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SUMMARY 

 

Timetabling is the allocation, subject to constraints, of given resources to objects being places 

in space time, in such a way as to satisfy as nearly as possible a set of desirable objectives. 

Timetabling problems arise in a wide variety of domains including education, sport, transport 

and healthcare institutions.  

 

This research mainly focuses on two categories of the educational timetabling problem at the 

university level: the course and the examination timetabling problems. There are several 

differences between both problems. In the examination timetabling problem, a number of 

examinations can often be scheduled into one room or an examination may be split across 

several classrooms, where else in the course timetabling problem, it is most typically the case 

that one course has to be scheduled into exactly one classroom. 

 

The course timetabling problem can be further decomposed into five different sub-problems: 

teacher assignment, class-teacher timetabling, course scheduling, student scheduling and 

classroom assignment. In this research, we focus on two sub-problems: teacher assignment and 

course scheduling problems. Most research works in this area only focus on one of the sub-

problems of the course timetabling problem, such as the course scheduling problem where it is 

often assumed that the teacher assignment problem has already been solved earlier before the 

actual scheduling of courses to time periods.  

 

Motivated by the need to overcome this limitation of only considering one sub-problem, three 

different mathematical programming models that combine both teacher assignment and course 

scheduling problems simultaneously are introduced. This combination is known as the Teacher 

Assignment - Course Scheduling (TACS) problem. The first mathematical model, TACS 

Model I, is considered as a basic model which accommodates some common requirements. 



 

ix 

 

This model is further extended to two different models, namely, TACS Model II and TACS 

Model III, by accommodating some additional requirements. 

 

Initially, we solve these mathematical programming models by using ILOG OPL Studio 

software. However, this software could not provide optimal solutions especially for large scale 

instances of TACS Model III. A simple improvement heuristic is proposed in order to obtain 

the solutions. Since the results obtained by a simple improvement heuristic are not good 

enough, four algorithms based on hybridization of the Simulated Annealing and other methods 

are proposed to solve the problem. These algorithms are known as Algorithms SA1, SA2, SA-

TS and LR-SA.  We conclude that LR-SA outperforms other algorithms in terms of solution 

quality. 

 

This research focuses not only on the course timetabling problem, but also on the examination 

timetabling problem. In the examination timetabling problem context, majority of the methods 

proposed were centered on the general concepts of graph theory. However, some constraints, 

such as students cannot take two examinations consecutively, limit the use of graph theory 

approach. We formulate the basic examination timetabling problem as a Quadratic Assignment 

Problem in order to overcome this limitation.  

 

Algorithm GRASP-SA-TS is proposed in order to solve the problem. This hybrid algorithm is 

based on a combination of Greedy Randomized Adaptive Search Procedure, Simulated 

Annealing and Tabu Search. The proposed algorithm is able to obtain the optimal or the best 

known solutions for several QAP benchmark problems. 

 

In real-world situations, the number of examinations can be greater than the number of time 

periods. There should be a possibility to assign more than one examination to a time period. 

Therefore, the basic examination timetabling problem is extended to a more general model. 

One of the constraints in QAP is relaxed and the entire model is formulated as a Quadratic 



 

x 

 

Semi-Assignment Problem (QSAP). Algorithm GRASP-SA-TS is modified in order to solve 

the extended examination timetabling problem. The computational results show the ability of 

the hybrid algorithm to provide good quality solutions compared with those of pure SA.  

 

In summary, this study focuses on the course timetabling and examination timetabling 

problems. In the course timetabling problems, teacher assignment and course scheduling 

problems sub-problems are studied simultaneously which is not commonly studied by other 

researchers. Several algorithms based on hybridization of the Simulated Annealing and others 

methods are proposed to solve the problem. The idea of the hybrid algorithms is also applied to 

the examination timetabling problems that have been formulated as a QAP and QSAP in this 

thesis. A hybrid algorithm based on a combination of GRASP, Simulated Annealing and Tabu 

Search is introduced to solve the problem. 
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CHAPTER I 

INTRODUCTION 

 

Timetabling is the allocation, subject to constraints, of given resources to objects being places 

in space time, in such a way as to satisfy as nearly as possible a set of desirable objectives 

(Wren, 1996). Burke et al. (2004) provide a general definition of timetabling:  

A timetabling problem is a problem with four parameters: T, a finite set of times; R, a 

finite set of resources; M, a finite set of meetings; and C, a finite set of constrains. The 

problem is to assign times and resources to the meetings so as to satisfy the constraints as 

far as possible. 

 

Timetabling can be considered to be a certain type of scheduling problem (Petrovic and Burke, 

2004). Scheduling is the allocation, subject to constraints, of resources to objects being placed 

in space-time, in such a way as to minimize the total cost of some set of the resources used 

(Wren, 1996) Some different views on the terms scheduling and timetabling can be found in 

the literature. For example, scheduling often aims to minimize the total cost of resources used, 

while timetabling often tries to achieve the desirable objectives as nearly as possible, such as 

teacher preferences.  

 

Carter (2001) points out that timetabling decides upon the time when events will take place, 

but it does not usually involve the allocation of resources in the way that scheduling often does. 

For example, a published bus or train timetable shows when journey are to be made on a 

particular routes. It is not necessary to inform which vehicles or drivers are assigned to that 

particular journey. On the other hand, a university course timetable has also take into account 

the availability of individual lecturers. The activities of drawing up the university course 
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timetable maybe considered as a scheduling activity. Some problems may fit more than one of 

the above definitions, and the terms tend to be used rather loosely in the workplace and in the 

scheduling community (Wren, 1996; Petrovic and Burke, 2004). 

 

An assignment problem is the problem of assigning a group of individuals to a certain number 

of jobs (Gass and Harris, 1996). In the process of building a university timetable, an 

assignment process is involved in certain sub-problems, such as assigning teachers to 

courses/course sections (teacher assignment problem) and assigning courses to classrooms 

(classroom assignment problem). 

 

The timetabling problem has attracted substantial research interests due to its importance in a 

wide variety of application domains, including education (e.g. Burke et al. 2004), transport (e.g. 

Kwan, 2004), employee/staff (e.g. Schaerf and Meisels, 2000), healthcare institutions (e.g. 

Bellanti et al., 2004 and Burke et al., 2004) and sport (e.g. Schönberger et al., 2004). The 

International Series Conferences on the Practice and Theory on Automated Timetabling 

(PATAT) which is held bi-annually is evident enough for the increase in research activities in 

this particular area.  

 

In this study, we focus on the educational timetabling problem at the university level. In a 

general educational timetabling problem, a set of events (e.g. courses and examinations) need 

to be assigned into a certain number of time periods subject to a set of constraints, which often 

makes the problem very hard to solve in real-world circumstances. 

 

Timetabling problem is an important problem encountered in every university throughout the 

world. A very primitive and naïve version of timetabling problem, namely, the restricted 

timetable problem (RTT), is shown to be NP-complete (Even et al., 1976) and therefore, all the 
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other variants also lead to NP-complete problem (Karp, 1972). RTT problem is a timetabling 

problem with the following restrictions: the number of time periods = 3, all classes are always 

available at each time period, each teacher teach either 2 or 3 classes. The proof of it was 

shown by displaying a polynomially bounded reduction of the 3-Satisfiability (3-SAT) to RTT.  

3-Satisfiability is a special case of k-Satisfiability (k-SAT) or simply Satisfiablity (SAT), when 

each clause contains exactly k = 3 literals.  It was one of NP-complete problems (Karp, 1972). 

Some other well-known NP-complete problems, such as GRAP K-COLOURABILITY, BIN 

PACKING and 3-DIMENSIONAL MATCHING, can be reducible to the timetabling problem 

(Cooper and Kingston, 1996).  

 

Educational timetabling problem is mainly classified into two different categories: course 

timetabling and examination timetabling problems. The course timetabling problem is defined 

as a multi-dimensional scheduling problem in which students, teachers are assigned to courses, 

course sections or classes; “events” (individual meetings between students and teachers) are 

assigned to classrooms and times (Carter and Laporte, 1998). The examination timetabling 

problem can be defined as the problem of allocating a number of examinations to a certain 

number of time periods in such a way that there would be no conflict or clash, i.e., no student 

are required to attend more than one examination at the same time period (Carter and Laporte, 

1996).  

 

Burke and Petrovic (2002) highlighted several similarities and differences of both problems. 

The course timetabling problem can be further decomposed into five different sub-problems: 

teacher assignment, class-teacher timetabling, course scheduling, student scheduling and 

classroom assignment (Carter and Laporte, 1998). The details would be explained in Section 

1.2. 
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In this introductory chapter, the background information, scope of the study, objectives of this 

study as well as the organization of this thesis are presented. 

 

1.1 Background and Motivation 

 

As mentioned above, one of the key applications of timetabling is in the matter of educational 

timetabling. Three significant developments that increase the interest in these problems are (de 

Werra, 1985 and Johnson 1993): 

a. The huge variety of problems faced due to different requirements in each institution. 

Schaerf (1999) gives a survey of the various requirements and formulations of timetabling 

problems. 

b. The nature of education. In particular, the timetable has become much more complicated 

due to changes in the educational systems, such as new subjects introduced, facility 

requirements, number of students and teachers involved, a much greater range of choice in 

the subjects that students can take; hence the problem needs a regular modification to 

adapt to the requirements of a changing environment. 

c. Computing facilities and expertise are now available in most education institutions. 

Computer and database system are widely used because they could provide high-level 

information storage and processing. Computer is able to cope the complexity, the changes, 

such as introduction of new courses (McCollum, 1998).   

  

Educational timetabling problem is one of the most important and time consuming tasks which 

occurs periodically in all institutions around the world. During the last few decades, many 

contributions related to timetabling problems have appeared. Several approaches or methods 

have been proposed for solving these problems in the literature (e.g. de Werra, 1985; Carter 

and Laporte, 1998; Schaerf, 1999 and Burke and Petrovic, 2002).  
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As mentioned earlier, educational timetabling problem is mainly classified into two different 

categories: course timetabling and examination timetabling problems. In the course timetabling 

context, the primary problem faced is to schedule asset of teachers to courses within a given 

number of rooms and time periods. The course timetabling problem can be further 

decomposed into five different sub-problems: teacher assignment, class-teacher timetabling, 

course scheduling, student scheduling and classroom assignment.  

 

In the course timetabling context, we focus on two sub-problems: teacher assignment and 

course scheduling problems. We notice that many papers only focus on one of the sub-

problems, as in the works of Andrew and Collins (1971), Harwood and Lawless (1975), Tillett 

(1975), Breslaw (1976), Schniederjans and Kim (1987) and Wang (2002) that only focus on 

the teacher assignment problem.  

 

On the other hand, the course scheduling problem only focuses on allocating courses to time 

periods. It is often assumed that the allocation of teachers to courses has been done earlier 

before the actual scheduling of courses to time periods, as in the works of Daskalaki et al. 

(2004), Al-Yakoob and Sherali (2006, 2007) and Lewis and Paechter (2007). This limitation 

motivates us to solve both problems simultaneously since real life problems always contain a 

combination of some of the sub-problems. 

 

In the examination timetabling context, majority of the methods proposed were centered on the 

general concepts of graph theory or network analysis. However, some constraints, such as 

students cannot take two examinations consecutively, limit the use of graph theory approach 

(Lewis, 2008). We formulate the basic examination timetabling problem as a Quadratic 

Assignment Problem in order to overcome this limitation. QAP formulation can be used to 

deal with conflicts in the examination timetabling problem, such as no students can take two or 
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more examinations at the same time, room capacities as well as several other constraints 

(Bullnheimer, 1997). 

  

1.2 Scope of the Study 

 

As described in Section 1.1, the educational timetabling problem can be classified into two 

main categories: course timetabling and examination timetabling problems (Burke, 2002) 

(Figure 1.1). Another type of classification was proposed by Scaherf (1999). The educational 

timetabling problem is categorized into three main categories: 

 School timetabling: The weekly scheduling for all the classes of a school with the purpose 

to avoid teachers meet two classes at the same time, and vice versa. 

 Course timetabling: The weekly scheduling for all the lecturers of a set of university 

courses in order to minimize the overlaps of teachers having common students. 

 Examination timetabling: The scheduling for the examinations in order to avoid overlap 

of examinations having common students and to spread the examinations for the students 

as much as possible. 

 

In this research, we refer to the classification of timetabling presented by Burke (2002). The 

scope of this study covers both course timetabling and examination timetabling problems at the 

university level. Although each category is studied separately in this research, in fact, they can 

be combined to make a comprehensive/complete analysis with the objective of achieving 

further improvement in the university timetabling area. 
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Figure 1.1 Classification of educational timetabling problems 

 

In the course timetabling context, there are several differences between university and school 

timetabling problems. In school timetabling problem, we often work with predefined classes 

and schools have few programs. In universities, more programs are offered and faculty 

members/teachers may only teach few hours a week.  

 

In the examination timetabling context, universities schedule examinations in order to avoid 

overlap of examinations having common students and to spread the examinations for the 

students as much as possible since students might take different courses. On the other hand, the 

program at the school level is usually highly structured and very tight. Students who take 

similar courses are divided into several classes. The examination timetabling problem focuses 

on how to schedule the examinations for each class. It is common that each class might be 

required to take two examinations consecutively.  

 

1.3 Purpose of the Study 

 

The proposed research mainly focuses on the course timetabling and the examination 

timetabling problems at the university level. The overall objective is to solve both problems by 
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proposing several methods and then perform a comparative study of the proposed methods 

based on the computational results obtained. Detailed discussion about each method would be 

included in order to facilitate better understanding of the problems. 

 

Specifically, this study focuses on several topics regarding the university timetabling problems 

in order to fulfill the following targets. 

 To identify existing limitations of the university timetabling problems.  

 To study the university course timetabling problems by considering two sub-problems, 

namely, teacher assignment and course scheduling problems simultaneously, known as the 

Teacher Assignment - Course Scheduling problem (TACS problem).  

 To develop new mathematical programming models for the TACS problem.  

 To propose and compare several algorithms, including hybrid algorithms, for solving the 

proposed mathematical programming models.  

 To present the examination timetabling problem as a Quadratic Semi-Assignment Problem.  

 To propose hybrid algorithms for solving the examination timetabling problem.  

 

1.4 Organization of the Thesis 

 

This thesis consists of eight chapters. Chapter 1 introduces the problem along with the 

necessary background and motivation for the problem. The chapter also details the scope and 

the purpose of the undertaken study. Chapters 2 to 8 elaborate on the different problems 

studied in the context of university timetable scheduling.  

 

Chapter 2 presents a thorough and comprehensive literature review of the educational 

timetabling studies in the recent years. The details of university timetabling classification, the 

theory of the timetabling problems, including formulations of the timetabling problem as well 
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as summary of the algorithms that have been applied to the educational timetabling problems, 

are described. In addition, a brief overview of hybrid algorithms is summarized.   

 

In Chapter 3, a detailed description of the TACS problem is presented. The basic and extended 

TACS mathematical models are introduced. Computational experiments based on some 

randomly generated instances are summarized and discussed in detail. The limitation of 

commercial software used for solving the TACS problem is highlighted.  

 

This situation inspires us to propose an improvement heuristic in order to solve the problem, 

which is further discussed in Chapter 4. The heuristic applies the principles of a simple greedy 

heuristic. Finally, the computational results obtained are presented and analyzed. Based on the 

results obtained, further improvements of the proposed heuristic are introduced in Chapters 5 

and 6. Several hybrid algorithms are proposed and compared comprehensively, including the 

computation time and the solution quality. The algorithms apply the principles of two well-

known metaheuristics, Simulated Annealing and Tabu Search. Finally, conclusions of the 

performances of the proposed algorithms are presented. 

 

In Chapter 7, the examination timetabling problem is studied. The basic and extension models 

of this problem are presented. This chapter extends the idea of the proposed hybrid algorithm 

presented in the previous chapters to the examination timetabling problem. Computational 

experience on a set of standard test problems (Quadratic Assignment Problem Library - 

QAPLIB) and several random data sets are summarized. The results obtained are compared 

with the best known/optimal solutions or lower bound of the problems. At the end, some 

conclusions, major contributions of the study, as well as limitations and suggestions for future 

research are presented in Chapter 8.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Many optimization problems concern with the choice of the best configuration of a set of 

variables to achieve some goals. Combinatorial optimization problem is considered as a class 

of problems where the set of feasible solutions is discrete (Blum and Roli, 2003).  

 

Definition 2.1 (Blum and Roli, 2003) A Combinatorial Optimization problem P = (S, f) can 

be defined by: 

 A set of variables X = {x1, …, xn}; 

 Variable domains D1, …, Dn; 

 Constraints among variables; 

 An objective function f to be minimized or maximized, where f: D1×…×Dn R
+
; 

The set of all possible feasible assignments is 

 S = {s = {(x1,v1),…, (xn,vn)}|vi Di, s satisfies all the constraints} 

 

Timetabling problems belong to a class of combinatorial optimization problems (COPs). A 

survey of related applications and approaches of combinatorial optimization was given by 

Grötschel (1991). Timetabling problem is defined as the problem of assigning a number of 

events into limited number of time periods. In this research, the focus would be concentrated 

on university timetabling problems. Timetabling problems are numerous which every 

university may have different characteristics due to different types of constraints or 

requirements. 
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Timetabling problems have attracted the attention of the Operation Research and Artificial 

Intelligence community. For surveys of timetabling methods and applications see de Werra 

(1985), Carter and Laporte (1998), Schaerf (1999) and Burke and Petrovic (2002). 

 

In this chapter, a detail description about educational timetabling problem especially in the 

university timetabling problem will be presented. We also present a brief overview of the 

hybrid algorithm including its applications in the timetabling problem.    

 

2.2 The Classification of the Timetabling Problem 

 

Educational timetabling problem can be divided into two main different categories: course and 

examination timetabling problems (Burke and Petrovic, 2002). The main differences between 

course timetabling and examination timetabling problems are summarized in the following 

table. Each category would be described in the following sub-sections. 

 

Table 2.1 Differences between course and examination timetabling problems 

Course Timetabling Examination Timetabling 

One room can only be used for one course Several exams can be done in one room or an exam 

might be split across several rooms 

Students may have two or more courses in a 

adjacent time periods 

Students may not have too many consecutive exams 

 

2.2.1 The Course Timetabling Problem 

 

The purposes of course timetabling are either to assign students, teachers to courses, course 

sections or classes or to assign courses, course sections or classes to time periods and/or 

classroom or both. The course timetabling problem can be viewed as a multi-dimensional 

scheduling problem in which students, teachers are assigned to courses/course sections; 
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meetings between students and teachers are assigned to classrooms and times. The course 

timetabling problems are applied to both school and university levels (Figure 1.1).  

 

Carter and Laporte (1998) presented the major differences between course timetabling problem 

at school and university levels, as shown in Table 2.2. Although the course timetabling 

problem structure varies among institutions, several common components, such as definitions 

of course, class and program were presented by Carter and Laporte (1998).   

 

Table 2.2 Differences between school and university course timetabling problems 

Characteristic School University 

Scheduling - By classes - By students 

Choice - Only few choices 

- Highly structured programs 

- Many electives 

- Loosely structured programs 

Teacher availability - Heavy teaching load - Light teaching load 

Rooms - Only few rooms used 

- Same size 

- Many rooms used 

- Variety of sizes 

Student load - Very heavy - Fairly light 

Criteria - No conflicts - Minimum conflicts 

Available rooms - Negligible - Limited 

 

Based on the planning sequence of timetable arrangement, Carter and Laporte (1998) 

distinguished the course timetabling problems as master timetable system and demand driven 

system. In the master timetable system, the institution releases the course timetable (including 

their sections and times) and students choose courses from the published timetable based on 

their preferences. In the latter, the institution releases only the course offered. Students select 

their courses from the list. The number of sections and time periods will then be decided based 

on the student requirements. 

 

Some examples of master timetable systems are course timetabling systems at the Canadian 

Engineering School (Laporte and Desroches, 1986), the Anderson School of Management 
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UCLA (Stallaert, 1997), the University of Nottingham (McCollum, 1998) and the Syracuse 

University (Saleh Elmohamed et al., 1998). It was highlighted that it would be unworkable in 

practice, if the institution allows the students’ choice to dictate the timetable. On the other 

hand, some universities have applied the demand driven system, for instance, the Darden 

Graduate School (Sampson et al., 1995), the University of Valencia Spain (Valdes et al., 2000) 

and the University of Waterloo (Carter, 2001). 

 

Carter and Laporte (1998) decomposed the course timetabling problem into five different sub-

problems: teacher assignment, class-teacher timetabling, course scheduling, student scheduling, 

and classroom assignment. The real life timetabling problems always contain a combination of 

the sub-problems (Figure 2.1), although not all of sub-problems may be relevant to a particular 

situation For example, the university course timetabling problem may consist of four sub-

problems: teacher assignment, course scheduling, student scheduling and classroom 

assignment. 

 

 

 

 

Figure 2.1 University course timetabling problem 

 

Each sub-problem focuses on a different problem, for instance, course scheduling problem 

only focuses on allocating courses to time periods by assuming the information about which 

teachers will be allocated to which particular course has been decided. The following figures 

illustrate the difference between the course timetabling problem and the course scheduling 

problem. 
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Day 1 2 

Period 1 2 3 4 5 1 2 3 4 5 

Teacher1   
   

  
  

4(2) 4(2)   

Teacher2 3(1)* 3(1) 
  

  
    

  

Teacher3   5(1) 5(1) 
 

  
    

  

Teacher4   
   

  2(2) 2(2) 
  

  

Teacher5           1(2) 1(2)       

   *Course 3 Section 1 taught by Teacher2 is scheduled on Day 1 Time periods 1 and 2 

Figure 2.2 A numerical example for the course scheduling problem 

 

Day 1 2 

Period 1 2 3 4 5 1 2 3 4 5 

Teacher1   
   

  
  

4(2) R2 4(2) R2   

Teacher2 3(1) R1* 3(1) R1 
  

  
    

  

Teacher3   5(1) R2 5(1) R2 
 

  
    

  

Teacher4   
   

  2(2) R3 2(2) R3 
  

  

Teacher5           1(2) R1 1(2) R1       

   *Course 3 Section 1 taught by Teacher2 is scheduled on Day 1 Time periods 1 and 2 in Room 1 

Figure 2.3 A numerical example for the course timetabling problem 

 

Each sub-problem will be described below: 

 Teacher Assignment Problem 

The aim is to assign teachers to the courses by considering their preferences. Some researchers 

have discussed the teacher assignment problem in the literature. One of the earliest papers was 

written by Andrew and Collins (1971). The problem is about how to make teacher assignments 

that have high effectiveness and preference ratings, while ensuring that all courses will be 

staffed and no teacher is overloaded. Tillett (1975) argued that that model could not be applied 

in the secondary school context. The extended model has been developed by considering 

preparation factor.  

 

Most of the early research work did not consider conflicting goals in the assignment problem. 

The natural conflict between competing individual teachers in course-teacher assignment can 

be represented as a goal programming model (Schniederjans and Kim, 1987). Some factors 
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that could affect the size and complexity of the teacher assignment problems were presented. 

They did mention that predetermined assignments could reduce the assignment problem size 

and complexity. However, such models usually do not deal with the course scheduling 

problem.  

 

Badri (1996) proposed a two-stage optimization procedure, this model seeks to maximize 

teacher-course preferences in assigning teachers to courses, and then maximize teacher-time 

preferences in allocating courses to time periods. Wang (2002) applied Genetic Algorithm for 

solving teacher assignment problem at Far East College, Taiwan. 

 

 Course Scheduling Problem 

The aim is to assign courses or course sections to time periods provided. Course scheduling 

can be considered as the most discussed problem in recent years, as witnessed by the work of 

Aubin and Ferland (1989), Abramson (1991), Hertz (1991, 1992), Abramson et al. (1999) and 

Gunawan et al. (2004). This problem can be combined with another sub-problem, classroom 

assignment problem. For more details, see Saleh Elmohamed et al. (1998), White and Zhang 

(1998), Daskalaki et al. (2004) and Al-Yakoob and Sherali (2006, 2007). However, it is often 

assumed that the teacher assignment has been solved and fixed before solving the course 

scheduling problem (Stallaert, 1997; Daskalaki et al., 2004; Daskalaki and Birbas, 2005; Al-

Yakoob and Sherali, 2006 and 2007).    

 

 Class-Teacher Timetabling Problem 

Students who take a similar group of courses are arranged into a class. Here, the scheduling 

unit is a class, not a student. This problem mostly arises in the school level. The main purpose 

is to construct a schedule for class-teacher meetings. It is assumed that the assignment of 

teachers to courses and classes has been determined. Class-teacher timetabling problem 
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without side constraints can be solved in polynomial time by means of a network flow 

algorithm (de Werra, 1971). Several papers discusses about this problem were published in 

recent years (Chalal and de Werra, 1989; Abramson, 1991; Costa, 1994; Schaerf, 1999). 

Asratian and de Werra (2002) presented a generalized class-teacher model which extends the 

basic class-teacher model. 

 

 Student Scheduling Problem 

The main purpose in this scheduling is to assign the students to the course section while 

balancing section sizes and respecting room capacities. This problem occurs especially when 

courses are taught in multiple sections (Carter and Laporte, 1998). Once students have selected 

their courses, they must be assigned to sections. This process can only be done after the 

university publishes the timetable and students register the courses that they are willing to take. 

Some papers discuss about this problem were written by Laporte and Desroches (1986), Sabin 

and Winter (1986) and Graves et al. (1993).    

 

 Classroom Assignment Problem 

Courses have to be assigned to specific rooms and time periods. For simplification, the 

assignment of courses to the time periods is usually done before the assignment of courses to 

the rooms (Glassey and Mizrach, 1986; Gosselin and Truchon, 1986 and Carter, 1989). Some 

classroom assignment problems can be considered as easy problems although others may be 

difficult to solve (Carter and Tovey, 1992). Both the non-interval and interval classroom 

assignments are proven as NP-complete based on reduction from 3-SAT (3-Satisfiability). 3-

SAT is a special case of k-satisfiability (k-SAT) when each clause contains exactly k = 3 

literals (Garey and Johnson, 1979). For fixed number of periods, the non-interval problem can 

be solved in polynomial time. 
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2.2.2 The Examination Timetabling Problem 

 

The examination timetabling problem is defined as assigning a set of examinations to a limited 

number of time periods in such a way that no student can take more than one examination at 

any time period as well as several other constraints. Conflicts in the examination timetabling 

problem can be divided into three different categories: the first order conflicts, second order 

conflicts and higher order conflicts (Leong and Yeong, 1987 and Bullnheimer, 1998).  

 

The first order conflicts refer to a situation where a student has to take two or more 

examinations at a time period. The second order conflicts term a situation where a student has 

to take two consecutive examinations. Finally, there may be further constraints dealing with 

room capacities, pre-scheduled examinations that so-called higher order conflicts. 

 

Carter (1986) presented a review of the early research on practical applications of examination 

timetabling in several universities. Algorithms implemented in the examination timetabling 

problem were summarized by Carter and Laporte (1996). They are categorized into four 

different types: cluster methods, sequential methods, generalized search (metaheuristics) and 

constraint based techniques that would be explained in Section 2.4.2. A comprehensive survey 

of British universities was presented by Burke et al. (1996). It covers the structure of the 

examination problems faced by universities, the ways to solve the problems as well as the 

objective of the examination timetabling problem.  

 

The examination timetabling problem was also summarized in the review papers of Schaerf 

(1999), Dimopoulou and Miliotis (2001) and Burke and Petrovic (2002). Burke and Petrovic 

(2002) gave an overall review of recent research conducted on course and examination 

timetabling in the university level.  
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One of the latest reviews is written by Qu et al. (2006). They highlight the search 

methodologies, automated approaches and the new trends for the examination timetabling 

problem as well. A range of relevant important research issues and research achievements that 

have been carried out in the last decade were presented. 

 

2.3 Formulation of the Timetabling Problem 

 

Timetabling problems are subject to several requirements or constraints that are usually 

classified into two different types: hard and soft constraints (Burke et al., 1996 and Burke and 

Petrovic, 2002). Hard constraints are rigidly enforced by the institution and, therefore, have to 

be satisfied. A feasible timetable is one that satisfies all the hard constraints which are 

commonly embodied as constraints in the mathematical formulation (Costa, 1994).  

 

Soft constraints are those that it is desirable to satisfy, but they are not essential. In real-world 

timetabling problem, it is usually impossible to satisfy all of the soft constraints. In general, 

soft constraints are often stated as penalties in the objective function that need to be minimized. 

The determination and classification of the soft constraints vary extensively in different 

universities depending on their specific requirements. 

 

Table 2.3 represents a comprehensive list of several common hard and soft constraints for the 

course timetabling (Burke and Petrovic, 2002) and examination timetabling problems (Qu et 

al., 2006).  
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Table 2.3 Primary Constraints in the timetabling problem 

Constraint Course Timetabling Problem Examination Timetabling Problem 

Hard Constraints - No student and teacher attend 

more than one course at any 

time period 

- the number of classrooms 

available is restricted at any 

time period  

- no student takes more than one 

examination at any time period 

- Resource of examinations (the 

number of classrooms and their 

capacity) need to be sufficient  

Soft Constraints - Some courses may need to be 

scheduled in certain 

particular time periods 

- One course may need to be 

scheduled before/after the 

other 

- Teachers might request 

certain time periods and 

prefer to teach in a particular 

classroom 

- Some examinations require specific 

time periods or specific classrooms 

- Certain examinations are required to 

be in consecutive time periods 

- Certain examinations are required to 

be on the same day 

- Students should not take two or 

more consecutive examinations 

 

Several different types of constraints classifications were also proposed by several other 

researchers. Birbas et al. (1997) classified the constraints based on the feasibility and quality 

criteria. All the feasibility rules are related to hard constraints. Costa (1994) used different 

terms to classify the constraints. They were divided into two partitions: essential and relaxed 

constraints. 

 

Some basic and traditional models of the timetabling problem with several variations were 

presented as bipartite multigraphs by de Werra (1985). The author summarized some basic 

class-teacher problems with several variations like pre-assignment schedules for several 

teachers or classes and unavailability schedules for several teachers or classes. All the 

problems were presented as integer programming models and the graph colouring models. 

Indeed, when other real world constraints considered in a problem (particularly those relating 
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to the ordering of events within a timetable), then the simple graph coloring model will not be 

sufficient on its own (Lewis, 2008).  

 

The integer programming modeling were widely used for formulating other sub-problems: 

student assignment problem (Valdes et al., 2000), course scheduling problem (Birbas et al., 

1997 and Valdes et al., 2002) and teacher assignment problem (McClure and Wells, 1984 and 

Wang, 2002). However, Yu and Sung (2002) argued that group coloring algorithm could not 

incorporate the non academic constraints into the problem formulation. They also mentioned 

that the integer programming approach would encounter some modeling difficulties when the 

number of variables and constraints increase.  

 

Other types of formulations are proposed by several researchers. Gosselin and Truchon (1986) 

formulated the classroom allocation problem as a linear programming model. Aubin and 

Ferland (1989) and Hertz (1991) formulated the large scale timetabling problem as an 

assignment problem. Tripathy (1992) presented the course scheduling problem as a 

modification of the transportation problem with the addition of conflict matrix constraints.  

 

The basic examination timetabling problem is commonly modeled as a graph colouring 

problem (White and Chan, 1979 and Bullnheimer, 1998). The role of graph colouring methods 

in the timetabling literature was highlighted in Burke et al. (2004). The Quadratic Assignment 

Problem has been used to formulate the examination timetabling problems, as in the works of 

Leong and Yeong (1987). Bullnheimer (1998) formulated the basic examination scheduling 

problem as a QAP with a different objective function. A fuzzy set based approach has been 

used to modeling constraints imposed on university examination timetabling problem (Petrovic 

et al., 2005). 
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2.4 Algorithms for the Timetabling Problem 

 

There are a significant number of techniques or approaches to timetabling problems that have 

appeared in the literature. Many applications of the various approaches for solving the problem 

have been extensively studied and published in Operations Research literature over the last 

decades. A wide variety of approaches to timetabling problems have been described in the 

literature. These approaches can be classified with respect to different criteria. 

 

Here, we summarize the classification of algorithms for the course timetabling problem 

presented by Carter and Laporte (1998). Carter and Laporte (1996) also published a survey of 

papers on practical examination timetabling problems, including the classification of the 

algorithms.  

   

2.4.1 Algorithms for the Course Timetabling Problem 

 

Carter and Laporte (1998) classified the algorithms used to solve course timetabling problems 

into four different groups: global algorithms, constructive heuristics, improvement heuristics 

and interactive systems. 

 

2.4.1.1 Global Algorithms 

 

Small size problems can sometimes be solved by means of a standard integer linear 

programming package, such as CPLEX. However, when problem size increases rapidly, the 

optimal solution could not be found due to computational intractability. 
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Research has been done on the applications of global algorithms to timetabling problems. 

Andrew and Collins (1971) developed a procedure based on a simple linear programming 

technique for assigning the teachers to courses. Some drawbacks of the proposed model were 

highlighted by Tillet (1975). He noted that the model does not consider some factors such as 

the number of courses taught by each teacher. 

 

Tillet (1975) proposed an integer programming model for the teacher assignment problem in 

the secondary school level and solved the model by using commercial software. Breslaw (1976) 

highlighted the major drawback of the proposed model by Tillet (1975), namely, that the 

computation time of solving the model can be prohibitively large as the problem size increases. 

He proposed a model to overcome this major drawback and could be applicable at the 

university level. 

 

Tripathy (1980) developed an algorithm based on the Lagrangian relaxation approach to 

course timetabling. The aim was to determine the number of periods required to schedule the 

courses. The results obtained were compared with Barham and Westwood’s results (1978). 

The author argued that the algorithm could produce the guaranteed minimum objective value.   

 

Tripathy (1992) employed a Lagrangian relaxation approach coupled with sub-gradient 

optimization for solving a large university timetabling problem. This approach was 

incorporated with a branch and bound procedure for further improvement. This study has 

shown not only the potential of the proposed technique for solving large scale timetabling 

problems but also possible extensions to other similar problems. Carter (1989) used a 

Lagrangian relaxation technique to solve the classroom assignment problem. 
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The timetable problem for Greek high schools was formulated by Birbas et al. (1997) as an 

integer programming model. The paper focuses on creating schedules for schools with major 

and elective courses and several student groups. CPLEX solver was used to obtain the optimal 

solution.  

 

The use of linear programming to assign classrooms on a daily basis has been adopted by 

Gosselin and Truchon (1986). They proposed two stages for solving the classroom allocation. 

Due to cost and preparation reasons, the rooms and requests were grouped into categories and 

types, respectively. The first step is to use a simplex algorithm for finding how many requests 

of each type should be met with rooms of each category. To ensure that the problem always 

has a feasible solution, fictitious rooms were introduced. In the second step, a simple algorithm 

is proposed in order to assign a particular room to each request. Those assignments have to be 

compatible with the solution generated from the first step.  

 

Dimopoulou and Miliotis (2001) developed a system that produces a combined course and 

examination timetable schedule for the Athens University of Economics and Business. In the 

course scheduling part, an integer programming model was used. The examination timetabling 

was developed by using a simple heuristic method.  

 

Some of the latest applications of integer programming are presented by Daskalaki et al. 

(2004), Al-Yakoob et al. (2006, 2007). They modeled university timetabling problems as 

integer programming models. Different sizes of problems have been solved by the commercial 

IP solver software, CPLEX.  

 

Harwood and Lawless (1975) used the goal programming model to formulate the teacher 

assignment problem. Schniederjans and Kim (1987) highlighted the major drawback of the 
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Harwood and Lawless’ model. The model might be very difficult to implement. They 

presented some factors that could affect the size and complexity of the teacher assignment 

problem and proposed a model to overcome the major drawback. 

 

Badri (1996) proposed a goal programming model for solving both course scheduling and 

teacher assignment problems through a two-stage optimization procedure. The model seeks to 

maximize teacher-course preferences in assigning teachers to courses, and then maximize 

teacher-time preferences in allocating courses to time periods. The extended version was 

proposed by Badri et al. (1998). The model was built through a one-stage process in which 

both preferences are considered simultaneously.  

 

2.4.1.2 Constructive Heuristics 

 

When the problem size gets larger, it would be difficult to find and prove the existence of an 

optimal solution, especially within a short computation time (Costa, 1994). It would be 

necessary to develop a heuristic approach in order to find a good solution within a reasonable 

amount of time.   

 

The heuristic method tries to find a feasible solution by making sequential assignments. 

However, backtracking might be needed in order to undo some of the previous allocations. The 

heuristic method usually consists of two phases (Eiselt and Laporte, 1987). In phase I, we try 

to find a feasible initial solution, and in phase II, the current feasible solution is improved in 

order to reach the best optimum. 

 

The large scale course timetabling problems have been solved by several researchers. This 

problem involves two sub-problems which are related to each other: the course scheduling and 
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the student grouping problems. Aubin and Ferland (1989) proposed a heuristic approach, 

namely an iterative descent method, in order to handle both sub-problems iteratively and reach 

an improved solution.  

 

Wright (1996) proposed a heuristic search for course scheduling in a complex secondary 

school in Lancashire, England. The courses which have to be simultaneously conducted are 

grouped into a block. The length of the timetabling period is based on a fortnightly cycle. Both 

situations cause the course scheduling problem to become more complicated.  

 

Laporte and Desroches (1986) developed a heuristic method in order to allocate students to 

course sections in Ecole Polytechnique de Montreal (EPM), one of Canada’s leading 

Engineering schools. Abdennadher and Marte (2000) used constraint logic programming as a 

constructive heuristic for modeling the university course timetabling problem. They showed 

how to model the timetabling problem as a partial constraint satisfaction problem.  

 

2.4.1.3 Improvement Heuristics 

 

Recently, modern search methods called metaheuristics have been widely used in the 

timetabling problem. The term metaheuristic was initially introduced by Glover (1986). Some 

definitions of metaheuristics are given below: 

 

Definition 2.2 A metaheuristic is formally defined as an iterative generation process which 

guides a subordinate heuristic by combining intelligently different concepts for exploring and 

exploiting the search space, learning strategies are used to structure information in order to 

find efficiently near-optimal solutions (Osman and Laporte, 1996). 
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Definition 2.3 A metaheuristic is an iterative master process that guides and modifies the 

operations of subordinate heuristics to efficiently produce high quality solutions. It may 

manipulate a complete (or incomplete) single solution or a collection of solutions at each 

iteration. The subordinate heuristics may be high (or low) level procedures, or a simple local 

search, or just a construction method (Voss et al., 1999). 

 

Blum and Roli (2003) differentiated metaheuristics into several classifications based on the 

characteristics: nature-inspired vs. non-nature inspired, population based vs. single point 

search, dynamic vs. static objective function, one vs. various neighborhood structures, memory 

usage vs. memory-less methods. The properties of metaheuristics were also pointed out. 

 

The class of metaheuristics includes – but is not restricted to – Simulated Annealing, Tabu 

Search, Genetic Algorithm, Greedy Randomized Adaptive Search Procedure and Ant Colony 

Optimization. The latest survey of the application of metaheuristics in the university 

timetabling problem is presented by Lewis (2008).  

 

SA was initially introduced by Kirkpatrick et al. (1983) for finding good solutions to a wide 

variety of combinatorial optimization problems. It was one of the first algorithms that had an 

explicit strategy to avoid local minima. SA has been successfully applied to a variety of 

combinatorial optimization problems, such as the Traveling Salesman Problem (Cerny, 1985), 

machine scheduling problem (Van Laarhoven et al., 1992 and Radhakrishnan and Ventura, 

2000), the Quadratic Assignment Problem (Wilhelm and Ward, 1987 and Connolly, 1990) and 

timetabling problem (Abramson, 1991; Thompson and Dowsland, 1996; Bullnheimer, 1998; 

Abramson et al., 1999; Saleh Elmohamed et al., 1998 and Gunawan, 2004). 
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The fundamental concepts of Tabu Search (TS) algorithm was originally proposed by Glover 

(1989, 1990). Many different papers have presented applications of Tabu Search to various 

combinatorial problems, such as the Quadratic Assignment Problem (Taillard, 1991 and 

Drezner, 2002 and 2005), machine scheduling problem (Nowicki and Smutnicki, 1996), 

vehicle routing problem (Gendreau et al., 1998 and 2001) and timetabling problem (Hertz, 

1991, 1992 and Costa, 1994). 

 

Hertz (1991) dealt with the large scale course and examination timetabling problems by 

proposing a new global approach based on TS. Two algorithms proposed are TATI (TAbu 

search for TImetabling) and TAG (TAbu search for Grouping). The advantage of those 

techniques compared with an iterative descent method (Aubin and Ferland, 1989) is the ability 

to avoid being trapped by local optima.  

 

Hertz (1992) proposed a new global approach which is based on the TS. Each subject is 

divided into several topics. A certain number of time periods have to be assigned to a 

particular topic. Those time periods should be divided into daily amounts of consecutive time 

periods called the daily quantum. The fundamental difference with other course scheduling is 

that the length and the number of some courses is not known in advance.  

 

Some other applications of TS were presented by Costa (1994) for class-teacher timetabling 

problem, Gunawan et al. (2004) for teacher assignment and course scheduling problems, 

Valdes et al. (1996) and Valdes et al. (2002) for class timetabling problem and Valdes et al. 

(2000) for student scheduling problem. 

 

The applications of Genetic Algorithm in the class/teacher timetabling problem were presented 

by Carrasco and Pato (2001). They used a special multi objective GA, namely the non-
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dominated sorting Genetic Algorithm (NSGA). The multi objective GA incorporates two 

distinct and competitive objectives: teacher-oriented objective and class-oriented objective. 

The basic idea is to minimize the penalties due to violations of constraints with respect to the 

two competing aspects: classes and teachers.  

 

The GA was also used by other researchers: Ueda et al. (2001), Yu and Sung (2002) and 

Gunawan et al. (2004) for course scheduling problem; Wang (2002) and Gunawan et al. (2008) 

for teacher assignment problem.  

 

The application of Ant Colony Optimization (ACO) in the timetabling problem is not so 

widely used yet. Socha et al. (2002 and 2003) presented two different ACO algorithms, namely, 

Ant Colony System (ACS) and MAX-MIN Ant System (MMAS), to solve the simplified 

version of a typical university course timetabling problem. The data was generated using a 

generator written by Paechter.   

 

Socha et al. (2002) presented the application of MAX-MIN Ant System (MMAS) combined 

with the local search routine. The comparison of the MMAS algorithm and a Random Restart 

Local Search (RRLS) algorithm was presented. It was concluded that the results of MMAS are 

better than those of RRLS. Socha et al. (2003) compared ACS and MMAS algorithms against 

some other algorithms such as Simulated Annealing (SA), Iterated Local Search, and RRLS. 

The MMAS performs better than ACS on all instances tested. While, on medium instances of 

the problem, SA is better than MMAS, while on the large instances, MMAS has the best 

performance.  
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2.4.1.4 Interactive Systems 

 

Some researchers propose interactive (semi–automatic) procedures to handle timetabling 

problems. Human intervention is still needed especially in the final output (Schaerf, 1999). 

Timetabling system could be classified by the degree of user and system interaction. Almost 

all of the current literature describe that the relevant data is entered into the system before the 

execution starts. It is referred to as the batch oriented system. Only few literatures have used 

the interactive mode which the updating data could be introduced without having to redo the 

entire program.  

 

White and Wong (1988) proposed an algorithm that uses piecewise incremental construction. 

The algorithm is based on the approach presented by Selim (1982). Chalal and de Werra (1989) 

proposed an interactive system for small class-teacher timetabling. The problem was 

formulated as a network flow model. The difference with other class-teacher problems was 

that the authors did not determine who would teach which topic to each class. They concluded 

that an interactive system is an effective tool. 

 

Carter (2001) presented and summarized a comprehensive interactive course timetabling and 

student scheduling system developed from 1979 until 1987 at the University of Waterloo. The 

system developed integrates course timetabling across the institution. 

 

2.4.2 Algorithms for the Examination Timetabling Problem 

 

 Algorithms used for solving the examination timetabling problem are classified into four types 

of approaches: cluster methods, sequential methods, generalized search strategies 

(metaheuristics) and constraint based approaches (Carter and Laporte, 1996). 
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2.4.2.1 Cluster Methods 

 

In these methods, examinations with few or without conflicts are grouped into the same block, 

followed by allocating the blocks into specific periods to satisfy some constraints. These 

approaches represent a form of decomposition of the problem. Two drawbacks of these 

methods, infeasibility issue and poor quality solutions, were discussed by Qu et al. (2006).  

 

Leong and Yeong (1990) created conflict free groups by selecting examinations one at a time 

in descending order of number of conflicts. Other approaches for sorting the examinations are 

based on the degree times the number of student conflicts with all other examinations (Lotfi 

and Cerveny, 1991), a linear combination of the size of the enrolment and the number of 

conflicts with other courses (Johnson, 1990). 

 

2.4.2.2 Sequential Methods 

 

In sequential methods, examinations are assigned to a specific period one at a time, based on 

some ordering strategies. As explained in Section 2.3, examination timetabling problems can 

be modeled as graph colouring problems. There is a range of ordering strategies of graph 

coloring problems can be modified and applied in examination timetabling problems. The 

following table summarizes some of widely studied ordering strategies in examination 

timetabling problems (Qu et al., 2006). 

 

Five ordering strategies in Table 2.4 were studied on real and randomly generated examination 

timetabling problems by Carter et al. (1996). It was concluded that there was no heuristic 

outperformed any of the rest over the problems tested. Burke et al. (1998) proposed simple 

techniques in order to improve the solutions by introducing a random element into the 
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application of heuristics shown in Table 2.4. Asmuni et al. (2005) applied fuzzy logic to 

arrange the examinations to be scheduled based on ordering strategies on the same data sets. 

 

Table 2.4 Ordering strategies in the examination timetabling problem 

No Heuristics Ordering strategies 

1 Largest degree Decreasingly by the number of conflicts the 

examinations have with the other 

examinations 

2 Saturation degree Increasingly by the number of time periods 

available for the examination at the time 

3 Largest weighted degree Decreasingly by total number of students in 

conflict with other examinations 

4 Random ordering Randomly order the examinations 

5 Largest enrolment Decreasingly by the number of enrolments 

(students) for the examination 

 

2.4.2.3 Generalized Search Strategies (Improvement Heuristics) 

 

These strategies are similar to the improvement heurisctics described in Section 2.4.1.3. 

Generalized search strategies start with one or more initial solutions and apply a search 

strategy in order to avoid local optimum. These strategies are usually seen in metaheuristics, 

such as Simulated Annealing (SA), Tabu Search (TS), Genetic Algorithm (GA) and so forth.   

 

SA has been applied to a wide range of examination timetabling problems. Johnson (1990) 

used Simulated Annealing to solve the problems of University of the South Pacific (USP). A 

direct comparison with the previous manual approach was reported. It appears that the 

examination timetable planning has been simplified by using the proposed approach. 

 

Bullnheimer (1998) formulated a small scale examination timetabling problem at the 

University of Magdeburg as a Quadratic Assignment Problem. SA with two different 
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neighborhood structures was then proposed. Some of the latest applications of SA in 

examination timetabling problems are presented by Thompson and Dowsland (1998), Merlot 

et al. (2003), Duong and Lam (2004) and Burke et al. (2004). The following table summarizes 

the applications of other metaheuristics in examination timetabling problems. 

 

Table 2.5 Several applications of metaheuristics to the examination timetabling problem 

No Metaheuristics Authors 

1 Tabu Search Boufflet and Negre (1996), White and Xie (2001) 

and Paquete and Stutzle (2002)  

2 Genetic Algorithm Burke et al. (1996), Ergül (1996) and Sheibani 

(2002) 

3 Ant Colony Algorithm Dowsland and Thompson (2005), Naji Azimi 

(2005) 

 

2.4.2.4 Constraint Based Approaches 

 

There are a number of papers from the Artificial Intelligence research community that use 

general systems for constraint representation. Here, examination timetabling problem is 

described as a set of examinations which require certain “resources” and there are several 

constraints need to be considered. There is no explicit minimization of maximization objective 

function. However, these approaches are usually integrated with other methods in order to 

reduce the time complexity. Examples of the applications of constraint based approaches in 

examination timetabling problems were presented by David (1998), Merlot et al. (2003) and 

Duang and Lam (2004). 

 

2.5 Overview of Hybrid Algorithms 

 

Timetabling problems belong to the class of combinatorial optimization problems (COP). A 

survey of related applications of combinatorial optimization is given by Grötschel (1991). In 
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general, a combinatorial optimization problem has a discrete finite search space S and a 

function f, that measures the quality of each solution in S.  The main problem is to find 

f(s)s*
Ss

 maxarg  where s is a vector of decision variables and f is objective function that has 

to be maximized. The vector s* is a global optimum. The neighborhood N(s) of a solution s in 

S is defined as the set of solutions which can be obtained from s by a move. Each solution is s 

denoted as s , where )(sNs  . 

 

Two common techniques for solving timetabling problem are exact algorithms and heuristic 

methods. The former could guarantee finding an optimal solution. However, when problem 

size increases rapidly, the optimal solution could not be found within reasonable computation 

time. Perhaps, it could be due to a memory leak problem. On the other hand, heuristic methods 

are able to produce good enough solutions within reasonable computation time. 

 

For many years, the main focus of research in timetabling problem was on the application of a 

single method to given problems. Recently, instead of comparing against some methods, some 

researchers have attempted to combine some methods. This recent area of research has become 

more important and viable due to increasing computational power. Some possible 

hybridizations will be described in the following sub-sections. 

 

Talbi (2002) introduced the taxonomy of hybrid algorithms based on design and 

implementation issues. The hybrid algorithms are divided into low and high levels. In the low 

level hybridization, a given function of a metaheuristic is replaced by another metaheuristic. 

On the other hand, the different metaheuristics are self-contained in the high level hybrid 

algorithm. These two levels are further classified into relay and teamwork hybridization. In 

relay hybridization, a set of metaheuristics is applied one after another. Teamwork 



  Chapter 2 Literature Review 

 

34 

 

hybridization uses many parallel cooperating agents, where each agent carries out a search in a 

solution space.  

 

Other different classifications of hybrid algorithms were given by Blum and Roli (2003) and 

Puchinger and Raidl (2005). Different forms of hybridization proposed in Blum and Roli 

(2003) are (i) component exchange among metaheuristics, (ii) cooperative search and (iii) 

integrating metaheuristics and systematic methods. Puchinger and Raidl (2005) placed more 

emphasis on the combination of exact algorithms and metaheuristics, which are further 

categorized into two classes, namely collaborative and integrative combinations. This 

classification would be explained in Section 2.5.2. 

 

2.5.1 Hybridization of Heuristics 

 

Heuristic methods are classified into two categories: constructive and improvement heuristics. 

In Sections 2.4, we have described some applications of each category in timetabling problems.   

 

One of the earlier papers that applied the idea of hybrid algorithms in the university course 

timetabling problem was presented by Weare et al. (1995). This paper proposed a hybrid 

Genetic Algorithm that combines a direct representation of the timetable and heuristic 

crossover operators. A hybrid of heuristic sequencing and evolutionary methods has also been 

presented by Burke and Newall (1999). This hybrid algorithm not only reduces the time taken 

to find the solution, but also improves the quality of the solutions.  

 

Duong and Lam (2004) presented a hybrid method for the examination timetabling problem 

which consists of two phases: the first phase focuses on providing an initial solution by using a 

constraint programming approach, while the second phase focuses on determining crucial 
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cooling schedule parameters by applying SA. Merlot et al. (2003) proposed a new hybrid 

algorithm, consisting of three phases: a constraint programming phase for developing an initial 

solution, Simulated Annealing and hill climbing phases for improving the quality of solutions.  

 

One of the latest applications of a hybrid algorithm in the timetabling problem is presented by 

Chiarandini et al. (2006). The proposed algorithm is mainly based on a framework consisting 

of the successive application of construction heuristics, variable neighborhood descent and 

Simulated Annealing. The paper also describes a hybrid metaheuristic algorithm involving a 

modified Simulated Annealing approach for solving the university course timetabling problem. 

 

Another possible hybridization is to combine metaheuristic components with other 

components from other metaheuristics, known as hybrid metaheuristics. This recent area of 

research has become more important and viable due to increasing computational power. For 

instance, it may be desirable to have a memory element in the Simulated Annealing approach 

by incorporating the Tabu Search algorithm. Chiarandini and Stützle (2003) combined various 

construction heuristics, Tabu Search, variable neighborhood descent and Simulated Annealing 

for solving the course timetabling problem. Some examples of hybrid metaheuristics applied in 

other combinatorial optimization problems were proposed by Feng et al. (1993), Fox (1993), 

Bianchi et al. (2005) and Lim et al. (2005).  

 

In the examination timetabling problem, sequential hybridization of Ant Colony System 

outperforms other types of hybridizations (Naji Azimi, 2005). Finally, one of the latest 

applications of hybrid metaheuristics in timetabling problems is presented by Rahoual and 

Saad (2006), which involving a combination of Genetic Algorithm and Tabu Search for 

tackling the timetabling problem. 
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2.5.2 Hybridization of Exact Algorithms and Heuristics/Metaheuristics 

 

Puchinger and Raidl (2005) classify the hybridization of exact algorithms and metaheuristics 

into two different categories: collaborative and integrative combinations. Figure 2.4 gives an 

overview of this classification. 

.  

Figure 2.4 Major classification of exact/metaheuristic combinations 

 

Collaborative algorithms refer to the algorithms that exchange information but are not part of 

each other or no algorithm is contained in another. Both exact and heuristic algorithms can be 

executed sequentially or in parallel. In sequential execution, either the exact algorithm is 

executed as a kind of pre-processing before the metaheuristic, or vice-versa. For instance, the 

original problem is relaxed and solved using CPLEX and the solution obtained is improved by 

a subsequent metaheurictic. Exact and metaheuristic algorithms can also be executed in a 

parallel or intertwined way. The basic idea is having a set of agents which all agents work in 

parallel on a set of shared memories. Each agent performs an optimization algorithm.      

 

In integrative combinations, one technique is a subordinate embedded component of another 

technique. Two possibilities in the integrative combinations are: 

 

Hybridization of Exact Algorithms and Metaheuristics 

Collaborative Combinations 

Sequential Execution 

Parallel or Intertwined 

Execution 

Integrative  Combinations 

Incorporating Exact Algorithms in 

Metaheuristics 

Incorporating Metaheuristics in 

Exact Algorithms 
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 Incorporating Exact Algorithms in Metaheuristics 

Exact algorithms can be used to search neighborhoods in local search based metaheuristics. 

Such techniques are known as Very Large-Scale Neighborhood (VLSN) search (Ahuja et 

al., 2002). 

 Incorporating Metaheuristics in Exact Algorithms   

In branch-and-price algorithm, the pricing of columns is sometimes done by means of 

heuristics including metaheuristics in order to speed up the whole optimization process. 

For instance, a heuristic column generation approach was applied to graph colouring 

problem by Filho and Lorena (2000). 

 

The idea of hybrid algorithm has been widely applied in several combinatorial optimization 

problems such as flight network design problem (Büdenbender et al., 2000), production line 

scheduling problem (Clements et al., 1997), multiconstrained knapsack problem (Plateau et al., 

2002), transport timetabling (Laplagne, 2005) and traveling salesman problem (Applegate et 

al., 1998 and Burke et al., 2001). It is highlighted that there are still many research 

opportunities to develop hybrid algorithms. 

   



   Chapter 3 Mathematical Programming Models for the Course Timetabling Problem 

     

38 

 

CHAPTER III  

MATHEMATICAL PROGRAMMING MODELS FOR 

THE COURSE TIMETABLING PROBLEM 

 

3.1 Introduction 

 

Course timetabling problem can be classified into five sub-problems: teacher assignment, 

class-teacher timetabling, course scheduling, student scheduling and classroom assignment 

(Carter and Laporte, 1998). Although real life course timetabling problems always contain a 

combination of several sub-problems, we notice that many researchers only focus on one of the 

sub-problems. For instance, works of Andrew and Collins (1971), Schniederjans and Kim 

(1987) and Wang (2002) only focus on solving the teacher assignment problem, without 

considering the allocation of courses to time periods (the course scheduling problem).  

 

On the other hand, the course scheduling problem only focuses on scheduling courses to time 

periods. It is often assumed that the allocation of teachers to courses has been performed 

before the actual scheduling of courses to time periods, as in the works of Al Yakoob et al. 

(2006, 2007), Daskalaki et al. (2004), Daskalaki and Birbas (2005) and Lewis and Paechter 

(2007).  

 

In this research, we focus on a commonly encountered timetabling problem in many 

universities, and we call it the Teacher Assignment - Course Scheduling problem (TACS 

problem). The TACS problem is a combination of teacher assignment and course scheduling 

sub-problems, which considers requirements of both sub-problems simultaneously. The 
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primary problem faced is how to assign teachers to their preferred courses and then to schedule 

courses to time periods over a week based on the teachers’ time preferences.  

 

This chapter provides the basic and extended TACS mathematical programming models. The 

characteristics and the description of each proposed model are described in the subsequent sub-

sections. The proposed models are then solved by commercial software, ILOG OPL Studio 

software. Finally, computational results based on some randomly generated data sets and 

conclusions are presented. The weaknesses of commercial software to solve large instances are 

also highlighted in the conclusion part. 

 

3.2 The Basic TACS problem 

 

3.2.1 Problem Description 

 

In this sub-section, we start with a basic mathematical programming model that combines 

teacher assignment and course scheduling problems simultaneously at the university level. 

This timetabling problem that we address is peculiar to an engineering faculty of a university 

in Indonesia. A number of common definitions and terms for the basic problem are first 

explained as follows.  

 

A course refers to a subject taught by a teacher within a week. Each course requires a time 

period in which each time period requires a certain number of consecutive hours. Before the 

new semester starts, teachers are requested to decide the courses they are willing to teach, 

along with their preferred time periods to teach the courses. 
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Although each university could have different requirements, the following description 

summarizes the most common and basic requirements that would be considered in our problem. 

The first requirement is considered as the soft constraint and it would be incorporated in the 

objective function that needs to be maximized, while the rest would be treated as hard 

constraints that cannot be violated. The requirements imposed in the basic problem are as 

follows: 

1. Teacher preferences in terms of course and time period are maximized.  

2. Each teacher has to teach at least one course and could not exceed the maximum number 

of courses allowed. 

3. The number of courses taught could not exceed the number of classrooms available for 

each time period. 

4. Each teacher can only teach one course, at most, at any time period. 

5. All courses have to be scheduled.  

6. Teachers will not be assigned courses that they are unable to teach. 

 

3.2.2 The Mathematical Programming Model 

 

We consider a set of teachers I who are willing to teach a set of courses J. All courses will be 

scheduled into the set of time periods M. The basic mathematical programming model is 

presented as an integer programming model with the following decision variable: 

 ijmX = 1 if teacher i teaches course j at time period m, 0 otherwise  MmJjIi  ,,  

 

A mathematical programming model for the basic TACS problem can be formulated as 

follows: 
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[TACS Model I] 

Maximize    
  


Ii Jj Mm

ijmimijTACS_ XPTPCZ I
I       (3.1) 

subject to: 

 

i
Jj Mm

ijm NX   
 

1    Ii        (3.2) 

 

 
 


Ii Jj

mijm CX I     Mm       (3.3) 

 





Jj

ijmX 1    MmI,i        (3.4) 

 

 
 


Ii Mm

ijmX 1     Jj        (3.5) 

 

0ijmX     Mm,JjI,i i       (3.6) 

 

 10,X ijm     MmJ,jI,i       (3.7) 

 

The objective function ZTACS_I (equation 3.1) reflects a total preference function that needs to 

be maximized. It refers to the sum of value given by teacher i on the preference of being 

assigned to teach course j (PCij) and value given by teacher i on the preference of being 

assigned to teach at time period m ( I
imPT ). Thus, the teacher can choose not only his course 

preference, but he can also indicate his time preference. In our model, we have assumed that 

these preferences are equally important. However, the values for these preferences can be 

scaled, or the preference function can be modified by adding different weights according to the 

actual timetabling scenarios encountered. In this basic model, it is assumed that the entire 

week is divided into 20 time periods. 

 

Equation (3.2) ensures that each teacher i  has to teach at least one course, while not allowing 

the teacher to teach more than the maximum number of courses allowed, iN . Equation (3.3) 

represents the constraint on the number of classrooms available I
mC  during each time period m . 

Equation (3.4) ensures that each teacher i can only teach at most one course at any time period 



  Chapter 3 Mathematical Programming Models for the Course Timetabling Problem 

 

42 

 

m. Equation (3.5) states that each course j has to be allocated with a teacher at a particular time 

period m. Equation (3.6) ensures that teachers will not be assigned courses that they are unable 

to teach. Finally, constraint (3.7) imposes the 0-1 restrictions on the decision variables ijmX . 

 

3.2.3 Computational Results 

 

The TACS Model I described above was solved by ILOG OPL Studio 3.7 on a 2.59GHz 

Pentium IV PC with 512MB RAM that runs in Microsoft Windows XP operating system. We 

generate randomly generated several data sets in such a way that the data sets correspond to 

differing values of four parameters.   

 

Here,  the four various parameters are the number of teachers I ,  the number of courses J ,  

the maximum number of courses taught by each teacher  IiNi   and the number of 

classrooms available  MmCm I . The values of Ni and I
mC  may vary which depend on the 

characteristic of the institution. In our basic model, it is assumed that for Ii , NN i   

and Mm , CCm I . The characteristics for each data set are summarized in Tables 3.1. 

 

The following explanation describes how we define the preference values for each teacher. In 

terms of preference values, each teacher needs to indicate which courses and time periods are 

considered as the first priority, second priority and so on. This scenario can avoid a situation 

where teachers define very low values for all courses and time periods. These priorities would 

then be translated into numerical values, for instance, courses in the first priority would have a 

value of 100 and so on. For courses and time periods which are not selected, we simply set a 

zero value. 
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Table 3.1 Characteristics of data sets (TACS Model I) 

Data set 

Number of 

teachers 

|I| 

Number of 

courses 

|J| 

Maximum number 

of courses taught 

N 

Number of classrooms 

available 

C 

50_1 50 200 4 10 

50_2 50 200 5 10 

50_3 50 200 6 10 

50_4 50 200 4 15 

50_5 50 200 4 20 

50_6 50 250 5 13 

50_7 50 300 6 15 

50_8 50 350 7 18 

50_9 50 400 8 20 

100_1 100 200 2 10 

100_2 100 200 3 10 

100_3 100 200 4 10 

100_4 100 200 2 15 

100_5 100 200 2 20 

100_6 100 250 3 13 

100_7 100 300 3 15 

100_8 100 350 4 18 

100_9 100 400 4 20 

     

Each data set contains five randomly generated data instances. We set the number of time 

periods |M| to be 20. This assumes that one week consists of 20 time periods in which each 

time period has a length of two and half hours (Figure 3.1). 

 
  Day 

 
 1 2 3 4 5 

 
07.30 – 10.00 Period1 Period5 Period9 Period13 Period17 

Time 
10.00 - 12.30 Period2 Period6 Period10 Period14 Period18 

 
12.30 – 15.00 Period3 Period7 Period11 Period15 Period19 

 
15.00 - 17.30 Period4 Period8 Period12 Period16 Period20 

 
Figure 3.1 Time periods in a week 
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In order to ensure feasibility of the problem instances being solved, the following formulae 

are used for calculating the maximum number of courses taught and number of classrooms 

available: 











|I|

|J|
 N        (3.8) 

 











|M|

|J|
 C        (3.9) 

 

Table 3.2 shows the results obtained when the number of teachers is set to 50. It summarizes 

the average optimal objective function values obtained and the average CPU time required to 

obtain the solutions.  

 

Data set 50_1 is used as the 50-teacher base data set by setting equations (3.8) and (3.9) to 

equality. For data sets 50_2 to 50_5, we change the value of either the maximum number of 

courses taught N or the number of classrooms available C in the 50-teacher base data set. In 

general,  we observe that some of the average CPU time required decreases when the 

maximum number of courses taught N or the number of classrooms available C increases. 

 

The possible reason for this situation is when we increase the maximum number of courses 

taught N or the number of classrooms available C,  it becomes easier for equations (3.2) and 

(3.3) to be satisfied, which may result in decreased CPU time when finding the optimal 

solution for these problem instances. When the maximum number of courses taught or the 

number of classrooms available is increased, the average objective value of the optimal 

solution is increased, meaning more courses and time periods are assigned to each teacher. 
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Table 3.2 Computational results by OPL Solver when number of teachers is 50 

Data set 

Objective 

function 

value 

CPU time 

(seconds) 

Average  

objective 

function value 

Average 

CPU time 

(seconds) 

50_1(1) 34250 19.06 34167.40 19.30 

50_1(2) 34097 23.17   

50_1(3) 34097 18.40   

50_1(4) 34424 18.26   

50_1(5) 33969 17.63   

50_2(1) 35770 15.18 35645.80 16.77 

50_2(2) 35257 17.44   

50_2(3) 35707 17.57   

50_2(4) 35707 17.03   

50_2(5) 35788 16.63   

50_3(1) 35759 16.55 35847.60 16.93 

50_3(2) 35510 18.18   

50_3(3) 35845 17.16   

50_3(4) 36097 15.94   

50_3(5) 36027 16.84   

50_4(1) 34572 17.53 34797.40 15.77 

50_4(2) 34727 15.50   

50_4(3) 34410 15.32   

50_4(4) 35290 14.52   

50_4(5) 34988 15.99   

50_5(1) 34876 15.44 34968.40 15.40 

50_5(2) 34930 15.72   

50_5(3) 35621 15.47   

50_5(4) 34979 15.41   

50_5(5) 34436 14.97   

50_6(1) 40889 52.55 41185.20 29.92 

50_6(2) 40741 24.08   

50_6(3) 41011 24.73   

50_6(4) 41913 24.06   

50_6(5) 41372 24.20   

50_7(1) 47681 94.32 48083.00 54.81 

50_7(2) 47675 42.69   

50_7(3) 48674 48.58   

50_7(4) 48685 42.49   

50_7(5) 47700 45.94   

50_8(1) 53300 177.69 54139.80 119.48 

50_8(2) 55039 115.59   

50_8(3) 53777 98.64   

50_8(4) 54770 115.97   

50_8(5) 53813 89.52   

50_9(1) 60176 158.98 59709.80 204.99 

50_9(2) 60159 203.38   

50_9(3) 60159 195.85   

50_9(4) 59329 288.12   

50_9(5) 58726 178.62   
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The following figure illustrates part of the optimal solution obtained for data set 50_1(1) 

including a numerical example. For instance, Teacher1 is allocated to teach Course 171 in 

Period 2, Course 177 in Period 5 and so on. 

 

Period 1 2 … 5 6 7 8 9 … 20 

Teacher1 
 

171 
 

177 
 

166 
   

  

Teacher2 
    

92 
    

  

Teacher3 47 
        

  

: 
         

  

: 
         

  

Teacher50   170           16     

 

Figure 3.2 Part of the result of data set 50_1(1) 

 

Data sets 50_6 to 50_9 consider the case when the number of courses offered is increased 

from 250 to 400 courses. We notice that when the number of courses is increased, the 

average CPU time required increases rapidly (see Figure 3.3). In general, we conclude that 

the average CPU time will increase when the size of the problem increases.  
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Figure 3.3 Plot of average CPU time for data sets 50_1, 50_6 to 50_9 
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Table 3.3 Computational results by OPL Solver when number of teachers is 100 

Data set 

Objective 

function 

value 

CPU time 

(seconds) 

Average  

objective 

function value 

Average 

CPU time 

(seconds) 

100_1(1) 36943 194.93 36887.80 190.23 

100_1(2) 36916 170.86   

100_1(3) 36906 142.38   

100_1(4) 36653 152.68   

100_1(5) 37021 290.29   

100_2(1) 37912 185.00 37938.20 208.10 

100_2(2) 38085 190.08   

100_2(3) 38085 203.60   

100_2(4) 37634 237.87   

100_2(5) 37975 223.96   

100_3(1) 38197 206.56 38342.40 216.50 

100_3(2) 38468 251.53   

100_3(3) 38468 146.63   

100_3(4) 38494 217.62   

100_3(5) 38085 260.15   

100_4(1) 37325 219.16 37371.00 176.10 

100_4(2) 37251 99.05   

100_4(3) 37337 183.03   

100_4(4) 37649 145.49   

100_4(5) 37293 233.79   

100_5(1) 37007 76.17 37290.00 139.18 

100_5(2) 37007 162.95   

100_5(3) 37551 161.09   

100_5(4) 37647 73.85   

100_5(5) 37238 221.86   

100_6(1) 45744 342.61 45667.60 369.13 

100_6(2) 45717 332.26   

100_6(3) 44973 303.11   

100_6(4) 45952 491.75   

100_6(5) 45952 375.91   

100_7(1) 51819 488.21 52015.40 547.42 

100_7(2) 52573 545.95   

100_7(3) 52573 818.63   

100_7(4) 51937 322.21   

100_7(5) 51175 562.08   

100_8(1) 60611 1336.72 60360.20 1355.55 

100_8(2) 60479 1728.42   

100_8(3) 60479 1424.24   

100_8(4) 59773 1075.08   

100_8(5) 60459 1213.29   

100_9(1) 64963 1670.30 65259.80 1818.39 

100_9(2) 65753 1815.83   

100_9(3) 65938 1956.49   

100_9(4) 65734 1441.68   

100_9(5) 63911 2207.66   
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The next set of results looks into the effect of increasing the number of teachers to 100. We 

have to adjust the maximum number of courses taught and the number of classrooms 

available accordingly. Table 3.3 shows the computational results when the number of teachers 

is set to 100 with data set 100_1 as the 100-teacher base data set. The configurations of the 

other data sets 100_2 to 100_9 are generated in a similar way as that of those data sets 50_2 to 

50_9. 

 

From Table 3.3, we observe a decrease in the average CPU time required when the number 

of classrooms available increases. When the number of courses is increased as in data sets 

100_6 to 100_9, we observe that the average CPU time required increases rapidly (see 

Figure 3.4 for illustration).   In addition, we observe that the average CPU time needed for 

solving the 100-teacher problem instances is much larger than that for the 50-teacher 

problem instances when we compare the results in Tables 3.2 and 3.3.  
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Figure 3.4 Plot of average CPU time for data sets 100_1, 100_6 to 100_9 

 

Another observation of interest is the distribution of the number of courses taught by each 

teacher with respect to the maximum number of courses taught that we specify (see Table 3.4).  
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Table 3.4 Distribution of average number of courses taught by each teacher 
 
Data 

set 

Maximum 

number of 

courses taught 

Average percentage of teachers teaching the following number of courses (%)  

Variance 1 2 3 4 5 6 

50_1 4 0.0 0.0 0.0 100.0 0.0 0.0 0.00 

50_2 5 0.0 2.4 20.4 52.0 25.2 0.0 0.55 

50_3 6 0.0 1.2 26.0 47.6 22.0 3.2 0.66 

100_1 2 0.0 100.0 0.0 0.0 0.0 0.0 0.00 

100_2 3 18.4 62.8 18.8 0.0 0.0 0.0 0.37 

100_3 4 20.0 60.6 18.6 0.8 0.0 0.0 0.42 

 

The variances obtained are reasonably small, with only a small percentage of teachers having a 

very small or a very large number of courses taught. Thus, the optimal solutions obtained 

appear to have the property of sharing the similar number of courses taught among teachers. 

For example, in data sets 50_1, 50_2, 50_3, the number of teachers and courses are 50 and 200, 

respectively. Most of teachers will tech 4 courses. 

 

In this section, the basic TACS problem has been presented in detail. In the following sections, 

we extend the basic model into more complicated models by incorporating several additional 

requirements or constraints.  

 

3.3 The First Extended TACS problem  

 

3.3.1 Problem Description 

 

As explained earlier, the basic model only considers the following situations: each course can 

only be taught by one teacher and conducted only once a week. Here, the first extended model, 

namely TACS Model II, would accommodate the following different requirements:  

 Assuming the number of students registered to a particular course is probably greater than 

the capacity of a classroom. It would be necessary to divide a particular course into several 
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course sections that are taught by the same or different teachers. In order to decide which 

courses have to be divided to course sections, the university needs to forecast the number of 

students who are going to take a particular course by referring to the university data base. 

 A course can be taught more than once within a week. However, at any particular time 

period, only one course section can be taught. 

 Since a course can be divided into several sections, each course can be taught by more than 

one teacher. The minimum and maximum number of teachers who can teach for each 

course depend on the number of sections offered for each course.. We only restrict each 

course section can only be taught by one teacher. 

 

3.3.2 The Mathematical Programming Model 

 

TACS Model II is presented as an integer programming model with the following additional 

decision variables: 

 ijP  = 1 if teacher i teaches course j, 0 otherwise    JjIi  ,  

 ijkmX = 1 if teacher i teaches course j section k at time period m, 0 otherwise   

 MmKkJjIi j  ,,,  

 

A mathematical programming model for the timetabling problem that we address can then be 

formulated as follows: 

 

[TACS Model II] 

Maximize     
    


Ii Jj jKk Mm

ijkmim
Ii Jj

ijijTACS_ XPTPPCZ I
II     (3.10) 

subject to: 

 

 
 


Ii Kk

ijkm

j

X 1      MmJj  ,       (3.11) 
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















 






jKk j

Mm
ijkm

ij
Sec

X

P     JjIi  ,      (3.12) 

 





Ii

jijj UTPLT     Jj       (3.13) 

 





Jj

iij NP1      Ii       (3.14) 

 

 
 


Jj Kk

ijkm

j

X 1     MmIi  ,      (3.15) 

 

  
  


Ii Jj jKk

mijkm CX I     Mm      (3.16) 

 

  
  


Ii Kk Mm

jijkm

j

SecX     Jj       (3.17) 

 

 
 


Ii Mm

ijkmX 1      jKkJj  ,      (3.18) 

 

0ijkmX      MmKkJjIi ji  ,,,    (3.19) 

 

 1,0ijkmX      MmKkJjIi j  ,,,    (3.20) 

 

The objective is to maximize the course and time preference of all teachers. It is reflected in 

equation (3.10). Equation (3.11) ensures that for a particular course, only one section can be 

conducted in every period. Equation (3.12) represents the relationship between variables ijP  

and ijkmX . It indicates that if teacher i teach at least one section of course j, the value of ijP  

would be 1, meaning that teacher i teaches course j. Equation (3.13) limits the number of 

teachers who can teach for each course. Equation (3.14) ensures that each teacher has to teach 

between the minimum and maximum number of courses taught.   

 

Equation (3.15) ensures that each teacher can only teach at most one course section at a 

particular time period. Equation (3.16) represents the constraint on the number of classrooms 

available during each time period. Equation (3.17) states that all sections for a particular 

course must be scheduled. Equation (3.18) assumes that each course section can only be taught 
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by one teacher. Equation (3.19) ensures that teachers will not be assigned courses that he/she is 

unable to teach. Finally, constraint (3.20) imposes the 0-1 restrictions on the decision 

variables ijkmX . 

 

Note that equation (3.12) involves nonlinear functions of the decision variables but these can 

always be linearized by adding the following constraint: 

  

  jij
Kk Mm

ijkmijj SecPXPεSec
j

  
 

1     JjIi  ,     (3.21) 

  

Here,  is any positive number such that  j
j

Secε 1min . 

 

Preposition 3.1 If  j
j

Secε 1min , then equation (3.21) holds. 

Proof. 

From equation (3.21), one obtains ij

j

Kk Mm
ijkm

P-
Sec

X

ε
j

1

 
 

for ( Jj,Ii  ) 

Case 1. Suppose teacher i teaches course j, thus 1 
 jKk Mm

ijkmX as well as 

ij

j

Kk Mm
ijkm

j

Kk Mm
ijkm

j

P-
Sec

X

Sec

X

Sec
ε

jj
1

1


  
  

 

Case 2. Suppose teacher i does not teach course j, thus 0  
 jKk Mm

ijkmij XP as well as 

ij

j

Kk Mm
ijkm

P-
S

X

ε
j

11 

 
 
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By referring to equation (3.21),   ij

j

Kk Mm
ijkm

ij P
Sec

X

Pε
j



 
 

1 , the value of 

,....2,1, 


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Kk Mm
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jjj

By contradiction, if 

1



















 
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ij
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X
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j

, then 











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










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








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Kk Mm
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j

Kk Mm
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X
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X
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X
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1  

Finally, we conclude that  j
j

Secε 1min . 

 

3.3.3 Computational Results 

 

TACS Model II was solved by ILOG OPL Studio 3.7 on the earlier processor and operating 

system used for solving TACS Model I. Several random data sets were generated in such a 

way that they correspond to differing values of the following parameters: the number of 

teachers I , the number of courses J , the maximum number of courses taught N and the 

number of classrooms available C .  

 

Two additional parameters, the number of sections jSec and the number of time periods M , 

are set to constant values. Each data set contains five different randomly generated data 

instances. The following table shows the detail characteristics of data sets. The number of 

sections for each course and the number of time period per week are set to 3 and 20, 

respectively. 
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Table 3.5 Characteristics of data sets (TACS Model II) 

 
Data 

set 

 

Number of 

teachers 

|I| 

Number of 

courses 

|J| 

Maximum number 

of courses taught 

N 

Number of classrooms 

available 

C 

25_1 25 75 3 7 

25_2 25 75 4 7 

25_3 25 75 5 7 

50_1 50 150 3 13 

50_2 50 150 4 13 

50_3 50 150 5 13 

75_1 75 225 3 20 

75_2 75 225 4 20 

75_3 75 225 5 20 

 

Table 3.6 Computational results by OPL Solver when number of teachers is 25 

 

Data set 

Objective 

function 

value 

CPU time 

(seconds) 

Average  

objective 

function value 

Average 

CPU time 

(seconds) 

25_1(1) 12080 3.73 12474 4.20 

25_1(2) 12170 4.88   

25_1(3) 13060 3.73   

25_1(4) 12670 3.87   

25_1(5) 12390 4.80   

25_2(1) 13750 16.65 14238 6.91 

25_2(2) 14000 3.61   

25_2(3) 14930 4.69   

25_2(4) 14360 4.18   

25_2(5) 14150 5.41   

25_3(1) 14440 3.37 14874 4.28 

25_3(2) 14640 5.36   

25_3(3) 15770 4.20   

25_3(4) 14810 3.93   

25_3(5) 14710 4.56   

 

 

Table 3.6 shows the computational results when the number of teachers is set to 25. It 

summarizes the average optimal objective function values obtained and the average CPU time 

required to obtain the solutions. In general, we observe that when the maximum number of 

courses taught is increased, the objective function value for each instance and the average 
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objective value of the optimal solution are increased. More courses and time periods would be 

assigned to each teacher. 

 

Table 3.7 Computational results by OPL Solver when number of teachers is 50 

 

Data set 

Objective 

function 

value 

CPU time 

(seconds) 

Average  

objective 

function value 

Average 

CPU time 

(seconds) 

50_1(1) 24730 80.10 24572 48.06 

50_1(2) 24540 19.61   

50_1(3) 23740 46.65   

50_1(4) 24830 52.96   

50_1(5) 25020 40.95   

50_2(1) 28130 38.30 28018 75.47 

50_2(2) 27950 53.51   

50_2(3) 27230 64.77   

50_2(4) 28060 85.15   

50_2(5) 28720 135.60   

50_3(1) 28990 19.93 28964 33.71 

50_3(2) 28760 29.51   

50_3(3) 28330 25.42   

50_3(4) 28910 42.94   

50_3(5) 29830 50.74   

 

 

Table 3.8 Computational results by OPL Solver when number of teachers is 75 

 

Data set 

Objective 

function 

value 

CPU time 

(seconds) 

Average  

objective 

function value 

Average 

CPU time 

(seconds) 

75_1(1) 38620 1409.13 37442 1711.49 

75_1(2) 37180 1264.74   

75_1(3) 37010 1720.73   

75_1(4) 36750 2142.15   

75_1(5) 37650 2020.72   

75_2(1) 43950 1635.38 42562 1786.72 

75_2(2) 42240 1749.48   

75_2(3) 42070 1990.90   

75_2(4) 41710 1567.05   

75_2(5) 42840 1990.80   

75_3(1) 45510 1077.42 43988 1514.37 

75_3(2) 43680 1667.73   

75_3(3) 43230 1646.54   

75_3(4) 43100 1633.72   

75_3(5) 44420 1546.42   
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Similar observations have been found for other data sets with the number of teachers are set to 

50 and 75 (Tables 3.7 and 3.8). The average CPU time needed for solving large instances is 

much larger than that for the 25-teacher problem instances. From Table 3.8, we observe that 

we require almost 30 minutes for solving the 75-teacher problem instances. 

 

Table 3.9 Distribution of average number of courses taught by each teacher 

  
 

Data Set 

Average percentage of teachers teaching following number of courses (%) 

1 2 3 4 5 

25_1 0.0 0.0 100.0 - - 

25_2 0.0 0.0 0.0 100.0 - 

25_3 0.0 1.6 5.6 21.6 71.2 

50_1 0.0 0.0 100.0 - - 

50_2 0.0 0.0 0.8 99.2 - 

50_3 0.0 1.2 11.6 33.2 54.0 

75_1 0.0 0.0 100.0 - - 

75_2 0.0 0.0 0.5 99.5 - 

75_3 0.0 0.8 13.1 31.7 54.4 

 

For further analysis, we observe the distribution of average number of courses taught by each 

teacher with respect to the maximum value specified (see Table 3.9). If we increase the 

maximum number of courses taught, there is a tendency that most of the teachers will teach as 

many as the maximum number of courses taught Ni.  

 

For example, when the maximum number of courses taught is set to 3 courses (data set 25_1), 

all teachers will teach 3 courses. Similar observation when we increase the maximum number 

of courses taught to 4 courses (data set 25_2), each teacher will teach 4 different courses. It 

could be due to the following requirements: the numbers of teachers teach a particular course 

can be more than one teacher and the minimum number of teachers required for a particular 

course. For instance, courses with 4 sections require at least two teachers to teach. It turns out 

that more teachers will be assigned to courses. At the end, more courses would be assigned to 
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each teacher as long as the number of courses taught does not exceed the maximum number of 

courses taught. 

 

Table 3.10 Number of teachers allocated to a particular course 

 

 

Data set 

Number of 

teachers |I| 

Number of courses 

|J| 

Maximum number 

of courses taught 

N 

The percentage of courses 

taught by 

1 teacher 2 teachers 

25_1 25 75 3 100.0 0.0 

25_2 25 75 4 66.7 33.3 

25_3 25 75 5 45.9 54.1 

50_1 50 150 3 100.0 0.0 

50_2 50 150 4 66.9 33.1 

50_3 50 150 5 53.3 46.7 

75_1 75 225 3 100.0 0.0 

75_2 75 225 4 66.8 33.2 

75_3 75 225 5 53.4 46.6 

 

From Table 3.10, if the number of courses |J| divided by the number of teachers |I| is equal to 

the maximum number of courses taught per teacher N, each course would be taught by one 

teacher. On the other hand, if we increase the maximum number of courses taught value, we 

notice that more than one teacher would be able to teach a particular course. The more we 

increase the value, the more number of teachers would teach a particular course. 

 

3.4 The Second Extended TACS problem 

  

3.4.1 Problem Description 

 

The second extended model, namely TACS Model III, includes several additional 

requirements which are comparable to those occurring in an engineering faculty of a university 

in Indonesia. Similar to TACS Model II, due to the capacity of the classrooms and the number 
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of students registered, some courses have to be taught repeatedly by the same teacher or by 

different teachers. Each of these repeated courses is known as a course section. 

 

In previous models (TACS Model I and II), a week is assumed to be divided into several time 

periods with the same number of hours (Figure 3.1). In TACS Model III, time periods are 

considered on a day-hour basis and courses can be conducted at any time period in order to 

increase teaching flexibility (see Figure 3.5 for illustration). Each course/course section 

requires a certain number of consecutive time periods per week.  

 

Similar to both TACS Model I and TACS Model II, teachers are requested to decide the 

courses they are willing to teach before the new semester starts, along with their preferred days 

and time periods to teach the courses. We adopt a similar approach by formulating TACS 

Model III that considers both teacher assignment and course scheduling simultaneously.  

 

The primary problem faced is to assign teachers to their preferred courses and course sections 

and then to schedule course sections to time periods over a week based on the teachers’ 

preferences (Figure 3.5).  

 

       Teachers                      Courses/Sections   Time periods 
 
 
 
 
 
 
 
 
   
  

Figure 3.5 TACS Model III 

 

The university timetabling problem has special features that highly depend on the university’s 

characteristics, such as the courses taught, the teachers and the availability of resources as well. 

Teacher 1 

Teacher 2 

Teacher 3 

: 

: 

: 

Teacher i 

Course 1 Section 1 

Course 1 Section 2 

Course 2 Section 1 

: 

: 

: 
Course j Section k 

 Day 1 Day 2 Day 3 Day 4 Day 5 

Period 1           

Period 2           

Period 3           

Period 4           

Period 5           

Period 6           

Period 7           

Period 8           
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Although each university might have different requirements, the following description 

summarizes the most common requirements that will be regarded as hard constraints that 

cannot be violated.  

 

There are some requirements which are similar to those of TACS Model II (Section 3.3.1). 

Here, the following additional requirements pertaining to TACS Model III are listed: 

 In order to avoid high workload for each teacher or unbalanced teaching load, all the course 

sections taught by a teacher have to be spread evenly throughout a week.  

 Each course section requires a certain number of time periods to be scheduled 

consecutively.  

 Another specific requirement in the context of an engineering faculty in a university in 

Indonesia is the number of sections for a particular course that can be conducted each day. 

In particular, this is restricted to only one section that can be conducted each day so that all 

sections can be spread evenly throughout the week. The main reason is to increase the 

chance for students to select the courses. For instance, Courses A (Section 1) and B (Section 

1) are taught on Monday (time period 1). Students definitely cannot take both courses at the 

same time. However, another section for each course (Section 2) would be scheduled on a 

different day so students may consider to take another course (either Course A or B) on a 

different day. We assume that the number of sections for a particular course is less than or 

equal to the number of days in a week.  

 

3.4.2 The Mathematical Programming Model  

 

The timetable is in the form of a weekly schedule. A week is further partitioned into a set of 

days (L) and time periods (M). In this study, each time period m is assumed to be of the same 

duration. Each section k of course j  jKk has to be scheduled into time periods based on the 
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number of time periods required, Hj. Each time period Mm on day Ll  has a maximum 

number of classrooms available, III
lmC . For simplicity, we again assume that III

lmC  is a constant, 

i.e., III
lmC  = C for all l and all m, where C is a positive integer. 

    

The decision variables needed in the model are defined next: 

ijklmX  = 1 if teacher i teaches course j section k on day l and at time period m; 0 otherwise 

 MmLlKkJjIi j  ,,,,  

ijklY  = 1 if teacher i teaches course j section k on day l; 0 otherwise  

  LlKkJjIi j  ,,,  

ijklmU  = 1 if teacher i teaches course j section k on day l and starts at time period m; 0 

otherwise  MmLlKkJjIi j  ,,,,  

ijP  = 1 if teacher i teaches course j; 0 otherwise  JjIi  ,  

iL  = number of course sections taught by teacher i  Ii  

iV  = number of course sections taught by teacher i per day  Ii  

 

A mathematical programming model for the timetabling problem can then be formulated as 

follows: 

[TACS Model III] 

 

Maximize       
      


Ii Jj Ii Jj jKk Ll Mm

ijklmilmijijTACS_ XPTPPCZ III
III    (3.22) 

subject to: 

 
 


Ii Kk

ijklm

j

X 1    MmLlJj  ,,      (3.23) 

 












  

 jKk Ll j

ijkl

ij
Sec

Y
P    JjIi  ,       (3.24) 

 





Jj

iij NP1     Ii        (3.25) 
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



Ii

jijj UTPLT    Jj        (3.26) 

 

jijkl
Mm

ijklm HYX 


   LlKkJjIi j  ,,,     (3.27) 

 

 
 


Ii Kk

ijkl

j

Y 1    LlJj  ,       (3.28) 

 

 
 


Jj Kk

ijklm

j

X 1     MmLlIi  ,,      (3.29) 

 

 
  


Ii Jj Kk

lmijklm CX III    MmLl  ,       (3.30) 

 

  
  


Ii Kk Ll

jijkl

j

SecY    Jj        (3.31)

  


 


Ii Ll

ijklY 1     jKkJj  ,       (3.32) 

 

0ijklmX     LlKkJjIi ji  ,,,     (3.33) 

 

  
  


Jj Kk Ll

iijkl

j

LY    Ii        (3.34) 

 














L

L
V i

i     Ii        (3.35) 

 

 
 


Jj Kk

iijkl

j

VY     LlIi  ,       (3.36) 

 
 
 





1

0

jH

t
ijklmjt)ijkl(m UHX    1,...,1,,,,  jj HMmLlKkJjIi   (3.37) 

 
 

 
 






Ii Ll

HM

m
ijklm

j

U
1

1

1    jKkJj  ,       (3.38) 

 

 
  


Ii Ll Mm

jijklm HX    jKkJj  ,       (3.39) 

 

0ijklmU      MHMmLlKkJjIi jj ,...,2,,,,   (3.40) 

 

0ijklmU      1,...,1,,,,  jji HMmLlKkJjIi   (3.41) 

 

 1,0ijklmX     MmLlKkJjIi j  ,,,,    (3.42) 

 

 1,0ijklY     LlKkJjIi j  ,,,     (3.43) 



  Chapter 3 Mathematical Programming Models for the Course Timetabling Problem 

 

62 

 

 1,0ijklmU     MmLlKkJjIi j  ,,,,    (3.44) 

 

 1,0ijP     JjIi  ,       (3.45) 

 
ZLi     Ii        (3.46) 

 
ZVi      Ii        (3.47) 

 

The objective function (3.22) is similar to that of equation (3.1). It refers to the sum of value 

given by teacher i on the preference of being assigned to teach course j (PCij) and value given 

by teacher i on the preference of being assigned to teach on day l time period m ( III
ilmPT ).  

 

Equation (3.23) ensures that at most one section can be taught in every time period for a 

particular course j. Equation (3.24) ensures that the variable ijP  takes the value of 1 when 

teacher i teaches at least one section of course j; otherwise, it would be 0. Equation (3.25) 

ensures that each teacher has to teach at least one course. Equation (3.25) also represents the 

constraint that each teacher cannot teach more than the maximum number of courses taught. 

Teachers would not teach more than the maximum number of courses allowed although he 

shows great interests on many courses.  

 

Equation (3.26) restricts for each course the number of teachers who could teach it. Equations 

(3.25) and (3.26) try to reduce a situation where more courses would be assigned to teachers 

who show great interests on many courses compared to those teachers who do not show 

interest in most of the courses. For example, course A with 4 course sections, the minimum 

number of teachers teach this particular course is set to two. In this case, although only one 

teacher shows a great interest on that course, the university has to find another teacher with 

less interest in order to satisfy the minimum number of teacher required to teach that particular 

course.  
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Equation (3.27) shows the relationship between variables ijklY  and ijklmX . If teacher i teaches 

course j section k during Hj time periods on day l, the value of ijklY is equal to 1. Equation (3.28) 

ensures that for any course j, at most one section can be conducted each day. Equation (3.29) 

ensures that each teacher can only be assigned at most one course section at any time period.  

 

Equation (3.30) prevents the total number of course sections conducted per time period from 

exceeding the number of classrooms available, III
lmC . Equation (3.31) states that all course 

sections for each course must be scheduled in the timetable. Equation (3.32) ensures that each 

course section can only be taught by one teacher, while equation (3.33) ensures that teachers 

will not be assigned courses that they are unable to teach. 

 

Equation (3.34) calculates the number of course sections taught by each teacher and equation 

(3.35) determines the number of course sections taught per day for each teacher, rounded 

upwards to the nearest integer. Equation (3.36) helps to spread evenly all the course sections 

taught by each teacher throughout a week.  

 

Equations (3.37), (3.38) and (3.39) deal with the consecutive requirements. With these 

constraints, if course j section k taught by teacher i requires Hj consecutive time periods and 

the teacher is assigned to a given period of day l as the first period to be taught for the course 

section, then the teacher will be assigned to the following (Hj - 1) periods. In order to facilitate 

the modeling of this requirement, the variable ijklmU  is introduced.  

 

Equation (3.37) expresses the logic that each course section has to be scheduled and taught by 

a teacher in Hj time periods consecutively. If the start of section k of course j taught by teacher 

i is assigned to time period m1 of day l, i.e., the variable 
1ijklmU  takes the value of 1, then the 
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following (Hj – 1) time periods have to be assigned to the same course section. Equation (3.38) 

ensures that there is only one starting time period for each course section, and equation (3.39) 

further ensures that the number of time periods allocated to each course section meets its 

requirement. 

 

For variables ijklmU , additional constraints (3.40) and (3.41) are introduced to ensure that a 

course section could not be started in certain time periods if the remaining time periods are less 

than the number of time periods required and teachers will not be assigned certain time periods 

for courses that they are unable to teach, respectively. Finally, constraints (4.42), (4.43), (4.44) 

and (4.45) impose the 0-1 restrictions for the decision variables ijklmX , ijklY , ijklmU  and ijP , 

respectively; while constraints (4.46) and (4.47) represent the nonnegative and integrality 

requirements for the iL  and iV  variables. 

 

Even though equations (3.24) and (3.35) involve nonlinear functions of the decision variables, 

they can be rewritten as a linear model TACS' Model III by introducing additional constraints 

(3.48) and (3.49) as follows: 

  

  jij
Kk Ll

ijklijj SecPYPεSec
j

  
 

1    JjIi  ,    (3.48) 

  

LVL)V(L iii  1      Ii     (3.49) 

 

Here,  is any positive number such that  








 L1,Sec1ε j
j

minmin .  

 

Preposition 3.2. If  






 LSecj

j
1,1minmin , then equations (3.48) and (3.49) hold. 

Proof. 

From equation (3.48), one obtains ij

j

Kk Ll
ijkl

P-
Sec

Y

ε
j

1

 
 

for ( Jj,Ii  ) 
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Case 1. Suppose teacher i teaches course j, thus 1 
 jKk Ll

ijklY as well as 

ij

j

Kk Ll
ijkl

j

Kk Ll
ijkl

j

P-
Sec

Y

Sec

Y

Sec
ε

jj
1

1
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  
  

 

Case 2. Suppose teacher i does not teach course j, thus 0  
 jKk Ll

ijklij YP as well as 

ij

j

Kk Ll
ijkl

P-
S

Y

ε
j

11 

 
 

 

By referring to equation (3.48),   ij

j

Kk Ll
ijkl

ij P
Sec
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By contradiction, if 
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From equation (3.49), one obtains i
i V

L

L
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The TACS Model III can be represented as follows: 

 

[TACS' Model III] 

Maximize Objective function (3.22) 

subject to: 

  Constraints (3.23), (3.25) – (3.34), (3.36) – (3.49) 

 

The maximum number of decision variables and constraints in the proposed mathematical 

model are (2|I||J||K||L||M| + |I||J||K||L| + |I||J|+2|I|) and (3|I||J||K||L||M| + 2|I||J||K||L| + |I||J||L||M| + 

|I||L||M| + |I||J| + 3|J||K| + |I||L| + |J||L| + |L||M| + 4|I| + 3|J|), respectively. 

 

3.4.3 Computational Results 

 

To test the performance of the proposed model, it is implemented in ILOG OPL Studio 4.2 on 

a 2.6GHz Pentium IV PC with 512MB RAM that runs in Microsoft Windows XP operating 

system. Several data sets are generated in such a way that the data sets correspond to differing 

values of several parameters. Two different types of randomly generated data sets that 

represent the TACS problem of varying difficulties are generated. Here, the various parameters 

are the number of teachers |I|, the number of courses |J|, the number of sections for each course 

|K|, the maximum number of courses taught N and the number of classrooms available C. The 

maximum computation time is limited to 24 hours for all the data sets. 

 

The number of days per week is assumed to be five days and the number of time periods per 

day is eight periods except for problem type 5×5. Each data set consists of five randomly 

generated data instances. Two different types of data sets are generated and they are known as 

Group I and Group II data sets, respectively. For Group I data sets, the number of sections for 

each course is set to a fixed number, while the number of sections for each course varies in the 

Group II data sets.  Tables 3.11 and 3.12 summarize the characteristics of each data set. For all 
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the data sets, we set the minimum and maximum number of teachers who can teach a 

particular course ( jLT  and jUT ) as shown in Table 3.13. 

Table 3.11 Characteristics of Group I data sets 

Data set 

Number 

of 

teachers 

|I| 

Number 

of 

courses 

|J| 

Number 

of 

sections 

|K| 

Number 

of days 

|L| 

Number of 

time periods 

per day 

|M| 

Maximum 

number of 

courses taught 

N 

Number of 

classrooms 

available 

C 

5×5_1 5 5 2 5 4 1 4 

5×5_2 5 5 2 5 4 2 4 

10×10_1 10 10 2 5 8 1 4 

10×10_2 10 10 2 5 8 2 4 

15×15_1 15 15 2 5 8 1 6 

15×15_2 15 15 2 5 8 2 6 

20×20_1 20 20 2 5 8 1 8 

20×20_2 20 20 2 5 8 2 8 

 

Table 3.12 Characteristics of Group II data sets 

 

Data set 

Number 

of 

teachers 

|I| 

Number 

of 

courses 

|J| 

Minimum 

number 

of 

sections 

|Kj| 

Maximum 

number of 

sections 

|Kj| 

Number 

of days 

|L| 

Number 

of time 

periods 

per day 

|M| 

Maximum 

number of 

courses 

taught 

N 

Number of 

classrooms 

available 

C 

10×20_1 10 20 2 3 5 8 4 10 

10×20_2 10 20 2 4 5 8 4 10 

20×30_1 20 30 2 3 5 8 3 15 

20×30_2 20 30 2 4 5 8 3 15 

20×40_1 20 40 2 3 5 8 4 15 

20×40_2 20 40 2 4 5 8 4 15 

30×60_1 30 60 2 3 5 8 4 20 

30×60_2 30 60 2 4 5 8 4 20 

 

Table 3.13 Minimum and maximum number of teachers for each course 

Number of sections 
Minimum number of teachers 

(LT) 

Maximum number of teachers 

(UT) 

1 1 1 

2 1 2 

3 1 2 

4 2 3 
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The maximum size of problems solvable within reasonable time is rather small due to the huge 

number of constraints and decision variables involved. Tables 3.14 and 3.15 summarize the 

average best known/optimal objective function values obtained and the average CPU time 

required to obtain the solutions for Group I and Group II data sets, respectively. 

 

From Table 3.14, we observe that the average CPU time required to obtain the solution 

increases rapidly when the maximum number of courses taught increases from one to two 

courses. The average objective function value of the optimal solutions is also increased when 

the maximum number of courses taught is increased. This is because the chances for each 

teacher to be assigned the courses and time periods preferred will be higher and each course 

can be taught by more than one teacher. Similar observations can be found from the results in 

Table 3.15. 

 

The best known/optimal solution can be found for data sets with the number of teachers = 10 

within a few minutes. For 20 teachers, we observed that the CPU time increases rapidly as 

shown in Table 3.15. The solutions can only be found within 3 to 10 hours. However, the 

TACS' Model III could not be solved to optimality for data sets 20×40_1, 20×40_2, 30×60_1 

and 30×60_2 within 24 hours. It could be that the problem is too large for the search space to 

be explored exhaustively. As such, we only report the best known solutions that could be 

obtained within this computation time limit for these data sets. For 30×60_2 data set, we can 

only get the best known solutions of two instances. This indicates that the computation time 

required to find an optimal solution to the TACS problem becomes prohibitively large when 

the problem size increases. 
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Table 3.14 Computational results of Group I data sets by OPL Solver 

 

Data set 
Objective function 

value 

CPU time 

(seconds) 

Average  objective 

function value 

Average 

CPU time (seconds) 

5×5_1(1) 1130 2.43 1052 2.03 

5×5_1(2) 1090 2.23   

5×5_1(3) 1040 1.65   

5×5_1(4) 1020 2.04   

5×5_1(5) 980 1.82   

5×5_2(1) 1280 1.85 1216 2.17 

5×5_2(2) 1290 2.45   

5×5_2(3) 1110 2.25   

5×5_2(4) 1190 2.03   

5×5_2(5) 1210 2.25   

10×10_1(1) 2340 31.07 2184 18.47 

10×10_1(2) 2260 11.59   

10×10_1(3) 2200 22.15   

10×10_1(4) 2020 12.50   

10×10_1(5) 2100 15.03   

10×10_2(1) 2860 49.97 2712 31.79 

10×10_2(2) 2780 32.29   

10×10_2(3) 2780 19.70   

10×10_2(4) 2540 10.96   

10×10_2(5) 2600 43.06   

15×15_1(1) 3080 67.23 3170 136.93 

15×15_1(2) 3270 200.32   

15×15_1(3) 3130 222.63   

15×15_1(4) 3280 70.53   

15×15_1(5) 3090 123.95   

15×15_2(1) 4170 265.11 4166 431.94 

15×15_2(2) 4260 554.36   

15×15_2(3) 4150 189.92   

15×15_2(4) 4320 401.42   

15×15_2(5) 3930 748.90   

20×20_1(1) 4290 583.82 4368 337.98 

20×20_1(2) 4330 177.10   

20×20_1(3) 4340 444.72   

20×20_1(4) 4540 172.26   

20×20_1(5) 4340 312.01   

20×20_2(1) 5660 6637.76 5774 4212.92 

20×20_2(2) 5730 2127.28   

20×20_2(3) 5770 9367.78   

20×20_2(4) 5880 379.04   

20×20_2(5) 5680 2552.72   
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Table 3.15 Computational results of Group II data sets by OPL Solver 

Data set 
Objective function 

value 

CPU time 

(seconds) 

Average  objective 

function value 

Average 

CPU time (seconds) 

10×20_1(1) 7590 1578.91 7766 1183.11 

10×20_1(2) 8210 588.28   

10×20_1(3) 7670 311.59   

10×20_1(4) 7560 2789.25   

10×20_1(5) 7800 647.54   

10×20_2(1) 7660 1114.60 7934 1273.15 

10×20_2(2) 8480 423.92   

10×20_2(3) 7970 541.53   

10×20_2(4) 7730 3473.21   

10×20_2(5) 7830 812.51   

20×30_1(1) 11010 10283.73 10952 11640.27 

20×30_1(2) 11140 9265.63   

20×30_1(3) 10430 10598.13   

20×30_1(4) 10920 18584.29   

20×30_1(5) 11260 9469.55   

20×30_2(1) 13090 17184.70 13468 36019.99 

20×30_2(2) 12880 55032.51   

20×30_2(3) 13660 47060.92   

20×30_2(4) 14260 38239.02   

20×30_2(5) 13450 22582.79   

20×40_1(1) 13210
a
 -

b
 13742 -

b
 

20×40_1(2) 14010
a
 -

b
   

20×40_1(3) 13360
a
 -

b
   

20×40_1(4) 13860
a
 -

b
   

20×40_1(5) 14270
a
 -

b
   

20×40_2(1) 16190
a
 -

b
 16852 -

b
 

20×40_2(2) 17440
a
 -

b
   

20×40_2(3) 17240
a
 -

b
   

20×40_2(4) 16700
a
 -

b
   

20×40_2(5) 16690
a
 -

b
   

30×60_1(1) 20540
a
 -

b
 21074 -

b
 

30×60_1(2) 21060
a
 -

b
   

30×60_1(3) 20710
a
 -

b
   

30×60_1(4) 21890
a
 -

b
   

30×60_1(5) 21170
a
 -

b
   

30×60_2(1) - -
b
 24830 -

b
 

30×60_2(2) 25180
a
 -

b
   

30×60_2(3) - -
b
   

30×60_2(4) - -
b
   

30×60_2(5) 24480
a
 -

b
   

a
 The best known solution obtained within 24 hours 

b
 CPU time = 24 hours 
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This difficulty associated with solving the mathematical model primarily stems from the large 

number of binary variables. This experimentally supports the theoretical results on the NP-

completeness of timetabling problems (Even et al., 1976). Consequently, many heuristic 

algorithms were proposed and developed to deal with the timetabling problem in the literature 

as mentioned in the previous section. In the following two chapters, several heuristics that can 

handle large problem sizes would be proposed. Detail comparison among proposed algorithms 

would also be presented. 

 

3.5 Conclusions 

 

We have proposed three different mathematical programming models for a timetabling 

problem that combines teacher assignment and course scheduling simultaneously. The first 

model, TACS Model I, is considered as the basic model which only accommodates some basic 

or the most common requirements in both problems. This model is extended to two different 

models, TACS Model II and III, by considering several additional requirements, such as some 

courses are divided into course sections and so forth. In TACS Model III, we also include 

several additional requirements which are comparable to those occurring in an engineering 

faculty of a university in Indonesia, for instance, time periods are considered on a day-hour 

basis in order to increase teaching flexibility and courses can be conducted at any time period, 

one course section can only be conducted each day. 

 

We reported the computational results of solving the model for some randomly generated data 

sets. In TACS Model I, we observe that the average computation time decreases when the 

maximum load or the number of classrooms available increases. The main reason of this 

phenomenon is that the constraints related to the maximum number of courses taught or the 

number of classrooms available can be satisfied easily. On the other hand, the average 
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computation time increases rapidly when we increase the problem size by adding the number 

of courses taught.  

 

When we increase the maximum number of courses taught, the average objective value of the 

optimal solution is also increased, meaning that the chances for each teacher to be assigned 

more courses and time periods will be higher.  Similar conclusions can be drawn from the 

computational results of TACS Model II. 

 

For the extended TACS Model III, there is difficulty in obtaining the optimal solutions due to 

the presence of some constraints, such as consecutive constraints and non-linearity constraints, 

and large number of integer variables as well. As such, in the next chapters, we propose 

several algorithms to solve the problem especially for large problem sizes. 
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CHAPTER IV 

AN IMPROVEMENT HEURISTIC FOR THE TACS 

PROBLEM 

 

4.1 Introduction 

 

In the previous chapter, we formulated the university course timetabling problems as 

mathematical programming models. The proposed basic and extended models combine both 

teacher assignment and course scheduling problems simultaneously, which causes the entire 

models to become more complex. It has been shown that the maximum size of problems 

solvable within reasonable time is rather small due to the huge number of constraints and 

decision variables involved, especially for the second extended mathematical model (TACS 

Model III). It would be necessary to develop a heuristic approach in order to find a good 

solution within a reasonable amount of time. In the next three chapters, we will focus on 

developing several different heuristics for solving the TACS Model III. 

 

Chapter 4 is started by presenting a simple improvement heuristic for solving the problem. The 

details of the heuristics are described in the following sub-sections, followed by the 

computational results and comparisons. Finally, some issues such as the strengths and the 

weaknesses of the proposed heuristic are summarized in the conclusion part.   

 

4.2 The Proposed Heuristic 

 

Our problem consists of two common sub-problems of the university course timetabling 

problem: teacher assignment and course scheduling problems. The proposed heuristic will 
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solve these sub-problems iteratively, and it comprises of three main phases: (1) pre-processing, 

(2) construction, and (3) improvement (see Figure 4.1).   

 

The first phase is related to the data management. In the second phase, a feasible solution is 

built. If there is no feasible solution, we need to rearrange the assignments or relax some 

requirements or constraints. In the improvement phase, the initial solution obtained is further 

improved. Some examples of heuristic approaches for solving the course scheduling problem 

were proposed by Loo et al. (1985), Aubin and Ferland (1989) and Wright (1996). We briefly 

describe each phase below. The details of the proposed heuristic are presented in Appendix A. 

 

 

 

 

 

 

Figure 4.1 Improvement heuristic 

 

4.2.1 The Pre-Processing Phase 

 

The purpose of the pre-processing phase is to construct two additional sets, jI and iLM , where 

 j

||I

jj

j j
,...,i,iiI 21  is the set of teachers who are willing to teach course j and sorted in non-

increasing order of the PCij value, and      








|M||L|iiiiii
i m,l,...,m,l,m,lLM

21
 is the set of 

time periods of teacher i which are sorted in non-increasing order of the PTilm value. For 

example, I1 = {i
1
1,i

1
3} is the set of teachers who are willing to teach Course 1 and Teacher 1 

has the highest course preference (PC11 ≥ PC31). Similar to LMi, the first element (li,mi)
1
 

Pre-Processing Phase 

 Generate two additional sets, Ij and LMi 

Construction Phase 

 Allocate teachers to courses and course sections 

 Allocate course sections to time periods 

Improvement Phase 

  Reallocate teachers to courses and course sections followed by reallocating to time periods 
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represents a day and a time period with the highest III
ilmPT  value. The time complexity for these 

processes are O(|I|
2
|J|) and O(|I||L|

2
|M|

2
), respectively. 

 

4.2.2 The Construction Phase 

 

In this phase, a feasible solution is constructed by accommodating as many course and time 

period preferences as possible. Each course should be allocated to the teacher who has the 

highest preference and scheduled to the time periods with the highest time period preferences 

as well. The entire phase is started with the allocation of teachers to courses and course 

sections which is related to the teacher assignment problem.  

 

For each course j, we refer to set  j

||I

jj

j j
,...,i,iiI 21  in order to find a number of teachers who 

are going to be allocated to that particular course. The process is started by evaluating Teacher 

ji1  with the highest course preference, PCij. However, in order to generate a feasible initial 

solution, a checking procedure has to be performed. The purpose of this procedure is to ensure 

the following constraint is satisfied: 

 Constraint (3.25):   



Jj

iij NP1    Ii   

Each teacher cannot teach more than the maximum number of courses taught Ni 

 

When the selected teacher has reached Ni, the next teacher j
i2 with less preference would be 

considered. This process is continued until the number of selected teachers for course j is equal 

to the minimum requirement, LTj, as shown in Table 3.13. For example, a course with 3 

sections, the minimum number of teacher allocated is 1 teacher, meaning that all sections of 

that particular course would be initially taught by the selected teacher. 
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However, it is possible that until the last element j
|I| j

i , we will not be able to find any teacher 

from the list Ij. For this case, we can choose a teacher from list Ij who has the lowest number of 

courses taught by relaxing the requirement of minimum and maximum number of courses 

taught by each teacher (constraint (3.25)). Therefore, an infeasible initial solution might be 

generated. Some teachers might have to teach more than the maximum number of courses 

taught Ni, while other teachers might not teach any course, thereby resulting in infeasibility 

because of violation of that requirement. 

 

Due to the infeasibility issue in the teacher assignment sub-problem above, we try to improve 

the initial solution before continuing to the next step. We classify teachers into three different 

groups: 

 Group1 = 








 
Jj

iij NPIi , this group represents a set of teachers who teach more than 

the maximum number of courses taught Ni. 

 Group2 = 








 
Jj

iij NPIi 1 , this group represents a set of teachers who teach between 

the minimum and maximum number of courses taught. 

 Group3 = 








 
Jj

ijPIi 1 , this group represents a set of teachers who do not teach any 

course. 

 

The number of teachers in group s is represented as |Groups|, for s = 1, 2 or 3. Our aim is to 

eliminate teachers from Group 1 as well as to allocate at least one course to teachers in Group 

3 such that |Group3| = |Group1| = 0. For each teacher iGroup1, by referring to all courses 

taught by teacher i, we find another teacher i' who can take over one or more courses taught by 

teacher i until the total number of courses taught by teacher i is less than or equal to the 
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maximum number of courses taught ( i
j

ij NP  ). We need to ensure that teacher i' currently 

has the least number of courses taught.  

 

The following figure illustrates this process. Assuming the minimum and maximum numbers 

of courses taught by each teacher are 1 and 3 courses, respectively, we refer to teachers in 

Group1 and select one teacher randomly. For example, Teacher1 currently teaches four courses: 

Course1, Course2, Course4 and Course6. Since Teacher1 has exceeded the maximum number 

of courses taught, another teacher has to be found in order to teach one course from Teacher1.  

 

By referring to sets I1, I2, I4 and I6, we determine which teachers are able to teach courses 

taught by Teacher1. We have to consider the number of courses taught by those teachers. For 

example, Course1 can be taught by Teacher2 and Teacher3. Since Teacher2 currently teaches 

only one course, we decide to choose Teacher2 for teaching Course1 (including all sections of 

Course1).    

 

 

Figure 4.2 A numerical example to illustrate the construction phase 

 

A similar idea is used for eliminating teachers in Group3. We select teacher i randomly from 

Group3. By referring to the list of courses preferred by teacher i, Ji, we find a course that is 

I4 

 

Teacher1 Course1 Course2 Course4 

I1 
 

Teacher2(1) Teacher3(2) 

I2 
 

 

Teacher3(2) Teacher4(3) Teacher5(3) 

Course6 

Teacher3(2) Teacher3(2) 

I6 

 
Teacher4(3) 

Teacher2(1) refers to Teacher2 who currently teaches 1 course 

Group 1 
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currently taught by another teacher who has the highest number of courses taught. The selected 

course is then allocated to teacher i. For example, Teacher1 who is currently in Group 3 

prefers to teach Course1 and Course2. In the current solution, both courses are taught by 

Teacher2 and Teacher3, respectively. Assuming that Teacher2 currently teaches 2 courses and 

Teacher3 teaches 3 courses, we decide to allocate Teacher1 to Course2 and replace Teacher3. 

These additional steps are performed until |Group1| = |Group3| = 0 or the total number of 

iterations reaches the preset maximum number of iterations. 

 

The complexity of the above process is O(|I|
2
|J|). It is possible to redesign the procedure and 

make it more efficient, such as by ignoring the maximum and minimum number of courses 

taught constraints of equation (3.25) in the Checking procedure. For this case, the complexity 

can be reduced to O(|I||J|). However, the possibility of obtaining an infeasible solution might 

be higher. It would require some additional efforts, such as increasing the number of iterations 

or increasing the computation time in the improvement phase, in order to achieve better 

solutions. For special cases such as when the number of sections for each course is set to 1, the 

complexity will be automatically reduced to O(|I||J|). 

 

For the initial allocation of time periods, each teacher has the time periods sorted based on 

his/her preferences, LMi. The number of time periods allocated to each teacher is dependent on 

the number of courses and course sections allocated during the teacher assignment phase. The 

idea of the proposed algorithm is almost similar to the teacher assignment phase. We allocate 

the time periods to teachers based on their time preferences. 

 

For each course j section k taught by teacher i, we choose the first element (li, mi)
1
 from LMi as 

the starting time period. The Checking procedure has to be invoked in order to address the 

feasibility issues. This procedure ensures that the following constraints are satisfied: 
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 Constraint (3.23):   
 


Ii Kk

ijklm

j

X 1    MmLlJj  ,,  

For any course j, at most one section can be taught at time period m. 

 Constraint (3.28):   
 


Ii Kk

ijkl

j

Y 1   LlJj  ,  

For any course j, at most one section can be conducted on day l. 

 Constraint (3.29):  
 


Jj Kk

ijklm

j

X 1    MmLlIi  ,,  

Teacher i can only teach at most one course section on day l time periods m. 

 Constraint (3.30):   
  


Ii Jj Kk

lmijklm CX III   MmLl  ,  

The number of course sections taught on day l time period m cannot exceed the number of 

classrooms available, III
lmC . 

 Constraint (3.36):   
 


Jj Kk

iijkl

j

VY    LlIi  ,  

The number of course sections taught by teacher i on day l has to be less than or equal to 

the maximum number of course sections taught by teacher i per day, Vi. 

 

When the selected time period is not feasible, the next element (li, mi)
2
 in LMi with less 

preference value would be considered. A similar situation with the teacher assignment sub-

problem will be faced if until the last element (li, mi)
|L||M|

 in the list LMi, the course section has 

not been allocated yet. For this situation, we have to relax some constraints, such as constraints 

(3.28), (3.30) and (3.36), and we try to find a set of day and time period from LMi.  

 

Due to the relaxed constraints, it turns out that some courses might be conducted more than 

once on the same day, or some time periods have the number of course sections taught that 

exceed the capacity, or some teachers do not have evenly spread out schedules. These courses, 

time periods and teachers are kept in Excess Lists 1, 2 and 3, respectively. The number of 

members in an Excess List e is represented as |ELe|, for e = 1, 2 or 3. 
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 EL1 = 












  
 Ii jKk

ijklYLJ,lj 1 , this group represents a set of courses (including their 

scheduled days) scheduled more than once on a particular day. 

  EL2 = 












   
  Ii Jj jKk

lmijklm CXMmL,l III , this group represents a set of days and time 

periods where the number of course sections scheduled on that particular day and time 

period is exceeded the maximum capacity.  

 EL3 = 












  
 Jj jKk

iijkl VYLI,li , this group represents a set of teachers (including the 

scheduled days) who teach more than the maximum number of course sections taught per 

day Vi. 

 

In order to deal with these infeasibility issues, the solution could be improved before 

continuing to the next phase. This is achieved by reallocating some courses and course sections 

to new time periods without violating constraints (3.23), (3.28), (3.29), (3.30) and (3.36). For 

example: 

 In Group EL1, suppose two course sections of Course1 are scheduled on the same day, we 

select one course section randomly and try to find another different day for that particular 

course section. However, we need to ensure these constraints (3.23), (3.28), (3.29), (3.30) 

and (3.36) (3.28), (3.29), (3.30) and (3.36) are not violated. 

 In Group EL2, suppose the number of course sections allocated is greater than the 

maximum capacity on Day1-Time Period2, we have to remove a certain number of course 

sections in order to ensure the capacity constraints is not violated. Some course sections 

are selected randomly and reallocated to other days and time periods. 
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 In Group EL3, suppose Teacher1 teaches more than the maximum number of course 

sections taught per day Vi, we reallocate some course sections taught by Teacher1 to 

different days and time periods by ensuring there is no violation to other constraints. 

 

These additional steps are performed until |EC1| = |EC2| = |EC3| = 0 or the total number of 

iterations reaches the preset maximum number of iterations. It is important to note that an 

infeasible initial solution might still occur. However, with the additional steps, the chances of 

infeasibility would be less. The worst case time complexity of this course scheduling process is 

O(|I||J||K||L||M|). Again, this time complexity can be reduced through efficient procedures or 

for some special cases.     

 

After performing the entire processes described above, the total objective function value is 

then calculated. This objective function is slightly different with equation (3.22) due to 

additional penalty values, PENALTY1 and PENALTY2. Here, the terms PENALTY1 and 

PENALTY2 reflect the penalty values for the violations of the respective requirements. The 

details of these calculations are explained as follows: 

 

 

Course objective function value  

=  
 


Ii Jj

ijij PENALTYGroupGroupPPC 131        (4.1) 

 

Time objective function value  

=      
    


Ii Jj jKk Ll Mm

ijklmilm PENALTYELELELXPT 2321
III

   (4.2) 

 

Total objective function value  

 

= Course objective function value + Time objective function value   (4.3) 
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4.2.3 The Improvement Phase 

 

In this phase, after an initial solution is obtained from the construction phase, two operations 

are performed in order to seek further improvement. These two operations are reallocation of 

teachers to courses and course sections, followed by rescheduling course sections to days and 

time periods. The initial solution is treated as a starting solution in the improvement phase. 

 

The first operation is started by randomly choosing course j that is currently taught by teacher 

i1, followed by considering another new teacher 12 ii   jIi 2  without violating the 

maximum number of courses taught by teacher i2, 
2i

N . Two possible moves will be considered 

as shown in Figure 4.3. The two possible moves considered are to choose either teacher i2 to be 

added to the list of teachers who teach course j and take over some of the course sections that 

are currently taught by teacher i1 (1
st
 move), or teacher i2 will fully replace teacher i1 on course 

j (2
nd

 move).  

 

However, if the number of teachers who teach the selected course reaches the maximum 

number of teachers allowed ( jUT ), we can only select the 2
nd

 move; otherwise, a move is 

chosen randomly. Suppose teacher i2 could not be found, the process would be terminated and 

returned to the first operation.  

 
Figure 4.3 Two possible moves 

 

Course 1 

i1 

i2 

 

i1 

 

    Section 1  Section 2  Section 3   

i2 i2 i1 i2 i2 

2nd move 

i1 

1st move 
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Let 
2i

K  be the set of sections of course j taken over by teacher i2. In the second operation, we 

check whether it is possible to allocate teacher i2 to the previous day and time periods 

scheduled for teacher i1 to teach course j section k, where
2i

Kk . Otherwise, a new set of days 

and time periods without constraint violation has to be found.  

 

We present a numerical example to illustrate the neighborhood moves of the proposed 

algorithm. The first operation is started by choosing one course randomly. Assuming that 

Course1 with two course sections, Section1 and Section2, has been chosen and both sections 

are initially taught by Teacher1, we refer to Set I1 which consists of teachers who are willing to 

teach Course1. By considering other constraints, such as the minimum and the maximum 

number of courses taught by each teacher (constraint (3.25)), we examine teachers in Set I1 and 

find which teachers would be able to teach Course1.  

 

Let assume I1 = {Teacher1, Teacher2, Teacher3}, some possible neighborhood moves are 

either Teacher2 or Teacher3 takes one section or both sections of Course1. Assuming that 

Teacher2 has higher preference to Course1, we start to evaluate Teacher2. If there is no 

constraint violation by selecting Teacher2, we choose randomly whether either one course 

section is allocated to Teacher2 or both sections are allocated to Teacher2. Otherwise, we 

continue to evaluate Teacher3.  

 

If we can find another teacher (either Teacher2 or Teacher3) who can replace Teacher1, the 

process is continued to the second operation: rescheduling the changes into a different day or 

time periods. We check whether it is possible to allocate the new teacher to the previous day 

and time periods scheduled for Teacher1 to teach that particular course section. Otherwise, a 

new set of day - time periods with the highest time preference value and without constraint 

violation has to be found. 
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Finally, we evaluate the change by calculating the difference of the objective function value of 

the new timetable and the previous timetable. If the new timetable provides a better total 

objective function value, we treat the new timetable as the current solution. Otherwise, the 

process will return to the previous starting solution. These two operations are performed until 

the total number of iterations reaches the preset maximum number of iterations. Finally, the 

solution of the problem is the best solution obtained so far. In general, the time complexity of 

the neighborhood exploration is  MLKJIO . 

 

4.3 Computational Results 

 

To evaluate the performance of the improvement heuristics, we compare the solutions obtained 

with the solutions obtained by solving the mathematical programming model. The data sets 

presented in Chapter 3 were used in our computational experiments on the heuristics. The 

entire heuristics were coded in C++ and tested on the Intel Pentium IV 2.6 GHz PC with 512 

MB RAM under the Microsoft Windows XP Operating System.  

 

The values of the parameters used by the improvement heuristic are summarized in Table 4.1. 

Preliminary experimentation was performed to determine suitable values for the parameters of 

the proposed heuristic. These values were chosen to ensure a compromise between the 

computation time and the solution quality.  

 

Table 4.1 Parameter settings for the improvement heuristic 

Parameter Value 

Number of iterations in the Construction Phase  

(Teacher Assignment Problem) 

40×|I| 

Number of iterations in the Construction Phase  

(Course Scheduling Problem) 

20×|J| 

Number of iterations in the Improvement Phase |I|×|J|×|L|×|M| 

PENALTY1, PENALTY2 1,000 
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Table 4.2 Comparison of the heuristic results and the optimal solutions on Group I data sets 

Data Set 

Solution obtained by 

commercial software 
The improvement heuristic 

Objective 

function value 

CPU time 

(seconds) 

Average 

objective 

function value 

Best 

objective 

function 

value 

Average 

CPU time 

(seconds) 

 
heuristic

)1(
  

(%)  

 
heuristic

)2(
  

(%) 

5×5_1(1) 1130 2.43 1100 1100 0.00 2.65 2.65 

5×5_1(2) 1090 2.23 820 910 0.00 24.77 16.51 

5×5_1(3) 1040 1.65 810 880 0.02 22.12 15.38 

5×5_1(4) 1020 2.04 800 800 0.02 21.57 21.57 

5×5_1(5) 980 1.82 910 930 0.00 7.14 5.10 

5×5_2(1) 1280 1.85 1100 1140 0.00 14.06 10.94 

5×5_2(2) 1290 2.45 1020 1020 0.02 20.93 20.93 

5×5_2(3) 1110 2.25 910 910 0.02 18.02 18.02 

5×5_2(4) 1190 2.03 810 850 0.02 31.93 28.57 

5×5_2(5) 1210 2.25 1060 1110 0.02 12.40 8.26 

10×10_1(1) 2340 31.07 2180 2230 0.08 6.84 4.70 

10×10_1(2) 2260 11.59 1610 1800 0.08 28.76 20.35 

10×10_1(3) 2200 22.15 1970 1980 0.06 10.45 10.00 

10×10_1(4) 2020 12.50 1720 1780 0.08 14.85 11.88 

10×10_1(5) 2100 15.03 1880 1880 0.06 10.48 10.48 

10×10_2(1) 2860 49.97 2390 2650 0.22 16.43 7.34 

10×10_2(2) 2780 32.29 2070 2320 0.23 25.54 16.55 

10×10_2(3) 2780 19.70 2090 2510 0.30 24.82 9.71 

10×10_2(4) 2540 10.96 1950 2180 0.24 23.23 14.17 

10×10_2(5) 2600 46.03 2060 2300 0.25 20.77 11.54 

15×15_1(1) 3080 67.23 2790 2940 0.20 9.42 4.55 

15×15_1(2) 3270 200.32 3100 3120 0.20 5.20 4.59 

15×15_1(3) 3130 222.63 2710 2820 0.22 13.42 9.90 

15×15_1(4) 3280 70.53 2910 3000 0.23 11.27 8.54 

15×15_1(5) 3090 123.95 2580 2700 0.20 16.50 12.62 

15×15_2(1) 4170 265.11 3920 3920 0.94 6.00 6.00 

15×15_2(2) 4260 554.36 3930 3930 0.97 7.75 7.75 

15×15_2(3) 4150 189.92 3850 3850 0.88 7.23 7.23 

15×15_2(4) 4320 401.42 3980 3980 0.89 7.87 7.87 

15×15_2(5) 3930 748.90 3560 3560 0.97 9.41 9.41 

20×20_1(1) 4290 583.82 4210 4210 0.56 1.86 1.86 

20×20_1(2) 4330 177.10 3740 3740 0.52 13.63 13.63 

20×20_1(3) 4340 444.72 3900 3900 0.56 10.40 10.14 

20×20_1(4) 4540 172.26 4420 4420 0.59 2.64 2.64 

20×20_1(5) 4340 312.01 4000 4000 0.52 7.83 7.83 

20×20_2(1) 5660 6637.76 5440 5440 2.42 3.89 3.89 

20×20_2(2) 5730 2127.28 4970 4970 2.23 13.26 13.26 

20×20_2(3) 5770 9367.78 5060 5060 2.19 12.31 12.31 

20×20_2(4) 5880 379.04 5540 5540 2.19 5.78 5.78 

20×20_2(5) 5680 2552.72 5230 5230 2.17 7.92 7.92 

     Average 13.28 10.56 

     Maximum 31.93 28.57 

     Minimum 1.86 1.86 
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Table 4.3 Comparison of the heuristic results and the optimal solutions on Group II data sets 

Data Set 

Solution obtained by 

commercial software 
The improvement heuristic 

Objective 

function value 

CPU time 

(seconds) 

Average 

objective 

function value 

Best 

objective 

function 

value 

Average 

CPU time 

(seconds) 

 
heuristic

)1(
  

(%)  

 
heuristic

)2(
  

(%) 

10×20_1(1) 7590 1578.91 6040 6520 0.95 20.42 14.10 

10×20_1(2) 8210 588.28 6740 5920 1.52 17.90 15.71 

10×20_1(3) 7670 311.59 6130 6470 1.05 20.08 15.65 

10×20_1(4) 7560 2789.25 6270 6240 1.02 17.06 17.46 

10×20_1(5) 7800 647.54 6060 6910 1.00 22.31 11.41 

10×20_2(1) 7660 11145.60 5960 6590 1.09 22.19 13.97 

10×20_2(2) 8480 423.92 7130 7080 1.13 15.92 16.51 

10×20_2(3) 7970 541.53 6340 6290 1.13 20.45 21.08 

10×20_2(4) 7730 3473.21 6400 6580 1.16 17.21 14.88 

10×20_2(5) 7830 812.51 6140 6370 0.89 21.58 18.65 

20×30_1(1) 11010 10283.73 8420 9740 7.88 23.52 11.53 

20×30_1(2) 11140 9265.63 8250 9480 8.00 25.94 14.90 

20×30_1(3) 10430 10598.13 7750 9370 8.14 25.70 10.16 

20×30_1(4) 10920 18584.29 7960 9260 9.09 27.11 15.20 

20×30_1(5) 11260 9469.55 8550 9730 8.48 24.07 13.59 

20×30_2(1) 13090 17184.70 10280 11420 15.55 21.47 12.76 

20×30_2(2) 12880 55032.51 10010 10890 16.48 22.28 15.45 

20×30_2(3) 13660 47060.92 10070 11430 16.58 26.28 16.33 

20×30_2(4) 14260 38239.02 10070 11820 17.47 29.38 17.11 

20×30_2(5) 13450 22582.79 10800 11060 18.39 19.70 17.77 

20×40_1(1) 13210a -b 9970 11890 16.24 24.53 9.99 

20×40_1(2) 14010 a -b 10490 11740 16.28 25.12 16.20 

20×40_1(3) 13360 a -b 10230 11820 17.03 23.43 11.53 

20×40_1(4) 13860 a -b 10530 11950 16.33 24.03 13.78 

20×40_1(5) 14270 a -b 10480 11720 16.61 26.56 17.87 

20×40_2(1) 16190 a -b 13200 14170 48.14 18.47 12.48 

20×40_2(2) 17440 a -b 13500 13990 50.03 22.59 19.78 

20×40_2(3) 17240 a -b 12630 14350 48.55 26.74 16.76 

20×40_2(4) 16700 a -b 12240 13960 50.44 26.71 16.41 

20×40_2(5) 16690 a -b 12830 13560 46.89 23.13 18.75 

30×60_2(1) 20540 a -b 15810 17990 217.37 23.03 12.41 

30×60_2(2) 21060 a -b 15760 18320 204.58 25.17 13.01 

30×60_2(3) 20710 a -b 16050 18530 218.55 22.50 10.53 

30×60_2(4) 21890 a -b 16580 19260 203.39 24.26 12.01 

30×60_2(5) 21170 a -b 16430 18420 196.41 22.39 12.99 

30×60_1(1) - -b 18940 21290 377.36 - - 

30×60_1(2) 25180 a -b 19260 20700 397.39 23.51 17.79 

30×60_1(3) - -b 19030 20390 420.00 - - 

30×60_1(4) - -b 18810 21820 396.88 - - 

30×60_1(5) 24480 a -b 18770 20710 373.61 23.33 15.40 

     Average 22.87 14.92 

     Maximum 29.38 21.08 

     Minimum 15.92 9.99 
a
 The best known solution obtained within 24 hours 

b
 CPU time = 24 hours 

 

For each data set, the proposed algorithm was executed 20 times with different random seeds. 

Tables 4.2 and 4.3 summarize the results obtained from the proposed heuristic for Group I and 
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Group II data sets, respectively. As described in earlier chapters, the TACS' Model III was 

initially solved by commercial software (ILOG OPL Studio 4.2). Unfortunately, the optimal 

solution for data sets 20×40_1, 20×40_2, 30×60_1 and 30×60_2 could not be computed within 

the time limit of 24 hours. Thus, only the best known solutions for those data sets were 

reported. These numerical results indicate that the computing time required to find an optimal 

solution to the problem becomes prohibitively large when the problem size increases. 

 

A comparison of the objective function values and computation times (in seconds) obtained by 

the heuristic and the integer programming model was presented. The comparison is done by 

calculating the percentage deviation of the best objective function value of the proposed 

algorithm A ( A
bestZ ) as well as the average objective function values of the proposed algorithm 

A ( AZ ) from the best known/optimal value ( *Z ) as follows: 










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 
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)2( 100       (4.5) 

 

For Group I data sets, we observe that the proposed heuristic can yield feasible solutions with 

the deviation of the best and the average objective function values of the proposed algorithm 

from the best known/optimal value being less than 32% and 29%, respectively. The best or 

minimum value of parameters heuristic
)1(  and heuristic

)2(  is only 1.86%. The average values of both 

parameters are 13.28 and 10.56, respectively. 

 

Similar observations are obtained from the results of Group II data sets. The deviation of the 

best and the average objective function values of the proposed algorithm from the best 

known/optimal value are not more than 29.38% and 21.08%, respectively. However, the best 
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values of parameters heuristic
)1(   and heuristic

)2( are quite high compared with those of Group I data 

sets. The best or minimum values of parameters heuristic
)1( and heuristic

)2( are only 15.92% and 

9.99%, respectively. The average values are considered high for both parameters (22.87% and 

14.92%). 

 

We notice that the proposed heuristic is able to find solutions within a reasonable amount of 

computation time for both group data sets although some solutions are not good enough. Some 

problems that were unsolved by the ILOG OPL Studio software can be solved by the proposed 

heuristic within reasonable computation time, as can be seen in data sets such as that of 

20×40_1, 20×40_2, 30×60_1, and 30×60_2. 

 

Table 4.4 Distribution teachers based on the number of courses taught 

Data 

Set 

Maximum 

number of 

courses taught, Ni 

Average percentage of teachers teaching the 

following number of courses (%) Variance 

1 2 3 4 

5×5_1 1 100.0 0.0 0.0 0.0 0.00 

5×5_2 2 72.0 28.0 0.0 0.0 0.16 

10×10_1 1 100.0 0.0 0.0 0.0 0.00 

10×10_2 2 41.3 25.3 0.0 0.0 0.23 

15×15_1 1 100.0 0.0 0.0 0.0 0.00 

15×15_2 2 64.0 36.0 0.0 0.0 0.22 

20×20_1 1 100.0 0.0 0.0 0.0 0.00 

20×20_2 2 74.0 26.0 0.0 0.0 0.18 

10×20_1 4 8.0 30.0 34.0 28.0 0.84 

10×20_2 4 6.0 20.0 30.0 44.0 0.85 

20×30_1 3 24.0 46.0 30.0 0.0 0.53 

20×30_2 3 20.0 39.0 41.0 0.0 0.56 

20×40_1 4 13.0 27.0 35.0 25.0 0.95 

20×40_2 4 14.0 15.0 28.0 43.0 1.13 

30×60_1 4 9.3 30.7 34.0 26.0 0.88 

30×60_2 4 6.7 21.3 35.3 36.7 0.84 
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Another observation of interest is on the number of courses taught distribution of the teachers 

with respect to the maximum number of courses taught that we specify (see Table 4.4). For 

Group I data sets, we notice that the proposed heuristic distributes the number of courses 

taught evenly to teachers. The variances obtained are reasonably small (≤ 0.23%). However, 

for Group II data sets, the variances are found to be large with only a small percentage of 

teachers having very small number of courses taught. 

 

4.4 Conclusions 

 

This chapter has presented an efficient approach to solve a large TACS problem that cannot be 

easily solved by commercial software. For large problems, it could be difficult to find and 

prove the existence of an optimal solution, especially within short computation time. The 

proposed heuristic solves these sub-problems iteratively.  

 

The results obtained from the proposed heuristic were compared against the best 

known/optimal solutions obtained by the ILOG OPL Studio Software. Although the proposed 

heuristic is able to yield feasible solutions within reasonable computation time, we notice that 

the percentage of solution deviation from best known/optimal objective function value is not 

good enough due to inability of the solution to escape from local optimum.  

 

Though the entire heuristic described here is a simple improvement heuristic, it is worth noting 

that the procedures in the improvement phase allow for various types of modifications, such as 

incorporating metaheuristic procedures to the improvement phase. Such suitable hybridization 

of the heuristic methods may exhibit significantly better performance in terms of solution 

quality and the time to obtain the solutions, as noted by Purchinger and Raidl (2005). 
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In the next two chapters,  we look into several ways of improving the proposed heuristic to 

obtain solutions of better quality. This would include the hybridization of the proposed 

heuristic with other types of heuristics or exact algorithms as mentioned in Chapter 2.    
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CHAPTER V  

HYBRIDIZATION OF HEURISTICS FOR THE TACS 

PROBLEM 

 

5.1 Introduction  

 

In the previous chapter, we have introduced an improvement heuristic based on a greedy 

heuristic for solving the TACS Model III. The limitation of the heuristic, which is related to 

the quality of the solution, was highlighted. In this chapter, we propose another type of 

heuristic, known as the hybrid algorithm. 

 

The motivation of hybridization is to obtain better solutions compared with those of the 

improvement heuristic proposed in Chapter 4. Instead of applying a single algorithm, we 

consider the hybridization of several algorithms that has risen considerably among researchers 

in combinatorial optimization over the last few years. The best results found for many practical 

or academic optimization problems are often obtained by hybrid algorithms (Talbi, 2002). In 

this chapter, we propose three different hybrid algorithms based on hybridization of Simulated 

Annealing and Tabu Search algorithms. 

 

The rest of this chapter is organized as follows. Section 5.2 discusses three different hybrid 

algorithms proposed in detail. In Section 5.3, a comparative study on their performance is 

conducted.  The experiment on several random generated data sets was carried out to verify the 

performance of the proposed algorithms. Finally, some conclusions and directions for possible 

future research are described in Section 5.4. 
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5.2 Hybridization of Heuristics 

 

Three different collaborative hybrid algorithms, namely, Algorithms SA1, SA2 and SA-TS, are 

introduced to solve the TACS Model III. These algorithms are mainly based on Simulated 

Annealing (SA). SA algorithm is a type of local-search heuristic algorithm to avoid getting 

trapped at a local minimum by accepting ”Uphill” moves that deteriorate the objective function 

value, using a probabilistic acceptance criterion (Kirkpatrick et al., 1983). This situation makes 

it possible for the solution to escape from the local optimum, and finally to converge to the 

global optimum.   

 

However, SA has some drawbacks, such as completely memoryless, excessive or unnecessary 

moves during high temperatures. Owing to the random nature of SA, potentially good 

solutions can often be missed (Lim et al., 2005). In order to minimize these drawbacks, we 

incorporate other properties of Tabu Search, such as the intensification strategy, aspiration 

criterion and tabu list.  

 

Intensification strategy is a feature that explores more thoroughly the portions of the search 

space that seem promising in order to ensure that the best solutions in certain areas are indeed 

found. This strategy is incorporated in each algorithm proposed. In Algorithm SA-TS, the 

concept of tabu list for keeping track the last visited movement and avoiding cycles is 

introduced. Tabu list is added in the acceptance-rejection process (evaluation process) of SA in 

order to avoid excessive or unnecessary moves especially during high temperatures. When a 

move belongs to the tabu list at any iteration, it would not be accepted, unless a tabu move 

passes the aspiration criterion or provides a better objective function value. 
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Similar to the improvement heuristics proposed in Chapter 4, each algorithm comprises of 

three main phases: (1) pre-processing, (2) construction, and (3) improvement. Each proposed 

algorithm combines a greedy heuristic and a hybridization of Simulated Annealing and Tabu 

Search algorithms sequentially. The greedy heuristic is used for generating an initial solution 

in the construction phase, while the hybridization of SA and TS is implemented for improving 

the solution in the improvement phase.  

 

For the first two phases, pre-processing and construction phases, each algorithm follows the 

same procedures. The difference lies in in the improvement phase that would be explained 

after the descriptions of pre-processing and construction phases.  

  

5.2.1 The Pre-Processing Phase 

 

This phase is similar to that in Section 4.2.1. The main purpose is to generate two different sets 

Ij and LMi. For more details, please refer to Section 4.2.1 

 

5.2.2 The Construction Phase 

 

The construction phase is used primarily to obtain an initial feasible solution. In this phase, the 

TACS problem is divided into two sub-problems: the teacher assignment and course 

scheduling problems.  

 

As part of the proposed hybrid algorithms, we propose a mathematical programming model 

that only focuses on the teacher assignment problem, namely, TA model. This model is a 

modification of the TACS Model III presented in Chapter 3. In TA model, we only consider 

the constraints which are related to the teacher assignment problem.  
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We define the following decision variables: 

ijkX   = 1 if teacher i teaches course j section k; 0 otherwise  jKkJjIi  ,,   

ijP  = 1 if teacher i teaches course j; 0 otherwise  JjIi  ,  

[TA Model]: 

 

Maximize 
 


Ii Jj

ijijTA PPCZ        (5.1) 

 

subject to: 

 













 
 

 jKk j

ijk
ij

Sec

X
P         JjI,i         (5.2) 

 





Jj

iij NP1   Ii        (5.3) 

 





Ii

jijj UTPLT   Jj        (5.4) 

 

0ijkX   ji Kk,JjI,i         (5.5) 

 





Ii

ijkX 1  jKkJ,j         (5.6) 

 

 1,0ijkX   jKkJ,jI,i         (5.7) 

 

 1,0ijP   JjI,i         (5.8) 

 

The objective function in (5.1) only involves the course preference function that needs to be 

maximized. Equation (5.2) ensures that when teacher i teaches at least one section of course j, 

the value of ijP  would be 1, meaning that teacher i teaches course j. Note that equation (5.2) is 

nonlinear but it can be linearized by the following equation with sufficiently small but positive 

ε: 

 

  ijj

jKk
ijkijj PSecXPεSec  



1    JjI,i      (5.9) 

 

Equation (5.3) ensures that there is a limit to the number of courses taught by each teacher. 

Equation (5.4) restricts the number of teachers who could teach a particular course. Equation 
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(5.5) ensures that teachers will not be assigned courses that they are unable to teach. Equation 

(5.6) assumes that each course section can only be taught by one teacher. Finally, constraints 

(5.7) and (5.8) represent the integrality constraints for the decision variables ijkX   and ijP . The 

optimal solution obtained ZTA is denoted as initial_ta. 

 

Based on some preliminary experiments, the TA Model can be optimally solved by 

commercial software, ILOG OPL Studio 4.2. However, if this sub-problem cannot be 

optimally solved especially for large-size problems, the proposed heuristic in the construction 

phase presented in Chapter 4 can be applied. The optimal solution of the TA model is applied 

as a part of the initial solution in the proposed hybrid algorithm for the overall TACS problem.   

 

The second sub-problem, which is related to the course scheduling problem, would be solved 

by a simple greedy heuristic. The idea is similar to that of an improvement heuristic proposed 

in Chapter 4. An initial feasible solution, initial_cs, is constructed by satisfying as much time 

period preferences as possible. The entire process in the construction phase is briefly outlined 

in Algorithm 1 (Figure 5.1). The flow chart of Algorithm 1 is presented in Appendix B1. 

 

Algorithm 1:  

CONSTRUCTION PHASE ( ) 

(1)  Solve TA Model, determining ijkX  and ijP   

(2) Obtain the objective function value of the teacher assignment problem, initial_ta  

(3) Allocate course j section k to time periods  jKk,Jj   

(4) Calculate the objective function value of the course scheduling problem, initial_cs 

(5) Set the solutions obtained as the initial solution 

(6)  Calculate the initial objective function value, initial_sol = initial_ta + initial_cs  

 

Figure 5.1 Pseudocode of the construction phase 
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For illustration, the following figure presents part of the solution obtained for data set 5×5_1(1) 

in the construction phase. 

Day 1 2 

Period 1 2 3 4 5 1 2 3 4 5 

Teacher1   
   

  
  

4(2) 4(2)   

Teacher2 3(1) 3(1) 
  

  
    

  

Teacher3   5(1) 5(1) 
 

  
    

  

Teacher4   
   

  2(2) 2(2) 
  

  

Teacher5           1(2) 1(2)       

 

Figure 5.2 Part of the initial solution of data set 5×5_1(1) 

 

As illustrated above, each course section is scheduled on a particular day and a certain number 

of time periods. For instance, Teacher1 teaches Course4-Section2 on Day2-Time Periods3 and 

4. Teacher4 and Teacher5 teach different course sections on the same day and time periods. 

This initial solution would be further improved in the next phase, the improvement phase. 

 

5.2.3 The Improvement Phase 

 

The improvement phase aims to improve the quality of the solution by applying Simulated 

Annealing algorithm. SA was originally developed by Kirkpatrick et al. (1983) for finding 

good solutions to a wide variety of combinatorial optimization problems. It is a type of 

metaheuristics which avoids getting trapped at a local optimum by accepting deteriorating 

moves that worsen the objective function value, using a probabilistic acceptance criterion: 

nT
n eTcetanAccepP



 ),/(        (5.10) 

 

where Δ is the difference of objective function values between two successive moves and Tn is 

the temperature at iteration n. The following table links the terminology of the TACS problem 

to SA terminology.  
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Table 5.1 Terminology relationship 

SA terminology Problem equivalent 

System Teacher assignment and course scheduling problems 

Energy state Configuration of teachers, courses, course sections, days and time periods 

Energy The objective function value in TACS Model III 

Particles Teachers, courses, course sections, days and time periods 

 

In this study, we use the geometric cooling schedule to update the temperature, which is 

similar to the one applied by Saleh Elmohamed et al. (1998) and Liu and Ong (2002). This 

geometric cooling schedule computes the temperature, Tn+1 at iteration n+1 by multiplying the 

temperature at iteration n, Tn, with the constant cooling factor α: 

  nn TT  1        (5.11) 

 

As mentioned earlier, three hybrid algorithms, namely, Algorithms SA1, SA2 and SA-TS, are 

proposed. The main difference between pure Simulated Annealing (Kirkpatrick et al., 1983) 

and our proposed algorithms lies in the additional strategy applied. The intensification strategy, 

which is originally from Tabu Search, is incorporated to each proposed algorithm. The idea of 

the intensification strategy is to focus the search once again starting from the best solution 

obtained in order to further improve the quality of the solutions if there is no improvement of 

the solution obtained after a certain number of iterations. 

 

The neighborhood structure applied to each algorithm is similar to the one proposed in Chapter 

4. Basically, the neighborhood structure is mainly based on two operations: reallocation of 

teachers to courses and course sections and rescheduling of course sections to days and time 

periods. Algorithm SA1 only applies the acceptance-rejection process (evaluation process) of 

SA at the end of two operations. On the other hand, Algorithms SA2 and SA-TS apply the 

evaluation process at the end of each operation. In Algorithm SA-TS, we also incorporate 

some features of Tabu Search, such as the aspiration criterion and tabu list. In the following 

sub-sections, each algorithm is further described in more detail. 



                                          Chapter 5 Hybridization of Heuristics for the TACS Problem 

 

98 

 

5.2.3.1 Algorithm SA1  

 

After obtaining an initial solution from the construction phase, we begin two operations in 

order to seek further improvements. These two operations include reallocation of teachers to 

courses and course sections (the first operation), followed by rescheduling course sections to 

days and time periods (the second operation).  

 

We present a numerical example to illustrate the neighborhood moves of Algorithm SA1. The 

first operation is started by choosing one course randomly. Assuming that Course1 with two 

course sections, Section1 and Section2, is chosen and both sections are currently taught by 

Teacher1, we refer to Set I1 which consists of teachers who are willing to teach Course1. By 

considering other constraints, such as the minimum and the maximum number of courses 

taught by each teacher (constraint (3.25)), we examine teachers in Set I1 in order to determine 

which teachers would be able to teach Course1.  

 

Let assume I1 = {Teacher1, Teacher2, Teacher3}, some possible neighborhood moves are 

either Teacher2 or Teacher3 teaches one section or both sections of Course1. Since Teacher2 

has higher preference to Course1, we evaluate Teacher2. If there is no constraint violation by 

selecting Teacher2, we choose either one or two sections would be allocated to Teacher2 

randomly. Otherwise, we continue to evaluate Teacher3.  

 

If we can find a new teacher (either Teacher2 or Teacher3) who can replace Teacher1, the 

process is continued to the second operation: rescheduling the changes into a different day or 

time periods. We evaluate whether it is possible to allocate the new teacher to the previous day 

and time periods scheduled for Teacher1 to teach that particular course section. Otherwise, a 
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new set of days and time periods with no constraint violation has to be found. However, if 

either the first or the second operation is not successful, we simply return to the first operation.  

 

Figure 5.3 describes how we evaluate the neighborhood movements. Let S1, S2, … Sx and T1, 

T2, …, Tv be the possible neighborhood moves generated in the first and second operations, 

respectively. Let assume that S1 and T2 are the selected neighborhood moves of the first and 

the second operations, respectively, we then evaluate the total objective function value 

obtained.  

 

If these neighborhood moves can give a better total objective function value, they would be 

accepted. On the other hand, if the total objective function value is worse than that of the 

current solution, we evaluate whether the neighborhood moves are either accepted or rejected 

with a certain probability. In this case, the acceptance-rejection process (the evaluation process) 

of SA is only applied at the end of two operations.  

 

 

 

 

 

 

 

 

Figure 5.3 Solution representation of Algorithm SA1 

 

The details of SA1 are summarized in Algorithm 2 (Figure 5.4). The entire algorithm will be 

terminated if the total number of iterations of the outer loop reaches the preset maximum 

number of iterations, outer_loop. The acceptance-rejection process (the evaluation process) is 

Possible neighborhood 

moves of the first 

operation 
 

The Evaluation 

Process 

Current 

Solution 

S1 

S2 

Sx ....... 

T1 

T2 

...... 
 T1 

. 

Ty 

New 

Solution 

Accepted 

Rejected 

Possible neighborhood 

moves of the second 

operation 
 



                                          Chapter 5 Hybridization of Heuristics for the TACS Problem 

 

100 

 

summarized in Algorithm 3 (Figure 5.5), which is part of Algorithm 2. Flow charts of both 

algorithms are presented in Appendix B2 and B3, respectively. 

Algorithm 2:  
SA1 ( ) 

(1) Initialize the parameters  

(2) Set the best solution, best_sol = initial_sol 

(3) Set the current solution, current_sol = initial_sol 

(4) Set the total number of iterations, num_iter = 0 

(5) Set the number of non improvement iterations, no_improv = 0 

(6) While the total number of iterations, num_iter is less than the preset maximum number of iterations, 

outer_loop do:  

(7) Repeat inner_loop times:  

(8)  Apply the first operation (reallocation teachers to courses and course sections) 

(9)  If the first operation is successful 

(10)     Apply the second operation (rescheduling course sections to days and time periods) 

(11)     If the second operation is successful 

(12)     Evaluate the changes by applying Algorithm 3 

(13)     Else 

(14)       Return to Step (8) 

(15)    Else 

(16)    Return to Step (8) 

(17)  Update temperature Tnum_iter 

(18)  If current_sol is worse than best_sol 

(19)       no_improv := no_improv + 1    

(20)   If no_improv > the maximum number of non improvement iterations, limit 

(21)     Apply the intensification strategy 

(22)    num_iter := num_iter + 1 

(23) Endwhile 

(24) Report the best solution, best_sol 
 

Figure 5.4 Pseudocode of Algorithm SA1 

Algorithm 3:  
EVALUATION PROCESS SA ( ) 

(1) Calculate the new solution, new_sol 

(2) Calculate the change of the objective function, Δ := new_sol – current_sol  

(3) If Δ > 0  

(4)  Update the current solution, current_sol 

(5)  If current_sol is better than best_sol  

(6)   Update the best solution, best _sol = current_sol 

(7) Else 

(8)  Choose a random number r1 uniformly from [0,1] 

(9)  If num_iterΔ/T

1 expr    

(10)   Accept the new solution, new_sol 

(11)   Update the current solution, current_sol 

(12)  Else 

(13)  Return to the current solution, current_sol 
 

Figure 5.5 Evaluation process of Algorithms SA1 and SA2 
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5.2.3.2 Algorithm SA2  

 

In this algorithm, two similar operations are involved: reallocating teachers to courses and 

course sections and rescheduling these changes into other days and time periods. The major 

difference between Algorithms SA1 and SA2 lies in how we apply the evaluation process 

(Algorithm 3).  

 

As described in Section 5.2.3.1, the evaluation process is only applied at the end of the two 

operations in Algorithm SA1. On the other hand, we incorporate the acceptance-rejection 

process (the evaluation process) after each operation is conducted in Algorithm SA2 

(Algorithm 4), as presented in Figure 5.6 and Appendix B4. For illustration purpose, please 

refer to Figure 5.7. 

 

Algorithm 4:  
SA2 ( ) 

(1) Initialize the parameters 

(2) Set the best solution, best_sol = initial_sol 

(3) Set the current solution, current_sol = initial_sol 

(4) Set the total number of iterations, num_iter = 0  

(5) Set the number of non improvement iterations, no_improv = 0 

(6) While the total number of iterations, num_iter is less than the preset maximum number of 

iterations,  outer_loop do:  

(7)  Repeat inner_loop times:  

(8)   Apply the first operation  

(9)   If the first operation is successful 

(10)     Evaluate the change by applying Algorithm 3 

(11)   Apply the second operation  

(12)        If the second operation is successful 

(13)     Evaluate the change by applying Algorithm 3 

(14)   Else 

(15)     Return to Step (8) 

(16)   Update temperature Tnum_iter 

(17)  If current_sol is worse than best_sol 

(18)    no_improv := no_improv + 1    

(19)   If no_improv > the maximum number of non improvement iterations, limit 

(20)    Apply the intensification strategy 

(21)   num_iter := num_iter + 1 

(22) Endwhile 
(23) Report the best solution, best_sol 
 

Figure 5.6 Pseudocode of Algorithm SA2 
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Figure 5.7 describes how we apply the evaluation process at the end of each operation. As 

described earlier, the acceptance-rejection process of SA is applied at the end of each operation. 

Let S1 be the selected neighbor move of the first operation, we continue to evaluate the change 

of the teacher assignment objective function value by applying the acceptance-rejection 

process (Algorithm 3). If S1 is accepted, we proceed to the second operation. The selected 

neighbor move of the second operation is again evaluated in terms of the change of the course 

scheduling objective function value.  

 

However, if the first operation is rejected, the second operation is still performed by another 

different strategy. The operation is started by choosing section k of course j randomly, 

where jKk . This course section will be allocated to other possible time periods. The change 

of the course scheduling objective function value is then evaluated by the acceptance-rejection 

process (Algorithm 3). 

 

 

 

 

 

 

 

 

 

Figure 5.7 Solution representation of Algorithm SA2 
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5.2.3.3 Algorithm SA-TS 

 

In Algorithm SA-TS, we provide a framework involving the hybridization of Simulated 

Annealing (SA) and Tabu Search to develop and improve the quality of the solution.  

 

Similar to Algorithm SA2, the phase is started by applying the first operation, the reallocation 

of teachers to courses and course sections. Several features from Tabu Search, such as tabu list 

and aspiration criterion, are introduced in this algorithm. Tabu Search explicitly uses a short 

term memory which is implemented as a tabu list for escaping from local minima and avoiding 

cycles. A tabu list keeps track of the most recently visited solutions and forbids moves toward 

them unless a move that satisfies the aspiration criterion even if it is forbidden by tabu 

conditions. The most commonly used the aspiration criterion is to allow a solution which is 

better than the best solution obtained so far. 

 

In pure SA algorithm, a deteriorating move would be evaluated by using a probabilistic 

acceptance criterion, as shown in equation (5.10). In an effort to avoid excessive or 

unnecessary moves, which will deteriorate the objective function value especially during high 

temperatures, we include an additional evaluation step after the probabilistic acceptance 

calculation. When a worse move belongs to the tabu list for a given iteration, it is not allowed 

to be accepted. On the other hand, a worse non-tabu move can either be accepted or rejected 

with certain probability. 

 

The way we choose the tabu list depends on the element replaced in the current solution. In the 

first operation (reallocation teachers to courses or course sections), the tabu list is denoted as 

tabu1, which contains pairs of teacher i and course j visited in the last length1 iterations. For 

example, in the current solution, Course1 is currently taught by Teacher1. After the first 
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operation is conducted, a new solution is generated by allocating Teacher2 to Course1. In this 

case, a pair of Teacher1 and Course1 is included in the tabu list, tabu1.We are not allowed to 

choose this pair in the last length1 iterations unless it satisfies the aspiration criterion or gives a 

better objective function value. 

 

The improvement phase is then continued to the second operation. We introduce another tabu 

list for this operation (tabu2), which contains a list of {teacher i, course j, section k, day l, and 

starting time period m} visited in the last length2 iterations. For example, if Course1 Section1 

taught by Teacher1 has just been moved from Period1 to Period2, one could declare that 

moving back that particular course from Period2 to Period1 is tabu for a certain number of 

iterations.  

 

Similar to Algorithm 2, if the first operation is rejected, the second operation is still performed 

by choosing section k of course j randomly, where jKk . This course section will then be 

allocated to other time periods. The operation is continued by evaluating the objective function 

value and checking the tabu list, tabu3. In this operation, the tabu list contains a list of {course 

j, day l, and starting time period m}, which is forbidden in the last length3 iterations.   

 

Figures 5.8 and 5.9 represent the pseudocode of Algorithms SA-TS (Algorithm 5) and the 

evaluation process (Algorithm 6), respectively. The details of both algorithms are presented as 

flow charts in Appendix B5 and B6.  
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Algorithm 5:  
SA-TS ( ) 

(1) Initialize the parameters 

(2) Set the best solution, best_sol = initial_sol 

(3) Set the current solution, current_sol = initial_sol 

(4) Set the total number of iterations, num_iter = 0  

(5) Set the number of non improvement iterations, no_improv = 0 

(6) While the total number of iterations, num_iter is less than the preset maximum number of 

iterations,  outer_loop do:  

(7)  Repeat inner_loop times:  

(8)   Apply the first operation  

(9)   If the first operation is successful 

(10)     Evaluate the change by applying Algorithm 6 

(11)   Apply the second operation  

(12)        If the second operation is successful 

(13)     Evaluate the change by applying Algorithm 6 

(14)   Else 

(15)     Return to Step (8) 

(16)   Update temperature Tnum_iter 

(17)  If current_sol is worse than best_sol 

(18)    no_improv := no_improv + 1    

(19)   If no_improv > the maximum number of non improvement iterations, limit 

(20)    Apply the intensification strategy 

(21)   num_iter := num_iter + 1 

(22) Endwhile 
(23) Report the best solution, best_sol 
 

Figure 5.8 Pseudocode of Algorithm SA-TS 

 

Algorithm 6:  

EVALUATION PROCESS SA-TS ( ) 

(1) Calculate the new solution, new_sol 

(2) Calculate the change of the objective function, Δ := new_sol – current_sol  

(3) If  Δ > 0  

(4)  Update the current solution, current_sol 

(5)  If current_sol is better than best_sol  

(6)   Update the best solution, best _sol = current_sol 

(7)  Update tabu list 

(8) Else 

(9)  Choose a random number r1 uniformly from [0,1] 

(10) Check whether the new solution is tabu 

(11) If num_iterΔ/T

1 expr   and the new solution is not tabu 

(12)  Accept the new solution, new_sol 

(13)  Update the current solution, current_sol 

(14)  Update tabu list 

(15) Else 

(16)  Return to the current solution, current_sol 

(17)  Update tabu list 

 

Figure 5.9 Evaluation process of Algorithm SA-TS 
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5.3 Computational Results 

 

The computational experiments were performed on a 2.6GHz Intel Pentium IV PC with 512 

MB RAM under the Microsoft Windows XP Operating System. The proposed algorithms were 

coded in C++. The solution of the TA model is obtained by ILOG OPL Studio 4.2 Solver. 

 

Our tests are performed over the same data sets used in Chapter 4. The values of the 

parameters used by the proposed algorithms are summarized in Table 5.2. Preliminary 

experimentation was performed to determine suitable values for the parameters of the 

proposed heuristic. These values were chosen to ensure a compromise between the 

computation time and the solution quality. This single set of SA parameter settings is used for 

comparing all the proposed algorithms on the same data sets. 

 

Table 5.2 Parameter settings for hybrid algorithms 

Parameter Value 

Number of iterations, outer_loop |I|×|L|×|M| 

Initial temperature, T0 10,000 

Number of neighbor moves at each 

temperature Tn, inner_loop 

|I|×|L|×|M| 

Cooling factor, α 0.95 

Number of non-improvement iterations 

prior to intensification, limit 

0.05×|I|×|L|×|M| 

Length of tabu1, length1 0.25×|I| for Group I data sets, 0.5×|I| for Group II data sets 

Length of tabu2, length2 |L| for Group I data sets, 2×|L| for Group II data sets  

Length of tabu3, length3 |L| for Group I data sets, 2×|L| for Group II data sets 

 

To see if the proposed algorithms have better than simply solving the teacher assignment and 

course scheduling problems separately as was commonly seen in the literatures discussed in 

Chapter 2, we have performed computational experiments on solving the Group I data sets via 
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the latter approach. This involved solving the TA Model and then using the results obtained as 

the inputs for the TACS Model III.  

 

For each data set, the proposed algorithms were executed 20 times with different random seeds. 

Tables 5.3 summarizes the overall results that include the objective function values obtained 

by solving the teacher assignment and course scheduling sub-problems separately and by 

solving the TACS Model III, the average CPU time required to solve the TACS Model III, as 

well as the average objective function value obtained, the best objective function value 

obtained and the average CPU time required to obtain the solution by Algorithms SA1, SA2 

and SA-TS. Table 5.4 represents similar results for Group II data sets.  

 

From Table 5.3, it can be seen that solving the teacher assignment and course scheduling sub-

problems separately is inferior in performance than the proposed algorithms in terms of the 

objective function values obtained for all the Group I data sets. 

 

We observe that the computation time taken by Algorithm SA1 to obtain the solution is less 

than the computation time taken by Algorithm SA2 and Algorithm SA-TS for all the data sets. 

It is due to the evaluation process is run twice in the improvement phase of Algorithms SA2 

and SA-TS. However, better results have been obtained by Algorithm SA2 and Algorithm SA-

TS since both algorithms are able to obtain the optimal solution for most of group I data sets. 
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Table 5.3 Computational results of Algorithms SA1, SA2 and SA-TS on Group I data sets 

 Solution obtained by commercial software Algorithm SA1 Algorithm SA2 Algorithm SA-TS 

Data Set Objective function 

value for separating 

model solving 

Objective function 

value for solving 

TACS' Model III 

CPU time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

5×5_1(1) 1100 1130 2.43 1100 1100 0.09 1107.5 1130 0.13 1100 1100 0.75 

5×5_1(2) 900 1090 2.23 910 910 0.10 1086.5 1090 0.14 1088.5 1090 0.78 

5×5_1(3) 880 1040 1.65 880 880 0.08 1020 1020 0.13 1040 1040 0.76 

5×5_1(4) 800 1020 2.04 800 800 0.06 1011.5 1020 0.13 1012 1020 0.77 

5×5_1(5) 930 980 1.82 930 930 0.09 950 950 0.14 980 980 0.77 

5×5_2(1) 1150 1280 1.85 1170 1170 0.07 1230 1230 0.12 1225.5 1230 0.68 

5×5_2(2) 1110 1290 2.45 1125.5 1180 0.09 1290 1290 0.12 1290 1290 0.72 

5×5_2(3) 1000 1110 2.25 994 1040 0.08 1108 1110 0.12 1097 1110 0.73 

5×5_2(4) 820 1190 2.03 810 810 0.05 1100 1100 0.12 1148.5 1160 0.66 

5×5_2(5) 1130 1210 2.25 1130 1130 0.08 1160 1160 0.12 1210 1210 0.71 

10×10_1(1) 2230 2340 31.07 2230 2230 1.58 2290 2290 4.94 2325 2340 5.12 

10×10_1(2) 1800 2260 11.59 1820.5 1830 1.56 2236.5 2260 5.10 2242.5 2260 5.44 

10×10_1(3) 2020 2200 22.15 2020 2020 1.59 2192 2200 5.24 2200 2200 5.91 

10×10_1(4) 1790 2020 12.50 1780 1780 1.57 2020 2020 5.45 2019 2020 5.57 

10×10_1(5) 1850 2100 15.03 1880 1880 1.55 2025.5 2090 5.29 2090 2090 5.65 

10×10_2(1) 2650 2860 49.97 2700 2700 1.47 2842.5 2850 4.70 2845.5 2850 4.98 

10×10_2(2) 2340 2780 32.29 2340 2340 1.50 2725.5 2780 4.47 2764 2780 4.51 

10×10_2(3) 2560 2780 19.70 2560 2560 1.48 2766.5 2780 4.39 2777.5 2780 4.39 

10×10_2(4) 2250 2540 10.96 2260 2260 1.49 2468.5 2500 4.75 2478.5 2500 5.01 

10×10_2(5) 2300 2600 46.03 2303.5 2370 1.47 2547 2550 4.78 2547 2550 5.14 
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Table 5.3 Computational results of Algorithms SA1, SA2 and SA-TS on Group I data sets (continued) 

 

Data Set 

Solution obtained by commercial software Algorithm SA1 Algorithm SA2 Algorithm SA-TS 

Objective function 

value for separating 

model solving 

Objective function 

value for solving 

TACS' Model III 

CPU time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

15×15_1(1) 2900 3080 67.23 2950 2950 5.25 3062.5 3070 17.40 3069 3070 19.65 

15×15_1(2) 3140 3270 200.32 3140 3140 2.30 3267.5 3270 16.37 3270 3270 18.18 

15×15_1(3) 2810 3130 222.63 2830 2830 5.16 3120 3120 17.51 3119 3130 19.84 

15×15_1(4) 2970 3280 70.53 3020 3020 5.21 3196.5 3200 18.09 3212.5 3270 21.75 

15×15_1(5) 2740 3090 123.95 2740 2740 5.20 3030 3050 19.85 3039 3080 19.57 

15×15_2(1) 3790 4170 265.11 3920 3920 4.93 4068 4110 15.77 4099.5 4120 18.38 

15×15_2(2) 3860 4260 554.36 3930 3930 4.93 4177.5 4220 15.43 4223 4230 18.43 

15×15_2(3) 3850 4150 189.92 3850 3850 4.91 4140 4150 18.12 4141 4150 18.78 

15×15_2(4) 4010 4320 401.42 4028 4090 4.79 4241 4310 15.60 4280.5 4300 17.78 

15×15_2(5) 3510 3930 748.90 3553 3560 6.62 3780.5 3850 15.41 3844.5 3900 17.59 

20×20_1(1) 4140 4290 583.82 4220 4220 11.08 4289.5 4290 29.78 4289 4290 31.23 

20×20_1(2) 3560 4330 177.10 3760 3760 10.93 4213 4220 30.24 4220 4250 31.67 

20×20_1(3) 4070 4340 444.72 3920 3920 10.90 4303 4320 31.25 4294.5 4320 31.39 

20×20_1(4) 4420 4540 172.26 4420 4420 10.94 4540 4540 31.18 4540 4540 30.63 

20×20_1(5) 4270 4340 312.01 4070 4070 10.99 4225 4280 29.20 4230 4300 30.38 

20×20_2(1) 5460 5660 6637.76 5460 5460 10.98 5512.5 5570 28.25 5574.5 5610 30.30 

20×20_2(2) 5500 5730 2127.28 4990 4990 10.19 5505 5570 27.98 5554.5 5630 28.58 

20×20_2(3) 5650 5770 9367.78 5130 5130 10.16 5483 5600 26.84 5482.5 5600 28.30 

20×20_2(4) 5540 5880 379.04 5546 5550 10.39 5699.5 5760 26.85 5798 5850 29.68 

20×20_2(5) 5360 5680 2552.72 5289 5310 10.27 5556 5620 27.05 5560.5 5620 28.18 
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Table 5.4 Computational results of Algorithms SA1, SA2 and SA-TS on Group II data sets 

 Solution obtained by commercial software Algorithm SA1 Algorithm SA2 Algorithm SA-TS 

Data Set Objective function value 

for solving TACS 

Model III 

CPU time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

10×20_1(1) 7590 1578.91 6537.5 6650 4.04 7162.5 7240 6.42 7145.5 7250 6.55 

10×20_1(2) 8210 588.28 6904.5 6960 2.41 7493.5 7600 5.70 7563 7720 5.56 

10×20_1(3) 7670 311.59 6471.5 6500 2.43 6959 7040 5.88 7108.5 7200 5.86 

10×20_1(4) 7560 2789.25 6312 6410 4.04 6810.5 6950 5.95 6907.5 7070 6.24 

10×20_1(5) 7800 647.54 6913 6940 3.79 7340.5 7410 6.09 7429.5 7490 6.47 

10×20_2(1) 7660 11145.60 6598 6670 3.98 7250 7330 6.38 7186 7360 6.81 

10×20_2(2) 8480 423.92 7081.5 7110 2.17 7522.5 7630 5.70 7655.5 7760 5.50 

10×20_2(3) 7970 541.53 6270.5 6480 2.18 6906.5 7060 5.91 7033 7160 5.95 

10×20_2(4) 7730 3473.21 6434 6620 4.23 6941.5 7050 5.98 7113 7210 6.29 

10×20_2(5) 7830 812.51 6467.5 6790 3.60 7136.5 7250 6.03 7245 7320 6.65 

20×30_1(1) 11010 10283.73 9774 9800 6.74 10512.5 10720 19.56 10568.5 10680 35.26 

20×30_1(2) 11140 9265.63 9621 9680 6.72 10597.5 10760 19.41 10718.5 10920 37.73 

20×30_1(3) 10430 10598.13 9300 9300 6.69 9779 9870 17.54 9812 9930 30.59 

20×30_1(4) 10920 18584.29 9333.5 9400 6.96 9868 10040 18.15 10085 10230 32.44 

20×30_1(5) 11260 9469.55 9787.5 9810 6.73 10569 10740 18.56 10711 10880 33.34 

20×30_2(1) 13090 17184.70 11456.5 11770 10.76 12298.5 12460 26.91 12424 12580 66.36 

20×30_2(2) 12880 55032.51 11132 11370 10.96 12206 12460 27.44 12254.5 12390 29.79 

20×30_2(3) 13660 47060.92 11439 11460 12.82 12231.5 12490 26.67 12287.5 12490 48.03 

20×30_2(4) 14260 38239.02 11822 11860 11.07 12997.5 13120 27.25 13155 13250 49.05 

20×30_2(5) 13450 22582.79 10967 11440 10.65 11990 12200 25.24 12165.5 12410 49.05 
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Table 5.4 Computational results of Algorithms SA1, SA2 and SA-TS on Group II data sets (continued) 

 

Data Set 

Solution obtained by commercial software Algorithm SA1 Algorithm SA2 Algorithm SA-TS 

Objective function value for 

solving TACS' Model III 

CPU time 

(seconds) 
Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

20×40_1(1) 13210a -b 11680.5 11940 13.45 12568.5 12760 73.35 12704 12920 128.36 

20×40_1(2) 14010 a -b 11671.5 11880 10.88 12484.5 12760 83.86 12654.5 12890 139.92 

20×40_1(3) 13360 a -b 11821.5 11850 11.92 12427.5 12550 78.11 12547 12720 132.54 

20×40_1(4) 13860 a -b 11939.5 12010 10.69 12818.5 12900 78.15 12844 12990 138.97 

20×40_1(5) 14270 a -b 12088 12210 10.98 12979 13240 80.26 12995 13220 137.97 

20×40_2(1) 16190 a -b 14136 14200 19.86 14683 14800 46.18 14957.5 15120 101.42 

20×40_2(2) 17440 a -b 14130.5 14390 20.06 15283.5 15520 43.74 15462 15600 107.91 

20×40_2(3) 17240 a -b 14388.5 14540 19.63 15170.5 15400 45.00 15423.5 15540 104.45 

20×40_2(4) 16700 a -b 13720 13880 20.09 14625 14880 43.10 14856.5 15060 104.26 

20×40_2(5) 16690 a -b 13336 14110 22.50 14711 14970 42.43 15034 15250 99.74 

30×60_2(1) 20540 a -b 18224 18280 56.14 19253 19470 193.53 19346.5 19530 389.06 

30×60_2(2) 21060 a -b 18328 18370 52.75 19472 19660 199.59 19695 19830 477.57 

30×60_2(3) 20710 a -b 18463 18640 53.20 19161.5 19330 196.52 19375.5 19550 390.22 

30×60_2(4) 21890 a -b 19250 19300 52.01 20486 20650 211.55 20806.5 20910 379.60 

30×60_2(5) 21170 a -b 18336 18510 53.87 19460 19640 194.13 19749.5 20010 359.04 

30×60_1(1) - -b 21400 21880 83.37 23218 23780 258.07 23498.5 23940 387.13 

30×60_1(2) 25180 a -b 20645 21050 85.02 22480.5 22870 245.35 22782.5 23200 487.88 

30×60_1(3) - -b 21034 21330 78.24 22613.5 22840 255.08 22959 23270 418.27 

30×60_1(4) - -b 21820 21820 79.16 23414.5 23600 243.30 23583.5 23840 384.61 

30×60_1(5) 24480 a -b 20643 20930 78.98 22428.5 23060 241.03 22793.5 23180 394.47 
a
 The best known solution obtained within 24 hours 

b
 CPU time = 24 hours 
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A comparison of the objective function values and computation times (in seconds) obtained by 

the proposed algorithms and the best known/optimal solutions was summarized in Tables 5.5 

and 5.6. We use the same formulae presented in Chapter 4 to calculate the deviations of the 

best and the average objective function values of the proposed algorithm from the best 

known/optimal value. 

 

Table 5.5 Comparison of the algorithm results and the optimal solutions on Group I data sets 

Data Set 
Algorithm SA1 Algorithm SA2 Algorithm SA-TS 
1SA

)1(
 (%) 1SA

)2(
 (%) 2SA

)1(
 (%) 2SA

)2(
 (%) TSSA

)1(
 (%) TSSA

)2(
 (%) 

5×5_1(1) 2.65 2.65 1.99 0.00 2.65 2.65 

5×5_1(2) 16.51 16.51 0.32 0.00 0.14 0.00 

5×5_1(3) 15.38 15.38 1.92 1.92 0.00 0.00 

5×5_1(4) 21.57 21.57 0.83 0.00 0.78 0.00 

5×5_1(5) 5.10 5.10 3.06 3.06 0.00 0.00 

5×5_2(1) 8.59 8.59 3.91 3.91 4.26 3.91 

5×5_2(2) 12.75 8.53 0.00 0.00 0.00 0.00 

5×5_2(3) 10.45 6.31 0.18 0.00 1.17 0.00 

5×5_2(4) 31.93 31.93 7.56 7.56 3.49 2.52 

5×5_2(5) 6.61 6.61 4.13 4.13 0.00 0.00 

10×10_1(1) 4.70 4.70 2.14 2.14 0.64 0.00 

10×10_1(2) 19.45 19.03 1.04 0.00 0.77 0.00 

10×10_1(3) 8.18 8.18 0.36 0.00 0.00 0.00 

10×10_1(4) 11.88 11.88 0.00 0.00 0.05 0.00 

10×10_1(5) 10.48 10.48 3.55 0.48 0.48 0.48 

10×10_2(1) 5.59 5.59 0.61 0.35 0.51 0.35 

10×10_2(2) 15.83 15.83 1.96 0.00 0.58 0.00 

10×10_2(3) 7.91 7.91 0.49 0.00 0.09 0.00 

10×10_2(4) 11.02 11.02 2.81 1.57 2.42 1.57 

10×10_2(5) 11.40 8.85 2.04 1.92 2.04 1.92 

15×15_1(1) 4.22 4.22 0.57 0.32 0.36 0.32 

15×15_1(2) 3.98 3.98 0.08 0.00 0.00 0.00 

15×15_1(3) 9.58 9.58 0.32 0.32 0.35 0.00 

15×15_1(4) 7.93 7.93 2.55 2.44 2.06 0.30 

15×15_1(5) 11.33 11.33 1.94 1.29 1.65 0.32 

15×15_2(1) 6.00 6.00 2.45 1.44 1.69 1.20 

15×15_2(2) 7.75 7.75 1.94 0.94 0.87 0.70 

15×15_2(3) 7.23 7.23 0.24 0.00 0.22 0.00 

15×15_2(4) 6.76 5.32 1.83 0.23 0.91 0.46 

15×15_2(5) 9.59 9.41 3.80 2.04 2.18 0.76 

20×20_1(1) 1.63 1.63 0.01 0.00 0.02 0.00 

20×20_1(2) 13.16 13.16 2.70 2.54 2.54 1.85 

20×20_1(3) 9.68 9.68 0.85 0.46 1.05 0.46 

20×20_1(4) 2.64 2.64 0.00 0.00 0.00 0.00 

20×20_1(5) 6.22 6.22 2.65 1.38 2.53 0.92 

20×20_2(1) 3.53 3.53 2.61 1.59 1.51 0.88 

20×20_2(2) 12.91 12.91 3.93 2.79 3.06 1.75 

20×20_2(3) 11.09 11.09 4.97 2.95 4.98 2.95 

20×20_2(4) 5.68 5.61 3.07 2.04 1.39 0.51 

20×20_2(5) 6.88 6.51 2.18 1.06 2.10 1.06 

Average 9.64 9.31 1.94 1.27 1.24 0.70 

Maximum  31.93 31.93 7.56 7.56 4.98 3.91 

Minimum 1.63 1.63 0.00 0.00 0.00 0.00 
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Table 5.6 Comparison of the algorithm results and the optimal solutions on Group II data sets 

Data Set 
Algorithm SA1 Algorithm SA2 Algorithm SA-TS 
1SA

)1(
 (%) 1SA

)2(
 (%) 2SA

)1(
 (%) 2SA

)2(
 (%) TSSA

)1(
 (%) TSSA

)2(
 (%) 

10×20_1(1) 13.87 12.38 5.63 4.61 5.86 4.48 

10×20_1(2) 15.90 15.23 8.73 7.43 7.88 5.97 

10×20_1(3) 15.63 15.25 9.27 8.21 7.32 6.13 

10×20_1(4) 16.51 15.21 9.91 8.07 8.63 6.48 

10×20_1(5) 11.37 11.03 5.89 5.00 4.75 3.97 

10×20_2(1) 13.86 12.92 5.35 4.31 6.19 3.92 

10×20_2(2) 16.49 16.16 11.29 10.02 9.72 8.49 

10×20_2(3) 21.32 18.70 13.34 11.42 11.76 10.16 

10×20_2(4) 16.77 14.36 10.20 8.80 7.98 6.73 

10×20_2(5) 17.40 13.28 8.86 7.41 7.47 6.51 

20×30_1(1) 11.23 10.99 4.52 2.63 4.01 3.00 

20×30_1(2) 13.64 13.11 4.87 3.41 3.78 1.97 

20×30_1(3) 10.83 10.83 6.24 5.37 5.93 4.79 

20×30_1(4) 14.53 13.92 9.63 8.06 7.65 6.32 

20×30_1(5) 13.08 12.88 6.14 4.62 4.88 3.37 

20×30_2(1) 12.48 10.08 6.05 4.81 5.09 3.90 

20×30_2(2) 13.57 11.72 5.23 3.26 4.86 3.80 

20×30_2(3) 16.26 16.11 10.46 8.57 10.05 8.57 

20×30_2(4) 17.10 16.83 8.85 7.99 7.75 7.08 

20×30_2(5) 18.46 14.94 10.86 9.29 9.55 7.73 

20×40_1(1) 11.58 9.61 4.86 3.41 3.83 2.20 

20×40_1(2) 16.69 15.20 10.89 8.92 9.68 7.99 

20×40_1(3) 11.52 11.30 6.98 6.06 6.09 4.79 

20×40_1(4) 13.86 13.35 7.51 6.93 7.33 6.28 

20×40_1(5) 15.29 14.44 9.05 7.22 8.93 7.36 

20×40_2(1) 12.69 12.29 9.31 8.59 7.61 6.61 

20×40_2(2) 18.98 17.49 12.37 11.01 11.34 10.55 

20×40_2(3) 16.54 15.66 12.00 10.67 10.54 9.86 

20×40_2(4) 17.84 16.89 12.43 10.90 11.04 9.82 

20×40_2(5) 20.10 15.46 11.86 10.31 9.92 8.63 

30×60_2(1) 11.28 11.00 6.27 5.21 5.81 4.92 

30×60_2(2) 12.97 12.77 7.54 6.65 6.48 5.84 

30×60_2(3) 10.85 10.00 7.48 6.66 6.44 5.60 

30×60_2(4) 12.06 11.83 6.41 5.66 4.95 4.48 

30×60_2(5) 13.39 12.56 8.08 7.23 6.71 5.48 

30×60_1(1) - - - - - - 

30×60_1(2) 18.01 16.40 10.72 9.17 9.52 7.86 

30×60_1(3) - - - - - - 

30×60_1(4) - - - - - - 

30×60_1(5) 15.67 14.50 8.38 5.80 6.89 5.31 

Average 14.85 13.69 8.47 7.13 7.41 6.13 

Maximum  21.32 18.70 13.34 11.42 11.76 10.55 

Minimum 10.83 9.61 4.52 2.63 3.78 1.97 

 

The tables above show differences of the quality of solutions produced by each algorithm. SA1 

does not perform very well with the maximum values of both parameters 1SA
)1( and 1SA

)2( are 

31.93%. A possible reason is that the exploration of the neighborhood moves in SA1 is 

limited. The neighborhood consists of two operations: reallocation of teachers and time 

periods. If the first operation is accepted, we continue to reallocate the course to other time 
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periods. Unfortunately, it might be possible that the teacher reallocation is rejected 

especially during the iterations with low temperature T and the process is then terminated 

without proceeding to the second operation.  

 

The experiments clearly demonstrate the superiority of Algorithm SA2 and SA-TS. They yield 

the optimal solutions for most of Group I data sets. Similar to Group I results, SA1 could not 

perform very well with the minimum values of 1SA
)1( and 1SA

)2( are 10.83% and 9.61%, 

respectively.  The results obtained by SA2 and SA–TS show some improvement over those of 

SA1. The best performance is shown by Algorithm SA–TS where the best value of TSSA
)2(
 is 

only 1.97%. Some features of Tabu Search incorporated in Algorithm SA-TS are able to 

prevent unnecessary moves during high temperature and lead to better solutions. 

 

In summary, we observe that solution quality depends not only on the evaluation process but 

also on the way in which it is applied. Overall, these experiments indicate that the results of 

SA2 and SA-TS are vastly superior to those obtained by SA1. However, this improvement is 

obtained at the cost of additional computation time. 

 

5.4 Conclusions 

 

This chapter presented three different hybrid algorithms, known as SA1, SA2 and SA-TS, to 

solve the TACS problem. They combine a greedy heuristic, Simulated Annealing and Tabu 

Search algorithms.  

 

The entire problem was divided into two interrelated sub-problems, teacher assignment and 

course scheduling problems. The teacher assignment problem was solved by ILOG OPL 

Studio software and the course scheduling problem was tackled by a greedy heuristic.  
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The main difference of the pure SA and our proposed algorithms lies in the additional strategy 

applied. The intensification strategy of the Tabu Search algorithm is included in each proposed 

algorithm, Algorithms SA1, SA2 and SA-TS. The idea of the intensification strategy is to 

focus the search once again starting from the best solution obtained in order to further improve 

the quality of the solutions if there is no improvement of the solution obtained after a certain 

number of iterations.  

 

There are two operations involved in each algorithm: reallocation of teachers to courses and 

course sections and reallocation course sections to time periods. In Algorithm SA1, the 

acceptance – rejection process (the evaluation process) of SA is only applied at the end of both 

operations. In Algorithms SA2 and SA-TS, the evaluation process is applied at the end of each 

operation. We conclude that by conducting the evaluation process at the end of each operation, 

better solutions would be obtained. Algorithms SA2 and SA-TS are able to explore more 

possible neighborhood moves. 

 

Some features of Tabu Search, such as aspiration criterion, tabu length and tabu list is included 

in the evaluation process of Algorithm SA-TS. It has been shown that Algorithms SA-TS 

outperforms SA1 and SA2 in terms of objective function values obtained. Tabu list is able to 

avoid excessive or unnecessary moves especially during high temperatures, which will 

deteriorate the objective function value. 

 

Another hybridization of Lagrangian relaxation and metaheuristics that focus on building the 

initial feasible solutions would be proposed in the next chapter.  The performance would be 

compared with the one of the proposed algorithms, SA-TS. 
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CHAPTER VI  

HYBRIDIZATION OF LAGRANGIAN RELAXATION 

AND METAHEURISTICS FOR THE TACS PROBLEM 

 

6.1 Introduction 

 

The main idea of the proposed algorithms explained in Chapter 5 is to focus on improving the 

initial solutions generated from the construction phase. The initial solution was initially 

generated by a greedy heuristic. In this Chapter, we focus on how to construct good quality 

initial solutions that would lead to better quality final solutions. The quality of the initial 

solution does play an important role in order to find better solutions (Joubert and Claasen, 

2006; Moody et al., 2008). 

 

In order to construct the initial solution, we apply the Lagrangian Relaxation approach (Held 

and Karp, 1970). The approach essentially consists of removing certain “complicating” 

constraints and incorporating them in the objective function so that the relaxed problem can be 

solved efficiently. The objective function value obtained is then treated as an upper bound on 

the optimal value of the original maximization problem.  

 

A detailed review and successful applications of the Lagrangian relaxation have been 

documented by Fisher (1981). Several other successful applications of the Lagrangian 

relaxation approach have been reported by Geoffrion (1974), Fisher (1981), Chien et al. (1989), 

Brännlund et al. (1998) and Kim and Kim (2000).  
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In this study, we develop a hybridization of Lagrangian relaxation approach and Algorithm 

SA2, namely, Algorithm LR-SA, for solving TACS Model III. In the construction phase, the 

problem is solved by the Lagrangian relaxation approach for generating initial feasible 

solutions. These initial solutions are further improved by Algorithm SA2 in the improvement 

phase.  

 

This chapter is organized as follows. Section 6.2 describes the entire proposed algorithm for 

solving the problem. In Section 6.3, an extensive computational evaluation of the proposed 

algorithm, including comparison and analysis of results obtained, is presented to illustrate the 

performance of the new approach. At the end of this chapter, some related discussions are 

summarized.  

 

6.2 The Proposed Algorithm 

 

Algorithm LR-SA consists of three phases: (1) pre-processing, (2) construction and (3) 

improvement. Each of these phases would be further described below. 

 

6.2.1 The Pre-processing Phase 

 

Similar to previous proposed algorithms (Algorithms SA1, SA2 and SA-TS), two different sets 

jI and iLM  are generated.  

 

6.2.2 The Construction Phase 

 

The second phase of the hybrid algorithm is used primarily to obtain an initial feasible solution. 

The consecutiveness requirement is identified as a major source of complexity in TACS Model 
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III. This requirement turns the problem from easy to hard, i.e. from polynomially solvable to 

NP-hard (ten Eikelder and Willemen, 2001 and Daskalaki and Birbas, 2005). We decide to 

remove the constraints related to this requirement from the model and only consider them in 

the process of generating an initial feasible solution. Thus, we proposed another mathematical 

model, denoted as TACS Model IV, which is similar to TACS Model III without 

consecutiveness requirements (equations (3.37), (3.38), (3.40), (3.41) and (3.44)). 

 

[TACS Model IV] 

Maximize  Objective function (3.22) 

subject to: 

 Constraints (3.23) – (3.36), (3.39), (3.42) – (3.43), (3.45) – (3.47)  

 

The TACS Model IV is further decomposed into two smaller models: TA Model and CS 

Model whereas each model represents the teacher assignment and course scheduling problems, 

respectively. These two models would be solved in a three-stage relaxation procedure. The 

first stage focuses on solving the TA Model. The results obtained are further used as an input 

in the second stage which is related to the CS Model. 

 

We propose a Lagrangian relaxation approach in order to solve the CS Model. Since the results 

obtained might not be feasible to TACS Model III, we propose an additional heuristic, so 

called as a Lagrangian heuristic in the third stage. In this stage, we include the consecutiveness 

constraints in order to construct a feasible solution. The details of each stage would be 

described below. 
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6.2.2.1 The Teacher Assignment Sub-Problem 
 

Here, we use the same model presented in Section 5.2.2 in order to obtain the solution of the 

teacher assignment problem, X'ijk. TA Model is then optimally solved by CPLEX 10.0 and the 

decision variable X'ijk is used as an input in the next model, CS Model.  

 

6.2.2.2 The Course Scheduling Sub-Problem 

 

We propose another mathematical model by considering the requirements of the course 

scheduling problem, denoted as CS Model. As mentioned earlier, the consecutiveness 

requirements has been removed and would only be considered in the process of generating an 

initial feasible solution based on a Lagrangian heuristic.  

 

[CS Model] 

 

Maximize     
    


Ii Jj jKk Ll Mm

ijklmilmCS XPTZ III       (6.1) 

subject to: 

 

ijk
Ll

ijkl XY 


     jKkJjIi  ,,     (6.2) 

 

 
 


Ii Kk

ijkl

j

Y 1     LlJj  ,      (6.3) 

 

  
  


Ii Kk Ll

jijkl

j

SecY     Jj       (6.4)

  


 


Ii Ll

ijklY 1      jKkJj  ,     (6.5) 

 

  
  


Jj Kk Ll

iijkl

j

LY     Ii       (6.6) 

 











5

i
i

L
V      Ii       (6.7) 

 

 
 


Jj Kk

iijkl

j

VY      LlIi  ,      (6.8) 
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jijkl
Mm

ijklm HYX 


    LlKkJjIi j  ,,,    (6.9) 

 

 
 


Ii Kk

ijklm

j

X 1     MmLlJj  ,,     (6.10) 

 

 
 


Jj Kk

ijklm

j

X 1      MmLlIi  ,,     (6.11) 

 

 
  


Ii Jj Kk

lmijklm CX III     MmLl  ,     (6.12) 

 

 
  


Ii Ll Mm

jijklm HX     jKkJj  ,     (6.13) 

 

 1,0ijklY      LlKkJjIi j  ,,,    (6.14) 

 
ZLi      Ii       (6.15) 

 
ZVi       Ii       (6.16) 

 

 1,0ijklmX      MmLlKkJjIi j  ,,,,   (6.17) 

 

The objective function (6.1) only reflects the time preferences. An additional constraint (6.2) is 

introduced in order to relate the TA Model results obtained, X'ijk, to this sub-problem. This 

constraint ensures that only course sections that have been allocated to teachers will be 

scheduled on a particular day. The rest of the constraints are similar to those of course 

scheduling constraints in TACS Model III. 

 

CPLEX 10.0 could not solve CS Model optimally due to the complexity of the problem. 

Therefore, we proposed a Lagrangian relaxation approach in order to generate good upper 

bounds for the problem. The Lagrangian relaxation approach essentially relaxes the original 

problem by removing certain constraints and incorporating them in the objective function 

using Lagrangian multipliers. For any given set of multipliers, an upper bound on the CS 

Model is served by the relaxed problem’s objective function. 
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Consider the Lagrangian relaxation that dualizes constraint (6.9) of CS Model using 

Lagrangian multipliers ijklλ . An important property in evaluating a relaxation is the amount of 

computation time required to obtain the solutions (Fisher, 1981; Chien et al., 1989). Equation 

(6.9) is considered as a difficult constraint. After incorporating that constraint in the objective 

function, the relaxed problem can be solved efficiently within a reasonable computation time. 

The relaxed problem, denoted as CS(λ) Model, is given below: 

 

[CS(λ) Model] 

Maximize           
        











Ii Jj jKk Ll Mm
ijklmjijklijkl

Ii Jj jKk Ll Mm
ijklmilmCS XHYλXPTZ III

λ

  =           
       


Ii Jj jKk Ll

jijklijkl
Ii Jj jKk Ll Mm

ijklmijklilm HYλXλPT III  (6.18) 

subject to:  

  (6.2) – (6.8), (6.10) - (6.17)   
 

The above mathematical model is decomposed into two independent sub-models: the first sub-

model, CS1(λ) Model, is the model of creating daily schedules of course sections, while the 

second sub-model, CS2(λ) Model, is that of further scheduling course sections to time periods. 

For the given values of X'ijk and ijklλ , the following sub-models are optimized: 

 

[CS1(λ) Model]: 

 

Maximize      
   


Ii Jj Kk Ll

jijklijklCS

j

HYλZ λ1       (6.19) 

subject to: 

   (6.2) – (6.8), (6.14) - (6.16)   

  

 

[CS2(λ) Model]: 

 

Maximize        
    


Ii Jj jKk Ll Mm

ijklmijklilmCS XλPTZ III
2 λ      (6.20) 

subject to: 

   (6.10) - (6.13), (6.17)  
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An upper bound on the optimal solution value of CS Model,  CSZ , can be computed by the 

following formula:       21 CSCSCS ZZZ  , where  1CSZ and  2CSZ represents the 

solution values of CS1(λ) Model and CS2(λ) Model, respectively. Finally, the upper bound for 

TACS Model IV as well as TACS Model III is calculated by  λZZ CSTA  . The following 

figure represents the entire framework of the construction phase. 

 

 

 

 

 

 

 

 

 

Figure 6.1 Framework of the construction phase 

 

6.2.2.3 The Subgradient Search Method 
 

The best objective function value can be obtained by finding good values for the Lagrangian 

multipliers, and the following dual problem [D] is used for this purpose. 

    [D]      minimizeλ  CSZ      (6.21) 

 

In order to solve the dual problem [D], we use the sub-gradient search method as described in 

Fisher (1981). This method identifies good directions for changing the multipliers ijklλ and 

improving the upper bound. At each subgradient iteration, the best upper bound would be 

updated if the upper bound generated improves the current upper bound. The multipliers are 

updated with the following method: 

TACS Model III 

TACS Model IV 

TA Model CS Model 

CS(λ) Model 

CS2(λ) Model CS1(λ) Model 
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2
DIFF

HYX

θλλ
jijkl

m
ijklm

ijklijkl














   LlKkJjIi j  ,,,   (6.22) 

where,   

 DIFF is the vector of differences between the left-hand sides and the right-hand sides 

of the constraint (6.9) 

 ijklλ  is initially set to zero 

 

θ is the step size and is determined by   LBSC ZλZδθ   , where δ is a step-size multiplier 

such that 20  δ , and is LBZ  is the lower bound corresponding to the best known (heuristic) 

solution to original problem, CS Model. Initially, the value of δ is set to 2 (Fisher, 1981) and it 

would be adjusted by the following formula: δ.δ  50  whenever the objective function 

value of CS'(λ) Model has failed to improve in some specified number of iterations. 

 

6.2.2.4 A Lagrangian Heuristic (Fisher, 1981) 

 

The solutions of the relaxed problem CS(λ) Model may be infeasible to the original problem 

CS Model. As shown in Figure 6.1, since CS Model is part of TACS Model III, we develop a 

heuristic procedure, namely, Lagrangian heuristic, in order to convert an infeasible solution to 

a feasible solution for CS Model and TACS Model III as well.  

 

In the Lagrangian heuristic, we include the consecutiveness constraints that have been 

removed in TACS Model IV. The best feasible solution of the Lagrangian heuristic is treated 

as the lower bound for CS Model. The lower bound of TACS Model III can be obtained by 

combining the lower bound for CS Model and the optimal solution of TA Model. This lower 

bound would then be treated as an initial feasible solution in the improvement phase.  
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In the Lagrangian heuristic, there are two processes involved. The first process examines 

whether the best solution of the relaxed problem CS(λ) is feasible for the original problem, 

TACS Model III, while the second process focuses on building a feasible solution. Each 

process would be described as follows. 

 

The first process  

Let decision variables ijklY and ijklmX be the best upper bound obtained so far in CS1(λ) and 

CS2(λ) Models. These decision variables might not be feasible for TACS Model III. In the first 

process, we define two different decision variables ijklY
~

and ijklmX
~

(with the default values are 

zero) that represent the final solutions of the Lagrangian heuristic. These variables would be 

further used as the initial feasible solution in the improvement phase. 

 

We initially check whether each decision variable ijklY (with value = 1) and the corresponding 

decision variables ijklmX  satisfy the relationship requirement and the consecutiveness 

requirement. For example, Let Y1111 = 1, we check whether 



|M|

m
jm HYX

1
11111111 (the 

relationship requirement). If it is satisfied, we continue to check whether 
 







1

1111

-Hm

mm
jm

j

HX (the 

consecutiveness requirement). If these requirements are satisfied, we set the corresponding 

variables ijklY
~

and ijklmX
~

 equal to 1.  

 

At the end of the first process, we divide the decision variables ijklY
~

into two different sets, 

defined by 

  Ll,KkJ,jI,i,Y
~

Ykj,i,S jijklijkl  11       (6.23) 

 

  Ll,KkJ,jI,i,Y
~

Ykj,i,S jijklijkl  012      (6.24) 
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Here, S1 represents a set of course sections that have already been scheduled while S2 

represents a set of course sections that have not been scheduled yet. The details of the first 

process are presented in Figure 6.2 and Appendix C1. 

 
The first process: (Check the feasibility of the solutions) 

(1)  Define ijklY and ijklmX be the solution values of [CSP'1] and [CSP'2], respectively 

(2)  Define ijklY
~

and ijklmX
~

be the final solution values of [CSP] 

(3)  Define S1 = S2 = Ø 

(4)  Set  Ll,KkJ,jI,iY
~

jijkl  0 and  MmL,l,KkJ,jI,iX
~

jijklm  0   

(5)  For   Ll,KkJ,jI,i,lk,j,i, j  do 

(6)   If 1ijklY   

(7)    Calculate 
Mm

ijklmX  

(8)    If jijkl
Mm

ijklm HYX 


where Hj is the number of time periods required for course j section k  

(9)     Find m  , where m  is the first variable 1ijklmX  

(10)     Let 0sum  

(11)    For mt  to  1 jHm do 

(12)     If 1ijkltX   

(13)       1 sum:sum  

(14)    If jHsum    

(15)     Set 1ijklY
~

 

(16)     For mt  to  1 jHm do 

(17)      Set 1ijklmX
~

  

(18)      kj,i,SS  11  

(19)    Else 

(20)      kj,i,SS  22  

(21)  Else 

(22)    kj,i,SS  22   

 

Figure 6.2 First process of a Lagrangian heuristic 
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The second process 

The idea of the second process is to schedule a set of course sections in Set S2. For each 

 kj,i, in S2, we perform a complete enumeration to find another possible set of day – time 

periods that satisfies the relationship and the consecutiveness constraints. However, we need to 

ensure that other requirements, such as the last period for conducting a course would not 

exceed the number of time period per day, capacity constraint and so forth, will not be violated. 

The details of the second process would be explained as follows.  

 

The process is started by selecting one element  kj,i,  in S2. This variable represents that 

teacher i teach course j section k. The process is continued by examining the first element (li, 

mi)
1
 from LMi as the selected day and the starting time period. We examine whether that 

particular day li and time periods mi to (mi + Hj - 1) satisfy the following constraints:  

 The length of time period required for course j section k will not exceed the number of 

time periods per day (Figure 6.3: Step 4). 

 For course j, at most one section can be conducted per day (Figure 6.3: Step 10, 

corresponding to constraint (6.3)). 

 The number of course sections taught by teacher i on day l has to be less than or equal to 

the maximum number of course sections taught per day, Vi (Figure 6.3: Step 16, 

corresponding to constraint (6.8)). 

 For course j, at most one section can be taught at time period m (Figure 6.3: Step 22, 

corresponding to constraint (6.10)). 

 Teacher i can only be assigned at most one course section on day l time period m (Figure 

6.3: Step 27, corresponding to constraint (6.11)). 

 The number of course sections taught on day l time period m cannot exceed the number of 

classroom available, C
 
(Figure 6.3: Step 32, corresponding to constraint (6.12)). 

 



  Chapter 6 Hybridization of Lagrangian Relaxation and Metaheuristics for the TACS Problem 

 

127 

 

If the first element (li, mi)
1 
satisfies the above-mentioned constraints, we set the corresponding 

variables ijklY
~

and ijklmX
~

 equal to 1 and remove  kj,i, from S2. However, if the first element of 

LMi is not feasible, the next element in LMi with less preference values would be considered. 

Suppose that until the last element of LMi, we still could not find any element (li, mi), we need 

to relax some requirements and find the best possible allocation which refers to any element (li, 

mi) that violates as few constraints as possible. Therefore, we impose some penalty values 

which related to infeasible solutions. This process is repeated until S2 = Ø. The above method 

is similar to the process of allocating course sections to time periods presented in Section 4.2.2. 

The details of the second process are presented in Figure 6.3 and Appendix C2. 

 

A Lagrangian heuristic is executed once after (NH) iterations of sub-gradient search method. 

The entire construction phase is terminated if the number of iterations reaches a predetermined 

limit, NK. Finally, the best feasible solution obtained by a Lagrangian heuristic is used as an 

initial feasible solution in the improvement phase. A Lagrangian heuristic has also been 

applied by Chien et al. (1989) for solving an integrated inventory allocation and vehicle 

routing problem and Kim and Kim (2000) for solving multi-period inventory and distribution 

planning problem. 
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The second process: (Build the feasible solution) 

(1)   For  
2

S kj,i, do 

(2)   Let 1t   

(3)    Set d = tth day component of LMi and start_time = tth time period component of LMi 

(4)    Check whether   MHstart_time j  1  

(5)    If it is not satisfied  

(6)     If MLt  , 1 t:t , go to (3)  

(7)     Else go to (37) 

(8)    Else if it is satisfied 

(9)     For start_timeu   to  1 jHstart_time  

(10)     Check whether  
 


Io Kp

ojpd

j

Y
~

1  (constraint (6.3) is satisfied) 

(11)     If it is not satisfied 

(12)      If MLt  , 1 t:t , go to (3) 

(13)      Else go to (37) 

(14)     Else if it is satisfied 

(15)      For start_timeu   to  1 jHstart_time  

(16)      Check whether  
 


Jp Kq

iipqd

pj

VY
~

1  (constraint (6.8) is satisfied) 

(17)      If it is not satisfied 

(18)       If MLt  , 1 t:t , go to (3) 

(19)       Else go to (37) 

(20)      Else if it is satisfied 

(21)       For start_timeu   to  1 jHstart_time  

(22)       Check whether  
 


Io Kq

ojkdu

j

X
~

1  (constraint (6.10) is satisfied)  

(23)       If it is not satisfied 

(24)        If MLt  , 1 t:t , go to (3) 

(25)        Else go to (37) 

(26)       Else if it is satisfied 

(27)        Check whether  
 


Jp Kq

ipqdu

p

X
~

1  (constraint (6.11) is satisfied)  

(28)        If it is not satisfied 

(29)         If MLt  , 1 t:t , go to (3) 

(30)         Else go to (37) 

(31)        Else if it is satisfied 

(32)         Check whether  
  


Io Jp Kq

opqdu

p

CX
~

 (constraint (6.12) is satisfied) 

(33)         If it is not satisfied  

(34)          If MLt  , 1 t:t , go to (3) 

(35)          Else go to (37) 

(36)         Else if it is satisfied, go to (38) 

(37)   Relax some of the constraints violated and find the best possible allocation   iLMstart_timed,  where 

d and start_time represent the selected day and the starting time period, respectively, go to (38) 

(38)     Set 1 ijkdijkd Y
~

Y and 0ijklY  

(39)     For timestartu _ to  1 jHstart_time  

(40)       Set 1ijkluX
~

 

(41)      kj,i,SS  11 and  kj,i,\SS 22   

 

Figure 6.3 Second process of the Lagrangian heuristic 
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6.2.3 The Improvement Phase 

 

At the end of previous phases, an initial feasible solution is obtained. This solution will be 

further improved in the improvement phase. We apply a modified Simulated Annealing (SA) 

algorithm which has attracted significant attention as an approach for large optimization 

problems (Ross, 2000). We apply the same idea of Algorithm SA2 proposed in Chapter 5. The 

details of Algorithm LR-SA are summarized in Appendix C3. 

 

6.3 Computational Results 

 

All the computational experiments were performed on a 2.6 GHz Intel Pentium IV PC with 

512 MB of RAM running the Microsoft Windows XP Operating System. The proposed 

algorithm was coded in C++. CPLEX 10.0 is used for obtaining the solutions of the TA Model, 

CS1(λ) Model and CS2(λ) Model. 

 

Computational experiments to evaluate the performance of the proposed algorithm were 

performed on two sets of different test problems presented in Chapter 3. The proposed 

algorithm requires few parameters to be set. Since we would like to make our results as 

reproducible as possible, we limit our runs in this experiment to a single set of parameter 

settings. Table 6.1 summarizes the values of the parameters used in the computational study 

which obtained throughout the experiment. 
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Table 6.1 Parameter setting for Algorithm LR-SA 

Parameter Value 

Number of iterations needed before applying the heuristic procedure, NH 20 

Number of iterations in the construction phase,  NK 100 

Number of iterations, outer_loop |I|×|L|×|M| 

Initial temperature, T0 10,000 

Number of neighbor moves at each temperature Tn, inner_loop |I|×|L|×|M| 

Cooling factor, α 0.95 

Number of non-improvement iterations prior to intensification, limit 0.05×|I|×|L|×|M| 

 
 

The proposed algorithm was executed 20 times on each data set.  Tables 6.2 and 6.3 

summarize the overall results that include the objective function values obtained by solving the 

TACS' Model, the average CPU time required to solve the TACS' Model, as well as the 

average objective function value obtained, the best objective function value obtained and the 

average CPU time required to obtain the solution by both Algorithm SA-TS proposed in 

Chapter 5 and Algorithm LR-SA. 

 

In most cases, the Algorithm LR-SA found better average objective values than those of 

Algorithm SA-TS except for the following data sets: 5×5_1 no 2, 10×10_2 no 3, 20×20_2 no 4, 

30×60_2 no 1 and 4.  In general, we conclude that Algorithm LR-SA outperforms Algorithm 

SA-TS. 
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Table 6.2 Computational results of Algorithm LR-SA on Group I data sets 

 

 

Data Set 

Solution obtained by 

commercial software 
Algorithm SA-TS Algorithm LR-SA 

Objective 

function 

value 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

5×5_1(1) 1130 2.43 1100 1100 0.75 1130 1130 0.00 

5×5_1(2) 1090 2.23 1088.5 1090 0.78 1065 1090 0.00 

5×5_1(3) 1040 1.65 1040 1040 0.76 1040 1040 0.00 

5×5_1(4) 1020 2.04 1012 1020 0.77 1020 1020 0.00 

5×5_1(5) 980 1.82 980 980 0.77 980 980 0.00 

5×5_2(1) 1280 1.85 1225.5 1230 0.68 1230 1230 0.00 

5×5_2(2) 1290 2.45 1290 1290 0.72 1290 1290 0.00 

5×5_2(3) 1110 2.25 1097 1110 0.73 1110 1110 0.00 

5×5_2(4) 1190 2.03 1148.5 1160 0.66 1160 1160 0.00 

5×5_2(5) 1210 2.25 1210 1210 0.71 1210 1210 0.00 

10×10_1(1) 2340 31.07 2325 2340 5.12 2340 2340 6.7 

10×10_1(2) 2260 11.59 2242.5 2260 5.44 2260 2260 5.65 

10×10_1(3) 2200 22.15 2200 2200 5.91 2200 2200 5.4 

10×10_1(4) 2020 12.50 2019 2020 5.57 2020 2020 7.55 

10×10_1(5) 2100 15.03 2090 2090 5.65 2100 2100 6.55 

10×10_2(1) 2860 49.97 2845.5 2850 4.98 2850 2850 7.4 

10×10_2(2) 2780 32.29 2764 2780 4.51 2780 2780 6.25 

10×10_2(3) 2780 19.70 2777.5 2780 4.39 2776.5 2780 3.65 

10×10_2(4) 2540 10.96 2478.5 2500 5.01 2490 2490 5.6 

10×10_2(5) 2600 46.03 2547 2550 5.14 2550 2550 10.35 

15×15_1(1) 3080 67.23 3069 3070 19.65 3080 3080 41.8 

15×15_1(2) 3270 200.32 3270 3270 18.18 3270 3270 41.1 

15×15_1(3) 3130 222.63 3119 3130 19.84 3130 3130 31.8 

15×15_1(4) 3280 70.53 3212.5 3270 21.75 3280 3280 39.3 

15×15_1(5) 3090 123.95 3039 3080 19.57 3090 3090 43.5 

15×15_2(1) 4170 265.11 4099.5 4120 18.38 4120 4120 42.4 

15×15_2(2) 4260 554.36 4223 4230 18.43 4260 4260 39.75 

15×15_2(3) 4150 189.92 4141 4150 18.78 4150 4150 32.35 

15×15_2(4) 4320 401.42 4280.5 4300 17.78 4281.5 4300 33.55 

15×15_2(5) 3930 748.90 3844.5 3900 17.59 3889 3890 29.4 

20×20_1(1) 4290 583.82 4289 4290 31.23 4290 4290 67.6 

20×20_1(2) 4330 177.10 4220 4250 31.67 4330 4330 74.85 

20×20_1(3) 4340 444.72 4294.5 4320 31.39 4340 4340 67.3 

20×20_1(4) 4540 172.26 4540 4540 30.63 4540 4540 68.8 

20×20_1(5) 4340 312.01 4230 4300 30.38 4340 4340 75.5 

20×20_2(1) 5660 6,637.76 5574.5 5610 30.30 5588 5620 77.9 

20×20_2(2) 5730 2,127.28 5554.5 5630 28.58 5674 5690 69.4 

20×20_2(3) 5770 9,367.78 5482.5 5600 28.30 5552 5620 68.4 

20×20_2(4) 5880 379.04 5798 5850 29.68 5775 5830 61.3 

20×20_2(5) 5680 2,552.72 5560.5 5620 28.18 5601 5630 63.1 
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Table 6.3 Computational results of Algorithm LR-SA on Group II data sets 

 

 

Data Set 

Solution obtained by 

commercial software 

Algorithm SA-TS Algorithm LR-SA 

Objective 

function 

value 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

10×20_1(1) 7590 1578.91 7145.5 7250 6.55 7335 7350 12.08 

10×20_1(2) 8210 588.28 7563 7720 5.56 7625 7740 17.34 

10×20_1(3) 7670 311.59 7108.5 7200 5.86 7056 7290 15.9 

10×20_1(4) 7560 2789.25 6907.5 7070 6.24 7105.5 7130 15.6 

10×20_1(5) 7800 647.54 7429.5 7490 6.47 7591.5 7640 15.76 

10×20_2(1) 7660 1114.60 7186 7360 6.81 7388.5 7420 14.04 

10×20_2(2) 8480 423.92 7655.5 7760 5.50 7912 7950 15.48 

10×20_2(3) 7970 541.53 7033 7160 5.95 7360.5 7420 13.18 

10×20_2(4) 7730 3473.21 7113 7210 6.29 7310 7360 13.52 

10×20_2(5) 7830 812.51 7245 7320 6.65 7358 7360 14.34 

20×30_1(1) 11010 10283.73 10568.5 10680 35.26 10745.5 10770 91.95 

20×30_1(2) 11140 9265.63 10718.5 10920 37.73 10940 10960 96.4 

20×30_1(3) 10430 10598.13 9812 9930 30.59 10040 10040 82.75 

20×30_1(4) 10920 18584.29 10085 10230 32.44 10432 10550 82.3 

20×30_1(5) 11260 9469.55 10711 10880 33.34 10969.5 11090 82.05 

20×30_2(1) 13090 17184.70 12424 12580 66.36 12454 12470 127.75 

20×30_2(2) 12880 55032.51 12254.5 12390 29.79 12550 12550 121.9 

20×30_2(3) 13660 47060.92 12287.5 12490 48.03 12904 13030 115.35 

20×30_2(4) 14260 38239.02 13155 13250 49.05 13405 13410 125.2 

20×30_2(5) 13450 22582.79 12165.5 12410 49.05 12539.5 12780 117.95 

20×40_1(1) 13210a -b 12704 12920 128.36 12927 13000 123.6 

20×40_1(2) 14010 a - b 12654.5 12890 139.92 13256.5 13320 119.85 

20×40_1(3) 13360 a - b 12547 12720 132.54 12648.5 12910 126.45 

20×40_1(4) 13860 a - b 12844 12990 138.97 12875.5 13060 111.85 

20×40_1(5) 14270 a - b 12995 13220 137.97 13646.5 13770 118.65 

20×40_2(1) 16190 a - b 14957.5 15120 101.42 15484.5 15530 188.25 

20×40_2(2) 17440 a - b 15462 15600 107.91 15829 16290 172.95 

20×40_2(3) 17240 a - b 15423.5 15540 104.45 15576 15850 179.65 

20×40_2(4) 16700 a - b 14856.5 15060 104.26 15653.5 15780 163.25 

20×40_2(5) 16690 a - b 15034 15250 99.74 15049 15550 177.85 

30×60_2(1) 20540 a - b 19346.5 19530 389.06 19535 19790 609.3 

30×60_2(2) 21060 a - b 19695 19830 477.57 20444.5 20570 587.7 

30×60_2(3) 20710 a - b 19375.5 19550 390.22 19580.5 19860 626.1 

30×60_2(4) 21890 a - b 20806.5 20910 379.60 21202.5 21370 575 

30×60_2(5) 21170 a - b 19749.5 20010 359.04 20241.5 20560 559.3 

30×60_1(1) - a - b 23498.5 23940 387.13 23363 24070 843.3 

30×60_1(2) 25180 a - b 22782.5 23200 487.88 24272.5 24350 727.9 

30×60_1(3) - a - b 22959 23270 418.27 23042 23570 661.9 

30×60_1(4) - a - b 23583.5 23840 384.61 22849 23570 699 

30×60_1(5) 24480 a - b 22793.5 23180 394.47 22983.5 23450 685.5 
a
 The best known solution obtained within 24 hours 

b
 CPU time = 24 hours 

 

A solution of 10×20_1(1) is represented in Appendix E. The LR-SA can reach the optimal 

solutions for most of instances in Group I data sets. On the run of LR-SA, the average CPU 

time required is longer than that of SA-TS. It is due to the algorithm applied in the 
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construction phase. The Lagrangian relaxation procedure takes longer time to generate the 

initial solutions. Nevertheless, better solutions on the objective function values are obtained. 

 

Table 6.4 Comparison of the algorithm results and the optimal solutions on Group I data sets 

Data Set 
Algorithm SA-TS Algorithm LR-SA 

TSSA
)1(
 (%) TSSA

)2(
 (%) SALR

)1(
 (%) SALR

)2(
 (%) 

5×5_1(1) 2.65 2.65 0.00 0.00 

5×5_1(2) 0.14 0.00 2.29 0.00 

5×5_1(3) 0.00 0.00 0.00 0.00 

5×5_1(4) 0.78 0.00 0.00 0.00 

5×5_1(5) 0.00 0.00 0.00 0.00 

5×5_2(1) 4.26 3.91 3.91 3.91 

5×5_2(2) 0.00 0.00 0.00 0.00 

5×5_2(3) 1.17 0.00 0.00 0.00 

5×5_2(4) 3.49 2.52 2.52 2.52 

5×5_2(5) 0.00 0.00 0.00 0.00 

10×10_1(1) 0.64 0.00 0.00 0.00 

10×10_1(2) 0.77 0.00 0.00 0.00 

10×10_1(3) 0.00 0.00 0.00 0.00 

10×10_1(4) 0.05 0.00 0.00 0.00 

10×10_1(5) 0.48 0.48 0.00 0.00 

10×10_2(1) 0.51 0.35 0.35 0.35 

10×10_2(2) 0.58 0.00 0.00 0.00 

10×10_2(3) 0.09 0.00 0.13 0.00 

10×10_2(4) 2.42 1.57 1.97 1.97 

10×10_2(5) 2.04 1.92 1.92 1.92 

15×15_1(1) 0.36 0.32 0.00 0.00 

15×15_1(2) 0.00 0.00 0.00 0.00 

15×15_1(3) 0.35 0.00 0.00 0.00 

15×15_1(4) 2.06 0.30 0.00 0.00 

15×15_1(5) 1.65 0.32 0.00 0.00 

15×15_2(1) 1.69 1.20 1.20 1.20 

15×15_2(2) 0.87 0.70 0.00 0.00 

15×15_2(3) 0.22 0.00 0.00 0.00 

15×15_2(4) 0.91 0.46 0.89 0.46 

15×15_2(5) 2.18 0.76 1.04 1.02 

20×20_1(1) 0.02 0.00 0.00 0.00 

20×20_1(2) 2.54 1.85 0.00 0.00 

20×20_1(3) 1.05 0.46 0.00 0.00 

20×20_1(4) 0.00 0.00 0.00 0.00 

20×20_1(5) 2.53 0.92 0.00 0.00 

20×20_2(1) 1.51 0.88 1.27 0.71 

20×20_2(2) 3.06 1.75 0.98 0.70 

20×20_2(3) 4.98 2.95 3.78 2.60 

20×20_2(4) 1.39 0.51 1.79 0.85 

20×20_2(5) 2.10 1.06 1.39 0.88 

Average 1.24 0.70 0.64 0.48 

Maximum 4.98 3.91 3.91 3.91 

Minimum 0.00 0.00 0.00 0.00 
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Table 6.5 Comparison of the algorithm results and the optimal solutions on Group II data sets 

Data Set 
Algorithm SA-TS Algorithm LR-SA 

TSSA
)1(
 (%) TSSA

)2(
 (%) SALR

)1(
 (%) SALR

)2(
 (%) 

10×20_1(1) 5.86 4.48 3.36 3.16 

10×20_1(2) 7.88 5.97 7.13 5.72 

10×20_1(3) 7.32 6.13 8.01 4.95 

10×20_1(4) 8.63 6.48 6.01 5.69 

10×20_1(5) 4.75 3.97 2.67 2.05 

10×20_2(1) 6.19 3.92 3.54 3.13 

10×20_2(2) 9.72 8.49 6.70 6.25 

10×20_2(3) 11.76 10.16 7.65 6.90 

10×20_2(4) 7.98 6.73 5.43 4.79 

10×20_2(5) 7.47 6.51 6.03 6.00 

20×30_1(1) 4.01 3.00 2.40 2.18 

20×30_1(2) 3.78 1.97 1.80 1.62 

20×30_1(3) 5.93 4.79 3.74 3.74 

20×30_1(4) 7.65 6.32 4.47 3.39 

20×30_1(5) 4.88 3.37 2.58 1.51 

20×30_2(1) 5.09 3.90 4.86 4.74 

20×30_2(2) 4.86 3.80 2.56 2.56 

20×30_2(3) 10.05 8.57 5.53 4.61 

20×30_2(4) 7.75 7.08 6.00 5.96 

20×30_2(5) 9.55 7.73 6.77 4.98 

20×40_1(1) 3.83 2.20 2.14 1.59 

20×40_1(2) 9.68 7.99 5.38 4.93 

20×40_1(3) 6.09 4.79 5.33 3.37 

20×40_1(4) 7.33 6.28 7.10 5.77 

20×40_1(5) 8.93 7.36 4.37 3.50 

20×40_2(1) 7.61 6.61 4.36 4.08 

20×40_2(2) 11.34 10.55 9.24 6.59 

20×40_2(3) 10.54 9.86 9.65 8.06 

20×40_2(4) 11.04 9.82 6.27 5.51 

20×40_2(5) 9.92 8.63 9.83 6.83 

30×60_2(1) 5.81 4.92 4.89 3.65 

30×60_2(2) 6.48 5.84 2.92 2.33 

30×60_2(3) 6.44 5.60 5.45 4.10 

30×60_2(4) 4.95 4.48 3.14 2.38 

30×60_2(5) 6.71 5.48 4.39 2.88 

30×60_1(1) - - - - 

30×60_1(2) 9.52 7.86 3.60 3.30 

30×60_1(3) - - - - 

30×60_1(4) - - - - 

30×60_1(5) 6.89 5.31 6.11 4.21 

Average 7.41 6.13 5.17 4.24 

Maximum 11.76 10.55 9.83 8.06 

Minimum 3.78 1.97 1.80 1.51 

 

We calculate the deviation of the best and the average objective function values of the 

proposed algorithms from best known/optimal value, denoted as SALR
)1(
 and SALR

)2(
 as shown 

in Tables 6.4 and 6.5. 
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For Group I data sets, the maximum value of SALR
)1(
 is less than 4%, which is better than the 

value obtained by Algorithm SA-TS (4.98%). Similar to the performance of SA-TS, Algorithm 

LR-SA is able to obtain the optimal solutions for all instances in data sets 5×5_1, 10×10_1, 

15×15_1 and 20×20_1. The average values of the deviation of the best and the average 

objective function values also decrease from 1.24% to 0.64% and 0.70% to 0.48%, 

respectively. 

 

LR-SA also shows good performance in Group II data sets. The worst values of SALR
)1(
 and 

SALR
)2(
 are less than 10%. For large instances, such as 30×60_1 and 30×60_2, the values are 

much better compared against those of SA-TS. 

 

6.4 Conclusions 

 

In this chapter, we have studied and presented a successful hybrid algorithm, Algorithm LR- 

SA, for tackling the TACS problem. The algorithm integrates the Lagrangian relaxation 

procedure and Simulated Annealing algorithm. The performance of the proposed algorithm is 

measured by applying the algorithm to the same problems presented in the earlier chapters.  

 

The computational results show that the proposed algorithm is able to produce good quality 

solutions which are less than 10% of the best known or optimal solutions. For most problem 

instances in Group I data sets, the optimal solutions can be reached by the proposed algorithm. 

We conclude that Algorithm LR-SA outperforms Algorithm SA-TS proposed in Chapter 6 in 

terms of both the average and the best objective function values obtained. The Lagrangian 

relaxation approach is able to construct good quality initial solutions that would lead to better 

quality final solutions. 
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This work has raised several issues, which remain as possible future research directions. Some 

possible extensions of the proposed mathematical model can be explored, such as by 

incorporating specific constraints or requirements of other universities or institutions, 

incorporating the classroom assignment sub-problem and so forth.  Finally, we extend the idea 

of the hybrid algorithm to solve another category of the educational timetabling problem, 

namely, the examination timetabling problem. The details would be explained in Chapter 7.  
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CHAPTER VII  

HYBRIDIZATION OF METAHEURISTICS FOR THE 

EXAMINATION TIMETABLING PROBLEM 

 

7.1 Introduction 

 

The examination timetabling problem is another category of the educational timetabling 

problem. Setting up a conflict-free timetable is not a trivial task due to limited resources like 

periods and examination rooms. In particular, the primary goal in the examination timetabling 

problem is no student takes more than one examination in any time period. This conflict is 

categorized as a hard constraint and must be eliminated.  

 

Several authors define a situation when a student is required to attend more than one 

examination at the same time as the first-order conflict. (Balakrishnan, et al., 1992 and 

Bullnheimer, 1998). Besides the first-order conflicts, there are so-called back-to-back or 

second-order conflicts. This term refers to a situation where a student has to take two 

consecutive examinations. Finally, there may be higher-order conflicts dealing with other 

constraints, such as room capacities and so on. 

 

Different variants of the examination timetabling problem have been proposed in the literature. 

The allocation is an important and difficult task for each educational institutions since it 

requires expensive human and computer resources. Several surveys of practical applications of 

examination timetabling algorithms were discussed by Carter (1986) and Burke et al. (1996). 

The following soft constraints represent some of the common requirements in the examination 

timetabling problem:  

(1) Limitation on available rooms per time period. 
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(2) Students should not have examinations in consecutive periods or more than one 

examination on the same day. 

 

The examination timetabling problem can be represented as an undirected weighted graph, 

where vertices and edges represent examinations and conflicts between examinations, 

respectively (de Werra, 1985). For illustration purpose, Figure 7.1 shows a simple examination 

problem. For example, the weight of course 1 is 20, meaning that 20 students are enrolled in 

this course. The number of students who are enrolled in examinations 1 and 3 is 4 students. 

 

Figure 7.1 An example of examination timetabling problem as an undirected weighted graph 

 

The above graph is linked to the graph colouring problem. The problem is an assignment of 

colour to vertices in such a way that no two adjacent vertices share the same colour. The graph 

colouring problem is known as NP-complete (Garey and Johnson, 1977). 

 

Although a graph theory approach is commonly used to generate the examination schedule, 

various restrictions introduced to the problem, such as the second order and higher-order 

conflicts, limit the use of a graph theoretic approach (Arani and Lotfi, 1989). To deal with 

these conflicts, Leong and Yeong (1990) have formulated the examination timetabling 

problem as Quadratic Assignment Problem (QAP).  
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The rest of this chapter is organized as follows. Section 7.2 describes a review of QAP and its 

relationship to the examination timetabling problem. A hybrid algorithm is then proposed in 

order to solve the problem, namely, Algorithm GRASP-SA-TS. Basically, three different 

algorithms involved are: GRASP (Greedy Randomized Adaptive Search Procedure), 

Simulated Annealing (SA) and Tabu Search (TS).  

 

The idea of the hybrid algorithm is similar to that of Algorithm SA-TS proposed in Chapter 5. 

The main difference lies in the algorithm implemented in the construction phase. Here, we 

propose GRASP algorithm in order to build an initial solution in the construction phase. The 

computational results obtained with our hybrid algorithm are reported. Section 7.3 presents the 

extended examination timetabling problem, including the mathematical programming model, 

the lower bound, the proposed algorithm and the computational results as well. Finally, some 

concluding remarks are provided in Section 7.4. 

 

7.2 The Quadratic Assignment Problem (QAP) 

 

The QAP was first introduced by Koopmans and Beckmann (1957) to model a plant location 

problem. This problem belongs to the class of NP-hard combinatorial optimization problems 

(Sahni and Gonzales, 1976). Due to wide assortment of applications, The QAP has been 

extensively used to formulate other practical problems as summarized in Table 7.1. 

 

Some of the last surveys about QAP in the literature were presented by Burkard (1984), 

Burkard (1990), Anstreicher (2003), Drezner et al. (2005) and Loiola et al. (2007). The article 

of Anstreicher (2003) reviewed the recent advances in the solutions of QAP. A summary of the 

progress made in both heuristic and exact solutions for the QAP was presented by Drezner et 

al. (2005). By configuring some new QAP instances with non-uniform distributed flow 
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distances and flows, the authors showed that those instances are difficult for metaheuristics. 

Loiola et al. (2007) continued to summarize new publications about QAP since 1999 including 

some of the most important formulations as well as a detailed discussion on the theoretical 

resources used to define lower bounds for exact and heuristic solutions methods. 

 

Table 7.1 Several applications of the Quadratic Assignment Problem 

No Problem Authors 

1 Economic problems Koopmans and Beckmann (1957) and Heffley (1980)  

2 Scheduling problems Geoffrion and Graves (1976) 

3 Facility layout problems Elshafei (1977), Dickey and Hopkins (1972), Benjaafar 

(2002) and Miranda et al. (2005) 

4 Timetabling problems Leong and Yeong (1987), Arani and Lotfi (1989) and 

Bullnheimer (1998)  

5 Electronic component placement problems Steinberg (1961) and Miranda et al. (2005) 

 

The QAP is identified as the problem of finding a minimum cost allocation of facilities into 

locations, taking the costs as the sum of all possible distance-flow products. This problem can 

be formulated as integer programming (IP) formulations (Wilhelm and Ward, 1987; Rossin et 

al., 1999 and Fedjki et al., 2004). In these formulations, the quadratic terms are included in the 

objective function value. The QAP can also be formulated as mixed integer linear 

programming (MILP) formulations by transforming quadratic terms into linear terms (Lawler, 

1963; Frieze and Yadegar, 1983 and Adam and Johnson, 1994).  

 

Taking a simple approach, the pairwise allocation of facility costs to adjacent locations is 

proportional to flows and the distances between them. In this case, the QAP can be formulated 

by using the permutation concept (Hillier and Connors, 1966; Taillard, 1991 and Lim et al., 

2000) as follows: the objective is to find a permutation of n facilities such that the total cost 

 πC  is minimized. Let fij be the flow between facilities i and j and    jid   be the distance 

between locations  i  and  j . The QAP problem then becomes: 
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 
      
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1 1



        (7.1) 

where  n  is the set of all permutations of integers {1, 2, …, n}. 

 

Here, the solution is represented by the n-vector:         n,,,,  321  and the element 

  ki  denotes that facility i is assigned to location k in the current solution  n . 

 

The permutation concept is similar to that of the permutation scheduling problem (PFSP). 

PFSP is a class of scheduling problems in which the operations of every job must be processed 

on machines in the same order and the processing order of the jobs on the machines is the 

same for every machine (Tseng and Lin, 2009). In PFSP, the objective is to find a permutation 

of n jobs,       n,...,,  21 , in the set of all permutations  n such that the total flow 

time (makespan) is minimized. 

 

The quality of the solutions obtained from heuristic algorithms is measured by the gap between 

the lower bound value and the optimal solution. One of well-known QAP lower bound was 

presented by Gilmore (1962) and Lawler (1963), namely, GLB. Its importance is due to its 

simplicity. However, it shows an important drawback as its gap grows very quickly with the 

size of the problem. 

 

Drezner (1995) proved that bound based on the linear programming relaxation is equal or 

better than the GLB bound. Other different types of lower bounds proposed are the elimination 

bound (ELI), an interior point based linear programming bound (IPLP) (Resende et al., 1995), 

a semi-definite programming bound (SDP) (Rendl and Sotirov, 2007) and a triangle 

decomposition bound (TDB) (Karisch and Rendl, 1995).  
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In the literatures, two different approaches for solving the QAP are divided into two categories: 

exact and heuristic algorithms. In the first case, the most frequent used strategies are branch 

and bound, branch and cut and dynamic programming techniques. As exact methods can only 

be used to solve small-size instances of the problem, much research effort has been devoted to 

the development of heuristic solution procedures that can be performed in reasonable 

computation time and yet yield optimal or near-optimal solutions.  

 

Heuristic algorithms are classified into the following categories: constructive, limited 

enumeration and improvement methods/metaheuristics (Loiola et al., 2007). There are number 

of heuristic techniques using different conceptions as summarized in Table 7.2. Constructive 

methods construct a sub-optimal permutation step by step. It starts with a partial permutation π 

which is empty. Then π is expanded by repetitively selecting a pair of assignment (i, j) such 

that Mi and  Mπj  according to certain heuristic, where M is the index set containing the 

indices of π for which the corresponding assignments are done and π(M) is the set   Mi|i  . 

This process is repeated until π becomes a complete permutation. 

 

Enumeration methods can guarantee the optimal solution only if they can go to the end of the 

enumerative process. Unfortunately, it usually takes much longer to reach the optimality. In 

order to limit the computation time of the enumeration, stopping conditions are defined: 

maximum number of iterations, a limit for the execution time and so forth.  

 

Improvement methods are mostly used in the QAP. It is started with a feasible solution that 

will be further improved by searching for possible solutions in its neighborhood. In particular, 

improvement heuristic methods are frequently used in metaheuristics.  
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Table 7.2 Some applications of heuristics to the Quadratic Assignment Problem 

No Methods Authors 

1 Constructive methods Arkin et al. (2001), Gutin and Yeo (2002) 

and Yu and Sarker (2003) 

2 Enumeration methods Burkard and Bonniger (1983) and West 

(1983) 

3 Simulated Annealing Burkard and Rendl (1984), Connoly (1990), 

Peng et al. (1996), Tian et al. (1996)  and 

Siu and Chang (2002) 

4 Genetic Algorithm Ahuja et al. (2000), Lim et al. (2000) and 

Lim et al. (2002) 

5 Ant Colony Algorithm Dorigo et al. (1996) and Maniezzo and 

Colorni (1995, 1999) 

6 Tabu Search Kapov (1990), Taillard (1991) and Drezner 

(2005) 

7 GRASP Li et al. (1994)  

 

As mentioned in Section 7.1, there is a strong relationship between Quadratic Assignment and 

the examination timetabling problem. Examinations can be treated as facilities that need to be 

scheduled on different time periods (locations). Here, we formulate the basic examination 

timetabling problem as a Quadratic Assignment Problem by assuming that the number of 

examinations and available time periods are equal. Each examination has to be scheduled on 

one time period and each time period can only be occupied by one examination. These 

requirements are identical with the requirements of the QAP.  

 

In QAP, the objective function represents the total cost of assignment of all facilities to all 

locations, which is the product of the flow between facilities and the distance between 

locations. The primary goal in the examination timetabling problem is to avoid overlap of 

examinations having common students. Other goals such as to minimize the number of 

students who have two examinations in any consecutive periods and to spread examinations 

with higher number of common students as much as possible can also be considered. Thus, 
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these goals can be formulated using the objective function in the QAP with appropriate cost 

values that would be explained in the next section.    

 

The following sub-sections will describe the mathematical programming model of the basic 

examination timetabling problem, the proposed algorithm as well as the computational results 

in details. 

 

7.2.1 The Mathematical Programming Model 

 

Consider the basic examination scheduling problems with n (= |M|) slots or time periods and n 

(= |M|) examinations to be scheduled. Given two matrices FLOW = [f'tu] and COST = [c'vw] 

where elements tuf  and vwc represent the number of students taking examinations t and u and 

the cost between time period v and time period w, respectively, the examination problem can 

be formulated as a Quadratic Assignment Problem (EP Model I).  

 

We define the following decision variable: 

 tvx  = 1 if exam t is scheduled at time period v, 0 otherwise     nvt, 1  

 

 

[EP Model I] (Leong and Yeong, 1987) 

 

Minimize 
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I       (7.2) 

 

subject to:  

 

1
1




n

t
tvx   nv 1         (7.3) 

 

1
1




n

v
tvx   nt 1         (7.4) 

 

 1,0tvx   nvt, 1         (7.5) 
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The value of vwc is then calculated as follows: 
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
       (7.6) 

where vwd  = the “distance” between time periods v and w 

 M̂  = a very large number 

 

The following illustration explains how to determine and calculate the value of vwc . Linear 

distance cost which is generally used in QAP cannot be applied directly to the examination 

timetabling problem. Here, we use a cost function that is inversely proportional to distance. Let 

assume that the number of days per week is 5 days and the number of time periods per week is 

equal to 40 periods. The distance between time period 3 and time period 9 is 6 time periods 

and the cost between these time periods 
39

c  is 61 .  

 

In order to avoid a situation where students have to take more than one examination at one 

time period (first-order conflict), the cost between time periods v and w (when v = w) is set to a 

very large number. The main objective in this model is to minimize the number of students 

who have two examinations in any consecutive periods (second-order conflict), as shown in 

equation (7.2). Both constraints (7.3) and (7.4) ensure that one time period can only be 

occupied by one examination and each examination can only be scheduled on one time period 

and, respectively. These constraints also ensure that the first-order conflict will not occur. 

 

The EP Model I can be represented as a permutation problem: 

 
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where  n  is the set of all permutations of integers {1, 2, …, n}. 
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The solution is represented by the n-vector:         n ,,3,2,1   and the element 

  rtπ  denotes that examination t is assigned to time period r in the current solution  n . 

 

7.2.2 The Proposed Algorithm 

 

In this chapter, we introduce a new hybrid metaheuristic for the examination timetabling 

problem, which involves GRASP as well as a hybridization of SA and TS algorithms as 

presented in Chapter 5. The Greedy Randomized Adaptive Search Procedure (GRASP) is a 

simple metaheuristic that combines constructive heuristics and a local search (Feo and 

Resende, 1995). Several applications of GRASP can be found in the following problems: 

assignment problems (Prais and Riberio, 2000), the Quadratic Assignment Problem (Yong et 

al., 1994), airline flight scheduling and maintenance base planning (Feo and Bard, 1989) and 

scheduling of parallel machines (Laguna and Velarde, 1991). 

 

The entire algorithm comprises of two main phases: (1) construction, and (2) improvement. 

The GRASP is used to initialize a solution in the first phase, while a combination of SA and 

TS (denoted as the Algorithm SA-TS) is for improving the solution in the second phase. Each 

phase is presented and described in the following sub-sections. 

 

7.2.2.1 The Construction Phase 

 

In the construction phase, we build an initial solution by implementing part of the Greedy 

Randomized Adaptive Search Procedure (GRASP) (Yong et al., 1994). GRASP consists of 

two processes: a construction process and a local search process. In the first phase 

(construction phase), an initial feasible solution is constructed. Since the solutions by a 

GRASP construction are not guaranteed to be optimal, it is almost always beneficial to apply a 
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local search to attempt to improve the initial solution in the local search process. Normally, a 

local optimization procedure such as a two-exchange is employed. However, in our 

implementation, we only consider the first process of GRASP in order to build an initial 

solution. The initial solution is then improved by Algorithm SA-TS proposed in Chapter 5.  

 

Construction Phase ( ) 

(1) Sort the   22 /nn  flow entries in FLOW in increasing order and keep the 

largest   22 /nnβ  entries, such that
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candidate restriction parameter  10    and  x be the largest integer smaller or equal to x. 

(2) Sort the   22 /nn  cost entries in COST in non-increasing order and keep the 

smallest   22 /nnβ  entries, such that
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
 


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





 


2222222222221111

/nnβ/nnβ/nnβ/nnβ
wvutwvutwvut cf,,cf,cf  ,sort 

them in increasing order and keep the smallest   22 /nnγβ  elements as the candidate list, where 

γ is the second candidate restriction parameter  10  γ . 

(4) Select a couple of assignment pairs from the candidate list randomly. 

(5) Calculate tvC , the cost of assigning examination t to time period v, with respect to the already-

made assignments, Γ : 

 




Γwu,

vwtutv cfC where       rr w,u,,w,u,w,uΓ ~~2211   

(6) Set o = the number of unassigned examinations and m = the number of unassigned examination-

time period pairs 

(7) Determine the  γm examination-time period pairs having the smallest tvC values. 

(8) Select an examination-time period pair  vt,  randomly from the list generated in Step 7. 

(9) Update the set  vt,ΓΓ   

(10) Set 1 oo  

(11) Repeat Steps 5 – 10 until o = 0 

 

Figure 7.2 Construction phase of GRASP Algorithm 

 

The process is started by selecting the first 2 assignments based on the minimum cost of 

interaction vwtucf  , followed by assigning the remaining (n – 2) examinations based on the cost 

of assigning a particular examination with respect to the already-made assignments, i.e. we 

select the one that has the minimum cost. This process is made until all the remaining (n – 2) 

examinations are assigned. The time complexity for finding minimum cost of 

interaction vwtucf  is O(n
2
). The details of the construction process of GRASP are described in 

Figure 7.2 (Yong et al., 1994). 
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A numerical example for illustrating the construction phase in the GRASP algorithm is given 

as follows. Consider the basic examination scheduling problems with n (= 5) time periods and 

n (= 5) examinations to be scheduled. Two matrices FLOW = [f'tu] and COST = [cvw] represent 

the number of students who take examinations and the cost between two different time periods, 

respectively. For example, there are 10 students who take examinations 1 and 2 as represented 

by f'12 and the cost between time periods 1 and 3 is 0.5.  

                                          FLOW                                                     COST 

 

1 2 3 4 5 

  

1 2 3 4 5 

1 0 10 0 15 5 

 

1 - 1 0.5 0.33 0.25 

2   0 2 0 25 

 

2   - 1 0.5 0.33 

3   

 

0 7 8 

 

3   

 

- 1 0.5 

4   

  

0 2 

 

4   

  

- 1 

5         0 

 

5         - 

 

Figure 7.3 A numerical example for illustrating GRASP algorithm 

Let β = 0.5 and γ = 0.6, we sort (n
2
 - n)/2 = 10 flow entries in FLOW, keeping the 

  22 /nnβ   = 5 largest values: f'25 ≥ f'14 ≥ f'12 ≥ f'35 ≥ f'34 and sort (n
2
 - n)/2 = 10 cost entries 

in COST, keeping the   22 /nnβ   = 5 smallest values: c'15 ≤ c'14 ≤ c'25 ≤ c'13 ≤ c'24. Then, we 

sort the costs of interaction f'25c'15, f'14c'14, f'12c'25, f'35c'13, f'34c'24 in increasing order and keep the 

smallest   22 /nnβ   = 3 elements: f'12c'25 ≤ f'34c'24 ≤ f'35c'13 as the candidate list (Figure 7.4). 

 

f'12c'25 f'34c'24 f'35c'13 f'14c'14 f'25 c'15 

3.33 3.5 4 5 6.25 

 

Figure 7.4 A numerical example of the costs of interaction in GRASP algorithm 

 

We then select a couple of assignments having the smallest interaction cost from the candidate 

list randomly. Note that the above ordering of the cost elements needs to be done only once in 

the initialization phase of the GRASP. Assuming that f'12 c'25 is selected, meaning that courses 

1 and 2 are scheduled on time periods 2 and 5, respectively, we continue to schedule 

unscheduled examinations to one time period at a time.  
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Let Г = {(1,2), (2,5)} be the set of already-made assignment, we calculate Ctv, the cost of 

assigning examination t to time period v, with respect to the already-made assignment, Г, as 

follows: C31, C33, C34, C41, C43, C44, C51, C53, C54 (Figure 7.5). We sort these values in 

increasing order and keep the smallest 5 elements: C31, C33, C34, C44, C51. We then select one 

element randomly. Assuming that C34 is selected, we update the set Г = Г {(3,4)}. This 

process in continued until all unscheduled examinations have been scheduled.   

 

C31 C33 C34 C44 C51 C41 C43 C53 C54 

0.5 1 2 7.5 11.25 15 15 17.5 27.5 

 

Figure 7.5 A numerical example of Ctv in GRASP algorithm 

 

7.2.2.2 The Improvement Phase 

 

The quality of the initial solution generated by GRASP, initial_sol, is then improved in the 

improvement phase. The algorithm applied in this phase is a combined SA and TS algorithm 

(Algorithm SA-TS). While it is mainly based on Simulated Annealing (Kirkpatrick et al, 1983), 

the main difference of the standard SA and the proposed SA lies in the additional elements or 

strategies added. Several features from Tabu Search, such as the tabu length, tabu list and the 

intensification strategy are incorporated in the algorithm for further improvement (Glover, 

1989). The details of this procedure are summarized in Figure 7.6. 

 

Instead of selecting two examinations randomly as was commonly done in Simulated 

Annealing, we start by selecting one examination t randomly followed by examining all other 

potential pair-swaps sequentially in the order   tu:t,u  . The selected move is the one with 

the best  π,t,uΔ  value. Assuming that 0 uutt ff , the objective function difference  ut,π,Δ  
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obtained by exchanging examinations  tπ  and  uπ  can be computed in  n operations 

(Taillard and Gambardella, 1997): 

  ut,π,Δ                    tπuπuπtπutuπtπtπuπtu ccfccf  

                     





n

ut,a
a

uπaπtπaπautπaπuπaπat ccfccf
1

 

                            aπuπaπtπuaaπtπaπuπta ccfccf    (7.8) 

 

 

Given two matrices FLOW = [f'tu] and COST = [c'vw] where elements tuf  and vwc represent the 

number of students taking examinations t and u and the cost between time period v and time 

period w, respectively, if both matrices FLOW = [f'tu] and COST = [c'vw] are symmetric with a 

zero diagonal, the formula can be simplified as follows: 

 

   ut,π,Δ                   





n

ut,a
a

uπaπtπaπautπaπuπaπat ccfccf
1

2   (7.9) 

 

The new permutation is then evaluated by the acceptance-rejection procedure in SA. The tabu 

list contains pairs (t, u) that have been visited in the last length iterations. For a given iteration, 

if a pair (t, u) belongs to the tabu list, it is not allowed to accept the exchange of examinations t 

and u, unless this exchange gives an objective function value strictly better than the best 

solution obtained so far. At any temperature T, the neighborhood search is repeated until a 

certain number of iterations, inner_loop, has been performed. 

 

If there is no improvement of the solution obtained after a certain number of iterations (limit), 

we apply the intensification strategy of Tabu Search. This strategy focuses the search once 

again starting from the best permutation obtained. Finally, the entire algorithm will be 

terminated if the total number of iterations of the outer loop reaches the preset maximum 

number of iterations, outer_loop. 
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Algorithm SA-TS ( ) 
(1) Initialize the parameters 

(2) Set the best solution, best_sol = initial_sol 

(3) Set the current solution, current_sol = initial_sol 

(4) Set the total number of iterations, num_iter = 0 

(5) Set the total number of iterations without improvement, no_improv = 0 

(6) While the total number of iterations, num_iter is less than the preset maximum number of 

iterations, outer_loop do: 

(7)   Repeat inner_loop times: 

(8)    Select an examination t randomly 

(9)    Apply a partial sequential neighborhood search 

(10)    Find the best permutation with the smallest value of  ut,,πΔ   

(11)   If  ut,,πΔ   < 0 

(12)     Update the current solution, current_sol 

(13)     Update tabu list     

(14)      If current_sol is better than best_sol  

(15)      Update the best solution, best _sol = current_sol 

(16)   Else 

(17)    Choose a random number r uniformly from [0,1] 

(18)     no_improv := no_improv + 1 

(19)     Check whether the best permutation is tabu or not 

(20)     If 
  num_iter/Tut,,πΔ

expr


  and the new solution is not tabu 

(21)      Update the current solution, current_sol 

(22)     Update tabu list 

(23)     Else 

(24)      Return to the current solution, current_sol 

(25)     Update tabu list 

(26)   Update temperature num_iternum_iter αT:T   

(27)   If (no_improv > limit)  
(28)    Apply the intensification strategy 

(29)    Set no_improv := 0 

(30)   num_iter := num_iter +1 

(31) End while 

(32) Report the best solution, best_sol 
 

Figure. 7.6 Algorithm SA-TS for the basic examination timetabling problem 

 

7.2.3 Computational Results 

 

As mentioned in previous sections, the examination timetabling problem is presented as a 

Quadratic Assignment Problem. In order to evaluate the performance of the proposed 

algorithm, we decided to solve some benchmark problems from a library for research on the 

QAP (QAPLIB http://www.opt.math.tu-graz.ac.at/qaplib/inst.html) which have been studied 

and solved by other researchers (Burkard et al., 1997). In this section, the computational 

http://www.opt.math.tu-graz.ac.at/qaplib/inst.html
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results of applying the proposed algorithm to solve some benchmark problems of the QAPLIB 

are shown. We report experimental results on a wide range of test problems from the suite of 

QAP test problem QAPLIB. We tested the proposed algorithm implementation on several 

problem classes in QAPLIB: chr, had, kra, nug, rou, scr, sko, tai, and wil classes.  

 

The computational experiments were performed on a 2.67 GHz Intel (R) Core
TM

 2 Duo CPU 

with 3 GB of RAM under the Microsoft Windows Vista Operating System. The proposed 

algorithm coded in C++. The values of the parameters used in the computational study are 

summarized in Table 7.3. All the values are determined experimentally to ensure a 

compromise between the computation time and the solution quality. 

 

Table 7.3 Parameter settings for Algorithm SA-TS (the basic examination timetabling problem) 

Parameter Value 

Maximum number of iterations, outer_loop 300×n 

Initial temperature, T0 5,000 

Number of neighborhood moves at each temperature T, inner_loop 100×n 

Cooling factor, α 0.9 

Number of non-improvement iterations prior to intensification, Limit 0.02×outer_loop 

Length of tabu list, length n/2 

 

For each benchmark problem, the proposed algorithm was executed 20 times with different 

random seeds. The following tables summarize the average objective function value obtained, 

the best objective function value obtained and the average CPU time required to obtain the 

solution for each class.  

 

The objective function values of the optimal/best known solutions given in Burkard et al. 

(1997) are presented for comparison purposes. The heading TSSA
)1(
 refers to the percentage 

deviation between the average objective function value of the solutions obtained and the best 
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known/optimal solution, while TSSA
)2(
 refers to the percentage deviation between the best 

objective function value of the solutions obtained and the best known/optimal solution. The 

values for TSSA
)1(
 and TSSA

)2(
 are computed by equations which are similar to equations (4.4) 

and (4.5). 

   

Table 7.4 summarizes the computational results of the chr type benchmarks. The difficulty 

level in solving the chr problem instances is considered high (Lim et al., 2002). On the whole, 

the proposed hybrid algorithm is able to find solutions with values of TSSA
)1(
 not exceeding 

1.50% from the known optimum. For all problem instances, the best known/optimal solutions 

can be obtained. 

 

Table 7.4 Computational results of Algorithm SA-TS on problem class chr 

Benchmark 

problem 

Optimal/Best 

known solution 

Average 

Solution 

Average 

CPU time 

(seconds) 

Best 

Solution 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

chr12a 9552 9552 23.96 9552 0.00 0.00 

chr12b 9742 9742 23.74 9742 0.00 0.00 

chr12c 11156 11156 23.76 11156 0.00 0.00 

chr15a 9896 9896 56.92 9896 0.00 0.00 

chr15b 7990 7990 56.82 7990 0.00 0.00 

chr15c 9504 9504 58.09 9504 0.00 0.00 

chr18a 11098 11098 119.66 11098 0.00 0.00 

chr18b 1534 1534 119.29 1534 0.00 0.00 

chr20a 2192 2224.9 179.20 2192 1.50 0.00 

chr20b 2298 2306.7 181.59 2298 0.38 0.00 

chr20c 14142 14142 177.30 14142 0.00 0.00 

chr22a 6156 6181.3 257.49 6156 0.41 0.00 

chr22b 6194 6265.2 257.48 6194 1.15 0.00 

chr25a 3796 3811 427.97 3796 0.40 0.00 
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Tables 7.5 and 7.6 summarize the results of testing on had and kra problem instances. The 

average gaps of the solutions are less than 0.75%. For each problem instance, the hybrid 

algorithm is again able to obtain the best known/optimal solutions. 

Table 7.5 Computational results of Algorithm SA-TS on problem class had 

Benchmark 

problem 

Optimal/Best 

known solution 

Average 

Solution 

Average 

CPU time 

(seconds) 

Best 

Solution 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

had12 1652 1652 23.95 1652 0.00 0.00 

had14 2724 2735 43.51 2724 0.40 0.00 

had16 3720 3721 72.97 3720 0.03 0.00 

had18 5358 5358 116.05 5358 0.00 0.00 

had20 6922 6927.2 176.81 6922 0.08 0.00 

 

Table 7.6 Computational results of Algorithm SA-TS on problem class kra 

Benchmark 

problem 

Optimal/Best 

known solution 

Average 

Solution 

Average 

CPU time 

(seconds) 

Best 

Solution 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

kra30a 88900 89554.5 893.24 88900 0.74 0.00 

kra30b 91420 91420 893.63 91420 0.00 0.00 

kra32 88700 88700 1160.07 88700 0.00 0.00 

 

Table 7.7 Computational results of Algorithm SA-TS on problem class nug 

Benchmark 

problem 

Optimal/Best 

known solution 

Average 

Solution 

Average 

CPU time 

(seconds) 

Best 

Solution 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

nug12 578 578 23.66 578 0.00 0.00 

nug14 1014 1014 43.11 1014 0.00 0.00 

nug15 1150 1150 56.52 1150 0.00 0.00 

nug20 2570 2570 177.39 2570 0.00 0.00 

nug21 2438 2438 215.25 2438 0.00 0.00 

nug22 3596 3596 258.28 3596 0.00 0.00 

nug24 3488 3488 367.42 3488 0.00 0.00 

nug25 3744 3744 430.63 3744 0.00 0.00 

nug27 5234 5234 586.25 5234 0.00 0.00 

nug28 5166 5166.9 675.75 5166 0.02 0.00 

nug30 6124 6124.4 888.68 6124 0.01 0.00 
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Table 7.7 is a summary of the results for the nug type of benchmarks. The results indicate that 

these problem instances do not pose much difficulty for the proposed hybrid algorithm to 

obtain good solutions as the values of TSSA
)1(
 are not more than 0.02%. All the best 

known/optimal solutions can be obtained within reasonable computation time.  

 

For larger problem instances (n ≥ 20), the proposed algorithm requires longer computation 

time. Nevertheless, it is able to find the best solutions for all problem instances. The optimal 

solution of the most difficult problem, namely the nug30, can be solved within 15 minutes. 

 

The following tables show the results of testing on rou, scr and sko problem instances. The 

values of TSSA
)1(
 are not more than 0.03% for rou and scr problem instances, while the 

maximum value of TSSA
)1(
 is only 0.18% for sko problem instance. For sko49 and sko56, the 

values of TSSA
)2(
 are around 0.1% from the optimal/best known solution. The longest CPU 

time required to obtain the solution is about 3 hours for sko56. 

 

Table 7.8 Computational results of Algorithm SA-TS on problem class rou 

Benchmark 

problem 

Optimal/Best 

known solution 

Average 

Solution 

Average 

CPU time 

(seconds) 

Best 

Solution 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

rou12 235528 235528 23.75 235528 0.00 0.00 

rou15 354210 354210 56.61 354210 0.00 0.00 

rou20 725522 725742.7 176.76 725522 0.03 0.00 

 

Table 7.9 Computational results of Algorithm SA-TS on problem class scr 

Benchmark 

problem 

Optimal/Best 

known solution 

Average 

Solution 

Average 

CPU time 

(seconds) 

Best 

Solution 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

scr12 31410 31410 23.73 31410 0.00 0.00 

scr15 51140 51140 56.38 51140 0.00 0.00 

scr20 110030 110030 176.29 110030 0.00 0.00 



   Chapter 7 Hybridization of Metaheuristics for the Examination Timetabling Problem 

 

156 

 

Table 7.10 Computational results of Algorithm SA-TS on problem class sko 

Benchmark 

problem 

Optimal/Best 

known solution 

Average 

Solution 

Average 

CPU time 

(seconds) 

Best 

Solution 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

sko42 15812 15833.8 5699.98 15812 0.14 0.00 

sko49 23386 23424.5 6353.46 23410 0.16 0.10 

sko56 34458 34520.4 10867.03 34494 0.18 0.10 

 

Table 7.11 Computational results of Algorithm SA-TS on problem class tai 

Benchmark 

problem 

Optimal/Best 

known solution 

Average 

Solution 

Average 

CPU time 

(seconds) 

Best 

Solution 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

tai10a 135028 135028 23.99 135028 0.00 0.00 

tai12a 224416 224416 46.86 224416 0.00 0.00 

tai15a 388214 388214 101.71 388214 0.00 0.00 

tai17a 491812 491812 156.03 491812 0.00 0.00 

tai20a 703482 704610.2 374.43 703482 0.16 0.00 

tai25a 1167256 1182462.3 1009.34 1175490 1.30 0.71 

tai30a 1818146 1845611.7 2138.80 1833020 1.51 0.82 

tai35a 2422002 2484348.1 3127.62 2477054 2.57 2.27 

tai40a 3139370 3228315.1 5341.07 3207852 2.83 2.18 

tai50a 4938796 5122386.6 12645.33 5115612 3.72 3.58 

tai60a 7205962 7463484.2 13440.62 7417240 3.57 2.93 

tai80a 13515450 13997867.4 15644.29 13938662 3.57 3.13 

tai100a 21054656 21788679.9 22109.45 21689698 3.49 3.02 

 

Table 7.12 Computational results of Algorithm SA-TS on problem class wil 

Benchmark 

problem 

Optimal/Best 

known solution 

Average 

Solution 

Average 

CPU time 

(seconds) 

Best 

Solution 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

wil50 48816 48867.7 11570.09 48850 0.11 0.07 

wil100 273038 273406.3 21982.86 273240 0.13 0.07 

 

 

As shown in Tables 7.11 and 7.12, for the tai and wil type benchmarks, the performance of the 

SA–TS is still acceptable with values of TSSA
)1(
 and TSSA

)2(
 are not more than 3.72% and 

3.58%, respectively. For larger problems (with n > 20), the best known/optimal solutions 
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cannot be found. It is likely that with greater number of iterations, the outcome may improve 

with possibility of obtaining the best known/optimal solutions for some of the benchmarks. 

 

In summary, we show that QAP can be used to formulate the examination timetabling problem 

since both problems have similar characteristics. We propose a new hybrid algorithm for some 

QAP benchmark problems. The algorithm incorporates the advantages of three different 

algorithms: GRASP, Simulated Annealing and Tabu Search algorithms. It appears to be an 

efficient algorithm for the QAP. For some standard benchmark problems, this algorithm is able 

to obtain the optimal or the best known solutions. The computation time required is reasonable 

especially for problem instances with modest size. 

 

7.3 The Extended Examination Timetabling Problem 

 

Quadratic Semi-Assignment Problem (QSAP) is a special case used to model clustering and 

partitioning problems (Hansen and Lih, 1992). In QSAP, we have n facilities and m locations 

where n > m. All facilities have to be allocated to m locations so as to minimize the overall 

distance covered by the flow of materials moving between different facilities. Again, QSAP 

can be used to formulate another extension of the basic examination timetabling problem that 

would be explained below. 

 

In the basic examination timetabling model (QAP model), the first order conflict cannot occur 

because one time period can only be scheduled for one examination. However, in many real 

world problems, the number of resources (rooms) available can be more than necessary and the 

number of examinations is greater than the number of time periods available. In this situation, 

it is possible to assign more than one examination to a time period. Thus, constraint (7.3) can 
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be relaxed and the examination problem can then be formulated as a Quadratic Semi-

Assignment Problem (QSAP).  

 

The details of the mathematical model are presented in the following sub-section. 

 

7.3.1 The Mathematical Programming Model 

 

The following models assume that each time period can accommodate more than one 

examination. Let Capv be number of classrooms available in time period v  nv 1 . Since 

each time period can be scheduled for more than one examination, the first order conflict 

might occur. In order to avoid this situation, we introduce different values of vwc : 

 











M̂

d

c

η

vw

vw 

1

  

wv

wv

wv







1

1

       (7.10) 

where  

 M̂  = a very large number 

 η  = a marginal product of time period 

   = a number greater than 1, and is typically set to 10  

 

Here, we investigated cost function that is inversely proportional to distance with the power 

order η . The parameter η  emphasizes the importance level of the conflict. Setting η  = 0 

means that we are only concerned about the first and second order conflicts and treat higher 

order conflicts as equally important. For example, there is no difference in terms of vwc  value 

if the “distance” between two time periods v and w, |v – w|, is either two periods or greater than 

two periods. On the other hand, the cost between two time periods is diminishing for η  = 1. A 

higher value of vwd will result in a lower value of vwc . In this case, we concern about higher 

order conflicts.  
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[EP Model II]  

 

Minimize 
   


n

t

n

u

n

v

n

w
uwtvvwtuEP_ xxcfZ

1 1 1 1
II       (7.11) 

 

subject to:  

 

v

n

t
tv Capx 

1

  nv 1         (7.12) 

Constraints (7.3), (7.4) 

 

 
EP Model II still assumes that the number of courses is equal to the number of time periods. 

Constraint (7.12) ensures that the maximum number of examinations scheduled at any time 

period is Capv. In this study, it is assumed that Capv = Cap  nv 1 . The formulation of 

QSAP can always be adjusted to specific requirement of a certain university as stated in 

Bullnheimer (1998).  

 

To further relax the restriction that the number of examinations and the number of time periods 

are equal, the more general examination scheduling problem with n slots or time periods and e 

(e ≥ n) examinations to be scheduled is being considered in EP Model III. 

 

[EP Model III]  

  

Minimize 
   


e

t

e

u

n

v

n

w
uwtvvwtuEP_ xxcfZ

1 1 1 1
III       (7.13) 

 

subject to:  

 

v

e

t
tv Capx 

1

  nv 1         (7.14) 

 

1
1




n

v
tvx   et 1         (7.15) 

 

 1,0tvx   nve,t  11        (7.16) 
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The quadratic form of QSAP can always be linearized by introducing new variables 

uwtvtvuw xxy  (Burkard, 1990) and constraints (7.18) and (7.19). Therefore, we can write EP 

Model III as the following model, EP Model IV. 

 

[EP Model IV] 

 

Minimize 
   


e

t

e

u

n

v

n

w
uwtvvwtuEP_ ycfZ

1 1 1 1
IV       (7.17) 

 

subject to: 

 

Constraints (7.14), (7.15), (7.16) 

 

tvv

e

u
tvuw xCapy 

1

  nwv,et  1,1       (7.18) 

 

tv

n

w
tvuw xy 

1

   nvet,u  1,1       (7.19)

  

 1,0tvuwy    nwv,et,u  1,1       (7.20)

  

Since uwtvtvuwuwtvtvuw yxxxxy  , an additional constraint (7.26) can be included in EP 

Model IV. Finally, the entire model can be represented as EP Model V. 

 

[EP Model V] 

Minimize 
   


e

t

e

u

n

v

n

w
uwtvvwtuEP_ ycfZ

1 1 1 1
V       (7.21) 

 

subject to:  

 

v

e

t
tv Capx 

1

   nv 1        (7.22) 

 

1
1




n

v
tvx    et 1        (7.23) 

 

tvv

e

u
tvuw xCapy 

1

  nwv,et  1,1       (7.24) 

 

tv

n

w
tvuw xy 

1

   nvet,u  1,1       (7.25) 
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uwtvtvuw yy      nwv,et,u  1,1       (7.26) 

 

 1,0tvx    nve,t  11       (7.27) 

 

 1,0tvuwy    nwv,et,u  1,1       (7.28) 

 

 

7.3.2 The Lower Bound 

 

Two problems, EP Model IV and EP Model V, can be relaxed by replacing the integrality 

constraint  1,0tvx to 0tvx and  1,0tvuwy to 0tvuwy . The relaxed problems are represented 

as EP Model VI and EP Model VII, respectively. EP Model VI is treated as the lower bound of 

EP Model IV, while EP Model VII is treated as the lower bound of EP Model V, respectively. 

Let ZEP_VI be the objective function value of EP Model VI and ZEP_VII be the objective function 

value of EP Model VII. 

 

Preposition 7.1.  ZEP_VI = LB ≤ ZEP_V 

PROOF. Suppose the integrality constraints    1,0,1,0  tvuwtv yx  in EP Model IV are replaced 

by 0,0  tvuwtv yx  to generate the relaxed problem EP Model VI. Every feasible solution to 

EP Model V is always a feasible solution to EP Model VI. If the optimal solution 
*x  of EP 

Model V does exist, it can be easily proven that ZEP_VI = ZEP_V.   

 

Lemma 7.1.  ZEP_V = OPTIMAL 

PROOF. This lemma is adapted from Drezner (1995). We show that uwtvtvuw xxy  . Two 

different cases are distinguished: 

 

Case 1: Suppose 1tvuwy , the value of 1tvx  [by equation (7.24)] and 1uwtvy  [by equation 

(7.26)], thus 1uwx  as well as uwtvtvuw yxx  . 
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Case 2: Suppose 0tvuwy , by a contradiction, we assume that 1 uwtv xx . Since 1tvx , we 

get 0tax for all va   [by equation (7.23)]. Refer to equation (7.24), 0tauwy  for all va  . 

By equation (7.26), 0 tauwuwta yy . Since 1uwx , 1uwtvy by equation (7.25) because all the 

other terms in the sum are equal to zero. This constitutes a contradiction. 

 

Lemma 7.2. ZEP_VI ≤ ZEP_IV  

PROOF: This lemma can be proven by checking that every feasible solution to EP Model IV is 

always a feasible solution to EP Model VI. If the solution of EP Model IV is integer, it can be 

easily proven that ZEP_VI = ZEP_IV. 

 

Lemma 7.3.  ZEP_VII ≤ ZEP_V 

PROOF: Similar to lemma 7.2, this lemma can be proven by checking that every feasible 

solution to EP Model V is always a feasible solution to EP Model VII. 

 

Lemma 7.4.  ZEP_IV ≤ ZEP_V  

PROOF: Since EP Model V is an extension of EP Model IV by adding constraint (7.26), every 

feasible solution to EP Model V is always a feasible solution to EP Model IV. 

 

Lemma 7.5.  ZEP_VI ≤ ZEP_VII  

PROOF: Similar to lemma 7.4, by checking that every feasible solution to EP Model VII is a 

feasible solution to EP Model VI.   

 

Preposition 7.2.  LB ≤ ZEP_VII ≤ OPTIMAL 

PROOF: Let ZEP_VI = LB and by lemma 7.5 ZEP_VI ≤ ZEP_VII, we can conclude that LB ≤ ZEP_VII. 

Let ZEP_V = OPTIMAL (lemma 7.1) and ZEP_VII ≤ ZEP_V (lemma 7.3), we get ZEP_VII ≤ 

OPTIMAL. 
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7.3.3 The Proposed Algorithm 

 

In the previous chapter, we have introduced a new hybrid metaheuristic for QAP. This 

algorithm is able to provide very good results. In order to solve the examination problem, we 

adopt the algorithm with some modifications. The entire algorithm comprises of two main 

phases: (1) construction, and (2) improvement. The GRASP is used to initialize a solution in 

the first phase, while a combination of Simulated Annealing and Tabu Search algorithms is for 

improving the solution in the second phase. Each phase is presented and described in detail 

below. 

 

7.3.3.1 The Construction Phase 

 

In the previous chapter, part of GRASP was implemented to build an initial solution for the 

QAP. Due to some of the general requirements of the examination timetabling problem 

differing from those of QAP, such as each time period can accommodate more than one 

examination and there is a limit of the number of examinations per time period, we need to 

modify GRASP presented in Section 7.2 accordingly. The details of the construction process 

of GRASP are described in Figure 7.7. 
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Construction Phase ( ) 

(1) Sort the   22 /ee  flow entries in FLOW in increasing order, such 

that












 











 


22222211

/ee/ee
ututut fff  . 

(2) Sort the   22 /nn  cost entries in COST in non-increasing order, such 

that












 











 


22222211

/nn/nn
wvwvwv ccc  .  

(3) Calculate the cost interaction






















 






















 






















 






















 


2222222222221111

/nnβ/nnβ/nnβ/nnβ
wvutwvutwvut cf,,cf,cf  , 

sort them in increasing order and keep the smallest    22 /nnβ  elements as the candidate list, 

where  is the second candidate restriction parameter  10  β . 

(4) Select a couple of assignment pairs from the candidate list randomly. 

(5) Calculate tvC , the cost of assigning examination t to time period v, with respect to the already-

made assignments, Γ and capacity of each time period, Capv: 

 




Γwu,

vwtutv cfC  where       rr w,u,,w,u,w,uΓ ~~1111  ,  

(6) Set o = the number of unassigned examinations and m = the number of unassigned examination-

time period pairs 

(7) Determine the  γm examination-time period pairs having the smallest tvC values. 

(8) Select an examination-time period pair  vt,  randomly from the list generated in Step 7. 

(9) Update the set  vt,ΓΓ   

(10) Set 1 oo  

(11) Repeat Steps 5 – 10 until o = 0 
 

Figure 7.7 Construction phase of Modified GRASP algorithm 

 

For illustration of the construction phase in the modified GRASP algorithm, we provide a 

numerical example as follows. Consider the extended examination scheduling problems with n 

(= 5) slots or time periods and e (= 6) examinations to be scheduled as well as two matrices 

FLOW = [f'tu] and COST = [cvw].  

                                     FLOW                                                             COST 

 

1 2 3 4 5 6 

 

1 2 3 4 5 

1 0 10 0 15 5 3 1 1000 10 0.5 0.33 0.25 

2   0 2 0 25 26 2   1000 10 0.5 0.33 

3   

 

0 7 8 12 3   

 

1000 10 0.5 

4   

  

0 2 0 4   

  

1000 10 

5   

   

0 1 5         1000 

6           0 

       

Figure 7.8 A numerical example for illustrating modified GRASP algorithm 
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Let β = 0.5 and γ = 0.5, we sort 15 flow entries in FLOW, keeping the 5 largest values: f'26 ≥ f'25 

≥ f'14 ≥ f'36 ≥ f'12 and sort 10 cost entries in COST, keeping the 5 smallest values: c'15 ≤ c'14 ≤ c'25 

≤ c'13 ≤ c'24. Then, we calculate the costs of interaction f'26c'15, f'25c'14, f'14c'25, f'36c'13, f'12c'24 and 

keep the smallest 3 elements: f'14 c'25≤ f'12c'24 ≤ f'36c'13 as the candidate list (Figure 7.9). 

 

f'14c'25 f'12c'24 f'36c'13 f'26c'15 f'25 c'14 

5 5 6 6.5 8.33 

 

Figure 7.9 A numerical example of the costs of interaction in modified GRASP algorithm 

 

A couple of assignments having the smallest interaction cost from the candidate list randomly 

is then selected. Assuming that f'12 c'24 is selected, meaning that courses 1 and 2 are scheduled 

on time periods 2 and 4, respectively, we continue to schedule unscheduled examinations to 

one time period at a time.  

 

Let Г = {(1,2), (2,4)} be the set of already-made assignment, we calculate Ctv, the cost of 

assigning examination t to time period v, with respect to the already-made assignment, Г, and 

the capacity of time period v. We sort these values in increasing order and we keep the 

smallest 10 elements: C31, C32, C45, C44, C33, C35, C61, C51, C41, C43 (Figure 7.10). We then 

select one element randomly. Assuming that C32 is selected, we then update the set Г = 

Г {(3,2)}. Similar to examination 1, examination 3 can be scheduled on time period 2 since 

the capacity of time period 2 is still enough. This process in continued until all unscheduled 

examinations have been scheduled.   

 

C31 C33 C34 C44 C51 C41 C43 C53 C54 

0.5 1 2 7.5 11.25 15 15 17.5 27.5 

 

Figure 7.10 A numerical example of Ctv in modified GRASP algorithm 
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7.3.3.2 The Improvement Phase 

 

Having an initial feasible solution, we turn our attention towards the improvement of that 

solution. In this study, we focus on the hybridization of heuristics in order to solve the 

examination timetabling problem. The algorithm applied in this phase to improve the solution 

is adapted from Algorithm SA-TS described in Section 7.2. As described in Chapter V, 

Algorithm SA-TS outperforms other proposed hybrid algorithms. Figure 7.11 summarizes the 

details of the proposed algorithm. 

 

Algorithm SA-TS ( ) 

(1) Initialize the parameters 

(2) Set the best solution, best_sol = initial_sol 

(3) Set the current solution, current_sol = initial_sol 

(4) Set the total number of iterations, num_iter = 0 

(5) Set the total number of iterations without improvement, no_improv = 0 

(6) While the total number of iterations, num_iter is less than the preset maximum number of 

iterations, outer_loop do: 

(7)   Repeat inner_loop times: 

(8)    Select an examination i randomly 

(9)    Apply a partial sequential neighborhood search 

(10)    Find the best permutation πwith the smallest value of  ,tππ,Δ   

(11)    If  ,tππ,Δ   < 0  

(12)     Update the current solution, current_sol 

(13)     Update tabu list 

(14)      If current_sol is better than best_sol  

(15)      Update the best solution, best _sol = current_sol 

(16)    Else 

(17)    Choose a random number r uniformly from [0,1] 

(18)     no_improv:= no_improv+1 

(19)     Check whether the best permutation is tabu or not 

(20)     If 
  num_iter/Tt,ππ,Δ

expr


  and the new solution is not tabu 

(21)     Update the current solution, current_sol 

(22)     Update tabu list 

(23)     Else 

(24)      Return to the current solution, current_sol 

(25)     Update tabu list 

(26)   Update temperature num_iternum_iter αT:T   

(27)   If (no_improv > limit)  
(28)    Apply the intensification strategy 

(29)    Set no_improv:= 0 

(30)   num_iter := num_iter+1 

(31) End while 

(32) Report the best solution, best_sol 

 
Figure 7.11 Algorithm SA-TS for the extended examination timetabling problem 
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The neighborhood is defined by reallocating an examination of the current solution   to 

another different time period (single move) such that a better solution   is derived. It is 

necessary to ensure that the maximum number of examinations scheduled at any time period 

Capv is not being exceeded. Instead of a random neighborhood search, a partial sequential 

neighborhood search is used, which involves examining all other potential moves sequentially 

with respect to time periods for an examination of the current solution .  

 

The objective function difference  ,tππ,Δ   obtained by exchanging the time period of 

examination t,  tπ  and  tπ , using the following equation: 

     ,tππ,Δ        




 
e

ta
a

tπaπtπaπat ccf
1

)(2      (7.29) 

The selected move is the one with the best  ,tππ,Δ   value. The new permutation is then 

evaluated by the acceptance-rejection procedure in SA. We incorporate features from Tabu 

Search, such as the tabu length, tabu list and intensification strategy in the algorithm. 

 

The tabu list contains examination-time period pairs that have been visited in the last length 

iterations. For a given iteration, if a pair   tπt,  belongs to the tabu list, it is not allowed to 

accept the exchange of the time periods  tπ  and  tπ , unless this exchange gives a strictly 

better objective function value (aspiration level criteria). At any temperature T, the 

neighborhood search is repeated until a certain number of iterations, inner_loop, has been 

performed. 

 

7.3.4 Computational Results 

 

The computational results of applying the proposed algorithm to solve several randomly 

generated problems are shown. Several data sets are generated in such a way that the data sets 
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correspond to three various parameters: the number of examinations, the number of time 

periods and the number of classrooms available per time period.  These data are empirical 

data which are comparable to the real data used in the examination timetabling problem in an 

engineering faculty of a university in Indonesia.  

 

We set the number of time periods to be 20. This is by assuming that one week consists of 5 

working days, and each working day consists of 4 time periods, of which the length of each 

time period is 2 to 3 hours. The value of parameter η  is set to 1. The characteristics of the 

problem instances used in the computational experiments are shown in Table 7.13. Each data 

set consists of the number of examinations that need to be scheduled and the total number of 

available time periods. For instance, data set 10×10 consists of 10 examinations and 10 time 

periods available. 

 

Table 7.13 Characteristics of the extended examination timetabling problem data sets 

No Data set 

Number of 

examinations 

e 

Number of 

time periods 

n 

Number of 

classrooms 

Cap 

1 10×10×3 10 10 3 

2 20×20×3 20 20 3 

3 40×20×4 40 20 4 

4 60×20×5 60 20 5 

5 80×20×6 80 20 6 

6 100×20×7 100 20 7 

 

Table 7.14 summarizes the values of the parameters used in the computational study which are 

determined experimentally to ensure a compromise between the computation time and the 

solution quality. 
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Table 7.14 Parameter settings for Algorithm SA-TS  

(the extended examination timetabling problem) 

Parameter Value 

Maximum number of iterations, outer_loop 50×e  

Initial temperature, T0 1000 

Number of neighborhood moves at each temperature T, inner_loop 100×n 

Cooling factor, α 0.9 

Number of non-improvement iterations prior to intensification, limit 0.01×outer_loop 

Length of tabu list, length e/2 

 

The algorithm is coded in C++ and executed on a 2.67 GHz Intel (R) Core
TM

 2 Duo CPU with 

3 GB of RAM under the Microsoft Windows Vista Operating System. The algorithm is 

repeated for 20 runs, with the average objective function value, the best objective function 

value and the average computation time being tabulated. To see if the proposed algorithm is an 

improvement over a pure SA algorithm, we also applied a pure SA algorithm for all data sets. 

 

Table 7.15 Computational results of Algorithm SA-TS 

No Data set 

Algorithm SA Algorithm SA-TS 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU time 

(seconds) 

1 10×10×3 14.8 14.8 1.29 14.8 14.8 1.31 

2 20×20×3 123.36 121.68 18.64 121.84 121.68 20.26 

3 40×20×4 642.24 628.48 65.61 634.82 627.66 68.55 

4 60×20×5 2743.22 2657.32 140.46 2699.42 2652.08 140.39 

5 80×20×6 7723.47 7410.62 236.98 7620.33 7281.68 246.20 

6 100×20×7 20275.46 18167.34 340.90 19456.78 17583.36 350.52 

 

In general, both algorithms perform very well and obtained quite good solutions within 

reasonable computation time (Table 7.15). It indicates that the performance of the hybrid 

algorithm, Algorithm SA-TS, is better than the pure SA in terms of the average and the best 
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objective function values obtained. The computation time needed by the hybrid algorithm also 

compares favourably with that of the pure SA. 

 

Table 7.16 provides a numerical comparison between the lower bound, the average as well as 

best objective function values. The lower bounds ZEP_VII were obtained by using ILOG OPL 

Studio 4.2 on the same processor and operating system used for implementing the proposed 

algorithms.  

 

The heading TSSA
)1(
 refers to the percentage deviation between the average objective function 

value of the solutions obtained by Algorithm SA-TS and the lower bound, while the heading 

TSSA
)2(
 refers to the percentage deviation between the best objective function value of the 

solutions obtained by Algorithm SA-TS and the lower bound.  

 

Table 7.16 Comparison of the algorithm results and the lower bounds 

No Data Set 

Average 

objective 

function value 

Best 

objective 

function 

value 

Lower Bound 

TSSA
)1(
  

(%) 

TSSA
)2(
  

(%) 

1 10×10×3 14.8 14.8 12.2 21.31 21.31 

2 20×20×3 121.84 121.68 93.02 30.98 30.81 

3 40×20×4 634.82 627.66 509.06 24.70 23.30 

4 60×20×5 2699.42 2652.08 2133.46 26.53 24.31 

5 80×20×6 7620.33 7281.68 6158.14 23.74 18.24 

6 100×20×7 19456.78 17583.36 14243.32 36.60 23.45 

 

In overall, the average and the best percentage deviations are less than 37% and 31%, 

respectively. Since the proposed lower bound is mainly based on the linear relaxation of the 

problem, an interesting open problem that can be considered for future research work would be 

to develop better quality lower bounds for this problem. For instance, a Lagrangian relaxation 

approach can be considered for calculating a better lower bound. 
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7.4 Conclusions 

 

In this chapter, we present the basic examination timetabling problem as a QAP problem. In 

this basic model, we assume that the number of examinations is equal to the number of time 

periods. A new hybrid algorithm was introduced to solve the problem. The algorithm 

incorporates three different algorithms: GRASP, Simulated Annealing and Tabu Search 

algorithms. It appears to be an efficient heuristic algorithm for solving the problem. For some 

standard benchmark problems, this algorithm is able to obtain the optimal or the best known 

solutions within reasonable computation time.  

 

In this study, we present another suitable model for the extended examination timetabling 

problem where the number of examinations is larger than the number of time periods. The 

problem is represented as a Quadratic Semi-Assignment Problem (QSAP). This model allows 

the number of examinations is more than the number of time periods available and each time 

period can accommodate more than one examination. 

 

Another hybrid algorithm based on a combination of GRASP, Simulated Annealing and Tabu 

Search was proposed for solving this problem that cannot be easily solved by commercial 

software. It is shown that the proposed algorithm yields good solutions within reasonable 

computation time compared with those of pure Simulated Annealing.  

 

Subjects of possible areas for future research should be the inclusion of other constraints and 

the development of better lower bounds. We can look into ways of improving the proposed 

algorithm to obtain better solutions especially when the problem size is very large.  
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CHAPTER VIII  

CONCLUSIONS AND FUTURE RESEARCH WORK 

   

In this chapter, we summarize and discuss the major findings and contributions of this study. 

Some suggestions and recommendations for future work will also be presented.  

 

8.1 Major Findings and Contributions 

 

The timetabling problem has been studied in a wide variety of application domains including 

educational timetabling, transportation timetabling, employee timetabling, healthcare 

timetabling and sport timetabling. In this study, we focus on the educational timetabling 

problem at the university level, known as the university timetabling problem. The following 

figure represents the framework of the problem studied. 

 

 

 

 

 

 

 

 

 

Figure 8.1 Framework of the study 
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The university timetabling problem can be classified into two categories: the course and 

examination timetabling problems. There are, of course, several differences between both 

categories. In the course timetabling problem, one course has to be scheduled into exactly one 

classroom. However, a number of examinations can often be scheduled into one room or an 

examination may be split across several classrooms in the examination timetabling problem. 

 

In the university course timetabling problem, four different sub-problems are involved: course 

scheduling, student scheduling, teacher assignment and classroom assignment. In this study, 

we focus on two sub-problems: the teacher assignment and course scheduling problems. The 

problem of teacher assignment is how to assign teachers to courses while maximizing a 

preference function. In course scheduling problem, the main concern is how to schedule course 

sections to time periods over a week. It is often assumed that the allocation of teachers to 

courses has been done and fixed earlier before the actual scheduling of courses to time periods. 

 

Motivated by the need to overcome this limitation of only considering one sub-problem, we 

studied a combination of teacher assignment and course scheduling simultaneously which is 

not commonly studied by other researchers. This combination is known as the Teacher 

Assignment – Course Scheduling problem (TACS problem).  

 

An important contribution relating to the university course timetabling problem is on three 

different mathematical programming models proposed and presented in Chapter 3. These 

models, namely, TACS Model I, TACS Model II and TACS Model III represent a combination 

of the teacher assignment and the course scheduling problems. TACS Model I which is 

considered as the basic model only includes several common requirements of both sub-

problems. TACS Model II includes some additional requirements such as courses can be 

divided into several sections and one course can be taught by more than one teacher. TACS 
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Model III which is the most complex model includes several other requirements which are 

comparable to those occurring in an engineering faculty of a university in Indonesia.  

 

Computational experiments based on some randomly generated instances are summarized and 

discussed in detail in Chapter 3. Initially, the problems were solved by ILOG OPL Solver 

software. Unfortunately, some large-scale instances of TACS Model III could not be optimally 

solved.  

 

In order to overcome the limitation of solving TACS Model III, two different methods, namely, 

a simple improvement heuristic and hybrid algorithms were developed in Chapters 4, 5 and 6. 

In Chapter 4, we introduced a simple improvement heuristic that applies the principles of a 

greedy heuristic. Since the results obtained by this heuristic are not good enough, we proposed 

four different hybrid algorithms in order to solve the problem.  

 

In Chapter 5, three different hybrid algorithms, mainly based on a greedy heuristic, Simulated 

Annealing and Tabu Search, were developed. These algorithms are Algorithms SA1, SA2 and 

SA-TS. The computational experience shows that the proposed hybrid algorithms are able to 

produce good quality solutions for several random problem instances. It has been concluded 

that Algorithms SA-TS and SA2 outperform SA1 significantly in terms of objective function 

values obtained.  

 

A possible reason is that the exploration of the neighborhood structure in SA1 is limited. The 

neighborhood consists of two operations: reallocation of teachers to courses and rescheduling 

courses to time periods. If the first operation is accepted, we continue to the second operation 

and evaluate whether these two operations are acceptable. Unfortunately, it might be possible 

that the teacher reallocation is rejected and the process is then terminated without proceeding 
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to the evaluation process. On the other hand, Algorithms SA2 and SA-TS applied the 

evaluation process at the end of each operation. Although the first operation is rejected, we still 

continue to the second operation by choosing another course that has to be scheduled to 

another set of day-time periods.  

 

In Algorithm SA-TS, we also include several features from Tabu Search such as the aspiration 

level criterion and tabu list. We found that Algorithm SA-TS performs better than Algorithm 

SA2 does. It shows that unnecessary moves during high temperature can be avoided by 

including those features. 

 

In Chapter 6, we have studied and presented a successful hybrid algorithm of the Lagrangian 

relaxation procedure and a modified Simulated Annealing (SA) algorithm, namely, Algorithm 

LR-SA, for solving the TACS problem. The performance of the proposed algorithm was 

measured by applying the algorithm to the same problems discussed in earlier chapters. We 

concluded that LR-SA outperforms the previous algorithm SA–TS in terms of solution quality. 

The Lagrangian relaxation approach is able to construct good quality initial solutions that 

would lead to better quality final solutions. 

 

The idea of the hybrid algorithm that has been successfully applied in the course timetabling 

problem has motivated us to apply to another university timetabling problem, known as the 

examination timetabling problem. In the university examination timetabling problem, we 

notice that majority of the methods proposed were centered on the general concepts of graph 

theory or network analysis.  

 

In this study, the basic examination timetabling problem was formulated as a Quadratic 

Assignment Problem (QAP). A new hybrid algorithm (Algorithm GRASP-SA-TS) that 
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combines several features of Greedy Randomized Adaptive Search Procedure (GRASP), 

Simulated Annealing and Tabu Search algorithms had been proposed in Chapter 7. In 

summary, the proposed algorithm was able to obtain the optimal or the best known solutions 

for several QAP benchmark problems within reasonable computation time.  

 

Since the number of examinations can be greater than the number of time periods, the 

examination timetabling problem is reformulated as the Quadratic Semi-Assignment Problem 

(QSAP). The lower bound for the extended examination timetabling problem, which is based 

on the relaxation of the integrality constraints, was proposed. Algorithm GRASP-SA-TS was 

then modified in order to solve the problem. We conclude that the proposed algorithm yields 

good solutions within reasonable computation time compared with those of pure Simulated 

Annealing.  

 

To sum up, the main contributions of this study are as follows: 

 In the course timetabling context, two sub-problems: teacher assignment and course 

scheduling problem are discussed and solved simultaneously, which is not commonly 

studied by other researchers. This combination problem is known as TACS problem. 

 Three different mathematical models are developed in order to represent the combination of 

teacher assignment and course scheduling problems simultaneously (TACS problem).  

 Several hybrid algorithms based on hybridization of the Simulated Annealing and other 

methods are proposed in order to solve the TACS problem. 

 The examination timetabling problem is formulated as QAP and QSAP. These formulations 

can represent first-order, second-order and higher order conflicts which cannot be captured 

in graph coloring formulation. 

 The idea of the hybrid algorithm is extended and applied to solve the examination 

timetabling problem. 
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8.2 Limitations and Future Research Work 

 

Different models of university timetabling problems and advancements of different new 

approaches have been proposed in this thesis. Major findings and contributions were 

summarized as above. Nevertheless, due to limitations involved in the current study, there are 

still some aspects that were not addressed yet and deserve further explorations. 

 

Several randomly generated data sets of sizes that are comparable to those occurring in an 

engineering faculty of a university in Indonesia were proposed. We notice that one limitation 

of the research is the lack of real-world applications which can prove the robustness of the 

proposed approaches and methodologies.  

 

As stated in Chapter 1, this thesis focuses on teacher assignment and course scheduling 

problems at the university level. The whole process of building a timetable consists of other 

problems: classroom assignment and student scheduling problems, which are not considered in 

this study. Similarly, this study did not cover the classroom assignment problem in the 

examination timetabling problem. 

 

In this study, we focus on the course timetabling and examination timetabling problems which 

are comparable to those occurring in an engineering faculty of a university in Indonesia. Some 

other constraints that might be occurred in other universities are not considered, such as certain 

courses or examinations have to be scheduled consecutively, certain courses or examinations 

cannot be conducted at the same time period, the uniformity of workload and so on. 
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The following points of further research are based on the limitations in current thesis. From a 

broader perspective, there are some interesting research topics that can be recommended for 

future research. 

 

Since one limitation of this research is the lack of real applications, more effort should be put 

on the incorporation of real case timetabling problems that would be considered as future 

research work. Each institution might have a different curriculum structure, additional 

requirements can be included in the models in order to make the models more realistic and 

acceptable,  for instance,  some courses or examinations cannot be scheduled together,  some 

courses or examinations have to be conducted consecutively, the uniformity of the workload 

and so on.  

 

A lot of variables have been used especially in TACS Model III, and hence ILOG OPL Studio 

software is not effective in solving the problem. There might be a better way to model the 

problem especially for the one is used to model the consecutive constraints. One possible way 

to consider in future research is to use column generation concept. Column generation can be 

beneficial for a large-scale problem with many variables but relatively few constraints 

(Desaulniers et al., 2005). 

 

Another possible area for future research is to incorporate other sub-problems, such as 

classroom assignment and student scheduling into the process. This would transform the entire 

process of building course and examination timetables into a more complex and complete 

process. It would be beneficial to extend the problem into the whole process of building a 

complete timetable by considering other sub-problems as well.  

 

There are several differences between school and university timetabling problems. In school 

timetabling problem, we often work with predefined classes and have few programs so that the 
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main problem is to determine teachers for given subjects and classes, and to construct 

appropriate teaching schedules. In universities, more programs are offered and faculty 

members/teachers may only teach few hours a week. Due to these differences, the study of 

building either a course or an examination timetable at the school level can be considered as 

future research work. 

 

Another possible extension is to improve the proposed methods in order to obtain better 

solutions. For example, in the proposed algorithms, the Tabu Search framework was designed 

with only a short term memory (tabu list) and the intensification strategy. It might be useful to 

implement other strategies, such as diversification strategy. The diversification strategy 

encourages the search process to examine unvisited regions and to generate solutions that 

differ in various significant ways from those seen before. One possible diversification 

technique is constraint relaxation. Constraint relaxation is implemented by dropping selected 

constraints from the search space definition and adding to the objective weighted penalties for 

constraint violations. 
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APPENDIX A Procedures of the Improvement Heuristic 

 

The details of three phases of the improvement heuristic presented in Chapter 4 are described 

as follows: 

 

Pre-Processing Phase 

(1) For each course j, construct a list Ij that consists of teachers who are willing to teach 

course j that are sorted in non-increasing order of course preference.  

(2) For each teacher i, construct a list LMi of a 2-tuple (day l and time period m) that consists 

of days and time periods sorted in non-increasing order of time period preference.  

 

Construction Phase 

 This phase consists of two sub-phases: 

 

Teacher assignment allocation sub-phase 

(3) For each course j, find the minimum number of teachers needed, LTj. The objective in 

this phase is to find teacher(s) from list Ij with the highest preference without violating 

the maximum number of courses taught constraint. Checking procedure must be applied 

in this step. If the minimum number of teacher, LTj is one, allocate the selected teacher 

to all sections of course j, otherwise, distribute the sections to the selected teachers, for 

instance, if LTj is two and course j has four sections, then each teacher will teach two 

course sections. 

(4) Classify each teacher based on their total number of courses taught. They are divided 

into three groups: teachers who have number of courses taught more than the maximum 

value allowed (Group 1), teachers who have number of courses taught less than or equal 

to the maximum value allowed and greater than one course (Group 2) and teachers who 

are not allocated to any courses (Group 3). 

(5) If |Group1| and |Group3| = 0, go to Step (7), otherwise go to Step (6). 

(6) Repeat the following steps until the total number of iterations reaches the preset 

maximum number of iterations or |Group1| and |Group3| = 0: 

(6.1) If |Group1| ≠ 0, do 

- Choose one teacher randomly from Group 1 and find another teacher who can 

teach one of the course 
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- Classify all teachers again into Groups 1, 2 and 3. 

(6.2)  If |Group3| ≠ 0, do  

- Choose one teacher randomly from Group 3 and allocate a course from his 

course preference list 

- Classify all teachers again into Groups 1, 2 and 3. 

 

Course scheduling sub-phase 

(7) Allocate each course section to time periods based on time preference. Checking 

procedure described earlier must be applied. 

(8) Check whether any courses are taught more than once a day. If any, keep the course in 

Excess List 1 (EL1). 

(9) Check whether any time periods have course sections allocated more than the capacity 

allowed. If any, keep the particular time period in Excess List 2 (EL2). 

(10) Check whether any teachers have their course sections not evenly spread out throughout 

the week. If any, keep the teacher in the Excess List 3 (EL3). 

(11) If |EL1|, |EL2| and |EL3| = 0, go to Step (13), otherwise go to Step (12). 

(12) Repeat the following steps until the total number of iterations reaches the preset 

maximum number of iterations or |EL1|, |EL2| and |EL3| = 0 : 

 (12.1) If |EL1| ≠ 0, do 

- Choose a course randomly from Excess List 1 and find a new day and time 

periods. 

- Update Excess Lists 1, 2 and 3. 

(12.2) If |EL2| ≠ 0, do  

- Choose a time period randomly from Excess List 2. 

- Determine number of course sections have to be reallocated. 

- For each selected course section, find a new day and new time periods. 

- Update Excess Lists 1, 2 and 3. 

(12.3) If |EL3| ≠ 0, do  

- Choose a teacher from Excess List 3. 

- Find the day taught by that teacher which has number of course sections taught 

more than the upper bound of number of course sections taught per day. 

- Determine number of course sections have to be reallocated. 

- For each selected course section, find a new day and new time periods. 

- Update Excess Lists 1, 2 and 3. 

(13) Calculate the total objective function value 
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Improvement Phase 

(14) Keep the current initial solution as the best solution obtained and treated as the initial 

solution. 

(15) Start from the initial solution. 

(16) Choose a course randomly including the teacher allocated to that particular course. 

(17) Find another teacher who has the minimum number of courses taught and less than the 

maximum number of courses taught. If found, go to Step (16), otherwise go to Step (15). 

(18) Reallocate the new teacher to the course. 

(19) Reallocate the time periods of the course. 

(20) Update the total objective function value. 

(21) Check whether the final objective function value is better than the best solution obtained. 

If Yes, keep the current solution as the best solution and update the starting initial 

solution. Otherwise, go back to the starting initial solution. 

(22) Repeat Steps (15) to (21) until the total number of iterations reaches the preset maximum 

number of iterations. 
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APPENDIX B1 Flow Chart of the Construction Phase 
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APPENDIX B2 Flow Chart of Algorithm SA1 
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APPENDIX B3 Flow Chart of the Evaluation Process of Algorithms 

SA1 and SA2 (Algorithm 3) 
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APPENDIX B4 Flow Chart of Algorithm SA2 
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APPENDIX B5 Flow Chart of Algorithm SA-TS 
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APPENDIX B6 Flow Chart of the Evaluation Process of Algorithm 

SA-TS (Algorithm 6) 
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APPENDIX C1 Flow Chart of the First Process of a Lagrangian 

Heuristic 
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APPENDIX C2 Flow Chart of the Second Process of a Lagrangian 

Heuristic 
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APPENDIX C3 Flow Chart of Algorithm LR-SA 
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APPENDIX D1 Flow Chart of the Construction Phase of GRASP 

Algorithm 
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APPENDIX D2 Flow Chart of Algorithm SA-TS for the basic 

Examination Timetabling Problem 
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APPENDIX D3 Flow Chart of the Construction Phase of Modified 

GRASP Algorithm  
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APPENDIX D4 Flow Chart of Algorithm SA-TS for the Extended 

Examination Timetabling Problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y 

Y 

Y 

Initialize the parameters 

Set the best solution, best_sol = initial_sol 

Set the current solution, current_sol = initial_sol 

Set the total number of iterations, num_iter = 0 

Set no_improv = 0 

Y 

Is num_iter < the preset 

maximum number of 

iterations, outer_loop? 

Set inner = 0 

Report the best solution, 
best_sol 

N 

Select exam t randomly 

Apply a partial sequential 

neighborhood search 

Find the best permutation  with 

the smallest value of  t,π,Δ   

N 

N 

N 

N 

Y 

Y 

 t,π,Δ  < 0? 

Update the current solution,  

current_sol = new_sol 

Is current_sol better than 

best_sol? 

Update the best solution,  

best_sol = current_sol 

Generate a random number 

r1 uniformly from [0, 1] 

Check whether new_sol is tabu 

r1 < exp(∆(π’,t,u)/T) and 

new_sol is not tabu? 

no_improv := no_improv +1 

Update the current solution,  

current_sol = new_sol 

Return to the current 

solution,  

current_sol  

Update tabu list 

Is inner < the preset 

value, inner_loop? 

Update tabu list 

Update temperature, T 

Is no_improv > the preset 

value, limit? 

Apply the intensification strategy Set no_improv = 0 

num_iter := num_iter + 1 

Finish 

N 

Start 



                                                                                                                                                                              Appendix E Solution Representation  

     

221 

 

APPENDIX E SOLUTION REPRESENTATION 

Solution for Data set 10×20(1) by Algorithm LR-SA 

Day 1 2 3 

Period 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

Teacher1 
              

4(2) 4(2)     4(3) 4(3)         

Teacher2 
     

16(1) 16(1) 
   

17(2) 17(2) 
    

  
 

15(1) 15(1) 
   

  

Teacher3 
      

8(2) 8(2) 
      

3(2) 3(2)   
     

12(1) 12(1) 

Teacher4 
                

  
    

2(2) 2(2) 2(2) 

Teacher5 
        

11(2) 11(2) 
    

1(1) 1(1)   
 

19(1) 19(1) 19(1) 
 

7(2) 7(2) 

Teacher6 
        

13(2) 13(2) 
      

  
  

1(2) 1(2) 
  

  

Teacher7 
  

17(1)* 17(1) 14(3) 14(3) 
        

14(1) 14(1)   
     

14(2) 14(2) 

Teacher8 
     

20(2) 20(2) 20(2) 
    

18(3) 18(3) 
  

  
    

10(1) 10(1)   

Teacher9 
      

6(2) 6(2) 
 

20(1) 20(1) 20(1) 
    

  
   

5(2) 5(2) 
 

  

Teacher10 
 

7(3) 7(3) 
           

9(1) 9(1)             8(1) 8(1) 

Day 4 5 
        

Period 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
        

Teacher1 
             

2(1) 2(1) 2(1) 
        

Teacher2 
    

5(1) 5(1) 
  

16(2) 16(2) 
  

15(3) 15(3) 
          

Teacher3 
 

12(3) 12(3) 
      

10(2) 10(2) 
             

Teacher4 
  

6(1) 6(1) 
       

13(1) 13(1) 
           

Teacher5 
    

11(1) 11(1) 
   

7(1) 7(1) 
        

` 
    

Teacher6 
    

4(1) 4(1) 
       

19(2) 19(2) 19(2) 
        

Teacher7 
 

15(2) 15(2) 
         

3(1) 3(1) 
          

Teacher8 18(2) 18(2) 
           

18(1) 18(1) 
         

Teacher9 
          

12(2) 12(2) 
    

  
       

Teacher10 
         

9(2) 9(2) 
             * Teacher 7 teaches Course 17 Section 1 on Day 1 Time Periods 3 and 4 


