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Summary

Precise segmentation of vasculature from three-dimensional (3D) magnetic reso-

nance angiography (MRA) images plays an important role in image-guided neu-

rosurgery, pre-operation planning and clinical analysis. Level sets based evolution

algorithms are being widely applied to MRA data sets. Our objective is to develop

an automated segmentation scheme to accurately extract vasculature of the brain,

especially the thin vessels. Inspired by the intrinsic properties of MRA, we have

proposed a scheme called the gradient compensated active contour (GCAC), which

compensates for the low gradient near the edge of thin vessels’ contour. The GCAC,

which is based on level sets, has been tested on both synthetic volumetric images

and real 3D MRA images. Our experiments show that the introduced gradient

compensation can facilitate more accurate segmentation of thin blood vessels.
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Chapter 1

Introduction

1.1 Medical Image Segmentation

An important issue in medical image analysis is the segmentation problem. It can

be defined as the process of labeling each voxel in a medical image data set to

indicate its tissue type or anatomical structure. The labels that result from this

process have a wide variety of applications in medical research and visualization.

For instance, in a liver transplant surgery, it is essential to know the available

volume of livers before the surgery. It will be possible by collecting the required

information through medical imaging. The input to a segmentation procedure

is grayscale medical image, for example the result of a CT or MRI scan and the

desired output, contains labels that classify the input grayscale voxels. Currently in

hospitals, radiologists manually do the segmentation task after getting the images.

However, this process can be quite time consuming. In addition, the manually

obtained results are not reproducible. With the fast increasing size and number of

medical images, the use of computers in facilitating their processing and analysis

has become inevitable.
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CHAPTER 1. INTRODUCTION

The digital revolution and the rapid growing processing power of the modern

computer in combination with medical imaging modalities have helped doctors to

achieve more accurate diagnosis and surgery. Segmentation techniques have an

important role in extracting the necessary boundaries, surfaces, and segmenting

volumes of these organs in the spatial and temporal domains. Algorithms for the

segmentation of anatomical structures and other regions of interest are becoming

a key component in assisting and automating specific radiological tasks. A large

number of algorithms have been proposed for biomedical imaging applications.

Some application of these algorithms is discussed in the following section.

1.2 Applications of Segmentation

Image segmentation is often the crucial step, when detailed or quantitative infor-

mation about the appearance, size, or shape of patient anatomy is desired (Figure

1.1). Applications of interest that depend on image segmentation include three-

dimensional visualization, volumetric measurement, research into shape represen-

tation of anatomy, image-guided surgery, and detection of anatomical changes over

time and so on. Segmentation of medical imagery allows 3D surface model visu-

alization of patient anatomy. The advantage of a surface model representation is

that it gives a three-dimensional view from any angle, which is an improvement

over two-dimensional cross section view of the original grayscale data set. More-

over, volume measurements of the anatomical structures cannot be done without

segmenting the images since it is not possible to accurately measure anatomical

volumes visually. Image-guided surgery is another medical application where seg-

mentation is beneficial as it can help the surgeons to follow complex trajectories

and to avoid anatomical hazards such as blood vessels or functional brain areas.

Further discussion on application of segmentation can be found in [52].

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Block diagram of medical image analysis scheme incorporated with
visualization.

1.3 MRA images

Magnetic resonance imaging (MRI) is a method of producing extremely detailed

pictures of body tissues without the need for x-rays. The electromagnetic energy

that is released when exposing a patient to radio frequency waves in a strong mag-

netic field is measured and analyzed by a computer, which forms three-dimensional

images. MR angiography (MRA) is an MRI study of the blood vessels. It uti-

lizes MRI technology to detect, diagnose and aid the treatment of heart disorders,

stroke, and blood vessel diseases. MRA may provide detailed images of blood ves-

sels without using any contrast material [33]. Precise segmentation of vasculature

from three-dimensional (3D) magnetic resonance angiography (MRA) images plays

an important role in image-guided neurosurgery, pre-operation planning and clin-

ical analysis. However, there are many difficulties to do this task. The following

are some of the main challenges and difficulties in vasculature segmentation:

• Vasculature complex topology: Vascular tree is intricate, consisting of several

tiny vessels with huge amount of branches. Moreover,this network highl
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CHAPTER 1. INTRODUCTION

y varies in size and shape from one person to another.

• Noise and Gaps : There might be intensity discontinuities in the images that

results in noise and gaps in the vessels.

• Low intensity contrast between small vessels and their background: Due to

MRA imaging properties, small vessels are not easily distinguishable from the

background. In addition, there are other organs in the brain, such as skull,

which has intensity value close to that of the blood vessel.

• Characteristics of scanning modalities and their limitations: Currently MRA

imaging machines produce sets of 2D images which can be viewed as the

cross section of the 3D volume and the vessels instead of the 3D view of the

vasculature itself.

• A variety of artifacts may appear in MR images: Since the artifacts change

the appearance of the image, they may also affect the performance of a seg-

mentation algorithm. The most important artifacts in image segmentation

are intensity inhomogeneities and partial volume effect.

1.4 Thesis Focus and Main Contributions

In particular, a new deformable model, gradient compensated geodesic active con-

tour (GCAC), is formulated and developed to extract vasculature from MRA im-

ages. Unlike existing MRA segmentation techniques, which have difficulty on ex-

tracting tiny vessels, the GCAC is able to segment the whole structures successfully

from 3D MRA images with the help of the compensator function. This method

is applied on clinical MRA images and compared with other state-of-the-art MRA

segmentation methods.

4



CHAPTER 1. INTRODUCTION

1.5 Organization of the Thesis

The remainder of the thesis can be divided into four parts. First, we provide an

overview of medical image segmentation methods in Chapter 2. Next, in Chapter 3,

some backgrounds on 3D magnetic resonance angiography (MRA) images and their

segmentation methods are provided. Later in this chapter, a new method for MRA

image segmentation, called gradient compensator active contour, is presented that

is based on geodesic active contours. This method is able to extract vasculature

from MRA images of the brain. Experiments which demonstrate the capability of

our algorithms are presented and discussed in Chapter 4. Finally, in Chapter 5, we

present our conclusions and discuss some possible future works.
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Chapter 2

A Review of Segmentation

Methods for Medical Images

In this chapter, a brief survey of the various segmentation techniques, for medical

images, is presented. First, we begin with a review of medical image segmentation

techniques in section 2.1 . Then, in section 2.3.2, we provide some background on

parametric active contours and the basis of deformable models, which have been

successfully used in medical image segmentation. Following that, an introduction

to geometric deformable models and geodesic active contours, is provided.

2.1 Introduction

Image segmentation essentially involves, partitioning an image into several con-

stituent regions. In the context of medical imaging, these regions have to be

anatomically meaningful. Essentially, there are two aspects of medical imaging

that make the segmentation process a difficult problem. First, is the imaging pro-

cess itself. The imaging modalities, for example MR, CT, or ultrasound, is chosen

6
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so that its interactions with the tissues of interest will provide clinically relevant

information about the tissue in the output image. But this does not mean that the

anatomical feature of interest will be particularly separable from its surroundings.

This means that it will not be a constant gray scale value, and strong edges may not

be present around its borders. In fact, the interaction of the imaging process with

the tissue of interest will often produce a “grainy” region that is more detectable by

the human eye than by even sophisticated computer algorithms. This is due to the

noise in the imaging process and inhomogeneity of the tissue itself. Consequently,

simple image processing methods, such as thresholding or edge detection, may not

be very successful when applied to medical image segmentation. The second as-

pect, that makes segmentation a difficult problem, is the complexity and variability

of the anatomy that is desired to be segmented. It may not be possible to locate

or delineate certain structures without detailed anatomical knowledge. Since, a

computer does not approach the expert knowledge of a radiologist and it cannot

make use of all the information that exists about the image, such as anatomical

knowledge. This may lead to a meaningless segmentation results, which means

that the segmented regions may not correspond to different tissues. The above

facts make general segmentation a difficult problem, as the prior knowledge must

either be built into the system or provided by a human operator.

Figure 2.1: Classification of segmentation methods.

Segmentation methods for medical images vary enormously, depending on im-

7
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age type, image modality used, and the properties of the desired objects, since

each imaging modality has its own characteristics and produces quite different

image for same tissue. There is currently no single segmentation method that pro-

duces reasonable results for all medical image types. Although some methods are

more general and can be applied to a variety of data sets, but, specialized methods

for particular applications can often achieve better performance by taking prior

knowledge into account [7], [9].

There are many ways to classify medical images segmentation methods depend-

ing on different criteria, such as the user interactivity. Accordingly, the groups are

manual methods, that require a high level of user interactivity, computer-aided

semiautomatic methods, and completely automatic methods [13]. Currently, man-

ual approach is the most commonly used, as it is conceptually simple. Manual

segmentation is done in each two-dimensional slice for the entire “stack” of slices

that constitute a three-dimensional image volume. However, due to the huge size of

medical images the process is quite time-consuming and subject to human errors.

In addition, they often suffer from interobserver and intraobserver variability [65].

These terms simply mean that, the same or different users can make different

choices that affect the segmentation process and it leads to segmentation results

that are very much dependent on the user. For these reasons, developing computer-

aided semi-automatic and automatic methods have received great attention in the

medical imaging field.

In another classification, segmentation methods can be broadly divided into

three main categories: edge-oriented, region-oriented and hybrid methods (Figure

2.1). In edge-oriented approaches, edges between different regions are first found,

and the resulting regions become the segmented regions. Therefore, the task of im-

age segmentation essentially becomes an edge detection problem, which has been

well studied. Focusing only on the boundaries is computationally less complex

but also less robust since information inside the region is discarded. On the other

8
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hand, region-oriented methods, start from one point given inside the object and

then add other points until the region encompasses the desired object. The main

advantage of these methods over the edge-oriented ones is that they make use of

the information inside the edges. However, these methods are not robust enough

and they are highly sensitive to the noise and they need a high level of user inter-

activity. Finally, there are hybrid methods, which make use of both approaches to

do the segmentation process. In the following sections these three categories will

be discussed in more details.

2.2 Region-Oriented Methods

In Region-Oriented approaches, images are segmented into regions of pixels based

on certain criteria and similarities and the desired regions are found directly. These

methods mainly consist of thresholding, region growing, and watershed methods

[4].

2.2.1 Thresholding Methods

Segmentation methods based on thresholding attempt to determine intensity val-

ues, called thresholds, which separate the pixels, based on their intensities, into

ranges that correspond to the tissue types. The success of segmentation process

highly depends on the selection of the proper threshold values. There are several

ways for this selection: First,is to obtain this values manually. This selection may

lead to a quite reasonable result. However,this method suffers from the problems

discussed previously for the manual methods. Another alternative is to obtain the

thresholding values in a more automatic manner and image histograms are often

used for this mean. These approaches are based on the assumption that differ-

ent objects in an image have distinct distribution function. But, the difficulty of

9
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the these approaches is that this assumption is mostly wrong and the intensity

distributions of different objects are overlapped.

2.2.2 Region Growing Methods

Region growing algorithms, the other class of region-oriented algorithms, start with

a set of pixels called seeds, that belong to the structure of interest. These seeds

can be selected either manually or by an automatic process [64]. In the region

growing process, all the pixels neighboring a seed are examined to see if they meet

the similarity criteria and if they do, they will be added to the region containing

the seed. The procedure continues until all the pixels are checked and there is no

new pixels to be added to the region. Region growing algorithms vary depending

on the criteria used to decide whether a pixel should be included in the region

or not, the type of connectivity used to determine neighbors, and the strategy

used to visit neighboring pixels [64]. While the original region-growing algorithm

[14] formalism is somewhat crude, interesting extensions have been proposed by

Adams et al. [67] where some statistical information is derived from the region as

it expands. These techniques have been applied to medical image analysis as well

[68], [69]. However, there are some limitations to these methods as they are unstable

and their performance highly depends on the choice of homogeneity criterion [79].

Furthermore, if partial volume effects (see Section 3.1.1) are present or if there are

small connections between objects, it can cause the objects to combine into one

larger region. Noise can also affect the segmentation negatively [66].

2.2.3 Watershed Methods

Watershed approach can be best understood, if one can assume an image as a

landscape where bright pixels represent heights and dark pixels valleys. Then

10
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flooding will be simulated (Figure 2.2). The water intends to fill the valleys. But

dams are built at points where water coming from different valleys would meet. The

dams stop the mixing of the water. The process will stop when the water level has

reached the highest peak in the landscape. In this way, the landscape is partitioned

into regions or valleys separated by dams [80]. These dams are called watersheds.

They are the boundaries of objects and segmented valley regions are considered to

be distinct objects in the image. In the context of medical imaging, some algorithms

have been implemented using this approach, for instance Segonne, et al. [15] uses

the watershed algorithm to get an approximate boundary of the brain. However,

A known drawback of the watershed algorithm is over-segmentation due to noise

or local discontinuities in the gradient image [70].

Figure 2.2: Illustration of Watershed algorithm.

2.3 Edge-Oriented Methods

Edge-Oriented segmentation looks for sharp changes in the intensity of the im-

ages. An edge can be defined as the boundary between two regions with relatively

distinct properties. The assumption of edge-based segmentation is that every sub-

region in an image is uniform enough so that the change between two sub-regions

can be determined on the basis of discontinuities. Therefore, the main weakness of

these approaches are dealing with noisy images. Another major difficulty is that

extracted edges need to be connected into topologically meaningful region bound-

aries. To address this problem, Kass et al. [10] set the topology of the boundary and

11
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then deform this model in a variational framework to finally reside on the edges.

It was first implemented in two dimensions, and was named snakes (Section 2.3.2).

Improvements of this technique include Geometric Active Contours and Geodesic

Active Contours (Section: 2.3.2) [9].

2.3.1 Classical Edge Detection Methods

Computation of a local derivative operator is the essential idea underlying most

edge detection methods. The gradient vector of an image I(x, y, z), given by

∇I =


∂I
∂x

∂I
∂y

∂I
∂z

 (2.1)

And boundary is known to be in the vicinity of points where the norm of

the gradient is large. This is the approach taken in the 60s and 70s by Roberts

and Sobel [71], [87], who proposed slightly different discrete convolution masks to

approximate the gradient of digital images. Disadvantages with these approaches

are that edges are not precisely localized and may be corrupted by noise [9], [14].

Canny [78] proposed adding a smoothing preprocessing step, in order to reduce the

influence of the noise as well as a thinning post-processing phase to ensure that

the edges are uniquely localized. A slightly different approach was proposed by

Marr and Hildreth [72] where edges are defined as the zeros of the Laplacian of a

smooth version of the image. The Laplacian of an image function I(x, y, z) is the

summation of the second-order derivatives and is defined as:

∇2I =
∂2I

∂x2
+

∂2I

∂y2
+

∂2I

∂z2
(2.2)
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Laplacian of an image highlights regions of rapid changes in intensity which

corresponds to the location of its zero-crossings [14]. A critical disadvantage of the

gradient approaches is that the derivatives enhances the noise. As a second-order

derivative, the Laplacian is even more sensitive to noise. However, an alternative

could be smoothing the image by convolving it with a Gaussian function [14].

Another major limitation of these low-level edge detection methods is that

they only consider local information of medical images segmentation as in general,

shape, location and orientation of objects is known. They do not make use of the

priori knowledge like the desired shape, size or location of the objects.

2.3.2 Active Contours

Deformable models or Active contours have overcome many of the problems with

the classical edge detection approaches by providing compact and analytical repre-

sentations of object shape, by incorporating anatomic knowledge, and by providing

interactive capabilities [83]. Active contours, are curves (2-D) or surfaces (3-D) de-

fined within an image domain that can move under the influence of internal forces

coming from within the curve itself and external forces computed from the image

data. The internal and external forces are defined so that the evolving surface will

conform to an object boundary or other desired features within an image [61].

They were first introduced by Kass et al. [10] for 2-D problems, as snakes.

Since then, different varieties of these models have been developed and used suc-

cessfully for medical image segmentation purposes [16]. These approaches are able

to segment anatomic structures by exploiting constraints derived from the image

data together with a priori knowledge. This knowledge may be incorporated into

the deformable model in the form of initial conditions, data constraints, constraints

on the model shape parameters, or into the model fitting procedure. The use of

13
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implicit or explicit anatomical knowledge to guide shape recovery is especially im-

portant for robust automatic interpretation of medical images. Deformable models

are capable of handling the significant variation of anatomical structures. Further-

more, deformable models are highly interactive that allow medical expertise to bear

on the model-based image interpretation task when necessary.

There are three main approaches in deformable models based on the their math-

ematic implementation and representation: Parametric Active Contours, move pre-

defined contours points based on an energy minimization scheme and the anatom-

ical knowledge is represented explicitly as parameterized contours in a Lagrangian

frame work [61]. While Geometric Active Contours, move contours implicitly as

a particular level of a function. Priori knowledge is represented implicitly as level

sets of a higher-dimensional, scalar level set function and it evolves in an Eule-

rian fashion [19], [18]. A major advantage of geometric deformable models over

parametric deformable models is topological flexibility due to their implicit rep-

resentation. However, in non-interactive applications, both forms of deformable

models must be initialized close to the structure of interest to guarantee a good

performance. Moreover, they should be used with extreme caution, when dealing

with several adjacent objects [16]. Further details about these two approaches will

be discussed in section 2.3.2. Finally, the last class of active contours are known as

Geodesic Active Contours. This new formulation for active contours was presented

by Caselles et al. [12]. The model is intrinsic (geometric) and topology independent

connection between the energy based active contours (snakes) and the computation

of geodesics or minimal distance curves in a Riemannian space derived from the

image [12]. These models can also be interpreted as a connection between the two

previous, parametric and geometric, active contours that we have talked about. In

other words, they can be viewed as a more mathematically sophisticated variant

of classical snakes which are an improvement on the previous approaches.

14
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Parametric Active Contours

The first type of parametric deformable model was proposed by Kass et al. and

named snakes due to the appearance of the contour [10]. The idea is to match

deformable models to image data by means of energy minimization. The traditional

snake is a curve, that moves through the spatial domain of an image to minimize

the energy functional:

E(C) =

∫ 1

0

(
α

∣∣∣∣∂C∂s

∣∣∣∣2 + β

∣∣∣∣∂2C
∂s2

∣∣∣∣2 − f (C(s))

)
ds (2.3)

where C(s) is an evolving curve, parameterized by s∈[0, 1]. The energy function

is defined as a weighted sum of internal and external energy terms. The internal

energies, also called regularization terms, are the first two terms in the above

equation and depend solely on the shape of the curve C(s). Their role is to control

the curves tension and rigidity. The contour interacts with the image through f

which is the external energy, derived from the image and it takes on its smaller

values at the features of interest, such as boundaries. Given a gray-level image ,

typical external energies designed to lead an active contour toward step edges [61].

f(C(s)) = |∇I(s)|2 or (2.4)

f(C(s)) = |∇ (Gσ(s) · I(s)) |2, (2.5)

where Gσ(s) is a two-dimensional Gaussian function with standard deviation σ and

∇ is the gradient operator. It is easy to see from these definitions that larger σs will

cause the boundaries to become blurry. Such large σs are often necessary, however,

in order to increase the capture range of the active contour. In the above model, the

external image force (last term of Equation 2.3) is significant only in the immediate

vicinity of the desired object boundaries. Elsewhere, the model’s evolution is driven

dominantly by the internal forces only (the first two terms of Equation 2.3), which
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leads to shrinking and smoothing of the contour. Therefore, an initialization of

the model needs to be close enough to the actual object boundaries. α and β are

real positive constants, called weighting parameters. The tradeoff between edge

proximity and edge smoothness is played by these parameters in the Equation 2.3.

A snake that minimizes the above energy function must satisfy the following Euler

equation:

∂

∂s

(
α

∂C
∂s

)
− ∂2

∂s2

(
β

∂2C
∂2s

)
+∇f(C(s)) = 0 (2.6)

This can be viewed as an internal and external energy balance equation.

Eint + Eext = 0 (2.7)

where Eint = ∂
∂s

(
α∂C

∂s

)
+ ∂2

∂s2

(
β ∂2C

∂2s

)
and Eext = ∇f(C(s)). The internal force

prevents stretching and bending while the external potential force pulls the snake

toward the desired image edges. To find a solution to Equation 2.6, the snake is

made dynamic by treating as a function of time as well as s. Then, the partial

derivative of C with respect to t is then set equal to the left hand side of Equation

2.6 as follows:

~Ct =
∂

∂s

(
α

∂C
∂s

)
− ∂2

∂s2

(
β

∂2C
∂2s

)
+∇f(C(s)). (2.8)

Adding a time directive term of C is equivalent to applying gradient descent

algorithm to find the local minimum of Equation 2.3 [84]. When the solution

stabilizes, the term ~Ct vanishes and we achieve a solution of the Equation 2.6. A

numerical solution to Equation 2.8 can be found by discretizing the equation and

solving the discrete system iteratively [61]. Approaches based on parametric active
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contours produce reasonable results and have been used extensively in literatures

(See [16] for a survey of snakes in medical image analysis). However, one limitation

to these methods, is that the active contour or snake cannot change topology. For

example, if it starts out being a topological circle, will always remain a topological

circle and will not be able to break up into two or more pieces, even if the image

contains two unconnected objects. In addition, the functional in 2.3 is not intrinsic

since it depends on the parametrization s that is arbitrary. This is an undesirable

property, since parameterizations are not related to the geometry of the curve (or

object boundary). Therefore, it is not natural for an object detection problem to

depend on the parametrization of the representation [12].

Geometric Active Contours

In order to obtain a better understanding of the geometric active contours, we need

to study the Front Evolution Theory and the Level Sets approaches [18].

Front Evolution Theory and Level Sets Solution: Let C(q, t), defined as

{x(q, t), y(q, t)}, a curve in 2D or {x(q, t), y(q, t), z(q, t)}, a surface in 3D, be a

closed front or contour, propagating along its normal direction, starting with an

initial contour C0(q) = C(q, 0) (t represents time and q parameterizes the given

contour). The basic result from the front evolution theory is that the geometric

shape of the contour is determined by the normal component of the evolution

velocity, while the tangential component affects only the parameterizations [18].

The evolution equation, according to Level Sets approach, can be written as

~Ct(q, t) = F (C(q, t)) ~N (C(q, t)) (2.9)
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with

C(q, 0) = C0(q)

where F (C(q, t)) is a scalar function that often depends on the curvature (κ)

of the contour, and ~N (C(q, t)) is the unit normal vector along the contour C(q, t).

Level set methods have been proposed to solve the front evolution Equation 2.9.

Level set methods are numerical techniques for analyzing and computing interface

motions( [18], [12]). Since implicit representation is used, the level sets methods

allows for topological changes to occur without additional computational complex-

ity [7]. Therefore they can be applied when there is no prior assumption about

the object topology. When solving problems, the level sets method increases the

dimensionality of the problem. For example in front evolution problems, instead

of evolving the 2D curves, the method evolves a 3D surface and the 2D objective

curve is represented implicitly as the zero level set of a smooth, Lipschitz-continuous

scalar function Ψ(x, t), as shown in Figure 2.3. Function Ψ(x, t) is also known as

the level set function, where x ∈ R2 in 2D and x ∈ R3 in 3D.

Although there are many choices of the level set function, in practice, the signed

distance function is preferred for its stability in numerical computations [19](see

Figure 2.4). The fast marching method proposed in [47] provides an efficient al-

gorithm for constructing the signed distance function from a given initial contour.

The initialization can also be as simple as one or several seed points. We use

signed distance functions as the representation of function Ψ(x, t) for all of our

experiments in this dissertation.

Now, let Ψ : <2 → < be the signed distance function to curve C. If C is evolving

according to front evolution Equation 2.9, it can be shown that this contour will

be followed by level set approach using the following level set equation:
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Figure 2.3: Concept of zero set in a level set.

∂Ψ(x, t)

∂t
= F (x, t)|∇Ψ(x, t)| (2.10)

where Ψ (C0(p), 0) = 0, and |∇Ψ| denotes the norm of the gradient of Ψ. Note

that the function F (x, t) is a speed function which is only defined at the contour

location originally and, hence, needs to be extended to the whole computational

domain (see [19]), in order that (2.10) applies to the whole space. Above equations

illustrate that evolving a curve C is equivalent to updating its signed distance

function Ψ according to speed function F . The evolving curve C is then obtained

as the zero level set of Ψ. The formulation is analogous for the case of surface

evolving in 3D.

Geometric Deformable Models Caselles et al. [20] and Malladi et al. [21]

applied the above theory to the problem of image segmentation by multiplying the

contour velocity by a “stopping” term g(|∇I(x)|) that is a monotonically decreasing

function of the gradient magnitude of the image I (or its smoothed version). In

19



CHAPTER 2. A REVIEW OF SEGMENTATION METHODS FOR MEDICAL
IMAGES

Figure 2.4: The implicit level set curve is the black line superimposed over the
image grid. The location of the curve is interpolated by the pixel values of a signed
distance map. The grid pixels closest to the implicit curve are shown in gray [23].

this way, they arrived at the following evolution equation:

∂Ψ(x, t)

∂t
= g(|∇I(x)|)(c + κ(x, t))|∇Ψ(x, t)| (2.11)

where c is a constant inflation or deflation (depending on its sign) speed term,

similar to the function of balloon force in [85], which aims to keep the contour

moving in the proper direction, and κ(x, t) is the mean curvature of the level set

of Ψ(x, t) that passes through the point x, which can be easily computed from

the spatial derivatives of Ψ(·, t) (see [19]). We note that, in [20, 21], the above

formulation is originally derived for planar curves, however, the very same form

applies to surfaces as well. In the remainder of this thesis, all of the equations

apply to both curves and surfaces unless stated otherwise.

However, the model described in Equation 2.11 does not arise from the min-

imization of an energy function as in the classical active contour models. Thus,
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regularization of smoothness and rigidness might not be assured. To address this,

Caselles et al. [12, 46] and Kichenassamy et al. [53] derived another class of de-

formable models, called the geodesic active contour (GCA) . The basic idea is to

consider the object boundary detection as a problem of geodesic computation in a

Riemannian space, according to a metric g(x) induced by the given image I. The

model has been introduced in the following section.

Geodesic Active Contours

Approaches based on geodesic active contours have been increasingly investigated

and developed in medical image segmentation. The derivation of the geodesic

active contours are presented as follows. In the original parametric deformable

models [10], the energy E(C) is defined as:

E(C) =

∫ 1

0

(
α

∣∣∣∣∂C∂s

∣∣∣∣2 + β

∣∣∣∣∂2C
∂s2

∣∣∣∣2 − γf (C(s))

)
ds (2.12)

where C(s) is a curve and parameterized by s∈[0, 1]. Here, α, β and γ are real

positive constants, and f is a gradient map of the image. Solving the problem of

snakes amounts to finding, for a given set of constants α, β and γ, the curve C that

E(C) is minimized. A possible problem of the original deformable models is the

need to select the parameters that control the trade-off between smoothness and

proximity to the object. Inappropriate parameters make the minimization process

difficult, sometimes impossible, to converge. Caselles et al. [12] proved that curve

smoothing would be obtained even if β=0. Assuming β=0, Equation 2.12 reduces

to:

E(C) = α

∫ 1

0

∣∣∣∣∂C∂s

∣∣∣∣2 − γ

∫ 1

0

f (C(s)) ds. (2.13)

The Equation 2.13 can be extended by generalizing the edge detector. Let g:

[0, +∞[→ R+ be a strictly decreasing function such that g(r) → 0 as r → ∞.
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Since function f is an edge map of the image I : [0, a]× [0, b] → R+, Equation 2.13

can be extended by replacing f with g(|∇I|)2. Then we have a general energy

functional:

E(C) = α

∫
Ω

|Cs|2 ds + γ

∫
Ω

g (|∇I(C)|)2 ds (2.14)

where ∇I is gradient of the image. Equation 2.14 is then further transformed into

E(C) =

∫
Ω

g (|∇I(C)|) |Cs| ds (2.15)

The goal now is to minimize E in Equation 2.13 for C in a certain allowed space of

curves [12]. Noting that the Euclidean length of the contour C is: L(C) =
∫

Ω
|Cs|ds

and the object contour is approximated by C when the energy E is minimized.

Therefore, the problem of image segmentation is transformed into searching of

the global minimal path weighted by g(|∇I(C(s))|). In another word, it has been

shown that object contours can be delineated through finding out the minimal

paths instead of minimizing the energy E directly. It can be shown that in order

to minimize Equation 2.15, the initial curve should follow the curve evolution in

Equation 2.16.

∂C(t)

∂t
= g(I)κ ~N − (∇g. ~N) ~N (2.16)

where κ is the Euclidean curvature as before and ~N is the unit inward normal

vector. This equation can be represented using the level-sets approach as follows:

∂Ψ
∂t

= |∇Ψ|div
(
g(I) ∇Ψ

|∇Ψ|

)

= g(I)|∇Ψ|κ +∇g(I).∇Ψ

(2.17)

where the right hand of the flow is the Euler-Lagrange of Equation 2.15 with

C represented by a level-set of Ψ.
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The geodesic formulation introduces a new term to the curve evolution mod-

els that further attracts the deforming curve to the boundaries, improving the

detection of boundaries with large differences in their gradient. This term also

partially frees the model from the need to estimate crucial parameters. Therefore,

the geodesic formulation improves the previous deformable models [12].

2.4 Hybrid methods

In this approach, the strengths of several segmentation techniques are combined to

achieve a better segmentation. Basically theses approaches integrates both edge-

oriented and region-oriented methods to amplify their strength and reduce their

weakness. Region-based active contours are one of the main classes in this cate-

gory. These models use the statistical information of image intensity within each

subset instead of searching geometrical boundaries. Most region-based active con-

tour models consist of two parts: the regularity part, which determines the smooth

shape of contours, and the energy minimization part, which searches for unifor-

mity of a desired feature within a subset. A nice characteristic of region-based

active contours is that the initial contours can be located anywhere in the im-

age as region-based segmentation relies on the global energy minimization rather

than local energy minimization. Therefore, less prior knowledge is required than

edge-based active contours. A region-based active contour derivation, using the

Mumford-Shah segmentation model [25], [26] is presented in this section. In this

model, the evolving curve C is defines as the boundary of a region Ω . Ω is the

area inside the curve C while complement of Ω (Ωc) outside of the curve C. The

method is the minimization of an energy-based segmentation. Assume that image

is formed by two regions of approximately piecewise constant intensities of distinct

values I i and Io and the object to be detected is represented by the region with

value I i and Co denotes its boundary (Figure 2.5). Now we may define a term,
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called fitting term, as in Equation 2.18.

E1(C) =

∫
inside C

|I −M1|2d~x+

∫
outside C

|I −M2|2d~x (2.18)

(a) (b)

Figure 2.5: Illustration of mumford-shah algorithm, the fitting term is minimized
when the curve is on the boundary of the object [28].

where C is any curve and M1, M2 are the averages of I inside C and outside

C (See Figure: 2.5) [18]. This was the basic idea underlying the Mumford-Shah

segmentation method. In order to apply this method to the active contours, the

above energy function has been extended (Equation 2.19).

E(M1, M2, Ψ) = µ
∫

δ(Ψ)|∇Ψ| d~x

+ν
∫

H(Ψ) d~x

+λ1

∫
|I −M1|2H(Ψ)d~x

+λ2

∫
|I −M2|2(1−H(Ψ))d~x

(2.19)

24



CHAPTER 2. A REVIEW OF SEGMENTATION METHODS FOR MEDICAL
IMAGES

It can be seen that the energy function measures the difference between the

piecewise-constant and the actual image intensity at every image pixel and more-

over it adds some regularizing terms for the boundaries length and the area. The

level set equation for a curve evolving according to the energy function in Equa-

tion 2.19, is given by:

∂Ψ

∂t
= δε

[
µ∇.

(
∇Ψ

|∇Ψ|

)
− ν − λ1(I −M1)

2 + λ2(I −M2)
2

]
(2.20)

One important property of this method, compared to other models, is its global

nature. All level sets of Ψ have the potential to be important. This means that

other isocontours corresponding to nonzero values of Ψ might evolve so they get

past Ψ = 0 and create new segmented regions . Thus reinitialization to the distance

function is not a good idea [18].
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Chapter 3

Gradient Compensated Active

Contours

MRA is a noninvasive medical imaging modality that produces 3D images of ves-

sels and cavities. Accurate extraction of 3D vascular structures from MRA images

has become increasingly important for diagnosis and quantification of vascular dis-

eases. A group of specific methods have been proposed for this particular kind of

medical images. In this chapter, we first provide some backgrounds in MRA images

(Section: 3.1.1. Then, a brief review of current MRA segmentation techniques is

presented in section 3.1.2 and finally, the Gradient Compensated Active Contours

(GCAC) is proposed and discussed (Section: 3.2).

3.1 Background

While a huge number of different algorithms exist for performing the segmentation

task, there is currently no single segmentation method that produces reasonable

results for all types of medical images. Proper selection of the segmentation tech-

nique depends on the properties of the image being segmented. Different imaging
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techniques bring out different anatomical structures and may have different prop-

erties. For example, CT images which are better at depicting bone, would be useful

for detecting fractures. However, a fracture can be very difficult or impossible to

detect in an MR image. On the other hand, MR imaging generate images of high

contrast between soft tissues in the body.

The following sections aim to give an understanding of MRA image’s general

properties and the certain characteristics of MR images that have to be taken into

consideration when segmenting these images. Also, existing vessel segmentation

algorithms are reviewed and discussed briefly .

3.1.1 MRA Images and Their Properties

Magnetic resonance angiography (MRA) is a noninvasive medical imaging technol-

ogy that produces three-dimensional (3D) images of vessels. The images acquisition

process can be done with or without injecting a contrast agent. Both methods can

generate two- or three-dimensional data. There are currently four different meth-

ods that widely used in non-contrast technique to acquire the MRA images: (1)

time-of-flight (TOF-MRA), (2) phase-contrast MR angiography (PC-MRA), (3)

black-blood MRA, (4)T2-weighted MRA and (5)T ∗
2 -weighted MRA [31]. In this

thesis we limit our discussion to TOF MRA, as this is the most widely used MRA

technique which is able to provide robust images for a wide range of clinical issues.

TOF MRA Properties

In the TOF-MRA technique, multiple thin-section images are acquired contigu-

ously, and the images are summed up to make a volume set (Figure 3.1).The only

practical way to get a good view of inside the brain is to slice it, so three di-

mensional anatomical structures are displayed in two-dimensional cross-sections.
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The 2D slices can be viewed individually, or they can be stacked to form a 3-D

image.It uses the fact that, as blood circulates, even during the acquisition, its

magnetization properties differ from the surrounding, non-moving tissues. During

data acquisition, the static surrounding tissue produces low signal intensity in the

images. While, the flowing spins provide stronger signals that are due to blood flow

and thus they are distinguishable from the surrounding background. For optimal

imaging conditions, the image plane has to be oriented perpendicular to the main

flow. Maximum flow signal is achieved when a totally new column of blood enters

the slice every repetition time (TR) period. Figure 3.2 shows that the intensity

of the signal from flowing vessels depends on several factors including the repe-

tition time (TR), slice or slab thickness (THK ), velocity vector (v) of blood flow

(magnitude and directions) [31] and displacement (d). Based on Equation 3.1, it is

evident that this technique is highly sensitive to blood flow velocity. Also be noted

that the TOF technique provides blood flow images instead of true vessel lumen

images.

Figure 3.1: Volumetric MRA data set

d = v ∗ TR (3.1)

Equation 3.1 shows that the larger the velocity (v), the larger the displacement.

However, In the case when d is greater than a certain value (the slab thickness THK
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Figure 3.2: TOF technique: vi is the velocity of blood flow, THK is the slice or
slab thickness and TR is the repetition time. [31].

), the blood signal intensity will stay constant as indicated by the horizontal curve

in Figure 3.2. The major disadvantage of the TOF technique is that it is not

robust under complicated flow conditions [31]. Furthermore, the intensities in the

MR images are patient dependant. The intensity of the tissues may vary from

person to person. However, MR images share some common characteristics and

the general appearance of the histogram is similar for different patients.

Artifacts

A variety of artifacts may appear in MR images. Since the artifacts change the

appearance of the image they may also affect the performance of a segmentation

algorithm. The most important artifacts in image segmentation are intensity in-

homogeneities and the partial volume effect.
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Figure 3.3: Displacement (Intensity) vs. Flow and TR [32]

Intensity Inhomogeneities: Intensity inhomogeneities are not always visible to

the human eye, but can nonetheless have a negative influence on automatic seg-

mentation. This may manifest itself by for example making intensities as higher

or lower in one part of the image than in other parts. It is often caused by the

radio frequency (RF) coils. Different methods exist to compensate for the inho-

mogeneities. The inhomogeneity is often modeled as a field that varies smoothly

over the image. The inhomogeneity field is often thought to be a multiplicative

field, which means that the true voxel intensity is multiplied by the value of the

field in that voxel. There are methods which remove the inhomogeneities during

the segmentation process. For example, some approaches, alternate estimation

of the inhomogeneity field with classification to obtain inhomogeneity corrections

( [74], [75] and [76]).

The Partial Volume Effect: The partial volume effect occurs when a voxel

cannot be accurately assigned to one tissue type. This is because the intensity in

the voxel originates from more than one tissue. It occurs because one voxel contains

many body cells and the signal emitted from these cells make up the detected

intensity in this voxel. The partial volume effect is most apparent at edges between

30



CHAPTER 3. GRADIENT COMPENSATED ACTIVE CONTOURS

different tissues. It may deteriorate the sharpness of the edges between tissues. The

partial volume effect can be a significant problem in brain segmentation since the

brain has a complex folded surface. Another concern is the classification of such

voxels, i.e., to which of the tissues should it be assigned. One way of dealing with

partial volume effects is by using so called soft segmentation. Soft segmentation,

as opposed to hard segmentation, means that a voxel may belong to more than one

tissue class. Some methods perform soft segmentation by finding the probabilities

that a voxel belongs to different tissues ( [66]). The partial volume effect is caused

by the fact that we have a limited resolution in the images. Smaller voxel sizes

reduce the partial volume effect since the probability that more than one tissue

type is contained in the same voxel is reduced.

Motion artifacts: Motion can be periodic, as caused by blood flow, heart beat,

or respiration, or random, as a consequence of patient movements. The motion of

the entire object during the imaging sequence generally results in a blurring of the

entire image with ghost images in the phase encoding direction. The nature of the

artifact depends on the timing of the motion with respect to the acquisition.

3.1.2 Review:Vasculature Segmentation

Reasonably accurate extraction of 3D vascular structures from MRA images is

highly important for detecting and aiding the treatment of heart disorders, stroke,

and blood vessel diseases [7]. A variety of methods have been developed for seg-

menting vessels within MRA data. However, we can broadly divide them into two

categories: Skeleton-based and Nonskeleton-based. Skeleton-based techniques are

those indirect methods which segment and reconstruct the vessels by first calculat-

ing the centerlines and the cross sections of the vessels from the 2-D slices( [30], [3]).

Contrary to these methods, nonskeleton-based techniques are those that segment
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the vessels in 3D directly. Several methods have been developed based on these

principles. In the following sections we discuss them briefly.

Skeleton-based Techniques

Several methods have been developed based on this principle and multiscale schemes

to allow for the diversity of vessel sizes. In these approaches, the centerline mod-

els can be generated explicitly, implicitly or via post processing by vessel model-

ing [30,34–38]. They just apply thresholding, and then followed by object connec-

tivity algorithms in many different ways. Next, follow it by a thinning procedure,

and a extraction based on graph description. The resulting centerline structure is

used for 3D reconstruction of the vasculature [31]. Diversity of vessel sizes can be

handled by incorporating multiscale schemes into these Skeleton-based algorithms.

Skeleton or indirect-based techniques can broadly be classified into three classes

based on the way they estimate the cross section of the vessels: 1) skeleton with

vessel cross section estimation using edge-based techniques, 2) skeleton with vessel

cross-section estimation using parametric-based models and 3) skeleton with vessel

cross section estimation using geometric-based models [3]. Indirect methods have

shown to be fast compared to the direct ones. However, direct techniques are more

robust and accurate [31], and thus they are preferred for MRA vessel segmentation

when a precise extraction of the vessels is needed.

Nonskeleton-based Techniques

In contrary to above techniques, the vessel reconstruction is done directly and with-

out estimating the vessel cross sections in Non-skeleton based methods. Many dif-

ferent methods have been proposed within this framework like thresholding meth-

ods [39], fitting techniques [30,40], mathematical morphology based methods [41],
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fuzzy connectedness methods [42], deformable models based methods [43–45, 56],

wave propagation based methods [49, 50], and so on. A commonly used technique

to evaluate MRA data sets, currently in hospitals, is maximum intensity projec-

tion (MIP) [39] (Figure 3.4), which falls in the thresholding category. The MIP is

generated by selecting the maximum value along an optical ray that corresponds

to each pixel of the 2D MIP image. It is useful because the overall shapes and

paths of the vessels become visible. However, it is known that the MIP may lead

to underestimation of vessel width and decrease in signal-to-noise ratio (SNR)

resulting in poor visualization of blood vessels [57]. Deformable models 1 based

methods are another important category of these techniques .Since their introduc-

tion by Kass et al. [10] as active contour model or ”snake”, numerous models have

been proposed and used successfully for medical image segmentation. For instance,

Klein et al. [56] proposed to reconstruct 2D vessel boundaries or 3D vessel walls

using deformable surface models represented by B-spline surfaces. However, it is

not possible to employ parameterized deformable models to effectively deal with

whole vessel trees, as the models would be required to change topology during

evolution [58]. To address the topology adoption issue, several special strategies

have been proposed and incorporated into deformable models [5, 6]. For example,

Yim et al. [44] proposed a deformable surface model based on triangulated meshes

for vessel construction in 3D. Nevertheless, it may be problematic to apply these

methods [44,56] for segmentation of vessels from low contrast MRA images.

Another class of deformable models are geometric and geodesic deformable

models, which are based on level sets theory and can freely adapt into complex

topologies of objects, were then proposed and applied on MRA images ( [21], [12]).

Geometric deformable models are capable of accommodating the often significant

variability of biological structures over time and across different individuals [5].

Therefore, they have become a promising and vigorously researched model-based

1We will interchangeably use the phrase deformable models and active contour/ surfaces.
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approach to computer-assisted medical image analysis. In the following section we

will discuss the geodesic deformable models in more detail.

3.1.3 Geodesic Active Contours & the Speed Functions

Geodesic deformable models or geodesic active contours, permit broad shape cover-

age by employing geometric representations that involve many degrees of freedom.

The name “deformable models” stems primarily from the use of elasticity theory

at the physical level, generally within a Lagrangian dynamics setting [5]. They

can freely adapt into complex topologies of objects. Therefore, they have been

proposed and applied widely on MRA images segmentation.

Geodesic deformable models are governed by some curvature dependent speed

functions. These speeds govern the evolution of the deforming model and they

consists of two terms: a constant (hyperbolic) and a curvature (parabolic) term. In

the context of image segmentation the speed function also called ”stopping function

” as it needs to stop the evolving curve, near the vicinity of the desired object.The

accuracy of the segmentation process depends upon when and where this force stops

the propagating curve, and how strong this stopping force is [51]. Different types

of stopping forces have been proposed for geodesic active contours, such as those

based on image gradients [18], edge strength [54], and area minimization [59]. In all

of the above stopping forces, the key feature, that attracts the curve to the desired

objects, is the intensity gradient of the objective image. Based on the stopping

force,we can discuss and review the different geodesic active contours that have

been proposed and used for the purpose of segmentation.

In the original model proposed by Caselles and Malladi ( [21], [12]), the gov-
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erning force is based on the image gradient and the evolution equation is:

∂Ψ

∂t
= g (|∇I|) (κ + V0)︸ ︷︷ ︸

F

|∇Ψ| (3.2)

where the first term of the speed function, g (|∇I|) called gradient map of the

image, is a monotonically decreasing function of the image gradient, e.g:

g (|∇I|) =
1

1 + |∇(Gσ(x) ∗ I(x))|
(3.3)

or

g (|∇I|) = e|ξ∇(Gσ(x)∗I(x))| (3.4)

The local minima of this function are at the image edges. It is the external

image dependent force and the main goal of it, is to stop the evolving curve when

it arrives to the objects boundaries. κ is the curvature of the evolving contour and

is expressed as:

κ = ∇. ~N = ∇.
(

∇Ψ
|∇Ψ|

)
(3.5)

The second term of the stopping force, (κ + V0), acts as the internal force in the

classical energy based snakes model and it its rule is to smooth out the areas of

high curvature, which are assumed to be due to noise. [64]. V0 is a constant motion

term leads to the formation of shocks from which a representation of shape can be

derived and it helps the curve to move in the desired direction.

The above approach is topology independent and it is able to detect any number

of objects in the image. However, the stopping term is not robust enough and hence

it may not stop the “bleeding” or “leaking” of the boundaries. Furthermore, the

pulling back feature is also not strong enough. In addition, the pulling back feature

is also not strong enough and so the curve can not come back to the goal position

once it crosses the boundaries [51].
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Kichenassamy et al. [53] and Yezzi et al. [54] tried to solve the above problems

by introducing a new extra stopping term, called the pull back term, based on

image-dependent Riemannian metrics, as follows:

∂Ψ

∂t
= g (|∇I|) (κ + V0) |∇Ψ|+ (∇ (g (|∇I|)) .∇Ψ) (3.6)

The second term, (∇ (g (|∇I|)) .∇Ψ), also called length minimizing term, helps

the evolving surface, return to its position once it crosses the object boundary

and it denotes the projection of an attractive force vector on the normal of the

surface. precisely, this technique employs ideas from Euclidean curve shortening

evolution which defines the gradient direction in which the Euclidean perimeter is

shrinking as fast as possible [54]. Therefore, the new stopping function is obtained

by multiplying the Euclidean arc length by the gradient map [18].

The proposed active contour is attracted very quickly and efficiently to the

desired feature. In addition, these techniques give reasonable results for rather

noisy images [55]. However, they may have difficulty in extracting tiny vessels

from 3D images as they suffer from boundary leaking for complex structures [51].

Moreover, the flow can be unacceptably slow to converge in practice [60].

Siddiqi et al. ( [59], [60], [51]) proposed another extra term, area minimization

term, that was derived from minimizing a certain weighted area energy functional.

More precisely, in analogy to the case of Euclidean arc-length, they have modify

the infinitesimal Euclidean area by a conformal factor and compute the gradient

flow for the modified area functional [60].

∂Ψ

∂t
= g(x)(κ + V0)|∇Ψ|+ (∇g∇Ψ) +

V0

2
x∇g|∇Ψ| (3.7)

where V0

2
x∇g|∇φ|, area minimizing term, is mathematically equal to the prod-

uct of the divergence of the gradient map and the gradient of the surface [51].
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When applied to shape segmentation, the new flow exhibits a stronger attraction

force to features of interest than the constant inflation term previously used, due

to the inclusion of a new doublet term. However, this method may not be a robust

solution to the segmentation of complex shapes such as in brain segmentation [51].

One of the difficulties in segmentation of MRA images is accurate extraction

of small vessels. As, they exhibit much variability in shape and size compare to

the thick parts and they often have a low intensity contrast with the surrounding

issues. To deal with this problem, Pingkun et al. [7] proposed a new capillary

action based active contour, Capillary Geodesic Active Contours (CGAC), which

is modeled based on the physical phenomenon of capillary action. The final level

sets update equation is represented as:

∂Ψ

∂t
= g(κ + V0)|∇Ψ|+∇g · ∇Ψ + (κ̂2 + λ)|∇Ψ|f(1− cos2 θ). (3.8)

where parameter λ balances contribution of propagation, advection force and

the capillary action. cos θ is defined as:

cos θ = ~N · ∇g

|∇g|
.

The constant terms V0 in Equation 3.8 act like balloon force which facilitate evolv-

ing surfaces snapping to solid boundaries. Comparing the new speed function with

those of the geodesic active contour (Equation 3.6) the third term is new which

comes from the capillary action and it is expected to facilitate the evolving surface

adapting into thin parts of objects, e.g. thin vessels. The incorporated capillary

force adapts the evolution surface into thin branches of blood vessels and obtains

more accurate segmentation results ( [7]). Nevertheless, the capillary active con-

tour does not make use of any priori knowledge of the MRA image properties for

the propagation and the speed term is not specialized for MRA images. Thus, it
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is not surprising that it may exhibit some difficulty in extracting very tiny vessels

from 3D MRA images of brain vasculature.

Small vessels and their branches, which exhibit much variability, are very im-

portant in planning and performing neurosurgical procedures. More precise naviga-

tion and localization information for computer guided procedures can be achieved

with greater details. Our work aims to develop an image segmentation algorithm

for automatically extracting the whole vasculature from 3D angiography by modi-

fying the speed term of the level set methods. Inspired by the intrinsic properties

of MRA and considering the relation between vessels thickness and their intensity

in MRA images, a novel variation of level set algorithm has been proposed and

tested on both synthetic and real MRA images. Tests shows that our proposed

level set algorithm has great potential for segmenting very thin vessels under low

contrast conditions.

3.2 Gradient Compensated Active Contours

3.2.1 Thickness vs. Intensity Gradient in MRA Images

Gradient value at each point of an image (I) is obtained as follows:

|∇I| =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

+

(
∂I

∂z

)2

(3.9)

where I is the image intensity. Gradient at each point is the sum of the directional

intensity changes. The gradient is likely to be large at the boundaries due to

the dramatic changes in voxel intensity values at these points. The higher these

changes, the higher will be the value of the gradient.
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In MRA images, vessels appear brighter than the background. However, the

range of the intensity values of blood vessels in MRA images are not restricted

to a small interval but are spread out widely. Figure 3.4 (a) shows the MIP of a

MRA data set. It can be observed that thick vessels appear much brighter than

the thinner ones. Thus, thick vessels are easily distinguishable while thin vessels

appear to not differ much from the surrounding tissues. Therefore, the prominent

boundaries of the thicker vessels lead to higher gradient values compared to small

vessels. This can be seen in the Figure 3.4 (b), which is the gradient of an MIP

image.

(a) (b)

Figure 3.4: (a) MIP of a MRA data set and (b) its Gradient magnitude.

As discussed in Section 3.1.1, within the blood vessels, the intensity depends

very much on the blood flow (see Figure 3.3). The velocity of blood flow in thick

vessels is higher than in thin vessels. Therefore, the thicker the vessel, the more

will be the flow and hence the higher the intensity and gradient values. Also,

thin vessels are affected by the partial volume effect, which further reduces their

intensity. [4].

The boundary gradient vs. the thickness of vessels is plotted for a sample

data set in Figure 3.5. Clearly, there is an almost exponential relationship between
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vessel thickness and the gradient on their boundaries which is approximated in

Equation 3.10.

Figure 3.5: The boundary gradient vs. the thickness of the vessels for a sample
data set

|∇I(x)| ∼= MaxGrad ∗ (1− e(−λ∗Th(x))) (3.10)

where x is any point on the vessel boundaries, ∇I(x) is the gradient at x,

MaxGrad is the maximum of the image gradient values which is usually 255 for

MRA images, Th(x) is the thickness of the vessel at point x and λ is a small

constant depending on the image properties.

It can be seen from Figure 3.6 that the intensity gradient initially increases

sharply with the thickness and levels off beyond a certain thickness. The reason

is that in MRA images, for a fixed repetition time (TR), if the velocity exceeds a

certain value, the intensity due to blood flow will remain constant [31].
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Figure 3.6: Vessel gradient vs. vessel thickness

3.2.2 Stopping Forces in Active contours

A crucial factor in the success of level set methods, is the speed function that

evolves the surface to the desired boundaries. The accuracy of the segmentation

highly depends on when and where the propagating contour needs to stop [51]. The

stopping forces can be divided into two classes: static and dynamic [61]. Static

forces are those that are pre-computed and do not change as the contour progresses.

On the other hand, Dynamic forces are those that change as the contour deforms.

Considering the special case of a contour expanding with a speed V > 0 . Let T be

the time at which the contour crosses a given point. The function T then satisfies

|∇T | .V = 1. This equation simply says that the gradient of the arrival time

is inversely proportional to the speed of the evolving contour. If the propagating

surface needs to stop close to the vicinity of the segmenting topological shape, then

the speed of the surface should approximate closely to zero near the final segmenting

shape. All the geodesic active contours referred to in section 3.1.3, use the gradient

map of the image as an external image-dependent speed term which its main goal

is to stop the evolving curve when it arrives at the object boundaries. The gradient

map of the image is obtained through the use of a monotonically decreasing function
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of image gradients (Equations 3.3 and 3.4). Therefore, this external speed decreases

with the increase of the gradient values and has its minima when the contour is

located in the image regions with high gradient values, i.e., edges. It should be

noted that the speed at the boundaries needs to be zero (to make the contour reside

there). This means the higher the gradient value, the faster the propagation of the

surface is, which results in a robust and accurate segmentation [51]. In the context

of MRA segmentation,the accuracy of the segmentation process highly depends on

how high the gradient values are at the vessel boundaries. However, as discussed in

section 3.2.1, image gradients are not high enough at the thin vessel boundaries and

therefore the segmentation process may fail at these vasculature. Considering the

variation of blood vessel thickness versus the gradient of the boundaries in MRA

images, we have modified stopping forces of the capillary geodesic active contours

in order to perform better in the vicinity of the small vessels.

3.2.3 Gradient Compensator Function

As discussed in Section 3.1.3, the gradient map (g(|∇I|)) of the image is the only

image-dependant component of the stopping forces and its role is to stop the con-

tour’s evolution near the boundaries of the desired objects. The gradient map is

a static function of the image gradient (Equation 3.3, 3.4) i.e., that its values do

not change in time, as the contour deforms. However, it can be seen from Figure

3.4(b), that the gradient values are much lower for the thin vessels compared to

the thick ones, thus making it difficult to place the contours on the boundaries of

thin vessels. To address this problem, we propose a dynamic gradient map that is

not only a function of the image gradient but also a function of time and contour

location. As the evolving contour gets smaller, it is very likely that it is approach-

ing the smaller vessels whose gradient values may not be high enough to attract

the contour. Therefore, it is desirable to make the evolving contour more sensitive
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to the image gradients as it shrinks. To achieve this, a novel gradient map function

is defined such that it produces reasonable values even if the image gradient is not

high enough, provided that the contour thickness is also small. To reach this goal,

an equalizer function is defined (Equation 3.11), which is a function of the contour’s

thickness and its role is to strengthen the image gradient values when the contour’s

thickness is small ( i.e., when the contour is most probably in the vicinity of the

small vessels ). This equalizer function is called gradient compensator function,

M(x, t), and is defined as follows:

M(x, t) = α ∗ (e(−λ∗Th(x,t))) (3.11)

Figure 3.7: M(Th(x)) vs. estimation of thickness at point x

where x is any point on the contour, Th(x) is the estimated thickness of the

surface at that point, λ is the same parameter as in Equation 3.10 and α is a

constant, to be set by the user. From Figure 3.7 it can be seen that the value

of this function varies between 0 to α for very thick and extremely thin contours,

respectively. The same λ as Equation 3.10 has been chosen so that the rate of the

change of M(x, t) vs. Th(x) is the same as ∇I(x) vs. the Th(x) in Equation 3.10.

This ensures that M(x, t) increases as the gradient values decrease at the small
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vessel boundaries. Function M(x, t) is incorporated into the gradient map equation

by replacing the term ∇I(x) in Equation 3.4, with (1 + M(x, t))∇I(x), as follows:

g(x, t) = e|ξ∗∇(Gσ(x)∗(1+M(x,t))∇I(x))|

= e|ξ∗∇(Gσ(x)∗(1+α∗e(−λ∗Th(x,t)))∇I(x))|
(3.12)

Gradient compensator function compensates for the insufficient amount of ∇I

on the thin vessels’ boundaries. M(x, t) is nearly zero for thick vessels, hence,

(1+M(x, t))∗∇I ' ∇I. However, for small vessels, M(x, t) > 0 and is proportional

to the gradient difference of that vessel and a thick one. Thus, (1+M(x, t))∗∇I >

∇I. α, in Equation 3.11, is a constant which is specific to our approach which

functions as a trade-off between this compensator term and other forces in the

evolution process. Its value can be chosen in the range of 0 and Max(|∇I|)
Min(|∇I|) −1, where

the upper limit is chosen in a way as to strike a balance between the gradients of

thin and thick vessels. Choosing a large α, the effect of makeup function will be

more prominent and more thin vessels will be extracted (Figure 4.1). However, the

approach may become more sensitive to noise. Thus, as in any other segmentation

approach, there is a need to keep a balance between these two issues.

In our approach, we need to estimate the thickness of the evolving contour.

For this purpose the normal vector at each point x is first obtained as follows:

−→
N =

∇φ

|∇φ|
(3.13)

Since blood vessels in MRA images appear brighter than the background, the

directions of normals in the image could be known. Assuming that the contour is

almost tubular at each point, the thickness of point x , Th(x), could be estimated

as the number of voxels along the normal direction within the contour, as shown
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Figure 3.8: Estimation of the local contour thickness

in Figure 3.8. This computation is not costly, since the normal of the surface has

been calculated in other parts of the level set algorithm.

The evolution equations for the Gradient Compensated geodesic Active Con-

tour (GCAC) is obtained by replacing the g(x) with g(x, t) (Equation 3.12) in

CGAC speed terms (Equation 3.8) as follows:

∂Ψ

∂t
= g(κ + V0, t)|∇Ψ|+∇g(t) · ∇Ψ + (κ̂2 + λ)|∇Ψ|f(1− cos2 θ). (3.14)

3.2.4 Implementation

The GCAC described in previous section has been coded for 3D segmentation,

based on the insight segmentation and registration toolKit (ITK) [64], an open

source software developed as an initiative of the United States National Library

of Medicine and freely available at www.itk.org. A large number of leading edge

segmentation and registration algorithms have been implemented inside this toolkit
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Figure 3.9: An overview of the Gradient Compensated Active Contour Algorithm
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[64].

The results of the algorithm have been visualized using the visualization toolKit

(VTK) [62], which is also an open source software for 3D computer graphics, image

processing, and visualization. VTK supports a wide variety of visualization algo-

rithms including scalar, vector, tensor, texture, and volumetric methods, as well as

advanced modeling techniques such as implicit modeling, polygon reduction, mesh

smoothing, cutting, contouring, and Delaunay triangulation. In addition, dozens

of imaging algorithms have been directly integrated to allow the user to mix 2D

imaging/3D graphics algorithms and data. It is freely available at www.vtk.org.

Figure 3.9 shows the major components involved in the application of the

Gradient Compensated Geodesic Active Contours for a segmentation task. An

initial segmentation estimate is generated by simply thresholding the 3D MRA

image with thin tubular structures. Before applying the algorithm, the image is

smoothened by using a small isotropic Gaussian filter, since the level sets algorithm

inherently requires some smoothness of gradients. The result is used to generate

an initial signed distance function Ψ0, which has negative values inside objects and

positive values on the outside. As thick vessels appear quite bright in MRA images,

we are able to extract the thick parts of the vasculature in the early stage of the

algorithm. A 3-D array keeps track of the evolving contour thickness right from

the initial contour and is used in the gradient compensator function. The level sets

function Ψ is then iteratively updated according to:

Ψn+1 = Ψn +∇Ψn∇t, (3.15)

where ∇Ψ is calculated using Equations 3.14. The 3-D thickness array will be

updated for the points that have been moved in any iteration. Convergence is

achieved when volumetric change is very small over some iterations. Before ap-

plying the algorithm, the image is smoothed by using a small isotropic Gaussian
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since the level sets algorithm inherently requires some smoothness of gradients [19].

The Narrow band level set method [27] has been used for the implementation, in

order to restrict most computations to a thin band of active voxels immediately

surrounding the interface. Furthermore, the level sets map Ψ is periodically reini-

tialized to be a signed distance function. It means that, the zero level set C is

extracted from Ψ, and then the value at each point is set to be its distance to

C. This is needed because Ψ is defined as the signed distance map of C, which,

however, cannot be ensured during the evolving process.
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Results and Discussion

he proposed algorithm has been applied on both synthetic data and MRA data

sets. First, the effectiveness of the GCAC is studied using a vessel-like computer

generated synthetic data. Secondly, the vasculature tree from three different sets

of real MRA data is extracted, using the algorithm described in Section 3.2.4 and

the results are compared with both that ones of the Capillary Geodesic Active

Contours (CGAC) algorithm and the reference manual segmentations performed

by medical radiologists.

4.1 Results based on synthetic data

Figure 4.1 shows the application of the our proposed approach on a computer

generated vessel to illustrate the effects of the gradient compensator function. As

seen from Figures 4.1(a, b), which is a generated vessel, the intensity of the voxels

in the model decreases as the thickness of the vessel decreases. Starting from the

initialization, evolution is done according to the proposed level set equation in 3.14.

In our experiment, all the parameters are fixed except that α (in the compensator
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function) varies between 0 and Max(|∇I|)
Min(|∇I|) − 1. The evolution results with different

parameter settings after a number of iterations are visualized in Figures 4.1 (c,d,e).

When α is set to zero, our algorithm in fact evolves exactly like the CGAC and is not

able to extract the thin and darker portions of the vessel. Other extracted results

with different values of (α) in Figure 4.1 shows that the compensator function can

facilitate the evolution of the free surface in very thin portions of vessels.
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(a) (b)

(c) (d)

(e)

Figure 4.1: Illustration of the effects on varying α in Equation (3.11)on (a) a syn-
thetic 3D vessel whose cross section along the axis is shown in (b). (c) Segmented

vessel, α = 0. (d) Segmented vessel, α = 1.2. (e) Segmented vessel,α=3.2.
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(a) (b)

Figure 4.2: Maximum intensity projections of the two segmented MRA data sets.

4.2 Segmentation Results of 3D MRA Images

The algorithm was applied to different sets of real 3D time of flight MRA (TOF-

MRA) images. These images and their manual segmentations by clinicians were

provided by the Department of Diagnostic Radiology at the National University

Hospital. Each of the these data sets contains approximately 120 slices, with the

size of 512×512, spacing of 0.43×0.43×1.2 and 16 bits level of gray tone resolu-

tion. Some samples of 2D slices of these MRA data sets are shown in Figure 4.3

were bright regions and points are the desired blood vessels to be segmented. The

raw images were originally in Digital Imaging and Communications in Medicine

(DICOM) [24] format, which is the most common standard for storing and trans-

mitting the medical images in hospitals. A single DICOM file contains both a

header (which stores the patient’s information, the type of scan, image dimensions,

etc.), as well as all of the image data (in three dimensions). However, to keep
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the personal information of the patients safe, we convert the data sets from DI-

COM format to ANALYZE ,which stores the image data in one file (*.img) and the

header data in another file (*.hdr). The conversion have been done using MATLAB

Image Processing Toolbox. An Intel, Pentium IV with 1.9 GHz CPU speed and

768 MB of RAM, running on Windows XP platform, computer was used in our

experiments.

In order to illustrate the effectiveness of the proposed method, we have done

some comparisons between our proposed method and other method. The details

and the results of these comparisons are presented in the following sections.

4.2.1 Comparison with Manually segmented results

Two sets of real MRA data are segmented, using our proposed algorithm and

the extracted vessels are compared with manual segmentation results obtained by

clinicians. The MIP (Maximum Intensity Projection ) of these two data sets are

shown in Figure 4.2. These noisy images are further smoothed, using a small

isotropic Gaussian filter. The initial segmentation is obtained by thresholding the

raw data set and the evolution is carried out according to Equation 3.14.

Figures 4.4- 4.7 show clinically (manual) segmented and the corresponding

GCAC segmentation results in two different points of view.

The proposed algorithm is able to extract much of the vascular tree that ap-

pears in the clinically segmented images. In addition, it can be seen that a fair

amount of thin vessels have been successfully segmented using our proposed algo-

rithm.
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Figure 4.3: Samples of cerebral MRA data set. Bright regions and points are blood
vessels.
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(a) The proposed algorithm results

(b) Manually segmented results

Figure 4.4: First data set: view 1
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(a) The proposed algorithm results

(b) Manually segmented results

Figure 4.5: First data set: view 2 56
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(a) The proposed algorithm results

(b) Manually segmented results

Figure 4.6: Second data set: view 1 57
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(a) The proposed algorithm results

(b) Manually segmented results

Figure 4.7: Second data set: view 2
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4.2.2 Comparison with CGAC

In this section, three MRA data sets have been segmented using our proposed

method. Figure 4.8 shows the MIP (Maximum intensity projection ) of one of

these MRA data sets where vessels within the region of interest (Figure 4.9) are

enhanced for better visualization.

Figure 4.8: MIP of the segmented MRA

Figure 4.9: Region of interest

We have compared the segmentation results of our proposed method with the
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state-of-the-art “Capillary Geodesics Active Contours” algorithm [7]. Identical

parameter settings in the evolution equations are used for both methods except for

the gradient compensator term, α , which is specific to the our proposed method

and determines the contribution of this proposed force. The segmentation results

of CGAC and our method are visualized in Figures 4.2.2, 4.2.2 and 4.2.2 from

different points of view. From these results, it can be seen that both segmentation

algorithms can successfully extract much of the vasculature. However, CGAC

does not make use of any priori knowledge of the MRA image properties for the

propagation. Small gradient values of the thin vessels make it difficult for CGAC to

distinguish them from the background. On the other hand, our proposed gradient

compensator function, could strengthens the active contours algorithms and assists

them to identify more thin parts of blood vessels without imposing much additional

complexity to the geodesic active contours model.
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(e) Proposed algorithm results (α = 3.0) (f) CGAC results

Figure 4.10: MRA data set 1
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(e) Proposed algorithm results (α = 2.2) (f) CGAC results

Figure 4.11: MRA data set 2
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(e) Proposed algorithm results (α = 2.8) (f) CGAC results

Figure 4.12: MRA data set 3
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4.3 Summary

In this chapter, we applied the gradient compensated active contour to both 3D

synthetic and cerebral MRA images. The incorporated gradient compensator term

seems to adapt the evolution surface into very thin branches of blood vessels and

obtains more accurate segmentation as demonstrated in our experiments. We have

also tested the accuracy of the proposed method by comparing our results with the

manually segmented ones.
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Conclusions and Future Work

A novel gradient compensated active contour has been proposed and developed to

extract vasculature from MRA images. Considering that, different imaging tech-

niques bring out different anatomical structures and they have their own image

properties, we may conclude that specialized methods for a particular applications

can often achieve better performance compare to general ones by taking some prior

knowledge into account.The prior knowledge acts like regularizers inside the seg-

mentation algorithms. The underlying idea of our approach is also to incorporate

the priori knowledge of the MRA images, into the active contours in order to im-

prove their performance.

The performance of this algorithm has been validated by experimental results

on both synthetic images and medical MRA images and better results have been

obtained compared with other state-of-the-art MRA segmentation algorithm.
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5.1 Future Work

This dissertation opens up some interesting directions for further investigation. We

describe some of them in the following sections.

5.1.1 Further study of GCAC

The most immediate area of future work would be to ascertain the advantages of

the proposed method using more MRA data sets and also to study its limitations.

Furthermore, there would be considerable interest in developing an automatic pa-

rameter setting program through some learning algorithm.

5.1.2 Clinical application

Extracting organs from medical images is an important problem in many medi-

cal applications ranging from collecting clinical diagnosing information to surgery

planning and navigating. Although the application of geometric techniques such as

active contours have gone well in this field , still there is a far away from achieving

stable three-dimensional volumes and a standard segmentation in real-time. Cur-

rently, it appears that clinicians prefer the manual approaches to the automatic

ones and the adoption of a new automatic system is difficult unless it can perform

for all intents and purposes exactly like a manual segmenter. This is not an easy

task, and more tweaking of the system would be necessary to achieve this.

Using our algorithm for MRA image segmentation, nearly the whole vasculature

can be successfully extracted from 3D MRA images. However, the segmentation

process is only the first step to provide diagnostic information to achieve computer

aided diagnosis (CAD). An important information to be obtained from cerebral
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MRA is the possibility of stroke or aneurysm. These possibilities are measured

through checking the degree of stenosis or dilation along blood vessels. Since the

whole vasculature has been extracted out, this could not be a difficult problem.

The degree of stenosis or dilation can be measured by computing the diameter of

the blood vessels at each point. Nevertheless, efforts need to be make on working

out a robust and precise numerical measurement.

5.1.3 Medical Image Segmentation with Priori Knowledge

In this thesis, we present an active contour method that takes the properties of

MRA images into consideration. This idea can be extended to other imaging

modalities, such as CT images, as well. In addition, brain vascular networks have

many other important properties (e.g. concerning density, size, orientation, and

adjacency with other structures) which enable the creation of vascular models of

brain vasculature that can be incorporated into active contours to further improve

the precision and robustness of the segmentation. There is similar work on this

[11], but how to efficiently employ such information and incorporated into active

contours, still needs to be studied. Development of methods that can incorporate

the local object size in defining the connectedness, object material inhomogeneity,

noise, blurring, and background variations may also be appealing.
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