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                                                SUMMARY 

 

     Endocytosis is the fundamental cellular process by which eukaryotic cells 

internalize materials from the extracellular environment, through invaginating 

plasma membrane to form endocytic vesicles. Increasing evidence underlines the 

importance of actin dynamics in assisting plasma membrane deformation during 

vesicle formation and transport. Moreover, the spatiotemporal features of actin 

recruitment and vesicle formation are shown to be conserved across eukaryotic 

evolution. In budding yeast, endocytosis occurs at the sites that coincide with the 

cortical actin patches, which comprise an array of proteins involved in various 

aspects of endocytosis and actin dynamics. Some of the molecular mechanisms by 

which these proteins cooperate to achieve the sequential events of endocytosis 

have yet remained unknown. One of the major mechanisms for regulating this 

process involves the phosphorylation cycles of endocytic factors by the Ark1/Prk1 

kinase family. A number of endocytic components, including Pan1p, Sla1p, 

Scd5p, Yap1801/2p and Ent1/2p, have been identified as substrates of Prk1p, and 

the consensus Prk1p phosphorylation motifs have been identified as 

(L/I/V/M)xx(Q/N/T/S)xTG. Phosphorylation of Pan1p and other endocytic 

components by Prk1p leads to disassembly of the coat complex and the 

termination of vesicle-associated actin polymerization. Ark1p, another member of 

this kinase family, is also found to be essential for endocytosis and actin 

organization, as neither ark1 nor prk1 single mutant shows obvious actin and 

endocytic defect; while in the absence of both kinases, the defects of actin 

cytoskeleton and endocytosis are striking. Compared with Prk1p, Ark1p has been 

barely studied and its functional characteristics are essentially unknown.  



 xv 

       This study started with demonstration of the kinase activity of Ark1p and 

identification of the substrates of Ark1p. The kinase activity of Ark1p appears to 

be comparable to that of Prk1p, and Ark1p could also phosphorylate the 

consensus Prk1p motifs when co-expressed in E. coli. Both Sla1p and Pan1p are 

identified as common substrates of Prk1p and Ark1p by in vitro kinase assay and 

in vivo phosphoryaltion study, while Prk1p seems to be the major kinase for 

Pan1p in vivo [Chapter 3]. The functional difference of the two kinases is later 

found to depend on their divergent non-kinase regions [Chapter 4]. Next, Arp2p, a 

component of Arp2/3 complex, is identified as a binding partner unique for Prk1p 

by testing two-hybrid interactions on cortical patch components.  A short region 

located adjacent to the kinase domain unique to Prk1p is mapped to be required 

for the kinase to interact with Arp2p. Further studies demonstrated that the Prk1p-

Arp2p interaction is critical for down-regulation of Pan1p [Chapter 5]. 

           Therefore, by biochemical and genetic analysis, this study established a 

novel interaction between two factors in endocytosis - the actin nucleation factor 

Arp2/3 that promotes endocytosis and the Prk1p kinase that acts to disassemble 

the endocytic machinery and inhibit the actin nucleation by Pan1p. These findings 

reveal that, in addition to its role in the nucleation of actin polymerization, Arp2p 

also mediates what appears to be an auto-regulatory mechanism possibly adapted 

for efficient coordination of actin assembly and disassembly during endocytosis. 
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1.1. General introduction 

       All living cells are surrounded by a plasma membrane that physically 

separates the intracellular compartment from the extracellular environment. One 

of the important functions of plasma membrane is to take up and internalize 

extracellular materials by a dynamic process called endocytosis. During 

endocytosis, the extracellular materials are captured and internalized together 

with a portion of plasma membrane by invaginating and pinching off plasma 

membrane to form endocytic vesicles, which later develop into early and late 

endosomes and ultimately fuse with lysosome for degradation or recycle back to 

plasma membrane. The initial understanding of endocytosis mainly came from 

the morphological and biochemical studies in animal cells. Later, genetic 

approaches were utilized to study endocytosis in other organisms, such as 

Drosophila melanogaster, Dictyostelium discoideum and Saccharomyces 

cerevisiae. The genetic studies in budding yeast Saccharomyces cerevesiae are 

especially fruitful. By isolation and characterization of endocytic mutants, a 

number of molecules have been identified. Their homologues are also found in 

mammalian endocytic pathway. Though some differences are evident between 

yeast and mammalian endocytosis, the underlying mechanism appears to be 

conserved.  

           During endocytic internalization steps, mechanical forces are required to 

work against the forces of surface tension and osmotic pressure to reshape the 

plasma membrane (Dai and Sheetz, 1995). Increasing evidence indicated that 

actin polymerization may be one of the important forces to facilitate membrane 

deformation and vesicle movement in both mammalian and yeast cells (Liu et al., 
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2006; Kaksonen et al., 2006). In the following sections, the relationship between 

actin and endocytosis will be reviewed.  

 

1.2    Biochemical properties of Actin  

         Actin is a globular, 42-47 kDa protein that exists in dynamic equilibrium 

between two states, monomer (G actin) and filamentous polymer (F actin) 

(Pollard, 1990). X-ray crystallographic analysis revealed that G actin has two 

lobes separated by a deep cleft where the ATP molecule resides and affects the 

molecular conformation upon binding (Barany et al., 2001). G actin can 

polymerize into F actin spontaneously. The actin-bound ATP will be hydrolyzed 

once the actin monomer incorporates into actin filaments. The actin filament has 

intrinsic polarity, i.e., the two ends are different. The end to which actin 

monomers are preferentially added is called barbed end, while the other end from 

which actin monomers tend to disassociate is called pointed end (Pollard and 

Borisy, 2003). The ATP bound actin subunits are enriched at the barbed end, 

while the ADP bound actin subunits are found at the pointed end. The ADP-actin 

subunits dissociated from pointed ends must undergo nucleotide exchange to 

become ATP-actin to be competent for subsequent rounds of barbed end addition. 

Once filament growth reaches a steady state, actin polymerization and 

depolymerization at the two ends are in an equilibrium. The steady-state cycling 

of actin subunits throughout filaments is called actin treadmilling (Nicholson-

Dykstra et al., 2005). Actin polymerization and treadmilling occur very slowly in 

vitro, but much more efficiently in vivo by assistance of a variety of actin binding 

proteins. Moreover, the actin filaments are further cross linked into networks 
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and/or anchored to specific substratum by the actin binding proteins. The 

biochemical features of actin, together with the actin binding proteins, allow actin 

filament to work as a physical force when the polymer grows beneath the plasma 

membrane or at one side of an object, as demonstrated in the membrane 

protrusion during phagocytosis and intracellular endosome movement (Figure1.1) 

 

1.3     Actin and endocytosis in mammalian cells   

1.3.1 Endocytosis in mammalian cells 

           Mammalian endocytosis can be classified into: clathrin-dependent 

pathway, the caveolar and a clathrin- and caveolae-independent pathway. 

Clathrin dependent endocytosis is the most extensively studied and best 

characterized endocytic pathway, as it is the main pathway for receptor-mediated 

endocytosis in most eukaryotic cells (Brodsky et al., 2001). The first insight of 

this process came from electron microscopy studies in 1964, when the endocytic 

vesicles were first observed as electron-dense coated invaginations which 

accumulate yolk proteins at the plasma membrane in insect oocytes (Roth and 

Porter, 1964). By purifying coated vesicles from different cell lines, a major 

protein species, clathrin, was found to form the coat of all the different vesicles in 

different cell types (Pearse, 1976). By extensive biochemical characterization and 

X-ray study, the structure of clathrin coat was revealed as a triskelion in which 

three clathrin heavy chains tightly associated with three clathrin light chains to 

form a lattice (Musacchio et al., 1999; Kirchhausen, 2000). Clathrin-dependent 

endocytosis is found to take place only at specialized sites of the cell membrane 
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called coated-pit zones (Santini et al., 2002). However, because clathrin cannot 

associate directly with any known components of plasma membrane, other 

adapter proteins should be responsible for recruiting clathrin to the plasma 

membrane. The first adapter identified is AP2, a heterotetramer consisting of two 

large (α and β) and two small (s2 and m2) subunits, which links trans-membrane 

receptors destined for internalization to the clathrin lattice by association with 

internalization motifs within the cytoplasmic tails of these receptors (Pearse and 

Robinson, 1990; Schmid, 1992; Ohno et al., 1995).  Dynamin, a GTPase, is 

implicated for vesicle budding and fission (McNiven et al., 2000). In addition to 

clathrin, AP2 and dynamin, a number of other molecules are identified to be 

important for clathrin dependent vesicle formation. They are proteins associated 

with clathrin, AP2 and dynamin and include Eps15, epsin, amphiphysin, 

intersectin, endophilin and rab5 (Brodsky et al., 2001). Biochemical and 

microscopic studies have revealed some detailed processes of the clathrin 

mediated endocytosis (Brodsky et al., 2001; Higgins and McMahon, 2002). The 

first step in this pathway is the reorganization and clustering of cargos by specific 

transmembrane receptors and other membrane adaptors. Subsequently, clathrins 

are recruited to the sites and oligomerized to form a clathrin coat at the plasma 

membrane. The coated membrane gradually undergoes deformation and 

invagination, and eventually forms an endocytic vesicle by membrane scission. 

Finally, the vesicle is uncoated and the cargo in the vesicle is delivered to early 

endosomes by fusing with the endosomal membrane. The cargo molecules are 

sorted to be either recycled back to the cell plasma membrane, or targeted for 

degradation in lysosomes. 
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1.3.2 Actin involvement in mammalian endocytosis  

       Actin filaments were observed to be associated with endocytic coated pits 

under electron microscope, providing the first clue of actin involvement in 

mammalian endocytosis (Salisbury et al., 1980; Kohtz et al., 1990). Following 

that, several actin dynamic perturbing pharmacological agents (such as 

cytochalasin D, latrunculin A and jasplakinolide) had been utilized to study the 

actin involvement during endocytosis in different cell types (Gottlieb et al., 1993; 

Jackman et al., 1994; Lamaze et al., 1997; Fujimoto et al., 2000). It was found 

that impaired actin dynamics had substantial but variable effect on endocytosis in 

different cell types. Now it is clear that actin polymerization is essential for the 

formation of membrane protrusions in macropinocytosis and phagocytosis (May 

and Machesky, 2001; Welch and Mullins, 2002), and the internalization process 

in caveolae-mediated endocytosis (Pelkmans et al., 2002)(Figure 1.1). 

              Though there are debates on the role of actin in clathrin dependent 

endocytosis, evidence is accumulating in recent years supporting the involvement 

of actin polymerization in clathrin dependent endocytosis as depicted in Figure 

1.1. With actin depolymerization drugs, actin polymerization was found to be 

necessary for clathrin-mediated endocytosis (Merrifield et al., 2002; Yarar et al., 

2005; Boucrot et al., 2006). On the other hand, actin filaments were also found to 

colocalize with clathrin-mediated endocytic sites (Shupliakov et al., 2002). In 

addition, a large number of protein–protein interactions have been discovered to 

link the endocytic machinery to the actin cytoskeleton(Qualmann and Kessels, 

2002; Engqvist-Goldstein and Drubin, 2003). Moreover, using green fluorescent 
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Figure 1.1 Actin-polymerization-motivated processes in mammalian 
and budding yeast cells.  
 
The dynamic polymerization of actin filaments (red) is involved in different 
processes that reshape or move cellular membranes. These processes include 
different forms of endocytic pathways at the plasma membrane — that is, 
clathrin-mediated endocytosis in Saccharomyces cerevisiae and mammalian 
cells, as well as caveolae-mediated endocytosis, macropinocytosis and 
phagocytosis in mammalian cells. In addition, actin assembly plays a role in 
the movement of endosomes and/or endocytic vesicles. In mammalian cells, 
endosomes move by actin ‘rocketing’, whereas in S. cerevisiae, endocytic 
vesicles move together with actin cables as they are being assembled by 
formin proteins. Finally, the protrusion of lamellipodia and filopodia in 
migrating mammalian cells is dependent on actin polymerization. [Figure 
adapted by permission from Macmillan Publishers Ltd: [Nature Reviews 
Molecular Cell Biology] (Kaksonen et al., 2006), copyright (2006)] 
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protein (GFP) tagged or fluorescently labeled actin, total internal reflection 

fluorescence (TIRF) microscopy revealed that actin filaments as well as the 

endocytic components were assembled and disassembled at endocytic sites in a 

highly ordered manner. The actin filaments appear when the coated endocytic 

membrane starts to invaginate to form the clathrin coated vesicles, and disappear 

coincidently with the scission of the endocytic vesicles (Merrifield et al., 2002; 

Merrifield, 2004; Yarar et al., 2005), indicating actin polymerization may have 

roles in the vesicle invagination and pinching off. Consistently, the scission of 

clathrin coated vesicles was dramatically reduced when the cells were treated 

with actin polymerization inhibitors (Merrifield et al., 2005).  

    

1.4      Actin and endocytosis in yeast  

1.4.1 Actin structures in yeast 

      Budding yeast cells contain three distinct actin structures that are visible by 

fluorescence microscopy of Rhodamine-phalloidin stained cells: cortical actin 

patches, actin cables and a contractile actin ring (Adams and Pringle, 1984; 

Kilmartin and Adams, 1984; Amberg, 1998); Figure1.2). Actin patches are spots 

distributed over the cell surface. Actin cables are fibers coursing through the cells 

in parallel with the long axes of the cells. The nucleation of actin cables is 

activated by yeast formins (Bni1 and Bnr1), and crucial for polarized movement 

of traffic vesicles for growth. Actin contractile rings are actin bands formed 

transiently at bud necks of large budded cells, and important for cytokinesis 

(Sanders and Field, 1994; Bi et al., 1998; Lippincott and Li, 1998).  
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         These actin structures are highly dynamic, undergoing extensive 

rearrangements in accordance with polarity switches during the cell cycle. In G1 

cells before START (the point of commitment to a new cell cycle), actin cables 

and patches are distributed randomly resulting in isotropic cell expansion. Once 

the G1 cell reaches a critical size, the budding site is formed. Actin cables are 

oriented toward this incipient bud site and patches converge to this region, which 

initiates a transition from isotropic to apical cell growth mode. Once the 

orientation of cables is established, secretory vesicles containing building 

materials for new cell wall and plasma membrane are transported along the cables 

and deposit the contents at the growth region. As a bud emerges, cables extend 

from the mother cell into the bud, and patches remain concentrated at the bud tip, 

leading to a period of bud elongation. Later, near the end of G2 phase, the actin 

cables and patches in the bud become randomly distributed, causing a switch 

from apical to isotropic bud growth. At this stage, the cables in the mother cell 

still extend into the bud, ensuring that only the bud grows. At the end of bud 

growth, actin cables and patches redistribute randomly in both the mother cell 

and bud (Adams and Pringle, 1984; Kilmartin and Adams, 1984; Novick and 

Botstein, 1985; Lew and Reed, 1993; Welch et al., 1994; Lew and Reed, 1995; 

Kron and Gow, 1995). This is quickly followed by the congregation of actin to 

the sides of the neck to form contractile actin rings, which is a prerequisite for 

cytokinesis (Lew and Reed, 1993; Lew and Reed, 1995). 
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 Figure 1.2  Organization of the actin cytoskeleton in S. cerevisiae  
 
           Actively growing yeast cells contain three visible F-actin structures: 

cortical actin patches, polarized actin cables, and a cytokinetic actin ring, which 
are undergoing extensive rearrangements in accordance with polarity switches 
during the cell cycle.  
 
 
 
1.4.2 Endocytosis in Saccharomyces cerevisiae 

           The budding yeast Saccharomyces cerevisiae is an excellent model for 

endocytosis study due to its advantages in genetic manipulation. Non-essential 

genes can easily be disrupted from the yeast genome to directly address their 

functions in a given cellular process. The function of essential genes can also be 

tested by creating temperature sensitive (ts) or other conditional alleles, which are 

only inactivated at a given temperature or under certain conditions. In addition, 

various genetic screen strategies can be set up to isolate the mutants defective in 

specific cellular processes in yeast.   

           In order to screen for yeast mutants defective in endocytosis, it is critical 

to set up assays that can measure the cellular uptake defects. Various assays were 
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developed in yeast to assess the internalization of distinct endocytic pathways. 

Receptor mediated endocytosis can be followed by quantitative evaluation of the 

uptake of radioactively labeled α factor (Dulic et al., 1991). To assess fluid phase 

endocytosis in yeast, two fluorescent dyes are commonly used: lucifer yellow 

(LY), and FM 4-64 (Riezman, 1985; Dulic et al., 1991; Vida and Emr, 1995). By 

using different assays and screening procedures, a number of endocytosis mutants 

(such as end, ren, dim mutants) were isolated (Chvatchko et al., 1986; Davis et 

al., 1993; Raths et al., 1993; Munn and Riezman, 1994; Wendland et al., 1996; 

Luo and Chang, 1997; D'Hondt et al., 2000; Munn, 2001), and many important 

endocytic components were identified. So far, over fifty genes that are important 

for receptor internalization have been isolated, and most of the proteins encoded 

by these genes have homologues in mammalian cells or have domains that share 

homology with that present in mammalian endocytic proteins (Engqvist-

Goldstein and Drubin, 2003) (Figure1.3). 

          Latest development in live-cell imaging microscopy, coupled with genetic, 

biochemical and pharmacological tests of function, greatly improved our 

understanding of the receptor-mediated endocytosis in budding yeast. Total 

internal reflection fluorescence (TIRF) and multicolor real-time fluorescence 

microscopy, in particular, together with particle tracking algorithms permit 

tracking the behavior of a particular endocytic molecule during endocytosis. 

Similar to the observations in the mammalian cells, the yeast endocytic 

components are found to be assembled and disassociated at endocytic sites in a 

highly ordered sequence (Merrifield, 2004; Kaksonen et al., 2006).  
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Figure 1.3 Saccharomyces cerevisiae and mammalian protein 
homologies. 
 
           This table gives descriptions of the key endocytic proteins in S. 
cerevisiae, together with mammalian homologies and their functions. The 
‘–’ symbol indicates that there is no known homologue. AAK1, adaptor-
protein-complex-2-associated kinase-1; Abp1/ABP1, actin-binding protein-
1; Ark1, actin-regulating kinase-1; Arp2/3, actin-related protein-2/3; Cap 
1/2, barbed-end capping proteins; CAPZ, capping protein muscle Z-line; 
Chc1, clathrin heavy chain-1; Clc1, clathrin light chain-1; EPS15, 
epidermal-growth-factor-receptor-pathway substrate-15; GAK, cyclin-G-
associated kinase; HIP1R, Huntingtin-interacting protein-1 related; Myo, 
myosin; PtdIns(4,5)P2, phosphatidylinositol-4,5-bisphosphate; Rvs, 
reduced viabililty upon starvation; (N-)WASP, (neuronal) Wiskott–Aldrich 
syndrome protein; WIP, WASP-interacting protein. [Figure adapted by 
permission from Macmillan Publishers Ltd: [Nature Reviews Molecular 
Cell Biology] (Kaksonen et al., 2006), copyright (2006)] 
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         Depending on the cargos and the respective assay methods, endocytosis in 

budding yeast has been classified into two main pathways: receptor-mediated 

endocytosis and fluid-phase endocytosis. Recepter-mediated endocytosis can be 

further divided into ubiquitin–dependent and NPFX(1,2)D-dependent 

internalisation based on the target signals (Tan et al., 1996; Hicke, 2001; Howard 

et al., 2002).  

          However, it should be noted that though there are many similarities 

between yeast and mammalian endocytosis, there are also some differences 

between them. In yeast, clathrin, AP2 and dynamin are not as critical for 

endocytosis as their homologues in mammalian cells, while actin polymerization 

is strictly required in budding yeast endocytosis (Geli and Riezman, 1998). 

 

1.4.3 Actin involvement in yeast endocytosis  

         The actin polymerization and turnover are essential for yeast endocytic 

internalization, because treatment of yeast cells with latrunculin-A (an actin 

monomer sequester leading to rapid disassembly of F-actin), or jasplakinolide (an 

actin filament stabilizer) blocked endocytic internalization (Ayscough et al., 1997; 

Ayscough, 2000). Approximately one third of the known endocytic proteins 

directly regulate actin assembly and/or bind to actin (Raths et al., 1993; Munn et 

al., 1995). In addition, the majority of endocytic mutants identified hitherto have 

defects in the actin cytoskeleton organization. Also, the severity of the endocytic 

defect is generally correlated with the severity of the actin phenotype.  

           Recently dual color real-time fluorescence microscopy has been used to 

investigate the spatiotemporal correlation of actin assembly and endocytic 
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proteins during endocytic internalization (Kaksonen et al., 2003; Kaksonen et al., 

2005). The transient actin burst was found to strictly appear at preformed 

endocytic coated structures at the yeast endocytic site, while actin disassembly 

was found to occur immediately after vesicle scission (Merrifield et al., 2005). 

Such dynamic characteristics of actin indicate that actin polymerization could 

play roles in yeast endocytosis invagination, constriction and scission. 

Consistently, when actin polymerization is blocked by latrunculin A, the clathrin 

coats and coat-associated proteins are stabilized at the plasma membrane and the 

internalization movement is completely blocked (Kaksonen et al., 2003; 

Kaksonen et al., 2005; Newpher et al., 2005).  

       

1.4.4 A dynamic picture of  yeast actin and endocytosis  

            Based on their dynamic features during endocytosis, the endocytic 

components are proposed to function as four groups of dynamic modules: the 

coat, the Wiskott–Aldrich syndrome protein (WASP)–myosin complex, the actin 

network and the amphiphysin complex (Kaksonen et al., 2005) (Figures 1.4). 

First, the coat module comes to the specified endocytic sites and thereby initiates 

the endocytic coat assembly. This module contains clathrin, Ede1p, Sla1p, Pan1p, 

End3p, and Sla2p, and may also include Ent1/2p and Yap1801/2p (Newpher et 

al., 2005). These coat proteins may help to recognize and cluster endocytic 

targets which are modified by ubiquitin or contain a unique signal motif.  After 

assembly on the plasma membrane, these proteins remain stationary for about 

one minute, and then move inward with the forming vesicle. The second group, 

the WASP/Myo module proteins, which contain at least two Arp2/3 complex 
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activators, such as Las17p (yeast WASP homolog) and the type I myosin Myo5p, 

are recruited to surround the coated endocytic site. As the Arp2/3 complex 

activators, the WASP/Myo module proteins are believed to initiate the actin 

filaments network formation at the endocytic sites in response to some signals, 

and thus generate force to drive membrane deformation and inward movement.  

A few seconds after the arrival of the WASP/Myo module, the actin module 

proteins start to be assembled at the endocytic site. Actin and some actin 

associated proteins, such as Cap1/2p, Sac6p, Abp1p, and the Arp2/3 complex, 

belong to this module. All the proteins in this module depend on actin 

polymerization for their cortical localizations, as Latrunculin A treatment will 

prevent their patch localization. The lastly joined module is the amphiphysin 

module. It is composed of Rvs161p and Rvs167p. The BAR domains of Rvs161p 

and Rvs167p are shown to promote membrane curvature in vitro (Peter et al., 

2004). They appear soon after actin polymerization begins and remain for a short 

while, then move rapidly inward, and disassociate from endocytic coat. The rapid  

inward movement was speculated to coincide with the vesicle scission from the 

plasma membrane (Kaksonen et al., 2005).   

1.4.5 Actin assembly and force generation 

           The next question would be how the actin polymerization is incorporated 

into endocytic machinery during internalization process. A detailed 

understanding of actin patch ultra-structure would provide important information. 

Recently, rapid-freeze deep-etch electron microscopy revealed ultra-structure of 

actin patches: actin filaments form branched, cone shaped network at the cell 
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Figure 1.4 The sequential assembly of actin filaments and endocytic 
components at endocytic sites.  
a. The different steps of endocytic internalization: endocytic site initiation, 
membrane invagination and scission, and vesicle release. The four protein 
modules that are involved in endocytic internalization in Saccharomyces 
cerevisiae are shown schematically — that is, the coat (green), the Wiskott–
Aldrich syndrome protein (WASP)–myosin complex (yellow), the actin 
network (red) and the amphiphysin complex (blue). Components of these 
different protein modules are assembled and disassembled dynamically.  
b. The temporal localization of the constituent proteins for each module in S. 
cerevisiae. c. The approximate temporal localization of proteins during 
endocytic internalization in mammalian cells. Dashed lines indicate ambiguity 
in the time frame of the protein dynamics. [Figure adapted by permission from 
Macmillan Publishers Ltd: [Nature Reviews Molecular Cell Biology] 
(Kaksonen et al., 2006), copyright (2006)] 
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cortex, with Arp2/3 complex restricted to the apexes of the mound (Mulholland et 

al., 1994; Young et al., 2004; Rodal et al., 2005). The position of Arp2/3 

complex suggests that the majority of the actin filament barbed end oriented to 

the cell cortex. This assignment of actin filament polarity at the actin patches is 

also supported by photo-bleaching the actin filaments in the live sla2∆ and sla1∆ 

bbc1∆ mutant cells (Kaksonen et al., 2003; Kaksonen et al., 2005).  

          Based on all the previous data and recent live-cell image and electron 

microscopy findings, a schematic working model for actin polymerization in the 

yeast endocytic machinery was proposed (Kaksonen et al., 2006; Figure1.4). 

When the endocytic coat proteins are assembled at the endocytic sites, the Arp2/3 

activators (including Las17p and Myo5p) are recruited to the rim of the 

invaginating endocytic coat. They not only associate with endocytic coat, but also 

efficiently activate the Arp2/3 complex to nucleate actin filaments. The actin 

filaments are further crosslinked by fimbrin/Sac6p. Some endocytic proteins 

(such as Sla2p and Pan1p) which associate with coat can also bind with actin 

filaments. Therefore, these actin filaments are fixed to the endocytic coat by these 

linkers and the continual actin filament growth at the opposite ends generate 

force to push the plasma membrane and results in the inward movement of the 

coat membrane (Mulholland et al., 1994; Rodal et al., 2005; Kaksonen et al., 

2006).  

1.4.6 Control of actin polymerization during endocytosis 

          As the actin polymerization is very slow in vitro, a number of actin binding 
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Figure 1.5 Working model of actin polymerization in the yeast endocytic 
machinery  
 
          This schematic diagram illustrates putative functions of different actin-
cytoskeleton proteins during endocytic internalization in Saccharomyces 
cerevisiae. Las17 (yeast Wiskott–Aldrich syndrome protein) together with the 
myosins Myo3 (not shown) and Myo5 activate the actin-related protein-2/3 
(Arp2/3) complex at the cell surface. Myosins might also generate force on 
the actin network or anchor the actin filaments to the plasma membrane 
through their motor domains. The activated Arp2/3 complexes form branched 
actin filaments that grow through the addition of ATP–actin monomers near 
the plasma membrane. Older filaments are capped at their barbed ends by 
capping proteins (Cap1/2). The branched filaments are further crosslinked by 
Sac6. The crosslinked actin network is linked to the underlying vesicle coat 
by actin-binding proteins such as Sla2 and Pan1, which are represented by 
green hand-like structures. The growth of the actin network leads to the 
invagination of the coated membrane. [Figure adapted by permission from 
Macmillan Publishers Ltd: [Nature Reviews Molecular Cell Biology] 
(Kaksonen et al., 2006), copyright (2006)] 
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proteins are involved in the regulation of actin polymerization in the cells to 

adapt to the requirement of a particular cellular process. The actin polymerization 

at the endocytic site is initiated by Arp2/3 complex, which nucleate actin 

assembly by mimicking actin filament barbed end (Welch and Mullins, 2002). In 

S. cerevisiae, there are five potential Arp2/3-complex activators at endocytic sites 

— Las17p (yeast WASP), Pan1p (yeast Eps15), Myo3p, Myo5p (motor proteins) 

and Abp1p (actin binding protein-1) (Kaksonen et al., 2003; Engqvist-Goldstein 

and Drubin, 2003; Jonsdottir and Li, 2004; Sirotkin et al., 2005). The live-cell 

image studies of four of these proteins (Las17p, Pan1p, Myo5p and Abp1p) show 

that each of them behaves in a temporally and spatially distinct manner, which 

indicates that they might control the actin polymerization at different stages 

during vesicle formation and inward movement. Consistently, mutations blocking 

the Arp2/3 activity of Las17p, Pan1p, or Myo5p lead to severe defects in actin 

organization and endocytosis (Sun et al., 2006).  

         To coordinate the actin assembly and vesicle membrane formation, the 

activities of these Arp2/3 complex activators must be under controls as well. For 

example, Las17p assembles about 1 minute earlier before the emergence of actin 

filaments at the endocytic site, indicating Las17p activates Arp2/3 complex to 

nucleate actin not immediately after its assembly, but likely to be in response to 

some signals. The signals to activate these Arp2/3 complex activators during 

specific endocytic steps are unknown yet. But, in vitro biochemical analysis show 

that two coat module proteins, Sla1p and Bbc1p, are able to inhibit Las17p, 

whereas the SH3 domain of Bzz1p (a yeast syndapin-like protein) relieves 

Las17p inhibition (Rodal et al., 2003; Sun et al., 2006). On the other hand, Sla2 
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(yeast Hip1R) is also found to inhibit Pan1p to activate Arp2/3 complex in vitro 

(Toshima et al., 2006).  

 

1.4.7 Phospho-regulation of actin polymerization and endocytosis in budding 

yeast by Ark1/Prk1 kinase 

         Endocytosis, like some other important biological processes, is regulated by 

phosphorylation. Reversible phosphorylation of endocytic proteins appears to be 

important for the dynamic assembly and disassembly of endocytic coat. One of 

the best characterized mechanisms is phosphoregulation by Ark1/Prk1 kinase 

family which is conserved from yeast to mammalian cells (Smythe and Ayscough, 

2003). The members of this kinase family include mammalian cyclin-G-

associated kinase (GAK) and adapter-associated kinase (AAK1), as well as yeast 

Ark1p, Prk1p and Akl1p, featured by their homology in an N-terminal kinase 

domain (Figure1.6).   

          GAK1 and AAK1 were identified as components of endocytic coat 

complex, and found to phosphorylate AP-1/AP-2 µ chains (Wilde and Brodsky, 

1996; Umeda et al., 2000; Olusanya et al., 2001; Conner and Schmid, 2002). 

         The first kinase of this family, Prk1p, was identified in two independent 

studies. In one study, Prk1p was isolated in a genetic screen for extragenic 

suppressors of pan1-4, a temperature sensitive Pan1 mutant defective in actin 

cytoskeleton organization (Zeng and Cai, 1999). In this study, the kinase- 

substrate relationship between Prk1p and Pan1p was also established. 

          Moreover, the typical Prk1p phosphorylation motif (LxxQxTG), which is  
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Figure 1.6 Ark/Prk kinase family members.  
 

A. Unrooted phylogenetic tree of the kinase domains of the Ark1/Prk1 
family produced from alignments generated using ClustalX software. 
The black circles indicate nodes that scored a significance of greater than 
90% probability. Coloured areas denote a possible subfamily. The yeast 
kinase members all fall into a distinct group (pink) as do the AAK1-
related (green) and GAK-related (yellow) members. 

B. Diagram of Ark1/Prk1 kinase domain structures. In all cases, the kinase 
domain is near the amino terminus (red lozenge). The length of the 
region downstream of the kinase domain is extremely variable. In the 
kinase domains, Ark1 is 73% identical to Prk1, 48% to Akl1, and 38% to 
both NakP1 and AAK1. The kinase domain of AAK1 is 66% identical to 
NakP1 and 39% to GAK. AAK, adaptor-associated kinase; BIKE, 
BMP2-inducible kinase; GAK, cyclin-G-associated kinase; NakP1, 
Numb-associated kinase P1; Aux, Auxilin; A.g., Anopheles gambiae; 
A.t., Arabidopsis thaliana; C.e., Caenorhabditis elegans; D.m., 
Drosophila melanogaster; H.s., Homo sapiens; M.m., Mus musculus; 
P.f., Plasmodium falciparum; R.n., Rattus norvegicus; S.c., 
Saccharomyces cerevisiae; S.p., Schizosaccharomyces pombe.  [Figure 
reproduced with permission from (Smythe and Ayscough, 2003) the 
Nature Publishing Group]
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highly repeated in Pan1 N-terminal region, was identified. In another study, 

Ark1p was first isolated in a yeast two-hybrid screen to identify Sla2p binding 

partners. Prk1p, which has a similar kinase domain to Ark1p, was also 

characterized (Cope et al., 1999). In the following years, several coat proteins, 

Sla1p, Ent1/2p, YAP1801/2p and Scd5p, which contains clustered multiple sites 

similar to Prk1p phosphorylation motif, were also identified as Prk1p substrates 

(Zeng et al., 2001; Watson et al., 2001; Huang et al., 2003; Henry et al., 2003). 

In all of the Prk1p substrates, these phosphorylation sites are distributed in the 

regions required for interaction with other endocytic proteins, suggesting that 

phosphorylation may regulate the assembly of endocytic complexes. This idea is 

supported by the failure of binding between phosphor-Pan1p and Sla1p in in vitro 

binding assay. Moreover, over-expression of Prk1p results in the dissociation of 

Sla1p from Pan1p-containing complexes in gel- filtration experiment, which also 

supports that the consequences of phosphorylation is to the disassociate the coat 

protein complex (Zeng et al., 2001).    

    Prk1p and Ark1p are functionally redundant. Deletion of Prk1p or Ark1p alone 

does not have any apparent defects in actin patch and endocytosis regulation, 

while simultaneous disruption of both genes resulted in severe defects in actin 

organization, featured by large actin clumps (Cope et al., 1999). However, loss of 

Prk1p, but not Ark1p, is synthetic lethal with sla2∆, and forms actin clumps in an 

abp1∆ mutant, indicating that they have distinct functions. But until now, Ark1p 

function has been rarely studied.   
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      Another important feature of Prk1p and Ark1p is their C-terminal poly 

proline motif.  This motif, which interacts with the Src-homology 3 (SH3) 

domain of the actin-binding protein Abp1p, is required for proper actin patch 

localization for both kinases (Fazi et al., 2002). However, abp1∆ mutant does not 

show any actin defect similar to ark1∆ prk1∆ mutant, which may be explained by 

the residual patch localization of Prk1p in abp1∆ mutant. It is also possible that 

Ark1p and Prk1p may have important function outside of the actin patch.     

            In this study, we set out to study the distinct functions of Ark1p and Prk1p 

during actin assembly in yeast endocytosis by genetic, biochemistry and cell 

biology methods.  
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2.1 Reagents 

         All laboratory chemicals were purchased from Sigma-Aldrich Co. (St.Louis 

MI, USA) or BDH Ltd. Media components were from Difco Laboratories (USA) 

and Sigma Chemical Company (USA). Enzymes were from New England 

Biolabs (Boston, MA, USA) and Roche Diagnositics (Mannheim, Germany). 

Radioisotope was purchased from New England Nuclear Inc. Oligonucleotides 

used in this study were synthesized by Research Biolabs (Singapore) or Sigma-

Aldrich-Proligo (Singapore). 

For immunoprecipitation of Pan1p-Myc or Myc-Sla1p, Goat-anti Myc 

conjugated beads (New England Biolabs) were utilized. Rabbit-anti HA 

conjugated beads (New England Biolabs) were used to immunoprecipitate HA-

Prk1p, HA-Ark1p or HA-Ark1D159Y to do the in vitro kinase assay.  The 

following antibodies were used for immuno-detection: mouse monoclonal -Myc 

(Santa Cruz Biotechnology) at 1:500 for detection of Pan1p-Myc and Myc-Sla1p; 

rabbit  polyclonal -phosphor-threonine at 1:250 (Zymed, Invitrogen)  for 

detection of phosphor-threonine modification of Pan1-Myc and Myc-Sla1p 

immunoprecipitated from different kinase mutant backgrounds; and rabbit 

polyclonal -phosphothreonine at 1:5000 (Zymed, Invitrogen)  for detection of  

phosphothreonine modification of purified GST fusion substrates from E.coli co-

expression kinase assay. HRP-conjugated sheep anti-mouse IgG (Amersham) was 

used as secondary antibody.  

 

2.2     Strains and culture conditions 
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        The E. coli strain DH5α (GIBCO BRL, USA) was used as the host strain in 

this study for DNA recombination and plasmid amplification. The E. coli strain 

BL21 Gold (Stratagene) was used as the host strain for GST or His fusion protein 

expression. The E. coli cells were cultured at 37oC in LB broth (1% bacto-

tryptone, 0.5% bacto-yeast extract, 1% NaCl, pH 7.0) or on LB agar plates (LB 

containing 2% bacto-agar) with 100 μg/ml Ampicilin (Sigma) or 25 μg/ml 

Kanamycin (Sigma) added to the media to select for E. coli cells carrying 

recombinant plasmids. 

         Yeast cells were grown in standard yeast extract-peptone-dextrose (YEPD; 

1.1% yeast extract, 2.2% peptone, 0.006% adenine and 2% glucose) or synthetic 

complete medium (SC; 0.67% yeast nitrogen base without amino acids, 2% D-

glucose and 0.2% amino-acids mix). For the selection and maintenance of some 

nutritional markers that were introduced into yeast strains, appropriate selective 

media (SC without appropriate amino acid) were used. Wild-type cells were 

grown at 30°C with good aeration while temperature-sensitive mutants were 

cultured at the permissive temperature of 25°C and analyzed at the restrictive 

temperature of 37°C. To induce the expression of genes under the GAL1 

promoter, cells were grown overnight in the medium with 2% raffinose instead of 

D-glucose as the carbon source, and induced 1 to 4 hours with 2% Galactose 

added to the culture. The yeast strains used in this study are listed in the Table 1. 
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Table 1.Yeast Strains Used in This Study 

Strain                                          Genotype and sorce 

W303-1A         MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1  (Laboratory 

collection) 

SFY526 MATa ura3-52 his3-200 ade2-101 lys2-801 trp1-901 leu2-3,112 canr  gal4-

542 gal80-538  URA3:: GAL1-lacZ  (CLONTECH, USA) 

YMC410 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3 

(Laboratory collection)                   

YMC411 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3 

akl1∆::URA3    (Laboratory collection)                               

YMC412 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3 

akl1∆::URA3 ark1∆:: LEU2 (Laboratory collection)                   

YMC413         MATa ade2 trp1 can1 leu2 his3 ura3 pan1-4 prk1∆:: HIS3 (Laboratory 

collection)                   

YMC414 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3  

ark1∆:: LEU2 (Laboratory collection)                   

YMC511 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 pan1::PAN1-

Myc-TRP1 (This study)                   

YMC512 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3  

pan1:: PAN1-Myc-TRP1 (This study)                   

YMC503 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3 

akl1∆::URA3  pan1:: PAN1-Myc-TRP1 (This study)                   

YMC504 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3 

akl1∆::URA3   ark1∆:: LEU2  pRS314-PAN1-Myc-TRP1 (This study)                

YMC505 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 sla1:: Myc-

SLA1-TRP1 (This study)                   
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2.3. Oligonucleotide primers 

Primers used for E.coli-co-expression kinase constructs:  

YMC507 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3 

akl1∆::URA3 sla1:: Myc-SLA1-TRP1 (This study)                   

YMC508 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3 

akl1∆::URA3  ark1∆::LEU2 pRS314 –Myc-SLA1-TRP1 (This study)                  

YMC509 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3  

ark1∆::LEU2  pan1:: PAN1-Myc-TRP1  (This study)                   

YMC510 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 arp2::Arp2-

HA-LEU2 (This study)                   

YMC513 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 pan1:: PAN1-

4-Myc-TRP1 (This study)                   

YMC514 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3  

pan1:: PAN1-4-Myc-TRP1 (This study)                   

YMC515 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 ark1∆::LEU2 

sla1:: Myc-SLA1-TRP1 (This study)                   

YMC516 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 ark1∆::LEU2 

prk1∆::HIS3 sla1:: Myc-SLA1-TRP1 (This study)                   

YMC506 MAT a ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15  ura3-1 prk1∆::HIS3  

sla1:: Myc-SLA1-TRP1 

LR1BamHF: 5'GTGTGGATCCATGTATAACCCGTACCAG3' 

LR1EnStpR:   5'AGCACGAGCACGCTACTATTATGAGTTG
ACAAAGCCAGTTGC3' 
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Primers for Ark1D159Y Mutagenesis  

 
 
Primers for fusion of Ark1 kinase domain with Prk1 C terminal, and Prk1 kinase 
domain fusion with Ark1 C terminal 
 
 

 

LR2BamHF: 5'GTGTGGATCCTTCATTACAGCGGGCGTAC
3' 

LR2EnStpR: 5'AGCACGAGCACGCTACTATTAATTATTAAA
GTTGGATTTGG3' 
 

Sla1GST3BamHF: 5'GCTGGATCCGCAATGATGCCTTTGCAG3' 

Sla1GST3EnStpR: 5'AGCACGAGCACGCTACTATTAGAATCCAAA
CGGATTTGATG3' 

EnhaF: 5'CGTGCTCGTGCTAATAATTTTGTTTAACTTT
AAGAAG3' 
 

ARK299HAR: 5'GGACGTCGTATGGGTACATAATTGATATCC
TCTTCAG3' 
 

EnhaPrkF: 5'CTTTAAGAAGGAGATATAATGAATACTCCA
CAGATTAGTC3' 
 

EnhaArkF: 5'CTTTAAGAAGGAGATATAATGAATCAACCT
CAAATTGGC3' 
 

PK298HAR: 5'GGACGTCGTATGGGTATAACCTGGAAACCT
CCTC3' 
 

HAxho1R: 5'GTGTCTCGAGAGCGTAGTCTGGGACGTCGT
ATGGG3' 

Ark1orfAscF:  5'CGTGGCGCGCCGAATCAACCTCAAATTGGC3' 

ArkD159YR: 5'CTATCTTTATATAACGGTGAATTAAC3' 
 

ArkD159YF: 5'GTTAATTCACCGTTATATAAAGATAG3'  
 

Ark1orfxhoR: 5'CGTCTCGAGTCACTTATCCAAGGATAAC3' 
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Primers for Prk1AR mutagenesis 
 

 
       Restriction site added is underlined. Additional residues were added 5' to the 

restriction site to facilitate complete restriction enzyme cleavage at the ends of 

PCR products. 

Ark1BamHF:  
 

5'GCTGGATCCATGAATCAACCTCAAATTGG3' 

ArkN299R:  
 

5'CATAATTGATATCCTCTTCAG3' 

Prk1C299F: 5'CTGAAGAGGATATCAATTATGCAGAATAAG
CCTTGCCCG3' 
 

PKorfAscR:  
 

5'GTGTGGCGCGCCAACTTTGCTGGGAAACC3' 

PrkorfXba1F: 5'GTGTCTAGAATGAATACTCCACAGATTAGT
C3' 
 

PrkN299R:   5'CACGGAACATTTTGCATCTGTAACCTGGAA
ACCTCC3' 
 

ArkC299F:   
 

5' ATGCAAAATGTTCCGTGTCC3' 
 

ArkorfAscR: 5'GTGGGCGCGCCCTTATCCAAGGATAACTTT
CG3' 
 

ArkC299F:   
 

5' ATGCAAAATGTTCCGTGTCC3' 
 

PrkorfXba1F: 5'GTGTCTAGAATGAATACTCCACAGATTAGT
C3' 
 

PrkAF: 5'CAAGTGGTTCAGGCGCCCAGTAGCCATTTGAA
ACCCAATTGGCCGGTG3' 
 

PrkAR: 
 

5'GCGCCTGAACCACTTGTATGTCATTAATCG
GGCAAGGCTTATTCTG3' 
 

PKorfAscR:  
 

5'GTGTGGCGCGCCAACTTTGCTGGGAAACC3' 
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2.4. Recombinant DNA methods 

General recombinant DNA methods were performed essentially as 

described by Sambrook et al. (1989). Polymerase chain reaction (PCR) was 

carried out with Vent DNA polymerase. Restriction enzyme digestion was 

performed using the appropriate buffers supplied by the manufactures. Blunt 

ending of DNA fragments was carried out using Klenow DNA polymerase. 

Dephosphorylation of cloning vectors was done using calf intestinal phosphatase 

(CIP). T4 DNA ligase (New England Biolabs or Roche) was used for ligation of 

DNA fragments.  

 

2.4.1. Transformation of E. coli cells  

 For heat shock transformation, DNA from ligation mix (7.5μl) or plasmid 

DNA (less than 0.1 μg) was mixed with 50 μl KCM buffer (100 mM KCl, 30 mM 

CaCl2, 50 mM MgCl2), and 100 μl of competent cells. After incubation on ice for 

30-45 min, the cells were heat shocked at 43oC water bath for 50 seconds. The 

transformed cells were quickly incubated on ice for at least 1 min before being 

plated out on the LB agar plates with appropriate antibiotics according to the 

selection marker of individual plasmid.  

For electroporation transformation, combine 20 μl of the electro-competent 

cells with 1-2 μl of plasmid or ligation mixture in 0.2 cm electroporation cuvettes 

(Bio-rad) and leave on ice for 5 min. The electroporation was done using a Gene 

Pulser (Bio-Rad) at a voltage of 2 KV and with a resistance and capacitance of 

200 Ω resistances and 25 μF, respectively. Following electroporation, cells were 

resuspended in 1 ml of LB and grown at 37°C for 1 h. Aliquots of the cells were 
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spread onto agar plates containing the selective medium with the appropriate 

antibiotics. 

 

2.4.2. Plasmid preparation and analysis 

       Overnight bacterial culture (2.0 ml) was pelleted by centrifugation at full 

speed in table-top centrifuge for 30 sec. The resulting bacterial pellet was 

resuspended in 250 μl of STET buffer (8% sucrose, 0.5% Triton X-100, 50 mM 

Tris-HCI pH8.0, 50 mM EDTA, 1 mg/ml freshly prepared lysozyme). The 

mixture was boiled at 100oC water bath for 2 min and subsequently centrifuged at 

full speed for 5 min. After removal of the bacterial debris by toothpicks, 250 μl of 

isopropanol was added to the supernatant, and the mixture was mixed by vortex 

before being centrifuged at full speed (13,000 rpm) for 10 min. The DNA pellet 

was washed with 70% ethanol and then dissolved in 50 μl of TE buffer (10 mM 

Tris-HCl, 1 mM EDTA, [pH8.0]) containing 0.1 μg/μl RNAase.  

For high-quality plasmid DNA purification, QIAprep Miniprep Kit 

(QIAGEN Inc., Germany) was used and the procedure was according to the 

manufacturer’s protocol.  

• Spin down cells from a 5 ml overnight culture by centrifugation at full 

speed in an Eppendorf 5145c centrifuge (Eppendorf, Hamburg, Germany). 

Decant the supernatant and resuspend the cell pellet thoroughly in 250 μl of 

Buffer P1 (50 mM Tris-HCl, pH8.0; 10 mM EDTA; 100 μg/ml RNaseA). 

Transfer the cell suspension to a 1.5 ml microfuge tube. 
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• Lyse cells by adding 250 μl of Buffer P2 (200 mM NaOH, 1% SDS). Mix 

gently by inverting the tube several times. 

• Add 350 μl of Neutralization Buffer N3 (3.0 M potassium acetate, pH5.5) 

and mix gently but thoroughly to prevent localized precipitation. 

• Centrifuge at full speed in the Eppendorf centrifuge for 10 min to pellet 

the precipitated proteins and genomic DNA. 

• Transfer the supernatant to the QIAprep column and centrifuge at full 

speed for 30-60 s. Discard the flow-through. 

• Wash the column by adding 0.5 ml of Buffer PB and centrifuge at full 

speed for 30-60 s. Discard the flow-through. 

• Wash column with 0.75 ml of Buffer PE and centrifuge for 30-60 s. 

Discard flow-through and centrifuge the column for 1 min to remove the residual 

wash buffer. 

• Place the column in a fresh 1.5 ml microfuge tube. Add 50 μl of Buffer 

EB (10 mM Tris-HCl, pH 8.5) to the column; let it stand for 1 min before 

centrifugation to elute the DNA. Restriction digestions were performed to 

analyze the plasmid constructs. Normally, 1-2 μg of the plasmid DNA was 

digested with 1-2 units of the appropriate enzymes in a 20 μl reaction at 37°C for 

2 h. The digestion products were analyzed by agarose gel electrophoresis.  

 

Table 2. Plasmid Constructs Used in This Study 

 Construct                                                            Description 

pARK1-HA                                  ARK1 coding region was generated by PCR, cloned in 
frame with a C-terminal HA epitope followed by the 
ADH1 terminator, and placed under PRK1promoter 
control in pRS316. 
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pPRK1-HA                                  PRK1 coding region was generated by PCR, cloned in 
frame with a C-terminal HA epitope followed by the 
ADH1 terminator, and placed under PRK1 promoter 
control in pRS316. 
 

pARK1n-PRK1c-HA                  The DNA coding region for Ark1p (1-299a.a.) was fused 
with the DNA coding region for Prk1p (299-8109a.a.) 
by PCR, cloned in frame with a C-terminal HA epitope 
followed by the ADH1 terminator, and placed under 
PRK1 promoter control in RS316 
 

pPRK1n-ARK1c-HA                   The DNA coding region for Prk1p (1-298a.a.) was fused 
with the DNA coding region for Ark1p (300-639a.a.) by 
PCR, cloned in frame with a C-terminal HA epitope 
followed by the ADH1 terminator, and placed under 
PRK1 promoter control in RS316. 
 

pPRK1298-HA                              The DNA coding region for Prk1p kinase domain (1-298 
a.a.) was generated by PCR and cloned in frame with a 
C-terminal HA epitope followed by the ADH1 
terminator, and placed under PRK1 promoter control in 
pRS316. 
 

pPRK1∆pp-HA                          The DNA coding region for Prk1p (1-747 a.a.) was 
generated by PCR and cloned in frame with a C-terminal 
HA epitope followed by the ADH1 terminator, and 
placed under PRK1 promoter control in pRS316.  
 

pARK1∆pp-HA                          The DNA coding region for Ark1p (1-606 a.a.) was 
generated by PCR and cloned in frame with a C-terminal 
HA epitope followed by the ADH1 terminator, and 
placed under ARK1 promoter control in pRS316. 
 

pPRK1319-HA                        The DNA coding region for Prk1p (1- 319 a.a.) was 
generated by PCR and cloned in frame with a C-terminal 
HA epitope followed by the ADH1 terminator, and 
placed under PRK1 promoter control in pRS316. 
 

pPRK1AR∆pp-HA                            The DNA coding region for Prk1p (1-747 a.a.) with 
Prk1p (299 to 319a.a.) replaced with Ark1p according 
region (300 to 320a.a.) was generated by PCR and 
cloned in frame with a C-terminal HA epitope followed 
by the ADH1  terminator, and placed under PRK1 
promoter control in pRS316.  
 

pPRK1AR -HA                                The DNA coding region for Prk1p with Prk1p (299 to 
319a.a.) replaced with Ark1p according region (300 to 
320a.a.) was generated by PCR, cloned in frame with a 
C-terminal HA epitope followed by the ADH1 
terminator, and placed under PRK1 promoter control in 
pRS316. 
 

pPAN1-Myc-304                       The DNA coding region for Pan1p (1252-1480 aa) was 
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generated by PCR and cloned in frame with a C-terminal 
Myc epitope followed by the ADH1 terminator in 
pRS304. 
 

pPAN1-Myc                        PAN1 open reading frame was generated by PCR and 
cloned in frame with a C-terminal Myc epitope followed 
by the ADH1 terminator, and placed under PAN1 
promoter control in pRS314. 
 

pMyc-SLA1-304                      Myc-Sla1p. SLA1 open reading frame was generated by 
PCR and cloned in frame after three copies of the Myc 
epitope, under SLA1 promoter control in pRS304. 
 

pMyc-SLA1                               Myc-Sla1p. SLA1 open reading frame was generated by 
PCR and cloned in frame after three copies of the Myc  
epitope, under SLA1 promoter control in pRS314. 
 

pGADT7-ARP2                        ARP2 coding region was generated by PCR and cloned 
in frame into pGADT7. 
 

pGBKT7-ARP2                      ARP2 coding region was generated by PCR and cloned 
in frame into pGBKT7. 
 

pGBKT7-PRK1D158Y           The coding region of Prk1D158Yp was generated by PCR 
and cloned in frame into pGBKT7 (Zeng et al. 2001). 
 

pGBKT7-PRK1 D158Y
(1-747) The DNA coding region of Prk1D158Yp (1-747 a.a.) was 

generated by PCR and cloned in frame in pGBKT7. 
 

pGBKT7-PRK1 D158Y
(1-319)          The DNA coding region of Prk1D158Yp (1-319 a.a.) was 

generated by  PCR and cloned in frame in pGBKT7  
 

pGADT7-PRK1D158Y
298          The DNA coding region for Prk1p (1-298 a.a.) was 

generated by PCR and cloned in frame into pGADT7. 
 

pGEX-SR                                     GST-SR; The DNA coding region for Sla1p (1068-1244 
a.a.) was generated by PCR and cloned in frame into 
pGEX-4T-1.          
 

pGEX-SR-ARK1299HA              For GST-SR and ARK1299-HA co-expression in E. Coli. 
The DNA coding region for Sla1p (1068-1244 a.a.) 
followed by three stop codons, was fused with a 
translational enhancer, a Shine-Dalgarno sequence and 
Ark1p kinase domain coding region( 1-299a.a.) followed 
with a HA tag at C-terminal by PCR fusion method, and 
cloned into the BamHI and XhoI sites of pGex-4T-1.  
 

pGEX-SRmut-ARK1299HA      For GST-SRmut and ARK1299-HA co-expression in E. 
Coli. GST-SRmut is GST-SR variant with all TG to AG 
mutations.                
 

pGEX-SR-ARK1D159Y
299HA     For GST-SR and ARK1D159Y

299-HA co-expression in E. 
Coli.  ARK1D159Y299-HA is ARK1299-HA variant with 
D159Y mutation. 
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pGEX-SR-PRK1298-HA          For GST-SR and PRK1298-HA co-expression in E. Coli. 
The DNA coding region for Sla1p (1068-1244 a.a.) 
followed by three stop codons, was fused with a 
translational enhancer, a Shine-Dalgarno sequence and 
Prk1p kinase domain coding region( 1-298a.a.) followed 
with a HA tag at C-terminal by PCR fusion method, and 
cloned in frame into the BamHI and XhoI sites of pGex-
4T-1.  
 

pGEX-LR1-ARK1299-HA    For GST-LR1 and ARK1299-HA co-expression in E. 
Coli. The DNA coding region for Pan1p (1-245 a.a.) 
followed by three stop codons, was fused with a 
translational enhancer, a Shine-Dalgarno sequence and 
Ark1p kinase domain coding region( 1-299a.a.) followed 
with a HA tag at C-terminal by PCR fusion method, and 
cloned in frame into pGex-4T-1.  
 

 pGEX-LR1-ARK1D159Y
299-HA     For GST-LR1 and ARK1D159Y

299-HA co-expression in 
E. Coli.  ARK1D159Y

299-HA is ARK1299-HA variant with 
D159Y mutation. 
 

 pGEX-LR1-PRK1298-HA         For GST-LR1 and PRK1298-HA co-expression in E. 
Coli. The DNA coding region for Pan1p (1-245 a.a.) 
followed by three stop codons, was fused with a 
translational enhancer, a Shine-Dalgarno sequence and 
Prk1p kinase domain coding region( 1-299a.a.) followed 
with an HA tag at C-terminal by PCR fusion method, 
and cloned into the BamHI and XhoI sites of pGEX-4T-
1. 
 

pGEX-LR2-ARK1299-HA       For GST-LR2 and ARK1299-HA co-expression in E. 
Coli. The DNA coding region for Pan1p (384-584 a.a.) 
followed by three stop codons, was fused with a 
translational enhancer, a Shine-Dalgarno sequence and 
Ark1p kinase domain coding region ( 1-299a.a.) 
followed with an HA tag at C-terminal by PCR fusion 
method, and cloned into the BamHI and XhoI sites of 
pGEX-4T-1.  
 

 
pGEX-LR2-ARK1D159Y

299-HA   
 For GST-LR2 and ARK1D159Y

299-HA co-expression in 
E. Coli.  ARK1D159Y

299-HA is ARK1299-HA variant with 
D159Y mutation.  
 

pGEX-LR2-PRK1298-HA            For GST-SR and ARK1299-HA co-expression in E. Coli. 
The DNA coding region for Pan1p (384-584 a.a.) 
followed by three stop codons, was fused with a 
translational enhancer, a Shine-Dalgarno sequence and 
Prk1p kinase domain coding region( 1-298a.a.) followed 
with an HA tag at C-terminal by PCR fusion method, 
and cloned in frame into the BamHI and XhoI sites of 
pGEX-4T-1.  
 

pGAL-HA-PRK1                       The PRK1 coding region was generated by PCR, cloned 
in frame with the HA epitope, and placed under GAL1 
promoter control in pRS316 (Zeng and Cai, 1999). 
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pGAL-HA-ARK1                          
 

 The ARK1 coding region was generated by PCR, cloned 
in frame with the HA epitope, and placed under GAL1 
promoter control in pRS316.  
 

pGAL-HA-ARK1D159Y             The ARK1 coding region was generated by PCR, cloned 
in frame with the HA epitope, and placed under GAL1 
promoter control in pRS316.  
 

pGAL- PRK1D158Y-EGFP     
 

PRK1 D158Y coding region was generated by PCR, cloned 
in frame with a C-terminal EGFP epitope followed by 
the ADH1 terminator, and placed under GAL1 promoter 
control in pRS316.     
 

pGAL- PRK1D158Y
319-EGFP    

 
The DNA coding region for Prk1D158Yp (1-319a.a.) was 
generated by PCR, cloned in frame with a C-terminal 
EGFP epitope followed by the ADH1 terminator, and 
placed under GAL1 promoter control in pRS316.   
 

pGAL- PRK1D158Y
298-EGFP          The DNA coding region for Prk1D158Yp (1-298a.a.) was 

generated by PCR, cloned in frame with a C-terminal 
EGFP epitope followed by the ADH1 terminator, and 
placed under GAL1 promoter control in pRS316. 
 

pGAL- PRK1D158Y
AR-EGFP           The DNA coding region for Prk1D158Yp with Prk1p (299 

to 319a.a.) replaced with Ark1p according region (300 to 
320a.a.) was generated by PCR, cloned in frame with a 
C-terminal EGFP epitope followed by the ADH1 
terminator, and placed under GAL1 promoter control in 
pRS316.  
 

pGAL-PRK1D158Y
AR∆pp-EGFP       The DNA coding region for Prk1D158Yp (1-747 a.a.) with 

Prk1p (299 to 319a.a.) replaced with Ark1p according 
region (300 to 320a.a.) was generated by PCR, cloned in 
frame with a C-terminal EGFP epitope followed by the 
ADH1 terminator, and placed under GAL1 promoter 
control in pRS316. 
 

pGAL-PRK1D158Y
AR∆pp-Myc        The DNA coding region for Prk1D158Yp (1-747 a.a.)  

with Prk1p(299 to 319a.a.) replaced with Ark1p 
according region (300 to 320a.a.) was generated  by 
PCR, cloned in frame with a C-terminal Myc epitope 
followed  by the ADH1 terminator,  and placed under 
GAL1 promoter control in pRS316. 
 

pGAL-PRK1D158Y∆pp-Myc            The DNA coding region for Prk1D158Yp (1-747 a.a.) was 
generated by PCR, cloned in frame with a C-terminal 
Myc epitope followed by the ADH1 terminator, and 
placed under GAL1 promoter control in pRS316.  
 

pGEX-PRK1319                               GST-PRK1319; The DNA coding region for Prk1p (1-
319 a.a.) was generated by PCR and cloned in frame into 
pGEX-6p-1.  
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pGEX-PRK1298                              GST-PRK1298; The DNA coding region for Prk1p (1-
298 a.a.) was generated by PCR and cloned in frame into 
pGEX-6p-1.   
 

pET-ARP2                                     His-ARP2; ARP2 coding region without intron was 
generated by PCR and cloned in frame into pET-Duet-1.  
 

ARP2-HA-305                                The DNA coding region for Arp2p with ARP2 promoter 
was generated by PCR and cloned in frame with a C-
terminal HA epitope followed by the ADH1 terminator 
in pRS305. 
 

pARK1PR-HA                                The DNA coding region for Ark1p with Ark1p (300 
to 320a.a.) replaced with Prk1p according region 
(299 to 319a.a.) was generated by PCR, cloned in 
frame with a C-terminal HA epitope followed by the 
ADH1 terminator, and placed under ARK1 promoter 
control in pRS316. 
 

pPAN1-4-Myc-304                       The DNA coding region for Pan1p (1-849aa) was 
generated by PCR and cloned in frame with a C-
terminal Myc epitope followed by the ADH1 
terminator in pRS304. 
 

pGBKT7-ARK1 D159Y
PR  The DNA coding region of Ark1D159Yp, with Ark1p 

(300 to 320a.a.) replaced with Prk1p according 
region (299 to 319a.a.) was generated by PCR and 
cloned in frame into pGBKT7. 
 

 

 

2.4.3. Mutagenesis  

Mutations in pGEX-SRmut-ARK1299HA, Ark1D159Y, Prk1ARHA-316 were 

generated either by one step PCR with mutagenic primers or by sequential PCR 

mutagenesis as described (Cormack and Somssich, 1997), and confirmed by 

sequencing analysis. 

 

2.5. Yeast manipulations 

          Yeast genetic techniques were performed according to standard methods 

described previously (Rose, 1990).   
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2.5.1. Yeast transformation 

The host cells were grown in appropriate medium to the log phase and 

harvested by centrifugation at 3000 rpm for 5 min. For each transformation, 

about 50 μl of the cell pellet was washed once in Li-TE buffer (0.1 M lithium 

acetate, 10 mM Tris-HCl pH 7.5, 1 mM EDTA), and resuspended in 100 μl of 

yeast transformation mix (2 M LiAc : 50% PEG 8000 : 1 M DTT = 1:8:1). The 

cell suspension was then mixed with the plasmid DNA and 10 μl of salmon 

sperm carrier DNA (9.5 μg/μl salmon testes DNA, Sigma) followed by 

incubation at 42°C for 30 min. The cells were collected by centrifugation at low 

speed and resuspended in 1 ml of H2O. The cell suspension was spread onto 

selective plates and incubated at the appropriate temperature for 3 to 4 days.     

  

2.5.2. Preparation of yeast genomic DNA  

To extract genomic DNA from yeast, the cells were grown in 2.5 ml proper 

medium and proper temperature overnight. 2ml cells were centrifuged at high 

speed for 5 seconds. Cell pellet was resuspended in 160μl 1M sorbitol, 0.1M 

EDTA (pH7.5), and transferred to 1.5 ml tube. 40μl lyticase (10mg/ml) and 1.6μl 

β-mercaptoethanol were added to the reaction tube. Reaction tubes are place on 

the roller wheel at 30ºС for 1 hour. The cells were centrifuged at high speed for 

30 seconds, and the supernatant discarded. The cell pellet was resuspended in 250 

μl 50mM Tris (pH7.4), 20mM EDTA. 25μl 10% SDS was added, mixed well and 

incubated at 65ºС, for 15 min. 100 μl 5M KAc was added, vortexed, and put on 

ice for 15 min. After spinning at high speed for 5 min, supernatant was 
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transferred to a new tube, and 350 μl (equal volumn) isopropanol added, mixed 

well and then held at room temperature for 5 min. After another high speed 

centrifugation and supernatant was discard. The pellet was wash with 900μl 70% 

Ethanol, spun at high speed for 1 min and the ethanol decanted, and the pellet 

dried. The pellet was dissolved in 50 μl TE (pH7.4), 5 μl RNase A (10 mg/ml). 2 

μl of DNA was taken for subsequent PCR analysis. 

 

2.5.3. Gene integration and PCR conformation 

To obtain YMC501, YMC502, YMC503 and YMC509, plasmid pPAN1-

Myc-304 was linearized within the PAN1 gene by BamHI digestion and 

integrated into W303-1A, YMC410, YMC411, YMC414, respectively. To obtain 

YMC505, YMC506, and YMC507, plasmid pMyc-SLA1-304 was linearized 

within the SLA1 gene by BamHI digestion and integrated into W303-1A, 

YMC410, YMC411, respectively. To obtain YMC510, plasmid Arp2-HA-305 

was linearized within the ARP gene promoter by BspEI digestion and integrated 

into W303-1A. The integration was confirmed by PCR (Huxley et al., 1990) and 

sequencing analysis. 

 

2.6. Microscopy and fluorescence studies  

2.6.1. Rhodamine phalloidin staining 

Staining of actin filaments with rhodamine-phalloidin (Molecular Probes, 

Eugene, OR) was performed as described previously (Adams and Pringle, 1991) 

with minor modifications. Cells were grown in at 25ºC in Ura dropout with 

raffinose as  the carbon source medium to early log phase, and galactose was later 
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added for GAL1 induction. After 1 hour galactose induction, cells were colleted 

and suspended in fixation solution (3.7% formaldehyde, 100 mM KH2PO4, 100 

mM K2HPO4) for 45 min. Cells were then washed two times with PBS and 

suspended in PBS containing 0.1% Triton X-100 for 15 min. After washing again 

with PBS for two times, cells were incubated with PBS containing rhodamine-

phalloidin (1:500) at 25ºC for 30 min. Cells were finally washed with PBS for 

four times and suspended in Vectashield mounting medium, and followed by 

visualization with the Leica DMAXA microscope. 

 

2.6.2. Lucifer Yellow uptake assay 

         Cells were grown in 25 ml of YEPD or selection medium at 24ºС overnight 

with shaking. When cell density was 0.7-1.0 X 107 cells/ml, 1 ml of cell culture 

was placed in a 1.5 ml tube with punctures. Cells were gently pelleted in labtop 

centrifuge at 13,000 rpm for 1 minute at room temperature. After removing the 

supernatant, the cell pellet was resuspended in 90 μl of fresh YEPD. 10 μl of 

freshly prepared Lucifer Yellow stock solution (Dilithium salt) was added and 

incubated at 24 ºС for 2 hours. 1 ml ice-cold wash buffer (50mM 

Na2HPO4/NaH2PO4 pH 7, 10mM NaF, 10mM Na azide) was added to the 

reaction tube to stop the reaction and immediately put sample on ice. The cells 

were washed with ice cold wash buffer 3 times, suspended in Vectashield 

mounting medium, and followed by visualization with the Leica DMAXA 

microscope.  
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2.7. Protein studies 

2.7.1. Yeast protein extraction 

          To prepare crude protein extracts using acid-washed glass beads, yeast 

strains were grown in appropriate conditions to mid-log phase (OD600 = 0.9 to 

1.2). Cells were harvested, washed once with Stop mix  buffer (0.9% NaCl, 1 

mM NaN3, 10 mM EDTA, 50 mM NaF) and resuspended in 200 μl of ice-cold 

lysis buffer (1% Triton X-100,  0.1% SDS, 100 mM NaCl, 50 mM Tris-HCl 

[pH7.2], 1 mM PMSF, 20 μg/ml leupeptin, 40 μg/ml aprotinin, 0.1 mM Na-

orthovanadate, 15 mM p-nitrophenyl phosphate (PNPP) ). 200 μl of acid-washed 

500-μm-diameter glass beads (Sigma) were added to the cell suspension and the 

cells were lysed by vortexing vigorously at 4°C. After two rounds of high speed 

centrifugation to pellet out the cellular debris, the supernatant containing the 

crude cell lysate was collected, snap frozen in liquid nitrogen and stored at -80°C. 

Protein concentration was determined using the Coomassie Plus-200 Protein 

Assay Reagent (PIERCE, U.S.A). Crude protein extraction prepared by this way 

can be used for immunoprecipitation. 

           To prepare total protein extracts by TCA precipitation, 1 ml cells 

equivalent to OD600 = 4 were harvested by centrifugation and resuspended in 300 

μl ice-cold water.  Then, 150 μl of YEX lysis buffer (1.85 M NaOH, 7.5% β-

mercaptoethanol) was added and the suspension was kept on ice for 10 min.  

Subsequently, 150 μl of 50% ice-cold TCA was added to the suspension which 

was further kept on ice for another 10 min.  The precipitate was collected by 

centrifugation at 4°C for 5 min and then resuspended in a solution containing 35 
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μl of  two times SDS-loading buffer (100 mM dithiothreitol, 50 mM Tris-HCl 

[pH 6.8], 2% SDS, 0.1% bromophenol blue, 10% glycerol)  and 15 μl 1 M Tris 

buffer [pH 8.0].  After boiling for 10 min, 5 to 10 μl of each samples were 

loading on an SDS-PAGE, and used for subsequent analysis. 

  

2.7.2. Immunoprecipitation and Western blot 

        Yeast cells were grown at 30°C to mid-log phase (A600 = 0.9 to 1.2) in 150 

ml of SC medium lacking the appropriate amino acids, washed once in solution A 

(0.9% NaCl, 1 mM NaN3, 10 mM EDTA, 50 mM NaF), and resuspended in 900 

μl of solution B (1% Triton X-100, 1% sodium deoxycholate, 0.1% sodium 

dodecyl sulfate [SDS], 50 mM Tris-HCl [pH 7.2], 100 mM sodium orthovanadate, 

15 mM p-nitrophenylphosphate, 1 mM  phenylmethylsulfonyl fluoride, protease 

inhibitors). Cells were then lysed at 4°C by vortexing with 500-μm-diameter 

acid-washed glass beads (Sigma). After centrifugation at 15,000 g for 20 min, the 

supernatant was transferred to a new tube and the protein concentration was 

measured. For immunoprecipitation, cell lysates (about 3 mg) were incubated for 

1 h at 4°C with mouse anti-HA antibody or with mouse monoclonal anti-Myc 

antibody, respectively, to precipitate HA-tagged and Myc-tagged proteins. The 

mixture was incubated on ice for 1 hour, and followed by the incubation with 

Protein A/G PLUS-Agrose beads (Santa Cruz Biotechnology, pre-equilibrated in 

lysis buffer with protease inhibitors) for another 1 at 4°C with gentle agitation. 

The beads were then washed 4 times in RIPA buffer (1% Triton X-100, 150 mM 

NaCl, 50 mM Tris-HCl [pH 7.2]). The immune complexes were released by 

boiling in sample buffer for 5 min. After centrifugation, samples were loaded on 
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SDS–7.5 or 10% polyacrylamide gels. After electrophoresis, the separated 

proteins were electroblotted onto Immobilon-P membranes (Millipore). 

      SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using 

the Mini-PROTEIN II electrophoresis cell (Bio-Rad, USA). The separation gel 

contained 8% to 12% of acrylamide mix (acrylamide:bisacrylamide, 29:1), 375 

mM Tris-HCI [pH8.8] and 0.1% SDS. The stacking gel contained 5% acrylamide 

mix, 125mM Tris-HCl [pH6.8] and 0.1% SDS. Polymerization was induced by 

the addition of TEMED and freshly prepared ammonium persulfate. Protein 

samples in SDS-loading buffer were boiled for 8 min, and loaded onto the gel. 

The electrophoresis was carried out in Tris-glycine buffer (25 mM Tris, 250 mM 

glycine, 0.1% SDS). The prestained broad range protein marker (New England 

Biolabs) was used to estimate the size of proteins. 

        After electrophoresis, the separated proteins were electro-transferred onto 

Immobilon PVDF membranes (Millipore, USA) using the liquid transfer cell 

(Bio-Rad, USA). The transfer buffer contained 3.30 g/L Tris and 14.4 g/L glycine. 

For Western blot, the membrane was incubated overnight at 4°C in blocking 

solution (PBS containing 0.05% Tween-20 and 5% skimmed milk). The 

membrane was sequentially incubated with the primary antibody and the HRP-

conjugated secondary antibody, and followed by extensive wash with PBS 

containing 0.05% Tween-20. The antibody-antigen complexes were visualized 

with the Enhanced Chemiluminescence (ECL) system (Amersham, UK).   

        To treat the immunoprecipitates with calf intestinal alkaline phosphatase 

(CIP), the protein A-Sepharose beads were washed with RIPA buffer (50 mM 

Tris-HCl, pH 7.2, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 150 
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mM NaCl), followed by incubation at 37 ºC with 1ml of 10 U/ml CIP (Biolabs, 

Inc.) for 30 min and boiling in the sample buffer. 

 

2.7.3. GST fusion protein purification  

        To make GST-fusion proteins, the DNA coding regions were obtained by 

PCR and cloned in frame to a bacterial GST expression vector pGEX-4T-1 

(Amersham Pharmacia Biotech, Malaysia). The plasmids were transformed into 

E. coli strain BL21. 

         Transformants were grown to OD600 = 0.7 in 200 ml of Luria-Bertani(LB) 

medium containing 100 mg of ampicillin (Sigma) per ml , and induced with 1 

mM isopropylthioβ-D-galactoside (Life Technologies, Inc.) at 30ºC for 6 hours to 

express the fusion proteins. Cells were collected by centrifugation (GSA, 

Beckman), and resuspended in cold PBS buffer. The suspensions were sonicated 

on ice to lyse the cells and the lysates were centrifuged at 10,000 rpm for 10 min 

in a Sorvall SS-34 rotor. The supernatants were incubated with glutathione -

Sepharose 4B beads (Pharmacia) for 30 min at room temperature, then 

transferred to disposable columns (Pharmacia). The beads were washed with PBS 

three times and the fusion proteins were eluted from the beads by incubation with 

elution buffer (10 mM glutathione, 50 mM Tris-HCl, pH 8.0) at 24ºC for 20min.  

 

2.7.4. E.coli co-expression kinase assay 

         The bi-cistronic expression plasmids for E. coli co-expression assay were 

generated as follows (Figure2.1). The DNA coding region for the substrates (SR, 
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SRmut, or LR1, LR2) followed with 3 stop codons, a translational enhancer and a 

Shine-Dalgarno sequence ( 5'CGTGCTCGTGCTAATAATTTTGTTTAACTT 

TAAGAAGGAGATATA3’; Tan, 2001), were fused with kinase (Ark1p kinase 

domain or Prk1 kinase domain followed with an HA tag at C-terminal) by PCR 

fusion method, then cloned in frame into the BamHI and XhoI sites of pGEX-4T-

1 (Amersham Biosciences, Singapore).  

 

 

 

 

 

 

        

      The bi-cistronic expression plasmids were transformed into E. coli strain 

BL21, and the transformants were grown in 200 ml of Luria-Bertani medium 

containing 100 mg of ampicillin (Sigma) per ml to an optical density at 600 nm 

of 0.8. The expression of GST fusion proteins and HA tagged kinases were 

induced with 1 mM isopropyl-1-thio-b-D-galactopyranoside (IPTG) (Life 

Technologies, Inc.) at 30°C for 1hour. The subsequent purification of the GST 

fusion substrate proteins were performed as described above. The expression of 

Figure 2.1 The bi-cistronic expression plasmids construction for E. coli co-
expression assay.   
      The coding regions of the substrates (SR, SRmut, or LR1, LR2) followed 
by 3 stop codons, a translational enhancer and a Shine-Dalgarno sequence 
(5'CGTGCTCGTGCTAATAATTTTGTTTAACTTTAAGAAGGAGATATA
3’, Tan, 2001), were fused to the kinase domains of either Ark1p or Prk1p 
(containing an HA tag at the C-termini) by PCR, and then cloned in frame into 
the BamHI and XhoI sites of pGEX-4T-1 (Amersham Biosciences). 
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kinases was confirmed first by analysis of the cell lysates by 10% SDS-PAGE 

and western. Then the purified GST-fusion substrates were subjected to the 10% 

SDS-PAGE and Western blotting to analyze the phosphothreonine modification 

status. The nitrocellulose membranes with electroblotted GST fusion substrates 

were later stained with Coomassie blue dye to visualize the GST fusion proteins. 

 

2.7.5. His fusion protein purification and in vitro binding  

          Plasmid containing His-ARP2 was transformed into E.coli strain BL21 

Gold (Stratagene). Transformants were grown in 200ml of ampicillin containing 

LB medium at 37ºС OD600 = 1.0, followed by the addition of IPTG to 1mM and 

incubation at 30 ºС for overnight. Cells were collected by centrifugation and 

resuspended in cold extraction buffer (1% Triton, 150mM NaCL, 5mM 

Imidazole, 20mM Tris-HCl, 1mMPMSF, pH8.0). The resuspended cells were 

sonicated on ice and the lyastes were centrifuged at 17,000 rpm for 20min. The 

supernatants were incubated with pre-washed Ni-NTA Agrose (QIAGEN, 

Germany), for 1 hour at 4 ºC. Then the beads were washed with wash buffer 

(150mM NaCl, 20mM Imidazole, 20mM Tris-HCl, 1mM PMSF, pH8.0) for 3 

times. The His tagged proteins bound on Ni-NTA beads were eluted by 

incubating the beads with elution buffer (20mM Tris-HCl, 200mM NaCl, 250mM 

Imidazole). 

          For GST fusion protein binding experiments, 400 μl of approximately 3 mg 

of purified His-tag proteins was incubated with GST fusion protein coupled beads 

for 1hour at 4 ºC, washed five times with RIPA buffer, and then eluted into SDS-

PAGE sample buffer.          
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2.7.6. In vitro kinase assay 

        For in vitro kinase assays, the yeast cells with GAL-HA-Prk1, Gal –HA-Ark, 

or Gal-HA-Ark1D159Y were cultured in raffinose as the carbon source medium to 

early log phase, and galactose was later added for GAL1 induction. After 3 hour 

galactose induction, cells were colleted. The cell extraction and IP was done as 

described. The polyclonal rabbit anti-HA antibody conjugated beads (Research 

Biolab) was used to precipitate HA-tagged Prk1p and HA-tagged Ark1p. The 

beads were first washed with the RIPA buffer for five times, then three times 

with 25 mM MOPS (pH 7.2) and resuspended in 6μl of HBII buffer (60 mM b-

glycerophosphate, 25 mM MOPS, pH 7.2, 15 mM p-nitrophenylphosphate, 15 

mM MgCl2, 5 mM EGTA, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl 

fluoride, 20mg leupeptin/ml, and 0.1 mM sodium orthovanadate). The kinase 

assay was performed by incubating the beads with 5mg of GST-fusion proteins, 

0.5μl of 1 mM ATP, 0.5μl of [γ-32P]ATP (10 mCi/ml; New England Nuclear 

Inc.), 1ml of 250 mM MOPS in a total volume of 20ml at 25ºC for 15min. The 

reaction was stopped by addition of protein gel sample buffer; the reaction 

mixture was denatured at 100ºC for 5 min, and subjected to 10% SDS-PAGE. 

The gels were first stained with Coomassie blue to visualize the protein bands. 

After pictures were taken, the gels were fixed, dried, and exposed to x-ray films. 

 

2.7.7. Co-Immunoprecipitation 

         Co-Immunoprecipitation of Prk1p and Arp2p was done as described (Lechler et 

al., 2000) with some modifications. Briefly, Gal-Prk1D158Y
AR∆pp-Myc or Gal- 
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Prk1D158Y∆pp-Myc was transformed into cells with Arp2-HA. The resultant strains 

were grown at 30ºC with raffinose as the carbon source medium to early log phase, 

and galactose was later added for GAL1 induction. After 1 hour galactose induction, 

cells were colleted. The cell extraction and IP was done as described (Lechler et al., 

2000). The cell lysate was centrifuged at 300,000 g for 60 min. The resulting high-

speed supernatant was nearly at a concentration of ~10 mg/ml. 40 µl high-speed 

extract was incubated, for 1 h at 4°C, with 20 µl goat-anti Myc condjugated beads 

(NEB). Eluted proteins were precipitated with 10% trichloroacteic acid and 

resuspended in protein gel sample buffer. Samples were separated by 10% PAGE and 

subsequent western blot analysis. 

 

2.8. Yeast Two Hybrid Assay 

          The MATCHMAKER system (Clontech Laboratories, USA) was used in 

two-hybrid analysis. For the yeast two-hybrid assay, DNA fragments of ARP2 

and PRK1D158Y were fused to the HA-tagged GAL4 activation domain of 

pGADT7 or the Myc-tagged DNA binding domain of pGBKT7 as indicated in 

Table 2. Plasmids were co-transformed into the strain SFY526 and the expression 

of each fusion protein was confirmed by Western blotting with the use of anti-HA 

or anti-Myc antibodies. The β-galactosidase activities were measured as 

instructed by the manufacturer (CLONTECH, Palo Alto, CA).  
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3.1. Background 

        Endocytosis is a dynamic process which involves tightly controlled assembly 

and disassembly of endocytic coat components and actin networks throughout 

cargo capture, membrane invagination, vesicle scission and targeting. In yeast, 

one of the best characterized regulatory mechanisms of this process is the 

reversible phosphorylation of endocytic coat complex and actin filament assembly 

by members of Ark/ Prk kinase family. 

          Prk1p is the most extensively studied member of Ark/Prk kinase family. It 

was isolated from a genetic screening of  extragenic suppressors of an endocytic 

defective mutant pan1-4 (Zeng and Cai, 1999) in yeast. A number of endocytic 

proteins, including Pan1p, Sla1p, Scd5p, Yap1801/2p and Ent1/2p, were 

identified as substrates of Prk1p (Zeng et al., 2001; Watson et al., 2001; Huang et 

al., 2003; Henry et al., 2003), and the Prk1p consensus phosphorylation motifs 

were identified as (L/I/V/M)xx(Q/N/T/S)xTG (Huang et al., 2003).          

          Ark1p, another yeast member of this kinase family, was identified through 

a two hybrid screening for binding proteins of Sla2p (Cope et al., 1999). Ark1p 

shares high homology with Prk1p in the kinase domain (73% identical). The role 

of Ark1p overlaps with that of Prk1p, because neither ark1 nor prk1 single 

mutant shows actin cytoskeleton and endocytic defects; while in the absence of 

both kinases, the defects of actin cytoskeleton and endocytosis are striking (Cope 

et al., 1999; Sekiya-Kawasaki et al., 2003). However, the function of Ark1p has 

been barely studied, and its substrate and phosphorylation motifs are not clear.  

         Zeng et al. showed that Sla1p and Pan1p immunoprecipitated from prk1∆ 

were phosphorylated when incubated with radioactive ATP, whereas the two 
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proteins immunoprecipitated from ark1∆ prk1∆ cells could not be phosphorylated. 

It suggested that Ark1p may be the kinase which is co-precipitated with and 

phosphorylate Sla1p and Pan1p in vitro (Zeng et al., 2001). However, the direct 

evidence that Ark1p can phosphorylate these two proteins has not been reported. 

Later, Henry et al. tested Ark1p’s kinase activity on synthetic peptides in vitro, 

and showed that Ark1p could phosphorylate AxTG motif instead of TxTG motif, 

which could be readily phosphorylated by Prk1p and Akl1p. But, there is only 

one AxTG motif present in Sla1p and no AxTG motif in Pan1p. So the Ark1p 

substrates and phosphorylation motifs remain unclear.  

            In order to understand how Ark1p functions in endocytic regulation, we 

began by studying Ark1p kinase activity and identifying Ark1p substrates.  

 

3.2.    Results 

3.2.1.    Kinase activity of Ark1p in a traditional kinase assay 

        As Ark1p and Prk1p are functionally redundant, it is reasonable to 

hypothesize that at least some of the substrates of Prk1p are expected to be shared 

by Ark1p. Sla1p, one of the known substrates of Prk1p, was first used as a 

potential substrate to test the kinase activity of Ark1p by the in vitro kinase assay. 

The Sla1p C-terminal region containing multiple Prk1p phosphorylation motifs 

was expressed as a GST fusion protein (named as GST-SR) and purified from E. 

coli for use in the kinase assay. To prepare the kinases, HA tagged Ark1p, as well 

as HA-Prk1p and HA-Ark1D159Yp, were expressed under the inducible GAL 

promoter in yeast cells, immunoprecipitated and subjected to the in vitro kinase 
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assay. Ark1D159Y is an Ark1 kinase mutant, in which the conserved Aspartic Acid 

in the catalytic domain of the kinase was mutated into tyrosine. 

 

 

 

 

 

        The immunoprecipitated kinases were examined by SDS-PAGE and western 

blot to confirm the expression of the kinases. Equal amount of kinases are used in 

in vitro kinase assay (Figure 3.1 A). GST-SR was readily phosphorylated by 

Figure 3.1   In vitro phosphorylation of Sla1p by Ark1p.  
 
A.  Wild-type Ark1p, the kinase-inactivated Ark1D159Yp, and wild-
type Prk1p were expressed as HA-tagged proteins and quantified by   
immunoprecipitation and western. Equal amounts of the   
immunoprecipitated proteins were used in the kinase reactions.  
 
B. Phosphorylation results were shown as autoradiography and the   
input substrates were visualized by the coomassie blue staining. 
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immunoprecipitated HA-Prk1p, as has been reported previously (Zeng et al., 2001) 

(Figure 3.1 B, the third lane). HA-Ark1p prepared in the same way could also 

phosphorylate GST-SR, albeit much less effectively (Figure 3.2 B, the first lane). 

The Ark1D159Y mutant exhibited a largely abolished activity (Figure 3.1 B, the 

second lane).  

 

3.2.2.   Kinase activity of Ark1p in E.coli co-expression assay 

       To investigate whether the above result was due to an intrinsic low activity of 

Ark1p or to a suboptimal assay condition, the kinase activity was tested in a 

bacterial co-expression system. This system has been used successfully to 

establish the kinase activity of SRPK1 over its substrate ASF/SF2 (Yue et al., 

2000), and to test the effect of phosphorylation on protein interactions (Shaywitz 

et al., 2002). GST fusion proteins were co-expressed with kinase by using a bi-

cistronic expression vector (Figure 2.1). After induction, GST fusion proteins 

were purified and analyzed by the SDS-PAGE and western blot using anti 

phosphor-threonine antibody to detect the phosphorylation of the GST fusion 

proteins. GST-SR was co-expressed with the HA-tagged kinase domain of Ark1p, 

Ark1D159Y or Prk1p. The expression of the kinases was confirmed by 

immunoblotting with anti-HA antibody to be at similar levels (Figure 3.2A). As 

shown in Figure 3.2B, GST-SR co-expressed with either Ark1p or Prk1p kinase 

domain became equally extensively phosphorylated, whereas no phosphorylation 

could be detected when co-expressed with Ark1D159Y (Figure 3.2B, upper panel).   
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Figure 3.2  Phosphorylation of Sla1p-SR, Pan1p-LR1 and Pan1p-
LR2 by Ark1p and Prk1p in E. Coli.  
A. Expression of Kinases in the E. Coli co-expression system. The   

expression levels of kinases in the co-expressed E.Coli cells were 
examined by using antibody against HA antibody on immunoblots of 
cell extracts. Control is the cell transformed with pGEX-4T-1 vector. 

  
B. GST fusion substrates, indicated below the panels, co-expressed with 

respective kinases, indicated above the panels, were purified after 1 h 
induction and analyzed by SDS-PAGE and Western. Lane 4 (CIP) in 
each panel is same as lane 1 (Ark1) but treated with the phosphatase 
prior to loading. The band of added phosphatase is indicated by 
asterisk. 

 
C. Schematic diagrams of GST-SRmut and amino acid sequence   of SR 

protein which is used as substrate here. All of the red lines labeled 
threonines are mutated into alanine. And there are still 10 more 
threonines in the mutated SR, which are labeled with green lines.   
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The extensive phosphorylation of GST-SR caused the protein band to be up-

shifted from 40 kDa up to about 60 kDa. Calf intestinal phosphatese(CIP) 

treatment of the purified GST fusion protein abolished the phosphor-threonine 

signal and the band-shift, indicating the anti-phosphor-threonine antibody 

specifically recognizes the phosphor-threonine signals. The phosphorylation was 

confined to the predicted Prk1p phosphorylation sites, as converting all the 

threonine residues in these consensus TG sites to alanine (GST-SRmut) by site-

directed mutagenesis(Figure 3.2C) abolished phosphorylation by either Ark1p or 

Prk1p, even though numerous other threonine residues were still present. Similar 

experiments were also carried out with two Pan1p N-terminal long repeats (LR): 

LR1 and LR2 (Zeng and Cai, 1999). Ark1p phosphorylated LR1 and LR2 as 

efficiently as Prk1p (Figure 3.2, lower panels), and the phosphorylation of GST-

LR1 and GST-LR2 caused the protein band to be up-shifted. These results 

showed that Ark1p is able to phosphorylate at least two of the Prk1p’s native 

targets, Pan1p and Sla1p, in vitro.  

 

3.2.3. The in vivo substrate preference of Prk1p and Ark1p 

        To test whether Ark1p contributes to the phosphorylation of Sla1p and 

Pan1p in vivo, proteins immunoprecipitated from wild type, prk1Δ, ark1Δ, prk1Δ 

akl1Δ, ark1Δ prk1Δ and prk1Δ ark1Δ akl1Δ cells, were examined by western 

blotting with anti-phospho-threonine antibody. The anti-Myc antibody was used 

to check the protein amount. The level of Sla1p phosphorylation from prk1Δ, 

ark1Δ, ark1Δ prk1Δ, or prk1Δ akl1Δ cells was similar to that of wild type cells, 

while no signal was detected from the triple deletion prk1Δ ark1Δ akl1Δ cells or  
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Figure 3.3. In vivo phosphorylation status of Sla1p and Pan1p in different 
kinase deletion mutants.  
 

A. Myc-Sla1p was immunoprecipitated from cell lysate prepared from 
wild-type (YMC505) and five different kinase deletion strains: 
prk1Δ (YMC506), prk1Δ akl1Δ (YMC507), ark1Δ (YMC515), 
prk1pΔ ark1Δ (YMC516) and prk1pΔ ark1Δ akl1Δ (YMC504/508), 
at 30°C. The immunoprecipitates from wild-type (YMC505) were 
incubated with 1 μl of CIP for 30 min at 37°C prior to loading.  

 
B. Myc-tagged Pan1p was immunoprecipitated from cell lysate 

prepared from wild-type (YMC511) and three different kinase 
deletion strains, prk1Δ (YMC512), prk1Δ akl1Δ (YMC503), and 
prk1pΔ ark1Δ akl1Δ (YMC504), separated on SDS gels, and 
probed by the mouse anti-Myc antibody. The membrane was 
stripped and probed again with the rabbit anti-phosphothreonine 
antibody. The immunoprecipitates from wild-type (YMC511) were 
incubated with 1 μl of CIP for 30 min at 37°C prior to loading.   
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after phosphatase treatment (CIP), indicating that Ark1p could indeed contribute 

to Sla1p in vivo phosphorylation (Figure 3.3A). The level of Sla1p 

phosphorylation remained essentially unchanged as long as one of the three 

kinases was functional. In contrast, deletion of the PRK1 gene alone resulted in a 

drastic reduction in the Pan1p phosphorylation (Figure 3.3B), suggesting that 

Pan1p, unlike Sla1p, is more restricted to regulation by Prk1p. The residual 

phosphorylation of Pan1p persists in prk1Δ akl1Δ mutant, but disappears in prk1Δ 

ark1Δ akl1Δ, indicating that Ark1p also contribute to Pan1p in vivo 

phosphorylation.   

 
 
3.2.4. The phosphorylation motifs of Ark1 

          The Prk1p phosphorylation motifs have been identified as 

[L/I/V/M]xx[Q/N/T/S]xTG (Huang et al., 2003), using the substrate derived from 

a fragment of Pan1 (amino acids 564-846, named as R15) that contains a single 

LxxQxTG motif (Figure 3.4A). As the E.coli co-expression assay can efficiently 

demonstrate Ark1p kinase activity, Ark1’s potential phosphorylation motifs were 

examined by coexpression of Ark1 kinase domain with the various GST-R15 

mutants as substrates. For convenience of description, the threonine in the 

LxxQxTG motif is given a position number of P0, and the residues upstream of 

P0 are designated as P-n (Figure 3.4A). 

          In a preliminary test, as shown in Fingure 3.4B, Ark1p could phosphorylate 

GST-R15 when they are co-expressed. The phosphor-threonine signal was not  
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Figure 3.4 Ark1p could phosphorylate Prk1p phosphorylation 
motifs. 
 
A. Schematic diagram of GST-R15. 
 
B. Ark1p could phosphorylate LxxQxTG. The substrates GST-R15 

and GST-R15T/A, indicated below the panels, were co-expressed 
with respective kinases, indicated above the panels, purified after 
1 h induction and analyzed by SDS-PAGE and western blot. The 
substrate GST fusion proteins were visualized by coomassie blue 
staining, and the phosphorylations were detected by western 
blotting with anti-phosphor-threonine antibody.  

 
C. Ark1p could phosphorylate Prk1p consensus phosphorylation 

motifs. The substrates GST-R15 variations, indicated above the 
panels, were co-expressed with Ark1p kinase domain, purified 
after 1 hour induction and analyzed by SDS-PAGE and western 
blotting.   
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detected when the mutant kinase Ark1D159Y was used as kinase, or the GST-

R15T/A (the threonine at the P0 position was mutated to alanine) was used as 

substrate, suggesting that Ark1p could phosphorylate GST-R15 on the threonine 

in the consensus LxxQxTG site. We next tested if Ark1p could phosphorylate all 

the other known Prk1p consensus phosphorylation sites. Besides these identified 

phosphorylation motifs [L/I/V/M]xx[Q/N/T/S]xTG, there are some other repeats 

of  TG sites found in Sla1p, in which the P-5 position is [A/S/N] and P-2 position 

is [F/L], which may represent additional patterns of Prk1p or Ark1p 

phosphorylation motif.  The L residue of R15-WT at P-5 was mutated into the P-

5 variations in the identified Prk1p’s phosphorylation motifs and some variations 

found in Sla1p-SR, namely A, M, I, V, and S; and the Q residue of R15-WT at P-

2 was mutated into the P-2 variations in the established Prk1p’s phosphorylation 

motifs and some variations found in Sla1p-SR, namely, N, T, S, F, and L. As 

shown in Figure 3.4C, Ark1p was able to phosphorylate all of these variants.  

 

3.3 Discussion 

          Compared with Prk1p, Ark1p has been much less studied and its 

phosphorylation targets were not clear. It is, however, deemed functionally 

redundant to Prk1p by the fact that the mutants of either prk1 or ark1 have no 

obvious phenotypes but simultaneous loss of both proteins is disastrous for cell 

growth, due to the severe defects in actin organization and endocytosis. A typical 

case was reported by Sekiya-Kawasaki et al., where inhibition of Prk1p in the 

ark1 mutant led to rapid and Arp2/3-dependent accumulation of aggregated 
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endocytic intermediates composed of vesicles wrapped by actin filaments 

(Sekiya-Kawasaki et al., 2003). However, the mechanism of their functional 

redundancy is not clear. Moreover, PRK1 and ARK1 have distinct genetic 

interactions with other endocytic proteins, indicating that some differences do 

exist between these two kinases. It was hypothesized that they may have different 

phosphorylation motifs (Smythe and Ayscough, 2003).     

        In this study, by a bacterial co-expression system, it was demonstrated that 

the kinase domains of Ark1p and Prk1p are equally efficient in phosphorylating 

Sla1p and Pan1p. The in vivo phosphorylation of Pan1p and Sla1p also depend on 

Ark1p in the absence of Prk1p and Akl1p. Moreover, our finding that Ark1p 

could phosphorylate Pan1p in vivo is also consistent with the report that mutations 

of all potential Prk1 phosphorylation sites in Pan1p resulted in actin abnormalities 

similarly present in prk1Δark1Δ, but absent from prk1Δakl1Δ cells (Toshima et al., 

2005). Both in vitro and in vivo evidence demonstrated that Pan1p and Sla1p are 

substrates of Ark1p and Prk1p. In addition, in the E. coli co-expression assay, 

Ark1p can phosphorylate known Prk1p phosporylation sites.  

      We noticed that the in vivo phosphorylation level of Pan1p was primarily 

dependent on Prk1p, as it decreased dramatically in the prk1 mutant, whereas the 

Sla1p phosphorylation level remained almost unchanged with any one of the three 

kinases present. These in vivo results indicate that Pan1p and Sla1p are subjected 

to different modes of regulation by Ark/Prk family kinases in vivo, though similar 

phosphorylation motifs are present in both proteins. 

     Akl1p, the least studied member in the Ark/Prk family is also involved in 

the phospho-regulation of Sla1p. Sla1p phosphorylation is completely abolished 



Chapter 3                                                              Identification of Ark1p substrates             

 

 62

in the triple kinase deletion mutant cells, while the level of Sla1p phosphorylation 

remained essentially unchanged in ark1 ∆ prk1∆. But its function in endocytosis 

and actin cytoskeleton still remained to be explored.   
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4.1. Background           

          The distinct functions of Prk1p and Ark1p were first uncovered by genetic 

analyses. Loss of Prk1p, but not Ark1p, was found to be lethal to the sla2Δ mutant 

and caused severe actin defects in abp1Δ cells (Cope et al., 1999). Until the 

present study, the molecular basis underlining the distinct genetic interactions has 

remained unknown. 

        It had been speculated that the distinct functions of Ark1p and Prk1p may be 

because that the two kinases recognize and phosphorylate different target sites in 

response to different signals (Smythe and Ayscough, 2003). But our in vitro and 

in vivo experimental results described in Chapter 3 showed that Ark1p could 

phosphorylate Sla1p and Pan1p on similar motifs as Prk1p, and moreover, the in 

vivo phosphorylation level of Pan1p was primarily dependent on Prk1p, as it 

decreased drastically in the prk1∆ mutant, suggesting that some distinct 

mechanisms must be at work. The most divergent part of Ark/Prk kinase family 

members is their non-kinase domain. The ease of genetic manipulation in yeast 

enabled us to evaluate the functional importance of the non-kinase domain by a 

domain swap approach.   

 

4.2. Results 

4.2.1. Chimeric kinses are functional 

          To evaluate the functional importance of the non-kinase domains of Ark1p 

and Prk1p, we swapped their kinase domains (1-298aa of Prk1p and 1-299aa of 

Ark1p) to create two chimeric kinases named Prk1n-Ark1c (with the Prk1p kinase 
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Figure 4.1 Chimeric kinases are functional. 
 

A. Schematic illustration of Prk1p, Ark1p and the chimeric kinases. 
Prk1n-Ark1c is made of the kinase domain of Prk1 (1 to 298 aa) and 
the non-kinase domain of Ark1 (300 to 638 aa), and Ark1n-Prk1c is 
made of the kinase domain of Ark1 (1 to 299 aa) and the non-kinase 
domain of Prk1 (299 to 810 aa). 

B. Expressions of the chimeric kinases Ark1n-Prk1c and Prk1n-Ark1C in 
prk1∆ ark1∆ mutant. TCA extracts from indicated cells were analyzed 
by western blot with anti-HA and anti-G6PDH. 

C.  The prk1Δ ark1Δ mutant (YMC414) was transformed with the 
plasmids containing different kinase genes as indicated on the left side 
of the panel. The resultant strains were patched on selective medium 
and let grow at 30°C, and then replica-plated on a fresh plate and let 
grow at 37°C. 
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domain) and Ark1n-Prk1c (with the Ark1p kinase domain), as shown in Figure 

4.1A. To check the expressions of the chimeric kinases Ark1n-Prk1c and Prk1n-

Ark1C in prk1∆ ark1∆ mutant,  TCA extracts from indicated cells were analyzed 

by western blot with anti-HA and anti-G6PDH antibodies. Both fusion genes 

under the PRK1 promoter were expressed as their wild type counterparts (Figure 

4.1B). After introduction into prk1Δ ark1Δ cells, the fusion genes were both able 

to rescue the mutant’s temperature sensitivity at 37°C and its actin defects (Figure 

4.1C), indicating that the fusion kinases are functional.  

 

4.2.2. Non-kinase domains are responsible for distinct genetic interactions 

          It was found that a temperature-sensitive (ts) mutant of PAN1, pan1-4, 

could be suppressed by deletion of PRK1. However, pan1-4 cannot be suppressed 

by ARK1 deletion. We found that pan1-4 phosphorylation is dramatically 

decreased in prk1∆ mutant, but not in ark1∆ (Figure4.2B), which is consistent 

with the finding described in Chapter 3 that Pan1p phosphorylation primarily 

depends on Prk1p but not Ark1p.    

          We next tested the function of the chimeric kinases on Pan1p, by 

transforming the kinases into the pan1-4 prk1Δ cells. Strikingly, after the chimeric 

kinases were introduced into pan1-4 prk1Δ cells, it was Ark1n-Prk1c that 

mimicked the activity of Prk1p to reconstitute the temperature sensitivity in the 

mutant (Figure 4.2A).  
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Figure 4.2 Non-kinase domains are responsible for the distinct 
functions of ark1/Prk1p on Pan1p  
 

A. The pan1-4 prk1Δ mutant (YMC413) was transformed with the 
plasmids as indicated and the cells were grown to log phase and 
spotted onto a selective plate and incubated at 30 (left) or 37°C 
(right). Photographs were taken after each plate was incubated 
for 2 days. 

B. The prk1Δ ark1Δ mutant containing Myc-Pan1p (YMC509) was 
transformed with the different kinase constructs. Myc-Pan1p 
was immunoprecipitated from cell lysates prepared from strains 
indicated above the panel, gel separated and probed sequentially 
by mouse anti-Myc and rabbit anti-phosphothreonine antibodies. 
The phosphorylation level of Pan1-Myc in each sample was 
measured by densitometer and normalized against its protein 
amount. The relative phosphorylation intensities were calculated 
and presented as bar graphs shown below. 

 



Chapter 4                                                    Functional study of non-kinase domain 

 

 

 68

As Pan1p phosphorylation in vivo mainly depends on Prk1p (Chapter3), Pan1p 

phosphorylation status in the various chimeric kinases background was examined 

as well. The immunoprecipitated Pan1p was examined by western blot with an 

anti-Myc antibody to verify the protein amount and the phosphorylation status 

was checked by western blot with anti-phospho-threonine antibody. The 

phosphorylation level of Pan1-Myc in each sample was measured by densitometer 

and normalized against its protein amount. The relative phosphorylation 

intensities were calculated and presented as bar graphs.  Consistently, the level of 

Pan1p phosphorylation was similarly high in the cells expressing Prk1p and 

Ark1n-Prk1cp, and almost equally low in Ark1p and Prk1n-Ark1cp containing 

cells (Figure 4.2B). Taken together, these results indicate that the non-kinase 

domain is responsible for the distinct in vivo functions of Prk1p and Ark1p.  

 

4.2.3. The function of Ark1p, but not Prk1p, depends on the C-terminal 

polyproline motif 

       One important feature of the non-kinase domains of Ark1p and Prk1p is their 

C-terminal poly-proline motif. The localization of Ark1p and Prk1p to the cortical 

actin patches has been shown to be mediated by an interaction between these C-

terminal poly-P motifs and the SH3(Src homology 3) domain of Abp1p (Cope et 

al., 1999; Fazi et al., 2002). However, deletion of ABP1 does not produce a 

similar phenotype as observed in prk1Δ ark1Δ. In addition, unlike Ark1p, whose 

cortical association was completely eliminated in the abp1∆ mutant, the cortical 

localization of some Prk1p proteins has been observed in the abp1∆ mutant (Cope 
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et al., 1999; Fazi et al., 2002). Therefore, we hypothesized that Prk1p may have 

additional ways to be localized cortically. It is possible that the Prk1 poly-proline 

motif may be able to bind to other SH3 motif containing actin patch proteins. 

          To reassess the functions of their polyproline motifs, we created prk1 and 

ark1 mutants lacking only the polyproline motifs and transformed them into 

prk1Δ ark1Δ cells. The expression levels of Prk1pΔPP and Ark1pΔPP were 

confirmed by western blotting to be similar to their wild type counterparts (Figure 

4.3D). As shown in Figure 4.3A, Prk1pΔPP could complement the temperature 

sensitivity of prk1Δ ark1Δ at 37°C, while Ark1pΔPP could not. Consistent with 

this, Prk1pΔPP-GFP was still able to localize to the cortical patches, while 

Ark1pΔPP-GFP was diffused in the cell (Figure 4.3 B). Moreover, Prk1pΔPP also 

rescued the actin defects in the prk1Δ ark1Δ cells to an extent indistinguishable 

from the wild type, whereas considerable actin aggregates were still visible in the 

cells expressing Ark1pΔPP, although in smaller sizes than those in prk1Δ ark1Δ 

cells (Figure 4.3C). These results suggest that Prk1p, but not Ark1p, could 

function independently of the polyproline motif and the patch localization of 

Prk1p may depend on other region in its non-kinase domain. This suggestion is 

also consistent with an earlier observation that the prk1Δ abp1Δ mutant acquired a 

similar actin defect as in the prk1Δ ark1Δ mutant whereas the ark1Δ abp1Δ 

mutant did not (Cope et al., 1999).   
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Figure 4.3  The function of Ark1p, but not Prk1p, depends on the C- 
terminal polyproline motif  
 

A.  The prk1Δ ark1Δ mutant (YMC414) was transformed with 
single-copy plasmid carrying PRK1, ARK1, PRK1ΔPP and 
ARK1ΔPP (with deletions in the polyproline stretch). The 
resultant strains were patched on selective medium at 30°C 
(left), and replica-plated on a fresh plate and incubated at 37°C 
(right). Photographs were taken after each plate was incubated 
for 2 days. 

B.  Prk1p, but not Ark1p, can localize to cortical patches without 
the C-terminal poly-P motif. Plasmids carrying GFP tagged 
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Prk1p, Ark1p, Prk1∆PP and Ark1∆PP, each under their native 
promoters, were transformed into prk1Δ (YMC410) or ark1Δ 
(YMC409), and the transformants were examined under 
fluorescent microscope. 

C.  Rhodamine-phalloidin staining of actin filaments in the cells 
described above. Scale bars, 5 μm. 

D.  Expression of Prk1p, Ark1p, Prk1∆PP and Ark1∆PP proteins 
in the transformed prk1Δ ark1Δ cells. TCA precipitates from 
the extracts of cells shown in Figure 3A were analyzed by 
immunoblotting with anti-HA antibody and anti-G6PDH. 

 

 

4.3. Discussion 

4.3.1. Non-kinase domain is responsible for distinct function of Ark1p and 

Prk1p 

        In Chapter 3, we have demonstrated that Ark1p’s kinase activity is 

comparable with Prk1p in E. coli co-expression assay. Moreover, Prk1p and 

Ark1p are divergent outside their highly homologous kinase domains. It is 

reasonable to speculate that the distinct functions of Ark1p and Prk1p may be 

mediated by their divergent C-terminal regions. This was proved to be true by the 

domain swap experiments. It is rather conspicuous that the Pan1p phosphorylation 

was recovered nearly to the wild-type level by the kinase domain of Ark1p fused 

to the non-kinase domain of Prk1p, while the Prk1p kinase domain became 

incompetent to perform what used to be its native task after it equipped with the 

non-kinase domain of Ark1p. Clearly, the non-kinase domains are crucial for the 

differential activities of Prk1p and Ark1p, at least as shown by the 

phosphorylation of Pan1p. 
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4.3.2. Prk1p has poly-proline independent anchor  

         The poly proline motif is the only known element in the non kinase region 

that is important for the function of the kinases. It has been shown to  be 

responsible for the patch localization of Ark1p and Prk1p through the interaction 

with Abp1p SH3 domain (Fazi et al., 2002). By evaluation of the contributions of 

polyproline motif, we found that the function of Ark1p essentially depends on the 

polyproline motif, whereas Prk1p is still functional in the absence of its poly-P 

motif. Prk1pΔPP is not only able to rescue the temperature-sensitivity and actin 

defects of ark1Δ prk1Δ, but also able to reconstitute the temperature-sensitivity in 

the pan1-4 prk1Δ mutant (Figure 5.3). In fact, Prk1pΔPP-GFP was still able to 

localize to the cortical patches, suggesting that Poly-P motif is not the sole 

determinant for the actin patch localization of Prk1p. The existence of poly-P 

independent recruiter could also explain why Prk1p can still localize to actin 

patch in the absence of Abp1p. We hypothesize that the functions of Ark1p and 

Prk1p kinases are regulated by distinct anchors which determine their spatial and 

temporal localizations in the endocytic machinery.         
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5.1. Background 

          Phosphorylation is one of the most common regulatory methods present in 

all organisms. As unregulated phosphorylation would be harmful to cells, it is 

vital to keep the activity of these kinases under proper control. Controlled sub-

cellular positioning is an important way to ensure the protein kinase to be 

positioned at the right place and right time to perform its respective function.  

       The studies of Prk1∆PP and Ark1∆PP in Chapter 4 have established that in 

vivo functions of Ark1p and Prk1p are closely connected to the cortical patch 

localization. The results also indicate that Prk1p has a poly proline independent 

anchor, which prompted us to search for proteins that interact with the C-terminal 

region of Prk1p but independent of polyP. Identification of Prk1p’s Poly-P 

independent anchor will shed light on the underlying mechanism of the redundant 

and distinct functions of Ark1p and Prk1p, and the regulation of the kinases 

during endocytic vesicle internalization and pinching off.  

 

5.2. Results  

5.2.1. Identification of Arp2p as a binding protein for Prk1p  

         The yeast two-hybrid system was used to test interactions of Prk1pΔPP with 

a number of known actin patch-associated proteins including Pan1p, Sla1p, End3p, 

Scd5p, Sac6p, Cap1p, Cap2p, Arp2p and Arp3p. Among them, Arp2p, the core 

component of Arp2/3 complex, was found capable of binding to Prk1pΔPP but 

not to Ark1pΔPP (Figure 5.1A). Using various deletion constructs of Prk1p, the 

region necessary for interacting with Arp2p was mapped to a 21-amino-acid 

region (299-319 aa.) adjacent to the kinase domain. 
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 To determine whether the interaction between Prk1p and Arp2p is direct, 

the binding between His-tagged Arp2p and GST-Prk11-319 was investigated. Equal 

amounts of bead-immobilized GST-Prk11-319 and GST-Prk11-298 (kinase domain 

only) were mixed with equal amount of purified His-Arp2, respectively. After 

washing, the bound proteins were analyzed by western blot with anti-GST and 

anti-His antibodies. As shown in Figure 5.1B, His-Arp2 could be precipitated by 

GST-Prk11-319 but not by GST-Prk11-298, indicating that the 21-amino-acid 

segment between 298 and 319 is required for the direct binding of Prk1p to Arp2p.  

The interaction between Prk1p and Arp2p was further confirmed by co-

immunoprecipitation. The PRK1 gene without the C-terminal poly proline region, 

PRK1ΔPP, was tagged with the Myc-epitope and placed under the GAL1 

promoter to enhance its expression. After galactose induction for 2 h, cell lysates 

were prepared and Myc-Prk1p was precipitated. As shown in Figure 5.1C, HA-

Arp2 could be co-immunoprecipited by the anti-Myc antibody. The co-

immunoprecipitation was abolished if the 21 a.a. region of Prk1p was replaced by 

the corresponding region from Ark1p (Prk1ARΔPP) (Figure5.1C).   

 

5.2.2. Interaction with Arp2p is important for Prk1p’s patch localization 

          To test whether the 21 a.a. region was required for Prk1p to achieve 

the cortical localization, GFP fusion proteins of wild type Prk1p, Prk11-319, Prk11-

298, Prk1AR, and Prk1ARΔPP were placed under the control of GAL1 promoter and 

transformed into wild type cells. The cortical GFP signals were observed only in 

the cells expressing Prk1-GFP, Prk11-319-GFP, and Prk1AR-GFP. On the other 

hand, the GFP signals of Prk11-298-GFP and Prk1ARΔPP-GFP were diffused in the 



Chapter 5                                                   Identification of Arp2p as a new anchor 

 

 76

 

Figure 5.1. Identification of Arp2p as a new adapter protein for Prk1p.  
A. Two-hybrid interaction between Prk1p and Arp2p.  
B.  In vitro binding of Arp2p with Prk1p. GST fusion proteins of Prk11-319 

and Prk11-298 were immobilized on glutathione-agarose beads and 
incubated with His-Arp2. Bound proteins were analyzed by Western 
blotting with the anti–His antibody and the GST fusion proteins were 
detected by the anti-GST antibody.  

C.  Co-immunoprecipitation of Prk1p and Arp2p. Yeast extracts in equal       
amounts prepared from YMC510 (arp2:: Arp2-HA) and YMC510       
containing pGAL-PRK1D158YΔPP-Myc or pGAL-Prk1D158Y

ARΔPP-Myc       
were subjected to anti-Myc immunoprecipitation. The bound proteins 
were analyzed by immunoblotting with anti-HA antibody. Extracts 
used are shown below the gel. The extract lane is the extracts from the 
pGAL- PRK1D158Y

ARΔPP-Myc containing strain.  
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cytoplasm (Figure 5.2). This result indicates that either the Arp2p-interacting 

region or the Abp1p-interacting region is sufficient for Prk1p to be localized to 

cortical patches. Moreover, we also noted that more than 90% of the Prk1-GFP 

and Prk11-319-GFP patches colocalized with the actin patches, which is a common 

feature of actin module proteins including Abp1p, Arp2/3 complex, Cap1/2p 

(Kaksonen et al., 2005).  

 

5.2.3. Prk1p patch localization closely correlates to Prk1p’s function 

         To evaluate the functional significance of the Arp2p-Prk1p interaction, wild 

type Prk1p, Prk11-319, Prk11-298 and Prk1AR (with the polyproline region), was 

transformed into prk1Δ ark1Δ cells. All the mutant kinase proteins were stable 

and expressed well (Figure5.3A). The resultant strains were tested for growth at 

37°C. Wild type Prk1p, Prk11-319 and Prk1AR could rescue the temperature 

sensitivity of prk1Δ ark1Δ at 37°C, whereas the kinase domain alone (Prk11-298) 

failed to do the same (Figure 5.3B, left panel). We also 

examined the actin structures of these cells by Rhodamin Phalloidin (Rd-Phallo

idin) staining. Consistent with above temperature sensitivity results, wild type 

Prk1p, Prk11-319 and Prk1AR could rescue the actin defect, while kinase domain 

alone (Prk11-298) and Prk1ARΔPP failed to do the same (Figure 5.3C, lower panel). 

As endocytosis depends on normal actin structures in yeast, the endocytic 

functions of these kinase mutant cells were also investigated. Indeed, wild type 

Prk1p, Prk11-319 and Prk1AR could rescue the defect in Lucifer Yellow uptake of 

the prk1Δ ark1Δ cells, but Prk11-298 and Prk1ARΔPP could not (Figure 5.3C upper  
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Figure 5.2. The Arp2p binding region of Prk1p is required for its 
cortical localization.  
 
Wild type cells (W303-1A) were transformed with plasmids carrying 
pGAL-PRK1D158Y-GFP, pGAL-PRK1D158Y

1-319-GFP, pGAL-PRK1D158Y
1-

298-GFP, pGAL-PRK1D158Y
AR-GFP and pGAL-PRK1D158Y

ARΔPP-GFP. 
After 1 hour galactose induction, cells were fixed and stained with 
rhodamine (Rd)-phalloidin. Since over-expression of Prk1p could disturb 
actin cytoskeleton, an inactive kinase (D158Y) was used in this 
experiment. 
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panel). These results suggest that as long as the localization to the cortical patches 

is achieved, either by the interaction with Arp2p (shown by Prk1319) or with 

Abp1p (shown by Prk1AR), Prk1p will be able to perform the essential functions. 

But, when the C terminal region is deleted, the kinase domain alone (Prk1298) 

cannot perform the kinase function, though the kinase domain alone still could 

phosphorylate substrates in vitro (Chapter3).  

 

5.2.4 Arp2p binding is important for regulation of Pan1p by Prk1p 

          As we discussed in the Chapter 4, the non-kinase domains are critical for 

the differential activities of Prk1p and Ark1p, at least as shown in the 

phosphorylation of Pan1p. With the identification Arp2p as Prk1p’s new anchor 

protein, we are now able to answer the question of whether interaction with Arp2p 

differentiates Prk1p from Ark1p. Wild type Prk1p, Prk11-319, Prk11-298 and Prk1AR 

(with the polyproline region), was transformed into pan1-4 prk1Δ cells. All the 

mutant kinase proteins were stable and expressed well (Figure5.3A). The resultant 

strains were tested for growth at 37°C. Interestingly, only wild type Prk1p and 

Prk11-319 could restore the temperature sensitivity to pan1-4 prk1Δ cells at 37°C, 

whereas Prk1AR, despite its ability to localize to the cortical patches and to rescue 

the double kinase deletion mutant, failed to do so (Figure 5.4A). It indicates that 

the interaction with Arp2p, rather than Abp1, enables Prk1p to perform its 

specific functions.  

          As the in vivo phosphorylation of Pan1p largely depends on Prk1p, we were 

interested in finding out whether the Prk1p-dependent Pan1p in vivo 

phosphorylation is mediated by Arp2p, the phosphorylation status of Pan1p was 
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Figure 5.3 Prk1p patch localization closely correlates to its function 
 

A. Expression of various Prk1 mutant proteins. Prk1AR, Prk1AR∆PP, 
Prk11-298, Prk11-319, Prk1∆PP, and Prk1, fused with the HA tag at 
their C terminus and placed under the native PRK1 promoter, were 
transformed into the prk1Δ ark1Δ or pan1-4 prk1Δ mutants. TCA 
extracts from indicated cells were analyzed by immunoblotting with 
anti-HA and anti-G6PDH. The non-specific band is indicated by 
asterisk. 

B. The prk1Δ ark1Δ (YMC414) strains were transformed with the 
constructs as indicated. The resultant cells were grown to log phase 
and spotted on selective medium and incubated at 30°C (left), and 
37°C (right). Photographs were taken after cells were grown for 
2 days.  

C.  Endocytosis and actin structures of different prk1 mutants. The 
YMC414 (prk1Δ ark1Δ) cells carrying different constructs as 
indicated were subjected to staining for actin filaments and the 
Lucifer yellow uptake assay. Scale bar, 5μm. 
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analyzed in the prk1Δ ark1Δ mutant carrying Prk1p, Prk11-319, Prk11-298 or Prk1AR. 

Indeed, Prk1p1-319 restored Pan1p phosphorylation close to the wild type level, 

whereas Prk11-298 had no effect (Figure 5.4B). Prk1AR was able to increase the 

Pan1p phosphorylation level only slightly, approximately to the residual Pan1p 

phosphorylation level remained in the prk1Δ mutant (about 20% of the wild type 

level).  

         Next we tested whether the 21 a.a region is sufficient to provide Prk1p 

specific function. We created another chimeric kinase, Ark1PR, carrying the 21 a.a 

sequence at the corresponding region of Ark1p. HA tagged Ark1PR was 

transformed into prk1Δ ark1Δ cells. Ark1PR-HA is stable and expressed as well as 

wild type Ark1p (Figure 5.4 C).  The resultant strains were tested for growth at 

37°C. Ark1PR could rescue the temperature sensitivity of prk1Δ ark1Δ at 37°C, 

indicating that Ark1PR is functional (Figure 5.4 D left panel). It was also 

introduced into the pan1-4 prk1Δ, and strikingly, Ark1PR, similar to Prk1p and 

Prk1ΔPP, restored the temperature sensitivity to pan1-4 prk1Δ cells at 37°C 

(Figure 5.4D, right panel), suggesting that the Arp2p binding region renders 

Ark1p the ability to perform the Prk1p specific function.   

 

5.2.5 The reconstitution of pan1-4prk1∆ temperature sensitivity by 

various kinases is closely correlated with Pan1-4p phosphorylation status 

in these mutants 

         Throughout our study, the temperature sensitivity of the pan1-4 mutant was 

used to assay the function of Prk1p, Ark1p and their derivatives. However, it 
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Figure 5.4   Arp2p binding is important for regulation of Pan1p by Prk1p 

A. pan1-4 prk1Δ (YMC413) strains were transformed with the 
constructs as indicated. The resultant cells were grown to log 
phase and spotted on selective medium and incubated at 30°C 
(left), and 37°C (right). Photographs were taken after cells were 
grown for 2 days. 

 
B. Phosphorylation status of Pan1p in different prk1 mutants. The 

prk1Δ ark1Δ mutant containing Myc-Pan1p (YMC509) was 
transformed with the different kinase constructs as indicated. 
Myc-Pan1p was immunoprecipitated, SDS gel separated and 
probed sequentially by anti-Myc and anti-phosphothreonine 
antibodies (upper). The phosphorylation level of Pan1-Myc in 
each sample was normalized against its protein amount. The 
relative phosphorylation intensities were calculated and 
presented as bar graphs (lower). 
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C. Expression of Ark1p and Ark1PRp in prk1Δ ark1Δ mutant. TCA 
extracts from indicated cells were analyzed by immunoblotting 
with anti-HA and anti-G6PDH. 

 
D. Left: prk1Δ ark1Δ mutant (YMC414) was transformed with 

plasmids containing different kinase genes as indicated. The 
resultant strains were grown to log phase and spotted onto a 
selective plate and incubated at 30 (left) or 37°C (right). Right: 
pan1-4 prk1Δ (YMC413) was transformed with plasmids 
containing different kinase genes as indicated. The resultant 
strains were grown to log phase and spotted onto a selective 
plate and incubated at 30 (left) or 37°C (right). Photographs 
were taken after each plate was incubated for 2 days. 

 

 

remained to be determined if Pan1-4p in vivo phosphorylation status is indeed 

correlated with the growth phenotype. So, we next examined the in vivo 

phosphorylation status of Pan1-4p in pan1-4 prk1∆ strains carrying the various 

forms of kinases. Myc-tagged Pan1-4p was expressed under its endogenous 

promoter as the sole copy of Pan1p in otherwise wild type cells and prk1∆ mutant 

cells. The cells were grown at 25oC and 37oC. Pan1-4p proteins were 

immunoprecipitated by anti-Myc conjugated beads and examined by 

immunoblotting with an anti-Myc antibody to check the protein amount and with 

anti-phosphor-threonine antibody to test the phosphorylation status. The pan1-4 

mutant protein (Pan1-4p) exhibited a high steady-state level of phosphorylation at 

37oC in the presence of wild type Prk1p (Figure 5.5 A). Similarly high level of 

phosphorylation was maintained by the kinase variants, Ark1n-Prk1c and Ark1PR 

which possessed the Arp2p-binding capacity, but not by Ark1, Prk1n-Ark1c, and 

Prk1AR that did not (Figure 5.5 B).  
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Figure 5.5 Arp2p binding is important for phosphorylation of Pan1-4p by 
Prk1p 
 

A. Endogenously expressed Pan1-4p-Myc was immunoprecipitated 
from YMC514 (prk1Δ) and YMC513 (PRK1) cells at either 25°C 
(lanes 1, 3) or 37°C (lanes 2, 4) for 3 h, SDS gel separated and 
sequentially immunoblotted with anti-PThr and anti-Myc 
antibodies. The phosphorylation level of Pan1-4p-Myc in each 
sample was measured by densitometer and normalized against its 
protein amount. The relative phosphorylation intensities were 
calculated and presented as bar graphs. 
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B.  Phosphorylation status of Pan1-4p in different prk1 mutants. 
Endogenously expressed Pan1-4p-Myc was immunoprecipitated 
at 37°C from YMC 514(prk1Δ) cells containing pPrk1-HA-316, 
pArk1-HA-316, pArk1n-Prk1c-HA-316, pPrk1n-Ark1c-HA-316, 
pRS316, pPrk1ARHA-316, pArk1PR-HA-316. The relative 
phosphorylation intensities were calculated and presented as bar 
graphs.  

 
 

        In summary, Arp2p, the core component of Arp2/3 complex, was found 

capable of binding to Prk1pΔPP but not to Ark1pΔPP by using the yeast two-

hybrid system. The Arp2p-Prk1p interaction appears to be direct as shown in the 

in-vitro binding assay. Moreover, the 21a.a. binding region of Prk1p is required 

for the in-vitro binding. Subsequent genetic and biochemistry studies indicate that 

the region is not only important for Prk1p patch localization, but also important 

for Prk1p’s distinct function on Pan1p. 

 

5.3. Discussion 

5.3.1. Arp2p as a new anchor protein of Prk1p 
 
         Ark1p and Prk1p are known as negative regulators of actin and endocytic 

coat complex during the endocytic internalization (Zeng et al., 2001; Sekiya-

Kawasaki et al., 2003). Although several Prk1p substrates have been identified, 

how Ark1p and Prk1p are regulated to disassemble the endocytic coat is still 

unknown. Conceivably, the assembly and disassembly of coat complex and actin 

polymerization must be tightly coordinated. Early arrival of Prk1p and Ark1p may 

cause inefficient or abortive coat assembly; late arrival of these kinases may result 

in delayed coat disassembly and excessive actin assembly. Abp1p is a known 

adapter involved in their recruitment, through the specific binding occurs between 
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Abp1-SH3 and the poly proline motif in the kinases’ non-kinase domain (Cope et 

al., 1999; Fazi et al., 2002). However, as an abp1∆ mutant does not show drastic 

defects as in ark1∆ prk1∆, and Prk1p still can localize to endocytic sites in abp1∆, 

other anchor(s) is proposed to be responsible for recruiting Prk1p to the endocytic 

sites. In this study, we found that Prk1p without Poly P still can localize to actin 

patches and rescue the temperature sensitivity phenotype, as well as actin and 

endocytic defects of ark1∆ prk1∆.  Through a small scale directed yeast two-

hybrid screen, we identified Arp2p, a key component of Arp2/3 complex, as a 

new anchor responsible for Prk1p’s patch localization and function. The live 

image study showed that Arp2/3 complex arrives at cortical endocytic site, 

together with Abp1p, Actin, Sac6p (yeast fimbrin), and Cap1/2p, which are 

classified into the actin module (Kaksonen et al., 2005). The arrival of Arp2/3 

complex and Abp1p on the patch marks the turning point from coat assembly to 

actin polymerization and membrane invagination. On the other hand, almost all of 

the known Prk1p substrates, such as Pan1p, Sla1p and Scd5p (may also include 

Ent1/2p and YAP1801/1802p), are shown to assemble to the endocytic sites 

earlier than actin module, hence they are not likely to be phosphorylated by 

Ark1/Prk1 until the endocytic coat matures. Therefore, using Arp2p and Abp1p as 

anchors is an ideal way to timely coordinate the coat assembly and disassembly in 

a timely way during endocytic internalization.  

         The discovery of Arp2p as Prk1p’s anchor protein is not the first case of the 

Arp2/3 complex functioning beyond its actin assembly activity. In a recent study, 

Arp2/3 complex is also found to interact with exocyst component Exo70 to 
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coordinate cytoskeleton and membrane traffic during cell migration (Zuo et al., 

2006).           

 

5.3.2. Arp2p and Abp1p recruited Prk1p have different effect on Pan1p 

         Compared with Abp1p, Arp2p recruits a much less amount of Prk1p, as 

Prk1-GFP signal reduced considerably in an abp1∆ mutant. Nevertheless, Arp2p-

mediated Prk1p appears to be more important for phosphor-regulation of Pan1p 

than Abp1p. Because Pan1p is known to interact with many endocytic proteins 

including End3p, Sla1p, Sla2p, Ent1/2p, Yap1801/2p, and Scd5p, it is conceivable 

that Pan1p may exist in different complexes which locate to different regions in 

the endocytic coat complex. Moreover, all the known Arp2/3 activators, such as 

Bee1p/Las17p, Myo3/5p, and Pan1p, not only recruit Arp2/3 complex, but also 

have interactions with numerous endocytic proteins. Thus, it is possible that 

Arp2p mediated Prk1p may be directed to a pool of Pan1p complex which is not 

accessible by Abp1p mediated Prk1p.  

       

5.3.3.   Implications of Arp2p-recruited Prk1p on Pan1p function 

          Pan1p is a key component of the cellular machinery responsible for actin 

organization and endocytosis. It not only acts as a scaffold for assembly of the 

endocytic complex by interacting with a number of endocytic proteins, but also 

acts as a linker to connect the vesicle and actin filament meshworks, by 

interaction with actin filaments and stimulating Arp2/3 complex to activate actin 

filaments nucleation at the endocytic site. Toshima et al., found that Prk1p 

inhibited the ability of Pan1p to bind to actin filaments and to activate the Arp2/3 
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complex, supporting that phosphorylation of Pan1p by Prk1p is an important 

mode of regulation during endocytosis Prk1p (Toshima et al., 2005).  Though, it 

is not clear yet which specific step does Pan1p exactly function in, it is likely that 

Pan1p-promoted actin assembly at the endocytic sites may only need to be very 

transient, and such a brief burst of actin polymerization may be sufficient for that 

particular step of event, to induce membrane invagination, for example.  

          The discovery of Arp2p as a new Prk1p anchor protein indicates that an 

auto-limiting mechanism may be at work in this process. As Prk1p, an inhibitor of 

the actin nucleation by Pan1p, is recruited together with Arp2p, a component of 

the actin nucleation factor Arp2/3 complex, to the endocytic sites after the 

assembly of endocytic coat, it appears that the actin assembly engine is equipped 

with a brake when it starts working.  

  

        In conclusion, we characterized the kinase activity of Ark1p and identified 

Pan1p and Sla1p as Ark1’s substrates, which explained the functional redundancy 

of Prk1p and Ark1p in actin patch and endocytosis regulation. We also found that 

although Pan1p can be phosphorylated by both kinases, Prk1p appears to play a 

major role. The functional difference between Prk1p and Ark1p is due to their 

non-kinase domains through domain-swap analysis.  Next, Arp2p, a component 

of Arp2/3 complex, was identified as a new anchor for Prk1p, but not for Ark1p. 

Genetic and biochemical data also supported that the interaction between Prk1p 

and Arp2p decides the distinctive function of Prk1p. Together with Abp1p, a 

known anchor for Prk1p and Ark1p, this finding suggests that Ark1p and Prk1p, 

two negative regulators of endocytic coat, are recruited simultaneously with actin 
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assembly, providing an important insight on how cells coordinate the endocytic 

coat formation, actin assembly and disassembly.    
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