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SUMMARY 

 

Tick saliva contains potent anti-hemostatic molecules that help ticks obtain 

their enormous bloodmeal during prolonged feeding. Following the isolation of 

thrombin inhibitors present in the salivary gland extract from partially fed female 

Amblyomma variegatum, the tropical bont tick, we characterized the most potent, 

variegin. It is one of the smallest (32 residues) thrombin inhibitors found in nature. 

Full-length variegin and two truncated variants were chemically synthesized. Despite 

its small size and flexible structure, variegin binds thrombin with a strong affinity (Ki 

~ 10.4 pM) and high specificity. Results using the truncated variants indicate that the 

seven residues at the N-terminus affect the binding kinetics; when removed, the 

binding characteristics change from fast to slow. Further, the thrombin active site 

binding moiety of variegin is in the region of residues 8 to 14, and the exosite-I 

binding moiety is within residues 15 to 32. 

 

Upon binding to thrombin, variegin is cleaved at the scissile bond between 

Lys10 and Met11. The sequence resides in the active site binding segment 

(8EPKMHKT14) is novel. Residues locate C-terminal to the scissile bond (11MHKT14) 

is mainly responsible for the ability of variegin cleavage product to non-competitively 

inhibit thrombin. After cleavage, the variegin C-terminal fragment retains strong 

binding to thrombin (Ki = 14.1 nM) resulting in prolonged inhibition of the enzyme.  

 

Despite our attempts to obtain the three-dimensional structure of thrombin in 

complex with full-length s-variegin, only the density of its C-terminal cleavage 

fragment is observed. s-Variegin (cleavage fragment) fits tightly to thrombin in the 
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catalytic pocket, prime subsites and exosite-I. s-Variegin cleavage fragment perturbs 

the charge relay system of thrombin catalytic site and the formation of oxyanion hole 

through a new and extensive hydrogen bonding network, explaining the non-

competitive inhibition of thrombin. The structure also reveals other important 

information and facilitates subsequent design of variegin variants. These variants that 

have been designed and characterized cover a diverse spectrum of potency, kinetics 

and mechanism of inhibition, including peptides with affinities ranging from 

nanomolar to picomolar values, with fast and slow tight-binding, displaying 

competitive and non-competitive inhibition.  

 

We have then demonstrated that the in vivo antithrombotic effects of variegin 

variants in zebrafish larvae correlate well with their in vitro affinities for thrombin 

with the exception of the slow binding variants. In addition, the thrombin inhibitory 

activities of the peptides can be reversed by protamine sulfate. Through works 

conducted within the scope of this project, we have identified and characterized a 

novel thrombin inhibitor, variegin. It is dissimilar to any other groups of naturally 

occurring thrombin inhibitors, thus belongs to a new class of its own. A wide 

selection of peptides with different potencies, kinetics, mechanisms of inhibition were 

designed and characterized, laying foundation for subsequent development of these 

inhibitors as therapeutic agent. 
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Introduction 
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1.1. HEMOSTASIS 

 

The circulation of blood is essential for our survival. Hemostasis – the 

spontaneous arrest of blood loss from ruptured vessels (Jackson and Nemerson, 1980) 

– involved the interplay of several processes such as vasoconstriction, platelet 

activation and aggregation, blood coagulation and fibrinolysis. When vascular injury 

occurs, subendothelial matrix is exposed to the flowing blood. Two pathways proceed 

to activate platelets in the blood – collagen pathway and tissue factor (TF) pathway. 

In the collagen pathway, the exposure of subendothelial collagen recruits platelets to 

the site of injury. Platelets adhere to the exposed collagen through platelet-

glycoprotein VI and platelet glycoprotein Ib-V-IX-von Willebrand factor (VWF) 

interactions. In tissue factor pathway, the activation of platelet is through thrombin 

cleavage of platelet protease-activated receptor 4 (Par4). Tissue factor (derived from 

the vessel wall or present in blood) initiates the classical blood coagulation cascade 

(see below for details) to produce thrombin. Which of the two pathways predominates 

depends on the injury, although the result, platelet activation, is the same. Activated 

platelets accumulate on the endothelium, aggregate and recruit inactivated platelets to 

form platelet thrombus. Associated with this platelet thrombus is fibrin, cleaved from 

fibrinogen by thrombin. As coagulation propagates, fibrin clot forms to seal the 

breach in the vessel wall (Furie and Furie, 2007; Furie and Furie, 2008).  

 

1.1.1. Blood coagulation cascade 

The classical view of hemostasis places the formation of platelet thrombus 

(platelet plug) as the initial response to injury. Platelet plug was thought to 

temporarily reduce blood loss before the formation of fibrin clot through blood 
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coagulation pathway to strengthen the platelet plug in a meshwork of fibrin (Davie et 

al., 1991). Recent findings demonstrated that formation of the platelet plug 

intertwined with thrombin generation and fibrin clot formation as concurrent events 

(Furie and Furie, 2007; Furie and Furie, 2008). Either way, blood coagulation 

pathway is the common mechanism to arrest the bleeding. Thus, blood coagulation 

remains one of the most important parts of hemostasis. The blood coagulation cascade 

was established in 1964 (Davie and Ratnoff, 1964; Macfarlane, 1964) and has been 

reviewed in detail elsewhere (Jackson and Nemerson, 1980; Davie et al., 1991). An 

interesting historical perspective was also published (Davie, 2003). Nonetheless, latest 

studies of thrombus formation in vivo have added valuable information to our 

knowledge and will be the main focus in the descriptions here.  

 

1.1.2. Initiation phase 

The current view on blood coagulation separates the process into two phases – 

initiation and amplification (Figure 1.1). In the initiation phase, a minute amount of 

thrombin is generated through a series of events described in the classical extrinsic 

(tissue factor) pathway of coagulation. Tissue factor is a membrane protein located in 

the adventitial and medial layers of the vessel wall. Vascular injury exposes tissue 

factor to circulatory activated factor VII (FVIIa) in flowing blood to form the 

extrinsic tenase complex in the present of calcium ions (FVIIa-TF-Ca2+). However, 

TF is also present in the circulating blood, associated with microparticles. It is 

postulated that microparticles associated TF exist in a latent form and is activated by a 

yet to be identified mechanism at the site of injury. In either case, formation of the 

extrinsic tenase complex is pivotal. This complex activates three zymogens – factor 

VII (FVII), factor IX (FIX) and factor X (FX). Activated FVII binds to free TF to 
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FIGURE 1.1  

Blood coagulation cascade – initiation and amplification phase 

Initiation phase 

Amplification phase 
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increase the amount of the extrinsic tenase complex. Activated FIX (FIXa) binds to 

circulatory factor VIII (FVIII) to generate FXa, albeit inefficiently. Factor X is also 

directly activated by the extrinsic tenase complex. The overall result is the generation 

of FXa, which in turn associates with FV as an inefficient complex to generate trace 

amount of thrombin (FIIa) from prothrombin (FII) (Furie and Furie, 2008).  

 

1.1.3. Amplification phase 

With the formation of this low amount of thrombin blood coagulation 

proceeds to the amplification phase (Figure 1.1), typically described as the intrinsic 

(contact factor) pathway. Thrombin activates platelets, FVIII, FV and possibly FXI. 

Platelets contributed phospholipids (PL) surface that is required for the maximum 

efficiency of coagulation complexes. With the formation of FVIIIa, the fully active 

intrinsic tenase complex (FIXa-FVIIIa-PL-Ca2+) is assembled which amplified FXa 

production. Similarly, activated FV (FVa) forms the fully active prothrombinase 

complex (FXa-FVa-PL-Ca2+). As a result the fully active complexes increase the 

amount of thrombin produced by at least five orders of magnitude, resulting in a large 

burst of thrombin (Furie and Furie, 2008). Thrombin cleaves fibrinogen into fibrin 

which polymerized into the insoluble clot. The fibrin polymers are further 

strengthened and stabilized through covalent cross-linking driven by thrombin-

activated factor XIII (FXIIIa) (Lane et al., 2005). 

 

The activation of factor XI (FXI) by thrombin, although is controversial, also 

contributes to FXa production. The contact activation – the initiation of contact 

system pathway in vitro – is through factor XII (FXII) and prekallikrein (PK)-high 

molecular weight kallikrein (HMWK) complex activation on negatively charged 
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surface in the presence of Zn2+. The activation is reciprocal, amplifying FXIIa and 

kallikrein formed. The activated factor XII cleaves FXI into FXIa, which in turn 

activates FIX – the enzyme in the intrinsic tenase complex. Kallikrein also cleaves 

HK to release bradykinin (Gailani and Renne, 2007). The contact activation was 

previously thought to be irrelevant in vivo in hemostasis. However, recent findings 

suggested important roles of FXII and FXI in pathological thrombus formation. Thus, 

by inhibiting FXIIa, it might be possible to prevent thrombosis without perturbing 

hemostasis (Furie and Furie, 2007; Muller and Renne, 2008). 

 

1.1.4. Fibrinolysis 

Once bleeding stops and hemostasis is restored, the clot must be removed. The 

process of clot dissolution is known as fibrinolysis. The main enzyme responsible for 

the degradation of fibrin into soluble products is the serine proteinase plasmin. 

Plasmin circulates as inactive zymogen (plasminogen) in the blood. Two enzymes, 

tissue plasminogen activator (tPA) (released from vascular endothelial cells following 

injury) and, to a lesser degree, urokinase (synthesized as a zymogen prourokinase by 

epithelial cells lining excretory ducts and is activated by proteolytic cleavage) convert 

plasminogen to plasmin (Zorio et al., 2008).  

 

1.1.5. Physiological inhibitors of blood coagulation 

Physiologically, blood coagulation is controlled by: (1) enzymes inactivation 

through proteinase inhibitors; and (2) cofactors inactivation through enzymes. Among 

all the proteinase inhibitors, antithrombin-III (AT-III), which belongs to serine 

proteinase inhibitor (serpin) superfamily, plays an important role. Many blood 

coagulation enzymes, including thrombin, FIXa, FXa and FXIa are inhibited by AT-
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III. The inhibition is mediated through a unique mechanism, which involves the 

formation of a ternary complex of AT-III, the enzyme and glycosaminoglycans 

(GAGs; e.g. heparin and heparan sulfate). Like a typical serpin, AT-III irreversibly 

locks its target proteinases in a covalent acyl-enzyme intermediate for inhibition. The 

presence of GAGs accelerated the reaction. In contrast to the broad specificity of AT-

III, a similar but thrombin-specific serpin, heparin cofactor II (HCII), is also present. 

A Kunitz-type proteinase inhibitor – tissue factor pathway inhibitor (TFPI) – is 

responsible for the inhibition of the TF-FVIIa-FXa complex. Proteolytic inactivation 

of cofactors – FVa and FVIIIa – is achieved through a serine proteinase named 

activated protein C (APC). Cleavage of FVa and FVIIIa by APC results in a rapid lost 

of the intrinsic tenase and the prothrombinase complexes and attenuates thrombin 

production. Interestingly, APC is activated by thrombin associated with membrane 

bound thrombomodulin (TM). Therefore, by binding to TM, the procoagulant role of 

thrombin can be switched to an anticoagulant one (Davie et al., 1991).  
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1.2. THROMBOSIS 

 

As hemostasis is a tightly regulated system, any imbalance could lead to either 

unclottable blood, resulting in hemorrhagic disorders, or unwanted clot formation, 

resulting in thrombosis. Thrombosis in particular causes high morbidity and mortality 

due to vascular occlusion with the consequence of myocardial infarction (MI), stroke, 

pulmonary embolism (PE), or deep-vein thrombosis (DVT) (Furie and Furie, 2008). 

Globally, with changing food habits and lifestyles, atherosclerosis and 

thromboembolic disorders are taking the central stage (Ajjan and Grant, 2006). In the 

USA alone, it is being estimated that 2 million people develop DVT each year, with 

600,000 of them progress to PE, which is fatal in 200,000 patients every year (Gross 

and Weitz, 2008). Antithrombotic drugs, generally divided into two classes – 

anticoagulants and antiplatelets, are used to prevent and treat thrombosis. 

Anticoagulants are effective for initial and long-term management of both the arterial 

[acute coronary syndrome (ACS) and stroke] and venous [venous thromboembolism 

(VTE)] thrombosis (Eikelboom and Hirsh, 2007). Antiplatelet drugs are useful for 

arterial thrombotic events (e.g. in the treatment of ACS and prophylactic management 

of coronary, cerebral and peripheral artery disease), but is less efficacious than 

anticoagulants in the prevention of VTE. Such difference is suggested to be due to the 

underlying mechanisms of diseases in the arterial and venous thrombosis (Wu and 

Matijevic-Aleksic, 2005). Thus, anticoagulants are crucial for the prevention and 

treatment of thrombosis. 
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1.3. CURRENT ANTICOAGULANTS 

 

1.3.1. Heparin 

Heparin and vitamin K antagonists (such as warfarin) are the cornerstones of 

anticoagulation therapy. Unfortunately, both classes of drugs have well-documented 

limitations such as a narrow therapeutic window and highly variable dose-response. 

Unfractionated heparin (UFH) is a heterogenous mixture of polysaccharide chains of 

different molecular sizes (3 to 50 kDa) that binds to AT-III in the blood to facilitate 

the inhibition of thrombin and FXa by AT-III. Unfractionated heparin also binds to 

plasma proteins, resulting in highly variable pharmacokinetics. In addition, UFH also 

induces an immune response called heparin-induced thrombocytopenia (HIT). The 

recent introduction of low-molecular-weight heparin (LMWH, 3 – 4 kDa) and 

fondaparinux (1728 Da) that mainly inhibit FXa through AT-III seems to have 

overcome some of the UFH problems. Plasma proteins binding and incidence of HIT 

are largely reduced although other difficulties, such as the need for injection and the 

possibility of HIT, persist (Marder et al., 2004; Wu and Matijevic-Aleksic, 2005; 

Gross and Weitz, 2008).  

 

1.3.2. Vitamin K antagonists 

The coumarin family of Vitamin K antagonists (most commonly warfarin), 

inhibit vitamin K-dependent γ-carboxylation of FII (prothrombin), FVII, FIX, FX (all 

are procoagulants), protein C and protein S (both are physiological anticoagulants), 

impairing their activity. Despite being orally available, warfarin is associated with a 

long list of disadvantages. It has a slow onset, narrow and highly variable therapeutic 

dosages and paradoxical hypercoagulability. All these limitations made frequent 

9



 

coagulation monitoring mandatory, increasing both patient compliance issues and cost 

of healthcare (Marder et al., 2004; Wu and Matijevic-Aleksic, 2005; Gross and Weitz, 

2008).  

 

1.3.3. Direct thrombin inhibitors 

Limitations of heparin and warfarin drive the continual and intense efforts to 

develop new, efficacious and safe anticoagulants, especially those targeting specific 

coagulation factors (Gross and Weitz, 2008). Some of these leading agents, such as 

hirudin, bivalirudin, argatroban and dabigatran etexilate, are currently in the market. 

They are all specific and direct thrombin inhibitors. Hirudin, originally isolated from 

the medicinal leech Hirudo medicinalis, is a 65-residue protein. Recombinant hirudin 

is approved for the treatment in patients with HIT and thrombosis prophylaxis after 

major orthopedic surgery. There are a few major drawbacks (includes risk of bleeding, 

pharmacokinetics that depend on renal function, lack of antidote, immunogenicity and 

rebound hypercoagulability) associated with the recombinant hirudin. This has 

rendered the use of the agent largely limited as heparin replacement in patients with 

HIT (Greinacher and Warkentin, 2008). Bivalirudin is a 20-residue peptide designed 

based on the hirudin structure and is indicated for invasive cardiology particularly 

percutaneous coronary intervention (PCI). Unlike hirudin, bivalirudin is eliminated by 

a combination of proteolytic and renal routes and has negligible immunogenic 

potential. Compared to hirudin and argatroban, bivalirudin is more widely used. It is 

gaining more clinical applications for both arterial (e.g. ACS, MI) and venous (HIT) 

thrombotic events (Warkentin et al., 2008). Argatroban is a small molecule inhibiting 

the thrombin active site. Clinical usage of argatroban is largely limited to HIT (Yeh 

and Jang, 2006). Dabigatran etexilate is the latest anticoagulant to reach the market. It 
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was approved by European Commission in March 2008 for the prevention of venous 

thromboembolic events in patients who have undergone total hip- or knee-

replacement surgery. It is the second orally available direct thrombin inhibitor to gain 

approval for clinical use, the first being ximelagatran. However, ximelagatran was 

withdrawn from the market in February 2006 due to concerns in causing liver toxicity. 

Unlike warfarin, coagulation monitoring is not required for the use of dabigatran 

etexilate (Eriksson et al., 2008). It is difficult to predict at this point whether 

dabigatran etexilate will eventually replace warfarin but the complicated nature and 

clinical settings of thrombosis (e.g. arterial vs. venous thrombosis, acute vs. long term 

management, thrombosis in pregnant, nursing, renal-impaired or cancer patients) 

definitely called for more new and safe anticoagulants with different pharmacological 

and pharmacokinetic properties. Thus, the search for new lead compounds for 

development of anticoagulants is still very relevant.   
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1.4. HEMATOPHAGOUS ANIMALS 

 

To search for new lead molecules, extensive research is focused on isolating 

and characterizing highly specific anticoagulants from blood-feeding (hematophagous) 

animals. The success of recombinant hirudin, and to a greater extent bivalirudin, 

demonstrates the utility of these natural products in drug design. Hematophagous 

animals consist mainly of arthropods in the orders of Ixodida (Ixodidae – hard ticks; 

Argasidae – soft ticks), Diptera (Culicidae – mosquitoes; Ceratopogonidae – biting 

midges; Tabanidae – horseflies; Glossinidae – tsetseflies; Simuliidae – blackflies; 

Phlebotominae – sandflies), Hemiptera (Triatominae – kissing bugs), Phthiraptera 

(Anoplura – sucking lice) and Siphonaptera (fleas), as well as some annelids in the 

subclass of Hirudinae (leeches), parasitic nematodes such as hookworms, and even 

mammals (vampire bats). Physiologically, the duration (e.g. seconds in mosquitoes to 

months in hookworm), behavior (obligatory or facultative) and mechanisms (e.g. 

pool-feeding/telmophages in ticks or capillary-feeding/solenophages in mosquitoes) 

of their blood-feeding habits differ. However, they all face the common physical, 

mechanical and chemical defenses of their hosts, including the skin and vessel walls, 

and the hemostatic, inflammatory and immunological responses. In order to obtain the 

enormous amount of blood required (relative to their body weight), it is essential for 

hematophagous animals to overcome these barriers with potent pharmacological 

agents that are capable of attenuating these physiological responses of their hosts 

(Ribeiro, 1995; Ribeiro and Francischetti, 2003). These agents include vasodilators, 

anticoagulants, antiplatelets, immunosuppressors and anti-inflammatory compounds 

(Ribeiro, 1995; Salzet, 2001; Ribeiro and Francischetti, 2003; Champagne, 2004; 

Hovius et al., 2008).  
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1.5. EXOGENOUS ANTICOAGULANTS FROM HEMATOPHAGOUS 

ANIMALS 

 

Over the years, a large number of exogenous anticoagulants from 

hematophagous animals have been identified, although not many of them have been 

characterized in detail (Salzet, 2001; Champagne, 2004). These anticoagulants target 

blood coagulation proteinases to prevent clot formation during their ingestion and 

digestion of blood meals. Unlike physiological inhibitors of blood coagulation 

proteinases which mainly comprise two groups (serpin and Kunitz), enormous 

molecular diversity can be observed in the exogenous anticoagulants from 

hematophagous animals. Cataloging this vast amount of information is important. 

Here, an overview on the structure, function and mechanism of exogenous 

anticoagulants from hematophagous animals is provided to help rationalizing the 

molecular diversity in this group of proteins. Based on the mechanism of action, these 

exogenous anticoagulants from hematophagous animals can be broadly classified as: 

(1) thrombin inhibitors (Table 1.1); (2) FXa inhibitors (Table 2.1); (3) extrinsic tenase 

complex inhibitors (Table 3.1); (4) intrinsic tenase complex inhibitors (Table 4.1); 

and (5) contact system proteins inhibitors (Table 5.1). The tables provided a 

comprehensive list of these anticoagulants as some of the molecules are not discussed 

in the text due to limitation in writing space. 

 

1.5.1. Thrombin inhibitors (Table 1.1) 

1.5.1.1. Hirudin 

The most well-known example of thrombin inhibitor, hirudin, was isolated 

more than 50 years ago from the peripharyngeal glands of the medicinal leech Hirudo 
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TABLE 1.1 

Thrombin inhibitors from hematophagous animals 
THROMBIN INHIBITORS 

      
      

Class Structure Mechanism  Example Species Reference 
      
      

Hirudin Hirudo medicinalis (Markwardt, 1994) 
Bufrudin Hirudinaria 

manillensis 
(Scacheri et al., 1993) 

• Fast, tight-binding, 
competitive inhibition 

• N-terminus inhibits active site 
non-canonically 

• C-terminus binds to exosite-I  
Hirullin Hirudinaria 

manillensis 
(Steiner et al., 1992) 

    

    

1.  Hirudin-like 
inhibitors 

• Single domain of ~ 7 kDa 
• N-terminal globular core 

stabilized by 3 disulfide 
bridges 

• C-terminal long, extended tail 
• Similar to hirudin but C-

terminus binds to exosite-II 
Haemadin Haemadipsa 

sylvestris 
(Strube et al., 1993) 
(Richardson et al., 2000) 

       
       

Ornithodorin Ornithodoros 
moubata 

(van de et al., 1996) 

Savignin Ornithodoros 
savignyi 

(Nienaber et al., 1999; Mans 
et al., 2002) 

Monobin Argas monolakensis (Mans et al., 2008) 
   

Amblin Amblyomma 
hebraeum 

(Lai et al., 2004) 

Boophilin Boophilus microplus (Macedo-Ribeiro et al., 
2008) 

2.  Kunitz-type 
proteinase 
inhibitors 

• Single Kunitz domain is ~ 7 
kDa 

• Two tandem Kunitz domains 
• Soft ticks inhibitors: distorted 

inhibition loop, lack of basic 
P1 residue 

• Hard ticks inhibitors: typical 
inhibition loop, with basic P1 
residue 

• Slow, tight-binding, 
competitive inhibition  

• N-terminal Kunitz domain 
inhibits active site non-
canonically 

• C-terminal Kunitz domain 
binds to exosite-I 

Hemalin Haemaphysalis 
longicornis 

(Liao et al., 2008) 

       
       

Rhodniin Rhodnius prolixus (Friedrich et al., 1993; van 
de et al., 1995) 

Dipetalogastin Dipetalogaster 
maximus 

(Mende et al., 1999) 

3.  Kazal-type 
proteinase 
inhibitors 

• Single Kazal domain is ~ 6 
kDa 

• Multiple non-classical Kazal 
domains in tandem  

• Typically isolated as two 
tandem domains proteins but 
cDNA sequence showed 
multiple-domains precursors 

• Slow, tight-binding, 
competitive inhibition 

• N-terminal Kazal domain 
inhibits active site canonically 

• C-terminal Kazal domain 
binds to exosite-I 

Infestin-1-2 Triatoma infestans (Campos et al., 2002) 
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4.  Lipocalin 
family 

• Single domain of ~ 16 kDa 
• Eight-stranded (A-B-C-D-E-F-

G-H) β-barrel and a central 
ligand-binding pocket 

• Directional inversion in B and 
C strands compared to typical 
lipocalin topology 

• Binds to exosite-I only Triabin Triatoma 
pallidipennis 

(Noeske-Jungblut et al., 
1995; Fuentes-Prior et al., 
1997) 

       
       

• Slow, tight-binding, 
competitive inhibition 

• Inhibits active site and exosite-
I 

Anophelin Anopheles albimanus (Valenzuela et al., 1999) 

    
    

5.  Anophelin & 
thrombostasin 

• Single domain of ~ 7 to 9 kDa 
• No cysteines 
• Acidic segment in the middle 

of the molecule 
• Lack of kinetic information 
• Inhibits active site 
• Exosites binding not 

determined 

Thrombostasin Haematobia irritans (Zhang et al., 2002) 

       
       

• Binds to exosite-I only Madanin 1 & 2 Haemaphysalis 
longicornis 

(Iwanaga et al., 2003) 
    
    

6.  Madanin & 
chimadanin 

• Single domain of ~ 7 kDa 
• No cysteines 
• Containing a 11-residues 

acidic segment in the middle 
• Inhibits active site 
• Exosites binding not 

determined 

Chimadanin Haemaphysalis 
longicornis 

(Nakajima et al., 2006) 

       
       

7.  Antistasin-like 
inhibitor 

• Cysteine-rich domain of ~ 7 
kDa 

• Containing a 26-residues 
segment with conserved 
cysteines and disulfide 
linkages 

• Domain typically repeated in 
tandem 

• Inhibits active site 
• Exosites binding not 

determined 

Theromin Theromyzon 
tessulatum 

(Salzet et al., 2000) 

       
       

8.  Granulin-like 
inhibitor 

• Single granulin domain is ~ 6 
kDa 

• 12 conserved cysteines and 
disulfide linkages 

• Inhibits active site 
• Exosites binding not 

determined 

Leech granulin Hirudo nipponia (Hong and Kang, 1999) 
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9.  TTI • Short peptide of ~ 4 kDa 
• No cysteines 

• Inhibits active site 
• Exosites binding not 

determined 

TTI Glossina morsitans 
morsitans 

(Cappello et al., 1998) 

       
       

10.  NTI-1 • Short peptide of ~ 3 kDa • Non-competitively inhibits 
active site 

NTI-1 Hyalomma 
dromedarii 

(Ibrahim et al., 2001a) 

       
       

11.  Microphilins • Short peptide of ~ 1.7 kDa • Binds to exosite-I only Microphilin (2 
isoforms) 

Boophilus microplus (Ciprandi et al., 2006) 

       
       

12.  BmAP • High molecular weight of 60 
kDa 

• Inhibits active site 
• Binds to at least one exosite 

BmAP Boophilus microplus (Horn et al., 2000) 

       
       

13.  BmGTI • 26 kDa • Binds to exosite-I only 
• Also enhances APC activity 

BmGTI Boophilus microplus (Ricci et al., 2007) 

       
       

• Slow, tight-binding, 
competitive inhibitor 

Americanin (12 
– 16 kDa)  

Amblyomma 
americanum 

(Zhu et al., 1997a) 
    
    

Calcaratin (14 
kDa) 

Boophilus calcaratus (Motoyashiki et al., 2003) 

Unnamed (45 
kDa) 

Anopheles stephensi (Waidhet-Kouadio et al., 
1998) 

Tabanin (7 kDa) Tabanus bovinus (Arocha-Pinango et al., 
1999) 

Simulidin (11 
kDa) 

Simulium vittatum (Abebe et al., 2008) 

Crude extract 17 species of flies 
(genus: tabanus) 

(Kazimirova et al., 2002) 

Crude extract 3 species of 
mosquitoes (genus: 
Anopheles) 

(Stark and James, 1996) 

Crude extract Simulium argus (Abebe et al., 1994) 

14.  Others • Lack of detailed structural 
information 

• Lack of functional 
characterization 

Crude extract Panstrongylus 
megistus 

(Pereira et al., 1996) 
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medicinalis. Hirudin is a 65-residue protein (~ 7 kDa) which specifically inhibits 

thrombin (Markwardt, 1994). Many hirudin isoforms with minor variations in primary 

structures were subsequently reported (Scharf et al., 1989; Markwardt, 1994). This 

family of inhibitors was also isolated from other species of leeches (Steiner et al., 

1992; Scacheri et al., 1993) (Table 1.1). Hirudin binds thrombin with a Ki value of 22 

fM. The Tyr64 of hirudin is sulfated and desulfated hirudin binds to thrombin 10 

times weaker, with a Ki of 207 fM (Stone and Hofsteenge, 1986). Hirudin becomes a 

slow-binding inhibitor at high ionic strength solutions (0.2 and above) (Stone and 

Hofsteenge, 1986), highlighting the importance of electrostatic interactions between 

hirudin and thrombin in the complex formation (Myles et al., 2001). 

 

Three-dimensional (3D) structures of hirudin were determined using nuclear 

magnetic resonance (NMR) spectroscopy (Clore et al., 1987; Haruyama and Wuthrich, 

1989) and its structures complexed with thrombin were determined using X-ray 

crystallography (Rydel et al., 1990; Grutter et al., 1990; Rydel et al., 1991; Vitali et al., 

1992; Liu et al., 2007). Hirudin has an N-terminal domain (residues 1 – 48) folded 

into a globular unit stabilized by three disulfide bridges, and a long C-terminal 

domain (residues 49 – 65) in an extended conformation (Figure 1.2 A). The first three 

residues on hirudin N-terminus bind to a hydrophobic pocket at the active site of 

thrombin in a non-canonical form (ie. in the opposite direction of natural substrates 

such as fibrinogen), forming a short parallel β-pleated sheet with thrombin Ser214 – 

Gly216 [chymotrypsinogen numbering system (Bode et al., 1992)]. In contrast, 

canonical inhibitor runs in an anti-parallel direction with respect to thrombin Ser214 – 

Gly216 and possesses a basic P1 residue occupies the acidic S1 site [nomenclature: 

substrate residues are numbered from the P1-P1′ scissile bond toward the N-terminus 
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FIGURE 1.2 

Thrombin inhibitors from 
hematophagous animals 
(A) Hirudin (PDB: 1HRT): N-terminal 
core stabilized by three disulfide bridges 
and a long, extended C-terminal tail 

(B) Haemadin (PDB: 1E0F): N-terminal 
core stabilized by three disulfide bridges 
and a long, extended C-terminal tail 

(C) Boophilin (PDB: 2ODY): two tandem 
Kunitz domains with normal reactive-site 
loop (arrow) 

(D) Ornithodorin (PDB: 1TOC): two 
tandem Kunitz domains with distorted 
reactive-site loop (arrow) 

(E) Rhodniin (PDB: 1TBQ): two tandem 
Kazal domains with typical reactive-site 
loop (arrow) 

(F) Triabin (PDB: 1AVG): eight stranded 
β-barrel fold 

 

A B 

C D 

E F 
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and C-terminus respectively. Corresponding substrate binding pockets on the 

proteinases are number accordingly with, ‘S’ replacing ‘P’ (Schechter and Berger, 

1967)]. This primary specificity pocket (S1) on hirudin-bound thrombin is not 

occupied, differing from those of canonical inhibitors. The N-terminal amino group 

interacts with thrombin catalytic residues through hydrogen bonds. The C-terminal 

domain of hirudin is disordered in NMR structures (Clore et al., 1987; Haruyama and 

Wuthrich, 1989) but binds in ordered, extended conformation to the thrombin exosite-

I in crystal structures. The thrombin exosite-I is flanked by two loops (Phe34 – Leu41 

and Lys70 – Glu80) that are rich in basic residues (Rydel et al., 1991). The hirudin C-

terminus, rich in acidic residues, is inserted into exosite-I through specific 

electrostatic interactions. In addition, hydrophobic contacts also make significant 

contributions to the interaction (Rydel et al., 1990; Grutter et al., 1990; Rydel et al., 

1991). The specific, tight-binding nature of hirudin is thus a result of the extensive 

contacts in both the active site and exosite-I of thrombin (Figure 1.3 A).  

 

1.5.1.2. Haemadin 

Haemadin was isolated from Indian leech Haemadipsa sylvestris (Strube et al., 

1993). Although haemadin and hirudin share low sequence similarity, they exhibit a 

common three dimensional fold (Richardson et al., 2000). Haemadin is slightly 

smaller than hirudin with 57 residues. Haemadin is a slow and tight-binding inhibitor 

of thrombin, with Ki = 210 fM  (Strube et al., 1993). Similar to hirudin, haemadin has 

a globular N-terminal core stabilized by three disulfide bridges with an extended, 

acidic C-terminal tail (Figure 1.2 B). The first three N-terminal residues bind to the 

active site of thrombin non-canonically, again similar to the C-terminus of hirudin. 

Interestingly, the haemadin acidic C-terminus binds to the thrombin exosite-II instead 
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FIGURE 1.3 

Thrombin-inhibitors interaction 
sites 
Interface residues between thrombin and 
its inhibitors are mapped. On thrombin, 
active site surfaces are colored green, 
exosite-I surfaces are colored yellow and 
exosite-II surfaces are colored orange. On 
inhibitors, active site targeting residues 
are colored magenta, exosite-I targeting 
residues are colored cyan and exosite-II 
targeting residues are colored blue. 

 (A) Hirudin-thrombin complex (PDB: 
1HRT) 

(B) Haemadin-thrombin complex (PDB: 
1E0F) 

(D) Boophilin-thrombin complex (PDB: 
2ODY) 

(C) Ornithodorin-thrombin complex 
(PDB: 1TOC) 

 (E) Rhodniin-thrombin complex (PDB: 
1TBQ) 

(F) Triabin-thrombin complex (PDB: 
1AVG) 
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of exosite-I (Figure 1.3 B) (Richardson et al., 2000). Thrombin exosite-II is a highly 

basic surface (more so than exosite-I), situated on the opposite side of exosite-I. 

Exosite-II is also the heparin-binding site of thrombin (Huntington, 2005). The 

distinct surfaces targeted by haemadin (exosite-II) and hirudin (exosite-I) despite 

overall similarity in their 3D structures makes an interesting comparison of the 

molecular diversity observed in the anticoagulants from hematophagous animals: both 

are peptide inhibitors of thrombin from leeches, but each targets distinct sites. 

 

1.5.1.3. Kunitz-type proteinase inhibitors 

 The Kunitz-type serine proteinase inhibitors, also commonly known as bovine 

pancreatic trypsin inhibitor (BPTI), are one of the most extensively studied families of 

serine proteinase inhibitors (Laskowski, Jr. and Kato, 1980). A typical Kunitz-type 

domain has a reactive-site loop which binds and runs antiparallel to the enzyme active 

site residues Ser214 – Gly216. The basic P1 residue of the inhibitor binds to the S1 

specificity pocket of the enzyme, similar to the natural substrates (canonical inhibition) 

(Bode and Huber, 1992). This structural fold is commonly found in anticoagulants 

from ticks. Kunitz-type inhibitors identified from two separate families of ticks 

(Ixodidae – hard ticks and Argasidae – soft ticks) appear to belong to two different 

protein subclasses, based on their sequences. This provides evidence for the 

independent evolution of anticoagulant adaptations of blood-feeding behaviors in the 

hard and soft ticks (Mans et al., 2002b). 

 

Comparing sequence only, Kunitz-type thrombin inhibitors from hard ticks 

have a reactive-site loop with normal topology (Figure 1.2 C). Molecules in this group 

include amblin from Amblyomma hebraeum (Lai et al., 2004), boophilin from 
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Boophilus microplus (Macedo-Ribeiro et al., 2008) and hemalin from Haemaphysalis 

longicornis (Liao et al., 2008). These molecules have two tandem Kunitz domains. 

They typically have a lower affinity for thrombin [amblin Ki = 20 nM (Lai et al., 

2004), boophilin Ki = 1.8 nM (Macedo-Ribeiro et al., 2008)] compared to the soft 

ticks Kunitz-type inhibitors. These molecules were initially thought to bind to the 

active site of thrombin with their first Kunitz domain in a canonical fashion. However, 

the recently reported crystal structure of boophilin-thrombin complex revealed that 

boophilin first Kunitz domain binds to the active site of thrombin non-canonically 

despite the presence of a reactive-site loop with normal topology (Figure 1.3 C) 

(Macedo-Ribeiro et al., 2008).  

 

Kunitz-type thrombin inhibitors from soft ticks include ornithodorin from 

Ornithodoros moubata (van de et al., 1996), savignin from Ornithodoros savignyi 

(Nienaber et al., 1999; Mans et al., 2002a) and monobin from Argas monolakensis 

(Mans et al., 2008). Kinetically, savignin (Ki = 4.89 pM) (Nienaber et al., 1999) and 

monobin (Ki = 7 pM) (Mans et al., 2008) are slow, tight-binding, competitive 

inhibitors of thrombin. They are atypical Kunitz-type inhibitors as they have two 

highly distorted tandem Kunitz domains (Figure 1.2 D). This distortion is due to the 

displacement of a disulfide bridge, and the two domains are connected by an extended 

linker peptide. In addition to the distorted reactive-site loop, there is also a lack of 

basic P1 residue. As a result, this group of molecules non-canonically inhibit 

thrombin, as shown by the crystal structure of the thrombin-ornithodorin (van de et al., 

1996). The first of the two Kunitz domains of ornithodorin binds to the thrombin 

active site. The linker peptide and the second Kunitz domain bind to the thrombin 

exosite-I (Figure 1.3 D). The distorted reactive-site loop is not in contact with 
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thrombin. Instead, the first three residues of the N-terminal Kunitz domain run 

parallel to thrombin Ser214 – Gly219, making several hydrophobic contacts with the 

thrombin active site, similar to hirudin. The other residues in the first domain of 

ornithodorin also make contacts with the thrombin 60-loop (Leu59 – Asn62) and 

autolysis loop (Leu144 – Gly150) near the active site. Interactions between the 

exosite-I of thrombin and the second Kunitz domain of ornithodorin are mainly 

mediated through ionic pairings and are strengthened by hydrophobic interactions 

(van de et al., 1996).  

 

1.5.1.4. Kazal-type proteinase inhibitors 

 One other commonly encountered serine proteinase inhibitor – the Kazal-type 

inhibitor (Laskowski, Jr. and Kato, 1980) – is also utilized as the structural scaffold 

for exogenous anticoagulants. Kazal-type thrombin inhibitors include rhodniin from 

Rhodnius prolixus (Friedrich et al., 1993; van de et al., 1995), dipetalogastin from 

Dipetalogaster maximus (Mende et al., 1999) and infestin from Triatoma infestans 

(Campos et al., 2002). Typically, these molecules consist of multiple non-classical 

Kazal domains and bind to thrombin in a slow, tight-binding, competitive mode. The 

first and second cysteines of non-classical Kazal domains are spaced by one or two 

residues. In contrast, seven or eight spacer residues are found in classical Kazal 

domains. The Ki for rhodniin, dipetalogastin (domain 3-4) and infestin (domain 1-2) 

are 0.2 pM (Friedrich et al., 1993), 0.05 pM (Mende et al., 1999) and 25 pM (Campos 

et al., 2002), respectively. Interestingly, these molecules are typically isolated as 

proteins with two tandem domains (Figure 1.2 E), although cDNA cloned are usually 

translated into additional domains [rhodniin – three domains (Friedrich et al., 1993); 

dipetalogastin – six domains (Mende et al., 1999); infestin – seven domains (Lovato 
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et al., 2006)]. The crystal structure of the rhodniin–thrombin complex showed a 

different binding mechanism than the Kunitz-type inhibitors. In Kazal-type inhibitors, 

the first domain binds to the active site of thrombin canonically. The second Kazal 

domain (along with inter-domains linker) binds to the exosite-I of thrombin. The 

reactive-site loop of rhodniin has a P1 His. In contrast to the non-canonical inhibition 

of Kunitz inhibitors, the imidazole side chain of the P1 His is inserted into the S1 

pocket of thrombin. The thrombin 60- and autolysis loops also make contacts with the 

first Kazal domain. Although the second Kazal domain binds to the exosite-I of 

thrombin, the interaction appears to exclude the reactive-site loop (Figure 1.3 E). 

Only two pairs of residues directly form salt bridges, but the second Kazal domain 

and the linker peptide have an overall positive charge which might help to target the 

molecule to the negatively charged surface on exosite-I (van de et al., 1995).  

 

The roles of the additional domains revealed by cDNA of Kazal inhibitors 

were investigated in infestin. Combinations of different domains showed differential 

specificities towards blood coagulation proteinases (Figure 1.4). Domain 1-2 (Campos 

et al., 2002) is most specific for thrombin, while the presence of domain 4 (in infestin 

domains 1-4, 3-4 and 4) (Campos et al., 2002; Campos et al., 2004) switches the 

specificity towards FXIIa. It should also be noted that the post-translational 

processing mechanisms of these molecules are yet to be fully elucidated. However, 

the infestin domains are postulated to be processed between Ala-Glu, releasing single 

or tandem domains (Lovato et al., 2006). For example, proteins representing domains 

1R, 1-2 and 3-4 have the Ala-Glu dipeptide at their boundaries and were all isolated 

from the anterior midgut homogenate of Triatoma infestans.  
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Domains  Ki (nM) 
1R 2R 3R 1 2 3 4 Trypsin Thrombin FXa FXIIa Plasmin 

       ND 
             

       NI 
             

       5.2 0.8 59.2 0.078 1.1 
             

       3.1 0.025 NI NI NI 
             

       3.3 NI 18.2 0.067 0.4 
             

       11 NI 53 0.128 2.1 
             

 
FIGURE 1.4 

Differential specificities showed by different combinations of infestin domains 
Kazal-type thrombin inhibitor infestin cDNA is translated into seven tandem domains. Putative site of post-translational cleavage is between Ala-Glu that are present in 
between domain 1R and signal peptide, domain 1R and 2R, domain 3R and 1, domain 2 and 3 (indicated by red arrow). Matured proteins representing domains 1R, 1-2 and 3-
4 were isolated. Combinations of different domains showed differential specificities towards serine proteinases (italic Ki indicates that the binding to that enzyme is the 
strongest). Domain 1R is not an anticoagulant; instead it inhibits neutrophil elatase, subtilisin A and chymotrypsin. The presence of domain 4 appeared to be responsible for 
FXIIa specificity. Domain 1-2 is specific for thrombin.  

ND: not determined 

NI: non inhibitory  
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1.5.1.5. Lipocalin family 

The kissing bug Triatoma pallidipennis utilizes the lipocalin fold as a scaffold 

for anticoagulants. Although the lipocalin family of proteins has low sequence 

similarity, they all share a characteristic fold of an eight-stranded (A-B-C-D-E-F-G-

H), anti-parallel β-barrel and a central ligand-binding pocket. This family of proteins 

display a wide variety of functions (Flower, 1996). Triabin, isolated from Triatoma 

pallidipennis (Noeske-Jungblut et al., 1995) is the only thrombin inhibitor belonging 

to this family. Triabin binds to the thrombin exosite-I (but not to the active site) in an 

equimolar ratio, with a Ki of 3 pM (Noeske-Jungblut et al., 1995). Structurally, triabin 

deviates slightly from the typical lipocalin topology due to a directional inversion of 

the B and C strands, creating an up-up-down-down topology in the first four strands 

of the β-barrel (Figure 1.2 F). In contrast to the hirudin C-terminus, which is inserted 

into a deep cleft formed by the surface loops in exosite-I of thrombin, the β-barrel 

structure interacts with a relatively flat surface near the end of the cleft. The contacts 

are mainly mediated through hydrophobic interactions, covering a larger area of 

exosite-I (Figure 1.3 F) (Fuentes-Prior et al., 1997).  

 

1.5.1.6. Anophelin  

Isolated and cloned from the salivary glands of the mosquito Anopheles 

albimanus, anophelin, a 6.5-kDa protein, belongs to a unique class of thrombin 

inhibitors (Valenzuela et al., 1999). Anophelin is a slow, tight-binding, competitive 

inhibitor of thrombin with a Ki of 5.87 pM. Like many other exogenous thrombin 

inhibitors, anophelin binds to both the active site and exosite-I of thrombin 

(Francischetti et al., 1999). However, anophelin has a unique amino acid sequence 

which does not show significant homology to other known proteins (except 
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FIGURE 1.5 

Sequences of anophelin, thrombostasin, madanins and chimadanin 
(A) Sequence alignment of anophelin and thrombostasin showed limited identities. Identical residues are colored red, similar residues are colored blue. Both proteins are rich 
in acidic residues, marked by the symbol ‘@’. Identities between the two proteins concentrated in the acidic segment in the middle of the molecules and a short basic segment 
in the C-terminus. 

(B) Sequence alignment of madanins and chimadanin also showed limited identities among each other. Identical residues are colored red, similar residues are colored blue. 
Similar to anophelin and thrombostasin, the proteins are rich in acidic residues, marked by the symbol ‘@’. The proteins also bear the similar arrangement of residues (a 
cluster of acidic residues in the middle along with a short segment of basic residues near C-terminus). Chimadanin has an extension on C-terminus compared to madanins. 

A 
 
Anophelin  --APQYAPGDEPSYDEDTDDS-DKLVENDTSITDEDYAAIEASLS-ETFNTAADP-------------------GRRLGEGSKP---- 
            @@   @@@ @@  @   @ @    @@@    @     @      @                         @ 
 
Thrombostasin SAGPITLQLD----DDDDDDSGIPIFEMDDEDEDSNDNQKFP-LSFERFPENEKNQVGLRARFNKFMAKFTSLFGRRRG-VNVPNAA- 
            @    @@@@@@      @ @@@@@@  @         @   @ @                       

B 
 
Madanin 1  YP-ERDSAKEGNQEQERALHVKVQKRTDG-DADYDEYEEDGTTPTPDPTAPTAKPRLRGNKP----------------- 
      @     @   @ @           @  @ @ @@ @@@      @         
 
Madanin 2         YP-ERDSAKDGNQEKERALLVKVQERYQGNQGDYDEYDQDETTPPPDPTAQTARPRLRQNQD----------------- 
      @     @   @ @        @       @ @@ @ @@     @              @ 
 
Chimadanin       QPKE----KTKGVEVE--GNPATLISARQMDVSYDEYEDNGPDVIPG---EPAKPRGGPKNGAASGKFDQIPDFSSESH 
      @         @ @              @   @@ @@   @       @                 @   @   @  

27



 

thrombostasin, which will be discussed below). Significantly, anophelin contains no 

cysteines but is rich in acidic residues in the middle segment (Figure 1.5 A) 

(Valenzuela et al., 1999). The acidic site could target the thrombin exosite-I, similar 

to the action of hirudin C-terminus. However, the disulfides-stabilized 

hirudin/Kunitz/Kazal-type domains are not present in anophelin (due to the lack of 

cysteines), suggesting that a distinct structural feature is used to inhibit the thrombin 

active site. 

 

1.5.1.7. Thrombostasin  

 Thrombostasin was isolated from the horn fly Haematobia irritans. It is an 81-

residue protein that inhibits the thrombin active site. The primary sequence of 

thrombostasin contains no cysteines and shows very limited homology to anophelin. 

Interestingly, like anophelin, there appears to be a clustering effect of acidic residues 

in the middle of the molecule (all 18 acidic residues fall within positions 10 to 48) and 

a short segment of basic residues near the C-terminus (Figure 1.5 A) (Zhang et al., 

2002). 

 

1.5.1.8. Madanins and chimadanin 

 Madanins (isoforms 1 and 2) (Iwanaga et al., 2003) and chimadanin 

(Nakajima et al., 2006) are two groups of 7-kDa proteins identified in the salivary 

glands cDNA libraries of the hard tick Haemaphysalis longicornis. Recombinant 

madanins bind only to the thrombin exosite-I while not affecting thrombin amidolytic 

activity (commonly used to probe the function of thrombin active site) (Iwanaga et al., 

2003). In contrast, recombinant chimadanin inhibits the function of thrombin active 

site: however, the binding to either exosites was not investigated (Nakajima et al., 
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2006). The translated amino acid sequence of madanins and chimadanin are without 

cysteines and show low similarity with each other, except for an acidic segment in the 

middle of the molecule and a basic segment near the C-terminus (Figure 1.5 B). 

Neither proteins show significant homology to other proteins. However, a similar 

arrangement of residues (a cluster of acidic residues in the middle and a short segment 

of basic residues near the C-terminus) is seen in both proteins and is also observed in 

anophelin and thrombostasin. The C-terminus of chimadanin is extended, compared to 

madanins.  

 

1.5.1.9. Antistasin-like inhibitor 

In addition to the hirudin-like fold, leeches also utilize the antistasin-like 

scaffold to derive thrombin inhibitors [antistasin is a FXa inhibitor (Tuszynski et al., 

1987; Nutt et al., 1988), see below for details]. Theromin, an antistasin-like thrombin 

inhibitor isolated from Theromyzon tessulatum inhibits the thrombin active site with a 

Ki of 12 fM (Salzet et al., 2000). Overall sequence homology between theromin and 

antistasin is low, but crucially, a 26-residue segment with conserved (six) cysteines 

and disulfide pattern is present in both. Antistasin is a single chain, 119-residue 

protein with two tandem repeats (Tuszynski et al., 1987; Nutt et al., 1988), while 

theromin is a disulfide-linked homodimer of 67-residue chains (proteolytically 

processed tandem repeats). 

 

1.5.1.10. Tsetse thrombin inhibitor (TTI) 

 A potent, specific and short thrombin inhibiting peptide was isolated from 

salivary gland extract (SGE) of the tsetse fly Glossina morsitans morsitans and named 

tsetse thrombin inhibitor (TTI). TTI has 32 residues and contains no cysteines based 
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on the translated sequence of cloned cDNA. Native TTI potently inhibits thrombin 

amidolytic activity with a Ki of 584 fM. However, chemically and recombinantly 

synthesized TTI are substantially less active, with Ki of 166 nM and 150 nM, 

respectively. The differences in Ki values might be due to post-translational 

modifications in the native protein (Cappello et al., 1998).  

 

1.5.1.11. Nymphal thrombin inhibitor-1 (NTI-1) 

Nymphal thrombin inhibitor-1, isolated from the nymphs of the camel tick 

Hyalomma dromedarii is a unique thrombin inhibitor. The size of the molecule is 

small (3.2 kDa), similar to TTI but mechanistically it is unique. The peptide non-

competitively inhibits thrombin active site with a Ki of 11.7 μM but it also inhibits 

FXa (5-fold less potent compared to thrombin inhibition). Although the affinity to 

thrombin is relatively weak compared to other thrombin inhibitors, the non-

competitive mode of inhibition for the active site could be an interesting subject for 

studies (Ibrahim et al., 2001a).  

 

1.5.2. FXa inhibitors (Table 1.2) 

1.5.2.1. Kunitz-type proteinase inhibitors 

One of the main classes of FXa inhibitors is the atypical, non-canonical 

Kunitz-type inhibitors from the soft ticks including tick anticoagulant peptide (TAP) 

from Ornithodoros moubata (Waxman et al., 1990) and FXa-inhibitor (FXaI) from 

Ornithodoros savignyi (Gaspar et al., 1996). In contrast to the tandem Kunitz domains 

arrangement observed in Kunitz-type thrombin inhibitors, TAP and FXaI contain a 

single domain (Figure 1.6 A). Kinetically, both are slow, tight-binding, competitive 

inhibitors of FXa. Native and recombinant TAP have Ki values of 0.588 nM 
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TABLE 1.2 

FXa inhibitors from hematophagous animals 
FXa INHIBITORS 

      
      

Class Structure Mechanism Example Species Reference 
      
      

TAP Ornithodoros 
moubata 

(Waxman et al., 1990; Wei 
et al., 1998) 

1.  Kunitz-type 
proteinase 
inhibitors 

• Single Kunitz domain of ~ 6 to 
7 kDa 

• Distorted inhibition loop, lack 
of basic P1 residue 

 

• Slow, tight-binding, 
competitive inhibition 

• N-terminal Kunitz domain 
inhibits active site non-
canonically 

• C-terminal Kunitz domain 
binds to exosite-I 

FXaI Ornithodoros 
savignyi 

(Gaspar et al., 1996) 

       
       

NAP5 (AcAP5) Ancyclostoma canium (Cappello et al., 1995; 
Stassens et al., 1996; 
Mieszczanek et al., 2004) 

• Competitive inhibition  
• Inhibits active site canonically 

NAP6 (AcAP6) Ancyclostoma canium (Cappello et al., 1995; 
Stassens et al., 1996; 
Mieszczanek et al., 2004) 

    
    

2.  Ascaris-type 
proteinase 
inhibitors 

• Single domain of ~ 9 to 11 
kDa 

• 10 conserved cysteine residues 
and disulfide linkages 

• Has proteinase inhibition loop 
with basic P1 residue 

• Two-site partial non-
competitive inhibition 

• Inhibits active site 
• Needs an exosite for full active 

site inhibition 
• Also inhibits extrinsic tenase 

complex 

AceAP1 Ancyclostoma 
ceylanicum 

(Harrison et al., 2002) 

       
       

Antistasin Haementeria 
officinalis 

(Tuszynski et al., 1987; Nutt 
et al., 1988) 

Ghilanten Haementeria 
ghilianii 

(Brankamp et al., 1990) 

3.  Antistasin-like 
inhibitors 

• Cysteine-rich domain of ~ 7 
kDa 

• Containing a 26-residues 
segment with conserved 
cysteines and disulfide 
linkages 

• Domain typically repeated in 

• Inhibits active site canonically 
• Interactions with exosites not 

reported 

Therostasin Theromyzon 
tessulatum 

(Chopin et al., 2000) 
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tandem (except therostasin) 
       
       

4.  Atypical 
serpins 

• Single domain of ~ 45 – 55 
kDa 

• Three β-sheets and eight or 
nine α-helices 

• Typically glycosylated 
• Shorter reactive center loop 

and different hinge residues 
compared to typically serpins 

• Mechanistically different from 
typical serpins  

• Only example so far showed 
reversible, non-competitive 
inhibition 

• Post-translational modification 
important for activity 

AFXa Aedes aegypti (Stark and James, 1995; 
Otlewski et al., 2005) 

       
       

Salp14 Ixodes scapularis (Narasimhan et al., 2002) 5.  Salp family • ~ 9 to 14 kDa • Recombinant salp14 inhibits 
FXa active site 

• Recombinant salp9pac is not 
active 

Salp9pac Ixodes scapularis (Narasimhan et al., 2002) 

       
       

6.  Hemerythrin 
family 

• Single domain of ~ 15 kDa 
• Has a topology consist of four 

helix bundle 

• Inhibits active site 
• Maximal inhibitory activity at 

low concentration (<1 mM) of 
CaCl2 

Lefaxin Haementeria 
depressa 

(Faria et al., 1999) 

       
       

7.  Draculin • Glycoprotein of ~ 90 kDa • Slow, non-competitive, tight 
binding inhibitor of active site 

Draculin Desmodus rotundus (Fernandez et al., 1999) 

       
       

Unnamed Hyalomma truncatum (Joubert et al., 1995) 8.  Uncompetitive 
inhibitors from 
Hyalomma 

• ~ 15 to 17 kDa • Uncompetitive inhibitors of 
active site Unnamed Hyalomma 

dromedarii 
(Ibrahim et al., 2001b) 

       
       

Unnamed (16 
kDa) 

Amblyomma 
americanum 

(Zhu et al., 1997b) 

Unnamed (28 
kDa) 

Culicoides 
variipennis 
sonorensis 

(Perez de Leon et al., 1998) 

Unnamed (18 
kDa) 

Simulium vittatum (Jacobs et al., 1990) 

9.  Others • Lack of detailed structural 
information 

• Lack of functional 
characterization 

Unnamed Haementeria 
ghilianii 

(Condra et al., 1989) 
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Crude extract 3 species of 
mosquitoes 

(Stark and James, 1996) 

Crude extract 3 species of black 
flies 

(Abebe et al., 1994) 
    
    

Unnamed Simulium vittatum (Abebe et al., 1996) 
Crude extract Dermacentor 

andersoni 
(Gordon and Allen, 1991) 

• Inhibiting prothrombinase 
complex by attenuating FV 
activity 

 Crude extract Triatoma infestans (Pereira et al., 1996) 
    
    

  • Inhibiting prothrombinase 
complex by unknown 
mechanism 

Unnamed (65 
kDa) 

Rhipicephalus 
appendiculatus 

(Limo et al., 1991) 
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FIGURE 1.6 

FXa and extrinsic tenase complex inhibitors from hematophagous animals 
(A) FXa inhibitor TAP (PDB: 1KIG): single Kunitz-type domain with distorted reactive-site loop 

(B) FXa inhibitor NAP5 (PDB: 2P3F): single Ascaris-type domain 

(C) FXa inhibitor antistasin (PDB: 1SKZ): two tandem antistasin-like domains in antistasin 

(D) extrinsic tenase complex inhibitor NAPc2 (PDB: 2H9E): single Ascaris-type domain 

A B 

D C 
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(Waxman et al., 1990) and 0.18 nM, respectively (Neeper et al., 1990) while native 

FXaI has a Ki of 0.83 nM (Gaspar et al., 1996). The crystal structure of TAP in 

complex with FXa (Wei et al., 1998) shows a similar non-canonical mode of active 

site inhibition as observed in the thrombin-hirudin (Rydel et al., 1990; Grutter et al., 

1990; Rydel et al., 1991) and thrombin-ornithodorin interactions (van de et al., 1996). 

The first three N-terminal residues make multiple important contacts with the FXa 

active site and catalytic triad. In addition, TAP interacts with some of the residues on 

the Na+-binding (Arg222 & Lys224) and autolysis loops (Arg143, Glu146, Lys147 

and Arg149) of FXa (Figure 1.7 A) (Wei et al., 1998).  

 

1.5.2.2. Ascaris-type proteinase inhibitors 

The Ascaris family of serine proteinase inhibitors are characterized by 10 

cysteine residues forming a unique disulfide pattern in a single domain (Grutter, 

1994). A group of Ascaris-type FXa inhibitors (75 – 84 residues) were identified in 

the hookworms Ancyclostoma caninum (NAP5/6 or AcAP5/6 and NAPc2/3/4 or 

AcAPc2/3/4) (Cappello et al., 1995; Stassens et al., 1996; Mieszczanek et al., 2004b) 

and Ancyclostoma ceylanicum (AceAP1) (Harrison et al., 2002). NAP5/6 (Stassens et 

al., 1996) and AceAP1 (Harrison et al., 2002) inhibit the FXa active site, whereas 

NAPc2/3/4 binds to an FXa exosite (Stassens et al., 1996; Mieszczanek et al., 2004b; 

Murakami et al., 2007). Binding of NAPc2/3/4 to FXa facilitates their inhibition of 

the FVIIa-TF complex (Stassens et al., 1996; Mieszczanek et al., 2004b), thus are 

considered as extrinsic tenase complex inhibitors (see below for details). Detailed 

studies on NAP5 showed that it inhibits the FXa active site function competitively, 

with a Ki of 43 pM (Stassens et al., 1996). NAP5 (Figure 1.6 A) binds to FXa active 

site canonically, through the reactive-site loop that possesses a P1 Arg (Figure 1.7 B). 
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A 

C 

B FIGURE 1.7 

FXa-inhibitors interaction sites 
Interface residues between FXa and its inhibitors are 
mapped. On FXa, active site surfaces are colored green. The 
active site includes the active site pocket, Na+-binding loop 
and autolysis loop. The extended exosite surface including 
heparin binding exosite is colored orange. On inhibitors, 
active site targeting residues are colored magenta; exosite 
targeting residues are colored blue. 

(A) FXa-TAP complex (PDB: 1KIG) 

(B) FXa-NAP5 complex (PDB: 2P3F) 

(C) FXa-NAPc2 complex (PDB: 2H9E): NAPc2 binds to 
FXa as scaffold to inhibit FVIIa-TF complex, thus is classed 
as extrinsic tenase complex inhibitor 
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In addition to the active site, NAP5 interacts with residues on the Na+-binding 

(Arg222) and autolysis loops (Arg143, Lys147, Arg150, Gln151), similar to TAP 

(Rios-Steiner et al., 2007). Interestingly, the C-terminus of NAP5 was observed to 

interact with a novel FXa exosite (this exosite partially overlaps with the FXa heparin 

binding exosite) in a symmetry-related FXa molecule (Rios-Steiner et al., 2007). This 

exosite interaction is similar to that observed in NAPc2-FXa complex (see below for 

details) (Murakami et al., 2007). Whether this observation is an artefact due to crystal 

packing or has any physiological consequences remains to be confirmed.  

 

Despite the structural similarity between NAP5 and AceAP1, they have 

distinct mechanisms of action. Mechanistically, NAP5 is a competitive inhibitor of 

FXa amidolytic activity while AceAP1 is a two-site, partial non-competitive inhibitor. 

AceAP1 needs an exosite (yet to be identified) on FXa to which it binds with a lower 

affinity (700 nM) for full inhibition of the active site (affinity is 2 nM). Moreover, the 

FXa-AceAP1 complex binds to the FVIIa-TF complex in the same way as the FXa-

NAPc2 complex, while NAP5 is devoid of such activity (Harrison et al., 2002; 

Mieszczanek et al., 2004a).  

 

1.5.2.3. Antistasin-like inhibitors 

The antistasin-like domain is utilized widely in leeches as structural scaffold 

of anticoagulants. FXa inhibitors with antistasin-like domain include antistasin 

isolated from Haementeria officinalis (Tuszynski et al., 1987; Nutt et al., 1988), 

ghilanten isolated from Haementeria ghilianii (Brankamp et al., 1990) and therostasin 

isolated from Theromyzon tessulatum (Chopin et al., 2000). A 119-residue protein, 

antistasin has two tandem domains containing the 26-residue antistasin-like signature 
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(PROSITE entry PS51252). Each domain in antistasin has 10 cysteines, forming five 

intra-domain disulfide bridges (Figure 1.6 C). It is a slow, tight-binding, competitive 

inhibitor (Ki = 0.3 – 0.6 nM). The inhibition of the FXa active site is through the 

canonical reactive-site loop residing in the N-terminal domain (Arg as the P1 residue) 

(Dunwiddie et al., 1989). The crystal structure of antistasin was reported and was 

modelled in complex with FXa. Other than inhibition of the active site through the 

canonical reactive-site loop, the complex model suggested possible binding to the 

Na+-binding loop (Arg222, Lys223 and Lys224) (Lapatto et al., 1997). Overall 

sequence similarity between therostasin and antistasin is low, although the domain 

signature, canonical reactive-site loop and P1 Arg are all conserved. Compared to 

antistasin, therostasin is more potent (Ki = 34 pM), smaller (82 residues), and has 

fewer cysteine residues (six residues). However, it does not display the similar tandem 

domains pattern observed in antistasin (Chopin et al., 2000).  

 

1.5.2.4. Serpin superfamily  

Serpins are a superfamily of 45-55 kDa proteins that inhibit their target 

enzymes by irreversibly locking the proteinases in a covalent acyl-enzyme 

intermediate (Otlewski et al., 2005). The crude SGE of the mosquitos Aedes aegypti 

was found to inhibit the active site function of FXa through a reversible, non-

competitive mechanism (Stark and James, 1995). The only anti-FXa fraction in the 

extract, named anticoagulant-factor Xa (AFXa, 54 kDa), was isolated and cloned from 

the salivary glands of Aedes aegypti. Its primary sequence shows high similarities 

with other serpins (e.g. plasminogen activator inhibitor-2). Post-translational 

modifications of AFXa could be important for activity (four N-linked glycosylation 

sites are present). However, compared to typical serpins, AFXa has a shorter reactive 

38



 

center loop and different hinge residues. If the activity of AFXa is the same as that of 

the SGE (reversible, non-competitive inhibition of FXa), it would be interesting to 

investigate its differences with the physiological serpin (AT-III), which also inhibits 

FXa but through a distinct mechanism (irreversible, heparin-dependant, competitive 

inhibition) (Stark and James, 1998).  

 

1.5.2.5. Draculin 

Factor Xa inhibitor is also reported from mammal, the vampire bat. Draculin, 

an 88.5-kDa glycoprotein, isolated from Desmodus rotundus is a non-competitive, 

tight-binding inhibitor of FXa amidolytic activity, with a Ki of 14.8 nM (Fernandez et 

al., 1999). The high molecular weight and non-competitive inhibition mechanism of 

draculin is unique among anticoagulants from hematophagous animals. It showed that 

hematophagous mammalians, being phylogenetically distant from other invertebrates, 

are likely to evolve distinct classes of anticoagulants. 

 

1.5.2.6. Uncompetitive FXa inhibitors from Hyalomma 

Two uncompetitive inhibitors of FXa amidolytic activity were isolated from 

Hyalomma truncatum (Ki = 0.69 nM) (Joubert et al., 1995) and Hyalomma 

dromedarii (Ki = 134 nM) (Ibrahim et al., 2001b). Both proteins, unnamed, have 

similar masses (17 kDa and 15 kDa respectively). Example of uncompetitive inhibitor 

(binding to enzyme-substrate complex but not enzyme) is not commonly found. Thus, 

detailed characterizations of these molecules could possibly reveal novel FXa 

exosite(s) that strongly modulate substrate-bound active site function. 
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1.5.3. Extrinsic tenase complex inhibitors (Table 1.3) 

1.5.3.1. Kunitz-type inhibitors 

The two main classes of exogenous extrinsic tenase complex inhibitors act 

through a similar but not identical mechanism as the physiological inhibitor TFPI. 

Tissue factor pathway inhibitor (TFPI) is a Kunitz-type inhibitor with three tandem 

domains, binding to both FXa and FVIIa-TF to form a quaternary complex (Crawley 

and Lane, 2008). The hard tick Ixodes scapularis has two different extrinsic tenase 

complex inhibitors with Kunitz scaffolds. One of them, ixolaris (15.7 kDa), posseses 

two tandem Kunitz domains and does not bind to the FXa active site, in contrast to 

TFPI (three domains and binds to the FXa active site). It was hypothesised that the 

second Kunitz domain first binds to FX/X before binding to the FVIIa-TF complex 

via its first domain (Francischetti et al., 2002). Ixolaris binding to FX and FXa with 

affinity between 0.5 – 10 nM (Monteiro et al., 2008). Factor X/Xa residues that are 

involved in binding to ixolaris are on a surface largely overlaps with their heparin 

binding proexosite/exosite (Monteiro et al., 2005; Monteiro et al., 2008). In addition, 

binding of ixolaris to FX (Monteiro et al., 2008) and FXa (Monteiro et al., 2005) 

impaired their interactions with FVIIIa and prothrombin, respectively. Much less 

information is available for the inhibition of the FVII-TF complex by the FX/FXa-

ixolaris complex. Since ixolaris is a Kunitz-type inhibitor, it is likely that the reactive-

site loop on the first Kunitz domain will be utilized to bind to the FVIIa active site. 

However, the putative P1 residue is Glu, instead of a preferred basic residue 

(Francischetti et al., 2002). The other extrinsic tenase complex inhibitor, penthalaris, 

has five tandem Kunitz domains, comparing to only two in ixolaris. Penthalaris uses 

FX or FXa as scaffold to inhibit the FVIIa-TF complex in the same way as ixolaris. 
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TABLE 1.3 

Extrinsic tenase complex inhibitors from hematophagous animals 
EXTRINSIC TENASE COMPLEX INHIBITORS 

      
      

Class Structure Mechanism Example Species Reference 
      
      

Ixolaris Ixodes scapularis (Francischetti et al., 2002; 
Monteiro et al., 2005; 
Monteiro et al., 2008) 

1.  Kunitz-type 
proteinase 
inhibitors 

• Single Kunitz domain of ~ 6 to 
7 kDa 

• Multiple Kunitz domains in 
tandem 

 

• Similar to TFPI 
• One Kunitz domain binds 

FX/FXa heparin binding pro-
exosite/exosite as scaffold  

• Another Kunitz domain 
inhibits to FVIIa-TF complex 

• Forms inactive extrinsic 
tenase-inhibitor quaternary 
complex  

Penthalaris Ixodes scapularis (Francischetti et al., 2004) 

       
       

NAPc2/AcAPC2 Ancyclostoma canium (Stassens et al., 1996; 
Mieszczanek et al., 2004) 

NAPc3/AcAPC3 Ancyclostoma canium (Stassens et al., 1996; 
Mieszczanek et al., 2004) 

• Binds FXa exosite as scaffold  
• Inhibitor-FXa complex binds 

FVIIa-TF complex 
• Forms inactive extrinsic 

tenase-inhibitor quaternary 
complex 

NAPc4/AcAPC4 Ancyclostoma canium (Stassens et al., 1996; 
Mieszczanek et al., 2004) 

    
    

2.  Ascaris-type 
proteinase 
inhibitors 
 
 
 
 
 

 

• Single domain of ~ 9 to 11 
kDa 

• 10 conserved cysteine residues 
and disulfide linkages 

• Has a proteinase inhibition 
loop with basic P1 residue 

• Forms inactive extrinsic 
tenase-inhibitor quaternary 
complex 

• Binding to FXa is through 
exosite and active site 

AceAP1 Ancyclostoma 
ceylanicum 

(Harrison et al., 2002) 

       
       

3.  Others • Lack of detailed structural 
information 

• Lack of functional 
characterization 

Crude extract Dermacentor 
andersoni 

(Gordon and Allen, 1991) 

       
       

 

41



 

The contribution of the three additional Kunitz domains to the interaction/function is 

not yet clear (Francischetti et al., 2004).  

 

1.5.3.2. Ascaris-type inhibitors 

NAPc2/AcAPc2, along with two other isoforms NAPc3/AcAPc3 and 

NAPc4/AcAPc4 (Stassens et al., 1996; Mieszczanek et al., 2004b), isolated from 

Ancyclostoma caninum have the disulfide pairing signature of the Ascaris family 

inhibitors. NAPc2/3/4 binds to FX or FXa as a scaffold for the subsequent inhibition 

of the FVIIa-TF complex. This mechanism of action is similar to ixolaris and 

penthalaris (Kunitz-type inhibitors). NAPc2 is most potent molecule among these 

Ascaris inhibitors, binding FX and (inactivated)FXa with a Kd of 1 nM (Buddai et al., 

2002). The (inactivated)FXa-NAPc2 complex then inhibits the FVIIa-TF complex 

with a Ki of 8.4 pM (Stassens et al., 1996). NAPc2 moderately inhibits the FXa 

amidolytic activity. However, its binding is not directed at FXa active site but at an 

exosite that includes the FXa C-terminus (Buddai et al., 2002). NMR structures of 

NAPc2 showed extensive flexibility in solution, especially in the central acidic loop 

and C-terminus (Duggan et al., 1999). The crystal structure of NAPc2, in complex 

with active site-inhibited FXa, showed that the extended NAPc2 C-terminus became 

ordered upon binding to FXa (Figure 1.6 D) (Murakami et al., 2007). Binding of 

NAPc2 to FXa is mediated through a novel exosite adjacent to, and partially 

overlapping with, the heparin binding exosite of FXa (Figure 1.7 C) (Rezaie, 2000). 

This surface, which was also found to be the target for ixolaris, could be the extension 

of the heparin binding exosite (Monteiro et al., 2005). FXa residues that form this 

novel exosite includes those residing in the Gln61 – Lys65 loop, the Glu86 – Arg93 

β-strand and the Lys236 – Lys243 C-terminal helix (Murakami et al., 2007). NAPc2 
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is postulated to inhibit canonically the FVIIa active site through its reactive-site loop 

that contains a P1 Arg residue (Murakami et al., 2007). This reactive-site loop is rich 

in acidic residues and is disordered in both NMR (Duggan et al., 1999) and the FXa-

bound crystal structure (Murakami et al., 2007), indicating possible conformational 

changes or stabilizations upon binding to FVIIa. NAPc2 completed Phase II clinical 

trials with promising results (Ledizet et al., 2005; Giugliano et al., 2007) although its 

development was suspended recently 

(http://www.nuvelo.com/products/rNAPc2/index.html). 

 

1.5.4. Intrinsic tenase complex inhibitor (Table 1.4) 

1.5.4.1. Lipocalin family 

Nitrophorin-2 (or Prolixin-s, ~ 20 kDa), isolated from kissing bug Rhodnius 

prolixus (Ribeiro et al., 1995), is an intrinsic tenase complex inhibitor belongs to the 

lipocalin family (Zhang et al., 1998; Isawa et al., 2000). Four nitric oxide/histamine 

transporting molecules with high sequence similarities (nitrophorin 1 to 4) were 

characterized from the kissing bug and all possess vasodilatory (through nitric oxide 

release) and antihistaminic (through histamine binding) activities. Interestingly, only 

nitrophorin-2 has a strong anticoagulant activity mediated through specific protein-

protein interactions. Nitrophorin-2 binds specifically to FIX/FIXa with a Kd of 13 nM, 

most likely by targeting the Gla-domain of FIX/FIXa. This binding interferes with 

FIX activation (by both the FVIIa-TF complex and FXIa) and with FIXa activity in 

the intrinsic tenase complex (Isawa et al., 2000). Through comparison of the 

anticoagulant with nitrophorin-1 and 4 (non-anticoagulants), surfaces on nitrophorin-2 

involve in FIX/FIXa binding have been suggested (Andersen and Montfort, 2000).  
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TABLE 1.4 

Intrinsic tenase complex inhibitors from hematophagous animals 
INTRINSIC TENASE COMPLEX INHIBITORS 

      
      

Class Structure Mechanism Example Species Reference 
      
      

1.  Lipocalin 
family 

• Single domain of ~ 16 kDa 
• Eight-stranded (A-B-C-D-E-F-

G-H) antiparallel β-barrel and 
a central ligand-binding pocket 

• Also functions as vasodilator 
and antihistamine 

• Binds to FIX/FIXa Gla-
domain 

• Inhibits both FIX activation 
and FIXa activity in intrinsic 
tenase complex  

Nitrophorin-2 
(prolixin-s) 

Rhodnius prolixus (Ribeiro et al., 1995; Zhang 
et al., 1998; Isawa et al., 
2000; Andersen and 
Montfort, 2000) 

       
       

2.  Others 
 

 

• Lack of detailed structural 
information 

• Inhibits intrinsic tenase 
complex activity by 
attenuating FVIII activity  

Crude extract Triatoma infestans (Pereira et al., 1996) 
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1.5.5. Contact system proteins inhibitors (Table 1.5) 

1.5.5.1. Kunitz-type inhibitors 

Haemaphysalin (16 kDa, two tandem Kunitz domains), from the hard tick 

Haemaphysalis longicornis (Kato et al., 2005) binds directly to both FXII and 

HMWK in the presence of Zn2+ and interferes with their associations with activating 

surfaces. Amidolytic activity of FXIIa and kallikrein are not affected by the inhibitor. 

As a result of haemaphysalin binding, reciprocal activations of FXII and prekallikrein 

are disrupted and initiation of the classical intrinsic pathway of coagulation is 

inhibited (Kato et al., 2005). Similar to haemaphysalin, hamadarin from the mosquito 

Anopheles stephensi has an identical mechanism of inhibition on contact system 

proteins. Hamadarin also has a mass of 16 kDa, although no sequence information is 

available to ascertain the identity of hamadarin as a Kunitz-type inhibitor (Isawa et al., 

2002). 

 

A group of Kunitz-type inhibitors isolated from Boophilus microplus were 

reported to inhibit the amidolytic activity of plasma kallikrein. Two of them, BmTI-A 

(15 kDa) (Tanaka et al., 1999) and BmTI-2 (17 kDa) (Sasaki et al., 2004) have two 

tandem domains while one, BmTI-D (8 kDa) has a single Kunitz domain (Sasaki et al., 

2004). They inhibited plasma kallikrein with Ki values of 120 nM, 48 nM and 12 nM, 

respectively. However, they also inhibited other serine proteinase such as trypsin, 

chymotrypsin and neutrophil elastase (Tanaka et al., 1999; Sasaki et al., 2004). 

Similarly, a few inhibitors from Rhipicephalus sanguineus, such as RsTIQ2 (12 kDa, 

two Kunitz domains) and RsTIQ7 (8 kDa, single Kunitz domain), inhibited the 

amidolytic activity of plasma kallikrein in addition to trypsin, neutrophil elastase and 

plasmin (Sant'Anna et al., 2003).  

45



TABLE 1.5 

Contact system proteins inhibitors from hematophagous animals 
CONTACT SYSTEM PROTEINS INHIBITORS 

      
      

Class Structure Mechanism Examples Species Reference 
      
      

• Binds directly to both FXIIa 
and high molecular weight 
kininogen (HK) 

• Inhibits associations of FXIIa 
and HK with activating 
membranes 

Haemaphysalin Haemaphysalis 
longicornis 

(Kato et al., 2005) 

    
    

• Identical with haemaphysalin Hamadarin Anopheles stephensi (Isawa et al., 2002) 
    

    

BmTI-A/D/2 Boophilus microplus (Tanaka et al., 1999; Sasaki 
et al., 2004) 

1.  Kunitz-type 
proteinase 
inhibitors 
 

 

• Single Kunitz domain is ~ 7 
kDa 

• Some of the inhibitors have 
two tandem Kunitz domains (~ 
16 kDa) 

• Inhibits plasma kallikrein 
amidolytic activity 

• Shows cross specificity for 
other proteinases such as 
trypsin, neutrophil elastase and 
plasmin 

RsTI-Q2/Q7 Rhipicephalus 
sanguineus 

(Sant'Anna et al., 2003) 

       
       

Infestin 1-4 Triatoma infestans (Campos et al., 2002; 
Campos et al., 2004) 

Infestin 3-4 Triatoma infestans (Campos et al., 2002; 
Campos et al., 2004) 

2.  Kazal-type 
proteinase 
inhibitors 

• Single Kazal domain is ~ 6 
kDa 

• Multiple non-classical Kazal 
domains  

• cDNA sequence showed 
multiple-domains precursors 

• Inhibits FXIIa amidolytic 
activity 

• Specificity towards different 
proteinase changes with 
different tandem repeats Infestin 4 Triatoma infestans (Campos et al., 2002; 

Campos et al., 2004) 
       
       

3.  Antistasin-like 
inhibitors 
 

 

• Cysteine-rich domain of ~ 5 
kDa 

• Containing a 26-residues 
segment with conserved 
cysteines and disulfide 
linkages 

• Inhibits amidolytic activity of 
plasma kallikrein 

• Also inhibits tissue kallikrein 
and trypsin 

Piguamerin Hirudo nipponia (Kim and Kang, 1998) 
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1.6. MOLECULAR DIVERSITY IN EXOGENOUS ANTICOAGULANTS 

 

Blood-feeding is crucial for the survival of hematophagous organisms and 

hence they have a large number of anticoagulant proteins in their saliva that 

specifically target blood coagulation proteinases. Thus, hundreds of millions years of 

evolution have provided the driving force for the molecular diversity observed in 

these exogenous anticoagulants. One can observe (1) the functional diversity among 

closely-related proteins; and (2) the functional convergence among structurally 

unrelated proteins.  

 

1.6.1. Molecular scaffold 

In the first case, a set of molecular scaffolds are being used to target various 

stages of the blood coagulation cascade. In this scenario, the molecular surface is 

altered through evolution and tailored to recognize distinct serine proteinases. 

Generally, the same sets of scaffolds are found in closely-related species, whereas 

different sets of scaffolds are found in phylogenetically distant species. For example, 

exogenous anticoagulants from ticks have the Kunitz-type inhibitor scaffold, while 

those from hookworms and leeches have the Ascaris-type or hirudin-like inhibitor 

scaffolds, respectively. This is most likely due to the presence of common ancestral 

molecules. Even in this case, structurally similar inhibitors isolated from different 

species might be of particular interest, due to their adaptations to difference hosts. 

Take hirudin and other members of its class as example: molecules similar to hirudin 

were isolated from other leeches; they are bufrudin (Scacheri et al., 1993) and hirullin 

(Steiner et al., 1992) from Hirudinaria manillensis. Hirudinaria manillensis is 

primarily a mammalian parasite (cf. Hirudo medicinalis is an amphibian parasite), 
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which brings the suggestion that bufrudin and hirullin may be tailored to inhibit 

mammalian coagulation protein more efficiently. The C-terminal sulfotyrosine of 

hirudin is not conserved in bufrudin (Scacheri et al., 1993) and hirullin was found to 

be glycosylated at Thr45 (isoform P6) or Thr50 (isoform P18) (Steiner et al., 1992). 

Characterizations of these molecules are important for the understanding of structure-

function relationships of hirudin. Therefore, further investigations into this family of 

inhibitors may reveal how post-translational modifications could be used as a strategy 

to modulate activity of anticoagulants. 

 

At times, the same domains are duplicated and the proteins containing tandem 

repeats exhibit distinct/altered specificities, as demonstrated by the Kazal-type 

inhibitors infestins. Derived from the same precursor, specificities of infestins relied 

on the post-translational processing when a broad specificity inhibitor (infestin 1-4) 

can be processed into one specific for thrombin (infestin 1-2) and one specific for 

FXIIa (infestin 3-4) (Campos et al., 2002; Campos et al., 2004) (Figure 1.4). 

Investigations into the processing mechanisms could answer interesting questions on 

the regulation of blood-feeding behavior of hematophagous animals. 

 

There is another important mechanism that was responsible for molecular 

diversity in these exogenous anticoagulants – gene duplications coupled with 

mutations. When the gene of a domain is repeated in tandem, new functions can be 

gained through mutations. For instance, soft ticks FXa inhibitors [TAP (Waxman et 

al., 1990; Wei et al., 1998) and FXaI (Gaspar et al., 1995; Gaspar et al., 1996)] have a 

single Kunitz domain inhibiting the FXa active site while thrombin inhibitors 

[ornithodorin (van de et al., 1996), savagnin (Nienaber et al., 1999) and monobin 
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(Mans et al., 2008)] have two Kunitz domains targeting both the thrombin active site 

and exosite-I.  

 

In some animals, more than one scaffold is utilized to generate distinct 

anticoagulants during evolution. For example, anticoagulants from kissing bugs have 

both the Kazal-type inhibitors (thrombin inhibitors) and the lipocalin family 

(thrombin and intrinsic tenase complex inhibitors) scaffolds. Similarly, the hirudin-

like (thrombin inhibitors) and antistasin-like (FXa inhibitors) scaffolds are widely 

present in anticoagulants from leeches. Thus, potentially new sets of scaffolds were 

utilized each time an independent adaptation of blood-feeding behavior occurs, 

generating a large variety of molecules. 

 

1.6.2. Functional convergence 

As distinct from the functional variations of structurally similar protein, the 

functional convergence of structurally diverse molecules is just as evident. For 

example, thrombin inhibitors from hematophagous animals belong to at least 13 

different classes (Table 1.1), while FXa inhibitors belong to eight or more different 

classes (Table 1.2). Despite such diversity in structures, they recognize a limited 

number of molecular surfaces. For example, the thrombin exosite-I and active sites 

are targeted by the hirudin-like (Electricwala et al., 1991; Scacheri et al., 1993; 

Markwardt, 1994), Kunitz-type (van de et al., 1996; Macedo-Ribeiro et al., 2008), 

Kazal-type (Friedrich et al., 1993; van de et al., 1995; Mende et al., 1999; Campos et 

al., 2002) and anophelin (Valenzuela et al., 1999) thrombin inhibitors. Similarly, both 

the Kunitz-type [TAP (Waxman et al., 1990; Wei et al., 1998)] and Ascaris-type 

[NAP5 (Rios-Steiner et al., 2007)] inhibitors targeted the active site, Na+-binding loop 
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and autolysis loop of FXa. The presence of multiple classes of molecules for similar 

function can even be observed in a single species. At least four different classes of 

thrombin inhibitors can be found in Boophilus microplus: (1) boophilin (Macedo-

Ribeiro et al., 2008); (2) microphilin (Ciprandi et al., 2006); (3) BmAP (Horn et al., 

2000); and (4) BmGTI (Ricci et al., 2007) (Table 1.1). Structure-function 

relationships of such functionally convergent anticoagulants will help us to delineate 

their functional sites as well as to design of novel anticoagulants de novo.  
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1.7 AIM AND SCOPE OF THE THESIS 

 

Motivated by the molecular diversity observed in exogenous anticoagulants, as 

well as the success of hirudin, bivalirudin and NAPc2 in their clinical developments, 

we aimed to study novel anticoagulants from hematophagous animals. In order to do 

so, we established a scientific collaboration with Dr Maria Kazimirova from Institute 

of Zoology, Slovak Academy of Sciences, Slovakia. The presence of thrombin 

inhibitors in the crude and fractions of SGE of partially engorged (9 days post 

attachment) females Amblyomma variegatum were reported by Dr Kazimirova and 

colleagues in 2002 (Kazimirova et al., 2002). Amblyomma variegatum, the tropical 

bont tick, is a three-host hard tick that feeds on a number of domesticated animals 

including cattle, sheep, goats, horses and dogs as well as humans 

(http://www.cfsph.iastate.edu/FactSheets/pdfs/amblyomma_variegatum.pdf). At the 

time, she had successfully isolated three fractions of salivary protein with indications 

of thrombin inhibitory activity and named the most potent peptide as variegin. The 

only information available was their sequences, although all three fractions showed 

some degree of heterogeneity. We are interested in understanding the structure-

function relationships of variegin. Specifically, the aims of this thesis were: 

 

1. To understand the kinetics, mechanism and specificity of thrombin inhibition by 

variegin 

2. To elucidate the structure-function relationships of variegin 

3. To delineate the molecular details involved in thrombin-variegin interaction 

4. To design new variants which allow better understanding of the interaction and 

provide suitable candidates for future drug development 
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5. To establish the feasibility of developing variegin as a novel anticoagulant by 

investigating its in vivo antithrombotic effects  

 

On the whole, the scope of this thesis covers the approaches used to fulfill 

these aims, the results obtained, and the discussion of their implications. Explicitly, 

we chemically synthesized full-length variegin and established its thrombin inhibitory 

function. Structure-function relationships of the inhibitor are detailed using truncation 

variants. A three-dimensional structure of thrombin-variegin complex was solved at 

2.4 Å resolution, which in turn allowed the design and characterization of new 

variegin variants with a wide spectrum of activities. Finally, the in vivo antithrombotic 

effects of variegin and variants were demonstrated in the thrombosis model of 

zebrafish larvae. Therefore, this thesis sets the foundation for future development of 

variegin as a novel anticoagulant. 
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Chapter Two 

 
 
 
 
 
 
 
 
 

 
 

Variegin, a novel class of thrombin 
inhibitors 
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2.1. INTRODUCTION 

 

Ticks are hematophagous arthropods and they are pool feeders. Their 

attachment to host is achieved with chelicerae and toothed hypostome, creating 

feeding pool of blood in the dermis of their hosts. Ixodid (hard) ticks may feed for a 

few days or up to two weeks, with their mouthparts cemented into their host skin 

throughout (Labuda and Nuttall, 2004). During the insertion of hypostome, tick saliva 

starts to flow to the tip of the mouthparts. Thus, secretion of saliva into feeding pool 

occurs even before consumption of any blood (Steen et al., 2006). Blood meals 

ingested by hard ticks in a matter of few days are usually more than a hundred times 

their own weight (Jaworski, 2003). The secret of successful feeding lies in their saliva. 

Tick saliva is a complex mixture of potent anti-haemostatic, anti-inflammatory and 

immunoregulatory molecules. However, the isolation of these salivary molecules is a 

daunting task, mainly due to the low amount of saliva sample one can collect from 

these tiny creatures (Valenzuela, 2004). Therefore, a more commonly used approach 

is to dissect the salivary glands of the ticks and isolate pharmacologically active 

components from the extracts (SGE).  

 

Blood-feeding typically induces high expression level of salivary proteins as 

well as remarkable morphological changes in the salivary glands. Such changes are 

most profound in female hard ticks, with up to 25-fold increase in the mass and 

proteins content a few days after attachment (Figure 2.1). Similar changes, albeit to a 

smaller extent, can also be found in males. Once fully engorged (the completion of 

blood meals), females will drop to the ground, digest the blood meals, lay eggs and 

then die. Degeneration of salivary glands through apoptosis occurs within a few days 
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FIGURE 2.1 

Dissected salivary glands of Amblyomma variegatum, the tropical bont tick 
(Figure contributed by Dr. Maria Kazimirova, Slovak Academy of Sciences) 
Blood meals induced increase in mass and protein content of Amblyomma variegatum salivary glands. 
(A) unfed male (B) unfed female (C) 2-day fed female (D) 9-day fed female. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.2 

Pictures of Amblyomma variegatum (Figure contributed by Dr. Maria 
Kazimirova, Slovak Academy of Sciences) 
 (A) unfed female (B) 2-day fed female (C) 9-day fed female (D) fully engorged, detached female (E) 
engorged nymph (F) male.  
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of detachment [see (Bowman and Sauer, 2004) for more detailed descriptions of the 

physiology and function of salivary glands].  

 

The study on structure-function relationships of variegin started with the 

chemical synthesis of the full-length peptide by solid-phase peptide synthesis. Other 

than to obtain a large amount of sample, the use of synthetic peptide also served the 

purpose of avoiding ambiguity in the protein sequence. Since the protein sequences 

showed heterogeneity, it is possible that the sequences obtained were misrepresented 

by the major (but not active) protein in the fractions. Solid-phase peptide synthesis is 

a robust method to generate large amount of samples, especially when the length of 

peptide is less than 50 residues. In order to delineate structure-function relationships 

of the inhibitors, truncation variants were designed based on prior knowledge of 

thrombin inhibitors. In this case, the inhibitors are short linear peptides, thus any loss 

of activity in truncation variants is likely to correlate well with the direct loss of 

functional residues instead of other complications such as alteration of the global fold 

of the inhibitors. However, the peptides that can be synthesized are largely limited by 

the availability of building blocks (i.e. the amino acids). In some cases, certain post-

translational modifications that occurred in the native peptides cannot be reproduced 

(which will be discussed later in this chapter). Synthesized crude peptides are purified 

by reverse-phase high performance liquid chromatography (RP-HPLC), although the 

presence of chemically and structurally similar side products poses challenges to this 

process. Parameters such as the choice of column, ion-pairing agent (thus pH of 

buffers) and the slope of the eluting gradient, need to be optimized for their efficient 

separation. Activities of native and synthetic peptides are typically assayed by their 
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abilities to inhibit the thrombin amidolytic and fibrinogenolytic activities. Analysis of 

data were through mathematical models stated in the Materials and Methods Section.  

 

In summary, this chapter details the purification of a group of thrombin 

inhibitors from Amblyomma variegatum SGE and characterization of the most potent, 

variegin. The structure-function relationships of variegin, including inhibition 

mechanism and kinetics, were investigated with the full-length and truncation variants. 

The functional site of variegin and their target binding sites on thrombin were 

elucidated which laid the foundation for the subsequent investigations of this new 

class of thrombin inhibitors.  
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2.2. MATERIALS AND METHODS 

 

2.2.1. Materials 

Human citrated plasma was provided by the Department of Hematology and 

Transfusiology of the Slovak Institute of Cardiovascular Diseases. Thromboclotin 

reagent was from Dade AG (Düdingen, Switzerland). Thromboplastin IS reagent and 

Actin FS Activated PTT reagent were from Dade International Inc. (Miami, Florida, 

USA). Standard 9-Fluorenylmethyloxycarbonyl (Fmoc)-L-amino acids, Fmoc-PEG-

PS (4-hydroxymethylphenoxyacetic acid linker) support resin, N,N-

dimethylformamide (DMF), 20% v/v piperidine in DMF, O-(7-azabenzotriazol-1-yl)-

1,1,3,-3-tetramethyluronium hexafluorophosphate (HATU) and N,N-

diisopropylethylamine (DIPEA) were from Applied Biosystems (Foster City, 

California, USA). Trifluoroacetic acid (TFA), formic acid (FA), diethyl ether, 

acetonitrile, α-cyano-4-hydroxycinnamic acid (CHCA), 1,2-ethanedithiol, thioanisole, 

bovine chymotrypsin and bovine serum albumin (BSA), were from Sigma Aldrich (St. 

Louis, Missouri). Human fibrinogen, FXIIa, tPA, urokinase, kallikrein and bovine 

trypsin were from Merck Chemicals Ltd. (Nottingham, UK). Human FIXa, FXa, FXIa, 

APC and plasmin were from Hematologic Technologies, Inc. (Essex Junction, 

Vermont). Human FVIIa and recombinant α-thrombin were gifts from the Chemo-

Sero-Therapeutic Research Institute (KAKETSUKEN, Japan) (Soejima et al., 2001; 

Yonemura et al., 2004). Chromogenic substrates benzoyl-IIe-Glu(Glu-γ-methoxy)-

Gly-Arg-p-nitroanilide (pNA) hydrochloride (HCl) (S2222), H-D-Phe-pipecolyl (Pip)-

Arg-pNA•2HCl (S2238), H-D-Val-Leu-Lys-pNA•2HCl (S2251), H-D-IIe-Pro-Arg-

pNA•2HCl (S2288), H-D-Pro-Phe-Arg-pNA•2HCl (S2302), pyroGlu-Pro-Arg-

pNA•HCl (S2366), pyroGlu-Gly-Arg-pNA•HCl (S2444), methoxysuccinyl-Arg-Pro-
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Tyr-pNA•HCl (S2586) and benzyloxycarbonyl-D-Arg-Gly-Arg-pNA•2HCl (S2765) 

were from Chromogenix (Milano, Italy). Spectrozyme® FIXa (H-D-Leu-

phenylalanyl-Gly-Arg-pNA•2-AcOH) was from American Diagnostica Inc. (Stamford, 

Connecticut). All other chemicals and reagents used were of analytical grade. 

 

 

Experiments described in this section were initiated and performed by Dr. Maria Kazimirova, Dr. Peter Takac, Dr. Milan 

Labuda (Institute of Zoology, Slovak Academy of Sciences), Dr. Adama Trimnell (Seattle Biomedical Research Institute) and Dr. 

Patricia Nuttall (NERC, Centre for Ecology and Hydrology). Inclusion of these descriptions is for the completeness of the 

presented data. 

2.2.2. Identification of thrombin inhibitors from salivary gland extract of female 

tropical bont tick, Amblyomma variegatum 

2.2.2.1. Salivary gland extracts and estimation of protein concentrations 

Adult female Amblyomma variegatum ticks (Figure 2.2) that had been feeding 

on laboratory rabbits for 9 days (partially fed) were removed, mounted in Petri dishes 

dorsal side down, and their salivary glands dissected out into 150 mM NaCl and 

stored at -70 °C.  Prior to use, the frozen salivary glands were incubated at ~ 90 °C for 

5 min, homogenized, and centrifuged at 11,000 x g for 15 min.  The supernatant fluids 

were collected and the pellets resuspended in 150 mM NaCl and recentrifuged.  

Pooled supernatant fluids represented crude SGE.  Protein concentration was 

estimated by the method of Bradford (Bradford, 1976). 

 

2.2.2.2. Purification of variegin isoforms 

Variegin was purified by a three-step reverse-phase HPLC procedure with a 

Beckman Instruments 126/168 DAD HPLC system (Fullerton, California, USA). In 

the first step (Figure 2.3 A) SGE was loaded onto a Vydac C-4 (5 μm; 250 x 4.6 mm) 

column (Grace Vydac, Hesperia, California). Pooled fractions that contained the 
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strongest anticoagulant activity (Figure 2.3 A, fraction AV-III) were subjected to a 

second step (Figure 2.3 B) using a Beckman Ultrasphere C-18 (5 μm; 250 x 4.6 mm) 

column. Lastly, individual fractions were further purified using a Vydac C-18 (5 μm; 

250 x 4.6 mm) column to obtain three fractions of potent anti-thrombin activity: AV 

3/5, AV 5/5 and AV 6/5 (Figure 2.3 C – D). The major component in the AV 6/5 

fraction was named n-variegin (‘n’ denotes the native peptide).  

 

2.2.2.3. Coagulation assays 

Thrombin time (TT), prothrombin time (PT) and activated partial 

thromboplastin time (APTT) assays were used for the initial screens of anticoagulant 

activities in SGE and fractions. Citrated human plasma (50 μl) was pre-incubated with 

a maximum of 5 μl of the SGE or the same volume of 150 mM NaCl (control) at 37˚C 

for 1 min. After adding the corresponding reagents (TT: 50 μl of Thromboclotin 

reagent; PT: 100 μl of Thromboplastin IS reagent; APTT: 50 μl of Actin FS Activated 

PTT added for 3 min and reaction started with 50 μl of 20 mM CaCl2), times required 

for the formation of fibrin clots were determined visually using a stop watch.  

 

The activities of crude SGE and the three fractions (AV 3/5, AV 5/5 and AV 

6/5) were verified at the Oxford Hemophilia Centre of Churchill Hospital (Oxford, 

UK). TT, PT and APTT were performed using an MDA-180 analyser (Organon 

Teknika Ltd., Cambridge, UK). Ten µl of SGE (1 μg/μl) or diluted fractions 

containing AV 3/5, AV 5/5 and AV 6/5 (concentrations of undiluted fractions were: 

0.07 μg/μl, 0.05 μg/μl, and 0.02 μg/μl, respectively) were added to 290 μl of platelet 

poor plasma, mixed and incubated for 5 min at 37˚C. The activities were also verified 

using a Thromboelastograph (TEG) Analyzer (Haemoscope Inc., Skokie, Illinois). 
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Five μl of samples were added to 335 μl of citrated whole blood, incubated for 5 min 

and the sample run on the TEG following recalcification.  

 

2.2.2.4. Protein sequence analysis 

The molecular weight of proteins present in AV 3/5, AV 5/5 and AV 6/5 was 

determined by Eurosequence (Groningen, the Netherlands) using a BIFLEX (Bruker-

Franzen, Bremen, Germany) matrix-assisted laser desorption/ionization time-of-flight 

(MALDI-TOF) mass spectrometer equipped with a nitrogen laser (337 nm) and 

gridless delayed extraction ion source. Partial amino acid sequences were determined 

by N-terminal Edman-degradation using an automated sequencer (Model 494, 

Applied Biosystems). The complete sequence for AV 6/5 was determined by MALDI-

MS analysis. Swiss-Prot accession number for variegin is P85800. 

 

 

Experiments described from this section onwards are completed within the scope of this thesis. 

2.2.3. Structure-function relationships of variegin 

2.2.3.1. Peptide synthesis  

All peptides used in the studies were synthesized using solid phase peptide 

synthesis methods on an Applied Biosystems Pioneer Model 433A Peptide 

Synthesizer (Foster City, California, USA). The synthesized peptides were assembled 

on support resins pre-loaded with respective C-terminal amino acids, which cleaves to 

release peptides with free carboxylic acid at the C-terminus. Fmoc groups of amino 

acids were removed by 20% v/v piperidine in DMF and coupled using HATU/DIPEA 

in situ neutralization chemistry. Cleavage of synthesized peptides from resins and side 

chain protection groups were typically carried out using a cocktail of TFA/1,2-

ethanedithiol/thioanisole/water (90:4:4:2% v/v) at room temperature for 2 h. Cleaved 
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peptides were precipitated with cold diethyl ether. Precipitated peptides were 

dissolved in either water or 0.1% TFA and lyophilized before purification.  

 

2.2.3.2 Purification of synthesized peptides 

Synthetic crude peptides were purified to homogeneity by RP-HPLC on 

ÄKTATM Purifier System (GE Healthcare, Uppsala, Sweden) with SunFireTM C18 

(100 Å, 5 μm; 250 mm x 10 mm) (Waters, Milford, Massachusetts) column. Typically 

peptides were eluted using an optimized linear elution gradient created by a 

combination of two solvents (solvent A: 0.1% TFA in water and solvent B: 0.1% TFA 

and 80% acetonitrile in water). Elutions of peptides were monitored at 215 nm and 

280 nm. Chromatograms for purification of peptides can be found in Appendix A. 

 

2.2.3.3. Electrospray ionization mass spectrometry (ESI-MS) 

The homogeneity and mass of peptides were assessed using ESI-MS 

performed on API-300 LC/MS/MS system (Perkin-Elmer Sciex, Selton, Connecticut, 

USA). The samples were delivered by direct injection. LC-10AD liquid 

chromatography system (Shimadzu, Kyoto, Japan) was used for solvent delivery 

(40% acetonitrile in 0.1% FA). Ionspray, orifice and ring voltages were typically set 

at 4600 V, 50 V and 350 V, respectively. Nitrogen was used as nebulizer and curtain 

gas. Mass spectra for peptides can be found in Appendix A. 

 

2.2.3.4. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF MS) 

The homogeneity and masses of peptides were also determined using MALDI-

TOF MS on a Voyager DE-STR Biospectrometry Workstation (Applied Biosystems, 
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Foster City, California, USA). Typically, the sample was co-crystallized with an equal 

volume of the matrix (10 mg/ml of CHCA freshly prepared in 1:1 acetonitrile/water 

containing 0.3% TFA) on a 100-well stainless steel sample plate. The accelerating 

voltage was set at 25000V, the grid voltage at 93.0% and the guide wire voltage at 

0.3%. Molecular ions were generated using a nitrogen laser (wavelength, 337 nm) at 

an intensity of 1800–2200. Extraction of ions was delayed by 800 ns. The spectrum 

obtained was the average of several scans. The spectrum was calibrated using external 

standards. Mass spectra for peptides can be found in Appendix A. 

 

2.2.3.5. Circular dichroism (CD) spectroscopy 

Far-UV CD spectra (260 – 190 nm) of peptides dissolved in 10 mM of sodium 

phosphate buffer (pH 7.4) were recorded using a Jasco J-810 spectropolarimeter 

(Easton, Maryland). All measurements were carried out at room temperature using 0.1 

cm path length stoppered cuvettes. The instrument optics was flushed with nitrogen 

gas at 30 L/min. The spectra were recorded using a scan speed of 50 nm/min, a 

resolution of 0.2 nm and a bandwidth of 2 nm. A total of three scans were recorded 

and averaged for each spectrum and the baseline (spectrum of buffer) was subtracted.  

 

2.2.3.6. Michaelis-Menten constant (Km) of S2238 for thrombin 

Assays for recombinant α-thrombin amidolytic activity were carried out using 

small, synthetic chromogenic substrate S2238. Hydrolysis of S2238 release colored 

product p-nitroaniline (pNA). Rate of pNA formation is proportional to the enzymatic 

activity and followed at 405 nm. The relation between the initial rate of reaction, V, 

with concentration of S2238 follow Michaelis-Menten kinetics described by equation 

(1): 
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 V = (VmaxS) / (S + Km)       (1)  

 

where V is the initial rate of reaction, S is the concentration of substrate S2238 and 

Km is the Michaelis-Menten constant of substrate for the enzyme (thrombin). 

 

Assays were performed in 96-well microtiter plates in 50 mM Tris buffer (pH 

7.4) containing 100 mM NaCl and 1 mg/ml BSA at room temperature. Typically, 

reactions were started with addition of 100 μl of different concentrations of S2238 

(indicated in Results section) into a mixture of 100 μl recombinant α-thrombin and 

100 μl buffer. The rates of formation of colored product pNA were followed at 405 

nm for 10 min with SPECTRAMax Plus microplate spectrophotometer (Molecular 

Devices, Sunnyvale, California, USA). Data obtained were fitted to equation (1) using 

Origin software (MicroCal, Northampton, Massachusetts) to calculate Km and Vmax. 

 

2.2.3.7. Inhibition of thrombin amidolytic activity 

The activities of peptides were determined by the inhibition of recombinant α-

thrombin amidolytic activity assayed using the chromogenic substrate S2238. All 

assays were performed in 96-well microtiter plates in 50 mM Tris buffer (pH 7.4) 

containing 100 mM NaCl and 1 mg/ml BSA at room temperature. Typically, 100 μl of 

peptide and 100 μl of recombinant α-thrombin were pre-incubated for different 

durations before the addition of 100 µl of S2238. Details of each experiment are 

described along with the graphs representing the results obtained. The rates of 

formation of colored product pNA were followed at 405 nm for 10 min with 

SPECTRAMax Plus microplate spectrophotometer. Percentage inhibition was 

calculated by taking the rate of increase in absorbance in the absence of inhibitor as 
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0%. Dose-response curves were fitted using Origin software to calculate IC50 values 

with the following logistic sigmoidal equation: 

 

y = A2 + (A1 - A2) / [1 + (x / x0)H]      (2) 

  

where y is percentage of inhibition, A2 is right horizontal asymptote, A1 is left 

horizontal asymptote, x is log10 of inhibitor concentration, x0 is point of inflection 

and H is the slope of the curve. IC50 was calculated by substituting ‘50’ into y. 

 

2.2.3.8. Determination of the inhibitory constant Ki 

The inhibitory constants, Ki, of all peptides were determined using S2238 as 

substrate for recombinant α-thrombin. All assays were performed in 96-well 

microtiter plates using a 50 mM Tris buffer (pH 7.4) containing 100 mM NaCl and 1 

mg/ml BSA at room temperature. Typically, 100 μl of recombinant α-thrombin were 

added to a mixture of 100 μl peptides and 100 µl S2238 to initiate the reactions. 

Concentrations of peptides and S2238 used vary with experimental setups and will be 

indicated separately in the ‘Results’ section. The rates of formation of colored product 

pNA were followed at 405 nm for 10 min with SPECTRAMax Plus microplate 

spectrophotometer. 

 

When an enzyme is inhibited by an equimolar concentration of inhibitor, the 

binding of inhibitor to enzyme causes a significant depletion in the concentration of 

free inhibitors. This tight-binding inhibition is described by equation (3) (Stone and 

Hofsteenge, 1986): 
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Vs = (Vo/2Et) {[(Ki′ + It – Et)2 + 4Ki′Et]1/2 – (Ki′ + It – Et)}   (3) 

 

where Vs is steady state velocity in the presence of inhibitor, Vo is velocity observed 

in the absence of inhibitor, Et is total enzyme concentration, It is total inhibitor 

concentration and Ki′ is apparent inhibitory constant.  

 

For competitive inhibition, Ki is related to Ki′ by equation (4): 

  

Ki′ = Ki (1 + S/Km)        (4) 

 

where Ki′ increases linearly with S, Ki is the inhibitory constant, S is the concentration 

of substrate and Km is the Michaelis-Menten constant for S2238.  

 

For non-competitive inhibitors, Ki is related to Ki′ by equation (5) (Copeland, 

2000): 

 

 Ki′ = (S + Km) / [(Km/Ki) + (S/αKi)]      (5) 

 

where α is the modifying constant of the inhibitor on the affinity of the enzyme for its 

substrate, and likewise the effect of the substrate on the affinity of the enzyme for the 

inhibitor.  α < 1 when binding of one supported the other, α > 1 when binding of one 

impedes the other and when α = 1, binding of one has no effect on the other. For 

mixed-type non-competitive inhibitor, α is either < 1 or > 1. For classical non-

competitive inhibitors, α = 1, thus,  
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Ki′ = Ki          (6) 

 

where Ki′ remained constant with increasing S, Ki is the inhibitory constant, S is the 

concentration of substrate S2238 and Km is the Michaelis-Menten constant for S2238. 

For peptides that were found to be tight-binding inhibitors their data were fitted to 

these equations using Origin software. 

 

If the rate of interaction of the inhibitor with the enzyme is slow so that the 

inhibited steady-state velocity is slowly achieved, the progress curve of product 

formation of this slow binding inhibition is described by equation (7) (Morrison and 

Walsh, 1988): 

  

P = Vft + (Vi – Vf) (1 – e-kt) / k + Po      (7) 

 

where P is the amount of product formed, Po the is initial amount of product, Vf is 

final steady state velocity, Vi is initial velocity, t is time, and k is apparent first-order 

rate constant. 

 

There are two possible minimum kinetic mechanisms to describe such slow 

binding reactions (Morrison and Walsh, 1988; Rezaie, 2004): 

 

E + I   EI*      Scheme (1) 

 

where E is enzyme, I is inhibitor and EI* is stable enzyme-inhibitor complex, K1 is 

association rate constant and K2 is dissociation rate constant. In this scheme, slow 

K1 

K2 
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binding is mainly due to the slow K1. The apparent first-order rate constant k will 

increase linearly with inhibitor concentration. Alternatively:  

 

E + I   EI   EI*   Scheme (2) 

 

where EI is initial collision complex, K3 is forward isomerization rate and K4 is 

reverse isomerization rate. In this scheme, binding involves rapid formation of an 

initial collision complex (EI) that subsequently undergoes slow isomerization to the 

final enzyme-inhibitor complex (EI*). k increases hyperbolically with inhibitor 

concentrations. Dissociation constant of EI (denoted Ki`) can be calculated from 

equation (8): 

 

k = K4 + K3It / [It + Ki`(1 + S / Km)]      (8) 

 

The overall inhibitory constant Ki can be calculated from equation (9): 

  

Ki = Ki` [K4 / (K3 + K4)]       (9) 

 

For peptides that were found to be a slow binding inhibitor their data were fitted to 

these equations using Origin software. 

 

2.2.3.9. Serine proteinase specificity 

The selectivity profile of one peptide, synthetic variegin (s-variegin) was 

examined against 13 serine proteinases: fibrinolytic serine proteinases (plasmin, tPA 

and urokinase), anticoagulant serine proteinase APC, procoagulant serine proteinases 

K1 

K2 

K3 

K4 
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(FXIIa, FXIa, FXa, FIXa, FVIIa, kallikrein and recombinant α-thrombin) and 

classical serine proteinases (chymotrypsin and trypsin). Effects of s-variegin on these 

serine proteinases were determined by inhibition of their amidolytic activities assayed 

using specific chromogenic substrates for respective enzymes. All assays were 

performed in 96-well microtiter plates using a 50 mM Tris buffer (pH 7.4) containing 

100 mM NaCl and 1 mg/ml BSA at room temperature (4 mM of CaCl2 were also 

present in the buffer for chymotrypsin and activated protein C assays). 100 µl of s-

variegin (for assay with recombinant α-thrombin final concentrations are 10 nM, 100 

nM and 1000 nM; for assays with other serine proteases final concentrations are 1 µM, 

10 µM and 100 µM) were incubated with 100 µl serine proteases for 5 min in room 

temperature before the addition of 100 µl substrates. The rate reactions were followed 

at 405 nm for 10 min with SPECTRAMax Plus microplate spectrophotometer. The 

percentage of inhibition caused by s-variegin was calculated by taking the rate of 

increase in absorbance in the absence of inhibitor as 0%. 

 

2.2.3.10. Fibrinogen clotting time 

The abilities of three peptides (s-variegin, EP25 and AP18) to prolong 

fibrinogen clotting time were tested using a BBL fibrometer (BD, Franklin Lakes, 

New Jersey). 200 µl of fibrinogen (final concentration 3 mg/ml) were incubated with 

100 µl of peptides (various concentrations) at 37°C. Clotting of fibrinogen was 

initiated by the addition of 100 µl of recombinant α-thrombin (final concentration 20 

nM). All reagents and samples were dissolved in 50 mM Tris buffer (pH 7.4) 

containing 100 mM NaCl.  
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2.3. RESULTS 

 

 

Experiments described in this section were initiated and performed by Dr. Maria Kazimirova, Dr. Peter Takac, Dr. Milan 

Labuda (Institute of Zoology, Slovak Academy of Sciences), Dr. Adama Trimnell (Seattle Biomedical Research Institute) and Dr. 

Patricia Nuttall (NERC, Centre for Ecology and Hydrology). Inclusion of these descriptions is for the completeness of the 

presented data. 

2.3.1. Identification of thrombin inhibitors from salivary gland extract of female 

tropical bont tick, Amblyomma variegatum 

2.3.1.1. Purification of variegin isoforms 

Crude SGE of Amblyomma variegatum exhibited potent anticoagulant activity 

in all three coagulation assays (PT, APTT and TT) (Table 2.1). Potency was in the 

order TT >> APTT > PT. Since PT test on the integrity of extrinsic pathway, APTT 

test on extrinsic pathway and TT test on the conversion of fibrinogen to fibrin by 

thrombin, the prominent effect of the SGE on TT is an indication of the presence of 

potent/high amount of antithrombin components. The inhibitions on APTT and PT are 

likely to be due to the effect of these antithrombin components or/and the presence of 

weaker/smaller amount of inhibitors acting on other enzymes ‘upstream’ of thrombin. 

This observation indicates the SGE is a promising source of potent thrombin 

inhibitors. To purify these inhibitors, SGE was fractionated by RP-HPLC (Figure 2.3 

A). After the first step of purification, the most potent anticoagulant fraction (AV-III) 

was subjected to a second purification step (Figure 2.3 B). The resulting fractions 

were screened for antithrombin activity in coagulation and chromogenic substrate 

assays. Two fractions with the strongest activity (retention time 23.08 and 28.93 min) 

were further purified in separate runs. The fraction with retention time 23.08 min was 

separated into two main peaks denoted AV 3/5 and AV 5/5 (Figure 2.3 C). The 

fraction with retention time 28.93 has one main peak and with a small ‘shoulder peak’ 
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TABLE 2.1 

Anticoagulation activities of Amblyomma variegatum SGE (females fed for 9 days). 
Results show the mean of duplicate values. In controls 150 mM NaCl was substituted for SGE.  

 

 PT (s) APTT (s) TT (s) 

Control  15 28 17 

SGE protein (μg)    

0.025   50 

0.050   105 

0.100   >180 

0.250 15 28  

0.500 19 38  

1.000 22 45  

2.500 40 >180  

5.000 >180   
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FIGURE 2.3 

Purification of variegin isoforms by RP-HPLC 
(A) In the first step, SGE was fractionated using a gradient of 10 – 100% ACN over 90 min. Protein 
concentrations in pooled fractions of AV-I to AV-VIII ranged from 0.08 (AV-I) to 1.39 µg/µl (AV-IV). 
For TT assays (control clotting time = 19 s): NC – no clot after adding < 0.01 µg protein/50 µl plasma; 
*** prolonged clotting of > 1 min after adding < 0.01 µg protein/50 µl plasma; ** prolonged clotting of 
> 40 s (< 1 min) after adding < 0.01 µg protein/50 µl plasma; * any delay (< 40 sec) in clotting in 
comparison with control. For APTT assays (control clotting time = 40 s): NC – no clot after adding < 
0.01 µg protein/50 µl plasma; ●●● prolonged clotting of > 1 min after adding < 0.01 µg protein; ●● 
prolonged clotting of > 1 min after adding < 0.1 µg protein/50 µl plasma; ● any delay (< 1 min) in 
clotting in comparison with control. For PT assays (control clotting time = 15 s): ○○ prolonged clotting 
of > 1 min after adding 0.5 µg protein/50 µl plasma; ○ any delay (< 1 min) in clotting compared to 
control (n = 2). 

(B) Fraction AV-III was subjected to a second purification step using a gradient of 10 – 40% ACN over 
60 min. Protein concentrations in fractions ranged from 0.05 to 0.17 µg/µl. The range of fractions with 
anticoagulant activities (dashed line, assayed by PT, APTT and TT) was tested for antithrombin 
activity with S2238. Fractions indicated with asterisks inhibited thrombin amidolytic activity. Two 
fractions with the strongest activity (retention time 23.083 and 28.933 min, indicated by red arrows) 
were subjected to a third step of purification (gradient of 10 – 40% ACN over 60 min) (n = 2). 

A

B 
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FIGURE 2.3 (continued) 

Purification of variegin isoforms by RP-HPLC  
(C) The fraction with retention time 23.08 min separated into two main peaks denoted AV 3/5 and AV 
5/5.  

(D) The fraction with retention time 28.93 has one main peak and a small ‘shoulder peak’ and was 
denoted AV 6/5. 

 

D 

C 
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and was denoted AV 6/5 (Figure 2.3 D). The anticoagulant activities of these three 

fractions (AV 3/5, AV 5/5 and AV 6/5) along with crude SGE were verified by PT, 

APTT, TT and TEG assays. All four assays revealed that AV 6/5 contained the most 

potent anticoagulant activity, followed by AV 3/5 and AV 5/5 (Table 2.2).  

 

2.3.1.2. Protein sequence analysis 

Partial sequences of all three fractions were determined by Edman degradation. 

For AV 6/5 the sequence and molecular weight were completed by MALDI-TOF. 

MALDI spectrum of AV 6/5 revealed a major m/z signal of 3769.96 Da 

(monoisotopic mass = 3768.96 Da) and a minor m/z signal of 3777.79 Da 

(monoisotopic mass = 3776.79 Da). The main component has the sequence 

SDQGDVAEPKMHKT(hex)APPFDFEAIPEEYLDDES, where the Thr14 is 

modified by a hexose moiety. This was named variegin and was further characterized. 

The minor component (3776.79 Da) is almost identical to variegin, with Glu31 

replaced by His. Partial sequences determined by Edman degradation revealed two 

components in the AV 3/5 fraction (m/z 3953.54 and 3409.57 Da) and three 

components in AV 5/5 (m/z 3680.23, 3368.94 and 3173.62 Da). All the sequences 

determined are highly similar to variegin (Figure 2.4), indicates the present of 

isoforms.  

  

BLAST results indicated that variegin does not show similarity to any known 

proteins in the database. Interestingly, its C-terminus (DFEAIPEEYL) is almost 

identical to the C-terminus of hirudin (residues 55 to 64: DFEEIPEEYL). Thus, we 

hypothesized that variegin C-terminus plays a similar role to hirudin C-terminus in 

binding to thrombin. However, Tyr63 of hirudin is sulfated (Markwardt, 1994) while 
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TABLE 2.2  

Anticoagulation activities of A. variegatum SGE and RP-HPLC fractions. 
AV 6/5 showed the most potent activity in all assays. The major component in AV 6/5 was sequenced and 
named variegin. Since APTT, PT and TT were performed in citrated platelet poor plasma (PPP) - a non-
physiological milieu, the activity of the samples were also verified using TEG, which permits coagulation 
monitoring in whole blood using viscoelastic assessment of clot formation as an endpoint.  (PNP: pooled 
normal plasma; r: r phase, the period of time of latency from the time that blood was placed in the TEG 
until the initial fibrin formation; k: k phase, a measure of the speed to reach a certain level of clot strength). 

 

Sample  
(initial concentration) TEG PT (s) APTT (s) TT (s) 

Crude SGE (1 μg/μl) Complete inhibition No clot No clot No clot 

PNP Normal 13.6 25.6 12.2 

AV 6/5 (0.02 μg/μl) Inhibited - - - 

1:200 dilution - 15.3 59.2 78.9 

1:500 dilution - 14.4 48.3 39.2 

AV 3/5 (0.07 μg/μl) Prolonged r/k - - - 

1:200 dilution - 14.1 46.7 30.8 

1:500 dilution - 14.1 38.8 20.6 

AV 5/5 (0.05 μg/μl) Prolonged r/k - - - 

1:200 dilution - 13.8 38.5 21.4 

1:500 dilution - 13.8 33.7 15.6 

 
 

75



 

 

 

 

 

 

 

 

 

 

FIGURE 2.4 

Amino acid sequence of variegin and isoforms 
Sequences of peptides in fraction AV 6/5 (variegin), AV 3/5 and AV 5/5 are highly similar. Red color 
are identical residues, blue color similar residues, black color are non-conserved residues, yellow 
shading indicates hexose modified Thr. The most potent peptide, variegin, was selected for further 
structure-function relationships studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.5 

Michaelis-Menten constant (Km) of S2238 for thrombin  

Plot of reaction velocity (Vmax) as a function of substrate (S2238) concentration were fitted to the 
Michaelis-Menten equation (equation 1). Km calculated with Michaelis-Menten equation is determined 
to be 3.25 ± 0.56 µM (n = 3, error bars represent S.D.). 
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the corresponding Tyr27 in variegin is not. In contrast, while Thr14 is modified by a 

hexose moiety, none of the residues in hirudin is glycosylated.  

 

 

Experiments described from this section onwards are completed within the scope of this thesis. 

2.3.2. Structure-function relationships of variegin 

2.3.2.1. Michaelis-Menten constant (Km) of S2238 for thrombin 

In order to facilitate subsequent analysis of data involved in hydrolysis of 

S2238 by thrombin, Km of S2238 for recombinant α-thrombin was determined. The 

initial rate of reaction, V, increased with increasing concentrations of S2238, 

following Michaelis-Menten kinetics described by equation (1) (Figure 2.5). Km 

calculated with the equation is 3.25 ± 0.56 µM, similar to other reported values in the 

literature (Stone and Hofsteenge, 1986; Myles et al., 2001). 

 

2.3.2.2. Inhibition of thrombin amidolytic activity by n-variegin and its Ki 

The ability of native variegin (n-variegin) to inhibit thrombin amidolytic 

activity was assayed with S2238, a small peptidyl substrate that binds only to the 

active site. N-variegin inhibited the amidolytic activity and progress curves of 

inhibition showed that steady state equilibrium was achieved upon mixing: a 

characteristic of fast binding inhibitor (Figure 2.6 A). Significant inhibition (~ 80%) 

was observed for equimolar concentrations of thrombin and n-variegin (3.33 nM): a 

characteristic of tight-binding inhibitor. Thus, n-variegin is a fast and tight-binding 

inhibitor of thrombin. IC50 (mean ± S.D.) of the inhibition is 0.99 ± 0.02 nM (Figure 

2.6 B). Since the amount of sample available was not enough to perform similar 

experiments at different concentrations of substrates, competitive nature of the 

inhibition is assumed based on results obtained with synthetic variegin (s-variegin). 
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FIGURE 2.6 

Thrombin inhibition by n-variegin 
(A) Example of linear progression curves of thrombin inhibition by variegin (■: 0.020 nM, □: 0.039 
nM, ●: 0.078 nM, ○: 0.156 nM, ▲: 0.313 nM, ∆: 0.625 nM, ▼: 1.25 nM, : 2.5 nM, ♦: 5 nM) using 
S2238 (100 µM) as substrate, showing steady state equilibrium achieved upon mixing – a characteristic 
of fast binding inhibitor. 

(B) The ability of n-variegin (0.001 nM, 0.003 nM, 0.01 nM, 0.03 nM, 0.1 nM, 0.3 nM, 1 nM, 3 nM, 
10 nM, 30 nM and 100 nM) to inhibit thrombin (3.33 nM) amidolytic activity was assayed using active 
site directed substrate S2238 (100 µM). Dose response curve of thrombin inhibition by variegin (■) 
showed significant inhibition (~ 80%) for equimolar concentration of thrombin and variegin (3.33 nM). 
IC50 of the inhibition are 0.99 ± 0.02 nM (n = 3, error bars represent S.D.). 

B 

A 

78



 

Data fitted with equation (3), describing tight-binding inhibitor, showed a Ki of 10.4 ± 

1.4 pM [equation (4)] (Figure 2.7). 

 

2.3.2.3. Design of deletion variants 

For further understanding of structure-function relationships, three peptides 

were synthesized, purified and characterized. Synthetic variegin 

(SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES, s-variegin) has the complete 

sequence of n-variegin, while EP25 (EPKMHKTAPPFDFEAIPEEYLDDES) and 

AP18 (APPFDFEAIPEEYLDDES) have seven and 14 residues truncated from the N-

terminus, respectively (Table 2.3). The designs of these truncation variants are based 

on prior knowledge available for thrombin substrates and inhibitors. Full-length 

variegin were synthesized to confirm the active sequence of variegin. C-terminal 

sequence of variegin (DFEAIPEEYL), being similar to hirudin, is likely to target 

thrombin exosite-I. The distance between thrombin active site and exosite-I is 

approximately 20 Å. Based on observations made earlier in the design of bivalent 

thrombin inhibitors (Maraganore et al., 1990), this distance can be covered by four to 

eight Gly residues. In addition, thrombin preferred substrates and canonical inhibitors 

with a basic P1 residue (most commonly Arg). Since n-variegin inhibits thrombin 

amidolytic activity, binding to active site is very likely. If variegin inhibits thrombin 

canonically, within a distant covered by four to eight residues from the putative 

exosite-I binding segment two basic residues – Lys10 and Lys13 – are the most 

probable P1 residues. Therefore, truncation variants were designed such that one will 

contain only exosite-I binding sequence (AP18), while the other will contain both 

exosite-I and active site binding sequences but devoid of the unique sequence in the 

N-terminus (EP25). Synthesis of glycosylated Thr was not possible as the building 
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block (hexose modified Thr) was not available. Thus, unlike native variegin (n-

variegin), Thr is not glycosylated in s-variegin and EP25.  

 

2.3.2.4. Synthesis of s-variegin and variants 

Full-length synthetic variegin (s-variegin), EP25 and AP18 were synthesized 

by solid-phase peptide synthesis. Purifications of peptides were carried out with RP-

HPLC. Identity and homogeneity of peptides were confirmed with MALDI-TOF MS 

(Table 2.3). CD spectra of s-variegin, EP25 and AP18 are all similar to that of n-

variegin, typical of random coil proteins (Figure 2.8). 

 

2.3.2.5. Selectivity profile of variegin 

To determine its selectivity profile, s-variegin was screened against 13 serine 

proteinases including thrombin. Apart from thrombin, no other serine proteinases was 

significantly inhibited (≥ 5%) even at 1 µM of s-variegin. Inhibition of > 10% was 

observed at much higher concentrations of s-variegin. The most susceptible 

proteinases are plasmin, trypsin and FXIa, which were inhibited ~ 20 to 30% by 100 

μM of s-variegin. In contrast, against thrombin, similar ~ 30% inhibition was 

observed at a concentration at least 4 orders of magnitude lower (~ 3.3 nM) (Figure 

2.9). Therefore, s-variegin is a specific and potent thrombin inhibitor. On the other 

hand, negative values were observed for the inhibition of urokinase and FVIIa, 

suggesting some degree of activation for these enzymes. While, there seems to be a 

dose-dependent activation for urokinase, similar activation is less evident and 

inconclusive in the case of FVIIa. Accurate interpretation of the FVIIa data is difficult 

due to the lack of a dose-dependent relation as well as the overlapping standard 

deviations. 
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TABLE 2.3 

Design of variegin truncation variants 
In order to investigate structure-function relationships of variegin, synthetic peptides were designed and synthesized based on variegin sequence and prior 
knowledge of thrombin substrate and inhibitors. 

 

Name Sequence Theoretical 
mass (Da) 

Observed 
mass (Da) Basis for design 

s-variegin SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 3608.9 3609.0 
• Full-length sequence of native variegin 
• To confirm the active sequence of variegin 
• Thr14 is not glycosylated 

EP25 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2936.2 2936.4 

• Truncation of 7 residues from N-terminus 
• To investigate the role of the unique N-

terminal while retaining putative P1 residues 
• Thr14 is not glycosylated 

AP18 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2084.2 2084.4 

• Truncation of 14 residues from N-terminus 
• To test the hypothesis that variegin binding to 

active site is canonical with either Lys10 or 
Lys13 as P1 residue 

• To ascertain the binding of this segment to 
thrombin exosite-I 
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FIGURE 2.7  

Inhibitory constant Ki of n-variegin  
Since variegin behaved as a tight-binding inhibitor, inhibition of thrombin (1.8 nM) by variegin (■) at 
similar concentrations (0.020 nM, 0.039 nM, 0.078 nM, 0.156 nM, 0.313 nM, 0.625 nM, 1.25 nM, 2.5 
nM, 5 nM, 10 nM) was examined using S2238 (100 µM) as substrate. Data obtained were fitted to 
equations (3) and (4) to derive a Ki (mean ± S.D.) of 10.4 ± 1.4 pM (n = 3, error bars represent S.D.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

FIGURE 2.8 

Variegin and deletion variants lack secondary structures 
Far-UV CD spectra (260 – 190 nm) of n-variegin, s-variegin, EP25 and AP18 dissolved in 10 mM of 
sodium phosphate buffer (pH 7.4). All spectra were typical of random coil protein. 
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FIGURE 2.9 

Selectivity profile of s-variegin 
s-Variegin was screened against 13 serine proteases: fibrinolytic serine proteases (plasmin, tPA and urokinase), anticoagulant serine protease APC, procoagulant serine 
proteases (FXIIa, FXIa, FXa, FIXa, FVIIa, kallikrein and thrombin) and classical serine proteases (chymotrypsin and trypsin). The final concentrations of proteases and 
substrates are given in parentheses in nM and mM, respectively: plasmin (3.61)/S2251 (1.2), TPA (36.9)/S2288 (1), urokinase (40 U/ml)/S2444 (0.3), APC (2.14)/S2366 
(0.67), FXIIa (20)/S2302 (1), FXIa (0.125)/S2366 (1), FXa (0.43)/S2765 (0.65), FIXa (333)/Spectrozyme® FIXa (0.4), FVIIa (460)/S2288 (1), kallikrein (0.93)/S2302 (1.1), 
α-thrombin (3.33)/S2238 (0.1), chymotrypsin (1.2)/S2586 (0.67) and trypsin (0.87)/S2222 (0.1). Thrombin was tested against three concentrations of s-variegin: (■) represent 
0.01 µM, (■) represent 0.1 µM and (■) represent 1 µM. For the other proteases, much higher concentrations of s-variegin were used: (■) represent 1 µM, (■) represent 10 µM 
and (■) represent 100 µM (n = 3, error bars represent S.D.). 
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2.3.2.6. Inhibition of thrombin amidolytic activity by s-variegin, EP25 and AP18 

s-Variegin is similar to n-variegin in that steady state equilibrium of inhibition 

was achieved upon mixing. It was 5-fold less active than n-variegin and ~ 30% 

inhibition was observed at equimolar concentrations of thrombin and s-variegin (3.33 

nM). Dose-response curves showed IC50 values of around 5.4 nM, independent of pre-

incubation time (0 min and 10 min) (Figure 2.10 A). Hence, s-variegin is also a fast 

and tight binding inhibitor of thrombin. The absence of Thr glycosylation in s-

variegin might account for its weaker activity.  

 

EP25 also inhibited the amidolytic activity of thrombin. However, unlike n-

variegin and s-variegin, progress curves of inhibition showed two-phase equilibria in 

the absence of pre-incubation. Steady state equilibrium inhibition was achieved 

relatively slowly, after 20 min pre-incubation. Dose-response curves of EP25 were 

dependent on incubation times. Thus the deletion of seven N-terminal residues 

(SDQGDVA) turned the binding mode from fast to slow. However, potency of EP25 

was not affected by the deletion. When the final steady state equilibrium was achieved 

(20 min pre-incubation) EP25 inhibited thrombin to the same extent as s-variegin. 

IC50 values for EP25 and s-variegin are 5.63 ± 0.45 nM and 5.40 ± 0.95 nM (Figure 

2.10 B).  

 

In contrast, AP18 did not inhibit thrombin amidolytic activity even at 300 µM, 

suggesting that it did not bind to the active site. Instead, AP18 enhanced thrombin 

amidolytic activity slightly in a dose-dependent manner (Figure 2.10 C). This is 

consistent with the reported behavior of hirudin C-terminus (Naski et al., 1990). In 
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FIGURE 2.10 

Inhibition of thrombin by s-variegin, EP25 and AP18 
(A) The abilities of s-variegin, EP25 and AP18 to inhibit amidolytic activity of thrombin were assayed 
using active site directed substrate S2238 (100 µM). Dose response curve of thrombin (3.33 nM) 
inhibition by s-variegin (0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 nM) 
showed significant inhibition (~ 30%) for equimolar concentration of thrombin and variegin (3.33 nM). 
Dose-response curves of inhibition were independent of pre-incubation time: (■) represents 0 min pre-
incubation (IC50 = 5.40 ± 0.95 nM and (○) represents 10 min of pre-incubation (IC50 = 5.49 ± 0.42 nM 
(n = 3, error bars represent S.D.).  

(B) Dose-response curves of thrombin (3.33 nM) inhibition by EP25 (0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 
nM, 30 nM, 100 nM, 300 nM, 1000 nM) showed a pre-incubation time-dependent shift. IC50 values are 
139.30 ± 7.02 nM without pre-incubation (■), 22.55 ± 2.52 nM with 1 min pre-incubation (○), 10.39 ± 
1.53 nM with 2 min pre-incubation (▲), 6.42 ± 0.50 nM with 5 min pre-incubation ( ), 6.80 ± 0.57 
nM with 10 min pre-incubation (♦) and 5.63 ± 0.45 nM with 20 min of pre-incubation (+) (n = 3, error 
bars represent S.D.). 
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FIGURE 2.10 (continued) 

Inhibition of thrombin by s-variegin, EP25 and AP18 
(C) AP18 (3 µM, 10 µM, 30 µM, 100 µM, 300 µM) was unable to inhibit thrombin (3.33 nM) 
amidolytic activity on S2238 (100 µM); instead at high concentrations of AP18, hydrolysis of S2238 
were slightly enhanced (n = 3, error bars represent S.D.).  

(D) All three peptides, s-variegin (■; 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM 100 nM, 300 nM), EP25 (○; 
3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 nM, 3000 nM) and AP18 (▲; 0.1 µM, 0.3 µM, 1 µM, 3 
µM, 10 µM, 30 µM, 100 µM, 300 µM) prolonged fibrinogen clotting times (n = 3, error bars represents 
S.D.). No pre-incubation of peptides with thrombin was carried out. AP18 inhibited thrombin 
fibrinogenolytic activity but not amidolytic activity, suggesting binding to exosite-I. 
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summary, these results suggest that the active site binding moiety on variegin resides 

within position 8 to 14 (EPKMHKT).  

 

2.3.2.7. Inhibition of thrombin fibrinogenolytic activity 

s-Variegin, EP25 and AP18 all prolonged fibrinogen clotting time in a dose-

dependent manner (Figure 2.10 D). Fibrinogen binds to both the active site and 

exosite-I of thrombin (Di Cera, 2003; Huntington, 2005). AP18 inhibited 

fibrinogenolytic but not amidolytic activity of thrombin, and hence we concluded that 

the C-terminus of variegin binds to exosite-I. This observation is consistence with that 

of hirudin C-terminus (Maraganore et al., 1989; Naski et al., 1990). The difference in 

activity between s-variegin and EP25 is likely to be due to the slow binding mode of 

EP25. 

 

2.3.2.8. Inhibitory constant Ki of s-variegin and EP25 

Ki values of s-variegin and EP25 were determined using S2238 as substrate. S-

variegin is a fast and tight binding inhibitor. The apparent inhibitory constants Ki′ 

were determined in the presence of different concentrations of S2238 (Figure 2.11 A). 

s-Variegin is a competitive inhibitor of thrombin and Ki′ increased linearly with 

increasing concentrations of S2238 [equation (3)] (Figure 2.11 B). The true inhibitory 

constant, Ki was found to be 146.4 ± 13.6 pM, which is 14-fold higher than n-variegin 

(10.4 ± 1.4 pM). In contrast, EP25 is a slow binding inhibitor of thrombin. Progress 

curves of inhibition were fitted to equation (7) to obtain k for each concentration of 

EP25 (Figure 2.12 A). k, the apparent first-order rate constant for the establishment of 

the equilibrium between initial collision complex (EI) and final stable complex (EI*), 

increased hyperbolically with EP25 concentration (Figure 2.12 B), as described by 
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FIGURE 2.11 

Inhibitory constant Ki of s-variegin 
(A) S-variegin is a fast and tight binding inhibitor of thrombin. S-variegin (0.313 nM, 0.625 nM, 1.25 
nM, 2.5 nM, 5 nM, 10 nM) was mixed with different concentrations of S2238: 12.5 μM (■), 25 μM (○), 
50 μM (▲), 80 μM ( ), 100 μM (♦), 150 μM (+), 200 μM (×) and 300 μM ( ) to determine Ki’. 
Reactions were started with the addition of thrombin (1.8 nM). Data were fitted to equation (3) (n = 3, 
error bars represent S.D.).  

(B) Plot of Ki’ against substrate concentration showed a linear curve, indicating s-variegin 
competitively inhibited thrombin amidolytic activity on S2238. By fitting the data to equation (4), the 
inhibitory constant Ki was shown to be 146.4 ± 13.6 pM (error bars represent S.D.). 
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FIGURE 2.12 

Inhibitory constant Ki of EP25 
(A) Although EP25 also inhibited thrombin at equimolar concentrations if pre-incubated with thrombin, 
the initial inhibition without pre-incubation was weak. Ki of EP25 was determined without pre-
incubation with concentrations at least 8-fold greater than thrombin. Under these assay conditions, 
binding of EP25 to thrombin does not result in a significant depletion of free EP25 concentration, thus 
the ‘tight-binding’ condition was not considered for data fitting. Progression curves of thrombin (0.9 
nM) inhibition by different concentrations of EP25: 7.8 nM (■), 12.5 nM (□), 15.6 nM (●), 25 nM (○), 
31.3 nM (▲), 50 nM ( ), 62.5 nM (▼), 100 nM (◊) and 125 nM (♦), using S2238 (100 µM) as 
substrate. The progression curves are non-linear, and showed two-phase equilibria typical of slow-
binding inhibition. Data were fitted to equation (7) to obtain a k for each concentration of EP25 used (n 
= 3, error bars represent S.D.).  

(B) Plot of the apparent first-order rate constant k against EP25 concentrations is a hyperbolic curve 
described by equation (8) and hence was fitted to the equation to obtain a Ki` of 529.7 ± 76.7 pM, 
representing the dissociation constant of initial collision complex EI. The overall inhibitory constant Ki 
was calculated from equation (9) and was found to be 149.8 ± 30.5 pM (error bars represent S.D.). 
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Scheme (2). Thus, the binding between EP25 and thrombin involves the isomerization 

of EI to EI*. The dissociation constant of EI (Ki`, mean ± standard deviation, equation 

(8) was 529.7 ± 76.7 pM, while the overall inhibitory constant Ki [equation (9)] was 

149.8 ± 30.5 pM. Thus Ki of EP25 is essentially the same as Ki of s-variegin (146.4 ± 

13.6 pM). These results confirmed that the deletion of seven N-terminal residues did 

not affect potency but switched the binding mode from fast to slow. 
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2.4. DISCUSSION 

 

In order to overcome the hemostatic system of their host, it is conceivable that 

salivary glands of female Amblyomma variegatum secrete potent inhibitors targeting 

thrombin. This is because thrombin plays a central role in maintaining the integrity of 

hemostasis. Thrombin interacts with most of the zymogens and their cofactors, 

playing multiple procoagulant and anticoagulant roles in blood coagulation (Di Cera, 

2003; Huntington, 2005). As a procoagulant protease, the first traces of thrombin 

generated in the initiation phase activate FV and FVIII to provide positive feedback 

leading to the thrombin burst in the amplification phase. Thrombin cleaves fibrinogen 

to fibrin, forming insoluble clots. Fibrin polymers are further strengthened and 

stabilized through covalent cross-linking driven by thrombin activated factor XIII. 

Thrombin also contributes to the generation of a platelet plug, possibly through two 

mechanisms: (a) it activates platelets by interacting with PARs and glycoprotein V; 

and (b) it prevents destabilization of the platelet plug, by inactivating ADAMTS13, a 

disintegrin and metalloprotease with a thrombospondin type 1 motif, number 13, that 

cleaves VWF. As an anticoagulant protease, thrombin activates protein C in the 

presence of the cofactor thrombomodulin. APC inactivates FVa and FVIIIa, down-

regulating the generation of thrombin (Davie et al., 1991; Di Cera, 2003; Huntington, 

2005; Lane et al., 2005). 

 

Variegin is one of the smallest thrombin inhibitors found in nature. Despite its 

small size and flexible structure, variegin binds to thrombin with strong affinity. 

Structure-activity studies revealed the interaction of s-variegin with an extended 

surface area of thrombin. The thrombin active site binding moiety of variegin is in the 
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region of residues 8 to 14, and the exosite-I binding moiety is within residues 15 to 32. 

The seven N-terminal residue moiety, while not binding directly to thrombin, affected 

the binding kinetics; when removed, the binding characteristics of variegin changed 

from fast to slow.  

 

Over the years, many thrombin inhibitors have been isolated from 

hematophagous animals and snake venom. However, no similarities were found in the 

primary structure of variegin and other thrombin inhibitors. The absence of cysteines, 

consistent with a flexible structure, also differs from prototypic thrombin inhibitors 

such as hirudin (compact N-terminus, acidic and extended C-terminus) (Rydel et al., 

1990; Grutter et al., 1990; Rydel et al., 1991; Schwienhorst, 2006), rhodniin (double 

domain Kazal-type inhibitor) (Friedrich et al., 1993; van de et al., 1995), ornithodorin 

(double domain Kunitz-type inhibitor) (van de et al., 1996) and theromin (acidic and 

antistasin-like N-terminus, compact C-terminus) (Salzet et al., 2000), even though 

they all bind to the same sites on thrombin (active site and exosite-I) (Figure 2.13 B). 

Although variegin residues 19 to 28 are almost identical to hirudin C-terminus, their 

N-termini are completely different (Figure 2.13 A). The first three residues on hirudin 

N-terminus bind to a hydrophobic pocket at thrombin active site in a non-canonical 

form, forming a short parallel β-pleated sheet with thrombin Ser214 – Gly217 (Rydel 

et al., 1990; Grutter et al., 1990; Rydel et al., 1991). It is unlikely that variegin binds 

to thrombin active site with the same mechanism. The active site binding segment 

resides in the middle of the molecule. With variegin C-terminus anchoring on 

thrombin exosite-I, it would be geometrically challenging for the middle segment to 

approach thrombin active site from the opposite direction as in the case of hirudin. 

Unlike hirudin, variegin is not sulfated at the Tyr residue and has three extra residues 
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FIGURE 2.13 

Comparison of variegin with other thrombin inhibitors 
(A) Amino acid sequence alignment of n-variegin, s-variegin, EP25, AP18, hirulog-1 and hirudin show 
highly similar C-terminal sequences. N-variegin is glycosylated at Thr (T), hirulog-1 contains a D-Phe 
(F) and hirudin is sulfated at Tyr (Y). Sequence of TTI is distinctly different from variegin and was not 
aligned. 

(B) Schematic diagram showing different classes of naturally occurring thrombin inhibitors and their 
structural features. Hirudin: compact N-terminus binds to active site, acidic and extended C-terminus 
binds to exosite-I; Rhodniin: two Kazal-type domains in head-to-tail arrangement with the N-terminal 
domain binding to active site and the C-terminal domain binding to exosite-I; Ornithodorin: two 
Kunitz-type domains in tail-to-tail arrangement with the N-terminal domain binding to active site and 
the C-terminal domain to exosite-I; Haemadin: compact N-terminal domain binds to active site, acidic 
and extended C-terminus binds to exosite-II; Triabin: single β-barrel domain binds to exosite-I; 
Bothrojaracin: two different chains of the C-type lectin domain bind to exosite-I and exosite-II 
respectively. Other classes of thrombin inhibitors such as theromin and TTI are not represented due to 
lack of detailed structural information. Structurally variegin is most similar to hirulog (bivalirudin), a 
synthetic bivalent thrombin inhibitor. 
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at the C-terminus. Desulfation of hirudin (Stone and Hofsteenge, 1986) or its C-

terminal peptide (hirugen) (Maraganore et al., 1989) retained anti-thrombin activity 

despite a 10-fold reduction in affinity (Stone and Hofsteenge, 1986) and activity 

(Maraganore et al., 1989). Our results indicated that AP18 binds to exosite-I and 

slightly enhanced thrombin amidolytic activity, comparable to the reported behavior 

of hirudin C-terminus (Maraganore et al., 1989; Naski et al., 1990), suggesting similar 

roles for these two sequences. This appears to be an example of convergent evolution 

in two phylogenetically distant lineages.  

 

Variegin is also distinct from other thrombin inhibitors such as haemadin 

(Strube et al., 1993; Richardson et al., 2000), triabin (Noeske-Jungblut et al., 1995; 

Fuentes-Prior et al., 1997) and bothrojaracin (Zingali et al., 1993). Haemadin has a 

similar structure to hirudin, binding to the thrombin active site with its N-terminus, 

but to exosite-II with its extended C-terminus (Strube et al., 1993; Richardson et al., 

2000). Triabin only inhibits exosite-I and has a similar structure to lipocalins 

(Noeske-Jungblut et al., 1995; Fuentes-Prior et al., 1997). Bothrojaracin, a C-type 

lectin protein, binds to both exosite-I and exosite-II (Zingali et al., 1993) (Figure 2.13 

B). Only two other thrombin inhibitors of similar size have been reported to date, but 

they appear to be unrelated to variegin. Despite also having 32 residues, tsetse 

thrombin inhibitor (TTI), isolated from tsetse fly Glossina morsitans morsitans 

(Cappello et al., 1996; Cappello et al., 1998), does not share any sequence similarity 

with variegin (Figure 2.13 A). Another low molecular weight thrombin inhibitor (3.2 

kDa) was isolated from the camel tick, Hyalomma dromedarii (NTI-1) (Ibrahim et al., 

2001a). Unlike variegin, NTI-1 is a weak (Ki = 11.7 µM) and non-competitive 
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inhibitor of thrombin, binding to only one site on thrombin. Currently, no detailed 

structural information for NTI-1 is available. 

 

Perhaps variegin is best compared with hirulogs, a group of synthetic bivalent 

thrombin inhibitors designed by grafting the hirudin C-terminus to the active site 

binding moiety D-Phe-Pro-Arg-Pro through a linker of different number of glycyl 

residues (e.g. hirulog-1 has four Gly as linker) (Figure 2.13 A) (Maraganore et al., 

1990). In particular, the size of EP25 is comparable to hirulog-1, but with a much 

stronger affinity (Ki of EP25 is ~ 149.8 ± 30.5 pM, while Ki of hirulog-1 is 2.56 nM). 

However, in contrast to fast binding kinetic of hirulog-1, EP25 is as a slow binding 

inhibitor. Hirulog-1 was named bivalirudin for its clinical development and eventually 

entered the market as anticoagulant (Warkentin et al., 2008). 

 

Since the C-termini of variegin and hirulogs, DFEA(E)IPEEYL, are highly 

similar (Figure 2.13 A), we propose that the improved affinity of variegin is mainly 

due to residues N-terminal to this sequence. Our results indicate that the active site 

binding moiety on variegin has the sequence EPKMHKT. Within this sequence lie 

two basic residues – Lys10 and Lys13 – which could be the P1 site. Either way, this 

sequence appears to be very different from sequences of most natural substrates of 

thrombin. For example, Lys at P1, although possible, is very rarely observed. Also, 

the presence of Glu/Met at P3, Met/glycosylated Thr at P1′ His/Ala at P2′ and 

glycosylated Thr at P4′ are all uncommon (Bode et al., 1992; Huntington, 2005; Page 

et al., 2005). Therefore, the identification of this unique active site binding moiety has 

significant implications for both understanding thrombin substrate preference and the 

discovery of new leads for developing direct thrombin inhibitors. The determination 
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of cleavage of variegin by thrombin, the unambiguous identification of the P1 residue, 

as well as molecular interactions between this unique active site binding moiety with 

thrombin active site become the next logical steps to proceed. Answers to these 

questions will be described in details in the next chapter.  

 

Site-directed mutagenesis and intrinsic fluorescence studies suggest the 

following events during binding of hirudin to thrombin (Jackman et al., 1992; Myles 

et al., 2001): (1) electrostatic steering due to the complementary electrostatic fields of 

the hirudin C-terminus and thrombin exosite-I, (2) ionic tethering through direct 

interactions between specific residues of hirudin C-terminus inducing conformational 

changes and stabilization of the thrombin-hirudin C-terminal complex, and (3) 

subsequent binding of hirudin N-terminus to the apolar site near the active site. The 

conformational changes upon binding of hirudin C-terminus (step 2) detected in 

intrinsic fluorescence studies were observed to be the rate limiting step (Jackman et 

al., 1992). Hirudin behaved as a slow binding inhibitor in high ionic strength solution 

(> 0.2 M) where ionic interactions were impaired (Stone and Hofsteenge, 1986). 

Interestingly, in variegin, the deletion of seven N-terminal residues led to a switch 

from a fast binding inhibitor to a slow binding inhibitor without any loss of binding 

affinity. This slow binding observed for EP25 is presumably due to the loss of N-

terminal residues instead of impaired ionic tethering observed for hirudin, suggesting 

a different rate limiting step. The kinetic studies indicate that the slow binding mode 

of EP25 probably involves isomerization of the thrombin-EP25 complex. We propose 

that long-range electrostatic interactions between the C-terminus of EP25 and 

thrombin exosite-I allow rapid formation of the initial collision complex (EI). This 

leads to subsequent binding of EPKMHKT to the active site in a slow step to form the 
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stabilized enzyme-inhibitor complex (EI*) through short range interactions (step 3 is 

the rate limiting step) (Figure 2.14).  By contrast, in the full-length variegin, the N-

terminus, possibly through two negatively charged residues in SDQGDVA, provides 

an additional electrostatic steering (but probably not tethering) effect to pre-orientate 

the N-terminus close to the active site allowing rapid formation of short-range 

interactions. The electrostatic steering effect of the N-terminus can be facilitated by 

the presence of the highly basic exosite-II. Exosite-II is located about 10 Å away from 

the active site (Page et al., 2005), a distance that can theoretically be covered by the 

seven N-terminal residues in an extended conformation (Figure 2.14). 
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FIGURE 2.14 

Proposed binding mechanisms of variegin and deletion variants 
(A) The thrombin exosite-I binding moiety of variegin is within residues 15 to 32 and active site 
binding moiety is in the region of residues 8 to 14. The seven N-terminal residues, while not binding 
directly to thrombin, affected the binding kinetics; when removed, the binding characteristic of variegin 
changed from fast to slow, suggesting a possible steering effect to exosite-II. 

(B) Proposed binding mechanism of variegin to thrombin: (i) complementary electrostatic charges 
between variegin N-terminus and thrombin exosite-II as well as between variegin C-terminus and 
thrombin exosite-I steer variegin to thrombin, (ii) all electrostatic interactions occurred rapidly 
(tethering) and pre-orient active site binding moiety (EPKMHKT) in correct conformation for fast 
binding to thrombin active site.  

(C) Proposed binding mechanism of EP-25 to thrombin: (i) electrostatic charges on C-terminus steer 
EP25 to thrombin and subsequently provide specific tethering interaction, (ii) without the steering 
effect of N-terminal residues (SDQGDVA) the active site binding moiety is not orientated properly to 
fit the thrombin active site, hence the initial collision complex (EI) has a higher Ki`, and (iii) in a slow 
step the active site binding moiety (EPKMHKT) adopts the correct conformation for optimum binding 
and formation of a stabilized complex.  

(D) Proposed binding mechanism of AP18 to thrombin: (i) electrostatic charges on C-terminus steer 
AP18 to thrombin and subsequently provide specific tethering interaction in a fast binding step, (ii) 
without the active site binding moiety (EPKMHKT) thrombin fibrinogenolytic activity but not 
amidolytic activity is inhibited. Fibrinogen binding to thrombin requires exosite-I, which is occupied 
by AP18.  

 

 

A 

B 

C 

D 

(i) (ii) 

(ii) 

(ii) 

(iii) (i) 

(i) 
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2.5. SUMMARY 

 

Variegin is one of the smallest (32 residues) thrombin inhibitors found in 

nature. Activity and affinity of n-variegin, s-variegin and two truncation variants 

(EP25 and AP18) for thrombin were determined. Variegin is a specific, fast and tight-

binding, competitive thrombin inhibitor. We have demonstrated that the thrombin 

active site binding moiety of variegin is in the region of residues 8 to 14, and the 

exosite-I binding moiety is within residues 15 to 32. The first seven N-terminus 

residues governed kinetic of binding; without them, the peptide turns into a slow 

binding inhibitor. 
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Chapter Three 

 
 
 
 
 
 
 
 
 

 
 

Thrombin inhibition by a cleavage 
product of variegin 
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3.1 INTRODUCTION 

 

As found in the previous chapter, variegin is distinct from all other naturally 

occurring thrombin inhibitors. Instead, it shared some similarities to a human 

designed, synthetic thrombin inhibitor hirulog-1/bivalirudin. Between late 1980s and 

early 1990s, a group of novel thrombin inhibitors called hirulogs were reported 

(Maraganore et al., 1990; Witting et al., 1992). A peptide containing hirudin C-

terminal residues 53 to 64 (NGDFEEIPEEYL) was observed to inhibit the thrombin 

fibrinogenolytic activity by binding to the exosite-I. The thrombin active site function 

is not inhibited by the peptide (Maraganore et al., 1989). Based on a model of 

thrombin structure (Furie et al., 1982), the N-terminal residue of this peptide was 

estimated to be at least 18 to 20 Å away from side chain hydroxyl group of the 

thrombin active site residue Ser195. On the other hand, the ability of D-FPR, or 

similar tripeptides to bind to the thrombin active site was long established (Bajusz et 

al., 1978; Sonder and Fenton, 1984). However, while the hirudin C-terminal peptide 

lacks active site inhibitory function, D-FPR lacks specificity and strong affinity. In 

order to overcome these problems, a non-sulfated hirudin C-terminal peptide was 

attached to D-FPR through a flexible glycyl linker to cover the distance between the 

active site and exosite-I. By varying the number of residues in the linker segment, a 

group of potent bivalent thrombin inhibitors were designed and characterized. One of 

the molecules, hirulog-1, has four glycine residues in the linker segment. The 

activities of peptides with higher number of glycine residues do not differ 

significantly with hirulog-1. A shorter linker segment (two glycines) adversely 

affected the activity. Therefore, the optimum length of linker spanned four residues, 

101



consistent with the estimation of the distance between the thrombin active site and 

exosite-I (Maraganore et al., 1990).  

 

Hirulog-1 contains 20 residues and is a fast and tight-binding, competitive 

inhibitor of thrombin with Ki = 2.56 nM (Witting et al., 1992). Although its affinity to 

thrombin is about five orders of magnitudes weaker, the size of hirulog-1 is two third 

smaller than hirudin. Unlike hirudin, hirulog-1 is a canonical inhibitor of thrombin, 

binding to the active site in a substrate-like manner. Upon binding to thrombin, the 

substrate-like active site binding moiety of hirulog-1 is cleaved at the peptide bond 

between Arg3 and Pro4 (Skrzypczak-Jankun et al., 1991; Witting et al., 1992). It was 

subsequently named bivalirudin for its clinical development and is currently available 

in the market as Angiomax™ (in USA) or Angiox™ (in EU) 

(http://www.themedicinescompany.com/products_angiomax.shtml). Bivalirudin has a 

short plasma half-life (~ 25 min) and is eliminated by a combination of proteolysis 

and renal clearance (Warkentin et al., 2008). The process of bivalirudin development 

represented an elegant and successful example of rational drug designs. By taking part 

of a naturally occurring molecule (hirudin) as template, a molecule with more ‘drug-

like’ properties (e.g. smaller size) was synthesized. It represents a new class of 

bivalent thrombin inhibitors, which was previously not encountered in nature.   

 

Our data with the variegin truncation variants suggests that variegin inhibits 

thrombin with a canonical mechanism. Thus, the next few questions that surfaced are 

whether thrombin hydrolyzes variegin? If it does, how fast does it occur? Where is the 

cleavage site? What impact does the cleavage have on the activity of variegin? To 

answer these questions, we analyzed the cleavage process using RP-HPLC. Analysis 
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by RP-HPLC is a robust method to determine the extent of cleavage. With appropriate 

selection of column, eluent and elution gradient, cleaved peptides can be separated 

efficiently based on their hydrophobicity. Cleaved and separated peptides can be 

easily identified using mass spectrometer. In order to correlate cleavage with activity 

of peptides, several experiments probing the thrombin amidolytic activity under 

different conditions were devised. Hirulog-1 (bivalirudin) was synthesized to facilitate 

comparisons with s-variegin and its variants. In this chapter, careful comparisons 

between variegin and hirulog-1 are presented. Our results demonstrated nature’s 

ability to produce a molecule that is similar but probably superior to the product of 

human drug design – hirulog-1/bivalirudin. Thus, variegin represents an interesting 

insight from nature on drug design.  

  

103



3.2. MATERIALS AND METHODS 

 

3.2.1 Materials 

All materials used were as described in Chapter 2. For details please refer to 

‘Section 2.2.1. Materials’.  

 

3.2.2. Synthesis, purification and mass spectrometry analysis of peptides 

Synthesis, purification and mass spectrometry analysis of s-variegin, EP25, 

MH22 and hirulog-1 followed procedures described in Chapter 2. For details please 

refer to ‘Section 2.2.3.1. Peptide synthesis’.  

 

3.2.3. Thrombin 

Two different sources of thrombin, recombinant α-thrombin (based on human 

α-thrombin sequence) and human plasma derived thrombin, were both generous gifts 

from the Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN, Japan). 

Recombinant α-thrombin was desalted with HiTrap™ Desalting Column (GE 

Healthcare, Uppsala, Sweden) in 20 mM ammonium bicarbonate (NH4HCO3) and 

lyophilized before being used for the RP-HPLC analysis of cleavage. Human plasma 

derived thrombin was used to test thrombin inhibitory activities of peptides. Peptides 

generally showed 2-fold stronger inhibition against recombinant α-thrombin than 

plasma derived thrombin for an as yet to be identified reason. The Km of S2238 for 

human plasma derived thrombin was determined to be 3.32 ± 0.35 μM, similar to the 

value obtained using recombinant α-thrombin (3.25 ± 0.56 μM) and other reported 

values in the literature (Stone and Hofsteenge, 1986; Myles et al., 2001).  
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3.2.4. RP-HPLC analysis of the cleavage 

Peptides were incubated with recombinant α-thrombin at both 37°C and room 

temperature in 50 mM Tris buffer (pH 7.4) containing 100 mM NaCl and 1 mg/ml 

BSA. Reaction mixtures without thrombin were used as control. After various 

incubation times, the reactions were quenched with 0.1% TFA buffer (pH 1.8) and 

loaded onto a SunFireTM C18 column attached to an ÄKTATM Purifier System. New 

peaks other than those present in the chromatogram of both control reaction mixture 

and 0 min incubation were identified as cleavage products and subjected to ESI-MS to 

verify their masses. The peaks were integrated to calculate the area under the peaks 

and the relative percentage of each peak to determine the extent of cleavage. 

 

3.2.5. Thrombin inhibitory activities of peptides 

Activities of s-variegin, EP25, MH22 and hirulog-1 were assayed by their 

abilities to inhibit the thrombin amidolytic activity on S2238. Assays were typically 

performed as described in ‘Section 2.2.3.7. Inhibition of thrombin amidolytic activity’ 

of Chapter 2. Effects of pre-incubation times (hence cleavage) on thrombin inhibitory 

activities of peptides were performed with the same assay, varying pre-incubation 

times and/or concentrations of BSA. For experiments to ascertain integrity of 

thrombin exosite-I during extended incubation time, parallel sets of assay were 

performed with or without addition of freshly prepared inhibitors after 28 h of pre-

incubation. All data obtained were fitted using Origin software to equation (2) for 

calculation of IC50 values and equations (3) to (9) for calculation of Ki values 

depending on the mechanisms of inhibition, as described in ‘Section 2.2.3.8. 

Determination of the inhibitory constant Ki′’ of Chapter 2. Details of each experiment 

are described along with the graphs representing the results obtained. 
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3.3. RESULTS 

 

3.3.1. Cleavage of peptides by thrombin 

Since variegin was hypothesized to canonically bind to the thrombin active 

site, it may be cleaved by thrombin which is similar to other serine protease inhibitors 

(Witting et al., 1992; Bode and Huber, 1992). Therefore we examined the cleavage of 

s-variegin by thrombin and its effects on peptides activities. The RP-HPLC analysis 

showed that s-variegin was indeed cleaved by thrombin at both 37 °C and room 

temperature (~ 25 °C). At 0 min of incubation, only peaks corresponding to full-

length s-variegin and thrombin were present. Two new peaks representing cleavage 

products appeared and increased with incubation times (Figure 3.1). These new peaks 

had masses of 1045 Da (SDQGDVAEPK) and 2582 Da 

(MHKTAPPFDFEAIPEEYLDDES) respectively, and corresponded to cleavage at the 

Lys10-Met11 peptide bond. Cleavage proceeded faster at 37 °C (Figure 3.1 A) than at 

25 °C (Figure 3.1 B).  

  

In a preliminary experiment to verify the effect of variegin cleavage, s-

variegin and EP25 were incubated with thrombin up to 24 h and at various time points 

assayed for the ability to inhibit the thrombin amidolytic activity. The results showed 

that both s-variegin and EP25 lost their activities only after prolonged incubation with 

thrombin (Figure 3.2). Interestingly, at the same temperature (25 °C) and molar ratios 

(30-fold excess of s-variegin), after 60 min of incubation, ~ 30% of s-variegin was 

cleaved (Figure 3.1 C), yet no significant loss of inhibitory activity of s-variegin 

(Figure 3.2 A) and EP25 (Figure 3.2 B) was observed. After 24 h of pre-incubation, 

only ~ 30% loss of inhibitory activity of s-variegin and EP25 was observed. In the 
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FIGURE 3.1 

Cleavage analyses of s-variegin by thrombin at 37 °C and 25 °C  
(A) s-variegin (150 µM) was incubated with thrombin (5 µM) for various times at room temperature (n 
= 2, error bars represent S.D.). S-variegin was present in 30-fold excess of thrombin. Cleavage of s-
variegin by thrombin was analyzed with RP-HPLC. Figure showed typical chromatograms of HPLC 
analysis of the cleavage. At incubation time = 0 min, the single peak corresponds to full-length s-
variegin. With incubation, two new peaks appeared corresponding to cleavage products of mass 1045 
Da (representing N-terminal fragment SDQGDVAEPK) and 2582 Da (representing C-terminal 
fragment MHKTAPPFDFEAIPEEYLDDES) while uncleaved s-variegin decreased in quantity. 
Cleavage proceeded faster at 37 °C than at room temperature (25 °C). Only 180 min was needed for 
complete cleavage at 37 °C while 360 min was needed for ~ 90% of cleavage at 24 °C. 
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37 °C incubation 25 °C incubation 

60 min 
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0 min 

30 min 30 min 
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FIGURE 3.1 (continued) 

Cleavage analysis of s-variegin by thrombin at 37 °C and 24 °C 
Relative percentage of uncleaved s-variegin ( ), cleavage product of mass 1045 (representing N-
terminal fragment SDQGDVAEPK) ( ) and cleavage product of mass 2582 (representing C-terminal 
fragment MHKTAPPFDFEAIPEEYLDDES) ( ) was calculated by integrating area under the peaks in 
RP-HPLC analysis. Cleavage proceeded faster at 37 °C than at room temperature (24 °C) (n = 2, error 
bars represent S.D.). 

(B) showed results obtained by incubating s-variegin and thrombin at 37 °C. Only 180 min was needed 
for complete cleavage. 

(C) showed results obtained by incubating s-variegin and thrombin at 24 °C. 360 min was needed for ~ 
90% of cleavage. 
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FIGURE 3.2 

S-variegin and EP25 retained activities after being cleaved by thrombin 
(A) S-variegin was incubated with thrombin (3.33 nM) for up to 24 hr at room temperature and at 
various time points assayed for the ability to inhibit thrombin amidolytic activity on 100 µM S2238 (n 
= 3, error bars represent S.D.). 

(B) Similar experiments were carried out replacing s-variegin with EP25 (n = 3, error bars represent 
S.D.).  

Concentrations of s-variegin or EP25 are 10 nM (■), 100 nM (■) and 1000 nM (■) (n = 2, error bars 
represent S.D.). At 100 nM of s-variegin or EP25, the inhibitors were present in 30-fold excess of 
thrombin identical with the molar ratio used in cleavage experiments, and hence were used primarily 
for comparison with cleavage data from RP-HPLC analysis (see Figure 3.1). 

A 

B 
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case of the slow binding inhibition of EP25, percentage inhibition increased with 

incubation time up to 20 min and then decreased due to cleavage by thrombin (Figure 

3.2 B). Thus, it is likely that the cleavage product(s) retains strong binding to the 

thrombin active site.  

 

3.3.2. Inhibition of thrombin amidolytic activity by cleavage product, MH22 

To test if the variegin cleavage product is indeed responsible for its prolonged 

activity, the C-terminal fragment of cleavage (MHKTAPPFDFEAIPEEYLDDES) 

was synthesized (Table 3.1). This fragment, MH22, was selected for several reasons. 

First, the ability of the last 18 residues to bind to thrombin was observed earlier 

(AP18, see Chapter 2). Second, the first seven N-terminal residues of variegin do not 

bind to thrombin (see Chapter 2). Thus it is less likely that the other three residues 

EPK are responsible for the strong and prolonged inhibitory effect of variegin after 

cleavage (bear in mind that these assays were carried out with S2238 as substrate, 

which has an optimized structure based on a similar moiety, D-FPR). Last, preliminary 

data from the thrombin-variegin structure obtained by X-ray diffraction suggested that 

MH22 binds to thrombin after cleavage (see Chapter 4 for details).  

  

MH22 inhibited the thrombin amidolytic activity at equimolar concentration 

(~ 15%) and progress curves of inhibition showed that steady state equilibrium was 

achieved upon mixing. Thus, similar to s-variegin, MH22 is a fast and tight-binding 

inhibitor. Dose-response curve showed a IC50 value of 11.46 ± 0.71 nM (Figure 3.3). 

s-Variegin inhibition of human plasma derived thrombin has a IC50 value of 8.25 ± 

0.45 nM (Figure 3.3), slightly higher than that of the recombinant α-thrombin (5.40 ± 

0.95 nM) (Chapter 2).  
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TABLE 3.1 

Peptide synthesis 
Cleavage product of s-variegin (MH22) was synthesized. Hirulog-1 was also synthesized for comparison. 

Name Sequence Theoretical 
mass (Da) 

Observed 
mass (Da) Basis for design 

s-variegin SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 3608.9 3609.0 • Full-length sequence of variegin 

MH22 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2581.8 2581.8 

• Cleavage product of variegin  
• C-terminal fragment of the scissile bond 
• Postulated to bind thrombin resulting in prolonged 

activity of s-variegin after cleavage 

Hirulog-1 SDQDFPRPGGGGNGDFEEIPEEYL 2180.3 2179.6 

• Designed by J. M. Maraganore et. al. (Maraganore et al., 
1990; Witting et al., 1992)  

• Structurally similar to s-variegin 
• Short, linear peptide that binds thrombin active site and 

exosite-I 
• Like s-variegin, binding to thrombin results in cleavage 
• Synthesized as comparison with s-variegin and MH22 
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FIGURE 3.3 

Inhibition of human plasma thrombin by MH22, s-variegin and hirulog-1 
The ability of MH22, s-variegin and hirulog-1 to inhibit amidolytic activity of human plasma derived 
thrombin were assayed using active site directed substrate S2238 (100 µM). Dose response curves of 
thrombin (1.65 nM) inhibited by MH22 ( ) s-variegin ( ) and hirulog-1 ( ) all showed inhibition 
when they are present in similar molar concentrations with thrombin.  

Concentrations used for MH22 ( ) and s-variegin are 0.03 nM, 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 
30 nM, 100 nM, 300 nM and 1000 nM. IC50 of inhibition are 11.46 ± 0.71 nM and 8.25 ± 0.45 nM, 
respectively (n = 3, error bars represent S.D.). 

Concentrations used for hirulog-1 ( ) are 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 
nM, 3000 nM and 10000 nM. IC50 of inhibition is 72.6 ± 3.9 nM (n = 3, error bars represent S.D.) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3.4 

Apparent inhibitory constant, Ki’ of MH22 
Since MH22 behaved as a tight-binding inhibitor, inhibition of thrombin (1.65 nM) by MH22 at 
different concentrations (0.195 nM, 0.391 nM, 0.781 nM, 1.56 nM, 3.12 nM, 6.25 nM, 12.5 nM, 25 nM, 
50 nM, 100 nM) were examined using different concentrations of S2238 as substrate. Reactions were 
started with the addition of thrombin. Shown in the figure are experiments performed with 100 μM 
S2238. Data obtained were fitted to equations (3) to derive an apparent inhibitory constant, Ki

’ (mean ± 
S.D.) of 14.31 ± 0.26 nM (n = 3, error bars represent S.D.). 
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3.3.3. The inhibitory constant Ki of MH22 

 The inhibitory constant, Ki of MH22 was determined using S2238 as substrate. 

MH22 is a fast and tight binding inhibitor. The apparent inhibitory constants, Ki′ were 

determined in the presence of different concentrations of S2238 [equation (3), Figure 

3.4]. Unlike s-variegin which has Ki′ values that increase linearly with increasing 

concentrations of S2238 [equation (4)], MH22 Ki′ values remained constant with 

changes in S2238 concentrations. The behavior of the curve fits the equation that 

describes non-competitive inhibition where α = 1 [equation (5)] and hence, Ki′ = Ki 

[equation (6)]. Fitting the Ki′ values by linear regression derived a value of 14.11 ± 

0.29 nM for Ki (Figure 3.5). s-Variegin showed a Ki of 0.318 ± 0.020 nM when 

assayed with human plasma derived thrombin (the Ki for recombinant α-thrombin was 

0.146 ± 0.014 nM). Thus, the full-length peptide s-variegin is a competitive inhibitor, 

but its cleavage product MH22 is a non-competitive inhibitor of the function of 

thrombin active site.  

  

3.3.4. Inhibition of thrombin amidolytic activity by hirulog-1 and its Ki 

For comparison, hirulog-1 was synthesized based on a sequence reported 

previously (Maraganore et al., 1990). In our assays, hirulog-1 inhibited (human 

plasma derived) the thrombin amidolytic activity with IC50 = 72.6 ± 3.9 nM (Figure 

3.6), which is about 9- and 6-fold weaker than s-variegin and MH22 respectively. The 

inhibitory constant Ki of hirulog-1 obtained by fitting data to equations describing fast, 

tight-binding, competitive inhibitors [equations (3) and (4)] is 2.94 ± 0.12 nM, similar 

to reported value in the literature [2.56 ± 0.35 nM (Witting et al., 1992)] (Figure 3.6 

& 3.7). Thus, the actual affinity of MH22 to thrombin is weaker than hirulog-1 

despite the lower IC50 value compared to hirulog-1 at saturating concentration of 
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FIGURE 3.5 

Inhibitory constant Ki of MH22 
Apparent inhibitory constant Ki’ of MH22 were determined with six different concentrations of 
substrate S2238 (12.5 μM, 25 μM, 50 μM, 75 μM, 100 μM and 150 μM). Plot of Ki’ against substrate 
concentrations remained constant throughout, indicating MH22 non-competitively [equations (5) & (6)] 
inhibits thrombin amidolytic activity on S2238. Fitting the Ki’ values by linear regression derived the 
inhibitory constant Ki as 14.11 ± 0.29 nM (n = 3 for each S2238 concentration, error bars represent 
S.D.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3.6 

Apparent inhibitory constant, Ki’ of hirulog-1 
Inhibitions of thrombin (0.8 nM) by hirulog-1 at various concentrations (0.977 nM, 1.95 nM, 3.91 nM, 
7.81 nM, 15.6 nM, 31.3 nM, 62.5 nM, 125 nM, 250 nM and 500 nM) were examined using 12.5 μM 
( ), 25 μM ( ), 50 μM ( ) and 100 μM ( ) of S2238 as substrate. Reactions were started with the 
addition of thrombin. Data obtained were fitted to equations (3) to derive apparent inhibitory constant, 
Ki

’ (n = 2, error bars represent S.D.). 
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FIGURE 3.7 

Inhibitor constant Ki of hirulog-1 
Apparent inhibitory constant Ki’ of hirulog-1 were determined with four different concentrations of 
substrate S2238 (12.5 μM, 25 μM, 50 μM and 100 μM). Plot of Ki’ against substrate (S2238) 
concentrations increases linearly with increasing concentrations of substrate, indicates that hirulog-1 
competitively inhibited thrombin amidolytic activity on S2238. By fitting the data to equation (4), the 
inhibitory constant Ki was shown to be 2.94 ± 0.12 nM, similar to reported value in the literature (2.56 
± 0.35 nM) (n =2 for each S2238 concentration, error bars represent S.D.). 
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substrate (100 μM S2238). Being a competitive inhibitor, hirulog-1 IC50 values are 

significantly increased in higher concentrations of S2238 whereas MH22, a non-

competitive inhibitor, has a constant IC50 independent of substrate concentrations. 

 

3.3.5. Effect of pre-incubation times on activities of peptides  

The RP-HPLC analysis showed cleavage increases with time (Figure 3.1). In 

order to investigate how cleavage affects the activities, MH22, s-variegin, EP25 and 

hirulog-1 were pre-incubated with thrombin for different lengths of time before 

respective residual thrombin amidolytic activities were determined (Table 3.2 and 

Figure 3.8). Dose-response curves for each peptide at various pre-incubation times 

were constructed. The IC50 of MH22 remained constant for at least 2 h at ~ 13 nM 

before a slight drop in activity after 18 h (IC50 = 28.4 ± 1.8 nM). After 28 h, activity 

of MH22 dropped sharply (IC50 of 479.7 ± 16.0 nM). For s-variegin, IC50 changed 

from 8.25 ± 0.45 nM (without pre-incubation) to 10.37 ± 0.30 nM (after 20 min pre-

incubation) and remained constant up to at least 2 h. Similar to MH22, the activity of 

s-variegin started to decrease slightly after 18 h (IC50 = 27.8 ± 5.6 nM) and 

significantly after 28 h (IC50 = 504.2 ± 27.0 nM). Thus, cleavage of s-variegin caused 

an initial drop in activity. However, the cleavage product MH22 non-competitively 

inhibited thrombin, explaining the prolonged inhibitory effect of s-variegin. The 

convergence of IC50 values of the two peptides from 20 min onwards supported this 

assumption. For EP25, which is a slow binding inhibitor, the IC50 decreased from 

173.1 ± 25.9 nM (without pre-incubation) to 13.12 ± 0.67 nM (after 20 min pre-

incubation). Subsequently, a similar trend was observed where the IC50 remained 

constant up to 2 h and increased to 26.8 ± 4.1 nM and 437.9 ± 4.9 nM, respectively, 

after 18 h and 28 h. Lastly, for hirulog-1, the effect of cleavage was evident after just 
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TABLE 3.2 

Effect of pre-incubation times on peptides activities 
MH22, s-variegin, EP25 and hirulog-1 were pre-incubated with thrombin for different lengths of time before respective residual thrombin amidolytic activities were 
determined. Dose-response curves for each peptide at various pre-incubation times were constructed for calculations of IC50 (n = 3). 

ND: not determined 

IC50 (nM) (mean ± S.D.) Pre-incubation 
time (min) 

MH22 s-variegin EP25 hirulog-1 

0 11.46 ± 0.71 8.25 ± 0.45 173.1 ± 26.0 72.6 ± 3.9 

10 13.36 ± 0.76 9.62 ± 0.30 14.1 ± 1.1 101.6 ± 13.0 

20 12.4 ± 1.9 10.37 ± 0.30 13.12 ± 0.67 ND 

30 14.94 ± 0.77 11.5 ± 1.3 13.6 ± 1.3 ND 

45 ND ND ND 133.9 ± 16.0 

120 (2 h) 13.53 ± 0.65 13.2 ± 1.3 12.4 ± 1.8 258.8 ± 26.0 

1080 (18 h) 28.4 ± 1.8 27.8 ± 5.6 26.8 ± 4.1 ND 

1680 (28 h) 479.7 ± 16.0 504.2 ± 28.0 437.9 ± 4.9 ND 
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FIGURE 3.8 

Effect of pre-incubation times on peptides activities 
MH22 ( ), s-variegin ( ), EP25 ( ) and hirulog-1 ( ) were pre-incubated with thrombin (1.65 nM) 
for different lengths of time in 1 mg/ml BSA before respective residual thrombin amidolytic activities 
were determined. Dose-response curves for each peptide at various pre-incubation times were 
constructed for calculations of IC50. (n = 3, error bars represent S.D.) 

Cleavage product of s-variegin and EP25 (which is represented by MH22) inhibited thrombin non-
competitively, causing a prolonged potent inhibitory effect of these peptides up to 18 h, before a 
sudden drop in activity at 28 h. In contrast, IC50 of hirulog-1 increase linearly with pre-incubation times, 
indicates that cleavage directly causes a loss of function.  

Concentrations of MH22, s-variegin and EP25 are 0.03 nM, 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 
nM, 100 nM, 300 nM and 1000 nM. Pre-incubation times used are 0 min, 10 min, 20 min, 30 min, 120 
min (2 h), 1080 min (18 h) and 1680 min (28 h). 

Concentrations of hirulog-1 are 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 
nM and 3000 nM. Pre-incubation times used are 0 min, 10 min, 45 min and 120 min (2 h). 
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10 min, where the IC50 dropped from 72.6 ± 3.9 nM to 101.6 ± 13.0 nM. The IC50 

values gradually increased with pre-incubation times. By 2 h, the IC50 of hirulog-1 

was 258.8 ± 26.0 nM. Therefore, as opposed to s-variegin, the cleavage product of 

hirulog-1 probably fails to inhibit thrombin, leading to the rapid loss of activity.  

 

3.3.6. Loss of MH22 activity on prolonged pre-incubation 

The prolonged inhibitory effects of variegin peptides after cleavage are due to 

thrombin inhibition by their cleavage product (MH22). Although MH22 inhibited 

thrombin potently upon mixing, its activity decreased sharply after 28 h pre-

incubation (Figure 3.8). Possible explanations for this observation includes: (1) 

further cleavage by thrombin; (2) α-thrombin was degraded into its beta or gamma 

forms (due to autolysis) with the loss of exosite-I, thus the target site of MH22 is not 

available; or (3) non-specific adsorption of MH22 to the reaction wells, reducing the 

amount of peptides available to inhibit thrombin.  

 

MH22 sequence contains a Lys at position 3 (residue 13 in full-length 

variegin), which could act as the P1 residue to facilitate a second cleavage. To test 

this possibility, MH22 was incubated with thrombin up to 28 h at room temperature 

(25 °C) and the mixture was analyzed for the cleavage products by RP-HPLC. 

Interestingly, no cleavage in MH22 was observed even after 28 h. On the other hand, 

~ 30% of hirulog-1 was cleaved by 2 h and by 18 h, cleavage was complete (Figure 

3.9). Therefore, the loss of MH22 activity after 28 h pre-incubation is not due to 

further cleavage of the peptide. 
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FIGURE 3.9 

Cleavage analysis of MH22 and hirulog-1 by thrombin at 25 °C  
(A) MH22 (final concentration: 150 µM) was incubated with thrombin (final concentration: 1.5 µM) 
for various times [0 min, 120 min, 1080 min (18 h), 1680 min (28 h)] at room temperature (n = 3, error 
bars represent S.D.). Cleavage of the peptides by thrombin was analyzed with RP-HPLC. Figure 
showed typical chromatograms of HPLC analysis of MH22 cleavage by thrombin. At incubation time = 
0 min, the main peak corresponds to intact MH22. No new peak was observed even after 28 h 
incubation, indicates MH22 did not undergo a second cleavage by thrombin. Therefore, the significant 
loss of MH22 activity after 28 h is not due to cleavage of the peptide by thrombin. 

(B) Same experiment was conducted with hirulog-1 replacing MH22. As incubation time increased, 
new peaks with 1780 Da (PGGGGNGDFEEIPEEYL) and 418 Da (DFPR) appeared. Cleavage of 
hirulog-1 by thrombin between Arg3-Pro4 causes loss of its thrombin inhibitory activity (Figure 3.8).  

Hirulog-1 MH22 

0 min 

120 min (2 h) 

1080 min (18 h) 

1680 min (28 h) 1680 min (28 h) 

1080 min (18 h) 

120 min (2 h) 

0 min 
Mass = 2582 Da Mass = 2180 Da 

Mass = 1780 Da 

Mass = 418 Da 

A B 
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Human α-thrombin is known to be susceptible to proteolysis. Trypsin cleaves 

thrombin at Arg77A-Asn78 bond to produce βT-thrombin, while thrombin autolysis 

occurs at an additional Arg67-Ile68 scissile bond resulting in excision of the Ile68 to 

Arg77A peptide, producing β-thrombin (Boissel et al., 1984; Braun et al., 1988b). 

Alternatively, cleavage at Arg75-Tyr76 and Arg77A-Asn78 for β-thrombin was also 

reported (Chang, 1986). When proteolysis occurs only at the Lys149E-Gly150 bond, 

β′-thrombin is formed (Chang, 1986). A combination of cleavages for β- and β′-

thrombin produces γ-thrombin (Rydel et al., 1994). Crucially, these cleavages disrupt 

the exosite-I of α-thrombin. As a result, clotting activities of β- and γ-thrombin was 

significantly reduced. Affinities for fibrin, thrombomodulin and hirudin (all target 

exosite-I) were lost, but amidolytic activities towards small synthetic substrates (e.g. 

S2238) were not affected (Bode et al., 1992). MH22 contains the exosite-I binding 

sequence (AP18) characterized in Chapter 2. When thrombin is autolyzed into β 

and/or γ forms, thrombin exosite-I is lost which might then cause MH22 to lose its 

inhibitory activity. Therefore, the assays were slightly modified to probe the integrity 

of the thrombin exosite-I under our experimental conditions. After 28 h pre-

incubation (when the IC50 of s-variegin and MH22 increased significantly), fixed 

concentrations of respective peptides (at their IC50 without pre-incubation) were 

added fresh into the reaction mixture before the addition of substrate S2238 (Figure 

3.10). It was hypothesized that, if the thrombin exosite-I was disrupted (due to 

autolysis) after 28 h, freshly added peptides should not inhibit thrombin. On the 

contrary, if the thrombin exosite-I is intact, freshly added inhibitors should bring 

about inhibition at least to the same level without pre-incubation (assuming peptides 

originally present in reaction mixture were all inactive). As shown Figure 3.10, the 

freshly added peptides were able to inhibit the thrombin amidolytic activity. However, 
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FIGURE 3.10 

Determination of α-thrombin stability after 28 h pre-incubation 
A modified assay of thrombin amidolytic activity was used to probe for α-thrombin stability after 28 h 
of pre-incubation. Without pre-incubation, s-variegin inhibited thrombin by ~ 50% at 8.25 nM (red bar), 
but after 28 h pre-incubation, thrombin inhibitory activity was lost (green bar, not visible). Addition of 
8.25 nM of fresh s-variegin after 28 h pre-incubation restored the inhibition partially to 27.70 ± 0.62% 
(cyan bar) (N = 3, error bars represent S.D.). 

Similarly, without pre-incubation, MH22 inhibited thrombin by ~ 50% at 11.5 nM (magenta bar), but 
after 28 h pre-incubation, thrombin inhibitory activity was lost (green bar). Addition of 11.5 nM of 
fresh MH22 after 28 h pre-incubation also restored the inhibition partially to 34.9 ± 1.2% (blue bar) (N 
= 3, error bars represent S.D.).  

Overall results suggested that a small degree of activity loss after prolonged incubation can be 
attributed to thrombin autolysis  
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the percentages of inhibition were lower than the expected levels. For example, after 

8.25 nM of s-variegin were pre-incubated with thrombin for 28 h, no inhibition was 

observed. Although ~ 50% inhibition was expected if stability of thrombin was not 

affected by the prolonged incubation, freshly added 8.25 nM s-variegin inhibited 

thrombin by ~ 28%. Similarly, 11.5 nM of MH22 inhibited thrombin by ~ 50% 

without pre-incubation, but after 28 h pre-incubation, no inhibition was observed. The 

freshly added 11.5 nM MH22 inhibited thrombin by ~ 35%, instead of the expected ~ 

50%. Thus, there appeared to be a small degree of autolysis occurring with the 

prolonged pre-incubation. However, since the freshly added peptides were able to 

partially restore the inhibition, the significant loss of s-variegin and MH22 activities 

after 28 h cannot be solely attributed to the autolysis of thrombin. 

  

To investigate whether non-specific adsorption of peptides to reaction wells 

was causing the drops in activities, MH22, s-variegin, EP25 and hirulog-1 were pre-

incubated with thrombin for 28 h in a buffer containing various concentrations of 

BSA (1, 5 and 10 mg/ml). In the case of MH22, s-variegin and EP25, increase in BSA 

concentrations restored peptides activities almost completely. For MH22, the IC50 

after 28 h in the presence of 1 mg/ml, 5 mg/ml and 10 mg/ml of BSA are 479.7 ± 16.0 

nM, 60.9 ± 3.1 nM and 62.9 ± 10.9 nM, respectively. The IC50 s-variegin are 504.2 ± 

27.0 nM, 53.4 ± 12.0 nM and 38.99 ± 0.43 nM, in the same order. Similarly, The IC50 

of EP25 are 437.9 ± 4.9 nM, 39.1 ± 9.4 nM and 38.4 ± 5.4 nM (Figure 3.11). These 

similar IC50 values obtained in 5 mg/ml and 10 mg/ml BSA indicates that restoration 

of the activities was saturated, although incomplete. Therefore, both the non-specific 

surface adsorptions of peptides and partial loss of thrombin stability (due to autolysis) 
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account for the loss of inhibitory activities of variegin (and variants) after the 

prolonged pre-incubation.  

 

The loss of hirulog-1 activity after 2 h of pre-incubation could not be reversed 

by increasing concentrations of BSA. The IC50 values remained the same (258.8 ± 26 

nM, 279.7 ± 4.7 nM, 281.8 ± 6.2 nM for 1 mg/ml, 5 mg/ml and 10 mg/ml of BSA, 

respectively) (Figure 3.12). Interestingly, between 1 nM to 100 nM, hirulog-1 

activated thrombin. The C-terminal segment of hirudin was reported to bind to the 

exosite-I and enhances thrombin amidolytic activity (Naski et al., 1990). Similar 

activation was also observed with AP18 [see Chapter 2]. It is likely that the hirulog-1 

C-terminus (structurally similar to the hirudin C-terminal segment) remains bound to 

thrombin after cleavage but, due to its inability to bind to the active site, loses the 

inhibitory function. Thus, at high concentrations of hirulog-1 (≥ 300 nM in Figure 

3.12), the uncleaved hirulog-1 is present in excess, resulting in thrombin inhibition. 

However, between 1 nM and 100 nM, the amount of uncleaved hirulog-1 is too low to 

produce observable inhibition. Instead, the effect of cleavage product (which is 

thrombin activation) predominates and results in the negative values for inhibition.  
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FIGURE 3.11 

Non-specific surface adsorption of peptides 
Peptides were pre-incubated with thrombin (1.65 nM) for 28 h in 1 mg/ml ( ), 5 mg/ml ( ) and 10 
mg/ml ( ) of BSA before respective residual thrombin amidolytic activities were determined (S2238 = 
100 μM). Increasing BSA concentrations almost completely restored peptide activities, indicated by 
left shift of dose-response curves (green arrows). Concentrations of MH22, s-variegin and EP25 were 
0.03 nM, 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM and 1000 nM. (n = 3, error 
bars represent S.D.) 

(A) MH22 IC50 are 479.7 ± 16.0 nM ( ), 60.9 ± 3.1 nM ( ) and 62.9 ± 10.9 nM ( ). 

(B) S-variegin IC50 are 504.2 ± 27.0 nM ( ), 53.4 ± 12.0 nM ( ) and 38.99 ± 0.43 nM ( ). 

(C) EP25 IC50 are 437.9 ± 4.9 nM ( ), 39.1 ± 9.4 nM ( ) and 38.4 ± 5.4 nM ( ). 

A 

B 

C 
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FIGURE 3.12 

Non-specific surface adsorption of peptides 
Hirulog-1 was pre-incubated with thrombin (1.65 nM) for 28 h in 1 mg/ml ( ), 5 mg/ml ( ) and 10 
mg/ml ( ) of BSA before respective residual thrombin amidolytic activities were determined (S2238 = 
100 μM). Concentrations of hirulog-1 are 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 
nM, 1000 nM and 3000 nM. Hirulog-1 IC50 are 258.8 ± 26 nM ( ), 279.7 ± 4.7 nM ( ) and 281.8 ± 
6.2 nM ( ). Increasing BSA concentrations did not restore activity of hirulog-1. Between 1 nM to 100 
nM thrombin activity was enhanced instead of inhibited. At high concentrations (≥ 300 nM), uncleaved 
hirulog-1 produced inhibitions. However, between 1 nM to 100 nM, where amount of uncleaved 
hirulog-1 is too low to produce observable inhibition, effect of cleavage product predominates and 
presented as negative values for inhibition (red arrow) (n = 3, error bars represent S.D.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 3.13 

s-Variegin and MH22 thrombin active site inhibition 
C-terminal sequences of s-variegin and hirulog-1 are almost identical (not shown), hence s-variegin 
most likely derived its stronger (~ 9-fold) affinity from active site binding residues. Compared to 
hirulog-1, P1 and P3 residues of s-variegin are sub-optimal for thrombin binding. Arg at P1 and D-Phe 
at P3 are favorable for thrombin active site binding. The tetrapeptide sequence MHKT is uncommon 
among thrombin natural substrates/inhibitors.  

During amidolysis pNa moiety of S2238 occupies S1’ subsite of thrombin, thus should theoretically 
interferes with MH22 (especially Met) binding to the same site (boxed in red). However, MH22 acts as 
a classical non-competitive inhibitor – binding to both free thrombin and thrombin-substrate complex 
with the same affinity – indicates that pNa and Met binding site are not overlapping.  

Cleavage 
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3.4. DISCUSSION 

 

Based on our data with s-variegin and its truncation variants, we hypothesize 

that s-variegin binds to the thrombin active site in a canonical manner (‘Section 2.4. 

Discussion’ in Chapter 2). However, the conformation of s-variegin is in an extended 

form unlike the commonly found loop structure of canonical inhibitors (Bode and 

Huber, 1992; Krowarsch et al., 2003). Results presented in this chapter confirmed this 

hypothesis. Upon incubation with thrombin, s-variegin is cleaved by thrombin at the 

Lys10-Met11 scissile bond. Despite the cleavage, the variegin inhibitory activity was 

largely retained. The strong binding of the C-terminal fragment of the cleavage 

(MH22) to thrombin probably explains the prolonged effect of s-variegin and EP25. 

Interestingly, MH22 non-competitively inhibits thrombin. However, extended pre-

incubation resulted in the eventual loss of peptides activity. This observation is 

mainly due to thrombin autolysis and non-specific surface adsorption peptides to 

reaction wells instead of further cleavage by thrombin. In contrast, hirulog-1 rapidly 

loses its inhibitory function due to the cleavage. 

 

Cleavage analysis of s-variegin showed that the P1 residue is Lys10. The 

presence of P1 Lys, although possible, is rare (Page et al., 2005). Despite the less 

preferred P1 residue, variegin inhibition of thrombin is strong and specific, 

presumably compensated by other interactions. Sequence comparison between s-

variegin and hirulog-1 provided some clues to this problem. Under our experimental 

conditions, compared to hirulog-1, s-variegin binds to thrombin about 9-fold stronger. 

The difference is unlikely to stem from their interactions with the thrombin exosite-I, 

since the C-terminal sequences of both peptides are almost identical. s-Variegin active 
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site binding sequence resides in its middle segment (EPKMHKT), which is also the 

site where it is most different from hirulog-1. Compared to the corresponding segment 

in hirulog-1 (DFPRPGGG), s-variegin P1 (Lys) and P3 (Glu) residues are both 

theoretically sub-optimal for thrombin. A number of different P3 residues can be 

found in natural substrates, but for those that do not require a cofactor for thrombin 

binding, Gly or Ser (small/small and hydrophilic) usually occupies this position 

(Huntington, 2005). Moreover, presence of acidic residue in P3 position is known to 

impair thrombin proteolysis (Le Bonniec and Esmon, 1991). In synthetic substrates, a 

large, hydrophobic D-amino acid is preferred (Vindigni et al., 1997). Thus, the overall 

stronger binding of s-variegin is most likely derived from its P′ residues, especially 

the MHKT tetrapeptide sequence (Figure 3.13).   

 

The importance of MHKT sequence was further demonstrated by the ability of 

variegin cleavage product (MH22) to potently inhibit thrombin. MH22 inhibited the 

thrombin active site function. In contrast, AP18, without the four residues (MHKT), 

does not (Chapter 2). Thus, the MHKT sequence is mainly responsible for the active 

site inhibitory activity of MH22, targeting the S1′ to S4′ subsites on thrombin. This 

sequence is uncommon among thrombin natural substrates or inhibitors. Generally it 

was observed that the S1′ subsite of thrombin is limited in size, therefore prefer small 

and hydrophilic P1′ residues such as Gly and Ser (Bode et al., 1992; Page et al., 2005). 

However, in variegin, a bulky, hydrophobic residue (Met) is present. The P2′ site of 

natural thrombin substrates is occupied by Pro, aromatic (Phe/Tyr) or bulky 

hydrophobic (Val/Ile) residue (Huntington, 2005). Variegin is again different from the 

norm in that a His is present at the P2′ site. The Arg at P3′ was reported to interact 

with Glu39 and Glu192 of thrombin (Bode et al., 1992). In variegin, a Lys is present 

128



and could make similar contacts. More importantly, the P4′ of variegin is a glyco-Thr. 

s-Variegin, which is not glycosylated, recorded 14-fold weaker affinity for thrombin, 

suggesting strong interaction between the hexose moiety with thrombin.  

 

MH22 non-competitively inhibited thrombin. Typically, a non-competitive 

inhibitor binds at a site distal from the active site and allosterically inhibits its 

function. However, the MHKT tetrapeptide are residues immediately after the scissile 

bond. Intuitively, binding of this segment to thrombin is likely to be within the active 

site. Substrate used in the experiments, S2238, has a chemical structure of D-Phe-

Pipecolyl-Arg-pNA, with its Arg side chain inserted into the thrombin S1 subsite and 

cleavage occurs between the Arg-pNA bond. With the pNA moiety also occupying 

the S1′ in the immediate proximity of scissile bond during amidolysis, its presence 

should theoretically interferes with the binding of MH22 to the same site – and the 

reverse (MH22 obstructing S2238 binding) should also be true (Figure 3.13). In such 

a case, α should be > 1 [equation (5)] and the plot of Ki′ against substrate 

concentrations should increase in a hyperbolic manner with increasing concentrations 

of substrate (Copeland, 2000). This type of non-competitive inhibition is usually 

termed ‘mixed inhibition’. However, under our experimental conditions, the apparent 

inhibitory constant, Ki′, remained strictly constant with changes in substrate 

concentrations. Thus, MH22 act as a classical non-competitive inhibitor, binding to 

both free thrombin and thrombin-substrate complex with the same affinity (Figure 

3.14). On the same note, the assumption that pNA interferes with MH22 binding does 

not hold. Therefore, the binding sites of MH22 and pNA on thrombin are not 

overlapping, indicate that the residue immediately after the scissile bond (Met11) may 

not bind to thrombin or binds at a different site (Figure 3.13).  
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FIGURE 3.14 

Equilibrium scheme for variegin inhibition of thrombin 
In the absence of variegin, S2238 binds to thrombin (Ks is the equilibrium constant for thrombin-S2238 
dissociation, blue arrows) and hydrolyzed by thrombin to release colored product pNA (kp is the 
forward rate constant for pNA formation, green arrow). 

In the presence of variegin, thrombin binds to variegin (Ki-v is the inhibitory constant of variegin, 
brown arrows) thus S2238 hydrolysis is inhibited competitively. Upon binding, thrombin cleaves 
variegin into MH22 (kc is the forward rate constant for cleavage, violet arrow). 

MH22 remained bound to thrombin, acting as a classical non-competitive inhibitor of thrombin (Ki-m is 
the inhibitory constant of MH22). MH22 binds to free thrombin or S2238 bound thrombin with the 
same affinity, α = 1, thus Ki-m = αKi-m (red arrows). Similarly, Ks = αKs, binding of S2238 to thrombin 
is unaffected by MH22.  
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In the absence of its N-terminal globular core, a long fragment of hirudin C-

terminal (T45PKPQSHNDGDFEEIPEEYLQ65) was reported to either inhibit the 

thrombin amidolytic activity with hyperbolic uncompetitive (α = 0.49) (Schmitz et al., 

1991) or hyperbolic competitive mechanisms (α = 4) (DiMaio et al., 1990) or non-

inhibitory at all (Krstenansky and Mao, 1987). In first two cases, the inhibitory 

activities are weak, with the Ki of 410 nM (Schmitz et al., 1991) and 110 nM (DiMaio 

et al., 1990), respectively. In addition, a thrombin inhibitor isolated from the camel 

tick Hyalomma dromedarii, NTI-1, was also reported to be a non-competitive 

inhibitor of the thrombin active site function. However, its affinity for thrombin is 

also weak (Ki = 11.7 μM). The molecule also inhibits FXa (5-fold less potent 

compared to thrombin inhibition) (Ibrahim et al., 2001a). Therefore, to our knowledge, 

the characterization of MH22 is the first account of a potent and specific classical 

non-competitive inhibitor of the thrombin active site. Therefore, detailed structure-

function relationships studies on MH22 should help in the development of a new 

group of thrombin inhibitors. 

 

The subsequent loss of peptide activity after more than 28 h of pre-incubation 

with thrombin was somewhat surprising. Our results show that the autolysis of 

thrombin partially accounts for this observation. Earlier studies have shown that 50% 

cleavage time at 25 °C for Lys149E-Gly150 peptide bond and disruption of thrombin 

exosite-I was 32 h (Chang, 1986). After 28 h of incubations, the freshly added 

peptides inhibited thrombin, albeit to a lesser extent. The observed lower levels of 

inhibitions are probably due to the autolysis and loss of binding site (exosite-I) for 

variegin (and variants). Further, the ability of BSA to restore most of the peptide 

activity suggested the possibility of non-specific adsorption of peptides to the reaction 
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wells. Judging from the late elutions of variegin peptides on C18 RP-HPLC columns, 

these peptides are rather hydrophobic. Thus, adsorption to polystyrene microtiter 

plates used in experiments is very likely the explaination (Hermanson, 2008). The 

combined effects of the autolysis of thrombin and nonspecific adsorption of peptides 

to the reaction wells explain the observed loss of inhibitory activity of variegin 

peptides. However, these effects are pertinent only to in vitro settings (long incubation 

time, plastic environment etc.) and are irrelevant in vivo. 

  

In contrast to s-variegin, the cleavage of hirulog-1 caused an immediate loss of 

activity. This indicates that hirulog-1 cleavage product is unable to inhibit thrombin, 

unlike s-variegin products. In fact, a peptide similar to the C-terminal cleavage 

fragment of hirulog-1 (GGGGGNGDFEEIPEEYL; the first residue in the cleavage 

fragment of hirulog-1 would be Pro instead of Gly) was unable to inhibit thrombin 

(Maraganore et al., 1990). It is conceivable that this fragment continues to be bound 

to thrombin after the cleavage, since the last 12 residues (NGDFEEIPEEYL) binds to 

the thrombin exosite-I. However, the glycyl linker lacks specific interactions with 

thrombin (Maraganore et al., 1990; Skrzypczak-Jankun et al., 1991). This peptide, 

with a sulfated tyrosine (named hirugen), binds to thrombin with the Ki values of 540 

to 640 nM (Naski et al., 1990). When desulfated, the affinity typically drops around 

10-fold (Maraganore et al., 1989). As hirulog-1 is non-sulfated, the binding of its C-

terminal cleavage fragment to thrombin would be at least two orders of magnitude 

weaker than variegin cleavage product MH22 (Ki = 14.11 ± 0.29 nM). In addition to 

the weaker binding, the effects of the cleavage products on thrombin are also different. 

The variegin cleavage product (MH22) continues to potently inhibit thrombin but the 

hirulog-1 cleavage product paradoxically activated the thrombin active site function. 
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It is interesting to think that while development of hirulogs represents 

successful rational drug design, variegin demonstrates the ability of nature to produce 

similar ‘designs’ through evolution. Nonetheless, there are also significant differences 

between them. First, variegin contains only natural amino acids (Koh et al., 2007), 

while hirulog-1 has a D-Phe (Witting et al., 1992). Second, even the synthetic form of 

variegin (s-variegin), that are without Thr-glycosylation, is a stronger inhibitor of 

thrombin. For example, the s-variegin Ki (assayed with human plasma derived 

thrombin) is 0.318 ± 0.020 nM, while the hirulog-1 Ki is 2.94 ± 0.12 nM (similarly 

assayed with human plasma derived thrombin). The potency of variegin is probably 

derived from its unique sequence that targets an extended surface on thrombin active 

site and exosite-I, including the S1′ to S4′ subsites (by using the MHKT sequence). In 

contrast, the hirulog-1 glycyl linker does not bind to thrombin (Maraganore et al., 

1990; Skrzypczak-Jankun et al., 1991). Third, the cleavage of product of variegin 

MH22 remained tight-bound to thrombin (Ki = 14.11 ± 0.29 nM), while the binding of 

the hirulog-1 cleavage product to thrombin is about 400-fold weaker (Maraganore et 

al., 1989; Naski et al., 1990). Last, the variegin cleavage product, MH22, potently and 

non-competitively inhibits thrombin but the hirulog-1 cleavage product paradoxically 

activates the function of thrombin active site. Thus, variegin appeared to retain the 

advantages of hirulog-1 (small size, proteolytic cleavage and hence lower dependency 

on renal function to eliminate the drug), but with improved potency (lower Ki), 

probably longer inhibitory effects (cleavage product inhibits thrombin) and better 

safety profile (no risk of paradoxical activation of thrombin). It is obvious that the 

differences between the molecule and hirulog-1 are vast and significant which makes 

it a far more superior candidate for the development of novel anticoagulants. 

133



3.5 SUMMARY 

 

Variegin was shown to bind to thrombin in a substrate-like mechanism. Upon 

binding, it is cleaved by thrombin between Lys10 and Met11. The variegin C-terminal 

fragment after cleavage (MH22) remained tightly bound to thrombin and inhibited the 

enzyme non-competitively with a Ki of 14.11 ± 0.29 nM. The loss of peptide activity 

after prolonged incubation is not due to a second cleavage by thrombin but due to a 

combination of the autolysis of thrombin and non-specific adsorption of peptides on 

the reaction surfaces. In contrast, the cleavage of hirulog-1 by thrombin causes rapid 

loss of inhibitory action and paradoxically activates the function of thrombin active 

site. 
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Chapter Four 

 
 
 
 
 
 
 

 
 
 

The structure of thrombin-s-variegin 
complex and the design of new 

variegin variants 

135



 

4.1. INTRODUCTION 

 

Variegin is a novel, fast and tight-binding competitive inhibitor of thrombin. 

The peptide is short (32 residues) with a novel sequence. Structurally, it is dissimilar 

to any other groups of naturally occurring thrombin inhibitors, thus belongs to a class 

of its own (Koh et al., 2007). Based on biochemical data obtained with variegin 

truncation variants, the thrombin active site binding moiety of variegin is in the region 

of residues 8 to 14, and the exosite-I binding moiety is within residues 15 to 32. The 

seven N-terminal residues govern the binding kinetics; when removed, the binding 

characteristics of variegin changed from fast to slow (Chapter 2). Binding in a 

substrate-like mechanism, variegin is cleaved by thrombin at the Lys10-Met11 

scissile bond. The C-terminal cleavage fragment of variegin (MH22) remained 

strongly bound to thrombin, non-competitively inhibiting the enzyme (Chapter 3).  

 

To further understand the molecular details of the thrombin-s-variegin 

interactions, we solved the 3D structure of this complex by X-ray crystallography. 

Since the first thrombin crystal structure was solved in 1989 (Bode et al., 1989), X-

ray crystallography has been a useful tool for studies of the molecular interactions 

involving thrombin. The relatively large size of the thrombin-variegin complex (~ 40 

kDa) and a reasonable number of successful examples of the thrombin complexes 

(Bode et al., 1989; Skrzypczak-Jankun et al., 1991; Bode et al., 1992; Qiu et al., 1992) 

justified the selection of X-ray crystallography as the experimental approach. In order 

to minimize the amount of sample (especially thrombin) used, the previously reported 

crystallization conditions for similar thrombin-inhibitors complexes (Skrzypczak-

Jankun et al., 1991), instead of using new crystallization screens, were attempted. 
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After some initial efforts on the optimizations of crystallization and crystal-freezing 

conditions, the complex structure was solved at 2.4 Å resolution. Based on the 

structure obtained, 13 new variants of variegin were designed and characterized to 

further our understanding of the interactions.  

 

Thrombin is a multi-functional molecule. Human α-thrombin is a two-chain 

(chains A and B) protein. The A-chain is much shorter (36 residues) than the B-chain 

(259 residues) and the two chains are linked by a disulfide bridge. The B-chain, in 

particular, carries the catalytic domain, which is mainly responsible for the functions 

of thrombin (Di Cera, 2003). The active site contains the classical catalytic triad – 

His57, Asp102 and Ser195. Compared to other blood coagulation serine proteinases, 

thrombin has a prominent active site cleft which is deep and narrow. This structure is 

frequently described as a canyon-like cleft. Two insertion loops (60- and autolysis 

loops) forming the wall of the cleft. The active site of thrombin has an acidic S1 

subsite, hence it preferably cleaves substrates with a basic side chain at the P1 

position of the scissile bond (Bode et al., 1992; Huntington, 2005). The narrow active 

site cleft restricts the shape and size of substrates that can be inserted. Of the two 

insertion loops, the 60-loop (Leu59 – Asn62) is rigid and hydrophobic while the 

autolysis loop (Leu144 – Gly150) is flexible and hydrophilic. The 60-loop covers the 

‘top’ of the active site and interacts with the hydrophobic residues of the substrate N-

terminal to the scissile bond. Conversely, the autolysis loop, which is situated at the 

‘bottom’ of active site cleft, governing interactions with the residues C-terminal to the 

scissile bond (Huntington, 2005). The surfaces of thrombin active site that interact 

with the substrate residues N-terminal to the scissile bond are described as ‘non-prime 

subsites’ (S subsites) in this thesis. Similarly, the surfaces of active site in contact 
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with the substrate residues C-terminal to the scissile bond are typically described as 

‘prime subsites’ (S′ subsites) (Page et al., 2005).  

 

Exosite-I is a surface near the prime subsites of thrombin. The bottom of the 

exosite-I is a deep, canyon-like cleft extending from the prime subsites. The cleft is 

apolar in nature. The walls of the cleft are formed by two surface loops Phe34 – 

Leu39 (described as 34-loop in this thesis) and Lys70 – Glu80 (described as 70-loop 

in this thesis) (Rydel et al., 1991). In contrast to the apolar nature of the canyon-like 

cleft, the surface of exosite-I is dominated by several positively-charged residues 

(Skrzypczak-Jankun et al., 1991). The exosite-I interacts with substrates fibrinogen, 

FV, FVIII, FXI, ADAMTS13 and PAR-1; with cofactors fibrin and thrombomodulin; 

and with inhibitor heparin cofactor II (Huntington, 2005). Exosite-II is an even more 

basic surface near the ‘non-prime subsites’ of the active site, interacting with 

substrates FV and FVIII; and with cofactors GpIbα, heparin and chondroitin sulphate 

moiety on thrombomodulin (Huntington, 2005). Occupancy of either exosites can 

induce allosteric changes to the active site to enhance catalysis. The Na+ binding loop 

(Cys220 – Trp225) also provides allosteric control to thrombin function. The Na+ 

binding (denoted as ‘fast’ form) favors the procoagulant functions of thrombin, such 

as increased binding to fibrinogen and PAR-1 whereas Na+-free thrombin (denoted as 

the ‘slow’ form) favors the anticoagulant functions such as increased protein C 

activation (Di Cera, 2003; Huntington, 2008). In order to perform precisely its diverse 

yet sometimes opposing functions, thrombin utilizes these important exosites to 

ensure its specificity in the recognition and interaction with different 

substrates/cofactors/inhibitors. By making use of competition for exosites as well as 

the differences in the local distribution of various substrates and cofactors in the 
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microenvironment, thrombin is able to function as the central control mechanism to 

the blood coagulation system (Lane et al., 2005).  

 

This chapter presents first the structure of thrombin-s-variegin complex and 

then the design and characterization of more variegin variants. Structural observations 

well complemented activity studies of all variants and instilled great confidence in 

both sets of data. Important information for both thrombin substrate preference and 

inhibitor design was elucidated which provided a strong foundation for continuous 

development of variegin as an anticoagulant.  
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4.2 MATERIALS AND METHODS 

 

4.2.1. Materials 

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), HEPES 

sodium salt and polyethylene glycol (PEG) 8000 were from Sigma Aldrich (St. Louis, 

Missouri, USA). Crystallization trays and grease were purchased from Hampton 

Research (Aliso Viejo, California, USA). All other materials used were as described 

in Chapter 2. For details please refer to ‘Section 2.2.1. Materials’.  

 

4.2.2. Synthesis, purification and mass spectrometry of peptides 

Synthesis, purification and mass spectrometry analysis of s-variegin, EP25, 

MH22 and hirulog-1 followed the procedures described in Chapter 2. For details 

please refer to ‘Section 2.2.3.1. Peptide synthesis’. Of special notes are peptides 

containing sulfotyrosine (DV24Ysulf, DV24K10RYsulf and MH18Ysulf), of which the 

sulfate groups are acid labile. The cleavage of these peptides was carried out with 

90% aqueous TFA on ice for 5 h as previously described (Kitagawa et al., 2001). 

Purification of the peptides containing sulfotyrosine (DV24Ysulf, DV24K10RYsulf and 

MH18Ysulf) and phosphotyrosine (DV24Yphos and DV24K10RYphos) were performed 

with solvent containing 0.1% FA as ion pairing agent instead of TFA. The sulfate 

moiety on Tyr27 is unstable during ionization in mass spectrometry analysis, thus the 

non-sulfated masses were observed. Identification of sulfated peptides was on the 

basis of: (1) non-sulfated masses of the peptides; (2) as opposed to tyrosine residue 

that absorbs UV at 280 nm, sulfotyrosine residue does not; and (3) sulfated and non-

sulfated peptides do not co-elute in RP-HPLC. 
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4.2.3. Thrombin 

Two different sources of thrombin – recombinant α-thrombin (based on 

human α-thrombin sequence) and human plasma derived thrombin, both were 

generous gifts from the Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN, 

Japan). Recombinant α-thrombin was desalted with the HiTrap™ Desalting Column 

(GE Healthcare, Uppsala, Sweden) in 20 mM ammonium bicarbonate (NH4HCO3) 

and lyophilized before using it for crystallization. Human plasma derived thrombin 

was used to assay thrombin inhibitory activities of the peptides.  

 

4.2.4. Crystallization of thrombin-s-variegin complex 

The reported crystallization conditions that were used to crystallize the 

thrombin-hirugen and thrombin-hirulog-1 complexes of human α-thrombin 

(Skrzypczak-Jankun et al., 1991) were modified and optimized. Lyophilized s-

variegin was dissolved in 50 mM HEPES buffer (pH 7.4) containing 375 mM NaCl to 

a concentration of 8.34 μM (3 mg/ml). Desalted, lyophilized recombinant α-thrombin 

was subsequently dissolved in the s-variegin solution to a final concentration of 5.56 

μM (20 mg/ml). The amount of s-variegin in this mixture was 1.5-fold in excess of 

thrombin. Crystallization of the thrombin-s-variegin complex was achieved using the 

hanging drop vapor diffusion method. Typically, 1 μl of protein solution was mixed 

with 1 μl of precipitant buffer (100 mM HEPES buffer pH 7.4, containing 20 to 25% 

(w/v) PEG 8000 and were equilibrated against 1 ml of precipitant buffer at 4 °C. 

Crystals appeared after approximately four weeks and were harvested for data 

collection two weeks later. The entire process for setting up, growing and harvesting 

of crystals were performed in 4 °C as the crystals are unstable at room temperature.  
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4.2.5. Data collection 

Prior to data collection, the crystals were briefly soaked in a cryoprotectant 

solution containing the mother liquor, supplemented with 25% (v/v) glycerol, and 

flash cooled at 100 K in nitrogen (gas) cold stream (Cryostream cooler, Oxford 

Cryosystem, Oxford, United Kingdom). Synchrotron data were measured at the 

Beamline X29 (National Synchrotron Light Source, Brookhaven, USA). Data sets 

were collected (Table 4.1) using the Quantum 4-CCD detector. The diffraction data 

were processed using the program HKL2000 (Otwinowski and Minor, 1997). The 

crystal belonged to the monoclinic space group C2 and diffracted up to 2.4 Å 

resolution with a = 124.66 Å, b = 50.83 Å, c= 61.54 Å and V = 385390.59 Å3 Da-1 

and corresponded to a solvent content of 59.09%. 

 

4.2.6. Structure solution and refinement  

  The structure of thrombin-s-variegin complex was solved by the molecular 

replacement method using the MolRep program (Vagin and Teplyakov, 2000). The 

coordinates of the thrombin-hirulog-3 structure (PDB code 1ABI) (Qiu et al., 1992) 

were used as a search model. The rotation search (in resolution shells of 25 to 4 Å) 

located one thrombin-peptide complex molecule in the asymmetric unit. The rigid 

body refinement after determining the translation components gave a correlation 

coefficient of 0.60 and R = 0.48. The resultant electron density map was of good 

quality. The Fourier and difference Fourier maps clearly showed electron density for 

s-variegin.  Several cycles of map fitting using the program O version 7.0 (Jones et al., 

1991) and refinement using the program CNS version 1.1 (Brunger et al., 1998) led to 

convergence of R-values. The crystallographic and refinement statistics are given in 

Table 4.1. The correctness of stereochemistry of the model was verified using 

PROCHECK (Laskowsi et al., 1993). Online server PISA (Krissinel and Henrick, 
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TABLE 4.1 

Crystallographic data and refinement statistics* 

 

Data set Thrombin-s-variegin complex 

Crystal  

Space Group C2 

Unit Cell Parameters a = 124.66 Å    b = 50.83 Å    c = 61.54 Å 
α = 90.0°          β = 98.7°        γ = 90.0° 

Data collection  

Resolution range (Å) 50 – 2.4 

Wavelength (Å) 0.9795 

Observed reflections 261706 

Unique reflections 15123 

Completeness (%) 98.1 

Overall (I/σI) 19.4 

Redundancy 1.9 

Rsym
a (%) 5.4 

Refinement and quality  

Resolution range (Å)  I>σ(I) 20–2.4 

Rwork
b 0.2598 

Rfree
c 0.3301 

RMSD bond lengths (Å) 0.007 

RMSD bond angles(º) 1.47 

Average B-factors (Å2)  

Protein atoms (2404 atoms) 66.709 

Water molecules (203 atoms) 68.160 

Ramachandran plot  

Most favored regions (%) 76.2 

Additional allowed regions (%) 22.5 

Generously allowed regions (%) 1.3 

Disallowed regions (%) 0 
 

* Statistics from the current model. 
a Rsym = hkl I [|Ii (hkl) - <I(hkl)>|] / hkl I(hkl)  
b Rwork = |Fobs - Fcalc| / |Fobs| where Fcalc and Fobs are the calculated and observed structure factor 
amplitudes, respectively. 
c Rfree = as for Rwork, but for 8.0% of the total reflections chosen at random and omitted from refinement. 
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2007) was used to analyze the protein-peptide interface. Swiss-Pdb Viewer was used 

for the overlaying of structures, calculations of root-mean-square deviations (RMSD) 

and drawing of figures (Guex and Peitsch, 1997). DS ViewerLite (Accelrys Software, 

San Diego, California, USA) was also used to draw figures. Superscripted prefix ‘T’ 

were added to thrombin residues and superscripted prefix ‘V’ were added to s-

variegin residues for the descriptions of the structure in this chapter. 

 

4.2.7. Thrombin inhibitory activities of peptides 

The activities of all peptides were assayed by their abilities to inhibit thrombin 

amidolytic activity on S2238. Assays were typically performed as described in 

‘Section 2.2.3.7. Inhibition of thrombin amidolytic activity’ of Chapter 2. In general, 

activities were assayed without pre-incubation and with 20 min pre-incubation with 

thrombin in the presence of 1 mg/ml BSA. All data obtained were fitted using Origin 

software to equation (2) for the calculation of IC50 values and equations (3) to (9) for 

the calculation of Ki values depending on the kinetics and mechanisms of inhibition, 

as described in ‘Section 2.2.3.8. Determination of the inhibitory constant Ki′’ of 

Chapter 2. Details of each experiment are described along with the graphs 

representing the results obtained. 
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4.3. RESULTS 

 

4.3.1. Three-dimensional structure of thrombin-variegin complex 

The structure was solved by molecular replacement method from synchrotron 

data and refined to a final R-factor of 0.259 (Rfree = 0.331) at 2.4 Å resolution (Figure 

4.1 A). The Ramachandran plot from an analysis using PROCHECK (Laskowsi et al., 

1993) shows that 76.2% of non-glycine residues are in the most favored region and no 

residues is in the disallowed region. The coordinates file of the structure is attached 

along with this thesis (see Appendix B). The structure was mainly compared to the 

thrombin-hirulog-1 (PDB: 2HGT) (Skrzypczak-Jankun et al., 1991) (Figure 4.1 B), 

thrombin-hirulog-3 (PDB: 1ABI) (Qiu et al., 1992) (Figure 4.1 C) and thrombin-

hirugen (PDB: 1HGT) (Skrzypczak-Jankun et al., 1991) (Figure 4.1 D) structures. 

Among all thrombin inhibitors, variegin is structurally and functionally closest to 

hirulog-1. Hirulog-3 is a non-hydrolyzable variant of hirulog-1, incorporating a β-

homoarginine at position 3. The β-homo-Arg3-Gly4 bond is not a peptide bond, thus 

is not cleaved by thrombin (Qiu et al., 1992). Otherwise hirulog-3 has an identical 

sequence to hirulog-1. Hirugen is a short peptide with the following sequence: N-

acetyl-NGDFEEIPEEY(SO3)L. This peptide is derived from hirudin C-terminal 

residues 53 to 64, with a sulfotyrosine residue. The same sequence, without tyrosine 

sulfation, is present in the hirulog’s C-terminus. Unlike hirulogs, hirugen only binds 

to the thrombin exosite-I. Comparisons were also made with D-Phe-Pro-Arg 

chloromethylketone (PPACK)-inhibited thrombin (PDB: 1PPB) (Bode et al., 1989) 

(Figure 4.1 E) and wild-type, inhibitor- and Na+-free thrombin (PDB: 2AFQ) 

(Johnson et al., 2005) (Figure 4.1 F) when necessary. In 1PPB (the first thrombin 

crystal structure), the thrombin active site is inhibited by PPACK but the exosites are 
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FIGURE 4.1 

Structures of thrombin-s-variegin complex compared to other thrombin 
structures 
(A) Thrombin-s-variegin complex structure. Thrombin A-chain backbone is colored as light blue 
ribbon, B-chain backbone is colored as white ribbon and s-variegin backbone and side chain atoms are 
showed as pink sticks.  

(B) thrombin-hirulog-1 complex structure (PDB: 2HGT). Hirulog-1 colored as red sticks.  

(C) thrombin-hirulog-3 complex structure (PDB: 1ABI). Hirulog-3 colored as yellow sticks. 

(D) thrombin-hirugen complex structure (PDB: 1HGT). Hirugen colored as green sticks. 

(E) thrombin-PPACK complex structure (PDB: 1PPB). PPACK colored as orange sticks. 

(F) wild-type, inhibitor- and Na+-free thrombin (PDB: 2AFQ). Structure represents ‘slow’ form 
thrombin and is without an inhibitor. 

A B 

C D 

E F 
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unoccupied. 2AFQ is the first crystal structure of inhibitor-free, wild-type human α-

thrombin. However, the structure represents the ‘slow’ form thrombin, as the crystals 

were grown in the absence of Na+ (or other univalent cation). Compared to the ‘fast’ 

form thrombin, the Na+-binding loop is significantly displaced while the active site 

cleft is constricted and formed a non-catalytic hydrogen bonding network (Johnson et 

al., 2005).  

 

4.3.2. Thrombin 

Electron density for the thrombin-variegin complex structure is well defined 

except at the termini of the A chain [T(1THFGSGE1C) on N-terminus, T(14M DGR15) on 

C-terminus] and the autolysis loop [T(148WTANVGK149E)]. The missing residues are 

all solvent-exposed and often disordered in other reported thrombin structures also 

(Skrzypczak-Jankun et al., 1991; Qiu et al., 1992; Johnson et al., 2005). The structure 

of thrombin in the variegin complex superimposes with that in the PPACK (PDB: 

1PPB), hirugen (PDB: 1HGT), hirulog-1 (PDB: 2HGT) and hirulog-3 (PDB: 1ABI) 

complexes. Excluding the disordered regions, the root-mean-square-deviation (RMSD) 

for the A-chain is less than 0.67 Å (Table 4.2) for all backbone atoms while that for 

side chain atoms is between 1.59 and 2.27 Å. The RMSD values for the B-chain 

backbone and side chain atoms are less than 0.73 and 1.33 Å, respectively. This 

indicates that there is no major conformational change in thrombin whether inhibition 

is directed at the active site or exosite-I or both. However, the comparison with the 

inhibitor-free thrombin (PDB: 2AFQ) revealed marked differences in the B-chain 

backbone and side chain atoms (1.33 Å and 2.30 Å). Since 2AFQ represents the 

‘slow’ form of thrombin, these differences most likely reflect a summation of all the 

structural changes in the ‘slow’ and inhibitor-free thrombin. 
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TABLE 4.2 

Root-mean-square deviations (RMSD) between the thrombin-s-variegin complex 
and other structures 
2HGT and 1ABI represent thrombin inhibited at both active site and exosite-I, similar to the thrombin-
s-variegin complex. 1HGT represents thrombin inhibited at exosite-I only. 1PPB represents thrombin 
inhibited at active site only. 2AFQ represents inhibitor and Na+-free thrombin. Highest differences 
were found in comparison with 2AFQ mainly due to the extensive changes in surface loops in ‘slow’ 
form thrombin. RMSD were calculated from Cα, backbone and side chain atoms for thrombin A-chain 
and B-chain as well as a C-terminal segment (DFEA(E)IPEEYL) which is common in s-variegin, 
hirulog-1, hirulog-3 and hirugen. NP: relevant atoms are not present.   

 

 2HGT 1ABI 1HGT 1PPB 2AFQ 

A-chain RMSD (Å) 

Cα 0.34 0.35 0.35 0.63 0.61 

Backbone atoms 0.56 0.60 0.67 0.59 0.75 

Side chain atoms 1.68 1.59 2.27 1.75 1.61 

B-chain RMSD (Å) 

Cα 0.59 0.55 0.52 0.70 1.35 

Backbone atoms 0.65 0.59 0.59 0.73 1.33 

Side chain atoms 1.33 1.21 1.19 1.29 2.30 

DFEA(E)IPEEYL RMSD (Å) 

Cα NP 3.62 3.87 NP NP 

Backbone atoms NP 3.40 3.63 NP NP 

Side chain atoms NP 7.00 7.06 NP NP 

DFEA(E)IPEEYL RMSD (Å) 

Cα 1.46 1.22 1.26 NP NP 

Backbone atoms 1.46 1.24 1.34 NP NP 

Side chain atoms 3.05 2.96 2.88 NP NP 

DFEA(E)IPEEYL RMSD (Å) 

Cα NP 4.98 5.33 NP NP 

Backbone atoms NP 4.64 4.96 NP NP 

Side chain atoms NP 9.01 9.11 NP NP 
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Some electron densities were observed near TAsn60G, which is glycosylated 

in native thrombin. The recombinant human α-thrombin that was used for 

crystallization was produced in mouse myeloma cells and hence the N-glycosylation 

was expected. SDS-PAGE analysis showed that the mass of recombinant α-thrombin 

is consistent with wild-type and glycosylated α-thrombin. (Yonemura et al., 2004). 

However, the density was not well-defined for complete modeling of the glycan 

moiety. Similar observations were made in other thrombin structures also, 

demonstrating the flexibility of this carbohydrate group (Bode et al., 1992; Qiu et al., 

1992).   

  

4.3.3. s-Variegin 

 Only 17 out of 32 residues (VHis12 to VLeu28) on s-variegin have well-

defined densities. The first 11 residues on the s-variegin N-terminus (VSer1 to VMet11) 

and the last four residues on the C-terminus (VAsp29 to VSer32) could not be modeled. 

As discussed previously, the first seven N-terminal residues do not make direct 

contacts with thrombin (see Chapter 2) and s-variegin is cleaved by thrombin between 

VLys10 and VMet11. It is likely that the N-terminal cleavage fragment 

[V(1SDQGDVAEPK10)] dissociates from thrombin after cleavage before 

crystallization occurs. In contrast, biochemical data showed that the C-terminal 

fragment (Met11 to Ser32, represented by peptide MH22) remains tightly bound to 

thrombin after the cleavage (see Chapter 3). This was reflected in the structure, where 

all the observed densities for s-variegin are located within this fragment. Densities for 

the N-terminal residue of the fragment (VMet11) and last four residues on the C-

terminus [V(29DDES32)] of the bound fragment are not observed, presumably 

reflecting flexibility in these terminal positions. 
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 Residues number 11 to 20 in hirulog-1 and hirulog-3 as well as residues 3 to 

12 in hirugen have the following sequence DFEEIPEEYL. An almost identical 

segment of this sequence is present in s-variegin residues 19 to 28 [V(DFEAIPEEYL), 

the only difference is underlined]. In the hirulog-1 structure, only five of the residues 

in this segment (DFEEI) were observed (Skrzypczak-Jankun et al., 1991). In the other 

two structures (hirulog-3 and hirugen), the entire segment is modeled. By aligning 

thrombin B-chain of respective structures, backbone and side chain (excluding the 

position where Glu is changed to Ala) atoms RMSD within this region were 

computed (Table 4.2). Despite having almost identical sequences, there are significant 

differences between s-variegin and the other three inhibitors, demonstrated by the 

high RMSD values (1.46 – 3.63 Å for backbone atoms, 3.05 – 7.06 Å for side chain 

atoms). The most significant difference is observed in the conformation of the last 

five residues (PEEYL). While these residues in hirulog-3 and hirugen form a 310 helix 

turn, the corresponding residues in s-variegin remained more or less in an extended 

confirmation until the last two observed residues VTyr27 and VLeu28. s-Variegin 

contains four extra residues at the C-terminus which are not observed in the structure. 

The presence of these four residues might have an influence on the conformation of 

C-terminal segment V(24PEEYL28). Interestingly, this segment appeared to exhibit 

conformational heterogeneity in other structures as well. For example, the hirulog-1 

C-terminus is disordered while in one of the recent structures of sulfated hirudin 

binding to thrombin, this segment forms a one-turn α-helix (Liu et al., 2007) (Figure 

4.2).  
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FIGURE 4.2 

Differences in C-terminal conformations between s-variegin and hirulog-1, 
hirulog-3, hirugen and sulfo-hirudin 
Despite the presence of analogous residues PEEYL, s-variegin C-terminus (pink ribbon) acquired a 
vastly different conformation compared to hirulog-1 (red ribbon), hirulog-3 (yellow ribbon), hirugen 
(green ribbon) and sulfo-hirudin (blue ribbon). C-terminus of s-variegin has four extra residues 
(D29DES32) but their densities were not observed. This segment appeared to exhibit conformational 
heterogeneity in other structures as well: 

(A) Residues PEEYL in hirulog-1 (red ribbon) are disordered and hence missing from structure.  

(B) Residues PEEYL in hirulog-3 (yellow ribbon) form a 310 helix turn. 

(C) These residues in hirugen (green ribbon), with sulfated tyrosine, also form a 310 helix turn. 

(D) Other than Tyr-sulfation, hirudin (blue ribbon) C-terminus has an extra Gln residue, forms a full α-
helical turn. 

A B

C D
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4.3.4. Thrombin-s-variegin interactions 

4.3.4.1. Interactions within catalytic pocket 

Of the 17 observed s-variegin residues, a selected few N-terminal residues are 

of special interest.  The thrombin-s-variegin structure was compared with the 

thrombin-hirugen structure (PDB: 1HGT) as they shared one common characteristic, 

both occupy the exosite-I but not the non-prime subsites of active site (since the N-

terminal cleavage fragment of s-variegin is not present). Of the three catalytic 

residues (THis57, TAsp102 and TSer195), the most striking difference was with the Oγ 

atom of TSer195. In the thrombin-s-variegin structure, the TSer195 Oγ is displaced by 

1.1 Å. As a result, the hydrogen bond with the Nε of THis57 (which should be part of 

the catalytic charge relay system) is absent in the thrombin-s-variegin structure. The 

distance between the two atoms increased to 3.77 Å (Figure 4.3 A). The 

corresponding distance in the thrombin-hirugen structure is 2.79 Å (Figure 4.3 A). 

The displacement of the TSer195 Oγ is due to interaction with s-variegin. Particularly, 

a new and extensive network of hydrogen bonds between VHis12, TSer195, TGly193 

and TCys42 as well as a water molecule perturbs the catalytic charge relay network. 

Crucially, the VHis12 backbone N (donor) is engaged with the Oγ of TSer195 

(acceptor) through hydrogen bond (2.77 Å) while the VHis12 side chain Nδ (acceptor) 

could contribute a weak hydrogen bond with the TSer195 Oγ (donor) (3.68 Å). In 

addition, the VHis12 backbone N also hydrogen bonds to the backbone N of TGly193 

and Sγ of TCys42 via a water molecule. Effectively, the electrons on the TSer195 Oγ 

get delocalized into this hydrogen bonding network, rendering it a weak nucleophile 

and incapable of attacking the backbone C of the substrate efficiently. In addition, 

involvement of the main chain N of TGly193 in this hydrogen network prevents the 
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FIGURE 4.3 

Thrombin catalytic triads in s-variegin bound and hirugen bound structures 
(A) Thrombin catalytic triad THis57, TAsp102 and TSer195 when unoccupied in thrombin-hirugen 
structure (green) has the intact charge relay hydrogen bonding system. In thrombin-s-variegin structure 
(pink), TSer195 Oγ is displaced by 1.10 Å (cyan arrow). Distance between THis57 Nε and TSer195 Oγ 
is 3.77 Å, thus hydrogen bond is not formed and the charge relay system is broken. 

(B) The displacement of TSer195 Oγ is due to interaction with interactions with s-variegin (gray). 
VHis12 backbone N (donor) engaged TSer195 Oγ (acceptor) through hydrogen bond (2.77 Å) while 
VHis12 side chain Nδ (acceptor) could contribute a weak hydrogen bond with TSer195 Oγ (donor) (3.68 
Å). The VHis12 backbone N also forms hydrogen bond with TGly193 backbone N and TCys42 Sγ via a 
water molecule (light blue). Thus, TSer195 Oγ is rendered a weak neucleophile and incapable of 
attacking backbone C of substrate. Oxyanion hole formation is also disturbed due to involvement of 
TGly193 backbone N in this hydrogen bond network.  
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2.83 Å 

2.62 Å 
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formation of the oxyanion hole, further reducing the catalytic capability of this 

complex (Figure 4.3 B).  

 

No other major structural changes are observed around the active site cleft, 

including the non-prime subsites (occupied by substrates residues N-terminal to the 

scissile bond) and Na+ binding loop. This indicates that the C-terminal cleavage 

fragment of s-variegin (MH22) is unlikely to affect binding affinities of small peptidyl 

substrates, such as S2238. This observation supports the classical non-competitive 

inhibition observed for MH22. As shown in Figure 3.14 (Chapter 3), the substrate 

(S2238) binding (Ks) to thrombin was not affected by MH22 (and reverse is also true) 

but rate of product formation (kp) of the reaction decreased due to inefficient catalysis. 

As discussed in Chapter 3 (see Figure 3.13), the condition for the observed classical 

non-competitive inhibition precludes binding of VMet11 in the same site occupied by 

pNA moiety of S2238. This assumption is supported by the absence of VMet11 

density in the structure. Thus, VMet11 might not be in direct contacts with thrombin 

and was disordered in the complex. The lack of interactions between VMet11 and 

thrombin is consistent with the thinking that thrombin S1′ prefer residues with small 

side chain such as Gly, Ala or Ser (Bode et al., 1992).  

 

4.3.4.2. Interactions within prime subsites of active site 

In addition to the extensive network of hydrogen bonds, other interactions 

between the s-variegin P2′ to P5′ residues (VHis12, VLys13, VThr14 and VAla15) with 

thrombin further anchored this moiety in the prime subsites of thrombin. Extensive 

interface contacts between the VHis12 to VAla15 of s-variegin and thrombin surface 

formed by residues in the 60-loop, autolysis loop and 34-loop was observed (Figure 
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FIGURE 4.4 

Prime subsites interactions between thrombin and s-variegin 
For s-variegin, only residues P2’ to P5’ (VHis12 to VAla15) are shown. Density for s-variegin P1’ VMet11 cannot be traced in the structure. Thrombin S2’ subsite (red) 
(formed by TCys42, THis57, TTrp60D, TLys60F, TGlu192 and TSer195) partially overlaps with the S1’ subsite observed in hirulog-3. S-variegin P3’ VLys13 side chain runs 
close and parallel with TGlu192 side chain, and its backbone is in contact with TLeu41, forming the S3’ subsite (cyan). S-variegin P4’ VThr14 side chain is directed towards 
the bottom of autolysis loop, occupying a small pocket formed by TGly142, TAsn143, TGlu192, TGly193 and TGlu151, forming the S4’ subsite (pink). Thrombin S5’ subsite 
(green) is lined by TLeu40 at the bottom, which allows s-variegin P5’ VAla15 to burry its side chain in the interface. 
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4.4). Comparing residues to residues, the P2′ of s-variegin (VHis12) is displaced by 

2.77 Å towards the active site, compared to the P2′ of hirulog-3 (Gly5) (measured by 

the displacement of Cα atoms). This discrepancy can be partially explained by the use 

of β-homo-Arg as P1 in hirulog-3, which displaced the backbone atoms of P1′ by 

about a bond length. It could also be due to the involvement of the VHis12 in the 

extensive hydrogen bonding network with the thrombin active site, which draws the 

residues closer towards the TSer195 (Figure 4.3 B). Consequently, the VHis12 side 

chain occupied part of the small S1′ subsite observed in hirulog-3. The VHis12 

backbone O is hydrogen bonded to the TLys60F Nζ (2.74 Å). The P2′ VHis12 in s-

variegin structure is surrounded by and in contact with residues TCys42, THis57, 

TTrp60D, TLys60F, TGlu192 and TSer195. Partial occupation of the S1′ by VHis12 

limits the space available to accommodate the bulky side chain of the P1′ VMet. Thus, 

it is possible for the P1′ VMet to point out into the solvent. The P3′ VLys side chain 

runs close and parallel with the TGlu192 side chain, allowing hydrophobic 

interactions between the aliphatic side chains of both residues. However, a strong 

ionic pairing between VLys13 and TGlu21 is not likely as the distance between the two 

charges is more than 5.0 Å. The backbone of VLys13 is also in contact with the 

TLeu41. The P4′ VThr side chain appeared to be directed towards the base of the 

autolysis loop, which made the analysis less certain due to the flexible nature of the 

loop. Nonetheless, the side chain occupies a small cavity lined by residues TGly142, 

TAsn143, TGlu192, TGly193 and TGlu151. Hydrogen bonds are observed between the 

VThr14 Oγ and TGlu192 backbone O (2.53 Å) and TAsn143 Oδ (3.29 Å) (Table 4.3). 

The P5′ Ala side chain was buried deep into the bottom of the canyon-like cleft lined 

by the Leu40 which provides a hydrophobic contact. 

 

156



TABLE 4.3 

Direct hydrogen bonds between s-variegin and thrombin 
Possible direct hydrogen bonds between s-variegin and thrombin are computed with a cutoff of 3.70 Å. 

 

S-variegin Thrombin 

Residues Atoms Residues Atoms 

Distance 
(Å) 

VHis12 N TSer195 Oγ 2.77 

VHis12 O TLys60F Nζ 2.74 

VHis12 Nδ TSer195 Oγ 3.68 

VThr14 O TLeu40 N 3.29 

VThr14 Oγ TAsn143 Oδ 3.29 

VThr14 Oγ TGlu192 O 2.53 

VThr14 Oγ TGlu192 Oε 3.30 

VGlu21 N TThr74 O 2.76 

VGlu21 Oε TArg75 Nε 3.02 

VGlu21 Oε TTyr76 N 3.14 

 

157



 

4.3.4.3. Interactions within exosite-I 

Thrombin-s-variegin binding in the exosite-I is mainly driven by hydrophobic 

interactions. On the whole s-variegin fits firmly into the canyon-like cleft extending 

from the thrombin active site to exosite-I (Figure 4.5 A & B). Many apolar residues in 

between these loops lined the bottom of the cleft. The walls of the cleft are formed by 

the 60- and autolysis loop near the thrombin active site as well as the 34- and 70-loops 

at around the exosite-I (Rydel et al., 1991; Bode et al., 1992; Huntington, 2005). The 

binding of s-variegin with thrombin is driven mainly by hydrophobic contacts at the 

apolar bottom and the wall of the cleft. The thrombin residues that are involved in 

binding are: (i) at the bottom of these surface loops: TMet32, TLeu40, TLeu41, TCys42, 

TLeu65, TArg67, TLys81, TIle82 and TMet84; (ii) in the 60-loop: TTrp60D and 

TLys60F; (iii) in the autolysis loop: TGly142, TAsn143 and TGln151; (iv) in the 34-

loop: TPhe34, TLys36, TPro37, TGln38 and TGlu39; (iv) in the 70-loop: TArg73, 

TThr74, TArg75, TTyr76 and TArg77A (Figure 4.5 C). Specific side chains interactions 

are important, as all but five residues on the entire s-variegin polypeptide chain 

(VPhe18, VAsp19, VAla22, VGlu26 and VTyr27) have their side chains buried in the 

interfaces with thrombin (Figure 4.5 D). Also, some of the strongest hydrophobic 

contacts observed include: (1) VPhe20 with TMet32, TPhe34 (π-π stacking) and 

TLeu40; (2) VIle23 with TPhe34, TLeu65, TTyr76 and TIle82; (3) VPro24 with TTyr76.  

 

In contrast to the apolar nature of the bottom of canyon-like cleft, the top 

surfaces of these loops, especially the 70-loop, are dominated by positively-charged 

residues. These basic residues include TArg35, TLys36, TArg73, TArg75, TLys81, 

TArg77A, TLys109, TLys110 and TLys149E, forming a positively-charged entrance 

over the apolar canyon-like cleft. Despite the presence of multiple acidic residues in s-
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FIGURE 4.5 

s-Variegin fitted firmly into the canyon-like cleft  
(A) Thrombin has a deep canyon-like cleft (boxed) starting from active site extending to exosite-I  

(B) On the whole s-variegin (pink CPK model) fitted firmly at the bottom of the canyon-like cleft in 
extended conformation, covering catalytic pocket, prime subsites and exosite-I. The bottom of the cleft 
composed of mainly apolar residues. The walls of the cleft are formed by the 60- and autolysis loop 
near thrombin active site, along with 34- and 70-loop at exosite-I. 

(C) Thrombin residues that interfaced with s-variegin are colored according to their positions: catalytic 
pocket – blue; 60-loop – red; autolysis loop – cyan; 34-loop – yellow; 70-loop – green; bottom of the 
cleft – orange. See text for identity of residues that are involved in the interactions. Ball and stick 
model of s-variegin is shown in pink. 

(D) s-Variegin interacts with thrombin through specific side-chain contacts. All but five residues 
(VPhe18, VAsp19, VAla22, VGlu26 and VTyr27, all colored white) on s-variegin have their side chains 
buried in the interface with thrombin.  
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VGlu26
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variegin C-terminus (VAsp19, VGlu21, VGlu25 and VGlu26), only one ion pair is 

formed between VGlu21 and TArg75. Interestingly, in the hirulogs, hirugen and 

hirudin structures the analogous Glu makes an ion pair with the TArg75 of a 2-fold 

symmetry-related molecule (Rydel et al., 1990; Skrzypczak-Jankun et al., 1991; Qiu 

et al., 1992). This interaction was suggested to happen within the same thrombin-

inhibitor pair in solution although structurally it was not observed (Rydel et al., 1990). 

In our structure, the TArg75 side chain is rotated by 96.8° about Cγ compared to the 

TArg75 of hirulog-3 to facilitate the electrostatic interaction with the VGlu21, 

providing structural evidence for the existent of the predicted interaction (Figure 4.6 

A). Similarly, in the hirulog-1/3 and hirugen structures, only one ion pair can be 

observed. However, this interaction is between the TArg73 and an Asp corresponds to 

the VAsp19. Formation of an equivalent ion pair in the thrombin-s-variegin structure 

was not possible as the VAsp19 side chain points in an opposite direction into the 

solvent. This change in the side chain orientation is most likely due to the kink in s-

variegin backbone which is induced by Pro16-Pro17 (see below for further details) 

(Figure 4.6 B).  

 

At the end of the canyon-like cleft is a relatively flatten surface formed by 

thrombin residues TAsp63 – TIle68 and TLys81 – TLeu85. Despite being present in 

close proximity, the s-variegin C-terminal residues VPro24 to VLeu28 stacked loosely 

on top of this surface with two of the side chains (VGlu26 and VTyr27) pointing into 

the solvent (Figure 4.5 D). This s-variegin segment is in a different conformation 

when compared to hirulog-3/hirugen despite sharing similar sequences (Figure 4.2). 

Compared to the constricted canyon-like cleft, the relatively open surface around this 

region could be responsible for the hirudin/hirulogs/hirugen/s-variegin C-terminal 
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Figure 4.7 

 

 

 

 

FIGURE 4.6 

Ionic pairing in thrombin-s-variegin complex and the differences with thrombin-
hirulog-3 structure 
(A) The only ion pair (4.54 Å) in thrombin-s-variegin structure is between TArg75 and VGlu21. In 
hirulog-3/hirugen/hirudin structure, the same pairing occurred between the inhibitor and a 2-fold 
symmetry-related thrombin. In our structure, TArg75 side chain (pink) rotated 96.8° about Cγ compared 
to TArg75 of hirulog-3 (green) to facilitate interaction with VGlu21 (red). 

(B) The strong ion pair (2.92 Å) in thrombin-hirulog-3 structure is absent in thrombin-s-variegin 
structure since VGlu19 (red) of s-variegin pointed to an opposite direction compared to the analogous 
hirulog-3 Glu11 (blue). A kink in s-variegin backbone (red) induced by VPro16 and VPro17 is likely to 
be the cause for displacement of VGlu19 side chain. Pink ribbon represents thrombin in complex with 
s-variegin.   
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FIGURE 4.7 

s-variegin VGlu25 and VTyr27 side chains 
(A) Overlaying s-variegin (pink) and hirulog-3 (yellow) based on their thrombin molecule showed 
VGlu25 side chain occupies a similar position as hirulog-3 Tyr side chain. The analogous Tyr in s-
variegin is occupying a different position and the side chain is pointing into the solvent. 

(B) Similar observation is obtained by comparing s-variegin (pink) with hirugen (green). The Tyr in 
hirugen is sulfated which improved its affinity to thrombin by 10-fold. 

(C) Alignment of s-variegin (pink) and sulfo-hirudin (blue) showed similar observations as (A) and (B).  
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conformational heterogeneity as discussed in the Section 4.3.3. Interestingly, the 

VGlu25 side chain occupied a similar position as the side chain of C-terminal Tyr in 

the hirulog-3/hirugen/hirudin structures (Figure 4.7). Sulfation of this Tyr in hirudin 

and hirugen caused a 10-fold increase in affinity (Stone and Hofsteenge, 1986; Dodt 

et al., 1988; Braun et al., 1988a; Maraganore et al., 1989). The sulfate moiety present 

in the thrombin-hirugen structure (PDB: 1HGT) is involved in a hydrogen bonding 

network (Skrzypczak-Jankun et al., 1991). For the sulfate moiety in the thrombin-

sulfo-hirudin structure (PDB: 2PW8), a salt bridge and a hydrogen bond are formed 

with TLys81 and TTyr76 respectively (Liu et al., 2007). Despite occupying a similar 

position, VGlu25 does not make similar contacts with thrombin.  

 

4.3.5. Design and characterization of variegin variants 

Thirteen new variegin variants were designed based on the thrombin-s-

variegin structure as well as background information available on thrombin 

interactions. The general approach was to first optimize the length of variegin before 

optimizing several key positions on variegin to obtain maximum interaction with 

thrombin (Figure 4.8). 

  

4.3.5.1. Optimization of the length of variegin: truncation at the C-terminus  

 The lack of electron densities for the four s-variegin C-terminal residues 

[V(29DDES32)] in the complex structure indicated that these four residues are unlikely 

to interact strongly with thrombin. Further, these residues were not present in hirulogs 

or hirugen. Considering the vast differences between C-terminal conformations of s-

variegin and hirulogs/hirugen, it would be interesting to examine the role of these 

residues. Two truncation variants, EP21 and MH18, corresponded to EP25 and MH22, 
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FIGURE 4.8 

Design of variegin variants 
New variegin variants were designed to improve thrombin-variegin interactions. The approach was to first optimize the length of variegin (blue) before optimizing several 
key positions on variegin (red). 
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TABLE 4.4 

Optimization of the length of variegin: truncation at the C-terminus  
Two new truncation variants EP21 and MH18 were designed and synthesized based on template sequences EP25 and MH22 respectively, for the optimization of the length of 
variegin. 
 

Name Sequence Theoretical 
mass (Da) 

Observed 
mass (Da) Basis for design 

s-variegin SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 3608.9 3609.0 • Full-length sequence of native variegin 
• Fast, tight-binding, competitive inhibitor 

EP25 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2936.2 2936.4 
• Template sequence for EP21 
• Slow, tight-binding, competitive inhibitor 
• Has the same Ki as s-variegin 

EP21 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2489.8 2490.2 

• Deletion of 4 residues from EP25 C-terminus 
• To test the hypothesis that the lack of density of these 4 

residues in structure is due to the lack of strong 
interactions with thrombin 

MH22 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2581.8 2581.8 
• Template sequence for MH18 
• C-terminal cleavage fragment of s-variegin and EP25 
• Fast, tight-binding, non-competitive inhibitor 

MH18 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2135.4 2136.0 • See EP21 
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respectively, but lacking those four C-terminal residues, were designed and 

characterized (Table 4.4). Since EP25 and s-variegin binds to thrombin with the same 

affinity, C-terminal truncation variant of s-variegin was not synthesized.  

 

4.3.5.2. Inhibition of thrombin amidolytic activity by EP21 and MH18 

Progress curves of thrombin inhibition by EP21 showed two-phase equilibria 

in the absence of pre-incubation, typical of a slow binding inhibitor. EP21 activity 

was dependent on pre-incubation time. The IC50 decreased from 176.9 ± 6.8 nM 

(without pre-incubation) to 16.2 ± 2.9 nM (after 20 min pre-incubation) (Figure 4.9 

A). By fitting data to equations (7), (8) and (9), the inhibitory constant, Ki, calculated 

for EP21 inhibition of thrombin is 0.315 ± 0.024 nM (Figure 4.9 B; Table 4.5). All the 

values are similar to that of EP25 indicates that truncation of four C-terminal residues 

does not significantly alter the peptide activity.  

 

MH18 inhibited the thrombin amidolytic activity at equimolar concentration 

(~ 15%) and the steady state equilibrium was achieved upon mixing. Thus, MH18 is a 

fast, tight-binding inhibitor for thrombin. Dose-response curves showed IC50 values of 

10.9 ± 1.2 nM (without pre-incubation) and 11.7 ± 1.9 nM (after 20 min pre-

incubation) (Figure 4.10 A). These values are essentially identical with the data 

obtained with MH22 (Table 4.5). The apparent inhibitory constant, Ki′ of MH18 were 

obtained with 100 μM of S2238, fitting the data with equation (3) (Figure 4.10 B). 

Assuming that MH18 is a non-competitive inhibitor like MH22, equation (5) and (6) 

was solved to derive the inhibitory constant Ki of 14.9 ± 3.5 nM which is consistent 

with the Ki of MH22 (Table 4.5). This set of results ascertained the above conclusion 

that the four C-terminal residues are not involved in binding to thrombin.  
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TABLE 4.5 

Thrombin inhibitory activities of EP21 and MH18 
EP21 and MH18 inhibited thrombin with the same mechanisms and potencies as their respective template sequences EP25 and MH22. 

 

Name Sequence 
Pre-

incubation 
tine (min) 

IC50 (nM) Ki (nM) Remarks 

0 8.25 ± 0.45 
s-variegin SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 10.37 ± 0.30 
0.318 ± 0.020 • Fast, tight-binding, competitive 

inhibitor 

0 173.1 ± 26.0 
EP25 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 13.12 ± 0.67 
0.37 ± 0.11 • Slow, tight-binding, competitive 

inhibitor 

0 176.9 ± 6.8 
EP21 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 16.2 ± 2.9 
0.315 ± 0.024 • Slow, tight-binding, competitive 

inhibitor 

0 11.46 ± 0.71 
MH22 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 12.3 ± 1.9 
14.11 ± 0.29 • Fast, tight-binding, non-competitive 

inhibitor 

0 10.9 ± 1.2 
MH18 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 11.7 ± 1.9 
14.9 ± 3.5 • Fast, tight-binding, non-competitive 

inhibitor 
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FIGURE 4.9 

Variegin variant EP21 (slow, tight-binding, competitive inhibitor) 
(A) EP21 (0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 nM, 3000 nM and 10000 nM) 
inhibition of thrombin (1.65 nM) amidolytic activity with S2238 (100 µM) showed a pre-incubation 
time-dependent shift due to slow binding. IC50 are 176.9 ± 6.8 nM without pre-incubation (  solid line) 
and 16.2 ± 2.9 nM with 20 min pre-incubation (  dotted line) (n = 3, error bars represent S.D.). 

(B) Progression curves (not shown) of thrombin (1.65 nM) inhibition by different concentrations of 
EP21 (18.8 nM, 25 nM, 37.5 nM, 50 nM, 75 nM, 100 nM and 150 nM) at 100 μM S2238 were fitted to 
equation (7) describing a slow binding inhibitor to obtain a k for each concentrations of EP21 used. 
Plot of k against EP21 concentrations (  solid line) is a hyperbolic curve described by equation (8) and 
hence was fitted to the equation to obtain a Ki` of 1.66 ± 0.36 nM, representing the dissociation 
constant of initial collision complex EI. The overall inhibitory constant Ki was calculated from 
equation (9) as 0.315 ± 0.024 nM (n = 3, error bars represent S.D.). 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 4.10 

Variegin variant MH18 (fast, tight-binding, non-competitive inhibitor) 
(A) The abilities of MH18 (0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 nM, 
3000 nM and 10000 nM) to inhibit amidolytic activity of thrombin (1.65 nM) were assayed in 100 µM 
S2238. Dose-response curves are independent of pre-incubation time. IC50 are 10.9 ± 1.2 nM without 
pre-incubation (  solid line) and 11.7 ± 1.9 nM after 20 min pre-incubation (  dotted line) (n = 3, 
error bars represent S.D.). 

(B) Since MH18 behaved as a fast and tight-binding inhibitor, thrombin (1.65 nM) inhibition was 
tested with 0.39 nM, 0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM, 100 nM and 200 
nM of MH18 at 100 μM of S2238 (  solid line). Apparent inhibitory constant Ki’ obtained by fitting 
data to equation (3) is 14.9 ± 3.5 nM. The inhibitory constant Ki is calculated to be 14.9 ± 3.5 nM based 
on equations (5) and (6) (n = 3, error bars represent S.D.). 

A B 

A B 
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4.3.5.3. Optimization of the length of variegin: extension at the N-terminus 

Our earlier data showed that the seven N-terminal residues of variegin are 

responsible for its fast binding kinetics; when removed, the binding characteristics 

changed from fast to slow without loss in affinity (Chapter 2). We then postulated that 

the highly basic thrombin exosite-II could help to steer variegin N-terminus residues 

(which contains two negatively charged residues in its sequence 1SDQGDVA7) into 

an optimal orientation close to the active site, allowing rapid formation of short-range 

interactions. Since thrombin exosite-II is located about 10 Å away from the active site 

(Page et al., 2005), this distance could theoretically be covered by at least three N-

terminal residues in an extended conformation. In order to produce a peptide that 

retained the fast-binding property, we designed and characterized a peptide extending 

EP21 by three residues at the N-terminus. One out of the two acidic N-terminal 

residues, VAsp5, is present in this variant, which is named DV24 (Table 4.6).  

 

4.3.5.4. Inhibition of thrombin amidolytic activity by DV24 

Instead of the two-phase equilibria usually observed for slow binding inhibitor, 

DV24 progress curves of thrombin inhibition were similar to s-variegin, reaching 

steady state equilibrium upon mixing. Thus, DV24 is a fast and tight-binding inhibitor. 

Activity of DV24 decreased with increasing pre-incubation time due to cleavage by 

thrombin. Dose-response curves showed IC50 values of 7.49 ± 0.28 nM (without pre-

incubation) and 10.07 ± 0.60 nM (after 20 min pre-incubation) (Figure 4.11 A, Table 

4.7). Assuming competitive inhibition, equations (3) and (4) were used to derive the 

inhibitory constant Ki of 0.306 ± 0.029 nM, consistent with Ki of s-variegin (Figure 

4.11 B; Table 4.7). Therefore, we managed to design a peptide that is eight residues 

shorter than s-variegin but retained the fast-binding kinetic with the same Ki. 
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TABLE 4.6 

Optimization of the length of variegin: extension at the N-terminus 
One extension variants DV24 was designed and synthesized based on template sequence EP21 for the optimization of the length of variegin. 

 

Name Sequence Theoretical 
mass (Da) 

Observed 
mass (Da) Basis for design 

s-variegin SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 3608.9 3609.0 • Full-length sequence of native variegin 
• Fast, tight-binding, competitive inhibitor 

EP21 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2489.8 2490.2 

• Template sequence for DV24 
• Slow, tight-binding, competitive inhibitor 
• Deletion of 4 residues from C-terminus 
• Has the same Ki as s-variegin and EP25  

DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2775.1 2775.3 

• Extension of EP21 N-terminus by 3 residues 
• To test the hypothesis that acidic residue (Asp) in the N-

terminus facilitate fast-binding through electrostatic 
steering effect towards thrombin exosite-II 
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TABLE 4.7 

Thrombin inhibitory activity of DV24 
DV24 inhibited thrombin with the same potency as the template sequence EP21. However, unlike EP21 which is a slow binding inhibitor, DV24 is a fast-binding inhibitor, 
similar to s-variegin. 

 

Name Sequence 
Pre-

incubation 
tine (min) 

IC50 (nM) Ki (nM) Remarks 

0 8.25 ± 0.45 
s-variegin SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 10.37 ± 0.30 
0.318 ± 0.020 • Fast, tight-binding, competitive 

inhibitor 

0 176.9 ± 6.8 
EP21 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 16.2 ± 2.9 
0.315 ± 0.024 • Slow, tight-binding, competitive 

inhibitor 

0 7.49 ± 0.28 
DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 10.07 ± 0.60 
0.306 ± 0.029 • Fast, tight-binding, competitive 

inhibitor 
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FIGURE 4.11 

Variegin variant DV24 (fast, tight-binding, competitive inhibitor) 
(A) Dose-response curves of thrombin (1.65 nM) inhibition by DV24 (0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 
nM, 30 nM, 100 nM, 300 nM, 1000 nM and 3000 nM) in 100 µM S2238 showed a right shift with 
increased pre-incubation time due to cleavage. IC50 are 7.49 ± 0.28 nM without pre-incubation (  solid 
line) and 10.07 ± 0.60 nM with 20 min pre-incubation (  dotted line) (n = 3, error bars represent S.D.). 

(B) Since DV24 behaved as a fast and tight-binding inhibitor, thrombin (1.65 nM) inhibition was tested 
with 0.39 nM, 0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM, 100 nM and 200 nM of 
DV24 at 100 μM of S2238 (  solid line). Apparent inhibitory constant Ki’ obtained by fitting data to 
equation (3) is 9.74 ± 0.91 nM. The inhibitory constant Ki is calculated to be 0.306 ± 0.029 nM based 
on equation (4) (n = 3, error bars represent S.D.). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 4.12 

Variegin variant DV24K10R (fast, tight-binding, competitive inhibitor) 
(A) Dose-response curves of thrombin (1.65 nM) inhibition by DV24K10R (0.1 nM, 0.3 nM, 1 nM, 3 
nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 nM and 3000 nM) in 100 µM S2238 showed a right shift 
with increased pre-incubation time due to cleavage. IC50 are 6.98 ± 0.76 nM without pre-incubation (  
solid line) and 12.01 ± 0.41 nM after 20 min pre-incubation (  dotted line) (n = 3, error bars represent 
S.D.). 

(B) Since DV24K10R behaved as a fast and tight-binding inhibitor, thrombin (1.65 nM) inhibition was 
tested with 0.39 nM, 0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM, 100 nM and 200 
nM of DV24K10R at 100 μM of S2238 (  solid line). Apparent inhibitory constant Ki’ obtained by 
fitting data to equation (3) is 8.27 ± 0.85 nM. The inhibitory constant Ki is calculated to be 0.259 ± 
0.015 nM based on equation (4) (n = 3, error bars represent S.D.). 

A B 

A B 
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4.3.5.5. Optimization of thrombin-s-variegin interactions: P1 substitution 

One striking difference between variegin and other thrombin 

substrates/inhibitors is the presence of Lys in the P1 position of the scissile bond. 

Typically, Arg is found in this position for thrombin substrates. The electrostatic 

interaction between the side chain guanidinium group of Arg and the side chain 

carboxylate group of TAsp189 in the S1 subsite is usually preferred. In contrast, P1 

Lys usually interacts with Asp189 through a water molecule (Perona and Craik, 1995), 

resulting in reduced affinity and specificity (Vindigni et al., 1997). The absence of 

electron density for residues before the scissile bond [V(1SDQGDVAEPK10)] in the 

thrombin-s-variegin structure probably implies the lack of strong affinity for thrombin 

within this segment. Therefore, using DV24 as template sequence, the P1 residue 

Lys10 was replaced by Arg in a new variant named DV24K10R (Table 4.8). 

 

4.3.5.6. Inhibition of thrombin amidolytic activity by DV24K10R 

 IC50 obtained for DV24K10R is 6.98 ± 0.76 nM without pre-incubation, which 

is similar to IC50 of DV24 (7.49 ± 0.28 nM). However, IC50 for DV24K10R is 12.01 ± 

0.41 nM after 20 min pre-incubation, slightly higher than that of DV24 (10.07 ± 0.60 

nM). It is likely that cleavage of the peptide proceeds faster with the presence of P1 

Arg (Figure 4.12 A; Table 4.9). Affinity to thrombin has increased slightly, indicated 

by a small drop in Ki value to 0.259 ± 0.015 nM (compared to 0.306 ± 0.029 nM for 

DV24) (Figure 4.12 B; Table 4.9). Thus, substitution of Lys10 by Arg only minimally 

improved thrombin affinity of variegin despite previous observations that P1 Lys 

generally binds 10-fold weaker than P1 Arg (Page et al., 2005). With this observation 

in mind, subsequent designs of new variants are typically performed with both Lys 

and Arg at P1 position.    
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TABLE 4.8 

Optimization of thrombin-s-variegin interactions: P1 substitution 
In order to optimize interaction of s-variegin P1 residue with thrombin S1 pocket, DV24K10R was designed and characterized. 

 

Name Sequence Theoretical 
mass (Da) 

Observed 
mass (Da) Basis for design 

s-variegin SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 3608.9 3609.0 • Full-length sequence of native variegin 
• Fast, tight-binding, competitive inhibitor 

DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2775.1 2775.3 • Template sequence for DV24K10R 
• Fast, tight-binding, competitive inhibitor 

DV24K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 2803.1 2803.3 
• Lys10 replaced by Arg 
• Arg at this P1 position is the preferred residue for 

thrombin 
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TABLE 4.9 

Thrombin inhibitory activity of DV24K10R 
DV24K10R binds thrombin with minimally improved affinity and with the same mechanism as its template sequence.  

 

Name Sequence 
Pre-

incubation 
tine (min) 

IC50 (nM) Ki (nM) Remarks 

0 8.25 ± 0.45 
s-variegin SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 10.37 ± 0.30 
0.318 ± 0.020 • Fast, tight-binding, competitive 

inhibitor 

0 7.49 ± 0.28 
DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 10.07 ± 0.60 
0.306 ± 0.029 • Fast, tight-binding, competitive 

inhibitor 

0 6.98 ± 0.76 
DV24K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 

20 12.01 ± 0.41 
0.259 ± 0.015 • Fast, tight-binding, competitive 

inhibitor 
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4.3.5.7. Optimization of thrombin-s-variegin interactions: removal of backbone kink 

 The phenyl group of VPhe20 is inserted into an apolar cavity in thrombin and 

interacts with TPhe34 by π-π stacking. This interaction is also present in hirulogs, 

hirugen and hirudin complex structures and marks the start of the C-terminal segment 

– DFEA(E)IPEEYL – where s-variegin and hirulogs/hirugen are almost identical. In 

s-variegin, there are nine residues present in between the P1 Lys residue and the Phe 

[V(11MHKTAPPFD19)]. However, in hirulog-1/3, the same distance is spanned by 

only eight residues (4PGGGGNGD11). Analysis of the thrombin-s-variegin structure 

showed that VPro16 and VPro17 induced a kink in its backbone, causing a slight bend 

upwards, away from thrombin. This in turn caused a displacement of VPhe18 and 

VAsp19 by about 3.16 Å and 1.70 Å from their corresponding residues in hirulog-3 – 

Gly10 and Asp11 – as measured by distances between their Cα atoms (Figure 4.13). 

Crucially, Asp11 of hirulog-3 make an ion pair with TArg73 which is absent between 

the analogous VAsp19 and TArg73 (Figure 4.6 B). In fact VAsp19 side chain points to 

the opposite direction into the solvent, creating a 9.22 Å distance between the VAsp19 

Oδ and TArg73 NH2 (Figure 4.13). Therefore, Pro16 was deleted from s-variegin 

sequence to remove the kink in the backbone for the repositioning of VAsp19 so as to 

restore the ionic interaction. Using DV24 and DV24K10R as template sequences, 

variants DV23 and DV23K10R were designed, synthesized and characterized (Table 

4.10). 

 

4.3.5.8. Inhibition of thrombin amidolytic activity by DV23 and DV23K10R 

 Both DV23 and DV23K10R showed decrease in activities compared to their 

templates. DV23 IC50 values are 45.4 ± 1.6 nM (without pre-incubation) and 77.8 ± 

6.1 nM (after 20 min pre-incubation) (Figure 4.14 A). DV23 Ki is 2.19 ± 0.23 nM 
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FIGURE 4.13 
VPro16-VPro17 caused a kink in s-variegin backbone. 
The presence of a VPro16-VPro17 (yellow) dipeptide sequence in s-variegin resulted in a kink in its backbone. Overlaying s-variegin (pink, only Cα positions traced) and 
hirulog-3 (green, only Cα positions traced) based on their thrombin structures revealed displacement of VPhe18 and VAsp19 from their corresponding residues Gly10 and 
Asp11 of hirulog-3 by 3.16 Å and 1.70 Å (measured by Cα positions) (cyan double headed arrow). Consequently, VAsp19 side chain points to an opposite direction of the 
analogous Asp11 side chain in hirulog-3. This Asp11 in hirulog-3 makes a strong ion-pair with TArg73 (white). Due to the displacement of VAsp19, the nearest possible 
distance between TArg73 NH2 and VAsp19 OD1 is 9.22 Å, rendered this interaction in thrombin-s-variegin structure impossible. 

VPro17

VPro16

Gly10 (hirulog-3)

Asp11 (hirulog-3)

TArg73 (thrombin-s-
variegin complex) 

3.16 Å 1.70 Å

9.22 Å

VPhe18

VAsp19
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TABLE 4.10 

Optimization of thrombin-s-variegin interactions: removal of backbone kink 
Based on sequences of DV24 and DV24K10R, Pro16 was deleted to produce two variants: DV23 and DV23K10R in an attempt to remove the kink in peptide backbone 
observed in the thrombin-s-variegin crystal structure. 

 

Name Sequence Theoretical 
mass (Da) 

Observed 
mass (Da) Basis for design 

DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2775.1 2775.3 

• Template sequence for DV23 
• Fast, tight-binding, competitive inhibitor 
• Has the same Ki as s-variegin 
• Lys at P1 

DV23 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2678.0 2678.2 

• Deletion of VPro16 
• To remove the kink in peptide backbone caused by two 

proline residues 
• To test the hypothesis that removal of the kink in the 

peptide backbone can reposition VAsp19 for improved 
activity 

DV24K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 2803.1 2803.3 

• Template sequence for DV23K10R  
• Fast, tight-binding, competitive inhibitor 
• Has the same Ki as s-variegin 
• Arg at P1 

DV23K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 2706.2 2706.2 • See DV23 
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TABLE 4.11 

Thrombin inhibitory activity of DV23 and DV23K10R 
Both DV23 and DV23K10R showed decrease in activities compared to their respective templates, DV24 and DV24K10R. The rapid loss of activities after cleavage implies 
that their cleavage products fail to inhibit thrombin. 

 

Name Sequence 
Pre-

incubation 
tine (min) 

IC50 (nM) Ki (nM) Remarks 

0 7.49 ± 0.28 
DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 10.07 ± 0.60 
0.306 ± 0.029 • Fast, tight-binding, competitive 

inhibitor 

0 45.4 ± 1.6 
DV23 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 77.8 ± 6.1 
2.19 ± 0.23 • Fast, tight-binding, competitive 

inhibitor 

0 6.98 ± 0.76 
DV24K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 

20 12.01 ± 0.41 
0.259 ± 0.015 • Fast, tight-binding, competitive 

inhibitor 

0 12.9 ± 1.0 
DV23K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 

20 101.9 ± 1.2 
0.600 ± 0.010 • Fast, tight-binding, competitive 

inhibitor 
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(Figure 4.14 B). All values showed an average of 7-fold reduction in activity 

compared to DV24 (Table 4.11). The other variant, DV23K10R is also less active 

compared to its template, DV24K10R. The peptide IC50 are 12.9 ± 1.0 nM (without 

pre-incubation) and 101.9 ± 1.2 nM (20 min pre-incubation) (Figure 4.15 A). 

DV23K10R Ki is 0.600 ± 0.010 nM (Figure 4.15 B). Its affinity to thrombin is 

approximately 2-fold weaker than DV24K10R (Table 4.11). While DV23K10R is 

more active than DV23 without pre-incubation with thrombin, the trend is reversed 

after 20 min of pre-incubation. This is in agreement with the observation that peptide 

with Arg at P1 (DV24K10R) is hydrolyzed by thrombin at a faster rate than peptide 

with Lys at P1 (DV24) (Section 4.3.5.6.). Moreover, the rapid loss of activity also 

implies that the cleavage product no longer inhibits thrombin potently. Thus, the 

deletion of VPro16 appears to have an adverse effect on the activities of both the intact 

peptide and cleavage product. Considering the proximity of variegin P′ residues to 

VPro16, removal of this residue probably compromised the interactions within the 

prime subsites. 

 

4.3.5.9. Optimization of thrombin-s-variegin interactions: C-terminal Ala22 

substitution 

Other than the three residues [V(30DES32)] extension, C-termini of variegin and 

hirudin differed in two other ways: (1) a non-conserved substitution of Glu58 in 

hirudin by VAla22 in variegin; and (2) VTyr27 is non-sulfated in variegin (and also in 

hirulogs). We examined the effect these differences in a series of variants. The side 

chain of VAla22 is solvent exposed in crystal structure (Figure 4.5 D) although hirudin 

Glu58 side chain was observed to make an ion-pair with TArg77a of thrombin (Rydel 

et al., 1990; Rydel et al., 1991). Two new variants, EP25A22E and MH22A22E were 
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FIGURE 4.14 

Variegin variant DV23 (fast, tight-binding, competitive inhibitor) 
(A) Dose-response curves of thrombin (1.65 nM) inhibition by DV23 (0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 
nM, 30 nM, 100 nM, 300 nM, 1000 nM and 3000 nM) in 100 µM S2238 showed a right shift with 
increased pre-incubation time due to cleavage. IC50 are 45.4 ± 1.6 nM without pre-incubation (  solid 
line) and 77.8 ± 6.1 nM after 20 min pre-incubation (  dotted line) (n = 3, error bars represent S.D.). 

(B) Thrombin (1.65 nM) inhibition was tested with 3.91 nM, 7.81 nM, 15.6 nM, 31.3 nM, 62.5 nM, 
125 nM, 250 nM and 500 nM of DV23 at 100 μM of S2238 ( ). Apparent inhibitory constant Ki’ 
obtained by fitting data to equation (3) is 69.6 ± 7.8 nM. The inhibitory constant Ki is calculated to be 
2.19 ± 0.23 nM based on equation (4) (n = 3, error bars represent S.D.). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 4.15 

Variegin variant DV23K10R (fast, tight-binding, competitive inhibitor) 
(A) DV23K10R (0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 nM and 3000 
nM) inhibited thrombin (1.65 nM) in the presence of 100 µM S2238. Loss of activities after cleavage is 
rapid, indicated by the strong right shift of dose-response curve. IC50 are 12.9 ± 1.0 nM without pre-
incubation (  solid line) and 101.9 ± 1.2 nM after 20 min pre-incubation (  dotted line) (n = 3, error 
bars represent S.D.). 

(B) Thrombin (1.65 nM) inhibition was tested with 3.91 nM, 7.81 nM, 15.6 nM, 31.3 nM, 62.5 nM, 
125 nM, 250 nM and 500 nM of DV23K10R at 100 μM of S2238 (  solid line). Apparent inhibitory 
constant Ki’ obtained by fitting data to equation (3) is 19.1 ± 1.9 nM. The inhibitory constant Ki is 
calculated to be 0.600 ± 0.010 nM based on equation (4) (n = 3, error bar represents S.D.). 

A B 

A B 
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designed. Using EP25 and MH22 as respective template sequence, VAla22 in both 

peptides were replaced by Glu. The four C-terminal residues were retained in both 

variants to preserve the original local environment of the peptides near the C-terminus 

(Table 4.12).   

 

4.3.5.10. Inhibition of thrombin amidolytic activity by EP25A22E and MH22A22E 

Similar to EP25 and EP21, progress curves of thrombin inhibition by 

EP25A22E showed two-phase equilibria in the absence of pre-incubation with 

thrombin. IC50 for EP25A22E are 124.3 ± 23.0 nM (without pre-incubation) and 

decreased to 13.5 ± 2.1 nM (after 20 min pre-incubation) (Figure 4.16 A), similar to 

of EP25 (Table 4.13). Thus, EP25A22E is a slow and tight-binding inhibitor. The 

inhibitory constant Ki calculated from equations (7) to (9) describing slow binding 

inhibitor, is 0.311 ± 0.070 nM (Figure 4.16 D), again effectively the same as EP25 

(Table 4.13). Thus, replacement of VAla22 by Glu does not alter activity of variegin 

variant.  

 

MH22A22E inhibited thrombin amidolytic activity with IC50 values of 13.62 ± 

0.45 nM (without pre-incubation) and 15.63 ± 0.36 nM (20 min pre-incubation) 

(Figure 4.17 A). Ki of MH22A22E is 15.1 ± 1.0 nM (Figure 4.17 B). All values match 

those of MH22 (Table 4.13). This result added confidence to the conclusion that no 

significant improvement on activity can be achieved by mutating VAla22 to Glu. 
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TABLE 4.12 

Optimization of thrombin-s-variegin interactions: C-terminal VAla22 substitution 
Based on template sequences EP25 and MH22, two variants EP25A22E and MH22A22E were designed to determine the effect VAla22 to Glu substitution. 

 

Name Sequence Theoretical 
mass (Da) 

Observed 
mass (Da) Basis for design 

EP25 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2936.2 2936.4 
• Template sequence for EP25A22E 
• Slow, tight-binding, competitive inhibitor 
• Has the same Ki as s-variegin and EP25  

EP25A22E SDQGDVAEPKMHKTAPPFDFEEIPEEYLDDES 2994.2 2994.4 

• VAla22 replaced by Glu 
• Glu is present in this position in hirudin forming salt 

bridge with TArg77a of thrombin 
• Side chain of VAla22 in the thrombin-s-variegin structure 

is solvent exposed 
• Last four residues were retained to preserve local 

environment of C-terminus 

MH22 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2581.8 2581.8 
• Template sequence for MH22A22E 
• C-terminal cleavage fragment of s-variegin 
• Fast, tight-binding, non-competitive inhibitor 

MH22A22E SDQGDVAEPKMHKTAPPFDFEEIPEEYLDDES 2639.8 2640.1 • See EP25A22E 
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TABLE 4.13 

Thrombin inhibitory activity of EP25A22E and MH22A22E 
EP25A22E and MH22A22E inhibited thrombin with the same mechanisms and potencies as their respective template sequences.  

 

Name Sequence 
Pre-

incubation 
tine (min) 

IC50 (nM) Ki (nM) Remarks 

0 173.1 ± 26.0 
EP25 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 13.12 ± 0.67 
0.37 ± 0.11 • Slow, tight-binding, competitive 

inhibitor 

0 124.3 ± 23.0 
EP25A22E SDQGDVAEPKMHKTAPPFDFEEIPEEYLDDES 

20 13.5 ± 2.1 
0.311 ± 0.070 • Slow, tight-binding, competitive 

inhibitor 

0 11.46 ± 0.71 
MH22 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 12.3 ± 1.9 
14.11 ± 0.29 • Fast, tight-binding, non-competitive 

inhibitor 

0 13.62 ± 0.45 
MH22A22E SDQGDVAEPKMHKTAPPFDFEEIPEEYLDDES 

20 15.63 ± 0.36 
15.07 ± 1.04 • Fast, tight-binding, non-competitive 

inhibitor 
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FIGURE 4.16 

Variegin variant EP25A22E (slow, tight-binding, competitive inhibitor) 
(A) EP25A22E (0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 nM and 3000 
nM) inhibition of thrombin (1.65 nM) amidolytic activity in 100 μM S2238 showed a pre-incubation 
time-dependent shift due to slow binding. IC50 values are 124.3 ± 23.0 nM without pre-incubation (  
solid line) and 13.5 ± 2.1 nM after 20 min pre-incubation (  dotted line) (n = 3, error bars represent 
S.D.). 

(B) Progression curves (not shown) of thrombin (1.65 nM) inhibition by different concentrations of 
EP21 (9.38 nM, 12.5 nM, 18.8 nM, 25 nM, 37.5 nM, 50 nM, 75 nM, 100 nM, 150 nM, 200 nM and 
300 nM) at 100 μM S2238 were fitted to equation (7) describing a slow binding inhibitor to obtain a k 
for each concentrations of EP25A22E used. Plot of k against EP25A22E concentrations (  solid line) 
is a hyperbolic curve described by equation (8) and hence was fitted to the equation to obtain a Ki` of 
1.02 ± 0.060 nM, representing the dissociation constant of initial collision complex EI. The overall 
inhibitory constant Ki was calculated from equation (9) as 0.311 ± 0.070 nM (n = 3, error bars represent 
S.D.). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 4.17 

Variegin variant MH22A22E (fast, tight-binding, non-competitive inhibitor) 
(A) MH22A22E (0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM, 1000 nM and 3000 
nM) inhibition of thrombin (1.65 nM) amidolytic activity were assayed in 100 µM S2238. Dose-
response curves are independent of pre-incubation time. IC50 are 13.62 ± 0.45 nM without pre-
incubation (  solid line) and 15.63 ± 0.36 nM after 20 min pre-incubation (  dotted line) (n = 3, error 
bars represent S.D.). 

(B) Since MH22A22E behaved as a fast and tight-binding inhibitor, thrombin (1.65 nM) inhibition was 
tested with 0.39 nM, 0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM, 100 nM and 200 
nM of MH22A22E at 100 μM of S2238 (  solid line). Apparent inhibitory constant Ki’ obtained by 
fitting data to equation (3) is 15.1 ± 1.0 nM. The inhibitory constant Ki is calculated to be 15.1 ± 1.0 
nM based on equations (5) and (6) (n = 3, error bars represent S.D.). 

A B 

A B 
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4.3.5.11. Optimization of thrombin-s-variegin interactions: C-terminal Tyr27 

modifications 

Desulfation of Tyr63 in hirudin or hirugen is known to reduce their affinities 

to thrombin by about 10-fold (Stone and Hofsteenge, 1986; Dodt et al., 1988; Braun 

et al., 1988a; Maraganore et al., 1989). Interestingly, the analogous residue in native 

variegin, VTyr27, is non-sulfated. C-terminal conformation of s-variegin deviates 

vastly from that of hirulogs, hirugen or sulfo-hirudin (Figure 4.2). The difference 

might be due to the four/three residues extension of s-variegin [V(29DDES32)] C-

terminal (see Section 4.3.3.). Side chain of VGlu25 occupies a similar position as side 

chain of sulfotyrosine in sulfo-hirudin or hirugen structures (Figure 4.7). However, 

VGlu25 side chain did not make any polar or electrostatic contacts with thrombin. 

Thus, the binding at this position for thrombin-s-variegin complex appeared to be 

suboptimal. In view of the truncation of s-variegin C-terminal residues V(29DDES32), 

we postulated that the introduction of sulfate moiety at VTyr27 can switch s-variegin 

C-terminal conformation to mimic sulfo-hirudin or hirugen and thereby increasing the 

binding affinity. Therefore, it would be interesting to investigate whether sulfation in 

s-variegin improves its activity.  

 

Other than sulfation, another commonly found post-translational modification 

for tyrosine is phosphorylation. Sulfate and phosphate moieties shared some 

similarities. Both carry an overall negative charge with almost the same size. Under 

our assay conditions at pH 7.4, sulfotyrosine side chain has a single negative charge 

while phosphotyrosine side chain carries two negative charges (Hofsteenge et al., 

1990). Consequently, peptides were designed to bear these two modifications – 

sulfation and phosphorylation – on the VTyr27. Based on DV24, DV24K10R and 
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TABLE 4.14 

Optimization of thrombin-s-variegin interactions: C-terminal VTyr27 sulfation 
Based on sequences of DV24, DV24K10R and MH18, sulfo-Tyr27 was incorporated to produce three variants: DV24Ysulf, DV24K10RYsulf and MH18Ysulf to optimize C-
terminal conformation of the variants. 

Name Sequence Theoretical 
mass (Da) 

Observed 
mass (Da) Basis for design 

DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2775.1 2775.3 

• Template sequence for DV24Ysulf  
• Fast, tight-binding, competitive inhibitor 
• Has the same Ki as s-variegin  
• Lys at P1 

DV24Ysulf SDQGDVAEPKMHKTAPPFDFEAIPEEY*LD 2855.1 NA 

• Sulfation of VTyr27 
• Tyr-desulfation in hirudin/hirugen results in 10x weaker 

binding to thrombin 
• To investigate if sulfation improve affinity for thrombin 

DV24K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 2803.1 2803.3 

• Template sequence for DV23K10RYsulf 
• Fast, tight-binding, competitive inhibitor 
• Has the same Ki as s-variegin 
• Arg at P1 

DV24K10RYsulf SDQGDVAEPRMHKTAPPFDFEAIPEEY*LDDES 2883.1 NA • See DV24Ysulf 

MH18 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2135.4 2136.0 
• Template sequence for MH18Ysulf 
• Fast, tight-binding, non-competitive inhibitor 
• Arg at P1 

MH18Ysulf SDQGDVAEPKMHKTAPPFDFEAIPEEY*LDDES 2215.4 NA • See DV24Ysulf 

 

*represents sulfotyrosine residue; NA: not available (see Section 4.2.2 for details) 
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TABLE 4.15 

Thrombin inhibitory activity of DV24Ysulf, DV24K10RYsulf and MH18Ysulf 
Sulfation of VTyr27 drastically improved activities of all new variants compared to their respective template peptides. Affinity of DV24K10RYsulf to thrombin is 
approximately 70-fold stronger than hirulog-1/bivalirudin. 

Name Sequence 
Pre-

incubation 
tine (min) 

IC50 (nM) Ki (nM) Remarks 

0 7.49 ± 0.28 
DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 10.07 ± 0.60 
0.306 ± 0.029 • Fast, tight-binding, competitive 

inhibitor 

0 1.66 ± 0.18 
DV24Ysulf SDQGDVAEPKMHKTAPPFDFEAIPEEY*LDDE 

20 2.02 ± 0.29 
0.056 ± 0.018 • Fast, tight-binding, competitive 

inhibitor 

0 6.98 ± 0.76 
DV24K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 

20 12.01 ± 0.41 
0.259 ± 0.015 • Fast, tight-binding, competitive 

inhibitor 

0 1.39 ± 0.17 
DV24K10RYsulf SDQGDVAEPRMHKTAPPFDFEAIPEEY*LDDE 

20 1.66 ± 0.21 

0.0420 ± 
0.0061 

• Fast, tight-binding, competitive 
inhibitor 

0 10.9 ± 1.2 
MH18 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 

20 11.7 ± 1.9 
14.94 ± 3.50 • Fast, tight-binding, non-competitive 

inhibitor 

0 1.26 ± 0.18 
MH18Ysulf SDQGDVAEPKMHKTAPPFDFEAIPEEY*LDDE

S 
20 1.17 ± 0.14 

1.25 ± 0.18 • Fast, tight-binding, non-competitive 
inhibitor 

 

*represents sulfotyrosine residue 
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FIGURE 4.18 

Variegin variant DV24Ysulf (fast, tight-binding, competitive inhibitor) 
(A) DV24Ysulf (0.05 nM, 0.15 nM, 0.45 nM, 1.5 nM, 4.5 nM, 15 nM, 45 nM, 150 nM, 450 nM and 
1500 nM) inhibited thrombin (1.65 nM) amidolytic activity in 100 µM S2238. Dose-response curve 
shifted slightly to the right with increased pre-incubation time due to cleavage. IC50 are 1.66 ± 0.18 nM 
without pre-incubation (  solid line) and 2.02 ± 0.29 nM after 20 min pre-incubation (  dotted line) 
(n = 3, error bars represent S.D.). 

(B) Since DV24Ysulf behaved as a fast and tight-binding inhibitor, thrombin (1.65 nM) inhibition was 
tested with 0.20 nM, 0.39 nM, 0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM and 100 
nM of DV24Ysulf at 100 μM of S2238 (  solid line). Apparent inhibitory constant Ki’ obtained by 
fitting data to equation (3) is 1.78 ± 0.47 nM. The inhibitory constant Ki is calculated to be 0.056 ± 
0.015 nM based on equation (4) (n = 3, error bars represent S.D.). 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

FIGURE 4.19 

Variegin variant DV24K10RYsulf (fast, tight-binding, competitive inhibitor) 
(A) DV24K10RYsulf (0.05 nM, 0.15 nM, 0.45 nM, 1.5 nM, 4.5 nM, 15 nM, 45 nM, 150 nM, 450 nM 
and 1500 nM) inhibited thrombin (1.65 nM) amidolytic activity in 100 µM S2238. Dose-response 
curve shifted slightly to the right with increased pre-incubation time due to cleavage. IC50 are 1.39 ± 
0.17 nM without pre-incubation (  solid line) and 1.66 ± 0.21 nM after 20 min pre-incubation (  
dotted line) (n = 3, error bars represent S.D.). 

(B) Since DV24K10RYsulf behaved as a fast and tight-binding inhibitor, thrombin (1.65 nM) inhibition 
was tested with 0.20 nM, 0.39 nM, 0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM and 
100 nM of DV24Ysulf at 100 μM of S2238 (  solid line). Apparent inhibitory constant Ki’ obtained by 
fitting data to equation (3) is 1.33 ± 0.19 nM. The inhibitory constant Ki is calculated to be 0.0420 ± 
0.0061 nM based on equation (4) (n = 3, error bars represent S.D.). 

A B 

A B 
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MH18 sequences, sulfotyrosine residue was incorporated in three new variants, 

DV24Ysulf, DV24K10RYsulf and MH18Ysulf (Table 4.14). Similarly, phosphotyrosine 

residue was included for DV24 and DV24K10R to produce two variants, namely, 

DV24Yphos and DV24K10RYphos (Table 4.16).  

 

4.3.5.12. Inhibition of thrombin amidolytic activity by tyrosine-modified peptides 

IC50 for DV24Ysulf are 1.66 ± 0.18 nM (without pre-incubation) and 2.02 ± 

0.29 nM (after 20 min pre-incubation). Increase in IC50 is due to cleavage by thrombin 

(Figure 4.18 A). Fitting kinetic data to equations describing fast, tight-binding, 

competitive inhibitor showed that the Ki (mean ± S.D.) of the peptide is 0.056 ± 0.018 

nM (Figure 4.18 B). Thus, for DV24Ysulf, an average of 5-fold in activity and affinity 

are gained compared to DV24 (Table 4.15). DV24K10RYsulf inhibition of thrombin 

showed similar extent of improvement compared to DV24K10R (Table 4.15). IC50 are 

1.39 ± 0.17 nM (without pre-incubation) and 1.66 ± 0.21 nM (after 20 min pre-

incubation) (Figure 4.19 A). Ki is 0.0420 ± 0.0061 nM (Figure 4.19 B). Affinity of 

DV24K10RYsulf to thrombin is approximately 70-fold stronger than hirulog-

1/bivalirudin (hirulog-1 Ki = 2.94 ± 0.12 nM). Although cleaved by thrombin, the 

sulfotyrosine containing cleavage product (MH18Ysulf) also inhibited the enzyme 

potently. Activity of MH18Ysulf is independent of pre-incubation times, consistent 

with previous observations of its template peptide MH18. However, compared to the 

latter, MH18Ysulf IC50 values, 1.26 ± 0.18 nM (without pre-incubation) and 1.17 ± 

0.14 nM (20 min pre-incubation), are 9-fold lower (Figure 4.20 A). Assuming fast, 

tight-binding, non-competitive inhibition, Ki of MH18Ysulf is 1.25 ± 0.18 nM, which 

is 11-fold and 2-fold stronger than MH18 and hirulog-1/bivalirudin respectively 

(Figure 4.20 B; Table 4.15). 
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TABLE 4.16 

Optimization of thrombin-s-variegin interactions: C-terminal Tyr27 phosphorylation 
Based on sequences of DV24 and DV24K10R, phospho-Tyr27 was incorporated to produce two variants: DV24Yphos and DV24K10RYphos to check if phosphorylation 
increases their affinities for thrombin. 

 

Name Sequence Theoretical 
mass (Da) 

Observed 
mass (Da) Basis for design 

DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDES 2775.1 2775.3 

• Template sequence for DV24Yphos 
• Fast, tight-binding, competitive inhibitor 
• Has the same Ki as s-variegin  
• Lys at P1 

DV24Yphos SDQGDVAEPKMHKTAPPFDFEAIPEEY^LDDES 2855.1 2855.3 

• Phosphorylation of VTyr27 
• Phosphate group is similar to sulfate in size but has two 

negative charges (cf. to one in sulfate) 
• To investigate if phosphorylation improve affinity for 

thrombin 

DV24K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 2803.1 2803.3 

• Template sequence for DV23K10RYphos 
• Fast, tight-binding, competitive inhibitor 
• Has the same Ki as s-variegin 
• Arg at P1 

DV24K10RYphos SDQGDVAEPRMHKTAPPFDFEAIPEEY^LDDES 2883.1 2883.3 • See DV24Yphos 

 
^represents phosphotyrosine residue 
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TABLE 4.17 

Thrombin inhibitory activity of DV24Yphos and DV24K10RYphos 
Phosphorylation of VTyr27 did not improve peptides affinities as much as sulfation. Affinity of DV24Yphos to thrombin is similar with its template peptide while affinity of 
DV24K10RYphos to thrombin is slightly higher compared to its template peptide. 

 

Name Sequence 
Pre-

incubation 
tine (min) 

IC50 (nM) Ki (nM) Remarks 

0 7.49 ± 0.28 
DV24 SDQGDVAEPKMHKTAPPFDFEAIPEEYLDDE

S 
20 10.07 ± 0.60 

0.306 ± 0.029 • Fast, tight-binding, competitive 
inhibitor 

0 8.67 ± 0.45 
DV24Yphos SDQGDVAEPKMHKTAPPFDFEAIPEEY^LDDE 

20 12.4 ± 1.2 
0.327 ± 0.032 • Fast, tight-binding, competitive 

inhibitor 

0 6.98 ± 0.76 
DV24K10R SDQGDVAEPRMHKTAPPFDFEAIPEEYLDDES 

20 12.01 ± 0.41 
0.259 ± 0.015 • Fast, tight-binding, competitive 

inhibitor 

0 4.64 ± 0.78 
DV24K10RYphos SDQGDVAEPRMHKTAPPFDFEAIPEEY^LDDE

S 
20 7.8 ± 1.8 

0.150 ± 0.018 • Fast, tight-binding, competitive 
inhibitor 

 
^represents phosphotyrosine residue 
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FIGURE 4.20 

Variegin variant MH18Ysulf (fast, tight-binding, non-competitive inhibitor) 
(A) The abilities of MH18Ysulf (0.03 nM, 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 
nM and 1000 nM) to inhibit amidolytic activity of thrombin (1.65 nM) were assayed in 100 µM S2238. 
Dose-response curves are independent of pre-incubation time. IC50 are 1.26 ± 0.18 nM without pre-
incubation (  solid line) and 1.17 ± 0.14 nM after 20 min pre-incubation (  dotted line) (n = 3, error 
bar represents S.D.). 

(B) Since MH18Ysulf behaved as a fast and tight-binding inhibitor, thrombin (1.65 nM) inhibition was 
tested with 0.20 nM, 0.39 nM, 0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM and 100 
nM of MH18Ysulf at 100 μM of S2238 (  solid line). Apparent inhibitory constant Ki’ obtained by 
fitting data to equation (3) is 1.25 ± 0.18 nM. The inhibitory constant Ki is calculated to be 1.25 ± 0.18 
nM based on equation (5) and (6) (n = 3, error bar represents S.D.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 4.21 

Variegin variant DV24Yphos (fast, tight-binding, competitive inhibitor) 
(A) Dose-response curves of thrombin (1.65 nM) inhibition by DV24Yphos (0.03 nM, 0.1 nM, 0.3 nM, 1 
nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM and 1000 nM) in 100 µM S2238 showed a right shift with 
increased pre-incubation time due to cleavage. IC50 are 8.67 ± 0.45 nM without pre-incubation (  solid 
line) and 12.4 ± 1.2 nM after 20 min pre-incubation (  dotted line) (n = 3, error bars represent S.D.). 

(B) Since DV24Yphos behaved as a fast and tight-binding inhibitor, thrombin (1.65 nM) inhibition was 
tested with 0.39 nM, 0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM, 100 nM and 200 
nM of DV24Yphos at 100 μM of S2238 (  solid line). Apparent inhibitory constant Ki’ obtained by 
fitting data to equation (3) is 10.4 ± 1.0 nM. The inhibitory constant Ki is calculated to be 0.327 ± 0.032 
nM based on equation (4) (n = 3, error bars represent S.D.). 

A B 

A B 
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FIGURE 4.22 

Variegin variant DV24K10RYphos (fast, tight-binding, competitive inhibitor) 
(A) Dose-response curves of thrombin (1.65 nM) inhibition by DV24Yphos (0.03 nM, 0.1 nM, 0.3 nM, 1 
nM, 3 nM, 10 nM, 30 nM, 100 nM, 300 nM and 1000 nM) in 100 µM S2238 showed a right shift with 
increased pre-incubation time due to cleavage. IC50 are 4.64 ± 0.78 nM without pre-incubation (  solid 
line) and 7.8 ± 1.8 nM after 20 min pre-incubation (  dotted line) (n = 3, error bars represent S.D.). 

(B) Since DV24Ypho behaved as a fast and tight-binding inhibitor, thrombin (1.65 nM) inhibition was 
tested with 0.39 nM, 0.78 nM, 1.56 nM, 3.13 nM, 6.25 nM, 12.5 nM, 25 nM, 50 nM, 100 nM and 200 
nM of DV24K10RYphos at 100 μM of S2238 (  solid line). Apparent inhibitory constant Ki’ obtained 
by fitting data to equation (3) is 4.78 ± 0.57 nM. The inhibitory constant Ki is calculated to be 0.150 ± 
0.018 nM based on equation (4) (n = 3, error bars represent S.D.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 4.23 

Effects of various designs 
A summary of the effects of various designs employed. See text for details. 

A B 
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Phosphorylation of VTyr27 produced results with slightly ambiguous trend. 

IC50 values for DV24Yphos are 8.67 ± 0.45 nM (without pre-incubation) and 12.4 ± 1.2 

nM (after 20 min pre-incubation) (Figure 4.21 A). Ki of the peptide is 0.327 ± 0.032 

nM (Figure 4.21 B). Thus, when present along with Lys at P1, phosphorylation of 

VTyr27 is marginally less active than DV24 (Table 4.17). However, when present 

along with Arg at P1, phosphorylation of VTyr27 improved activity of peptide by 

around 1.5-fold. IC50 for DV24K10RYphos are 4.64 ± 0.78 nM (without pre-incubation) 

and 7.8 ± 1.8 nM (after 20 min pre-incubation) (Figure 4.22 A). Inhibitory constant Ki 

was determined to be 0.150 ± 0.018 nM (Figure 4.22 B; Table 4.17). Therefore, 

despite similar properties of sulfate and phosphate moiety, sulfation of Tyr27 

appeared to be more advantageous in terms of the activity of the peptides. It is very 

likely that the presence of sulfo-Tyr27 and the truncation of extra residues in variegin 

variants caused a rearrangement of C-terminal conformation to mimic hirugen/hirudin 

C-termini. Therefore, strong affinities are obtained in these variants through 

optimization of C-terminal interactions. 
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FIGURE 4.24 

Inhibitory constant, Ki, of all s-variegin variants compared to hirulog-1 
Variegin variants are sorted according to their mechanism of actions. All competitive inhibitors (fast or slow) have higher affinities to thrombin compared to hirulog-1. The 
most potent variant DV24K10RYsulf is about 70-fold stronger. Even their cleavage products (non-competitive inhibitors) are potent inhibitor, with one of them, MH18Ysulf, 
binds to thrombin approximately 2-fold tighter than hirulog-1. 

Fast, tight-
binding, 
competitive 

Slow, tight-
binding, 
competitive 

Fast, tight-
binding, non-
competitive 
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4.4. DISCUSSION 

 

Despite the use of full-length s-variegin for co-crystallization with thrombin, 

only the density of the C-terminal cleavage fragment was observed in our structure. 

The structure provided the basis to explain the classical non-competitive inhibition 

observed with variegin cleavage product. In thrombin-hirulog-1 complex, hirulog-1 

was cleaved by thrombin and a large portion of C-terminal cleavage fragment was 

also missing in the structure (Skrzypczak-Jankun et al., 1991). However, unlike s-

variegin, hirulog-1 N-terminal cleavage fragment (D-FPR) was observed to occupy 

thrombin active site (at the non-prime subsites). As predicted and discussed in 

Chapter 3, affinity of s-variegin N-terminal fragment for thrombin is likely to be 

weaker compared to that of hirulog-1. Thus, it is not surprising that after cleavage, the 

N-terminal fragment dissociates from thrombin before crystallization. This may in 

turn explain the long period of time needed for the growth of crystals (six to eight 

weeks).  

 

Considering the less than ideal interactions provided by s-variegin N-terminus, 

we substituted P1 Lys with Arg in some of the new variants as this substitution is 

reported to increase affinity for thrombin by 10-fold through better fit to S1 subsite 

(Bode et al., 1992; Vindigni et al., 1997). Our results showed that improvement of 

affinities due to this substitution are variable. The most drastic effect of this change 

occurred in DV23K10R, with 4-fold decrease in Ki compared to DV23. In other cases 

such as DV24, DV24Ysulf and DV24Yphos, the effects of substitution is less than 2-fold. 

It is likely the loose fitting of P1 Lys is compensated by the extensive interactions 

between s-variegin P′ residues and thrombin S′ subsite. The anchoring effect of P′ 
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residues, along with the narrow cleft of thrombin active site, ensure strong binding of 

variegin despite loosely fitting P1 Lys. In contrast, DV23/DV23K10R-thrombin 

interactions around the prime subsites are likely to be disturbed due to deletion of 

Pro16 (DV23 Ki is 7-fold higher than DV24). In this situation, P1 Arg facilitated 

stronger binding of V(5DVAEPR10) sequence to active site compared to P1 Lys, 

reflected by the higher gain in affinity. Similarly, less favorable P1 Lys is found in a 

natural substrate PAR3, which also contains a fragment similar to hirudin C-terminal 

(Coughlin, 2000).  

 

Instead of directly involved in binding, the segment containing seven s-

variegin N-terminal residues was previously shown to dictate s-variegin binding 

kinetics (Chapter 2). In its absence, EP25 binds thrombin in a less optimized 

conformation before slowly isomerizing into a stable complex without loss of 

eventual affinity. An ‘electrostatic steering’ role for this N-terminal segment was 

proposed considering the possible complementary charges with thrombin exosite-II 

(see Figure 2.15 in Chapter 2). Unfortunately, the N-terminal cleavage fragment is not 

found in the complex structure, and hence the mechanism for fast binding due to the 

first seven residues remains elusive. However, by extending the slow binding peptide 

EP21 by three residues on its N-terminus, which includes the negatively charged 

amino acid Asp, we are able to restore the fast binding characteristics. Thus, the prime 

subsites anchoring effect (discussed above) mainly drives affinity for thrombin active 

site, while the N-terminal steering effect is needed for proper pre-orientation of this 

segment. With a fitting conformation (assisted by N-terminus), s-variegin or DV24 P1 

to P3 residues can be inserted rapidly into thrombin active site (assisted by prime 
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subsites targeting). Once in the acidic S1 pocket, P1 Lys interacts with TAsp189 with 

only a minimal overall loss of binding strength compared to P1 Arg.  

 

This mode of binding which results in less stringent requirement for P1 

residue in variegin might be exploited for the design of new and specific thrombin 

inhibitors. Considering the depth of the S1 pocket, residues with long aliphatic side 

chain such as Leu or Met might replace Lys in variegin variants. Loss of affinity 

accompanying such substitution might be largely compensated by the prime subsites 

anchoring and N-terminal steering effects of variegin. Allowance for non-basic P1 

residues – Leu in heparin cofactor-II (Baglin et al., 2002), D-Tyr (Riester et al., 2005) 

and Trp (Malikayil et al., 1997) – are possible in cases where interactions at other 

positions/exosites are optimized. Most of the other blood coagulation serine 

proteinases (and trypsin) have specificity for basic P1 residue, thus replacement with 

a neutral side chain could further improve the selectivity of the inhibitor for thrombin. 

As variegin already has high selectivity for thrombin (more than four orders of 

magnitude, see Chapter 2), the possibilities of further P1 substitutions were not 

explored within the scope of this thesis. 

 

Only one ion pair (VGlu27-TArg75) can be observed in the complex despite 

the apparent complementary charges between exosite-I and s-variegin C-terminus. In 

hirudin, electrostatic interactions are important for initial association with thrombin 

providing both steering (by complementary in electrostatic fields) and tethering (by 

specific ion pairing) effects (Myles et al., 2001). The ionic tethering is the rate-

limiting step (Jackman et al., 1992) and explained the observation that hirudin binds 

thrombin slowly in solutions with high ionic strength (> 0.2) (Stone and Hofsteenge, 
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1986). As discussed in Chapter 2, ionic tethering in s-variegin is not the rate-limiting 

step in its association with thrombin (see Figure 2.15 in Chapter 2). The presence of 

only one ion pair, thus minimal effect of ionic tethering, in the structure supports this 

hypothesis. In contrast, extensive non-polar interactions are observed. Similarly, only 

one ion pair is present in thrombin-hirulogs/hirugen structures (Skrzypczak-Jankun et 

al., 1991; Qiu et al., 1992). Thus, the role of ion pairings in thrombin exosite-I 

interactions appeared to be over-emphasized previously (evident from the common 

use of the name ‘anion-binding exosite-I’). This echoes the sentiment of J. A. 

Huntington that “it is more accurate to call exosite-I the apolar-binding exosite, and 

exosite-II the anion-binding exosite” (Huntington, 2005).  

 

Compared to the non-prime subsites, understanding of thrombin prime 

subsites (especially S2′ and beyond) binding preferences is much less complete. 

Nonetheless, S′ subsites interactions are important for binding (Laskowski, Jr. and 

Kato, 1980). Pertinent to thrombin, inclusion of P3′ and P4′ residues improved 

binding affinity of fibrinopeptide A by ~ 10-fold (Marsh, Jr. et al., 1983). Systematic 

probing of thrombin S′ subsites with ‘methyl scan’ also produced inhibitors with 

strong binding affinities demonstrating the potential for targeting thrombin prime 

subsites in the design of potent inhibitors (Slon-Usakiewicz et al., 1997). In hirulog-1, 

the glycyl linkers connect the active site and exosite-I binding moieties without 

displaying specific interactions with thrombin prime subsites. As a result, this 

segment in is disordered its crystal structure (Skrzypczak-Jankun et al., 1991) and the 

activity is rapidly lost after cleavage by thrombin [(Witting et al., 1992) and Chapter 

3]. When anchored by a non-hydrolyzable active site binding moiety and an exosite-I 

binding segment, the non-specific linker was forced to fit into the canyon-like cleft in 
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prime subsites as seen in hirulog-3 (Qiu et al., 1992) and P498 (Fethiere et al., 1996). 

In these cases, S′ subsite interactions are sub-optimal and lack specific side chain 

interactions. As a result, extensive and lengthy optimizations through synthetic 

chemistry using multiple unnatural amino acids were necessary to produce potent 

prime subsites-binding inhibitors (Matthews et al., 1996; Slon-Usakiewicz et al., 1997; 

Slon-Usakiewicz et al., 2000). In contrast, tight-fitting to prime subsites in s-variegin 

is achieved through specific interactions involving side chains of natural amino acids. 

Information obtained from this structure can help in our understanding of thrombin 

prime subsites interactions for future drug design. Significantly, Thr14 in native 

variegin is modified by a hexose. However, the pocket that holds unmodified Thr14 

side chain is too small to accommodate the hexose moiety. Thus, binding of glyco-

Thr in native variegin might involve rearrangement of thrombin or the inhibitor 

around this region. Such changes are likely in view of the proximity of the flexible 

autolysis loop to Thr14. The autolysis loop plays important roles in interactions of 

FXa (Manithody et al., 2002), FIXa (Yang et al., 2003) and APC (Yang et al., 2005) 

with their substrates and inhibitors. Extensive interactions of rhodniin and 

ornithodorin with thrombin autolysis loop were also reported (van de et al., 1995; van 

de et al., 1996). 

  

This is the first time structural information about thrombin prime subsites was 

obtained from a natural thrombin inhibitor that is firmly inserted into the thrombin 

canyon-like cleft extending from active site to exosite-I. None of the naturally 

occurring thrombin inhibitors that have been crystallized previously binds thrombin in 

the same way. Among all, hirudin is most similar to s-variegin and the two overlaid 

well in a short segment where they shared almost identical sequences DFEA(E)I. 
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However, compared to s-variegin P2′ to P4′ which bind close to the thrombin, 

corresponding residues (Gln49, Ser50 and His51) in hirudin [PDB entry 1HRT (Vitali 

et al., 1992) was used for comparison] pointing away from thrombin prime subsites. 

Distances measured based on Cα atom showed these residues are at an average of 5.79 

Å ‘above’ s-variegin, with respect to thrombin. In the thrombin-sulfo-hirudin complex 

structure densities for these residues were not traced suggesting minimal contacts with 

thrombin prime subsites (Liu et al., 2007). Other inhibitors including rhodniin  (van 

de et al., 1995), ornithodorin (van de et al., 1996) and boophilin (Macedo-Ribeiro et 

al., 2008) do not get inserted into the canyon-like cleft. The presence of relatively 

bulky Kunitz or Kazal domains in both ends of these molecules precluded close fitting 

of their linker peptides into the bottom of the cleft. The firm insertion of (variegin) 

peptides in extended conformation into the cleft is probably the minimum structure 

needed to achieve maximum and simultaneous binding to thrombin catalytic pocket, 

prime subsites and exosite-I. This ‘minimalist’ approach in nature (ticks) confers an 

advantage of minimum energy expenditure (protein synthesis) for maximum outcome 

(potent inhibition of coagulation enzymes for blood meals).  
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4.5. SUMMARY 
 

The 2.4 Å resolution thrombin-s-variegin complex structure was solved. 

Despite our efforts to crystallize full-length s-variegin, only density for C-terminal 

segment of s-variegin was traced. Structural basis of non-competitive inhibition of 

thrombin by s-variegin cleavage product was revealed. Thirteen new variegin variants 

were designed and synthesized based on the structure as well as other prior 

knowledge. These variants that have been designed and characterized cover a diverse 

spectrum of potency, kinetic and mechanism of inhibition, including peptides with 

affinities ranging from nanomolar to picomolar values, with fast and slow tight-

binding, displaying competitive and non-competitive inhibition (Figure 4.24), laying a 

solid foundation for further development of variegin as a therapeutic agent. 
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Chapter Five 

 
 
 
 
 
 
 

 
 
 

In vivo antithrombotic effects of 
variegin variants and their 

neutralizations in vitro 
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5.1 INTRODUCTION 

 

Variegin potently inhibited thrombin, targeting the catalytic pocket, prime 

subsites and exosite-I. Depending on the length of N-terminus, variegin variants could 

either be fast or slow binding. After being hydrolyzed, its cleavage product non-

competitively inhibited thrombin active site, resulting in prolonged inhibition of the 

enzyme. In vitro this novel class of inhibitors appeared to be more superior to hirulog-

1/bivalirudin, the commercially available peptide-based inhibitor of thrombin. 

However, as is with all other molecules, reproducing the in vitro activities in vivo 

remained one of the biggest hurdles that many fell at. In the development of 

anticoagulants one has to control the delicate balance between thrombosis and 

hemostasis and demonstrate the in vivo efficacy even at early stages of lead 

optimization. This is mainly due to the subtle and complex environment where 

anticoagulant exerts its action: locally high concentrations of coagulation proteinases 

and cofactors, in the presence of blood cells and vascular wall components, under 

constant but most of the time abnormal (turbulence and stasis) blood flow, and 

possibly local hypoxia and acidosis (Levi et al., 2001). Establishment of in vitro-in 

vivo correlations can help in guiding the lead optimization process towards the best 

drug candidate. Since anticoagulants are useful in the treatment of venous thrombosis 

(Eikelboom and Hirsh, 2007), we looked to test the variegin peptides in animal 

models of venous thrombosis.  

 

The use of animal models of venous thrombosis has a history of more than 60 

years. These models were used either for investigation of in vivo thrombus formation 

or for evaluation of pharmacological interventions. At least 18 different species are 
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used, but the most common ones are dogs, rats and rabbits. Techniques used, although 

highly variable, shared the common principle of inducing either vascular injury, blood 

stasis or local activation of coagulation and measure the thrombus formation, growth 

or lysis (Levi et al., 2001). Selection of models depends on the objective of the studies 

and typically many different models were used for pre-clinical development of 

anticoagulants to investigate different pharmacodynamics and pharmacokinetics of 

those molecules (Maraganore, 1993; Markwardt, 1994). 

 

While it is of our interest to evaluate variegin and its variants in venous 

thrombosis models, our laboratory lacks the experience and technical ability to 

conduct such studies independently. Therefore, we worked in collaboration with Prof. 

Pudur Jagadeeswaran from University of North Texas to determine the efficacy of the 

peptides in zebrafish model. There is a wide collection of information available 

demonstrating that human and zebrafish have similar hemostatic pathways 

(Jagadeeswaran et al., 2005; Jagadeeswaran, 2005). Zebrafish plasma was found to be 

responsive to activators for intrinsic and extrinsic pathways [e.g. ellagic acid, 

thromboplastin and Russell’s viper venom factor X (RVV-X) activator]. The presence 

of AT-III, HC-II, protein C and vitamin-K-dependent γ-carboxylation proteinases 

homologues in zebrafish were also demonstrated by the abilities of heparin 

(antithrombin-dependent thrombin/FXa inhibitor), Protac (protein C activator) and 

warfarin (vitamin-K antagonist) to inhibit activities of the relevant coagulation factors 

(Jagadeeswaran and Sheehan, 1999). Full or partial cDNAs of several important 

coagulation factors were also cloned, further suggested similarities in hemostasis 

system between zebrafish and mammals. cDNAs or genes of coagulation factors 

identified include prothrombin (Jagadeeswaran et al., 2000), FVII (Sheehan et al., 
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2001), FV, FIX, FX, AT, TFPI, HC-II and plaminogen precursor (Hanumanthaiah et 

al., 2002). The nucleated equivalents of platelet, thrombocyte, was also found 

(Jagadeeswaran et al., 1999). Therefore, the large extent of conservation of 

hemostasis system between zebrafish and mammals makes it a relevant model to 

study thrombosis and hemostasis in vivo.  

 

Dr. Jagadeeswaran and his laboratory have devised a novel method to screen 

for antithrombotic compounds using venous thrombosis model in zebrafish larvae 

(Jagadeeswaran, 2008). Zebrafish larva is transparent and has easily visualized, well-

defined blood vessels. Established techniques are available for introducing peptides 

into the blood stream of the larvae as well as accurately inducing uniform vascular 

wound by laser ablation. Zebrafish thrombocytes (equivalent to platelets in mammals) 

and other blood cells are large enough for visualization of thrombus formation in vivo 

under the microscope without additional labeling procedures. The time taken for 

thrombus formation and hence vascular occlusion after laser-induced injuries can be 

measured to ascertain in vivo activities of peptides. Breeding and maintenance of 

zebrafish is easier than other animals and with possibly up to 17 peptides to be 

evaluated, zebrafish models will provide faster turnover rate and minimizing 

unnecessary use of higher animals.  

 

One of the inherent major side effects of anticoagulants is increase risk of 

bleeding. Therefore, it is desirable for availability of appropriate ways to neutralize 

bleeding complications in the event such as overdosage (Schulman and Bijsterveld, 

2007). We looked into the possibility of identifying an antidote for the variegin 
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peptides. We tested and demonstrated the ability of protamine sulfate, a clinically 

available antidote for heparin, to reverse activities of s-variegin and two of its variants.  

 

This chapter deals with two clinically important considerations for the 

development an anticoagulant: in vivo efficacy and availability of antidote. Variegin 

and its variants compared favorably against hirulog-1/bivalirudin in both aspects, thus 

demonstrated the viability of developing variegin (and variants) as novel 

anticoagulants.  
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5.2. MATERIALS AND METHODS 

 

5.2.1. Materials 

Adult zebrafish and zebrafish larvae were maintained in Department of 

Biological Sciences, University of North Texas, Denton, Texas, USA. All other 

materials used were as described in Chapter 2. For details please refer to ‘Section 

2.2.1. Materials’.  

 

5.2.2. Synthesis, purification and mass spectrometry of peptides 

Synthesis, purification and mass spectrometry analysis of all peptide followed 

the procedures described in Chapter 2 and Chapter 4 (for sulfotyrosine containing 

peptide). For details please refer to ‘Section 2.2.3.1. Peptide synthesis’ in Chapter 2 

and ‘Section 4.2.2. Synthesis, purification and mass spectrometry of peptides’ in 

Chapter 4. 

 

5.2.3. Breeding of zebrafish 

The zebrafish breeding tank was assembled with two 1 L tanks. The bottom of 

one tank was cut off and placed onto a sterilized mesh. This tank was subsequently 

inserted into a second tank with intact bottom. A pair of zebrafish was then placed 

into the breeding tank at the end of a light cycle. The mesh served to isolate the pair 

of zebrafish in the top tank. Within the first 2 h of the next light cycle, the fish begin 

to spawn and eggs collect at the bottom of the breeding tank under the protection of 

the mesh. After removal of fish, water in the breeding tank was filtered through a 

brine shrimp net which retains the eggs. The net was immediately inverted over a 

Petri dish containing E3 media (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 
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mM MgSO4 and 10-5% methylene blue), releasing the eggs and other contaminating 

materials such as feces. The eggs were subsequently transferred into fresh E3 media 

with a plastic Pasteur pipette. This cleaning step was repeated twice before the eggs 

were transferred into a new tank and maintained at 28.5 °C for hatching.  

 

5.2.4. Microinjection 

Larvae at 4 days-post-fertilization (dpf) were used to determine in vivo 

activities of peptides in venous thrombosis model. Intravenous microinjections of 

peptides were performed using Nanoject II (Drummond, Broomall, Pennsylvania, 

USA) with glass injection needles (3.5-in. capillaries) pulled on a vertical pipette 

puller (Knopf, Tujunga, California). The tips of the pulled needles were clipped using 

small scissors and filled with 500 μM of peptides dissolved in phosphate buffered 

solution (PBS). Ten nanolitres of peptides or PBS were injected into the larvae 

circulation through the posterior (caudal) cardinal vein. The site for microinjection of 

peptides is indicated in Figure 5.1 [adapted from (Isogai et al., 2001)], which showed 

an angiogram of a zebrafish larva at approximately 4.5 dpf. 

 

5.2.5. Mounting of zebrafish larvae in agarose 

Each larvae injected with peptides were placed in 0.5 ml of distilled water 

added with 6 μl of 10 mM Tricaine solution for anesthetization. To this water 

containing larvae equal volume of 1% low-melt agarose solution (maintained at 35 °C 

in a water bath) was added. The mixture (with anesthetized larvae) was poured onto a 

glass microscopic slide within a rectangular rubber gasket to mount the larvae flat on 

their side in agarose.  
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FIGURE 5.1 [adapted from ‘The Vascular Anatomy of the Developing Zebrafish: An Atlas of Embryonic and Early Larval 
Development’ (Isogai et al., 2001)] 

Angiogram of a zebrafish larva at approximately 4.5 dpf showing its circulation system in lateral view 
(A) The heart of the larva 

(B) The posterior (caudal) cardinal vein, this is the site where 10 nl of peptide solution were injected  

(C) The anal pore 

(D) The caudal vein, this is the site for laser ablation which is approximately five somites towards the tail end from anal pore 

D 

A 

B 

C 

tail head 
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5.2.6. Laser ablation 

Laser ablation of larvae veins were performed with pulsed nitrogen laser light 

pumped through coumarin 440 dye (445 nm) (MicroPoint Laser system, Photonic 

Instrument, St Charles, Illinois, USA) at 10 pulses/second with laser intensity setting 

at 10. Accuracy of the laser was tested before ablations. Laser ablation of each larva 

was carried out 20 min after microinjection of the peptide. Glass slides were placed 

under Optipnot phase-contrast fluorescence microscope (Nikon, Melville, New York, 

USA). The larvae were viewed with 20X lens (10X eyepiece) to locate the site for 

laser ablations, which was five somites towards the caudal end from the anal pore 

(Figure 5.1 & 5.2). Laser beam aimed at the caudal vein within the ablation site was 

triggered for 3 s. The process was recorded using a digital camera attached to a video 

home system (VHS) recorder and a monitor. Thrombus formation following vein 

injury due to laser ablation was monitored and the time taken for complete occlusion 

of injured vein was recorded. Three short video recording the thrombus formation (or 

lack of) in larvae injected with PBS, MH22 and DV24K10RYsulf were attached in this 

thesis, see Appendix C for details. 

 

5.2.7. Neutralization of thrombin inhibitory activity of peptides 

The ability of protamine sulfate to reverse inhibition of thrombin amidolytic 

activity by peptides was assayed using the chromogenic substrate S2238. All assays 

were performed in 96-well microtiter plates in 50 mM Tris buffer (pH 7.4) containing 

100 mM NaCl and 1 mg/ml BSA at room temperature. Typically, 100 μl of peptide 

and 100 μl of protamine sulfate were pre-incubated for 10 min before the addition of 

50 μl of human plasma derived thrombin. 50 μl of S2238 were added to initiate the 

reaction. Details of each experiment are described along with the graphs representing 
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the results obtained. The rates of formation of colored product pNA were followed at 

405 nm for 10 min with SPECTRAMax Plus microplate spectrophotometer 

(Molecular Devices, Sunnyvale, California, USA). Percentages of inhibition in the 

presence and absence of protamine sulfate were compared for calculation of 

percentages of reversal. 
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5.3. RESULTS 

 

5.3.1. In vivo antithrombotic effects of the peptides 

Five inhibitors were selected as representative peptides to test for their 

antithrombotic effects in vivo using venous thrombosis model of zebrafish larvae. 

They are: (1) s-Variegin, the full-length sequence of native variegin – a fast, tight-

binding competitive inhibitor (Ki = 0.318 ± 0.020 nM); (2) EP25, without seven N-

terminal residues, has similar affinity to thrombin (Ki = 0.370 ± 0.11 nM), but it is a 

slow binding inhibitor; (3) MH22, the cleavage product that is a fast and tight-binding, 

non-competitive inhibitor (Ki = 14.11 ± 0.29 nM); (4) DV24K10RYsulf, the peptide 

with the most potent in vitro activity (Ki = 0.0420 ± 0.0061 nM); and (5) hirulog-1, 

fast, tight-binding, competitive inhibitor currently in the market (Ki = 2.94 ± 0.12 nM). 

Hirulog-1 was used as positive control of the experiments. 

 

All five peptides were injected into the zebrafish larvae circulation through the 

posterior (caudal) cardinal vein at a single dose (500 μM, 10 nl). Antithrombotic 

effects of the peptides are measured by the abilities of all peptides to delay time-to-

occlusion (TTO) of caudal vein after laser ablation. After laser ablation, control TTO 

of a wild-type 4 dpf larva is about 21 s (Jagadeeswaran et al., 2006). Typically, if 

thrombus formation is inhibited (due to either an antithrombotic agent or genetic 

defect), TTO can be delayed up to 150 s, beyond which complete occlusion will not 

occur (Seongcheol Kim, personal communication). Therefore, the dose for injection 

(500 μM, 10 nl) was carefully selected based on a few preliminary experiments such 

that a definite TTO can be obtained for most, if not all, of the peptides. 
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Zebrafish larvae injected with the same volume of PBS have a TTO (mean ± 

S.D.) of 19.0 ± 3.2 s (Figure 5.3 & 5.4; Appendix C). s-Variegin (Ki = 0.318 ± 0.020 

nM) is strongly antithrombotic, with TTO of 120.8 ± 7.4 s. In contrast, EP25, despite 

having similar Ki as s-variegin, does not show any activity. With a TTO of 22.5 ± 6.2 

s, EP25 did not show any significant antithrombotic effect compared with same batch 

of larvae injected with PBS. MH22 (Ki = 14.11 ± 0.29 nM) showed good activity with 

TTO of 33.3 ± 2.9 s (Figure 5.5; Appendix C). DV24K10RYsulf (Ki = 0.0420 ± 0.0061 

nM) is the most potent inhibitor and it completely inhibited of thrombus formation 

(Appendix C). Hirulog-1/bivalirudin (Ki = 2.94 ± 0.12 nM), as reference drug, 

prolonged the TTO to 45.0 ± 5.5 s. Overall, other than EP25, the antithrombotic 

effects of the peptides correlated well with their affinities for thrombin. Thus, slow 

binding inhibition mode (EP25) is not desirable for in vivo efficacy while both fast, 

competitive (s-variegin, DV24K10RYsulf and hirulog-1) and fast, non-competitive 

(MH22) inhibition are effective (Figure 5.3). Our results are consistent with similar 

observations reported earlier about the importance of rapid thrombin inhibition for 

efficacious antithrombotic agents (Stone and Tapparelli, 1995). 

 

5.3.2. Neutralization of thrombin inhibitory activity of the peptides 

The ability of protamine sulfate to reverse inhibition of thrombin amidolytic 

activity by the peptides was assayed using the chromogenic substrate S2238. 

Protamine is a mixture of highly cationic peptides originally extracted from fish 

sperm nuclei. Protamine sulfate is clinically used for the reversal of anticoagulant 

effect of heparin by binding to the anionic heparin molecules (Schulman and 

Bijsterveld, 2007). Variegin has several acidic residues at its C-terminus which could 

215



 

 

 

 

 

 

 

 

 

 
 
 
 

FIGURE 5.2 

The site for laser ablation 
Zebrafish 4 dpf larva was viewed with 20X lens (10X eyepiece) to locate the site for laser ablation, 
which was five somites (marked ‘A’) towards the caudal end from the anal pore (marked ‘B’). Laser 
beam aimed at caudal vein (marked ‘C’) within the ablation site was triggered for 3 s. Thrombus 
formation following vein injury due to laser ablation was monitored and the time taken for complete 
occlusion of injured vein was recorded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 5.3 

TTO for zebrafish larvae injected with different peptides 
Zebrafish 4 dpf larvae were injected with 10 nl of different peptides at 500 μM or 10 nl of PBS as 
control. The larvae caudal vein was injured by laser ablation 20 min after injection of the peptides or 
PBS. TTO after laser ablation were recorded up to 150 s for comparison of antithrombotic effects of 
different peptides. TTO of PBS, hirulog-1, s-variegin, EP25 and MH22 are 19.0 ± 3.2 s, 45.0 ± 5.5 s, 
120.8 ± 7.4 s, 22.5 ± 6.2 s and 33.3 ± 2.9 s, respectively. Within 150 s, no thrombus was formed in 
larvae injected with DV24K10RYsulf. With the exception of the slow binding inhibitor EP25, the 
abilities of the peptides to prolong TTO generally correlate with their Ki (n = 4, error bars represent 
S.D.).

C 

A 

B 
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FIGURE 5.4 

Thrombus formation in zebrafish larva after laser injury: PBS 
Pictures captured from video recording thrombus formation in zebrafish larva after laser injury. The larva was injected with PBS 20 min before laser ablation. At 0 s, laser 
beam was fired inducing an injury at caudal vein (arrow). After 4 s, blood cells began to adhere at the site of injury. Thrombus grew to a visible size by 11 s. After 21 s, the 
large thrombus formed totally occluded the flow of blood through the injured vein and this time (TTO) was recorded. See Appendix C for video. 

0 s

21 s

4 s

11 s
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FIGURE 5.5 

Thrombus formation in zebrafish larva after laser injury: MH22 
Pictures captured from video recording thrombus formation in zebrafish larva after laser injury. The larva was injected with MH22 20 min before laser ablation. At 0 s, laser 
beam was fired inducing an injury at caudal vein (arrow). Compared to larva injected with PBS, blood cells adherence was delayed to 9 s. Thrombus grew to a visible size by 
21 s (cf 11 s in control). TTO was prolonged to 35 s, demonstrating the in vivo antithrombotic effect of the peptide. See Appendix C for video. 

35 s21 s

0 s 9 s
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be the target for protamine sulfate. This option was first explored since there are 

ample clinical experiences for protamine sulfate administration.  

 

Fixed concentrations of s-variegin, DV24K10RYsulf and MH22 (at their 

respective IC50 and IC90) were incubated with various concentrations of protamine 

sulfate before assaying their residual thrombin inhibitory activities. Protamine sulfate 

reversed the effects of all three peptides dose-dependently (Figure 5.6). Activities of 

s-variegin and MH22 were reversed to similar extent. At IC50 of s-variegin (8.25 nM) 

and MH22 (11.5 nM), approximately 50% of reversal were achieved with 0.1 mg/ml 

of protamine sulfate. Percentage of reversal saturated at around 75% despite high 

concentrations of protamine sulfate. In contrast, for DV24K10RYsulf at its IC50 

concentration (1.4 nM), 1 mg/ml of protamine sulfate was needed for ~ 50% of 

reversal. As expected, concentrations of protamine sulfate needed to neutralize effects 

of peptides at their IC90s were higher than at IC50s (Figure 5.6). Therefore, protamine 

sulfate can neutralize most of the effect of variegin peptides. s-Variegin and MH22 

has identical C-termini (represented by MH22 sequence) but DV24K10RYsulf C-

terminus (represented by MH18Ysulf sequence) is sulfated and has stronger affinity for 

thrombin. S-variegin and MH22 were neutralized to the similar extent. Higher 

concentrations of protamine sulfate are needed for DV24K10RYsulf reversal. 

Therefore, the binding between protamine sulfate and the peptides are likely to be 

mediated through the acidic C-termini of variegin peptides. 
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FIGURE 5.6 

Thrombin inhibitory effects of the peptides are reversed by protamine sulfate 
The ability of protamine sulfate to reverse inhibition of thrombin amidolytic activity by the peptides was assayed using the chromogenic substrate S2238. Protamine sulfate (3 
mg/ml, 1 mg/ml, 0.3 mg/ml, 0.1 mg/ml, 0.03 mg/ml, 0.01 mg/ml, 0.003 mg/ml and 0.001 mg/ml) were incubated with peptides at their IC50 concentrations (solid lines) – 8.25 
nM s-variegin ( ), 11.5 nM MH22 ( ) and 1.4 nM DV24K10RYsulf ( ) – for 10 min before addition of thrombin (1.65 nM). Amidolytic activity of thrombin was assayed 
with 100 μM S2238. Percentages of inhibition in the presence and absence of protamine sulfate were compared for calculation of percentages of reversal. s-Variegin and 
MH22 can be reversed to similar extent but higher concentrations of protamine sulfate are needed for effective reversal of DV24K10RYsulf.  

Similar experiments were conducted with the peptides at their IC90 concentrations (dotted lines): 167 nM for s-variegin ( ), 224 nM for MH22 ( ) and 13.6 nM for 
DV24K10RYsulf ( ). Higher concentrations of protamine sulfate are needed for reversal of all three peptides. s-Variegin and MH22 are again neutralized to the same extent, 
while it is more difficult to neutralize DV24K10RYsulf. Therefore, the peptides acidic C-terminal residues are most likely responsible for protamine sulfate binding. 
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5.4. DISCUSSION 

 

Clinical experiences showed that prevention of thrombus formation 

(anticoagulation) are effective for initial and long-term management of both arterial 

[acute conorary syndrome (ACS) and stroke] and venous [venous thromboembolism 

(VTE)] thrombosis (Marder et al., 2004; Eikelboom and Hirsh, 2007). Similar to other 

direct thrombin inhibitors (DTI), variegin will have several advantages over 

conventional anticoagulants such as heparin and warfarin. For example, variegin 

efficacy will not be dependent on other endogenous proteins (e.g. AT-III), has no 

significant binding to other plasma proteins (specific for thrombin), not inhibited by 

platelet factor 4 (unlike heparin), does not cause HIT (again unlike heparin), able to 

inhibit both free and clot-bound thrombin (being small enough to diffuse into fibrin 

clot), has rapid onset of action (especially if parenterally administrated) and with 

lesser drug-drug and drug-food interactions (unlike warfarin) (Bauer, 2002; Gurm and 

Bhatt, 2005; White, 2005). Clinically, some of the possible indications for variegin, 

inferred from other DTIs, include: (1) as heparin replacement in HIT; (2) for venous 

thrombosis prophylaxis after major orthopedic surgery; (3) for prevention of arterial 

thrombosis and reocclusions during/after invasive cardiology particularly PCI; and (4) 

for management of acute coronary syndrome (ACS) and myocardiac infartion (MI) 

(Bates and Weitz, 2006; Warkentin et al., 2008). In the event where variegin is 

formulated to become orally available or being used as template to produce 

peptidomimetics for oral administration, the possible indications would include long-

term management of venous thromboembolism (VTE) (Gustafsson et al., 2004).  
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Clinically, efficacies, indications and side effects of DTIs (hirudin, bivalirudin, 

argatroban and dabigatran) differ due to inherent differences in their 

pharmacodynamics and pharmacokinetics. Therefore, it is important that potential 

clinical benefits of variegin (or its variants) to be considered in the light of its 

similarities and differences with other DTIs. Variegin and some of its variants 

inhibited thrombin potently with low Ki (between ~ 0.04 to 0.3 nM). Their affinities 

for thrombin is stronger than bivalirudin (Ki = 2.3 nM) (Maraganore et al., 1990), 

argatroban (Ki = 3.2 nM) (Fareed and Jeske, 2004) and dabigatran (Ki = 4.5 nM) 

(Wienen et al., 2007) but weaker than hirudin (Ki = 0.2 pM) (Stone and Hofsteenge, 

1986). Our venous thrombosis experiments in zebrafish larvae showed that in vivo 

antithrombotic effects of peptides are correlated with their in vitro affinities for 

thrombin. Thus, lower Ki of variegin (compared to bivalirudin, argatroban and 

dabigatran) will translate to low therapeutic dosage needed for the inhibitor, which 

should help in reducing possible side effects. However, extremely strong affinity for 

thrombin might not be desirable. The almost irreversible binding of hirudin to 

thrombin (Ki = 0.2 pM) was suggested to be responsible for the higher risk of major 

bleeding compared to unfractionated heparin (UFH) (White, 2005). Thus, in terms of 

affinity to thrombin, it appears that variegin represent a good balance between 

potency and safety. In addition, immunogenicity is a problem that has been widely 

reported for hirudin but not for bivalirudin (Alban, 2008). The smaller size of 

bivalirudin is likely to be the reason for the lower incidences of immunogenicity 

(Warkentin et al., 2008). Being about the same size as bivalirudin, immunogenicity 

might also not be a problem for variegin, giving variegin an edge over hirudin.  
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Other than argatroban, other DTIs are mainly excreted through kidney. Thus, 

dosage monitoring and adjustment are necessary in patients with renal impairments 

(Di Nisio et al., 2005). However, bivalirudin excretion is less dependent on renal 

clearance than hirudin. This is due to enzymatic proteolysis of the peptide in the body 

(by thrombin and lysosomes in the distal tubule) before excretion (Gladwell, 2002). 

Thus, bivalirudin is a safer option than hirudin in patients with impaired renal 

function (Warkentin et al., 2008). Variegin is similar to bivalirudin in size, 

composition and, to an extent, hydrolysis by thrombin. The metabolism and excretion 

profile of both might be similar, which confers another advantage to variegin over 

hirudin. Bivalirudin half-life is extremely short (~ 25 min) (Alban, 2008). Parallel to 

our work on variegin, our collaborator Dr Patricia Nuttall from Centre for Ecology 

and Hydrology, NERC, UK, has performed quantitative whole body autoradiography 

studies in rats injected with [3H]s-Variegin. Preliminary data indicated rapid 

elimination of the peptide through renal route similar to bivalirudin, with a half-life of 

~ 1 h (Patricia A. Nuttall, personal communication).  

 

We showed that C-terminal cleavage fragment of variegin retained strong 

binding to thrombin resulting in prolonged inhibitory activity (Chapter 3). This 

fragment (MH22) showed in vivo activity in our experiment. Its ability to prolong 

TTO is about 1.3-fold lower than hirulog-1/bivalirudin, despite having a lower 

affinity for thrombin and acts non-competitively. Therefore, our data showed that 

effective prevention of thrombus formation can be achieved by both competitive and 

non-competitive inhibitors of thrombin active site function. In addition to rendering 

thrombin catalytic residue Ser195 non-functional (Chapter 4), binding of MH22 to 

thrombin also makes exosite-I unavailable to fibrinogen. It is therefore not surprising 
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that MH22 has comparable in vivo activity with hirulog-1/bivalirudin. Thus, the 

longer half-life and prolonged action of variegin (cleavage fragment inhibits thrombin) 

might allow single dose administration instead of continuous infusion (as in the case 

of bivalirudin) (Warkentin et al., 2008) especially in short procedures such as PCI. 

 

Considering the prolonged action for variegin, there is a need to explore ways 

to neutralize its activity. We showed that protamine sulfate can reverse variegin (and 

variants) activities in vitro. From the experience of using protamine sulfate as heparin 

reversal, the dose needed will depend on dosage and plasma half-life of the 

anticoagulant (Schulman and Bijsterveld, 2007). Thus, in vivo efficacy of variegin 

reversal by protamine sulfate cannot be verified at this point. The use of protamine 

sulfate is not risk-free, as it induces histamine release and causing problems such as 

hypotension and bronchoconstriction. However, clinical experiences in its 

administration as heparin reversal should ensured a higher benefit to risk ratio when 

used as variegin reversal. Other options, such as hemodialysis and administration of 

procoagulant enzyme (eg. FVIIa), are also possible as they are being used for 

neutralization of other DTIs (Schulman and Bijsterveld, 2007). On the whole, variegin 

(and variants) represent a fine balance between hirudin and bivalirudin for most of 

their properties (Ki, sizes, plasma half-life etc.) (Table 5.1). At this point, the strong in 

vivo antithrombotic effects and the availability of an antidote (protamine sulfate) 

support the continual development of variegin (and variants) as anticoagulant. 
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TABLE 5.1 

Comparison of n-variegin, s-variegin, DV24K10RYsulf and MH18Ysulf with hirudin and hirulog-1  
Variegin represent a fine balance between hirudin and hirulog-1 (both available in the market) for most of their properties, underlined the potential of this novel thrombin 
inhibitor as a good therapeutic agent. 

 

 
 

 hirudin n-variegin s-variegin DV24K10RYsulf MH18Ysulf hirulog-1 

Size 65 residues 32 residues 32 residues 24 residues 18 residues 20 residues 

Modified amino acid Sulfotyrosine Glycothreonine None Sulfotyrosine Sulfotyrosine None 

Unnatural amino 
acid None None None None None D-Phe 

Ki 0.02 – 0.20 pM 10.40 pM 318 pM 42 pM 1250 pM  2940 pM 

Mechanism of 
inhibition 

Fast, tight-binding, 
competitive 

Fast, tight-binding, 
competitive 

Fast, tight-binding, 
competitive 

Fast, tight-binding, 
competitive 

Fast, tight-binding, 
non-competitive 

Fast, tight-binding, 
competitive 

Cleaved by 
thrombin? No Yes (K-M) Yes (K-M) Yes (K-M) No Yes (R-P) 

Cleavage product 
inhibits thrombin? Not applicable Yes Yes Yes Not applicable No 

Plasma half-life 60 – 120 min ? ~ 60 min ? ? 25 min 

Clearance Renal Renal (proteolysis?) Renal (proteolysis?) Renal (proteolysis?) Renal (proteolysis?) Renal and proteolysis 
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5.5. SUMMARY 

 

The in vivo antithrombotic effects of four representative variegin variants were 

tested and compared to that of hirulog-1/bivalirudin in the prevention of thrombus 

formation in venous thrombosis model of zebrafish larvae. Generally, except for EP25, 

antithrombotic effects of these peptides correlate well with their affinity for thrombin 

determined in vitro. It is likely slow binding characteristics of EP25 rendered the 

peptide ineffective in vivo. In addition, the thrombin inhibitory action of variegin can 

be neutralized by protamine sulfate and hence is suitable for development as an 

antithrombotic therapeutic agent. 
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Conclusions and future perspectives 
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6.1. CONCLUSIONS 

 

Blood-feeding is crucial for the survival of hematophagous animals. Tick 

saliva contains large number of anticoagulant proteins to help ticks obtain their 

enormous blood meal during prolonged feeding. The most potent thrombin inhibitor 

isolated from the SGE of partially fed female Amblyomma variegatum – variegin – 

was studied and described in detail in this thesis. Variegin is a novel, fast and tight-

binding competitive inhibitor of thrombin. The peptide, 32 residues, is one of the 

smallest thrombin inhibitor found in nature. It is dissimilar to any other groups of 

naturally occurring thrombin inhibitors, thus belongs to a new class of its own. 

Despite its small size and flexible structure, variegin binds thrombin with strong 

affinity (Ki = 10.4 pM) and high specificity. The primary structure of variegin is 

unique among other thrombin substrates/cofactors/inhibitors. We chemically 

synthesized the full-length sequence of variegin (s-variegin) and managed to 

understand the kinetic, mechanism and specificity of thrombin inhibition by variegin. 

Through s-variegin and two truncation variants (EP25 and AP18) we have outlined 

key structure-function information of variegin: residues 8 to 14 bind to thrombin 

active site; residues 15 to 32 binds to thrombin exosite-I; and the first seven N-

terminal residues of variegin are not in direct contact with thrombin but are needed for 

its fast binding characteristics. 

 

We showed that variegin binds thrombin with a substrate-like mechanism, and 

hence is cleaved at the scissile bond between Lys10 and Met11 by the proteinase. The 

sequence resides in the active site binding segment (E8PKMHKT14) is novel and in 

fact contradicted some of the common knowledge about thrombin substrate 
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preference. However, this unique sequence, especially those residues located C-

terminal to the scissile bond (M11HKT14), was found to be in close contact with 

thrombin prime subsites. This prime subsites binding segment is mainly responsible 

for the ability of variegin cleavage product to non-competitively inhibit thrombin. 

This unique property of variegin to bind thrombin strongly before and after cleavage, 

results in prolonged inhibition of the enzyme.  

 

Although we attempted to obtain the three-dimensional structure of thrombin 

in complex with full-length s-variegin, only the density of its C-terminal cleavage 

fragment was traced. The structure provided molecular details of thrombin-s-variegin 

(cleavage fragment) interactions. Variegin (cleavage fragment) fitted tightly to 

thrombin in catalytic pocket, prime subsites and exosite-I. The structure provided the 

basis to explain the classical non-competitive inhibition observed with variegin 

cleavage product. One of the thrombin catalytic residues, Ser195, was displaced from 

its normal position. The change is due to the involvement of Ser195 Oγ in a new and 

extensive hydrogen bonding network involving His12 of s-variegin. The same 

hydrogen bonding network also perturbed the oxyanion hole by engaging Gly193 

backbone N. Overall, the catalytic capability of thrombin is inhibited. The structure 

also revealed other important information and prompted subsequent design of variegin 

variants: (1) final four residues of s-variegin are disordered in structure. On this basis 

we removed these residues and produced shorter inhibitors without loss of activities; 

(2) Pro16-Pro17 induced a kink in the backbone of s-variegin. We removed one of the 

Pro but the activities of these variants diminished, probably due to disturbance of 

prime subsites interactions; and (3) s-variegin C-terminal conformation is vastly 

different from hirudin/hirugen C-termini. In addition to removing the extra residues, 
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we incorporated a sulfotyrosine in s-variegin to mimic the structure of hirudin/hirugen 

C-termini and produced peptides with strong affinities for thrombin (one of them has 

Ki = 42 pM). The structure also provided explanation for other observations: (1) 

substitution of P1 Lys with Arg only minimally improved activities of peptides. The 

less stringent requirement for P1 residue in variegin is probably due to its strong 

interactions with thrombin prime subsites; and (2) substitution of Ala22 by Glu did 

not change the potencies of the peptides. The Ala22 side chain is solvent exposed and 

is not involve in interaction.  

 

We then established the feasibility of developing variegin (and variants) as a 

clinically available anticoagulant. We have demonstrated that the in vivo 

antithrombotic effects of variegin variants correlate well with their in vitro affinities 

for thrombin with the exception of slow binding variants. In addition, the thrombin 

inhibitory activities of the peptides can be reversed by protamine sulfate. Through 

works conducted within the scope of this project, a wide range of peptides with 

different potencies, kinetics, mechanisms of inhibition are made available. Variegin 

compares favorably against the other peptide-based direct thrombin inhibitor available 

in the market (bivalirudin) in every aspect that have been evaluated and discussed. 

With the conclusion of this work, the stage is now set for further development of 

variegin into a therapeutic agent. 
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6.2. FUTURE PERSPECTIVES 

 

6.2.1. On variegin 

This study on the structure-function relationships of variegin demonstrated its 

enormous potential for drug development. However, data presented in this thesis 

marked the start, but not the end of this long and challenging process. Many 

interesting questions remained to be answered. Some of which will enhance our basic 

understanding about the molecule and its interactions with thrombin while others will 

have direct impact on the drug development process.  

 

6.2.1.1. Three-dimensional structures of MH18Ysulf and other variants 

The removal of four C-terminal residues coupled with incorporation of 

sulfotyrosine drastically improved affinities of the peptides. This is most likely due to 

a change in their C-terminal conformations to mimic hirudin/hirugen C-termini for 

optimum interactions with thrombin. The crystal structure of thrombin-MH18Ysulf 

complex can therefore prove this hypothesis. We are in the process to crystallize this 

complex. Any new information derived from the structure can also be used to further 

improve the affinities of the inhibitors. In addition, we are trying to screen for new 

conditions that will allow crystallization of thrombin with complete full-length s-

variegin. Alternatively, a non-hydrolyzable variant can be synthesized (eg. 

incorporating β-homo-Arg residue similar to hirulog-3) for the study of interactions in 

the sites N-terminal to the scissile bond (non-prime subsites). 
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6.2.1.2. Further optimizations of thrombin-variegin interactions 

Despite the strong affinity of variegin (and variants) for thrombin, there are 

still rooms for further optimizations of the interactions. For example, P3 Glu is known 

to be a poor substrate residue for thrombin. Substitution of this residue with D-Phe 

will definitely enhance the interaction, but the use of unnatural amino acids is best 

avoidable. Interestingly, there is a report of Asp at P3 along with Arg at P3′ showing 

strong affinity for thrombin (Su et al., 2004). This mirrored the P3 Glu and Lys P3′ 

pairing in variegin in the charges of their side chains, although in the same report 

substitution of P3 Asp by Glu abolished the activity of peptide. We can look into the 

possibilities of the double substitution of Asp at P3 and Arg at P3′ to improve variegin 

activity. In addition, the absence of density for Met11 and the classical non-

competitive inhibition observed for MH22, suggested that Met11 is not involved in 

thrombin interaction. Substitution of this P1′ residue with Gly, Ala or Ser (in line with 

the requirement for an amino acid with small side chain) as well as Pro (for slow rate 

of cleavage) can also be done.  

 

6.2.1.3. Variegin family of thrombin inhibitors in Amblyomma ticks 

Parallel with this work on structure-function relationships of variegin, our 

collaborator Dr. Ladislav Roller from Institute of Zoology, Slovakia tried to clone 

variegin cDNA with degenerate primers. The clone obtained was translated into a 

polypeptide chain with five repeats of variegin-like sequences. A search in The 

Amblyomma variegatum Gene Index (AvGI) from The Institute of Genomic Research 

(TIGR) recovered sequences with similar variegin-like repeats. These sequences had 

around 40% identity with cDNA clone obtained by Dr. Roller. A recently constructed 

cDNA library of Amblyomma cajennense also reported the existence similar clones 
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(Batista et al., 2008). Therefore, it is likely that variegins are synthesized as precursor 

proteins before being proteolytically processed into matured peptides. This pool of 

putative sequences represents multiple isoforms of variegin. We have identified 

representative sequences from each cDNA clone (from both A. variegatum and A. 

cajennense) and will synthesize peptides with these sequences to determine their 

activities. By comparing the sequences and activities, we will have an idea of the 

‘best’ residues in each position for maximum binding to thrombin. In addition, the 

studies on gene regulations and the post-translational processing mechanisms of the 

precursors will probably unveil interesting information about the blood-feeding 

strategies of the ticks. 

 

6.2.1.4. Other pre-clinical animal studies 

In vivo antithrombotic effects of variegin (and variants) need be evaluated in 

other animal models. Performance of variegin (and variants) can be compared to other 

direct thrombin inhibitors (eg. hirudin, bivalirudin and dabigatran) and conventional 

anticoagulants (eg. heparin) in both venous and arterial thrombosis models. 

Pharmacokinetics and toxicology studies are also needed to demonstrate the benefits 

of variegin (and variants) in pre-clinical studies. 

 

6.2.2 On the discovery of novel exogenous anticoagulants from hematophagous 

animals 

Much valuable information was gained from the studies of a small number of 

exogenous anticoagulants from hematophagous animals. These molecules can either 

be used as a drug [e.g. hirudin (Markwardt, 1994)] or provide a template for drug 

designs [e.g. bivalirudin (Maraganore et al., 1990)]. Through works conducted within 
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the scope of this thesis, we have added a promising candidate – variegin – for drug 

development. In addition, studies on these exogenous anticoagulants often reveal new 

mechanisms to inhibit coagulation factors. Further, detailed structural analyses of the 

inhibitor-proteinase complexes often reveal new exosites on coagulation factors that 

are susceptible for inhibition. For instance, other than thrombin inhibitor (variegin) 

that has been the theme of this thesis, one can design novel FXa inhibitors with 

different mechanisms based on competitive (Tuszynski et al., 1987; Dunwiddie et al., 

1989; Waxman et al., 1990; Stassens et al., 1996; Lapatto et al., 1997; Wei et al., 1998; 

Rios-Steiner et al., 2007), noncompetitive (Stark and James, 1995; Stark and James, 

1998), partial noncompetitive (Harrison et al., 2002; Mieszczanek et al., 2004a), and 

uncompetitive (Joubert et al., 1995; Ibrahim et al., 2001b) inhibitors. Since blood 

coagulation factors are all serine proteinase with highly similar active site, high 

specificity can often be achieved through molecular interactions with such distinct 

exosites (Bock et al., 2007). The inhibitors targeting specific exosites will have 

minimal side effects related to non-specificity. Bivalirudin is a good, specific 

thrombin inhibitor designed to target thrombin exosite-I and the active site based on 

information derived from the studies on hirudin C-terminal interactions with thrombin 

(Maraganore et al., 1990). We believe variegin can emulate and potentially be more 

successful than bivalirudin. 

 

Currently, only a very small number of hematophagous animals (~ 50, bases 

on articles listed on Pubmed database) have been studied, that too partially, for their 

anticoagulants. In nature, hematophagous animals include an estimated 15000 species 

of arthropods (> 400 genera) (Ribeiro, 1995) plus a large number of leeches and 

hookworms. It is postulated that in hematophagous arthopods alone, blood-feeding 
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behavior have evolved independently at least six times in history (Ribeiro, 1995). This 

huge number of species translates into an enormous pool of structurally and 

functionally diverse exogenous anticoagulants. One of the major limitations in their 

studies is the availability of only small amounts of salivary gland extracts that leads to 

difficulties in the identification, isolation and characterization of these interesting 

proteins. Recent progress in large scale and sensitive genomic, transcriptomic, 

structural and proteomic analysis has helped to ease the problem. Thus discoveries of 

new exogenous anticoagulants from distinct lineages will be made in the foreseeable 

future and the studies of the existing and newly-characterized anticoagulants will 

provide ideal, fertile and exciting future in the development of anticoagulant therapies. 
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APPENDIX A. Purification of peptides 
 
 
 
 
 
 
 
 
 
 
s-variegin: elution gradient was 29 – 37% B in 90 ml. Reconstructed ESI-MS spectrum showed 
mass of 3609.0 Da. 
 
 
 
 
 
 
 
 
 
 
 
 
 
EP25: elution gradient was 29.6 – 36.6% B in 90 ml. Reconstructed ESI-MS spectrum showed 
mass of 2936.4 Da. 
 
 
 
 
 
 
 
 
 
 
 
 
 
AP18: elution gradient was 33.6 – 39.6% B in 90 ml. Reconstructed ESI-MS spectrum showed 
mass of 2084.4 Da. 
 
 
 
 
 
 
 
 
 
 
 
 
 
MH22: elution gradient was 34 – 39% B in 90 ml. Reconstructed ESI-MS spectrum showed mass 
of 2581.8 Da. 
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APPENDIX A. Purification of peptides (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
Hirulog-1: elution gradient was 24 – 36% B in 180 ml. Reconstructed ESI-MS spectrum showed 
mass of 2179.6 Da. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EP21: elution gradient was 32 – 38% B in 75 ml. Reconstructed ESI-MS spectrum showed mass of 
2490.2 Da. 
 
 
 
 
 
 
 
 
 
 
 
 
 
MH18: elution gradient was 36 – 45% B in 75 ml. MALDI-TOF spectrum showed mass of 2136.0 
Da. 
 
 
 
 
 
 
 
 
 
 
 
 
 
DV24: elution gradient was 31.5 – 38.5% B in 75 ml. MALDI-TOF spectrum showed mass of 
2775.3 Da 
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APPENDIX A. Purification of peptides (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DV24K10R: elution gradient was 28 – 43% B in 75 ml. MALDI-TOF spectrum showed mass of 
2803.3 Da 
 
 
 
 
 
 
 
 
 
 
 
 
 

DV23: elution gradient was 30 – 45% B in 75 ml. MALDI-TOF spectrum showed mass of 2678.2 
Da 
 
 
 
 
 
 
 
 
 
 
 
 
 

DV23K10R: elution gradient was 32 – 42% B in 80 ml. MALDI-TOF spectrum showed mass of 
2706.2 Da 
 
 
 
 
 
 
 
 
 
 
 
 
 
EP25A22E: elution gradient was 34 – 38% B in 75 ml. Reconstructed ESI-MS spectrum showed 
mass of 2994.4 Da. 
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APPENDIX A. Purification of peptides (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
MH22A22E: elution gradient was 31 – 37% B in 75 ml. Reconstructed ESI-MS spectrum showed 
mass of 2640.1 Da. 
 
 
 
 
 
 
 
 
 
 
 
 
 
DV24Ysulf: elution gradient was 26.4 – 27.8% B in 80 ml. MALDI-TOF spectrum showed 
desulfated mass of 2775.3 Da 
 
 
 
 
 
 
 
 
 
 
 
 
 
DV24K10RYsulf: elution gradient was 26.9 – 27.9% B in 80 ml. MALDI-TOF spectrum showed 
desulfated mass of 2803.3 Da 
 
 
 
 
 
 
 
 
 
 
 
 
 
MH18Ysulf: elution gradient was 25.4 – 26.6% B in 80 ml. MALDI-TOF spectrum showed 
desulfated mass of 2136.0 Da. 
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APPENDIX A. Purification of peptides (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DV24Yphos: elution gradient was 33.5 – 36.5% B in 80 ml. MALDI-TOF spectrum showed mass of 
2855.3 Da. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DV24K10RYphos: elution gradient was 33.5 – 35.5% B in 80 ml. MALDI-TOF spectrum showed 
mass of 2883.3 Da. 
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APPENDIX B. Coordinates file for the thrombin-s-variegin structure 

 
Submission of the structure to PBD is put on hold for publication. The coordinates 
file for the structure is recorded in the CD attached at the end of this thesis. The 
file can be found in CD at this location: /appendix B/thrombin-variegin.pdb 

 

 
 

APPENDIX C. Videos recording thrombus formation in zebrafish larvae 
 

Three short video recording the thrombus formation (or lack of) in larvae injected 
with PBS, MH22 and DV24K10RYsulf were copied into the CD attached. 
Although thrombus formation can be directly followed on the monitor attached to 
the microscope throughout the whole experiment, the digital camera attached can 
only record short videos with a maximum duration of 39 s. 

The file for the larva injected with PBS (TTO ~ 21 s) can be found at this location: 
/appendix C/PBS_1.avi 

The file for the larva injected with MH22 (TTO ~ 35 s) can be found at this 
location: /appendix C/MH22_1.avi 

The file for the larva injected with DV24K10RYsulf (no thrombus formed) can be 
found at this location: /appendix C/DV24K10RYsulf_1.avi 

 

 
 

APPENDIX D. Publications 

 
Soft copies of the two publications related to this thesis were recorded in the CD 
attached at this location: /appendix D/JBC.pdf; and /appendix D/Expert Rev 
Hematol.pdf 
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