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Summary

Given a braid b ∈ B2n we can produce a link by joining consecutive pairs of

strings at the top, forming caps, and at the bottom, forming cups. This link

is called the plat closure of b. The set of all braids that fix the caps form a

subgroup H2n and the plat closure of a braid is unchanged after multiplying

on the left or on the right by elements of H2n. So plat closure gives a map

from the double cosets H2n\B2n/H2n to the set of isotopy classes of non-

empty links. As well moving within a double coset there is a stabilisation

move which leaves the plat closure unchanged but increases the braid index

by two and multiplies on the right by σ2n. Birman [2] has shown that any

two braid with isotopic plat closures can be related by a sequence of double

coset and stabilisation moves.

In Chapter 1 we show that if we change the way we draw the cups then

we can use twisted cabling as the stabilisation move. Moreover, we show

that any two braids with equal plat closure can be stabilised until they lie

in the same double coset. If we restrict to even braids then we can give the

plat closure a well defined orientation. In this case we show that untwisted

cabling can be used as the stabilisation move. Assuming an oriented version

of Birman’s result we construct a groupoid G and two subgroupoids H+ and

H− which satisfy the following. All the even braid groups embed in G. There

is a plat closure map on G which takes the same value on the embedded even

braid group. This plat closure is constant on the double cosetsH+\G/H− and

induces a bijection between double cosets and isotopy classes of non-empty

oriented links.

In Chapter 2 we compute a presentation for H2n. To do this we construct

a 2-complex Xn on which H2n acts. Then we show that this complex is simply

connected, the action is transitive on the vertex set and the the number of

edge and face orbits is finite. We get generators from each edge orbit and

relations from the edge and face orbits. In the final chapter we compute a

presentation for the intersection of H2n and the pure braid group.
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Chapter 1

Plat Closure of Braids and the

Braid Cabling Groupoid

1.1 Plat closure of braids

Given a braid b ∈ B2n on 2n strings we define the plat closure of b to be

the link obtained by joining consecutive pairs of strings at the top, forming

caps, and at the bottom, forming cups. We can think of the caps as forming

a (0, 2n)-tangle a+
0 and the cups as forming a (2n, 0)-tangle a−

0 .

a+
0 = ∩ ∩ · · · ∩ a−

0 = ∪ ∪ · · · ∪

Using this notation we can write the plat closure in the following way.

p0(b) = a+
0 b a−

0

As with the closure of braids, we have the following analogue of Alexan-
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der’s theorem[1].

Proposition 1. For every link L there exists some braid b ∈ B2n such that

the plat closure of b is L.

Let H2n be the stabiliser of a+
0 under the action of B2n on (0, 2n)-tangles,

ie

H2n =

{

h ∈ B2n a+
0 h = a+

0

}

.

By reflecting horizontally we see that this is also the stabiliser of a−
0.

For any braid b ∈ B2n we have the following two moves which preserve

its plat closure. A double coset move, (A0), which moves within H2nbH2n,

and a stabilisation move (B0) which increases the braid index by two.

b→ h1b h2 h1, h2 ∈ H2n (A0)

b→ bσ2n ∈ B2n+2 (B0)

In [2] Birman proves the following analogue of Markov’s theorem[8].

Theorem 2 (Birman). Given two braids b ∈ B2n and b′ ∈ B2n′ with p0(b) =

p0(b′) then there exists a sequence of braids

b = b0 → b1 → b2 → . . .→ bN = b′

such that the plat closure of each bi is equal to that of b, p0(bi) = p0(b),

and such that each move bi → bi+1 is either a double coset move (A0), a

stabilisation move (B0) or the inverse of a stabilisation move (B0)
−1

.
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In [6] Hilden calculates a set of generators for H2n and in Chapter 2 we

calculate a presentation for H2n.

1.2 Shifted plat closure

If we shift the cups giving a modified form of plat closure, as defined below,

then we can use inclusion as the stabilisation move.

Definition 3. Let a+ = a+
0 and a− = δa−

0 where δ = σ1σ2 · · ·σ2n−1.

a+ = · · · a− =
· · ·

Define the shifted plat closure of a braid b ∈ B2n by

p(b) = a+b a−.

Proposition 4. Given any link L there exists a braid b ∈ B2n such that the

shifted plat closure of b is L.

Proof. This follows from Proposition 1 and the fact that a− = δa−
0 .

The loss of symmetry between the caps and the cups means that we now

have two subgroups of B2n, the stabiliser of a+ and the stabiliser of a−.

H+
2n =

{

h ∈ B2n a+h = a+

}

H−
2n =

{

h ∈ B2n h a− = a−

}

As before, we now have two moves which preserve the shifted plat closure.

A double coset move (A1) and a stabilisation move (B1). For b ∈ B2n let b
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denote the inclusion of b in B2n+2, ie b is b with two vertical strings added

on the right.

b→ h+b h− for some h+ ∈ H+
2n, h− ∈ H−

2n (A1)

b→ b (B1)

Theorem 5. Given any two braids b ∈ B2n and b′ ∈ B2n′ with p(b) = p(b′)

then there exists a sequence of braids

b = b0 → b1 → b2 → . . .→ bN = b′

such that for each bi we have that p(bi) = p(b) and that each move bi → bi+1

is either an (A1), (B1) or (B1)
−1

move.

Proof. As a− = δa−
0 we have that p(b) = p(b′) only if p0(b δ) = p0(b′δ) so by

Theorem 2 there exists a sequence

b δ = d0 → d1 → d2 → . . .→ dM = b′δ

such that for each di we have that p0(di) = p(b) and that each move di → di+1

is one of (A0), (B0) or (B0)−1. Hence, if we let bi = di δ
−1, it suffices to show

that for each move di → di+1 there exists a sequence of (A1), (B1) or (B1)
−1

moves from bi to bi+1.

Suppose that di → di+1 is a move of type (A0). Then di+1 = h1dih2 for

some h1, h2 ∈ H+
2n. Consider the braid h1bjδh2δ

−1, if we multiply by δ on
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the right we get

(h1biδh2δ
−1)δ = h1biδh2 = h1dih2 = di+1.

So bi+1 = h1biδh2δ
−1 and, because h1 ∈ H+

2n and δh2δ
−1 ∈ H−

2n, we have that

bi → bi+1 is a type (A1) move.

Now suppose that di → di+1 is a move of type (B1). So we have that

di+1 = di σ2n. Let x be the following element of B2n+2.

x = σ1σ2 · · ·σ2nσ−1
2n+1σ

−1
2n · · ·σ

−1
1 =

· · ·

· · ·

Clearly x ∈ H−
2n+2 as it is just a half twist of the outer cup. Now consider

bi x, multiplying on the right by δ gives

bixδ = biσ1σ2 · · ·σ2n = (biδ)σ2n = diσ2n.

Hence bi+1 = bi x and we have the following sequence of moves from bi to

bi+1.

bi
(B1)
−→ bi

(A1)
−→ bi x

1.3 Twisted cabling

Definition 6. For b ∈ B2n let twi(b) denote the braid on 2n + 2 strings

obtained by twist cabling the ith string of b, that is the braid obtained
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by replacing the ith string from the top left with three new strings in a

neighbourhood of the original such that at each crossing they perform a half

twist in the same direction as the crossing. The function twi can be defined

recursively by twi(1) = 1 and

twi

(

σǫ
j b

)

=



















































σǫ
j twi(b) if j < i− 1

σǫ
i+2σ

ǫ
i+1σ

ǫ
iσ

ǫ
i+2σ

ǫ
i+1σ

ǫ
i+2 twi+1(b) if i = j

σǫ
i+1σ

ǫ
iσ

ǫ
i−1σ

ǫ
i+1σ

ǫ
iσ

ǫ
i+1 twi−1(b) if i = j − 1

σǫ
j twi(b) if j > i

where ǫ = ±1.

Proposition 7. The shifted plat closure of a braid is preserved by twisted

cabling.

Before we prove this we need the following definitions and lemma.

Let ti be the (2n, 2n + 2)–tangle which adds a cap to the right of the ith

string if i is even and to the left if i is odd.

ti =



















. . .
∩

i . . . if i is odd

. . .
∩

i . . . if i is even

So a+ti = a+, ti a
− = a− and, for example, t2 = t3.

Let si be the (2n + 2, 2n)–tangle which adds a cup to the left of the ith

string if i is even and to the right if i is odd.
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si =























. . . ∪

i
. . . if i is odd

. . . ∪

i
. . . if i is even

So si a
− = a−, a+si = a+ and, for example, s1 = s2.

Let π be the natural map from B2n to the symmetric group S2n, ie π

takes σi to the transposition (i i+1). If we write π and the action of the

symmetric group on the right then we can define the action of B2n on the

set {1, . . . , 2n} by i · b = i · (bπ).

Lemma 8. For a braid b ∈ B2n the following equations hold.

ti twi(b) = b tj

twi(b) sj = si b

where j = i · b.

Proof. As twi can be defined recursively, it is enough to show this when

b = σ±1
k . We will do the case when b = σk, the case b = σ−1

k is similar. If

k < i−1 or k > i then clearly the equations hold. If k = i and i is even then

ti twi(σi) =

i

twi(σi) si+1 =

i

7



=

i

=

i

= σi ti+1 = si σi

If k = i and i is odd then

ti twi(σi) =

i

twi(σi) si+1 =

i

=

i

=

i

= σi ti+1 = si σi

If k = i− 1 and i is odd then

ti twi(σi−1) =

i

twi(σi−1) si−1 =

i

8



=

i

=

i

= σi−1 ti−1 = si σi−1

If k = i− 1 and i is even then

ti twi(σi−1) =

i

twi(σi−1) si−1 =

i

=

i

=

i

= σi−1 ti−1 = si σi−1

Proof of Proposition 7. For b ∈ B2n and j = i · b we have the following.

p(twi(b)) = a+
twi(b) a− = a+ti twi(b) a−

= a+b tja
− = a+b a− = p(b)

9



So we have the following two moves which preserve the shifted plat closure

of a braid b ∈ B2n. A double coset move (A2) and a twisted cabling move

(B2).

b→ h+b h− for some h+ ∈ H+
2n, h− ∈ H−

2n (A2)

b→ twi(b) for some i (B2)

Theorem 9. Given two braids b ∈ B2n and b′ ∈ B2n′ with p(b) = p(b′) then

there exists a sequence of braids

b = b0 → b1 → b2 → . . .→ bN = b′

such that the shifted plat closure of each bi is equal to that of b, p(bi) = p(b),

and that each move bi → bi+1 is either an (A2), (B2) or (B2)
−1

move.

Proof. By Theorem 5 there exists a sequence of (A1), (B1) and (B1)−1 moves

from b to b′. As (A1) = (A2) it is enough to show that we can replace each

(B1) move with a sequence of (A2), (B2) and (B2)−1 moves. So suppose that

b→ b is a (B1) move and consider a+twi(b) where i = 2n · b−1.

a+
twi(b) = a+ti twi(b) = a+b t2n = a+b

Therefore twi(b) and b lie in the same coset of H+
2n+2\B2n+2 and hence

twi(b) → b is an (A2) move. So we can replace b → b with the following

sequence of moves.

b
(B2)
−→ twi(b)

(A2)
−→ b

10



Proposition 10. Twisted cabling preserves H+
2n and H−

2n, ie for all h+ ∈

H+
2n and all h− ∈ H−

2n and for all i we have that twi(h
+) ∈ H+

2n+2 and

twi(h
−) ∈ H−

2n+2.

Proof.

a+
twi

(

h+
)

= a+ti twi

(

h+
)

= a+h+tj = a+tj = a+

where j = i · h+.

twi

(

h−
)

a− = twi

(

h−
)

sja
− = sih

−a− = si a
− = a−

where j = i · h−.

Lemma 11. For i < j the braid twitwj(b) is in the same double coset as

twj+2twi(b).

Proof. Let k = i · b and l = j · b. We will assume that k < l, the case when

k > l is analogous. It is easy to see that the tangles tltk and tktl+2 are equal.

So we have the following.

a+
twitwj(b) = a+ti twitwj(b) = a+

twj(b) tk

= a+tj twj(b) tk = a+b tltk

and
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a+
twj+2twi(b) = a+tj+2twj+2twi(b)

= a+
twi(b) tl+2 = a+ti twi(b) tl+2 = a+b tktl+2.

Hence a+twitwj(b) = a+twj+2twi(b) and so twitwj(b) and twj+2twi(b) lie in

the same coset of H+
2n+4\B2n+4.

Theorem 12. The sequence of braids in Theorem 9 can be chosen so that

it consists of a sequence of (B2) moves, then an (A2) move, and then a

sequence of (B2)
−1

moves.

Proof. First we will show that an (A2) followed by a (B2) move can be re-

placed with a (B2) followed by an (A2) move, and hence that a (B2)−1 followed

by an (A2) can be replaced by an (A2) followed by a (B2)
−1. Then we will

show that a (B2)−1 followed by a (B2) can either be eliminated or replaced

by a (B2), an (A2), and then a (B2)−1 move. Finally, noting that an (A2)

move followed by another (A2) move is equivalent to a single (A2) move, we

see that any sequence of moves can be rewritten into one of the required form

and hence the theorem holds.

So, suppose that we have an (A2) move followed by a (B2) move.

b
(A2)
−→ h+b h− (B2)

−→ twi

(

h+b h−
)

Let j = i · h+ and k = i · (h+b). By Proposition 10 we have that twi(h
+) ∈

H+
2n+2 and twk(h−) ∈ H−

2n+2. So we can replace the sequence of moves with

12



the following.

b
(B2)
−→ twj(b)

(A2)
−→ twi

(

h+
)

twj(b) twk

(

h−
)

= twi

(

h+b h−
)

Now suppose that we have a (B2)
−1 then a (B2) move

b1
(B2)−1

−→ b2
(B2)
−→ b3.

So b1 = twi(b2) and b3 = twj(b2) for some i, j. If i = j then the sequence can

be simplified. So without loss of generality we may assume that i < j. So,

by Lemma 11, we have the following sequence of moves.

b1 = twi(b2)
(B2)
−→ twj+2twi(b2)

(A2)
−→ twitwj(b2)

(B2)−1

−→ twj(b2) = b3.

1.4 Cabling

Definition 13. For b ∈ B2n let ci(b) denote the braid on 2n + 2 strings

obtained by replacing the ith string from the top left with three new strings

parallel to the original. The function ci can be defined recursively by ci(1) =

1 and

13



ci

(

σǫ
j b

)

=



















































σǫ
j ci(b) if j < i− 1

σǫ
i+2σ

ǫ
i+1σ

ǫ
i ci+1(b) if i = j

σǫ
i−1σ

ǫ
iσ

ǫ
i+1 ci−1(b) if i = j − 1

σǫ
j+2ci(b) if j > i

where ǫ = ±1.

The goal is to use cabling as the stabilisation move, however there is an

obvious problem. Cabling does not always preserve the plat closure of a

braid, for example p(c1(σ1)) 6= p(σ1).

Proposition 14. For all b ∈ B2n, if i = i · b mod 2 then p(b) = p(ci(b)).

Before we prove this we need the following.

As before, let ti be the (2n, 2n + 2)–tangle which adds a cap to the right

of the ith string if i is even and to the left if i is odd. Similarly let t′i be the

(2n, 2n + 2)–tangle which adds a cap to the left of the ith string if i is even

and to the right if i is odd.

ti =























. . .
∩

i . . . if i is odd

. . .
∩

i . . . if i is even

t′i =























. . .
∩

i . . . if i is odd

. . .
∩

i . . . if i is even

As before, let si be the (2n + 2, 2n)–tangle which adds a cup to the left

of the ith string if i is even and to the right if i is odd. Similarly, let s′i be

the (2n + 2, 2n)–tangle which adds a cup to the right of the ith string if i is

even and to the left if i is odd.
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si =























. . . ∪

i
. . . if i is odd

. . . ∪

i
. . . if i is even

s′i =























. . . ∪

i
. . . if i is odd

. . . ∪

i
. . . if i is even

Lemma 15. For any braid b ∈ B2n, let j = i · b, then we have the following.

ti ci(b) =











b tj if i = j mod 2

b t′j if i 6= j mod 2

t′i ci(b) =











b t′j if i = j mod 2

b tj if i 6= j mod 2

ci(b) sj =











si b if i = j mod 2

s′i b if i 6= j mod 2

ci(b) s′j =











s′i b if i = j mod 2

si b if i 6= j mod 2

Proof. Because ci can be defined iteratively it is enough to show this when

b = σ±1, we will only show that ti ci(σk) =











σk tj

σk t′j

, the remaining cases are

similar.

If k < i − 1 or k > i then clearly the equation holds. If k = i and i is

even then

ti ci(σi) =

i

=

i

= σi t
′
i+1

If k = i and i is odd then

ti ci(σi) =

i

=

i

= σi t
′
i+1

15



If k = i− 1 and i is odd then

ti ci(σi−1) =

i

=

i

= σi−1 t′i−1

If k = i− 1 and i is even then

ti ci(σi−1) =

i

=

i

= σi−1 t′i−1

Proof of Proposition 14. If b ∈ B2n and i = i · b mod 2 then we have

p(ci(b)) = a+
ci(b) a− = a+ti ci(b) a−

= a+b ti·b a− = a+b a− = p(b) .

So we have the following two types of moves that preserve the shifted plat

closure of a braid b ∈ B2n. A double coset move (A3) and a cabling move

(B3).

b→ h+b h− for some h+ ∈ H+
2n, h− ∈ H−

2n (A3)

b→ ci(b) for i such that i = i · b mod 2 (B3)

16



Theorem 16. Given two braids b ∈ B2n and b′ ∈ B2n′ with p(b) = p(b′) then

there exists a sequence of braids

b = b0 → b1 → b2 → . . .→ bN = b′

such that the shifted plat closure of each bi is equal to that of b, p(bi) = p(b),

and that each move bi → bi+1 is either an (A3), (B3) or (B3)
−1

move.

Proof. By Theorem 5 there exists a sequence of (A1), (B1) and (B1)−1 moves

from b to b′. As (A3) = (A1) it is enough to show that we can replace each

(B1) move with a sequence of (A1), (B1) and (B1)
−1 moves.

So suppose that b→ b is a (B1) move. Let i = 2n · b−1. If i is even then

a+
ci(b) = a+ti ci(b) = a+b t2n = a+b.

Therefore ci(b) and b lie in the same coset of H+
2n\B2n and we can replace

b→ b with

b
(B2)
−→ ci(b)

(A3)
−→ b.

If on the other hand i is odd, we have that ci+1(σib) is in the same coset as

σib and we can replace b→ b with the following.

b
(A3)
−→ σib

(B3)
−→ ci+1(σib)

(A3)
−→ σib

(A3)
−→ b

Proposition 17. Cabling preserves H+
2n and H−

2n. In other words, for all

h+ ∈ H+
2n and all i such that i = i · h+ mod 2 we have ci(h

+) ∈ H+
2n+2 and
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for all h− ∈ H−
2n and all i such that i = i·h− mod 2 we have ci(h

−) ∈ H−
2n+2.

Proof.

a+
ci(h

+) = a+ti ci(h
+) = a+h+tj = a+tj = a+

where j = i · h+.

ci(h
−) a− = ci(h

−) sj a− = si h
−a− = si a

− = a−

where j = i · h−.

Definition 18. Say that a braid b ∈ B2n is even if for all i we have i = i · b

mod 2. The even braids form a subgroup E2n of B2n.

Proposition 19. For any b ∈ B2n there exists h+ ∈ H+
2n and h− ∈ H−

2n such

that h+b h− is even.

Proof. Label the end of the strings with the elements of {1, 2, . . . , 2n} ×

{+,−} so that the top of the strings are labelled (1, +), (2, +), . . . , (2n, +)

and the bottom labelled (1,−), (2,−), . . . , (2n,−). Each component C of the

link p(b) gives a sequence of labels constructed by starting at a point (i, +)

on C then following C down to (i · b,−) and then carrying on along C listing

the labels in the order that they occur. We will assume that the starting

point (i, +) is chosen so that i is odd. A braid is even if and only if the

indices follow the pattern odd, odd, even, even, odd, odd, etc.

Suppose that the component C gives rise to the sequence (ik, sk)N
k=1. Then

sk = + if k = 0 or 1 mod 4 and sk = − if k = 2 or 3 mod 4. Hence

s2k = s2k+1. From the construction it follows that the pair i2k and i2k+1
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consists of one even number and one odd number. A braid is even if and

only if whenever k is odd this pair is of the form odd then even and whenever

k is even this pair is even then odd. For each pair (i2k, s2k), (i2k+1, s2k+1) that

doesn’t follow this pattern the half twist of the corresponding cap, if s2k = +,

or cup, if s2k = −, multiplied on the top or the bottom respectively of the

braid corrects this pair and moves within the double coset. Applying this

to every pair of every component we produce an even braid that lies in the

same double coset as the original braid.

Proposition 20. If b ∈ E2n and b′ ∈ E2n′ with p(b) = p(b′) then the sequence

of braids in Theorem 16 can be chosen so that each bi is even.

Proof. We will show that any sequence of length two starting at an even

braid can be replaced with a sequence where all but the last braid are even.

We can assume that at most one of the moves is an (A3) move. As (B3) and

(B3)−1 moves take even braids to even braids we may assume that the first

move is an (A3) move. So we only have two cases, an (A3) then a (B3), or

an (A3) then a (B3)−1.

First suppose that we have an (A3) move followed by a (B3) move

b→ h+b h− → ci(h
+b h−)

where b is even. Let j = i · h+, k = j · b and l = k · h−.

If i = j mod 2 then k = l mod 2 and so ci(h
+) ∈ H+

2n+2 and ck(h−) ∈

H−
2n+2. Hence we have the following sequence of moves.

b
(B3)
−→ cj (b)

(A3)
−→ ci(h

+) cj (b) ck(h−) = ci(h
+b h−)
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Suppose that i 6= j mod 2 so we also have that k 6= l mod 2. Let

x = σjσj+1σj and y = σ−1
k σ−1

k+1σ
−1
k . We have that cj (b) = x cj (b) y, to see

this it is enough consider the cases b = σi and b = σi−1. The following shows

that ci(h
+) x ∈ H+

2n+2 and y ck(h−) ∈ H−
2n+2.

a+
ci(h

+) x = a+ti ci(h
+) x = a+h+t′j x = a+h+tj = a+tj = a+

y ck(h−) a− = y ck(h−) sl a
− = y s′k h−a− = sk h−a− = sk a− = a−

So we can replace the original sequence of moves with the following.

b
(B3)
−→ cj (b)

(A3)
−→ ci(h

+) x cj (b) y ck(h−) = ci(h
+b h−)

Now we look at the second case. Suppose that we have an (A3) and then

a (B3)
−1 move

b→ h+b h− = cj (b′)→ b′

where b is even. By Proposition 19 there exists x ∈ H+
2n−2 and y ∈ H−

2n−2

such that xb′y is even. Let i = j · x−1, k = j · b′ and l = k · y.

If i = j mod 2 then we also have that k = l mod 2 and so ci(x) ∈ H+
2n

and ck(y) ∈ H−
2n. Therefore the original sequence can be replaced with

b
(A3)
−→ ci(x) h+b h−

ck(y) = ci(xb′y)
(B3)−1

−→ xb′y
(A3)
−→ b′.
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If i 6= j mod 2 then k 6= l mod 2. So, as in the first case, we have that

ci(x) σjσj+1σj ∈ H+
2n,

σ−1
k σ−1

k+1σ
−1
k ck(y) ∈ H−

2n,

and

σjσj+1σj cj (b′) σ−1
k σ−1

k+1σ
−1
k = cj (b′) .

So the sequence can be replaced with the following.

b
(A3)
−→ ci(x) σjσj+1σj h+b h−σ−1

k σ−1
k+1σ

−1
k ck(y) = ci(xb′y)

(B3)−1

−→ xb′y
(A3)
−→ b′.

Theorem 21. Given two even braids b ∈ E2n and b′ ∈ E2n′ with p(b) = p(b′)

then the sequence of braids from b to ′ can be chosen so that all of the (B3)

moves come first, we then have an (A3) move and then all of the (B3)
−1

moves at the end.

Note that this can fail if either b or b′ is not even. For example, if

b = σ1 ∈ B2 and b′ = 1 ∈ B4 then p(b) = p(b′) is the unknot but there

are no (B3) moves starting at b.

Proof. By Proposition 20 we may assume that every braid in the sequence

is even. So, by the proof of Proposition 20, whenever we have an (A3) move

followed by an (B3) move we can replace it with a (B3) followed by an (A3)

move.
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Suppose that we have a (B3)−1 then a (B3),

ci(b)→ b→ cj (b) .

If i = j then clearly this sequence can be removed. Otherwise we may assume

that i < j and then this can be replaced by the following sequence.

ci(b)
(B3)
−→ cj+2ci(b) = cicj (b)

(B3)−1

−→ cj (b)

Therefore any sequence can be rewritten to one of the required form.

For an even braid b ∈ E2n the even numbered strings at the top connect

to even numbered strings at the bottom and the odd numbered strings at

the top connect to odd numbered strings at the bottom. So we have a well

defined notion of an even string and an odd string. We can now give the odd

strings a downward orientation and the even strings an upward orientation.

This orientation is consistent with the shifted plat closure and hence gives a

well defined oriented plat closure←−p (b). This also gives an orientation on the

caps and on the cups and we can write ←−p (b) =←−a+b←−a−.

←−a + = · · ·
←−a − =

· · ·

Proposition 22. Given any oriented link L there exists some braid b ∈ B2n

such that L =←−p (b).

Proof. By Alexander’s theorem[1] L can be expressed as the closure of a
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braid b ∈ Bn, ie

L = b

· · ·

· · ·

· · ·

This is isotopic to the following, which is clearly the oriented plat closure of

some even braid.
· · ·

b

· · ·

Proposition 23. The oriented plat closure of an even braid b ∈ E2n is

preserved by cabling, ie ←−p (b) =←−p (ci(b)) for every 1 ≤ i ≤ 2n.

Proof. If we add the appropriate orientation to the ti and si used in the proof

of Proposition 14 and Lemma 15 the same arguments hold for the oriented

plat closure.

As with the unoriented case we have two moves which preserve the ori-
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ented plat closure of an even braid. A double coset move and a stabilisation

move.

b→ h+b h− for some h+ ∈ H+
2n ∩ E2n, h− ∈ H−

2n ∩ E2n (A4)

b→ ci(b) for some i (B4)

Conjecture 24. Given two braids b ∈ E2n and b′ ∈ E2n′ with ←−p (b) =←−p (b′)

then there exists a path from b to b′ consisting of (A4), (B4) and (B4)
−1

moves.

1.5 The Braid Cabling Groupoid

By a forest we will mean a sequence of planar rooted ternary trees. For

example,

f =

Let F (k, l) be the set of all forest with k leaves and l trunks. Our example

f lies in F (11, 3). We have a map

F (k, l)× F (l, m)→ F (k, m)

(f, g) 7→ fg
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given by gluing the trunks of the first forest onto the leaves of the second.

The set F (k, k) contains a single forest which we will call the identity. The

forests form a category F with objects N and morphism F (k, l).

Given a braid β ∈ Bn and a forest f ∈ F (m, n) we can glue the trunks of

the trees in f to the top of the strings in β. If we then pull all the branching

points down through β we get a new braid cf (β) and a new forest f ·β. The

forest f · β can also be thought of as the result of permuting the trees of f

via the permutation defined by β. If f contains a single branching point on

the ith tree then cf is the same as the cabling map ci .

Let Γ be the directed graph with vertex set 2N and edges 2n
β

−→ 2n for

each β ∈ E2n, and edges 2m
Cf

−→ 2n and 2n
C
−1
f

−→ 2m for each f ∈ F (2m, 2n).

Let C be the free category on Γ. In other words, C is the category with

objects 2N and morphisms hom(2m, 2n) the set of all paths from 2m to 2n

in Γ. Given paths x from 2l to 2m and y from 2m to 2n we will write xy for

the composite path from 2l to 2n, ie we will write composition of morphisms

as a map hom(2l, 2m)× hom(2m, 2n)→ hom(2l, 2n). We identify the edges

given by the identity elements 1 ∈ E2n and 1 ∈ F (2n, 2n) with the identity

morphism 2n→ 2n. We will write x ∈ Γ if x is an edge of Γ and x ∈ C if x

is a morphism of C. We will call elements of C words. Let the braid cabling
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groupoid G be the quotient of C by the following relations.

CfC
−1
f = 1 = C−1

f Cf (1)

αβ = γ for α, β, γ ∈ E2n with αβ =E2n
γ (2)

CfCg = Cfg (3)

Cfβ = cf (β) Cf ·β (4)

The equivalence relation on words generated by (1)–(4) is the same as

the reflexive transitive closure of the following system of rewrite rules.

Cfβ → cf (β) Cf ·β (i)

β C−1
f → C−1

f ·β−1cf ·β−1 (β) (ii)

CfCg → Cfg (iii)

C−1
g C−1

f → C−1
fg (iv)

αβ → γ where αβ =E2n
γ (v)

CfC
−1
g → C−1

g′ Cf ′ where g′f = f ′g (vi)

C−1
fg cf (β) C(f ·β)h → C−1

g βCh (vii)

Note that for every f ∈ F (2n, 2m) and g ∈ F (2l, 2m) there exists g′ ∈

F (2k, 2n) and f ′ ∈ F (2k, 2l) such that g′f = f ′g.

Proposition 25. The rules (i)–(vii) define a well-founded confluent rewrite

system.

Proof. We need to show that whenever a word can be rewritten in two differ-

ent ways then the resulting words can be rewritten by a sequence of rewrites
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to the same word. The following is a list of all words that can be rewritten

in two different ways.

Cfβ C−1
g (i), (ii)

CfCgβ (i), (iii)

Cfαβ (i), (v)

C−1
fg cf (β) C(f ·β)hγ (i), (vii)

β C−1
g C−1

f (ii), (iv)

αβ C−1
f (ii), (v)

α C−1
fg cf (β) C(f ·β)h (ii), (vii)

CfCgCh (iii), (iii)

CfCgC
−1
h (iii), (vi)

C−1
fg cf (β) C(f ·β)hCe (iii), (vii)

C−1
f C−1

g C−1
h (iv), (iv)

CfC
−1
g C−1

h (iv), (vi)

C−1
e C−1

fg cf (β) C(f ·β)h (iv), (vii)

αβγ (v), (v)

CeC
−1
fg cf (β) C(f ·β)h (vi), (vii)

C−1
fg cf (β) C(f ·β)hC

−1
e (vi), (vii)

C−1
fg cf (β) C(f ·β)h = C−1

f ′g′cf ′ (β ′) C(f ′·β′)h′ (vii), (vii)

Before we continue we will need the following lemma.
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Lemma 26. Cabling and the action of braids on forests satisfies the following

equations.

(fg) · β =
(

f · cg(β)
)

(g · β)

cf (β)−1 = cf ·β (β−1)

cf

(

cg(β)
)

= cfg (β)

cf (αβ) = cf (α) cf ·α(β)

First we consider the word Cfβ C−1
g which can be rewritten by a (i) rule

or a (ii) rule. Suppose that f ′g = g′(f · β). Applying β−1 to both sides of

this equation we see that
(

f ′ · cg (β−1)
)

(g · β−1) = (g′ · cf ·β (β−1))f .

Cfβ C−1
g

(i) //

(ii)

��

cf (β) Cf ·βC−1
g

(iv)

��
CfC

−1
g·β−1cg·β−1 (β)

(vi)
��

cf (β) C−1
g′ Cf ′

(ii)

��

C−1
(g′·cf ·β (β−1))Cf ′·cg (β−1)cg·β−1 (β) (i) // C−1

g′·cf (β)−1c(g′·cf (β−1))f (β) Cf ′
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Now consider CfCgβ.

CfCgβ
(i) //

(iii)

��

Cfcg (β) Cg·β

(i)
��

Cfgβ

(i)

��

cfg (β) Cf ·cg (β)Cg·β

(iii)
��

cfg (β) C(fg)·β cfg (β) C(f ·cg (β))(g·β)

Now consider Cfαβ, where αβ = γ.

Cfαβ i //

(v)

��

cf (α) Cf ·αβ

(i)
��

Cfγ

(i)

��

cf (α) cf ·α(β) Cf ·γ

(v)vvmmmmmmmmmmmm

cf (γ) Cf ·γ

Now consider C−1
fg cf (β) C(f ·β)hγ.

C−1
fg cf (β) C(f ·β)hγ

(i) //

(vii)

��

C−1
fg cf (β) c(f ·β)h(γ) C((f ·β)h)·γ

(v)

��

C−1
g β Chγ

(i)

��

C−1
fg cf (β ch(γ)) C((f ·β)h)·γ

C−1
g β ch(γ) Ch·β C−1

fg cf (β ch(γ)) C(f ·β ch (γ))(h·γ)
(vii)

oo

29



Now consider β C−1
g C−1

f .

β C−1
g C−1

f

(ii) //

(iv)

��

C−1
g·β−1cg·β−1 (β) C−1

f

(ii)
��

βC−1
fg

(iv)

��

C−1
g·β−1C

−1
f ·cg (β−1)c(f ·cg (β−1))(g·β−1)(β)

(iv)
��

C−1
(fg)·β−1c(fg)·β−1 (β) C−1

(f ·cg (β−1))(g·β−1)c(f ·cg (β−1))(g·β−1)(β)

Now consider αβ C−1
f , where γ = αβ.

αβ C−1
f

(ii) //

(v)

��

α C−1
f ·β−1cf ·β−1 (β)

(ii)
��

γ C−1
f

(ii)

��

C−1
f ·β−1α−1cf ·β−1α−1 (α) c

f ·β−1 (β)

(v)ttiiiiiiiiiiiiiiii

C−1
f ·γ−1cf ·γ−1 (γ)

Now consider α C−1
fg cf (β) C(f ·β)h. First note that

c
f ·cg (α−1)

(

c
g·α−1 (α) β

)

= c
f ·cg (α−1)

(

c
g·α−1 (α)

)

c
f ·cg (α−1)cg·α−1 (α)(β)

= c(fg)·α−1 (α) cf (β)

and

(f · cg (α−1)) · c
g·α−1 (α) β = f · β.
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α C−1
fg cf (β) C(f ·β)h

(vii) //

(ii)
��

α C−1
g β Ch

(ii)

��
C−1

(fg)·α−1c(fg)·α−1 (α) cf (β) C(f ·β)h

(v)
��

C−1
g·α−1cg·α−1 (α) β Ch

(v)

��

C−1
(f ·cg (α−1))(g·α−1)cf ·cg (α−1)

(

c
g·α−1 (α) β

)

C(f ·β)h
(vii) // C−1

g·α−1(cg·α−1 (α) β) Ch

Now consider CfCgCh.

CfCgCh
(iii) //

(iii)
��

CfgCh

(iii)
��

CfCgh
(iii) // Cfgh

Now consider CfCgC
−1
h . Let f ′, g′, h′ and h′′ satisfy the following.

h′g = g′h

f ′h′ = h′′f

So we have that h′′fg = f ′h′g = f ′g′h.

CfCgC
−1
h

(vi) //

(iii)
��

CfC
−1
h′ Cg′

(vi)
��

CfgC
−1
h

(vi)
��

C−1
h′′ Cf ′Cg′

(iii)xxppppppppppp

C−1
h′′ Cf ′g′
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Now consider C−1
fg cf (β) C(f ·β)hCe.

C−1
fg cf (β) C(f ·β)hCe

(vii) //

(iii)
��

C−1
g β ChCe

(iii)

��
C−1

fg cf (β) C(f ·β)he

(vii) // C−1
g β Che

Now consider C−1
f C−1

g C−1
h .

C−1
f C−1

g C−1
h

(iv) //

(iv)
��

C−1
gf C−1

h

(iv)
��

C−1
f C−1

hg

(iv) // C−1
hgf

Now consider CfC
−1
g C−1

h . Let f ′, g′, h′ and f ′′ satisfy the following

f ′g = g′f

h′f ′ = f ′′h

CfC
−1
g C−1

h

(vi) //

(iv)

��

C−1
g′ Cf ′C−1

h

(vi)
��

CfC
−1
hg

(vi)
��

C−1
g′ C−1

h′ Cf ′′

(iv)wwooooooooooo

C−1
h′g′Cf ′′

32



Now consider C−1
e C−1

fg cf (β) C(f ·β)h.

C−1
e C−1

fg cf (β) C(f ·β)h
(vii) //

(iv)
��

C−1
e C−1

g βCh

(iv)

��
C−1

fgecf (β) C(f ·β)h
(vii) // C−1

ge βCh

For the word αβγ this follows from the associativity of multiplication in

the braid group.

Now consider CeC
−1
fg cf (β) C(f ·β)h. Let e′, f ′, g′ and e′′ satisfy the follow-

ing.

g′e = e′g

e′′f = f ′e′
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CeC
−1
fg cf (β) C(f ·β)h

(vii) //

(vi)
��

CeC
−1
g βCh

(vi)

��

C−1
f ′g′Ce′′cf (β) C(f ·β)h

(i)
��

C−1
g′ Ce′βCh

(i)

��
C−1

f ′g′ce′′f (β) Ce′′·cf (β)C(f ·β)h

(iii)
��

C−1
g′ Ce′βCh

(i)

��
C−1

f ′g′ce′′f (β) Ce′′·cf (β)(f ·β)h C−1
g′ ce′ (β) Ce′·βCh

(iii)

��

C−1
f ′g′cf ′e′ (β) C((e′′f)·β)h

C−1
f ′g′cf ′e′ (β) C((f ′e′)·β)h

C−1
f ′g′cf ′e′ (β) C(f ′·ce′ (β)(e′·β)h

(vii) // C−1
g′ ce′ (β) C(e′·β)h

Now consider C−1
fg cf (β) C(f ·β)hC

−1
e . Let e′, f ′, h′ and e′′ satisfy the fol-

lowing.

e′h = h′e

e′′(f · β) = f ′e′

Note that

((e′′ · cf (β)−1)f) · β = (e′′ · cf (β)−1) · cf (β) (f · β)

= e′′(f · β)

= f ′e′

34



and so

(e′′ · cf (β)−1)f = (f ′e′) · β−1

= (f ′ · ce′ (β
−1))(e′ · β−1).

C−1
fg cf (β) C(f ·β)hC

−1
e

(vii) //

(vi)
��

C−1
g β ChC

−1
e

(vi)

��
C−1

fg cf (β) C−1
e′′ Cf ′h′

(ii)
��

C−1
g β C−1

e′ Ch′

(ii)

��
C−1

fg C−1
e′′·cf (β)−1c(e′′·cf (β)−1)f (β) Cf ′h′

(iv)
��

C−1
g C−1

e′·β−1ce′·β−1 (β) Ch′

(iv)

��

C−1
(e′′·cf (β)−1)fg

c(e′′·cf (β)−1)f (β) Cf ′h′

C−1
(f ′·ce′ (β

−1))(e′·β−1)gc(f ′·ce′ (β
−1))(e′·β−1)(β) Cf ′h′

(vii) // C−1
(e′·β−1)gce′·β−1 (β) Ch′

Now consider C−1
fg cf (β) C(f ·β)h = C−1

f ′g′cf ′ (β ′) C(f ′·β′)h′ . We have the fol-

lowing.

C−1
fg cf (β) C(f ·β)h = C−1

f ′g′cf ′ (β ′) C(f ′·β′)h′

(vii) //

(vii)
��

C−1
g βCh

C−1
g′ β ′Ch′

If we let F = LCM(f, f ′) then there exists G such that FG = fg and there

exists f1 and f ′
1 such that ff1 = F = f ′f ′

1. So we have that g = f1G and

g′ = f ′
1G. There exists β0 such that cF (β0) = cf (β). We also have that

β = cf1
(β0) and β ′ = c

f ′

1
(β0). Also F · β = LCM(f · β, f ′ · β ′) hence there
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exists H such that (F · β0)H = (f · β)h and we have that (f1 · β0)H = h and

(f ′
1 · β0)H = h′. So we can complete the above with the following.

C−1
g βCh = Cf1Gcf1

(β0) C−1
(f1·β0)H

(vii)

��
C−1

g′ β ′Ch′ = Cf ′

1Gc
f ′

1
(β0) C−1

(f ′

1·β0)H

(vii) // CGβ0C
−1
H

Now that we have a complete rewrite system we have a unique normal

form N(x) for any given word x. We have that for each word x there exists

f , g and β such that N(x) = C−1
f βCg.

Corollary 27. The maps E2n → G and the functor F → G given by β 7→ β

and f 7→ Cf respectively are injective.

For x ∈ G we can define its oriented plat closure by ←−p (x) =←−p (β) where

N(x) = C−1
f βCg. Note that once we have written x in the form C−1

f βCg we

don’t need to do the remaining (vii) rewrite to find ←−p (x) as the plat closure

is invariant under cabling.

Proposition 28. For every link L there exists some x ∈ G such that←−p (x) =

L.

Proof. If we let i denote the inclusion of E2n into Aut(2n) then it is clear

that ←−p =←−p ◦ i. Hence this follows from Proposition 22.

Let H+ be the subgroupoid consisting of all morphisms whose normal

form is C−1
f βCg for any f and g and any β ∈ H+

2n ∩ E2n. By Proposition 17
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this is closed under multiplication. Similarly let H− be the subgroupoid

consisting of all morphisms whose normal form is C−1
f βCg where β ∈ H−

2n ∩

E2n.

Proposition 29. The oriented plat closure map is constant on the double

cosets of H+\G/H−.

Proof. We will show that multiplying on the left by an element of H+ pre-

serves the plat closure. Multiplying on the right by elements ofH− is similar.

Given x = C−1
f β Cg ∈ G and y = C−1

p θ Cq ∈ H
+, ie θ ∈ H+

2n for some n.

We want to show that←−p (x) =←−p (yx), so we start by calculating the normal

form of yx. We have the following where f ′q = q′f .

C−1
p θ CqC

−1
f β Cg

(vi)
��

C−1
p θ C−1

f ′ Cq′β Cg

(ii),(i)

��

C−1
p C−1

f ′·θ−1cf ′·θ−1 (θ) cq′ (β) Cq′·βCg

(iii),(v),(iv)
��

C−1
(f ′·θ−1)p(c

f ′·θ−1 (θ) cq′ (β)) C(q′·β)g

Then there may be a (vii) move on the end of this sequence. So we have

that ←−p (yx) = ←−p
(

c
f ′·θ−1 (θ) cq′ (β)

)

. By Proposition 17 c
f ′·θ−1 (θ) is in H+

2m

for some m and by Proposition 14 ←−p (β) = ←−p
(

cq′ (β)
)

therefore ←−p (x) =

←−
p (yx).

Conjecture 30. The oriented plat closure map ←−p from H+\G/H− to the

set of non-empty oriented links is a bijection.
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Proof given Conjecture 24. Given x, x′ ∈ G with ←−p (x) = ←−p (x′). Suppose

that N(x) = C−1
f β Cg and that N(x′) = C−1

f ′ β ′ Cg′. So we have that ←−p (β) =

←−
p (β ′). Therefore, by Theorem 21 and Conjecture 24 there exists i1, i2, . . . iN ,

j1, j2, . . . jM and h+ ∈ H+
2n and h− ∈ H−

2n such that

ci1
ci2
· · · ciN

(β) = h+
cj1

cj2
· · · cjM

(β ′) h−.

The sequence of cabling moves can be combined into a single forest cabling

move. So for some f1 and f2,

cf1
(β) = h+

cf2
(β ′) h−.

We have that

C−1
f β Cg = C−1

f C−1
f1

cf1
(β) Cf1·βCg

= C−1
f C−1

f1
h+

cf2
(β ′) h−Cf1·βCg

Because C−1
f ′ C−1

f2
(h+)−1Cf1Cf ∈ H

+ and C−1
g C−1

f1·β
(h−)−1Cf2·β′Cg′ ∈ H

− we

have that x is in the same double coset as

C−1
f ′ C−1

f2
cf2

(β ′) Cf2·β′Cg′ = C−1
f ′ β ′Cg′.
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Chapter 2

Hilden’s group

2.1 Introduction

Let H3 denote the closed upper half-space of R
3, let a1, a2, . . . , an ⊂ H3

be n pairwise disjoint properly embedded unknotted arcs and let a∗ = a1 ∪

a2 ∪ · · · ∪ an. Viewing the braid group as the mapping class group of the

punctured disc, if this disc is included in ∂H3 with ∂a∗ as the punctures, one

can define Hilden’s group, H2n, to be the subgroup of B2n consisting of all

mapping classes that can be extended to H3 \a∗. Or equivalently, H2n is the

stabiliser of a∗ under the action of B2n on 0, 2n–tangles.

Hilden[6] found generators for a similar subgroup of the braid group of

a sphere. For any given braid b multiplying on either the left or the right

by elements of H2n preserves the plat closure, ie plat closure is constant on

each double coset. Birman[2] showed that if two braids have the same plat

closure then they can be related by a sequence of these double coset moves

and stabilisation moves that changes the braid index by 2.
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We calculate a presentation for H2n using the action of this group on a cel-

lular complex. Hatcher–Thurston[5], Wajnryb[9, 10, 11], Laudenbach[7], etc

used the same method to calculate presentations for mapping class groups.

We start in Section 2.2 by outlining this method. A similar but more gen-

eral method is given by Brown [4]. Brendle–Hatcher[3] have calculated a

presentation for H2n using a different method.

In Section 2.3 we define a simply-connected complex Xn. In Section 2.4

we remove some of the edges and faces of this complex resulting in a new

complex which remains simply-connected but gives a simpler presentation.

This presentation is calculated in Section 2.5 and then used to calculate a

presentation with generators similar to those found by Hilden.

2.2 The method

In this section we recall the method of Hatcher–Thurston[5]. This section

follows §2 “Une Méthode pour présenter G” of Laudenbach[7] and all results

in this section are from there.

Suppose that X is a connected simply-connected cellular 2-complex such

that each attaching map is injective and that each cell is uniquely determined

by its boundary. Suppose that G is a group acting cellularly on the right

of X, and that this action is transitive on the vertex set X0. Pick a vertex

v0 ∈ X0 as a basepoint and let H denote its stabiliser in G, ie H = {g ∈ G |

v0 · g = v0}. Suppose that H has a presentation with generating set S0 and

relations R0, ie H = 〈S0|R0〉.

Given vertices u, v ∈ X0 such that {u, v} is the boundary of an edge of X
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we will write (u, v) for this (oriented) edge. Given a sequence v1, v2, . . . , vk

of vertices such that either vi = vi+1 or (vi, vi+1) forms an edge we will write

(v1, v2, . . . , vk) for the path traversing these edges. Whenever vi = vi+1 we

shall say that vi is a stationary point.

Let E denote the set of all oriented edges starting at v0, so H acts on E.

Suppose that {eλ}λ∈Λ is a set of representatives for the H–orbits of the edges

in E, ie E =
⋃

λ∈Λ eλH and eλH = eλ′H only if λ = λ′. Since the action of

G is transitive on X0 we can find rλ ∈ G such that eλ = (v0, v0 · rλ). Let

S1 = {rλ}λ∈Λ.

The edges {eλ}λ∈Λ also form a set of representatives for the edge orbits

of the G–action on X. To see this suppose that two of these edges lie in the

same G–orbit, ie (v0, v) = (v0, u) · g. Then we have that v0 = v0 · g therefore

g ∈ H .

Suppose that {fµ}µ∈M is a set of representatives for the G–orbits of the

faces of X. Since the action is transitive on X0, we may assume that the

boundary of each face fµ contains the vertex v0.

Definition 1. An h-product of length k is a word of the form

hk+1 rλk
hk rλk−1

hk−1 · · · rλ1h1

where each λi ∈ Λ and each of the hi are words in H . To each h-product

we can associate an edge path P = (v0, v1, . . . , vk) in X starting at v0 then

visiting the vertices v1 = v0 · rλ1h1, v2 = v0 · rλ2h2 rλ1h1, etc. This means

that the edge (vi−1, vi) is in the orbit of (v0, v0 · rλi
). Given any edge path

starting at v0 we can choose an h-product to represent it.
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We can now choose the following three sets of relations.

R1: For each edge orbit representative eλ pick a generating set T for the

stabiliser of this edge, ie 〈T 〉 = StabG(v0) ∩ StabG(v0 · rλ). For each

t ∈ T we have the relation rλtr
−1
λ = h for some word h ∈ H .

R2: For each eλ we have a relation rλ′h rλ = h′ where the LHS is a choice

of h-product for the path (v0, v0 · rλ, v0) and h′ is some word in H .

R3: For each face orbit representative fµ with boundary (v0, v1, . . . , vk−1, v0)

choose an h-product representing this path and a word h ∈ H such that

rλk
hk · · · rλ1h1 = h.

Theorem 2. The group G has the following presentation.

G = 〈S0 ∪ S1|R0 ∪ R1 ∪R2 ∪ R3〉

Corollary 3. Suppose that H is finitely presented, that the number of edge

and face orbits is finite and that each edge stabiliser is finitely generated.

Then G has a finite presentation.

We prove Theorem 2 in several steps.

Claim 1. The set S0 ∪ S1 generates G.

Proof. Given any g ∈ G, let v = v0 · g. Now as X is connected there is an

edge path connecting v0 to v. Choose an h-product g1 = hk+1 rλk
hk · · · rλ1h1

representing this path. Then v0 · gg−1
1 = v0 so g = hg1 for some h ∈ H .

Claim 2. If two h-products, p1 and p2, give rise to the same path and are

equal in G then they are equivalent modulo R0 ∪ R1.
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Proof. Because p1 and p2 represent the same path they must have equal

length. Suppose that p1 = hk+1 rλk
hk · · · rλ1h1 and p2 = fk+1 rλ′

k
fk · · · rλ′

1
f1.

Clearly, if the two h-products are of length 0 then they are both words in H

and so are equivalent modulo R0. Now suppose that k 6= 0. The fact that p1

and p2 represent the same path means that

(v0, v0 · rλ1h1, v0 · rλ2h2 rλ1h1, . . .) = (v0, v0 · rλ′

1
f1, v0 · rλ′

2
f2 rλ′

1
f1, . . .),

therefore

(v0, v0 · rλ1) = (v0, v0 · rλ′

1
) · f1h

−1
1 .

So λ1 = λ′
1 and f1h

−1
1 is in the stabiliser of the edge eλ1 . Hence, for some

word f ′
2 in H

fk+1 rλ′

k
fk · · · rλ′

2
f2 rλ′

1
f1h

−1
1 h1 = fk+1 rλ′

k
fk · · · rλ′

2
f ′

2 rλ1h1

modulo R1. By induction the two shorter h-products hk+1 rλk
hk · · · rλ2h2 and

fk+1 rλ′

k
fk · · · rλ′

2
f ′

2 are equivalent modulo R0 ∪ R1, and so p1 = p2 modulo

R0 ∪ R1.

Claim 3. Suppose that two h-products represent the same element of G and

induce edge paths that are equivalent modulo backtracking. Then they are

equivalent modulo R0 ∪R1 ∪ R2.

Proof. It is enough to show that any h-product is equivalent to an h-product

that represents a path without any backtracking. Furthermore, if we proceed

by induction on the length of the h-product, it is enough to show that any

h-product whose associated path has backtracking at the end is equivalent
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to a shorter h-product.

Suppose that g = hk+3 rλk+2
hk+2 rλk+1

hk+1 gk is such an h-product, ie

vk = v0 · gk

vk+1 = v0 · rλk+1
hk+1 gk

vk+2 = vk = v0 · rλk+2
hk+2 rλk+1

hk+1 gk

and gk is a shorter h-product. So, multiplying by g−1
k h−1

k+1, we find that

rλk+2
hk+2 rλk+1

is an h-product with associated path (v0, v0 · rλk+1
, v0). Sup-

pose that rλ′hrλ = h′ is the R2 relation corresponding to this path. Then

λ = λk+1 and v0 · rλ′h = v0 · rλk+2
hk+2. So λ′ = λk+2 and hk+2h

−1 is in the

stabiliser of the edge eλk+1
. Therefore there exists a word f in H such that

hk+3 rλk+2
hk+2 rλk+1

hk+1 gk = hk+3f rλ′h rλhk+1 gk

modulo R1. Hence modulo R2 this is equal to hk+3fh′hk+1gk, a shorter h-

product.

Claim 4. Any h-product equal to the identity in G is equivalent to the identity

modulo R0 ∪ R1 ∪R2 ∪ R3.

Proof. Given any h-product gk equal to the identity in G its associated edge

path must be a loop. Since X is simply-connected this loop is the boundary

of a union of faces of X. So choose one of these faces f touching the loop

at a vertex v then modulo R0 ∪ R1 ∪ R2 we can add backtracking starting

at v going around the boundary of f . Modulo R3 we can remove one pass

round ∂f . This leaves a new loop that can be spanned by one less face,
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which, by induction on the minimum number of faces needed to span a loop,

is equivalent to the identity.

Proof of Theorem 2. Given any word in the generators, S0∪S1, that is equal

to the identity in G then modulo R2 it is equivalent to an h-product and so

by Claim 4 is equivalent to the identity modulo R0 ∪R1 ∪ R2 ∪R3.

2.3 The complex Xn

An embedded disc D ⊆ H3 is said to cut out ai if the interior of D is disjoint

from a∗, the arc ai is contained in the boundary of D and the boundary

of D lies in ai ∪ ∂H3, ie ai ⊂ ∂D and ∂D ⊂ ai ∪ ∂H3. A cut system

for a∗ is the isotopy class of n pairwise disjoint discs 〈D1, D2, . . .Dn〉 where

each Di cuts out the arc ai. Say that two cut systems 〈D1, D2, . . . , Dn〉 and

〈E1, E2, . . . , En〉 differ by a simple i-move if Di∩Ei = ai and Dj = Ej for all

j 6= i. If this is the case we will suppress the non-changing discs and write

〈Di〉 → 〈Ei〉.

Definition 4. Define the cut system complex Xn as follows. The set of all

cut systems for a∗ forms the vertex set X
0

n. Two vertices are connected by

a single edge iff they differ by a simple move. Finally, glue faces into every

loop of the following form, giving triangular and rectangular faces.

〈Di〉 〈D′
i〉

��
��

��

〈D′′
i 〉

666666

〈Di, Dj〉 〈D′
i, Dj〉

〈Di, D
′
j〉 〈D′

i, D
′
j〉
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Define the basepoint to be v0 = 〈d1, d2, . . . , dn〉 where the di are vertical

discs below the ai, see Figure 2.1. Sometimes it is convenient to think of the

���������������������

���������������������

�
�
�
� �

�
�
� �

�
�
� �

�
�
� �

�
�
� �

�
�
�

. . .

a1 a2 an

d1 d2 dn

Figure 2.1: The arcs ai and the discs di

ai and di rotated by a quarter turn.

Before we prove that this complex is simply connected we need the fol-

lowing lemma about substituting one disc for another.

Suppose that v = 〈D1, D2, . . .Dn〉 is a vertex of Xn and that D and D∗

are two discs cutting out the arc ai. We will say that the tuple (v, D, D∗)

forms a valid substitution if either D 6= Di for any i, or if there exists some i

such that D = Di and that for all j 6= i we have that Dj ∩D∗ = ∅. In other

words if D is in v then (v, D, D∗) forms a valid substitution if there exists an

edge 〈D = Di〉—〈D
∗〉. If (v, D, D∗) forms a valid substitution then we can

replace D with D∗ to get a vertex v∗, ie

v∗ =















v if Di 6= D,

〈D∗〉 if Di = D.

Similarly, for any edge path P with a choice of discs representing each

vertex, we say (P, D, D∗) forms a valid substitution if for each vertex v of P

the tuple (v, D, D∗) forms a valid substitution and for each edge (vi, vi+1) of
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P there is an edge (v∗
i , v

∗
i+1). If (P, D, D∗) forms a valid substitution then we

can replace each occurrence of D with D∗, ie replace each vertex v with v∗,

giving a new path P ∗.

Lemma 5. If (P, D, D∗) forms a valid substitution, where P = (v1, . . . , vk),

then P ∗ is a path and the loop

v1
P vk

v∗
1

P ∗

v∗
k

is homotopic to a point. Moreover, if P is a loop then so is P ∗ and they are

homotopic as loops.

Proof. Clearly we may assume that D and D∗ are not isotopic, otherwise

P = P ∗. Suppose that D and D∗ cut out the arc ai. For each vertex v of P

we have that either v = v∗ or (v, v∗) is an edge of Xn.

For each edge (u, v) in P , where u = 〈Dj〉 and v = 〈D′
j〉, we have the fol-

lowing possibilities. If D is not in u nor in v then (u, v) = (u∗, v∗). Otherwise

we have two cases depending on whether i = j or not.

If i = j then only one of either u or v contains D. Suppose that D ∈ u,

ie Dj = D. If D∗ = D′
j then u∗ = v∗ = v and (u, v) is homotopic to (u∗, v∗)

in X
1

n. Otherwise, if D∗ 6= Dj , we have the following face of Xn.

u P
v = v∗

u∗

P ∗

vvvvvvvvv
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If i 6= j the we have the following face of Xn.

〈D, Dj〉
P 〈D, D′

j〉

〈D∗, Dj〉
P ∗

〈D∗, D′
j〉

In either case there is a homotopy from (u, v) to (u∗, v∗) that agrees with

the homotopies between the vertices of P and P ∗. Therefore P is homotopic

to P ∗.

Theorem 6. The complex Xn is connected and simply connected.

Proof. It suffices to show that any loop is homotopic to the constant loop at

v0. Given a loop in Xn it is homotopic to an edge path P . Now choose discs

to represent each vertex of P . We shall write D ∈ P if D is one of the discs

chosen as a representative of some vertex of P .

Claim. The path P is homotopic to a path whose vertices admit representa-

tive discs which intersect the discs d1, d2, . . . , dn only in the arcs a1, a2, . . . , an.

Assuming that the intersection of the discs D ∈ P with d1 ∪ d2 ∪ . . .∪ dn

isn’t only a1, a2, . . . , an we can carry out the following procedure.

For some i the union of the discs in P intersects di in a non-empty collec-

tion of arcs. Pick an arc α of this intersection that is lowest in the sense that

it doesn’t separate the entirety of any other arc from ∂H3∩di. For example,

see Figure 2.2 where α and γ are lowest but β is not.

The arc α comes from some D ∈ P . Now cut D along α, discard the

section not containing ai and glue in a disc parallel to di. This results in a

new disc D∗ whose intersection with di contains at least one less arc.
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α β

γ

Figure 2.2: Lowest arcs α and γ

Any disc E ∈ P for which E ∩ D = aj or ∅ also has E ∩ D∗ = aj or ∅

respectively; if not E must intersect D∗ in the section parallel to di and

this contradicts the condition that α is a lowest arc. Therefore the triple

(P, D, D∗) form a valid substitution and, by Lemma 5, we can replace D

with D∗ to get a new homotopic loop P ∗.

We now have a homotopic loop P ∗ that has fewer intersections with d1 ∪

d2 ∪ . . .∪ dn. So by induction on the number of intersections we have proved

the claim.

So we may assume that the path P meets d1, d2, . . . , dn only in the arcs

a1, a2, . . . , an. Therefore, for each D ∈ P cutting out the arc ai, the triple

(P, D, di) forms a valid substitution and so by in turn replacing each D ∈ P

with di we see that P is homotopic to the constant path v0. The connected-

ness of Xn follows by taking P to be a constant loop.

Up to homotopy the group H2n acts on (H3, a∗) by homeomorphisms,

therefore it takes cut systems to cut systems. The edges and faces of Xn

are determined by the intersections of pairs of discs, hence this action on X
0

n

extends to a cellular action on Xn.

Theorem 7. The action of H2n on X
0

n is transitive.

Proof. Given a vertex 〈D1, D2, . . . , Dn〉 of Xn, if we take each i in turn and

look at the intersection of Di with ∂H3. We see that this defines a path from
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one end of ai to the other. If we now move one end around this path until

it is close to the other and then move it straight back to its starting point

we have an element of H2n that moves Di to di. Combining all of these we

see that 〈D1, D2, . . . , Dn〉 is in the orbit of v0, ie the action is transitive on

X
0

n.

2.4 The complex Xn

We now construct a subcomplex Xn of Xn with the same vertex set but with

fewer edges and faces.

Given an edge e = (〈D〉, 〈D′〉) of Xn define its length, l(e), to be the

number of arcs underneath D ∪ D′. In other words, since H3 \ D ∪ D′ has

two components, one bounded and one unbounded, we can define the length

as follows

l(e) = #{i | ai is contained in the bounded component of H3 \D ∪D′}.

Given two edges e and e′ with the same length there exists an element of

H2n taking e to e′.

We will say that a rectangle (〈D, E〉, 〈D′, E〉, 〈D′, E ′〉, 〈D, E ′〉) is nested

if E ∪ E ′ lies in the bounded component of H3 \D ∪D′ or vice versa, ie if

one pair of changing discs lies underneath the other.

For i ≤ j let Tij denote the subcomplex consisting of all triangular faces

of Xn with shortest two edges of length i and j. Note, this implies that

the remaining edge has length i + j. Given a rectangular face of Xn we
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have two cases depending on whether it is nested or not. Let Rij denote

the subcomplex consisting of all rectangular nested faces with inner edge of

length i and outer edge of length j. For i ≤ j let Sij denote the subcomplex

consisting of all non-nested rectangular faces with edges of length i and j.

Definition 8. Let Xn be the subcomplex of Xn with the same vertex set,

all edges of length 1 and 2 and all faces from R12, S11 and T11, ie Xn =

R12∪S11∪T11. As the length of an edge is invariant under the action of H2n

on Xn this action preserves each Tij , Rij and Sij and so preserves Xn.

A vertex v = 〈D1, . . . , Dn〉 is completely determined by the intersection

of the discs Di with ∂H3. Using this we can define the vertices xi for 0 ≤

i ≤ n − 1, yij for 0 ≤ i ≤ n − 2 and j = 0 or i < j ≤ n − 1 and zij for

0 ≤ i, j, i + j ≤ n− 2 as in Figure 2.3. So we have l(v0, xi) = i, l(v0, y0j) = j,

l(v0, yi0) = i, l(v0, zi0) = i and l(v0, z0j) = j. Note, there is some redundancy

in this notation, ie xi = y0i and x0 = y00 = z00 = v0.

We now define the faces Rij ∈ Rij , Sij ∈ Sij , Tij ∈ Tij of Xn as follows.

Rij =

y00 yi0

y0j yij

Sij =

z00 zi0

z0j zij

Tij =

x0 xi

��
��
��

xi+j

222222

For every face in Xn there is an element of H2n taking it to one of these

representatives.

Theorem 9. The complex Xn is simply connected.

Proof. Figure 2.4 shows that the boundary of each of the faces Rij for 1 <

i < j and Sij for 1 < i, j can be expressed as the boundary of a union of
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xi = · · · · · ·

HHH

vvv
Ei

d2 di di+2 di+3 dn

yij = · · · · · · · · ·

KKK
K

sss
s

HHH

vvv

d3 di+2 di+3 dj+1 dj+2 dn

zij = · · · · · · · · ·

DD
D

zz
z

zz
z

DD
D

d2 di+1di+2 dn−j
dn−1

Figure 2.3: The vertices xi, yij and zij

faces with shorter edges. The first column shows how to replace faces where

the first index is not 1. Then the second column can be used to reduce the

second index to either 2 or 1 respectively.

As each of the rectangular faces can be moved to one of Rij or Sij by

some element of H2n it follows that every loop in Xn is null-homotopic in

R12 ∪ S11 ∪
⋃

1≤i≤j≤n

Tij .

Let the Ei be the discs as shown in Figure 2.3, ie xi = 〈Ei, d2, d3, . . . , dn〉.

For j > 2 let Aj the be full subcomplex of Xn containing all the vertices
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Rij :

y00

GGGGGGGG
yi0

wwwwwwww

yi−1,0

yi−1,j

wwwwwwww

FFFFFFFF

y0j yij

T1,i−1

T1,i−1

Ri−1,j R1j R1j :

y00

GG
GG

GG
GG

G
y10

ww
ww

ww
ww

w

y0,j−1

wwwwwwww
y1,j−1

GGGGGGGG

y0j y1j

R1,j−1

T1,j−1 T1,j−1

S11

Sij :

z00

GG
GG

GG
GG

G
zi0

wwwwwwww

zi−1,0

zi−1,j

wwwwwwww

FFFFFFFF

z0j zij

T1,i−2

Si−1,j S1j

T1,i−2

S1j :

z00

GG
GG

GG
GG

G
z10

ww
ww

ww
ww

w

z0,j−1

wwwwwwww
z1,j−1

GGGGGGGG

z0j z1j

S1,j−1

T1,j−1 T1,j−1

S11

Figure 2.4: Decomposing rectangular faces

“between” x0 and xj , ie

A0
j = {〈D, d2, d3, . . . , dn〉 ∈ X

0

n

| D 6= d0 or Ej , interior of D ⊂ bounded component of H3 \ E0 ∪ Ej}.

Choose x1 as a base point of Aj .

For every edge (u, v) of Aj we have the following two triangles in Xn.
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Note that all edges have length less than j.

x0

}}
}}

}}
}}

AA
AA

AA
AA

u

AA
AA

AA
A v

}}
}}

}}
}

xj

Lemma 10. The subcomplex Aj is path connected.

Proof. Given a vertex v = 〈D, d2, . . . dn〉 ∈ A0
j . First suppose that for some

2 < i ≤ j there exists a path γ on ∂H3 from di to Ej such that γ does

not cross E1, D or dl for l 6= i. Let D′ be a disc parallel to Ej except in a

neighbourhood of γ where we glue in the boundary of a neighbourhood of

γ ∪ di. Then there is a path (v, v′, x1) in Aj where v′ = 〈D′〉. See Figure 2.5.

E1

i
γ

D

Ej

D′

Figure 2.5: Tunnelling along γ

Now suppose that no such path exists on ∂H3. Each vertex u = 〈Du〉 of

Aj partitions the set {d2, d3, . . . dj+1} into two non-empty subsets. The first

containing those discs that are between d1 and Du, the second those between

Du and Ej . (If one of these sets were empty then we would have that either

Du = d1 or Du = Ej.) As j > 2 at least one of these sets contains more than

one disc. Choose an i 6= 1 such that di is in this set.
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Now draw a path γ on ∂H3 from di to Ej that doesn’t intersect dl for

l = 3, . . . , j or E1 and only intersects D transversely. Starting at di move

along γ and label the successive points of γ∩D as p1, p2, . . . , pk. Now we can

construct a sequence of discs D = D0, D1, . . . , Dk where each Dl+1 is parallel

to Dl except in a neighbourhood of pl+1 where we glue in the boundary of

a sufficiently small neighbourhood of the disc di and the segment of γ up to

pl+1. With each successive Dl the disc di moves from one side of the partition

to the other. At each step neither side of the partition is empty so 〈Dl〉 is

a vertex of Aj . This gives a path (v = 〈D0〉, 〈D1〉, . . . , 〈Dk〉) in Aj . Now,

〈Dk〉 satisfies the hypothesis above, therefore this path can be continued to

the base point x1.

We can now complete the proof of Theorem 9. So far we have shown that

any loop in Xn is the boundary of a union of faces in R12∪S11∪
⋃

1≤i≤j≤n Tij .

For a given loop take an edge (u, v) of maximal length j in this union. If

j > 2 then the faces on either side of (u, v) must be triangular with the

remaining edges of length less than j. So we have the following situation for

some u′, v′ ∈ X
0

n.

u

~~
~~

~~
~

@@
@@

@@
@

u′

@@
@@

@@
@ v′

~~
~~

~~
~

v
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By Lemma 10 we can replace these two triangles with the following.

u

mmmmmmmmmmmmmmmm

zz
zz

zz
zz

GG
GG

GG
GG

G

SSSSSSSSSSSSSSSSSS

u0

QQQQQQQQQQQQQQQQ u1

DD
DD

DD
DD

· · · uk−1

ww
ww

ww
ww

w
uk

kkkkkkkkkkkkkkkkkk

v

Where u0 = u′ and uk = v′. Here each edge has length less than j. Therefore

all edges of length greater that 2 can be replaced and so the loop is null-

homotopic in Xn.

2.5 Calculating the presentation

By Section 2.4 we have an H2n–action on a simply connected cellular com-

plex. So we can now follow the method given in Section 2.2.

Using the fact that H2n is a subgroup of B2n, we can define the following

elements of H2n in terms of σ1, . . . , σ2n−1 the generators of B2n.

r1 = σ2σ1σ
−1
3 σ−1

2

r2 = σ4σ3σ2σ1σ
−1
5 σ−1

4 σ−1
3 σ−1

2

si = σ2iσ2i−1σ2i+1σ2i for i ∈ {1, . . . , n− 1}

ti = σ2i−1 for i ∈ {1, . . . , n}

So r1 is the first arc passing through the second, r2 is the first two arcs

passing through the third, si is the ith and i + 1st arcs crossing and ti is

the ith arc performing a half twist. Subsequently we will prove that these
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generate H2n.

Proposition 11. The stabiliser of the vertex v0 is isomorphic to the framed

braid group and hence has a presentation 〈S0 | R0〉 where

S0 = {s1, s2, . . . , sn−1, t1, t2, . . . , tn}

R0 =
{

sisj = sjsi for |i− j| > 1,

sisjsi = sjsisj for |i− j| = 1,

titj = tjti for all i, j,

sitj = tjsi if j /∈ {i, i + 1},

sitj = tksi if {i, i + 1} = {j, k}
}

Proof. If we restrict to ∂H3, elements of H2n can be thought of as motions

of the end points of the ai. For elements of the vertex stabiliser this motion

moves the di ∩ ∂H3 among themselves, ie this is the fundamental group of

configurations of n line segments in the plain, the framed braid group.

We have two edge orbits, one consisting of edges of length 1 and the other

consisting of edges of length 2. Note that our choice of r1 and r2 mean that

(v0, v0 · r1) ∈ l−1(1)

(v0, v0 · r2) ∈ l−1(2).

For i = 1, 2, let Ii denote the stabiliser of the edge (v0, v0 ·ri), ie the subgroup

of all elements that fix both v0 and v0 · ri.
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Proposition 12. The subgroups I1 and I2 are generated as follows.

I1 = 〈t2, t3, . . . , tn, s3, s4, . . . , sn−1, s1s1t1t1, s2s1s1s2〉

I2 = 〈t2, t3, . . . , tn, s2, s4, s5, . . . , sn−1, s1s2s2s1t1t1, s3s2s1s1s2s3〉

Proof. For I1 [I2] the motion of the di outside of d1∪E2 [d1∪E3] is generated

by t3, t4, . . . , tn, s3, s4, . . . , sn−1 and s2s1s1s2 [t4, t5, . . . , tn, s4, s5, . . . , sn−1 and

s3s2s1s1s2s3], the motion of the di inside d1 ∪ E2 [d1 ∪ E3] is generated by

t2 [t2, t3, s2] and the motion of d1 ∪ E2 [d1 ∪ E3] is generated by s1s1t1t1

[s1s2s2s1t1t1].

We are now ready to calculate relations for R1, R2 and R3. The following

relations are easily verifiable, in fact most of them take place in B8.

The R1 relations

To calculate the R1 relations we have to find, for each edge orbit representa-

tive (v0, v0 ·ri) and each generator t of Ii, a word h in S0 such that ritr
−1
i = h.
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One possibility is the following.

r1t2r
−1
1 = t1 (R11)

r1tkr
−1
1 = tk for k > 2 (R12)

r1skr
−1
1 = sk for k > 2 (R13)

r1s1s1t1t1r
−1
1 = s1s1t2t2 (R14)

r1s2s1s1s2r
−1
1 = s2s1s1s2 (R15)

r2t2r
−1
2 = t1 (R16)

r2t3r
−1
2 = t2 (R17)

r2tkr
−1
2 = tk for k > 3 (R18)

r2s2r
−1
2 = s1 (R19)

r2skr
−1
2 = sk for k > 3 (R110)

r2s1s2s2s1t1t1r
−1
2 = s2s1s1s2t3t3 (R111)

r2s3s2s1s1s2s3r
−1
2 = s3s2s1s1s2s3 (R112)

The R2 relations

To calculate the R2 relations we need to find, for each edge orbit representa-

tive (v0, v0 · ri), an h-product rih ri for the path (v0, v0 · ri, v0) and a word h′

in S0 such that rih ri = h′.

r1t1s1 r1 = s1t1 (R21)

r2s1t2s2 r2 = s2s1t1 (R22)
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The R3 relations

To calculate the R3 relations we need to find, for each edge orbit, an h-

product representing the boundary of a face in the orbit and an equivalent

word in S0. The following are such relations for the S11, R12 and T11 orbits

respectively.

r1s1s2s3s1s2 r1s1s2s3s1s2t2t4 r1s2s3s1s2 r1

= s1s2s3s1s2s1s2s1s3s2s2s3s1s2t1t3

(R31)

r1 r2s1s2s1t2t3 r1 r2 = s2s1s2t1t2 (R32)

r2s1t2 r1s2s1 r1 = s1s2s1t1 (R33)

//

��

OO

oo

Figure 2.6: The path given by the h-product on the LHS of (R31)

If we use a different set of generators, similar to those found by Hilden,

then we can get a more braid like presentation. Let pi = σ2iσ2i−1σ
−1
2i+1σ

−1
2i for

1 ≤ i < n. So pi is the ith arc passing under the i + 1st arc, see Figure 2.7.

Theorem 13. The group H2n has a presentation with generators pi, sj and
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tk for 1 ≤ i, j < n and 1 ≤ k ≤ n and the following relations.

pipj = pjpi for |i− j| > 1 (P1)

pipjpi = pjpipj for |i− j| = 1 (P2)

sisj = sjsi for |i− j| > 1 (P3)

sisjsi = sjsisj for |i− j| = 1 (P4)

pisj = sjpi for |i− j| > 1 (P5)

pisi+1si = si+1sipi+1 (P6)

pi+1pisi+1 = sipi+1pi (P7)

pi+1sisi+1 = sisi+1pi (P8)

pitisipi = siti (P9)

pitj = tjpi for j 6= i, or i + 1 (P10)

piti+1 = tipi (P11)

sitj = tjsi if j 6= i or i + 1 (P12)

sitj = tksi if {i, i + 1} = {j, k} (P13)

titj = tjti for 1 ≤ i, j ≤ n (P14)

si = pi = ti =

Figure 2.7: Generators of H2n

These generators and relations can be represented pictorially as in Fig-

ure 2.8 and Figure 2.9.
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p s t

p−1 s−1 t−1

Figure 2.8: Pictorial representation of the p, s, t and their inverses

= = =

(P6) (P7) (P9)

Figure 2.9: Pictorial representation of (P6), (P7) and (P9)

Proof. Since H2n is a subgroup of the braid group it is easy to check that

these relations all hold. So it remains to prove that each of the relations in R0,

R1, R2 and R3 can be deduced from (P1)–(P14) using the fact that r1 = p1

and r2 = p2p1. First note that R0 is a subset of these relations. The relations

(R11), (R12), (R13) and (R21) follow directly from (P11), (P10), (P5) and

(P9) respectively. The remaining relations can be deduced as follows. Some

of these relations are quite long and are perhaps better understood using pic-

torial representations. For the longest, (R31), see Figure 2.10 for a pictorial

version.

(R14): r1s1s1t1t1r
−1
1 = p1s1s1t1t1p

−1
1 (P13)2

= p1t1s1s1t1p
−1
1 (P9)

= s1t1p
−1
1 s1t1p

−1
1 (P9)

= s1t1t1s1 (P13)2

= s1s1t2t2
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(R15): r1s2s1s1s2r
−1
1 = p1s2s1s1s2p

−1
1 (P6)

= s2s1p2s1s2p
−1
1 (P8)

= s2s1s1s2

(R16): r2t2r
−1
2 = p2p1t2p

−1
1 p−1

2 (P11)

= p2t1p
−1
2 (P10)

= t1

(R17): r2t3r
−1
2 = p2p1t3p

−1
1 p−1

2 (P10)

= p2t3p
−1
2 (P11)

= t2

(R18): r2tkr
−1
2 = p2p1tkp

−1
1 p−1

2 (P10)

= p2tkp
−1
2 (P10)

= tk

(R19): r2s2r
−1
2 = p2p1s2p

−1
1 p−1

2 (P7)

= s1

(R110): r2skr
−1
2 = p2p1skp

−1
1 p−1

2 (P5)2

= sk
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To deduce (R111) we make use of the following deduction.

p2p1s1s2t3p2p1 (P7)

= s−1
1 p2p1s2s1s2t3p2p1 (P4)

= s−1
1 p2p1s1s2s1t3p2p1 (P12)(P13)2

= s−1
1 p2p1t1s1s2s1p2p1 (P6)

= s−1
1 p2p1t1s1p1s2s1p1 (P9)

= s−1
1 p2s1t1s2s1p1 (P8)

= s2p1s
−1
2 t1s2s1p1 (P12)

= s2p1t1s1p1 (P9)

= s2s1t1

(⋆)

(R111): r2s1s2s2s1t1t1r
−1
2 = p2p1s1s2s2s1t1t1p

−1
1 p−1

2 (P13)2

= p2p1s1s2t3s2s1t1p
−1
1 p−1

2 (⋆)

= p2p1s1s2t3p2p1s1s2t3 (⋆)

= s2s1t1s1s2t3 (P13)2

= s2s1s1s2t3t3

(R112): r2s3s2s1s1s2s3r
−1
2 = p2p1s3s2s1s1s2s3p

−1
1 p−1

2 (P5)

= p2s3p1s2s1s1s2s3p
−1
1 p−1

2 (P6)

= p2s3s2s1p2s1s2s3p
−1
1 p−1

2 (P8)

= p2s3s2s1s1s2p1s3p
−1
1 p−1

2 (P5)

= p2s3s2s1s1s2s3p
−1
2 (P6)

= s3s2p3s1s1s2s3p
−1
2 (P5)2

= s3s2s1s1p3s2s3p
−1
2 (P8)
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= s3s2s1s1s2s3

(R22): r2s1t2s2r2 = p2p1s1t2s2p2p1 (P9)

= p2p1s1p
−1
2 s2t2p1 (P9)

= p2p1s1p
−1
2 s2t2s

−1
1 t−1

1 p−1
1 s1t1 (P13)

= p2p1s1p
−1
2 s2s

−1
1 p−1

1 s1t1 (P6)

= p2p1s
−1
2 p−1

1 s2s1s2s
−1
1 p−1

1 s1t1 (P4)

= p2p1s
−1
2 p−1

1 s1s2p
−1
1 s1t1 (P8)

= p2p1s
−1
2 p−1

1 p−1
2 s1s2s1t1 (P7)

= s2s1t1

(R31): r1s1s2s3s1s2r1s1s2s3s1s2t2t4r1s2s3s1s2r1

= p1s1s2s3s1s2p1s1s2s3s1s2t2t4p1s2s3s1s2p1 (P13)(P12)

= p1s1s2s3s1s2p1s1s2s3t3s1s2t4p1s2s3s1s2p1 (P13)(P12)2

= p1s1s2s3s1s2p1t4s1s2s3s1s2t4p1s2s3s1s2p1 (P10)(P12)2

= p1s1s2s3t4s1s2p1s1s2s3s1s2t4p1s2s3s1s2p1 (P13)3

= p1t1s1s2s3s1s2p1s1s2s3s1s2t4p1s2s3s1s2p1 (P10)

= p1t1s1s2s3s1s2p1s1s2s3s1s2p1t4s2s3s1s2p1 (P8)2

= p1t1s1s2s3s1s2p1s1p3s2s3s1s2t4s2s3s1s2p1 (P5)(P1)

= p1t1s1s2s3s1s2p3p1s1s2s3s1s2t4s2s3s1s2p1 (P3)

= p1t1s1s2s1s3s2p3p1s1s2s3s1s2t4s2s3s1s2p1 (P6)

= p1t1s1s2s1p2s3s2p1s1s2s3s1s2t4s2s3s1s2p1 (P6)

= p1t1s1p1s2s1s3s2p1s1s2s3s1s2t4s2s3s1s2p1 (P3)

= p1t1s1p1s2s3s1s2p1s1s2s3s1s2t4s2s3s1s2p1 (P9)

= s1t1s2s3s1s2p1s1s2s3s1s2t4s2s3s1s2p1 (P8)2
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= s1t1s2s3s1s2p1s1s2s3s1s2t4p3s2s3s1s2 (P12)2(P13)3

= s1t1s2s3s1s2p1t1s1s2s3s1s2p3s2s3s1s2 (P3)

= s1t1s2s3s1s2p1t1s1s2s1s3s2p3s2s3s1s2 (P6)2

= s1t1s2s3s1s2p1t1s1p1s2s1s3s2s2s3s1s2 (P9)

= s1t1s2s3s1s2s1t1s2s1s3s2s2s3s1s2 (P12)(P13)

= s1t1s2s3s1s2s1s2s1t2s3s2s2s3s1s2 (P12)(P13)2

= s1t1s2s3s1s2s1s2s1s3s2s2t2s3s1s2 (P12)(P13)

= s1t1s2s3s1s2s1s2s1s3s2s2s3s1t1s2 (P12)

= s1t1s2s3s1s2s1s2s1s3s2s2s3s1s2t1 (P12)2(P13)2

= s1s2s3s1s2t3s1s2s1s3s2s2s3s1s2t1 (P12)(P13)2

= s1s2s3s1s2s1s2s1t1s3s2s2s3s1s2t1 (P12)4(P13)2

= s1s2s3s1s2s1s2s1s3s2s2s3s1s2t3t1 (P14)

= s1s2s3s1s2s1s2s1s3s2s2s3s1s2t1t3

(R32): r1r2s1s2s1t3t2r1r2 = p1p2p1s1s2s1t3t2p1p2p1 (P12)(P13)2

= p1p2p1t1s1s2s1t2p1p2p1 (P9)

= p1p2s1t1p
−1
1 s2s1t2p1p2p1 (P6)

= p1p2s1t1s2s1p
−1
2 t2p1p2p1 (P7)

= p1p2s1t1s2s1p
−1
2 t2p2p1p2 (P11)

= p1p2s1t1s2s1t3p1p2 (P12)(P10)

= p1p2s1s2t1s1p1t3p2 (P9)

= p1p2s1s2p
−1
1 s1t1t3p2 (P8)

= p1s1s2s1t1t3p2 (P4)

= p1s2s1s2t1t3p2 (P6)

= s2s1p2s2t1t3p2 (P14)(P10)
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= s2s1p2s2t3p2t1 (P9)

= s2s1s2t2t1

(R33): r2s1t2r1s2s1r1 = p2p1s1t2p1s2s1p1 (P9)

= p2s1t1s2s1p1 (P10)

= p2s1s2t1s1p1 (P8)

= s1s2p1t1s1p1 (P9)

= s1s2s1t1
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= = =

Figure 2.10: Deducing the (R31) relation
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Chapter 3

The Pure Hilden group

Let PH2n denote the pure Hilden group on 2n strings, ie the intersection of

the Hilden group with the pure braid group.

PH2n = H2n ∩P2n

In this chapter we will compute a presentation for PH2n using the method

and the complex given in the previous chapter.

3.1 The presentation

Let the elements pij = pji, xij = xji, yij = yji and tk ∈ PH2n for 1 ≤ i < j ≤

n and 1 ≤ k ≤ n be as follows. Here all of the other strings lie behind those

69



shown.

pij =

i j

xij =

i j

yij =

i j

tk =

k

Let S denote the set of all these elements.

S = {pij , xij , yij, tk | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}

Let R denote the following relations.

pij tk = tk pij (C-pt)

ti tj = tj ti (C-tt)

xij tk = tk xij i < j k 6= i (C-xt)

yij tk = tk yij i < j k 6= j (C-yt)

αij βkl = βkl αij

α, β ∈ {p, x, y},

(i, j, k, l) cyclically ordered
(C1)

αij βik γjk = βik γjk αij

(i, j, k) cyclically ordered,

α, β, γ as in Table 3.1
(C2)

αik pjk βjl p
−1
jk = pjk βjl p

−1
jk αik

α, β ∈ {p, x, y},

(i, j, k, l) cyclically ordered
(C3)

xij pij ti = pij ti xij i < j (M-x)

yij pij tj = pij tj yij i < j (M-y)
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i < j < k
(p, p, p) (p, y, y) (x, p, p) (x, x, p)
(x, y, y) (y, p, p) (y, p, x) (y, y, y)

j < k < i
(p, p, p) (p, x, y) (x, p, p) (x, p, x)
(x, x, y) (y, p, p) (y, x, y) (y, y, p)

k < i < j
(p, p, p) (p, x, x) (x, p, p) (x, x, x)
(x, y, p) (y, p, p) (y, p, y) (y, x, x)

Table 3.1: The values of (α, β, γ) for which (C2) holds

Theorem 1. The pure Hilden group has a presentation with generating set

S and relations R.

PH2n = 〈S | R〉

3.2 Vertex stabiliser

Recall that the complex Xn given in the previous chapter comes with an

H2n-action on it and that we have a prefered basepoint v0 = 〈d1, d2, . . . , dn〉.

As the pure Hilden group is a subgroup of the Hilden group the action of

H2n on Xn restricts to an action of PH2n on Xn. The proof of Theorem 7 of

Chapter 2 shows that the action of PH2n on X0
n remains transitive.

Proposition 2. The stabiliser of the vertex v0 is the framed pure braid group

FPn and so is isomorphic to Pn × Z
n.

Proof. By Proposition 11 of Chapter 2 the stabiliser of the action of H2n is

the framed braid group on n strings. If we intersect this with the pure braid

group on 2n strings we get the framed pure braid group on n strings. (Note

that for FPn the number of twists on each string must be an integer and not

a half integer as in the case of FBn.)
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From this we see that the vertex stabiliser is generated by the pij and

tk, that all relations between these elements follow from (C-pt), (C-tt), (C1),

(C2) and (C3) (with α = β = γ = p), and hence the R0 relations are included

in R.

3.3 Edge orbits

Let E denote the set of all oriented edges that start at v0 the basepoint of

Xn. We will now find a representative of each orbit of the FPn action on E.

Given an edge (v0, v) ∈ E, because v = 〈D1, D2, . . .Dn〉 differs from v0 by a

simple move, there exists a unique i such that Di 6= di.

If the edge is of length one then there is a unique dj under Di ∪ di. All

of the remaining discs, dk for k 6= i, j, can be moved by an element of FPn

away from Di ∪ di and then back from behind to their original positions.

After applying tpi for some p we have one of the following possibilities, each

of which lie in a different orbit.

i j i j
for i < j

(v0, v0 · xij) (v0, v0 · x
−1
ij )

j i j i
for j < i

(v0, v0 · yij) (v0, v0 · y
−1
ij )

Similarly, if the edge is of length two then there exists two discs dj and
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dk, under di ∪Di. We may assume that j < k. As in the previous case there

is an element of FPn which takes (v0, v) to one of the following possibilities,

each of which lie in different orbits.

i j k i j k
for i < j < k

(v0, v0 · xij xik) (v0, v0 · x
−1
ik x−1

ij )

j i k j i k
for j < i < k

(v0, v0 · xik yij) (v0, v0 · y
−1
ij x−1

ik )

j k i j k i
for j < k < i

(v0, v0 · yij yik) (v0, v0 · y
−1
ik y−1

ij )

Proposition 3. The pure Hilden group PH2n is generated by pij, ti, xij and

yij.

PH2n = 〈S〉

Proof. By the method of Chapter 2 the group PH2n is generated by the

generators of the vertex stabiliser and {rλ}. We have that

{rλ} =











xij , x−1
ij

yij, y−1
ij

i < j











∪























xij xik, x−1
ik x−1

ij

xjk yij, y−1
ij x−1

ik

yik yjk, y−1
jk y−1

ik

i < j < k























and so all of these generators either are contained in S or can be written in
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terms of the elements of S.

3.4 Action of the framed braid group

We have an embedding of the framed braid group on n strings FBn in the

braid group on 2n strings given as follows.

σi =

i

τj =

j

This makes FBn a subgroup of H2n. It is clear that conjugation by elements

of FBn preserves the pure Hilden group and hence we have a left action of

FBn on PH2n. In fact this action can be defined on the level of reduced words

as well. In other words we have an action of F 〈σi, τj〉, the free group on the

letters σi and τj , on F 〈pij, xij , yij, tk〉, the free group on the letters pij , xij ,

yij, tk. So we have a homomorphism

F 〈σi, τj〉 −→ Aut(F 〈pij, xij , yij, tk〉)

g 7−→ Φg

In Section 3.8 we will construct Φ and then show that it satisfies the

following properties. For any word g ∈ F 〈σi, τj〉,

(A) for each x we have that Φg(x) =B2n
g x g−1.

(B) for any word h ∈ F 〈pij, tk〉 we have that Φg(h) ∈ F 〈pij, tk〉.

(C) for each rλ we have that Φg(rλ) =R h1rλ′h2 for some h1, h2 and rλ′ .

74



(D) for any relation x =R y we have a relation Φg(x) =R Φg(y).

3.5 The R1 relations

The R1 relations consist of a relation of the form rλ tr−1
λ = h for each edge

orbit representative (v0, v0 · rλ), for each t in a generating set of the stabiliser

of this edge and for some word h in FBn.

Proposition 4. The stabiliser of the edge (v0, v0 ·x12) is generated as follows.

Stab(v0, v0 · x12) =

〈

pij i, j > 2

tk k > 1

p12t1

p1k p2k k > 2

〉

Proof. As Stab(v0, v0 · x12) is a subgroup of Stab(v0) = FPn we can view

the elements of Stab(v0, v0 · x12) as motions of line segments. If we draw a

line L between the second and third line segments then this motion can be

broken into section consisting only of motions of the segments to the right

of L, sections consisting only of motions to the left of L and the motion of a

single segment across L around both the first and second segment and then

back across L. The motions to the right are generated by pij for i, j > 2 and

tk for k > 2. The motions to the left are generated by t2 and p12 t1. And the

motions across L are of the form p1k p2k for k > 2.
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So the R1 relations can be chosen as follows.

x12 pij x−1
12 = pij for i, j > 2 (1)

x12 tk x−1
12 = tk for k > 1 (2)

x12 p12 t1 x−1
12 = p12 t1 (3)

x12 p1k p2k x−1
12 = p1k p2k for k > 2 (4)

Relation (1) follows from (C1), relation (2) follows from (C-xt), relation (3)

follows from (M-x) and relation (4) follows from (C2).

For the edge orbit representative (v0, v0 · x12 x13) we can draw a line L

between the third and fourth line segment. Motion of the segments to the

right is generated by pij for i, j > 3 and tk for k > 3. Motion of the segments

to the left is generated by p12 p13 t1, t2, t3 and p23. Finally the elements

p1k p2k p3k give the motion between the two halves. Therefore we have the

following.

Proposition 5. The stabiliser of the edge (v0, v0 · x12 x13) is generated as

follows.

Stab(v0, v0 · x12 x13) =

〈

p23

pij i, j > 3

tk k > 1

p12 p13 t1

p1k p2k p3k k > 3

〉
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Hence the R1 relations can be chosen as follows.

x12 x13 p23 (x12 x13)−1 = p23 (5)

x12 x13 pij (x12 x13)−1 = pij for i, j > 3 (6)

x12 x13 tk (x12 x13)−1 = tk for k > 1 (7)

x12 x13 p12 p13 t1 (x12 x13)−1 = p12 p13 t1 (8)

x12 x13 p1k p2k p3k (x12 x13)−1 = p1k p2k p3k for k > 3 (9)

Relation (5) follows from (C2), relation (6) follows from two applications

of (C1), relation (7) follows from two applications of (C-xt). Relation (8)

follows from the following.

x12 x13 p12 p13 t1 (C2)

= x12 x13 p13 p23 p12 p−1
23 t1 (C-pt)3

= x12 x13 p13 t1 p23 p12 p−1
23 (M-x)

= x12 p13 t1 x13 p23 p12 p−1
23 (C2)

= x12 p13 t1 p23 p12 x13 p−1
23 (C-pt)2

= x12 p13 p23 p12 t1 x13 p−1
23 (C2)

= p13 p23 x12 p12 t1 x13 p−1
23 (M-x)

= p13 p23 p12 t1 x12 x13 p−1
23 (C2)

= p13 p23 p12 t1 p−1
23 x12 x13 (C-pt)

= p13 p23 p12 p−1
23 t1 x12 x13 (C2)

= p12 p13 t1 x12 x13

Finally (9) follows from the following.
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x13 p1k p2k p3k (C2)

= p1k p3k x13 p−1
3k p2k p3k (C2)

= p1k p3k x13 p23 p2k p−1
23 (C3)

= p1k p3k p23 p2k p−1
23 x13 (C2)

= p1k p2k p3k x13

x12 p1k p2k p3k (C2)

= p1k p2k x12 p3k (C1)

= p1k p2k p3k x12

Now consider the edge orbit representative (v0, v0 · rλ) for rλ 6= x12 or

x12 x13. There exists some g ∈ FBn such that (v0, v0 · r1) · g = (v0, v0 · rλ),

where r1 = x12 or x12 x13. By property (A) of Φ

Φg−1(r1) =B2n
g−1r1g

and by property (C) there exists words h1, h2 ∈ FPn and some rλ′ such that

Φg−1(r1) =R h1 rλ′ h2. (3.1)

Combining these we see that v0 · r1 g = v0 · rλ′ h2 and hence that λ = λ′ and

h2 ∈ Stab(v0, v0 · rλ).

Let T be the choice of generators for Stab(v0, v0 · r1) chosen above. So for

all t ∈ T there exists h ∈ FPn such that

r1 t r−1
1 =R h.
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So by property (D) we have

Φg−1(r1 t r−1
1 ) =R Φg−1(h). (3.2)

Property (B) implies that Φg−1(t) ∈ FPn and Φg−1(h) ∈ FPn. Combining

(3.1) and (3.2) we get

h1 rλ h2 Φg−1(t) h−1
2 r−1

λ h−1
1 =R Φg−1(h)

and so h2 Φg−1(t) h−1
2 ∈ Stab(v0, v0 · rλ).

Claim 5. The set {h2 Φg−1(t) h−1
2 | t ∈ T} generates Stab(v0, v0 · rλ).

Proof. As h2 ∈ Stab(v0, v0 · rλ) the set {h2 Φg−1(t) h−1
2 | t ∈ T} generates

Stab(v0, v0 · rλ) if and only if the set {Φg−1(t) | t ∈ T} generates Stab(v0, v0 ·

rλ). This is equivalent to saying that for any s ∈ Stab(v0, v0 · rλ) we can

find t1, . . . , tk ∈ T such that s = Φg−1(t1 · · · tk), in other words that Φg(s) ∈

Stab(v0, v0 · r1). Now

(v0 · r1) · Φg(s) = v0 · r1 g s g−1

= v0 · rλ s g−1

= v0 · rλ g−1

= v0 · r1

Therefore the claim holds.
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So for our R1 relation we can choose the following

rλ h2 Φg−1(t) h−1
2 r−1

λ = h−1
1 Φg−1(h) h1

and hence we can choose our R1 relations so that they all follow from R.

3.6 The R2 relations

The R2 relations consist of a relation of the form rλ′ h rλ = h′ for each edge

orbit representative, where the LHS is an h-product for the path (v0, v0·rλ, v0)

and h′ ∈ FBn. For each edge (v0, v0 · rλ) the edge (v0, v0 · r
−1
λ ) is in a different

orbit. Our choice of rλ mean that for all λ there exists λ′ such that r−1
λ = rλ′ .

This means that for all the R2 relations we can choose r−1
λ rλ = 1, ie they

are all trivial.

3.7 The R3 relations

The R3 relations consist of a relation of the form rλk
hk · · · rλ1h1 = h for each

edge orbit representative, where the LHS is an h-product that represents the

boundary of the face and h ∈ FPn. As with the R1 relations, we will calculate

the relations for some specific orbits first then use Φ for the general case.

We will start with the triangular face (v0, v0·x12 x13, v0·x12). An h-product

for this path is x−1
13 x−1

12 (x12 x13). So the R3 relations is

x−1
13 x−1

12 (x12 x13) = 1
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and so it is trivial.

Next consider the non-nested rectangular face (v0, v0 · x12, v0 · x34 x12, v0 ·

x34). An h-product that represents this path is x−1
34 x−1

12 x34 x12. So the R3

relations is

x−1
34 x−1

12 x34 x12 = 1

which follows from (C1).

Now consider the nested rectangular face

(v0, v0 · x23, v0 · x12 x13 x23, v0 · x12 x13).

An h-product that represents this path is

(x12 x13)−1x−1
23 (x12 x13) x23.

So the R3 relations is

(x12 x13)−1 x−1
23 (x12 x13) x23 = 1

which follows from (C2).

Given any other face orbit representative (v0 = u0, u1, . . . , uk = v0) there

exists some g ∈ FBn such that

(u0, u1, . . . , uk) = (v0, v1, . . . , vk) · g

where (v0, v1, . . . , vk) is the boundary of one of the three faces whose R3

relations we calculated above. Suppose the relation from (v0, v1, . . . , vk) is
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the following.

rλk
hk · · · rλ1h1 = h

By property (C), for each rλi
there exists hi1, hi2 ∈ FPn and rλ′

i
such that

Φg−1(rλi
) =R hi1 rλ′

i
hi2

Claim 6. The following h-product represents the path (u0, u1, . . . , uk).

rλ′

k
hk2 Φg−1(hk) h(k−1)1 · · · rλ′

1
h11 Φg−1(h1)

Proof. The ith vertex of the path associated to the h-product is given as

follows.

v0 · rλ′

i
hi2 Φg−1(hi) h(i−1)1 · · · rλ′

1
h11 Φg−1(h1)

= v0 · Φg−1(rλi
, hi · · · rλ1 h1)

= v0 · rλi
hi · · · rλ1 h1 g

= vi · g

= ui

Therefore for our R3 relation we may choose the following

rλ′

k
hk2 Φg−1(hk) h(k−1)1 · · · rλ′

1
h11 Φg−1(h1) = h−1

k1 Φg−1(h)

which follows from R by property (D).
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3.8 Definition and properties of Φ

All that remains to prove Theorem 1 is to construct Φ and show that it

satisfies properties (A)–(D).

Define Φ, the action of F 〈σi, τj〉 on F 〈 pij, xij , yij, tk〉, as follows. For

α ∈ {p, x, y}

Φσi
(αkl) = αkl for i 6= k − 1, k, l − 1, l

Φσi
(αij) = αi+1,j for i + 1 < j

Φσi
(αi+1,j) = pi,i+1 αij p−1

i,i+1 for i + 1 < j

Φσj
(αi,j+1) = pj,j+1 αij p−1

j,j+1 for i + 1 < j

Φσj
(αij) = αi,j+1 for i + 1 < j

Φσi
(pi,i+1) = pi,i+1

Φσi
(xi,i+1) = t−1

i+1 yi,i+1 ti+1

Φσi
(yi,i+1) = xi,i+1

Φσi
(tj) =































tj if j 6= i, i + 1

tj+1 if j = i

ti if j = i + 1

Φτi
(pkl) = pkl

Φτi
(xkl) =















xkl if i 6= k

x−1
kl pkl if i = k

for k < l

Φτi
(ykl) =















ykl if i 6= l

y−1
kl pkl if i = l

for k < l

Φτi
(tj) = tj
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Proposition 6. The map Φ is a well defined action of F 〈 τi, σi 〉 on

F 〈 pij, ti, xij , yij〉.

Proof. All that needs to be checked is that Φσi
and Φτi

are invertible. The

inverses are as follows.

Φσ−1
i

(αkl) = αkl for i 6= k − 1, k, l − 1, l

Φσ−1
i

(αij) = p−1
i,i+1 αi+1,j pi,i+1 for i + 1 < j

Φσ−1
i

(αi+1,j) = αij for i + 1 < j

Φσ−1
j

(αi,j+1) = αij for i + 1 < j

Φσ−1
j

(αij) = p−1
j,j+1 αi,j+1 pj,j+1 for i + 1 < j

Φσ−1
i

(pi,i+1) = pi,i+1

Φσ−1
i

(xi,i+1) = yi,i+1

Φσ−1
i

(yi,i+1) = ti xi,i+1 t−1
i

Φσ−1
i

(tj) =































tj if j 6= i, i + 1

tj+1 if j = i

tj−1 if j = i + 1

Φτ−1
i

(pkl) = pkl

Φτ−1
i

(xkl) =















xkl if i 6= k

pkl x
−1
kl if i = k

for k < l

Φτ−1
i

(ykl) =















ykl if i 6= l

pkl y
−1
kl if i = l

for k < l

Φτ−1
i

(tj) = tj
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It is easy to check the Φ satisfies property (A), ie that for every word g ∈

F 〈σi, τj〉 and for each x ∈ F 〈 pij, ti, xij , yij〉 we have that Φg(x) = g x g−1 as

braids. It is also clear that Φ satisfies property (B). That is that for any word

g ∈ F 〈σi, τj〉 and for any word h ∈ F 〈 pij, tk〉 we have Φg(h) ∈ F 〈 pij, tk〉.

Proposition 7. The map Φ satisfies property (C). In other word for any

word h in F 〈 pij, tk〉 and any

rλ ∈











xij , x−1
ij

yij, y−1
ij

i < j











∪























xij xik, x−1
ik x−1

ij

xjk yij, y−1
ij x−1

ik

yik yjk, y−1
jk y−1

ik

i < j < k























we have a relation Φg(rλ) = h1rλ′h2 that can be deduced from the relations

in R, for some h1, h2 ∈ F 〈 pij, tk〉 and some rλ′.

Proof. First note that for each word h in F 〈 pij, tk〉, by property (B), the

map Φg takes h to another word in F 〈 pij, tk〉. Therefore we only need to

check Φg where g = τ±1, σ±1.

For rλ = xij , x
−1
ij , yij, y

−1
ij this follows immediately from the definition of

Φ given above.

Now consider Φσm
(rλ) for rλ = xij xik, xjk yij or yik yjk. The only cases

when Φσm
(rλ) 6= rλ are m = i− 1, m = i and j = i + 1, m = i and j > i + 1,

m = j−1 and i < j−1, m = j and k = j+1, m = j and k > j+1, m = k−1

and j < k − 1, and m = k. We now show that Φσm
(rλ) =R h1 rλ′ h2.

m = i− 1 Φσi−1
(xij xik) = pi−1,i xi−1,j xi−1,k p−1

i−1,i

Φσi−1
(xjk yij) = xjk pi−1,i yi−1,j p−1

i−1,i (C1)
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= pi−1,i xjk yi−1,j p−1
i−1,i

Φσi−1
(yik yjk) = pi−1,i yi−1,k p−1

i−1,i yjk (C1)

= pi−1,i yi−1,k yjk p−1
i−1,i

m = i and j = i + 1 Φσi
(xij xik) = t−1

j yij tj xjk (M-x)

= t−1
j yij p−1

jk xjk pjktj (C2)

= t−1
j p−1

jk p−1
ik yij pik xjk pjk tj (C2)

= t−1
j p−1

jk xjk yij pjk tj

Φσi
(xjk yij) = pij xik p−1

ij xij (C2)

= p−1
jk xik pjk xij (C2)

= p−1
jk xij xik pjk

Φσi
(yik yjk) = yjk pij yik p−1

ij (C2)

= yik yjk

m = i and j > i + 1 Φσi
(xij xik) = xi+1,j xi+1,k

Φσi
(xjk yij) = xjk yi+1,j

Φσi
(yik yjk) = yi+1,k yjk

m = j − 1 and i < j − 1 Φσj−1
(xij xik) = pj−1,j xi,j−1 p−1

j−1,j xik (C1)

= pj−1,j xi,j−1 xik p−1
j−1,j

Φσj−1
(xjk yij) = pj−1,j xj−1,k yi,j−1 p−1

j−1,j

Φσj−1
(yik yjk) = yik pj−1,j yj−1,k p−1

j−1,j (C1)

= pj−1,j yik yj−1,k p−1
j−1,j
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m = j and k = j + 1 Φσj
(xij xik) = xik pjk xij p−1

jk (C2)

= xij xik

Φσj
(xjk yij) = t−1

k yjk tk yik (M-y)

= t−1
k pjk tk yjk t−1

k p−1
jk tk yik (C-pt)2

= pjk yjk p−1
jk yik (C2)

= pjk yjk pij yik p−1
ij p−1

jk (C2)

= pjk yik yjk p−1
jk

Φσj
(yik yjk) = pjk yij p−1

jk xjk (C2)

= p−1
ik yij pik xjk (C2)

= xjk yij

m = j and k > j + 1 Φσj
(xij xik) = xi,j+1 xik

Φσj
(xjk yij) = xj+1,k yi,j+1

Φσj
(yik yjk) = yik yj+1,k

m = k − 1 and j < k − 1 Φσk−1
(xij xik) = xij pk−1,k xi,k−1 p−1

k−1,k (C1)

= pk−1,k xij xi,k−1 p−1
k−1,k

Φσk−1
(xjk yij) = pk−1,k xj,k−1 p−1

k−1,k yij (C1)

= pk−1,k xj,k−1 yij p−1
k−1,k

Φσk−1
(yik yjk) = pk−1,k yi,k−1 yj,k−1 p−1

k−1,k

m = k Φσk
(xij xik) = xij xi,k+1

Φσk
(xjk yij) = xj,k+1 yij

87



Φσk
(yik yjk) = yi,k+1 yj,k+1

For Φτm
we only have three cases where Φτm

(rλ) 6= rλ these are when

m = i and rλ = xij xik, m = j and rλ = xjk yij , and m = k and rλ = yik yjk.

Φτi
(xij xik) = x−1

ij pij x−1
ik pik (C2)

= x−1
ij p−1

jk x−1
ik pjk pij pik (C2)

= x−1
ik x−1

ij pij pik

Φτj
(xjk yij) = x−1

jk pjk y−1
ij pij (C2)

= x−1
jk p−1

ik y−1
ij pik pjk pij (C2)

= y−1
ij x−1

jk pjk pij

Φτk
(yik yjk) = y−1

ik pik y−1
jk pjk (C2)

= y−1
ik p−1

ij y−1
jk pij pik pjk (C2)

= y−1
jk y−1

ik pik pjk

Now consider Φσ−1
m

(rλ) the cases where Φσ−1
m

(rλ) 6= rλ are the same as for

Φσm
(rλ).

m = i− 1 Φσ−1
i−1

(xij xik) = xi−1,j xi−1,k

Φσ−1
i−1

(xjk yij) = xjk yi−1,j

Φσ−1
i−1

(yik yjk) = yi−1,k yjk

m = i and j = i + 1 Φσ−1
i

(xij xik) = yij p−1
ij xjk pij (C2)

= yij pik xjk p−1
ik (C2)

= xjk yij

88



Φσ−1
i

(xjk yij) = xik ti xij t−1
i (M-x)

= xik p−1
ij xij pij (C2)

= p−1
ij p−1

jk xik pjk xij pij (C2)

= p−1
ij p−1

jk xij xik pjk pij

Φσ−1
i

(yik yjk) = p−1
ij yjk pij yik (C2)

= yik yjk

m = i and j > i + 1 Φσ−1
i

(xij xik) = p−1
i+1 i xi+1,j xi+1,k pi+1 i

Φσ−1
i

(xjk yij) = xjk p−1
i,i+1 yi+1,j pi,i+1 (C1)

= p−1
i,i+1 xjk yi+1,j pi,i+1

Φσ−1
i

(yik yjk) = p−1
i,i+1 yi+1,k pi,i+1 yjk (C1)

= p−1
i,i+1 yi+1,k yjk pi,i+1

m = j − 1 and i < j − 1 Φσ−1
j−1

(xij xik) = xi,j−1 xik

Φσ−1
j−1

(xjk yij) = xj−1,k yi,j−1

Φσ−1
j−1

(yik yjk) = yik yj−1,k

m = j and k = j + 1 Φσ−1
j

(xij xik) = p−1
jk xik pjk xij (C2)

= p−1
jk xij xik pjk

Φσ−1
j

(xjk yij) = yjk p−1
jk yik pjk (C2)

= yjk pij yik p−1
ij (C2)

= yik yjk

Φσ−1
j

(yik yjk) = yij tj xjk t−1
j (M-x)

= yij p−1
jk xjk pjk (C2)
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= p−1
jk p−1

ik yij pik xjk pjk (C2)

= p−1
jk xjk yij pjk

m = j and k > j + 1 Φσ−1
j

(xij xik) = p−1
j,j+1 xi,j+1 pj,j+1 xik (C1)

= p−1
j,j+1 xi,j+1 xik pj,j+1

Φσ−1
j

(xjk yij) = p−1
j,j+1 xj+1,k yi,j+1 pj,j+1

Φσ−1
j

(yik yjk) = yik p−1
j,j+1 yj+1,k pj,j+1 (C1)

= p−1
j,j+1 yik yj+1,k pj,j+1

m = k − 1 and j < k − 1 Φσ−1
k−1

(xij xik) = xij xi,k−1

Φσ−1
k−1

(xjk yij) = xj,k−1 yij

Φσ−1
k−1

(yik yjk) = yi,k−1 yj,k−1

m = k Φσ−1
k

(xij xik) = xij p−1
k,k+1 xi,k+1 pk,k+1 (C1)

= p−1
k,k+1 xij xi,k+1 pk,k+1

Φσ−1
k

(xjk yij) = p−1
k,k+1 xj,k+1 pk,k+1 yij (C1)

= p−1
k,k+1 xj,k+1 yij pk,k+1

Φσ−1
k

(yik yjk) = p−1
k,k+1 yi,k+1 yj,k+1 pk,k+1

As with Φτm
, for Φτ−1

m
we only have three cases where Φτ−1

m
(rλ) 6= rλ these

are when m = i and rλ = xij xik, m = j and rλ = xjk yij, and m = k and

rλ = yik yjk.

Φτ−1
i

(xij xik) = pij x−1
ij pik x−1

ik (C2)

= pij pik pjk x−1
ij p−1

jk x−1
ik (C2)
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= pij pik pjk x−1
ik x−1

ij p−1
jk

Φτ−1
j

(xjk yij) = pjk x−1
jk pij y−1

ij (C2)

= pjk pij pik x−1
jk p−1

ik y−1
ij (C2)

= pjk pij pik y−1
ij x−1

jk p−1
ik

Φτ−1
k

(yik yjk) = pik y−1
ik pjk y−1

jk (C2)

= pik pjk pij y−1
ik p−1

ij y−1
jk (C2)

= pik pjk pij y−1
jk y−1

ik p−1
ij

For rλ = x−1
ik x−1

ij , y−1
ij x−1

ik and y−1
jk y−1

ik we have shown that for some

h1, h2 ∈ FPn and some r−1
λ′ we have that Φg(r−1

λ ) =R h1 r−1
λ′ h2. Hence we

have Φg(rλ) =R h−1
2 rλ′ h−1

1 .

Proposition 8. The map Φ satisfies property (D). In other words, for any

word g ∈ F 〈σi, τj〉 and any relation x =R y we have that Φg(x) =R Φg(y).

Proof. This is equivalent to saying that for each relation x = y in R and

each g ∈ {σi, σ−1
i , τi, τ−1

i } the relation Φg(x) = Φg(y) follows from those in

R. For any relation only involving pij’s and tk’s the image under Φg will still

only involve pij ’s and tk’s and hence, by Proposition 2, the new relation will

follow from those in R.

We will now considering action of Φσq
and Φτq

on each of the relations.

For any relation x =R y we will say that the deduction of Φg(x) = Φg(y) is

trivial if Φg(x) = Φg(y) is a relation in R of the same type.

(C-xt) xij tk = tk xij k 6= i, i < j
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First consider Φσq
. If we start with q = 1 and increase it the first non-

trivial case is when q = i − 1. The next case is when q = i and this is only

non-trivial if j = i + 1. The next case is when q = j − 1 and j 6= i + 1. The

remaining values are all trivial.

When q = i− 1 we have that Φσq
(tk) = tk′ where k′ 6= i− 1.

Φσq
(xij tk) = pi−1,i xi−1,j p−1

i−1,i tk′ (C-pt)

= pi−1,i xi−1,j tk′ p−1
i−1,i (C-xt)

= pi−1,i tk′ xi−1,j p−1
i−1,i (C-pt)

= tk′ pi−1,i xi−1,j p−1
i−1,i

= Φσq
(tk xij)

When q = i and j = i + 1 we have that Φσq
(tk) = tk′ where k′ 6= j.

Φσq
(xij tk) = t−1

j yij tj tk′ (C-tt)

= t−1
j yij tk′ tj (C-yt)

= t−1
j tk′ yij tj (C-tt)

= tk′ t−1
j yij tj

= Φσq
(tk xij)

When q = j − 1 and j 6= i + 1 we have that Φσq
(tk) = tk′ where k′ 6= i.

Φσq
(xij tk) = pj−1,j xi,j−1 p−1

j−1,j tk′ (C-pt)

= pj−1,j xi,j−1 tk′ p−1
j−1,j (C-xt)

= pj−1,j tk′ xi,j−1 p−1
j−1,j (C-pt)

= tk′ pj−1,j xi,j−1 p−1
j−1,j

= Φσq
(tk xij)
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Now consider Φτq
, the only non-trivial case is when q = i.

Φτq
(xij tk) = x−1

ij pij tk (C-pt)

= x−1
ij tk pij (C-xt)

= tk x−1
ij pij

= Φτq
(tk xij)

(C-yt) yij tk = tk yij k 6= j, i < j

First consider Φσq
, the non-trivial cases are q = i−1, q = i and j = i+ 1,

and q = j − 1 and j 6= i + 1.

When q = i− 1 we have that Φσq
(tk) = tk′ where k′ 6= j.

Φσq
(yij tk) = pi−1,i yi−1,j p−1

i−1,i tk′ (C-pt)

= pi−1,i yi−1,j tk′ p−1
i−1,i (C-xt)

= pi−1,i tk′ yi−1,j p−1
i−1,i (C-pt)

= tk′ pi−1,i yi−1,j p−1
i−1,i

= Φσq
(tk yij)

When q = i and j = i + 1 we have that Φσq
(tk) = tk′ where k′ 6= i.

Φσq
(yij tk) = xij tk′ (C-xt)

= tk′ xij

= Φσq
(tk yij)

When q = j−1 and j 6= i+ 1 we have that Φσq
(tk) = tk′ where k′ 6= j−1.

Φσq
(yij tk) = pj−1,j yi,j−1 p−1

j−1,j tk′ (C-pt)

= pj−1,j yi,j−1 tk′ p−1
j−1,j (C-yt)
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= pj−1,j tk′ yi,j−1 p−1
j−1,j (C-pt)

= tk′ pj−1,j yi,j−1 p−1
j−1,j

= Φσq
(tk yij)

Now consider Φτq
, the only non-trivial case is when q = j.

Φτq
(yij tk) = y−1

ij pij tk (C-pt)

= y−1
ij tk pij (C-yt)

= tk y−1
ij pij

= Φτq
(tk yij)

(C1) αij βkl = βkl αij (i, j, k, l) cyclically ordered

First consider Φσq
. The non-trivial cases are q = i−1 and i 6= l + 1, q = i

and j = i + 1, q = j − 1 and j 6= i + 1, q = j and k = j + 1, q = k − 1 and

j 6= k − 1, q = k and l = k + 1, p = l − 1 and l 6= k + 1, and p = l and

i = l + 1.

When q = i− 1 and i 6= l + 1 we have the following.

Φσq
(αij βkl) = pi−1,i αi−1,j p−1

i−1,i βkl (C1)

= pi−1,i αi−1,j βkl p
−1
i−1,i (C1)

= pi−1,i βkl αi−1,j p−1
i−1,i (C1)

= βkl pi−1,i αi−1,j p−1
i−1,i

= Φσq
(βkl αij)

When q = i and j = i + 1 the only non-trivial case is when α = x.

Φσq
(xij βkl) = t−1

j yij tj βkl (C-βt)
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= t−1
j yij βkl tj (C1)

= t−1
j βkl yij tj (C-βt)

= βkl t
−1
j yij tj

= Φσq
(βkl xij)

When q = j − 1 and j 6= i + 1 we have the following.

Φσq
(αij βkl) = pj−1,j αi,j−1 p−1

j−1,j βkl (C1)

= pj−1,j αi,j−1 βkl p
−1
j−1,j (C1)

= pj−1,j βkl αi,j−1 p−1
j−1,j (C1)

= βkl pj−1,j αi,j−1 p−1
j−1,j

= Φσq
(βkl αij)

When q = j and k = j + 1 we have the following.

Φσq
(αij βkl) = αik pjk βjl p

−1
jk (C3)

= pjk βjl p
−1
jk αik

= Φσq
(βkl αij)

When q = k − 1 and j 6= k − 1 we have the following.

Φσq
(αij βkl) = αij pk−1,k βk−1,l p

−1
k−1,k (C1)

= pk−1,k αij βk−1,l p
−1
k−1,k (C1)

= pk−1,k βk−1,l αij p−1
k−1,k (C1)

= pk−1,k βk−1,l p
−1
k−1,k αij

= Φσq
(βkl αij)

When q = k and l = k + 1 the only non-trivial case is when β = x.
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Φσq
(αij xkl) = αij t−1

l ykl tl (C-αt)

= t−1
l αij ykl tl (C1)

= t−1
l ykl αij tl (C-αt)

= t−1
l ykl tl αij

= Φσq
(xkl αij)

When q = l − 1 and l 6= k + 1 we have the following.

Φσq
(αij βkl) = αij pl−1,l βk,l−1 p−1

l−1,l (C1)

= pl−1,l αij βk,l−1 p−1
l−1,l (C1)

= pl−1,l βk,l−1 αij p−1
l−1,l (C1)

= pl−1,l βk,l−1 p−1
l−1,l αij

= Φσq
(βkl αij)

Finally, when q = l and i = l + 1 we have the following.

Φσq
(αij βkl) = pil αjl p

−1
il βik (C3)

= βik pil αjl p
−1
il

= Φσq
(βkl αij)

Now consider Φτq
, there are two non-trivial cases. In the first case

Φτq
(αij) = α−1

ij pij and we have the following.

Φτq
(αij βkl) = α−1

ij pij βkl (C1)

= α−1
ij βkl pij (C1)

= βkl α
−1
ij pij

= Φτq
(βkl αij)
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In the second case Φτq
(βkl) = β−1

kl pkl and we have the following.

Φτq
(αij βkl) = αij β−1

kl pkl (C1)

= β−1
kl αij pkl (C1)

= β−1
kl pkl αij

= Φτq
(βkl αij)

(C2) αij βik γjk = βik γjk αij

(i, j, k) cyclically ordered,

(α, β, γ) as in Table 3.1

First consider Φσq
. The only non-trivial cases are when q = i − 1 and

i 6= k + 1, q = i and j = i + 1, q = j − 1 and j 6= i + 1, q = j and k = j + 1,

q = k − 1 and k 6= j + 1, and q = k and i = k + 1.

When q = i− 1 and i 6= k + 1 we have the following.

Φσq
(αij βik γjk) = pi−1,i αi−1,j βi−1,k p−1

i−1,i γjk (C1)

= pi−1,i αi−1,j βi−1,k γjk p−1
i−1,i (C2)

= pi−1,i βi−1,k γjk αi−1,j p−1
i−1,i (C1)

= pi−1,i βi−1,k p−1
i−1,i γjk pi−1,i αi−1,j p−1

i−1,i

= Φσq
(βik γjk αij)

When q = i and j = i + 1 we have two cases. Except for when i < j < k

and (α, β, γ) = (x, x, p) or k < i < j and (α, β, γ) = (x, y, p) we have the

following deduction. Let t̄j and ᾱij be defined as follows.

t̄j =















tj if α = x

1 if α 6= x

ᾱij =































pij if α = p

yij if α = x

xij if α = y
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So we have that Φσq
(αij) = t̄−1

j ᾱij t̄j .

Φσq
(αij βik γjk) = t̄−1

j ᾱij t̄j βjk pij γik p−1
ij (C-βt) (C-pt) (C-γt) (C-pt)

= t̄−1
j ᾱij βjk pij γik p−1

ij t̄j (C2)

= t̄−1
j ᾱij γik βjk t̄j (C2)

= t̄−1
j γik βjk ᾱij t̄j (C-pt) (C-pt)

= γik βjk pij p−1
ij t̄−1

j ᾱij t̄j (C2)

= βjkpij γik p−1
ij t̄−1

j ᾱij t̄j

= Φσq
(βik γjk αij)

When i < j < k and (α, β, γ) = (x, x, p) or k < i < j and (α, β, γ) =

(x, y, p) we have the following deduction with β = x or y respectively.

Φσq
(xij βik pjk) = t−1

j yij tj βjk pij pik p−1
ij (C2)

= t−1
j yij tjpij pik βjk p−1

ij (M-y)

= pij yij pik βjk p−1
ij (C2)

= pij pik βjk yij p−1
ij (C2)

= βjk pij pik yij p−1
ij (C-pt)

= βjk pij pik p−1
ij t−1

j pij tj yij p−1
ij (M-y)

= βjk pij pik p−1
ij t−1

j yij pij tj p−1
ij (C-pt)

= βjk pij pik p−1
ij t−1

j yij tj

= Φσq
(βik pjk xij)

When q = j − 1 and j 6= i + 1 we have the following.

Φσq
(αij βik γjk) = pj−1,j αi,j−1 p−1

j−1,j βik pj−1,j γj−1,k p−1
j−1,j (C1)

= pj−1,j αi,j−1 βik γj−1,k p−1
j−1,j (C2)

= pj−1,j βik γj−1,k αi,j−1 p−1
j−1,j (C1)
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= βik pj−1,j γj−1,k αi,j−1 p−1
j−1,j

= Φσq
(βik γjk αij)

When q = j and k = j + 1 we have two cases. Except for when i < j < k

and (α, β, γ) = (y, p, x) or j < k < i and (α, β, γ) = (x, p, x) we have the

following. Here

γ̄jk =































pjk if γ = p

yjk if γ = x

xjk if γ = y

Φσq
(αij βik γjk) = αik pjkβij p−1

jk γ̄jk (C2)

= αik p−1
ik βij pik γ̄jk (C2)

= αik γ̄jk βij (C2)

= γ̄jk βij αik (C2)

= p−1
ik βij pik γ̄jk αik (C2)

= pjk βij p−1
jk γ̄jk αik

= Φσq
(βik γjk αij)

When i < j < k and (α, β, γ) = (y, p, x) or when j < k < i and (α, β, γ) =

(x, p, x) we have

Φσq
(αij pik xjk) = αik pjk pij p−1

jk t−1
k yjk tk (M-y)

= αik pjk pij yjk p−1
jk (C2)

= pjk pij αik yjk p−1
jk (C2)

= pjk pij yjk pij αik p−1
ij p−1

jk (C2)

= pjk pij yjk p−1
jk αik (M-y)
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= pjk pij p−1
jk t−1

k yjk tk αik

= Φσq
(pik xjk αij)

When q = k − 1 and k 6= j + 1 we have the following.

Φσq
(αij βik γjk) = αij pk−1,k βi,k−1 γj,k−1 p−1

k−1,k (C1)

= pk−1,k αij βi,k−1 γj,k−1 p−1
k−1,k (C2)

= pk−1,k βi,k−1 γj,k−1 αij p−1
k−1,k (C1)

= pk−1,k βi,k−1 γj,k−1 p−1
k−1,k αij

= Φσq
(βik γjk αij)

Finally, when q = k and i = k + 1 we have the following two cases. If

β 6= x then we have the following. Here

β̄ik =















pjk if β = p

yjk if β = x

Φσq
(αij βik γjk) = pik αjk p−1

ik β̄ik γij (C2)

= p−1
ij αjk pij β̄ik γij (C2)

= β̄ik αjk γij (C2)

= β̄ik γij pik αjk p−1
ik

= Φσq
(βik γjk αij)

And if β = x then we have the following.

Φσq
(αij xik γjk) = pik αjk p−1

ik t−1
i yik ti γij (C-pt)

= pik αjk t−1
i p−1

ik yik ti γij (M-y)
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= pik αjk yik t−1
i p−1

ik ti γij (C-pt)

= pik αjk yik p−1
ik γij (C2)

= pik αjk yik pjk γij p−1
jk p−1

ik (C2)

= pik αjk γij yik p−1
ik (C2)

= pik γij yik αjk p−1
ik (C2)

= pik yik pjk γij p−1
jk αjk p−1

ik (C2)

= pik yik p−1
ik γij pik αjk p−1

ik (C-pt)

= pik yik t−1
i p−1

ik ti γij pik αjk p−1
ik (M-y)

= pik t−1
i p−1

ik yik ti γij pik αjk p−1
ik (C-pt)

= t−1
i yik ti γij pik αjk p−1

ik

= Φσq
(βik γjk αij)

Now consider Φτq
, the non-trivial cases are as follows.

q = i i < j < k (x, p, p) (x, y, y) (x, x, p)

j < k < i (y, p, p) (y, x, y) (y, y, p)

k < i < j (x, p, p) (x, x, x) (x, y, p)

q = j i < j < k (y, p, p) (y, y, y) (y, p, x)

j < k < i (x, p, p) (x, x, y) (x, p, x)

k < i < j (y, p, p) (y, x, x) (y, p, y)

q = k i < j < k (p, y, y) (x, y, y) (y, y, y)

j < k < i (p, x, y) (x, x, y) (y, x, y)

k < i < j (p, x, x) (x, x, x) (y, x, x)

For the first two columns of the cases q = i and q = j we have the

following.
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Φτq
(αij βik γjk) = α−1

ij pij βik γjk (C2)

= α−1
ij βik γjk pij (C2)

= βik γjk α−1
ij pij

= Φτq
(βik γjk αij)

For the third column in the case q = i we have the following.

Φτq
(αij βik γjk) = α−1

ij pij β−1
ik pik γjk (C2)

= α−1
ij pij β−1

ik p−1
ij pik γjk pij (C2)

= α−1
ij p−1

jk β−1
ik pjk pik γjk pij (C2)

= β−1
ik α−1

ij pik γjk pij (C2)

= β−1
ik pik γjk α−1

ij pij

= Φτq
(βik γjk αij)

For the third column in the case q = j we have the following.

Φτq
(αij βik γjk) = α−1

ij pij βik γ−1
jk pjk (C2)

= α−1
ij γ−1

jk pij βik pjk (C2)

= α−1
ij γ−1

jk βik pjk pij (C2)

= βik γ−1
jk β−1

ik α−1
ij βik pjk pij (C2)

= βik γ−1
jk pjk α−1

ij pij

= Φτq
(βik γjk αij)

For the case when q = k we have the following.

Φτq
(αij βik γjk) = αij β−1

ik pik γ−1
jk pjk (C2)

= αij β−1
ik p−1

ij γ−1
jk pij pik pjk (C2)

= αij γ−1
jk β−1

ik pik pjk (C2)
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= γ−1
jk β−1

ik αij pik pjk (C2)

= γ−1
jk β−1

ik pik pjk αij (C2)

= β−1
ik p−1

ij γ−1
jk pij pik pjk αij (C2)

= β−1
ik pik γ−1

jk pjk αij

= Φτq
(βik γjk αij)

(C3) αik pjk βjl p
−1
jk = pjk βjl p

−1
jk αik (i, j, k, l) cyclically ordered

First consider Φσq
. As before the only non-trivial cases are when q = i−1

and i 6= l + 1, q = i and j = i + 1, q = j − 1 and j 6= i + 1, q = j and

k = j + 1, q = k − 1 and k 6= j + 1, q = k and l = k + 1, p = l − 1 and

l 6= k + 1, and p = l and i = l + 1.

When q = i− 1 we have the following.

Φσq
(αik pjk βjl p

−1
jk ) = pi−1,i αi−1,k p−1

i−1,i pjk βjl p
−1
jk (C1)(C1)(C1)

= pi−1,i αi−1,k pjk βjl p
−1
jk p−1

i−1,i (C3)

= pi−1,i pjk βjl p
−1
jk αi−1,k p−1

i−1,i (C1)(C1)(C1)

= pjk βjl p
−1
jk pi−1,i αi−1,k p−1

i−1,i

= Φσq
(pjk βjl p

−1
jk αik)

When q = i and j = i + 1 we have the following. (Here the (C2)s hold

because we are in either of the bottom two rows of Table 3.1, both of which

contain (α, p, p) for α = p, x, and y.)

Φσq
(αik pjk βjl p

−1
jk ) = αjk pij pik βil p

−1
ik p−1

ij (C2)

= pij pik αjk βil p
−1
ik p−1

ij (C1)

= pij pik βil αjk p−1
ik p−1

ij (C2)
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= pij pik βil p
−1
ik p−1

ij αjk

= Φσq
(pjk βjl p

−1
jk αik)

When q = j − 1 and j 6= i + 1 we have the following.

Φσq
(αik pjk βjl p

−1
jk ) = αik pj−1,j pj−1,k βj−1,l p

−1
j−1,k p−1

j−1,j (C1)

= pj−1,j αik pj−1,k βj−1,l p
−1
j−1,k p−1

j−1,j (C3)

= pj−1,j pj−1,k βj−1,l p
−1
j−1,k αik p−1

j−1,j (C1)

= pj−1,j pj−1,k βj−1,l p
−1
j−1,k p−1

j−1,j αik

= Φσq
(pjk βjl p

−1
jk αik)

When q = j and k = j + 1 we have the following.

Φσq
(αik pjk βjl p

−1
jk ) = pjk αij βkl p

−1
jk (C1)

= pjk βkl p
−1
jk pjk αij p−1

jk

= Φσq
(pjk βjl p

−1
jk αik)

When q = k − 1 and k 6= j + 1 we have the following.

Φσq
(αik pjk βjl p

−1
jk ) = pk−1,k αi,k−1 pj,k−1 p−1

k−1,k βjl pk−1,k p−1
j,k−1 p−1

k−1,k (C1)

= pk−1,k αi,k−1 pj,k−1 βjl p
−1
j,k−1 p−1

k−1,k (C3)

= pk−1,k pj,k−1 βjl p
−1
j,k−1 αi,k−1 p−1

k−1,k (C1)

= pk−1,k pj,k−1 p−1
k−1,k βjl pk−1,k p−1

j,k−1 αi,k−1 p−1
k−1,k

= Φσq
(pjk βjl p

−1
jk αik)

When q = k and l = k + 1 we have the following. (Here the (C2)s hold

because we are in either of the top two rows of Table 3.1, both of which

contain (β, p, p) for β = p, x, and y.)
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Φσq
(αik pjk βjl p

−1
jk ) = αil pjl pkl βjk p−1

kl p−1
jl (C2)

= αil βjk (C1)

= βjk αil (C2)

= pjl pkl βjk p−1
kl p−1

jl αil

= Φσq
(pjk βjl p

−1
jk αik)

When q = l − 1 and l 6= k + 1 we have the following.

Φσq
(αik pjk βjl p

−1
jk ) = αik pjk pl,l−1 βj,l−1 p−1

l,l−1 p−1
jk (C1)(C1)(C1)

= pl,l−1 αik pjk βj,l−1 p−1
jk p−1

l,l−1 (C3)

= pl,l−1 pjk βj,l−1 p−1
jk αik p−1

l,l−1 (C1)(C1)(C1)

= pjk pl,l−1 βj,l−1 p−1
l,l−1 p−1

jk αik

= Φσq
(pjk βjl p

−1
jk αik)

Finally, when q = l and i = l + 1 we have the following. (Here the (C2)s

hold because they always hold for the triples (α, p, p) and (β, p, p).)

Φσq
(αik pjk βjl p

−1
jk ) = pil αkl p

−1
il pkj βij p−1

jk (C2)(C2)

= p−1
ik αkl βij pik (C1)

= p−1
ik βij pik p−1

ik αkl pik (C2)(C2)

= pjk βij p−1
jk pkl αkl p

−1
kl

= Φσq
(pjk βjl p

−1
jk αik)

Now consider Φτq
, there are two non-trivial cases. In the first case

Φτq
(αik) = α−1

ik pik and we have the following.

Φτq
(αik pjk βjl p

−1
jk ) = α−1

ik pik pjk βjl p
−1
jk (C3)

= α−1
ik pjk βjl p

−1
jk pik (C3)
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= pjk βjl p
−1
jk α−1

ik pik

= Φτq
(pjk βjl p

−1
jk αik)

In the second case Φτq
(βjl) = β−1

jl pjl and we have the following.

Φτq
(αik pjk βjl p

−1
jk ) = αik pjk β−1

jl pjl p
−1
jk (C3)

= pjk β−1
jl p−1

jk αik pjk pjl p
−1
jk (C3)

= pjk β−1
jl pjl p

−1
jk αik

= Φτq
(pjk βjl p

−1
jk αik)

(M-x) xij pij ti = pij ti xij i < j

First consider Φσq
. The only non-trivial cases are when q = i − 1, q = i

and j = i + 1, and q = j − 1 and j 6= i + 1.

When q = i− 1 we have the following.

Φσq
(xij pij ti) = pi−1,i xi−1,j pi−1,j p−1

i−1,i ti−1 (C-pt)

= pi−1,i xi−1,j pi−1,j ti−1 p−1
i−1,i (M-x)

= pi−1,i pi−1,j ti−1 xi−1,j p−1
i−1,i (C-pt)

= pi−1,i pi−1,j p−1
i−1,i ti−1 pi−1,i xi−1,j p−1

i−1,i

= Φσq
(pij ti xij)

When q = i and j = i + 1 we have the following.

Φσq
(xij pij ti) = t−1

j yij tj pij tj (C-pt)

= t−1
j yij pij tj tj (M-y)

= t−1
j pij tj yij tj (C-pt)

= pij yij tj
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= Φσq
(pij ti xij)

When q = j − 1 and j 6= i + 1 we have the following.

Φσq
(xij pij ti) = pj−1,j xi,j−1 pi,j−1 p−1

j−1,j ti (C-pt)

= pj−1,j xi,j−1 pi,j−1 ti p
−1
j−1,j (M-x)

= pj−1,j pi,j−1 ti xi,j−1 p−1
j−1,j (C-pt)

= pj−1,j pi,j−1 p−1
j−1,j ti pj−1,j xi,j−1 p−1

j−1,j

= Φσq
(pij ti xij)

Now consider Φτq
, the only non-trivial case is when q = i.

Φτq
(xij pij ti) = x−1

ij pij pij ti (C-pt)

= x−1
ij pij ti pij (M-y)

= pij ti x
−1
ij pij

= Φτq
(pij ti xij)

(M-y) yij pij tj = pij tj yij i < j

First consider Φσq
. The only non-trivial cases are when q = i − 1, q = i

and j = i + 1, and q = j − 1 and j 6= i + 1.

When q = i− 1 we have the following.

Φσq
(yij pij tj) = pi−1,i yi−1,j pi−1,j p−1

i−1,i tj (C-pt)

= pi−1,i yi−1,j pi−1,j tj p−1
i−1,i (M-y)

= pi−1,i pi−1,j tj yi−1,j p−1
i−1,i (C-pt)

= pi−1,i pi−1,j p−1
i−1,i tj pi−1,i yi−1,j p−1

i−1,i

= Φσq
(pij tj yij)
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When q = i and j = i + 1 we have the following.

Φσq
(yij pij tj) = xij pij ti (M-x)

= pij ti xij

= Φσq
(pij tj yij)

When q = j − 1 and j 6= i + 1 we have the following.

Φσq
(yij pij tj) = pj−1,j yi,j−1 pi,j−1 p−1

j−1,j tj−1 (C-pt)

= pj−1,j yi,j−1 pi,j−1 tj−1 p−1
j−1,j (M-y)

= pj−1,j pi,j−1 tj−1 yi,j−1 p−1
j−1,j (C-pt)

= pj−1,j pi,j−1 p−1
j−1,j tj−1 pj−1,j yi,j−1 p−1

j−1,j

= Φσq
(pij tj yij)

Now consider Φτq
, the only non-trivial case is when q = j.

Φτq
(yij pij tj) = y−1

ij pij pij tj (C-pt)

= y−1
ij pij tj pij (M-y)

= pij tj y−1
ij pij

= Φσq
(pij tj yij)

All that remains is to check that R is closed under Φτ−1
q

and Φσ−1
q

. From

the expressions for the inverses given in the proof of Proposition 6 it follows

that for every word x we have Φσ−2
q

(x) =R p−1
q,q+1 x pq,q+1 and Φτ−2

q
(x) =R

t−1
q x tq. Therefore whenever x =R y we have

Φσ−2
q

(x) =R p−1
q,q+1 x pq,q+1 =R p−1

q,q+1 y pq,q+1 =R Φσ−2
q

(y)
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and

Φτ−2
q

(x) =R t−1
q x tq =R t−1

q y tq =R Φτ−2
q

(y)

hence Φσ−1
q

(x) =R Φσ−1
q

(y) and Φτ−1
q

(x) =R Φτ−1
q

(y).
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