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Summary

Given a braid b € By, we can produce a link by joining consecutive pairs of
strings at the top, forming caps, and at the bottom, forming cups. This link
is called the plat closure of b. The set of all braids that fix the caps form a
subgroup Hs,, and the plat closure of a braid is unchanged after multiplying
on the left or on the right by elements of Hy,. So plat closure gives a map
from the double cosets Hy,\Bs,/Hy, to the set of isotopy classes of non-
empty links. As well moving within a double coset there is a stabilisation
move which leaves the plat closure unchanged but increases the braid index
by two and multiplies on the right by o3,. Birman [2] has shown that any
two braid with isotopic plat closures can be related by a sequence of double
coset and stabilisation moves.

In Chapter 1 we show that if we change the way we draw the cups then
we can use twisted cabling as the stabilisation move. Moreover, we show
that any two braids with equal plat closure can be stabilised until they lie
in the same double coset. If we restrict to even braids then we can give the
plat closure a well defined orientation. In this case we show that untwisted
cabling can be used as the stabilisation move. Assuming an oriented version
of Birman’s result we construct a groupoid G and two subgroupoids H* and
H~ which satisfy the following. All the even braid groups embed in G. There
is a plat closure map on G which takes the same value on the embedded even
braid group. This plat closure is constant on the double cosets H™\G/H ™~ and
induces a bijection between double cosets and isotopy classes of non-empty
oriented links.

In Chapter 2 we compute a presentation for Hy,. To do this we construct
a 2-complex X,, on which Hs,, acts. Then we show that this complex is simply
connected, the action is transitive on the vertex set and the the number of
edge and face orbits is finite. We get generators from each edge orbit and
relations from the edge and face orbits. In the final chapter we compute a

presentation for the intersection of Hy,, and the pure braid group.

v



Chapter 1

Plat Closure of Braids and the

Braid Cabling Groupoid

1.1 Plat closure of braids

Given a braid b € B,, on 2n strings we define the plat closure of b to be
the link obtained by joining consecutive pairs of strings at the top, forming
caps, and at the bottom, forming cups. We can think of the caps as forming

a (0,2n)-tangle a and the cups as forming a (2n, 0)-tangle a .
ag =NnN--N ag =UUyU - U
Using this notation we can write the plat closure in the following way.
po(b) = afbay

As with the closure of braids, we have the following analogue of Alexan-
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der’s theorem[1].

Proposition 1. For every link L there exists some braid b € Bs,, such that

the plat closure of b is L. O
Let Hy, be the stabiliser of ad under the action of By, on (0, 2n)-tangles,
ie

H2n = {h € B2n

agh = ag }
By reflecting horizontally we see that this is also the stabiliser of a;.
For any braid b € B, we have the following two moves which preserve

its plat closure. A double coset move, (Ag), which moves within Hy,bHs,,

and a stabilisation move (By) which increases the braid index by two.

b— hlb hg hl, hg € H,, (AO)

b — boa, € Bayio (Bo)

In [2] Birman proves the following analogue of Markov’s theorem|8].
Theorem 2 (Birman). Given two braids b € B, and ' € By, with po(b) =
po(b') then there exists a sequence of braids

b:bo—>bl—>bg—>...—>b1\[:b/

such that the plat closure of each b; is equal to that of b, po(b;) = po(b),
and such that each move b; — b4y is either a double coset move (Ag), a

stabilisation move (By) or the inverse of a stabilisation move (By) ™. O



In [6] Hilden calculates a set of generators for Hy, and in Chapter 2 we

calculate a presentation for Hy,.

1.2 Shifted plat closure

If we shift the cups giving a modified form of plat closure, as defined below,

then we can use inclusion as the stabilisation move.

Definition 3. Let a™ = af and a~ = da; where § = 0109 - 09,_1.

at= M N M am =\ u”'u/

Define the shifted plat closure of a braid b € B,,, by

p(b) =a*ba .
Proposition 4. Given any link L there exists a braid b € Bo, such that the
shifted plat closure of b is L.

Proof. This follows from Proposition 1 and the fact that a= = da, . O

The loss of symmetry between the caps and the cups means that we now

have two subgroups of Bs,, the stabiliser of a* and the stabiliser of a™.

ha = a_}

As before, we now have two moves which preserve the shifted plat closure.

H;—n = {h € B2n

ath = a*} H,, = {h € By,

A double coset move (A;) and a stabilisation move (B). For b € By, let b



denote the inclusion of b in Bsg,», ie b is b with two vertical strings added

on the right.

b— htbh™  forsome h* € Hj,, h™ € H;, (Ay)

b—b (B1)

Theorem 5. Given any two braids b € Ba, and V' € Ba, with p(b) = p(V)

then there exists a sequence of braids

b:bo—>bl—>bg—>...—>b1\[:b/

such that for each b; we have that p(b;) = p(b) and that each move b; — b;1
is either an (A1), (By) or (By)™" move.

Proof. As a= = da, we have that p(b) = p(b') only if py(bd) = po(b'd) so by

Theorem 2 there exists a sequence

bd=dy—d —dy— ... > dy=0b0

such that for each d; we have that py(d;) = p(b) and that each move d; — d; 1
is one of (Ay), (By) or (By)™". Hence, if we let b; = d; 677, it suffices to show
that for each move d; — d; there exists a sequence of (A;), (By) or (By) ™"
moves from b; to b; 1.

Suppose that d; — d;41 is a move of type (Ag). Then d;y; = hyid;hs for

some hy,hy € Hj,. Consider the braid hib;0hed~", if we multiply by ¢ on



the right we get
(hlbi5h25_1>5 == hlbléhg - hldihg - di+1.

So biy1 = h1b;0hed ™! and, because hy € Hy, and 6hyd~t € H,, we have that
b; — b;y1 is a type (Ap) move.
Now suppose that d; — d;.1 is a move of type (By). So we have that
dis1 = d; 0an. Let z be the following element of Bo, .
] e )/
T = 0109 .0-27"10-2_1’1,1—1—10-2_1’1,1 e 0'1_1 — h
TN
Clearly v € Hj,,, as it is just a half twist of the outer cup. Now consider

b; , multiplying on the right by § gives

bz = bio10g - - 09 = (b;0) 02, = d;i0a,.

Hence b1 = b;  and we have the following sequence of moves from b; to

bisi.

1.3 Twisted cabling

Definition 6. For b € B,, let tw;(b) denote the braid on 2n + 2 strings

obtained by twist cabling the ith string of b, that is the braid obtained



by replacing the ith string from the top left with three new strings in a
neighbourhood of the original such that at each crossing they perform a half
twist in the same direction as the crossing. The function tw; can be defined

recursively by tw;(1) =1 and

( € . . .
o tw; (D) if j<i—1
04201410505 90541059 tWiga (b) i i =]

tw; (O']6 b) =

€ € € € € € Lo
0510505 103410505 twia(b)  ifi=j—1

\0']6- tw; (D) if j >4
where € = +1.

Proposition 7. The shifted plat closure of a braid is preserved by twisted

cabling.

Before we prove this we need the following definitions and lemma.
Let t; be the (2n,2n + 2)-tangle which adds a cap to the right of the ith

string if ¢ is even and to the left if ¢ is odd.

L if 4 is odd
t; = N
<o+ | if 7 is even
N
So att; =a*, t;a~ = a~ and, for example, t, = t3.

Let s; be the (2n + 2, 2n)-tangle which adds a cup to the left of the ith

string if 7 is even and to the right if ¢ is odd.



U e
. . if 7 is odd
i
S; =
U e
K if 7 is even
i
So s;a” =a~, ats; = a* and, for example, s; = s».

Let m be the natural map from By, to the symmetric group So,, ie 7
takes o; to the transposition (i i+1). If we write 7 and the action of the
symmetric group on the right then we can define the action of By, on the

set {1,...,2n} by i-b=1i- (bnm).

Lemma 8. For a braid b € Bsy, the following equations hold.

tWZ(b) Sj = S b

where 7 =1 - b.

Proof. As tw; can be defined recursively, it is enough to show this when

1

b= a,:fl. We will do the case when b = oy, the case b = o, " is similar. If

k <i—1 or k > i then clearly the equations hold. If £k = ¢ and i is even then

1

ti tWZ(O'Z) = \ th(Uz) Si+1 = AN
AN AN
AN
N\




4

= 0;liy1
If Kk =17 and 7 is odd then

\

ti tWi(O'Z‘) =

. /\/ / .

D)

= 0itit1

If k=7—1 and 7 is odd then

"

ti tWi(O'Z‘_l) = \

AN
\)
A

?

tw;(0;) Sip1 =

Il
N—
/C N N\

= 5,0;

~.

J/
XX

tw;(05-1) Sim1 =




-/

N |

= 0j-1ti—1 = 8,01

If k=14—1 and 7 is even then

AN

titw;(oi_1) = AN twi(0i—1) sic1 = [\
AN ) N

AN
\ 7
' &
M \
= 0i-1ti—1 =8, 0i_1

Proof of Proposition 7. For b € By, and 7 = ¢ - b we have the following.

p(tw;(b)) = attw;(b)a™ = a™t; tw;(b) a”

=a"btja” =aTba” = p(b)



So we have the following two moves which preserve the shifted plat closure

of a braid b € By,. A double coset move (A) and a twisted cabling move

(Bz).

b— h*bh™ for some h* € HJ ,h~ € H,, (As)

b — tw;(b) for some @ (B2)

Theorem 9. Given two braids b € By, and b’ € Ba,, with p(b) = p(b') then

there exists a sequence of braids
b=by—b —by— ... sby=10V

such that the shifted plat closure of each b; is equal to that of b, p(b;) = p(b),

and that each move b; — by is either an (As), (Bs) or (By)™" move.

Proof. By Theorem 5 there exists a sequence of (A;), (B;) and (B;)™" moves
from b to t/. As (A1) = (Ag) it is enough to show that we can replace each
(B;) move with a sequence of (A,), (By) and (By) ™" moves. So suppose that

b — bis a (B;) move and consider a¥tw;(b) where i = 2n - b=,
attw;(b) = att;tw;(b) = atbty, = a™b

Therefore tw;(b) and b lie in the same coset of Hj ,,\Ba,2 and hence
tw;(b) — b is an (Ay) move. So we can replace b — b with the following

sequence of moves.

b 22 tw,(b) 22

10



O

Proposition 10. Twisted cabling preserves Hy and Hs, , ie for all ht €
H3, and all h~ € Hj, and for all i we have that tw;(h*) € H3, ., and

tw;(h™) € Hy, 5.

Proof.

attw; (h*) = a*t;tw; (hY) = a*h*t; = att; = a*

where j =i -ht.

twi(h_) a” = twi(h_) sja” =sh~a” =s;a” =a"

where j =17-h™. O

Lemma 11. For i < j the braid tw;tw;(b) is in the same double coset as

th_,_QtW,' (b) .

Proof. Let k=14-band [ =7 -b We will assume that £ < [, the case when
k > [ is analogous. It is easy to see that the tangles ¢;t; and t.t; 2 are equal.

So we have the following.

attwitw; (b) = a™t; twitw; (D) = aTtw; (D) ¢,

=amt;tw;i(b) ty, = atbiyty

and

11



CL+th+2tWi(b) = a+tj+2th+2tWi(b)

= CL+tWZ‘(b) tl+2 = a+ti tWi(b) tl+2 = a+btktl+2.

Hence a*tw;tw;(b) = a™tw, otw;(b) and so tw;tw;(b) and tw; otw;(b) lie in

the same coset of H, ,\Bay 4. O

Theorem 12. The sequence of braids in Theorem 9 can be chosen so that
it consists of a sequence of (Bs) moves, then an (As) move, and then a

sequence of (Ba)™" moves.

Proof. First we will show that an (A,) followed by a (By) move can be re-
placed with a (B,) followed by an (A) move, and hence that a (By) ™" followed
by an (A,) can be replaced by an (A,) followed by a (By)™'. Then we will
show that a (By) ™" followed by a (B) can either be eliminated or replaced
by a (Bs), an (Ay), and then a (By)”" move. Finally, noting that an (Aj)
move followed by another (As) move is equivalent to a single (Ay) move, we
see that any sequence of moves can be rewritten into one of the required form
and hence the theorem holds.

So, suppose that we have an (A) move followed by a (Bs) move.
b 22 hroh™ P2 tw, (b A7)

Let j =i-h" and k =i - (h*b). By Proposition 10 we have that tw;(h') €

Hj, ., and tw,(h™) € H;,,,. So we can replace the sequence of moves with

12



the following.
b P2 tw;(b) L2 tw (B tw; (b) twy (h) = tw; (R0 1)
Now suppose that we have a (By) ™" then a (By) move
b by By,

So by = tw;(b2) and by = tw,(by) for some ¢, j. If i = j then the sequence can
be simplified. So without loss of generality we may assume that ¢ < j. So,

by Lemma 11, we have the following sequence of moves.

_ (B2) (A2) (B2) ! _
bl = tWi(bQ) — th+2tWi(bz) E— tWith(bg) — th(bg) = bg.

1.4 Cabling

Definition 13. For b € By, let c,(b) denote the braid on 2n + 2 strings
obtained by replacing the ith string from the top left with three new strings
parallel to the original. The function ¢, can be defined recursively by c,(1) =

1 and

13



o5 ¢;(b) if j<i—1
05 1905,105C, (b)) ifi=j

o o0, ¢, (b) ifi=5—1

\a§+2ci(b) if >4
where € = £1.
The goal is to use cabling as the stabilisation move, however there is an

obvious problem. Cabling does not always preserve the plat closure of a

braid, for example p(c, (1)) # p(o1).
Proposition 14. For allb € By, if i =i-b mod 2 then p(b) = p(c,(D)).

Before we prove this we need the following.

As before, let t; be the (2n,2n + 2)-tangle which adds a cap to the right
of the ith string if 7 is even and to the left if 7 is odd. Similarly let ¢, be the
(2n,2n + 2)-tangle which adds a cap to the left of the ith string if 7 is even

and to the right if ¢ is odd.

i

if i is odd Y oo ifdis odd
N N

As before, let s; be the (2n + 2, 2n)-tangle which adds a cup to the left

ti t

if 7 is even

i

if 7 is even
N

N

of the ith string if 7 is even and to the right if ¢ is odd. Similarly, let s be
the (2n + 2, 2n)—tangle which adds a cup to the right of the ith string if ¢ is

even and to the left if 7 is odd.

14



if 7 is odd

U o
2

l

S; —
’

if 7 is even

. if 7 is even
1

Lemma 15. For any braid b € By, let 7 =1 -b, then we have the following.

bt;, ifi=j mod 2 bt, ifi=j mod 2
tic;(b) = tic,(b) =

bty ifi#j mod 2 bt; ifi#j mod 2

sib ifi=j mod 2 sib ifi=j mod 2
c;(b)s; = c;(b)sj =

sib ifi#j mod 2 sib ifi#£j mod 2

Proof. Because ¢, can be defined iteratively it is enough to show this when

O'ktj

+1

b = o~ we will only show that t; c.(ox) = , the remaining cases are

!
‘ ‘ O‘k t]
similar.

If k <i—1or k > 1 then clearly the equation holds. If £ = ¢ and i is

tic;(0:) = (\ ] = = 0iti

NN

even then

If k=17 and 7 is odd then

D [ [
tic,(0;) = ] = ] =0itiy
4

M

15



If k=7—1 and 7 is odd then

Li {

ti Ci(gi—l) = AN = =0;—1 t;—l
AN
\ M N

If k=17 —1 and 7 is even then
\ 5

ti Ci(gi—l) = AN = =0;—1 t;—l
AN
\ M

O
Proof of Proposition 14. If b € By, and ¢ =7 -b mod 2 then we have
p(c;(b)) = a"c;(b)a” =a'tic(b)a”
=a"btiya” =atba =p(b).
]

So we have the following two types of moves that preserve the shifted plat

closure of a braid b € By,. A double coset move (A3) and a cabling move

(Bs).

b— htbh~  for some ht € H}, ,h~ € H;, (A3)

b—c,(b) for ¢ such that i =4i-b mod 2 (B3)

16



Theorem 16. Given two braids b € By, and b’ € Bay,, with p(b) = p(b') then

there exists a sequence of braids
b=by—b —by— ... sby=10V

such that the shifted plat closure of each b; is equal to that of b, p(b;) = p(b),

and that each move b; — byyy is either an (As), (Bs) or (Bs)™" move.

Proof. By Theorem 5 there exists a sequence of (A1), (By) and (B1)™" moves
from b to t/. As (A3) = (A;) it is enough to show that we can replace each
(B;) move with a sequence of (A;), (B;) and (By)™" moves.

So suppose that b — b is a (B;) move. Let i = 2n -b~'. If i is even then

atc,(b) = a’t;c;(b) = atbty, = a™b.

)

Therefore c,(b) and b lie in the same coset of Hj, \Ba, and we can replace
b — b with
b ¢ () A2 T,

7

If on the other hand i is odd, we have that c, ,(0;b) is in the same coset as

o;b and we can replace b — b with the following.
b b P e (o) O of 20T

O

Proposition 17. Cabling preserves Hy,, and H,,. In other words, for all

ht € H3, and all i such that i =i-h" mod 2 we have c;(h") € H}, ., and

17



for allh~ € Hy,, and alli such thati =i-h~ mod 2 we have c,(h™) € Hy, .

Proof.

atc;(ht) =a"t;c;(h") =a"ht; =at; = a*

where j =i-h™.

where j =17-h™. O

Definition 18. Say that a braid b € B, is even if for all ¢ we have i =7 - b

mod 2. The even braids form a subgroup E,, of Bg,.

Proposition 19. For any b € By, there exists h™ € Hj,, and h™ € H;,, such

that h*bh™ is even.

Proof. Label the end of the strings with the elements of {1,2,...,2n} x
{+, =} so that the top of the strings are labelled (1,+),(2,+),...,(2n,+)
and the bottom labelled (1, —),(2,—),...,(2n, —). Each component C' of the
link p(b) gives a sequence of labels constructed by starting at a point (i, +)
on C' then following C' down to (i-b, —) and then carrying on along C' listing
the labels in the order that they occur. We will assume that the starting
point (7,+) is chosen so that i is odd. A braid is even if and only if the
indices follow the pattern odd, odd, even, even, odd, odd, etc.

Suppose that the component C gives rise to the sequence (i, sg)5_;. Then
sg. =+ ifk=0o0r1 mod4 and s,; = — if £ = 2 or 3 mod 4. Hence

Sop = Sory1. From the construction it follows that the pair i, and iggiq

18



consists of one even number and one odd number. A braid is even if and
only if whenever k is odd this pair is of the form odd then even and whenever
k is even this pair is even then odd. For each pair (g, Sox), (f2k+1, S2x+1) that
doesn’t follow this pattern the half twist of the corresponding cap, if sop = +,
or cup, if so, = —, multiplied on the top or the bottom respectively of the
braid corrects this pair and moves within the double coset. Applying this
to every pair of every component we produce an even braid that lies in the

same double coset as the original braid. O

Proposition 20. Ifb € Ey, and b’ € By, with p(b) = p(b') then the sequence

of braids in Theorem 16 can be chosen so that each b; is even.

Proof. We will show that any sequence of length two starting at an even
braid can be replaced with a sequence where all but the last braid are even.
We can assume that at most one of the moves is an (Az) move. As (B3) and
(Bs)™' moves take even braids to even braids we may assume that the first
move is an (A3) move. So we only have two cases, an (A3) then a (Bj), or
an (As) then a (Bs) ™.

First suppose that we have an (A3) move followed by a (Bs) move
b— h"bh™ — c,(htbh™)

where biseven. Let j=i-ht, k=j-bandl =k -h".
If i =j mod 2 then k =1 mod 2 and so c,(h*) € H], ., and ¢, (h™) €

H,, ,,. Hence we have the following sequence of moves.

b e () L2 e (ht) e, (b)c, (h™) =c,(hTbh™)
J 7 7 k 7

19



Suppose that i # j mod 2 so we also have that £ # [ mod 2. Let
r = 0j0;410; and y = o '0;} 07" We have that c;(b) = zc;(b)y, to see
this it is enough consider the cases b = o; and b = ¢;_;. The following shows

that c,(h")x € H, ., and yc, (h™) € Hy, ..

atc;(ht)x =a"tic,(h")x =a"h"tix =a"h™t; =a"t; = a*

ye,(h)a” =y (h)sia” =ys,ha” =s,h™a” =s,a” =a

So we can replace the original sequence of moves with the following.
(B3) (A3) — _
b 6y (b) 5 () ¢,) ye () = <, (hbh)

Now we look at the second case. Suppose that we have an (A3) and then
a (B3)™" move

b— htbh™ =, (b)) = Vf

where b is even. By Proposition 19 there exists z € Hj, , and y € H,, _,
such that by iseven. Let i =j -2~ ', k=j-b andl =k -y.
If i =j mod 2 then we also have that k = mod 2 and so ¢;(z) € Hj,

and ¢, (y) € H;,. Therefore the original sequence can be replaced with

b2 ¢ () hTbh™c, (y) = ¢, (ably) % by L2 v,

20



If i 25 mod 2 then k # [ mod 2. So, as in the first case, we have that

c,(v) 0joj410; € Hy,,

Uk_lo-k_-i{lo-k_lck (y) S H2_n7
and
0;0j+10; ¢; (V') oy e 10 = =c;(b).

So the sequence can be replaced with the following.

b (Asg) (Asz) b/

c;(x) 0050105 Kb R oy ok o e (y) = ¢, (ably) P ably

O

Theorem 21. Given two even braids b € Eq, and b’ € B, with p(b) = p(V)
then the sequence of braids from b to’ can be chosen so that all of the (B3)
moves come first, we then have an (As) move and then all of the (Bs)™"

moves at the end.

Note that this can fail if either b or o' is not even. For example, if
b=o0, € Byand i/ =1 € By then p(b) = p(¥') is the unknot but there

are no (Bs) moves starting at b.

Proof. By Proposition 20 we may assume that every braid in the sequence
is even. So, by the proof of Proposition 20, whenever we have an (Az) move
followed by an (Bs3) move we can replace it with a (Bj3) followed by an (Aj3)

move.
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Suppose that we have a (Bs)~' then a (Bs),
¢;(b) = b—c;(b).

If © = j then clearly this sequence can be removed. Otherwise we may assume
that ¢ < j and then this can be replaced by the following sequence.

&, (b) 2 c o, () = g, (6) 2 ¢ (b)

j+2%

Therefore any sequence can be rewritten to one of the required form. [

For an even braid b € E,, the even numbered strings at the top connect
to even numbered strings at the bottom and the odd numbered strings at
the top connect to odd numbered strings at the bottom. So we have a well
defined notion of an even string and an odd string. We can now give the odd
strings a downward orientation and the even strings an upward orientation.
This orientation is consistent with the shifted plat closure and hence gives a
well defined oriented plat closure p (b). This also gives an orientation on the

caps and on the cups and we can write p (b) = @tba.

Tt = N/ e S W—:\v \>/\>//

Proposition 22. Given any oriented link L there exists some braid b € Bo,

such that L = o (b).

Proof. By Alexander’s theorem[l] L can be expressed as the closure of a
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braid b € B,,, ie

This is isotopic to the following, which is clearly the oriented plat closure of

some even braid.

O

Proposition 23. The oriented plat closure of an even braid b € Es, is

preserved by cabling, ie p (b) = p (¢, (b)) for every 1 <i < 2n.

Proof. 1f we add the appropriate orientation to the ¢; and s; used in the proof
of Proposition 14 and Lemma 15 the same arguments hold for the oriented

plat closure. O

As with the unoriented case we have two moves which preserve the ori-
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ented plat closure of an even braid. A double coset move and a stabilisation

move.

b— htboh~ for some h™ € Hj, N Ey,, h~ € Hy, NEy, (Ay)

b—c,(b) for some i (By)

Conjecture 24. Given two braids b € By, and bV € BEq, with p (b) = p (V/
then there exists a path from b to U consisting of (A4), (By) and (By) ™"

moves.

1.5 The Braid Cabling Groupoid

By a forest we will mean a sequence of planar rooted ternary trees. For

\/

example,

Let F'(k,l) be the set of all forest with & leaves and [ trunks. Our example

f lies in F'(11,3). We have a map

F(k,1) x F(l,m) — F(k,m)

(f,9)— fg
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given by gluing the trunks of the first forest onto the leaves of the second.
The set F'(k, k) contains a single forest which we will call the identity. The
forests form a category F' with objects N and morphism F'(k,1).

Given a braid § € B,, and a forest f € F'(m,n) we can glue the trunks of
the trees in f to the top of the strings in 3. If we then pull all the branching
points down through 3 we get a new braid c, (6) and a new forest f- (3. The
forest f - (3 can also be thought of as the result of permuting the trees of f
via the permutation defined by 3. If f contains a single branching point on
the ith tree then c, is the same as the cabling map c;.

Let T be the directed graph with vertex set 2N and edges 2n —— 2n for
each (0 € E,,, and edges 2m 1, 9n and 2n i 2m for each f € F'(2m,2n).
Let C be the free category on I'. In other words, C is the category with
objects 2N and morphisms hom(2m, 2n) the set of all paths from 2m to 2n
in I'. Given paths x from 2[ to 2m and y from 2m to 2n we will write zy for
the composite path from 2/ to 2n, ie we will write composition of morphisms
as a map hom(2l, 2m) x hom(2m, 2n) — hom(2l, 2n). We identify the edges
given by the identity elements 1 € Ey, and 1 € F(2n,2n) with the identity
morphism 2n — 2n. We will write x € I if x is an edge of I' and z € C if «

is a morphism of C. We will call elements of C words. Let the braid cabling
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groupoid G be the quotient of C by the following relations.

CiCit=1=C;'C (1)
aff =~ for a, 8,7 € Ey, with aff =g,, v (2)

CrC, = Cyy (3)
CtfB=c;(8)Crp (4)

The equivalence relation on words generated by (1)—(4) is the same as

the reflexive transitive closure of the following system of rewrite rules.

CiB — c;(B) Crp (i)

BO = Crhac 54 (0) (ii)

C;C, — O, (iid)

c,lCit =0y (iv)

af — v where af =g,, ¥ (v)

CyCyt — C1Cy where ¢'f = fg (vi)

Cr, ¢;(B) Cirpn — Cy ' BCy (vii)

Note that for every f € F(2n,2m) and g € F(2l,2m) there exists ¢’ €
F(2k,2n) and f’' € F(2k,2l) such that ¢'f = f'g.

Proposition 25. The rules (i)—(vii) define a well-founded confluent rewrite

system.

Proof. We need to show that whenever a word can be rewritten in two differ-

ent ways then the resulting words can be rewritten by a sequence of rewrites
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to the same word. The following is a list of all words that can be rewritten

in two different ways.
CyB Gyt
CvCyp
Craf
Cryci(8) Crpmny
15} Cg_lC’f_l
af C’;l
aCrrci(B) Crom
C;C,Ch
CngC,jl
Crycr(B) Clr.pmnCe
cyle et
C'fC;lC,Zl
C'Crlcs(B) Cirppn
afy
C.Cr,c;(B) Cirpm

Crrci(B) CrpnCe?

Cryci(B) Cirm = Crgep (B) Cprpm

(iii), (iii)
(iii), (vi)
(iii), (vii)
(iv), (iv)
(iv), (vi)
(iv), (vii)

(vi), (vii)
(vii), (vii)

Before we continue we will need the following lemma.
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Lemma 26. Cabling and the action of braids on forests satisfies the following

equations.

O

First we consider the word Cy3C, " which can be rewritten by a (i) rule
or a (ii) rule. Suppose that f'g = ¢'(f - 8). Applying 57! to both sides of

this equation we see that (f’ -c, (ﬂ_l)> (-7 = (g Cra (B~

C’fﬁCg‘l ® Cf(ﬂ) Cf.ﬁCg‘l
l(ﬁ) l(iv)
CrCypr€y5-1(B) c;(8) Cy'Cy

l(vi) l(ii)
—1 1

0 1
Clges 581 Creg3HC.5-1 (B) == Cgrc (9)-1S(g1c (3177 (B) Cr
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Now consider C;Cy[3.

CrCyp Cfcg (B) Cy.p
l(iii) l(i)
Craf3 Crg(B8) Crey(3)Cop

l(i) l(iﬁ)

¢y (B) Clrgyp == C4,(B) Csc,(8)(9-)
Now consider C'ya/3, where a3 = 7.
Cfaﬁ Cf( )Cf.a/@
l(V) J{(i)
Cry Cy () Cta (8) Cry
l(i) &
Cy (7) Cy

Now consider Cj?glcf (B) Cir-8n7-

Cfgcf(ﬁ)c(fﬁ)h7—>0fgcf(ﬂ) -0 (V) Ci(r-8)n)-

J{(vii) l v)

C1BCyy Cr i (B, (1) Cuirpma
Jo H
Cy 1B, (7) Crp < Cryes (B, (1) Cispep (i
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Now consider 3C, 1Cf_1.

—1v—1 (ii) - -1
ﬁCg Cf Cﬁlcgﬁ (6)01‘
(iv) (i)
—1 1 -
BCrq Cop1Cre, (-1 (e (-0 1) (B)
(IV) (1v)
—1 -1
Crgr-1S(sgp5-1 (B) == Clrc, (5-1)(g.5-H) (e, (5-1)(g5-1) ()

Now consider a3 C7 !, where v = af.

aBC;! O aChc(0)
l(v) l(ii)
vCy! Crhta-1Crp1001(@) €551 (5)
l(ii) ©
C_ e 1(7)

Now consider o C’J?glcf (B) C(s.p)n- First note that

Cf-cg(ofl) <Cg,a—1 (Oé) ﬂ) = Cf-cg(ofl) <Cg,a—1 (Oé)> Cf'Cg(Ofl)Cgvofl (@) (6)
= C(fg),afl (Oé) Cf (ﬁ)

and

(fcy@™) cppal(a)B=f-5.
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— (vii)
« Cfglcf (6) C(f.g)h

Crgya-1C(rgra—t (@) s (B) Cirom

l v)

1 (vii)
Cfcyla1)(ga1)Chc (1) (Cg-orl (@) 5) Clrom —

Now consider C;C,C},.

C0,Ch - 040

l (i) l (iii)
(iii)

CyCgp ——=Clgn

aCrlBCy,

(i)

C_lflcg,afl (a) BCh

g

ct

R

()i (@) B) Ch

Now consider CyC,C;*. Let f', g/, b’ and h” satisfy the following.

WNg=gh

f/hl — h/lf
So we have that h"fg = f'h'g = f'g'h.

o001 - st

l(iii) l(vi)

C,Cit ColCuCy

o

-1
Chr Crpry
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Now consider Cf_glcf (B) Cr.pnCe.

(vii)

C'Jfglcf(ﬂ) C (f8) nCo —> g_lﬂ C,C,
l(iii) l(iii)
(vii)
Cfg Cf(ﬂ) C(f,g) C 160@
Now consider C;'C;'Cy
(1v _ _
C IC 1C 1 gflCh 1
l(iV) l(iV)
—1—1 (V) -1
Cf Chg Chgf

Now consider CyC LCL Let f/, ¢', W and f” satisfy the following

fla=4d'f
h/f/ — f'//h

Vl

CrCte e 0l opCy !

l(iV) l(vi)

CyChy CrCy Cpn

l(vo %

-1
Ch’g’Cf”
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Now consider C’e_lC]?glcf (B) Cty.p)n-

vii

Co1C3) e (B) Cppn ~2 C1C 1 BC

l(iV) l (iv)

_ Wil)
CraeCs (B) Cirpm CtBC

For the word oy this follows from the associativity of multiplication in
the braid group.
Now consider C’eC’]Tglcf (B) Cr.pn- Let €, f', g’ and €” satisfy the follow-

ing.

e// — f/e/
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CeClyc; () Crppm YD 0.0y B0

(vi) (vi)
C;;,Ce//cf(ﬁ) C(f.ﬁ)h Cg_,lC’erﬁC’h
() )
CrigCon(B) CorcCirpm Cy'CaBCh
(iif) (i)
CryCans(B) Cercy@)s-)n Cylc. (8) CorpCh

Cf:lrcf/el (/6) C((ellf)ﬁ)h
(iii)
CrryCpe (B) Cprerrpm

_ (vii) _
ClrryCpre (B) Clprey )e-mn == Cy'cur (B) Clerppn

Now consider Cf_glcf (B) Cir.pnCt. Let €, f', b/ and €” satisfy the fol-

lowing.

Note that
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and so

Crycr(B) ClrpnCet = O
(vi) (vi)
Crle,(8) Col Cr CBCTC
(i (i)
1 1 _
Cro CorepioyrCeres 15 () Crw Cq ' CogaCo g1 () On
(v)
1 .
Cleres@nsaSerepar-r B Crw )

1 vii _
Cip e 69196 5131y B) Come == Ol 1y €52 (8) o

Now consider Cj?glcf (B) Cirpn = C';,;,cf, (") C(r.prn- We have the fol-

lowing.

(vii)

Cy ¢;(B) Cirpn = CJT,;,cf, (8) Cprpyw —>Cy 1 BCy

\L(Vii)

Cg_’ 1 ﬁ/c«hl

If we let F' = LCM(f, f’) then there exists G such that FG = fg and there
exists f; and f] such that ff; = F = f'f{. So we have that ¢ = f1G and
g' = fiG. There exists 3 such that c.(fy) = c,;(3). We also have that
B =cy (Bo) and ' = Cpy (Bo). Also F'- 3 = LCM(f -3, f - ) hence there
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exists H such that (F- 5y)H = (f - #)h and we have that (f; - 5o)H = h and

(fi - Bo)H = K. So we can complete the above with the following.

Cg_l/gch = CflGCf1 (/60) C(_fi'ﬁo)H

l (vii)

_ _ (vii) _
Cgllﬂ'Ch’ - Cf{GCf{ (o) C(f?ﬁo)H CaloCy'

O

Now that we have a complete rewrite system we have a unique normal
form N(z) for any given word x. We have that for each word x there exists

f, g and (8 such that N(z) = C’f_lﬁCg.

Corollary 27. The maps Eo, — G and the functor F' — G given by 5 +— (3

and f — Cy respectively are injective.

For x € G we can define its oriented plat closure by p (z) = p (3) where
N(z) = C'f_lﬂCg. Note that once we have written x in the form ijlﬂCg we
don’t need to do the remaining (vii) rewrite to find p (x) as the plat closure

is invariant under cabling.

Proposition 28. For every link L there exists some x € G such that p (v) =

L.

Proof. If we let ¢ denote the inclusion of Es, into Aut(2n) then it is clear

that ‘p = p oi. Hence this follows from Proposition 22. O

Let H™ be the subgroupoid consisting of all morphisms whose normal

form is C'f_lﬁCg for any f and g and any 3 € Hj N E,,. By Proposition 17
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this is closed under multiplication. Similarly let H~ be the subgroupoid
consisting of all morphisms whose normal form is C’;l BC, where 8 € H,, N

E,,.

Proposition 29. The oriented plat closure map is constant on the double

cosets of HT\G/H ™.

Proof. We will show that multiplying on the left by an element of H* pre-
serves the plat closure. Multiplying on the right by elements of H~ is similar.

Given z = C’;lﬁ CyeGandy=C'0C, € HY, ie 6 € Hj, for some n.
We want to show that p (z) = p (yx), so we start by calculating the normal

form of yx. We have the following where f'q = ¢'f.

C10C,Cr A C,

(vi)

C10CH 0B C,

(i), (1)
Cp_lcjz.lgflcf/.gfl (‘9) Cy (ﬁ) Cq"ﬁcg
(iii),(v),(iv)
C(_f}.g—l)p(cff.g—l (9) Cq’ (/6)) C(q’ﬂ)g

Then there may be a (vii) move on the end of this sequence. So we have
that p (yz) = p (cf,.e,l(ﬁ) Cy (ﬂ)) By Proposition 17 ¢, , 1 (6) is in H,
for some m and by Proposition 14 p (3) = ?(cq, (ﬂ)) therefore p (z) =

P (yz). O

Conjecture 30. The oriented plat closure map ‘p from HT\G/H™ to the

set of non-empty oriented links is a bijection.
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Proof given Conjecture 24. Given z,z' € G with p () = p (2). Suppose
that N(z) = C’;lﬁ C, and that N(2') = Cf_,lﬁ’ Cy. So we have that p () =

P (8). Therefore, by Theorem 21 and Conjecture 24 there exists iy, 4s, . . . iy,

JisJ2s---ju and bt € H, and b~ € Hy, such that
i, Ciy " Gy (ﬁ) = h’+cj1 (;j2 .. 'CjM (6/) o

The sequence of cabling moves can be combined into a single forest cabling

move. So for some f; and fs,
¢, (8) = e, (3) b
We have that

Cr'BCy = Cr'Cles (B) Cpr 50,

= C;le_lthrcfz (6/) h_Cfl.ﬁCg

Because CJZICJT;(h*)_lele € H* and C'_lC]?l.lﬁ(h_)_leQﬂ/Cg/ € H™ we

g

have that x is in the same double coset as

Cf_,lezlcfz (/6/) sz.ﬁlcg/ = Cf_,lﬁlcg/.
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Chapter 2

Hilden’s group

2.1 Introduction

Let H? denote the closed upper half-space of R?, let aj,as,...,a, C H?
be n pairwise disjoint properly embedded unknotted arcs and let a, = a; U
as U ---Ua,. Viewing the braid group as the mapping class group of the
punctured disc, if this disc is included in 0H? with da, as the punctures, one
can define Hilden’s group, Hs,, to be the subgroup of By, consisting of all
mapping classes that can be extended to H?\ a.. Or equivalently, Hy, is the
stabiliser of a, under the action of By, on 0, 2n-tangles.

Hilden[6] found generators for a similar subgroup of the braid group of
a sphere. For any given braid b multiplying on either the left or the right
by elements of Hs, preserves the plat closure, ie plat closure is constant on
each double coset. Birman[2] showed that if two braids have the same plat
closure then they can be related by a sequence of these double coset moves

and stabilisation moves that changes the braid index by 2.

39



We calculate a presentation for Hy,, using the action of this group on a cel-
lular complex. Hatcher-Thurston[5], Wajnryb[9, 10, 11], Laudenbach[7], etc
used the same method to calculate presentations for mapping class groups.
We start in Section 2.2 by outlining this method. A similar but more gen-
eral method is given by Brown [4]. Brendle-Hatcher[3] have calculated a
presentation for Hy, using a different method.

In Section 2.3 we define a simply-connected complex X,,. In Section 2.4
we remove some of the edges and faces of this complex resulting in a new
complex which remains simply-connected but gives a simpler presentation.
This presentation is calculated in Section 2.5 and then used to calculate a

presentation with generators similar to those found by Hilden.

2.2 The method

In this section we recall the method of Hatcher-Thurston[5]. This section
follows §2 “Une Méthode pour présenter G” of Laudenbach[7] and all results
in this section are from there.

Suppose that X is a connected simply-connected cellular 2-complex such
that each attaching map is injective and that each cell is uniquely determined
by its boundary. Suppose that G is a group acting cellularly on the right
of X, and that this action is transitive on the vertex set X°. Pick a vertex
vp € X as a basepoint and let H denote its stabiliser in G, ie H = {g € G |
Vo - g = vo}. Suppose that H has a presentation with generating set Sy and
relations Ry, ie H = (S| Ro).

Given vertices u,v € X such that {u, v} is the boundary of an edge of X
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we will write (u,v) for this (oriented) edge. Given a sequence vy, vy, .. ., vy
of vertices such that either v; = v; 41 or (v, v;11) forms an edge we will write
(v1,vg,...,v;) for the path traversing these edges. Whenever v; = v we
shall say that v; is a stationary point.

Let E denote the set of all oriented edges starting at vy, so H acts on F.
Suppose that {ey}aca is a set of representatives for the H—orbits of the edges
in £, ie E = J,cpexH and exH = ey H only if A = ). Since the action of
G is transitive on X? we can find ry € G such that ey = (v, v - 7y). Let
S1={r}sen

The edges {ex}rea also form a set of representatives for the edge orbits
of the G—action on X. To see this suppose that two of these edges lie in the
same G-orbit, ie (v, v) = (vg,u) - g. Then we have that vy = v - g therefore
g€ H.

Suppose that {f,}.enm is a set of representatives for the G-orbits of the
faces of X. Since the action is transitive on X, we may assume that the

boundary of each face f, contains the vertex vy.

Definition 1. An h-product of length k is a word of the form

hk+1 ’I")\khk T)\kflhk—l e r)\lhl

where each \; € A and each of the h; are words in H. To each h-product
we can associate an edge path P = (vg, vq,...,v;) in X starting at vy then
visiting the vertices v; = vy - ry, b1, v2 = vy - Tx,ha Ta, h1, etc. This means
that the edge (v;—1,v;) is in the orbit of (v, vy - ry,). Given any edge path

starting at vg we can choose an h-product to represent it.
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We can now choose the following three sets of relations.

Ry: For each edge orbit representative ey pick a generating set T" for the
stabiliser of this edge, ie (T') = Stabg(vg) N Stabg(vg - ry). For each

t € T we have the relation r,\tr/(l = h for some word h € H.

Ry: For each ey we have a relation ryh vy = h' where the LHS is a choice

of h-product for the path (vo, vg - ry,v) and A’ is some word in H.

R3: For each face orbit representative f,, with boundary (vg, v, . .., Ug_1, o)
choose an h-product representing this path and a word h € H such that

TAkhk . 'T)\lhl = h.

Theorem 2. The group G has the following presentation.

G = (SoUSi|RoU Ry URyU Rg)

Corollary 3. Suppose that H is finitely presented, that the number of edge
and face orbits is finite and that each edge stabiliser is finitely generated.

Then G has a finite presentation.
We prove Theorem 2 in several steps.
Claim 1. The set Sy U Sy generates G.

Proof. Given any g € G, let v = vy - g. Now as X is connected there is an
edge path connecting vy to v. Choose an h-product g1 = hyt1 - 73,1

representing this path. Then vy - gg; ' = v s0 g = hgy for some h € H. O

Claim 2. If two h-products, p1 and ps, give rise to the same path and are

equal in G then they are equivalent modulo Ry U R;.
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Proof. Because p; and p, represent the same path they must have equal
length. Suppose that p; = hiy1 ra ke - -7a P and po = frp r,\;cfk . -r,\zlfl.
Clearly, if the two h-products are of length 0 then they are both words in H
and so are equivalent modulo Ry. Now suppose that k £ 0. The fact that p;

and p, represent the same path means that
(vo, vo - Ta Py Vo - Tahe Ta R, L) = (o, Vo '7’,\'1f1, UO'T,\gf2 7’,\'1f1, )

therefore

(vo, Vo = Txy) = (vo,v0 - ;) - fibit.

So A\ = A] and flhl_l is in the stabiliser of the edge ey,. Hence, for some

word f} in H

fevr o fi g fo g b he = fapr ma fi T fa g

modulo R;. By induction the two shorter h-products hy41 75, bt - - - 7r,he and
fra1 T fe-- T f4 are equivalent modulo Ry U Ry, and so p; = p, modulo

RoU R;. U

Claim 3. Suppose that two h-products represent the same element of G and
induce edge paths that are equivalent modulo backtracking. Then they are

equivalent modulo Ry U R1 U Ry.

Proof. 1t is enough to show that any h-product is equivalent to an h-product
that represents a path without any backtracking. Furthermore, if we proceed
by induction on the length of the h-product, it is enough to show that any

h-product whose associated path has backtracking at the end is equivalent
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to a shorter h-product.

Suppose that g = hyy3 7y, k2 Ta,, Prs1 gr is such an h-product, ie

UV, = Vo Gk
Vk+1 = Vo " Thpy,y his1 g
Vk+2 = UV = 7Vo- TAk+2hk+2 TAthk—i—l Gk

and g is a shorter h-product. So, multiplying by g, lh,;il, we find that
TApso k42 Th,p, 18 an h-product with associated path (vo, Vg - SV Vo). Sup-
pose that ryhry, = h' is the Ry relation corresponding to this path. Then
A= Xey1 and vg - ryvh = vg - ag,hege. S0 XN = Ajpo and hgyoh ! s in the

stabiliser of the edge ey, . Therefore there exists a word f in H such that

Pirs Tag o Pkr2 "o Mkt G = hags f b mahigy gr

modulo R;. Hence modulo R, this is equal to hg,3fh'hgi19k, a shorter h-

product. O

Claim 4. Any h-product equal to the identity in G is equivalent to the identity

modulo RO U Rl U R2 U Rg.

Proof. Given any h-product g, equal to the identity in G its associated edge
path must be a loop. Since X is simply-connected this loop is the boundary
of a union of faces of X. So choose one of these faces f touching the loop
at a vertex v then modulo Ry U Ry U Ry we can add backtracking starting
at v going around the boundary of f. Modulo R3 we can remove one pass

round Jf. This leaves a new loop that can be spanned by one less face,
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which, by induction on the minimum number of faces needed to span a loop,

is equivalent to the identity. O

Proof of Theorem 2. Given any word in the generators, SyU Sy, that is equal
to the identity in G then modulo R, it is equivalent to an h-product and so

by Claim 4 is equivalent to the identity modulo Ry U Ry U Ry U R3. 0

2.3 The complex X,

An embedded disc D C H? is said to cut out a; if the interior of D is disjoint
from a,, the arc a; is contained in the boundary of D and the boundary
of D lies in a; U OH3, ie a; C 0D and 0D C a; UOH?. A cut system
for a, is the isotopy class of n pairwise disjoint discs (D1, Ds, ... D,) where
each D; cuts out the arc a;. Say that two cut systems (Dy, Ds, ..., D,) and
(Ey, By, ..., E,) differ by a simple i-move if D; N E; = a; and D; = E; for all
j # 4. If this is the case we will suppress the non-changing discs and write

(Di) — (Ei).

Definition 4. Define the cut system complex X,, as follows. The set of all
cut systems for a, forms the vertex set XZ. Two vertices are connected by
a single edge iff they differ by a simple move. Finally, glue faces into every

loop of the following form, giving triangular and rectangular faces.
(D) ——(Dj) (Ds, Dj) —— (Dj, Dj)

(D7) (Di, Dj) —— (D, D5)
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Define the basepoint to be vy = (dy,ds, ..., d,) where the d; are vertical

discs below the a;, see Figure 2.1. Sometimes it is convenient to think of the

ai a2

Figure 2.1: The arcs a; and the discs d;

a; and d; rotated by a quarter turn.

Before we prove that this complex is simply connected we need the fol-
lowing lemma about substituting one disc for another.

Suppose that v = (Dy, Ds,...D,) is a vertex of X,, and that D and D*
are two discs cutting out the arc a;. We will say that the tuple (v, D, D*)
forms a valid substitution if either D # D; for any ¢, or if there exists some ¢
such that D = D; and that for all j # i we have that D; N D* = (). In other
words if D is in v then (v, D, D*) forms a valid substitution if there exists an
edge (D = D;)—(D*). If (v, D, D*) forms a valid substitution then we can

replace D with D* to get a vertex v*, ie

(% if DZ 7£ D,
(D*) if D; = D.
Similarly, for any edge path P with a choice of discs representing each

vertex, we say (P, D, D*) forms a valid substitution if for each vertex v of P

the tuple (v, D, D*) forms a valid substitution and for each edge (v;, v;41) of
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P there is an edge (v}, v}, ). If (P, D, D*) forms a valid substitution then we
can replace each occurrence of D with D*, ie replace each vertex v with v*,

giving a new path P*.

Lemma 5. If (P, D, D*) forms a valid substitution, where P = (vy,...,vg),

then P* is a path and the loop

vlévk
* pP* *
UV ——— U

is homotopic to a point. Moreover, if P is a loop then so is P* and they are

homotopic as loops.

Proof. Clearly we may assume that D and D* are not isotopic, otherwise
P = P*. Suppose that D and D* cut out the arc a;. For each vertex v of P
we have that either v = v* or (v,v*) is an edge of X,,.

For each edge (u,v) in P, where u = (D;) and v = (D), we have the fol-
lowing possibilities. If D is not in u nor in v then (u,v) = (u*,v*). Otherwise
we have two cases depending on whether ¢ = j or not.

If © = 7 then only one of either u or v contains D. Suppose that D € u,
ie D; = D. If D* = D) then u* = v* = v and (u,v) is homotopic to (u*,v*)

in X;. Otherwise, if D* # D,, we have the following face of X,,.
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If i # j the we have the following face of X,,.

<D’Dj>L<D7D;'>

(D*, D;) (D, D})

In either case there is a homotopy from (u, v) to (u*,v*) that agrees with
the homotopies between the vertices of P and P*. Therefore P is homotopic

to P*. O
Theorem 6. The complex X,, is connected and simply connected.

Proof. 1t suffices to show that any loop is homotopic to the constant loop at
vo. Given a loop in X,, it is homotopic to an edge path P. Now choose discs
to represent each vertex of P. We shall write D € P if D is one of the discs

chosen as a representative of some vertex of P.

Claim. The path P is homotopic to a path whose vertices admit representa-

tive discs which intersect the discs dy, ds, . .., d, only in the arcs ai, as, ..., a,.

Assuming that the intersection of the discs D € P with d; Uds U ... Ud,
isn’t only ay,as,...,a, we can carry out the following procedure.

For some i the union of the discs in P intersects d; in a non-empty collec-
tion of arcs. Pick an arc « of this intersection that is lowest in the sense that
it doesn’t separate the entirety of any other arc from 0H? Nd;. For example,
see Figure 2.2 where a and ~ are lowest but 3 is not.

The arc a comes from some D € P. Now cut D along «, discard the
section not containing a; and glue in a disc parallel to d;. This results in a

new disc D* whose intersection with d; contains at least one less arc.
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7 &

g
/A

Figure 2.2: Lowest arcs a and ~y

Any disc E € P for which EN D = a; or ) also has E N D* = a; or ()
respectively; if not E must intersect D* in the section parallel to d; and
this contradicts the condition that « is a lowest arc. Therefore the triple
(P, D, D*) form a valid substitution and, by Lemma 5, we can replace D
with D* to get a new homotopic loop P*.

We now have a homotopic loop P* that has fewer intersections with d; U

dy U...Ud,. So by induction on the number of intersections we have proved

the claim.
So we may assume that the path P meets d,ds,...,d, only in the arcs
ai,as, . ..,a,. Therefore, for each D € P cutting out the arc a;, the triple

(P, D,d;) forms a valid substitution and so by in turn replacing each D € P
with d; we see that P is homotopic to the constant path vy. The connected-

ness of X,, follows by taking P to be a constant loop. O

Up to homotopy the group Hy, acts on (H3, a,) by homeomorphisms,
therefore it takes cut systems to cut systems. The edges and faces of X,
are determined by the intersections of pairs of discs, hence this action on XSL

extends to a cellular action on X,,.
Theorem 7. The action of Hs, on XSL 18 transitive.

Proof. Given a vertex (D1, Do, ..., D,) of X, if we take each i in turn and

look at the intersection of D; with OH?3. We see that this defines a path from
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one end of a; to the other. If we now move one end around this path until
it is close to the other and then move it straight back to its starting point
we have an element of Hy, that moves D; to d;. Combining all of these we
see that (Dy, Dy, ..., D,) is in the orbit of vy, ie the action is transitive on

XV O

n

2.4 The complex X,

We now construct a subcomplex X,, of X,, with the same vertex set but with
fewer edges and faces.

Given an edge e = ((D),(D')) of X,, define its length, I(e), to be the
number of arcs underneath D U D’. In other words, since H*\ D U D’ has
two components, one bounded and one unbounded, we can define the length

as follows
I(e) = #{i | a; is contained in the bounded component of H*\ D U D'}.

Given two edges e and ¢ with the same length there exists an element of
H,, taking e to €.

We will say that a rectangle ((D, E), (D', E), (D', E'), (D, E")) is nested
if £ U E’ lies in the bounded component of H®\ D U D’ or vice versa, ie if
one pair of changing discs lies underneath the other.

For « < j let 7;; denote the subcomplex consisting of all triangular faces
of X,, with shortest two edges of length i and j. Note, this implies that

the remaining edge has length ¢ + j. Given a rectangular face of X, we
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have two cases depending on whether it is nested or not. Let R;; denote
the subcomplex consisting of all rectangular nested faces with inner edge of
length ¢ and outer edge of length j. For i < j let S;; denote the subcomplex

consisting of all non-nested rectangular faces with edges of length ¢ and j.

Definition 8. Let X,, be the subcomplex of X,, with the same vertex set,
all edges of length 1 and 2 and all faces from Ris, Si1 and 7y, ie X,, =
R12US11 U7y, As the length of an edge is invariant under the action of Hs,

on X, this action preserves each 7;;, R;; and S;; and so preserves X,,.

A vertex v = (Dq,...,D,) is completely determined by the intersection
of the discs D; with OH?. Using this we can define the vertices z; for 0 <
1 <n—1y;for0<i<n—-2andj=0o0r¢:<j <n-—1and z; for
0<4,j,i4+j <n—2asin Figure 2.3. So we have {(vg, ;) = 1, I(vo, Yo;) = J,
L(vo, yio) = 1, l(vo, zio) = ¢ and (v, 29;) = j. Note, there is some redundancy
in this notation, ie z; = yo; and xy = Yoo = 200 = Vo-

We now define the faces R;; € R;;, Sij € Sij, Ti; € Ty of X, as follows.

Yoo Yio 200 Zi0 T

Sij —

Yij 205

0

T
T, =\

Zij Litj

Rij —

Yoj

For every face in X,, there is an element of H, taking it to one of these

representatives.
Theorem 9. The complex X, is simply connected.

Proof. Figure 2.4 shows that the boundary of each of the faces R;; for 1 <

i < j and S;; for 1 < 4,j can be expressed as the boundary of a union of
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i+2 dits Jn

Figure 2.3: The vertices x;, y;; and z;;

faces with shorter edges. The first column shows how to replace faces where
the first index is not 1. Then the second column can be used to reduce the
second index to either 2 or 1 respectively.

As each of the rectangular faces can be moved to one of R;; or S;; by

some element of Ho,, it follows that every loop in X,, is null-homotopic in

Ri2 U811 U U Tj.

1<i<j<n

Let the E; be the discs as shown in Figure 2.3, ie z; = (E;, ds, ds, ..., d,).

For j > 2 let A; the be full subcomplex of X,, containing all the vertices
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Yo i0

0 Y
\711/ Yoo Y10
Yi—1,0 \ Ri,j—1 /
Rij: Ri-1,5 ‘ Raj lei Tij-1 Yo,j-1 Yi,j—1 T
Yi—1,5 / S \
/Tll\ Yo, Y1
Y

]

Yoj
20

10

0 Z
\le/ 200 210
Zi—1,0 \ S1,5-1 /
Sij: Si—1,j ‘ Sij Slj: Ti,j—1 <0,j—1 21,5-1 Tij-1
Zi—1,j / S11 \
/,2.1&_2\ 204 215
j Z

ij

20

Figure 2.4: Decomposing rectangular faces

“between” zy and x;, ie

A% = {(D,dy,ds, ..., d,) € X,

| D # dy or E;,interior of D C bounded component of H*\ Ey U E;}.

Choose z; as a base point of A;.

For every edge (u,v) of A; we have the following two triangles in X,,.
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Note that all edges have length less than j.

Lemma 10. The subcomplex A; is path connected.

Proof. Given a vertex v = (D, ds,...d,) € A?. First suppose that for some
2 < i < j there exists a path v on OH?® from d; to F; such that v does
not cross Ey, D or d; for | # i. Let D’ be a disc parallel to E; except in a
neighbourhood of v where we glue in the boundary of a neighbourhood of

vUd;. Then there is a path (v,v’,21) in A; where v' = (D’). See Figure 2.5.

Figure 2.5: Tunnelling along ~

Now suppose that no such path exists on H3. Each vertex u = (D,) of
A; partitions the set {ds,ds,...d;11} into two non-empty subsets. The first
containing those discs that are between d; and D, the second those between
D, and Ej. (If one of these sets were empty then we would have that either
D, =dy or D, = E;.) As j > 2 at least one of these sets contains more than

one disc. Choose an i # 1 such that d; is in this set.
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Now draw a path ~ on OH? from d; to E; that doesn’t intersect d; for
[ =3,...,5 or Fy and only intersects D transversely. Starting at d; move
along v and label the successive points of YN D as py, po, . .., pr. Now we can
construct a sequence of discs D = D°, D', ..., D* where each D! is parallel
to D! except in a neighbourhood of p,.; where we glue in the boundary of
a sufficiently small neighbourhood of the disc d; and the segment of v up to
pii1. With each successive D' the disc d; moves from one side of the partition
to the other. At each step neither side of the partition is empty so (D') is
a vertex of A;. This gives a path (v = (D%, (DY), ... (D*)) in A;. Now,
(D*) satisfies the hypothesis above, therefore this path can be continued to

the base point . O

We can now complete the proof of Theorem 9. So far we have shown that
any loop in X, is the boundary of a union of faces in R15US; U Ulgz‘gjgn Tj.
For a given loop take an edge (u,v) of maximal length j in this union. If
j > 2 then the faces on either side of (u,v) must be triangular with the
remaining edges of length less than j. So we have the following situation for

<0
some u',v" € X,,.

55



By Lemma 10 we can replace these two triangles with the following.

\

Ug (751

Up

/
v

Where uy = v’ and u, = v’. Here each edge has length less than j. Therefore
all edges of length greater that 2 can be replaced and so the loop is null-

homotopic in X,,. O

2.5 Calculating the presentation

By Section 2.4 we have an Hy,—action on a simply connected cellular com-
plex. So we can now follow the method given in Section 2.2.
Using the fact that Hy,, is a subgroup of Bs,,, we can define the following

elements of Hy,, in terms of oy, ..., 09, 1 the generators of B,.

r = 020103_102_1

Ty = 0403020105_101103_102_1

S; = 02;02;—102i+1092; forie{1,...,n—1}

ti = 091 forie {1,...,n}

So ry is the first arc passing through the second, 7y is the first two arcs
passing through the third, s; is the ith and ¢ + 1st arcs crossing and t; is

the ith arc performing a half twist. Subsequently we will prove that these
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generate Ho,.

Proposition 11. The stabiliser of the vertex vy is isomorphic to the framed

braid group and hence has a presentation (Sy | Ry) where

So = {s1,82,---,Sn-1, t1,t2, ..., s}
Ry = { sisj = sjs;  for|i—j] > 1,
$i5jS; = 8j8;8; for|i—j| =1,
tit; = tt; for all 1, 7,
sit; =t;s;  ifj ¢ {i,i+1},
sitj = tes;  if {i,i+ 1} ={j,k} }

Proof. If we restrict to OH?, elements of Hs, can be thought of as motions
of the end points of the a;. For elements of the vertex stabiliser this motion
moves the d; N OH? among themselves, ie this is the fundamental group of

configurations of n line segments in the plain, the framed braid group. O

We have two edge orbits, one consisting of edges of length 1 and the other

consisting of edges of length 2. Note that our choice of r; and r, mean that

(vo,v9 - 1) € 171(1)

(vg, v - T2) € I71(2).

Fori =1, 2, let I; denote the stabiliser of the edge (vg, vg-7;), ie the subgroup

of all elements that fix both vy and vy - ;.
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Proposition 12. The subgroups I; and 15 are generated as follows.

I = (ta,ts, ..., tn, S3,54,...,50-1, S151t1t1, 52515152)

Iy = (ta,ts, ..., tn, S2, S4,85,...,50—1, S1525251t1t1, 535251515253)

Proof. For I [I5] the motion of the d; outside of dy U E; [dy U Ej] is generated
by t3,t4, ... tn, S3, 84, -, Sp_1 and $2818182 [ta, t5, .., tn, S4, S5, .., Sp_1 and
S35251815253), the motion of the d; inside d; U Ey [dy U Ej3] is generated by
to [t2,t3,89] and the motion of dy U Ey [dy U Ej3] is generated by sysitit;

[81828281t1t1]. O

We are now ready to calculate relations for Ry, Ry and R3. The following

relations are easily verifiable, in fact most of them take place in Bsg.

The R; relations

To calculate the R; relations we have to find, for each edge orbit representa-

tive (vg,vo-7;) and each generator ¢ of I;, a word h in Sy such that ritr; ' = h.
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One possibility is the following.

ritaryt =1 (R 1)

riteryt =t for k > 2 (R12)

rispryt = sy for k > 2 (R13)
risisititryt = s1s1tats (R14)
T159815150T] | = $2515182 (R15)
rotary b =t (R16)

rotary ! =ty (R17)

rotery b =t for k >3 (R18)

ToSaTy ' = 81 (R19)

ToSKTyt = S for k >3 (R110)
r2518282$1t1t1r2_1 = 595151 8213t3 (Ry11)
7“28382818182837“2_1 = 535951515283 (R112)

The R, relations

To calculate the Ry relations we need to find, for each edge orbit representa-
tive (vg, vg - r;), an h-product r;h r; for the path (vg, vg - i, v9) and a word A’

in Sy such that r;h r; = 1.

rit181 r1 = Sity (Rol)

7’281t282 ro = SgSltl (R22>
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The Rj3 relations

To calculate the Rj3 relations we need to find, for each edge orbit, an h-
product representing the boundary of a face in the orbit and an equivalent
word in Sy. The following are such relations for the S;1, Ri2 and 777 orbits

respectively.

715152835152 T15152535182tal4 7152538152 T1

(R31)

= 8182838182818281838282838182t1t3
T1 7’2818281t2t3 T o = 828182t1t2 (R32>
7’281t2 15981 ' = 818281t1 (Rg?))

I e

| |

Figure 2.6: The path given by the h-product on the LHS of (R51)

If we use a different set of generators, similar to those found by Hilden,
then we can get a more braid like presentation. Let p; = agiagi_laz_ifrla;il for

1 <i < n. So p; is the ith arc passing under the ¢ 4+ 1st arc, see Figure 2.7.

Theorem 13. The group Hs, has a presentation with generators p;, s; and
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ty for 1 <4, <n and 1 <k <n and the following relations.

pipj = DjDi for|i—j| >1 (P1)
PiDiDi = PiPiD; for|i—jl=1 (P2)
8iS; = 8;8; forli—j] >1 (P3)
8i5;8; = 5j8iS; forli—j]=1 (P4)
PiSj = S;jDi for li—jl>1 (P5)
PiSit18i = Si415iPi+1 (P6)
Pi+1PiSi+1 = SiPi+1Pi (P7)
DPi+15iSi+1 = SiSi+1Pi (P8)
pitisipi = sil; (P9)
pit; = t;p; forj #1i, ori+1 (P10)
Pitiv1 = tips (P11)

sit; = t;s; ifj#iori+1 (P12)

sit; = tis; if fii+1y={j,k}  (P13)

tit; = tt; fori<ij<n  (Pl4)

Figure 2.7: Generators of H,,

These generators and relations can be represented pictorially as in Fig-

ure 2.8 and Figure 2.9.
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S X

D t
p—l t—l
Figure 2.8: Pictorial representation of the p, s, t and their inverses

e : 0

(P6) (P7) (P9)

S_l

Figure 2.9: Pictorial representation of (P6), (P7) and (P9)

Proof. Since Hs,, is a subgroup of the braid group it is easy to check that
these relations all hold. So it remains to prove that each of the relations in Ry,
Ry, Ry and Rj3 can be deduced from (P1)—(P14) using the fact that r; = p;
and r9 = pop1. First note that Ry is a subset of these relations. The relations
(R11), (R12), (R13) and (R.1) follow directly from (P11), (P10), (P5) and
(P9) respectively. The remaining relations can be deduced as follows. Some
of these relations are quite long and are perhaps better understood using pic-

torial representations. For the longest, (R3l), see Figure 2.10 for a pictorial

version.

(R14): risisititiry = pisisititipy ! (P13)?
= pitisisitipy (P9)
= sitip P sitipy (P9)
= sitit151 (P13)?
= $1S1tots
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(R110)

7“1828181827’1_1

7’2th2_1

’f’2t3’f’2_1

r2tk7"2_1

7“2827’2_1

7’23kr2_1

-1
= P152515152D,
_ -1
= S$281P25152D,

= 52515152

= paprtap; 'y
= pat1py !
=t

= popitspy 3"
= patspy
= t,

= popitapy Py
— potipy

=t

= pap15apy '3

:Sl

= Dapr1siDy Dy

63

(P11)
(P10)

(P10)
(P11)

(P10)
(P10)



To deduce (R;11) we make use of the following deduction.

(Rlll)

(R112)

P2p1S152t3P2P1 (P7)
= S]'pap1S25iSatapap (P4)

= 51 'pepisisasitspopr (P12)(P13)°

= 57 'papitisisasipap (P6)
= 57 'papitisipisasipy (P9)
= 51 'pasitisasipy (P8)
= Sop15y tiSysipy (P12)
= sypitisip (P9)
= 895111

—1 -1, -1
r981828281t1t1T9 = pap1S1S2S2S1litipy Py
= t3sasitipy Dyt

= P2P15152U35251L1P1 P2

= Pap1S1S2t3Pap151Sats

= 895111515213

= $9515182t3l3

—1 -1, -1
7’28382818182837’2 :p2p183$28181$283p1 p2
- -1, —1

= P253P15251515253P1 Po

_ -1, —1

= P253S5251P2515253P1 Do

o -1, —1

= P2853S52515152P183P1 Do

-1
= P2535251515253P2

-1
= 8352P351515253D2

-1
= 53525151P35253P2
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(R31)I

— 535251515283

r981t28aTs = pap1S1taSapapt

= pap151py  Satapr

= paprsiDy Satasy 'y sty
= pap151Py S287 Dy sty

= pop155 Py ' Sas15087 Dy Lsit
= pop15y Py S189p7 sit

= pop155 ' Py Py ' s15281t

= 8981t

7'15152835152715152535152t214715253518271

D15152835152P151525351S2t2t4P152835152P1

D151525351 521515253351 S24P152535152P1
D15152535152P1t45152535152L4P152535152P1
D1515253L45152P15152535152L4P152535152P1
D1t15152535152P151525351 52841525351 52P1
P1t15152535152P15152535152P11452535152P1
P1t151525351S2P151P3525351521452535152P1
P1115152535152P3P15152535152t452535152P1
P1t15152515352P3P151525351521452535152P1
P1t1515251P25352P151525351 5214525351521
P11151P152515352P15152535152t452535152P1
P1t151P152535152P151525351521452535152P1

$1t182535152P1515253515214525351S2P1
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(P13)(P12)?

(P10)(P12)
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(R32)Z

= 511152535152P15152535152t4P352535152
= S1t152535152P1115152535152P352535152
= 511152535152P1115152515352P352535152
= 511152535152P11151P15251535252535152

= $1115253515251115251535252535152

= Sltl82838182818281t2838282838182
= Sltl82838182818281838282t28381$2
= Sltl828381828182818382828381151&
= 81t182838182818281838282838182t1
= 81828381$2t381$28183$28283$182t1
= 8182838182818281t1838282838182t1
= 8182838182818281838282838182@

= $152535152515251535252538152t113

T17281828113t211T2 = P1P2p1S15251t3t2P1 P21
= p1p2p1t1S15281taP1P2p1
= pipasitipy ' S2sitapipap

= p1p251t15281Py taP1Dap

= pipasitises1p; tapapipa
= p1p2sitiS281tapip2

= p1p2s1Sat1S1pitsps

= pip2siSopy sititsps

= p1515251t1l3p2

= P1525152t1t3D2

= $281P2Salit3pa
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(P12)*(P13)*
(P3)
(P6)*
(P9)

(P12)(P13)

(P12)(P13)?

(P12)(P13)
(P12)

(P12)*(P13)*

(P12)(P13)?

(P12)*(P13)*
(P14)

(P12)(P13)?
(P9)
(P6)
(P7)
(P11)

(P12)(P10)

(P9)

(P8)

(P4)

(P6)

(P14)(P10)



= 5251 P2Salspaly (P9)

= 59518at9t1

(R33): ToS1loT15281T1 = Pap1S1tap1S2S1P1 (P9)
= p2si1t15251P1 (P10)
= P25152t151P1 (P8)
= $152P1l15101 (P9)
= 51898111

67



R
/M,@Ja///
J/a)/ﬁf
Sssuteell




Chapter 3

The Pure Hilden group

Let PH,,, denote the pure Hilden group on 2n strings, ie the intersection of

the Hilden group with the pure braid group.
PH2n = H2n N P2n

In this chapter we will compute a presentation for PH,, using the method

and the complex given in the previous chapter.

3.1 The presentation

Let the elements Dij = Dji, Tij = Tjiy, Yij = Yji and tk S PHgn for 1 S 1 <j S

n and 1 < k < n be as follows. Here all of the other strings lie behind those
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shown.

: J j i
\\ \ )

e ’\\ ) I

Let S denote the set of all these elements.

~.

St

—

S =A{pij, Tij, vij, te |1 <i<j<n,1<k<n}

Let R denote the following relations.

Dij te = th Dij (C-pt)

ZTij tr = tx L5 1< j k 7A 1 (C—Z’t)

Yij te = i Yij <] k# 3 (C-yt)
a? /6 6 {p7 x? y}7

Q5 Bri = B Qjj (Cl)

(1,7, k,1) cyclically ordered

(1,7, k) cyclically ordered,
aij Bik Vik = Bik Vik 0Gj (C2)
a, 3,7 as in Table 3.1

_ _ o, B € {p,x,y},
ik Djk B Py = Dk B Dy ik (C3)
(1,4, k,1) cyclically ordered
Zij Pij ti = Pij ti Ty 1<y (M-x)
Yij Pij tj = Dij tj Yij 1<]J (M-y)
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- (p,p,p) (0y,y) (x,p,p) (x,7,p)
Pk Ew,y,y)) ((y,p,p§ Ey,p,x; Ey,y,yg
, | (pp) (0zy) (z,pp) (2,02
J<hk<i Exffy)) ((y,p,pg nyy)) ((y,y,p;

. . D, D, P p,r,x xr,p,p r,Tr,x
ki< (z,y,p) (W,p,p) (v;py) (y,7,2)

Table 3.1: The values of (a, 3,7) for which (C2) holds

Theorem 1. The pure Hilden group has a presentation with generating set

S and relations R.

3.2 Vertex stabiliser

Recall that the complex X,, given in the previous chapter comes with an
H,,-action on it and that we have a prefered basepoint vy = (dy,ds, . .., d,).
As the pure Hilden group is a subgroup of the Hilden group the action of
H,, on X, restricts to an action of PH,, on X,,. The proof of Theorem 7 of

Chapter 2 shows that the action of PHjy, on X? remains transitive.

Proposition 2. The stabiliser of the vertex vy is the framed pure braid group

FP,, and so is isomorphic to P,, X 7.

Proof. By Proposition 11 of Chapter 2 the stabiliser of the action of Hy, is
the framed braid group on n strings. If we intersect this with the pure braid
group on 2n strings we get the framed pure braid group on n strings. (Note
that for FP,, the number of twists on each string must be an integer and not

a half integer as in the case of FB,,.) O
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From this we see that the vertex stabiliser is generated by the p;; and
tr, that all relations between these elements follow from (C-pt), (C-tt), (C1),
(C2) and (C3) (with « = 3 = v = p), and hence the Ry relations are included
in R.

3.3 Edge orbits

Let E denote the set of all oriented edges that start at vy the basepoint of
X,,. We will now find a representative of each orbit of the FP,, action on E.
Given an edge (v, v) € E, because v = (D, D, ... D,,) differs from vy by a
simple move, there exists a unique ¢ such that D; # d;.

If the edge is of length one then there is a unique d; under D; U d;. All
of the remaining discs, dy for k # i, 7, can be moved by an element of FP,
away from D; U d; and then back from behind to their original positions.
After applying ¥ for some p we have one of the following possibilities, each

of which lie in a different orbit.

i j i j
(v, Vo * T45) (vo,vo - ;)
J i J i
(vo, Vo - Yi5) (vo, vo - y,}I)

Similarly, if the edge is of length two then there exists two discs d; and
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dy, under d; U D;. We may assume that 7 < k. As in the previous case there
is an element of FP,, which takes (v, v) to one of the following possibilities,

each of which lie in different orbits.

i j k i J k
(v, Vo * Tij Tik) (vo, vo - 77, %_]1)
i ik i ik
(vo, Vo * Tik Yij) (vo, v - yi}l )
i ki i ki

(an Vo - Yij yzk)

(vo, vo - Y %1)

Proposition 3. The pure Hilden group PHy,, is generated by p;;, t;, x;; and
Yij -
PHQn — <S>

Proof. By the method of Chapter 2 the group PH,, is generated by the

generators of the vertex stabiliser and {r,}. We have that

-1 -1
Tij Liky Ly Lyg
—1,-1 |«
TikYij, Yij Ty |[P<TS k
-1, 1
Yik Yjik,  Yjx Yix

and so all of these generators either are contained in S or can be written in
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terms of the elements of S. O

3.4 Action of the framed braid group

We have an embedding of the framed braid group on n strings FB,, in the

braid group on 2n strings given as follows.

This makes FB,, a subgroup of Hy,. It is clear that conjugation by elements
of ¥B,, preserves the pure Hilden group and hence we have a left action of
FB,, on PH,,,. In fact this action can be defined on the level of reduced words
as well. In other words we have an action of F'(o;, 7;), the free group on the
letters o; and 7;, on F\(p;j, Tij, Yij, tk), the free group on the letters p;;, z;;,

Yij, tg. So we have a homomorphism

F(oi, ) — Aut(F(pij, ®ij, Yij, tr))

g|—>(I)g

In Section 3.8 we will construct ® and then show that it satisfies the

following properties. For any word g € F(o;, 75),

(A) for each & we have that ®,(z) =gp,, gz g "

(B) for any word h € F(p;;, t) we have that ®,(h) € F(p;j, t).

(C) for each 7y we have that ®,(ry) =g hiryhy for some hy, hy and ry.
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(D) for any relation x =g y we have a relation ®,(z) = D4(y).

3.5 The R; relations

The R; relations consist of a relation of the form r) tr;l = h for each edge
orbit representative (vg, vg- 7)), for each ¢ in a generating set of the stabiliser

of this edge and for some word h in FB,,.

Proposition 4. The stabiliser of the edge (vy,vo-T12) is generated as follows.

Dij 1,5 > 2
t k>1
Stab(’Uo, Vo 1’12) = F
P12t1
Dik Do k> 2

Proof. As Stab(vg,vg - x12) is a subgroup of Stab(vy) = FP,, we can view
the elements of Stab(vg, vp - £12) as motions of line segments. If we draw a
line L between the second and third line segments then this motion can be
broken into section consisting only of motions of the segments to the right
of L, sections consisting only of motions to the left of L and the motion of a
single segment across L around both the first and second segment and then
back across L. The motions to the right are generated by p;; for ¢, j > 2 and
ty for k > 2. The motions to the left are generated by t5 and pi2 t;. And the

motions across L are of the form py; pop for k > 2. O
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So the R, relations can be chosen as follows.

T12 Pij o Dij fori,j > 2 (1)
Tio ty T1n =ty for k > 1 (2)

T12 praty 35 = pizt (3)
T1 Pik Dok Ty = PPk for k> 2 (4)

Relation (1) follows from (C1), relation (2) follows from (C-zt), relation (3)
follows from (M-z) and relation (4) follows from (C2).

For the edge orbit representative (vg, vy - 12 x13) we can draw a line L
between the third and fourth line segment. Motion of the segments to the
right is generated by p;; for ¢, 7 > 3 and t; for £ > 3. Motion of the segments
to the left is generated by pis pi3ti, to, t3 and po3. Finally the elements
D1k P2r P3k give the motion between the two halves. Therefore we have the

following.

Proposition 5. The stabiliser of the edge (vg,vo - X132 T13) i generated as

follows.

D23

Dij 1,J >3
Stab(’Uo,’Uo + T12 1'13) = < ti k>1 >

P12 P13 t1
Pik Dok D3k k>3
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Hence the R; relations can be chosen as follows.

-1
T12 T13 P23 (Ilz $13) = P23

-1 .o
T12 T13 Pij (T12T13) " = Py fori,5 >3

T12 T13 tk (1’12 1’13)_1 = tk for k > 1

T12 T13 pr2pizts (T12713) " = prapist

-1
L12 13 Pik P2k P3k (5512 ZE13) = P1k P2k P3k

for k > 3

Relation (5) follows from (C2), relation (6) follows from two applications

of (C1), relation (7) follows from two applications of (C-zt). Relation (8)

follows from the following.

T12 T13 P12 P13t

-1
= T12 T13 P13 P23 P12 Pa3 11
_ t -1
= T12 T13 P13 U1 P23 P12 Pos
_ ¢ -1
= T12 P13 U1 13 P23 P12 Pa3
_ ¢ -1
= T12 P13 U1 P23 P12 L13 Pog
_ t -1
= T12 P13 P23 P12 U1 T13 Pas
_ t -1
= P13 P23 12 P12 U1 13 Po3
_ ¢ -1
= P13 P23 P12 U1 T12 T13 Po3
_ t -1
= P13 P23 P12 11 Pag T12 X13
_ _1t
= P13 P23 P12 Pa3 11 T12 T13

= pr2 P13 t1 T12 13

Finally (9) follows from the following.
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T13 D1k Dok Psk (
= D1k P3k T13 Dap Dok D3k (
= D1k D3k T13 P23 Pok Doy (C3
= D1k D3k P23 Dok Dag 13 (

= D1k P2k P3k 13

L12 P1k P2k P3k (CQ)
= D1k P2k T12 P3k (C1)

= D1k P2k P3k L12

Now consider the edge orbit representative (vg,vg - 7)) for ry # x13 or
x12 T13. There exists some g € FB,, such that (v, vg - 71) - g = (vo, vo - T2),

where r; = 15 or x5 x13. By property (A) of ®
Oy-1(r1) =B,, 97119

and by property (C) there exists words hq, hy € FP,, and some ry such that
Qy-1(r1) =g hi 7y ho. (3.1)

Combining these we see that vy - 1 ¢ = vo - 7y he and hence that A = )" and
hy € Stab(vg, vg - 7).
Let T be the choice of generators for Stab(vg, vg - 1) chosen above. So for

all ¢t € T there exists h € FP,, such that

ritrit =g h.

78



So by property (D) we have

B, 1 (r1tr7Y) =g Dy (h). (3.2)

Property (B) implies that ®,-:(t) € FP,, and ®,-1(h) € FP,. Combining
(3.1) and (3.2) we get

hiryhy ®y-1(t) hy ' ryt byt =g ®,-1(h)

and so hy ®,-1(t) hy' € Stab(vg, vg - 1y).
Claim 5. The set {hy ®,-1(t) hy' | t € T} generates Stab(vg, vg - 7).

Proof. As hy € Stab(vg, v - 73) the set {ha ®,-1(t)hy" | t € T} generates
Stab(vg, vg - ) if and only if the set {®,-1(t) | t € T'} generates Stab(vp, vg -
ry). This is equivalent to saying that for any s € Stab(vg, v - 7\) we can
find ¢,...,t € T such that s = ®,-1(t; - - - t), in other words that ®4(s) €

Stab(vg, vg - 71). Now

(vo-71)-Py(s) =vo-T1959
:UO'TASQ_l
=V-"Trg

Therefore the claim holds. O
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So for our R; relation we can choose the following
ry he @1 (t) hyt iyt = hit @,-1(h) by

and hence we can choose our R; relations so that they all follow from R.

3.6 The R, relations

The R, relations consist of a relation of the form ry hry = I’ for each edge
orbit representative, where the LHS is an h-product for the path (vg, vg-ry, vo)
and h' € FB,,. For each edge (vg, vg- 7)) the edge (vy, vo-r/(l) is in a different
orbit. Our choice of ry mean that for all A there exists A’ such that r;l = ry.
This means that for all the Ry relations we can choose r/(l ry = 1, ie they

are all trivial.

3.7 The Rj3 relations

The Rj relations consist of a relation of the form ry, hy - - - ry, k1 = h for each
edge orbit representative, where the LHS is an h-product that represents the
boundary of the face and h € FP,,. As with the R, relations, we will calculate
the relations for some specific orbits first then use ® for the general case.
We will start with the triangular face (vg, vo-212 13, Uo-12). An h-product

for this path is 273 275 (712 213). So the R relations is

Ty 4y (Ti213) =1
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and so it is trivial.

Next consider the non-nested rectangular face (vg, vg - 12, Vo * T34 T12, Vg
x34). An h-product that represents this path is 55541 xl_21 T34 T1a. S0 the R
relations is

-1 ,.-1

which follows from (C1).

Now consider the nested rectangular face

(Uo, Vo - T23, Vg * T12 L13 T23, Vg * T12 9513)-

An h-product that represents this path is

(212 9313)_11'2_31 (212 13) Ta3.

So the R3 relations is

(212 713) 7" 258 (T12713) a3 = 1

which follows from (C2).
Given any other face orbit representative (vg = g, u1, . .., ur = vg) there

exists some g € FB,, such that

(u(]aula"'vuk) = (U(]vvlv"'uvk) g
where (vg,v1,...,v;) is the boundary of one of the three faces whose Rj
relations we calculated above. Suppose the relation from (vg, vy, ..., vx) is
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the following.

’l“)\khk N "I“)\lhl =h

By property (C), for each ry, there exists h;, hio € FP,, and 7y, such that

®g*1(rAi) =g ha X hiz

Claim 6. The following h-product represents the path (ug,uy,. .., ug).

T)\;c hkg (I)gfl (hk) h(k—l)l e 7’)\/1 hll (I)gfl (hl)

Proof. The ith vertex of the path associated to the h-product is given as

follows.

Vo

< 7x; i @g1 (i) hioayy == 7y i @1 (ha)

Vo '(I)g—l(’r)\i, h,’""f’)\l hl)
UO'T)\ihi"'T)\l hig
V; - g

Uy

Therefore for our Rz relation we may choose the following

7 Paa @g-1 (hi) hgeny1 -+ 7x hay @g1(hy) = hyf! ®g-1(h)

which follows from R by property (D).
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3.8 Definition and properties of ¢

All that remains to prove Theorem 1 is to construct ¢ and show that it
satisfies properties (A)—(D).

Define @, the action of F(o;, 7;) on F(pij, %ij, Yij, tk), as follows. For

a € {p,z,y}
Oo (o) = au fori#k—1,k1—1,1
D, (i) = g1y fori+1<j
Do (it1) = Pijit1 Qv pi_,i1+1 fori+1<j
O, (1) = Pjj1 Qi D) fori4+1<j
Do (i) =y fori+1<j
(I)cri(pi,i+1) = Dii+1
Q,.(Tii11) = ti_+11 Yiit1 tiv1
(I)cri(yi,i—i-l) = Tii+1

/

t;  ifjAd i+l
o(t;) =ty ifj=i

t: ifj=i+1

(I)n(pkl) = Pkl

(I)Ti(xkl) = for k <1

l’];ll Pkl ifi==~k

Ykl ifi#l
(I)Ti(ykl) = for k <1

yk_ll Pkl lf’L = l
\
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Proposition 6. The map ® is a well defined action of F{t;, 0;) on
F{pij, ti, Tij, Yij)-

Proof. All that needs to be checked is that ®,, and ®,, are invertible. The

inverses are as follows.

d —1(0%1) = g fori;ék—l,k,l—l,l
D -1(oy;) = Piii1 Qi) Piiel fori+1<j
d 71(Oél+17j) = O4j fori+1< j
d 71(04 7J+1) = O4j fori+1< j
7j

d J—l(Oé ) = pj_,]l—i-l QG j+1 Djj+1 fori+1< J
® ;1(172 i+1) = Diit+1
) ;1(1’2 z+1) = Yii+1
P ;1(?/1 i) =tz ty!

(

t, ifj A it
¢U;1(tj) = tj_|_1 lfj =1

tiy ifj=i+1

\
(I)Tzfl(pkz) = Pkl

4
(I)Til(xkl) = for k <1

puy ifi=k

Ykl ifi#l

(I)Tfl(ykl) = for k <1

Pkl yk_ll ifi =1

\
®7’71(tj> = tj
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It is easy to check the ® satisfies property (A), ie that for every word g €
F(o;, 7;) and for each x € F(py;, t;, xi;, yi;) we have that ®,(z) = gz g~* as
braids. It is also clear that ® satisfies property (B). That is that for any word

g € F(o;, 7;) and for any word h € F(p;;, ty) we have ®,(h) € F(p;j, tr).

Proposition 7. The map ® satisfies property (C). In other word for any

word h in F(p;j, ty) and any

-1, -1
_1 Lij Liky, Ly Lyj
Lijy Ty
J . . . . .
T\ € ST Y e yilagt |i<i<k
yija yzj 1 1

Yik Yik,  Yjk Y

we have a relation O, (1) = hiryhe that can be deduced from the relations

in R, for some hy,hy € F(p;;, tx) and some ry.

Proof. First note that for each word h in F(p,;, t;), by property (B), the
map @, takes h to another word in F(p;;, tx). Therefore we only need to
check @, where g = 751, oF1.

For ry = x;;, xi_jl, Yijs yigl this follows immediately from the definition of
® given above.

Now consider @, (ry) for rx = 4 ik, Tk yij OF Yir Y5 The only cases
when &, (ry) #rynarem=i—1, m=tand j=i+1, m=idiand j >i+1,
m=j—landi<j—1l,m=jandk=j+1,m=jandk>j+1, m=~k—1

and j < k— 1, and m = k. We now show that ®,, (ry) =g hyry he.
m=1i—1 Do, (T3 i) = Pic1i Tic1j Tic1k Pi__ll,i

Doy (Tjk Yij) = Tk Pim14 Yi-1,5 pi_—ll,i (C1)
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m=tdand j =1+ 1

m=dand j >i+1

m=j—landi<j—1

_ —1
= Pi-1i ik Yi-1,5 Pi—14

Doy, (Yir yjk) = Pi-1,i Yi-1,k pi__ll,i Yk

- -1
= Pi-1 Yi-1,kYjk Di—1,

D, (v i) = t;1 Yij Uj Tjp
= i D Tk Dkt
=ttt o b
— Y pjk DPir Yij Pik Ljk Pjk U5
= tfl Pj_kl Tk Yij Dik tj

Do, (jk Yij) = pij T pi_jl Tij
= p;kl Tik Pjk Tij
= p;kl Tij Tik Djk

o, (Yik Yik) = Yik Pij Yik pi_jl
= Yik Yjk

o, (Tij Tir) = Tig1j Tig1k

Do, (i Yij) = Tjk Yir1,5

Qo (Yik Yjk) = Yit1,k Yjk

B 1
Do,y (Tij Tik) = Pj1j Tij-1D; 1, Tik

o -1
= Pj-1,5 Tij-1Tik Pj 15

_ —1
Do, (T Yis) = Pi-1j Tj—1kYij—1 Dj_1

q)ojfl (Yir yjk) = YikPj—1,5 Yj-1,k p;_ll,j

_ -1
= Pj-15 Yik Yj—1,k Pj_1;
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m=jand k=741 Do, (Tij Tir) = Tik Pjk Tij p;kl

= Tij Tik

D, (zjk yij) =ty Yjk tk Yik
=t pixtrynty" pj_kl Uk Yik
= Djk Yjk IM
= ik Yik Dij Yik Dij Dy

= Djk Yik Yjk Dy

Do, (Yir Yir) = Pjk Yij p;kl Zjk

= Tk Yij
m=jand k >j+1 Do, (24j Ti) = Tij1 Tik
Do, (T Yij) = Tj+,k Yij+
Do, (Yik Yjk) = Yik Yjt1,k

m=k—landj<k—-1 &, , (Iij Tig) = Tij Ph—1,k Tik—1 p,;_ll,k

—1
= Pk—1k Tij Tik—1 Pr_1k

_ —1
Do (Tjk Yij) = Pho1k Tjk—1 D1 Vi

- -1
= Pk-1,k Tjk-1Yij Pr_1k
_ -1
(I)a'k—l(yik yjk) = Pk—1k Yik—1Yjk—1 Pr_1 1
m=k (I)ak (il?ij Izk) = Tij i k41

(I)crk (SCjk yij) = Tjk+1Yij
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Py, (Yin yjk) = Yik+1Yjk+1

For &, we only have three cases where ®,. (r)) # r) these are when
m =14 and ry = x;; Ty, m = j and ry = T Yi;, and m =k and 7\ = Yix Y-
Q.. (255 i) = %-_jl Dij Tip Dik (C2)

= Ii_jl pj_kl T3 pjk Dij Dik (C2)

_ -1 -1
= Ty Ly Pij Pik

D (w51 yij) = xj_k;l Djk yglpij (C2)

= T3 Dy Yij Pik Dik Dij (C2)

_ .1, -1
= Yij Lk PjkPij

O, (Yir ysk) = Vi Pik Yy Dik (C2)
= Yir Dij Ui Pij Dik Dk (C2)

= yj_kl Yin Pik Djk

Now consider @ _-1(ry) the cases where ®__1(ry) # r) are the same as for
(I)om (T)\) .
m=1—1 <I>0;11 (Iij xzk) = Tij-1,j Ti—1,k
O, (Tjk Yig) = Tjk Yior

(I)o;jl (yik yjk) = Yi-1,k Yjk

m =1 and j =1 + 1 (1)0;1 (xij xzk) = yij pz_jl xjk pij (CQ)
= Yij Dik Tjk Dy (C2)
= Tjk Yij
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_ -1

(1)0;1 ($jk ylj) = T ti L5 tz
_ -1
= Tik Pij Lij Pij
S . |
= Dij DPji ik Pjk Lij Dij
-1 -1
= Dij Pjr Lij Tik Pjk Dij
_ -1

‘I’o;l(yik Yik) = Dy Yik Dij Yik
= Yik Yjk

. L )
m=dand j >i+1 @a_i—l(l’ij Tik) = Pithi Tit1j Titik Ditli

_ -1

cbafl(xjk Yij) = Tjk Diit1 Yit+1,5 Piji+1
-1
= Pijit1 Tjk Yi+1,5 Pii+1
-1

(I)ofl (Yir yjk) = Di i1 Yit+1,k Piit+1 Yjk
_ -1 -
= Diit1 Yit1,k Yjk Piit1

m=j7—landi<j—1 (I)U;fl (Iij xzk) = Tjj-1Tik

Oyt (Tk Yig) = TjrkYig

Oyt Wik Yjk) = Yi Y10
m=jand k=7+1 ®U;1(Iij Ti) = p;kl Tik Pjk Tij

= p;kl Tij Tik Pk

<I>J;1 (Tjk Yij) = Yjn pj_kl Yik Pjk
= Yjk Dij Yik pi_jl
= Yik Yjk

(I)Ujfl (yik ?/jk) = Yij tj Tjk tj_l
= Yij pj_kl Tjk Djk
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= Py P Y P Tk (C2)

-1

= Pjr Ljk Yij Pjk
. . —1

m=)7 and k > ] +1 (I)ijl (xij xzk) = pj,j+1 Li j4+1 Pjj+1 Tik (Cl)
-1
= Djj+1 LTij+1 Tik DPjj+1
-1

Oo o1 (Tk Yij) = Pjjr1 Titrk Yiger Py

q)g;1 (Yik Yjr) = Yik P;}Jrl Yi+1,k Pjj+1 (C1)

- pj_,;Jrl Yik Yj+1,k Pjj+1
m=k—1land j<k—1 (I)akfjl(xij Tik) = Tij Tih 1
(I)cr;jl(xjk Yij) = Tjk—1Yij
cbcr;,ll(yik Yik) = Yik—1Yjh—1

_ _ —1
m =k (I)agl(%‘j Tik) = Tij Dy i1 Tik+1 Pt (C1)
—1
= Di k41 Lij Tik+1 Pkk+1
-1
D1 (T Yij) = Prjers Tik+1 Phokt1 Yig (C1)

_ -1
= P k1 Ljk+1Yij Pk k+1

-1
(I)a,;l (yik yjk) = DPikt1 Yik+1Yjk+1 Phk+1

As with @, , for ® 1 we only have three cases where ®__ (rx) # 7y these

are when m = ¢ and r\ = z;; 5, m = j and r\ = z;,¥;;, and m = k and

™ = Yik Yjk-

(DT,;l (xij .Z’Zk) = Dij Ii_jl Pik .Z’Z-_kl (C2)

= Dij Dik Dj Ty p;kl Ty (C2)
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_ -1 ,-1 -1
= Dij Pik Pjk Ty Li5 Pig

O 1Tk Yis) = Djk T3 Di Ui (C2)
= Djk Pij Pik x;kl P Yij' (C2)

_ -1,.-1 -1
= Pjk Pij Pik Yij Ljp Dig

D1 (Yik Yjk) = Dir Yin Pik yj_kl (C2)
= Dik Dk Dij Ui D' yj_kl (C2)

= Dik Pjk Pij yj_kl Y pi_jl

o oo1.-1 1.1 1,1

For ry = xy a7, y;; vy, and yj; v, we have shown that for some
-1 -1 -1

hi, hy € FP,, and some ), we have that ®,(ry") =g hy ), he. Hence we

have (I)g(T)\) =R h2_1 DY hl_l O

Proposition 8. The map ® satisfies property (D). In other words, for any

word g € F(o;, ;) and any relation v =g y we have that ®4(x) =g P,4(y).

Proof. This is equivalent to saying that for each relation z = y in R and
each g € {0y, 0, ', 7, 7, '} the relation ®,(x) = ®,(y) follows from those in
R. For any relation only involving p;;’s and ¢;’s the image under ®, will still
only involve p;;’s and t;’s and hence, by Proposition 2, the new relation will
follow from those in R.

We will now considering action of ®,, and @, on each of the relations.

For any relation © =g y we will say that the deduction of ®,(x) = ®,(y) is

trivial if ®,(z) = ®,(y) is a relation in R of the same type.

(C—LL’T,) ZTij tr =ty Tij k # 1, 1 < j
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First consider ®,, . If we start with ¢ = 1 and increase it the first non-
trivial case is when ¢ = ¢ — 1. The next case is when ¢ = ¢ and this is only
non-trivial if j =4+ 1. The next case is when ¢ = 7 — 1 and j # 7+ 1. The
remaining values are all trivial.

When ¢ =i — 1 we have that ®, (t;) = t;» where k' # i — 1.

Qo (Tij th) = Pic1, Tic1j Pi__ll,i 7% (C-pt)
= Pi-1,iTi-1,5 i pi__llvi (C-xt)
= Pi—litk Ti—1 pi__lu (C-pt)

~1
= U Pi1,i Ti-1,j Di1

= g, (tr ij)

When ¢ =i and j =i+ 1 we have that &, (t;) =t where k' # j.

O, (25 tr) = 5 yij by ta (C-tt)
= t]_l Yij tk/ t]’ (C_yt)

=t b ity

= Oy, (tk 245)

When ¢ = j — 1 and j # i + 1 we have that ®, (t) = ti where k' # 4.

Oy, (T3 th) = Pj1;Tij1Dy oyt (C-pt)
= Pj1j Tijatw Dyl (C-xt)
= Pj-1 e Tij1 Dy (C-pt)

_ —1
=tk Pj—1,j Tij—1DPj 1

= O, (tr, 745)
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Now consider @, the only non-trivial case is when ¢ = <.

O, (w35 te) = x5 pij e (C-pt)
= a; e pij (C-xt)
=t Ii_jl Dij
= (I)Tq(tk S(Zij)

(C-yt) Yij te = Tk Yij k#7, 1<y

First consider @, _, the non-trivial cases are ¢ =i—1,¢=17and j =i+1,
and q=7—1and j# 1+ 1.

When ¢ =i — 1 we have that ®, (t;) = tp where k' # j.

Do, (Yij tk) = Di-1,i Yi-1,) pi__ll,i 7% (C-pt)
= Pi—1,i Yi—1,5 t pi__lu (C-zt)
= Pi—1,itk’ Yi-1,5 pi__ll,i (C-pt)

_ -1
=l Pi-1,iYi-1,j Pi_14

= &, (te vij)
When ¢ =i and j =i+ 1 we have that ®, (t;) = tx where £’ # .

Do (Vij tr) = Tij (C-xt)
= lpr X4

When ¢ = j—1and j # i+ 1 we have that &, (ty) = )y where k" # j — 1.

O (Yij te) = Dj—1j Yij—1 D51 tre (C-pt)

= Pj-1,4 Yij—1tx pj__llhj (C-yt)

93



= Pjo1te Vi1 P50, (C-pt)
= th D1, Yij—1 Djor

= O, (tr yis)

Now consider @, the only non-trivial case is when ¢ = j.

O, (vij tr) = Yij' Pij t (C-pt)
= Ui tkpy (Ct)
=t y; Dij
= &, (tryis)

(C1) Qij B = Bruci; (i, 4, k, 1) cyclically ordered

First consider ®,_. The non-trivial cases are ¢ =i —1and i # [+1,q =i
and j=i+1,g=j7—1land j#i+1,q=jandk=j+1,¢q=k—1 and
j#k—-1,qgq=kandl=k+1,p=I1l—1andl # k+ 1, and p = [ and
1=1+1.

When ¢ =i —1 and ¢ # [ + 1 we have the following.

D, (aij Br) = Pi1i Qim1,5 Di_1 Bua (C1)
= Pi—1,i Q1,5 B pi__ll,i (C1)
= Pi1i B Qi1,j Pty (C1)

1
= OriPi-1i Qi1 Di 1

= (I)Uq(ﬁkl Oéij)

When ¢ =i and j =i + 1 the only non-trivial case is when a = x.

O, (i Brt) = ;' yij ty B (C-Bt)
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= 7" yi; But; (C1)
=17 Buist; (C-pt)
= Bty it

= (I)crq(ﬁkz xij)

When ¢ =j — 1 and j # i + 1 we have the following.

cbaq(aij Bri) = pj-1jQij1 pj__ll,j Br (C1)
= Pj-1, Q-1 P pj__ll,j (C1)
= Pj—1j B i1 pj__le (C1)

_ —1
= Bu Dj—1, i j-1Dj 1

= (I)Uq(ﬂkl Oéij)

When ¢ = j and k = j + 1 we have the following.

O, (aij Br) = i ik B Dy (C3)
= Djk ﬁjlpj_kl Qi

= &, (B )

When ¢ =k — 1 and j # k — 1 we have the following.

D, (s Br) = g Pr—1,k Pr—1, p;;_ll,k (C1)
= Pr—1,k Qij Br—1, p;;_ll,k (C1)
= Pr—1.k Be—11 Qij p;;_ll,k (C1)

-1
= Pk—1,k ﬁk—l,l Pr_q g Xij

= &, (B i)
When ¢ = k and [ = k + 1 the only non-trivial case is when (§ = x.
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D, (vij o) = othl_lykl t (C-at)
=t i Yrt (C1)
=t gyt (C-at)
= tl_l Yri by Qv

= O, (Ty aij)

When ¢ =1 —1 and [ # k£ + 1 we have the following.

q)aq(oéij Bri) = aijpi-14 ﬁk,z—lpf_ll,l (C1)
= pro11 Qj Bri-1 Pl__ll,l (C1)
= Pr—11 Bra—1 i Py (C1)

-1
= Di-1,0 Bri-1 D Qi

= (I)Uq(ﬁkl Oéij)

Finally, when ¢ = [ and ¢ = [ 4+ 1 we have the following.
D, (cij Bra) = pu vy Bk (C3)
= Bik pa i pi_ll
= q)aq(ﬁkl aij)

Now consider ®, , there are two non-trivial cases. In the first case

. (a45) = ai_jlp,-j and we have the following.

O (g Br) = o5 pij Bu (C1)
= 0y i (1)
= Bu oy pij
= (I)Tq(ﬂkz aij)
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In the second case @ (By) = 6k_llpkl and we have the following.

O (s Br) = Mpkl (C1)
= B’ @i (C1)
= O P v
= (I)Tq(ﬂkz aij)

(1,7, k) cyclically ordered,
(C2) i Bik Vit = Bik Vik 0Gj
(cv, B,7) as in Table 3.1

First consider ®,,. The only non-trivial cases are when ¢ = 7 — 1 and
t#k+1l,g=tand j=i+1,q=j—land j#i+1,g=j7and k=j5+1,
g=k—landk#j+1,andg=Fkandi=Fk+ 1.

When ¢ =4 —1 and ¢ # k + 1 we have the following.

Do (ij Bik Vjk) = Pic14 Q1,5 Bi-1,k pi__ll,i Vik (C1)
= Di—1,i Q-1 Bi—1,k ’ijpi__lu (C2)
= Pic1i Bim1k Yk Qi1 i (C1)

_ -1 —1
= pi—1i Bi-1k Pi1,iVik Pi-14 Qi—1,5 P31 4

= (I)Uq(/@ik Yik Oéz'j)

When ¢ =i and j =i+ 1 we have two cases. Except for when i < j < k
and (o, 3,7) = (z,z,p) or k < i < j and (o, 3,7) = (z,y,p) we have the

following deduction. Let ¢; and &;; be defined as follows.

t; fa=ua B
t; = Qij =Yy; fa==x

1 ifa#zx

Tij 1fOé:y
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So we have that (I)oq (Oéij) = t_]_l O_éij tj.

Do, (ij Bir Vjk) = Ej_1 ij tj Bk pij %'kpi_jl (C-Bt) (C-pt) (C-ot) (C-pt)

=t quj B pig Ve 0 1 (C2)
= fj_l Qi Yik Bik T (C2)
= 7]'_1 Yik Bjk Qij {j (C-pt) (C-pt)
= ik Bjk Dij Py 1 i b (C2)

= Bikpij Yir Dij & ' Qi b

= q)aq(ﬁik Yk aij)

When i < j < k and (o, 5,7) = (z,2,p) or k < i < j and (o, 3,7) =

(z,y,p) we have the following deduction with § = x or y respectively.

Do (Tij Bik Djr) = tj_l Yij tj Bk Dij Dik pi_jl (C2)
= t5" i tipij Dir Bj D' (M-y)
= Dij Yij Pir Bjk D3;' (C2)
= Pij Dik Bjk Yij pi_jl (C2)
= Bik Pij Dk Yij D3 (C-pt)
= Bk pij ik Dij U Dij b Yi Dy (M-y)
= Bk Dij Dik pi_jl tj_l Yij Dij t; pi_jl (C-pt)

= Bk pij P 0 ;" Yij b

= (I)aq(ﬂik Djk SCij)

When ¢ =j — 1 and j # i + 1 we have the following.

Do, (i Bir Vir) = Pj-1,j Qij—1 p_j_—ll,j Bik Di—1,5 Vi—1,k Pj__ll,j (C1)
= Pj—-1,j O j—1 Bik Vi-1,k pj_—ll,j (C2>
= Dj—1,5 Bik Vj-1,k Vi j—1 pj_—ll,j (C1)
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_ -1
= Bik Pj—1,5Vj—-1k Qi j—1Dj 15

= q)aq(ﬁik Vik aij)

When ¢ = j and k = j 4+ 1 we have two cases. Except for when i < 7 < k
and (o, 3,7) = (y,p,x) or j < k < i and (o, 3,7) = (x,p,x) we have the

following. Here
pjk ify=p
Vik =y ify==x

zjp fy=y

\

Do, (s Bix Vir) = ik Pxij p;kl Yik (C2)
= i Py, Bij Di Vi (C2)
= ik Yjk Bij (C2)
= Yk Bij ik (C2)
= py' Bij Pir Vjk Qin (C2)

= pik Bij Dji Yk ik
= q)aq(ﬁik Vik aij)
When i < j < kand (o, 5,7) = (y,p, ) or when j < k <iand (o, 3,7) =

(x,p, x) we have

Qo (vij Pik Tjk) = ik Djk Dij Pj_kl e yin e (M-y)
= QK Djk Pij Yjk p;kl (C2)
= Djk Dij Qik Yjk Dy (C2)
= Djk Dij Yik Pij Qir Dy Dy (C2)
= Pjk Pij Maik (M-y)
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= Djk Dij pj_k;l ey te Qg

= q)Jq(pik Tk aij)

When ¢ =k — 1 and k # j + 1 we have the following.

O, (ij Bir Vik) = Qij Pe—1.k Bisk—1 Visk—1 Di 1 4 (C1)
= Pr—1,k Qij Bik—1Vj k-1 P;Z_lm (C2)
= Pr—1.k Bik—1Vj k-1 Qij p;;_lLk (C1)

—1
= Pk—1,k ﬁi,k—l Vik—1Pr_1r Yij

= q)aq(ﬁik Vik aij)

Finally, when ¢ = k and ¢ = k + 1 we have the following two cases. If

(G # x then we have the following. Here

_ pir fB=0p
Bir =

yirp Hp=ux

D, (vij Bik Vik) = Dik Xk pi_kl Bi Vij (C2)
= pi_jl i Dij Bik Vij (C2)
= B ajr Vi (C2)
= Bik Yij it Qi Dif,

= (I)crq(ﬁik Vik Oéij)

And if § = x then we have the following.

D, (Qij Tix Vik) = Pik Ok D t7 " Yir ti Vi (C-pt)

= Dik Qjk it Pi_kl Yik i Vij (M-y)
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= pik i Yir ;D ti Vi (C-pt)

= Dik Ok Yik D, Vig (C2)
= Dik Ok Yik Pjk Vij p;kl P (C2)
= Dik Ok Vi Yi Digy (C2)
= Dik Yij Yik Ok P (C2)
= Dik Yik Djk Vij p;kl Qg pi_kl (C2)
= Dk Yik Pix. Vij Dike Ok Dy (C-pt)
= Dik Yk U, Do i Vij Dik ik Dy (M-y)
= pirty ' Pt Yir ti Vij Pik Ok D (C-pt)

= 17" yir i Vij Dik Uk Dig

= (I)aq(ﬂik Vik Oéij)

Now consider @, , the non-trivial cases are as follows.

g=1i|i<j<k (z.pp) (2,9,y) (z,2,p)
j<k<i (y.p.p) (y,2,9) (v.y,p)
k<i<j (z,p,p) (z.7,2) (2,9,p)

g=j|i<ji<k (yp,p) Wy (y,p2)
j<k<i (z,pp) (z,2,y) (z,p2)
k<i<j (y.p,p) (Y, z,2) (y,p,9)

g=k|i<j<k (py.y) (=99 (¥v9)
j<k<i (pzy) (v,z,y) (y,2,9)
k<i<j (pz,z) (z,z,2) (y,z,x)

For the first two columns of the cases ¢ = ¢ and ¢ = j we have the

following.
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O (aij Bir vjr) = %_jl Pij Bix Vjk
= ai_jl Bik Yik Pij
= Bix Yk OKi_jl Dij

= (I)Tq(ﬂik Vik aij)

For the third column in the case ¢ = ¢ we have the following.

®r,(aij Bin Vik) = Oéi_jl Pij B Dik Vi
= az’_jl pi; Bir pi_jl Dik Vjk Pij

1.1 g1
= Q;; Dji Bir. Pik Pik Vik Pij

_ -1 _-1

= ﬂzk Q" Dik Vjk Dij
_ -1 -1

= Pk Pik Yk Q5 Dij

= (I)Tq(ﬂik Vik aij)

(C2)
(C2)
(C2)
(C2)

For the third column in the case ¢ = j we have the following.

. (s Bir vik) = %_jl Dij Bik ’Yj_kl Dik
= a;;" Vi ij Bk Dk
= ;' YV Bik Dj D

-1 -1 -1
= Bik Yk /sz Qs ﬁikpjkpij

= Bik Vi Djk Q5j Dij
= (I)Tq(ﬂik Vik aij)
For the case when ¢ = k we have the following.

. (aij Bik Vik) = v Bt pin %'_kl Dik

_ -1, -1, -1
= ij By Dy Vjk Pij Pik Pjk

_ -1 -1
= Qi Vg, Bir. Dik Djk
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= Vi B’ Qi i Pik ()
= Mpzk Pjk Qg (C2)
_ i;l ]Mp]k Qi (C2)
= B! Pk v P i

= q)rq(ﬁik Yik Oéz'j)

(C3) ik Dik Bji p;kl = Djk ﬂjlpj_kl Qi (1,7, k, 1) cyclically ordered
First consider ®,,. As before the only non-trivial cases are when ¢ =i—1
and i #l+1, ¢g=diand j=i+1, ¢g=j—1and j #i+1, ¢ =j and
k=j+1,g=k—1landk#j+1,¢gq=kandl =k+1,p=1—1 and
l#4k+1,andp=1landi=1+1.
When ¢ =i — 1 we have the following.
O, (vik ik Bt Dy ) = Die1i i1k Pi 1 Pik B Pz (C1)(C1)(C1)
= Pic1 Qim1k ik Bj1 Pig Pi1a (C3)
= pi—1,i Pjk Bji p;kl i1k Pty (C1)(C1)(C1)

_ -1 -1
= Dijk B Djk Pi-1,i ®i—1kPi—1;

= @, (pjr B p;kl k)

When ¢ =i and j = i + 1 we have the following. (Here the (C2)s hold
because we are in either of the bottom two rows of Table 3.1, both of which

contain («, p,p) for a = p, x, and y.)

O, (ir Pjk Bi1 D3 ) = Qi Dij Pik Ba Digy Py (C2)
= Dij Dik %k Bi Dir pi_jl (C1)
= pij i Bu ik D3y, pi_jl (C2)
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_ -1,-1
= Pij Dik Bt Pir Pij Qi

= O, (pjr B Dy k)

When ¢ =j — 1 and j # i + 1 we have the following.

D, (it Pik Bjt Dy ) = ik Dj—1,5 Pi—1.k Bio14 P51 1 Py 11, (C1)
= Pj-1,j Qi Pj—1.k Bj—1, p;_ll,k pj_—ll,j (C3)
= Pj-1;Pj—1k Bj-1, p;_ll,k ik pj_—ll,j (C1)

= Pj-1;Pj-1k Bj-11 p;_ll,k pj_—ll,j Qik;
= o, (pjk Bji pj_kl k)
When ¢ = j and k = j + 1 we have the following.

Oq,(ir Pk B D) = Pik g B Py (C1)
= Djk B p;kl Djk Qij pj_k;l

= O, (pir B Dy k)

When ¢ =k — 1 and k # j + 1 we have the following.

1y _ 1 IR
Dy, (it Pik Bjt D1 ) = Ph—1k Qik—1 Pjk—1 P11 Bjt Pk—1k Py o1 Ptk

_ -1 -1
= Pk—1,k O k—1Djk—1 ﬁjz Dik-1Pr_1k

_ —1 —1
= Ph—1,k Pik—1Bj1 P p—1 Qik—1Pp_1

_ -1 -1 -1

= Pk—1,kDjk—1Pp 1k ﬂjl Pr—1kPjrp_1%k—1Pp_1k

= O, (pjr B Dy vir)

When ¢ = k and | = k + 1 we have the following. (Here the (C2)s hold

because we are in either of the top two rows of Table 3.1, both of which

contain (3, p,p) for § = p, x, and y.)
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O, (i ik Bi1 D3 ) = i Djt it Bk Pt P31 (C2)

= % Bk (C1)
= Bjk cal (C2)
= pjiPr Bk Pt Py Qi

= O, (pjr Bit p;kl Qik)

When ¢ =1—1 and [ # k + 1 we have the following.

D, (ik Dy 5jlpj_kl) = ik ik Pri—1 Bji-1 pl_,ll_l p;kl (C1)(C1)(C1)
= Pri-1Qik Pjk Bj1-1 pj_k;l plfll_l (C3)
= Dui—1Pjk Bji-1 pj_kl Qi plfll_l (C1)(C1)(C1)

_ -1 —1
= PjkDii-1 5;‘,1—1 Pri_1Pj ik

= @, (pjr B p;kl k)

Finally, when ¢ = [ and i = [ + 1 we have the following. (Here the (C2)s

hold because they always hold for the triples («, p, p) and (5, p,p).)

(I)crq(aik Djk Bii p;kl) = Dii ki P#M (C2)(C2)
= pi_kl o Bij Dik (C1)
= Py Bij Pik P kit Dit (C2)(C2)

_ -1 —1
= Pjk ﬁij Pj Pkl Ckl Py

= @, (pik B vy ir)
Now consider @ , there are two non-trivial cases. In the first case
Q. (a5) = ai_klpik and we have the following.
O, (v pji By ) = o Par Dk Bt Dy (C3)
= g Pk Bjt D ik (C3)
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_ -1 -1
= Djk 5jl Pj %y Pik

= . (pjr Bji pj_kl k)
In the second case @, (8;1) = ﬁj_llpjl and we have the following.

O (cir pj B3 ) = ik ik By Dt D (C3)

= pix By Djit ik Pik DL D (C3)

_ ~1 -1
= Pjk /6jl DjiPjy ik

= & (i B vy ir)

(M-z) Tij Pij ti = Pij ti Tij i<
First consider ®,,. The only non-trivial cases are when ¢ =i —1, ¢ =1
and j=i+1,andg=j—1and j #i+ 1.

When g =i — 1 we have the following.

o, (Tij pijti) = Pic1iTic1,j Di-1 Pi__ll,i li1 (C-pt)
= Pi-1,i Ti—1,j Pi—1,j ti—1 pi__lu (M-z)
= Di—1,i Pi-1,j ti—1 Ti—15 pi__lu (C-pt)

—1 —1
= Di—1,i Pi—1,j Di_1,i tim1 Dim1,i Tim1,5 P14

= O, (pij ti wij)

When ¢ =i and 7 =i + 1 we have the following.

Qo (T4 pij ti) = tj_l Yijtjpijt; (C-pt)
=1t Y Piitits (M-y)
=t pij iyt (C-pt)
= Dij Yij t;
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= D, (pij ti zij)

When ¢ =j — 1 and j # i + 1 we have the following.

Do (5 pij ti) = Djo1,j Tijo1 Pij—1 Dy 1 b (C-pt)
= Pj1jTij-1Pij-1tip; (M-2)
= Pjo1y Pij—1tiTij1 Py (C-pt)

_ -1 -1
= Pj—1,j Pi,j—1P;-1 ti Pj—1,5 Tij—1Dj 1

= &, (pij ti 7ij)

Now consider @, the only non-trivial case is when ¢ = <.

O, (x5 pij ti) = T35 Pig Pis b (C-pt)
= ffi_jl Dij ti Pij (M-y)
= pij i T D

= O. (pij t; zij)

(M-y) Yij Pij U = Pij Uj Yij 1<
First consider ®,,. The only non-trivial cases are when ¢ =i —1, ¢ =1
and j=i+1,andg=j—1and j #i+ 1.

When g =i — 1 we have the following.

Do, (Yij Dij i) = Pie1,i Vi1, Di-1, pi__lu t; (C-pt)
= Pi-1,iYi-1,jDi—1, t; Pi__ll,i (M-y)
= Pi-1,i Pi-1,5 Uj Yi-1, Pi__ll,i (C-pt)

_ —1 —1
= Di—1,i Pi-1,Pi—1; tj Di—1,i Vi1, Pi_1,

= @, (pij tj vij)
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When ¢ =i and j =i + 1 we have the following.

Do, (Yij Pij tj) = Tijpij ti (M-z)
= Dij li Tij

= O, (pij t; vij)

When ¢ =j — 1 and j # i + 1 we have the following.

Do, (Yij Pij tj) = Dj—1.j Yirj—1Pij—1Dj 15 tj—1 (C-pt)
= Dj-1,Yij—1DPij-1tj—1 pj__llhj (M-y)
= Dj-1,4DPij-1 tj_—lyi,j—lpj__ll,j (C-pt)

_ -1 -1
= Dj—1,Pij-1DPj1,ti-1Pj—1,; Yij—1Dj 1,

= O, (pij tj vij)

Now consider @, , the only non-trivial case is when ¢ = j.

O (yij pisty) = yi; Dij Pig ty (C-pt)
= Y Pij t Dij (M-y)
= pij t;yi;' Dij
= O (Pij tj Yij)

All that remains is to check that R is closed under <I>T;1 and <I>J;1. From
the expressions for the inverses given in the proof of Proposition 6 it follows
that for every word z we have ®,—2(z) =g Pyas1 T Pgq+1 and P —2(z) =g

t, ' xt,. Therefore whenever x =p y we have

1 1
O, (%) =R Pygi1TPagt1 =R Pogi1YPoatt =r Po2(y)

108



and

O, 2(2) =g t; aty =g 1yt =r O, 2(y)

hence ®_-1(z) =g ,-1(y) and ¢ _-1(z) =g -1 (y).

Tq
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