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SUMMARY 

 

Market and technology changes have brought about new characteristics of product 

development. Developing products faster, better, and cheaper than competitors has 

become critical to success. In response to these pressures, many industries have shifted 

from a sequential and functional development paradigm to a concurrent and cross-

functional paradigm. Increasing the concurrency, however, also increases the 

complexity of development projects. Our literature review shows that there is a lack of 

methods to help management to derive appropriate development policies (such as 

overlapping degree, communication frequency, and functional interaction level). 

According to the information dependency and communication cost, we grouped 

concurrent product development processes into three types and proposed three models 

to manage them. These models are validated or illustrated with product development 

case studies in three consumer electronics companies. 

 

The first model presented is an analytical model for managing concurrent development 

processes with sequential dependence and low communication cost. It is well known 

that continuous information exchange is optimal when communication cost is low. 

Therefore the concurrent problem can be simplified into an overlapping problem 

regardless of communication strategies. Appropriate overlapping degree and functional 

interaction level for projects with different properties are proposed. This model was 

applied to examine the development policies in a handset design company. 
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The second model proposed deals with concurrent development processes with 

sequential dependence and high communication cost. In this case, the communication 

policy is extremely important. If information exchange is too frequent, the 

communication time and cost would increase significantly. However, infrequent 

information exchange would increase downstream rework. The model aims to optimize 

project performance by investigating the interactions between overlapping policy and 

communication strategy. The model was applied to improve the refrigerator 

development process in a consumer electronics company. 

 

Finally a simulation model for managing overlapped iterative product development (i.e. 

the overlapped stages are interdependent) is developed. For iterative processes, the 

interaction is much more complex and analytical approaches have proved to be 

prohibitively expensive. Consequently, a System Dynamics model is built for 

modeling overlapped iterative development processes. Using this model we can track 

the impact of different overlapping degrees and testing qualities on project 

performance. Therefore, it can help management find appropriate development policies. 

The model was implemented in a design house and led to marked improvement in 

project performance, thus demonstrating the viability of the model.  

 

This study is motivated by the needs of companies, and is developed based on previous 

literature and in-depth case studies. The usefulness and validity of the insights, 

analytical results, and algorithms proposed in this research have been validated 

through the case studies done in consumer electronics companies. We believe that the 

results proposed can also be applied to manage concurrent processes in other industries 

with similar properties. 
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CHAPTER 1  

INTRODUCTION 

 

The outline of this chapter is given as follows. In Section 1.1, the research background 

is explained. In Section 1.2 the research gap is proposed, followed in Section 1.3 by 

the research objective. The research approaches applied in this research project are 

discussed in Section 1.4. The structure of this thesis is given in the end. 

 

1.1 Background 

In the traditional paradigm, new product development (NPD) process is treated as a 

series of sequential and functional product development stages (Wheelwright and 

Clark, 1992). Information generated from one function transfers to the next one only 

after its completion, which results in poor coordination between development teams 

and bottlenecks of information flow (Hayes et al., 1988). It can significantly increase 

project cycle time. 

 

Since the early 1990s, demanding market and short product life cycle in many 

industries have forced manufacturing firms to develop low-cost and high-quality 

products at a rapid pace. At the same time, the increasing technical intensity makes 

product development more complex. In order to deal with these issues, product 

development undergoes new trends, such as cross-functional team and concurrent 

product development. These new trends have increased the uncertainty and complexity 

of product development. Researchers now view product development as a collection of 
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stages which are performed concurrently or iteratively. The product development 

processes and management practices created for relatively long product life cycle, 

stable market, and technology-based competition are no longer capable of producing 

products which can meet customer requirements in terms of time, cost, and quality 

(Clark and Fujimoto, 1991; Williams, 2005).  

 

Improving development performance is becoming increasingly important and 

challenging.  Part of the difficulty is caused by the internal structure of the product 

development process (Roberts, 1974; Ford and Sterman, 2003a). Well-intentioned 

changes to product development process may cause severe unintended side effects. For 

example, development stages may be concurrently executed to reduce project cycle 

time. However, in concurrent product development, a change in a stage will cause the 

rework in other development stages since they are usually dependent or interdependent. 

In the end, the overall development time is longer than otherwise. Therefore, many 

tools have been proposed to accelerate the NPD process and control the NPD cost, and 

prominent among these is the concept of concurrent engineering (CE). It has provided 

much success towards achieving shorter time-to-market (Clark and Fujimoto, 1991; 

Wheelwright and Clark, 1992; Smith and Reinersten, 1998; Bhuiyan, 2001). 

Overlapping of development stages, functional interaction, and frequent information 

exchange are among the elements that enable CE to improve the performance of 

product development (Blackburn, 1991; Bhuiyan, 2001).  

 

Overlapping refers to a situation where the downstream development stages start prior 

to the completion of the upstream development stages. Overlapping is commonly 

found in many real life cases in order to overcome the obstacles faced in the sequential 
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process (e.g. Krishnan et al., 1997). However, overlapping may increase rework 

because downstream work, started with preliminary information, may turn out to be 

wrong, because of changes or new insights in the upstream phase of development. 

Functional interaction, defined as the involvement of downstream engineers in 

upstream development, can reduce the rework incurred by the concurrent execution of 

development stages because upstream engineers can get more accurate input about 

requirements from later phases. As such, CE converts the sequential process into a 

more cooperative one, thus creating interdependencies between activities (Liker et al., 

1996). Although the potential benefits of CE may be considerable, it becomes more 

challenging to coordinate such a process.  

 

1.2 Research Gap 

Traditional network-based scheduling techniques, such as Critical Path Method (CPM) 

and Program Evaluation and Review Technique (PERT) (Moder et al., 1983; Badiru, 

1993; Golenko-Ginzburg and Gonik, 1996), describe development processes which are 

relatively stable and sequential. These models were initially developed to control 

schedule, and later expanded to manage resources and costs. Rooted in the traditional 

sequential paradigm of product development, CPM disaggregates the development 

process into activities which are related through their temporal dependencies. In other 

words, the constraints are described as relationships between the beginning and 

completion of activities. Each activity is treated as a monolithic block of work 

described only by its duration. However, these models ignore the interactions between 

development stages, which are essential for concurrent NPD process (Rodrigues and 

Bowers, 1996; Ford and Sterman, 1998). 
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Recently, many analytical and simulation models have been developed to describe 

concurrent product development process and analyze the trade-offs among project 

cycle time, quality, and development cost. Smith and Eppinger (1997a, 1997b) 

developed several analytic models of sequential and parallel design iterations and 

addressed the effect of iterations among project phases on project cycle time with the 

Design Structure Matrix. Krishnan et al. (1997) proposed a framework to determine 

the optimal number and timing of information transfers. They showed that “upstream 

information evolution” and “downstream sensitivity” are the two properties affecting 

optimal overlapping strategies. Loch and Terwiesch (1998) adapted the concepts of 

evolution and sensitivity: “upstream information evolution” is defined as the 

continuous design modification process; “downstream sensitivity” represents the 

impact of a modification on downstream rework. Based on these concepts, they 

developed an analytical model and derived the optimal communication strategies for 

overlapped sequential process. Roemer et al. (2000) analyzed the time-cost tradeoffs in 

multistage product development. Chakravarty (2001) studied the trade-offs between 

the overlapping risk and the project time saved. Some special cases were analyzed to 

establish useful insights for sequential and overlapped processes. Bhuiyan et al. (2004) 

proposed a stochastic simulation model and discussed the impact of overlapping, 

functional interaction, upstream information evolution, and downstream sensitivity on 

three types of rework. Although the results of these efforts are insightful in many 

respects, we still can not derive appropriate overlapping degrees and functional 

interaction levels for the projects with different properties. This is because: 

 

(1) Although existing models of concurrent product development describe the effects 

of upstream changes on downstream rework, most of these models (e.g. Williams 
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et al., 1995; Williams, 1999; Eppinger et al., 1994; Cho and Eppinger, 2005; 

Bhuiyan et al., 2004) use rework probability as input parameter which is difficult to 

be estimated directly since it is determined by the interactions of many parameters 

(such as completion quality, rework quality, and testing quality) (Krishnan et al., 

1997; Joglekar et al., 2001). There is a need to make the interaction between 

development stages clear and analyze rework according to its root causes which 

would allow project managers to find appropriate policies for concurrent product 

development. 

 

(2) While trade-offs among cycle time and development effort are necessary in product 

development, many studies only concentrate on project cycle time. Project policies 

which favor project cycle time may significantly affect other performance 

measures, such as the percentage of tasks requiring rework which is a key 

component for development effort. Consequently, there is a need to consider the 

effect on development effort or cost when trying to reduce the development cycle 

time (Smith and Reinertsen, 1998). Therefore, we need a model to estimate cycle 

time and development effort simultaneously so that managers can evaluate whether 

the overall benefit is greater than the investment involved. 

 

(3) While the interaction between overlapping and communication is emphasized by 

many empirical studies, very few researchers have studied it in detail. It is clear 

that frequent information exchange can reduce rework in overlapped product 

development. However, communication also incurs time and cost. Tools are 

needed to balance these positive and negative effects and thus to derive appropriate 

overlapping and communication policies. 
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This thesis approaches the stated problems by explicitly modeling the interaction 

between consecutive development stages and the time-cost trade-off involved in CE. 

As a result, appropriate decisions on overlapping, communication, and functional 

interaction can be proposed.  

 

1.3 Research Objective 

Although successful new product development is critical to the survival of many 

companies, and much of previous research has focused on the development of 

technology and methods to support NPD management (e.g. Cooper, 1980; Steward, 

1981; Eppinger et al., 1994; Repenning, 2001; Williams, 2005), our literature review 

shows that there is a lack of methods to explicitly model and analyze concurrent 

development processes. By modeling the effect of project properties (e.g. project 

uncertainty, dependency between development stages, and upstream information 

evolution) on project performance (project cycle time and development cost) this thesis 

investigates and suggests policies for managing and coordinating CE processes, and 

assesses the optimal or appropriate overlapping degree, communication frequency, and 

functional interaction level for the projects with different properties. The impact of 

project characteristics (such as project uncertainty, rework rate, and communication 

cost) on development policies is analyzed in an attempt to uncover insights on 

appropriate management of development projects within a given context. 
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Figure 1.1 Independence, sequential dependence, and interdependence 

 
An information-based view of product development is assumed in this thesis (Clark 

and Fujimoto, 1991). From this perspective, individual development activities are the 

information-processing units that receive information from their preceding stages and 

transform it into new information to be passed on to subsequent stages. Therefore the 

focus of the models is on the evolution of information and its impact on downstream 

rework. Information needs create dependencies between development stages which 

determine the product development structure. According to the information 

dependency between them the development processes can be classified as (see Figure 

1.1): Independence if there is no information exchange between development stages; 

Sequential dependence if there is a unidirectional information flow; and 

interdependence if the stages are mutually dependent and the information flows in both 

ways (Thompson, 1967). Studies of concurrent engineering usually focus on dependent 

and interdependent development stages since the policies for independent stages are 

directly available.  

 

Product development process can also be sorted by the communication cost, which is 

the fixed setup cost per information exchange (Ha and Perteus 1995, Loch and 

Terwiesch 1998). If a project is done by one team, then the communication cost is 

usually omitted. Related cases are proposed by Roemer et al. (2000), Krishnan et al. 

Stage 1 

Stage 2 

Stage 1 

Stage 2 

Stage 1 

Stage 2 

Independence Sequential Dependence Interdependence 
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(1997), Roemer and Ahmadi (2004). If a project is done by different teams, the 

communication cost should be considered. Related cases are proposed by Loch and 

Terwiesch (1998), Helms (2004). In this research, the dependent processes with low 

communication cost and the dependent processes with high communication cost are 

studied separately, since the models and policies for these processes are different. 

Consequently, three models are proposed to study the concurrent development 

processes with different information dependencies and/or communication cost: 

 

• Firstly, this thesis presents an analytical model for managing concurrent 

development processes with sequential dependence and low communication cost. It 

is well known that continuous information exchange is optimal when 

communication cost is low (Roemer et al. 2000). Therefore the concurrent problem 

can be simplified into an overlapping problem regardless of communication 

strategies. The decisions on the degree of overlapping and the level of functional 

interaction are studied. The model has been applied to examine the development 

policies in a handset design company. 

 

• Secondly, an analytical model for managing concurrent processes with sequential 

dependence and high communication cost is developed. In this case, the 

communication policy is extremely important. If information exchange is too 

frequent, then communication time and cost would increase significantly. However, 

infrequent information exchange would increase downstream rework. The model 

aims to optimize project performance by investigating the interaction between 

overlapping policy and communication strategy. The model was employed to 

analyze the development process of a large consumer electronics company. 
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• Finally a simulation model for managing overlapped iterative processes is 

developed. For iterative processes, the interaction is much more complex and 

analytical approaches have proved to be prohibitively expensive. Consequently, a 

System Dynamics model is built to manage concurrent processes composed of 

interdependent development stages. Using this model we can track the impact of 

different overlapping degrees and testing qualities on project performance. 

Therefore, it can help management to identify appropriate development policies. 

The model was implemented in a design house and led to marked improvement in 

project performance, thus demonstrating the viability of the model. 

 

Note that depending on their newness to the company and marketplace, product 

innovations can be incremental or radical (Henderson and Clark, 1990; McDermott, 

1999; Hauser et al., 2006). Radical innovation often requires developing products with 

an entirely new set of performance features (Leifer et al. 2000; Zhou et al. 2005). On 

the other hand, an extension or improvement of existing products is termed as 

incremental product innovation. Incremental product innovation plays a major role in 

the success of many organizations since the majority of so called ‘new’ products are in 

fact reworked versions of existing products (Ali, 1994; Griffin 1997; Grupp and Maital, 

2001). This thesis focuses mainly on incremental innovation. 

 

1.4 Research Approach 

Mathematical and System Dynamics modeling methodologies are used to study 

different concurrent NPD processes. For sequentially dependent process, the 

interaction between development stages is relatively simple. Therefore, nonlinear 
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programming is used to derive the development policies. Comparing to simulation 

methods, mathematical modeling is relatively simple. Furthermore, many useful 

insights can be derived by analyzing the mathematical models. However, for 

interdependent (or iterative) processes, the interaction is much more complex and thus 

analytical modeling is not suitable. Therefore System Dynamics modeling 

methodology is applied. All of the models are illustrated with case studies in consumer 

electronics industry. 

 

1.4.1 Nonlinear Programming 

Nonlinear programming is one of the basic methods of operation research. Through 

nonlinear programming, the models capture the relationship between project properties, 

development policies, and project performance. For the projects with low 

communication cost, a simple non-linear programming model is built. For the projects 

with high communication cost, a mixed-integer nonlinear programming model is 

developed. 

 

The fundamental concept of the model is based on the premise that management makes 

decisions or chose actions (such as overlapping degree, communication frequency, and 

functional interaction level) that maximize project performance (measured in time and 

cost in this thesis). 

 

1.4.2 System Dynamics 

We simulate concurrent and interdependent product development processes by System 

Dynamics methodology. As such, the model serves as a framework for 

experimentation to test the effect of different development policies and activity 
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properties on project performance. A computer simulation model provides several 

advantages. Firstly, many and various project parameters and dynamic relationships 

can be modeled more comprehensively with the flexible representation available than 

with manual or mathematical modeling methods. Secondly, unlike qualitative research, 

assumptions are made explicit and unambiguous in simulation models by their 

representation as formal equations. Thirdly, comparing to direct experiment, doing 

experiment through simulation is safe, replicable, low-cost and fast. Finally, the 

model’s reflection of actual project structure provides an effective means of 

communicating research work and results. 

 

System Dynamics (SD) methodology is used in this thesis. Discrete event simulation 

model and continuous time model (System Dynamics) are two methods commonly 

used to simulate NPD process. The former assumes that the product development 

process is composed of a finite set of activities and information flow only exists at the 

beginning or at the end of an activity. In contrast, the SD approach to project 

management treats the process of each phase as continuous work flow. It is consistent 

with the assumption in the overlapping models (e.g. Loch and Terwiesch, 1998; 

Roemer et al., 2000; Roemer and Ahmadi, 2004). Through building the relationship 

between work flow and information flow, we simulate the continuous upstream 

information evolution and its effect on downstream rework using SD approach. 

 

1.5 Structure of the Thesis 

This thesis consists of six chapters, consisting essentially of three parts, as shown in 

Figure 1.2. The thesis is organized as follows:  
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Chapter 1: Introduction presents the motivation for the research and details research 

objective, methodology, and structure. The research objective is to help management 

make decisions on overlapping degree, communication frequency, and functional 

interaction level in concurrent product development.  

 

Chapter 2: Background on Previous Work reviews relevant literature of concurrent 

processes, traditional models of product development processes, and recent models for 

concurrent processes. The research gap is identified: current models do not allow 

explicit and clear modeling of the interaction between concurrent development stages. 

Consequently, managers can only make decisions on an ad hoc basis, leading to 

inefficient development policies. This research aims to solve the problem by 

developing formal models of concurrent processes. Three types of concurrent 

processes are studied: concurrent and sequentially dependent product development 

processes with low communication cost; concurrent and sequentially development 

processes with high communication cost; and iterative processes (or concurrent 

processes composed of interdependent development stages). 

 

Chapter 3: Managing Concurrent Development Processes with Low 

Communication Cost presents an analytical model for managing dependent 

development stages in which the communication cost is low.  

 

Chapter 4: Managing Concurrent Development Processes with High 

Communication Cost presents an analytical model for managing concurrent and 

sequentially dependent development processes with high communication cost.  
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Chapter 5: A System Dynamics Model of Overlapped Iterative Processes develops 

a simulation model for managing overlapped iterative processes. In Chapters 3 and 4, 

analytical models are built for managing concurrent and sequentially dependent 

product development processes. For interdependent product development processes, 

the interaction is much more complex and thus analytical modeling is not suitable. 

Consequently, a System Dynamics model is built in this chapter. Note that using this 

method we can only find the best solution within different scenarios and thus the 

solution is not globally optimal. The model was illustrated with a case study at a 

design house. 

 

Chapter 6: Conclusions and Future Study gives a summary of this research. We 

first summarized the results derived on the models and case studies and discussed the 

contributions of this study. Then, we point out the limitations of this research. The 

directions for future study are discussed in the last section. 
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Figure 1.2 Structure of the thesis 

 

Chapter 1  

Introduction Part A- Review & Focus: 

Establish research focus on concurrent 

processes; review the related literature. 

Part B- Managing Concurrent Processes: 
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CHAPTER 2  

BACKGROUND ON PREVIOUS WORK 

 

In this chapter, an extensive review of the relevant theoretical and analytical research 

in NPD is presented. The chapter begins with a review of research in traditional 

sequential development processes, followed by research in concurrent development 

processes which have appeared in the last two decades. These reviews provide the 

basis for the evaluation of various product development models which investigate the 

impacts of project properties and development policies on project performance. This is 

followed by a detailed evaluation of existing descriptive, analytical, and simulation 

models of NPD processes. Some concepts in the concurrent engineering literature, 

which are closely related to this research, are illustrated in detail. 

 

2.1 Traditional Sequential Development Processes 

As shown in Figure 2.1, traditional models of product development processes are 

based upon a sequential and functional approach to product development 

(Wheelwright and Clark, 1992). In the traditional paradigm, the development processes 

are treated as a series of development activities from conceptualization to mass 

production. This is represented by the unidirectional arrows between phases in Figure 

2.1. Many researchers have described the traditional process and have given examples 

from different industries (e.g. Wheelwright and Clark, 1992; Womack et al., 1990; 

Nevins and Whitney, 1989; Hayes et al., 1988). Clark and Fujimoto (1991) argue that 
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this paradigm is appropriate “…when markets were relatively stable, product life 

cycles were long, and customers concerned most with technical performance.” 

 

The sequential process is highly functionally segregated, i.e. different functions have 

responsibility for different phases, with formal communication between the functions 

occurring at the end of each phase (at the gates, or the milestones) when one function 

hands off its work to the next. Typically, the functions responsible for the various 

phases are: marketing personnel for the concept phase and launch phase, design 

engineers for design phase, test engineers for the prototype testing phase, and 

manufacturing personnel for the pilot production phase. 

 

Figure 2.1 A schematic diagram for a phase-milestone NPD process 

 

Substandard project performance under the traditional paradigm generates friction and 

conflicts among different function groups, resulting in poor coordination and 

bottlenecks in the flow of information through the product development processes 

(Hayes et al., 1988). This can extend the project cycle time or consume additional 

resources, thereby increasing costs. 
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2.2 Concurrent Development Processes 

Market and technology changes have brought about new characteristics of product 

development. The most significant changes from the traditional paradigm to the new 

paradigm are from sequential development process to concurrent process. Overlapping 

and functional interaction are two of the most important components of concurrent 

development. Researchers now view product development as a collection of highly 

coupled development stages which are performed iteratively and often simultaneously 

by cross-functional development teams (Wheelwright and Clark, 1992; Womack et al., 

1990).  

 

2.2.1 Overlapping of Development Stages 

Overlapping refers to the product development process where the downstream stage 

starts prior to the completion of the upstream stage. The primary purpose of adopting 

overlapping approach is cycle time reduction through planning and executing multiple 

stages simultaneously instead of sequentially as in a sequential development process. 

This requires starting downstream stage as soon as preliminary information is available. 

For the overlapped process, the development stages are usually sequentially dependent 

or interdependent. Information generated by one or more stages poses contingencies 

for others; thus, all the development stages should be considered simultaneously 

(Adler, 1995).  

 

Although large reduction in cycle time can be realized by applying overlapping 

approach (Wheelwright and Clark, 1992; Womack et al., 1990; Nevins and Whitney, 

1989), the cycle time reduction comes at the cost of increased complexity. Overlapping 

increases the dependency between development stages and the number of required 
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information transfers. To deal with the increased interdependencies, intensive 

coordination is required. However, this may increase the cost of manpower. Because 

downstream is started on preliminary information in the overlapped process, the 

amount of rework is likely to increase when new information becomes available. 

Researchers suggest that iteration in product development is a primary cause of the 

dynamic nature of product development, a primary driver of project cycle time and a 

measure of process quality (Cooper, 1994, 1993a, b, c; Bhuiyan et al., 2004). Figure 

2.2 shows an overlapped concurrent development process. Information flows between 

tasks are more frequent than in a sequential process. When quality problems are found 

by downstream stages, the relevant information is transferred to the stages which are 

responsible for the quality problems and then rework occurs. 

 

Figure 2.2 Concurrent process 
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2.2.2 Cross-Functional Teams 

In today’s product development, functional participation takes place through the 

formation of teams consisting of representatives from the functions involved. Due to 

uncertainty in product development processes, the release of preliminary information 

to downstream functions may introduce the need for rework when there is a change in 

preliminary information. The goal of functional interaction is to reduce project 

uncertainty by identifying the potential quality problems as early as possible. The 

formation of cross-functional teams is an extension of the move away from function-

based teams to the matrix structures. Hayes et al. (1988) describe and Wheelwright and 

Clark (1992) later refine a detailed model of this shift by introducing intermediate 

steps defined by the level of influence of project managers. Restructuring product 

development organizations away from function-based groups and toward cross-

functional development teams has become a widely used approach to reduce project 

cycle time (Clark and Fujimoto, 1991). 

 

However, researchers (Clark and Fujimoto, 1991; Dean and Susman, 1991; Takeuchi 

and Nonaka, 1991) have realized that the formation of cross-functional teams alone 

does not necessarily reduce time-to-market. They found that over-extended 

communication and coordination in cross-functional team may lower project 

performance. Dean and Susman (1991) found that friction between the members from 

different functions may affect the efficiency of product development. Nevin et al. 

(1991) listed some other reasons for the cross-functional team failures. 

 

The new development paradigm addresses the increased coordination needs of projects 

with cross-functional development teams. The apparent assumption is that project 
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uncertainty, which is a driver of rework, can be reduced by using cross-functional 

teams. However, functional interaction also increases communication time and cost. 

Empirical studies show that functional interaction may increase (Eisenhardt and 

Tabrizi, 1995; Von Corswant and Tunälv, 2002), decrease (Bhuiyan et al., 2004; 

Wagner and Hoegl, 2006), or have no significant effect (Datar et al., 1997) on project 

performance. These mixed results indicate that cross-functional team is not a panacea 

for managing NPD projects. The functional interaction policy should be adjusted 

according to project characteristics. Thus potential risks must be carefully examined to 

ensure that added time and effort are kept to a minimum (Krishnan et al., 1997). 

 

2.3 Previous Models for Managing Development Projects 

In order to control project schedule or analyze the effect of different policies on NPD 

performance (in terms of project cycle time, and cost), various models for NPD 

process management have been developed. We group these models into five categories: 

network-based scheduling techniques (e.g. Moder et al., 1983; Badiru, 1993; Golenko-

Ginzburg and Gonik, 1996), design structure matrix (DSM) (e.g. Eppinger et al., 1994; 

Cho and Eppinger, 2005), analytical models (e.g. Smith and Eppinger, 1997a, 1997b), 

discrete event simulation models (e.g. Bhuiyan et al., 2004), and System Dynamics 

(SD) models (e.g. Cooper, 1980; Ford and Sterman, 1998; Williams, 2005).  

 

2.3.1 Network-based Scheduling Techniques 

The Critical Path Method (CPM) and Program Evaluation and Review Technique 

(PERT) are two of the most important network-based scheduling techniques which 

have been widely used to manage development projects. These methods were initially 

developed to control schedule, and later expanded to manage resources and costs. 
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Rooted in the traditional paradigm of product development, the Critical Path Method 

disaggregates the development process into activities which receive upstream 

information at the beginning and transfer the output to the downstream in the end. 

Each activity is treated as a monolithic block of work described only by its duration. 

The temporal dependencies between development activities describe the constraints 

which upstream activities impose on downstream activities. The logic of the schedule 

can be represented in a network diagram. A simple example is shown in Figure 2.3. 

 

Figure 2.3 A network diagram for CPM schedule management 

 

Critical Path Method enables the identification of a project’s critical path, which is the 

sequence of tasks whose combined durations define the minimum project cycle time. 

Earliest and latest possible start and finish times of all activities determined by the 

critical path can be calculated, as can the available slack times. Furthermore, the 

Critical Path Method provides some tools for studying the trade-offs of different 
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performance measures, such as project cycle time and development efforts. For 

example, durations of activities along the critical path can be shortened by using more 

resources (Wheelwright and Clark, 1992; Moder et al., 1983). Through Critical Path 

Method, time-cost trade-offs can be analyzed and the effectiveness of accelerating 

alternative activities can be determined. In addition, the effects of altering 

dependencies among development activities on time-to-market reduction can be 

investigated (Moder et al., 1983). 

 

The Critical Path Method can be easily understood and applied in practice. However, 

the method has several crucial limitations. It assumes that all quality problems can be 

discovered and solved before the task is completed, and upstream information only be 

sent to the downstream activities when it is finalized. As a result, the method can not 

describe concurrent processes in which upstream changes will cause significant 

downstream rework. Secondly, the Critical Path Method assumes that the duration of 

each activity is directly available. This prevents the method from modeling and 

studying the underlying factors determining activity duration, such as development 

efficiency, development quality, and project uncertainty. Therefore the Critical Path 

Method is unable to model the dynamic nature of concurrent development processes.  

 

PERT addresses one of the limitations of the Critical Path Method by incorporating the 

effect of project uncertainty in the estimates of the duration of development activities. 

It was developed for processes such as product development (Moder et al., 1983). 

Three estimates (most likely estimate, optimistic estimate and pessimistic estimate) are 

used to describe the variability of activity durations. Based on these data, the 

probability of a project meeting specific schedule objectives can be derived. The 
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incorporation of duration uncertainty makes PERT more valuable in managing the 

projects with uncertainty. However, for most development projects, the delay is 

usually caused by rework not by the change of activity duration. Like the Critical Path 

Method, PERT cannot explicitly represent the dynamic interaction between 

development activities, as well as the rework caused by upstream changes. 

 

2.3.2 Design Structure Matrix 

The iterative nature of product development can be addressed using Design Structure 

Matrix (an example is shown in Figure 2.4) (Smith and Eppinger, 1997; Eppinger et al., 

1994; Steward, 1981). The DSM method is based on the earlier work in large-scale 

system decomposition (Ledet and Himmelblau, 1970; Sargent and Westerberg, 1964). 

The DSM provides a compact representation of a complex system by showing 

information dependencies in a square matrix with the full set of development activities 

as both row and column labels. Activity names are usually listed to the left of the 

matrix. A mark in an off-diagonal cell represents an information transfer between two 

development activities/stages. For each activity, its row represents its input and its 

column shows its output. When activities are listed in temporal order, sub-diagonal 

marks represent an input from upstream activities/stages to downstream 

activities/stages. Super-diagonal marks denote a feedback from downstream activities 

to upstream activities. 

 

The DSM approach, first introduced by Steward (1981) and further developed for large 

projects by Eppinger et al. (1994), spawns dozens of research efforts on organizing 

product development tasks. DSM has been used to map and predict information flows 

among activities (Morelli, Eppinger and Gulati, 1995). It can also be used to 
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investigate different strategies for managing product development projects. Osborne 

(1993) applied iteration maps and the Design Structure Matrix to describe product 

development at a leading semiconductor firm Intel, in terms of cycle time. Osborne’s 

work demonstrates the need for further investigation on the impacts of dependencies 

among development tasks on project cycle time. It also points to the need for a better 

understanding of how key factors which impact cycle time can be identified and 

managed. Smith & Eppinger (1997a, 1997b) presented two analytical extensions of the 

DSM method. In the first model, they used Eigen-structure analysis to identify 

controlling features of iteration in product development projects. In the second model, 

the ordering of tasks was manipulated and an expected duration for each task sequence 

was calculated using Reward Markov Chain. More recently, Yassine, Falkenburg, and 

Chelst (1999) utilized a two-dimensional variable to measure the dependency strength 

between design tasks. Ahmadi et al. (2001) addressed the dynamic rework probabilities. 

A recent survey by Browning (2001) shows the increasing use of DSM method for 

project planning and management. Chen et al. (2004) proposed an approach to quantify 

the dependency between design tasks in a DSM. Abdelsalam & Bao (2006) proposed a 

framework to determine the sequence of activities that minimizes project cycle time 

given stochastic task durations. 

 

DSM is potentially a useful tool in describing and investigating information transfer 

and iteration for cycle time reduction. However, DSM cannot directly model the 

development process over time. Like the Critical Path Method, DSM assumes that the 

dependencies between tasks, the development speed of every task, and the probability 

of rework are fixed.  
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Figure 2.4 DSM representation of UCAV preliminary design process 

(Browning and Eppinger, 2002) 

 

2.3.3 Analytical Models 

Previous empirical studies showed that overlapping of consecutive development stages 

can reduce project cycle time at the cost of additional development effort (Clark & 

Fujimoto, 1991; Smith & Reinertsen, 1998; Sobek et al., 1999; Helms, 2004). 

Eisenhardt & Tabrizi (1995) observed that the effect of overlapping is closely related 

to the uncertainty of development projects in computer industry. Based on the 

empirical study of 140 development projects in the electronics industries, Terwiesh & 

Loch (1999) concluded that overlapping is effective only if uncertainty can be resolved 

quickly. Clark and Fujimoto (1991) identified that the negative effect of concurrent 

execution can be reduced through frequent information exchange. 
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Based on these empirical studies and literature, a significant amount of research has 

been conducted on how to determine the optimal development strategies for concurrent 

processes. We group them into three categories: overlapping sequentially dependent 

stages, overlapping interdependent stages, and communication policies. 

 

• Overlapping Sequentially Dependent Stages 

Krishnan et al. (1997) proposed a framework to determine the optimal number of 

information transfers and start time of downstream iteration so as to minimize project 

cycle time. They proposed that “evolution” and “sensitivity” are the properties which 

determine optimal overlapping. The former is the rate at which upstream information 

converges to a final solution, and the information is modeled as an interval that gets 

refined over time (see Figure 2.5). They distinguish between fast evolution and slow 

evolution. In the case of slow evolution, major changes still happen in the end of 

upstream development. Sensitivity describes how vulnerable the downstream stage is 

to any changes in the upstream information, and is defined by the time needed by the 

downstream stage to incorporate changes. They also distinguish between high and low 

sensitivity, where high sensitivity means that a change early in the upstream process 

has a large impact on the downstream process and low sensitivity means that a change 

early in the upstream process has a small impact on the downstream process. 

 

Krishnan et al. (1997) addressed the overlapping problem by studying how values of 

the evolution and sensitivity patterns determine the extent to which overlapping is 

appropriate between two sequentially dependent stages. An integer program was 

developed to study the effect of overlapping policies on project cycle time, assuming 
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upstream evolution and downstream sensitivity are known initially. The method is 

illustrated with an example of the door outer panel development process. 

 

 

Figure 2.5 Upstream evolution 

(Krishnan et al. 1997) 

 

In practice, evolution and sensitivity are not always easy to define quantitatively. 

Therefore, the authors developed a conceptual framework to address the overlapping 

and communication strategies. Four communication and overlapping policies for the 

projects with different evolution and sensitivity properties were proposed (Figure 2.6). 

When the evolution is slow and sensitivity is low, the stages can be overlapped by 

starting downstream stage with preliminary information, and incorporating upstream 

modifications in subsequent downstream iteration. It is defined as iterative overlapping. 

If evolution is fast and sensitivity is high, then the exchanged information should be 

preempted by taking its final value at an earlier point in time. It is called preemptive 

overlapping. When the upstream evolution is slow and the downstream sensitivity is 
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high, either we can disaggregate the upstream information and transfer part of the 

finalized information to the downstream at an earlier point in time or sequential 

process can be applied. This approach is called divisive overlapping. Finally, if the 

upstream evolution is fast and the downstream sensitivity is low, then the downstream 

stage can start earlier and the upstream information can be preempted. This case is 

called distributive overlapping. 

 

Figure 2.6 Development policies based on evolution and sensitivity 

(Krishnan et al. 1997) 

 

The aim of overlapping is to reduce the cycle time of a project. Besides benefits there 

are also risks to the overlapped execution of development processes. This risk is a 
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However, if the modification occurs after the preliminary information is released the 

upstream as well as the downstream process will be affected by the modification. In 

the worst case the cycle time of the overlapped process exceeds the lead-time of the 

sequential process. Therefore, it is important to determine beforehand whether it is 

worth the risk to overlap processes. 

 

However Krishnan et al.’s framework only addresses the appropriate policies when 

evolution is extremely slow or fast and sensitivity is extremely low or high. For these 

cases, the trade-offs are obvious. However, for most development projects, these 

extreme situations almost never happen. Therefore analytical models are needed to 

investigate the time-cost trade-off in concurrent processes in detail. 

 

Following Krishnan et al.’s framework, Loch & Terwiesch (1998) have developed an 

analytical model of concurrent process which consists of two sequentially dependent 

stages. In their work, “upstream evolution” is defined as the continuous design 

modification process; “downstream sensitivity” represents the impact of a modification 

on downstream rework. Based on these concepts, Loch & Terwiesch presented an 

analytical model to determine appropriate overlapping and communication strategies. 

They suggest that if engineering changes arise after the start of downstream stage, this 

poses the risk of redoing the downstream work. The risk can be high if the dependency 

between the stages is high. They propose that communication can reduce the risk of 

downstream rework, but at the cost of communication time.  

 

Loch & Terwiesch developed an analytical model that results in optimal overlapping 

and communication strategies for the projects with different properties, such as project 
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uncertainty, upstream evolution, and downstream sensitivity. Uncertainty is measured 

by the average modification rate of upstream information. It is defined as a 

nonhomogeneous Poisson process. Evolution speed represents the rate at which the 

uncertainty is reduced. The total amount of uncertainty can be reduced through 

communication in the form of meetings.  

 

One of the key assumptions of Loch and Terwiesch’s model is that the later the 

upstream modifications arrive, the more difficult it is to deal with them. However their 

mathematical model can not capture this feature, which leads to wrong conclusions in 

their study. The details will be illustrated in Chapters 3 and 4. 

 

Since then, a number of innovation researchers have studied the optimal overlapping 

strategies for sequentially dependent product development processes. For example, 

Roemer et al. (2000) analyzed the time-cost trade-offs in multistage overlapped 

processes by assuming that the downstream rework can be directly estimated by 

project engineers. The interdependencies between overlapping and crashing, which are 

two commonly used methods for reducing project cycle time, were studied by Roemer 

& Ahmadi (2004). Chakravarty (2001) studied the optimal overlapping policies in 

three overlapping modes assuming that the incompatibility among development stages 

is estimable. While these works have shed light on the analysis of product 

development process, it is still not clear how the probability of rework can be properly 

assessed in practice. 

 

A common assumption made in this stream of overlapping models is that downstream 

stages will not feedback information to its corresponding upstream stages. Hence, 
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these models can not effectively deal with interdependent development stages, which 

are quite common in complex development projects. 

 

• Overlapping Interdependent Development Stages 

Yassine, Chelst, and Falkenburg (1999) used risk and decision analysis methodology 

to determine the optimal overlapping policy for a set of activities. Using a probabilistic 

model consisting of an upstream stage and a downstream stage, their methodology 

finds the optimal overlapping strategy based on the study of independent, sequentially 

dependent, and interdependent stages/activities. They proposed three categories of 

information structures: sequential, partial overlapping, and concurrent. They proposed 

that sequential process takes place for dependent stages; partial overlapping can take 

place for either sequentially dependent stages or interdependent stages; concurrent 

execution is only suitable for independent development stages. These propositions 

describe how the development stages should be overlapped. However, this paper did 

not address the key question for project management: how much to overlap. The 

extreme points of partial overlapping are sequential development and concurrent 

development. Therefore, the authors didn’t make it clear how NPD process should be 

organized for different projects. 

 

Carrascosa et al. (1998) presented a model to estimate project cycle time for different 

task sequences and overlapping degrees using concepts of probability of change and 

impact. However, the assumption made in their study is that there is only one 

parameter causing a task to change during the evolution of each task, which limits its 

application. Joglekar et al. (2001) presented the performance generation model (PGM) 

to derive insights on optimal concurrency strategies between coupled development 
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stages under a deadline. Bhuiyan et al. (2004) proposed a stochastic simulation model 

and discussed the impact of overlapping and functional interaction on project 

performance. Wang & Yan (2005) focused on the optimization of the concurrency 

between an upstream activity and a number of downstream activities. These models 

were built on the assumption that rework probability is estimable. However, it is still 

not clear how the probability of rework can be properly assessed in practice. 

 

• Communication Policies 

Facilitating communication among business functions and/or members in cross-

functional teams are commonly used by many companies (Cooper, 1994; Swink et al., 

1996; Minderhoud & Fraser, 2005). It is well known that communication among 

development teams can reduce project uncertainties, but at the expense of additional 

time and cost for communication. Patrashkova-Volzdoska et al. (2003) reported that 

communication frequency and performance are nonlinearly dependent with an 

inverted-U relationship, based on a survey of 60 cross-functional teams. Helms (2004) 

observed that the information exchange among development teams is time consuming 

in chemical industries. 

 

In spite of its importance, the issue of communication policies has been addressed only 

to a limited extent in the analytical literature. Ha & Porteus (1995) developed an 

analytical model and studied the benefit of early detection of upstream flaws through 

overlapping and frequent communication between development stages. In their study, 

the development stages are assumed to be interdependent. In contract to sequentially 

dependent stages, the nature of interdependent activities requires more frequent 

communication. If information exchange is too frequent, then communication time and 
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cost would increase significantly. However, infrequent information exchange would 

delay the identification of the design flaws and increase the amount of rework of the 

upstream stage. Given these trade-offs, they seek to determine the optimal 

communication frequency that minimizes the expected project completion time. A 

dynamic program was developed and it showed that the overlapped development must 

be accompanied by progress reviews to minimize the risk of downstream rework. 

Moreover, the frequency of communication or progress reviews must be balanced with 

the value gained from having them. With appropriate overlapping and communication 

policies, project cycle time can be reduced without significantly increasing the risk of 

downstream rework. Loch & Terwiesch (1998) extended the work of Ha & Porteus, 

and developed an analytical model to determine the optimal overlapping degree and 

the communication frequency between upstream and downstream stages. 

 

2.3.4 Discrete Event Simulation Models 

Another stream of research uses simulation to explore the linkage between task 

sequences and project performance. Discrete event simulation (DES) model and 

System Dynamics (SD) model are two methods commonly used to simulate NPD 

process. Discrete Event Simulation (DES) model usually assumes that the PD process 

is composed of a finite set of activities and information flow only exists at the 

beginning or at the end of an activity.  

 

Bhuiyan et al. (2004) developed a DES model to study the impact of rework on 

development cycle time and effort (man power). This model demonstrates the 

relationships between overlapping policy, functional interaction strategy, project cycle 

time, and development effort. However, this stochastic model cannot directly simulate 
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the structure of a development process over time. The dependencies between stages, 

the development speed of every stage and the probability of rework cannot be adjusted 

continuously over the development process. This model cannot be used to study 

complex development processes because the building blocks of the model are 

developed based on simplified stage-gate processes.  

 

Some other discrete event simulation models have been developed to study product 

development projects. Browning & Eppinger (2002) highlighted the effects of varying 

process architecture by simulating NPD process as a network of activities that 

exchange deliverables. The model outputs sample cost and schedule outcome 

distributions. Each distribution is used with a target and an impact function to 

determine a risk factor. Alternative process architectures can be compared to reveal 

opportunities to trade cost and schedule risk. Gil et al. (2004) simulated the concept 

development process for semiconductor fabrication facilities, and found that some 

decision-making postponement can help increase the predictability of concept 

development duration and reduce resources spent in design without increasing the risk 

of exceeding project deadlines. Cho & Eppinger (2005) extended the work of 

Browning & Eppinger (2002) by accounting for resource constraints. 
 

2.3.5 System Dynamics Models 

Many models of product development have been built on System Dynamics approach. 

In this section, we generally introduced the System Dynamics models of product 

development. For more detailed review, readers can refer to the work done by Ford 

(1995) and Chi (2001). 
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Roberts (1974) developed a small model with System Dynamics approach to 

investigate the management of R&D projects. They assume that each activity or stage 

is composed of many “job units” which are uniform in size. The completion rate of the 

“job units” is determined by available manpower and productivity. Management 

decisions (such as the change of manpower) are based on perceived progress, which 

includes both actual progress and perceptual errors.  

 

Cooper (1980) and Reichelt (1990) described the framework of large System 

Dynamics models developed by Pugh-Roberts Associates for claims settlement of 

large scale shipbuilding operations. The structure of the model was further illustrated 

in Cooper, 1993a, b, c. Cooper (1980, 1993a, b, c) simulated the major phases of 

shipbuilding operation and modeled the impacts of rework in projects on cycle time 

and development cost. He distinguishes between the activities of the initial completion 

of development tasks and rework and discusses the rework caused by customer 

changes. Project phases are dependent in this model. Therefore, engineering changes 

may propagate across project phases if they are not identified on time. A delay in 

discovering engineering changes increases the total amount of rework, reduces project 

quality, and slows the completion of the project. Reichelt (1990) describes the 

dependency of downstream product development stage on its preceding stage in a two-

stage process. Cooper and Reichelt’s research adds several valuable concepts to the 

literature of project management: 

1) Customer changes will significantly increase the time for coordination and rework, 

and thus increase project cycle time and cost; 

2) Upstream changes will not only increase the rework of that stage but also increase 

the rework of all the downstream stages depending on the output of the stage; 
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3) Manpower diverted from other development stages disrupts work flow and requires 

additional labor, lowering the average skill level and thus reducing development 

rate and increasing development cost. 

 

Richardson and Pugh (1981) developed a System Dynamics model of single R&D 

projects. The rework process is modeled in detail, which expands the resource 

effectiveness portion of the fundamental structure used by Roberts. Richardson and 

Pugh distinguish between tasks-done-correctly and tasks-requiring-rework. Project 

cycle time and the amount of rework are significantly affected by the error rate in 

product development and the discovery rate of development errors. Based on their 

model, Richardson and Pugh illustrate the effects of different assumptions and policies 

on project cycle time and identify some impractical policies which were obtained on 

invalid assumptions of rework or project scope.   

 

Abdel-Hamid (1984) built a model of software development to better understand the 

root causes of cost overruns, late deliveries, and user dissatisfaction. In this model, 

software production is influenced by human resource management, planning, and 

controlling. Schedule pressure increases the predicated amount of work force which is 

necessary to complete the project on schedule. Schedule pressure also influences the 

productivity of work force, the error generation rate, and the resource allocation in 

different development activities. 

 

The impacts of project manager motivations on project performance are investigated 

by Jessen (1990) with a model based upon resources strategy, targets, and rework. This 
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model focused on the roles of balancing feedback loops in projects. It improves our 

understanding of the motivational structures in projects. 

 

 “Gate functions” were introduced by Homer et al. (1993) to describe the constraints 

on the progress of a development stage imposed by both the progress of the preceding 

stages and the work within the stage. In this model, graphical table functions are used 

to describe these precedence relationships in more detail than possible with the Critical 

Path or PERT methods (Ford, 1995). For example, the work availability of a 

downstream stage can be affected by the progress of the upstream stage throughout the 

duration of the downstream phase. However, using CPM or PERT, the information 

transfer only occurs at the start or finish of a development stage. Homer et al.’s model 

uses both available work and resources to constrain progress. We adopted this structure 

in the SD model to describe information prerequisites. 

 

Ford et al. (1993) did a case study in an electronic entertainment equipment 

manufacturer and investigated the interface between two product development groups. 

The relationships among coordination, schedule and project quality are focused in this 

model. The authors explicitly modeled rework due to development errors and 

operational iteration. They distinguished between required and voluntary iteration in 

product development. Based on this model, they studied the influence of schedule 

pressure on decisions about iteration for quality. The time-quality tradeoff was also 

discussed in this model. 

 

Whilst the above studies have covered the three domains (monitoring and control, 

rework and human resources) as identified by Rodrigues and Bowers (1996), it is Ford 
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and Sterman (1998) who tie these together with a process structure. Ford and Sterman 

(1998) developed a product development model which includes all four performance 

drivers: process structure, resources, targets and scope. They have demonstrated the 

importance of integrating process structure with resource, scope, and targets in 

dynamic models of development projects. More specifically, Ford and Sterman (1998) 

explicitly describes the interdependency of the tasks within a phase and the links 

among multiple project phases. 

 

Chi (2001) proposed that the segregation of knowledge is the endogenous factor which 

results in an inherent need for iteration. They developed a System Dynamics model to 

investigate the impacts of such knowledge segregation on the performance of product 

development projects. This proposed framework helps management to manage the 

knowledge within NPD projects. 

 

The existing System Dynamics literature has a rich history of modeling development 

projects. All these models contribute to the description and documentation of the tight 

linkage between development resources, resource management, and project 

performance. However, current literature can not explicitly simulate the rework 

generation process in concurrent product development. This limits the application of 

SD models in product development projects since CE has already been applied in most 

development projects. The SD model developed in Chapter 5 addresses it by explicitly 

modeling the interaction between overlapped development stages. It will help 

management derive appropriate development policies and thus improve project 

performance. 
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2.3.6 Summary of the Models for Product Development 

Five different methods to address the development sequence and strategies have been 

suggested in the literature. CPM and PERT are the methods developed for sequential 

process and thus they are not applicable for concurrent product development. DSM is a 

descriptive method which is used in our thesis to represent the general relationships of 

the development stages in a mobile phone development company in Chapter 5. DSM is 

not suitable for studying overlapping and communication policies directly, since it can 

not simulate the interaction between development stages. The continuous nature of 

NPD process also makes DES not suitable. Therefore, in this thesis, only DSM method, 

analytical modeling method, and SD approach are applied. DSM is used to describe the 

general process of product development; two analytical models and a SD model are 

developed to study the optimal/appropriate development policies for different 

concurrent processes. 

 

2.4 A Framework to Study Concurrent Processes 

Although many models have been developed to study new product development, 

current models cannot capture the rework generation process in concurrent processes. 

Therefore, management still lacks of tools to derive appropriate overlapping and 

communication strategies for concurrent processes.  

 

However the current literature does give some useful concepts for modeling concurrent 

processes: 

1) Krishnan et al. (1997) proposed that “evolution” and “sensitivity” are the 

properties which determine optimal overlapping. 
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2) The information evolution process for product development projects is usually 

available and it is one of the key factors affecting downstream rework (Krishnan et 

al., 1997; Roemer et al., 2000). 

3) Terwiesch and Loch (1999) and many other researchers (e.g. Carrascosa et al., 

1998) make it clear that the downstream sensitivity is linearly related to 

downstream progress. 

These concepts are supported by empirical studies (e.g. Eisenhardt and Tabrizi, 1995; 

Helms, 2004), and have had a strong influence on the literature on concurrent 

engineering. They are the start point of this thesis. 

 

2.5 Summary of Literature Evaluation 

This chapter documents the shift from sequential product development processes to 

dynamic development processes because of the trends of concurrent development. It 

identifies several fundamental features of concurrent development processes such as 

overlapping of development stages, cross-functional team, and rework due to upstream 

changes. 

 

Traditional project management models based on the Critical Path Method (CPM) and 

Program Evaluation and Review Technique (PERT) assume the process is in a static 

fashion with activity duration estimates and precedence relationships describing the 

network of development activities. Consequently, these models can not deal with 

concurrent product development. 

 

Although some researchers have built models to study the relationship between the 

features of concurrent processes and NPD performance, most of these models simply 
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assume that the rework probability is directly estimable. However, from our case study 

and previous empirical literature, it is almost impossible to estimate these parameters 

directly, which leads to the fact that although there are several models built for 

analyzing concurrent processes, most of them cannot be applied directly in practice 

(Jun et al., 2005). This research proposes three models to describe concurrent 

development processes with different types of information dependencies. Using these 

models, we can derive appropriate development policies based on the data available for 

most development projects such as historical data of modifications, and dependence 

between development stages. The applicability and usefulness of these models are 

illustrated and validated with the case studies in three companies developing consumer 

electronics products.  
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CHAPTER 3  

MANAGING CONCURRENT DEVELOPMENT 

PROCESSES WITH LOW COMMUNICATION 

COST 

 

This chapter presents an analytical model for managing concurrent and sequentially 

dependent development processes in which communication cost is low. Firstly, the 

relevant literature is reviewed and the research gap is illustrated. Then, we investigate 

the downstream progress in detail, which is essential to derive the optimal overlapping 

policies. We find that downstream progress increases over time when upstream 

evolution is fast or linear, but it is indefinite when upstream evolution is slow. After 

that, we present the optimal overlapping policies taking into account the complexity of 

downstream progress. The impact of different project properties (such as dependency 

between development stages, rework rate, and opportunity cost of time) on overlapping 

policies is discussed. Finally, we derive the optimal functional interaction strategies 

under the condition that optimal overlapping is followed. The methodology is 

illustrated with a case study at a handset design company. 

 

3.1 Introduction 

The increasing importance of rapid product development has given rise to a large body 

of literature dedicated to development cycle time reduction (Krishnan and Ulrich, 2001; 

Carrillo and Franza, 2006). Overlapping and functional interaction are two of the most 
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popular approaches which are considered necessary to accelerate product development 

process and reduce project uncertainty (e.g. Wheelwright and Clark, 1992; Ganapathy 

and Goh, 1997; Smith and Reinertsen, 1998; Joglekar and Ford, 2005). Overlapping 

refers to the product development processes where the downstream stage starts prior to 

the completion of the upstream stage. Functional interaction is defined as the 

involvement of downstream engineers in upstream development. 

 

Despite the popularity of overlapping and functional interaction, empirical studies 

show that the gain from these approaches must be weighed against the additional time 

and cost for rework and communication (Cordero, 1991; Bhuiyan et al., 2006; 

Eisenhardt and Tabrizi, 1995; Von Corswant and Tunälv, 2002). Overlapping allows 

the downstream stage to start earlier at the cost of additional rework arising from 

subsequent modifications of the upstream stage (Krishnan et al., 1997; Helms, 2002). 

For example, mould fabrication can start before the detailed design is finalized so that 

development cycle time may be reduced. However, when the product design is 

changed the mould will have to be revised or re-fabricated, which is costly and time 

consuming. Overlapping may not be beneficial when the upstream information 

changes significantly and/or the downstream stage is highly dependent on upstream 

output. Functional interaction reduces upstream uncertainty and downstream rework at 

the cost of additional time for communication and cooperation (Loch and Terwiesch 

1998). Consequently, analytical investigation of the trade-offs involved is needed. 

Note that without overlapping, rework also occurs (e.g. product design may be 

changed because it doesn’t fit with product equipment requirements). In this thesis we 

only focus on the rework which is caused by overlapping. 
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Some analytical models have been developed to determine the optimal overlapping and 

functional interaction levels. We sorted them into two groups. In the first group, 

researchers assume that the total amount of downstream rework for different projects 

with different overlapping degrees is directly estimable. For example, Roemer et al. 

(2000) analyzed the time-cost trade-offs for multistage overlapped processes by 

assuming that the downstream rework can be estimated by project engineers. The 

interdependencies between overlapping and crashing were studied by Roemer and 

Ahmadi (2004). Chakravarty (2001) studied the optimal overlapping policies in three 

overlapping modes assuming the incompatibility among development stages is 

estimable. While these works have shed light on the analysis of product development 

process, it is still not clear how the probability of rework can be determined in practice 

(Jun et al., 2005). 

 

On the contrary, the second group of studies assumes that the rework probability is 

unavailable in practice but can be derived according to certain project properties, such 

as upstream evolution, project uncertainty, and dependency between development 

stages. Krishnan et al. (1997) developed a model-based framework to manage the 

overlapping of two development stages. They showed that “upstream evolution” and 

“downstream sensitivity” are the two properties determining optimal overlapping 

strategies. Loch and Terwiesch (1998) adapted the concepts of evolution and 

sensitivity: “upstream evolution” is defined as the speed at which the preliminary 

information is modified; “downstream sensitivity” represents the impact of a 

modification on downstream rework. Based on these concepts, they developed an 

analytical model and derived the optimal communication strategies for overlapped 

processes. These studies are supported by empirical studies (e.g. Eisenhardt and 
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Tabrizi, 1995; Terwiesch and Loch, 1999; Helms, 2004), and have had a strong 

influence on the literature on concurrent engineering. 

 

The model developed in this chapter follows the work of Krishnan et al. (1997) and 

Loch and Terwiesch (1998) but differs from their research in three important aspects. 

 

Firstly, we model the impact of an upstream change on downstream rework as a 

function of the downstream progress and the dependency of overlapped stages 

(Terwiesch and Loch, 1999; Thomke and Bell, 2001; Lin et al., 2008). Downstream 

progress is the amount of work which is completed but not corrupted by upstream 

changes. Dependency describes the percentage of the downstream progress which will 

be affected by a change. Figure 3.1 shows the progress of stage i. For the purpose of 

explanation, we assume that two changes happen at 1t  and 2t  (in reality, changes have 

a probability of happening at any time). At time 1t , the progress of stage i would be 5 

if there is no change. If a change takes place at 1t  and the dependency is 20%, the 

progress will be dropped to 4 and 1 day’s rework arise. The same dynamics take place 

at 2t . From this example we can see that the progress of the downstream stage is 

dynamically affected by project properties (such as upstream evolution and 

dependency). Krishnan et al. (1997) simplified the impact of upstream changes on 

downstream rework by assuming information updating was allowed only when an 

iteration of the downstream stage was completed (i.e. the downstream progress is 

100%). Therefore they can use a single parameter, “sensitivity”, to represent the 

impact of upstream modifications on downstream rework. For the simplicity of their 

model, Loch & Terwiesch (1998) assume that the impact of engineering changes is 

linearly related to downstream time, i.e. they implicitly assume that downstream 
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progress equals downstream time. This assumption does not guarantee the fact that the 

downstream progress can not be negative at any time. For example, in Figure 3.1, 10 

modifications arrive at time 2t . It is clear that up to 10 days of downstream work can 

be affected by upstream modifications, since the downstream progress can not be 

negative. However, based on their assumption, a total of 20 days of rework arises if the 

dependency is 20% (i.e. the downstream progress becomes -10 days at 2t ). Unlike 

their research, we investigate the downstream progress in detail. Such analysis is 

essential to derive the optimal overlapping and functional interaction strategies 

(Carrascosa et al., 1998). 

 

Figure 3.1 The progress of a downstream stage 

 
 
Secondly, our model is more general with respect to the evolution patterns studied. 

Eppinger et al. (1994) pointed out that, in a typical design project, most engineering 

changes arise somewhere in the middle of the project which implies that the evolution 

function may be S-shaped. Krishnan et al. (1997) defined two types of upstream 

information evolution: “fast evolution” and “slow evolution”. If the modification rate 

decreases with time, the evolution is said to be fast. In contrast, the modification rate 

increases over time in slow evolution. Loch and Terwiesch (1998) studied the 
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communication and overlapping policies for the projects in which the modification rate 

is linearly related to development time. While making specific assumption of the 

upstream evolution can help to derive management insights, it also limits the 

application of the model. Our model is developed based on a general assumption of the 

upstream evolution: the modification rate is non-negative, which ensures our model to 

be a good abstraction of practice. 

 

Thirdly, project performance is measured by time and cost in this model. There are 

three traditional measures of project performance: time, cost, and quality. For most 

derivative projects the target quality is often well defined. Hence, the objective for 

management is to achieve the required quality with less time and cost. However, most 

of the extant literature, such as Krishnan et al. (1997) and Loch and Terwiesch (1998), 

takes development cycle time as the sole measure for project performance (Gerwin and 

Barrowman, 2002). Unlike their research, we explicitly address the trade-off between 

cycle time and cost. Furthermore, the relationship between project properties (e.g. 

uncertainty, dependency, and evolution) and project performance is explored. (As we 

know, the time-cost trade-off is also studied by some other researchers, such as 

Roemer et al. (2000) and Chakravarty (2001). However all of these studies are 

developed based on the assumption that the total amount of downstream rework is 

directly estimable and thus the effect of uncertainty, upstream evolution, and 

dependency on development cycle time and cost is not explicitly explored.) 

 

This chapter is organized as follows. Section 3.2 introduces an analytic model which 

captures the relationship between upstream evolution, dependency of development 

stages, overlapping and functional interaction policies, and project performance. 
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Section 3.3 discusses the progress of downstream stage and the earliest downstream 

start time in detail. In section 3.4, we present the optimal overlapping and functional 

interaction policies, taking into account the complexity of downstream progress. Then 

two closely related problems are discussed. In section 3.6, the methodology is 

illustrated with a case study at a handset design company. Conclusions are summarized 

in section 3.7. 

 

3.2 Model Formulation 

In this section we first formulate the tradeoffs of cost and development cycle time. 

Then, based on a review of relevant literature (e.g. Krishnan et al., 1997; Loch and 

Terwiesch, 1998; Carrascosa et al., 1998) we introduce a general mathematical model 

of upstream evolution and its impact on downstream rework. The objective function, 

constraint equations, model parameters, and decision variables are summarized at the 

end of this section. 

 

3.2.1 Overview of the Model 

The theoretical basis of our model is the information-based view of product 

development (Clark and Fujimoto, 1991), in which individual development stages are 

viewed as information-processing units that receive information from upstream stages 

and transform it into new information to be passed on to downstream stages.  

 

Figure 3.2 shows the information transformation between two overlapped development 

stages. Unlike the traditional sequential process, in overlapped product development, a 

downstream stage can start on preliminary information. Without loss of generality, we 

assume preliminary information of the upstream is available at time zero and it is 



       Chapter 3   Managing Concurrent Development Processes with Low Communication Cost 

                         

49  

continuously modified until the end of the upstream stage. uD  and dD  denote the 

durations of initial development of upstream and downstream stages respectively, 

where the duration of initial development is the expected time it takes to perform a 

stage without overlapping. The downstream stage is dependent on the upstream stage 

and cannot be finished earlier. Consequently, the earliest start time of the downstream 

stage et  satisfies �� ≤ ��. The exact point of �� is discussed in Section 3.3 and can be 

derived on Proposition 3.3. The decision variable st , which is the start time of 

downstream stage, ranges between et  and uD . A smaller st  corresponds to higher 

overlapping degree. 

 

Figure 3.2 Overlapped product development process 
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In Figure 3.2, functional interaction and upstream development are sequential because 

they are usually sequentially done by one team. It is consistent with previous studies 

(e.g., Loch and Terwiesch, 1998). Functional interaction can also be applied in 

downstream and it will affect the overlapping between downstream stage and the later 

development stages. In this model, we only study the overlapping between two 

development stages. Therefore, functional interaction in downstream is not studied. 

 

Without considering the drawbacks of overlapping, the development cycle time of the 

two stages can be reduced to ds Dt + . However, because downstream stage starts with 

preliminary information, upstream changes may lead to rework at the downstream 

stage. The downstream rework duration is denoted by ( , )r sD t τ . Functional interaction 

reduces upstream uncertainty and downstream rework but increase interaction time τ

(Ha and Porteus, 1995; Loch and Terwiesch, 1998). Taking into account of the rework 

duration and functional interaction time, the product development time for concurrent 

approach is: 

( , )c s d r sT t D D tτ τ= + + +                                                                                            (3.1) 

 

As we know development cycle time for traditional sequential process is s u dT D D= + . 

Thus, the reduced cycle time due to overlapping and functional interaction is: 

( , )s c u s r sT T D t D tτ τ− = − − −                                                                                      (3.2) 

 

Defining tc  as the opportunity cost of time, the gain from reducing development cycle 

time is ( ( , ))t u s r sc D t D tτ τ− − − . Let cτ  and rc be the unit cost of functional interaction 

and rework respectively. The additional cost for overlapping and functional interaction 
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is ( , )r r sc c D tττ τ+ . The overall gain from these approaches can be formulated by 

summing the negative and positive effects of overlapping and functional interaction, i.e. 

: ( ( , )) ( , )t u s r s r r sMax G c D t D t c c D tττ τ τ τ= − − − − −                                                    (3.3) 

 

3.2.2 Upstream Information Evolution 

In product development, modifications are inevitable because of the high uncertainty 

of development projects. We define upstream evolution as the arriving rate of upstream 

changes. These changes affect the preliminary information based on which 

downstream stage has begun work. These changes follow a nonhomogeneous Poisson 

process with rate ( )tµτ  (see Loch & Terwiesch (1998), Carrascosa et al. (1998), and 

Jun et al. (2005) for the justification of the Poisson assumption). Consistent with 

Krishnan et al. (1997) and Loch & Terwiesch (1998), the evolution is said to be fast if 

the modification rate ( )tµτ  decreases with �. In this case, the preliminary information 

gets close to its final form rapidly. Slow evolution indicates that ( )tµτ  increases with �. 

The evolution is linear, if the modifications are generated as a homogeneous Poisson 

process. 

 

Figure 3.3 Impact of functional interaction on uncertainty 
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Clausing (1994) identified two types of uncertainties. One is the result of the fact that 

it is difficult to make the design concept very clear at the beginning. The other is the 

modifications caused by problems regarding manufacturability and maintainability of 

the product. Previous studies (e.g. Clausing, 1994; Adler, 1995; Bhuiyan et al., 2004) 

have shown that the second type of uncertainty can be reduced through functional 

interaction, and the uncertainty reduction usually exhibits diminishing returns (see 

Figure 3.3). Consistent with these empirical results, the relationship between 

modification rate and functional interaction is modeled as: 

 0

exp{ }
( ) ( )

a b
t t

a b
τ

λτ
µ µ

+ −
=

+
                                                                                       (3.4) 

a b+  represents the overall level of uncertainty in the absence of functional interaction. 

The uncertainty which can be reduced through functional interaction is captured by b . 

Parameter λ  represents the cross-functional teams’ capability to reduce upstream 

uncertainty. 0 ( )tµ  denotes the modification rate if there is no functional interaction 

( 0=τ ). 

 

3.2.3 Downstream Rework 

Downstream rework arises when the modifications of upstream stage corrupt the 

relevant tasks in the downstream stage. In other words, these tasks need to be reworked 

because they were based on incorrect information. Since there are numerous tasks in a 

project, it is infeasible to tract tasks individually. Consistent with previous literature 

(e.g. Chakravarty, 2001), we describe workload of development stage in terms of 

duration. That is the workload equals the duration of initial development. For example, 

we can say there is 10 days’ work. In this model, the workloads of upstream and 

downstream are �� and �
 respectively. Consequently the initial development rate of 
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downstream, which is the regular speed of downstream development without 

overlapping, is equal to one. Let r  denote the downstream rework rate and 1≥r  

because of the learning effect. As shown in Figure 3.2, u sD t−  is the overlapped period 

of two consecutive development stages. y  and ytD su −−  denote the time spent on 

rework and initial development in the overlapped period respectively. Therefore, the 

total amount of tasks completed in the overlapped period equals ryytD su +−− . 

( )uP D  is the downstream progress at time uD , i.e. the amount of work which is 

completed on preliminary information but not affected by upstream modifications. The 

total amount of rework and rework duration are: 

)()1(),( usus DPyrtDtR −−+−=τ                                                                                (3.5) 

( , )
( , ) s

r s

R t
D t

r

τ
τ =                                                                                                         (3.6) 

where y is constrained by the total amount of tasks can be reworked at time �� .                

r

tPyrt
y

yy )()1( −−+
≤ .                                                                                               (3.7) 

 

To derive the rework duration ( , )r sD t τ , it is essential to determine the expression of 

downstream progress. Downstream progress rate is composed of two key elements: 

development rate which is one for initial development and r  for rework, and 

corruption rate which is the effect of upstream modifications on the progress of the 

downstream stage. Corruption rate is determined by modification rate, ( )tτµ , 

dependency between development stages, k , and the progress of downstream stage, 

( )P t  (Terwiesch and Loch, 1999; Carrascosa et al., 1998). More completed 

downstream work will be corrupted when modification rate and dependency are high. 

The progress of downstream stage accounts for the reason why additional rework 
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arises in overlapped product development. For traditional sequential process, 

modifications are found and resolved before the downstream stage starts, i.e. the 

changes are made when the downstream progress is zero. However, in overlapped 

process, the downstream stage starts on preliminary information in order to reduce 

development cycle time. Rework arises when modifications are made after the 

downstream stage starts (Krishnan et al., 1997; Lin et al., 2008). The downstream 

progress rate is formulated as follows: 

)()(1
)(

tPtk
t

tP
τµ−=

∂

∂
  for � < �� − 	 or �� < � < ��                                                (3.8) 

)()(
)(

tPtkr
t

tP
τµ−=

∂

∂
 for �� − 	 ≤ � ≤ ��                                                              (3.9) 

Equation (3.8) represents the progress rate of initial development. Equation (3.9) 

denotes the progress of rework. These Equations show the dynamic relationship 

between progress rate and downstream progress. Based on these equations we can 

derive �(�), the downstream progress at time �. Let � = �� , we can derive �(��). 

Then using equation 3.5, we can derive the total amount of rework. In section 3.4, the 

downstream progress will be investigated in greater detail. 

 

3.2.4 Summary 

Based on the elements discussed above, we formulate the optimization problem as 

follows:  

( , ) ( , )
max : ( )s r s

t u s

R t c R t
G c D t c

r r
τ

τ τ
τ τ= − − − − − ;                                                    (3.10) 

subject to: Equations (3.4), (3.5), (3.7), (3.8),(3.9); 

                 e s ut t D≤ ≤ ;                                                                                               (3.11) 

                 0≥τ ;                                                                                                        (3.12) 
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Table 3.1 Model parameters and decision variables 

Parameters Definition 

uD  Upstream development duration 

dD  Downstream development duration 

y  Time spent on initial development in the overlapped period 

( )tτµ  Rate of upstream modifications 

a  Modifications irreducible through functional interaction 

b  Modifications reducible through functional interaction 

λ  Functional interaction capability 

tc  
Opportunity cost of time (the cost of increasing one unit of 

time-to-market) 

cτ  Functional interaction cost 

rc  Rework cost 

k  

Dependency between development stages (the percentage 

of downstream progress which will be affected by a 

modification) 

r  Rework rate of downstream stage 

Decision Variables Definition 

y  Time spent on rework in the overlapped period 

st  Start time of downstream stage 

yt  Finish time of y 

τ  Functional interaction duration 

 

All variables are summarized in Table 3.1. Our model focuses on the effects of 

overlapping and functional interaction on cost and cycle time. It is employed to answer 

the following managerial questions: 

(1) What is the relationship of downstream progress with time, upstream 

uncertainty, dependency of development stages, and other project properties?  

(2) How can we maximize project performance through overlapping? 

(3) What is the relationship between project properties (e.g. modification rate, 

dependency, rework rate, and rework cost) and overlapping strategy? 
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 (4) How can we maximize project performance by applying overlapping and 

functional interaction simultaneously? 

 

3.3 Downstream Progress and Earliest Start Time 

To understand the impact of an upstream modification on downstream rework, the 

downstream progress should be investigated first. Assume that the functional 

interaction duration τ  and the start time of downstream stage st  are given. In this 

section, we first discuss the priority ordering of initial development and rework. Then, 

we derive the expression of downstream progress ( )P t , the total amount of 

downstream rework ( , )sR t τ , and the earliest downstream start time. The results are 

summarized in Propositions 3.1, 3.2, and 3.3. 

 

Proposition 3.1  

For downstream development, initial development is prior to rework.  

 

Proof. To enhance readability of the thesis, all proofs of this chapter are shown in 

Appendix A. 

 

In overlapped product development, tasks can be continuously corrupted by upstream 

modifications. Therefore at certain time, engineers can do the design tasks that have 

yet to be completed or the design tasks that have been completed but are corrupted by 

upstream modifications. Proposition 3.1 proves that the traditional working sequence 

(rework follows initial development) (Black and Repenning, 2001) is optimal when 

rework rate is not lower than initial development. An empirical support of this result is 

provided by Repenning (2001). Furthermore, if rework is prior to initial development, 
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rework and initial development will be completely interwoven. Frequent changes from 

initial development to rework and from rework to initial development can significantly 

increase setup time, which primarily comprises time for procuring specialized tooling 

for build operations, as well as time and cost penalties associate with an engineer’s 

learning curve (Chakravarty, 2001; Meixell et al. 2006). Moreover, for some tasks, 

frequent redoing is not allowable. For example, frequent change of hard mold will 

damage it and thus causing a tremendous increase of cost. Therefore, in practice, 

rework usually begins after the initial tasks are finished (e.g. Black and Repenning, 

2001; Lin et al., 2008). Note, for many projects, a small percentage of rework, which 

constraints the initial development, is done before finishing the initial development. 

For modeling simplicity, we ignore the trivial effect of it on project performance. 

Proposition 3.1 is the base for the following results. Moreover, it can be directly 

applied for guiding resource allocation among development activities.   

 

Proposition 3.2  

(a)  Downstream progress at time �� is 
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(c) The progress of downstream stage increases over time when ��(�) is nonincreasing 

with t, but it is indefinite when ��(�) increases with �. 

 

Figure 3.4 Downstream progress: numerical example 

 

Proposition 3.2(a) expresses the downstream progress at time t . Only initial 

development should be done in the overlapped period when dus DDt −≥ , since initial 

development is prior to rework. When dus DDt −≤ , the time spent on rework in the 

overlapped period is sdu tDD −− . By these concepts, the downstream progress at 

time t  is derived. Then, by equation (3.5) and Proposition 3.2(a), the total amount of 

rework is derived in Proposition 3.2(b). Proposition 3.2(c) describes the change of 

downstream progress over time. Downstream progress increases monotonously over 

time when the upstream evolution is fast or linear. However, for slow evolution, the 

corruption rate may dominate at the end of the project which leads to the decrease of 

downstream progress. It is further illustrated with a numerical example in Figure 3.4, 

which shows that the change of downstream progress over time is complex. Detailed 

investigation of it is essential to derive optimal overlapping policies. 

 

Proposition 3.3  
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t
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Define the earliest start time as the time which ensures development teams work 

continuously. The earliest start time of downstream stage is zero if du DD ≤  or 

d

D D

t

D

t

D

D
Ddtdxxkdtdxxkr

d uuu

d

≤−+− ∫ ∫∫∫ 0
})(exp{})(exp{ ττ µµ  

Otherwise et  must satisfy the following equation: 

d
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D
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sd
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uuu

sd

=−+− ∫ ∫∫∫
+

+
})(exp{})(exp{ ττ µµ  

Furthermore et  can be easily found through a simple binary search, because the left-

hand side of the equation is strictly decreasing with st . 

 

Proposition 3.3 clearly defines the earliest downstream start time. This provides the 

base for analyzing optimal overlapping policies. In the next section, we try to find the 

exact downstream start time which maximizes project performance. 

 

3.4 Analysis of the Optimal Policies 

3.4.1 Optimal Overlapping 

Assume the functional interaction duration τ  is exogenously determined. With 

Propositions 3.2 and 3.3 we can now determine the optimal overlapping degree. 

 

Proposition 3.4 

(a) The objective function G  is concave with respect to st , i.e., there is a unique 

optimum st  in the interval [ , ]e ut D . 

(b) The optimal start time of downstream stage, denoted by *
st , equals to et  if 

due DDt −≥  and 
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(c) The optimal start time of downstream stage should be et , when 1 r

t

c
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c
≥ + . This 

conclusion is independent of the properties of uncertainty, dependency, and upstream 

evolution. 
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Through a simple binary search, the optimal start time can be derived from the 

following equation 
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Proposition 3.4(b) defines the necessary and sufficient condition for complete 

overlapping (starting the downstream at time et ). Roemer et al. (2000) proved that 

complete overlapping is optimal for time-to-market problems when 1r = . We 

generalize their conclusion in Proposition 3.4(c). This result can be easily used by 
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management to check the applicability of complete overlapping, since it does not relay 

on any information about evolution and dependency and reduces the number of 

parameters that must be estimated to three.  

 

As we discussed above, overlapping may significantly increase downstream rework 

and thus complete overlapping may not be the best solution for certain development 

projects. Proposition 3.4(d) determines the optimal downstream start time for the 

projects for which complete overlapping is unsuitable. As shown in Figure 3.5, if the 

conditions in Proposition 3.4(d) are satisfied, project performance increases from uD  

to 
*
st  but it decreases from 

*
st  to et . This is because as overlapping degree increases, 

the negative effect of more downstream rework begins to outweigh the positive impact 

of starting the downstream stage earlier. The optimal solution can be derived from 

equation (3.15) or (3.16).  

 

Proposition 3.5 

(a) Higher dependency, k , or modification rate, ( )tτµ , decreases the optimal 

overlapping degree. Furthermore faster evolution increases the optimal overlapping 

degree. 

(b) Higher rework rate r  increases the optimal overlapping degree. 

(c) The start time of the downstream stage is earlier when the opportunity cost of time, 

tc , increases or the rework cost, rc , decreases. 

(d) The optimal overlapping policy is independent of the downstream development 

duration dD , if dD  changes within ),[ +∞uD . 
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Figure 3.5 Optimal start time of downstream stage 

Proposition 3.5(a) describes the impact of upstream evolution and dependency of 

development stages on optimal overlapping. It is consistent with previous research (e.g. 

Krishnan et al., 1997; Bhuiyan et al., 2004) which concludes that projects should start 
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on preliminary information when sensitivity is low and evolution is fast. However 

sequential process is better for projects with high sensitivity and slow evolution. 

 

Proposition 3.5(b) explains the reason why overlapping strategies do not work well for 

distributed and cross-company development projects. Rework caused by engineering 

changes usually needs close cooperation between functional teams. Divergent cultural 

values, geographical distance, and goal incongruity make the rework process much 

more time consuming in distributed environment than it in collocated environment. 

Thus, project delay becomes a common problem for distributed projects. In order to 

avoid delay, complete overlapping may be applied. However, our analytical result 

shows that lower rework rate decreases the optimal overlapping degree. When rework 

rate is low, increasing overlapping degree may increase development cost significantly 

and thus lower project performance. The efficient way to increase project performance 

for distributed product development is to increase rework rate by clearly defining 

responsibilities and benefits, building trust between functional teams and so on 

(O’Sullivan, 2003). Accelerating rework rate will not only reduce rework time but also 

increase the optimal overlapping degree which leads to further reduction of 

development cycle time. 

 

Minderhoud and Fraser (2005) showed that although sequential process is still 

favorable for some development projects, most projects are shifting to concurrent 

process especially for consumer electronics products. Many other empirical studies 

(e.g. Smith and Reinertsen, 1998; Cohen et al., 1996) recognized that time-to-market is 

becoming more and more important for today’s development projects. Proposition 

3.5(c) builds the relationship between these phenomena. The increasing importance of 
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time-to-market makes concurrent engineering much more favorable for most product 

development projects. 

 

Proposition 3.5(d) indicates that a company does not need to adjust its overlapping 

policies when downstream development duration changes within ),[ +∞uD . The 

change of development cycle time T  is the same as the increasing or decreasing of dD . 

 

Corollary 3.1 

(a) For time-driven projects, t rc c>> , complete overlapping is optimal as long as 

rework is not more difficult than initial development. 

(b) For cost-driven projects, r tc c>> , sequential process is optimal. 

 

Corollary 3.1 describes the optimal overlapping policies for time-driven and cost-

driven problems. It gives the condition of when complete overlapping is optimal for 

time-to-market problem and explains why sequential process is widely used for cost 

driven projects. 

 

3.4.2 Overlapping and Functional Interaction 

Overlapping with or without functional interaction may lead to very different impacts 

on project performance. Without functional interaction, the reduction of project cycle 

time must be accompanied by additional cost. However, overlapping with functional 

interaction may reduce cost and cycle time simultaneously, which is supported by 

previous studies (e.g. Pisano, 1997; Ward et al., 1995; Bhuiyan et al., 2004). This is 

because efficient functional interaction can significantly reduce project uncertainty; 
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thus modification cost, rework duration, and rework cost will be reduced accordingly. 

Therefore choosing suitable overlapping and functional interaction policies, project 

cycle time and cost can be reduced simultaneously for the projects with low 

downstream sensitivity, fast upstream evolution, and efficient functional interaction. 

This situation is further illustrated with a numerical example shown in Figure 3.6. The 

shaded area shows the feasible policies which can reduce project cycle time and cost 

simultaneously. However, as discussed above, functional interaction also incurs cost. 

The question then is: how to optimize project performance by applying functional 

interaction and overlapping simultaneously? In this section we analyze optimal 

functional interaction strategies under the condition that optimal overlapping discussed 

above is followed. 

 

Proposition 3.6 

(a) The optimal functional interaction duration locates in 
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G  is concave with respect to τ . Thus, * 0τ =  when 
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(c) If maxλτ  is small, G  is convex with respect to τ . Therefore 
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Figure 3.6 Reducing time and cost simultaneously 

 

Proposition 3.6 shows that G  can be convex or concave for certain cases, but overall it 

is indefinite. This result is consistent with that from Bhuiyan et al. (2004). Then where 

does this complexity come from? As described in section 3.2, the effect of functional 

interaction decreases with time. However every extra reduction of modifications will 

have a greater benefit on downstream rework than any previous reduction of the same 

magnitude. Take an extreme example. Suppose several modifications occur 

continuously at the time when two consecutive stages are almost finished. Every 

upstream modification will corrupt 50% of downstream work. Therefore 50%, 75%, 

and 87.5% of downstream work will be corrupted by one, two, and three modifications 

respectively. Reducing modifications from three to two is relatively easy but this only 
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reduces 12.5% rework. On the contrary, reducing modifications from one to zero is 

difficult but it can decrease 50% rework. 

 

Because of the complex relationship between functional interaction and project 

performance, optimal solutions are presented only for the projects satisfying certain 

conditions. Proposition 3.6(a) shows that no functional interaction should take place if 

project performance strictly decreases over τ . Proposition 3.6(b) shows the case 

where the reducing effect of functional interaction dominates the process which makes 

G  concave with respect to τ . It indicates that either no functional interaction or the 

solution of the first order condition is optimal. Proposition 3.6(c) shows the case where 

the increasing importance of reducing a modification dominates the process. It leads to 

the convexity of G  with respect to τ . Consequently the optimal solution must lie on a 

border. 

 

For a project not satisfying the above conditions we can derive the solution based on 

the generalized conclusion shown in Proposition 3.6(a), i.e., the optimal functional 

interaction duration can not be bigger than a certain value. This is because the effect of 

functional interaction must be negative when τ  is big enough. Further functional 

interaction will reduce uncertainty very little but increase functional interaction time 

significantly. Based on the range shown in Proposition 3.6(a) and the optimal 

overlapping policies discussed in the previous section we can obtain the graph about 

the relationship between functional interaction duration and project performance and 

thus identify the optimal solution. Figure 6 shows an example of a time-to-market 

problem. In this case, the graph is first convex and then changes to concave.  The 

optimal functional interaction duration is about 5.68 weeks. 
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Figure 3.7 Functional interaction and project performance 

 

The complex relationship between project performance and functional interaction 

implies that incremental improvement of functional interaction may be inapplicable. It 

may lead to local optimum. As shown in Figure 3.7, functional interaction lowers 

project performance at the beginning and thus 0τ =  is a local optimum. The 

development cycle time based on local optimum is 0.89 week’s longer than the result 

with global optimal solution. 

 

Functional interaction has been found to increase (Eisenhardt and Tabrizi, 1995; Von 

Corswant and Tunälv, 2002), decrease (Bhuiyan et al., 2004; Wagner and Hoegl, 2006), 

or to have no significant effect (Datar et al., 1997) on the development cycle time. 

Proposition 3.6 explains these conflicting findings. Functional interaction is not a 

panacea for managing new product development. It is beneficial only if we can choose 
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suitable functional interaction levels according to project properties such as evolution, 

dependency, rework rate, and functional interaction capacity. 

 

3.5 Problem Variations 

In the previous sections, we have developed a model for maximizing project profit, 

which we refer to as the profit maximizing problem. However, for some projects, 

Pareto-optimal overlapping strategies should be considered. These are strategies that 

generate a given cycle time at minimum cost, or conversely, strategies whose cycle 

times are shortest for a given budget, which we will refer to as the target timing 

problem and the budget constraint problem, respectively. Both of these problems can 

be solved by the similar approach as the profit maximizing problem. 

 

Budget Constraint Problem 

In this version of the problem, we need to determine the minimum cycle time under a 

budget constraint. We can formulate the problem as follows: 

r

tR
tDT s
sd

),(
:min

τ
τ +++=  

subject to: B
r

tRc
cC sr ≤+=

),( τ
ττ  

where B  represents the budget for the additional costs incurred due to overlapping. By 

Proposition 3.2, it is easy to prove that the first derivative of the objective function 

with respect to st  is positive ],[ ues Dtt ∈∀ . That is, in order to reduce project cycle 

time, we need to start the downstream as early as possible. The first derivative of 

r

tRc
c sr ),( τ

ττ +  is negative ],[ ues Dtt ∈∀ . That is, the earliest downstream start time 
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occurs at the point where BC = . Therefore the optimal start time *
st  can be derived 

from the following equation: 

B
r

tRc
c sr =+

),( * τ
ττ  

 

Target Timing Problem 

For the second problem, we assume that the time to market is given, and the problem is 

to determine the optimal degree of overlapping such that the product will be launched 

at a specific target time with minimum development cost. Typical situations where this 

type of question arises are when new products are introduced during trade shows or 

when a competitor’s launch date has to be preceded. This problem may be 

characterized as the “dual” of the previous problem. Target timing has commonly been 

used as the strategy of new product introduction. Given the time to market as a target, 

the objective is to minimize product development cost, which can be formulated as 

follows: 

r
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where tT  represents the target timing of the project. We have shown that C  is 

decreasing with st  and T  is increasing with st . Therefore, for target timing problem, 

the cost can be minimized when tTT = . The optimal start time *
st  can be derived from 

the following equation: 

t
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3.6 Model Application 

Our model was applied to improve the mobile phone development process at a leading 

handset application software and handset solution provider in China. This company 

employs approximately 2,600 professionals, of which 90% are engineers. As of July 

2006, the company has developed more than 100 handset designs for international 

brand owners such as NEC, Kyocera, and Mitsubishi. 

 

As is common in consumer electronics industry, shorter product life cycles impel the 

company to develop new products at an increasingly rapid pace. Hence, all the major 

precepts of concurrent engineering (including overlapping and functional interaction) 

are practiced in the company. However, these policies were intuitively determined by 

project managers, rather than on analytical grounds, tending to yield inefficient 

strategies. We aim to improve the development process by providing analytical 

solutions about overlapping and functional interaction. Derivative projects with mature 

architecture, which account for about 70% of the projects completed during the 2004-

2006 period, were studied. We focused specifically on the detail design (upstream) and 

mold fabrication (downstream) since they are within the critical path of mobile phone 

development and are the primary drivers of development cycle time. Mold fabrication 

is done by suppliers with whom the company has developed close partnership over the 

years. The information transformation between these companies, the updating of 3D 

and 2D drawings, is relatively inexpensive.  

 

Most of the parameters were directly derived from the five mobile phone development 

projects completed in the first half of 2006. To improve the reliability of the collected 

information, these data were checked and confirmed by the engineers who were 
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familiar with these projects. For example, the information evolution duration was 

extremely long for project “VX” because of the customer’s suspension of the project. 

Consequently the evolution duration for this project was derived by deducing the 

abnormal delay. We now describe our data collection efforts at the company in detail. 

 

We first collected the data about functional interaction and upstream evolution. 

Functional interaction represents the involvement of tooling engineers (from supplier) 

during the detail design stage. We observed that functional interaction duration was 

short in most projects (e.g. half day or one day), resulting in insufficient data for us to 

derive the relationship between design uncertainty and functional interaction duration. 

Hence, we asked the experienced project engineers to estimate the uncertainty level 

when longer functional interaction is applied and then conducted a regression analysis 

by minimizing SSE (sum of squared residuals) to determine the functional interaction 

function.  

 

Upstream evolution is the nonhomogeneous Poisson process of engineering changes. 

After finishing the preliminary design, the resulting design drafts are continuously 

modified. The modification usually lasts for 12 working days. The number and time of 

design modifications are well documented in the company and thus the evolution 

function can be derived from field data. The outputs of regression analysis of these two 

functions are summarized in Figure 3.8. 
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Figure 3.8 Evolution and functional interaction functions 

 

After that, we operationalized the estimation of the dependency parameter k . As 

previous literature (Terwiesch and Loch, 1999; Roemer and Ahmadi, 2004; Carrascosa 

et al., 1998) and our field study show, the impact of an upstream modification on 

downstream rework is the result of the dependency of overlapped stages multiplied by 

the progress of the downstream stage. Vice versa, if the total amount of rework, the 

number of modifications, and the progress when each modification occurred are 

available, we can derive the dependency directly from historical data. Mathematically: 
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where N  denotes the overall number of modifications occurred in the detail design 

stage; iP  is the progress of the downstream stage when the th
i  modification occurred; 

R is the amount of downstream work corrupted by these modifications. In our data set, 

the value of dependency k  is 1.9%. 

 

The estimates of the development duration and rework rate were much simpler because 

both of them can be directly derived from previous projects (Ford and Sterman, 1998; 

Repenning, 2001). The costs of functional interaction and rework are largely 

dominated by the engineering hours spent on the activities. Therefore these costs were 

simply determined by the average hourly wage of the engineers and the related 

engineering hours. However, the opportunity cost of time changed significantly for 

different projects (It was less than $5000 in our data set).  

 

After deriving these parameters, we applied the methodology developed in this chapter 

and supplied management with the functional interaction and overlapping strategies for 

the projects with different opportunity cost of time. The effect of inaccurate estimates 

of uncertainty and dependency was evaluated in Figure 3.9. 
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Figure 3.9 Optimal policies for the projects with different opportunity cost 

 

Although the results may not be very accurate because of estimation errors of the 

parameters, they are good enough to guide the management of similar development 

projects in the company. Previously, low overlapping degree and short term functional 
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interaction were applied for all the projects in the company. Figure 3.9 shows that the 

applied functional interaction policy is consistent with our analytical results. The 

designers, usually with 5 or more similar project experiences, know very well of the 

downstream stage; thus the benefit of functional interaction is small. Note, as Figure 

3.9 shows, the relationship between uncertainty and functional interaction is nonlinear. 

The increasing of uncertainty will increase the number of modifications reducible 

through functional interaction, but it will also reduce the overlapping degree and thus 

reduce the impact of each modification on downstream rework. The optimal functional 

interaction level may decrease when both uncertainty and dependency are increased. 

 

Previous overlapping policy applied in the company shows the dilemma faced by 

project managers. Short product life cycles impel engineers to reduce cycle time by 

overlapping development stages but the limited development budget tells them that 

overlapping should be avoided since it is costly. Previous overlapping policy made by 

intuition is far from optimal. Our study clearly shows when the benefit of overlapping 

overwhelms the cost of rework and when complete overlapping should be applied 

(Figure 3.9). High level of overlapping is more favorable when opportunity cost of 

time is big ( 1000tc > ), regardless of the change of other parameters (such as 

uncertainty and dependency). 

 

3.7 Discussion and Conclusion 

Literature (e.g. Terwiesch and Loch, 1999; Roemer and Ahmadi, 2004) shows that 

companies are still determining overlapping and functional interaction on an ad hoc 

basis, yielding inefficient development policies. There is a need to quantitatively 

analyze development strategies on project properties. The model presented in this 
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chapter helps to identify optimal functional interaction and overlapping policies to 

improve project performance. The interactions between overlapping and functional 

interaction as well as the trade-offs between cost and cycle time are explicitly studied. 

We use a general assumption of the upstream evolution, which ensures the model to be 

a good abstraction of practice. Moreover, the impact of upstream modifications on 

downstream rework is explicitly studied, which ensures the accuracy and reliability of 

the conclusions derived. 

 

This research yields three main results. Firstly, our analytical results show that the 

change of downstream progress over time is quite complex. It may be increasing or 

decreasing for the projects with different uncertainty, dependency, and evolution 

features. The assumption of increasing downstream progress is only applicable for the 

projects with fast or linear evolution. For future models of overlapped process, it is 

necessary to address the downstream progress in detail since it is one of the key factors 

affecting overlapping policies. 

 

Secondly, we derive the optimal overlapping policies for the projects with different 

properties. Two conditions for complete overlapping are given in Proposition 3.4. One 

is based on detailed information of evolution and dependency. It defines the necessary 

and sufficient condition for complete overlapping. The other is the sufficient condition 

for complete overlapping which only relies on the information about rework rate, 

opportunity cost of time, and rework cost. Proposition 3.5 and Corollary 3.1 show the 

relationship between project properties and overlapping policies. Higher uncertainty 

and dependency reduce the optimal overlapping which agrees with previous literature 

(e.g. Eisenhardt and Tabrizi, 1995; Loch and Terwiesch, 1998). The downstream 
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rework rate, opportunity cost of time, and rework cost also affect overlapping degree. 

Higher rework rate and opportunity cost of time make overlapping more active. 

However rework cost is negatively related to the overlapping degree and thus 

sequential process is more attractive for cost-driven projects. 

 

Thirdly, we derive the optimal functional interaction strategies when overlapping 

follows the optimal pattern. The relationship between project performance and 

functional interaction is complex. It may not simply increase or decrease with time. 

Incremental improvement of functional interaction may not work for consecutive 

projects, which increases the need of formal models for decision making. 

 

There are several limitations for the application of our results. Firstly, we assume that 

the information transformation to the downstream stage is relatively inexpensive 

because of the advancement of information technology and the close cooperation 

between functional teams. Previous research (e.g. Krishnan et al., 1997; Helms, 2004; 

Roemer and Ahmadi, 2004) supports this argument. However some projects may have 

information transformation difficulty. In the next chapter, we discuss the optimal 

communication and overlapping policies for these projects. Secondly the model in this 

chapter requires extensive knowledge of evolution and dependency. For incremental 

innovations which account for the majority of product development projects (Whitney, 

1990; Wang and Yan, 2005), these data are typically available (Krishnan et al., 1997; 

Roemer et al., 2000; Helms, 2002), as demonstrated in our in-depth case study at the 

handset design company.  For completely new projects this information is often not 

accessible and optimal solutions suggested here may not be achievable. Finally, 

product quality and product originality, which are not concerned in this paper, may 
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play important roles in the success of radical projects. Consequently, if managers 

intend to apply our model to radical projects, it is important to make sure that: (1) cost 

and time are the most important factors for these projects; (2) the data about evolution 

and dependency are available or estimable. 

 

Several aspects of the model presented in this chapter merit further examination. 

Firstly, we only focus on time-cost trade-off in this chapter. The trade-off between 

time and quality or cost and quality deserves further attention. Secondly, extension of 

the model to multiple development stages should be further investigated. Thirdly, we 

may extend our model by including the detection of upstream errors by the 

downstream stage. Lin et al. (2008) studied it with a System Dynamics model (the 

model shown in Chapter 5). Because of the limitation of System Dynamics approach, 

no optimal solution is derived in that paper. Further investigation with an analytical 

model may derive better solutions and useful management insights.  
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CHAPTER 4  

MANAGING CONCURRENT DEVELOPMENT 

PROCESSES WITH HIGH COMMUNICATION 

COST 

 

An analytical model for managing sequentially dependent stages with low 

communication cost is described in Chapter 3. However, the results and methodology 

derived in that chapter cannot be applied for the projects with high communication cost, 

since communication policy will significantly influence project performance when 

communication takes time or cost. In this chapter we first introduce an algorithm to 

derive the optimal overlapping and communication strategies for the projects with high 

communication cost. Then the projects with linear upstream evolution are discussed 

and a more efficient algorithm is proposed. Furthermore, some guidelines for 

structuring concurrent processes are provided. We applied this methodology to study 

the development projects in a large consumer electronics company. 

 

4.1 Introduction 

Shorter product life cycles in many industries impel firms to develop new products at 

an increasingly rapid pace. Overlapping development stages, combined with frequent 

information exchange, is commonly regarded as a core technique for faster product 

development (Clark and Fujimoto, 1991; Wheelwright and Clark, 1992; Smith and 

Reinertsen, 1998; Joglekar and Ford, 2005; Minderhoud and Fraser, 2005).  
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For projects with low communication cost, studies have shown that frequent 

information exchange is optimal. However, for projects with high communication cost, 

the trade-offs need to be studied. Frequent information exchange between the 

development teams reduces the negative effect of overlapping but increases 

communication time and development cost (Haberle et al., 2000). To improve project 

performance, overlapping and communication policies should be coordinated and the 

time-cost trade-offs involved in concurrent product development should be 

investigated. 

 

Here we give a simple example to further illustrate the problem studied in this chapter. 

In mobile phone development, mold fabrication (such as the slots shown in Figure 4.1) 

is done according to the outputs of detail design (such as the dimensions shown in 

Figure 4.1). Initial design usually takes two and a half weeks, and then the design will 

be continuously modified until the end of the fifth week. In order to reduce 

development cycle time, mold fabrication often starts before all of the design errors 

have been identified and resolved. Then, what is the optimal start time of mold 

fabrication? If overlapping is applied, should we arrange a series of meetings in order 

to frequently inform the downstream team of the latest engineering changes? How 

many meetings should be arranged and when should the meetings take place? This 

chapter presents an analytical model addressing these questions which are commonly 

faced by development engineers. 
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Figure 4.1 Mobile phone development 

 

This chapter is organized as follows. The next section reviews the relevant literature on 

concurrent engineering. In section 4.3, we provide an analytical model which captures 

the relationship between project properties, overlapping degree, communication policy, 

and project profit. Section 4.4 introduces an algorithm for optimizing overlapping and 

communication strategies. Then, the projects with linear upstream evolution are 

studied and some guidelines for structuring concurrent processes are provided. In 

section 4.5, we illustrate the methodology with a case study at an electronics company. 

Conclusions are summarized in the last section. 

 

Detail design Components 
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4.2 Related Literature 

The interaction between overlapping and communication strategies was first 

emphasized by Clark and Fujimoto (1991). Their studies of the world automobile 

industry showed that, for effective operation of overlapping, problem solving must be 

integrated with frequent information exchange. This concept is useful to initiate 

organizational changes and has had a strong influence on the research and practice in 

concurrent engineering. However, to fully operationalize the concept, we need to better 

understand the interaction between overlapping and communication strategies, and 

derive the appropriate development policies depending on project characteristics. 

 

An interesting body of mathematical models has been developed to address the trade-

offs involved in concurrent product development. We sorted them into two groups. In 

the first group, researchers assume that the information exchange between 

development teams is costless (e.g. Krishnan et al., 1997; Roemer et al., 2000; 

Chakravarty, 2001) and thus it can take place immediately after an engineering change 

occurs. According to this assumption, the concurrency problem is simplified into an 

overlapping problem which is irrelevant to the communication strategies. There are 

several notable studies in this group. Krishnan et al. (1997) developed a model to 

determine the number of downstream iterations so as to minimize the development 

cycle time. They showed that “upstream evolution” and “downstream sensitivity” are 

the two properties determining the optimal overlapping strategies. Their model was 

applied in the development of a door panel of a car. Roemer et al. (2000) studied the 

time-cost trade-offs in multistage overlapped processes. An efficient algorithm was 

proposed to determine an appropriate overlapping strategy. Chakravarty (2001) sorted 

overlapping into three major modes: interrupt build overlapping, continuous build 
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overlapping, and preempt build overlapping. The optimality conditions for each mode 

are presented and the relationship between different overlapping modes is discussed. 

Roemer and Ahmadi (2004) studied the interaction of two common tools for reducing 

project cycle time: overlapping of development stages and crashing of development 

times. This line of research greatly advances the analysis of concurrent product 

development. However, the results and methodology derived cannot be applied for 

projects with high communication cost, because, for these projects, communication 

policy interacts with overlapping strategy and substantially affects project performance. 

 

It is well known that information exchange between development teams usually takes 

time and cost (Loch and Terwiesch, 1998). Helms (2002) reported a typical 

information exchange procedure in a chemical company. If design changes are needed, 

the upstream team needs to submit a Change Notice to the downstream members. A 

meeting is then arranged where the engineers from the two teams discuss the reasons 

for the changes, the cost to process the changes, and so on. This will finally results in 

the release of a new version of drawings and documents. Because the information 

exchange process is time consuming, the engineers in the company tend to have fewer 

meetings and information exchanges in order to concentrate on their development 

work. However, the managers asked for more frequent information exchanges in order 

to reduce downstream rework. The questions then are what is the optimal timing and 

frequency of information exchange, and how communication policy interacts with 

overlapping degree. 

 

The second group of studies takes into account the cost of communication and tries to 

address these questions. Ha and Porteus (1995) studied the benefit of early detection of 
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upstream flaws through overlapping and frequent communication. If information 

exchange is too frequent, then communication time and cost would increase 

significantly. However, infrequent information exchange would delay the 

identification of the design flaws and increase the corresponding rework of the 

upstream stage. While their research emphasizes the downstream team’s ability to 

discover the faults in the upstream stage, our study focuses on the influence of the 

upstream modifications on the downstream rework, or “integrated problem solving” 

(Clark and Fujimoto 1991).  

 

Our work is most closely related to that of Loch and Terwiesch (1998). In their model, 

the overlapping and communication policies are determined by modification rate, 

downstream sensitivity, and communication cost. Modification rate represents the 

arrival rate of upstream changes, corresponding to the concept of “upstream evolution” 

in Krishnan et al. (1997) work. Downstream sensitivity is defined as the impact of a 

modification on downstream rework. Communication cost denotes the fixed set-up 

time for information exchange. Based on these concepts, the authors built an analytical 

model to minimize project cycle time. We improved upon this work in three important 

aspects: 

 

Firstly, the impact of downstream progress on rework is explicitly addressed in our 

model. It is well known that the impact of an upstream modification on downstream 

rework is closely related to the progress of the downstream stage, the amount of work 

that is completed and not corrupted by upstream changes (e.g. Terwiesch and Loch, 

1999; Carrascosa et al., 1998; Thomke and Bell, 2001, Roemer and Ahmadi, 2004; Lin 

et al., 2008). However the question of how to model the dynamic change of 
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downstream progress is not well addressed by previous studies. Loch & Terwiesch 

(1998) implicitly assume that the downstream progress equals the downstream 

development time t . However, in concurrent processes, the downstream progress at 

time t  should be less than t  due to the existence of uncertainty and corruption 

(Carrascosa et al., 1998). Furthermore, if the project uncertainty and dependency are 

high, their assumption may lead to negative downstream progress which contradicts 

with the fact that the downstream process should be always greater or equal to zero. 

For example, assume the dependency of two development stages is 0.5. Then, by Loch 

and Terwiesch’s assumption, each modification at the 10th day will corrupt 5 day’s 

downstream work. The downstream progress at the 10th day becomes negative if more 

than two modifications occur at that day. Therefore, it is valuable to reinvestigate the 

overlapping and communication policies by describing the progress of downstream 

stage in detail. 

 

Secondly, we extend Loch and Terwiesch’s (1998) research by relaxing their 

assumption of modification rate. Literature shows that the modification rate may be 

linear, nonlinear, concave, convex, or S-shaped with respect to development time 

(Eppinger et al. 1994, Krishnan et al. 1997, Chakravarty 2001). However, Loch and 

Terwiesch (1998) only studied projects where the modification rate is linearly related 

to development time. In our research, we examine projects with non-linear 

modification rate. 

 

Thirdly, this work explicitly addresses the trade-off between increased cost and 

reduced project cycle time due to concurrent execution. Project performance reflects 

integration of three intermediate objectives: time, cost, and quality. For most derivative 
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projects, the target quality is well defined. Therefore, the objective for management is 

to achieve the required quality with less time and cost (Gerwin and Barrowman 2002). 

However, as with most of the studies in this area, Loch and Terwiesch used 

development cycle time as the sole measure for project performance. As a result, they 

disregarded the fact that hidden costs are usually accompanied with the practices that 

reduce time-to-market (Smith and Reinertsen 1998). We explicitly address 

development cost in our model which is mainly the labor cost of information exchange 

and rework. We measure project performance in profit which is defined as gain from 

early launch of the product minus additional project cost. 

 

4.3 Model Formulation 

In this section we first formulate the time-cost trade-off involved in concurrent product 

development. Then we introduce a general mathematical model of the relationships 

between project properties, development policies, and project performance. The 

objective function, constraint equations, model parameters, and decision variables are 

summarized at the end of this section. 

 

4.3.1 Overview of the Model 

Our model examines the projects with a “nominal sequential” (Krishnan et al., 1997) 

structure, i.e. the principal information exchange between consecutive design stages is 

unidirectional: from upstream stage to downstream stage. For each time of 

communication, both the upstream and downstream engineers must drop everything 

they are doing and commit themselves entirely to set a meeting and discuss the latest 

changes for downstream incorporation (Ha and Porteus, 1995; Loch and Terwiesch, 

1998; Wang and Yan, 2005).  
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Figure 4.2 Overlapped process with multiple information exchanges 

 

Consider the concurrent execution of two consecutive development stages (Figure 4.2). 

We call the first stage upstream and the second downstream. uD  and dD  represent the 

durations of initial development of upstream and downstream developments 

respectively, where the duration of initial development is the expected time it takes to 

perform a stage without overlapping. Without loss of generality, we assume 

preliminary information of the upstream is available at time zero. et  denotes the 

earliest start time of the downstream stage, which ensures that the upstream is finished 
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earlier than the downstream. Then, the start time of the downstream stage 0t  should be 

0e ut t D≤ ≤ ;                                                                                                                 (4.1) 

max{0, }e u dt D D= − .                                                                                                  (4.2) 

 

During the overlapped process, there may be several “bursts” of information transfer 

from the upstream stage to the downstream stage. Frequent information exchange 

allows the downstream engineers to be aware of the latest upstream change, and thus 

reduces the amount of rework.  

 

A typical overlapped process with multiple information exchanges is shown in Figure 

4.2. The information exchange policy can be represented in the form 

( 1 2, , , , ,i nQ Q Q QL L ), where Qi is the interval between the ( 1)th
i −  and th

i  information 

exchange. The time for the th
i  information exchange is denoted as it , so that 

0 1

i

i jj
t t Q

=
= +∑ . Therefore, the information exchange policy can also be represented in 

the form ( 1 2, , , , ,i nt t t tL L ). Note that, in this model, the th
i  information exchange 

denotes the th
i  meeting since the start of downstream development. 

 

If sequential process is applied, the development cycle time should be β++ du DD , 

where β  represents the setup time for information exchange which is closely related to 

Ha and Porteus (1995) and Loch and Terwiesch’s (1998) definitions of setup/penalty 

time and communication cost respectively. For concurrent process, the development 

cycle time can be written as 

),()1(),( ,100,10 nrdn ttDnDtttT ++++= β .                                                                   (4.3) 
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where dDt +0  represents the time for regular development; n  denotes the number of 

information exchanges after the start of downstream development; ),( ,10 nr ttD  is the 

duration for rework; nt ,1  denotes the information exchange policy, i.e. ( 1 2, , , , ,i nt t t tL L ).  

 

We assume the opportunity cost of time tc  is constant as, for most development 

projects, the opportunity cost of time does not change significantly in short run. That is, 

although the opportunity cost of time may be different in years, but it is almost 

constant in several weeks. Furthermore, in practice, the penalty for delay and the 

premium for early completion are usually proportional to time. Therefore, for 

concurrent development, the gain from reducing development cycle time can be 

written as 

)],([ ,10 ndut ttTDDc −++ β .                                                                                         (4.4) 

 

We next consider the costs associated with rework and communication. Let βc  be the 

cost for information exchange (cost per meeting) and 
rc  denote the cost for one unit 

time of rework. The additional cost for overlapped development is 

0 01, 1,( , ) ( , )n r r nC t t n c c D t tβ= ⋅ + ⋅ .                                                                                 (4.5) 

 

Thus, profit maximization objective can be represented as 

),()],([:max ,10,10 nndut ttCttTDDcG −−++= β .                                                       (4.6) 

 

4.3.2 Downstream Rework 

At the heart of overlapping problem lies the downstream rework duration ),( ,10 nr ttD  

which impacts project cycle time and increases development cost. The downstream 
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rework duration is determined by the evolution of upstream modifications, the 

dependency between development stages, and the downstream progress (Krishnan et al. 

1997, Carrascosa et al. 1998, Loch and Terwiesch 1998, Lin et al. 2008). Previous 

studies (e.g. Eppinger et al., 1994; Krishnan et al., 1997; Chakravarty, 2001) show that 

upstream evolution can be concave, convex, or S-shaped. Therefore, we model the 

arrival of upstream modifications (upstream evolution) as a nonhomogeneous Poisson 

process with non-negative rate ( )tµ . This assumption is quite general and includes all 

the evolution patterns identified by previous studies. 

 

Previous research (e.g. Carrascosa et al., 1998; Loch and Terwiesch, 1998; Lin et al., 

2008) has made it clear that, for most development projects, the impact of a 

modification on downstream rework is in proportion to the downstream progress ( )P t . 

Let 1k  be the percentage of downstream progress which will be affected by a 

modification. Then, if a modification arises at time t  the progress will be changed into 

1( ) (1 )P t k⋅ − . If the second modification occurs at the same time, then the progress will 

be further reduced into 1
2( ) (1 )P t k⋅ − . For modeling simplicity, we define k  as the 

dependency parameter and it equals 1ln(1 )k− − . Then the progress for one and two 

modifications can be represented as ( ) exp{ }P t k⋅ −  and ( ) exp{ 2 }P t k⋅ −  respectively. 

Figure 4.3 graphically shows the change of downstream progress over time. At time 1t  

the downstream group is informed about the modifications identified from st  to 1t . To 

simplify our model, we approximate the downstream progress by calculating it on the 

mean of the modifications. Consequently, at time 1t , the progress changes from 1Q  to 

})(exp{
1
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1 ∫−
t

t
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t
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})(exp{]})(exp{[
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1

1

0
21 ∫∫ −⋅+−

t

t

t

t
dttkQdttkQ µµ , and so on. It is clear that the progress rate 

of the downstream stage is dynamically affected by upstream modifications, 

dependency of overlapped stages, overlapping strategies, and communication policies. 

The expected rework for a concurrent process can be written as 
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where parameter r  denotes the rework rate.  

 

 

Figure 4.3 Progress of downstream stage 
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non-negative. Mathematically  

0

1

n

i u

i

Q D t

=

= −∑ ,                                                                                                           (4.8) 

10 1k< < .                                                                                                                    (4.9) 

 

4.3.3 Summary 

Table 4.1 Inputs and decision variables 

 

Parameters Definition 

uD  Upstream development duration 

dD  Downstream development duration 

( )tµ  Rate of upstream modifications 

1k  
The percentage of downstream progress which will be 

affected by a modification 

k  Dependency between development stages 

r  Rework rate of downstream stage 

β  Communication duration (per meeting) 

cβ  Communication cost (per meeting) 

tc  
Opportunity cost of time (the cost of increasing one unit of 

time-to-market) 

rc  Rework cost (the cost for one unit time of rework) 

Decision Variables Definition 

0t  Start time of downstream stage 

n  The number of meetings 

iQ  
The time interval between the ( 1)th

i −  and thi  information 

exchange 

it  The time of the  thi  information exchange 
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We summarize all the variables in Table 1 and state the optimization problem as 

follows 

∑ ∫
= −

−−
+

−−−−=
n

i

D

t
i

rt

ut

u

i

dttkQ
r

cc
ncntDcG

1

0
1

}])(exp{1[)(:max µβ β ;              (4.10) 

subject to: Equations (4.1), (4.2), (4.8), (4.9); 

)1ln( 1kk −−= ;                                                                                                         (4.11) 

∑ =
+=

i

j ji Qtt
10 .                                                                                                      (4.12) 

 

The decision variables of this model are 0t , n , and iQ  ( ni ≤≤1 ): n  and iQ  determine 

the communication policy; 0t  represents the overlapping policy (smaller 0t  

corresponds to higher overlapping degree). 

 

4.4 Analysis of Overlapping and Communication Policies 

For concurrent process, project performance is determined by overlapping and 

communication strategies. In this section, we first derive the optimal communication 

policy assuming 0t  is given. Then we address the optimal overlapping degree and 

introduce an algorithm to improve project performance by adjusting overlapping and 

communication strategies simultaneously. 

 

4.4.1 Information Exchange Policy 

Assuming the downstream start time is fixed, we seek a contingent information 

exchange strategy that maximizes project profit. The results are summarized in 

Proposition 4.1. 
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Proposition 4.1 

 (a) Given n  and 0t , all the stationary points can be determined using the following 

equations 

ni
tk

dttk

Q
i

t

t

i

i

i ≤≤
−−

=
−

∫
−

− 2
)(

})(exp{1

1

1

2

µ

µ
,                                                                   (4.13) 
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n

i

i −=∑
=

. 

By comparing the stationary points, we can identify the optimal information exchange 

policy. Inspection of (4.13) shows that iQ  ( 2 i n≤ ≤ ) is determined by 1Q . Therefore, 

the current problem can be simplified into a problem of identifying the optimal 1Q . 

 

(b) Given 0t , the optimal communication times *
n  must satisfy the following equation 

ββ cc

tDc
n

t

ut

+

−
+<

)(
1 0*                                                                                                     (4.14) 

 

Proof. To enhance readability of the thesis, all proofs of this chapter are shown in 

Appendix B. 

 

By Proposition 4.1(a), the optimal communication policy can be derived by one 

dimensional search when 0t  and n  are predetermined ( 1Q  changes from 0 to 0uD t− ). 

The range of *n  is given in proposition 4.1(b).  0( ) /( )t u tc D t c cββ− +  is small since we 

only study the development projects with high communication cost (for the projects 

with low communication cost, a model has been developed in Chapter 3). Therefore, 

the optimal communication policy can be derived through several iterations of one 

dimensional search when 0t  is predetermined. These deliberations give rise to the 



      Chapter 4   Managing Concurrent Development Processes with High Communication Cost 

                         

96  

following algorithm. 

 

Algorithm 1 

Initiation: 

Step 0. Setting 1n =  and 01 uQ D t= − , compute ),( 0
*

ntG . Let * 1n = , *
1 0uQ D t= − , 

),()( 0
*

0
*

ntGtG = , and 2n = . Here  ),( 0
*

ntG  represents the optimal 

performance when 0t  and n  are given. )( 0
*

tG  is the optimal performance 

when 0t  is predetermined. 

Iteration: 

Step 1. If )/()(1 0 ββ cctDcn tut +−+≥ , stop. 

Step 2. Search 1Q  in the range 010 uQ D t< < −  and identify all the values which satisfy 

0

1

n

i u

i

Q D t

=

= −∑ . By the method of Lagrange multipliers, these are local optima. 

Step 3. Compare the local optima and identify the 1Q  which yields the maximum profit 

),( 0
*

ntG .  

Step 4. If )(),( 0
*

0
*

tGntG > , then *n n= , *
1 1Q Q= , and ),()( 0

*
0

*
ntGtG = .  

Step 5. 1n n= + . Go to Step 1. 

 

If 1n = , 1Q  must be 0uD t−  and ),( 0
*

ntG  can be derived directly. In the initialization 

of the algorithm, we first let * 1n = , 1
*

0uQ D t= − , and ),()( 0
*

0
*

ntGtG = . Then, in step 1 

and 2, we change the value of n  and check the optimal project performance when 0t  

and n  are given. Step 3 compares ),( 0
*

ntG  with )( 0
*

tG . If ),( 0
*

ntG  is better, the 

communication policy will be changed accordingly. The optimal communication 

policy can be identified after all the possible values of n  are examined. 
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In Algorithm 1, we first try to identify all the stationary points when n  and 0t  are 

given. Then, by comparing the stationary points, we can identify the optimal 

information exchange policy when n  and 0t  are given. By trying all the possible 

values of � , we can identify the optimal information exchange policy when 

overlapping degree is predetermined. 

 

4.4.2 Optimizing the Concurrency 

We have derived an algorithm to determine the optimal information exchange policy 

when 0t  is given. Then, how to identify the optimal overlapping degree? This problem 

can be solved with the analytical results presented in this section. 

 

Proposition 4.2 

Assume *

,1 *n
t  (i.e. ***

2
*
1 *,,,,,

ni tttt LL ) is the optimal information exchange policy when 

0t  is given. Then, if the downstream starts at *
it  the optimal information exchange 

policy should be **
1 *,,

ni tt L+ . 

 

Proposition 4.3 

Assume the optimal communication policy is nt ˆ,1̂  (i.e. ni tttt ˆ21
ˆ,,ˆ,,ˆ,ˆ LL ) when complete 

overlapping is applied (i.e. ett =0 ). 

(a) If 0}])(exp{1[
1ˆˆ

>−−
+

− ∫
−

u

n

D

t

rt
t dxxk

r

cc
c µ , then there is a smallest it̂  satisfying 

0}])(exp{1[
ˆ

>−−
+

− ∫
u

i

D

t

rt
t dxxk

r

cc
c µ  and the optimal downstream start time locates in 

]ˆ,ˆ[ 1+ii tt . Furthermore, the optimal performance is either )ˆ,ˆ( ˆ,1 nii ttG +  or )ˆ,ˆ( ˆ,21 nii ttG ++ , if 
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],ˆ[]ˆ,[ 10 uiie Dtttt +∪∈ . )ˆ,ˆ( ˆ,1 nii ttG +  is the project performance when the downstream 

starts at it̂  and the communication policy is nit ˆ,1
ˆ

+ . 

 

(b) If 0}])(exp{1[
1ˆˆ

<−−
+

− ∫
−

u

n

D

t

rt
t dxxk

r

cc
c µ , then uDt =*

0  (i.e. sequential process is 

optimal). 

 

(c) If 0}])(exp{1[
ˆ

=−−
+

− ∫
u

i

D

t

rt
t dxxk

r

cc
c µ , then 1

*
0

ˆ
+= itt  and )ˆ,ˆ( ˆ,21

*
nii ttGG ++= . 

 

Proposition 4.2 shows that if the optimal communication policy is known when 0t  is 

given, the optimal communication policy and project performance are also clear when 

the downstream starts at *
it . Proposition 4.3 gives the overlapping and communication 

policies in different situations. Note that Proposition 4.3(a) only gives a range of the 

downstream start time. However, it should be accurate enough since the optimal point 

is often not required for most project management problems.  

 

The steps of solving the concurrency problem are that: first let ett =0  and derive the 

optimal communication policy by Algorithm 1; then, by Proposition 4.2 and 

Proposition 4.3, the optimal or appropriate communication strategy, overlapping 

policy, and project performance can be derived; finally, if 

0}])(exp{1[
1ˆˆ

>−−
+

− ∫
−

u

n

D

t

rt
t dxxk

r

cc
c µ  and an accurate solution is required, then we 

need to examine and compare the solutions when the downstream starts in ]ˆ,ˆ[ 1+ii tt , 

which can be done using Algorithm 1. 
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 In certain industries, project performance is mainly determined by development cycle 

time (Carrillo and Franza 2006). Time-to-market problem is a special case of the 

concurrency problem. We assume 1r ≥ , which is valid for many projects because of 

the existence of learning effect (Browning and Eppinger 2002). Some additional 

insights are derived. 

 

Proposition 4.4 

Assume 1r ≥ . 

(a) The optimal development cycle time for the time-to-market problem satisfies 

)ˆ,()ˆ,( ˆ,1
*

ˆ,1 nene ttTTttT ≤≤− β .                                                                                    (4.15) 

 

(b) The optimal start time of the downstream stage satisfies 

0 1
* ˆmin( , )e et t t t ϕ≤ ≤ + ,                                                                                                (4.16) 

where / exp{ ( ) }
u

e

D

t
k x dxϕ β µ= − ∫ . If β  is small, ett ≈*

0 . In other words, complete 

overlapping should be applied when β  is small. 

 

From Proposition 4.4(b) we can see that complete overlapping is optimal when β  is 

small. This result is consistent with the conclusions derived by previous models for 

projects with low communication cost (e.g. Roemer et al. 1999). However, our result 

also shows that the downstream start time should be delayed if communication takes 

time. It indicates that complete overlapping is not necessary a global optimum for 

time-to-market problem, although it is recommended by many researchers. Proposition 

4.4(a) shows the optimal project cycle time for the time-to-market problem. 
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4.4.3 The Linear Evolution Case 

In this section we list the management insights obtained for the projects with linear 

upstream evolution (i.e. the modifications are generated as a homogeneous Poisson 

process) and present a computationally efficient solution procedure which determines 

the optimal policies through a binary search. The results are nevertheless important 

since most evolution curves can be approximated by piecewise linear functions, which 

corresponds to a situation where the decision makers only estimate the average 

modification rates in different periods (Loch and Terwiesch 1998, Roemer and 

Ahmadi 2004). Thus, the insights and algorithm presented here also constitute the 

basis for solving the general case. 

 

Proposition 4.5 

 (a) Given n  and 0t , the optimal information exchange policy can be determined by the 

following equations 

ni
k

Qk
Q i

i ≤≤
−−

= − 2
}exp{1 1
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.                                                                               (4.17) 
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Furthermore, ∑
=

n

i

iQ
1

 strictly increases with 1Q . Therefore, the optimal 1Q  can be 

identified through a binary search. 

 
 

(b) *
1

*
+> ii QQ , i.e. management should increase the communication frequency over time. 

 

(c) *
n  is non-increasing with 0t . 
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(d) Given 0t , the profit function ),( 0
*

ntG  is concave with respect to n . 

 

Proposition 4.5(a) shows that 
1

n

i

i

Q

=
∑  strictly increases with 1Q . Therefore, given n  and 

0t , we can easily find the optimal 1Q  through a binary search. The idea behind the 

binary search procedure is that whether 
1

n

i

i

Q

=
∑  is greater or less than u sD t−  at a trail 

solution definitely indicates whether 1Q  should be decreased or increased. Proposition 

4.5(d) shows that the object function is concave with respect to n . That is, if project 

profit increases with n , then nn >* . Conversely, if project profit decreases with n , 

then nn ≤* . Therefore, given 0t , the optimal communication policy can be derived by 

a two-dimensional binary search. These deliberations give rise to the following 

algorithm. 

 

Algorithm 2 (for the linear evolution case) 

Notation 

n = current lower bound of *n , n = current upper bound of *n , 1Q = current lower 

bound of 1
*

Q , 1Q = current upper bound of 1
*

Q . 

Initiation: 

Step 0. Let 1n = , 0( )
1 t u

t

c D t
n

c cββ

 −
= + 

+  
, 1 0Q = , and 1 0uQ D t= − . 

Iteration 1: 

Step 1. Let ( ) / 2 1n n n= − −    and  2/)(~ nnn −= . 

Step 2. Iteration 2: 
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Step 2.1. Let 2/)( 111 QQQ += . Computer ∑
=

n

i

iQ
1

. 

Step 2.2. If 0

1

n

i u

i

Q D t

=

< −∑ , then 11
QQ = , go to Step 2.1; if 0

1

tDQ u

n

i

i −>∑
=

, then 

11 QQ = , go to Step 2.1. Else, compute ),( 0
*

ntG ; let 1 0Q = , 1 0uQ D t= − . 

Step 2.3. Let 2/)(
~

111 QQQ += . Compute ∑
=

n

i

iQ

~

1

~
. 

Step 2.4. If 0

~

1

~
tDQ u

n

i

i −<∑
=

, then 11

~
QQ = , go to Step 2.3. If 0

~

1

~
tDQ u

n

i

i −>∑
=

, then 

11

~
QQ = , go to Step 2.3. Else, compute )~,( 0

*
ntG ; let 1 0Q = , 1 0uQ D t= − . 

Step 3. If 2n n− ≤  and )~,(),( 0
*

0
*

ntGntG ≥ , then nn =* , 1
*
1 QQ = , ),()( 0

*
0

*
ntGtG = , 

stop; if 2n n− ≤  and )~,(),( 0
*

0
*

ntGntG < , then nn ~* = , 1
*
1

~
QQ = , )~,()( 0

*
0

*
ntGtG = , 

stop. Else, if )~,(),( 0
*

0
*

ntGntG < , then n n= , go to Step 1; if )~,(),( 0
*

0
*

ntGntG ≥ , then 

nn ~= , go to Step 1. 

 

Because the binary search for n  can be performed in )
)(

1log( 0

ββ cc

tDc

t

ut

+

−
+  steps and, for 

each n , the optimal 1Q  can be identified in )log( 0tDu −  steps, the overall 

computational effort of the algorithm is ))log()
)(

1(log( 0
0 tD

cc

tDc
O u

t

ut −⋅
+

−
+

ββ
. 

 

Propositions 4.4(b), 4.4(c), and 4.4(d) are the guidelines for structuring concurrent 

processes. Proposition 4.4(b) indicates that the communication frequency should be 

increased over time. Proposition 4.4(c) describes the relationship between the number 

of meetings and the degree of overlapping. More meetings should be arranged when 

the overlapping degree is high. Proposition 4.4(d) shows that, given 0t , the object 
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function is concave with respect to n . This is important from a managerial perspective. 

Consider an organization attempting to improve information exchange policy across 

similar projects. Since ),( 0
*

ntG  is concave, the organization can rely on marginal 

improvement: continuously increase n  until it decreases project performance. 

 

4.5 Model Application 

In this section, we illustrate the model with its application in a consumer electronics 

company which is one of the world’s leading white goods home appliance 

manufacturers. It manufactures home appliances in over 15,100 different specifications 

under 96 categories and has approximately 50,000 employees throughout the world. Its 

product categories range from refrigerators, refrigerating cabinets, air conditioners, 

washing machines, televisions, mobile phones, home theatre systems, computers, 

water heaters, DVD players and integrated furniture. The global revenue of the 

company for 2005 was more than 12 billion US dollars.  

 

As is common in consumer electronics industry, concurrent engineering is applied in 

the case study company. Our model was applied to improve the refrigerator 

development process. There are six types of refrigerator development projects in the 

company, one of which is analyzed in this section to illustrate the methodology 

proposed. The data set shown in this chapter was estimated together with the 

experienced engineers according to the records of the previous projects (the documents 

of design issues and project schedule). In most companies, these data are available 

(Krishnan et al. 1997, Roemer et al. 2000, Lin et al. 2008) which allows us to derive 

the development policies on reliable inputs. Actually, this is one of the most important 

reasons that why the concepts of upstream evolution (the evolution of upstream 
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modification) and downstream sensitivity, which were proposed by Krishnan et al. 

1997 and extended by Loch and Terwiesch (1998), have had a strong influence on the 

literature of concurrent engineering. 

 

Our focus is on the Detail Design (upstream) and Tooling Fabrication (downstream) 

since they are the key drivers of development time and cost and are usually 

concurrently executed. After completing the preliminary detail design, the drawings 

are reviewed by experienced engineers and two rounds of prototype testing are 

arranged. The design drafts are continuous modified in the testing process. As shown 

in Figure 4.4, the modification process lasts 48 working days (working 6 days per 

week). For the previous projects, the downstream starts on the 22nd day when the 

testing of the first prototype is almost finished. After that, no meeting is arranged until 

the drawings are finalized. The estimated setup time and cost for information exchange 

are 1 day and 2000 dollars respectively. 

 

Figure 4.4 Modification process 
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According to Figure 4.4, we derive the function of cumulated design modifications 

using regression analysis by minimizing SSE (sum of squared residuals). The outputs 

of regression analysis are summarized in Table 4.2 and plotted in Figure 4.5. We see 

that the proposed function fits well to the real data set. 

 

Table 4.2 Assessing model fit to data 

 DF Sum of Squares Mean Square R-Square 

Model 2 1.46009E+06 7.30045E+05 0.999116 

Error 15 200.659 13.37726667 
 

Uncorrected Total 17 1.46029E+06 
  

Corrected Total 
16 226926 

  

 

 

 

Figure 4.5 Cumulated design modifications 
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days and the downstream development duration is 44 days. By the equations derived in 

Section 3, the impact factor k  equals 0.65%. The other parameters, which are 

commonly used for project modeling (Ford and Sterman 1998, Repenning 2001), were 

derived from historical records or estimated by experienced engineers.  

 

By these parameters, we investigated the optimal communication policy for complete 

overlapping using Algorithm 1. The results are: 5ˆ =n , 48,96.37,28.29,26.21,25.13ˆ
ˆ,1 =nt , 

and 99.107)( 0
* =tG . Then, by Proposition 2a, we derive that ]26.21,25.13[*

0 ∈t , 

73.162)ˆ,ˆ( ˆ,21 =nttG , and 03.179)ˆ,ˆ( ˆ,32 =nttG . Therefore, an appropriate development 

policy is that: 210 =t ; the communication occurs at the 30th, 39th, and 49th day 

(assuming the solution must be integer). If an accurate solution is required, we need to 

compare the project performance when the downstream starts in ]26.21,25.13[ . Figure 

4.6 shows the change of project performance with 0t , by which we derive 

)ˆ,ˆ( ˆ,32
*

nttGG = . 

 

Figure 4.6 The effect of overlapping policy on project performance 
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Comparing the analytical results with the development policies applied in the company, 

we see that the previous communication strategy is far from optimal. If two more 

meetings were arranged on the 30th and 39th day, the gain from CE can be increased 

from $87,000 to $179,030. 

 

The sensitivity of development policies on setup time and cost is also studied. As 

shown in Table 4.3, *
n  decreases with βc  and β  and *

0t  increases with βc  and β . 

However, *
n  and *

0t   change discontinuously. For example, as shown in Table 4.3, the 

development policies are not affected when the communication cost and time changes 

from 150% to 175%. This is important from a managerial perspective. Consider an 

organization attempting to continuously decrease its setup time and cost for 

information exchange by applying new technologies. Since *
n  and *

0t   change 

discontinuously, the organization can only adjust its development policies when the 

setup time and cost reach a critical value.  

Table 4.3 The impact of communication time and cost on development policies 

Setup Time and 
Cost 

*
n  

*
0t  

*

,1 *n
t  *

G  

25% 7 17 
20.94, 24.90, 28.97, 33.22, 37.74, 
42.62, 48 

234.24 

50% 5 19 24.15, 29.43, 35.03, 41.14, 48 210.23 

75% 4 19 6.48, 6.75, 7.36, 48 192.69 

100% 3 21 29.10, 37.86, 48 179.03 

125% 3 21 29.10, 37.86, 48 166.28 

150% 2 24 35.06, 48 155.77 

175% 2 24 35.06, 48 147.27 

200% 2 24 35.06, 48 138.77 

225% 2 24 35.06, 48 130.27 

250% 2 24 35.06, 48 121.77 

275% 2 24 35.06, 48 113.27 

300% 1 30 48 106.71 
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4.6 Discussion and Conclusion 

Literature (e.g. Clark and Fujimoto 1991, Loch and Terwiesch 1998, Helms 2004) 

shows that overlapping and communication policies are interrelated. Overlapping may 

degrade project performance if appropriate communication policy is not followed. We 

present an analytical model that optimally schedule overlapping and communication 

policies. The dynamic relationship between downstream progress and project 

characteristics is explicitly studied, which ensures the accuracy and applicability of the 

insights and algorithms derived. Furthermore, the availability of the input data and the 

applicability of the model are validated by a case study in a consumer electronics 

company. 

 

This research yields four main results. Firstly, by Proposition 4.1, Algorithm 1 is 

proposed which can help us determine the optimal communication policy when 

overlapping degree is predetermined. Then, by the insights given in Propositions 4.2 

and 4.3, an appropriate overlapping degree and the corresponding communication 

policy are determined. After that, the time-to-market problem is discussed in 

Proposition 4.3. Previous research (e.g. Roemer et al. 1999) argues that complete 

overlapping is optimal for time-to-market problem. However, our result shows that the 

downstream start time should be delayed if communication takes time. The conflict 

exists because previous studies usually ignore communication time and cost. Our result 

takes the effect of communication time into account and thus is more general. Finally, 

Proposition 4.4 presents several important management insights for the linear 

evolution case. The linear evolution case is studied in detail because: (1) all the 

evolution processes can be approximated by piecewise linear functions; (2) the 
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algorithm for the linear evolution case is much more efficient; (3) the insights can 

guide management to determine communication policy without modeling. 

 

Nonetheless, we would like to point out the limitations to the approach presented here. 

Firstly, our model can only be built and analyzed when historical data is available. For 

derivative projects which account for the majority of product development projects 

(Whitney 1990, Wang and Yan 2005), these data are typically available (Krishnan et al. 

1996, Roemer et al. 2000, Helms 2002). However, for new projects, we can only build 

a model based on estimated data which may lead to inaccurate results. Secondly, 

although the model is built on previous literature and illustrated with a case study done 

in consumer electronics industry, it is important to test and improve it through real 

applications in other industries since the development processes may be different. 

Thirdly, our model is deterministic and therefore does not directly address risk, while 

many facets of risk can be addressed by running sensitivity analyses on the input data. 

Finally, the downstream progress is derived on the mean value of upstream 

modifications. It is an approximation of the mean value of downstream progress. 

 

The model discussed in Chapter 4 will reduce to the model in Chapter 3 when 

communication cost is zero. As we know, communication cost can never be zero in 

practice. Therefore, theoretically, all the projects can be studied using the model 

discussed in Chapter 4. However, as communication cost becomes small, it is 

computationally difficult to derive appropriate development policies using this model. 

Furthermore, many simple and useful insights in Chapter 3 cannot be derived with the 

model in Chapter 4. Researchers usually ignore the communication cost when it is 
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insignificant comparing to the project cycle time and total development cost (e.g. 

Krishnan et al. 1997). 
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CHAPTER 5  

A SYSTEM DYNAMICS MODEL OF 

OVERLAPPED ITERATIVE PROCESSES 

 

In Chapter 3 and Chapter 4, concurrent exaction of sequentially dependent stages is 

studied. However, for some projects, the development stages are interdependent. How 

to estimate the cycle time of these product development projects? What is the effect of 

activity properties and development policies on project performance? This chapter 

presents a new product development (NPD) process model, termed Dynamic 

Development Process Model (DDPM), for managing overlapped iterative product 

development. The model was validated with data from a mobile phone development 

project. It was employed to identify appropriate policies for the overlapped iterative 

projects in the case study company. These identified policies were implemented in the 

company and led to marked improvement in project performance, thus demonstrating 

the viability of the model. 

 

5.1 Introduction 

Traditional project management models, such as Critical Path Method (CPM) and 

Program Evaluation and Review Technique (PERT) (Moder et al., 1983; Badiru, 1993; 

Golenko-Ginzburg and Gonik, 1996), describe development processes which are 

relatively stable, with activity duration estimates and precedence relationships 

representing the network of development activities. However, these models ignore 
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iterations or implicitly incorporate iterations into duration estimates (Ford and Sterman, 

2003a, 2003b), limiting the capability of these scheduling techniques in modeling NPD 

processes. 

 

Therefore, some models other than CPM/PERT have been developed to study iterative 

product development processes. Design structure matrix (DSM) was developed to 

describe durations and rework probabilities of development activities (Eppinger et al., 

1994; Steward, 1981). Several other researchers (e.g. Ahmadi and Wang, 1999; Belhe 

and Kusiak, 1996) have developed extensions by considering the dynamics of rework 

probability and activity duration. Smith and Eppinger (1997a, 1997b) developed 

analytic models of sequential and parallel design iterations and addressed the effect of 

iterations among project phases on project cycle time with Design Structure Matrix 

and reward Markov chain. Browning and Eppinger (2002) developed the first DSM-

based simulation model which analyzed NPD iterations in a generalized project 

network. After that Cho and Eppinger (2005) developed the second-generation DSM-

based simulation model which accounts for resource constraints. Cooper (1980, 1993a, 

1993b, 1993c) and several other researchers (Ford and Sterman, 1998; Repenning, 

2001; Richardson and Pugh III, 1981) built System Dynamics (SD) models to 

understand the continuous evolution of NPD projects. While these models have 

advanced our understanding on the dynamics of iterative NPD projects, they do not 

take into account the overlapping nature of development activities, which is a common 

practice to reduce project cycle time (Lawson and Karandikar, 1994; Roemer and 

Ahmadi, 2004). 
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Previous empirical studies showed that overlapping can reduce project cycle time at 

the cost of additional development effort (Smith and Reinertsen, 1995; Helms, 2004) 

and the effect of overlapping is closely related to the uncertainty of development 

projects (Eisenhardt and Tabrizi, 1995; Terwiesch and Loch, 1999). Based on these 

studies some models have been developed to investigate overlapped processes in 

which two development stages are sequentially dependent. Krishnan et al. (1997) 

developed a framework of concurrent development processes with sequential 

dependence to determine the optimal number and timing of information transfer. They 

showed that “upstream information evolution” and “downstream sensitivity” are the 

two properties affecting optimal overlapping strategies. Loch and Terwiesch (1998) 

adapted the concepts of evolution and sensitivity: “upstream information evolution” is 

defined as the continuous design modification process; “downstream sensitivity” 

represents the impact of a modification on downstream rework. Based on these 

concepts, they developed an analytical model and derived the optimal communication 

strategies for overlapped processes with sequential dependence. Roemer et al. (2000) 

analyzed the time-cost tradeoffs in multistage product development. Chakravarty 

(2001) studied the trade-offs between the overlapping risk and the project time saved. 

Some special cases were analyzed to establish useful insights for overlapping 

development activities. Unlike previous research we developed a model for overlapped 

iterative product development, where downstream activities may discover upstream 

errors and give feedback to the corresponding activities (Figure 5.1). The extension 

from sequentially dependent to interdependent process makes it possible to simulate 

and study the effect of overlapping for complex development projects. 

 

 



                      Chapter 5   A System Dynamics Model of Overlapped Iterative Processes 

                         

114  

 

 

 

 

 

 

 

 

 

Figure 5.1 DSM representation of sequential dependence and interdependence 

 

To model and analyze overlapped iterative product development we developed the 

Dynamic Development Process Model (DDPM) using System Dynamics (SD) 

methodology. Discrete event simulation model and continuous time model (system 

dynamics) are two methods commonly used to simulate NPD processes. The former 

assumes that product development process is composed of a finite set of activities and 

information flow only exists at the beginning or at the end of an activity. In contrast, 

the SD approach to project management treats the process of each phase as continuous 

work flow. It is consistent with the assumption in the overlapping models (e.g. Loch 

and Terwiesch, 1998; Roemer et al., 2000; Roemer and Ahmadi, 2004). Through 

building the relationship between work flow and information flow, we simulate the 

continuous upstream information evolution and its effect on downstream rework using 

SD approach. 
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The rest of this chapter is organized as follows. In section 5.2, we develop the concepts 

of Rework Due to Development Errors and Rework Due to Corruption. According to 

our field study and literature review (e.g. Joglekar et al., 2001; Krishnan et al., 1997) 

of NPD process, these are the types of rework existing in overlapped iterative product 

development. In the next section, we use these concepts to construct the dynamic 

development process model, followed by the validation of DDPM in section 5.4. The 

effect of corruption on project performance is discussed in section 5.5. Then policies 

for the overlapped iterative projects in a development company are analyzed in section 

5.6. The successful application of the proposed new policies further validated the 

model. Conclusions are summarized in section 5.7. 

 

5.2 Rework due to development errors and corruption 

We follow the information-based view of product development (Clark and Fujimoto, 

1991) in which individual development activities are the information-processing units 

that receive information from their preceding activities and transform it into new 

information to be passed on to subsequent activities. The information changes between 

activities are embedded in the tasks carried out. Each activity of the product 

development process is related to the development tasks such as customer 

specifications at concept development phase, detailed engineering drawings at detail 

design phase, and part dimensions at pilot production phase. The ultimate objective is 

to ensure these tasks are carried out correctly, at low cost and in short time. We 

describe and simulate the rework process in the form of Rework Due to Development 

Errors and Rework Due to Corruption.  
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5.2.1 Rework Due to Development Errors 

Product development, even for derivative products, is a process with much uncertainty. 

Consequently, many tasks are incorrectly done in the completion and rework processes. 

These tasks are termed as Development Errors (DEs). Rework Due to Development 

Errors refers to rework or rectification of DEs which are identified through review and 

testing activities.  

 

We illustrate the rework process using a stock and flow structure (Figure 5.2). Stocks 

represent the accumulation of tasks and flows represent the rates of development 

activities (Sterman, 2004). Tasks initially reside in the Tasks Remaining (Tr) stock. As 

the project begins and progresses, tasks correctly done flow into the Tasks-done-

correctly (Tc) stock while tasks containing errors or defects add to the Development 

Errors stock. Development Errors may be identified by a testing activity and flow into 

the Tasks to be Reworked stock. Therefore the total number of Development Errors 

decrease as some of them are correctly reworked. Because rework quality is usually 

not perfect, tasks which are incorrectly reworked flow back into the Development 

Errors stock. Some of the reworked tasks in the Development Errors stock may need 

to flow into this rework cycle one or more times. When rework quality is low, this 

vicious rework cycle dominates the development process. According to Cooper 

(1993a), “A quality of 0.20 will require five cycles of work and cost (four full rework 

cycles) to ‘get it right’”. 
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Figure 5.2 Rework due to development errors 

 

5.2.2 Rework Due to Corruption 

Rework Due to Corruption refers to rework or rectification when the change of tasks in 

an upstream phase corrupts the relevant tasks in the downstream phases, whether the 

downstream tasks are done correctly or not. In other words, some tasks need to be 

reworked because they start on incorrect information from upstream phases. We 

termed this phenomenon as Corruption. In this model, the ��� (� ≥ 2) order rework, 

i.e. the downstream corruption caused by upstream corruption, is also studied. 

 

Tasks corrupted are dependent on the reworked tasks of the upstream phase, the 

Dependency of the development phases, and the progress of the downstream phase 

(Tasks Done). The reworked tasks of the upstream phase are positively related to 

Rework Due to Corruption. More changed tasks inevitably mean that more tasks may 

T asks Rem aining

T asks-done-correctly
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be reworked in the downstream phases (Krishnan et al., 1997). Dependency represents 

the relationship between the tasks corrupted in the downstream phase and the fraction 

of the tasks changed in the upstream phase. It is also positively related to Rework Due 

to Corruption. Tasks Done accounts for the reason why more rework is needed in 

overlapped NPD process than the rework in sequential process. For traditional 

sequential product development process most of the Development Errors can be found 

and resolved before the downstream activities start (at that time Tasks Done of 

downstream phase is equal to zero and no Corruption arise). For example, in a fully 

sequential process, pilot production only starts after detail design has been completed 

and most of the quality problems have been resolved. However, in practice, pilot 

production usually starts before the upstream activities have been completed in order 

to reduce project cycle time. Therefore, in today’s overlapped NPD process, 

Corruption accounts for a large portion of rework and affects product development 

performance seriously (Krishnan et al., 1997). 

 

The stock and flow structure of Rework Due to Corruption is shown in Figure 5.3. 

Certain percentage of downstream tasks is completed based on wrong information 

from Development Errors of upstream phase. These tasks, together with other tasks, 

reside in the Tasks-done-correctly stock and the Development Errors stock. Corruption 

occurs when DEs of an upstream phase are identified. The tasks associated with DEs 

of upstream phases leave the Tasks-done-correctly stock and the Development Errors 

stock, and then flow into the Tasks to be Reworked stock. 
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Figure 5.3 Rework due to corruption 

 

5.2.3 Example 

Here we give a simple example to further illustrate the rework process. As shown in 

Figure 5.4, Slot A and Slot B are determined by four dimensions. These dimensions are 

derived in Phase 1, and then the slots are fabricated in Phase 2. The detailed 

development process can be described as follows: 

1) In the beginning, all of the dimensions reside in Tasks Remaining 1 and the slots 

reside in Tasks Remaining 2. 

2) Assuming the development activity in phase 1 is not perfect, Dimension 3 flows into 

the Development Errors 1 stock. The other dimensions flow into the Tasks-done-

correctly 1 stock. The slots are kept in Tasks Remaining 2. 

3) Phase 2 starts before the development error in Phase 1 is identified and revised. 

Assuming the development activity in Phase 2 is perfect, Slot A and Slot B are exactly 

T asks Rem aining

T asks-done-correctly

D evelopm ent Errors
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Com plete T asksW rongly
Corrupt D evelopm entErrorsT asks to be Rew orkedRedo T asks W rongly
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fabricated according to the dimensions and flow into the Tasks-done-correctly 2 stock. 

The states of the dimensions are not changed.  

4) After that the error of Dimension 3 is identified and revised. It is represented as 

Rework Due to Development Errors in our model. 

5) Since Slot B is determined by Dimension 3, it needs to be revised accordingly. We 

term this type of rework as Rework Due to Corruption. 

 

 
 
 

Figure 5.4 Base rear of a mobile phone 

 

5.3 Dynamic Development Process Model 

5.3.1 Stocks and Flows 

We combine Rework Due to Development Errors and Rework Due to Corruption in 

one stock and flow structure (Figure 5.5).  
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Figure 5.5 Dynamic development process model (DDPM) 

 

Four stocks and six flows are used to represent the completion and rework processes. 

The stocks (Tasks Remaining (Tr), Tasks-done-correctly (Tc), Development Errors 
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(DEs), and Tasks to be Reworked (Ttr)) represent the sizes of the backlogs of tasks. The 

sizes of the stocks change due to the flows related to development activities. In Figure 

5.5, Complete Tasks Correctly (cc) and Complete Tasks Wrongly (cw) represent the 

completion activity; Testing Rate (gre) and Discover Development Errors (de) represent 

the testing activity; Redo Tasks Correctly (rc) and Redo Tasks Wrongly (rw) represent 

the rework activity; Corrupt Tasks-done-correctly (kc) and Corrupt Development 

Errors (ke) represent the Corruption caused by upstream rework. Therefore the 

processes described in section 5.2 can be represented by the following differential 

equations (at the start of a project, Tr(0)=100%, and Tc(0), DEs(0), and Ttr(0) all equal 

zero): 

(d/dt)(Tr) = - cc - cw                                                                                                    (5.1) 

(d/dt)(Tc) = cc + rc – kc                                                                                               (5.2) 

(d/dt)(DEs) = cw + rw – (de +ke)                                                                                 (5.3) 

(d/dt)(Ttr) = (de +ke) + kc – rc – rw                                                                              (5.4) 

 

Testing process is represented by two stocks and one flow (Figure 5.5). Tested tasks 

leave the Testing Remaining (Gr) stock, pass through the Testing Rate (gre), and then 

accumulate in the Testing Completed (Gc) stock (at the start of a project Gr(0)=100% 

and Gc(0)=0). Mathematically:  

(d/dt)(Gr) = -gre                                                                                                          (5.5) 

(d/dt)(Gc) = gre                                                                                                           (5.6) 

 

We formally model the flows related to completion, testing, corruption, and rework 

with the equations in the rest of this section. The input parameters needed to build the 

model are listed in Table 5.1 and shown as diamonds in Figure 5.5. The italic font 
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shown in Figure 5.5 represents the parameters of upstream and downstream phases. 

Tasks and Development Errors are in percentage values in our model. For example at 

the start of a project all the development tasks reside in the Tasks Remaining stock, so 

that Tr(0) is 100%. 

 
Table 5.1 Model parameters and performance measures 

Parameters Definition 

Precedence Constraints The condition to start an activity 

Average Activity Rate  The average rate of completing a development 

activity 

Completion/Rework Quality The percentage of tasks correctly done 

Testing Quality The percentage of Development Errors identified in 

the testing process 

Dependency The percentage of downstream tasks will be affected 

by one percentage of upstream changes. 

Measures of Project 

Performance 

Definition 

Project Quality The percentage of Development Errors remained 

when the overall project is completed. 

Cycle time The duration from the start to the end of a project 

Development Effort The tasks completed and reworked from the start to 

the end of a project 

 

5.3.2 Completion 

Three development activities drive the flows of tasks in NPD process: completion, 

rework and testing. The progress rate for each of three development activities is the 

lesser of the average development rate and the rate allowed by tasks available. 

Therefore the Completion Rate (cre) is the minimum of the Average Completion Rate 

(Ac), and the number of Tasks Remaining (Tr) divided by the time step (τ) of the 
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simulation model when Tasks Done in Upstream Phase (Tdu) is greater or equal to 

Precedence Constraints for Completion (Pc). Otherwise Completion Rate equals zero. 

According to Completion Quality (Cq), Completion Rate is decomposed into Complete 

Tasks Correctly and Complete Tasks Wrongly. These conditions can be represented by 

the following equations: 

cre = IF (Tdu ≥  Pc) THEN (Min (Ac, Tr/ τ)) ELSE (0)                                                (5.7) 

cc = cre * Cq                                                                                                                (5.8) 

cw = cre * (1 – Cq)                                                                                                       (5.9) 

 

5.3.3 Testing 

Similar to completion rate, Testing Rate is equal to the minimum of the Average 

Testing Rate (Ag) and the number of Testing Remaining (Gr) divided by the time step if 

Tasks Done (Td) is greater or equal to Precedence Constraints for Testing (Pg). 

Otherwise it is zero. Rework arises when the Development Errors are found by a 

testing activity. As it is typical that we cannot find all the Development Errors through 

a single round of testing, DEs are likely to be discovered by subsequent testing 

activities. We model Discovery Rate (dre) as the sum of the product of Testing Quality 

(Gq) and Testing Rate from the current testing activity (denoted by m) to the last testing 

activity of the project (denoted by n). Discover Development Errors (de) is the result of 

Discovery Rate multiplied by Development Errors. Mathematically: 

gre = IF (Td ≥  Pg) THEN (Min (Ag, Gr/τ)) ELSE (0)                                               (5.10) 

Td = Tc + DEs                                                                                                           (5.11) 

dre = ∑
=

n

mi
i

re
i

q gG *                                                                                                    (5.12) 

de = dre * DEs                                                                                                           (5.13) 
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Figure 5.6 Parameters of dynamic development process model 

Parameters Definition 

Tr Tasks remaining 

Td Tasks done 

Tdu Tasks done in upstream phase 

Tc Tasks-done-correctly 

Ttr Tasks to be reworked 

DEs Development errors 

Gr Testing remaining 

Gc Testing completed 

Ac Average completion rate 

Ag Average testing rate 

Ar Average rework rate 

Pc Precedence constraints for completion 

Pg Precedence constraints for testing 

Cq Completion quality 

Gq Testing quality 

Rq Rework quality 

cre Completion rate 

cc Completion tasks correctly 

cw Completion tasks wrongly 

gre Testing rate 

dre Discovery rate 

de Discover development errors 

K Dependence between development phases 

kc Corrupt tasks-done-correctly 

ke Corrupt development errors 

rre Rework rate 

rru Rework rate of upstream phase 

rc Redo tasks correctly 

rw Redo tasks wrongly 

τ  Time step 
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5.3.4 Corruption 

When Development Errors of an upstream phase are found and corrected after starting 

the downstream activities, some tasks are corrupted. The amount of the tasks corrupted 

is the product of upstream modifications, Dependency (k) between development phases, 

and Tasks Done in the downstream phase (Loch and Terwiesch, 1998; Carrascosa et al., 

1998; Roemer and Ahmadi 2004). In DDPM, Rework Rate of Upstream Phase (rru) 

corresponds to upstream modifications. Tasks Done in downstream phase is the sum of 

Development Errors (DEs) and Tasks-done-correctly (Tc). Consequently, Corrupt 

Tasks-done-correctly is the product of Rework Rate of Upstream Phase, Dependency, 

and Tasks-done-correctly. Similarly Corrupt Development Errors is the product of 

Rework Rate of Upstream Phase, Dependency, and Development Errors. Note that 

corruption only happens when Tasks-done-correctly and Development Errors are not 

equal to zero. These relationships can be presented as follows: 

kc = rru * k * Tc                                                                                                         (5.14) 

ke = rru * k * DEs                                                                                                      (5.15) 

 

5.3.5 Rework 

Rework Rate (rre) is formulated similarly to Completion Rate. It is the lesser of the 

Average Rework Rate (Ar), and the number of Tasks to be Reworked (Ttr) divided by 

the time step. Rework Rate is composed of Redo Tasks Correctly and Redo Tasks 

Wrongly. Redo Tasks Correctly is the product of Rework Rate and Rework Quality (Rq). 

Redo Tasks Wrongly is the rate of generating wrong tasks in the rework process. These 

relationships are represented by the following equations:  

rre = Min (Ar, Ttr/τ)                                                                                                   (5.16) 

rc = rre * Rq                                                                                                               (5.17) 
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rw = rre * (1 – Rq)                                                                                                     (5.18) 

 

5.4 Validation of the model 

5.4.1 Base Case 

The company where the case study was conducted is a design company in Shanghai, 

China. The company designs mobile phones according to market and technology 

trends and sells the design to manufacturers, or according to customer requirements 

when approached by a specific customer. In order to reduce time-to-market, 

overlapped iterative development process is implemented in the company: downstream 

phase starts before the tasks in upstream phase are frozen; upstream development 

errors are continuously rectified according to the feedback information from 

downstream phases. 

 

The project of a derivative product, which is developed based on a relatively mature 

architecture, is used to validate DDPM. The project started in September 2003 and was 

completed in May 2004. As shown in Figure 5.7 and 5.8, the development process of 

the project involves three development phases and each phase is composed of 

completion, rework, and testing activities:  

1) Concept Development: Based on the requirements provided by the customer, the 

design company studied the feasibility of the product concept, refined the 

requirements, and defined the main features and specifications of the product. This 

phase is composed of four development activities: completion activity of concept 

development, rework activity of concept development, 3D model review (RC1 in 

Figure 5.7 and Figure 5.8), and dummy sample review (RC2). 
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Figure 5.7 Development process of a mobile phone 

 

2) Detail Design: This phase constitutes the detail design of mechanical and 

electronic components. After the first prototype was completed, engineers 

reviewed its mechanical and electronic performance to ensure compliance with 

initial requirements (RD1), followed by detailed testing (TD1). In parallel to TD1, the 

company began making more prototypes to further test the mechanical and 

electronic performances of the product (TD2). 

3) Pilot Production: Pilot Production is the stage where the product design is realized 

as a physical product in a manufacturing plant with further testing implemented to 

improve the quality of the product. Half-way through the detail design phase, the 
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engineers began to fabricate moulds and produce products for testing. Normally, 

100-500 sets of mobile phones are produced per batch. After that, the engineers 

started to review and solve the quality problems found in the production process 

(RP1). At the same time, quality engineers tested the product quality and provided a 

report to the designers (TP1). For mobile phone development, several rounds of 

pilot production are needed to identify potential quality problems. 

 

  

Figure 5.8 Information flows in the mobile phone development 

 

5.4.2 Data Collection 

In order to validate our model we collected detailed data based on historical records, 

such as project schedule and the quality problems found and solved over the entire 

period of the project. These data were double checked together with the engineers 

  1 2 3 4 5 6 7 8 9 10 

Completion and rework activity 

of concept development 
1  × ×  × × ×    

RC1 2 ×          

RC2 3 ×          

Completion and rework activity 

of detail design 
4 ×    × × ×  × × 

RD1 5    ×       

TD1 6    ×       

TD2 7    ×       

Completion and rework activity 

of pilot production 
8    ×     × × 

RP1 9        ×   

TP1 10        ×   
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familiar with this project. The Average Completion Rate, Average Testing Rate, 

Completion Quality, and Precedence Constraints can be directly accessed from the 

historical data (Ford and Sterman, 1998; Black and Repenning, 2001). The other 

parameters are calculated using following equations: Average Rework Rate is the result 

of Tasks Reworked divided by Rework Duration; Rework Quality equals Tasks 

Correctly Reworked divided by Tasks Reworked; Testing Quality equals Development 

Errors Found divided by Development Errors Exist (Cooper, 1993a); Dependency 

equals Tasks Corrupted divided by the product of Upstream Tasks Reworked and 

Tasks Done. The parameter values of the project are listed in Table 5.2. 

 

5.4.3 Model Testing 

Behavior-reproduction tests (Sterman, 2004) are used to validate the model by 

comparing simulation results with field data for the mobile phone development project. 

Many tools are available to assess a model’s ability to reproduce the behavior of a 

system. Most common are descriptive statistics to assess the point-by-point fit. Point-

by-point metrics compute some measures of the error between a data series and the 

model output at every point for which data exist and then report the average values. 

 

The most widely reported measure of fit is R2, the coefficient of determination. R2 

measures the fraction of the variance in the data “explained” by the model. If the 

model exactly replicates the actual series, R2=1; if the model output is constant, R2=0. 

R2 is the square of the correlation coefficient which measures the degree to which two 

series covary. 
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Table 5.2 Model inputs for the mobile phone development project 

(a) Parameter values of completion & rework activities 

Completion & Rework Activities 
Precedence 

Constraints 

Rate   

(per 
Quality 

Completion Activity of Concept 

Development 
- 1/5 79.73% 

Rework Activity of Concept Development - 1/25 85.71% 

Completion Activity of Detail Design RC2 finished 1/14 63.01% 

Rework Activity of Detail Design - 1/13 83.48% 

Completion Activity of Pilot Production TD1 finished 1/34 78.34% 

Rework Activity of Pilot Production - 1/35 83.41% 

 (b) Parameter values of testing activities 

Testing 

Activities 

Precedence 

Constraints 

Rate        

(per day) 

Testing Quality for Each Phase 

Concept 

Development 

Detail 

Design 

Pilot 

Production 

RC1 

Concept 

development 

initially completed 

2 50.00% - - 

RC2 RC1 finished 2 5.41% - - 

RD1 

Detail design 

initially completed 
4 14.29% 43.28% - 

TD1 RD1 finished  1/4 50.00% 62.02% - 

TD2 RD1 finished  1/10 28.57% 28.28% - 

RP1 

Pilot production 

initially completed 
1 - 41.30% 46.24% 

TP1 

Pilot production 

initially completed 
1/14 - 31.72% 31.73% 

 (c) Dependency 

Stages Dependency 

Dependency between Concept 

Development and Detail Design 
2.13 

Dependency between Detail 

Design and Pilot Production 
1.63 
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The mean absolute error, MAE; mean absolute error as a percentage of the mean, 

MAE/Mean; and root mean square error, RMSE all provide measures of the average 

error between the simulated and actual series. MAE weights all errors linearly; RMSE 

weights large errors much more heavily than small ones. Both measure the error in the 

same units as the variable itself. MAE/Mean and RMSE/Mean provide dimensionless 

metrics for the error, which are easier to interpret. 

 

 

 

 

Figure 5.9 Reference mode and simulation results 
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Field data and model output for the three development phases are shown in Figure 5.9. 

The behavior patterns of DDPM for the three development phases follow closely the 

patterns of the field data. The error between a data series and the model output is 

measured by R2, MAE/Mean, and RMSE/Mean. As shown in Table 5.3, the errors for 

three phases are reasonable (R2>97%, MAE/Mean <3%, and RMSE/Mean<4%).  

 
Table 5.3 Error statistics for assessing model fit to data 

Phase n R
2
 (%) 

MAE/

Mean 

RMSE

/Mean 

Thiel Inequality Statistics 

Bias 

(%) 

Unequal 

Variation 

(%) 

Unequal 

Covariance 

(%) 

Concept 

Development 
174 97.34% 0.68% 2.39% 2.74% 58.14% 39.12% 

Detail Design 158 98.88% 2.03% 3.65% 3.13% 60.26% 36.61% 

Pilot 

Production 
129 99.50% 1.97% 3.10% 32.14% 13.55% 54.31% 

 

It is important to know the sources of errors as well as the total number of errors. 

Large errors may be due to a poor model or a large amount of random noise in the data. 

The total error may be large if a model of behavior in the real system is deliberately 

excluded as irrelevant to the model purpose. The Theil inequality statistics can help 

decompose the error into systematic and unsystematic components. 

 

The Theil inequality statistics (Sterman, 1984; Theil, 1966) decompose the mean 

square error (MSE) into three components: Bias, Unequal Variation, and Unequal 

Covariation. Bias arises when the model output and data have different means. 

Unequal variation indicates that the variances of the two series differ. Unequal 

covariation means the model and data are imperfectly correlated, that is, they differ 
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point by point. Large MAE/RMSE and large bias indicate systematic error and should 

lead to questions about the assumption of the model. 

 

Partitioning the MSE using the Theil inequality statistics reveals MSE dominated by 

Unequal Covariance and Unequal Variation. As the errors for our model are small 

(R2>97%, MAE/Mean <3%, and RMSE/Mean<4%) and Bias only accounts for a small 

part of MSE, this model should be accurate enough for us to show the behavior 

patterns of overlapped iterative development projects and study the effect of different 

policies on project performance. 

 

5.5 Effect of Corruption on Project Performance 

To understand the influence of Corruption on project performance we compare the 

simulation results of our model with a model without considering Corruption. Since no 

Corruption exists for the concept development phase, we only studied the results of 

detail design phase and pilot production phase (Figure 5.10) and analyzed the effect of 

Corruption on the total amount of reworked tasks and project cycle time when the 

project achieved the required quality with 98% of tasks correctly done. Table 5.4 

shows that corruption increased about 50% of rework and 10% of project cycle time on 

average. This suggests that models ignoring Rework Due to Corruption or implicitly 

incorporating it into Rework Due to Tasks-done-wrongly will affect the accuracy of the 

models, and may lead to wrong managerial implications. 
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Figure 5.10 Simulating the effect of corruption 
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Table 5.4 Impacts of corruption on project performance 

Detail Design Pilot Production

66.45% 64.31%

24.47% 38.63%

Corrupted Tasks / 

Reworked Tasks 
36.82% 60.07%

Without Corruption 153.42 (day) 155.54 (day)

With Corruption 164.08 (day) 183.54 (day)

Effect of Corruption on Project 

Cycle Tim
6.50% 15.14%

Time Needed to 

Achieve 98% of 

Tasks Correctly 

Done

Phase

ReworkedTasks  

Corrupted Tasks 

 

 

5.6 Policy Analysis 

In order to check the applicability of our model for policy analysis, we continuously 

collected and analyzed the data from the projects of the design company. In 2004 we 

studied the product development process in the company and collected relevant data 

for the model. Alternative policies were analyzed subsequently. In early 2005 new 

policies were implemented. The results of the new policies were analyzed in 2006.  

 

We assume that the development projects are completed when they achieve the 

required quality, with 98% of tasks correctly done (which is the standard currently 

used in the company), and try to reduce the project cycle time and development effort 

with different policies for different types of projects. Typically, there are three types of 

development projects in the company: projects with new architecture and new circuit 

board (Type 1 project); projects with mature architecture and new circuit board (Type 

2 project); and projects with mature architecture and mature circuit board (Type 3 

project). Each of these three types of projects has different development qualities, 
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particularly in concept development phase and detail design phase. Generally the 

development qualities are better for projects with mature architecture and circuit board. 

The data used in this section were collected on 6 projects completed in 2004 (2 

projects for each type). All of the data were validated by experienced engineers from 

Industrial Design, Mechanic Design, Hardware, Quality Control, and Production 

departments. 

 

5.6.1 Overlapping between Detail Design and Pilot Production 

As shown in Figures 5.7 and 5.8, the initial completion of detail design generates 

preliminary information for pilot production and then the preliminary information will 

be modified through testing and rework. Pilot production can start when preliminary 

information is available. However it will incur Rework Due to Corruption. Pilot 

production can also start after most of the modifications are done. Therefore four 

alternative overlapping policies are considered: start pilot product after TD2 

(represented as overlapping policy 1 (O1) in Figure 5.11); start pilot production after 

TD1 (O2); start pilot production after RD1 (O3); and start pilot production immediately 

after detail design (O4). In 2004, the standard process for the company was to start 

pilot production after TD1. However, is this level of overlapping suitable for all of the 

projects in the company? In order to answer it, we tested the influence of different 

overlapping policies for three types of projects. As can be seen in Figure 5.11, more 

rework occurs as the degree of overlapping increases. This may explain why 

overlapped product development does not always work as predicted. There is a trade-

off between the time reduced because of overlapping and the cost and time increased 

due to rework. 
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Rework changes more significantly in Type 1 project than the change in the other 

projects, as indicated by the steeper slope of the line. In 2004, O2 was implemented in 

the company. This policy is suitable for Type 1 project, because the application of O3 

or O4 would increase rework seriously. However, O3 is better for Type 2 and Type 3 

projects, because project cycle time can be reduced with little expense of rework. 

Theoretically, O4 can also be implemented for projects with mature architecture. 

However, according to the experience of the engineers from the company, O4 may 

increase the risk of damaging the hard mould for pilot production, causing a 

tremendous increase in cost. For example, the size of handset housing affects a large 

number of related parts, and a change of it means building new hard moulds. Pilot 

production should only start after important specifications have been properly 

reviewed and confirmed. Consequently, the overlapping policy should be adjusted: O2 

can be used for type 1 project, and O3 can be applied for type 2 and type 3 projects.  

 

Figure 5.11 Project performance with different levels of overlapping between detail 

design and pilot production 
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5.6.2 Overlapping in Pilot Production 

 
Table 5.5 Project performance with different levels of overlapping in pilot 

production 

Performance Development Projects
Current 

Policy
New Policy

Performance 

Improvement (%)

Type 1 Project 1.4274 1.5082 -5.66%

Type 2 Project 0.6087 0.6102 -0.25%

Type 3 Project 0.5014 0.5026 -0.24%

Type 1 Project 265.25 234.75 11.50%

Type 2 Project 184.5833 175.125 5.12%

Type 3 Project 176.5833 165.9167 6.04%

Reworked Tasks of 

Pilot Production 

(%)

Project Cycle Time 

(working day)

 

 

For mobile phone development, usually several (2-4) rounds of pilot production are 

needed. In 2004, the policy for the company was to start the next round of pilot 

production immediately after RP1 if TP1 had not begun. For example, in the base case 

RP1 was finished in 6 days before TP1 started. Using the old policy, engineers started 

the second round of pilot production after RP1. Some engineers questioned whether it 

was worthwhile to do more rounds of pilot production to reduce project cycle time 

because pilot production is costly (as typically 100-500 sets of mobile phones were 

produced just for testing). It seems obvious that this policy can reduce project cycle 

time. However, the simulation results show that this policy not only increases cost but 

also increases project cycle time (Table 5.5). The policy aims to reduce project cycle 

time but in reality the opposite happened because quality problems found in TP1 could 

not be corrected in the second round of pilot production. Therefore more rounds of 

pilot production might be needed to achieve the required project quality. Consequently, 
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the suggested new policy is that the next round of pilot production should start after 

both RP1 and TP1, whether the projects are urgent or not. 

 

5.6.3 Evaluating Activity Criticality 

The investment policies can be evaluated by activity criticality, which is the sensitivity 

of project performance to the investment for improving activity quality and duration. 

The investment needed and the resulting activity quality and duration could be 

estimated according to the experience of the managers or by benchmarking. Based on 

these data we can re-analyze the project performance and compare the investment with 

the performance improved.  

 

Table 5.6 Project performance with original and improved activity duration 

Performance Development Projects
Current 

Machine

New 

Machine

Performance 

Improvement (%)

Type 1 Project
1.4274 1.3244

7.22%

Type 2 Project
0.6087 0.5592

8.13%

Type 3 Project
0.5014 0.4637

7.52%

Type 1 Project
265.25 259.5833

2.14%

Type 2 Project
184.5833 180.3333

2.30%

Type 3 Project
176.5833 173.25

1.89%

Reworked Tasks 

of Pilot 

Production (%)

Project Cycle 

Time

 

 

When we were doing the case study in the company, the managers were considering 

introducing a prototyping machine. Prototypes are used to find and solve Development 

Errors of detail design before expensive pilot production starts. The first prototype was 

outsourced at that time and it took about one week. The rest of the prototypes were 

done through soft tooling, which was time consuming. The new prototyping machine 
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could reduce by 2 working days for the first prototype, and 21 working days for the 

other prototypes, but it required a large amount of financial investment. In order to 

study if it was worthwhile to acquire this new machine, we compared the performance 

of the projects using current practice with the performance using the new prototyping 

machine (Table 5.6). It turned out that the reduction of 23 working days with the use of 

the new machine could only reduce the project cycle time by about 2%. However, it 

could significantly reduce rework by about 7.6% on average. The reason is that TD1 

and TD2 are not in the critical path of the project. These are the activities to find the 

quality problems of concept development and detail design. Finding the quality 

problems earlier can reduce the rework caused by corruption in the project. According 

to the simulation results, the number of projects done in the company each year, and 

the cost of each project, we found that the cost saving is greater than the investment 

involved. We thus suggested the company to invest in the prototyping machine. 

 

5.6.4 Application Result  

We simulated the product development process again based on the new policies for 

overlapping and investment. The result shows that if the new overlapping policies are 

adopted and the prototyping machine is invested, the company can reduce the project 

cycle time by about 12% without significantly affecting the percentage of reworked 

tasks.  

 

All of the policies discussed above were accepted by the company, because we not 

only analyzed the effect of different policies, but also explained the root causes of the 

results. Comparing the projects completed before June 2004 to the projects finished in 

the first half of the year 2005 when the new policies had been implemented, we found 
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that the average project cycle time was reduced by about 30%. Except for the new 

policies mentioned above, the average rate of pilot production and testing (TD1, TD2, 

and TP1) was improved because of the introduction of new technologies and the 

adoption of other development policies. There is no significant difference between the 

qualities of development activities for the projects developed in 2004 and in 2005. The 

reason is that the experience of the engineers is not significantly changed from 2004 to 

2005. Some experienced engineers left the company and recruits were employed. The 

average working experience of the engineers was about 5 years. Using the new input 

data, the model output matched closely with the average project cycle time of the 

projects finished in 2005. It further validated our model and showed that DDPM is a 

useful tool for analyzing overlapped iterative product development. 

 

5.7 Conclusion 

The ability to expeditiously develop products has been accredited as a critical factor 

for the survival of many companies (Carrillo and Franza, 2006). Overlapping of 

development activities is commonly regarded as the most promising strategy to reduce 

project cycle time. However, overlapping interrelated activities based on preliminary 

information can be costly (Roemer et al., 2000). Therefore, some researchers have 

developed models to analyze overlapped and sequentially dependent product 

development process (e.g. Krishnan et al., 1997; Loch and Terwiesch, 1998; Roemer et 

al., 2000). The effect of the “upstream information evolution” on the rework of the 

downstream phase is studied in these models. We extend previous research by 

developing a SD model for overlapped iterative product development. 
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The model presented in this chapter has high “face validity” (Law and Kelton, 1991; 

Smith and Morrow, 1999) because it is developed based on the accepted framework 

for overlapped product development (e.g. Krishnan et al., 1997; Loch and Terwiesch, 

1998; Roemer et al., 2000), in depth case study of the modeled system, and System 

Dynamics methodology (Black and Repenning, 2001; Cooper, 1980; Ford and Sterman, 

1998; Joglekar and Ford, 2005; Williams et al., 1995; Williams et al., 2003) which has 

been theoretically and practically validated. Furthermore, we validated the model 

through comparing the simulation results with real data of a project done in a mobile 

phone development company. The successful application of the new policies further 

implies the usefulness of our model. Although more detailed examination may be 

needed, the current level of validity is comparable with models in the related literature 

(Abdelsalam and Bao, 2006; Browning and Eppinger, 2002; Cho and Eppinger, 2005; 

Ford and Sterman 1998; Smith and Morrow, 1999). 

 

The contribution of this simulation model is threefold. Firstly, development projects 

are usually complex and iterative. Although previous research has advanced our 

understanding of overlapped processes with sequential dependence, there is still a lack 

of tools to study overlapped iterative processes. Our simulation model provides 

management a useful tool to predict the effect of different overlapping policies on 

project performance for overlapped iterative product development. Secondly, the 

introduction of new technologies and/or new machines can help to reduce the time 

required to complete various development activities and reduce the probability of 

making errors. Our model provides a way to evaluate these possibly substantial capital 

investments by estimating the resulting improvement of project performance. Thirdly, 

our case study and simulation results show that some insights drawn by previous 
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models for overlapping development stages with sequential dependence are still 

applicable in overlapped iterative product development: (1) overlapping policies are 

significantly affected by project uncertainty, thus different overlapping strategies can 

be applied for the projects with different uncertainty levels; (2) The total amount of 

downstream rework can be reduced by increasing evolution speed, which is achieved 

through increasing testing rate in our case. 

 

Several aspects of the model presented in this chapter merit further examination. 

Firstly, more cases are needed to validate the model. Future research can test the 

broader application of the DDPM by applying it to other overlapped iterative NPD 

projects. Such tests will provide a basis for the abstraction of more general dynamic 

lessons for development process improvement. Secondly, the effective allocation of 

development resources, such as manpower and equipment, is difficult due to the 

complexity of overlapped product development process. Therefore, our model may be 

further developed to analyze resource allocation policies for overlapped iterative NPD 

projects. Finally, overlapping of development activities incurs additional rework. 

Spending resource for the rework for one project inevitably causes delay in other 

projects. Therefore, we may need to extend our model to explore suitable policies for 

managing multiple projects. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE STUDY 

 

The models for managing concurrent processes with different information 

dependencies and communication costs have been presented through Chapter 3 to 

Chapter 5. In this chapter, concluding remarks are given to summarize the main 

findings and contributions. The limitations of the models and the possible research 

areas for future studies are also highlighted.  

 

6.1 Introduction 

Successful new product development is critical for the survival of many companies. 

Product development literature often provides open-loop, single-link linear 

relationships which are usually lists of simplified rules for managing projects. These 

universal solutions are often not applicable in practice because each firm has a unique 

set of constraints and requirements, and does not usually carry out the same project 

twice (Smith and Reinertsen, 1998). For example, in the literature of concurrent 

engineering, some researchers (e.g. Imai et al., 1985; Takeuchi and Nonaka, 1991; 

Clark and Fujimoto, 1991; Wheelwright and Clark, 1992) propose that product 

development processes can be accelerated by concurrent execution of development 

stages. The others (e.g. Eisenhardt and Tabrizi, 1995; Terwiesch and Loch, 1999) 

argue that concurrent engineering is not applicable to all product development projects. 

Although these studies have contributed to theoretical understanding, they are still not 
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applicable in practice. No method is proposed to help management make decisions on 

how to apply concurrent engineering to a certain project.  

 

Therefore, the focus of this thesis can no longer be whether or not to apply CE but to 

probe more deeply. This research develops two analytical models and one simulation 

model for different concurrent processes addressing two questions: (1) how to 

determine the optimal overlapping degree between consecutive development stages; (2) 

how to arrange the information exchanges for coordinating the upstream changes. In 

addition, the analytical model in Chapter 3 also addresses the functional interaction 

policy, and the simulation model in Chapter 5 discusses the effect of testing and 

development qualities on project cycle time and development cost.  

 

6.2 Contributions of this Study 

This thesis sets out to develop models for managing NPD projects, and to derive 

management insights to help in structuring concurrent product development processes. 

It explores the effects of project properties and development policies on NPD 

performance. Three models for the projects with different information dependencies 

have been developed to derive appropriate overlapping policies, communication 

strategies, and functional interaction level. In addition, comparisons are made 

specifically between sequential and CE processes. The conditions under which one 

process outperforms the other are investigated. This work has both theoretical and 

methodological implications. 
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6.2.1 Contributions to Theory    

While some researchers have developed models to analyze concurrent product 

development process, most of these models are developed based on the assumption 

that the rework probability or the amount of rework is known. However, the question 

of how to estimate the probability of rework has not been rigorously addressed by 

researchers (Roemer and Ahmadi, 2004; Jun et al., 2005). Consequently, these models 

are not applicable in practice. The models introduced in this thesis are helpful for 

management to derive appropriate development policies by the data available in 

practice. This was done based on the concepts of evolution and sensitivity (Krishnan et 

al. 1997) and on practical studies of concurrent product development processes, 

following an information processing view of product development processes. The 

research has produced the following important analytical results, management insights, 

and algorithms, categorized under the models for different concurrent processes. 

 

For sequentially dependent processes with low communication cost, firstly, the optimal 

overlapping policies are presented. Then, the impact of different project properties 

(such as dependency between development stages, rework rate, and opportunity cost of 

time) on overlapping policies is proposed. Finally, the thesis derives the optimal 

functional interaction strategies under the condition that optimal overlapping is 

followed. This model was used to examine the development policies in a handset 

design company. 

 

 For sequentially dependent processes with high communication cost, an algorithm is 

proposed to derive the optimal overlapping and communication strategies for the 

general case. Then the linear evolution case is further discussed and a more efficient 
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algorithm for the linear evolution case is presented. The model is applied to improve 

the refrigerator development process in an electronics company. Moreover, some 

guidelines for structuring concurrent processes are provided. 

 

For interdependent process, this work presents a new product development (NPD) 

process model, termed Dynamic Development Process Model (DDPM). Although 

System Dynamics does not guarantee an optimal solution for a product development 

project, it can include more factors of reality. Because of this, SD has been widely and 

successfully applied to study product development projects in practice (e.g. Cooper, 

1980; Ford and Sterman, 1998; Black and Repenning, 2001; Joglekar and Ford, 2005). 

The SD model developed in this thesis extends previous work (e.g. Krishnan et al., 

1997; Loch and Terwiesch, 1998; Joglekar et al., 2001) through modeling iterative 

product development process with multiple phases, considering the rework caused by 

different causes, and investigating the trade-offs between project cycle time, project 

quality, and development effort. The model has been validated with data from a mobile 

phone development project. The DDPM was employed to identify appropriate policies 

for the overlapped iterative projects in the case study company. These identified 

policies were implemented in the company and led to marked improvement in project 

performance, thus demonstrating the viability of the model. 

 

The findings of the models generally agree with empirical results. As such, they seem 

to provide a reasonable prediction of performance and can therefore be considered to 

be a good managerial tool to help design a process in terms of overlapping, 

communication, and functional interaction. The applicability of the models is 

illustrated with three case studies in consumer electronics companies.  
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To date, no existing work has produced useful guidelines on how to design and 

manage concurrent processes in detail. Our study is presumably the first study that has 

systematically analyzed concurrent processes. Furthermore, different models for the 

projects with different information dependency and communication cost are developed. 

Thus, the models developed in this thesis are more able to represent practical 

situations than previously developed models. The study of concurrent product 

development is therefore a significant contribution to the existing research. 

 

6.2.2 Contributions to Methodology 

Contributions to methodology mainly refer to the use of System Dynamics 

methodology to study concurrent product development processes. SD has been widely 

used to model NPD processes in 1980s and 1990s. However, previous models can not 

explicitly simulate the dynamic properties of concurrent processes. This limits the 

usability of SD models, as CE has already been applied in most NPD projects 

(Siemieniuch and Sinclair, 1999). Our DDPM model describes a structure to describe 

the dynamic relationship between overlapped stages. Together with previous SD model, 

our model shows that SD can become a powerful tool to study concurrent product 

development. 

 

The SD methodology is also instrumental in broadening the scope of the study of 

concurrent product development, which was limited when using mathematical 

methodology. As a result, one of the most significant contributions of this thesis is that 

the outcomes of concurrent execution of two development stages could be tied to 

macro-process performance in a product development model. Whereas most models in 
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the existing literature have produced important findings about the concurrent execution 

of two development stages, the SD model, which integrates these process 

characteristics into more comprehensive models, allows us to check the combined 

effect of different development policies, such as overlapping and testing policies, on 

project performance. 

 

6.3 Limitations 

There are several limitations for this study that restrict the extent to which the findings 

can be generalized. Firstly, although the models are built on previous literature and 

validated on three case studies in consumer electronics industry, it is important to test 

and improve them through real applications in other industries since the NPD 

processes may be different. 

 

Secondly, the models assume that all team members share common goals in a project. 

Though this is a common assumption in NPD models and is true to most NPD projects, 

in a cross-company project, functional teams tend to have goals that differ from one 

another. Goal incongruity may increase the complexity of product development and 

affects the choice of development policies. 

 

Thirdly, our simulation model does not guarantee an optimal solution to manage 

overlapped product development. This is a limitation of most simulation models 

incorporating iteration in complex projects (Cho and Eppinger, 2005).  

 

Fourthly, we assume the opportunity cost of time is constant. However, although the 

opportunity cost should be constant in short run, it may change in long run. It implies 
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that the opportunity cost of time should be investigated in detail, if the application of 

CE changes project launch time significantly. 

 

Finally, in this thesis, we focus on process related options (overlapping, functional 

interaction, and information exchange) to reduce cycle time. However, cycle time can 

also be reduced through a focus on product design related options such as module 

based platform development. It should be promising to investigate the process and 

design related options simultaneously. 

 

6.4 Future Work 

There are several opportunities that exist to extend the work presented in this thesis, as 

well as to develop new areas of research. Avenues for future work are now discussed.  

 

6.4.1 Application of the Models 

Researchers can test the broader application of the models by applying them to other 

development projects and processes. Empirical research focusing on the issues in this 

thesis would be useful to compare to the models’ results. A continued effort towards 

studying NPD process performance using the methodologies and toolsets presented in 

this thesis should contribute increasingly to understand how NPD can be successfully 

managed in order to meet organizational goals. It will provide a basis for the 

abstraction of more general dynamic lessons for development process improvement.  

 

6.4.2 Communication Technologies 

The results of this thesis show that communication efficiency can significantly affect 

development policies and project performance. Modeling the use of various 
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communication technologies would undoubtedly help us to check the root cause of 

communication efficiency. Considering the growing use of communication 

technologies, it becomes valuable to track their roles and impact on project 

performance.    

 

6.4.3 Knowledge Management in Product Development 

It may be useful in the future to focus on knowledge management in NPD. Modeling 

the effect of knowledge sharing would be useful and necessary. Sharing knowledge of 

different functions and projects might minimize the need to rework, and may even 

show how multiple projects can be arranged. In fact, the effect of functional interaction 

is studied in the first model and it can also be studied by the other two. For knowledge 

sharing in different projects, no existing model has been able to deal with it.  

 

6.4.4 Multiple Project Interaction 

The present models consider only one project, though there may be other projects that 

may interact with it. Each project is vying for the limited resources within the 

organization, which places constraints on all of them (Scott, 1997; Gerwin and 

Barrowman, 2002). This may result in one project not getting enough resources when 

other projects are considered, making it difficult to dedicate resources to a project. 

 

In our case studies in consumer electronics industry, we observed that team members 

were sometimes being pulled from one project to another.  The resulting effect was 

span time prolongation and effort increase due to the “warm-up” period required for 

the engineers to start up again where they had left off. This can seriously constrain a 

project from achieving low cycle time and cost. Investing it would help to identify the 
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effect of multiple-project interactions, the serious impact of the loss of a team member, 

and the importance of resource availability to an organization. This can also highlight 

the difference in performance between projects that have dedicated team members, and 

those whose team members are subject to fluctuations. 

 

6.4.5 Testing 

As was discussed in Chapter 5, review or testing is arranged at the end of each stage. 

For new product development, review and testing usually accounts for the most of 

development time and cost. In our models the testing strategies are assumed to be 

predetermined.  

 

Because of the importance of testing, some researchers are attempting to identify 

testing strategies that optimize product development performance (Loch et al. 2001; 

Thomke and Bell, 2001). When testing activities are overlapped with each other, 

though span time is reduced, the effect of learning is lost, as compared to sequential 

testing (Thomke, 1998). Loch et al. (2001) suggest that when testing is costly, it should 

be performed sequentially, and that when the test activity is slow, executing it in 

parallel will reduce project cycle time. 

 

Although researchers have paid attention to the testing activities in one stage/phase, so 

far, no work has investigated the relationship between testing activities in different 

development stages. For example, in mobile phone development, engineers can do one 

round of prototype testing, or many rounds of prototype testing. Spending more time in 

prototype testing will reduce the potential problems in pilot production. Therefore, the 

project cycle time may be reduced. Then, how to balance the testing activities in 
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concept development, detail design, and pilot production? It should be valuable to 

investigate it in detail. 
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APPENDIX A        

PROOFS OF CHAPTER 3 

 

Proof of Proposition 3.1  

Assume ∆ time units are spent on rework at time 1t  and ∆ time units are spent on 

initial development at time 2t  ( 12 tt > ). Then �∆ work will be affected by � µ�
��
��

 � 

modifications and ∆  work will be affected by � µ� �
��
�!

 modifications. However, if 

initial development is done first, ∆ work will be affected by � µ�
��
��

 modifications and 

�∆ work will be affected by � µ�
��
�!

 modifications. It is clear that less work will be 

affected by upstream modifications in the later case. Therefore the priority of 

downstream development should be given to initial development.  □ 

 

Proof of Proposition 3.2  

(a) By proposition 3.1, only initial development will be done in the overlapped 

period if ds Dtt +≤ . Therefore Equation (3.8) can be applied. It is a first order 

linear equation. The general solution of this equation is 
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Therefore the downstream progress is 

∫ ∫∫−
t

t

t

t

t

t s ss

dtdxxkdttk })(exp{})(exp{ ττ µµ . 

If ds Dtt +≥ , the downstream progress at time t  can be represented as 

equation (3.9).  Similarly, the general solution of (3.9) is 
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Consequently, if ds Dtt +≥ , the downstream progress at time t  is 
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(b) By proposition 3.2a, the downstream progress at time uD  is 















−≤−+

−=

−≥−=

∫ ∫

∫ ∫

∫ ∫

+

+

dus

D

tD

D

t

tD

t

D

t
u

dus

D

t

D

t
u

DDtifdtdxxkr

dtdxxkDP

DDtifdtdxxkDP

u

sd

u

sd

s

u

u

s

u

)})(exp{

})(exp{)(

})(exp{)(

τ

τ

µ

µ

µτ

                                     



                                                                                      Appendix A   Proofs of Chapter 3 

                         

170  

Substituting the above equations into (3.5), we derive the total amount of downstream 

rework. 

 

(c) By proposition 3.2a and equation (3.8), if ds Dtt +≤  the downstream progress rate 

can be represented as 
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(3.22) 

It is clear that 
"#(��)

"��
> 0 when ��(�) is nonincreasing with t. It is indefinite when ��(�) 

increases with �. 

By proposition 3.2a and equation (3.9), if ds Dtt +≥  the downstream progress rate can 

be represented as  
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Similarly, we can prove that 
"#(��)

"��
> 0  when ��(�)  is nonincreasing with t. It is 

indefinite when ��(�) increases with �.  □ 

 

Proof of Proposition 3.3  
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If du DD ≤ , the solution is direct. When du DD > , the earliest start time either equals 

zero or satisfies the following equation 
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The first derivative of the left-hand side of (3.23) with respect to st  is  
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The first derivative of the right-hand side of (3.23) is -1. Therefore equation (3.23) has 

either exactly one solution or susrd tDtDD −>+ ),( τ  for all values of st , because the 

first derivative of the left-hand side is strictly larger than that of the right-hand side. 

Consequently, the earliest start time should be zero if  
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The first derivative of the left-hand side of (3.24) is 
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It is strictly negative. Therefore we can easily find et  through a simple binary search.  

□ 

 

Proof of Proposition 3.4 
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(a) Assume the functional interaction duration τ  is exogenously determined. By 

proposition 3.2b and equation 3.10, if dus DDt −≥ , we have 
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The first and second derivatives of (3.25) with respect to st  are 
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Inspection of (3.27) shows that 2 2/ 0sG t∂ ∂ <  for all [ , ]s e ut t D∈ , i.e., the objective 

function is concave with respect to st . 
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The first and second derivatives of (3.28) with respect to st  are 
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Inspection of equation (3.30) shows that 2 2/ 0sG t∂ ∂ <  for [ , ]s e ut t D∈ , i.e., the objective 

function is concave with respect to st . 
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(b) Since the objective function is concave with respect to st , complete overlapping 
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(c) Rewriting (3.13) yields 
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In (3.31), the first term is not relevant to the properties of uncertainty, dependency, and 

upstream evolution. The second term is always negative. Therefore we can conclude 

that the optimal start time of the downstream stage must be et , when 1 /r tr c c≥ + . By 

comparing equations (3.13) and (3.14), we have 
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Therefore, the right-hand side must be negative when 1 /r tr c c≥ + . 
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(3.32) can be simplified as  
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The left-hand side of (3.15) and (3.16) strictly decreases when st  increases. Therefore, 

through a simple binary search, the optimal start time can be derived.  □ 

 

Proof of Proposition 3.5 
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It implies that higher dependency parameter k  increases the optimal downstream start 

time *
st . 
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It implies that higher uncertainty level, }exp{ λτ−+ ba  increases the optimal 

downstream start time *
st . 
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It implies that *
st  decrease when evolution becomes faster. 
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It implies that the overlapping degree increases with r  (i.e. *
st  decreases with r ). 
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It implies that the downstream start time *
st  decreases when the opportunity cost of 

time tc  increases. 
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It implies that the downstream start time *
st  increases with rc . 
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(d) If ),[ +∞∈ ud DD , the optimal overlapping degree can be derived from equation 

(3.15) which is independent of dD .  □ 

 

Proof of Corollary 3.1 

(a) This result follows from Proposition 2(c) which shows that the optimal start time of 

downstream stage must be et  when 1 /r tr c c≥ + . For time-driven projects, / 0r tc c → . 

Therefore complete overlapping is optimal for time-to-market problem when 1r ≥ . 
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Proof of Proposition 3.6 
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It is clear that badxx
uD

t
+≤∫ )(0µ . Applying it in Equations (3.33) and (3.34), we 

have 
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APPENDIX B         

PROOFS OF CHAPTER 4 

 

Proof of Proposition 4.1 

(a) It is clear that our model is a constrained problem with an equality constraint. 

Using the method of Lagrange multipliers, it is converted into an unconstrained 

function  
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(b) In overlapped process, at least an information exchange should be arranged at time 

uD . The potential benefit of more frequent information exchange is no more than 

( )t u sc D t−  and the cost for them is ( 1)( )tn c cββ− + . To optimize project performance, 

the communication cost should be less than the potential benefit. Therefore, 
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0
* 1 ( ) /( )t u tn c D t c cββ< + − + .  □ 

 

Proof of Proposition 4.2 

If the downstream starts at 0t  and *

,1 *
n

t  is the optimal communication policy, the project 

performance can be written as 
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If ),()( *

,1

***
*

niii ttGtG
+

> , then )( 0
*

tG  can be improved by replacing ),( *

,1

*
*

nii ttG
+

 with 

)( **
itG . A conflict arises. Therefore, ),( *

,1

*
*

nii ttG
+

 is the optimal solution when the 

downstream starts at *
it .  □ 

 

Preparation for Proof of Proposition 4.3 

Let 1 ˆ,
ˆ

nt  be the optimal communication policy for complete overlapping and ˆ
iQ  be the 

optimal interval between the ( 1)th
i −  and thi  information exchange. 

 

LEMMA 4.1.  

(a) If 0}])(exp{1[
ˆ
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+

− ∫
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D

t
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r

cc
c µ , ˆ1 2,
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c µ , ˆ1 2,
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Proof. (a) If the project starts at ît , the project performance with the optimal 
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communication policy can be represented as 
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Comparing (4.19) and (4.20), we get )ˆ,ˆ(),ˆ( ˆ,1
*

,0 * niini ttGttG +> . The conflict arises since 

ˆ1,
ˆ ˆ( , )i i nG t t +  is the optimal solution when downstream starts at ît . Therefore, 
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Comparing (4.19) and (4.21), we get )ˆ,ˆ(),ˆ( ˆ,1
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,0 * niini ttGttG +> . The conflict arises since 

ˆ1,
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that: )ˆ,ˆ( ˆ,1 nii ttG +  is the optimal performance when the downstream starts in ]ˆ,ˆ[ 1 ii tt − ; 

)ˆ,ˆ( ˆ,1 nii ttG −  is the optimal performance when the downstream starts in ]ˆ,ˆ[ 12 −− ii tt , and so 

on. Combining the above results, it is evident that )ˆ,ˆ( ˆ,21 nii ttG ++  is the optimal 

performance when ]ˆ,[ 10 +∈ ie ttt .  □ 

 

Proof of Proposition 4.3 
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(c) By Lemma 4.1, it is evident that ˆ1 2,
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Proof of Proposition 4.4 
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ttT  be the optimal solution for the time-to-market problem (i.e. 
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When 1r ≥ , (4.23) can be simplified to 
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The conflict arises. Therefore 0 1
* ˆmin( , )e et t t t ϕ≤ ≤ + .  □ 
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Proof of Proposition 4.5 

(a) For the linear evolution case, the objective function can be simplified to 
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The first derivative of iQ  with respect to 1Q  is 
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By Proposition 4.5(a), it is evident that 1Q  decreases with n . Consequently, (4.27) 

decreases with n. Assume nt ~,1

~  is the optimal communication policy when 0t  and n~  (

*~ nn > ) are given. Then 
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Consequently, *n  is non-increasing with 0t . 

 

(d) To prove that the profit function ),( 0
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ntG  is concave with respect to n , it is 

necessary and sufficient to prove that for any three neighboring points 1n − , n , 1n + , 

the following formula holds 
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By (4.29), ),(),
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