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Summary

The performance of wireless sensor networks strongly depends on the underlying

transport protocol. The traffic characteristics in sensor networks are known to cause

frequent congestion spots. In this thesis, novel adaptive methods in congestion control

are explored.

In the first part of this thesis, a review of existing work in congestion control is given

to highlight the congestion likelihood problem. Two means of congestion mitigation are

employed depending on the sensing scenario. First, the regulation of channel contention

is proposed for mitigation of transient congestion. Second, the packet generation rate

is adjusted collaboratively to provide fairness and efficiency. Two artificial intelligence

methods are investigated to solve these control problems. A first solution based on re-

inforcement learning is proposed to learn the policy which minimizes packet drop and

unfairness. To this end, buffer overflows and greedy actions are punished with negative

rewards. The SMART algorithm is then applied to maximize the long term average

performance. The second solution is an inference technique called Min-Sum. The mini-

mization of congestion is transformed into smaller coordination problems involving fewer

variables. The interactions between sensors nodes are modelled in order to coordinate

their control decisions.

The simulation results show that 15% improvement in energy efficiency is obtained

over the recently proposed Fusion method. With a non-periodic workload, the proposed

learning method provides privileged channel access to gateway nodes, making bandwidth

available for higher aggregate throughput. With a periodic workload, the proposed

v



method still outperforms Min-Sum and Fusion in both fairness and efficiency. Although

Min-Sum based methods allow accurate decision trade-offs, the message exchange is a

limiting factor in the correctness of decisions.

This thesis shows that the congestion controller can learn the policy and hence does

not require detection thresholds.
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Chapter 1

Introduction

This chapter presents a brief overview of wireless sensor networks. The main objectives,

contributions and the thesis structure are then summarized.

1.1 Background on wireless sensor networks

A Wireless Sensor Network (WSN) [1] consists of small micro-electronic devices with

sensing, processing and communication capabilities. WSNs are intended to scale up

to thousand of nodes and to cover large geographical areas. Sensors are scattered in

the space of interest and then let to run with minimal human intervention. Wireless

sensor networks promise a wide range of new applications such as habitat monitoring

and target tracking.

Wireless communication suffers from radio interference, fading, high bit-error and

collisions. Besides, wireless sensors communicate with little power and relatively simple

protocols. Low energy consumption and reliable detection of the event are more signif-

icant attributes in WSNs. The packet is thus usually small and the transmission rates

can be lower than one packet per second. Several types of workload are distinguished:

event-driven, query-driven or periodic.
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Applications running on wireless sensors have strict resource constraints. Sensor

nodes are provided with little processing capabilities, small memory and low bandwidth.

Moreover, they are often powered with batteries whose replacement is impractical. Since

the radio component consumes energy the most [1], the communication protocols have

to be energy efficient. For example, processing the data before transmitting can reduce

communication. Implementing a sleep schedule is another way to increase the lifetime

of the network.

The flows in WSNs are convergent and extend over multiple hops. One or several

sinks are used for data collection. The collection usually has the pattern of a tree rooted

at the sink. Intermediate nodes forward packets from the upstream branches towards

the sink. In a WSN, congestion spots are frequently located near the sink and at the

intersection of flows.

1.2 Motivation and objectives of the research

The channel is usually shared in WSNs and limited in capacity. Since the users of the

network assign arbitrary sensing rates, the total load can exceed the capacity of the

network. Therefore, congestion control is necessary to prevent packet drops. Wireless

transmissions cost in energy and bandwidth. The dropping of a packet waste not only

the last transmission but all the previous hops, hence diminishing the network energy

efficiency. A congested network is not only inefficient but unfair: Congested paths are

prone to packet loss. The network becomes unfair in presence of congestion because

shorter paths have higher delivery ratio than longer paths.

Recent work [2, 3] suggests a three phases process: detection of congestion then its

notification, followed by a rate adjustment. These methods entail two issues. First, the

notification of congestion suffers from a random delay in contention based communica-

tions. Second, these schemes do not consider that different parts of network are more
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likely congested than others.

The objectives of this thesis are multiple:

• To introduce adaptive methods for congestion control. The detection and rate

adjustment parameters can be customized for a particular node to maximize the

effectiveness of the control.

• To evaluate their efficiency and fairness for various traffic workloads.

• To establish the coordination between sensor nodes. Data collection is a collabo-

rative task in WSNs. A sensor node may benefit when coordinating with its peers

in order to mitigate congestion.

1.3 Main contributions

In this thesis, multi-agent technology is investigated to model the network of sensors,

while reinforcement learning and inference solutions to the congestion control problem

are explored. The agent controls either the transmission or the generation of data

packets to reduce congestion and unfairness.

Two methods are studied to adapt the control decisions to the each sensor node’s

context:

• A model free method approximates the control policy by reinforcement learning.

The control problem is represented as a Semi-Markov Decision Process (SMDP).

Based on a feedback, the agent learns the action that maximizes an utility function.

• The inference method coordinates the agents’ action to reach a global objective.

The congestion control problem is formulated as a cost minimization. The costs

are modelled with coordination functions. Messages are exchanged to determine

the minimal cost action in a decentralized way.
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The simulation results showed that the proposed methods can improve the energy

efficiency up to 15% over the Fusion method[4] with periodic and non-periodic workload.

They also provide fair collection from all sources.

1.4 Structure of the Thesis

The remainder of this thesis is organized as follows:

The next chapter surveys congestion control and avoidance schemes in WSNs. Design

goals are also provided.

Chapter 3 presents the notification delay issue and its effect on congestion. The

problem is tackled with an approach intending to reduce loss and also with another for

fair allocation.

Chapter 4 gives introductory foundations to reinforcement learning. Then, the con-

gestion control problem is translated as a learning problem where an agent is trying to

interact optimally with its environment and other agents.

Chapter 5 presents the inference algorithm Min-Sum for coordinating agents. The

theoretical background of the method is given, then interactions are modelled.

Chapter 6 presents the simulations and the results. Four proposed methods are

compared to existing methods on a 19-nodes network.

Finally, Chapter 7 concludes the thesis, highlighting the major contributions.
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Chapter 2

Literature review

This chapter presents the state of the art in congestion control for wireless sensor

networks. The main design points of a congestion control scheme are laid out. The

existing methods can be classified in either congestion avoidance or congestion control.

Most of existing work combines several methods to increase both efficiency and fairness.

2.1 Introduction

2.1.1 Congestion in sensor networks

In wireless sensor scenarios, the sink is not always within direct transmission range. In-

termediates nodes forward packets and also generate packets. The bandwidth allocation

is especially complex in a multi-hop ad-hoc network. Given that the channel capacity

is limited in capacity, sensor nodes must adapt their transmission and their packet gen-

eration rate. If the source nodes near the sink originate too much bandwidth, little is

left for distant nodes. Conversely, if the distant nodes originate important traffic, the

nodes downstream will drop packets by congestion, wasting the previous effort to for-

ward them. Moreover, transient congestions are frequent in wireless networks, because
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the channel condition varies with time.

Congestion also occurs when events are reported collectively. For example, sensors

tracking the same event will simultaneously create packets. The channel can become

congested since several nodes transmit within a very short period. The buffers eventually

overflow when the packets propagate in burst towards the sink.

Nodes near the sink send a lot of packets because they route the traffic from the

entire upstream spanning tree. Since each hop has a congestion probability, a path with

more hops suffers from more loss. Therefore congestion leads to unfairness. Distant

sources suffer from greater loss than closer sources whose packets are collected in larger

proportion.

Congestion control intends to limit the effects of congestion such as packet drops

and delay. A fair allocation of bandwidth is desirable as it ensures an uniform sensing

coverage. In WSNs, energy efficiency is important and few seconds of delays are tolerated

in most applications.

Physical errors can be the first cause of congestion [4]. Radio transmissions have

effects beyond the reception range. Two wireless sensors may not able to communicate

directly, but can mutually interfere each other as shown in Figure 2.1. Interferences lead

to high error and collision probability. Congestion collapse can occurs even with large

buffers since congestion may cause corrupted transmissions due to interferences.

2.1.2 Design criteria in congestion control

In WSNs, several criteria should be taken into consideration in the design of a congestion

control scheme:

1. Burst management: congestion occurs not only with a periodic workload, but also

with an event-based workload.
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Figure 2.1: Wireless sensor network with a congested node. The transmission and
interference range are shown with circles.

2. Stable response: A fast detection and response to congestion permits more en-

ergy savings. However, with a random channel access, a delay is expected in the

propagation of control messages. The control system should avoid response to

temporary perturbation that could cause oscillation.

3. Load diversity: Since the report rate is specific to the application, the congestion

control scheme should give consistent performance in light and heavy load. If the

offered load exceeds the network capacity, the scheme must be able to minimize

congestion. In addition, some sources may be more important than others, thus

the scheme should distinguish the weight of packets.

4. Robust in imperfect wireless environment: Wireless links can lose up to 20% of

packets due to errors. Besides, topology changes can occur in real deployment.

5. Adaptability: Self configuration of the algorithm is an useful feature since sensors
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are deployed in large numbers. The congestion control scheme may adapt to the

particular environment of a node.

6. Simple: The overhead induced by control signals or by processing is kept low in

order to not hinder the main application.

Finally, the scalability of the scheme must be indisputable.

Beside conventional quality of service metrics like drop rate, throughput and delay,

other design criteria are relevant to wireless sensor networks:

• Energy efficiency is essential since congestion affects the lifetime of the network.

Packet drops waste the energy spent in the previous hops. Collisions and chan-

nel errors are additional energy waste because of retransmissions. The efficiency

expressed in J/packet is proportional to the number of packets collected at the

sink.

• Fairness: The utility of the information collected is optimal when the delivery is

perfectly balanced. In a congested network, far sensor nodes deliver packets with

difficulty. As a result, fairness diminishes because the collected information mainly

comes from nodes next to the sink.

• Reliability : The application may define a minimum reliability which requires a

certain delivery ratio. This metric is also called the perceived application fidelity.

In general, sensing applications do not require end-to-end packet reliability since

the information is redundant.

In the sensor network literature, congestion control schemes differ in the way of de-

tecting a congestion, of signaling it and in the way of adjusting the rates. Two congestion
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control strategies exist: congestion control and congestion avoidance. A congestion con-

trol mechanism prevents abrupt congestion collapse by ensuring throughput and fairness

deteriorate gracefully with the load. Congestion avoidance techniques adjust the rates

after congestion is detected.

2.2 Congestion Avoidance

Congestion avoidance mechanisms have been reported since the development of MAC

protocols in sensor networks [2]. They were initially designed to improve the network

reliability, by preventing packet drops. New issues related to congestion were raised and

several techniques were proposed such as: buffer based detection, fair rate allocation

and prioritized channel access. Various types of rate adjustment are reported: heuris-

tic, exact, or based on the current congestion level. This section presents the several

congestion indicators and the rate adjustment techniques frequently met in the WSN

literature.

2.2.1 Congestion Detection

Congestion detection is estimating the probability of packet loss or delay. In conjunction

with mitigation techniques, an accurate detection can anticipate a growing congestion

and prevent the overflows of buffers. The congestion indicators have an essential role to

avoid congestion. In addition, the rate adjustment can be dynamically adjusted accord-

ing to the congestion levels to enhance response and stability.

Buffer occupancy is the prevalent congestion indicator [3, 4, 5, 6, 7, 8, 9, 10] since

measuring the queue length is fairly simple. Packets can come from upstream nodes

faster than they leave to the downstream node especially with contention based com-
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munications. These packets in excess are stored in the buffer to improve reliability.

Nevertheless the reliability cannot be perfect since when the buffer is full, arriving pack-

ets are dropped and definitely lost. An empty queue suggests a low contention level. A

queue nearly full indicates a very likely congestion. Nevertheless, the buffer size affects

the pertinence of buffer based detection. A large buffer takes time to overflow and thus

a transmission imbalance could go undetected. Conversely, high occupancy does not

imply channel congestion if the queue is decreasing.

A threshold is a straightforward mean to detect buffer congestion [3, 4, 10]. Con-

gestion is implied if the buffer occupancy is above the threshold,. Chen et al. proposed

a buffer management scheme [9] and studied the effect of hidden terminals on the con-

gestion detection. The threshold is decreased with the number of child nodes. If k

child nodes are contending for the same buffer space, k times less residual buffer is

advertised. IFRC [7] uses multiple thresholds to assess congestion. The first threshold

detects congestion for an increasing queue, the second for a decreasing queue. Large

buffers equip sensors in IFRC [7] and can make congestion detection difficult. By no

surprise, IFRC decreases dynamically the threshold until the buffer length stabilizes. In

ESRT [5] and PCCMAC [10], the future buffer occupancy is estimated and overflows can

be predicted. Prediction methods have the advantage of not using a threshold, avoiding

the inefficiency caused by its estimation. Nonetheless, they assume that the arrival and

service rates are constant in a close future, which is not always verified on a wireless

medium.

Buffer congestion often has its root in a congestion of the channel. When the channel

is at its maximum capacity, new packets are accumulated in the buffer until transmission

is possible. To obtain the channel load, the sensor ’s radio must be on and receiving.

To preserve energy, Coda method [3] performs channel sampling only when the buffer

contains packets.
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Congestion is implied from packet loss in ARC [2]. Coda [3] additionally infers con-

gestion from loss of ACK on the path between source and sink. Such detection method

can mistake channel error with buffer congestion, and reduce the throughput unnecessar-

ily. The arrival and service rate are used as congestion indicator in [8, 10]. This method

is conservative as a node may lack opportunity to transmit not because congestion but

of random accesses. Like the channel loading, these indicators are calculated with an

average (EWMA). The determination of the time window in the average possibly affects

the responsiveness of the entire scheme.

Recent studies [4, 3] showed that buffer occupancy is sufficient to detect congestion

and is more accurate than channel loading. Proactive method like buffer occupancy can

reduce the size of hot spots with a hop-by-hop flow control [4].

Small buffers are advised in sensor networks because the occupancy level indicates

only the recent congestion and not the cumulated congestion. Large buffers produce

longer delays that are penalizing for real time application. In most works using a

threshold [4, 3, 6], the threshold value is determined from intuition and approximately

set to 0.75. A common single threshold leads to inefficiencies because each of sensor

node has a different congestion inclination. In most works, the threshold value is based

on heuristics rather than rigorous analysis.

2.2.2 Congestion Notification

Upon congestion detection, the relevant nodes are notified in order to reduce the traffic

going through congested nodes. Closed loop control is an end-to-end flow control be-

tween a source and the sink. Open loop control is a hop-by-hop flow control performed

between adjacent sensors nodes.
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Hop-by-hop

Hop-by-hop flow control has the advantage of scaling well with the network size since

communications are only between adjacent nodes. Therefore a processing required for

congestion control is moved from the base station to local sensors. The congestion

notification propagates in the direction opposite to the data traffic and is also called

backpressure. As the source nodes causing congestion can be located far from where

congestion occurs, the backpressure messages propagate over several hops. Two situa-

tions are present: backpressure travels over non-congested sensor, thus the response to

congestion is short. In the other case, congestion grows neighbor to neighbor until the

target sensor is regulated. The reactivity of backpressure is very slow in this former

case. It employs buffering to mitigate transient congestion.

Congestion is notified with the help of a congestion bit in Coda and Fusion [3, 4].

Real valued information will allows more accurate adjustment [7, 10]. In the explicit

congestion notification (ECN), a control message is sent. The communication overhead

of ECN motivates implicit congestion notification (ICN) which uses normal data pack-

ets to carry congestion information. By taking advantage of the broadcast nature of

transmissions, the target sensors receive the control information by overhearing it. The

assumption of overhearing unaddressed packets is common in wireless sensor protocols.

End-to-end

End-to-end congestion control happens between the source and the destination of a flow.

The destination is responsible for loss detection and loss recovery. The sink feedbacks

the sources after a congestion is inferred upstream. The congestion signals first need to

propagate towards the sink. Then, rate control messages return to the sources causing

congestion. In WSNs, end-to-end control will have a slow response to congestion be-
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cause signaling is over several hops. Even though the sink is less resource limited, the

acknowledgment messages take bandwidth in the entire network and has no guaranty of

reaching the targets.

Event-to-Sink Reliable Transport (ESRT) [5] tags the packet with a congestion noti-

fication bit (CN) when the buffer is nearly full. In response to CN bits, the sink reduces

globally the reporting rate according to an empirical control law. It assumes that the

sink can broadcast the control message directly to all the sensor nodes. ESRT reduces

the global rate until all congestion spots are cleared. The most congested source is re-

stricting the whole network. Since congestion hot-spots can be transient and localized,

a number of sources stay at a conservative rate.

CODA [3] applies both end-to-end and hop-by-hop flow control. With a closed loop

multi-source regulation, the sink asserts congestion over several sources. When the rate

is above a threshold, the sensor keeps its current rate only if it receives ACK messages

periodically. The sink computes the reporting rate and limits the ACK messages sent

to sources. Coda does not consider fairness in these regulations.

Hop-by-hop congestion control is attractive because it is effective and scalable. In

terms of communication overhead, the end-to-end notification is costly without broad-

casting or multi-casting. In terms of responsiveness, hop-by-hop flow control handles

transient congestions the fastest. Moreover, some rate control strategies can provide

efficient control of persistent congestion.

2.2.3 Rate Control

The mitigation of congestion is achieved by reducing the rate at which packets are

generated. A rate control can be applied at different communication layers. However, a

simple extension of the efforts in traditional network to WSNs meets several difficulties.
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First, the channel quality and bandwidth are time-variant. Second, the nodes causing

congestion are not obvious to find in the spanning tree.

AIMD: Additive Increase Multiplicative Decrease

The AIMD control augments the rate with a constant α until the signs of congestion

appear; the rate is then cut by multiplying with β < 1. A larger α tends to a more

aggressive channel contention. The choice of β determines the penalty at transmission

failure.

CODA [3] decreases the sensing rate when the parent node is congested. The Fusion

scheme [4] applies a stop-and-go rate control. The outgoing transmissions are completely

stopped until the parent node clears its congestion. Such complete stop prevents buffer

overflows more effectively than a simple decrement. IFRC [7] is a scheme that uses

AIMD in juxtaposition with congestion sharing to allocate rates fairly. The stability

of the scheme strongly depends on a heuristic which determines the AIMD parameters.

ARC [2] maintains two independent sets of α and β to guarantee the fairness of the

originating traffic with the route-thru traffic.

AIMD is actually a heuristic method. The available bandwidth at a sensor node

continually changes in reason of interferences, multi-path fading and burst packets.

AIMD based methods performs continually rate adjustment to adapt to a dynamic

environment. The oscillation of the rates is inherent to AIMD as it cannot reach an

equilibrium. Examples of oscillation are found in [6, 9, 7].

One difficulty of AIMD rate control is the determination of the exact rate reduc-

tion in response to congestion. An abrupt decrease of the transmission rate causes the

backpressure to propagate over several hops, intensifying the oscillation. The additive

increase can lead to inefficient utilization because resources are not fully used when avail-

14



able. IFRC for instance achieved only the 60% of maximum throughput. Even though

some heuristics can improve convergence by tuning the AIMD parameters, adapting

directly to the optimal rates would be more energy efficient than a slow converging rate

control.

Exact rate adjustment

The general concept is to calculate the upper bound of the rate according to criteria like

fairness. A fair share rate for each flow is 1/N where N is the number of source nodes

in the upstream subtree. CCF [6] limits the packet generation rate r by C/N where C

is the available capacity at a sensor node. Similar constraints are taken in PCCMAC

[10].

Within a subtree, the generation rate cannot exceed the share just calculated. Since

any subtree is at least included by the entire spanning tree, the rate of a source is

determined with the smallest rate on the path from the source to the sink. To achieve

a fair bandwidth allocation, the most loaded intermediate node imposes the maximum

fair share of the bandwidth per source. The optimal fair rate of the network is equal

to the minimum of the calculated fair share. This rate is propagated in the network

by using a second constraint [6, 7]: the local generation rate ri has to be inferior to

parent’s rate i.e. ri < rparent(i). A node thus gains authority to control the rates of the

all descendent nodes. The control of the upstream nodes is done recursively, simplifying

the flow control. A minor inconvenient is that the sink has to transmit dummy packets

at the maximum allowable rate as it is a parent node as well [7].

IFRC [7] considers in addition congestion sharing to achieve fair rate allocation.

Nodes interfering with a congested node are throttled down although they are not di-

rect neighbor in the tree. Potential interferers are the nodes whose flows share the

channel with the flows of a congested sensor. The rate is decreased for nodes with a

congested descendant and also for all potential interferers.
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Channel contention

With contention based protocols, rate control can be unreliable because the maximum

rate or available bandwidth is time-variant. A node is not able to transmit at a wanted

rate ri especially when the channel utilization is near saturation. The transmission rate

can be changed dynamically through the back-off intervals in CSMA based protocol.

The rationale in controlling the contention is to give higher channel priority to gate-

way nodes which forward a lot of packets. To reach a given transmitting rate, the

contention window must be correctly adjusted in function of neighbors’ contention level.

PCCMAC [10] calculates virtual rates and the back-off window which allows the

wanted rate. It proposes a virtual rate estimator since global information is required in

the calculation. Congested sensor nodes in Fusion [4] uses shorter back-off to clear their

buffer quickly. A prioritized access also accelerates the propagation of the backpressure.

Woo et al. [2] point out that a random delay introduces a phase shift which can reduce

channel congestion.

2.3 Congestion Control

The previous section has presented some solutions when congestion has been declared.

This section surveys preemptive approaches to prevent congestion in WSNs. The deliv-

ery of packet is fair if the sink can receive roughly same number of packets from each

sensor. If each node is to minimize loss without a reference, uneven magnitude of control

leads to an unfair collection of packets.
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2.3.1 Traffic shaping

Traffic shaping provides mechanism to control the traffic being sent in the network.

Leaky bucket and token bucket are simple traffic shaping techniques to maintain a rate

uniform.

The rate limitation suggested in Fusion [4] uses a token bucket to meter the traffic

introduced in the network. It limits the source to generate at the same rate as all of

its descendent. A source i generates packet at rate equal to 1/N(parent(i))th of the

outgoing bandwidth of i’s parent node. In terms of packets, for N packets send by

the parent node, one packet is generated locally. Because burst of packets are common

in WSNs, a token bucket is used. One token is generated for every N packets routed

through the parent and another is spent to generate a packet. It entails promiscuous

hearing.

Rate limiting removes greedy sources, and improves simultaneously fairness and ef-

ficiency. Nevertheless, traffic shaping does not accommodate well traffic from correlated

events. Imbalance between incoming and outgoing traffic are not solved because the

token bucket allows burst transmission. Also, since the N packets counted are not

necessarily from unique sources, rate limiting is not perfectly fair when there are re-

transmissions. Lastly, the sink needs to send packets additionally so that its child nodes

can shape their traffic.

2.3.2 Queue Management

With a first-in first-out queue discipline, the sources with a large traffic are advantaged

because the buffer does not differentiate the incoming packets. Since it is beneficial for a

source to send as many packets as possible, intermediate nodes become congested when

the same strategy is taken by all nodes.

Packets can be differentiated according to their origin or their weight. PCCMAC [10]

uses a Start time Fair Queue (SFQ) for fairness. Managing distinct queues can improve
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fairness. One queue per child node is implemented in CCF [6]. The probability of

servicing (PS) a queue is proportional to tree size N of the node linked to this queue. The

PS mechanism allows packets to have equal probability of reaching the sink. Nevertheless

PS requires work conserving queues which is hardly verified in practice.

The method was improved with an Epoch-based Proportional Selection (EPS). The

node serves N packets in each epoch. Specifically, each queue serves a number of packets

equal to the subtree size. Since EPS differentiate packets, it is robust with an imperfect

channel. Moreover, congestion in any branches of the network will cause a decrease

throughout all others parts of the network.

2.3.3 Adaptive Routing

Most of the transport protocols in WSNs consider single path routing. Load balancing

can be achieved with multiple paths routing. Since a node can have several parent nodes,

backpressure and the rate adjustment become problematic. It has to determine the rate

that verifies simultaneously the constraints of several forwarding nodes, and in the same

time has to maintain fair sharing of bandwidth. Multiple paths routing introduces a

trade-off between delay and energy. Alternative routes can be less congested but need

more hops. Furthermore route update messages may increase energy consumption.

Cross-layer optimization in wireless sensor network is still an open problem. Redi-

recting the packets to less congested nodes is the approach taken by Siphon [11]. Siphon

employs virtual sinks to redirect traffic and mitigate congestion in the area where the

traffic converges. But Siphon’s virtual sinks are powerful nodes which communicate to

the sink directly with a second radio.
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2.4 Conclusion

The unique aspects of wireless sensor networks highlight the need for a fair and efficient

congestion control scheme. The ideal transport scheme would remain energy efficient,

fair and with good perceived application fidelity under heavy load conditions. A sum-

mary of the existing works is given in Table 2.1.

Buffer occupancy detects congestion sufficiently well to use as a base to improve.

The use of a detection threshold is not convincing, and thus other methods are explored

in this thesis. Adaption is one characteristic that this thesis explores.

Following most of the existing works, the proposed method in this thesis detects

congestion from the buffer occupancy and mitigates with rate and contention control.

Traffic shaping is a simple and conclusive technique to provide fair bandwidth allocation.

Since rates are not exact in wireless environment, a control at the packet level answers

better to the need of fast response and efficiency. In the following Chapters, learning

and inference techniques are explored to find control strategies.

Table 2.1: Summary of existing congestion control schemes in WSNs
Scheme Detection

Method
Efficiency Fair Response

ARC [2] Loss Drop Yes Slow
CODA [3] Static

Buffer+
Channel

Drop No average

Fusion [4] Static
Buffer

Drop Simple
fairness

Fast

ESRT [5] Predictive
Buffer

No drop Yes Very
slow

IFRC [7] Dynamic
Buffer

No drop Max
Min fair

Very
slow

LWBM [9] Dynamic
Buffer

No drop Very fast

CCF [10] Predictive
Buffer

No drop Simple
fairness

Fast
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Chapter 3

Link Flow Control Problem

In this chapter, the challenges of congestion control in WSNs are presented. Sensor

networks exhibit non-uniform congestion likelihood and coordinated behavior. Moreover,

a shared wireless channel entails contention delay. An agent model is provided with

detection and control features. The control of either the transmission rate or the packet

generation rate is proposed to mitigate congestion.

3.1 Problem Statement

The previous chapter raises the difficulty in effectively detecting and mitigating conges-

tion. The congestion properties are actually specific to a sensor node. The effectiveness

of a detection method varies among nodes. A scheme can thus adapt its parameters to

minimize congestion detection errors. Congestion has three characteristics which moti-

vate the adaptation of a congestion control scheme:

First, congestion is unpredictable in location and size. The wireless environment is a

factor of congestion. Multi-path interference, for instance, depends on the geographical

location and limits the effective throughput. The maximum capacity of the network
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is also determined by its topology. Furthermore, sensors nodes are randomly scattered

making the traffic pattern unpredictable.

The size of congestion spots varies not only with the bandwidth but also with the

number of child nodes. The congestion likelihood increases with the degree of the node:

if the channel access probability is equal for all nodes, one node receives as many packets

as child nodes between two transmissions.

Even the location in the network influences the congestion. Congestion causes little

degradation when taking place deep in the network. On the contrary, a congestion near

the sink causes serious drops and unfairness.

Second, in CSMA based communications, congestion notification is affected by the

contention delay which increases the latency of rates updates. Hop-by-hop flow control

is prevalent in WSNs. Messages are propagated to inform relevant sensors on the oc-

currence of congestion and the necessary rate adjustment. A sensor node can notify a

congestion in average after half of its neighbors have transmitted if the channel capacity

is almost reached.

While a congested parent node contends for the channel, a child node can transmit

a packet that causes its parent node’s buffer to overflow. Therefore, a slow response

to congestion is detrimental to the network as more packets are dropped. Figure 3.1

illustrates the delay of notification.

To reduce the effects of contention delay, different strategies were suggested in the

literature. A prioritized channel access is given to congested nodes in Fusion [4]. Large

buffers [7] prevented the overflow resulting from uncontrolled queue rises. A buffer

reservation scheme was suggested in [9]. The buffer occupancy methods [3] notify up-

stream nodes before the buffer is completely full. However the outcome of actions has

uncertainties related to randomness of channel access. None of the existing works has

considered the congestion control as a quantifiable and collaborative task in a stochastic
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Figure 3.1: Delay in congestion notification: an intermediate node forwards packets for
three child nodes. The packets are numbered according to the order of transmission.
Child nodes stop transmitting when they hear the parent notifying congestion. However,
random contention prevents immediate notification. During this delay lapse, the child
nodes keep transmitting at the high rate, causing buffer overflow.

environment.

Lastly, congestion is the result of joint actions in addition to individual actions. The

congestion control is a problem where sensors have to coordinate between themselves.

Without communicating their knowledge, the transmission strategies may be in conflict

and lead to worse congestion.

For a given sign of congestion, the congestion detector determines the correspond-

ing congestion likelihood and the corresponding control action. Agent technology can

overcome these problems. The autonomous nature of agent would be able to represents

these sensor nodes making rational decisions to solve the congestion.
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Figure 3.2: Link Flow Control model

3.2 Agent Model of the sensor node

Modeling a WSN as a multi-agent system [12] is well-founded because a wireless sensor

has computation and communication capabilities. A global control is not robust since

a failure of the deciding agent would be detrimental to the global performance. On the

contrary, the use of multiple autonomous agents provides flexibility and adaptability.

In the context of WSNs, agents are software entities with the same communication

protocol. Reusability of the code is important when hundreds of sensors are deployed.

An agent aims for a goal by performing three tasks iteratively: observation of the

conditions of the environment, reasoning to interpret the observations, and then action.

The locally observed environment can be affected by other agents. Thus, the agent

responds to these dynamics to meet the goal. Agents also interact with each other

either directly by communication or indirectly from changes of the common environment.

Agents may need to exchange their view and their knowledge to reach a global objective.

To this end, agents communicate to request and deliver information.

The dynamics of the environment depends on individual actions and also on the joint

actions. By coordinating their action, the joint action of agents can fulfil the global ob-

jective. Therefore, it is essential to determine the interactions between agents.
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The congestion control problem is decomposed into a series of single-hop flow control

tasks. Figure 3.2 depicts the control agent and the communication components in the

link flow control model (LFC).

A control agent is present in each sensor and communicates with other agents. The

network state monitor provides the information assessing congestion levels. The agent

observes through the monitor and carries out actions through the packet handler. The

perceived environment encompasses the buffer, the channel and received traffic. At

relevant events, the packet handler requests a decision from the agent. The actions are

the different transmission mode and the admission decisions. The next section presents

these actions and the state of environment.

3.3 Actions of the Packet Handler

The objective of the control agent is to adjust either the transmission rate µi or packet

generation rate ri.

The flow regulations are performed at different layers. The first adjusts the local

contention at the MAC layer, thus affecting the transmission rate. The second controls

the admission of traffic from the application, influencing the packet generation rate.

Figure 3.3 depicts the communication layers and these flows.

In the methods proposed in the next chapters, the packet handler carries out actions

modifying either the contention or the rate at which new packets are generated. Rate

regulation is more effective than contention regulation to mitigate congestion. However,

it is only possible with a periodic workload. Controlling the rate of random event has

no sense. In Chapter 6, one regulation is assesed at the same time.
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Figure 3.3: Regulation of the packet generation rate and transmission rate

3.3.1 Contention Regulation

Congestion at the transport layer often has its origin at lower layers. Buffer overflows can

be prevented by lowering the arrival rate or by raising the transmission rate. Unfortu-

nately, controlling accurately these rates is difficult when the channel usage is high. The

achievable transmission rate depends on the local contention level i.e. the opportunism

of the node. To prevent collision, random deferment intervals are used in contention

based communications. The maximum deferment or contention window (CW) differen-

tiate channel access among contending nodes. Figure 3.4 illustrates the decision made

by the agent in the selection of the contention window and its effect on the transmission

rate.

The transmission rate µt1i is simplified to a monotone function of the contention

window size i.e. µi ' Ω′(CWi). Congestion are alleviated by controlling the access on

the shared channel. The contention policy is approximately as follow:

1. When the local buffer is congested, the node is granted a privileged access by

shortening the contention window.

2. When the parent node is congested, a node increases the contention window to
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Figure 3.4: Flowchart of CSMA with back-offs

defer the transmission, and avoid overflows.

It is noted that when the two conditions are true, the node defers the transmission

(2 overwrite 1) since the packets of the parent node are more ”valuable”.

Regulating the local channel contention helps to control transient congestions within

a contention domain. Packet drops are reduced by distributing the packet accumulated

in the buffers over several nodes. Contention regulation reduces but does not completely

remove packet drops. When the offered load permanently exceeds the channel capacity,

a different strategy consists in reducing directly the packet generation rate. Contention

regulation is the solution to transient and local congestion.

3.3.2 Rate Regulation

Reducing the packet generation rate leads to an immediate reduction of the total traffic.

The delivery of a single packet costs to the network a number of forwards. If this

packet is not admitted in the network, bandwidth is made available for more than one

transmission. Although an overload is quickly reduced by cutting the rate of the distant

sources, the network would suffer from unfairness.

Without a fair rate control, some sources have a high report rate compared to oth-

ers which experience bandwidth starvation. Packets originating near sink tend to be
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Figure 3.5: Flowchart of a packet generation

delivered in larger proportion than those from deeper in the network. In event based

reporting, the flows are not continuous thus it is difficult to compare their rates.

The rate regulation is on a packet basis rather than on a rate basis because a

given rate is hardly achievable with congested channels. The rate regulation is per-

formed on the originating traffic. Figure 3.5 illustrates the agent deciding the admis-

sion of the sensing data into the network. Another option is regulating the route-

thru traffic, but this requires informing sources at several hops away. The decisions

ACi = {ADMIT,REJECT} affect the generation of originating packets. The ex-

pected decision determines the packet generation rate ri.

The rate regulation prevents the load from exceeding the network capacity. An ideal

scheme allows fair delivery without loss. The network is enforced to be fair at any

load so that congestion may not develop. This technique is inspired from an exact rate

adjustment in the work of Tien Ee [6]. Specifically, the available bandwidth B at one

node is divided evenly among the N other sources in the upstream subtree. The packet

generation rate ri also must be smaller than the rate of the parent node rp.

ri =
B

N
and ri ≤ rp (3.1)
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3.4 Network State Monitor

The state of a sensor node indicates the level of congestion and unfairness with local

information. Four measurements are made: the buffer occupancy, the route-thru traffic

rate, the upstream fairness index and the downstream fairness index.

Instantaneous buffer occupancy

The buffer occupancy is simple to obtain and makes a reasonable indicator of local

congestion. In multi-hop communications, the state of the link indicates how well the

packets are forwarded. Since a link is considered as congested if the next hop buffer is

full, the buffer occupancy of the next hop node is an indicator of the link congestion.

Route-thru traffic rate

The traffic to forward, λ, measures the risk in terms of packet drops. Large traffic

intuitively causes in case of congestion more drops than smaller traffic. And a node is

more vulnerable to buffer overflows with more load. Congestion is frequently observed

at proximity of the sink where nodes forward a large amount of traffic. The average

traffic rate is the inverse of the average inter arrival time. The packet arrivals intervals

it are averaged with the exponential moving average (EWMA):

λt =
1
itavg

(3.2)

it+1
avg = (1− wtr)× itavg + wtr × it (3.3)

Upstream Fairness Index

Congestion causes packet loss and subsequently unfairness in a forwarding network.

Although rate control can make a network efficient, it can be a source of unfairness if
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not performed collaboratively. A metering technique is introduced to detect unfairness

between sources.

To obtain a fair allocation of the bandwidth, the available bandwidth B at one node

is divided evenly among the N sources in the upstream subtree. A fair packet generation

rate ri satisfies the equality [6]:

ri =
B

N
(3.4)

In order to accommodate burst packets, a token bucket is used like with Fusion

scheme [4]. The sensor nodes determine their value of N by keeping a record of the

origin of the packets.

Each intermediate node performs a metering of the route-thru traffic with a token

bucket. One token is added for every N packets forwarded, until it reaches a maximum.

This way, the agent does not need to determine the available bandwidth B but rather

the outgoing bandwidth utilized. A counting of packets sent is sufficient to obtain B.

A packet generated locally consumes one token. The state component is the current

number of tokens TokenT .

0 ≤ TokenT ≤ TOKEN MAX

Downstream Fairness Index

A second index measures short term unfairness between the node and its parent. The

rate of a source is determined with the smallest rate on the path from the source to

the sink (c.f. traffic shaping in Chapter 2). The maximum rate can only decrease as

the distance from the sink augments. Thus, the generation rate of a source ri can not

exceed the generation rate of the parent rp.

ri ≤ rp (3.5)
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Figure 3.6: Rate limitation with fairness indexes

The second bucket collects one token every time it hears one packet generated and

sent from the parent node. Similarly, the generation of a packet removes one token.

There are currently TokenP token in this bucket.

0 ≤ TokenP ≤ TOKEN MAX

With both rate limitation, congestion in any branches of the network will cause a

decrease throughout all others parts of the network as illustrated in Figure 3.6.

A fair rate is under constraint from the upstream and downstream nodes. An uni-

lateral rate limitation is insufficient to force a sensor node to share the same rate as its

upstream subtree. The two constraints are verified if packets are generated only when

both buckets are not empty. Since the sensor cannot generate new data when the bucket

is empty, ri is kept inferior to rp. For one packet generated, N packets are expected to

be forwarded, and one packet from the source parent is expected.

3.5 Conclusion

The control agent was presented with its observed environment and its actions. The

use of buffer occupancy, the arrival rates and the rate control are widespread in con-
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gestion control literature. The contention regulation and the fairness indexes are our

contributions.

To solve efficiently the congestion problem, two solutions to the multi-agent problem

are explored. In Chapter 4, a method based on reinforcement learning is suggested to

adapt the contention and rate strategy to the topology. In Chapter 5, an inference

method is used to coordinate actions and reduce congestion.
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Chapter 4

Adapting Policies by

Reinforcement Learning

In this Chapter, a solution method based on reinforcement learning is introduced. First,

the semi-markov model and the solution approach are motivated. Before presenting the

particular method used, an introduction to reinforcement learning is given. The second

section describes the implementation of the algorithm on the congestion control problem.

For both contention and rate regulation problem, the state and reward are defined.

4.1 Introduction

Sequential decision making in uncertainty motivates a Markov decision process model

[13]. The environment of the agent is stochastic because the medium is accessed ran-

domly. For example, the queue length at the next decision epoch is conditioned by a

probability distribution.

In practice, the probability structure of the underlying Markov chain is difficult

to obtain. The determination of transition probability is prohibitive and unrealistic

as each node has its own perception of the environment. In addition, the topology is
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Figure 4.1: Reinforcement learning model

inherently spontaneous and thus it is impossible to predict the spanning tree and the

traffic patterns.

This thesis investigates the learning of the policy from experience. With on-line

learning, the sensor node can adapt by itself to the environment presented. A learning

method provides more flexibility and robustness compared to a fixed strategy. The

goal of the learning agent is to avoid congestion. It can be achieved by limiting the

packet drops or unfairness. Contention and generation rate policy are learnt to provide

coordinated actions.

4.2 Background on Reinforcement learning

Reinforcement learning (RL) [13] is a computational approach for goal oriented decision

making. RL is a way to teach agent the optimal control policy. It is based on stochastic

approximation through direct interactions with the environment. The decision maker

is assigned rewards or punishments based on the temporal feedback of its action. The

computational complexity of RL algorithms is considerably less than methods of dynamic

programming since transition and reward matrices are not required.

Any reinforcement learning system basically comprises an agent, the environment,

a reward function, a policy and a value function. The agent selects a control action

a which leads to a transition from the environment state s. Upon the next decision,
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the agent updates the new state s′ from the sensory inputs and collects a feedback in

the form of reward. The policy is learnt progressively at each iteration as illustrated in

Figure 4.1.

The reward r(s, a) defines the goal. It maps each state-action pair to a number that

measures the immediate desirability of the action. A reward may be negative if the

action results in unwanted consequences. RL problems are credit assignment problems

because the immediate reward can be followed by worse ones. The objective of the

agent is then to maximize the reward or credit in the long term. An optimal sequential

decision path maximizes the expected reward and can be represented in more compact

form with a policy π. The policy is an association from the context or state to the

action to perform. Value function defines the desirability of a state (or a state-action

pair) in the long term. It represents the expected average reward by following the policy

starting from that state. Since the policy is based on value functions, an optimal policy

is approximated completely when all the states and actions are visited a large number

of times. Exploratory actions are taken for the purpose of visiting new states. The

learning phase typically ends when the value functions have converged.

The computational burden is only related to the approximation of the values func-

tions. Sutton [13] developed incremental learning techniques for control also referred as

temporal difference methods. For an in-depth presentation of the solutions of reinforce-

ment learning, the book by Sutton and Barto [13] is a reference in this topic.

4.2.1 SMART reinforcement learning

Sequential decision problems that are amenable to the Markov analysis are Markov

Decision Processes (MDP). In a Semi Markov Decision Process (SMDP) [14], decisions

are not restricted to discrete time epochs like in MDPs. Decisions are made whenever

the system enters a specific state that is relevant to the agent. The state may change
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several times between two decision intervals since the environment is a renewal process.

Most of research and applications focus on discounted sum of rewards as the optimal-

ity metric. The future rewards have less importance than the present reward with the

discount criterion. However, in engineering problems, performances are preferably eval-

uated with their time average expected reward. Some examples are average efficiency

or average throughput.

Let R∗(s, a) be the expected average adjusted value by choosing actions optimally

starting from the state s and action a. The value of state s can be written R∗(s) =

maxaR∗(s, a). The interaction at at time t brings the environment from a SMDP state s

to another SMDP state s′ with the state transition probability Pst,st+1(at) and sojourn

time τ(s, a). There exists a scalar ρ∗ satisfying the Bellman optimality equation in

SMDP states:

R∗(s, a) = max
a

[
r(s, a)− ρ∗τ(s, a) +

∑
s′

Ps,s′(a)R∗(s′, a)

]
(4.1)

An incremental learning procedure known as Semi-Markov Average Reward Technique

(SMART) [14] allows the agent to accumulate knowledge on the states, immediate re-

ward, and time spent between state-transition.

The SMART algorithm approximates the values R(s, a) with the temporal differences

method which assigns utility on one step performance (Eq. 4.2). If this error is positive,

then the preference for the previous action on the previous state is intensified. Otherwise

the tendency to take this action on that particular state is decreased.

∆R = r(st, at)− ρt · τt + max
at+1∈A

Rold(st+1, at+1)−Rold(st, at) (4.2)

Rnew(st, at) = Rold(st, at) + αt ·∆R (4.3)
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where αt is the learning rate parameter at the tth decision epoch.

The average reward rate ρ at the tth decision epoch is estimated by taking the ratio

of the total reward earned and the total simulation time.

ρt =
∑t

k=1 r(sk, ak)∑t
k=1 τ(sk, ak)

(4.4)

The control policy π is obtained by selecting the action with the highest the state-

action value (for a maximization).

π(st) = a = arg max
b∈A(s)

R(st, b) (4.5)

An action different than the greedy action is chosen with probability εt. These

exploratory actions ensure that all state-action pairs of the underlying Markov chain

are visited and have been assigned a value.

An algorithm of SMART is given in Appendix.

4.2.2 Distributed reinforcement learning in cooperative systems

Reinforcement learning methods mostly focus on control problems in single agent set-

tings. With multiple agents, the concatenation of individual states gives an exponen-

tially large system state. To address control problem in a multi-agent setting, several

distributed reinforcement learning methods were proposed. A taxonomy of multi-agent

reinforcement learning is presented in the survey of Veloso and Stone [15].

Schneider at al. [16] proposed several heuristic methods based on the combination

of values functions or rewards from several agents. The collaboration degree with a

neighbor is determined with a weighting function. Since messages are exchanged at

each steps of the learning, delay in communication can lead to a slow learning or non-

convergence.

Guestrin et al. proposed a planning method for multi-agent factored MDP [17]. The
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structured representation of the system allows the expression of the value functions in

linear combination of basis functions. Since a basis function relates to only a small

number of agents, the complexity is reduced exponentially. Finally, the weights of each

basis function are computed with a linear program. The computations are carried out

off-line and centrally.

In [18], the same author introduced a collaborative action selection method. First,

the global payoff is approximated with a sum of local payoff functions depending on at

most two agents. Since an agent can affect only a few others, the multi-agent system

can be represented with a coordination graph. An edge symbolizes an interdependency

between two agents. Next, the agents run the variable elimination algorithm which

finds the exact solution to the maximization problem. This distributed action selection

strategy is the key idea of other multi-agent extension of RL methods such as Q-learning.

However, the variable elimination algorithm requires the synchronization in the elim-

ination process. The decision latency increases with the size of the network because of

synchronization. The above methods may not be suitable to the congestion problem

since real-time response is critical to avoid congestion in WSNs,

4.3 Reinforcement Learning for congestion control

Since the wireless sensor nodes are geographically scattered and have limited communi-

cation range, the learning has to be decentralized in order to be communication efficient.

If two nodes are apart of several hops, their coordination would be expensive in commu-

nication. Consequently, the scope of the coordination is limited to a local neighborhood.

The congestion control problem is decomposed into several overlapping link flow

control (LFC) problems. The sub-problems are interrelated, but solved independently

at each node. One learning agent is set at each sensor node. A Markov decision process

characterizes this agent and the solution is approximated by reinforcement learning.
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With relevant state and reward, the local optimizations may imply a global near-

optimal system. However, in the objective of enabling coordination, the interactions

related to congestion are to be considered.

The SMART algorithm operates in continuous time and does not need synchroniza-

tion. In multi-agent settings, one agent should not synchronize with another, so that

the system is robust to failures. This is especially true when channel contention delays

the transmission randomly. Consequently, the information exchanged between agents

are processed asynchronously. The coordination messages are incorporated as they are

received.

The network state monitor is updated continually and the reward is cumulated until

the next action. Although the agent may update the state more than once between

two consecutive actions, the decision is made normally according the current policy and

action selection strategy.

In the following, the state and rewards are established for the congestion control

problem. As mentioned in the previous chapter, the transmission rate can be controlled

to mitigate congestion. This control is achieved by regulating the contention window

when the channel is highly loaded. Next, the control of the packet generation rate is

formulated. The objective is then to reduce unfairness by limiting the rate.

4.3.1 Reinforcement Learning of Contention Window Policy (RLCW)

The contention window determines the probability of transmission and thus the trans-

mission rate. Packet drops from congestion are located at the buffer level. The concept

of RLCW is to learn the policy which prevents packet drops at the next hop node. The

common approach [19] is to learn the policy which minimizes local drops. Given the

multi-hop nature of communications, a sensor node has to evaluate how well its packets

are forwarded. Therefore, a state of the link is better defined as the state of buffer at
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the next hop node.

Sensor nodes consider the current state of buffer to select the back-off decision. The

value functions learned estimate future rewards. As a result, the reinforcement learning

provides a control policy that anticipates the buffer lengths and the buffer overflows.

With the average expected reward criterion, the policy will minimize the long term av-

erage drops on the link.

State and action space

The state descriptor for a single agent is the queue length of the parent node qp.

s = [qp]

Before each packet transmission attempt, the control agent updates the state s,

collects the reward r and then takes an action a. The action is the choice of the

contention window CW from a finite set.

a ∈ {CW = c0, CW = c1, . . .}

The feedback signal is the cost related to drops on both sides of the link. The

packet drops are the cause of inefficiency, unfairness and low application reliability. The

Distributed Reward RL heuristic [16] is used to learn coordinated actions. The reward

is the weighted sum of two costs. Dl denotes the local drops between two transmission

attempts. Dp denotes the drops at the parent node during the same period.

Reward = −Cost = −(wlDl + wpDp) (4.6)

This cost is equivalent to a negative reward. Since packets dropped with higher hop
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Figure 4.2: Agents and Communications involved in RLCW.

count cost more energy, a parent drops weights wp = 1.0, more than local drops with

wl = 0.01 .

r(st, at) = −τ(st, at)× Cost

The interactions between agents are summarized in Figure 4.2. The agent controls

the contention level of the node through its direct action. If the action was notified

to another agent, all nodes must have same set of actions limiting the application to

homogenous network. Nodes advertise their current buffer length and drops. This

contrasts with the backpressure method [4, 3] where congestion is detected locally but

stopped from upstream.

The control agents are able to coordinate by mutual observation. The state is actu-

ally non-local because the agent “observes” the environment of the parent node. The

reinforcement signal is the weighted sum of rewards from several agents. This method is

known as distributed reward RL [16] and converges to better solutions than independent

Q-learning in cooperative scenarios. The learning agent can choose the best alternative

if the choices all lead to congestion. For example, if a node and its parent have their

buffers congested, packet drops are likely to occur in both nodes. A short back-off drains

the local buffer more quickly and prevents local overflows. However, this can lead to
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the overflow of the parent node. With distributed reward RL, the agent considers the

feedback of both agents. After repeated trials, the agent can estimate the action with

the least worse outcome since rewards are real valued.

A pseudo code of the algorithm is provided in Algorithm 1.

Pseudo code of the algorithm in RLCW

Initialize SMART learner1

for each packet transmission attempt do2

Collect Dl since last attempt;3

Collect packet drop advertised by parent node Dp since last attempt;4

Set Cost = (wlDl + wpDp) ;5

Determine the last update of parent node buffer qp;6

Set the state S = [qp];7

Update the SMART learner ;8

Obtain the action a from the SMART learner;9

Advertise Dsum and qp in the header; Set the back-off window according to a;10

Start back-off timer;11

Upon timer expiration:12

if channel idle then13

Transmit ;14

Dl = Dp = Dsum = 0;15

else16

Wait for channel idle ;17

Dsum = Dsum +Dl;18

end19

end20

Algorithm 1: RLCW Algorithm: Learning of the contention policy
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4.3.2 Reinforcement Learning of Rate Policy (RLRATE)

Rate regulation in a sensor network should be a collaborative task if fairness is de-

sign criterion. A sensor network may not drop packet, but the packets collected from

each source present large disparities. The regulation of the rate has two objectives:

prevention of congestion and fair allocation of the available bandwidth. The states are

indicators of fairness. They indicate whether the local source has generated more packets

in comparison to its descendent and parent nodes in the spanning tree.

State and action space

The state descriptor of the RLRATE agent is:

s = [TokenT, TokenP ]

TokenT is an indicator of the fairness between the packet generation rate and the route-

thru traffic rate. TokenP indicates the difference of the local packet generation rate with

the parent node’s rate. TokenP is a shared state because a node and its parent directly

affect it as illustrated on Figure 4.3.

The sensing data is either admitted or not in the network by generating a new packet.

The average action taken determines the packet generation rate (originating traffic rate).

For instance, if the frames are always admitted, the packet generation rate is equal to

the sensing rate. The rejection of frames intends to reduce the traffic moving in the

network, and subsequently to limit unfairness.

a ∈ {ADMIT,REJECT}

The objective of the agent is keep the network fair by maintaining the following

42



Figure 4.3: Agents and Communications involved in RLRATE.

conditions discussed in Chapter 3:

ri ≤
B

N
and ri ≤ rp

The actions which go against these conditions are punished with negative rewards

(Eq. 4.7 and 4.8).

The reward is negative if the sensor node generates a new packet although the

node was seen greedy. An empty token bucket indicates that the originating traffic has

exceeded the fair share of bandwidth.

Cost = CostT + CostP

CostT =


1 if TokenT = 0 and a=ADMIT ,

0 otherwise
(4.7)

CostP =


1 if TokenP = 0 and a=ADMIT ,

0 otherwise
(4.8)
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A pseudo code of the RLRATE method is given in Algorithm 2. The interactions

between agents are illustrated Figure 4.3. The state and reward are updated locally

without transmission involved. As a result, the contention delay has no effect on the

performance.

Pseudo code of the algorithm in RLRATE

Initialize SMART learner1

for each report do2

Determine the number of tokens tokenT and tokenP ;3

Set the state s = [tokenT, tokenP ] ;4

Calculate CostT , CostP with the current state and lastAction;5

Set Cost = CostT + CostP ;6

Update the SMART learner;7

Obtain the action a from the SMART learner;8

if (a = ADMIT ) then9

Enqueue and Send the report;10

else11

Discard the current sensing report;12

end13

Record lastAction = a;14

end15

Algorithm 2: RLRATE Algorithm: Learning of the generation policy
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4.3.3 Implementation issues

Inclusion of the exploration phase in the evaluation

The first phase of learning has exploratory actions, thus performances is not represen-

tative of the learned policy. With the appropriate exploration rate decay, the length of

the exploration phase can be adjusted. A decaying exploration rate improves the learn-

ing process in the beginning. However, for a fair comparison with other schemes, the

early results from the exploration should be taken in account. This exploration phase

becomes negligible as the duration of evaluation increases.

Processing and communication overhead

The processing in one step of learning only needs addition, multiplication and a random

number generator. With parameterized values functions, the processing complexity is

only linear in the number of actions and of state components.

With RLCW method, the buffer length and drop rate are communicated to neigh-

bors. To avoid communication overhead, normal data packets piggy back these control

information (two integer numbers). With RLRATE method, the states are obtained

locally and agents do not communicate.

Function approximations

Real world RL problems are intractable as the state space grows exponentially with the

number of state variable. The learning is slow if the state space is too large. Visiting

all the states a sufficient number of times may pose a problem. Therefore, function

approximations that can generalize state features are essential to accelerate learning.

The memory used for storage is reduced by sharing what was learnt on one state with

similar features.
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A function approximator called Cerebellar Model Articulation Controller (CMAC)

is frequently used in reinforcement learning [20]. It is linear unlike neural networks.

A CMAC partitions the input space into overlapping tiles. Each tile ψ or parameter

captures a salient feature in the state descriptor and performs a local generalization.

The value of a state becomes a linear combination of weights w.

V (s, w) =
K∑
k=1

w(k) · ψ(k)

The number of parameters K is far less than the number of states.

In the learning of the value, the TD update (Eq. 4.3) is replaced by a step which

updates the weights according to the back propagation algorithm. The reinforcement is

shared between the parameters i ∈ P(s) present in the current state.

wt+1
i = wti + α∆w, for i ∈ P(s)

∆w =
∆R

card(P (s))

Each tile is linked to a single state to avoid exponentially many tiles. The value is a

linear combination of functions that depend on just one state component. This simplifi-

cation removes the possibility of learning features combining several state components.

4.4 Conclusion

This chapter presents a learning approach to address the congestion control using states

and rewards that are linked to other agents to enforce coordination.

With learning based methods, RLCW and RLRATE, the policy is constructed step

by step according to a feedback. In RLCW, the contention windows are controlled with

a policy obtained by reinforcement learning. Packet drops are the feedback signals and
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to be minimized. In RLRATE, unfairness is detected locally and the agent learns to

bring balance by controlling the generation of packet.

The following chapter explores the use of an inference algorithm to solve the con-

tention regulation and rate regulation problem; this algorithm exploits a priori known

interactions rather than approximating them from experience.

Table 4.1: Summary of the learning methods
Method Action State Communication
RLCW Contention Window Buffer length Buffer length qp

and Drop count
Dp

RLRATE Admission/ Rejection of
packet

Token bucket con-
tents

None
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Chapter 5

Distributed Coordination using

Inference

In this chapter, an alternative method to reinforcement learning is explored. The con-

gestion control problem is modelled as a coordination problem. An iterative algorithm

related to belief propagation is explored as a coordination method. A background is given

in the first section, then the contention and rate regulation problem are modelled.

5.1 Introduction

Coordination is the agreement on actions in a control problem involving multiple actors.

Some MAC or transport protocols are examples of coordination in WSNs. Inefficiencies

in a sensor network can be the result of buffer overflows. The overflow of the downstream

buffer can be avoided by reducing the transmission rates of upstream nodes. Therefore,

flow control is a coordination problem between congested nodes and their neighbors.

A WSN is evaluated as a whole system, since sensing is a collective task. In a
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distributed system, local optimizations often preclude global optimality. Local optimal

decisions can be conflicting with each other. Since packets are broadcasted, a local

congestion solution can worsen the channel conditions in different part of the network.

This global optimization problem can be formulated as an inference problem in a

Bayesian network. Given the state of sensors ~s, the problem consists in finding the joint

action ~a such that the joint probability distribution of congestion is minimized network

wide.

~a = arg min
~a
Prob(congestion|~s,~a)

With the computation and communication capabilities, wireless sensors can benefit

from the power of distributed algorithms. An exhaustive search is costly as there are

exponentially many action vectors. A centralized computation is unrealistic in WSNs

because of the induced communication delay and overhead. Moreover, real-time decision

making is expected as buffers are small and can overflows within a second.

To this end, a complex control problem is formulated as a minimization problem of

reduced complexity using the inference method. All the agents take decision in parallel

and exchange messages to make sure local decisions lead to good team behavior. The

optimal action of the agents is the unknown in the problem.

5.2 Belief Propagation

Belief Propagation is an algorithm for solving probabilistic inference problems in Bayesian

networks [21]. Its application generalizes to undirected graphical models or Markov ran-

dom fields (MRF). Figure 5.1 illustrates a MRF as a graph G = (V,E). A vertex v ∈ V

is associated with a random variable Xi ∈ X. A local potential ψi(Xi) depends on this

variable. An edge e ∈ E represents a dependence between two variables, which is defined

with a compatibility potential function ψij(Xi, Xj). Considering that all the variables
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Figure 5.1: An undirected graphical model with the potential functions

dependencies are expressed with the functions ψij , the joint probability function is the

product of distributions over cliques:

Prob( ~X) =
∏
i∈V

ψi(Xi)
∏

(i,j)∈E

ψij(Xi, Xj) (5.1)

A common query in a MRF is the Maximum a Posteriori (MAP) configuration of

variables:

~X∗ = arg max
~X
Prob( ~X) (5.2)

Belief propagation is an iterative method to solve this maximization problem. In

the algorithm, each node i sends a message mij to any neighbor j in the graph. N(i)

denotes the set of neighbors of node i in the graph.

m
(t+1)
ij (Xj) = max

Xi

ψi(Xi)ψij(Xi, Xj)
∏

k∈N(i)\j

m
(t)
ki (Xi)

 (5.3)

After reception of new messages, the belief is updated and new messages are sent to

neighbors based on what was received previously. Since the messages propagates and

are updated from a node to another, local information is aggregated and spread in the

whole graph.
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The algorithm converges in finite number of steps to the optimal joint action [21].

A fixed point is reached when the messages converge in value. The global optimal

configuration is given by choosing locally X∗i as in Eq. 5.4.

X∗i = arg max
Xi

ψi(Xi)
∏

k∈N(i)

m
(t)
ki (Xi)

 (5.4)

The Max-Plus and Min-Sum algorithms belong to the family of belief propagation

algorithm [22]. They employ any positive potentials functions rather than probabilis-

tic distributions. J. Kok [23] studied Max-Plus to coordinate actions in multiple agent

settings. The coordination dependency between two agents is represented with a joint

payoff function.

The Min-Sum algorithm is similar to Max-Plus, but minimizes a global value rather

than maximizes it.The global cost is decomposed in simpler terms depending on actions

a:

Cost(~a) =
∑
i∈V

ψi(ai) +
∑

(i,j)∈E

ψij(ai, aj)

The minimum cost action in a coordination graph is equivalent to the maximum a

posteriori configuration in an undirected graphical model. The optimal joint action a∗i

is found with similar messages passing (Eq. 5.5). These messages are actually estimates

of the global cost function from a single agent’s perspective. Node i gives a value mij

for each action aj of j according to the information available and collected so far.

m
(t+1)
ij (aj) = min

ai

ψi(ai) + ψij(ai, aj) +
∑

k∈N(i)\j

m
(t)
ki (ai)

 (5.5)

The messages received locally determine the local action causing the least global

cost. The joint optimal action is calculated distributively and in parallel at each node.
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The following consistency property holds in graph without cycle after convergence:

min
~a′|a′

i=ai

Cost(~a′) = ψi(ai) +
∑

k∈N(i)

m
(t)
ki (ai) (5.6)

Consequently, each agent i can select individually optimal action a∗i .

a∗i = arg min
ai

ψi(ai) +
∑

k∈N(i)

m
(t)
ki (ai)


The family of belief propagation algorithms illustrates the transformation of a com-

plex optimization problem into a set of smaller problems. Each agent solves a problem

with few variables and only uses local message passings. Convergence proofs and strong

theoretical results exist for the belief propagation algorithm and its extensions [22]. Due

to its asynchronous nature, the algorithms based on belief propagation are particularly

suitable for real-time decision making. A pseudo code of the coordination algorithm is

provided in Appendix.

5.3 Definition of Potential Functions

5.3.1 Coordination Graph

The congestion at a sensor node is caused by a few neighbors rather than all of them.

Packet drops result from the inability of the receiver to accommodate sender’s packets.

Therefore, pair interactions can be constructed as illustrated in the Figure 5.2.

A framework for multi-agent coordination [17] exploits these local dependencies to

represent a large coordination problem with a coordination graph G = (V,E). The

global cost Ψ~a is decomposed into a sum of local functions (5.7). Function ψi is the

cost that is caused unilaterally by node i. Function ψij describes the cost additionally
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Figure 5.2: The coordination graph over the spanning tree: the links on the spanning
tree correspond to the pairwise dependencies. The immediate neighbors in the routing
tree coordinate their respective actions.

created when the neighbor nodes i and j choose respectively action ai and aj .

Ψ~a =
∑
i∈V

ψi(ai) +
∑

(i,j)∈E

ψij(ai, aj) (5.7)

The coordination algorithm minimizes a global cost with local computations and

local communications. The Min-Sum algorithm is intended to minimize distributively

congestion and unfairness.

5.3.2 Coordination of Contention Windows (COCW)

Contention regulation (c.f. Chapter 3) is the mean to adjust the transmission rate when

the channel is congested. Potential functions express the congestion with the estimated

packet drop. The variables in these functions are the contention windows CW. A small

contention window increases contention and transmission rates. Consequently, it helps

clearing the local buffer, but the packet accumulation is only transferred to the next

hop node.

The potential functions in this study are based on intuition rather than rigorous

analysis because the relationship between contention window and achievable rate is
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difficult to determine distributively. The proposed heuristic method estimates the loose

upper bound of packet drops.

The congestion likelihood increases with the number of upstream nodes. While child

nodes increase the risk of congestion, each of then send information to the parent node.

Consequently, the messages from child nodes add up (Eq. 5.6) to influence further the

decision and to avoid mismatching actions.

Congestion potential

The total incoming traffic at node i is the sum of the route-thru traffic λi and the orig-

inating traffic ri as illustrated in Figure 5.3. The transmission rate µi depends on the

actions or contention window CWi and has implications on the local congestion and on

the downstream node j’s congestion. For example, the starvation of an outgoing link

(µi = 0) is the worst case of buffer congestion. The packet drop rate is then nearly equal

to the incoming traffic D = ri + λi. A general trend can be drawn: the expected packet

drops increases with traffic intensity.

The local potential ψi(CWi) is function of the local buffer and the contention window

which are the state and action, respectively. A nearly full buffer is more likely to

overflows than an empty buffer. Therefore, the congestion likelihood increases with the

buffer occupancy qi. We make the simplifying assumption that the transmission rate

decreases linearly with the contention window. For example, doubling CWi roughly

halves the service rate and augments the buffer drops. The potential packet loss is given

by ψi at Eq. 5.8 where CWmin is the shortest back-off window that always wins the

contention (≥ 1).

ψi(CWi) = ri
qi
qmax

(1− CWmin

CWi
) (5.8)

Taking decision independently leads to uncoordinated actions and congestion. The
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Figure 5.3: Coordination between two adjacent sensor nodes: the parameters taken
in account are the packet generation rates ri , arrival rates λi, queue length qi, and
contention windows CWi

coordination function is defined as the congestion resulting from unmatching control

actions: In Figure 5.3, if the node i uses a short contention window, j will send less

packet and will receive more. A node which uses a short back-off confiscates the available

bandwidth of the neighboring nodes. This node j is thus likely to have a congested buffer.

The lack of coordination creates additional drops which are bounded by the traffic

received at the congested node j. The buffer drops augment with the queue lengths qi

and qj . On the one hand, the probability of buffer overflows at the downstream node

increases with its occupancy qj . On the other hand the length of the local queue qi

determines the congestion of the mentioned downstream node.

A coordination potential function ψij is constructed from these observations:

ψij(CWi, CWj) = 0.5λj
qi + qj
qmax

· CWj

CWi
(5.9)

The function ψij is a rough estimation of the packet loss for different contention

windows. In a link with one upstream and one downstream node, the packet drops

will occurs when the upstream node send more packets (with a smaller CW) than the

downstream can receive. When (2k · CWi) ≤ CWj , k × λj packets can be be dropped

because the upstream node i will win the contention more frequently at the expense of

the downstream node j. When the contention level is equal CWi = CWj , half of λj can
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be dropped. Actions are coordinated when the upstream nodes use a longer contention

window than its downstream nodes. The congested node is able to drain its queue with

high transmission rate.

These coordination functions are based on intuition, rather than rigorous analysis.

With COCW, a sensor node advertises its current buffer length qi, the incoming traffic

λi and the messages mij . To reduce control packet overhead, this information is put on

every data packets, and is collected by enabling overhearing. A pseudo code of COCW

is given is Algorithm 3. In the followings, the rate control is modelled as coordination

problem to minimize unfairness.

Pseudo code of COCW

Determine the incoming traffic λi and calculate the potentials functions1

for each packet to transmit do2

Determine the buffer occupancy3

Select a neighbor j and compute the coordination message addressed to j4

Collect messages and create function gi(ai)5

Choose action a∗i which minimizes the cost6

7

a∗i = arg min
ai

gi(ai)

Transmit with the contention window CW8

end9

Algorithm 3: Pseudo code of COCW
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5.3.3 Coordination of packet generation rates (CORATE)

As presented in the LFC problem (c.f. Chapter 3), two rate constraints provide a fair

and efficient rate:

ri =
B

N
and ri ≤ rp

A possible decomposition of the total unfairness in the network into simpler terms

is:

Ψ~a =
∑
i∈V

ψi(ai) +
∑

(i,j)∈E

ψij(ai, aj) (5.10)

Since the first constraint only depends on the local rate, the local potential ψi(ai)

represents the first constraint into a cost function. The second equations involves directly

the local rate and the parent node’s rate, therefore, the coordination functions ψij(ai, aj)

represents the cost of unmatching action pairs, specifically those decreasing fairness.

State of fairness

The state components in CORATE are TokenT and TokenP . TokenT is an indicator

of the fairness between the originating traffic rate and the route-thru traffic i.e. the

upstream sub-stree. TokenP indicates the difference between the local packet genera-

tion rate and the parent node’s generation rate. The node is considered greedy when

TokenT = 0 or TokenP = 0.

Unfairness Potentials

The local potential ψi(ai) determines a cost when a packet is generated, although more

originating packets than the fair share were already generated (TokenT = 0). The

rejection of packet in normal conditions is also penalized to maximize throughput and

reliability.
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ψi(ADMIT ) ψi(REJECT )

TokenT = 0 1 0

TokenT > 0 0 1

Each node maintains the TokenP of its child nodes. By counting the packets origi-

nating from its child in the route-thru traffic, the parent node obtains this index. The

parent node then sends the coordination message back to each one of the child nodes.

This message is the preference of the parent for the actions of a particular child node.

The decisions penalize greedy child nodes j (TokenP = 0) if they still generate pack-

ets at the next round. The message from the parent has more weight so that both

constraints are verified together.

ψij(ADMIT ) ψij(REJECT )

TokenP = 0 at j 2 0

TokenP > 0 at j 0 0
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Figure 5.4: Implicit message passings with the primary traffic

Pseudo code of CORATE

Determine the buckets content TokenT , TokenP1

Determine the TokenPj of each of the child node j2

Update the potentials functions ψi and ψij3

for each packet to generate do4

Select a neighbor j and compute the coordination message addressed to j5

Create function gi(ai) from the collected messages mij6

Choose action a∗i = ACi which minimizes the cost7

8

a∗i = arg min
ai

gi(ai)

Admit the packet for a∗i=ADMIT.9

end10

Algorithm 4: Pseudo code of CORATE

59



5.3.4 Implementation issues

Message and computation overhead

A congestion control based on the Min-Sum algorithm can use the data traffic to carry

the coordination messages (Figure 5.4). The use of specific messages packets creates too

much overhead and has no benefit because two nodes cannot transmit simultaneously.

Therefore, coordination message mij is inserted within the header whenever a packet is

transmitted. Since a node has to pass a message to all of its neighbors, the messages

are addressed one by one in turn. The destinations of these messages are the neighbors

which have to listen promiscuously to all transmissions. The effect of this technique

is evaluated in the simulations. The use of specific messages packets creates too much

overhead and has no benefit because two nodes cannot transmit simultaneously.

Since the coordination graph is the spanning tree (has no cycle), the algorithm

converges to the optimal solution in static cases. The messages values stabilize after

the longest path experiences a forward and backward propagation of messages. The

message overhead of the algorithm grows linearly with the size of the network. However,

full propagation is not necessary as congestion spots are solved locally. This stems from

the observation of Crick et al. [24].

For each decision, the processing complexity and storage requirement is linear in

the number of neighbors N and in the number of actions. The computation is light for

sensor motes since tens of additions and multiplications are carried out for each packet

transmitted.

Correctness of decisions

Experimental results showed that asynchronous message passings do not affect the re-

sults. Asynchronous versions of belief propagation were experimented in distributed

applications such as robot soccer [25, 24].
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Belief propagation and its variants are robust to random communication errors.

Crick and Pfeffer [24] conducted an empirical study on the effect of disturbances of the

asynchronous algorithm. He concluded that unreliable communication affects little the

correctness of beliefs [24].

The algorithm keeps the number of errors relatively low in highly dynamic states

[24]. The current state determines the potential functions. In COCW and CORATE,

the states are packet level measures which vary rapidly. Simulations will tell if the

number of erroneous decisions is kept low.

J. Kok [23] mentions that the algorithm’s performance declines when several opti-

mal solutions exist. Agents tend to forget the good actions in the past and reach only

sub-optimal configurations. However, the presence of outliers in the actions lessen this

discrepancy. As such, the different control actions should have large differences to make

the solution unique.

5.4 Conclusion

This chapter presents a new iterative approach to solving the congestion control using

a decomposition of a global cost into local expression and a parallel message passing

to select the action distributively. The key concept presented is the coordination of

multiple agents’ actions.

With the coordination based methods, COCW and CORATE, the interactions be-

tween agents are modelled explicitly unlike in the reinforcement learning approach.

Heuristics were proposed to elaborate these potential functions.

The next chapter presents the simulations results of the proposed methods. Rate

regulation methods, RLRATE and CORATE are evaluated on a periodic workload,

whereas contention regulation methods RLCW and COCW are evaluated on an event
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based workload.

Table 5.1: Summary of the coordination methods
Method Action State Communication
COCW Contention Window Buffer length Buffer length qp

and arrival rate λ
+ messages mij

CORATE Admission/ Rejection of
packet

Token bucket con-
tents

messages mij
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Chapter 6

Simulations and Results

In this chapter, the simulation results of the proposed methods are shown. The packet

drops, throughput, energy efficiency and fairness are evaluated with random and periodic

sensing scenarios.

We proposed learning methods (RLCW and RLRATE) and coordination methods

(COCW and CORATE) to congestion control in WSNs. In the following sections, we

define the simulation model and the evaluation methods. The work of Hull and Jamieson

[4] is used as a baseline method in the comparison. The influences of the sensing rate

on the performances are analyzed. In the first scenario, contention regulation methods

are evaluated with a non-periodic workload. In the second scenario, the rate regulation

methods are evaluated with a periodic workload. The period value is a supplementary

information which gives to the second method better efficiency in handling congestion

than the first method.

63



Figure 6.1: Topology of the simulated wireless sensor network.

Table 6.1: System parameters
Parameter Value
Bandwidth 40 Kbps

Packet error rate 0.10
Data packet size 60 bytes

ACK size 13 bytes
Data rate 45 packets/s

Retransmission limit 7
Transmission range 45m

Carrier sensing range 150m
Propagation model Two ray ground reflection

Buffer length 10 packets
Transmission Power 0.075 mW

Reception/Idle Power 0.025 mW
Contention window c0 31ms
Contention window c1 127ms
Token Bucket capacity 10
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6.1 Model of wireless sensor network

6.1.1 Simulation parameters

The simulated wireless sensor network consists of one sink and 19 sensor nodes. The

sensing area is 120x120m wide and the nodes are arranged as depicted in Figure 6.1.

The optimal functioning point changes from a topology to another. Consequently, the

results of several random topologies cannot be averaged. The experimented topology is

sufficient to reveal the variation in depth within a routing tree. The packets are for-

warded over multiple hops to the sink. The next hop node is manually chosen in the

simulation. The paths to the sink are static and the topology as well.

Simulations were conducted on the network simulator NS2 [26] and carried out on a

Pentium-M 1.8 Ghz. The code of IEEE 802.11 in NS2 was simplified to perform a simple

CSMA: the back-off timer is not interrupted when other transmissions are sensed on the

channel. This is to make the medium access in the simulation more similar to MAC

for WSNs. The wireless environment is simulated with the two-ray ground reflection

propagation model and an imperfect channel. The packet error rate is set to 0.10 and

the nominal reception range is 45m. The destination node replies with an ACK message

for each transmission without error. All wireless sensor nodes are in each other’s carrier

sense range, thus eliminating the hidden node problem among nodes. Several collision

avoidance techniques exist but they are not perfect to be integrated in the simulation.

The channel capacity is 40 Kbps and data packets are 60 bytes in length. The wireless

medium can accommodate up to 45 packets per second (pps), which is similar to what

current wireless sensor nodes achieve. The other significant parameters of the simula-

tions are shown in Table 6.1.

In the methods based on reinforcement learning, the initial learning and exploration
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rates are α0 = 0.1 ε0 = 0.2, respectively. The rates are decayed according to the

Darken-Chang-Moody algorithm [27] with parameter ϑ = 106. The CMAC function

approximator consists of ten tiles with two resolution elements. One CMAC of 20

resolution elements is needed for each action and each state component. The storage

requirement in floating point numbers is 40 for RLCW and 80 for RLRATE, which are

in the capacities of a sensor motes.

All the sensors enable active overhearing, which is a common assumption when the

radio is never powered off. The broadcast nature of the communication enables the

neighboring nodes to receive implicitly the notification and coordination messages. The

data packets carry information such as buffer length qp and the packets dropped Dp in

RLCW and the incoming traffic λ in COCW.

6.1.2 Performance evaluation

Besides packet drop rate, aggregate throughput and total energy spent, composite mea-

sures are made: energy efficiency and fairness. Network fairness is applicable only for

periodic workload.

For a network of n sensors, ri packets belonging to the source i were collected at the

sink. ei Joules were consumed at i during the simulation run. The energy efficiency is

given by the energy spent in the network for one packet received at the sink.

Energy efficiency =
∑n

i=1 ei∑n
i=1 ri

(6.1)

The fairness metric employed is

Fairness =
(
∑n

i=1 ri)
2

n
∑n

i=1 r
2
i

(6.2)
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6.2 Non-periodic workload scenario

Event-driven sensing is the common example of non-periodic workload. Since the sensor

nodes do not continually sense, fairness does not apply in this scenario. The totality

of messages from the application is introduced into the network since rate regulation is

not performed. Congestion is not completely removed but only alleviated. The buffers

would overflow if the load of traffic exceeds the channel capacity.

To simulate the traffic generated by random events, a period of inactivity is intro-

duced. An inactive source node does not generate packets, but can forward traffic.

Transitions in activity are performed synchronously every ten seconds and a node has

one chance out of three of being active in the next round.

The wireless sensor network topology is depicted in Figure 6.1. The network is

evaluated under mean sensing rate ranging from 1 to 5 packets per second. A run lasts

2,000 simulated seconds. The results are then averaged over ten runs. We compare the

methods in Table 6.2.

Table 6.2: Methods compared with non-periodic workload
RLCW Contention regulation is performed by a policy obtained by

reinforcement learning.
COCW The second method is based on multi-agent coordination.

The sensor nodes coordinate their contention levels.
BP+PM Backpressure and Prioritized MAC techniques as in the

work of Hull and Jamieson [4] is simulated. A congestion
is notified whenever the buffer and channel occupancy ex-
ceeds the thresholds as in the reference, qthres = 0.75 and
chthres = 0.85. All sensor nodes use the same threshold val-
ues to detect congestion. Transmission is paused whenever
a sensor node hears that its parent node is congested. Pri-
oritized MAC grants a contention window divided by four
to congested sensor nodes.

No control The contention window is fixed as c1.
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Figure 6.2: Total Packet drop in the network with non-periodic workload

6.2.1 Results of RLCW and COCW

Importance of gateway nodes:

Figure 6.2 shows the congestion of the network above 1pps as indicated by the drop-

ping of packets. Congestion control is necessary because intermediate nodes at strategic

locations affect the performance of the entire network. A gateway node near the sink

consumes a lot of bandwidth since it forwards a lot of traffic. If a gateway node is con-

gested, the aggregate throughput is diminished as showed at 2pps in Figure 6.3. Since

the aggregate throughput is the most determining factor for energy efficiency, the ability

of these gateway nodes to forward packet correctly is critical. Table 6.3 shows that node

one and two are the gateways nodes in the topology.
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Figure 6.3: Aggregate Throughput with non-periodic workload

Table 6.3: Traffic forwarded by node
Subtree size Node Id

9 1,2
4 6
2 11,13
1 3,7
0 4,5,8,9,10,14,15,16
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Local channel contention:

It determines the transmission rate and thus the aggregate throughput. As shown in

Figure 6.3, the learning method (RLCW) achieves up to 1 pps more throughput than

the baseline method BP+PM.

Figure 6.4 shows that with the RLCW method, gateway nodes one and two always

choose to use the short contention window. The remaining nodes use a short CW

more frequently with COCW than with RLCW. Since there is less competition for

channel with RLCW, gateways nodes can transmit more. Backpressure (BP) does not

differentiate gateway nodes from leaf nodes since the congestion thresholds are identical

for all nodes. BP implements the stop-and-go flow control (graph c). The gateway

nodes choose the long CW about two times out of ten because their buffer levels can

be low sometimes. The prioritized access (PM) decreases CW only for congested nodes.

Since gateway nodes forward large amount traffic, a weak channel contention leads to

the reduction of throughput as observed with the BP+PM method.

Energy efficiency:

RLCW consumes less energy in the network than COCW and BP+PM as result of

moderate contention. In addition, more packets are received at the sink with the RLCW

and COCW methods, reducing the energy spent per packet. As shown in Figure 6.5,

RLCW is the most energy efficient, outperforming BP+PM by 14% (-0.007J/packet).

The throughput and efficiency of COCW declines with the report rate because of

communication delays. Since the parent node becomes more congested with increasing

sensing rate, some child nodes do not receive their coordination message. It is interesting

to note that less energy is spent when no method is used (Figure 6.6). The total energy

spent is reduced because of higher drop rates and fewer packets to forward in the end.
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Figure 6.4: Contention window chosen by sensor nodes at 1pps

6.2.2 Analysis of the value functions and learned policy

To prove the convergence of the SMART algorithm in the contention window regulation

problem, the value functions and the policy are analyzed.

Figure 6.7 shows the value function and the maximizing action for a given state and

at a given node in the case of RLCW. A rise in the cost is observed within the first 500

seconds due to the absence of policy. In addition, the agent explores actions and chooses

arbitrarily between action 0 and 1. After 500s, only one action is selected, validating

policy convergence. The following exploitation of the policy stabilizes progressively the

value function. The value converges to its minimal value as it is a cost.
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Figure 6.5: Energy efficiency with non-periodic workload

Figure 6.6: Total energy spent in the network with non-periodic workload
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Figure 6.7: Convergence of the value function and the policy

Figure 6.8 plots the value and the policy at node seven and 15 which differs in the

degree of their parent node. These value functions were collected after 2,000 seconds of

learning at sensing rate 1pps. Lower values are desirable because they represent costs.

The value function displayed in graph (a) indicates the existence of notification

delay. If the notification was instantaneous, the cost would concentrate at occupancy

(qp = 1.0). However the cost at intermediate occupancy levels (qp ≈ 0.5) suggests that

buffer overflows occurred although the buffer was observed 50% full. Because of the

notification delay, the state is not fully observable. The uncertainty in the observation

is leveraged by learning the expected outcomes.

As illustrated in graphs (a) and (c), node seven receives more cost than node 15

as its parent node is a gateway node which is prone to congestion. These observations

in addition to the favorable results of RLCW support the need for adaptive congestion

avoidance in wireless sensor networks. In the policy graph (b), the node seven learns
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Figure 6.8: Value function and Action learnt in RLCW as function of buffer occupancy
qp

to use a long contention window when the occupancy is above 70%. The node 15 has

learned that its parent node is less prone to congestion and thus set the threshold to

80% (cf. graph (d)). This observation verifies that nodes can individually learn the

policy adapted to the environment.

6.3 Periodic workload scenario

In this experiment, all sensor nodes generate packets periodically without interruption.

The bandwidth can be allocated fairly since the number of source nodes is constant.

Rate regulation is performed at the messaging layer before the packets are admitted in

the network. The control agent may reject the admission of new packets in order to

reduce the packet generation rate (i.e. < sensing rate).

The congestion control schemes are compared under sensing rate varied from 0 to
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2.5 packets per second on the same topology. All the sensors are generating packets.

Each experiment is repeated ten times and then the results are averaged. Each run lasts

2,000 simulated seconds. The contention window is not controlled and left to 31ms in

the compared methods. Table 6.4 summarizes the rate regulation methods.

6.3.1 Results of RLRATE and CORATE

Effect of a Lossy channel

The rate control reduces the packets admitted into the network to mitigate congestion.

As shown in Figure 6.9, reducing the rate directly at the source removes almost entirely

the packet drops.

In this scenario, RLRATE drops less packets than Fusion. The source rate limiting

(RATE) in Fusion relies on counting all packets transmitted by the parent node including

the corrupted ones. With a lossy channel, the retransmissions skew the traffic shaping

performed by the token bucket. As a result, Fusion generates packets in excess which

later congest the traffic. In contrast, the two proposed methods detect unfairness by

Table 6.4: Methods compared with a periodic workload
RLRATE The agent learns the rate control policy to minimize unfair-

ness.

CORATE The agents coordinate their rate decisions to minimize un-
fairness.

Fusion RATE+BP+PM: The combination of three techniques, Fu-
sion [4], comprises source rate limiting, hop-by-hop back-
pressure and prioritized MAC. The traffic of the parent node
is measured and the local rate is adjusted with a token
bucket. This simple passive method limits the sensor to
send at the same rate of its descendent. The token genera-
tion rate is equal to µp/Np where µp is the transmission rate
of the parent node and Np its subtree size.

No control All sensing packets are admitted into the network.
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Figure 6.9: Total Packet drops in the network with periodic workload

counting the packets generated and transmitted by the parent node. The channel quality

has less negative effects on the performance since only the successful transmissions are

counted.

Effect of increased decision rate:

CORATE suffers from the notification delay which reduces responsiveness of the agent.

As seen in Figure 6.9, the drop rate in CORATE increases with the offered load. Coordi-

nation with the Min-Sum algorithm is based on message passings. Due to the contention

delay, the parent node sends one coordination message only after half of the neighboring

sensor nodes have transmitted in average. Because some important messages are received

after the actual decision making, packets are admitted in excess. Each packet generation

is a decision with CORATE, therefore buffer overflows increases with the sensing rate

as shown in Figure 6.9. Figure 6.12 also indicates reduced aggregate throughput for

CORATE as consequence of congestion. The frequency of messages updates is limited
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by the channel capacity. Therefore, more erroneous decisions are made when the sensing

rate increases.

As illustrated in Figure 6.10, RLRATE behaves as expected when the sensing rate

is increased from 1pps to 2pps. On the contrary, CORATE does not halve the packets

generated rate like RLRATE, and causes overload traffic.

Figure 6.10: Decisions taken by greedy node
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Figure 6.11: Network Fairness with periodic workload

Figure 6.12: Aggregate Throughput with periodic workload
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Figure 6.13: Energy efficiency with periodic workload

Fairness

Figure 6.11 compares the fairness provided by the rate control methods. RLRATE and

FUSION allocate fairly the bandwidth and the network is able to keep fairness above

0.95 for all values of sensing rates. The discrepancy of the results of CORATE is also

shown at the fairness which declines with the sensing rate.

RLRATE yields fairness similar to Fusion. However, RLRATE incurs the least packet

drops. RLRATE provides fairness because the reward was allocated to penalize greedy

actions. The convergence of the value and policy are similar to that described in the

non-periodic workload.

Energy Efficiency

Figure 6.13 reports the energy consumed in the network for one packet received at the

sink. Above 1.5pps, RLRATE outperforms in throughput all the other methods. RL-

RATE is the most energy efficient scheme by reducing consumption up to 0.005J/packet
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(-15%) compared to Fusion.

The CORATE method exhibits as expected a decreasing efficiency with the increas-

ing sensing rate. The best results are obtained with RLRATE in particular because the

state and reward are available locally without resorting to communication.

6.4 Discussion

The aim of this thesis is to investigate the possible benefits of coordination and learning

in congestion control. Two issues were raised: notification delay and unpredictable

traffic pattern.

The use of reinforcement learning is a well-adapted option to adjust automatically

the detection and control parameters of wireless sensor nodes. The uncertainty in the

states is alleviated with the prediction features of the Semi-MDP model. The notification

delay and the unpredictability of congestion can be circumvented with value functions

which represent the long term expected utility. The analysis of the policy showed that

agents learn different policies in order to adapt to each situation. The baseline method

using threshold incurred more drops than with the learning method. Coordination is

achieved by using reward or state related to multiple agents. One drawback of RL

methods can be the initial learning phase, but which took only 10 minutes in simulation

time.

With the coordination algorithm Min-Sum, the global utility is decomposed into

several local utilities related to smaller parts of the system. The coordination graph is

depicted with spanning tree. The interactions are in practice more complex and more

difficult to determine in a wireless context. One difficulty is to establish formalized

relationships between agents, which are sometimes not straightforward.

Congestion avoidance is modelled as the coordination between several agents in

COCW. Coordination functions are loose upper bounds of packet loss. They are based
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on heuristics rather than rigorous analysis. COCW outperformed Backpressure. This

illustrates the strength of the Min-Sum algorithm. In the experiments, the data traffic

provides free transport for messages. The message passing has to accelerate if decision

intervals shorten. In reason of communication delay, real-time decision making is not

achievable. Results showed that CORATE suffers from this delay and its performance

deteriorates with increasing sensing rates.

Simulations results showed that reinforcement learning based methods enhanced the

network efficiency and fairness. The coordination methods were limited by the com-

munication delay and may not be good solutions for fast paced decision problems. A

summary in given in Table 6.5

Regarding the computational efforts, the coordination algorithm requires a dozen

of operation including memory access for each packet sent and each packet overheard

(from neighbors). The learning algorithm requires a dozen of elementary float operation

for each packet to send. For the coordination a method, the drop minimization is not

performed well when the channel is congested. The delay to receive control information

impedes the correctness of decision making. A congestion affects coordination algorithm

and which in turn loses efficiency.

Learning methods are scalable since the learning process only involves the local

sensor, the parent sensor node and the immediate child sensor nodes. Therefore, learning

methods scale easily. The Chapter 4, section 3.3 mentions the difficulties encountered

to make the learning algorithm converge.

Coordination methods also scale up easily since the messages are inserted in the

header and tolerant to asynchronous transmission. The problem of minimizing conges-

tion is transformed into smaller coordination problem. The coordination is only local,
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because the causes of congestion and consequences are local. Chapter 5, section 3.4

mentions implementations issues and overhead induced by the scheme.

The processing is at sending time. There are a dozen of arithmetic operations in

floating numbers (cf. Appendix A.1). The methods may apply to very large sensor

networks since the communication overhead does not grow with the network size. In

comparison with FUSION, communication overheads are strictly similar because the

proposed methods piggyback control data as well. Fusion also uses active listening of

all packets. The proposed methods use in average less than 100 bytes for storage and

less than ten arithmetic operations for each packet sent.

This study was performed on a simulator rather than on real sensor motes. Hidden

node problems were neglected with the simulated network because this work first ad-

dresses congestion regardless of the underlaying MAC. The RTS/CTS control packets or

delays should be used if collisions prevent communications. A simple packet error rate

was simulated to determine the robustness in realistic conditions. The set of contention

windows was limited to two, because a larger set would increase the convergence time

and the size of messages without significant benefit.

A real life user trial would require the following settings:

• for each packet transmit, a parameter modulates the contention or the probability

of real transmission. In 802.11 DCF, the contention window has this purpose. It

can also be the slot allocation or transmissions schedule allocation.

• a MAC layer which allows to extract information from the header of packets which

are addressed to its receiver. Since the control information is communicated within

the data packets, the neighbor nodes must be in listening mode when the relevant

control information is sent. In 802.11 based Mac, the receiver is always listening so

the proposed methods work fine. In S-MAC, parent and child nodes stay connected

once they exchanged their schedules. Thus, the learning and coordination process
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are not affected by choosing the one of the awaken neighbors as destination of

control information.

• a routing algorithm which does not modify frequently the topology and connec-

tivity. The forwarding sensor has to be invariant for every sensor because the

learning process is specific to this forwarding node. The communication structure

has to stay stable even in presence of sleep schedule (or radio turned off).

Table 6.5: Summary of the studied methods
Method Strengths Weaknesses
Reinforcement
learning

No need to determine the co-
ordination model. Can adapt
to imperfection such as com-
munication delay

The initial learning phase pre-
vents immediate exploitation
of the policy

RLCW Best efficiency. Gateway
nodes have priority.

State is not available directly

RLRATE Most Fair. Highest through-
put

Learn an intuitive policy

Multi-agent
coordination

Take directly the optimal ac-
tion by estimating decision
with real values.

Expensive in communication.
The coordination model is to
be determined (or heuristic).

COCW Good Efficiency Efficiency declines with in-
creasing rates

CORATE Fair Efficiency and Fairness de-
cline severely with increasing
rates
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Chapter 7

Conclusions

7.1 Contributions

This thesis addresses the congestion issue with artificial intelligence methods. Conven-

tional methods do not address the issue of notification delay in contention based MAC.

Congestion likelihood is variable and its notification experiences delay. Such delay is

the root of the slow responsiveness and inaccuracy of most existing congestion control

schemes.

Instead of controlling congestion using a fixed algorithm, this thesis proposes to use

the learning approach to alleviate congestion in sensor networks. The congestion having

uncertain outcomes, the learning method provides ways of enhancing the throughput.

Packet drop and unfairness have been addressed.

Results confirm that buffer levels have different interpretation in terms of drop prob-

ability. The algorithm works because there is a direct relationship between buffer state

and buffer overflow. The control policy is learned iteratively and outperforms existing

methods. The proposed learning approach promises more flexibility and better perfor-

mance.

An alternative approach based on the ’Min-Sum’ algorithm is used to coordinate
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packet transmission and then solve the congestion control problem. One conclusion is

that the coordination algorithm produces bad results as the network load increases. The

reason is that at congestion time, packets containing control information are lost or de-

layed.

In all scenarios, the methods based on learning are 15% more energy efficient than an

existing scheme Fusion. In real application, this improvement means that the lifetime

of the network is improved for same traffic pattern, same activity and same packets

collected at the base station. A network running the proposed method delivers about

twice the throughput and expends less energy compared to a network without any

congestion control.

The superiority of the proposed solutions over method such as FUSION is most

discernible when the sensing rate is high (higher than 1 pps). For most applications of

the wireless sensor networks, the sensing rate is pretty low. Some applications of such

high sensing rate include camera sensors or motion detectors.

In low duty cycle sensor network, congestion can appears because constrained con-

nectivity or sleep schedule. The proposed schemes work without any modification since

they do not depend on a particular medium access protocol. S-mac or B-mac is a good

candidate for such applications.

7.2 Applications and Implementation

In all collection scenarios, the methods based on learning are 15% more energy efficient

than an existing scheme FUSION. In real application, this improvement means that the

lifetime of the network is improved for same traffic pattern, same activity and same

packets collected at the base station. A network running the proposed method delivers

about twice the throughput and expends less energy compared to a network without
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any congestion control.

The superiority of the proposed solutions over method such as FUSION is most

pronounced when the sensing rate is high (higher than 1 pps). For most applications of

the wireless sensor networks, the sensing rate is pretty low. Some applications of such

high sensing rate include camera sensors or motion detectors. In low duty cycle sensor

network, congestion can appears because constrained connectivity or sleep schedule.

The proposed schemes work without any modification since they do not depend on

a particular medium access protocol. S-mac or B-mac is a good candidate for such

applications.

Learning methods are scalable since the learning process only involves the local

sensor, the parent sensor node and the immediate child sensor nodes. The proposed

methods use data packet to piggy back the control information. Therefore there is no

communication overhead. A real life user trial would require that a MAC layer allows

packet header snooping and that the contention can be tuned for each packet. Also, the

paths towards the sink has to be invariant from one point. Those requirements points

are discussed in the discussions section of the Chapter 6.

In the learning scheme RLCW, the state is defined as the queue length of the parent

node. The attempt to add the channel load and local queue as state component was un-

successful. The extra state components presented large deviation due to their sampling.

Therefore the generalization done by the CMAC had undesirable affect on the policy.

Initially, it was difficult to find arguments supporting the statement that the under-

lying process is a Markov chain. The theoretical foundations then were not very strong

unless a continuous time model which is more flexible. Semi Markov decision processes

allow us to apply reinforcement learning on the congestion control problem. The deci-

sion times are random and multiple state transitions can occur between two steps. The

reader is invited to refer to Chapter 4, for more details in implementation complexities.
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7.3 Future work

The thesis is implicitly concerned with data collection in tree communication structure.

In the periodic scenario, it was implied that all the sensors are sensing and transmitting.

However, some applications require just a sparse population of sensors to perform the

sensing task. The RLRATE, CORATE methods will not alleviate unfairness as the

downstream fairness index requires the parent node to generates new packets. If the

parent is not a data source, then the index will fail in equalizing the generation rates of

upstream sensors. Another way to improve multi-agent coordination is by extending it

over communication range so that distant sources are allocated a fair share of bandwidth.

In the simplified view of analysis, the results are intuitive and still give insight to

the problem. There is a future work is formalizing the congestion control problem

more rigorously, as a SMDP. A queuing model could be envisaged once the transition

probability is parameterized. If more variables are introduced; the model would validate

make the simulation results easier to interpret. In the current state of work, learning

from experience produces a decision maker with relatively good accuracy. A future model

has to trade off between strength of foundations and ease of implementation. Although

the proposed methods are still independent from the MAC layer, a thorough analysis

of the congestion can be done only with a particular MAC. This thesis studies adaptive

approaches which are generic enough to apply to other wireless sensor communication

systems.
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Appendix A

Algorithms
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A.1 SMART Algorithm

Initialize initial time t = 0, last event time tl = 0, total time T = 0 and the1

reward rate ρ = 0, state s and s′, action values Rold(s, a) = Rnew(s, a) = 0 for all

s ∈ S and a ∈ A(s)

Set learning rate α, averaging rate β, exploration rate ε2

for (event e) do3

Determine the new state s′4

Determine the cost and the transition time τ(s, a)5

Calculate the reward r(s, a) and the average reward ρ6

Calculate the TD error7

∆R = r(s, a)− ρ · τ(s, a) + max
b∈A

Rold(s′, b)−Rold(s, a)

Update the State-Action Values8

Rnew(s, a) = Rold(s, a) + αt ·∆R

Select the action a which is the greedy action with probability 1− ε,9

otherwise select a random action

10

Rold(s, a)← Rnew(s, a) ∀(s, a) ∈ S ×A

Update the reward rate ρ← ρ∗T+r(s,a)
T+τ(s,a)11

Update the last event time tl ← t, the current state s← s′ and the total time12

T ← T + τ(s, a)

Update learning rate α, averaging rate β, exploration rate ε13

Perform the action a14

end15

Algorithm 5: Learning a policy with the SMART Algorithm90
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A.2 Min-Sum Algorithm

Discover neighbors nodes of node i in the spanning tree: N(i)={parent+child1

nodes}

Construct and update the potential functions ψi(si, ai) and ψij(si, sj , ai, aj) for2

every neighbor j ∈ N(i)

for each packet to transmit do3

Select a neighbor j in Round Robin4

Calculate the message to node j5

mij(aj) = min
ai

{ψi(si, ai) + ψij(si, sj , ai, aj) +
∑

k∈N(i)\j

mkj(ai)}

Calculate6

gi(ai) = ψi(ai) +
∑

k∈N(i)

mki(ai)

Choose action a∗i ∈ a0, . . . , aM7

a∗i = arg min
ai

gi(ai)

Transmit the packet with information8

[i, si, j,mij(a0), . . . ,mij(aM )]

end9

for all packets overheard with j == i do10

save and update [j, sj , i, mji(a0), . . . ] in Storage11

end12

Algorithm 6: Distributed Coordination with Min-Sum
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