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Summary 
 
 

Traumatic injuries to the peripheral nerves can cause several functional deficiencies. 

The repair of peripheral nerve gap deficit remains a complex problem in clinical 

reconstructive surgery. Autologous nerve graft is used as the current approach to 

repair nerve gap injury, but there are several drawbacks that are accompanied with the 

use of patient’s own tissue. A vast amount of research to produce bioengineered nerve 

bridging construct is being pursued that aim to replace the use of autologous nerve 

grafts. In this project, it is hypothesized that biodegradable bilayered nerve conduit 

containing aligned nanofibrous intra-luminal guidance channels produced by 

electrospinning can bridge and repair peripheral nerve gap. Moreover, this nerve 

construct can be modified with extracellular matrix molecules and neurotrophins to 

improve the outcome of nerve gap repair.  

 

Synthetic poly(L-lactic acid) bilayered nanofiber conduit made up of nanofibers that 

mimic the extracellular matrix was fabricated using electrospinning to act as a 

guiding construct and a biomimetic environment for nerve repair. The conduit 

consisted of two layers of nanofibers membranes - inner layer of aligned nanofibers 

to guide neurite outgrowth; outer layer of randomly arranged nanofibers to provide 

mechanical integrity. Extracellular matrix proteins such as laminin were successfully 

incorporated into the nanofiber to improve the performance of the conduit. Intra-

luminal guidance channels made from strands of aligned nanofibers were fabricated 

from poly(L-lactic-co-glycolic acid) using a novel electrospinning set-up. The aligned 

longitudinally nanofiber channels present a physical support for regenerating axons 
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and Schwann cells to adhere and extend to bridge up nerve gaps. The guidance 

channels closely imitated the intact nerve architecture of the basal laminae and bands 

of Büngner that allow the Schwann cells and axons to orientate along the axis of 

aligned nanofibers. Neurotrophins such as nerve growth factor had been coupled onto 

the guidance channels to provide sustained release of the growth factor to nerve 

regeneration.  

 

This project has capitalized on the nano-scale architectures of nerve conduits to guide 

and increase the quality of nerve regeneration and functional recovery, and prevent 

scar tissue in-growth which acts as barrier to axonal outgrowth. Biomimetic conduit 

containing guidance channels was shown to support nerve regeneration across the 

nerve interstump gap effectively in 15 mm rat sciatic nerve transection injury model. 

The assessment mainly focused on post-operative function recovery and histological 

analysis: (1) nanofiber conduit with guidance channels supported axons and Schwann 

cells progression longitudinally along the nanofibers; (2) intra-luminal channels 

provided as guidance substrates and the conduit served to prevent scar formation and 

entrap biomolecules within the interstump gap to promote nerve regeneration in vivo; 

(3) laminin and nerve growth factor can be used to improve the performance of 

nanofiber construct. The capability of nanofiber nerve construct has been 

demonstrated to bridge nerve gaps with improved functional recovery suggests that 

this nanofiber construct can potentially be used in the clinical settings to reconstruct 

peripheral nerve gap.  
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Chapter 1 
 
 

Introduction 
 
 
 

1.1 Background 

It is estimated that approximately 360,000 patients suffered from health problems 

related to upper extremity paralytic syndromes annually in the United States, and over 

300,000 people suffer peripheral nerve injuries in Europe yearly [1]. Mechanical, 

chemical, thermal, and/or pathological etiologies can cause peripheral nerve injuries 

in humans. If there are no interventions to repair the damaged nerves, loss of function 

with impaired sensation and painful neuropathies will occur that affect the patients 

adversely. Because mature neurons do not regenerate effectively, it is a challenge to 

obtain successful and good rehabilitation for peripheral nerve repair. And no patients 

make a complete recovery following transection injuries to the nerves. However, 

axonal outgrowth of the peripheral nerves and outcome of nerve repair can be 

optimized if appropriate nerve repair techniques and/or nerve implant devices are 

used, thus reconnecting the proximal and the distal nerve stumps to obtain 

satisfactory functional recovery.  

 

The current clinical gold standards for the treatment of injured peripheral nerves are 

direct tension free end-to-end anastomosis for the transected nerve stumps. 

Frequently, tension free repair is not possible due to too large of a gap, and in this 
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situation the gold standard is to use autologous nerve grafts to bridge these gaps. 

Even then, recovery of sensory, motor and autonomic functions are never complete 

and at best, a clinical function recovery rate of about 80% is achieved [2]. Other 

disadvantages of autologous nerve grafts include: 1) donor site morbidity, 2) multiple 

surgical procedures, 3) insufficient donor nerves, 4) possible formation of painful 

neuroma, and 5) donor and recipient size mismatch with poor alignment of fascicles 

[3]. Other biological nerve scaffolds such as veins and skeletal muscles are 

alternatives that have been used to repair nerve gaps [2, 4], but these scaffolds have 

not produce optimum nerve regeneration results. 

 

Bioengineered nerve construct is an attractive alternative substitute for clinicians to 

use for the repair peripheral nerve injuries because they can overcome certain 

disadvantages of using autologous grafts like donor site morbidity, insufficient donor 

nerves and size mismatches. Although FDA-approved nerve constructs are already 

available, these devices are reserved for small gaps in humans (several millimeters or 

up to 30 mm) that do not address the repair of larger peripheral nerve gaps commonly 

found in the clinical situations [2, 5]. The main challenge is to bioengineer artificial 

nerve constructs that are capable of bridging large nerve gaps that are currently not 

achievable with the non-biological nerve substitutes, and to provide improved rate of 

recovery and better clinical return to functions than autologous nerve grafts [2]. 

Recent advances in tissue engineering techniques have sparked interests in making 

scaffolds with natural materials and/or biodegradable synthetic polymer nanofibers 

[6]. However most often, the current non-biological nerve implant devices do not 
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possess the physical topography that recapitulates the hierarchical organization and 

biological functions of peripheral nerve natural extracellular matrix (ECM) that 

consists of submicron fibers and fibrils. The rationale for using nano-scale fibers is 

based on the theory that cells attach and organize well around fibers with diameters 

smaller than the diameter of the cells and axons [7]. The non-woven polymeric 

meshwork is a mimic to the nano-scale protein fiber meshwork in native ECM. 

Therefore it will be advantages to create a nerve construct that possesses the physical 

topographical of nerve ECM to bridge nerve gaps for repair.  

 

Another important aspect to consider when designing the nerve construct is the use of 

intra-luminal guidance channels in the lumen of a bridging conduit. One of the 

reasons why the autologous nerve graft is an excellent scaffold for nerve repair is 

because it provides the basal lamina structure with biochemical signals (e.g. laminin 

and collagen) that promote efficient axonal extensions [8]. For transected nerve 

repair, a fibrin matrix will initially form in the lumen of an empty conduit that is used 

to bridge the nerve gap [8]. Subsequently capillaries, axons and non-neuronal cells 

such as Schwann cells, macrophages, and fibroblasts invade this matrix. However if 

the fibrin matrix is not formed appropriately or infiltrated with the cellular 

components, it will disintegrate and nerve regeneration might fail, especially in large 

nerve gaps [8]. Intra-luminal guidance channels can thus be incorporated in the 

conduit to support the formation of the fibrin matrix and act as the initiate substrates 

for cellular infiltration that will aid in bridging large nerve gaps [9]. Hence, the use of 
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novel longitudinally aligned nanofibrous intra-luminal guidance channels could 

potentially improve the outcome of nerve repair.  

 

1.2 Motivation 

 

Topographical presentation of the nerve scaffold is important for promoting nerve 

regeneration. Recent studies have shown the potential and importance of nano-texture 

scaffolds for nerve tissue engineering applications [10]. It has been proposed that 

since peripheral nerve trunk is structurally made up of ECM [11] and electrospinning 

is an enabling technology to fabricate nano- and micro- size fibers that mimic the 

structural ECM of the body. By controlling the processing parameters, fibrous 

scaffolds with controllable fiber diameter ranging from nano to micro-meter scale can 

be achieved to fabricate scaffolding architectures that promote peripheral nerve 

regeneration. Nerve construct made up of nanofibers may be beneficial for nerve 

regeneration. 

 

Furthermore recent studies have shown that with the use of aligned nanofibers, the 

cells orientate along the alignment of the nanofibers with neurites extending along the 

direction of the nanofibers, and aligned nanofibers promote the longest neurite 

extension when compared to random nanofibers, and aligned and random microfibers 

[12]. Studies illustrated that the orientation of the nanofibers has a marked effect on 

the morphology and alignment of the attached cells. Human coronary artery smooth 

muscle cells and mouse neuronal cells when cultured on aligned scaffolds orientate 
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along the direction of the nanofibers [12, 13]. The cytoskeletal proteins were also 

observed to follow the orientation of these cells when cultured on aligned nanofibers. 

In addition, neurite extensions of mouse neuronal cells were also found to follow the 

orientation of the nanofibers. The use of aligned nanofibers to prepare both the outer 

tubular scaffold and the intra-luminal guidance channels of the nerve conduits will 

guide as well as potentially promote the rate of axonal elongation. 

 

In addition, natural ECM materials can be electrospun with polymer nanofibers or 

incorporated into the nerve conduits. Growth factors which are more labile that need 

to remain biologically active and slowly release to support axonal growth, can be 

incorporated into electrospun fibers to enhance nerve regeneration. In this project, we 

utilized electrospinning to fabricate a nanofibrous conduit that contained novel 

longitudinally aligned nanofibrous strands (termed intra-luminal strands or guidance 

channels) (Fig. 1.1) and studied its effectiveness to promote nerve regeneration in a 

15 mm rat sciatic nerve model. 

 

1.3 Hypothesis and Objectives 

 

Hypothesis 

Nerve conduit containing aligned nanofibrous intra-luminal guidance channels 

with nerve enhancing biomolecules promote peripheral nerve regeneration. 
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a) Nano-scale architectured nerve conduit with aligned nanofibrous intra-luminal 

guidance channels could be fabricated. 

 

b) Incorporation of ECM bioactive molecules such as laminin and collagen 

(which promote neurite growth) into nerve conduit enhance axonal outgrowth. 

 

c) Sustained release of incorporated neurotrophins such as nerve growth factor 

(NGF) that are essential for neuronal growth and survival, in the design nerve 

construct.  

 

d) Nerve conduit with aligned intra-luminal nanofibrous guidance channels 

enhance nerve regeneration to aid peripheral nerve regeneration.  

 

 

Objectives 

• Utilize electrospinning technology to fabricate three-dimensional nanofibrous 

nerve conduit with aligned intra-luminal guidance channels; 

 

• Capitalize on the nano-scale architectures of nerve construct to guide nerve 

regeneration, and prevent scar tissue in-growth which acts as barrier to axonal 

outgrowth; 
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• Incorporate ECM bioactive molecules and provide sustained release of 

neurotrophins to enhance nerve regenerative ability of the nerve construct; 

 

• Demonstrate the capability of the nanofibrous nerve construct to bridge nerve 

deficits larger than 10 mm in rat sciatic nerve model. 

 

The strategy and scheme of nanofibrous nerve guide is depicted in Figure 1.1. 

Bioengineered nerve construct consists of an outer nerve conduit that was 

fabricated using PLLA and aligned PLGA nanofibrous intra-luminal guidance 

channels. ECM bioactive molecules such as laminin were coupled into the outer 

conduit fabrication and neurotrophins such as NGF was incorporated into the 

intra-luminal guidance channels for sustained release to enhance nerve 

regeneration.  
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Figure 1.1. Peripheral nerve construct strategy (Figure not drawn to scale). 

 

1.4 Overview of work scope 

 

In this dissertation, a detailed literature review is presented in Chapter 2 that includes 

the fabrication of various nanofibrous scaffolds by electrospinning and the different 

aspect of peripheral nerve engineering. Conclusions for this thesis and 

recommendations for future work are described in Chapter 7. 

 

Table 1.1. Overview of project scope. 

Hypothesis Objective Descriptions Thesis 

Nano-scale 

architectured nerve 

conduit with aligned 

nanofibrous intra-

luminal guidance 

channels could be 

fabricated. 

 

 

Utilize 

electrospinning 

technology to 

fabricate three-

dimensional 

nanofibrous nerve 

conduit with aligned 

intra-luminal 

guidance channels. 

 

Bilayered nanofibrous nerve 

conduit and aligned 

nanofibrous intra-luminal 

guidance channels were 

successfully fabricated using 

electrospinning. 

Chapter 3 

and 

Chapter 5 

 

Incorporation of 

ECM bioactive 

molecules such as 

laminin and 

collagen (which 

Incorporate ECM 

bioactive molecules 

and provide 

sustained release of 

neurotrophins to 

Study on collagen and laminin 

coupling onto nanofiber were 

done. The in vitro results 

showed that blending of 

laminin was the optimum 

Chapter 4 
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promote neurite 

growth) into nerve 

conduit enhance 

axonal outgrowth. 

 

method to produce the nerve 

construct that can be used to 

enhance nerve regeneration in 

rat sciatic nerve repair.  

Sustained release of 

incorporated 

neurotrophins such 

as nerve growth 

factor (NGF) that 

are essential for 

neuronal growth and 

survival, in the 

design nerve 

construct. 

 

enhance nerve 

regenerative ability 

of the nerve 

construct. 

Bioactive NGF was 

incorporated into the nanofiber 

by blending electrospinning to 

fabricate protein coupled intra-

luminal guidance channels for 

sustained release of 

neurotrophins. 

Chapter 5 

 

Nerve conduit with 

aligned intra-

luminal nanofibrous 

guidance channels 

enhance nerve 

regeneration to aid 

peripheral nerve 

regeneration.  

 

Demonstrate the 

capability of the 

nanofibrous nerve 

construct to bridge 

nerve deficits larger 

than 10 mm in rat 

sciatic nerve model. 

 

(1) nanofibrous conduit with 

longitudinally aligned 

nanofibrous intra-luminal 

guidance channels supported 

Schwann cell migration and 

axon extensions in vivo;  

 

(2) nerve enhancing 

biomolecules such as laminin 

could aid in nerve regeneration 

for bridging peripheral nerve 

gaps. 

Chapter 6 

 

 
 



 Chapter 2 

10 

Chapter 2 
 
 

Literature Review 

 
 

2.1 Introduction 

Tissue engineering is a multi-disciplinary field of research that involves the use of 

cells, biological molecules, mechanical stimuli, and biomaterials to facilitate the 

repair of damaged/diseased tissue or to regenerate functional tissue [14-16]. Diverse 

and complex integration of various technologies such as the combination of material 

science research, scaffold technologies and the study of molecular and cell biology 

are essential to produce a fully-functional tissue [16-18]. Although tissue engineering 

research has progressed significantly over the years and yielded many invaluable 

results, there remain challenges for tissue engineers to translate the laboratory 

research to practical clinical use. The importance of enhancing interactions and 

bridging developmental biology and tissue engineering is judiciously identified 

because this can be a key to realize the potential of applying tissue engineering 

strategies in clinics to improve human health [19].  

 

We need to understand how the cells and tissues construct themselves during 

development, remodeling, and repair and regeneration after injury to form the distinct 

three-dimensional structures with specific positions and arrangements [19]. After 

which we can bioengineer the appropriate structural physiochemical micro-



 Chapter 2 

11 

environment for specific damaged tissue to promote and aid in the healing and 

remodeling of the damaged tissues. 

 

2.2 Tissue Engineering  

2.2.1 Biomimetic scaffolds for tissue engineering  

Every tissue type has its unique structure, morphology, chemical gradients, 

hydrodynamic and electrical forces, and mechanical properties [19]. Design of tissue 

engineering systems is a challenging task because the design criteria is required to 

address the general and tissue-specific needs to create a viable environment for each 

damaged tissue [19]. A key principle in tissue engineering is based upon that the cells 

surrounding the damaged tissue or the cells that are involved in the spontaneous 

repair of the damaged tissue have the capacity to reorganize into structures that 

resemble the original tissue [20]. Cells lives in native ECM consisting of nano- to 

micro- structured fibers (proteins and proteoglycans). This hierarchical organization 

presents a defined environment with nano-scale intermolecular binding interactions 

that will affect the morphological and functional development of the cells. Recent 

studies have shown the importance of nano-texture scaffolds for tissue engineering 

applications [10]. Cells that were cultured on micro-size fibrous scaffolds were 

flattened and the cells spread as if they were cultured on flat surfaces (Figure 2.1) 

[21]. Scaffolds with nano-scale architectures have larger surface area to adsorb 

proteins and present many more binding sites to cell membrane receptors would be 

more biomimetic to support better cell-matrix interactions [21]. Thus the presentation 
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of suitable topographical cues is an important aspect to consider when designing 

tissue engineered scaffolds.  

 

 
Figure 2.1. Scaffold architecture affects cell binding and spreading [21]. 

 

Bioengineered scaffolds or creation of biomimetic environments that have similarities 

to the natural ECM can be achieved using various techniques such as self-assembly, 

phase separation, and electrospinning processing methods (Table 2.1). The table 

compares the three methods that can be used to produce submicron scaffolds that 

structurally resemble the natural ECM. Self-assembly of nanofibers has been 

elegantly studied to produce scaffolds that biomimic the micro-environment of the 

tissue [22, 23]. Peptide nanofiber scaffolds were prepared by self-assembly for the 

nerve regeneration with accompanied functional return of vision in animals [23]. 

However self-assembled peptide scaffolds are mechanically weak to act as a 

supporting substrates. Phase separation is a technique to produce controllable nano-
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structured porous scaffolds that can allow cell in-growth for tissue engineering 

applications. Nanofibrous matrices that were fabricated by phase separation were 

shown to support nerve cells growth and differentiation [24]. A limitation of phase 

separation process is that it is unable to produce long and continuous fibers. 

Electrospinning is a simple and scalable fabrication method to produce nanofibrous 

scaffolds that have been shown in several studies to support tissue repair [25, 26]. An 

advantage of electrospinning over the other two techniques are that it is a simple 

process that is able to produce long and continuous fibers with control over fiber 

orientation. However one could also consider that electrospinning is limited to some 

polymer.  

 

Table 2.1. Comparison of various nanofibrous scaffold processing methods [23, 24, 

26]. 

Scaffold 

processing 

method 

General 

descriptions 

Advantages Disadvantages 

Self-assembly A process in which 

atoms, molecules, 

and supramolecular 

aggregates organize 

and arrange 

themselves into an 

ordered structure 

through weak and 

noncovalent bonds; 

typically involves a 

Mimic the 

biological process 

in certain 

circumstances. 

Complex process, 

limited to a few 

polymers, unable to 

produce long and 

continuous fibers with 

control over fiber 

orientation. 
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bottom-up 

approach. 

Phase 

separation 

A process that 

involves various 

steps, typically raw 

material 

dissolution, 

gelation, solvent 

extraction, freezing 

and drying, leading 

to the formation of 

nanofibrous foam-

like structure. 

Simple process, 

tailorable 

mechanical 

properties. 

Limited to a few 

polymers, longer 

processing time, unable 

to produce long and 

continuous fibers with 

control over fiber 

orientation. 

 

Electrospinning A process that 

essentially employs 

electrostatic forces 

for the production 

of polymer 

nanofibrous 

scaffolds, typically 

involves top-down 

approach. 

Simple and cost-

effective process, 

capable to produce 

long and 

continuous fibers 

with control over 

fiber orientation, 

versatile to many 

polymers. 

 

Use of high-voltage 

apparatus. 

 

2.2.2 Nano-structured scaffolds by electrospinning  

One of the basic premise of tissue engineering is to design and fabricate suitable 

structural scaffolds using biomaterials that are able to support cell adhesion, 

migration, proliferation and differentiation [27]. It can also involves the provision of 

an appropriate cocktail of bioactive molecules and/or cells that can induce the 
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formation of functional healthy tissue [28, 29]. Electrospinning is a simple and 

versatile technique that can produce non-woven ECM-like nanofiber scaffolds with 

nano-topographical cues to interact with the cells. This process was first patented by 

Formhals in 1934 [30] and until 1990s electrospinning has attracted more attention. 

Electrospun polymer fibers can be easily tailored and manipulated for desirable 

assembly structures, mechanical properties, and degradation time. These submicron 

fibrous scaffolds have large surface to volume ratio, well-interconnected pores, and 

high porosity that are suitable for different application purposes. Synthetic polymeric 

nanofibers such as poly(ε-caprolactone) (PCL) [31], poly(L-lactic acid) (PLLA) [12], 

poly(glycolic acid) (PGA) [32] and poly(lactic-co-glycolic acid) (PLGA) [33], and 

natural-occurring polymeric nanofibers such as collagen [34] and gelatin [35] have 

been electrospun. Electrospun nanofibers have been actively explored for applications 

in the different areas of tissue engineering such as skin [36], cartilage [37], bone [31], 

blood vessel [38], heart [39], and nerve [40].  

 

Briefly, this technique utilizes an electric field generated by an applied voltage that 

subsequently introduces surface charges on the polymer solution. This thus induces 

the formation of a Taylor cone polymeric droplet at the tip of the spinneret. As the 

electric potential that is created at the droplet surface exceeds a critical value, the 

electrostatic forces will overcome the solution surface tension to initiate polymer jet 

stream. The charged jet is accelerated towards the grounded collector and undergoes 

bending instability, elongation, and solvent evaporation or jet solidification which 

leads to rapid thinning of the jet and deposition of dry fibers in a random manner onto 
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the collector [33, 41, 42]. Several factors can affect the electrospinning process and 

fiber morphology (Table 2.2). We can therefore change various conditions to obtain 

suitable fibers for specific applications.   

 

Table 2.2. Effect of changing electrospinning process parameters on the resultant 

fiber morphology [26]. 

Process Parameter Effect on fiber morphology 

Viscosity/concentration  Low concentrations/viscosities yielded defects in the 

form of beads and unction; increasing 

concentration/viscosity reduced the defects; 

 Fiber diameters increased with increasing 

concentration/viscosity. 

 

Conductivity/solution 

charge density 

 Increasing the conductivity aided in the production of 

uniform bead-free fibers; 

 Higher conductivities yielded smaller fibers in general 

(except PAA and polyamide-6). 

 

Surface tension  No conclusive link established between surface tension 

and fiber morphology. 

 

Polymer molecular 

weight 

 Increasing molecular weight reduced the number of beads 

and droplets. 

 

Dipole moment and 

dielectric constant 

 Successful spinning occurred in solvents with a high 

dielectric constant. 

 

Flow rate  Lower flow rates yielded fibers with smaller diameters; 

 High flow rates produced fibers that were not dry upon 
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reaching the collector. 

 

Field strength/voltage  At too high voltage, beading was observed; 

 Correlation between voltage and fiber diameter was 

ambiguous. 

 

Distance between tip 

and collector 

 A minimum distance was required to obtain dried fibers; 

 At distance either too close or too far, beading was 

observed. 

 

Needle tip design  Using a co-axial, 2-capillary spinneret, hollow fibers 

were produced. 

 

Collector composition  Smooth fibers resulted from metal collectors;  

 Aligned fibers were obtained using a conductive frame, 

rotating drum, or a wheel-like bobbin collector; 

 Yarns and braided fibers were also obtained. 

 

Ambient parameters  Increased temperature caused a decrease in solution 

viscosity, resulting in smaller fibers; 

 Increasing humidity resulted in the appearance of circular 

pores on the fibers. 

 

 
Electrospinning can facilely produce nanofibrous scaffolds with different assemblies 

and architectures by slight modification or changing of the set-ups. Randomly 

arranged nanofibers is the most commonly electrospun substrates. This form of 

nanofiber orientation presents a network of interconnected pores, high porosity and 

anisotropic mechanical properties. Although randomly arranged nanofibers are useful 

in tissue engineered scaffolds, defined and orderly aligned fiber arrangement seem to 
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be more beneficial for most of the natural occurring tissues [26]. Aligned nanofibers 

play a significant role in the influence of morphology and cytoskeleton of many cell 

types. Endothelial cells, smooth muscle cells, osteoblasts, fibroblasts, and neural stem 

cells displayed alignment and actin organization dictated by the prevailing nanofiber 

orientation [10]. Aligned fibers were shown to guide oriented in vitro neurite 

outgrowth and glial cells migration from dorsal root ganglia [43]. Also, enhanced 

Schwann cell orientation and maturation was observed when they were cultured on 

aligned nanofibers [44]. Therefore novel electrospinning set-ups have been developed 

over the years to generate bioengineered nanofibrous scaffolds with diverse nanofiber 

arrangements and structures (Fig. 2.2), especially for aligned fibers substrates 

production.  
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Figure 2.2. Various architectures of electrospun nanofibers or scaffolds: (a) random 

nanofibers, (b) aligned nanofibers, (c) beaded nanofibers, (d) nanofibrous yarn 

scaffolds, (e) nanofiber bundle, and (f) core-shell nanofibers. 

 

Fabrication set-up for randomly oriented nanofibers  

Figure 2.3 shows a typical electrospinning set-up for the production of randomly 

arranged nanofibers. The collector described herein is a planar plate that is 

conventionally used to assemble randomly oriented nanofibers.  

 

 

Figure 2.3. Schematic diagram of simple electrospinning set-up for production of 

random nanofibers.  

 

Variations of the set-up to fabricate multi-layered nanofibrous mats and mixed 

polymer mats where the nanofibers are randomly arranged can also be achieved (Fig. 

2.4). Multi-layering electrospinning allows the flexibility to produce stacks of 
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nanofibers comprising of different materials, while mixing electrospinning that use 

two or more spinnerets enables the production of scaffolds with blended nanofibers. 

 

 

(a) Multi-layering electrospinning (b) Mixing electrospinning 

  

Figure 2.4. Electrospinning set-ups (a) Multi-layering electrospinning, and (b) Mixing 

electrospinning [45]. 

 

Fabrication set-ups for aligned nanofibers 

Considerable efforts have been used to explore the fabrication of bioengineered 

scaffolds with highly controllable fiber orientations. Usually, aligned nanofibers are 

electrospun onto rotating drums at relatively high rotational speeds (e.g. several 
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thousands rpm). However there is a maximum limit for the rotating speed of the 

collectors that can be used because continuous fibers will not be formed if the critical 

speed is exceeded that break the polymer jet [26]. Tables 2.3 and 2.4 illustrate the 

various electrospinning set-ups that are used to produce aligned nanofibers.  

 

Table 2.3. Descriptions of electrospinning set-ups using rotating drums for collection 

of aligned nanofibers [26]. 

Rotating Drum Collectors 

Simple drum Wire drum Wire wound around the 

drum 

 

 

 

 

 

 
Large are of aligned fibers 

can be fabricated; precise 

orderly aligned fibers are 

difficult to achieve. 

 

Highly aligned nanofibers 

can be electrospun; thick 

layer of aligned fibers are 

not possible.  

Highly aligned fibers are 

achievable and area of 

aligned fibers on the wire is 

adjustable by varying wire 

thickness; aligned fibers are 

concentrated on the wire 

only. 

 

 

Table 2.4. Descriptions of electrospinning set-ups using rotating mandrels for 

collection of aligned nanofibers [26]. 
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Rotating Mandrel Collectors 

Knife-edge electrodes below 

drum (tube) collector 

Knife-edge electrodes to 

control electrospinning jet 

Disc collector 

   

 
Highly aligned fibers can be 

fabricated and thick layer of 

fibers can be collected; only 

possible with small diameter 

tube and set-up requires a 

negative electrode. 

 

Thick layer of highly 

aligned fibers can be 

produced; set-up requires a 

negative electrode and 

applicable only with small 

diameter tube. 

 

Highly aligned fibers 

can be collected; small 

area of collection and 

retaining high fiber 

alignment at same 

rotating speed when the 

deposited fibers become 

thicker is difficult. 

 

 
 

Another electrospinning set-up that can produced aligned nanofibers involves the use 

of two parallel blades as the collector (Table 2.5).  In this set-up, the fibers are 

suspended across a gap created by the parallel blades due to the electrostatic 

interactions that stretch the fibers across the space [46].  

 

Table 2.5. Descriptions of electrospinning set-ups using blades for collection of 

aligned nanofibers [26]. 
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Other forms of collectors 

Parallel electrodes 

 

 
Highly aligned fibers can be obtained easily and fibers are easily transferable to another 

substrate; thick layer of aligned fibers are not possible and limitation of length of 

aligned fibers is present. 

 

 
 

Fabrication set-up for co-axial electrospinning 

Co-axial electrospinning has been designed to create core-shell structured nanofibers 

(Fig. 2.5). Two polymer solutions can concurrently be ejected through the two co-

axial capillaries into the electrostatic field created by the high voltage supplied to the 

set-up. Zhang et al. electrospun core-shell nanofibers where gelatin and PCL formed 

the core and shell components, respectively [47]. Similarly, the same electrospinning 

set-up was used to fabricate individually collagen-coated PCL nanofibers and 

demonstrated their enhanced effect in promoting dermal fibroblasts proliferation and 

migration [48]. In fact, an advantage of using such set-up allows the fabrication of 

materials that are not easily electrospun. Solutions that are not electrospinnable can 

still be electrospun into the core component as long as the shell fluid is 

electrospinnable [49]. In the literature, Jiang et al. [50], Huang et al. [51], and Zhang 

et al. [52] have used coaxial electrospinning to produce protein- and/or drug- 
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encapsulating core-shell fibers and investigated their release behaviors. Interestingly, 

this type of device can be used to encapsulate living cells in the nanofibers for various 

applications that enable significant advances in tissue engineering and regenerative 

medicine [53].  

 

(a) Co-axial electrospinning set-up (b) Co-axial cell spinning device  

 

 

 

 

 

Figure 2.5. Core-shell fiber electrospinning set-ups. (a) Co-axial electrospinning, and 

(b) co-axial cell spinning device [53].   

 

Fabrication set-ups for three-dimensional nanofibrous scaffolds  
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Besides producing nanofibrous substrates that are mainly in the form of mats or 

membranes, electrospinning can be used to fabricate scaffolds in the forms of tubular, 

yarn and mesh architectural constructs. 

 

(a) Nanofibrous conduit 

Figure 2.6 shows the electrospinning set-up used to fabricate nanofibrous conduits. 

Briefly, nanofibers are electrospun and collected on a rod that is attached to a rotating 

mandrel. This easily forms a tubular conduit made up of electrospun nanofibers. The 

nanofibrous conduits have been studied in vascular graft [54], nerve conduit [40] 

applications. 

 

 

 

 

Figure 2.6. Schematic diagram of tubular construct electrospinning set-up.  

 

(b) Nanofibrous yarn 

The electrospinning set-up (Fig. 2.7) [55] is a novel and unique method that has been 

developed to fabricate nanofibrous strands of a few microns that are made up of 
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longitudinally aligned nanofibers bundle. Briefly, a high voltage is delivered to the 

spinneret and the nanofibers are drawn towards a basin of flowing water. The vortex 

created by the flowing water will coalesce the nanofibers into a bundle to form the 

nanofibrous yarn to be drawn onto a rotating mandrel for the collection of individual 

strands. The yarn is made up of several highly aligned nanofibers that can provide 

excellent supporting structures for growth and maintenance of cells.  

 

  

 

 

 

 

Figure 2.7. Schematic of the electrospinning set-up to fabricate nanofibrous yarn [55].  

 

(c) Nanofibrous three-dimensional mesh  

Generally, it is difficult to fabricate three-dimensional scaffolds through 

electrospinning because individual nanofibers are too fragile to be physically 

manipulated using standard apparatus. Residual charges on the deposited fibers 

generally divert subsequent incoming fibers to the side that prevent fibers to form a 
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bulk substrate efficiently. Although nanofibers can be stacked to form a membrane 

substrate, there is the presence of limitations. The stacked nanofibrous substrates will 

consist of pore sizes that are relatively too small to allow cell penetration through the 

scaffold. Hence, Teo et al. modified the set up shown in Figure 2.7 to fabricate a 

three-dimensional nanofibrous mesh made up of nanofibrous yarn as shown in Figure 

2.8. The nanofiber yarns were not drawn onto a rotating mandrel for individual strand 

collection, but simply gathering at the bottom of the set-up shown. This scaffold has 

relatively good mechanical properties, porosity, and pore-size that can allow cell 

penetration. Scaffolds made up of PGA, PLGA, PLLA, or blended collagen-polymers 

have been successfully fabricated using this unique set-up. 

  

 

 

Figure 2.8. Schematic of the electrospinning set-up to fabricate nanofibrous 3-D mesh 

[56].  

 

(d) Nanofiber bundle  
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Manageable three-dimensional bundle made up of highly ordered aligned nanofiber 

can be created using electrospinning through the use of steel blades to control the 

electric field (Fig. 2.9). Similar to the set-up shown in Table 2.5, the blades are placed 

in the direction shown in Figure 2.9. Nanofibers are first collected along the two-

fixed steel blades and by dipping the electrospun nanofiber bundle in water and 

drying the bundle, robust micro-size bundle that is made up of highly aligned 

nanofibers are produced.   

 

   

 

Figure 2.9. Schematic of the electrospinning set-up to fabricate nanofibrous 3-D 

bundle [57].  

 

In general, electrospinning allows researchers to fabricate nanofibrous scaffolds that 

mimic the natural ECM with reproducible structures. Extensive amount of research 

has been done to produce electrospun nanofibers for its use in tissue engineering 

applications.  
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2.2.3 Modifications of nano-structured scaffolds for tissue engineering 

applications  

Most commonly used biodegradable synthetic polymer materials such as PLLA, PGA, 

PCL, and co-polymers have been electrospun due to the easy dissolution of these 

polymers in electrospinning solvent. Besides synthetic materials, natural occurring 

polymers like collagen [18-23], and gelatin can also be electrospun into fibrous 

scaffolds. Although natural occurring materials present a more conducive 

environment for cell-matrix interactions, these nanofibers are seldom used as tissue 

engineered scaffolds because they do not possess adequate mechanical properties 

upon contacting with water. Although synthetic polymeric nanofibers possess 

adequate mechanical integrity for handling and implantation, they do not provide a 

biochemical-like environment to interact with the damaged tissues that require repair. 

Interactions between cells and their environments are usually mediated by bio-

recognition signals [58]. In native tissues, ECM presents their adhesion proteins such 

as laminin, collagen, fibronectin, and vitronectin to affect cell attachment through the 

binding between integrin receptors on the cell surfaces. Therefore much work is done 

to enhance the biocompatibility of polymeric tissue engineered scaffolds to create a 

biochemical-like environment on the biomaterial surfaces [10].  

 

Biomolecules such as adhesive proteins like collagen, RGD peptides, fibronectin and 

growth factors like basic fibroblast growth factor, epidermal growth factor and insulin 

that can be easily recognized by the cells can be coupled onto the biomaterials to 

induce bio-recognition mechanisms of the interaction of cells and polymeric 



 Chapter 2 

30 

biomaterial scaffolds. These modifications can preserve the mechanical integrity of 

polymeric scaffolds while creating an ECM-like environment to the scaffolds. 

Common methods used to modify nanofibers include physical adsorption of 

biomolecules onto the polymer surface or blending biomolecules into the bulk 

polymer for electrospinning [42, 59]. These two methods are the most straightforward 

techniques to enhance the surface of the materials, but possibility of easily losing the 

biomolecules by physical coating and loss of bioactivity of biomolecules by blended 

electrospinning should be considered. Covalent binding of biomolecules onto 

nanofibers is an alternative way to introduce cell recognition signals onto the 

biomaterial surface [60]. This method is useful because covalent attachment of the 

biomolecules onto the nanofibers can ensure long-term chemical stability until the 

polymer degrades. However this chemical method is tedious that involves several 

steps and several chemicals are needed to carry out the procedures and the bioactivity 

of the biomolecules may be compromised. Generally, nanofibrous scaffolds can be 

modified with bioactive molecules for use in tissue engineering applications.  

 

2.3 Peripheral Nerve Tissue Engineering 

2.3.1 Peripheral nerve injuries 

Nerve injuries are generally quite common and their causes are very diverse which 

include external compression, direct intraneural injection of steroid or anesthetic 

agents, metabolic or neoplastic diseases, and physical injuries. Failure to restore these 

damaged nerves can lead to the loss of muscle function, impaired sensation, and 

painful neuropathies. The response of the nerve tissue to injury is stereotypical, i.e. it 
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depends on the degree of injury sustained and the types of cells that are involved in 

recovery. Nerve injuries were first classified into three categories by Seddon in 1943. 

They were neurapraxia, axonotmesis and neurotmesis. Sunderland [61] expanded this 

classification further in 1951 (Table 2.6). 

 

Table 2.6. Classification of nerve injuries [62]. 

Seddon’s 

classification 

Sunderland’s 

classification 

Injury 

Neurapraxia I A local area of nerve conduction block. 

 

II Loss of the relative continuity to the axon such 

that Wallerian degeneration occurs distal to the 

injury. 

 

III Axon injury and scarring within the 

endoneurium. 

 

Axonotmesis 

IV Nerve regeneration across the area of injury 

blocked by a functional scar at the level of the 

nerve injury. 

 

V Nerve is completely transected, no functional 

recovery anticipated. 

 

Neurotmesis 

VI Individual responses of axons, end organs, and 

nerve connective tissue to the particular injury. 
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2.3.1.1 Peripheral nerve anatomy  

Peripheral nerve consists of sensory and/or motor axons that are the extensions of the 

nerve cell bodies. These nerve cell bodies are located in the dorsal root ganglia 

(sensory neurons), autonomic ganglia (autonomic neurons) and the ventral horn of the 

spinal cord or brain stem (motor neurons) of the nervous system [63]. In general 

terms, peripheral nerves can be simply divided anatomically in three layers – namely 

endoneurium, perineurium and epineurium (Fig. 2.10 and Table 2.7 [63]). Axons are 

arranged in bundles and found in the endoneurium layer [61]. In the endoneurium 

compartment (En), a single Schwann cell envelops several unmyelinated axons, and 

another Schwann cell provides multiple wrappings of the plasma membrane forming 

the myelin sheath of a myelinated axon. Schwann cells associated with both 

unmyelinated and myelinated axons are covered with a continuous basal lamina [54]. 

Capillaries (Cap) are present within the endoneurial compartment and collagen fibers 

[64] run primary longitudinally between axons. Axons, Schwann cells, collagen, and 

endoneurial fluid are bundled into a fascicle by the perineurium (Pe). The 

perineurium consists of several layers of flattened perineurium cells that are covered 

internally and externally by a basal lamina. Several nerve fascicles are bundled 

together by the epineurium [65] as shown in Figure 2.10 to form a single peripheral 

nerve. 
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Figure 2.10. Structural components of peripheral nerve. Artery (A), basal lamina 

(BL), capillary (Cap), endonerium (En), epineurium (Ep), and perineurium (Pe). 

Adapted from [63]. 

 

Table 2.7. Anatomical layers of the peripheral nerve [63]. 

Layer Primary Component   

Endoneurium Basal lamina of type IV collagen, fibronectin and heparin sulfate 

proteoglycan. 

Loose connective tissue of type I and type II collagen fibrils arranged 

longitudinally. 

Fibroblasts, mast cells, macrophages and endoneurial fluid. 

 

Perineurium Layers of type I and type II collagen fibrils.  

Elastic fibers arranged circumferentially oblique and longitudinally. 

Basal lamina with laminin, heparin sulfate proteoglycan and 
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fibronectin. 

 

Epineurium Bundles of type I and type III collagen fibrils. 

Elastic fibers, fibroblasts, mast cells and fat cells. 

 

 
 

2.3.1.2 Nerve injury: the process of degeneration and regeneration 

After complete transection of the nerve cable, the cell bodies, axons and Schwann 

cells immediately undergo changes that prepare the injured nerve for regeneration 

(Fig. 2.11) [61, 66-69]. Neuronal cell bodies would swell that is accompanied by a 

significant increase in cellular metabolism and production of proteins that would 

subsequently be transported down the axon for nerve outgrowth [67]. Axonal 

degeneration, termed Wallerian degeneration, occurs at the distal site of injury that is 

characterized by neurofilbrillar, microtubular and myelin sheath fragmentations that 

form granular and amorphous debris. At the same time macrophages secrete a variety 

of cytokines which promote Schwann cells division. This thus increases the number 

of Schwann cells available for axons to interact. Macrophages also secrete interleukin 

1, which stimulates the Schwann cells to produce nerve growth factor, thereby 

enhancing the nerve regeneration process [70]. Within 24 hours, most of the distal 

axons would have been degenerated [71]. Degradation also occurs at the proximal 

site, but to a limited degree as the initiation of the nerve regeneration would halt the 

degeneration process [2, 61].  
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Random sproutings of the axon, either myelinated or unmyelinated, occurs at the 

intact node of Ranvier [72]. Subsequently, the random sprouting would be replaced 

by a permanent filopodia containing cytoskeleton that is known as the growth cone 

and would appear at the proximal broken nerve cable [67, 72]. Removal of the 

degraded axonal tissue by the resident or circulating-recruited macrophages and 

adjacent Schwann cells also facilitate the preparation of the injured nerve 

environment for reinnervation process [72]. By 48 hours, myelin sheath would be 

degraded into segments of ovoids; the myelin debris and macrophage-derived 

cytokines would initiate the mitosis of Schwann cells by 96 hours after injury [73]. At 

21 days, the Schwann cells would have formed dense Schwann cell tubes (i.e. 

Büngner bands) that would guide the regeneration of axons [71]. Figure 2.12 shows 

the simplified process of nerve regeneration in an empty nerve bridging conduit.  
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Figure 2.11. Simple schematic of nerve process after peripheral nerve injury [2]. 

 

During nerve regeneration, axons regenerate and elongate at a rate of approximately 1 

mm/day in vivo [74]. But the suggested rate varies according to the length of the 

deficit, position of the nerve injury, and the time between the onset of injury [61]. 

Growth cones would innervate an end tissue by the formation of synapses [61]. 

Although axon extends and reaches end targets such as muscle and skin, functional 

impairment is still very common due to the random and unspecific innervations of 

axons to the end organs that are not identical to those that existed prior to injury [75, 

76]. There are a number of molecular interactions taking place in nerve regeneration. 

This involves a variety of molecules in the environment that interact with axons, 

examples of such molecules are present on the surface of axons and Schwann cells 

(L1 and N-cadherin), in the ECM and axon’s surroundings as soluble secreted 

molecules. The surface molecules of the axon growth cones have to interact with 

molecules of neighboring cells, and also the interaction of substrate adhesion 

molecules with ligands in the ECM have to take place in order to exert tension on the 

growth axons and make regenerative progresses [70]. 

 

Axon regeneration can often be inhibited by factors such as the presence of scar tissue 

in the nerve. Sometimes, axons fail to regenerate across nerve injuries and grow into a 

fibroblastic scar tissue at the site of damage. The axons at this region will not be able 

to grow further and the scar will develop into a swollen club ending. This scar tissue 
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creates a barrier against axonal regeneration in the peripheral nerve because 

fibroblasts do not secrete neurotrophic factors that axons require they are trying to 

grow through the scar tissue. In addition, fibroblasts associated with peripheral nerve 

produces a large amount of highly inhibitory proteoglycan (NG2 chondroitin sulfate 

proteoglycan) that will prevent axonal regeneration [77]. In certain cases whereby 

long stretches of the nerve are traumatized by contusion or by stretch injuries, 

scarring occur though the whole length of the injury and axons in these regions will 

not be able to regenerate. 

 

 

 

 

Figure 2.12. Timeline process of nerve regeneration in a bioengineered conduit. 
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2.3.2 Peripheral nerve repair in clinical situations 

Peripheral nerve injury management has improved greatly in the past decades. The 

knowledge in basic science research is increasingly becoming important as it helps 

refine nerve surgical procedures, offering the promise of near-anatomic restoration of 

nerve structure and function. At the same time, a good understanding of intra-neural 

topography and anatomy of the peripheral nerve is also required to ensure better 

chances of functional recovery. 

 

Autologous nerve transplantation is the gold standard to repair peripheral nerve 

injuries that result in gaps that cannot be repaired by simply suturing to reconnect the 

proximal and distal stumps. The sural nerve is the most common nerve graft used 

because this nerve is easy to harvest that can provide approximately 25-30 cm nerve 

tissue, leaving minor sensory deficits [78]. However, clinical reconstruction usually 

encompasses repairing of mixed or motor nerve deficits with sensory nerve graft that 

might present inappropriate nerve alignment and size disparity [3]. Other biological 

bridging conduits such as vein grafts presents limitations that involved the penetration 

of regenerated fibers through the vessel wall to entangle with the scar tissue, and also 

the collapsing of the veins due to their thin walls [79].   

 

Bioengineered nerve construct is an alternative to bridge up nerve deficit to achieve 

functional recovery of the damaged nerve. These non-biological nerve guide implants 

can replace autologous nerve graft transplantations that are frequently limited by 
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tissue availability, secondary deformities, and second surgical step to obtain the donor 

nerves that result in loss of functions at the donor-site nerve. Although FDA-

approved tissue engineered nerve devices (Table 2.8) are already available, these 

devices are reserved for small defects (several millimeters or up to 30 mm) that do 

not address larger peripheral nerve gap injuries commonly found in the clinics [2, 5]. 

Tissue engineered construct to facilitate axonal growth and glial cell proliferation, 

which include a scaffold, support cells, growth factors, ECM molecules have been 

previously studied. Results in the past with these constructs have failed to equal the 

nerve regeneration achieved with autologous nerve grafts [2]. Recent advances and 

contributions in the field of tissue engineering, in particular advances in tissue 

scaffolds preparation, and better understanding of the biology of nerve regeneration, 

have focused research on the combination of materials and desired biomolecules to 

create new composite materials that can actively stimulate the rate of nerve 

regeneration, increase the gap distance that the nerve construct can successfully 

bridge, target motor and sensory nerves reinnervation to their respective organs, and 

minimize inflammation. 

 

Table 2.8. List of commercially available artificial nerve grafts [64, 78, 80]. 

Nerve Guide (Company) Material Nerve Guide Image 

 

NeuraGen® (Integra) 

 

Collagen Type I 
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NeuroTube® (Synovis 

Micro) 

Poly(glycolic acid) 

 
 

SalubridgeTM [80]  Polyvinyl alcohol hydrogel  

 
 

 

AvanceTM (Axogen Inc.)  Acellular nerve graft - 

 

 

Neuroflex™ (Collagen 

Matrix Inc.) 

Collagen Type I 

 
 

Neurolac® (Polyganics) Poly(ε-caprolactone)-co-(DL-

lactic acid) (50:50)  

 
 

 

2.3.3 Designing biomimetic synthetic peripheral nerve construct  

Repairing nerve transection injury is a unique process whereby the injured nerve cells 

do not heal by proliferation to increase the numbers. The repair of individual nerve 

cell and its axon takes place in an environment of intense cellular (e.g. Schwann cells, 

fibroblasts, endothelial cells) proliferation [81]. Growth cone explores its surrounding 

environment as it advances and they are guided to their targets by a combination of 

contact mediated and diffusible chemoattraction cues that are either attractive or 

repulsive (Fig. 2.13) [82]. Bioactive molecules that can aid in nerve regeneration for 
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attracting advancing growth cone to extend towards the distal stumps are actively 

examined. Axons can be guided at short-range by contact mediated mechanisms 

involving cell surface and ECM molecules and long range chemoattraction involves 

the secretion of diffusible chemoattractant substances by target cells to guide axon 

towards the target organs [82] as shown in Figure 2.13. 

 

 

 

Figure 2.13. The molecular biology of axon guidance [82]. 

 

The ideal nerve construct must be easily available, biodegradable, readily 

vascularized, and porous for oxygen and nutrients diffusion. It should have low 

antigenicity and can avoid long-term compression. Current approaches of nerve 
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conduit research include the use of biodegradable polymer scaffolds, and 

incorporation of supporting cells such as Schwann cells, growth factors, and ECM 

molecules. A excellent review by Yannas et al. [83] described existing theories on 

nerve regeneration (Table 2.9) that occurred in a artificial conduit. The same paper 

suggested that an ideal tubular configuration for good nerve regeneration support 

ought to involve the ability to block myofibroblasts from forming contractile capsule 

while facilitating formation of microtubes (e.g. bands of Büngner).  

 

Table 2.9. Descriptions of nerve regeneration theories [83].  

Description Postulation of mechanism 

Neurotrophic theory Axon elongation from the proximal stump is controlled 

by diffusion of growth-promoting soluble factors 

produced at the distal stump. 

 

Contact guidance theory Elongation of axons requires contact guidance with 

appropriate substrate(s). Enhanced Schwann cells and 

fibroblasts proliferation and migration occur in the 

presence of insoluble substrates. 

 

Pressure cuff theory For large nerve gap regeneration, axon growth is 

mechanically blocked by the circumferential forces that 

are exerted by the contractile fibroblasts 

(myofibroblasts). Closure of the wound might result. If 

myofibroblast capsule is allowed to develop fully, 

formation of neuroma would occur that effectively 

block elongation of axons across the gap.   
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Basement membrane 

microtube theory 

Axons regrowth into preformed microtubes (i.e. linear 

columns form by the Schwann cells after nerve 

transection). This provides a linear path for axon 

elongation and myelination. 

 

 
Pressure cuff theory and microtube theory appeared to play dominant role in 

peripheral nervous system (PNS) regeneration. Although neurotrophic theory and 

contact guidance theory are not thought to greatly influence the quality of 

regeneration, their importance is not ruled out. Figures 2.14 and 2.15 depict the 

flowchart of the various features of a tubular conduit that would affect nerve 

regeneration and the mechanisms of nerve regeneration, respectively. We have to 

carefully study the configurations of the conduit, the fillings for the conduit, the 

soluble factors, and the cells that enhance nerve regeneration. 
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Figure 2.14. Effects of chamber parameters on quality of regeneration through 

regulation of the synthesis of two types of tissues: contractile cell capsule and 

microtubes [83].  
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Figure 2.15. Hypothesized mechanisms of peripheral nerve regeneration: outcome of 

regeneration depends on both up-regulation by synthesis of microtubes and down-

regulation by formation of contractile cells capsule [83]. 

 

 

The schematic model of a synthetic nerve construct design strategy (Fig. 2.16) that 

provides a defined microenvironment consisting of culture cells, growth factors, ECM 

molecules, and physical substrates in the lumen of the conduit is illustrated.  
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Figure 2.16. Schematic representation of the designed features of a synthetic nerve 

construct. 

 

2.3.3.1 Materials 

Lungborg is one of the pioneers to evaluate use of non-biological conduits for nerve 

repair. Non-biodegradable tubes such as silicone or polytetrafluoroethylene conduits 

were initially used to reconstruct the nerve after transection injuries that have shown 

promising results. However these non-biodegradable conduits pose long term 

complications such as fibrosis and chronic nerve compression that eventually require 

surgical removal of the conduits. Conduits made from bioabsorbable polymers 

(synthetic and naturally occurring) are promising alternatives to non-degradable 
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tubes. Table 2.10 lists some of the common biodegradable materials used to construct 

tubular conduit that have been used in in vivo studies.  

 

Table 2.10. Some common materials used to fabricate conduit that have been used in 

in vivo studies.  

Materials General 

Properties (e.g. 

degradation+) 

Fabrication 

technique 

Surface 

properties 

Permeability  References 

Synthetic      

PGA* Aliphatic 

polyester, 

Crystalline, 

degradation in 

6-12 months 

 

Woven mesh 

fabrication 

technique 

- Semi-

permeable 

[78] 

PLLA  Aliphatic 

polyester, 

crystalline, slow 

degradation 

(e.g. > 24 

months) 

 

Solvent casting, 

extrusion, and 

particulate 

leaching 

Rough-

looking due 

to the open-

pore 

structure 

Porous, mean 

pore size of 

12.1 µm 

[84-86] 

PLGA  Electrospinning Randomly 

arranged 

nanofibers 

provide 

relative 

smooth 

Semi-

permeable 

 

[40] 
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surface 

 

PCL-LA* Amorphous, 

degradation 

within year(s) 

Dip-coating Inner layer 

is dense to 

prevent in-

growth of 

fibroblast, 

outer layer 

is porous 

Semi-

permeable 

[4], [87] 

      

Natural      

Collagen* Degradation 

between one 

and 9 months 

Spinning of 

collagen fibers 

around a central 

mold to form 

tubular 

geometry 

Interconnect

ed pores 

with 

laminated 

appearance; 

inner layer 

consisting 

of densely 

packed 

fibers that 

are 

intertwined 

with multi- 

layered 

structure 

Semi-

permeable 

(e.g. 

permeable to 

molecules the 

size of BSA) 

[88] 

Alginate  Freeze-drying 

of hydrogel 

 

 Porous  

+ Degradation rate is dependent on the fabrication methods 

* Commercially available nerve conduit 
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The advantages of using natural biomaterials for nerve construct production are the 

presence of biological recognition to provide a better environment for tissue 

regeneration. However, natural biomaterials may exhibit inflammatory and antigenic 

responses though collagen exhibits these immunological responses minimally. In 

contrast, synthetic polymers can be produced reproducibly in large scale that have 

controlled properties of strength, degradation rate, and microstructure. A drawback of 

synthetic polymers is the lack of biological recognition but this can be circumvented 

through the incorporation of cell-recognition molecules or domains such as laminin or 

tripeptide RGD into these materials. In fact, mixing of natural materials such as 

collagen and synthetic polymers such as PGA were performed to fabricate tubes to 

bridge up nerve gaps, and this combination of materials shows excellent nerve 

regeneration over large nerve gaps [89]. The many key characteristics possessed by 

synthetic polymers such as high porosity and surface area, structural strength, and 

specific three-dimensional shapes outweigh the lack of biological recognition in their 

use in tissue engineering or other bioengineering applications, especially in nervous 

tissue repair. 

 

2.3.3.2 Cells 

Glial cells, Schwann cells, are identified to be essential for successful peripheral 

nerve regeneration. During development, Schwann cells actively deposit ECM 

comprising of basal lamina sheets that surround individual axon-Schwann cell units.  

Following injuries, denervated Schwann cells will produce a number of neurotrophic 
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factors to support the survival of injured neurons, promote macrophage infiltration to 

the injured nerve, and provide substrate for axonal regeneration. Another important 

role of the Schwann cells involves the ensheathing and remyelination of regenerating 

axons. Although it is not exactly known about the mechanisms between axon and 

Schwann cell partnership during nerve regeneration, experiments have shown that a 

close relationship is present [90, 91] and regenerating axons could be misdirected by 

atypical Schwann cells processes [91]. Guidance of Schwann cells migration, 

adhesion, and maturation have been observed when cultured on various substrates 

[92, 93]. Incorporation of Schwann cells in the nerve conduits achieved good 

regeneration in the sciatic nerve repair compared with the nerve conduits without 

Schwann cells  [94, 95]. Coupling Schwann cells [90, 96] in artificial nerve conduits 

is a potential strategy to improve peripheral nerve regeneration. However, Schwann 

cells application in the clinics remains controversial because in vitro expansion of 

culture Schwann cells is limited and the potential rejection of non-autologous donor 

Schwann cells has to be addressed. 

 

Stem cells may be an alternative source for Schwann cells. Neural stem cells [97] and 

trans-differentiated bone marrow stromal cells [98-100] that express glial phenotype 

show potential use of stem cell therapy for peripheral nerve tissue engineering. 

Grafting of glial-differentiated bone marrow stromal cells into peripheral nerve repair 

showed a beneficial effect on Schwann cell growth within the nerves, thus indirectly 

promoting axonal regeneration [100]. However trans-differentiation of stem cells into 

neuronal or glial-like cells for use in clinical settings would require considerable 
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evaluation to justify the use in the design of artificial nerve conduits. Besides stem 

cells, research to use olfactory ensheathing cells [101], and genetic modified cells that 

over-express neurotrophins [2, 102-106]  for nerve regeneration have also been 

described. Olfactory ensheathing cells that could be derived centrally from the 

olfactory bulb or derived peripherally from the olfactory epithelium possess similar 

phenotypes as Schwann cells and astrocytes [2]. It is however suggested that in order 

to warrant the use of olfactory ensheathing cells in peripheral nerve regeneration, 

distinct advantages of these cells over Schwann cells would have to be shown [2].  

 

2.3.3.3 Extracellular matrix molecules 

Schwann cells ensheathing the axons actively deposit sheets of ECM. The molecular 

constituents found in the peripheral nerve ECM are listed in Table 2.11. ECM 

mechanically stabilized cells and is critical for myelination of axons [107]. There are 

two major components: basal lamina surrounding the Schwann cells and axons, and 

endoneurial collagen that are both formed during embryonic development. Basal 

lamina contains collagen type IV and V, laminin, fibronectin, entactin, and heparan 

sulfate proteoglycan [107]. Endoneurial collagen contains longitudinally arranged 

collagen fibrils that are mainly collagen type I, II, IV, and V [107]. Since ECM plays 

important role for supporting the axons and Schwann cells, it may be advantageous to 

mimic the structure and biochemical signals found in the PNS ECM to enhance the 

performance of synthetic nerve constructs to bridge nerve deficits.  

 

Table 2.11.  Description of ECM molecules of the peripheral nervous system [11].  
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Extracellular 

matrix 

molecules 

Active 

peptide 

sequence 

 

Distribution in ECM of nervous 

system 

Major Function 

Laminin 

 

 

IKVAV, 

YIGSR, 

RGD 

Perhaps all basement 

membranes including those of 

Schwann cells and skeletal 

muscle, appears prior to 

development of intact basement 

membranes, on astrocytes in 

culture 

 

Interact and influence 

with Schwann cells 

activities. Supports 

nerve fiber growth, 

stimulates aggregation 

of acetylcholine 

receptors on culture 

myotubes 

 

Collagen  

 

 

RGD Synthesized by Schwann cells, 

Schwann cell basement 

membrane 

Major structural protein 

of lamina densa, 

stimulates 

ensheathment of 

neurons by Schwann 

cells 

 

Fibronectin 

 

RGD Radial glia in developing 

cerebellum, skeletal muscle and 

Schwann cell basement 

membranes, ECM of neural 

crest 

Guidance of migrating 

neuroblasts, and 

growing nerve fibers, 

Schwann cell mitogen 

 

 

Entactin 

 

- Basal lamina of Schwann cells 

 

Cell attachment 

Heparan 

sulfate 

- Basement membrane of 

Schwann cells 

Myoneural 

synaptogenesis, 

adhesion of culture 
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neural cells to 

substrates, associated 

with a neurotrophic 

factor 

 

 
 

Haptotactic cues for nerve regeneration include the incorporation of contact-mediated 

signals such as ECM proteins or short sequences of the “functional” nucleotides of 

the ECM to guide axons to extend to the synaptic targets [82]. It is well recognized 

that ECM components like collagen, laminin, and fibronectin can improve the results 

of nerve repair.  

 

Collagen, a major component of the peripheral nerve’s ECM, consists of different 

isoforms that display different functions for the PNS [11]. For example, collagen type 

I supports Schwann cells attachment and proliferation through interaction with the 

cell surface integrins, and collagen type IV is the main structural component of the 

basal densa [11]. Collagen type I is minimally antigenic that limits fibrotic and 

foreign body reaction [108], and can be broken down by collagenase possessed by 

fibroblast, macrophages and polymorphonuclear leukocytes [109]. Numerous studies 

have evaluated collagen for nerve tissue engineering applications. Incorporation of 

collagen gel or collagen sponge in the lumen of nerve guides were shown to improve 

nerve regeneration [110-112]. Collagen type I filaments were found to enhance nerve 

regeneration in a 30 mm rat sciatic nerve deficit [113]. Collagen-based nerve guides 

have also been produced commercially for clinical use [78].  
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Laminin, a major component of the basal lamina, is one of a series of structural 

proteins that activate the β1-integrin receptor. It plays a crucial role in cell migration, 

differentiation of Schwann cells and axonal growth [114-116]. In vitro experiments 

have shown that neurite outgrowth can be enhanced on scaffolds that have been 

coupled with laminin [96, 117-119]. In addition, short bioactive oligopeptides 

sequences of laminin (e.g. IKVAV and YIGSR) that can be recognized by specific 

receptors have been shown to improve neurite outgrowth [120, 121]. Fibronectin has 

been reported to affect the motility of Schwann cells. Fibronectin has been shown to 

influence axonal elongation, Schwann cell attachment and proliferation [122]. In 

addition, fibronectin-containing matrices were formed in the lumen of synthetic 

conduits used to bridge the nerve gaps [66]. Experiments demonstrated the 

effectiveness of fibronectin mesh as a delivery vector of chemotactic cues to promote 

nerve regeneration [123, 124], while providing support as a basal lamina scaffold.  

 

2.3.3.4 Neurotrophic proteins  

In normal nerve state, cellular and molecular activities are dependent on the influence 

of neurotrophic factors secreted by the peripheral target cells. Neurotrophic factors 

mediate chemotaxis processes that are required for successful re-establishment of 

functional synaptic connections. Actions of neurotrophic factors are influenced by the 

neurotrophic receptors such that the binding of each individual neurotrophin with 

their specific receptor(s) will initiate a cascade of reactions. During nerve 

regeneration, axons can respond to specific neurotrophic proteins and grow back 
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preferentially towards the original target organs to form functional synaptic 

innervations. Researchers have applied exogenous neurotrophic factors at the injury 

sites to promote better nerve regeneration and functional recovery [125, 126]. 

Biodegradable polymers are usually used to produce the delivery vectors to provide 

sustained release of bioactive neurotrophic proteins. Since neurotrophins usually have 

short plasma half-life, considerations have to be taken when encapsulating growth 

factors into the design of the nerve conduit. Encapsulation of proteins for drug release 

surrounds several concerns that include maximizing therapeutic activity, maintaining 

the protein stability, and minimizing toxic side effects [20]. Table 2.12 shows the 

various neurotrophic growth factors that have been studied for their potential use in 

peripheral nerve repair.  

 

Table 2.12. Neurotrophic factors for peripheral nerve regeneration. 

Growth factor Abbreviation Major Target Delivery 

Vector(s) 

References 

Nerve growth 

factor 

 

 

NGF Sensory neurons, 

small axons 

Microspheres, 

hydrogel, 

nanofibers 

[126-128] 

Neurotrophin-3 NT-3 Sensory neurons, 

small and 

medium size 

axons 

 

Fibronectin 

scaffolds 

[124] 

Brain-derived 

neurotrophic 

BDNF Sensory neurons, 

large axons 

Collagen gel [129] 
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factor  

Glial-derived 

neurotrophic 

factor 

GDNF Motor neurons Synthetic 

polymeric 

nanofiber 

conduit 

 

[130] 

Fibroblast growth 

factor 2 

FGF-2 Vascular 

endothelial cells 

Synthetic 

polymer 

conduit  

 

[131] 

Ciliary 

neurotrophic 

factor 

CNTF Schwann cells 

(injury factor) 

 

Protein 

solution 

[125] 

Vascular 

endothelial 

growth factor 

 

VEGF Vascular 

endothelia cells 

Protein 

solution 

[132] 

Insulin-like 

growth factor I 

 

 

IGF-I Inflammatory 

cells (anti-

inflammatory) 

Covalently 

bound to 

conduit 

[133] 

Glial growth 

factor 

GGF Schwann cells Alginate 

hydrogel 

 

[134] 

 
NGF, the first identified neurotrophic factor, is essential for the survival and 

maintenance sensory and sympathetic neurons [135]. It binds to the p75 neurotrophin 

receptor and the trk-A receptor. Another growth factor that is closely related to NGF 

is the brain-derived growth factor (BDNF). BDNF is expressed by skeletal muscle 

that primarily binds to the trk-B receptor and is important for the regulation of 
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neuromuscular synapse development [136, 137]. Evidence obtained from in vitro 

experiment has shown that BDNF is an important biomolecule for the survival and 

differentiation of motor neurons and could assist to prevent neuron death after nerve 

injury [136]. In vitro and in vivo studies have shown that neurotrophins-3 (NT-3) and 

-4 (NT-4) and ciliary neurotrophic factor (CNTF) bind to the trk receptors and the 

glycosyl-phosphatidylinostiol-linked CNTF receptor, respectively, that are required 

for the survival of certain motor neurons [137, 138] as well. Glial cell line-derived 

neurotrophic factor (GDNF) that binds to the tyrosine kinase receptor (RET) and the 

GDNF receptor-alpha is distantly related to transforming growth factor beta family 

[29] and has the ability to promote survival of both motor and sensory neurons [137].  

 

Many studies have introduced neurotrophic factors in the peripheral nerve tissue 

engineering strategies to evaluate the extent of nerve regeneration. Release of 

neurotrophic factors such as nerve growth factor that were encapsulated in 

microspheres [139], matrices [140], scaffolds [128, 141, 142] or covalently bound to 

scaffolds [143] have demonstrated improved neurite outgrowth. The presence of 

exogenous nerve-related bioactive molecules such as NT-3 and BDNF has 

demonstrated enhanced nerve regeneration [2, 144]. Also, concentration gradients of 

NGF and NT-3 have been immobilized on hydrogel to promote neurite outgrowth 

[145, 146]. 

 

Usually, protein release profiles are characterized by a marked initial burst release 

that results in subsequent low amount of neurotrophic factors delivered to the injury 
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sites [147]. Efforts are made to minimize this problem to achieve controllable and 

continuous delivery of proteins using different biodegradable polymers or vectors 

such as microspheres or hydrogel. Increasing interests to use nano-scale delivery 

vectors such as nanoparticles, nanotubes, and nanofibers to provide improved 

sustained release of drug are underway [20]. Among those, the nanofibers are 

promising as a dual functional scaffold that not only provides controlled drug delivery 

but also supports cell and tissue growth as the nano-scale topography closely mimics 

the natural ECM.  

 

2.3.3.5 Intra-luminal guidance channels and scaffolds 

An important process in nerve regeneration to repair transected nerve involves the 

migration of Schwann cells into the synthetic nerve grafts from the proximal and 

distal nerve stumps [148], subsequently forming cellular bridges across the 

interstump gap that are termed bands of Büngner (Fig. 2.17). These physical 

structures play a significant function in nerve regeneration as they act as guiding cues 

and substrates for growth cone adherence and axon outgrowth towards the distal end. 

The longitudinally oriented cell matrix organize axon extension such that if 

regenerating axons accidentally leave the supporting matrix, axonal elongation 

usually terminates that can result in the formation of neuroma [149]. The molecular 

driving force for Schwann cells to form these cellular bridges are not known, but this 

could likely be due to the polarized expression of adhesion proteins along the 

proximal-distal axis of the Schwann cells [149].  
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Figure 2.17. Formation of bands of Büngner by the Schwann cells during nerve 

regeneration [81].  

 

Tubulation devices that utilize hollow conduits provide a physical substrate to guide 

sprouting axonal elongation towards the distal stumps, thus preventing aberrant 

outgrowth of axons and formation of scar tissue that impede nerve repair. In a hollow 

conduit, formation of fibrin matrix occurs that is subsequently infiltrated with 

Schwann cells and non-neuronal cells. Formation of physical cellular bridges (i.e. 

bands of Büngner) will be created by the proliferated Schwann cells that are shown to 

influence nerve regeneration and can act as scaffolds for advancing axons (Fig. 2.17). 

If the nerve gap deficits are too great, formation of fibrin matrix and bands of 

Büngner might be compromised, thus affecting nerve regeneration and functional 

recovery. Researchers have thus introduced physical scaffolds within the lumen of the 

conduits to potentially enhance axonal regeneration (Table 2.13). 
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Table 2.13. Fillings and scaffolds in the lumen of nerve conduit. 

Fillings Materials Features References

Denatured muscle 

scaffolds 

allogenic and acellular Presents longitudinally 

oriented basal lamina 

of muscle that also 

contains ECM 

molecules such as 

laminin and collagen 

type IV. 

 

[150, 151] 

Hydrogel Natural occurring 

materials such as 

collagen, Matrigel, 

hyaluronic acid, etc. 

 

Highly porous. Can be 

coupled with neurite-

promoting 

biomolecules 

 

[119] 

Magnetically aligned 

fibrils hydrogel 

Collagen Fibers that mimic the 

natural ECM. Can be 

coupled with neurite-

promoting 

biomolecules 

 

[112] 

Synthetic or natural-

occurring polymeric 

filaments (intra-

luminal guidance 

channels) 

Collagen and synthetic 

polymer (e.g. PLLA, 

PGA)  

 

Micro-sized fibers (5 

µm – 150 µm). 

Can be coupled with 

neurite-promoting 

biomolecules. 

 

[9, 113, 

118, 152] 
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Incorporation of fillings in the conduits are aimed to create a permissive regenerative 

environment that can regulate appropriate axonal growth and promote excellent 

functional activities of the nonneuronal cells essential for nerve regeneration. The use 

of denatured muscles have been shown to effectively direct outgrowing axons as the 

presence of longitudinally oriented basal lamina of the muscle tissue that contains 

biochemical molecules [150] was considered as beneficial. Longitudinally aligned 

guidance scaffolds have been described to provide excellent guiding function for 

regenerating axons. A study has shown that aligned collagen fibrils in collagen 

conduits enhance the regeneration in the mice’s sciatic nerves compared to conduits 

containing unaligned collagen gel [111]. Micro-grooved polymer filaments inside 

nerve conduits allowed nerve regeneration to occur with highly oriented axon growth 

without meandering [149]. Incorporation of intra-luminal guidance channels can thus 

potentially improve nerve regeneration [2, 9, 118, 152, 153] to repair large nerve 

defect injuries since they can mimic the bands of Büngner. For a 18 mm and 30 mm 

nerve lesion gap, Cai et al. [152] and Yoshii et al. [113] have reported that conduits 

containing physical filaments could enhance axonal regeneration in the animal 

studies. This thus assists to recreate an environment that resembles more like the 

native nerve tissue organization architecture.  

 

2.3.4 Electrospun nano-scale scaffolds for peripheral nerve regeneration 

Current interests for using electrospun nanofibers in tissue engineering strategy can 

be attributed to the nano- and micro- hierarchical architecture of the scaffolds easily 
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fabricated by electrospinning [154]. Scaffolds possessing nano-texture surface had 

been previously shown to allow adhesion and proliferation of neural stem cells [155].  

 

Poly(L-lactide-co-glycolide) (PLGA) biodegradable polymer conduit made up of 

random nanofibers has been fabricated and this conduit demonstrated nerve 

regeneration after one-month implantation as evidenced by neurofilament immuno-

staining and histomorphometrical analyses (Figs. 2.18 and 2.19). In vitro study also 

showed that neural cells were able to extend their neurites well on synthetic poly(L-

lactide) (PLLA) nanofibers (Fig. 2.20) [12].  

 

 

   

  

Figure 2.18. Immunostaining for the neurofilament protein (NF68) confirmed axonal 

distribution of the regenerated nerves in the nanofiber conduits. (a) Explanted nerve 

regenerated nerve cable after a month of implantation, (b) Cross-sectional view of the 

conduit regenerated distal stump, and (c) Cross-sectional view of the control rat 

sciatic nerve [40]. 
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Figure 2.19. Histology analysis of the varying degrees of myelinated axons in 

regenerated rat sciatic nerves in the nanofiber conduit [40]. 

 

Fiber orientation plays a significant role in the influence of morphology and 

cytoskeleton of many cell types. Aligned PLLA nanofibers were able to promote 

longest neurite extension when compared to the random PLLA nanofibers. It has been 

reported that more than 80% of cells have been induced to elongate neurite parallel to 

the fiber axis of the aligned nanofibrous scaffolds through the contact guidance effect 

[12]. In the same study, differentiation rate of the neural cells was observed to be 

better on nanofibrous scaffolds compared to that of the microfibrous scaffolds [12]. 

Aligned fibers were shown to guide oriented neurite outgrowth and glial migration 

from dorsal root ganglia [43]. 
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Figure 2.20. (a) Phase contrast micrographs and (b) Confocal laser scanning 

micrographs (antibody staining of neurofilament 200 kDa) of neural cells interactions 

with nanofibers on day 2 after cell seeding. The fiber alignment may have effects on 

mediating the interaction between the neural cells and the scaffolds. The preferred 

growing direction of the neural cells is parallel to the fiber axis and the process is 

dynamically directed over time [12]. 

 

In addition, fiber arrangement (i.e. aligned vs. random) may have mediation effects 

on the interaction of the nerve supporting cells with the scaffolds. It has been reported 

that when dorsal root ganglia were cultured on random nanofibers, neurite outgrowth 

were modest and Schwann cell migration (Fig. 2.21) were not as directed. However 

when ganglia were cultured on aligned nanofibers, axons were directed to extend 
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along the axis of the fibers. In addition, Schwann cell migrations were prominent 

along the axis of the nanofibers orientation indicating that the aligned nanofibers 

acted as physical substrates to direct movement and subsequently affect Schwann cell 

maturation.  

 

 

Figure 2.21. Comparison of aligned and randomly oriented nanofibers on cell 

morphology [156].  

 

In another study, enhanced Schwann cell orientation and maturation was observed 

when cultured on aligned nanofibers (Fig. 2.22) [44]. 
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Figure 2.22. Schwann cell cultured on aligned and randomly oriented nanofibers [44].  

 

2.3.5 Summary 

In an effort to regenerate peripheral nerve to bridge nerve gap of clinically relevant 

critical lengths, several major advances have been made in the recent years in the 

field of peripheral nerve engineering. Despite these improvements in the field, there 

remains no adequate substitute for autologous nerve grafts, the present gold standard 

for bridging peripheral nerve gap injuries. Current research focuses mainly on the 

creation and development of an ideal nerve construct that will most probably 

encompass several strategies such as the use of different biodegradable materials, 

cellular components, ECM molecules, neurotrophins, and lumen fillings, which have 

been described in this chapter. In the present study, a biomimetic nanofibrous nerve 
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construct will be designed and discussed on its effectiveness to repair nerve injury 

and potentially replace the use of autologous nerve grafts. An acellular approach is to 

fabricate the nanofibrous nerve construct consisting of intra-luminal guidance 

channels that is coupled with ECM protein (laminin or collagen) and neurotrophic 

factor (NGF). The strategy aims to provide an advanced nerve repair implant device 

to bridge up nerve gap that will bring about better clinical outcomes.  
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Chapter 3 
 
 

Fabrication of PLLA nanofiber membrane and nanofiber 

nerve conduit 

 
 

3.1 Introduction 

Enhancing cell interactions with bioengineered biomaterial is crucial for successful 

applications of scaffolds for repairing and regenerating damaged tissue. The scaffolds 

can be designed to mimic complex biological structures, and/or provide the 

mechanical support to allow the cells of the damaged tissue to remodel and repair to 

form distinct three-dimensional tissue structures that resembles the original tissue [19, 

20]. In recent years, electrospinning has been extensively used to construct 

bioengineered scaffolds because it is a simple fabrication process that can easily 

produce nano- and micro- size synthetic polymeric fibers. Synthetic polymeric 

nanofibers such as PCL [31], PLLA [12], PGA [32] and PLGA [33], and natural-

occurring polymeric nanofibers such as collagen [34] and gelatin [35] have been 

electrospun for studies in bone [31], vascular [59], nerve [12, 157], and other 

bioengineered grafts.  

 

PLLA, an FDA approved biomaterial, is a widely-used for scaffold fabrication 

because it is biodegradable and generally shows good biocompatibility. In one study, 

PLLA has been shown to maintain its structural shape and size that display minimum 

swelling or shrinking issue when immersed in PBS up to 42 days, and presented 
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sound fibrous architecture throughout the 28-day cell culture period [32]. In neural 

tissue engineering, PLLA possesses sufficient mechanical integrity to be used as the 

scaffold material for nerve scaffolds [12, 43, 158] or guidance channels fabrication 

[86]. Porous PLLA conduits [84, 85] and PLLA filaments [9, 118] were evaluated in 

rat sciatic nerve model that yielded some promising results for applications in 

peripheral nerve repair. Recently, nano-textured PLLA scaffolds made up of nano-

fibrils have been shown to allow adhesion and proliferation of neural cells [12, 43, 

158].  

 

Additionally, upon seeding onto polymeric biomaterial, cell attachment to polymer is 

the first cellular event to occur. After the cells are securely adhered, other events such 

as cell migration, proliferation and differentiation will then subsequently take place 

[32]. Therefore, optimal cell adhesion is critical for favorable cellular response. Li et 

al. described that PLLA nanofibers were found to perform better than PCL, PGA and 

PLGA nanofibers, in terms of supporting cell-matrix interaction and cellular 

proliferation in certain cell types [32]. A preliminary study was performed in this 

project to evaluate the various electrospun nanofibrous scaffolds that were fabricated 

from the biodegradable polymers for nerve cell culturing. Neural cell viability assay 

showed that PLLA provided better substrates for nerve cell growth that have been 

compared with PLLA, PLGA, P(DL)LA, PGA, PCL and PCL-LA (Appendix A). 

 



 Chapter 3 

70 

3.2 Materials and Methods 

All chemicals were obtained from Sigma-Aldrich (St Louis, MO) and were used as 

received, unless otherwise stated. PLLA was bought from Polysciences, Inc. 

(Warrington, PA) at molecular weight of 100 kDa. All the parameters of 

electrospinning process had been optimized. 

3.2.1  Fabrication of random and aligned PLLA nanofibers  

Random and aligned PLLA nanofibrous membranes were fabricated by 

electrospinning as shown in Figure 3.1a and 3.1b, respectively. PLLA solution was 

prepared by dissolving PLLA in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) at a 

concentration of 10% w/v. The polymer solution was fed using a 27-G spinneret at a 

rate of 0.5 mL/h using a syringe pump (KDS100, KD Scientific Inc., USA). The 

distance between the spinneret tip and the collector was set at 12 cm. Electrospinning 

voltages were applied using a high-voltage power supply (AU-301P1Matsusada 

Precision Inc., Japan) at 10 and 21 kV for random and aligned PLLA nanofibers, 

respectively. Aligned nanofibers were electrospun at disk rotation speed of 1000 rpm, 

corresponding to take-up velocity of 630 m/min. All the experiments were performed 

in a humidity of less than 65% and a temperature of 24-26 oC. 

 



 Chapter 3 

71 

 

Figure 3.1. Electrospinning of nanofibers. (a) random nanofibers membrane, and (b) 

aligned nanofibers membrane. 

3.2.2 Fabrication of PLLA nanofibrous nerve conduit 

Nanofibrous nerve conduit was made up of two layers of nanofiber membranes as 

shown in Fig. 3.2. Aligned PLLA nanofibers membrane was produced by using the 

electrospinning set up shown in Fig. 3.3a. PLLA solution at 10% w/v was pumped at 

a rate of 1 mL/h to the spinneret that was set at 10 cm from the rotating drum 

collector. The rotating drum collector (diameter = 6 cm) was set at 3000 rpm and the 

electrospinning voltage was at 10 kV (high-voltage power supply, AU-

301P1Matsusada Precision Inc., Japan). Aligned nanofiber membrane was removed 
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from the collector and wrapped around a 1.5 mm diameter metallic rod (for nerve 

repair in a rat sciatic nerve injury model). Subsequently, PLLA solution at 10% w/v 

was pumped at a rate of 1 mL/h to the spinneret that was set at 10 cm from the 

rotating mandrel (Fig. 3.3b) to produce randomly arranged nanofibers that enclosed 

the aligned nanofibers membrane that had been wrapped around the metallic rod. 

Randomly oriented nanofibers were electrospun and collected on the rod attached 

onto a rotating mandrel (revolving at approximately 100 rpm). Finally the fabricated 

bilayered nanofibrous conduit was removed from the rod. All the experiments were 

performed in a humidity of less than 60% and a temperature of 24-27 oC. 

 

 

 

Figure. 3.2. Schematic of bilayered nanofibrous conduit. 
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Figure. 3.3. Fabrication technique of bilayered nerve conduit (a) aligned nanofiber 

membrane, and (b) randomly oriented nanofiber membrane. 

 

3.2.3 Characterization of PLLA nanofibers 

Atomic force microscopy (Dimension 2100; Digital Instruments Nanoscope, USA) in 

“dynamic force mode” was used to examine the topography of the nanofibrous 

substrate. Silicon nanoprobe tips (Nanosensors, Switzerland) with resonant 

frequencies near 270 kHz were used.  

 

Transmission electron microscopy (TEM) (JEM-2010F FasTEM, JEOL) was used to 

study the electrospun nanofibers. Nanofibers for TEM samples were prepared by 

direct depositing of the as-spun nanofibers on copper grids (Structural Probe, SPI 

Supplies Division, West Chester, PA) and observations were made a voltage of 100 

kV.  
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Morphology of electrospun nanofibers was studied using a scanning electron 

microscopy (SEM) (JSM-5800LV, JEOL, Tokyo Japan). The nanofibers were 

sputter-coated with gold up to 90 s in a JEOL JFC-1200 fine coated and an 

accelerating voltage of 10 kV of the SEM was used to examine the morphology of the 

electrospun scaffolds. Range of nanofiber diameters were determined based on SEM 

micrographs with the use of image analysis software (ImageJ; National Institutes of 

Health, Bethesda, MD). 

 

3.2.4 In vitro degradation of PLLA nanofibers with cultured cells 

Degradation study of PLLA nanofibers was conducted for 4 months. Randomly 

arranged nanofiber membranes were cut and glued (Implant-grade silicone adhesive, 

Silbione, MED ADH 4300 RTV, Rhodia, France) onto glass slides. Samples were 

sterilized overnight in 70% ethanol and rinsed with PBS prior to cell seeding. Rat 

pheochromocytoma cell line, PC12 cells, was obtained from American Type Culture 

Collection (ATCC). Undifferentiated PC12 cells were seeded at a density of 10,000 

cells/cm2 and cultured for the predetermined time-points. At every fortnight, samples 

were trypsinized at 37 oC and washed thoroughly to remove the cells from the 

nanofibers. Nanofibers were dried at room temperature and kept in vacuum for 

subsequent mechanical tensile test. Standard tensile test for fabric materials were 

performed with a micromechanical tester (Instron 5848 microtester, USA) at a stroke 

rate of 5 mm/min on 10 mm x 20 mm electrospun nanofiber sheet. The thickness of 
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the nanofiber sheet was determined by a micrometer (Mitutoyo, Japan). SEM was 

used to observe the morphologies of the degraded fibers. 

 

3.2.5 Characterization of PLLA conduits 

SEM was used to examine the morphology of PLLA nanofibrous conduit. The 

nanofiber conduits were placed in PBS pH 7.4 at 37 °C. After a month, the conduits 

were removed from the solution and blotted dry with an absorbent Kimwipe tissue. 

Macroscopic images were then taken using a bright-field microscope and camera 

(Leica, Germany). Swelling test was also analyzed by measuring the changes of wall 

thickness and tube diameter of the conduit using a bright-field microscope and 

ImageJ (National Institutes of Health, Bethesda, MD). Shrinkage percentage was 

expressed as follows: 

 

%100
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µ
µ  

 

 

Apparent density and porosity of nanofiber membranes were calculated based on the 

following equations: 
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where bulk density of PLLA = 1.2-1.3 g/cm3 

 

Structural pore properties was assessed using a capillary flow porometer (1200-

AEHXL, Porous Media Inc., Ithaca, NY). Briefly, pore size distribution was 

determined by allowing a non-reacting gas to flow through the dry nanofiber 

membrane, and subsequently the flowing gas streamed through the same membrane 

that had been wetted by a liquid of known surface tension. The difference in flow rate 

is thus measured as a function of pressure for both dry and wet processes. The pore 

size was determined using the software provided by Porous Media Inc. 

 

3.2.6 Statistical analysis 

Mechanical tensile testing were performed using 5 samples. The results are averaged 

and expressed as mean ± standard deviation (SD). Variance analysis using an 

ANOVA Single Factor test, with 95% confidence was used for statistical analysis. A 

p-value of less than 0.05 was considered as statistically significant. 
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3.3 Results 

3.3.1 Characterization of PLLA randomly arranged and aligned nanofiber 

membranes 

 

3.3.1.1 Atomic force microscopy and transmission electron microscopy 

PLLA nanofibers were successfully electrospun to form fibrous membranes. Figure 

3.4 illustrates the various images of the nanofibers. The electrospun nanofiber had 

smooth morphological appearance.  

 

a) 

 

b) 

 

 

Figure 3.4. PLLA nanofibers (a) Atomic force micrograph, and (b) transmission 

electron micrograph. 
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3.3.1.2 Scanning electron microscopy 

Electrospinning parameters were optimized to obtain morphologically smooth PLLA 

nanofibers. Diameter ranges of the nanofibers (Table 3.1) were determined by direct 

measurement of the nanofiber images from the scanning electron micrographs.  

 

Table 3.1. SEM images of randomly oriented and aligned PLLA nanofiber 

membranes. 

Nanofiber orientation Random Aligned 

Scanning electron 

micrograph 

 

 
 

 

 

Nanofiber diameter 

(nm) 

312 ± 67 265 ± 61 

 

3.3.2 Mechanical and morphology of PLLA nanofibers after in vitro 

degradation  

In vitro biodegradation was performed by culturing undifferentiated PC12 neuronal 

cells on PLLA randomly arranged nanofiber membranes for 4 months and mechanical 

tensile test was performed to evaluate the degree of degradation of the polymers. 

There was no significant decrease in ultimate tensile strength (Fig. 3.5a) and ultimate 
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tensile strain (Fig. 3.5b) of PLLA nanofibers cultured with PC12 cells. The variable 

data obtained could be due to the tendency of PC12 cells to aggregate that might not 

be uniformly distributed on the cultured membranes, thus leading to the observed 

large standard deviations of the mechanical properties. However, there was a gradual 

decrease in of the Young’s Modulus (Fig. 3.5c) of the nanofibrous sheets. In general, 

the degradation results showed that in vitro tests did not degrade the mechanical 

properties of the nanofiber sheets to any statistically significantly extent. From this 

degradation study, the mechanical properties of PLLA nanofibrous sheets were 

maintained and the degradation rate was slow when cultured with cells.  
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Degradation - Ultimate Tensile Strain of PLLA Nanofibers
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Degradation - Young's Modulus of PLLA Nanofibers
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Figure 3.5. Mechanical tensile test of PLLA nanofibrous sheets cultured with PC12 

cells (a) ultimate tensile strength, (b) ultimate tensile strain, and (c) Young’s 

Modulus. 
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Figure 3.6 illustrates the scanning electron micrographs of PLLA nanofibers that were 

degraded for four months. The nanofibers maintained its morphology, without any 

signs of breakage of the nanofibers. In another in vitro study, PLLA nanofibers did 

not show significant changes in weight loss and crystallinity after 45 days of 

experiment [159].  

 

 
Figure 3.6. SEM images of degraded PLLA nanofibers over four months in vitro. 

 

3.3.3 Characterization of bilayered nanofiber conduit 

3.3.3.1 Scanning electron microscopy 

Bilayered nanofibrous conduit was electrospun using the set-up shown in Figure 3.3. 

Figure 3.7 shows the scanning electron micrographs of the fabricated nerve conduit. 

The conduit was made up of two layers of electrospun membranes: inner membrane 

was made up of longitudinally aligned nanofibers to guide axonal extensions and 
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Schwann cells migration, while the outer membrane were formed by randomly 

oriented nanofibers to minimize collapse of conduit along the axis of the aligned 

fibers found in the inner layer. Electrospinning of nanofiber conduit using the 

described method provides the flexibility to obtain the conduit with various inner 

diameters (results not shown) for application in the repair of nerves with different 

dimensions. The conduit was fabricated to have an inner diameter of 1.5 mm 

measurement that can be used to repair rat sciatic nerve. If the conduit possessed too 

small or too large inner diameter, quality of nerve regeneration will be compromised 

[160].  

 

 

Figure 3.7. SEM images of bilayered nerve conduit. Inner and outer layers consisted 

of longitudinally aligned nanofibers and randomly arranged nanofibers, respectively. 

 

3.3.3.2 Porosity and pore size of nanofiber conduit 

Nanofibrous conduit consisted of fibers that were in a diameter range of 250-1000 

nm. The pore size of conduit was 1.19 ± 0.50 µm, and Table 3.2 describes the 
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thickness and porosity of the nerve conduit. Since the nerve conduit will be implanted 

into the rat sciatic nerve, a 1.5 mm diameter nerve conduit was fabricated as shown in 

Figure 3.8.  

 

Table 3.2. Description of nanofiber conduit. 

Nanofiber membrane 

(orientation) 

Inner (Aligned) Outer (Random) 

Thickness of membrane 

(µm) 

53 ± 4 102 ± 11 

Apparent density (g/cm3) 0.24 ± 0.02 0.23 ± 0.01 

Porosity (%) 81.0 ± 1.2 82.0 ± 0.7 
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Figure 3.8. Illustrations of electrospun PLLA nerve conduit for nerve repair. 

 

3.3.3.3 Swelling property of PLLA nanofiber conduit 

Swelling or shrinking of polymer nerve conduit in physiological fluid may pose 

problems in nerve repair because they may compress the regenerating axons [160]. 

The shrinkage percentage of the conduit wall was 6 ± 2 %. PLLA nanofibrous 

conduit did not show significant swelling or shrinking after immersion in PBS for one 

month.  

3.4 Discussion 

In tissue engineering and regenerative medicine of damaged tissue, it is desired that 

the cells will reorganize into structures that resemble the original tissue for 

spontaneous repair. A defined environment can influence adhesion, proliferation, 

migration and differentiation of cells surrounding or involved in the repair of the 

damaged tissue [19]. Nanotopographic patterns have been shown to influence cell 

shape, gene expression, neurite outgrowth, and cell migration in a positive manner 

[158]. The mechanisms of the effects of nano- and micro-topographies on neural cells 

adhesion and differentiation had not been extensively reported. However, as nerve 

cells and their axons live in native ECM consisting of hierarchical organization of 

nano-scaled fibers and intermolecular binding interactions, scaffolds with nano-

topography could have positive effects on the morphological and functional 

development of neural cells and nerve supporting cells. Also, synthetic polymers 

interact with the cellular components through the serum and/or ECM proteins that 

have been adsorbed on the polymer surface. Comparing to micro-scale scaffolds, 
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electrospun nanofibrous scaffolds have higher surface to volume ratio that allowed 

adsorption of more biomolecules for cell adhesion [32] that would be suitably used as 

bioengineered substrates. In addition, polymeric nanofibers are usually strong in 

mechanical properties, so the scaffold can have good tensile strength and excellent 

flexibility. Electrospinning was successfully used to fabricate PLLA nanofibers for 

nerve regeneration applications [12, 43, 158].  

 

In vitro study showed that aligned nanofibers provided superior contact guidance 

such that the ganglia neurites extended along the nanofibers upon contact and the 

neurites never left the nanofibers to grow on the cover-slip substrates that was not 

covered with nanofibers [43]. It was hypothesized that axons preferred to grow along 

the path of minimal principal curvature due to their inherent stiffness of the 

cytoskeletal structure that rendered better neurite extensions on aligned fibers [152]. 

In vitro culture of Schwann cells on aligned fibers showed cell cytoskeleton and 

nuclei aligning along the fibers with narrow morphology that resembled the bands of 

Büngner [43, 44]. Therefore, the incorporation of aligned nanofibers in nerve conduit 

design would potentially benefit the outcome of nerve repair of transection injury. 

 

Bilayered nanofibrous conduit made up of two layers of nanofibers membranes: (1) 

hierarchically placed in the inside were longitudinally aligned nanofibers that aimed 

to provide contact guidance for regenerating axon and proliferating Schwann cells, 

and (2) hierarchically located on the outside were randomly oriented nanofibers to 

provide mechanical strength, enable the transport of diffusible biochemical molecules 
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has been fabricated by electrospinning and prevent scar tissue formation. Several 

studies reported enhanced in vivo nerve regeneration using aligned nanofibrous 

conduits. However, it has been postulated that nanofibrous conduit that was made up 

of only aligned nanofibers might collapse easily along the axis of the aligned fibers. 

Hence, a bilayered nanofibrous conduits made up of aligned and randomly arranged 

nanofibers that could potentially improve the mechanical integrity of the nanofibrous 

nerve conduit was successfully fabricated.  

 

Biodegradation of biological scaffold to repair damaged tissue is generally necessary 

because long term presence of the non-degradable scaffold will cause chronic foreign 

body reaction. Depending on the type of tissue to be repaired, different degradation 

rate of the scaffold to support the repair and regeneration process will be required. 

The rate of synthetic polymer degradation depends on several factors such as 

crystallinity, molecular weight, and morphological structures. PLLA was chosen as 

the nerve conduit material because it has a relatively slow degradation rate that will 

not rapidly present acidic byproducts at the site of nerve repair. The collapse of 

conduit would also occur if the conduit degraded too fast and lost its mechanical 

integrity, hence a slower degrading polymer was used to fabricate nanofibrous nerve 

scaffold. Additionally, PLLA has been shown to support good neurite outgrowth in 

PC12 cell culture studies (Appendix A). 

 

The nanofiber conduit fabricated in this study possessed sufficient wall thickness to 

maintain the mechanical integrity and provide conduit flexibility to allow movement 
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of joints and associated motion as well. It was designed to provide tension-free repair 

site, and guide nerve regeneration across the nerve gap to prevent axonal escape at the 

repair site. Thin walled conduit was described to be beneficial for nerve repair 

strategy because less neuroma formation has been observed when nerve was bridged 

as compared to thicker walled conduit. Furthermore, less amount of the biomaterial 

used for a thin walled conduit will minimize the amount of degradation byproducts 

over time.  

 

The pore size of the nerve conduit was in the micro-scale region (1-10 µm) that was 

described to be beneficial for nerve regeneration. Vleggeert-Lankamp et al. [161] 

reported that the small pores were effective for nerve regeneration. Scaffolds that 

possess a thickness (e.g. wall thickness of a tube or membrane thickness) of 100-200 

µm were described to provide sufficient diffusion [162] for nerve repair. Hence 

nanofibrous conduit described herein possessed appropriate wall thickness 

(approximately 150 µm) for efficient diffusion of nutrient exchange and waste 

transport. In addition, the availability of endogenous neurotrophic factors and nutrient 

exchange in conduits with a porosity ranging from semi-permeable to macroporous 

were shown to influence nerve regeneration [141].  

 

Electrospinning has been shown to lower the glass transition temperature of synthetic 

polymer that could retard the crystallization behaviour of polymers especially in 

semicrystalline polymers. This in turn will cause a large shrinkage in polymer 

scaffolds that can be undesirable in several medical applications. It has also been 
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shown that electrospun PLLA conduit retained its wall thickness and internal 

diameter after incubation in PBS for a month well that will not negatively affect nerve 

repair after implantation in the body. Shrinking (or swelling) of nerve conduit can 

have negative effect on the speed and quality of nerve repair as the conduit will 

compress and exert pressure on the regenerating axons. Negligible shrinkage in 

electrospun PLLA nanofibers scaffold has been observed due to the significant 

increase in crystallinity of the polymer.  

 

A latency period of three weeks is usually observed in nerve regeneration of 

transected nerve injury in humans. The nerve will subsequently regenerate at a rate of 

1 mm/day. Maturation of nerves will occur thereafter while the conduit should stay 

intact to support the nerve regeneration process. Therefore, the nanofiber conduit was 

designed to prevent scar formation and provide the mechanical and physical support 

for regenerating nerves across the interstump gap.  

 

3.5 Conclusion 

In this chapter, PLLA nanofibrous membranes and bilayered nanofibrous nerve 

conduit were successfully fabricated using electrospinning. The nanofibrous 

membrane had smooth nanofiber morphology and maintained its mechanical 

properties after 16 weeks of in vitro degradation evaluation under cell culture 

conditions.  
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Chapter 4 
 
 

Modification of PLLA nanofibers with extracellular matrix 

molecules 

 
 

4.1 Introduction 

During development of the PNS, haptotactic factors are known to influence and 

stimulate axon guidance and neurite extension. In this chapter, collagen and laminin 

will be studied as the contact guidance biochemical cues for axonal outgrowth.  

 

Collagen is one of the most commonly used natural materials tested for its use in 

scaffolds design. Peripheral nerve ECM comprises mainly of collagen that acts as 

structural protein. Additionally, collagen has specific amino acid motifs can bind to 

cell-surface receptors that can aid in nerve regeneration process. Nanofibers had been 

modified with collagen using coating technique [59] or blending collagen in polymer 

solution for electrospinning [42] to enhance cell attachment and viability. These 

studies showed that nanofibers can be easily modified with ECM bioactive proteins to 

enhance interactions of the scaffolds with cultured cells.  

 

Laminin is one of the ECM component that is continuously synthesized after nerve 

injury [68] and it plays a crucial role in cell migration, differentiation and axonal 

growth [114-116]. For example, myelination in the PNS is affected by laminin. 
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Studies have described that even as Schwann cells could proliferate and migrate along 

axons, differentiation of myelinating phenotype was not observed without the 

presence of laminin [163, 164]. Furthermore, in vitro experiments have shown that 

neurite outgrowth is enhanced on scaffolds that were covalently bound with laminin 

[117]. Physical adsorption of laminin onto substrates with microgrooves [96] or 

microfilaments that acted as intra-luminal support matrices [118] have also been 

evaluated. These studies showed that in vitro directional guidance of the neurite 

outgrowth was achieved and enhanced using scaffolds that were physically adsorbed 

with laminin. Improved axonal outgrowth has also been observed in nerve guides 

filled with laminin gel as well [119]. Therefore, the incorporation of laminin onto 

nanofibers can potentially improve the rate of nerve regeneration.  

 

In Chapter 3, PLLA was used to fabricate nanofibrous membranes and conduits. 

Although PLLA is generally biocompatible, PLLA does not have biological 

recognition sites that can interact with the cells. It is therefore desirable to modify 

PLLA nanofibers using simple methods to improve the biocompatibility of PLLA to 

enhance cell-matrix interaction. Also, PLLA is generally hydrophobic due to the non-

polar groups along its backbone and synthetic polymer nanofibers are relatively 

hydrophobic as the decrease in fiber diameter will correspond to an increase in 

effective contact angle [25]. Improving the hydrophilic property of electrospun and 

incorporation of cell-recognition domains such as RGD onto nanofibers can be done 

to enhance cell-scaffold interactions. In a previous study [60], air plasma treatment 

was used to improve the hydrophilic property of electrospun nanofibers.  
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In this chapter, the aim was to investigate and compare the chemical composition of 

modified PLLA nanofibers through the addition of collagen or laminin by covalently 

binding, physical adsorption, and blending bioactive ECM molecules with PLLA 

polymer solution during electrospinning. In addition, neural cell viability and 

differentiation were analyzed to determine the suitability of using collagen and 

laminin modified PLLA nanofibers and compare the efficiency of the modification 

methods for peripheral nerve regeneration applications. 

 

4.2 Materials and Methods 

All chemicals were obtained from Sigma-Aldrich (St Louis, MO) and were used as 

received, unless otherwise stated. Rat pheochromocytoma cell line, PC12 cells, was 

obtained from American Type Culture Collection (ATCC). PLLA of 100 kDa was 

bought from Polysciences, Inc. (Warrington, PA). Collagen type I was purchased 

from Koken Co., Ltd (Japan). Mouse 2.5S NGF and laminin were purchased from 

Invitrogen Corporation, USA. Cell Titer 96 Aqueous One Solution assay (MTS assay) 

was acquired from Promega (Madison, WI). BCA Protein Assay kit and MicroBCA 

protein assay were bought from Pierce (USA). 

 

4.2.1 Fabrication of PLLA nanofibers  

PLLA nanofibers were fabricated by electrospinning technique. Polymer solution was 

prepared by dissolving PLLA in HFP at a concentration of 10% w/v. Using a syringe 
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pump (KDS100, KD Scientific Inc., USA), PLLA solution was fed at a rate of 1mL/h 

through a 27-G spinneret placed 11 cm from the grounded collector. A high-voltage 

power supply (AU-301P1Matsusada Precision Inc., Japan) was used to apply an 

electrospinning voltage of 10 kV DC to produce PLLA nanofibers. Electrospinning 

was conducted in a humidity of less than 60% and a temperature of 22-24 oC. 

 

4.2.2 Modifications of PLLA nanofibers with ECM molecules 

4.2.2.1 Covalent binding 

Method 1: Covalent binding of ECM molecules onto nanofibers 

PLLA nanofibers were plasma-treated in air using an electrode-less, inductively 

coupled radio-frequency glow discharge plasma cleaner (Harrick Plasma PDC-001, 

Ithaca, NY) for 5 min at a radio-frequency power of 30 W to increase the hydrophilic 

property of the nanofibers. Subsequently, the nanofiber mats were immersed in 2-(N-

morpholino)ethanesulfonic acid (MES) buffered solution (0.1 M, pH 5.0) of 5 mg/mL 

of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 5 

mg/mL of N-hydroxysuccinimide (NHS) for 1 h at room temperature. The nanofibers 

were then rinsed with MES buffer and immersed in collagen solution (300 µg/mL in 

0.01 N HCl) or laminin solution (10 µg/mL) for 24 h at 4 oC with gentle shaking (Fig. 

4.1). Covalently bound collagen-PLLA and laminin-PLLA nanofibers were then 

immersed in 70% ethanol overnight and subsequently rinsed thoroughly with sterile 

0.01 M PBS. The samples were kept sterile for cell culture studies or dried 

completely for characterization. 
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4.2.2.2 Physical adsorption 

Method 2: Physical adsorption of ECM molecules onto nanofibers 

Similarly, PLLA nanofibers were plasma-treated in air for 5 min using an electro-less, 

inductively coupled radio-frequency glow discharge plasma cleaner. PLLA nanofiber 

mats were then immersed in collagen solution (300 µg/mL in 0.01 N HCl) or laminin 

solution (10 µg/mL) for overnight at 4 oC with gentle shaking (Fig. 4.1). Physically 

adsorbed collagen-PLLA and laminin-PLLA nanofibers were then immersed in 70% 

ethanol overnight and subsequently rinsed thoroughly with sterile 0.01 M PBS. The 

samples were kept sterile for cell culture studies or dried completely for 

characterization. 

 

4.2.2.3 Blended electrospinning 

Method 3: Electrospinning of blended collagen-PLLA and laminin-PLLA nanofibers 

Blended collagen-PLLA nanofibers were fabricated by electrospinning as shown in 

Fig. 4.1. Blended collagen-PLLA solution (10% w/v) at ratio of 10:1 (weight of 

PLLA : weight of collagen) was prepared by uniformly mixing PLLA and collagen in 

HFP at room temperature. Blended laminin-PLLA nanofibers were fabricated by 

electrospinning as shown in Figure 4.1. Blended laminin-PLLA solution (10% w/v) at 

a ratio of 250:1 (weight of PLLA : weight of laminin) was prepared by uniformly 

mixing PLLA and laminin in HFP at room temperature. The ECM-polymer solutions 

were fed through a 27-G spinneret at a rate of 1mL/h using a syringe pump (KDS100, 

KD Scientific Inc., USA). The distance between the spinneret tip and the grounded 

collector was set at 11 cm. Electrospinning voltage was applied using a high-voltage 



 Chapter 4 

94 

power supply (AU-301P1Matsusada Precision Inc., Japan) at 10 kV DC for the 

fabrication of blended collagen-PLLA and laminin-PLLA nanofibers. All 

experiments were performed in a humidity of less than 60% and a temperature of 22-

24 oC.  

 

Blended collagen-PLLA and laminin-PLLA nanofibers were sterilized overnight with 

70% ethanol, followed with thorough rinsing in 0.01 M PBS for cell culturing or 

dried completely for characterization. The amount of collagen used for covalent 

binding or physical adsorption was equivalent to the amount of collagen used for 

blended electrospinning (i.e. 100 µg collagen per mg PLLA nanofibers). Similarly, 

the amount of laminin used for covalent binding or physical adsorption was 

equivalent to the amount of laminin used for blended electrospinning (i.e. 4 µg 

laminin per mg PLLA nanofibers). 
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Figure 4.1. Schematic of modification of nanofibers with collagen or laminin: Method 

1 – Covalent immobilization, Method 2 – Physical adsorption, and Method 3 – 

Electrospun blended ECM-polymer solution. 

 

4.2.3 Characterization of laminin-modified PLLA nanofibers 

4.2.3.1 Scanning electron microscopy 

Morphology of electrospun nanofibers was studied using a SEM (JSM-5800LV, 

JEOL, Tokyo, Japan). Ranges of nanofiber diameters were measured based on the 

SEM micrographs by using an image analysis software (ImageJ; National Institutes of 

Health, Bethesda, MD).  
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4.2.3.2 Visualization of RBITC-collagen and FITC-laminin on nanofibers 

Collagen was conjugated to rhodamine B isothiocyanate (RBITC) for detection and 

examination of the modification methods. Collagen was mixed with sodium 

carbonate buffer (0.1 M, pH = 9.0) and RBITC (Sigma, USA) in dimethylsulfoxide. 

The reaction was performed at 4 oC for 10 h. Subsequently, the unreacted RBITC was 

removed by centrifuging the mixture in size exclusion chromatography columns that 

had exclusion limit of 6 kDa (Biorad, Hercules, CA).  

 

Laminin was conjugated to fluorescein for detection and examination of the 

modification methods. Laminin was mixed with sodium carbonate buffer (0.1 M, pH 

= 9.0) and fluorescein isothiocynate (FITC, Molecular Probes, Carlsbad, CA) in 

dimethylsulfoxide. The reaction was performed at 4 oC for 10 h. Subsequently, the 

unreacted FITC was removed by centrifuging the mixture in size exclusion 

chromatography columns that had exclusion limit of 6 kDa (Biorad, Hercules, CA).  

 

RBITC-collagen and FITC-laminin were then used for modification of PLLA 

nanofibers as described in the above nanofiber modification section. RBITC-collagen 

and FITC-laminin modified nanofibers were mounted using FluorSaveTM reagent 

(Calbiochem, Germany) onto coverslips and viewed under laser scanning confocal 

microscope (LSCM, Fluoview FV300, Olympus). 
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4.2.3.3 X-ray photoelectron spectrometry 

X-ray photoelectron spectra of collagen-PLLA and laminin-PLLA nanofibers were 

taken on a Kratos XPS AXIS His System (Shimadzu, Japan) with a takeoff angle of 

90o and binding energy referenced to C1S of saturated hydrocarbon at 284.5 eV. 

 

4.2.3.4 Protein analysis: BCA assay 

BCA protein assay was used to quantify the amount of collagen coupled onto the 

nanofibers according to the RT (room temperature) Test Tube Protocol provided by 

the manufacturer. Collagen concentration was calculated from collagen standard 

curve.  MicroBCA protein assay (Promega, Madison, WI) was used according to 

manufacturer’s test tube protocol for analysis of the amount of laminin coupled onto 

the laminin-PLLA nanofibers. Laminin concentration was calculated from laminin 

standard curve. 

 

4.2.4 In vitro PC12 cell culture 

Rat PC12 cells were used to study the effect of collagen-PLLA and laminin-PLLA 

nanofibers on neurite extensions. The cell-line was used because PC12 cells undergo 

differentiation when they are exposed to nerve growth factor. Thus it serves as a 

useful model system to study neuronal differentiation. Also, it has been extensively 

used to evaluate biomaterials for nerve regeneration applications [165-167]. PC12 

cells were cultured in high glucose DMEM supplemented with 10% heat-inactivated 

horse serum, 5% fetal bovine serum and 1% antibiotic/antimycotic solution (Gibco 

USA) (complete medium). Nanofiber mats were placed in 24-well plate for cell 
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culture study. PC12 cells were seeded at a density of 5000 cells/cm2 for MTS cell 

viability assay. Similarly, cells were seeded at a density of 5000 cells/cm2 to 

minimize contact inhibition of neuritogenesis and cultured in differentiation medium 

(high-glucose DMEM, 1% horse serum, 0.5% fetal bovine serum and 1% 

antibiotic/antimycotic solution) supplemented with 50 ng/mL NGF. For 

differentiation studies, PC12 cells were primed by the addition of 50 ng/mL NGF at 

least 48 h prior to seeding for neurite outgrowth study. The cells were cultured in a 

humidified incubator at 37 oC with 5% CO2. 

 

Glass coverslips were coated with 100 µg/mL poly L-lysine (Sigma, St Louis, MO) 

overnight at 4 oC with gentle shaking. The coated glass coverslips were then 

immersed in 70% ethanol overnight and subsequently rinsed thoroughly with sterile 

0.01 M PBS for cell culture study. 

 

4.2.5 PC12 cell viability study 

Cell viability of the materials was analysed using MTS assay (Promega, Madison, 

WI) after day 1, 3 and 5 of cell culture. Briefly, the cell-nanofiber complex was 

incubated with assay reagent in complete medium for 4 h, and aliquots were pipetted 

into the wells of a 96-well plate to be analyzed with a spectrophotometric plate reader 

(FLUOstar OPTIMA; BMG Labtech, Offenburg, Germany). The absorbance at 490 

nm for each well was recorded.  
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4.2.6 Immunoctyochemistry and neurite length analysis 

After day 1, 3 and 5 of cell culture, immunostaining for neurofilament 160/200 kDa 

(NF160/200) was performed to observe and compare phenotypes and neurite 

outgrowth of the differentiated PC12 cells seeded on the nanofibrous scaffolds. 

Briefly, the scaffolds were rinsed with PBS and fixed in 4% paraformaldehyde for 15 

min at room temperature followed by permeation with 0.1% TritonX-100 for 5 min. 

Non-specific labeling was blocked with incubating in 2% BSA. The samples were 

immersed in mouse anti-NF160/200 (diluted at 1:200, Sigma) overnight. 

Subsequently the samples were washed and incubated in FITC conjugated rabbit anti-

mouse secondary antibody (diluted at 1:50, Chemicon, USA) for 1 h at 37 oC. 

Counterstaining with propidium iodide (2.5µg/mL) for 1 min at 37 oC was conducted. 

The immunostained samples were mounted onto glass slides with FluorSaveTM 

reagent and viewed under laser scanning confocal microscope (LSCM, Fluoview 

FV300, Olympus). Ten random, separate fields per well were recorded at 20 x lens 

objective and neurite outgrowth analysis was determined with image analysis 

software (ImageJ; National Institutes of Health, Bethesda, MD).  

 

4.2.7 Scanning electron microscopy of nanofibers cultured with cells 

Proliferating and differentiating cell morphology on nanofiber mats were studied 

using SEM. Samples were fixed in 4% paraformaldehyde for 15 min and dehydrated 

with graded concentration (50%-100% v/v) of ethanol. Subsequently, 

hexamethyldisilanze (HMDS) were added to the samples and kept in a fume hood for 

air drying and used for SEM observation.  



 Chapter 4 

100 

 

4.2.8 Statistical analysis 

All data presented are expressed as mean ± standard deviation (SD). ANOVA Single 

Factor analysis was conducted and the level of statistical significance is defined as p 

< 0.05. Each parameter was conducted with three samples (n = 3). MTS cell viability 

assay results showed the values consisted of three samples of triplicate readings. 

 

4.3 Results 

4.3.1 Morphology and chemical composition of electrospun PLLA and ECM-

PLLA nanofibers 

4.3.1.1 Scanning electron microscopy 

Electrospinning was employed to produce and functionalize polymeric nanofibers. 

Functionalization of nanofibers was achieved using covalent binding, physical 

adsorption, or blending ECM bioactive molecules (i.e. collagen and laminin) with 

PLLA solution for electrospinning. SEM revealed that PLLA and functionalized 

collagen-PLLA and laminin-PLLA nanofibers had smooth morphology that consisted 

of nanofibers in the diameter range of 100-500 nm (Table 4.1 and Fig. 4.2).   

 

Table 4.1. Diameter range of nanofibers (nm). 

Nanofibers Collagen Laminin 

Covalently bound  312 ± 68 312 ± 68 

Physically adsorbed  312 ± 68 312 ± 68 
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Blended  238 ± 114 272 ± 80 

PLLA 312 ± 68 312 ± 68 

 
 

 

Figure 4.2. Scanning electron micrographs of electrospun nanofibers (a) covalently 

bound collagen-PLLA, (b) physically adsorbed collagen-PLLA, (c) blended collagen-

PLLA, (d) covalently bound laminin-PLLA, (e) physically adsorbed laminin-PLLA, 

and (f) blended laminin-PLLA. 

 

4.3.1.2 RBITC-collagen and FITC-laminin on nanofibers 

Confocal scanning laser micrographs (Figs. 4.3 and 4.4) showed the uniform 

distribution of collagen and laminin coupled onto the nanofibers (RBITC conjugated 

collagen-PLLA and FITC conjugated laminin-PLLA nanofibers).  
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Figure 4.3. LSCM micrographs of PLLA nanofibers modified with RBITC-collagen 

(a) covalently bound collagen-PLLA, (b) physically adsorbed collagen-PLLA, and (c) 

blended collagen-PLLA. 

 

 

Figure 4.4. LSCM micrographs of PLLA nanofibers modified with FITC-laminin (a) 

covalently bound laminin-PLLA, (b) physically adsorbed laminin-PLLA, and (c) 

blended laminin-PLLA. 
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4.3.2 Chemical composition of electrospun PLLA, collagen-PLLA, and laminin-

PLLA nanofibers 

4.3.2.1 X-ray photoelectron spectrometry 

Chemical composition of collagen and laminin coupled onto PLLA nanofibers were 

shown and verified using X-ray photoelectron spectrometry (XPS). Tables 4.2 and 4.3 

show that collagen and laminin were successfully added onto the surface of the 

nanofibers as indicated by the presence of N1S peaks in the spectra, respectively. 

Since XPS only examined the surface of the functionalized nanofibers, quantification 

of collagen and laminin coupled onto the nanofibers was achieved using protein assay 

described below.  

 

Table 4.2. Atomic ratios of carbon, oxygen, and nitrogen on the surface of PLLA and 

collagen-PLLA nanofibers as determined by X-ray photoelectron spectrometry. 

Nanofiber mat C atomic 

concentration 

% 

N atomic 

concentration 

% 

O atomic 

concentration 

% 

Covalently bound collagen-

PLLA 

 

53.58    5.28    41.14    

Physically adsorbed collagen-

PLLA 

 

56.67    5.03    38.30    

Blended collagen-PLLA 

 

53.51   2.56    43.93    

PLLA 54.49    0 45.51    
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Table 4.3. Atomic ratios of carbon, oxygen, and nitrogen on the surface of PLLA and 

laminin-PLLA nanofibers as determined by X-ray photoelectron spectrometry. 

Nanofiber mat C atomic 

concentration 

% 

N atomic 

concentration 

% 

O atomic 

concentration 

% 

Covalently bound laminin-PLLA 

 

64.49 4.65 30.85 

Physically adsorbed laminin-PLLA 

 

67.67 0.99 31.34 

Blended laminin-PLLA 

 

63.50 0.37 36.13 

PLLA 60.85 0 39.15 

 
 
4.3.2.2 BCA assay for protein quantification 

The presence and quantity of collagen and laminin coupled onto the nanofibers were 

evaluated using BCA protein assays. Analysis showed that more collagen had been 

coupled onto PLLA nanofibers via the blended electrospinning method (Table 4.4). 

Similarly, significantly more laminin were found throughout the nanofibrous 

membranes (Table 4.5) in blended laminin-PLLA nanofibers than on covalently 

bound and physically absorbed laminin-PLLA nanofibers. 

 

Table 4.4. Pierce’s BCATM protein assay for collagen-PLLA nanofibers. 

Nanofiber mat Covalently 

Bound 

Physical 

Adsorption 

Blended 

Quantity of collagen 42 ± 17 µg 22 ± 10 µg 58 ± 19 µg 
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coupled per mg of PLLA 

 

 

Table 4.5. Pierce’s MicroBCATM protein assay for laminin-PLLA nanofibers. 

Nanofiber mat Covalently 

Bound 

Physical 

Adsorption 

Blended 

Quantity of laminin coupled 

per mg of PLLA 

 

1.75 ± 0.41 µg 1.50 ± 0.54 µg 3.12 ± 0.63 µg 

 

4.3.3 Effect of collagen-PLLA and laminin-PLLA nanofibers on PC12 cell 

viability  

Incorporation of ECM proteins has been shown to enhance nerve regeneration in 

several studies [117, 118]. In this study, PLLA nanofibers were modified by the 

addition of collagen or laminin through covalent binding, physical adsorption or 

blending with PLLA polymer solution during electrospinning to determine the effects 

of ECM modification methods of nanofibers on neurite outgrowth. MTS assay was 

used to study the viability of PC12 cells cultured on collagen-PLLA and laminin-

PLLA nanofibers.  

 

In general, coupling of collagen onto nanofibers improved cell viability as compared 

to PLLA nanofibers that were not modified with collagen. In this study, covalently 

bound collagen-PLLA nanofibers were found to support better cell viability (Fig. 

4.5). Figure 4.6 shows the SEM micrographs of cell proliferation on collagen-PLLA 
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nanofibers. It has been shown that collagen modified PLLA nanofibers were able to 

support cell proliferation, as compared to unmodified PLLA nanofibers.  

 

It was observed that laminin-PLLA nanofibers supported better cell viability 

compared to the unmodified PLLA nanofibers and control samples (glass coated with 

poly(L-lysine)) as shown in Figure 4.5. Laminin modified scaffolds also supported 

the attachment and proliferation of PC12 cells (Fig. 4.7) for subsequent neurite 

outgrowth when nerve growth factor was introduced. It has been shown that 

nanofibers that were coupled with laminin could enhance PC12 cell viability and 

adhesion, and can serve as effective substrates to enhance nerve regeneration.  
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Figure 4.5. Viability of PC12 cells cultured on collagen and laminin-PLLA 

nanofibers. Data are expressed as mean ± SD (n = 3, triplicate) (* p < 0.05, compared 

to the PLLA nanofibers group). 

 

 

 

Figure 4.6. Representative scanning electron micrographs of PC12 cell proliferation 

on collagen-PLLA nanofibers. 
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Figure 4.7. Representative scanning electron micrographs of PC12 cell proliferation 

on laminin-PLLA nanofibers. 

 

4.3.4 Effect of collagen-PLLA and laminin-PLLA nanofibers on PC12 cell 

differentiation 

PC12 cell differentiation on collagen-PLLA and laminin-PLLA nanofibers was 

studied by analysing the neurite outgrowth observed on the nanofiber scaffolds. 

PLLA nanofibers that were modified with collagen and laminin could promote 

neurite extension more significantly than on the unmodified PLLA nanofibers (Fig. 

4.8). 
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The results showed that covalently bound collagen-PLLA nanofibers enhanced 

neurite outgrowth of PC12 cells when compared to physically adsorbed or blended 

collagen-PLLA nanofibers (Fig. 4.8). This correlates to the better viability of PC12 

cells cultured on covalently bound collagen-PLLA nanofibers (Fig. 4.5), indicating 

that covalent coupling of collagen on PLLA nanofibers could be a potential method to 

improve PLLA nanofibers for nerve regeneration applications. Scanning electron 

micrographs of neurite extensions of PC12 cells on nanofibers are shown in Figure 

4.9. Immuno-staining of neurofilament 160/200 kDa of cultured PC12 cells on 

collagen-PLLA nanofibers are shown in Figure 4.10. As the culture progressed, more 

neurite outgrowth was observed on covalently bound collagen-PLLA nanofibers as 

compared to the other modified collagen-PLLA nanofibers. 

 

 

Figure 4.8 illustrates that more neurite outgrowth of PC12 cells were observed on 

blended laminin-PLLA nanofibers as compared to the other two modification 

methods. This observation may be attributed to more laminin were coupled onto the 

blended laminin-PLLA nanofibers. Although blended laminin-PLLA nanofibers were 

found to be better substrates to provide enhanced neurite outgrowth (Fig. 4.8, 4.11 

and 4.12) but this result did not correlate to better PC12 cell viability on blended 

laminin-PLLA nanofibers (Fig. 4.5). This may be attributed to the tendency of 

laminin to promote neurite outgrowth than to enhance viability of nerve cells [115]. 

In general, blended electrospinning is thus an effective modification technique to 
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introduce biochemical cues onto synthetic polymer nanofibers for creating 

biomimetic peripheral nerve scaffolds. 

 

 

 

Figure 4.8. Neurite extension of PC12 cells cultured on collagen-PLLA and laminin-

PLLA nanofibers. Data are expressed as mean ± SD (n = 3) (* p < 0.05, compared to 

the PLLA nanofibers group). 
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Figure 4.9. Representative scanning electron micrographs of PC12 cell differentiation 

on collagen-PLLA nanofibers. 
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Figure 4.10. Representative LSCM of cells cultured on collagen-PLLA nanofibers. 

Neurite was stained for neurofilament 160/200 kDa (green) and nuclei of the cells 

were stained with propidium iodide. 
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Figure 4.11. Representative scanning electron micrographs of PC12 cell 

differentiation on laminin-PLLA nanofibers. 
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Figure 4.12. Representative LSCM of cells cultured on laminin-PLLA nanofibers. 

Neurite was stained for neurofilament 160/200 kDa (green) and nuclei of the cells 

were stained with propidium iodide. 

 

4.4 Discussion 

Although synthetic polymers such as PLLA and PLGA nanofibers possess 

biodegradation capacity and good mechanical properties, many do not possess cell 

recognition signals. In this chapter, collagen and laminin were introduced into the 

nanofibers to improve cell-matrix interactions. Collagen and laminin were 

successfully coupled onto PLLA nanofibers using three methods 1) covalent binding 
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using water-soluble carbodiimide and N-hydroxysuccinimide as the coupling 

reagents, 2) physical adsorption, or 3) physical blending of collagen or laminin 

together with PLLA solution for electrospinning procedure (blended electrospinning). 

Careful steps were taken to ensure that the collagen or laminin added to the scaffolds 

were consistent for the modification methods to compare the efficiency of attaching 

ECM molecules throughout the scaffolds. 

 

Covalently immobilized collagen on polymer can improve material-tissue interface 

by promoting ingrowth of soft tissue and tissue adhesion [168]. Physical adsorption 

of collagen is a simple technique employed to alter the surface chemistries of the 

biomaterials to enhance cell attachment and proliferation [59]. Study has described 

that fibrotic foreign-body reactions were minimized using collagen coated synthetic 

implants that promoted integration of implant and host tissue [108]. Also, luminal 

epithelium of the jugular vein that was coated with collagen greatly improved nerve 

regeneration [169]. Blending of collagen with polymer solution for electrospinning 

allowed the refining of the composition of polymeric nanofibers for improved 

biocompatibility [42]. Our results showed that covalently bound collagen-PLLA 

nanofibers supported better cell viability even when there was more collagen coupled 

on the blended collagen-PLLA nanofibers. It is suggested that physically adsorbed 

collagen-PLLA nanofibers provided the least favorable substrate for neurite 

outgrowth as compared to covalently bound collagen-PLLA and blended collagen-

PLLA nanofibers because physically adsorbed collagen was less biologically stable 

due to the easy desorption of adhesive molecules when cells were cultured [170]. 
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Enhanced neurite outgrowth was observed on covalently bound collagen-PLLA 

nanofibers as compared to the other two types of collagen modified nanofibers. The 

reason may be due to the preference of axonal outgrowth on smooth surfaces [2]. 

Pure collagen nanofibers were found to swell into hydrogel-like structure in cell 

culture medium [42], thus blended collagen-PLLA nanofibers that consisted of 

blended collagen-PLLA nanofibers would also swell to affect neural cell attachment 

and viability.  

 

Laminin is well-characterized to induce cell attachment and neurite outgrowth and its 

involvement in nerve regeneration in vivo [116, 118] and is a major component of the 

basal lamina and is potent in promoting neurite outgrowth [11]. Laminin interacts 

with surface receptors, such as Schwann cell surface integrin receptors α1β1, α6β1, 

α6β4, to activate signaling pathways that influence cell viability and functions [164]. 

It also presumably activates myelination which is essential for successful nerve 

regeneration [107]. Laminin had been cross-linked onto PLLA nanofibers to provide 

a bioactive scaffold possessing both physical and biochemical cues for the induction, 

enhancement and guidance of neurite outgrowth of neural cells [158]. Blended 

electrospinning were found to be an efficient technique to introduce laminin into the 

scaffolds (on the surface and in the interior of the nanofibers) as more laminin were 

found to couple onto the scaffolds as compared to the other two methods (Table 4.5). 

Blended electrospinning is considered a rapid and simple modification technique as 

compared to the other two modification methods. Covalent immobilization and 

physical adsorption involved several steps to achieve modification of the nanofibrous 
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scaffold that did not achieve similar laminin coupling efficiency. In addition, the 

presence of laminin molecules on the surface and in the interior of the blended 

nanofibers can provide the necessary signals for cell interaction as the synthetic 

polymer degrades.  

 

PC12 cells extended their neurite well on blended laminin-PLLA nanofibers. 

Especially, extensive neurite outgrowth was observed on blended laminin-PLLA 

nanofibers that highly suggest that electrospinning of laminin at high voltage had not 

adversely affected the bioactivity of the ECM protein. Many studies have shown 

successful electrospinning of collagen nanofibrous scaffolds using HFP as the solvent 

[42, 92]. Electrospun nanofibrous collagen-blended PCL-LA nanofibers were shown 

to support the attachment, viability and preserve phenotype of the cultured endothelial 

cells [42]. Collagen-PCL nanofibers produced by blended electrospinning also 

supported glial cell migration and axonal outgrowth [92]. Thus, it is postulated that 

laminin that had been blended in the polymer and HFP solution will remain viable 

bioactive molecule to promote neurite outgrowth. In addition, it is well known that 

laminin contains bioactive neurite binding sites for neural cell attachment and 

differentiation (namely YIGSR and IKVAV, respectively), and studies had shown 

enhanced neurite extensions on substrates that were modified with laminin peptides 

[120, 121, 171]. If these peptide sequences are not adversely influenced by the 

solvent used for blended electrospinning, the bioactivity of the ECM proteins found 

in the blended electrospun nanofibers could remain bioactive after treatment with the 

electrospinning solvent.  
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In vitro neurite extension of neural cells is a good indirect measure of the ability of 

ECM molecules to promote nerve regeneration [92, 122, 172]. In this chapter, it is 

observed that collagen and laminin modified PLLA nanofibers were found to support 

neurite extension. More importantly, better encapsulation efficiency of ECM 

molecules in the nanofibers was obtained using blended electrospinning (Fig. 4.8). 

Comparing collagen and laminin, laminin is a more potent biomolecule that support 

better neurite outgrowth and activities of Schwann cells for nerve regeneration (Figs. 

4.10 and 4.12). Additionally, laminin has been found to encourage better attachment 

and proliferation of Schwann cells when compared to collagen and fibronectin [122]. 

In vivo studies have shown that laminin performed better than collagen in the 

improvement of outcome of nerve regeneration [119]. It had been reported previously 

[2] that neurites grew well on smooth surfaces and it is interesting to observe that the 

positive control samples in this study(i.e. coverslips coated with poly(L-lysine) 

supported excellent neurite outgrowth (Fig. 4.8). Hence the good neurite extensions 

observed on coverslips coated with poly (L-lysine) could be due to the smooth 

surface that had been presented by the coverslips to the extending neurites to effect 

better neurite outgrowth.  

 

Successful fabrication of nanofibers using electrospinning depends on the 

characteristics such as solubility in suitable solvents and their molecular weight, of 

the material to be electrospun. Blended electrospinning can be used to fabricate 

scaffolds from materials that cannot be easily electrospun alone (e.g. low molecular 
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weight polymer or bioactive molecules such as laminin) because these materials can 

be blended with polymers that are well-suited for electrospinning (e.g. PLLA and 

PLGA) which can further act as a good mechanical support. In this study, three 

modification methods were studied that shows blended electrospinning as a facile and 

efficient method to fabricate bioactive nanofibrous scaffolds that contain both 

synergistic topographical and biochemical cues for enhancement of nerve 

regeneration. 

 

4.5 Conclusion 

This chapter demonstrates that nanofibrous scaffolds can be fabricated by 

electrospinning to produce nano-scale architectured scaffolds and can be easily 

functionalized with biochemical cues (e.g. collagen and laminin) to further enhance 

neurite outgrowth for potential applications in neural tissue repair. Importantly, 

blending laminin for electrospinning is a useful and easy method to modify scaffolds 

that have both topographical and biochemical cues. 
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Chapter 5 
 
 

Fabrication and characterisation of PLGA nanofiber intra-

luminal guidance channels and modification with 

neurotrophins 

 

 
 

5.1 Introduction 

Bridging developmental biology, tissue engineering and regenerative medicine has 

been identified as an important key to realize the potentials of applying bioengineered 

scaffolds in the clinics [19]. It is essential to understand how cells construct 

themselves during development to form the distinct three-dimensional tissue 

structures; and how cells of damaged tissue remodel, repair and regenerate after 

injury to form desirable structures that resemble the original tissue [20]. Appropriate 

designs of bioengineered nerve constructs are therefore crucial to encourage better 

tissue regeneration to replace damaged tissue. For nerve regenerative medicine, the 

presence of endoneurium layer in which the axons are arranged in nerve bundles is an 

important feature of the autologous nerve graft. Autologous nerve grafts contain these 

longitudinal endoneurial tubes of the basal lamina for nerve growth cones or non-

neuronal cells to adhere and attach for elongation, migration and maturation. 

Especially for large peripheral nerve gaps repair, this important architecture found in 
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the autologous nerve graft may render the better nerve regeneration and functional 

recovery observed in autograft repair [152].  

 

Previous study has shown that without inner filament bundles in peripheral nerve gap 

repair, Schwann cell cables were formed in a discontinuous manner [152] to present 

an unfavorable environment that affected nerve regeneration. Therefore, the lack of 

intra-luminal guidance channels in synthetic nerve conduits might limit the rate or 

degree of peripheral nerve regeneration. Comparison of empty nerve conduits and 

conduits containing microfilaments has previously been examined. The results 

demonstrated that the presence of microfilaments enhanced axonal regeneration in 

rats that were subjected to a 18 mm nerve lesion injury [152]. Also, bundles of 

collagen filaments that were used to bridge 30 mm rat sciatic nerve gaps had been 

shown to provide contact guidance for the regenerating axons [113]. Therefore 

bioengineering conduits that resemble the hierarchical levels of the native nerve, for 

example to incorporate intra-luminal guidance scaffolds that mimic the endoneurial 

tubes, might improve the capacity of synthetic nerve constructs to enhance nerve 

regeneration and obtain  better functional recovery.  

 

Besides providing physical structures to allow axons and non-neuronal cells to 

regenerate across a nerve gap, it is advantageous to provide further biochemical cues 

to enhance nerve regeneration. Nerve growth cone is influenced and elongated by 

chemotactic soluble guidance molecules that can be cell-cell (short-range) 

interactions or diffusion gradient (long-range) mediation by possibly signal 
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transduction mechanisms [173]. Besides directing and attracting the growth cones, 

neurotrophic factors are also known to regulate the maturation of axons [173, 174]. 

Soluble biomolecules may possess attractive or repulsive capabilities that could be 

classified and applied accordingly [173] for the purpose of peripheral nerve 

engineering. NGF is a critical guidance molecule that is actively involved in nerve 

regeneration. NGF binds to specific receptors at the nerve growth cone that are then 

internalized and retrogradely transported to the soma [175]. This interaction 

influences neurons on many levels, including gene expression and apoptosis. 

Controlled and sustained delivery of neurotrophic factors can be achieved by several 

methods, such as the use of biodegradable microspheres, genetically modified cells 

that produce NGF, immobilizing growth factors on biomaterials, or mini pumps [2, 

126, 140]. Recently growth factors have been encapsulated in biodegradable 

nanofibers to provide sustained release to encourage better nerve regeneration [128, 

130]. In this chapter, NGF was incorporated onto the nanofibers as a model 

therapeutic drug to provide continuous release of the biomolecules for promoting 

nerve regeneration. 

 

PLGA is one of the most commonly used biomaterial for designing delivery vector 

for the releasing drug. It is co-polymer of PLLA and PGA that are both approved by 

FDA use in implant devices. It is an extremely versatile material as its properties such 

as mechanical strength, degradation rate, and degree of crystallinity can be adjusted 

by varying the ratio content of the two components or molecular weight to achieve 

desired drug release pattern. Numerous studies have used PLGA microspheres to 
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deliver proteins for various applications. Protein release from microspheres is usually 

characterized by an initial diffusion-controlled burst release phase that is followed by 

little or incomplete protein release [176]. In addition, the instability of protein 

released from microspheres has been attributed to the local pH drop due to the acidic 

PLGA degradation products trapped in the environment [176]. In this study, NGF has 

been designed to be encapsulated in nanofibrous intra-luminal guidance channels that 

can provide protein delivery capacity. The sustained release of NGF could potentially 

improve the performance of synthetic nerve constructs to repair peripheral nerve 

injuries. 

 

5.2 Materials and Methods 

All chemicals were obtained from Sigma-Aldrich (St Louis, MO) and were used as 

received, unless otherwise stated. Poly(L-lactic acid)-co-poly(glycolic acid) [70:30] 

(PLGA) was bought from Polysciences, Inc. (Warrington, PA) at an of molecular 

weight of ~ 10,000-20,000. Rat pheochromocytoma cell line, PC12, was obtained 

from American Type Culture Collection (ATCC). Mouse NGF was purchased from 

Invitrogen (USA). Rat 2.5S NGF and ELISA kit were obtained from R&D Systems 

(USA). Cell Titer 96 Aqueous One Solution assay was purchased from Promega 

(Madison, WI). 
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5.2.1 Fabrication of PLGA and NGF-PLGA nanofiber membranes 

PLGA nanofibrous membranes were fabricated by electrospinning. PLGA solution 

was prepared by dissolving the polymer in HFP at a concentration of 35%. The 

polymer solution was fed using a 27-G spinneret at a rate of 1 mL/h using a syringe 

pump (KDS100, KD Scientific Inc., USA). The distance between the spinneret tip 

and the collector was set at 12 cm. Electrospinning voltages were applied using a 

high-voltage power supply (AU-301P1Matsusada Precision Inc., Japan) at 10 kV. 

Blended NGF-PLGA solution was prepared by mixing 25 µL of NGF solution (100 

µg/mL) with 1 mL of PLGA solution (35% w/v in HFP). Blended NGF-PLGA 

nanofibers were prepared by electrospinning NGF-PLGA solution at a voltage of 12 

kV with a flow rate of 1 mL/h. The distance between the spinneret and the collector 

was set at 10 cm apart. Nanofibers were collected on 15 mm glass coverslips that 

were used for morphology observation and NGF bioactivity study. 

 

5.2.2 Characterization of PLGA and NGF-PLGA nanofiber membranes 

5.2.2.1 Scanning electron microscopy 

Morphology of electrospun nanofibers was studied using SEM (JSM-5800LV, JEOL, 

Tokyo Japan). The nanofibers were sputter-coated with gold up to 90 s in a JEOL 

JFC-1200 fine coated and an accelerating voltage of 10 kV of the SEM was used to 

examine the morphology of the electrospun scaffolds. Range of nanofiber diameters 

were determined based on SEM micrographs with the use of image analysis software 

(ImageJ; National Institutes of Health, Bethesda, MD). 
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5.2.2.2 Release of NGF from nanofiber membrane  

Analysis of released NGF from the nanofibers was performed by placing the 

nanofiber membrane that was collected on glass coverslip in a 24-well plate. The 

nanofibers were soaked in the DMEM medium that contained antibiotic-antimycotic 

(Invitrogen, USA) solution at a dilution of 1:200. Under static conditions, the fibers 

were incubated at 37 oC in the presence of 5% CO2. At various time points, 500 mL 

of supernatant was collected and an equal amount of fresh medium was replaced. 

 

5.2.2.3 Viability of PC12 cells  

Rat PC12 cells were used to study the effects of the addition of NGF onto nanofibers 

on cellular components. PC12 cells were cultured in high glucose DMEM 

supplemented with 10% heat-inactivated horse serum, 5% fetal bovine serum and 1% 

antibiotic/antimycotic solution (Gibco USA) (complete medium). PC12 cells were 

seeded at a density of 5000 cells/cm2 in a 96-well plate for MTS cell viability assay 

(Promega, Madison, WI). PC12 cells seeded onto the 96-well cell culture plate for 

one day in a humidified incubator at 37 oC with 5% CO2. The culture medium was 

completely removed and replaced with medium containing released NGF from the 

nanofibers. In one of the control groups, an addition of 50 ng/mL exogenous NGF 

was added to the medium to serve as the positive control group. The negative control 

group consisted of cells that were cultured in medium that did not contain the addition 

of exogenous NGF. The cells were then cultured for another two days for MTS assay 

analysis. The medium was removed and replaced with assay reagent in complete 
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medium for 4 h, and aliquots were pipetted into the wells of a 96-well plate to be 

analyzed with a spectrophotometric plate reader (FLUOstar OPTIMA; BMG Labtech, 

Offenburg, Germany). The absorbance at 490 nm for each well was recorded.  

 

5.2.2.4 Bioactivity of NGF released using PC12 cells 

Cells were seeded at a density of 5000 cells/cm2 in a 96-well plate to minimize 

contact inhibition of neuritogenesis and cultured for one day (high-glucose DMEM, 

1% horse serum, 0.5% fetal bovine serum). Bioactivity of released NGF from the 

nanofibers was studied by analyzing the differentiation of PC12 cells cultured in 

release medium. Similar to cell viability assay, after two days of culture, 

immunostaining for neurofilament 160/200 kDa was carried out on the cultured cells 

to evaluate the maintenance of NGF bioactivity. 

5.2.3 Fabrication of PLGA intra-luminal guidance channels 

Intra-luminal guidance channels made up of bundles of nanofibers were fabricated 

using electrospinning set-up shown in Fig. 5.1. PLGA solution were prepared by 

dissolving PLGA in HFP at a weight concentration of 35% w/v. The polymer solution 

was fed using a 27-G spinneret at a various flow rates (i.e. 4, 5, and 7 mL/h) using a 

syringe pump (KDS100, KD Scientific Inc., USA). The distance between the 

spinneret tip and the collector was set at 12 cm. Electrospinning voltages were 

applied using a high-voltage power supply (AU-301P1Matsusada Precision Inc., 

Japan) at 12 kV DC for  PLGA nanofibrous channels. All the experiments were 

performed in a humidity of less than 60% and a temperature of 24-26 oC. Briefly, 

PLGA solution (35%, w/v in HFP) was delivered to the spinneret and nanofibers were 
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electrospun and deposited on a surface of distilled water. The deposited nanofibers 

were then drawn down a funnel by a vortex created by the flowing water in the basin 

and coalesced into a nanofibrous strand. Drawn nanofibrous strand bundle were then 

collected on the rotating mandrel to produce intra-luminal guidance strands as shown 

in Figure 5.1. This bundle was collected on a rotating mandrel and was cut to 

appropriate length for use as the intra-luminal guidance channel 
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Figure 5.1. Schematic representation of electrospinning set-up to fabricate intra-

luminal guidance channels. 

 

5.2.4 Fabrication of PLGA intra-luminal guidance channels containing NGF 

NGF-PLGA solution was prepared by dissolving PLGA in HFP at a concentration of 

35% w/v. An amount of 50 µg rat 2.5S NGF (R&D Systems, USA) and 3 mg bovine 

serum albumin (BSA, Sigma) were added to 1 g PLGA solution (35% w/v in HFP) to 

form blended NGF-PLGA solution. Briefly, protein-polymer solution was delivered 

using a 27-G spinneret at feeding rate of 3-5 mL/h using a syringe pump (KDS100, 

KD Scientific Inc., USA). Electrospinning voltage was applied using a high-voltage 

power supply (AU-301P1Matsusada Precision Inc., Japan) at 12-15 kV DC. The 

distance between the spinneret tip and the collector (e.g. surface of the distilled water) 

was set at 7-10 cm. 

 

5.2.5 Characterization of PLGA nanofiber guidance channels 

Morphology of electrospun nanofibers was studied using a scanning electron 

microscopy (SEM) (JSM-5800LV, JEOL, Tokyo Japan) using similar protocol for 

observation of PLGA nanofibers. 
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5.2.6 Characterization of NGF-PLGA nanofiber guidance channels 

5.2.6.1 NGF ELISA assay 

NGF-PLGA intra-luminal guidance channels mesh (n = 3), each weighing 40 ± 7 mg, 

were each soaked in a 6-well plates filled with 3.0 mL of serum-free medium. The 

medium contained antibiotic-antimycotic (Invitrogen, USA) solution at a dilution of 

1:200. Under static conditions, the fibers were incubated at 37 oC in the presence of 

5% CO2. At various time points, 1 mL of supernatant was collected and an equal 

amount of fresh medium was replaced. Using a standard ELISA kit (R&D Systems, 

USA) for rat NGF, released NGF that had diffused from the nanofibrous guidance 

channels was analyzed. Release kinetics of NGF released over time from the channels 

was thus calculated using the NGF ELISA data.  

 

 

5.3 Results 

5.3.1 PLGA and NGF-PLGA nanofiber membranes  

5.3.1.1 Scanning electron microscopy of nanofiber membrane 

SEM images of PLGA and NGF-PLGA membranes (Table 5.1) showed smooth 

morphological presentation of the nanofibers. 

 

Table 5.1. SEM images of PLGA and NGF-PLGA nanofiber membranes.  

Nanofiber PLGA NGF-PLGA 

Scanning 

electron 

  



 Chapter 5 

130 

micrograph 

 
 

 

Diameter (nm) 330 ± 29 240 ± 110 

 
 
5.3.1.2 Released NGF maintained bioactivity  

Since neurotrophins are essential for neurons growth and survival, NGF was blended 

with PLGA solution during the electrospinning process to fabricate NGF-PLGA 

nanofibers. Cell viability was assessed using PC12 cells with release medium of day 

20. Figure 5.2 shows that release of NGF from the nanofibers supported cell viability 

indicating that the some of the released NGF retained its bioactivity.  

  



 Chapter 5 

131 

 
Figure 5.2. PC12 cell viability analysis on released NGF from nanofibers. 

 

The bioactivity of NGF in the nanofibers was evaluated by incubating the cells in 

release medium for two days and using the medium to evaluate PC12 cell 

differentiation (Fig. 5.3). The NGF released from the electrospun NGF-PLGA 

nanofibers was found to induce PC12 cell differentiation, illustrating the maintenance 

of NGF bioactivity. 
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           (a)              (b)                 (c) 

Figure 5.3. Maintenance of the bioactivity of NGF released from electrospun NGF-

PLGA nanofibers (a) LSCM of positive control PC12 culture with NGF, (b) LSCM of 

experimental PC12 culture with released NGF from electrospun blended NGF-PLGA 

nanofibers, and (c) LSCM of negative control PC12 culture without NGF. 

 

5.3.2 PLGA and NGF-PLGA nanofiber membranes  

5.3.2.1 Scanning electron microscopy of PLGA guidance channels 

Morphology of the electrospun nanofibrous guidance channels is shown in Figures 

5.4 and 5.5. Figure 5.5 shows the electrospun bundles of intra-luminal guidance 

channels.  
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Figure 5.4. SEM micrographs of PLGA guidance channels (a) 4 mL/h, (b) 5 mL/h, 

and (c) 7 mL/h. 

 

Figure 5.5. Scanning electron micrographs of intra-luminal guidance channels made 

up of longitudinally aligned nanofibers. 

 

5.3.2.2 Dimensions of intra-luminal guidance channels using different flowing rates 

Figures 5.6 and 5.7 depict the analysis of the guidance channel (yarn) diameters and 

nanofiber diameters with respect to the change in the feed rate of the polymer 

solution, respectively. Consistent with results reported by Teo et al. [55], the 

diameters of the channel and nanofiber increased as the flowing rate of the polymer 

solution is increased used for electrospinning. 
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Figure 5.6. Analysis of electrospun nanofibrous guidance channels – diameter 
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Figure 5.7. Analysis of electrospun nanofibrous guidance channels - nanofiber 

diameter 
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5.3.3 NGF-PLGA nanofiber intra-luminal guidance channels  

5.3.3.1 ELISA analysis of released NGF from intra-luminal guidance channels 

To verify the presence of NGF in the intra-luminal channels, protein release kinetics 

was performed. Figure 5.8 shows the cumulative mass of NGF released per milligram 

of intra-luminal channels that was determined by NGF ELISA. Similar to previous 

studies that have used electrospinning to produce proteins-polymer nanofibers [128, 

130], a continuous release of partially bioactive nerve growth factor was achieved for 

at least two months.  

 

 

Figure 5.8. Cumulative release profile of NGF from PLGA intra-luminal guidance 

channels. The concentration of NGF was determined by using NGF ELISA. 
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5.4 Discussion 

Empty bridging conduit for nerve gap repair provides limited tissue-level guidance 

because of the lack of tissue or artificial structures to guide the growing axons across 

the site of the injury. This can thus cause axon misdirection and suboptimal functional 

recovery [9]. To effectively design scaffolds for nerve repair, it is essential to 

understand the biological events that follow after nerve transection. After injury, the 

distal axons will degenerate and associated Schwann cells will break down their 

myelin sheath after nerve injury. During Wallerian degeneration, axons and myelin 

debris will be removed by the denervated Schwann cells and infiltrating macrophages 

through phagocytosis. Schwann cells start to proliferate 3 to 4 days after injury [177]. 

As Schwann cells lose contact with the axon, they will proliferate and subsequently 

form the bands of Büngner which are oriented columns of cells and laminin [122]. 

The bands of Büngner are critical physical substrates that support and allow the 

regenerating axons to cross the nerve gap. If the nerve gap is too large, formation of 

these biological structures would be compromised [9]. Therefore it may be 

advantageous to produce and bioengineer intra-luminal guidance channels that can act 

as exogenous support for axons to advance towards the distal stump.  

 

In this chapter, poly(L-lactic acid)-co-poly(glycolic acid) was used to fabricate 

nanofiber membranes and intra-luminal guidance channels. In the preliminary study, 

poly(D,L-lactic acid)-co-poly(glycolic acid) nanofibrous membrane, another 

commonly used biomaterial used to fabricate scaffolds for medical applications, was 

observed to shrink extensively in PBS that rendered it to be unsuitable for producing 
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the guidance channels. Another report has also shown that poly(D,L-lactic acid)-co-

poly(glycolic acid) nanofibrous membranes could shrink up to 84% from its original 

size [178]. Because extensive shrinking of the nanofibrous intra-luminal guidance 

channels will block the lumen of the conduit that will impede the extension of axons 

and migration of Schwann cells, careful selection of polymer to fabricate guidance 

channels in this project was made. In a preliminary study, minimal shrinking was 

observed when poly(L-lactic acid)-co-poly(glycolic acid) nanofibrous membrane 

were incubated in PBS and ethanol, it was suitably used to fabricate guidance 

channels by electrospinning.  

 

The formation of cellular cable by the Schwann cells to provide a bridge that direct 

and organize the axonal extension as the nerve regenerates across the conduit. 

However for relative large nerve gaps, formation of this cellular guidance cable may 

not be completed in a timely manner for the advancing growth cone to adhere and 

extend. To enhance the guidance environment in the nerve conduit, bioabsorbable 

PLGA nanofibrous intra-luminal channels were introduced into the conduit lumen to 

act as an initial substrate for the migration of Schwann cells and extension of axons. 

At the polymer solution feed rate of 3-5 mL/h, diameter of PLGA and NGF-PLGA 

guidance channels measured 25 ± 5 µm, with nanofiber diameters of 200-600 nm. 

Although the incorporation of intra-luminal guidance strands had been studied 

previously, these strands were made up of single fiber with diameter of 5 µm or more 

[152, 153]. They did not take advantage of the nano-scale topography that has the 

potential to enhance and promote nerve regeneration significantly. In this chapter, 
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three-dimensional nanofibrous intra-luminal guidance channels were successfully 

fabricated such that each guidance channel was made up of several aligned nanofibers 

that had sufficient mechanical properties to be implanted in vivo. The nanofiber 

bundle could provide excellent supporting substrates for advancing growth cone due 

to a larger surface area to volume ratio, and the longitudinally aligned nanofibers 

resembled the endoneurial tubes that served to guide the advancing axons linearly 

towards the distal nerve stumps.  

 

Electrospinning has been shown to be useful in encapsulating neurotrophic factors for 

sustained release applications. The ease of production of nanofibers and incorporation 

of various therapeutic molecules into nanofibers has made electrospinning a versatile 

technique in fabrication of nanoscaffolds. PLGA nanofibers can be electrospun with 

proteins that allow us to incorporate neurotrophins for sustained release at the nerve 

repair site. PLGA and NGF-PLGA nanofibers were electrospun and shown to support 

neural cell attachment, proliferation and differentiation. Several polymer-protein 

scaffolds were studied for repair of spinal cord and peripheral nerve injuries [130, 

179]. The released of NGF from the nanofiber membrane was shown to induce 

neurite extensions on cultured undifferentiated PC12 cells. A previous study that used 

a cellular assay has shown that bioactivity of NGF released from electrospun 

nanofibers was demonstrated for 85 days [128]. Hence the described results suggested 

that bioactive NGF was successfully incorporated into electrospun fibers to act as a 

drug-delivery vehicle for supporting nerve regeneration.  
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Continuous release of neurotrophic factors from the nano-topograhical intra-luminal 

channels can potentially provide a sustained amount of biochemical signals to guide 

axonal extension for nerve tissue engineering. NGF was incorporated into the intra-

luminal guidance channels. The fabricated fibers had an average loading of 0.002% as 

determined by NGF ELISA, despite the theoretical NGF loading efficiency that was 

calculated at 0.005%. The lower NGF encapsulation efficiency observed possibly 

suggested that some growth factor was denatured by the organic solvent and electrical 

potential during preparation and fabrication procedures. In this study, encapsulation 

efficiency of NGF in electrospun fibers was satisfactory albeit the low encapsulation 

efficiency. Delivery rates of 2.78 and 44.8 ng/mL/day were reportedly required to 

maintain a two-month NGF concentration of 1 ng/mL (minimum concentration to 

maintain survival of dorsal root ganglion neurite outgrowth) for human median nerve 

and rat sciatic nerve repairs [126]. Based on the ELISA study, it was calculated that 

the intra-luminal channels that were used in the animal study (described in Chapter 6) 

had a NGF release rate (bioactive and/or non-bioactive) of approximately 7 

ng/mL/day. NGF was successfully incorporated into the nanofibers for therapeutic 

release. Electrospinning technique used in this chapter provided flexibility for the use 

of different polymer or polymer-protein blend to fabricate the membranes and intra-

luminal guidance channels. This also allows the moderation of the biodegradation rate 

that can be optimized for nerve regeneration.  

 

Superior performance of autologous nerve grafts can be attributed to the presence of 

Schwann cells that produce adhesion molecules and neurotrophic factors. Although 
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Schwann cells produce several growth factors such as NGF and BDNF [180], 

providing exogenous Schwann cells need to be further analyzed for optimal seeding 

density despite their importance for essential for successful nerve regeneration [181]. 

Additionally, the implantation of foreign cells in medical applications would likely 

cause immunological problems, it is aimed to design a cell-free nerve construct that 

can promote Schwann cell migration and maturation [92]. There are no known studies 

that evaluated the use of intra-luminal guidance channels made up of longitudinally 

aligned nanofibers in the lumen of nerve conduits to repair nerve transection injury. 

In this chapter, novel intra-luminal channels of longitudinally aligned nanofibers were 

electrospun to support Schwann cells migration and axonal extension that can be 

placed in a nerve conduit to study its effectiveness to aid nerve regeneration in vivo.  

 

5.5 Conclusion 

Presently, intra-luminal guidance channels that have been reported in literature were 

mainly made up of single fibers in the micro-scale dimensions. The intra-luminal 

channels made up of aligned nanofibers were successfully fabricated using 

electrospinning. Nerve growth factor was successfully coupled onto the nanofibers to 

fabricate NGF-PLGA intra-luminal guidance channels that provided sustained release 

of the biomolecules. 
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Chapter 6 
 
 

In vivo study of nanofiber nerve constructs in rat sciatic 

nerve injury model 

 
 

6.1 Introduction 

Nerves can be injured by physical trauma, external compression, thermal, chemical, 

or pathological etiologies. Unlike neurons in the central nervous system, peripheral 

nerve and its neurons can repair spontaneously when injured although varying degree 

of functional recovery will be obtained. The current clinical gold standard practice to 

bridge up transected peripheral nerve gap is the use of autologous nerve graft such as 

the sural nerve or the lateral antebrachial cutaneous nerve [79]. However repair using 

autologous nerve grafts presents problems such as donor site mobility, potential 

formation of painful neuroma at the donor site, or shortage of donor nerves. In nerve 

tissue engineering, synthetic nerve devices have been designed to replace the use of 

autologous nerve grafts. They are typically tubular conduits made from natural or 

synthetic biodegradable polymers [2] to bridge up nerve gaps of several millimeters. 

Introducing intra-luminal guidance channels in the lumen of a conduit may also 

improve the result of nerve repair. In this chapter, bilayered nanofibrous conduit 

containing novel intra-luminal guidance channels that were made up of longitudinally 

aligned nanofibers (Fig. 6.1) was evaluated to determine if the nerve construct was 

beneficial for nerve repair and regeneration. 
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Figure 6.1. Schematic of nanofibrous nerve implant device for peripheral nerve 

repair. Bilayered nerve conduit was made up of longitudinal aligned nanofiber inner 

membrane and randomly arranged nanofiber outer membrane. Intra-luminal guidance 

channels (strands or yarns) were made up of several longitudinally aligned 

nanofibers. 

 

Biochemical signals that are beneficial for nerve regeneration include haptotactic and 

chemotactic cues. Haptotactic cues that involves the use of ECM proteins such as 

collagen, fibronectin, and laminin have considerable positive effects on nerve 

regeneration [11, 122]. Chemotactic cues involve using neurotropic and neurotrophic 

factors to regulate the survival, maintenance, and functions of the neurons. Hence it 

would be valuable to incorporate haptotactic and chemotactic signals in the design of 

bioengineered nerve constructs. This chapter aimed to evaluate the nanofibrous nerve 

implant device consisting of a bridging conduit and intra-luminal guidance channels 
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(Fig. 1.1) that combined synergistic effects of physical topographical and biochemical 

cues to repair and bridge up transected sciatic nerve in rats. 

6.2 Materials and Methods 

All chemicals were obtained from Sigma-Aldrich (St Louis, MO) and were used as 

received, unless otherwise stated. Poly(L-lactic acid) (PLLA) that had an inherent 

viscosity of 1.09 dL was bought from Lactel Absorbable Polymers (Pelham, AL). 

Poly(L-lactic acid)-co-(glycolic acid) (PLGA) (70:30) was bought from Polysciences, 

Inc. (Warrington, PA). Rat 2.5S NGF was obtained from R&D Systems (USA) and 

mouse laminin was purchased from Invitrogen Corporation, USA. 

 

6.2.1 Fabrication of nanofibrous nerve construct 

PLLA solution was prepared by dissolving PLLA in HFP at a concentration of 15% 

w/v. Blended laminin-PLLA solution (15% w/v) at ratio of 250:1 (weight of PLLA : 

weight of laminin) was prepared by uniformly mixing PLLA and laminin in HFP at 

room temperature. Bilayered nanofibrous conduit was fabricated using the 

electrospinning set-up and procedures described in Chapter 3. 

 

PLGA solution were prepared by dissolving PLGA in HFP at a weight concentration 

of 35% w/v. NGF-PLGA solution was prepared by dissolving PLGA in HFP at a 

concentration of 35% w/v. An amount of 50 µg rat 2.5S NGF (R&D Systems, USA) 

and 3 mg bovine serum albumin (BSA, Sigma) were added to 1 g PLAGA solution 

(35% w/v in HFP) to form blended NGF-PLGA solution. PLGA and NGF-PLGA 
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intra-luminal guidance channels were fabricated by the electrospinning set-up and 

procedures described in Chapter 5.  

 

 

Figure 6.2. General fabrication scheme of nanofiber nerve construct. 

 

Bilayered nerve conduit was packed with intra-luminal channels at a density that 

occupied approximately 10% of the entire conduit lumen area to minimize hindrance 

of nerve tissue growth in the bilayered conduit. Briefly, 1.5 mm conduit had lumen 

area of 1.8 mm2 and 10% of intra-luminal guidance channels would occupy 0.18 

mm2. Guidance channels of 25 mm in length were weighed that covered 

approximately 0.02 mm2 (assuming each channel was 25 µm in diameter). 

Subsequently, mass of intra-luminal guidance channels that occupied 0.18 mm2 (i.e. 

10% of the lumen area) were weighed and incorporated into the conduit.   
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6.2.2 Characterization of nanofibrous nerve construct 

Morphology of electrospun nanofibers was studied using SEM (JSM-5800LV, JEOL, 

Tokyo, Japan). The nanofibers were sputter-coated with gold up to 100 s in a JEOL 

JFC-1200 fine coater. An accelerating voltage of 10 kV was used to examine the 

morphology of the electrospun scaffolds. Ranges of nanofiber diameters were 

determined based on the SEM images with the use of an image analysis software 

(ImageJ; National Institutes of Health, Bethesda, MD).  

 

6.3 Animal implantation study  

6.3.1 Experimental groups 

Nanofibrous nerve constructs were evaluated for their efficacy to promote nerve 

regeneration. Experimental groups include (a) nerve conduit only (Group A, n = 10), 

(b) nerve conduit + intra-luminal guidance channels (Group B, n = 10), (c) nerve 

conduit coupled with laminin + intra-luminal guidance channels (Group C, n = 10), 

(d) nerve conduit + intra-luminal guidance channels encapsulated with NGF (Group 

D, n = 9), (e) nerve conduit coupled with laminin + intra-luminal guidance channels 

encapsulated with NGF (Group E, n = 10), and (f) autologous nerve graft as the 

positive control group (Group F, n = 7). Prior to implantation, the excess intra-

luminal guidance channels that were protruding the conduit were trimmed with sterile 

surgical scissors. 
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6.3.2 Implantation 

Operations were performed on male Wistar rats (weighing 200-250 g). All procedures 

strictly adhered to the guidelines of the University Institutional Animal Care and Use 

Committee that has been approved. The rats were anesthetized subcutaneously with 

xylazine and ketamine hydrochloride mixture. Surgical sites were shaved and 

prepared with iodine. A skin incision was made and the muscles were exposed and 

retracted. Sciatic nerve was exposed and a 10 mm nerve segment was resected in each 

animal, and resulted in a gap of approximately 15 mm (Fig. 6.3). The nerve construct 

was sutured into the resulting gap using non-absorbable 10-0 suture ethilon (Ethicon, 

USA) on each end and muscle and skin incisions were closed with absorbable 4-0 

Vicryl suture (Ethicon, USA). The closed wound was further treated with Opsite 

spray dressing (Smith & Nephew, UK). The rats were monitored for a duration of 3-

month. 

 

Autologous nerve graft Nanofibrous nerve construct 

 

 

 

 

Figure 6.3. Implantation of nerve constructs in sciatic nerve. 
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6.3.3 Neurobehavioral tests 

6.3.3.1 Sensory function recovery analysis 

Sensory functional recovery was evaluated by positioning the rats to stand with 

affected hind foot on a hotplate at 56 oC (Fig. 6.4). The time was measured for the rat 

to withdraw the affected hind foot from the hotplate, and the test was terminated 

when no withdrawal occurred within 12 s to prevent any injury. A positive sensory 

recovery was considered when the rat was able to remove its hind limb within 12 s as 

placed on the hotplate. The animal was tested at week 0, and fortnightly until week 12 

post-implantation.  

 

 

Figure 6.4. Sensory recovery test using hot plate at 56 oC. 
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6.3.4 Neurophysiological test 

Nerve conduction studies were performed prior to tissue harvesting at the 12 week 

end-point using a 2 channel nerve conduction machine (Medelec Synergy Oxford 

Instrument). Nerve action potential (NAP) conduction velocity and NAP amplitude of 

the reinnervated gastrocnemius muscle were measured to analyze axonal regeneration 

(Fig. 6.5). Stimulating electrode was placed at the distal stump (to repair) of the 

repaired sciatic nerve, while recording electrode (TECA Accessories; Oxford 

Instruments, UK) was placed in the right gastrocnemius muscle. A ground electrode 

was placed at the skin. Evaluation of the test was performed when the rats were under 

general deep anesthesia. Conduction velocities were calculated from the measured 

latencies and distances.   

 

 

Figure 6.5. Schematic representation of nerve conduction test performed on 

regenerated sciatic nerve. 
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6.3.5 Explant of tissue 

6.3.5.1 Regenerated Nerves  

A skin incision was made and the muscles were exposed and retracted in the 

anesthetized rats at the study end-point (week 12 post implantation). The implant 

device was exposed and the surrounding tissues were carefully dissected from the 

device. The repaired sciatic nerve was excised, including several millimeters 

proximal and distal to the implanted device. 

 

6.3.5.2 Muscles  

Muscle wasting is normally observed after nerve transection injury. The degree of 

long-term recovery of muscle reinnervation was assessed by weighing the 

gastrocnemius muscles [65]. At the study end-point (week 12 post implantation), the 

muscles were harvested and weighed from the experimental and normal sides while 

the animals were under deep anesthesia. If muscle reinnervation occurred as nerve 

repair progressed, muscle atrophy at the experimental side would be minimized. 

Hence, indirect measurement of muscle reinnervation was evaluated by analyzing the 

calculated ratio of experimental muscle and contralateral intact muscle mass [65].  
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6.3.6 Biological examinations 

6.3.6.1 Neurofilament and S-100 Schwann cell protein immunostaining  

The repaired sciatic nerve was carefully dissected from surrounding tissues and 

excised, including several millimeters proximal and distal to the implanted device. 

The specimen was fixed by immersion in 4% paraformaldehyde cacodylate-buffered 

solution overnight at 4 oC. Subsequently, the segments were cryopreserved in 30% 

sucrose solution overnight at 4 oC and frozen in tissue embedding OCT compound in 

a -80 oC freezer (Tissue-Tek, Sakura). The tissue was sectioned at 10 µm and 

processed for double immuno-staining of neurofilament 200 kDa (NF200, Sigma) and 

S-100 (S-100, Dako) proteins. Non-specific antibody adhesion was blocked by 

incubation in 20% goat serum for 2 hours and then incubated with mouse anti-NF200 

and rabbit anti-S-100 antibodies overnight at 4 oC. Subsequently, secondary goat anti-

mouse FITC and goat anti-rabbit TRIBC antibodies were incubated with the tissue 

sections and processed for confocal scanning laser microscope observation.  

 

6.3.6.2 Quantification of regenerated axons 

Axon density and axon diameter distribution were quantified from the confocal 

scanning laser micrographs using image analysis software (ImageJ, NIH). Random 

and separate cross sections of every experimental animal’s mid-graft nerve tissue 

sections (20 x lens objective) were taken for evaluation.  
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6.3.6.3 Scanning electron microscopy of nerve implant and regenerated tissue 

Regenerated nerve tissue and conduit were fixed in 4% paraformaldehyde cacodylate-

buffered solution overnight at 4 oC and cryo-protected in OCT (optimum cutting 

temperature) embedding medium in -80 oC freezer. The tissue was sectioned at 10 µm 

and was thoroughly with PBS. The tissue section was subjected to a graded series of 

ethanol dehydration and dried completely before observation under the scanning 

electron microscope. SEM (JSM-5800LV, JEOL, Tokyo Japan) was used to visualize 

the tissue and the nerve construct after 3 months of implantation. The nanofibers and 

regenerated tissue were sputter-coated with gold up to 90 s in a JEOL JFC-1200 fine 

coated and an accelerating voltage of 10 kV of the SEM was used to examine the 

morphology of the electrospun scaffolds. Range of nanofiber diameters were 

determined based on SEM micrographs with the use of image analysis software 

(ImageJ; National Institutes of Health, Bethesda, MD). 

 

6.3.7 Statistical analysis 

All data presented are expressed as mean ± standard deviation (SD). Each of the 

dependent variables from muscle mass, neurophysiological and histochemical data 

was analyzed separately. Mean values from each variable were compared using 

ANOVA Single Factor analysis to compare 2 groups using a 95% confidence 

interval. ANOVAs analysis was conducted and the level of statistical significance is 

defined as p < 0.05.  
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6.4 Results 

6.4.1 Nanofibrous nerve construct 

Bilayered nanofibrous conduit and longitudinally aligned nanofibrous intra-luminal 

guidance channels were fabricated by electrospinning. PLLA and laminin-PLLA 

nanofibrous conduits were fabricated to exploit the physical nano-topographical 

morphology and the ECM to present a more natural interface and biochemical motifs 

for cell-matrix interactions. Intra-luminal guidance channels were fabricated to mimic 

the basal laminae of peripheral nerve that could act as substrates for axonal outgrowth 

and Schwann cells migration for nerve repair. Figures 6.6 and 6.7 illustrate the 

macrographs and scanning electron micrographs of the nerve construct, respectively. 

 

 

Figure 6.6. Macrographs of nanofibrous nerve construct. (a) bilayered nanofibers 

nerve conduit, (b) intra-luminal guidance channels, and (c) nerve conduit containing 

intra-luminal channels.  
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Figure 6.7. Scanning electron micrographs of nanofibrous nerve construct. 

 

6.4.1.1 Nanofibrous nerve conduit 

The fabricated conduits did not show significant swelling and no obvious in vitro 

degradation of the PLLA nanofibers was observed over 4 months macroscopically 

(Chapter 3). Besides evaluating PLLA nanofibrous conduit for bridging nerve gap 

injury, laminin-PLLA nanofibrous conduit was also fabricated using blended 

electrospinning to exploit the ECM molecule that can present a more natural interface 

and provide biochemical motifs for cell-matrix interactions to enhance nerve 

regeneration. 
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6.4.1.2 Nanofibrous intra-luminal guidance channels 

Individual intra-luminal guidance channel was made up of nanofibers bundle (bundle 

had a diameter range of 25 ± 5 µm) (Fig. 6.7), consisting of PLGA fibers with 

diameter of 200-600 nm. Intra-luminal guidance channels were inserted into the 

lumen of the nanofibrous conduits, occupying approximately 10% of the lumen area. 

This amount was loaded to reduce any hindrance to axonal outgrowth, while 

providing sufficient substrates for guidance of axons and migration of Schwann cells 

along the intra-luminal guidance channels. To determine if the addition of neurite-

promoting neurotrophins such as NGF would aid in nerve repair, NGF-PLGA intra-

luminal guidance channels were fabricated using blended electrospinning and the 

unique electrospinning set-up described in Chapter 5. In vitro analysis of NGF release 

form the intra-luminal guidance channels were sustained for at least 2 months 

(Chapter 5). The combination of nanofibrous conduit and intra-luminal guidance 

channels was evaluated for its efficacy to aid in nerve repair. The devices were 

implanted into rat sciatic nerves using microsurgery procedure. No ripping of 

conduits was observed when they were sutured into the transected nerves. 

 

6.4.2 Nerve explants and gross findings 

Explantations of implants were performed 12 weeks after implantation. The 

implanted conduits were still present at the operated sites, with no obvious 

biodegradation of the PLLA or laminin-PLLA nanofibrous conduits. Minimal 

adhesion was observed between the nerve implants and the surrounding tissues, and 

no noticeable neuroma formation could be found at the proximal and distal suture 
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sites (Figs. 6.8 and 6.9). There were also no observable wound inflammations. The 

nanofibrous conduits did not show significant swelling when immersed in saline 

solution a period of 2 months, thus no compromise of the quality of nerve 

regeneration was expected [87] or seen in this study. Table 6.1 describes the 

occurrences of conduit collapse after 3-month implantation. Half of the experimental 

empty nanofibrous conduits (Group A) collapsed while most or all of the nanofibrous 

conduits that contained intra-luminal guidance channels maintained conduit patency. 

Tissue cables formation across the interstump gaps were observed in all the animals, 

except in two of the 10 rats in Group A (bilayered nerve conduit + saline). 

Observation of nerve tissue traversing across the interstump gap showed that the 

presence of intra-luminal guidance channels guided nerve regeneration that did not 

hamper the axonal extensions through the lumen of the conduit. It is noted that 

although 50% of the empty conduits collapse, there was still an 80% of the empty 

conduits (Group A) with regenerated tissue bridging across the gaps. The collapse of 

these conduits could have occurred after the formation of the new nerve tissue. 
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Figure 6.8. Images of regenerated nerve explants. 
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Figure 6.9. Images of proximal and distal stumps of the nerve constructs after 3 

months implantation. 

 

Table 6.1. Description and results of in vivo experimental groups. 

Group Components 

Number 

of 

animals 

% of rats with 

regenerated nerve 

across the nerve gap 

% of 

collapsing 

tubes 

A Nerve conduit 

 
10 80 50 

B Nerve conduit + intra-

luminal guidance channels 

 

10 100 10 

C Nerve conduit coupled 

with laminin + intra-

luminal guidance channels 

 

10 100 0 

D Nerve conduit + intra-

luminal guidance channels 

encapsulated with NGF 

 

9 100 0 

E Nerve conduit coupled 

with laminin + intra-

luminal guidance channels 

encapsulated with NGF 

 

10 100 0 

F Autologous nerve graft 

 
7 100 0 
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6.4.3 Sensory functional recovery analysis 

Thermo-sensitivity was used to evaluate sensory functional recovery. The results are 

presented in Table 6.2. The experimental animals suffered sensory loss following 

sciatic nerve transections. Within six weeks after surgery, all animals implanted with 

intra-luminal guidance channels (Groups B-E) regained thermo-sensitivity and 

maintained reactivity till the end-point of the study. All rats with nerve implants 

containing intra-luminal guidance channels showed good recovery (100% recovery) 

as compared to the control groups (42.9% and 50% for autograft and empty 

nanofibrous conduit, respectively). This result indicated that intra-luminal channels 

could potentially aid nerve repair and sensory function repair. However, the addition 

of NGF in the guidance channels for sustained release did not show superior 

improvement on sensory functional recovery in this study. Some animals slowly 

developed thermo-sensitivity, but some also lost the reactivity to hotplate stimulation 

over the observation period. Similar gain and loss of sensory nerve recovery has also 

been described in another study [99] in which autologous nerve grafts and 

decellularized muscle grafts were implanted to repair 20 mm sciatic nerve gaps in rats 

for a period of 7 weeks. Studies have described that recovery of sensory nerve 

functions will start with the expansions of axons from the neighbouring tissue [182]. 

Collateral sprouts of axons from intact fibers in the skin around the denervated area 

may contribute to the return of sensory functions [183]. The sprouted sensory axons 

reconnected to the targets would be maintained if the targets were sensory synaptic 

origins, otherwise the regenerated axons would degenerate that could still result in the 
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loss of function [183]. In other cases, the sensory axons could regenerate at a slower 

speed to connect to the appropriate sensory targets for functional recovery.  

 

Table 6.2. Sensory recovery test result. 

 

 

(-) no reaction at or after 12s 

(+) reaction before 12s 

 

6.4.4 Muscle reinnervation evaluation 

Another assessment for evaluating nerve regeneration was achieved by analyzing the 

gastrocnemius muscles of the animals that provide information on the degree of 

muscle wasting or muscle reinnervation. Gastrocnemius muscle will start to atrophy 

when the sciatic nerve is transected because this muscle is supplied by the posterior 

tibial branch of the sciatic nerve. However if nerve regenerate into the muscle, it will 

result in a regain in the mass proportional to the amount of muscle reinnervation [85, 

184, 185]. The gastrocnemius muscles were thus harvested from the experimental 

animals and weighed. Muscle reinnervation was indirectly determined by measuring 

the mass of the muscles in the experimental side as compared to the contra-lateral 
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intact muscles. There was obvious muscle atrophy in the experimental limbs in some 

of the animals. Figure 6.10 depicts the measurement and calculation of the 

experimental muscle and contra-lateral intact muscle mass ratio analysis. Significant 

improvement in muscle reinnervation was observed in nerve implants that contained 

intra-luminal guidance channels with biomolecules such as laminin (Group D) or 

laminin/NGF (Group E) that are compared to autologous nerve grafts and empty 

conduits. However, the addition of NGF did not significantly improve muscle 

reinnervation in implants that already contained laminin. There was no significant 

difference (p > 0.05) observed in terms of muscle reinnervation recovery when nerve 

constructs contained only NGF (Group D) was compared to empty nerve conduits and 

autologous nerve grafts (Groups A and F, respectively) (Fig. 6.10). NGF is known to 

positively affect sensory neurons [174], thus the addition of NGF might not be 

distinctively important for axonal reconnection to muscle synaptic targets. Although 

repairing with only intra-luminal guidance channels (Group B) did not show 

significant improvement in muscle reinnervation, the result was comparable to that of 

the autologous nerve grafts (Group F). Thus the result suggested that the introduction 

of intra-luminal guidance channels could nevertheless potentially encourage muscle 

regeneration.  
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Figure 6.10. Comparison of muscle mass ratio to evaluate the degree of muscle 

reinnervation after nerve regeneration (* p < 0.05, as compared to autologous nerve 

graft group; ** p < 0.05, as compared to empty nerve conduit group). 

 

6.4.5 Nerve conduction study of regenerated nerves  

Neurophysiological analysis of the regenerated nerve can provide some information 

regarding the functional state of the nerves. Nerve conduction study of the 

regenerated nerves was performed under general anesthesia. To evaluate the recovery 

of the peripheral nerve segment, conduction velocity and action potential (i.e. 

amplitude) were obtained. Figures 6.11 and 6.12 compare the conduction velocity and 

amplitude among the experimental groups. All the experimental nanofibrous nerve 

constructs demonstrated comparable conduction velocities and amplitudes achieved 

as compared to the autologous nerve graft group.  
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Figure 6.11. Conduction velocity of regenerated rat sciatic nerves at 12 weeks post-

surgery. 
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Figure 6.12. Amplitude of regenerated rat sciatic nerves at12 weeks post-surgery.  

 

6.4.6 Immunohistochemistry for neurofilament and S-100 proteins  

To visualize the degree of axonal extensions and Schwann cells migration in the 

regenerated nerve, immunohistochemistry analyses of neurofilament 200 kDa 

(NF200) and S-100 protein that is specific to Schwann cells were performed (Figs. 

6.13-6.16) on the proximal and mid-graft transverse sections. Immunoreactivity to 

neurofilament 200 kDa was observed in the transverse regenerated nerve segments of 

the implants after 12 weeks of nerve repair. Neurofilament analysis of axons at the 

mid-graft sections provided information about the degree of regeneration in the nerve 

implants (Fig. 6.16). This suggested that myelinated and unmyelinated axons had 

extended across the gaps into the distal nerve stump.  

 

Schwann cell marker, S-100 protein, staining was also observed throughout the 

regenerated tissues (Fig. 6.16). Migrated Schwann cells were found throughout all the 

nerve implants. In this study, there were more S-100 proteins present in the 

autologous nerve grafts (Group F) as compared to the other groups (Groups A-E) 

tested, indicating that autologous nerve grafts were superior in supporting Schwann 

cell proliferation and migration. Schwann cells were shown to ensheath and surround 

the regenerating axons. The transverse sections revealed that all regenerated axons 

were observed to co-localize with the Schwann cells. This highlighted that the aligned 

nanofibers potentially enhanced the migration and maturation of Schwann cells after 

nerve injury repair and aided axon elongation.  
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Figure 6.13. Immunohistochemical analysis of nerve regeneration in implants (20x 

magnification). Double immunostained of NF200 (green) and S-100 (red) (5 mm 

from proximal nerve stump, transverse cross-section). (a) bilayered nerve conduit 

with saline, (b) bilayered nerve conduit with intra-luminal channels, (c) bilayered 

nerve conduit with NGF incorporated intra-luminal channels, (d) bilayered nerve 

conduit coupled with laminin and intra-luminal channels, (e) bilayered nerve conduit 

coupled with laminin and NGF incorporated intra-luminal channels, and (f) 

autologous nerve graft.  
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Figure 6.14. Immunohistochemical analysis of nerve regeneration in implants (60x 

magnification). Double immunostained of NF200 (green) and S-100 (red) (5 mm 

from proximal nerve stump, transverse cross-section). (a) bilayered nerve conduit 

with saline, (b) bilayered nerve conduit with intra-luminal channels, (c) bilayered 

nerve conduit with NGF incorporated intra-luminal channels, (d) bilayered nerve 

conduit coupled with laminin and intra-luminal channels, (e) bilayered nerve conduit 

coupled with laminin and NGF incorporated intra-luminal channels, and (f) 

autologous nerve graft.  
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Figure 6.15. Immunohistochemical analysis of nerve regeneration in implants (20x 

magnification). Double immunostained of NF200 (green) and S-100 (red) (mid-graft, 

transverse cross-section). (a) bilayered nerve conduit with saline, (b) bilayered nerve 

conduit with intra-luminal channels, (c) bilayered nerve conduit with NGF 

incorporated intra-luminal channels, (d) bilayered nerve conduit coupled with laminin 

and intra-luminal channels, (e) bilayered nerve conduit coupled with laminin and 

NGF incorporated intra-luminal channels, and (f) autologous nerve graft.  
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Figure 6.16. Immunohistochemical analysis of nerve regeneration in implants (60x 

magnification). Double immunostained of NF200 (green) and S-100 (red) (mid-graft, 

transverse cross-section). (a) bilayered nerve conduit with saline, (b) bilayered nerve 

conduit with intra-luminal channels, (c) bilayered nerve conduit with NGF 

incorporated intra-luminal channels, (d) bilayered nerve conduit coupled with laminin 

and intra-luminal channels, (e) bilayered nerve conduit coupled with laminin and 

NGF incorporated intra-luminal channels, and (f) autologous nerve graft.  

 

These results showed that axons could be directed to bridge up the gap with the 

presence of nanofibrous guidance channels. It has been demonstrated that nanofibrous 

intra-luminal guidance channels can be effectively used to guide axonal extension and 

Schwann cells migration in vivo.  
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Also, immuno-staining for neurofilaments revealed that axon diameters at the 

proximal end of the autologous nerve graft group were generally larger as compared 

to the other experimental groups (Figs. 6.13 and 6.14). However, examining Figures 

6.15 and 6.16 revealed that bigger axons were found in the groups that contains intra-

luminal guidance channels at the mid-graft sections. 

 

6.4.7 Quantification of regenerated axons  

To evaluate the amount of axons that extended and bridged across the interstump 

nerve gap, analyses of the density of axons at the proximal and mid graft sections are 

shown in Figures 6.17 and 6.19, respectively. Additionally, the distribution of axons 

diameter at the proximal and mid graft sections are shown in Figures 6.18 and 6.20, 

respectively At the mid-graft sections, autologous nerve graft group (Group F) 

supported significantly more axon elongation across the nerve gap as compared to the 

other groups (Groups A-E) (Fig. 6.18).  
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Figure 6.17. Comparison of the axon density at the proximal sections. Group F 

(autologous nerve grafts group) and Group E (nanofibrous conduit coupled with 

laminin + NGF incorporated intra-luminal guidance channels) showed significantly 

higher axon density compared to Group A (nerve conduit only) (* p < 0.05).  
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Figure 6.18. Comparison of the axon density at the mid-graft sections. Autologous 

nerve grafts group (Group F) showed significantly higher axon density compared to 

all the other experimental groups (* p < 0.05, except Group E). Group E (Nanofibrous 

conduit coupled with laminin + NGF incorporated intra-luminal guidance channels) 

demonstrated more regenerated axon density compared to Group A (Nanofibrous 

conduit + saline) and Group B (Nanofibrous conduit + intra-luminal guidance 

channels) (** p < 0.05).  
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Figure 6.19. Distribution of regenerated axon diameter at the proximal sections. 

 

 

Figure 6.20. Distribution of regenerated axon diameter at the mid-graft sections. 
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Figure 6.21 illustrates the scanning electron micrographs of nerve tissue regeneration 

at the mid-sections of the artificial nerve grafts. The PLGA intra-luminal channels 

were still present and kept in bundles in the nerve constructs after 3-month post 

implantation.  

 

 

 

(a) 
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(b) 

 

Figure 6.21. SEM images of the mid-section of nanofibrous nerve graft (a) bilayered 

nerve conduit only, and (b) bilayered nerve conduit with intra-luminal guidance 

channels. 

 

6.5 Discussion 

Patients with peripheral nerve injuries continue to get unsatisfactory outcomes due to 

the poor regenerative capacity of nerves. This creates a significant functional problem 

for patients, as well as social and economic burden for society. When direct repair of 

the transected nerves is possible, a functional outcome of 80% can be achieved in the 

best circumstances [2]. When there is a nerve gap that requires bridging with a graft, 

the results are invariably poor despite using the “gold standard” autologous nerve 
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grafts. Furthermore, use of autologous nerves grafts is complicated by donor site 

morbidity, lack of available nerves, and size mismatches. Electrospinning is a 

versatile technique that can produce nanofibers into highly controllable bioengineered 

tubular scaffolds and guidance channels that can be used as nerve construct to repair 

peripheral nerve injuries. An important feature of the nanofibrous nerve implants 

produced by electrospinning described in this study was the use of aligned nanofibers 

in the design of the conduit and the intra-luminal guidance channels. Aligned 

nanofibers have been shown to play pivotal role in promoting and guiding axon 

growth, and Schwann cells migration and maturation [43, 44]. The nano-texture and 

topography determine the extent of neurite outgrowth and direct Schwann cell 

migrations parallel to the aligned nanofibers [12, 43, 44]. In addition, several in vivo 

studies have shown that hollow conduit made up of aligned nanofibers improved 

nerve regeneration in rat sciatic nerve gap injury [130, 156]. In this study, 

electrospinning was successfully used to fabricate conduit and intra-luminal guidance 

channels that were made up of aligned nanofibers to guide nerve regeneration (Figure 

6.13-6.20).   

 

A common issue concerning the use of bioengineered conduit is the collapse of the 

construct when implanted in vivo. Collapse of the conduits may limit fibrin matrix 

formation, cellular infiltration and axonal outgrowth [141], thus affecting the nerve 

regeneration process. Therefore maintaining the patency of nerve conduit by creating 

and maintaining the lumen space during regeneration period is crucial for the success 

of peripheral regeneration within the nerve guidance construct [5, 87]. Despite 
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observing that 50% of the empty nanofibrous conduits collapsed in this study, the 

nanofibrous conduits fabricated generally possessed adequate mechanical properties 

to maintain a stable path for nerve regeneration across the injury site. The collapse of 

some of the empty conduits could be due to the weaker mechanical properties present 

at certain regions of each conduit, where less nanofibers were collected onto the 

region during fabrication that resulted in a smaller wall thickness. Furthermore 

introducing nanofibrous guidance channels in the lumen of the conduit would likely 

prevent conduit from collapsing, whilst not hindering nerve regeneration process 

(Table 6.1). Several researchers had also elegantly studied electrospun aligned 

nanofibrous conduits for nerve repair [35, 36]; however they had not described the 

patency of conduits after implantation. The bridging nerve conduit should be able to 

provide sufficient mechanical support to “withstand long-term in vivo forces” [5, 

186]. It is also important to consider the probable weakening of the mechanical 

properties over time due to biodegradation process of the conduit; the degradation 

rate of nerve conduit must be designed to support the axonal outgrowth and prevent 

scar ingrowth [74]. In addition, PLLA has been shown to maintain its mechanical 

integrity for 4 months as described in Chapter 3. 

 

Clinically, synthetic conduits have not functioned as well as autologous nerve grafts 

[78] for long nerve gap repair. It has been postulated that the basal lamina structures 

of autologous nerve graft act to provide guidance substrate for axonal outgrowth [9], 

thus displaying superior nerve regeneration outcome. Intra-luminal guidance channels 

used in this animal study aimed to mimic the basal lamina and the bands of Büngner 
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that could act as the initiate guidance scaffolds for axonal extensions towards the 

distal stump to form functional connections with the target organs. Intra-luminal 

guidance channels that were made up of aligned polymeric nanofibers were fabricated 

and a packing density of 10% of guidance channels was incorporated into the 

bilayered conduit to evaluate axonal regeneration in the transected sciatic nerve. A 

study performed by Ngo et al. [9] studied the effect of packing density of intra-

luminal guidance channels in conduits and described that a 7.5% packing density 

would be optimal for bridging nerve gaps, even when a 3.5% packing density showed 

greater number of myelinated axons in an in vivo experiment. However, too low 

packing density of guidance channels would result in the tendency of the channels to 

settle to the bottom of the conduit [9]. In this project, a 10% packing density of intra-

luminal guidance channels was used. Nanofibrous PLGA guidance channels (Groups 

B-E) were shown to enable better functional recovery as compared to autologous 

nerve graft (Group F). As no axons were found to be in immediate contact with the 

guidance channels, they did not directly act as scaffolds for axons regeneration. It is 

likely that these guidance channels aided in nerve regeneration through stabilizing the 

fibrin matrix that can be found in nerve regeneration process [8] and supporting 

Schwann cell migration to form bands of Büngner that laid the foundation for 

advancing axons.  

 

To further enhance the performance of nanofibrous nerve implants, we incorporated 

laminin in the nerve construct. Laminin has been shown to improve in vivo nerve 

regeneration studies [119, 187-189]. Laminin can be easily electrospun with 



 Chapter 6 

177 

biodegradable polymers to generate bioactive scaffolds. Laminin was blended with 

PLLA for the electrospinning of laminin-PLLA nanofiber conduit. This modification 

technique was chosen because higher amount of laminin can be coupled onto 

nanofibers as compared to physical adsorption or covalent binding methods that have 

been described in Chapter 4. Nerve conduit coupled with laminin was examined for 

the effect of laminin on in vivo nerve repairs. Successful coupling of laminin onto the 

nanofibers to create the nanofibrous conduit that provided robust regeneration was 

achieved (Groups C and E). In this experiment, improved muscle reinnervation and 

neurophysiology test results were observed in the rats that were implanted with 

constructs that contained laminin (Figs. 6.10-6.12), highlighting the beneficial effects 

of using laminin for transected nerve gap repair. Especially, laminin present in the 

nerve constructs was shown to promote muscle reinnervation as shown in Figure 6.10 

(Groups C and E). Good muscle reinnervation was observed in the nanofibrous nerve 

constructs (especially Groups C and E) could be attributed to the presence of higher 

amount of ECM molecules (i.e. laminin) present in the constructs that can potentially 

promote better functional recovery. Although other ECM molecules such as collagen 

and fibronectin have been shown to influence and promote nerve regeneration [2], 

laminin was chosen as we have determined that laminin was more effective than 

collagen to promote neurite outgrowth in vitro (Chapter 4). A previous study also 

showed that laminin encouraged better attachment and proliferation of Schwann cells 

when compared to collagen and fibronectin [122].  
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Besides using ECM molecules to improve synthetic nerve devices, we also examined 

the possible additional effect on nerve regeneration if we included neurotrophins in 

nanofibrous nerve constructs. Encapsulation of neurotrophic factors into nanofibers to 

facilitate nerve regeneration was achieved in the present study by using blended 

electrospinning. Concerns regarding the use of blended electrospinning to couple of 

neurotrophins in nerve guides were low loading protein efficiency and loss of 

bioactivity of the biomolecules. Despite these limitations, blended electrospinning 

was chosen to encapsulate NGF in nanofibers because this method could allow 

uncomplicated fabrication of growth factor-nanofiber intra-luminal guidance channels 

(Fig. 5.1). In addition, blended electrospinning has been shown to produce nanofibers 

that contained even distribution of NGF within the fibers [128]. Bioactive NGF has 

been successfully coupled onto the nanofibrous intra-luminal guidance channels 

(Groups D and E) for sustained release to aid nerve regeneration in this study. 

Loading nerve constructs with neurotrophic factors can stimulate peripheral nerve 

regeneration [2]. These soluble factors play important roles in the differentiation, 

maintenance, and survival of neurons. NGF, the prototypical member of the 

neurotrophin family, protects neurons from injury-induced death in transected sciatic 

nerves [143]. Cell loss in the dorsal root ganglia or in the ventral horn of the spinal 

cord may be counteracted by administering NGF in the nerve implants. Previous 

studies have also shown that NGF-polymer nanofibers can be electrospun that 

maintain the bioactivity of the neurotrophins [128, 130] and electrospun GDNF-

polymer nanofibrous conduit promoted rat sciatic nerve gap repair [130]. However, 

the release of NGF from the nanofibrous nerve constructs did not significantly benefit 
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functional recovery in terms of muscle reinnervation recovery. This could be due to 

the lower concentration of NGF released from the guidance channels or the absence 

of NGF receptors at the growth cones to exert its effects. An increase amount of NGF 

could be introduced during the fabrication of neurotrophin coupled nanofibers, but the 

increase in fabrication cost and the feasibility to improve degree of NGF bioactivity 

have to be examined and considered.  

 

Combining haptotactic and chemotactic cues in the nerve constructs have shown 

better regeneration in terms of density of axons and functional recovery. Nerve 

constructs (Group E) that contained both laminin and NGF was shown to encourage 

axons extensions (Figs. 6.17 and 6.18) that were comparable to the autologous nerve 

grafts (p > 0.05). In terms of sensory recovery, incorporation of laminin or NGF alone 

in the nerve constructs allowed complete sensory recovery in the rats by week 6 post-

implantation (Table 6.2). But the addition of NGF into laminin coupled nerve 

constructs encouraged early sensory recovery (i.e. by week 2 post-implantation, Table 

6.2). Also, the combination of NGF and laminin in nerve constructs improved muscle 

reinnervation when compared to autologous nerve graft (Group A). A previous study 

has shown that synergistic combination of laminin and growth factor (i.e. FGF-2) in 

nanofibers could enhance in vitro nerve regeneration [158]. It would therefore be 

advantageous to incorporate haptotactic and chemotactic cues in the design of nerve 

constructs to encourage better axonal outgrowth across the interstump gaps.  
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Nerve conduction analysis of the regenerated nerve showed that the recovery of 

conduction velocity in the nanofiber constructs was lower than, but comparable to 

that of the autologous nerve grafts (Fig. 6.11) (non-operated nerve had a conduction 

velocity of 53 ± 6 m/s [182]). In order to obtain good recovery, proper reinnervation 

of the axons to the new target is required [182]. Increase in axons count is likely due 

to axonal sprouting. Several factors affect the quantity of axons such as the pruning of 

misdirected axons and loss of axons at the suture lines [184]. The number of nerve 

fibers and the size of the axons may account for the difference observed in nerve 

conduction study. In this study, more axons and larger axons were observed in 

autologous nerve graft that likely caused slightly better outcome observed in the 

nerve conduction velocity study (Figs. 6.17-6.20).  

 

Despite more regenerated axons were found in the autologous nerve grafts (Group F, 

Figs. 6.17-6.20), functional recovery (in terms of sensory response and muscle 

reinnervation) was observed to be better in some of the nanofibrous nerve constructs 

(namely Group C-E). The presence of exogenous laminin and NGF in the nanofibrous 

constructs might have positive effects on functional recovery observed in the rats that 

has been discussed previously. In addition, studies have described that the higher 

degree of axon extensions does not always correlate to the functional recovery due to 

possible aberrant sprouting and establishment of incorrect synaptic connections with 

the organs [190, 191].  
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Synergistic effects of nanotopography and biochemical possessed by the nerve 

construct described herein present a novel substitute to repair peripheral nerve gap. 

As the regenerating axons extend towards the distal stump and make contact with 

Schwann cells, the speed of axonal regeneration may slow down because the axons 

will be myelinated [192]. Nerve tissue regeneration and functional recovery were 

shown in histological and animal behavior tests (e.g. nerve conduction, sensory and 

muscle wasting tests), respectively. Although regenerated axons (Figs. 6.13-6.20) 

were observed to be greater in the autologous nerve graft (Group F), the other 

experimental groups (Groups A-E) were able to support better sensory and motor 

functional recovery results (Table 6.2 and Fig. 6.10) when compared to autologous 

nerve graft group (Group F) in this study. Similar to the autologous nerve grafts, the 

conduits were packed with guidance channels could mimic the basal lamina, and the 

additional presence of inter-nanofiber space of the individual intra-luminal guidance 

channel could potentially provide axons and Schwann cells to be in adequate 

proximity to supporting scaffolds for adherence and migration across the interstump 

gap. Also, the presence of laminin and/or NGF that were added exogenously to the 

nerve constructs (Groups D-E) could have potentially provided a suitable 

environment for nerve regeneration that may explain the better functional recovery 

observed in these nerve constructs (especially Group E). 

 

The observation in this study only lasted for 12 weeks when regeneration of the nerve 

was still incomplete. Longer observation might be necessary to further evaluate the 

effectiveness of the nanofibrous constructs for nerve repair. However, the current 
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results are satisfactory because nerve regeneration of nanofibrous constructs was 

comparable to that observed in the autologous nerve grafts. More importantly, 

sensory functional recovery and muscle reinnervation were observed to be even better 

in the nanofibrous constructs with intra-luminal guidance channels. Careful design of 

scaffolds in the lumen of the conduit needs to be considered as the presence of 

exogenous scaffolds in the lumen may impede the migration of cells or hinder the 

normal process of endogenous matrix formation [193]. In this study, the aligned 

nanofiber guidance channels were longitudinally arranged that could act to support 

cellular and axonal migration. This special nanofibrous feature of nerve construct 

with aligned nanofibrous intra-luminal guidance channels has not been examined in 

the synthetic nerve constructs up to now and our results suggested that nanofibrous 

intra-luminal guidance channels might be useful for nerve repair surgeries. 

 

6.6 Conclusion 

In this chapter, nerve constructs that combined physical nanotopography and 

biochemical signals to interpose nerve gaps for the enhancement of nerve 

regeneration and functional recovery were described. Herein, it has been shown that 

nanofibrous guidance channels made up of several longitudinally aligned nanofibers 

can effectively promote peripheral regeneration, evidenced by histological and 

functional recovery tests. Biochemical cues such as laminin and NGF were 

incorporated in the nerve constructs to evaluate their roles to improve nerve 

regeneration in vivo. It has been demonstrated that (1) nanofibrous conduit with 

longitudinally aligned fibrous intra-luminal guidance channels supported Schwann 
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cell migration and axon extensions in vivo (2) nerve enhancing molecules such as 

laminin could aid in nerve regeneration for bridging peripheral nerve gaps. In this 

study, nanofibrous nerve construct that combined synergistic effects of physical and 

biochemical cues described in this thesis could be further improved and potentially 

replace the use of autologous nerve grafts to repair injured peripheral nerves seen in 

the clinical situations.  
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Chapter 7 
 

Conclusions and Recommendations 

 
7.1 Conclusions 

Bioengineered nerve construct is an attractive alternative method for clinicians to 

repair peripheral nerve injuries that might replace the use of autologous nerve grafts, 

thus eliminating some of the limitations encountered when autologous nerve grafts 

were to be used. The ECM of the peripheral nerve is made up of nano- and micro- 

fibers that present physical and biological cues for cell-matrix interactions, hence 

nanofibrous scaffolds have been fabricated and investigated to positively influence 

nerve regeneration. Nanofibrous bridging construct may thus produce better 

performance and enhance nerve regeneration and functional recovery in the repair of 

nerve gap injuries. This study aimed to fabricate and evaluate whether nanofibrous 

conduits containing intra-luminal guidance channels and combination with ECM 

proteins and neurotrophins would be suitable for repairing nerve transection injury.  

 

Our assessment was performed on established rat sciatic nerve transection injury 

model and mainly focused on post-operative function recovery and histological 

parameters. It has been demonstrated that (1) nanofibrous conduit can provide 

physical guide for regeneration of nerve (2) intra-luminal guidance channels 

supported Schwann cell migration and axon extensions in vivo (3) laminin and 

neurotrophins such as NGF promoted nerve regeneration for bridging nerve gaps. 

Successful nerve regeneration requires the survival of neuron cell bodies after injury, 
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extension of axons to bridge the interstump gap, and functional reconnections of the 

axons with the appropriate synaptic targets. Axons and Schwann cells progressed 

longitudinally along the nanofibers as the intra-luminal guidance channels provided 

mechanical substrates for preferential adhesion and growth and the nanofibrous 

conduit served to prevent scar formation and entrap secreted beneficial biomolecules 

within the interstump gap to promote nerve regeneration. Although autologous nerve 

grafts are viewed as gold solution for repairing nerve gaps, mismatching of 

regenerated tissue and donor site mobility would need to be considered. Our initial 

results showed that intra-luminal channels resembled the bands of Büngner and the 

basal lamina, organized nerve cable formation, and aided in robust regeneration and 

functional recovery across the nerve gap. Although relatively good functional 

recovery and innervation was achieved to repair lesion in the sciatic nerve in this 

study, further comprehensive study should be performed. Larger gap lesions should 

be evaluated to determine if the novel nanofibrous construct can potentially replace 

the use of autologous nerve grafts and is useful for repair of transected nerve gaps 

often seen in the clinics. 

 

7.2 Recommendations for future work 

The nerve conduit and intra-luminal guidance channels described herein possessing 

longitudinally aligned nano-topograhical fibers have shown promising results in 

supporting directional neuronal growth across lesions in vivo to promote better 

functional recovery. However further comprehensive analysis can be done to 

investigate the spatial and temporal progression of axons from the proximal to the 
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distal ends when using this nanofibrous construct. These will provide important 

information on how the nanofibrous intra-luminal guidance channels acted as 

scaffolds to support nerve regeneration. Additionally, we observed the presence of 

relatively intact guidance channels within the conduit at the study end-point that 

revealed no complete biodegradation of the channels. Further studies can be 

performed to determine if faster degrading polymers of PLGA that have a lesser 

content of lactic acid would be more beneficial for supporting nerve regeneration, or 

vice versa.  

 

Intra-luminal guidance channels can also be made with nanofiber architecture that is 

shown in Figure 7.1.  The hollow inner structure will provide more surface area for 

regenerating axons and Schwann cells to adhere and extend that will limit the 

hindrance of nerve regeneration in the lumen of the conduit. Blended collagen-

polymer intra-luminal guidance channels can also be fabricated that will provide cell 

recognition signals and faster degradation rate that may be beneficial for advancing 

growth cones and migrating Schwann cells in nerve regeneration. 

 

 

Figure 7.1 Intra-luminal guidance channels made up of hollow yarn. 
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Laminin presents cell recognition peptides to positively influence nerve regeneration. 

Laminin can be coupled onto intra-luminal guidance channels to determine if the 

outcome of nerve repair can be improved. Although laminin is an effective biological 

molecule to enable enhanced nerve regeneration, there are potential drawbacks of 

introducing these ECM molecules that originated from immunogenic proteins. We 

therefore propose to introduce bioactive laminin peptide analogs (e.g. IKVAV and 

YIGSR) into nanofibers to replace the use of natural biomolecules in the artificial 

nerve constructs, and that it is currently being investigated in the laboratory. Concerns 

regarding encapsulation of neurotrophins using conventional blended electrospinning 

could be minimized or circumvented by using co-axial electrospinning technique to 

introduce neurotrophins in the nanofibers to protect the neurotrophins during protein-

nanofiber fabrication. In a co-axial electrospinning process, two polymer solutions 

can be concomitantly ejected in an electrostatic field through two co-axial capillaries. 

This will result in core-shell structured nanofiber. Solutions that are not easily 

electrospun (e.g. protein solution) can be encapsulated in the core of the core-shell 

nanofibers if the shell solution can be electrospun. This thus provides consideration 

protection to the core component from direct exposure to organic solvents, thus 

keeping maximum bioactivity of the biomolecules.  

 

Peripheral nerve consists of a relative extensive network of blood vessels for 

maintaining the structural and functional integrity of peripheral axons [61]. For large 

nerve gap repair, providing sufficient adequate vascularization may be critical for the 

success of nerve repair so as to provide sufficient nutrients to proliferating Schwann 
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cells and possibly maintain survival of neurons. Poor vascularization may cause an 

increase in the formation of fibrosis that will decrease the speed of axonal extension. 

Angiogenesis can be induced by introducing vascular endothelia growth factor 

(VEGF) through recombinant protein delivery that will increase vascularity within the 

nerve construct. However, providing VEGF alone may not be sufficient because 

formation of dysfunctional, leaky and permanent immature blood vessels may occur 

[194-196]. Together with VEGF, platelet-derived growth factor-BB (PDGF-BB) may 

be required for formation of new matured blood vessels to aid in axon extension and 

maturation [194-196].  

 

Functional nerve regeneration is a complex and delicate process. There is no single 

approach in the design of nerve construct that can be effective for use in clinical 

peripheral nerve repair. Better therapies may be required to improve the ability of the 

surviving neurons to regenerate and increase the speed of axonal outgrowth. For long 

gap repair, strategies could be devised to prevent the loss of basal laminae of the 

distal nerves because their maintenance is critical for regenerating axons to have a 

support to reinnervate and form synaptic contacts with the appropriate targets [197]. 

Further research in the areas of basic sciences such as developmental biology and 

applied sciences such as bioengineering is required to produce more suitable 

substitutes that can provide remarkable outcome of peripheral nerve repair and 

regeneration.  
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Cell viability assay of PC12 cells cultured on different 
polymeric nanofibers 

 

MTS Assay - Comparison of Materials
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*No data is obtained for PGA nanofibers on Day 7 and 14 as the scaffolds had 
fragmented totally.  
 
Scanning electron micrographs of PC12 cell proliferation and differentiation on 
nanofibers 
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Appendix B 
 

Sample preparation for scanning electron microscopy 
observation 

 
 
Scanning electron microscopy is used to image cell-matrix composite.  
 
1. Wash the samples 3 times with PBS (5 min each wash). 
2. Immerse samples in 2.5% glutaraldehyde (300uL each well). Incubate for 1-2 

hours. 
3. Wash 3 times with DI water (5 min each wash). 
4. Immerse samples in 50% ethanol (500 uL each well) incubate for 15 min. 
5. Repeat step 4 with 75% ethanol. 
6. Repeat step 4 twice with 95% ethanol. 
7. Repeat step 4 twice with 100% ethanol, incubating for 30 min each time. 
8. Cover samples with HMDS (hexamethyldisilizane) (200uL each sample) allow to 

dry overnight. 
9. Gold-coat samples prior to SEM. 
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Covalent coupling with EDC/NHS method 
 
1. Preparation of 2-4(-Morpholino)ethanesulfonic acid hydrate, 

(MES hydrate) buffer solution (Sigma, M2933) 
To prepare 0.1 M buffer solution (pH = 5.0), Mw = 195.24 g/mol 
For example, to prepare a 20 mL of 0.1 M MES buffer solution 
 
Mass required = volume x concentration  
= 20 mL x 0.1 mol/L x 1L/1000mL x 195.24 g/mol 
= 0.390 g of MES hydrate required 
 
Volume of DI water to be added = 20 mL (1 M = 1 Molarity (1 mol/L)) 

 
2. Preparation of N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

solution (Sigma, E1769) MW=191.7 
To prepare 5 mg/mL of EDC in MES buffer (i.e. ~26.1mM) 
 
Mass required = 5 mg/mL x 5 mL = 25 mg or 0.025 g 

* EDC is unstable in solution. Mix immediately before using and discard 
excess. Use the solution within 10min of mixing. 

 
3. Preparation of N-Hydroxysuccinimide solution (Sigma, 130672) MW=115.09 

To prepare 5 mg/mL of 5mL NHS in MES buffer (~43.4 mM) 
 
Mass required = 0.025 g 
 
If it is required to quench the EDC, addition of of 2-mercaptoethanol should be 
done.  

 
• Plasma treat the samples for desired time. Immediately immerse the 

polymer with glass coverslip with freshly prepared 1mL each EDC/NHS 
(molar ratio=0.6, recommended by Pierce is 0.4) in MES buffer at 4 oC for 
2 hour. 

 
• Rinse material PBS at pH 7.4. 

 
• Immerse material in protein (e.g. collagen or laminin) solution for 24 

hours at 4 oC. 
 

• Rinse protein-grafted material in deionized water for 3 times with PBS to 
remove the physically adsorbed protein (e.g. gelatin) and sterilize in 75% 
ethanol for 24 hours. Rinse thoroughly with sterile PBS thereafter. 
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Physical coating of proteins on nanofibers 
 

1. Place the nanofiber coverslips on a rectangle glass-slide. Each slide can carry 
3 coverslips at one time. Put the slide in plasma cleaner/sterilizer (Harrick 
Scientific Corp. PDC-001). 

2. Tightly close the door and open the pump to vacuum the chamber for 5 mins. 
3. Adjust the RF level to low level and turn on the power button. Please ensure 

that there is red light. If there is no light, loosen the door a little until red light 
appears. Adjust the RF level to high level for 5 mins. 

4. Quickly take the coverslips out and put them in a 24-well plate (Plasma 
treatment will lose effect if nanofiber is placed outside for too long). 

5. Add 500 uL protein (e.g. collagen or laminin) solution in the well and put the 
plate in 4 oC to incubate overnight. 

6. Rinse modified material in deionized water for 3 times with PBS to remove 
the physically adsorbed protein (e.g. gelatin) and sterilize in 75% ethanol for 
24 hours. Rinse thoroughly with sterile PBS thereafter. 
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Immunohistochemical staining protocol for nerve tissue 
 
Mainly for neurofilament and S-100 protein observation on the explanted rat nerve. 
 

Solutions 
1x PBS, Goat serum (20%) in PBS 
  
Primary antibodies 

1. Mouse anti-rat neurofilament 200 kDa phosphorylated and 
non-phosphorylated forms (1:100) 

 
2. Rabbit anti-rat S-100 protein (1:100)  

 
Secondary antibody 

1. Goat anti-mouse IgG (H+L) FITC (1:50) 
 

2. Goat anti-rabbit IgG (H+L) RBITC (1:50) 
 

 
Procedure 
 
1. Fix harvested proximal nerve in 4% paraformaldehyde at 4 oC overnight. 

2. Wash the specimen with cacodylate buffer and cryo-protect  in 20% buffer 

sucrose solution overnight at 4 oC. 

3. Quickly freeze specimen in Tissue-Tek O.C.T compound and stored at -80 oC. 

4. Cut longitudinal sections using a cryostat, thickness = 10 µm. 

5. Collect sections on poly-L-lysine coated slides and stored at -20 oC. 

6. Non-specific antibody adhesion is blocked with 20% goat serum for 2 hours. 

7. Using monoclonal anti-200 kDa neurofilament to identify regenerating axons, 

visualized with FTIC conjugated anti-mouse IgG. 

8. Using anti-S-100 protein to identify Schwann cells protein, visualized with 

RBITC conjugated anti-mouse IgG. 

9. Incubate primary antibody (1:100) overnight at 4 oC. 

10. Wash with PBS solution and incubate secondary body (1:50) at room temperature 

for 30 min. 

11. Add mounting media for laser confocal scanning microscopy observation. 
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Sensory recovery test 
 

WRL is used as an assessment of the nociception recovery of the rat.  
 
Procedure  
 
(Handle the rat with care and minimize stress for the rat.) 
 

1. Warp the rat with a surgical towel above its waist and position it to stand with 
the affected hind paw on a hot plate of 56 oC. 

2. WRL is defined as the time elapsed from the onset of hotplate contact and the 
withdrawal of the hind paw. Measure the time with a stopwatch. 

3. Normal rats withdraw their paws from the hotplate within 4.3 s or less. 
4. If no paw withdrawal after 12s, remove the heat stimulus IMMEDIATELY to 

prevent tissue damage; assign the maximal WRL of 12 s to the rat. 
 
 
 

 



 Appendix G 

G1 

Appendix G 
 

Immuno-staining of neurofilament 200 kDa and S-100 
protein of regenerated nerve at the mid-graft section 

 
 
(A) Bilayered nerve conduit and saline (20x magification). 
 

 
 
 
 
(B) Bilayered nerve conduit and intra-luminal guidance channels (20x 
magification). 
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(C) Bilayered nerve conduit coupled with laminin and intra-luminal guidance 
 channels (20x magification). 
 

 
 
 
 
(D) Bilayered nerve conduit and and NGF incorporated intra-luminal guidance 
 channels (20x magification). 
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(E) Bilayered nerve conduit coupled with laminin and and NGF incorporated 
intra- luminal guidance channels (20x magification). 
 

 
 
 
 
(F) Autologous nerve graft (20x magification). 
 

 
 


