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Summary

In recent years, there have been increasing interests in mental-fatigue tracking technolo-

gies with the widespread hope that they will be invaluable inthe prevention of fatigue-

related accidents. This thesis is concerned with developing novel signal-processing

methods that enableautomatic mental-fatigue measuring and monitoring in human indi-

viduals from their electroencephalogram (EEG) recordings. New methods for automatic

EEG artifact removal, feature selection and multi-class classification are proposed and

tested in the present work.

EEG is easily contaminated by physiological artifacts fromelectrocardiograph (ECG),

electrooculogram (EOG) and electromyogram (EMG). These artifacts typically have

much higher amplitude than cerebral signals and thus imposegreat difficulties in EEG

interpretation. In this study, a novel independent-component-analysis (ICA) based au-

tomatic EEG artifact-removal method is proposed, in which aweighted support vector

machine (SVM) together with an error-correction algorithmis used for automatic iden-

tification of artifactual independent components in EEG. This combination of weighted

SVM and error-correction mechanism is motivated by the special structural information

of the learning problem at hand, with the former dealing withthe inherent unbalancing

of data and the latter exploiting some useful constraints readily available from empirical

studies. Our experiments show that a significant performance advance has been obtained

by the proposed method, comparing with several existing methods in the literature.
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SUMMARY viii

Feature selection plays an important role for the performance of a mental-fatigue mea-

suring and monitoring system. When the underlying important features are known

and irrelevant / redundant features are removed, the learning problem can be greatly

simplified, resulting in an improved generalization capability and enhanced system in-

terpretability. The work proposes new feature-selection methods. They use a novel

feature-ranking criterion based on the sensitivity analysis of posterior probabilities. In

loose terms, this criterion evaluates the importance of a specific feature by computing

the aggregate value, over the feature space, of the absolutedifference of the probabilis-

tic outputs of the learning method with and without the feature. The proposed methods

are competitive with, if not better than, some popular feature-selection methods in the

literature, based on the datasets that we have tested.

For reliably classifying mental fatigue into different levels, a multi-class classification

system is established using a recently-developed probabilistic support vector machine

(PSVM) method. The numerical results show that it does not only give superior classifi-

cation accuracy but also provides a valuable estimate of confidence in the prediction of

mental fatigue levels in a given 3-second EEG epoch.

The thesis is organized as followed. Chapter 1 provides the motivation and objectives

of the present work. The background knowledge needed for thesubsequent chapters is

given in Chapter 2. Chapter 3 gives an overview of the approach taken in this work and

the detailed description of the collection and labeling of mental fatigue EEG used in the

present work. The next four Chapters provide the detailed account of the proposed auto-

matic EEG artifact removal method (Chapter 4), feature selection method (Chapters 5-6)

and multi-class classification method (Chapter 7). It is worth noting that Chapter 7 also

presents the prototype of the developed automatic mental-fatigue measuring and mon-

itoring system and includes a comprehensive performance evaluation of the developed

system. Conclusions are drawn in Chapter 8.
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Chapter 1

Introduction

Mental fatigue, defined by Grandjean (1980) as “a state of reduced mental alertness

that impairs performance”, has become one of the most significant causes of acci-

dents throughout modern society (see Dinges, 1995; Idogawa, 1991; Lal and Craig,

2001a; Mitler et al., 1988). In recent years, there have beenincreasing interests in

electroencephalogram (EEG) based automatic mental-fatigue measurement and moni-

toring system (Artaud et al., 1994; Dinges and Mallis, 1998;Gevins et al., 1995; Lal

et al., 2003), with the widespread hope that such system willbecome invaluable in the

prevention of mental-fatigue related accidents.

This thesis is concerned with developing novel signal processing methods that enable

automatically measuring and monitoring mental fatigue in human individuals from their

EEG recordings. Various methods tackling the problems related to EEG signal process-

ing, such as artifact removal, feature selection and multi-class pattern classification, are

proposed and tested.

As an introduction, this chapter examines the role of mentalfatigue in increasing the oc-

currences of various accidents throughout our modern society and provides an overview
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of the past related work on mental-fatigue detection using EEG (detailed literature re-

view deferred to Chapter 2). The contributions of the current work are then outlined,

followed by the organization of the thesis given at the end ofthis chapter.

1.1 Motivation

Typical symptoms of mental fatigue include decreased physiological arousal, slowed

functioning of sensorimotor and impaired capability of information processing in the

brain (Mascord and Heath, 1992). Such adverse physiological changes can seriously

deteriorate operator’s ability to respond effectively to emergency situations and numer-

ous evidence has shown that mental fatigue has become one of the most significant

causes of accidents throughout our society.

Mental fatigue is receiving increasing attention in the field of road safety. According

to the early work by Idogawa (1991), mental fatigue accountsfor 35% to 45% of all

vehicle accidents on the road. A recent estimation (Stutts et al., 1999) made by the

National Highway Traffic Safety Administration in the United States has also announced

that, each year in United States alone, there are approximately 100,000 road accidents

reported due to mental-fatigue related drowsy driving, claiming over 1,500 lives.

Another important area that calls for further research on mental fatigue is airline industry

(both commercial and military). The National Transportation Safety Board (NTSB) in

the United States cited pilot fatigue as either the cause or acontributing factor in 69

plane accidents from 1983 to 1986 (Kaplan, 1996; Stanford Sleep Disorders Clinic and

Research Center, 1991). According to a recent report (Ryan and Heath, 2007), the NTSB

has linked pilot fatigue to at least 10 commercial aviation accidents since 1993. While

these reported accidents represent only a small percentageof the more than 40 million

airline flights during the period, these crashes killed over260 people .
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Mental fatigue is critical not only in transportation industries, but also in other occu-

pations, for instance, factory operators and health care professional, where sustained

attention is required. The consequence of the potential incidents caused by mental fa-

tigue in these occupations may not be fatal, but the accumulated costs for health care,

lost productivity and damage to machinery and property can easily amount to billions

of dollars.

Mental fatigue is believed to be a nonlinear, temporally dynamic, and complex process

which results from various factors (Dinges, 1995). Typicalfactors causing mental fa-

tigue include sleep restriction or deprivation and circadian rhythm (see Cajochen et al.,

2004; Hartley et al., 1994; Pearson, 2004; Philip et al., 2005), irrelevant work schedules

(seeÅerstedt et al., 2000; Brictson, 1966; Horne and Reyner, 1995), length of journey

and monotonous driving environment (see Horne and Reyner, 1995), and demanding

delivery schedule (see Hartley et al., 1994).

Among other causes of mental fatigue, sleep deprivation andcircadian rhythm are gen-

erally considered the most significant cause for the increasing occurrences of mental-

fatigue related accidents. Nowadays, it is becoming increasingly common for us to

stretch our limits to squeeze more time for work or for play. That extra time is usu-

ally taken by reducing the time period for which we sleep. This is true not only for

students preparing for exams or office workers, but also for industrial workers, health

care-professionals, drivers and pilots. Though it seems asan easy concession to make,

but slowly and surely this lack of sleep catches up with us andmakes ourselves prone

to the impairment of mental fatigue. The sleep loss is a “sleep debt” that is cumulative.

A modest loss of sleep on each single night may end up with a serious sleep debt over

several nights. The more sleep debt we accumulate, the greater impairment does mental

fatigue have. Moreover, the impairment due to mental fatigue can also be amplified by

the bi-modal circadian rhythm. Some evidence of this can be seen by examining the

temporal patterns of mental-fatigue related accidents. Ithas been documented (Miller,
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2001) that there are two surges in the occurrences of mental-fatigue related accidents

which match nicely with our circadian rhythm: one surge in the early morning and

another surge in the mid afternoon

The nature of mental fatigue may also partly explain why there are increasing occur-

rences of mental-fatigue related accidents. Mental fatigue isubiquitous, pervasiveand

insidiousin nature (Miller, 2001). Byubiquitous, we mean that mental fatigue affects

everybody. Although the individual difference does exist,we however often feel, with-

out basis, that we are more resistant to mental fatigue than others. Bypervasive, we

mean that mental fatigue affects everything we do, physically, emotionally and cogni-

tively. However, the impairment of mental fatigue is often under-estimated. Byinsidi-

ous, we mean that often when we are fatigued, we are quite unawareof how badly we

are performing. In fact, several studies (Arnedt et al., 2001; Dawson and Reid, 1997;

Lamond and Dawson, 1999) have provided strong basis of the equivalency of mental fa-

tigue to alcohol in terms of impairment of our brain functioning. Moreover, we often do

not recognize that we are too fatigued to be safe and may deny the impairment induced

by mental fatigue, in the same manner as a drunk person does.

Another contributing factor to the increasing occurrencesof mental-fatigue related acci-

dents is the increasing level of automation (Okogbaa et al.,1994). Although automation

has provided tremendous benefits, it also makes operators more susceptible to mental fa-

tigue because automation significantly suppresses the stimulating influences by reducing

the need of active operation.

If an automatic system could be developed to measure and monitor mental fatigue, a

considerable number of accidents can be prevented and many lives could be saved. This

is exactly the reason why mental fatigue tracking technology has been a perennial pri-

ority in the list of NTSB’s “most wanted” safety improvements. In Singapore, Defence

Science and Technology Agency (DSTA) is also greatly interested in a “mental-fatigue

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



1.1 Motivation 5

screening system”. Specifically, this screening system is required to detect the extreme

mental fatigue of the pilots and to raise the alarm, before their reaching a state in which

they are incapable of fulfilling their cruise duties. The current doctorial research has

been partly motivated by this local relevance.

To this end, abundant efforts have been devoted to develop anobjective, non-intrusive

and automatic mental-fatigue measurement and monitoring method. Some pilot studies

have correlated mental fatigue with different physiological measures such as electrocar-

diograph (ECG), electrooculogram (EOG) and EEG. A good review of these methods

can be found in the thesis by Mallis (1999) and a review by Lal and Craig (2001a).

Among the numerous physiological indicators which have been linked to mental fatigue

in the literature, EEG has been shown to be one of the most predictive and reliable tech-

niques for detecting subtle changes in the brain due to mental fatigue (Artaud et al.,

1994; Dinges and Mallis, 1998; Gevins et al., 1995; Horne andReyner, 1995; Lal and

Craig, 2001a; Lal et al., 2003; Lal and Craig, 2002; Makeig and Jung, 1995).

More recently, several studies have also reported the feasibility of measuring mental fa-

tigue indexed by subject’s task performance, based on EEG data in attention-sustained

experiments using auditory or visual stimuli (Duta et al., 2004; Jones, 2006; Jung et al.,

1997; Lal et al., 2003; Makeig et al., 2000; Peiris et al., 2004; Sommer et al., 2002;

Vuckovic et al., 2002). Most of these pilot studies have focused on the detection of

performance lapses in the specific tasks that they studied (i.e. prediction of a mistake

in a specific task) without measuring subjects’ mental-fatigue levels directly. More-

over, most of these pilot studies used fairly simple linear or nonlinear regression or

neural networks, and the recent advance in the signal processing methods, like auto-

matic artifact removal, feature selection and multi-category pattern classification, have

been overlooked. More importantly, very little evidence exists on the efficacy of in-

corporating EEG into a practically-usable automatic mental-fatigue measurement and

monitoring system, and the literature continues to producevarying and even conflicting
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results. This is likely due to the challenge of developing effective mathematical frame-

work, signal processing methods and learning algorithms for the analysis of EEG signals

in relationship to mental fatigue.

To measure and monitor mental fatigue in (near) real-time fashion, at least three chal-

lenges remain in developing or adapting powerful signal processing methods (running

on fast enough computer or processing chip which were not available before) to extract

the relevant information from the EEG.

First, the technical challenge of automatic removal of the pervasive EEG artifacts has

rarely been addressed. These EEG artifacts typically have much higher amplitude than

cerebral signals and thus impose great difficulties in EEG interpretation. This, coupled

with the fact that mental fatigue produces much less distinguishable changes in terms of

EEG waveforms than other brain states like sleep (Kecklund andÅerstedt, 1993), makes

it imperative to have an effective automatic EEG artifact removal module in a workable

EEG-based mental fatigue monitoring system.

Second, it remains unclear what EEG features are important for measuring and monitor-

ing mental fatigue. Past studies have computed features on one or more spectral bands

from a priori defined one or more EEG channels, rather than computing full-spectrum

of each of the EEG channel in full mapping EEG recordings; Features that have been se-

lected to relate to mental fatigue were often limited to powers of some specific standard

frequency bands (often without giving the justification), rather than considering combi-

nation of multiple types of features; Moreover, the recent advance in feature selection

in the domain of machine learning have been largely overlooked, despite the apparent

multi-fold benefits of adapting such data mining technique:when the underlying im-

portant EEG features are known and irrelevant / redundant EEG features are removed,

the learning problem can be greatly simplified, resulting inimproved accuracy and en-

hanced system interpretability.
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Third, a comprehensive pattern recognition system is required for continuous measuring

and monitoring mental fatigue using EEG. It is not only complicated but also challeng-

ing to predict the subject’s mental-fatigue level given an EEG epoch of few seconds.

1.2 Objectives

This thesis is concerned with developing novel signal processing methods that enable

automatically measuring and monitoring mental fatigue in human individuals from their

EEG recordings.

The approach taken in this work is to first identify importantfeatures in the EEG signals

that correlate with mental fatigue in an individual from an collected mental-fatigue EEG

dataset. Then, these key features are used to construct an intelligent system that tracks

the state of mental fatigue of an individual.

1.3 Organization of the Thesis

Chapter 1 serves as an introduction. It examines the role of mental fatigue in the in-

creasing occurrences of various accidents throughout our modern society and provides

an overview of the past related work on mental-fatigue detection, followed by the de-

scription of the objectives of the present work.

Chapter 2 provides the relevant background information on EEG, standard EEG signal

processing methods, and the detailed review of the past related work on EEG-based

mental fatigue monitoring. Some formulations of the relevant signal processing methods

from the literature needed for subsequent chapters are alsogiven in the chapter.

Chapter 3 gives an overview of the approach taken in this work and the detailed de-
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scription of the collection and labeling of mental fatigue EEG used in the present work.

Chapter 4 is devoted to the proposed automatic artifact removal method and the report

of its performance in comparison with some existing methodsin the literature.

Chapter 5 andChapter 6 describe the proposed new feature-selection methods and the

related numerical experiments. For the ease of presentation, feature selection methods

for two-class classification are first discussed inChapter 5, followed by its non-trivial

extension to multi-class feature-selection methods described in Chapter 6. Although

the proposed feature-selection methods are proposed for EEG signal processing, they

in fact represent novel approaches that are generally useful in the domain of machine

learning.

Chapter 7 gives the details of our method for automatic classificationof multi-level

mental fatigue EEG using a probabilistic multi-class support vector machine (SVM).

This chapter also presents the prototype of the developed automatic mental-fatigue mea-

surement and monitoring system. The comprehensive performance evaluation of such a

system is also reported.

It is worth noting that, in organizing the thesis,Chapter 4 to Chapter 7 are presented

to be as self-contained as possible because each of these chapters deals with different

aspects of EEG signal processing. Accordingly, each methodpresented inChapter

4 to Chapter 7 is also tested separately on well-known publicly-available benchmark

datasets whenever possible. The performance evaluation ofthose methods using mental-

fatigue EEG is deferred toChapter 7. An additional benefit of doing so is that the va-

lidity of the proposed signal processing methods can be evaluated broadly in the domain

of machine learning before they are used in the specific application for mental-fatigue

measurement and monitoring.

Chapter 8 concludes the thesis with a discussion on the significance ofcurrent research,
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its limitations and future directions.
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Chapter 2

Literature Review

This chapter serves to familiarize the readers with the relevant background information

on EEG, such as EEG electrode placement, montage (an EEG jargon for differential

referencing), commonly-referenced standard EEG frequencies and their use in the study

of sleep patterns. This chapter also gives a detailed literature review on the past work

pertaining to the detection of mental fatigue using EEG, followed by a review of the

EEG signal processing methods with an emphasis on those needed for the subsequent

chapters.

2.1 EEG: Physiological Basis

The electroencephalogram is a recording of electrical activities in the brain as recorded

from electrodes placed on the scalp. The first EEG recordingson human were made by

Berger (1929), although similar measurements on animals had been carried out as early

as 1875 by Caton (1875). Soon after the invention of EEG, it has been one of the major

tools to investigate brain functionality.
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The EEG measures mainly summated potential field generated by post-synaptic cur-

rents (Speckmann and Elger, 1999). The synapse, a tiny interface between the terminal

bouton of a neuron and the membrane of another neuron or non-neuronal cell (such as

glandular cell), is the site where one neuron communicates with another cell. The num-

ber of synapses in the human brain is about 1015 to 5×1015 (1-5 quadrillion). They

allow neurons to form interconnected circuits within the central nervous system and

thus are crucial to all cognitive functions of our brain. They are also the major source of

the EEG signals. An action potential in a pre-synaptic axon causes the release of neu-

rotransmitter into the synapse. The neurotransmitter diffuses across the synaptic cleft

and binds to receptor in a post-synaptic dendrite, triggering a flow of ions into or out of

the dendrite. This results in compensatory currents in the extracellular space. It is these

extracellular currents that are responsible for the generation of the EEG signals.

It is generally believed that it is not possible to measure the potential field generated by

a single post-synaptic activation using the scalp EEG. Rather, the scalp EEG represents

the summation of the synchronous activities of thousands ofneurons that have similar

spatial orientation. The synchronous activation of such neuron cluster is commonly

modeled by using a dipole source activation. The relationship between the EEG and a

dipole source activation can be illustrated by Fig. 2.1. This schematic drawing treats the

brain as a volume conductor that is roughly spherical. As shown in the figure, what the

EEG measures is the potential difference between two locations on the scalp.

Besides the electrical field, the dipole source activation also generates a magnetic field

as shown in Fig. 2.1. This magnetic field can also be measured and the resulting mea-

surement is called magnetoencephalogram (MEG). Basically, EEG and MEG are just

different manifestations of brain activities, but MEG has some remarkable advantages

over EEG. For example, the skull insulation distorts the EEGbut it is transparent to

magnetic fields that the MEG measures. However, the MEG generated by the brain is

very weak (50 to 100 femto-teslas, about one-billionth the strength of the Earth’s mag-
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Figure 2.1: Schematic drawing of the bio-electrical field and bio-magnetic field gener-
ated by a dipole source activation

netic field) and is easily overwhelmed by environmental magnetic noises. Therefore, the

measurement of MEG has to be carried out in a magnetically shielded room using so-

phisticated equipment called Super-conducting QUantum Interference Device (SQUID)

and thus is inappropriate at present for non-clinical use.

2.2 EEG: Technological Basis

In Berger’s time (Berger, 1929), the EEG recording systems were very cumbersome and

could only be used in research laboratory or in a hospital. With the recent development

of electronics, there are more portable and powerful mini-systems for EEG recording.

This section provides the technological basis of EEG recording. Both hardware aspects

(electrode and filtering) and procedural aspects (the standard electrode placement, the

setting of differential referencing) are discussed in thissection.
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2.2.1 Electrode

The electrical contact between the input of the EEG recording system and the brain from

which the electrical signals originate is made by means of electrodes. Various types of

EEG electrodes can be found in (Spehlmann, 1981). Currently, the most commonly

used electrodes for scalp EEG are surface electrodes that are affixed to the skin with

conductive jelly. Indirect contact is established by an electrolyte bridge formed by the

conductive jelly applied between the electrode and the skin(see Kamp and da Silva,

1999, page 110).

It is worth noting that the recent development of dry EEG electrodes (Fonseca et al.,

2007; Griss et al., 2002; Taheri et al., 1994) equipped with the wireless transmission

technology may largely benefit the use of EEG beyond clinics in the near future, for

example, the use of EEG for mental fatigue measurement and monitoring in working

environment.

2.2.2 The International 10-20 System

The international 10-20 system of electrode placement (Jasper, 1958) has become the

standard electrode placement method in the context of EEG measurement. It ensures

accurate placement of electrodes on same subject in repeated measurements and allows

comparison of the EEG signals between subjects.

As shown in 2.2, two bony landmarks are used for the essentialpositioning of the EEG

electrodes: first, the nasion which is the point between the forehead and the nose; sec-

ond, the inion which is the lowest point of the skull from the back of the head and is

normally indicated by a prominent bump. The “10” and “20” in the name of the in-

ternational 10-20 system refer to the fact that the surface distances between adjacent
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Figure 2.2: The international 10-20 system of electrode placement (Aguiar et al., 2000)

electrodes are either 10% or 20% of the total front-back or right-left surface distance of

the skull.

Each site has a letter to identify the underlying brain functional lobe and a number

to identify the hemisphere location. The letters F, T, C, P and O stand for Frontal,

Temporal, Central, Parietal and Occipital respectively. Note that there is no central lobe

in brain anatomy, the “C” letter is used for identification purposes only. Even numbers

(2,4,6,8) refer to electrode positions on the right hemisphere, whereas odd numbers

(1,3,5,7) refer to those on the left hemisphere. For electrodes on the midline between

left and right hemisphere, a “z” letter is used in place of a number.
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The international 10-20 system involves 21 electrodes, butit can be modified to accom-

modate extra electrodes when necessary. For example, in themodified combinatorial

nomenclature (MCN) system used for 32-channel EEG recording, extra electrodes are

placed in-between the existing 10-20 system. However, the naming system used by

MCN is more complicated and the new letters introduced to name the extra electrodes

do not necessarily refer to the underlying cerebral cortex.

2.2.3 Montage

Since a reading of EEG, as shown in 2.1, represents a voltage difference between two

electrodes or two locations, the display of the EEG may be setup in one of following

ways, depending on the choice of differential referencing.Such differential referencing

method for displaying EEG is termed a montage.

Bipolar montage: Each channel (i.e., waveform) represents the voltage difference be-

tween two adjacent electrodes. The entire montage consistsof a series of such pairs of

electrodes and it typically includes chains running anteroposteriorly or transversely, us-

ing the same linkage over both hemispheres. For example, in the commonly-referenced

“double banana” montage, the channel “Fp1-F3” represents the voltage difference be-

tween the Fp1 electrode and the F3 electrode. Next, the channel “F3-C3” represents the

voltage difference between F3 and C3, and so on through the entire array of electrodes

anteroposteriorly.

Referential montage or unipolar montage:Each channel represents the voltage dif-

ference between an active electrode and an designated “inactive” one, known as the

reference. Ideally, the reference should be completely silent, having a zero potential. In

practice, however, all locations on the scalp are active to some degree. Therefore, the

choice of reference electrode is mainly determined by the available domain knowledge.
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For example, midline positions (the middle of Fz and Cz or Cz and Pz) are often used as

the reference because they do not amplify the signals from one hemisphere vs. the other.

In the literature, such reference is called cephalic reference since reference electrode is

put on scalp.

More often, a non-cephalic reference (reference electrodenear clavicle) is used. It is

hard to say whether a non-cephalic reference is superior to acephalic reference. On

the one hand, a non-cephalic reference can be used to addressthe problem of cerebral

contamination caused by an cephalic reference. On the otherhand, a non-cephalic refer-

ence is subject to the contamination of electrocardiograph(ECG) artifact and measures

must be taken to remove the resulting large amplitude ECG artifact introduced. Never-

theless, a non-cephalic reference becomes more popular among EEG signal processing

community with merging techniques for minimizing ECG artifact.

Average reference montage:The outputs of all of the amplifiers are summed and av-

eraged, and this averaged signal is used as the common reference for each channel.

Laplacian montage: Each channel represents the voltage difference between an elec-

trode and a weighted average of the surrounding electrodes.

When analog (paper) EEG are used, the EEG technician switches between montages

during the recording in order to highlight or better characterize certain features of the

EEG. With digital EEG, handling of montage becomes much easier. Typical, all EEG

are digitized and stored in unipolar montage. This is simplybecause any other montage,

if it is desired, can be constructed mathematically from thestored EEG.
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2.2.4 Filtering

In theory, the greater the recorded frequency band, the greater the fidelity of reproduc-

tion of the actual cerebral activity. In practice, however,recording a larger frequency

band increases the amount of outside interference or noise in the EEG signals. Filters

are used to make a compromise between reduction of extraneous noise and preservation

of cerebral signals (see Reilly, 1999, page 132).

Nowadays, the EEG is usually sampled at a frequency of about 256 Hz, which is more

than sufficient to cover the most commonly-referenced frequency bands (Niedermeyer,

1999) as shown in Table 2.1. Correspondingly, a routine EEG system typically comes

with an integrated low-pass filter (cut-off frequency at about 35 Hz) and a high-pass

filter (cut-off frequency about 0.1 Hz) as well as a 50 Hz or 60 Hz notch filter depending

on the frequency of local power system.

Table 2.1: Standard EEG frequency bands

Frequency Band Range
Delta 0.5–4 Hz
Theta 4–8 Hz
Alpha 8–13 Hz
Beta 13–30 Hz

It is worth noting that individual work in the literature mayuse slightly different lower

and upper limit for each frequency band than those in Table 2.1. Moreover, higher fre-

quencies are also considered in the literature. For example, “gamma band” was used to

designate frequencies above 30 Hz as early as 1938 (Jasper and Andrews, 1938). This

term was then abandoned and “gamma” frequencies became a part of “beta” frequen-

cies. However, the use of the term “gamma band” has made an impressive comeback

during the 1990s (Başar, 1992; Bullock, 1992; Eckhorn et al., 1992; Gray et al., 1992;

Kaplan, 1996). The “gamma” frequencies are conceived mainly as induced rather than

as spontaneous rhythms and they are therefore usually not included in the list of standard
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frequency bands for spontaneous EEG (Niedermeyer, 1999).

2.3 EEG: Characteristics

The scalp EEG is the secondary measure of brain functions. Asdiscussed in Section

2.1, the scalp EEG is a presentation of synchronized post-synaptic activations. A con-

siderable change in EEG indicates that there is some brain activity occurring in terms of

millions of cells acting together, in a synchronized fashion. In this sense, the measured

scalp EEG should be thought as “epiphenomena”, which is the manifestation or byprod-

uct of brain functions. The brain does not communicate or perform a function using

the EEG. Rather, it is a secondary measure, much like the vibration from an working

engine or the temperature of an active circuit. Understanding this characteristic of EEG

is important because it defines what the EEG can tell and what it can not. For example,

the brain does not, for example, produce alpha waves for any purpose. The existence

of the alpha waves is simply a result of certain brain function or brain activity. Alpha

waves can however be utilized for the investigator’s advantage, by investigating what

they represent and what they imply when they are changed (such as increase / decrease

in their amplitudes or shift in their frequencies).

Another characteristic of the scalp EEG is complexity. The EEG complexity originates

in the intricate neural system in the brain. Moreover, both internal and external noise

factors also largely increase the complexity in the interpretation of EEG. On the one

hand, EEG is subject to many modifiers including brain anatomy (for example, the skull

insulation distorts the EEG signals), neuron alignment andeven metabolism in the brain.

On the other hand, it is nearly always contaminated by other non-cerebral signals called

artifacts. The most common types of artifacts include EOG artifacts, ECG artifacts and

electromyogram (EMG) artifacts. In addition to internal artifacts, there are other noises
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which originate from outside of the subject, for example, the power line noise of 50 or 60

Hz, depending on the frequency of local power system. Poor contact of EEG electrode

to scalp may also distort the EEG signals due the momentary change in the impedance.

From a signal processing point of view, EEG has the followingcharacteristics: (i) EEG

is noisy. It is often contaminated by EOG, ECG and EMG artifacts and thus effective

artifact removal method is needed in order to improve the reliability of EEG interpreta-

tion. (ii) EEG is nonstationary. It varies with physiological and psychological states of

the brain. In practice, the EEG is often treated as a stationary process over a relatively

short duration (about 3 seconds). (iii) EEG is nonlinear. Although the traditional linear

methods show to be very useful in EEG analysis, the EEG is a highly nonlinear process.

2.4 EEG: A Major Tool to Study Brain

EEG has been one of the major tools to investigate brain functionality since Berger

(1929). In fact, before the brain-imaging techniques, suchas computerized tomography

(CT), magnetic resonance imaging (MRI), positron emissiontomography (PET) and,

more recently, functional magnetic resonance imaging (fMRI), EEG was the main, if

not the only, tool for study of the brain. The rest of this section gives the reader the

flavour of the diversity of EEG applications.

(a) Study of physiological or psychological brain states:EEG has been used in

study of physiological and psychological brain states since Berger (1929) as doc-

umented by gloor (1969). The fascinating aspect of Berger’swork is that many of

the ideas that he proposed are still relevant today (see Shaw, 2003, page 9). Fol-

lowing Berger, many research efforts have been devoted to the use of EEG in the

study of various physiological and psychological brain states, such as sleep (e.g.

Anderer et al., 1999; Erwin et al., 1984; Penzel and Conradt,2000; Rechtschaffen
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and Kales, 1968), arousal (e.g. Bonnet and Arand, 2001; Kok and Zeef, 1991),

fatigue (e.g. Artaud et al., 1994; Dinges and Mallis, 1998; Gevins et al., 1995;

Lal et al., 2003), attention (e.g. Arruda et al., 2007; Dockree et al., 2007; Oken

et al., 2006; White et al., 2005), anxiety (e.g. Gordeev, 2007; Hogan et al., 2007;

Lee et al., 1997; Schiff et al., 1949; Shagass, 1955; Warbrick et al., 2006; We-

instein, 1995), anesthesia (e.g. Davidson, 2006; Esmaeiliet al., 2007; Feinberg

and Campbell, 1997; Herregods et al., 1989; Jospin et al., 2007; Koskinen et al.,

2005; Maksimow et al., 2006; McEwen et al., 1975; Mi et al., 2003; Modena

et al., 1969; Suttmann et al., 1989; Zhang et al., 2001) and pain (e.g. Bromm et al.,

1992; De Benedittis and De Gonda, 1985; Diers et al., 2007; Dowman et al., 2008;

Gucer et al., 1978; Huber et al., 2006; Le Pera et al., 2000; Lutzenberger et al.,

1997; Sarnthein et al., 2006).

(b) Study of neural diseases:EEG has also been shown useful in study of various

neural diseases, such as epilepsy (e.g. Barkley and Baumgartner, 2003; Binnie

et al., 1981; Collura et al., 1990; Ebersole, 1991; Foldvaryet al., 2001; Gigli

and Valente, 2000; Goodin et al., 1990; Kershman et al., 1951; Kuhl and Lund,

1967; Legg et al., 1973; Matsuoka et al., 2000; Narayanan et al., 2008; Wray and

Hablitz, 1978), brain tumor (e.g. Bassett et al., 1967; Deboer et al., 2002; Kub-

ota et al., 2001; Murphy, 1957; Ochi and Sakata, 1955; Silverman et al., 1961),

Parkinson’s disease (e.g. Ban and Hojo, 1971; Delval et al.,2006; Kuhn et al.,

2005; Lalo et al., 2008; Novak et al., 2007; Vardi et al., 1978; Visser and Postma,

1971), ADD/ADHA (e.g. Alexander et al., 2008; Becker et al.,2004; Diamond,

1997; Kuperman et al., 1996; Laporte et al., 2002; Murias et al., 2007; Snyder

et al., 2008; Trudeau et al., 1999), depression (e.g. Fingelkurts et al., 2006; Hongo

et al., 1963; Kerkhofs et al., 1988; Kupfer et al., 1976; Li etal., 2008; Roschke

et al., 1994), Alzheimer’s disease (e.g. Besthorn et al., 1994; Ehle and Johnson,

1977; Ihl et al., 1996; Jelles et al., 1999; Kowalski et al., 2001; Nobili et al., 1999;
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Ponomareva et al., 2008; Soininen et al., 1988; Strik et al.,1997), Wilson’s disease

(e.g. Chu et al., 1991; Giagheddu et al., 2001; Hansotia et al., 1969; Nevsimalova

et al., 1986).

(c) Study of neural injuries: Study of neural injuries using EEG is another important

area of research. The relationships between EEG and stroke (e.g. Finnigan et al.,

2006, 2008; Platz et al., 2000; van Putten and Tavy, 2004; Vock et al., 2002; Wood

et al., 1984), trauma (e.g. Goransson et al., 1988; Khanna etal., 1991; Naquet

et al., 1968; Tezer et al., 2004; Thatcher et al., 1989) and coma (e.g. Brenner, 2005;

Calhoun and Ettinger, 1966; Fenwick et al., 1969; Kassab et al., 2007; Young,

2000) have been extensively studied.

(d) Study of brain conditioning: The typical example of the use of EEG in brain

conditioning is biofeedback techniques (Duffy, 2000; Miller, 1969a,b; Thatcher,

2000). The biofeedback techniques have been shown to be ableto reinforce, or

to reduce, any rhythms or combination of rhythms, or for morecomplex con-

figurations such as training different brain locations to besynchronized, or de-

synchronized. Impressive efforts have been made to correlate such different kinds

of training with the behavioral or cognitive enhancement insubjects. However,

many critiques opposing such approach have also been documented in the litera-

ture (Shaw, 2003; Steiner and Dince, 1981).

(e) The EEG-MRI Combo: It is well-known that EEG has high temporal resolution

and low spatial resolution. Recently, it has became popularto combine EEG with

high spatial-resolution brain-imaging techniques, such as MRI, providing a power

tool with both high temporal and spatial resolutions (Alper, 1993; Mirsattari et al.,

2004).
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2.5 EEG and Sleep

Among all the afore-mentioned EEG applications, the use of EEG in sleep study is

probably most influencing. The EEG methods used in the sleep study, involving the def-

inition, naming, quantification of typical frequency bandsas shown in Table 2.1, are still

widely followed in many EEG research areas, including in thestudy of mental fatigue.

Moreover, sleep deprivation or sleep loss is the most significant cause of mental fatigue

and there are also some similarities between sleep and mental fatigue (the discussion

of this is deferred to the later chapters). Therefore, this section is devoted to a brief

discussion of the relationship between EEG and sleep.

The average adult needs about 8 hours of sleep per night, but sleep need is approximately

normally distributed. That means, few people may need as little as 6 hours, while other

few may need as much as 10 hours. On an individual basis, the amount of sleep that an

individual requires is the amount necessary to achieve fullalertness and effortless func-

tioning during the waking hours, even when sitting quietly and being bored. When an

individual feels that they have to keep moving in order to stay alert, that is a strong sign

of too little sleep. One may assess the relative severity of this problem by using a reli-

able subjective rating scale called the Epworth SleepinessScale or Stanford Sleepiness

Scale.

Sleep is a complex and active physiological process. Sleep progresses in a cyclic fashion

between two types of sleep: non-rapid-eye-movement sleep (NREM) and rapid-eye-

movement sleep (REM). Within NREM sleep, sleep are often further classified into four

stages: stage 1, stage 2, stage 3 and stage 4. The cycling of sleep, or commonly known

as “sleep architecture”, can be easily monitored by EEG. Fig. 2.3 shows the various

sleep stages, with EEG signals shown on the left and the corresponding schematic of

sleep stages as a function of time of night shown on the right.
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Stage 2  (Light)

Stage 4  (Deep)

Stage 3  (Deep)

Awake 

REM Stage 1

Figure 2.3: Brain electrical activity (on left) illustrates the stages of sleep(on right). Note
that sleep progresses in a cyclic fashion through the sleep period. Morning awakening
often occurs from the stage REM. (McCallum et al., 2003)

As shown in Fig. 2.3, the five stages of sleep, including theirrepetition, occur cyclically.

The first cycle, which ends after the completion of the first REM stage, usually lasts for

100 minutes. Each subsequent cycle lasts longer, as its respective REM stage extends.

So a person may complete five cycles in a typical night’s sleep.

As an individual drifts off to sleep at night, he/she enters Stage 1. This is followed by a

slowing of the heart rate, decrease of body temperature and relaxing of muscle tension

as Stage 2 is entered. Stages 3 and 4 are known as slow-wave or delta sleep (because the

energy is dominated in the delta band) and these slow-wave brain activities are known

to be associated with very deep and restorative levels of sleep. During these stages, it is

particularly difficult to wake the individual. REM sleep occurs periodically throughout,

but the longer periods of REM sleep during normal, nocturnalsleep are most likely to

occur during the pre-dawn hours. REM sleep shows a brain electrical pattern similar

to Stage 1 or waking. Most dreaming occurs during REM sleep, and many normal

morning awakenings occur from REM sleep. With respect to an individual’s principal

sleep period for each 24-hour period, it is important that the entire cyclic process of sleep

be completed to receive the restful effects of a sleep period. Anything that interferes with
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sleep, such as noise disruptions, medication, alcohol, or simply insufficient duration,

will change the physiological structure of the sleep cyclesand impair alertness the next

day.

The use of EEG for sleep scoring, i.e. classifying sleep stages, shows one of the most

prominent approaches to EEG interpretation. Such an approach is to identify patterns

that associate with specific physiological or pathologicalbrain states and it is involved

in a great deal of EEG history.

2.6 Mental-Fatigue Basics

Everyone knows how it feels to get too little sleep. Many individuals refer to this feeling

as “mental fatigue” or “sleepiness”. Sleep loss is the primary causes of mental fatigue

and humans have specific physiological, psychological and environmental requirements

for getting adequate sleep (McCallum et al., 2003). The information in this section talks

about the basis of mental fatigue which includes the definition, effects and physiological

measurement methods of mental fatigue. The emphasis is put on the mental fatigue

induced by sleep deprivation because it is the most important cause of mental-fatigue

related accidents.

2.6.1 Mental Fatigue: Definition

“Mental fatigue”, is easier felt, than defined. There is no common definition accepted

by the scientific community. The most basic definition of mental fatigue can be feeling

tired, sleepy or exhausted, while a more complex definition can be a state of an cen-

tral nervous system, in which prior physical activity and/or mental processing and/or

wastefulness, in the absence of sufficient rest, result in insufficient cellular capacity
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or system-wide energy to maintain the original level of alertness and/or processing by

using normal resources (Staal, 2004). Many definitions of mental fatigue in the litera-

ture focus on the functional manifestations of mental fatigue. For example, Grandjean

(1980) defined the mental fatigue as “a state of reduced mental alertness that impairs

performance”. This is simply due to the fact that only very limited knowledge about the

physiological mechanism of mental fatigue is available while the mental-fatigue related

impairment to the brain functions has become one of the most significant causes of acci-

dents throughout the modern society (see Dinges, 1995; Idogawa, 1991; Lal and Craig,

2001a).

Before we continue to discuss mental fatigue, it is important to clarify the terms denot-

ing mental fatigue. Human fatigue can be divided into two categories: physical fatigue

and mental fatigue. Physical fatigue refers to the reduction of performance of the mus-

cular system, while mental fatigue is in general related to the brain or central nervous

system in a state of reduced mental alertness and with noticeable functional impairment.

With the increasing number of knowledge/information-based occupations and the rapid

development of machinery/automation, the complex phenomenon of mental fatigue be-

comes more and more important while physical fatigue is decreasing. The present work

concerns with mental fatigue only. Hence, in the rest of the thesis, “fatigue” may also

be used to refer without ambiguity to mental fatigue.

It is also not uncommon that the terms mental fatigue, sleepiness, drowsiness and to

a less extend, alertness/vigilance were used interchangeably in the literature (Broad-

bent, 1979; Dinges, 1995; Grandjean, 1979, 1980; Lal and Craig, 2001b; Torsvall and

Åkerstedt, 1987). Mental fatigue and sleepiness were oftenused synonymously to refer

to mental fatigue resulting from the neurobiological processes that regulate the circa-

dian rhythm and the need to sleep (Dinges, 1995). Although the term sleepiness has a

more precise definition than mental fatigue (hence the latter is not preferred by many

sleep specialists.), the term mental fatigue is widely usedto indicate the influence of
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long working periods, sleep debt, circadian rhythm, and being unable to sustain a cer-

tain level of vigilance or task performance (Dinges, 1995; Lal and Craig, 2002). The

present work concerns mainly on the mental fatigue due to sleep deprivation and circa-

dian rhythm which is the most common cause of fatigue-related accidents. Therefore,

though the popular term mental fatigue is used throughout the thesis, the terms mental

fatigue and sleepiness can actually be used interchangeably in this thesis without ambi-

guity. The terms alertness and vigilance were also used to denote the phenomenon of

mental fatigue in some sustained attention studies where the effect of mental fatigue on

attention capability was emphasized, but alertness and vigilance differ significantly by

definition from mental fatigue.

Mental fatigue is believed to be a nonlinear, temporally dynamic, and complex process

which results from various factors (Dinges, 1995). Typicalfactors causing mental fa-

tigue include sleep restriction or deprivation and circadian rhythm (see Cajochen et al.,

2004; Hartley et al., 1994; Pearson, 2004; Philip et al., 2005), irrelevant work schedules

(seeÅerstedt et al., 2000; Brictson, 1966; Horne and Reyner, 1995), length of journey

and monotonous driving environment (see Horne and Reyner, 1995), and demanding de-

livery schedule (see Hartley et al., 1994). Other secondaryfactors may also contribute

to mental fatigue psychologically, such as mood, motivation, noise, heat (Rhodes and

Gil, 2002; Rogers et al., 2003).

Among all causes of mental fatigue, sleep deprivation and circadian rhythm are gener-

ally considered the most significant cause for increasing occurrences of mental-fatigue

related accidents. Nowadays, it is becoming increasingly common for us to stretch our

limits to squeeze more time for work or for play. That extra time is usually taken by

reducing the time period for which we sleep. This is true not only for students preparing

for exams or office workers, but also for industrial workers,health care-professionals,

drivers and pilots. Though it seems as an easy concession to make, but slowly and surely

this lack of sleep catches up with us and makes ourselves prone to the impairment of
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mental fatigue. The sleep loss is a “sleep debt” that is cumulative. A modest loss of

sleep on each single night may end up with a serious sleep debtover several nights.

The more sleep debt we accumulate, the greater impairment does mental fatigue have.

Moreover, the impairment due to mental fatigue can also be amplified by the bi-modal

circadian rhythm. Some evidence of this can be seen by examining the temporal pat-

terns of mental-fatigue related accidents. It has been documented (see Miller, 2001) that

there are two surges in the occurrences of mental-fatigue related accidents which match

nicely with our circadian rhythm: one surge in the early morning and another surge in

the mid afternoon

As discussed in Section 1.1, the nature of mental fatigue mayalso partly explain why

there are increasing occurrences of mental-fatigue related accidents. Mental fatigue is

ubiquitous, pervasiveandinsidiousin nature (see Miller, 2001) and we often do not rec-

ognize that we are too fatigued to be safe. Another contributing factor to the increasing

occurrences of mental-fatigue related accidents is the increasing level of automation (see

Okogbaa et al., 1994). Although automation has provided tremendous benefits, it also

makes operators more susceptible to mental fatigue becauseautomation significantly

suppresses the stimulating influences by reducing the need of active operation.

2.6.2 Mental Fatigue: Effects

Mental fatigue has a variety of effects on the functionalityof the brain. The most

extensively-studied effect is that on sustained attentionor vigilance. It has been shown

that the reaction time in a vigilance task like the Psychomotor Vigilance Task (PVT),

is directly proportional to mental fatigue (Dinges and Powell, 1985; Pack et al., 2006;

Rogers et al., 2003). Other faculties like working memory, judgment and decision mak-

ing, and mood are also affected as mental fatigue progresses(Cajochen et al., 2004;

Staal, 2004). It has even been shown that after a certain level of sleep deprivation, the
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performance deterioration is similar to that caused by alcohol (Arnedt et al., 2001; Daw-

son and Reid, 1997; Lamond and Dawson, 1999): a striking factshowing the danger of

mental fatigue.

According to a report on a study of Canadian Marine pilots, the tasks rated by pilots

to be most affected by fatigue were decision-making, attention, remaining awake and

reaction time (Rhodes and Gil, 2002). In addition the study also pointed out that mental

fatigue led to decreased performance on memory tasks. Otherstudies too have pointed

out these same deficits. Ferguson et al. (2005) also assertedthat slowed reaction time,

impaired decision making, memory difficulties and vigilance decrements are primary

impairments caused by mental fatigue.

Various studies have also shown that performance of workingmemory deteriorates due

to sleep deprivation (Caldwell et al., 2004; Chee and Choo, 2004; Ferguson et al., 2005;

Murphy and Delanty, 2007; Smith et al., 2002). Similarly, executive functioning and

decision-making are also degraded due to mental fatigue (Bruck and Pisani, 1999; Kill-

gore et al., 2006; Neri et al., 1992; Nilsson et al., 2005; Raaijmakers, 1990).

In summary, below are the main cognitive impairments for mental fatigue due to sleep

deprivation:

(a) Impaired alertness or sustained attention or vigilance,

(b) Memory difficulties,

(c) Poor decision making,

(d) Reasoning abilities become slower,

(e) Language and verbal skills are compromised,

(f) Mathematical skill deteriorate,
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(g) Psychological effects like low mood, loss of motivationto continue working,

(h) Microsleeps — few moments of falling asleep while doing atask, followed by

regaining the conscious control of the task. These few moments can be most

dangerous specially for driver, pilots and industrial workers.

(i) Attention tunneling — as mental fatigue progresses, theability of the person to

analyze a large amount of factors while making a decision deteriorates, making

him/her focus on one or two factors which seem important to him/her. This can

lead to dangerous results in situations where a person is required to assess data

from different sources for making a right decision - like pilots, air traffic con-

trollers and military commanders.

2.6.3 Mental Fatigue: Measurements

Indicators of mental fatigue can be generally categorized into four types: (a) subjec-

tive feelings of tiredness, sleepiness, loss of motivation, low mood, impatience, frustra-

tion, confusion, (b) performance decrements on cognitive or psychomotor tasks, such as

sustained-attention tasks, working-memory tasks, decision-making tasks, mathematical

tasks, verbal and language tasks, (c) behavioral changes - being lethargic or irritable,

episodes of microsleeps, (d) changes in EEG, EMG and other physiological measures.

Accordingly, the measurement methods for mental fatigue can also be broadly divided

into four categories: (a) subjective self-report measures, (b) objective performance mea-

sures, (c) behavioral measures, (d) physiological measures.

This subsection is devoted to all the above-mentioned four types of mental-fatigue mea-

surement methods, except that EEG-based methods, as the closely-related past work to

this doctoral study, will be discussed in the next section. It is also worth noting that some

of these non-EEG mental-fatigue measurement methods are often used as the benchmark
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methods in collecting mental-fatigue EEG database used forEEG-based mental-fatigue

measurement methods. This will be clearer in the discussionof EEG-based mental-

fatigue measurement methods in the next section.

2.6.3.1 Subjective Self-Report Measures

The simplest measure of mental fatigue can be a subjective self-report measure, such

as Visual Analogue Scale (VAS), Stanford Sleepiness Scale (SSS), Epworth Sleepiness

Scale (ESS), Karolinska Sleepiness Scale (KSS) and, more recently, Situational Fatigue

Scale (SFS) (Yang and Wu, 2005). Subjective self-report mental-fatigue measurement

methods require subjects to rate their level of mental fatigue either indirectly (see Piper

et al., 1998; Zachrisson et al., 2002) or directly (see Schapire, 1992). In these methods,

the subjects are requested to rate their current states about their own assessments of men-

tal fatigue, typically through a questionnaire. The level of mental fatigue is estimated

by scoring their responses on the questionnaire.

Some of these scales like SSS, VAS and KSS are quite simple, involving only a few

questions about how the subjects are feeling at the moment. While other scales like

ESS and SFS are very detailed and require the subjects to estimate their level of mental

fatigue if they were in specific situations. The SFS has very detailed scenarios in which

the subjects have to imagine and they have to estimate how fatigued they would be if

they were in those scenarios, like watching TV for 2 hours, jogging for 20 minutes, or

reading for 1 hour, etc. Though these latter scales are claimed to have good results in

assessing mental fatigue, it raises the question whether such situations as “watching TV”

or “reading”, would have the same effect on all people, without considering the nature

of what they were watching on TV or what book they were reading. These measures

are purely based on a psychological estimate by the subjects, which may lead to less

accurate estimate of mental fatigue.
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Despite some known issues about the possible subjective bias (see Frey et al., 2004),

the subjective self-report measures are easy to administerand are generally believed to

have good reliability and good validity, especially in the setting of clinical assessment

when subjects are likely cooperative and faithful in their self-rating. However, they

cannot be used in some domains, such as transportation industry, where an objective

and non-intrusive mental-fatigue measurement method is required.

2.6.3.2 Objective Performance Measures

It is widely known that the mental fatigue due to sleep deprivation causes decrements

in the functioning of the brain, so mental fatigue can be measured objectively by the

performance of the subjects in performing various mental tasks.

There have been many mental tasks that were designed to assess the functioning of the

brain (see Bonnet and Arand, 1999; Griffin and Koonce, 1996; Williamson et al., 2001;

Wilson, 2002; Wilson et al., 2007). Some tasks estimate vigilance of the subject by

measuring reaction times, while some tasks measure memory or/and decision-making

functions. Other objective measures of mental fatigue may not necessarily involve active

mental tasks, rather they measure the mental fatigue by finding the propensity to fall

asleep by Multiple Sleep Latency Test (MSLT) or Maintenanceof Wakefulness Test

(MWT) (Bonnet and Arand, 1999).

One of the most commonly used objective measures of mental fatigue is the Psychomo-

tor Vigilance Task (PVT), developed by Dinges and Powell (1985). In this task, as

shown in Fig. 2.4a, a visual stimulus is given on the device screen and the subject has to

press a response button as soon as possible after perceivingthe stimulus. Subtracting the

time-stamp of the stimulus from that of the subject’s response gives the simple reaction

time for that response. The reaction time, averaged over a certain period (usually 10

minutes) with multiple stimuli, is used as the measure of mental fatigue. Many stud-
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(a) (b)

Figure 2.4: Objective performance measures of mental fatigue:(a) PVT-192 and (b)
PalmPVT (Source: www.ambulatory-monitoring.com)

ies have shown that the reaction time increases as the mentalfatigue progresses. The

Walter Reed Army Institute of Research has developed a PDA-based PVT, known as

PalmPVT , which has also shown close correspondence with theoriginal PVT in terms

of results when used in sleep deprivation studies (Fergusonet al., 2005; Lamond et al.,

2005; Thorne et al., 2005). The PalmPVT is shown in Fig. 2.4b.

Benefit from its simplicity and portability, the PVT is oftentreated as the gold standard

of performance measures and it has been used extensively in sleep-deprivation studies.

However, since the PVT requires the subjects to actively perform mental tasks, such ob-

jective mental-fatigue measurement method again cannot beused in some domains, such

as transportation industry, where a non-intrusive mental-fatigue measurement method is

required. Like other objective performance measures, another disadvantage of PVT is

that adminstration of PVT is relatively time-consuming (usually 10 mins).

Apart from general cognitive tasks used for measuring mental fatigue, there are some

specific tasks like driving simulator for drivers, multitasking for pilots and some com-

plex decision-making tasks for military purposes (like theWarship Commander Task).

These tasks are customized to cater for the specific needs. For example, driving sim-
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Figure 2.5: The multitasking for pilots includes a visual-motor tracking task, a display
of way points over which the pilot has to “fly”, a display of twoattitude indicators,
which sometimes differ, and a series of histograms, the length of which changed from
time to time. Another two complex tasks that are directly interacted. (Weinberg et al.,
1998)

ulators use driving-specific performance indicators, suchas lane deviation, number of

crashes and number of times speed limit was crossed over a period of time, to measure

mental fatigue. Similarly, multitasking for pilots, as shown in Fig. 2.5, uses tasks sim-

ilar to what a pilot is supposed to do when on a flight. It shows four tasks on different

quadrants of the computer screen to measure metrics like vigilance, tracking etc. Such

tasks are very specific for certain domains (drivers, pilotsor commanders) and can not

be used for other domains. Moreover, they requires complex hardware and software,

which greatly limits their use.

2.6.3.3 Behavioral Measures

The behavioral measures are not very commonly used to measure mental fatigue. They

are mainly used in field studies to assess the sleep cycles of subjects. One such device

is the ActigraphTM, which is watch shaped device containing accelerometers todetect
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wrist movements in subjects. They are to be worn all the time on the wrist and they

record the wrist movement data. The wrist movement is less during sleep, while it is

more during waking hours. Analysis of the data collected from an ActigraphTM device

can reveal the sleep cycle of an individual.

2.6.3.4 Physiological Measures

Recently, physiological measures of mental fatigue has sparkled a lot of interests. Be-

sides the EEG-based physiological measures which will be discussed in detail in the

next two sections, other physiological measures are mainlybased on monitoring the

face (especially the eyes) of the subject.

For example, PERCLOS is a physiological measure based on thePERcentage CLOSure

of eyelids (PERCLOS). PERCLOS is calculated by processing the subject’s face im-

age data coming from an infra red camera. It appears especially promising for driver

safety where the subject, i.e. the driver, is supposed to sitin the same location facing

the relatively bulky equipment. PERCLOS assumes that the drooping of the eyelids in-

creases as the person becomes more fatigued. Such system canraise alarm to the driver

once the percentage of eye closure crosses a certain threshold, thus allowing to tak-

ing some necessary counter measures (Dinges, 1998; Vaca, 2005). Besides PERCLOS,

other physiological measures of mental fatigue includes eye-blink frequency, nodding

frequency, face position and fixed gaze (see Bergasa et al.).

These non-EEG physiological mental-fatigue measurement methods appear to perform

well for driving scenarios, but they are also subject to somepitfalls. For example, they

may perform badly when there is considerable movements on the part of the driver and

they are not suitable for situations where the subject requires to be mobile due to job

demand.
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As seen in this section, there are many methods being used to measure the level of mental

fatigue. Every method has some benefits and some limitationsdepending on the location

and subjects for which it is intended to use. While the self-report questionnaires are easy

to administer and can even be computerized or programmed into a portable PDA, they

are subject to individual bias and they are obtrusive methods which are not suitable

for continuous monitoring of mental fatigue. Objective performance measures provide

objective and often more-reliable estimate of mental fatigue, but they are also obtrusive

methods that require subjects to perform actively in some mental tasks. Some non-

EEG based physiological measures, such as PERCLOS, give good results for driving

scenarios, but may fail if there is too much movement on the part of the driver, and also

they are not suitable for situations where the job demand of the subjects requires them

to be mobile.

2.7 Neurophysiological Basis of EEG-based Mental-Fatigue

Measurement

Among the numerous physiological indicators which have been linked to mental fatigue

in the literature, EEG has been shown to be one of the most predictive and reliable

one (Horne and Reyner, 1995; Lal and Craig, 2001b). This is directly motivated by

the neurophysiological manifestation of mental fatigue, that is, mental fatigue can be

with regard to the cortical deactivation in the brain. This cortical deactivation causes the

miscommunications between the cortical regions, resulting in various cognitive impair-

ments on alertness, attention and decision making, etc.

The postulation of such cortical deactivation occurring during mental fatigue can be

traced back to early 1990s (Brookhuis and de Waard, 1993; de Waard and Brookhuis,

1991; Kecklund and̊Aerstedt, 1993). In recent years, there has been accumulating evi-
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dence for this cortical deactivation pattern in relation tomental fatigue. It is particularly

interesting to see a similar deactivation/activation pattern changes occurred in sleep pro-

cess which have been documented in recent positron emissiontomography (PET) stud-

ies (Kecklund and̊Aerstedt, 1993; Maquet et al., 1996; Nofzinger et al., 1997). Sim-

ilarly, the cortical deactivation due to mental fatigue hasalso been recently verified in

our previous fMRI study (Li et al., 2005). For reference purposes, the major results of

this fMRI study are briefly reported in the next. The fMRI study shows: 1) Cortical

deactivation in the brain generally mirrored the task performance and hence the mental

fatigue. The circadian fatigue caused general decreased activity of the brain which was

coherent with the decreased performance. 2) Temporal cortex exhibited consistent acti-

vation decreasing trend with the task performance, indicating a direct involvement of the

temporal cortex in mediating task performance. 3) As the circadian fatigue progresses,

thalamus also showed a similar activation deactivation trend with the time. Thalamus

has been found to be involved in mediating attention (Portaset al., 1998). The decreased

activation in thalamus could be the indicator of attention loses due to mental fatigue. 4)

The medial frontal cortex showed a consistent pattern of activation change: higher in

session 1; drops in session 2 and maintains thereafter.

The striking different activation patterns, between a fresh brain in the morning after one

night sleep and the fatigued brain after one-night sleep deprivation, can be seen from

Figs. 2.6a and 2.6b. Compared with the fresh brain, the fatigued brain shows significant

lower activation in various functional lopes.

The fMRI was particularly useful in revealing the neurophysiology of mental fatigue,

it is however not practical to use fMRI for mental fatigue measurement due to its huge

cost, requirement of shielding room, prohibition of head movement and its low temporal

resolution. One of the possible approaches for catching thechanges of neuronal acti-

vation in the brain can be using EEG. EEG is the recording of the electric activity in

the brain, direct capture of the deactivation/activation pattern related to mental fatigue.
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(a) (b)

Figure 2.6: The activation patterns shown in fMRI scans for (a) a fresh brain after one
night sleep; (b) the fatigued brain after one night sleep deprivation.

In addition, with the recent development of dry EEG sensors (Griss et al., 2002; Taheri

et al., 1994), the preparation time for EEG data acquisitionis largely reduced, which

makes EEG well suited for a mental fatigue tracking device inoperational settings.

2.8 Past Work on EEG-based Mental-Fatigue Measure-

ment and Monitoring System

In recent years, the EEG-based mental-fatigue tracking technology has been a focal

point of research. As discussed in Section 2.4, EEG is a common physiological in-

dicator that have been successfully used to study physiological or psychological brain

states (like wakefulness, sleep cycles), neural diseases and neural injuries. Among the

numerous physiological indicators which have been linked to mental fatigue in the liter-

ature, EEG has been shown to be one of the most predictive and reliable one (Horne and

Reyner, 1995; Lal and Craig, 2001b). Moreover, using EEG formental-fatigue mea-

surement has many desirable properties: it is an objective,non-obtrusive and efficient

mental-fatigue measurement method which is well-suited for traffic safety and other

domains where online measurement and monitoring of mental fatigue is crucial.
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As early as in the 1970s, researchers have documented considerable evidence of a strong

correlation between EEG waveform and mental fatigue (see Grandjean, 1970; H. Fruh-

storfer, 1977; Howitt et al., 1978; Kanamori, 1985; Kecklund andÅerstedt, 1993). How-

ever, mental fatigue produces much less distinguishable changes in terms of EEG wave-

forms than other brain states like sleep (Kecklund andÅerstedt, 1993). There have been

little, if any, evidence showing the efficacy of measuring mental fatigue by character-

izing the EEG waveforms. In recent decades, such EEG waveform approach has given

rise to the more powerful quantitative electroencephalogram (qEEG) methods that are

equipped with digital signal-processing algorithms for the study of mental fatigue.

Although mental fatigue differs significantly from sleep cycles, many of past EEG-based

mental-fatigue studies follow the same approaches used in sleep studies. Using spec-

trum analysis (a typical qEEG method which was extensively used in sleep studies),

researchers have quantitatively shown the associations between EEG delta, theta, al-

pha, beta activities and mental fatigue during driving (Artaud et al., 1994; Beatty et al.,

1974; Dinges and Mallis, 1998; Gevins et al., 1995; H. Fruhstorfer, 1977; Horne and

Reyner, 1995; Lal and Craig, 2001a; Lal et al., 2003; Lal and Craig, 2002; Makeig and

Inlow, 1993; Makeig and Jung, 1995; Ogilvie et al., 1991; O’Hanlon and Beatty, 1977;

O’Hanlon and Kelley, 1977; Torsvall and̊Akerstedt, 1987, 1988). Though it requires

careful inspection, it is not difficult to see, from the rest of this Section, the common

conclusion between most of spectrum analyses—mental fatigue is generally associated

with a decrease in the frequencies of the predominant energybands. However, most

previously published studies on EEG changes during mental fatigue have found varying

results that could be due to methodological differences andlimitations (Lal and Craig,

2002).

For example, Beatty et al. (1974) reported that occipital theta activity in EEG is the most

reliable spectral indicator of mental fatigue. It contradicts with the study of O’Hanlon

and Beatty (1977) which reported that alert individuals with eyes open show a predom-
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inance of beta activity in EEG and mental fatigue can be characterized by a shifting of

energy to the alpha band. Though the subsequent studies of H.Fruhstorfer (1977) and

O’Hanlon and Kelley (1977) appear partially in favor of O’Hanlon and Beatty (1977) by

documenting that increases in both theta and alpha are significant for drowsy individuals

with eyes open, somewhat surprising results were obtained in a study by Ogilvie et al.

(1991) who claimed that increases in power were found acrossall standard frequency

bands at sleep onset (a state of extreme mental fatigue). This is apparently not the end

of the variable literature on mental fatigue. A recent work by Makeig and Inlow (1993)

again produced different results to the above.

In the 1980s and 1990s, in contrast to most previous studies that are based on labora-

tory tests or simulations, a group of Swedish researchers, led by Torsvall and̊Akerstedt,

carried out a series of field studies to examine mental fatigue in shift workers using am-

bulatory EEG, EOG and ECG (Åerstedt, 1988;̊Akerstedt and Gillberg, 1990;̊Akerstedt

et al., 1991; Torsvall and̊Akerstedt, 1987, 1988; Torsvall et al., 1989). Three-shiftwork-

ers, such as train drivers and paper-mill workers, were studied during day, afternoon and

night shifts. In those studies, only selected spectral bands from a pre-selected single-

channel EEG were studied. A 4-channel Medilog tape-recorder was used to record the

single-channel EEG (Cz-Oz or O2-P4), the EOG (oblique) and the ECG. The EEG was

sampled at 68 Hz and the hourly-averaged spectra of delta (0.5–3.9 Hz), theta (4–7.9 Hz)

and alpha (8–11.9 Hz) were sequently obtained by using a special purpose spectrum an-

alyzer. Epochs containing artifacts or sleep (≥4 min of consecutive stage 1 or higher)

were removed after visual inspection. The single-channel ECG was also recorded, al-

though it was found that this physiological measurement didnot correlate with mental

fatigue. The EOG was mainly used for visual identification ofslow rolling eye move-

ments which was often considered as the reliable indicator for sleep onset. Throughout

the work period, subjective self-report measure of sleepiness was also recorded on a

seven-point scale (1–very, very alert; 7–very, very sleepy).
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The results from these field studies showed that subjective sleepiness increased sig-

nificantly during the night shift. The hourly-averaged alpha power density increased

marginally at the same time, but no significant changes were found in the hourly-average

theta and delta power densities. Interestingly, these studies suggested that the detection

of sleepiness may be more clearly determined from burstliketransients in the spectral

content of the EEG, rather than from the usual approach of looking at spectral averages

over a long period (usually an hour). More specifically, theyreported that the very short

duration of increased power in the alpha, theta and to a lesser extent, delta bands were

the indicators of increases sleepiness, although such burstlike alpha, theta and delta in-

dicators of sleepiness might be engulfed in the much longer time periods without such

activity (Åkerstedt and Gillberg, 1990;̊Akerstedt et al., 1991; Torsvall and̊Akerstedt,

1987; Torsvall et al., 1989).

In another study (̊Akerstedt and Gillberg, 1990) where eight subjects were kept awake

and active overnight in a sleep lab, it has been showed nicelythat whether the eyes are

open or closed can make a substantial difference in the EEG spectrum of sleepiness.

The results showed that intrusions of slow rolling eye movements and of alpha and

theta power density during waking, open-eyed activity strongly differentiated between

high and low self-rated sleepiness, while the differentiation was poorer for subjects with

eyes closed. They also noticed that slow rolling eye movements might be one of the

major reasons for the increased alpha activity during extreme sleepiness and it was much

more difficult to differentiate between sleepiness and alert states with eyes closed. This

suggests that EEG-based mental fatigue measurement and monitoring method should

use the EEG recorded under the setting that the subject’s eyes are open. This finding is

not trivial because it is not uncommon that EEG with eyes closed were unwisely used

in some past work on mental fatigue for the sake of less EOG artifacts. It is worth to

point out that, if it is really desirable to keep subjects’ eyes closed, it would be valuable

to document eye rolling separately by EOG with extra EOG channels.
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Since the 1990s, study on the relationship between performance degradation and the

EEG spectrum has made an impressive comeback. As early as in the 1970s, Beatty

et al. (1974) reported that the performance deterioration in monotonous visual moni-

toring tasks could be predicted by increased theta band activity in the occipital brain

region. Further evidence was reported by (Townsend and Johnson, 1979) who stud-

ied the pre-stimulus EEG spectrum to reaction time in some monitoring task for both

well-rested subjects and sleep-deprived subjects, although the authors also warned there

could be considerable variation in EEG activity which was unrelated to performance.

Since the early 1990s, a series of studies have re-affirmed the feasibility of measuring

mental fatigue or drowsiness indexed by subject’s task performance, based on EEG data

in attention-sustained experiments using auditory or visual stimuli (Duta et al., 2004;

Jones, 2006; Jung et al., 1997; Makeig and Inlow, 1993; Makeig et al., 2000; Peiris

et al., 2004; Sommer et al., 2002; Vuckovic et al., 2002). Most of these studies have fo-

cused on the detection of performance lapses in the specific tasks that they studied (i.e.

the prediction of a mistake in a specific task) without measuring the subjects’ mental-

fatigue levels directly. Moreover, most of these pilot studies used fairly simple linear,

nonlinear regression or neural networks.

For example, the early work by Makeig and Inlow (1993) showednicely the coherence

of fluctuations in performance and EEG spectrum. In the study, the spontaneous EEG

were recorded from thirteen subjects when they were performing an simulated passive-

sonar-target detection task with eyes closed. No automaticartifact removal was done,

except simple rejection of large eye movements via visual inspection on the recording

from an extra periocular channel. The fluctuations in performance was measured by

local error rate which was derived by computing the fractionof undetected targets within

a time window with a constant width of about 33s, while the power time series in a given

frequency was estimated by using a 2.46s moving window. The results of coherence

analysis showed that changes in performance were accompanied by nearly simultaneous
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shifts in EEG spectral power which included drops in alpha, increases in low theta and

delta, and moderate increases in sigma band power (13 Hz). The work also demonstrated

the possibility of the use of EEG for prediction of performance lapses via a multiple

linear regression method.

Sleep onset detection is another relevant research area (see Gennaro et al., 2001; Ogilvie

et al., 1991; Virkkala et al., 2007; Yeo et al., 2007). However, detecting the sleep onset

in an individual, be it a pilot or be it a driver, may not alwaysmitigate a potentially

dangerous consequence: if the individual is already in the sleep stage, even if awakened,

there may be insufficient time to avoid an impending accident(Kaplan, 1996). It is

more important to measure and monitor mental fatigue in real-time (or close to real-

time) before sleep onset so that effective counter-measures or preventions can be put

into place at an appropriate stage.

Although the relationship between mental fatigue and EEG has been extensively stud-

ied, there have been only a handful of attempts in the literature that were directly aimed

to develop an EEG-based mental-fatigue measurement and monitoring system. The

automated drowsiness-detection system developed by Gevins et al. (1977) using four

referential-channels (C3-P3, P3-01, C4-P4 and P4-02) is probably the first such attempt.

In their system, simple decision-heuristics, based on increased ratios of both delta-band

to alpha-band and theta-band to alpha-band spectral intensity as compared with thresh-

olds determined for each subject from a randomly-chosen alert EEG baseline, were used.

Though their system were only able to differentiate betweenalert EEG and drowsy EEG

(in other words, mental fatigue was measured at only two levels—drowsy v.s. alert) and

the signal processing method used might appear pretty humble compared with the state-

of-the-art pattern-recognition techniques, the approachof using the spectrum features of

ongoing EEG for automatic measuring and monitoring mental-fatigue remains relevant

today.
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Another case in point is the work by Ninomija et al. (1993), inwhich a system was

developed to detect sleepy states of drivers using a single ongoing EEG feature, i.e. the

grouped EEG alpha waves, so as to warn them of the dangerous states. They reported

a type II error of 25%–35%. In order to improve the reliability of the system, they sug-

gested to monitor simultaneously the ECG (change of R-R intervals) during driving. As

further substantiated by the researchers (Fukuda et al., 1994), the detection of grouped

alpha waves was based on moving regression coefficients. Theapparent disadvantage in

this system is the use of extra electrodes to monitor two separate physiological signals,

making it more cumbersome. The use of ECG for mental-fatiguedetection also appears

controversial. For example, several studies have claimed that ECG did not correlate with

mental fatigue (̊Aerstedt, 1988;̊Akerstedt and Gillberg, 1990;̊Akerstedt et al., 1991;

Torsvall andÅkerstedt, 1987, 1988; Torsvall et al., 1989). Moreover, the literature does

not favor the use of alpha activity for mental-fatigue detection. For example, Lal et al.

(2003) pointed out that even though alpha marginally increases during drowsiness, the

magnitude of change in the delta and theta waves are larger and easier to detect.

The EEG-based driver-fatigue countermeasure system as presented in a series of recent

papers by a group of Australian researchers (Lal and Craig, 2001a,b; Lal et al., 2003; Lal

and Craig, 2002) are probably the latest effort in the literature to develop an EEG-based

mental-fatigue measurement and monitoring system. They used solely the spectrum fea-

tures of ongoing EEG to differentiate mental fatigue at 4 levels (Fig. 2.7). Specifically,

for each EEG channel, the following values were calculated:Dm, Dsd, Tm, Tsd, Am,

Asd, Bm, andBsd, whereD, T, A, andB represent the spectral magnitudes in the delta,

theta, alpha, and beta bands, respectively, andmandsd represent the mean and standard

deviation of those magnitudes. Thresholds were then definedfor each frequency band

in each channel. The classification of mental fatigue at 4 levels was again determined

by the instantaneous spectral magnitudes in each frequencyband of a given channel

(without artifact removal) and the relation of those magnitudes to the thresholds by us-
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Figure 2.7: The display panel of the EEG-based driver-fatigue countermeasure system
developed by Lal et al. (2003). Each 30s epoch was allocated to mental fatigue at 4
levels: alert, Phase 1 (transition to fatigue), Phase 2 (transitional–posttransitional phase),
and Phase 3 (post-transitional phase). An example of mental-fatigue detection shown in
one channel only, i.e. detection from one site on the brain, in this instance the Cz.

ing algorithmic Boolean logic: the approach that is not verydifferent from the one used

more than 20 years ago by Gevins et al. (1977). No quantitative performance evaluation

was reported in these initial trials of the first prototype ofthe system.

It needs to be pointed out that, in many EEG-based mental-fatigue studies, mental fa-

tigue was classified into discrete levels. For example, in the above-mentioned studies

(Lal and Craig, 2001a,b; Lal et al., 2003; Lal and Craig, 2002), mental fatigue was

classified into four phases/levels: early, medium, extremefatigue phase, and an arousal

phase. It is arguable whether mental fatigue should be measured continuously or dis-

cretely, but it is reasonable to believe that the progression of mental fatigue may not be

entirely smooth or continuous. On the contrary, mental fatigue could be very much like

sleep stages where only quasi-categorical sleep stages canbe defined. Evidence of such
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quasi-categorical mental-fatigue stages has also been shown in a recent EEG study by

Trejo et al. (2007).

In summary, the literature shows substantial evidence of changes in EEG, such as si-

multaneous changes in slow-wave activity (e.g. delta and theta activity) as well as alpha

activity during mental fatigue. However, most previously published studies on EEG

changes during mental fatigue have found varying results and very little evidence ex-

ists on the efficacy of incorporating EEG signal detection and analysis into an effective

mental-fatigue measurement and monitoring system. This islikely due to methodolog-

ical limitations. To measure and monitor mental fatigue in (near) real-time fashion, the

challenge remains in developing or adapting powerful signal processing methods (run-

ning on fast enough computer or processing chip which were not available before) to

extract the relevant information from the EEG. As shown in the above review, most

studies have computed measures on one or more spectral bandsfrom a priori defined

one or more EEG channels, rather than computing full-spectrum of each of the EEG

channel in full mapping EEG recordings; Features that have been selected to relate to

mental fatigue were often limited to powers of some specific standard frequency bands

(often without giving the justification), rather than considering combination of multiple

types of features; The technical challenge of automatic removing the pervasive EEG ar-

tifacts has rarely been addressed; Moreover, the recent advance in the signal processing

methods in the domain of machine learning, like feature selection and multi-category

pattern classification, have not been applied in this field.

2.9 EEG Signal Processing

EEG signals are the signatures of brain activities. EEG implementation is all about

evaluating and quantifying the EEG signals. Generally, thegoal is to relate certain
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physiological or psychological brain states to particularpatterns present in the EEG

via appropriate EEG signal processing methods. This section briefly reviews the signal

processing methods commonly used in the EEG analysis.

The reader should be aware that most of the mathematics are omitted in this brief review

and only the mathematics needed for the subsequent chaptersare collected at the end of

this chapter in Section 2.10. Further details on EEG signal processing methods can be

found in the review paper by Thakor and Tong (2004) or the review book by Sanei and

Chambers (2007).

2.9.1 Waveform Inspection

In the beginning of EEG history, clinical researchers relied heavily on visual inspection

of EEG waveforms. This conventional visual analysis methodof observing the EEG

waveform is thought to be subjective and laborious (Thakor and Tong, 2004). In past

decades, various qEEG methods (using digital signal processing techniques) have been

extensively studied and convincing evidence has been shownthat they are capable of

capturing EEG patterns that may be difficult, if not impossible, to be captured by manual

waveform inspection. The qEEG methods mainly include various methods for EEG

signal modeling, filtering and denoising, signal transform, blind signal separation and

pattern classification. In the following sections, these qEEG methods will be discussed.

2.9.2 Filtering and Denoising

As discussed in Section 2.3, the raw EEG signals are usually contaminated with various

sources of noises and artifacts, such as EOG artifact, ECG artifact, EMG artifacts and

50 Hz or 60 Hz power line noise depending on the local power supply.
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Artifacts in EEG are commonly handled by discarding the affected segments of EEG.

The simplest approach is to discard a fixed length segment (usually 1-3 seconds) from

the time an artifact is detected. The recognition of some artifacts, like eye blink artifacts,

are generally effected by detecting a voltage exceeding a threshold (usually 100µV) in

separate EOG channel. Other artifacts are generally ignored or manually marked by a

EEG practitioner and then manually discarded. Discarding segments of EEG data with

artifacts can greatly decrease the amount of data availablefor analysis.

Automatic removing/suppressing artifacts and noises is certainly very useful, especially

for EEG applications where (near) real-time processing of EEG signals is required.

Some noise and artifacts are easy to recognize and can usually be removed by filter-

ing (for example the power line noise). Nevertheless, most artifacts, such as EOG, ECG

and EMG artifacts, are present consistently and are difficult to remove. The removal of

EOG and ECG artifacts is important because they overlap in amplitude and spectrum of

EEG and easily interfere with EEG interpretation.

For example, mental fatigue produces much less distinguishable changes in EEG wave-

forms than other brain states like sleep (Kecklund andÅerstedt, 1993). Meanwhile, it

has also been shown in Section 2.8 that the increases in low frequency activities, such

as delta and theta band, are important to detect mental fatigue. The normal ECG rhythm

of a human is approximately 1.0-1.5 Hz and its second-order harmonics (2.0-3.0 Hz)

are within the delta band, whereas the EMG artifacts typically span the whole frequency

band. In such case, the influence of ECG and EMG artifacts cannot be ignored and some

automatic artifact removal methods are certainly needed.

Regression using the separate EOG/EMG channel (placed nearthe artifact sources) are

the most common type of artifact removal in the literature. The need of the extra chan-

nels is apparently one of the drawbacks. Moreover, since theEOG/EMG channel may

also contain EEG signals, the regression approach has the undesired effect of removing
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part of EEG signals. More detailed discussion on this approach can be found in (Croft

and Barry, 2000a,b).

In recent years, there has been increasing interest in applying independent-component-

analysis (ICA) to separate and remove artifact in EEG (Castellanos and Makarov, 2006;

Jung et al., 1998, 2000b; Urrestarazu et al., 2004; Vigárioet al., 2000; Vigário, 1997;

Wallstrom et al., 2004). For the ease of presentation, the detailed description of ICA

algorithm is deferred to Section 2.10. The use of ICA for artifact removal is mainly

motivated by the fact that ICA is effective in decomposing raw EEG recordings into

artifactual and non-artifactual independent components.Non-artifactual components

represent signals from brain activations while artifactual components represent electrical

signals originating from non-cerebral artifacts (see Fig.2.8).

As shown by the example as in Fig. 2.8, the ICA appears impressively promising for

EEG artifact removal. Conventionally, artifactual independent components are manu-

ally identified (usually by visual inspection) and then removed. This process is very

time-consuming and not suitable for real-time applications. However, the automatic

identification of artifactual independent components fromnon-artifactual independent

components remains a challenge. Recent effort towards automatic artifact removal us-

ing ICA includes (Nicolaou and Nasuto, 2004; Shoker et al., 2005) where a standard

support vector machine (SVM) classifier, trained on equal number of artifactual and

non-artifactual samples, was used for automatic identification of artifactual independent

components. Such a combination of ICA and SVM offers a promising approach for

automatic artifact removal. Unfortunately, it will be seenin the subsequent chapters that

unique properties of the problem at hand have not been taken into consideration and

further research is needed.

Several filtering methods have also been used to examine particular frequency bands of

interest. Particularly, lowpass, highpass and bandpass filters are routinely used in pre-
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Figure 2.8: An example of ICA-based artifact removal: (a)One segment of real EEG
data– the ECG artifact is prominent in all channels and the 50Hz power line noise is
significant in T6,O2; (b)The resulting independent components separated by the ICA–
the component c1 is ECG artifact source while the c3 is 50 Hz power line noise source;
(c)The reconstructed EEG segment after discarding ECG artifact and 50 Hz power line
noise (i.e. the components c1 and c3).
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processing of EEG signals. During the data collection stage, embedded analog infinite-

impulse-response (IIR) filters are normally used for anti-aliasing and removing the high

frequency activities of no concern. During the post-processing stage, both IIR filters

(usually a digital implementation) and finite-impulse-response (FIR) filters are com-

monly used to further enhance the EEG signals.

2.9.3 EEG Signal Modelling

After removing or depressing the artifacts and noise, the question of EEG signal mod-

elling naturally arises: can we have a model that regulates the EEG signals? The linear

modeling and nonlinear modelling methods described in the next few subsections are

the most common methods used to extract a parametric description of the EEG signals.

2.9.3.1 Linear Modelling

The main objective of linear modelling is to find a set of modelparameters that best

describe the EEG signal generation system for each EEG channel. The most common

method is the autoregressive (AR) modelling. For theith channel, we have

zi(n) = −
p

∑
k=1

akzi(n−k)+ εi(n), (2.1)

wherezi(n) denotes the EEG time series of theith channel,ak, k= 1, · · · , p, are the model

parameters,n denotes the discrete samples (time interval normalized to unity), andεi(n)

is the noise input. The following variant of AR modelling, i.e. the autoregressive moving

average (ARMA) modelling, has also been used:

zi(n) = −
p

∑
k=1

akzi(n−k)+
q

∑
k=0

bkεi(n−k), (2.2)
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wherebk,k = 1, · · · ,q, are the additional model parameters. It differs from the AR

modelling in that each sample is predicted not only by the previous samples but also by

the previous noise inputs.

In contrast to the AR and ARMA modelling methods which treat each channel indepen-

dently, multivariate AR approach has also been considered to model multi-channel EEG

signals as a whole. In such multivariate approach, each sample is predicted by both

its previous samples from the same channel and the previous samples from the other

channels. Hence, for theith channel,

zi(n) = −
p

∑
k=1

aikzi(n−k)−
M

∑
j=1, j 6=i

p

∑
k=1

a jkzj(n−k)+ εi(n), (2.3)

whereM represents the number of channels, andzi(n), εi(n) represents the output sam-

ple and input noise for theith channel respectively.

In general, the model parameters in the above linear modelling methods are estimated

either directly (such as through maximum likelihood estimation) or by employing some

iterative optimization schemes (Sanei and Chambers, 2007).

In recent years, it has been argued that there are advantagesof AR modelling over the

classical Fourier transform. However, there are significant known issues on the AR

modelling method, such as the difficulty in choosing the appropriate model order and

the challenge of selecting an appropriate length of EEG segment, which largely limits

its use in EEG signal modelling (Sanei and Chambers, 2007; Thakor and Tong, 2004).

2.9.3.2 Nonlinear Modelling

There are also nonlinear methods being considered for the purpose of EEG signal mod-

elling, in which the output EEG samples are nonlinearly related to its previous samples.
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In the generalized autoregressive conditional heteroscedasticity (GARCH) method, each

sample are related to its previous samples through a sum of nonlinear functions. This

model was originally introduced for time-varying volatility (Nobel Prize in Economic

Sciences in 2003). The study of such approach in EEG signal modelling is still in its

infancy.

2.9.4 Non-stationarity and Signal Segmentation

A time series signal can be deemed stationary if there is no considerable variation in its

statistics. The EEG signals are typically non-stationary and they are considered station-

ary only within short intervals (usually about 3 s for human resting EEG).

Since the EEG signals are non-stationary (or quasi-stationary within a short interval),

it is often necessary to segment the EEG signals into epochs of similar characteristics.

Such EEG segmentation is not only meaningful to clinicians in EEG diagnosis, but also

to many EEG signal processing methods that assume the stationarity of the signals (for

example, the AR modelling method).

To address this need, various adaptive parametric segmentation methods have been pro-

posed for automatic EEG segmentation. In loose terms, the procedure of adaptive para-

metric segmentation is based on the estimation of the similarity index of an initial fixed

interval of EEG with an EEG interval of the same duration viewed through the moving

window running along the EEG recording. The similarity index will presumably drop

sharply when the window runs over a segment boundary, signaling a transition to the fol-

lowing segment. For example, the afore-mentioned autoregressive modelling method,

which predicts the EEG sample at a given moment by its previous samples, can be use-

ful for automatic EEG segmentation. The discordance between predicted and real EEG

samples could be a sufficient indication of a local non-stationarity (Jansen, 1991).
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Studies on automatic EEG segmentation in turn reveal the non-stationarity of the EEG

signals. From the reported results of the EEG adaptive segmentation based on the au-

toregressive models, the quasi-stationary segment, in general, spans from 2–20 seconds

(Barlow et al., 1981; Creutzfeldt et al., 1985; Jansen, 1991). Use of multiple regression

analysis for EEG adaptive segmentation also reveals a similar duration of 2–10 seconds

for the majority of quasi-stationary EEG segments (Inouye et al., 1995). It will be seen

in a later section that this piece-wise stationary (or quasi-stationary) structure should

be taken into consideration when the EEG signals are processed piece-wisely using a

moving window.

Although the adaptive parametric segmentation methods appears to be effective for seg-

mentation of EEG signals, there is inherent contradiction in the parametric segmentation

(Kaplan and Shishkin, 2000). In principle, the parametric methods of adaptive segmen-

tation makes it possible to describe adequately the piece-wise stationary structure of the

EEG signals. However, all these methods designed for the analysis of non-stationary

processes are based on a procedure (usually based on autoregressive model) which may

be applicable only to stationary processes. It is evident that accurate fitting of a model

can be achieved only on a stationary interval. The longer theinterval, the finer charac-

teristics of the process can be represented by the model. Butthe longer the analyzed

interval of the real EEG, the more probable the incidence of heterogeneities within it.

If the model is constructed on a very short interval, it will be very rough and the results

of segmentation based on the parameters of this model cannotbe expected to be of high

quality (Brodsky et al., 1999).

Thus, parametric segmentation methods were rarely used to detect brain activity or

pathological abnormality. Better systems (usually a pattern recognition system) should

be considered for such purposes (Sanei and Chambers, 2007).Section 2.9.7 in this

chapter will review such approach.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



2.9 EEG Signal Processing 54

2.9.5 Signal Transforms

Since EEG signals can be deemed piece-wise stationary, it isstraightforward to char-

acterize them in either the time or frequency domain (after applying fast Fourier trans-

forms). The Wavelet transform also offers another alternative for a time-frequency anal-

ysis of EEG signals.

2.9.5.1 Fast Fourier transform

The frequency-domain representation of a finite-length signal can be obtained by using

the (discrete) fast Fourier transform. The spectrum analysis using Fast Fourier transform

are routinely used to relate the standard frequency bands (as in Table 2.1) to specific

physiological or pathological brain states.

Since the EEG signals are non-stationary, to track the temporal dynamics in the fre-

quency contents of the signal, the EEG signals are usually segmented into epochs (via a

fixed-length moving window running along the EEG time series) and consecutive trans-

forms are then performed on each epoch. It needs to be pointedout that the choice of

window length, overlapping between adjacent epochs, window type in performing the

fast Fourier transform are critical to successful capture of subtle frequency shifts in the

EEG signals (Gevins, 1987; Thakor and Tong, 2004).

It is worth noting that parametric spectrum estimation methods such as those based on

AR or ARMA modelling can potentially outperform the (discrete) fast Fourier trans-

form in presenting the frequency contents of the EEG signals, but they may also under-

perform due to poor estimation of the model parameters (mainly because of the non-

stationarity of the EEG signals). The selection of model order in AR or ARMA models

is another problem that has not been fully addressed. A high model order may arti-

ficially split a true peak in spectrum, whilst a low model order may lead to aliasing
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between nearby peaks in spectrum.

The (discrete) fast Fourier transform has fixed time and frequency resolutions. Higher

time and frequency resolution can be obtained through jointtime-frequency analysis

such as the time-frequency presentation obtained through Wigner-Ville distribution (see

Thakor and Tong, 2004). Nevertheless, such joint time-frequency analysis has notable

limitations: cross-term calculations may give rise to negative energy and the aliasing

effect may distort the spectrum.

2.9.5.2 Wavelet Transform

The wavelet transform is another alternative for a time-frequency analysis. The unique

property of the wavelet transform is that it provides adaptive time-frequency resolutions

by using scalable time-frequency kernel functions insteadof the fixed-scale window

function. It is significant because one usually needs more time accuracy in locating

the transient waves while being more interested in the frequency resolution for the EEG

signals dominated by slow waves. By using a variable-scaling which is shorter for higher

frequency and longer for lower frequency, the wavelet transform method can potentially

better localize the signal components in time-frequency domain. The details are readily

available from the literature (e.g. Murenzi et al., 1988) and hence omitted.

2.9.6 Nonlinearity

Researchers have also been looking for nonlinear characteristics in the EEG signals such

as chaotic measures (Pritchard and Duke, 1992, 1995; Sarbadhikari and Chakrabarty,

2001). These nonlinear chaotic measures are generally borrowed from chaos theory or

nonlinear dynamics which has been a rapidly developing areain physics since the 1980s.
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The most commonly used nonlinear measures include dimension estimation (see Lee

et al., 2001), Kolmogorov entropy (see Pritchard and Duke, 1992, 1995; Sarbadhikari

and Chakrabarty, 2001) and Lyapunov exponent spectrum (seeAftanas et al., 1997; Fell

et al., 1993; Iasemidis et al., 1990; Kim et al., 2000). Thesenonlinear measures offer

a new class of features that can be generally useful for the EEG pattern classification

systems as described in the next.

2.9.7 Patten Classification

The objective of classification is to draw a discriminant boundary between two or more

classes and to be able to label a new sample to an appropriate class based on its measured

features. In the context of EEG signal processing, the classification of the data in feature

space is often preferred. In fact, formulating an EEG signalprocessing problem into a

classification problem is involved in a great deal of recent EEG history. For example,

the EEG-based automatic classification of sleep stages has proved to be a big success.

Researchers have also been studying the classification of mental tasks by using EEG,

such as classification of left and right finger movements which has been nicely demon-

strated in the rapidly-growing EEG research area of brain-computer-interface. Also, as

discussed in Section 2.9.2, automatic artifact removal canbe boiled down to a classifi-

cation problem after the EEG signals have been decomposed into both artifactual and

non-artifactual source signals.

Many classification methods have been developed in the domain of machine learning

(Duda et al., 2000; Vapnik, 1995). Among them, linear discriminant analysis (LDA),

k-nearest neibor algorithm (KNN), artificial neural networks (ANN) and, more recently,

support vector machine (SVM) has been widely used in many real-world pattern clas-

sification problems . However, many classification methods do not necessarily perform

well on classification of EEG patterns due to the inherent challenges of the learning
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problems at hand.

First, the number of features involved in EEG pattern classification is usually large. This

is mainly due to the following two reasons: (i) the inherent redundancy of the EEG data

(i.e. the big number of channels, say 19 channels according to the international 10-20

electrode placement system); (ii) the limited knowledge ofthe neural circuitry in the

brain (because lack of domain knowledge may force us to include as many types of

features as possible, as long as these features show some correlation with the targets).

However, direct classification using all possible featuresis apparently undesirable, since

irrelevant and redundant features have adverse effect on the overall classification perfor-

mance and generalization ability of the system. Therefore,a data-driven approach of

selecting the key features is generally useful.

Second, the classification of EEG patterns typically involves unbalanced data where

minority class(es) can be very much under-represented in the data (with relatively few

samples). It will be seen in the later sections of this chapter that handling such unbal-

anced data is a challenging problem that is still an ongoing research topic.

Third, the classification of EEG patterns can be somewhat ill-posed where there are a

large number of features but with a relatively small number of samples. This, coupling

with the fact that the classification generally involves more than two classes, makes it

difficult to relate input features to output targets.

Last, there is generally a nonlinear-mapping between the input features and the output

targets in EEG classification tasks. Fitting such unknown nonlinear-mapping function

is by itself a challenging task.
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2.10 Mathematical Background

This section collects the mathematics from the literature and establishes the necessary

notations needed for the subsequent chapters. They serve asthe mathematical back-

ground of this doctoral study.

2.10.1 Independent-Component-Analysis

Independent-component-analysis is a recently-developedalgorithm for blind source sep-

aration (Common, 1994; Hyvarinen, 2000; Jutten and Herault, 1991), in which case the

original independent sources are assumed to be unknown, andyet to be separated from

their weighted mixtures.

2.10.1.1 The Concept

The ICA is best explained by the cocktail party problem as shown in Fig. 2.9. Imagine

that you are in a room where two people (denoted by two speakers in Fig. 2.9) are speak-

ing simultaneously. There are two microphones which are placed in different locations

in the room. The microphones give you two recorded speech signals, denoted byz1 and

z2 at the time instancet (the time indext is omitted in the expression for simplicity).

Each of these recorded signals is a weighted sum of the speechsignals emitted by the

two speakers, denoted bys1 ands2 at the time instancet. Let’s disregard any time de-

lay in the speech transmission for simplicity. The relationship can be expressed by the

following linear equations:

z1 = a11s1+a12s2;

z2 = a21s1+a22s2, (2.4)
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wherea11, a12, a21, a22, are so-called mixing coefficients that depend on the distances

of the microphones from the speakers. It would be very usefulif you could now recover

the two original speech signalss1 ands2, using only the recorded mixed signalsz1 and

z2. Actually, if we knew the mixing coefficientsai j , we could solve the linear equations

in (2.4) easily. The point is, however, that if we do not know theai j , it becomes a much

more difficult problem, i.e. the well-knowncocktail-party problem.

 

Sources Mixtures 

s1 

s2 

z1 

z2 

a11 

a21 

a12 

a22 

Figure 2.9: Cocktail party problem

The ICA was originally developed to deal with problems that are closely related to the

cocktail-party problem (Common, 1994; Hyvarinen, 2000; Jutten and Herault, 1991).

It uses some information on the statistical properties of the signalssi to estimate the

ai j . Actually, and perhaps surprisingly, it turns out that it isenough to solve the above-

mentioned cocktail-party problem by assuming thats1 ands2, at each time instantt, are

statistically independent. It needs to be pointed out that the independence assumption

is not an unrealistic assumption in many cases and that the assumption needs not be

exactly true in practice. That means, even ifs1 ands2 are loosely dependent to each

other, the ICA can still give very good estimates of them.

Fig. 2.10 gives a simple but impressive experiment on ICA. Fig. 2.10a shows the origi-

nal source signals which include a sinusoid waves1, a funny waves2, a saw-tooth wave

s3 and an impulsive noise waves4, while Fig. 2.10b shows the linearly-mixed signals,z1,

z2, z3 andz4, generated from the source signals using a (unknown) randomly-generated

coefficientsai j , i, j = 1, · · · ,4. The ICA is used to estimate theai j by using only the
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zi , i = 1, · · · ,4. As can be seen from Fig. 2.10c, ICA outputs the estimated indepen-

dent components (ICs) that are very close to the original source signals. Their signs

and appearing order may be different, but these generally have no significance for signal

processing.

The ICA appears especially useful for EEG signal processing. The EEG data consist

of recordings of electrical potentials in many different locations on the scalp. These

potentials are presumably generated by mixing the underlying components of both brain

activities and artifacts. This scenario is very similar to the cocktail-party problem: it is

very useful to recover the original components (of either brain activities or artifacts),

but we can only observe/record mixtures of these underlyingcomponents. The ICA

has shown great potential in EEG signal processing by givingaccess to its independent

components.

2.10.1.2 The Model

The basic data model used in defining ICA assumes that the observed n-dimensional

data vector at time instantt, z = [z1, · · · ,zn]
T , is given by

z =
m

∑
i=1

aisi = As, (2.5)

wheres= [s1, · · · ,sm]T is m independent source signals with zero mean (which can be

guaranteed by explicitly extracting the mean of eachzi without loss of generality), and

A = [a1, · · · ,am] is a constant mixing matrix which is a function of the location of the

sources, the channel positioning in the EEG recording, the shape and the conductivity

distribution of the brain as a volume conductor (Vigário, 1997).

As in a general blind signal separation problem,A is assumed to be ann×m matrix

of full rank (there are at least as many mixtures as the numberof independent sources,
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Figure 2.10: An experiment on ICA using artificial signals: (a) original source signals;
(b) mixed signals using a randomly-generated mixing coefficients; (c) the recovered
source signals by ICA using only the mixed signals.
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i.e. n > m). In addition, althoughA is unknown, we assume it to be constant, or semi-

constant (preserving local constancy) in order to perform ICA.

If let WT denote the pseudo-inverse ofA, the problem of solving Equation (2.5) can be

redefined equivalently as to find the separating matrixW that satisfies

s= WTz. (2.6)

2.10.1.3 The ICA Algorithm

It has been documented that the preprocessing of the input data (mixtures) by whitening

can significantly ease the separation of the source signals (Karhunen et al., 1997). There-

fore, standard principal-component-analysis (PCA) for whitening z is implemented in

preprocessing. It can be shown in the compact form (noting that we have dropped the

time indext):

v = Vz, (2.7)

whereE{vvT} = I with I denoting then×n unit matrix. The whitening matrixV is

given by

V = D−1/2ET , (2.8)

whereD = diag[1, · · · ,m] is a diagonal matrix comprising the eigenvalues of covari-

ance matrixE{zzT} as its diagonal elements, andE is a matrix with the corresponding

eigenvectors as its columns.

The starting point for ICA is the very simple assumption thatthe componentssi are

statistically independent. There are several ICA algorithms proposed in the literature,
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each using a different measure of independence. The most popular ICA algorithms are

based on mutual information or non-Gaussianity. It has beenshown (Hyvarinen, 1999,

2000) that mutual information (MI) is a measure of independence and that maximiz-

ing the non-Gaussianity of the source signals is equivalentto minimizing the mutual

information between them.

To illustrate the idea of ICA algorithm, let’s focus on the ICA algorithm that uses the

non-Guassianity as the measure of independence in which theclassical fourth-order

cumulant or kurtosis is used to quantify the non-Guassianity of a signal. Let’s consider

a projectionu = wTv and the kurtosis as defined by

kurt(y) = E{u4}−3[E{u2}]2, (2.9)

where the operatorE denotes the mathematical expectation. In this context, finding an

independent source signal is essentially to find a projection w of the recorded mixtures

z that maximizes the norm of the kurtosis in (2.9).

Then, a fixed-point ICA algorithm using gradient descent searching approach (FastICA)

algorithm (Hyvarinen, 1999, 2000) is used to search the expectation maximization of

(2.9). As a result, rows of the separating matrixW and corresponding independent

sources are identified one by one, up to a maximum ofm. The basic steps of this ICA

algorithm are as follows.

Algorithm 2.1: Main steps of FastICA algorithm.

Choose initial vectorw0 randomly and let the iteration stepk = 0;1

while Convergence/Stop Criterion is not metdo2

Let wk = E{v(wT
k−1v)3}−3wk−1;3

Let wk = wk/||wk||;4

end5
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2.10.2 Support Vector Machine

The support vector machine (SVM) is a supervised learning method used for classifica-

tion and regression. It was originally designed for two-class classification. Unlike other

statistical learning methods (such as neural networks and decision trees) which usually

aim only to minimize the empirical classification error, SVMsimultaneously minimizes

the empirical classification error and maximizes the geometric margin in classification;

hence it is also known as maximum margin classifier (Boser et al., 1992; Cortes and

Vapnik, 1995; Cristianini and Shawe-Taylor, 2000; Vapnik,1995, 1998).

The SVM is a powerful supervised learning method and it has a firm mathematic foun-

dation in the framework of statistical learning theory (Vapnik, 1995). The literature has

documented its superior performance on a variety of applications (Boser et al., 1992;

Cortes and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000; Vapnik, 1995, 1998).

2.10.2.1 Two-Class SVM

To understand the concept of the SVM, let’s start from a two-class classification problem

with a two-dimensional linearly-separable training dataset. It will be seen that there will

be no change in SVM formulation for the multi-dimensional cases. For such linearly-

separable samples as shown in Fig. 2.11, a discriminant plane (or hyperplane) is suf-

ficient to separate the samples from the two classes. Apparently, there is an infinite

number of such possible planes that could correctly classify the training data without

any error. However, there is only one plane that is optimal. It is straight-forward that the

optimal plane is the one that separates the samples without error and, in the meantime,

its distances to the closest samples from both classes is maximal. This optimal plane

can be similar to the one shown in Fig. 2.11, which can presumably generalize best

(i.e. classifying the unseen test data with the lowest error) since it gives the maximum
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geometric margin in the classification.

M
ax

im
um

m
ar

gin

Max
im

um

m
ar

gi
n

Optimal hyperplane

x1

x2

 
Figure 2.11: Optimal separating hyperplane

One way to find the optimal separating plane in a linearly-separable case is through

constructing the so-calledconvex hullsof samples from each class as shown in Fig.

2.12. The enclosed regions are the convex hulls for the respective class. By examining

the hulls, it is possible, albeit not automatically, to determine the closest two points lying

on the hulls of each classes (note that these do not necessarily coincide with actual data

points as in the case of Fig. 2.12. The optimal separating plane is then determined as

the perpendicular and equidistant plane to these points as shown in Fig. 2.12.

The SVM actually stems from the idea of formulating the seeking of the optimal separat-

ing plane that separates samples from two classes with maximum margin. To formulate

the SVM, let’s again start with the simplest case, i.e. the linear machine for linearly-

separable samples. It will be seen latter that the SVM for thegeneral case, nonlinear

machine for non-linearly-separable data results in a very similar mathematical formula-

tion.

Suppose that a datasetD for the linear-separable case is given in the form of{xi ,yi}
N
i=1

wherexi ∈R
D is theith sample,yi ∈ {1,−1} is the corresponding class label. Here,N is
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Figure 2.12: Determination of the optimal separating hyperplane using the concept of
convex hulls

the number of samples andD is the dimensionality. The objective is to find the optimal

separating hyperplane with maximum margin.

Consider the hyperplane is given as

w ·x+b = 0, (2.10)

where(·) refers to inner product (dot product) operator,w is normal to the hyperplane,

b/||w|| is the perpendicular distance from the hyperplane to the origin, and||w|| is the

Euclidean norm ofw as shown in Fig. 2.13. The SVM simply looks for the separat-

ing hyperplane that provides the maximum margin between thetwo classes. It will be

shown that the approach is to reduce the search of the optimalhyperplane to a convex

optimization problem by minimizing a quadratic function under some linear inequality

constraints. It should be noted that the hyperplane as in Equation (2.10) can be scaled

arbitrarily. This allows to transform the problem of maximizing the margin to a problem

of minimizing the norm of the weight vector, by setting the functional margins to be

equal to unity, i.e. setting|w ·x+b|= 1 for the closest samples to the hyperplane, which

can always be guaranteed by appropriate scaling of Equation(2.10) (The hyperplane
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Figure 2.13: Training of the linear SVM, for a linearly-separable case, is to find the
optimal hyperplane (thick line) which separates the samples from two classes (circles
vs. squares) with maximum margin. The support vectors are shown as solid circles or
squares.

with a functional margin of unity is sometimes referred to ascanonical hyperplane).

As the result, the optimal hyperplane can be determined by the following optimization

problem:

minL(w,b) = min
1
2
||w||2, (2.11)

subject to w ·xi +b≥ +1, for yi = +1; (2.12)

w ·xi +b≤−1, for yi = −1. (2.13)

It is not difficult to see that the closest samples to the optimal hyperplane are those that

satisfy the equality in Equations (2.12) and (2.13). They are so-calledsupport vectors

which has a unity distance to the optimal hyperplane and, in other words, which define

the supporting hyperplane (H−1 and H+1 in Fig. 2.13). The margin between these

supporting planes can be shown to be 2/||w|| as shown in Fig. 2.13. In the figure, the

support vectors are also highlighted using solid circles orsolid squares.

The inequality constraints as in Equations (2.12) and (2.13) can be combined into one
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set of inequality constraints asyi(w · xi + b)−1 ≥ 0, ∀i. Therefore, the optimization

problem that determines the optimal separating hyperplanecan be simplified to the fol-

lowing primal form:

minJ(w,b) = min
1
2
||w||2, (2.14)

subject to yi(w ·xi +b)−1≥ 0, i = 1, · · · ,N. (2.15)

The above primal form is usually solved via its equivalentdual form. The following

dual form is obtained through introducing the Lagrangian multipliers:

J(w,b,ααα) =
1
2
||w||2−

N

∑
i=1

αi [yi(w ·xi +b)−1], (2.16)

whereαi ≥ 0 is the non-negative Lagrangian multiplier for theith equality in Equa-

tion (2.15). Please note thatJ(w,b,ααα) has to be minimized with respect tow, b and

maximized with respect toαi . Hence,

∂J(w,b,ααα)

∂w
= w−

N

∑
i=1

yiαixi = 0, (2.17)

i.e.

w =
N

∑
i=1

yiαixi = 0, (2.18)

and

∂J(w,b,ααα)

∂b
=

N

∑
i=1

yiαi = 0. (2.19)
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Figure 2.14: Overlapping convex hulls for the non-linearly-separable case

By substituting these into Equation (2.16), the dual form isobtained as

maxJ(ααα) = max
ααα

[
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

yiy jαiα jxi ·x j ],

subject to
N

∑
i=1

yiαi = 0; (2.20)

αi ≥ 0 ∀i.

It is a well-known quadratic programming problem, for whichmany numerical solutions

are available (Hsu et al., 2004; Joachims, 1999; Platt, 1999).

So far, the SVM formulation for determination of the optimalseparating hyperplane

for linearly-separable cases has been described. However,many practical classifica-

tion problems deal with non-separable data as shown in Fig. 2.14 (they have overlaps

in their convex hulls for the two classes). Obviously, it maybe possible to define a

complicated nonlinear hyperplane to separate the data perfectly but it is well-known

in machine learning community that it causes the overfittingproblem which adversely

affects the generalization ability of the classifier.

Assuming that a discriminant hyperplane is still desirablefor these non-separable cases,

the SVM handles such cases via the concept of so-calledsoft margin classifier(see Fig.
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Figure 2.15: The concepts of the soft margin and the slack parameter used for the linear
SVM for the non-separable case.

2.15). The term “soft margin” means that the margin constraints are relaxed to allow

for some violation of some samples (the violation is denotedby a non-negative slack

variableξi as shown below) and that this violation is meanwhile given proportionate

influence on the location of the hyperplane. Thus the primal form as in Equations (2.14)

and (2.15) is changed to

minJ(w,b,ξξξ ) = min

[

1
2
||w||2+C

N

∑
i=1

ξi

]

, (2.21)

subject to yi(w ·xi +b)−1+ξi ≥ 0, i = 1, · · · ,N, and (2.22)

ξi ≥ 0, i = 1, · · · ,N, (2.23)

whereC is the generalization parameter that offers a trade-off between accuracy of data

fit and regularization.

As shown in Fig. 2.15, only those samples that violate the supporting hyperplane (H−1

and H+1 for class−1 and class+1 respectively) have a positive slack parameterξ and

their distance to the respective supporting hyperplane isξ/||w||. Therefore, for an error

to occur, the correspondingξ must exceed unity. Hence,∑i ξi is an upper bound on the
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number of training errors. Equation (2.21) clearly shows the motivation of the soft mar-

gin concept used in the SVM for non-separable cases: it offers a trade-off between the

empirical classification accuracy (the training error) andregularization capability (the

geographic margin). A small value ofC significantly limits the influence of outliers,

whereas a large value ofC give heavy penalty on the errors made by the hyperplane

which may lead to a discriminant hyperplane biased to the outliers. Therefore, appro-

priate selection ofC is of great importance and it is still an ongoing research topic. Typ-

ically, the parameterC is selected using the cross-validation procedure althoughother

methods have also been discussed (Chapelle et al., 2002; Keerthi, 2002; Lee and Lin,

2000).

Using the similar strategy of introducing Lagrandian multipliers to Equations (2.21) and

(2.22), the dual form of soft margin SVM can be obtained as

maxJ(ααα) = max
ααα

[
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

yiy jαiα jxi ·x j ],

subject to
N

∑
i=1

yiαi = 0; (2.24)

0≤ αi ≤C ∀i.

It is again a quadratic programming problem. Comparing thiswith Equation (2.20),

it is clear that the only difference is the new constraint of 0≤ αi ≤ C (replacing the

previous one ofαi ≥ 0). The change of the constraints has no significant implication on

the method that solves the quadratic programming problem.

While the SVM stemmed from of the idea of (soft) margin classifier as described above,

it was the idea ofkernel trickthat popularized the SVM. The idea of kernel trick offers

an alternative solution to approximate any nonlinear discriminant function in original

feature space (the input space) by nonlinearly projecting the data into a high (possibly

infinite) dimensional feature space, using an appropriate nonlinear mapping function.
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The key success of kernel trick lies in the special types of mapping functions that obey

Mercer’s theorem (also called reproducing kernel Hillbertspaces). These mapping func-

tions offer an implicit mapping that maps the original feature vectorx ∈ R
D into a high

(possibly infinite) dimensional Hillbert feature space,H, using a nonlinear mapping

functionΦ:

K(x1,x2) = Φ(x1) ·Φ(x2), R
D Φ
−→ H. (2.25)

This means the explicit mapping needs not be known or calculated; rather the cheap

inner product is sufficient to provide the mapping. Further,this means that the input

feature inner product can simply be substituted with the appropriate kernel function to

obtain the nonlinear SVM formulation that is capable of approximating any complicated

nonlinear discriminant functions in the input space, without involving any other changes.

In this way, all the benefits of the original linear SVM methodare maintained, yet the use

of kernel trick transforms a simple linear classifier into a powerful nonlinear classifier.

Hence, the primal form of the nonlinear SVM is

minJ(w,b,ξξξ ) = min

[

1
2
||w||2+C

N

∑
i=1

ξi

]

, (2.26)

subject to yi(w ·Φ(xi)+b)−1+ξi ≥ 0, i = 1, · · · ,N, and (2.27)

ξi ≥ 0, i = 1, · · · ,N, (2.28)

and the corresponding dual form is

maxJ(ααα) = max
ααα

[
N

∑
i=1

αi −
1
2

N

∑
i=1

yiy jαiα jK(xi ,x j)],

subject to
N

∑
i=1

yiαi = 0; (2.29)

0≤ αi ≤C ∀i.
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Popular kernel functions used in SVM include

Polynomial: K(x1,x2) = (x1 ·x2+a)b, for a = 0 or 1,b > 1; (2.30)

Gaussian: K(x1,x2) = exp
[

−γ(−||x1−x2||
2)

]

for γ > 0; (2.31)

Sigmoid: K(x1,x2) = tanh(ax1 ·x2+b), for somea > 0 andb > 0. (2.32)

After the machine training, for a given unseen feature vector (representing a test pattern),

the trained SVM outputs its predicted class label (-1 or +1) based on the half space

(defined by the hyperplane) into which that feature vector falls, by the following output

function

f (x) =
N

∑
i=1

yiαiK(xi,x)+b, (2.33)

and the decision function

d(x) = sgn

[

N

∑
i=1

yiαiK(xi ,x)+b

]

. (2.34)

The hyper-parameters of SVM,C and others (for example, theγ in the Gaussian ker-

nel), are typically selected through a grid-search via a cross-validation procedure. The

optimal values for these hyper-parameters that produce thehighest cross-validation ac-

curacy are used in the final training of the SVM. Such model selection also provides

significant immunity to the overfitting problem.

2.10.2.2 Platt’s Probabilistic Outputs for SVM

Standard SVM classifies a samplex depending on the sign off (x), or the half space in

H into whichΦ(x) falls. Such an approach, however, ignores the relative confidence in
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the classification, or the distanceΦ(x) is from the separating hyperplane. Platt (2000)

addressed this shortcoming through the use of a sigmoid function and mappedf (x) into

p(ω|x) (i.e. the probability of belonging to the classω givenx), providing probabilistic

information from standard SVM output. Here,ω = +1 or ω = −1 for class+1 and

class−1, respectively. The benefit ofp(ω|x) over f (x) in improving classification

accuracy has been demonstrated on several numerical experiments in the domain of

machine learning (Duan and Keerthi, 2005; Platt, 2000), butit has rarely been studied

in real-life applications.

SupposeN+ andN− are the numbers of positive (y= +1) and negative (y=−1) samples

respectively in the datasetD. The Platts probability output is

p̂(ω|x) =
1

1+exp[(A f(x)+B)]
, (2.35)

where f (x) is the SVM output given by Equation (2.33) and the parametersA andB

are obtained from minimizing the negative log likelihood (or the cross-entropy error

function) ofD in the form of

minF(A,B) = min{−∑
i
[tk log p̂(ω|x)+(1− tk) log(1− p̂(ω|x))]}, (2.36)

wheretk = (N+ +1)/(N+ +2) if yk = +1 andtk = 1/(N−+2) if yk =−1. It needs to be

noted that Lin et al. (2003) have suggested some modifications for numerical stability in

obtaining the above Platt’s probabilistic output. Hereafter, p̂(ω|x) refers to the estimated

posterior probability of belonging classω givenx obtained from Equations (2.36) and

(2.36), whilep(ω|x) refers to the true but typically unknown posterior probability of

belonging to classω givenx. They will be used extensively in the subsequent chapters.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



2.10 Mathematical Background 75

2.10.2.3 Multi-Class SVM

The SVM was originally designed for two-class classification. Several researchers have

studied the extension of the two-class SVM to multi-class classification, although it has

rarely been discussed and used in biomedical signal processing.

Consider a prototypical multi-class classification problem havingc classes (ω1, ω2, · · · ,

ωc) and a given datasetD in the form of{xi ,yi}
N
i=1 wherexi ∈ R

D is the ith sample,

yi ∈ {1, · · · ,c} is the corresponding class label. Hence,yi = k if and only if xi ∈ ωk.

Let Nk be the number of samples that belong to classωk, N := N1 + · · ·+ Nc be the

total number of samples inD andDi j := {xk,yk}xk∈ωi∪ω j be the subset ofD formed by

samples from classesωi andω j . In addition, letpi(x) ≡ P(ωi |x) denote the posterior

probability of belonging to classωi givenx and letp̂i(x) denote its estimate. Similarly,

pi j (x)≡ P(ωi |x,x∈ ωi or ω j) refers to the pairwise probability of belonging to classωi

knowing thatx is from classωi or classω j and p̂i j (x) is its estimate.

A standard multi-class SVM (for multi-class classificationproblems) is usually imple-

mented by combining several two-class SVMs. The most popular standard multi-class

SVM is the “one-versus-one” SVM (OVO-SVM). The final classification is based on

voting by all the pair-wise two-class SVMs. Specifically, for a given test feature vector,

count the times that each class wins in all these pair-wise classifications and choose the

class that wins most as the class for that test feature vector. Besides OVO-SVM, other

forms of standard multi-class SVM also exist, such as the “one-versus-all” SVM (OVA-

SVM) and various error-correction schemes. They follow similar principle as OVO-

SVM and perform similarly (Hsu and Lin, 2002; Rifkin and Klautau, 2004).

2.10.2.4 Probabilistic Multi-Class SVM

Duan and Keerthi (2005) have reported an interesting study,showing a probabilistic-
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based multi-class SVM performs significantly better than the standard multi-class SVMs

(such as OVO-SVM and OVA-SVM).

The probabilistic-based multi-class SVM is based on the estimations of posterior prob-

abilities using SVM and it has the decision function in the form of

d(x) = argmax
i
{pi(x)}. (2.37)

Typically, pi(x) is estimated by ˆpi(x), obtained from solving the following pairwise-

coupling (PWC) optimization problem (Hastie and Tibshirani, 1998; Wu et al., 2004):

min
p̂i(x)

c

∑
i=1

∑
j : j 6=i

[

p̂ ji (x)p̂i(x)− p̂i j (x)p̂ j(x)
]2

, subject to
c

∑
i=1

p̂i(x) = 1. (2.38)

wherep̂i j (x), p̂ ji(x) are known Platt’s probabilistic outputs of the two-class SVM clas-

sifiers (Platt, 2000) as discussed in Section 2.10.2.2. Specifically, suppose the standard

output of the two-class SVM trained usingDi j is

fi j (x) = ∑
xk∈Di j

ykαkK(xk,x). (2.39)

The probabilistic SVM output, ˆpi j (x), is

p̂i j (x) =
1

1+exp(Ai j fi j (x)+Bi j )
, (2.40)

where the parametersAi j andBi j are determined from minimizing the negative log like-

lihood (or the cross-entropy error function) function, or

minF(Ai j ,Bi j ) = min{− ∑
xk∈Di j

[tk log p̂i j (xk)+(1− tk) log(1− p̂i j (xk))]}, (2.41)

wheretk = (Ni +1)/(Ni +2) if yk = i andtk = 1/(Nj +2) if yk = j. It is worth noting
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that a cross-validation process was suggested by (Platt, 2000) to remove the requirement

of keeping a hold-out validation dataset for fitting the parametersAi j andBi j , which is

especially useful when the number of training samples is small.

The above procedure of obtaining ˆpi(x) from p̂i j (x) is hereafter referred as PWC-

PSVM. Both quantities, ˆpi(x) from Equation (6.2) and ˆpi j (x) from Equation (6.4) are

used extensively in the subsequent chapters.

2.10.2.5 The Weighted SVM for Unbalanced Problem

Unbalanced problem refers to the scenario where one class isvery much under-represented

in the data (with relatively few samples). This is a common and challenging problem

that the machine-learning researchers have to tackle in real-world applications, espe-

cially in many pattern-recognition applications using bio-medical signals. For example,

consider the problem of automatic detection of a certain disease where cases of that dis-

ease in a very large population are perhaps less than 1%. In such circumstance, if we

build a model in the usual way where the aim is to minimize the error rate, this may

easily lead to a biased classifier to say that there is no casesof the disease. The accuracy

of classifier is up to 99%, but of little use.

Classification of a unbalanced dataset often involves adjustments to the modelling in

some way. One conventional approach is to down-sample the majority class to even up

the classes. Alternatively, one might over-sample the rareclass and as such increase the

weight of the minority. Such conventional approaches can work, but it is not always

clear whether they will and how much they can help. Under-sampling can lead to a loss

of information, whilst over-sampling may lead to over-fitting.

The modified SVM, so-called the weighted SVM (Osuna et al., 1997), provides a promis-

ing alternative to deal with the unbalanced problem. Conceptually, the weighted SVM is
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to impose higher penalty on the classification errors made onthe samples from the mi-

nority class. This can be better explained by the following primal and dual formulations

of the weighted SVM:

minJ(w,b,ξξξ ) = min

[

1
2
||w||2+C− ∑

yi=−1
ξi +C+ ∑

yi=+1
ξi

]

,

subject to yi(w ·Φ(xi)+b)−1+ξi ≥ 0, i = 1, · · · ,N, and (2.42)

ξi ≥ 0, i = 1, · · · ,N,

and the corresponding dual form is

maxJ(ααα) = max
ααα

[
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

yiy jαiα jK(xi,x j)],

subject to
N

∑
i=1

yiαi = 0; (2.43)

0≤ αi ≤C− if yi = −1, 0≤ αi ≤C+ otherwise,

whereC− andC+ are different regularization parameters for the negative class and pos-

itive class, respectively. A useful choice (Eitrich and Lang, 2006; Osuna et al., 1997) is

to let

C−

C+
=

N+

N−
. (2.44)

In this way, the weighted SVM deals with the unbalanced problem within the well-

defined framework, the misclassification cost. In this setting, by imposing a very high

cost on misclassification on the minority class, the aim of the weighted SVM is to mini-

mize the misclassification cost, rather than to minimize theerror rate for the case of the

conventional SVM.
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Chapter 3

Proposed Research Approach and Data

Collection

This doctoral research work is concerned with developing novel signal processing meth-

ods that enable automatically measuring and monitoring mental fatigue in individuals

from their EEG recordings. The work is of great interest in traffic safety and other do-

mains where measurement and monitoring of mental fatigue iscrucial. Let’s begin with

the overview of the approach taken in this work.

3.1 Rationale

Despite its clear importance, there is no gold method for mental-fatigue measurement.

The conventional mental-fatigue measurement methods can be classified into two cate-

gories: subjective and objective measurements. Subjective mental-fatigue measurement

methods require subjects to rate their level of mental fatigue either indirectly (e.g. Piper

et al., 1998; Zachrisson et al., 2002) or directly (e.g. Shapiro et al., 2002), whereas objec-
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tive methods assess mental fatigue via quantifying subjects’ performance on a specific

task (e.g. Dinges and Powell, 1985; Thorne et al., 2005). There is a general agreement

that these conventional measurement methods can have good reliability and good va-

lidity. However, they cannot be used in some domains, such astransportation industry,

where an objective and non-intrusive mental-fatigue measurement method is required.

In attempts to develop an objective and non-intrusive mental fatigue measurement method,

some pilot studies have correlated mental fatigue with physiological measures such as

electrocardiogram (ECG), electrooculogram (EOG) and EEG.A good review of these

approaches can be found in the thesis by Mallis (1999) and a review by Lal and Craig

(2001a). More recently, several studies have reported the feasibility of measuring men-

tal fatigue or drowsiness indexed by subject’s task performance, based on EEG data in

attention-sustained experiments using auditory or visualstimuli (e.g. Duta et al., 2004;

Jones, 2006; Jung et al., 1997; Lal et al., 2003; Makeig et al., 2000; Peiris et al., 2004;

Sommer et al., 2002; Vuckovic et al., 2002).

Most of these pilot studies have focused on the detection of performance lapses in the

specific tasks that they studied (i.e. the prediction of a mistake in a specific task) with-

out measuring subjects’ mental-fatigue levels directly. Also, most of these pilot studies

used fairly simple linear or nonlinear regression or neuralnetworks and recent advance

in the signal processing methods, like automatic artifact removal, feature selection and

multi-category pattern classification, have been largely overlooked. More importantly,

the literature continues to produce varying and even conflicting results and very little

evidence exists on the efficacy of incorporating EEG into a practically-usable automatic

mental-fatigue measurement and monitoring system. This islikely due to the challenge

of developing effective mathematical framework, signal processing methods and learn-

ing algorithms for the analysis of EEG signals in relationship to mental fatigue.
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3.2 Approach Taken In This Work

Mental fatigue produces much less distinguishable changesin terms of EEG waveforms

than other brain states like sleep (e.g. Kecklund andÅerstedt, 1993). Therefore, the

design of an EEG-based mental fatigue measurement and monitoring system, as shown

in Fig. 3.1, requires some advanced signal processing methodology to address the in-

terference of artifacts. In addition, good answers are alsorequired for the problem of

selecting useful features in relationship to mental fatigue as well as for the problem of

classifying these features in relationship to mental fatigue. A stringent experimental

design ensuring that the developed system measures a meaningful fatigue-induced EEG

change is also crucial.

Fig. 3.1 shows the flowchart of the data-driven approach taken in this work. The ap-

proach is (i) to (automatically) remove the artifacts that very much undermine the reli-

ability of the EEG as a physiological indicator of mental fatigue; then (ii) to (automati-

cally) identify the key features in the EEG signals that correlate with mental fatigue in

an individual; and finally (iii) to construct an intelligentsystem that tracks the state of

mental fatigue of an individual based on these identified keyfeatures.

The present study may serve as a key step towards an EEG-basedmental-fatigue moni-

toring device or an EEG-based mental-fatigue screening system. The EEG-based mental-

fatigue monitoring device is particularly useful for preventing fatigue-related driving

accidents, where the driver’s mental fatigue needs to be continuously monitored, so

as to trigger necessary countermeasures when the driver becomes too fatigued to be

safe. The EEG-based mental-fatigue screening system is widely demanded in defence

where checking the mental fatigue level is one of the most important parameters in the

routinely-performed fitness-for-duty screening on those military personnel who perform

critical missions (such as cruise duty on a strategic bomber).

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



3.2 Approach Taken In This Work 82

Figure 3.1: Flowchart of the proposed EEG-based mental-fatigue measurement and
monitoring system.
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The rest of this chapter will discuss the experimental design for collecting the mental-

fatigue EEG database that will be used in subsequent chapters to train the proposed

EEG-based mental-fatigue measurement and monitoring system in a supervised regime.

3.3 Experimental Design and Data Collection

Scientific validity and reliability should first be established in a controlled laboratory

experiment. The present work used a rigid, albeit costly, controlled laboratory stud-

ies, involving a 25-hour sleep deprivation on volunteers and sampling over all circadian

phases (or mental-fatigue levels), to ensure that the developed system measures a mean-

ingful fatigue-induced EEG change. This section gives the detailed account of the ex-

perimental design used in this work. The resulting mental-fatigue EEG database (each

EEG segment with a reliable label of mental-fatigue level) was used, in the subsequent

chapters, to train the proposed EEG-based mental-fatigue measurement and monitoring

system in a supervised regime.

3.3.1 Mental-Fatigue EEG Experiments

Let’s begin with the mental-fatigue EEG experiments involving a 25-hour sleep depri-

vation on each subject. Mental-fatigue EEG data, sampling over all circadian phases

(or mental-fatigue levels) throughout the 25-hour sleep deprivation experiment, were

recorded hourly from the subjects. The procedure is as follows.
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3.3.1.1 Hardware and software environment

Monopolar EEG data were acquired at a sampling frequency of 167 Hz using a Medtronic

PL-Winsor 2.35 EEG system together with a 19-channel electrode cap, according to the

international 10-20 system (Jasper, 1958). The EEG data were pre-filtered by the EEG

system through its integrated low-pass filter (cut-off frequency at 35 Hz) and high-pass

filter (cut-off frequency at 0.1 Hz) as well as a 50 Hz notch filter.

Figure 3.2: The experiment set-up for mental-fatigue EEG database collection.

3.3.1.2 Subjects

In total, 22 subjects were selected from right-handed volunteers of local tertiary institu-

tions who fulfilled the inclusion criteria of not being on anymedication, no history of

sleep disorders and with regular sleep hygiene as evidencedby a one-week sleep diary

prior to the experiment. The recruitment of human subjects for this study was approved

by the Institutional Review Board of the National University of Singapore. Informed

consents were obtained and nominal monetary incentives sufficient to cover transporta-

tion costs were given for their participation.
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3.3.1.3 Procedure

Each subject underwent a 25-h sleep-deprivation experiment in a temperature-controlled

laboratory (23–25◦C) from 8:30 am to 9:30 am next day. Caffeine, tea, smoking were

prohibited for about two days (from one-day before the experiment till the end of exper-

iment). Subjects were required to perform an auditory working-memory vigilance task

(AWVT) session once an hour throughout the experiment (witheyes open) and they

were allowed to engage in non-strenuous activities in non-AWVT-session period. EEG

data were recorded simultaneously during every AWVT session and they were labeled to

5-level mental fatigue according to the subject’s performance in AWVT. The details of

such labeling of the mental-fatigue EEG data using AWVT is given in the next section.

3.3.2 Labeling of Mental-Fatigue EEG

In order to train the proposed system in a supervised regime,an AWVT was proposed to

label the recorded mental-fatigue EEG resulting from the above 25-hour mental-fatigue

EEG experiments. Specifically, according to a subject’s performance on AWVT, the

EEG data, collected hourly throughout his/her 25-hour sleep-deprivation experiment,

were manually classified into mental fatigue at 5 levels.

3.3.2.1 Why AWVT?

The simplest measure of mental fatigue can be a subjective self-report measure, such

as a the Visual Analogue Scale, Stanford Sleepiness Scale, Epworth Sleepiness Scale,

Karolinska Sleepiness Scale and the recent Situational Fatigue Scale (Yang and Wu,

2005). Here a person is made to rate his current state about his own assessment of

mental fatigue. These scales though easy to administer, have shown that many times a
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person is not the best judge of how much his functioning capacity is compromised due

to mental fatigue (Frey et al., 2004). Some of these tests arevery detailed and require the

subject to estimate their level of fatigue if they were in specific situations (like watching

TV, shopping, etc), for a certain period. Though these scales claim to have good results

in assessing fatigue, but it raises the question whether such situations as ”watching TV”,

would have the same effect on all people, without depending on the nature of what they

were watching on TV. These measures could have many psychological factors affecting

the estimate, and thus they may not be so accurate. This kind of subjective self-report

measures have given rise to performance measures which are objective and mostly free

from drawbacks of self-report measures.

Subjective mental fatigue measurement methods require subjects to rate their level of

mental fatigue either indirectly (e.g. Piper et al., 1998; Zachrisson et al., 2002) or directly

(e.g. Shapiro et al., 2002), whereas objective methods assess mental fatigue via quan-

tifying subjects performance on a specific task (e.g. Dingesand Powell, 1985; Thorne

et al., 2005). One of the most commonly used objective measure of mental fatigue is the

Psychomotor Vigilance Task (PVT), developed by Dinges and Powell (1985). In this

task, a visual stimulus is given and the subject has to press aresponse button as soon as

possible. Many studies have shown that the performance on this task shows an increase

in reaction time as the mental fatigue increases. The popularity of the PVT is mainly be-

cause it is a simple task, which could be easily performed by anyone, not depending on

the aptitude and education of the person. The Walter Reed Army Institute of Research

has developed a PDA based PVT, known as PalmPVT, which has also shown close cor-

respondence with the original PVT in terms of results when used in sleep deprivation

studies (Ferguson et al., 2005; Lamond et al., 2005; Thorne et al., 2005).

A task like PVT is useful to detect arousal of a person, and howit changes with the

progress of mental fatigue. Arousal is defined as the generalreadiness of the nervous

system to respond to a novel stimulus. It is seen that arousalmainly affects the reaction
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time in a vigilance task, while the accuracy does not only depend on arousal (Tassi et al.,

2003). This kind of a task can be an accurate measure in situations where people are

required to do monotonous tasks like electronic component assembling. On the other

hand, it may not be such a good measure in situations where thejob demands are more

complex and thus the higher faculty of brain functions are required.

Mental fatigue has a variety of effects on the functioning ofthe brain. The most ex-

tensively studied effect is that on sustained attention or vigilance. It is seen that the

reaction time in a vigilance task like the PVT, is directly proportional to mental fatigue

(Dinges and Powell, 1985; Pack et al., 2006; Rogers et al., 2003). Other faculties like

working memory, judgment and decision making are also affected as fatigue progresses

(Cajochen et al., 2004; Staal, 2004). It has even been shown that after a certain level

of sleep deprivation, the performance deterioration is similar to that caused by raised

levels of alcohol in the body (Arnedt et al., 2001; Dawson andReid, 1997; Lamond and

Dawson, 1999).

Though the PVT is a simple task that gives a fairly accurate measure of sleepiness

in individuals, one can wonder about how many tasks in real life situations require a

reaction time type response from individuals. Is a driver just required to press a button

or pedal when he sees an obstacle in front, or is he also required to make a decision

on which pedal to press, or which side to steer the car to avoidthe pending danger?

In practical situations such kind of decision-making goes hand in hand with a timely

response, and thus the outcome in such a situation not only depends on how fast a person

responds, but how adequately he decides to take corrective action. Similarly working

memory is used to keep relevant information in the mind, likespeed limits while driving.

The burden on working memory is more for pilots, who have to take many variables in

consideration from various instruments, to make their decisions. These basic functions

of working memory and decision making thus form an importantfoundation on which

the functioning of a person depends in real life conditions.It has been seen in studies

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



3.3 Experimental Design and Data Collection 88

that these functions also deteriorate due to sleep deprivation, apart from the decrease in

vigilance capacity.

As pointed out by Rogers et al. (2003), working memory and attention are important

factors that may influence the ability to perform neurobehavioral tasks and determine

the efficiency of neurocognitive functioning. Similarly, according to a report on a study

of Canadian Marine pilots, the tasks rated by pilots to be most affected by fatigue were

decision-making, attention, remaining awake and reactiontime (Rhodes and Gil, 2002).

In addition, the study also pointed out that mental fatigue led to decreased performance

on memory tasks. Other studies too have pointed out these same deficits. Ferguson

et al. (2005) asserted that slowed reaction time, impaired decision making, memory dif-

ficulties and vigilance decrements are caused by mental fatigue. Various studies on the

changes in working memory due to sleep deprivation have shown that the performance

deteriorates (Caldwell et al., 2004; Chee and Choo, 2004; Murphy and Delanty, 2007;

Smith et al., 2002). Similarly executive functioning and decision-making are also de-

graded due to mental fatigue (Bruck and Pisani, 1999; Killgore et al., 2006; Neri et al.,

1992; Nilsson et al., 2005; Raaijmakers, 1990).

There are also many different tasks that assess different functions of the brain (Bonnet

and Arand, 1999; Griffin and Koonce, 1996; Wilson, 2002; Wilson et al., 2007). These

tasks usually take a long time, or are required to be done by professionals or operators.

Objective ways to find the propensity to fall asleep as measured by Multiple Sleep La-

tency Test and a measure of alertness like Maintenance of Wakefulness Test are also lab

based (Bonnet and Arand, 1999).

The need exists for such tasks that can be used independentlyby subjects in real work

environments, with minimum hindrance to their daily work routine, without the need

for operators or observers. Such a task, which also incorporates other higher faculties of

brain functions in addition to reaction time, will be a better test of a person’s capabilities
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to perform in a real world situation. Thus, a reaction time task is modified to introduce

the elements of working memory and decision making, so that amore realistic way of

measuring the performance decrements due to mental fatiguecan be developed.

3.3.2.2 Characteristics of An Ideal Objective PerformanceTask

Considering the wide range of functions that deteriorate due to sleep deprivation, there

is a need for a comprehensive task, able to obtain a more realistic measure of a person’s

ability to perform his duties safely. An ideal task, for wideuse should have the following

characteristics:

(a) It should accurately measure mental fatigue.

(b) The amount of skill involved in doing the task should be absent or minimal. This

will make the task suitable for use without depending on the aptitude or education

of a person.

(c) It should have minimum dependence on motivation and other psychological fac-

tors, so that it can be more reliable for repeated use.

(d) The task should be comprehensive - measuring a range of human faculties (like

working memory, decision making, attention), so that it canbe a more realistic

test of the ability of a person to do his job safely.

(e) The task should be sensitive enough to test the functioning capability of a person

in a short time, so that it causes minimal disruption of the normal routine of a

person.

(f) The task should measure those functions that are used in most real life scenarios,

so that it can be used in different situations and have wide application.

(g) The task should be reliable and consistent.
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3.3.2.3 The AWVT

The auditory working-memory vigilance task is our attempt to measure mental fatigue

in a more realistic way, in which the task performance involves higher mental abilities

of a person, like working memory and decision making, in addition to vigilance.

Description: The AWVT can be seen as a variation of the Serial Choice Vigilance Task

(SVT), using auditory stimulus. In the usual SVT, there are multiple stimulus types, and

multiple response buttons corresponding to those stimuli.At a particular time, one of the

stimuli is given, and the person has to decide which responsebutton to press, keeping in

mind, which button corresponds to that particular stimulus. This appearance of stimuli

is random and continues for a fixed number of trials or a fixed period. This kind of task

introduces the decision-making element to the simple reaction time task, like PVT.

In AWVT, stimulus-delivering software was used on a PC. Programming was done to

deliver a set of four direction commands (left, right, up, down), in random order, every 5

seconds. Each direction command, within a set, was given at 500 ms interval. Subjects

were required to constantly concentrate and, after the command set is given through

headphones connected to the PC, to press the pre-specified buttons, within 1.5 s after

each complete command set, in the order of commands that theyheard. This gave

the subject enough time to press the response keys, but stillnot giving too much time

to relax. The period between the stimuli set was fixed, so there was no variation in

foreperiod, like in the PVT and PalmPVT. The software creates text files showing the

sequence of events (both stimulus command and response) andtheir time stamps, with

millisecond resolution. There is no feedback system in the program to show the reaction

time after a trial. The reaction times and errors were calculated separately later from the

collected text files. An error is one where the response sequence is not the same as the

given command set.
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Mental-Fatigue Scoring Using AWVT: For every AWVT session, an AWVT score was

calculated in terms of percentage of correct responses. EEGdata recorded simultane-

ously during the AWVT session were labeled to 5-level mentalfatigue according to the

subject’s AWVT performance. Specifically, for each subject, his/her individual perfor-

mance span (the highest AWVT score to the lowest AWVT score) was evenly divided

into five segments corresponding to fatigue level 1, · · · ,5, respectively. The label (i.e.

mental fatigue at 5 levels) of the EEG data for an AVT session was determined by which

segment the corresponding AWVT performance score fell into.

The AWVT differs from other simple reaction time tasks like PVT in that it introduces

the decision-making element so as to get a more realistic measure of a person’s cognitive

performance impairment due to mental fatigue. Beside this unique property, standard

measures, such as the learning curve, test-retest reliability and within-subject consis-

tency, also show that the AWVT offers as good classification of mental fatigue, if not

better, than the other simple reaction time tasks like PVT:

(a) The AWVT appears to have a similar learning curve to the PVT. The learning

curve for a task shows how many trials it will take for the performance on the task

of a subject to become saturated (defined as less than ten percent change in con-

secutive trials). It captures the subject’s learning effect on the task performance.

A shorter learning curve is usually preferred due to the concern of potential com-

pounding of the learning effect (extraneous factor, i.e. the noise) and the under-

lying brain functional impairment due to mental fatigue (factor to be measured,

i.e. the signal). The study of the learning curve of AWVT on randomly-chosen

5 subjects in our pilot study shows that the AWVT performancescore saturated

after 1-3 trials, indicating a similar learning curve to PVT.

(b) The AWVT appears to have a better test-retest reliability than PVT. The test-retest

reliability is to measure the reproducibility of the circadian rhythms throughout
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the 25-hour sleep deprivation of the same subject on different experiment days.

Table 3.1 shows the test-retest Pearson’s correlation of the randomly-chosen 5

subjects. It is worth noting that the higher correlation between different experi-

ment days on the same subject indicates the higher test-retest reliability.

(c) The AWVT also demonstrated better within-subject consistency than PVT. Both

AWVT and PVT offers a relative measure of mental fatigue, benchmarked against

the maximum and minimum values over a 25-hour sleep-deprivation experiment.

This requires that the highest and lowest performance scores for a particular sub-

ject should not vary much, when the task is done on different days. Thus, the

consistency in maxima and minima of the task performance score over different

experiment days is a good indicator of the within-subject consistency of that task.

The test-retest studies on the randomly-chosen 5 subject show that, between orig-

inal and repeat studies, for each particular subject, the percentage change in the

maxima and minima values of AWVT scores ranged from 0.8% to 8.3% (Mean

3.96%; SD 2.67%), while the percentage change for PVT lapsesranged from

22.2% to 36.3% (Mean 27.1%; SD 8%): a strong indicator of the better within-

subject consistency of AWVT.

Table 3.1: Pearsons correlation values between initial andrepeat trials on five subjects
for AWVT performance score and PVT lapses. The higher correlation indicates the
higher test-retest reliability.

sub1 sub2 sub3 sub4 sub5
AWVT 0.69 0.88 0.69 0.76 0.71

PalmPVT Lapses 0.60 0.77 0.29 0.51 0.60

3.4 Concluding Remarks

As a result of the 25-hour sleep deprivation experiments, a relative large database of

mental fatigue EEG (with reliable labels of mental fatigue levels), collected from 22
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subjects (each underwent a 25-hour sleep deprivation), wasestablished. As it will be

seen in the subsequent chapters, part of the resulting mental-fatigue EEG database (with

corresponding labels of mental fatigue level given by auditory working-memory vigi-

lance task (AWVT)) were used to train the proposed EEG-basedmental-fatigue mea-

surement and monitoring system as shown in Fig. 3.1. The trained system was then

tested on unlabeled EEG data and subsequently checked for concordance with the man-

ual classification by AWVT.
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Chapter 4

Weighted SVM with Error Correction

for Automatic EEG Artifact Removal

The presence of artifacts, such as eye blinks, in electroencephalographic (EEG) record-

ings obscures the underlying signals and makes EEG analysisdifficult. Large amounts

of EEG data must often be discarded because of contaminationby eye blinks, muscle

activity, line noise, and pulse signals. In this chapter, a novel automatic EEG artifact

removal method based on independent-component-analysis (ICA) is presented. In this

method, no EEG data are discarded. In stead, artifacts are automatically identified and

subsequently removed after they are decomposed from raw EEGdata by ICA. Com-

paring with past methods, the proposed method has two uniquefeatures: 1) a weighted

version of Support Vector Machine (SVM) formulation that handles the inherent un-

balanced nature of component classification; 2) ability to accommodate structural in-

formation typically found in component classification. Theadvantages of the proposed

method are demonstrated on real-life EEG recordings with comparisons made with sev-

eral benchmark methods in the literature. Results show thatthe proposed method is

preferable to the other methods in the context of artifact removal by achieving a better
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tradeoff between removing artifacts and preserving inherent brain activities. Qualitative

evaluation of the reconstructed EEG epochs also demonstrates that after artifact removal

inherent brain activities are largely preserved.

4.1 Introduction

Electroencephalogram recordings are known to be contaminated by physiological arti-

facts from various sources, such as blinking and movements of the eyes, beating of the

heart and movements of other muscle groups (e.g. Jung et al.,2000a). These artifacts are

mixed together with the brain signals, making interpretation of the EEG signals difficult

(Urrestarazu et al., 2004).

Artifacts in EEG are commonly handled by discarding the affected segments of EEG.

The simplest approach is to discard a fixed length segment (usually 1-3 seconds) from

the time an artifact is detected. The recognition of some artifacts, like eye blink artifacts,

are generally effected by detecting a voltage exceeding a threshold (usually 100µV) in

separate EOG channel. Other artifacts are generally ignored or manually marked by a

EEG practitioner and then manually discarded. Discarding segments of EEG data with

artifacts can greatly decrease the amount of data availablefor analysis.

In recent years, there has been increasing interest in applying independent-component-

analysis (ICA) (Common, 1994; Hyvarinen, 2000; Jutten and Herault, 1991) to artifact

removal in EEG (Castellanos and Makarov, 2006; Jung et al., 1998, 2000a,b; Makeig

et al., 1996; Urrestarazu et al., 2004; Vigário et al., 2000; Vigário, 1997; Wallstrom et al.,

2004). This is mainly motivated by the fact that ICA is effective in decomposing raw

EEG recordings into artifactual and non-artifactual independent components (ICs) (e.g.

Castellanos and Makarov, 2006; Jung et al., 1998; Vigário et al., 2000). Non-artifactual

ICs represent signals from brain activations while artifactual ICs represent electrical sig-
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nals originating from non-cerebral artifacts. In conventional ICA-based artifact removal

methods (e.g. Makeig et al., 1996; Urrestarazu et al., 2004;Vigário et al., 2000), arti-

factual ICs are manually identified (usually by visual inspection) and removed. This

process is very time-consuming and, hence, not suitable forreal-time applications. Re-

cent effort towards automatic artifact removal includes the pilot work by Nicolaou and

Nasuto (2004) and Shoker et al. (2005) where a standard SVM (Boser et al., 1992; Cortes

and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000; Vapnik, 1995, 1998) trained on

equal number of artifactual and non-artifactual samples, is used for automatic identifi-

cation of artifactual ICs.

Such a combination of ICA and SVM offers a promising approachfor automatic arti-

fact removal. Unfortunately, unique properties of the problem at hand have not been

taken into consideration. First, the real data is extremelyunbalanced-only a few of

the ICs are artifactual ICs and the majority is non-artifactual ICs (e.g. Castellanos and

Makarov, 2006; Joyce et al., 2004; Jung et al., 2001; Onton etal., 2006; Romero et al.,

2003). It is well known in the machine learning community that the performance of a

standard SVM, trained on balanced dataset, may perform poorly when the real data is

unbalanced. Second, the number of artifactual ICs responsible for each type of artifact,

decomposed from a given EEG epoch, is often small. This structural information of

the underlying data can be very useful for improving the accuracy of automatic artifact

identification. To the best of our knowledge, such structural information has however

not been exploited in past literature.

This chapter shows a formulation that exploits the above-mentioned unique properties

by: 1) using weighted SVM (Osuna et al., 1997) to handle the unbalanced data, and 2)

imposing constraints on the number of artifactual ICs through a novel error correction

algorithm. It is worth noting that the proposed formulationis conceptually different

from past ICA-based artifact removal methods. It considersall the ICs derived from

a given EEG epoch collectively while past methods treat eachIC independently. In a

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



4.2 Overview of the Proposed Artifact Removal System 97

Z
�

 

Figure 4.1: Block diagram of the proposed ICA-based automatic artifact removal sys-
tem. The system consists of four main modules: ICA, feature extractor, IC classifier
and EEG reconstruction module. The novelty of the proposed IC classifier is explicitly
shown. It has two sub-modules: a modified probabilistic multi-class SVM to address the
unbalance nature of the data and an error correction block tohandle the unique structural
information of the data.

carefully controlled experiment using real-life EEG data,the proposed method shows

significant performance advance as compared with a number ofpast methods in the

literature.

4.2 Overview of the Proposed Artifact Removal System

This section provides an overview of the proposed automaticartifact removal system

and establishes the necessary notations needed for subsequent sections. Like other ICA-

based artifact removal systems in the literature, the proposed system (see Fig. 4.1)

consists of four main modules: ICA, feature extractor, IC classifier and EEG recon-

struction. The contribution of the present work is mainly onthe new method used in the

IC classifier, though the feature extractor also includes some new features.

The continuous raw EEG recording is first segmented into epochs with a fixed length.

The resulting EEG epochs are then fed, epoch by epoch, into the artifact removal system.

Given a raw EEG epoch as the input, the output of the system is the reconstructed
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artifact-free EEG epoch.

Consider a givenn-channel raw EEG epoch,Z = [z1 z2 · · · zn]
T wherezi ∈R

l , ∀i, is the

time series for theith EEG channel with a fixed length,l . The ICA module decomposes

Z into m (≤ n) ICs, each representing an independent source. LetS = [s1 s2 · · · sm]T

denote the resulting ICs wheresi ∈ R
l , i = 1, · · · ,m, is theith IC andA = [a1 a2 · · · am]

denote the mixing matrix withai ∈ R
n containing the scalp distribution coefficients of

si . While many implementations of ICA are available, the popular FastICA package

(Gävert et al., 2005) is used in the present work.

The feature extractor generates a set of feature vectors from each of thesi ’s. Suppose

D features are extracted fromsi. Then,x(si) = [g1(si) g2(si) · · · gD(si)]
T denotes the

feature vector extracted fromsi andX(S) = [x(s1) x(s2) · · · x(sm)]T denotes the set of

feature vectors obtained fromS.

Suppose thesi ’s are attributed toc different classes{ω1, · · · ,ωc} with ω1 referring to the

class of brain sources and the restc−1 classes, i.e.ω2, · · · ,ωc, referring to different arti-

factual sources. Standard IC classifier used in the literature (Nicolaou and Nasuto, 2004;

Shoker et al., 2005) classifiessi into one ofc classes, or the decision functiond(x(si))

mapsx(si) into{ω1, · · · ,ωc}. Such a setup considerssi , i = 1, · · · ,m, independently and

is the framework used in most work in the literature. However, it is difficult for such a

setup to account for the unique structure of the underlying data. The proposed classi-

fier, as shown in Fig. 4.1, considers thesi ’s collectively and yields allm predicted class

labels via the decision functiond(X(S)). Such a setup aims to incorporate structural

information of the dataset and address the unbalanced nature of the data.

The proposedd(X(S)) is based on a modified version of probabilistic multi-class SVM.

The choice of SVM stems from its superior performance on manylearning problems.

Justification to this choice is verified by experimental results compared with other clas-

sification approaches, like KNN, Gaussian mixture models (GMM) and linear discrim-

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



4.3 The Proposed Approach 99

inant function (LDF). It is worth noting that the proposed modification to the proba-

bilistic multi-class SVM to address the unbalanced nature of the data is also a novel

contribution of this work. The detailed account of the proposed IC classifier will be

given in the next section.

The EEG reconstruction module reconstructs artifact-freeEEG epoch by zeroing the

contribution of all artifactual sources from raw EEG epoch.SupposẽS is obtained from

Sby zeroing all the identified artifactual ICs. The reconstructed artifact-free EEG epoch,

denoted bỹZ, can be obtained as follows:Z̃ = AS̃.

4.3 The Proposed Approach

The proposed IC classifier is a combination of a modified probabilistic multi-class SVM

and a novel error correction algorithm. It is our attempt to address the unique properties

of the problem. Givenm ICs decomposed from an EEG epoch, letmωi be the number of

ICs corresponding to classωi . The unique properties of the problem can be effected in

terms of the following constraints:

mω1 ≫ mω2, mω1 ≫ mω3, · · · , mω1 ≫ mωc, and (4.1)

lω2 ≤ mω2 ≤ uω2, lω3 ≤ mω3 ≤ uω3, · · · , lωc ≤ mωc ≤ uωc. (4.2)

The constraints in Equations (4.1) represent the inherent unbalanced nature of the data,

while those as in Equations (4.2) are the unique structural information that define the

upper and lower bounds, denoted byuωi andlωi , respectively, with regards to the num-

ber of ICs belonging to each type of artifactual source. Optimal values ofuωi and lωi

depend on the bioelectrical nature of that artifact (e.g., electrocardiogram (ECG) and

electrooculogram (EOG) artifacts generally have three spatial components each) and

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



4.3 The Proposed Approach 100

the protocol under which the EEG data are collected (e.g. thenumber of EEG channels

used). Typically, they can be tuned by a data-driven approach. The details will be given

in the description of the numerical experiments in this chapter.

4.3.1 The Modified Probabilistic Multi-Class SVM

A modified probabilistic multi-class SVM is proposed to address the unbalanced nature

of the learning problem (as shown in Equations (4.1)). It is modified from a recently-

developed probabilistic multi-class SVM proposed by Hastie and Tibshirani (1998),

by replacing all the standard binary SVMs with weighted SVMs(Osuna et al., 1997).

This modified probabilistic multi-class SVM is hereafter denoted as the weighted PWC-

PSVM method. The implementation of the weighted PWC-PSVM involves three major

steps as follows.

Let’s begin with the general notations needed. Consider a nominal c-class unbalanced

classification problem with datasetD in the form of{xi,yi}
N
i=1, wherexi ∈ R

D is theith

sample andyi ∈ {ω1, · · · ,ωc} is the corresponding class label andN is the total number

of training samples. LetNi denote the number of training samples belonging to classωi ,

andDi j ≡ {xk,yk}xk∈ωi∪ω j be the subset ofD formed by the samples from classωi and

ω j .

Construction of Weighted Binary SVMs: In total,c(c−1)/2 weighted binary SVMs

are constructed, each classifying a pair of classes. The weighted binary SVM classifying

classωi and classω j is trained usingDi j by solving the following optimization problem
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(Osuna et al., 1997):

minJ(w,b,ξξξ ) = min

[

1
2
||w||2+Ci j ∑

xk∈ωi

ξk +Cji ∑
xk∈ω j

ξk

]

,

subject to w ·Φ(xi)+b≥−1−ξk, if xk ∈ ωi , (4.3)

w ·Φ(xi)+b≤−1+ξk, if xk ∈ ω j , and

ξk ≥ 0,∀k,

whereΦ(·) is a nonlinear mapping function that maps feature vectors into a high (pos-

sibly infinite) dimensional Euclidean spaceH; w ∈ H, b ∈ R are the parameters that

determine the optimal separating hyperplane:w ·Φ(x) + b = 0; ξk ∈ R is the non-

negative slack variable. Different regularization parameters,Ci j andCji , are introduced

for the classesωi andω j , respectively. A useful choice (Eitrich and Lang, 2006) is to let

Ci j

Cji
=

Nj

Ni
. (4.4)

Conceptually, this is to impose higher penalty on the classification errors made on the

samples from the minority class.

Practically, the optimization problem of Equation (4.3) issolved using its dual formula-

tion (Boser et al., 1992; Cortes and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000;

Vapnik, 1995, 1998):

maxJ(ααα) = max
ααα

[ ∑
xk∈Di j

αk−
1
2 ∑

xp∈Di j

∑
xq∈Di j

ypyqαpαqK(xp,xq)],

subject to ∑
xk∈Di j

ykαk = 0; (4.5)

0≤ αk ≤Ci j if xk ∈ ωi , 0≤ αk ≤Cji otherwise,

whereαk is the non-negative Lagrangian multiplier for thekth sample andK(xp,xq) =
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Φ(xp) ·Φ(xq) is the kernel function. Let’s denote the output function of this weighted

binary SVM by

fi j (x) = ∑
xk∈Di j

αkykK(xk,x)+b. (4.6)

The choice of kernel functionK(·, ·) in the above equation is general and our study is

done with the popular Gaussian kernel,K(xp,xq) = exp(−γ‖xp−xq‖
2) whereγ is the

kernel parameter.

Generating Pairwise Class Probabilities:Standard SVM classifies a samplex depend-

ing on the sign off (x), or the half space inH into which f (x) falls. Such an approach,

however, ignores the relative confidence in the classification, or the distance thatx is

from the separating hyperplane. Platt (2000) proposes the use of the following sigmoid

function to mapfi j (x) into pi j (x) ≡ P(ωi |x,x ∈ ωi ∪ω j), the pairwise probability of

belonging to classωi knowing thatx is from classωi or ω j :

pi j (x) = 1− p ji (x) =
1

1+exp[Ai j fi j (x)+Bi j ]
, (4.7)

where the parametersAi j andBi j are determined from minimizing the negative log like-

lihood function (see Section 2.10.2.2 for details).

It is worth noting that a 5-fold cross-validation procedureis implicitly used in fitting

the parametersAi j andBi j , as suggested by Platt (2000). This cross-validation process

removes the requirement of keeping a hold-out validation dataset for fitting the parame-

tersAi j andBi j , which is especially useful when the number of training samples is small.

Our implementation also includes the modifications suggested by Lin et al. (2003) for

numerical stability.

Estimating Multi-class Posterior Probability: Given pi j (x),∀i 6= j, the multi-class
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posterior probabilities of belonging toωi givenx, denoted bypi(x)≡P(ωi |x),∀i, can be

estimated by solving the following optimization problem (Hastie and Tibshirani, 1998;

Wu et al., 2004):

min
pi(x)

c

∑
i=1

∑
j : j 6=i

[

p ji (x)pi(x)− pi j (x)p j(x)
]2

, subject to
c

∑
i=1

pi(x) = 1. (4.8)

Let p(x(si)) = [p1(x(si))p2(x(si)) · · · pc(x(si))]
T , representing the vector of multi-class

posterior probabilities as given by Equation (4.8) for thesi, the ith IC derived from a

given EEG epoch. It will be used in the proposed error correction algorithm as given in

the next.

4.3.2 Error Correction

Consider the classification ofm feature vectors corresponding tom ICs from a given

EEG epoch,x(si), i = 1, · · · ,m. Instead of simply usingd(si) = argmaxk{pk(x(si))} to

classify each IC independently, the proposed IC classifier includes a novel error correc-

tion algorithm,d(S), which aims to incorporate the structural information as given in

Equations (4.2) by considering all thesi , i = 1, · · · ,m, collectively and yielding allm

predicted class labels simultaneously.

In loose terms, the proposed error correction algorithm is to find them predicted class

labels that satisfy the constraints as in Equations (4.2) and, at the same time, match the

P(X(S)) = [p(x(s1)) p(x(s2)) · · · p(x(sm))] as much as possible.

Let qi ∈ R
c be the code vector representing the predicted class label for si. This implies

that, if the predicted class label ofsi is k, thekth elementqik is equal to one and all the

other elements inqi are zeros. Then, the proposed error correction algorithm can be
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formulated into the following mixed integer quadratic problem:

min
Q

m

∑
i=1

‖qi −p(x(si))‖,

subject to qi j = 0 or 1, for i = 1, · · · ,m, and j = 1, · · · ,c, (4.9)
c

∑
j=1

qi j = 1,

lω2 ≤
m

∑
i=1

qi2 ≤ uω2, · · · , lωc ≤
m

∑
i=1

qic ≤ uωc,

where the optimization is overQ = [q1 q2 · · · qm]T .

While various efficient solvers of the above optimization problem are available, the

present study uses the solver developed by Bemporad and Mignone (2001). With the

solution,Q, thesi ’s (i = 1, · · · ,m) are simultaneously classified by

d(X(S)) = [argmax
k

{q1k} · · · argmax
k

{qmk}]
T . (4.10)

4.4 Numerical Experiments

In numerical experiments, we limited ourselves to the problem of automatic removal of

ECG artifact and EOG artifact in real-life EEG. The proposedIC classifier was com-

pared quantitatively with several benchmark methods in a stringent subject-wise cross-

validation procedure. In addition, the reconstructed EEG epochs were reviewed by an

independent EEG expert to qualitatively evaluate the performance of the proposed arti-

fact removal method.
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4.4.1 Data Preparation

Ten right-handed volunteers from local tertiary institutions were selected for EEG mea-

surements. These subjects fulfilled the inclusion criteriaof no history of cardio-vascular

disease, normal eye sight and with regular eye blinks. Informed consent was obtained

and nominal monetary incentive was given for their participation. Multi-channel unipo-

lar EEG data were recorded at about 167 Hz (or 6ms sampling interval) from 17 elec-

trodes (excluding Fp1, Fp2) placed on the scalp according tothe International 10-20

system (Jasper, 1958) using the PL-EEG Wavepoint System (Medtronic, Inc. Denmark).

Five minutes of EEG data were recorded from each subject withtheir eyes open and in

resting state. The EEG data were bandpass-filtered with cutoff frequencies of 0.02 Hz

and 35 Hz, using a customized bandpass filter implemented in LabView (version 6.1,

National Instruments, USA).

These EEG recordings were firstly segmented into 12-second epochs (l = 2000). Each

EEG epoch was then decomposed into ICs by ICA. The ICs were presented to an EEG

expert for manual classification independently and in a random order. The EEG expert

labeled each IC as EEG IC (classω1), ECG IC (classω2) or EOG IC (classω3). These

labels were regarded as “true” labels, against which the performance of IC classifiers

was benchmarked.

Six features (D = 6) were extracted from each IC and they were used as the chief infor-

mation source, in place of the IC, for classification. Four features were directly adopted

from the literature (Shoker et al., 2005) for characterizing EOG artifacts and two new

features were proposed in the present study for characterizing ECG artifacts. The de-

tailed definitions of these features are given in Appendix A.Combining the resulting

feature vectors with the “true” labels given by manual classification, a subject-wise data

subset of 425 samples (25 epochs× 17 ICs),Dk := {xi ,yi}
425
i=1, k = 1, · · · ,10, was ob-

tained for each subject. This relatively large dataset, available separately for each sub-
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ject, were used to evaluate the proposed IC classifier in a stringent subject-wise cross-

validation procedure (see Section).

4.4.2 Parameter Selection

For the proposed IC classifier, two groups of parameters needto be tuned: a) the hyper-

parameters for each weighted SVM, i.e. the regularization parameters,Ci j , Ci j and the

kernel parameters,γi j ; b) the lower and upper bounds for each type of artifactual ICs,

i.e. uω j andlω j .

Tuning of hyper-parameters:SinceCi j andCji are connected through Equation (4.4),

only one of them needs to be tuned. In the experiments,(Ci j ,γi j ) were jointly tuned by

a 5-fold cross-validation (Muller et al., 2001) using the model selection tool in the LIB-

SVM package (Hsu et al., 2004) on the following grids:[2−5, · · · ,210]× [2−10, · · · ,23]

with a step size of 20.5.

Tuning of uωi and lωi : As mentioned earlier, for ECG and EOG artifacts, they generally

have three spatial components each (Schlögl et al., 2007).ICA may output three arti-

factual ICs corresponding to the three spatial components if high-density EEG record-

ings (such as 64-channel EEG recording) are used. However, the EEG data used in the

present study were recorded from 17 locations in the standard 10-20 system and ICA

tended to output less than three artifactual ICs for both ECGand EOG artifacts. In the

present experiment, a grid-search, with bothuωi andlωi ranging from 0 to 3 and a search

step size of 1, was performed for ECG ICs and EOG ICs respectively to obtain optimal

values foruωi andlωi that gave the highest balanced accuracy.
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4.4.3 Quantitative Performance Evaluation

Subject-Wise Cross Validation:To evaluate the performance of the proposed system, a

subject-wise resampling scheme was used. Among the data subsets{Di}
10
i=1 collected

from 10 subjects, samples from 9 subjects were used to form a training setDtra, and

the samples from the left-out subject were used to form a testing setDtes. Practically,

this resampling procedure results in 10 pairs ofDtra andDtes in total. In the numerical

experiments, for each pair ofDtra andDtes, Dtra was used for tuning of parameters and

training of SVM. The trained classifier was then tested on left-out datasetDtes. The

major advantages of such subject-wise cross-validation procedure include that: a) each

testing set is independent of the training set and thus the test error simulates the clas-

sifier’s generalization performance on other unseen subjects; b) classifier performance

obtained on multiple testing sets can be used for evaluatingthe statistical significance in

the performance difference between the two classifiers.

Performance Measures:The following popular measures were used for evaluating the

performance of the proposed IC classifier: balanced accuracy, relative classifier infor-

mation (RCI) (Sindhwani et al., 2001), Cohen’s kappa (Cohen, 1960), overall agreement

and specific agreement on each class (Hripcsak and Heitjan, 2002). For a given testing

set withc classes, letni j be the number of samples fromωi (true label) being classified

to ω j by the classifier (predicted label).

a) Balanced Accuracy:It is the average accuracy on all classes, i.e.

BA= 1/2∑c
i=1(nii/∑c

j=1ni j )×100%.

b) RCI: It measures the amount of uncertainty about the class label of an input re-

duced by a classifier, i.e.RCI = (HI −HO)/HI ×100%, whereHI andHO denote

the prior and posterior uncertainty about the class of an unseen input respectively.

RCI has been shown to be a useful performance measure that captures a detailed
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picture of classifier performance while being immune to the effect of prior class

probabilities. More details about computation ofRCI can be found in Sindhwani

et al. (2001).

c) Overall Agreement:It measures the portion of cases that two classifiers agree

upon (without distinguishing between agreements on different classes), i.e.OA=

∑c
i=1nii/∑c

i=1∑c
j=1ni j .

d) It measures the degree of agreement on each class. Specificagreement on class

ωk is calculated asSAωk = 2nkk/(∑c
i=1nik +∑c

j=1nk j).

e) Cohen’s kappa:Cohen’s kappa is probably the most popular metric used in the

literature, despite its known issues related to effect of prevalence in the cases of

unbalanced classification problems (Hripcsak and Heitjan,2002). It is calculated

askappa= (OA−EA)/(1−EA), whereOA refers to the overall agreement and

EA ≡ ∑c
k=1(∑

c
i=1nik ∑c

j=1nk j) / (∑c
i=1 ∑c

j=1ni j )
2 is the agreement expected by

chance.

Other Methods for Comparison:The proposed IC classifier (i.e. weighted PWC-PSVM

+ error correction) was compared with the following five benchmark methods: (i) the

weighted PWC-PSVM without error correction, (ii) the standard SVM trained on under-

sampled balanced dataset as used in the work by Nicolaou and Nasuto (2004); Shoker

et al. (2005), (iii) GMM (with class conditional probability densities estimated by using

the software package developed by Bouman (1997), (iv) KNN (Kfrom 1 to 9 were

tested and the best results obtained with K=5 were reported), and (v) LDF using the

minimum-squared-error solution.
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4.4.4 Qualitative Performance Evaluation by Reviewing

Reconstructed EEG

An independent EEG expert was invited to qualitatively evaluate the performance of

the proposed artifact removal system by examining each of the 250 raw EEG epochs

and its corresponding reconstructed EEG epoch simultaneously. The evaluation of each

epoch was based on three aspects: the removal of ECG artifact, the removal of eye-

blinking artifact and the preservation of brain activities. The EEG expert was required

to give detailed judgment on each of these three aspects. Forthe evaluation of the re-

moval of ECG or EOG artifact, “No improvement” was used to indicate that almost no

change was observed in the amount of artifacts before and after artifact removal; “minor

improvement” indicated that artifacts were partially removed but still observed in the

reconstructed EEG; a score of “almost removed” was given when almost no considered

artifact was observed in the reconstructed EEG. For the evaluation on the preservation

of brain activities, “major attenuation” was used to indicate that typical brain activities

were significantly attenuated; a score of “minor attenuation” was given when the ampli-

tude of typical brain activities was reduced but still visible; “well preserved” indicated

that almost no change in brain activities was observed before and after artifact removal.

4.4.5 Experimental Results

4.4.5.1 Validation of the Unique Properties of the LearningProblem

The collected data as described in Section 4.4.1 showed thatamong the 17 ICs separated

from each 12-second EEG epoch, there were only one ECG IC and no more than two

EOG ICs. In total, 250 ECG ICs, 292 EOG ICs and 3,708 EEG ICs were separated

from 250 EEG epochs from the ten subjects. Fig. 4.2a, Fig. 4.2b and Fig. 4.2c show a
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typical 12-second EEG epoch, the resulting ICs and the reconstructed EEG after artifact

removal, respectively. As can be seen, only one EOG IC (marked by a square) and one

ECG IC (marked by a circle) were separated from the EEG epoch.This verified the

unique properties of the learning problem at hand: the uneven class distributions and the

underlying structural information as given in Equations (4.1) and (4.2). The evidence

of such unique properties of the learning problem can also beseen from the optimal

values of inequality constraints for EOG ICs (ω2) and ECG ICs (ω3) determined by the

afore-mentioned grid-search, i.e.uω = 2, lω2 = 1, uω3 = lω3 = 1.

4.4.5.2 Quantitative Comparison

Detailed classification results and performance measures of the proposed method and the

benchmark methods are summarized in Table 4.1. The numbers shown are the averages

over 10 test datasets corresponding to 10 pairs ofDtra andDtes. TheP-values (given in

parentheses) were obtained in the pairedt-test between the proposed method and each

of the benchmark methods. Based on the results in Table , the proposed method appears

to be superior to all the benchmark methods. Details are as follows.

a) Comparison between the proposed method and the modeling approaches: As

shown in Table 4.1, the proposed method achieved significantly higher balanced

accuracy and RCI than the modeling approaches. It performedwell on both the

majority class (i.e. EEG ICs) and the minority classes (EOG ICs and ECG ICs).

In comparison, all the modeling approaches showed very goodperformance on

EEG ICs, which is evidenced by the significant higher specificagreement on EEG

ICs given by KNN and GMM and the significant higher overall agreement given

by GMM; however, their performance on the minority classes was not satisfying.

In the context of artifact removal, the proposed method which achieved a good

tradeoff among classification performance on each class is preferable.
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Figure 4.2: A typical example of (a) a 12-second EEG epoch (the waveforms marked
with ellipse and rectangular are typical ECG and eye-blinking artifacts), (b) the resul-
tant ICs (The IC marked by a rectangular was “true” EOG IC and the one marked by a
ellipse was “true” ECG IC, as labeled by the EEG expert. The ICmarked by an dashed
ellipse which was a “true” EEG IC was misidentified as an ECG ICby the weighted
PWC-PSVM. This misidentification was subsequently corrected by the proposed error
correction algorithm, (c) the corresponding reconstructed EEG epoch after artifact re-
moval by the proposed method.
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b) Comparison between the proposed method and the standard SVM: As can be seen

from Table 4.1, the standard SVM showed significant performance deterioration

on all performance measures as compared with the proposed method. The results

given by the confusion matrices suggest that the better performance of the pro-

posed method is mainly due to its higher accuracy on EEG ICs ascompared with

the standard SVM (3520/3708 v.s. 3424/3708). One plausiblereason is that the

standard SVM, as used in past work by Nicolaou and Nasuto (2004); Shoker et al.

(2005), was trained on down-sampled balanced training data(with large portion

of samples of EEG ICs being discarded). Such down-sampling causes a signifi-

cant loss of information and thus leads to suboptimal performance on the majority

class.

c) Comparison between the weighted PWC-PSVM with error correction and the

weighted PWC-PSVM without error correction:As shown in Table 4.1, almost

all performance measures show that the weighted PWC-PSVM with error correc-

tion significantly outperformed the weighted PWC-PSVM method without error

correction. The confusion matrices show that the incorporation of error correction

resulted in an large increase in the number of correctly classified EEG ICs (3540

v.s. 3474) at a tiny cost of the number of correctly classifiedECG ICs (246 v.s.

248). It is a strong indication of the goodness of the proposed error correction

algorithm. Consider all the ICs resulting from a given EEG epoch. On the one

hand, the error correction algorithm prevents the classifier from attributing more

ICs to artifacts than it should, i.e. avoids exceeding the corresponding upper lim-

its as in Equations (4.2). On the other hand, if the classifierfails in picking up

the minimum number of artifactual ICs, the error correctionalgorithm enforces

assigning certain number of most probable ICs (with largestposterior probability

of belonging to the classes of ECG/EOG) to artifactual ICs. Fig. 4.2 shows a

typical example when the weighted PWC-PSVM classified two ICs (marked with
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a circle and an ellipse respectively) as ECG ICs but the IC marked with the el-

lipse was actually an EEG IC. The proposed error correction algorithm corrected

this error by incorporating the constraint on ECG ICs: thereis only one ECG IC

decomposed from a given EEG epoch.

Table 4.1: Performance comparison between the proposed method (i.e. weighted PWC-
PSVM + ER) and five benchmark methods (weighted PWC-PSVM, standardSVM,
GMM, KNN and LDF). The numbers shown are averages over 10 testdatasets corre-
sponding to 10 pairs ofDtra andDtes. The number in parenthesis is the P-value obtained
in the pairedt-test between each of the benchmark methods and the proposedmethod.
The symbols ‘+’ and ‘−’ indicate statistically significant wins or losses over thepro-
posed method (P-value< 0.05).

Classifier
Confusion Matrix BA RCI Kappa OA SA

T/P ω1 ω2 ω3 (%) (%) ω1 ω2 ω3

Weighted ω1 3540 20 4
95.67 76.76 0.82 0.95 0.97 0.75 0.98PWC-PSVM ω2 164 272 0

+ EC ω3 4 0 246
Weighted ω1 3474 20 2 95.35 70.33 0.78 0.94 0.95 0.74 0.88

PWC-PSVM ω2 171 272 0 (0.05) (0.00−) (0.01−) (0.01−) (0.00−) (0.32) (0.01−)
ω3 63 0 248

Standard ω1 3424 20 4 94.63 67.15 0.74 0.93 0.96 0.7 0.87
SVM ω2 212 272 0 (0.02−) (0.00−) (0.00−) (0.00−) (0.00−) (0.03−) (0.00−)

ω3 72 0 246
GMM ω1 3653 71 20 88.73 68.34 0.85 0.97 0.98 0.79 0.95

ω2 49 221 0 (0.00−) (0.00−) (0.23) (0.02+) (0.00+) (0.07) (0.00−)
ω3 6 0 230

KNN ω1 3661 69 27 87.87 66.46 0.85 0.97 0.98 0.82 0.9
(K=5) ω2 28 221 0 (0.00−) (0.00−) (0.45) (0.07) (0.00+) (0.23) (0.02−)

ω3 19 2 223
LDF ω1 3691 129 197 58.71 29.08 0.53 0.92 0.96 0.7 0.343

ω2 12 162 0 (0.00−) (0.00−) (0.00−) (0.00−) (0.03−) (0.01−) (0.00−)
ω3 5 1 53

4.4.5.3 Review of Reconstructed EEG

The qualitative evaluation of the proposed artifact removal system by the independent

EEG expert is given in Table 4.2. Artifacts were largely reduced, without attenuating

brain activities, in most of the reconstructed EEG epochs. The amount of ECG artifacts

was reduced in 98.4% of the EEG epochs, with 98.0% indicated as “almost removed”

and 0.4% indicated as “minor improvement”. Eye-blinking artifacts were removed in

96.8% of the reconstructed EEG epochs, with 92.0% indicatedas “almost removed”

and 4.8% indicated as “minor improvement”. In 88.4% of the epochs, brain activities
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Table 4.2: Qualitative evaluation of the proposed method onthe removal of ECG, eye-
blinking artifact and the preservation of brain activitiesby an independent EEG expert

ECG Removal No improvement Minor improvement Mostly removed
1.60% 0.40% 98.00%

Eye-blinking Removal No improvement Minor improvement Mostly removed
3.20% 4.80% 92.00%

EEG Preservation Major attenuation Minor attenuation Well preserved
0.80% 10.80% 88.40%

were well preserved. Only 0.8% of the epochs suffered from major attenuation in brain

activities and 10.8% of the epochs were slightly attenuatedin brain activities.

4.5 Discussion

A novel IC classifier which combines a modified probabilisticmulti-class SVM and an

error correction algorithm has been proposed in the presentstudy. The proposed ap-

proach has been compared with several benchmark methods: the modified probabilistic

multi-class SVM without error correction, the standard SVM, GMM, KNN and LDF. In

a stringent subject-wise cross-validation procedure, numerical experiments have shown

that the proposed IC classifier achieved significantly better performance than the bench-

mark methods. Moreover, a qualitative evaluation of the reconstructed EEG by an inde-

pendent expert has demonstrated that the proposed artifactremoval method effectively

removes artifacts while fairly well preserving brain activities in EEG. The superiority of

the proposed approach can be attributed to the following reasons.

Firstly, the unbalanced nature of the underlying data is properly addressed by using

the modified probabilistic multi-class SVM. This multi-class SVM is modified from the

probabilistic multi-class SVM proposed by Hastie and Tibshirani (Hastie and Tibshi-

rani, 1998), by replacing all standard binary SVMs with weighted SVMs. It uses real

unbalanced data for training and penalizes more on the classification errors made on
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the samples from the minority class. As shown by experimental results, in comparison

with the modeling approaches (GMM, KNN and LDF), the modifiedmulti-class SVM

appears more effective in compensating the bias of prior class probabilities. The pro-

posed method is also superior to the standard SVM used in the past work by Nicolaou

and Nasuto (2004) and Shoker et al. (2005) which was trained on a balanced training set

formed by down-sampling of the majority class. The down-sampling inevitably causes

loss of information and thus leads to the suboptimal performance of the standard SVM

on the majority class.

Secondly, useful structural information of the underlyingdata is incorporated in deci-

sion making through the error correction algorithm. The structural information in the

present study is the constraints on the number of ICs responsible for each type of artifact

resulting from a given EEG epoch, as described in Equations (4.2). It is worth noting

that this structural information is different from class priors: class priors can be directly

included by many modeling method (e.g. KNN, GMM); however, the constraints as

of Equations (4.2) exist among the batch of ICs resulting from the same EEG epoch

and thus can only be exploited by considering the batch of ICscollectively (as the pro-

posed error correction algorithm does). Conventional classifiers, such as KNN, GMM

and LDF, which consider each sample independently, are unable to incorporate such

structural information. As shown by experimental results,a better tradeoff among the

classification accuracy on each class is achieved by incorporating this structural infor-

mation through the error correction algorithm. The proposed error correction algorithm

may be significant in both theoretical and practical aspects. It appears generally useful

for classification problems where similar structural information is contained in the test

samples and thus simultaneous classification of several test samples is necessary.

Moreover, the use of a probabilistic SVM may also contributeto the superior perfor-

mance of the proposed method. Given a test sample,x, the decision of conventional

SVM is based on the sign of SVM outputs,fi j (x). Such an approach ignores the relative
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confidence in classification, or the distance thatx is from the separating hyperplane. In

contrast, the probabilistic SVM is based on the calibrated confidence measures, i.e. the

estimates of posterior probabilities. The superiority of probabilistic SVM over standard

SVM has been recently demonstrated in a few studies in the domain of machine learn-

ing (see Duan and Keerthi, 2005; Hastie and Tibshirani, 1998; Platt, 2000), while its

application in EEG signal processing remains rare.

In the present study, we limited ourselves to the removal of ECG and eye-blinking ar-

tifacts. However, the idea of the proposed method can be generally extended to the

removal of other types of artifacts that can be isolated to one or more ICs by ICA (for

example, artifact due to muscle tension), provided that suitable features are available.

It should be acknowledged that, like all the ICA-based ICA removal methods, the pro-

posed method may produce discontinuities at the beginning and end of each recon-

structed EEG epoch, although it appears minimal in our experiments. As a precaution,

the segmentation should be retained in the review/use of thereconstructed EEG to pre-

vent the potential discontinuities from interfering EEG interpretation.

4.6 Concluding Remarks

This chapter presents an advanced and comprehensive solution to the difficult problem

for almost all EEG implementations: the problem of automatic EEG artifact removal.

The proposed method takes into account the unique properties of the learning problem

at hand by (i) using weighted probabilistic SVM to handle theunbalanced data, and (ii)

implementing an error correction algorithm to accommodateuseful structural informa-

tion of the underlying data. Quantitative comparisons between the proposed method

and several benchmark methods on real-life EEG data showed that the proposed method

significantly outperforms the other methods. A qualitativereview on the reconstructed
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EEG also revealed that artifacts were largely attenuated while brain activities were well

preserved in most of the EEG epochs. The proposed method appears to be well suited

for automatic EEG artifact removal.
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Chapter 5

Feature Selection via Sensitivity

Analysis of SVM Probabilistic Outputs

Designing effective feature selection method which allowsthe identification of critical

EEG features to mental fatigue is an important part of our effort in the development of

the EEG-based mental-fatigue measurement and monitoring system. It is in general an

important aspect of solving data-mining and machine-learning problems. This chapter

proposes a feature-selection method for the SVM learning for two-class classification

problems. Like most feature-selection methods, the proposed method ranks all features

in decreasing order of importance so that more relevant features can be identified. It

uses a novel criterion based on the probabilistic outputs ofSVM. This criterion, termed

Feature-based Sensitivity of Posterior Probabilities (FSPP), evaluates the importance of

a specific feature by computing the aggregate value, over thefeature space, of the ab-

solute difference of the probabilistic outputs of SVM with and without the feature. The

exact form of this criterion is not easily computable and approximation is needed. Four

approximations, FSPP1-FSPP4, are proposed for this purpose. The first two approxi-

mations evaluate the criterion by randomly permuting the values of the feature among
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samples of the training data. They differ in their choices ofthe mapping function from

standard SVM output to its probabilistic output: FSPP1 usesa simple threshold func-

tion while FSPP2 uses a sigmoid function. The second two directly approximate the

criterion but differ in the smoothness assumptions of criterion with respect to the fea-

tures. The performance of these approximations, used in an overall feature-selection

scheme, is then evaluated on various artificial problems andreal-world problems, in-

cluding datasets from the recent Neural Information Processing Systems (NIPS) feature

selection competition. FSPP1-3 show good performance consistently with FSPP2 be-

ing the best overall by a slight margin. The performance of FSPP2 is competitive with

some of the best performing feature-selection methods in the literature on the datasets

that we have tested. Its associated computations are modestand hence it is suitable as a

feature-selection method for SVM applications.

5.1 Introduction

Feature selection is an important issue in machine-learning problems. When the under-

lying important features are known and irrelevant/redundant features are removed, learn-

ing problems can be greatly simplified resulting in improvedgeneralization capabilities.

Feature selection can also help reduce online computational costs, enhance system in-

terpretability (Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1995, 1998) and im-

prove performance of the learning problems (see Günter andBunke, 2004; Guyon and

Elisseef, 2003; Guyon et al., 2002; Saon and Padmanabhan, 2001; Weston et al., 2001).

Several feature-selection methods have been proposed in recent years and a good review

of them can be found in the recent book by (Guyon et al., 2006b). In general, feature-

selection methods can be classified into three categories: filter-based, wrapper-based and

embedded-based (Guyon and Elisseef, 2003; Kohavi and John,1997; Neumann et al.,

2005). Filter-based methods are independent of the underlying learning algorithm while
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wrapper-based methods use the underlying learning algorithm to measure the quality of

the features but without exploiting the structure of the learning algorithm. In contrast,

embedded-based methods exploit the knowledge of the specific structure of the learning

algorithm (Guyon and Elisseef, 2003; Lal et al., 2006) and cannot be separated from it.

Generally, embedded-based methods are superior in performance relative to filter-based

or wrapper-based methods but carry with them a heavier computational load (Guyon

et al., 2006a).

This chapter develops a new embedded-based feature-selection method specifically for

support vector machine (SVM) learning. The focus on SVM stems from the interests

in it as a learning method following its encouraging resultson a variety of applications

(Boser et al., 1992; Cortes and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000; Vap-

nik, 1995, 1998). Unlike past feature-selection methods for SVM, this chapter proposes

the use of the probabilistic outputs of SVM as a more accuratemeasure of feature impor-

tance. For the prototypical two-class (ω+ andω−1) classification problem, probabilistic

output of SVM for a given sample,x, can be interpreted (Hastie & Tibshirani, 1998;

Platt, 2000) as the posterior probability ofx belonging to classω , p(ω|x). Here, class

ω can be eitherω+1 or ω−1. Such an interpretation under the Bayesian framework has

also been established (Williams & Rasmussan, 1996; Chu et al., 2003, 2004). This work

proposes a criterion based on the sensitivity of probabilistic outputs of SVM to each fea-

ture as a measure of importance of that feature, and is termedFeature-based Sensitivity

of Posterior Probabilities (FSPP). In loose terms, this criterion is the aggregate value,

over the feature space, of the absolute difference of the probabilistic outputs of SVM

with and without the feature.

The evaluation of this criterion is investigated using fourapproximations, termed FSPP1-

FSPP4 respectively. These approximations are then combined with the recursive feature-

elimination approach (Guyon et al., 2002) and other heuristic feature-ranking approaches

to yield an overall feature-selection scheme. The first two approximations are motivated
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by the random forests feature-selection method (Breiman, 2001) where the idea of Ran-

dom Permutation (RP) of the values of a feature is used to eliminate the contribution of

that feature. They differ from each other in that FSPP1 uses asimple threshold function

to obtain the probabilistic output of SVM while FSPP2 uses a sigmoid function. The sec-

ond two are direct approximations of the criterion. FSPP3 assumes mild dependence of

the criterion with respect to the features while FSPP4 assumes that criterion is differen-

tiable with respect to the features. The proposed methods are tested on several learning

problems, including the MONK’s problems, breast cancer andheart disease problems

from the UCI Repository (Newman et al., 1998), the nonlinearsynthetic problem of

Weston et al. (2001) and another two challenging problems, ARCENE and MADE-

LON, from the NIPS 2003 feature selection competition (Guyon, 2003). Numerical

comparisons with two well-known existing SVM feature-selection methods (SVM-RFE

by Guyon et al. (2002) and the margin method by Rakotomamonjy(2003)) are also pre-

sented. The results show that FSPP2 performs consistently well on these datasets and

compares favorably with the best methods available in the literature.

The rest of the chapter is organized as follows. Past relatedresults from the literature

needed for the subsequent sections are collected in Section5.2. Section 5.3 provides

the basis of the proposed criterion and the descriptions of the four approximations of

the criterion. Section 5.4 outlines the overall feature-selection schemes using the pro-

posed criterion. Extensive experimental results are reported in Section 5.5, followed by

discussion in Section 5.6. The concluding remarks are drawnin Section 5.7.

5.2 Background

The section reviews closely-related past work on SVM feature-selection methods. The

intention is to set the notations for the remainder of this chapter and to make the chapter
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as self-contained as possible. We begin with the general notations used. This work

considers the typical two-class classification problem with datasetD in the form of

{x j ,y j}
N
j=1 wherex j ∈ R

D is the jth sample,y j ∈ {−1,+1} is the corresponding class

label, andD is the dimensionality ofx j . Also, xi denotes theith feature of vectorx,

hence,xi
j is theith feature of thejth sample andx−i ∈ R

D−1 is the vector obtained from

x with the ith feature removed. Double subscripted variablex−i, j is also used and it

refers to thejth sample of variablex−i.

5.2.1 Probabilistic SVM

This chapter assumes the availability of the solution of theprobabilistic SVM as pro-

posed by Platt (2000). The full details of such probabilistic SVM formulation have been

given in Sections 2.10.2.12.10.2.2 in Chapter 2. For the convenience of the reader, the

key equations needed for the rest of this chapter are summarized as follows.

The SVM decision boundary of the two-class problems takes the form of an optimal

separating hyperplane,w.Φ(x)+b=0, in Hillbert feature spaceH, obtained by solving

the convex optimization problem

minJ(w,b,ξξξ ) = min

[

1
2
||w||2+C

N

∑
i=1

ξi

]

, (5.1)

subject to yi(w ·Φ(xi)+b)−1+ξi ≥ 0, i = 1, · · · ,N, and (5.2)

ξi ≥ 0, i = 1, · · · ,N, (5.3)

over w∈H, b∈ R and the non-negative slack variableξξξ ∈ R
N. The Φ(·) defines the

kernel functionK(xi ,x j) = Φ(xi) ·Φ(x j). In the above,C is a parameter that balances

the size ofw and the sum ofξi .

The solution of the above convex optimization problem givesthe expression of the sep-
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arating hyperplane, i.e.

f (x) =
N

∑
i=1

yiαiK(xi ,x)+b, (5.4)

serving as the decision function for all unseen samplesx in that the predicted class is +1

if f (x) >0 and−1 otherwise. The normal of this hyperplane inH is

w =
N

∑
i=1

αiyiΦ(xi). (5.5)

For ease of presentation, the exposition hereafter uses, without loss of generality, the

popular Gaussian kernel

K(xi,x j) = exp(−γ||xi −x j ||
2), (5.6)

whereγ is the kernel parameter. For accurate prediction of unseen samples, proper val-

ues of the parametersC andγ should be used. Typically, these parameters are obtained

using the cross-validation procedure although other methods have also been discussed

(Chapelle et al., 2002; Keerthi, 2002; Lee and Lin, 2000).

Standard SVM output classifies a samplex depending on the sign off (x), or the half

space inH into whichΦ(x) falls. Such an approach, however, ignores the relative confi-

dence in the classification, or the distanceΦ(x) is from the separating hyperplane. Platt

(2000) addressed this shortcoming through the use of a sigmoid function and mapped

f (x) into p(ω|x), providing probabilistic information from standard SVM output. The

benefit ofp(ω|x) over f (x) in improving classification accuracy has been demonstrated

on several numerical experiments (Duan and Keerthi, 2005; Platt, 2000).

SupposeN+ andN− are the numbers of positive (y=+1) and negative (y=−1) samples
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respectively in datasetD. The Platt’s probability output is

p̂(ω|x) =
1

1+exp(A f(x)+B)
, (5.7)

wheref (x) is the SVM output given by Equation 5.4 and the parametersA andB are ob-

tained from minimizing the negative log likelihood (or the cross-entropy error function)

of D in the form of

minF(A,B) = min

{

−∑
i
[ti log p̂(ω|xi)+(1− ti) log(1− p̂(ω|xi))]

}

, (5.8)

with ti = (N++1)/(N++2) if yi = +1 andti = 1/(N−+2) if yi =−1. Our implementa-

tion of the above includes the modifications suggested by Linet al. (2003) for numerical

stability. Hereafter, ˆp(ω|x) refers to the estimated posterior probability of belonging

class +1 givenx obtained from Equations (5.7)-(5.8), whilep(ω|x) refers to the true

but typically unknown posterior probability of belonging to classω givenx. The quan-

tity p̂(ω|x) is used extensively in the approximations of the proposed feature-ranking

criterion.

5.2.2 Past Work in SVM Feature Selection

Several feature-selection methods for SVM have been proposed in the literature (Barkley

and Baumgartner, 2003; Guyon et al., 2002; Rakotomamonjy, 2003; Weston et al.,

2001). In most of these methods, the feature-ranking criterion relies on the sensitiv-

ity of some suitable index of performance, or its estimate, with respect to the feature.

Features with low sensitivity are deemed less important while those with high sensitivity

are more.

Index of performance is typically linked to generalizationability of SVM and several
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estimates of this ability have been used in the literature. Guyon et al. (2002) used the

cost function of (5.2) and proposed a feature-ranking criterion based on the sensitivity

of this cost function with respect to a feature. In loose terms, this criterion measures the

importance of a feature by the difference in the sizes of the margin with and without the

feature. For notational convenience, this criterion is denoted by∆||w||2 hereafter. Using

this criterion as a basis, less important features are dropped successively, resulting in a

feature-selection method known as SVM Recursive Feature-Elimination (SVM-RFE).

Similarly, Weston et al. (2001) used, as the performance index, the SVM radius/margin

bound (Vapnik, 1998)

R2‖w‖2 , (5.9)

whereR is the radius of the smallest sphere, centered at the origin,that contains all

Φ(xi), i = 1, · · · ,N. The sensitivity of this index with respect to a feature was obtained

through the use of a virtual scaling factor. As suggested by Weston et al. (2001), the

idea could also be extended to the span estimate (Vapnik and Chapelle, 2000) which is

a tighter upper bound on the expected generalization error.Rakotomamonjy (2003) ex-

tended SVM-RFE algorithm using radius/margin bound and span estimate and proposed

feature-selection methods based on their zero-order and first-order sensitivity with re-

spect to the features. As reported (Rakotomamonjy, 2003) tobe the best among the

considered methods, the first-order sensitivity, denoted by ∇‖w‖2, is included in our

numerical experiments for comparison.
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5.3 The Ranking Criterion Based On Posterior Proba-

bilities

The proposed ranking criterion for theith feature is

Ct(i) =
∫

|p(ω|x)− p(ω|x−i)|p(x)dx, (5.10)

wherex−i ∈ R
D−1 is the vector derived fromx with the ith feature removed. The moti-

vation of the above criterion is clear: the greater the absolute difference betweenp(ω|x)

andp(ω|x−i) over the space ofx, the more important is theith feature. As the true val-

ues ofp(ω|x) andp(ω|x−i) are usually unknown, they are approximated by ˆp(ω|x) and

p̂(ω|x−i) respectively, obtained via Equations (5.7)-(5.8). The value of p̂(ω|x−i) corre-

sponds to the probabilistic output of a SVM trained with data{x−i, j ,y j}
N
j=1 instead of

{x j ,y j}
N
j=1. Sincex hasD features, this means that training of the SVM has to be done

D times so that a ranked list of{Ct(i), i = 1, · · · ,D} is obtained showing the relative

importance of all features inD. This is a computationally expensive process since each

SVM training is expensive, having a known complexity (Joachims, 1999; Platt, 1999)

of at leastO(N2) and thatD can be large. The remainder of this section shows four

approximations (FSPP1-FSPP4) of (5.10) that avoid the retraining process.

Motivated by the random forests (RF) method (Breiman, 2001), the first two approx-

imations involve a process of Random Permutation (RP) that randomly permutes the

values of a feature. Specifically, the values of theith feature ofx are randomly permuted

over theN examples. All other features ofx, exceptxi , remain unchanged. Suppose

ζ1, · · · ,ζN−1 is a set of uniformly distributed random numbers from (0,1) and ⌊ζ⌋ is

the largest integer that is less thanζ . The random permutation process is executed as

follows (Page, 1967): For eachk starting from 1 toN−1, computej = N×⌊ζ⌋+1 and

swap the values ofxi
k andxi

j . At the end of this process, the values ofxi will have been

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.3 The Ranking Criterion Based On Posterior Probabilities 127

randomly permuted.

We now state a general theorem relating the posterior probability and the RP process and

it serves as the theoretical basis for FSPP1 and FSPP2. To state this theorem precisely,

let x(i) ∈ R
D be the vector derived fromx with the ith feature randomly permuted.

Theorem 5.1 p(ω|x(i)) = p(ω|x−i).

Proof: As the uniform distribution is used in the RP process, the distribution of p(xi)

is unchanged, or

p(xi
(i)) = p(xi). (5.11)

Hence, we have

p(x(i)) = p(xi
(i),x−i) = p(xi

(i))p(x−i) = p(xi)p(x−i), (5.12)

where the second equality follows from the fact that the distribution of thep(xi
(i)) is

independent fromp(x−i) following the RP process. Using similar argument, we have

p(x(i),ω) = p(xi
(i))p(x−i,ω) = p(xi)p(x−i ,ω). (5.13)

Hence,

p(ω|x(i)) =
p(ω,x(i))

p(x(i))
=

p(xi)p(x−i,ω)

p(xi)p(x−i)
= p(ω|x−i). (5.14)

A corollary of Theorem 5.1 is the mutual information equality of I(ω,x(i)) = I(ω,x−i).
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This result follows from

I(ω,x(i)) = ∑
ω

∫

x(i)

p(ω,x(i)) log
p(ω,x(i))

P(ω)p(x(i))
dx(i)

= ∑
ω

∫

x−i

∫

xi
(i)

p(xi
(i))p(ω,x−i) log

p(ω,x−i)

P(ω)p(x−i)
dxi

(i)dx−i (5.15)

= ∑
ω

∫

x−i

p(ω,x−i) log
p(ω,x−i)

P(ω)p(x−i)
dx−i

∫

xi
(i)

p(xi
(i))dxi

(i)

= I(ω,x−i),

where Equations (5.12) and (5.13) are invoked.

Theorem 5.1 and its corollary show that the RP process has thesame effect as removing

the contribution of that feature for classification. Using this fact, criterion as of Equation

(5.10) can be equivalently stated as

Ct(i) =
∫

|p(ω|x)− p(ω|x(i))|p(x)dx. (5.16)

With the above equivalent form of the the proposed ranking criterion, we are now in a

position to state its first two approximations.

Method 1 (FSPP1):Approximation using threshold function

The first approximation uses a threshold function for the approximation of Equation

(5.16) in the form of

p(ω|x) ≈ ϕ( f (x)) (5.17)
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and

p(ω|x(i)) ≈ ϕ( f (x(i))), (5.18)

whereϕ(·) is the threshold function given by

ϕ( f ) =











1 if f ≥ 0

0 if f < 0
. (5.19)

It is worthy to note thatp(ω|x(i)) uses the samef function as given by Equation (5.4)

and does not involve the retraining of the SVM. Further approximation of the integration

overx in Equation (5.16) yields

FSPP1(i)=
1
N

N

∑
j=1

|ϕ( f (x j)−ϕ( f (x(i), j))|, (5.20)

wherex(i), j refers to thejth example of the input data where theith feature has been

randomly permuted.

Method 2 (FSPP2):Approximation using SVM probabilistic outputs

Motivated by the good results reported by Platt (2000) and Duan and Keerthi (2005),

FSPP2 approximatesp(c|x) by the Platt’s probabilistic output, ˆp(ω|x), in Equation

(5.16). Obviously, other methods that obtain probabilistic outputs from SVM can also

be used (Hastie and Tibshirani, 1998; Vapnik, 1998). Similarly, p(ω|x(i)) in Equation

(5.16) is approximated by ˆp(ω|x(i)) using the same trained SVM and the same trained

sigmoid for p̂(ω|x). Hence,

FSPP2(i) =
1
N

N

∑
j=1

|p̂(ω|x j)− p̂(ω|x(i), j)|. (5.21)
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Method 3 (FSPP3):Approximation via virtual vectorv

Unlike the previous, the next two methods (FSPP3 and FSPP4) approximate Equation

(5.10) via an additional virtual scaling factor. The use of an additional virtual vector

v ∈ R
D for the purpose of feature selection has been attempted in the literature (Rako-

tomamonjy, 2003; Weston et al., 2001) and it simplifies the computation of Equation

(5.10). Specifically, this approach uses onevi , having a nominal value of 1, for each

feature and replaces everyxi by vixi . Let vx = [v1x1 · · · vDxD] andv−ix refers tovx

with vi = 0. In this setting, the criterion as of Equation (5.10) can beapproximated by

Ct(i) =
∫

|p(ω|vx)− p(ω|v−ix)|p(x)dx. (5.22)

Using standard approximation, the above becomes

FSPP3(i) =
1
N

N

∑
j=1

|p̂(ω|vx j)− p̂(ω|v−ix j)|, (5.23)

wherep̂(ω|vx j) refers to the Platt’s posterior probability of thejth example and ˆp(ω|v−ix j)

= [1+ exp(A f(v−i)x) + B)]−1 as given by Equation (5.7) andf (·) is the SVM output

expression (5.4) obtained from the training set{xi ,yi}
N
i=1.

Method 4 (FSPP4):Approximation via derivative of p(ω|vx) with respect tov

The criteria as of Equation (5.22) can also be represented, under the assumption that

p(ω|vx) is differentiable with respect tov, by

Ct(i) =

∫

∣

∣

∣

∣

∣

∫ vi=0

vi=1

∂ p(ω|vx)

∂vi dvi

∣

∣

∣

∣

∣

p(x)dx. (5.24)

Instead of the integral overvi from 1 to 0, FSPP4 uses the sensitivity with respect tovi
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evaluated atvi = 1 and the above is approximated by

Ct(i) =
∫

∣

∣

∣

∣

∂ p(ω|vx)

∂vi ∆vi|vi=1

∣

∣

∣

∣

p(x)dx =
∫

∣

∣

∣

∣

∂ p(ω|vx)

∂vi |vi=1

∣

∣

∣

∣

p(x)dx, (5.25)

where∆vi = −1. It is important to note that, whenp(c|x) is approximated by ˆp(ω|x)

via Equation (5.7),∂ p̂(ω|vx)/∂vi admits a closed-from expression using the results

of Equation (5.4) and Equation (5.7). For the ease of presentation, its expression and

derivation are given in Appendix B. Hence, the fourth methodis

FSPP4(i) =
1
N

N

∑
j=1

∣

∣

∣

∣

∂ p̂(ω|vx j)

∂vi |vi=1

∣

∣

∣

∣

. (5.26)

The above shows four possible approximations to the rankingcriterion as of (5.10). The

use of these four methods, in an overall scheme for the purpose of feature selection, is

shown in the next section.

5.4 Feature-Selection Methods

This section presents two overall feature-selection schemes by combining FSPP1-FSPP4

with either the initial feature-ranking (INIT) approach (FSPP-INIT) or the recursive

feature-elimination (RFE) approach (FSPP-RFE). Both INITand RFE approaches are

commonly used for feature selection, with INIT being closerto the filter-based method

and the RFE being closer to the embedded method (Guyon et al.,2006b; Guyon and

Elisseef, 2003).

For both of the proposed feature-selection schemes (FSPP-INIT and FSPP-RFE), it is

assumed that an SVM output functionf (x) is available and that all hyper parameters,C, γ

or others, have been determined through a proper model selection process. For the cases
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where FSPP2-FSPP4 are involved, it is also assumed that the posterior probabilities are

available according to Equations (5.7) and (5.8).

The FSPP-INIT scheme has as its inputs datasetD, the index setI = {1, 2, · · · , D}

containing indices of features to be considered and the choice of the approximation

methodm∈{1, · · · , 4}. The output of FSPP-INIT is a ranked list of the features in the

form of an index setJr = { j1, · · · , jD} with jk ∈ I and FSPPm( jk) ≥ FSPPm( jk+1) for

k = 1, · · · ,D−1. The major steps involved are shown in Algorithm 2.

Algorithm 5.1: Main steps of FSPP-INIT feature-selection scheme.
Input : D, I , m
Output : Ranked listJr

Train the SVM and obtain the posterior probabilities via Equations (5.7) and1

(5.8) using the datasetD; For eachi ∈ I, compute FSPPm(i);
Output ranked listJr = { j1, · · · , jD} with jk ∈ I and FSPPm( jk) ≥2

FSPPm( jk+1) for k = 1, · · · ,D−1.

The FSPP-RFE scheme is similar to the one given by Guyon et al.(2002) but with the

FSPPm used as the ranking criterion. The steps involved in this approach are summa-

rized in Algorithm 3. The inputs are the datasetD, I andm, with the output being the

ranked list of featuresJR.

Algorithm 5.2: Main steps of FSPP-RFE feature selection scheme.
Input : D, I , m
Output : Ranked listJR

while I 6= /0 do1

setl = size(I );2

if l > 1 then3

Invoke FSPP-INIT(D, I , m)and obtain the outputJr ;4

Let the last element ofJr bek∗;5

Assignk∗ to thel th element ofJR;6

else7

Assign the only element inI to thel th element ofJR;8

end9

end10

Let I = I \k∗, remove featurek∗ from every sample inD and clearJr ;11

end12
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As the FSPP-INIT scheme computes the ranked list only once, it is closer in spirit to a

filter-based feature-selection scheme although the SVM algorithm is used. On the other

hand, the FSPP-RFE scheme uses FSPP-INIT as an inner-loop and invokes itD− 1

times, each time with a smaller index setI. The FSPP-RFE(D, I , m) scheme removes

one feature (the one with the lowest FSPPmscore) from the dataset at a time. Obviously,

more than one feature can be removed at one time with slight modifications to Steps

5, 6 and 11 in Algorithm 3. The current description of FSPP-RFE does not involve

the determination of parametersC and γ for each of the inner loop. Such a process

is possible albeit with even higher costs. For notational convenience, FSPPm-INIT and

FSPPm-RFE are used to specify the feature selection scheme using FSPPmas the choice

of the approximation method.

5.5 Experiments

Extensive experiments on both artificial and real-world benchmark problems were car-

ried out using the proposed methods. Like others, the artificial problems, i.e. MONK’s

problems from UCI Repository (Newman et al., 1998) and Weston’s nonlinear synthetic

problem (Weston et al., 2001), were used because the key features are known and are

suitable for comparative study of the four FSPPs. Two real-world problems, i.e. breast

cancer and heart disease problems from UCI Repository (Newman et al., 1998; Rätsch,

2005), were chosen as they have been used by other feature-selection methods (Guyon

et al., 2002; Rakotomamonjy, 2003) and serve as a common reference for compari-

son. Finally, the proposed methods were tested on ARCENE andMADELON problems

used in the NIPS 2003 feature selection competition (Guyon,2003), a well-known set

of challenging feature-selection problems.

In general, our method requires, for each problem, three subsets of data in the form of
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Dtra, Dval andDtes for training, validation and testing purposes. In cases where only

Dtra andDteswere available,Dtra was further split randomly into a newDtra andDval in

the ratio of 70% to 30%. The subsetDtra was normalized to zero mean and unit standard

deviation. Its normalizing parameters were also used to normalizeDval andDtes. The

subsetDtra was meant for the training of the SVM including the determination of the

optimalC andγ using 5-fold cross-validation procedure. The subsetDval was needed

for the determination of parametersA andB in Equation (5.7). TheDtessubset was used

for obtaining an unbiased testing accuracy of the underlying method. In cases where

there were 100 realizations of a given dataset, the procedure by Rätsch et al. (2001)

was followed: parametersC andγ were chosen as the median of the five sets of (C, γ)

of the first five realizations. Here each set of (C, γ) was obtained by standard 5-fold

cross-validations for one realization.

5.5.1 Artificial Problems

MONK’s problems: These problems (MONK-1 to 3) are available in UCI Repository

of machine learning databases (Newman et al., 1998). As the provided data do not have

Dval and the size ofDtra is relatively small, our experiments used part of the test set to

form Dval andDtra. The exact data split and the descriptions of the dataset aregiven in

Table .

The results for MONK-1 experiment using the optimal parameters (C = 32 andγ =

0.125) are shown in Fig. 5.1. Fig. 5.1a shows the FSPPm scores for the four methods

using the INIT approach. It is easy to see that all four methods were effective in de-

termining the key features. Figure 5.1b shows the test errorrates of SVM using only

the top-ranked features obtained via the RFE approach. The monotonic decrease in the

testing error rates with increasing top-ranked features isa clear indication of the ef-

fectiveness of the feature-selection procedure. The results for MONK-2 and MONK-3
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Table 5.1: Description of MONK’s datasets (Five discrete features:x1, x2, x4 ∈ {1,2,3};
x3, x6 ∈ {1,2}; x5 ∈ {1,2,3,4})

Dtra Dval Dtes Target Concept
MONK-1 216 216 124 (x1 = x2) or (x5 = 1) for Class 1,

otherwise Class -1
MONK-2 216 216 169 Exactly two of{ x1 = 1, x2 = 1, x3

= 1,x4 = 1,x5 = 1,x6 = 1} for Class
1, otherwise Class -1

MONK-3 216 216 122 (x5 = 3 andx4 = 1) or (x5 6= 4 and
x2 6= 3) for Class 1, otherwise Class
-1

show similar trends to Fig. 5.1 and are hence not shown.

The test error rates for FSPP4-RFE are not shown in Fig. 5.1b as the computation of

Equation (B.5) failed. This problem arose due to the existence of multiple identical

examples in the training data, resulting in the matrix in Equation (B.5) being singular.

While less likely to occur in real-life datasets, such situations can be handled using

pseudo inverses and/or Singular Value Decomposition (SVD)of the matrix in Equation

(B.5). However, they were not pursued because the performance of FSPP4 for other

examples is not promising, as shown in the next few examples.

Weston’s nonlinear synthetic problem: We followed the procedure given in (Weston

et al., 2001) and generated 10,000 samples of 10 features each. Only the first two fea-

tures (x1, x2) are relevant while the remaining features are random noise, each taken

from a normal distributionN(0, 20). The outputy ∈ {−1, +1} and the number of sam-

ples withy = +1 is equal to that withy=−1. If y = −1, (x1, x2) were drawn fromN(µµµ1,

ΣΣΣ) or N(µµµ2, ΣΣΣ) with equal probability, withµµµ1 = (−3/4,−3), µµµ2 = (3/4, 3) andΣΣΣ = I. If

y = +1, (x1, x2) were drawn again from two normal distributions with equal probability,

with µµµ1 = (3,−3), µµµ2 = (−3, 3) and the sameΣΣΣ. Dtra andDval contained 100 random

samples each and the rest were included inDtes for one realization of the dataset.

Average feature-selection performance over 100 realizations is shown in Fig. 5.2. with
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Figure 5.1: Performance of proposed methods on MONK-1 problem: (a) values of
FSPPm, m= 1, 2, 3, 4 using FSPPm-INIT; (b) test error rates against top-ranked features
identified by FSPPm-RFE.
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the parameters set atC = 32.0,γ = 0.03125. Similar to the MONK’s problems, Fig. 5.2a

and 5.2b were obtained from the use of FSPPm-INIT and FSPPm-RFE respectively. Fig.

5.2a shows the correct identification of the first two features having FSPPm scores that

are significantly larger (P-value< 0.01 based on pairedt-test over the 100 realizations)

than the FSPPm scores of a redundant feature. Fig. 5.2b shows that FSPP1-RFE and

FSPP2-RFE correctly identified the two key features as the test error rates were the low-

est with only two surviving features. However, FSPP3-RFE and FSPP4-RFE produced

less appealing results. Additional experiments were conducted to verify the statistical

significance of the advantage of FSPP1 and FSPP2 over FSPP3 and FSPP4 under the

RFE approach. Four pairedt-tests on the test error rates were conducted: FSPP1 vs

FSPP3, FSPP1 vs FSPP4, FSPP2 vs FSPP3 and FSPP2 vs FSPP4. Eachof theset-tests

was further repeated with only 1, 2, 3 or 4 surviving features. For all of these paired

t-tests, theP-values obtained were less than 0.03.

The difference between the performance of FSPP2 and FSPP3 isinteresting and de-

serves attention. Both criteria use the same ˆp expression obtained from Equations (5.7)

and (5.8) but differ in that ˆp(ω|x(i), j) is used in FSPP2 and ˆp(ω|v−ix j) in FSPP3. The

samplex(i), j has theith feature taking value that is randomly permuted whilev−ix j has

theith feature set to 0. The better performance of FSPP2 over FSPP3 appears to suggest

that the distribution ˆp(ω|v−ix) differs more fromp(ω|x−i) than p̂(ω|x(i)).

5.5.2 Real-World Benchmark Problems

The real-world benchmark problems are the breast cancer andheart disease datasets

obtained from Rätsch (2005), used also by Mika et al. (1999); Rakotomamonjy (2003);

Rätsch et al. (2001) in their experiments. Sizes of feature/Dtra/Dval/Dtesare 9/140/60/77

and 13/119/51/100 respectively and each problem has 100 realizations. For comparison

purposes, the format of presentation of results by Rakotomamonjy (2003) was adopted.
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Figure 5.2: Performance of the proposed methods on Weston’snonlinear dataset: (a)
values of FSPPm, m= 1,2,3,4 using FSPPm-INIT; (b) test error rates against top-ranked
features identified by FSPPm-RFE. Note that the stated FSPPm values and test error
rates are the averages over 100 realizations.

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



5.5 Experiments 139

Plots of the mean test error rates of SVM are provided with decreasing number of top-

ranked features. Each plot is the mean over 100 realizationsusing either FSPP-RFE or

FSPP-INIT feature-selection scheme.

For comparison purposes, performance of two feature-ranking criteria, the∆||w||2 method

by Guyon et al. (2002) and the∇‖w‖2 method by Rakotomamonjy (2003), is also in-

cluded. They were chosen because they appear to have performed well (Rakotoma-

monjy, 2003; Weston et al., 2001). Their performance was reproduced together with

those using FSPP1-4 in Figs. 5.3 and 5.4 for the two problems.While Fig. 5.3 is for

breast cancer dataset and Fig. 5.4 is for the heart disease dataset, Figs. 5.3a and 5.4a

report on the results based on the INIT approach while Figs. 5.3b and 5.4b are results of

the RFE approach. These results were obtained for the optimal parameters: (C = 2.83,γ

= 0.05632) for the breast cancer dataset and (C = 2.38,γ = 0.00657) for the heart disease

dataset.

Under the INIT approach, Fig. 5.3a shows that all the methodsconsidered (except

FSPP4) produced similar test error rates for the breast cancer dataset. This is confirmed

by theP-values (>0.05) obtained from pairedt-tests for the 100 realizations, except

for FSPP4 which gaveP-values of less than 0.01 when compared with other methods.

This was, however, not observed for the heart disease dataset. Fig. 5.4a shows that the

FSPP1-4 are significantly better than the∆||w||2 and the∇||w||2 methods withP-values

being less than 0.01 in the pairedt-tests for FSPPm vs ∆||w||2 and FSPPm vs ∇||w||2.

The performance of FSPP4 is not appealing for the breast cancer data. One possible

reason is that the function ˆp(ω|vx) as a function ofvi is highly nonlinear and not well

approximated by∂ p̂(ω|vx)/∂vi evaluated atvi= 1 as in Equation (5.26).

For the RFE approach, Fig. 5.3b shows that FSPP1 and FSPP2 again yielded signifi-

cantly lower average test error rates than FSPP3,∆||w||2 and∇||w||2. This is confirmed

by the pairedt-tests withP-values< 0.05 when only the top 2 or 3 features were used.
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Table 5.2: Description of ARCENE and MADELON datasets

Dataset Features Dtra Dval Dtes

MADELON 500 2000 600 1800
ARCENE 10000 100 100 700

Fig. 5.3b further shows that FSPP2 had a slight edge over FSPP1 and produced lower

average test error rates when only the top 2 or 3 features wereused (P-values<0.05),

suggesting that FSPP2 could be the best performing method. In Fig. 5.4b, the advantage

of the FSPPmover the other two methods is obvious. The pairedt-tests between FSPPm

versus either of the two methods yieldedP-values of less than 0.03. The variation in

performance among FSPP1-3 are, however, not significant as theP-values were greater

than 0.05. Also, FSPP4-RFE is not shown in Fig. 5.3b or Fig. 5.4b as the computation

of Equation (B.5) failed during the recursive feature elimination process.

5.5.3 NIPS Challenge Problems

A well-known set of challenging feature-selection problems is that given in the NIPS

challenge problems (Guyon, 2003). These problems are knownto be difficult and are

designed to test various feature-selection methods using an unbiased testing procedure

without revealing the labels of the test set. The problem sets ARCENE and MADELON

were chosen to evaluate our proposed method. In view of time and space constraints,

only the results of FSPP2-RFE are reported. The details of the ARCENE and MADE-

LON datasets are given in Table 5.2. ARCENE is probably the most challenging among

all the datasets from the NIPS competition as it is a sparse problem with the small-

est examples-to-features ratio (num-of-training-examples/num-of-features=100/10000),

while MADELON is a relatively easier problem with a bigger examples-to-features ra-

tio (2000/500). They were chosen to show effectiveness of the proposed methods for

both sparse and non-sparse problems.
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Figure 5.3: Test error rates against top-ranked features onbreast cancer dataset where
the top-ranked features were chosen based on (a) FSPPm-INIT (b) FSPPm-RFE,
m=1,2,3,4. Results of two other methods,∆||w||2 and∇||w||2, were also included. The
test error rates shown are the averages over 100 realizations.
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Figure 5.4: Test error rates against top-ranked features onheart disease dataset where
the top-ranked features were chosen based on (a) FSPPm-INIT (b) FSPPm-RFE,m =1,
2, 3, 4. Results of two other methods,∆||w||2 and∇||w||2, were also included. The test
error rates shown are the average over 100 realizations.
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Table 5.3: Results on NIPS 2003 challenge datasets as of February 01, 2006. (note:
BER is the balanced error rate on Dtes, while AUC refers to area under the ROC curve.)

Dataset Our best entry by FSPP2-RFE Top entry by other researchers
Rank BER AUC Feat. No. Probe (%) Rank BER AUC Feat. No. Probe (%)

MADELON 1 0.0622 0.9378 12 0 2 0.0622 0.9807 500 96
ARCENE 2 0.106 0.894 5000 27.82 1 0.072 0.9811 100 0

Based on the results of the earlier experiments, FSPP2-RFE was chosen for these two

datasets. Our version of FSPP2-RFE used a three-tier removal of features for MADE-

LON: 100 features at each recursion until 100 features were left followed by 20 features

at each recursion until 20 features were left and finally one feature at each recursion. A

more aggressive removal scheme was used for ARCENE: 1000 features were deleted at

each recursion. For each dataset, our result of FSPP2-RFE having the best validation

accuracy was chosen. Our entries were respectively ranked 1st and 2nd (as of February

01, 2006) in the MADELON and ARCENE group of entries. A comparison between

our results and the best entries by other participants of thechallenge (see Guyon, 2003)

is given in Table 5.3 (as of February 01, 2006).

5.6 Discussion

In summary, FSPP1-3 performed well for all the artificial datasets. This is to be expected

of any good feature-selection method. For the real-world datasets, FSPP1-2 had better

performance than FSPP3 with the edge going to FSPP2, especially when small numbers

of top-ranked features were used. The excellent performance of FSPP2 in the two NIPS

challenge problems reaffirmed its suitability for real-world datasets.

FSPP2-RFE appears to do well on sparse datasets (datasets with large number of features

but small training samples), as seen in the experiment associated with the ARCENE

problem. The reason for its good performance is not exactly clear, but one possible

reason is that the FSPP2 is based on the ensemble of all training examples of|p(ω|x)−
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p(ω|x−i)| over the feature space, as seen in Equation (5.10). This ensemble over all

x j is likely to be more accurate in measuring the contribution of a feature and is more

robust against decreasing training examples. This is different from other methods that

rely on bounds of index of performance where many of these bounds are known to be

loose (Rakotomamonjy, 2003; Vapnik, 1998) and its effect could be more severe when

the ratio of samples-to-features is low.

One significant advantage of FSPP2 is the modest computations needed for its evalu-

ation. Suppose the SVM outputf (xi) is available for allxi in the training data. The

evaluation of ˆp(ω|x) requires a one-time determination of variablesA andB from the

optimization problem as of Equation (5.8). Since Equation (5.8) is an unconstrained

convex optimization problem in two variables, its numerical determination is straight

forward (Lin et al., 2003). The random permutation of every feature over the training

data is required and it is a simpleO(DN) operation which can be done efficiently. Hence,

the FSPP2 scales linearly with respect to the number of features or training samples and

is suitable for large problems in high dimensions.

The proposed idea of using sensitivity of posterior probabilities for feature selection

appears general and should be extendable to other machine learning algorithms where

probabilistic outputs are also available.

The idea of using sensitivity of posterior probabilities for feature selection has been

demonstrated in the context of two-class classification problem. Possible extensions of

the current work could also include the adaptation of the criterion to regression problems

and multi-class classification problems where feature selection methods remain rare in

the literature. The next chapter of this dissertation will cover such an attempt.
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5.7 Concluding Remarks

This chapter introduces a new feature-ranking criterion based on the posterior proba-

bility of the SVM output. It is motivated from the advantage gained in using posterior

probability as a decision function for classification instead of the direct SVM output

function. Four approximations are proposed for the evaluations of the criterion. These

approximations are used in two overall feature-selection approaches, recursive feature-

elimination approach and initial feature-ranking approach.

The experimental results on various datasets show that three of the four approximations

(FSPP1, 2 and 3) yield good overall performance under the recursive feature-elimination

approach. Among them, FSPP2 has the overall edge in terms of accuracy and shows

performance that is comparable with some of the best methodsin the literature. In

addition, FSPP2 has modest computation and hence, is suitable for large problems in

high dimensional feature space. In addition, it appears to perform well for datasets

with low samples-to-features ratios. Consequently, this method is a good candidate for

feature selection for SVM applications.

As discussed in Section 2.8, mental fatigue is usually classified into more than two

discrete levels in the context of EEG-based mental-fatiguemeasurement and monitoring

system. In this case, a feature-selection method for multi-class classification is required.

The next chapter will focus on the endeavor to extend the proposed feature-selection

method for two-class classification problems, as presentedin this chapter, to a feature

selection method for multi-class classification problems.
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Chapter 6

Sensitivity of Posterior Probability as a

Measure of Feature Importance for

Multi-Class Classification Problems

EEG-based mental-fatigue measurement and monitoring is usually formulated into a

multi-class classification problem of differentiating mental fatigue at several discrete

levels. Therefore, a feature-selection method for multi-class classification problems is

required. This chapter proposes two feature-selection criteria for multi-class classifica-

tion problems based on the sensitivity of the posterior probability of the classifier with

respect to the feature. They are extensions of a two-class feature-selection method pre-

sented in the previous chapter and are based on two new criteria. In loose terms, each of

the two criteria measures the importance of a feature by computing the aggregate value,

over the feature space, of the absolute difference of the posterior probabilities of the

classifier with and without the feature. In their original form, the evaluations of the cri-

teria are computationally expensive and three approximations are proposed. Using the

support vector machine (SVM) multi-class classifier as the working example, perfor-
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mances of the three approximations are tested on several artificial and real-world bench-

mark datasets. Comparisons are also made with two other popular feature-selection

methods from the literature. Numerical results show that the proposed approximations,

when used in an overall feature-selection method, generally outperform the two popu-

lar feature-selection methods for the datasets considered. In addition, one of the three

approximations performs slightly better than the other two.

6.1 Introduction

Relatively little attention has been given to feature selection in a multi-class classifica-

tion setting in the literature. Most existing feature-selection methods are intended for

two-class classification problems. This is not surprising since a multi-class classifier

can be implemented by appropriately combining several two-class classifiers and hence

feature selection can be done separately for each of the two-class classifiers. However,

multi-class feature-selection methods are important and deserve attention for at least

two reasons. First, some classifiers, such as neural networks (see Haykin, 1999), logis-

tic regression (see Hosmer and Lemeshow, 1989) and random forests (Breiman, 2001),

are naturally multi-class classifiers and thus feature selection has to be performed in the

context of multi-class classification. Second, two-class feature-selection methods may

not be applicable for some multi-class classifiers built up from two-class classifiers. For

example, consider the multi-class classifier built up from several “one-versus-all” (OVA)

two-class support vector machine (SVM) classifiers (see Rifkin and Klautau, 2004). Let

fi(x) denote the output of theith two-class SVM classifier classifying classωi against

the rest of classes for a given test samplex. The decision rule for OVA multi-class clas-

sifier is argmaxi fi(x). This approach implicitly assumes that all two-class classifiers use

the same set of features. If different feature subsets are used for the different two-class

classifiers, the afore-mentioned decision rule can be wrongsince the output of each two-
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class classifier has its own bias level. This same difficulty exists for multi-class SVM

classifier constructed using pair-wise coupling strategy (PWC) (Hastie and Tibshirani,

1998).

New feature-selection methods for multi-class classification problems are considered in

this chapter. They are extensions of a two-class feature-selection method as presented in

the previous chapter and are based on two new criteria: one when p(ωi |x), the posterior

probability of belonging to classωi given x, is available and the other when only the

pairwise posterior probability,p(ωi |x,x ∈ ωi or ω j), is available. Both criteria use the

sensitivity of the posterior probability with respect to a feature as a measure of feature

importance, and are collectively termed Multi-class Feature-based Sensitivity of Pos-

terior Probabilities (MFSPP). In loose terms, both criteria correspond to the aggregate

value over the feature space of the absolute difference of the posterior probabilities with

and without the feature. Conceptually, these criteria are very different from those con-

sidered in the existing feature-selection literature. Forexample, the typical criteria used

for two-class SVM are the sensitivity of the cost function (Guyon and Elisseef, 2003;

Guyon et al., 2002), or the sensitivity of bounds on generalization error (Rakotoma-

monjy, 2003; Weston et al., 2001).

In their original form, the evaluation of the proposed two criteria are expensive and

approximations are needed. Three approximations, MFSPP1-3, are used and their per-

formances are tested on various benchmark datasets. Comparisons are also made with

several existing multi-class feature-selection methods in the literature. The results show

that all three approximations perform consistently well and compare favorably with the

other methods considered, with a slight edge going to MFSPP1.

The proposed feature-selection methods require the use of probabilistic classifiers. For

the ease of presentation, this work considers only probabilistic classifiers obtained from

the SVM methods as they are known to have superior performance (Duan and Keerthi,
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2005; Hastie and Tibshirani, 1998; Platt, 2000). It is well known (Platt, 2000) that a

probabilistic classifier can be obtained from the output function of a standard two-class

SVM classifier. Hastie and Tibshirani (1998) also show a pairwise coupling strategy to

combine several probabilistic two-class classifiers to form a single probabilistic multi-

class SVM classifier.

The rest of this chapter is organized as follows. Results from the literature needed for

the subsequent sections are collected and reviewed in Section ??. Section 6.3 states

the proposed feature-ranking criteria and the descriptions of the three approximations.

Section 6.4 outlines the overall feature-selection schemeincorporating the criteria. Ex-

tensive experimental results are reported and discussed inSection 6.5, followed by the

conclusions in Section 6.6.

6.2 Review of Past Work

The section provides a review of probabilistic multi-classSVM classifier and other

closely-related past work on multi-class feature-selection methods. We begin with the

general notations used. Consider a prototypical multi-class classification problem hav-

ing c classes (ω1,ω2, · · · ,ωc) and a given datasetD in the form of{xi,yi}
N
i=1 where

xi ∈ R
D is the ith sample,yi ∈ {1, · · · ,c} is the corresponding class label. Hence,

yi = k if and only if xi ∈ ωk. Let nk be the number of samples that belong to classωk,

N := N1+ · · ·+Nc be the total number of samples inD andDi j := {xk,yk}xk∈ωi∪ω j be the

subset ofD formed by samples from classesωi andω j . Also, letxi denote theith feature

of vectorx. Hence,xi
j refers to theith feature of thejth sample andx−i ∈ R

D−1 is the

vector obtained fromx with theith feature removed. Double subscripted variablex−i, j is

also used and it refers to thejth sample of vectorx−i . In addition,pi(x)≡ P(ωi|x) refers

to the posterior probability of belonging to classωi givenx and p̂i(x) is used to denote
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its estimate. Similarly,pi j (x) ≡ P(ωi |x,x ∈ ωi or ω j) refers to the pairwise probability

of belonging to classωi knowing thatx is from classωi or classω j and p̂i j (x) is its

estimate.

6.2.1 Probabilistic Multi-Class SVM

The description of the probabilistic multi-class SVM has been given in Section 2.10.2.4

in Chapter 2. Here, only key equations are given below for easy reference.

If pi(x) of a probabilistic multi-class SVM classifier is available,the decision function

is

d(x) = argmax
i
{pi(x)}. (6.1)

Typically, pi(x) is estimated by ˆpi(x), obtained from solving the following pairwise-

coupling (PWC) optimization problem (Hastie and Tibshirani, 1998; Wu et al., 2004):

min
p̂i(x)

c

∑
i=1

∑
j : j 6=i

[

p̂ ji (x)p̂i(x)− p̂i j (x)p̂ j(x)
]2

, subject to
c

∑
i=1

p̂i(x) = 1. (6.2)

where p̂i j (x), p̂ ji(x) are known probabilistic outputs of the two-class SVM classifiers

(Platt, 2000). Specifically, suppose the standard output ofthe two-class SVM trained

usingDi j is

fi j (x) = ∑
xk∈Di j

ykαkK(xk,x), (6.3)

whereK(·, ·) is the kernel function (Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik,

1995). The probabilistic SVM output, ˆpi j (x), is

p̂i j (x) =
1

1+exp(Ai j fi j (x)+Bi j )
, (6.4)
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where the parametersAi j andBi j are determined from minimizing the negative log like-

lihood (or the cross-entropy error function) function, or

minF(Ai j ,Bi j ) = min{− ∑
xk∈Di j

[tk log p̂i j (xk)+(1− tk) log(1− p̂i j (xk))]}, (6.5)

wheretk = (Ni +1)/(Ni +2) if yk = i andtk = 1/(Nj +2) if yk = j. It is worth noting

that a 5-fold cross-validation process is implicitly used in Equation (6.5) as suggested

by (Platt, 2000). This cross-validation process removes the requirement of keeping a

hold-out validation dataset for fitting the parametersAi j andBi j , which is especially

useful when the number of training samples is small. Our implementation of the above

includes the modifications suggested by Lin et al. (Lin et al., 2003) for numerical stabil-

ity. Obviously, the choice of kernel functionK(·, ·) in Equation (6.3) is general and our

study is done with the popular Gaussian kernel,K(xp,xq) = exp(−γ‖xp−xq‖
2) where

γ is the kernel parameter.

The above procedure of obtaining ˆpi(x) from p̂i j (x) is hereafter referred as PWC-

PSVM. Both quantities, ˆpi(x) from Equation (6.2) and ˆpi j (x) from Equation (6.4) are

used extensively in the approximations of the proposed feature-ranking criterion here-

after.

6.2.2 Other Feature-Selection Methods for SVM

For comparison purposes, three other feature-selection methods for multi-class classifi-

cation problems are reviewed below.
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6.2.2.1 Multi-Class Version of Fisher’s Score

The multi-class version of Fisher’s score (F-Score) assesses the importance of each fea-

ture independent of other features by the ratio of between-class variances and within-

class variances. The F-score for thekth feature is

F(k) =
∑c

i=1Ni(µµµk
i −µµµk)2

∑c
i=1∑x j∈ωi

(xk
j −µµµk

i )
2
, (6.6)

whereµµµk
i := ∑x j∈ωi

xk
j is theith class mean of thekth feature andµµµk := ∑c

i=1(Niµµµk
i )/n

is the mean over all class means.

6.2.2.2 Multi-Class Versions of SVM-RFE algorithm

The SVM Recursive-Feature-Elimination algorithm (SVM-RFE) is a well-known feature-

selection method for two-class SVM classifiers (Guyon et al., 2002). It uses the sensi-

tivity of the cost function of two-class SVM classifier with respect to each feature as

the feature-ranking criterion and the least important feature is recursively removed from

the training data between successive training of the classifier. Such a procedure, com-

bined with multi-class SVM under the OVA setting (SVM-OVA-RFE), was suggested

by Weston et al. (2003) based on its feature-ranking criterion

D(k) =
c

∑
i=1

|Ji −J−k,i |, (6.7)

whereJi := 1
2‖wi‖

2 +C∑ j ξ j is the cost function of the two-class SVM classifier be-

tween classωi and the rest of classes, andJ−k,i is the corresponding cost function after

thekth feature is removed. Assuming no change in solution of the SVM, Equation (6.7)
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is shown (Weston et al., 2003) to be equivalent to

D̂(k) =
c

∑
i=1

∣

∣‖wi‖
2−‖w−k,i‖

2
∣

∣, (6.8)

wherewi andw−k,i are the respective normals to the separating hyperplanes ofthe SVM

classifiers.

Based on Equation (6.7) or Equation (6.8), it is straight-forward to extend the SVM-RFE

algorithm to “one-versus-one” (OVO) multi-class SVM (SVM-OVO-RFE) by using the

following feature-ranking criterion:

D̂p(k) =
c

∑
i=1

∑
j : j 6=i

∣

∣‖wi j‖
2−‖w−k,i j‖

2
∣

∣, (6.9)

wherewi j is the normal to the separating hyperplane of the two-class SVM classifier

classifying classωi against classω j and w−k,i j is the corresponding vector obtained

after thekth feature is removed.

6.3 The Proposed Criteria

Consider the prototypicalc-class classification problem with posterior probabilitypi(x)

andpi j (x). Let x−k ∈ R
D−1 be the vector derived fromx with thekth feature removed.

The proposed ranking-criterion for thekth feature is

S(k) =
c

∑
i=1

∫

λi |pi(x)− pi(x−k)|p(x)dx, (6.10)
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where

λi ≥ 0, i = 1, · · · ,c and
c

∑
i=1

λi = 1. (6.11)

The motivation of above criterion is clear: the greater the weighted absolute difference

betweenpi(x) and pi(x−k) over the space ofx, the more important is thekth feature.

Theλi are introduced to account for the different emphases placedon the sensitivity of

posterior probabilities for the various classes. One useful choice is to let

λi =
β
Ni

with β = (
c

∑
i=1

1
Ni

)−1 (6.12)

so as to avoid the key features of a majority class from dominating the ranking in a

multi-class feature-selection setting.

The evaluation ofS(k) requires the availability ofpi(x). If pi(x) are not available but

only pi j (x) are, a second proposed feature-ranking criterion is

Sp(k) =
c

∑
i=1

c

∑
j=1, j 6=i

∫

λi j |pi j (x)− pi j (x−k)|p(x|x ∈ ωi or ω j)dx (6.13)

whereλi j play the same role asλi in Equation (6.10) and are subject to similar con-

straints:

λi j ≥ 0 for all (i, j) with i 6= j, λi j = λ ji , ∑
i 6= j

λi j = 1. (6.14)

As the true values ofpi(x) and pi j (x) in Equation (6.10) and Equation (6.13) are un-

known, they are approximated by ˆpi(x) and p̂i j (x) obtained by solving Equations (6.2)

and (6.5) respectively. The values ofpi(x−k) in Equation (6.10) andpi j (x−k) in Equa-
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tion (6.13) correspond to the probabilistic outputs of PWC-PSVM trained using data

{x−k,i ,yi}
n
i=1 in place of{xi ,yi}

n
i=1. Sincex has D features, to obtainpi(x−k) for

k= 1, · · · ,D means that training of PWC-PSVM has to be performedD times, each time

with one feature removed from the training set. This is a computationally expensive pro-

cess. The remainder of this section shows three approximations (MFSPP1–MFSPP3) of

Equation (6.10) or Equation (6.13) which avoid the retraining process.

The approximations ofpi(x−k) and pi j (x−k) in Equation (6.10) and Equation (6.13)

involve a process of random permutation (RP) of the values ofa feature as discussed

in the previous chapter. Specifically, the values of thekth feature ofx are randomly

permuted over then samples of a dataset while all other features ofx, exceptxk, remain

unchanged. Suppose{ζ1, · · · ,ζN−1} is a set of uniformly distributed random numbers

from (0,1) and⌊ζ⌋ is the largest integer that is less thanζ . The random permutation of

the values of thekth feature is executed as follows (Page, 1967): for eachi starting from

1 ton−1, computej = ⌊N×ζi⌋+1 and swap the values ofxk
i andxk

j .

Let x(k) ∈ R
D be the vector derived fromx with thekth feature randomly permuted by

the RP process. The next theorem states a result onpi(x) andpi j (x) following the RP

process and serves as the theoretical basis for the approximations. The proof of which

has been given in the proof of Theorem 5.1 in the context of a two-class classification

problem but is included in Appendix C. for easy reference.

Theorem 6.1 Suppose pi(x) is the posterior probabilities ofx belonging to classωi

and pi j (x) is the posterior probabilities of belonging to classωi given thatx ∈ ωi ∪ω j .

Then,

pi(x−k) = pi(x(k)) (6.15)
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and

pi j (x−k) = pi j (x(k)). (6.16)

Theorems 6.1 shows that the RP process has the same effect as removing the contribu-

tion of that feature for classification. Using this fact, thecriterion of Equation (6.10) can

be equivalently stated as

S(k) =
c

∑
i=1

∫

λi |pi(x)− pi(x(k))|p(x)dx, (6.17)

while Equation (6.13) is equivalent to

Sp(k) =
c

∑
i=1

c

∑
j=1: j 6=i

∫

λi j |pi j (x)− pi j (x(k))|p(x|x ∈ ωi or ω j)dx. (6.18)

Based on Equation (6.17) and Equation (6.18), the three approximations are stated next.

MFSPP1: As mentioned earlier,pi(x) is not known exactly and is approximated by

p̂i(x) of Equation (6.2), trained using datasetD. As for pi(x(k)), it is approximated by

the same ˆpi expression of Equation (6.2) but withx replaced byx(k). This means that

no retraining of the classifier is involved in the approximation of pi(x(k)) by p̂i(x(k)).

Further approximation of the integration over thex space in Equation (6.17) yields

Ŝ1(k) =
1
n

c

∑
i=1

n

∑
j=1

λi|p̂i(x j)− p̂i(x(k), j)|, (6.19)

wherex(k), j refers to thejth sample of the training data where thekth feature has been

randomly permuted.
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MFSPP2: In a manner similar to MSFPP1, Equation (6.18) becomes

Ŝp(k) =
c

∑
i=1

c

∑
j=1: j 6=i

∑
xp∈Di j

1
Ni +Nj

λi j |p̂i j (xp)− p̂i j (x(k),p)|. (6.20)

The criteria of Equation (6.17) and Equation (6.18) assess the importance of a feature

by the sensitivity ofpi(x) or pi j (x) with respect to that feature. Obviously, this idea can

be applied to other multi-class classification methods so long as probabilistic outputs

are available. For example, one can obtain another approximation of Equation (6.17)

for the OVA multi-class SVM. In OVA multi-class SVM,c two-class SVM classifiers

are constructed where theith two-class classifier is for separating classωi from the rest

of the classes. One suggested (Duan et al., 2003) simple estimate ofpi(x) is:

p̄i(x) = p̃i(x)/
c

∑
j=1

p̃ j(x) (6.21)

where

p̃ j(x) = 1/[1+exp(A j f j(x)+B j)] (6.22)

is the probabilistic output obtained fromf j(x), the standard output of theith two-class

classifier, in a similar manner to Equation (6.4) and Equation (6.5).

MFSPP3: Using Equation (6.21) in Equation (6.17), a feature-ranking criterion for

OVA multi-class SVM is

Ŝ2(k) =
1
n

c

∑
i=1

n

∑
j=1

λi|p̄i(x j)− p̄i(x(k), j)|. (6.23)

Clearly, other more sophisticated schemes (see Duan et al.,2003; Roth, 2001) for ob-

taining posterior probabilities from standard outputs of OVA multi-class SVM can also

be used.
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6.4 Feature Selection Method

This section describes the overall scheme of multi-class feature selection using MFSPP1-

MFSPP3. The overall scheme follows the well-known recursive-feature-elimination

(RFE) approach (Guyon et al., 2002), in which the least important feature, as ranked by

MFSPP1-MFSPP3, is removed from successive SVM training. Accordingly, the overall

scheme is referred to as MFSPP1-RFE to MFSPP3-RFE. It is assumed that estimates

of pi(x) and pi j (x) are available under the formulation of PWC-PSVM or other prob-

abilistic SVMs. This also implies that all the hyper-parameters of SVMs,(C,γ), have

been determined through a proper model selection process, followed by a subsequent

determination of(Ai j ,Bi j ) for Equation (6.4) or(Ai,Bi) for Equation (6.22).

As a review, the steps involved in the MFSPP1-RFE scheme are summarized in Algo-

rithm 4. This scheme has its inputs the datasetD and the index setI = {1,2, · · · ,D}

containing all the indices of features. The output is a ranked list of features in the form

of an index setJR = { j1, j2, · · · , jD} where jk ∈ I for eachk. The scheme starts with the

full feature setI . The while loop is invoked, which trains the PWC-PSVM classifier and

gets a ranked list of the featuresJl containing all elements inI . Next, the last element

of Jl (corresponding to the feature having the smallestŜ1) is removed fromI and stored

in the rightmost position of the ranked listJR. The while loop is then invoked on the

reduced setI . This process continues, each time removing the least important feature

from I and storing it in the rightmost free position ofJR, until I is empty.

With a slight modification to steps 5 and 6 in Algorithm 4, one can easily get the steps

involved in MFSPP2-RFE and MFSPP3-RFE. It is also worth noting that more than

one feature can be removed at one time with a slight modification to steps 5 and 6

of Algorithm 4 and that the current description of feature-selection scheme does not

involve the determination of hyper-parameters(C,γ)’s in the step 4 in the while loop of

Algorithm 4. Such a process is possible albeit with higher costs.
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Algorithm 6.1: Main steps of MFSPP1-RFE feature selection scheme.
Input : D, I
Output : Ranked listJR

while I 6= /0 do1

setl = size(I );2

if l > 1 then3

Train PWC-PSVM usingD;4

For eachi ∈ I , computeŜ1(i) via Equation (6.19);5

Put eachjk ∈ I into a rank listJl = { j1, j2, · · · , j l} satisfying6

Ŝ1( jk) ≥ Ŝ1( jk+1) for k = 1, · · · , l −1;
Let the last element ofJl bek⋆;7

Assignk⋆ to thel th element ofJR;8

else9

Asign the only element inI to thel th element ofJR;10

end11

end12

Let I = I \k⋆ and remove featurek⋆ from every sample inD.13

end14

Table 6.1: Basic information of the four real-world benchmark problems used in the
present study

Problem #class #realization #feature #training #testing
wine 3 100 13 125 53

lung cancer 3 100 56 22 10
waveform 3 100 40 3500 1500

DNA 3 1 180 2000 1186

6.5 Experiments and Discussions

Extensive experiments on both artificial and real-world benchmark problems are car-

ried out using the proposed methods. Like other studies, artificial problems are used

because the key features are known, making comparative study easy. Four real-world

benchmark problems from UCI repository of machine learningdatasets (Newman et al.,

1998) and the Statlog collection (Michie et al., 1994) are chosen to serve as references

for comparison. Descriptions of these are given in Table 6.1.

It is important to note that the purpose of the experiments isnot to compare the per-
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formances of different multi-class SVMs (excellent work onthis can be found in Duan

and Keerthi, 2005; Hsu and Lin, 2002; Rifkin and Klautau, 2004), but to measure the

effectiveness of proposed multi-class feature-selectionmethods. To do so, feature sets

from different feature-selection methods are used and their performances are evaluated

using one consistent multi-class classifier: PWC-PSVM.

The experiment for each dataset uses two data subsets,Dtra andDtes, for training and

testing purposes.Dtra is normalized to be zero mean and unit standard deviation and

Dtes is correspondingly adjusted using the normalization parameters ofDtra. The nor-

malizedDtra is used for training of each binary SVM classifier including the determi-

nation of the optimal hyperparameters(C,γ) and the fitting of sigmoid functions for its

probabilistic outputs. The parameters(C,γ) for each binary SVM are selected by 5-fold

cross-validation over the following grid:[2−7, · · · ,27]× [2−10, · · · ,23] and is done sep-

arately for each binary SVM using LibSVM (Hsu et al., 2004). Obviously,Dtes is used

only to obtain the unbiased test accuracy rate of the underlying method.

For each datasets in Table 6.1 except the DNA, the 100 realizations are generated by

random (stratified) splitting of the total samples intoDtra andDtes in the ratio of 70% to

30%. The choice of one realization for the DNA dataset is due to the high computational

cost involved and missing entries in the lung-cancer dataset are filled by the mode values

of their respective classes. The parameters(C,γ) for each binary SVM classifier are

chosen as the median of five sets of(C,γ) of the first five realizations. Here, each set

of (C,γ) is obtained by 5-fold cross-validation for one realization(Rätsch et al., 2001).

In all experiments,λi follows that given by Equation (6.12) andλi j = λ ji = β
Ni+Nj

with

β = (∑i, j :i 6= j
1

Ni+Nj
)−1.
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Figure 6.1: The distribution of first two features in the three-class nonlinear synthetic
problem, with the data in each class generated from a mixtureof Gaussians.

6.5.1 Artificial Problem

The first experiment involves a three-class version of Weston’s nonlinear problem (We-

ston et al., 2001) where the samples for each class are generated from a mixture of

Guassians. Following the procedure by Weston et al. (2001),10,000 samples are gener-

ated with 10 features each for the three classes. Only the first two features,(x1, x2), are

relevant while the rest are random noise, each taken from a normal distributionN(0,20).

Figure 6.1 shows the distribution of the first two features. Note that a similar dataset has

been used in (Hastie and Tibshirani, 1998).

The experiment aims to study the effect of sparsity of the training set on the performance

of various feature-selection methods. Four sizes (30, 50, 70 and 100) ofDtra are chosen.

For each size, 100 realizations ofDtra are obtained by random selection from the 10,000

samples. When one realization ofDtra is selected, the rest of the 10,000 samples are

used forDtes.

Two sets of the SVM parameters,(C,γ), are used. The first (set I) is chosen by the afore-

mentioned method using the first five realizations ofDtra. The second (set II) is tuned
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Table 6.2: Mean and standard deviation of test errors on the three-class version of We-
ston’s nonlinear problem using different feature-selection methods and different training
set sizes. The numbers in brackets are the percentage of runsthat(x1,x2) are success-
fully identified as the first two most-important features by each feature-selection method
over 100 realizations. Two settings of parameters(C,γ) are considered: (I)the median
of five sets of(C,γ) resulting from a 5-fold cross-validation process on each ofthe first
five realizations ofDtra; (II) a 5-fold cross-validation process on the randomly-selected
3,000 samples.

Training Set Size
Method 30 50 70 100

SVM-OVA-RFE 0.34±0.07 (12%) 0.37±0.03 (1%) 0.28±0.06 (58%) 0.21±0.02 (100%)
SVM-OVO-RFE 0.37±0.02 (0%) 0.34±0.07 (19%)0.23±0.02 (100%)0.22±0.03 (97%)

(I) MFSPP1-RFE 0.20±0.08 (83%)0.22±0.04 (96%)0.23±0.02 (100%) 0.21±0.02 (100%)
MFSPP2-RFE 0.27±0.11 (53%)0.21±0.03 (98%) 0.23±0.02 (100%) 0.21±0.02 (100%)
MFSPP3-RFE 0.24±0.10 (67%) 0.22±0.04 (96%)0.23±0.02 (100%) 0.21±0.02 (100%)

SVM-OVA-RFE 0.27±0.13 (69%) 0.21±0.07 (93%) 0.17±0.04 (99%) 0.16±0.02 (100%)
SVM-OVO-RFE 0.32±0.07 (24%) 0.26±0.09 (60%) 0.21±0.08 (84%) 0.18±0.06 (98%)

(II) MFSPP1-RFE 0.26±0.08 (60%)0.20±0.04 (98%) 0.17±0.02 (100%) 0.16±0.02 (100%)
MFSPP2-RFE 0.24±0.08 (75%)0.20±0.04 (98%) 0.17±0.02 (100%) 0.16±0.02 (100%)
MFSPP3-RFE 0.24±0.08 (79%) 0.20±0.04 (98%) 0.17±0.02 (100%) 0.16±0.02 (100%)

using randomly chosen 3,000 samples (1,000 for each class) from the 10,000 training

samples and this set is used for all four sizes of the trainingset. This second set is taken

to be the optimal parameter values and serves as a reference to decouple the effect of a

wrong choice of(C,γ) from the effect of different feature-selection methods.

Table 6.2 shows the means and the standard deviations of the test errors over the 100

realizations when only the two highest-ranked features areused. In addition, Figure 6.2

and Figure 6.3 show plots of the mean of the test-error rates versus the number of top-

ranked features used. The two figures differ in the choice of(C,γ) used: Set I for Figure

6.2 while Set II for Figure 6.3. Besides MFSPP1-3, results ofSVM-OVA-RFE and

SVM-OVO-RFE (existing wrapper methods reviewed in SectionII.B) are also included

for comparison purposes. The F-score measure is a filter method and is not included for

comparison for artificial dataset as it is not very meaningful.

From Table 6.2, Figs 6.2 and 6.3, it is easy to see that MFSPP1-RFE, MFSPP2-RFE

and MSPP3-RFE perform at least as good, if not better, than SVM-OVA-RFE and
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Figure 6.2: Average test-error rates against top-ranked features over 100 realizations of
the three-class version of Weston’s nonlinear problem for four training set sizes: (a) 30
samples; (b) 50 samples; (c) 70 samples; (d) 100 samples. Theset I of parameters(C,γ)
are used and they are chosen as the median of five sets of(C,γ) resulting from a 5-fold
cross-validation process on each of the first five realizations ofDtra.
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Figure 6.3: Average test-error rates against top-ranked features over 100 realizations of
the three-class version of Weston’s nonlinear problem for four training set sizes: (a) 30
samples; (b) 50 samples; (c) 70 samples; (d) 100 samples. Theset II of parameters
(C,γ) are used and they are chosen chosen by a 5-fold cross-validation process on the
randomly-selected 3,000 samples.
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SVM-OVO-RFE. The advantage of MFSPP1-RFE, MFSPP2-RFE and MSPP3-RFE

over SVM-OVA-RFE and SVM-OVO-RFE is evident when the feature-selection prob-

lem becomes more challenging (as the size of training set gets smaller). The statistical

significance of the difference is verified by additional paired t-tests. Six pairedt-tests

on the test-error rates (over 100 realizations when only thefirst two top-ranked features

are provided to the predictor) between the proposed methods(MFSPP1-RFE, MFSPP2-

RFE and MSPP3-RFE) and the benchmark methods (SVM-OVA-RFE and SVM-OVO-

RFE) are conducted. Most of the resultingP-values are less than 0.05 (especially when

the training set size is small, i.e. 30 or 50)—a clear indication of the statistical signifi-

cance on the advantage of the proposed methods over the benchmark methods.

On the other hand, the performances of the three proposed ranking criteria (MFSPP1-

RFE, MFSPP2-RFE and MSPP3-RFE) are very similar. Additional paired t-tests on

the test-error rates (over 100 realizations when only the two highest-ranked features are

used) confirm that no significant difference exists in the performances of these three

methods on this problem.

6.5.2 Real-World Benchmark Problems

The real-world benchmark problems and their respective realizations used in the exper-

iments are given in Table 6.1. Figures 6.4, 6.5 and 6.6 show the average test-error rates

for the proposed methods (MFSPP1-RFE, MFSPP2-RFE and MFSPP3-RFE) and the

benchmark methods (F-Score, SVM-OVA-RFE and SVM-OVO-RFE)on all real-world

benchmark datasets except DNA. It is evident that, at almostall values of top-ranked

feature used, the performances of the proposed methods are better than those of the

benchmark. Also, the best-performing method appears to be MFSPP1-RFE, it gives the

lowest test-error rate using the smallest number of top-ranked features.
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The statistical significance of the above-mentioned performance difference is also con-

firmed by additional pairedt-tests for datasets having 100 realizations. Tables 6.3,

6.4 and 6.5 show theP-values for comparisons between the best-performing method,

MFSPP1-RFE, and the other methods on all real-world benchmark datasets except DNA.

Additional six sets of pairedt-tests on the test-error rates between the proposed methods

(MFSPP1-RFE, MFSPP2-RFE and MSPP3-RFE) and the benchmark methods (SVM-

OVA-RFE and SVM-OVO-RFE) are also conducted and they show that all the three

proposed methods perform at least as good, if not better, than the benchmark methods.

The result for the DNA dataset is shown in Figure 6.7. As shown, the proposed set

of methods generally give lower test-error rates than the benchmark methods. Among

all the methods, MFSPP1-RFE again produces the lowest errorrate using the smallest

number of top-ranked features.

6.5.3 Discussion

The difference in performances of the proposed methods (MFSPP1-RFE, MFSPP2-RFE

and MSPP3-RFE) to the other methods (SVM-OVA-RFE and SVM-OVO-RFE) is inter-

esting and deserves attention. Both groups of methods use the RFE approach but differ

in the choice of ranking criteria used: conceptually the former uses the sensitivity of the

posterior probability with respect to a feature,∂ pi(x)
∂xk while the latter uses the sensitivity

of the SVM cost function with respect to a feature,∂J(x)
∂xk or equivalently,∂‖w‖2

∂xk . The

better performances of the proposed methods appear to suggest that ∂ pi(x)
∂xk is a better

measure of importance of thekth feature than∂‖w‖2

∂xk . The exact reasons for this are not

entirely clear but several possibilities exist.

One possibility relates to the measure of performance. Testing accuracy is used to de-

termine the superiority of one feature selection method over another and this accuracy

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



6.5 Experiments and Discussions 167

2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Top−ranked Features

T
es

t E
rr

or
 R

at
e

 

 
F−Score
SVM−OVA−RFE
SVM−OVO−RFE
MFSPP1−RFE
MFSPP2−RFE
MFSPP3−RFE

Figure 6.4: Average test-error rates against top-ranked features over 100 realizations of
the wine dataset.

Table 6.3: Performance comparison between the best-performing method (i.e. MFSPP1-
RFE) and the other methods (F-Score, SVM-OVA-RFE, SVM-OVO-RFE, MFSPP1-
RFE, MFSPP2-RFE) on the wine dataset. TheP-value is obtained in the pairedt-test
between each method to the best-performing method MFSPP1-RFE. The symbols “+”
and “−” indicate statistically significant wins or losses over MFSPP1-RFE (P-value<
0.05).

MFSPP1 F-Score SVM-OVA SVM-OVO MFSPP2 MFSPP3
-RFE -RFE -RFE -RFE -RFE

Ntop Mean Mean P- Mean P- Mean P- Mean P- Mean P-
TER TER value TER value TER value TER value TER value
(%) (%) (%) (%) (%) (%)

1 31.9 26.2 0.34 33.9 0.06 26.7 0.51 27.4 0.37 27.2 0.63
2 11.1 11.6 0.16 13.2 0.00− 11.0 0.90 14.5 0.00− 12.2 0.01−

3 8.0 8.4 0.28 9.1 0.00− 9.1 0.01− 9.3 0.00− 8.7 0.02−

4 6.0 6.4 0.19 7.9 0.00− 10.3 0.00− 6.6 0.01− 6.1 0.64
5 4.1 4.7 0.00− 6.6 0.00− 8.2 0.00− 4.6 0.00− 4.1 0.83
6 3.4 5.0 0.00− 3.6 0.00− 6.7 0.00− 3.2 0.18 3.6 0.16
7 3.8 4.7 0.00− 5.4 0.00− 6.3 0.00− 3.5 0.17 3.4 0.07
8 2.9 4.3 0.00− 4.6 0.00− 5.9 0.00− 3.4 0.02− 3.1 0.28
9 1.7 3.2 0.00− 4.1 0.00− 5.0 0.00− 2.4 0.00− 3.1 0.00−

10 1.4 2.3 0.00− 3.6 0.00− 3.5 0.00− 1.8 0.00− 2.7 0.00−

11 1.6 2.1 0.00− 3.1 0.00− 2.8 0.00− 1.8 0.02− 2.9 0.00−

12 1.7 2.0 0.00− 2.0 0.00− 2.3 0.00− 1.8 0.03− 2.1 0.00−

13 1.5 1.5 1.00 1.5 1.00 1.5 1.00 1.5 1.00 1.5 1.00
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Figure 6.5: Average test-error rates against top-ranked features over 100 realizations of
the lung-cancer dataset.

Table 6.4: Performance comparison between the best-performing method (i.e. MFSPP1-
RFE) and the other methods (F-Score, SVM-OVA-RFE, SVM-OVO-RFE, MFSPP1-
RFE, MFSPP2-RFE) on the lung-cancer dataset. TheP-value is obtained in the paired
t-test between each method to the best-performing method MFSPP1-RFE. The symbols
“+” and “−” indicate statistically significant wins or losses over MFSPP1-RFE (P-value
< 0.05).

MFSPP1 F-Score SVM-OVA SVM-OVO MFSPP2 MFSPP3
-RFE -RFE -RFE -RFE -RFE

Ntop Mean Mean P- Mean P- Mean P- Mean P- Mean P-
TER TER value TER value TER value TER value TER value
(%) (%) (%) (%) (%) (%)

1 51.0 55.4 0.00− 54.5 0.00− 51.9 0.45 53.0 0.06 53.0 0.00−

4 43.2 46.3 0.03− 47.7 0.01− 49.4 0.00− 42.8 0.72 42.8 0.20
8 39.3 41.8 0.06 42.6 0.01− 46.8 0.00− 40.5 0.20 40.5 0.02−

10 42.3 40.7 0.25 42.1 0.89 45.1 0.06 40.9 0.23 40.9 0.09
20 40.8 40.3 0.68 40.3 0.71 45.5 0.02− 39.7 0.25 39.7 0.36
30 41.8 41.0 0.44 42.7 0.42 46.0 0.01− 42.5 0.51 42.5 0.82
40 43.6 43.6 1.00 43.5 0.91 45.8 0.03− 43.5 0.88 43.5 0.88
50 45.3 45.0 0.73 44.5 0.13 46.5 0.16 45.0 0.47 45.0 0.75
56 44.8 44.8 1.00 44.8 1.00 44.8 1.00 44.8 1.00 44.8 1.00
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Figure 6.6: Average test-error rates against top-ranked features over 100 realizations of
the waveform dataset.

Table 6.5: Performance comparison between the best-performing method (i.e. MFSPP1-
RFE) and the other methods (F-Score, SVM-OVA-RFE, SVM-OVO-RFE, MFSPP1-
RFE, MFSPP2-RFE) on the waveform dataset. TheP-value is obtained in the paired
t-test between each method to the best-performing method MFSPP1-RFE. The symbols
“+” and “−” indicate statistically significant wins or losses over MFSPP1-RFE (P-value
< 0.05).

MFSPP1 F-Score SVM-OVA SVM-OVO MFSPP2 MFSPP3
-RFE -RFE -RFE -RFE -RFE

Ntop Mean Mean P- Mean P- Mean P- Mean P- Mean P-
TER TER value TER value TER value TER value TER value
(%) (%) (%) (%) (%) (%)

1 45.7 45.9 0.27 46.1 0.16 47.0 0.01− 46.1 0.07 45.5 0.34
5 20.4 27.5 0.00− 20.3 0.17 23.4 0.00− 20.2 0.15 20.9 0.04−

10 15.1 17.9 0.00− 15.0 0.36 16.3 0.01− 15.1 0.87 15.2 0.26
15 13.0 13.3 0.14 14.8 0.01− 13.4 0.04− 13.0 0.65 13.2 0.27
20 13.4 13.3 0.19 14.3 0.00− 13.1 0.12 13.4 0.81 13.4 0.74
25 13.4 13.6 0.24 13.8 0.04− 13.6 0.31 13.3 0.42 13.5 0.37
30 13.5 13.6 0.76 13.7 0.71 13.3 0.80 13.3 0.85 13.8 0.27
35 13.6 13.7 0.90 13.7 0.75 13.6 0.76 13.6 0.97 13.7 0.80
40 13.7 13.7 1.00 13.7 1.00 13.7 1.00 13.7 1.00 13.7 1.00
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Figure 6.7: Test-error rates against top-ranked features on the DNA dataset.

is largely dependent on the choice of the decision function,d(x). One possible reason

for the better performance of∂ pi(x)
∂xk is that pi(x) is ”closer” to the decision function,

d(x), of the classifier (d(x) = argmaxi pi(x) ) than‖w‖2 since∂d(x)
∂xk = argmaxi

∂ pi(x)
∂xk .

While the relation between‖w‖ (or J(x)) andd(x) is connected via the expressions of

pi(x) = (1+ exp(Ai f (x)+ Bi)
−1 and f (x) = ∑wTΦ(x)+ b. As the decision function

directly affects testing accuracy, measures based on∂ pi(x)
∂xi is a better choice for feature

selection.

Another possible reason is that,‖w‖2 which is inversely proportionate to the SVM mar-

gin, could be more sensitive to the effect of a wrong choice of(C,γ) in the presence of

sparse training data. Some evidence of this can be seen in ournumerical experiments on

the Weston’s nonlinear datasets. By comparing the results obtained using Set I and II in

Table 6.2, Figures 6.2 and 6.3, it is evident that, for small training set sizes of 30 and 50,

the test errors of SVM-OVA-RFE and SVM-OVO-RFE improve significantly from Set I

to Set II, while the changes are much less significant for MFSPP1-RFE, MFSPP2-RFE

and MSPP3-RFE.
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6.6 Concluding Remarks

This chapter proposes the use of two feature-ranking criteria for feature selection in

multi-class classification systems. It is based on posterior probabilities of multi-class

SVM and is motivated by the advantage gained in using posterior probability as a de-

cision function for classification instead of the direct SVMoutput function. The three

approximations used for the two criteria are tested on various artificial and real-world

benchmark problems in an overall feature-selection schemeusing the popular recursive

feature-elimination approach. The experimental results show that all the three approx-

imations yield good overall feature-selection performance in the datasets considered.

Among them, one of the approximation that uses the probabilistic outputs of the multi-

class SVM proposed by Hastie and Tibshirani (Hastie and Tibshirani, 1998) has an over-

all edge and gives consistently better performance than theother feature-selection meth-

ods considered. In addition, it also performs best (among the other methods considered)

on sparse datasets with low samples-to-features ratios. Itis especially of interest to

biomedical applications, such as the EEG application in this dissertation, which usually

involve such sparse datasets.
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Chapter 7

Continuous Measurement and

Monitoring of Mental Fatigue: A

Comprehensive Pattern Recognition

System

This chapter presents an EEG-based mental-fatigue measurement and monitoring sys-

tem using a probabilistic-based multi-class support vector machine (SVM) method. This

pattern-recognition system uses the mental-fatigue EEG database established in Chap-

ter 3, and it also includes the novel functions of automatic artifact removal algorithm

and the automatic feature selection algorithm developed inChapter 4 and Chapter 6 re-

spectively. The experiments that follow provide evidence that this pattern-recognition

system not only gives superior accuracy in predicting the subjects’ mental-fatigue level

but also provides a valuable estimate of confidence in the prediction that it makes in a

given 3-second EEG epoch.
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7.1 Introduction

In attempts to develop an objective and non-intrusive mental fatigue measurement method,

some pilot studies have correlated mental fatigue with physiological measures such as

electrocardiogram (ECG), electrooculogram (EOG) and EEG.A good review of these

approaches can be found in the thesis by Mallis (1999) and a review by Lal and Craig

(2001a). More recently, several studies have reported the feasibility of measuring men-

tal fatigue or drowsiness indexed by subjects task performance, based on EEG data in

attention-sustained experiments using auditory or visualstimuli (see Duta et al., 2004;

Jones, 2006; Jung et al., 1997; Lal et al., 2003; Makeig et al., 2000; Peiris et al., 2004;

Sommer et al., 2002; Vuckovic et al., 2002).

Most of these pilot studies have focused on the detection of performance lapses in the

specific tasks that they studied (i.e. the prediction of a mistake in a specific task) without

measuring subjects mental-fatigue levels directly. Also,most of these pilot studies used

fairly simple linear or nonlinear regression or neural networks and recent advance in the

signal processing methods, like automatic artifact removal, feature selection and multi-

category pattern classification, have been overlooked. More importantly, the literature

continues to produce varying and even conflicting results and very little evidence exists

on the efficacy of incorporating EEG into a practically-usable automatic mental-fatigue

measurement and monitoring system.

This chapter investigates whether a recently established technology similar to neural

networks, probabilistic-based multi-class SVM, togetherwith the novel the automatic

artifact removal algorithm and the automatic feature selection algorithm developed in

Chapter 4 and Chapter 6, can be used to automate the measurement and monitoring of

subjects mental fatigue at different levels. Unlike standard multi-class SVM and other

statistical learning methods which only give the bare classification, the probabilistic-

based multi-class SVM provides not only superior classification accuracy but also use-
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ful estimates of confidence in the classification decision (Duan and Keerthi, 2005). This

chapter also tests, through rigid performance evaluation,whether the probabilistic-based

multi-class SVM together with the EEG signal processing methods developed in the pre-

vious Chapters can be used to establish a robust EEG-based mental fatigue measurement

and monitoring system that is potentially of use in automated fatigue detection systems.

7.2 The Demonstration System

Fig. 7.1 shows the demonstration system of the EEG-based mental-fatigue measurement

and monitoring system that was developed in this study. Monopolar EEG data were ac-

quired at a sampling frequency of 167 Hz together with an electrode cap, according to

the international 10-20 system (Jasper, 1958). The EEG datawere pre-filtered by the

EEG system through its integrated low-pass filter (cut-off frequency at 35 Hz) and high-

pass filter (cut-off frequency at 0.1 Hz) as well as a 50 Hz notch filter. The EEG data

were piped to a laptop through a data acquisition card (DAQCard- 6036E, National In-

struments, USA) and then processed by a customized LabView software system running

on a laptop for automatic measurement of subjects mental fatigue at different levels. The

predicted mental fatigue levels were shown by a curve varying with the time (or by a

virtual meter) on the laptop monitor, together with plots ofreal-time EEG data (after au-

tomatic artifact removal). The developed system has real-time capacity, but the present

study focuses on the offline evaluation of its accuracy.

7.3 Data Preparation and Artifact Removal

As discussed in Chapter 3, 22 subjects were selected from right-handed volunteers of

local tertiary institutions who fulfilled the inclusion criteria of not being on any medi-

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



7.3 Data Preparation and Artifact Removal 175

(a) (b)

Figure 7.1: The developed demonstration system: (a) the display panel of the system,
(b) the set-up of the demonstration system.

cation, no history of sleep disorders and with regular sleephygiene as evidenced by a

one-week sleep diary prior to the experiment. The recruitment of human subjects for

this study was approved by the National University of Singapore (NUS) ethical com-

mittee. Informed consents were obtained and nominal monetary incentives sufficient to

cover transportation costs were given for their participation. In order to train the system

in a supervised regime, an auditory working-memory vigilance task (AWVT) was used

as a validation measurement of mental fatigue. The detailedaccount of AWVT has been

given previously in Chapter 3.

Each subject underwent a 25-h sleep deprivation experimentin a temperature-controlled

laboratory (23–25◦C) from 8:30 am to 9:30 am next day. Caffeine, tea, smoking were

prohibited for about two days (from one-day before the experiment till the end of exper-

iment). Subjects were required to perform AWVT session oncean hour throughout the

experiment (with eyes open) and they were allowed to engage in non-strenuous activi-

ties in non-AWVT-session period. EEG data were recorded simultaneously during every

AWVT session and they were labeled to 5-level mental fatigueaccording to the AWVT

performance score. Specifically, for each subject, his/herindividual performance span

(the highest AWVT score to the lowest AWVT score) was evenly divided into five seg-

ments corresponding to fatigue level 1 to level 5, respectively. The label (i.e. mental
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fatigue at 5 levels) of the EEG data for an AWVT session was determined by which

segment the corresponding AWVT performance score fell into.

As the result, a relative large database of mental fatigue EEG (with reliable labels of

mental fatigue levels), collected from 22 subjects (each underwent a 25-hour sleep de-

privation), was available separately for each subject. As it will be seen in the subsequent

sections, about half of the data (from 12 subjects) were usedfor identifying the key EEG

features that are relevant to mental fatigue. The rest of thedata (from 10 subjects) were

used to evaluate the performance of the proposed system in a stringent subject-wise

cross-validation procedure (see Section 7.6.4).

The collected EEG data were enhanced by a customized FIR bandpass filter with a pass

band of 0.1–25 Hz implemented in Matlab (version 6.5, MathWorks, USA). The elec-

troencephalogram artifacts and electrocardiogram artifacts were automatically removed

by using the artifact removal method described in Chapter 4.

7.4 Feature Extraction

The purpose of feature extraction was to extract a set of features that optimally distin-

guish mental fatigue at 5 levels. They were used as the chief information source, in

replace of the EEG data, for classification.

Specifically, the multi-channel EEG data were segmented into 3-second-long EEG epochs

by passing through feature extraction windows (length of 3 seconds or 500 samples).

There was two-second lag (or 334 samples) between two adjacent segmentations. Fast

Fourier transform (FFT) with Hann window (length of 256 samples and 50% of overlap

between adjacent segments) (Oppenheim and Schafer, 1989) was performed on each of

these 3-second EEG epochs. The resulting power spectrum density function (normal-
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ized by its total power) for each channel was divided into four segments according to the

four standard EEG frequency bands (Niedermeyer and Silva, 1999): delta (0.5-4 Hz),

theta (4-8 Hz), alpha (8-13 Hz), and beta (13-20 Hz). For eachchannel, four frequency

features were defined for each standard EEG frequency band based on the EEG power

spectrumP( fi) in that considered frequency band, capturing both spatialand temporal

information that were useful for distinguishing mental fatigue at 5 levels. These features

are defined as follows.

(a) Dominant Frequency (DF):For every peak in a considered frequency band, two

frequencies in relation to a peak were defined - one was on the rising slope and

the other was on the falling slope having the power equal to (or closest to) half

the power of the peak. These two frequencies defined a frequency zone called

full width half maximum band of the peak (Weisstein, 2007). Among all peaks in

the considered frequency band, the peak with the largest average power in its full

width half maximum band was called the dominant peak, while its corresponding

frequency was called dominant frequency. In loose terms, this feature was to cap-

ture the dominant peak with the most significant bandwidth within a considered

frequency band.

(b) Average Power of Dominant Peak (APDP):This was defined as the average power

on the full width half maximum band of a dominant peak. It represented the

significance/importance of that dominant peak.

(c) Center of Gravity Frequency (CGF): It was defined as

CGF = [∑
i

P( fi) · fi]/[∑
i

P( fi)], (7.1)

wherefi is discretized frequency andP( fi) is the estimated power spectral density.

This feature is significantly different from the first feature (dominant frequency),

which can be illustrated by an example: if the spectrum for a considered frequency
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band is dominated by two narrow peaks (one larger than the other), it is not dif-

ficult to see from Equation (7.1) that the center of gravity frequency will fall in

between these two peaks, whereas the dominant frequency will be the frequency

of the largest peak.

(d) Frequency Variability (FV): It is defined as

FV =
∑i P( fi) · f 2

i − [∑i P( fi) · fi]2/∑i P( fi)

∑i P( fi)
. (7.2)

ConsideringP( fi) as the probability distribution of frequency, this feature is in

fact the variance of the frequency in the defined frequency band.

As a result of feature extraction, the mental-fatigue EEG data recorded from each subject

throughout the 25-hour sleep-deprivation experiment, were first segmented into 2,100

epochs. Each 3-second EEG epoch was then converted into a 304×1 vector of quan-

titative EEG features (4 kinds of features× 19 channels× 4 frequency bands). It is

acknowledged that small portion of the EEG data (less than 20-second EEG data) in the

beginning of each recording period was discarded for two reasons: 1) to minimize the

bias of warming-up effect on the subject at the beginning of each session of auditory

working-memory vigilance task; 2)to ensure the well-balanced samples for all the five

levels of mental fatigue.

7.5 Feature Selection

Feature selection concerned with the identification of a minimum set of key EEG fea-

tures necessary for accurate classification of mental fatigue at 5 levels (out of above-

mentioned 304 features). It is important for at least two reasons: 1) from ergonomics

point of view, fewer features and thus fewer EEG channels aredesirable for user’s com-
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fort; 2) from machine-learning point of view, when the underlying important features

are known and redundant features are removed, the classification problem can be greatly

simplified, resulting in improved classification accuracy.

The MFSPP-RFE, the feature-selection method for multi-class classification problems

as presented in Chapter 6, was used to select the key featuresfor multi-level mental-

fatigue EEG classification. In view of time constraints, only the results of MFSPP1-RFE

was obtained. The choice of MFSPP1-RFE was due to its encouraging performance in

the rigid numerical experiments on various artificial and real-world benchmark problems

as reported in Chapter 6.

To ensure that the performance evaluation which will be reported in later sections in

this chapter is not biased, only part of the database (12 out of 22 subjects) was used

for identifying the key features. A subject-wise cross-validation procedure was used

to form the data subsetDtra and Dtes as required by the MFSPP1-RFE. Specifically,

2100× 11 samples from 11 subjects were used to form aDtra, and the samples from

the left-out subject were used to form a testing setDtes. Practically, this subject-wise

cross-validation procedure results in 12 pairs ofDtra andDtes. For each pair ofDtra and

Dtes, Dtra was used by feature-selection approach, MFSPP1-RFE (as described in Al-

gorithm 4), producing a ranked feature listJR showing the all the features in decreasing

order of importance. To estimate the predictive performance of the selected features,

the PWC-PSVM, i.e. the probabilistic multi-class SVM, was iteratively fit onDtra, at

each iteration retraining a new PWC-PSVM after discarding the least important features

according toJR. To estimate the predictive performance of the selected features, the test

errors were obtained by testing onDtes on the iteratively trained PWC-PSVM and cal-

culating the percentage of misclassifications onDtes. In order to save the computational

time, a three-tier feature-removal scheme was used, in which 20 least-important features

were removed at each recursion until 44 features left, and then 5 features were removed

at each recursion until 24 features were left, followed by two features removed at each
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Figure 7.2: Mean test error rate against the number of top-ranked features where the
top-ranked features were selected by MFSPP1-RFE. The test error rates were obtained
by averaging 12 test error rates on all resampled subsetsDtes’s.

recursion.

Fig. 7.2 shows the mean test error rates of PWC-PSVM on unseentesting setsDtes’s

with the decreasing number of top-ranked features, where the top-ranked features were

selected the MFSPP1-RFE approach. The mean test error ratesshown were the average

values over 12 test error rates corresponding to 12 pairs ofDtra andDtes. Error bars of

standard deviation have not been plotted for the sake of clarity. The results show that the

standard deviation is rather stable with regards to the number of the top-ranked features

used for classification (between 4% and 7%).

Like most EEG-based automatic diagnostic systems, it is imperative to use only key

features. The full feature set constitutes a high dimensional vector (304 for the present

study) that contains key features pertinent to the classification of mental fatigue, irrele-

vant features for other cognitive states or artifacts, as well as redundant features which
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can be replaced by key features. Direct classification usingthe full feature set is ap-

parently undesirable, since irrelevant and redundant features have adverse effect on the

overall classification performance and generalization ability of the system. On the other

hand, if some of key features were further removed after removal of irrelevant and re-

dundant features, the classification accuracy would drop dramatically. The results as

shown in Fig. 7.2 matches exactly the said scenario. Using a multi-class classifier, the

lowest mean test error rate (approximately 12%) was obtained using only about 22 fea-

tures, compared with a mean test error rate of about 21% usingthe full feature set (304

features) and a mean test error rate of about 83% using only the most important fea-

ture. The classification performance in differentiating mental fatigue at 5 levels could

be greatly improved by using only the key features pertinentto the classification via

feature selection.

The determination of the number of top-ranked features to beretained can be tricky.

Based on the results as shown in Fig. 7.2, it may be a good idea to examine the first 22

top features as ranked by the MFSPP1-RFE using each of 12 pairs of Dtra andDtes. It

is reasonable to believe that, if a feature is repeatedly selected as a key feature in the ex-

periments on 12 pairs ofDtra andDtes following the above-mentioned cross-validation

procedure, the feature is indeed important. There were 18 features which were repeat-

edly ranked within the first 22 top features in the experiments on at least 6 pairs ofDtra

andDtes(out of 12 pairs). These features are shown in Fig. 7.3 and Table 7.1. They were

used in the proposed EEG-based mental-fatigue measurementand monitoring system.

It is worth noting that, although the key features were selected by the automatic feature

selection method using a data-driven approach, the selection generally makes sense in

terms of neurophysiology. For example, features in delta, theta and alpha bands from

frontal region of the brain (i.e. F3, F4, Fz, F7 and F8 as shownin Fig. 7.3) were identi-

fied important for the classification of mental fatigue at different levels. It corresponds

with various studies in the literature (see Broughton et al., 1994; Cajochen et al., 1999;
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Figure 7.3: Distribution of the 18 key features which were repeatedly ranked within
the first 22 top features in the experiments on 12 pairs ofDtra andDtes by MFSPP1-
RFE. The number in bracket following the channel name is the number of key features
deriving from that channel.

Jung et al., 1997) which have shown nicely relative increasein delta, theta and alpha

activity after sleep deprivation. Also, occipital sites (i.e. O1 and O2) were selected as

shown in Fig. 7.3, which is consistent with many other studies on neurophysiology of

mental fatigue (see Alloway et al., 1997; Cajochen et al., 1995; Cantero and Atienza,

2000; Stampi et al., 1995). Besides these features with clear neurophysiological inter-

pretation, the key features selected by the automatic feature selection method also in-

clude some new features which have not been captured from a purely neurophysiologic

angle, such as key features from T3 and T6. The automatic feature selection procedure

identifies features that provide improvement to the classification accuracy, and hence,

can usually discover a larger set of features. Besides new key features, features that

work only in the presence of other features may also be discovered. Interested readers

may refer to the review paper (Guyon and Elisseef, 2003) for related discussions. We

see the new features identified by the procedures like ours which serve as candidates for
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Table 7.1: List of the selected 18 key features

Feature Rank Channel Name Frequency Band Feature Name
1 T4 Theta APDP
2 T6 Theta APDP
3 F3 Alpha APDP
4 C3 Theta APDP
5 C4 Theta APDP
6 Pz Theta APDP
7 T3 alpha APDP
8 T3 Beta FV
9 F3 Theta APDP
10 O2 Theta APDP
11 F4 Beta APDP
12 Fp1 Delta APDP
13 O1 Delta FV
14 O2 Beta APDP
15 F7 Delta CGF
16 Pz Beta APDP
17 F4 Alpha APDP
18 O1 Beta APDP

subsequent neurophysiologic investigation.

As a result of afore-mentioned feature extraction and feature selection, the collected

mental fatigue EEG data were transformed into subject-wisedatasetsDk, k = 1, · · · ,10

(for 10 subjects), in the form of{x(n),y(n)}2100
n=1 ∈ R

18×{1,2,3,4,5}, wherex(n) is the

18-dimensional feature vector derived from thenth EEG epoch of thekth subject and

y(n) is the corresponding mental-fatigue level determined by the manual classification.

7.6 Automatic Measurement of Mental Fatigue Using

Probabilistic-Based SVM

A probabilistic-based multi-class SVM was used in the proposed system for automatic

measurement and monitoring of mental fatigue. This is part of our attempt to achieve
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higher accuracy in predicting the subjects’ mental fatigueat 5 levels and to obtain a

useful confidence estimate telling how confident/reliable each prediction is.

7.6.1 Two-class SVM

SVM is a supervised learning method used for classification and regression. It was orig-

inally designed for two-class classification. Unlike otherstatistical learning methods

(such as neural networks and decision trees) which usually aim only to minimize the

empirical classification error, SVM simultaneously minimizes the empirical classifica-

tion error and maximizes the geometric margin in classification; hence it is also known

as maximum margin classifier (Boser et al., 1992; Cortes and Vapnik, 1995; Cristianini

and Shawe-Taylor, 2000; Vapnik, 1995, 1998).

The training of SVM is essentially seeking an optimal separating hyperplane that sep-

arates samples from two classes with maximum margin, but thetrick is to find the hy-

perplane in a high (possibly infinite) dimensional space obtained by transforming the

original feature space using an appropriate nonlinear mapping function, rather than in

the original feature space (Duda et al., 2000). Fig. 7.4 shows an illustrative example of

a hyperplane that SVM constructs. The support vectors of SVMare the training sam-

ples that define the optimal separating hyperplane and are the most difficult patterns to

classify. The SVM identifies these support vectors and simultaneously constructs the

optimal separating hyperplane which optimally separates them with maximum margin;

that is the machine training for SVM. After the machine training, for a given unseen fea-

ture vector (representing a test pattern), the trained SVM outputs its predicted class label

(-1 or +1) based on the half space (defined by the hyperplane) into which that feature

vector falls.
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Figure 7.4: Training of SVM is to find the optimal hyperplane (thick line) which sep-
arates the samples from two classes (circles vs. squares) with maximum margin. The
support vectors are shown as solid circles or squares. The figure shows the projection
view of the hyperplane in two dimensions (ϕ1 andϕ2) in transformed space.

7.6.2 Standard Multi-Class SVM

SVM was originally designed for two-class classification. Amulti-class SVM (for

multi-class classification problems) is usually implemented by combining several two-

class SVMs. The most popular standard multi-class SVM is the‘one-versus-one’ SVM

(OVO-SVM). The final classification is based on voting by all the pair-wise two-class

SVMs. Specifically, for a given test feature vector, count the times that each class wins in

all these pair-wise classifications and choose the class that win most as the class for that

test feature vector. Besides OVO-SVM, other forms of standard multi-class SVM also

exist, such as ‘one-versus-all’ SVM (OVA-SVM) and various error-correction schemes.

They follow similar principle as OVO-SVM and perform similarly (Hsu and Lin, 2002;

Rifkin and Klautau, 2004).
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7.6.3 Probabilistic-Based Multi-Class SVM

Two-class SVM classifies a sample depending on the half space(defined by separating

hyperplane) into which that sample falls and standard multi-class SVM is simply a brute-

force combination of two-class SVMs. Such an approach, however, ignores the relative

confidence in the classification, or the distance that the sample is from the separating

hyperplane. Standard multi-class SVM, such as OVO-SVM, only gives a bare classifi-

cation, i.e. prediction of the class that the test sample belongs to. No extra information

is provided to show how confident the classification is.

Unlike standard multi-class SVM, probabilistic-based multi-class SVM gives not only

a bare classification but also a useful confidence estimate showing how confident the

classification is. A discussion of the basic principle and mathematics of probabilistic-

based multi-class SVM has been shown in Chapter 2. For simplicity, this probabilistic-

based multi-class SVM is hereafter denoted by PWC-PSVM.

In this study, PWC-PSVM was used for the purpose of automaticmeasurement of men-

tal fatigue at 5 levels. For a new feature vectorx(n) derived from thenth EEG epoch, the

decision rule of PWC-PSVM is to assignx(n) to the most probable mental fatigue level

as follows:

d(x(n)) = argmax
i
{P(ωi|x(n)), i = 0 , · · ·, 5}, (7.3)

whereωi denotes theith mental fatigue level andP(ωi|x(n)) is the confidence estimate

of assigning thenth EEG epoch to theith mental fatigue level. The PWC-PSVM method

has the advantage that it provides the output of multi-classSVM a new interpretation in

the form of posterior probability or confidence estimate of assigning the new sample to

that class. If the posterior probability for one class is significantly higher than the other

classes, then the strength of the prediction is sufficientlyhigh. On the contrary, if there
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are multiple or no classes which claim the test sample with relatively high posterior

probability, then the strength of the prediction is low. It is more accurate to make pre-

dictions with high strength than those with low strength. Inthe present work, a bar plot

of these confidence estimates associated with a test sample could also be shown together

with decision by Equation (7.3). The bar plot tells the user how sure (in a qualitative

sense) it is of that decision.

The usefulness of confidence estimates was also studied in anattempt to achieve high

accuracy for the proposed mental fatigue measurement and monitoring system. Instead

of using Equation (7.3) to predict mental fatigue level on single EEG epoch, the predic-

tion can be made through aggregation of confidence estimateson multiple EEG epochs,

sayτ epochs. After a number of EEG epochs, the current mental fatigue level ofx(n)

can be determined by the most probable class as follows:

d̂(x(n)) = argmax
i
{P(ωi|x(n−k)), k = 0 , ..., τ −1 andi = 0 , · · ·, 5}, (7.4)

whereP(ωi |x(n− k)) again denotes the confidence estimate of assigning the(n− k)th

epoch to theith mental fatigue level as given by PWC-PSVM. The classification rule

makes the prediction of the mental fatigue level by the associated class label with the

largest confidence estimate withinτ consecutive EEG epochs. In the present study, the

effectiveness of Equation (7.4) was compared with those of other two commonly used

methods for aggregating multiple predictions:

d̄(x(n)) = argmax
i
{

N−1

∑
k=0

P(ωi |x(n−k))}; (7.5)

d̃(x(n)) = argmax
i
{

N−1

∑
k=0

logP(ωi |x(n−k))}. (7.6)

These two methods as in Equations (7.5) and (7.6) are similarexcept that the latter is
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expected to have better scaling than the former for confidence estimates given by PWC-

PSVM (0< P(ωi |x(n−k)) < 1).

7.6.4 Subject-Wise Cross-Validation for Performance Evaluation

To evaluate the generalization performance of the proposedEEG-based mental-fatigue

measurement system, a blocking re-sampling scheme “leave-one-proband-out” (Lahiri,

2003) was used. The data from 10 subjects (that were different from the 12 subjects used

in feature selection) were divided subject-wise so that samples used for training and for

testing were not from same subjects. Specifically, samples of one subject were used for

testing, and samples of the rest subjects were used to form a serial of nested training

datasets, starting from a smallest training dataset comprising samples of one subject to

a biggest training dataset comprising samples of nine subjects by progressively incor-

porating more and more subjects’ samples. As a result, for each hold-out subject for

testing, a serial of 9 nested training datasets were formed.It is fair to note that this

“leave-one-proband-out” re-sampling scheme forms an extremely stringent evaluation

of subject-independent performance of the proposed system.

7.7 Results

7.7.1 Mental-fatigue classification accuracy

Fig. 7.5 showed 10 curves of the testing accuracy for the PWC-PSVM method, each

curve showing the testing accuracies on a hold-out subject varying with the number of

subjects used in training. The testing accuracy was calculated in terms of the percentage

of correct classifications. For comparison, the average testing accuracies for both of
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Figure 7.5: The testing accuracy varying with number of subjects for training in single-
trial classification using the PWC-PSVM method. The testingaccuracy was evaluated
on a hold-out subject. Each curves in the figure correspondedto a hold-out subject, with
the thick solid line showing the mean. For comparison, the mean of testing accuracies
using OVO-SVM method was also shown by the thick dashed line.

PWC-PSVM (thick solid line) and OVO-SVM method (thick dashed line) were shown

in Fig. 7.5. The PWC-PSVM method consistently obtained higher mean accuracy than

OVO-SVM. In fact, pairedt-test showed that PWC-PSVM significantly outperformed

OVO-SVM (p-value< 0.05). The pairedt-test’s were done, for each number of subjects

used in training, on the 10 paired accuracies resulting from10-fold subject-wise cross-

validation. This suggests the goodness of the probabilistic multi-class SVM over stan-

dard non-probabilistic multi-class SVM, which is consistent with the empirical study of

Duan and Keerthi (2005).

Fig. 7.5 represents the generalization performance of the proposed mental fatigue mon-

itoring system on new subjects. As shown in Fig. 7.5, the highest average testing accu-

racy of 87.5% for 5-level mental fatigue classification was obtained with PWC-PSVM

trained on 9 subjects, compared with the highest average testing accuracy of 85.1% for
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Table 7.2: Mean confusion matrix resulting from subject-wise 10-fold cross-validation

Actual \ Predicted Level 1 Level 2 Level 3 Level 4 Level 5
Level 1 389 (92.6%) 18 (4.3%) 10 (2.4%) 1 (0.2%) 2 (0.5%)
Level 2 20 (4.8%) 373 (88.9%) 12 (2.9%) 8 (1.9%) 7 (1.7%)
Level 3 16 (3.8%) 30 (7.1%) 342 (81.4%) 15 (3.6%) 17 (4.0%)
Level 4 5 (1.2%) 20 (4.8%) 25 (6.0%) 355 (84.5%) 15 (3.6%)
Level 5 8 (1.9%) 10 (2.4%) 7 (1.7%) 19 (4.5%) 376 (89.5%)

OVO-SVM. They are in fact 10-fold cross-validation accuracies with all the available

data being split into 10 folds subject-wise.

Fig. 7.5 is also useful for deducing the minimum number of subjects required for train-

ing. The proposed mental-fatigue monitoring system was aimed to be applicable to

different subjects and hence inter-subject dependence of mental-fatigue pattern is of

concern. As shown in Fig. 7.5, the mean testing accuracy using PWC-PSVM (thick

solid line) monotonically increased with the number of subjects for training, suggesting

a mild inter-subject dependence of mental fatigue pattern.The testing accuracy was

about 84.3% (±3.6%) with the classifier PWC-PSVM trained on 6 subjects. It then

slowly increased to about 87.5% (±3.2%) with the classifier trained on 9 subjects where

it almost saturated.

It is worth noting that equal costs for any misclassificationwere assumed in the present

study. Table 7.2 showed the average confusion matrix, whichwas the mean of 10 confu-

sion matrices resulting from the afore-mentioned subject-wise 10-fold cross-validation

procedure. It showed that gross errors (such as mental fatigue level 1 being misclassified

to mental fatigue level 5) did not often occur.
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7.7.2 Relating classification confidence estimate to classification ac-

curacy

Fig. 7.5 and Table 7.2 showed the hard accuracy for the PWC-PSVM method: the accu-

racy in terms of the percentage of correct classifications using the single-trial decision

rule of Equation (7.3). However, the strength of the classification, which was readily

provided by the PWC-PSVM method, has not been taken into consideration. Since the

PWC-PSVM method gave the output of multi-class SVM a more subtle interpretation

as a classification confidence estimate, it provides us a way to evaluate the classifica-

tion results by comprehensively examining these confidencevalues. Table 7.3 listed the

rank of confidence estimate for the correct class, counting on all the hold-out validating

samples (resulting from subject-wise 10-fold cross-validation) when the PWC-PSVM

method achieved the highest mean accuracy of 87.5%. Following the procedure of get-

ting the mean confusion matrix in Table 7.2, the counts in Table 7.3 were divided by 10

(the number of folds) and rounded to the nearest integers. The corresponding percentage

was shown in parentheses. Given a test sample, if the confidence estimate for the correct

class is ranked first by the classifier, the single-trial classification using Equation (7.3) is

correct. Otherwise, an error occurs. From Table 7.3, it is evident that most errors were

due to the reason that the confidence estimate for the correctclass was ranked second

or third by the classifier PWC-PSVM. Nearly half of the errorsoccurred because the

confidence estimate for the correct class was ranked second,indicating that errors tend

to occur in the overlapping regions of multiple classes where there are multiple classes

claiming the test sample with high confidence estimate.

Table 7.3 explored the possibility of further improving themulti-class classification ac-

curacy by aggregating confidence estimates on multiple epochs. Subject-wise 10-fold

cross-validation accuracies were obtained, on different number of epochs used (τ = 1

to 5) for each aggregation method as in Equations (7.4), (7.5) and (7.6). As shown in
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Table 7.3: Categorization of the single-trial decision results based on the ranking of
confidence estimate (percentages are shown in parentheses following the corresponding
counts)

Correct Class Label
Rank of Confidence Estimate for Correct Class

First Second Third Fourth Fifth
Level 1 389 (92.6%) 16 (3.8%) 6 (1.4%) 6 (1.4%) 3 (0.7%)
Level 2 373 (88.9%) 25 (6.0%) 8 (1.9%) 6 (1.4%) 8 (1.9%)
Level 3 342 (81.4%) 33 (7.9%) 20 (4.8%) 13 (3.1%) 12 (2.9%)
Level 4 355 (84.5%) 30 (7.1%) 14 (3.3%) 10 (2.4%) 11 (2.6%)
Level 5 376 (89.5%) 25 (6.0%) 10 (2.4%) 6 (1.4%) 3 (0.7%)

Table 7.4: Comparison of different aggregation methods on different numbers of epochs
used for aggregation

Aggregation Rule
Number of Epochs for Aggregation

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
d̂(x(n)) 87.50% 89.30% 90.10% 90.60% 90.60%
d̄(x(n)) 87.50% 89.30% 90.10% 90.10% 90.11%
d̃(x(n)) 87.50% 88.90% 89.90% 89.91% 89.91%

Table 7.3, whenτ is set to 1, they were equivalent to single-trial decision rule as in

Equation (7.3). As the number of epochs for aggregation increased from 1 to 5, the

cross-validation accuracy increased for all methods, withthe edge going to the aggre-

gation method as in Equation (7.4). It gave the best cross-validation accuracy of 90.6%,

aggregating on 4 or 5 epochs.

As expected, all the three aggregation methods as in Equations (7.4), (7.5) and (7.6)

improved the testing accuracy. However, the slight edge of method as in Equation (7.4)

over those as in Equations (7.5) and (7.6) is most interesting. The aggregation method

as in Equation (7.4) made the prediction of the mental fatigue level for the current test

samplex(n) by the associated class label with the largest confidence estimate within

τ consecutive EEG epochsx(n− τ + 1), · · · , x(n). It is different from Equations (7.5)

and (7.6) which gave aggregate prediction by simply averaging the confidence estimates

over multiple epochs. One of plausible reasons for the slightly better performance of

Equation (7.4) is that it increased the accuracy most by effectively increasing the chance
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that the final prediction of mental fatigue level was made on the single trial prediction

with the highest strength.

It is also interesting to see from Table 7.3, that the accuracy saturates at aboutτ = 5. A

plausible explanation could be that reliable EEG pattern change due to change in mental

fatigue or brain functional state spans 15 seconds to 1 minute (Lal et al., 2003; Torsvall

andÅkerstedt, 1987).

7.8 Discussion

An EEG based mental fatigue measurement and monitoring system using a multi-class

SVM with confidence estimate has been presented. Three aggregate prediction methods

have also been proposed and compared in an attempt on furtherimproving classification

accuracy. The results show that a multi-class SVM with confidence estimate outper-

formed standard multi-class SVM method. Moreover, the classification accuracy was

further increased to about 90% using one of the proposed aggregate prediction methods.

The developed system may serve as a key step towards an EEG based mental-fatigue

monitoring device. In the literature, several studies havereported the feasibility of de-

tecting operator drowsiness based on EEG data in attention-sustained experiments (see

Duta et al., 2004; Jones, 2006; Jung et al., 1997; Lal et al., 2003; Makeig et al., 2000;

Peiris et al., 2004; Sommer et al., 2002; Vuckovic et al., 2002). Most of these pilot

studies used a fairly simple linear or nonlinear regressionor neural networks, as op-

posed to the more sophisticated multi-class SVM with confidence estimate use in the

present study. Another shortcoming of these pilot studies was the lack of subject-wise

cross-validation in their performance evaluation (see Lalet al., 2003). The present study

used a relative large data (22 subjects, each for a 25-hour duration), applied a stringent

“leave-one-proband-out” scheme in the evaluation of subject-independent performance,
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and showed a high accuracy (about 90%) in classifying mentalfatigue EEG.

A remarkable property of the probabilistic-based multi-class SVM used in the present

study is that it provides not only superior classification accuracy but also useful esti-

mates of confidence in the classification that it makes. Its benefits have recently been

studied in the domain of machine learning (Duan and Keerthi,2005), while its appli-

cation in biomedical engineering remains rare. The presentstudy has provided addi-

tional evidence by demonstrating the use of resulting posterior probabilities for in-depth

evaluation of classification results (via comprehensive examination of these posterior

probabilities) and for further performance boosting (via aggregation of these posterior

probabilities). The highest accuracy of 90.6% achieved in this study is also one of the

significant contributions of the present study.

The present study has focused on circadian mental fatigue caused by sleep deprivation.

Inefficient functioning due to sleep deprivation and working at the time of circadian dips

has been a major cause of accidents in shipping, aviation, industrial and military scenar-

ios. There has also been a general agreement that sleep deprivation causes a degradation

of many of human abilities like vigilance, sustained attention, working memory, judg-

ment and executive decision making. Consequently, the present study used the Auditory

Vigilance Task in indexing the mental fatigue level caused by sleep deprivation. This

task, in comparison with the popular PVT (Dinges and Powell,1985; Thorne et al.,

2005) which only measures vigilance, measures not only vigilance but also working

memory, decision making and sustained attention - the higher faculties of the human

brain which are used for complex tasks in real life. Nevertheless, this task tests more

functions while still being simple and having minimal variability (due to aptitude or ed-

ucation of a person). A comprehensive comparison between AWVT and other mental

fatigue measurement methods could be worthy of future investigations.

As in many other mental fatigue or vigilance studies using EEG (e.g. Lal et al., 2003),
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mental fatigue was classified into different levels (5 levels in the present work). It is

arguable whether mental fatigue should be measured continuously or discretely, but it

is reasonable to believe that progression of mental fatiguemay not be entirely smooth

or continuous. On the contrary, mental fatigue could be verymuch like sleep staging

where only quasi-categorical sleep stages can be defined. Inthe study done by Lal et al.

(2003), mental fatigue was similarly classified into 4 phases: early, medium, extreme

fatigue phases, and an arousal phase. Evidence of such quasi-categorical mental fatigue

states has also been shown in a recent EEG study by Trejo et al.(2007).

In the present study, a relative measure of mental fatigue (with the full range of individ-

ual performance divided into five) instead of a universal measure for all subjects is used

because the task performance of AWVT (same as other performance tasks like PVT)

is subject-dependent. It is reasonable to believe that all mental fatigue levels in a full

cycle of circadian fatigue were sampled by the 25-hour sleepdeprivation experiment

used in the present study. Therefore, the maximum (or minimum) task performance cor-

responds to the lowest (or highest) mental fatigue level, i.e. mental fatigue level 1 (or

level 5). However, the minimum and maximum performance might be rather noisy, thus

possibly distorting the manual classification of intermediate mental fatigue levels (level

2-4). The classification results by the proposed probabilistic-based multi-class SVM (as

shown in Table 7.2) also imply that mental fatigue levels 2-3as defined by this relative

measure were less distinguishable as SVM gave lower classification accuracies on these

two classes than to other classes.

7.9 Concluding Remarks

A pattern-recognition system for automatic classificationof subjects’ mental fatigue at

5 levels has been presented in this chapter. This chapter hasalso described a workable

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE



7.9 Concluding Remarks 196

demonstration system of an EEG-based mental-fatigue measurement and monitoring

device, through the use of all the EEG signal processing methods developed in previous

chapters. The performance evaluation of the system via a stringent “leave-one-proband-

out” demonstrates the feasibility of an automatic EEG method for assessing and moni-

toring of mental fatigue at a time scale of 3s EEG epoch.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

The present work represents a new data-driven approach to automatic mental-fatigue

measurement and monitoring. The developed signal processing software has resulted

in a demonstration prototype that shows promising performance in the prediction of

mental fatigue levels given a 3-second EEG data. It may serveas a key step towards an

EEG-based mental-fatigue monitoring device.

This research has resulted in a novel method for automatic EEG artifact removal. EEG

artifacts, like from ECG, EOG and EMG, typically have much higher amplitude than

cerebral signals and thus impose a great difficulty in EEG interpretation. Comparing

with some existing methods, the results of our numerical experiment show that a signif-

icant performance advance has been achieved in automatic EEG artifact removal using

the proposed method.

The study also resulted in the invention of a serial of feature-selection methods based

on a new feature-ranking criterion that is conceptually different from those used in the
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literature. In loose terms, this criterion evaluates the importance of a specific feature by

computing the aggregate value, over the feature space, of the absolute difference of the

probabilistic outputs of the learning method with and without the feature. As a result,

all features can be ranked in a decreasing order of importance so that more relevant

features can be identified. These new feature-selection methods are significant not only

in theoretical aspect but also in application aspect. Usingonly important features in a

mental-fatigue measurement and monitoring system can result in a higher accuracy and

improved system interpretability with a simpler architecture.

In addition to the development of new methods for automatic artifact removal and fea-

ture selection, this work has investigated the use of a probabilistic multi-class SVM for

measuring and monitoring mental fatigue using EEG. The numerical results show that

it not only gives superior classification accuracy but also provides a valuable estimate of

confidence in the prediction of mental fatigue level in a given 3-second EEG epoch.

Finally, the experiments conducted as a part of the researchhave also shed light on

mental-fatigue assessment methods that are critical for setting up mental-fatigue EEG

dataset. A new auditory working-memory vigilance task has been proposed as a critical

improvement to conventional vigilance task, providing a more realistic measure of a per-

son’s mental fatigue based on more comprehensive measurable cognitive performance

impairment. Moreover, new EEG features are investigated for characterizing mental

fatigue and serve as good candidates for subsequent neurophysiologic investigation.

8.2 Recommendations

It should be noted that although this study has produced encouraging results on auto-

matic measurement of mental fatigue by EEG, there are a number of challenges that

need to be addressed in future investigation. The first is to consider widening the se-
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lection criteria of subjects. The subjects used in the present study were restricted to

young healthy tertiary students. This might largely minimize the effect of individual

differences in EEG. Future studies should include a wider spectrum of subjects to inves-

tigate a possible effect of other variables such as age, raceand even some pathological

conditions (e.g. chronic fatigue syndrome). The second is with regards to hardware im-

plementation. The hardware implementation of the proposedEEG-based mental-fatigue

measurement and monitoring system is also vital in the application of such system in

working environment. This study focused on the signal processing methodologies, and

did not attempt to find electronic and mechanical textiles for the proposed system.

The feature selection methods proposed in this study are useful for classification of men-

tal fatigue in specific and for machine learning in general. The proposed idea of using

sensitivity of posterior probabilities for feature selection appears general and should be

extendable to other machine learning algorithms where probabilistic outputs are also

available. One of such possibility is the softmax-based probabilistic multi-layer percep-

trons neural networks, combined with which the idea of usingsensitivity of posterior

probabilities for feature selection can lead to a new feature selection method for MLP

neural networks.
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T. Åerstedt, G. Kecklund, M. Gillberg, and A. Lowden. Days of recovery. In L. Hartley,
editor, Proceedings of the Fourth International Conference on Fatigue and Trans-
portation, Perth, Australia, 2000.

L. I. Aftanas, N. V. Lotova, V. I. Koshkarov, V. L. Pokrovskaja, S. A. Popov, and V. P.
Makhnev. Non-linear analysis of emotion EEG: calculation of kolmogorov entropy
and the principal Lyapunov exponent.Neurosci Lett, 226(1):13–16, 1997.
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Appendix A

Definition of the Six Features Used in

the Automatic Artifact Removal

System

Given an IC,si, the six features extracted from the IC were defined as follows.

Feature 1:It is defined (Shoker et al., 2005) as the ratio between the peak amplitude and

the variance of the IC:

g1(si) =
max|si |

σ2
si

, (A.1)

whereσsi is the standard deviation of time seriessi .

Feature 2:It is essentially the normalized skewness ofsi as follows (Shoker et al., 2005).

g2(si) =
E{s3

i }

σ3
si

, (A.2)

where the operatorE denotes the mathematical expectation. (A-2)Feature 3:This fea-
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ture measures the cross-correlation betweensi and reference EEG signals collected from

eye-blinking dominated EEG channels, i.e. Fp1, Fp2, F3, F4,O1, O2. The reference

EEG signals are chosen from an EEG database distinct from thedatabase used for train-

ing and testing of the artifact removal system (see Shoker etal. (2005) for details). It is

given by

g3(si) =
1
6 ∑

j=1
6max

τ
|E{z0

j (t)si(t + τ)}|. (A.3)

Feature 4:This feature is the Kullback-Leibler (KL) distance betweenthe probability

density function (PDF) ofsi and that of a reference EOG IC which is decomposed from

an EEG epoch distinct from those used for training and testing (Shoker et al., 2005). It

is given by

g4(si) = DKL(P(si) ‖ P(s0
eog))

=

∫

P(si) ln
P(si)

P(s0
eog)

dsi , (A.4)

whereP(si) andP(s0
eog) are the PDF ofsi and the reference EOG IC,s0

eog, respectively.

Feature 5:The fifth feature is the variance of scalp distribution ofsi , given by

g5(si) = var(
ai

‖ai‖
), (A.5)

whereai refers to the scalp distribution coefficients in mixing matrix corresponding to

si . This feature is specially proposed for ECG ICs because empirical evidences have

shown that their unique scalp distribution gives smaller variance than other types of ICs.

Feature 6: This feature is similar to the feature 4 and it computes the KLdistance
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between the PDF ofsi and that of a reference ECG IC,s0
ecgvia the following equation:

g4(si) = DKL(P(si) ‖ P(s0
ecg))

=
∫

P(si) ln
P(si)

P(s0
ecg)

dsi. (A.6)

This feature is proposed to capture the distinct PDF of ECG ICs due to their unique

composition of P wave, QRS complex and T wave.

It is worth noting that features 3, 4 and 6 require reference signals obtained from distinct

EEG epochs that are not part of training and testing datasets. They do not require ad-

ditional reference EEG channels which are generally required in many non-ICA based

artifact removal methods.
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Appendix B

Derivation of FSPP4 in Chapter 5

This appendix shows the derivation of∂ p̂(ω|vx j)/∂vi used in Equation (5.25) of FSPP4.

Let p̂ j and f j denote ˆp(ω|vx j) and f (vx j) respectively. Suppose there arem support

vectors after the training/tuning of SVM. LetI1 = {k|0 < αk < C} andI1 = {k|αk = C}

with cardinalitiesm1 andm2 respectively withm1+m2 = m. From Equations (5.4), (5.6)

and (5.7), it is easy to see that

∂ p̂ j

∂vi

∣

∣

∣

∣

vi=1
= −

exp(A f j +B)

[1+exp(A f j +B)]2

[

A
∂ f j

∂vi + f j
∂A
∂vi +

∂B
∂vi

]
∣

∣

∣

∣

vi=1
, (B.1)

with

∂ f j

∂vi =
m

∑
k=1

[

(−2γ)αkyk(xk,i −x j ,i)
2K(vxk,vx j)+

ykK(vxk,vx j)∂αk
/

∂vi]+∂b
/

vi . (B.2)

Expression of the 1st term in the RHS of Equation (B.1) involves the evaluations of

∂αk/∂vi for k∈ I1 and∂b/∂vi as shown in Equation (B.2), where the mild assumption

of ∂αk/∂vi = 0 for k ∈ I2 is used. Using the Karush-Kuhn-Tucker (KKT) conditions
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(Cristianini and Shawe-Taylor, 2000) of the SVM solutions,it is not difficult to show

that











∑k∈I1 αkykK(vxk,vxp)+∑k∈I2 αkykK(vxk,vxp)+b = yp,∀ p∈ I1

∑k∈I1 αkyk +∑k∈I2 αkyk = 0
, (B.3)

or







A e

ỹT 0













α̃αα

b






+







βββ

β0






=







ỹ

0






, (B.4)

whereApk = ykK(vxk,vxp), ỹ is the vector ofyi (i ∈ I1), e is m1×1 vector of all 1,α̃αα is

the vector ofαi (i ∈ I1), β0 = ∑k∈I2 αkyk andβββ p = ∑k∈I2 αkykK(vxk,vxp). Differentiate

Equation (B.4) with respect tovi yields







∂ α̃αα
∂vi

∂b
∂vi






= −







A e

ỹT 0







−1















∂βββ
∂vi

0






+







∂A
∂vi 0

0T 0













α̃αα

b

















. (B.5)

The 2nd and 3rd terms in the RHS of Equation (B.1) involve differentiations ofA and

B. From Equation (5.8), the solutions forA andB have to satisfy

∂F(A,B)

∂A
= −∑

j
(

t j

p̂ j
+

1− t j

1− p̂ j
)
∂ p̂ j

∂A
= 0; (B.6)

∂F(A,B)

∂B
= −∑

j
(

t j

p̂ j
+

1− t j

1− p̂ j
)
∂ p̂ j

∂B
= 0. (B.7)
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Differentiate both sides of Equations (B.6) and (B.7) with respect tovi , we have

∂ 2F(A,B)

∂vi∂A
=∑

j
(

t j

p̂2
j

−
1− t j

(1− p̂ j)2)
∂ p j

∂A

∂ p̂ j

∂vi −

∑
j

(
t j

p̂ j
+

1− t j

1− p̂ j
)(

∂ 2p̂ j

∂ 2A
∂A
∂vi +

∂ 2p̂ j

∂B∂A
∂B
∂vi +

∂ 2p̂ j

∂ f j∂A

∂ f j

∂vi ) (B.8)

=0;

∂ 2F(A,B)

∂vi∂B
=∑

j
(

t j

p̂2
j

−
1− t j

(1− p̂ j)2)
∂ p j

∂B

∂ p̂ j

∂vi −

∑
j

(
t j

p̂ j
+

1− t j

1− p̂ j
)(

∂ 2p̂ j

∂ 2B
∂B
∂vi +

∂ 2p̂ j

∂A∂B
∂A
∂vi +

∂ 2p̂ j

∂ f j∂B

∂ f j

∂vi ) (B.9)

=0.

Note that∂ p̂ j/∂vi of Equations (B.8) and (B.9) are further expressed in terms of ∂A/∂vi

and∂B/∂vi using Equation (B.1), while∂ f j/∂vi is known from Equations (B.2), (B.5).

Hence,∂A/∂viand∂B/∂vi can be solved from this expanded set of equations derived

from Equations (B.8) and (B.9).

The evaluation of∂ p̂ j/∂vi involves the full set of training samples and is often com-

putationally expensive. Fortunately, numerical evidenceshows that the magnitudes of

the 2nd and 3rd terms in the RHS of Equation (B.1) are typically several orders smaller

than the 1st term. Hence, an approximate value of∂ p̂ j/∂vi can be found by making the

assumption that∂A/∂vi = 0 and∂B/∂vi = 0. Under this assumption,∂ p̂ j/∂vi reduces

to the evaluation of the 1st term in the RHS of Equation (B.2), which can be obtained

by Equations (B.2) and (B.5). Our numerical experiments in Chapter 5 use this approx-

imation.
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Appendix C

Proof of Theorem 6.1 in Chapter 6

Sincex(k) is derived fromx with the values of thekth feature uniformly randomly per-

muted by the RP process, the probability distribution of featurexk, p(xk), is unchanged

by the RP process, i.e.,

p(xk
(k)) = p(xk). (C.1)

The vectorx(k) is that obtained fromx with its k feature randomly perturbed. Then, its

distribution

p(x(k)) = p(xk
(k),x−k) = p(xk

(k))p(x−k) = p(xk)p(x−k), (C.2)

where the second equality follows from the fact that the distribution of p(xk
(k)) is inde-

pendent fromp(x−k) following the RP process. Using same argument, the joint distri-

bution

p(x(k),ωi) = p(xk
(k))p(x−k,ωi) = p(xk)p(x−k,ωi). (C.3)
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Hence,

pi(x(k)) =
p(ωi ,x(k))

p(x(k))
=

p(xk)p(x−k,ωi)

p(xk)p(x−k)
= pi(x−k). (C.4)

Using similar argument, it is not difficult to provepi j (x−k) = pi j (x(k)).

NATIONAL UNIVERSITY OF SINGAPORE SINGAPORE


