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Abstract 

 

 

     A dilute magnetic semiconductor (DMS) is a material in which a 

fraction of the host cations are substitutionally replaced by magnetic 

ions or appropriate rare earths. This leads to localized magnetic 

moments in the semiconductor matrix. DMS is regarded as the key 

materials for spin electronics where not only charge but also spin of 

electrons are used for electronic functionality. Ferromagnetic 

semiconductors with Curie temperatures (TC) above room 

temperature are ideal for more efficient spintronics devices, and 

high TC ferromagnetic properties in DMS have been reported. 

However, the origin of room temperature ferromagnetism in DMS is 

still controversial. Four common possible origins of ferromagnetism 

in DMS have been proposed and this thesis aims to examine their 

feasibility.     Zinc oxide (ZnO) is well known for its direct band-

gap and large excitation energy, and exhibits unique piezoelectric 

and electric-optic properties. In particular, ZnO has been identified 

as a good host material for realizing wide band-gap DMS with high 

TC ferromagnetism by doping with magnetic ions. 

     In this project, Zn1-xTMxO (TM – Co, Cu, Ti and Mn) films were 

fabricated on Si (100) substrates by radio-frequency magnetron 

sputtering. Profilometry measurements, scanning electron 

microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction 

(XRD), X-ray absorption fine structure studies (XAFS) and 

vibrating sample magnetometer (VSM) measurements were used to 

characterize the samples and investigate the origins of magnetism. 
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Chapter 1 

Dilute Magnetic Semiconductors 

 

   1.1   Spintronics 

 

       Spintronic devices are devices exploiting spins as information carriers. 

They exhibit performances superior to conventional electronic devices. 

Semiconductors lasers fed by spin-polarized currents will have better mode 

stability and lower critical currents. Similarly, spin transistors (Fig. 3.1) 

consisting of a conductor sandwiched between ferromagnetic contacts is 

expected to be faster and more efficient than a standard field-effect 

transistor.1 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1.   Spin field-effect transistor (Spin FET).2 

 

     Semiconductor-based electronic devices, used for information 

processing and communications, have had great success using only the 
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charge of electrons. On the other hand, the spin of electrons in 

ferromagnetic materials plays the major role in information storage 

technology, for example in hard disks, magnetic tapes, and magneto-optical 

disks.3 There is now great interest to further enhance the performance of 

electronic devices by using both charge and spin of electrons 

simultaneously, so that the device would have the capability of mass 

storage and information processing at the same time. The combination of 

charge and spin of electrons is known as spintronics (spin-polarized 

electronics) or magneto-electronics.2  

 

1.2  Introduction to Dilute Magnetic Semiconductors   

 

     Dilute magnetic semiconductor (DMS) is a material in which a fraction 

of the host cations is substitutionally replaced by magnetic ions or 

appropriate rare earths.4 This leads to localized magnetic moments in the 

semiconductor matrix. Usually, magnetic moments originate from the 

partially filled 3d or 4f shells of transition metals (TM) or rare earths 

elements. The partially filled d states or f states contain unpaired electrons, 

in terms of their spin, which are responsible for their magnetic behaviour.4 

In DMS materials, the delocalized conduction band electrons and valence 

band holes interact with the localized magnetic moments associated with 

the magnetic atoms.4 Generally, when 3d transition-metal ions substitute the 

host cations, the resultant electronic structure is influenced by strong 

hybridization of the 3d orbitals of the magnetic ion and mainly the p 

orbitals of the neighbouring host anions.4 This hybridization gives rise to 

strong magnetic interaction between the localized 3d spins and the carriers 

in the host valence band.4    
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Fig. 1.2.   Classification of semiconductor based on its magnetic behavior: a) magnetic 

semiconductor, b) dilute magnetic semiconductor, and c) nonmagnetic semiconductor.5 

 

     The concept of DMS was first introduced by Dietl et al.1 who predicted 

the mean-field Zener model of ferromagnetism in ZnO and GaN above 

room temperature upon doping with transition elements such as Mn (on the 

order of 5% or more) in p-type materials in 2000. Sato et al.6 predicted that 

the ferromagnetic state Co2+ in Co-doped ZnO could be stabilized by s-d 

hybridization, pointing to the possibility that high-temperature 

ferromagnetic materials could be realized in n-type ZnO. By doping 

magnetically active atoms into semiconductors, dilute magnetic 

semiconductors (Fig. 1.2b) are formed having both semiconducting and 

ferromagnetic properties, and whereby spins can be controlled using B-

fields and E-fields. The idea of a dilute magnetic semiconductor is 

appealing because such a system has both semiconducting and 

ferromagnetic properties. Semiconductors such as those from group II-VI 

(e.g., ZnO, TiO2, and SnO2) and group III-V (e.g., GaAs, InSb) can be 

doped with transition metals (Cr, Mn, Fe, Co, and Ni). Physically, the 

magnetic ions will substitute a fraction of the cations in the host 

semiconductor. A major difficulty is the preparation and synthesis of 

perfectly doped DMSs due to the insolubility or instability of impurities in 

the host materials from the thermodynamic point of view.    

 

     There are five essential requirements for implementing a semiconductor 

in spintronics technology 2: 

1)  Efficient electrical injection of spin-polarized carriers into 

semiconductors 
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2)  Adequate spin diffusion lengths and lifetimes for transport in the device 

3)  Effective control and manipulation of the spin system 

4)  Efficient detection of the spin system to determine the output 

5)  Curie temperature (Tc) above room temperature            

      

    DMS are promising materials since they have charge and spin degrees of 

freedom in a single matrix leading to an interplay of magnetic, optical, and 

electronic functionalities. Many studies on DMS have been done, such as 

transition metal (Cr, Mn, Fe, Co, and Ni)-doped II-VI and III-V compound 

semiconductors. The transition metal-doped II-VI compound 

semiconductors include a variety of compounds consisting of various 

combinations of group II cations (Zn, Cd, and Hg) and group VI anions (O, 

S, Se, and Te) while the transition metal-doped III-V compound 

semiconductors include a variety of compounds consisting of various 

combinations of group III cations (B, Al, Ga, and In) and group V anions 

(N, P, As, and Sb).2 

 

    There is also much interest in oxide-based DMS because oxide 

semiconductors (e.g: ZnO, TiO2, and SnO2) have the following advantages 

over non-oxide semiconductors2: 

1. wide bandgap suited for applications with short light wavelengths  

2. transparency and dyeability with pigments 

3. high n-type carrier concentration 

4. easily grown at low temperatures         

 

         Much research on dilute magnetic semiconductors is currently on-

going. The aims are to study the mechanism of ferromagnetism and also to 

improve the efficiency of spin injection into the semiconductors.2 Due to 

the necessity that DMS materials must exhibit ferromagnetism with a 

critical temperature above room temperature in order to have practical 

applications in spintronic devices, Tc is naturally deemed to be the 

bottleneck issue.4 
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1.2.1   ZnO 

                     

     Zinc oxide (ZnO) is well known for its direct band-gap and large 

excitation energy, and exhibits unique piezoelectric and electric-optic 

properties. The band-gap is the approximately the absorption edge which 

corresponds to a particular wavelength at which the material absorbs light. 

In the series of 3d metal oxides from Sc to Zn, the band gap tends to reduce 

progressively. ZnO has a band gap of ~3.4eV, placing it in the vicinity of 

insulating materials. For ZnO, this happens around a wavelength of 380nm 

which is in the UV region of the light spectrum. The band-gap is tuneable 

from 2.8 to 3.3eV and from 3.3 to 4eV, depending on the alloying material.  

     Instead of the NaCl-type crystal structure found in most mono-oxides of 

3d metals, ZnO takes the wurtzite structure in which Zn and O are 

tetrahedrally coordinated, slightly distorted in the [111] direction.  It is 

generally accepted that 4s and 4p orbitals of Zn contribute to the chemical 

bonding of valence electrons, the bond is ionic but with covalent character.7 

The partial replacement of Zn by other TM elements can introduce 

additional electronic bands from 3d orbitals, significantly changing the 

degree of covalency and overall electronic configurations. Therefore, it is 

essential to investigate the local atomic and electronic configuration and 

arrangement of these dopants in ZnO.  

     In addition, ZnO has large exciton energy (~60meV) which is useful for 

efficient UV laser applications. In particular, ZnO has been identified as a 

good host material for realizing wide band-gap DMS with high TC 

ferromagnetism by doping with magnetic ions.8 The magnetic properties 

due to the doping of Ti, Mn, Co and Cu in ZnO prepared by a variety of 

methods have been reported.9-14 

 

1.3   Origin of magnetism in DMS 

 

     The first study on oxide-semiconductors (Mn-doped ZnO) was done by 

Fukumura et al.15 but it showed no ferromagnetic behavior. Another work 

by Ueda et al.16 using Pulsed Laser Deposition (PLD) technique to make 
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transition metal-doped ZnO films on α-Al2O3 (1120) substrates also 

reported no ferromagnetic behavior in (Mn, Cr, and Ni)-doped ZnO. 

However, their Co-doped ZnO (Zn1-xCoxO) films showed ferromagnetic 

behavior at room temperature. Many conflicting experimental results have 

been reported for TM doped ZnO.4 

     Theoretical results focusing on the magnetic properties and high TC 

behavior of DMSs have been reported4,17 but there is no consensus about 

the origin of the magnetic properties. The Zener model1,8 based on mean 

field theory takes into account the anisotropy of the carrier-mediated 

exchange interaction associated with spin-orbit coupling in the host 

material.  To achieve a high TC, a specific amount of magnetic ions and a 

sufficiently high concentration of holes are required which is not easily 

achievable from the experimental point of view. Using density functional 

theory calculations for TM doped ZnO, Sato et al.6,18 concluded that 

ferromagnetic states can be stabilized for V, Cr, Fe, Co and Ni-doped ZnO 

at concentrations ranging from 5 to 25%. A modified model proposed by 

Coey et al.19 ascribed the origin of ferromagnetism to the formation of 

bound magnetic polarons (BMP) which overlap to create a spin-split 

impurity band.   

Four common possible origins of ferromagnetism in DMS have been 

proposed. The first is the bound magnetic polaron (BMP) model.19 The 

second is the spin-split impurity-band model.20 The third is carrier-induced 

ferromagnetism.4 The fourth is the ferromagnetism of TM or TM oxide 

clusters found in DMS samples but this will not be discussed in detail. 
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1.3.1   Bound magnetic polaron model 

 

 
Fig. 1.3.   Representation of magnetic polarons. A donor electron couples its spin 

antiparallel to impurities with a half-full or more than half-full 3d shell. The figure is 

drawn for magnetic cation concentration x=0.1 and when the orbital radius of the magnetic 

cation is sufficiently large. Cation sites are represented by small circles. Oxygen is not 

shown; the unoccupied oxygen sites are represented by squares.4,19 

 

     A possible explanation for intrinsic magnetism can be found invoking a 

supercoupling mechanism based on the BMP model. An electron associated 

with a particular defect is confined in a hydrogenic orbital of radius rH = 

εr(m/m*)a0 =  γa0 and γ = εr (m/m*), where εr is the dielectric constant, m is 

the electron mass, m* is the effective mass of the donor electrons and a0 is 

the Bohr radius (0.53 Å).21 Taking into account a sufficiently large orbital 

radius, say for γ =7, overlap between a hydrogenic electron and the cations 

within its orbit leads to 

FM  supercoupling between them21, as shown in Fig. 1.3. The interaction 

between the hydrogenic electron and the cations is represented by a 

Heisenberg exchange Hamiltonian22: 

   ---(1) 
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where S is the spin of the TM ion and s is the donor electron spin. The 

donors tend to form a BMP, coupling TM ion within their orbits.21 The 

Hamiltonian of a two-polaron subsystem is given by Eq. (1), where the 

donor electron spin index j takes only two values j1 and j2 corresponding to 

the two polarons under consideration.21 

     The bound magnetic polarons20,23,24,25,26 are formed by the alignment of 

the spins of many TM ions with that of much lower number of weakly 

bound carriers such as excitons within a polaron radius.4 The basic idea is 

illustrated in Fig. 1.3. The localized holes of the polarons act on the TM 

impurities surrounding them, producing an effective magnetic field and 

aligning all spins.4 As the temperature decreases, the interaction distance 

(boundary) grows.4 Neighbouring magnetic polarons overlap and interact 

via magnetic impurities forming correlated clusters of polarons.4 FM is 

observed when the size of such clusters is equal to the size of the sample.4 

The model is inherently attractive for low carrier density systems such as 

many of the electronic oxides.4 The polaron model is applicable to both p- 

and n-type host materials. Although the direct exchange interaction of 

localized holes is antiferromagnetic, the interaction between bound 

magnetic polarons may be FM for sufficiently large concentrations of 

magnetic impurities.4 This enables FM ordering of the TM ions in an 

otherwise insulating or semi-insulating material.  
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1.3.2   Spin-split impurity-band model 

 

 

Fig. 1.4.   Schematic density of states for (a) TM= Ti, (b) TM = Mn, and (c) TM = Co. The 

Fermi level lies in a spin-split donor impurity band. 

 

     M. Venkatesan et al19 reported that the variation of magnetic moments 

across the TM series in TM-doped ZnO can be explained in terms of the 

spin-split impurity-band model20 which can account for FM in high-k 

dielectrics doped with a few percent of transition-metal ions. For the light 

3d elements, the 3d
↑ states lie high in the 2p(O) -- 4s(Zn) gap, overlapping 

the donor impurity band which is spin split19 as shown in Fig. 1.4. In the 

middle of the series, there is no overlap with the 3d levels and exchange is 

weak, but towards the end of the series the 3d
↓ states overlap the impurity 

band, which then has the opposite spin splitting for the same occupancy.19 

High Curie temperatures are found whenever unoccupied 3d states overlap 

the impurity band, but not otherwise.19 The likely origin of the donor 

impurity band in ZnO films is lattice defects such as oxygen vacancies 

which can trap between one or two electrons (F0 centers).27,28,29 

 

1.3.3   Carrier-induced ferromagnetism 

 

For carrier-induced ferromagnetism (FM), the samples must first be 

conducting. There are several carrier-induced ferromagnetism based models 
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like Ruderman-Kittel-Kasuya-Yoshida (RKKY) type interactions and 

double exchange interactions. The basic idea behind RKKY interaction is 

based on indirect exchange coupling between the magnetic ions and the 

conduction band electrons due to Coulomb exchange. The conduction 

electron is magnetized in the vicinity of the magnetic ion, with the 

polarization decaying with distance from the magnetic ion in oscillatory 

fashion.4 This oscillation causes an indirect superexchange interaction 

(RKKY) between two magnetic ions on the nearest or next nearest magnetic 

neighbours.4 The coupling may result in a parallel (FM) or an anti-parallel 

(anti-FM) setting of moments dependent on the separation between 

interacting atoms.4      

     As the donor concentration δ increases, there comes a point where the 

impurity-band model breaks down and the donor states merge with the 

bottom of the conduction band.20 The RKKY interaction is operative even 

when the Fermi level lies below the mobility edge, provided the separation 

of magnetic cation neighbours is less than the localization length.20 The 

Fermi wavevector kF is small at the bottom of the band and the RKKY 

interaction is always ferromagnetic at low electron densities.20 At higher 

densities, the interaction will provide as many negative as positive 

exchange bonds, and the system becomes a spin glass.20 The first change of 

sign of the RKKY function F(ξ) = –[(ξcos(–sinξ)/ξ4] is at ξ = 2kFr = 2.87, 

where kF is the Fermi wavevector (3π2n☐)1/3.20 In a free-electron band the 

corresponding condition for ferromagnetism x > 2.6nδ, is easily satisfied.20 

The Curie temperature in the molecular field approximation considering 

only z nearest-neighbour sites is TC = 2zJRKKYS(S + 1)/3kB where JRKKY is 

given by the expression30 [(Jsd
2
m*kF

4
n

2)/(32π3
ħ

2
nO

2)]F(ξ). In order to 

enhance the interaction, it would be necessary to transfer conduction-band 

electrons to the 3d impurities but this is precluded for the second half of the 

3d series if the spin polarization of the conduction band is positive.20 

     In the double exchange mechanism originally proposed by Zener,31 

magnetic ions in different charge states couple with each other by virtual 

hopping of the extra electron from one ion to the other.4 In the DMS 

material, if neighbouring TM magnetic moments are in the same direction, 
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the TM-d band is widened by the hybrization between the up-spin states.4 

Therefore, in the FM configuration, the band energy can be lowered by 

introducing carriers to the d band.4 In these cases, the 3d electron in the 

partially occupied 3d-orbtials of the TM is allowed to hop to the 3d-orbitals 

of the neighbouring TM if neighbouring TM ions have parallel magnetic 

moments.4 As a result, the d-electron lowers its kinetic energy by hopping 

in the FM state. This is so called the double exchange mechanism.4 

 

1.4   Scope of thesis 

 

 It is at presently unclear whether all reports of ferromagnetism 

particularly at or above room temperatures are indeed intrinsic magnetic 

behaviour or arising from clustering and segregation effects. However, the 

observed ferromagnetism of Ga1-xMnxAs is well-established and is 

universally believed to be an intrinsic DMS phenomenon. It is not an 

overstatement that the expected advantages of GaN and ZnO-based 

spintronics are truly exciting although the efforts in material science and 

devices are still in their embryonic stage. Moreover, there are many 

challenges to consider including whether high ferromagnetic transition 

temperature and carrier mediated ferromagnetism can be realized.  

     The scope of the remaining thesis is as follow: The second chapter will 

describe the set-up of the XDD beamline in Singapore Synchrotron Light 

Source (SSLS) and the theories of X-ray Absorption Fine Structure 

(XAFS). The third chapter will discuss the principles of Radio-Frequency 

(RF) magnetron sputtering and the procedure of the fabrication of the TM-

doped thin films. The fourth, fifth and sixth chapters cover the structural 

characterization, XAFS studies and the magnetization studies of the 

samples. Finally, the seventh chapter is the conclusion chapter.   
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Chapter 2 

X-ray Absorption Fine Structure 

 

   2.1   Introduction  

 

     In this thesis, a range of analytical techniques are used to study 3d 

metal doped ZnO thin films, namely profilometry, SEM, XRD, XRF, 

SIMS, XAFS and VSM etc. Details of these techniques can be easily found 

in the references [1]–[8]. In this chapter, we will describe the XAFS 

technique, which is the main technique used in this thesis. 

X-ray absorption fine structure (XAFS) measurements reveal the 

absorption characteristics of x-rays absorbed by an atom at energies near 

and above the core-level binding energies of that atom. Specifically, XAFS 

is the modulation of an atom’s x-ray absorption probability due to the 

chemical and physical state of the atom. XAFS spectra give information on 

the immediate environment around each absorbing species, and are 

especially sensitive to the formal oxidation state, coordination chemistry, 

and the distances, coordination number and species of the atoms 

immediately surrounding the selected element. Hence, XAFS provides a 

practical, and relatively simple, way to determine the chemical state and 

local atomic structure for a selected atomic species. XAFS can be used in a 

variety of systems, for example in the solid (crystalline or amorphous), 

liquid or gaseous state.9 

     The x-ray absorption spectrum is typically divided into two regimes: x-

ray absorption near-edge spectroscopy (XANES) and extended x-ray 

absorption fine-structure spectroscopy (EXAFS). XANES is strongly 

sensitive to the formal oxidation state and coordination chemistry (e.g., 

octahedral, tetrahedral coordination) of the absorbing atom, while EXAFS 

is used to determine the distances, coordination number, and species of the 

neighboring atoms surrounding the absorbing atom.9 XAFS has the 
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advantage that it can provide element-specific structural information on 

crystalline or non-crystalline systems with a bond-length accuracy of 0.01 

Å. Therefore, XAFS can be employed as a useful tool to study the DMS 

system, particularly to probe the dilute doping and impurities in the host.10 

     The development of the XANES and EXAFS techniques came only after 

the 1970s when intense X-ray sources became readily available through 

synchrotron laboratories. Synchrotron Light (SL)1,2,11,12 is produced by 

electrons circulating in a storage ring at almost the speed of light. The 

electrons are deviated by the magnetic field of the bending magnets 

distributed all along the circumference and when the trajectory of the 

electrons bends, they emit SL composed of bright infra-red, ultraviolet and 

X-ray light through the bremsstrahlung (braking radiation) process. These 

intense sources of X-ray light make it possible for XANES and EXAFS 

methods to be employed to investigate structures of materials. 

 

2.2   Principles of XAFS  

 

     When x-rays are incident on the sample, the x-rays are absorbed by the 

electrons in the atom. The atom absorbs an x-ray of energy E, ejecting a 

core electron of energy E0 and emitting a photoelectron of energy (E-E0). 

When the x-ray energy is large enough to promote the core electron to the 

continuum, there is a sharp increase in the absorption. The absorption 

spectrum for an isolated atom is depicted on the left of Fig. 2.1. However, 

in the presence of neighboring atoms in the vicinity, the emitted 

photoelectron interacts with the surrounding atoms.13 
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Fig. 2.1.   X-ray Absorption due to isolated atom and with scattering atom.9 

 

      When the wave nature of the ejected photoelectrons are taken into 

account and the atoms are regarded as point scatterers, a simple picture can 

be seen in which the backscattered waves interfere with the forward wave 

to produce either peaks or troughs as illustrated by Fig. 2.2. This is an 

interference effect on the final state and results in an oscillatory feature seen 

in the EXAFS region to the right of Fig. 2.1. 

 

photon electrons

 

Fig. 2.2.   Interference of photoelectrons in multi-atom system.14 

 

     The wavelength of the photoelectron is dependent on its energy and thus 

the phase of the back scattered wave at the central atom will change with 

the energy of the incoming photon. Since the backscattering amplitude and 
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phase are dependent on the type of atom causing the backscattering and its 

distance from the central atom, information regarding the coordination 

environment of the absorbing atom can be obtained by analyzing the 

absorption spectrum.13     

 

 

Fig.  2.3.   Segmentation of Absorption Spectrum into pre-edge, XANES and EXAFS 

region.13 

 

      A typical XAFS spectrum is shown in Fig. 2.3 with the different regions 

labelled. The energy range of the absorption spectrum from the absorption 

edge till approximately 50 electron volts above the edge is termed as the 

XANES region, while the EXAFS region extends approximately 200 

electron volts beyond the XANES region.  

     The XANES regime is where the oscillations contain information about 

the valance number, anti-bonding states etc within the atom.  As illustrated 

in Fig.2.4, multiple scattering from various neighbours are dominant in 

XANES whereas single scattering from its direct neighbour is dominant in 

EXAFS. The EXAFS spectrum contains information about the number and 

species of neighbouring atoms as well as their distances away from the 

absorbing atom.  
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Fig. 2.4.   Photoscattering Processes in XANES and EXAFS.14 

 

2.2.1   XANES 

 

     The pre-edge absorption is usually due to electronic transitions of 

electrons from the lower core levels to the higher unfilled or half-filled 

molecular orbitals. These absorptions may be due to s→d orbital transitions 

or p→f orbital transitions. However, the probabilities for such transitions 

are usually not very high, thus resulting in a low absorption in the pre-edge 

region.13 The x-ray absorption region near the edge is known as XANES.  

     XANES gives information on the valence state of the selected type of 

the atom in the sample. The local symmetry of its unoccupied orbitals can 

also be deduced in the shape and energy shift of the x-ray absorption edge 

itself.13 Theoretically, the anti-bonding states, bonding information and 

even the Density of States (DOS) can be extracted from the XANES 

spectrum. However, the details of XANES are currently not very well 

understood, and there are no simple models describing the XANES 

features.  

     The different oxidation states of the sample would result in a chemical 

shift in the absorption edge. Thus, the position of the edge gives an 

indication of the oxidation state of the sample. Typically, as the oxidation 

state increases, the edge lies at a higher energy. This is because when the 

elements are oxidized, the valence electrons are more tightly bound to the 

nucleus, resulting in a higher energy required to remove the electron from 

its bound state.15  
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     Since the XANES spectrum is also sensitive to the local geometry of the 

sample, there should be a distinct difference for different bond 

coordinations. For a sample of octahedral structure, due to its symmetry 

about its centre (centro-symmetry), no p-d mixing is allowed. Only 

quadrupole transitions are possible but by Fermi’s golden rule, this 

transition probability is very low. This results in very little or an absent pre-

edge feature in the XANES spectrum. When the structure is distorted from 

the octahedral structure, p-d mixing is allowed, resulting in dipole 

transitions in the pre-edge as well as quadrupole transitions. These results in 

a larger pre-edge peak and in a pure tetrahedral sample Thus, the pre-edge 

feature is indicative of geometry in the XANES structure.15 

 

2.2.2   EXAFS 

 

     EXAFS is the region of the absorption spectrum roughly 50eV after the 

absorption edge till several hundred electron volts later. In EXAFS, we can 

determine the thermal or structural disorder of the atomic positions which 

are determined from the oscillatory part of the absorption coefficient above 

the major absorption edge. EXAFS is mainly caused by single scattering off 

the nearest neighbours, and this scattering effect is much better understood 

compared to XANES. The EXAFS equation9: 

                                                                                                                                            

                                                                                                                                            --- (1) 

                                                                                                                                     

                              

Where Nj = Coordination number, δj(k) = Phase shift, Fj(k)= Scattering 

amplitude, σj  = Debye Waller factor, Rj =Bond length, s0 = inelastic factor. 

 

      XAFS oscillations χ(k) are found to be proportional to 1/kR2 [spherical 

wave], N, Fj(k), sin(2kRj+δj(k)) [interference item], exp(-2k2σj
2) [disorder 

factor] and exp(-2Rj/λ) [electron mean free path]. 
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     Within the neighbourhood of the element of interest, there is usually 

more than one type of scattering atom. Depending on the scattering atom, 

the scattering amplitude f(k) and the δ(k) varies. The EXAFS equation is 

useful for modelling the effects of scattering atoms around our absorbing 

element. Hence, we are able to determine R, N and the mean square 

disorder of neighbour distance σ2. Thus, the measured fine structure will be 

a sum of the contributions from each scattering atom type. This is 

accommodated by taking a sum of the atoms in the neighbourhood, and j 

represents the individual coordination shell of identical atoms at 

approximately the same distance from the central atom. Since f(k) and δ(k) 

depends on the atomic number of the scattering atom, we can also 

determine the species of the scattering atom.9 

 

2.3   XDD Beamline 

 

      The X-ray Development and Demonstration (XDD)16,17 beam line and 

its experimental station are designed for general purpose diffractometry, 

fluorescence detection and absorption spectroscopy.  

 

 
Fig. 2.5.   Picture of XDD Beamline at SSLS13 

     

      The X-rays produced by the synchrotron are first directed to a focusing 

mirror, which is then sent to a monochromator, allowing x-rays of only a 

particular energy to pass through. Finally, x-rays of selected energy are 

allowed into the experimental hatch.13 The optical layout of the XAFS 

facility in the XDD beamline is illustrated in Fig.2.6. Synchrotron radiation 
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beams from the superconducting bending magnet (4.5 Tesla) are confined 

by a front slit (slit1), focused horizontally and collimated vertically by a 

toroidal mirror, and monochromatized via a double-crystal 

monochromator.10 The monochromatic beams pass through a UHV 

chamber, confined by an exit slit (slit2), and finally enter the experimental 

hutch where samples are mounted.10 The sample position is 14 m long from 

the light source point. The Si (111) double crystal monochromator18 covers 

an energy range from 2.5 to 10 keV which incorporates measurable 

elements in the periodic table: S to Zn, K-edge; Ru to Ta, L-edge; Pt to Bi, 

M-edge and the L-, M-edges of most rare earth elements.10 The beam size is 

about 4 mm horizontally and 3 mm vertically at the sample position.10 The 

3rd order harmonic component was removed by a collimating mirror 

installed upstream of the monochromator which cuts off fluxes with 

energies higher than 10 keV.  

 

 

 

 

Fig. 2.6   Optical layout of the XAFS facility at the XDD beamline of SSLS.14 
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Fig. 2.7.   Photon flux measured by an ion chamber at energies from 2.4 to 10.5 keV, 
vertical and front horizontal slit opening were set to 4 and 5 mm respectively. The flux was 
normalized to 200 mA of ring current.10 
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     Inside the storage ring, electrons with energy of about 700 MeV are 

accelerated and orbited through 4.5 T dipoles in the Helios 2.19 The flux 

estimated at the sample position of the XDD beamline is plotted in Fig. 2.7 

at energies from 2.4 to 10.5 keV measured by the ionization chamber. The 

vertical and front horizontal slit opening at the front end were set to 4 and 5 

mm, respectively, the flux was normalized to 200 mA ring current.10 The 

photon flux is related to the critical energy (1.47 keV) of the synchrotron 

storage ring, and it falls significantly for energies higher than 8 keV. The 

drop at 3.2 keV is due to the argon absorption in air since there is a 20 mm 

long air path between the exit window and the ion chamber, and the 

measurements were performed in air.10 The high photon flux from 

synchrotron radiation light source which is several orders of magnitude 

higher than that of the laboratory X-ray generators is necessary for XAFS 

experiments.  

     At higher energies than 10 keV, the photon count drops and is not 

suitable for XAFS experiments. Thus, experiments conducted at the SSLS 

XDD beamline are limited to elements with absorption edges (K- L- M- 

edges) in the range from about 4keV till 8.5keV.13 Therefore, the list of 

elements suitable for XAFS measurements at the XDD beamline is 

displayed in Fig. 2.8. Some elements are measured at the K edges, while 

others are measured at the L or M edges.  

 

            
Fig. 2.8.   Suitable elements for XAFS at XDD Beamline.14 
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2.4   Sample Requirements 

 

     The samples used for XAFS measurements at the XDD beamline are 

usually solid (crystalline or amorphous) samples, though XAFS can be 

applied even to liquid and gaseous samples. However, certain modifications 

must be made to the current experimental end station in order to do XAFS 

experiments for liquid and gaseous samples.13 

     For transmission mode measurements, the solid samples are ground to a 

powder of very fine particle size. The particle size is ideally less than 1 

absorption length or roughly 400 mesh. The unit “mesh” is for description 

of particle size where 400 mesh indicates that there are 400 lines per inch in 

the wire grid.13 By a simple conversion, 400 mesh indicates that the particle 

size is around 60 microns in diameter.13 They are then either spread on 

scotch tape and folded a number of times or mixed with fine powders of BN 

or LiF and pressed into pellets.  

     If the method of detection is by Total Electron Yield (TEY), the sample 

has to be conductive, so it is sometimes spread on carbon tape, or ground 

into fine powder then mixed with graphite and pressed into pellets.13 The 

gauge as to how thick the sample should be or how many folds of scotch 

tape to make, is dependent on the best signal to noise ratio for the element 

of interest whereby the absorption jump ratio is ideally around 1, as 

described in Fig. 2.9. 

 

                 

Fig. 2.9.   Ideal Absorption Jump for XAFS Experiments.13 
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2.5   Methods of Detection 

 

     When x-rays interact with matter, several processes may occur as 

illustrated in Fig 2.10. The x-rays may end up scattered, transmitted, or 

absorbed and producing fluorescence x-rays and photoelectrons. X-rays that 

are not absorbed by the sample pass through the sample directly and are 

detected as transmitted x-rays. 
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                              Fig. 2.10.   Interaction of X-ray with matter.14 

 

     We can deduce the absorption of x-rays by the element of interest by 

either measuring the intensity of the transmitted x-rays, photoelectrons 

produced or the fluorescence photons produced. These methods of detection 

are namely measurements by Transmission, Total Electron Yield (TEY) 

and X-ray Fluorescence.13 Our choice of method of detection is dependent 

on the concentration of our target element in the sample. Transmission is 

always the preferred technique but when the sample concentration is low 

(<5%), the absorption jump is low and the spectrum formed may have a 

large noise to signal ratio.13 Hence, for dilute samples, we can adopt either 

TEY or X-ray Fluorescence methods for measurements. Fig. 2.11 shows a 

guide to what methods to use for different element concentrations. The 

electron yield decreases with increasing atomic number Z and the 

fluorescence yield increases with Z. This means that TEY is most effective 
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with lighter elements and is ineffective with heavier elements as the 

electron yield signal becomes too weak and vice versa for X-ray 

Fluorescence. 

     In the sections below, transmission measurement mode and X-ray 

Fluorescence measurement will be discussed in detail. TEY is excluded 

from the discussions since it is not utilized in the project.  

 
Fig. 2.11.   XAFS methods of detection for different concentration.20 

 

2.5.1   Transmission 

 

     Transmission measurement mode is preferred as very little statistical 

noise is introduced through the measurement technique. The sample needs 

to be totally homogeneous because the bulk properties of the sample are 

being measured and thickness effects become important. Particle size can 

also contribute to thickness effects unless it is considerably smaller than the 

absorption length.  

     The method of detection is to place the ionisation chambers in line with 

the sample and the incident x-ray. A typical experimental setup for XAFS 

transmission measurements at the XDD beamline is shown in Fig. 2.12. The 

x-rays enter the first ionisation chamber and the intensity of the incident x-

ray (I0) is measured. The x-rays is then partially absorbed by the sample  

and the transmitted x-rays enter the ionisation chamber 2 which measures 
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the intensity I. I, I0 and the thickness of the sample t are related by Beer’s 

law: I=Ioe
-µt

 where µ is the absorption coefficient of the sample. The 

limitation of this method is that the sample has to be of an appropriate 

thickness. If the sample is too thin, the photons just pass through the sample 

without interacting but if it is too thick, the absorption is too great that no 

photons enter Ionisation chamber 2.13 

 

            
Fig. 2.12.    Experimental Setup at XDD beamline for XAFS measurement by 

transmission.13 

 

2.5.2   X-Ray Fluorescence 

 

     Below a certain level of concentration (<5%), the change in absorption 

before and after the edge will become indiscernible with the transmission 

technique.13 In situations like this, XAFS measurements are performed in 

the fluorescence mode. The probability of fluorescence is proportional to 

the absorption probability but the fluorescence intensity that we measure 

has to travel back through the sample to get to the detector.9 Since all matter 

attenuates x-rays, the fluorescence intensity, and therefore the XAFS 

oscillations, can be damped due to this self-absorption effect.9 Thus, the 

fluorescence mode is not suitable for XAFS measurements when significant 

self absorption occurs. A schematic diagram of the Lytle detector used for 
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X-ray Fluorescence is shown in Fig. 2.13. The XDD beamline utilizes a 

home-made Lytle-type detector for X-ray Fluorescence measurements. 

 

                           
Fig. 2.13.    Schematic Lytle Detector.14 

 
     Assuming that the sample is at 45o

 to both the incident beam and the 

fluorescence detector, the measured fluorescence intensity14 goes as: 

 

                                                                                                                            --- (2)      

 

 

Where ε = fluorescence efficiency, Ω = the solid angle of the detector, Ef = 

the energy of the fluorescent x-ray, µx (E) = the absorption from the element 

of interest, µt (E) = the total absorption in the sample: µt (E) = µx (E) + µother 

(E) 

 

For thin or dilute samples, the fluorescence intensity14 will follow the 

expression: 

  

                                                                          where                                                   ---(3) 

 

For concentrated samples, µx (E) and µother (E) are comparable, and the 

XAFS will be severely damped by self-absorption. For thick and 

concentrated samples, the equation for the fluorescence intensity14 will be: 
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                                                                         where                                                  ---(4)         

 

2.6   Data Analysis  

 

     The WinXAS code21 was used for data analysis. For samples measured 

with more than one scan, all scans were averaged to improve statistics. The 

spectra for XANES are sectioned accordingly to remove glitches. Each 

spectrum was normalized by applying linear fits to the pre and post-edge 

regions. A macro was recorded and employed for automatic data processing 

for all scan data to allow for precise comparability of results. The data 

analysis for EXAFS follows a standard procedure. Firstly, the spectra are 

subjected to Golay-Savitzky smoothing with polynomial of 0/1 degree. 

Normalization was performed by employing linear and polynormial fits to 

the pre-edge and post-edge regions of the absorption spectra respectively. 

The subsequent processing includes the E0 selection, transforming from 

energy space to momentum (k) space, a 7-segment spline fit to post-edge 

region to extract XAFS functions, k3 weighting to amplify the oscillation of 

the spectrum and Fourier transform (FT) from k space to real R space.13 A 

macro was recorded and employed for the automatic data processing of all 

scan data.  

     In the FT, the appropriate XAFS functions in k space were extracted for 

Co, Cu, Ti and Mn K-edges respectively, k3 weighted and a Bessel window 

function was employed. The data fit was performed in R space using phase 

shift and backscattering amplitude extracted from the TM-replaced ZnO 

model.22 The model was constructed based on the wurtzite structure of ZnO 

where one Zn atom (central absorber) was replaced by the doped TM 

atoms. The inelastic factor, s0, was determined by fitting to standard 

references and fixed.  

 

 

 

0 ( / 4 ) ( )

( ) ( )
x

f

t t f

I E
I

E E

ε π µ

µ µ

Ω
=

+
[ ( ) ( )] 1

t t f
E E dµ µ+ >>



30 

 

References 

1. X-ray characterization of Materials, edited by Eric Lifshin, Published  
        by Wiley-Vch.  
2. Surface characterization: a user's sourcebook, edited by D. Brune,  
        Published by Wiley-Vch. 
3. Physics of magnetism and magnetic materials, by K.H.J. Buschow and   
        F.R. de Boer. Imprint New York : Kluwer Academic/Plenum  

                                    Publishers, c2003. 
4. Introduction to focused ion beams : instrumentation, theory, techniques  
        and practice, edited by Lucille A. Giannuzzi, Fred A. Stevie. Imprint  
        New York : Springer, c2005. 
5. Surface and thin film analysis : principles, instrumentation,  
        applicatons, edited by H. Bubert and H. Jenett. Imprint Weinheim:  

                                    Wiley-VCH, 2002. 
6. Scanning electron microscopy and x-ray microanalysis, by Joseph I.  
       Goldstein. Imprint New York : Kluwer Academic/Plenum Publishers,  
       c2003. Edition 3rd ed. 
7. Scanning electron microscopy, X-ray microanalysis, and analytical   
        electron microscopy: a laboratory workbook / Charles E. Lyman.  

                                    Imprint New York : Plenum Press , c1990. 
8. Handbook of silicon semiconductor metrology, edited by Alain C.   
        Diebold. Imprint New York : Marcel Dekker, 2001. 
9. Matthew Newville, Consortium for Advanced Radiation Sources,  
        University of Chicago, (2004). Fundamentals of XAFS. Retrieved on  
        September 30, 2004, from 

        http://cars9.uchicago.edu/xafs/xas_fun/xas_fundamentals.pdf 
10. Tao Liu, Zhihua Yong and Andrew T. S. Wee, Hairuo Xu and  
        Weeshong Chin, Ping Yang, ICMAT 2007. 
11. Some basic principles of synchrotron radiation. Anonio Juarez, AmLm  
        group, 2001  

12. Yong Zhihua, Andrew Wee, Gao Xinyu, National University of  
        Singapore, Department of Physics, Synchrotron radiation studies of  

       Cobalt doped Dilute Magnetic Semi-conductors, Honours Year Project  
       2005 Nov.         
13. Toh Ping Yong, Andrew Wee, Liu Tao, National University of  
       Singapore, Department of Physics, XAFS Studies on Eu, Mn and Co  

       doped ZnO Nanoparticles, Honours Year Project 2006 April. 
14. Some basic and practical aspects of X-ray Absorption Fine Structure   
        Spectroscopy based on synchrotron radiation, a presentation by Dr Liu  

                                    Tao, National University of Singapore, Department of Physics, 2005  
                                    Sept. 

15. Course Characterization Techniques in Heterogeneous Catalysis  
        January 5th, 2004 JeroenA. vanBokhoven, Retrieved on Jan 2006,   
        from http://prins00.ethz.ch/Teaching/xanespdf.pdf 
16. P. Yang, D. Lu, R. Kumar and H.O. Moser, Nucl. Instr. and Meth. in  
        Phys. Res. B 238, 310 (2005). 
17. SSLS official website, XDD beamline details: 



31 

 

       http://ssls.nus.edu.sg/facility/beamlines/xdd/xdd.htm 
18. Farideh Jalilehvand, Ph.D. Assistant Professor University of Calgary.  
       (2002). X-ray Absorption Spectroscopy (XANES, EXAFS) Synchrotron.  
       Retrieved on September 30, 2004, from  
       http://www.chem.ucalgary.ca/research/groups/faridehj/index.html 
19. X. Yu, O. Wihelmi, H.O. Moser, J. Electron Spectrosc. Relat.  
        Phenom., 144, 1031(2005). 
20. Carrying out an EXAFS Experiment:  
        http://srs.dl.ac.uk/xrs/Stations/basics/basic_EXAFS.htm 
21. Ressler, T. J. Physique IV, 7, C2 (1997). 
22. Tao Liu, Hairuo Xu, Wee Shong Chin, Zhihua Yong, and Andrew T.  
        S. Wee, J. Phys. Chem C, 112, 3489 (2008) 
 

 
 

 

 



 32

Chapter 3 

Fabrication of 3d Metal Doped ZnO 

thin films 

 

3.1   Reactive Radio-frequency magnetron sputtering 

 

     The planar magnetron sputtering source was invented at the 

beginning of the seventies.
1,2,3

 Magnetron sputtering became a well 

established commercial technique for the deposition of metal, optical 

films and semiconductors films many years later. It has many important 

advantages over other thin-film deposition methods such as evaporation, 

chemical vapour deposition (CVD) or spray pyrolysis, namely3,4: 1) 

Low substrate temperatures (down to room temperature); 2) Good 

adhesion and high purity of films on substrates; 3) High deposition 

rates; 4) High uniformity of thickness of the deposited films; 5) Good 

controllability and long-term stability of the process; 6) Good ability to 

maintain the stoichiometry of original target; 7) Low cost; 8) Scalability 

to large areas; 9) Better reproducibility of films. 

     Two excitation modes are used in magnetron sputtering, namely 

direct current (dc) and radio-frequency (rf) modes.  If a chemical redox 

reaction occurs, it is called reactive magnetron sputtering. The reactive 

rf sputtering mode was used in our work since it is more suitable for 

insulating targets. 
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3.2   Principles of RF magnetron sputtering 

 

                         

 

Fig. 3.1.   Schematic diagram of a magnetic sputtering configuration for simultaneous 

rf and dc excitation.
3
 

 

 

 

 

   

 

 

 

    

 

 

 
 

Fig. 3.2.   Schematic of the ion-solid interactions and the sputtering process.
4
 

 

     A schematic diagram of magnetron sputtering configuration is 

shown in Fig. 3.1 and the process is illustrated in Fig. 3.2. When a high 

primary ion sputtered particle 

ion or neutral atom 

primary ion 

penetration depth 

implanted ion 
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energy ion bombards a target, it knocks atoms near the target surface 

from their equilibrium positions, causing these atoms to move around in 

the material and undergo further collisions, and finally causing the 

ejection of atoms through the target surface. This ejection process is 

known as sputtering. Reflected ions, neutral atoms and secondary 

electrons may also be produced along with the target atoms. The ejected 

target atoms are then made to condense on a substrate to form a thin 

film.4 

     In rf sputtering, which is suitable for both conducting and insulating 

targets, a high frequency generator (13.56MHz) is connected between 

the metal electrodes where the target is placed.
5
 Neutral gas is 

introduced into the vacuum chamber. When a large rf potential (~1-1.5 

kV) is applied across the metal electrodes, glow discharge can be 

initiated and electrons oscillating in the alternating field have sufficient 

energy to cause further ionizing collisions, and the plasma which is a 

complex gaseous state of matter comprising of free radicals, electrons, 

photons, ions, and various neutral species can be self-sustained. The 

large rf potential required to initiate the discharge is no longer 

necessary once it has been attained.  

     Due to their higher mobility as compared to ions, many more 

electrons will reach the target surface during the positive half-cycle 

than ions during the negative half-cycle, and the target, being mounted 

capacitively to the rf source, will become self-biased negatively. 4 The 

negative dc potential on the target surface then repels many electrons 

from the vicinity of this surface, creating a torus-like plasma in front of 

the target. In the rf discharge, the electrons are able to follow the rf 

frequency of 13.56MHz while the ions are not, due to their large inertia. 

This kind of excitation is much more effective compared to ionization 

by non-oscillating secondary electrons in the dc discharge, leading to 

lower target voltages in the rf discharge.  However, the magnetic 

confinement of the electrons is not as good due to the negative dc 
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potential on the target surface.
3 

The collection of charged particles in 

the plasma will bombard the target and sputtering can be achieved. The 

plasma will not form at frequencies less than 10 kHz and 13.56 MHz is 

the frequency generally used for rf sputtering.
 4

 

     Magnetic field effects are used in sputtering systems. In the 

conventional sputtering systems, electrons escaping from the inter-

electrode space as a result of random collisions will be lost to the walls 

and no longer oscillate in the rf field. Thus, there will be insufficient 

electrons in the plasma to cause ionization, leading to a loss to the glow. 

To minimize this loss, a magnet is placed behind the metal electrodes.
 

The purpose of using a magnetic field in a sputtering system is to 

constrain the electrons, and cause them to produce more ionization.
 4

 

The use of magnetic field in sputtering is termed as magnetron 

sputtering and this is particularly useful where high deposition rates and 

low substrate temperatures are required.
5
 

     The basic feature of a magnetron discharge is the confinement of the 

plasma in front of the target and this can be achieved by the 

combination of electric and magnetic fields. The magnetic field is 

parallel to the target surface and orthogonal to the electric field.
 5

 The 

magnetic field strength is adjusted in such a way (about 20 to 200mT) 

that the electrons are significantly influenced by the magnetic field 

while the ions are not. The electrons perform cycloidal orbits in the 

crossed electric and magnetic fields, leading to very high ionization 

efficiency. Thus, magnetron discharges can be sustained at much lower 

pressures (<10
-2

 Pa) and/or higher current densities than the glow 

discharges without magnetic assistance. 
3 

The rf system requires an 

impedance matching network to ensure maximum effective power 

delivered to the electrodes. Adequate grounding of the substrate 

assembly is necessary to avoid undesirable rf voltages developing on 

the surface.
 4
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     The potential distribution in the discharge between the target and the 

substrate is essential for the sputtering and the deposition of the film. 

This potential distribution determines the energies of the ions and 

neutral species which contribute to the deposition process. The external 

discharge parameters such as working pressure, discharge power and 

design of the magnetic fields (i.e. balanced or unbalanced magnetrons) 

influence the potential distribution and hence the particle energies. The 

potential distribution for rf excitation is shown schematically in Fig. 3.3. 

3
 

 

              

Fig. 3.3.   Potential distribution in a magnetron sputtering discharge, excited by rf.
 3
 

 

     The working gas pressure typically ranges from a 10
-2

-10
-3

 Torr, 

depending on factors such as target material, rf voltage etc. If the 

working gas pressure in the rf system is too low, the electrons in the 

plasma do not cause sufficient ionizations. On the other hand, if the gas 

pressure is too high, the electrons are slowed by elastic collisions, 

resulting in insufficient energy to cause ionizations. In addition, the 

ions generated may not have enough energy to produce secondary 

electrons when they strike the target surface. For both situations, the 

plasma will not appear stable.4 

     Usually, films sputtered at room temperatures are amorphous but an 

increase in substrate temperature or post-deposition heat treatment 
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improves the crystalinity and grain size. The quality of the films 

depends on various deposition parameters such as plasma conditions, 

sputtering rate, substrate temperature, sputtering gas mixture, sputtering 

pressure, etc. 
5
 

 

3.3   Discovery-18 Deposition system 

 

      

Fig. 3.4.   Discovery-18 Deposition system and control panel 

 

     The sputtering system utilized in the fabrication of the doped ZnO 

thin films is the Discovery-18 Deposition system shown in Fig. 3.4. It is 

a semi-automatic system that has essentially all the features described 

in the above section. It has three planar magnetron sputter sources, with 

rf/dc capability, allowing multi-target sputtering of conducting and 

insulating targets to be done simultaneously. In addition, it is equipped 

with a rf-biasable, rotatable substrate stage. Substrate heating is also 

possible to 400 °C. The pumping assembly comprises of one rotary 

pump which serves as a backing pump for the turbomolecular pump. 

The chamber can be pumped down to high vacuum pressures of 10
-7

 

torr. The total flow rate of the sputtering gases is controlled by their 
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respective mass flow controllers (100 sccm full scale). The chamber is 

connected to a water cooling system.
4
 

 

3.4   Cleaning and preparation of Si and glass substrates 

 

     Silicon (100) wafers and thin glass slides are used as substrates for 

deposition. Silicon wafers are selected as it is the most widely used in 

semiconductor industry and also due to its low cost. Thin glass slides 

are used to study the contrast in the textures and properties of the films 

grown.  

     Si(100) substrates and glass slides were cleaned chemically before 

mounting in the vacuum chamber. A clean substrate that is free from 

impurities and oil layer will facilitate epitaxial growth and minimize 

stacking faults as well as pin holes in the resulting film.  
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Si substrates are pre-cleaned in 
acetone ultra-sonic bath for 10mins

blown dry with compressed N2

Soaked in 5% nitric acid 

ultra-sonic bath for 10 mins

blown dry with compressed N2

Immersed in acetone

ultra-sonic bath for 10 mins

blown dry with compressed N2

Ready for deposition

blown dry with blower

5% HF dip for 7-10mins
Method of 

cleaning Si

substrates

 

 

Fig. 3.5.   Schematic diagram of cleaning Si substrates (Method 1) 

 

    Two methods of cleaning Si substrates were used. In the first method, 

the Si substrates are cleaned using the following sequence as illustrated 

in Fig. 3.5. They are first pre-cleaned ultrasonically in acetone for 10 

minutes and blow dried using compressed nitrogen gas to remove most 

of the dust particles, oil molecules, fibers and organic compounds on 

the sample surfaces. Next, the Si substrates were immersed in 5% nitric 

acid ultra-sonic bath for 10 minutes to remove the inorganic 

contaminants. They were blown dry using compressed nitrogen gas. 

After this, the Si substrates were washed ultra-sonically in acetone for 

10 more minutes to remove excess nitric acid left on the surfaces. They 

were blown dry using compressed nitrogen gas before being subjected 

to a 5% HF dip for about 7 to 10 minutes to dissolve any remaining 

native silicon dioxide layer. They are then blown dry with a blower.  
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Si substrates, glass slides and Petri dish are first
pre-cleaned by acetone and IPA 

heated till 55oC -75oC

Si substrates and glass slides are loaded onto the 
PTFE holder and immersed into the SC-1. 

Create SC1 by mixing H2O: H2O2: NH4OH 
in the ratio 10 :2 :0.5 

blown dry with N2 gun

Submerged in150ml HPLC water. 

30 mins

Ready for deposition

fished out one at a time, sprayed with IPA, N2 

blow dried. 

Method of 

cleaning Si

substrates

 

 

Fig. 3.6.   Schematic diagram of cleaning Si substrates (Method 2) 

 

     In the second method
6
 illustrated in Fig. 3.6, the Si substrates, glass 

slides and a Petri dish were first pre-cleaned by acetone and IPA 

(isopropyl alcohol), followed by N2 blow drying. After this, the 

substrates are stored in a clean petri dish. The SC-1 solution was 

prepared by mixing H2O: H2O2: NH4OH in the ratio 10 :2 :0.5 in a 

250ml beaker dedicated to SC-1. The beaker containing SC-1 solution 

and PTFE holder are heated on a hot plate till the temperature of the 

solution reaches 55°C to 75°C. When the desired temperature is 

reached, Si substrates and glass slides are loaded onto the PTFE holder 

and immersed into the SC-1 solution.   

     After soaking for 30 minutes, the PTFE holder together with the Si 

substrates and glass slides are removed and immersed into a second 

clean beaker containing 150ml HPLC (High-performance liquid 

chromatography) water. The substrates and glass slides are fished out 

one at a time, sprayed with IPA and finally N2 blow dried. The Si 
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substrates and glass slides are put back into the petri dish and are ready 

for deposition.  

 

3.5   Thin film deposition 

 

 

 

 

 

Fig. 3.7.   TM-doped ZnO thin films deposited on round glass slides and Si(100). (Left 

to Right: TM stands for Co, Cu Ti and Mn)  

 

     All the thin films of TM (Ti, Mn, Co and Cu)-doped ZnO in our 

work were fabricated by reactive radio-frequency magnetron sputtering 

from a commercial ZnO target of 99.995% purity with a small plate of 

pure metal plate (Ti, Mn, Co or Cu) attached.  A ZnO target is selected 

instead of Zn metallic target since the control of film stochiometry is 

easier with oxide targets, alleviating the need for high temperature and 

post-deposition annealing.
5
 The concentration of TM doped into the 

samples was changed by changing the size of the plate. Fig. 3.7 shows a 

photograph of the Ti, Mn, Co and Cu-doped thin films deposited on 

round glass slides and Si(100) substrates. The deposited films on the 

glass/ substrates show different colors due to different thickness and 

perhaps due to different elemental compositions. 

     A low-temperature ZnO buffer layer is first induced between the 

Si(100) substrate/glass slides and ZnO film to reduce the lattice 

mismatch between ZnO and Si(100)/glass slides. Next, a high-

temperature ZnO layer is deposited on this buffer layer to obtain a high-

quality thin film. Reports
7,8,9

 have shown that there is marked 

improvement in both the optical properties and crystalline quality 
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achieved in high-temperature ZnO layers on the low-temperature (LT) 

ZnO layer/ Si through a two-step growth using an RF magnetron 

sputtering system. Photoluminescence (PL) spectra taken of the ZnO 

film with LT-grown ZnO layer at room temperature and 10K both 

showed the remarkably improved features including narrower FWHM 

of exciton emission, suppression of defect-induced visible emission, 

and appearance of free exciton peak, when compared with the PL 

spectra of the ZnO directly grown on Si.7 

     In the experiments, the chamber is first pumped down to 10
-6

 to10
-7 

Torr and the voltage for sputtering is set at around 28V. The target was 

first pre-sputtered for 6 to 8 minutes to clean its surface at 200
o
C. 

Buffer layers were next created on the Si(100) substrates and glass 

slides at 200oC for 2 minutes at a deposition power of 150W. The 

temperature of the heater was then raised to 400
o
C. The target was pre-

sputtered again for 3 minutes at 400
o
C before a further 1 hour of 

sputtering at 400
o
C at a deposition power of 150W; thin films of a 

certain thickness were formed. The films were deposited in high 

vacuum at different ambient atmospheres (100% argon, a mixture of 

85% argon and 15% nitrogen and a mixture of 80% argon and 20% 

oxygen) at a pressure of 1.0 - 2.0mTorr.  The gas flow was set at 18.7 -

21.0sccm (atm cm
3
/min). The target to substrate distance is fixed 

throughout all the experiments.  
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Chapter 4 

Structural Properties of Doped ZnO 

thin films 

 

     In this chapter, the characterization of doped ZnO films by several 

techniques will be presented, namely profilometry measurements 

(section 4.1), X-ray fluorescence (section 4.2), scanning electron 

microscopy (SEM) (section 4.3), X-ray diffraction (XRD) (section 4.4) 

and secondary ion mass spectrometry (SIMS) (section 4.5). These 

characterization techniques give complementary analyses of the 

different structural properties of TM-doped ZnO films. 

 

4.1   Profilometry measurements 

 

     The thickness of the films was measured using a Alpha-step 500 

Profilometer. Before measuring the thickness, a step must be first 

created. This step was created before deposition of the films by drawing 

a thin line using a transparency marker on the Si (100) substrate. After 

deposition, the marker line was removed using a cotton bud soaked in 

acetone. The film deposited on this line can thus be removed and a step 

is created. The thickness of the films is measured at least twice at 2 

different line sections and the average is taken. The errors are 

calculated by the standard deviation method. The results are tabulated 

in the Table 4.1.  
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Table. 4.1.   Thickness of TM-doped films and the atmosphere under which they are 

fabricated. (The other experimental parameters are listed in Section 3.5.) 

 

Samples Thickness of Films/ Ǻ 
Atmosphere 

ZnO 1806.7±15 85%Ar + 15%N2 

Zn0.985Co0.015O   5657.5±61 85%Ar + 15%N2 

Zn0.979Co0.021O   5535.5±50 85%Ar + 15%N2 

Zn0.977Co0.023O 6434.7±4 85%Ar + 15%N2 

Zn0.961Co0.039O 3583.0±11 80%Ar + 20%O2 

Zn0.809Co0.191O 7757.0±15 85%Ar + 15%N2 

Zn0.790Co0.210O 6513.5±3 Ar 

Zn0.987Cu0.013O 9926.0±48 Ar 

Zn0.986Cu0.014O 8084.0±40 85%Ar + 15%N2 

Zn0.976Cu0.024O   7463.7±28 85%Ar + 15%N2 

Zn0.942Cu0.058O 8887.5±40 Ar 

Zn0.812Cu0.188O 9856.3±111 85%Ar + 15%N2 

Zn0.754Cu0.246O 10370.0±20 Ar 

Zn0.996Ti0.004O   6406.5±64 85%Ar + 15%N2 

Zn0.994Ti0.006O   3790.0±33 80%Ar + 20%O2 

Zn0.972Ti0.028O 5053.0±48 85%Ar + 15%N2 

Zn0.933Ti0.067O 5661.0±58 Ar 

Zn0.999Mn0.001O 6914.0±50 85%Ar + 15%N2 

Zn0.978Mn0.022O   4372.0±20 80%Ar + 20%O2 

Zn0.963Mn0.037O   5834.0±28 Ar 
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4.2   X-Ray Fluorescence (XRF) 
 

     X-ray fluorescence studies were performed at the Phase Contrast 

Imaging (PCI) beamline1 at SSLS.   The penetration depth of the hard X-

rays used in XRF is in the µm range; hence XRF probes the bulk of the 

films. Fig. 4.1, 4.2, 4.3 and 4.4 show the normalized XRF spectra of the 

TM-doped ZnO films where TM is Co, Cu, Ti and Mn, respectively. Ar 

detected by XRF originates from the career gas absorbed by the samples 

while Cr and Fe contaminants are from the stainless steel sample holder. 

A calibrated sample Zn0.92Co0.02Cu0.02Mn0.02Ti0.02O was first prepared by 

mixing ZnO, Co3O4, MnO2, TiO2 and CuO powders together and XRF 

measurement was performed to determine the accurate composition. By 

comparing the areas under the Zn Kα and TM Kα peaks and comparing 

with the calibrated sample of known concentration using equation (1) 

below, the TM composition x was derived. Table 4.1 tabulates the 

concentrations of all the samples determined using XRF measurements. 

                       
' '

x A

x A
=        ---- (1) 

   where A = area of TM Kα peak: area of Zn Kα peak in the TM-doped   

                     ZnO film 

             A’ = area of TM Kα peak: area of Zn Kα peak in the calibrated  

                     sample tabulated in Table 4.2 

             x’ = composition of TM in calibrated sample = 0.02  

 

Table. 4.2.   Ratio of areas of TM Kα peak to area of Zn Kα peak in the calibrated 

sample Zn0.92Co0.02Cu0.02Mn0.02Ti0.02O. x’ for all TM in sample are 0.02±0.002. 

 

TM Co Cu Ti Mn 

A’ 0.119 0.090 0.024 0.076 
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Fig. 4.1.   Normalized X-Ray Fluorescence spectra of the Zn 1-xCoxO films. 
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Fig. 4.2.   Normalized X-Ray Fluorescence spectra of the Zn 1-xCuxO films. 
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Fig. 4.3.   Normalized X-Ray Fluorescence spectra of the Zn 1-xTixO films. 
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Fig. 4.4.   Normalized X-Ray Fluorescence spectra of the Zn 1-xMnxO films. 
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4.3   Scanning Electron Microscopy (SEM) 
 

     SEM measurements were done using a JEOL JSM 6700F system. 

The surface morphology of Co, Cu, Ti and Mn-doped ZnO films 

deposited at 400oC was imaged at normal e-beam incidence as shown in 

Figs. 4.5, 4.6, 4.7 and 4.8. In general, the surfaces of the films look 

smooth at low magnification and particles can be observed at high 

magnification. The Co, Cu and Ti-doped ZnO films have relatively 

small and slightly elongated spherical grain structure. The Mn-doped 

ZnO films, on the other hand, have a mixture of small, spherical and 

blade-like grain structures. The images at high magnification also 

display ring hexagonal structures of the ZnO compound which are most 

evident in Fig. 4.5(c) at 50,000 magnification and Fig. 4.6(c) at 100,000 

magnification. This confirms the hexagonal wurtzite structure of ZnO.2 

     Fig. 4.9 shows the cross-sectional view of a typical Cu-doped ZnO 

film. A preferred vertical growth of the ZnO nanorods on Si (100) 

substrate is observed. The thickness of the film is measured to be 

768.0nm, which is of approximately 2.9% different from the value 

measured by profilometry. This implies that both the SEM and 

profilometry give very close thickness measurements.   

 

 

 

 

 

 

 

 

 

 

 



50 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5.   SEM images of (a) Co-doped ZnO film deposited on Si (100) at high 

magnification, (b) Co-doped ZnO film at low magnification and (c) hexagonal ring 

structure drawn on (a). 
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Fig. 4.6.   SEM images of (a) Cu-doped ZnO film deposited on Si (100) at high 

magnification, (b) Cu-doped ZnO film at low magnification and (c) hexagonal ring 

structure drawn on (a). 
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Fig. 4.7.   SEM images of (a) Ti-doped ZnO film deposited on Si (100) at high 

magnification, (b) Ti-doped ZnO film at low magnification. 
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Fig. 4.8.   SEM images of (a) Mn-doped ZnO film deposited on Si (100) at high 

magnification, (b) Mn-doped ZnO film at low magnification. 
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Fig. 4.9.   Cross-sectional view of (a) Cu-doped ZnO thin film deposited on Si (100), 

(b) thickness of the same film indicated on the image. 

                                                                                                                                                  
 

4.4   X-ray Diffraction (XRD) 
               

     The as-grown samples with various compositions of Zn, Co, Cu, Ti 

and Mn were subjected to XRD studies for gross structural 

characterization. ZnO thin films deposited on Si (100) substrates and 

glass slides show polycrystalline structure, indicating that the respective 

ZnO grains are rotated along the c-axis direction due to large 

differences between ZnO and Si/glass in terms of physical properties 

such as thermal expansion coefficient and lattice mismatch. 

(b) 

(a) 
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4.4.1 Co-doped ZnO films 
 

     ZnO (002) and ZnO (201) peaks are observed in the XRD spectra of 

the undoped ZnO and Co-doped ZnO films deposited on Si (100) 

substrates as shown in Fig. 4.10. ZnO (101) peak is only observed for 

Zn0.809Co0.191O film, which is the thickest among the Co-doped films. 

This is an indication of poorer-texture film.3 This indicates a non-

preferential-orientation wurtzite structure. No particular trend is 

observed for the films grown under the same gas ambient. No metal or 

metal oxide related peak was detected within the sensitivity of XRD. 

However, the peak position of ZnO: Co is shifted by 0.2o – 0.4o towards 

the higher angles as compared to undoped ZnO. The peak shift suggests 

a decrease in lattice parameter c of the Co-doped ZnO by Bragg’s law. 

The decrease in c is consistent with the substitution of Zn2+ ion (radius 

= 0.600 Å)4,5 by the smaller Co2+ ion (radius = 0.058 Å)5,6. 

     The XRD spectrum of the same Co-doped ZnO film deposited on Si 

(100) with different geometrical orientations might give different peak 

intensities and even an extra ZnO peak (103) as shown in Fig. 4.11; this 

implies that these films exhibit anisotropic behavior. Fig. 4.12 displays 

the XRD spectrum of Co-doped ZnO films deposited on glass slides 

with Co concentrations of less than 2.5%. XAFS results presented in 

section 5.2.1 have proven the incorporation of Co ions into the ZnO 

lattice at these Co concentrations. ZnO (002) peak and a very weak 

ZnO (004) peak are observed and ZnO (002) peak being the dominant 

peak suggests that the single phase Co-doped ZnO film deposited on 

glass is strongly c-axis orientated. This also implies that the Co-doped 

ZnO films grown on glass slides might have slightly different crystal 

phases as compared to those grown on Si (100) substrates. 
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Fig. 4.10.   XRD patterns of the ZnO and Co-doped ZnO films deposited on Si (100). 
The Co concentrations x were determined by XRF. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4.11.   Repeated XRD measurements of the same Co-doped ZnO film deposited 
on Si (100). 
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Fig. 4.12.   XRD patterns of Co-doped ZnO films deposited on glass. 

 

4.4.2 Cu-doped ZnO films 
 

      The XRD spectra for the undoped ZnO and Cu-doped ZnO films 

deposited on Si (100) substrates are displayed in Fig. 4.13. Both 

ZnO(002) and ZnO(201) peaks are observed for the undoped ZnO and 

Cu-doped ZnO films with Cu concentrations below 6% deposited on Si 

(100) substrates. This indicates a non-preferential-orientation wurtzite 

structure. No particular trend is observed for the films grown under the 

same gas ambient. For high Cu concentrations, the ZnO (002) peak is 

absent (Zn0.812Cu0.188O and Zn0.754Cu0.246O), but ZnO (201) appears 

appears for both films. This implies that these films are not c-axis 

orientated. The ZnO (103) peak shows up when the Cu concentration 

exceeds 2%. No metal or metal oxide related peak can be detected 
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within the sensitivity of XRD below Cu concentrations of 19%. The 

Cu2O (220) phase is readily observed in Zn0.754Cu0.246O. 

     The peak position of ZnO: Cu is shifted by 0.3o – 0.5o towards 

higher angles as compared to undoped ZnO. The peak shift implies a 

decrease in lattice parameter c of the Cu-doped ZnO by Bragg’s law. 

Since the radius of the Zn2+ ion is approximately the same as that of the 

Cu+ ion (radius = 0.600 Å)7,  the decrease in lattice parameter c cannot 

be solely explained by ionic radii difference. The reason might be due 

to the strain caused by non-uniform substitution of Cu ions into the Zn 

site5,8 and complex defect formation7.    

     XRD spectrum of the same particular Cu-doped ZnO film deposited 

on Si (100) substrate with different geometrical orientation might give 

different peak intensities as depicted in Fig. 4.14; this implies that these 

films exhibit anisotropy behavior. Fig. 4.15 displays the XRD spectrum 

for Cu-doped ZnO films deposited on glass slides with Cu 

concentrations of less than 2.5%. The ZnO (002) and ZnO (004) peaks 

are identified, and dominant ZnO (002) peak implies that the single 

phase Cu-doped ZnO film deposited on glass is strongly c-axis 

orientated. We have come to the same conclusion as the Co-doped ZnO 

films that the Cu-doped ZnO films grown on glass slides might have 

slightly different crystal phases as compared to those grown on Si (100) 

substrates. 
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Fig. 4.13.   XRD patterns of the ZnO and Cu-doped ZnO films deposited on Si (100). 
The Cu concentrations x were determined by XRF. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.14.  Repeated XRD measurements of the same Cu-doped ZnO film deposited 
on Si (100). 
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Fig. 4.15.   XRD patterns of Cu-doped ZnO films deposited on glass. 

 

4.4.3 Ti-doped ZnO films 
 

     The ZnO (002) and (201) peaks from the undoped ZnO and Ti-

doped ZnO films deposited on Si (100) substrates could be identified in 

Fig. 4.16. This indicates a non-preferential-orientation wurtzite 

structure. No particular trend is observed for the films grown under the 

same gas ambient. No metal or metal oxide related peak can be detected 

within the sensitivity of XRD. However, the peak position of ZnO: Ti is 

shifted by 0.1o – 0.2o towards higher angles as compared to undoped 

ZnO. The peak shift implies a decrease in lattice parameter c of the Ti-

doped ZnO by Bragg’s law. The decrease in c is not consistent with the 

substitution of Zn2+ ion (radius = 0.600 Å) by the bigger Ti3+ ion 

(radius = 0.670 Å). However, the decrease in c is in agreement with the 

theoretical calculations in reference [9] which mainly attributes this 
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phenomenon to the reduced bond length of the Ti-O bond after Ti ion 

substituted Zn ion in the ZnO wurtzite structure. As mentioned above, 

the reason might be due to the strain caused by non-uniform 

substitution of Ti ions into the Zn site5,8 and complex defect formation7.    

     The XRD spectrum of the same particular Ti-doped ZnO film 

deposited on Si (100) with different geometrical orientations might give 

different relative peak intensities and even an extra ZnO peak (103) as 

shown in Fig. 4.17; this implies that these films exhibit anisotropic 

behavior. The ZnO (002) peak is present in Fig. 4.18 (the XRD 

spectrum of Ti-doped ZnO films deposited on glass slides). This 

implies that the single phase Ti-doped ZnO film deposited on glass is 

strongly c-axis orientated. We have come to the same conclusion as the 

above. The Ti-doped ZnO films grown on glass slides might have 

slightly different crystal phases as compared to those grown on Si (100) 

substrates. 
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Fig. 4.16.   XRD patterns of the ZnO and Ti-doped ZnO films deposited on Si (100). The Ti 

                          concentrations x were determined by XRF. 
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Fig. 4.17.  Repeated XRD measurements of the same Ti-doped ZnO film deposited on 
Si (100). 
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Fig. 4.18.   XRD patterns of Ti-doped ZnO films deposited on glass. 
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4.4.4 Mn-doped ZnO films 
 

      Fig. 4.19 illustrates the XRD spectrum for the undoped ZnO and 

Mn-doped ZnO films deposited on Si (100) substrates. The ZnO (002) 

and ZnO (201) peaks are recognized in Fig. 4.19 for all samples. This 

indicates a non-preferential-orientation wurtzite structure. No particular 

trend is observed for the films grown under the same gas ambient. 

However, Zn2Mn3O8 (215) peak is observed for the Zn0.978Mn0.022O 

sample. Little information on the properties of the complex compound 

Zn2Mn3O8 has been found.  The XAFS results presented in section 5.2.4 

has confirmed the precipitation of Mn. The reason for precipitation 

might be due to the ambient atmosphere in which the film is fabricated 

and might not be related to the Mn concentration; this shall be 

discussed in the later chapter.  

     The peak position of ZnO: Mn is shifted by 0.2o – 0.4o towards 

higher angles as compared to undoped ZnO. The peak shift suggests a 

decrease in lattice parameter c of the Mn-doped ZnO. The decrease in c 

is not consistent with the substitution of the Zn2+ ion (radius = 0.600 Å) 

by the bigger Mn2+ ion (radius = 0.660 Å)6,10. The reason might be due 

to the non-uniform substitution of Mn ions into the Zn site5,8 and 

complex defect formation7 as suggested previously.   

     Fig. 4.20 shows the XRD spectrum of the same particular Mn-doped 

ZnO film deposited on Si (100) substrate. It reveals that the same 

sample orientated at different positions might give different peak 

intensities; this implies that these films exhibit anisotropy behavior. The 

Mn-doped ZnO films deposited on glass slides exhibit ZnO (002) peak 

and an extremely weak ZnO (004) peak as shown in Fig. 4.21. The 

dominant ZnO (002) peak indicates that the film has a strongly c-axis 

orientated wurtzite structure. Hence, ZnO films grown on glass slides 

might have slightly different crystal phases as compared to those grown 

on Si (100) substrates. 
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Fig. 4.19.   XRD patterns of the ZnO and Mn-doped ZnO films deposited on Si (100). 
The Mn concentrations x were determined by XRF. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4.20.  Repeated XRD measurements of the same Mn-doped ZnO film deposited 
on Si (100).  
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Fig. 4.21.   XRD patterns of the Mn-doped ZnO films deposited on glass. 

 

4.4.5 Summary of XRD Results 
 

     All TM (Co, Cu, Ti and Mn)-doped ZnO films deposited on Si (100) 

exhibit anisotropic behavior. No particular trend is observed for the 

films grown under the same gas ambient for all TM-doped samples. 

ZnO (002) and ZnO (201) peaks are observed in all the XRD spectra of 

the undoped ZnO and Co, Ti and Mn-doped ZnO films deposited on Si 

(100) substrates. ZnO (101) peak is only observed for the thickest Co-

doped film. This indicates non-preferential-orientation wurtzite 

structures. On the other hand, both ZnO(002) and ZnO(201) peaks are 

only observed for the Cu-doped ZnO films deposited on Si (100) 

substrates with Cu concentrations below 6%. For high Cu 

concentrations, the ZnO (002) peak is absent. This implies that these 
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films are not c-axis orientated. The ZnO (103) peak shows up when the 

Cu concentration exceeds 2%.  

     All the peak positions of ZnO: TM are shifted slightly towards the 

higher angles as compared to undoped ZnO. The peak shifts suggest a 

decrease in c of the all TM-doped ZnO films by Bragg’s law. The 

decrease in c is consistent with the substitution of Zn2+ ion by the 

smaller Co2+ ion. However, it is not consistent with the cases of Cu, Ti 

and Mn. Hence, ionic radii difference between Zn2+ and TM ions 

cannot fully account for the decrease in lattice parameter c. The 

possible reason might be due to the strain caused by non-uniform 

substitution of Cu, Ti and Mn ions into the Zn site and complex defect 

formation.    

      All TM-doped ZnO films deposited on glass slides exhibit ZnO 

(002) peak. The dominant ZnO (002) peak indicates that these films 

have a strongly c-axis orientated wurtzite structure. Thus, ZnO films 

grown on glass slides might have slightly different crystal phases as 

compared to those grown on Si (100) substrates. 

 

4.5   Secondary ion mass spectroscopy (SIMS) 

 

     SIMS was performed to investigate whether the distribution of TM 

ions is uniform throughout the bulk of TM-doped ZnO films annealed 

at high temperature since there is a likelihood of segregation of 

transition metal oxides near the surfaces. 

     First, samples with no precipitation as confirmed by EXAFS results 

in chapter 5 were chosen for annealing. The samples were first 

annealed at 800oC in air in a furnace. The rate of temperature increment 

was 15 oC per minute, and subsequently the temperature was kept 

constant at 800oC for an hour. The temperature was then decreased at 

15 oC per minute. The annealed samples were then removed from the 

furnace after cooling to room temperature. 
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     SIMS measurements were performed on a Cameca IMS-6F SIMS; 

primary beams of O2+ at 7.5 kev impact energy were used for the depth 

profiling. The angle of bombardment of O2+ with respect to the sample 

surface is about 50o. The SIMS spectra for Zn0.977Co0.023O annealed at 

800oC showed uniform dopant distribution with respect to the 

distribution of Zn2+ ions as shown in Figs. 4.22. The as prepared Co-

doped ZnO sample was not analyzed by SIMS since the annealed 

sample already showed uniform dopant distribution. 

      Fig. 4.23 displays the SIMS spectrum of the as-prepared 

Zn0.986Cu0.014O sample showing a slightly higher concentration of Cu 

ions in the bulk of ZnO relative to the surface. However, after annealing 

this sample at 800oC, surface precipitation of Cu or Cu oxides was 

observed in Fig. 4.24. This might lead to ferromagnetism in Cu-doped 

ZnO samples calcinated at high temperatures.  

     Fig. 4.25 displays the SIMS spectrum of the as-prepared 

Zn0.978Mn0.022O sample illustrating a two-layer growth of the film. The 

bottom bulk layer was richer in Mn than the top layer. The bottom bulk 

layer was richer in terms of Mn ions than the top layer. This might be 

due to a sudden change of sputtering conditions like a decrease in gas 

flow or a decrease of deposition power etc and this is not observed in 

other Mn-doped samples. After annealing this sample at 800oC, the 

concentration of Mn at shallower depth increased as shown in Fig. 4.26. 

This implies that the Mn ions gained energy and diffused towards the 

surface in the form of Mn oxides as thermal vibrations increased. This 

result has been confirmed in XAFS Section 5.2.4. The precipitated Mn 

oxides might lead to ferromagnetism in Mn-doped ZnO samples 

annealed at high temperatures. 

     Out of the three annealed TM (Co, Cu and Mn)-doped ZnO samples, 

only the Co-doped ZnO sample showed uniform dopant distribution 

relative to the Zn2+ distribution. The as-prepared Zn0.986Cu0.014O sample 

possessed a slightly higher concentration of Cu ions in the bulk of ZnO 
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with respect to the surface whereby after annealing, surface 

precipitation of Cu or Cu oxides was observed. The Zn0.978Mn0.022O 

film consisted of two-layers, the bottom layer being Mn richer than the 

top layer. After annealing this sample, the concentration of Mn at 

shallower depth increased.  
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Fig. 4.22.   SIMS spectrum of Zn0.977Co0.023O sample annealed at 800oC in air. 
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Fig. 4.23.   SIMS spectrum of Zn0.986Cu0.014O sample. 

Zn0.986Cu0.014O  N2 + Ar Annealed at 800oC in air
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Fig. 4.24.   SIMS spectrum of Zn0.986Cu0.014O sample annealed at 800oC in air. 
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Fig. 4.25.   SIMS spectrum of Zn0.978Mn0.022O sample. 
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Fig. 4.26.   SIMS spectrum of Zn0.978Mn0.022O sample annealed at 800oC in air. 
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4.6 Conclusions 

 

     The thickness of all films was found to be a few thousands 

angstroms. The films are polycrystalline in nature. The Co, Cu and Ti-

doped ZnO films have relatively small and slightly elongated spherical 

grain structure. The Mn-doped ZnO films, on the other hand, have a 

mixture of small, spherical and blade-like grain structures. The images 

at high magnification also display ring hexagonal structures of the ZnO 

compound.  

     All TM-doped ZnO films deposited on glass slides exhibit ZnO (002) 

peak in XRD spectrum. The dominant ZnO (002) peak indicates that 

these films have a strongly c-axis orientated wurtzite structure. Thus, 

ZnO films grown on glass slides might have slightly different crystal 

phases as compared to those grown on Si (100) substrates. 

     All TM (Co, Cu, Ti and Mn)-doped ZnO films deposited on Si 

(100) exhibit anisotropy behavior. These films have non-preferential-

orientation wurtzite structures. There is also a decrease in c of the all 

TM-doped ZnO films. The decrease in c is consistent with the 

substitution of Zn2+ ion by the smaller Co2+ ion. However, it is not 

consistent with the cases of Cu, Ti and Mn. Hence, ionic radii 

difference between Zn2+ and TM ions cannot fully account for the 

decrease in lattice parameter c. The possible reasons might be due to the 

strain caused by non-uniform substitution of Cu, Ti and Mn ions into 

the Zn site and complex defect formation.  

     Secondary ion mass spectrometry (SIMS) has shown that out of the 

three annealed TM (Co, Cu and Mn)-doped ZnO samples, only 

Zn0.977Co0.023O showed uniform dopant distribution relative to the Zn2+ 

distribution. The as prepared Zn0.986Cu0.014O sample possessed a 

slightly higher concentration of Cu ions in the bulk of ZnO with respect 

to the surface whereby after annealing, surface precipitation of Cu or 

Cu oxides was observed. Zn0.978Mn0.022O film consisted of two-layers, 
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the bottom layer being Mn richer than the top layer. After annealing this 

sample, the concentration of Mn at shallower depth increased.  
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Chapter 5 

XAFS investigations of 3d metal doped 

ZnO thin films 
 

     In this chapter, the XANES and EXAFS experimental procedures 

will be covered (section 5.1), followed by the results and discussions 

for TM (Co, Cu, Ti and Mn) -doped ZnO films (Section 5.2). 

 

5.1   Experimental procedure  
            

     The Co, Cu and Mn–doped ZnO films were measured at X-ray 

Development and Demonstration beamline1 (XDD) beamline at the 

Singapore Synchrotron Light Source (SSLS) which has an available 

energy range of 2.4keV -10 keV, whereas the Ti-doped ZnO films, due 

to the low concentration and low binding energy for Ti, were performed 

at SPring-8 in Hyogo, Japan.2            

     XAFS spectra of film samples deposited on glass were collected in 

the fluorescence mode at the XDD beamline employing a home-made 

Lytle-type detector filled with argon ambient. The samples were 

mounted in grazing incidence geometry at an incident angle of 4° with 

the sample plane parallel to the electric field vector of the incident 

beam. Thin glass slides are chosen for deposition as substrates since Si 

single crystal substrates exhibit diffraction peaks in the EXAFS 

spectrum. These diffraction peaks overlap with the measured absorption 

spectrum, making it difficult to perform EXAFS analysis. As glass is 

amorphous, there will be no diffraction peak in the EXAFS spectrum.  

     The incident intensity of x-ray photons were recorded by an air filled 

ionization chamber.  The reference samples of metal foils and metal 
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oxides were measured in transmission mode where a second ionization 

chamber was employed. These were discussed in section 2.5.1. 

Standards of metal oxides were ground into fine powders and dispersed 

on Scotch tapes. The tapes were folded into a number of layers and 

tested for optimal thickness for transmission. The energy was calibrated 

to the K-edge absorption of metal-foils. XAFS spectra were collected in 

the photon energy range from roughly 100eV prior to the absorption 

edge to several hundred eV above.  

     Experiments at SPring-8 were performed at room temperature at the 

BL01B1 beamline3 which has an available energy range of 3.8 keV – 

113 keV. BL01B1 is a bending magnet beam line equipped with 2 

mirrors and a fixed-exit double-crystal monochromator using Si(311) 

crystals. X-ray fluorescence from the samples was detected by a 19-

element Ge solid-state detector.4 
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5.2   Results  and Discussion 

 

5.2.1   Co-doped ZnO films 
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Fig. 5.1.   Normalized Co K-edge XANES spectra of Co-doped ZnO films deposited 

on glass, Co foil, CoO and Co3O4. GM A, GM B and GM C stand for 85%Ar + 

15%N2, 80%Ar + 20%O2 and Ar gas mixture, respectively. 

 

The XANES features are mostly associated with the configuration 

of the nearest neighbors. Three main features are identified in the 

XANES spectrum in Fig. 5.1 are: the small pre-edge peak A, the 

dominant main peak C and the shoulder D at the post-edge region. The 

interpretations of K-edge XANES features for 3d transition-metal 

oxides are well established. 5-7 In the tetrahedral configuration of 

oxygen nearest neighbors, the 3d, 4s and 4p orbitals of TM are 

hybridized and mixed with the O 2p orbitals to form hybridized 
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molecular orbitals. The features A and C in XANES can be attributed to 

the unfilled anti-bonding states of these molecular orbitals.5,8,9  

Generally, peak A is interpreted as a quadrupolar electronic transition 

from 1s to the unoccupied 3d final states hybridized with 4p character 

of the absorber; its intensity is enhanced by the local atomic 

configuration that lacks centrosymmetry.5,10 Even though it is not 

allowed by the electronic dipolar selection rule, ∆l = ±1, the pre-edge 

peak is discernible due to the mixing of 4p and 3d states. Therefore, this 

feature gains significant spectral weight for the case of non-

centrosymmetric tetrahedral geometry of an absorbing atom through the 

mixing of d–p orbitals.10  

Peak C arises from the dominant dipolar transition from 1s to the 

4p-related final states; the intensity drops significantly in samples with 

Co oxides and Co metal precipitation. This peak is higher for octahedral 

sites (CoO) than tetrahedral sites. The shoulder D has a solid state 

character which is attributed to the single scattering contribution of 

absorbers with the third coordination shell of O neighbors8,9 and it is 

known to be associated with orbital mixing of the more delocalized Co 

4p with higher shell O atoms.   

     Fig. 5.1 compares the normalized Co K-edge XANES spectra of Co-

doped ZnO films deposited on glass with those of the reference 

materials. A comparison with CoO in terms of chemical shift indicates 

a valence state 2+ for Co in the Zn0.985Co0.015O, Zn0.979Co0.021O and 

Zn0.977Co0.023O which were all fabricated under 85%Ar + 15%N2 

atmosphere. This is in agreement with previous reports. 10-13 The 

spectra of these samples show a distinct pre-edge peak A. On the 

contrary, the present spectrum of CoO with the rocksalt structure shows 

only a weak pre-edge peak A due to the octahedral symmetry of cobalt 

ion in CoO. Feature A with almost the same intensity as these samples 

appears for the reference Co3O4 with the spinel structure, in which one 

third of cobalt ions exist in tetrahedral sites and the rest are located in 
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octahedral sites. This observation provides evidence for the 

incorporation of cobalt ion into the tetrahedral site of the wurzite ZnO 

lattice, in agreement with several reports.10,12,14,15 

     Zn0.961Co0.039O was fabricated under 80%Ar + 20%O2 atmosphere. 

There is a positive shift in energy of the Zn0.961Co0.039O spectrum 

relative to those of the samples stated above. The drop in intensity and 

shift of peak C to higher energy implies the valence state of Co changes 

to a higher oxidation state and is about +2.67 as the final spectrum lies 

near to Co3O4 at the pre-edge region. Therefore, a portion of Co in 

Zn0.961Co0.039O might have formed Co3O4 clusters. The Co oxides might 

have already formed during the sputtering process as Co might have 

reacted with the O2 gas in the chamber during deposition before they 

enter the Zn lattice. 

 A comparison with Co metal in terms of chemical shift at the pre-

edge region reveals a Co valence state between 0 and 1 in 

Zn0.809Co0.191O and Zn0.790Co0.210O, and this suggests a phase transition 

due to the precipitation of metastable Co from ZnO. Peaks C and D also 

broaden and their intensities decrease significantly, implying that a 

large proportion of Co metal has precipitated from Zn0.809Co0.191O and 

Zn0.790Co0.210O samples. The solubility limit of Co into ZnO for 

equilibrium film growth process is about 14.5~18.0%.16 
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Fig. 5.2.   Normalized Co K-edge XANES of annealed Zn0.977Co0.023O film deposited 

on Si and the as-prepared Zn0.977Co0.023O film grown on glass. GM A stands for 

85%Ar + 15%N2 gas mixture. 

   

   Zn0.977Co0.023O films deposited on Si(100) and glass slide are grown 

under the same conditions. The film deposited on Si(100) is annealed at 

800oC; details are given in section 4.5. The normalized Co K-edge 

XANES spectra of this sample and the as-prepared Zn0.977Co0.023O film 

grown on glass are depicted in Fig. 5.2. Both spectra are very similar to 

each other and a valence state 2+ and tetrahedral coordination of Co is 

identified in both samples via a comparison with the CoO spectrum. No 

precipitation can be detected in the annealed sample using XANES. 

These results are further discussed with the EXAFS results.  
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Fig. 5.3.  Linear Combination XANES fit of normalized Co K-edge XANES spectra 

of (a) Zn0.790Co0.210O, (b)Zn0.809Co0.191O and (c) Zn0.961Co0.039O, all deposited on glass. 

GM A, GM B and GM C stand for 85%Ar + 15%N2, 80%Ar + 20%O2 and Ar gas 

mixture, respectively. 

 

     Fig. 5.3 shows the Linear Combination (LC) -XANES fit by a 

combination of cobalt metal and ZnCoO for Zn0.790Co0.210O and 

Zn0.809Co0.191O; Co3O4 and ZnCoO for Zn0.961Co0.039O. The results of 

the fit are tabulated in table 5.1. At the first approximation, 

Zn0.961Co0.039O consists of 14.0% Co3O4 and 86.0% of interstitial Co2+ 

substituted in Zn sites, consistent with the XANES analysis. For 

Zn0.790Co0.210O and Zn0.809Co0.191O, 48.1% Co metal and 51.9% of 
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interstitial Co2+ substituted in Zn sites and 47.1% Co metal and 52.9% 

of interstitial Co2+ substituted in Zn sites, respectively, were resolved. 

Clearly, a significant proportion of Co metal has precipitated in both 

samples.  

 

Table. 5.1.   Results of the Fit to Co K-edge XANES of Zn0.961Co0.039O, 

Zn0.809Co0.191O and Zn0.790Co0.210O films giving % of interstitial Co and Co 

precipitation. 

 

Samples % of interstitial Co substituted 

in Zn sites 

% of Co3O4 precipitation 

Zn0.961Co0.039O 86.0 14.0 

Samples % of Co substituted in Zn sites % of Co metal precipitation 

Zn0.809Co0.191O 47.1 52.9 

Zn0.790Co0.210O 48.1 51.9 
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Fig. 5.4.   Normalized Co K-edge EXAFS of Zn0.985Co0.015O films grown on glass and 

Si (100). GM A stands for 85%Ar + 15%N2 gas mixture. 

 

     Fig. 5.4 illustrates the normalized Co K-edge EXAFS spectra of 

Zn0.985Co0.015O films grown on glass and Si (100) under the same 
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conditions. The two spectra overlap very well which implies that the 

chemical state and the local atomic structures of Co in the films 

deposited on glass and Si(100) are identical. Thus, XAFS experiments 

were only performed on films grown on glass substrates.  
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Fig. 5.5.   Co K-edge EXAFS function of Co-doped ZnO films deposited on glass and 

reference samples. GM A, GM B and GM C stand for 85%Ar + 15%N2, 80%Ar + 

20%O2 and Ar gas mixture, respectively. 

 

Fig. 5.5 shows the Co K-edge EXAFS functions of Co-doped ZnO 

films and reference samples by extracting the oscillation part from the 

free atomic absorption background. A significant decrease in intensity 

of the XAFS amplitude can be observed for samples Zn0.790Co0.210O and 

Zn0.809Co0.191O as compared to others, indicating a significant structural 

change.  
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     The Fourier transform (FT) magnitudes of the Co K-edge EXAFS 

function of the Co-doped ZnO films and reference samples are shown 

in Fig. 5.6. The magnitude of the FT peak is related to the coordination 

number (CN) and the Debye-Waller (DW) factor (σ2), and the trends of 

Fig. 5.6 for Zn0.985Co 0.015O, Zn0.979Co0.021O, Zn0.977Co 0.023O and 

Zn0.961Co0.039O can be quantitatively described by the 2-shell data fit in 

Fig. 5.7 and the fitting results tabulated in Table 5.2. Table 5.2 also lists 

the radial structure of the first two coordination shells for the reference 

samples used in the study which were extracted from crystallographic 

data of these oxides. The data fit for Zn0.809Co0.191O and Zn0.790Co0.210O 

are not included since it is evident that Co metal is present in both 

samples. In the FT, the XAFS function in the range 2.4-11.4Å-1 in k 

space was extracted for Co K-edge. The CN, inter-atomic distance (R), 

DW factor (σ2) and the energy shift (E0) were free variables during the 

fitting. σ2 refers to the mean-square relative displacement and accounts 

for the thermal and static disorder effects associated with the movement 

of atoms about their equilibrium position, and is extracted from the fit 

to EXAFS. These parameters are associated with a certain local 

coordination shell and averaged over all absorbers in the sample. The 

inelastic factor, s0
2, was extracted from a fit to the reference sample and 

was fixed at 0.85 in the fit.  

     As shown in Fig. 5.6, the first peak at about 1.6Å is due to nearest 

four Co-O or Zn-O pairs in the first shell. The second peak situated at 

about 2.95Å corresponds to the second shell of mainly twelve Co-Zn or 

Zn-Zn pairs (for ZnO), and the third peak at approximately 4.3Å arises 

mainly from the third coordination shell comprising 9 O atoms. The 

third coordination peaks are almost smeared out due to long range 

disorder in the samples.  

     The position of the first Co-O peak does not change significantly for 

Zn0.985Co0.015O, Zn0.979Co0.021O and Zn0.977Co0.023O relative to the Zn-O 

peak because when Co2+ ions are incorporated into the ZnO lattice; RCo-
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O changes only by at about 0.01Å. It can be seen that RCo-O and RCo-Zn, 

displayed in Table 5.2 are very close to RZn-O and RZn-Zn of their bulk 

counterpart (1.97Å and 3.21Å). In addition, the CN of the first Co-O 

shell for these samples did not exceed 4, hence the majority of the Co2+ 

ions have been incorporated into the substitutional sites of the Zn lattice 

and they are of tetrahedral coordination in the first shell.  

     Broadening of the Co-O and Co-Zn peaks in the Co K-edge FT 

displayed in Fig.5.6 is observed for Zn0.961Co0.039O. RCo-O decreases 

relative to RZn-O and is 1.94Å, close to the theoretical value of Co3O4 

(1.93Å) 5. It is clear that not all Co ions are dissolved in the ZnO 

wurtzite lattice; part of them is deposited to form Co3O4 precipitate. 

This result is supported by the fact that the Co constituents of 

Zn0.961Co0.039O are 14.0% Co3O4 and 86.0% of interstitial Co2+ 

substituted in Zn sites as given by the LC-XANES fitting results in 

Table 5.1.  

     A significant difference in Zn0.809Co0.191O and Zn0.790Co0.210O can be 

observed, as indicated by the broadening of the Co-O in the Co K-edge 

FT. The Co-O peak displays an evident shift toward high R in the 

Zn0.790Co0.210O spectrum and this is more likely caused by the presence 

of Co metal which has a bigger RCo-Co as compared RCo-O. LC-XANES 

fit results in Table 5.1 agree with these results that the Co constituents 

of Zn0.790Co0.210O and Zn0.809Co0.191O are 48.1% Co metal and 51.9% of 

interstitial Co2+ substituted in Zn sites and 47.1% Co metal and 52.9% 

of interstitial Co2+ substituted in Zn sites, respectively.  
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Fig. 5.6.   Fourier transform magnitudes of the Co K-edge EXAFS function of Co-

doped ZnO films deposited on glass and reference samples. The first peak situated at 

approximately 1.6Ǻ is due to Co-O or Zn-O co-ordinations of the first shell. The 

second peak at about 2.9Ǻ is due to Co-Zn or Zn-Zn coordinations of the second shell. 

GM A, GM B and GM C stand for 85%Ar + 15%N2, 80%Ar + 20%O2 and Ar gas 

mixture, respectively. 
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Fig. 5.7.   Two shell-fit data fit (Zn-O and Co-Zn respectively) to the FT of (a) 

Zn0.985Co0.015O, (b) Zn0.979Co0.021O, (c) Zn0.977Co0.023O and (d) Zn0.961Co0.039O,  all 

deposited on glass, at the Co K-edges. GM A and GM B stand for 85%Ar + 15%N2 

and 80%Ar + 20%O2 gas mixture, respectively. 
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Table. 5.2.   Results of the Fit to Co K-edge EXAFS of the Co-O and Co-Zn shells in 

Zn0.985Co0.015O, Zn0.979Co0.021O, Zn0.977Co0.023O and Zn0.961Co0.039O films. a 

 

Co K-edge Co-O/ Zn-O/ Co-Co    Co-Zn/ Zn-Zn/ Co-Co    

   CN           R             σ2         CN          R             σ2    

ZnO 4.0 1.97 -- 12.0 3.21 -- 

Co 12.0 2.50 -- 6.0 3.54 -- 

CoO 6.0 2.13 -- 12.0 3.02 -- 

Co3O4 4.0/ 6.0 

 

1.93 -- 12.0 3.34 -- 

Zn0.985Co0.015O  /glass 3.9 1.97 0.0041 9.5 3.23 0.0137 

Zn0.979Co0.021O  /glass 3.6 1.97 0.0031 13.0 3.24 0.0164 

Zn0.977Co0.023O /glass 3.5 1.98 0.0023 11.6 3.25 0.0142 

Zn0.961Co0.039O /glass 4.0 1.94 0.0059 9.3 3.24 0.0143 

Zn0.977Co0.023O /Si, 

annealed 

3.3 1.95 0.0005  

 
a CN, R (Å), and σ2 (Å2) are the coordination number, inter-atomic distance, and 
Debye-Waller factor, respectively. The uncertainties for CN, R, and σ2 are 10%, 0.01 
Å, and 10%, respectively. 

 

     Fig. 5.8 illustrates the FT magnitudes of the Co K-edge EXAFS of 

annealed Zn0.977Co0.023O film deposited on Si and the as-prepared 

Zn0.977Co0.023O film grown on glass. Only the Co-O shell was fitted for 

the annealed sample at Co K-edge and the data fit is displayed in Fig. 

5.9 while the fitting results are tabulated in Table 5.2. The annealed 

sample shows a smaller Co-O bond length (1.95Å) relative to the as-

prepared sample (1.98Å), as observed from the shift toward low R of 

the corresponding FT peak. It is likely that precipitates similar to Co3O4 

(1.93Å) have formed due to calcination after the sample was heated at 

800oC for an hour in air. However, this is not very evident based on the 

XANES results. 
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Fig. 5.8.   Fourier Transform magnitudes of the Co K-edge EXAFS function of the as-

prepared Zn0.977Co0.023O film deposited on glass, annealed Zn0.977Co0.023O film 

deposited on Si and reference samples. GM A stands for 85%Ar + 15%N2 gas mixture. 

 

 

Fig. 5.9. Two shell-fit data fit  (Zn-O and Zn-Zn respectively) to FT of the EXAFS 

function of (a) the as-prepared Zn0.977Co0.023O deposited on glass; one shell-fit data 

(Zn-O) to FT of the EXAFS function of (b) annealed Zn0.977Co0.023O deposited on 

Si(100) at the Co K-edges. GM A stands for 85%Ar + 15%N2 gas mixture. 
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     It can be concluded that the percolation threshold of Co into ZnO 

cannot exceed 19% even though reactive magnetron sputtering is a non-

equilibrium film growth process. The majority of Co2+ ions have been 

incorporated into the substitutional sites of the Zn lattice for low Co 

doping content and they replace the Zn ions, adopting a tetrahedral 

coordination. Co3O4 clusters are formed when subjected to 800oC 

calcination and when the ambient in which the films are fabricated 

consists of 20% oxygen gas.Co metal are the major precipitates when 

the solubility limit is exceeded.   

 

5.2.2   Cu-doped ZnO films 
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Fig. 5.10.   Normalized Cu K-edge XANES of Cu-doped ZnO films deposited on 

glass, Cu foil, Cu2O and Cu. GM A and GM C stand for 85%Ar + 15%N2 and Ar gas 

mixture, respectively. 
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     Fig. 5.10 compares the normalized Cu K-edge XANES spectra of 

Cu-doped ZnO films deposited on glass with those of pure Cu, Cu2O 

and CuO. Three main features are identified in the XANES spectrum in 

Fig. 5.10: the shoulder peak B, the dominant main peak C and the 

shoulder D at the post-edge region. Pre-edge peak A represents 

electronic transition from 1s to the unoccupied 3d final states and its 

absence from the Cu K-edge XANES spectrum is due to the filled 3d 

orbital of Cu ions in Cu-doped ZnO samples. Shoulder peak B can be 

attributed to the unfilled anti-bonding states of hybridized molecular 

orbitals and arises from the 4p-character of the density of states of Cu. 

The shoulder D mainly arises from the interaction of central absorber 

with the distant coordination atoms, in particular, the third shell of 9 O 

atoms. In interpreting the XANES features of TM oxides, this peak was 

generally explained as an indication of middle-range-ordering from the 

MS point of view.8,17 The lack of middle-range-ordering around the 

absorber can lead to a damping shoulder D, this may be the case for Cu-

doped samples. A comparison with reference spectra in Fig. 5.10 in 

terms of chemical shift indicates a valence state of between 0 and 1+ of 

Cu in all the samples.  

     Zn0.987Cu0.013O was fabricated under pure Ar atmosphere. The 

spectrum of Zn0.987Cu0.013O  has a very prominent shoulder B and this 

indicates the onset of precipitation of Cu or Cu oxides. The lattice of 

this sample is highly distorted as can be seen by the smeared out feature 

D, leading to the amorphous structure of the sample. Even though the 

Cu doping concentration is very low in this sample, Cu precipitation 

might have occurred since the deposition rate in Ar atmosphere is much 

higher as compared to the other gas mixtures of Ar, N2 and O2. In 

addition, the sputtering rate of Cu metal also exceeds that of other 

metallic foils. This might lead to the direct sputtering of Cu metal into 

ZnO without sufficient time for the diffusion of Cu ions into the ZnO 
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lattice. Another possible reason for the failure of substitution doping of 

Cu ions might be due to the low solubility limit(0~1.5%) of Cu in 

ZnO.16 

   Zn0.986Cu0.014O and Zn0.976Cu0.024O were fabricated under under 

85%Ar + 15%N2 atmosphere. A comparison with the Cu2O spectrum 

reveals a valence state 1+ of Cu in Zn0.986Cu0.014O, implying a charge 

transfer from ZnO to Cu.  The 1+ valence for Cu-doped ZnO has been 

reported by Fons et al.18 on as-prepared Cu doped ZnO thin films grown 

by molecular beam epitaxy and theoretically predicted by Spaldin et 

al.19 and Feng et al.20. In fact, Cu has been predicted generally as 

acceptors in impurity doping of ZnO to produce p-type 

semiconductors.19 Peak B in the spectrum of Zn0.986Cu0.014O is of very 

low intensity as compared to the rest of the samples whereas peak C is 

very prominent. Peak D is barely visible due to poor crystallinity and 

disordered lattice structure. However, the substitution of Cu+ ions in 

ZnO lattice of this sample is not evident solely based on the XANES 

results and we have to rely on EXAFS results to give us more 

information. The shape of this spectrum also resembles that of Cu2O, 

and since the Cu ions in Cu2O also have valence state 1+, it is 

impossible to distinguish them from the Cu+ ions incorporated in Zn 

sites. On the other hand, Zn0.976Cu0.024O resembles that of 

Zn0.987Cu0.013O with a prominent shoulder B. Hence, this also indicates 

the possibility of precipitation of small amounts of Cu or Cu oxides.   

     Zn0.942Cu0.058O was fabricated under pure Ar atmosphere. The 

spectrum of Zn0.942Cu0.058O is marked by a rather sharp feature B, a 

subdued and broadened main peak C and an almost non-existent 

shoulder D. The intensiy of peak C decreases significantly as compared 

to the rest of the samples, implying the existence of large amounts of 

Cu metal within the sample. 

     Zn0.986Cu0.014O films are deposited on Si(100) and glass slides under 

the same conditions. The film deposited on Si(100) was annealed at 
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800oC; details are given in section 4.5. Normalized Cu K-edge XANES 

spectra of this sample and the as-prepared Zn0.986Cu0.014O film grown 

on glass are displayed in Fig. 5.11. Both spectra are similar to each 

other and a valence state 1+ of Cu is identified in both samples via a 

comparison with the Cu2O spectrum. No precipitation can be detected 

in the annealed sample through XANES. However, SIMS results (Figs. 

4.23 and 4.24) in section 4.5 clearly shows that after annealing 

Zn0.986Cu0.014O at 800oC for an hour in air, surface precipitation of Cu 

or Cu oxides is observed. Some Cu ions might have aggregated and 

generated Cu2O clusters near the surface. Since the Cu ions in Cu2O 

also have valence state 1+, it is impossible to distinguish them from the 

Cu+ ions incorporated in Zn sites.  
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Fig. 5.11.   Normalized Cu K-edge XANES spectra of annealed Zn0.986Cu0.014O film 

deposited on Si(100) and the as-prepared Zn0.986Cu0.014O film grown on glass. GM A 

stands for 85%Ar + 15%N2 gas mixture. 
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Fig. 5.12.   Cu K-edge EXAFS function of the Cu-doped ZnO films deposited on glass 

and reference samples. GM A and GM C stand for 85%Ar + 15%N2 and Ar gas 

mixture, respectively. 

 

Fig. 5.12 shows the Cu K-edge EXAFS functions of Cu-doped ZnO 

films and reference samples by extracting the oscillation part from the 

free atomic absorption background. A change in shape and a significant 

decrease in intensity of the XAFS amplitude are observed for sample 

Zn0.942Cu0.058O, indicating a structural phase transition. 
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Fig. 5.13.   Fourier transform magnitudes of the Cu K-edge EXAFS function of Cu-

doped ZnO films deposited on glass and reference samples. GM A and GM C stand 

for 85%Ar + 15%N2 and Ar gas mixture, respectively. Phase shift was not corrected. 

 

     The Fourier transform (FT) magnitudes of the Cu K-edge EXAFS 

function of the Cu-doped ZnO films and reference samples are shown 

in Fig. 5.13. Fig. 5.14 depicts the 1-shell data fit in Zn0.986Cu0.014O and 

and Zn0.976Cu0.024O; the fitting results are tabulated in Table 5.3. Table 

5.3 also lists the radial structure of the first coordination shell for the 

reference samples used in the study which were extracted from 

crystallographic data of these oxides. Samples with high Cu 
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concentration are excluded in Fig. 5.13 and Fig. 5.14 because all of 

them resemble the Cu K-edge EXAFS functions of Cu foil. In the FT, 

the XAFS function in the range 2.3-11.6Å-1 in k space was extracted for 

Cu K-edge. The CN, inter-atomic distance (R), DW factor and the 

energy shift (E0) were set as free variables during the fit. The inelastic 

factor, s0
2, was extracted from a fit to the reference sample and was 

fixed at 0.81 in the fit.  
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Fig. 5.14.   One shell data fit (Zn-O) to FT of the EXAFS functions of (a) 

Zn0.986Cu0.014O and (b) Zn0.976Cu0.024O films), all deposited on glass, at the Cu K-edges. 

GM A stands for 85%Ar + 15%N2 gas mixture. 
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Table. 5.3.   Results of the Fit to Cu K-edge EXAFS of the Cu-O in Zn0.986Cu0.014O 

and Zn0.976Cu0.024O films.a 

 

Cu K-edge Cu-O/ Zn-O/ Cu-Cu 

   CN        R             σ2 

ZnO 4.0 1.97 -- 

Cu 12.0 2.56 -- 

Cu2O 2.0 1.85 -- 

CuO 4.0 1.95 -- 

Zn0.986Cu0.014O /glass 3.0 1.90 0.0066     

Zn0.976Cu0.024O /glass 1.8 1.86 0.0032    
 

a CN, R (Å), and σ2 (Å2) are the coordination number, inter-atomic distance, and 
Debye-Waller factor, respectively. The uncertainties for CN, R, and σ2 are 10%, 0.01 
Å, and 10%, respectively. 
 

In the Cu K-edge EXAFS functions of Zn0.986Cu0.014O and 

Zn0.976Cu0.024O shown in Fig. 5.13, the first peak at about 1.4Å (phase 

shift was not corrected) is due to nearest four Cu-O or Zn-O pairs (for 

ZnO) at the first shell. The fit to the Cu-O coordination yields RCu-O of 

1.90Å and 1.86Å for Zn0.986Cu0.014O and Zn0.976Cu0.024O respectively as 

listed in Table 5.3. These samples show much smaller RCu-O relative to 

RZn-O (1.97Å), as observed from the shift toward low R of the 

corresponding FT peak. The second coordination peaks are basically 

non-existent due to poor crystallinity and significant distortion of the 

lattice caused by doping. In addition, the CN of the Cu-O shell for these 

samples is very much lower than 4, hence the FT fitted results clearly 

demonstrates the formation of Cu2O local structure whose RCu-O value 

is 1.85Å and the number of nearest oxygen neighbors is 2, consistent 

with the XANES analysis, indicative of Cu precipitation from the 

wurtzite lattice and formation of Cu2O. Zn0.976Cu0.024O evidently 

contains more Cu2O clusters than Zn0.986Cu0.014O with its lower CN and 

smaller RCu-O due to its higher Cu doping concentration. Tao et al.21 has 
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also reported similar findings on the precipitation of Cu2O clusters in 

Cu-doped ZnO nanoparticles calcinated at 400oC.  

     The broadening of the Cu-O peak in the Cu K-edge FT displayed in 

Fig. 5.13 is observed for Zn0.987Cu0.013O.  In addition, this peak displays 

an evident shift toward high R and this is attributed to the presence of 

Cu metal which has a bigger RCu-Cu as compared to RCu-O. The position 

of the Cu-O shell peak for Zn0.942Cu0.058O is very close to the Cu-Cu 

peak of Cu foil, which is a clear indication that majority of the Cu have 

aggregated and precipitated as pure Cu in this sample, in agreement 

with XANES results. 

     It can be concluded that Cu ions in ZnO matrix are not stable against 

400°C calcination and tend to precipitate easily as Cu or Cu2O. Also, 

the ZnO lattice is greatly distorted with Cu doping, distinct from Mn 

and Co doping in ZnO. The solubility of Cu into ZnO is extremely low 

( less than 1.3%) even though reactive magnetron sputtering is a non-

equilibrium film growth process. The substituted Cu ions at the Zn sites 

have a valence state of 1+. Cu2O and metallic Cu are the main 

precipiates when the percolation threshold is exceeded.  
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5.2.3   Ti-doped ZnO films 
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Fig. 5.15.   Normalized Ti K-edge XANES of Ti-doped ZnO films deposited on glass, 

Ti foil, Ti2O3 and TiO2. Inset: the pre-edge region of the spectra. GM A, GM B and 

GM C stand for 85%Ar + 15%N2, 80%Ar + 20%O2 and Ar gas mixture, respectively. 

 

     Fig. 5.15 compares the normalized Ti K-edge XANES spectra of Ti-

doped ZnO films deposited on glass with those of pure Ti foil, Ti2O3 

and TiO2. Four main features are identified in the XANES spectra in 

Fig. 5.15: a very sharp pre-edge peak A, the shoulder peak B, the 

dominant main peak C and the shoulder D at the post-edge region. 

Feature A corresponds to the electronic transition from 1s to the 

unoccupied 3d final states and is very prominent due to the almost 

empty 3d orbital of Ti and the non-centrosymmetric tetrahedral 

geometry of an absorbing atom through the mixing of d–p orbitals.10  
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     Zn0.996Ti0.004O and Zn0.972Ti0.028O were fabricated under 85%Ar + 

15%N2 ambient. Zn0.933Ti0.067O was fabricated under pure Ar ambient. 

The XANES spectra of these samples display very prominent pre-edge 

peak A. This observation provides direct evidence for the substitutional 

incorporation of Ti ions into the tetrahedral zinc sites in the wurzite 

ZnO lattice. On the contrary, the spectra of Ti2O3 and TiO2 show only 

weak pre-edge peak A due to the octahedral local structures around Ti 

ions. A comparison with the Ti2O3 spectrum in terms of chemical shift 

at the peak A reveals a valence state close to 3+ of Ti in these samples, 

indicating that the Ti atoms act as donors22,23 by supplying an electron 

or they create zinc vacancies (V0 centers)22 when Ti3+ occupies Zn2+ 

sites. Venkatesan et al.24 reported the 3+ valence state of Ti in Ti-doped 

ZnO fabricated using conventional pulsed laser deposition.  

     Zn0.994Ti0.006O was fabricated under 80%Ar + 20%O2 ambient. There 

is a positive chemical shift in peak A for this sample relative to those of 

the samples stated above. The drop in intensity and shift of peak A to 

higher energy implies the valence state of Ti changes to a higher 

oxidation state and is between 3 and 4 as it lies in between those of 

Ti2O3 and TiO2. Peak C also broadens and its intensity is much lower 

than the rest. Although the Ti doping concentration is extremely low in 

this sample, a portion of titanium oxides or zinc titanate might have 

formed during the sputtering process. The Ti ions sputtered from the 

target might have reacted with the oxygen ions and formed oxide  

precipitates. 
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Fig. 5.16.   Ti K-edge EXAFS functions of Zn0.972Ti0.028O and Zn0.933Ti0.067O films 

deposited on glass and reference samples. GM A and GM C stand for 85%Ar + 

15%N2 and Ar gas mixture, respectively. 

 

     Fig. 5.16 shows the Ti K-edge EXAFS functions of Zn0.972Ti0.028O 

and Zn0.933Ti0.067O films and reference samples. The data for 

Zn0.996Ti0.004O and Zn0.994Ti0.006O are not available because of the poor 

statistics due to low Ti concentrations and the heavy matrix background. 

It is noted that the EXAFS functions for Zn0.972Ti0.028O and 

Zn0.933Ti0.067O are very similar. 

     The Fourier transform (FT) magnitudes of the EXAFS function of 

Zn0.972Ti0.028O, Zn0.933Ti0.067O films and reference samples are 

illustrated in Fig. 5.17. Fig. 5.18 gives the data fit for the first Ti-O 

shell in Zn0.972Ti0.028O and Zn0.933Ti0.067O; the fitting results are 

tabulated in Table 5.4. Table 5.4 also lists the radial structural 

parameters of the first coordination shell for the reference samples used 

in the study which were extracted from crystallographic data. In the FT, 

the XAFS function in the range 2.9-11.0Å-in k space was extracted for 

Ti K-edge. The CN, R, DW factor and E0 were set as free variables 
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during the fit. The inelastic factor, s0, was extracted from a fit to the 

reference sample and was fixed at 0.90 in the fit.  
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Fig. 5.17.   Fourier Transform magnitudes of the Ti K-edge EXAFS function of Ti-

doped ZnO films deposited on glass and reference samples. The first peak at 1.4~1.5Ǻ 

is due to Ti-O or Zn-O coordinations of the first shell. The second peak at about 

3.15~3.2Ǻ is due to Co-Zn or Zn-Zn co-ordinations of the second shell. GM A and 

GM C stand for 85%Ar + 15%N2 Ar gas mixture, respectively. Phase shift was not 

corrected. 
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Fig. 5.18.   One shell-fit data fit (Ti-O) to the first peak in FT of (a) Zn0.972Ti0.028O, (b) 

Zn0.933Ti0.067O film deposited on glass. GM A and GM C stand for 85%Ar + 15%N2 

Ar gas mixture, respectively. 

 

Table. 5.4.   Results of the Fit to the Ti-O shell in Zn0.972Ti0.028O and Zn0.933Ti0.067O 

films.a 

 

Ti K-edge Ti-O/ Zn-O 

   CN        R              σ2 

ZnO 4.0 1.97 -- 

Ti2O3 6.0 2.05 -- 

TiO2 6.0 1.95 -- 

Zn0.972Ti0.028O /glass 4.3 1.89 0.0044    

Zn0.933Ti0.067O /glass 5.4 1.87 0.0087    
 

a CN, R (Å), and σ2 (Å2) are the coordination number, inter-atomic distance, and 
Debye-Waller factor, respectively. The uncertainties for CN, R, and σ2 are 10%, 0.01 
Å, and 10%, respectively. 

 

In the Ti K-edge EXAFS functions of Zn0.972Ti0.028O and 

Zn0.933Ti0.067O displayed in Fig. 5.17, the first peak at around 1.4~ 1.5Å 
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(phase shift was not corrected) is due to the Ti-O or Zn-O coordinations 

in the first shell. The second peak at about 3.15~3.2Å corresponds to 

the second shell, e.g. Ti-12Zn for doped ZnO or Zn-12Zn for ZnO. Due 

to the lattice distortion caused by the doping, a shift towards higher R of 

the second Ti-Zn shell is observed for doped samples relative to ZnO. 

This is attributed to the more closely packed Ti-O shells, causing Ti to 

be more loosely bonded to the second shell. The third peak at 

approximately 4.05Å arises mainly from the third coordination shell 

comprising 9 O atoms and multiple scattering paths, which are not 

obvious due to the lack of long range ordering in the film samples.  

The fit to the Ti-O coordination yields a RTi-O of 1.89Å for 

Zn0.972Ti0.028O. It is much smaller than RZn-O (1.97Å) in ZnO, in 

agreement with the theoretical calculations in reference [22] and this 

might be due to the stronger interaction between tetra Ti3+ and O2- as 

compared to Zn2+ and O2-. The empty d-orbitals of Ti may be involved 

in the bonding. The CN of the Ti-O shell for Zn0.972Ti0.028O is close to 4 

if the 10% error was taken into account. This implies that the majority 

of the Ti3+ ions have substituted the Zn2+ ions in ZnO. However, a 

distortion was also induced. The solubility limit of Ti in ZnO at the 

equilibrium state is about 2.5~4.0%.16 

      A broadening and the shift toward low R of the Ti-O peak for 

Zn0.933Ti0.067O are observed. The fit to the Ti-O coordination yields a 

RTi-O of 1.87Å which is also smaller than that of ZnO. The CN of the 

Ti-O shell for Zn0.933Ti0.067O is 5.3 which implies that a portion of Ti 

ions are more likely to take octahedral coordination than tetrahedral 

one. Hence, the FT fitted results are consistent with the formation of 

zinc titanate compounds such as Zn2Ti3O8 and ZnTiO3. These 

compounds might have shorter Ti-O bond lengths.  Zn2Ti3O8 is a 

metastable compound and possesses a defect spinel structure.26 The Ti4+ 

ions in Zn2Ti3O8 occupy octahedral sites whereas part of Zn2+ ions 

occupy octahedral sites and the rest are in tetrahedral sites. ZnTiO3 has 
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a perovskite structure and is stabilized by the 6-fold coordination of the 

Ti4+ ions and 12-fold coordination of the Zn2+ ions. The Ti4+ ion is 

located at the octahedral interstitial site at the center of the unit cell and 

is coordinated to six O2- ions. This accounts for the increase in CN and 

a decrease in R of the Ti-O shell for Zn0.933Ti0.067O.  However, this is 

not very evident based on the XANES results.  

      It can be concluded that the percolation threshold of Ti in ZnO 

cannot exceed 6.7% even though reactive magnetron sputtering is a 

non-equilibrium film growth process. XAFS results also indicated that 

the majority of Ti3+ ions have been incorporated into the substitutional 

sites of the Zn lattice at about and below 2.8% Ti doping content; the 

results also revealed predominant tetrahedral coordination geometry of 

Ti atoms in Zn1-xTixO. The ZnO lattice is distorted with Ti doping, 

demonostrated by the fact that Zn-O has a stronger interaction than 

ZnO. Titanium oxides are formed when the films are fabricated in the 

ambient containing 20% oxygen and zinc titanate compounds are 

generated at approximately 6.7% Ti doping content.  
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5.2.4   Mn-doped ZnO 
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Fig. 5.19.   Normalized Mn K-edge XANES of Zn0.978Mn0.022O and Zn 0.963Mn 0.037O 

films deposited on glass, annealed Zn 0.963Mn 0.037O film deposited on Si(100), Mn foil, 

MnO, Mn3O4, Mn2O3 and MnO2. GM B and GM C stand for 80%Ar + 20%O2 and Ar 

gas mixture, respectively. 

 
     Fig. 5.19 compares the normalized Mn K-edge XANES spectra of 

Zn0.978Mn0.022O and Zn0.963Mn0.037O films deposited on glass and 

annealed Zn0.963Mn0.037O film deposited on Si(100) with those of pure 

Mn foil, MnO, Mn3O4, Mn2O3 and MnO2. The XANES spectrum for 

Zn0.999Mn0.001O was not presented because of the poor data quality due 

to the low Mn concentration. Similar to previous data, the spectra in Fig. 

5.19 shows a small pre-edge peak A, a shoulder peak B, a dominant 

main peak C and a shoulder D at the post-edge region. The 

interpretations of K-edge XANES features for 3d TM oxides have been 

explained in sections 5.2.1 and 5.2.2.  
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     Zn0.978Mn0.022O fabricated under 80%Ar + 20%O2 atmosphere shows 

a positive chemical shift relative to Zn0.963Mn0.037O. The shift of the 

peak A to higher energy implies the change of valence state of Mn to a 

higher oxidation state between 3+ and 4+, as the final spectrum lies in 

between those of Mn2O3 and MnO2. Reduced and broadened intensities 

for A, C, and D are observed. Although the Mn doping concentration is 

extremely low in this sample, a small portion of maganese oxides in 

Zn0.978Mn0.022O might already have formed during the sputtering 

process. As indicated by the XRD results in section 4.4.4, Zn2Mn3O8 is 

the probable precipitated phase. Mn might have reacted with the O2 gas 

in the chamber during deposition.  

     Zn0.963Mn0.037O was fabricated under pure Ar ambient. A 

comparison with MnO in terms of chemical shift indicates a 2+ valence 

for Mn, which is in agreement with previous reports.12,27-29 Furthermore, 

the solubility limit of Mn in ZnO at equilibrium state is about 

19.0~21.0%.16 The spectrum of this sample shows a distinct pre-edge 

peak A which indicates a four-fold coordination of Mn, consistent with 

previous publications.27,28,30-32 This suggests a substitutional 

incorporation of Mn2+ ions into the Zn sites.    

Zn0.963Mn0.037O films deposited on Si(100) and glass slide are 

grown under the same conditions. The film deposited on Si is annealed 

at 800oC; details are given in section 4.5. There is a positive shift in 

energy of the annealed Zn0.963Mn0.037O spectrum relative to the as-

deposited one. The intensity of peak A decreases and it shifts to higher 

energy, this indicates that the valence state of Mn changes to a higher 

oxidation state and is between 3 and 4 as the final spectrum lies in 

between those of Mn2O3 and MnO2. After the sample was heated at 

800oC for an hour in air, some Mn2+ ions might have aggregated and 

formed manganese oxides with higher valence states near the surface. 

     Fig. 5.20 illustrates the Mn K-edge EXAFS functions of Mn-doped 

ZnO films and reference samples by extracting the oscillation part from 
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the free atomic absorption background. The EXAFS of Zn0.978Mn0.022O 

and annealed Zn0.963Mn0.037O are drastically different from that of 

Zn0.963Mn0.037O, indicative of different structures in the films. 
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Fig. 5.20.   Mn K-edge EXAFS function of Mn-doped ZnO films deposited on glass 

and reference samples. GM B and GM C stand for 80%Ar + 20%O2 and Ar gas 

mixture, respectively. 

 
     The Fourier transform (FT) magnitudes of the Mn-doped ZnO films 

and reference samples are shown in Fig. 5.21. Fig. 5.22 illustrates the 

two-shell data fit in Zn0.978Mn0.022O and Zn0.963Mn0.037O films deposited 

on glass and the one-shell data fit for Zn0.963Mn0.037O film deposited on 

Si; the fitting results are tabulated in Table 5.5. Table 5.5 also lists the 

radial structural parameters of the first and second coordination shells 

for the reference samples used in the study which are extracted from 

crystallographic data of these oxides. In the FT, the XAFS function in 

the range 2.7-12.0Å-1 in k space wwas extracted for Mn K-edge. The 

CN, interatomic distance (R), DW factor and the energy shift (E0) were 
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set as free variables during the fit. The inelastic factor, s0, was extracted 

from a fit to the reference sample and was fixed at 0.90 in the fit.  
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Fig. 5.21.   Fourier Transform magnitudes of the Mn K-edge EXAFS function of Mn-

doped ZnO films deposited on glass and reference samples. GM B and GM C stand 

for 80%Ar + 20%O2 and Ar gas mixture, respectively. 



 108

 

 

 

 

0.00

0.02

0.04

0.06

0.08

0.10

0 1 2 3 4 5 6 7 8

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.080.00

0.02

0.04

0.06

0.08

0.10

Zn
0.978

Mn
0.022

O /glass (GM B)
(a)

 Expt

 Fit
 

 

(c)

annealed Zn
0.963

Mn
0.037

O /Si (GM C)

R ((((A))))

 

F
T
(( ((
k

3
χχ χχ
)) ))

 Expt

 Fit

 Mn-O

 Mn-Zn

(b)

Zn
0.963

Mn
0.037

O /glass (GM C)

o

 
 

Fig. 5.22.   Two shell data fit (Zn-O and Zn-Zn respectively) to the FT of the (a) 

Zn0.978Mn0.022O film deposited on glass, (b) Zn0.963Mn0.037O film deposited on glass 

and one shell-fit data (Zn-O) to the (c) annealed Zn0.963Mn0.037O film deposited on Si 

(100) at the Mn K-edges. GM B and GM C stand for 80%Ar + 20%O2 and Ar gas 

mixture, respectively. 
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Table. 5.5.   Fitting results of the Mn-O and Mn-Zn shells in Zn0.978Mn0.022O and 

Zn0.963Mn0.037O films.a 

 

Mn K-edge Mn-O/ Zn-O Mn-Zn /Zn-Zn /Mn-Mn 

   CN        R              σ2    CN            R              σ2 

ZnO 4.0 1.97 -- 12.0 3.21 -- 

MnO 6.0 2.22 -- 12.0 3.14 -- 

Mn3O4 4.0/ 6.0 2.04 -- 8.0 3.43 -- 

Mn2O3 6.0 1.99 -- 6.0 3.10 -- 

Mn5O8 6.0 1.89 -- 6.0 2.94 -- 

MnO2 6.0 1.89 -- 2.0 2.87 -- 

Zn0.978Mn0.022O /glass 6.5 1.89 0.0116 2.3 3.24 0.0093 

Zn0.963Mn0.037O /glass 3.5 2.04 0.0033 10.5 3.25 0.0130 

Zn0.963Mn0.037O /Si, annealed 3.4 1.91 0.0060  
a CN, R (Å), and σ2 (Å2) are the coordination number, inter-atomic distance, and 
Debye-Waller factor, respectively. The uncertainties for CN, R, and σ2 are 10%, 0.02 
Å, and 10%, respectively. 
 

     As shown in Fig. 5.21, the first peak is due to the nearest neighbor 

four Co-O or Zn-O bonds in the first shell. The second peak 

corresponds to the second shell of mainly twelve Co-Zn or Zn-Zn bonds 

(for ZnO) and the third peak arises mainly from the third coordination 

shell comprising 9 O atoms. The third coordination peaks of the as-

prepared thin films are almost smeared out due to long range disorder in 

the samples.  

     In Fig. 5.21, the position of the first Mn-O peak does not change 

significantly for Zn0.978Mn0.022O relative to the Zn-O peak. However, 

the fitted RMn-O is 1.89Å, much smaller than RZn-O and close to the 

theoretical value of MnO2. The short RMn-O indicates that the Mn2+ ions 

are not isolated in the ZnO wurtzite lattice. They aggregate in the lattice, 
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and some of them convert from the wurtzite to Mn oxides with 

oxidization states between 3+ and 4+, with local structures similar to 

MnO2 and Zn2Mn3O8. It should be added that the RMn-O in manganese 

oxides is related to the valence states of Mn, the shorter RMn-O for 

Zn0.978Mn0.022O is correlated with a higher valence state which is 

consistent with the XANES analysis. The much dampened second Mn-

Zn or Mn-Mn peak and the third coordination peak in the FT are an 

indication that the precipitated tetravalent manganese oxides found in 

Zn0.978Mn0.022O lack long range order. In addition, the CN of the first 

Mn-O shell for these samples is about 6, within experimental error, 

hence the majority of the Mn ions has precipitated and formed MnO2 

and Zn2Mn3O8 clusters, consistent with XANES and XRD results. 

     In Fig. 5.21, the first Mn-O or Zn-O peak of Zn0.963Mn0.037O 

deposited on glass shifts to the right relative to the Zn-O peak and is 

centered at about 1.9Å. RMn-O is 2.04Å, close to the values reported by 

Tao et al.21 and J. Pellicer-Porres et al.30. The larger value of RMn-O 

(2.04Å) than those of ZnO (1.97Å) and Co-doped ZnO may be due to 

the larger Mn2+ ionic radius (0.66 Å) as compared to those of Zn2+ 

(0.60Å) and Co2+ (0.58Å). This indicates an overall expansion of the 

ZnO lattice as a result of doping with larger Mn2+ ions. The RMn-Zn 

value is 3.25Å, close to the value of Mn-doped ZnO nanoparticles 

calcinated at 400oC reported by Tao et al.21. In addition, the CN of the 

first Mn-O shell for this sample does not exceed 4, indicating that the 

majority of the Mn2+ ions have been incorporated into the substitutional 

sites of the Zn lattice and have predominantly tetrahedral coordination 

in the first shell even though a distortion is induced by the substitution.  

     The broadening of the Mn-O and Mn-Zn peaks in the Mn K-edge FT 

displayed in Fig. 5.21 is observed for annealed Zn0.963Mn0.037O 

deposited on Si. The shape and position of the FT resembles that of 

Mn2O3. There is an overall left shift of the spectrum to smaller R 

relative to the as-prepared sample. RMn-O (1.91Å) decreases relative to 



 111

that of the as-prepared sample. The CN of the first Mn-O shell for this 

sample, on the other hand, is smaller than 4, suggesting that the sample 

also contains a portion of MnO2 and Mn5O8 (Mn2
2+Mn3

4+O8)
33 which 

have Mn-O bond lengths of 1.89Å. Mn5O8 is a metastable compound.34 

At 800°C, this metastable substituted doping state of Mn in ZnO was 

replaced by manganese oxides with higher valence states, consistent 

with the XANES analysis.   

     It can be concluded that the majority of Mn2+ ions have been 

incorporated into the substitutional sites of the Zn lattice for low Mn 

doping content and they substitute the Zn ions at tetrahedral sites. There 

is also an overall expansion of the ZnO lattice as a result of doping of 

larger Mn2+ ions. Mn oxides with higher oxidization state are formed 

when the ambient in which the films are fabricated consists of 20% 

oxygen gas. When the Mn-doped ZnO sample is annealed at 800°C, 

Mn2O3 clusters and ZnMnO complex containing Mn3+ and Mn4+ are 

generated.  
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5.2.5   Discussions 
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Fig. 5.23. Normalized K-edge fluorescent XANES for TM-doped ZnO (TM=Co, Mn 

and Ti) films deposited on glass and ZnO measured in fluorescence mode. Each 

spectrum was energy shifted relative to each other for co-plotting. GM A and GM C 

stand for 85%Ar + 15%N2 Ar gas mixture, respectively. 

 

     Fig. 5.23 illustrates the normalized K-edge fluorescent XANES for 

TM-doped ZnO (TM=Co, Mn and Ti) films deposited on glass and ZnO 

measured in fluorescence mode. For comparison, the spectra were 

rescaled by taking the K edge energy of pure metals as the origin. The 

most pronounced pre-edge peak A is observed for the Ti-substituted 

ZnO and it reduces from Ti to Zn across the 3d transition metals series, 

indicating that the peak A is closely associated with the occupation of 
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3d-orbitals of TM as the electronic configuration from Ti to Cu varies 

from 3d2 to 3d10. The valence states of TM doped ZnO are related to the 

chemical shift of XANES and can be measured by comparison with 

reference samples. Ti incorporated in ZnO shows a 3+ valence state 

while those of Co and Mn are 2+.  
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Fig. 5.24.   Fourier Transform magnitudes of the TM-doped ZnO (TM=Co, Mn and Ti) 

films deposited on glass and ZnO. (GM A and GM C stand for 85%Ar + 15%N2 Ar 

gas mixture, respectively.) 

 

  XAFS results show that the majority of the TM ions adopt a 

tetrahedral coordination in the ZnO matrix. The Fourier transformed 

spectra of Co, Ti and Mn-doped ZnO normally shows a well-ordered 

coordination up to the third shell35,36 displayed in Fig 5.24. However, 

Co dopant in ZnO matrix results in less distortion of the ZnO lattice (in 

terms of RZn-O) as compared to Ti, Mn and Cu dopants. The ionic radius 
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matching with the ZnO lattice may be the main factor since this induces 

less strain energy.21 In the case of Cu, though Cu+ has the same 

Shannon ionic radius as Zn2+ (0.6 Å), EXAFS results in section 5.2.2 

have proven the precipitation of Cu2O and Cu clusters in all Cu-doped 

samples; hence this might result in distortion of lattice since the clusters 

might be amorphous. Also, a slightly smaller radius might be more 

favorable for achieving high thermal stability of the dopant in ZnO, as 

in the case of Co2+ (0.58 Å).21 

On the other hand, the charge transfer from ZnO to TM 3d orbitals 

also appears to be an important consideration.21 The tendency of charge 

transfer arises from the excess electrons in impurity bands which are 

initially due to its strong n-type semiconductor character.21 Such a 

charge transfer trend observed is compatible with the BMP model 

mentioned in Chapter 1.3.1. In this model, to achieve a high Curie 

temperature, hybridization and charge transfer from a donor-derived 

impurity band to unoccupied 3d states of the TM element is required.21 

The stable doping for Co but not for Mn, Cu and Ti, is indicative of the 

importance of ionic radius matching with matrix in ZnO doping, in 

order to reduce the free energy. The origin of the extra electrons for this 

charge transfer is probably impurity bands which are intrinsic for n-type 

ZnO21 and needs further confirmation. 
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Chapter 6 

Magnetic Properties of 3d doped ZnO thin 

films 

 

     Vibrating sample magnetometer (VSM) was used to measure the 

hysteresis loops for all TM-doped ZnO films deposited on Si(100) 

substrates at room temperature. The saturation moments (Ms) of all samples 

were discussed and the possible origins of ferromagnetism (FM) were 

suggested. 

  

6.1   Experimental procedure  
 

     A model 7407 VSM produced by Lake-Shore Company was used in the 

magnetic measurements of the thin films. The magnetic field was applied 

parallel to the plane of the sample. Before the measurements, the sample 

holder with a pure Si substrate bonded by white Teflon tape was first 

measured to calibrate the background madnetism contributed by the holder, 

Teflon tape and Si substrate. The thin film samples with dimensions 

(~10mm x 7mm) were used for magnetic measurements. A maximum of 

5000G magnetic field was applied to the sample during measurements. 

There were a total of 72 points collected in the hysteresis loops and the y-

sensitivity was set to be 400emu. The time lag at each point was 

approximately 20s. The magnetization curves were measured at room 

temperature.  

 

6.2   Data Analysis 

           
     The saturation magnetic moments Ms per TM atom and per cm3 were 

calculated. Before performing these calculations, the mass of the measured 

samples and pure Si substrate was measured using an electronic beam 

balance. Since the mass X of all the samples are different, it is crucial to 

normalize the magnetic measurements to 1g sample mass before making 
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comparisons. Assuming that the mass of thin films was negligible 

compared to the Si substrates, the magnetization curves were first divided 

by the mass of the respective samples. The same procedure is applied to the 

magnetic measurement performed on pure Si substrate for calibration. The 

calibration curve is then subtracted from the magnetization curves of all the 

samples; hence the hysteresis loops R obtained are due solely to the thin 

films since all the background and substrate effects were eliminated. R is 

then readjusted, so that its center lies in the center of the intersection of the 

x-y axes. 

Next, the lengths and widths of the samples were measured using a vernier 

caliper several times and average values are taken. The surface areas A of 

the rectangular films were calculated. However, A is the surface area of the 

film for mass X; when the mass of the sample is increased to 1g, we are 

assuming a bigger piece of Si substrate and a larger surface area of the Si 

substrate. Hence, the area of the deposited film will also increase. The 

larger surface area B of the film for 1g of the sample is calculated by 

proportionality calculations. The thickness T of the films remained a 

constant regardless of the size of Si substrate. T had already been measured 

using the alpha-step profilometer and the results are tabulated in section 3.2. 

The volume ( V = B × T) of the thin films were then calculated from these 

results, followed by the multiplication of the density of ZnO (5.65g/cm3) 

with V to obtain the mass (m) of the film for 1g of the sample. Next, the 

hysteresis loops R is divided by m of the respective films to obtain resultant 

curves P/ emu per g. Ms per g for all thin films can then be found from P. 

The error in Ms can be calculated by means of standard deviation. 

     The concentrations of TM in Zn1-xTMxO had been calculated in section 

3.3. Next, the number of TM atoms in Zn1-xTMxO was calculated using the 

following equation: 

 

# TM atoms = #moles of ZnO × Avogadro constant × %TM concentration 

                        = mass m of film/ mass of 1 mole of Zn1-xTMxO  

                           × Avogadro constant × %TM concentration 

where Avogadro constant=6.02×1023mol-1        
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     Finally, the magnetization curves R are divided by the respective 

number of TM atoms and a conversion from emu to µB is done to obtain the 

hysteresis loops H/ µB per TM atom. Ms per TM atom for all thin films are 

measured from H. The error in Ms can be calculated by means of standard 

deviation. 

 

6.3   Results and Discussions 
 

6.3.1   Co-doped ZnO 
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Fig. 6.1.   M-H loops measured at room temperature for Co-doped ZnO films deposited on 

Si (100). 

 

     The M-H magnetization (µB/Co) curves measured at room temperature 

are shown in Fig. 6.1. All Co-doped ZnO films are ferromagnetic except for 

Zn0.790Co0.210O which shows no distinct hysteresis in Fig. 6.1. The 

hysteresis loop for Zn0.809Co0.191O is very low in magnitude. The insulating 

nature of our Co-doped ZnO samples is significant in that a magnetic 

coupling interaction other than carrier-mediated exchange is apparently 

operative. Moreover, conventional superexchange interactions cannot 

produce long-range magnetic order at concentrations of magnetic cations of 
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a few percent.1 Therefore, there are two possible origins of the 

ferromagnetism in Co-doped ZnO that should be considered. 

     The first possible origin of FM of insulating Co-doped ZnO samples 

might be derived from common native defects such as oxygen vacancies, 

zinc intersitials and zinc vacancies.2 The oxygen vacancies might have an 

important role in the origin of room-temperature ferromagnetism for 

insulating oxide DMS. 3-6 This is because the likely origin of the donor 

impurity band in ZnO films come from lattice defects such as oxygen 

vacancies which trap between one and two electrons (F0centers).7-10 The 

spin-split impurity-band model which is accountable for FM has been 

elaborated in section 1.3.2. M. Venkatesan et al.7 reported that there is no 

obvious correlation between conductivity and cation valence or 

conductivity and magnetism in their TM-doped ZnO samples. The electrons 

in the impurity band will be localized by the influence of electronic 

correlations and potential fluctuations11 associated with the dopant cations.7 

Localization does not preclude ferromagnetic coupling, providing the 

localization length is not much shorter than γa0.
7 
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Fig. 6.2.  Normalized Co K-edge XANES spectra of Co-doped ZnO films deposited on 

glass, Co foil, CoO and Co3O4. GM A, GM B and GM C stand for 85%Ar + 15%N2, 

80%Ar + 20%O2 and Ar gas mixture, respectively. 

 

     Tongfei Shi et al.4 has carried out XANES models simulations taking 

into account two structure models. One model is Co atom substituting for 
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Zn atom in ZnO cluster with the first shell, and the values obtained from 

their EXAFS fitting are attributed to second shell bond lengths.  The other 

model is substitutional Co at Zn sites in ZnO with one oxygen vacancy in 

the nearest coordination shell.4 In the experimental and calculated XANES 

spectra done using the FEFF8.2 code by Tongfei Shi et al.4, it is observed 

that the two main features in the experimental spectra of Zn0.98Co0.02O and 

Zn0.95Co0.05O can be reproduced by the calculated spectrum for the structure 

model without oxygen vacancy.4 However, the presence of an oxygen 

vacancy makes peaks A and B change to one smooth peak C. This indicates 

that oxygen vacancy, which can induce a donor state overlapping with the d 

states of the Co atoms, is not produced in these samples4. In contrast to their 

results, our EXAFS results (Fig. 6.2) in section 5.3.1 show that only a 

smooth peak “D” which corresponds to peak “C” in the calculated XANES 

spectra done by Tongfei Shi et al.4, exists for Zn0.985Co0.015O, 

Zn0.979Co0.021O and Zn0.977Co0.023O whereby Co2+ ions are successfully 

incoporated at the Zn sites. Thus, our results indicate the presence of 

oxygen vacancies that might give rise to room temperature FM. 

     Marcel H.F. Sluiter et al.6 , on the other hand, reported that the DFT 

calculations with oxygen vacancies in the case of Co and Mn revealed little 

effect on the magnetic couplings because the induced donor state is too 

deep to significantly affect the occupancy of the extended TM levels. This 

opposes the reasoning given by references [4], [5], [6] and [12]. Marcel 

H.F. Sluiter et al.6 also reported that both electron doping with zinc 

interstitials and hole doping with zinc vacancies make Zn1-xCoxO and Zn1-

xMnxO strongly FM. The important role played by Zn vacancies and Zn 

interstitials explains why annealing at high temperatures decreases FM in 

Zn1-xCoxO as the Zn vacancies and Zn interstitials are generally lost and 

replaced with inert oxygen vacancies. In our case, it is also possible that the 

FM found in the Co-doped ZnO films is due to the presence of the native 

defects such as zinc interstitials and zinc vacancies. 
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Fig. 6.3.  Three-polaron subsystem is to represent supercoupling between polarons.1 

 
     The second possible origin of FM in our Co-doped ZnO samples can be 

attributed to intrinsic magnetism by invoking a supercoupling mechanism 

based on the bound magnetic polarons (BMP) model as mentioned in 

section 1.3.1.1,3,13,14,15 The highly non-equilibrium process of magnetron 

sputtering makes it possible for impurities (defects) in the doped film to be 

located throughout the lattice at arbitrary distances with respect to Co sites.4 

For a sufficiently large orbital radius, overlap between a hydrogenic 

electron and the cations within its orbit leads to ferromagnetic 

supercoupling between them1, as shown in Fig. 6.3. The interaction 

between the hydrogenic electron and the cations is represented by a 

Heisenberg exchange Hamiltonian:1,16  

             Ĥij = Ʃij JijŜiŝj       --- (1) 

 

where S is the spin of the Co2+ and s is the donor electron spin. The donors 

tend to form a BMP, coupling Co2+ within their orbits. The Hamiltonian of 

a two-polaron subsystem is given by Eq. (1), where donor electron spin 

index j takes only two values j1 and j2 corresponding to the two polarons 

under consideration.1 
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Table. 6.1.   The saturation magnetic moments Ms of Co-doped ZnO films deposited on Si 

(100) and the atmosphere under which they are fabricated. 
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Fig. 6.4.   The room temperature saturation magnetic moments Ms expressed as (µB/Co), as 

a function of the measured Co concentrations x of the Co-doped specimens.  The Co 

concentration in the sample was estimated by XRF measurements.  

 

     Table 6.1 tabulates Ms (µB/Co) of Co-doped ZnO films deposited on Si 

(100). Fig. 6.4 displays the variation of Ms (µB/Co) with Co concentration x 

of the samples. The largest measured moment is 0.237±0.004 µB/Co in 

Zn0.985Co0.015O is smaller than the spin-only moment mspin= 3µB Co2+ in the 

high spin d7 configuration e4t2
3.7,12,17 Song et al.1 reported a large saturation 

moment of 6.1 µB/Co atom at room temperature for 4 at.% Co-doped ZnO 

sample. Table 6.1 and Fig. 6.4 demonstrate a general trend of falloff in 

Sample name Atmosph
ere 

Ms/µB per Co atom 

Zn0.985Co0.015O   Ar + N2 0.237 ± 0.004 
Zn0.979Co0.021O   Ar + N2 0.081 ± 0.002 
Zn0.977Co0.023O Ar + N2 0.095 ± 0.0006 

Zn0.977Co0.023O, annealed Ar + N2 0.037 ± 0.001 
Zn0.961Co0.039O Ar + O2 0.058 ± 0.001 
Zn0.809Co0.191O Ar + N2 0.015 ± 0.00003 
Zn0.790Co0.210O Ar --- 
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Ms(µB/Co) with increasing x, consistent with several publications.1,3,18,19 

This phenomenon can be explained by the four following reasons.  

     The first possible reason is in terms of a random distribution of cobalt 

ions over the cation sites in the wurtzite lattice. Isolated ions contribute the 

full moment, pairs and most groups of four are antiferromagnetically 

coupled and make no net contribution, triplets contribute mspin/3. Large 

antiferromagnetically coupled clusters of N atoms will make a contribution 

of mspin/N
1/2.7,17 Antiferromagnetism or ferrimagnetism might appear where 

there are continuous paths throughout the crystal joining nearest neighbor 

magnetic Co cations.1,3  

     In our Co-doped ZnO samples, the majority of the Co2+ ions 

incorporated at Zn sites have no nearest Co2+ neighbor for low Co 

concentrations. Most of the magnetism arises through intervening Zn and 

therefore corresponds to the isolated case.20 As x increases, the fraction of 

Co2+ that have nearest Co2+ neighbor grows rapidly, the Co spins might be 

antiferromagnetically coupled between nearest neighbor due to 

superexchange interaction which is short-ranged.3,21 Hence, the magnetic 

property of the samples might be derived from the isolated Co2+ ions20 that 

have no nearest neighbor Co2+ in the Co-doped ZnO films and these form 

larger fractions of the magnetic ions when x is smaller, particularly in 

Zn0.985Co0.015O, Zn0.979Co0.021O and Zn0.977Co0.023O.   

     Secondly, the FM of the Co-doped samples might be due to the 

acquisition of moment through electronic effects by the atoms surrounding 

the cobalt atoms in the sample, or that the orbital moment of the cobalt 

remains unquenched.1,19,22 The rapid decrease in Ms (µB/Co) on the 

increment of dopant concentration might be due to the enhanced dopant-

dopant associations leading to progressive orbital moment quenching.  

     The third reason can be ascribed to the presence of Co3O4 clusters which 

are AFM23,24 at room temperature. Zn0.961Co0.039O contains approximately 

14.0% Co3O4 clusters. Hence, the existence of AFM Co3O4 tends to 

decrease the ferromagnetism (FM) contributed by the isolated Co2+ ions, in 

agreement with reference [4]. The drop in Ms after a high temperature 

treatment of Zn0.977Co0.023O might be due to the enhanced dopant-dopant 

associations1 or the AFM interactions in the Co3O4 clusters which 
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precipitated after annealing. These explain the drop in the effective 

magnetic moment per Co atom with the increment of x.  

     Finally, E Dudzik et al.25 reported that Co clusters grown on Au (111) 

are superparamagnetic at room temperature. M. Klimenkov et al.26, on the 

other hand, reported that magnetic measurements at temperatures between 2 

K and 360 K reveal superparamagnetic behaviour of the small Co 

nanoclusters in SiO2 films up to 3 nm and FM for clusters above 7 nm. The 

Co constituents of Zn0.790Co0.210O and Zn0.809Co0.191O, as given by EXAFS 

results in section 5.3.1, imply that there are 48.1% Co0 and 51.9% of 

interstitial Co2+ substituted in Zn sites and 47.1% Co0 and 52.9% of 

interstitial Co2+ substituted in Zn sites, respectively. Hence, the fourth 

reason that accounts for the trend might be due to the formation of these 

superparamagnetic Co nanoclusters21 at high Co concentrations. 

     Zn0.790Co0.210O shows no distinct hysteresis in Fig. 6.1; the M-H loop 

suggests paramagnetism of the sample. The Co0 precipitated in 

Zn0.790Co0.210O might have formed very small Co nanoclusters, leading to 

superparamagnetism. Thus, it can be deduced that Zn0.790Co0.210O consists 

of a mixture of ferromagnetic and paramagnetic clusters of Co atoms at 

room temperature, i.e. superparamagnetic stage. Zn0.809Co0.191O, on the 

other hand, might have contained less of such small Co nanoclusters since 

superparamagnetism is not evident from the hysteresis M-H loop in Fig. 

6.1. Nevertheless, the overall Ms(µB/Co) decreases. Thus, the possibility of 

the existence of these superparamagnetic Co clusters in Zn0.809Co0.191O 

cannot be eliminated. 

 

Table. 6.2.   The saturation magnetic moments Ms of Co-doped ZnO films deposited on Si 

(100) and the atmosphere under which they are fabricated. 

 

 

 

 

 

 

Sample name Atmosphere Ms (emu/ g) 
Zn0.985Co0.015O   Ar + N2 0.249 ± 0.004 
Zn0.979Co0.021O   Ar + N2 0.118 ± 0.003 
Zn0.977Co0.023O Ar + N2 0.152 ± 0.001 

Zn0.977Co0.023O, annealed Ar + N2 0.060 ± 0.002 
Zn0.961Co0.039O Ar + O2 0.155 ± 0.004 
Zn0.809Co0.191O Ar + N2 0.191 ± 0.0004 
Zn0.790Co0.210O Ar --- 
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Fig. 6.5.   M-H loops measured at room temperature for Co-doped ZnO films deposited on 

Si (100). 

 

                              
0 2 4 6 8 10 12 14 16 18 20

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

 

M
s
 (

e
m

u
/g

)

Co Concentration (%)

N
2
 and Ar

O
2
 and Ar

N
2
 and Ar

N
2
 and Ar

N2 and Ar

 

Fig. 6.6.   The room temperature saturation magnetic moments Ms as a function of the 

measured Co concentrations x of the Co-doped specimens.   
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     Table 6.2 tabulates the Ms (emu/g) of Co-doped ZnO films deposited on 

Si (100). Fig. 6.5 displays the M-H magnetization (emu/g) curves measured 

at room temperature while Fig. 6.6 displays the variation of Ms (emu/g) 

with Co concentration x of the samples. In contrast with the results plotted 

in terms of µB/Co in Fig. 6.4, the total absolute Ms increases with increasing 

x. The exception is the case of Zn0.985Co0.015O which has an extremely large 

number of isolated Co2+ ions, leading to a very large effective magnetic 

moment per Co. This can be ascribed to the fact that the total number of the 

isolated Co2+ ions is larger for higher x; this portion of the Co2+ ions 

contributes to FM, hence leading to larger total absolute magnetic moment 

with increase in x even though Co3O4 and Co clusters exist.  

 

6.3.2   Cu-doped ZnO 
 

     The M-H magnetization (µB/Cu) curves measured at room temperature 

are shown in Fig. 6.7. All Cu-doped ZnO films are ferromagnetic as 

observed through the M-H hysteresis loops. The resistivity of our Cu-doped 

ZnO samples is high such that a magnetic coupling interaction other than 

carrier-mediated exchange exists. 
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Fig. 6.7.   M-H loops measured at room temperature for Cu-doped ZnO films deposited on 

Si (100). 
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           Xiaobing Feng et al.27 employed the Becke three parameter Lee-

Yang-Parr (B3LYP) hybrid density functional method in the GGA 

approximation to study the electronic structure and possible ferromagnetic 

ordering in Zn1−xTMxO (TM= Cu, Mn). For the case of Cu, the results 

indicate that in n-type ZnO, electrons would rather occupy the empty Cu 3d 

states, leading to Cu+ state instead of Cu2+ ions because the unoccupied Cu 

3d state is lower than the host conduction band states.27 The total energies 

for different magnetic configurations and different distances were 

calculated between the Cu ions when two Zn ions are substituted with Cu 

ions. In one case (‘far’), the two Cu ions are well separated along the c-axis 

with a Cu–Cu distance of 5.205 Å; in the other case (‘near’), the two Cu 

ions are in the ab plane and have a distance of 3.249 Å which is the shortest 

distance between two cations in the ab plane.27 The results reveal that the 

magnetic phases are more stable than the non-magnetic ones. In the ‘near’ 

case, the AFM state is favoured over the ferromagnetic one while in the 

‘far’ case, the FM state has the lowest energy.27,28 Of all the magnetic 

configurations, the FM state with the largest distance between the two Cu 

ions has the lowest total energy which implies that ferromagnetic 

semiconductors can be obtained by doping Cu into ZnO.27,28 The 

calculation indicates that the magnetic couplings between Cu ions depend 

on the Cu–Cu distances.26,27 In other words, FM state is stabilised for 

“isolated” Cu+ ions. The calculation also shows that Cu-clustering is not 

stable in the ground state and it is detrimental to the FM of Cu-doped 

ZnO.27 

     Similar to Co-doped ZnO, the possible origins of the FM of Cu-doped 

ZnO might be ascribed to 1) the spin-split impurity-band model whereby 

the impurity band is found to primarily arise from the hybridization of the 

Cu 3d level with O 2p states28 and/or 2) the intrinsic magnetism that can be 

explained by the BMP model. 
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Table. 6.3.   The saturation magnetic moments Ms of Cu-doped ZnO films deposited on Si 

(100) and the atmosphere under which they are fabricated. 
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Fig. 6.8.   The room temperature saturation magnetic moments Ms as a function of the 

measured Cu concentrations x of the Cu-doped specimens.  The Cu concentration in the 

sample was estimated by XRF measurements. 

 

     Table 6.3 summarizes the Ms (µB/Cu) of Cu-doped ZnO films deposited 

on Si (100). Fig. 6.8 displays the variation of Ms (µB/Cu) with Cu 

concentration x of the samples. The largest measured moment is 

0.101±0.001µB/Cu in Zn0.987Cu0.013O whereas the theoretical value of the 

magnetic moment of Cu doped in ZnO is predicted to be 0.12 However, 

many papers29-31 have reported the presence of FM in their Cu-doped ZnO 

samples with magnetic moment as high as 0.75 µB/Cu atom.29 Table 6.3 and 

Fig. 6.8, again, display a consistent decrease in Ms with increasing x, in 

Sample name Atmosphere Ms/µB per Cu atom 
Zn0.987Cu0.013O   Ar  0.101 ± 0.001 
Zn0.986Cu0.014O   Ar + N2 0.097 ± 0.004 

Zn0.986Cu0.014O, annealed    Ar + N2 0.056 ± 0.001 
Zn0.976Cu0.024O   Ar + N2 0.067 ± 0.001 
Zn0.942Cu0.058O   Ar  0.023 ± 0.0003 
Zn0.812Cu0.188O   Ar + N2 0.010 ± 0.0001 
Zn0.754Cu0.246O   Ar  0.005 ± 0.00006 



130 
 

agreement with reference [27]. This similar trend probably has the same 

explanations as Co-doped ZnO.    

     Firstly, at higher Cu concentrations, there is an increasing occurrence of 

AFM coupling between Cu pairs occurring at shorter separation distance. 

This has been predicted in theoretical studies.27,32 Secondly, the rapid drop 

in Ms (µB/Cu) on the increment of Cu concentration can be attributed to the 

enhanced dopant-dopant associations leading to progressive orbital moment 

quenching.  

     Thirdly, the decrease in magnetic moment per Cu is related to the 

presence of Cu2O which is AFM.29,30,33 EXAFS results in section 5.3.2 

confirm the existence of Cu2O clusters in Zn0.986Cu0.014O and 

Zn0.976Cu0.024O. The decrease in Ms after annealing Zn0.986Cu0.014O at 800oC 

might be due to the enhanced dopant-dopant associations1 or the AFM 

interactions in the Cu2O clusters which formed after calcination.  

     Copper clusters, on the other hand, are non-magnetic.27-29,34 Lastly, as 

mentioned previously, Cu-clustering is not stable in the ground state and it 

is detrimental to FM in Cu-doped ZnO.27 Cu clusters are also found in 

Zn0.987Cu0.013O, Zn0.942Cu0.058O, Zn0.812Cu0.188O and Zn0.754Cu0.246O, as 

indicated by EXAFS results in section 5.3.2. All the above reasons explain 

why Ms (µB/Cu) drops off with increasing x values.  

 

Table. 6.4.   The saturation magnetic moments Ms of Cu-doped ZnO films deposited on Si 

(100) and the atmosphere under which they are fabricated. 

 

 

 

 

 

Sample name Atmosphere Ms (emu/g) 
Zn0.987Cu0.013O   Ar  0.089 ± 0.001 
Zn0.986Cu0.014O   Ar + N2 0.095 ± 0.003 

Zn0.986Cu0.014O, annealed    Ar + N2 0.055 ± 0.001 
Zn0.976Cu0.024O   Ar + N2 0.109 ± 0.002 
Zn0.942Cu0.058O   Ar  0.090 ± 0.001 
Zn0.812Cu0.188O   Ar + N2 0.132 ± 0.002 
Zn0.754Cu0.246O   Ar  0.092 ± 0.001 
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Fig. 6.9.   M-H loops measured at room temperature for Cu-doped ZnO films deposited on 

Si (100). 
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Fig. 6.10.   The room temperature saturation magnetic moments Ms as a function of the 

measured Cu concentrations x of the Cu-doped specimens.  
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     Table 6.4 tabulates the Ms (emu/g) of Cu-doped ZnO films deposited on 

Si (100). Fig. 6.9 displays the M-H magnetization (emu/g) curves measured 

at room temperature while Fig. 6.10 displays the variation of the magnetic 

moment Ms (emu/g) with Cu concentration x of the samples. Contrary to the 

results plotted in terms of µB/Cu in Fig. 6.8, the total absolute magnetic 

moment does not decrease with increasing x. It is observed that for all Cu-

doped ZnO films fabricated under Ar ambient, the Ms values are roughly 

the same (0.090emu/g) which implies that Ms is independent of x. On the 

other hand, the Ms values increase readily with the increment of x for films 

fabricated under 85%Ar + 15%N2 atmosphere.  

     EXAFS results have confirmed the existence of Cu clusters in 

Zn0.987Cu0.013O, Zn0.942Cu0.058O and Zn0.754Cu0.246O which are all fabricated 

under Ar ambient, whereas 85%Ar + 15%N2 atmosphere has favored the 

formation of AFM Cu2O clusters in Zn0.986Cu0.014O and Zn0.976Cu0.024O. 

Under 85%Ar + 15%N2 atmosphere, Zn0.812Cu0.188O has a mixture of Cu 

and Cu2O clusters due to its high Cu content. It is postulated that in the 

samples fabricated under 85%Ar + 15%N2 ambient, a lot more isolated Cu+ 

ions (which contribute to FM state) are present which increases with rise in 

x, leading to a higher total absolute magnetic moment. Although AFM 

Cu2O clusters exist in these samples, the larger magnitude of FM might be 

able to overcome it. It is also postulated that the samples fabricated under 

Ar atmosphere have a high percentage of non-magnetic Cu clusters and a 

fixed small number of isolated Cu+ ions. Thus, the Ms values almost 

remained constant regardless of x values. 

 

6.3.3   Ti-doped ZnO 

 

     The M-H magnetization (µB/Cu) curves measured at room temperature 

are shown in Fig. 6.11. All Ti-doped ZnO films are ferromagnetic as 

observed through the M-H hysteresis loops. Zn0.995Ti0.005O fabricated under 

under 80%Ar + 20%O2 atmosphere might have contained large amounts of 

FM Ti oxides precipitates, hence it has a higher Ms than the rest of the  
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Fig. 6.11.   M-H loops measured at room temperature for Ti-doped ZnO films deposited on 

Si (100). 

 

samples. The Ti-doped ZnO samples are insulators; hence, carrier-mediated 

FM is not possible.    

     Osuch et al35 performed electron density functional theory (DFT) 

calculations which show that the introduction of titanium induces an 

impurity band in the lower part of the conduction band with both the 

majority- and minority-spin components retaining a band gap. The 

introduction of Ti, therefore, maintains the semiconducting nature of ZnO. 

The impurity levels associated with the Ti dopant are spin polarized with 

the Fermi level passing through the Ti related impurity band for the 

majority spin component.35 Impurity levels lying close to the Fermi level 

are spin polarized by 0.6–0.7 eV.35 These results are consistent with 

experimental findings of Park et al.36 and Lin et al.37 where Ti dopants are 

found to be donors in ZnO. The impurity band is formed by the 

hybridization of the Ti 3d level with the 2p states of the O neighbors of 

Ti.35 This is also consistent with the experimental findings of Venkatesan et 

al.
7 where it was suggested that ferromagnetic ordering arises in ZnO:Ti 
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due to an exchange interaction between localized Ti 3d magnetic moments 

mediated by an overlap of Ti 3d orbitals with a delocalized donor impurity 

band.35 It is necessary for a partly occupied Ti 3d impurity band overlaps 

with a spin polarized donor impurity band to mediate the exchange 

interaction in that model.35 Ab initio calculations performed by Osuch et 

al35 suggest ferromagnetic ordering in the Ti0.0625Zn0.9375O sample without 

additional doping and that Ti itself is likely to be a n-type dopant in ZnO.35 

These results are further supported by the results of Gebicki et al.,38 where 

it was found that Raman peaks of ZnO:Ti are associated with electronic 

transitions in a Ti-related complex strongly coupled to lattice phonons. 

     Hence, the possible origins of the FM of Ti-doped ZnO might be 

ascribed to 1) the spin-split impurity-band model whereby the impurity 

band is formed by the hybridization of the Ti 3d level with the 2p states of 

the O neighbors of Ti and/or 2) the intrinsic magnetism that can be 

explained by the BMP model. 

 

Table. 6.5.   The saturation magnetic moments Ms of Ti-doped ZnO films deposited on Si 

(100) and the atmosphere under which they are fabricated. 

 

 

 

 

 

 

Sample name Atmosphere Ms/µB per Ti atom 
Zn0.996Ti0.004O   Ar + N2 0.090 ± 0.004 
Zn0.995Ti0.005O   O2 + N2 0.827 ± 0.013 
Zn0.972Ti0.028O   Ar + N2 0.039 ± 0.002 
Zn0.933Ti0.067O   Ar  0.036 ± 0.001 
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Fig. 6.12.   The room temperature saturation magnetic moments Ms as a function of the 

measured Ti concentrations x of the Ti-doped specimens.  The Ti concentration in the 

sample was estimated by XRF measurements. 

 

     Table 6.5 summarizes the Ms (µB/Ti) of Ti-doped ZnO films deposited 

on Si (100). Fig. 6.12 displays the variation of Ms (µB/Ti) with Ti 

concentration x of the samples which excludes Zn0.995Ti0.005O. The largest 

measured moment of Ti-doped ZnO, excluding Zn0.995Ti0.005O which 

contains large amounts of FM Ti oxides precipitates, is 0.090±0.004µB/Ti 

in Zn0.996Ti0.004O. The theoretical value of the magnetic moment of Ti 

doped in ZnO is predicted to be 0 by Sato et al.12 However, Antony et al.39 

reported a saturation moment of 0.15 µB/Ti atom at room temperature for 

5% Ti-doped ZnO sample, and Osuch et al35 performed DFT calculations 

predicting a magnetic moment of 0.63µB per supercell in Zn0.9375Ti0.0625O. 

Table 6.5 (omitting Zn0.995Ti0.005O) and Fig. 6.12 display a consistent 

decrease in Ms with increasing x. This similar trend probably has the same 

explanations as Co and Cu-doped ZnO.    
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Fig. 6.13.   M-H loops measured at room temperature for Ti-doped ZnO films deposited on 

Si (100). 

 

 

Table. 6.6.   The saturation magnetic moments Ms of Ti-doped ZnO films deposited on Si 

(100) and the atmosphere under which they are fabricated. 

 

 

 

 

 

Sample name Atmosphere Ms (emu/g) 
Zn0.996Ti0.004O   Ar + N2 0.027 ± 0.001 
Zn0.995Ti0.005O   O2 + N2 0.312 ± 0.005 
Zn0.972Ti0.028O   Ar + N2 0.076 ± 0.003 
Zn0.933Ti0.067O   Ar  0.168 ± 0.005 
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Fig. 6.14.   The room temperature saturation magnetic moments Ms as a function of the 

measured Ti concentrations x of the Ti-doped specimens.   

 

     Table 6.6 tabulates the Ms (emu/g) of Ti-doped ZnO films deposited on 

Si (100). Fig. 6.13 displays the M-H magnetization (emu/g) curves 

measured at room temperature while Fig. 6.14 shows the variation of the 

magnetic moment Ms (emu/g) with Ti concentration x which excludes 

Zn0.995Ti0.005O. Unlike in Fig. 6.12, the total absolute magnetic moment 

increases almost linearly with increasing x with the exception of 

Zn0.995Ti0.005O which contains large amounts of FM Ti oxides precipitates. 

This can be attributed to the fact that the total number of isolated Ti3+ ions 

is larger for higher x. This portion of the Ti3+ ions contributes to FM, hence 

leading to larger total absolute magnetic moment with increase in x.  

 

 

 

 

 

 

 



138 
 

6.3.4   Mn-doped ZnO 
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Fig. 6.15.   M-H loops measured at room temperature for Mn-doped ZnO films deposited 

on Si (100). 

      

     The M-H magnetization (µB/Mn) curves measured at room temperature 

for Mn-doped ZnO films deposited on Si (100) are shown in Fig. 6.15. All 

Mn-doped ZnO films are ferromagnetic as observed through the M-H 

hysteresis loops. The Mn-doped ZnO samples are insulators; hence, carrier-

mediated FM is not possible. Xiao-yun et al.40 reported that the insertion of 

Mn2+ ions leads to formation of defects in the ZnO host matrix. Thus, the 

FM of Zn1-xMnxO films is strongly related to the defects in ZnO.40,41       

     Yan et al.41 reported that the room-temperature ferromagnetism of 

Zn0.97Mn0.03O grown by metal organic chemical vapour deposition 

(MOCVD) method may be connected with the presence of Zn vacancy 

(VZn). They used the Vienna ab initio simulation package (VASP) to 

calculate the electronic structure and magnetic interactions between Mn 

ions in the model structure of MnZn+VZn.
41 The calculations showed that the 

FM configuration is energetically favoured over the AFM configuration by 

22meV in total energy, indicating the stability of the FM state against the 
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AFM state for MnZn+VZn.
41 This is in agreement with previous theoretical 

calculations.42,43 The hybridization between the Mn 3d
↑ and defect a1 states 

facilitates the electron transfer from Mn 3d
↑ states to the acceptor.41  

According to the BMP model, the charge transfer between the Mn 3d and a1 

states favours an enhancement of the Curie temperature TC.41  From first-

principles calculations, it was concluded that the Zn vacancy favours the 

room-temperature ferromagnetism in the Zn0.97Mn0.03O thin film. 41 

     For the spin-split impurity-band model, there is no overlap of the donor 

impurity band with the 3d levels of Mn as shown in Fig. 6.16 and the 

exchange is weak.7 Hence, the possible origins of the FM of Mn-doped 

ZnO might be ascribed to the intrinsic magnetism that can be explained by 

the BMP model. However, there are also several theoretical and 

experimental reports12,44 on AFM found in Mn-doped ZnO. 

 

 
Fig. 6.16.   Schematic density of states for (a) TM= Ti, (b) TM = Mn, and (c) TM = Co. 

The Fermi level lies in a spin-split donor impurity band.7 

 

Table. 6.7.   The saturation magnetic moments Ms of Mn-doped ZnO films deposited on Si 

(100) and the atmosphere under which they are fabricated. 

 

  

 

                

  

Sample name Atmosphere Ms/µB per Mn atom 
Zn0.999Mn0.001O Ar + N2 1.882 ± 0.022 
Zn0.978Mn0.022O Ar + O2 0.211 ± 0.001 
Zn0.963Mn0.037O Ar  0.013 ± 0.0007 

Zn0.963Mn0.037O, annealed Ar 0.034 ± 0.0009 
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Fig. 6.17.   The room temperature saturation magnetic moments Ms as a function of the 

measured Mn concentrations x of Mn-doped specimens.  The Mn concentration in the 

sample was estimated by XRF measurements. 

 

     Table 6.7 summarizes the Ms (µB/Mn) of Mn-doped ZnO films deposited 

on Si (100). Fig. 6.17 displays the variation of Ms (µB/Mn) with Mn 

concentration x of the samples. The largest measured moment of 

Zn0.999Mn0.001O is 1.882±0.022µB/Mn, smaller than the spin-only moment 

mspin= 5µB Mn2+ in the high spin state.3,12,41,45 This is a common 

phenomenon for DMS materials, usually ascribed to the competition 

between the FM interaction and AFM superexchange coupling of 

neighboring Mn2+ ions.42 Several papers3,7,41,45 reported low Ms <0.5µB/Mn 

in Mn-doped ZnO, in contrast to our results for Zn0.999Mn0.001O. This 

indicates that there might be other factors leading to FM in our samples 

which will be further discussed in section 6.3.5.  

     Table 6.7 and Fig. 6.17 display a consistent decrease in Ms with 

increasing x, in agreement with references [41], [44], [46] and [47]. This 

similar trend probably has the same explanations as the rest of the TM-

doped ZnO. With increasing x, the fraction of Mn ions pairs and groups of 

four Mn ions or more formed AFM clusters which do not contribute to the 

magnetic signal increases which reduces the net magnetization.41,47,48 The 

slight increase in Ms after annealing Zn0.963Mn0.037O at 800oC might be due 
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to the precipitation of small amounts of Mn3O4 which is FM with Tc of 

46K.41,49 Nearly all possible Mn-based binary and ternary oxide candidates 

are AFM41 and these include MnO and MnO2 with Neel temperatures of 

116 and 84K respectively.45 
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Fig. 6.18.   M-H loops measured at room temperature for Mn-doped ZnO films deposited 

on Si (100). 
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Fig. 6.19.   The room temperature saturation magnetic moments Ms as a function of the 

measured Mn concentrations x of the Mn-doped specimens.   
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Table. 6.8.   The saturation magnetic moments Ms of Mn-doped ZnO films deposited on Si 

(100) and the atmosphere under which they are fabricated. 

 

 

 

 

      

     Table 6.8 tabulates the Ms (emu/g) values of Mn-doped ZnO films 

deposited on Si (100). Fig. 6.18 displays the M-H magnetization (emu/g) 

curves measured at room temperature while Fig. 6.19 shows the variation of 

the magnetic moment Ms (emu/g) with Mn concentration x.  

The total absolute magnetic moment decreases with the increment of x with 

the exception of Zn0.978Mn0.022O which is suspected to contain small 

amounts of FM Mn3O4; this is plotted in terms of µB/Mn in Fig. 6.12. This 

suggests that the AFM superexchange coupling between Mn atoms is 

energetically more favorable than FM as x increases48; Mn atoms will 

gather close to each other, cluster around O atom and exhibit AFM behavior 

which leads to a net reduction in magnetization.48,50,51  

 

6.4   Summary 
 

     VSM measurements at room temperature reveal that the TM (Co, Cu, Ti 

and Mn)–doped ZnO films are ferromagnetic. The origins of the FM of our 

insulating TM-doped ZnO samples can generally be attributed to 1) the 

spin-split impurity-band model and/or 2) the intrinsic magnetism that can 

be explained by the BMP model.  

     The largest measured moments for TM-doped ZnO without any 

precipitation are 0.237±0.004 µB/Co in Zn0.985Co0.015O, 0.090±0.004µB/Ti 

in Zn0.996Ti0.004O and 1.882±0.022µB/Mn in Zn0.999Mn0.001O. 

     In all TM–doped ZnO films, Ms(µB/TM atom) is generally found to 

decrease with increasing x. This trend can be explained by a few reasons. 

Firstly, at higher TM concentrations, there is an increasing occurrence of 

AFM coupling between TM pairs, groups of four and coupled clusters of N 

Sample name Atmosphere Ms (emu/g) 
Zn0.999Mn0.001O Ar + N2 0.183 ± 0.002 
Zn0.978Mn0.022O Ar + O2 0.323 ± 0.002 
Zn0.963Mn0.037O Ar  0.033 ± 0.002 

Zn0.963Mn0.037O, annealed Ar 0.087 ± 0.002 
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number of TM atoms. Secondly, the rapid drop in Ms with increasing TM 

content can be attributed to enhanced dopant-dopant associations leading to 

progressive orbital moment quenching. Thirdly, the formation of AFM TM 

oxide clusters at high TM concentrations might also lead to the fall in 

Ms(µB/TM atom).  
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Chapter 7 

Conclusions 

 
 

     Zn1-xTMxO (TM: Co, Cu, Ti and Mn) films were fabricated on Si (100) 

substrates by radio-frequency magnetosputtering from a ZnO target with a 

small TM plate attached.  

     X-ray fluorescence analysis performed at the Phase Contrast Imaging 

(PCI) beamline at Singapore Synchrotron Light Source (SSLS) was 

employed to determine the stoichiometry of the films. The TM composition 

x in Zn1-xTMxO was derived by comparing the areas under the Zn Kα and 

TM Kα peaks and those of a calibrated sample of known concentration. The 

alloy fraction x of Zn1-xCoxO was determined to be 1.5%, 2.1%, 2.3%, 

3.9%, 19.1% and 21%. The alloy fraction x of Zn1-xCuxO was determined to 

be 1.3%, 1.4%, 2.4%, 5.8%, 18.8% and 24.6%. The alloy fraction x of Zn1-

xTixO was determined to be 0.4%, 0.6%, 2.8% and 6.7%. The alloy fraction 

x of Zn1-xMnxO was determined to be 0.1%, 2.2% and 3.7%.        

     Scanning electron microscopy (SEM) images showed the polycrystalline 

nature of the film surfaces. The Co, Cu and Ti-doped ZnO films have 

relatively small and slightly elongated spherical grain structure. The Mn-

doped ZnO films, on the other hand, have a mixture of small, spherical and 

blade-like grain structures. The images at high magnification also display 

ring hexagonal structures of the ZnO compound. 

     X-ray diffraction (XRD) studies using Cu K α radiation indicated the 

polycrystalline nature of the films. All TM-doped ZnO films deposited on 

glass slides exhibit ZnO (002) peak. The dominant ZnO (002) peak 

indicates that these films have a strongly c-axis orientated wurtzite 

structure. Thus, ZnO films grown on glass slides might have slightly 

different crystal phases as compared to those grown on Si (100) substrates. 

     All TM (Co, Cu, Ti and Mn)-doped ZnO films deposited on Si (100) 

exhibit structural anisotropic behavior. No particular trend is observed for 

the films grown under the same gas ambient for all TM-doped samples. 
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ZnO (002) and ZnO (201) peaks are observed in all the XRD spectra of the 

undoped ZnO and Co, Ti and Mn-doped ZnO films deposited on Si (100) 

substrates. This indicates non-preferential-orientation wurtzite structures. 

All the peak positions of ZnO: TM are shifted slightly towards the higher 

angles as compared to undoped ZnO. The peak shifts suggest a decrease in 

lattice height c for the all TM-doped ZnO films. The decrease in c is 

consistent with the substitution of Zn
2+

 ion by the smaller Co
2+

 ion. 

However, it is not consistent in the cases of Cu, Ti and Mn doping. Hence, 

ionic radii difference between Zn
2+

 and TM ions cannot fully account for 

the decrease in lattice parameter c. Other possible reasons might be the 

strain caused by non-uniform substitution of Cu, Ti and Mn ions into the Zn 

site,
 
and complex defect formation.  

     Secondary ion mass spectrometry (SIMS) has shown that out of the three 

annealed TM (Co, Cu and Mn)-doped ZnO samples, only Zn0.977Co0.023O 

showed uniform dopant distribution relative to the Zn
2+ 

distribution. The as 

prepared Zn0.986Cu0.014O sample possessed a slightly higher concentration 

of Cu ions in the bulk of ZnO with respect to the surface whereby after 

annealing, surface precipitation of Cu or Cu oxides was observed. 

Zn0.978Mn0.022O film consisted of two-layers, the bottom layer being Mn 

richer than the top layer. After annealing this sample, the concentration of 

Mn at shallower depth increased.  

    X-ray absorption fine structure (XAFS) was measured at room 

temperature at the X-ray Development and Demonstration (XDD) beamline 

at SSLS in fluorescence mode. The XAFS spectra were compared to 

standard samples of oxides and metal foils measured in transmission mode.  

     XAFS results indicate that the percolation threshold of Co into ZnO 

cannot exceed 19%. The majority of Co
2+

 ions were incorporated into the 

substitutional sites of the Zn lattice for low Co doping content and they 

adopt a tetrahedral coordination. Co3O4 clusters are formed when subjected 

to 800
o
C calcination and when the ambient in which the films are fabricated 

consists of 20% oxygen gas. Co metal are the major precipitates when the 

solubility limit is exceeded.      

     XAFS results show that the Cu ions in ZnO matrix are unstable against 

400°C calcination and tend to precipitate easily as Cu or Cu2O. 
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Furthermore, the ZnO lattice is greatly distorted with Cu doping, as distinct 

from Mn and Co doping in ZnO. The solubility of Cu into ZnO is extremely 

low ( less than 1.3%). The substituted Cu ions at the Zn sites have a valence 

state of 1+. Cu2O are the main precipiates when the percolation threshold is 

exceeded.  

     XAFS results indicate that the percolation threshold of Ti in ZnO cannot 

exceed 6.7%. The majority of Ti
3+

 ions have been incorporated into the 

substitutional sites of the Zn lattice at about and below 2.8% Ti doping 

content; the results also revealed predominant tetrahedral coordination 

geometry of Ti atoms in Zn1-xTixO. The ZnO lattice is distorted with Ti 

doping, demonostrated by the fact that Zn-O has a stronger interaction than 

ZnO. Titanium oxides are formed when the films are fabricated in the 

ambient containing 20% oxygen, and zinc titanate compounds are generated 

at approximately 6.7% Ti doping content.  

     XAFS results confirmed the incoporation of the majority of Mn
2+

 ions at 

the substitutional sites of the Zn lattice for low Mn doping content and they 

substitute the Zn ions at tetrahedral sites. There is also an overall expansion 

of the ZnO lattice as a result of doping larger Mn
2+

 ions. Mn oxides with 

higher oxidization state are formed when the ambient in which the films are 

fabricated consists of 20% oxygen gas. When the Mn-doped ZnO sample is 

annealed at 800°C, Mn2O3 clusters and the ZnMnO complex containing 

Mn
3+

 and Mn
4+

 are generated.  

The Fourier transformed spectra of Co, Ti and Mn-doped ZnO 

normally shows a well-ordered coordination up to the third shell. However, 

Co dopant in ZnO matrix results in less distortion of the ZnO lattice (in 

terms of RZn-O) as compared to Ti, Mn and Cu dopants. The ionic radius 

matching with the ZnO lattice may be the main factor since this induces less 

strain energy. The charge transfer from ZnO to TM 3d orbitals also appears 

to be an important consideration. Such a charge transfer trend observed is 

compatible with the BMP model. The stable doping for Co but not for Mn, 

Cu and Ti, is indicative of the importance of ionic radius matching with 

ZnO matrix, in order to reduce the free energy.  

        VSM measurements at room temperature revealed that the TM (Co, 

Cu, Ti and Mn)–doped ZnO films are ferromagnetic. The origins of the FM 
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of the insulating TM-doped ZnO samples can generally be attributed to 1) 

the spin-split impurity-band model and/or 2) the intrinsic magnetism that 

can be explained by the BMP model.  

     The largest measured moments for TM-doped ZnO without any 

precipitation are 0.237±0.004 µB/Co in Zn0.985Co0.015O, 0.090±0.004µB/Ti 

in Zn0.996Ti0.004O and 1.882±0.022µB/Mn in Zn0.999Mn0.001O. 

     In all TM–doped ZnO films, Ms(µB/TM atom) is generally found to 

decrease with increasing x. This trend can be explained by a few reasons. 

Firstly, at higher TM concentrations, there is an increasing occurrence of 

AFM coupling between TM pairs, groups of four and coupled clusters of N 

TM atoms. Secondly, the rapid drop in Ms on the increment of TM content 

can be attributed to the enhanced dopant-dopant associations leading to 

progressive orbital moment quenching. Thirdly, the formation of AFM TM 

oxide clusters at high TM concentrations might also lead to the fall in 

Ms(µB/TM atom).  

     In conclusion, TM-doped ZnO DMS films were successfully fabricated 

on silicon with ferromagnetism at room temperature which hopefully will 

be useful in fabricating future Si-based spintronics devices. Further 

examinations of the magnetization properties of the TM-doped ZnO films 

could be carried out by performing Superconducting Quantum Interfering 

Devices (SQUID) measurements on the samples at low temperatures. 

 

 

 

 

 


	Microsoft Word - Thesis cover
	Microsoft Word - CONTENT page
	Microsoft Word - Acknowledgement
	Microsoft Word - Abstract 3
	Microsoft Word - thesis writeup chap 1c
	Microsoft Word - thesis writeup chap 2c
	Microsoft Word - Thesis writeup chap3b
	Microsoft Word - thesis writeup chap 4b
	Microsoft Word - thesis writeup chap 5d edited 4
	Microsoft Word - thesis writeup chap 6a edit
	Microsoft Word - thesis writeup chap 7a

