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Summary

In this thesis I present my attempt to further the knowledge on early human development 

with emphasis on trophoblast lineage, using RNA-Sequencing (RNA-Seq) technology. 

RNA-Seq leverages on high throughput next generation sequencing to profile entire 

transcriptomes with extreme sensitivity  and resolution, providing data superior to that of 

conventional methods available for measuring gene expression.

Three major RNA-Seq datasets are presented in this thesis.

The first dataset contains information on transcriptomic dynamics of poly A mRNA from 

a time-course experiment with five time-points (day 0, 2 4 6 and 8), where human 

embryonic stem cells were differentiated along the trophoblast lineage using an improved 

differentiation protocol. 

The second dataset contains transcriptomic data of smallRNA (all RNA transcripts less 

than 200 nucleotides) during the first three time-points of the above mentioned 

differentiation protocol.

The third dataset is on mouse early development and contains information on the 

transcriptomes of the 8-cell stage embryo, E3.5 blastocyst, E4.5 blastocyst and E4.5 

inner cell mass. This mouse preimplantation dataset is used in a comparative capacity to 

find molecular mechanisms which are specific to the human system. 

As an early adapter of the RNA-Seq technology during a time where there were no 

proper analysis software available, I created a series of programatic workflows in the 

form of scripts, written using the python programming language, meant to simplify  the 

analysis of RNA-Seq data and to easily  identify transcriptomic events such as alternative 
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splicing, novel exon - exon junctions, exon extensions and expression of novel 

transcripts. These workflows together with the results they provide are also presented in 

this thesis.

Using RNA-Seq datasets and results of programatic workflows mentioned above, this 

thesis presents a comprehensive view on the transcriptomics of early human trophoblast 

differentiation.

When comparing human and mouse preimplantation data, it was evident that  the two 

systems have considerable differences at the transcriptome level concerning both the 

expression pattern and expression level of genes. This observation supports the hourglass 

model of development, where the species of the same animal phylum, for a brief period 

in their developmental timeline known as the phylotypic stage, show a remarkable 

similarity with each other, but show considerable differences during the rest of the 

developmental timeline. Trophoblast development occurs much earlier than the 

phylotypic stage and therefore shows great divergence in transcriptomics between mouse 

and human. This is important because it  advocates the cautious extrapolation of 

biological observations made in the mouse system into human - as in the case of most 

data available for trophoblast differentiation. 

Looking at novel (i.e. unannotated) transcribed regions of the human genome identified 

by RNA-Seq, it was evident that trophoblast differentiation induces the expression of a 

large number of endogenous retroviral sequences. There are instances where these 

retroviral elements modify transcripts by acting as extra exons or as new promoters 

resulting in the expression of new transcripts. Therefore this thesis argues that retroviral 
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elements are a major component responsible for the human / primate specific 

transcriptomic events in early development. Thus they  are responsible for the interspecies 

diversity seen during the pre-phylotypic stages of development in human and mouse.
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1.Introduction

1.1 Preimplantation development: from zygote to blastocyst

Fertilization occurs in the fallopian tube, 24 - 48 hrs after ovulation, leading to the 

production of the zygote, the new organism’s first developmental stage. Then for 3 - 4 

days in mouse and for 5 - 7 days in humans, it  travels through the fallopian tube 

moving towards the uterus while producing new cells - the blastomeres, through 

mitotic division. During these cleavage stages the actual size of the embryo remains 

the same even though the number of cells within the structure increases.  During the 

8-cell stage of the embryo, the blastomeres are totipotent, clearly identifiable and are 

topologically symmetrical. The polarization events that take place during compaction 

create the morula, giving rise to two ‘classes’ of cells - inner blastomeres and outer 

blastomeres. The inner blastomeres are fully surrounded by the outer blastomeres 

while the outer blastomeres have a part of their cell surface exposed to the external 

environment. Maturation of the outer blastomeres into a functional epithelium 

combined with further cell divisions leads to the formation of the blastocoel, the 

defining feature of the blastocyst.

The blastocyst  is composed of an outer layer of cells making the trophoectoderm 

(TE), which marks the perimeter of the blastocyst, and the inner cell mass (ICM), 

which initially  exists as a small group of cells attached to the TE layer facing the 

blastocoel. At around E4.5 in mouse, the ICM  differentiates into the primitive 

endoderm, which will produce the extraembryonic tissues and the epiblast which will 

create the embryo proper. Formation of trophoectoderm (TE) and inner cell mass 
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(ICM) during the genesis of blastocyst marks the first lineage segregation event of the 

embryo. The TE goes on to form the fetal component of the placenta.

1.2 Development of the placenta

The placenta is a complex organ which acts as the interface between two (partially) 

genetically  diverse individuals. It is composed of both fetal and maternal tissue. The 

placenta is essential for the transport of nutrients, gases and waste products between 

the fetus and mother and acts as an endocrine organ facilitating the growth of the 

fetus. Though poorly understood, the placenta also plays an important  role in maternal 

immune modulation preventing the mother from rejecting the semi-allograft embryo.

Placenta development gets underway  just after implantation which takes place at 

around 8 - 9 days post fertilization in humans when the embryo is made up of around 

107 - 256 cells (Benirschke, Kaufmann et al. 2006). Implantation is composed of 

three stages, apposition, adhesion and invasion.

During apposition the blastocyst orients itself so that its embryonic pole gets attached 

first. This is preceded by  complex crosstalk between the blastocyst and the uterine 

wall. After attachment, the invasion phase begins when the trophoblasts in the 

attachment surface proliferate and produce cytotrophoblast cells and a 

syncytiotrophoblast layer. Syncytiotrophoblasts are a multi-nucleated layer of cells 

produced by the fusion of mono-nucleated cytotrophoblasts. Cytotrophoblasts have an 

active proliferative rate which enables them to increase their number while producing 

the syncytiotrophoblast. After some time, vacuoles start to appear in the 

syncytiotrophoblast layer. As development progresses these expand and forms a 
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system of lacunae, separated by ‘walls’ of syncytiotrophoblast - the trebaculae. At 

around day 12 the embryo is completely engulfed by the uterine epithelium, and due 

to the proliferation of trophoblasts, the embryo is completely covered by a syncytial 

layer of syncytiotrophoblasts and cytotrophoblasts. Physical and hormonal pressures 

put on the endometrium by trophoblasts causes the endometrium to form decidua.

Trophoblast proliferation together with lacunar formation divides the trophoblast 

layer into three layers - in the direction of fetus to maternal tissues - primary  chorionic 

plate which is composed of cytotrophoblasts, the lacunary system and the 

trophoblasic shell made by syncytiotrophoblasts. Here the cytotrophoblasts which 

form the chorionic plate, invade the syncytiotrophoblast and continue their migration 

to the maternal endometrium. The invading trophoblasts penetrates maternal blood 

vessels. In the mature placenta this connection results in filling the lacuna with blood. 

These lacuna act as mini reservoirs enabling the diffusion of nutrients and gas to the 

fetus. The endometrium-invading trophoblast cells form villi, where each villus is 

composed of a column of cytotrophoblasts and a surrounding layer of 

syncytiotrophoblast. From the earliest  stages of the placenta to the most mature stage, 

a layer of trophoblastic and fetal tissues, termed the placental barrier, separates 

maternal and fetal bloodstreams.

As the fetus grows and its demands for oxygen and nutrients increases, the maternal 

circulation system and the placental barrier get adapted, so that the blood flow to the 

placenta is enhanced and the efficiency of transfer through the placental barrier is 

maximized. Due to the plugging of maternal spiral arteries by trophoblasts, there is no 

detectable uteroplacental blood flow during the first trimester (Hustin and Schaaps 
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1987) which leads to a low oxygen environment. At around the twelfth week the plugs 

are removed and the maternal blood flow is increased.

1.3 Genes involved in the formation of the trophoectoderm (TE)

The vast majority of functional studies to determine essential gene function in 

preimplantation development and formation of trophoblast lineage relies mainly on 

data from the mouse. Currently Tead4 is considered to be the earliest transcription 

factor involved in TE lineage determination (Yagi, Kohn et al. 2007). Tead4 

homozygous mutants die even before the formation of the blastocoel (Nishioka, 

Yamamoto et  al. 2008). Even though Tead4 is expressed ubiquitously in the embryo 

(Nishioka, Yamamoto et al. 2008), its activity  is modulated through the components 

of the Hippo signaling pathway (Nishioka, Inoue et al. 2010). Hippo signaling is 

made active by  cell to cell contact, which results in phosphorylation of the Tead 

coactivator protein Yap. Yap protein inhibits the nuclear localization of Tead, 

essentially  preventing it from acting as a transcription factor. Since cell to cell contact 

is high on the inside cells, Hippo signaling is more active there, leading to 

inactivation of Tead4. This is supported by the fact  that Yap protein shows different 

sub-cellular localization in ICM  versus TE (Nishioka, Inoue et al. 2010). In Lats 1/2 

homozygous mutants, which are negative regulators of Yap, Yap accumulates in the 

nucleus and Cdx2 expression increases (Nishioka, Inoue et al. 2010). Even though 

Tead4 is expressed in the ICM it is not essential for the ICM (Yagi, Kohn et al. 2007; 

Nishioka, Yamamoto et al. 2008).

Activation of Tead4 in TE leads to the up-regulation of Cdx2 (Yagi, Kohn et al. 2007). 

Cdx2 is recognized as an essential factor for the ICM/ TE lineage segregation and acts 
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by the repression of Oct4 and Nanog in the TE. It has been shown that Cdx2 

homozygous mutant embryos, even if they  produce the blastocyst, die before 

implantation due to the collapsing of the blastocoel, and that in these embryos there is 

no differential expression of Oct4 and Nanog between the TE and ICM (Strumpf, 

Mao et al. 2005). The reciprocal relationship between Cdx2 and Oct4 has been further 

shown by  the over-expression of Cdx2 in mouse ES cells, which down-regulates Oct4 

leading to the differentiation of cells into TE lineage (Niwa, Toyooka et  al. 2005). 

Cdx2 is first expressed in a nonspecific manner and then gets up-regulated in the 

outside cells which are the precursors of TE, suggesting that Cdx2 is not the trigger 

for lineage segregation (Ralston and Rossant 2008; Guo, Huss et al. 2010).

Apart from Tead4 and Cdx2 which based on current understanding, act as the main 

regulators of lineage shift to TE, there are other transcription factors which help  in the 

maintenance and progression of TE state. Among these, Eomes is considered to be an 

important factor in trophoblast development and mesoderm formation (Russ, Wattler 

et al. 2000). Even though Eomes is expressed throughout early development 

(McConnell, Petrie et al. 2005), it is believed to be at least partially regulated by Cdx2 

(Nishioka, Yamamoto et al. 2008).

 

Tcfap2c has been reported to differentiate ES cells into the trophoblast lineage 

independent of Cdx2, even though both Cdx2 and Tcfap2c are required for the up-

regulation of Elf5 which helps in trophoblast cell maintenance (Kuckenberg, Buhl et 

al. 2010). Additionally Ets2 has been shown to be important in trophoblast 

development (Georgiades and Rossant 2006) and trophoblast  stem cell self renewal 

(Wen, Tynan et al. 2007).  Elf5 acts downstream of TE formation and aids in the 
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robust expression of Cdx2 and Eomes (Ng, Dean et al. 2008). Gata3, which is highly 

expressed in trophoblast cell lines, is expressed from the 8-cell stage but gets 

restricted to TE and is thought to regulate TE expression (Home, Ray et al. 2009; 

Ralston, Cox et  al. 2010). Gata2 is also expressed in the blastocyst and is restricted to 

the TE. Thus redundancy  between Gata 2/3 may explain why neither is early 

embryonic-lethal in the mouse. 

1.4 Genes involved in the formation of the placenta

Even though placental mammals (and the placenta) came into being relatively 

recently  compared to the timeframe of vertebrate evolution, the placenta as an organ 

is highly diverse among different species both at the tissue / cellular level and the sub 

cellular level (Rawn and Cross 2008). Surprisingly, this diversity is not caused mainly 

by new placenta-specific genes, as the number of such known genes are low. Instead 

placenta development involves genes with multiple functions in both placenta and in 

other tissues / organs (Cross, Baczyk et al. 2003). For example HAND1 is involved in 

heart and blood vessel formation along with placenta development (Riley, Anaon-

Cartwight et al. 1998). Similar examples include both DLX3 (Beanan and Sargent 

2000) and FGFR2 (Xu, Weinstein et al. 1998). However this lack of placenta specific 

genes is compensated mainly by transcriptional regulation. There are several 

examples of genes which undergo alternative splicing or have alternative start sites - 

regulated by  placenta specific enhancers / promoters - thereby producing a placenta-

specific or placenta-enriched isoform. Some of the placenta-specific promoter activity 

has been derived from historical retroviral infections. 
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1.4.1 GCM1 (Glial cells missing 1)

GCM1 is considered to be an essential transcription factor for placental development 

due to its ability  to make active fusogenic and proangiogenic gene expression in the 

placenta, thereby leading to vasculogenesis and formation of the syncytiotrophoblast 

(Anson-Cartwright, Dawson et al. 2000; Lin, Chang et al. 2010).  GCM1 is reported to 

positively regulate Syncytin (Yu 2002), placental growth factor (PGF) (Chang, 

Mukherjea et al. 2008) and Aromatase (CYP19A1) (Yamada, Ogawa et al. 1999), all 

genes essential for placental function. GCM1 acts as a regulator between the 

proliferative state and the cell cycle arrest / fusion of trophoblast cells (Baczyk, 

Drewlo et al. 2009). GCM1 has a highly  placenta-specific expression and is known to 

be regulated at the post transcriptional level. GSK3B causes GCM1 to be 

phosphorylated which leads to it being detected by FBW2 and ultimately resulting in 

GCM1 degradation (Chiang, Liang et al. 2009). DUSP23 on the other hand has a 

protective effect, since it is involved in the dephosphorylation of GCM1 thereby 

preventing it from being degraded (Lin, Chang et al. 2010).

1.4.2 Chorionic gonadotropin (CG)

CG is a member of the glycogen hormone family  where the rest of the members 

consist of the luteinizing hormone (LH), Follicle stimulating hormone (FSH) and the 

thyroid stimulating hormone (TSH) (Pierce and Parsons 1981). The CG protein is 

dimeric, consisting of an alpha subunit, encoded by CGA, which is shared among all 

the members of the glycogen hormone family and a beta subunit  which is specific for 

CG. CG is only found in primates and horses and is expressed exclusively in the 

placenta (Nilson, Bokar et al. 1991; Rawn and Cross 2008). The beta subunit  of CG, 
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derived from duplications of the gene encoding the beta subunit of LH, has 6 copies 

in the human genome. CG is involved in inducing progesterone secretion from the 

corpus lutem and preparing the uterus endometrium for pregnancy (Cameo, Srisuparp 

et al. 2004) and is essential for the maintenance of human pregnancy.

1.4.3 Growth Hormone cluster

The human growth hormone cluster is composed of five genes - GH1, GH2, CSH1, 

CSH2 and CSHL1. Among these, all except GH1 is placenta specific, while GH1 is 

expressed both in the placenta and the pituitary (Su, Liebhaber et al. 2000). GH2 

protein induces maternal lactogenic and growth promoting activities (Macleod , 

Worsley et al. 1991; Alsat, Guibourdenche et al. 1998).

1.4.4 ELF5 (E74-like factor 5)

ELF5 is believed to act as a “gatekeeper gene”, to maintain the trophoblast  lineage 

after the initial lineage commitment (Senner and Hemberger 2010) and is under 

epigenetic regulation (Hemberger, Udayashankar et al. 2010). In mouse, it has been 

reported that Elf5 is methylated and repressed in the embryonic lineage and 

hypomethylated and expressed in the trophoblast lineage, and enforces maintenance 

of the trophoblast lineage through a positive feedback loop with Cdx2 and Eomes 

(Ng, Dean et al. 2008). In humans, ELF5 expression is found in the villous 

cytotrophoblast cells of the placenta (Hemberger, Udayashankar et al. 2010). On the 

other hand, human embryonic stem cells, and the trophoblast cells derived either 

through spontaneous differentiation or BMP4 treatment have a hypermethylated and 

non - expressed ELF5 (Hemberger, Udayashankar et al. 2010). This raises an issue 

with the conventional trophoblast differentiation protocols since ELF5 is an important 
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regulator of the trophoblast lineage and the conventional differentiation protocols do 

not induce ELF5 expression similar to the actual system.

1.5 Transposable elements in the human genome

Transposable elements are mobile DNA sequences in the genome. They  are able to 

change their location within the genome by using either a “cut  - paste” or a “copy - 

paste” strategy. Transposable elements are divided into two classes - Retrotransposons 

(Class I) and DNA transposons (Class II). It has been estimated that 45% of the 

human genome is composed of sequence derived from transposable elements 

(Griffiths 2001) though many of these sequences are no longer “transposable”.

Under the copy-paste strategy used by retrotranposons in the “migration” across 

genome, the element is first transcribed into an RNA intermediate, which then 

changes the original locale and  finally gets reverse transcribed back into genomic 

DNA. Because of this mechanism they leave behind their original DNA footprint in 

the genome thus effectively amplifying their number over time. Endogenous retroviral 

elements (ERVs) belong to this class. 

DNA transposons on the other hand do not have an RNA intermediate stage as they 

follow a cut - paste strategy. Their movement involves the excision of the transposon 

from the genomic DNA, movement to a new location and then the integration back 

into the genome. 
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1.5.1 Endogenous retroviral elements (ERVs)

Endogenous Retroviral Elements (ERVs) are the modern day genomic remnants of 

ancient germline infections of exogenous viruses. ERVs alone make up for around 8 - 

10% of the human genome (Griffiths 2001; Goodier and Kazazian 2008; Black, 

Arnaud et al. 2010).

ERVs have the same genomic structure as their active exogenous counterparts. This 

includes the four viral genes, gag, pro, pol and env, sandwiched between two long 

tandem repeat (LTR) regions. The gag gene codes for structural components of the 

viral particle while pro and pol genes code for the enzymatic machinery. The env gene 

codes for viral capsid and envelope protein. The two LTR regions contain regulatory 

elements which could regulate the expression and the function of the ERV element 

(Black, Arnaud et al. 2010).

Previously, ERVs together with other members of the repeat elements group  were 

thought to be nonfunctional and were labelled as “junk DNA”. In fact, most  if not all 

human endogenous retroviral elements (HERVs) have acquired point mutations in the 

coding sequences, which disrupt the original function. That said the mere existence of 

these genes, with their original gene structure intact, indicates that they may  still serve 

a biological purpose. If ERVs were truly  “junk DNA” then at least  the majority of 

them would simply cease to exist, removed through natural selection.

Creation of new ERVs by the integration of new retroviruses to the germline has 

happened throughout evolution. The recent ERVs known as modern ERVs still have 

functional viral pathogens such as the Jaagsiekte sheep retrovirus (JSRV), mouse 
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mammary  tumor virus, feline leukemia virus and the avian leukemia virus which 

closely resemble their (i.e. ERV’s) genomic structure and sequence (Black, Arnaud et 

al. 2010).  However the common consensus is that most of the ERVs, due to point 

mutations, have completely lost one or more functional genes of the original viral 

particle. 

1.6 Human genes originating from human ERVs which are highly 
expressed in placenta

The genes HERV-W (ERVWE1), HERV-FRD and ERV-3 have intact env genes and are 

expressed in the human placenta (Venables, Brookes et al. 1995; Blond, Besème et al. 

1999; De Parseval, Lazar et al. 2003).

1.6.1 ERV-3

This was the first retroviral protein to be associated with a physiological function. 

(Rote, Chakrabarti et al. 2004). ERV-3 is coded by  the env gene, which has a long 

open reading frame, and is expressed in syncytiotrophoblasts but not in villous 

cytotrophoblasts (Lin, Xu et al. 1999). In isolated cytotrophoblasts, the ERV-3 

expression was up-regulated upon differentiation (Boyd, Bax et al. 1993). It has also 

been reported that its expression is associated with increased expression of hCG and 

cell cycle arrest prior to syncytiotrophoblast formation (Rote, Chakrabarti et al. 2004).

A mutation which introduces a stop codon in the ERV-3 coding env  gene has been 

observed (Rasmussen and Clausen 1998; De Parseval, Lazar et al. 2003). The 

functional importance of ERV-3 has been questioned since 1% of the population 

which has this as a heterozygous mutation are healthy. However there is a chance that 
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ERV-3 still might be active due to a variety of reasons including the truncated protein 

retaining function, ERV-3 function being restored by other retroviral elements 

expressed during early  development, and the stop codon being bypassed (Rote, 

Chakrabarti et al. 2004). However based on the structure of the full length ERV-3 

protein, it has been reported that it lacks fusogenic ability  and the ability for 

immunosuppression (Lin, Xu et al. 1999; Lin, Xu et al. 2000; Mi, Lee et al. 2000). 

1.6.2 HERVE1 / Syncytin 1

Protein coded by  the env open reading frame of HERV-W is known as Syncytin 1. 

HERV-W expression is restricted to syncytiotrophoblast (Rote, Chakrabarti et al. 

2004). Syncytin 1 entered the primate genome 25 million years ago after the split of 

the new and old world monkeys which happened 40 million years ago (De Parseval, 

Lazar et al. 2003).

Interaction between Syncytin 1 and the D type mammalian retrovirus receptor leads to 

the formation of the syncytium (Blond, Besème et al. 1999; Handwerger 2009). It is 

believed that Syncytin 1 is involved in the fusion of mononuclear cytotrophoblasts to 

produce syncytiotropblasts.  Syncytin 1 causes cell fusion in cell lines and this 

activity is reversed by  an anti Syncytin 1 antibody (Blond, Lavillette et al. 2000; Mi, 

Lee et  al. 2000) . Conversely when BeWo Cell fusion is induced by forskolin, 

Syncytin 1 is up-regulated (Mi, Lee et al. 2000).  In addition Syncytin 1 contains a 

putative immunosuppressive region suggesting an immunological function as well 

(Black, Arnaud et al. 2010).
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1.6.3 HERV-FRD / syncytin 2

Syncytin 2 was identified by a genome-wide screen for fusogenic retroviral envelopes 

(Blaise, de Parseval et al. 2003).  Both Syncytin 1 and Syncytin 2 are structurally 

similar. Like Syncytin 1, Syncytin 2 is also reported to induce cell fusion and is 

believed to have immunosuppressive properties (Mangeney, Renard et al. 2007). 

1.7 Functional implications of the existence and expression of ERVs

Despite their origins from infective exogenous retroviruses, ERVs have been 

associated with positive effects on their host’s biology. 

Most retroviruses contain an immunosuppressive region in their env  protein which 

enables the viral particle to bypass the host immune defenses. While this is certainly 

detrimental to the host in the case of a retroviral infection, it could be considered as a 

benefit in rare instances where temporary immunosuppression is required. During 

implantation, the mother’s reproductive system must accept the embryo, which is of a 

different genomic composition (i.e. a semi-allograft) to that of the maternal genome. 

An immune rejection at any stage of early development would be fatal to the fetus 

highlighting the requirement for immunosuppression. 

While modulation of immunosuppressive effects has been argued as a main function 

of ERVs they have also been implicated in imparting antiviral resistance, maintaining 

genomic plasticity  and introducing novel regulatory elements via LTRs (Nelson, 

Carnegie et al. 2003). 

13



1.8 Genes which produce placenta-specific / placenta-enriched 
transcripts due to insertion of retroviral elements in their regulatory 
regions

Long terminal repeat (LTR) sequences flank retrotransposons and have their own 

promoters and enhancers. Therefore if an insertion of a retrotransposon occurs close 

to an existing gene there is a chance that the expression of the gene is influenced by 

the LTR promoters and enhancers. Several such examples have been reported and 

more instances were identified from the data presented in this thesis.

1.8.1 CYP19A1 (Cytochrome P450, family 19, subfamily A, polypeptide 1)

CYP19A1 codes for the protein Aromatase, which is a key  enzyme in estrogen 

biosynthesis (Simpson, Mahendroo et al. 1994). It is involved in placental 

development as well as preparation for parturition (Fürbass, Selimyan et  al. 2007). 

RefSeq annotation shows that aromatase has two isoforms, where the splice selects 

either the first or the second in a mutually exclusive manner. The isoform which 

encompasses the first exon is reported to be placental specific and this isoform is 

regulated by  a placenta-specific promoter (Kamat and Mendelson 2001). The 

particular promoter exists in an LTR region, suggesting that its origin is retroviral 

(van de Lagemaat, Landry et al. 2003).

1.8.2 EDNRB (Endothelin receptor type B)

EDNRB has an active LTR region, derived from an HERV-E family retrovirus, as an 

alternative promoter, which produces a placental specific isoform (Medstrand, Landry 

et al. 2001).  The LTR promoter is located ~52kb upstream of the “standard” promoter 
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of the gene. Unlike in the case of CYP19A1, the placental specific isoform of EDNRB 

accounts for only around 15% of the total transcripts in placenta (Sakurai, Yanagisawa 

et al. 1990).

1.9 MicroRNAs in early development

MicroRNAs are short non coding regulatory  RNA, which regulate the translation of 

target mRNAs either by mRNA degradation or by translational repression (Lewis and 

Steel 2010). The microRNAs carry  out their function by  binding to the 3’ UTR of the 

target mRNA and they add an additional layer of complexity  to the transcriptome 

(Bartel 2004). 

MicroRNA biogenesis consists of several steps. First, microRNA genes are 

transcribed by RNA polymerase II which produces a primary  microRNA (pri-

miRNA). Primary microRNA has a stable secondary stem loop  structure consisting of 

a ~33 nucleotide stem. Then it is cleaved by the microprocessor complex consisting of 

Drosha and DGCR8 to produce a pre-microRNA. Pre-microRNA maintains the stem 

loop structure of pri-miRNA but has a shorter stem consisting of ~22 nucleotides. 

This stable stem loop  structure is a key feature of microRNAs and can be used in 

microRNA prediction workflows. The pre-miRNA is then transported out of the 

nucleus by Exportin - 5 transporter protein, where the RISC loading complex subjects 

it to a further cleaving step  by removing its loop thus resulting in a ~22 nucleotide 

double stranded RNA (Lee, Ahn et al. 2003). The double strand then gets separated 

where one goes on to act as a mature microRNA while the other (known as the “star” 

strand) gets degraded.
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The expressed cohort of microRNA of a particular tissue / cell type has been shown to 

be highly  specific (Bartel 2004). This implies that microRNA regulation is at least 

partially involved in defining the “state” of the tissue / cell type. Therefore the 

identification of microRNA expression dynamics during early development is very 

important.

Involvement of microRNA in early  development has been reported. Mouse Oocytes 

with nonfunctional microRNA biogenesis machinery do not survive beyond the first 

cell division (Murchison, Stein et al. 2007; Tang, Kaneda et  al. 2007) indicating that 

maternally derived microRNAs are essential for the very first steps of mammalian 

development (Lewis and Steel 2010). Mouse miR-125a expression has been shown to 

begin at the 2 cell stage, and is believed to regulate developmental timing (Byrne and 

Warner 2008). Mouse miR-92 has been shown to be specific for trophoectoderm and 

primitive endoderm (Takeda, Noguchi et al. 1997; Byrne and Warner 2008; Foshay 

and Gallicano 2009). In the case of human ES cells, mir-145 is reported to regulate 

POU5F1, SOX2 and KLF4 showing the importance of microRNA in regulating 

pluripotency  (Xu, Papagiannakopoulos et al. 2009). It has been shown that placenta 

too expresses a unique set of microRNA and some even enter the mother’s blood 

stream (Gilad, Meiri et al. 2008). Thus defining microRNAs in the human trophoblast 

lineage will not only provide resources for understanding the basic biology of 

placental formation but may also potentially provide biomarkers for placental 

function in maternal blood.
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1.10 Epithelial - mesenchymal transition (EMT)

Epithelial-mesenchymal transition (EMT) is the process in which polarized epithelial 

cells convert themselves into a mesenchymal phenotype through structural and 

biochemical changes (Zeisberg and Neilson 2009). EMT transition, or its reverse 

(Mesenchymal to epithelial transition - MET) is dependent on the activity  of 

specialized transcription factors, cell surface proteins, enzymes and even microRNAs. 

While epithelial cells are polar and stationary, mesenchymal cells show an increased 

capability for migration / invasion (Kalluri and Weinberg 2009). 

EMTs are divided into three types. Type 1 includes EMT events that  take place during 

implantation embryogenesis and organ development while type II includes EMT 

events during tissue regeneration and organ fibrosis (Kim, Kugler et al. 2006; 

Zeisberg, Tarnavski et al. 2007; Potenta, Zeisberg et al. 2008). EMTs which take place 

during cancer progression and metastasis are classified under type III (Hanahan and 

Weinberg 2000; Thiery 2002).

During trophoectoderm formation, cells of the morula undergo a transition to an 

epithelial phenotype. Furthermore, during implantation cytotrophoblast cells undergo 

an epithelial to mesenchymal transition which enable them to invade the maternal 

endometrium and act as an anchor and form an interface for gas and nutrient 

exchange (Aplin and Kimber 2004; Bischof, Aplin et al. 2006). These EMT events 

come under type I and are the least studied events among all EMT events. Most of the 

biochemistry  relating to type I EMT comes from the studies done on embryogenesis 

or organ development, an event which occurs after the formation of the TE lineage.
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When EMT events during embryogenesis is considered, canonical Wnt signaling is 

believed to be a critical factor, as embryos deficient in Wnt3 are unable to undergo 

EMT during gastrulation (Liu, Wakamiya et al. 1999; Skromne and Stern 2001). 

Formation of the primitive streak, which is the subsequent EMT event, requires 

Wnt8c (Popperl, Schmidt et al. 1997). Wnt proteins together with FGF receptors 

(Ciruna and Rossant 2001; Perea-Gomez, Vella et al. 2002) and the transcription 

factors Snail, Eomes and Mesps regulate gastrulation (Nieto 2002; Arnold, Hofmann 

et al. 2008; Lindsley, Gill et al. 2008; Kalluri 2009) .

1.11 Involvement of microRNA in the regulation of EMT

Using madin darby canine kidney (MDCK) clones, it has been shown that members 

of the microRNA 200 family (mir - 200a/b/c, miR- 141 and mir - 429) and mir - 205 

are up regulated during EMT and regulate EMT through ZEB1 and ZEB2 (Gregory, 

Bert et al. 2008). mir-200b and 200c down-regulate the expression of ZEB1 and ZEB2 

(Hurteau, Carlson et  al. 2007; Nanna 2007). When expressed, ZEB1 and ZEB2 inhibit 

the expression of E-cadherin transcription, preserving the epithelial phenotype 

(Comijn, Berx et al. 2001; Eger, Aigner et al. 2005).
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1.12 Importance of studying the development and function of 
trophoblast lineage

Trophoectoderm formation marks the first lineage commitment in early  development. 

It also marks the creation of the first epithelial cell type of the new organism. The 

trophectoderm also plays a major role in implantation which is one of the most crucial 

steps for a successful pregnancy. The trophoblast create a majority  of cells / tissues in 

the placenta, a unique organ which acts as the interface of two genetically  different 

organisms (the mother and the child). Problems in trophoblast / placental biology are 

believed to contribute to poor pregnancy outcomes such as preeclampsia (incidence 

rate of 7 - 8%) and preterm labor (10%) (Goldenberg and Andrews 1996). Besides 

providing a better understanding of placental disorders, studying placental biology 

may provide an additional model to study cancer as there are similarities in the 

biology  of the two systems. For instance, during the transformation of villous 

cytotrophoblasts to their extravillous state, trophoblasts change their morphology 

from that  of epithelial to invasive mesenchymal type. This epithelial to mesenchymal 

transformation is seen in several types of cancer and studying trophoblast 

differentiation would shed more light on the underlying mechanisms. Therefore the 

study of trophectoderm is of vital importance not only from an early development 

stand point, but also from a clinical point of view.
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1.13 Model systems currently available to study the trophoblast 
lineage

The study  of trophectoderm formation and trophoblast differentiation, particularly  in 

the human system, presents the researcher with a number of obstacles. Apart from the 

ethical issues raised by early human embryo research, TE formation takes place at an 

extreme early time point of embryo formation making it difficult to obtain clinical 

samples. Samples earlier than 6 weeks of gestation are not available (Golos, 

Giakoumopoulos et al. 2010). The available clinical samples from aborted fetuses are 

difficult to come by  (Enders 2000). When available, the information obtained is 

limited  to the later differentiation stages of the trophoblast. Therefore to circumvent 

the above mentioned issues, different  types of model systems have been developed for 

the study of the early differentiation stages of the trophoblast.

1.13.1 Animal models to study trophoblast biology

One of the ways to study  human trophoblast differentiation is to use a model system 

such as the mouse. Even now, the mouse and in some instances the primate system, 

are been used to study the TE formation and the differentiation of the trophoblasts. 

This approach while informative, has an inherent weakness, due to the genetic and 

biochemical differences between the model system (mouse) and human (Carter 

2007) . 

1.13.2 Cell lines to study trophoblast biology

Primary  trophoblast cultures obtained from aborted placenta and a number of 

choriocarcinoma derived cell lines are available to study trophoblast biology  (King, 

Thomas et al. 2000; Shiverick, King et al. 2001). Carcinoma cell lines are easy to 
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maintain and study  as opposed to the primary cell cultures. However, the latter 

provides a more realistic view of the trophoblast biology (Genbacev and Miller 2000) 

as the cancer like properties of cell lines can be a handicap when using them to study 

trophoblast biology (Khoo, Bechberger et al. 1998). Since the primary trophoblast 

cells have been obtained from early pregnancy placenta or term placenta, they belong 

to a time point much later than the initial lineage commitment, making it difficult to 

use them to study TE formation and early TE differentiation.

1.13.3 Embryonic stem cells

The derivation of embryonic stem cells, specially human stem cells, from the inner 

cell mass of the blastocysts has enabled the study of pluripotency and differentiation, 

without using valuable and rare clinical samples. While trophoblast  stem cells - stem 

cells derived from the trophoblast - are available for mouse, they are still not available 

for humans.

Under right conditions, stem cells can be differentiated into the trophoblast lineage, 

creating a model system, which starts from the earliest time points of trophoblast 

differentiation. Human embryonic stem cells, have been shown to spontaneously 

differentiate into the trophoblast lineage (Thomson, Kalishman et al. 1995; Thomson, 

Itskovitz-Eldor et al. 1998). However since this differentiation is not uniform, a 

variety of differentiation protocols, including controlling of gene expression, using 

chemical mediators and imparting physical stresses has been proposed to increase the 

efficiency of the differentiation.
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It has been reported that ES cells can be differentiated along the trophoblast lineage 

by preventing the expression of pluripotency factors. This has been done by ‘active’ 

methods such as knocking down (Niwa, Miyazaki et al. 2000; Velkey and O'Shea 

2003; Hay, Sutherland et al. 2004) or silencing POU5F1, NANOG or SOX2 by 

siRNA (Hough, Clements et al. 2006; Ivanova, Dobrin et al. 2006; Loh, Wu et al. 

2006) or through inducing ES cells to form embryoid bodies (EBs) and then selecting 

for trophoblast like cells (Gerami-Naini, Dovzhenko et al. 2004; Golos, Pollastrini et 

al. 2006) .

When it comes to the study of human trophoblast lineage, using these approaches on 

ES cells are preferred, due to its ability to show extreme early events in TE formation 

and differentiation. Since the differentiation starts from human stem cells, the 

observations obtained can be considered more realistic than what is gained when 

using materiel from different species.

1.13.4 Differentiating human embryonic stem cells to the trophoblast lineage 
through modification of hES media

ES cells grown in the presence of BMP4 differentiates into the trophoblast lineage 

(Xu, Chen et al. 2002; Liu, Dovzhenko et al. 2004). A similar observation has been 

done when BMP4 treatment was done without FGF2 (Schulz, Ezashi et al. 2008) . 

While these differentiation protocols do induce the expression of trophoblast related 

genes and suppress the expression of pluripotency  factors they have certain flaws. For 

example it has been reported that the efficiency of BMP4 differentiation is cell line 

dependent and that certain IVF derived stem cell lines had poor trophoblast 

differentiation and that formation of endoderm / yolk sac like structures was also 

involved (Reubinoff, Pera et al. 2000; Pera, Andrade et al. 2004).
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The BMP4 differentiation of human embryonic stem cells to the trophoblast lineage 

has been improved upon by Dr. Luo Wenlong  under the supervision of Dr. Paul 

Robson (Dr. Luo Wenlong’s thesis - https:// scholarbank.nus.edu.sg/handle/

10635/18805, (Wenlong 2008)). This protocol used BMP4 treatment together with 

SU5402, an FGF receptor inhibitor, to produce a rapid, uniform differentiation of hES 

cells to the trophoblast  lineage. This improved protocol works on multiple hES cell 

lines, and results in a more robust and rapid down-regulation of pluripotency factors 

and an up-regulation of trophoblast markers, compared to the standard BMP4 

treatment (Wenlong 2008). My thesis relies on this particular improved differentiation 

protocol to study the transcriptome of the trophoblast lineage.

1.14 RNA-Sequencing as a tool for high-throughput transcriptomics 

From the early Sanger sequencing methods, to the current high-throughput 

sequencing platforms, DNA sequencing technology has come a long way. The modern 

“Next generation” sequencing machines with their efficient chemistries and 

miniaturized technologies have the capacity to sequence millions of DNA reads per 

run. RNA-Sequencing (RNA-Seq) technology exploits this high-throughput 

sequencing capability, to sequence cDNA fragments from RNA extracts to study 

transcriptomes in great detail. 

An RNA-Seq experiment has three main steps. The wet lab portion is where the RNA 

of the particular sample is extracted and the sequencing libraries generated. Then 

comes the sequencing part which results in a large amount of data describing all the 
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sequences of the libraries. The final step  involves mapping the sequenced “fragments” 

to their original genes to identify the transcriptome.

 The wet lab portion of an RNA-Seq experiment has several major steps. 

1) Extraction of RNA and selecting for the RNA component of interest. The RNA 

extraction method should ensure the extraction of the RNA of interest, for example 

to study small RNA, the method used should be able to efficiently extract  the 

smallRNA available in the sample. 

2) Removal of rRNA. In an extracted RNA sample (unless the extraction was done so 

that only small RNA was extracted), ribosomal RNA would be the major 

component. Since rRNA show limited change in biology, they need to be removed 

to better use the available sequencing depth. For this reason commercial kits which 

deplete rRNA or extract mRNA using their polyA tail are available.

3) Fragmentation - Current sequencing technologies have a limited sequencing length. 

Therefore to accommodate this requirement the RNA (or in some cases the reverse 

transcribed cDNA) needs to be fragmented. Sonication methods as well as 

enzymatic methods are used in fragmentation.

4) Reverse transcribing of RNA. Depending on the protocol used, this step comes 

before or after fragmentation.

5) Adapter ligation. For the sequencing machine to process a particular read, it should 

contain two adapters either side of it (This is so that the reads can be incorporated 

into the specific sequencing chemistry used by the sequencer). In some protocols 

one of the adapters is used as a “barcode” for multiplexing of samples.
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1.14.1 Available sample preparation strategies

Since RNA-Seq technology has been around for some time now, there are different 

protocols available for different samples. Choice of protocol is mainly determined by 

the amount of RNA available and the segment of the transcriptome which is of 

interest. 

If the sample amount is not an issue, then the most common sequencing method is the 

fragment sequencing, which (if ABI sequencers are used) gives strand specific reads. 

There is also another protocol by Nugen (http://www.nugeninc.com/nugen/index.cfm/

products/amplification-systems/ovation-rna-seq-system/), which uses a lesser amount 

of sample, and which does rRNA depletion and sample amplification within the same 

protocol. If the sample amount is really  low there is also a single cell RNA-Seq 

protocol (Tang, Barbacioru et  al. 2010) which takes in a single cell’s worth of RNA 

and amplifies it so that sufficient material is obtained to construct RNA-Seq libraries.
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1.14.2 Applied Biosystems (ABI) SOLiD Sequencing

When we were selecting technologies for RNA-Seq, ABI offered the best sequencing 

depth and fragment length combination. SOLiD technology  provides 50bp reads 

which are most importantly, strand specific, i.e. one can take a sequenced read and not 

only say  which portion of the genome it came from but also say  which strand it 

originated from. In the case of transcriptomics this feature is extremely useful.

SOLiD technology has a different method of “reading” bases when it sequences a 

read compared to other available technologies. Instead of reading one base at a time 

(base space), the SOLiD method reads two bases at the same time and this is done in a 

staggered manner so that each base is read twice. This results in increased accuracy of 

the read and higher mappable reads. However the disadvantage of this is that, 

compared to standard FASTA-like sequence outputs given by other sequencing 

technologies, the SOLiD platform results in sequence data encoded in “color space”, 

where each base pair is represented not by their actual names (e.g. ATGC) but a 

number representing two neighboring bases, determined by each base pair. This adds 

another layer of complexity to the data. As a result there are fewer tools available to 

analyze color space data compared to standard base space data.
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1.15 Results from RNA-Seq compared to traditional methods

Compared with traditional transcriptomics techniques such as real time PCR and 

microarray, RNA-Seq experiments tend to cost more, require a greater effort both 

during sample preparation and data analysis and requires specialized and expensive 

equipment. However despite these drawbacks the quality and depth of information 

provided by an RNA-Seq experiment is far superior to that obtained from any other 

conventional transcriptomics method.

In contrast  to hybridization-based methods such as microarrays, RNA-Seq is a 

sequencing method. Therefore the technique is highly  accurate and sensitive and not 

confounded by  cross-hybridization effects. The technology is now mature enough to 

make available different protocols for different sample amounts (cell lines to 

embryos) which looks at different RNA types (mRNA to smallRNA). 

Furthermore, unlike a microarray or a qPCR experiment where the sequence of the 

gene is critical to measure its expression level, RNA-Seq data is independent of 

known annotations. Due to this, RNA-Seq technology provides information on the 

entire transcriptome including both known and unknown entities. This enables the 

easy identification of new transcripts / genes. In addition, since RNA- Seq data 

contains information on all the exons of the transcripts, accurate expression levels can 

be calculated and also alternative splicing and alternative start events can also be 

studied.

Moreover, depending on the protocol, the RNA-Seq data can be strand specific. This 

means that in addition to the expression level of a particular transcript, its coding 
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strand can also be identified. All the data except the mouse embryo RNA-Seq data is 

strand specific. 

Due to these advantages RNA-Seq is currently  the best tool available for the study  of 

transcriptomes.
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2 Materials and Methods

2.1 Cell culture

Only the cells grown in feeder free conditions were used in the study to prevent the 

samples from being contaminated by mouse embryonic fibroblasts (MEFs). The 

WiCell H1 human embryonic stem cell line (WiCell research institute) was grown on 

conditioned hES media, at 37 ºC, in a humidified atmosphere with 5% CO2 . The cells 

were routinely passaged every 7 days.

2.1.1 Preparation of conditioned human embryonic stem cell (hESC) media

Human embryonic stem cell (hESC) media was prepared by  combining 800 ml of 

DMEM  F12 (Gibco, #11330-032), 200 ml (or 20%) of Knockout serum (Invitrogen 

#10828028), 10 ml of 100 mM L- Glutamine (Gibco, #25030) with 7 !l of 2 - 

mercaptoethanol (Gibco, #21985-023), 10ml of non essential amino acid (Gibco, 

#11140) and 45 !l of 10%  bFGF (Invitrogen, # 13256-029).

A 15 cm cell culture plate was coated with 0.1% gelatin (Stem cell technologies, 

#07903) overnight, and the plate was seeded with 4 million inactivated MEFs in MEF 

media.  

On the second day, the MEF media was replaced with hES media, and from the third 

day to the tenth day the conditioned hES media was collected, and a new volume of 

hES media added daily. Finally the collected conditioned media was filter sterilized 

and 90!l of bFGF added for a final bFGF concentration of 4 ng / ml.
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2.1.2 Passaging cells

First, the plates to which the split cells were to be added, were coated with Matrigel 

(BD, #354234) diluted with knockout DMEM  (Gibco, #10829) to a dilution ratio of 1: 

30. 

During passaging, the cells were first  incubated with a 1 mg / ml solution of type IV 

collagenase (Gibco, #17104019), for 5 - 7 minutes at 37 ºC . After the incubation and 

after ensuring that the edges of the cell colonies appear to be curled, the collagenase 

solution was replaced by hES medium. Then using a sterile 5 ml pipette, the cells 

were gently scraped and the cell suspension was centrifuged (Eppendorf, #5810R) at 

800 rpm, for 1 minute at room temperature. After the centrifugation step the 

supernatant was removed and the cells were resuspended in conditioned media. The 

suspension was gently pipetted up and down to break the large cell clumps and the 

cells were added to the Matrigel coated plates.

2.1.3 Treatment of cells

SU5402 (Calbiochem, #572630) was dissolved in DMSO ( Sigma, #D2650) before 

diluting in conditioned hES media for a final concentration of 20 !M and BMP4 (R & 

D Systems, # 314-BP /CF) was diluted in DPBS (Gibco, #14190 ) to a concentration 

of 100 !g / ml before being diluted to a concentration of 100 ng / ml. The media 

containing 20 !M of SU5402 and 100 ng / ml of BMP4 was added to cells during 

treatment and the media was changed daily.
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2.1.4 RNA extraction

Extraction of RNA was done by using a combination of standard TRIzol (Invitrogen, 

#15596-018)  method and the RNA extraction using RNAeasy mini kit (Qiagen, 

#74106). Please note that unless otherwise stated the centrifugation steps and 

incubation steps were done at room temperature.

Each 15cm dish containing H1 hESC colonies were first washed twice with 10ml of 

PBS (Gibco, 14190 - 144 ) followed by  the addition of 6 ml TRIzol. After incubating 

for 5min with TRIzol, the lysed cells were mixed well by pipetting up and down and 

divided, 1 ml each, into 1.5 ml micro-centrifuge tubes (Eppendorf, MCT-175-C). For 

each tube (containing 1 ml of TRIzol), 200 !l of chloroform was added and incubated 

for 3 minutes. This was followed by a centrifugation step at  4 ºC for 15 minutes at 

12,000 rpm (Eppendorf, #5415R). After the centrifugation the aqueous layer was 

carefully  placed into another 1.5 ml micro-centrifuge tube and 500 !l of isopropanol 

was added to it. This was incubated for 10 minutes and centrifuged at 12,000 rpm for 

4 ºC for 10 minutes. The supernatant was discarded and the remaining pellet was 

washed by adding 1 ml of 75% ethanol followed by a centrifugation step at 10,000 

rpm for 5 minutes at  4ºC. The remaining washed pellet was dissolved in 100 !l of 

RNase free water (Ambion, #AM9937) and the Qiagen mini RNAeasy kit (Qiagen, # 

74106) was used to process the resulting RNA solution.

350 !l of Buffer RLT (with 1%, 2- mercaptoethanol (Gibco, # 21985 - 023)) was 

added to the 100 !l RNA solution followed by 250 !l of 100% ethanol. The resulting 

solution was mixed by gently  pipetting up and down and then applied to a RNeasy 

mini column. This was then centrifuged for 30 seconds at 12,000 rpm and the flow-
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through was discarded. After changing the collection tube, 500 !l of buffer RPE was 

added to the spin column and centrifuged for 30 seconds at 12,000 rpm and the flow-

through discarded. Then the spin column was again centrifuged for 1 minute at 12,000 

rpm. The RNeasy mini column was placed in a new sterile 1.5 ml micro-centrifuge 

tube. The RNA was eluted out by adding 20 !l of RNase free water directly  onto the 

filter membrane of the spin column, incubating for 1min and centrifuging for 12,000 

rpm for 1 minute. This step  was repeated once to elute the remaining RNA from the 

membrane. 

2.1.5 Checking RNA concentration, purity and integrity

RNA concentration and purity was measured by the NanoDrop spectrophotometer 

(Thermoscientific, #ND-1000). The NanoDrop uses absorbance at 260nm wavelength 

to predict the RNA concentration based on the Beer - Lambert law. The 260 / 280 

absorbance ratio was used as a measure of RNA purity  and a value above 2.0 was 

considered to be pure.

The RNA integrity  was evaluated by performing a Agilent RNA 6000 pico assay 

(#5067-1513) on the Agilent bioanalyzer. The RNA integrity number (RIN) gives the 

integrity  of the RNA sample in a scale of 0 - 10 where 10 is the highest. All samples 

used had a RIN value of more than 9.

2.1.6 Poly (A) RNA purification

The Poly (A) Purist MAG kit (Ambion,  #AM1922) was used for extracting RNA 

transcripts with a poly A tail from the total RNA extract. The poly (A) purist mag kit  
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uses oligo (dT) magnetic beads and a magnet to capture RNA transcripts with a poly 

A tail. The capture process involves placing the micro-centrifuge tube with the 

sample / wash solution in the holder of the magnet for 2 minutes letting the magnetic 

beads attach to the surface closest to the magnet and carefully  removing the liquid 

portion. 100 !g of total RNA was used for the mRNA extraction for each sample. 

The total RNA concentration was adjusted to 600 !g / ml by adding RNase free water 

and to this diluted RNA solution,  an equal volume of  2X binding buffer was added 

and mixed. 10 !l of oligo (dT) beads were used per 100 !g of RNA. The beads were 

first washed twice with wash solution 1 prior to use. The RNA in binding buffer was 

then mixed with the beads and the mixture was incubated for 5 minutes at 70 ºC. After 

this it was incubated for 60 minutes on a shaker ( Labnet, #S2030 - RC - 220) at room 

temperature, with gentle rocking. The beads were captured and washed twice with 

wash solution 1 and wash solution 2, respectively. The volume of wash solutions used 

was equal to the volume of the initial diluted total RNA. The poly (A) RNA was 

eluted from the beads by two 200 !l washes of the RNA storage solution heated to 

75ºC. The RNA was then precipitated using an incubation step of 1 hour at -80ºC with 

0.1 volumes of 5M ammonium acetate, 1 !l Glycogen and 1.1 ml of 100% ethanol. 

After incubation the poly (A) RNA pellet was isolated by a centrifugation step of 30 

minutes at 12,000 g  at  4ºC. The pellet was then washed with 1ml of 70% ethanol 

followed by a centrifugation step for 10 minutes at  4ºC . Finally the poly  (A) RNA 

pellet was resuspended in 30 !l of RNase free water.

The concentration and the efficiency of poly  (A) extraction was measured using a 

bioanalyzer trace.
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2.1.7 Whole transcriptome library preparation for SOLiD sequencing

The whole transcriptome library preparation consisted of fragmenting the poly (A) 

RNA, adapter ligation, reverse transcription, size selection and amplification. For 

these steps the contents of the ABI whole transcriptome library preparation kit (ABI, 

#4425680 ) was used.

2.1.7.1 Fragmentation

750 ng of poly (A) RNA diluted in 8 !l of RNase free water was used for 

fragmentation. 1 !l each of 10X RNase III reaction buffer and RNase III was added to 

the  diluted poly (A) RNA solution. It  was mixed by gently pipetting up  and down and 

incubated for 10 minutes at 37 ºC in a thermocycler (BioRad, tetrad 2). Immediately 

after the incubation 90 !l of nuclease free water was added to the reaction mix.

Following the fragmentation step  an RNA cleanup step was performed using the 

Ribominus concentration module (Invitrogen, #K155005). 100 !l of binding buffer 

L3 and 250 !l of 100% ethanol was added to the fragmentation reaction mix with 

water. The mixture was placed in a spin column and centrifuged for 1 minute at 

12,000 g. After discarding the flow-through, 500 !l of buffer W5 was added to the 

spin column and it was centrifuged for 1 minute followed by  another 2 minute 

centrifugation, after removing the flow-through. To elute the RNA, the spin column 

was then placed on a recovery tube. The elution was done by two 20 !l wash steps 

using RNase free water, an incubation step of 1 minute,  and a centrifugation of 1 min 

at 12,000 g.
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The Nanodrop spectrophotometer was used to quantify the resulting fragmented RNA 

and the Bioanalyzer was used to measure the size distribution.

2.1.7.2 Hybridization

75 ng of fragmented RNA in 3 !l of RNase free water, 2 !l of adapter mix A and 3 !l 

of the hybridization solution was mixed on ice. The resulting mixture was incubated 

65 ºC for 10 minutes and 16 ºC for 5 minutes, using a thermocycler with a heated lit. 

After the two incubation steps 10 !l of 2X ligation buffer and 2 !l of the ligation 

enzyme mix was added and the resulting ligation mix was incubated for 16 hours at 

16 ºC on a thermocycler with the heated lid turned off.

2.1.7.3 Reverse transcription

The reverse transcription master mixture (per sample), was prepared by  mixing 

together 13 !l of Nuclease water, 4 !l of 10X RT buffer, 2 !l of 2.5mM dNTP mix 

and 1 !l of array  script  reverse transcriptase enzyme, on ice. This RT mix was added 

to the 20 !l ligation mix after the 16 hour incubation. After gently mixing, the reverse 

transcription was carried out in a thermocycler at  42 ºC with a heated lid for 30 

minutes. 

2.1.7.4 cDNA purification

For cDNA purification the Qiagen PCR purification kit was used (cat #28106). The 

centrifugation steps were carried out at room temperature.
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The resulting cDNA from the reverse transcription was transferred to a 1.5ml micro-

centrifuge tube and was mixed with 60 !l of RNase free water and 500 !l of Buffer 

PB. The resulting 600 !l solution was added to a mini elute column and centrifuged 

for 13,000 g for 1 minute. The followthrough was discarded and the spin column was 

placed on a new centrifuge tube followed by another centrifugation step of 1 minute 

at 13,000 g. The spin column was placed on another clean micro-centrifuge tube and 

10 !l of buffer EB was added to the spin membrane. After an incubation of 1 minute 

the purified cDNA was extracted by a centrifugation step of 13,000 g for 1 min.

2.1.7.5 Size selection

The size selection of the cDNA is done using a gel purification step which uses Novel 

reagents and NuPage gels (Invitrogen, # EC6865BOX).

5 !l of purified cDNA was run on a Novex 6% TBE-Uread gel (using 1X TBE 

running buffer on the Xcell surelock mini-cell electrophoresis system (Invitrogen, 

EI0001)). Once the gel has run for 15 minutes it was stained with SYBR gold nucleic 

acid stain (Invitrogen, #S11494) and the gel band corresponding to the range 100 - 

200bp was excised and cut into four equal sized vertical bands.

2.1.7.6 cDNA amplification

The PCR mastermix was made by adding 171.6 !l of Nuclease free water, 22 !l of 

10X PCR buffer, 4.4 !l of SOLiD PCR primer 1, 17.6 !l of 2.5mM  dNTP and 4.4 !l 

of Amplitaq DNA polymerase, per sample. Two of the gel pieces cut in the above step 

were individually put on 2 PCR tubes and 100 !l of the PCR master mix was added to 

each. The program for the PCR was set as follows. A holding step of 95 ºC for 5 
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minutes. 15 cycles of  of 95ºC for 30 seconds, 62 ºC for 30 seconds and 72 ºC for 30 

seconds. And a final holding step of 72 ºC for 7 minutes.

2.1.7.7 Purification of the amplified cDNA

The Purelink PCR micro kit (Invitrogen, #A11199 ) was used for the purification of 

the amplified cDNA. All centrifugation steps were done at room temperature.

The PCR reaction solution in both of the tubes were pooled into a 1.5ml 

microcentrifuge tube and mixed with 800 !l of binding buffer B2. This was added to 

a Purelink column, centrifuged for 1 min at 10,000 g and flow through discarded. The 

centrifugation step  was repeated and then the purified cDNA was eluted with two 

washes of 10 !l of elution buffer by incubating for 1 minute and spinning for 14,000 g 

for 1 minute.

A bioanalyzer trace was obtained for the finished DNA and the sample was submitted 

for sequencing.
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2.2 smallRNA RNA-Seq

2.2.1 Extraction of smallRNA enriched RNA

The mirVana miRNA Isolation kit (Ambion, # AM1560) was used for the extraction 

of RNA, enriched with small RNA.  This kit allows the extraction of RNA less than 

200 nucleotides. The treated cells and the control cells were lysed with 600 !l of 

Lysis / Binding buffer, inside the culture dish and the cell lysate was collected. 1/10 

volume of miRNA homogenate additive was added to the lysate and it was incubated 

for 10min on ice. An equal volume of Acid-Phenol:Chloroform was  then added to the 

mixture, and it was centrifuged at 10,000 g for 5 minutes. After the centrifugation the 

upper (aqueous) phase was carefully transferred to a new tube and mixed with 1/3 

volumes of 100% ethanol. The mix was then transferred to a filter cartridge and after 

a centrifugation step  (10,000g,~15sec) the filtrate was collected. A 2/3 volume of 

100% ethanol was added to the filtrate, and it was again filtered using a filter 

cartridge. The flow through was discarded and the filter was washed with 700 !l of 

miRNA wash Solution 1 followed by two washes of 500 !l of wash solution. The 

RNA enriched with small RNA was then eluted with 100!l of heated (95ºC) nuclease 

free water. 

The RNA integrity and the size distribution of the RNA was evaluated by using the 

Agilient bioanalyzer.

2.2.2 Library preparation

For the library preparation for smallRNA RNA - Seq, the SOLiD Total RNA-Seq kit 

for small RNA libraries protocol (ABI, # 4452439)  was used. This protocol is in 

principal similar to the standard RNA-Seq library preparation, but excludes the 
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enzymatic fragmentation step. 200ng total RNA enriched for smallRNA was directly 

hybridized with SOLiD adaptors and the library generation was done as per the above 

stated protocol. The  library generation steps are omitted here to avoid repetition with 

the standard RNA-Seq library preparation section.

2.2.3 RNA-Seq library generation system with the Ovation system

The standard ABI RNA-Seq library preparation protocol requires a minimum of 

100ng -  200ng of rRNA depleted or poly A RNA. This RNA requirement becomes an 

issue when limited samples such as mouse embryos are concerned. Therefore to 

analyze the transcriptome of the mouse embryos, which yield very  little RNA, the 

Ovation RNA-Seq system by  Nugen (Nugen, # 7100-08) was used. The Ovation kit 

can amplify RNA (in a linear manner) starting from as little as 500 pg and produce 

around 3!g of RNA. Apart from the impressive amplification the other advantage of 

this method is that its amplification does not solely depend on the poly  A tail of the 

transcripts. It uses random priming for amplification, where the primers are 

specifically designed to bind to all RNA except ribosomal RNA. The amplified 

product from the Ovation kit was further processed using the ABI fragment library 

preparation protocol to produce the libraries.

2.2.4 RNA extraction

RNA extraction of mouse embryos was done using the pico pure RNA extraction kit.
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2.2.5 RNA amplification by the Nugen Ovation kit

2.2.5.1 First strand cDNA synthesis

500 pg of RNA in a 5!l solution was mixed,on ice, with 2!l of A1 solution, 2.5!l A2 

solution and 0.5!l A3 solution. The mix was then put in a thermocycler and the 

following program was run - (4ºC 1 min, 25ºC 10min, 42ºC 10min, 70ºC 15min, 4ºC 

hold ).

2.2.5.2 Second strand cDNA synthesis

9.7!l of B1 solution and 0.3!l of B2 solution was added to the products of the first 

strand cDNA synthesis step. It was then placed in a thermocycler and the following 

program was run (4ºC 1 min, 25ºC 10min, 50ºC 10min, 80ºC 20min, 4ºC hold ).

2.2.5.3 Purification of double stranded cDNA

RNAClean beads were used for this step. The beads were first resuspended and 

allowed to return to room temperature. 32!l of the bead mix was added to the 

products of the previous step and incubated for 10 min at room temperature. The 

beads were then aggregated using a magnet and 42!l of the cleared buffer was 

removed. Then the beads were washed three times  with 200!l 70% ethanol and air-

dried for 20 min. 

2.2.5.4 SPIA Amplification

The SPIA mastermix was prepared by mixing on ice 20!l of C2 solution, 10!l of C1 

solution and 10!l C3 solution. This was added to the air dried RNAClean beads 
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containing the cDNA. The mix was then put in a thermocycler and the following 

program was run (4ºC 1 min, 47ºC 60min, 95ºC 5min, 4ºC hold). 

2.2.5.5 Post SPIA Modification

The RNAClean beads were aggregated using a magnet and the supernatant (35!l) was 

put into a new tube.  To the supernatant 5!l of E1 primer was added and the mix was 

incubated for 3 min at 98ºC in a thermocycler. After the incubation, 5!l of E2 solution 

and 5!l of E1 was added and the resulting mix was put in the thermocycler and the 

following program was run (4ºC 1 min, 30ºC 10min, 42ºC 15min, 75ºC 10min, 4ºC 

hold). This produces the final amplified cDNA. The cDNA was purified using 

QIAquick PCR purification kit ( Qiagen, # 28104).

2.2.5.6 Library preparation

The SOLiD fragment library kit (ABI, #S3100101) was used to prepare the small 

RNA-Seq libraries using the amplified cDNA. 
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2.3 Bioinformatic analysis of RNA-Seq

During an RNA-Sequencing run, the sequencer records the nucleotide sequence of all 

the sequenced reads. In order to make biologically relevant interpretations these 

sequenced reads must be first mapped to the genome to identify the region it 

originated from, and then the reads should be counted so that the expression level of 

the particular region they map  to, can be measured. For these above mentioned steps 

Bioscope software (version 1, ABI) was used.

2.3.1 Alignment / mapping

Bioscope uses the software - mapreads (also known as, SOLiD system colour space 

mapping tool)(http://solidsoftwaretools.com/gf/project/mapreads/) for the alignment 

of reads to the genome. Mapreads uses a seed and match strategy  for mapping. In this 

approach, the software first tries to find an initial alignment of 25 bases between the 

read and the genome (the seed) with a maximum of 2 mismatches. Once it finds such 

a place the alignment is extended to the entire length of the read, and an alignment 

score is calculated by giving a score of +1 for each correctly aligned base and -2 for 

each misaligned base. During alignment the mapreads software looks at up to ten 

positions each read aligns to and only considers a read as uniquely aligned if the read 

maps to only one position or if the difference in score between the best alignment and 

the next best is more than 4. During the mapping step  the reads are mapped to the 

filter sequences (described below), splice junctions and the genome in parallel. 
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2.3.2 Mapping to filter sequences

If the reads which originate from the repeat sequences of the genome is used for the 

genomic alignment they can cause unnecessary computational overhead and incorrect 

results, as they would match to multiple locations of the genome with virtually the 

same alignment score. To counter this problem, the reads are mapped to a database of 

known repeat sequences which in effect filter them out and prevent them from being 

mapped to the genome. In our case the repeat database contained ribosomal 

sequences, tRNA sequences and other common repeat sequences. By looking at the 

total number of reads mapping to rRNA sequences, the efficiency  of the rRNA 

removal method can be validated. 

2.3.3 Mapping to the reference genome

This is the single most computationally intensive and most time consuming process of 

the RNA-Seq data analysis. The data described here were aligned to the hg18 build of 

the human genome. This step enables the identification of the genomic regions which 

are being transcribed, and since the alignment is done to the whole genome even the 

unannotated but transcribed regions can be identified. 

2.3.4 Mapping to the splice junctions

The seed and extension method used by  mapreads works well for a majority of reads, 

which originate from exon bodies. However the reads which originate from splice 

junctions do not get mapped to the genome due to the presence of introns in the 

genome which in this case is the reference sequence. To counter this problem 

Bioscope tries to map the reads to a database of all possible exon exon junctions 
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within a given RefSeq gene. This step  manages to recover the splice junction reads. 

Normally splice junction reads are much less in number as compared to the number of 

reads which mapped to their corresponding exons. This is understandable as the splice 

junction reads represent only a small portion of the entire footprint of the transcript. 

However they are important in identifying and quantifying the alternative splicing 

events of genes, as they act as markers of linkages between two exons.

2.3.5 Counting known transcripts

The counting step quantifies the reads which map to a particular transcript or a gene. 

It should be noted that the final counts file shows read counts per exon. Post 

processing is needed to obtain the total number of reads which map to a particular 

exon or a gene. During counting the reads which get  aligned to the genome get 

counted if they have less than 3 bases outside the given exon. As for reads which get 

mapped to splice junctions, they contribute to the count of the exon if it starts or ends 

at the boundary of the exon. 

2.3.6 File formats

Bioscope software produces several files in several formats which contain the RNA-

Seq data.

Counts file : This is a tab delimited text file which contains the total number of reads 

mapping to individual exons of RefSeq annotation.

wig file format: These files contains data on the expression level of each base in the 

genome. These can be uploaded to the UCSC genome browser for visualizing the 

data.
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GTF file format: This contains the sequence and the mapping location of each and 

every read which  align to the genome.

Filter files: Contains statistics on the number of reads which align to the repeat 

sequences.

2.4 Calculating expression levels

The simplest measure of the  expression level of a particular gene is the total number 

of reads which align to it. However the raw read count is not a good indicator of 

expression level as it  is dependent on  the length of the sequence as well as the 

sequencing depth.  (i.e. longer the transcript, the higher the total read count, the higher 

the total sequenced reads, the higher the read count). The RPKM value (Mortazavi, 

Williams et al. 2008) was introduced to nullify the effects of these two factors on the 

expression level of a particular transcript or a gene. The RPKM value was calculated 

by normalizing the total number of reads which fall on all the exons of the gene, with 

the length of all its exons and the sequencing depth. Total mapped reads for the entire 

genome was used as a representative value for the sequencing depth. 

RPKM value for a particular gene was calculated using the following equation:

= [ "(read counts of exons) /{ " (exon length)/1000 X total mapped reads} ] X 

1000000

2.4.1 Microarray Data

The Illumine Single Color Human Ref-8 Version 2 microarray data was first imported 

into GenomeStudio (Illumine) for background correction. Then the data was imported 

into GeneSpring GX (Version 11.0, Agilent Technologies Inc.) where it was 
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normalized (Shift to 75 percentile, Baseline transformation - median of all samples) 

and analyzed.

2.4.2 Comparing expression levels of RNA-Seq data and microarray data

To compare the expression levels obtained by RNA-Seq and microarray, the fold 

change of all the RefSeq genes (day 0 vs day 8 of treatment) were calculated using 

RPKM data values for RNA-Seq and normalized probe intensity values for 

microarray  data. To keep the fold change values accurate only genes showing RPKM 

values of more than one and probe intensity values of more than 20 at both time 

points were used in the comparison. The fold changes were converted into signal log 

ratios (SLRs) by  converting the fold change into its log2 value and the resulting SLR 

values of RNA-Seq and microarray  data were plotted against each other and the 

coefficient of determination (R2) value was calculated for the two datasets.

2.4.3 Gene ontology analysis

Gene ontology analysis was performed using the Panther classification system (http://

www.pantherdb.org/, genome biology article). The geneIDs were uploaded and the 

enriched human gene ontology terms were extracted.

2.4.4 Hierarchical clustering

To gauge the differentiation to the trophoblast lineage brought about by the treatment, 

the microarray expression levels of the treated samples were compared against a 

compilation of published microarray data of normal tissues and cell lines (Ge, 

Yamamoto et al. 2005; Burleigh, Kendziorski et al. 2007; Bilban, Tauber et al. 2010). 
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All the data were normalized using default parameters using Genespring GX, and 

exported into Genesis (Sturn, Quackenbush et al. 2002). There the data was used to 

perform a Hierarchical Clustering using Pearson correlation.
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2.5 Interpreting UCSC browser views

The main usable dataset  of any RNA-Seq experiment includes the locations of the 

genome where each and every sequenced read map to. In this thesis the UCSC 

genome browser (www.genome.ucsc.edu) (Kent, Sugnet et al. 2002) was used to 

visualize the data. The UCSC genome browser has the capacity to take in the large 

RNA-Seq dataset and display it as peaks, which denote the expression of a particular 

region. The USCS browser is also capable of showing existing annotation data 

(exons, genes, ESTs, microRNAs etc.) together with the above mentioned RNA-Seq 

peaks. 

2.5.1 The organization of  data in the UCSC genome browser

UCSC genome browser displays data and annotation information based on the 

genomic coordinates. Each browser view, which is the image the user sees, is 

composed of 1) a data section, where the user provided data is displayed - in this case 

RNA-Seq peaks and 2) an annotation section which comes built into the browser, 

where the user can select the information to be displayed -  such as RefSeq genes. 

Both data and annotations are organized as tracks which are “strips” of either data or 

annotation whose appearance  and the order can be customized by  the user (see Figure 

2.1).
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Figure 2.1: Organization of data and annotation in the UCSC genome browser. 
UCSC genome browser displays data based on the genomic co-ordinates. Annotations 
(shown in blue) for a particular genomic region and the RNA-Seq peaks (shown in 
red) corresponding to the region are overlaid on-top of each other as “tracks”. The 
user has the ability to upload custom data (in this case the RNA-Seq data) and also to 
select which annotation types are selected.

2.5.2 A typical view of the UCSC browser

The RNA-Seq data on the trophoblast differentiation (mRNA and small RNA) is 

strand specific which means that by looking at  the alignment of a particular read the 

location as well as the strand which it originates from can be identified. During 

visualization of RNA-Seq data using the UCSC genome browser the strand specificity 

is represented by two tracks (one for each strand) per sample.

Figure 2.2 describes a typical view of the UCSC browser loaded with RNA-Seq data.

RNA-Seq data tracks

USCS annotation tracks

Day 0 peaks

Day 2 peaks

Day 4 peaks

Day 8 peaks

Day 6 peaks

UCSC known genes track

RefSeq track

Human ESTs track

Conservation

A typical UCSC browser view contains 
two major sections.
1) A data track section for user’s data  - 
in this case showing RNA-Seq read data
2) Annotation data from UCSC and 
other databases

The data and annotation section can be 
overlaid with different datasets known 
as tracks. In this case the view includes 
all time points. 

In the case of RNA-Seq, due to the 
strand specific nature of the data, each 
sample track is subdivided into positive 
strand and negative strand.
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The summary of peaks aligned to the region. The 
peak height for each base shows the number of 
reads mapping to  that particular location. Higher 
the peak height more the expression.

Since this particular gene is expressed in the 
negative strand (see below) there are no reads 
mapping to the positive strands, and the peaks are 
only found in the negative strand.

In this case data relating to only one sample is 
shown. When a comparison of peaks / expression 
levels between samples is required , multiple data 
tracks can be stacked on top of each other.

Standard UCSC annotation notation. The thick blue 
box shows the presence of an exon and the thin line 
joining them shows an intron.

If a particular gene has multiple different transcripts 
they are shown in a separate line. In this case based 
on RefSeq annotation this gene has 9 different 
transcripts.

If the intronic lines show arrows pointing from left 
to right then the gene is present in the positive 
strand and vice versa.

In intergenic regions this annotation is empty. 

RNA-Seq data tracks
Here the reads 

aligning to both 
positive and negative 
stands of one sample 

is shown.

Annotation data 
tracks

Here only two 
tracks are shown. 
First is the UCSC 
gene annotation 

track and the second 
is the RefSeq 

annotation track.

UCSC known genes track

RefSeq annotation track

RNA-Seq negative strand

RNA-Seq positive strand

Figure 2.2: Visualizing RNA-Seq data using UCSC genome browser
UCSC browser provides co-ordinate specific information of the genome onto which 
user data (in this case data from RNA-Seq ) can be overlaid. The panel on the left 
shows the read data of the entire chromosome 10, while the panel on the right shows a 
small enlarged view marked by  the black rectangle. For clarity  positive and negative 
stand tracks from only one sample are shown.

UCSC gene annotation 
track

RefSeq annotation 
track

Reads aligned to the 
positive strand

Reads aligned to the 
negative strand

50



3.0 Results 1
Programatic workflows designed for the 

analysis of RNA-Seq data

The function of Bioscope software from ABI, which is provided together with the 

sequencing platform, is primarily to align sequence reads to the reference genome. 

Thus to perform analysis of the RNA-Seq dataset beyond expression levels, I 

developed a set of programmatic workflows. These workflows, coded using the 

python programming language (www.python.org), were designed to use the data / 

files produced by Bioscope as input and produce results files on various aspects of 

transcriptome dynamics.

Over the course of this thesis project, programmatic workflows were designed for the 

following tasks.

• Identification of genes which show changes in their splicing profile during 

treatment

• Identification of genes with exons which show mutually exclusive expression

• Identification of novel transcribed regions

• Identification of novel transcripts

• Identification of extensions of annotation

All the workflows described here, when combined, make up a suite of software 

utilities which enables the rapid identification of interesting transcriptomics 

phenomena from an RNA-Seq dataset. Since these were developed during the course 

of the thesis and used for the analysis of data presented here, the workflows are 

shown in the results section.
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3.1 Workflow for identifying genes for which the splicing pattern is 
altered during treatment

This workflow identifies genes which undergo alternative splicing events of a RNA-

Seq dataset. Apart from altering the expression level of a gene, a treatment can also 

cause a change in its splicing profile (i.e. induce or suppress the expression of 

different isoforms of the same gene). In cases where alternative splicing takes place, 

the overall expression of the gene might not change significantly, even though a 

considerable change in function could occur. 

A straightforward approach to identifying alternative splicing events from an RNA-

Seq experiment would be to use junction reads (reads which originate from the exon - 

exon boundary). This approach works well provided that there is a significant amount 

of junction reads available in the dataset. Unfortunately in the case of most RNA-Seq 

datasets this is not so, as the commonly used fragment library  protocol produces 

fragments of 50bp and this short  sequencing length reduces the likelihood of a 

junction read being mapped to the genome. This reduces the number of junction reads 

discovered.

In order to compensate for the lack of junction reads, this workflow was designed to 

identify splicing events purely  based on individual exon counts and not on junction 

reads. Despite not using split reads, with the correct settings, this workflow produces 

good quality predictions with a minimum number of false positives.

A change in the number of reads mapping to a particular exon during a time course, 

can be due to either a change in the expression level of the gene or due to a splicing 
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event or both. Thus when trying to identify  genes which show an altered splicing 

profile it  is vital to negate the effects of changes in expression levels. In the workflow 

this is done by comparing the expression level of an exon relative to its neighbors. 

The assumption here is that while expression level of the gene is proportional to the 

read counts of its individual exon, a change in gene expression should not change the 

proportion of contribution made by individual exons to the gene expression level if no 

splicing event takes place. For example, in the case of the three exons shown in 

Figure 3.1 - left panel, when the splicing profile remains unchanged, each has a read 

count of 100 which goes down to 50 during treatment. Even though their expression 

levels change, the ratio of expression levels remains constant (100:100:100 = 1:1:1 = 

50:50:50) because the splicing profile remains the same. However when there is a 

change in splicing the ratio cannot be maintained, as splicing selectively  increases or 

decreases the read counts of a exon (100:100:100 vs 50:25:50). By detecting this 

phenomenon the workflow can predict the alteration of the splicing profile of a gene.
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Figure 3.1: The workflow for identifying genes whose splicing profile is altered 
during treatment.
If there is a change in the splice profile it would be seen as a marked increase or 
decrease in read counts of a particular exon with respect to its neighboring exons. 
This method of normalization negates the effect of changes in read count due to up  or 
down-regulation of the gene.
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3.2 Workflow for identifying genes which show mutually exclusive 
exon patterns

This workflow is an extension of the (above mentioned) method for detecting genes 

which show changes in their splicing profile during a treatment. Here the expression 

pattern (up-regulation or down-regulation) of individual exons belonging to a 

particular gene is monitored during treatment to identify a pair or more of exons 

which show an opposite regulation pattern. For example in the case of Figure 3.2, 

genes with the expression pattern on the left will be discarded as all of them show a 

similar type of regulation. However genes showing an expression pattern on the right 

will be identified as having mutual exclusively expressed exons as it  has one down-

regulated and one up-regulated exon.

Figure 3.2: Workflow for the identification of genes with mutually exclusive 
exons. 
The workflow looks for a pair or more exons which are regulated in an opposing 
manner in two time points.
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3.3 Workflow for the Detection of novel transcribed regions (NTRs)

Novel transcribed regions (NTRs) are defined as unannotated regions which are 

transcribed, as shown by RNA-Seq data.  Throughout this study, RefSeq annotations 

were used to identify NTRs, although it should be mentioned that the NTR detection 

workflow was designed to take in any annotation. The identified NTRs could be new 

exons of known transcripts, extensions of known genes or totally new transcripts.

The first step of the NTR detection process involves identifying unannotated regions 

(i.e gaps between annotated regions) of the genome. In the case of RefSeq annotation 

these gaps include introns as well as regions between gene footprints. In the next 

stage, regions identified as unannotated are probed, to find locations which are shown 

to be expressed by having reads mapping to it. These regions are identified as NTRs 

provided that they satisfy  user provided expression criteria which includes the 

minimum height of the peak and the read count of the NTR peak.

Figure 3.3: Novel transcribed regions (NTRs) identification workflow.
NTRs are identified by finding expressed regions in un annotated regions. 
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3.4 Workflow for the detection of novel transcripts using NTR data

Identification of novel transcripts is done by clustering the novel transcribed regions 

based on the distance between them. The premise is that if there is a series of novel 

transcribed regions with close proximity  to each other then there is a very good 

likelihood that they belong to the same transcript (NTRs acting as exons of the new 

transcript). While NTRs are dispersed throughout the genome and can be found in 

intronic regions, close to known genes and far away from genes, the NTRs which are 

important in identifying novel genes should ideally exist as a cluster of peaks located 

a considerable distance away from known genes. 

Thus the transcript identification workflow first  filters out NTR regions which lie 

close to known exon and gene footprints. In the first pass it  filters out NTRs which 

fall within 25 nucleotides before and after an exon boundary. NTRs filtered at this 

step are used to redefine the known exon boundary based on expression data. Then in 

the second pass it  removes NTRs which fall within 10,000 nucleotides before and 

after a known gene boundary. The NTRs removed here could potentially be novel 

exons of known genes. Resulting NTRs are used for novel transcript identification. A 

set of NTRs are recognized as part of a novel transcript if they are within 10,000 

nucleotides of each other. Once the potentially novel genes are identified they are 

grouped based on whether they are expressed at all time points, a few or at only one.
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3.5 Workflow for the identification of Extended exon footprints

RNA-Seq data, when aligned to the entire genome, is not dependent on existing 

annotation. While in most  cases the existing RefSeq annotation matches with the 

footprints of the expressed regions as obtained by  RNA-Seq, there are some striking 

examples where expression occurred beyond the existing annotation. These 

‘extensions’ of expression beyond RefSeq annotation, were seen in exons, 3’ UTR and 

5 ‘UTR regions. A workflow was designed to identify  regions where there is a 

significant difference between RNA-Seq data and existing annotation.

To identify  extensions in ordinary  exons (non UTR exons), the workflow first 

identifies exon boundaries from RefSeq and extends the exon footprint until it covers 

all the expressed bases on either side of it. This process essentially  corrects the exon 

annotation, based on the RNA-Seq data.

To identify extensions of the 3’ and 5’ UTR, the workflow starts at the end of the UTR 

and tries to extend the footprint using the expressed regions. Since most UTRs 

contain regions where mapping  efficiency  is low, the workflow allows the extended 

region to have gaps of less than 100 base pairs.

Figure 3.4: The workflow for the identification of exon extensions.
The extensions are identified by comparing RNA-Seq data and RefSeq data.
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3.6 Workflow for the discovery of expressed repeat regions

Repeat regions usually consist  of long interspersed nuclear elements (LINEs), short 

interspersed nuclear elements (SINEs), long terminal repeat elements (LTRs), DNA 

repeat elements, satellite repeats and RNA repeats.

Bioscope software automatically  does basic filtering of some repeat regions during 

alignment. However the filter process is not extensive and, based on the unique 

alignment, it seems that a significant proportion of repeat regions do show expression. 

Here the main interest was to identify expressed repeat regions which did not have 

any overlap  with RefSeq annotations. Thus during this workflow the repeat regions 

(which were downloaded from UCSC repeat masker track) that  did not have an 

overlap with RefSeq genes were first identified. Subsequently the reads which map to 

these individual regions were counted.
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3.7 Workflow for the identification of novel splice sites

As mentioned earlier, the efficiency of junction reads mapping is low in the case of 

50bp fragment RNA-Seq. While this reduces its effectivity in identifying alternative 

splicing events, these can be used to identify un-annotated exon - exon junctions (i.e.. 

novel splicing between known RefSeq exons). The inherent flaw in this method is that 

it only  picks up novel exon junctions of highly expressed transcripts as they  have the 

highest chance of generating a significant number of junction reads.

To identify novel junctions, the novel junction reads identified during alignment are 

filtered to obtain only the reads which are of best quality and align perfectly to the 

junction. These reads are then grouped based on the gene they belong to.

Figure 3.5 : Novel junction identification workflow 
The workflow for identifying novel splice sites uses the Bioscope junction reads 
which are conveniently labelled to be either known (from a known splice site) or 
putative (unknown splice site). To identify reliable splice sites the junction reads are 
first filtered to remove any potentially mis - aligned reads. Then the filtered putative 
junction reads are used to identify the corresponding exons connected by  the junction, 
thereby defining novel splice sites.
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3.8 Workflow for the identification of novel microRNA from 
smallRNA RNA-Seq

From a theoretical point of view, the smallRNA-Seq experiment should be able to 

capture all the smallRNA expression events that takes place during the experiment. 

By using the novel transcribed region (NTR) detection workflow described above, all 

the potentially novel small RNA in the transcriptome can be identified. Looking at the 

data, as shown in the second results section, most of the novel smallRNA turn out to 

be within the size range of mature microRNAs. Therefore a workflow was developed 

to identify novel microRNA from small RNA-Seq data.

In this workflow (Figure 3.6), the unique properties of the microRNA stem loop 

structure was used to confirm whether an NTR was a microRNA. In this workflow, an 

NTR discovery was done using the smallRNA sample, and then the footprint  of the 

NTR was expanded to encompass the sequence of the stem loop  structure. This DNA 

sequence was then programmatically  folded using RNAfold (Hofacker 2003) using 

minimum free energy to see if it was capable of producing a stable stem loop.
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Figure 3.6: Workflow for the identification of novel microRNA.
Novel microRNA were identified by looking at the thermodynamic stability  of their 
stem-loop structure.
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4.0 Results 2
4.1 Trophoblast differentiation

The differentiation protocol using SU5402 and BMP4, which pushes a human 

embryonic stem cell to the trophoblast lineage, gives access to a unique and scarcely 

studied cell type. The unbiased nature of RNA-Sequencing is ideally suited to study 

the transcriptome of such a product. This is because RNA-Seq provides much more 

information than the expression levels provided by traditional technologies such as 

microarrays and quantitative PCR.

4.2 hESC derived trophoblast gene expression strongly correlates 
with that of placental derived tissue

Though we were confident that SU5402+BMP4 treatment directs human embryonic 

stem cells to the trophoblast lineage (as described in Dr. Wenlong Luo’s thesis 

(Wenlong 2008)), a recent report suggested that hESC-based protocols did not form 

true trophoblast (Hemberger, Udayashankar et al. 2010), particularly because there 

was a lack of expression of ELF5, a key gene in the trophoblast that is repressed in 

embryonic stem cells through promoter DNA methylation. Thus I aimed to 

comprehensively compare the outcome of our novel differentiation protocol (which 

was not taken into account in Hemberger et. al.) to that of its natural counterpart. 

Trophoblasts are the major zygotically-derived cell type which contributes to the 

placenta from the fetus. In order to find out the cell lines / tissues(s) that show a 

similar expression pattern to that brought about by the differentiation, unsupervised 

hierarchal clustering was used to compare a dataset  containing microarray expression 
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levels of published tissues / cell types and the SU5402 + BMP4 differentiation 

microarray  data. Importantly, besides a broad array of human tissues including the 

placenta (Ge, Yamamoto et al. 2005) this comparison also include sorted extravillous 

trophoblast and cytotrophoblast  cells from first trimester human placentae (Bilban, 

Haslinger et al. 2009), the earliest possible placental cells from post-implantation 

human development. Hierarchal clustering is designed to cluster together similar 

datasets. Therefore, tissues / samples / cell lines which are clustered together can be 

considered as having closely matching global expression profiles. 

Reassuringly, the closest  tissue type to day 6 and day 8 of treatment was the placenta, 

and the closest cell types were the extravillous trophoblast and cytotrophoblast cells. 

In addition, our microarray data indicated that ELF5 was indeed expressed during the 

differentiation. These evidence support that the products of our trophoblast 

differentiation protocol is being representative of the true trophoblast.
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EVT
6 Days
8 Days
CTB
Placenta

Figure 4.1: Trophoblast differentiation products cluster closely with placenta and 
related cell types.
This shows the hierarchical clustering result of the five time-points of the 
differentiation protocol with a list of tissue / organ expression profiles. Day 6 and Day 
8 time-points cluster with Placenta, EVT - Extravillous trophoblast and CTB - 
Cytotrophoblast samples.
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4.3 Poly A extraction of total RNA effectively removes ribosomal 
RNA to increase the dynamic range of the transcriptomic data

RNA-Seq involves extraction of RNA from a particular sample and converting it to a 

library which can be sequenced so that the transcripts can be later reconstructed, and 

their expression levels measured. Ribosomal RNA (rRNA) is the single most 

abundant species (>90%) in any total RNA sample extracted using conventional 

methods. If a sample contains a significant amount of rRNA, it reduces the 

sequencing depth of messenger RNA (mRNA). This hinders the study  of the 

dynamics of the transcriptome as rRNA levels are mostly static. Therefore, for the 

trophoblast differentiation experiments, an mRNA extraction step (based on the 

polyA tail) was performed to remove rRNA from the sample. The Agilent bioanalyzer, 

which measures the length distribution with concentration of RNA, was used to asses 

the reduction of rRNA for each sample.

Figure 4.2: Removal of rRNAs from polyA RNA. 
Overlapped Agilent Bioanalyzer trace of total RNA (blue) and one time - poly  A 
extracted mRNA (red). The reduction of rRNA species (Reduction in height of rRNA 
peaks) is evident.

18S 

28S 

5S 
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Above observation was confirmed after sequencing, where the reads which mapped to 

known rRNA sequences (and some other filter sequences) were less than 10% of the 

total sequenced reads (Table 1).

Sample Name Percentage of reads mapping to rRNA

SB - Day 0 9%
SB - Day 2 6.5%
SB - Day 4 6.8%
SB - Day 6 7.9%
SB - Day 8 6.2%
Mm - E 3.5 BL 4.2%
Mm - E 4.5 BL 4.2%
Mm - E 4.5 ICM 2.7%
Mm - 8 cell 2.1%

Table 1: Percentage of reads which map to rRNA.
If a sequencing run has a high percentage of reads mapping to rRNA regions of the 
genome, it reduces the number of reads representing mRNAs. All the RNA-Seq 
samples presented in this thesis show a low percentage of reads mapping to rRNA. SB 
- SU5402 +BMP4 treatment, Mm - mouse embryo samples, showing that  the rRNA 
removal was successful.

4.4 Expression levels obtained by RNA-Seq for known genes show a 
good correlation with microarray data

Parallel to the RNA-Seq experiment, a microarray run was performed using the same 

samples (These samples were also used for the hierarchical clustering mentioned 

above). Microarray run was carried out by Ms. Woon Chow Thai from our group. The 

intention of running the microarrays was to observe how expression levels of all 

genes compared between RNA-Seq and the more conventional microarray 

technologies. The comparison was done on differential expression values of RNA-Seq 

and microrray data. To do the comparison en masse the Signal Log Ratio values  
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(SLR = log2 of fold change) of the two datasets were plotted with each other. To 

obtain reliable fold change / signal log ratio values from the microarray data, only 

genes which had a raw signal value of more than 10 in both day 0 and day 8 time-

points were used for the comparison. No filtering was done based on RNA-Seq 

RPKM values. The value of coefficient of determination (R2) between the two 

datasets was 0.8055. Expected R2 value for the two identical datasets is 1 (on a range 

of 0 - 1), thus the two expression datasets with a R2 value of 0.8 can be considered to 

be significantly  comparable with each other. This is further confirmed by the fact that 

94% of the genes had a difference of less than 1 SLR (signal log ratio) value between 

the two datasets and only  5 of the genes showed contradictory expression pattern (i.e 

up-regulated according to one dataset and down-regulated in the other) (Figure 4.3).

Figure 4.3 : Comparison of signal log ratio values of microarray and RNA-Seq 
dataset. 
The fold change values of day 0 vs day  8 were converted to Signal Low Ratios 
(SLRs) by converting them to log2 form. The RNA-Seq and microarray expression 
values showed a good correlation with each other. 
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There were only 5 genes which showed opposite expression patterns (i.e. up-

regulation in one dataset and a down-regulation on the other). Upon closer 

examination these were found to be due to issues with the placement of the Illumina 

microarray  probe. For example in the case of BAX, microarray data indicated the gene 

is up-regulated during differentiation while RNA-Seq data showed otherwise. 

Looking at the RNA-Seq peak profile of BAX, clearly a short and a long isoform of 

the gene is being expressed, and the longer one is down-regulated while the shorter 

one is up-regulated (Figure 4.4). However the Illumina microarray probe in this case, 

only picked up the shorter isoform, marking the gene as being up-regulated. This 

clearly  shows the advantage of looking at the expression of the entire transcript(s) of 

any gene (as in the case of RNA-seq), instead of merely  considering a small portion to 

represent the expression of the entire gene as done by microarray technology.

Figure 4.4: Differences in methods used in RNA-Seq and microarrays for 
measuring gene expression. 
Figure shows the BAX RNA-Seq UCSC view. There is a conflict between RNA-Seq 
and microarray  expression patterns for this gene. The 3’ portion of the gene has been 
enlarged for clarity on the panel on the right, and the red bar marks the position where 
the Illumina microarray probe binds. RNA-Seq data shows that  in the case of BAX, 
the longer isoform is being up-regulated while the shorter isoform is down-regulated. 
Since the microarray probe only detects the shorter isoform, it marks the gene as 
being down-regulated.
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4.5 The trophoblast differentiation protocol brings about drastic 
changes in the hES cell transcriptome as identified by RNA-Seq 

One of the advantages of RNA-seq is its ability to provide a digital count of 

expression levels through the RPKM  value. As described in the methods section, 

RPKM value represents the number of reads mapping to a particular gene normalized 

to it  is length and the total sequencing depth. A gene was defined as significantly 

expressed when it had an RPKM value higher than a set number.  Based on the 

numbers presented in Table 2, it is evident that there is an increase in expressed genes 

upon treatment, which is maintained up to day 6. In other words the treatment seems 

to be inducing a number of genes which are not expressed in human embryonic stem 

cells under normal conditions. The decrease of expressed transcripts between day  6 

and 8, could be due to the clearance of pluripotent genes. Indeed, this differentiation 

protocol had been characterized to co-express both pluripotent and trophoblast  genes 

over the first  couple of days of differentiation and become committed to the 

trophoblast lineage only after approximately 48 hours of treatment (Wenlong 2008) 
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Treatment 
Duration

Total 
number of 
genes with 
RPKM  > 0

Total 
number of 
genes with 
RPKM > 2

Total 
number of 
genes with 
RPKM > 5

Total 
number of 
genes with 

RPKM > 10

Day 0 17005 11094 8688 6452

Day 2 16965 11138 8896 6583

Day 4 17127 11306 9084 6728

Day 6 17132 11359 9155 6729

Day 8 17238 11279 8967 6575

Table 2: RefSeq genes expressed during the trophoblast differentiation time-
course from a total of 21296 RefSeq genes.
Day 0 represents undifferentiated H1 human ES cells. The number of total expressed 
genes increases during differentiation and peaks at day 6.

Figure 4.5: Genes expressed at very high level (RPKM > 10) at each time point. 
There is a clear increase in expressed genes in all time points compared to day 0. 
Please note that  the baseline of the graph has been raised to 6400 to highlight the 
difference in Y axis.
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Figure 4.6: Differentially expressed genes during trophoblast differentiation.
This shows the extent of differential expression between day 0 and day 8, during the 
transition from human ES cells to the trophoblast lineage. Each horizontal bar in the 
main graph depicts the signal log ratio (SLR) of each of the total 21,296 genes. The 
top 10 up and down-regulated genes have been magnified and are shown in the two 
sub charts. The extent of up and down-regulation suggest that the differentiation 
protocol leads to a profound change in the transcriptome. SLR is defined as the log 2 
of the fold change.
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4.6 A number of genes which are not expressed in undifferentiated 
human ES cells gets induced during trophoblast differentiation

Apart from differentially  regulated genes, induced genes during the trophoblast 

differentiation is of particular interest. Here an induced gene is defined as a gene 

which is not expressed in human embryonic stem cells, but  is significantly expressed 

during the differentiation treatment. There is an increase in the number of induced 

genes during treatment, and the induction of new genes seems to be correlated with 

the length of treatment. Even considering a cut off of RPKM > 2, there are 51 genes 

(shown in table 3) which are induced in day 8.

Treatment Total induced 
number of genes 

(RPKM > 0 )

Total induced 
number of genes 

(RPKM > 1)

Total induced 
number of genes 

(RPKM > 2)

Day 2 679 11 4

Day 4 845 32 16

Day 6 912 59 28

Day 8 1018 78 51

Table 3: Trophoblast differentiation induces a number of genes during the time-
course. The number of genes which are induced increase with time. 
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Gene Symbol
CYP19A1

HOPX
S100P

MRGPRX1
HERV-FRD

DCN
APOA4

FGB
HMGCS2

SMPX
SLN

LOC100129935
C1orf105
LGALS13

SERPINB12
HOXA1
LGR5
BLNK
CCR1

SNORD115-33
SLC22A11

DEFB1
BCAR4
CYP3A7
TFAP2B

PPY
TCL6

ODAM
FBLN7

P11
SNORD115-30

FYB
PLA2G2F

CASP4
ELF5

C6orf155
TREM1
NPR3
CGB8
TLR7

SNORD116-28
SNORD19B

FGA
SNORD115-4

PGC
CGB5
CST4

DAPP1
LY6H

LY6G6C
HOXB3

Table 4: The 51 genes induced during 8 days of treatment which show expression 
level of more than 2 RPKM units.
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In order to identify the functions of the 51 induced genes as a group, a gene ontology 

study was carried out using panther gene ontology database (www.pantherdb.org).

Panther gene ontology analysis of the 51 induced genes with 8 days of 

treatment.
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Figure 4.7: Gene ontology results of the 51 highly induced genes during 
trophoblast differentiation. The ontology terms marked with a red * represents 
terms significantly  enriched by DAVID (http://david.abcc.ncifcrf.gov/) functional 
gene analysis. 
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Based on panther gene-ontology analysis, the 51 induced genes at 8 days of treatment 

seems to be biologically  active proteins. The majority of them seems to be involved in 

regulatory roles which suggests that these might be important effectors of the 

differentiation process.

4.7 Study of fold change distribution of genes during trophoblast 
differentiation

Looking at the genes which are up  and down regulated during the differentiation 

protocol, clearly the number of differentially expressed genes gets increased with 

time.

comparison Up-regulated
 (SLR ! 2 )

Down-regulated 
(SLR " 2)

day 4 vs day 0 1440 1354

day 6 vs day 0 1642 1498

day 8 vs day 0 1789 1684

Table 5: The total number of up-regulated and down-regulated genes increase 
with treatment duration.

To broadly  evaluate the function of up-regulated genes during the differentiation, a 

gene ontology analysis similar to the one above was carried out.
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4.8 Gene ontology analysis of up regulated genes during trophoblast 
differentiation

Summary of protein class

Figure 4.8: Panther protein classes of the up-regulated genes.
Y axis shows the significantly  expressed protein class and the x axis shows the 
number of genes belonging to each class. 

Just as induced genes, the up-regulated genes during 8 days of treatment are enriched 

with transcription factors and signaling proteins. Apart  from these two main groups, 

most other groups of proteins are also represented in the up-regulated genes. These 

results imply that while transcription factors and signaling molecules are the major 

effectors of the observed differentiation outcomes, the treatment brings about a 

profound change which affects almost all the processes of the cell. 
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The pathways affected by genes which are up-regulated during trophoblast 

differentiation.

Figure 4.9: Significantly affected pathways from up-regulated genes during 
trophoblast differentiation.

Pathways with the highest number of up-regulated genes, namely Wnt signaling, 

Cadhering signaling and TGF-beta signaling are all reported to be involved in 

mesenchymal to epithelial transition. In addition, Wnt signaling has been implicated 

in embryo implantation (Mohamed, Jonnaert et al. 2005) .
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Top 50 Up-regulated Expressed in placenta Top 50 Down-regulated
CGA Yes FOXD3
CCR7 PRDM14
KRT23 Yes PDZD4
H19 Yes LEFTY1
MUC15 C14orf115
SLC40A1 Yes TMEM132D
PLSCR5 C9orf135
CDH5 Yes HESRG
RELN PTPRN
GCM1 Yes KCNH6
CSF3R Yes ATCAY
ALPK2 MAGEA4
HSD3B1 Yes ZIC2
PLCXD3 LCK
NTRK2 SNCB
ERP27 CRLF1
HOXB2 PPP1R16B
LUM Yes TMEM151B
VGLL1 Yes OPCML
TBX3 Yes POU5F1
P2RY6 Yes POU3F1
DIO2 PTPRZ1
APOA2 ADAMTS8
GDF6 BCAN
NR2F2 Yes NRIP3
CYSLTR2 C1QL2
GUCY1A3 RTN4RL2
CYP2C18 PRKCB
KIAA0774 FGF19
FLJ45983 SLC7A3
EPAS1 Yes CTCFL
MBNL3 Yes KCNQ2
LRP2 SLITRK3
FLRT3 FAM124A
ZNF750 Yes CRIP3
IL1F5 NPTX2
ST8SIA4 RASGRP4
GATA6 IGSF21
STS Yes CPEB1
HTRA4 NMU
TP63 AIF1
MEIS1 OLFM1
NUPR1 NTRK3
HAL RHBDL3
SLC6A4 PADI3
ZNF503 DOCK2
CLEC1A Yes ZIC5
ADCY10 TMEM145
SYTL5 CXCL5
C8orf4 Yes HRH3

Table 6: Top 50 up and down regulated genes during trophoblast differentiation.
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4.9 Comparison of RNA-Seq gene expression levels with published 
human preimplantation data shows a considerable overlap

There is a paucity of gene expression data available for human pre-implantation 

development, a result of the scarcity of such tissues combined with the very limiting 

amount of RNA available in each individual sample. Thus when Zhang et al (Zhang, 

Zucchelli et al. 2009) reported a microarray study of human pre-implantation 

development - the first available data set providing global gene expression of 

significant quality  from the human blastocyst - I eagerly compared it with our hESC-

derived data. The Zhang dataset enabled the identification of differentially expressed 

genes during the transition from the 4 - cell stage to the blastocyst. Using the data 

presented in the paper, it is possible to identify  genes up and down-regulated during 

blastocyst formation, but it is not possible to separate out trophectoderm / ICM 

specific / enriched genes as the paper does not report  the gene expression of ICM  or 

the trophectoderm separately. Nonetheless, the majority  of cells in the blastocyst 

(>70%) would be trophectoderm and the 4-cell embryo would represent a stage at 

which the trophectoderm has yet to form. Thus a comparison of 4-cell stage to 

blastocyst should identify genes up-regulated in the human trophoblast lineage. 

Though many pluripotent genes are thought to be expressed in the 4-cell stage embryo 

there are likely other genes specifically expressed in the ICM of the human 

blastocysts that are up-regulated from the 4-cell to the blastocyst stage. My RNA-Seq 

data of the SU5402+BMP4 hESC differentaitiotn protocol provides a set  of genes up  / 

down-regulated during human trophoblast differentiation. Therefore by overlapping 

the human embryo dataset with the SU5402+BMP4 differentiation, the genes shown 

to be responsible for trophoblast development by the differentiation protocol can be 

validated. 
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However, it should be noted that while the dataset presented by  Zhang et al. is 

impressive, due to the nature of the sample they  only use duplicates for microarray 

runs and that the variability  within the samples is high. As a result 1,501 genes 

identified as significantly up-regulated 2-fold or more is likely  an underestimate of 

the genes truly  differentially regulated. When these 1,501 genes are overlapped with 

the hESC-derived trophoblast differentiation data 542 genes are significantly up-

regulated in both datasets. On average the 542 commonly  up-regulated genes show an 

average fold change of 8 fold ( maximum = 16,348 fold and minimum 2 fold). In 

addition, a hierarchical clustering done between the RNA-Seq and preimplantation 

microarray  data showed that  the 4 cell microarray sample clustered with the hESc 

sample of RNA-Seq and the blastocyst sample of microarray clustered with day 8 

time point of RNA-Seq. This clearly  shows that there is a good correlation between 

the SU5402+BMP4 differentiation RNA-Seq data and human preimplantation data 

(Figure 4.10), and more importantly this correlation suggests that the identified 542 

genes identified may play a vital role in human trophoblast formation and 

development highlighting the utility of my RNA-seq data in identifying the 

transcriptome of early  human trophoblast development. These 542 genes were 

analyzed further.
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Figure 4.10: Hierarchical clustering of RNA-Seq data with published human 
preimplantation data. 
Human blastocyst sample gets clustered with 8 days differentiation time-point while 
four cell human embryo sample gets clustered with human ES sample.
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geneID Day 0 
RPKM

Day 2 
RPKM

Day 4 
RPKM

Day 6 
RPKM

Day 8 
RPKM

SLR Fold 
change 

Fold 
change 

blastocyst 
vs 

EightCell 

CGA 0.11 0.26 8.09 544.43 2239.42 14.37 21173.91 126.19
S100P 0 0.28 0.51 31.14 83.46  - - 109.48
GCM1 0.03 0.07 1.23 16.24 33.01 10.26 1226.22 88.05
MUC15 0.03 7.43 25.34 39.22 62.84 10.87 1871.53 80.58
ABCG2 1.55 13.3 94.63 118.81 95.97 5.95 61.82 76.64
ANXA1 11.11 24.35 113.18 481.26 751.31 6.08 67.65 74.84
H19 0.18 15.78 81.45 598.54 808.91 12.16 4576.41 58.78
LRP2 0.15 2.92 23.12 39.26 43.24 8.13 280.14 54.18
KRT19 100 368.9 582.93 630.19 606.56 2.6 6.06 51.01
RCN1 19.12 18.4 26.8 38.87 43.59 1.19 2.28 49.97
CCR7 0.02 0.95 3.35 42.51 122.07 12.8 7131.55 46.9
ZNF750 0.06 27.41 31.55 12.68 15.58 8.07 268.73 41.31
CBLB 10.46 15.66 20.21 34.68 51.22 2.29 4.89 41.1
LYN 12.37 12.57 25.91 54.9 91.76 2.89 7.41 39.84
ENPEP 0.34 18.29 34.39 57.63 54 7.33 160.90 37.57
SGMS1 7.74 12.16 12.98 16.42 16.75 1.11 2.16 36.46
GADD45G 11.56 14 6.93 33.33 82.97 2.84 7.16 35.36
SERPINB9 31.42 233.14 82.11 45.03 73.85 1.23 2.35 34.81
SLC38A1 29.15 47.37 101.27 134.29 128.59 2.14 4.41 33.98
KRT23 0.03 0.49 19.3 96.09 182.97 12.36 5256.91 33.55
SMAD7 5.32 17.88 21.43 21.09 30.92 2.54 5.82 33.21
CCKBR 0.54 1.11 5.27 27.9 32.85 5.92 60.55 32.39
HERV-FRD 0 0 0.14 6.67 32.13  - - 31.54
RAB31 10.26 30.39 26.51 37.7 34.48 1.75 3.36 29.34
RHOU 1.87 20.23 33.93 68.54 71.29 5.25 38.05 29
KANK4 0.18 0.18 3.12 23.74 29.38 7.33 160.90 27.86
GATA2 0.52 31.45 31.26 45.02 77.57 7.23 150.12 27.52
SLC1A3 2.41 4.07 9.87 38.02 54.55 4.5 22.63 27.19
CEBPA 2.25 11.21 33.38 39.25 47.26 4.39 20.97 26.59
REEP1 0.31 0.45 0.94 5.88 6.61 4.42 21.41 26.53
SLC40A1 0.09 0.65 4.16 82.5 152.16 10.74 1710.26 26.03
ANXA3 14.61 68.63 150.09 322.63 290.26 4.31 19.84 25.74
SDC1 21.99 5.05 5.24 29.7 54.74 1.32 2.50 25.29
KRT18 69.59 230.83 322.61 458.84 410.36 2.56 5.90 23.94
COL21A1 1.19 0.6 1.43 10.82 9.26 2.96 7.78 23.36
TACSTD2 0.9 45.09 48.68 32.7 30.38 5.08 33.82 23.31
AMOTL2 14.86 40.87 53.73 77.06 90.51 2.61 6.11 22.28
GPRC5A 0.57 7.43 10 19.25 31.05 5.76 54.19 21.35
S100A14 1.32 25.65 121.89 72.48 57.72 5.45 43.71 21.16
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geneID Day 0 
RPKM

Day 2 
RPKM

Day 4 
RPKM

Day 6 
RPKM

Day 8 
RPKM

SLR Fold 
change 

Fold 
change 

blastocyst 
vs 

EightCell 

TNS3 10.54 55.64 28.83 19.3 26.34 1.32 2.50 21.1
IL1R1 0.12 1.35 2.71 8.16 10.7 6.46 88.03 20.87
TGFBR2 2.02 0.9 2.43 10.67 27.39 3.76 13.55 20.73
FHDC1 6.81 18.21 17.82 24.05 39.22 2.53 5.78 20.32
HOPX 0 0.44 0.16 42.53 98.19  - - 20.14
SLC7A11 1.37 1.98 4.29 3.07 2.88 1.07 2.10 19.35
CDKN1C 15.65 41.64 46.75 162.39 252.66 4.01 16.11 19.3
C10orf10 3.21 9.83 12.33 28.87 56.97 4.15 17.75 19.28
TPD52L1 5.86 9.31 21.58 35.53 36.09 2.62 6.15 19.13
HSPB8 3.49 17.14 43.68 150.95 388.24 6.8 111.43 19.03

Table 7: The top 50 up-regulated genes (based on human embryo 4-cell to 
blastocyst fold enrichment) which are also up-regulated in the hESC-based 
trophoblast differentiation protocol.
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4.10 Genes induced / up-regulated during trophoblast differentiation

Table 7 highlights genes that are best induced / up-regulated in human trophectoderm 

formation (based on preimplantation data) that are also up-regulated in the hESC-

based trophoblast system. The RNA-Seq profile of a few of these genes will be 

described hereafter.

4.10.1 CGA (Chorionic gonadotrophin alpha)

CGA codes for the alpha subunit of the human chorionic gonadotropin, the signature 

hormone of the trophoblast. CGA expression is initiated at day 4 and is greatly  up-

regulated as differentiation progresses.

Figure 4.11: RNA-Seq peak profile of CGA on the UCSC browser. 
The CGA expression gets up-regulated from a very  low value of 0.11 RPKM at day  0 
to 2239.4 at day 8, showing a fold change of 21173.9. Only the negative strand for 
each of the time point is shown here for clarity.

Day 0 negative strand

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand
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4.10.2 CGB (Chorionic gonadotropin beta)

CGB, which together with CGA produces hCG hormone, has six genes in the human 

genome with virtually  the same sequence. These are a result of extensive gene 

duplication of the original LHB gene with some of these gene duplication occurring 

since the divergence from the chimpanzee (Hallast, Saarela et al. 2008). The extent of 

sequence similarity can be seen in the multiple alignment diagram in Figure 4.12. 

This presents a major issue when it comes to aligning the reads from these regions 

into the genome. During the counting phase of RNA-Seq, reads which map to two 

places or more with the same score are discarded and therefore a considerable number 

of reads originating from CGB genes are not taken into account during calculation of 

expression values. This leads to an underestimation of the level of expression from 

this locus. This is in contrast to the microarray data which indicates rather robust up-

regulation (CGB5 max. probe intensity  of 267, CGB8 max. probe intensity  of 281) as 

the hybridization signal is not lost. This multi-mapping issue is a weakness of RNA-

seq but the sequence data can also be used to an advantage here. By  focusing on 

specific bases that vary between the genes, and identifying whether any unique reads 

are mapped in these regions, it is possible to identify which of the 6 CGB genes are 

being expressed, something that would be challenging with an array based method of 

expression detection. From this analysis, RNA-seq  clearly identifies expression from 

CGB8, CGB5 and CGB7 as showing significant up-regulation during the 

differentiation. Such information is valuable particularly if one is interested in the 

transcriptional control of specific CGB genes.
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Figure 4.12: Multiple alignment of CGB8, CGB5, CGB, CGB7, CGB2 and CGB1. 
The analysis was performed using CLC Main workbench. The lines next to the gene 
names show consensus sequences and the bar graph shows the conservation %. Note 
that in most cases the conservation is 100% and that it rarely  goes below 50% 
suggesting extreme sequence similarity. 

Figure 4.13: The UCSC view for CGB5. 
Tracks from the top are, (1) Day 0 unique reads - which there are none, (2)  Day 8 
unique reads - to a maximum height of 37 suggesting that there is robust expression, 
and (3) Day 8 multi-map  reads - which up  to a certain extent recovers some of the lost 
reads due to the high homology of the CGB group of genes. The multimap track 
therefore show a much higher read count and a 100% coverage of the transcript.
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4.10.3 CCR7 (CC chemokine receptor type 7)

CCR7 is best known for its involvement in the maturation of dendritic cells and thus 

in adaptive immune response (Sanchez-Sanchez, Riol-Blanco et al. 2006). CCR7 

expression goes from an RPKM value of 0.02 at 0 days to 122 at 8 days and ranks as 

the eleventh most  abundant transcript in the 8 day trophoblast. There are no previous 

reports of its expression in the trophoblast  but an analysis of the Zhang et al data 

clearly  indicates its expression in the human blastocyst. Potential functions for CCR7 

could either be a measure to protect the fetus from future infections, or a way  to 

modulate inflammatory reactions between the fetal - maternal interface, through the 

communication between the trophoblasts and dendritic/Treg/NK cells in the 

endometrium which are known to play a positive role during implantation. 

Considering the up-regulation of the retroviral elements (discussed later) it  is likely 

that CCR7 and expressed retroviral elements misdirects the maternal immune system 

providing an immunosuppressive function.

4.10.4 KRT23 (Keratin type I cytoskeletal 23)

Keratins are classical markers of epithelial cells. In the mouse blastocyst, Krt8 and 

Krt18 (and Krt7 and 19) are used to mark the early trophoblast lineage, while in the 

human blastocyst it is KRT7 that is the classical marker of these cells. I see abundant 

expression and up-regulation of KRT7 (7.8 fold), KRT8 (6.8 fold), KRT18 (5.8 fold), 

and KRT19 (6.0 fold). In addition, I also see KRT23, a keratin not previously defined 

as a trophoblast keratin but is highly expressed in the placenta (KRT23 entry of biogps 

expression database at http://biogps.gnf.org) and the trophoblast differentiation 

(5272.3 fold). KRT23 is required for epithelial cells and its up-regulation can be used 
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as an additional confirmation that the differentiation has produced cells of the 

epithelial lineage. Since Krt23 expression is not seen in mouse early development, 

KRT23 can be considered as a potential human trophoblast specific gene.

Comparing the RefSeq annotation of KRT23 gene and the RNA-Seq peak profile, it is 

clear that the KRT23 isoform expressed during differentiation has a different 

transcription start site to that shown in RefSeq. The transcript seems to skip the first 

exon in the 5’ UTR region and start at the next exon which contains the start codon. 

While this does not affect the structure and therefore the function of the protein since 

the coding sequence remains the same, it might be differently regulated post 

transcriptionally, due to the change in UTR (Figure 4.14).

Figure 4.14: The RNA-Seq peak profile of KRT23 gene.
The first exon in the 5’ URT region (shown within the box) is not  transcribed during 
differentiation, giving rise to a new isoform. For clarity only the negative strand is 
shown.

Day 0 negative strand

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand
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4.10.5 H19

H19 is a long non-coding RNA, which is well known to be highly expressed in the 

placenta. H19 is reported to be modulated by  steroid hormones including 17-ß-

estradiol which is the dominant form of estrogen, in mammary glands and the uterus 

(Adriaenssens, Lottin et al. 1999).

Considering RNA-Seq data, H19 expression is induced immediately  after treatment 

and gets highly up-regulated during trophoblast differentiation. This expression 

pattern clearly shows that H19 expression in early development is not only  limited to 

maternal tissues, but is also expressed in the embryo and that H19 is involved in 

trophoblast differentiation. Furthermore miR-675 which originates from the original 

H19 transcript (Cai and Cullen 2007) is highly  up-regulated based on the microRNA 

RNA-Seq data presented in the latter part of this thesis suggesting a regulatory role 

for H19.
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Day 0 positive strand

Day 2 positive strand

Day 4 positive strand

Day 6 positive strand

Day 8 positive strand

Figure 4.15: RNA-Seq peak profile of H19.
H19 gets up-regulated from day 2 onwards. For clarity  only the positive strand is 
shown.
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4.10.6 MUC15 (Mucin 15)

Mucins are high molecular weight substances secreted by epithelial cells to form a 

sticky  mass. Mucins are secreted by the uterus and is reported to aid implantation 

(Carson, DeSouza et al. 1998). The function of mucins is not limited to implantation. 

They  are also reported to be expressed in the human placenta and suppress the 

invasion of trophoblast-like cells in vivo (Shyu, Lin et al. 2007). This suggest that 

mucins directly  or indirectly regulate the migratory  properties, first by  facilitating 

implantation and then by regulating invasion and plays an important part  during early 

trophoblast development.

RNA-Seq data shows that MUC15 expression is induced during trophoblast 

differentiation and is highly  up-regulated (1867.4 fold) at day 8 of differentiation. 

This suggests that mucins are secreted by the blastocyst and it is confirmed by the fact 

that MUC15 is one of the greatest up-regulated genes in the Zhang et. al. data during 

the transition from the 8-cell to the blastocyst stage. In addition to this mucin 

secretion also indicates the epithelial phenotype is acquired by the differentiated cells. 

RNA-Seq junction reads show that two out of the three known MUC15 isoforms are 

expressed.
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Day 0 negative strand

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand

Figure 4.16: RNA-Seq peak profile of MUC15.
MUC15 shares its gene footprint with TMEM16C which is coded by  the opposite 
(positive strand) strand. 
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4.10.7 SLC40A1 (Solute carrier family 40 (iron-regulated transporter), member 
1)

The product for this gene, Ferroportin 1, is essential for iron efflux. It has been 

identified as expressed in the human placenta, found on the basal surface of the 

syncytiotrophoblasts (Donovan, Brownlie et al. 2000). In my data, SLC40A1 is highly 

up-regulated during 4 days of trophoblast differentiation and by 8 days reaches an 

RPKM value of 152 (1715.9 fold change). This is one of many  examples in my 

expression data, where up-regulation is seen in a key molecule involved in nutrient 

supply between mother and the fetus through the trophoblast. 

Located on the basal surface (Donovan, Brownlie et al. 2000), SLC40A1 is in a 

position to secrete iron, out from the trophoblast cytoplasm towards the developing 

embryo. With respect to iron uptake by the trophoblast from the maternal side, it is 

interesting to note that TFRC, encoding transferrin receptor-1 and functioning in iron 

uptake, is abundantly  expressed (86 RPKM) in the 8 day trophoblast. Thus 

presumably, both apically positioned transferrin receptor-1 and basally positioned 

SLC40A1 are able to supply iron to the fetus from the mother. This along with folate, 

of which the transporter is also expressed (FOLR1 25 RPKM at 8 days), adds to the 

mounting evidence that iron supplementation at  preconception and early pregnancy  is 

important for improved pregnancy  outcomes (Titaley, Dibley et al. 2010). Relevant to 

this is the recent finding that Slc40a1 is essential for mouse neural tube closure (Mao, 

McKean et al. 2010), which is precisely the role folate supplementation is known to 

play in early human development.
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4.10.8 GCM1 (Glial cells missing homolog 1)

As described in the introduction, GCM1 is a transcription factor essential for mouse 

placental function, though its expression in the mouse trophoblast lineage occurs 

much later than initial trophoblast formation. Based on RNA-Seq data, GCM1 is not 

expressed in human ES cells, but is highly  up-regulated from day 4 of the trophoblast 

differentiation (Figure 4.17) to a final fold change of 1226.1. 

Day 0 negative strand

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand

Figure 4.17: RNA-Seq peak profile of GCM1 gene expression.
There is negligible expression in day  0 (undifferentiated ES cells). The Expression 
begins at day 4 of differentiation and increases through the time-points. 
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4.10.8.1 Regulation of GCM1

Regulation of GCM1 is carried out by the proteins GSK3B, FBW2 and DUSP23 at 

the post-transcriptional level. GSK3B phosphorilates GCM1, marking it  for 

degradation by FBW2 (Chiang, Liang et al. 2009) while DUSP23 dephosphorilates 

GCM1 (Lin, Chang et al. 2010) preventing the GCM1 degradation. Interestingly 

during SB differentiation GSK3B gets up-regulated and DUSP23 gets down-regulated 

suggesting that even at earlier preimplantation stages the GCM1 regulatory machinery 

is active. 

4.10.9 Placental BDNF (Brain-derived neurotropic factor) / NTRK2 (Neurotropic 
tyrosine kinase 2) system

It has been reported that in mice, BDNF plays an important role in implantation and 

placental development (Mayeur, Silhol et  al. 2010). In the hESC-trophoblast 

differentiation protocol BDNF is not expressed at very significant levels (max 3.31 

RPKM at 8 days) but its receptor - TrkB (NTRK2) - is, being up-regulated from 0 to 

62 RPKM  over the 8 day time course. This would suggest that  the trophoblast  is 

responsive to BDNF, perhaps supplied from the maternal endometrium.

  

TrkB, in mammals has a full length and a truncated isoform (Tapia-Arancibia, Rage et 

al. 2004). The truncated isoform, while lacking intracellular tyrosine kinase activity, is 

active and can trigger transduction signals (Tapia-Arancibia, Rage et al. 2004; Skaper 

2008). The truncated isoform of TrkB (Trkb-T1) is able to regulate Rho A signaling 

(Ohira, Homma et al. 2006) and Rho A is shown to be predominant in cytotrophoblast 

cells and is implicated in trophoblast migration (Shiokawa 2002; Mayeur, Silhol et al. 

2010). 
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The RNA-Seq peak profile of both NTRK2 (Figures 4.18) shows an interesting 

transcriptomic phenomenon. In the case of NTRK2, which based on RefSeq has five 

different isoforms, only  the shortest  isoform is expressed during trophoblast 

differentiation. Based on peak heights, it  seems a few of the longer isoforms are 

expressed at very low levels but the shortest isoform is clearly  the highest expressed. 

It is this isoform (Trkb - T1) that has shown to be involved in regulating RhoA 

signaling (Ohira, Homma et al. 2006).   

Day 0 positive strand

Day 2 positive strand

Day 4 positive strand

Day 6 positive strand

Day 8 positive strand

Figure 4.18: The RNA-Seq peak profile of NTRK2.
Data on peak distribution proves that shortest isoform, indicated with a red arrow is 
highly expressed.

97



4.10.10 ELF5 (E74-like factor 5)

As a transcription factor essential for mouse trophoblast, much attention has been 

drawn to ELF5 in the human trophoblast literature. Indeed, its lack of expression in 

other hESC-derived trophoblast populations has been used to argue against these cells 

being true trophoblast (Hemberger, Udayashankar et al. 2010). Thus it is comforting 

to see from my RNA-Seq data which clearly shows that the SU5402+BMP4 

differentiation protocol used in this thesis does indeed induce ELF5 expression (0  

RPKM at day 0 and 2.96 at day 8) thereby providing a more realistic transcriptomics 

picture of trophoblast differentiation. ELF5 expression is not high, but  since its been 

reported to be methylated in human ES cells, any form of expression indicates that the 

trophoblast differentiation leads to its de-methylation. Furthermore ELF5 is 

considered to be a trophoblast stem cell marker and not a marker for the entire 

trophoblast lineage, which is brought about by the differentiation.

ELF5 has two isoforms, 2a and 2b. It  has been reported that ELF5 - 2b is the major 

variant found in the placenta (Hemberger, Udayashankar et al. 2010). In agreement 

with above, the SU+BMP4 differentiation clearly induces ELF5 - 2b (Figure 4.19). 
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Figure 4.19 : Peak profile of ELF5.
ELF5 expression begins at  round day 4 - day 6 during the differentiation. ELF5 has 
two isoforms 2b and 2a. 2a has its first exon within the first intron of 2b. SU+BMP4 
induces the ELF5 - 2b isoform, just as in the placenta where it is the major variant.

4.10.11 ABCG2 (ATP-binding cassette sub-family G member 2)

ABCG2 is highly expressed in the human placenta, and is believed to protect the fetus 

from xenobiotics transported from the maternal circulation (Kolwankar 2005). It has 

been shown that knocking down of ABCG2 in BeWo cells, causes the down-

regulation of trophoblast markers and reduces cell fusion (Evseenko, Paxton et al. 

2007). ABCG2 is directly  regulated by estrogen and PPARgamma (Szatmari 2006), 

both highly expressed during early  development and during the trophoblast 

differentiation. 

The RNA-Seq peak profile of ABCG2 shows an interesting transcriptomics dynamic. 

ABCG2 gene which is expressed at low levels in human ES cells get highly  up-

Day 0 negative strand

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand
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regulated during differentiation (61.7 fold). Furthermore, as can be seen in Figure 

4.20 panel A, the ABCG2 changes the starting exon of transcription during 

differentiation. In addition to this the third exon which is not expressed in human ES 

cells starts getting expressed.

AB Panel B enlarged

Day 0 negative strand

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand

Figure 4.20: The expression and splicing dynamics of ABCG2. 
The entire RNA-Seq profile is shown on the right panel. The box marked A shows the 
first exon which is unused in human ES cells and used during differentiation. The box 
marked B shows the third exon which has a similar expression pattern as the first  - 
see the enlarged view on the right.
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4.11 Comparison with mouse pre-implantation data

While the main focus of this thesis is human trophoblast development, it is important 

to compare the data from the human samples with the mouse model. This comparison 

enables the validation of existing knowledge as most  observations regarding early 

development originate from the mouse system, and enables the identification of 

human specific phenomena during trophoblast differentiation.

The mouse pre implantation RNA-Seq dataset presented in this thesis consists of four 

samples - uncompacted 8-cell, E3.5 blastocyst, E4.5 Blastocyst  and E4.5 ICM. (The 

E4.5 trophoblast cells are difficult to isolate from the embryo without being 

contaminated by cells in the ICM). Dr. Guo Guoji, a former member of the lab, 

carried out the collection of the mouse embryos and performed the immunosurgery 

(Solter and Knowles 1975) to isolate the ICM.

Using the four mouse RNA-Seq samples, trophoblast  related gene expression changes 

can be identified via the comparison of gene expression changes between the E4.5 

blastocyst / 8-cell and E4.5 ICM / E4.5 blastocyst. i.e genes which are involved in 

mouse trophoblast differentiation can be considered as genes which show an up-

regulation in both E4.5 Blastocyst / 8 cell stage comparison and E4.5 Blastocyst / 

E4.5 ICM comparison (i.e. low in 8 cell, low in ICM but high in blastocyst). At the 

uncompacted 8-cell stage, markers and some key regulators of the trophectoderm are 

not yet expressed, morphological epithelialization of the outer cells does not occur 

until the early 32-cell stage. The ICM is clearly  distinguishable from the 

trophectoderm by gene expression as early as the later 32-cell stage (Guo, Huss et al. 

2010). 
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To validate the mouse RNA-Seq data it was compared with the expression levels of 

the 48 genes presented in Guo et al. There was a good qualitative co-relation between 

the two datasets. For example Gata3 and Cdx2 which are expressed at low levels in 

the 8 cell stage and becomes TE specific showed a 4.59 and 4.11 fold up-regulation (8 

cell stage vs outer cells at 32 cell stage) in Guo et al and a 35.1 and 35.7 fold (8 cell 

stage vs E4.5 blastocyst) in mouse RNA-Seq data. Nanog and Sox2 which are specific 

to ICM compared to TE shows a fold enrichment of 17.1 and 354.6 in the ICM (32 

cell stage in vs out cells) based on Guo et al data and mouse RNA-Seq data showed 

an enrichment of 2 and 1.5 fold between E4.5 blastocyst and E4.5 ICM. As can be 

seen from these data the expression of key genes is qualitatively the same in both 

datasets. The values of fold change differs as the sample types used for the 

comparison are different.

When comparing the gene sets related to trophoblast development in both human and 

mouse systems, the most clear observation is the significant difference of both the 

expression level and expression pattern with each other. This point is clearly 

illustrated in Figure 4.21. The figure is a scatterplot of the top 500 up-regulated genes 

in human during trophoblast differentiation. The genes which have a RPKM value of 

less than 1 has been reset to one to make the comparison simpler. As can be clearly 

seen there is no correlation between human and mouse. There are a number of genes 

which are highly expressed in human but are not significantly  expressed in mouse 

(see the area highlighted in red). 
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Figure 4.21: Comparison of mouse and human RNA-Seq data during 
trophoblast differentiation.
The RPKM values less than 1 has been reset to 1. Only the top 500 up-regulated 
genes in human are shown. The top 35 genes which are highly up-regulated in human 
and expressed at very low level (less than 1 RPKM) in mouse are highlighted in red. 

It should be highlighted that the comparison done in Figure 4.21 is not exact. In-fact 

considering the lack of clinical samples of human early trophoblast development, a 

one-to-one comparison is not feasible. Therefore for the comparison human ES cells 

differentiated into the trophoblast lineage was used. Given the evidence presented 

here it could be correctly assumed to produce a realistic early trophoblast 

transcriptome. 

Due to the difference in the initially available RNA amounts two different protocols 

(as outlined in the methods section) was used to process the samples. The protocol 

used to process the trophoblast differentiation samples produce reads specific for 

transcripts with a poly  A tail while the single cell protocol used to process mouse 

embryos provides information on all the transcripts - including poly A ones. Therefore 

as far as the poly A genes are concerned the data should be comparable. The usage of 
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fold change as the primary  measure of gene expression also removes sample specific 

biases. 

The purpose of the Figure 4.21 and this entire section, is to emphasize that at the 

transcriptome level, human and mouse systems, during trophoblast differentiation 

show significant difference and cellular heterochrony.

4.11.1 GCM1 expression in SB differentiation, human and mouse early 
development

The gene expression of GCM1 in both human and mouse systems during early 

development is drastically different. Based on the Zhang et. al. paper, raw probe 

intensity value of GCM1 during the human 4 cell stage embryo is 50 and it gets 

increased up to 7117 during the blastocyst  stage. The human trophoblast RNA-Seq 

data has a similar pattern where in human ES cells GCM1 gets only 2 reads and at day 

8 it increases to 2399 reads - a 1226 fold up-regulation based on RPKM  value. 

However in the mouse RNA-Seq system this drastic increase is not seen. In fact the 

up-regulation of Gcm1 from 8 cell stage to E4.5 blastocyst is just 2.73 fold, where the 

E4.5 blastocyst sample gets only 45 reads being aligned to the gene. This drastic up-

regulation of GCM1 during human trophoblast differentiation as compared to the 

mouse system suggests that GCM1 plays a more important role in the human system 

compared with the mouse. This is further confirmed by the observed up-regulation of 

PGF, Syncytins and Aromatase, which are genes regulated by GCM1, suggesting that 

GCM1 protein is highly active during trophoblast formation.
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4.12 Retroviral expression as a possible explanation for the 
transcriptomic difference of early development factors in human and 
mouse

As explained in the Introduction, expression of endogenous retroviral components 

have the to capacity  influence the transcriptome of early development. Existing data 

shows that they can create new genes and form regulatory regions of existing genes 

influencing their expression. Since the endogenous retroviral component of the 

genome changes with evolution, the retroviral elements in mouse and human can be 

considered to be quite different, and this difference has the potential to bring about the 

changes in the gene regulatory mechanisms of early  development in mouse and 

human. 

4.12.1 Expression of genes originated from retroviral elements during 
trophoblast differentiation

The fusogenic Syncytin 1 and Syncytin 2 are primate-specific genes, which originated 

from  retroviral elements inserted into the ancestral genome ~25 and 40 million years 

ago respectively  (Cheynet, Ruggieri et al. 2005; Renard, Varela et al. 2005). They are 

induced during the hESC-to-trophoblast differentiation. The human pre-implantation 

data also shows a similar expression pattern. Their peak profiles are shown in Figures 

4.22 and 4.23. 

Expression of Syncytin 1 and 2 starts at day  6 and gets up-regulated at day 8. 

Considering the distribution of uniquely mapped reads, Syncytin 1 which is the newer 

gene among the two, has a coverage of around 50% while the older Syncytin 2 has a 

100% coverage. Once the multi-mapped reads are used to measure the coverage, 

Syncytin 1 reaches a 100% coverage (Figure 4.24). This highlights an important point 

105



when trying to identify new retroviral insertions. When the insertion is relatively  new, 

even if it is highly  expressed, due to sequence similarity, aligning reads becomes 

difficult and the coverage goes down. However when the insertion gets “older” and 

accumulates point mutations, then identification of those regions through RNA-Seq 

becomes less difficult due to ease of alignment. 
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Figure 4.22 : RNA-Seq peak profile of Syncytin 1.
Syncytin 1 is not expressed in day  0 and day  2. It starts to get expressed in day 6 and 
is up-regulated there after. There is only  a partial UCSC annotation. Note the new 
exon on the 3’ end. Only the negative strand of each time point is shown for clarity.
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HERV-FRD (Syncytin 2)
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Figure 4.23: RNA-Seq peak profile of Syncytin 2.
This has a similar expression pattern as Syncytin 1.
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Figure 4.24 :  Change of coverage of expressed retroviral elements with insertion 
time.
The first track shows the standard unique reads whereas the second track shows multi-
mapped reads which are reads that map to the genome up  to 10 times. Syncytin 2 gene 
which is the older of the two has 100% coverage in both unique and multi-mapped 
tracks, while Syncytin 1 show only around 50% coverage in the unique track.
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4.12.2 Expression of genes with retroviral derived regulatory elements during 
trophoblast differentiation

Trophoblast-specific expression from ERV LTRs has been described for a number of 

genes (Cohen, Lock et al. 2009) . I first investigated my  data set to determine if there 

was expression derived from these ERV LTRs. Of the 9 placenta-specific ERV LTRs 

described in Cohen et al. there was evidence for significant expression from CYP19A1 

(RPKM = 102 at day 8), PTN (RPKM = 244), INSL4 (RPKM = 1.97), PAPPA2 

(RPKM = 25), MID1 (RPKM  = 14) and EDNRB (RPKM = 60) but no expression 

from IL2RB, NOS3 and ENTPD1.

4.12.3 CYP19A1 (Cytochrome P450, family 19, subfamily A, polypeptide 1)

Human trophoblast expression of CYP19A1 is known to be driven by an ERV LTR 

promoter (Conley and Hinshelwood 2001; Cohen, Lock et al. 2009). In my data set 

CYP19A1 is highly up-regulated during SB differentiation (Figure 4.25). Based on 

RNA-Seq data, the placenta-specific isoform is expressed while the others, driven 

from different tissue-specific promoters, are not. Based on the UCSC annotation track 

it seems that another - third isoform is expressed, but its expression is not as nearly  as 

high as the placenta specific one.
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Day 0 negative strand

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand

Figure 4.25: The RNA-Seq peak profile of CYP19A1.
It is not expressed at day 0 (undifferentiated human ES cells) and gets highly up-
regulated during differentiation.
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Figure 4.26: The RNA-Seq expression profile of CYP19A1 at day 8 time point of 
SB differentiation protocol.
The major expressed isoform incorporates the first exon (enlarged view in the box on 
the right) and is the one reported to be placenta specific. The other RefSeq isoform 
incorporating the second exon (shown by the circle) is not expressed. RNA-Seq data 
also shows the expression of a third isoform (shown enlarged in the box on the right), 
which is unannotated in RefSeq. 
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4.12.4 EDNRB (Endothelin receptor type B)

Based on RNA-Seq data EDNRB is highly  up-regulated during SB differentiation. 

Unlike CYP19A1, it is expressed in undifferentiated human ES cells and this 

expression is further up-regulated throughout the treatment. What has been previously 

described as the placental-specific isoform, driven from an ERV LTR promoter, starts 

to be expressed from day  6 onwards of the differentiation process. Expression from 

this LTR-based promoter only  accounts for 10-15% of total expression at the 8 day 

time-point. Based on RNA-Seq data, a novel third exon is observed between the 

expressed first exon and the non-expressed second exon. This novel isoform seems to 

have an expression pattern similar to the placenta specific one (Figure 4.27).

Day 0 negative strand

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand

Figure 4.27 : The RNA-Seq peak profile of EDNRB.
The gene gets up-regulated during differentiation. While the gene is expressed (albeit 
at a lower level) in undifferentiated human embryonic stem cells, the placenta specific 
isoform is only expressed from day 6 - 8 onwards.
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Figure 4.28: An enlarged view of the RNA-Seq expression profile of EDNRB gene 
at day 8 timepoint.
The box on the right shows the exon responsible for the placenta specific isoform 
under the regulation of the LTR promoter. In accordance with published data this 
isoform is expressed at around 10 - 15% of the total transcripts (based on peak 
height). The third isoform (which does not have a RefSeq annotation) shows a similar 
pattern as the placenta specific one, and its unique exon is shown in the box on the 
left. 
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4.12.5 PTN (Pleiotrophin)

PTN gene has an HERV-C family LTR region, which acts as a placenta-specific 

alternative promoter producing a different isoform (Schulte, Lai et  al. 1996) . Based 

on RNA-Seq, PTN is highly up-regulated during differentiation. The placenta-specific 

isoform is highly expressed at day  8, but there also is expression in undifferentiated 

human ES cells albeit at  a much lower level. The RNA-Seq data also indicates the 

presence of another novel exon, which is not annotated in either the RefSeq or UCSC 

tracks. This is absent in day 0 and the early days of differentiation but starts to get 

expressed at day 6 and onwards (Figure 4.29) and, interestingly, the new exon is 

actually an expressed LTR  - ERV1 element.

Day 0 negative strand

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand

Figure 4.29: The RNA-Seq expression profile of PTN gene.
It gets highly up-regulated during differentiation. Novel exon is highlighted.
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Figure 4.30 : A magnified view of the novel exon, with an LTR footprint of PTN 
gene found by RNA-Seq.
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4.13 Novel transcribed regions (NTRs) active during trophoblast 
differentiation

One of the advantages of RNA-seq over other gene expression detection methods is 

that it provides an unbiased view of the transcriptome and thus has the opportunity to 

identify transcripts not defined previously. This feature is particularly  important in the 

context of the cell type I was analyzing as the early human trophoblast has not been 

fully  transcriptionally explored before.  For this reason I spent some effort in trying to 

identify and characterize novel transcribed regions (NTRs). NTRs are defined as 

expressed regions in the genome that do not have any valid RefSeq annotations (see 

Methods for details). NTR detection was done for all five samples.

Time point Total NTRs
Total mapped 
reads to the 

genome.

NTRs per million 
mapped reads

Day 0 556,207 42,845,342 12,981.74
Day 2 1,074,476 42,203,140 25,459.62
Day 4 1,144,784 40,421,804 28,320.95
Day 6 1,007,134 40,218,029 25,041.85
Day 8 975,546 40,174,214 24,282.89

Table 8: Total Novel Transcribed Regions (NTRs) identified from each sample.
Showing NTRs per million mapped reads normalizes the total NTRs to the 
sequencing depth.

Table 8 shows the total NTR counts for each sample, and the total NTRs per million 

mapped reads to normalize for sequencing depth.  The main pattern which stands out 

from the above dataset is the increase of total NTRs from day 0 to day  2. This 

increase is maintained throughout the time-course. The increase of total NTRs from 

day 0 to day 2 is 196% while the increase from day 0 to day 8 is 187%. Almost 

doubled increase in NTRs in the differentiated cells fits with my hypothesis that 
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unbiased transcriptomic analysis of the trophoblast lineage would uncover greater 

novelty over the more extensively explored embryonic stem cell transcriptome.
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Figure 4.31: Distribution of NTRs per million reads during treatment.
There is a marked increase in NTRs during the initial stages of treatment (day 0 to 
day 8) and the total NTR number remains at elevated levels throughout the treatment.
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Figure 4.32: Distribution of the size of known exon from RefSeq.
The distribution is skewed to the left  but the exon counts are maintained even beyond 
1000 nucleotides. Note that the logarithmic scale is used for the Y axis and only exons 
less than 2000 nucleotides are represented in the histogram for clarity.
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Figure 4.33: Distribution of size in novel transcribed regions in day 0.
The size distribution follows a logarithmic decrease as the size of the NTR increases. 
Note that the logarithmic scale is used for the Y axis. Clearly  the NTR distribution 
differs from that of RefSeq exons.

Since NTRs could be assumed to be potential unannotated exons, one would assume 

that the NTR distribution would follow the same distribution as that of RefSeq exons. 

Therefore I first studied  the distribution of RefSeq exon size (Figure 4.32), which 

peaks at around 150 - 250 nucleotide. While the RefSeq distribution is skewed to the 

left, there are a significant number of exons which are larger than 1000 nucleotides. 

This is significantly different from the length distribution of NTRs which peaks at the 

smallest size bin (Figure 4.33). The highest number of NTRs belong to the very  short 

0 to 50 nucleotide range and counts gets exponentially reduced as the NTR length 

increases. In contrast to the RefSeq known exon distribution which contains a 

considerable number of exons more than 1000 nucleotides long, there seem to be very 

few NTRs of that size. And there seems to be quite a high number of NTRs which are 

of smaller size (100 nucleotides or less).
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Distribution pattern of NTR length remains unchanged during treatment, all time 

points share the same histogram shape. However, the rapid increase in NTRs due to 

treatment is reflected in the read counts, where all size bins show a considerable 

increase between day 0 and day 2.

Range day 0 day 8 Fold Change (8D / 0D) Increase %
0 - 50 419367 709193 1.69 169

50 - 100 102981 202784 1.97 197
100 - 150 20424 39536 1.94 194
150 - 200 6562 12033 1.83 183
200 - 250 2761 5109 1.85 185
250 - 300 1456 2498 1.72 172
300 - 350 827 1415 1.71 171
350 - 400 502 841 1.68 168
400 - 450 368 577 1.57 157
450 - 500 215 384 1.79 179
500 - 550 164 263 1.60 160
550 - 600 130 198 1.52 152
600 - 650 95 149 1.57 157
650 - 700 64 114 1.78 178
700 - 750 54 77 1.43 143
750 - 800 40 69 1.73 173
800 - 850 24 53 2.21 221
850 - 900 31 39 1.26 126
900 - 950 24 27 1.13 113

950 - 1000 14 22 1.57 157
Table 9: Comparison of NTRs of difference sizes between day 0 and day 8.
There is a clear up-regulation of NTRs on all size bands. Note that only NTRs of less 
than 1000 nucleotides are shown for clarity.
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NTR Range day 0 day 2 day 4 day 6 day 8
0 - 50 419367 777948 820404 720453 709193

50 - 100 102981 225709 243633 218154 202784
100 - 150 20424 44070 49552 42624 39536
150 - 200 6562 13412 15516 13019 12033
200 - 250 2761 5633 6427 5464 5109
250 - 300 1456 2799 3372 2756 2498
300 - 350 827 1561 1917 1537 1415
350 - 400 502 984 1156 921 841
400 - 450 368 602 739 602 577
450 - 500 215 418 507 388 384
500 - 550 164 318 350 266 263
550 - 600 130 231 264 221 198
600 - 650 95 166 200 153 149
650 - 700 64 115 152 107 114
700 - 750 54 89 100 92 77
750 - 800 40 84 98 58 69
800 - 850 24 56 71 61 53
850 - 900 31 44 51 41 39
900 - 950 24 38 36 38 27
950 - 1000 14 33 38 22 22
1000 - 1050 9 21 31 27 22
1050 - 1100 23 25 21 24 25
1100 - 1150 9 13 22 18 16
1150 - 1200 9 11 26 15 20
1200 - 1250 10 12 13 9 12
1250 - 1300 13 10 14 11 10
1300 - 1350 6 12 8 9 13
1350 - 1400 3 6 6 8 11
1400 - 1450 4 4 5 7 11
1450 - 1500 2 11 11 1 5
1500 - 1550 2 5 8 5 4
1550 - 1600 0 3 4 4 0
1600 - 1650 3 7 5 1 1
1650 - 1700 0 2 2 1 0
1700 - 1750 1 3 3 0 2
1750 - 1800 2 3 1 2 2
1800 - 1850 1 0 2 1 1
1850 - 1900 0 2 3 1 2
1900 - 1950 1 1 0 0 0
1950 - 2000 2 3 0 2 2

Table 10: NTR counts of all the treatments divided into size bands of 50 
nucleotides. 
For clarity only NTRs less than 2000 nucleotides are shown. As observed in the total 
NTR counts, there is a marked increase in NTR in day 2 compared to day 0.
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During the discovery  of novel transcribed regions, it was believed that most NTRs 

would be either new exons of known genes, or exons from totally  novel genes. While 

NTR counts and the distribution of length of NTRs support the potential existence of 

new transcripts and new exons, the presence of large numbers of very small NTRs 

appeared to be a mystery.

4.14 Identification of Novel transcripts

The potential for identification of novel transcripts, presumably found in a subset of 

the NTRs, was one of the reasons RNA-Seq was applied in this study. The novel 

nature of the cell type caused by the SU5402+BMP4 differentiation creates the 

possibility of identifying new genes / exons which have not been described 

previously.

The strategy  I used to identify novel transcripts from NTR data is fully  described in 

the materials and methods section. Briefly, to be identified as a cluster of exons 

contributing to a new gene, the NTRs had to be significantly  expressed (on average 5 

reads per base) and exist away from any know exon / gene footprint but significantly 

close with each other (less than 10,000 nucleotides). Samples from Day 0 

representing human embryonic stem cells and Day 8 representing the most 

differentiated time-point were used for the novel transcript discovery.

The novel transcript discovery pipeline identified 741 potential novel transcripts in 

Day 0 and 701 potential novel transcripts in Day  8. Out of these 367 were present in 

both the undifferentiated hESC and the 8 day differentiated trophoblast.
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To further study theses novel transcripts their distribution of average exon length was 

observed. It became evident that the majority  of potentially novel transcripts had an 

average exon length less than the 110 - 120 nucleotides found to be the average size 

RefSeq exons. This potential novel transcript exon size distribution was similar to the 

length distribution in the total NTR set where the majority of NTRs were less than 

100 nucleotides. 

Figure 4.34: The distribution of the average exon length of the potential novel 
transcripts.
The distribution is skewed showing a bias towards exon lengths less than 100.

121



4.14.1 Interference of the novel transcript discovery by processed pseudogenes

While looking at the footprints of the potentially novel transcripts, it  was observed 

that a considerable number of them had overlaps with footprints with processed 

pseudogenes. Though one hypothesis could be that these represented expressed 

processed pseudogenes, this should not be the case as the definition of a processed 

pseudogene is that it contains no introns. Thus there should not be multiple peaks but 

only a single peak detected from a processed pseudogene; I detected multiple, small 

(50-60 base window) peaks. A sequence search indicated that  the footprint of these 

peaks were the same as the exon - exon junctions of the parental gene from where the 

pseudogene originates. This implies that these reads are actually  from the parental 

gene transcript but they get  mapped to the processed pseudogene than the actual exon 

- exon junction as the aligner favors alignment without gaps like in the intron between 

the exons. This leads to the creation of small peaks outside the footprints of known 

genes and located in pseudogene regions, which are then (incorrectly) identified as 

NTRs. This explains the unexpected high number of short NTRs observed. Since the 

processed pseudogene contains sequences to all the exon - exon junctions, these small 

RNAs exists as groups representing all the exon - exon junctions of the active 

transcript, thereby falsely showing as a new transcript. For an example please see the 

explanation below.

1. Observation: Presence of short peaks (less than ~100 nucleotides), often in groups 

(mostly  two but can be more). In most cases (such as in this) they are on an annotated 

processed pseudogene footprint shown in blue. 
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2. When a sequence search of the annotated processed pseudogene (in blue) is done 

using a UCSC blat search, the second hit is the gene  AHCY, which is the active 

counterpart of the pseudogene. (The first hit  is the processed gene itself). 

Visualization of the blat result is shown below. The first track is the RefSeq 

annotation and the blat alignment of the processed pseudogene is shown as the second 

track. Note the alignment with only  the exons - a characteristic of a processed 

pseudogene.

3. When the sequence of the footprint of the first peak is used to search the human 

genome (same as above) it results in the following location. The sequence match is 

shown in black. Note that the sequence of the small peak footprint is identical to a 

junction region of the AHCY gene. Therefore the conclusion is that the small peaks 

in clusters originate from the junction reads of active genes.
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This observation clearly explains the high number of short NTRs which were then 

removed from the dataset and the novel transcript identification was repeated.

It has been reported that  LINE-1 repeat elements have the ability to create 

pseudogenes (Esnault, Maestre et al. 2000) and that they are active in human ES cells 

(Garcia-Perez, Marchetto et al. 2007). Therefore the ‘noise’ created by pseudogenes in 

RNA-Seq experiments should be monitored and removed. This observation would be 

quite useful for the RNA-Seq community as it introduces a source of false positives in 

an RNA-Seq experiment and because it  leads to an under estimation of read counts of 

genes which have pseudogenes, by taking away their junction reads. 

Even after removing the small NTRs, all the patterns of NTR such as the marked up-

regulation of NTRs during the start of the differentiation remains the same.

4.14.2 Novel transcripts discovered from RNA-Seq data after removing 
interferences by pseudogenes

Identification of the above mentioned phenomenon which created false positive peaks 

due to exon - exon junctions was a disappointment as it brought down the total 

number of novel transcribed regions and thereby novel transcripts in each sample. 

Despite this, after removing NTRs which are less than 120 nucleotides in length (the 

ones which are most likely  be mapped to exon-exon junctions of pseudogenes) and re-

running the novel transcript discovery pipeline, 260 potentially novel transcripts from 

day 0 and 272 transcripts from Day 8 were identified. A subset of these were validated 

by PCR, cloned and sequenced. Some of the examples are described below.
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4.15 Examples of identified and validated novel transcripts

The sequences of the novel transcripts 1 - 8, which were obtained by PCR and cloning 

are given in appendix II.

4.15.1 Novel transcript 1 (chr1:63,559,143 - 63, 560, 695)

As can be seen in Figure 4.35, there is a novel multi-exonic gene which overlaps 

FOXD3 gene, and is coded by the opposite strand. There are no RefSeq or UCSC 

annotations describing it. However to support the above observation there are valid 

split ESTs (one originating from ES cells) with a shared footprint. FOXD3, being a 

major pluripotency  factor, is inhibited immediately  upon treatment, and interestingly 

the novel gene has exactly the same expression pattern, suggesting that there may be a 

functional relationship  and co-regulation, between the two, potentially through a 

bidirectional promoter.

This novel transcript does not have a valid open reading frame starting form AUG 

( but does have a 405 nucleotide coding sequence beginning from UUG). Therefore it 

is most likely a non-coding transcript. Novel transcript 1 was validated by PCR, 

cloning and sequencing.
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Figure 4.35: The novel gene next to FOXD3.
The peaks belonging to FOXD3 is shown highlighted in red while the peaks of the 
novel gene is shown in blue.

FOXD3 peaks

Novel gene

Day 0 positive strand

Day 0 negative strand
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4.15.2 Novel transcript 2 (chr7:100,729,591-100,731,304)

This new transcript was identified in the undifferentiated hESC sample. It is down-

regulated immediately upon differentiation (maximum peak height of 105 in day 0 

goes down to 2 in day 2). There is a LINE element which has an overlap  with this 

transcript thus suggesting that this transcript originated from a LINE insertion. This 

has an open reading frame of 447 nucleotides. Novel transcript 2 was validated using 

PCR, cloning and sequencing.

Figure 4.36: RNA-Seq peak profile of the novel transcript 2. 
Only the positive strand of Day 0 is shown for clarity.
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4.15.3 Novel transcript 3 (chr7:100,738,332-100,740,838)

This novel transcript  shows a down-regulation during the trophoblast differentiation 

but does not show a rapid suppression upon treatment compared to novel transcript 2. 

It has a maximum peak height of 213 in day  0, which goes down to 14 in day 8. This 

does not have a RefSeq annotation, and UCSC only has a putative annotation, and 

reports that it is from an IMAGE clone. It should be noted that based on RNA-Seq 

data there appears to be an additional exon on the 3’ side of the transcript. The 

transcript does have an open reading frame and appears to be originating from a LINE 

insertion based on the LINE sequences found on the base of both exons. This novel 

transcript has been validated by PCR, cloning and sequencing.

Day 0 positive strand

Day 0 negative strand

split EST track

Figure 4.37: RNA-Seq profile of the novel transcript 3.
The three potential exons are shown in boxes. There is no RefSeq transcript for this, 
but there is an incomplete UCSC annotation which excludes the last exon on the 3’ 
end.
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4.15.4 Novel transcript 4 (chr17:34,456,005-34,462,831)

This novel transcript is human ES specific. It does not have a RefSeq annotation, and 

has only  an incorrect  UCSC annotation. The footprint of this transcript is supported 

by split ESTs. The 5’ exon appears to be originating from an LTR region.

Day 0 positive strand

Day 0 negative strand

split EST track

Figure 4.38: RNA-Seq peak profile of the novel transcript 4.
The two exons are enclosed in black boxes and the LTR region which overlaps the 
first exon is shown within the red box.
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4.15.5 Novel transcript 5 (chr19:44,838,393-44,843,124)

This transcript originally did not have a RefSeq annotation or a UCSC annotation. Its 

existence is supported by  split - human ESTs  with placental origins. This transcript is 

expressed only  at later time points (day 6 and day 8) during differentiation implying 

that it might be important in trophoblast differentiation. PCR validation and 

sequencing proved the existence of the four exons. The latest version of UCSC 

browser shows this gene as LGALS16 supported by  a publication (Than, Romero et 

al. 2009) which reports that its placenta specific. While this takes away the novelty  of 

this transcript, this proves the effectivity of the differentiation protocol for inducing 

this transcript and the transcript detection pipeline for identifying it.

Day 0 positive strand

split EST track

Day 2 positive strand

Day 4 positive strand

Day 6 positive strand

Day 8 positive strand

Figure 4.39:  The UCSC view of the novel transcript 5.
The expression begins late at day 6. There are split ESTs supporting it.
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4.15.6 Novel transcript 6 ( chr13:99,536,264-99,539,117)

This transcript is expressed during the entire differentiation but shows a significant 

down-regulation through the course of differentiation. It does not have RefSeq or 

UCSC annotations, but is supported by split ESTs. 

The gene PCCA (Propionyl CoA carboxylase, alpha polypeptide) is just next to this 

transcript and is coded by the opposite strand, thereby suggesting that both transcripts 

could be regulated by a bi-directional promoter. PCCA has a similar expression 

pattern to this novel transcript. Novel transcript 6 was validated using PCR, cloning 

and sequencing.

Day 0 positive strand

Day 0 negative strand

split ESTs

Figure 4.40: UCSC view of the novel transcript 6.
Note that the novel transcript  is expressed from the negative strand (right to left), 
while the PCCA gene is expressed from the positive strand (left to right). The 
proximity of these two transcripts, common expression pattern and their orientation 
suggests the regulation through a bi-directional promoter.
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4.15.7 Novel transcript 7 (chr13:90,577,939-90,644,334)

This transcript is specific for the day 8 time-point of trophoblast development. Its 

footprint is quite long, and does not have RefSeq or UCSC annotations. However it is 

supported by EST data including one originating from embryonic trophoblast. 

Expression of this transcript begins at day 4 at  a maximum peak height of 34 and 

increase up to 140 in day 8. Novel transcript  7 was validated using PCR, cloning and 

sequencing.

Day 0 negative strand

split EST track

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand

Figure 4.41: RNA-Seq peak profile of the novel transcript 8.
This transcript gets up-regulated during trophoblast  differentiation. Three exons 
which make up the transcript as identified by PCR and sequencing is shown within 
the boxes. Additional peaks in the surrounding suggest that  there could be additional 
transcripts originating from this locus.
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4.15.8 Novel transcript 8 (chr10:54,432,626-54,459,840)

This transcript is composed of three exons and has no RefSeq or UCSC annotations. 

Based on the RNA-Seq data it is up-regulated throughout the differentiation. Its 

existence is supported by a human EST which has a fetal origin. Expression of this 

transcript starts at day 2 and gets up-regulated during the course of the differentiation. 

There is no clear open reading frame. Novel transcript 8 was validated using PCR, 

cloning and sequencing.

Day 0 negative strand

split EST track

Day 2 negative strand

Day 4 negative strand

Day 6 negative strand

Day 8 negative strand

Figure 4.42: RNA-Seq peak profile of novel transcript 8. 
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4.15.9 A cluster of new transcripts (chr7:100,728,243 - 100,742,923)

Day 0 positive strand

Figure 4.43: A cluster of novel transcripts identified by RNA-Seq.

A cluster of three novel transcripts expressed at day 0. They do not have RefSeq 

annotations, and only the transcript on the extreme left has a partial UCSC annotation. 

This cluster was validated using PCR, cloning and sequencing. 

134



4. 16 Expression of retroviral related elements in the genome during 
trophoblast differentiation

Even after the removal of small NTRs formed by  junction reads of active genes (i.e. 

exon exon junctions of processed pseudogenes), the number of NTRs present in the 

sample were still considerable. When NTRs longer than 150 nucleotides are 

considered, there are 6,562 NTRs in day 0 and 12,033 NTRs in day 8. Among these, 

3,151 NTRs in day  0 and 2,976 NTRs in day  8 contribute to potential novel 

transcripts. This leaves 3,411 NTRs in day 0 and 9,057 in day 8 unaccounted for. The 

significant increase (almost threefold) of NTRs from day 0 to day 8 suggest  that these 

NTRs might serve a biological purpose. To study this, the locations of these NTRs 

were analyzed. From an initial manual analysis of some of these NTRs it became 

apparent that many of  these were derived from short interspersed nuclear elements 

(SINEs), long interspersed nuclear elements (LINEs), and long terminal repeat (LTR) 

elements of the genome, in other words, the “dark matter” of the genome. Indeed, it 

turns out that a majority  (Table 11) of these NTRs were derived from these repetitive 

elements. 

To study the expression of these elements during differentiation, all SINE, LINE and 

LTR elements which do not fall within any known RefSeq footprint was identified 

and their expression based on RNA-Seq read counts were analyzed. The following 

table shows the summary  of the counts. Based on the read counts it  is clear that both 

SINE and LINE elements show an increase during differentiation.
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Repeat Type Day 0 Day 2 Day 4 Day 6 Day 8
SINE
LTR
LINE

315 674(684) 734(777) 656(701) 557(593)
269 269(284) 261(276) 247(263) 237(252)
241 459(465) 558(590) 449(478) 417(444)

Table 11: The number of SINE / LINE / LTR elements which show expression 
during day 0 - day 8 based on uniquely mapping reads. 
An element is considered expressed only if on average it has a read count of 4 per 
base. The number enclosed in brackets are values normalized for the sequencing 
depth.

Since SINE, LINE and LTR elements all have different subcategories, their 

expression dynamics  were further analyzed to see if there was any sub-type specific 

expression. The tables containing the number of expressed elements belonging to a 

particular category and graphs showing their expression pattern are shown in Figures 

4.44, 4.45 and 4.46. Overall, this shows that the trophoblast differentiation causes a 

clear increase in all sub categories of SINE and LINE elements and the highest 

increase is between day 0 and day  2 - the start of the treatment. As far as the LTR 

elements are concerned, despite the reduction in total expressed elements, three out of 

four subcategories - namely ERVL, ERVK and MaLR show a distinct increase in 

expressed elements at the start of differentiation, and the increase is maintained 

throughout the differentiation.

4.16.1 Specificity of reads mapping to the repeat elements

The notion that all the repeat regions in the genome have similar sequences and 

therefore are unable to provide unique read mapping surfaces is untrue. Detection by 

hybridization is problematic but sequence-based detection is possible. While the 

repeat regions originally inherits a particular primary structure based on it's type and 
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class, it gets rapidly altered due to point mutations. And since different repeat regions 

acquire different mutations their sequences become unique. however it should be kept 

in mind that this process requires time and that the most recently integrated repeats 

would not show a sequence diversity as shown by the more mature ones.

RNA-Seq has been designed from ground up to identify  all expressed regions 

including ones that arise from repeat regions while preventing non-specific binding. 

Firstly the reads which map to more than one location with the same score are 

discarded and not used in counting. These discarded reads could come from expressed 

repeat regions which have not yet accumulated enough point mutations to become 

truly  unique. Secondly a read is considered to be uniquely aligned only if the 

difference between it's best alignment score and the second best is more than four. 

This too prevents non specific binding.

All the data on the expressed repeat  regions reported in this thesis have been obtained 

by the same alignment criteria used for the rest of the genome (as described in the 

methods section and as highlighted above). This results in the rejection of large 

number of reads arising from expressed regions as seen by the huge increase of reads 

in the multi mapped track compared to that of the uniquely mapped. Therefore the 

extensive expression of repeat regions reported in this thesis is not a result of mis 

aligned reads and in fact the reported repeat expression is an underestimate of what 

actually is due to the large number of reads lost  due to the stringent alignment 

process.
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To quantitatively  show the above mentioned point the reads mapping to introns and  

coding sequences were compared with the reads mapping to repeat regions. The data 

is summarizes in table 12.   

Description # of regions Average reads 
per base

Introns of genes with one known isoform 118432 0.07

SINE , LINE , LTR elements with at least 4 reads per base 1211 10.4

All RefSeq exons with at least 4 reads per base 4079 10.1

NTRs with 5 reads per base with 60 bases or more overlap 1530 16.0

Table 12: Statistics of reads mapping to repeat elements, introns and exons of 
day 8 sample.

As can be seen in the table the average reads mapping per base in known eons and the 

repeat regions are almost the same while the reads mapping to the introns is 

negligible. Looking at the novel transcribed regions which arise from a repeat region 

and go beyond it's footprint, the average reads per base number goes higher even than 

that of known exons to 16. 

This clearly  demonstrates that  the reported expressed regions are indeed real and that 

the cutoff used to identify the expressed ones is comparable with that of known exons.
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Expression of SINE elements during trophoblast differentiation

Repeat TypeDay 0Day 2Day 4Day 6Day 8
MIR 265 586 647 572 12
Alu 50 88 87 84 12
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Figure 4.44: Number of expressed SINE elements during trophoblast 
differentiation. 

139



Expression of LINE elements during trophoblast differentiation

!

./!

0!!

#/!

$!!

1'()

*+,-! *+,-" *+,-# *+,-$ *+,-%

Repeat TypeDay 0 Day 2 Day 4 Day 6 Day 8
L2 128 250 317 230 225
L1 85 151 187 158 134
CR1 21 41 37 45 44
RTE 7 17 17 16 14

0

100

200

300

400

L2
0

50

100

150

200

L1
0

5

10

15

20

RTE
0

13

25

38

50

CR1

Figure 4.45: Number of LINE elements expressed during trophoblast 
differentiation.
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Expression of LTR elements during trophoblast differentiation

Figure 4.46: Number of LTR regions expressed during trophoblast 
differentiation.
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4.17 Distribution of expressed repeat regions in the genome

Once it was observed that the SINE, LINE and LTR elements are expressed 

throughout differentiation the location of these expressed elements were studied to see 

if they are spread throughout the genome or localized to a particular area. A Circos 

diagram (http://mkweb.bcgsc.ca/circos/) (Krzywinski, Schein et al. 2009) (Figure 

4.47) shows that the expressed SINE, LINE and LTR elements are found everywhere 

in the genome and that they show considerable differential expression.
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Figure 4.47: A circular chromosomal image (generated by circos software) 
showing the expression of LINE, SINE and LTR elements. 
The chromosomes of the genome is shown in each of the segments of the outermost 
circle. Each concentric circle is a scatterplot showing the expression level of the 
particular element in the y axis. The two outer most rings / charts show the expression 
based on the multi map read counts, while the next two tracks show the expression 
based on the unique read counts. The innermost track shows the differential 
expression based on the unique counts (Red - Up-regulated, Green - Down-regulated). 
The objective of this diagram is to show that the expression of SINE, LINE and LTR 
elements are widespread throughout the genome.
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Figure 4.48: The track showing differential expression of the repeat elements 
(day 0 vs day 8). 
This is the SLR (Signal log ratio, which is the log2 of fold change) track from the 
previous figure. The red markers showing up-regulation and green showing down-
regulation shows clearly that the repeat elements are differentially  expressed during 
differentiation.
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4.18 Retroviral elements acting as new exons of known transcripts 
during trophoblast differentiation

To gauge the influence of retroviral elements in gene expression, a proximity study of 

the expressed retroviral elements to known genes was carried out. A retroviral element 

was considered as a potential new exon of a gene if it was found to be within 10, 000 

bases of a gene footprint. There were 86 such cases in day 0 and 259 cases in day 8. 

This threefold increase from day 0 to day 8 further suggests that LTR elements do 

have a significant biological role in trophoblast differentiation. 

4.18.1 CLDN4 (Claudin 4)

CLDN4 shows a novel exon on its 5’ side which has an annotated LTR footprint from 

the ERV1 subfamily. The new exon is shown in panel 1 of Figure 4.49 and is enlarged 

in panel 2 to show its LTR footprint. The additional exon is not expressed in day 0, 

even though the CLDN4 gene itself is expressed. The new exon is induced by  the 

differentiation, reaching its maxima in day 8. Another novel exon just next  to the 

CLDN4 extension can also be seen. The novel exon and the extension has been 

validated by PCR, cloning and sequencing.
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Figure 4.49: RNA-Seq peak profile of CLDN4 and its novel exons as identified by 
RNA-Seq.
Panel 1 shows the first novel exon and panel 2 shows an enlarged view of that peak 
showing its LTR footprint. 
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Figure 4.50: Enlarged view of the novel exons of CLDN4 identified using RNA-
Seq.
The extension to the original CLDN4 can also be seen. Here only the peaks of day 8 
time point are shown.

New exon 1 New exon 2 CLDN4 gene extension

RefSeq CLDN4
gene footprint
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4.18.2 DHX32 (DEAH (Asp-Glu-Ala-His) box polypeptide 32)

The gene DHX32 gets up-regulated during trophoblast differentiation. Apart  from the 

known exons, the gene seems to have an additional one in the 5’ side and this novel 

exon has an overlap with an LTR element. This observation was validated by PCR.

Exon 1

Exon 1
magnified

Day 0

Day 2

Day 4

Day 6

Day 8

Figure 4.51: The gene DHX32 has a novel exon on its 5’ end (exon 1).
The panel on the right (exon 1 magnified) shows an enlarged view of the same exon 
with the LTR annotations. The peak falls fully on an LTR element which is flanked by 
two LINE elements.
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4.18.3 MYCT1 (MYC target 1)

Based on RefSeq annotation the gene MYCT1 has two exons. Its expression begins at 

day 2 and continues throughout the differentiation. RNA-Seq data indicates that the 

first exon of MYCT1 is not expressed, however there are two novel transcribed 

regions which are on the 5’ side of the transcript, and they share footprints with LTRs. 

The similar expression pattern between MYCT1 and the two NTRs suggests that they 

could be two new exons of MYCT1.

!

Exon 1 Exon 2 Exon 1
magnified

Exon 2
magnified

Day 0

Exon 1 Exon 2

Day 2

Day 4

Day 6

Day 8

Figure 4.52: RNA-Seq profile of MYCT1 and its two novel exons identified by 
RNA-Seq.
There are two new ‘exons’  on the 5’ end of the MYCT1 gene. Both peaks have 
overlaps with LTRs (shown on the left portion of the Figure).
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4.18.4 ZBTB3 (Zinc finger and BTB domain containing 3)

The gene ZBTB3 is down-regulated during trophoblast differentiation. Looking at the 

RNA-Seq data (Figure 4.53) it is clear that  there is an additional exon on the 5’ side of 

the transcript. This transcript is only present in day  0 and therefore can be considered 

as stem cell specific. The footprint of the new exon is derived from an LTR element. 

This has been validated using PCR. 

Interestingly  this LTR has been reported to recruit NANOG in ES cells (Kunarso, 

Chia et al. 2010) which hints at a co-regulation mechanism between the expressions 

of this novel exon and NANOG.

Exon 1
Exon 1

magnified

Day 8

Day 6

Day 4

Day 0

Day 2

Figure 4.53 : RNA-Seq peak profile of ZBTB3 and its ES specific novel exon.
The gene ZBTB3 has a novel exon on its 5’ end which has a complete overlap with an 
LTR element (ERV1 subfamily)
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4.18.5 SCGB3A2 (Secretoglobin, family 3A, member 2)

SCGB3A2 is down-regulated during trophoblast differentiation. RNA-Seq indicates 

that the first exon of the transcript is hardly  transcribed (has low number of reads 

aligned to it) and that there is a novel exon, which has originated from an LTR region 

and expressed at  a similar level to the gene.  Expression of the novel exon and the 

skipping of the RefSeq 1st exon which contains the original start codon, suggest that 

the SCGB3A2 protein structure could be affected.  PCR results showed that the NTR 

is indeed a novel exon of SCGB3A2.

Exon 1 Exon 1 magnified

Day 6

Day 4

Day 0

Day 8

Day 2

Figure 4.54 :RNA-Seq peak profile of SCGB3A2 and its novel exon identified by 
RNA-Seq.
SCGB3A2 gene has one new exon on its 5’ side which has an LTR footprint.
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4.19 Genes which show a change in their splicing profile during 
trophoblast differentiation

Transcriptomic dynamics of any system cannot be exclusively described based on the 

expression level of genes. To sufficiently study a transcriptome, the alternate splicing 

events needs to be described together with gene expression. Alternative splicing 

events are quite common in the transcriptome (Wang, Sandberg et al. 2008) and they 

are reported to be important in regulating developmental processes (Kanadia and 

Cepko 2010).

If the splicing occurs in a protein coding region then it could influence the biological 

function of the protein. On the other hand, if the splicing is restricted to an 

untranslated region then the postranscriptional regulation of the transcript could 

potentially be affected. 

A comprehensive study  on the alternative splicing events during early  development 

has not been done before, mainly due to the limitations of microarray technology. 

Therefore the alternative splicing detection workflow (as described in Results 1 

section) was written to identify  alternative splicing events leveraging on RNA-Seq 

data which provides expression information of the entire gene.

Based on the alternative splicing detection workflow, 385 genes which show a change 

in their alternative splicing profiles were identified. The criteria used were that both 

exons showing the splicing should have a read count of more than 10 and that they 

should show a three fold or more differential change in the two exons (i.e. fairly 
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stringent criteria). Based on results, the workflow identified standard alternative 

splicing events, mutual exon splicing events and also alternative start  / stop sites.

 

4.19.1 Mutual exclusive splicing of Fibroblast growth factor receptor 2 (FGFR2)

One of the most striking examples of alternative splicing was found in the fibroblast 

growth factor receptor 2 (FGFR2) which happens to be mutually exclusive. Data 

shows that there is a shift  of expression from the 8th exon of FGFR2 transcript variant 

1 (NM000141.4) to the 8th exon of FGFR2 transcript variant 2 (NM022970.3), when 

comparing day 0 and day 8 samples (i.e. a shift from exon IIIc to IIIb). It  has been 

reported that the FGFR2 - IIIb isoform is specific to epithelial cells and the IIIc 

isoform is specific to mesenchymal lineage (Orr-Urtreger, Bedford et al. 1993). 

Therefore this observation clearly shows the transformation of stem cells into an 

epithelial lineage. Furthermore, ESRP1 and ESRP2, which are epithelial cell type-

specific splicing regulators of FGFR2 (Warzecha, Sato et al. 2009), are up-regulated 

during the early stages of differentiation (day 2 and day 4), which are the time points 

where the flip in the mutual exclusive isoforms takes place. 
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Figure 4.55: Mutual exclusion of FGFR2 exons.
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4.19.2 Mutual exclusion splicing of dynamin 2 (DNM2)

Similar to that of FGFR2, Dynamin 2, also shows a mutual alternative splicing 

between its  10th exon of isoform NM_001005361.1 and the 10th exon of isoform 

NM_004945.2.

Figure 4.56: RNA-Seq peak profile of DNM2.
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4.19.3 Alternative start exon in guanine nucleotide binding protein (G protein), 
alpha stimulating activity polypeptide (GNAS)

The alternative splicing detection workflow also picks up genes which change their 

transcription start sites by ‘dropping’ exons. GNAS shows such a change in expression 

where it shifts the expression from transcript variant 4 (NM_080425.2) to transcript 

variant 2 (NM_016592.2). It should be noted that based on RNA-Seq data, the 

opposite strand also show some expression at day-0.

Figure 4.57: RNA-Seq peak profile of GNAS.
Panel A shows the profile of the full gene and Panel B shows the enlarged footprints 
of the two start exons. While the expression of one start exon goes down, the other 
start exon’s expression level goes up suggesting a change in isoforms and start exon 
usage.
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4.19.4 GATA binding protein 2 (GATA2)

GATA2 is reported as an important regulator of trophoblast  specific gene expression 

and placental function (Ma, Roth et al. 1997). GATA2 is one of the highest up-

regulated genes in both the RNA-Seq trophoblast differentiation (150 fold) and in 

human blastocyst development (Zhang, Zucchelli et al. 2009) . Up-regulation of 

GATA2 is immediate upon differentiation by SU5402 + BMP4 as can be seen by the 

RNA-Seq peak profile in Figure 4.58. This immediate up-regulation can, in part, be 

explained by the fact that this gene is a known BMP4 target.

Based on RefSeq annotation, GATA2 has three isoforms that differ from each other by 

use of different transcription start sites leading to three unique first exons. The 

translation start site resides in exon 2. This alternative promoter use has been 

conserved between the chick and human (Nony, Hannon et al. 1998; Pan, Minegishi 

et al. 2000), at least for the most distal and proximal promoters. Analysis of my  RNA-

Seq data indicates that during differentiation, the most proximal promoter (producing 

transcript NM 001145662.1) is expressed first, identifiable in the day 2 data, and at 

around day  6, expression is evident from both the proximal and distal promoter 

(transcript NM  032638.4) (Figure 4.58). There is a Smad responsive element 

immediately adjacent to the proximal promoter of GATA2 (Karaulanov, Knöchel et al. 

2004). This could explain early  activation of the GATA2 isoform corresponding to the 

proximal promoter as Smad7 is expressed and up-regulated throughout the 

differentiation. The presence of a GATA2 binding site at  the distal promoter might 

explain the expression of the alternative isoform.
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This observation suggests of an instance where a gene is regulated by two promoters, 

one inducing the expression while the other maintaining it. This dynamic switch in 

GATA2 promoter use has not been previously described. This example represents the 

power of combining a comprehensive transcriptomic analysis (i.e. RNA-seq) with a 

developmental time-course to provide insight into developmental mechanism.

In addition, RNA-Seq data indicates that there is a novel transcript which is 

transcribed by the opposite strand but which overlaps with the 5’ portion of the 

GATA2 gene (Figure 4.58), and that it has a similar expression pattern to GATA2 (i.e. 

not expressed in day 0, and gets induced during differentiation).
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Figure 4.58: RNA-Seq peak profile of GATA2.
It gets induced during day 2 and keeps on being up-regulated. Initially a short 
transcript is expressed and around day 6 a longer transcript is transcribed.
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Figure 4.59: Different isoforms of GATA2 expressed at day 8.
At day 8, the shortest and the longest isoform of the GATA2 gene is expressed, and 
the third isoform is not. The above Figure shows the junction reads (in green), which 
joins the exons together. The junctions marked with a blue dot represent the exon - 
exon connections of the longer isoform, while the junctions marked with the black dot 
originates from the shortest isoform. In day 2, only  the junction reads from the shorter 
isoform can be seen.
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Figure 4.60: The novel transcribed region next to GATA2.
The GATA2 peaks are highlighted in blue and the novel transcribed region / transcript 
is shown in red. There is considerable overlap between the two (but coded by 
different strands) and the new transcript has a similar expression pattern to that of 
GATA2.
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4.20 Identification of novel exon - exon junctions based on RNA-Seq 
data

As described in the methods section, the mapreads aligner identified reads mapping to 

exon - exon junctions of known transcripts. This is done through aligning reads 

(which have not been aligned during the genomic alignment phase) to a sequence 

database which represents all the exon - exon junctions of RefSeq transcripts 

including the novel exon - exon junctions. 

The reads which map to exon-exon junctions are important as they act as markers 

indicating that the two exons which makes up a particular junction are connected (i.e. 

spliced in) with each other. Therefore if in a given gene, there is a significant number 

of reads mapping to a novel exon - exon junction (i.e the splice junction is not 

described in RefSeq but the exons which contribute to it are) then it  could be used as 

an indicator to show that there is a new isoform of that particular gene.

I wrote a pipeline to exploit this dataset which predicts novel exon-exon junctions of 

all the genes in RefSeq. To increase the accuracy of the method, only  the reads which 

are highly  specific for the novel junction were used. Based on the results of this 

workflow which used data from all time points, there were 6,205 genes which showed 

12615 potentially novel exon - exon junctions. Among these, there were 253 junctions 

which had at-least 10 reads mapping to it. Even though on the face of it, 10 reads per 

junction appears to be too stringent it should be noted that the reads used for this step 

of analysis showed the best possible unique alignment and that junction reads have a 

low chance of being aligned on the first place due to the short exon-exon junction foot 

print.
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The main importance of identifying novel exon - exons junctions is that a novel 

junction could completely change the function of the protein. This is demonstrated by 

using the novel exon - exon junctions identified in PTK2 and PAPOLA genes (Figures 

4.61 and 4.62).

Figure 4.61: The novel exon-exon junction of PTK2 identified by RNA-Seq and 
its influence on the protein product. 
For clarity  only the negative strand is shown in the day 8 time point. Note that the 
changes brought about by the novel junction ultimately leads to changing the domains 
contained within the protein.

NM_005607 (PTK2) - original NM_005607 with 4th exon spliced out

Length 1075 a.a 999a.a

Weight 121kDa 111kDa

Isoelc. point 6.42 9.28

Aliphatic Index 81.16 56.04

Amino acid 
composition

Pfam domains

protein kinase domain
alpha / beta hydrolase fold

cystathionine beta synthase domain
aldehyde dehydrogenase

negative regulatory factor
5

Amino acid Count Frequency

Valine (V) 36 0.036

Tryptophan (W) 23 0.023

Tyrosine (Y) 27 0.027

Aspartic acid or asparagine (B) 0 0.000

Glutamic acid or glutamine (Z) 0 0.000

Any amino acid (X) 51 0.051

Leucine or isoleucine (J) 0 0.000

1.8 Amino acid distribution histogram

1.9 Annotation table
There are no annotations.

5

Amino acid Count Frequency

Valine (V) 58 0.054

Tryptophan (W) 14 0.013

Tyrosine (Y) 40 0.037

Aspartic acid or asparagine (B) 0 0.000

Glutamic acid or glutamine (Z) 0 0.000

Any amino acid (X) 1 0.001

Leucine or isoleucine (J) 0 0.000

1.8 Amino acid distribution histogram

1.9 Annotation table
There are no annotations.
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Figure 4.62: The novel exon-exon junction of PAPOLA identified by RNA-Seq 
and its influence on the protein product.

NM_032632 (PAPOLA) - original NM_032632 with 4th exon spliced out

Length 1513 a.a 1394 a.a

Weight 170 kDa 161 kDa

Isoelc. point 9.52 9.65

Aliphatic Index 90.66 73.48

Amino acid 
composition

Pfam domains
acetyltransferase family

aminotransferase class I and II
type II intron maturase

ring finger domain
HAMP domain
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GENE Chr
Novel Junction (hg 18)Novel Junction (hg 18)

GENE Chr Start End
USP28 chr11 113180979 113184230
PTOV1 chr19 55049613 55052973
FBLN1 chr22 44307709 44321629
ZFP42 chr4 189153989 189157757
PALLD chr4 170082805 170083939
PBX1 chr1 163048011 163057398
FUS chr16 31101487 31103761
FMR1 chrX 146826812 146829787
MYO6 chr6 76675065 76680500
GPBP1L1 chr1 45899485 45924671
COL6A2 chr21 46364920 46367217
YAP1 chr11 101582016 101599563
OSBPL8 chr12 75368900 75405421
SYNGAP1 chr6 33517515 33518644
COBLL1 chr2 165265513 165269200
AP1B1 chr22 28054885 28056367
LTA4H chr12 94920974 94924223
ATP1A1 chr1 116737869 116743565
EPB41L3 chr18 5396968 5400565
RNF213 chr17 75942562 75977568
HISPPD1 chr5 102548345 102554442
DGUOK chr2 74007688 74027354
PTK2 chr8 141943681 141969824
SIN3B chr19 16834371 16835491
PRKCSH chr19 11419434 11419508
CCT2 chr12 68267664 68279910
HMG20A chr15 75500402 75537801
EPB41L3 chr18 5387426 5396776
COL1A2 chr7 93881524 93894256
PLD3 chr19 45546516 45563300
NTRK2 chr9 86474159 86475112
EPB41L3 chr18 5383478 5385066
EMID1 chr22 27941620 27957009
ACTN4 chr19 43888612 43904018
BAT3 chr6 31714983 31715955
PPP4C chr16 29995298 30001306
ZNF664 chr12 123038639 123061881
DMKN chr19 40688729 40692926

Table 13: Genes which have a novel exon - exon junction with more than 20 
reads mapping to it.
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4.21 Extensions to existing annotations at 3’ and 5’

One of the main advantages of RNA-Seq data is that it is not dependent on existing 

annotation. This becomes a great  asset in identifying novel transcriptomic 

phenomena. One such example is the improvement of existing annotations. The 

alignment pattern of the sequenced reads to a particular annotated region in the 

genome can be used to validate the existing annotations and make alterations if 

required. In certain cases the RNA-Seq peaks tends to ‘extend’ beyond the known 

RefSeq annotation boundary, and a workflow was developed to identify these 

extensions in a genome-wide manner.

The pipeline found that there were 1708 internal exons (all exons except  3’ and 5’ 

UTRs) which had an ‘extension’ of 100 base pairs or more on 5‘ and / or 3‘ side in 

day 0. There were 322 genes which had more than 1000bp extensions on their 3’ UTR 

while 20 genes had more than 1000bp 5‘UTR extensions. Based on distribution of 

extensions, it is clear that the 3’ UTR extensions have a longer average length (Figure 

4.63). 

The majority  of target sites of microRNA lies in the 3’ UTR region of the transcripts. 

For this reason the proper annotation of specially the 3’ UTR is vital. This study 

identifies a total of 1,575 kb extensions of 3’ UTR regions with respect to RefSeq 

annotation for the entire genome. This extension region is vital for accurate 

identification of microRNA-target transcript pairs. For example a microRNA - target 

prediction performed using the 3’ UTR extension regions identified here through 

miRANDA prediction algorithm (Enright, John et al. 2003) predicted 1000+ 

additional microRNAs which could bind to NANOG.
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Figure 4.63: Distribution of 3’ and 5’ UTR extensions based on RNA-Seq data.
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4.21.1 A few examples of UTR extension
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Figure 4.64: UTR extensions of TAOK1 and TBC1D16 two genes with the 
highest extended 3’ UTRs. 

These extensions are much longer than the original length of the transcript itself.

To further show the superior nature of RNA-Seq and the extent of 3’ UTR extensions 

as compared to RefSeq annotation data EST BC042436 can be used as an example. 

This EST does not have a corresponding annotation in RefSeq and it  does not have an 

Illumina probe associated to it. An associated Affymatrix probe (212444_at) has no 

associated RefSeq gene annotated to  it. However RNA-Seq data clearly indicates that 

this is in fact a result of the 3’ extension of the gene GPRC5A (Figure 4.65). 
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In the preimplantation dataset both GPRC5A and the probe 212444_at gets up-

regulated during blastocyst  formation. The co-regulation of these two - seen by the 

similar expression pattern,  further validates that they are indeed from the same 

transcript.

Figure 4.65: Extension region of GPRC5A.
The EST BC042436 does not have a RefSeq annotation, and is annotated by  GenBank 
as an independent mRNA with a partial coding sequence. RNA - seq data clearly 
shows that it is actually an extension at the 3’ UTR of the gene GPRC5A.
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GeneID Chr UTRStop Strand Extension Length (Nucleotides)
HMBOX1 chr8 28966159 + 11453
SNORD108 chr15 22783233 + 10611
EIF2C2 chr8 141611433 - 10308
POU2F1 chr1 165651950 + 10050
RAB3B chr1 52158374 - 10016
HELLS chr10 96351846 + 9930
WDR86 chr7 150709765 - 9508
ZNF704 chr8 81716267 - 8461
HIST1H2AC chr6 26232897 + 7691
SESN3 chr11 94546153 - 7436
MBNL3 chrX 131341386 - 7251
DYNLL2 chr17 53522617 + 7153
HEBP2 chr6 138776275 + 7127
TBC1D16 chr17 75529501 - 7106
TAOK1 chr17 24895628 + 7099
FAM40A chr1 110398786 + 7097
PPM1L chr3 162271511 + 6752
TRIM71 chr3 32908775 + 6710
MPRIP chr17 17029598 + 6708
PANK3 chr5 167917204 - 6695
RGP1 chr9 35742871 + 6552
PTPN14 chr1 212598016 - 6469
FAM160A1 chr4 152804234 + 6241
C6orf186 chr6 110674156 - 6149
TMED8 chr14 76878084 - 6090
GRPR chrX 16081562 + 6086
CDS2 chr20 5119989 + 6060
LOC729082 chr15 39379086 + 6016

Table 14: Genes which show a maximum 3’ UTR extension of more than 6000 
nucleotides beyond the current RefSeq annotation.

170



4.22 smallRNA data analysis

The focus on mRNA dynamics and technical issues such as difficulty  in designing 

primers for their small footprint and lack of sequence information has resulted in the 

low number of high throughput genome-wide studies on small RNA, specially during 

early development. 

Small RNA species include microRNA, which are regulators of mRNA. It  has been 

shown that during trophoectoderm formation in mouse, a massive removal of non-TE-

specific transcription factors takes place and that this removal is greater than the 

increase of TE specific transcription factors (Guo, Huss et al. 2010).  Therefore, it is 

logical to assume that microRNAs could play a major part in the reduction of non - 

TE specific transcription factors. Thus, study of microRNA expression during 

trophoectoderm formation could be beneficial in describing mRNA transcriptomic 

events that take place during this time.

Placental microRNA has been detected in maternal blood during pregnancy (Chim, 

Shing et al. 2008; Enquobahrie, Abetew et al. 2010). So it is vital to know the 

microRNA component which is involved in trophoblast formation so that they  can 

serve as markers for placental / trophoblast function.

Due to the above mentioned reasons it was decided to perform a small RNA-seq 

experiment for the samples of the human trophoblast differentiation protocol. Day 0 

(undifferentiated human ES cells), Day 2 and Day 4 time-points of the differentiation 

were used for this experiment and all RNA less than 200 nucleotides were studied. 

Since microRNAs are the most active among the small RNA, the emphasis of the 
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analysis was to study  the differential expression of known microRNA and to identify 

novel microRNA.

4.22.1 Differential expression of microRNA

The miRBASE annotation, containing a total of 1048 microRNAs, was used to obtain 

the footprints of known microRNA. A microRNA was considered as expressed at 

significant level when it had more than 20 reads mapping to it. Based on these criteria 

day 0 time-point (undifferentiated human ES cells) showed 350 microRNAs as being 

significantly expressed while day 2 and day 4 showed the significant expression of 

371 and 365 microRNA respectively. 

As for differential expression (day 4 vs day 0), 138 microRNA were up-regulated 2 

fold or more and 110 microRNA were down-regulated. (Figure 4.66)
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Figure 4.66: The differential expression of microRNA during the trophoblast 
differentiation. 
Each point / bar of the graph on the left  shows the expression of a single microRNA. 
As can be seen, the microRNA component of the transcriptome is highly dynamic 
during the differentiation, having members which are highly up and down regulated. 
The top 10 highly up  and down-regulated genes and their expression levels are shown 
on the left.

Presence of a significant number of up and down-regulated microRNA during 

differentiation suggest that the SU5402 + BMP4 differentiation brings about a 

considerable change in the small RNA transcriptome. In order to see that this change 

leads to trophoblast like phenotype / biology seen in the differentiated cells, up-

regulated microRNAs were compared with microRNA previously  reported to be 

highly  expressed in the placenta and a considerable overlap was observed (Terauchi, 

Koi et al. 2003; Chim, Shing et al. 2008; Gilad, Meiri et al. 2008; Enquobahrie, 
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Abetew et  al. 2010). Figure 4.67 shows the up-regulated microRNAs during the 

differentiation protocol together with their expression values. The bars in red shows 

the microRNAs which, based on literature, are highly expressed in the placenta. The 

majority  of microRNA reported to be expressed in the placenta are up-regulated in the 

trophoblast differentiation. The microRNAs which are up-regulated during 

trophoblast differentiation but are not reported to be present in the placenta could be 

involved in the early stages of placental development or simply unidentified placental 

microRNA .
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Figure 4.67: The expression level of all the up-regulated microRNA based on 
RNA - Seq data.
The microRNAs with the red bar are the ones reported in literature to be abundant in 
the placenta. The ones which are in blue could simply be unidentified new 
microRNAs of the placenta, or microRNAs involved in the early development of the 
placenta which once their role is done, gets down-regulated during the mature stages 
of the placenta.
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4.22.2 microRNAs involved in the regulation trophoblast lineage

Based on smallRNA - Seq data, there are 348 microRNA which are up-regulated 

during the SU5402+BMP4 differentiation. Expression levels of the highest expressed 

microRNA are shown in Figure 4.67. Since this is the first time that the microRNA 

component of the early  stages of human trophoblast  differentiation has been studied, 

there are no directly comparable data available. The closest  available datasets come 

from placental samples. Chim et al (2008) analyzed third trimester placenta for the 

expression of 157 microRNA by TaqMan analysis. 

Out of the 17 highest expressed microRNAs in placenta based on (Chim, Shing et al. 

2008), 12 are up-regulated during the trophoblast differentiation. These include hsa-

miR-373, hsa-mir-371, hsa-mir-372, hsa-mir-149, hsa-miR-34c, hsa-miR-34b, hsa-

miR-135b, hsa-miR-141, hsa-miR-200b, hsa-miR-137, hsa-miR-184 and hsa-

miR-337. 

4.22.3 Stem cell related microRNA

Next generation sequencing has been used to study the microRNA component of 

human embryonic stem cells (Bar, Wyman et  al. 2008; Morin, O’Connor et al. 2008). 

The sequencing depth used in these studies are much smaller than the amount used in 

my small RNA-Seq sequencing. Therefore it  is expected that my  dataset would yield 

additional information on the smallRNA transcriptome.

Using 20 reads per microRNA as cutoff, only 186 microRNAs are significantly 

expressed according to the dataset in Morin et al, while 331 microRNAs are 
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significantly  expressed in mine. The 145 microRNAs which were detected 

exclusively  in my  dataset  can be explained by its high sequencing depth which 

increases sensitivity. Despite this, the two datasets are highly comparable with 87% 

(164 microRNAs out of 186) expressed in  Morin et. being significantly expressed in 

mine. The difference of sequencing depth also could be a reason for the much higher 

number of novel microRNA detected using my dataset compared to that of Morin et 

al.

4.23 Identification of novel small RNA

Just like in the standard RNA-Seq analysis, the small RNA-Seq dataset was used to 

look for novel transcribed regions (NTRs). In this case the footprints of microRNAs 

in the miRBASE database was used to de-mark the known expressed regions. 12,404 

NTR regions were identified in day 0 and 15,145 NTRs were found in day 8. Again 

just like in the case of the standard RNA-Seq dataset the number of NTR regions 

showed a significant increase during differentiation.

Since most of the smallRNAs can be classified based on the size, the size distribution 

of all the identified NTRs were studied. The distribution shown in Figure 4.70, while 

having a large footprint from 16 nucleotides to beyond 200, shows a clear, very strong 

maxima of 22 nucleotides. Recall that my small RNA-seq library  was created for any 

RNA that was 200 bases or smaller. Since the average length of microRNAs is around 

22 nucleotides, this suggests that identified NTRs from the small RNA dataset are 

highly  enriched in microRNA. Due to this observation the subsequent analysis 

focussed on identification of novel microRNAs.
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Figure 4.70 : The size distribution of small RNA NTRs expressed in day 0 and 
day 4. 
While the distribution has a broad footprint  the maxima is at 22 nucleotides - the 
average length of microRNAs. The bottom two graphs are shows the enlarged view of 
the microRNA size peak.

4.23.1 Potentially novel microRNAs

To get a reliable list of potential microRNA from all the NTRs, NTRs which map to 

known repeatmasker regions from UCSC genome browser, were removed. 

Repeatmasker contains annotations for rRNA, tRNA as well as LINEs, SINEs and 

LTRs described previously. By this step  most of the tRNA and small ribosomal RNA 

are removed. Subsequently, known snoRNAs were removed from the list. To narrow 

down the list further, the secondary  structure of these potential microRNA was 

analyzed using RNAfold. As mentioned in the methods section microRNAs have a 

unique stem loop like secondary structure with quantifiable criteria such the as 

number of complementary bases in the stem loop and a free energy cutoff. These 

criteria enabled the identification of potential microRNA with a stable stem loop 

secondary  structure. Finally  2,360 potential microRNA from day 0 and 2,924 from the 

day 4 data set were identified. Among these 150 and 180, in day 0 and 4 respectively, 
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originated from highly  conserved regions in placental mammals seen as a 80% or 

more overlap with mammal conservation track of UCSC. This suggest the possibility 

that most of the new microRNA are less conserved, meaning that they  could be either 

primate- or human- specific.

When comparing the expression pattern of these novel microRNAs, 927 microRNAs 

(including highly conserved and non-conserved) showed up-regulation (2-fold or 

more) and 473 showed a down-regulation. This suggest that these microRNA are 

affected by the differentiation treatment. As for the highly conserved microRNA they 

too show significant differential expression. On day  0 out of the 150 highly conserved 

novel microRNA, 64 show a 2 fold or more  up-regulation while only  8 shows down 

regulation of more than 2 fold.

Description Day 0 Day 4
Total peaks (min height 1, min reads per base 100) 12,404 15,145
no overlap with RepeatMasker 6,546 8,022
no overlap with RepeatMasker + 80% or more Overlap with Mammalian highly conserved regions460 589
no overlap with RepeatMasker + no overlap with snRNA 6,369 7,818
no overlap with RepeatMasker + no overlap with snRNA + miRNA criteria pass 2,360 2,924
no overlap with RepeatMasker + no overlap with snRNA + miRNA criteria pass + 80% conserved150 180

Table 15: Novel microRNA statistics.
Note the clear increase of novel microRNAs brought about by the differentiation.

Description Count
Up-regulated novel miRNA during differentiation more than 1SLR 927
Up-regulated novel miRNA during differentiation more than 2SLR 307
Down-regulated novel miRNA during differentiation more than 1SLR 473
Down-regulated novel miRNA during differentiation more than 2SLR 132

Table 16: Differential expression of novel microRNA.
The differential expression is measured between day  4 and day  0 during trophoblast 
differentiation.
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4.23.2 A typical view of a known microRNA together with its folded structure

Figure 4.71 shows the UCSC view of a known microRNA and the stem loop structure 

it produces. Note that the peak profile contains a taller peak and a shorter one. The 

taller peak represents the mature microRNA sequence while the shorter peak 

represents the star sequence. 

Figure 4.71: A typical UCSC view of the RNA-Seq  small RNA dataset. 
Here a footprint of a known microRNA is shown. The data tracks from day 0, day 2 
and day  4 respectively are arranged from top to bottom. In the insert, next to the 
peaks, the secondary structure of  of the microRNA - which shows the characteristic 
stem loop structure is shown. This is the format of all the small RNA-Seq related 
screen shots displayed in the thesis unless stated otherwise. 

Day 0

Day 2

Day 4

known miRNA annotation

Secondary structure 
by RNA fold
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4.23.3 Examples of novel microRNA

As the alignment process discriminates between a known microRNA and a novel one, 

and since it is easier to align small RNA-Seq reads to the known microRNA footprints 

than to entire genome, the small peak representing the star sequence is not seen in 

novel microRNA. The peak seen in novel microRNA profiles represents the mature 

microRNA sequence.

The following section will contain examples of potentially novel microRNA which 

originate from  introns, intergenic regions and opposite strand of a known gene. In 

each of the cases the predicted stem-loop structure is also shown.
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4.23.4 Examples of novel miRNA which originate from the opposite 
strand of a known exon

Day 0

Day 2

Day 4

Figure 4.72: novel microRNA which originates from the opposite strand of 
ASTN1 gene.
 This gets up-regulated during differentiation and has a stable stem loop.

Figure 4.73:  A novel microRNA coded by the opposite strand of GLTPD1.
This forms a stable stem loop and gets up-regulated during trophoblast differentiation.
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4.23.5 Examples of novel miRNA which originate from an intronic 
region.

Figure 4.74: A novel microRNA coded by an intron of MPZL1 and PZR genes.
This novel microRNA gets down-regulated during differentiation.

Figure 4.75: A novel microRNA which is coded by the intron sequence of LGR6 
and VTS20631. 
This gets down-regulated with treatment.
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4.23.6 Examples of novel miRNA which originate from an intergenic 
region of the genome.

Figure 4.76: novel microRNA coded by an intergenic region.
This gets up-regulated during differentiation.

Figure 4.77: Another novel microRNA coded by an intergenic region.
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4.23.7 Examples of novel miRNA which show an up-regulation 
during differentiation.

Figure 4.78: A highly up-regulated novel microRNA  (~180 fold).
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4.23.8 Examples of novel miRNA which show an down-regulation 
during differentiation.

Figure 4.79: A significantly down-regulated microRNA (~ 4 fold).

Figure 4.80: A 20 fold down-regulated novel microRNA.
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4.23.9 Novel microRNA cluster

A study on the proximity of  novel microRNA was carried out to identify  microRNAs 

which exist as clusters. Only  one such example was found containing 3 or more 

microRNA. Figure 4.81 shows the UCSC view of a known microRNA and Figure 

4.82 shows the novel microRNA cluster as identified by RNA-Seq.

Figure 4.81: A known microRNA cluster

Figure 4.82: The novel microRNA cluster identified by RNA-Seq.
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5.0 Discussion

Study of early human development, especially  the development of the trophoblast 

lineage, is important not only from a fundamental biological point of view but also 

from a clinical perspective.

Formation of the trophectoderm is a significant biological step, as it marks the first 

lineage commitment and the origin of the first epithelial cell type of the new 

organism. Furthermore, with the help of maternal tissues, trophoblast cells go on to 

produce the placenta, through a complex and unique differentiation sequence.

This thesis is an attempt to describe and understand the intricate dynamics of the 

transcriptome during the establishment and development of the human trophoblast 

lineage. A scarcity or non-availability of samples, ethical issues and the lack of 

differentiation protocols that  can provide realistic results, have limited the detailed 

study of this fascinating differentiation program in humans.

In this thesis, using an improved differentiation protocol which induces human 

embryonic stem cells to assume characteristics of the trophoblast lineage, I have 

attempted to create a comprehensive record of the transcriptomic dynamics during 

trophoblast differentiation. To study  the transcriptome, I have used RNA-Seq 

technology to look at both poly-adenylated RNA and small RNA dynamics. The    

poly(A) RNA data set provides information on the mRNA portion of the 

transcriptome while the RNA-Seq dataset of small RNA provides insights mainly on 

microRNA expression. 
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RNA-Seq technology  is superior to other traditional techniques employed for 

transcriptomic studies. It allows the analysis of the entire transcriptome and is 

extremely sensitive and accurate since it is based on sequencing. Furthermore, RNA-

Seq data is not based on existing annotation, which allows the identification of novel 

transcriptomic phenomena. 

At the time of the analysis there were no proper software to analyze an RNA-Seq data 

set in an in-depth manner. Therefore I developed a set  of workflows / scripts which 

enabled the extraction of useful information from an RNA-Seq dataset. These 

workflows identify  alternative splicing events, mutual exclusion events, extensions 

for existing annotations, novel transcribed regions, novel transcripts and novel 

microRNAs. 

To calculate the RNA-Seq expression levels, I first used RPKM  values, which are the 

counts of reads mapping to individual genes, normalized to the gene length and the 

sequencing depth. To check the validity of the RNA-Seq experiment I compared the 

RNA-Seq expression levels with microarray data for the same sample. The two 

datasets had a very  good correlation with a coefficient of determination (R2) value of 

0.8. 

Next I compared the gene expression dataset of the five time points of the 

SU5402+BMP4 treatment (our novel trophoblast differentiation protocol) with a large 

group of human tissues and cell lines, to identify  the organ / tissue system which has 

the closest transcriptional similarity  using hierarchical clustering. Reassuringly, it 
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turned out that  the closest organ to the outcome of the differentiation protocol is the 

human placenta and the closest cell types to it were the cytotrophoblast and 

syncytiotrophoblast cells. 

To further validate the data from the differentiated trophoblast transcriptome it  was 

compared with a published microarray dataset of early human development (Zhang, 

Zucchelli et al. 2009). This dataset only  contains information of the pre-blastocyst and 

blastocyst samples with no direct trophoectoderm sample. However by overlapping 

up-regulated genes of blastocyst formation with  those of trophoblast differentiation, I 

was able to identify genes which are exclusively involved in trophoblast formation.

Hierarchal clustering was again used to compare the trophoblast differentiated cell 

transcriptome with the above mentioned published human blastocyst microarray  data. 

Here the day 8 time point of the differentiation protocol clustered closest with the 

blastocyst sample and the day  0 (undifferentiated ES cells) was clustered with the 4 

cell stage embryo.

Then I looked at the expression dynamics of individual genes to identify  the ones 

which are involved in the initiation and the maintenance of the trophoblast  lineage. I 

looked at significantly up-regulated genes in day 2, 4, 6 and 8 time points compared 

to day  0. These genes either were induced meaning that they were not expressed in the 

human embryonic stem cells (day  0), but  expressed at significant levels during 

differentiation or were already  being expressed at  day  0, but were significantly up-

regulated during differentiation.
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Looking at  the number of expressed genes in each time point, it was clear that the 

differentiation caused an increase in the total number of expressed genes. The 

increase of expressed genes was highest in day  2. On the other hand at day  2 some of 

the pluripotency  factors are still expressed albeit  at a lower level than undifferentiated 

ES cells. Therefore day 2 time-point represents a transition phase where pluripotency 

machinery  are being suppressed while trophoblast inducing mechanisms are made 

active.

In general, the significantly up-regulated genes during trophoblast differentiation 

include a mix of pregnancy related hormones, placenta specific genes, genes 

associated with retroviral elements and genes which indicate mesenchymal to 

epithelial transition. 

A considerable number of the genes that were induced / up-regulated during 

trophoblast differentiation have already been reported to be involved in placenta 

formation. However in most of the cases these observations have been made in other 

model systems, trophoblast cell lines, mature placenta or related samples (e.g the 

uterus). RNA-Seq data confirms the fact that these genes are involved in the early 

phases of the trophoblast differentiation.

The highest up-regulated gene during trophoblast  differentiation is CGA which codes 

for one of the two subunits of human chorionic gonadropin - the “pregnancy 

hormone” and a hallmark of the trophoblast  lineage. CGA is initially detected at day 4 

and by day 8 has extremely high levels of expression (2,239 RPKM).
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Syncytin 1 and Syncytin 2 are fusogenic proteins implicated in the formation of the 

syncytiotrophoblast. They have originated from endogenous retroviral insertions and 

are induced during differentiation.

The keratin genes - KRT19, KRT23, KRT18, which are characteristic of epithelial 

cells, are significantly  induced around day 4 and their up-regulation is maintained 

throughout the differentiation. 

The Mucin gene MUC15 is induced immediately during differentiation and is highly 

expressed up to day 8. Mucins are believed to play a vital part during implantation, 

creating a sticky surface for the blastocyst to attach to the uterus. 

GCM1 is an essential transcription factor for placenta formation. GCM1 expression is 

induced during day  4 and keeps on increasing. Interestingly  the transcriptomic data 

suggest that the GCM1 regulatory machinery (which includes the genes GSK3B and 

DUSP23), evolved to keep the GCM1 levels in check, is also active.

Induction of genes during differentiation is not only limited to coding genes. The gene 

H19 which codes for a long non-coding gene which is modulated by oestrogen, is 

immediately induced during differentiation and its expression keeps on increasing.

All the genes mentioned here and the majority of the genes being significantly up-

regulated during trophoblast treatment are either placenta specific, or highly 

expressed in the placenta. 
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RNA-Seq data also identifies genes which are up to now not reported to be involved 

in trophoblast development. For example CCR7 (Chemokine receptor type 7) is a 

gene involved in adaptive immune response. Based on transcriptomics data, it is the 

second most highly up-regulated gene in the differentiation protocol. This is 

unexpected because it is thought that the trophoblast has mechanisms to suppress the 

immune reaction from the mother for a successful pregnancy. However the up-

regulation of CCR7 indicates that the trophoblast is actively producing proteins which 

has the potential to induce an immune reaction. Published data on the human 

preimplantation development of actual human embryos, also show an up-regulation of 

CCR7 in the human blastocyst compared to the 8 cell embryo. This suggest that CCR7 

is indeed a relevant gene for trophoblast function, and not a side effect of the 

differentiation. One potential explanation for this is that the human trophoblast 

secretes CCR7 to put the mothers adaptive immune systems to “overdrive” and 

therefore reducing its effectiveness. This sounds feasible, specially considering the 

extremely high number of endogenous retrovirus related transcripts seen to be 

expressed during the differentiation (discussed later), thereby providing an enormous 

amount of antigens - most of which are highly dynamic and not critical for the 

functions of the trophoblast. 

VTCN1 (V-set domain containing T cell activation inhibitor 1), which is an inhibitor 

of innate immunity  (Yi and Chen 2009). During the trophoblast differentiation 

VTCN1 is up-regulated 191 fold. This together with the CCR7 example could shed 

light on the immunosuppressive processed during early development. 
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RNA-Seq of small RNA indicates that the smallRNA expression is significantly 

influenced by the trophoblast differentiation. However the number of induced 

microRNA during differentiation is extremely limited. This suggests that in the case 

of microRNA regulation of trophoblast differentiation, changes in microRNA 

expression level is more important than the induction of new microRNAs. 

A considerable number of microRNA up-regulated during trophoblast  differentiation,  

has shown to be expressed in the placenta suggesting that they have a sustained 

functional role, from the initiation of the trophoblast formation to its later stages of 

development. In addition to this, there is also another set of microRNA which gets up-

regulated during the differentiation protocol and have not been reported yet in 

literature to be expressed in the placenta. Since the samples used in literature are 

mostly  term placentas, this subset of microRNA can be considered to be specific for 

the earlier stages of trophoblast differentiation. 

A subset of the microRNA which gets up-regulated during trophoblast  differentiation 

has shown to be present in the maternal serum. This opens up the possibility of using 

these microRNA as biomarkers to monitor the development progress of the 

trophoblast lineage, and therefore, to an extent, the health of the fetus. 

Main issue with the currently  available data on trophoblast differentiation is that most 

of them have been originally  discovered in the mouse model and have been 

extrapolated into the human model. Considering the scarcity of clinical samples and 

ethical issues, this is understandable. However given the evolutionary difference 

between mouse and human, and the resulting differences in basic mechanisms of early 
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development, such an extrapolation could potentially  lead to misinterpretations. As an 

example, the genes for hCG, the main marker of trophoblast lineage is absent in the 

mouse model. To understand the difference between early development 

transcriptomics of human and mouse, and to isolate transcriptomic events specific to 

human, I generated a RNA-Seq dataset of early  mouse differentiation which included 

samples representing mouse 8-cell stage, E3.5 blastocyst, E4.5 blastocyst and E 4.5 

inner cell mass. The inclusion of an E4.5 inner cell mass sample enables the isolation 

of mouse trophoblast specific transcriptomic events. This dataset  was then compared 

to the RNA-Seq data from the human trophoblast differentiation. 

Major observation of this comparison was the apparent difference in the expression 

levels of genes between the human and mouse systems. Based on the expression 

levels, it  is evident that at least as far as the trophoblast lineage is concerned different 

molecular mechanisms participate in each of the two species.

For example the “classical” trophoblast related genes - Gata3 and Cdx2 are up-

regulated at extremely  high levels in the mouse trophoblast. In comparison, while 

GATA3 is expressed in the human (RNA-Seq and pre-implantation) system and CDX2 

is up-regulated during trophoblast formation, the expression levels are much lower 

compared to that of the mouse system. On the other hand transcription factors such as 

GCM1 which are highly  expressed in the human system is only faintly expressed in 

mouse. 

The species dependent divergence of trophoblast related biological mechanisms is a 

characteristic of the hourglass model of development. Briefly explained, the model 
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suggests that organisms of the same animal phylum have a particular stage, termed the 

phylotypic stage, where they  look morphologically similar to each other. Beyond this 

stage and before this stage, development is dissimilar just like the ends of an 

hourglass. The major criticism leveled against this model has been that the 

observation is based on morphological similarity alone. However two recent papers, 

characterizing the conservation of gene expression pattern within fish and fly  species 

across developmental time, have shown that the phylotypic similarities are observable 

at the molecular level as well (Domazet-Lo#o and Tautz 2010; Kalinka, Varga et al. 

2010). The phylotypic stage is considered to occur following gastrulation at 

approximately the early somite stage. Therefore the human and mouse transcriptomic 

data presented here belong to a time-point before the phylotypic stage. This explains 

the significant difference in the transcriptome of human and mouse seen by RNA-Seq.

The area of focus of this thesis falls on a very narrow region of the hourglass model 

much earlier than the phylotypic stage. Concerning that particular region, the human 

and mouse transcriptomic differences is in agreement with the hourglass model of 

development. That being said, due to the lack of information of our dataset on the 

conserved time points of the model, the data presented in this thesis cannot be used to 

support the rest of the hourglass model.

Since the differences between the human and mouse shown in this thesis is in 

alignment with the hourglass model of development, at the developmental stage the 

samples belong to, it is essential to find the cause of the divergence. In other words it 

is important to identify what factor / factors contribute to the developmental 

differences at the molecular level between the mouse and the human system. 
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This thesis presents ample examples which show that primate-specific retroviral 

elements in the human genome have an important function in trophoblast 

development. The number of expressed retroviral elements - namely  the trophoblast-

specific components of SINES, LINES and HERV-K elements of LTRs - are highly 

increased during differentiation. This increase is consistent with the increase of 

overall gene expression which peaks at day 2 during trophoblast differentiation. The 

expression of retroviral elements is widespread throughout the genome.

Syncytin 1 and Syncytin 2, both of which have origins in retroviral genes, and 

involved in placenta formation, get induced during differentiation and are among the 

most highly up-regulated.

The genes CYP19A1, EDNRB and PTN are known to have promoters which have 

originated from retroviral insertions resulting in production of placenta specific / 

enriched isoforms. These genes are highly expressed during human trophoblast 

differentiation and the major isoform in all these cases is the one under the regulation 

of the retroviral promoter. This suggests that  the retroviral elements have an important 

regulatory role in trophoblast differentiation.

One of the novel observations made during RNA-Seq analysis was where, a new 

unannotated exon, with origins of retroviral sequences, initiates expression during 

trophoblast differentiation. This is seen in a number of genes including CLDN4, 

DHX32 and ZBTB3, SCGB3A2. In the cases where the gene is a transcription factor 

the effects of retroviral expression will be amplified.
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The expression of retroviral elements in early development has also seen in other 

species including mouse. Therefore the expression of the retrotransposon elements are 

by no means a human specific event. However since the retrotransposon complement 

- both location and sequence - of each species is unique it is clear that the 

retrotransposon transcriptome is significantly different from each other. Because of 

this difference and the fact that most of them are expressed, they  have the capacity to 

regulate and create species specific transcriptomic events.

In summary, Focusing exclusively on the transcriptome of early  development, mainly 

in human and to a limited extent in the mouse I have catalogued the dynamics of 

known genes and also described novel transcriptomic phenomena. I also provide 

evidence for the hourglass model of development in human and mouse at the 

molecular level during trophoblast differentiation, and suggest that the expression of 

retroviral elements might be the driving force for species specific transcriptomic 

events. 

Be it human, mouse or any  other species, early  development is one of the most 

important and biologically fascinating field of study. Considering its importance and 

complexity, it will take quite some time for science to be able to fully  describe it. I 

believe that the data and information presented in this thesis will be beneficial in this 

regard.
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Appendix I : Python code for workflows

RPKM calculation

Input file: 
The default exon counts file produced by ABI bioscope pipeline

Command:  
python  counts2RPKM.py  <bioscope counts file>  <sequencing depth>

Code:
counts2RPKM.py

#this script takes in a counts file and produces RPKM values for individual genes.
from __future__ import division
import sys

fName = sys.argv[1]
seqDepth = int(sys.argv[2])
countsDic = {}
lengthDic = {}

print seqDepth
for line in open(fName,'r'):
    temp = line.strip(`).split('\t')
    if temp[2] == 'exon':
        chr = temp[1]
        start = int(temp[3])
        stop = int(temp[4])
        length = stop - start
        hits = int(temp[5])
        geneID = temp[8].split('"')[1].split('"')[0]
        if geneID[-1:]=='P':
            geneID = geneID[:-1]
        #print line.split()
        #print chr,start,stop,hits,geneID

        if geneID in countsDic:
            #geneId has already been added

            countsDic[geneID] = countsDic[geneID]+hits
            lengthDic[geneID] = lengthDic[geneID]+length
        else:
            countsDic[geneID] = hits
            lengthDic[geneID] = length
k = countsDic.keys()
k.sort()

for gene in k:
    totalCounts = countsDic[gene]
    totalLength = lengthDic[gene]/2
    if totalCounts == 0:
        print gene, totalCounts,totalLength,0
    else:
        print gene, totalCounts,totalLength, (totalCounts/(totalLength/1000))/seqDepth 
* 1000000
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Identification of novel transcribed regions

Inputs:
1) A folder containing all the wig files for each chromosome-strand pair.(The 

naming convention should be as follows - chr<#>.<pos/neg>.wig - eg. 
chr1.pos.wig)

2) The default counts file containing RefSeq counts from the ABI bioscope output.
(The scripts can be modified to use others.)

 
Output:
 The final output will be a folder containing identified NTRs.
 There will be a seperate file for NTRs for all chromosome / strand 
combinations.
 The NTR files will be tab delimited and will have the following columns 
describing the identified NTR peak.
 [<chromosome><strand><start><stop><min height><max 
height><length><ucsc notation><total area>

Command:
 The NTR identification process includes the following steps...
 1)Processing the counts file
 2)Creating a gap file from the counts file.
 3)Identification of NTRs.

1)Processing the counts file.
The biosocpe counts file shows counts for each exon / cds / start codon of refSeq.
First remove CDS and start_codon counts.
Then sort the counts file in the following order 
     i)chromosome ASC
     ii)strand ASC
     iii)start position ASC
Name the counts file as [sampleID].exons.sorted.txt, and use it for the next step.

2)Creating a gap file from the counts file.

python gaps.py [counts file] > [gapfile.txt]
Recommended gapfile name - [sampleID].exon.gap.txt

3)Identification of NTRs.
Once the above script is run type...
python peakcall_iterate_bsub.py [wiggle file folder] [resuls folder] [gap file] 
[minthreshhold] [min peak size]
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Code:

Gaps.py
#gaps.py
#finds gaps in a list of annotated regions.
#Input - tab delimited file of strand specific annotated regions (e.g refseq)
#Input format - chr,start,stop,strand,Info - Sorted Ascending in the following order - 
chr,start,strand # corrction 18/8/2010 chr,strand,start
#Output - list of ranges of the 'gaps' between the given annotations.
import sys
try:
    annotfile = sys.argv[1] #The input file
except:
    print 'Incorrect input.'
    print ' python gaps.py <Inputfile>'
    

#Initialization of variables which describe the range in the line immediately before.
prevstop = 0
prevchr = 'a'
prevstrand = '~'

for line in open(annotfile,'r'): #reads the annotation file line by line
    
    #stripping data from the current line
    
    
    temp = line.split('\t')
    chr = temp[0].strip()
    strand = temp[3].strip() 
    starts = int(temp[1])
    ends = int(temp[2])
    #info = temp[8].split('\n')[0] #this field in unique for the refseq annotation
    
    
    
    
    #This begins the comparing process
    
    if prevstop > starts:
 #usually this cannont be the case, if this is true then either there is an overlap 
between two annotations or the annotation range is on a different chromosome / strand
        if (prevchr == chr and prevstrand ==strand): 
#checks to see if its the same chr/strand combination; if this is the case then its an 
overlap.
            
            if prevstop < ends: 
# Checks if the current seqments if fully immersed in the previous one. i.e. a 100! 
overlap.
                
                prevstop = ends 
# if ends is greater then shifts the prevstop position and does not print anything as 
there is not 'gap'
            
        else:
            #its a change in either the chromosme or the strand
            prevstop = -1 
#resets the prev position and prints the gap from start to the currenet position
            print chr,'\t',prevstop+1,'\t',starts-1,'\t',strand
            
    else:
            a=1
            #A normal sequential annotation.
            print chr,'\t',prevstop+1,'\t',starts-1,'\t',strand 
        
    
    
    prevstop = ends
    prevchr = chr
    prevstrand = strand
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peakcall.py
#peakcall.py
#(c)  Genome Institute of Singapore. 
#Input - tab delimited file; Format  - chr,start,stop,strand

try:
    import psyco
    psyco.full()
except:
    pass

import sys

chromosome = sys.argv[1]
inputstrand = sys.argv[2]
wigfile = sys.argv[3]
minthreshhold = int(sys.argv[4])
minpeaksize = int(sys.argv[5])
gapfile = sys.argv[6]

dic = {} #this is the dictionary which will contain all the data from the wig file

#first the script adds the entire wig file to a dictionary. WARNING - you need a 
considerable amount of ram. This mac has 4Gig and it seems sufficient.

for line in open(wigfile,'r'): #loops through the file reading each line and adds it 
to the dictionary - dic
    temp = line.split('\t') 
    pos = temp[0]
    
    if pos.isdigit(): #prevents the header giving an error.
        pos = int(pos)
        count = int(temp[1].split()[0])
        
        dic[pos] = count #dic is the dictionary

        

line = '' #reusing line and temp variables
temp = ''
prevplace = 0

peak={} # this will act as a temporary dictionary to contain the data of a peak

for line in open(gapfile,'r'): #reads the file containing the gap positions line by 
line    
    temp = line.split('\t')
    chr = temp[0].split()[0] 
    strand = temp[3].split()[0]
    
    if chr==chromosome and strand == inputstrand: #This limits the search for only the 
given chromosome and strand.
        starts = int(temp[1])
        stops = int(temp[2]) #start and stop coordinates of the gap
        
        prevplace = starts-1 #this holds the previous stop+1 
        
        for i in range(starts,stops+1): #why use stops+1?
        
            try:
                d =  dic[i] # checks if the position contains a value in the 
dictionary. if not there will be an error.
                #ithere IS a count value for the given position
                
                
                if d > minthreshhold: #provides a threshhold value for the peaks
                    #itpiht there is a count for the position and it is more than the 
threshhold
                    
                    if (i-prevplace) == 1: #checks if the current position is adjecent 
to the  previous. i.e checks for continuity.
                        
                        peak[i] = int(d)
                        d=0
                        
                    else:
                        #itpiht there is gap i.e the peak has stopped! So showld 
display the peak.
                        q=2
                        
                        

                prevplace = i    
        
        
            except :
                q=2 #The peak has ended
                if len(peak) > minpeaksize:
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                    peakpoints = peak.values()
                    peakkeys = peak.keys()
                    #print 'max', max(peakpoints)
                    #print 'min',min(peakpoints)
                    #print 'length',len(peakpoints)
                    c = len(peakpoints)-1
                    tot = 0
                    for i in peakpoints:
                        tot = tot+int(i)
                    print chr,'\t',strand,'\t',min(peakkeys),'\t',max
(peakkeys),'\t',max(peakpoints),'\t',min(peakpoints),'\t',len
(peakpoints),'\t',chr,':',min(peakkeys),'-',max(peakkeys),'\t',tot

                    
                    
                    peak.clear() #resetting the peak dictionary
                else:
                    peak.clear()
                    
    #to run after the loop ends (this is for peaks which end with the range). i.e the 
peaks which continues throught the annotations, i.e. the extensions?
                    
    if len(peak) > minpeaksize:
                    peakpoints = peak.values()
                    peakkeys = peak.keys()
                    
                   
                    c = len(peakpoints)-1
                    tot = 0
                    for i in peakpoints:
                        tot = tot+ int(i)
                    print chr,'\t',strand,'\t',min(peakkeys),'\t',max
(peakkeys),'\t',max(peakpoints),'\t',min(peakpoints),'\t',len
(peakpoints),'\t',chr,':',min(peakkeys),'-',max(peakkeys),'\t',tot
                    
                    
                    
                    peak.clear() #resetting the peak dictionary
    else :
        peak.clear()
        
            
    #print '-----------------------------'
    peak.clear()
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Identification of novel transcripts

Steps:

Input:
1) A concatenated NTR file
2) File containing gene footprints

Command:
1) To identify NTRs which are close to a known gene
python getCloseNTRs.py <NTR file> <Genefootprint file> <max gap>

2) To get a list of NTRs which are not close to any gene
python compare.py <output of 1> <NTR file>

3) To identify transcripts
python idenitfyTranscripts.py <output of 2> <max gap between exons>
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Compare.py

import sys

list = []

for line in open(sys.argv[1],'r'):
    list.append(line.strip())

b = 0

for line in open(sys.argv[2],'r'):
    temp = line.strip().split('\t')
    chr = temp[0].strip()
    start = int(temp[2].strip())
    stop = int(temp[3].strip())
    strand = temp[1].strip()
    #print chr,start,stop,strand
    for i in list:
        temp2 = i.strip().split('\t')
        chr1 = temp2[6].strip()
        start1 = int(temp2[8].strip())
        stop1 = int(temp2[9].strip())
    
        strand1 = temp2[7].strip()
        #print chr1,start1,stop1,strand1
        if chr == chr1 and start == start1 and stop == stop1 and strand == strand1 :
            #print line.strip()
            b = 1

    if b == 0:
        print line.strip()
    if b == 1:
        b = 0
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getCloseNTRs.py

import sys
NTRFile = sys.argv[1]
geneFootPrintFile = sys.argv[2]
n = int(sys.argv[3])
#addint the NTRfile to a dictionary...
dic = {}
for line in open(NTRFile,'r'):
    temp = line.strip().split('\t')
    tID = temp[0]+temp[1]+temp[2]+temp[3]
    #print temp[4],temp[12],temp[13],temp[14],temp[15]
    dic[tID] = line.strip()

for line in open(geneFootPrintFile,'r'):
    temp = line.strip().split('\t')
    print line
    #print temp[0],temp[1],temp[2],temp[3],temp[4]
    geneID  =temp[0].strip()
    chr = temp[1].strip()
    start = int(temp[2])
    stop = int(temp[3])
    strand = temp[4].strip()

    setGene = set(range(start,stop))
    setGeneExtended = set(range(start-n,stop+n))

    for ntr in dic:
        t = dic[ntr].strip().split('\t')
        nchr = t[0].strip()
        nstrand = t[1].strip()
        if nchr == chr and nstrand == strand :
            nstart = int(t[2])
            nstop = int(t[3])
            setNTR = set(range(nstart,nstop))

            L1 = len(setGene & setNTR)
            L2 = len(setGeneExtended & setNTR)

            if L1 == len(setNTR) or L2 == len(setNTR):
                'L3','\t',line.strip(),'\t',dic[ntr].strip()
            else:
                if L1> 0:
                    print 'L1','\t',line,'\t',dic[ntr],'\t',L1
                #print geneID,chr,start,stop,strand,nchr,nstrand,nstart,nstop,'L1',L1
                if L2 > 0:
                    print 'L2','\t',line.strip(),'\t',dic[ntr].strip(),'\t',L2
                
                #print geneID,chr,start,stop,strand,nchr,nstrand,nstart,nstop,'L2',L2
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identifyTranscripts.py

from __future__ import division
import sys
n = int(sys.argv[2])
prevStop = 0
tempList = []

prevChr = ''
prevStrand = '~'

for line in open(sys.argv[1],'r'):
    temp = line.strip().split('\t')
    chr = temp[0].strip()
    strand = temp[1].strip()
    start = int(temp[2].strip())
    stop = int(temp[3].strip())

    if chr == prevChr and prevStrand == strand and (start - prevStop) <=  n:
        print '@@@@@@@', start - prevStop, start,prevStop
        tempList.append(line.strip())
    else:
        if len(tempList)>= 2:
            j = 0.00
            for i in tempList:
                print i.strip()
                j = j + float(i.strip().split()[-1])
                

            print j / len(tempList)
            print tempList[0].strip().split('\t')[0],':',tempList[0].strip().split('\t')[2],'-',tempList[-1].strip().split('\t')[3]
            tempList = []
            tempList.append(line.strip())
            print '====================='
        else:
            tempList = []
            tempList.append(line.strip())
            

    prevStop = stop
    prevChr = chr
    prevStrand = strand
    #print chr,strand,start,stop
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Finding 3‘UTR extensions.

Input:
3UTR - bed file containing 3’ UTRs
allexonfile - bed file containing all exons
wigfile - original ABI file

Command:
python <3UTR> <chr> <strand> <wigfile> <allexonfile>

Code:

correctEnds.3prime.+.py
#this script is only for + strand.
import sys
exonFile = sys.argv[1] #exon file containing only annotated 3' exons
chr = sys.argv[2] #in the chrn format
strand = sys.argv[3].strip()
wigFile = sys.argv[4].strip() #corresponding wig file
originalExonFile = sys.argv[5] #the exon file containing all exons

oriExon = []
#loading the originalExonFile
for line in open(originalExonFile,'r'):
    temp = line.strip()
    oriExon.append(temp)
    
#loading the wiggle file into the dictionary
wigDic = {}

for line in open(wigFile,'r'):
    temp = line.strip().split('\t')
    #print temp[0],temp[1]
    wigDic[int(temp[0])] = int(temp[1]) #wigDic[pos]=count
    

for line in open(exonFile,'r'): #goes through all the 3' UTR exons one by one
    flag = 0
    temp = line.strip().split('\t')
    echr = temp[1].strip()
    estrand = temp[4].strip()
    #print echr,estrand,chr,strand
    if chr == echr and strand == estrand: #looks if the 3' UTR exon is withing the 
given chr and strand combination
        
        NM = temp[0]
        #print NM
        start = int(temp[2]) #start and stop of the 3' UTR
        stop = int(temp[3])
        geneID = temp[5]
        coverage = 0
        total = 0
        avgheight = 0
        #finding the next anootation after this so that the gap between the current 3' 
UTR and the next gene
        for exon in oriExon:
            t = exon.strip().split('\t')
            oriChr = t[0]
            oriStart = int(t[1])
            oriStop = int(t[2])
            oriStrand = t[3]
            oriGene = t[4]
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            if chr == oriChr and oriStart == start and oriStop == stop and oriStrand 
== strand: #looking for the 3' UTR from the list containing all exons
                oriIndex = oriExon.index(exon) #save the index of it
                tempgeneID = oriGene
                while tempgeneID.strip() == oriGene.strip(): #passes the other 3' UTRs 
of the same gene! ??
                    oriIndex = oriIndex +1
                    tempgeneID = oriExon[oriIndex].strip().split('\t')[4].strip()
                    flag = flag + 1
                   # print tempgeneID,oriGene 

                #print chr,strand,start,stop,geneID
                
                #print oriExon[oriIndex], 'is the gene next to it'
                nextStart = int(oriExon[oriIndex].strip().split('\t')[1].strip()) # 
this marks then begining of the next gene #nextStart is the start of the next gene 
(i.e. the 5' UTR of the next gene)
                                
                                

              
                                
                                
        tempstart = stop
        coverage = 0
        total = 0
        gaps = 0
        lastPeakStop = 0
        if nextStart - tempstart > 20000:#the maximum gap the scrpt looks for is 
10000bp
            nextStart = tempstart+20000
        #print tempstart,nextStart
        if nextStart < tempstart:
            continue #bypasses cases where the next genefootprint starts before the 
end of the 3'UTR
        gapCount = 0 
        while gaps < 200 and  tempstart < nextStart -1 : #max gap allowed is 100
            #print tempstart,nextStart
            #print gaps, gaps < 200
            if tempstart in wigDic:
                coverage = coverage +1
                total = total + wigDic[tempstart]
                lastPeakStop = tempstart
                #if gaps >  0:
                    #gapCount = gapCount+1
                    #gaps = 0
                gaps = 0
                
            else:
                gaps = gaps +1
                gapCount = gapCount+1
            tempstart = tempstart + 1
            
        
        if coverage > 10: #coverage limit
            
            #print '=========================================='
            print 
chr,start,stop,strand,geneID,coverage,total,lastPeakStop,start,gapCount,tempgeneID,fla
g
            #print '==========================================='            

                
        ## for i in range(stop,stop+1001):
##             if i in wigDic:
##                 coverage = coverage +1
##                 total = total + wigDic[i]
##         if coverage > 10:
##             print chr,start,stop,geneID,coverage,total
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 Identification of genes which show a change in their splicing profile 
during differentiation.

Input:

datafile - file containing exon read counts of all samples arranged in different columns

Command:

print 'input -> python altsplice.py <datafile>  <column number of first sample> 
<column number of second sample> <minimum_adjoining peak size> <min peak 
size> <ratio of ratios>' 

To identify genes with mutually exclusive exons substitute altsplice.py with 
mutualExclusive.py 

Code:

altsplice.py

#Given a list of combined exon counts sorted according the exon and start position, 
this script identifies transcripts which show potential alt splicing.
#It assumes that the ratio of expression level of individual exons whithin a single 
transcript at a single time point is the same.

#input format:
#e.g sortedQuery, tab delimited, no header, optional [ID, chromosome,start, stop, 
strand, exon, strand] level for each sample,

#import statements
from __future__ import division # this line makes python division behave like normal 
i.e with decimals
#from statlib import stats #statlib package used to do statistical calculations
import sys

#assigning command line arguments to variables
try:
    fname = sys.argv[1] # data file
    
    d0place = int(sys.argv[2]) #position of the first sample
    d8place = int(sys.argv[3]) #position of the second sample
    
    minAdj = float(sys.argv[4]) #min size of adjoining peaks
    minPeak = float(sys.argv[5]) #min size of peak under study
    mul = float(sys.argv[6]) # multiplication factor
    

except:
    
    print 'input -> python altsplice.py <datafile>  <column number of first sample> 
<column number of second sample> <minimum_adjoining peak size> <min peak size> <ratio 
of ratios>'
    exit(1)
    # Typical input python altsplice.py sortedQuery.txt 10 5 9

#variable initiation
lines = [] #array of lines belonging to the same gene and having a non zero exon count
pgenename = '' #holds the name of the previous gene
ratio = [] #the ration between the two exon counts
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d0 = []
d8 = []
exonStart = []
exonStop = []
exonStartStop = []
r = 0.01
dic= {} #dictionary of lines and the start position, user for sorting
count = 0 #counts the number of lines
dir = ''
prevExonLength = 0
nextExonLength = 0
nowExonLength = 0

print 
'pgenename','\t','exon','\t','pratio','\t','nratio','\t','d0prev','\t','d0now','\t','d
0next','\t','d8prev','\t','d8now','\t','d8next'

for line in open(fname,'r'): #sortedQuery.txt contains the combination of all the exon 
counts sorted according to the gene
    temp = line.strip().split('\t')
    #genename = temp[0].split(';')[0].split()[1].split('"')[1].split('"')[0]
    genename = temp[9].strip()
    #print genename
    if pgenename == genename: #The objective here is to make a list (lines) of all the 
exons belonging to the same gene.
        lines.append(line)
    else:
        #once the lines list is filled it gets processed here
        
        #sorting the lines in the exon order
        for l in lines:
            dic[int(l.strip().split('\t')[2])] = l #dictionary format startposition : 
line
            
        #sorting dic
        dk = dic.keys()
        dk.sort() #get the list of keys i.e. startpositions and then sort that.
        
        
        for l in dk:
            t = dic[l].strip().split('\t')
            d0i = int(t[d0place])
            d8i = int(t[d8place])
            d0.append(d0i)
            d8.append(d8i)
            exonStartStop.append( str(t[0]).strip()+':'+str(t[1]).strip()+'-'+str(t
[2]).strip())
            exonStart.append(int(t[1].strip()))
            exonStop.append(int(t[2].strip()))

            #print t[1],t[2]
            
        
        #now that the two lists are filled....
        #print 'sdfad'
        #print exonStart
        #print exonStop
        prevExonLength = 0
        nextExonLength = 0
        nowExonLength = 0

        for i in range(1,len(d0)-2):
        
            
            
            if len(nowSet & prevSet) == 0:
                d0prev = d0[i-1]
                d8prev = d8[i-1]
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            else:
                #print 'wishva',pgenename
                d0prev = d0[i-2]
                d8prev = d8[i-2]

            if len(nowSet & nextSet) == 0:
                
                d0next = d0[i+1]
                d8next = d8[i+1]
            else:
                #print 'wishva',pgenename
                d0next = d0[i+2]
                d8next = d8[i+2]
           

            #start code for finding exons which goes completely AWOL

            if d0now < minPeak and d0now > 0 and d8now >= minPeak and d8prev > 0 and 
d8next > 0 and d8now / d0now >= mul:
                if (d0prev / d8prev  >=  mul/2 or d0next / d8next >= mul/2):
                #potential appearance of a peak
                    if d0prev >= minAdj and d0next>= minAdj and d8prev >= minAdj and 
d8next >= minAdj:
                        print pgenename,'\t', exonStartStop[i],'\t',pratio,'\t',  
nratio,'\t',d0prev,'\t',d0now,'\t',d0next,'\t',d8prev,'\t',d8now,'\t',d8next,'\t', 
pratio >= mul\
     and nratio>= mul, int(exonStartStop[i].split('-')[1]) - int(exonStartStop
[i].split(':')[1].split('-')[0]),"Extream UP"

            if d8now < minPeak and d8now > 0 and d0now >= minPeak and d0prev > 0 and 
d0next > 0 and d0now / d8now >= mul :
                if (d8prev / d0prev  >=  mul/2 or d8next / d0next >= mul/2) :
                #potential dissappearance of a peak                                                                    
                                                                
                    if d0prev >= minAdj and d0next>= minAdj and d8prev >= minAdj and 
d8next>= minAdj:
                        print pgenename,'\t', exonStartStop[i],'\t',pratio,'\t',  
nratio,'\t',d0prev,'\t',d0now,'\t',d0next,'\t',d8prev,'\t',d8now,'\t',d8next,'\t', 
pratio >= mul\
     and nratio>= mul, int(exonStartStop[i].split('-')[1]) - int(exonStartStop
[i].split(':')[1].split('-')[0]),"Extream DOWN"

              #      print 'vertical','\t',pgenename,'\t', exonStartStop
[i],'\t',pROR,'\t',  
nROR,'\t',d0prev,'\t',d0now,'\t',d0next,'\t',d8prev,'\t',d8now,'\t',d8next,'\t', 
pratio >= mul and nratio>= mul, int(exonStartStop[i].split('-')[1]) - int
(exonStartStop[i].split(':')[1].split('-')[0])

            
            

            #end code for vertical 
comparison----------------------------------------------------------------------------
----------------------------------
            if d0prev >= minAdj and d0next >= minAdj  and d8prev >= minAdj and d8next 
>= minAdj:
                
                if d0now >= minPeak and d8now >= minPeak:
                    
                
                
                
                
                    d0prevratio = d0now/d0prev
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                    d0nextratio = d0now/d0next
                    
                    d8prevratio = d8now/d8prev
                    d8nextratio = d8now/d8next
                    
                    
                    
                    #previous ratios
                    if d0prevratio >= d8prevratio:
                        pratio = d0prevratio/d8prevratio
                        
                    else:
                        pratio = d8prevratio / d0prevratio
                        
                        
                    #next ratios
                    if d0nextratio >= d8nextratio:
                        nratio = d0nextratio/d8nextratio
                    else:
                        nratio = d8nextratio / d0nextratio
                    
                    
                    
                    if pratio >= mul or nratio>= mul  : # or?
                        print pgenename,'\t', exonStartStop[i],'\t',pratio,'\t',  
nratio,'\t',d0prev,'\t',d0now,'\t',d0next,'\t',d8prev,'\t',d8now,'\t',d8next,'\t', 
pratio >= mul and nratio>= mul, int(exonStartStop[i].split('-')[1]) - int
(exonStartStop[i].split(':')[1].split('-')[0]),'\t',"Normal"
                        dir = ''
                        count = count+1
                        
                    
                                  
        d0 = []
        d8 = []
        exonStartStop = []
        ratio = []
        dic = {}
        
        
            
        lines = []
        lines.append(line)
    pgenename = genename
                  
print count
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mutualExclusive.py

#Given a list of combined exon counts arranged according to the exon this script 
identifies transcripts which show potential alt splicing.
#The combined counts file MUST be sorted based on geneID

#Wishva Herath, Robson Lab, Genome Institute of Singapore, Singapore
#(C) Jan 2010.

#import statements
from __future__ import division # this line makes python division behave like normal 
i.e with decimals
#from statlib import stats #statlib package used to do statistical calculations
import sys

#assigning command line arguments to variables
try:
    fname = sys.argv[1] # combined counts file
    d0place = int(sys.argv[2]) #The index of the first sample
    d8place = int(sys.argv[3]) #The index of the second sample
    geneIDpos = int(sys.argv[4]) #The index of the geneID
    gT = float(sys.argv[5]) # this is the min of first+second / exonlength
    ratio = float(sys.argv[6]) #the ratio between the first and the second
    #minAdj = int(sys.argv[4])
    #minPeak = int(sys.argv[5])
    #mul = float(sys.argv[6]) # multiplication factor of the standard deviation
   
   
except:
    
    print "Input error"
    print "python findMutualSpliced.py <combined exoncounts file.txt> <d0> <d8> 
<geneIDpos> <normTotal> <ratio>"

    exit(1)
    # Typical input python altsplice.py sortedQuery.txt 10 5 9

#variable initiation
lines = [] #array of lines belonging to the same gene and having a non zero exon count
pgenename = '' #holds the name of the previous gene

d0 = []
d8 = []
exonStartStop = [] 

dic= {} #dictionary of lines and the start position, user for sorting

for line in open(fname,'r'): #sortedQuery.txt contains the combination of all the exon 
counts sorted according to the gene
    temp = line.strip().split('\t')
    #genename = temp[0].split(';')[0].split()[1].split('"')[1].split('"')[0] #This is 
for the combined gap files produced by accsess. 
    genename = temp[geneIDpos].strip()
    #print genename
    if pgenename == genename: #The objective here is to make a list (lines) of all the 
exons belonging to the same gene.
        lines.append(line)
    else:
        #once the lines list gets filled with exon data of a particular gene it gets 
here.
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        #sorting the lines in the exon order
        for l in lines:
            dic[int(l.strip().split('\t')[1])] = l #dictionary format startposition : 
line
            
        #sorting dic
        dk = dic.keys()
        dk.sort() #get the list of keys i.e. startpositions and then sort that.
        
        
        for l in dk:
            t = dic[l].strip().split('\t')
            d0i = int(t[d0place])
            d8i = int(t[d8place])
            d0.append(d0i)
            d8.append(d8i)
            exonStartStop.append( str(t[0]).strip()+':'+str(t[1]).strip()+'-'+str(t
[2]).strip())#contains chr:start-stop
        
        FC = []
        normGap = []
        rr = []
        rr.append(1.234)
        rr.remove(1.234)
        for i in range(0,len(d0)):
            first = int(d0[i])
            second = int(d8[i])
            gap = int(exonStartStop[i].split('-')[1]) - int(exonStartStop[i].split
(':')[1].split('-')[0])
            
            normGap.append((first+second)/gap)
            
            if ((first+second)/gap)  > gT :
                if first == 0 and  second == 0 :
                    #print 'zero'
                    rr.append(float(0))
                    FC.append('z')
                elif first == 0 and second > 1:
                    FC.append('Mu')
                    rr.append(float(0))
                elif second == 0 and first > 1:
                    FC.append('Md')
                    rr.append(float(0))
                elif first == second:
                    FC.append('e')
                    rr.append(float(1))
                elif first / second  > ratio:
                    rr.append(first/second)
                    FC.append('d')
                elif second / first > ratio:
                    rr.append(float(second/first))
                    FC.append('u')
                else:
                    FC.append('n')
                    if first > second:
                        rr.append(float(first / second))
                    else:
                       # rr = second/first
                        rr.append(float(second/first))
            else:
                FC.append('l')
                if first <> 0 and second <> 0:
                    if first > second:
                        rr.append(float(first / second))
                    else:
                        rr.append(float(second / first))
                else:
                    rr.append(float(0))
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        #print FC
        
        if 'u' in FC and 'd' in FC:
            print '------------------------------------------------'
            print 'GENEID=',pgenename
            
               
            for j in range(0,len(d0)):
                #print "Complete Mutual Exclusion!"
                print FC[j],d0[j],d8[j],exonStartStop[j],normGap[j],rr[j]
                #pass
        if 'Mu' in FC and 'Md' in FC:
            print "complete mutual exclusivitiy"
            for j in range(0,len(d0)):
                print FC[j],d0[j],d8[j],exonStartStop[j],normGap[j],rr[j]

        
                  
        d0 = []
        d8 = []
        exonStartStop = []
        
        dic = {}
        
        
            
        lines = []
        lines.append(line)
    pgenename = genename
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Appendix II: Sequences of novel transcripts

Novel transcripts were validated by designing primers to amplify the transcript, 
running PCR, performing gel purification, cloning the amplicon into a top10 vector 
and sequencing the vector. The entire sequence of the sequenced vector is given. The 
primer sequence is shown in bold and underlined text.

Novel transcript 1 (chr1:63,559,143-63,560,695)
 
Forward strand sequence:
GGTCATTCACAAAGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAAGCGG
CCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTGATTTTTAAATTTTTATTTTTATTTT
ATTGAATTATTTTTGGTGTGTCAAGGCCAAGGAAAGAGGAGATCGTGGGTGGGGAAACAG
ACAGAGGGAATCAGAAGCACCACTGTCCATCCGGAATTAAATCCACATCCCAGCATCTTCT
GCAAATATTTCACTAATTATTTCCTCTCGGAACTCCTCCCCTCGTGCTCCTTCCTCTGGTGAG
GCCGGCGCTCCCCTCCCAGGCCGCAGCGGACAGACAGGGATTGGGTTCCGTGTGCCTGCC
ACACCAGGCAGGCTCTTGCGGCTCCCAACTAGGCGGCCTTGCACTCCGCGTGCATTGGCCA
CACATCCTCGCCTCCTCCACCCGCTCCGCCGCCGGTTTTCTTGGAAGTTAAATCTTGGAGGA
TTTGTCCACACCCGCTCCCTGGGCCCCAGGGCCCGGATCCAGCCTGGGTGGGGGGGTCTCC
GGGCGGGCCGCAGCGCCCTCCGTGCCCCGGGGATGCTGGCGCACAGTGCGGAGCGGAGTT
GCGCGTCTCTCAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCG
GTACCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCAC
AATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTG
AGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTG
CCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCT
TCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAG
CTCACTCAAAGGCGGTAATACGGTTATCCCCAGAATCAGGGGATAACGCAGGAAAAAACAT
GTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCCCGTTGCTGGGGTTTTT
CCATAGGTTCGG

Reverse strand sequence:
CAACGATAATGATACGCCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCG
CCAGTGTGCTGGAATTCGCCCTTGAGAGACGCGCAACTCCGCTCCGCACTGTGC
GCCAGCATCCCCGGGGCACGGAGGGCGCTGCGGCCCGCCCGGAGACCCCCCCAC
CCAGGCTGGATCCGGGCCCTGGGGCCCAGGGAGCGGGTGTGGACAAATCCTCCA
AGATTTAACTTCCAAGAAAACCGGCGGCGGAGCGGGTGGAGGAGGCGAGGATGT
GTGGCCAATGCACGCGGAGTGCAAGGCCGCCTAGTTGGGAGCCGCAAGAGCCTG
CCTGGTGTGGCAGGCACACGGAACCCAATCCCTGTCTGTCCGCTGCGGCCTGGGA
GGGGAGCGCCGGCCTCACCAGAGGAAGGAGCACGAGGGGAGGAGTTCCGAGAG
GAAATAATTAGTGAAATATTTGCAGAAGATGCTGGGATGTGGATTTAATTCCGGATG
GACAGTGGTGCTTCTGATTCCCTCTGTCTGTTTCCCCACCCACGATCTCCTCTTTCC
TTGGCCTTGACACACCAAAAATAATTCAATAAAATAAAAATAAAAATTTAAAAATC
AAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAG
AGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACA
ACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACAT
CCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCC
AACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGC
GCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAG
CGCCCGCTCCTTTCCCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCC
GTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCAC
CTCGACCCCAAAAAACTTGATTAGGGGGATGGTTCACGTAATGGGCCATCCCCC
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Novel transcript 2 (chr7:100,729,591-100,731,304)

Forward strand:
GGGGGCGTAGAATCGACTCCTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGC
CGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTACCCCAGAATAAGAACTAACCCAGC
AGGTTTTGTTCACATTAATGGCCAGAGTACAACCCATGAATCTTTAAAGTGAGAAAAATGCT
TCAGATTTTATGCCCTGAGAGTTTTTCTTCTATTTGTTCTAGTCCATCATTGAAGCTTTTGAGT
GTACTTTGTATTTCATCCAATGATTTCTTCAGTTCCAGAAATACTCTTCTGTTGAATTTTAAA
ACCTCTTTCTGGCAGGTAATCATCTCATATATCTCCCCACCTCTTTTCCTCATTTCTTTATGTT
GTTGTTCAAAAGACTCTTCCATGTTGATGACCTTCTTTACAATCAGTCCGGTCAATTCTCTG
CTCAATTCTCTGTTTGAGCTTTCCTGAATTTCTTTTGGATGGGGATCTGTTGCTGGAGAATTA
CTGGTTTCTTCTGAAGGCGTCACATTTCCTTGCTTTTTCATGTCTCCTGGGTCCTTCCGTTGA
GATCTGCGCATCCTGTGGAACAGTCACTTCTTCCGTTTGTGAATTCGCTTTGTAGGGGAGGA
CTTCTTCCCTTTCCCCGCGCGCGGGGGCTGCAGGCCGTCCCAGCCGATCCGATTTCTCCGC
GCAGGCTGCCTGGGTGCCTCTGCTCCACTCCTCGGGCTCCCAGTGGCTTCTCGGCTGAATC
CCGCGTTCTCTTAGCGGATCTGCTGCAAGTGTGAAAACCTACCGGCTCCTTCTGTTCCCGTC
GGAGGAGAGGCGCGTGCCGGCTGCATCTACCAGGCCATCTTGAGCCTGTGGTCCTGGGTG
GAAACGGGGTCCCAAGTGCGGGAGTTACTCAAGGGCGTTCAAGGGCGAATTCCAGCACAC
TGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGGCGTAATCATGGTCATAGCT
GTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAA
AGTGTAAAGCCTGGGGGGCCTAATGAGTGAGCTAACTCACATTAATTGGGTTGCCCTCCCT
GC

Reverse strand:
AACGACACGTTATACGCCAAGCTTTGGTACGAGCTCGGATCCACTAGTAACGGCCGCCAGT
GTGCTGGAATTCGCCCTTGAACGCCCTTGAGTAACTCCCGCACTTGGGACCCCGTTTCCA
CCCAGGACCACAGGCTCAAGATGGCCTGGTAGATGCAGCCGGCACGCGCCTCTCCTCCGA
CGGGAACAGAAGGAGCCGGTAGGTTTTCACACTTGCAGCAGATCCGCTAAGAGAACGCGG
GATTCAGCCGAGAAGCCACTGGGAGCCCGAGGAGTGGAGCAGAGGCACCCAGGCAGCCT
GCGCGGAGAAATCGGATCGGCTGGGACGGCCTGCAGCCCCCGCGCGCGGGGAAAGGGAA
GAAGTCCTCCCCTACAAAGCGAATTCACAAACGGAAGAAGTGACTGTTCCACAGGATGCG
CAGATCTCAACGGAAGGACCCAGGAGACATGAAAAAGCAAGGAAATGTGACGCCTTCAG
AAGAAACCAGTAATTCTCCAGCAACAGATCCCCATCCAAAAGAAATTCAGGAAAGCTCAA
ACAGAGAATTGAGCAGAGAATTGACCGGACTGATTGTAAAGAAGGTCATCAACATGGAAG
AGTCTTTTGAACAACAACATAAAGAAATGAGGAAAAGAGGTGGGGAGATATATGAGATGAT
TACCTGCCAGAAAGAGGTTTTAAAATTCAACAGAAGAGTATTTCTGGAACTGAAGAAATCA
TTGGATGAAATACAAAGTACACTCAAAAGCTTCAATGATGGACTAGAACAAATAGAAGAAA
AACTCTCAGGGCATAAAATCTGAAGCATTTTTCTCACTTTAAAGATTCATGGGTTGTACTCT
GGCCATTAATGTGAACAAAACCTGCTGGGTTAGTTCTTATTCTGGGGTAAGGGCGAATTCTG
CAGATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTATA
GTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGG
CGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAA
AGGCCCCCCCCGATCGCCCTTTCCAAAAGTG
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Novel Transcript 3 (chr7:100,738,332-100,740,838)

Forward strand:
GGGTCGTTTGACATCGAATCACTAAAAGGGCGAATTGGGCCCTTCTAGATGCATGCTCGAG
CGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTAAGATGGCCTGGTAGATGCAG
CCGGCACGCACCTCTCCTCTGACGGGAACCGAAGGAGCCGGTAGGTTTTCACACTTGCAG
CAGATCCGCTAAGAGAACGCGGGATTCAGCCGAGAAGCCACGGGGAGCCCGAGGAGCGG
AGCAGAGGCACCCAGGCAGCCTGCGCGGAGAAATTGGATCGGCGGGGACGACCTGCAGC
TCCCGCGCGCGGGGAAAGGGAAGAAGTCCTCCCCTACAAAGCAAATTCACAAACTTGGAA
GAAGCAATTTACACAGGATGTGCAGATCTCAATGGAAGGACACGGGAAACGTGAAAAAGC
AAGGAAGTGGGACGCCTCCAAAGGAACCCAGTAATTCTCCAGCAACAGATCCCCATCCAA
AAGAAATTCAAGAAATGTCATATAGAGAATTGTGGAAACTGATTTTAACCAAGATTAGAGG
GATTCAAGAGACTTCTGAAAAAGAAAGTAAGGAAATGTCAACAGCAATTCTGGATATGGTT
GAGGTATTTACCAACCAGATACAGAGTTTTCCAGAGCACATGGCAAATGTGGAACTGAAGA
AATCACTGGAAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGG
TACCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACA
ATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGA
GCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGC
CAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTT
CCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGC
TCACTCAAACGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATG
TGAGCAAAAGCCCAGCAAAAGGCCAGGAACC

Reverse strand:
AGATTTCAAAGTATTCGCCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAG
TGTGCTGGAATTCGCCCTTTCCAGTGATTTCTTCAGTTCCACATTTGCCATGTGCTCTGGA
AAACTCTGTATCTGGTTGGTAAATACCTCAACCATATCCAGAATTGCTGTTGACATTTCCTTA
CTTTCTTTTTCAGAAGTCTCTTGAATCCCTCTAATCTTGGTTAAAATCAGTTTCCACAATTCT
CTATATGACATTTCTTGAATTTCTTTTGGATGGGGATCTGTTGCTGGAGAATTACTGGGTTCC
TTTGGAGGCGTCCCACTTCCTTGCTTTTTCACGTTTCCCGTGTCCTTCCATTGAGATCTGCAC
ATCCTGTGTAAATTGCTTCTTCCAAGTTTGTGAATTTGCTTTGTAGGGGAGGACTTCTTCCCT
TTCCCCGCGCGCGGGAGCTGCAGGTCGTCCCCGCCGATCCAATTTCTCCGCGCAGGCTGCC
TGGGTGCCTCTGCTCCGCTCCTCGGGCTCCCCGTGGCTTCTCGGCTGAATCCCGCGTTCTCT
TAGCGGATCTGCTGCAAGTGTGAAAACCTACCGGCTCCTTCGGTTCCCGTCAGAGGAGAGG
TGCGTGCCGGCTGCATCTACCAGGCCATCTTAAGGGCGAATTCTGCAGATATCCATGACACT
GGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAAT
TCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATC
GCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCG
CCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAA
GCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGC
CCGCTCCTTTCGCTTTCTTCCCTTCCTTTTCTCGCCACGTTTCGCCGGCTTTCCCCCGTCTGA
GCTCTAAATCGGGGGGGCTCCCTTTAGAGGGGTTCCGAATTTAAGGGCTTTACGGGCAACC
CCCAACCCCAAAAAAAAAACTTTAT
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Novel transcript 4 (chr17:34,456,005-34,462,831)

Forward strand:
GGGCTATTATCGACTCCTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCC
AGTGTGATGGATATCTGCAGAATTCGCCCTTTGTAAATGGGAAGGGAAGAAAATAACATG
AAGTGGAGGCAATAGGAAGAAGAAATGAAGAATCCCTGAGTGAGAACAGGAGTCTTGGA
CTGACTCCGTGGTGCACACACACCCTGTTTCATCTCGGGCAGCATCCTGTCAGCCAGTAGG
AGAGTGGCCGGCCCGAATAGTGCAACCTCCATTCTACCCGCTTGCCATGGTTTCGTTGTGG
GTGGAGGATACTTTCTTGCCCCGGCTTCAGACTTGCCCATGTGGCTTGCTTTGGCCATGGAA
TGAAGCAGAAATGAAAGCCTACCAGTTCCAAAGGGCGAATTCCAGCACACTGGCGGCCGT
TACTAGTGGATCCGAGCTCGGTACCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTG
TGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAG
CCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTC
CAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGC
GGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCG
GCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGG
GATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAA
GGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGA
CGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTG
GAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTT
CTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTA
GGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTTCAGCCCGACCGCTGGCG
GCCTTA

Reverse strand:
AAGTACAGATTACGCCAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTG
CTGGAATTCGCCCTTTGGAACTGGTAGGCTTTCATTTCTGCTTCATTCCATGGCCAAAGCA
AGCCACATGGGCAAGTCTGAAGCCGGGGCAAGAAAGTATCCTCCACCCACAACGAAACCA
TGGCAAGCGGGTAGAATGGAGGTTGCACTATTCGGGCCGGCCACTCTCCTACTGGCTGACA
GGATGCTGCCCGAGATGAAACAGGGTGTGTGTGCACCACGGAGTCAGTCCAAGACTCCTG
TTCTCACTCAGGGATTCTTCATTTCTTCTTCCTATTGCCTCCACTTCATGTTATTTTCTTCCCT
TCCCATTTACAAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATGCA
TCTAGAGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACA
ACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCT
TTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCA
GCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTT
ACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCC
CTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTA
GGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTC
ACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCT
TTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTT
GATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAA
ATTTAACGCGAATTTTAACAAAATTCAGGGCGCAAGGGCTGCTAAAGGAAGCGGAACACG
TAAAAAGCCAGTCCGCAAAAACGGGTGCTGACCCCGGATG
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Novel transcript 5 (chr19:44,838,393-44,843,124)

Forward strand:
GGCGTAGTATCGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGC
CAGTGTGATGGATATCTGCAGAATTCGCCCTTACTCAGAAGACTGGACACAATTCCGAAG
GTCGCCCAGAAGGAGAGGACAATGTCATTTCTAACTGTGCCATACAAACTGCCTGTGTCTT
TGTCTGTTGGTTCCTGCGTGATAATCAAAGGGACACTGATCGACTCTTCTATCAGCGAACCA
CAGCTGCAGGTGGATTTCTACACTGAGATGAATGAGGACTCAGAAATTGCCTTCCATTTGC
GAGTGCACTTAGGCCGTCGTGTGGTCGTGAACAGTCGTGAGTTTGGGATATGGATGTTGGA
GGAGAATTTACACTATGTGCCCTTTGAGGATGGCAAACCATTTGACTTGCGCATCTACGTGT
GTCACAATGAGTATGAGGTAAAGGTAAATGGTGAATACATTTATGCCTTTGTCCATCGAATC
CCGCCATCATATGTGAAGATGATTCAAGTGTGGAGAGATGTCTCCCTGGACTCAGTGCTTGT
CAACAATGGACGGAGATGATCACACTCCTCATTGTTGAGGAAACCCTCTTTCTACCTGACC
ATGGGATTCCTAGAGCCTGCCAACAGAATAATCCCTCCTCAACCCCTTCCCCTACACTTGGT
CATTAAAACAGCACCAAACCAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTAGTGGAT
CCGAGCTCGGTACCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTA
TCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCC
TAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAA
CCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATT
GGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGA
GCGGTTTCAGCCCCCTCAAAAGGCGGTAAAACGGTTTTCCACAAAAATC

Reverse strand:
ACAGAATGATTCGCCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTG
CTGGAATTCGCCCTTGGTTTGGTGCTGTTTTAATGACCAAGTGTAGGGGAAGGGGTTGAG
GAGGGATTATTCTGTTGGCAGGCTCTAGGAATCCCATGGTCAGGTAGAAAGAGGGTTTCCT
CAACAATGAGGAGTGTGATCATCTCCGTCCATTGTTGACAAGCACTGAGTCCAGGGAGACA
TCTCTCCACACTTGAATCATCTTCACATATGATGGCGGGATTCGATGGACAAAGGCATAAAT
GTATTCACCATTTACCTTTACCTCATACTCATTGTGACACACGTAGATGCGCAAGTCAAATGG
TTTGCCATCCTCAAAGGGCACATAGTGTAAATTCTCCTCCAACATCCATATCCCAAACTCAC
GACTGTTCACGACCACACGACGGCCTAAGTGCACTCGCAAATGGAAGGCAATTTCTGAGTC
CTCATTCATCTCAGTGTAGAAATCCACCTGCAGCTGTGGTTCGCTGATAGAAGAGTCGATCA
GTGTCCCTTTGATTATCACGCAGGAACCAACAGACAAAGACACAGGCAGTTTGTATGGCAC
AGTTAGAAATGACATTGTCCTCTCCTTCTGGGCGACCTTCGGAATTGTGTCCAGTCTTCTGA
GTAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAGAGG
GCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTG
ACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAG
CTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAAT
GGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCA
GCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTT
CTCGCCCCGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGG

231



Novel transcript 6 (chr13:99,536,264-99,539,11)

Forward strand:
GGGGCGTTTTATCGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCC
GCCAGTGTGATGGATATCTGCAGAATTCGCCCTTCAGGAGTGAGAGAGACAGGGGCGTGC
GTGAGTTCCGGCGGCCTGCACCGGGCAAACCCCGTACCTTCCCAGCATCGGCTCAGCAACC
CACGTGCATCCAGGCCGGTCAATGTCATTGAGTCACCTCCGCGCCTTGGCCACCCTGGAGT
CCCGAGAATCCGAAGTTCCGGACAAATGCCCAAACTACATTCCTGCATGTTCGAAAGCGTA
AATTGCAAAGCACAAATCCAGTTGTAGATTGTGGCCGGGAGCAGTGGCTCACGCCTATAAT
CCCAGCACTTTGGGAGGCCGAGGCGGACAGATCACGAGGTCAGCACTTCGAGACCAGCAT
GGCCAACATGGTGAAGCCCCATCTCTACTAAAAATACAAACATTAGCCAGGCATGGTGGTA
GGCCCCTGTAATCCCAGCTACTCGGTAGGCTGAGGCAGGAGAATCACTTGAACCCGGGAG
GCAGAGGTTTCAGTGAGCTGAGACTGCACCATTGCACTCCAGCCTGGGCGACAGACCAAG
ACTCCATCTCAAAAAAAAAAAAAAAGTTATAGATTGTAAGGAAAATACCCCCAAGGAAGTT
GAGGACACAGCAGACTTGGACTGTCTCCAAACCTGTTCATTCTTCTGAGTGCACTGCTCGG
AGCATCCTATTGGGCAGCATATCCTGGCCTCCTTTCCAGTTCGATGTGGTACTATACCTGATT
TCTGGCCAATAAAATATGAGAGGACATGAAATTCAACAGCCCCTGGGCTTGGCTTAAAAAA
CCTTCCATGCAATCCTCCACACCTTTTCACCTCTCAGCTGCTGAGACTTTTCTAGGCACTAC
CCAAAAACCAGCCTGGGTCTCCAGTAACAAAGGAAAACAAATTCCTTCCCACTATCCTGCA
CCGAACTGTGACTGGGCAAAAAATAAAGTTTTTATTTTCTTACCCCCTTGAAATTTGAGGAT
GCTAAAACAATTATTTCTTTCCACCCTAATACCGTTTTTTTAAGGACAATTTGGCCCAACACG
TTCTTATGCCCTTATATCCCCCCCTTTA

Reverse strand:
CGCAGACAGATACGCCAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTG
CTGGAATTCGCCCTTCCTGGCCATTCTTGATATTGTTAATGTATGTTTTTATTCTGAAAAAG
GTTTTTTGTTGTTTATTTATTTATTTTTGAGACAGAGTCTCACTCTGTTGCCCAGGCTGGAGT
GCACTGGTACAATCTTGGTTCACTGCAACCTCCGCCTCCTGGCTTGAAGATTTTCCTGCCTC
AGCTTCCTGAGTAGCTGGGATCACAGGCACGTGCCACCATGTTTGGCTAATTTTCGTATTTT
TTGTAGAGCTGGGGTTTCACCATGTCGGCCAGGCTGGTCTCAAACTCCTGACATCAGGTGA
TCTGCCCACCTCGGCCTTATAAACTGCTGTGATTATAGGCATAAGCTACTGTGTCTGGCCTAA
TTGTCCTCTACTAATACTGTATTAGGCTGGGAAGACTAACTGCTCTAGCAATCCTCAAATCTC
AATGGTGTAAGAAAATAAAAACTTTATTTTTTGCTCATGTCACAGTTCGGTGCAGGATAGTG
AGAAGGATCTGCTCTCCTTTGCTACTGGAGACCCAGGCTGCTTCTGTGTAGTGCCTAGAAA
AGTCTCAGCAGCTGAGAGGTGAAAAGGTGTGGAGGATTGCATGGAAGGTTTTATAAGCCA
AGCCCAGGGGCTGTTGAATTTCATGTCCTCTCATATTTTATTGGCCAGAAATCAGGTATAGTA
CCACATCGAACTGGAAAGGAGGCCAGGATATGCTGCCCAATAGGATGCTCCGAGCAGTGCA
CTCAGAAGAATGAACAGGTTTGGAGACAGTCCAAGTCTGCTGTGTCCTCAACTTCCTTGGG
GGTATTTTCCTTACAATCTATAACTTTTTTTTTTTTTTTGAAATGGAGTCTTGGTCTGTCGCCC
AGGCTGGAGTGCAATGGTGCAGTCTCAGCTCACTGAAACCTCTGCCTCCCGGGTTCAAGTG
ATTCTCCTGCCTCAGCCTACCGAGTAGCTGGGATTACAGGGGCCCTACCACCATGCCTGGCT
AATGTTTGTATTTTTTAGTAAAAATGGGGCTTCACCATGTTGGCCCATGCTGGTCTCGAAGT
GCTGACCTC
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Novel transcript 7 (chr13:90,577,939-90,644,334)

Forward strand:
GGGAGGATGTTTCGACTCACTATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGC
CGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTATTTCTAGGTGCAGACGAGGCATTTG
GGGCATAGAAGATCACACTCTTCTTCCGCCATGTCTTAAGATATTACTTTATAGTAATTTATCT
TAGTCCAGGTGCAGTGCCTCACACCTGTAATCCCAGCACTTTGGAAGGCTGAGCTGGGAGG
ATTGCTTGAGGCTGGCAGTTCAAGACTTCTTCCATTTTAAGGGGCCTTGTGATTACAGCTGG
TCCATCTGGATATTCTAAGATATTCTCCCTATTTTAAGGAGAGAAATCTGAAATCTGAGGTGC
AGTTGATTTGAATCCAGGAAATCTAAGGAAAAAGTTCAAGCTCTTAATCATTTCATACCCTT
CTTGTTGCTAACTTAAACTTTTTTTTTAAAAAAGTTAATCTTGTCTATGAAGCATGAATCTAT
AATACTAGGGAAAAAACTGGCTAACAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTA
GTGGATCCGAGCTCGGTACCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAA
TTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGG
GGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTC
GGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTT
GCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGC
GGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAA
CGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCG
CGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTC
AAGTCAGAGGTGGCGAAACCCGACAGGACTTTAAAGATACCAGGCGTTTCCCCCTGGAAG
CTCCCTCGGTGCGCTCTCCTGTTCCGACCCTGCCCCTTACCGG

Reverse strand:
NNNNNNNNNNAANNNNNNNAACGCCAAGCTNGGGTACCGAAGCTTCGGANNNACTAGTA
ACGGCCGCCAGTGTGCTGGAATTCGCCCTTGTTAGCCAGTTTTTTCCCTAGTATTATAGAT
TCATGCTTCATAGACAAGATTAACTTTTTTAAAAAAAAAGTTTAAGTTAGCAACAAGAAGG
GTATGAAATGATTAAGAGCTTGAACTTTTTCCTTAGATTTCCTGGATTCAAATCAACTGCACC
TCAGATTTCAGATTTCTCTCCTTAAAATAGGGAGAATATCTTAGAATATCCAGATGGACCAGC
TGTAATCACAAGGCCCCTTAAAATGGAAGAAGTCTTGAACTGCCAGCCTCAAGCAATCCTC
CCAGCTCAGCCTTCCAAAGTGCTGGGATTACAGGTGTGAGGCACTGCACCTGGACTAAGAT
AAATTACTATAAAGTAATATCTTAAGACATGGCGGAAGAAGAGTGTGATCTTCTATGCCCCA
AATGCCTCGTCTGCACCTAGAAATAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCC
GCTCGAGCATGCATCTAGAGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGG
CCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGC
AGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCC
CAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGG
CGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCC
TTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCG
GGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGAT
TAGGGTGATGGNTNCACGTANNGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACN
TTNGGAGTCCACNNNNNNNANNGGNNTNTNNNCNAACTNNNNNNACTCANNCCNNTCTC
NNNCNNNTNNTTNNNNNNNNNNNNNTNNNGAATTCGNNNCTATTTGNNNNNN
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Novel transcript 8 (chr10:54,432,626-54,459,840)

Forward strand:
GGGAGGTTAGTAATCGACTCACTATAGGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGC
GGCCGCCATGTGATGGATATCTGCAGAATTCGCCCTTCTTTGTACTTTCACTCTGCTCAAT
AAAGCCTGCAGCTTTTTCTCACTCTCAGTCCATGTCTCTTTCACTCACTGTGGTCAGCTTCC
ACACCATTTCTTTGGTGTGGCTTGGCAAGAACCTCAGGTGTTACATCTTGGCGAGCCAGAC
AGGAGACTCCAGAAAAGGGGTGATTTTCCTGTACCAGTCCAATGCCTCCAGAGGAAGATC
ATACATTTGCCATTTTACTGCTTAGTACGCATGCTTGAGCCTGCTCGCCCAACTGCTGAGATC
TTATTCAGAAACTGCTGATCACCAACTCCAGCGTCAAATGCTGAGAACCCAGTGGAGGAGT
CCAAGACCTTAGGGGATTGTGGAGCCGCTTGTCCAACACACAGCCCATGGGCCACATGTGG
CTCAGGATTGCTTTGAATGCAGCCCAACACAAATTCACAAACTTTCTTAAAACATTATGAGT
TTTTTTGTGATTTTTTTTTTTAGTAGCTCATAAGCTATGGTTAGTGGTAGTGTATTTTATGTGT
GTGTCCCAAGACAATTCTTCTTCCAGTGTGGCACAGGGAAGCCAAAAGATTGTACACCCAT
GAATTAGAAAGAACAAGCATCAGGAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTAG
TGGATCCGAGCTCGGTACCAAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAAT
TGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGG
GTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCG
GGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTG
CGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCG
GCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGGATAA
CGCAGGAAAGAACATGTGAGCAAAAAGGCCAGCAAAAAGGCCAGGAACCG

Reverse strand:
CAACGAGACGTCATTCGCCAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGT
GTGCTGGAATTCGCCCTTCCTGATGCTTGTTCTTTCTAATTCATGGGTGTACAATCTTTTG
GCTTCCCTGTGCCACACTGGAAGAAGAATTGTCTTGGGACACACACATAAAATACACTACC
ACTAACCATAGCTTATGAGCTACTAAAAAAAAAAATCACAAAAAAACTCATAATGTTTTAAG
AAAGTTTGTGAATTTGTGTTGGGCTGCATTCAAAGCAATCCTGAGCCACATGTGGCCCATG
GGCTGTGTGTTGGACAAGCGGCTCCACAATCCCCTAAGGTCTTGGACTCCTCCACTGGGTT
CTCAGCATTTGACGCTGGAGTTGGTGATCAGCAGTTTCTGAATAAGATCTCAGCAGTTGGG
CGAGCAGGCTCAAGCATGCGTACTAAGCAGTAAAATGGCAAATGTATGATCTTCCTCTGGA
GGCATTGGACTGGTACAGGAAAATCACCCCTTTTCTGGAGTCTCCTGTCTGGCTCGCCAAG
ATGTAACACCTGAGGTTCTTGCCAAGCCACACCAAAGAAATGGTGTGGAAGCTGACCACA
GTGAGTGAAAGAGACATGGACTGAGAGTGAGAAAAAGCTGCAGGCTTTATTGAGCAGAGT
GAAAGTACAAAGAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATG
CATCTAGAGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTAC
AACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCC
TTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGC
AGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTTGTGGTG
GTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTT
CCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTT
TAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCA
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Appendix III: Sequencing statistics

Day 0
Counts:
Reads mapped:                                               42845342    (100.0%)Reads mapped:                                               42845342    (100.0%)Reads mapped:                                               42845342    (100.0%)Reads mapped:                                               42845342    (100.0%)Reads mapped:                                               42845342    (100.0%)
Reads filtered:                                              5866117    (13.7%)Reads filtered:                                              5866117    (13.7%)Reads filtered:                                              5866117    (13.7%)Reads filtered:                                              5866117    (13.7%)Reads filtered:                                              5866117    (13.7%)
Reads with too many mappings (N > 10):                       3261829    (7.6%)Reads with too many mappings (N > 10):                       3261829    (7.6%)Reads with too many mappings (N > 10):                       3261829    (7.6%)Reads with too many mappings (N > 10):                       3261829    (7.6%)Reads with too many mappings (N > 10):                       3261829    (7.6%)
Reads with number of mappings in proper range (N <= 10):    39583513    (92.4%)Reads with number of mappings in proper range (N <= 10):    39583513    (92.4%)Reads with number of mappings in proper range (N <= 10):    39583513    (92.4%)Reads with number of mappings in proper range (N <= 10):    39583513    (92.4%)Reads with number of mappings in proper range (N <= 10):    39583513    (92.4%)
Reads uniquely aligned (score.clear.zone =  4):             26955116    (62.9%)Reads uniquely aligned (score.clear.zone =  4):             26955116    (62.9%)Reads uniquely aligned (score.clear.zone =  4):             26955116    (62.9%)Reads uniquely aligned (score.clear.zone =  4):             26955116    (62.9%)Reads uniquely aligned (score.clear.zone =  4):             26955116    (62.9%)
Reads mapped to NTR:Reads mapped to NTR:Reads mapped to NTR: 1703606

Day 2
Counts:
Reads mapped:                                               42203140    (100.0%)Reads mapped:                                               42203140    (100.0%)Reads mapped:                                               42203140    (100.0%)Reads mapped:                                               42203140    (100.0%)Reads mapped:                                               42203140    (100.0%)
Reads filtered:                                              4238302    (10.0%)Reads filtered:                                              4238302    (10.0%)Reads filtered:                                              4238302    (10.0%)Reads filtered:                                              4238302    (10.0%)Reads filtered:                                              4238302    (10.0%)
Reads with too many mappings (N > 10):                       3363120    (8.0%)Reads with too many mappings (N > 10):                       3363120    (8.0%)Reads with too many mappings (N > 10):                       3363120    (8.0%)Reads with too many mappings (N > 10):                       3363120    (8.0%)Reads with too many mappings (N > 10):                       3363120    (8.0%)
Reads with number of mappings in proper range (N <= 10):    38840020    (92.0%)Reads with number of mappings in proper range (N <= 10):    38840020    (92.0%)Reads with number of mappings in proper range (N <= 10):    38840020    (92.0%)Reads with number of mappings in proper range (N <= 10):    38840020    (92.0%)Reads with number of mappings in proper range (N <= 10):    38840020    (92.0%)
Reads uniquely aligned (score.clear.zone =  4):             27790743    (65.8%)Reads uniquely aligned (score.clear.zone =  4):             27790743    (65.8%)Reads uniquely aligned (score.clear.zone =  4):             27790743    (65.8%)Reads uniquely aligned (score.clear.zone =  4):             27790743    (65.8%)Reads uniquely aligned (score.clear.zone =  4):             27790743    (65.8%)
Reads mapped to NTR:Reads mapped to NTR:Reads mapped to NTR: 3055869

Day 4
Counts:
Reads mapped:                                               40421804    (100.0%)Reads mapped:                                               40421804    (100.0%)Reads mapped:                                               40421804    (100.0%)Reads mapped:                                               40421804    (100.0%)Reads mapped:                                               40421804    (100.0%)
Reads filtered:                                              4105623    (10.2%)Reads filtered:                                              4105623    (10.2%)Reads filtered:                                              4105623    (10.2%)Reads filtered:                                              4105623    (10.2%)Reads filtered:                                              4105623    (10.2%)
Reads with too many mappings (N > 10):                       3378454    (8.4%)Reads with too many mappings (N > 10):                       3378454    (8.4%)Reads with too many mappings (N > 10):                       3378454    (8.4%)Reads with too many mappings (N > 10):                       3378454    (8.4%)Reads with too many mappings (N > 10):                       3378454    (8.4%)
Reads with number of mappings in proper range (N <= 10):    37043350    (91.6%)Reads with number of mappings in proper range (N <= 10):    37043350    (91.6%)Reads with number of mappings in proper range (N <= 10):    37043350    (91.6%)Reads with number of mappings in proper range (N <= 10):    37043350    (91.6%)Reads with number of mappings in proper range (N <= 10):    37043350    (91.6%)
Reads uniquely aligned (score.clear.zone =  4):             26832589    (66.4%)Reads uniquely aligned (score.clear.zone =  4):             26832589    (66.4%)Reads uniquely aligned (score.clear.zone =  4):             26832589    (66.4%)Reads uniquely aligned (score.clear.zone =  4):             26832589    (66.4%)Reads uniquely aligned (score.clear.zone =  4):             26832589    (66.4%)
Reads mapped to NTR:Reads mapped to NTR:Reads mapped to NTR: 3283724

Day 6
Counts:
Reads mapped:                                               40218029    (100.0%)Reads mapped:                                               40218029    (100.0%)Reads mapped:                                               40218029    (100.0%)Reads mapped:                                               40218029    (100.0%)Reads mapped:                                               40218029    (100.0%)
Reads filtered:                                              5020898    (12.5%)Reads filtered:                                              5020898    (12.5%)Reads filtered:                                              5020898    (12.5%)Reads filtered:                                              5020898    (12.5%)Reads filtered:                                              5020898    (12.5%)
Reads with too many mappings (N > 10):                       3065324    (7.6%)Reads with too many mappings (N > 10):                       3065324    (7.6%)Reads with too many mappings (N > 10):                       3065324    (7.6%)Reads with too many mappings (N > 10):                       3065324    (7.6%)Reads with too many mappings (N > 10):                       3065324    (7.6%)
Reads with number of mappings in proper range (N <= 10):    37152705    (92.4%)Reads with number of mappings in proper range (N <= 10):    37152705    (92.4%)Reads with number of mappings in proper range (N <= 10):    37152705    (92.4%)Reads with number of mappings in proper range (N <= 10):    37152705    (92.4%)Reads with number of mappings in proper range (N <= 10):    37152705    (92.4%)
Reads uniquely aligned (score.clear.zone =  4):             26237091    (65.2%)Reads uniquely aligned (score.clear.zone =  4):             26237091    (65.2%)Reads uniquely aligned (score.clear.zone =  4):             26237091    (65.2%)Reads uniquely aligned (score.clear.zone =  4):             26237091    (65.2%)Reads uniquely aligned (score.clear.zone =  4):             26237091    (65.2%)
Reads mapped to NTR:Reads mapped to NTR:Reads mapped to NTR: 2814868

Day 8
Counts:
Reads mapped:                                               40174214    (100.0%)Reads mapped:                                               40174214    (100.0%)Reads mapped:                                               40174214    (100.0%)Reads mapped:                                               40174214    (100.0%)Reads mapped:                                               40174214    (100.0%)
Reads filtered:                                              4056325    (10.1%)Reads filtered:                                              4056325    (10.1%)Reads filtered:                                              4056325    (10.1%)Reads filtered:                                              4056325    (10.1%)Reads filtered:                                              4056325    (10.1%)
Reads with too many mappings (N > 10):                       2866193    (7.1%)Reads with too many mappings (N > 10):                       2866193    (7.1%)Reads with too many mappings (N > 10):                       2866193    (7.1%)Reads with too many mappings (N > 10):                       2866193    (7.1%)Reads with too many mappings (N > 10):                       2866193    (7.1%)
Reads with number of mappings in proper range (N <= 10):    37308021    (92.9%)Reads with number of mappings in proper range (N <= 10):    37308021    (92.9%)Reads with number of mappings in proper range (N <= 10):    37308021    (92.9%)Reads with number of mappings in proper range (N <= 10):    37308021    (92.9%)Reads with number of mappings in proper range (N <= 10):    37308021    (92.9%)
Reads uniquely aligned (score.clear.zone =  4):             26370337    (65.6%)Reads uniquely aligned (score.clear.zone =  4):             26370337    (65.6%)Reads uniquely aligned (score.clear.zone =  4):             26370337    (65.6%)Reads uniquely aligned (score.clear.zone =  4):             26370337    (65.6%)Reads uniquely aligned (score.clear.zone =  4):             26370337    (65.6%)
Reads mapped to NTR:Reads mapped to NTR:Reads mapped to NTR: 2642161
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3.5BL
Reads mapped:                                               63348717    (100.0%)Reads mapped:                                               63348717    (100.0%)Reads mapped:                                               63348717    (100.0%)Reads mapped:                                               63348717    (100.0%)Reads mapped:                                               63348717    (100.0%)

Reads filtered:                                              4357607    (6.9%)Reads filtered:                                              4357607    (6.9%)Reads filtered:                                              4357607    (6.9%)Reads filtered:                                              4357607    (6.9%)Reads filtered:                                              4357607    (6.9%)

Reads with too many mappings (N > 10):                       8221261    (13.0%)Reads with too many mappings (N > 10):                       8221261    (13.0%)Reads with too many mappings (N > 10):                       8221261    (13.0%)Reads with too many mappings (N > 10):                       8221261    (13.0%)Reads with too many mappings (N > 10):                       8221261    (13.0%)

Reads with number of mappings in proper range (N <= 10):    55127456    (87.0%)Reads with number of mappings in proper range (N <= 10):    55127456    (87.0%)Reads with number of mappings in proper range (N <= 10):    55127456    (87.0%)Reads with number of mappings in proper range (N <= 10):    55127456    (87.0%)Reads with number of mappings in proper range (N <= 10):    55127456    (87.0%)

Reads uniquely aligned (score.clear.zone =  4):             38227773    (60.3%)Reads uniquely aligned (score.clear.zone =  4):             38227773    (60.3%)Reads uniquely aligned (score.clear.zone =  4):             38227773    (60.3%)Reads uniquely aligned (score.clear.zone =  4):             38227773    (60.3%)Reads uniquely aligned (score.clear.zone =  4):             38227773    (60.3%)

E4.5BL

Reads mapped:                                               69274851    (100.0%)Reads mapped:                                               69274851    (100.0%)Reads mapped:                                               69274851    (100.0%)Reads mapped:                                               69274851    (100.0%)Reads mapped:                                               69274851    (100.0%)

Reads filtered:                                              4162828    (6.0%)Reads filtered:                                              4162828    (6.0%)Reads filtered:                                              4162828    (6.0%)Reads filtered:                                              4162828    (6.0%)Reads filtered:                                              4162828    (6.0%)

Reads with too many mappings (N > 10):                       9230754    (13.3%)Reads with too many mappings (N > 10):                       9230754    (13.3%)Reads with too many mappings (N > 10):                       9230754    (13.3%)Reads with too many mappings (N > 10):                       9230754    (13.3%)Reads with too many mappings (N > 10):                       9230754    (13.3%)

Reads with number of mappings in proper range (N <= 10):    60044097    (86.7%)Reads with number of mappings in proper range (N <= 10):    60044097    (86.7%)Reads with number of mappings in proper range (N <= 10):    60044097    (86.7%)Reads with number of mappings in proper range (N <= 10):    60044097    (86.7%)Reads with number of mappings in proper range (N <= 10):    60044097    (86.7%)

Reads uniquely aligned (score.clear.zone =  4):             45011450    (65.0%)Reads uniquely aligned (score.clear.zone =  4):             45011450    (65.0%)Reads uniquely aligned (score.clear.zone =  4):             45011450    (65.0%)Reads uniquely aligned (score.clear.zone =  4):             45011450    (65.0%)Reads uniquely aligned (score.clear.zone =  4):             45011450    (65.0%)

E4.5 ICM

Reads mapped:                                               65735255    (100.0%)Reads mapped:                                               65735255    (100.0%)Reads mapped:                                               65735255    (100.0%)Reads mapped:                                               65735255    (100.0%)Reads mapped:                                               65735255    (100.0%)

Reads filtered:                                              2739158    (4.2%)Reads filtered:                                              2739158    (4.2%)Reads filtered:                                              2739158    (4.2%)Reads filtered:                                              2739158    (4.2%)Reads filtered:                                              2739158    (4.2%)

Reads with too many mappings (N > 10):                      12190267    (18.5%)Reads with too many mappings (N > 10):                      12190267    (18.5%)Reads with too many mappings (N > 10):                      12190267    (18.5%)Reads with too many mappings (N > 10):                      12190267    (18.5%)Reads with too many mappings (N > 10):                      12190267    (18.5%)

Reads with number of mappings in proper range (N <= 10):    53544988    (81.5%)Reads with number of mappings in proper range (N <= 10):    53544988    (81.5%)Reads with number of mappings in proper range (N <= 10):    53544988    (81.5%)Reads with number of mappings in proper range (N <= 10):    53544988    (81.5%)Reads with number of mappings in proper range (N <= 10):    53544988    (81.5%)

Reads uniquely aligned (score.clear.zone =  4):             37920430    (57.7%)Reads uniquely aligned (score.clear.zone =  4):             37920430    (57.7%)Reads uniquely aligned (score.clear.zone =  4):             37920430    (57.7%)Reads uniquely aligned (score.clear.zone =  4):             37920430    (57.7%)Reads uniquely aligned (score.clear.zone =  4):             37920430    (57.7%)

8 cell

Reads mapped:                                               66423689    (100.0%)Reads mapped:                                               66423689    (100.0%)Reads mapped:                                               66423689    (100.0%)Reads mapped:                                               66423689    (100.0%)Reads mapped:                                               66423689    (100.0%)

Reads filtered:                                              2155598    (3.2%)Reads filtered:                                              2155598    (3.2%)Reads filtered:                                              2155598    (3.2%)Reads filtered:                                              2155598    (3.2%)Reads filtered:                                              2155598    (3.2%)

Reads with too many mappings (N > 10):                      10926984    (16.5%)Reads with too many mappings (N > 10):                      10926984    (16.5%)Reads with too many mappings (N > 10):                      10926984    (16.5%)Reads with too many mappings (N > 10):                      10926984    (16.5%)Reads with too many mappings (N > 10):                      10926984    (16.5%)

Reads with number of mappings in proper range (N <= 10):    55496705    (83.5%)Reads with number of mappings in proper range (N <= 10):    55496705    (83.5%)Reads with number of mappings in proper range (N <= 10):    55496705    (83.5%)Reads with number of mappings in proper range (N <= 10):    55496705    (83.5%)Reads with number of mappings in proper range (N <= 10):    55496705    (83.5%)

Reads uniquely aligned (score.clear.zone =  4):             37635809    (56.7%)Reads uniquely aligned (score.clear.zone =  4):             37635809    (56.7%)Reads uniquely aligned (score.clear.zone =  4):             37635809    (56.7%)Reads uniquely aligned (score.clear.zone =  4):             37635809    (56.7%)Reads uniquely aligned (score.clear.zone =  4):             37635809    (56.7%)
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