

MODELING AND ANALYZING CONCURRENT

PROCESSES FOR PROJECT PERFORMANCE

IMPROVEMENT

LIN JUN

NATIONAL UNIVERSITY OF SINGAPORE

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48646632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MODELING AND ANALYZING CONCURRENT

PROCESSES FOR PROJECT PERFORMANCE

IMPROVEMENT

LIN JUN

(M.Mgt., Xian Jiaotong University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

 2008

 Acknowledgements

i

ACKNOWLEDGEMENTS

This thesis would have never been completed successfully without the help from those

who have supported me throughout the course of my doctoral studies, including family,

friends, and colleagues. I would like to take this opportunity to express my

appreciation to all of them.

First of all I would like to thank my supervisors. At NUS I would like to thank Dr.

Chai and Prof. Wong. It was Dr. Chai who led me into this research field and guided

me throughout the whole period. His enthusiasm, patience, encouragement and support

have kept me working on the right track with a high spirit. I would like to thank Prof.

Wong for his support and encouragement in many ways to finish this thesis. His

comments and recommendations of my reports are usually timely and thoughtful. At

TU/e I would like to thank Prof. Brombacher. Although he had a tight agenda, he

always managed to make time for me every week when I was in TU/e from 2006 to

2007. As a result, we had many efficient and fruitful discussions some of which have

been incorporated in this thesis. His critical comments have also helped me to improve

this work. Working with my three supervisors is an exceptional experience for me, and

I believe such experience will definitely benefit me for the whole life.

I would like to thank the faculty members of Department of Industrial and Systems

Engineering, from whom I have learnt not only knowledge but also skills in research as

well as teaching. I am also very grateful to my colleagues in ISE Department of NUS

and QRE department of TU/e for their kindly help. They include Foong Hing Wih,

 Acknowledgements

ii

Zhou Peng, Wang Qi, Li Suyi, Sari Kartika Josephine and others. I benefit a lot

through discussion with them about my research methodology, research gaps, and so

on.

Special appreciation goes to the staffs in Shanghai Sunplus Communication

Technology Co., Ltd., China Techfaith Wireless Communication Technology Ltd., and

Haier Electronics Group Co., Ltd. for their support and collaboration in this project,

which enriches this research from practical point of view.

Without the support from my family the thesis would have been impossible. Especially,

I want to thank my wife, Qian Yanjun, for her patience and support, which helped me

overcome all the difficulties faced throughout the course of doctorial studies.

 Lin Jun

 May 2007

 Table of Contents

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... I

TABLE OF CONTENTS .. III

SUMMARY .. VI

LIST OF TABLES .. VIII

LIST OF FIGURES ... IX

NOMENCLATURE ... XI

CHAPTER 1 INTRODUCTION ... 1

1.1 BACKGROUND .. 1

1.2 RESEARCH GAP .. 3

1.3 RESEARCH OBJECTIVE ... 6

1.4 RESEARCH APPROACH ... 9

1.5 STRUCTURE OF THE THESIS .. 11

CHAPTER 2 BACKGROUND ON PREVIOUS WORK .. 15

2.1 TRADITIONAL SEQUENTIAL DEVELOPMENT PROCESSES 15

2.2 CONCURRENT DEVELOPMENT PROCESSES ... 17

2.3 PREVIOUS MODELS FOR MANAGING DEVELOPMENT PROJECTS 20

2.4 A FRAMEWORK TO STUDY CONCURRENT PROCESSES.................................... 39

 Table of Contents

iv

2.5 SUMMARY OF LITERATURE EVALUATION .. 40

CHAPTER 3 MANAGING CONCURRENT

DEVELOPMENT PROCESSES WITH LOW

COMMUNICATION COST .. 42

3.1 INTRODUCTION .. 42

3.2 MODEL FORMULATION .. 48

3.3 DOWNSTREAM PROGRESS AND EARLIEST START TIME 56

3.4 ANALYSIS OF THE OPTIMAL POLICIES .. 59

3.5 PROBLEM VARIATIONS .. 69

3.6 MODEL APPLICATION .. 71

3.7 DISCUSSION AND CONCLUSION .. 76

CHAPTER 4 MANAGING CONCURRENT

DEVELOPMENT PROCESSES WITH HIGH

COMMUNICATION COST .. 80

4.1 INTRODUCTION .. 80

4.2 RELATED LITERATURE ... 83

4.3 MODEL FORMULATION .. 87

4.4 ANALYSIS OF OVERLAPPING AND COMMUNICATION POLICIES 94

4.5 MODEL APPLICATION .. 103

4.6 DISCUSSION AND CONCLUSION .. 108

CHAPTER 5 A SYSTEM DYNAMICS MODEL OF

OVERLAPPED ITERATIVE PROCESSES 111

 Table of Contents

v

5.1 INTRODUCTION .. 111

5.2 REWORK DUE TO DEVELOPMENT ERRORS AND CORRUPTION 115

5.3 DYNAMIC DEVELOPMENT PROCESS MODEL .. 120

5.4 VALIDATION OF THE MODEL .. 127

5.5 EFFECT OF CORRUPTION ON PROJECT PERFORMANCE 134

5.6 POLICY ANALYSIS .. 136

5.7 CONCLUSION .. 142

CHAPTER 6 CONCLUSIONS AND FUTURE STUDY . 145

6.1 INTRODUCTION .. 145

6.2 CONTRIBUTIONS OF THIS STUDY .. 146

6.3 LIMITATIONS .. 150

6.4 FUTURE WORK... 151

REFERENCES .. 155

APPENDIX A PROOFS OF CHAPTER 3 168

APPENDIX B PROOFS OF CHAPTER 4 181

 Summary

vi

SUMMARY

Market and technology changes have brought about new characteristics of product

development. Developing products faster, better, and cheaper than competitors has

become critical to success. In response to these pressures, many industries have shifted

from a sequential and functional development paradigm to a concurrent and cross-

functional paradigm. Increasing the concurrency, however, also increases the

complexity of development projects. Our literature review shows that there is a lack of

methods to help management to derive appropriate development policies (such as

overlapping degree, communication frequency, and functional interaction level).

According to the information dependency and communication cost, we grouped

concurrent product development processes into three types and proposed three models

to manage them. These models are validated or illustrated with product development

case studies in three consumer electronics companies.

The first model presented is an analytical model for managing concurrent development

processes with sequential dependence and low communication cost. It is well known

that continuous information exchange is optimal when communication cost is low.

Therefore the concurrent problem can be simplified into an overlapping problem

regardless of communication strategies. Appropriate overlapping degree and functional

interaction level for projects with different properties are proposed. This model was

applied to examine the development policies in a handset design company.

 Summary

vii

The second model proposed deals with concurrent development processes with

sequential dependence and high communication cost. In this case, the communication

policy is extremely important. If information exchange is too frequent, the

communication time and cost would increase significantly. However, infrequent

information exchange would increase downstream rework. The model aims to optimize

project performance by investigating the interactions between overlapping policy and

communication strategy. The model was applied to improve the refrigerator

development process in a consumer electronics company.

Finally a simulation model for managing overlapped iterative product development (i.e.

the overlapped stages are interdependent) is developed. For iterative processes, the

interaction is much more complex and analytical approaches have proved to be

prohibitively expensive. Consequently, a System Dynamics model is built for

modeling overlapped iterative development processes. Using this model we can track

the impact of different overlapping degrees and testing qualities on project

performance. Therefore, it can help management find appropriate development policies.

The model was implemented in a design house and led to marked improvement in

project performance, thus demonstrating the viability of the model.

This study is motivated by the needs of companies, and is developed based on previous

literature and in-depth case studies. The usefulness and validity of the insights,

analytical results, and algorithms proposed in this research have been validated

through the case studies done in consumer electronics companies. We believe that the

results proposed can also be applied to manage concurrent processes in other industries

with similar properties.

 List of Tables

viii

LIST OF TABLES

Table 3.1 Model parameters and decision variables ... 55

Table 4.1 Inputs and decision variables .. 93

Table 4.2 Assessing model fit to data ... 105

Table 4.3 The impact of communication time and cost on development policies .. 107

Table 5.1 Model parameters and performance measures .. 123

Table 5.2 Model inputs for the mobile phone development project 131

Table 5.3 Error statistics for assessing model fit to data .. 133

Table 5.4 Impacts of corruption on project performance .. 136

Table 5.5 Project performance with different levels of overlapping in pilot

production ... 139

Table 5.6 Project performance with original and improved activity duration 140

 List of Figures

ix

LIST OF FIGURES

Figure 1.1 Independence, sequential dependence, and interdependence 7

Figure 1.2 Structure of the thesis .. 14

Figure 2.1 A schematic diagram for a phase-milestone NPD process 16

Figure 2.2 Concurrent process .. 18

Figure 2.3 A network diagram for CPM schedule management 21

Figure 2.4 DSM representation of UCAV preliminary design process 25

Figure 2.5 Upstream evolution ... 27

Figure 2.6 Development policies based on evolution and sensitivity 28

Figure 3.1 The progress of a downstream stage ... 46

Figure 3.2 Overlapped product development process .. 49

Figure 3.3 Impact of functional interaction on uncertainty 51

Figure 3.4 Downstream progress: numerical example ... 58

Figure 3.5 Optimal start time of downstream stage ... 62

Figure 3.6 Reducing time and cost simultaneously .. 66

Figure 3.7 Functional interaction and project performance 68

Figure 3.8 Evolution and functional interaction functions 73

Figure 3.9 Optimal policies for the projects with different opportunity cost 75

Figure 4.1 Mobile phone development ... 82

Figure 4.2 Overlapped process with multiple information exchanges 88

Figure 4.3 Progress of downstream stage ... 92

Figure 4.4 Modification process ... 104

Figure 4.5 Cumulated design modifications ... 105

 List of Figures

x

Figure 4.6 The effect of overlapping policy on project performance 106

Figure 5.1 DSM representation of sequential dependence and interdependence . 114

Figure 5.2 Rework due to development errors ... 117

Figure 5.3 Rework due to corruption ... 119

Figure 5.4 Base rear of a mobile phone .. 120

Figure 5.5 Dynamic development process model (DDPM) 121

Figure 5.6 Parameters of dynamic development process model 125

Figure 5.7 Development process of a mobile phone .. 128

Figure 5.8 Information flows in the mobile phone development 129

Figure 5.9 Reference mode and simulation results .. 132

Figure 5.10 Simulating the effect of corruption ... 135

Figure 5.11 Project performance with different levels of overlapping between detail

design and pilot production ... 138

 Nomenclature

xi

NOMENCLATURE

CE Concurrent Engineering

CPM Critical Path Method

DDPM Dynamic Development Process Model

DES Discrete Event Simulation

DSM Design Structure Matrix

MAE Mean Absolute Error

NPD New Product Development

PERT Program Evaluation and Review Technique

PGM Performance Generation Model

PD Product Development

RMSE Root Mean Square Error

SD System Dynamics

 Chapter 1 Introduction

1

CHAPTER 1

INTRODUCTION

The outline of this chapter is given as follows. In Section 1.1, the research background

is explained. In Section 1.2 the research gap is proposed, followed in Section 1.3 by

the research objective. The research approaches applied in this research project are

discussed in Section 1.4. The structure of this thesis is given in the end.

1.1 Background

In the traditional paradigm, new product development (NPD) process is treated as a

series of sequential and functional product development stages (Wheelwright and

Clark, 1992). Information generated from one function transfers to the next one only

after its completion, which results in poor coordination between development teams

and bottlenecks of information flow (Hayes et al., 1988). It can significantly increase

project cycle time.

Since the early 1990s, demanding market and short product life cycle in many

industries have forced manufacturing firms to develop low-cost and high-quality

products at a rapid pace. At the same time, the increasing technical intensity makes

product development more complex. In order to deal with these issues, product

development undergoes new trends, such as cross-functional team and concurrent

product development. These new trends have increased the uncertainty and complexity

of product development. Researchers now view product development as a collection of

 Chapter 1 Introduction

2

stages which are performed concurrently or iteratively. The product development

processes and management practices created for relatively long product life cycle,

stable market, and technology-based competition are no longer capable of producing

products which can meet customer requirements in terms of time, cost, and quality

(Clark and Fujimoto, 1991; Williams, 2005).

Improving development performance is becoming increasingly important and

challenging. Part of the difficulty is caused by the internal structure of the product

development process (Roberts, 1974; Ford and Sterman, 2003a). Well-intentioned

changes to product development process may cause severe unintended side effects. For

example, development stages may be concurrently executed to reduce project cycle

time. However, in concurrent product development, a change in a stage will cause the

rework in other development stages since they are usually dependent or interdependent.

In the end, the overall development time is longer than otherwise. Therefore, many

tools have been proposed to accelerate the NPD process and control the NPD cost, and

prominent among these is the concept of concurrent engineering (CE). It has provided

much success towards achieving shorter time-to-market (Clark and Fujimoto, 1991;

Wheelwright and Clark, 1992; Smith and Reinersten, 1998; Bhuiyan, 2001).

Overlapping of development stages, functional interaction, and frequent information

exchange are among the elements that enable CE to improve the performance of

product development (Blackburn, 1991; Bhuiyan, 2001).

Overlapping refers to a situation where the downstream development stages start prior

to the completion of the upstream development stages. Overlapping is commonly

found in many real life cases in order to overcome the obstacles faced in the sequential

 Chapter 1 Introduction

3

process (e.g. Krishnan et al., 1997). However, overlapping may increase rework

because downstream work, started with preliminary information, may turn out to be

wrong, because of changes or new insights in the upstream phase of development.

Functional interaction, defined as the involvement of downstream engineers in

upstream development, can reduce the rework incurred by the concurrent execution of

development stages because upstream engineers can get more accurate input about

requirements from later phases. As such, CE converts the sequential process into a

more cooperative one, thus creating interdependencies between activities (Liker et al.,

1996). Although the potential benefits of CE may be considerable, it becomes more

challenging to coordinate such a process.

1.2 Research Gap

Traditional network-based scheduling techniques, such as Critical Path Method (CPM)

and Program Evaluation and Review Technique (PERT) (Moder et al., 1983; Badiru,

1993; Golenko-Ginzburg and Gonik, 1996), describe development processes which are

relatively stable and sequential. These models were initially developed to control

schedule, and later expanded to manage resources and costs. Rooted in the traditional

sequential paradigm of product development, CPM disaggregates the development

process into activities which are related through their temporal dependencies. In other

words, the constraints are described as relationships between the beginning and

completion of activities. Each activity is treated as a monolithic block of work

described only by its duration. However, these models ignore the interactions between

development stages, which are essential for concurrent NPD process (Rodrigues and

Bowers, 1996; Ford and Sterman, 1998).

 Chapter 1 Introduction

4

Recently, many analytical and simulation models have been developed to describe

concurrent product development process and analyze the trade-offs among project

cycle time, quality, and development cost. Smith and Eppinger (1997a, 1997b)

developed several analytic models of sequential and parallel design iterations and

addressed the effect of iterations among project phases on project cycle time with the

Design Structure Matrix. Krishnan et al. (1997) proposed a framework to determine

the optimal number and timing of information transfers. They showed that “upstream

information evolution” and “downstream sensitivity” are the two properties affecting

optimal overlapping strategies. Loch and Terwiesch (1998) adapted the concepts of

evolution and sensitivity: “upstream information evolution” is defined as the

continuous design modification process; “downstream sensitivity” represents the

impact of a modification on downstream rework. Based on these concepts, they

developed an analytical model and derived the optimal communication strategies for

overlapped sequential process. Roemer et al. (2000) analyzed the time-cost tradeoffs in

multistage product development. Chakravarty (2001) studied the trade-offs between

the overlapping risk and the project time saved. Some special cases were analyzed to

establish useful insights for sequential and overlapped processes. Bhuiyan et al. (2004)

proposed a stochastic simulation model and discussed the impact of overlapping,

functional interaction, upstream information evolution, and downstream sensitivity on

three types of rework. Although the results of these efforts are insightful in many

respects, we still can not derive appropriate overlapping degrees and functional

interaction levels for the projects with different properties. This is because:

(1) Although existing models of concurrent product development describe the effects

of upstream changes on downstream rework, most of these models (e.g. Williams

 Chapter 1 Introduction

5

et al., 1995; Williams, 1999; Eppinger et al., 1994; Cho and Eppinger, 2005;

Bhuiyan et al., 2004) use rework probability as input parameter which is difficult to

be estimated directly since it is determined by the interactions of many parameters

(such as completion quality, rework quality, and testing quality) (Krishnan et al.,

1997; Joglekar et al., 2001). There is a need to make the interaction between

development stages clear and analyze rework according to its root causes which

would allow project managers to find appropriate policies for concurrent product

development.

(2) While trade-offs among cycle time and development effort are necessary in product

development, many studies only concentrate on project cycle time. Project policies

which favor project cycle time may significantly affect other performance

measures, such as the percentage of tasks requiring rework which is a key

component for development effort. Consequently, there is a need to consider the

effect on development effort or cost when trying to reduce the development cycle

time (Smith and Reinertsen, 1998). Therefore, we need a model to estimate cycle

time and development effort simultaneously so that managers can evaluate whether

the overall benefit is greater than the investment involved.

(3) While the interaction between overlapping and communication is emphasized by

many empirical studies, very few researchers have studied it in detail. It is clear

that frequent information exchange can reduce rework in overlapped product

development. However, communication also incurs time and cost. Tools are

needed to balance these positive and negative effects and thus to derive appropriate

overlapping and communication policies.

 Chapter 1 Introduction

6

This thesis approaches the stated problems by explicitly modeling the interaction

between consecutive development stages and the time-cost trade-off involved in CE.

As a result, appropriate decisions on overlapping, communication, and functional

interaction can be proposed.

1.3 Research Objective

Although successful new product development is critical to the survival of many

companies, and much of previous research has focused on the development of

technology and methods to support NPD management (e.g. Cooper, 1980; Steward,

1981; Eppinger et al., 1994; Repenning, 2001; Williams, 2005), our literature review

shows that there is a lack of methods to explicitly model and analyze concurrent

development processes. By modeling the effect of project properties (e.g. project

uncertainty, dependency between development stages, and upstream information

evolution) on project performance (project cycle time and development cost) this thesis

investigates and suggests policies for managing and coordinating CE processes, and

assesses the optimal or appropriate overlapping degree, communication frequency, and

functional interaction level for the projects with different properties. The impact of

project characteristics (such as project uncertainty, rework rate, and communication

cost) on development policies is analyzed in an attempt to uncover insights on

appropriate management of development projects within a given context.

 Chapter 1 Introduction

7

Figure 1.1 Independence, sequential dependence, and interdependence

An information-based view of product development is assumed in this thesis (Clark

and Fujimoto, 1991). From this perspective, individual development activities are the

information-processing units that receive information from their preceding stages and

transform it into new information to be passed on to subsequent stages. Therefore the

focus of the models is on the evolution of information and its impact on downstream

rework. Information needs create dependencies between development stages which

determine the product development structure. According to the information

dependency between them the development processes can be classified as (see Figure

1.1): Independence if there is no information exchange between development stages;

Sequential dependence if there is a unidirectional information flow; and

interdependence if the stages are mutually dependent and the information flows in both

ways (Thompson, 1967). Studies of concurrent engineering usually focus on dependent

and interdependent development stages since the policies for independent stages are

directly available.

Product development process can also be sorted by the communication cost, which is

the fixed setup cost per information exchange (Ha and Perteus 1995, Loch and

Terwiesch 1998). If a project is done by one team, then the communication cost is

usually omitted. Related cases are proposed by Roemer et al. (2000), Krishnan et al.

Stage 1

Stage 2

Stage 1

Stage 2

Stage 1

Stage 2

Independence Sequential Dependence Interdependence

 Chapter 1 Introduction

8

(1997), Roemer and Ahmadi (2004). If a project is done by different teams, the

communication cost should be considered. Related cases are proposed by Loch and

Terwiesch (1998), Helms (2004). In this research, the dependent processes with low

communication cost and the dependent processes with high communication cost are

studied separately, since the models and policies for these processes are different.

Consequently, three models are proposed to study the concurrent development

processes with different information dependencies and/or communication cost:

• Firstly, this thesis presents an analytical model for managing concurrent

development processes with sequential dependence and low communication cost. It

is well known that continuous information exchange is optimal when

communication cost is low (Roemer et al. 2000). Therefore the concurrent problem

can be simplified into an overlapping problem regardless of communication

strategies. The decisions on the degree of overlapping and the level of functional

interaction are studied. The model has been applied to examine the development

policies in a handset design company.

• Secondly, an analytical model for managing concurrent processes with sequential

dependence and high communication cost is developed. In this case, the

communication policy is extremely important. If information exchange is too

frequent, then communication time and cost would increase significantly. However,

infrequent information exchange would increase downstream rework. The model

aims to optimize project performance by investigating the interaction between

overlapping policy and communication strategy. The model was employed to

analyze the development process of a large consumer electronics company.

 Chapter 1 Introduction

9

• Finally a simulation model for managing overlapped iterative processes is

developed. For iterative processes, the interaction is much more complex and

analytical approaches have proved to be prohibitively expensive. Consequently, a

System Dynamics model is built to manage concurrent processes composed of

interdependent development stages. Using this model we can track the impact of

different overlapping degrees and testing qualities on project performance.

Therefore, it can help management to identify appropriate development policies.

The model was implemented in a design house and led to marked improvement in

project performance, thus demonstrating the viability of the model.

Note that depending on their newness to the company and marketplace, product

innovations can be incremental or radical (Henderson and Clark, 1990; McDermott,

1999; Hauser et al., 2006). Radical innovation often requires developing products with

an entirely new set of performance features (Leifer et al. 2000; Zhou et al. 2005). On

the other hand, an extension or improvement of existing products is termed as

incremental product innovation. Incremental product innovation plays a major role in

the success of many organizations since the majority of so called ‘new’ products are in

fact reworked versions of existing products (Ali, 1994; Griffin 1997; Grupp and Maital,

2001). This thesis focuses mainly on incremental innovation.

1.4 Research Approach

Mathematical and System Dynamics modeling methodologies are used to study

different concurrent NPD processes. For sequentially dependent process, the

interaction between development stages is relatively simple. Therefore, nonlinear

 Chapter 1 Introduction

10

programming is used to derive the development policies. Comparing to simulation

methods, mathematical modeling is relatively simple. Furthermore, many useful

insights can be derived by analyzing the mathematical models. However, for

interdependent (or iterative) processes, the interaction is much more complex and thus

analytical modeling is not suitable. Therefore System Dynamics modeling

methodology is applied. All of the models are illustrated with case studies in consumer

electronics industry.

1.4.1 Nonlinear Programming

Nonlinear programming is one of the basic methods of operation research. Through

nonlinear programming, the models capture the relationship between project properties,

development policies, and project performance. For the projects with low

communication cost, a simple non-linear programming model is built. For the projects

with high communication cost, a mixed-integer nonlinear programming model is

developed.

The fundamental concept of the model is based on the premise that management makes

decisions or chose actions (such as overlapping degree, communication frequency, and

functional interaction level) that maximize project performance (measured in time and

cost in this thesis).

1.4.2 System Dynamics

We simulate concurrent and interdependent product development processes by System

Dynamics methodology. As such, the model serves as a framework for

experimentation to test the effect of different development policies and activity

 Chapter 1 Introduction

11

properties on project performance. A computer simulation model provides several

advantages. Firstly, many and various project parameters and dynamic relationships

can be modeled more comprehensively with the flexible representation available than

with manual or mathematical modeling methods. Secondly, unlike qualitative research,

assumptions are made explicit and unambiguous in simulation models by their

representation as formal equations. Thirdly, comparing to direct experiment, doing

experiment through simulation is safe, replicable, low-cost and fast. Finally, the

model’s reflection of actual project structure provides an effective means of

communicating research work and results.

System Dynamics (SD) methodology is used in this thesis. Discrete event simulation

model and continuous time model (System Dynamics) are two methods commonly

used to simulate NPD process. The former assumes that the product development

process is composed of a finite set of activities and information flow only exists at the

beginning or at the end of an activity. In contrast, the SD approach to project

management treats the process of each phase as continuous work flow. It is consistent

with the assumption in the overlapping models (e.g. Loch and Terwiesch, 1998;

Roemer et al., 2000; Roemer and Ahmadi, 2004). Through building the relationship

between work flow and information flow, we simulate the continuous upstream

information evolution and its effect on downstream rework using SD approach.

1.5 Structure of the Thesis

This thesis consists of six chapters, consisting essentially of three parts, as shown in

Figure 1.2. The thesis is organized as follows:

 Chapter 1 Introduction

12

Chapter 1: Introduction presents the motivation for the research and details research

objective, methodology, and structure. The research objective is to help management

make decisions on overlapping degree, communication frequency, and functional

interaction level in concurrent product development.

Chapter 2: Background on Previous Work reviews relevant literature of concurrent

processes, traditional models of product development processes, and recent models for

concurrent processes. The research gap is identified: current models do not allow

explicit and clear modeling of the interaction between concurrent development stages.

Consequently, managers can only make decisions on an ad hoc basis, leading to

inefficient development policies. This research aims to solve the problem by

developing formal models of concurrent processes. Three types of concurrent

processes are studied: concurrent and sequentially dependent product development

processes with low communication cost; concurrent and sequentially development

processes with high communication cost; and iterative processes (or concurrent

processes composed of interdependent development stages).

Chapter 3: Managing Concurrent Development Processes with Low

Communication Cost presents an analytical model for managing dependent

development stages in which the communication cost is low.

Chapter 4: Managing Concurrent Development Processes with High

Communication Cost presents an analytical model for managing concurrent and

sequentially dependent development processes with high communication cost.

 Chapter 1 Introduction

13

Chapter 5: A System Dynamics Model of Overlapped Iterative Processes develops

a simulation model for managing overlapped iterative processes. In Chapters 3 and 4,

analytical models are built for managing concurrent and sequentially dependent

product development processes. For interdependent product development processes,

the interaction is much more complex and thus analytical modeling is not suitable.

Consequently, a System Dynamics model is built in this chapter. Note that using this

method we can only find the best solution within different scenarios and thus the

solution is not globally optimal. The model was illustrated with a case study at a

design house.

Chapter 6: Conclusions and Future Study gives a summary of this research. We

first summarized the results derived on the models and case studies and discussed the

contributions of this study. Then, we point out the limitations of this research. The

directions for future study are discussed in the last section.

 Chapter 1 Introduction

14

Figure 1.2 Structure of the thesis

Chapter 1

Introduction Part A- Review & Focus:

Establish research focus on concurrent

processes; review the related literature.

Part B- Managing Concurrent Processes:

Model and analyze three types of

concurrent processes: sequentially

dependent processes with inexpensive

communication, sequentially dependent

processes with high communication cost,

and iterative processes. These models

were applied in three consumer electronics

companies.

Part C- Conclusions & Future Study:

Give a summary of this research and list

the work needed to be done in the future.

Chapter 2

Background on Previous Work

Chapter 3

Managing Concurrent

Development Processes with Low

Communication Cost

Chapter 4

Managing Concurrent

Development Processes with High

Communication Cost

Chapter 5

A System Dynamics Model of

Overlapped Iterative Processes

Chapter 6

Conclusions & Future Study

 Chapter 2 Background on Previous Work

15

CHAPTER 2

BACKGROUND ON PREVIOUS WORK

In this chapter, an extensive review of the relevant theoretical and analytical research

in NPD is presented. The chapter begins with a review of research in traditional

sequential development processes, followed by research in concurrent development

processes which have appeared in the last two decades. These reviews provide the

basis for the evaluation of various product development models which investigate the

impacts of project properties and development policies on project performance. This is

followed by a detailed evaluation of existing descriptive, analytical, and simulation

models of NPD processes. Some concepts in the concurrent engineering literature,

which are closely related to this research, are illustrated in detail.

2.1 Traditional Sequential Development Processes

As shown in Figure 2.1, traditional models of product development processes are

based upon a sequential and functional approach to product development

(Wheelwright and Clark, 1992). In the traditional paradigm, the development processes

are treated as a series of development activities from conceptualization to mass

production. This is represented by the unidirectional arrows between phases in Figure

2.1. Many researchers have described the traditional process and have given examples

from different industries (e.g. Wheelwright and Clark, 1992; Womack et al., 1990;

Nevins and Whitney, 1989; Hayes et al., 1988). Clark and Fujimoto (1991) argue that

 Chapter 2 Background on Previous Work

16

this paradigm is appropriate “…when markets were relatively stable, product life

cycles were long, and customers concerned most with technical performance.”

The sequential process is highly functionally segregated, i.e. different functions have

responsibility for different phases, with formal communication between the functions

occurring at the end of each phase (at the gates, or the milestones) when one function

hands off its work to the next. Typically, the functions responsible for the various

phases are: marketing personnel for the concept phase and launch phase, design

engineers for design phase, test engineers for the prototype testing phase, and

manufacturing personnel for the pilot production phase.

Figure 2.1 A schematic diagram for a phase-milestone NPD process

Substandard project performance under the traditional paradigm generates friction and

conflicts among different function groups, resulting in poor coordination and

bottlenecks in the flow of information through the product development processes

(Hayes et al., 1988). This can extend the project cycle time or consume additional

resources, thereby increasing costs.

Concept C/D C/D

C/D

C/D

Design

Prototype
Testing

Pilot
Production

C/D: Checking & Decision

Product
launch

 Chapter 2 Background on Previous Work

17

2.2 Concurrent Development Processes

Market and technology changes have brought about new characteristics of product

development. The most significant changes from the traditional paradigm to the new

paradigm are from sequential development process to concurrent process. Overlapping

and functional interaction are two of the most important components of concurrent

development. Researchers now view product development as a collection of highly

coupled development stages which are performed iteratively and often simultaneously

by cross-functional development teams (Wheelwright and Clark, 1992; Womack et al.,

1990).

2.2.1 Overlapping of Development Stages

Overlapping refers to the product development process where the downstream stage

starts prior to the completion of the upstream stage. The primary purpose of adopting

overlapping approach is cycle time reduction through planning and executing multiple

stages simultaneously instead of sequentially as in a sequential development process.

This requires starting downstream stage as soon as preliminary information is available.

For the overlapped process, the development stages are usually sequentially dependent

or interdependent. Information generated by one or more stages poses contingencies

for others; thus, all the development stages should be considered simultaneously

(Adler, 1995).

Although large reduction in cycle time can be realized by applying overlapping

approach (Wheelwright and Clark, 1992; Womack et al., 1990; Nevins and Whitney,

1989), the cycle time reduction comes at the cost of increased complexity. Overlapping

increases the dependency between development stages and the number of required

 Chapter 2 Background on Previous Work

18

information transfers. To deal with the increased interdependencies, intensive

coordination is required. However, this may increase the cost of manpower. Because

downstream is started on preliminary information in the overlapped process, the

amount of rework is likely to increase when new information becomes available.

Researchers suggest that iteration in product development is a primary cause of the

dynamic nature of product development, a primary driver of project cycle time and a

measure of process quality (Cooper, 1994, 1993a, b, c; Bhuiyan et al., 2004). Figure

2.2 shows an overlapped concurrent development process. Information flows between

tasks are more frequent than in a sequential process. When quality problems are found

by downstream stages, the relevant information is transferred to the stages which are

responsible for the quality problems and then rework occurs.

Figure 2.2 Concurrent process

S1

S2

S3

Sn

 Stage

Checking &
Decision

Information flow

between stages

Feedback information

 Chapter 2 Background on Previous Work

19

2.2.2 Cross-Functional Teams

In today’s product development, functional participation takes place through the

formation of teams consisting of representatives from the functions involved. Due to

uncertainty in product development processes, the release of preliminary information

to downstream functions may introduce the need for rework when there is a change in

preliminary information. The goal of functional interaction is to reduce project

uncertainty by identifying the potential quality problems as early as possible. The

formation of cross-functional teams is an extension of the move away from function-

based teams to the matrix structures. Hayes et al. (1988) describe and Wheelwright and

Clark (1992) later refine a detailed model of this shift by introducing intermediate

steps defined by the level of influence of project managers. Restructuring product

development organizations away from function-based groups and toward cross-

functional development teams has become a widely used approach to reduce project

cycle time (Clark and Fujimoto, 1991).

However, researchers (Clark and Fujimoto, 1991; Dean and Susman, 1991; Takeuchi

and Nonaka, 1991) have realized that the formation of cross-functional teams alone

does not necessarily reduce time-to-market. They found that over-extended

communication and coordination in cross-functional team may lower project

performance. Dean and Susman (1991) found that friction between the members from

different functions may affect the efficiency of product development. Nevin et al.

(1991) listed some other reasons for the cross-functional team failures.

The new development paradigm addresses the increased coordination needs of projects

with cross-functional development teams. The apparent assumption is that project

 Chapter 2 Background on Previous Work

20

uncertainty, which is a driver of rework, can be reduced by using cross-functional

teams. However, functional interaction also increases communication time and cost.

Empirical studies show that functional interaction may increase (Eisenhardt and

Tabrizi, 1995; Von Corswant and Tunälv, 2002), decrease (Bhuiyan et al., 2004;

Wagner and Hoegl, 2006), or have no significant effect (Datar et al., 1997) on project

performance. These mixed results indicate that cross-functional team is not a panacea

for managing NPD projects. The functional interaction policy should be adjusted

according to project characteristics. Thus potential risks must be carefully examined to

ensure that added time and effort are kept to a minimum (Krishnan et al., 1997).

2.3 Previous Models for Managing Development Projects

In order to control project schedule or analyze the effect of different policies on NPD

performance (in terms of project cycle time, and cost), various models for NPD

process management have been developed. We group these models into five categories:

network-based scheduling techniques (e.g. Moder et al., 1983; Badiru, 1993; Golenko-

Ginzburg and Gonik, 1996), design structure matrix (DSM) (e.g. Eppinger et al., 1994;

Cho and Eppinger, 2005), analytical models (e.g. Smith and Eppinger, 1997a, 1997b),

discrete event simulation models (e.g. Bhuiyan et al., 2004), and System Dynamics

(SD) models (e.g. Cooper, 1980; Ford and Sterman, 1998; Williams, 2005).

2.3.1 Network-based Scheduling Techniques

The Critical Path Method (CPM) and Program Evaluation and Review Technique

(PERT) are two of the most important network-based scheduling techniques which

have been widely used to manage development projects. These methods were initially

developed to control schedule, and later expanded to manage resources and costs.

 Chapter 2 Background on Previous Work

21

Rooted in the traditional paradigm of product development, the Critical Path Method

disaggregates the development process into activities which receive upstream

information at the beginning and transfer the output to the downstream in the end.

Each activity is treated as a monolithic block of work described only by its duration.

The temporal dependencies between development activities describe the constraints

which upstream activities impose on downstream activities. The logic of the schedule

can be represented in a network diagram. A simple example is shown in Figure 2.3.

Figure 2.3 A network diagram for CPM schedule management

Critical Path Method enables the identification of a project’s critical path, which is the

sequence of tasks whose combined durations define the minimum project cycle time.

Earliest and latest possible start and finish times of all activities determined by the

critical path can be calculated, as can the available slack times. Furthermore, the

Critical Path Method provides some tools for studying the trade-offs of different

1

2

3

4

5

7

6

8

(5, 5)

(0, 0)

(8, 8)

(7, 9) (12, 12)

(7, 9) (9, 11)

(13, 13)

A

D

G

J

I

F
2

C

B

H

5 2

3

4

3

1

1

2

1

E

1 Nodes 2 3 …

A, B, C Activities

1, 2, 3 Durations

(0, 0), (7, 9)

…

…

… Earliest and latest event time

 Chapter 2 Background on Previous Work

22

performance measures, such as project cycle time and development efforts. For

example, durations of activities along the critical path can be shortened by using more

resources (Wheelwright and Clark, 1992; Moder et al., 1983). Through Critical Path

Method, time-cost trade-offs can be analyzed and the effectiveness of accelerating

alternative activities can be determined. In addition, the effects of altering

dependencies among development activities on time-to-market reduction can be

investigated (Moder et al., 1983).

The Critical Path Method can be easily understood and applied in practice. However,

the method has several crucial limitations. It assumes that all quality problems can be

discovered and solved before the task is completed, and upstream information only be

sent to the downstream activities when it is finalized. As a result, the method can not

describe concurrent processes in which upstream changes will cause significant

downstream rework. Secondly, the Critical Path Method assumes that the duration of

each activity is directly available. This prevents the method from modeling and

studying the underlying factors determining activity duration, such as development

efficiency, development quality, and project uncertainty. Therefore the Critical Path

Method is unable to model the dynamic nature of concurrent development processes.

PERT addresses one of the limitations of the Critical Path Method by incorporating the

effect of project uncertainty in the estimates of the duration of development activities.

It was developed for processes such as product development (Moder et al., 1983).

Three estimates (most likely estimate, optimistic estimate and pessimistic estimate) are

used to describe the variability of activity durations. Based on these data, the

probability of a project meeting specific schedule objectives can be derived. The

 Chapter 2 Background on Previous Work

23

incorporation of duration uncertainty makes PERT more valuable in managing the

projects with uncertainty. However, for most development projects, the delay is

usually caused by rework not by the change of activity duration. Like the Critical Path

Method, PERT cannot explicitly represent the dynamic interaction between

development activities, as well as the rework caused by upstream changes.

2.3.2 Design Structure Matrix

The iterative nature of product development can be addressed using Design Structure

Matrix (an example is shown in Figure 2.4) (Smith and Eppinger, 1997; Eppinger et al.,

1994; Steward, 1981). The DSM method is based on the earlier work in large-scale

system decomposition (Ledet and Himmelblau, 1970; Sargent and Westerberg, 1964).

The DSM provides a compact representation of a complex system by showing

information dependencies in a square matrix with the full set of development activities

as both row and column labels. Activity names are usually listed to the left of the

matrix. A mark in an off-diagonal cell represents an information transfer between two

development activities/stages. For each activity, its row represents its input and its

column shows its output. When activities are listed in temporal order, sub-diagonal

marks represent an input from upstream activities/stages to downstream

activities/stages. Super-diagonal marks denote a feedback from downstream activities

to upstream activities.

The DSM approach, first introduced by Steward (1981) and further developed for large

projects by Eppinger et al. (1994), spawns dozens of research efforts on organizing

product development tasks. DSM has been used to map and predict information flows

among activities (Morelli, Eppinger and Gulati, 1995). It can also be used to

 Chapter 2 Background on Previous Work

24

investigate different strategies for managing product development projects. Osborne

(1993) applied iteration maps and the Design Structure Matrix to describe product

development at a leading semiconductor firm Intel, in terms of cycle time. Osborne’s

work demonstrates the need for further investigation on the impacts of dependencies

among development tasks on project cycle time. It also points to the need for a better

understanding of how key factors which impact cycle time can be identified and

managed. Smith & Eppinger (1997a, 1997b) presented two analytical extensions of the

DSM method. In the first model, they used Eigen-structure analysis to identify

controlling features of iteration in product development projects. In the second model,

the ordering of tasks was manipulated and an expected duration for each task sequence

was calculated using Reward Markov Chain. More recently, Yassine, Falkenburg, and

Chelst (1999) utilized a two-dimensional variable to measure the dependency strength

between design tasks. Ahmadi et al. (2001) addressed the dynamic rework probabilities.

A recent survey by Browning (2001) shows the increasing use of DSM method for

project planning and management. Chen et al. (2004) proposed an approach to quantify

the dependency between design tasks in a DSM. Abdelsalam & Bao (2006) proposed a

framework to determine the sequence of activities that minimizes project cycle time

given stochastic task durations.

DSM is potentially a useful tool in describing and investigating information transfer

and iteration for cycle time reduction. However, DSM cannot directly model the

development process over time. Like the Critical Path Method, DSM assumes that the

dependencies between tasks, the development speed of every task, and the probability

of rework are fixed.

 Chapter 2 Background on Previous Work

25

Figure 2.4 DSM representation of UCAV preliminary design process

(Browning and Eppinger, 2002)

2.3.3 Analytical Models

Previous empirical studies showed that overlapping of consecutive development stages

can reduce project cycle time at the cost of additional development effort (Clark &

Fujimoto, 1991; Smith & Reinertsen, 1998; Sobek et al., 1999; Helms, 2004).

Eisenhardt & Tabrizi (1995) observed that the effect of overlapping is closely related

to the uncertainty of development projects in computer industry. Based on the

empirical study of 140 development projects in the electronics industries, Terwiesh &

Loch (1999) concluded that overlapping is effective only if uncertainty can be resolved

quickly. Clark and Fujimoto (1991) identified that the negative effect of concurrent

execution can be reduced through frequent information exchange.

 1 2 3 4 5 6 7 8 9 10
1
1

1
2

1
3

1
4

Prepare DR&O 1 × × × × ×

Create Design Architecture 2 ×

Distribute Models and Drawings 3 ×

Analyses & Evaluation 4 × × × × × ×

Create Structural Geometry 5 ×

Prepare for FEM 6 ×

Structural Design Conditions 7 ×

Weights & Inertial Analyses 8 × × ×

S&C Analyses & Evaluation 9

Free-body Diagrams & Loads 10

Internal Load Distributions 11

Strength, Stiffness, & Life 12

Manufacturing Planning 13 ×

UCAV Proposal 14 ×

 Chapter 2 Background on Previous Work

26

Based on these empirical studies and literature, a significant amount of research has

been conducted on how to determine the optimal development strategies for concurrent

processes. We group them into three categories: overlapping sequentially dependent

stages, overlapping interdependent stages, and communication policies.

• Overlapping Sequentially Dependent Stages

Krishnan et al. (1997) proposed a framework to determine the optimal number of

information transfers and start time of downstream iteration so as to minimize project

cycle time. They proposed that “evolution” and “sensitivity” are the properties which

determine optimal overlapping. The former is the rate at which upstream information

converges to a final solution, and the information is modeled as an interval that gets

refined over time (see Figure 2.5). They distinguish between fast evolution and slow

evolution. In the case of slow evolution, major changes still happen in the end of

upstream development. Sensitivity describes how vulnerable the downstream stage is

to any changes in the upstream information, and is defined by the time needed by the

downstream stage to incorporate changes. They also distinguish between high and low

sensitivity, where high sensitivity means that a change early in the upstream process

has a large impact on the downstream process and low sensitivity means that a change

early in the upstream process has a small impact on the downstream process.

Krishnan et al. (1997) addressed the overlapping problem by studying how values of

the evolution and sensitivity patterns determine the extent to which overlapping is

appropriate between two sequentially dependent stages. An integer program was

developed to study the effect of overlapping policies on project cycle time, assuming

 Chapter 2 Background on Previous Work

27

upstream evolution and downstream sensitivity are known initially. The method is

illustrated with an example of the door outer panel development process.

Figure 2.5 Upstream evolution

(Krishnan et al. 1997)

In practice, evolution and sensitivity are not always easy to define quantitatively.

Therefore, the authors developed a conceptual framework to address the overlapping

and communication strategies. Four communication and overlapping policies for the

projects with different evolution and sensitivity properties were proposed (Figure 2.6).

When the evolution is slow and sensitivity is low, the stages can be overlapped by

starting downstream stage with preliminary information, and incorporating upstream

modifications in subsequent downstream iteration. It is defined as iterative overlapping.

If evolution is fast and sensitivity is high, then the exchanged information should be

preempted by taking its final value at an earlier point in time. It is called preemptive

overlapping. When the upstream evolution is slow and the downstream sensitivity is

Upstream Activity A

Time
nt (Upstream progress) 0t 1t

Interval
width

Initial
interval

 Chapter 2 Background on Previous Work

28

high, either we can disaggregate the upstream information and transfer part of the

finalized information to the downstream at an earlier point in time or sequential

process can be applied. This approach is called divisive overlapping. Finally, if the

upstream evolution is fast and the downstream sensitivity is low, then the downstream

stage can start earlier and the upstream information can be preempted. This case is

called distributive overlapping.

Figure 2.6 Development policies based on evolution and sensitivity

(Krishnan et al. 1997)

The aim of overlapping is to reduce the cycle time of a project. Besides benefits there

are also risks to the overlapped execution of development processes. This risk is a

result of iterations that occur in product development. As long as a modification takes

place before the start of the downstream stage it only affects the upstream process.

A

B

Iterative overlapping

A

B

Distributive overlapping

A1

B

A

B

Divisive overlapping Preemptive overlapping

A2

Preliminary information exchange Finalized information exchange

Degree of

evolution

Degree of

evolution

Design change

Design change

Time Time

Slow evolution

Fast evolution

Low sensitivity

High sensitivity

Required
iteration
duration

Required
iteration
duration

 Chapter 2 Background on Previous Work

29

However, if the modification occurs after the preliminary information is released the

upstream as well as the downstream process will be affected by the modification. In

the worst case the cycle time of the overlapped process exceeds the lead-time of the

sequential process. Therefore, it is important to determine beforehand whether it is

worth the risk to overlap processes.

However Krishnan et al.’s framework only addresses the appropriate policies when

evolution is extremely slow or fast and sensitivity is extremely low or high. For these

cases, the trade-offs are obvious. However, for most development projects, these

extreme situations almost never happen. Therefore analytical models are needed to

investigate the time-cost trade-off in concurrent processes in detail.

Following Krishnan et al.’s framework, Loch & Terwiesch (1998) have developed an

analytical model of concurrent process which consists of two sequentially dependent

stages. In their work, “upstream evolution” is defined as the continuous design

modification process; “downstream sensitivity” represents the impact of a modification

on downstream rework. Based on these concepts, Loch & Terwiesch presented an

analytical model to determine appropriate overlapping and communication strategies.

They suggest that if engineering changes arise after the start of downstream stage, this

poses the risk of redoing the downstream work. The risk can be high if the dependency

between the stages is high. They propose that communication can reduce the risk of

downstream rework, but at the cost of communication time.

Loch & Terwiesch developed an analytical model that results in optimal overlapping

and communication strategies for the projects with different properties, such as project

 Chapter 2 Background on Previous Work

30

uncertainty, upstream evolution, and downstream sensitivity. Uncertainty is measured

by the average modification rate of upstream information. It is defined as a

nonhomogeneous Poisson process. Evolution speed represents the rate at which the

uncertainty is reduced. The total amount of uncertainty can be reduced through

communication in the form of meetings.

One of the key assumptions of Loch and Terwiesch’s model is that the later the

upstream modifications arrive, the more difficult it is to deal with them. However their

mathematical model can not capture this feature, which leads to wrong conclusions in

their study. The details will be illustrated in Chapters 3 and 4.

Since then, a number of innovation researchers have studied the optimal overlapping

strategies for sequentially dependent product development processes. For example,

Roemer et al. (2000) analyzed the time-cost trade-offs in multistage overlapped

processes by assuming that the downstream rework can be directly estimated by

project engineers. The interdependencies between overlapping and crashing, which are

two commonly used methods for reducing project cycle time, were studied by Roemer

& Ahmadi (2004). Chakravarty (2001) studied the optimal overlapping policies in

three overlapping modes assuming that the incompatibility among development stages

is estimable. While these works have shed light on the analysis of product

development process, it is still not clear how the probability of rework can be properly

assessed in practice.

A common assumption made in this stream of overlapping models is that downstream

stages will not feedback information to its corresponding upstream stages. Hence,

 Chapter 2 Background on Previous Work

31

these models can not effectively deal with interdependent development stages, which

are quite common in complex development projects.

• Overlapping Interdependent Development Stages

Yassine, Chelst, and Falkenburg (1999) used risk and decision analysis methodology

to determine the optimal overlapping policy for a set of activities. Using a probabilistic

model consisting of an upstream stage and a downstream stage, their methodology

finds the optimal overlapping strategy based on the study of independent, sequentially

dependent, and interdependent stages/activities. They proposed three categories of

information structures: sequential, partial overlapping, and concurrent. They proposed

that sequential process takes place for dependent stages; partial overlapping can take

place for either sequentially dependent stages or interdependent stages; concurrent

execution is only suitable for independent development stages. These propositions

describe how the development stages should be overlapped. However, this paper did

not address the key question for project management: how much to overlap. The

extreme points of partial overlapping are sequential development and concurrent

development. Therefore, the authors didn’t make it clear how NPD process should be

organized for different projects.

Carrascosa et al. (1998) presented a model to estimate project cycle time for different

task sequences and overlapping degrees using concepts of probability of change and

impact. However, the assumption made in their study is that there is only one

parameter causing a task to change during the evolution of each task, which limits its

application. Joglekar et al. (2001) presented the performance generation model (PGM)

to derive insights on optimal concurrency strategies between coupled development

 Chapter 2 Background on Previous Work

32

stages under a deadline. Bhuiyan et al. (2004) proposed a stochastic simulation model

and discussed the impact of overlapping and functional interaction on project

performance. Wang & Yan (2005) focused on the optimization of the concurrency

between an upstream activity and a number of downstream activities. These models

were built on the assumption that rework probability is estimable. However, it is still

not clear how the probability of rework can be properly assessed in practice.

• Communication Policies

Facilitating communication among business functions and/or members in cross-

functional teams are commonly used by many companies (Cooper, 1994; Swink et al.,

1996; Minderhoud & Fraser, 2005). It is well known that communication among

development teams can reduce project uncertainties, but at the expense of additional

time and cost for communication. Patrashkova-Volzdoska et al. (2003) reported that

communication frequency and performance are nonlinearly dependent with an

inverted-U relationship, based on a survey of 60 cross-functional teams. Helms (2004)

observed that the information exchange among development teams is time consuming

in chemical industries.

In spite of its importance, the issue of communication policies has been addressed only

to a limited extent in the analytical literature. Ha & Porteus (1995) developed an

analytical model and studied the benefit of early detection of upstream flaws through

overlapping and frequent communication between development stages. In their study,

the development stages are assumed to be interdependent. In contract to sequentially

dependent stages, the nature of interdependent activities requires more frequent

communication. If information exchange is too frequent, then communication time and

 Chapter 2 Background on Previous Work

33

cost would increase significantly. However, infrequent information exchange would

delay the identification of the design flaws and increase the amount of rework of the

upstream stage. Given these trade-offs, they seek to determine the optimal

communication frequency that minimizes the expected project completion time. A

dynamic program was developed and it showed that the overlapped development must

be accompanied by progress reviews to minimize the risk of downstream rework.

Moreover, the frequency of communication or progress reviews must be balanced with

the value gained from having them. With appropriate overlapping and communication

policies, project cycle time can be reduced without significantly increasing the risk of

downstream rework. Loch & Terwiesch (1998) extended the work of Ha & Porteus,

and developed an analytical model to determine the optimal overlapping degree and

the communication frequency between upstream and downstream stages.

2.3.4 Discrete Event Simulation Models

Another stream of research uses simulation to explore the linkage between task

sequences and project performance. Discrete event simulation (DES) model and

System Dynamics (SD) model are two methods commonly used to simulate NPD

process. Discrete Event Simulation (DES) model usually assumes that the PD process

is composed of a finite set of activities and information flow only exists at the

beginning or at the end of an activity.

Bhuiyan et al. (2004) developed a DES model to study the impact of rework on

development cycle time and effort (man power). This model demonstrates the

relationships between overlapping policy, functional interaction strategy, project cycle

time, and development effort. However, this stochastic model cannot directly simulate

 Chapter 2 Background on Previous Work

34

the structure of a development process over time. The dependencies between stages,

the development speed of every stage and the probability of rework cannot be adjusted

continuously over the development process. This model cannot be used to study

complex development processes because the building blocks of the model are

developed based on simplified stage-gate processes.

Some other discrete event simulation models have been developed to study product

development projects. Browning & Eppinger (2002) highlighted the effects of varying

process architecture by simulating NPD process as a network of activities that

exchange deliverables. The model outputs sample cost and schedule outcome

distributions. Each distribution is used with a target and an impact function to

determine a risk factor. Alternative process architectures can be compared to reveal

opportunities to trade cost and schedule risk. Gil et al. (2004) simulated the concept

development process for semiconductor fabrication facilities, and found that some

decision-making postponement can help increase the predictability of concept

development duration and reduce resources spent in design without increasing the risk

of exceeding project deadlines. Cho & Eppinger (2005) extended the work of

Browning & Eppinger (2002) by accounting for resource constraints.

2.3.5 System Dynamics Models

Many models of product development have been built on System Dynamics approach.

In this section, we generally introduced the System Dynamics models of product

development. For more detailed review, readers can refer to the work done by Ford

(1995) and Chi (2001).

 Chapter 2 Background on Previous Work

35

Roberts (1974) developed a small model with System Dynamics approach to

investigate the management of R&D projects. They assume that each activity or stage

is composed of many “job units” which are uniform in size. The completion rate of the

“job units” is determined by available manpower and productivity. Management

decisions (such as the change of manpower) are based on perceived progress, which

includes both actual progress and perceptual errors.

Cooper (1980) and Reichelt (1990) described the framework of large System

Dynamics models developed by Pugh-Roberts Associates for claims settlement of

large scale shipbuilding operations. The structure of the model was further illustrated

in Cooper, 1993a, b, c. Cooper (1980, 1993a, b, c) simulated the major phases of

shipbuilding operation and modeled the impacts of rework in projects on cycle time

and development cost. He distinguishes between the activities of the initial completion

of development tasks and rework and discusses the rework caused by customer

changes. Project phases are dependent in this model. Therefore, engineering changes

may propagate across project phases if they are not identified on time. A delay in

discovering engineering changes increases the total amount of rework, reduces project

quality, and slows the completion of the project. Reichelt (1990) describes the

dependency of downstream product development stage on its preceding stage in a two-

stage process. Cooper and Reichelt’s research adds several valuable concepts to the

literature of project management:

1) Customer changes will significantly increase the time for coordination and rework,

and thus increase project cycle time and cost;

2) Upstream changes will not only increase the rework of that stage but also increase

the rework of all the downstream stages depending on the output of the stage;

 Chapter 2 Background on Previous Work

36

3) Manpower diverted from other development stages disrupts work flow and requires

additional labor, lowering the average skill level and thus reducing development

rate and increasing development cost.

Richardson and Pugh (1981) developed a System Dynamics model of single R&D

projects. The rework process is modeled in detail, which expands the resource

effectiveness portion of the fundamental structure used by Roberts. Richardson and

Pugh distinguish between tasks-done-correctly and tasks-requiring-rework. Project

cycle time and the amount of rework are significantly affected by the error rate in

product development and the discovery rate of development errors. Based on their

model, Richardson and Pugh illustrate the effects of different assumptions and policies

on project cycle time and identify some impractical policies which were obtained on

invalid assumptions of rework or project scope.

Abdel-Hamid (1984) built a model of software development to better understand the

root causes of cost overruns, late deliveries, and user dissatisfaction. In this model,

software production is influenced by human resource management, planning, and

controlling. Schedule pressure increases the predicated amount of work force which is

necessary to complete the project on schedule. Schedule pressure also influences the

productivity of work force, the error generation rate, and the resource allocation in

different development activities.

The impacts of project manager motivations on project performance are investigated

by Jessen (1990) with a model based upon resources strategy, targets, and rework. This

 Chapter 2 Background on Previous Work

37

model focused on the roles of balancing feedback loops in projects. It improves our

understanding of the motivational structures in projects.

 “Gate functions” were introduced by Homer et al. (1993) to describe the constraints

on the progress of a development stage imposed by both the progress of the preceding

stages and the work within the stage. In this model, graphical table functions are used

to describe these precedence relationships in more detail than possible with the Critical

Path or PERT methods (Ford, 1995). For example, the work availability of a

downstream stage can be affected by the progress of the upstream stage throughout the

duration of the downstream phase. However, using CPM or PERT, the information

transfer only occurs at the start or finish of a development stage. Homer et al.’s model

uses both available work and resources to constrain progress. We adopted this structure

in the SD model to describe information prerequisites.

Ford et al. (1993) did a case study in an electronic entertainment equipment

manufacturer and investigated the interface between two product development groups.

The relationships among coordination, schedule and project quality are focused in this

model. The authors explicitly modeled rework due to development errors and

operational iteration. They distinguished between required and voluntary iteration in

product development. Based on this model, they studied the influence of schedule

pressure on decisions about iteration for quality. The time-quality tradeoff was also

discussed in this model.

Whilst the above studies have covered the three domains (monitoring and control,

rework and human resources) as identified by Rodrigues and Bowers (1996), it is Ford

 Chapter 2 Background on Previous Work

38

and Sterman (1998) who tie these together with a process structure. Ford and Sterman

(1998) developed a product development model which includes all four performance

drivers: process structure, resources, targets and scope. They have demonstrated the

importance of integrating process structure with resource, scope, and targets in

dynamic models of development projects. More specifically, Ford and Sterman (1998)

explicitly describes the interdependency of the tasks within a phase and the links

among multiple project phases.

Chi (2001) proposed that the segregation of knowledge is the endogenous factor which

results in an inherent need for iteration. They developed a System Dynamics model to

investigate the impacts of such knowledge segregation on the performance of product

development projects. This proposed framework helps management to manage the

knowledge within NPD projects.

The existing System Dynamics literature has a rich history of modeling development

projects. All these models contribute to the description and documentation of the tight

linkage between development resources, resource management, and project

performance. However, current literature can not explicitly simulate the rework

generation process in concurrent product development. This limits the application of

SD models in product development projects since CE has already been applied in most

development projects. The SD model developed in Chapter 5 addresses it by explicitly

modeling the interaction between overlapped development stages. It will help

management derive appropriate development policies and thus improve project

performance.

 Chapter 2 Background on Previous Work

39

2.3.6 Summary of the Models for Product Development

Five different methods to address the development sequence and strategies have been

suggested in the literature. CPM and PERT are the methods developed for sequential

process and thus they are not applicable for concurrent product development. DSM is a

descriptive method which is used in our thesis to represent the general relationships of

the development stages in a mobile phone development company in Chapter 5. DSM is

not suitable for studying overlapping and communication policies directly, since it can

not simulate the interaction between development stages. The continuous nature of

NPD process also makes DES not suitable. Therefore, in this thesis, only DSM method,

analytical modeling method, and SD approach are applied. DSM is used to describe the

general process of product development; two analytical models and a SD model are

developed to study the optimal/appropriate development policies for different

concurrent processes.

2.4 A Framework to Study Concurrent Processes

Although many models have been developed to study new product development,

current models cannot capture the rework generation process in concurrent processes.

Therefore, management still lacks of tools to derive appropriate overlapping and

communication strategies for concurrent processes.

However the current literature does give some useful concepts for modeling concurrent

processes:

1) Krishnan et al. (1997) proposed that “evolution” and “sensitivity” are the

properties which determine optimal overlapping.

 Chapter 2 Background on Previous Work

40

2) The information evolution process for product development projects is usually

available and it is one of the key factors affecting downstream rework (Krishnan et

al., 1997; Roemer et al., 2000).

3) Terwiesch and Loch (1999) and many other researchers (e.g. Carrascosa et al.,

1998) make it clear that the downstream sensitivity is linearly related to

downstream progress.

These concepts are supported by empirical studies (e.g. Eisenhardt and Tabrizi, 1995;

Helms, 2004), and have had a strong influence on the literature on concurrent

engineering. They are the start point of this thesis.

2.5 Summary of Literature Evaluation

This chapter documents the shift from sequential product development processes to

dynamic development processes because of the trends of concurrent development. It

identifies several fundamental features of concurrent development processes such as

overlapping of development stages, cross-functional team, and rework due to upstream

changes.

Traditional project management models based on the Critical Path Method (CPM) and

Program Evaluation and Review Technique (PERT) assume the process is in a static

fashion with activity duration estimates and precedence relationships describing the

network of development activities. Consequently, these models can not deal with

concurrent product development.

Although some researchers have built models to study the relationship between the

features of concurrent processes and NPD performance, most of these models simply

 Chapter 2 Background on Previous Work

41

assume that the rework probability is directly estimable. However, from our case study

and previous empirical literature, it is almost impossible to estimate these parameters

directly, which leads to the fact that although there are several models built for

analyzing concurrent processes, most of them cannot be applied directly in practice

(Jun et al., 2005). This research proposes three models to describe concurrent

development processes with different types of information dependencies. Using these

models, we can derive appropriate development policies based on the data available for

most development projects such as historical data of modifications, and dependence

between development stages. The applicability and usefulness of these models are

illustrated and validated with the case studies in three companies developing consumer

electronics products.

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

42

CHAPTER 3

MANAGING CONCURRENT DEVELOPMENT

PROCESSES WITH LOW COMMUNICATION

COST

This chapter presents an analytical model for managing concurrent and sequentially

dependent development processes in which communication cost is low. Firstly, the

relevant literature is reviewed and the research gap is illustrated. Then, we investigate

the downstream progress in detail, which is essential to derive the optimal overlapping

policies. We find that downstream progress increases over time when upstream

evolution is fast or linear, but it is indefinite when upstream evolution is slow. After

that, we present the optimal overlapping policies taking into account the complexity of

downstream progress. The impact of different project properties (such as dependency

between development stages, rework rate, and opportunity cost of time) on overlapping

policies is discussed. Finally, we derive the optimal functional interaction strategies

under the condition that optimal overlapping is followed. The methodology is

illustrated with a case study at a handset design company.

3.1 Introduction

The increasing importance of rapid product development has given rise to a large body

of literature dedicated to development cycle time reduction (Krishnan and Ulrich, 2001;

Carrillo and Franza, 2006). Overlapping and functional interaction are two of the most

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

43

popular approaches which are considered necessary to accelerate product development

process and reduce project uncertainty (e.g. Wheelwright and Clark, 1992; Ganapathy

and Goh, 1997; Smith and Reinertsen, 1998; Joglekar and Ford, 2005). Overlapping

refers to the product development processes where the downstream stage starts prior to

the completion of the upstream stage. Functional interaction is defined as the

involvement of downstream engineers in upstream development.

Despite the popularity of overlapping and functional interaction, empirical studies

show that the gain from these approaches must be weighed against the additional time

and cost for rework and communication (Cordero, 1991; Bhuiyan et al., 2006;

Eisenhardt and Tabrizi, 1995; Von Corswant and Tunälv, 2002). Overlapping allows

the downstream stage to start earlier at the cost of additional rework arising from

subsequent modifications of the upstream stage (Krishnan et al., 1997; Helms, 2002).

For example, mould fabrication can start before the detailed design is finalized so that

development cycle time may be reduced. However, when the product design is

changed the mould will have to be revised or re-fabricated, which is costly and time

consuming. Overlapping may not be beneficial when the upstream information

changes significantly and/or the downstream stage is highly dependent on upstream

output. Functional interaction reduces upstream uncertainty and downstream rework at

the cost of additional time for communication and cooperation (Loch and Terwiesch

1998). Consequently, analytical investigation of the trade-offs involved is needed.

Note that without overlapping, rework also occurs (e.g. product design may be

changed because it doesn’t fit with product equipment requirements). In this thesis we

only focus on the rework which is caused by overlapping.

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

44

Some analytical models have been developed to determine the optimal overlapping and

functional interaction levels. We sorted them into two groups. In the first group,

researchers assume that the total amount of downstream rework for different projects

with different overlapping degrees is directly estimable. For example, Roemer et al.

(2000) analyzed the time-cost trade-offs for multistage overlapped processes by

assuming that the downstream rework can be estimated by project engineers. The

interdependencies between overlapping and crashing were studied by Roemer and

Ahmadi (2004). Chakravarty (2001) studied the optimal overlapping policies in three

overlapping modes assuming the incompatibility among development stages is

estimable. While these works have shed light on the analysis of product development

process, it is still not clear how the probability of rework can be determined in practice

(Jun et al., 2005).

On the contrary, the second group of studies assumes that the rework probability is

unavailable in practice but can be derived according to certain project properties, such

as upstream evolution, project uncertainty, and dependency between development

stages. Krishnan et al. (1997) developed a model-based framework to manage the

overlapping of two development stages. They showed that “upstream evolution” and

“downstream sensitivity” are the two properties determining optimal overlapping

strategies. Loch and Terwiesch (1998) adapted the concepts of evolution and

sensitivity: “upstream evolution” is defined as the speed at which the preliminary

information is modified; “downstream sensitivity” represents the impact of a

modification on downstream rework. Based on these concepts, they developed an

analytical model and derived the optimal communication strategies for overlapped

processes. These studies are supported by empirical studies (e.g. Eisenhardt and

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

45

Tabrizi, 1995; Terwiesch and Loch, 1999; Helms, 2004), and have had a strong

influence on the literature on concurrent engineering.

The model developed in this chapter follows the work of Krishnan et al. (1997) and

Loch and Terwiesch (1998) but differs from their research in three important aspects.

Firstly, we model the impact of an upstream change on downstream rework as a

function of the downstream progress and the dependency of overlapped stages

(Terwiesch and Loch, 1999; Thomke and Bell, 2001; Lin et al., 2008). Downstream

progress is the amount of work which is completed but not corrupted by upstream

changes. Dependency describes the percentage of the downstream progress which will

be affected by a change. Figure 3.1 shows the progress of stage i. For the purpose of

explanation, we assume that two changes happen at 1t and 2t (in reality, changes have

a probability of happening at any time). At time 1t , the progress of stage i would be 5

if there is no change. If a change takes place at 1t and the dependency is 20%, the

progress will be dropped to 4 and 1 day’s rework arise. The same dynamics take place

at 2t . From this example we can see that the progress of the downstream stage is

dynamically affected by project properties (such as upstream evolution and

dependency). Krishnan et al. (1997) simplified the impact of upstream changes on

downstream rework by assuming information updating was allowed only when an

iteration of the downstream stage was completed (i.e. the downstream progress is

100%). Therefore they can use a single parameter, “sensitivity”, to represent the

impact of upstream modifications on downstream rework. For the simplicity of their

model, Loch & Terwiesch (1998) assume that the impact of engineering changes is

linearly related to downstream time, i.e. they implicitly assume that downstream

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

46

progress equals downstream time. This assumption does not guarantee the fact that the

downstream progress can not be negative at any time. For example, in Figure 3.1, 10

modifications arrive at time 2t . It is clear that up to 10 days of downstream work can

be affected by upstream modifications, since the downstream progress can not be

negative. However, based on their assumption, a total of 20 days of rework arises if the

dependency is 20% (i.e. the downstream progress becomes -10 days at 2t). Unlike

their research, we investigate the downstream progress in detail. Such analysis is

essential to derive the optimal overlapping and functional interaction strategies

(Carrascosa et al., 1998).

Figure 3.1 The progress of a downstream stage

Secondly, our model is more general with respect to the evolution patterns studied.

Eppinger et al. (1994) pointed out that, in a typical design project, most engineering

changes arise somewhere in the middle of the project which implies that the evolution

function may be S-shaped. Krishnan et al. (1997) defined two types of upstream

information evolution: “fast evolution” and “slow evolution”. If the modification rate

decreases with time, the evolution is said to be fast. In contrast, the modification rate

increases over time in slow evolution. Loch and Terwiesch (1998) studied the

1t 2t

5

Progress of stage i (days)

4

8

10

Time (days)

Impact of the
first

Impact of the
second

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

47

communication and overlapping policies for the projects in which the modification rate

is linearly related to development time. While making specific assumption of the

upstream evolution can help to derive management insights, it also limits the

application of the model. Our model is developed based on a general assumption of the

upstream evolution: the modification rate is non-negative, which ensures our model to

be a good abstraction of practice.

Thirdly, project performance is measured by time and cost in this model. There are

three traditional measures of project performance: time, cost, and quality. For most

derivative projects the target quality is often well defined. Hence, the objective for

management is to achieve the required quality with less time and cost. However, most

of the extant literature, such as Krishnan et al. (1997) and Loch and Terwiesch (1998),

takes development cycle time as the sole measure for project performance (Gerwin and

Barrowman, 2002). Unlike their research, we explicitly address the trade-off between

cycle time and cost. Furthermore, the relationship between project properties (e.g.

uncertainty, dependency, and evolution) and project performance is explored. (As we

know, the time-cost trade-off is also studied by some other researchers, such as

Roemer et al. (2000) and Chakravarty (2001). However all of these studies are

developed based on the assumption that the total amount of downstream rework is

directly estimable and thus the effect of uncertainty, upstream evolution, and

dependency on development cycle time and cost is not explicitly explored.)

This chapter is organized as follows. Section 3.2 introduces an analytic model which

captures the relationship between upstream evolution, dependency of development

stages, overlapping and functional interaction policies, and project performance.

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

48

Section 3.3 discusses the progress of downstream stage and the earliest downstream

start time in detail. In section 3.4, we present the optimal overlapping and functional

interaction policies, taking into account the complexity of downstream progress. Then

two closely related problems are discussed. In section 3.6, the methodology is

illustrated with a case study at a handset design company. Conclusions are summarized

in section 3.7.

3.2 Model Formulation

In this section we first formulate the tradeoffs of cost and development cycle time.

Then, based on a review of relevant literature (e.g. Krishnan et al., 1997; Loch and

Terwiesch, 1998; Carrascosa et al., 1998) we introduce a general mathematical model

of upstream evolution and its impact on downstream rework. The objective function,

constraint equations, model parameters, and decision variables are summarized at the

end of this section.

3.2.1 Overview of the Model

The theoretical basis of our model is the information-based view of product

development (Clark and Fujimoto, 1991), in which individual development stages are

viewed as information-processing units that receive information from upstream stages

and transform it into new information to be passed on to downstream stages.

Figure 3.2 shows the information transformation between two overlapped development

stages. Unlike the traditional sequential process, in overlapped product development, a

downstream stage can start on preliminary information. Without loss of generality, we

assume preliminary information of the upstream is available at time zero and it is

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

49

continuously modified until the end of the upstream stage. uD and dD denote the

durations of initial development of upstream and downstream stages respectively,

where the duration of initial development is the expected time it takes to perform a

stage without overlapping. The downstream stage is dependent on the upstream stage

and cannot be finished earlier. Consequently, the earliest start time of the downstream

stage et satisfies �� ≤ ��. The exact point of �� is discussed in Section 3.3 and can be

derived on Proposition 3.3. The decision variable st , which is the start time of

downstream stage, ranges between et and uD . A smaller st corresponds to higher

overlapping degree.

Figure 3.2 Overlapped product development process

Preliminary information Modified information

0

0

τ
u

D

�� − ��

 τ

u
D

The time when preliminary

information is available

Functional interaction
duration

Downstream development

duration

d

D
Start time of downstream
stage

Upstream development

duration

�� Downstream rework duration

T

Decision variables

Development cycle time T

time

	

�
 + 	

�
 + ��

	 Time spent on rework in the

overlapped period

�� ��

Finish time of y ��

��

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

50

In Figure 3.2, functional interaction and upstream development are sequential because

they are usually sequentially done by one team. It is consistent with previous studies

(e.g., Loch and Terwiesch, 1998). Functional interaction can also be applied in

downstream and it will affect the overlapping between downstream stage and the later

development stages. In this model, we only study the overlapping between two

development stages. Therefore, functional interaction in downstream is not studied.

Without considering the drawbacks of overlapping, the development cycle time of the

two stages can be reduced to ds Dt + . However, because downstream stage starts with

preliminary information, upstream changes may lead to rework at the downstream

stage. The downstream rework duration is denoted by (,)r sD t τ . Functional interaction

reduces upstream uncertainty and downstream rework but increase interaction time τ

(Ha and Porteus, 1995; Loch and Terwiesch, 1998). Taking into account of the rework

duration and functional interaction time, the product development time for concurrent

approach is:

(,)c s d r sT t D D tτ τ= + + + (3.1)

As we know development cycle time for traditional sequential process is s u dT D D= + .

Thus, the reduced cycle time due to overlapping and functional interaction is:

(,)s c u s r sT T D t D tτ τ− = − − − (3.2)

Defining tc as the opportunity cost of time, the gain from reducing development cycle

time is ((,))t u s r sc D t D tτ τ− − − . Let cτ and rc be the unit cost of functional interaction

and rework respectively. The additional cost for overlapping and functional interaction

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

51

is (,)r r sc c D tττ τ+ . The overall gain from these approaches can be formulated by

summing the negative and positive effects of overlapping and functional interaction, i.e.

: ((,)) (,)t u s r s r r sMax G c D t D t c c D tττ τ τ τ= − − − − − (3.3)

3.2.2 Upstream Information Evolution

In product development, modifications are inevitable because of the high uncertainty

of development projects. We define upstream evolution as the arriving rate of upstream

changes. These changes affect the preliminary information based on which

downstream stage has begun work. These changes follow a nonhomogeneous Poisson

process with rate ()tµτ (see Loch & Terwiesch (1998), Carrascosa et al. (1998), and

Jun et al. (2005) for the justification of the Poisson assumption). Consistent with

Krishnan et al. (1997) and Loch & Terwiesch (1998), the evolution is said to be fast if

the modification rate ()tµτ decreases with �. In this case, the preliminary information

gets close to its final form rapidly. Slow evolution indicates that ()tµτ increases with �.

The evolution is linear, if the modifications are generated as a homogeneous Poisson

process.

Figure 3.3 Impact of functional interaction on uncertainty

a

a b+

τ
Functional interaction

Level of

uncertainty
exp{ }a b tλ+ −

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

52

Clausing (1994) identified two types of uncertainties. One is the result of the fact that

it is difficult to make the design concept very clear at the beginning. The other is the

modifications caused by problems regarding manufacturability and maintainability of

the product. Previous studies (e.g. Clausing, 1994; Adler, 1995; Bhuiyan et al., 2004)

have shown that the second type of uncertainty can be reduced through functional

interaction, and the uncertainty reduction usually exhibits diminishing returns (see

Figure 3.3). Consistent with these empirical results, the relationship between

modification rate and functional interaction is modeled as:

 0

exp{ }
() ()

a b
t t

a b
τ

λτ
µ µ

+ −
=

+
 (3.4)

a b+ represents the overall level of uncertainty in the absence of functional interaction.

The uncertainty which can be reduced through functional interaction is captured by b .

Parameter λ represents the cross-functional teams’ capability to reduce upstream

uncertainty. 0 ()tµ denotes the modification rate if there is no functional interaction

(0=τ).

3.2.3 Downstream Rework

Downstream rework arises when the modifications of upstream stage corrupt the

relevant tasks in the downstream stage. In other words, these tasks need to be reworked

because they were based on incorrect information. Since there are numerous tasks in a

project, it is infeasible to tract tasks individually. Consistent with previous literature

(e.g. Chakravarty, 2001), we describe workload of development stage in terms of

duration. That is the workload equals the duration of initial development. For example,

we can say there is 10 days’ work. In this model, the workloads of upstream and

downstream are �� and �
 respectively. Consequently the initial development rate of

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

53

downstream, which is the regular speed of downstream development without

overlapping, is equal to one. Let r denote the downstream rework rate and 1≥r

because of the learning effect. As shown in Figure 3.2, u sD t− is the overlapped period

of two consecutive development stages. y and ytD su −− denote the time spent on

rework and initial development in the overlapped period respectively. Therefore, the

total amount of tasks completed in the overlapped period equals ryytD su +−− .

()uP D is the downstream progress at time uD , i.e. the amount of work which is

completed on preliminary information but not affected by upstream modifications. The

total amount of rework and rework duration are:

)()1(),(usus DPyrtDtR −−+−=τ (3.5)

(,)
(,) s

r s

R t
D t

r

τ
τ = (3.6)

where y is constrained by the total amount of tasks can be reworked at time �� .

r

tPyrt
y

yy)()1(−−+
≤ . (3.7)

To derive the rework duration (,)r sD t τ , it is essential to determine the expression of

downstream progress. Downstream progress rate is composed of two key elements:

development rate which is one for initial development and r for rework, and

corruption rate which is the effect of upstream modifications on the progress of the

downstream stage. Corruption rate is determined by modification rate, ()tτµ ,

dependency between development stages, k , and the progress of downstream stage,

()P t (Terwiesch and Loch, 1999; Carrascosa et al., 1998). More completed

downstream work will be corrupted when modification rate and dependency are high.

The progress of downstream stage accounts for the reason why additional rework

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

54

arises in overlapped product development. For traditional sequential process,

modifications are found and resolved before the downstream stage starts, i.e. the

changes are made when the downstream progress is zero. However, in overlapped

process, the downstream stage starts on preliminary information in order to reduce

development cycle time. Rework arises when modifications are made after the

downstream stage starts (Krishnan et al., 1997; Lin et al., 2008). The downstream

progress rate is formulated as follows:

)()(1
)(

tPtk
t

tP
τµ−=

∂

∂
 for � < �� − 	 or �� < � < �� (3.8)

)()(
)(

tPtkr
t

tP
τµ−=

∂

∂
 for �� − 	 ≤ � ≤ �� (3.9)

Equation (3.8) represents the progress rate of initial development. Equation (3.9)

denotes the progress of rework. These Equations show the dynamic relationship

between progress rate and downstream progress. Based on these equations we can

derive �(�), the downstream progress at time �. Let � = �� , we can derive �(��).

Then using equation 3.5, we can derive the total amount of rework. In section 3.4, the

downstream progress will be investigated in greater detail.

3.2.4 Summary

Based on the elements discussed above, we formulate the optimization problem as

follows:

(,) (,)
max : ()s r s

t u s

R t c R t
G c D t c

r r
τ

τ τ
τ τ= − − − − − ; (3.10)

subject to: Equations (3.4), (3.5), (3.7), (3.8),(3.9);

 e s ut t D≤ ≤ ; (3.11)

 0≥τ ; (3.12)

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

55

Table 3.1 Model parameters and decision variables

Parameters Definition

uD Upstream development duration

dD Downstream development duration

y Time spent on initial development in the overlapped period

()tτµ Rate of upstream modifications

a Modifications irreducible through functional interaction

b Modifications reducible through functional interaction

λ Functional interaction capability

tc
Opportunity cost of time (the cost of increasing one unit of

time-to-market)

cτ Functional interaction cost

rc Rework cost

k

Dependency between development stages (the percentage

of downstream progress which will be affected by a

modification)

r Rework rate of downstream stage

Decision Variables Definition

y Time spent on rework in the overlapped period

st Start time of downstream stage

yt Finish time of y

τ Functional interaction duration

All variables are summarized in Table 3.1. Our model focuses on the effects of

overlapping and functional interaction on cost and cycle time. It is employed to answer

the following managerial questions:

(1) What is the relationship of downstream progress with time, upstream

uncertainty, dependency of development stages, and other project properties?

(2) How can we maximize project performance through overlapping?

(3) What is the relationship between project properties (e.g. modification rate,

dependency, rework rate, and rework cost) and overlapping strategy?

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

56

 (4) How can we maximize project performance by applying overlapping and

functional interaction simultaneously?

3.3 Downstream Progress and Earliest Start Time

To understand the impact of an upstream modification on downstream rework, the

downstream progress should be investigated first. Assume that the functional

interaction duration τ and the start time of downstream stage st are given. In this

section, we first discuss the priority ordering of initial development and rework. Then,

we derive the expression of downstream progress ()P t , the total amount of

downstream rework (,)sR t τ , and the earliest downstream start time. The results are

summarized in Propositions 3.1, 3.2, and 3.3.

Proposition 3.1

For downstream development, initial development is prior to rework.

Proof. To enhance readability of the thesis, all proofs of this chapter are shown in

Appendix A.

In overlapped product development, tasks can be continuously corrupted by upstream

modifications. Therefore at certain time, engineers can do the design tasks that have

yet to be completed or the design tasks that have been completed but are corrupted by

upstream modifications. Proposition 3.1 proves that the traditional working sequence

(rework follows initial development) (Black and Repenning, 2001) is optimal when

rework rate is not lower than initial development. An empirical support of this result is

provided by Repenning (2001). Furthermore, if rework is prior to initial development,

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

57

rework and initial development will be completely interwoven. Frequent changes from

initial development to rework and from rework to initial development can significantly

increase setup time, which primarily comprises time for procuring specialized tooling

for build operations, as well as time and cost penalties associate with an engineer’s

learning curve (Chakravarty, 2001; Meixell et al. 2006). Moreover, for some tasks,

frequent redoing is not allowable. For example, frequent change of hard mold will

damage it and thus causing a tremendous increase of cost. Therefore, in practice,

rework usually begins after the initial tasks are finished (e.g. Black and Repenning,

2001; Lin et al., 2008). Note, for many projects, a small percentage of rework, which

constraints the initial development, is done before finishing the initial development.

For modeling simplicity, we ignore the trivial effect of it on project performance.

Proposition 3.1 is the base for the following results. Moreover, it can be directly

applied for guiding resource allocation among development activities.

Proposition 3.2

(a) Downstream progress at time �� is
















≤≤+−⋅+

−=

+≤−=

∫ ∫∫

∫ ∫∫

∫ ∫ ∫

+

+

uds

t

tD

t

t

t

t

tD

t

t

t

t

t

uds

t

t

t

t

t

t

DtDtifdtdxxkdttkr

dtdxxkdttktP

DDttifdtdxxkdttktP

sd ss

sd

s ss

s s s

})(exp{})(exp{

})(exp{})(exp{)(

),min(})(exp{})(exp{)(

ττ

ττ

ττ

µµ

µµ

µµ

 (b) The total amount of downstream rework is















−≤−−−−+

−−=

−≥−−−=

∫ ∫

∫ ∫

∫ ∫

+

+

dus

D

tD

D

t
dsu

tD

t

D

t
ds

dus

D

t

D

t
sus

DDtifdtdxxkDtDr

dtdxxkDtR

DDtifdtdxxktDtR

u

sd

u

sd

s

u

u

s

u

]})(exp{[

})(exp{),(

})(exp{),(

τ

τ

τ

µ

µτ

µτ

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

58

(c) The progress of downstream stage increases over time when ��(�) is nonincreasing

with t, but it is indefinite when ��(�) increases with �.

Figure 3.4 Downstream progress: numerical example

Proposition 3.2(a) expresses the downstream progress at time t . Only initial

development should be done in the overlapped period when dus DDt −≥ , since initial

development is prior to rework. When dus DDt −≤ , the time spent on rework in the

overlapped period is sdu tDD −− . By these concepts, the downstream progress at

time t is derived. Then, by equation (3.5) and Proposition 3.2(a), the total amount of

rework is derived in Proposition 3.2(b). Proposition 3.2(c) describes the change of

downstream progress over time. Downstream progress increases monotonously over

time when the upstream evolution is fast or linear. However, for slow evolution, the

corruption rate may dominate at the end of the project which leads to the decrease of

downstream progress. It is further illustrated with a numerical example in Figure 3.4,

which shows that the change of downstream progress over time is complex. Detailed

investigation of it is essential to derive optimal overlapping policies.

Proposition 3.3

2 4 6 8 10

t

1

2

3

4

5

6

() 10tτµ =

() 2t tτµ =

10u dD D= = weeks;

0.02k = ; 0st =

()P t

Time

Downstream

progress

() 20 2t tτµ = −

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

59

Define the earliest start time as the time which ensures development teams work

continuously. The earliest start time of downstream stage is zero if du DD ≤ or

d

D D

t

D

t

D

D
Ddtdxxkdtdxxkr

d uuu

d

≤−+− ∫ ∫∫∫ 0
})(exp{})(exp{ ττ µµ

Otherwise et must satisfy the following equation:

d

tD

t

D

t

D

t

D

tD
Ddtdxxkdtdxxkr

sd

s

uuu

sd

=−+− ∫ ∫∫∫
+

+
})(exp{})(exp{ ττ µµ

Furthermore et can be easily found through a simple binary search, because the left-

hand side of the equation is strictly decreasing with st .

Proposition 3.3 clearly defines the earliest downstream start time. This provides the

base for analyzing optimal overlapping policies. In the next section, we try to find the

exact downstream start time which maximizes project performance.

3.4 Analysis of the Optimal Policies

3.4.1 Optimal Overlapping

Assume the functional interaction duration τ is exogenously determined. With

Propositions 3.2 and 3.3 we can now determine the optimal overlapping degree.

Proposition 3.4

(a) The objective function G is concave with respect to st , i.e., there is a unique

optimum st in the interval [,]e ut D .

(b) The optimal start time of downstream stage, denoted by *
st , equals to et if

due DDt −≥ and

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

60

0}])(exp{1[≤−−
+

+− ∫
u

e

D

t

rt

t dttk
r

cc
c τµ (3.13)

or

due DDt −≤ and

0)(exp{})(exp{
))(1(

≤−
+

−−
+−

− ∫∫ +

u

e

u

ed

D

t

rt
D

tD

rt

r dttk
r

cc
dttk

r

ccr
c ττ µµ (3.14)

(c) The optimal start time of downstream stage should be et , when 1 r

t

c
r

c
≥ + . This

conclusion is independent of the properties of uncertainty, dependency, and upstream

evolution.

(d) If due DDt −≥ and 0}])(exp{1[>−−
+

+− ∫
u

e

D

t

rt

t dttk
r

cc
c τµ

The optimal start time can be derived from the following equation:

)1ln(
1

)(
*

rt

t
D

t cc

cr

k
dtt

u

s +

⋅
−⋅−=∫ τµ (3.15)

If due DDt −≤ and

0})(exp{})(exp{
))(1(

>−
+

−−
+−

− ∫∫ +

u

e

u

ed

D

t

rt
D

tD

rt

r dttk
r

cc
dttk

r

ccr
c ττ µµ

Through a simple binary search, the optimal start time can be derived from the

following equation

0})(exp{})(exp{
))(1(

=−
+

−−
+−

− ∫∫ +

u

s

u

sd

D

t

rt
D

tD

rt

r dttk
r

cc
dttk

r

ccr
c ττ µµ (3.16)

Proposition 3.4(b) defines the necessary and sufficient condition for complete

overlapping (starting the downstream at time et). Roemer et al. (2000) proved that

complete overlapping is optimal for time-to-market problems when 1r = . We

generalize their conclusion in Proposition 3.4(c). This result can be easily used by

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

61

management to check the applicability of complete overlapping, since it does not relay

on any information about evolution and dependency and reduces the number of

parameters that must be estimated to three.

As we discussed above, overlapping may significantly increase downstream rework

and thus complete overlapping may not be the best solution for certain development

projects. Proposition 3.4(d) determines the optimal downstream start time for the

projects for which complete overlapping is unsuitable. As shown in Figure 3.5, if the

conditions in Proposition 3.4(d) are satisfied, project performance increases from uD

to
*
st but it decreases from

*
st to et . This is because as overlapping degree increases,

the negative effect of more downstream rework begins to outweigh the positive impact

of starting the downstream stage earlier. The optimal solution can be derived from

equation (3.15) or (3.16).

Proposition 3.5

(a) Higher dependency, k , or modification rate, ()tτµ , decreases the optimal

overlapping degree. Furthermore faster evolution increases the optimal overlapping

degree.

(b) Higher rework rate r increases the optimal overlapping degree.

(c) The start time of the downstream stage is earlier when the opportunity cost of time,

tc , increases or the rework cost, rc , decreases.

(d) The optimal overlapping policy is independent of the downstream development

duration dD , if dD changes within),[+∞uD .

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

62

Figure 3.5 Optimal start time of downstream stage

Proposition 3.5(a) describes the impact of upstream evolution and dependency of

development stages on optimal overlapping. It is consistent with previous research (e.g.

Krishnan et al., 1997; Bhuiyan et al., 2004) which concludes that projects should start

ts

G

ts

G

u
D et

uD

*

s
t

due

D

t

rt

t DDtanddttk
r

cc
c

u

e

−≥≤−−
+

+− ∫ 0}])(exp{1[τµ

*
()

e s
t t

st

st

Start time of downstream

Start time of downstream

Gain in

Project

Performance

Gain in

Project

Performance

due

D

t

rt

t DDtanddttk
r

cc
c

u

e

−≥>−−
+

+− ∫ 0}])(exp{1[τµ

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

63

on preliminary information when sensitivity is low and evolution is fast. However

sequential process is better for projects with high sensitivity and slow evolution.

Proposition 3.5(b) explains the reason why overlapping strategies do not work well for

distributed and cross-company development projects. Rework caused by engineering

changes usually needs close cooperation between functional teams. Divergent cultural

values, geographical distance, and goal incongruity make the rework process much

more time consuming in distributed environment than it in collocated environment.

Thus, project delay becomes a common problem for distributed projects. In order to

avoid delay, complete overlapping may be applied. However, our analytical result

shows that lower rework rate decreases the optimal overlapping degree. When rework

rate is low, increasing overlapping degree may increase development cost significantly

and thus lower project performance. The efficient way to increase project performance

for distributed product development is to increase rework rate by clearly defining

responsibilities and benefits, building trust between functional teams and so on

(O’Sullivan, 2003). Accelerating rework rate will not only reduce rework time but also

increase the optimal overlapping degree which leads to further reduction of

development cycle time.

Minderhoud and Fraser (2005) showed that although sequential process is still

favorable for some development projects, most projects are shifting to concurrent

process especially for consumer electronics products. Many other empirical studies

(e.g. Smith and Reinertsen, 1998; Cohen et al., 1996) recognized that time-to-market is

becoming more and more important for today’s development projects. Proposition

3.5(c) builds the relationship between these phenomena. The increasing importance of

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

64

time-to-market makes concurrent engineering much more favorable for most product

development projects.

Proposition 3.5(d) indicates that a company does not need to adjust its overlapping

policies when downstream development duration changes within),[+∞uD . The

change of development cycle time T is the same as the increasing or decreasing of dD .

Corollary 3.1

(a) For time-driven projects, t rc c>> , complete overlapping is optimal as long as

rework is not more difficult than initial development.

(b) For cost-driven projects, r tc c>> , sequential process is optimal.

Corollary 3.1 describes the optimal overlapping policies for time-driven and cost-

driven problems. It gives the condition of when complete overlapping is optimal for

time-to-market problem and explains why sequential process is widely used for cost

driven projects.

3.4.2 Overlapping and Functional Interaction

Overlapping with or without functional interaction may lead to very different impacts

on project performance. Without functional interaction, the reduction of project cycle

time must be accompanied by additional cost. However, overlapping with functional

interaction may reduce cost and cycle time simultaneously, which is supported by

previous studies (e.g. Pisano, 1997; Ward et al., 1995; Bhuiyan et al., 2004). This is

because efficient functional interaction can significantly reduce project uncertainty;

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

65

thus modification cost, rework duration, and rework cost will be reduced accordingly.

Therefore choosing suitable overlapping and functional interaction policies, project

cycle time and cost can be reduced simultaneously for the projects with low

downstream sensitivity, fast upstream evolution, and efficient functional interaction.

This situation is further illustrated with a numerical example shown in Figure 3.6. The

shaded area shows the feasible policies which can reduce project cycle time and cost

simultaneously. However, as discussed above, functional interaction also incurs cost.

The question then is: how to optimize project performance by applying functional

interaction and overlapping simultaneously? In this section we analyze optimal

functional interaction strategies under the condition that optimal overlapping discussed

above is followed.

Proposition 3.6

(a) The optimal functional interaction duration locates in

()()1
0 * max{0, ln[]}t r u e

t

kb c c D t

c cτ

λ
τ

λ

+ −
≤ ≤

+
 (3.17)

Furthermore * 0τ = if
()()

() 0t r u e
t

kb c c D t
c c

r
τ

λ + −
− + ≤ (3.18)

(b) If 0)(1 0 ≥
+

− ∫
u

e

D

t
dtt

ba

kb
µ (3.19)

G is concave with respect to τ . Thus, * 0τ = when
0

0
G

ττ =

∂
≤

∂
.

(c) If maxλτ is small, G is convex with respect to τ . Therefore

* *
0 max

*
, ,

max(,)
s st t

G G G
τ τ

= (3.20)

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

66

Figure 3.6 Reducing time and cost simultaneously

Proposition 3.6 shows that G can be convex or concave for certain cases, but overall it

is indefinite. This result is consistent with that from Bhuiyan et al. (2004). Then where

does this complexity come from? As described in section 3.2, the effect of functional

interaction decreases with time. However every extra reduction of modifications will

have a greater benefit on downstream rework than any previous reduction of the same

magnitude. Take an extreme example. Suppose several modifications occur

continuously at the time when two consecutive stages are almost finished. Every

upstream modification will corrupt 50% of downstream work. Therefore 50%, 75%,

and 87.5% of downstream work will be corrupted by one, two, and three modifications

respectively. Reducing modifications from three to two is relatively easy but this only

2 4 6 8 10

ts

1

2

3

4

5

τ

10== du DD weeks; 1=r ; 01.0=k ; 0=θ ; 1=rc ;

2=τc ; 1.0=mc ; 1=λ ; 0=a ; 100=b modifications

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

67

reduces 12.5% rework. On the contrary, reducing modifications from one to zero is

difficult but it can decrease 50% rework.

Because of the complex relationship between functional interaction and project

performance, optimal solutions are presented only for the projects satisfying certain

conditions. Proposition 3.6(a) shows that no functional interaction should take place if

project performance strictly decreases over τ . Proposition 3.6(b) shows the case

where the reducing effect of functional interaction dominates the process which makes

G concave with respect to τ . It indicates that either no functional interaction or the

solution of the first order condition is optimal. Proposition 3.6(c) shows the case where

the increasing importance of reducing a modification dominates the process. It leads to

the convexity of G with respect to τ . Consequently the optimal solution must lie on a

border.

For a project not satisfying the above conditions we can derive the solution based on

the generalized conclusion shown in Proposition 3.6(a), i.e., the optimal functional

interaction duration can not be bigger than a certain value. This is because the effect of

functional interaction must be negative when τ is big enough. Further functional

interaction will reduce uncertainty very little but increase functional interaction time

significantly. Based on the range shown in Proposition 3.6(a) and the optimal

overlapping policies discussed in the previous section we can obtain the graph about

the relationship between functional interaction duration and project performance and

thus identify the optimal solution. Figure 6 shows an example of a time-to-market

problem. In this case, the graph is first convex and then changes to concave. The

optimal functional interaction duration is about 5.68 weeks.

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

68

Figure 3.7 Functional interaction and project performance

The complex relationship between project performance and functional interaction

implies that incremental improvement of functional interaction may be inapplicable. It

may lead to local optimum. As shown in Figure 3.7, functional interaction lowers

project performance at the beginning and thus 0τ = is a local optimum. The

development cycle time based on local optimum is 0.89 week’s longer than the result

with global optimal solution.

Functional interaction has been found to increase (Eisenhardt and Tabrizi, 1995; Von

Corswant and Tunälv, 2002), decrease (Bhuiyan et al., 2004; Wagner and Hoegl, 2006),

or to have no significant effect (Datar et al., 1997) on the development cycle time.

Proposition 3.6 explains these conflicting findings. Functional interaction is not a

panacea for managing new product development. It is beneficial only if we can choose

2 4 6 8

0.25

0.5

0.75

1

1.25

1.5

1.75

(5.68, 1.89)

(1.50, 0.60)

(0, 1)

τ

G

10u dD D= = weeks; 0.1k = ; 1r = ; 0rc cτ = = ; 1tc = ;

() 10exp{ 0.5 }tτµ τ= − ; *
0st = ; *

2ln 500 τ ≤≤

Functional interaction

Project

performan

ce

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

69

suitable functional interaction levels according to project properties such as evolution,

dependency, rework rate, and functional interaction capacity.

3.5 Problem Variations

In the previous sections, we have developed a model for maximizing project profit,

which we refer to as the profit maximizing problem. However, for some projects,

Pareto-optimal overlapping strategies should be considered. These are strategies that

generate a given cycle time at minimum cost, or conversely, strategies whose cycle

times are shortest for a given budget, which we will refer to as the target timing

problem and the budget constraint problem, respectively. Both of these problems can

be solved by the similar approach as the profit maximizing problem.

Budget Constraint Problem

In this version of the problem, we need to determine the minimum cycle time under a

budget constraint. We can formulate the problem as follows:

r

tR
tDT s
sd

),(
:min

τ
τ +++=

subject to: B
r

tRc
cC sr ≤+=

),(τ
ττ

where B represents the budget for the additional costs incurred due to overlapping. By

Proposition 3.2, it is easy to prove that the first derivative of the objective function

with respect to st is positive],[ues Dtt ∈∀ . That is, in order to reduce project cycle

time, we need to start the downstream as early as possible. The first derivative of

r

tRc
c sr),(τ

ττ + is negative],[ues Dtt ∈∀ . That is, the earliest downstream start time

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

70

occurs at the point where BC = . Therefore the optimal start time *
st can be derived

from the following equation:

B
r

tRc
c sr =+

),(* τ
ττ

Target Timing Problem

For the second problem, we assume that the time to market is given, and the problem is

to determine the optimal degree of overlapping such that the product will be launched

at a specific target time with minimum development cost. Typical situations where this

type of question arises are when new products are introduced during trade shows or

when a competitor’s launch date has to be preceded. This problem may be

characterized as the “dual” of the previous problem. Target timing has commonly been

used as the strategy of new product introduction. Given the time to market as a target,

the objective is to minimize product development cost, which can be formulated as

follows:

r

tRc
cC sr),(

:min
τ

ττ +=

subject to: t
s

sd T
r

tR
tDT ≤+++=

),(τ
τ

where tT represents the target timing of the project. We have shown that C is

decreasing with st and T is increasing with st . Therefore, for target timing problem,

the cost can be minimized when tTT = . The optimal start time *
st can be derived from

the following equation:

t
s

sd T
r

tR
tD =+++

),(* τ
τ

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

71

3.6 Model Application

Our model was applied to improve the mobile phone development process at a leading

handset application software and handset solution provider in China. This company

employs approximately 2,600 professionals, of which 90% are engineers. As of July

2006, the company has developed more than 100 handset designs for international

brand owners such as NEC, Kyocera, and Mitsubishi.

As is common in consumer electronics industry, shorter product life cycles impel the

company to develop new products at an increasingly rapid pace. Hence, all the major

precepts of concurrent engineering (including overlapping and functional interaction)

are practiced in the company. However, these policies were intuitively determined by

project managers, rather than on analytical grounds, tending to yield inefficient

strategies. We aim to improve the development process by providing analytical

solutions about overlapping and functional interaction. Derivative projects with mature

architecture, which account for about 70% of the projects completed during the 2004-

2006 period, were studied. We focused specifically on the detail design (upstream) and

mold fabrication (downstream) since they are within the critical path of mobile phone

development and are the primary drivers of development cycle time. Mold fabrication

is done by suppliers with whom the company has developed close partnership over the

years. The information transformation between these companies, the updating of 3D

and 2D drawings, is relatively inexpensive.

Most of the parameters were directly derived from the five mobile phone development

projects completed in the first half of 2006. To improve the reliability of the collected

information, these data were checked and confirmed by the engineers who were

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

72

familiar with these projects. For example, the information evolution duration was

extremely long for project “VX” because of the customer’s suspension of the project.

Consequently the evolution duration for this project was derived by deducing the

abnormal delay. We now describe our data collection efforts at the company in detail.

We first collected the data about functional interaction and upstream evolution.

Functional interaction represents the involvement of tooling engineers (from supplier)

during the detail design stage. We observed that functional interaction duration was

short in most projects (e.g. half day or one day), resulting in insufficient data for us to

derive the relationship between design uncertainty and functional interaction duration.

Hence, we asked the experienced project engineers to estimate the uncertainty level

when longer functional interaction is applied and then conducted a regression analysis

by minimizing SSE (sum of squared residuals) to determine the functional interaction

function.

Upstream evolution is the nonhomogeneous Poisson process of engineering changes.

After finishing the preliminary design, the resulting design drafts are continuously

modified. The modification usually lasts for 12 working days. The number and time of

design modifications are well documented in the company and thus the evolution

function can be derived from field data. The outputs of regression analysis of these two

functions are summarized in Figure 3.8.

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

73

Figure 3.8 Evolution and functional interaction functions

After that, we operationalized the estimation of the dependency parameter k . As

previous literature (Terwiesch and Loch, 1999; Roemer and Ahmadi, 2004; Carrascosa

et al., 1998) and our field study show, the impact of an upstream modification on

downstream rework is the result of the dependency of overlapped stages multiplied by

the progress of the downstream stage. Vice versa, if the total amount of rework, the

number of modifications, and the progress when each modification occurred are

available, we can derive the dependency directly from historical data. Mathematically:

exp{ } 45.50 17.57exp{ 1.29 }a b λτ τ+ − = + −

45

50

55

60

65

0 0.5 1 1.5 2 2.5 3

Functional Interaction Duration

U
n

c
e
rt

a
in

ty

Field Data

Output of Fitted Functional

Interaction Function

0

10

20

30

40

50

60

0 2 4 6 8 10 12

Upstream Development Duration

C
u

m
u

la
ti

v
e
 M

o
d

if
ic

a
ti

o
n

s

Field Data

Output of Fitted

Evolution Function

1
() 11.93exp{ 0.23 }t tµ = −

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

74

∑
=

=
N

i

iPRk
1

/ (3.21)

where N denotes the overall number of modifications occurred in the detail design

stage; iP is the progress of the downstream stage when the th
i modification occurred;

R is the amount of downstream work corrupted by these modifications. In our data set,

the value of dependency k is 1.9%.

The estimates of the development duration and rework rate were much simpler because

both of them can be directly derived from previous projects (Ford and Sterman, 1998;

Repenning, 2001). The costs of functional interaction and rework are largely

dominated by the engineering hours spent on the activities. Therefore these costs were

simply determined by the average hourly wage of the engineers and the related

engineering hours. However, the opportunity cost of time changed significantly for

different projects (It was less than $5000 in our data set).

After deriving these parameters, we applied the methodology developed in this chapter

and supplied management with the functional interaction and overlapping strategies for

the projects with different opportunity cost of time. The effect of inaccurate estimates

of uncertainty and dependency was evaluated in Figure 3.9.

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

75

Figure 3.9 Optimal policies for the projects with different opportunity cost

Although the results may not be very accurate because of estimation errors of the

parameters, they are good enough to guide the management of similar development

projects in the company. Previously, low overlapping degree and short term functional

}23.0exp{})29.1exp{16.478.10()(tt −−+= τµτ ; 12=uD ;

25=dD ; %9.1=k ; 1=r ; $200=τc ; $350=rc

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000

Opportunity cost of time

D
o

w
n

s
tr

e
a
m

 s
ta

rt
 t

im
e

Base case

+20% Uncertainty and Dependence

-20% Uncertainty and Dependence

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000

Opportunity cost of time

F
u

n
c
ti

o
n

a
l
in

te
ra

c
ti

o
n

 d
u

ra
ti

o
n Base case

+20% Uncertainty and Dependence

-20% Uncertainty and Dependence

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

76

interaction were applied for all the projects in the company. Figure 3.9 shows that the

applied functional interaction policy is consistent with our analytical results. The

designers, usually with 5 or more similar project experiences, know very well of the

downstream stage; thus the benefit of functional interaction is small. Note, as Figure

3.9 shows, the relationship between uncertainty and functional interaction is nonlinear.

The increasing of uncertainty will increase the number of modifications reducible

through functional interaction, but it will also reduce the overlapping degree and thus

reduce the impact of each modification on downstream rework. The optimal functional

interaction level may decrease when both uncertainty and dependency are increased.

Previous overlapping policy applied in the company shows the dilemma faced by

project managers. Short product life cycles impel engineers to reduce cycle time by

overlapping development stages but the limited development budget tells them that

overlapping should be avoided since it is costly. Previous overlapping policy made by

intuition is far from optimal. Our study clearly shows when the benefit of overlapping

overwhelms the cost of rework and when complete overlapping should be applied

(Figure 3.9). High level of overlapping is more favorable when opportunity cost of

time is big (1000tc >), regardless of the change of other parameters (such as

uncertainty and dependency).

3.7 Discussion and Conclusion

Literature (e.g. Terwiesch and Loch, 1999; Roemer and Ahmadi, 2004) shows that

companies are still determining overlapping and functional interaction on an ad hoc

basis, yielding inefficient development policies. There is a need to quantitatively

analyze development strategies on project properties. The model presented in this

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

77

chapter helps to identify optimal functional interaction and overlapping policies to

improve project performance. The interactions between overlapping and functional

interaction as well as the trade-offs between cost and cycle time are explicitly studied.

We use a general assumption of the upstream evolution, which ensures the model to be

a good abstraction of practice. Moreover, the impact of upstream modifications on

downstream rework is explicitly studied, which ensures the accuracy and reliability of

the conclusions derived.

This research yields three main results. Firstly, our analytical results show that the

change of downstream progress over time is quite complex. It may be increasing or

decreasing for the projects with different uncertainty, dependency, and evolution

features. The assumption of increasing downstream progress is only applicable for the

projects with fast or linear evolution. For future models of overlapped process, it is

necessary to address the downstream progress in detail since it is one of the key factors

affecting overlapping policies.

Secondly, we derive the optimal overlapping policies for the projects with different

properties. Two conditions for complete overlapping are given in Proposition 3.4. One

is based on detailed information of evolution and dependency. It defines the necessary

and sufficient condition for complete overlapping. The other is the sufficient condition

for complete overlapping which only relies on the information about rework rate,

opportunity cost of time, and rework cost. Proposition 3.5 and Corollary 3.1 show the

relationship between project properties and overlapping policies. Higher uncertainty

and dependency reduce the optimal overlapping which agrees with previous literature

(e.g. Eisenhardt and Tabrizi, 1995; Loch and Terwiesch, 1998). The downstream

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

78

rework rate, opportunity cost of time, and rework cost also affect overlapping degree.

Higher rework rate and opportunity cost of time make overlapping more active.

However rework cost is negatively related to the overlapping degree and thus

sequential process is more attractive for cost-driven projects.

Thirdly, we derive the optimal functional interaction strategies when overlapping

follows the optimal pattern. The relationship between project performance and

functional interaction is complex. It may not simply increase or decrease with time.

Incremental improvement of functional interaction may not work for consecutive

projects, which increases the need of formal models for decision making.

There are several limitations for the application of our results. Firstly, we assume that

the information transformation to the downstream stage is relatively inexpensive

because of the advancement of information technology and the close cooperation

between functional teams. Previous research (e.g. Krishnan et al., 1997; Helms, 2004;

Roemer and Ahmadi, 2004) supports this argument. However some projects may have

information transformation difficulty. In the next chapter, we discuss the optimal

communication and overlapping policies for these projects. Secondly the model in this

chapter requires extensive knowledge of evolution and dependency. For incremental

innovations which account for the majority of product development projects (Whitney,

1990; Wang and Yan, 2005), these data are typically available (Krishnan et al., 1997;

Roemer et al., 2000; Helms, 2002), as demonstrated in our in-depth case study at the

handset design company. For completely new projects this information is often not

accessible and optimal solutions suggested here may not be achievable. Finally,

product quality and product originality, which are not concerned in this paper, may

 Chapter 3 Managing Concurrent Development Processes with Low Communication Cost

79

play important roles in the success of radical projects. Consequently, if managers

intend to apply our model to radical projects, it is important to make sure that: (1) cost

and time are the most important factors for these projects; (2) the data about evolution

and dependency are available or estimable.

Several aspects of the model presented in this chapter merit further examination.

Firstly, we only focus on time-cost trade-off in this chapter. The trade-off between

time and quality or cost and quality deserves further attention. Secondly, extension of

the model to multiple development stages should be further investigated. Thirdly, we

may extend our model by including the detection of upstream errors by the

downstream stage. Lin et al. (2008) studied it with a System Dynamics model (the

model shown in Chapter 5). Because of the limitation of System Dynamics approach,

no optimal solution is derived in that paper. Further investigation with an analytical

model may derive better solutions and useful management insights.

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

80

CHAPTER 4

MANAGING CONCURRENT DEVELOPMENT

PROCESSES WITH HIGH COMMUNICATION

COST

An analytical model for managing sequentially dependent stages with low

communication cost is described in Chapter 3. However, the results and methodology

derived in that chapter cannot be applied for the projects with high communication cost,

since communication policy will significantly influence project performance when

communication takes time or cost. In this chapter we first introduce an algorithm to

derive the optimal overlapping and communication strategies for the projects with high

communication cost. Then the projects with linear upstream evolution are discussed

and a more efficient algorithm is proposed. Furthermore, some guidelines for

structuring concurrent processes are provided. We applied this methodology to study

the development projects in a large consumer electronics company.

4.1 Introduction

Shorter product life cycles in many industries impel firms to develop new products at

an increasingly rapid pace. Overlapping development stages, combined with frequent

information exchange, is commonly regarded as a core technique for faster product

development (Clark and Fujimoto, 1991; Wheelwright and Clark, 1992; Smith and

Reinertsen, 1998; Joglekar and Ford, 2005; Minderhoud and Fraser, 2005).

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

81

For projects with low communication cost, studies have shown that frequent

information exchange is optimal. However, for projects with high communication cost,

the trade-offs need to be studied. Frequent information exchange between the

development teams reduces the negative effect of overlapping but increases

communication time and development cost (Haberle et al., 2000). To improve project

performance, overlapping and communication policies should be coordinated and the

time-cost trade-offs involved in concurrent product development should be

investigated.

Here we give a simple example to further illustrate the problem studied in this chapter.

In mobile phone development, mold fabrication (such as the slots shown in Figure 4.1)

is done according to the outputs of detail design (such as the dimensions shown in

Figure 4.1). Initial design usually takes two and a half weeks, and then the design will

be continuously modified until the end of the fifth week. In order to reduce

development cycle time, mold fabrication often starts before all of the design errors

have been identified and resolved. Then, what is the optimal start time of mold

fabrication? If overlapping is applied, should we arrange a series of meetings in order

to frequently inform the downstream team of the latest engineering changes? How

many meetings should be arranged and when should the meetings take place? This

chapter presents an analytical model addressing these questions which are commonly

faced by development engineers.

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

82

Figure 4.1 Mobile phone development

This chapter is organized as follows. The next section reviews the relevant literature on

concurrent engineering. In section 4.3, we provide an analytical model which captures

the relationship between project properties, overlapping degree, communication policy,

and project profit. Section 4.4 introduces an algorithm for optimizing overlapping and

communication strategies. Then, the projects with linear upstream evolution are

studied and some guidelines for structuring concurrent processes are provided. In

section 4.5, we illustrate the methodology with a case study at an electronics company.

Conclusions are summarized in the last section.

Detail design Components

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

83

4.2 Related Literature

The interaction between overlapping and communication strategies was first

emphasized by Clark and Fujimoto (1991). Their studies of the world automobile

industry showed that, for effective operation of overlapping, problem solving must be

integrated with frequent information exchange. This concept is useful to initiate

organizational changes and has had a strong influence on the research and practice in

concurrent engineering. However, to fully operationalize the concept, we need to better

understand the interaction between overlapping and communication strategies, and

derive the appropriate development policies depending on project characteristics.

An interesting body of mathematical models has been developed to address the trade-

offs involved in concurrent product development. We sorted them into two groups. In

the first group, researchers assume that the information exchange between

development teams is costless (e.g. Krishnan et al., 1997; Roemer et al., 2000;

Chakravarty, 2001) and thus it can take place immediately after an engineering change

occurs. According to this assumption, the concurrency problem is simplified into an

overlapping problem which is irrelevant to the communication strategies. There are

several notable studies in this group. Krishnan et al. (1997) developed a model to

determine the number of downstream iterations so as to minimize the development

cycle time. They showed that “upstream evolution” and “downstream sensitivity” are

the two properties determining the optimal overlapping strategies. Their model was

applied in the development of a door panel of a car. Roemer et al. (2000) studied the

time-cost trade-offs in multistage overlapped processes. An efficient algorithm was

proposed to determine an appropriate overlapping strategy. Chakravarty (2001) sorted

overlapping into three major modes: interrupt build overlapping, continuous build

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

84

overlapping, and preempt build overlapping. The optimality conditions for each mode

are presented and the relationship between different overlapping modes is discussed.

Roemer and Ahmadi (2004) studied the interaction of two common tools for reducing

project cycle time: overlapping of development stages and crashing of development

times. This line of research greatly advances the analysis of concurrent product

development. However, the results and methodology derived cannot be applied for

projects with high communication cost, because, for these projects, communication

policy interacts with overlapping strategy and substantially affects project performance.

It is well known that information exchange between development teams usually takes

time and cost (Loch and Terwiesch, 1998). Helms (2002) reported a typical

information exchange procedure in a chemical company. If design changes are needed,

the upstream team needs to submit a Change Notice to the downstream members. A

meeting is then arranged where the engineers from the two teams discuss the reasons

for the changes, the cost to process the changes, and so on. This will finally results in

the release of a new version of drawings and documents. Because the information

exchange process is time consuming, the engineers in the company tend to have fewer

meetings and information exchanges in order to concentrate on their development

work. However, the managers asked for more frequent information exchanges in order

to reduce downstream rework. The questions then are what is the optimal timing and

frequency of information exchange, and how communication policy interacts with

overlapping degree.

The second group of studies takes into account the cost of communication and tries to

address these questions. Ha and Porteus (1995) studied the benefit of early detection of

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

85

upstream flaws through overlapping and frequent communication. If information

exchange is too frequent, then communication time and cost would increase

significantly. However, infrequent information exchange would delay the

identification of the design flaws and increase the corresponding rework of the

upstream stage. While their research emphasizes the downstream team’s ability to

discover the faults in the upstream stage, our study focuses on the influence of the

upstream modifications on the downstream rework, or “integrated problem solving”

(Clark and Fujimoto 1991).

Our work is most closely related to that of Loch and Terwiesch (1998). In their model,

the overlapping and communication policies are determined by modification rate,

downstream sensitivity, and communication cost. Modification rate represents the

arrival rate of upstream changes, corresponding to the concept of “upstream evolution”

in Krishnan et al. (1997) work. Downstream sensitivity is defined as the impact of a

modification on downstream rework. Communication cost denotes the fixed set-up

time for information exchange. Based on these concepts, the authors built an analytical

model to minimize project cycle time. We improved upon this work in three important

aspects:

Firstly, the impact of downstream progress on rework is explicitly addressed in our

model. It is well known that the impact of an upstream modification on downstream

rework is closely related to the progress of the downstream stage, the amount of work

that is completed and not corrupted by upstream changes (e.g. Terwiesch and Loch,

1999; Carrascosa et al., 1998; Thomke and Bell, 2001, Roemer and Ahmadi, 2004; Lin

et al., 2008). However the question of how to model the dynamic change of

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

86

downstream progress is not well addressed by previous studies. Loch & Terwiesch

(1998) implicitly assume that the downstream progress equals the downstream

development time t . However, in concurrent processes, the downstream progress at

time t should be less than t due to the existence of uncertainty and corruption

(Carrascosa et al., 1998). Furthermore, if the project uncertainty and dependency are

high, their assumption may lead to negative downstream progress which contradicts

with the fact that the downstream process should be always greater or equal to zero.

For example, assume the dependency of two development stages is 0.5. Then, by Loch

and Terwiesch’s assumption, each modification at the 10th day will corrupt 5 day’s

downstream work. The downstream progress at the 10th day becomes negative if more

than two modifications occur at that day. Therefore, it is valuable to reinvestigate the

overlapping and communication policies by describing the progress of downstream

stage in detail.

Secondly, we extend Loch and Terwiesch’s (1998) research by relaxing their

assumption of modification rate. Literature shows that the modification rate may be

linear, nonlinear, concave, convex, or S-shaped with respect to development time

(Eppinger et al. 1994, Krishnan et al. 1997, Chakravarty 2001). However, Loch and

Terwiesch (1998) only studied projects where the modification rate is linearly related

to development time. In our research, we examine projects with non-linear

modification rate.

Thirdly, this work explicitly addresses the trade-off between increased cost and

reduced project cycle time due to concurrent execution. Project performance reflects

integration of three intermediate objectives: time, cost, and quality. For most derivative

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

87

projects, the target quality is well defined. Therefore, the objective for management is

to achieve the required quality with less time and cost (Gerwin and Barrowman 2002).

However, as with most of the studies in this area, Loch and Terwiesch used

development cycle time as the sole measure for project performance. As a result, they

disregarded the fact that hidden costs are usually accompanied with the practices that

reduce time-to-market (Smith and Reinertsen 1998). We explicitly address

development cost in our model which is mainly the labor cost of information exchange

and rework. We measure project performance in profit which is defined as gain from

early launch of the product minus additional project cost.

4.3 Model Formulation

In this section we first formulate the time-cost trade-off involved in concurrent product

development. Then we introduce a general mathematical model of the relationships

between project properties, development policies, and project performance. The

objective function, constraint equations, model parameters, and decision variables are

summarized at the end of this section.

4.3.1 Overview of the Model

Our model examines the projects with a “nominal sequential” (Krishnan et al., 1997)

structure, i.e. the principal information exchange between consecutive design stages is

unidirectional: from upstream stage to downstream stage. For each time of

communication, both the upstream and downstream engineers must drop everything

they are doing and commit themselves entirely to set a meeting and discuss the latest

changes for downstream incorporation (Ha and Porteus, 1995; Loch and Terwiesch,

1998; Wang and Yan, 2005).

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

88

Figure 4.2 Overlapped process with multiple information exchanges

Consider the concurrent execution of two consecutive development stages (Figure 4.2).

We call the first stage upstream and the second downstream. uD and dD represent the

durations of initial development of upstream and downstream developments

respectively, where the duration of initial development is the expected time it takes to

perform a stage without overlapping. Without loss of generality, we assume

preliminary information of the upstream is available at time zero. et denotes the

earliest start time of the downstream stage, which ensures that the upstream is finished

0t

nQ

0 1t 1nt − nt time

iQ

it1it −

Information exchange

Downstream rework duration,

where 1,nt denotes the

information exchange policy,

i.e. (1, , , ,i nt t tL L).

0

0t

uD

dD

 iQ

u
D

The time when preliminary
information is available

The time interval between the
th

i and (1)th
i − information

exchange

Downstream development
duration

d

D

Start time of downstream
stage

Upstream development
duration

it The time of the th
i

information exchange

Decision variables

Development cycle time

0 1,(,)r nD t t

1,0(,)nT t t

0 1,(,)nT t t

1Q

0 1,(,)r nD t t

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

89

earlier than the downstream. Then, the start time of the downstream stage 0t should be

0e ut t D≤ ≤ ; (4.1)

max{0, }e u dt D D= − . (4.2)

During the overlapped process, there may be several “bursts” of information transfer

from the upstream stage to the downstream stage. Frequent information exchange

allows the downstream engineers to be aware of the latest upstream change, and thus

reduces the amount of rework.

A typical overlapped process with multiple information exchanges is shown in Figure

4.2. The information exchange policy can be represented in the form

(1 2, , , , ,i nQ Q Q QL L), where Qi is the interval between the (1)th
i − and th

i information

exchange. The time for the th
i information exchange is denoted as it , so that

0 1

i

i jj
t t Q

=
= +∑ . Therefore, the information exchange policy can also be represented in

the form (1 2, , , , ,i nt t t tL L). Note that, in this model, the th
i information exchange

denotes the th
i meeting since the start of downstream development.

If sequential process is applied, the development cycle time should be β++ du DD ,

where β represents the setup time for information exchange which is closely related to

Ha and Porteus (1995) and Loch and Terwiesch’s (1998) definitions of setup/penalty

time and communication cost respectively. For concurrent process, the development

cycle time can be written as

),()1(),(,100,10 nrdn ttDnDtttT ++++= β . (4.3)

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

90

where dDt +0 represents the time for regular development; n denotes the number of

information exchanges after the start of downstream development;),(,10 nr ttD is the

duration for rework; nt ,1 denotes the information exchange policy, i.e. (1 2, , , , ,i nt t t tL L).

We assume the opportunity cost of time tc is constant as, for most development

projects, the opportunity cost of time does not change significantly in short run. That is,

although the opportunity cost of time may be different in years, but it is almost

constant in several weeks. Furthermore, in practice, the penalty for delay and the

premium for early completion are usually proportional to time. Therefore, for

concurrent development, the gain from reducing development cycle time can be

written as

)],([,10 ndut ttTDDc −++ β . (4.4)

We next consider the costs associated with rework and communication. Let βc be the

cost for information exchange (cost per meeting) and
rc denote the cost for one unit

time of rework. The additional cost for overlapped development is

0 01, 1,(,) (,)n r r nC t t n c c D t tβ= ⋅ + ⋅ . (4.5)

Thus, profit maximization objective can be represented as

),()],([:max ,10,10 nndut ttCttTDDcG −−++= β . (4.6)

4.3.2 Downstream Rework

At the heart of overlapping problem lies the downstream rework duration),(,10 nr ttD

which impacts project cycle time and increases development cost. The downstream

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

91

rework duration is determined by the evolution of upstream modifications, the

dependency between development stages, and the downstream progress (Krishnan et al.

1997, Carrascosa et al. 1998, Loch and Terwiesch 1998, Lin et al. 2008). Previous

studies (e.g. Eppinger et al., 1994; Krishnan et al., 1997; Chakravarty, 2001) show that

upstream evolution can be concave, convex, or S-shaped. Therefore, we model the

arrival of upstream modifications (upstream evolution) as a nonhomogeneous Poisson

process with non-negative rate ()tµ . This assumption is quite general and includes all

the evolution patterns identified by previous studies.

Previous research (e.g. Carrascosa et al., 1998; Loch and Terwiesch, 1998; Lin et al.,

2008) has made it clear that, for most development projects, the impact of a

modification on downstream rework is in proportion to the downstream progress ()P t .

Let 1k be the percentage of downstream progress which will be affected by a

modification. Then, if a modification arises at time t the progress will be changed into

1() (1)P t k⋅ − . If the second modification occurs at the same time, then the progress will

be further reduced into 1
2() (1)P t k⋅ − . For modeling simplicity, we define k as the

dependency parameter and it equals 1ln(1)k− − . Then the progress for one and two

modifications can be represented as () exp{ }P t k⋅ − and () exp{ 2 }P t k⋅ − respectively.

Figure 4.3 graphically shows the change of downstream progress over time. At time 1t

the downstream group is informed about the modifications identified from st to 1t . To

simplify our model, we approximate the downstream progress by calculating it on the

mean of the modifications. Consequently, at time 1t , the progress changes from 1Q to

})(exp{
1

0

1 ∫−
t

t
dttkQ µ . At time 2t the progress changes from 21 })(exp{

1

0

QdttkQ
t

t
+− ∫ µ into

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

92

})(exp{]})(exp{[
2

1

1

0
21 ∫∫ −⋅+−

t

t

t

t
dttkQdttkQ µµ , and so on. It is clear that the progress rate

of the downstream stage is dynamically affected by upstream modifications,

dependency of overlapped stages, overlapping strategies, and communication policies.

The expected rework for a concurrent process can be written as

=),(,10 nr ttD

}))(exp{)})(exp{)})(exp{(((
1

1

2

1

1

0

21

1
∫∫∫∑

−

−++−+−−
=

n

n

t

t
n

t

t

t

t

n

i

i dttkQdttkQdttkQQ
r

µµµ L ,

which can be simplified to

∑ ∫
= −

−−=
n

i

D

t
ir

u

i

n
dttkQ

r
ttD

1 1

,10
}))(exp{1(

1
),(µ . (4.7)

where parameter r denotes the rework rate.

Figure 4.3 Progress of downstream stage

To incorporate all the upstream modifications, the last meeting should be arranged at

time uD (i.e. un Dt =). 1k should be less than one, since the downstream progress is

1t 2t

Progress

time

Impact of the 1st batch
of modifications

Impact of the

2nd batch of
modifications

pt

0t

…

nt

Impact of the
thn batch of

modifications

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

93

non-negative. Mathematically

0

1

n

i u

i

Q D t

=

= −∑ , (4.8)

10 1k< < . (4.9)

4.3.3 Summary

Table 4.1 Inputs and decision variables

Parameters Definition

uD Upstream development duration

dD Downstream development duration

()tµ Rate of upstream modifications

1k
The percentage of downstream progress which will be

affected by a modification

k Dependency between development stages

r Rework rate of downstream stage

β Communication duration (per meeting)

cβ Communication cost (per meeting)

tc
Opportunity cost of time (the cost of increasing one unit of

time-to-market)

rc Rework cost (the cost for one unit time of rework)

Decision Variables Definition

0t Start time of downstream stage

n The number of meetings

iQ
The time interval between the (1)th

i − and thi information

exchange

it The time of the thi information exchange

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

94

We summarize all the variables in Table 1 and state the optimization problem as

follows

∑ ∫
= −

−−
+

−−−−=
n

i

D

t
i

rt

ut

u

i

dttkQ
r

cc
ncntDcG

1

0
1

}])(exp{1[)(:max µβ β ; (4.10)

subject to: Equations (4.1), (4.2), (4.8), (4.9);

)1ln(1kk −−= ; (4.11)

∑ =
+=

i

j ji Qtt
10 . (4.12)

The decision variables of this model are 0t , n , and iQ (ni ≤≤1): n and iQ determine

the communication policy; 0t represents the overlapping policy (smaller 0t

corresponds to higher overlapping degree).

4.4 Analysis of Overlapping and Communication Policies

For concurrent process, project performance is determined by overlapping and

communication strategies. In this section, we first derive the optimal communication

policy assuming 0t is given. Then we address the optimal overlapping degree and

introduce an algorithm to improve project performance by adjusting overlapping and

communication strategies simultaneously.

4.4.1 Information Exchange Policy

Assuming the downstream start time is fixed, we seek a contingent information

exchange strategy that maximizes project profit. The results are summarized in

Proposition 4.1.

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

95

Proposition 4.1

 (a) Given n and 0t , all the stationary points can be determined using the following

equations

ni
tk

dttk

Q
i

t

t

i

i

i ≤≤
−−

=
−

∫
−

− 2
)(

})(exp{1

1

1

2

µ

µ
, (4.13)

0

1

tDQ u

n

i

i −=∑
=

.

By comparing the stationary points, we can identify the optimal information exchange

policy. Inspection of (4.13) shows that iQ (2 i n≤ ≤) is determined by 1Q . Therefore,

the current problem can be simplified into a problem of identifying the optimal 1Q .

(b) Given 0t , the optimal communication times *
n must satisfy the following equation

ββ cc

tDc
n

t

ut

+

−
+<

)(
1 0* (4.14)

Proof. To enhance readability of the thesis, all proofs of this chapter are shown in

Appendix B.

By Proposition 4.1(a), the optimal communication policy can be derived by one

dimensional search when 0t and n are predetermined (1Q changes from 0 to 0uD t−).

The range of *n is given in proposition 4.1(b). 0() /()t u tc D t c cββ− + is small since we

only study the development projects with high communication cost (for the projects

with low communication cost, a model has been developed in Chapter 3). Therefore,

the optimal communication policy can be derived through several iterations of one

dimensional search when 0t is predetermined. These deliberations give rise to the

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

96

following algorithm.

Algorithm 1

Initiation:

Step 0. Setting 1n = and 01 uQ D t= − , compute),(0
*

ntG . Let * 1n = , *
1 0uQ D t= − ,

),()(0
*

0
*

ntGtG = , and 2n = . Here),(0
*

ntG represents the optimal

performance when 0t and n are given.)(0
*

tG is the optimal performance

when 0t is predetermined.

Iteration:

Step 1. If)/()(1 0 ββ cctDcn tut +−+≥ , stop.

Step 2. Search 1Q in the range 010 uQ D t< < − and identify all the values which satisfy

0

1

n

i u

i

Q D t

=

= −∑ . By the method of Lagrange multipliers, these are local optima.

Step 3. Compare the local optima and identify the 1Q which yields the maximum profit

),(0
*

ntG .

Step 4. If)(),(0
*

0
*

tGntG > , then *n n= , *
1 1Q Q= , and),()(0

*
0

*
ntGtG = .

Step 5. 1n n= + . Go to Step 1.

If 1n = , 1Q must be 0uD t− and),(0
*

ntG can be derived directly. In the initialization

of the algorithm, we first let * 1n = , 1
*

0uQ D t= − , and),()(0
*

0
*

ntGtG = . Then, in step 1

and 2, we change the value of n and check the optimal project performance when 0t

and n are given. Step 3 compares),(0
*

ntG with)(0
*

tG . If),(0
*

ntG is better, the

communication policy will be changed accordingly. The optimal communication

policy can be identified after all the possible values of n are examined.

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

97

In Algorithm 1, we first try to identify all the stationary points when n and 0t are

given. Then, by comparing the stationary points, we can identify the optimal

information exchange policy when n and 0t are given. By trying all the possible

values of � , we can identify the optimal information exchange policy when

overlapping degree is predetermined.

4.4.2 Optimizing the Concurrency

We have derived an algorithm to determine the optimal information exchange policy

when 0t is given. Then, how to identify the optimal overlapping degree? This problem

can be solved with the analytical results presented in this section.

Proposition 4.2

Assume *

,1 *n
t (i.e. ***

2
*
1 *,,,,,

ni tttt LL) is the optimal information exchange policy when

0t is given. Then, if the downstream starts at *
it the optimal information exchange

policy should be **
1 *,,

ni tt L+ .

Proposition 4.3

Assume the optimal communication policy is nt ˆ,1̂ (i.e. ni tttt ˆ21
ˆ,,ˆ,,ˆ,ˆ LL) when complete

overlapping is applied (i.e. ett =0).

(a) If 0}])(exp{1[
1ˆˆ

>−−
+

− ∫
−

u

n

D

t

rt
t dxxk

r

cc
c µ , then there is a smallest it̂ satisfying

0}])(exp{1[
ˆ

>−−
+

− ∫
u

i

D

t

rt
t dxxk

r

cc
c µ and the optimal downstream start time locates in

]ˆ,ˆ[1+ii tt . Furthermore, the optimal performance is either)ˆ,ˆ(ˆ,1 nii ttG + or)ˆ,ˆ(ˆ,21 nii ttG ++ , if

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

98

],ˆ[]ˆ,[10 uiie Dtttt +∪∈ .)ˆ,ˆ(ˆ,1 nii ttG + is the project performance when the downstream

starts at it̂ and the communication policy is nit ˆ,1
ˆ

+ .

(b) If 0}])(exp{1[
1ˆˆ

<−−
+

− ∫
−

u

n

D

t

rt
t dxxk

r

cc
c µ , then uDt =*

0 (i.e. sequential process is

optimal).

(c) If 0}])(exp{1[
ˆ

=−−
+

− ∫
u

i

D

t

rt
t dxxk

r

cc
c µ , then 1

*
0

ˆ
+= itt and)ˆ,ˆ(ˆ,21

*
nii ttGG ++= .

Proposition 4.2 shows that if the optimal communication policy is known when 0t is

given, the optimal communication policy and project performance are also clear when

the downstream starts at *
it . Proposition 4.3 gives the overlapping and communication

policies in different situations. Note that Proposition 4.3(a) only gives a range of the

downstream start time. However, it should be accurate enough since the optimal point

is often not required for most project management problems.

The steps of solving the concurrency problem are that: first let ett =0 and derive the

optimal communication policy by Algorithm 1; then, by Proposition 4.2 and

Proposition 4.3, the optimal or appropriate communication strategy, overlapping

policy, and project performance can be derived; finally, if

0}])(exp{1[
1ˆˆ

>−−
+

− ∫
−

u

n

D

t

rt
t dxxk

r

cc
c µ and an accurate solution is required, then we

need to examine and compare the solutions when the downstream starts in]ˆ,ˆ[1+ii tt ,

which can be done using Algorithm 1.

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

99

 In certain industries, project performance is mainly determined by development cycle

time (Carrillo and Franza 2006). Time-to-market problem is a special case of the

concurrency problem. We assume 1r ≥ , which is valid for many projects because of

the existence of learning effect (Browning and Eppinger 2002). Some additional

insights are derived.

Proposition 4.4

Assume 1r ≥ .

(a) The optimal development cycle time for the time-to-market problem satisfies

)ˆ,()ˆ,(ˆ,1
*

ˆ,1 nene ttTTttT ≤≤− β . (4.15)

(b) The optimal start time of the downstream stage satisfies

0 1
* ˆmin(,)e et t t t ϕ≤ ≤ + , (4.16)

where / exp{ () }
u

e

D

t
k x dxϕ β µ= − ∫ . If β is small, ett ≈*

0 . In other words, complete

overlapping should be applied when β is small.

From Proposition 4.4(b) we can see that complete overlapping is optimal when β is

small. This result is consistent with the conclusions derived by previous models for

projects with low communication cost (e.g. Roemer et al. 1999). However, our result

also shows that the downstream start time should be delayed if communication takes

time. It indicates that complete overlapping is not necessary a global optimum for

time-to-market problem, although it is recommended by many researchers. Proposition

4.4(a) shows the optimal project cycle time for the time-to-market problem.

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

100

4.4.3 The Linear Evolution Case

In this section we list the management insights obtained for the projects with linear

upstream evolution (i.e. the modifications are generated as a homogeneous Poisson

process) and present a computationally efficient solution procedure which determines

the optimal policies through a binary search. The results are nevertheless important

since most evolution curves can be approximated by piecewise linear functions, which

corresponds to a situation where the decision makers only estimate the average

modification rates in different periods (Loch and Terwiesch 1998, Roemer and

Ahmadi 2004). Thus, the insights and algorithm presented here also constitute the

basis for solving the general case.

Proposition 4.5

 (a) Given n and 0t , the optimal information exchange policy can be determined by the

following equations

ni
k

Qk
Q i

i ≤≤
−−

= − 2
}exp{1 1

µ

µ
. (4.17)

0

1

tDQ u

n

i

i −=∑
=

.

Furthermore, ∑
=

n

i

iQ
1

 strictly increases with 1Q . Therefore, the optimal 1Q can be

identified through a binary search.

(b) *
1

*
+> ii QQ , i.e. management should increase the communication frequency over time.

(c) *
n is non-increasing with 0t .

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

101

(d) Given 0t , the profit function),(0
*

ntG is concave with respect to n .

Proposition 4.5(a) shows that
1

n

i

i

Q

=
∑ strictly increases with 1Q . Therefore, given n and

0t , we can easily find the optimal 1Q through a binary search. The idea behind the

binary search procedure is that whether
1

n

i

i

Q

=
∑ is greater or less than u sD t− at a trail

solution definitely indicates whether 1Q should be decreased or increased. Proposition

4.5(d) shows that the object function is concave with respect to n . That is, if project

profit increases with n , then nn >* . Conversely, if project profit decreases with n ,

then nn ≤* . Therefore, given 0t , the optimal communication policy can be derived by

a two-dimensional binary search. These deliberations give rise to the following

algorithm.

Algorithm 2 (for the linear evolution case)

Notation

n = current lower bound of *n , n = current upper bound of *n , 1Q = current lower

bound of 1
*

Q , 1Q = current upper bound of 1
*

Q .

Initiation:

Step 0. Let 1n = , 0()
1 t u

t

c D t
n

c cββ

 −
= + 

+  
, 1 0Q = , and 1 0uQ D t= − .

Iteration 1:

Step 1. Let () / 2 1n n n= − −   and  2/)(~ nnn −= .

Step 2. Iteration 2:

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

102

Step 2.1. Let 2/)(111 QQQ += . Computer ∑
=

n

i

iQ
1

.

Step 2.2. If 0

1

n

i u

i

Q D t

=

< −∑ , then 11
QQ = , go to Step 2.1; if 0

1

tDQ u

n

i

i −>∑
=

, then

11 QQ = , go to Step 2.1. Else, compute),(0
*

ntG ; let 1 0Q = , 1 0uQ D t= − .

Step 2.3. Let 2/)(
~

111 QQQ += . Compute ∑
=

n

i

iQ

~

1

~
.

Step 2.4. If 0

~

1

~
tDQ u

n

i

i −<∑
=

, then 11

~
QQ = , go to Step 2.3. If 0

~

1

~
tDQ u

n

i

i −>∑
=

, then

11

~
QQ = , go to Step 2.3. Else, compute)~,(0

*
ntG ; let 1 0Q = , 1 0uQ D t= − .

Step 3. If 2n n− ≤ and)~,(),(0
*

0
*

ntGntG ≥ , then nn =* , 1
*
1 QQ = ,),()(0

*
0

*
ntGtG = ,

stop; if 2n n− ≤ and)~,(),(0
*

0
*

ntGntG < , then nn ~* = , 1
*
1

~
QQ = ,)~,()(0

*
0

*
ntGtG = ,

stop. Else, if)~,(),(0
*

0
*

ntGntG < , then n n= , go to Step 1; if)~,(),(0
*

0
*

ntGntG ≥ , then

nn ~= , go to Step 1.

Because the binary search for n can be performed in)
)(

1log(0

ββ cc

tDc

t

ut

+

−
+ steps and, for

each n , the optimal 1Q can be identified in)log(0tDu − steps, the overall

computational effort of the algorithm is))log()
)(

1(log(0
0 tD

cc

tDc
O u

t

ut −⋅
+

−
+

ββ
.

Propositions 4.4(b), 4.4(c), and 4.4(d) are the guidelines for structuring concurrent

processes. Proposition 4.4(b) indicates that the communication frequency should be

increased over time. Proposition 4.4(c) describes the relationship between the number

of meetings and the degree of overlapping. More meetings should be arranged when

the overlapping degree is high. Proposition 4.4(d) shows that, given 0t , the object

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

103

function is concave with respect to n . This is important from a managerial perspective.

Consider an organization attempting to improve information exchange policy across

similar projects. Since),(0
*

ntG is concave, the organization can rely on marginal

improvement: continuously increase n until it decreases project performance.

4.5 Model Application

In this section, we illustrate the model with its application in a consumer electronics

company which is one of the world’s leading white goods home appliance

manufacturers. It manufactures home appliances in over 15,100 different specifications

under 96 categories and has approximately 50,000 employees throughout the world. Its

product categories range from refrigerators, refrigerating cabinets, air conditioners,

washing machines, televisions, mobile phones, home theatre systems, computers,

water heaters, DVD players and integrated furniture. The global revenue of the

company for 2005 was more than 12 billion US dollars.

As is common in consumer electronics industry, concurrent engineering is applied in

the case study company. Our model was applied to improve the refrigerator

development process. There are six types of refrigerator development projects in the

company, one of which is analyzed in this section to illustrate the methodology

proposed. The data set shown in this chapter was estimated together with the

experienced engineers according to the records of the previous projects (the documents

of design issues and project schedule). In most companies, these data are available

(Krishnan et al. 1997, Roemer et al. 2000, Lin et al. 2008) which allows us to derive

the development policies on reliable inputs. Actually, this is one of the most important

reasons that why the concepts of upstream evolution (the evolution of upstream

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

104

modification) and downstream sensitivity, which were proposed by Krishnan et al.

1997 and extended by Loch and Terwiesch (1998), have had a strong influence on the

literature of concurrent engineering.

Our focus is on the Detail Design (upstream) and Tooling Fabrication (downstream)

since they are the key drivers of development time and cost and are usually

concurrently executed. After completing the preliminary detail design, the drawings

are reviewed by experienced engineers and two rounds of prototype testing are

arranged. The design drafts are continuous modified in the testing process. As shown

in Figure 4.4, the modification process lasts 48 working days (working 6 days per

week). For the previous projects, the downstream starts on the 22nd day when the

testing of the first prototype is almost finished. After that, no meeting is arranged until

the drawings are finalized. The estimated setup time and cost for information exchange

are 1 day and 2000 dollars respectively.

Figure 4.4 Modification process

0

10

20

30

40

50

60

70

80

3 9 15 21 27 33 39 45

Time (day)

M
o

d
if

ic
a

ti
o

n
s

 I
d

e
n

ti
fi

e
d

 p
e

r
T

h
re

e
 D

a
y

s

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

105

According to Figure 4.4, we derive the function of cumulated design modifications

using regression analysis by minimizing SSE (sum of squared residuals). The outputs

of regression analysis are summarized in Table 4.2 and plotted in Figure 4.5. We see

that the proposed function fits well to the real data set.

Table 4.2 Assessing model fit to data

 DF Sum of Squares Mean Square R-Square

Model 2 1.46009E+06 7.30045E+05 0.999116

Error 15 200.659 13.37726667

Uncorrected Total 17 1.46029E+06

Corrected Total
16 226926

Figure 4.5 Cumulated design modifications

According to the documents of design issues and project schedule, in average, about

100 modifications were transferred to the downstream at the beginning of the 49th day

and corrupted 30% of downstream work. The downstream progress at that time is 27

0

50

100

150

200

250

300

350

400

450

0 6 12 18 24 30 36 42 48

Time (day)

C
u

m
u

la
ti

v
e
 M

o
d

if
ic

a
ti

o
n

s

Field Data

Output of Fitted

Modification Function

}0555.0exp{37.23 t−=µ

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

106

days and the downstream development duration is 44 days. By the equations derived in

Section 3, the impact factor k equals 0.65%. The other parameters, which are

commonly used for project modeling (Ford and Sterman 1998, Repenning 2001), were

derived from historical records or estimated by experienced engineers.

By these parameters, we investigated the optimal communication policy for complete

overlapping using Algorithm 1. The results are: 5ˆ =n , 48,96.37,28.29,26.21,25.13ˆ
ˆ,1 =nt ,

and 99.107)(0
* =tG . Then, by Proposition 2a, we derive that]26.21,25.13[*

0 ∈t ,

73.162)ˆ,ˆ(ˆ,21 =nttG , and 03.179)ˆ,ˆ(ˆ,32 =nttG . Therefore, an appropriate development

policy is that: 210 =t ; the communication occurs at the 30th, 39th, and 49th day

(assuming the solution must be integer). If an accurate solution is required, we need to

compare the project performance when the downstream starts in]26.21,25.13[. Figure

4.6 shows the change of project performance with 0t , by which we derive

)ˆ,ˆ(ˆ,32
*

nttGG = .

Figure 4.6 The effect of overlapping policy on project performance

0

25

50

75

100

125

150

175

200

4 14 24 34 44

Downstream Start Time (day)

P
ro

je
c
t

P
e
rf

o
rm

a
n

c
e

}0555.0exp{37.23 t−=µ ; %65.0=k ; 48=uD ;

44=dD ; 15=tc ; 2=βc ; 7=rc ; 1=β ; 1=r

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

107

Comparing the analytical results with the development policies applied in the company,

we see that the previous communication strategy is far from optimal. If two more

meetings were arranged on the 30th and 39th day, the gain from CE can be increased

from $87,000 to $179,030.

The sensitivity of development policies on setup time and cost is also studied. As

shown in Table 4.3, *
n decreases with βc and β and *

0t increases with βc and β .

However, *
n and *

0t change discontinuously. For example, as shown in Table 4.3, the

development policies are not affected when the communication cost and time changes

from 150% to 175%. This is important from a managerial perspective. Consider an

organization attempting to continuously decrease its setup time and cost for

information exchange by applying new technologies. Since *
n and *

0t change

discontinuously, the organization can only adjust its development policies when the

setup time and cost reach a critical value.

Table 4.3 The impact of communication time and cost on development policies

Setup Time and
Cost

*
n

*
0t

*

,1 *n
t *

G

25% 7 17
20.94, 24.90, 28.97, 33.22, 37.74,
42.62, 48

234.24

50% 5 19 24.15, 29.43, 35.03, 41.14, 48 210.23

75% 4 19 6.48, 6.75, 7.36, 48 192.69

100% 3 21 29.10, 37.86, 48 179.03

125% 3 21 29.10, 37.86, 48 166.28

150% 2 24 35.06, 48 155.77

175% 2 24 35.06, 48 147.27

200% 2 24 35.06, 48 138.77

225% 2 24 35.06, 48 130.27

250% 2 24 35.06, 48 121.77

275% 2 24 35.06, 48 113.27

300% 1 30 48 106.71

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

108

4.6 Discussion and Conclusion

Literature (e.g. Clark and Fujimoto 1991, Loch and Terwiesch 1998, Helms 2004)

shows that overlapping and communication policies are interrelated. Overlapping may

degrade project performance if appropriate communication policy is not followed. We

present an analytical model that optimally schedule overlapping and communication

policies. The dynamic relationship between downstream progress and project

characteristics is explicitly studied, which ensures the accuracy and applicability of the

insights and algorithms derived. Furthermore, the availability of the input data and the

applicability of the model are validated by a case study in a consumer electronics

company.

This research yields four main results. Firstly, by Proposition 4.1, Algorithm 1 is

proposed which can help us determine the optimal communication policy when

overlapping degree is predetermined. Then, by the insights given in Propositions 4.2

and 4.3, an appropriate overlapping degree and the corresponding communication

policy are determined. After that, the time-to-market problem is discussed in

Proposition 4.3. Previous research (e.g. Roemer et al. 1999) argues that complete

overlapping is optimal for time-to-market problem. However, our result shows that the

downstream start time should be delayed if communication takes time. The conflict

exists because previous studies usually ignore communication time and cost. Our result

takes the effect of communication time into account and thus is more general. Finally,

Proposition 4.4 presents several important management insights for the linear

evolution case. The linear evolution case is studied in detail because: (1) all the

evolution processes can be approximated by piecewise linear functions; (2) the

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

109

algorithm for the linear evolution case is much more efficient; (3) the insights can

guide management to determine communication policy without modeling.

Nonetheless, we would like to point out the limitations to the approach presented here.

Firstly, our model can only be built and analyzed when historical data is available. For

derivative projects which account for the majority of product development projects

(Whitney 1990, Wang and Yan 2005), these data are typically available (Krishnan et al.

1996, Roemer et al. 2000, Helms 2002). However, for new projects, we can only build

a model based on estimated data which may lead to inaccurate results. Secondly,

although the model is built on previous literature and illustrated with a case study done

in consumer electronics industry, it is important to test and improve it through real

applications in other industries since the development processes may be different.

Thirdly, our model is deterministic and therefore does not directly address risk, while

many facets of risk can be addressed by running sensitivity analyses on the input data.

Finally, the downstream progress is derived on the mean value of upstream

modifications. It is an approximation of the mean value of downstream progress.

The model discussed in Chapter 4 will reduce to the model in Chapter 3 when

communication cost is zero. As we know, communication cost can never be zero in

practice. Therefore, theoretically, all the projects can be studied using the model

discussed in Chapter 4. However, as communication cost becomes small, it is

computationally difficult to derive appropriate development policies using this model.

Furthermore, many simple and useful insights in Chapter 3 cannot be derived with the

model in Chapter 4. Researchers usually ignore the communication cost when it is

 Chapter 4 Managing Concurrent Development Processes with High Communication Cost

110

insignificant comparing to the project cycle time and total development cost (e.g.

Krishnan et al. 1997).

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

111

CHAPTER 5

A SYSTEM DYNAMICS MODEL OF

OVERLAPPED ITERATIVE PROCESSES

In Chapter 3 and Chapter 4, concurrent exaction of sequentially dependent stages is

studied. However, for some projects, the development stages are interdependent. How

to estimate the cycle time of these product development projects? What is the effect of

activity properties and development policies on project performance? This chapter

presents a new product development (NPD) process model, termed Dynamic

Development Process Model (DDPM), for managing overlapped iterative product

development. The model was validated with data from a mobile phone development

project. It was employed to identify appropriate policies for the overlapped iterative

projects in the case study company. These identified policies were implemented in the

company and led to marked improvement in project performance, thus demonstrating

the viability of the model.

5.1 Introduction

Traditional project management models, such as Critical Path Method (CPM) and

Program Evaluation and Review Technique (PERT) (Moder et al., 1983; Badiru, 1993;

Golenko-Ginzburg and Gonik, 1996), describe development processes which are

relatively stable, with activity duration estimates and precedence relationships

representing the network of development activities. However, these models ignore

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

112

iterations or implicitly incorporate iterations into duration estimates (Ford and Sterman,

2003a, 2003b), limiting the capability of these scheduling techniques in modeling NPD

processes.

Therefore, some models other than CPM/PERT have been developed to study iterative

product development processes. Design structure matrix (DSM) was developed to

describe durations and rework probabilities of development activities (Eppinger et al.,

1994; Steward, 1981). Several other researchers (e.g. Ahmadi and Wang, 1999; Belhe

and Kusiak, 1996) have developed extensions by considering the dynamics of rework

probability and activity duration. Smith and Eppinger (1997a, 1997b) developed

analytic models of sequential and parallel design iterations and addressed the effect of

iterations among project phases on project cycle time with Design Structure Matrix

and reward Markov chain. Browning and Eppinger (2002) developed the first DSM-

based simulation model which analyzed NPD iterations in a generalized project

network. After that Cho and Eppinger (2005) developed the second-generation DSM-

based simulation model which accounts for resource constraints. Cooper (1980, 1993a,

1993b, 1993c) and several other researchers (Ford and Sterman, 1998; Repenning,

2001; Richardson and Pugh III, 1981) built System Dynamics (SD) models to

understand the continuous evolution of NPD projects. While these models have

advanced our understanding on the dynamics of iterative NPD projects, they do not

take into account the overlapping nature of development activities, which is a common

practice to reduce project cycle time (Lawson and Karandikar, 1994; Roemer and

Ahmadi, 2004).

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

113

Previous empirical studies showed that overlapping can reduce project cycle time at

the cost of additional development effort (Smith and Reinertsen, 1995; Helms, 2004)

and the effect of overlapping is closely related to the uncertainty of development

projects (Eisenhardt and Tabrizi, 1995; Terwiesch and Loch, 1999). Based on these

studies some models have been developed to investigate overlapped processes in

which two development stages are sequentially dependent. Krishnan et al. (1997)

developed a framework of concurrent development processes with sequential

dependence to determine the optimal number and timing of information transfer. They

showed that “upstream information evolution” and “downstream sensitivity” are the

two properties affecting optimal overlapping strategies. Loch and Terwiesch (1998)

adapted the concepts of evolution and sensitivity: “upstream information evolution” is

defined as the continuous design modification process; “downstream sensitivity”

represents the impact of a modification on downstream rework. Based on these

concepts, they developed an analytical model and derived the optimal communication

strategies for overlapped processes with sequential dependence. Roemer et al. (2000)

analyzed the time-cost tradeoffs in multistage product development. Chakravarty

(2001) studied the trade-offs between the overlapping risk and the project time saved.

Some special cases were analyzed to establish useful insights for overlapping

development activities. Unlike previous research we developed a model for overlapped

iterative product development, where downstream activities may discover upstream

errors and give feedback to the corresponding activities (Figure 5.1). The extension

from sequentially dependent to interdependent process makes it possible to simulate

and study the effect of overlapping for complex development projects.

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

114

Figure 5.1 DSM representation of sequential dependence and interdependence

To model and analyze overlapped iterative product development we developed the

Dynamic Development Process Model (DDPM) using System Dynamics (SD)

methodology. Discrete event simulation model and continuous time model (system

dynamics) are two methods commonly used to simulate NPD processes. The former

assumes that product development process is composed of a finite set of activities and

information flow only exists at the beginning or at the end of an activity. In contrast,

the SD approach to project management treats the process of each phase as continuous

work flow. It is consistent with the assumption in the overlapping models (e.g. Loch

and Terwiesch, 1998; Roemer et al., 2000; Roemer and Ahmadi, 2004). Through

building the relationship between work flow and information flow, we simulate the

continuous upstream information evolution and its effect on downstream rework using

SD approach.

 1 2 3 4

1

2 ×

3 ×

4 ×

 1 2 3 4

1 × ×

2 × × ×

3 × ×

4 ×

(b) Interdependent stages (a) Sequentially dependent

stages

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

115

The rest of this chapter is organized as follows. In section 5.2, we develop the concepts

of Rework Due to Development Errors and Rework Due to Corruption. According to

our field study and literature review (e.g. Joglekar et al., 2001; Krishnan et al., 1997)

of NPD process, these are the types of rework existing in overlapped iterative product

development. In the next section, we use these concepts to construct the dynamic

development process model, followed by the validation of DDPM in section 5.4. The

effect of corruption on project performance is discussed in section 5.5. Then policies

for the overlapped iterative projects in a development company are analyzed in section

5.6. The successful application of the proposed new policies further validated the

model. Conclusions are summarized in section 5.7.

5.2 Rework due to development errors and corruption

We follow the information-based view of product development (Clark and Fujimoto,

1991) in which individual development activities are the information-processing units

that receive information from their preceding activities and transform it into new

information to be passed on to subsequent activities. The information changes between

activities are embedded in the tasks carried out. Each activity of the product

development process is related to the development tasks such as customer

specifications at concept development phase, detailed engineering drawings at detail

design phase, and part dimensions at pilot production phase. The ultimate objective is

to ensure these tasks are carried out correctly, at low cost and in short time. We

describe and simulate the rework process in the form of Rework Due to Development

Errors and Rework Due to Corruption.

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

116

5.2.1 Rework Due to Development Errors

Product development, even for derivative products, is a process with much uncertainty.

Consequently, many tasks are incorrectly done in the completion and rework processes.

These tasks are termed as Development Errors (DEs). Rework Due to Development

Errors refers to rework or rectification of DEs which are identified through review and

testing activities.

We illustrate the rework process using a stock and flow structure (Figure 5.2). Stocks

represent the accumulation of tasks and flows represent the rates of development

activities (Sterman, 2004). Tasks initially reside in the Tasks Remaining (Tr) stock. As

the project begins and progresses, tasks correctly done flow into the Tasks-done-

correctly (Tc) stock while tasks containing errors or defects add to the Development

Errors stock. Development Errors may be identified by a testing activity and flow into

the Tasks to be Reworked stock. Therefore the total number of Development Errors

decrease as some of them are correctly reworked. Because rework quality is usually

not perfect, tasks which are incorrectly reworked flow back into the Development

Errors stock. Some of the reworked tasks in the Development Errors stock may need

to flow into this rework cycle one or more times. When rework quality is low, this

vicious rework cycle dominates the development process. According to Cooper

(1993a), “A quality of 0.20 will require five cycles of work and cost (four full rework

cycles) to ‘get it right’”.

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

117

Figure 5.2 Rework due to development errors

5.2.2 Rework Due to Corruption

Rework Due to Corruption refers to rework or rectification when the change of tasks in

an upstream phase corrupts the relevant tasks in the downstream phases, whether the

downstream tasks are done correctly or not. In other words, some tasks need to be

reworked because they start on incorrect information from upstream phases. We

termed this phenomenon as Corruption. In this model, the ��� (� ≥ 2) order rework,

i.e. the downstream corruption caused by upstream corruption, is also studied.

Tasks corrupted are dependent on the reworked tasks of the upstream phase, the

Dependency of the development phases, and the progress of the downstream phase

(Tasks Done). The reworked tasks of the upstream phase are positively related to

Rework Due to Corruption. More changed tasks inevitably mean that more tasks may

T asks Rem aining

T asks-done-correctly

D evelopm ent Errors
Com plete T asksCorrectly

Com plete T asksW rongly
D iscover D evelopm entErrorsT asks to be Rew orkedRedo T asks W rongly

Redo T asks Correctly

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

118

be reworked in the downstream phases (Krishnan et al., 1997). Dependency represents

the relationship between the tasks corrupted in the downstream phase and the fraction

of the tasks changed in the upstream phase. It is also positively related to Rework Due

to Corruption. Tasks Done accounts for the reason why more rework is needed in

overlapped NPD process than the rework in sequential process. For traditional

sequential product development process most of the Development Errors can be found

and resolved before the downstream activities start (at that time Tasks Done of

downstream phase is equal to zero and no Corruption arise). For example, in a fully

sequential process, pilot production only starts after detail design has been completed

and most of the quality problems have been resolved. However, in practice, pilot

production usually starts before the upstream activities have been completed in order

to reduce project cycle time. Therefore, in today’s overlapped NPD process,

Corruption accounts for a large portion of rework and affects product development

performance seriously (Krishnan et al., 1997).

The stock and flow structure of Rework Due to Corruption is shown in Figure 5.3.

Certain percentage of downstream tasks is completed based on wrong information

from Development Errors of upstream phase. These tasks, together with other tasks,

reside in the Tasks-done-correctly stock and the Development Errors stock. Corruption

occurs when DEs of an upstream phase are identified. The tasks associated with DEs

of upstream phases leave the Tasks-done-correctly stock and the Development Errors

stock, and then flow into the Tasks to be Reworked stock.

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

119

Figure 5.3 Rework due to corruption

5.2.3 Example

Here we give a simple example to further illustrate the rework process. As shown in

Figure 5.4, Slot A and Slot B are determined by four dimensions. These dimensions are

derived in Phase 1, and then the slots are fabricated in Phase 2. The detailed

development process can be described as follows:

1) In the beginning, all of the dimensions reside in Tasks Remaining 1 and the slots

reside in Tasks Remaining 2.

2) Assuming the development activity in phase 1 is not perfect, Dimension 3 flows into

the Development Errors 1 stock. The other dimensions flow into the Tasks-done-

correctly 1 stock. The slots are kept in Tasks Remaining 2.

3) Phase 2 starts before the development error in Phase 1 is identified and revised.

Assuming the development activity in Phase 2 is perfect, Slot A and Slot B are exactly

T asks Rem aining

T asks-done-correctly

D evelopm ent Errors
Com plete T asksCorrectly

Com plete T asksW rongly
Corrupt D evelopm entErrorsT asks to be Rew orkedRedo T asks W rongly

Redo T asks Correctly Corrupt T asks-done-correctly

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

120

fabricated according to the dimensions and flow into the Tasks-done-correctly 2 stock.

The states of the dimensions are not changed.

4) After that the error of Dimension 3 is identified and revised. It is represented as

Rework Due to Development Errors in our model.

5) Since Slot B is determined by Dimension 3, it needs to be revised accordingly. We

term this type of rework as Rework Due to Corruption.

Figure 5.4 Base rear of a mobile phone

5.3 Dynamic Development Process Model

5.3.1 Stocks and Flows

We combine Rework Due to Development Errors and Rework Due to Corruption in

one stock and flow structure (Figure 5.5).

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

121

Figure 5.5 Dynamic development process model (DDPM)

Four stocks and six flows are used to represent the completion and rework processes.

The stocks (Tasks Remaining (Tr), Tasks-done-correctly (Tc), Development Errors

T asks Rem ainingeq_1

T asks-done-correctlyeq_2

D evelopm ent Errorseq_3

Com plete T asksCorrectlyeq_8

Com plete T asksW ronglyeq_9
D iscover & CorruptD evelopm ent Errorseq_13 & eq_15

T asks to be Rew orkedeq_4
Redo T asks W ronglyeq_18

Redo T asks Correctlyeq_17
Com pletion Q uality

Rew ork Q uality

T asks D oneeq_11Tasks D one inTasks D one inTasks D one inTasks D one inUpstream PhaseUpstream PhaseUpstream PhaseUpstream Phase

T esting Rateeq_10

A verage Rew ork RateRew ork Rateeq_16
CorruptT asks-done-correctlyeq_14

T esting Com pletedeq_6

Com pletionRateeq_7
A verage Com pletionRate

R ew ork R ate ofR ew ork R ate ofR ew ork R ate ofR ew ork R ate ofUpstream PhaseUpstream PhaseUpstream PhaseUpstream Phase
D ependence

T esting Q uality
Testin g R ate o fTestin g R ate o fTestin g R ate o fTestin g R ate o fD ow n stream P haseD ow n stream P haseD ow n stream P haseD ow n stream P haseTesting Q uality ofTesting Q uality ofTesting Q uality ofTesting Q uality ofD o w nstream PhaseD o w nstream PhaseD o w nstream PhaseD o w nstream Phase D iscovery Rateeq_12A verage T esting Rate

PrecedenceConstraints forCom pletion PrecedenceConstraints for T esting
T esting Rem ainingeq_5

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

122

(DEs), and Tasks to be Reworked (Ttr)) represent the sizes of the backlogs of tasks. The

sizes of the stocks change due to the flows related to development activities. In Figure

5.5, Complete Tasks Correctly (cc) and Complete Tasks Wrongly (cw) represent the

completion activity; Testing Rate (gre) and Discover Development Errors (de) represent

the testing activity; Redo Tasks Correctly (rc) and Redo Tasks Wrongly (rw) represent

the rework activity; Corrupt Tasks-done-correctly (kc) and Corrupt Development

Errors (ke) represent the Corruption caused by upstream rework. Therefore the

processes described in section 5.2 can be represented by the following differential

equations (at the start of a project, Tr(0)=100%, and Tc(0), DEs(0), and Ttr(0) all equal

zero):

(d/dt)(Tr) = - cc - cw (5.1)

(d/dt)(Tc) = cc + rc – kc (5.2)

(d/dt)(DEs) = cw + rw – (de +ke) (5.3)

(d/dt)(Ttr) = (de +ke) + kc – rc – rw (5.4)

Testing process is represented by two stocks and one flow (Figure 5.5). Tested tasks

leave the Testing Remaining (Gr) stock, pass through the Testing Rate (gre), and then

accumulate in the Testing Completed (Gc) stock (at the start of a project Gr(0)=100%

and Gc(0)=0). Mathematically:

(d/dt)(Gr) = -gre (5.5)

(d/dt)(Gc) = gre (5.6)

We formally model the flows related to completion, testing, corruption, and rework

with the equations in the rest of this section. The input parameters needed to build the

model are listed in Table 5.1 and shown as diamonds in Figure 5.5. The italic font

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

123

shown in Figure 5.5 represents the parameters of upstream and downstream phases.

Tasks and Development Errors are in percentage values in our model. For example at

the start of a project all the development tasks reside in the Tasks Remaining stock, so

that Tr(0) is 100%.

Table 5.1 Model parameters and performance measures

Parameters Definition

Precedence Constraints The condition to start an activity

Average Activity Rate The average rate of completing a development

activity

Completion/Rework Quality The percentage of tasks correctly done

Testing Quality The percentage of Development Errors identified in

the testing process

Dependency The percentage of downstream tasks will be affected

by one percentage of upstream changes.

Measures of Project

Performance

Definition

Project Quality The percentage of Development Errors remained

when the overall project is completed.

Cycle time The duration from the start to the end of a project

Development Effort The tasks completed and reworked from the start to

the end of a project

5.3.2 Completion

Three development activities drive the flows of tasks in NPD process: completion,

rework and testing. The progress rate for each of three development activities is the

lesser of the average development rate and the rate allowed by tasks available.

Therefore the Completion Rate (cre) is the minimum of the Average Completion Rate

(Ac), and the number of Tasks Remaining (Tr) divided by the time step (τ) of the

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

124

simulation model when Tasks Done in Upstream Phase (Tdu) is greater or equal to

Precedence Constraints for Completion (Pc). Otherwise Completion Rate equals zero.

According to Completion Quality (Cq), Completion Rate is decomposed into Complete

Tasks Correctly and Complete Tasks Wrongly. These conditions can be represented by

the following equations:

cre = IF (Tdu ≥ Pc) THEN (Min (Ac, Tr/ τ)) ELSE (0) (5.7)

cc = cre * Cq (5.8)

cw = cre * (1 – Cq) (5.9)

5.3.3 Testing

Similar to completion rate, Testing Rate is equal to the minimum of the Average

Testing Rate (Ag) and the number of Testing Remaining (Gr) divided by the time step if

Tasks Done (Td) is greater or equal to Precedence Constraints for Testing (Pg).

Otherwise it is zero. Rework arises when the Development Errors are found by a

testing activity. As it is typical that we cannot find all the Development Errors through

a single round of testing, DEs are likely to be discovered by subsequent testing

activities. We model Discovery Rate (dre) as the sum of the product of Testing Quality

(Gq) and Testing Rate from the current testing activity (denoted by m) to the last testing

activity of the project (denoted by n). Discover Development Errors (de) is the result of

Discovery Rate multiplied by Development Errors. Mathematically:

gre = IF (Td ≥ Pg) THEN (Min (Ag, Gr/τ)) ELSE (0) (5.10)

Td = Tc + DEs (5.11)

dre = ∑
=

n

mi
i

re
i

q gG * (5.12)

de = dre * DEs (5.13)

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

125

Figure 5.6 Parameters of dynamic development process model

Parameters Definition

Tr Tasks remaining

Td Tasks done

Tdu Tasks done in upstream phase

Tc Tasks-done-correctly

Ttr Tasks to be reworked

DEs Development errors

Gr Testing remaining

Gc Testing completed

Ac Average completion rate

Ag Average testing rate

Ar Average rework rate

Pc Precedence constraints for completion

Pg Precedence constraints for testing

Cq Completion quality

Gq Testing quality

Rq Rework quality

cre Completion rate

cc Completion tasks correctly

cw Completion tasks wrongly

gre Testing rate

dre Discovery rate

de Discover development errors

K Dependence between development phases

kc Corrupt tasks-done-correctly

ke Corrupt development errors

rre Rework rate

rru Rework rate of upstream phase

rc Redo tasks correctly

rw Redo tasks wrongly

τ Time step

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

126

5.3.4 Corruption

When Development Errors of an upstream phase are found and corrected after starting

the downstream activities, some tasks are corrupted. The amount of the tasks corrupted

is the product of upstream modifications, Dependency (k) between development phases,

and Tasks Done in the downstream phase (Loch and Terwiesch, 1998; Carrascosa et al.,

1998; Roemer and Ahmadi 2004). In DDPM, Rework Rate of Upstream Phase (rru)

corresponds to upstream modifications. Tasks Done in downstream phase is the sum of

Development Errors (DEs) and Tasks-done-correctly (Tc). Consequently, Corrupt

Tasks-done-correctly is the product of Rework Rate of Upstream Phase, Dependency,

and Tasks-done-correctly. Similarly Corrupt Development Errors is the product of

Rework Rate of Upstream Phase, Dependency, and Development Errors. Note that

corruption only happens when Tasks-done-correctly and Development Errors are not

equal to zero. These relationships can be presented as follows:

kc = rru * k * Tc (5.14)

ke = rru * k * DEs (5.15)

5.3.5 Rework

Rework Rate (rre) is formulated similarly to Completion Rate. It is the lesser of the

Average Rework Rate (Ar), and the number of Tasks to be Reworked (Ttr) divided by

the time step. Rework Rate is composed of Redo Tasks Correctly and Redo Tasks

Wrongly. Redo Tasks Correctly is the product of Rework Rate and Rework Quality (Rq).

Redo Tasks Wrongly is the rate of generating wrong tasks in the rework process. These

relationships are represented by the following equations:

rre = Min (Ar, Ttr/τ) (5.16)

rc = rre * Rq (5.17)

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

127

rw = rre * (1 – Rq) (5.18)

5.4 Validation of the model

5.4.1 Base Case

The company where the case study was conducted is a design company in Shanghai,

China. The company designs mobile phones according to market and technology

trends and sells the design to manufacturers, or according to customer requirements

when approached by a specific customer. In order to reduce time-to-market,

overlapped iterative development process is implemented in the company: downstream

phase starts before the tasks in upstream phase are frozen; upstream development

errors are continuously rectified according to the feedback information from

downstream phases.

The project of a derivative product, which is developed based on a relatively mature

architecture, is used to validate DDPM. The project started in September 2003 and was

completed in May 2004. As shown in Figure 5.7 and 5.8, the development process of

the project involves three development phases and each phase is composed of

completion, rework, and testing activities:

1) Concept Development: Based on the requirements provided by the customer, the

design company studied the feasibility of the product concept, refined the

requirements, and defined the main features and specifications of the product. This

phase is composed of four development activities: completion activity of concept

development, rework activity of concept development, 3D model review (RC1 in

Figure 5.7 and Figure 5.8), and dummy sample review (RC2).

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

128

Figure 5.7 Development process of a mobile phone

2) Detail Design: This phase constitutes the detail design of mechanical and

electronic components. After the first prototype was completed, engineers

reviewed its mechanical and electronic performance to ensure compliance with

initial requirements (RD1), followed by detailed testing (TD1). In parallel to TD1, the

company began making more prototypes to further test the mechanical and

electronic performances of the product (TD2).

3) Pilot Production: Pilot Production is the stage where the product design is realized

as a physical product in a manufacturing plant with further testing implemented to

improve the quality of the product. Half-way through the detail design phase, the

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

129

engineers began to fabricate moulds and produce products for testing. Normally,

100-500 sets of mobile phones are produced per batch. After that, the engineers

started to review and solve the quality problems found in the production process

(RP1). At the same time, quality engineers tested the product quality and provided a

report to the designers (TP1). For mobile phone development, several rounds of

pilot production are needed to identify potential quality problems.

Figure 5.8 Information flows in the mobile phone development

5.4.2 Data Collection

In order to validate our model we collected detailed data based on historical records,

such as project schedule and the quality problems found and solved over the entire

period of the project. These data were double checked together with the engineers

 1 2 3 4 5 6 7 8 9 10

Completion and rework activity

of concept development
1 × × × × ×

RC1 2 ×

RC2 3 ×

Completion and rework activity

of detail design
4 × × × × × ×

RD1 5 ×

TD1 6 ×

TD2 7 ×

Completion and rework activity

of pilot production
8 × × ×

RP1 9 ×

TP1 10 ×

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

130

familiar with this project. The Average Completion Rate, Average Testing Rate,

Completion Quality, and Precedence Constraints can be directly accessed from the

historical data (Ford and Sterman, 1998; Black and Repenning, 2001). The other

parameters are calculated using following equations: Average Rework Rate is the result

of Tasks Reworked divided by Rework Duration; Rework Quality equals Tasks

Correctly Reworked divided by Tasks Reworked; Testing Quality equals Development

Errors Found divided by Development Errors Exist (Cooper, 1993a); Dependency

equals Tasks Corrupted divided by the product of Upstream Tasks Reworked and

Tasks Done. The parameter values of the project are listed in Table 5.2.

5.4.3 Model Testing

Behavior-reproduction tests (Sterman, 2004) are used to validate the model by

comparing simulation results with field data for the mobile phone development project.

Many tools are available to assess a model’s ability to reproduce the behavior of a

system. Most common are descriptive statistics to assess the point-by-point fit. Point-

by-point metrics compute some measures of the error between a data series and the

model output at every point for which data exist and then report the average values.

The most widely reported measure of fit is R2, the coefficient of determination. R2

measures the fraction of the variance in the data “explained” by the model. If the

model exactly replicates the actual series, R2=1; if the model output is constant, R2=0.

R2 is the square of the correlation coefficient which measures the degree to which two

series covary.

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

131

Table 5.2 Model inputs for the mobile phone development project

(a) Parameter values of completion & rework activities

Completion & Rework Activities
Precedence

Constraints

Rate

(per
Quality

Completion Activity of Concept

Development
- 1/5 79.73%

Rework Activity of Concept Development - 1/25 85.71%

Completion Activity of Detail Design RC2 finished 1/14 63.01%

Rework Activity of Detail Design - 1/13 83.48%

Completion Activity of Pilot Production TD1 finished 1/34 78.34%

Rework Activity of Pilot Production - 1/35 83.41%

 (b) Parameter values of testing activities

Testing

Activities

Precedence

Constraints

Rate

(per day)

Testing Quality for Each Phase

Concept

Development

Detail

Design

Pilot

Production

RC1

Concept

development

initially completed

2 50.00% - -

RC2 RC1 finished 2 5.41% - -

RD1

Detail design

initially completed
4 14.29% 43.28% -

TD1 RD1 finished 1/4 50.00% 62.02% -

TD2 RD1 finished 1/10 28.57% 28.28% -

RP1

Pilot production

initially completed
1 - 41.30% 46.24%

TP1

Pilot production

initially completed
1/14 - 31.72% 31.73%

 (c) Dependency

Stages Dependency

Dependency between Concept

Development and Detail Design
2.13

Dependency between Detail

Design and Pilot Production
1.63

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

132

The mean absolute error, MAE; mean absolute error as a percentage of the mean,

MAE/Mean; and root mean square error, RMSE all provide measures of the average

error between the simulated and actual series. MAE weights all errors linearly; RMSE

weights large errors much more heavily than small ones. Both measure the error in the

same units as the variable itself. MAE/Mean and RMSE/Mean provide dimensionless

metrics for the error, which are easier to interpret.

Figure 5.9 Reference mode and simulation results

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 20 40 60 80 100 120 140 160 180

T
a
s
k
s
 C

o
rr

e
c
tl
y
 D

o
n
e
 (

%
)

Working Days

Field Data of Pilot Production

Model Output of Pilot Production

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 20 40 60 80 100 120 140 160 180

T
a

s
k
s
 C

o
rr

e
c
tl
y

D
o

n
e

 (
%

)

Working Days

Field Data of Concept Development

Model Output of Concept Development

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 20 40 60 80 100 120 140 160 180

T
a
s
k
s
 C

o
rr

e
c
tl
y
 D

o
n
e
 (

%
)

Working Days

Field Data of Detail Design

Model Output of Detail Design

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

133

Field data and model output for the three development phases are shown in Figure 5.9.

The behavior patterns of DDPM for the three development phases follow closely the

patterns of the field data. The error between a data series and the model output is

measured by R2, MAE/Mean, and RMSE/Mean. As shown in Table 5.3, the errors for

three phases are reasonable (R2>97%, MAE/Mean <3%, and RMSE/Mean<4%).

Table 5.3 Error statistics for assessing model fit to data

Phase n R
2
 (%)

MAE/

Mean

RMSE

/Mean

Thiel Inequality Statistics

Bias

(%)

Unequal

Variation

(%)

Unequal

Covariance

(%)

Concept

Development
174 97.34% 0.68% 2.39% 2.74% 58.14% 39.12%

Detail Design 158 98.88% 2.03% 3.65% 3.13% 60.26% 36.61%

Pilot

Production
129 99.50% 1.97% 3.10% 32.14% 13.55% 54.31%

It is important to know the sources of errors as well as the total number of errors.

Large errors may be due to a poor model or a large amount of random noise in the data.

The total error may be large if a model of behavior in the real system is deliberately

excluded as irrelevant to the model purpose. The Theil inequality statistics can help

decompose the error into systematic and unsystematic components.

The Theil inequality statistics (Sterman, 1984; Theil, 1966) decompose the mean

square error (MSE) into three components: Bias, Unequal Variation, and Unequal

Covariation. Bias arises when the model output and data have different means.

Unequal variation indicates that the variances of the two series differ. Unequal

covariation means the model and data are imperfectly correlated, that is, they differ

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

134

point by point. Large MAE/RMSE and large bias indicate systematic error and should

lead to questions about the assumption of the model.

Partitioning the MSE using the Theil inequality statistics reveals MSE dominated by

Unequal Covariance and Unequal Variation. As the errors for our model are small

(R2>97%, MAE/Mean <3%, and RMSE/Mean<4%) and Bias only accounts for a small

part of MSE, this model should be accurate enough for us to show the behavior

patterns of overlapped iterative development projects and study the effect of different

policies on project performance.

5.5 Effect of Corruption on Project Performance

To understand the influence of Corruption on project performance we compare the

simulation results of our model with a model without considering Corruption. Since no

Corruption exists for the concept development phase, we only studied the results of

detail design phase and pilot production phase (Figure 5.10) and analyzed the effect of

Corruption on the total amount of reworked tasks and project cycle time when the

project achieved the required quality with 98% of tasks correctly done. Table 5.4

shows that corruption increased about 50% of rework and 10% of project cycle time on

average. This suggests that models ignoring Rework Due to Corruption or implicitly

incorporating it into Rework Due to Tasks-done-wrongly will affect the accuracy of the

models, and may lead to wrong managerial implications.

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

135

Figure 5.10 Simulating the effect of corruption

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 20 40 60 80 100 120 140 160
Working Days

P
e

rc
e

n
t

o
f

T
a

s
k

s
 C

o
rr

e
c

tl
y

 D
o

n
e

Results of the DDPM

Model (Detail Design)

Results of a Model

without Considering

Corruption (Detail

Design)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 20 40 60 80 100 120 140 160 180

Working Days

P
e

rc
e

n
t

o
f

T
a

s
k

s
 C

o
rr

e
c

tl
y

 D
o

n
e

Results of the

DDPM Model

(Pilot Production)

Results of a

Model without

Considering

Corruption (Pilot

Production)

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

136

Table 5.4 Impacts of corruption on project performance

Detail Design Pilot Production

66.45% 64.31%

24.47% 38.63%

Corrupted Tasks /

Reworked Tasks
36.82% 60.07%

Without Corruption 153.42 (day) 155.54 (day)

With Corruption 164.08 (day) 183.54 (day)

Effect of Corruption on Project

Cycle Tim
6.50% 15.14%

Time Needed to

Achieve 98% of

Tasks Correctly

Done

Phase

ReworkedTasks

Corrupted Tasks

5.6 Policy Analysis

In order to check the applicability of our model for policy analysis, we continuously

collected and analyzed the data from the projects of the design company. In 2004 we

studied the product development process in the company and collected relevant data

for the model. Alternative policies were analyzed subsequently. In early 2005 new

policies were implemented. The results of the new policies were analyzed in 2006.

We assume that the development projects are completed when they achieve the

required quality, with 98% of tasks correctly done (which is the standard currently

used in the company), and try to reduce the project cycle time and development effort

with different policies for different types of projects. Typically, there are three types of

development projects in the company: projects with new architecture and new circuit

board (Type 1 project); projects with mature architecture and new circuit board (Type

2 project); and projects with mature architecture and mature circuit board (Type 3

project). Each of these three types of projects has different development qualities,

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

137

particularly in concept development phase and detail design phase. Generally the

development qualities are better for projects with mature architecture and circuit board.

The data used in this section were collected on 6 projects completed in 2004 (2

projects for each type). All of the data were validated by experienced engineers from

Industrial Design, Mechanic Design, Hardware, Quality Control, and Production

departments.

5.6.1 Overlapping between Detail Design and Pilot Production

As shown in Figures 5.7 and 5.8, the initial completion of detail design generates

preliminary information for pilot production and then the preliminary information will

be modified through testing and rework. Pilot production can start when preliminary

information is available. However it will incur Rework Due to Corruption. Pilot

production can also start after most of the modifications are done. Therefore four

alternative overlapping policies are considered: start pilot product after TD2

(represented as overlapping policy 1 (O1) in Figure 5.11); start pilot production after

TD1 (O2); start pilot production after RD1 (O3); and start pilot production immediately

after detail design (O4). In 2004, the standard process for the company was to start

pilot production after TD1. However, is this level of overlapping suitable for all of the

projects in the company? In order to answer it, we tested the influence of different

overlapping policies for three types of projects. As can be seen in Figure 5.11, more

rework occurs as the degree of overlapping increases. This may explain why

overlapped product development does not always work as predicted. There is a trade-

off between the time reduced because of overlapping and the cost and time increased

due to rework.

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

138

Rework changes more significantly in Type 1 project than the change in the other

projects, as indicated by the steeper slope of the line. In 2004, O2 was implemented in

the company. This policy is suitable for Type 1 project, because the application of O3

or O4 would increase rework seriously. However, O3 is better for Type 2 and Type 3

projects, because project cycle time can be reduced with little expense of rework.

Theoretically, O4 can also be implemented for projects with mature architecture.

However, according to the experience of the engineers from the company, O4 may

increase the risk of damaging the hard mould for pilot production, causing a

tremendous increase in cost. For example, the size of handset housing affects a large

number of related parts, and a change of it means building new hard moulds. Pilot

production should only start after important specifications have been properly

reviewed and confirmed. Consequently, the overlapping policy should be adjusted: O2

can be used for type 1 project, and O3 can be applied for type 2 and type 3 projects.

Figure 5.11 Project performance with different levels of overlapping between detail

design and pilot production

0.4

0.9

1.4

1.9

150 175 200 225 250 275 300

Working Days

R
e

w
o

rk
e

d
 T

a
s
k
s
 o

f
P

il
o

t
P

ro
d

u
c
ti
o

n

(%
)

Type 1 project

Type 2 project

Type 3 project

O1

O2

O3

O4

O1
O2

O3
O4

O1
O2

O3 O4

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

139

5.6.2 Overlapping in Pilot Production

Table 5.5 Project performance with different levels of overlapping in pilot

production

Performance Development Projects
Current

Policy
New Policy

Performance

Improvement (%)

Type 1 Project 1.4274 1.5082 -5.66%

Type 2 Project 0.6087 0.6102 -0.25%

Type 3 Project 0.5014 0.5026 -0.24%

Type 1 Project 265.25 234.75 11.50%

Type 2 Project 184.5833 175.125 5.12%

Type 3 Project 176.5833 165.9167 6.04%

Reworked Tasks of

Pilot Production

(%)

Project Cycle Time

(working day)

For mobile phone development, usually several (2-4) rounds of pilot production are

needed. In 2004, the policy for the company was to start the next round of pilot

production immediately after RP1 if TP1 had not begun. For example, in the base case

RP1 was finished in 6 days before TP1 started. Using the old policy, engineers started

the second round of pilot production after RP1. Some engineers questioned whether it

was worthwhile to do more rounds of pilot production to reduce project cycle time

because pilot production is costly (as typically 100-500 sets of mobile phones were

produced just for testing). It seems obvious that this policy can reduce project cycle

time. However, the simulation results show that this policy not only increases cost but

also increases project cycle time (Table 5.5). The policy aims to reduce project cycle

time but in reality the opposite happened because quality problems found in TP1 could

not be corrected in the second round of pilot production. Therefore more rounds of

pilot production might be needed to achieve the required project quality. Consequently,

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

140

the suggested new policy is that the next round of pilot production should start after

both RP1 and TP1, whether the projects are urgent or not.

5.6.3 Evaluating Activity Criticality

The investment policies can be evaluated by activity criticality, which is the sensitivity

of project performance to the investment for improving activity quality and duration.

The investment needed and the resulting activity quality and duration could be

estimated according to the experience of the managers or by benchmarking. Based on

these data we can re-analyze the project performance and compare the investment with

the performance improved.

Table 5.6 Project performance with original and improved activity duration

Performance Development Projects
Current

Machine

New

Machine

Performance

Improvement (%)

Type 1 Project
1.4274 1.3244

7.22%

Type 2 Project
0.6087 0.5592

8.13%

Type 3 Project
0.5014 0.4637

7.52%

Type 1 Project
265.25 259.5833

2.14%

Type 2 Project
184.5833 180.3333

2.30%

Type 3 Project
176.5833 173.25

1.89%

Reworked Tasks

of Pilot

Production (%)

Project Cycle

Time

When we were doing the case study in the company, the managers were considering

introducing a prototyping machine. Prototypes are used to find and solve Development

Errors of detail design before expensive pilot production starts. The first prototype was

outsourced at that time and it took about one week. The rest of the prototypes were

done through soft tooling, which was time consuming. The new prototyping machine

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

141

could reduce by 2 working days for the first prototype, and 21 working days for the

other prototypes, but it required a large amount of financial investment. In order to

study if it was worthwhile to acquire this new machine, we compared the performance

of the projects using current practice with the performance using the new prototyping

machine (Table 5.6). It turned out that the reduction of 23 working days with the use of

the new machine could only reduce the project cycle time by about 2%. However, it

could significantly reduce rework by about 7.6% on average. The reason is that TD1

and TD2 are not in the critical path of the project. These are the activities to find the

quality problems of concept development and detail design. Finding the quality

problems earlier can reduce the rework caused by corruption in the project. According

to the simulation results, the number of projects done in the company each year, and

the cost of each project, we found that the cost saving is greater than the investment

involved. We thus suggested the company to invest in the prototyping machine.

5.6.4 Application Result

We simulated the product development process again based on the new policies for

overlapping and investment. The result shows that if the new overlapping policies are

adopted and the prototyping machine is invested, the company can reduce the project

cycle time by about 12% without significantly affecting the percentage of reworked

tasks.

All of the policies discussed above were accepted by the company, because we not

only analyzed the effect of different policies, but also explained the root causes of the

results. Comparing the projects completed before June 2004 to the projects finished in

the first half of the year 2005 when the new policies had been implemented, we found

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

142

that the average project cycle time was reduced by about 30%. Except for the new

policies mentioned above, the average rate of pilot production and testing (TD1, TD2,

and TP1) was improved because of the introduction of new technologies and the

adoption of other development policies. There is no significant difference between the

qualities of development activities for the projects developed in 2004 and in 2005. The

reason is that the experience of the engineers is not significantly changed from 2004 to

2005. Some experienced engineers left the company and recruits were employed. The

average working experience of the engineers was about 5 years. Using the new input

data, the model output matched closely with the average project cycle time of the

projects finished in 2005. It further validated our model and showed that DDPM is a

useful tool for analyzing overlapped iterative product development.

5.7 Conclusion

The ability to expeditiously develop products has been accredited as a critical factor

for the survival of many companies (Carrillo and Franza, 2006). Overlapping of

development activities is commonly regarded as the most promising strategy to reduce

project cycle time. However, overlapping interrelated activities based on preliminary

information can be costly (Roemer et al., 2000). Therefore, some researchers have

developed models to analyze overlapped and sequentially dependent product

development process (e.g. Krishnan et al., 1997; Loch and Terwiesch, 1998; Roemer et

al., 2000). The effect of the “upstream information evolution” on the rework of the

downstream phase is studied in these models. We extend previous research by

developing a SD model for overlapped iterative product development.

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

143

The model presented in this chapter has high “face validity” (Law and Kelton, 1991;

Smith and Morrow, 1999) because it is developed based on the accepted framework

for overlapped product development (e.g. Krishnan et al., 1997; Loch and Terwiesch,

1998; Roemer et al., 2000), in depth case study of the modeled system, and System

Dynamics methodology (Black and Repenning, 2001; Cooper, 1980; Ford and Sterman,

1998; Joglekar and Ford, 2005; Williams et al., 1995; Williams et al., 2003) which has

been theoretically and practically validated. Furthermore, we validated the model

through comparing the simulation results with real data of a project done in a mobile

phone development company. The successful application of the new policies further

implies the usefulness of our model. Although more detailed examination may be

needed, the current level of validity is comparable with models in the related literature

(Abdelsalam and Bao, 2006; Browning and Eppinger, 2002; Cho and Eppinger, 2005;

Ford and Sterman 1998; Smith and Morrow, 1999).

The contribution of this simulation model is threefold. Firstly, development projects

are usually complex and iterative. Although previous research has advanced our

understanding of overlapped processes with sequential dependence, there is still a lack

of tools to study overlapped iterative processes. Our simulation model provides

management a useful tool to predict the effect of different overlapping policies on

project performance for overlapped iterative product development. Secondly, the

introduction of new technologies and/or new machines can help to reduce the time

required to complete various development activities and reduce the probability of

making errors. Our model provides a way to evaluate these possibly substantial capital

investments by estimating the resulting improvement of project performance. Thirdly,

our case study and simulation results show that some insights drawn by previous

 Chapter 5 A System Dynamics Model of Overlapped Iterative Processes

144

models for overlapping development stages with sequential dependence are still

applicable in overlapped iterative product development: (1) overlapping policies are

significantly affected by project uncertainty, thus different overlapping strategies can

be applied for the projects with different uncertainty levels; (2) The total amount of

downstream rework can be reduced by increasing evolution speed, which is achieved

through increasing testing rate in our case.

Several aspects of the model presented in this chapter merit further examination.

Firstly, more cases are needed to validate the model. Future research can test the

broader application of the DDPM by applying it to other overlapped iterative NPD

projects. Such tests will provide a basis for the abstraction of more general dynamic

lessons for development process improvement. Secondly, the effective allocation of

development resources, such as manpower and equipment, is difficult due to the

complexity of overlapped product development process. Therefore, our model may be

further developed to analyze resource allocation policies for overlapped iterative NPD

projects. Finally, overlapping of development activities incurs additional rework.

Spending resource for the rework for one project inevitably causes delay in other

projects. Therefore, we may need to extend our model to explore suitable policies for

managing multiple projects.

 Chapter 6 Conclusions and Future Study

145

CHAPTER 6

CONCLUSIONS AND FUTURE STUDY

The models for managing concurrent processes with different information

dependencies and communication costs have been presented through Chapter 3 to

Chapter 5. In this chapter, concluding remarks are given to summarize the main

findings and contributions. The limitations of the models and the possible research

areas for future studies are also highlighted.

6.1 Introduction

Successful new product development is critical for the survival of many companies.

Product development literature often provides open-loop, single-link linear

relationships which are usually lists of simplified rules for managing projects. These

universal solutions are often not applicable in practice because each firm has a unique

set of constraints and requirements, and does not usually carry out the same project

twice (Smith and Reinertsen, 1998). For example, in the literature of concurrent

engineering, some researchers (e.g. Imai et al., 1985; Takeuchi and Nonaka, 1991;

Clark and Fujimoto, 1991; Wheelwright and Clark, 1992) propose that product

development processes can be accelerated by concurrent execution of development

stages. The others (e.g. Eisenhardt and Tabrizi, 1995; Terwiesch and Loch, 1999)

argue that concurrent engineering is not applicable to all product development projects.

Although these studies have contributed to theoretical understanding, they are still not

 Chapter 6 Conclusions and Future Study

146

applicable in practice. No method is proposed to help management make decisions on

how to apply concurrent engineering to a certain project.

Therefore, the focus of this thesis can no longer be whether or not to apply CE but to

probe more deeply. This research develops two analytical models and one simulation

model for different concurrent processes addressing two questions: (1) how to

determine the optimal overlapping degree between consecutive development stages; (2)

how to arrange the information exchanges for coordinating the upstream changes. In

addition, the analytical model in Chapter 3 also addresses the functional interaction

policy, and the simulation model in Chapter 5 discusses the effect of testing and

development qualities on project cycle time and development cost.

6.2 Contributions of this Study

This thesis sets out to develop models for managing NPD projects, and to derive

management insights to help in structuring concurrent product development processes.

It explores the effects of project properties and development policies on NPD

performance. Three models for the projects with different information dependencies

have been developed to derive appropriate overlapping policies, communication

strategies, and functional interaction level. In addition, comparisons are made

specifically between sequential and CE processes. The conditions under which one

process outperforms the other are investigated. This work has both theoretical and

methodological implications.

 Chapter 6 Conclusions and Future Study

147

6.2.1 Contributions to Theory

While some researchers have developed models to analyze concurrent product

development process, most of these models are developed based on the assumption

that the rework probability or the amount of rework is known. However, the question

of how to estimate the probability of rework has not been rigorously addressed by

researchers (Roemer and Ahmadi, 2004; Jun et al., 2005). Consequently, these models

are not applicable in practice. The models introduced in this thesis are helpful for

management to derive appropriate development policies by the data available in

practice. This was done based on the concepts of evolution and sensitivity (Krishnan et

al. 1997) and on practical studies of concurrent product development processes,

following an information processing view of product development processes. The

research has produced the following important analytical results, management insights,

and algorithms, categorized under the models for different concurrent processes.

For sequentially dependent processes with low communication cost, firstly, the optimal

overlapping policies are presented. Then, the impact of different project properties

(such as dependency between development stages, rework rate, and opportunity cost of

time) on overlapping policies is proposed. Finally, the thesis derives the optimal

functional interaction strategies under the condition that optimal overlapping is

followed. This model was used to examine the development policies in a handset

design company.

 For sequentially dependent processes with high communication cost, an algorithm is

proposed to derive the optimal overlapping and communication strategies for the

general case. Then the linear evolution case is further discussed and a more efficient

 Chapter 6 Conclusions and Future Study

148

algorithm for the linear evolution case is presented. The model is applied to improve

the refrigerator development process in an electronics company. Moreover, some

guidelines for structuring concurrent processes are provided.

For interdependent process, this work presents a new product development (NPD)

process model, termed Dynamic Development Process Model (DDPM). Although

System Dynamics does not guarantee an optimal solution for a product development

project, it can include more factors of reality. Because of this, SD has been widely and

successfully applied to study product development projects in practice (e.g. Cooper,

1980; Ford and Sterman, 1998; Black and Repenning, 2001; Joglekar and Ford, 2005).

The SD model developed in this thesis extends previous work (e.g. Krishnan et al.,

1997; Loch and Terwiesch, 1998; Joglekar et al., 2001) through modeling iterative

product development process with multiple phases, considering the rework caused by

different causes, and investigating the trade-offs between project cycle time, project

quality, and development effort. The model has been validated with data from a mobile

phone development project. The DDPM was employed to identify appropriate policies

for the overlapped iterative projects in the case study company. These identified

policies were implemented in the company and led to marked improvement in project

performance, thus demonstrating the viability of the model.

The findings of the models generally agree with empirical results. As such, they seem

to provide a reasonable prediction of performance and can therefore be considered to

be a good managerial tool to help design a process in terms of overlapping,

communication, and functional interaction. The applicability of the models is

illustrated with three case studies in consumer electronics companies.

 Chapter 6 Conclusions and Future Study

149

To date, no existing work has produced useful guidelines on how to design and

manage concurrent processes in detail. Our study is presumably the first study that has

systematically analyzed concurrent processes. Furthermore, different models for the

projects with different information dependency and communication cost are developed.

Thus, the models developed in this thesis are more able to represent practical

situations than previously developed models. The study of concurrent product

development is therefore a significant contribution to the existing research.

6.2.2 Contributions to Methodology

Contributions to methodology mainly refer to the use of System Dynamics

methodology to study concurrent product development processes. SD has been widely

used to model NPD processes in 1980s and 1990s. However, previous models can not

explicitly simulate the dynamic properties of concurrent processes. This limits the

usability of SD models, as CE has already been applied in most NPD projects

(Siemieniuch and Sinclair, 1999). Our DDPM model describes a structure to describe

the dynamic relationship between overlapped stages. Together with previous SD model,

our model shows that SD can become a powerful tool to study concurrent product

development.

The SD methodology is also instrumental in broadening the scope of the study of

concurrent product development, which was limited when using mathematical

methodology. As a result, one of the most significant contributions of this thesis is that

the outcomes of concurrent execution of two development stages could be tied to

macro-process performance in a product development model. Whereas most models in

 Chapter 6 Conclusions and Future Study

150

the existing literature have produced important findings about the concurrent execution

of two development stages, the SD model, which integrates these process

characteristics into more comprehensive models, allows us to check the combined

effect of different development policies, such as overlapping and testing policies, on

project performance.

6.3 Limitations

There are several limitations for this study that restrict the extent to which the findings

can be generalized. Firstly, although the models are built on previous literature and

validated on three case studies in consumer electronics industry, it is important to test

and improve them through real applications in other industries since the NPD

processes may be different.

Secondly, the models assume that all team members share common goals in a project.

Though this is a common assumption in NPD models and is true to most NPD projects,

in a cross-company project, functional teams tend to have goals that differ from one

another. Goal incongruity may increase the complexity of product development and

affects the choice of development policies.

Thirdly, our simulation model does not guarantee an optimal solution to manage

overlapped product development. This is a limitation of most simulation models

incorporating iteration in complex projects (Cho and Eppinger, 2005).

Fourthly, we assume the opportunity cost of time is constant. However, although the

opportunity cost should be constant in short run, it may change in long run. It implies

 Chapter 6 Conclusions and Future Study

151

that the opportunity cost of time should be investigated in detail, if the application of

CE changes project launch time significantly.

Finally, in this thesis, we focus on process related options (overlapping, functional

interaction, and information exchange) to reduce cycle time. However, cycle time can

also be reduced through a focus on product design related options such as module

based platform development. It should be promising to investigate the process and

design related options simultaneously.

6.4 Future Work

There are several opportunities that exist to extend the work presented in this thesis, as

well as to develop new areas of research. Avenues for future work are now discussed.

6.4.1 Application of the Models

Researchers can test the broader application of the models by applying them to other

development projects and processes. Empirical research focusing on the issues in this

thesis would be useful to compare to the models’ results. A continued effort towards

studying NPD process performance using the methodologies and toolsets presented in

this thesis should contribute increasingly to understand how NPD can be successfully

managed in order to meet organizational goals. It will provide a basis for the

abstraction of more general dynamic lessons for development process improvement.

6.4.2 Communication Technologies

The results of this thesis show that communication efficiency can significantly affect

development policies and project performance. Modeling the use of various

 Chapter 6 Conclusions and Future Study

152

communication technologies would undoubtedly help us to check the root cause of

communication efficiency. Considering the growing use of communication

technologies, it becomes valuable to track their roles and impact on project

performance.

6.4.3 Knowledge Management in Product Development

It may be useful in the future to focus on knowledge management in NPD. Modeling

the effect of knowledge sharing would be useful and necessary. Sharing knowledge of

different functions and projects might minimize the need to rework, and may even

show how multiple projects can be arranged. In fact, the effect of functional interaction

is studied in the first model and it can also be studied by the other two. For knowledge

sharing in different projects, no existing model has been able to deal with it.

6.4.4 Multiple Project Interaction

The present models consider only one project, though there may be other projects that

may interact with it. Each project is vying for the limited resources within the

organization, which places constraints on all of them (Scott, 1997; Gerwin and

Barrowman, 2002). This may result in one project not getting enough resources when

other projects are considered, making it difficult to dedicate resources to a project.

In our case studies in consumer electronics industry, we observed that team members

were sometimes being pulled from one project to another. The resulting effect was

span time prolongation and effort increase due to the “warm-up” period required for

the engineers to start up again where they had left off. This can seriously constrain a

project from achieving low cycle time and cost. Investing it would help to identify the

 Chapter 6 Conclusions and Future Study

153

effect of multiple-project interactions, the serious impact of the loss of a team member,

and the importance of resource availability to an organization. This can also highlight

the difference in performance between projects that have dedicated team members, and

those whose team members are subject to fluctuations.

6.4.5 Testing

As was discussed in Chapter 5, review or testing is arranged at the end of each stage.

For new product development, review and testing usually accounts for the most of

development time and cost. In our models the testing strategies are assumed to be

predetermined.

Because of the importance of testing, some researchers are attempting to identify

testing strategies that optimize product development performance (Loch et al. 2001;

Thomke and Bell, 2001). When testing activities are overlapped with each other,

though span time is reduced, the effect of learning is lost, as compared to sequential

testing (Thomke, 1998). Loch et al. (2001) suggest that when testing is costly, it should

be performed sequentially, and that when the test activity is slow, executing it in

parallel will reduce project cycle time.

Although researchers have paid attention to the testing activities in one stage/phase, so

far, no work has investigated the relationship between testing activities in different

development stages. For example, in mobile phone development, engineers can do one

round of prototype testing, or many rounds of prototype testing. Spending more time in

prototype testing will reduce the potential problems in pilot production. Therefore, the

project cycle time may be reduced. Then, how to balance the testing activities in

 Chapter 6 Conclusions and Future Study

154

concept development, detail design, and pilot production? It should be valuable to

investigate it in detail.

 References

155

REFERENCES

Abdel-Hamid, T., 1984. The dynamics of software development project management:

An integrative system dynamics perspective. Doctoral thesis. Massachusetts

Institute of Technology. Cambridge, MA.

Abdelsalam, H.M.E., Bao, H.P., 2006. A simulation-based optimization framework for

product development cycle time reduction. IEEE Transactions on Engineering

Management 53 (1), 69-85.

Adler, P.S., 1995. Interdepartmental interdependence and coordination: the case of the

design / manufacturing interface. Organization Science 6 (2), 147-167.

Ahmadi, R., Roemer, T.A., Wang, R.H., 2001. Structuring product development

processes. European Journal of Operational Research 130 (3), 539-558.

Ahmadi, R., Wang, H., 1999. Managing development risk in product design processes.

Operations Research 47 (2), 235-246.

Ali, A., 1994. Pioneering versus incremental innovation: Review and research

propositions. The Journal of Product Innovation Management 11 (1), 46-61.

Badiru, A.B, 1993. Quantitative Models for Project Planning, Scheduling, and Control.

Quorum Books, Westport, Conn.

Belhe, U., Kusiak, A., 1996. Modeling relationships among design activities. Journal

of Mechanical Design 118 (4), 454-460.

Bhuiyan, F., 2001. Dynamic models of concurrent engineering processes and

performance. Ph.D. dissertation, Department of Mechanical Engineering, McGill

University, Montreal.

 References

156

Bhuiyan, N., Gerwin, D., Thomson, V., 2004. Simulation of the new product

development process for performance improvement. Management Science 50

(12), 1690-1703.

Bhuiyan, N., Thomson, V., Gerwin, D., 2006. Implementing concurrent engineering.

Research Technology Management 49 (1), 38-43.

Black, L.J., Repenning, N.R., 2001. Why firefighting is never enough: Preserving

high-quality product development. System Dynamics Review 17 (1), 33-62.

Blackburn J., 1991. New Product Development: The New Time Wars. In Time-Based

Competition: The Next Battleground in American Manufacturing, ed. by J.

Blackburn, 121-163. Business One Irwin, Homewood.

Browning, T.R., 2001. Applying the Design Structure Matrix to system decomposition

and integration problems: a review and new directions. IEEE Transactions on

Engineering Management 48 (3), 292-306.

Browning, T.R., Eppinger, S.D., 2002. Modeling impacts of process architecture on

cost and schedule risk in product development. IEEE Transactions on Engineering

Management 49 (4), 428-442.

Carrascosa, M., Eppinger, S.D., Whitney, D.E., 1998. Using the design structure

matrix to estimate product development time. ASME Design Engineering

Technical Conferences, Atlanta, GA.

Carrillo, J.E., Franza, R.M., 2006. Investing in product development and production

capabilities: The crucial linkage between time-to-market and ramp-up time.

European Journal of Operational Research 171 (2), 536-556.

Chakravarty, A.K., 2001. Overlapping design and build cycles in product

development. European Journal of Operational Research 134 (2), 392-424.

 References

157

Chen, C.H., Khoo, L.P., Jiao, L., 2004. Information deduction approach through

quality function deployment for the quantification of the dependency between

design tasks. International Journal of Production Research 42 (21), 4623-4637.

Chi, J.C., 2001. The knowledge evolution framework: a knowledge management

perspective on the impact of knowledge segregation on product development

projects. Doctoral thesis. Massachusetts Institute of Technology. Cambridge, MA.

Cho, S., Eppinger, S.D., 2005. A simulation-based process model for managing

complex design projects. IEEE Transactions on Engineering Management 52 (3),

316-328.

Clark, K.B., Fujimoto, T., 1991. Product Development Performance Strategy,

Organization and Management in the World Auto Industry. Harvard Business

School Press, Boston, MA.

Clausing, D., 1994. Total Quality Development: A Step-By-Step Guide to World-Class

Concurrent Engineering. ASME Press, New York.

Cohen, M.A., Eliashberg, J., Ho, T-H., 1996. New product development: the

performance and time-to-market tradeoff. Management Science 42 (2), 173-186.

Cooper, K.G., 1980. Naval ship production: A claim settled and a framework built.

Interface 10 (6), 20-36.

Cooper, K.G., 1993a. The rework cycle: Benchmarks for the project manager. Project

Management Journal 24 (1), 17-22.

Cooper, K.G., 1993b. The rework cycle: How projects are mismanaged. PMNETwork,

February, 5-7.

Cooper, K.G., 1993c. The rework cycle: How it really works…and reworks….

PMNETwork, February, 25-28.

 References

158

Cooper, R.G., 1994. Third generation of new product processes. Journal of Production

Innovation Management 11 (1), 3-14.

Cordero, R., 1991. Managing for speed to avoid product obsolescence: A survey of

techniques. The Journal of Product Innovation Management 8 (4), 283-294.

Datar, S., Jordan, C., Kekre, S., Rajiv, S., Srinivasan, K., 1997. New product

development structures and time-to-market. Management Science 43 (4), 452-464.

Dean, J.W.Jr., Susman, G.I., 1991. Organizing for manufacturable design: managing

product life cycles from start to finish. Harvard Business Review Paperback.

Cambridge, MA.

Eisenhardt, K.M., Tabrizi, B.N., 1995. Accelerating adaptive processes: Product

innovation in the global computer industry. Administrative Science Quarterly 40

(1), 84-110.

Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A., 1994. A model-based

method for organizing tasks in product development. Research in Engineering

Design 6 (1), 1-13.

Ford, D.N., Hou, A., Seville, D., 1993. An exploration of systems product

development at Gadget, Inc.. Working paper D-4460. System Dynamics Group.

Sloan School of Management. Massachusetts Institute of Technology. Cambridge,

MA.

Ford, D.N., 1995. The dynamics of project management: an investigation of the

impacts of project process and coordination on performance. Doctoral thesis.

Massachusetts Institute of Technology. Cambridge, MA.

Ford, D.N., Sterman, J.D., 1998. Dynamic modeling of product development

processes. System Dynamics Review 14 (1), 31-68.

 References

159

Ford, D.N., Sterman, J.D., 2003a. Overcoming the 90% syndrome: Iteration

management in concurrent development projects. Concurrent Engineering:

Research and Applications 11 (3), 177-186.

Ford, D.N., Sterman, J.D., 2003b. The liar’s club: Concealing rework in concurrent

development. Concurrent Engineering: Research and Applications 11 (3), 211-

219.

Ganapathy, B.K., Goh, C.H., 1997. A hierarchical system of performance measures for

concurrent engineering. Concurrent Engineering Research and Applications 5 (2),

137-143.

Gerwin, D., Barrowman, N.J., 2002. An evaluation of research on integrated product

development. Management Science 48 (7), 938-953.

Gil, N., Tommelein, I.D., Beckman, S., 2004. Postponing design processes in

unpredictable environments. Research in Engineering Design 15 (3), 139–154.

Golenko-Ginzburg, D., Gonik, A., 1996. On-line control model for cost simulation

network projects. Journal of the Operational Research Society 47 (2), 266-283.

Griffin, A., 1997. PDMA research on new product development practices: Updating

trends and benchmarking best practices. The Journal of Product Innovation

Management 14 (6), 429–458.

Grupp, H., Maital, S., 2001. Managing New Product Development and Innovation: A

Microeconomic Toolbox. Edward Elgar, Cheltenham, UK.

Ha, A.Y., Porteus, E.L., 1995. Optimal timing of reviews in concurrent design for

manufacturability. Management Science 41 (9), 1431-1447.

Haberle, K.R., Burke, R.J., Graves, R.J., 2000. A not on measuring parallelism in

concurrent engineering. International Journal of Production Research 38 (8), 1947-

1952.

 References

160

Hauser, J., Tellis, G.J., Griffin A., 2006. Research on innovation: A review and agenda

for marketing science. Marketing Science 25 (6), 687-717.

Hayes, R.H., Wheelwright, S.C., Clark K.B., 1988. Dynamic Manufacturing, Creating

the Learning Organization. New York: The Free Press.

Helms, R., 2002. Product data management as enabler for concurrent engineering.

Ph.D. dissertation, Department of Technology Management, Technical University

Eindhoven, The Netherlands.

Helms, R., 2004. Framework for releasing preliminary information in product

development. Advanced Engineering Informatics 18 (4), 231-240.

Henderson, R.M., Clark, K.B., 1990. Architectural innovation: The reconfiguration of

existing product technologies and the failure of established firms. Administrative

Science Quarterly 35 (1), 9-30.

Homer, J., Sterman, J., Greenwood, B., Perkola, M. 1993. Delivery time reduction in

pulp and paper mill construction projects: A dynamic analysis of alternatives.

Proceedings of the 1993 International System Dynamics Conference. Monterey

Institute of Technology. Cancun, Mexico.

Imai, K., Nonaka, I., Takeuchi, H., 1985. Managing the new product development

process: how the Japanese companies learn and unlearn in The Uneasy Alliance.

Clark, K.B., Hayes, R.H., Lorenz, C., eds. Harvard Business School Press,

Cambridge, MA.

Jessen, S.A., 1990. The motivation of project managers, a study of variation in

Norwegian project managers’ motivation and demotivation by triangulation of

methods. Doctoral thesis. The Henley Management College and Brunel

University.

 References

161

Joglekar, N.R., Yassine, A.A., Eppinger, S.D., Whitney, D. E., 2001. Performance of

coupled product development activities with a deadline. Management Science 47

(12), 1605-1620.

Joglekar, N.R., Ford, D.N., 2005. Product development resource allocation with

foresight. European Journal of Operational Research 160 (1), 72-87.

Jun, H.B., Ahn, H.S., Suh, H.W., 2005. On identifying and estimating the cycle time of

product development process. IEEE Transactions on Engineering Management 52

(3), 336-349.

Keisler H.J., 1986. Elementary Calculus: An Infinitesimal Approach. Prindle, Weber

& Schmidt, Boston.

Krishnan, V., 1996. Managing the simultaneous execution of coupled phases in

concurrent product development. IEEE Transactions on Engineering Management

43 (2), 210-217.

Krishnan, V., Eppinger, S.D., Whitney, D.E., 1997. A model-based framework to

overlap product development activities. Management Science 43 (4), 437-451.

Krishnan, V., Ulrich, K.T., 2001. Product development decisions: A review of the

literature. Management Science 47 (1), 1-21.

Law, A.M., Kelton, W.D., 1991. Simulation Modeling and Analysis. McGraw-Hill,

Second ed., New York.

Lawson, M., Karandikar, H.M., 1994. A survey of concurrent engineering. Concurrent

Engineering: Research and Applications 2 (1), 1-6.

Ledet, W., Himmelblau, D., 1970. Decomposition procedures for the solving of large

scale systems, Advances in Chemical Engineering 8, 185-224.

 References

162

Leifer, R., McDermott, C.M., O’Connor, G.C., Peters, L.S., Rice, M., Veryzer, R.W.,

2000. Radical Innovation: How Mature Companies Can Outsmart Upstarts.

Harvard Business School Press, Cambridge, MA.

Liker, J.K., Sobek, D.K., Ward, A.C., Cristiano, J.J., 1996. Involving suppliers in

product development in the United States and Japan: evidence for set-based

concurrent engineering. IEEE Transactions on Engineering Management 43 (2),

165-178.

Lin, J., Chai, K.H., Wong, Y.S., Brombacher, A.C., 2008. A dynamic model for

managing overlapped iterative product development. European Journal of

Operational Research 185 (1), 378-392.

Loch, C.H., Terwiesch, C., 1998. Communication and uncertainty in concurrent

engineering. Management Science 44 (8), 1032-1048.

Loch, C.H., Terwiesch, C., Thomke, S., 2001. Parallel and sequential testing of design

alternatives. Management Science 47 (5), 663-678.

McDermott, C.M., 1999. Managing radical product development in large

manufacturing firms: A longitudinal study. Journal of Operations Management 17

(6), 631–644.

Meixell, M.J., Nunez, M., Talalayevsky, A., 2006. Activity structures in a project-

based environment: A coordination theory perspective. IEEE Transactions on

Engineering Management 53 (2), 285-296.

Minderhoud, S., Fraser, P., 2005. Shifting paradigms of product development in fast

and dynamic markets. Reliability Engineering and System Safety 88 (2), 127-135.

Moder, J.J., Phillips, C.R., Davis, E.W., 1983. Project Management with CPM, PERT,

and Precedence Diagramming. Van Nostrand Reinhold, New York.

 References

163

Morelli, M.D., Eppinger S.D., Gulati R.K., 1995. Predicting technical communications

in product development organizations. IEEE Transactions on Engineering

Management 42 (3), 215-222.

Nevins, J.L., Whitney, D., 1989. Concurrent Design of Products & Processes, A

Strategy for the Next Generation in Manufacturing. McGraw-Hill, New York.

Nevins, T.M., Summe, G.L., Uttal, B., 1991. Commercializing technology: what the

best companies do: managing product life cycles from start to finish. Harvard

Business Review Paperback. Cambridge, MA.

O’Sullivan, A., 2003. Dispersed collaboration in a multi-firm, multi-team product-

development project. Journal of Engineering and Technology Management 20 (1-

2), 93-116.

Osborne, S.M., 1993. Product Development Cycle Time Characterization through

Modeling of Process Change. Unpublished master’s thesis, Sloan School of

Management, MIT, Cambridge, MA.

Patrashkova-Volzdoska, R., McComb, S.A., Green, S.G., Compton, W.D., 2003.

Examining a curvilinear relationship between communication frequency and team

performance in cross-functional project teams. IEEE Transactions on Engineering

Management 50 (3), 262-269.

Pisano, G.P., 1997. The Development Factory. Harvard Business School Press,

Boston, MA.

Reichelt, Kimberley S., 1990. Halter Marine: A case study in the dangers of litigation.

Master’s thesis. Sloan School of Management. Massachusetts Institute on

Technology. Cambridge, MA.

Repenning, N.P., 2001. Understanding fire fighting in new product development. The

Journal of Product Innovation Management 18 (5), 285-300.

 References

164

Richardson, G.P., Pugh III, A.L., 1981. Introduction to System Dynamics Modeling

with Dynamo. MIT Press, Cambridge, MA.

Roberts, Edward B., 1974. A simple model of R&D project dynamics. R&D

Management 5 (1), 1-15.

Rodrigues, A., Bowers., J., 1996. System dynamics in project management: a

comparative analysis with traditional methods. System Dynamics Review 12 (2),

121-139.

Roemer, T.A., Ahmadi, R., Wang, R.H., 2000. Time-cost tradeoffs in overlapped

product development. Operations Research 48 (6), 858-865.

Roemer, T.A., Ahmadi, R., 2004. Concurrent crashing and overlapping in product

development. Operations Research 52 (4), 606-622.

Sargent, W., Westerberg, A., 1964. Speed-up in chemical engineering design.

Transactions of the Institution of Chemical Engineers and the Chemical Engineer

42, 190-197.

Scott, S.G., 1997. Social identification effects in product and process development

teams. Journal of Engineering and Technology Management 14 (2), 97-127.

Siemieniuch C.E., Sinclair M., 1999. Real-time collaboration in design engineering: an

expensive fantasy or affordable reality? Behaviour & Information Technology 18

(5), 361-371.

Smith, P.G., Reinertsen, D.G., 1998. Developing Products in Half the Time, 2nd ed.

Van Nostrand Reinhold, New York.

Smith, R.P., Morrow, J.A., 1999. Product development process modeling. Design

Studies 20 (3), 237-261.

Smith, R.P., Eppinger, S.D., 1997a. Identifying controlling features of engineering

design iteration. Management Science 43 (3), 276-293.

 References

165

Smith, R.P., Eppinger, S.D., 1997b. A predictive model of sequential iteration in

engineering design. Management Science 43 (8), 1104-1120.

Sobek, D.K., Ward, A.C., Liker, J.K., 1999. Toyota’s principles of set-based

concurrent engineering, Sloan Management Review 40 (2), 67-83.

Sterman, J.D., 1984. Appropriate summary statistics for evaluating the historical fit of

system dynamics models. Dynamica 10 (2), 51-66.

Sterman, J.D., 2004. Business Dynamics: Systems Thinking and Modeling for a

Complex World. Irwin/McGraw-Hill, Boston.

Steward, D.V., 1981. The design structure system: A method for managing the design

of complex systems. IEEE Transactions on Engineering Management 49 (4), 428-

442.

Swink, M.L., Sandvig, C., Mabert, V.A., 1996. Customizing concurrent engineering

processes: five case studies. Journal of Production Innovation Management 13 (3),

229-244.

Takeuchi, H., Nonaka, I., 1991. The new product development game: managing

product life cycles from start to finish. Harvard Business Review Paperback.

Cambridge, MA.

Terwiesch, C., Loch, C.H., 1999. Measuring the effectiveness of overlapping

development activities. Management Science 45 (4), 455-465.

Terwiesch, C., Loch, C.H., DeMeyer, A., 2002. Exchanging preliminary information in

concurrent engineering: Alternative coordination strategies. Organization Science

13 (4), 402-419.

Theil, H., 1966. Applied Economic Forecasting. North Holland Publishing Company,

Amsterdam.

 References

166

Thomke, S., 1998. Simulation, learning, and R&D performance: Evidence from

automotive development. Research Policy 27 (1), 55-74.

Thomke, S., Bell, D.E., 2001. Sequential testing in product development. Management

Science 47 (2), 308-323.

Thompson, J.D., 1967. Organizations in action: Social science bases of administrative

theory. McGraw-Hill, New York.

Von Corswant, F., Tunälv, C., 2002. Coordinating customers and proactive suppliers—

a case study of supplier collaboration in product development. Journal of

Engineering and Technology Management 19 (3–4), 249−261.

Wagner, S.M., Hoegl, M., 2006. Involving suppliers in product development: insights

from R&D directors and project managers. Industrial Marketing Management 35

(8), 936-943.

Wang, Z., Yan, H.S., 2005. Optimizing the Concurrency for a group of design

activities. IEEE Transactions on Engineering Management 52 (1), 102-118.

Ward, A., Liker, J.K., Cristiano, J.J., Sobek., D.K., 1995. The second Toyota paradox:

how delaying decisions can make better cars faster. Sloan Management Review 36

(3), 43-61.

Wheelwright, S.C., Clark, K.B., 1992. Revolutionizing Product Development. The

Free Press, New York.

Whitney, D.E., 1990. Designing the design process. Research in Engineering Design 2

(1), 3-13.

Williams, T., Eden, C., Ackerman, F., Tait, A., 1995. The effects of design changes

and delays on project cost. The Journal of the Operational Research Society 46

(7), 809-818.

 References

167

Williams, T., Ackermann, F., Eden, C., 2003. Structuring a delay and disruption claim:

An application of cause-mapping and system dynamics. European Journal of

Operational Research 148 (1), 192-204.

Williams, T., 2005. Assessing and moving on from the dominant project management

discourse in the light of project overruns. IEEE Transactions on Engineering

Management 52 (4), 497-508.

Williams, T.M. 1999. Seeking Optimum Project Duration Extension. The Journal of

the Operational Research Society 50 (5), 460-467.

Womack, J.P., Jones, D.T., Roos, D., 1990. The Machine that Changed the World, The

Story of Lean Production. Rawson Associates, New York.

Yassine, A.A., Chelst, K.R., Falkenburg, D.R., 1999. A decision analytic framework

for evaluating concurrent engineering. IEEE Transactions on Engineering

Management 46 (2), 144–157.

Yassine A.A., Falkenburg, D., Chelst, K., 1999. Engineering design management: an

information structure approach. International Journal of Production Research 37

(13), 2957-2975.

Zhou, K.Z., Yim, C.K., Tse, D.K., 2005. The effects of strategic orientations on

technology- and market-based breakthrough innovations. Journal of Marketing, 69

(2), 42-60.

 Appendix A Proofs of Chapter 3

168

APPENDIX A

PROOFS OF CHAPTER 3

Proof of Proposition 3.1

Assume ∆ time units are spent on rework at time 1t and ∆ time units are spent on

initial development at time 2t (12 tt >). Then �∆ work will be affected by � µ�
��
��

 �

modifications and ∆ work will be affected by � µ� �
��
�!

 modifications. However, if

initial development is done first, ∆ work will be affected by � µ�
��
��

 modifications and

�∆ work will be affected by � µ�
��
�!

 modifications. It is clear that less work will be

affected by upstream modifications in the later case. Therefore the priority of

downstream development should be given to initial development. □

Proof of Proposition 3.2

(a) By proposition 3.1, only initial development will be done in the overlapped

period if ds Dtt +≤ . Therefore Equation (3.8) can be applied. It is a first order

linear equation. The general solution of this equation is

]})(exp{}[)(exp{ 1Condtdxxkdttk
t

t

t

t

t

t s ss

+− ∫ ∫∫ ττ µµ

The downstream progress at st is zero. Therefore

0]})(exp{}[)(exp{ 1 =+− ∫ ∫∫ Condtdxxkdttk
t

t

t

t

t

t s ss
ττ µµ

01 =Con

 Appendix A Proofs of Chapter 3

169

Therefore the downstream progress is

∫ ∫∫−
t

t

t

t

t

t s ss

dtdxxkdttk })(exp{})(exp{ ττ µµ .

If ds Dtt +≥ , the downstream progress at time t can be represented as

equation (3.9). Similarly, the general solution of (3.9) is

]})(exp{}[)(exp{ 2Condtdxxkrdttk
t

tD

t

t

t

t sd ss

+⋅− ∫ ∫∫ +
ττ µµ

The downstream progress at sd tD + is

 ∫ ∫∫
++

−
sd

s s

sd

s

tD

t

t

t

tD

t
dtdxxkdttk })(exp{})(exp{ ττ µµ .

Therefore

]})(exp{}[)(exp{ 2Condtdxxkrdttk
sd

sd s

sd

s

tD

tD

t

t

tD

t
+⋅− ∫ ∫∫

+

+

+

ττ µµ

∫ ∫∫
++

−=
sd

s s

sd

s

tD

t

t

t

tD

t
dtdxxkdttk })(exp{})(exp{ ττ µµ

∫ ∫
+

=
sd

s s

tD

t

t

t
dtdxxkCon })(exp{2 τµ

Consequently, if ds Dtt +≥ , the downstream progress at time t is

∫ ∫∫

∫ ∫∫

+

+

−⋅+

−=

t

tD

t

t

t

t

tD

t

t

t

t

t

sd ss

sd

s ss

dtdxxkdttkr

dtdxxkdttktP

})(exp{})(exp{

})(exp{})(exp{)(

ττ

ττ

µµ

µµ

(b) By proposition 3.2a, the downstream progress at time uD is















−≤−+

−=

−≥−=

∫ ∫

∫ ∫

∫ ∫

+

+

dus

D

tD

D

t

tD

t

D

t
u

dus

D

t

D

t
u

DDtifdtdxxkr

dtdxxkDP

DDtifdtdxxkDP

u

sd

u

sd

s

u

u

s

u

)})(exp{

})(exp{)(

})(exp{)(

τ

τ

µ

µ

µτ

 Appendix A Proofs of Chapter 3

170

Substituting the above equations into (3.5), we derive the total amount of downstream

rework.

(c) By proposition 3.2a and equation (3.8), if ds Dtt +≤ the downstream progress rate

can be represented as

∫ ∫∫−−=
∂

∂ t

t

t

t

t

t s ss

dtdxxkdttktk
t

tP
})(exp{})(exp{)(1

)(
τττ µµµ

 ∫ ∫∫−−=
t

t

t

t

t

t s ss

dxxkd
t

dttkt })(exp{
)(

1
})(exp{)(1 τ

τ
ττ µ

µ
µµ

]
)(

)(

})(exp{

)(

)(exp{

}[)(exp{)(1
2∫
∫∫

∫ ∂

∂
+−−=

t

t

t

t

t

t

t

tt

t s

s

s

s

s

dt
t

t

t

dxxk

t

dxxk

dttkt τ

τ

τ

τ

τ

ττ

µ

µ

µ

µ

µ
µµ

]
)(

)(

})(exp{

)(

1
}[)(exp{)(

2∫
∫

∫ ∂

∂
−−=

t

t

t

t

s

t

t s

s

s

dt
t

t

t

dxxk

t
dttkt τ

τ

τ

τ
ττ

µ

µ

µ

µ
µµ

(3.22)

It is clear that
"#(��)

"��
> 0 when ��(�) is nonincreasing with t. It is indefinite when ��(�)

increases with �.

By proposition 3.2a and equation (3.9), if ds Dtt +≥ the downstream progress rate can

be represented as

∫ ∫∫−−=
∂

∂ t

t

t

t

t

t s ss

dtdxxkdttktk
t

tP
})(exp{})(exp{)(1

)(
τττ µµµ

]})(exp{})(exp{)(1)[1(∫ ∫∫ +
−−−+

t

tD

t

t

t

t sd ss

dtdxxkdttktkr τττ µµµ

Similarly, we can prove that
"#(��)

"��
> 0 when ��(�) is nonincreasing with t. It is

indefinite when ��(�) increases with �. □

Proof of Proposition 3.3

 Appendix A Proofs of Chapter 3

171

If du DD ≤ , the solution is direct. When du DD > , the earliest start time either equals

zero or satisfies the following equation

suerd tDtDD −=+),(τ (3.23)

By proposition 3.2b, we have

r

dtdxxkD

tD

sd

s

utD

t

D

t
d

sr

∫ ∫
+

−−
=

})(exp{
),(

τµ
τ

 ∫ ∫+
−−−−+

u

sd

uD

tD

D

t
dsu dtdxxkDtD })(exp{ τµ .

The first derivative of the left-hand side of (3.23) with respect to st is

∫∫ +
−

−
+−+−

u

sd

u

s

D

tD

D

t
dxxk

r

r
dxxk

r
})(exp{

1
})(exp{

1
1 ττ µµ

The first derivative of the right-hand side of (3.23) is -1. Therefore equation (3.23) has

either exactly one solution or susrd tDtDD −>+),(τ for all values of st , because the

first derivative of the left-hand side is strictly larger than that of the right-hand side.

Consequently, the earliest start time should be zero if

d

D D

t

D

t

D

D
Ddtdxxkdtdxxkr

d uuu

d

≤−+− ∫ ∫∫∫ 0
})(exp{})(exp{ ττ µµ

Otherwise et must satisfy the following equation:

d

tD

t

D

t

D

t

D

tD
Ddtdxxkdtdxxkr

sd

s

uuu

sd

=−+− ∫ ∫∫∫
+

+
})(exp{})(exp{ ττ µµ (3.24)

The first derivative of the left-hand side of (3.24) is

})(exp{})(exp{)1(∫∫ −−−−−
+

u

s

u

sd

D

t

D

tD
dxxkdxxkr ττ µµ

It is strictly negative. Therefore we can easily find et through a simple binary search.

□

Proof of Proposition 3.4

 Appendix A Proofs of Chapter 3

172

(a) Assume the functional interaction duration τ is exogenously determined. By

proposition 3.2b and equation 3.10, if dus DDt −≥ , we have

]
})(exp{

)[()(
r

dtdxxktD

ccctDcG

u

s

uD

t

D

t
su

rtsut

∫ ∫−−−
+−−−−=

τ

τ

µ
ττ (3.25)

The first and second derivatives of (3.25) with respect to st are

}])(exp{1[∫−−
+

+−=
∂

∂ u

s

D

t

rt

t

s

dttk
r

cc
c

t

G
τµ (3.26)

})(exp{)(
)(

2

2

∫−⋅+⋅
⋅

−=
∂

∂ u

s

D

t
rt

s

s

dttkcc
r

tk

t

G
τ

τ µ
µ

 (3.27)

Inspection of (3.27) shows that 2 2/ 0sG t∂ ∂ < for all [,]s e ut t D∈ , i.e., the objective

function is concave with respect to st .

If dus DDt −< , we have

)()(dsurdtt DtDcDcccG −−−++−= ττ

]})(exp{
})(exp{

)[(∫ ∫
∫ ∫

+

+

−−
−−

+−
u

sd

u

sd

s

u

D

tD

D

t

tD

t

D

t
d

rt dtdxxk
r

dtdxxkD

cc τ

τ

µ
µ

 (3.28)

The first and second derivatives of (3.28) with respect to st are

∫∫ −
+

−−
+−

−=
∂

∂
+

u

s

u

sd

D

t

rt
D

tD

rt

r

s

dttk
r

cc
dttk

r

ccr
c

t

G
)(exp{})(exp{

))(1(
ττ µµ (3.29)

})(exp{)()1(
)(

2

2

∫ +
−⋅+⋅−⋅

+⋅
−=

∂

∂ u

sd

D

tD
rt

sd

s

dttkccr
r

tDk

t

G
τ

τ µ
µ

 ∫−⋅+⋅−
u

s

D

t
rt

s dttkcc
r

t
)(exp{)(

)(
τ

τ µ
µ

 (3.30)

Inspection of equation (3.30) shows that 2 2/ 0sG t∂ ∂ < for [,]s e ut t D∈ , i.e., the objective

function is concave with respect to st .

 Appendix A Proofs of Chapter 3

173

(b) Since the objective function is concave with respect to st , complete overlapping

must be optimal if

















−≤≤−
+

−

−
+−

−

−≥≤−−
+

+−

∫

∫

∫

+

due

D

t

rt

D

tD

rt

r

due

D

t

rt

t

DDtifdttk
r

cc

dttk
r

ccr
c

DDtifdttk
r

cc
c

u

e

u

ed

u

e

0})(exp{

})(exp{
))(1(

0}])(exp{1[

τ

τ

τ

µ

µ

µ

(c) Rewriting (3.13) yields

})(exp{)1()1(∫−+−+≥
u

s

D

t
t

r

t

r dttk
c

c

c

c
r τµ (3.31)

In (3.31), the first term is not relevant to the properties of uncertainty, dependency, and

upstream evolution. The second term is always negative. Therefore we can conclude

that the optimal start time of the downstream stage must be et , when 1 /r tr c c≥ + . By

comparing equations (3.13) and (3.14), we have

})(exp{
))(1(

∫ +
−

+−
−

u

ed

D

tD

rt

r dttk
r

ccr
c τµ

}])(exp{1[})(exp{ ∫∫ −−
+

+−<−
+

−
u

e

u

e

D

t

rt

t

D

t

rt dttk
r

cc
cdttk

r

cc
ττ µµ

Therefore, the right-hand side must be negative when 1 /r tr c c≥ + .

(d) If due DDt −≥ and 0}])(exp{1[>−−
+

+− ∫
u

e

D

t

rt

t dttk
r

cc
c τµ , there must exist a

unique *
st where / 0G t∂ ∂ = . Therefore

∫ =−−
+

+−
u

s

D

t

rt

t dttk
r

cc
c

*
0}))(exp{1(τµ (3.32)

 Appendix A Proofs of Chapter 3

174

(3.32) can be simplified as

)1ln(
1

)(
*

rt

t
D

t cc

cr

k
dtt

u

s +

⋅
−⋅−=∫ τµ

Similarly, if due DDt −≤ and

0})(exp{})(exp{
))(1(

>−
+

−−
+−

− ∫∫ +

u

e

u

ed

D

t

rt
D

tD

rt

r dttk
r

cc
dttk

r

ccr
c ττ µµ

there must exist a unique *
st where dus DDt −≤* and

0})(exp{})(exp{
))(1(

=−
+

−−
+−

− ∫∫ +

u

s

u

sd

D

t

rt
D

tD

rt

r dttk
r

cc
dttk

r

ccr
c ττ µµ

or dus DDt −≥* and)1ln(
1

)(
*

rt

t
D

t cc

cr

k
dtt

u

s +

⋅
−⋅−=∫ τµ

The left-hand side of (3.15) and (3.16) strictly decreases when st increases. Therefore,

through a simple binary search, the optimal start time can be derived. □

Proof of Proposition 3.5

(a) 0})(exp{)()(
1

**

*

2

>−⋅⋅+⋅=
∂∂

∂
∫∫

=

u

s

u

s

ss

D

t

D

t
rt

tts

dttkdttcc
rkt

G
ττ µµ if dus DDt −≥*

})(exp{)()()1(
1

**

*

2

∫∫ ++
=

−⋅⋅+⋅−⋅=
∂∂

∂ u

sd

u

sd

ss

D

tD

D

tD
rt

tts

dttkdttccr
rkt

G
ττ µµ

 0})(exp{)()(
1

**
>−⋅⋅+⋅+ ∫∫

u

s

u

s

D

t

D

t
rt dttkdttcc

r
ττ µµ if dus DDt −≤*

By the implicit function theorem

0

*

*

2

2

2

*

>

∂

∂

∂∂

∂

−=
∂

∂

=

=

ss

ss

tts

tts
s

t

G

et

G

k

t

 Appendix A Proofs of Chapter 3

175

It implies that higher dependency parameter k increases the optimal downstream start

time *
st .

0})(exp{
)(

)(
)(

)(
*

*

*

2

>−⋅
∂

∂
⋅+⋅=

∂∂

∂
∫

∫
=

u

s

u

s

ss

D

t

D

t

rt

tts

dttk
t

dtt
cc

r

k

tt

G
τ

τ

τ

τ

µ
µ

µ

µ
 if dus DDt −≥*

})(exp{
)(

)(
)()1(

)(
*

*

*

2

∫
∫

+

+

=

−⋅
∂

∂
⋅+⋅−⋅=

∂∂

∂ u

sd

u

sd

ss

D

tD

D

tD

rt

tts

dttk
t

dtt
ccr

r

k

tt

G
τ

τ

τ

τ

µ
µ

µ

µ

 0})(exp{
)(

)(
)(

*

*

>−⋅
∂

∂
⋅+⋅+ ∫
∫ u

s

u

s
D

t

D

t

rt dttk
t

dtt
cc

r

k
τ

τ

τ

µ
µ

µ
 if dus DDt −≤*

By the implicit function theorem

0
})exp{(

})exp{(

*

*

2

2

2

*

>

∂

∂

−+∂∂

∂

−=
−+∂

∂

=

=

ss

ss

tts

tts
s

t

G

bat

G

ba

t λτ

λτ

It implies that higher uncertainty level, }exp{ λτ−+ ba increases the optimal

downstream start time *
st .

By the definition of the model, faster evolution decreases ∫
uD

t
dtt)(τµ , assuming the

total amount of upstream modifications is constant. Let e denote the evolution speed.

Mathematically

0
)(

<
∂

∂∫
e

dtt
uD

t
τµ

0
)(

})(exp{)(
*

*

*

2

<
∂

∂
⋅−⋅+⋅=

∂∂

∂ ∫
∫

=
e

dtt
dttkcc

r

k

et

G
u

su

s

ss

D

tD

t
rt

tts

τ

τ

µ
µ if dus DDt −≥*

 Appendix A Proofs of Chapter 3

176

e

dtt
dttkccr

r

k

et

G
u

sdu

sd

ss

D

tDD

tD
rt

tts ∂

∂
⋅−⋅+−⋅=

∂∂

∂ ∫
∫

+

+
=

*

*

*

)(
})(exp{))(1(

2 τ

τ

µ
µ

 0
)(

})(exp{)(
*

*
<

∂

∂
⋅−⋅+⋅+
∫

∫ e

dtt
dttkcc

r

k
u

su

s

D

tD

t
rt

τ

τ

µ
µ if dus DDt −≤*

By the implicit function theorem

0

*

*

2

2

2

*

<

∂

∂

∂∂

∂

−=
∂

∂

=

=

ss

ss

tts

tts
s

t

G

et

G

e

t

It implies that *
st decrease when evolution becomes faster.

(b) 0}])(exp{1[)(
1

*

*
2

2

<−−⋅+⋅−=
∂∂

∂
∫

=

u

s

ss

D

t
rt

tts

dttkcc
rrt

G
τµ if dus DDt −≥*

})([exp{)(
1

*

*
2

2

∫ +
=

−⋅+⋅−=
∂∂

∂ u

sd

ss

D

tD
rt

tts

dttkcc
rrt

G
τµ

 0}])(exp{
*

<−− ∫
u

s

D

t
dttk τµ if dus DDt −≤*

By the implicit function theorem

0

*

*

2

2

2

*

<

∂

∂

∂∂

∂

−=
∂

∂

=

=

ss

ss

tts

tts
s

t

G

rt

G

r

t

It implies that the overlapping degree increases with r (i.e. *
st decreases with r).

(c) 01}])(exp{1[
1

*

*

2

<−−−⋅=
∂∂

∂
∫

=

u

s

ss

D

t
ttts

dttk
rct

G
τµ if dus DDt −≥*

 Appendix A Proofs of Chapter 3

177

})(exp{)
1

1(
*

*

2

∫ +
=

−⋅−−=
∂∂

∂ u

sd

ss

D

tD
ttts

dttk
rct

G
τµ

 0})(exp{
1

*
<−− ∫

u

s

D

t
dttk

r
τµ if dus DDt −≤*

By the implicit function theorem

0

*

*

2

2

2

*

<

∂

∂

∂∂

∂

−=
∂

∂

=

=

ss

ss

tts

ttts

t

s

t

G

ct

G

c

t

It implies that the downstream start time *
st decreases when the opportunity cost of

time tc increases.

0}])(exp{1[
1

*

*

2

>−−⋅=
∂∂

∂
∫

=

u

s

ss

D

t
ttrs

dttk
rct

G
τµ if

dus DDt −≥*

}])(exp{})([exp{
1

**

*

2

∫∫ −−−⋅=
∂∂

∂
+

=

u

s

u

sd

ss

D

t

D

tD
ttrs

dttkdttk
rct

G
ττ µµ

 0})(exp{1
*

>−−+ ∫ +

u

sd

D

tD
dttk τµ if

dus DDt −≤*

By the implicit function theorem

0

*

*

2

2

2

*

>

∂

∂

∂∂

∂

−=
∂

∂

=

=

ss

ss

tts

ttrs

r

s

t

G

ct

G

c

t

It implies that the downstream start time *
st increases with rc .

 Appendix A Proofs of Chapter 3

178

(d) If),[+∞∈ ud DD , the optimal overlapping degree can be derived from equation

(3.15) which is independent of dD . □

Proof of Corollary 3.1

(a) This result follows from Proposition 2(c) which shows that the optimal start time of

downstream stage must be et when 1 /r tr c c≥ + . For time-driven projects, / 0r tc c → .

Therefore complete overlapping is optimal for time-to-market problem when 1r ≥ .

(b) For cost-driven projects, r tc c>> , the opportunity cost of time can be ignored and

thus the right-hand side of (3.26) and (3.29) becomes positive],[ues Dtt ∈∀ . That is

0>
∂

∂

st

G
],[ues Dtt ∈∀ . As G is concave with respect to st , we have *

s ut D≈ . □

Proof of Proposition 3.6

(a) Assume that optimal overlapping discussed above is followed. If dus DDt −≥* ,

The first derivative of (3.9) with respect to τ is

)()(})(exp{
)(

}exp{)(
* 0 ττ µµ

λτλ

τ
ccdtdxxdxxk

bar

cckbG
t

D

t

D

t

D

t

rt u

s

uu

+−−
+

−+
=

∂

∂
∫ ∫∫ (3.33)

If dus DDt −≤* , then

∫ ∫∫
+

−
+

−+
=

∂

∂ *

*
)(})(exp{[

)(

}exp{)(
0

sd

s

uutD

t

D

t

D

t

rt dtdxxdxxk
bar

cckbG
µµ

λτλ

τ
τ

)(])(})(exp{
* 0 ττ µµ ccdtdxxdxxkr t

D

tD

D

t

D

t

u

sd

uu

+−−+ ∫ ∫∫+
 (3.34)

It is clear that badxx
uD

t
+≤∫)(0µ . Applying it in Equations (3.33) and (3.34), we

have

 Appendix A Proofs of Chapter 3

179

)(})(exp{
}exp{)(

ττµ
λτλ

τ
ccdtdxxk

r

cckbG
t

D

t

D

t

rt u

e

u

+−−
−+

<
∂

∂
∫ ∫

()()exp{ }

()t r u e
t

kb c c D t
c c

r
τ

λ λτ+ − −
< − + (3.35)

()()

()t r u e
t

kb c c D t
c c

r
τ

λ + −
< − +

If (3.18) holds, / 0 0G τ τ∂ ∂ ≤ ∀ ≥ . Thus * 0τ = .

Equation (3.35) decreases with functional interaction time τ and thus /G τ∂ ∂ is

negative when

()()1
ln[]

()
t r u e

t

kb c c D t

r c cτ

λ
τ

λ

+ −
≥

+

Therefore
()()1

0 * max{0, ln[]}t r u e

t

kb c c D t

c cτ

λ
τ

λ

+ −
≤ ≤

+
.

(b) If dus DDt −≥* , the Second derivative of (3.9) with respect to τ is

)(

}exp{)(2

2

2

bar

cckbG rt

+

−+
−=

∂

∂ λτλ

τ

 ∫ ∫∫∫ −
+

−
−

u

s

uuuD

t

D

t

D

t

D

t
dtdxxdxxkdxx

ba

kb
*

)(})(exp{])(
}exp{

1[* 00 µµµ
λτ

τ

If dus DDt −≤* , then

)(

}exp{)(2

2

2

bar

cckbG rt

+

−+
−=

∂

∂ λτλ

τ

 ∫ ∫∫∫
+

−
+

−
−

*

*
)(})(exp{))(

}exp{
1([* 00

su

s

uuutD

t

D

t

D

t

D

t
dtdxxdxxkdxx

ba

kb
µµµ

λτ
τ

])(})(exp{))(
}exp{

1(
* 00∫ ∫∫∫+

−
+

−
−+

u

sd

uuuD

tD

D

t

D

t

D

t
dtdxxdxxkdxx

ba

kb
r µµµ

λτ
τ

 Appendix A Proofs of Chapter 3

180

It is direct that ∫∫ +
−>

+

−
−

u

e

u D

t

D

t
dtt

ba

kb
dxx

ba

kb
)(1)(

}exp{
1 00 µµ

λτ
. If

0)(1 0 ≥
+

− ∫
u

e

D

t
dtt

ba

kb
µ , G is concave. Thus, * 0τ = when

0

0
G

ττ =

∂
≤

∂
.

(c) If maxλτ is small, a first order approximation of the functional interaction function

is a b bλτ+ − .

If dus DDt −≥* , then

0])(}[)(exp{
)(

)()(
*

2

02

2

2

2

>−
+

+
=

∂

∂
∫ ∫∫ dtdxxdxxk

bar

cckbG u

s

uuD

t

D

t

D

t

rt µµ
λ

τ
τ

If dus DDt −≤* , then

2

2

2

2

)(

)()(

bar

cckbG rt

+

+
=

∂

∂ λ

τ

 ∫ ∫∫
+

−∗
*

*

2
0))(}()(exp{[

su

s

uutD

t

D

t

D

t
dtdxxdxxk µµτ

 0]))(}()(exp{
*

2

0 >−+ ∫ ∫∫+

u

sd

uuD

tD

D

t

D

t
dtdxxdxxkr µµτ

G is convex with respect to τ , therefore

* *
max

*
0, ,

max(,)
s st t

G G G
τ τ=

= □

 Appendix B Proofs of Chapter 4

181

APPENDIX B

PROOFS OF CHAPTER 4

Proof of Proposition 4.1

(a) It is clear that our model is a constrained problem with an equality constraint.

Using the method of Lagrange multipliers, it is converted into an unconstrained

function

∑ ∑∫
= =

−−+−−
+

−−−−=
−

n

i

n

i

iu

D

t
i

rt
utn QtDdttkQ

r

cc
ncntDcQh

u

i1 1

00,1)(}])(exp{1[)(),(
1

λµβλ β

The first derivative of the Lagrangian function with respect to iQ (1 i n≤ ≤) is

nidttktkQdttk
r

cc

Q

G
n

ij

D

t
jj

D

t

rt

i

u

j

u

i

≤≤=−−−−−
+

−=
∂

∂
∑ ∫∫

+=

−
−−

10}])(exp{)(})(exp{1[
1

1
11

λµµµ ,

which can be simplified to

ni
tk

dttk

Q
i

t

t

i

i

i ≤≤
−−

=
−

∫
−

− 2
)(

})(exp{1

1

1

2

µ

µ
,

The first derivative with respect to λ is

0

1

n

i u

i

Q D t

=

= −∑ .

(b) In overlapped process, at least an information exchange should be arranged at time

uD . The potential benefit of more frequent information exchange is no more than

()t u sc D t− and the cost for them is (1)()tn c cββ− + . To optimize project performance,

the communication cost should be less than the potential benefit. Therefore,

 Appendix B Proofs of Chapter 4

182

0
* 1 () /()t u tn c D t c cββ< + − + . □

Proof of Proposition 4.2

If the downstream starts at 0t and *

,1 *
n

t is the optimal communication policy, the project

performance can be written as

),(}])(exp{1[)()(*
,1

*

1

*
0

*
0

*

*
1

nii

i

i

D

t
j

rt
it ttGdttkQ

r

cc
icittctG

u

j
+

=

+−−
+

−−−−= ∑ ∫
−

µβ β . (4.18)

If),()(*

,1

*

niii ttGtG
+

> , then)(0
*

tG can be improved by replacing),(*

,1

*
*

nii ttG
+

 with

)(**
itG . A conflict arises. Therefore,),(*

,1

*
*

nii ttG
+

 is the optimal solution when the

downstream starts at *
it . □

Preparation for Proof of Proposition 4.3

Let 1 ˆ,
ˆ

nt be the optimal communication policy for complete overlapping and ˆ
iQ be the

optimal interval between the (1)th
i − and thi information exchange.

LEMMA 4.1.

(a) If 0}])(exp{1[
ˆ

≥−−
+

− ∫
u

i

D

t

rt
t dxxk

r

cc
c µ , ˆ1 2,

ˆ ˆ(,)i i nG t t+ + is the optimal solution when

],ˆ[10 ui Dtt +∈ .

(b) If 0}])(exp{1[
ˆ

≤−−
+

− ∫
u

i

D

t

rt
t dxxk

r

cc
c µ , ˆ1 2,

ˆ ˆ(,)i i nG t t+ + is the optimal solution when

]ˆ,[10 +∈ ie ttt .

Proof. (a) If the project starts at ît , the project performance with the optimal

 Appendix B Proofs of Chapter 4

183

communication policy can be represented as

rt

D

t

rt
tiniinii ccdxxk

r

cc
cQttGttG

u

i

−−−−
+

−+= ∫++++ βµ })])(exp{1([ˆ)ˆ,ˆ()ˆ,ˆ(
ˆ1ˆ,21ˆ,1 . (4.19)

Assume],ˆ(1
*
0 ui Dtt +∈ and)ˆ,ˆ(),(ˆ,21

*
,1

*
0 niin ttGttG ++> . Then 0 1

* ˆ
î it t Q +− > . Let the

communication policy be *

,0 *n
t when the project starts at ît . Then,),ˆ(*

,0 *ni ttG can be

represented as

rt

D

t

rt
tinni ccdxxk

r

cc
cttttGttG

u

i

−−−−
+

−−+= ∫ βµ })])(exp{1()[ˆ(),(),ˆ(
ˆ

*
0

*

,1

*
0

*

,0 ** . (4.20)

Comparing (4.19) and (4.20), we get)ˆ,ˆ(),ˆ(ˆ,1
*

,0 * niini ttGttG +> . The conflict arises since

ˆ1,
ˆ ˆ(,)i i nG t t + is the optimal solution when downstream starts at ît . Therefore,

),()ˆ,ˆ(*

,1

*
0ˆ,21 *nnii ttGttG ≥++ and ˆ1 2,

ˆ ˆ(,)i i nG t t+ + is the optimal profit when],ˆ[10 ui Dtt +∈ .

(b) Assume)ˆ,ˆ[1
*
0 +∈ ii ttt and)ˆ,ˆ(),(ˆ,21

*

,1

*
0 * niin

ttGttG ++> . Then 1
*
0

ˆˆ
+<− ii Qtt . Let the

communication policy be *

,0 *n
t when the project starts at ît . Then,),ˆ(*

,0 *ni ttG can be

represented as

rt

D

t

rt
tinni ccdxxk

r

cc
cttttGttG

u

i

−−−−
+

−−+= ∫ βµ })])(exp{1()[ˆ(),(),ˆ(
ˆ

*
0

*

,1

*
0

*

,0 ** . (4.21)

Comparing (4.19) and (4.21), we get)ˆ,ˆ(),ˆ(ˆ,1
*

,0 * niini ttGttG +> . The conflict arises since

ˆ1,
ˆ ˆ(,)i i nG t t + is the optimal solution. Therefore,),()ˆ,ˆ(*

,1

*
0ˆ,21 *nnii ttGttG ≥++ and)ˆ,ˆ(ˆ,21 nii ttG ++

is the optimal profit when]ˆ,ˆ[10 +∈ ii ttt .

It is clear that 0}])(exp{1[
1

ˆ
≤−−

+
− ∫

−

u

i

D

t

rt
t dxxk

r

cc
c µ . By the same logic, we derive

 Appendix B Proofs of Chapter 4

184

that:)ˆ,ˆ(ˆ,1 nii ttG + is the optimal performance when the downstream starts in]ˆ,ˆ[1 ii tt − ;

)ˆ,ˆ(ˆ,1 nii ttG − is the optimal performance when the downstream starts in]ˆ,ˆ[12 −− ii tt , and so

on. Combining the above results, it is evident that)ˆ,ˆ(ˆ,21 nii ttG ++ is the optimal

performance when]ˆ,[10 +∈ ie ttt . □

Proof of Proposition 4.3

(a) By Lemma 1(a) and 0}])(exp{1[
ˆ

>−−
+

− ∫
u

i

D

t

rt
t dxxk

r

cc
c µ , ˆ1 2,

ˆ ˆ(,)i i nG t t+ + is the

optimal solution when 0 1
ˆ[,]i ut t D+∈ .

0}])(exp{1[
1

ˆ
<−−

+
− ∫

−

u

i

D

t

rt
t dxxk

r

cc
c µ since it̂ is the smallest one in ne tttt ˆ21

ˆ,,ˆ,ˆ, L ,

which satisfies 0}])(exp{1[
ˆ

>−−
+

− ∫
u

i

D

t

rt
t dxxk

r

cc
c µ . By Lemma 4.1(b),)ˆ,ˆ(ˆ,1 nii ttG + is

the optimal solution when]ˆ,[0 ie ttt ∈ . Combing the results, it is evident that the

optimal downstream start time locates in]ˆ,ˆ[1+ii tt .

(b) By Lemma 4.1(b), it is clear that 0
*

ut D= when

0}])(exp{1[
1ˆˆ

<−−
+

− ∫
−

u

n

D

t

rt
t dxxk

r

cc
c µ .

(c) By Lemma 4.1, it is evident that ˆ1 2,
ˆ ˆ(,)i i nG t t+ + is the optimal performance when

0}])(exp{1[
ˆ

=−−
+

− ∫
u

i

D

t

rt
t dxxk

r

cc
c µ . Consequently, the downstream should start at

time 1
ˆ

+it . □

 Appendix B Proofs of Chapter 4

185

Proof of Proposition 4.4

(a) Let),(*

,1

*
0 *n

ttT be the optimal solution for the time-to-market problem (i.e.

),(*

,1

*
0

*
*n

ttTT =). If the downstream stage starts at et and the communication policy is

*

,1 *n
t , then the development cycle time is

βµ +−−−−+= ∫]1}))(exp{1(
1

)[(),(),(*
0

*

,1

*
0

*

,0 **

u

e

D

t
enne dxxk

r
ttttTttT . (4.22)

)ˆ,(ˆ,1 ne ttT is the optimal cycle time for complete overlapping and),()ˆ,(*

,0ˆ,1 *nene ttTttT ≤ ,

Therefore

βµ +−−−−+≤ ∫]1}))(exp{1(
1

)[(),()ˆ,(*
0

*

,1

*
0ˆ,1 *

u

e

D

t
enne dxxk

r
ttttTttT . (4.23)

When 1r ≥ , (4.23) can be simplified to

β−≥)ˆ,(),(ˆ,1
*

,1

*
0 * nen

ttTttT . (4.24)

Together with)ˆ,(),(ˆ,1
*

,1

*
0 * nen

ttTttT ≤ , we derive Equation (4.15).

(b) By Lemma 1(a), it is clear that 0 1
* ˆ

et t t≤ ≤ . Therefore, we only need to prove that

0
*

et t ϕ≤ + , where })(exp{/ ∫−=
u

e

D

t
dxxk µβϕ . Suppose 0

*
et t ϕ> + , then

βµ >−− ∫ })(exp{)(*
0

u

e

D

t
e dxxktt . If the communication policy for complete overlapping

is *

,0 *n
t , the development cycle time should be

),(})(exp{)(),(),(*

,1

*
0

*
0

*

,1

*
0

*

,0 *** n

D

t
enne ttTdxxkttttTttT

u

e

<+−−−= ∫ βµ (4.25)

The conflict arises. Therefore 0 1
* ˆmin(,)e et t t t ϕ≤ ≤ + . □

 Appendix B Proofs of Chapter 4

186

Proof of Proposition 4.5

(a) For the linear evolution case, the objective function can be simplified to

0

1

max : () (1 exp{ })
n n

t r
t u i j

i j i

c c
G c D t n nc Q k Q

r
ββ µ

= =

+
= − − − − − −∑ ∑ .

Using the method of Lagrange multipliers (similar to Proposition 1), we derive













−=

≤≤
−−

=

∑
=

−

0

1

1 2
}exp{1

tDQ

ni
k

Qk
Q

u

n

i

i

i
i

µ

µ

The first derivative of iQ with respect to 1Q is

nittk
Q

Q
i

i ≤≤−−=
∂

∂
− 2)}(exp{ 01

1

µ (4.26)

Inspection of (4.26) shows that 1/ 0iQ Q∂ ∂ > . Therefore,
1

n

i

i

Q

=

∑ strictly increases with

1Q and there must be a unique 1Q satisfying 0

1

tDQ u

n

i

i −=∑
=

.

(b) Inspection of (4.26) shows that 111 // QQQQ ii ∂∂>∂∂ + , i.e. iQ increases faster than

1+iQ . Therefore 1i iQ Q +> .

(c) Let),()(*

,100
*

*
n

ttGtG = . Then the first derivative of),(*

,10 *
n

ttG with respect to 0t is

∑ ∑ ∑∑
= = == ∂

∂
+

∂

∂
−−

+
−

∂

∂+
−−=

∂

∂ * * **
*

1 0

*

*

0

*
*

1 0

*

0

*

,10
)]}([exp{

),(n

i

n

ij

n

ij

j

i
i

j
rt

n

i

irt
t

n

t

Q
Qk

t

Q
Qk

r

cc

t

Q

r

cc
c

t

ttG
µµ

By equations (4.8) and (4.17)

))}((exp{
),(

*
1

0

*
1

0

0

*

,10 *

Qk
t

Q
tDk

r

cc

r

cc
c

t

ttG

u
rtrt

t

n
µµ −

∂

∂
−−−

+
−

+
+−=

∂

∂

 Appendix B Proofs of Chapter 4

187

 ∑ ∑ ∑∑∑
= = =−=+= ∂

∂
−−

∂

∂
−

+
−

* * ***

2 0

*

1

*

1 0

*

*]}exp{}[exp{
n

i

n

ij

n

ij

j
n

ij

j

n

ij

j

j
rt

t

Q
Qk

t

Q
Qk

r

cc
µµ

])}(exp{)}(exp{[

*

1 0

*

00
*
1 ∑

= ∂

∂
−−−−−−

+
−

+
+−=

n

i

i
uu

rtrt
t

t

Q
tDktDkQk

r

cc

r

cc
c µµµ

)1)}((exp{ *
10 QktDk

r

cc

r

cc
c u

rtrt
t µµ −−−

+
−

+
+−= (4.27)

By Proposition 4.5(a), it is evident that 1Q decreases with n . Consequently, (4.27)

decreases with n. Assume nt ~,1

~ is the optimal communication policy when 0t and n~ (

*~ nn >) are given. Then

)
~

,(),(~,10
*

,10 * nn
ttGttG > , (4.28)

0~,100
*

,10 /)
~

,(/),(* tttGtttG nn
∂∂>∂∂ . (4.29)

Consequently, *n is non-increasing with 0t .

(d) To prove that the profit function),(0
*

ntG is concave with respect to n , it is

necessary and sufficient to prove that for any three neighboring points 1n − , n , 1n + ,

the following formula holds

),()1,()1,(),(0
*

0
*

0
*

0
*

ntGntGntGntG −+>−− (4.30)

Let 1,1

~
+nt be the optimal information exchange policy for)1,(0 +ntG , i.e.

)
~

,()1,(1,100
*

+=+ nttGntG . Then

)
~

(),(),
~

(),()1,(010
*

1
*

0
*

0
* β−−+−=−+ ttcntGntGntGntG t

 βµ ctDktt
r

cc
u

rt −−−−−
+

−)}(exp{1)(
~

(001 . (4.31)

)
~

()1,()1,
~

()1,(),(010
*

1
*

0
*

0
* β−−+−−−≥−− ttcntGntGntGntG t

 βµ ctDktt
r

cc
u

rt −−−−−
+

−)}(exp{1)(
~

(001 . (4.32)

 Appendix B Proofs of Chapter 4

188

By (4.29),),(),
~

()1,()1,
~

(0
*

1
*

0
*

1
*

ntGntGntGntG −>−−− . Comparing the right hand

sides of (4.31) and (4.32), it is evident that

),()1,()1,(),(0
*

0
*

0
*

0
*

ntGntGntGntG −+>−− . This concludes the proof. □

