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Abstract 

MicroRNAs (miRNAs) are small endogenous ncRNAs participating in diverse cellular and 

physiological processes by post-transcriptionally suppressing the target genes. Critically 

associated with the early stages of the mature miRNA biogenesis, the hairpin motif is a crucial 

structural prerequisite for the prediction of authentic and novel precursor miRNAs (pre-miRs). 

Majority of the abundant genomic inverted repeats (pseudo hairpins) are dysfunctional pre-

miRs and can be filtered by comparative genomic-driven approaches, but genuine specie-

specific pre-miRs are likely to remain elusive.  

Motivated by the incomplete knowledge on the number of miRNAs present in the genomes 

of vertebrates, worms, plants, and even viruses, an in-depth statistical study (Ng and Mishra 

2007b) was conducted to elucidate the unique hairpin folding of an entire pre-miR. The 

comprehensive and heterogeneous datasets comprised of a collection of 2,241 published (non-

redundant) pre-miRs across 41 species, 8,494 pseudo hairpins, 12,387 (non-redundant) ncRNAs 

spanning 457 types, 31 full-length mRNAs, and 4 sets of synthetically generated genomic 

background corresponding to each of the native RNA sequence. The global and intrinsic hairpin 

folding features include the %G+C content, normalized base pairing propensity dP, normalized 

Minimum Free Energy of folding dG, normalized Shannon Entropy dQ, normalized base pair 

distance dD, and degree of compactness dF, as well as their normalized Z-scores. These features 

distinguish unambiguously pre-miRs from other types of ncRNAs, pseudo hairpins, mRNAs, 

and genomic background. 

A new de novo Support Vector Machine classifier miPred (Ng and Mishra 2007a) was 

developed for identifying pre-miRs without relying on phylogenetic conservation information, 

while able to handle arbitrary secondary structures. It achieved significantly higher sensitivity 

and specificity than existing (quasi) de novo predictors, by incorporating a Gaussian Radial 

Basis Function kernel as a similarity measure for the 29 combinatoric attributes. They 

characterized a pre-miR with the sequence motifs at the dinucleotide sequence level, hairpin 

structural characteristics, and topological descriptors. The predictor miPred achieved 93.50% 

(five-fold cross-validation accuracy) and 0.9833 (AUC or ROC score) on the human training 



 viii 

dataset; 84.55% (sensitivity), 97.97% (specificity), and 93.50% (accuracy) for the remaining 

human testing dataset; 87.65% (sensitivity), 97.75% (specificity), and 94.38% (accuracy) for 

1,918 pre-miRs in 40 non-human species.  

Two novel miRNAs dre-miR-N1 and dre-miR-N2 identified by miPred in the brain and 

gonads of juvenile and adult zebrafish, were validated experimentally as bona fide through 

Northern Blot, and were found to be localized in the adult ovary and testis via frozen section in 

situ hybridization (Beh and Ng et. al. 2007; in preparation).  

 

 

 

 

 

 

Keywords: classification, intrinsic RNA folding measures, microRNAs, precursor 

microRNAs, pseudo hairpins, secondary structure, support vector machine 
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Chapter 1. 

Introduction 

Precise genetic control is an essential survival feature of cellular systems, as they must respond 

to a multitude of metabolic requirements and developmental programs by varying spatial and 

temporal genetic expression patterns. Since the early 1960s, the concept of operon (Beckwith 

1996) was postulated that all protein-coding transcriptional units are controlled by means of 

operons subject to mechanisms of genetic control. Presumably, such mechanisms always 

involve protein factors that can sense biochemical signals and environmental cues, and then 

modulate the expression of corresponding genes by selectively interacting with the relevant 

Deoxyribonucleic acid (DNA) or Ribonucleic acid (RNA) sequences.  

Although proteins fulfill most requirements that biology has for enzyme, receptor, and 

structural functions, it is rediscovered lately that a plethora of functional non-coding RNA 

molecules can also serve in these capacities. Unlike mRNA, non-coding RNAs (ncRNAs) are 

characterized uniquely as functional RNAs that are not translated into proteins after being 

transcribed from genomic DNA. Inadvertently, ncRNA was widely perceived as "junk" RNA 

functionally unimportant in the cell, and merely performed as "accessory components to aid 

protein functioning" (Huttenhofer et al., 2005). These functional ncRNAs are emerging 

gradually as the central player participating in multiple regulatory layers and influencing a wide 

range of vital cellular processes including chromatin modification, mRNA stability and 

localization, transcription initiation, RNA processing, mRNA and protein synthesis, as well as 

post-translational RNA modification (Mattick and Makunin 2005; Storz 2002; Eddy 2001; Gray 

and Wickens 1998). 

Functional ncRNAs that have been discovered to date, namely, the ribozymes (Puerta-

Fernandez et al., 2003), small nuclear RNA (snRNA) (Storz et al., 2005), transfer RNAs 

(tRNAs) (Sprinzl and Vassilenko 2005), ribosomal RNAs (rRNAs), endogenous small-

interfering RNAs (siRNAs) (Huttenhofer et al., 2005), and most recently the riboswitches 

(Soukup and Soukup 2004; Mandal and Breaker 2004; Nudler and Mironov 2004; Vitreschak et 
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al., 2004; Winkler and Breaker 2003; Stormo 2003; Lai 2003; Hesselberth and Ellington 2002) 

are relatively short in length compared to protein-coding mRNAs. Others ncRNAs are long 

ranging from hundreds of base pairs to more than 10 kilobases and resemble mRNAs in that 

they are spliced, polyadenylated, and possibly 5' capped (Erdmann et al., 2000), but may only 

contain short ORFs. These mRNA-like ncRNAs include the mouse air RNA required for gene 

imprinting (Sleutels et al., 2002), the yeast meiRNA involved in meiosis control (Yamashita et 

al., 1998), and the mammalian XIST RNAs required for X chromosome inactivation (Xiao et 

al., 2007). 

This series of unexpected and exciting discoveries have led to a new paradigm of RNA-

directed gene expression regulation, defying the central dogma that DNA acts purely as a 

storage of information, RNA is solely the intermediate, and protein performs as the vehicle for 

catalytic reactions. Multiple challenges laid ahead as exact mechanism of action for some 

ncRNAs especially microRNAs in relation to their structures (Ahmed and Duncan 2004) and 

how the underlying sequence relates to and their biological functions (Vogel et al., 2003; 

Kitagawa et al., 2003) are still largely unclear. Notably, two international scientific consortiums, 

namely, the ENCyclopedia Of DNA Elements (ENCODE) Project (The ENCODE Project 

Consortium 2004) and the Functional Annotation of Mouse (FANTOM) (Maeda et al., 2006) 

are making significant progress in applying high-throughput computational and laboratory-

based approaches for detecting all sequence elements, especially those that undergo non-coding 

transcription, that confer biological function. 

1.1. Background of MicroRNAs 

Several large families of functional RNAs associated with essential protein synthesis are 

ubiquitous among all three kingdoms of life i.e., eukaryota, bacteria, and archaea (Griffiths-

Jones et al., 2005) − rRNA (decodes mRNA into amino acid) and tRNA (delivers amino acid to 

growing polypeptide chain), along with RNase P (tRNA maturation) and SRP RNA (protein 

export). In contrast, microRNAs (miRNAs) constitute an abundant class of small ~21–23 

nucleotides in length evolutionary conserved ncRNA molecules (Figure 1.1; colored in red) 

found exclusively in eukaryotes. They play important roles in gene regulation by mediating 

post-transcriptionally the production of intra-cellular proteins in most eukaryotes via sequence-

specific target mechanisms (Bartel 2004; Mallory and Vaucheret 2004; Ambros 2001). The 

founding members of the miRNA gene family lin-4 (Lee et al., 1993) and let-7 (Reinhart et al., 
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2000) unraveled respectively in 1993 and 2000, are essential heterochronic regulators directing 

temporal aspects of development timing in the early larval nematode Caenorhabditis elegans by 

repressing target genes lin-14, lin-28, and lin-41 (Banerjee and Slack 2002). Since the inception 

of this epic regulatory RNA phenomenon, thousands of novel miRNA genes have been 

discovered across plants, worms, flies, vertebrates, and even viruses (Griffiths-Jones et al., 

2006). (Figure 1.2) Among them, 474 and 373 mouse miRNAs were found in human and mouse 

genomes, respectively.  

 

Figure 1.1: A) Secondary structures of sample human miRNA precursors. Red regions 

denote mature miRNAs. B) Multiple alignments of sample human miRNA precursors. 

Majority of the endogenous miRNA genes originate from the polycistronic genes residing 

in the intergenic regions overlapping with the introns of protein-coding genes (Lee et al., 2002), 

or in the exons of the pseudo-ncRNA genes (Rodriguez et al., 2004). Lately, miRNAs have also 

been discovered in the introns (Ying and Lin 2005) of Caenorhabditis elegans (Ohler et al., 

2004). These intronic miRNAs differ uniquely from intergenic miRNAs in the requirement of 

RNA polymerases type II (Pol-II) and spliceosomal components for its biogenesis. (Figure 1.3) 
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MiRNA genes originate primarily from intronic and independent genomic regions of protein-

coding and mRNA-like ncRNA transcription units, but fewer from exons and untranslated 

regions (Rodriguez et al., 2004). Details of miRNA biogenesis are described in section 2.1. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

Human (Homo sapiens)

Mouse (Mus musculus)

Y

 

Figure 1.2: Distribution of known 474 human and 373 mouse miRNAs with respect to the 

chromosome loci. 
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Figure 1.3: Distribution of known 474 human and 373 mouse miRNAs with respect to the 

nearest transcription unit. 

Biologically pivotal and more prevalent genomically than presumed, emerging body of 

experimental evidence from those (relatively few) miRNAs whose biological function have 

been characterized, substantiates that miRNAs perform key regulatory roles for diverse 

developmental and physiological processes. For example, the Caenorhabditis elegans lsy-6 

determines the left-right asymmetry of chemo-receptor expression (Johnston and Hobert 2003); 

Caenorhabditis elegans lin-57/hbl-1 ensures post-embryonic developmental events are 

appropriately timed (Abrahante et al., 2003); Caenorhabditis elegans let-7 negatively regulates 

let-60/RAS associated with lung tumors (Johnson et al., 2005); Drosophila melanogaster miR-

14 miRNA is involved in apoptosis, stress resistance, and fat metabolism (Xu et al., 2003); D 

melanogaster bantam represses the gene hid associated with apoptosis and proliferation 

(Brennecke et al., 2003); Mus musculus miR-181a modulates hematopoietic differentiation 

(Chen et al., 2004); Mus musculus miR-196 induces directed-cleaving of Hox-B8 transcripts 

(Yekta et al., 2004); Arabidopsis thaliana miRNAs regulate the expression of transcription 

factor genes (Li and Zhang 2005); viral-encoded miRNAs hijack the host immune defense to 
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sustain their viral replication and pathogenesis (Stern-Ginossar et al., 2007; Pfeffer et al., 2005; 

Samols et al., 2005; Grey et al., 2005; Pfeffer et al., 2004). This dynamic range of biological 

findings underscores the functional importance of miRNAs, and the need for expanding our 

limited knowledge concerning them. 

1.2. Contributions of this Thesis 

MicroRNAs (miRNAs) are small ncRNAs participating in diverse cellular and physiological 

processes through the post-transcriptional gene regulatory pathway. Critically associated with 

the early stages of the mature miRNA biogenesis, the hairpin motif is a crucial structural 

prerequisite for the computational prediction of authentic and novel precursor miRNAs (pre-

miRs). Though many of the abundant genomic inverted repeats (pseudo hairpins) can be filtered 

computationally by comparative genomic-driven approaches, genuine specie-specific pre-miRs 

are likely to remain elusive. A definitive criterion for identifying and classifying accurately 

promising precursor transcripts as bona fide pre-miRs within a single genome has not yet been 

discovered. Moreover, discriminative features used in existing (quasi) de novo classifiers have 

achieved far from satisfactory predictive performances. 

Motivated by the incomplete knowledge on the number of miRNAs present in the genomes 

of vertebrates, nematodes, plants, and even viruses, an in-depth statistical study (Ng and Mishra 

2007b) was conducted to elucidate the unique hairpin folding of an entire pre-miR based on 

their sequence motifs, hairpin structural characteristics, and topological descriptors. The 

comprehensive and heterogeneous datasets comprised of a collection of 2,241 published (non-

redundant) pre-miRs across 41 species (Sanger miRBase 8.2), 8,494 pseudo hairpins extracted 

from the human RefSeq genes, 12,387 (non-redundant) ncRNAs spanning 457 types (Sanger 

Rfam 7.0), 31 full-length mRNAs randomly selected from GenBank, and four sets of 

synthetically generated genomic background corresponding to each of the native RNA 

sequence. The combinatoric (intrinsic and global) features include the %G+C content, 

normalized base pairing propensity dP, normalized Minimum Free Energy of folding dG, 

normalized Shannon Entropy dQ, normalized base pair distance dD, and degree of compactness 

dF, as well as their corresponding Z-scores zP, zG, zQ, zD, and zF. The large-scale 

characterization analysis revealed that these features distinguish distinctively pre-miRs from 

other types of ncRNAs, pseudo hairpins, mRNAs, and genomic background according to the 

non-parametric Kruskal-Wallis ANOVA (p < 0.001). 
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Based on the earlier findings (Ng and Mishra 2007b), a new de novo Support Vector 

Machine classifier miPred (Ng and Mishra 2007a) was developed for identifying pre-miRs 

without relying on phylogenetic conservation information, while able to handle arbitrary 

secondary structures. It achieved significantly higher sensitivity and specificity than existing 

(quasi) de novo predictors, by incorporating a Gaussian Radial Basis Function kernel as a 

similarity measure for the 29 global and intrinsic hairpin folding attributes. They characterized a 

pre-miR at the dinucleotide sequence, hairpin folding, non-linear statistical thermodynamics, 

and topological levels. Trained on 200 human pre-miRs and 400 pseudo hairpins, miPred 

achieved 93.50% (five-fold cross-validation accuracy) and 0.9833 (AUC or ROC score). Tested 

on the remaining 123 human pre-miRs and 246 pseudo hairpins, it reported 84.55% 

(sensitivity), 97.97% (specificity), and 93.50% (accuracy). Validated onto 1,918 pre-miRs 

across 40 non-human species and 3,836 pseudo hairpins, it yielded 87.65% (92.08%), 97.75% 

(97.42%), and 94.38% (95.64%) for the mean (overall) sensitivity, specificity, and accuracy. 

Notably, Apis mellifera, Ateles geoffroyi, Canis familiaris, Epstein barr virus, Herpes simplex 

virus, Human cytomegalovirus, Ovis aries, Physcomitrella patens, Rhesus lymphocryptovirus, 

Simian virus, and Zea mays were unambiguously classified with 100.00% (sensitivity) and more 

than 93.75% (specificity).  

Given the promising performances of the proposed de novo SVM classifier miPred, it was 

incorporated into a computational pipeline for the screening of novel miRNAs expressed in the 

brain and gonads of juvenile and adult zebrafish. Two novel miRNAs dre-miR-N1 and dre-miR-

N2 found to be expressed in the adult testis and juvenile female brain small RNA libraries, 

possessed Minimum Free Energy of -45.90 kcal/mol and -56.30 kcal/mol, as well as miPred 

scores of 0.999978 and 0.999681 as predicted by a SVM-based classifier miPred (Ng and 

Mishra 2007a), respectively. They were validated experimentally as bona fide miRNAs through 

Northern Blotting (Beh and Ng et. al. 2007; in preparation). Further characterization via frozen 

section in situ hybridization revealed their differential expression in the stage I/II oocytes (but 

not in stage III oocytes) of adult ovary and primary spermatocytes (but not secondary 

spermatocytes) of adult testis, and they exhibited sexual dimorphism in non-canonical sex-

related organs including the brain, gill and muscle/connective tissue between both sexes. 

1.3. Publications 

A series of peer-reviewed publications, international conferences, and working papers were 
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authored during the course of this thesis. Arranged chronologically; bold and underlined 

name(s) denote corresponding and first author(s), respectively. 

Beh,E.M., Ng,K.L.S., Schoenbach,C., Ng,S.W., Wong,L.S., and Orban,L. (2008) Small 

RNA Profiling in Zebrafish Gonads and Brain: Novel miRNAs with Sexually Dimorphic 

Expression (in preparation). Both first authors contributed equally. 

Ng,K.L.S. and Mishra,S.K. (2007a) De Novo SVM Classification of Precursor 

MicroRNAs from Genomic Pseudo Hairpins Using Global and Intrinsic Folding Measures. 

Bioinformatics, 23, 1321-1330. 

Ng,K.L.S. and Mishra,S.K. (2007b) Unique folding of precursor microRNAs: Quantitative 

evidence and implications for de novo identification. RNA, 13, 170-187. 

Ng,K.L.S. and Mishra,S.K. (2006a) Spectral Graph Partitioning Analysis of In Vitro 

Synthesized RNA Structural Folding, in Proceedings of the International Workshop on Pattern 

Recognition in Bioinformatics (PRIB 2006), Hong Kong, China, August 20, 2006. Also 

published in Lecture Notes in Computer Science (Springer), 4146, 81-92.  

Ng,K.L.S. and Mishra,S.K. (2006b) Virus on the Grid: Grid-enabling Viral-encoded 

MicroRNAs Identification, in Proceedings of the Third International Life Science Grid 

Workshop (LSGRID 2006), Yokohama Kanagawa, Japan, October 13-14, 2006. 

1.4. Thesis Organization 

The thesis is organized into six chapters:  

Chapter 2 introduces the biogenesis model of mature miRNA. Notably, the hairpin motif 

is a crucial structural prerequisite for the computational prediction of authentic and novel 

precursor miRNAs (pre-miRs). State-of-the-art approaches for identifying bona fide miRNAs 

(namely, experiment-based, comparative-genomics driven, and prediction-based) are then 

discussed.  

Chapter 3 summarizes the material and methods described in both works (Ng and Mishra 

2007a; Ng and Mishra 2007b). They are the biologically relevant datasets, intrinsic RNA 

folding measures, implementation of de novo classifier miPred, and statistical analysis metrics. 

Chapter 4 and Chapter 5 cover the results and discussion presented in both works (Ng 

and Mishra 2007b) and (Ng and Mishra 2007a), respectively. An in-depth statistical study (Ng 

and Mishra 2007b) was conducted to elucidate the unique hairpin folding of an entire pre-miR 

based on their sequence motifs, hairpin structural characteristics, and topological descriptors. 
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Follow up from the new findings, a de novo Support Vector Machine classifier miPred (Ng and 

Mishra 2007a) based on intrinsic folding measures was developed for identifying novel pre-

miRs without relying on phylogenetic conservation information. 

Chapter 6 describes the application of miPred as part of a computational pipeline for the 

identification of novel miRNAs expressed in the brain and gonads of juvenile and adult 

zebrafish (Beh and Ng et. al. 2007; in preparation). Two selected putative miRNAs were 

validated by northern blot and subjected to characterization by in situ hybridization. 

Chapter 7 concludes this dissertation and outlines the future directions including the ESTs 

analysis of miRNAs; research on miRNA target prediction algorithms to improve accuracy of 

miRNA target binding sites associated with human diseases; research on the mechanisms for 

transcriptional regulation of miRNAs given that most of their expression are highly cell/tissue 

specific. 
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Chapter 2. 

Background of MicroRNA Identifications 

2.1. Biogenesis of MicroRNAs and Small-Interfering RNAs 

(Figure 2.1) The prevailing biogenesis model of miRNA maturation points to five or six 

compartmentalized stepwise processing within the nucleus/cytoplasm in plants and vertebrates, 

respectively (Kim 2005; Anthony and Peter 2005). Briefly, (1) majority of the primary miRNAs 

(pri-miRs) are transcribed by the RNA polymerase II (Pol-II) into long primary transcripts. (2) 

These capped and polyadenylated pri-miRs of varying length (more than 1,000 nucleotides) 

tend to fold with specific "hairpin-shaped" secondary structure, serve as substrates for 

recognition by the nuclear endonuclease RNase III Drosha/Pasha complex (Lee et al., 2003; 

Zeng and Cullen 2003). Cleaving asymmetrically at sites near the bases of their primary stems 

release approximately 60−120 nucleotides intermediate precursor transcripts (pre-miRs). (3) 

Those pre-miRs possessing characteristic imperfect and extended hairpin structures with a 5' 

phosphate and a 2 nucleotides 3' overhang, are exported into the cytoplasm by the cargo 

transporter protein Exportin-5 in a Ran-GTP dependent manner or by HASTY, the orthologue of 

Exportin-5 (Zhang et al., 2006b). (4) Cytoplasmic RNase III-type endonuclease Dicer excises 

the pre-miRs, about 2 helical turns away from the termini of the stem-loop of pre-miRs, into 

22–23 nucleotides asymmetric mature miRNA duplexes miRNA:miRNA*. On the contrary, 

Dicer-like 1 enzyme DCL1, a plant orthologue of Drosha, performs both cleavage steps in the 

nucleus i.e., pri-miRs → 80−200 nucleotides pre-miRs → miRNA:miRNA* (Anthony and Peter 

2005). Plant mature miRNA duplexes miRNA:miRNA* exhibit greater frequency of base 

pairings and have tighter length distribution centering on 21 nucleotides (Anthony and Peter 

2005). (5) The strand miRNA with the less thermo-stable 5' termini is preferentially 

incorporated into a ribonucleoprotein to form a RNA-induced silencing complex (RISC) (Rivas 

et al., 2005; Maniataki and Mourelatos 2005; Tang 2005; Gregory et al., 2005; Tijsterman and 

Plasterk 2004; Cullen 2004a). Every RISC contains a member of the Argonaute protein family 
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that tightly binds the single-strand RNA in the complex. (6) The bound strand guides the RISC 

to the target mRNAs, for which the mechanistic modes of miRNA-directed post-transcriptional 

silencing of target genes differ between vertebrates and plants (Anthony and Peter 2005). 

 

Figure 2.1: Simplified model of miRNA and siRNA biogenesis and regulation of target 

gene expression (He and Hannon 2004). 

Primarily in vertebrates, through imperfect complementary base pairing to the 3' 

untranslated regions of specific mRNA transcripts, the RISC represses post-transcriptionally the 

target gene expression via translational arrest of protein synthesis (Doench and Sharp 2004; 

Reinhart et al., 2000; Olsen and Ambros 1999; Moss et al., 1997) and occasionally 

deadenylation (Wu et al., 2006). Exceptions include the miRNA-guided cleaving of Mus 

musculus Hox-B8 transcripts (Yekta et al., 2004) and of Epstein barr virus BALF5 (virus DNA 

polymerase) transcripts (Pfeffer et al., 2004) by miR-196 and miR-BART2, respectively. For 

plants, mRNA cleavage-degradation occurs with exact (or quasi) complementarity of not more 
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than 4 mismatches at the protein-coding regions of mRNAs (Brennecke et al., 2005; Yekta et 

al., 2004). Nevertheless, Arabidopsis thaliana non-protein coding gene IPS1 (Induced by 

Phosphate Starvation1) contains a motif with sequence complementarity to the phosphate (Pi) 

starvation-induced miRNA miR-399, but the pairing was found to be interrupted by a 

mismatched loop at the expected miRNA cleavage site. The IPS1 RNA is not cleaved, instead 

sequesters miR-399 (Franco-Zorrilla et al., 2007).  

In comparison, small-interfering RNAs (siRNAs) are another family of short 21−22 

nucleotides ncRNAs, functionally equivalent to miRNAs. Like the mature miRNA, the mature 

siRNA possesses a 5' phosphate and a two nucleotides 3' overhang, and is incorporated as a 

single-stranded RNA into the RISC. The RISC binds with exact (or quasi) anti-sense 

complementarity to the mRNA of the target genes. It cleaves between the 10th and 11th 

nucleotides (Elbashir et al., 2001a; Elbashir et al., 2001b), resulting in the post-transcriptional 

silencing of the target gene. At least demonstrated in mammalian tissue cells culture (Zeng et 

al., 2003; Doench et al., 2003), exogenously supplied siRNA can repress expression of a target 

mRNAs with partial complementarity to the 3' untranslated regions without inducing detectable 

RNA cleavage, while endogenously encoded human miRNA can direct cleaving of an mRNA 

bearing fully complementary target sites. Experimental evidence points to partial overlap in the 

protein composition of RISCs used by siRNAs and miRNAs (Filipowicz et al., 2005), 

explaining why both species of small ncRNAs are able to utilize largely similar or entirely 

identical post-transcriptional regulatory machinery (Cullen 2004b).  

Both miRNA and siRNA differ mainly in their biogenesis and evolutionary conservation 

(Murchison and Hannon 2004; Bartel 2004; Ambros et al., 2003b). For biogenesis, identical 

copies of mature miRNAs originate from one arm of each precursor hairpin, which is the stem 

region of shorter hairpins of endogenously encoded transcripts. In contrast, numerous different 

mature siRNAs are derived from each exogenously long double-stranded RNA precursor via the 

RNA interference pathway (Hannon 2002). The mature miRNAs and their precursor hairpins 

are often evolutionarily conserved. These hairpins are also transcribed from the miRNA 

genomic loci that are distinct from and usually distant from other gene types. In contrast, 

siRNAs generally display less sequence conservation, and they often correspond perfectly to the 

sequences of known or predicted mRNAs, transposons, or regions of heterochromatic DNA.  
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2.2. State-of-the-arts for MicroRNA Identification 

The strategies for identifying systematically novel miRNAs can be broadly categorized into in 

vivo and in silico (Berezikov et al., 2006; Ambros et al., 2003a). The latter can be subclassified 

into approaches based on comparative-genomics, machine learning, machine learning coupled 

with comparative-genomics, and others.  

2.2.1. Experimental Approaches 

To date, a handful of miRNA genes, namely, Caenorhabditis elegans lin-4, let-7, and lsy-6; 

Drosophila melanogaster bantam, miR-14, and miR-278 were yielded by forward genetic 

screening coupled with standard positional cloning of genetic loci. In particular, forward genetic 

screening methods require no prior knowledge of the sequence function. The standard 

methodology is to apply a chosen mutagen to organisms with a phenotype that was selected to 

facilitate the screening for the desired type of mutation. For example, when screening for lethal 

mutations in a specific chromosomal region, an appropriate marker gene should be used. The 

absence of progeny with the marker phenotype indicates a linked lethal mutation. Forward 

genetic screens can be used to select for mutations in the entire genome or in localized regions. 

Earlier experiment-driven discoveries were low-throughput and technically challenging, 

since many miRNA mutants might be unrecognized in a phenotype-driven screen due to 

pathway redundancy. Currently, novel miRNAs were discovered almost exclusively through 

intensive direct cloning and sequencing of cDNA libraries derived from the size-fractionated 

RNA transcripts. Breakdown products of mRNA transcripts in the background, endogenous 

ncRNAs contaminants (e.g., rRNAs, tRNAs, and snRNAs) as well as exogenous siRNAs are 

dominant players coexisting in the small RNA samples isolated from the cytoplasmic total RNA 

extracts. To thwart designating them erroneously as putative miRNAs, isolated approximately 

22 nucleotides small RNAs are assessed computationally against annotated mRNA and ncRNA 

databases (Lagos-Quintana et al., 2002; Lagos-Quintana et al., 2001; Lee and Ambros 2001; 

Lau et al., 2001). Directional cloning routes are neither exhaustive nor straightforward in 

discovering all the known miRNAs for two reasons. They are highly biased towards abundantly 

and/or ubiquitously expressed miRNAs that usually dominate the cloned products, rendering the 

isolation of novel miRNAs difficult (Lagos-Quintana et al., 2003). Moreover, miRNAs 

expressed constitutively at low abundance or have preferentially restrictive/specific temporal 
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(cell-phase) and spatial (tissue-/cell-type) expression patterns, are intricate to detect 

experimentally (Lagos-Quintana et al., 2001). To express them sufficiently for cloning efforts 

under controlled cellular conditions and non-abundant cell types is technically involving. In 

principle, this issue can be overcome by high-throughput deep sequencing of small RNA 

libraries using Massively Parallel Signature Sequencing (MPSS) (Brenner et al., 2000) on an 

appropriately pooled biological samples (Lu et al., 2006).  

To be characterized as bona fide mature miRNAs, selected small RNAs must be assessed 

whether they conform according to a combination of criteria for both their expression and 

biogenesis (Ambros et al., 2003a). (1) The 22 nucleotides RNA sequence should originate from 

the genomic regions of the organism from which they were cloned. (2) The genomic sequence 

encoding the novel mature miRNAs should potentially display characteristic hairpin-shaped 

secondary structures that fold in the absence of large internal loops or bulges especially large 

asymmetric ones with the lowest Minimum Free Energy of folding (MFE). (3) The putative 

miRNA should occupy entirely one arm of the hairpin, or at least 16 base pairs involving the 

first 22 nucleotides of the novel mature miRNA embedded within one arm of the fold-back 

precursor. (4) The distinct short RNA transcript should then be validated by experimental 

means, for example Northern blotting. (5) Accumulation of the fold-back precursor should be 

detected when Dicer is down-regulated.  

The short sequence length of small RNAs, however, confers relatively low specificity 

whereby matching regions are readily encoded in overwhelming number of unwanted genomic 

segments that can potentially fold into hairpin-shaped structures. To eliminate the over-

represented false-positives or simply pseudo hairpins, earlier computation-driven approaches 

relied on identifying close homologs of these putative pre-miRs as used for let-7 (Pasquinelli et 

al., 2000). This can be as straightforward as aligning sequences through NCBI Blastn 

(McGinnis and Madden 2004) while allowing several mismatches and gaps depending on their 

inter-phylogenetic distance. False-positives not residing in the orthologous locations are deemed 

not conserved phylogentically between closely related species, and are consequently masked 

(Floyd and Bowman 2004; Pasquinelli et al., 2000). The putativeorthologues of evolutionary 

conserved miRNAs genes should conform to the expression and biogenesis criteria (Ambros et 

al., 2003a). Apparently, mere application of simple alignment queries and positive-selection 

rules is likely to overlook novel families lacking clear homologues to published mature 

miRNAs.  
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2.2.2.  Comparative-genomics Approaches 

Advanced comparative-based identification techniques like MiRscan (Lim et al., 2003a; Lim et 

al., 2003b), MIRcheck (Jones-Rhoades and Bartel 2004), miRFinder (Bonnet et al., 2004a), 

miRseeker (Lai et al., 2003), findMiRNA (Adai et al., 2005), and MiRAlign (Wang et al., 2005) 

were developed to systematically exploited the greater availability of genomic sequences in 

nematodes, human, insects, and plants. Similar to the computational identification of ncRNA 

genes, they were largely based on cross-species sequence and structural conservations to 

identify evolutionarily conserved regions in the genome for miRNA candidates, and to 

distinguish phylogentically well-conserved pre-miR candidates from irrelevant (often over-

represented) genomic dysfunctional hairpins. For example, MiRscan (Lim et al., 2003a; Lim et 

al., 2003b) relies on the observation that the known miRNAs are derived from phylogenetically 

conserved stem-loop precursor RNAs with characteristic features. It successfully predicted 

hundreds of miRNAs in nematodes and human with a high sensitivity. MiRAlign (Wang et al., 

2005) aligns the secondary structure of pre-miRs to detect miRNAs. Typically, conserved 

regions are first identified by aligning the entire genome of phylogentically related species and 

masking out those regions most unlikely to be occupied by miRNAs (e.g., tRNAs and rRNAs). 

Sliding windows of the unmasked regions are folded at both strands by Mfold (Zuker 2003) or 

RNAfold (Hofacker 2003), two commonly used RNA secondary structure predictors. The 

secondary folds are scored according to a set of several characteristic features like MFE, length 

of the symmetric/asymmetric regions, and size of the terminal loop. The composite scores are 

thresholded, those high-ranking ones deem similar to pre-miRs published in Sanger miRBase 

(Griffiths-Jones et al., 2006) are then reserved for further experimental validation.  

Alternatively, an extensive set of novel miRNAs based on genome-wide human-mouse-rat 

comparisons was identified from a characteristic conservation profile of ten primate species 

using a technique known as Phylogenetic shadowing (Berezikov et al., 2005). Phylogenetic 

shadowing is a variant of phylogenetic footprinting, which examines genomic sequences of 

closely related species and takes into consideration the phylogenetic relationship of the set of 

species analyzed (Boffelli et al., 2003). Out of the 69 representative human candidates, 16 were 

validated with Northern blotting. From which, it was observed that there was a striking drop in 

conservation for sequences immediately flanking the miRNA hairpins. A similar comparative 

analysis of the human, mouse, rat, and dog genomes revealed that a proportion of the common 

regulatory motifs in the promoters and 3' untranslated regions are likely to be associated with 
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miRNAs (Xie et al., 2005).  

Evidently, these comparative approaches seem to be utmost promising for genome-wide 

screening for closely related species, but they are unable to predict non-conserved genes in 

divergent evolutionary distance with sufficient high sensitivity (Berezikov et al., 2005; Boffelli 

et al., 2003). As extensive genomics datasets for computationally intensive multiple genome 

alignments are involved, this renders identification of miRNAs impossible especially for 

organisms whose closest relatives have partial or yet-to-start sequenced genomes. Another 

significant drawback is that non-conserved pre-miRs with genus-specific patterns are likely to 

evade detection. Thus, identification of pre-miRs that differ significantly or evolve rapidly at the 

sequence level while retaining their characteristic evolutionary conserved hairpin-shaped 

structures poses an issue. Pathogenic viral-encoded pre-miRs have been uncovered in Epstein 

barr virus, Kaposi sarcoma-associated herpesvirus, Mouse γ-herpesvirus 68, Human 

cytomegalovirus, and Simian virus 40 that share little or no sequence homologies among 

themselves or with those of hosts (Pfeffer et al., 2005; Samols et al., 2005; Grey et al., 2005; 

Pfeffer et al., 2004), are likely to remain elusive to comparative-based detection. 

2.2.3. Machine Learning Approaches 

To surmount the technical shortfalls of comparative approaches for distinguishing species-

specific and non-conserved pre-miRs, predictors based on ab initio or de novo methodologies 

have been extensively developed. A critical and necessary feature for the mature miRNAs 

biogenesis is that they reside primarily on one arm of the pre-miRs that form characteristic 

imperfect hairpin-shaped structures. This criterion points to only those small RNA sequences 

occupying the 20 nucleotides matched regions on one arm of the hairpin-shaped precursors 

should be curated as novel miRNAs after experimentally validating them. Genome-wide 

screening for novel pre-miRs is technically complicated considering that the hairpin-shaped 

structures are rampant in the eukaryotic genomes and are not unique to miRNAs exclusively. 

These dysfunctional inverted repeats (termed as pseudo hairpins) are genomically prevalent in 

the Homo sapiens (1.1 × 107) (Bentwich et al., 2005) and Caenorhabditis elegans (4.4 × 104) 

(Pervouchine et al., 2003) genomes. Removing these overwhelming and irrelevant genomic 

pool of false-positives without sacrificing excessively putative pre-miRs is most technically 

challenging, as they are relatively short in length (60–80 nucleotides in animal and 100−400 

nucleotides in plants) and have highly diverse base compositions (Zhang et al., 2006b). 
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De novo or ab initio predictors characterize the variable-length sequence of pre-miRs as a 

fixed-length vector containing exclusively intrinsic descriptors, analogous to the face- or 

handwriting-pattern recognition techniques. Unlike protein-coding genes possessing statistically 

significant primary-sequence signals such as the open reading frames (ORFs), promoter motifs, 

and codon signatures, pre-miRs display defined "hairpin-shaped" secondary structure that have 

been readily exploited by existing de novo methods for reliable and high-throughput detection.  

Typically, they first decompose the individual pre-miR into a modularized RNA 

substructures comprising of dangling termini, (a)symmetric stem, and terminal loop. Derived 

from these specific regions are a complex array of sequence (e.g., nucleotide composition) and 

structural characteristics (e.g., thermodynamic stability). This is fashioned analogously to the 

protein-coding gene identification techniques that scan the genomic regions for signature signals 

of protein-coding genes without relying on external transcripts or genomic sequences. A 

supervised machine learning classification algorithm e.g., Support Vector Machine (SVM) is 

trained on a binary-labeled positive set of genuine pre-miRs and a negative set of pseudo 

hairpins. Through this inductive machine learning on their feature vectors, a classifier model 

and a set of decision rules are devised to discriminate between them. With the classification 

model, any unlabelled non- or well-conserved hairpins can be designated simply as a putative 

pre-miR or a dysfunctional inverted repeat with higher sensitivity/specificity and significantly 

efficient than previous comparative methods. (Table 2.1) Generally, better recognition accuracy 

are obtained according to a combination of structural features like Minimum Free Energy of 

folding or MFE by miR-abela (Sewer et al., 2005; Pfeffer et al., 2005), normalized MFE (z-

score) by RNAmicro (Hertel and Stadler 2006); local continuous substructure-sequence 

attributes by Triplet-SVM (Xue et al., 2005).  

An inaugural and definitive work, miR-abela (Sewer et al., 2005; Pfeffer et al., 2005) 

compiled 40 distinctive sequence and structural features gathered from the experimental domain 

knowledge of pre-miRs that obviates the use of comparative genomics information − stem 

length, length of the longest symmetrical region, number of complementary base pairs in the 

"relaxed symmetry" region, MFE, number of nucleotides in symmetrical and asymmetrical 

loops in the "relaxed symmetry" region, and the average size of the asymmetrical loops. The 

SVM classifier-based method named miR-abela, was trained with the binary-labeled feature 

vectors extracted from human pre-miRs (as positive examples) and random sequences like 

tRNAs, rRNAs and mRNA genes (as negative examples). It recovered 71.00% of the positive 

pre-miRs with a remarkably low false-positive rate of ~3.00%. It also predicted ~50 to 100 
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novel clustered pre-miRs for several species of human, mouse and rat by applying to their 

genomic regions around already known miRNAs; ~30.00% of these were previously 

experimentally validated. The validation rate among the predicted cases that were conserved in 

at least one other species was higher at ~60.00%; many had not been detected by comparative 

genomics approaches. The significance of miR-abela is its ability to detect non-conserved 

miRNA candidates that did not have any sequence homology to the existing known miRNA 

genes at the time, demonstrating the power of machine learning in overcoming the limitations of 

comparative approaches relying on phylogenetic conservation.   

The accuracy of predicting novel miRNAs was improved to ~90.00% in human and up to 

90.00% for other species, by another de novo classifier Triplet-SVM (Xue et al., 2005). This 

approach proposed a set of novel encoding features that combines the local continuous structure 

and sequence information of known pre-miRs' stem-loop structures and represented them as a 

set of 32 triplet elements − a nucleotide type and three continuous sub-structures e.g., "A(((" and 

"G(..". Albeit its methodological simplicity, promising performances, and independence of 

comparative genomics information, Triplet-SVM was largely limited to classifying RNA 

sequences that fold stringently into hairpin secondary structures without containing multiple 

loops. 

Alternatively, ProMiR (Nam et al., 2005) exploited a probabilistic co-learning technique 

Hidden Markov Model (HMM) that has a topology of hidden states to discriminate miRNA 

genes according to their pairwise aligned sequences. Notably, HMM is a statistical model in 

which the system being modeled is assumed a Markov process with unknown parameters, and 

the challenge is to determine the hidden parameters from the observable parameters. Applying 

HMM to the identification of miRNAs, ProMiR was trained and validated through 5- fold cross 

validation with a positive dataset comprising of 136 human mature miRNAs and a negative 

dataset comprising of 1000 extended stem-loop structures randomly extracted from the human 

genome. It achieved a promisingly low false-positive rate of 4.00%, but compromised for a less 

performing sensitivity of only 73.00%; out of 23 novel candidates detected, nine were further 

validated. 
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Table 2.1: Existing (quasi) de novo classifiers for distinguishing novel pre-miRs from 

genomic pseudo hairpins.  

Works Classifiers Num Description of Features Datasets 
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miR-abela 
(Sewer et al., 
2005; Pfeffer et 
al., 2005) 

SVM 
 

40  16 statistics computed from the 
entire hairpin structure, 10 from 
the longest symmetrical region 
of the stem, 11 from the longest 
relaxed symmetry region, and 3 
from the candidate stem-loop. 

Human 178 5,395 71.00 97.00 

ProMiR 
(Nam et al., 
2005) 

HMM 
+ CI 

− A hairpin structure is represented 
as a pairwise sequence. Each 
position of the pairwise sequence 
has two states, structural and 
hidden. 

Human 
 

136 1,000 73.00 96.00 

Triplet-SVM  
(Xue et al., 
2005) 

SVM 
 

32 Each hairpin is encoded as a set 
of 32 triplet elements: a 
nucleotide type and three local 
continuous sub-structure-
sequence attributes e.g., "A(((" 
and "G(..". 

Human 
Human 

30 
39 

1,000 
2,444 

93.30 
92.30 

88.10 
89.00 

BayesMIRfinder 
(Yousef et al., 
2006) 

NBI + CI 84 62 secondary structural features 
derived from the foot, mature, 
and head of a hairpin-loop; 12 
sequence features extracted from 
the candidate sequence.  

Worm 
Mouse 

11 
22 

150 
150 

83.00 
97.00 

96.00 
91.00 

RNAmicro 
(Hertel and 
Stadler 2006) 

SVM + CI 
 

12 2 lengths of stem and hairpin 
loop regions; 1 G+C sequence 
composition; 4 sequence 
conservation; 4 thermodynamic 
stability; and 1 structural 
conservation. 

Animal 
 

136 394 91.16 99.47 

(Classifiers) SVM (Support Vector Machine), NBI (Naïve Bayesian Induction), and HMM (Hidden Markov Model); CI 
(Comparative genomics information). (Num) Number of features.   

2.2.4. Machine Learning with Comparative-genomics Approaches 

A relatively recent work BayesMIRfinder (Yousef et al., 2006) adopted an alternative 

discriminative machine learning algorithm Naïve Bayesian Induction (NBI) as its underlying 

classifier algorithm in combination with multi-species genomic data a conservation filter to 

reduce the number of false positives. NBI is based on "Bayes theorem" and strong independence 

assumption. Similar to SVM, with the supply of a set of structural and sequence features, 
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BayesMIRfinder was trained using a variety of miRNAs from multiple organisms to predict 

novel and nonconserved miRNAs. Notwithstanding its technical novelty, BayesMIRfinder relied 

on the comparative analysis of conserved genomics regions for post-processing of candidates to 

yield a considerably higher sensitivity of 97.00% and comparable specificity of 91.00% in 

mouse to existing algorithms. 

Another SVM-based work RNAmicro (Hertel and Stadler 2006) incorporating 12 sequence 

and structural descriptors as part of its feature vector, reported an incredibly promising 

efficiency of 91.16% (sensitivity) and 99.47% (specificity). Two key characteristics of its 

classification pipeline were: (1) computationally expensive multiple sequence alignments were 

required for its inputs. (2) It implemented a structural filter that identified conserved 'almost-

hairpins' in a multiple sequence alignment. The filter excluded assessment of alignment 

windows whose consensus structure contained a stem with less than 10 base pairs or at least 2 

hairpins with at least 5 base pairs each, and classified them instantly as non pre-miRs. 

RNAmicro was applied to three independent and genome-wide comparative genomics surveys 

for candidate functional ncRNAs possessing evolutionary conserved sequence and RNA 

secondary structures − vertebrate (Washietl et al., 2005a), nematode (Missal et al., 2006), and 

urochordate (Missal et al., 2005). These datasets were generated from RNAz (Washietl et al., 

2005b) screening methodology (a machine learning technique relying on distinctive features of 

thermodynamic stability and conservation of secondary structure of functional ncRNAs) that 

neither incorporate nor provide membership information of disparate classes of ncRNAs; 

alternatively, Evofold (Pedersen et al., 2006) could also be used. Annotating the extensive 

collection of newly identified ncRNAs into specific classes is a resource-intensive and error-

prone task, which was first undertaken in an automated manner using RNAmicro from the 

perspective of miRNA. A strong association between the identified miRNAs and those 

published in previous reports was observed. 

2.2.5. Hybrid Approaches 

The following works do not belong to any of the three categories: comparative, machine 

learning, and machine learning coupled with comparative genomics.  

89 novel human miRNAs, nearly doubling the number of known human miRNAs, were 

previously reported using an integrative approach that combined computational identification of 

hairpin-shaped secondary structures, expression analysis based on microarray profiles, and 
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sequence directed cloning results (Bentwich et al., 2005). A novel 'target-driven' approach was 

developed for identifying miRNAs (Chan et al., 2005) that relied on comparative genomic 

studies between closely related flies and worms to first screen for miRNA binding sites in the 3' 

untranslated regions of target mRNAs. Since the miRNA sequences are complementary to some 

degree to their binding targets, putative mature miRNAs that potentially hybridize to the 

predicted targets were then identified.  

Two independent groups had developed algorithms specifically for viral-encoded miRNAs 

in small genomes of less than 500 kilobases. VirMir (Sullivan et al., 2005; Sullivan and Ganem 

2005) scanned the viral genome in both orientations with a window of 100 nucleotides in step of 

10 nucleotides. The secondary structure of each window was scored and the MFE was 

computed. The high-scoring candidates would then be validated experimentally by Northern 

blotting. A refined version of VirMir, Vmir (Grundhoff et al., 2006) had two improvements. 

First, the hairpin structures were directed to a structural analysis, and a scoring algorithm based 

on the statistical comparison of a positive and negative training sets were used for classification. 

Second, microarray analysis was employed to scan the high-scoring candidates. Another 

research group computationally screened the genome of Herpes simplex viruses 1 for hairpin-

like structures (Cui et al., 2006) and  obtained a set of pre-miR candidates via several filters, 

namely, the %G+C content, repeats, protein-coding sequence, and MFEs.  

2.3. Summary 

MicroRNAs (miRNAs) perform critical roles in the gene regulation network by targeting 

mRNAs for cleavage or translational repression. The ~22 nucleotides mature miRNAs originate 

from the transcription of long primary miRNAs, which are then processed into precursor 

miRNAs (pre-miRs) by nuclear RNase III Drosha. Validated miRNAs are involved in the 

developmental timing and left/right asymmetry of chemoreceptor expression in nematodes, 

programmed cell death in Drosophila, hematopoietic differentiation in mammals, apoptosis, and 

metabolism in insects, cellular proliferation, and immune response inhibition in viruses. Since 

past several years, studies on the biological roles of miRNAs in cancers have been emerging, 

pointing to miRNA as an invaluable and potential therapeutic target in human diseases. 

Detecting systematically miRNAs from a genome using current experimental techniques is 

labor-intensive and technically difficult, two main challenges gradually being resolved by 

computational approaches. Comparative genomics methods were first adopted to identify novel 
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miRNAs in specific animals and plants, according to reports that miRNA genes are conserved in 

the primary sequences and secondary structures. Obviously, novel miRNAs that have no known 

close homologies due to the limitation of the data for specie that does not have a closely related 

one sequenced, or due to the possible evolution of miRNAs, are unable to be identified. Ab 

initio prediction methods were recently developed that rely mainly on the characteristic of 

hairpin-shaped structures of pre-miRs for identifying novel miRNAs. Major limitations include 

using phylogenetic information to improve prediction accuracy, restricted to only strict hairpin-

shaped structures, and using extrinsic parameters of pre-miRs. Given that a large population of 

pre-miR-like hairpins can be screened from many genomes, it remains a challenge to distinguish 

the bona fide pre-miRs from pseudo ones. 
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Chapter 3. 

Materials and Methods 

3.1. Biologically Relevant Datasets  

3.1.1. Precursor MicroRNA Sequences 

4,028 curated pre-miRs spanning across 45 species were retrieved from Sanger miRBase 8.2 

available at http://microrna.sanger.ac.uk/sequences as of July 2006 (Griffiths-Jones et al., 

2006). As strong sequence homologies existed among pre-miRs for both within a single and 

between different specie(s), the original dataset was filtered to 90% identity using a greedy 

incremental clustering algorithm (Li and Godzik 2006). Briefly, all the sequences were first 

sorted in order of decreasing length and the longest one became the representative of the first 

cluster. Each remaining sequence was compared with the existing representatives and grouped 

into their cluster if the similarity with any representative was above a given threshold (default 

value is 0.9), else that sequence became the representative of a new cluster. Consequently, 2,241 

non-redundant pre-miRs spanning 41 species categorized into arthropoda, nematoda, 

verterbrata, viridiplantae, and viruses, were used for analysis. None of the sequences from G. 

gorilla, M. nemestrina, P. paniscus, and P. pygmaeus was retained. See details in Table 3.1. 

3.1.2. Functional Non-coding RNA Sequences 

All available curated seed ncRNA sequences were retrieved from Sanger Rfam 7.0 available at 

http://www.sanger.ac.uk/Software/Rfam as of March 2005 (Griffiths-Jones et al., 2005). After 

removing 46 types of pre-miRs, 12,387 functional prokaryotic and eukaryotic ncRNAs 

spanning 457 types categorized into 16 families. These functional ncRNAs have similar length 

distribution to the known pre-miRs, and can fold with hairpin(s) or stem-loop(s) (Svoboda and 

Cara 2006; Storz 2002; Eddy 2001). See Table 3.1 for details. 

Briefly, cis-regulatory elements are well-conserved untranslated mRNA leader region 

http://microrna.sanger.ac.uk/sequences
http://www.sanger.ac.uk/Software/Rfam
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capable of adopting alternate structural conformations that result in transcription termination or 

transcription elongation into the downstream region. For example, the T-box leader regulates 

transcription of many bacterial aminoacyl-tRNA synthetases, amino acid biosynthesis, and 

amino acid transport genes using uncharged tRNA as the effector (Winkler et al., 2001).  

Internal ribosome entry site (IRES) is a nucleotide sequence that allows for translation 

initiation in the middle of an mRNA. It mimics the 5' cap structure, critical for the assembly of 

the initiation complex.  

Riboswitches are highly conserved RNA regulatory elements, embedded within the 5' 

untranslated region of biosynthesis genes or operons, and cis-modulate their expressions upon 

binding to metabolite (e.g., guanine and thiamine pyrophosphate), without involving protein 

cofactors (Soukup and Soukup 2004; Mandal and Breaker 2004; Nudler and Mironov 2004; 

Vitreschak et al., 2004; Winkler and Breaker 2003; Stormo 2003; Lai 2003; Hesselberth and 

Ellington 2002).  

Thermoregulators are cis-regulatory elements commonly found in the 5' untranslated 

regions of mRNAs, whose secondary structure is regulated by temperature. For example, the 

structural motif of PrfA thermoregulator represses translation at 30°C by masking the Shine-

Dalgarno sequence, but conformational change frees it for ribosome binding to allow maximal 

translation when the temperature rises to 37°C (Johansson et al., 2002).  

Antisenses are characterized by a long hairpin-shaped structure interrupted by several 

unpaired residues or bulged loops, involved in negative regulation. For instance, the micF gene 

is a E.coli stress response gene encoding an untranslated 93 nucleotides antisense that binds to 

its target ompF mRNA of the outer membrane porin gene (Delihas and Forst 2001). It regulates 

ompF expression post-transcriptionally by causing translational repression.  

Ribozymes e.g., the Hepatitis δ-virus ribozyme and Hammerhead ribozyme, possess 

endonuclease function and catalyze a range of reactions such as self-cleavage of hepatitis δ-

virus transcript (Puerta-Fernandez et al., 2003).  

Small nucleolar RNAs (snoRNAs) can be functionally divided into C/D snoRNAs or 

H/ACA snoRNAs acting as guides for site-specific 2'-O-ribose methylation or as guides for 

pseudouridylation in the post-transcriptional processing of rRNAs (Weinstein and Steitz 1999).  

Spliceosomal RNAs or splicing RNAs e.g., U1-2 and U4-6 (Storz et al., 2005), are small 

nuclear RNAs constituting the spliceosome that process pre-mRNA into mRNA by excising the 

intronic regions.  

Transfer RNAs (tRNAs) exist as approximately 54−93 nucleotides hydrogen-bonded 
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cloverleaf structures, involved in transporting amino acids to the site of protein synthesis during 

translation (Sprinzl and Vassilenko 2005).  

Group I/II intron RNAs are large self-splicing ribozymes catalyzing their own excision 

from mRNA, tRNA, and rRNA precursors (Bonen and Vogel 2001; Cech 1990).  

3.1.3. mRNA Sequences 

31 mRNA sequences with the GenBank accession numbers shown in Table 3.1 were randomly 

selected from NCBI GenBank available at http://www.ncbi.nlm.nih.gov/GenBank (Benson et al., 

2005). They tend to fold into complex RNA structures with extremely negative MFEs as 

previously reported (Freyhult et al., 2005).  

3.1.4. Pseudo Hairpin Sequences 

8,494 pseudo hairpins were extracted from the protein-coding regions (CDSs) according to the 

UCSC refGene annotation tables (Karolchik et al., 2003) and human RefSeq genes from NCBI 

GenBank available at http://www.ncbi.nlm.nih.gov/RefSeq (Pruitt and Maglott 2001). As 

wrongly assumed 'negative samples' can distort the decision boundary of classifier in an 

unpredictable and/or significant manner, special requirements were imposed on the selection of 

genomic inverted repeats. First, they must originate from genomic regions that do not undergo 

any known experimentally validated alternative splicing (AS) events, as described previously 

(Xue et al., 2005). This criterion ensures that they do not encode genuine human pre-miRs. 

Second, they are analogous to genuine human pre-miRs by displaying similar distribution in 

terms of their length about 90 nucleotides, hairpin-shaped structures with stem at least 8 base 

pairs including the GU wobble pairs, and Minimum Free Energy of Folding (MFE) of at most -

15 kcal/mol. In addition, they fold without multiple loops in their RNA structures as verified by 

the RNAfold program in Vienna RNA package (Hofacker 2003). The RNAfold program is 

utilized with default parameter values (T = 37°C) to predict the secondary structures, based on 

Zuker's minimum free energy algorithm (Zuker and Stiegler 1981). The current study only 

utilized optimal folding results. 

3.1.5. Random Sequences 

In practice, randomization methods are often used to generate random sequences for extracting 

statistical significance for properties from biological sequences. The random sequences mimic 

http://www.ncbi.nlm.nih.gov/GenBank
http://www.ncbi.nlm.nih.gov/RefSeq
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the "background noise" from which it is possible to differentiate the real biological information. 

However, a simple randomization method of RNA sequence obscures the frequencies of the 

mononucleotides and dinucleotides, which are often biased and are crucial for the physical 

stability of the secondary structure (Clote et al., 2005; Bonnet et al., 2004b; Katz and Burge 

2003; Rivas and Eddy 2000). It is consequently essential to rule out the bias of base 

composition in the robustness analysis. 

In this work, four sets of R = 104 shuffled or randomized RNAs rn = r1r2…rL serving as the 

genomic background are synthesized from each nth native RNA sequence sn = s1s2…sL, using 

four sequence randomization algorithms, namely the Mononucleotide Shuffling (MS), 

Dinucleotide Shuffling (DS), Zero-order Markov Model (ZM), and First-order Markov Model 

(FM) that preserved the exact or nearly exact mononucleotide and dinucleotide base 

composition as the native sequence, correspondingly. These randomization methods as Adapted 

from Clote et al. (2005)have been widely used in the thermodynamic stability study of RNA 

secondary structure (Clote et al., 2005; Bonnet et al., 2004b; Katz and Burge 2003; Rivas and 

Eddy 2000). Here, L denotes the length of sequence in nucleotides; biochemical nucleotide at 

the ith position ri ∈ ∑ and si ∈ ∑, where ∑ = [A, C, G, U] is the nucleotide alphabet.  

(Figure 3.1) Mononucleotide Shuffling (MS) algorithm implements the "Fisher-Yates 

shuffle algorithm" that sequentially swaps the mononucleotides at all positions of sn with 

another at a randomly selected position. It consumes Θ(LlogL) bits and runs in linear time. The 

order of the shuffled nucleotides is truly random, preserving the mono- but not the di-nucleotide 

frequencies. 

(Figure 3.2) In previous Dinucleotide Shuffling (DS) algorithms (Bonnet et al., 2004b; 

Workman and Krogh 1999), a trinucleotide is randomly selected (e.g., ATT), then all the non-

overlapping trinucleotides that start and end with the same bases (e.g., AAT, ACT, AGT, and 

ATT) are shuffled at random. This procedure is repeated 10 times the length of the native 

sequence. Consequently, the shuffled RNA sequences are heuristically-based and may not 

guarantee to preserve correctly the exact mono and dinucleotide frequencies as the native RNA. 

In this work, the exact "Altschul-Erikson algorithm" (Altschul and Erickson 1985) was 

implemented such that it shuffles sn while preserving exactly both the mono- and di-nucleotide 

frequencies. The native and shuffled sequences always share the same first and last nucleotides 

(Coward 1999). The order of the shuffled nucleotides is 'less random' due to fewer possible 

dinucleotide preserving permutations. 
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Figure 3.1: Pseudo codes of Mononucleotide Shuffling (Fisher-Yates shuffle) algorithm.  

 

 

Figure 3.2: Pseudo codes of Dinucleotide Shuffling (Altschul-Erikson) algorithm. Adapted 

from Clote et al. (2005). 

1. Let random sequence rn be a copy of native sequence sn. 

2. For nucleotide position i from L to 1, do 

3.      nucleotide position  j is sampled from uniform(1, i). 

4.      If i ≠ j, then swap(ri , rj).  

1. Let random sequence rn be a copy of native sequence sn. 

2. Foreach nucleotide r of rn, do 

3.      create an edge-list Lr of edge-pairs (r, x) with nucleotides r and x 

occurring as a dinucleotide rx in sn.  

4. Last nucleotide rL is sL. 

5. Foreach nucleotide r ≠ rL of rn, do 

6.      append an edge-pair randomly selected from Lr to E(sn). E(sn) contains at 

most three edge-pairs. 

7. Let G = (V, E) be the last-edge graph such that (r, x) ∈ V and (r, x) ∈ E(sn). 

If any vertex in G is not connected to rL, then goto (4). Else, goto (7) as all 

vertices are connected in graph G to last nucleotide rL. 

8. Foreach nucleotide r of rn, do 

9.      permute the remaining edge-pairs in Lr − E(sn). Append to each Lr any 

edges from E(sn) that had been removed. 

10. First nucleotide r1 is s1.  

11. For nucleotide position i from 1 to L − 1, do 

12.    generate nucleotide ri+1 such that (ri, ri+1) ∈ Lr. 
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(Figure 3.3) For Zero-order Markov Model (ZM) algorithm, a new random sequence rn is 

formed by iteratively adding nucleotide ri sampled with expected mononucleotide frequencies 

F(∑, sn). The process is stopped when the random sequence rn has exactly the same length as the 

original sn. The sequence rn is 'truly' random and its mononucleotide frequencies fluctuate about 

the native ones. The dinucleotide frequencies are completely distorted using this method. 

(Figure 3.4) For First-order Markov Model (FM) algorithm, a new random sequence rn is 

formed by first choosing a nucleotide r1 sampled with expected mononucleotide frequencies 

F(∑, sn). Iteratively add the next nucleotide ri+1 sampled with conditional probabilities P(ri+1|ri) 

i.e., the probability of occurrence of a nucleotide at a particular position depends only on the 

previous nucleotide. The process is stopped when the random sequence rn has exactly the same 

length as the native sequence sn. The shuffled sequence rn is 'truly' random such that its 

dinucleotide frequencies fluctuate around the native ones but that do not have exactly the same 

values. Mononucleotide frequencies are not preserved. 

Figure 3.3: Pseudo codes of Zero-order Markov Model algorithm. 

 

Figure 3.4: Pseudo codes of First-order Markov Model algorithm. 

1. Compute mononucleotide frequencies F(∑, sn) from native sequence sn. 

2. For nucleotide position i from 1 to L, do 

3.      generate nucleotide ri by sampling with F(∑, sn).  

1. Compute mononucleotide frequencies F(∑, sn) and conditional probabilities   

P(ri+1|ri) from native sequence sn. 

2. Generate first nucleotide r1 by sampling with F(∑, sn). 

3. For nucleotide position i from 2 to L, do 

4.      generate nucleotide ri by sampling with P(ri+1|ri). 



 29 

Table 3.1: Annotation information of biologically relevant datasets.  

Datasets Counts Annotation Information 
Precursor 
miRNAs† 
 

2,241 Arthropoda (4/171): Anopheles gambiae, Apis mellifera, Drosophila 
melanogaster, Drosophila pseudoobscura 
Nematoda (2/189): Caenorhabditis briggsae, Caenorhabditis elegans 
Vertebrata (19/1203): Xenopus laevis, Xenopus tropicalis, Gallus gallus, Canis 
familiaris, Ateles geoffroyi, Lagothrix lagotricha, Saguinus labiatus, Macaca 
mulatta, Homo sapiens, Pan troglodytes, Lemur catta, Mus musculus, Rattus 
norvegicus, Bos taurus, Ovis aries, Sus scrofa, Danio rerio, Fugu rubripes, 
Tetraodon nigroviridis 
Viridiplantae (9/606): Arabidopsis thaliana, Glycine max, Medicago truncatula, 
Oryza sativa, Physcomitrella patens, Populus trichocarpa, Saccharum 
officinarum, Sorghum bicolor, Zea mays 
Viruses (7/72): Epstein barr virus, Herpes simplex virus, Human 
cytomegalovirus, Kaposi sarcoma-associated herpesvirus, Mouse γ-herpesvirus, 
Rhesus lymphocryptovirus, Simian virus 

Non-coding 
RNAs‡ 

12,387 Cis-reg (77/4002): X031, X032, X036, X037, X040, X041, X048, X109, X114, 
X140, X161, X164, X165, X171, X172, X175, X176, X179, X180, X182, X183, 
X184, X185, X192, X193, X194, X196, X197, X207, X214, X215, X220, X227, 
X230, X232, X233, X243, X250, X252, X259, X260, X290, X362, X374, X375, 
X376, X384, X385, X386, X389, X390, X391, X434, X436, X437, X453, X454, 
X459, X460, X463, X465, X467, X468, X469, X470, X481, X485, X490, X491, 
X496, X497, X498, X499, X500, X501, X502, X506 
Cis-reg|frameshift (5/808): X381, X382, X383, X480, X507 
Cis-reg|IRES (24/1201): X061, X209, X210, X216, X222, X223, X224, X225, 
X226, X228, X229, X261, X387, X447, X448, X449, X457, X458, X461, X462, 
X483, X484, X487, X495 
Cis-reg|riboswitch (12/917): X050, X059, X080, X162, X167, X168, X174, 
X234, X379, X380, X442, X504 
Cis-reg|thermoregulator (4/21): X038, X433, X435, X466 
Gene (24/480): X006, X013, X017, X019, X023, X024, X025, X044, X058, 
X060, X062, X063, X064, X100, X102, X107, X169, X170, X198, X199, X235, 
X240, X262, X503 
Gene|antisense (10/147): X033, X039, X042, X043, X106, X236, X238, X242, 
X388, X489 
Gene|ribozyme (9/561): X008, X009, X010, X011, X030, X094, X163, X173, 
X373 
Gene|rRNA (3/1010): X001, X002, X177 
Gene|snRNA (1/28): X066 
Gene|snRNA|guide|C/D-box (165/1050): X012, X016, X046, X049, X054, 
X055, X065, X067, X068, X069, X070, X071, X085, X086, X087, X088, X089, 
X093, X095, X096, X097, X099, X105, X108, X132, X133, X134, X135, X136, 
X137, X138, X141, X142, X145, X146, X147, X149, X150, X151, X152, X153, 
X154, X157, X158, X159, X160, X181, X186, X187, X188, X189, X200, X201, 
X202, X203, X204, X205, X206, X208, X211, X212, X213, X217, X218, X219, 
X221, X266, X267, X268, X270, X271, X273, X274, X275, X276, X277, X278, 
X279, X280, X281, X282, X283, X284, X285, X287, X288, X289, X292, X294, 
X295, X296, X297, X299, X300, X301, X304, X305, X306, X308, X309, X310, 
X311, X312, X313, X314, X315, X316, X317, X318, X320, X321, X323, X324, 
X325, X326, X327, X328, X329, X330, X331, X332, X333, X335, X336, X337, 
X338, X339, X341, X342, X343, X344, X345, X346, X347, X348, X349, X350, 
X351, X352, X353, X355, X356, X357, X358, X359, X360, X361, X377, X439, 
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Datasets Counts Annotation Information 
X440, X441, X450, X471, X472, X473, X474, X475, X476, X477, X478, X479, 
X492, X493, X494, X509 
Gene|snRNA|guide|H/ACA-box (71/419): X045, X056, X072, X090, X091, 
X092, X098, X139, X155, X156, X190, X191, X231, X263, X264, X265, X272, 
X286, X291, X293, X302, X303, X307, X319, X322, X334, X340, X392, X393, 
X394, X395, X396, X397, X398, X399, X400, X401, X402, X403, X404, X405, 
X406, X407, X408, X409, X410, X411, X412, X413, X414, X415, X416, X417, 
X418, X419, X420, X421, X422, X423, X424, X425, X426, X427, X428, X429, 
X430, X431, X432, X438, X443, X482 
Gene|snRNA|splicing (7/250): X003, X004, X007, X015, X020, X026, X488 
Gene|sRNA (42/233): X014, X018, X021, X022, X034, X035, X057, X077, 
X078, X079, X081, X082, X083, X084, X101, X110, X111, X112, X113, X115, 
X116, X117, X118, X119, X120, X121, X122, X124, X125, X126, X127, X128, 
X166, X195, X368, X369, X370, X371, X372, X378, X444, X505 
Gene|tRNA (1/1114): X005 
Intron (2/146): X028, X029 

mRNAs§  31 NM_001005151.1, NM_001003967.1, NM_177233.4, AY675236.1, 
NM_001004202.1, NM_178539.2, AB164385.1, AY555511.1, AB189435.1, 
NM_178307.2, NM_001003966.1, NM_205498.1, NM_013564.3, Z81556.1, 
NM_131070.2, X56279.1, AK045412.1, AF452886.1, BC049701.1, 
BC050086.1, NM_172343.1, AY182163.1, BC072691.1, CV127341.1, 
NC_004671.1, X00910.1, AY226143.1, AJ621386, CV122154.1, X68284, and 
CV199185.1 

†, e.g., phylum Arthropoda (4/171) has four species of pre-miRs containing 171 sequences. ‡, e.g., family Cis-reg (77/4002) has 
77 types of ncRNAs containing 4,002 sequences; miRBase accession X005 abbreviates RF00005. §, GenBank accession 
numbers. 

3.1.6. Four Complete Viral Genomes 

They were downloaded from NCBI GenBank (Benson et al., 2005), namely the Epstein barr 

virus (EBV; 171,823 base pairs; DNA circular; AJ507799.2), Kaposi sarcoma-associated 

herpesvirus (KSHV; 137,508 base pairs; DNA linear; U75698.1), Mouse γ-herpesvirus 68 strain 

WUMS (MGHV68; 119,451 base pairs; DNA linear; U97553.2), and Human cytomegalovirus 

strain AD169 (HCMV; 229,354 base pairs; DNA linear; X17403.1). 

3.2. Intrinsic RNA Folding Measures (Feature Vector) 

Adjusted base pairing propensity, dP measures the total number of base pairs present in the 

RNA secondary structure S normalized to the sequence length L in nucleotides (Schultes et al., 

1999). It removes the bias that a long sequence tends to have more base pairs. dP ranges [0.0, 

0.5], 0.0 for no base pair interactions and 0.5 for maximum of L/2 base pairs. 

Adjusted minimum free energy of folding, dG measures the thermodynamic stability of 

RNA structure S i.e., the lowest MFE for the most favorable conformation from a vast 
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population of predicted RNA secondary structures, normalized to the sequence length L in 

nucleotides (Freyhult et al., 2005). It removes the bias that a long sequence tends to have lower 

negative MFE (Seffens and Digby 1999). The computation of MFE structures uses a specialized 

dynamic programming algorithm (Zuker and Stiegler 1981).  

MFE Index 1, MFEI1 in Eq. (3.1) is the ratio of dG and %G+C content (Zhang et al., 

2006a).  

 1 .
%

dGMFEI
G C

=
+

 (3.1) 

Here, %G+C ratio = 100 × (fG + fC). fG and fC represent the occurring frequencies of 

nucleotides G and C in a given RNA sequence, respectively. 

Adjusted shannon entropy, dQ in Eq. (3.2), characterizes the base pairing probability 

distribution per base (BPPD) in a RNA structure S as a chaotic dynamical system (Freyhult et 

al., 2005; Schultes et al., 1999; Huynen et al., 1997). The local dominance of a single structure 

within the Boltzmann distribution of alternative secondary structures is strongly correlated with 

the reliability of the MFE structure. Low values of dQ correspond to BPPD that are dominated 

by single, a few, or by the absence of base pairings. These bases are better predicted than those 

having multiple alternative states. 

  2
1 log ( ) .ij ij

i j
dQ p p

L <

= − ∑  (3.2) 

Here, the McCaskill base pair probability pij in Eq. (3.3) denotes the probability of base 

pairing between bases i and j (McCaskill 1990); 1ij
αδ = if i and j pair, 0 otherwise. RNA 

molecules exist in vivo as an ensemble of secondary structures Sα ∈ S(x) with the Boltzmann 

distribution probability P(Sα) (Mathews 2004). The implementation of McCaskill's algorithm in 

RNAfold program (Hofacker 2003) was used to compute base-pair probabilities. 
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Here, Eα is the free energy of Sα, R is the molar gas constant given by 8.31451 Jmol-1K-1, 

and T is the absolute temperature taken 310.15 K or 37°C. 

Adjusted base pair distance, dD in Eq. (3.4), is the base pair distance for all pairs of 

structures Sα and Sβ inferred from sequence s (Freyhult et al., 2005; Moulton et al., 2000).  
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The base-pair distance dBP(Sα, Sβ) in Eq. (3.5) between two structures Sα and Sβ on s is 

defined as the number of base-pairs not shared by the structures Sα and Sβ. Here, the number of 

base pairs in Sα is |Sα| = ∑i < j ij
αδ ; 1ij

αδ = if i and j pair, 0 otherwise.  
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The computable form of dD in Eq. (3.6) can be obtained by substituting the Eq. (3.5) into 

Eq. (3.4), expanding the terms, and simplifying with known definition of pij in Eq. (3.3). 
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Second (or the Fiedler) eigenvalue, dF in Eq. (3.7), measures the compactness of a tree-

graph G = (V, E) (Gan et al., 2004; Fera et al., 2004). At the coarsest scale, each vertex v ∈ V 

represents a bulge loop, hairpin loop, internal loop, the 5' and 3' unpaired termini, or the multi-
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branch loop; each edge e ∈ E denotes a RNA stem. dF is computed from the Laplacian matrix 

L(G), a mathematical representation of the tree-graph G. dF can be used as a similarity measure 

among a collection of RNA secondary structures. See Appendix A for details.  

 [ ( )] ( ) = .dF FidlerEigen G G λ= ⇔L L X X  (3.7) 

MFE Index 2, MFEI2 in Eq. (3.8) is the ratio of dG and the number of stems m, which are 

structural motifs containing more than three contiguous base pairs. 

 2 .dGMFEI
m

=  (3.8) 

Z-scores of RNA folding measure or normalized feature vectors i.e., the Z-score Z(sn) in 

Eq. (3.9) normalizes the feature S(sn) ∈ [dG, dP, dQ, dD, dF] of nth native RNA sequence sn. 

Z(sn) is defined as the number of standard deviations by which S(sn) differs from the mean of 

inferred R = 104 randomized RNA sequences rn. The corresponding Z-scores of S(sn) ∈ [dG, dP, 

dQ, dD, dF] are denoted as zG, zP, zQ, zD, and zF using the four sequence randomization 

algorithms. 
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Here, Si(rn) is the computed feature for the ith random sequence of rn; μn and σn are the 

sample mean and the standard deviation of the feature S(sn) for R random RNA sequences rn. 

The entire set of R random sequences rn is synthesized via a Monte Carlo randomization 

approach (Clote et al., 2005; Bonnet et al., 2004b; Workman and Krogh 1999) e.g., by the 

"Altschul-Erikson algorithm" (Altschul and Erickson 1985), an exact form of dinucleotide 

shuffling algorithm. Briefly, it shuffles sn while preserving exactly both the mono- and di-

nucleotide frequencies. The rn shares the same first and last nucleotides as sn. The order of the 

shuffled nucleotides is 'less random' due to fewer possible dinucleotide-preserving permutations. 
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3.3. Statistical Analysis 

To measure the statistical differences inherent within pre-miRs' global structural and intrinsic 

stability features as well as to compute the probability that the samples are drawn from the same 

distribution, the non-parametric Kruskal-Wallis one-way Analysis of Variance (ANOVA) or 

non-parametric Mann-Whitney-Wilcoxon (Wilcoxon rank-sum) were conducted. The former 

tests for statistically significant difference in the median values (p < 0.001) among the 

experimental groups against the control are greater than would be expected by chance. To 

isolate the groups that differ from the control, Dunn's method of multiple comparisons test is 

conducted at p < 0.01. It does not include an adjustment for ties but allows the sample sizes of 

the experimental groups to be different. The latter tests for statistically significant difference in 

the median values between two experimental groups (p < 0.001). Unlike parametric statistical 

test like student t-test, both ANOVA and Wilcoxon rank-sum compare the ranks of the data 

values instead of the actual data values. Thus, they are robust to samples drawn from 

populations with non-normal distribution or have unequal variances. (Systat® SigmaPlot™ 9.0 

and SigmaStat™ 3.11). 

To quantify the correlation between measures for native pre-miRs, the Pearson correlation 

coefficients Cp(f, g) in Eq. (3.10) is computed; statistically significant at p < 0.001. Knowing 

that Cp is not robust to outliers and to non-Gaussian distributions, as it assumes a pseudo-

Gaussian distribution of the dataset. Thus, the results of Cp were also validated against those of 

non-parametric Spearman-rank Cs (ranks-based) and Kendall's Ck (relative ranks-based) 

correlation metrics. Both Cs and Ck are robust to samples containing outliers, or drawn from 

population with unequal variances, non-normality distribution, and non-linearity. (Mathworks® 

Matlab™ 7.1). 

 ( ) ( )( , ) .p
f f g gC f g
f f g g
− ⋅ −

=
− −

 (3.10) 

Here, f and g denote the vector of values for measure f and g, respectively. 
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3.4. De Novo Classifier miPred 

3.4.1. Background on Support Vector Machine  

Derived from the structural risk minimization principle of statistical learning theory, "Support 

Vector Machine" (SVM) is a supervised-learning technique that generates a classifier by 

simultaneously minimizing the empirical classification error and maximizing the geometric 

margin (Burges 1998; Vapnik 1998). Classifiers based on the special property of SVMs, are also 

known as maximum margin classifiers. Briefly, given a set of P and N binary-labeled samples 

(xi, yi) as training vectors, the primary objective of SVM is to explicitly construct an optimal 

hyperplane i.e., a multi-dimensional orthogonal plane that divides the feature vectors xi into 

binary-labeled classes yi with a maximum margin of separation while maintaining reasonable 

computing efficiency. Finding this hyperplane translates effectively to solving a convex 

quadratic programming optimization problem given in Eq. (3.11). This new formulation trades 

off the two goals of finding a hyperplane with large margin (i.e., minimizing ||w||), and finding a 

hyperplane that separates the data well (i.e., minimizing the ξi). 
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Here, yi ∈ ± 1 represents the positive (+1) and negative (−1) labeled classes to which the ith 

vector xi ∈ RM (i = 1, 2,…, P + N) having M attributes; b is a measure of the perpendicular 

distance from the hyperplane in the direction of w to the origin; soft-margin slack variable ξi 

measures the degree of misclassification for xi; C is the penalty parameter of the training error.  

Typically, the training vectors of input variables xi are not linearly separable and must be 

transformed uniquely to high-dimensional feature space by the function φ. SVM handles this 

non-linearity by simply incorporating a kernel transformation in order that only the function 

K(xi, xj) ≡ φ(xi)Tφ(xj) is required for training. A commonly used kernel is the Gaussian Radial 

Basis Function (RBF) kernel in Eq. (3.12), which maps the data to the Hilbert space of infinite 

dimensions. The parameter γ (the radius) controls the degree of smoothing of the decision 

surface in input space. Small values lead to an extremely flat and smooth decision surface, while 

large values tend to give a very convoluted decision surface that fits tightly around the training 

points. (Figure 3.5) General application of SVM is conducted using three straightforward steps, 
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namely the feature extraction, training the decision function on a set of selected binary-labeled 

training vectors, and classifying a given test sample xi into either positive or negative classes 

(Burges 1998). 
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After obtaining the classifier model, any unlabeled testing instance x can then be classified 

according to the decision function in Eq. (3.13). 

 ( ) sgn ( ) .Tf bϕ = + x w x  (3.13) 

 

Figure 3.5: Computational pipeline of vectorization and SVM classification. 

3.4.2. Grid-search Strategy for Parameter Estimation 

All classifier models were generated with the optimal values of hyperparameter pair (C, γ) given 

in Eq. (3.11) and (3.12), which were obtained from the following model selection procedure. 

Briefly, at each hyperparameter pair (C, γ) where C ∈ [C1, C2, …, Cn] and γ ∈ [γ1, γ2, …, γm], the 

training dataset was randomly partitioned into approximately k distinct equal-sized subsets. 

Repeating the validation process k times for each subset i.e., retaining a subsets for testing and 

the remaining k−1 subsets for training, the average accuracy of the k models gave the k -fold 

leave-one-out cross-validation (LOOCV) accuracy rate (Duan et al., 2003). To avoid over-

fitting the generalization, the best combination of hyperparameters (C, γ) maximizing the k-fold 

LOOCV accuracy rate served as the default setting for training miPred. In this work, k = 5 for 

five-fold cross validation, search space log2C ∈ [-10, -9, …, 15] and log2γ ∈ [-15, -14, …, 10]. 
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The search was terminated when the mean of the k prediction accuracies acc(C, γ) was 

maximized. The corresponding pair (C, γ) was selected to train the entire training set and to 

generate the final classifier model. Finally, the classification was conducted on the testing and 

independent evaluation datasets with "svm-predict -b 1". 

3.4.3. Training, Testing, and Independent Datasets  

For hyperparameter estimation and training the decision function of miPred, binary-class 

labeled samples consisting of 200 human pre-miRs (positives) and 400 pseudo hairpins 

(negatives) were randomly selected without replacement to avoid the classifier being skewed 

towards specifically screened training samples. The remaining 123 human pre-miRs (positives) 

and 246 randomly selected pseudo hairpins (negatives) were used for testing. They, denoted as 

TR-H and TE-H, take into account that the training and testing human datasets should be 

uncorrelated, potentially to avoid overly optimistic classification performances. The comparable 

ratio of 1:2 ensures that the selected negatives contribute more significantly to the specificity of 

a classifier than positives, while avoiding the problem of overtraining. Typically, the decision 

function of SVM converges to a solution where all samples belonging to the smaller class are 

classified as that of the larger class if the class sizes differ significantly. The performance of 

miPred was evaluated against three datasets IE-NH, IE-NC, and IE-M. They represent the 

remaining 1,918 pre-miRs spanning 40 non-human species (positives) and 3,836 randomly 

selected pseudo hairpins (negatives); 12,387 functional ncRNAs (negatives) from Sanger Rfam 

7.0 (Griffiths-Jones et al., 2005); and 31 mRNAs (negatives) from NCBI GenBank (Benson et 

al., 2005), respectively. Details of all five datasets can be found at section 3.1 (Ng and Mishra 

2007b). To avoid having paralogous miRNAs in the training and testing datasets, the original 

miRNA dataset download from Sanger Rfam 7.0 (Griffiths-Jones et al., 2005) was filtered to 

90% identity using a greedy incremental clustering algorithm (Li and Godzik 2006). 

3.4.4. Implementation of miPred  

Given its simplicity to deal easily with multi-dimensional datasets that can be noisy or 

redundant (non-informative or highly correlated), SVM has been adopted extensively as an 

invaluable discriminative machine learning tool to address diverse bioinformatics problems (Liu 

et al., 2006; Dror et al., 2005; Han et al., 2004). Considering that a single criterion to filter 

pseudo hairpins has not yet been identified, miPred undertakes a novel approach that posits the 
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entire hairpin-shaped structure of each pre-miR can be characterized solely into a feature vector 

xi containing 29 RNA global and intrinsic folding attributes, without relying on phylogenetic 

conservation information (Ng and Mishra 2007b).  

17 base composition variables: 16 dinucleotide frequencies %XY = fXY/(fX × fY) such that X, 

Y ∈ ∑ = [A, C, G, U], and 1 aggregate dinucleotide frequency %G+C ratio = 100 × (fG + fC). 

Here, fX and fXY represent the mononucleotide and dinucleotide frequencies, respectively. RNA 

intrinsic structural constraints may affect the dinucleotide base compositions and may deviate 

from approximately the %A = %T and %C = %G (Xia et al., 1998). Previous studies have also 

suggested that the base composition features %G+C ratio and dinucleotide frequencies may 

serve as indicators of ncRNAs (Schattner 2002; Klein et al., 2002). Thus, dinucleotide is the 

preferred predicting descriptor to mononucleotide or higher-order frequencies, as it strikes a 

compromise between the resolution and computation tractability. 6 folding measures: adjusted 

base pairing propensity dP (Schultes et al., 1999), adjusted Minimum Free Energy of folding 

(MFE) denoted as dG (Freyhult et al., 2005; Seffens and Digby 1999), MFE index 1 MFEI1 

(Zhang et al., 2006a), adjusted base pair distance dD (Freyhult et al., 2005; Moulton et al., 

2000), adjusted shannon entropy dQ (Freyhult et al., 2005), and MFE index 2 MFEI2. 1 

topological descriptor: degree of compactness dF (Gan et al., 2004; Fera et al., 2004). 5 

normalized variants of dP, dG, dQ, dD, and dF i.e., zP, zG, zQ, zD, and zF derived from 

dinucleotide shuffling. The 17 sequence composition variables as well as the non-linear 

statistical thermodynamics measures dQ and dD were computed by a custom-made Perl 

program genRNAStats.pl interfaced to the module RNAlib of Vienna RNA Package 1.4 

(Hofacker 2003); dG by RNAfold program (Hofacker 2003) that predicts the most favorable 

RNA structural folds of single sequences and their corresponding MFEs; the topological 

descriptors S and dF by a custom-made program RNAspectral (see Appendix A for details). 

After synthesizing the set of random RNA sequences via a custom-made Perl program 

genRandomRNA.pl, the normalized variants zP, zG, zQ, zD, and zF were computed in a similar 

manner using genRNARandomStats.pl. All intensive computations were performed on three 

clusters comprising of 192 dual-cores computational nodes. 

The proposed miPred's binary classifier was developed using libSVM version 2.82 (Chang 

and Lin 2001), a free implementation of SVM. Samples were randomly selected without 

replacement via a custom-made python script. Foremost, the 29 attributes of miPred were 

rescaled linearly by the svm-scale program to the interval [-1.0, 1.0] to guard against 

asymptomatic biasness in the numeric ranges for all the datasets; larger variance may dominate 
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the classification e.g., [6.0, 50.0] vs. [-0.5, -0.2]. All miPred classifier models were generated 

with "svm-train -b 1 -c 2C -g γ"; default RBF kernel; "-b 1" option computes the SVM 

probability estimates (P-values) for classification thresholding. As both the penalty parameter C 

(determines the trade-off between training error minimization and margin maximization) and 

the RBF kernel parameter γ (defines the nonlinear mapping from input space to some high-

dimensional feature space) are critical for the performance of SVM (Duan et al., 2003), they 

were optimally calibrated by an exhaustive grid-search strategy using k-fold cross-validation as 

described earlier.  

3.4.5. Classification Performance Metrics 

Sensitivity or recall (SE), Specificity (SP), Accuracy (ACC), F-measure (Fm) (Liu et al., 2006), 

and Matthew's Correlation Coefficient (MCC) (Bhasin et al., 2006) are defined in Eq. (3.14). 

All metrics (except MCC) range [0.0, 1.0]; closer to 1.0 implies better scores, and vice-versa. 

MCC ranges [-1.0, 1.0]; -1.0, 0.0, and 1.0 indicate worst possible, perfectly random, and best 

possible classification, respectively. Here True Positives (TP), False Negatives (FN), False 

Positives (FP), and True Negatives (TN) denote the number of true/false samples (which are 

pre-miRs in this work) that are detected/missed by the classifier, correspondingly. Figure 3.6 

shows a two by two confusion matrix containing the information about the actual and predicted 

outcomes evaluated by a binary classification. 
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Briefly, SE (or SP) measures the proportion of actual positives (or negatives) which are 

correctly identified; a test with a high SE (or SP) has fewer Type II errors (or Type I error rate), 
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and vice versa. ACC is the proportion of true results (both TP and TN) in the experiment, and 

measures how well a binary classification test correctly identifies or excludes a sample. When a 

binary-labeled dataset is unbalanced i.e., the number of positive and negative samples differ 

greatly like ratio of 1:5 or 1:10, the ACC of a classifier is not representative of the true 

performance of the classifier. Unlike ACC, Fm and MCC account for unbalanced datasets and 

are regarded as balanced measures. Fm is the harmonic mean of SE and positive predictive 

value (PPV).  

  

Figure 3.6: Confusion matrix for a binary-class classifier.  

The "quality" of a binary classification is commonly shown by the Receiver Operating 

Characteristic curve (ROC) that plots the trade-off between the SE and the false-positive rate 

(FPR = 1 − SP) across all possible classification thresholds (Hou et al., 2003). The normalized 

area under the ROC curve, denoted simply as the AUC or ROC score, is a measure of the 

discriminative power of the classes using the given features and classifier. AUC has the 

advantage over the ROC of quantifying the performance over the full range of classification 

costs. The AUC can be interpreted as the probability that two random samples selected from 

two classes will be ranked correctly, and is invariant to changes in class proportions (unlike 

ACC). It  ranges [0.5, 1.0]; closer to 0.5 (about the upward diagonal) for a totally random 

classifier for non-distinguishable classes; near to 1.0 (along the left-top boundary) signify a 

perfect classifier for separable classes (Lasko et al., 2005). An efficient algorithm for computing 

the AUC or ROC score (Hou et al., 2003) is shown in Figure 3.7. 
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Figure 3.7: Pseudo codes for computing efficiently AUC or ROC score. Adapted from Hou 

et al., (2003). 

3.4.6. F-scores of Features 

The "quality" of the ith feature is described commonly by the F-scores F1 (Dror et al., 2005) and 

F2 (Chen and Lin 2006) in Eq. (3.15). The larger their values for the ith feature, the more likely 

this feature possesses discriminative importance/power. 
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 (3.15) 

Here /i iµ µ+ − and /i iσ σ+ − denote the means and standard deviations of the positive (+) and 

negative (−) training datasets, correspondingly. The numerator and denominator describe the 

discrimination between the two classes, and that within each of the two classes. 

3.4.7. Benchmarking miPred 

Both Triplet-SVM (Xue et al., 2005) and Naïve Bayesian Classifier (NBC) served as 

1. Output variable: AUC = 0. 

2. Local variables: TP = 0; FP = 0. 

3. Sort the SVM scores of the positve and negative test samples. This gives a 

single column of sorted class labels [1, -1], which is denoted as sortedlabels.   

4. Foreach label of sortedlabels, do 

5.      If label == 1, then TP = TP + 1. 

6.      Else FP = FP + 1; AUC = AUC + TP. 

7. If TP == 0, then AUC = 0. 

8.      Else if FP == 0, then AUC = 1. 

9.      Else AUC = AUC/(TP * FP). 
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independent baseline models to benchmark the performance improvements or deterioration (if 

any) of miPred. The original Triplet-SVM was previously trained on 163 human pre-miRs and 

168 pseudo hairpins using the older libSVM version 2.36 with the "-b 1" option disabled. Here, 

Triplet-SVM was trained on randomly selected 200 human pre-miRs and 400 pseudo hairpins 

using the latest libSVM version 2.82 (the "-b 1" option is enabled) and the optimal 

hyperparameter pair (C, γ). Triplet-SVM was applied to the testing and independent evaluation 

datasets with "svm-predict -b 1".  

The Bayes Classifier Induction (bci) version 2.14, a free implementation of NBC available 

at http://fuzzy.cs.unimagdeburg.de/~borgelt/bayes.html, was used for training and testing with 

the exact samples and attributes employed by Triplet-SVM and miPred; denoted as Triplet-SVM-

NBC and miPred-NBC. For training, "bci -L1" yielded better classification results than the 

default "-L0". In theory, NBC seeks to maximize the probability P(X|C) = P(f1, f2,… fn)|C) such 

that the sample X belongs to one of the binary classes C = (T, F).  

The detailed prediction performances for miRNAs are found in Table C.1 (miPred), Table 

C.2 (miPred-NBC), Table C.3 (Triplet-SVM), and Table C.4 (Triplet-SVM-NBC); their mean 

sensitivities and specificities are summarized in Table C.5. The detailed prediction performances 

for non-miRNAs ncRNAs comparing the four classifiers are found in Table C.6; their mean 

specificities are summarized in Table C.7.  

3.5. Availability of Datasets and Software 

Supplemental materials including the entire datasets (RNA sequences in FASTA format), source 

codes (implementation of RNAspectral in ANSI C, shuffling/randomizing algorithms in Perl, 

and miPred in Perl), raw results (feature extraction of RNA sequences), and auxillary (Bash and 

Perl)  scripts are available publicly at http://web.bii.a-star.edu.sg/~stanley/Publications.  

http://fuzzy.cs.unimagdeburg.de/~borgelt/bayes.html
http://web.bii.a-star.edu.sg/~stanley/Publications
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Chapter 4. 

Unique Folding of Precursor MicroRNAs: 

Quantitative Evidence and Implications for De 

Novo Identification 

4.1. Comparison between Vertebrate and Plant Precursor 

MicroRNAs 

Among the arthropoda, nematoda, verterbrata, viridiplantae, and viruses available from Sanger 

miRBase 8.2 (Griffiths-Jones et al., 2006), no orthologous miRNA gene shared by vertebrates 

and plants has ever been reported (Anthony and Peter 2005). Pathogenic viral-encoded pre-

miRs present in Kaposi sarcoma-associated herpesvirus, Mouse γ-herpesvirus 68, and Human 

cytomegalovirus should be treated as exceptions, though they have also been demonstrated to 

neither share significant sequence homology with known host pre-miRs nor among themselves 

(Pfeffer et al., 2005; Samols et al., 2005; Grey et al., 2005). Viral-encoded pre-miRs do not 

possess genes homologous to host miRNA processing proteins e.g., Drosha, Dicer, and RISC, 

but are likely to hijack these proteins to facilitate their viral replication after infecting the host 

cells (Sarnow et al., 2006). Despite the apparent similarities of miRNAs biogenesis between 

vertebrates and plants, their evolutionarily ancient processing pathways (beyond 400 million 

years ago) were not operating in a common ancestor and could have evolved independently 

from a more ancient system (Anthony and Peter 2005). This suggests that both vertebrate and 

plant pre-miRs are likely to exhibit distinct folding features that warrant careful structural 

analysis.  

Vertebrate and plant pre-miRs have significantly distinct MFEI2, MFEI1, %G+C, dP, dG, 

dQ, dD, and dF from ncRNAs and mRNAs (p < 0.001). (Figure 4.1 and Figure 4.3) Foremost, 

the sequence length (in nucleotides) differs considerably between and among pre-miRs 
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(vertebrate; 90.4522 ± 0.4164 and plants; 137.9175 ± 2.0309), ncRNAs (frameshift; 53.2599 ± 

0.2543 to IRES; 276.0841 ± 2.4342), and mRNA (332.3226 ± 16.3064). The sequence lengths 

of ncRNAs and mRNAs are strongly and positively correlated with their Minimum Free Energy 

of Folding (MFE), as previously demonstrated (Zhang et al., 2006a; Bonnet et al., 2004b; 

Seffens and Digby 1999). Longer sequence length tends to results in a greater degree of 

freedom such that the native RNA sequences can fold into complex secondary structures with 

corresponding higher thermo-stability or lower MFEs. By normalizing the MFE with the 

sequence length, the normalized MFE dG ensures that it serves as a comparable measure 

without unduly penalizing the shorter pre-miRs or favoring the longer mRNAs (Zhang et al., 

2006a; Freyhult et al., 2005; Seffens and Digby 1999). In agreement with earlier findings 

(Zhang et al., 2006a; Freyhult et al., 2005), vertebrate and plant pre-miRs possess statistically 

distinct dG of -0.4308 ± 0.0025 and -0.4456 ± 0.0038  and are the lowest except frameshift (-

0.4814 ± 0.0023). Interestingly, a single criterion based on a variant of dG greater than a 

threshold value ε = 0.68 has been applied to genome-wide detection of Caenorhabditis elegans 

pre-miRs (Pervouchine et al., 2003). This yielded ~4.4 × 104 stable hairpins localized to ~4.00% 

of the genome, covering 64.29% (36/56) of the published ones (Lau et al., 2001).  

Vertebrate and plant pre-miRs possess significantly highest normalized base-pairing 

propensity dP of 0.3518 ± 0.0009 and 0.3545 ± 0.0013, accounting for ~70.36 − 70.9% of their 

nucleotides forming complementary base pairings within their highly thermo-stable hairpin-

shaped structures. Similar >72.00% for dP has also been reported corroborating our findings, 

albeit a smaller dataset of 513 plants pre-miRs across seven species was analyzed (Zhang et al., 

2006a). The presence of more hydrogen bonds and base pairings in the plant pre-miRs might 

benefit their recognition, processing, and nucleus-cytoplasm transport (Zhang et al., 2006a). 

Emerging experimental evidence also points to the hairpin motif of vertebrate pre-miRs as a 

critical feature for the miRNAs maturation (Zeng and Cullen 2004). Human pre-miR-30 binding 

by Exportin-5 involved recognition of almost the entire hairpin, except the terminal loop (Zeng 

and Cullen 2004). A hairpin-shaped structure >16 base pairs was required for detectable binding 

and >18 base pairs for high-affinity binding such that the stacking of contiguous paired 

nucleotides tended to reduce the MFE of the overall folded structure for greater thermo-stability. 

Contrary to the common belief that the unpaired regions tended to disrupt the RNA structure 

with greater MFE, deleting the 2 nucleotides bulge of pre-miR-30 left the binding unaffected or 

reduced binding modestly, unless the stem length was suboptimal. There was negligible or no 

significant effect on the correct recognition for varying size of the terminal loop, until it was 
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shortened from the normal 15 to 4 nucleotides. Besides nuclear export of pre-miR, the binding 

of Exportin-5 served to stabilize the pre-miR in the nucleus and during export by inhibiting the 

in vitro exonucleolytic cleavage (Zeng and Cullen 2004).    

Vertebrate and plant pre-miRs encode higher %A+U content than %G+C content of 

48.3079 ± 0.2504 and 46.6719 ± 0.3513; similarly observed by Zhang et al., (2006a). The 

higher %A+U content in the plant pre-miRs (likewise for vertebrate pre-miRs) might possibly 

serve as a biochemical signal for miRNA biogenesis by the RISC (Zhang et al., 2006a). The 

%G+C contents for vertebrate and plant pre-miRs were also found to be not considerably 

different from mRNAs (50.4626 ± 1.4654) and common families of ncRNAs like cis-regulator 

(48.9672 ± 0.1188), frameshift (46.4785 ± 0.1477), riboswitch (50.5054 ± 0.3381), 

thermoregulator (42.6490 ± 3.2009), HACA-box snoRNA (46.3048 ± 0.3160), splicing RNA 

(47.6933 ± 0.3731), sRNA (46.3963 ± 0.3513), tRNA (48.2725 ± 0.3541), and intron (44.7871 

± 0.8350). Unlike the %G+C content, the MFEI1 (divides dG by %G+C content, a newly 

proposed folding energy score to analyze plant pre-miRs (Zhang et al., 2006a) for vertebrate 

and plant pre-miRs of -0.0091 ± 0.0001 and -0.0096 ± 0.0001 are statistically highest except 

antisense (-0.0083 ± 0.0001) and frameshift (-0.0104 ± 0.0000). Our finding and another (Zhang 

et al., 2006a) point to the MFEI1 as a potential discriminative criterion to distinguish pre-miRs 

from mRNAs and ncRNAs, which a recent comparative classifier RNAmicro has included into 

its feature set (Hertel and Stadler 2006). 

Notably, vertebrate pre-miRs possess statistically higher normalized Shannon Entropy dQ 

and normalized base pair distance dD of 0.1161 ± 0.0025 and 0.0431 ± 0.0009 than plant pre-

miRs of 0.1424 ± 0.0036 and 0.0502 ± 0.0011. Generally, RNA sequences having relatively 

high values of both advanced folding measures are either unstructured, or long in length that 

fold with the assistance of accessory proteins, or have repertoire of alternative (pseudoknot) 

structures (Freyhult et al., 2005). This suggests that vertebrate pre-miRs will likely to fold into 

well-defined hairpins restricted to relatively fewer alternative conformations, possibly due to 

shorter sequence length (90.4522 ± 0.4164 nucleotides) compared to plants (137.9175 ± 2.0309 

nucleotides). The different "structureness" of vertebrate and plant pre-miRs causes the former to 

display significantly lowest and distinct dQ and dD except antisense (0.1336 ± 0.0061 and 

0.0468 ± 0.0020). The latter is not significantly unique from cis-regulator (0.2124 ± 0.0021 and 

0.0689 ± 0.0006), frameshift (0.1396 ± 0.0024 and 0.0552 ± 0.0009), antisense (0.1336 ± 

0.0061 and 0.0468 ± 0.0020), snRNA (0.2305 ± 0.0260 and 0.0741 ± 0.0074), and intron 

(0.1802 ± 0.0089 and 0.0620 ± 0.0026). Maturation of plant miRNA:miRNA* duplex is 
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performed exclusively by Dicer-like 1 enzyme (DCL1) via two cleavage steps pri-miR → pre-

miR → miRNA:miRNA* within the nucleus. In contrast to vertebrates (Zhang et al., 2006b; 

Anthony and Peter 2005), the two reactions are compartmentalized and directed separately by 

the nuclear  Drosha (pri-miR → pre-miR) and cytoplasmic Dicer (pre-miR → 

miRNA:miRNA*). Moreover, plant pre-miRs are less conserved (conservation of plants mature 

miRNAs is well preserved) than those in vertebrates (Zhang et al., 2006b; Anthony and Peter 

2005). Our structural analysis substantiates both experimental findings, pointing to the plant 

pre-miRs as very transient molecules (Zhang et al., 2006b) that possess less "structureness" 

indicative of lower dQ and dD compared to their vertebrate counterparts.  

Lastly, two newly proposed topological measures were analyzed i.e., degree of 

compactness dF and MFEI2 (divides dG by number of stems m). Vertebrate pre-miRs have 

significantly higher dF of 0.2197 ± 0.0042 than plant pre-miRs of 0.1251 ± 0.0033. Generally, 

RNAs possessing lower dF have less structured folds (Barash 2004b; Barash 2003) like 

mRNAs (0.0391 ± 0.0059). Both vertebrate and plant pre-miRs fold into topologically distinct 

structures with dF being statistically different but is not the extreme among mRNAs (0.0391 ± 

0.0059) and common families of ncRNAs like frameshift (0.8865 ± 0.0079), IRES (0.0442 ± 

0.0013), antisense (0.3734 ± 0.0133), rRNA (0.0933 ± 0.0020), snRNA (0.5372 ± 0.0415), and 

tRNA (0.5333 ± 0.0093). The other folding measure MFEI2 was inspired by the formation of the 

critical hairpin-shaped structure in the early stages of miRNA maturation. Reasonably, MFE 

should be largely localized to the stem(s) within the hairpin such that the higher MFEI2 

corresponds to greater thermo-stability per stem. The MFEI2 for vertebrate and plant pre-miRs 

of -0.0761 ± 0.0013 and -0.0539 ± 0.0010 are significantly different except antisense (-0.0811 ± 

0.0030), snRNA (-0.0764 ± 0.0088), and tRNA (-0.0676 ± 0.0007); cis-regulator (-0.0793 ± 

0.0017), snRNA (-0.0764 ± 0.0088), and intron (-0.0604 ± 0.0029). 

In summary, the 1,203 vertebrate and 606 plant pre-miRs are statistically distinct from 

12,387 ncRNAs and 31 mRNAs according to the measures MFEI2, MFEI1, %G+C, dP, dG, dQ, 

dD, and dF. Except for two recent published works investigating 513 plant pre-miRs (Zhang et 

al., 2006a) and 135 pre-miRs from different species (Freyhult et al., 2005), no larger-scale and 

in-depth statistical analysis highlighting these results on the folding characteristics of published 

pre-miRs have ever been reported.  

Vertebrate and plant pre-miRs have significantly distinct Z-scores of dG, dQ, dD, dP, and 

dF compared to the ncRNAs and mRNAs. (Figure 4.2 and Figure 4.3) Evolutionarily conserved 

vertebrate and plant pre-miRs possess considerably lowest zG except frameshift and antisense, 
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regardless of the sequence randomization algorithms. Our finding and another (Freyhult et al., 

2005) affirm the hypothesis that pre-miRs fold into highly thermo-stable secondary structures 

with significantly lower MFEs relative to their synthetically generated sequence randomized 

controls (Bonnet et al., 2004b; Workman and Krogh 1999). Therefore this unique structural 

characteristic of vertebrate and plant pre-miRs is not expected to occur by chance, it is 

indispensable for correct recognition and processing by Dicer-like enzymes (Bonnet et al., 

2004b). Earlier works (Bonnet et al., 2004b; Workman and Krogh 1999) were inconclusive as 

their dinucleotide shuffling algorithms were heuristically-based and the resulting shuffled RNAs 

might not guarantee to preserve the exact dinucleotide frequencies as the native RNAs (Clote et 

al., 2005). Instead, considerably larger dataset of pre-miRs and ncRNAs were investigated as 

well as the exact "Altschul-Erikson algorithm" (Altschul and Erickson 1985) for synthesizing 

104 dinucleotide shuffled RNAs. Two computational studies (Clote et al., 2005; Washietl and 

Hofacker 2004) also demonstrated that structural ncRNAs displayed lower MFEs than 

dinucleotide shuffled RNAs, but pre-miRs were not analyzed. 

Both zQ and zD of vertebrate and plant pre-miRs are statistically different and are the 

lowest except antisense, irrespective of the sequence randomization algorithms. Recent 

computational study  reported that pre-miRs and ncRNAs (like hammerhead ribozymes type III, 

and tRNAs) possessed significantly fewer k-locally optimal structures (potential kinetic traps) 

than their dinucleotide shuffled RNAs (Clote 2005). Both findings suggest pre-miRs are 

probable to undergo evolutionary pressure in adopting relatively fewer alternative folds of 

significantly lower MFEs than the random background, in order to function properly in the post-

transcriptional gene regulatory pathway.  

Vertebrate and plant pre-miRs report significantly highest zP i.e., more complementary 

base pairings are present in their RNA secondary structures than the genomic background, 

irrespective of the sequence randomization methods. They also have statistically distinct zF 

except common families of ncRNAs like cis-regulator, IRES, thermoregulator, CD-box 

snoRNA, and HACA-box snoRNA, as well as mRNAs. 

In summary, the 1,203 vertebrate and 606 plant pre-miRs are significantly different from 

the 12,387 ncRNAs and 31 mRNAs, after examining their zG, zQ, zD, zP, and zF based on 4 

sequence randomization algorithms and 104 random sequences corresponding to each native 

RNA. This statistical finding confirms that to reliably identify pre-miRs from the genomic 

background requires them more than possessing characteristic and well-defined secondary 

structures of statistically significant MFEs (Washietl and Hofacker 2004; Rivas and Eddy 2000).  
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Figure 4.1: Distribution profiles of pre-miRs, ncRNAs, and mRNAs for Length, MFEI2, 

MFEI1, %G+C, dP, dG, dQ, dD, and dF. Box lines indicate the lower quartile, median, 

mean, and upper quartile; whisker lines extend to the most extreme data value or at most 

1.5 times the box height; outliers beyond 5th and 95th percentile are not shown. See Table 

B.1 for details.  
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Figure 4.2: Distribution profiles of pre-miRs, ncRNAs, and mRNAs for zG, zQ, zD, zP, and 

zF. The horizontal dashed line indicates Z-score at zero. Box lines indicate the lower 

quartile, median, mean, and upper quartile; whisker lines extend to the most extreme data 

value or at most 1.5 times the box height; outliers beyond 5th and 95th percentile are not 

shown. See Table B.2 for details. 
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Figure 4.3: Heatmap of vertebrate and plants pre-miRs vs. ncRNAs, and mRNAs. zGM/D/Z/F 

denotes zG with respect to Mono- and Di-nucleotide shuffling, Zero- and First-Order 

Markov Model; green represents statistically different median; red for no statistical 

difference; grey for ties according to the ANOVA (p < 0.001) and Dunn's Method of 

multiple comparisons tests (p < 0.01). See Table B.3 for details. 

4.2. Comparison with Previous Studies on Structural Folding 

Analysis of ncRNAs and mRNAs 

(Figure 4.2 and Figure 4.3) For completeness of this large-scale study, three notable points were 

outlined to revisit previous works investigating whether ncRNAs and mRNAs fold into 

statistically significant and thermodynamically stable secondary structures. First, 51 mRNAs 

had significantly lower MFEs than their corresponding sets of 10 mononucleotide shuffled 

RNAs (Seffens and Digby 1999) and a subset of 46 mRNAs did not display any statistically 

lower MFEs than their corresponding sets of 10 dinucleotide shuffled RNAs (Workman and 

Krogh 1999). Our study (mononucleotide shuffling; -0.7223 ± 0.2089 and dinucleotide 

shuffling; 0.1021 ± 0.1625) and another using dinucleotide shuffling (Freyhult et al., 2005) 
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support both previous conclusions (Workman and Krogh 1999; Seffens and Digby 1999). 

Unique to this work, the mRNAs were observed to have considerably lower MFEs than the 

genomic background for Zero-order markov model (-0.4770 ± 0.1098), but not for First-order 

markov model (-0.0830 ± 0.0845). 

Second, our investigated 1114 tRNAs possess significantly lower MFEs than the genomic 

background for the four sequence randomization methods. This finding agrees with earlier 

results (Clote et al., 2005; Freyhult et al., 2005; Washietl and Hofacker 2004) that relied on 

dinucleotide shuffled RNAs, but differs from another work (Workman and Krogh 1999) in 

which the dinucleotide shuffling algorithm was heuristically-based as previously explained 

(Clote et al., 2005). Similar findings were reported for the hammerhead ribozymes type III 

(Clote et al., 2005; Washietl and Hofacker 2004), spliceosomal RNAs (Clote et al., 2005; 

Washietl and Hofacker 2004), riboswitches (Clote et al., 2005), and introns (Washietl and 

Hofacker 2004) that have considerably lower MFEs than corresponding sets of dinucleotide 

shuffled RNA sequences.  

Third, previously discussed (Clote et al., 2005; Bonnet et al., 2004b; Workman and Krogh 

1999), the controls serving as the genomic background would give erroneous conclusions if 

they destroyed certain non-random composition of the native sequence. Our results highlight 

that detectable systematic bias of zG distribution profiles exist among the four sequence 

randomization algorithms. Generally, the mean zG for pre-miRs, ncRNAs, and mRNAs are 

ordered from the lowest mononucleotide shuffling, marginally below those of dinucleotide 

shuffling, followed by Zero- and First-Order Markov Model. This result agrees with earlier 

works (Clote et al., 2005; Bonnet et al., 2004b; Workman and Krogh 1999) that disrupting the 

naturally occurring biases in the inherent dinucleotide frequencies of the sequences base 

composition should be avoided for determining the significance of secondary structure. 

Preserving the dinucleotide frequencies of the native sequences is critical so as not to affect the 

critical energy contributions of stacked base pairs and the corresponding accuracy of the RNA 

structural predictions (Clote et al., 2005; Bonnet et al., 2004b; Workman and Krogh 1999). 

4.3. Vertebrate and Plant Precursor MicroRNAs are Uniquely 

Different from Pseudo Hairpins 

To elucidate the unique folding of pre-miRs present in vertebrates and plants, the preceding two 
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statistical experiments were repeated by evaluating them against 8,494 pseudo hairpins instead 

of ncRNAs and mRNAs. Pseudo hairpins are genomic inverted repeats extracted from the 

protein coding regions of human RefSeq genes with no known alternative splicing (AS) events. 

They were first introduced as negative samples in Triplet-SVM (Xue et al., 2005), a de novo 

classifier based on triplet-encoding features e.g., "A(((" and "G(..". However, no structural 

analysis or comparison to published pre-miRs has been reported about them. 

(Figure 4.4 and Figure 4.6) Generally, the vertebrate and plant pre-miRs have significantly 

higher dP and dF as well as lower MFEI2, MFEI1, %G+C, dG, dQ, and dD than pseudo 

hairpins (p < 0.001). (Figure 4.5 and Figure 4.6) The distribution profiles of vertebrate and plant 

pre-miRs for zG, zQ, zD, and zP differ distinctively from pseudo hairpins (p < 0.001), 

irrespective of the sequence randomization algorithms. Unlike pseudo hairpins, pre-miRs tend 

to fold into secondary structures with significantly higher thermodynamic structural stability 

(lower zG), fewer alternative folds (lower zQ and zD), and more base pairings (higher zP). 

Except plants, vertebrate pre-miRs clearly have significantly higher zF (more compactness) than 

pseudo hairpins (p < 0.001).  

In summary, both findings invalidate conclusively the hypothesis that pseudo hairpins 

share comparable degree of structural folding characteristics with known vertebrate and plant 

pre-miRs. Our statistical results clearly points to the MFEI2, MFEI1, %G+C, dP, dG, dQ, dD, 

and dF as well as zG, zQ, zD, zP, and zF as potential discriminative descriptors. They 

effectively expand the triplet-encoding features in Triplet-SVM (Xue et al., 2005) to classify 

more accurately the genuine pre-miRs from pseudo hairpins in genome-wide screens.  
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Figure 4.4: Distribution profiles of the pre-miRs for Length, MFEI2, MFEI1, %G+C, dP, 

dG, dQ, dD. Box lines indicate the lower quartile, median, mean, and upper quartile; 

whisker lines extend to the most extreme data value or at most 1.5 times the box height; 

outliers beyond 5th and 95th percentile are not shown. See Table B.1 for details. 
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Figure 4.5: Distribution profiles of the pre-miRs for zG, zQ, zD, zP, and zF. The horizontal 

dashed line indicates Z-score at zero. Box lines indicate the lower quartile, median, mean, 

and upper quartile; whisker lines extend to the most extreme data value or at most 1.5 

times the box height; outliers beyond 5th and 95th percentile are not shown. See Table B.2 

for details. 
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Figure 4.6: Heatmap of pre-miRs vs. pseudo hairpins. zGM/D/Z/F denotes zG with respect to 

Mono- and Di-nucleotide shuffling, Zero- and First-Order Markov Model; green 

represents statistically different median; red for no statistical difference; grey for ties 

according to the ANOVA (p < 0.001) and Dunn's Method of multiple comparisons tests (p 

< 0.01). See Table B.3 for details. 

4.4. Correlation between Intrinsic RNA Folding Measures  

(Figure 4.7) Correlation tests were conducted on 2,241 non-redundant known pre-miRs 

according to the following metrics: Length, MFEI2, MFEI1, %G+C, dP, dG, dQ, dD, and dF as 

well as the zG, zQ, zD, zP, and zF (normalized forms of dG, dQ, dD, dP, and dF using the four 

sequence randomization algorithms). The Pearson correlation coefficients Cp are also validated 

against Spearman-rank Cs (ranks-based) and Kendall's Ck (relative ranks-based) correlation 

coefficients, as Cs and Ck are extremely robust to non-normal distribution.  

Generally, all of the metrics are weakly (|Cp| < 0.4) and moderately (0.4 ≤ |Cp| < 0.9) 

correlated except dQ, dD, zQ, and zD, regardless of the sequence randomization algorithms. 

Both dQ and dD are computed from the McCaskill base pair probability pij (Freyhult et al., 

2005), explaining the strong quasi-linear relationship (Cp ≥ 0.9) for the two pairs dQ and dD as 

well as their corresponding normalized form zQ and zD. There exist moderate pearson 

correlations within the three pairs dG and zG, dP and zP, as well as dF and zF for the four 
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sequence randomization algorithms. Initially, two pairs of features dQ and zQ as well as dD and 

zD were expected to behave similarly. Interestingly and currently unclear is why a strong 

association is observed within themselves. As a guide for future studies especially where 

computational resources is limited, only dQ instead of dD should be included (Freyhult et al., 

2005), while zQ and zD are extremely time-consuming to compute beyond 103 random RNA 

sequences. 
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Figure 4.7: Correlation between dQ, dD, zQ, and zD for pre-miRs; zQ, and zD correspond 

to dinucleotide shuffling; r indicates Pearson correlation coefficients Cp. p < 10-30 for all 

correlation. The pearson Cp, Spearman-rank Cs (ranks-based), and Kendall's Ck (relative 

ranks-based) correlation coefficients for all the metrics and sequence randomization 

methods studied in this work are provided in Table B.4−7.  

4.5. Summary 

In this large-scale investigation characterizing the entire hairpin-shaped structure of known 

precursor miRNAs (pre-miRs), notably vertebrate and plant pre-miRs were found to possess a 

set of 13 statistically significant global features. This in silico findings has greatly advanced our 

understanding of miRNA functions and biogenesis in relation to their structural features and 
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distinct folding patterns. A definitive criterion for identifying and classifying accurately 

promising precursor transcripts as bona fide pre-miRs, while discriminating against abundant 

pseudo hairpins within a single genome has not yet been discovered. Moreover, discriminative 

features used in existing (quasi) de novo classifiers have achieved far from satisfactory 

specificity and sensitivity, especially when cross-specie conservation is unavailable. Our 

investigated features relating to the intrinsic folding and topological characteristics of pre-miRs, 

can potentially serve as discriminative measures in improving the designs and performances of 

current de novo predictors. The 13 features have been incorporated into the development of a 

new and better performing de novo classifier for identifying specie-specific and non-conserved 

pre-miRs, wholly independent of phylogenetic conservation information. 
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Chapter 5. 

De Novo Classification of Precursor MicroRNAs 

from Genomic Pseudo Hairpins Using Global 

and Intrinsic Folding Measures 

5.1. Training and Classifying Human Precursor MicroRNAs 

The optimal hyperparameter pair (C, γ) of the SVM classifier miPred was calibrated using TR-

H (see section 3.4.3 for details), giving (C, γ) = (16.0, 0.03125) that maximizes the five-fold 

cross-validation accuracy rate of 93.50%. A classification score ranging [0.0, 1.0] is assigned by 

miPred to each hairpin, designating it as a putative pre-miR if its score is beyond a specified 

threshold. Across the entire spectrum of thresholds, a trade-off generally exists between 

specificity (greater value at higher threshold) and sensitivity (value increases at lower threshold) 

(Liu et al., 2006; Dror et al., 2005). The ROC analysis of miPred's classification model reported 

that the AUC or ROC score is approximately unity i.e., 0.9833. 

(Figure 5.1-A) With the default miPred's threshold predefined at 0.5, the Sensitivity (SE), 

Specificity (SP), and Accuracy (ACC) reported for TR-H are 88.00%, 97.50%, and 94.33%, 

respectively. Here, SP is greater than SE is more desirable in screening for novel pre-miRs from 

the entire genomic sequences or cloned small RNAs as abundant dysfunctional hairpins are 

encoded in the human (Bentwich et al., 2005) and Caenorhabditis elegans (Pervouchine et al., 

2003) genomes. An implication of a slightly lower SP than SE will reduce the signal (genuine 

pre-miRs) to background (pseudo hairpins) ratio, inflating significantly the effort and resources 

demanded in experimental validation of the putative precursor transcripts as biologically 

functional pre-miRs.  
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Figure 5.1: A−B) Distribution of TR-H (200 human pre-miRs and 400 pseudo hairpins) 

and TE-H (remaining 123 human pre-miRs and 246 pseudo hairpins) by miPred scores. 

Default miPred decision boundary (vertical dash line at 0.5). See Table C.1 for details. 

(Figure 5.1-B) Next, conducting miPred onto TE-H (see section 3.4.3 for details) obtains 

comparable performances of 84.55% (SE), 97.97% (SP), and 93.50% (ACC). In all, miPred can 

classify correctly 86.69% (280/323) human pre-miRs as positives and 97.68% (631/646) pseudo 

hairpins as negatives. Three of the human pre-miRs designated as negatives receive very low 

classification scores from miPred: hsa-miR-565 (0.454), hsa-miR-566 (0.012), and hsa-miR-594 

(0.187). Coincidently, they have been suspected to be falsely annotated as precursor transcripts 

encoding mature miRNAs on two grounds (Berezikov et al., 2006). First, both hsa-miR-565 and 

hsa-miR-594 overlap with tRNA annotations; hsa-miR-566 overlaps with Alu repeats. Second, 

none was represented by more than 1 clone or differentially expressed in a Dicer-deficient cell-

line (Cummins et al., 2006). Nevertheless, neither criterion is sufficient to eliminate a candidate 
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as repeat- (Smalheiser and Torvik 2005) and pseudogene-derived miRNAs (Devor 2006) have 

been discovered, and miRNAs expressed at low levels may be elusive to detection in a Dicer-

disrupted mutant (Berezikov et al., 2006). 

In contrast, Triplet-SVM based on triplet-encoding scheme (Xue et al., 2005) yields slightly 

poorer results: 86.00% (SE), 97.00% (SP), and 93.33% (ACC) for TR-H; 73.15%, 95.37%, and 

87.96% for TE-H; or overall 81.49% (251/308) of human pre-miRs as positives and 96.43% 

(594/616) of pseudo hairpins as negatives. The evaluation demonstrates the outstanding and 

consistent classification performance of miPred in partitioning specifically human pre-miRs 

from pseudo hairpins. The improved distinct separation by miPred is likely due to its excellent 

capability in recognizing the specific intrinsic and global features of human pre-miRs against 

those of pseudo hairpins. 

5.2. Improved Classification of Non-human Precursor 

MicroRNAs 

(Figure 5.2) The validation of miPred is extended to IE-NH (see section 3.4.3 for details) and its 

mean (overall) SE, SP, and ACC were quantified. Here, mean denotes the average performance 

for all species within IE-NH; overall performance is derived from the entire IE-NH independent 

of species. In this setting, miPred yields excellent and comparable classification performances 

to those of TR-H and TE-H, with respective SE, SP, and ACC of 87.65% (92.08%; 1,766/1,918 

non-human pre-miRs as positives), 97.75% (97.42%; 3,737/3,836 pseudo hairpins as negatives), 

and 94.38% (95.64%). (Table C.1) In contrast, Triplet-SVM reports 80.10% (86.15%; 

1,443/1,675 non-human pre-miRs as positives), 96.81% (96.27%; 3,225/3,350 pseudo hairpins 

as negatives), and 91.24% (92.90%). Apparently, these results point to miPred as a more 

credible and consistent classifier for distinguishing reliably specie-specific and evolutionary 

well-conserved pre-miRs across plants, worms, flies, vertebrates, and viruses (Griffiths-Jones et 

al., 2006). 

Notably, those pre-miRs present in the genomes of Physcomitrella patens, Apis mellifera, 

Ateles geoffroyi, Canis familiaris, Ovis aries, Epstein barr virus, Herpes simplex virus, Human 

cytomegalovirus, Rhesus lymphocryptovirus, Simian virus, and Zea mays are unambiguously 

identified by miPred with 100.00% (SE) and >93.75% (SP). Moreover, pre-miRs encoded in 

Caenorhabditis briggsae and Caenorhabditis elegans are excellently classified with SE of 



 61 

94.74% and 84.96%, as well as SP of 99.34% and 96.90%; the remaining two pathogenic 

viruses Mouse γ-herpesvirus and Kaposi sarcoma-associated herpesvirus have SE of 88.89% 

and 91.67%, as well as SP of 94.44% and 100.00%. Since miPred was not trained initially on 

any specie-specific pre-miRs and especially viral-encoded ones, this supporting evidence 

reinforces the premise that its selected descriptors have successfully captured the intrinsic and 

global properties characterizing the biologically functional pre-miRs spanning across different 

species including viruses. 
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Figure 5.2: Distribution of IE-NH (1,918 pre-miRs across 40 non-human species and 3,836 

pseudo hairpins) by specificity and sensitivity. Dash lines denote overall performances. 

For clarity, only specie names are assigned in left-bottom quarter. See Table C.1 for 

details. 

An obvious question is how viral-encoded pre-miRs can be distinguished by miPred so 

outstandingly, especially when they are known to lack homologs in other viruses or in the host 

(Sarnow et al., 2006; Cullen 2006). As there are few experimental studies elucidating their 

biological activities and biogenesis (Sullivan et al., 2005), it is reasonable to infer that 

pathogenic viruses do not possess homologous genes, which can express functionally similar 

host miRNA processing proteins e.g., Drosha, Dicer, and RISC. After infecting the human 

immune cells, they hijack these critical host proteins to regulate viral and host gene expression 

(Sarnow et al., 2006; Cullen 2006). This will facilitate their viral replication and pathogenesis 

by blocking the innate or adaptive host immune responses or by interfering with the appropriate 

regulation of apoptosis, cell growth, or DNA replication. Consequently, viral-encoded pre-miRs 
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are likely to be recognized and processed identically to the host (i.e., human) pre-miRs that 

miPred was trained on. 

5.3. Performance Comparison with Existing Predictors  

(Figure 5.3) By evaluating the published results of existing (quasi) de novo classifiers (Table 

2.1) both RNAmicro (Hertel and Stadler 2006) and miPred are the highest-scoring predictors in 

identifying putative pre-miRs from a genomic pool of candidate hairpins. RNAmicro displays 

comparable F-measure and Matthew's Correlation Coefficient of 98.90% and 92.97% (pre-miRs 

from various animals) vs. miPred of 95.29% and 85.47% (human pre-miRs), or 95.34% and 

90.14% (non-human pre-miRs). In contrast, Triplet-SVM (Xue et al., 2005) is the worst 

performer among the remaining classifiers that report 20.85−91.87% and 30.80−79.51%, 

respectively. 
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Figure 5.3: Performance comparison with existing (quasi) de novo classifiers listed in 

Table 2.1. H (Homo sapiens), C.E (Caenorhabditis elegans), and M (Mus musculus). 

Notably, miPred benefits two key areas of technical advancements. First, its 29 features are 

extracted from a single RNA sequence for classifying novel pre-miRs against pseudo hairpins in 

an unequivocal de novo manner. This is the primary advantage that miPred has over RNAmicro 
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by avoiding costly and occasionally unreliable multiple sequences alignments due to large 

phylogenetic distant or rapidly evolving pre-miRs. RNAmicro relies on computationally 

expensive comparative genomic alignments for predicting the consensus secondary structures 

and computing its feature vector (Hertel and Stadler 2006). Moreover, ProMiR (Nam et al., 

2005) and BayesMIRfinder (Yousef et al., 2006) depend on similar phylogenetic/conservation 

information for not incurring any significant loss of performances. Due to the sequence 

homologous nature of the genomics datasets being generated, their predictive accuracy may 

suffer when the cross-species evolutionary distance (e.g., vertebrates vs. nematode as well as 

urochordate) is too exceptionally diverged in rendering reliable multi-genomes alignment 

technically difficult or impossible. Second, distinct from classifiers by miR-abela (Sewer et al., 

2005; Pfeffer et al., 2005) and Triplet-SVM (Xue et al., 2005), the 29 attributes from miPred 

represent the global and intrinsic properties of any RNA structure, and not specific regions of it. 

Besides avoiding the pars pro toto fallacy in mistaking part for the entire, miPred can handle 

both hairpin-shaped structures as well as RNA sequences that fold with multiple loops. 

5.4. Classification of Functional ncRNAs and mRNAs  

The original intent of miPred is to distinguish pre-miRs spanning diverse species from genomic 

pseudo hairpins, according to the classifier model trained solely on human datasets. Since 

ncRNAs and mRNAs were not included in the initial training, it will be very instructive to 

assess how well miPred can discriminate them as non pre-miRs without relying on their specific 

dinucleotide sequence, structural, and topological characteristics. Moreover, such assessment 

was lacking or not available from existing (quasi) de novo predictors (Table 2.1). (Figure 5.4) 

Evaluating miPred and Triplet-SVM (Xue et al., 2005) onto IE-NC and IE-M, the former reports 

mean (overall) SP of 76.15% (68.68%; 8507/12,387 ncRNAs) and 87.10% (27/31 mRNAs). 

Here, mean or average SP is computed from all ncRNA types within IE-NC; overall SP 

corresponds to the entire IE-NC independent of ncRNA types. In contrast, Triplet-SVM yields 

90.30% (78.37%; 1,884/2,404 ncRNAs across 155 types) and 0.00% (0/31 mRNAs) for SP 

(figure not shown). Upon scrutiny, its "better" performances are attained at the expense of 

excluding 9,983 ncRNAs spanning 302 types (IE-NC) and 31 mRNAs (IE-M) that fold into 

complex structures containing multiple loops. This structural exclusion is a major limitation 

experienced commonly by most of the existing (quasi) de novo classifiers (Table 2.1) that 

extract modularized features from predefined RNA sub-structures. The comparison with Triplet-
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SVM clearly demonstrates that miPred trained solely on human pre-miRs and pseudo hairpins, 

can provide reasonable generalization in identifying unambiguously at least two-thirds of all the 

samples in IE-NC and IE-M as bona fide negatives. 

Cis-
reg

Cis-
reg

|fra
mes

hif
t

Cis-
reg

|IR
ES

Cis-
reg

|rib
os

witc
h

Cis-
reg

|th
erm

ore
gu

lat
or

Gen
e

Gen
e|a

nti
se

ns
e

Gen
e|r

ibo
zy

me

Gen
e|r

RNA

Gen
e|s

nR
NA

Gen
e|s

nR
NA|gu

ide
|C

/D
-bo

x

Gen
e|s

nR
NA|gu

ide
|H

/ACA-bo
x

Gen
e|s

nR
NA|sp

lici
ng

Gen
e|s

RNA

Gen
e|t

RNA
Int

ron

mRNAs

S
pe

ci
fic

ity
 (%

)

0

10

20

30

40

50

60

70

80

90

100

68.68 (8507/12387)

87.10 
(28/31)74.91 75.75 85.47 82.28 75.00 34.73 41.93 60.08 70.66 85.71 94.61 60.97 51.16 65.71 85.55 40.95

 

Figure 5.4: Distribution of IE-NC (12,387 ncRNAs) and IE-M (31 mRNAs) by specificity. 

Dash line denotes overall specificity. See Table C.6 and Table C.7 for details. 

Among the ncRNA samples in IE-NC, tRNAs (Sprinzl and Vassilenko 2005) and 

snoRNAs (Weinstein and Steitz 1999) are two of the largest classes of small ncRNAs present in 

the eukaryotic genomes. They are frequently misclassified as pre-miRs in most experimental 

settings, due to the absence of statistical signatures like codon structure and open reading frame 

(ORF) encoded by protein-coding genes (Sprinzl and Vassilenko 2005; Weinstein and Steitz 

1999). The snoRNAs can be divided into C/D snoRNAs or H/ACA snoRNAs acting as guides 

for site-specific 2'-O-ribose methylation or for pseudouridylation in the post-transcriptional 

processing of rRNAs (Weinstein and Steitz 1999). (Figure 5.4) 94.61% C/D snoRNAs, 60.97% 

H/ACA snoRNAs, and 85.55% tRNAs are identified by miPred as genuine non pre-miRs. To 

enhance the quality of miPred's identification, specialized algorithmic tools like snoseeker 

(Yang et al., 2006) and tRNAscan-SE (Lowe and Eddy 1997) can serve as rapid and pre-

processing filters in excluding these abundant ncRNAs, except C/D snoRNAs. They have 

reported SE of 90.00%, 75.00%, and 99.5% for detecting C/D snoRNAs, H/ACA snoRNAs and 
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tRNAs, respectively. 

(Figure 5.4) miPred is capable of discriminating correctly 75.75% frameshift, 85.47% 

IRES, 75.00% thermoregulator, 70.66% rRNA, and 85.71% snRNA as authentic non pre-miRs. 

Interestingly, a novel and abundant class of ncRNAs known as riboswitches (Winkler and 

Breaker 2003) are correctly classified by miPred as non pre-miRs with comparable SP of 

82.28%. These riboswitches found only in prokaryotes to date, can cis-modulate their 

expressions upon binding to metabolite (e.g., guanine and thiamine pyrophosphate) without 

involving accessory protein cofactors. Our SVM classifier miPred will likely to become an 

invaluable pre-experimental predictor in the event eukaryotic riboswitches(-like) molecules are 

identified.  

(Figure 5.4) Several classes of ncRNA are poorly classified by miPred as potential pre-

miRs with SP not more than 60.00%: Antisense, Ribozymes, Spliceosomes like U1−2 and 

U4−6, and Group I/II intron RNAs. Careful inspection into their sequence, structural, and 

topological properties reveals no general noticeable trends to explain the evasive detection. This 

finding prompts us to speculate that the feature vector used by miPred may lack specific 

discriminative components against these elusive classes of functional ncRNAs, or in part that 

they may possibly be exceedingly mobile or rapidly evolving. To identify and eliminate such 

ncRNAs will definitely require specialized tools built on the domain knowledge of their 

characteristic properties.  

5.5. Discriminative Power Contributed by Individual Feature 

The essential attributes of miPred were investigated on how they contribute substantially to the 

class distinctions between pre-miRs and pseudo hairpins, or whether exclusion of selected 

feature(s) can further enhance/degrade miPred's performances. Elucidating the "contributory 

quality" of individual attribute within a feature vector reaps the potential benefits of enhancing 

the predictive performance and computational tractability of the classifier, and gaining deeper 

insights into the domain problem (Isabelle and Andre 2003). Despite the importance, only 

Triplet-SVM (Xue et al., 2005) among the existing (quasi) de novo classifiers (Table 2.1) has 

conducted an analysis (less detailed than ours) on its feature selection. 

(Figure 5.5) The F-scores F1 and F2 (defined in section 3.4.6) were evaluated on the class-

conditional distributions, which measure the discriminative power of the miPred's 29 attributes. 

They are strongly and positively correlated, reporting Pearson correlation coefficient r = 0.977 
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and p = 1.272 × 10-19. As expected, structural features possess the strongest discriminative 

importance/powers by dominating the 12 highest scoring attributes (ranked according to 

descending F1 scores): MFEI1, zG, dP, zP, zQ, dG, dQ, zD, dD, MFEI2, %AU, and %G+C. 

They overlap to some degree with RNAmicro's features (Hertel and Stadler 2006) i.e., %G+C, 

MFEI1, dG (RNAmicro uses mean MFE of the aligned sequences and MFE of the consensus 

structure), and zG (RNAmicro computes via a regression model). Since the majority of the pre-

miRs are well-defined and thermodynamically stable stem-loop structures critical for the 

biogenesis of mature miRNAs (Bonnet et al., 2004b), these common features and miPred's top-

ranking ones are most probable to be conserved across all species from human to viruses. Thus, 

they are likely to be indispensable for rendering more robustness to the multi-feature capability 

of miPred against erroneous classifications of novel pre-miRs.  
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Figure 5.5: F1 and F2 scores for features of miPred and Triplet-SVM. For clarity, only the 

names for the top 12 ranking attributes of miPred are shown. See Table C.8 for details. 

Generally, the efficiency and reliability of classifiers depend on the size and selection of 

both the relevant data samples and specific attributes (Isabelle and Andre 2003). The previous 

experiments were repeated using 10 variants of miPred i.e., they have a smaller collection of 

features and are trained in the exact manner as miPred with identical samples in TR-H, and their 

performances are assessed against the remaining datasets (TE-H, IE-NH, IE-NC, and IE-M). 

miPred3 contains a subset of 26 features from miPred that excludes dQ, dD, and zD. When 
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evaluated statistically onto the 2,241 non-redundant pre-miRs, three pairs of attributes are 

strongly and positively correlated (Ng and Mishra 2007b) with r ranging 0.9221−0.9846 and p 

< 0.001: dQ vs. dD, dQ vs. zQ, and zQ vs. zD. zQ is selected due to its higher discriminative 

power (as indicated by both its F1 and F2 scores) than dQ, dD, and zD (Figure 5.6). Derived 

from miPred3, the remaining nine variants miPred3/5, miPred3/10, …, miPred3/24, and miPred3/25 

include only the top ranking 21, 16, 11, 6, 5, 4, 3, 2, and 1 feature(s), respectively. 

(Figure 5.6) As expected, miPred and miPred3 demonstrate consistent and comparable 

classification accuracies spanning the five datasets. The former containing near perfect 

correlated features dQ, dD, and zD as part of its larger feature vector is highly resilient to 

redundancy, since it also relies on SVM. SVM incorporates regularization techniques and is 

based on the theory of risk minimization, which can provide robust generalization control in 

accommodating redundant (i.e., strongly correlated) variables (Burges 1998). Removing 5 to 15 

low scoring features, miPred3/5 − miPred3/15 yield negligible performance differences compared 

to miPred3 when applied to pre-miR datasets; better improvements reported by miPred3/5 for 

ncRNAs and mRNAs datasets. This result suggests that the removed features are likely to 

contribute in a smaller degree to miPred as non-informative attributes and they generally do not 

degrade the performance of the discriminant method by overfitting the training data. With fewer 

than seven top-ranking features contained in miPred3/20 − miPred3/25, their overall classification 

accuracies degrade slightly for pre-miR datasets; generally have better performances for 

ncRNAs and mRNAs datasets. Both findings indicate that these six highest-scoring attributes 

MFEI1, zG, dP, zP, zQ, and dG are likely to be predominantly functioning, in order to contribute 

significantly to the prediction accuracies of miPred. 

(Figure 5.6) Features with weak discriminative power (like those sequence attributes in 

miPred possessing low F-scores) are viewed largely as redundant (i.e., non-informative), as no 

additional performance is gained by including them (Isabelle and Andre 2003). To affirm this 

premise, another three variants of miPred were evaluated: miPredI (17 features: 16 dinucleotides 

frequencies and %G+C), miPredII (12 features; MFEI1, MFEI2, dP, dG, dQ, dD, dF, zP, zG, zQ, 

zD, and zF), and miPredIII (9 features; a subset of miPredII that excludes dQ, dD, and zD). 

Apparently, miPredI performs the worst when identifying pre-miRs and degrades moderately for 

IE-NC, but reports better than expected classification when applying to IE-M. In contrast, the 

absence of sequence information (i.e., 16 dinucleotide frequencies and %G+C) shows no 

noticeable effect on the performances of miPredII and miPredIII for human pre-miRs in 

comparison to miPred and miPred3; both classifiers fare slightly inferior to miPredI for IE-NH 
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and much worst for IE-NC and IE-M. As indicated by both findings, the sequence information 

does not contribute (significantly or at all) towards discriminating pre-miRs from pseudo 

hairpins. Nevertheless, they are probable to perform a critical or compensatory role in the 

classification of ncRNAs and mRNAs as non pre-miRs. 
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Figure 5.6: Effects of feature selection on miPred's accuracy. Dash lines denote accuracies 

of original miPred. See Table C.9 for details. 

5.6. Screening Viral-encoded MicroRNA Genes 

rna22 is a pattern-based method for the identification of microRNA-target sites and their 

corresponding RNA/RNA complexes. A recent rna22-based census suggested that the previous 

numbers for pre-miRs present in several species were gross underestimation, and are likely to 

range in the tens of thousands (Miranda et al., 2006): Caenorhabditis elegans (359), Drosophila 

melanogaster (654), Mus musculus (>25,000) and Homo sapiens (>25,000). As an illustrative 

application of miPred, four complete viral genomes were randomly selected for screening novel 

pre-miRs via a similar methodology (Miranda et al., 2006): Epstein barr virus (EBV), Kaposi 

sarcoma-associated herpesvirus (KSHV), Mouse γ-herpesvirus 68 strain WUMS (MGHV68), 

and Human cytomegalovirus strain AD169 (HCMV). To date, Sanger miRBase 8.2 (Griffiths-

Jones et al., 2006) have annotated 23 (EBV; 23 + strands), 13 (KSHV; 12 − and 1 unknown 

strand), 9 (MGHV68; 9 + strands), and 11 (HCMV; 6 +, 4 −, and 1 unknown strands) viral-

encoded pre-miRs. The four viral genomic sequences are oriented to the corresponding +/− 

strands along which the published pre-miRs are located, and then scanned with a predefined 



 69 

sliding window (size of 95 nucleotides in 1 nucleotide steps) for potential viral-encoded 

hairpins. Those genomic regions satisfying the maximum length (≤ 95 nucleotides), minimum 

size of terminal loop (≥ 3 nucleotides), and MFEs (≤ -25 kcal/mol) were reserved for 

classification via miPred. The three thresholds were empirically determined from available 

genuine pre-miRs encoded in the four pathogenic viruses. The computational approach srnaloop 

was described previously by Grad et al. (2003) with differences in the parameter settings as 

mentioned earlier. Briefly, srnaloop uses a BLAST-like algorithm to search for short 

complementary words (stem-shaped structure) within a specified distance and dynamic 

programming to determine the complete alignment. In searching a sequence for hairpins of a 

certain length, srnaloop might find two or more hairpins on the same strand that overlap for a 

considerable percentage of their lengths, a phenomenon called "stuttering". Stutter filtering was 

applied to cycle iteratively through predicted hairpins on a strand-by-strand basis, to detect 

overlaps whose length exceeded a threshold fraction of the smaller of the two overlapping 

hairpin lengths, and to eliminate the hairpins with the smaller srnaloop score. Finally, MFEs 

were predicted by RNAfold program (Hofacker 2003) with default parameters. 

(Figure 5.7) In total 1,081 genomic hairpins were screened from the four viruses via 

srnaloop. Roughly, 30.15% (EBV; 60/199), 16.51% (KSHV; 36/218), 10.87% (MGHV68; 

20/184), and 27.71% (HCMV; 133/480) of the hairpins were classified as putative pre-miRs 

(positives) at the default miPred score cut-off ≥ 0.5; remaining ones were regarded as negatives. 

(Table C.10) The viral-encoded hairpins were manually mapped to the published pre-miRs, 25 

true positives (and 1 false negative) matched 25 published viral-encoded pre-miRs (red region), 

and their mature miRNAs (underlined region): 12 (1) EBV, 6 (0) KSHV, 3 (0) MGHV68, and 4 

(0) HCMV. Except kshv-miR-K12-9 and kshv-miR-K12-9, the remaining true-positive 

predictions had one or two mature miRNAs embedded exclusively in either arms of their 

(a)symmetric stem. kshv-miR-K12-9 was subsequently eliminated as it was a duplicate copy 

containing the exact sequence of kshv-miR-K12-9, and the encoded mature miRNAs overlap the 

most with its predicted 4 nucleotides (UAUA) terminal loop. Together, 44.64% (25/56) of the 

known pre-miRs for the four viruses were identified as hairpins, and 96.00% (24/25) of them 

were recovered as true positives. 

The 25 identified positives reported high miPred scores ≥0.815 except for two ebv-miR-

BHRF1-1 (0.437 miPred score) and mghv-miR-M1-8 (0.658), indicative of the default cut-off at 

0.5 was unlikely to be stringent. (Table S7) With the new cut-off set at 0.815, only 92.00% 

(EBV; 23/35), 60.00% (KSHV; 9/15), 75.00% (MGHV68; 6/8), and 92.73% (HCMV; 51/55) of 
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the previous positives (excluding published pre-miRs) survive as novel putatives. Majority had 

not yet been discovered (more will arise due to innate evolutionary mutations), suggesting that 

previous estimates of viral-encoded pre-miRs and miRNAs especially in EBV and HCMV 

might be grossly understated. (Figure 5.8) By mapping carefully the 6 newly found MGHV68-

encoded pre-miRs to the entire MGHV68 viral genome, the closest relative to human EBV and 

KSHV (Pfeffer et al., 2005), p1 was observed to overlap exactly with but was shorter than m6 

by 3 nucleotides (UUU) at the 3' termini (see inset for RNA structure). Since the mature miRNA 

(red region) encoded in m6 was experimentally cloned (Pfeffer et al., 2005), p1 was reassigned 

as a false-positive. p2 resided immediate downstream of m3 and within a known miRNA cluster 

~1.5 kb consisting of m1−7 that were transcribed by RNA Polymerase III (Pol-III) (Pfeffer et 

al., 2005), which indicated p2 was likely to be regulated by similar Pol-III promoter. Known 

host miRNA transcripts were synthesized from intergenic or intronic regions of annotated 

transcription units (Rodriguez et al., 2004) by Pol-II with the hallmarks of 5' m7G cap structures 

and 3' poly(A) tails (Lee et al., 2004; Cai et al., 2004), however, there were emerging evidence 

of them being transcribed from the exons of protein-coding genes like in Oryza sativa (Sunkar 

et al., 2005). Thus, p3, p4, and p5−6 located in the exons of three proteins might also undergo 

distinct processing and nuclear export mechanism from the host cell's miRNA maturation 

machinery. 

5.7. Summary 

In this work, a de novo SVM classifier model miPred was proposed to address specifically the 

challenges in improving the classification accuracy of existing (quasi) de novo approaches. 

Without relying on phylogenetic conservation information, miPred achieved significantly higher 

sensitivity and specificity by incorporating a Gaussian Radial Basis Function kernel as a 

similarity measure for the 29 global and intrinsic hairpin folding attributes. The comprehensive 

analysis reported that it yielded comparable or significantly better predictive performances (in 

terms of sensitivity and specificity) than existing classifiers for distinguishing non-conserved 

functional pre-miRs (spanning diverse species) from genomic pseudo hairpins and non pre-

miRs (most classes of ncRNAs and mRNAs) with high discriminative accuracy. Applying 

miPred to the screening of four viral genomes, numerous numbers of sequence segments have 

the potential to fold into pre-miR like hairpins. The successful ab initio classification of real pre-

miRs from pseudo ones opens a new approach for identifying novel miRNAs.  
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Deployment of miPred will likely to translate into considerable saving on precious and 

scarce experimental resources devoted to validating significantly fewer false-positives, since it 

is highly assured that those precursor transcripts predicted would be experimentally confirmed 

as functional pre-miRs. Recognizing these benefits that underscore miPred as a potential and 

invaluable pre-experimental screening tool, this research prototype was revamped as part of a 

computational pipeline for the identification of novel miRNAs expressed in the gonads and 

brain of zebrafish.  
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Figure 5.7: Distribution of viral-encoded hairpins according to miPred scores. See Table 

C.10 for details. 

 

Figure 5.8: Genomic map of predicted (pX denotes mghv-miR-pX) and published (mX 

denotes mghv-miR-M1-X) MGHV68-encoded pre-miRs, drawn not to scale by Genepalette 

1.2 (Rebeiz and Posakony 2004); RNA structure of m6 (inset; mghv-miR-M1-6) was 

obtained from Sanger miRBase 8.2 (Griffiths-Jones et al., 2006); red region denotes 

mature miRNA. See Table C.10 for details. 
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Chapter 6. 

Small RNA Profiling in Zebrafish Gonads and 

Brain: Novel MicroRNAs with Sexually 

Dimorphic Expression 

6.1. Introduction 

 The zebrafish Danio rerio has become an invaluable vertebrate model system for development 

and functional genetics, and is arguably the most widely-studied teleost to date. Sex 

determination in teleosts is a fundamental but poorly understood process crucial to continuation 

of the germ line. The genetic mechanisms controlling the sex determination and differentiation 

of zebrafish remain largely unknown, not well-understood, or at best contradicting (Uchida et 

al., 2002). The established model proposed that zebrafish is sexually mature after approximately 

three months, and distinct sexes can be detected after 21–23 days post fertilization (dpf) (Uchida 

et al., 2002).  Prior to sex differentiation, all zebrafish develop ovary-like gonads by default, a 

process that is initiated after 10 dpf and progresses till 20 dpf. Between 21 dpf and 30 dpf, this 

gonad development is initiated simultaneously in males alongside the ovarian apoptosis. 

Synaptonemal complex karyotype revealed that the diploid genome of zebrafish consists of 50 

chromosomes, but no specific sex chromosomes (Wallace and Wallace 2003) nor sex linked 

genes have been identified to date (von Hofsten and Olsson 2005). FTZ-F1 genes have been 

suggested recently to be involved in the sex determination process, however, many key 

questions remain unresolved (von Hofsten and Olsson 2005). Furthermore, teleosts display an 

enormous diversity of sex determination systems, which can also be influenced by 

environmental factors (Devlin and Nagahama 2002). 

Recent functional studies indicated that microRNAs (miRNAs) play essential roles in 

zebrafish development. Dicer1 mutants that were defective in miRNA processing, experienced 

arrest in overall growth and development, possibly caused by the depletion of miRNAs 
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ubiquitously required for cell proliferation or specific ones required in various tissues and 

organs (Wienholds et al., 2003). Injection of synthetic double-stranded dre-let-7 miRNAs 

caused specific phenotypic defects in the zebrafish embryo, as demonstrated that two dre-let-7 

target sites from the zebrafish lin-41 gene were mediated during post-transcriptional silencing 

(Kloosterman et al., 2004). Through maternal-zygotic dicer (MZdicer) mutants that disrupted 

the Dicer ribonuclease III and double-stranded RNA-binding domains, miRNAs expressed in 

zebrafish were experimentally shown to be indispensable for cell fate determination, axis 

formation, and cell differentiation (Giraldez et al., 2005). Moreover, MZdicer mutants displayed 

abnormal morphogenesis during gastrulation, brain formation, somitogenesis, and heart 

development. 

Known miRNAs were essentially absent from the early zygote stage at 0 hours post 

fertilization (hpf), given that a mere 3% miRNA content was derived from part of the small 

RNA library, and cloned miRNAs could not be detected during that period (Chen et al., 2005). 

The miRNAs expression commenced during the blastula stage  (4 hpf) with a zebrafish-specific 

family of miRNAs encoded by closely spaced multi-copy genes (Chen et al., 2005). Most of the 

known miRNAs were expressed preferentially in the later stages of development and 

approximately one-third of them were expressed at the onset stage of the embryonic brain 

(Kloosterman et al., 2006). Majority of the known miRNAs could not be detected up to the 

segmentation stage, but became visible between the pharyngula stage (24 hpf) and hatching 

stage (48 hpf). They showed strong expression when organogenesis was largely completed at 96 

hpf (Wienholds et al., 2005). Generally, known miRNAs were expressed in a highly tissue-

specific manner during segmentation (12 hpf) and later stages, but not in the early development, 

suggesting their role in differentiation or maintenance of tissue identity and not in tissue fate 

establishment (Wienholds et al., 2005). In another study, miRNA expressions were found to be 

highly differential across ten adult tissues (in the order listed in text) i.e., the total, brain, eye, 

muscle, gills, fins, skin, liver, gut, and heart (Kloosterman et al., 2006). Through recent work, 

miRNAs possessed a diverse expression profiles in neural cells when detected by in situ 

hybridizations (Kapsimali et al., 2007). Interestingly, miRNA profiles of two fibroblast cell lines 

derived from both caudal fin and liver epithelium closely resembled each other, despite the cell 

lines were established independently from various tissue sources including the liver and caudal 

fin (Chen et al., 2005). 

 In earlier expression profiling studies conducted using small RNA cloning (Chen et al., 

2005), microarray analysis (Kloosterman et al., 2006; Wienholds et al., 2005), and in situ 
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hybridizations experiments using locked-nucleic acid (LNA) modified oligonucleotide probes 

(Kapsimali et al., 2007; Kloosterman et al., 2006; Wienholds et al., 2005), organ and tissue-

specific miRNA expression profiles were observed spatially and temporally at different 

developmental stages in zebrafish. Considering that pooled RNA samples from both male and 

female zebrafish were used, as well as gonads from juveniles and adults were excluded, none of 

these studies has attempted to analyze the sex determination associated to and sexually 

dimorphic expression of miRNAs in zebrafish gonads and brain – a gap that this present study 

seeks to fill. 

6.2. Results and Discussion 

6.2.1. Cloning of Known and Novel MicroRNAs from Zebrafish Gonads and 

Brain 

In order to obtain a comprehensive miRNA expression profiles of zebrafish sex-related organs 

and brains, a large-scale sequencing experiment of six small RNA libraries was conducted, 

namely, ovary and testis of 35 days post fertilization (dpf) juveniles (5WO and 5WT), ovary and 

testis of adults (AOV and ATE), and the brain of 35 dpf female and male juveniles (5WFB and 

5WMB). The inclusion of 5WFB and 5WMB was motivated by a recent investigation that 

majority of the miRNAs were expressed in the onset stage of the embryonic brain (Kloosterman 

et al., 2006) and that sexually dimorphic cell proliferation was also observed in the teleost 

brains (Ampatzis and Dermon 2007; Zikopoulos et al., 2001). 

Roughly 1,500 clones was randomly picked from each library for sequencing (see Figure 

6.10 (Left) for details), except for 5WFB requiring twice as many due to lower cloning 

efficiency of small RNAs. Through an in-house computational pipeline consisting of four stages 

as shown in Figure 6.10 (Right), (Figure 6.1) 19,016 small RNAs (of which 11,791 were 

unique) were extracted from the 10,456 concatamers. The obtained sequences were then 

functionally annotated against 32,540 ncRNA sequences from Sanger Rfam 8.0 (Griffiths-Jones 

et al., 2005) and 60,067 others from another published dataset (Chen et al., 2005), 4,584 pre-

miR and 4,430 mature miRNA sequences (377 pre-miRs and 219 mature miRNAs in zebrafish) 

from Sanger miRBase 9.2, as well as 218,100 published piRNA sequences that were identified 

from zebrafish and mouse (Houwing et al., 2007; Grivna et al., 2006); see section 6.3.3 for 

details.  
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Majority of the small RNAs corresponded to fragments of published ncRNAs (1,469), 

known miRNAs (780), and piRNAs (7,415). Interestingly, a small subset of 133 small RNAs 

mapping to known pre-miRs but not the mature region could likely be miRNA*, 720 matched 

to both piRNAs and miRNAs, and 31 others could not be functionally annotated due to higher 

occurrences of sequencing errors. Expression profiles of known miRNAs are described in 

section 6.2.2. The average percentage of small RNAs cloned that were identified as known and 

putative miRNAs roughly matched that of previous miRNA profiling experiments conducted in 

mouse testis (Ro et al., 2007) and a recent large-scale mammalian miRNA expression atlas 

based on small RNA library sequencing (Landgraf et al., 2007). 

Concatamers

ATE
AOV

5W
T
5W

O
5W

MB
5W

FB
Tota

l

C
ou

nt
s

0
2000
4000
6000
8000

10000
12000

Small RNAs

ATE
AOV

5W
T
5W

O
5W

MB
5W

FB
Tota

l

C
ou

nt
s

0

5000

10000

15000

20000

Candidate 
miRNAs

ATE
AOV

5W
T
5W

O
5W

MB
5W

FB
Tota

l

C
ou

nt
s

0

2000

4000

6000

8000

Candidate 
pre-miRNAs

ATE
AOV

5W
T
5W

O
5W

MB
5W

FB
Tota

l

C
ou

nt
s

0
2000
4000
6000
8000

10000
12000
14000
16000

Putative 
pre-miRNAs

ATE
AOV

5W
T
5W

O
5W

MB
5W

FB
Tota

l

C
ou

nt
s

0
1000
2000
3000
4000
5000
6000
7000

Putative 
miRNAs

ATE
AOV

5W
T
5W

O
5W

MB
5W

FB
Tota

l

C
ou

nt
s

0

20

40

60

80

100

miRNAs* 
(133; 0.70%)

piRNAs and miRNAs 
(720; 3.79%)

ncRNAs 
(1,469; 7.73%)

miRNA candidates
 (8,468; 44.53%)

Others 
(31; 0.16%)

piRNAs 
(7,415; 38.99%)

miRNAs
(780; 4.10%)

 

Figure 6.1: A) Distribution of 10,456 concatamers, 19,016 small RNAs, 8,468 non-

annotated small RNAs (candidate miRNAs), 13,448 candidate pre-miRs, 6,202 putative 

pre-miRs, and 78 putative miRNAs across six libraries. Adult Testis and Ovary (ATE and 

AOV); Juvenile Testis and Ovary (5WT and 5WO); Juvenile Male and Female Brain 

(5WMB and 5WFB). See Table D.1 for details. B) Functional annotation of 19,016 small 

RNAs extracted from 10,456 concatamers. 
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8,468 non-annotated small RNAs (among them 6,964 were unique) that were clearly not 

belonging to any of the annotated ncRNAs, piRNAs, pre-miRs, and mature miRNAs, were 

considered as miRNA candidates. As the next stage was a computationally expensive exercise, 

only the 6,964 unique miRNA candidates were mapped to the sixth assembly of the zebrafish 

genome and folded structurally to screen for 13,448 candidate pre-miRs. They were then 

subjected to classification by miPred (Ng and Mishra 2007a; Ng and Mishra 2007b) into 6,202 

putative pre-miRs corresponding to 78 putative miRNAs, and the remaining 7,246 as pseudo 

hairpins. Majority of the putative miRNAs with flanking regions had been observed to have 

significantly higher occurrences of folding into a putative miRNA hairpin (Chen et al., 2005). 

This phenomena is not unusual as known mature miRNA dre-miR-430 family composing of 

five members has ∼100 gene copies distributed over two large clusters of 30 and 17 kilobases 

within unassembled genome sequence, and a very small (500 base pairs) cluster of three 

miRNAs positioned on chromosome 13 (Chen et al., 2005). 

6.2.2. Expression Profile Analysis of Known and Novel MicroRNAs based on 

Small RNA Libraries 

(Figure 6.2) In order to analyze the temporal and organ-specific miRNA expression in zebrafish 

sex-related organs and brains, the expression profile of known miRNAs was generated from the 

normalized cloning frequency of 780 small RNAs that were homologous to 88 zebrafish mature 

miRNAs. This took into consideration the relative fraction of known miRNAs identified within 

the total pool of cloned small RNAs of a given RNA sample across the six libraries. The values 

in each row corresponding to each known miRNA were linearly rescaled to the interval [-1.0, 

1.0]; -1.0 and 1.0 indicate weakly expressed and strongly expressed, respectively. The latest 

Sanger miRBase 9.2 (Griffiths-Jones et al., 2006) reported 219 mature miRNAs in the zebrafish 

genome. Among them, 88 (~40.00%) matched to 780 small RNAs expressed across the six 

miRNA libraries i.e., ATE, AOV, 5WT, 5WO, 5WMB, and 5WFB.  

The gonadal miRNA expression pattern obtained from this study revealed many highly 

correlated instances with those of previously published microarray analysis on zebrafish 

(Wienholds et al., 2005). Notably, dre-let-7a, dre-let-7c, dre-miR-7 family (dre-miR-[7a, 7b]), 

and dre-miR-143 were preferentially enriched in the ATE than AOV, while dre-let-7i, dre-miR-

92 family (dre-miR-[92a, 92b]), and dre-miR-132 were strongly expressed in AOV than in ATE. 

Interestingly, dre-let-7b expression was formerly reported to be restricted to the proliferative 
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ciliary marginal zone of the retina and absent from all mature retinal neurons, while dre-let-7a 

and dre-let-7c (differing from dre-let-7b by two and one nucleotide, respectively) lacked this 

retinal expression (Kapsimali et al., 2007). Notwithstanding the similarities, several differences 

between both miRNA expression profiles could also be observed. The dre-miR-125b was 

reported previously in both libraries ATE and AOV, and at a higher level in the latter 

(Wienholds et al., 2005). In this present study, it was identified in ATE but absent in AOV. In 

situ hybridization data reported its detection in the brain and spinal cord (Ason et al., 2006). 

Interestingly, abundant dre-miR-214 expression was detected in the adult gonad libraries AOV 

and ATE, but significantly stronger expression in AOV than in ATE was reported by the previous 

study (Wienholds et al., 2005). This miRNA was known to be expressed during the early 

segmentation stages in somites and varying its expression altered the genes expression regulated 

by the Hedgehog signaling (Flynt et al., 2007). The su(fu) mRNA encoding a negative regulator 

of Hedgehog signaling was targeted by dre-miR-214 for post-transcriptional suppression, and 

inhibiting the miRNA resulted in a reduction or loss of slow-muscle cell types, suggesting its 

involvement in the specification of muscle cell fate during somitogenesis (Flynt et al., 2007). 

Moreover, differential regulation of germline-specific gene expressions in the primordial germ 

cells (PGCs) and somatic cells involves dre-miR-214 targeting the 3' untranslated region of 

germline-specific genes nanos1 and TDRD7 (Mishima et al., 2006).  

A specific set of miRNAs was observed to be differentially expressed in both adult gonad 

libraries ATE and AOV such as the dre-let-7e and dre-miR-101 family (dre-miR-[101a, 101b]). 

The embryonic specific miRNA dre-miR-430 was previously known to be strongly detected at 

the onset of zygotic transcription, with functions in promoting the deadenylation and clearance 

of maternal mRNAs, while rescuing the brain morphogenesis phenotype (Giraldez et al., 2006). 

Interestingly, dre-miR-430c, a member of the dre-miR-430 family was detected exclusively in 

AOV, suggesting that this miRNA family could be expressed at the later stages in zebrafish 

development with additional and uncharacterized biological functions.  

Another small subset of miRNAs was preferentially expressed in an organ-specific and/or 

time-specific manner such that dre-miR-122 was found exclusively in both ovarian libraries of 

adult and juvenile zebrafish AOV and 5WO. Its homologue was reported to be specifically 

expressed in mouse liver (Pfeffer et al., 2005) and antagonism of mmu-miR-122 by systemically 

administered LNA-antimiR triggered up-regulation of a large set of predicted target mRNAs in 

the liver (Elmen et al., 2007). The dre-miR-29a displayed "male specific" expression in ATE, 

5WT, and 5WMB. Additionally, dre-miR-145 was detected in the juvenile but not in the adult 
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gonads, suggesting an early role in gonadal development, which was also observed in zebrafish 

pharyngeal arches and fins with weaker expression observed in the gut and gall bladder  (Ason 

et al., 2006). Conversely, the dre-miR-19 family (dre-miR-[19a, 19b, 19c, 19d]) was expressed 

strongly in the adult rather than the juvenile ovary, pointing to a later role in ovarian 

development of zebrafish.  
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Figure 6.2: Expression profiles of 88 known miRNAs and 2 novel miRNAs expressed 

across six miRNA Libraries. Adult Testis and Ovary (ATE and AOV); Juvenile Testis and 

Ovary (5WT and 5WO); Juvenile Male and Female Brain (5WMB and 5WFB). See Table 

D.2 for details. 
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Sexual dimorphism of miRNA expression was distinctively observed at the juvenile stage 

of development such that the dre-miR-140*, dre-miR-199, dre-miR-[34, 138, 141], and dre-miR-

[124, 200a] were expressed exclusively in one of the juvenile organ libraries 5WO, 5WT, 

5WFB, and 5WMB, respectively. Interestingly, the presence of dre-miR-140 was specifically 

restricted to the cartilage of pharyngeal arches, head skeleton, and fins at 72 hpf, (Wienholds et 

al., 2005), suggesting that dre-miR-140* could also be expressed in some or all these tissues. 

Our results on dre-miR-34 and dre-miR-124 were consistent with a recent in situ hybridization 

study of miRNA expression in neuronal system such that the constitutive expression of dre-miR-

124 was detected in the mature neurons, as well as its expression associated with transition from 

proliferation to differentiation; predicted targets for dre-miR-124 included diverse 'early' neural 

genes zic2a, pou5f1, otx2, and slit2; dre-miR-200a was expressed in the peripheral sensory 

neural cells; dre-miR-34 was expressed in neural cells in restricted subdivisions along the rostro-

caudal axis of the larval brain (Kapsimali et al., 2007). The homologue of dre-miR-124 was also 

reported to be specifically expressed in the mouse brain as determined by Northern blotting 

(Lagos-Quintana et al., 2002). These result suggested that miRNAs could also serve as a 

regulatory vehicle contributing towards the differential brain phenotypes observed in both sexes. 

miRNA:miRNA* pair originate from a common pre-miR hairpin, where the less stable 

strand miRNA* tends to be degraded and is not incorporated into RISC for post-transcriptional 

silencing of the target genes (Ambros et al., 2003a; Ambros 2001). Interestingly, both strands of 

two studied miRNA:miRNA* pairs could perform the role of mature miRNAs such that dre-

miR-199 was expressed only in 5WT while its counterpart strand dre-miR-199* was detected in 

the AOV, 5WT, 5WO, and 5WMB; dre-miR-20a was cloned in all libraries except 5WO, while 

dre-miR-20a* was expressed solely in 5WFB. It remains unknown what underlying mechanisms 

were involved or how this notable contrasting expression pattern could be achieved by both 

miRNA:miRNA* pairs, since a miRNA:miRNA* pair is initially generated from a common 

pre-miR hairpin. A possibility could be that either of the two mature miRNAs from a hairpin 

was selectively degraded in an organ or time-specific context.  

Other detected known miRNAs that could not be classified temporally and/or spatially 

include the dre-miR-7 family (dre-miR-[7a, 7b]), which was strongly expressed in ATE and was 

previously detected in the endocrine pancreas of Langerhans islets (Wienholds et al., 2005). The 

dre-miR-92 family (dre-miR-[92a, 92b]) was strongly expressed in diverse libraries AOV, 5WT, 

and 5WFB, in addition to the dre-miR-92b expression in neuronal precursors and stem cells 

(Kapsimali et al., 2007) and brain (Kloosterman et al., 2006). Besides being strongly expressed 
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in the two male-specific libraries ATE and 5WMB, dre-miR-222 was previously detected in a 

specific groups of differentiating cells of the forebrain and midbrain (Kapsimali et al., 2007). 

Finally, the two novel miRNAs dre-miR-N1 and dre-miR-N2 were strongly detected in the 

ATE and 5WFB, respectively. Though their sequences showed little or no similarities to existing 

miRNAs, the closest expression patterns to dre-miR-N1 belonged to the dre-miR-196 family 

(dre-miR-[196a, 196b]), while dre-miR-N2 had identical profile as that of two known miRNAs 

dre-miR-124 and dre-miR-138. Besides pre-miR-N1 and pre-miR-N2, 8 and 16 known miRNAs 

were located on the chromosome 1 and 23, respectively, for Sanger miRBase 9.2 (Griffiths-

Jones et al., 2006). Interestingly, none of those on chromosome 1 (dre-miR-15a, dre-miR-16b, 

dre-miR-155, dre-miR-218a, dre-miR-220, dre-miR-722, dre-miR-734, and dre-miR-740) were 

cloned in the six small RNA libraries; more than half of those on chromosome 23 (as indicated 

in bold; dre-let-7g, dre-let-7h, dre-miR-1, dre-miR-10b, dre-miR-26b, dre-miR-29a, dre-miR-

29b, dre-miR-34, dre-miR-124, dre-miR-133a, dre-miR-135c, dre-miR-196a, dre-miR-200a, 

dre-miR-200b, and dre-miR-429) were detected.   

6.2.3. Real-time RT-PCR Analysis of Known MicroRNAs Shows Sexually 

Dimorphic Expression 

The miRNA expression profile shown in Figure 6.2 was obtained from a miRNA library 

construction consisting of multi-steps experimental procedures that were likely to be prone to 

cloning fluctuations caused by sequencing aberrations, cloning techniques, and adaptors ligation 

efficiencies. In consideration of its inherent limitation, the miRNA expression profile portrayed 

a semi-quantitative measure on the abundance of miRNAs based on their clone numbers, which 

was an adequate but not fully accurate method of quantifying miRNA expression levels. Thus, it 

was evaluated with alternative miRNA quantitative methods, in particular real-time RT-PCR, 

which is more specific and sensitive. (Figure 6.3) The real-time RT-PCR analysis was 

performed on a selected set of five known zebrafish miRNAs, namely, the dre-let-7g, dre-let-7j, 

dre-miR-125b, dre-miR-130a, and dre-miR-143 on the six existing RNA samples ATE, AOV, 

5WT, 5WO, 5WMB, and 5WFB. 

In comparison with the miRNA library expression profiles of two miRNAs dre-let-7g and 

dre-let-7j belonging to the abundant dre-let-7 family, their real-time RT-PCR results reported 

that the expression patterns generally correlated with each other except that they had stronger 

expressions in 5WMB. The third miRNA dre-miR-125b was expressed at much lower levels in 
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both the adult and juvenile gonads (AOV, ATE, 5WO, and 5WT), than in the adult and juvenile 

brains of both sexes (AMB, AFB, 5WMB, and 5WFB) indicating a level of consistency with the 

miRNA library cloning data for which dre-miR-125b was weakly expressed in AOV, ATE, 5WT 

and 5WO than in 5WMB and 5WFB. Notably, the remaining two miRNAs dre-miR-130a and 

dre-miR-143 reported significantly different expression levels between miRNA cloning data and 

real-time RT-PCR data. For example, dre-miR-143 was moderately expressed in 5WMB and 

strongly expressed in 5WO and 5WMB according to miRNA cloning data. Instead, real-time RT-

PCR results reported stronger expression in 5WMB than in 5WO and 5WMB. The discrepancies 

between both technologies could be due to (but not limited to) an inherent bias in miRNA 

cloning with respect to these two miRNAs across the six libraries, causing a small fluctuation in 

the population of cloned miRNAs to significantly influence the resultant expression profile. 
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Figure 6.3: Real-time RT-PCR results of five selected known miRNAs expressed in gonads 

and brains of juvenile and adult zebrafish. Mean and standard deviations were derived 

from triplicates. 

Interestingly, characteristic sexual dimorphism of miRNA expression was observed in the 

male and female gonads of zebrafish by real-time RT-PCR data. The miRNA expression pattern 

for the five tested miRNAs reported significantly higher expression of approximately 2-3 folds 

in the testis than ovary for both juvenile and adult zebrafish i.e., ATE vs. AOV and 5WT vs. 
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5WO. Similar sexual dimorphism of miRNA expression was demonstrated for dre-let-7g and 

dre-let-7j (but less distinctive for dre-miR-125b, dre-miR-130a, and dre-miR-143) in the male 

and female brain of juvenile zebrafish i.e., 5WMB vs. 5WFB.  

6.2.4. Computational Identification of Novel MicroRNAs 

Two novel miRNAs dre-miR-N1 and dre-miR-N2 were observed to be expressed exclusively in 

the adult testis (ATE) and juvenile female brain (5WFM) small RNA libraries (see section 6.2.2 

for details), (Figure 6.4) as well as originated from one arm of promising precursor transcripts 

that tend to fold into energetically stable and high-scoring hairpin-shaped secondary structures.  

 

Figure 6.4: Secondary structures of two selected novel miRNAs dre-miR-N1 and dre-miR-

N2. Sequence region underlined in red indicates the novel mature miRNA. Size in 

nucleotides (nt) indicates length of novel miRNA. 

(Figure 6.5) Their corresponding putative pre-miRs possessed minimum free energy of 

folding (MFE) of -45.90 kcal/mol and -56.30 kcal/mol as predicted by RNAfold program 

(Hofacker 2003) with default parameters, as well as miPred scores of 0.999978 and 0.999681 as 
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predicted by the SVM-based classifier miPred using intrinsic RNA folding measures (Ng and 

Mishra 2007a; Ng and Mishra 2007b), respectively.  

 

Figure 6.5: Distribution of 377 known pre-miRs and 2 novel miRNAs dre-miR-N1 and dre-

miR-N2 with respect to their MFE (kcal/mol) and miPred score. 

(Table 6.1) These transcripts were derived from the anti-sense strand of chromosome 23 

and sense strand of chromosome 1 of the zebrafish genomic loci, respectively. Additional 

evidence for substantiating computationally both novel pre-miRs as likely genuine ones, were 
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provided by two recently published pre-miR classifiers miPred-J (Jiang et al., 2007) and 

ProMiR II (Nam et al., 2006) using their default parameters: miPred-J score of 0.828 and 0.680 

(above default cut-off of 0.5 indicates likely real pre-miR); ProMiR II score of 23.6223 and 

233.662 (above most stringent cut-off of 3.3 indicates likely genuine pre-miR). The former was 

coincidently named miPred, but independently developed using random forest prediction model 

with combined features, namely, local contiguous triplet structure composition, MFE, and p-

value of dinucleotide shuffling. The latter used a probabilistic co-learning model with additional 

features like G/C ratio, MFE, and entropy of candidate sequences for identifying putative ones. 

Table 6.1: Sequence and structural statistics of two selected novel miRNAs dre-miR-N1 

and dre-miR-N2.  

 dre-miR-N1 dre-miR-N2 
Sample  Adult Testis (ATE)  35 dpf Female Brain  (5WFB) 
Mature miRNA   
Sequence  GAUGUCAGUGGUUACAGGUUU  UGUCUUUGGACUGUGGGGGA 
Length (nts)  21   20  
Chromosomal 
coordinates 

 Chr23|36750719|36750739   Chr1|55786236|55786255  

Precursor miRNA   
Sequence AGGAAGCCAAAAACCUGUAACC

AUUGACUUCCAUUUGUUUUUCU
ACUAUGGAUGUCAGUGGUUACA
GGUUUUCAGCUUUCUUCGAUUU
CAGCAAAA 

ACAAUUUAGCCAACCCAAUUCA
CCUGUAGCACAUGUCUUUGGAC
UGUGGGGGAAACCGGAGCACCC
GGUUGCUCUUGUUUUCCUCACA
GUCCAAAGACAUGUG 

Length (nts)  96   103  
Chromosomal 
coordinates 

 Chr23|36750669|36750764  Chr1|55786203|55786306 

Direction  Antisense  Sense 
dG (kcal/mol)  -45.90   -56.30 
miPred score 0.999978 0.999681 
miPred-J score† 0.828 0.680 
ProMiR II score‡ 23.6223 233.662 

†, above 0.5 indicates real pre-miR by miPred-J (Jiang et al., 2007); ‡, above 3.3 (most stringent) indicates real pre-miR by 
ProMiR II (Nam et al., 2006). 

In order to validate the computational pipeline and the miRNA cloning construction, both 

novel miRNAs were reserved for confirmation and characterization based on Northern Blot 

analysis (see section 6.2.5 for details) and in situ hybridization (see section 6.2.6 for details), 

respectively. 
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6.2.5. Northern Blot Validation of Novel MicroRNAs 

 (Figure 6.6) To provide experimental evidence for the existence of bona fide miRNAs, 

Northern Blot is the preferred method for validating novel miRNAs, as it is extremely sensitive 

for detecting miRNAs and it also determines the sequence length of the RNA species 

(Kloosterman et al., 2006). Total RNA samples were derived from three adult zebrafish organs 

of both sexes, namely, the adult ovary and testis (AOV and ATE), adult male and female brain 

(AMB and AFB), as well as adult male and female gill (AMG and AFG). Juvenile zebrafish was 

excluded, as the total RNA samples yielded from the corresponding organs were insufficient for 

Northern Blot analysis. 

 

Figure 6.6: Northern Blot validation of two selected novel miRNAs dre-miR-N1 and dre-

miR-N2. Adult Male and Female Brain (AMB and AFB); Adult Male and Female Gill 

(AMG and AFG); Adult Ovary and Testis (AOV and ATE). Size in nucleotides (nt) 

indicates RNA length. 

(Figure 6.6, Left) The first novel miRNA dre-miR-N1 was moderately expressed in the 

AMG and AFG as well as the ATE, and weakly expressed in the AMB in the range of ~19-22 nt 

in length, but deficient in the remaining two samples AFB and AOV. (Figure 6.6, Right) 

Similarly, the second novel miRNA dre-miR-N2 was strongly expressed in the AMG and AFG 
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as well as ATE, and weakly expressed in the AMB and AFB as well as AOV at about 25nt in 

length, which is comparable (within the limit of Northern Blot resolution) to the canonical 

miRNA of ~22 nt. These Northern Blot results provided the experimental evidence to 

authenticate that both novel miRNAs dre-miR-N1 and dre-miR-N2 are bona fide novel miRNAs 

expressed in a sexually dimorphic manner across the ovary, gill, and testis in adult zebrafish of 

both sexes. It is reasonable to postulate that similar visible Northern Blot bands and positive 

observations could be derived from juvenile zebrafish. 

6.2.6. Characterization of Novel MicroRNAs using In Situ Hybridization 

(Figure 6.7) To examine the macroscopic distribution and cellular localization of novel miRNAs 

in a heterogeneous cell population, expression pattern characterization by frozen section in situ 

hybridization was performed on juvenile and adult gonads. Generally, both novel miRNAs dre-

miR-N1 and dre-miR-N2 were preferentially expressed in a germ-cell specific manner. Cross-

hybridization with other members of the respective miRNA families was negligible or at least 

minimally controlled (technically infeasible to be eliminated entirely), given that a single 

mismatch in the locked-nucleic acid (LNA) modified oligonucleotide probe significantly 

reduced the hybridization signal (Kapsimali et al., 2007).  

(Figure 6.7 A/B) In the adult ovary, their LNA modified probes were expressed exclusively 

in stage I and II oocytes but not in stage III oocytes, (Figure 6.7 C/D) while in the adult testis 

they were expressed mainly in primary spermatocytes and absent in secondary spermatocytes. 

Their distinctive expression patterns characterized by in situ hybridization were shared by two 

selected known miRNAs dre-miR-19a and dre-miR-25 for (Figure 6.8 A/B) adult ovary and 

(Figure 6.8 C/D) testis, respectively. Interestingly, little or no detectable miRNAs were 

expressed in the newly fertilized stage V oocytes (0 hpf embryos) as reported by a recent 

miRNA microarray study (Wienholds et al., 2005). Together with our in situ hybridization data 

on stage III oocytes were likely to be devoid of miRNA expression, they point to mature, 

unfertilized oocytes (stage III – V) in the adult ovary are likely to share this trait. 

(Figure 6.7 E/F) In the juvenile ovary, little or no dre-miR-N1 was detected in the stage I 

oocytes as compared to the surrounding tissue, while dre-miR-N2 was visible at a significant 

level indicating that the former was likely to be expressed at a temporally later stage than dre-

miR-N2 in the female germ cells of the juvenile ovary. (Figure 6.8 E/F) Similar observation 

could be made for dre-miR-19a and dre-miR-25, except that the former was expressed at a 
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temporally earlier stage than dre-mir-25 in the female germ cells of the juvenile ovary, for 

which further functional experiments will likely to elucidate the mechanism and biological 

significance of this phenomenon. Juvenile testis was inadvertently excluded from the entire in 

situ hybridization experiments as repeated attempts with both tested pairs of known and novel 

miRNAs was technically unsuccessful, possibly due to the minuscule size of the juvenile testis 

in comparison to the other evaluated organs and tissues.  

(Figure 6.9) Given that dre-miR-N2 was well expressed across the six samples based on the 

northern blot analysis shown in Figure 6.6, it was selected for follow-up frozen section in situ 

hybridization experiments with various non-sex tissues in juvenile and adult zebrafish. 

Interestingly, dre-miR-N2 was differentially expressed at a much higher level in a variety of 

female tissues than that of the male including (Figure 6.9 A/B) the epithelium of gills in 35 dpf 

individuals, as well as (Figure 6.9 C/D) the muscle and connective tissue in the trunk of 

juveniles. (Figure 6.9 E/F) Furthermore, dre-miR-N2 was strongly expressed in the periphery of 

the corpus cerebelli in the adult female brain, but absent in the adult male brain. This finding is 

in corroboration with a previous study demonstrating that sexual differences occurred in the 

zebrafish brain with respect to cell differentiation (Ampatzis and Dermon 2007), which together 

raised the possibility that miRNAs could generally contribute to the "higher order" differences 

in the brains. These results also demonstrated that sexually dimorphic expression of dre-miR-N2 

was not limited to "canonical" sex-related organs such as the gonads, and that seemingly "sexes- 

unrelated" tissues associated with the brain, gill, and muscle/connective tissues possessed the 

capacity to exhibit this sexually dimorphic expression. 
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Figure 6.7: In situ hybridization of novel miRNAs dre-miR-N1 and dre-miR-N2 showing 

expression patterns in zebrafish gonads. Stage I/II oocytes (I/II); Primary spermatocytes 

(psc); Secondary spermatocyte (ssc); Gut (G). 
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Figure 6.8: In situ hybridization of two known miRNAs dre-miR-19a and dre-miR-25 

showing expression patterns in zebrafish gonads. Stage I/II oocytes (I/II); Primary 

spermatocytes (psc); Secondary spermatocyte (ssc); Gut (G). 
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Figure 6.9: In situ hybridization of novel miRNA dre-miR-N2 showing sexually dimorphic 

expression across juvenile gill, muscle tissue, and adult brain. 
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6.3. Methods and Materials 

6.3.1. RNA Isolation 

All organs were dissected from a homozygous vas::egfp transgenic line (Wang and Orban 

2007). 35 days post fertilization (dpf) zebrafish were sexed according to the expression of 

enhanced green fluorescent protein (EGFP). Individuals with strong EGFP-derived fluorescence 

in their gonads were classified as females, while those with no or weak detectable EGFP-

derived fluorescence in their gonads were classified as males. Small RNAs with length less than 

200nt were isolated using the mirVana miRNA Isolation Kit (Ambion) according to the 

manufacturer's instructions.  

For Northern Blot analysis, total RNA from zebrafish organs was isolated using Trizol 

reagent (Invitrogen), but with the following modifications: after addition of 100% isopropanol 

for RNA precipitation, the samples were incubated overnight at -20oC; one RNA pellet wash 

was performed using 0.5ml 80% ice cold ethanol; the RNA pellet was dissolved in RNase-free 

H2O. 

For real-time RT-PCR analysis, total RNA from zebrafish organs was isolated using 

mirVana miRNA Isolation Kit (Ambion) and DNase-treated using DNA-free (Ambion). RNA 

isolations were separate from those used for small RNA library construction. 50ηg of total RNA 

was used for each real-time RT-PCR analysis.  

6.3.2. Small RNA Library Construction 

The miRNA Amplification Profiling (mRAP) protocol (Takada et al., 2006) was used for library 

construction, along with several modifications:  

(Figure 6.10, Left) For the adult ovary and testis libraries (AOV and ATE), 55µg of small 

RNA was electrophoresed on a 15% denaturing polyacrylamide gel. The eluted RNA from 19-

24nt was dephosphorylated, ligated to 3' adaptor (5' TGTAAGCTTTAACCGCGAATTCG 3'), 

subjected to RT-PCR, ligated with 5' adaptor (5' GCACCACGTATGCTATCGATCGTGAGA-

TGGG 3'), and filling in as previously described (Takada et al., 2006). The RT-PCR amplicons 

were fractionated on a 10% nondenaturing polyacrylamide gel and the 85-90bp fragments 

were eluted, precipitated in 100% EtOH overnight at -20°C and resuspended in distilled 

water. 20ηg of DNA was used for re-amplification by PCR using an exponential number of 

cycles. The re-amplification cycles were 94°C for 15sec, 55°C for 20 sec, and 72°C for 2min. 
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PCR re-amplification primers were identical to those used in the first round of amplification. 

Re-PCR products were then purified with QIAquick PCR Purification Kit (Qiagen), digested 

with BanI endonuclease (New England Biolabs), and subjected to Chroma-Spin 30 (Clontech) 

purification, before concatamerization using T4 DNA Ligase (New England Biolabs) by 

incubation at 4°C overnight. DNA concatamers were further purified with Chroma-Spin 100 

(Clontech), 3'-A tailed using Taq DNA polymerase (New England Biolabs) at 72°C for 

30min, and ligated into the pGEM-Teasy vector (Promega). 

For the 35 dpf ovary, testis, and brain libraries (5WO, 5WTE, 5WMB, and 5WFB), 200ηg 

of small RNA was subjected to mRAP (Takada et al., 2006) with the abovementioned 

modifications, except that prior electrophoresis on a 15% denaturing gel was omitted. The 

isolated small RNA fraction was directly subjected to dephosphorylation and subsequent 

processing as mentioned previously (Takada et al., 2006) without initial size fractionation. 

6.3.3. Computational Pipeline for Identification of Novel MicroRNAs 

(Figure 6.10, Right) The computation pipeline for sequence analysis of small RNAs consisted of 

four stages. In the first, cloning vector, as well as 5' adapter sequence (5' GCACCACGTATG-

CTATCGATCGTGAGATGGG 3') and 3' adapter sequences (5' TGTAAGCTTTAACCGCGA-

ATTCG 3') were masked and redundancy removed from each concatamer using a custom-made 

Perl program extractsmallRNAs.pl. The implemented algorithm took into consideration that not 

all cloned inserts matched perfectly to the zebrafish genome. Manual curation of non-matching 

sequences pointed to three sources of errors: mutations occurring in the 5' and/or 3' adapter 

sequences; deletion of entire 5' and/or 3' adaptors; duplications of entire 5' and/or 3' adaptors. 

These anomalies might be artifacts of the cloning, PCR, and sequencing procedures, or a 

consequence of non-templated modification of small RNAs. The insets of length ranging 18-

30bp inclusively, were then mapped to five independent databases (denoted as rfam_ncRNAs, 

literature_ncRNAs, miRBase_mature, miRBase_hairpins, and literature_piRNAs) using the 

NCBI Blastn 2.2.12 (McGinnis and Madden 2004); parameters optimized for short sequences 

were word-size = 7, as well as no masking of low compositional complexity and lower case.  

For the functional annotation, rfam_ncRNAs database used the entire data set of 32,540 

full-length ncRNA sequences excluding miRNAs from Sanger Rfam 8.0 (Griffiths-Jones et al., 

2005), which is publicly available at the http://www.sanger.ac.uk/Software/Rfam. The 60,067 

ncRNA sequences constituting the literature_ncRNAs database were obtained from a previous 

http://www.sanger.ac.uk/Software/Rfam
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publication related to the small RNA cloning on zebrafish (Chen et al., 2005). It was assembled 

from rRNA, tRNA, snRNA, snoRNA, and mRNA sequences by querying the NCBI GenBank 

online database from http://www.ncbi.nih.gov/Genbank/index.html for numerous species 

including the Danio rerio, Mus musculus, Homo sapiens, Barbus barbus, Carassius carassius, 

Cynoscion nebulosus, Cyprinus carpio, Gobio gobio, Notropis hudsonius, Pimephales 

promelas, Rutilus rutilus, Oncorhynchus mykiss, Salvelinus alpinus, and Salmo trutta. The 

entire 4,584 pre-miR and 4,430 mature miRNA sequences were directly downloaded from 

Sanger miRBase 9.2 (Griffiths-Jones et al., 2006), which is publicly available at the 

http://microrna.sanger.ac.uk/sequences for both miRBase_hairpins and miRBase_mature 

databases, respectively. Lastly, a total of 218,100 published piRNA sequences for 

literature_piRNAs were identified from two sources for zebrafish and mouse (Houwing et al., 

2007; Grivna et al., 2006). 

For the third stage, miRNA candidates (small RNAs that were clearly not belonging to any 

of the annotated ncRNAs, piRNAs, pre-miRs, and mature miRNAs) were mapped to the close 

to completion zebrafish Zv6 genome, ftp://ftp.ensembl.org/pub/assembly/zebrafish/Zv6release/ 

using the same NCBI Blastn 2.2.12 program (McGinnis and Madden 2004) and parameters. The 

zebrafish genome assembly (Zv6 March 2006) containing 1,626,077,335bp, is approximately 

half the size of the available human genome sequence. Hits found on the zebrafish genome were 

then extended with 50 bases flanking sequences from both ends, and their most stable secondary 

structures predicted by the RNAfold program (Hofacker 2003). Only selected regions that folded 

into hairpins satisfying three criteria were reserved for subsequent analysis − had length of at 

least 70 bases; possessed termini loops of at least three nucleotides; were embedded with an 

inset in one of their hairpin arms with at least 75.00% overlap. These filtering steps were 

implemented in a custom-made Perl program extracthairpins.pl.  

In the final stage, candidate pre-miRs were classified by a custom-made Perl program 

mipred.pl into putative pre-miRs or pseudo hairpins, based on the implementation of a SVM-

based classifier miPred using intrinsic RNA folding measures from earlier works (Ng and 

Mishra 2007a; Ng and Mishra 2007b). Hairpin candidates that passed the classification with 

miPred score (0.5, 1.0] were assigned as putative pre-miRs; those with [0.0, 0.5] were 

considered as pseudo hairpins. Selected putative miRNAs embedded in one arm of the putative 

pre-miRs were reserved for further validation using Northern Blotting and in situ hybridization.  

 

 

http://www.ncbi.nih.gov/Genbank/index.html
http://microrna.sanger.ac.uk/sequences
ftp://ftp.ensembl.org/pub/assembly/zebrafish/Zv6release/
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Figure 6.10: Experimental and computational pipeline for small RNAs cloning and 

sequencing, as well as candidate precursor miRNAs screening and classification. 

6.3.4. Real-time RT-PCR 

Real-time RT-PCR was performed using mirVana qRT-PCR miRNA Detection Kit (Ambion) 

and Hairpin-it miRNA Real-Time PCR Quantitation Kit (Genepharma) for dre-let-7g, dre-let-7j, 

dre-miR-125b, dre-miR-130a, and dre-miR-143. Reactions were carried out according to the 

manufacturer's instructions, and using the MyiQ Single-Color Real-Time PCR Detection 

System (Bio-Rad). 

β-actin was used with iQ Supermix (Bio-Rad) for normalization. The β-actin forward and 

reverse primer sequences were 5' CCATCCTTCTTGGGTATGGAATC 3' and 5' GGTGGGGC-

AATGATCTTGATC 3', respectively. The forward and reverse primers used for the known 
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miRNAs tested were proprietary Intellectual Property to Ambion and Genepharma. 

6.3.5. Northern Blotting 

Northern blot analysis of both novel miRNAs dre-miR-N1 and dre-miR-N2 was based on the 

protocol described in previous work (Kloosterman et al., 2006), except with the following 

modifications: each RNA sample of 1µg was ran on a 15% denaturing polyacrylamide gel 

(PAGE) until the bromophenol blue dye front of the loading buffer migrated to the bottom of the 

gel. The gel was then stained in 50ml of EtBr/0.5x TBE for 30min, followed by destaining and 

equilibration in 50ml of 0.5x TBE for 15min before imaging. Further destaining and 

equilibration was performed as described, after imaging. Hybond N+ nylon membrane 

(Amersham) pre-equilibrated in 0.5x TBE for 15min was used for the individual Northern Blot 

experiments. Transfer was performed at 120mA for 30min. Crosslinking was subsequently 

performed at 1200µJ for 25-50sec using Stratalinker (Stratagene). Membranes were pre-dried 

for 15min before further use. 

After crosslinking, membranes were prehybridized at 65oC with DIG Easy Hyb (Roche). 

Pre-heated probe solution (100ηg/µl, pre-heated to 65oC) was incubated with blots overnight at 

28oC. Stringency washes were then performed: 2x 5min in 2x SSC, 0.1% SDS at RT; and 2x 

15min in 2x SSC, 0.1% SDS at 42oC with manual agitation. Following this, immunological 

detection was performed as according to manufacturer's instructions (Roche). 

Size determination was performed using 2µg of 10bp DNA ladder (Invitrogen) denatured 

at 70oC for 5min and taking into account the fact that DNA migrates approximately 10% faster 

than RNA in denaturing polyacrylamide gel (Grivna et al., 2006). 

The probe sequences were dre-miR-N1 5' AAACCUGUAACCACUGACAUC 3', and dre-

miR-N2 5' UCCCCCACAGUCCAAAGACA 3'. 

6.3.6. Frozen Sections In situ Hybridization 

In situ hybridization was performed exactly as previously described in Exiqon's manual 

"MicroRNA Protocol for In-situ Hybridization on Frozen Sections", publicly available at the 

http://www.exiqon.com/uploads/Frozen_sections_in_situ_hybridization(5).pdf. 3'-DIG labeled 

locked-nucleic acid (LNA) modified oligonucleotide probes were purchased from Integrated 

DNA Technologies. 

Specimens were fixed in 4% paraformaldehyde in PBS at 4°C overnight, embedded in 2% 

http://www.exiqon.com/uploads/Frozen_sections_in_situ_hybridization(5).pdf
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agar, and soaked in 30% sucrose overnight at 4°C overnight. Embedded sections were mounted 

in Jung freezing medium (Leica) and sectioned at 12µm using a cryomicrotome (Leica). 

Sections were fixed in 4% paraformaldehyde in PBS for 4°C for 10 min, acetylated, and 

hybridized with 25-40ηM LNA modified probes overnight at a temperature 20-22°C below 

probe melting temperature. After the hybridization, slides were washed and blocked at 4°C 

overnight. Anti-digoxigenin-AP, Fab fragments (Roche) at 1:1500 were incubated with sections 

at 24°C for 4h before NBT/BCIP (Sigma) development at 24°C overnight. Frozen sections from 

in situ hybridizations were observed and analyzed using Axioplan inverted microscope. Images 

were captured with Metamorph ACT-1 software and processed using Adobe Photoshop 7.0. 

The probe sequences were dre-miR-19a 5' TCAGTTTTGCATAGATTTGCACA 3', dre-

miR-25 5' TCAGACCGAGACAAGTGCAATG 3', dre-miR-N1 5' AAACCTGTAACCACTG-

ACATC 3', and dre-miR-N2 5' TCCCCCACAGTCCAAAGACA 3'. 

6.4. Summary 

Expression profiles of 88 (out of 219 existing ones) known miRNAs based on six small RNA 

libraries, revealed that the cloned miRNAs were generally expressed in the gonads and brains of 

juvenile and adult zebrafish during specific stages of development (e.g., dre-let-7e, dre-miR-

101a, and dre-miR-101b in adult gonads; dre-miR-140*, dre-miR-199, and dre-miR-141 in 

juvenile gonads), some were expressed ubiquitously (e.g., dre-let-7 families), but many were 

expressed in a tissue specific manner (e.g., dre-miR-122 in ovarian libraries and dre-miR-29a in 

"male only" organs). Interestingly, two pairs of miRNA:miRNA* (i.e., dre-miR-199 and dre-

miR-199*; dre-miR-20a and dre-miR-20a*) had dissimilar expression pattern, suggesting the 

hypothesis that selective degradation of miRNA and/or miRNA* by RISC occurs in an organ 

and/or tissue-specific fashion.  

Remaining small RNAs that did not match annotated databases containing published 

sequences of ncRNAs, piRNAs, and known miRNAs, were subjected to miPred classification 

and experimental validation. Two novel miRNAs dre-miR-N1 and dre-miR-N2 predicted by 

miPred were confirmed by Northern Blotting as bona fide miRNAs. Furthermore, they were 

detected exclusively via in situ hybridization in stage I and II oocytes but not in stage III oocytes 

of adult ovary; they were expressed preferentially in the primary spermatocytes but absent in the 

secondary spermatocytes of the adult testis. 
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Chapter 7. 

Conclusion and Future Directions 

7.1. Conclusion 

In this thesis, an extensive literature survey was conducted to investigate comprehensively 

existing works on the identification of novel precursor miRNAs (pre-miRs), which faced 

technical limitations in distinguishing them from dysfunctional pseudo hairpins that are 

pervasive in many genomes. Because experimental techniques are labor-intensive and highly 

biased towards abundant miRNAs, comparative-based approaches seek to detect miRNA genes 

that are conserved in the primary sequences and secondary structures similar to known ones. 

Improvements were proposed to resolve identification of novel miRNAs that have no known 

close homologies due to the lack of genomic data for species that do not have any closely 

related ones, or due to the possible evolution of miRNAs. However, recent ab initio prediction 

methods relying exclusively on the characteristic of hairpin-shaped structures of pre-miRs for 

identifying novel miRNAs, also suffer major limitations from the use of phylogenetic 

information to improve prediction accuracy, are restricted to only strict hairpin-shaped 

structures, and the use of extrinsic parameters that define physical parts of a pre-miR. 

A definitive criterion for identifying and classifying accurately promising precursor 

transcripts as bona fide pre-miRs, while discriminating against abundant pseudo hairpins within 

a single genome has not yet been discovered. Moreover, discriminative features incorporated in 

existing (quasi) de novo predictors have reported far from satisfactory performances, especially 

when cross-species conservation information is unavailable. Through a comprehensive large-

scale characterization study on the entire hairpin-shaped structure of known pre-miRs from 

diverse species including that of vertebrate, plant, nematodes, and viruses, pre-miR was found 

to possess a set of thirteen statistically significant global and intrinsic features (Ng and Mishra 

2007b). This in silico findings has greatly advanced our understanding of miRNA functions and 

biogenesis in relation to their structural features and distinct folding patterns.  
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The investigated features relating to the intrinsic folding and topological characteristics of 

pre-miRs were integrated into the development of an improved de novo SVM classifier miPred 

for identifying specie-specific and non-conserved pre-miRs, wholly independent of 

phylogenetic conservation information (Ng and Mishra 2007a). It yielded comparable or 

significantly better predictive performances (in terms of sensitivity and specificity) than existing 

classifiers for distinguishing non-conserved functional pre-miRs (spanning diverse species) 

from genomic pseudo hairpins and non pre-miRs (most classes of ncRNAs and mRNAs) with 

high discriminative accuracy. 

Application of miPred for the identification of novel miRNAs expressed in the gonads and 

brain of zebrafish yielded two novel ones, which were validated by Northern Blotting as bona 

fide miRNAs (Beh and Ng et. al. 2007; in preparation). Both of them were detected exclusively 

via in situ hybridization in stage I and II oocytes but not in stage III oocytes of adult ovary; 

expressed preferentially in the primary spermatocytes and not in secondary spermatocytes in the 

adult testis. These results clearly showed that deployment of miPred in future screening projects 

would likely to yield considerable saving on precious and scarce experimental resources 

devoted to validating significantly fewer false-positives, since it is highly assured that those 

precursor transcripts predicted would be experimentally confirmed as functional pre-miRs.  

7.2. Expressed Sequence Tags Analysis of MicroRNAs 

In practice, designating putative pre-miRs as authentic members is conditional upon them 

conforming to a set of strict (but constantly refined) empirical criteria (Ambros et al., 2003a). 

First, these putatives must fold into hairpin-shaped structures with sufficient base-pairings more 

than 16 nucleotides (nt) in the stem to facilitate the maturation of miRNAs, which effectively 

referred to those consensus sets of pre-miRs. Second, the expression of pre-miRs or mature 

forms must be quantifiable by wet-lab experimental means (Berezikov et al., 2006). 

Alternatively, Expressed Sequence Tags (ESTs) could be utilized as an economically feasible 

and high-throughput vehicle for the transcriptome analysis and authentication of pre-miRs. 

Briefly, ESTs are partial and single-pass sequence reads (~200−500 nt) generated from 

either ends of randomly sampled cDNA libraries of expressed genes (Adams et al., 1991). EST 

sequencing strategy generally favors long stretch of stable and polyadenylated mRNAs. 

Together with direct experimental evidence consistently pointing to RNA Polymerase II (Pol-II) 

as the transcription machinery of miRNAs (Lee et al., 2004; Bracht et al., 2004; Cai et al., 
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2004), pre-miRs encoded within the primary transcripts should be present in ESTs. 

Circumstantial and direct experimental works have demonstrated the effectiveness of EST 

analysis in providing expression evidence for the existence of known pre-miRs in plants (Zhang 

et al., 2005; Bonnet et al., 2004a; Palatnik et al., 2003) and vertebrates (Jin et al., 2006; Li et 

al., 2006; Smalheiser 2003). It is tantalizing to extend the scope of EST analysis to minimize the 

false-positive rate especially of candidate pre-miRs from human and mouse, as both species 

have captured the largest repository of EST entries in the latest dbEST (Boguski et al., 1993). 

Several outcomes concerning the preliminary EST analysis of latest published human pre-

miRs are highlighted. Pairwise sequence similarities were assessed via NCBI Blastn 2.2.12 

(McGinnis and Madden 2004); parameters optimized for short sequences were word-size = 7, as 

well as no masking of low compositional complexity and lower case. First, pre-miRs located 

and sense oriented within introns of pre-mRNAs share the same promoter with their encoded 

genes but undergo spliceosomal excision from the Pol-II driven transcript when the mRNA 

serves as a template for protein synthesis (Lin et al., 2006). In principle, EST analysis should be 

ineffective towards sense intronic pre-miRs. However, 19.01% (27/142) of these pre-miRs were 

readily detected; none matched hsa-miR-[28, 101b, 103, 107, 140, 152, 153-1, 153-2, 218-1, 

218-2] (Lin et al., 2006). Second, EST analysis was sufficiently sensitive to 25.36% (70/276) of 

intergenic or antisense oriented pre-miRs to neighboring genes, which are suspected to be 

transcribed as independent units possessing their own (not necessarily Pol-II) promoters. Two 

highly intra-related intergenic clusters specific to human embryonic stem cells: hsa-miR-[367, 

302a, 302b, 302c, 302d] (antisense oriented; ~700bp; chromosome 4) and hsa-miR-[371, 372] 

(sense oriented; 500bp; chromosome 19), are expressed as polycistronic and polyadeylated 

primary transcripts (Suh et al., 2004). Several of them (bold) were detected by EST analysis. 

Surprisingly, a well-characterized intergenic cluster hsa-miR-[24-2, 27a, 23a] (antisense 

oriented; ~2.2 kbp; chromosome 19) had no EST matches. The last two pre-miRs are 5' capped 

and polyadenylated 1.8 kb downstream of the 3' termini of hsa-miR-24-2 that has a minimal 

~600 bp Pol-II dependent promoter (Lee et al., 2004). Third, hsa-miR-[515-1, 517a, 517c, 

519a-1] residing in the chromosome 19 miRNA cluster (C19MC), of which two (bold) were 

present in the human EST population. These pre-miRs, unlike conventional ones expressed 

exclusively by Pol-II, undergo RNA Pol-III mediated synthesis (Borchert et al., 2006). 

Additional EST searches for 18 predicted C19MC miRNAs and human miRNAs with upstream 

Alu-, tRNA- or mammalian-wide interspersed repeat (MWIR) dependent promoter elements 

that are strong candidates for Pol-III mediated transcription (Borchert et al., 2006), reported 
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merely three matching hits hsa-miR-[34a, 517b, 594]. 

Considering that the annotated 116 human and 82 mouse pre-miRs from Sanger miRBase 

9.0 had EST matches, transcriptome analysis at the finishing stage of the computational pipeline 

would provide more reliable expression evidence concerning the existence of novel pre-miRs 

that had not yet been experimentally characterized. 

7.3. Prediction of MicroRNA Target Sites Associated with Human 

Diseases 

Latest statistics suggests approximately 800 human miRNA genes (Bentwich et al., 2005; John 

et al., 2004) constituting ~1-2% of the known ~22,000 protein-coding genes, may actually 

regulate as many as one-third of the human genes (Du and Zamore 2005). However, the 

majority of their detailed regulatory functions remain largely unknown. A major obstacle that is 

stalling progress towards elucidating the exact causation of cellular processes linked to miRNAs 

is, our knowledge is greatly limited to only a few experimentally characterized miRNAs and 

their corresponding known regulated targets (Jiang et al., 2005; Ambros 2004). Certainly, 

prediction of human miRNA targets for post-transcriptional regulation would provide invaluable 

insights in at least two aspects. Firstly, knowing the miRNA targets provides an alternative 

approach to assign biological functions to the many miRNAs. Secondly, we would have a 

deeper understanding as to how dysfunctional miRNA might be associated with cancers, or 

might contribute to human diseases. However, this endeavor is a major challenge because high-

throughput experimental methods for identifying human miRNA targets are not yet available. 

Experimentally, miRNAs have shown to display differential expression levels in 

embryonic stem cells (Suh et al., 2004; Houbaviy et al., 2003), temporal and spatial expression 

patterns in normal tissues (Lagos-Quintana et al., 2002), and mammalian organs (Eder and 

Scherr 2005; Sempere et al., 2004; Krichevsky et al., 2003). Recently, comprehensive 

phenotypic and expression analysis even suggests an intrinsic association between oncogensis 

and human miRNAs (Lu et al., 2005) in tumor tissues (Iorio et al., 2005; Jiang et al., 2005; 

Michael et al., 2003; Calin et al., 2002). miRNAs may function as oncogenes or tumour 

suppressors, as they are frequently located at genomic regions involved in cancers (Gregory and 

Shiekhattar 2005) or are mediating antiviral defense in human cells (Lecellier et al., 2005). 

Expression profiles for 217 miRNAs distributed across 334 samples including cancers such as 
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leukemia and lymphomas, reflect informatively the developmental lineage and differentiation 

state of tumorgenesis (Lu et al., 2005). Experimental evidence (Bottoni et al., 2005; Calin et al., 

2002; Stilgenbauer et al., 1998) also suggest that the human miR-15a and miR-16 miRNAs 

located within 0.5 kb on chromosome 13q14, may be related to B cell Chronic Lymphocytic 

Leukemia (CLL), mantle cell lymphoma, multiple myeloma, and prostate cancer cases. This 

region has been known to be excised in these cancer types, and both genes are deleted or co-

repressed in more than two third of CLL cases, strongly suggesting their active involvement in 

tumorigenesis.  

In relation to human disease and potential therapies, islet-specific miRNA miR-375 has 

been identified to be a regulator of insulin secretion and may constitute a novel pharmacological 

target for the treatment of diabetes (Poy et al., 2004). Overexpression and inhibition of 

endogenous miR-375's function suppressed and enhanced glucose-induced insulin secretion, 

respectively. The mechanism by which insulin secretion is modified by miR-375 is independent 

of changes in glucose metabolism or intracellular Ca2+-signalling but correlated with a direct 

effect on insulin exocytosis. Myotrophin (Mtpn) was predicted to be and validated as a target of 

miR-375. Inhibition of Mtpn by siRNA mimicked the effects of miR-375 on glucose-stimulated 

insulin secretion and exocytosis. Similarly, in zebrafish, miR-375 is essential for formation of 

the insulin-secreting pancreatic islet. Loss of miR-375 function interfered by morpholino 

oligonucleotides, causes defects in the morphology of the pancreatic islet. Although the islet is 

still intact at 24 hours post fertilization (hpf), the islet cells become scattered by 36 hpf 

(Kloosterman et al., 2007). Another miRNA miR-133 has been reported to have a critical role in 

determining cardiomyocyte hypertrophy, suggesting its therapeutic application in heart disease. 

In vitro overexpression of miR-133 inhibited cardiac hypertrophy (Care et al., 2007). In contrast, 

suppression of miR-133 by 'decoy' sequences induced hypertrophy, which was more pronounced 

than that after stimulation with conventional inducers of hypertrophy. In vivo inhibition of miR-

133 by a single infusion of an antagomir caused marked and sustained cardiac hypertrophy. 

Specific targets of miR-133 were identified and validated, namely, RhoA, a GDP-GTP exchange 

protein regulating cardiac hypertrophy; Cdc42, a signal transduction kinase implicated in 

hypertrophy; and Nelf-A/WHSC2, a nuclear factor involved in cardiogenesis. A cluster of 

cellular miRNAs (i.e., miR-[28, 125b, 150, 223, 382]) are pivotal in the latency of Human 

Immunodeficiency Virus type 1 (HIV-1) in resting primary CD4+ T lymphocytes (Huang et al., 

2007), which is the major barrier for the eradication of the virus in patients on suppressive 

highly active anti-retroviral therapy (HAART). Even with optimal HAART treatment, 
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replication-competent HIV-1 exists in resting primary CD4+ T cells. A breakthrough discovery 

was that the 3' ends of HIV-1 mRNAs RNAs are targeted by the five miRNAs, which are 

enriched in resting CD4+ T cells but not in activated CD4+ T cells. Specific inhibitors of these 

miRNAs substantially counteracted their effects on the target mRNAs, measured either as HIV-

1 protein translation in resting CD4+ T cells transfected with HIV-1 infectious clones, or as HIV-

1 virus production from resting CD4+ T cells isolated from HIV-1–infected individuals on 

suppressive HAART. These results suggested suggest that manipulation of cellular miRNAs 

could be a novel approach for purging the HIV-1 reservoir. 

Only recently has the development of computational approaches gain prominence and 

acceptance as a research-advancement tools (Brown and Sanseau 2005), namely the 

RNAhybrid, miRanda, PicTar, MovingTargets, TargetScanS, and miRanda. In part, they have 

gradually overcome the folding complexity caused by the imperfect and interrupted 

hybridization (Lewis et al., 2003) between the relatively short miRNAs and the target mRNAs, 

and the rules governing miRNA-mRNA target interactions are gradually defined from those 

already deduced from lin-4, let-7, and bantam.  

To date, the identification for human miRNA targets to inform cancer diagnosis has not 

been systematically explored. Future contribution includes development of a computational 

approach for identifying all potential mRNA target sites for each miRNA sequence by 

considering the combinatoric folding of miRNA-mRNA duplex in the tripartite regions of 

mRNA and without relying on homology to other organisms. Several open questions will then 

be investigated − which miRNAs are the key regulators in the cellular system and which 

miRNA targets are highly and co-regulated by this set of miRNAs? What proportion of all genes 

is regulated by miRNAs in tumors? How many of those genes are regulated by each miRNA in 

tumors? Are specific cellular processes targeted by specific miRNAs or by miRNAs in general? 

What is the extent of cooperativity and multiplicity in miRNA-mRNA binding? Together, they 

will provide quantitative correlation between the degree of regulation and quality of the 

individual interactions (or their sum). This future work will serve as a small, but an important 

contribution towards identifying novel human miRNA targets and elucidating the full details of 

miRNA regulatory functions in tumorgenesis. 

7.4. Transcriptional Regulation of MicroRNAs 

Besides the identification of all potential mRNA target sites, another important (but lesser 
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researched) problem is elucidating the mechanisms for transcriptional regulation of miRNAs 

themselves given that most of their expression are highly cell/tissue specific − which 

promoter(s) and transcription factor(s) regulate the miRNA expression. 

In a recent study, through a combination of mouse and human cells, miR-10b was reported 

to be highly expressed in metastatic breast cancer cells and positively regulated cell migration 

and invasion (Ma et al., 2007). Overexpression of miR-10b in non-metastatic breast tumours 

initiated robust invasion and metastasis. Expression of miR-10b is induced by the pleiotropic 

transcription factor TWIST (part of an undescribed regulatory pathway) that binds directly to 

the putative promoter of miR-10b. The miR-10b inhibits translation of the target mRNA 

encoding homeobox HoxD10, resulting in increased expression of a well-characterized pro-

metastatic gene RhoC.  

As part of the ongoing research towards systematic identification of miRNA promoters, 

novel and clustered pre-miRs from various species (human, mouse, and viruses) are being 

actively identified in combination with direct whole-genome measurement of cis-regulatory 

promoter activities by technologies including the paired-end ditag (Ng et al., 2005) and single-

end Cap Analysis Gene Expression (CAGE) (Shiraki et al., 2003). An expanded repertoire of 

miRNA genes and regulatory mechanisms will definitely signify both a huge opportunity and 

technical challenge for mRNA target identification and comprehensive genome annotation, as 

we delve into the functional roles of miRNAs interplay with other genetic regulatory networks, 

biological pathways, and signaling cascades. 
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Appendix A. 

RNAspectral 

A.1. Representing RNA Secondary Structure as Planar Tree-graph 

The primary structure of a linear RNA chain molecule is the nucleotide sequence s = s1s2 …si 

…sL, and runs in the direction 5' → 3' terminus. L defines the number of nucleotides and si ∈ ∑ 

= (A, C, G, U) is the biochemical nucleotide at the ith position. The RNA molecule s folds upon 

itself relatively rapid into a two-dimensional RNA secondary structure S (Tinoco and 

Bustamante 1999). The structure S is stabilized by the canonical Watson-Crick G≡C and A=U, 

and wobble G=U base pairings. 

(Figure A.1) A planar RNA secondary structure S is mathematically described by a set of 

base pairings (i, j) ∈ S connecting bases si and sj, where i < j (Moulton et al., 2000). Given (i, j) 

and (k, l) ∈ S, a nucleotide can base pair to at most one other nucleotide i.e., i = k ⇔  j = l. A set 

of ∆ ∈ Z+ consecutive base pairs defines a stem for stabilizing the structure against thermal 

fluctuations. The number of unpaired nucleotides between paired si and sj should at most be θ ∈ 

Z+ i.e., i < j + θ; otherwise, the structural motif is considered an unpaired-loop of multi-branch, 

bulge, hairpin, or internal. Hairpin loop, folds upon itself; Internal loop, an unpaired region 

between two stems due to mismatched (e.g., AG and CU) or unpaired bases; Bulge loop, an 

asymmetrical internal loop formed from one strand; Multi-branch loop or junction, more than 

two stems coincide with some unpaired bases; Stem, a base paired region. Short and long 

dashed lines indicate unpaired nucleotides and paired bases. "•" and "—" represent vertex and 

edge. 

(Figure A.1) The RNA structure S has two hairpin loops, an internal loop, a bulge loop, a 

multi-branch loop, and five stems. It is represented as a RNA planar tree-graph G = (V, E) 

consisting of six vertices "•" and five edges "—" according to the following pair of vertex-edge 

rules (Gan et al., 2004; Fera et al., 2004). (1) Vertex V i.e., "•" denotes a set of θ ≥ 1 mismatched 

nucleotides or unmatched pairs of bases for hairpin loop, bulge loop, internal loop, the 5' and 3' 
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unpaired termini, and the multi-branch loop. In general, the vertices are arbitrarily labeled in the 

direction 5' → 3' terminus. (2) Edge E i.e., "—" denotes a RNA stem having ∆ ≥ 2 consecutive 

complementary pairs stabilized by the canonical Watson-Crick G≡C and A=U, and wobble 

G=U base pairings. 

 

Figure A.1: Planar schematic of RNA secondary structure and its embedded motifs. 

A.2. Converting RNA Planar Tree-graph to Laplacian Matrix 

A RNA planar tree-graph G = (V, E) is a mathematical formalism composed of n vertices vi ∈ V, 

i = (1, 2,…,|V|) connected by m incident undirected edges (vi, vj) ∈ E, each of which is assigned 

an edge weight Eij. Without loss of generality, edges are unweighted i.e., Eij = 1 (Barash 2004b; 

Barash 2003). The tree-graph G in Eq. (A.1) is uniquely represented by the Laplacian matrix 

L(G)n×n. 

 ( , ) ( ) ( ) ( ) .G V E G G G= ↔ = −L D A  (A.1) 

Here D(G)n×n and A(G)n×n are known as the degree and adjacency matrices of the tree-

graph G, respectively. The diagonal elements dij of D(G)n×n specify the degree or the minimum 

number of incident edges that each vertex vi connects with the other vertices vj ≠ vi, denoted by 

deg(vi). dij takes on values of deg(vi) = 1 for hairpin loop, as well as 5' and 3' unpaired termini; 

deg(vi) = 2 for internal and bulge loops; and deg(vi) > 2 for multi-branch loop. The off-diagonal 

elements aij of A(G)n×n specify whether there exists an incident edge connecting the vertices vi 

and vj. If vi and vj are adjacent aij = 1, otherwise aij = 0. 
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L(G)n×n is a symmetric matrix having each of its rows and columns indexed by V, and 

individually total to zero. The value of element lij in Eq. (A.2) is given by the difference 

between dij and aij. It specifies the degree of connectivity between the vertices vi and vj of the 

tree-graph G.  

 
deg( ),  if ,

1,  if edge ( , )   ,  
0,  if edge ( , ) .

ij i

ij ij i j

i j

d v i j
l a v v E i j

v v E
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 ∉

 (A.2) 

Applying the "Eigen-decomposition theorem" onto L(G)n×n, as shown in Eq. (A.3), 

 [ ]( ) = ( ) .G Gλ λ⇔ − =L X X L I X O  (A.3) 

Here, the eigenvalue λ is taken as some scalar of L(G)n×n along with its corresponding 

eigenvector 0n∈ℜ ≠X . I and O are the identity and null matrices. Equation (A.3) has non-

trivial solutions if and only if the condition in Eq. (A.4) is satisfied, 

 det ( ) 0 .G λ− =L I  (A.4) 

Solving the nth-degree characteristic polynomial in Eq. (A.4) generates the entire set of 

ordered eigenvalues λ1 ≤ λ2 ≤ …≤ λn. This set is the matrix's eigenvalue spectrum quantifying 

the connectivity as well as characterizing the graph similarity. Generally, L(G) is always 

positive semi-definite such that the first eigenvalue λ1 = 0 and those of higher orders λk > 1 

∈ +ℜ (Barash 2004b; Barash 2003). According to the concept of "Spectral Graph Partitioning" 

that originates from the field of domain decomposition in parallel computing (Alex et al., 1990), 

the second (also known as the Fiedler) eigenvalue λ2 represents mathematically the algebraic 

connectivity of the tree-graph G (Barash 2004b; Barash 2003). In relation to the RNA 

secondary structure, λ2 measures the degree of compactness of the RNA topology at the coarsest 

scale (Barash 2004b; Barash 2003). RNA structures having similar values of λ2 tend to be 

similar in topologies. Typically, the value of λ2 increases monotonically with greater 

compactness in the RNA structure. Large values correspond to vertices of high degree that are in 

close proximity, while small values for more equally dispersed edge set. Maximum value of λ2 

is either 1 or 2 for an n > 2 perfectly connected star-shaped tree-graph or for n = 2 linear tree-

graph, respectively (Barash 2004b; Barash 2003). 
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A.3. Pseudo Codes of RNAspectral Algorithm 

"Spectral Graph Partitioning" has been extensively applied to a variety of bioinformatics 

problems: the prediction of multiple mutation to disrupt motifs in riboswitches (Barash 2003), 

the prediction of RNA conformational switch by mutation (Barash 2004a), the search and 

analysis of RNA secondary structures (Barash 2004b), the classification of RNA coarse-grained 

tree-graph structures (Gan et al., 2004; Fera et al., 2004), and lastly for systematically 

partitioning complex RNA structures into simpler fragments with maximal decoupling between 

them (Gan et al., 2003). These applications underscore the potential of "Spectral Graph 

Partitioning" as an invaluable computational tool to elucidate the topological patterns hidden in 

the post-genomic sequences and to offer a tremendous opportunity for an enhanced 

understanding of both functional and structural genomics. 

"RNA Matrix Computer Program" (Gan et al., 2004; Fera et al., 2004) was the pioneering 

and only implementation of "Spectral Graph Partitioning" analysis on RNA structural folding. It 

is available online and provides a user-friendly web-interface for uploading a "ct file" produced 

by Zuker's Mfold prediction server (Zuker 2003; Zuker and Stiegler 1981) or equivalent. As an 

attempt to address the high-throughput demands of our in-house projects, RNAspectral was 

designed from scratch based on the mathematical formalisms gathered from literature, and 

iteratively validated against the "reference" results of "RNA Matrix Computer Program" (Gan et 

al., 2004; Fera et al., 2004). 

The algorithm RNAspectral(S) presents our strategy geared towards two tasks. Given a 

RNA secondary structure S described in a Vienna dot-bracket notation containing ".", "(", and 

")" (Hofacker 2003), it first abstract S at the coarsest-scale into a planar tree-graph 

representation. This transforms uniquely the RNA structural motifs (hairpin loops, internal 

loops, bulge loops, and multi-branch loops, as well as stems) into a network of vertices 

connected by incident edges. Next, it computes the Fidler eigenvalue λ2 from the Laplacian 

matrix corresponding to the tree-graph.  

RNAspectral(S) uses two primary functions in Line 2−3, whose pseudo-codes are 

described in both functions optimizeStruct(S) and parseStruct(S), respectively. The former 

returns RNA structure S' and the latter returns the values for five global variables totalpath, 

path, stems, ld, ls, and hs. Line 4−5, sets the value of adjacency matrix A at row path[i] and 

column path[i + 1] to 1; 6−7, sets the value of degree matrix D at row i and column i to ld[i]; 8, 

computes the Laplacian matrix L; 9, the auxiliary function computeEigVals(L) computes the 
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eigenvalue spectrum using the well-established "Eigen-decomposition theorem" and 

det 0λ− =L I . 

In function optimizeStruct(S), it implements the pair of vertex-edge rules described in 

subsection A.1. Line 1, vector pt contains the values returned by the auxiliary function 

makePBTable(S), such that the pt[i] of nucleotide at position i has value of UNPAIRED when 

that nucleotide is unpaired or denotes the position of the base to which it is paired; 2−8, internal 

loops with only one pair of mismatches are identified and then paired; 9−12, stems with only 

one complementary pair are identified and then unpaired; 13−17, bulges having unpaired mono-

nucleotide are deleted; 18, the resulting RNA structure S' is returned after applying the pair of 

vertex-edge rules. 

In function parseStruct(S), it implements the Eq. (A.1) and (A.2) described in subsection 

A.2. Line 1, S' is a RNA secondary structure specified in an extended dot-bracket format with 

additional symbols "[", and "]", returned by the auxiliary function auxStruct(S), to track the 

onset of a helical stem-loop; 2−14 computes the Euclidean path transverse from the first to the 

final (stems + 1)th vertex, in the direction of 5' → 3' terminus of the given RNA sequence; the 

size of vector path is stored in the variable totalpath. The size of each vertex and stem measured 

by the number of unpaired bases and number of pairs, respectively, are tracked by two variables 

ls and hs; the degree of each vertex is stored in the variable ld. 
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Figure A.2: Pseudo codes of algorithm RNAspectral(S). See section A.3 for details. 

 

1. Global variables: totalpath = 0; path = φ; stems = 0; ld = φ; ls = φ; hs = φ. 

2. Local variables: adjacency matrix A = φ; degree matrix D = φ; Laplacian 

matrix L = φ. 

3. Generate RNA structure S' from optimizeStruct(S), 

4. Generate a vector consisting of 6 elements (totalpath, path, stems, ld, ls, hs) 

from parseStruct(S'). 

4. For i from 1 to totalpath, do 

5.      A[path[i]][path[i + 1]] = 1. 

6. For i = 1 to stems + 1, do 

7.      D[i][i] = ld[i]. 

8. L = D – A. 

9. computeEigVals(L). 
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Figure A.3: Pseudo codes of function optimizeStruct(S). See section A.3 for details. 

 

1. Variables: L = len(S), pt = makePBTable(S), S' = S, j = 1. 

2. For i = 1 to L − 1, do 

3.      If pt[i] ═ UNPAIRED, then 

4.            If min(pt[i − 1], pt[i + 1]) ═ UNPAIRED, then continue. 

5.            If abs(pt[i − 1] − pt[i + 1]) ═ 2, then  

6.                  pt[i] = max(pt[i − 1], pt[i + 1]) − 1. 

7.            pt[pt[i]] = i. 

8.            S'[i] = "(", S'[pt[i]] = ")". 

9.      If pt[i] ≠ UNPAIRED, then      

10.            If pt[i − 1] ═ pt[i + 1], then 

11.                  S'[i] = S'[pt[i]] = ".". 

12.                  pt[pt[i]] = pt[i] = UNPAIRED. 

13. For i = 1 to L − 2, do 

14.      If pt[i] ═ UNPAIRED, then 

15.            If abs(pt[i − 1] − pt[i + 1]) ═ 1, then continue. 

16.            S'[j] = S'[i], j = j + 1. 

17. S'[j] = S'[L − 1], j = j + 1, S'[j] = φ. 

18. return S'. 
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Figure A.4: Pseudo codes of function makePBTable(S). See section A.3 for details. 

 

Figure A.5: Pseudo codes of function parseStruct(S). See section A.3 for details. 

1. Variables: L = len(S), pt = φ, stack = φ, j = 0. 

2. Foreach S[i] such that i = 1 to L − 1, do 

3.      If S[i] ═ ".", then pt[i] = UNPAIRED. 

4.      If S[i] ═ "(", then stack[j] = i,  j = j + 1. 

5.      If S[i] ═ ")", then  

6.          i = i − 1, pt[i] = stack[j],  

7.         pt[pt[i]] = i. 

8. return pt. 

1. Variables: L = len(S), S' = auxStruct(S), loop = φ, lp = 0, j = 0. 

2. Foreach S'[i] such that i = 1 to L − 1, do 

3.      If S'[i] ═ ".", then ls[loop[lp]] = ls[loop[lp]] + 1. 

4.      If S'[i] ═ "[", then 

5.            path[totalpath] = loop[lp], totalpath = totalpath + 1, lp = lp + 1, 

6.            stems = stems + 1, ld[stems] = 1, 

7.            loop[lp] = stems. 

8.      If S'[i] ═ ")", then j = j + 1. 

9.      If S'[i] ═ "]", then 

10.         hs[loop[lp]] = j + 1, 

11.         j = 0, 

12.         path[totalpath] = loop[lp] , totalpath = totalpath + 1, 

13.         lp = lp − 1, ld[loop[lp]] = ld[loop[lp]] + 1. 

14.  path[totalpath] = 0. 
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Figure A.6: Pseudo codes of function auxStruct(S). See section A.3 for details. 

A.4. ANSI C Source Codes of RNAspectral Algorithm 

RNAspectral is an efficient and rapid algorithm, implemented in portable ANSI C programming 

language using the development platform Intel Pentium M 2.0 GHz, and 1.0 GB RAM; Cygwin 

1.5.19-Windows XP. It provides a user-friendly command-line interface and four user-adjustable 

parameters: -v1, to enable the level of verbosity for obtaining output identical to that of "RNA 

Matrix Computer Program" (Gan et al., 2004; Fera et al., 2004); -v2, to enable detailed 

debugging and further analysis into RNAspectral internalities; --noopt, to disable the pair of 

vertex-edge rules; --monitor, to monitor the execution time. Together, these options and 

functionalities allow the inexperienced user to integrate the information from "Spectral Graph 

Partitioning" analysis such as the second eigenvalue λ2 and the number of vertices as part of 

their experimental methodologies, in an intuitive manner.  

 

 

 

 

 

 

 

1. Variables: L = len(S),  mp = φ, S' = S, o = 0, j = 0. 

2. Foreach S'[i] such that i = 1 to L − 1, do 

3.      If S'[i] ═ "(", then o = o + 1, mp[o] = i. 

4.      If S'[i] ═ ")", then 

5.             j = i. 

6.            While S'[j + 1] ═ ")"  ∧ mp[o − 1] ═ mp[o] − 1, do  

7.                  j = j + 1, o = o − 1. 

8.            S'[j] = "]", i = j, S'[mp[o]] = "[", o = o − 1. 

9. return S'. 



 114

    1 #include <stdio.h> 
    2 #include <stdlib.h> 
    3 #include <string.h> 
    4 #include <time.h> 
    5 #include <gsl/gsl_matrix.h> 
    6 #include <gsl/gsl_math.h> 
    7 #include <gsl/gsl_eigen.h> 
    8 #include <gsl/gsl_statistics_int.h> 
    9 #include "gopt.h" 
   10  
   11 /* Maximum length of RNA sequence */ 
   12 #define MAXLEN 10000 
   13 /* Maximum number of loops at min stack length 2 */ 
   14 #define STRUC MAXLEN/5 
   15 /* Definition of UNPAIRED */ 
   16 #define UNPAIRED -1 
   17 #define VERBOSE_DEBUG 2 
   18 #define VERBOSE_RNARAG 1 
   19 #define VERBOSE_DEFAULT 0 
   20 #define TURN_OFF 0 
   21 #define TURN_ON 1 
   22 #define OPTIMIZE_DEFAULT TURN_ON 
   23 #define MONITOR_DEFAULT TURN_OFF 
   24  
   25 #define PUBLIC 
   26 #define PRIVATE static 
   27  
   28 /* Functions */ 
   29 /* Process commandline parameters */ 
   30 PRIVATE void processParams(int argc, char *argv[]); 
   31 /* Print usage and available commandline parameters */ 
   32 PRIVATE void usage(void); 
   33 /* Process input file containing RNA structure of form ".()" */ 
   34 PRIVATE void processInput(FILE * tgFile, FILE * input); 
   35 /* Create new pointer */ 
   36 PRIVATE void *space(const unsigned size); 
   37 /* Write output to file */ 
   38 PRIVATE void writeFile(FILE * tgFile, const char *sequence, 
   39                        const char *structure, const char *header, 
   40                        const float energy); 
   41 /* Checks whether RNA structure in format ".()" is well-structured */ 
   42 PRIVATE int checkStruct(const char *structure); 
   43 /* Computes the Laplacian matrix */ 
   44 PRIVATE gsl_matrix *computeL(const char *structure, FILE * tgFile); 
   45 /* Implements the pair of vertex-edge rules described in subsection A.1 */ 
   46 PRIVATE char *optimizeStruct(const char *structure); 
   47 /* Implements the Eq. (A.1) and (A.2) described in subsection A.2 */ 
   48 PRIVATE void parseStruct(const char *structure); 
   49 /* Track the onset of a helical stem-loop */ 
   50 PRIVATE char *auxStruct(const char *structure); 
   51 /* Initialize five global variables totalpath, path, stems, ld, ls, and hs */ 
   52 PRIVATE void zeroVars(void); 
   53 /* Returns array representation of RNA structure */ 
   54 PRIVATE int *makePBTable(const char *structure); 
   55 /* Get graph statistics */ 
   56 PRIVATE void makeTopo(void); 
   57 /* 
   58  * Computes the eigenvalue spectrum using the well-established 
   59  * "Eigen-decomposition theorem" and  det|L - lambda*I|=0 
   60  */ 
   61 PRIVATE gsl_vector *computeEigVals(const gsl_matrix * L, int vertices); 
   62 /* Output message upon error */ 
   63 PRIVATE void nrerror(const char *file, const char *function, int line); 
   64  
   65 /* Global Variables */ 
   66 PRIVATE char line[] = 
   67     "------------------------------------------------------------\n"; 
   68 /* 
   69  * ls[0] ..... number of external digits. 
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   70  * ls[1 <= i <= loops] ..... size of i-th vertex measured by 
   71  * the number of unpaired bases 
   72  */ 
   73 PRIVATE int ls[STRUC]; 
   74 /* hs[1 <= i <= loops] .... size of i-th stem measured by the number of pairs*/ 
   75 PRIVATE int hs[STRUC]; 
   76 /* ld[1 <= i <= loops] .. degree (branches) of i-th vertex (loop) */ 
   77 PRIVATE int ld[STRUC]; 
   78 /* num of stems in a structure */ 
   79 PRIVATE int stems; 
   80 /* 
   81  * The Euclidean path transverse from the first to the final (stems + 1)th 
   82  * vertex, in the direction of 5' to 3' terminus of the given RNA sequence 
   83  */ 
   84 PRIVATE int path[2 * STRUC]; 
   85 /* stores size of vector path */ 
   86 PRIVATE int totalpath; 
   87  
   88 /* Global Variables set by command line */ 
   89 PRIVATE int verbose = VERBOSE_DEFAULT; 
   90 PRIVATE int optimize = OPTIMIZE_DEFAULT; 
   91 PRIVATE int monitor = MONITOR_DEFAULT; 
   92  
   93 /* Global Time Variables to monitor execution time */ 
   94 clock_t start, end; 
   95 double elapsed; 
   96  
   97 int main(int argc, char *argv[]) { 
   98     char *fname = "-"; 
   99     FILE *tgFile = stdout; 
  100  
  101     processParams(argc, argv); 
  102  
  103     if (strcmp(fname, "-") != 0) 
  104         if ((tgFile = fopen(fname, "a")) == NULL) 
  105             nrerror(__FILE__, "main", __LINE__); 
  106  
  107     if (monitor == TURN_ON) 
  108         start = clock(); 
  109  
  110     processInput(tgFile, stdin); 
  111  
  112     if (monitor == TURN_ON) { 
  113         end = clock(); 
  114         elapsed = ((double) (end - start)) / CLOCKS_PER_SEC; 
  115         fprintf(tgFile, "Time Taken (seconds): %.4f\n", elapsed); 
  116     } 
  117  
  118     if (strcmp(fname, "-") == 0) 
  119         fclose(tgFile); 
  120     else 
  121         fflush(tgFile); 
  122  
  123     exit(0); 
  124 } 
  125  
  126 /* Process commandline parameters */ 
  127 void processParams(int argc, char *argv[]) { 
  128     void *options; 
  129     const char *params; 
  130  
  131     if ((options = gopts("hvc", &argc, &argv)) == NULL) 
  132         nrerror(__FILE__, "processParams", __LINE__); 
  133  
  134     if (gopt(options, 'h', "help", NULL)) 
  135         usage(); 
  136  
  137     if (gopt(options, 'v', NULL, &params)) 
  138         verbose = atoi(params); 



 116

  139  
  140     if (gopt(options, 0, "noopt", NULL)) 
  141         optimize = TURN_OFF; 
  142  
  143     if (gopt(options, 0, "monitor", NULL)) 
  144         monitor = TURN_ON; 
  145  
  146     free(options); 
  147 } 
  148  
  149 /* Print usage and available commandline parameters */ 
  150 void usage(void) { 
  151     fprintf(stderr, "RNAspectral -h v12 --noopt < \"RNAfold File\"\n"); 
  152     fprintf(stderr, 
  153             "Example usage 1: RNAspectral < \"RNAfold File\" > \"Output\"\n"); 
  154     fprintf(stderr, 
  155             "Example usage 2: RNAfold < \"Fasta File\" | RNAspectral > 
  156             \"Output\"\n"); 
  157     exit(0); 
  158 } 
  159  
  160 /* Process input file containing RNA structure of form ".()" */ 
  161 void processInput(FILE * tgFile, FILE * input) { 
  162     char line[MAXLEN + 1]; 
  163     char *sequence = NULL, *structure = NULL, *header = NULL; 
  164     float energy; 
  165     int n = 1; 
  166  
  167     if (verbose == VERBOSE_DEFAULT) 
  168         fprintf(tgFile, 
  169                 "ID\tMFE\tLen\tVer\tStems\tJunct\tEndpts\tMidpts\tSecEigen\n"); 
  170  
  171     while (fgets(line, MAXLEN, stdin) != NULL) { 
  172         if (strcmp(line, "@") == 0) 
  173             break; 
  174  
  175         switch (line[0]) { 
  176         case '>': 
  177             header = (char *) space(strlen(line)); 
  178             sscanf(line, "> %s", header); 
  179             break; 
  180         case '.': 
  181         case '(': 
  182         case ')': 
  183             structure = (char *) space(strlen(line)); 
  184             if (sscanf(line, "%s (%f)", structure, &energy) != 2 
  185                     && sscanf(line, "%s", structure) != 1) { 
  186                 free(structure); 
  187                 structure = NULL; 
  188                 break; 
  189             } 
  190             if (structure != NULL) { 
  191                 if (verbose == VERBOSE_DEFAULT || header == NULL) { 
  192                     header = (char *) space(10); 
  193                     sprintf(header, "%d", n); 
  194                 } 
  195  
  196                 writeFile(tgFile, sequence, structure, header, energy); 
  197  
  198                 free(sequence); 
  199                 free(structure); 
  200                 free(header); 
  201                 sequence = structure = header = NULL; 
  202             } 
  203             n++; 
  204             break; 
  205         default: 
  206             sequence = (char *) space(strlen(line) + 1); 
  207             sscanf(line, "%s", sequence); 
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  208             break; 
  209         } 
  210     } 
  211 } 
  212  
  213 /* Create new pointer */ 
  214 void *space(const unsigned size) { 
  215     void *pointer = (void *) calloc(1, size); 
  216  
  217     if (pointer == NULL) 
  218         nrerror(__FILE__, "Space", __LINE__); 
  219  
  220     return pointer; 
  221 } 
  222  
  223 /* Write output to file */ 
  224 void writeFile(FILE * tgFile, const char *sequence, const char *structure, 
  225                const char *header, const float energy) { 
  226     int length = strlen(structure); 
  227  
  228     if (checkStruct(structure) == 0) { 
  229         fprintf(tgFile, "%s\t%.1f\t%d\tStructure incorrect\n", header, 
  230                 energy, length); 
  231         return; 
  232     } 
  233  
  234     gsl_matrix *L = computeL(structure, tgFile); 
  235  
  236     if (L == NULL) { 
  237         fprintf(tgFile, "%s\t%.1f\t%d\tLaplacian matrix incorrect\n", 
  238                 header, energy, length); 
  239         return; 
  240     } 
  241  
  242     int junctions = 0, endpoints = 0, midpoints = 0, vertices = L->size1; 
  243     int i = vertices, j; 
  244     gsl_vector_view diagonal = gsl_matrix_diagonal(L); 
  245  
  246     while (i--) { 
  247         int element = gsl_vector_get(&diagonal.vector, i); 
  248         switch (element) { 
  249         case 0: 
  250             break; 
  251         case 1: 
  252             endpoints++; 
  253             break; 
  254         case 2: 
  255             midpoints++; 
  256             break; 
  257         default: 
  258             junctions++; 
  259             break; 
  260         } 
  261     } 
  262  
  263     gsl_vector *eval = computeEigVals(L, L->size1); 
  264  
  265     if (verbose == VERBOSE_DEFAULT) { 
  266         double eval_i = gsl_vector_get(eval, 1); 
  267         fprintf(tgFile, "%s\t%.1f\t%d\t%3d\t%3d\t%3d\t%3d\t%3d\t%6f\n", 
  268                 header, energy, length, vertices, vertices - 1, junctions, 
  269                 endpoints, midpoints, eval_i); 
  270     } 
  271  
  272     if (verbose >= VERBOSE_RNARAG) { 
  273         fprintf(tgFile, "ENERGY =  %7.1f    %s\n", energy, header); 
  274         fprintf(tgFile, "%s\n", sequence); 
  275         fprintf(tgFile, "%s\n", structure); 
  276         fprintf(tgFile, 
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  277                 "There are %d nucleotides for the following sequence.\n", 
  278                 length); 
  279  
  280         fprintf(tgFile, 
  281                 "There are %d junction(s), %d endpoint(s), %d midpoint(s), 
  282                 and %d stem(s).\n", 
  283                 junctions, endpoints, midpoints, vertices - 1); 
  284         fprintf(tgFile, "Vertex#= %d\n", vertices); 
  285         fprintf(tgFile, "iteration=1\n\n"); 
  286         fprintf(tgFile, "LAPLACIAN MATRIX!\n"); 
  287  
  288         for (i = 0; i < vertices; i++) { 
  289             for (j = 0; j < vertices; j++) 
  290                 fprintf(tgFile, "%5g", gsl_matrix_get(L, i, j)); 
  291             fprintf(tgFile, "\n"); 
  292         } 
  293         fprintf(tgFile, "\n"); 
  294  
  295         double eigen_mul = 1; 
  296         for (i = 0; i < vertices; i++) { 
  297             double eval_i = gsl_vector_get(eval, i); 
  298             if (i > 0) 
  299                 eigen_mul *= eval_i; 
  300             fprintf(tgFile, "eigenvalue %3d=     %6f\n", vertices - i, eval_i); 
  301         } 
  302         fprintf(tgFile, "\n"); 
  303  
  304         fprintf(tgFile, 
  305                 "Vertices (determined by multipying eigenvalues):     %6f\n", 
  306                 eigen_mul); 
  307         fprintf(tgFile, line); 
  308     } 
  309  
  310     gsl_matrix_free(L); 
  311     gsl_vector_free(eval); 
  312 } 
  313  
  314 /* 
  315  * Checks whether RNA structure in format ".()" is well-structured 
  316  * return 0: brackets do not match 
  317  * return 1: brackets match 
  318  */ 
  319 int checkStruct(const char *structure) { 
  320     int i, o = 0, length = strlen(structure); 
  321  
  322     for (i = 0; i < length; i++) { 
  323         switch (structure[i]) { 
  324         case '(': 
  325             o++; 
  326             break; 
  327         case '.': 
  328             break; 
  329         case ')': 
  330             o--; 
  331             break; 
  332         default: 
  333             return 0; 
  334         } 
  335     } 
  336  
  337     if (o != 0) 
  338         return 0; 
  339     return 1; 
  340 } 
  341  
  342 /* Computes the Laplacian matrix */ 
  343 gsl_matrix *computeL(const char *structure, FILE * tgFile) { 
  344     int i, vertices; 
  345     int length = strlen(structure); 
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  346     char *new_structure = (char *) space(sizeof(char) * (length + 1)); 
  347  
  348     strcpy(new_structure, structure); 
  349  
  350     if (verbose >= VERBOSE_DEBUG) 
  351         fprintf(tgFile, "old structure %s\n", structure); 
  352  
  353     if (optimize == TURN_ON) 
  354         new_structure = optimizeStruct(structure); 
  355  
  356     if (verbose >= VERBOSE_DEBUG) 
  357         fprintf(tgFile, "new structure %s\n", new_structure); 
  358  
  359     parseStruct(new_structure); 
  360     free(new_structure); 
  361  
  362     makeTopo(); 
  363  
  364     vertices = stems + 1; 
  365  
  366     int actual_vertices = 0; 
  367     i = vertices; 
  368     while (i--) { 
  369         if (ld[i] > 0) 
  370             actual_vertices++; 
  371     } 
  372  
  373     if (verbose >= VERBOSE_DEBUG) { 
  374         fprintf(tgFile, "vertex\tdegree\tsize\tstem\tsize\n"); 
  375         for (i = 0; i < vertices; i++) 
  376             fprintf(tgFile, "%d\t%d\t%d\t%d\t%d\n", i, ld[i], ls[i], i, hs[i]); 
  377  
  378         fprintf(tgFile, 
  379                 "number of vertices = %d, total unpaired bases = %d\n", 
  380                 actual_vertices, topo.sumunpaired); 
  381         fprintf(tgFile, 
  382                 "number of stems = %d, total paired bases = %d\n", 
  383                 stems, topo.sumpaired * 2); 
  384     } 
  385  
  386     if (actual_vertices == 0) 
  387         return NULL; 
  388  
  389     gsl_matrix *A = gsl_matrix_calloc(vertices, vertices); 
  390     gsl_matrix *D = gsl_matrix_calloc(vertices, vertices); 
  391  
  392     /* 
  393      * Sets the value of adjacency matrix A at row path[i] 
  394      * and column path[i + 1] to 1 
  395      */ 
  396     for (i = 0; i < totalpath; i++) 
  397         gsl_matrix_set(A, path[i], path[i + 1], 1); 
  398  
  399     /* Sets the value of degree matrix D at row i and column i to ld[i] */ 
  400     for (i = 0; i < vertices; i++) 
  401         gsl_matrix_set(D, i, i, ld[i]); 
  402  
  403     /* Computes the Laplacian matrix L = D - A by using D as L */ 
  404     gsl_matrix_sub(D, A); 
  405     gsl_matrix_free(A); 
  406  
  407     /* Using D as L = D - A */ 
  408     return (D); 
  409 } 
  410  
  411 /* Implements the pair of vertex-edge rules described in subsection A.1 */ 
  412 char *optimizeStruct(const char *structure) { 
  413     int i, j, length = strlen(structure); 
  414     char *new_structure = (char *) space(sizeof(char) * (length + 1)); 



 120

  415  
  416     strcpy(new_structure, structure); 
  417  
  418     /* vector pt contains the values returned by makePBTable */ 
  419     int *pt = makePBTable(structure); 
  420     if (pt == NULL) 
  421         nrerror(__FILE__, "optimizeStruct", __LINE__); 
  422  
  423     for (i = 1; i < length - 1; i++) { 
  424         /* 
  425          * Internal loops with only one pair of mismatches are identified 
  426          * and then paired; >0 -1 >0 
  427          */ 
  428         if (pt[i] == UNPAIRED) { 
  429             if (pt[i - 1] == UNPAIRED) 
  430                 continue; 
  431             if (pt[i + 1] == UNPAIRED) 
  432                 continue; 
  433  
  434             if ((pt[i - 1] - pt[i + 1]) == 2) 
  435                 pt[i] = pt[i - 1] - 1; 
  436             else if ((pt[i + 1] - pt[i - 1]) == 2) 
  437                 pt[i] = pt[i - 1] + 1; 
  438             else 
  439                 continue; 
  440  
  441             pt[pt[i]] = i; 
  442             new_structure[i] = '('; 
  443             new_structure[pt[i]] = ')'; 
  444             continue; 
  445         } 
  446  
  447         /* 
  448          * Stems with only one complementary pair are identified 
  449          * and then unpaired; -1 >0 -1 
  450          */ 
  451         if (pt[i] > 0) { 
  452             /* Both pt[i - 1] and pt[i + 1] are UNPAIRED */ 
  453             if (pt[i - 1] == pt[i + 1]) { 
  454                 new_structure[i] = new_structure[pt[i]] = '.'; 
  455                 pt[pt[i]] = pt[i] = UNPAIRED; 
  456             } 
  457         } 
  458     } 
  459  
  460     for (j = 1, i = 1; i < length - 1; i++) { 
  461         /* Bulges having unpaired mono-nucleotide are deleted */ 
  462         if (pt[i] == UNPAIRED) { 
  463             if ((pt[i - 1] - pt[i + 1]) == 1) 
  464                 continue; 
  465             if ((pt[i + 1] - pt[i - 1]) == 1) 
  466                 continue; 
  467         } 
  468         new_structure[j++] = new_structure[i]; 
  469     } 
  470  
  471     new_structure[j++] = new_structure[length - 1]; 
  472     new_structure[j] = '\0'; 
  473     free(pt); 
  474  
  475     /* 
  476      * Resulting RNA structure S' is returned after applying 
  477      * the pair of vertex-edge rules 
  478      */ 
  479     return new_structure; 
  480 } 
  481  
  482 /* 
  483  * Returns array representation of RNA structure. 
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  484  * pt[i] of nucleotide at position i has value of UNPAIRED 
  485  * when that nucleotide is unpaired or denotes the position 
  486  * of the base to which it is paired 
  487  */ 
  488 int *makePBTable(const char *structure) { 
  489     int i, j = 0, length = strlen(structure); 
  490     int *stack = (int *) space(sizeof(int) * (length + 1)); 
  491     int *pt = (int *) space(sizeof(int) * (length + 1)); 
  492  
  493     for (i = 0; i < length; i++) { 
  494         switch (structure[i]) { 
  495         case '.': 
  496             pt[i] = UNPAIRED; 
  497             break; 
  498         case '(': 
  499             stack[j++] = i; 
  500             break; 
  501         case ')': 
  502             pt[i] = stack[--j]; 
  503             pt[pt[i]] = i; 
  504             break; 
  505         default: 
  506             break; 
  507         } 
  508     } 
  509  
  510     free(stack); 
  511     return (pt); 
  512 } 
  513  
  514 /* Implements the Eq. (A.1) and (A.2) described in subsection A.2 */ 
  515 void parseStruct(const char *structure) { 
  516     int i, lp = 0, p = 0; 
  517     int length = strlen(structure); 
  518     int *loop = (int *) space(sizeof(int) * (length / 3 + 1)); 
  519     char *string = auxStruct(structure); 
  520  
  521     if (string == NULL) 
  522         nrerror(__FILE__, "parseStruct", __LINE__); 
  523  
  524     zeroVars(); 
  525  
  526     /* 
  527      * Computes the Euclidean path transverse from the first 
  528      * to the final (stems + 1)th vertex, in the direction 
  529      * of 5' to 3' terminus of the given RNA sequence 
  530      */ 
  531     for (i = 0; i < length; i++) { 
  532         switch (string[i]) { 
  533         case '.': 
  534             ls[loop[lp]]++; 
  535             break; 
  536         case '[': 
  537             path[totalpath++] = loop[lp++]; 
  538             ld[++stems] = 1; 
  539             loop[lp] = stems; 
  540             break; 
  541         case ')': 
  542             p++; 
  543             break; 
  544         case ']': 
  545             hs[loop[lp]] = p + 1; 
  546             p = 0; 
  547             path[totalpath++] = loop[lp]; 
  548             ld[loop[--lp]]++; 
  549             break; 
  550         default: 
  551             break; 
  552         } 
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  553     } 
  554  
  555     path[totalpath] = 0; 
  556     free(string); 
  557     free(loop); 
  558 } 
  559  
  560 /* 
  561  * Track the onset of a helical stem-loop 
  562  * Returns a RNA secondary structure specified in an extended dot-bracket 
  563  * format with additional symbols "[", and "]" 
  564  */ 
  565 char *auxStruct(const char *structure) { 
  566     int length = strlen(structure); 
  567     int i, o = 0, p = 0; 
  568     int *mp = (int *) space(sizeof(int) * (length / 2 + 1)); 
  569     char *auxStruct = (char *) space(sizeof(char) * (length + 1)); 
  570  
  571     strcpy(auxStruct, structure); 
  572  
  573     for (i = 0; i < length; i++) { 
  574         switch (auxStruct[i]) { 
  575         case '.': 
  576             break; 
  577         case '(': 
  578             mp[++o] = i; 
  579             break; 
  580         case ')': 
  581             p = i; 
  582             while ((auxStruct[p + 1] == ')') && (mp[o - 1] == mp[o] - 1)) { 
  583                 p++; 
  584                 o--; 
  585             } 
  586             auxStruct[p] = ']'; 
  587             i = p; 
  588             auxStruct[mp[o--]] = '['; 
  589             break; 
  590         default: 
  591             nrerror(__FILE__, "auxStruct", __LINE__); 
  592         } 
  593     } 
  594  
  595     free(mp); 
  596     return (auxStruct); 
  597 } 
  598  
  599 /* Initialize five global variables totalpath, path, stems, ld, ls, and hs */ 
  600 void zeroVars(void) { 
  601     int i = STRUC; 
  602     while (i--) 
  603         ls[i] = hs[i] = ld[i] = 0; 
  604     totalpath = stems = 0; 
  605 } 
  606  
  607 /* Get graph statistics */ 
  608 void makeTopo(void) { 
  609     topo.vertices = stems + 1; 
  610     topo.stems = stems; 
  611  
  612     topo.sumpaired = topo.sumunpaired = 0; 
  613     int i = topo.vertices; 
  614     while (i--) { 
  615         topo.sumunpaired += ls[i]; 
  616         topo.sumpaired += hs[i]; 
  617     } 
  618  
  619     topo.meanpaired = gsl_stats_int_mean(hs, 1, topo.vertices); 
  620     topo.sdpaired = gsl_stats_int_sd(hs, 1, topo.vertices); 
  621     topo.minpaired = gsl_stats_int_min(hs, 1, topo.vertices); 
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  622     topo.maxpaired = gsl_stats_int_max(hs, 1, topo.vertices); 
  623     topo.meanunpaired = gsl_stats_int_mean(ls, 1, topo.stems); 
  624     topo.sdunpaired = gsl_stats_int_sd(ls, 1, topo.stems); 
  625     topo.minunpaired = gsl_stats_int_min(hs, 1, topo.stems); 
  626     topo.maxunpaired = gsl_stats_int_max(hs, 1, topo.stems); 
  627 } 
  628  
  629 /* 
  630  * Computes the eigenvalue spectrum using the well-established 
  631  * "Eigen-decomposition theorem" and  det|L - lambda*I|=0 
  632  */ 
  633 gsl_vector *computeEigVals(const gsl_matrix * L, int vertices) { 
  634     gsl_matrix *tempL = gsl_matrix_alloc(vertices, vertices); 
  635     gsl_vector *eval = gsl_vector_alloc(vertices); 
  636     gsl_matrix *evec = gsl_matrix_alloc(vertices, vertices); 
  637     gsl_eigen_symmv_workspace *w = gsl_eigen_symmv_alloc(vertices); 
  638  
  639     gsl_matrix_memcpy(tempL, L); 
  640     gsl_eigen_symmv(tempL, eval, evec, w); 
  641     gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); 
  642  
  643     gsl_eigen_symmv_free(w); 
  644     gsl_matrix_free(evec); 
  645     gsl_matrix_free(tempL); 
  646  
  647     return (eval); 
  648 } 
  649  
  650 /* Output message upon error */ 
  651 void nrerror(const char *file, const char *function, int line) { 
  652     fprintf(stderr, "Error: %s %s %d\n", file, function, line); 
  653     exit(0); 
  654 } 
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A.5. Experimental Methodology 

A typical experimental setup using RNAfold and RNAspectral programs in an automated manner 

is outlined in Figure A.7. In this example, sequence of THI element (AC084406.7; thiamine 

pyrophosphate riboswitch) (Sudarsan et al., 2003) was extracted from Sanger Rfam 7.0 

(Griffiths-Jones et al., 2005). Given a primary RNA sequence described in FASTA format, (Step 

A) its optimal secondary structure is predicted using RNAfold program (Hofacker 2003). The 

output of RNAfold is a FASTA-like format appended with the optimal structure in Vienna dot-

bracket notation with the base pairs and unpaired bases represented by brackets "( )" and dots "." 

(Hofacker 2003), respectively and the Minimum Free Energy of folding (MFE). In this 

example, the RNA secondary structure predicted by RNAfold has two hairpin loops, 5' and 3' 

termini, two internal loops, one bulge loop, and one multi-branch loop - all of these stabilized 

by six stems. (Step B) This is read by RNAspectral that converts the structure in bracket notation 

into a planar tree-graph consisting of seven arbitrarily labeled vertices "•" connected by six 

unweighted edges "—". (Step C) RNAspectral computes the seven by seven Laplacian matrix 

and the eigenvalue spectrum. (Step D) The output of RNAspectral is described in a tab-

delimited ASCII flat format for convenient import into numerical processing applications such 

as Mathworks® Matlab™ and Microsoft® Excel™. The labeled header shows the following rows 

of columnated values corresponding to the identifier (ID starts at 1 and increases monotically), 

Minimum Free Energy of folding (MFE in kcal/mol), length of sequence (Len in nucleotides), 

number of vertices (Ver), number of stems (Stems), number of junctions (Junct, more than 2 

stems), number of endpoints (Endpts, 1 stem), number of midpoints (Midpts, 2 stems), and the 

second eigenvalue λ2 (SecEigen).  

 (Figure A.8) The benchmarking platform was an AMD Opteron Processor 850 2.4 GHz 

and 1.5 GB RAM; GNU compiler v3.4.5 on Linux 2.6.9-5. The average speed of RNAspectral 

was computed by running it five times on 6,656 sets of 104 random RNA sequences. The 

random sequences were synthesized from each of the 6,656 sequences (average length of 

113.451 ± 0.803 nucleotides) gathered from Sanger miRBase 7.1 (Griffiths-Jones 2004) and 

Sanger Rfam 7.0 (Griffiths-Jones et al., 2005). RNAspectral required at most ~7.0 seconds or 

mean 427.8 milliseconds for processing the entire dataset. 

 



 125

 

0.000000
0.381966
0.381966
1.585786
2.618034
2.618034
4.414214

λ

 
 
 
 
 =  
 
 
 
  

7 7

1 -1 0 0 0 0 0
-1 2 -1 0 0 0 0
0 -1 3 -1 0 -1 0

( ) 0 0 -1 2 -1 0 0
0 0 0 -1 1 0 0
0 0 -1 0 0 2 -1
0 0 0 0 0 -1 1

G ×

 
 
 
 
 =  
 
 
 
  

L

 

Figure A.7: Typical workflow using RNAspectral for "Spectral Graph Partitioning" 

analysis on RNA structures. ←, second eigenvalue λ2 shows the same results as "RNA 

Matrix Computer Program" (Gan et al., 2004; Fera et al., 2004); bold, Unix commands. 

Length of RNA sequence 
(nucleotides)

100 200 300 400 500 600

E
la

ps
ed

 p
ro

ce
ss

or
 ti

m
e 

(m
ill

is
ec

on
ds

)

0

2000

4000

6000

8000

427.816

7064

 

Figure A.8: Average speed performance of RNAspectral. Unlike the actual wall-clock time, 

elapsed processor time excludes time spent queuing for free I/O or waiting for other 

processes to complete execution.  
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Appendix B. 

Supplemental for Chapter 4 
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Table B.1: Statistical comparison between pre-miRs, ncRNAs, mRNA, and pseudo hairpins based on 

Length, MFEI2, MFEI1, %G+C, dP, dG, dQ, dD, and dF. 

Datasets Counts Length MFEI2 MFEI1 %G+C dP dG dQ dD dF 

Arthropoda 171 88.6901 
± 0.8213 

-0.0645 
± 0.0016 

-0.0089 
± 0.0001 

43.3811 
± 0.4752 

0.3488 
± 0.0023 

-0.3824 
± 0.0050 

0.1067 
± 0.0047 

0.0403 
± 0.0016 

0.2059 
± 0.0067 

Nematoda 189 99.0212 
± 0.6723 

-0.0556 
± 0.0015 

-0.0086 
± 0.0001 

44.5725 
± 0.4641 

0.3411 
± 0.0025 

-0.3831 
± 0.0056 

0.1075 
± 0.0059 

0.0398 
± 0.0019 

0.1577 
± 0.0050 

Vertebrata 1203 90.4522 
± 0.4164 

-0.0761 
± 0.0013 

-0.0091 
± 0.0001 

48.3079 
± 0.2504 

0.3518 
± 0.0009 

-0.4308 
± 0.0025 

0.1161 
± 0.0025 

0.0431 
± 0.0009 

0.2197 
± 0.0042 

Viridiplantae 606 137.9175 
± 2.0309 

-0.0539 
± 0.0010 

-0.0096 
± 0.0001 

46.6719 
± 0.3513 

0.3545 
± 0.0013 

-0.4456 
± 0.0038 

0.1424 
± 0.0036 

0.0502 
± 0.0011 

0.1251 
± 0.0033 

Viruses 72 78.8750 
± 1.4665 

-0.0780 
± 0.0032 

-0.0087 
± 0.0002 

53.5111 
± 0.9219 

0.3619 
± 0.0029 

-0.4615 
± 0.0097 

0.0893 
± 0.0051 

0.0352 
± 0.0020 

0.2059 
± 0.0114 

Cis-reg 4002 90.7511 
± 0.8069 

-0.0793 
± 0.0017 

-0.0065 
± 0.0000 

48.9672 
± 0.1188 

0.2905 
± 0.0008 

-0.3233 
± 0.0017 

0.2124 
± 0.0021 

0.0689 
± 0.0006 

0.3871 
± 0.0064 

Cis-reg|frameshift 808 53.2599 
± 0.2543 

-0.2210 
± 0.0021 

-0.0104 
± 0.0000 

46.4785 
± 0.1477 

0.3382 
± 0.0010 

-0.4814 
± 0.0023 

0.1396 
± 0.0024 

0.0552 
± 0.0009 

0.8865 
± 0.0079 

Cis-reg|IRES 1201 276.0841 
± 2.4342 

-0.0192 
± 0.0002 

-0.0065 
± 0.0000 

57.5340 
± 0.1745 

0.3039 
± 0.0006 

-0.3757 
± 0.0013 

0.3702 
± 0.0034 

0.1156 
± 0.0010 

0.0442 
± 0.0013 

Cis-reg|riboswitch 917 138.6358 
± 1.4673 

-0.0381 
± 0.0005 

-0.0064 
± 0.0000 

50.5054 
± 0.3381 

0.2877 
± 0.0010 

-0.3223 
± 0.0026 

0.2515 
± 0.0041 

0.0826 
± 0.0012 

0.1960 
± 0.0042 

Cis-reg|thermoregulator 21 127.0476 
± 4.0447 

-0.0330 
± 0.0047 

-0.0061 
± 0.0002 

42.6490 
± 3.2009 

0.2955 
± 0.0075 

-0.2713 
± 0.0301 

0.2935 
± 0.0269 

0.0956 
± 0.0080 

0.1312 
± 0.0138 

Gene 480 222.2708 
± 5.8445 

-0.0372 
± 0.0012 

-0.0074 
± 0.0000 

51.6146 
± 0.5262 

0.3109 
± 0.0012 

-0.3808 
± 0.0046 

0.2435 
± 0.0060 

0.0794 
± 0.0018 

0.1258 
± 0.0058 

Gene|antisense 147 86.0476 
± 0.8681 

-0.0811 
± 0.0030 

-0.0083 
± 0.0001 

41.7778 
± 0.8673 

0.3106 
± 0.0034 

-0.3414 
± 0.0076 

0.1336 
± 0.0061 

0.0468 
± 0.0020 

0.3734 
± 0.0133 

Gene|ribozyme 561 242.0428 
± 5.4441 

-0.0406 
± 0.0017 

-0.0070 
± 0.0000 

54.4837 
± 0.3930 

0.3000 
± 0.0011 

-0.3811 
± 0.0040 

0.2704 
± 0.0053 

0.0863 
± 0.0016 

0.2335 
± 0.0145 

Gene|rRNA 1010 244.3208 
± 5.8418 

-0.0295 
± 0.0005 

-0.0066 
± 0.0000 

53.8479 
± 0.2508 

0.3022 
± 0.0008 

-0.3545 
± 0.0023 

0.2870 
± 0.0043 

0.0921 
± 0.0012 

0.0933 
± 0.0020 

Gene|snRNA 28 62.0357 
± 0.7024 

-0.0764 
± 0.0088 

-0.0061 
± 0.0003 

41.6782 
± 1.2105 

0.2803 
± 0.0064 

-0.2631 
± 0.0187 

0.2305 
± 0.0260 

0.0741 
± 0.0074 

0.5372 
± 0.0415 

Gene|snRNA|guide|CD-box 1050 91.5867 
± 1.0464 

-0.0379 
± 0.0004 

-0.0053 
± 0.0000 

42.3681 
± 0.2301 

0.2764 
± 0.0013 

-0.2265 
± 0.0022 

0.3174 
± 0.0041 

0.1012 
± 0.0012 

0.2772 
± 0.0058 

Gene|snRNA|guide|HACA-box 419 139.3675 
± 1.2446 

-0.0348 
± 0.0005 

-0.0068 
± 0.0001 

46.3048 
± 0.3160 

0.2929 
± 0.0013 

-0.3125 
± 0.0029 

0.2383 
± 0.0068 

0.0783 
± 0.0021 

0.1194 
± 0.0028 

Gene|snRNA|splicing 250 157.1200 
± 4.4708 

-0.0341 
± 0.0006 

-0.0068 
± 0.0001 

47.6933 
± 0.3731 

0.2898 
± 0.0021 

-0.3251 
± 0.0042 

0.2399 
± 0.0076 

0.0781 
± 0.0023 

0.1470 
± 0.0043 

Gene|sRNA 233 145.6524 
± 4.5117 

-0.0432 
± 0.0016 

-0.0066 
± 0.0001 

46.3963 
± 0.3513 

0.2815 
± 0.0024 

-0.3036 
± 0.0041 

0.2371 
± 0.0077 

0.0745 
± 0.0023 

0.2531 
± 0.0170 

Gene|tRNA 1114 73.4354 
± 0.1529 

-0.0676 
± 0.0007 

-0.0064 
± 0.0000 

48.2725 
± 0.3541 

0.2975 
± 0.0010 

-0.3138 
± 0.0029 

0.2488 
± 0.0035 

0.0831 
± 0.0011 

0.5333 
± 0.0093 

Intron 146 134.4384 
± 8.6225 

-0.0604 
± 0.0029 

-0.0080 
± 0.0001 

44.7871 
± 0.8350 

0.3204 
± 0.0024 

-0.3551 
± 0.0081 

0.1802 
± 0.0089 

0.0620 
± 0.0026 

0.2200 
± 0.0107 

mRNAs 31 332.3226 
± 16.3064 

-0.0132 
± 0.0006 

-0.0061 
± 0.0001 

50.4626 
± 1.4654 

0.2881 
± 0.0045 

-0.3087 
± 0.0131 

0.3828 
± 0.0175 

0.1192 
± 0.0049 

0.0391 
± 0.0059 

Pseudo hairpins 8494 84.7020 
± 0.1268 

-0.0476 
± 0.0002 

-0.0054 
± 0.0000 

56.1466 
± 0.1108 

0.2874 
± 0.0003 

-0.3070 
± 0.0009 

0.3185 
± 0.0016 

0.1048 
± 0.0005 

0.1818 
± 0.0008 

(Counts) Number of sequences being investigated. Values are stated as mean ± standard error. 
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Table B.2: Statistical comparison between pre-miRs, ncRNAs, mRNA, and pseudo hairpins based on zG, 

zQ, and zD using the four sequence randomization algorithms. 

  zG zQ zD 

Datasets Counts MS DS ZM FM MS DS ZM FM MS DS ZM FM 

Arthropoda 171 -4.8894 
± 0.1127 

-4.8985 
± 0.1177 

-3.5250 
± 0.0839 

-3.3032 
± 0.0818 

-1.7166 
± 0.0321 

-1.6873 
± 0.0316 

-1.7259 
± 0.0320 

-1.7067 
± 0.0311 

-1.6782 
± 0.0377 

-1.6526 
± 0.0365 

-1.6706 
± 0.0379 

-1.6544 
± 0.0364 

Nematoda 189 -4.9930 
± 0.1457 

-5.0228 
± 0.1443 

-3.4481 
± 0.1003 

-3.2885 
± 0.0927 

-1.7836 
± 0.0399 

-1.7548 
± 0.0394 

-1.7936 
± 0.0401 

-1.7797 
± 0.0390 

-1.7598 
± 0.0440 

-1.7358 
± 0.0432 

-1.7523 
± 0.0443 

-1.7433 
± 0.0432 

Vertebrata 1203 -5.2058 
± 0.0645 

-4.7608 
± 0.0642 

-3.6575 
± 0.0463 

-3.2317 
± 0.0426 

-1.6090 
± 0.0170 

-1.5465 
± 0.0164 

-1.6252 
± 0.0170 

-1.5779 
± 0.0164 

-1.5755 
± 0.0196 

-1.5209 
± 0.0187 

-1.5762 
± 0.0198 

-1.5368 
± 0.0188 

Viridiplantae 606 -6.9286 
± 0.1033 

-6.4395 
± 0.1037 

-4.5333 
± 0.0718 

-4.1132 
± 0.0693 

-1.6602 
± 0.0248 

-1.5957 
± 0.0243 

-1.6725 
± 0.0248 

-1.6211 
± 0.0242 

-1.6440 
± 0.0276 

-1.5879 
± 0.0267 

-1.6422 
± 0.0277 

-1.5982 
± 0.0267 

Viruses 72 -4.7038 
± 0.1952 

-4.5972 
± 0.1908 

-3.2593 
± 0.1325 

-3.0913 
± 0.1280 

-1.6475 
± 0.0414 

-1.6214 
± 0.0403 

-1.6722 
± 0.0416 

-1.6524 
± 0.0405 

-1.6088 
± 0.0495 

-1.5848 
± 0.0481 

-1.6191 
± 0.0498 

-1.6016 
± 0.0486 

Cis-reg 4002 -2.6887 
± 0.0308 

-2.3364 
± 0.0280 

-1.9053 
± 0.0203 

-1.5172 
± 0.0172 

-0.8439 
± 0.0142 

-0.7928 
± 0.0139 

-0.8336 
± 0.0142 

-0.7878 
± 0.0140 

-0.8206 
± 0.0147 

-0.7788 
± 0.0143 

-0.7851 
± 0.0148 

-0.7452 
± 0.0145 

Cis-reg|frameshift 808 -5.6222 
± 0.0477 

-3.7443 
± 0.0357 

-4.4470 
± 0.0359 

-2.3964 
± 0.0200 

-1.1436 
± 0.0158 

-1.1970 
± 0.0155 

-1.1579 
± 0.0160 

-1.1044 
± 0.0146 

-0.9865 
± 0.0192 

-1.0716 
± 0.0187 

-0.9768 
± 0.0197 

-0.9303 
± 0.0181 

Cis-reg|IRES 1201 -0.7674 
± 0.0353 

-1.0895 
± 0.0293 

-0.5451 
± 0.0192 

-0.6451 
± 0.0149 

-0.1924 
± 0.0250 

-0.2063 
± 0.0252 

-0.2027 
± 0.0250 

-0.2300 
± 0.0251 

-0.2134 
± 0.0256 

-0.2208 
± 0.0259 

-0.2121 
± 0.0257 

-0.2296 
± 0.0260 

Cis-reg|riboswitch 917 -1.5838 
± 0.0452 

-1.4806 
± 0.0446 

-1.1569 
± 0.0282 

-1.0231 
± 0.0261 

-0.8469 
± 0.0293 

-0.8163 
± 0.0294 

-0.8585 
± 0.0294 

-0.8513 
± 0.0293 

-0.8139 
± 0.0309 

-0.7884 
± 0.0309 

-0.8086 
± 0.0312 

-0.8030 
± 0.0309 

Cis-reg|thermoregulator 21 -1.0551 
± 0.2108 

-1.0754 
± 0.2211 

-0.8443 
± 0.1263 

-0.7904 
± 0.1349 

-0.5827 
± 0.1521 

-0.5791 
± 0.1523 

-0.5961 
± 0.1533 

-0.6004 
± 0.1542 

-0.4561 
± 0.1723 

-0.4496 
± 0.1725 

-0.4511 
± 0.1754 

-0.4460 
± 0.1753 

Gene 480 -2.9702 
± 0.0842 

-2.8100 
± 0.0851 

-1.9501 
± 0.0521 

-1.7827 
± 0.0510 

-1.0260 
± 0.0391 

-1.0098 
± 0.0394 

-1.0379 
± 0.0392 

-1.0335 
± 0.0395 

-1.0127 
± 0.0410 

-1.0017 
± 0.0412 

-1.0122 
± 0.0412 

-1.0082 
± 0.0415 

Gene|antisense 147 -4.0852 
± 0.1258 

-4.0585 
± 0.1283 

-2.9472 
± 0.0900 

-2.6765 
± 0.0829 

-1.5501 
± 0.0404 

-1.5317 
± 0.0409 

-1.5473 
± 0.0399 

-1.5387 
± 0.0403 

-1.5408 
± 0.0466 

-1.5220 
± 0.0469 

-1.5117 
± 0.0456 

-1.4990 
± 0.0460 

Gene|ribozyme 561 -3.0964 
± 0.0704 

-2.7927 
± 0.0706 

-1.9182 
± 0.0392 

-1.6665 
± 0.0376 

-0.7666 
± 0.0347 

-0.7312 
± 0.0346 

-0.7737 
± 0.0348 

-0.7588 
± 0.0346 

-0.7567 
± 0.0361 

-0.7347 
± 0.0355 

-0.7492 
± 0.0364 

-0.7450 
± 0.0357 

Gene|rRNA 1010 -2.0655 
± 0.0551 

-2.0126 
± 0.0523 

-1.3108 
± 0.0298 

-1.2051 
± 0.0268 

-0.6742 
± 0.0296 

-0.6618 
± 0.0296 

-0.6858 
± 0.0298 

-0.6943 
± 0.0295 

-0.6424 
± 0.0302 

-0.6329 
± 0.0301 

-0.6406 
± 0.0305 

-0.6491 
± 0.0302 

Gene|snRNA 28 -2.0909 
± 0.2613 

-1.3712 
± 0.3083 

-1.6055 
± 0.1806 

-1.0729 
± 0.2076 

-0.6335 
± 0.1771 

-0.5674 
± 0.1695 

-0.6180 
± 0.1789 

-0.5995 
± 0.1699 

-0.6270 
± 0.1735 

-0.6108 
± 0.1597 

-0.5832 
± 0.1759 

-0.6090 
± 0.1609 

Gene|snRNA|guide|CD-box 1050 -0.8113 
± 0.0397 

-0.7089 
± 0.0360 

-0.7209 
± 0.0270 

-0.6465 
± 0.0244 

-0.2189 
± 0.0292 

-0.2236 
± 0.0286 

-0.2146 
± 0.0295 

-0.2497 
± 0.0286 

-0.1810 
± 0.0298 

-0.1952 
± 0.0291 

-0.1512 
± 0.0302 

-0.1886 
± 0.0294 

Gene|snRNA|guide|HACA-box 419 -2.3694 
± 0.0745 

-1.7490 
± 0.0780 

-1.6445 
± 0.0499 

-1.2434 
± 0.0489 

-0.9913 
± 0.0497 

-0.9265 
± 0.0494 

-0.9997 
± 0.0499 

-0.9567 
± 0.0493 

-0.9621 
± 0.0532 

-0.9169 
± 0.0519 

-0.9546 
± 0.0537 

-0.9275 
± 0.0523 

Gene|snRNA|splicing 250 -2.6848 
± 0.1171 

-2.4767 
± 0.1097 

-1.7286 
± 0.0667 

-1.4502 
± 0.0567 

-1.0036 
± 0.0604 

-0.9687 
± 0.0610 

-1.0112 
± 0.0606 

-0.9999 
± 0.0601 

-1.0018 
± 0.0632 

-0.9681 
± 0.0636 

-0.9933 
± 0.0636 

-0.9783 
± 0.0631 

Gene|sRNA 233 -2.7470 
± 0.1222 

-2.7672 
± 0.1234 

-1.7773 
± 0.0712 

-1.6417 
± 0.0664 

-0.9773 
± 0.0589 

-0.9675 
± 0.0589 

-0.9771 
± 0.0592 

-0.9903 
± 0.0584 

-1.0182 
± 0.0608 

-1.0073 
± 0.0612 

-0.9991 
± 0.0611 

-1.0064 
± 0.0607 

Gene|tRNA 1114 -1.8663 
± 0.0281 

-1.7570 
± 0.0289 

-1.4794 
± 0.0193 

-1.3739 
± 0.0189 

-0.5740 
± 0.0237 

-0.5524 
± 0.0239 

-0.5770 
± 0.0238 

-0.5804 
± 0.0238 

-0.5223 
± 0.0257 

-0.5109 
± 0.0257 

-0.5019 
± 0.0260 

-0.5050 
± 0.0260 

Intron 146 -3.7603 
± 0.1402 

-3.6841 
± 0.1513 

-2.7426 
± 0.0976 

-2.5026 
± 0.0982 

-1.3073 
± 0.0531 

-1.2842 
± 0.0534 

-1.3177 
± 0.0533 

-1.3065 
± 0.0530 

-1.2483 
± 0.0558 

-1.2290 
± 0.0559 

-1.2424 
± 0.0564 

-1.2335 
± 0.0560 

mRNAs 31 -0.7223 
± 0.2089 

0.1021 
± 0.1625 

-0.4770 
± 0.1098 

-0.0830 
± 0.0845 

-0.1894 
± 0.1503 

-0.1434 
± 0.1486 

-0.1907 
± 0.1504 

-0.1680 
± 0.1487 

-0.1126 
± 0.1518 

-0.0994 
± 0.1492 

-0.1017 
± 0.1516 

-0.1055 
± 0.1496 

Pseudo hairpins 8494 -0.6493 
± 0.0121 

-0.2347 
± 0.0114 

-0.5606 
± 0.0073 

-0.3373 
± 0.0067 

-0.1058 
± 0.0113 

-0.0756 
± 0.0112 

-0.1052 
± 0.0114 

-0.1044 
± 0.0112 

-0.0444 
± 0.0117 

-0.0385 
± 0.0114 

-0.0208 
± 0.0118 

-0.0364 
± 0.0114 

(Counts) Number of sequences being investigated. Values are stated as mean ± standard error. MS, Mononucleotide Shuffling; DS, Dinucleotide 
Shuffling; ZM, Zero-order Markov Model; FM, First-order Markov Model. 
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Table B.3: Statistical comparison between pre-miRs, ncRNAs, mRNA, and pseudo hairpins based on zP, 

and zF based on four sequence randomization algorithms. 

  zP zF 

Datasets Counts MS DS ZM FM MS DS ZM FM 

Arthropoda 171 2.4736 
± 0.0653 

2.4309 
± 0.0686 

2.2904 
± 0.0560 

2.2112 
± 0.0579 

0.7107 
± 0.0912 

0.6432 
± 0.0910 

0.5025 
± 0.0791 

0.4001 
± 0.0736 

Nematoda 189 2.4392 
± 0.0807 

2.4022 
± 0.0819 

2.1992 
± 0.0673 

2.1076 
± 0.0661 

1.2007 
± 0.0675 

1.1643 
± 0.0660 

1.0738 
± 0.0651 

1.0329 
± 0.0628 

Vertebrata 1203 2.4911 
± 0.0287 

2.3364 
± 0.0301 

2.3065 
± 0.0246 

2.1516 
± 0.0251 

0.1902 
± 0.0340 

0.1859 
± 0.0333 

0.1359 
± 0.0330 

0.1427 
± 0.0323 

Viridiplantae 606 2.9329 
± 0.0449 

2.7807 
± 0.0461 

2.6133 
± 0.0376 

2.4634 
± 0.0383 

0.3538 
± 0.1870 

0.5419 
± 0.2134 

0.1306 
± 0.1470 

0.2984 
± 0.1693 

Viruses 72 2.6924 
± 0.0921 

2.6297 
± 0.0922 

2.4721 
± 0.0760 

2.3915 
± 0.0754 

-0.0844 
± 0.0335 

0.0750 
± 0.0351 

-0.1823 
± 0.0289 

-0.0562 
± 0.0295 

Cis-reg 4002 1.3687 
± 0.0197 

1.2727 
± 0.0185 

1.2527 
± 0.0160 

1.1631 
± 0.0141 

-0.1601 
± 0.0469 

-0.1078 
± 0.0479 

-0.2165 
± 0.0434 

-0.1643 
± 0.0441 

Cis-reg|frameshift 808 1.8580 
± 0.0237 

1.4936 
± 0.0218 

1.8881 
± 0.0207 

1.4944 
± 0.0157 

0.7519 
± 0.0732 

0.6479 
± 0.0723 

0.6347 
± 0.0692 

0.5327 
± 0.0682 

Cis-reg|IRES 1201 -0.0329 
± 0.0298 

0.1285 
± 0.0291 

0.1392 
± 0.0241 

0.2594 
± 0.0231 

1.1140 
± 0.1503 

1.0258 
± 0.1485 

0.8554 
± 0.1252 

0.7597 
± 0.1218 

Cis-reg|riboswitch 917 0.4080 
± 0.0365 

0.3818 
± 0.0362 

0.5064 
± 0.0292 

0.4811 
± 0.0285 

1.5069 
± 0.0682 

1.5169 
± 0.0692 

1.2329 
± 0.0614 

1.1410 
± 0.0600 

Cis-reg|thermoregulator 21 0.7628 
± 0.2207 

0.8579 
± 0.2135 

0.8156 
± 0.1827 

0.9010 
± 0.1667 

0.1460 
± 0.0809 

0.0892 
± 0.0815 

0.0623 
± 0.0758 

0.0149 
± 0.0748 

Gene 480 0.8078 
± 0.0495 

0.8192 
± 0.0495 

0.8420 
± 0.0414 

0.8754 
± 0.0403 

-0.0795 
± 0.1732 

0.0456 
± 0.1812 

-0.1270 
± 0.1624 

-0.0042 
± 0.1698 

Gene|antisense 147 1.4284 
± 0.0751 

1.4366 
± 0.0715 

1.3817 
± 0.0618 

1.3731 
± 0.0582 

-0.5938 
± 0.0065 

-0.5623 
± 0.0067 

-0.6124 
± 0.0057 

-0.5726 
± 0.0058 

Gene|ribozyme 561 0.8520 
± 0.0431 

0.7607 
± 0.0440 

0.8343 
± 0.0342 

0.7654 
± 0.0337 

0.7107 
± 0.0912 

0.6432 
± 0.0910 

0.5025 
± 0.0791 

0.4001 
± 0.0736 

Gene|rRNA 1010 0.8805 
± 0.0330 

0.8847 
± 0.0329 

0.8612 
± 0.0256 

0.8387 
± 0.0252 

1.2007 
± 0.0675 

1.1643 
± 0.0660 

1.0738 
± 0.0651 

1.0329 
± 0.0628 

Gene|snRNA 28 0.8315 
± 0.1820 

0.4112 
± 0.1759 

0.8631 
± 0.1418 

0.5505 
± 0.1294 

0.1902 
± 0.0340 

0.1859 
± 0.0333 

0.1359 
± 0.0330 

0.1427 
± 0.0323 

Gene|snRNA|guide|CD-box 1050 0.5020 
± 0.0334 

0.4050 
± 0.0335 

0.6217 
± 0.0278 

0.5643 
± 0.0274 

0.3538 
± 0.1870 

0.5419 
± 0.2134 

0.1306 
± 0.1470 

0.2984 
± 0.1693 

Gene|snRNA|guide|HACA-box 419 0.5749 
± 0.0454 

0.3727 
± 0.0479 

0.6545 
± 0.0377 

0.5069 
± 0.0385 

-0.0844 
± 0.0335 

0.0750 
± 0.0351 

-0.1823 
± 0.0289 

-0.0562 
± 0.0295 

Gene|snRNA|splicing 250 0.4583 
± 0.0708 

0.5303 
± 0.0692 

0.5381 
± 0.0574 

0.5607 
± 0.0546 

-0.1601 
± 0.0469 

-0.1078 
± 0.0479 

-0.2165 
± 0.0434 

-0.1643 
± 0.0441 

Gene|sRNA 233 0.7139 
± 0.0700 

0.7771 
± 0.0701 

0.7326 
± 0.0546 

0.7518 
± 0.0529 

0.7519 
± 0.0732 

0.6479 
± 0.0723 

0.6347 
± 0.0692 

0.5327 
± 0.0682 

Gene|tRNA 1114 0.8293 
± 0.0281 

0.8075 
± 0.0281 

0.9282 
± 0.0235 

0.9367 
± 0.0225 

1.1140 
± 0.1503 

1.0258 
± 0.1485 

0.8554 
± 0.1252 

0.7597 
± 0.1218 

Intron 146 1.6381 
± 0.0778 

1.6300 
± 0.0780 

1.5693 
± 0.0661 

1.5258 
± 0.0637 

1.5069 
± 0.0682 

1.5169 
± 0.0692 

1.2329 
± 0.0614 

1.1410 
± 0.0600 

mRNAs 31 0.3438 
± 0.2004 

-0.0620 
± 0.1970 

0.3700 
± 0.1576 

0.0849 
± 0.1532 

0.1460 
± 0.0809 

0.0892 
± 0.0815 

0.0623 
± 0.0758 

0.0149 
± 0.0748 

Pseudo hairpins 8494 0.5399 
± 0.0103 

0.3444 
± 0.0105 

0.6197 
± 0.0080 

0.4970 
± 0.0079 

-0.0795 
± 0.1732 

0.0456 
± 0.1812 

-0.1270 
± 0.1624 

-0.0042 
± 0.1698 

(Counts) Number of sequences being investigated. Values are stated as mean ± standard error. MS, Mononucleotide Shuffling; DS, Dinucleotide 
Shuffling; ZM, Zero-order Markov Model; FM, First-order Markov Model. 
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Table B.4: The correlation coefficients, 95th percentile, and p-values for pre-miRs using Mononucleotide 

Shuffling algorithm. 

Cp(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.3777 -0.0366 -0.0784 -0.0567 0.0394 0.2737 0.2424 -0.4389 -0.2470 0.0148 0.0085 0.0988 -0.0932 
MFEI2 6.76E-77 -0.0296 0.5484 -0.0535 -0.2937 0.5478 0.3374 0.3401 -0.8925 0.4418 0.2240 0.2366 -0.2070 -0.8288 
MFEI1 8.36E-02 3.76E-176 -0.0064 0.3589 -0.5960 0.5644 0.4323 0.4228 -0.4084 0.9192 0.5042 0.4885 -0.5936 -0.4453 
%G+C 2.02E-04 1.14E-02 4.28E-69 62.3790 0.0701 -0.5437 0.0166 0.0364 -0.1909 0.2596 0.2028 0.1884 -0.0601 -0.0648 
dP 7.25E-03 7.98E-46 1.30E-215 8.91E-04 0.4000 -0.6030 -0.3244 -0.2649 0.0515 -0.5436 -0.2878 -0.2377 0.9013 0.0538 
dG 6.25E-02 1.11E-175 1.01E-188 1.23E-172 4.89E-222 -0.2937 0.3972 0.3745 -0.1964 0.6065 0.2944 0.2929 -0.4934 -0.3448 
dQ 8.69E-40 8.85E-61 1.05E-102 4.33E-01 4.43E-56 1.40E-85 0.2885 0.9829 -0.2230 0.4257 0.9444 0.9290 -0.3441 -0.1315 
dD 2.44E-31 8.42E-62 7.14E-98 8.48E-02 2.70E-37 1.57E-75 0.00E+00 0.0984 -0.2400 0.4251 0.9396 0.9545 -0.2971 -0.1620 
dF 3.50E-106 0.00E+00 8.37E-91 7.86E-20 1.47E-02 6.50E-21 1.17E-26 1.01E-30 0.3820 -0.2594 -0.1319 -0.1515 0.0006 0.8292 
zG 1.68E-32 1.06E-107 0.00E+00 7.70E-36 1.44E-172 2.69E-225 2.33E-99 4.94E-99 8.88E-36 -1.8302 0.5474 0.5325 -0.6583 -0.4068 
zQ 4.85E-01 6.82E-27 7.81E-145 3.20E-22 5.17E-44 4.62E-46 0.00E+00 0.00E+00 3.68E-10 1.99E-175 -0.5625 0.9844 -0.3876 -0.1195 
zD 6.86E-01 6.85E-30 9.42E-135 2.42E-19 3.70E-30 1.37E-45 0.00E+00 0.00E+00 5.62E-13 2.34E-164 0.00E+00 -0.3737 -0.3316 -0.1508 
zP 2.78E-06 4.15E-23 1.87E-213 4.41E-03 0.00E+00 7.75E-138 2.61E-63 6.64E-47 9.77E-01 1.52E-278 3.09E-81 1.13E-58 4.2017 0.0269 
zF 9.80E-06 0.00E+00 1.38E-109 2.16E-03 1.09E-02 1.37E-63 4.19E-10 1.21E-14 0.00E+00 4.47E-90 1.38E-08 7.24E-13 2.03E-01 1.3094 

 

Cs(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.4177 0.0087 -0.0162 -0.0836 0.0175 0.1887 0.1679 -0.5274 -0.1333 -0.0281 -0.0258 0.0209 -0.1057 
MFEI2 7.28E-190 -0.0296 0.3772 -0.0689 -0.2149 0.4190 0.3124 0.3092 -0.7060 0.2867 0.1452 0.1614 -0.1283 -0.5533 
MFEI1 5.42E-01 8.09E-158 -0.0064 0.2446 -0.4185 0.3975 0.3022 0.2865 -0.2376 0.7732 0.3429 0.3278 -0.4063 -0.2725 
%G+C 2.55E-01 1.03E-06 2.25E-67 62.3790 0.0245 -0.3586 0.0258 0.0277 -0.1374 0.1562 0.1775 0.1579 -0.0365 -0.0388 
dP 4.24E-09 2.66E-52 4.79E-193 8.24E-02 0.4000 -0.4024 -0.2048 -0.1539 0.0334 -0.3727 -0.1560 -0.1190 0.7354 0.0148 
dG 2.19E-01 3.87E-194 6.60E-175 1.70E-142 1.54E-178 -0.2937 0.2502 0.2357 -0.0917 0.4447 0.1470 0.1530 -0.3294 -0.2152 
dQ 3.22E-40 8.83E-109 6.25E-102 6.76E-02 1.15E-47 1.92E-70 2.88E-01 0.8927 -0.2253 0.2783 0.7257 0.7197 -0.2132 -0.1117 
dD 3.49E-32 1.59E-106 9.29E-92 4.95E-02 1.29E-27 1.18E-62 0.00E+00 0.0984 -0.2332 0.2681 0.7194 0.7613 -0.1667 -0.1368 
dF 1.05E-271 0.00E+00 1.40E-57 2.34E-20 2.47E-02 6.70E-10 5.89E-52 1.84E-55 0.3820 -0.1166 -0.0926 -0.1115 -0.0285 0.5982 
zG 6.77E-21 5.71E-92 0.00E+00 1.67E-28 1.60E-153 1.84E-218 9.80E-87 1.44E-80 4.08E-15 -1.8302 0.3672 0.3494 -0.4490 -0.2341 
zQ 4.83E-02 6.85E-25 8.95E-131 2.57E-36 2.17E-28 1.80E-25 0.00E+00 0.00E+00 4.49E-10 1.21E-149 -0.5625 0.8913 -0.2345 -0.0625 
zD 6.96E-02 2.31E-30 1.12E-119 4.31E-29 3.47E-17 1.97E-27 0.00E+00 0.00E+00 6.05E-14 1.16E-135 0.00E+00 -0.3737 -0.1864 -0.0951 
zP 1.41E-01 8.84E-20 9.77E-183 9.71E-03 0.00E+00 8.91E-121 1.20E-51 2.99E-32 5.50E-02 1.12E-222 3.70E-62 6.32E-40 4.2017 -0.0313 
zF 1.02E-13 0.00E+00 2.76E-83 5.94E-03 2.93E-01 1.31E-52 2.33E-15 3.00E-22 0.00E+00 5.81E-62 9.29E-06 1.48E-11 2.66E-02 1.3094 
 

Ck(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.5843 0.0136 -0.0244 -0.1230 0.0254 0.2765 0.2471 -0.6788 -0.1973 -0.0365 -0.0339 0.0328 -0.1581 
MFEI2 2.38E-205 -0.0296 0.5299 -0.1018 -0.3162 0.5720 0.4496 0.4458 -0.8518 0.3971 0.2111 0.2350 -0.1884 -0.7362 
MFEI1 5.19E-01 1.76E-162 -0.0064 0.3509 -0.5911 0.5597 0.4326 0.4115 -0.3260 0.9253 0.4862 0.4662 -0.5787 -0.3946 
%G+C 2.48E-01 1.38E-06 6.04E-66 62.3790 0.0363 -0.5068 0.0376 0.0408 -0.1924 0.2265 0.2567 0.2288 -0.0541 -0.0577 
dP 5.17E-09 3.11E-53 3.14E-211 8.61E-02 0.4000 -0.5698 -0.3026 -0.2282 0.0475 -0.5352 -0.2325 -0.1776 0.9049 0.0221 
dG 2.30E-01 6.67E-195 5.31E-185 1.62E-146 4.43E-193 -0.2937 0.3630 0.3430 -0.1291 0.6129 0.2173 0.2260 -0.4729 -0.3150 
dQ 1.33E-40 6.12E-112 7.07E-103 7.50E-02 1.13E-48 9.35E-71 0.2885 0.9837 -0.3128 0.3967 0.8929 0.8910 -0.3131 -0.1659 
dD 1.58E-32 6.99E-110 2.52E-92 5.36E-02 7.35E-28 6.60E-63 0.00E+00 0.0984 -0.3237 0.3839 0.8891 0.9162 -0.2466 -0.2027 
dF 1.16E-302 0.00E+00 1.25E-56 3.95E-20 2.45E-02 8.69E-10 4.65E-52 8.18E-56 0.3820 -0.1537 -0.1265 -0.1528 -0.0407 0.7564 
zG 4.12E-21 1.64E-85 0.00E+00 1.82E-27 2.81E-166 2.44E-231 2.28E-85 1.28E-79 2.58E-13 -1.8302 0.5136 0.4913 -0.6282 -0.3370 
zQ 8.40E-02 5.34E-24 2.63E-133 4.63E-35 6.84E-29 2.32E-25 0.00E+00 0.00E+00 1.86E-09 3.94E-151 -0.5625 0.9831 -0.3429 -0.0926 
zD 1.08E-01 1.71E-29 2.69E-121 5.24E-28 2.46E-17 2.40E-27 0.00E+00 0.00E+00 3.54E-13 1.62E-136 0.00E+00 -0.3737 -0.2741 -0.1406 
zP 1.20E-01 2.37E-19 1.51E-200 1.05E-02 0.00E+00 3.13E-125 3.73E-52 2.07E-32 5.38E-02 2.54E-246 7.45E-63 6.58E-40 4.2017 -0.0459 
zF 5.10E-14 0.00E+00 2.22E-84 6.28E-03 2.95E-01 8.61E-53 2.71E-15 3.31E-22 0.00E+00 1.27E-60 1.13E-05 2.33E-11 2.97E-02 1.3094 

Three tables of Pearson correlation coefficients Cp, Spearman-rank Cs (ranks-based) and Kendall's Ck (relative ranks-based). (Upper diagonal) 
Correlation coefficients C(f, g). |C| ≤ 1.0, 1.0 for trend identical, -1.0 for perfect opposite, and 0.0 for complete independence. Bold, 0.9 ≤ |C| strongly 
correlated, 0.4 ≤ |C| < 0.9 moderately, and |C| < 0.4 weakly; (Diagonal) 95th percentile; (Lower diagonal) two-tailed p-values using the Student's t 
distribution for Cp. two-tailed p-values using the large-sample approximations for Cs and Ck. The pair(s) of variables with Cp > 0 (Cp < 0) and p-value 
< 0.001 tend to increase together (one variable decreases while the other increases).  
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Table B.5: The correlation coefficients, 95th percentile, and p-values for pre-miRs using Dinucleotide 

Shuffling algorithm. 

Cp(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.3777 -0.0366 -0.0784 -0.0567 0.0394 0.2737 0.2424 -0.4389 -0.2180 0.0183 0.0098 0.0814 -0.0884 
MFEI2 6.76E-77 -0.0296 0.5484 -0.0535 -0.2937 0.5478 0.3374 0.3401 -0.8925 0.4157 0.2147 0.2279 -0.1888 -0.8092 
MFEI1 8.36E-02 3.76E-176 -0.0064 0.3589 -0.5960 0.5644 0.4323 0.4228 -0.4084 0.8833 0.4905 0.4813 -0.5677 -0.4343 
%G+C 2.02E-04 1.14E-02 4.28E-69 62.3790 0.0701 -0.5437 0.0166 0.0364 -0.1909 0.2613 0.2059 0.1970 -0.0756 -0.0637 
dP 7.25E-03 7.98E-46 1.30E-215 8.91E-04 0.4000 -0.6030 -0.3244 -0.2649 0.0515 -0.5410 -0.2862 -0.2379 0.8867 0.0464 
dG 6.25E-02 1.11E-175 1.01E-188 1.23E-172 4.89E-222 -0.2937 0.3972 0.3745 -0.1964 0.5748 0.2794 0.2784 -0.4598 -0.3364 
dQ 8.69E-40 8.85E-61 1.05E-102 4.33E-01 4.43E-56 1.40E-85 0.2885 0.9829 -0.2230 0.4823 0.9387 0.9221 -0.3730 -0.1336 
dD 2.44E-31 8.42E-62 7.14E-98 8.48E-02 2.70E-37 1.57E-75 0.00E+00 0.0984 -0.2400 0.4791 0.9348 0.9486 -0.3237 -0.1640 
dF 3.50E-106 0.00E+00 8.37E-91 7.86E-20 1.47E-02 6.50E-21 1.17E-26 1.01E-30 0.3820 -0.2459 -0.1279 -0.1486 -0.0074 0.8195 
zG 1.59E-25 2.31E-94 0.00E+00 2.59E-36 1.36E-170 2.84E-197 6.51E-131 5.93E-129 3.25E-32 -1.4415 0.5998 0.5862 -0.6668 -0.3767 
zQ 3.86E-01 8.99E-25 5.58E-136 7.18E-23 1.62E-43 1.85E-41 0.00E+00 0.00E+00 1.24E-09 4.68E-219 -0.5185 0.9846 -0.4207 -0.1125 
zD 6.44E-01 8.74E-28 2.72E-130 4.74E-21 3.26E-30 3.71E-41 0.00E+00 0.00E+00 1.52E-12 5.75E-207 0.00E+00 -0.3807 -0.3646 -0.1450 
zP 1.14E-04 1.98E-19 2.10E-191 3.39E-04 0.00E+00 1.15E-117 6.87E-75 8.20E-56 7.28E-01 2.83E-288 8.09E-97 2.00E-71 4.1119 0.0030 
zF 2.78E-05 0.00E+00 9.35E-104 2.56E-03 2.82E-02 1.95E-60 2.16E-10 5.54E-15 0.00E+00 1.78E-76 9.21E-08 5.33E-12 8.87E-01 1.3811 

 

Cs(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.4177 0.0087 -0.0162 -0.0836 0.0175 0.1887 0.1679 -0.5274 -0.1114 -0.0212 -0.0211 0.0102 -0.0973 
MFEI2 7.28E-190 -0.0296 0.3772 -0.0689 -0.2149 0.4190 0.3124 0.3092 -0.7060 0.2778 0.1371 0.1534 -0.1211 -0.5369 
MFEI1 5.42E-01 8.09E-158 -0.0064 0.2446 -0.4185 0.3975 0.3022 0.2865 -0.2376 0.7201 0.3241 0.3121 -0.3907 -0.2646 
%G+C 2.55E-01 1.03E-06 2.25E-67 62.3790 0.0245 -0.3586 0.0258 0.0277 -0.1374 0.1604 0.1767 0.1589 -0.0466 -0.0327 
dP 4.24E-09 2.66E-52 4.79E-193 8.24E-02 0.4000 -0.4024 -0.2048 -0.1539 0.0334 -0.3728 -0.1520 -0.1148 0.7186 0.0143 
dG 2.19E-01 3.87E-194 6.60E-175 1.70E-142 1.54E-178 -0.2937 0.2502 0.2357 -0.0917 0.4153 0.1313 0.1380 -0.3062 -0.2117 
dQ 3.22E-40 8.83E-109 6.25E-102 6.76E-02 1.15E-47 1.92E-70 0.2885 0.8927 -0.2253 0.3108 0.7139 0.7099 -0.2291 -0.1148 
dD 3.49E-32 1.59E-106 9.29E-92 4.95E-02 1.29E-27 1.18E-62 0.00E+00 0.0984 -0.2332 0.2986 0.7080 0.7487 -0.1815 -0.1395 
dF 1.05E-271 0.00E+00 1.40E-57 2.34E-20 2.47E-02 6.70E-10 5.89E-52 1.84E-55 0.3820 -0.1194 -0.0896 -0.1084 -0.0274 0.5785 
zG 4.59E-15 1.74E-86 0.00E+00 5.64E-30 1.36E-153 8.33E-191 9.91E-108 1.89E-99 9.00E-16 -1.4415 0.3996 0.3796 -0.4591 -0.2254 
zQ 1.36E-01 2.27E-22 5.48E-117 5.42E-36 5.21E-27 1.22E-20 0.00E+00 0.00E+00 1.65E-09 7.65E-177 -0.5185 0.8916 -0.2539 -0.0587 
zD 1.38E-01 1.34E-27 1.16E-108 1.91E-29 4.20E-16 1.27E-22 0.00E+00 0.00E+00 2.99E-13 8.26E-160 0.00E+00 -0.3807 -0.2045 -0.0916 
zP 4.72E-01 8.41E-18 4.17E-169 9.57E-04 0.00E+00 1.21E-104 2.13E-59 6.97E-38 6.55E-02 8.56E-233 1.54E-72 1.04E-47 4.1119 -0.0365 
zF 7.66E-12 0.00E+00 1.31E-78 2.04E-02 3.13E-01 5.72E-51 3.90E-16 4.69E-23 0.00E+00 1.37E-57 3.12E-05 8.21E-11 9.63E-03 1.3811 
 

Ck(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.5843 0.0136 -0.0244 -0.1230 0.0254 0.2765 0.2471 -0.6788 -0.1642 -0.0270 -0.0275 0.0162 -0.1457 
MFEI2 2.38E-205 -0.0296 0.5299 -0.1018 -0.3162 0.5720 0.4496 0.4458 -0.8518 0.3910 0.1995 0.2235 -0.1775 -0.7185 
MFEI1 5.19E-01 1.76E-162 -0.0064 0.3509 -0.5911 0.5597 0.4326 0.4115 -0.3260 0.8869 0.4612 0.4455 -0.5561 -0.3836 
%G+C 2.48E-01 1.38E-06 6.04E-66 62.3790 0.0363 -0.5068 0.0376 0.0408 -0.1924 0.2307 0.2555 0.2306 -0.0688 -0.0486 
dP 5.17E-09 3.11E-53 3.14E-211 8.61E-02 0.4000 -0.5698 -0.3026 -0.2282 0.0475 -0.5337 -0.2261 -0.1716 0.8892 0.0212 
dG 2.30E-01 6.67E-195 5.31E-185 1.62E-146 4.43E-193 -0.2937 0.3630 0.3430 -0.1291 0.5776 0.1948 0.2046 -0.4416 -0.3102 
dQ 1.33E-40 6.12E-112 7.07E-103 7.50E-02 1.13E-48 9.35E-71 0.2885 0.9837 -0.3128 0.4430 0.8842 0.8833 -0.3366 -0.1704 
dD 1.58E-32 6.99E-110 2.52E-92 5.36E-02 7.35E-28 6.60E-63 0.00E+00 0.0984 -0.3237 0.4276 0.8798 0.9078 -0.2683 -0.2065 
dF 1.16E-302 0.00E+00 1.25E-56 3.95E-20 2.45E-02 8.69E-10 4.65E-52 8.18E-56 0.3820 -0.1603 -0.1223 -0.1485 -0.0391 0.7361 
zG 5.13E-15 8.88E-83 0.00E+00 1.87E-28 3.27E-165 1.26E-199 2.30E-108 2.54E-100 2.32E-14 -1.4415 0.5574 0.5335 -0.6398 -0.3270 
zQ 2.02E-01 1.47E-21 2.02E-118 1.00E-34 2.25E-27 1.33E-20 0.00E+00 0.00E+00 6.33E-09 3.56E-183 -0.5185 0.9832 -0.3708 -0.0860 
zD 1.94E-01 9.34E-27 1.04E-109 2.00E-28 2.87E-16 1.31E-22 0.00E+00 0.00E+00 1.59E-12 4.83E-165 0.00E+00 -0.3807 -0.3008 -0.1347 
zP 4.45E-01 2.58E-17 3.97E-182 1.12E-03 0.00E+00 1.28E-107 1.70E-60 2.89E-38 6.43E-02 2.75E-258 5.30E-74 4.31E-48 4.1119 -0.0539 
zF 4.13E-12 0.00E+00 1.89E-79 2.15E-02 3.15E-01 3.61E-51 4.65E-16 5.32E-23 0.00E+00 5.18E-57 4.56E-05 1.54E-10 1.07E-02 1.3811 

Three tables of Pearson correlation coefficients Cp, Spearman-rank Cs (ranks-based) and Kendall's Ck (relative ranks-based). (Upper diagonal) 
Correlation coefficients C(f, g). |C| ≤ 1.0, 1.0 for trend identical, -1.0 for perfect opposite, and 0.0 for complete independence. Bold, 0.9 ≤ |C| strongly 
correlated, 0.4 ≤ |C| < 0.9 moderately, and |C| < 0.4 weakly; (Diagonal) 95th percentile; (Lower diagonal) two-tailed p-values using the Student's t 
distribution for Cp. two-tailed p-values using the large-sample approximations for Cs and Ck. The pair(s) of variables with Cp > 0 (Cp < 0) and p-value 
< 0.001 tend to increase together (one variable decreases while the other increases).  
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Table B.6: The correlation coefficients, 95th percentile, and p-values for pre-miRs using Zero-order 

Markov Model algorithm. 

Cp(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.3777 -0.0366 -0.0784 -0.0567 0.0394 0.2737 0.2424 -0.4389 -0.1602 0.0172 0.0087 0.0750 -0.0935 
MFEI2 6.76E-77 -0.0296 0.5484 -0.0535 -0.2937 0.5478 0.3374 0.3401 -0.8925 0.4701 0.2283 0.2405 -0.2250 -0.8157 
MFEI1 8.36E-02 3.76E-176 -0.0064 0.3589 -0.5960 0.5644 0.4323 0.4228 -0.4084 0.9704 0.5056 0.4906 -0.6296 -0.4441 
%G+C 2.02E-04 1.14E-02 4.28E-69 62.3790 0.0701 -0.5437 0.0166 0.0364 -0.1909 0.3849 0.1922 0.1750 -0.0969 -0.0597 
dP 7.25E-03 7.98E-46 1.30E-215 8.91E-04 0.4000 -0.6030 -0.3244 -0.2649 0.0515 -0.5565 -0.2953 -0.2478 0.9384 0.0583 
dG 6.25E-02 1.11E-175 1.01E-188 1.23E-172 4.89E-222 -0.2937 0.3972 0.3745 -0.1964 0.5294 0.3060 0.3077 -0.4964 -0.3492 
dQ 8.69E-40 8.85E-61 1.05E-102 4.33E-01 4.43E-56 1.40E-85 0.2885 0.9829 -0.2230 0.4231 0.9475 0.9317 -0.3394 -0.1305 
dD 2.44E-31 8.42E-62 7.14E-98 8.48E-02 2.70E-37 1.57E-75 0.00E+00 0.0984 -0.2400 0.4194 0.9423 0.9569 -0.2895 -0.1609 
dF 3.50E-106 0.00E+00 8.37E-91 7.86E-20 1.47E-02 6.50E-21 1.17E-26 1.01E-30 0.3820 -0.3303 -0.1309 -0.1485 0.0215 0.8123 
zG 2.37E-14 1.37E-123 0.00E+00 4.63E-80 2.05E-182 3.99E-162 5.16E-98 3.35E-96 3.38E-58 -1.3010 0.5364 0.5210 -0.6525 -0.4227 
zQ 4.15E-01 6.82E-28 9.22E-146 4.41E-20 2.40E-46 8.79E-50 0.00E+00 0.00E+00 5.03E-10 3.25E-167 -0.5731 0.9840 -0.3769 -0.1192 
zD 6.82E-01 7.57E-31 4.58E-136 7.06E-17 1.07E-32 2.43E-50 0.00E+00 0.00E+00 1.61E-12 3.59E-156 0.00E+00 -0.3648 -0.3234 -0.1509 
zP 3.80E-04 4.12E-27 9.33E-248 4.27E-06 0.00E+00 9.14E-140 1.49E-61 1.63E-44 3.10E-01 5.89E-272 1.50E-76 9.97E-56 3.7370 0.0465 
zF 9.33E-06 0.00E+00 6.02E-109 4.71E-03 5.78E-03 2.86E-65 5.59E-10 1.81E-14 0.00E+00 8.07E-98 1.53E-08 6.97E-13 2.76E-02 1.0831 

 

Cs(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.4177 0.0087 -0.0162 -0.0836 0.0175 0.1887 0.1679 -0.5274 -0.0611 -0.0263 -0.0255 0.0000 -0.1074 
MFEI2 7.28E-190 -0.0296 0.3772 -0.0689 -0.2149 0.4190 0.3124 0.3092 -0.7060 0.3154 0.1509 0.1672 -0.1454 -0.5530 
MFEI1 5.42E-01 8.09E-158 -0.0064 0.2446 -0.4185 0.3975 0.3022 0.2865 -0.2376 0.8793 0.3465 0.3328 -0.4418 -0.2713 
%G+C 2.55E-01 1.03E-06 2.25E-67 62.3790 0.0245 -0.3586 0.0258 0.0277 -0.1374 0.2557 0.1683 0.1471 -0.0605 -0.0399 
dP 4.24E-09 2.66E-52 4.79E-193 8.24E-02 0.4000 -0.4024 -0.2048 -0.1539 0.0334 -0.3840 -0.1629 -0.1276 0.8075 0.0147 
dG 2.19E-01 3.87E-194 6.60E-175 1.70E-142 1.54E-178 -0.2937 0.2502 0.2357 -0.0917 0.3753 0.1580 0.1665 -0.3337 -0.2132 
dQ 3.22E-40 8.83E-109 6.25E-102 6.76E-02 1.15E-47 1.92E-70 0.2885 0.8927 -0.2253 0.2862 0.7353 0.7268 -0.2079 -0.1117 
dD 3.49E-32 1.59E-106 9.29E-92 4.95E-02 1.29E-27 1.18E-62 0.00E+00 0.0984 -0.2332 0.2736 0.7277 0.7690 -0.1601 -0.1368 
dF 1.05E-271 0.00E+00 1.40E-57 2.34E-20 2.47E-02 6.70E-10 5.89E-52 1.84E-55 0.3820 -0.1850 -0.0928 -0.1103 -0.0087 0.6003 
zG 1.71E-05 6.65E-111 0.00E+00 1.98E-73 7.11E-163 3.69E-156 1.17E-91 7.56E-84 1.27E-35 -1.3010 0.3676 0.3507 -0.4478 -0.2521 
zQ 6.43E-02 9.45E-27 1.96E-133 7.89E-33 8.97E-31 3.69E-29 0.00E+00 0.00E+00 4.25E-10 5.56E-150 -0.5731 0.8887 -0.2234 -0.0655 
zD 7.33E-02 1.82E-32 3.07E-123 1.87E-25 1.63E-19 3.49E-32 0.00E+00 0.00E+00 1.12E-13 1.25E-136 0.00E+00 -0.3648 -0.1793 -0.0987 
zP 1.00E+00 5.85E-25 1.11E-215 1.78E-05 0.00E+00 7.30E-124 3.11E-49 7.52E-30 5.57E-01 1.66E-221 1.43E-56 4.56E-37 3.7370 -0.0107 
zF 4.03E-14 0.00E+00 1.46E-82 4.69E-03 2.99E-01 1.07E-51 2.25E-15 3.04E-22 0.00E+00 1.48E-71 3.31E-06 2.51E-12 4.49E-01 1.0831 
 

Ck(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.5843 0.0136 -0.0244 -0.1230 0.0254 0.2765 0.2471 -0.6788 -0.0914 -0.0339 -0.0336 0.0020 -0.1604 
MFEI2 2.38E-205 -0.0296 0.5299 -0.1018 -0.3162 0.5720 0.4496 0.4458 -0.8518 0.4419 0.2192 0.2430 -0.2140 -0.7350 
MFEI1 5.19E-01 1.76E-162 -0.0064 0.3509 -0.5911 0.5597 0.4326 0.4115 -0.3260 0.9793 0.4912 0.4731 -0.6225 -0.3934 
%G+C 2.48E-01 1.38E-06 6.04E-66 62.3790 0.0363 -0.5068 0.0376 0.0408 -0.1924 0.3660 0.2436 0.2132 -0.0898 -0.0591 
dP 5.17E-09 3.11E-53 3.14E-211 8.61E-02 0.4000 -0.5698 -0.3026 -0.2282 0.0475 -0.5491 -0.2424 -0.1905 0.9470 0.0224 
dG 2.30E-01 6.67E-195 5.31E-185 1.62E-146 4.43E-193 -0.2937 0.3630 0.3430 -0.1291 0.5287 0.2331 0.2455 -0.4790 -0.3126 
dQ 1.33E-40 6.12E-112 7.07E-103 7.50E-02 1.13E-48 9.35E-71 0.2885 0.9837 -0.3128 0.4089 0.8997 0.8963 -0.3058 -0.1658 
dD 1.58E-32 6.99E-110 2.52E-92 5.36E-02 7.35E-28 6.60E-63 0.00E+00 0.0984 -0.3237 0.3924 0.8951 0.9211 -0.2371 -0.2023 
dF 1.16E-302 0.00E+00 1.25E-56 3.95E-20 2.45E-02 8.69E-10 4.65E-52 8.18E-56 0.3820 -0.2495 -0.1265 -0.1508 -0.0129 0.7563 
zG 1.47E-05 8.70E-108 0.00E+00 5.29E-72 9.72E-177 1.38E-161 4.76E-91 2.28E-83 3.84E-33 -1.3010 0.5161 0.4944 -0.6279 -0.3634 
zQ 1.08E-01 8.97E-26 1.90E-136 1.25E-31 2.44E-31 4.82E-29 0.00E+00 0.00E+00 1.89E-09 8.86E-153 -0.5731 0.9824 -0.3276 -0.0966 
zD 1.12E-01 1.78E-31 2.30E-125 1.86E-24 9.36E-20 4.01E-32 0.00E+00 0.00E+00 7.16E-13 1.86E-138 0.00E+00 -0.3648 -0.2642 -0.1454 
zP 9.26E-01 1.27E-24 1.21E-240 2.08E-05 0.00E+00 6.61E-129 9.92E-50 5.32E-30 5.43E-01 5.11E-246 3.39E-57 4.21E-37 3.7370 -0.0152 
zF 2.24E-14 0.00E+00 7.79E-84 5.13E-03 2.89E-01 5.51E-52 2.83E-15 3.91E-22 0.00E+00 6.39E-71 4.58E-06 4.60E-12 4.72E-01 1.0831 

Three tables of Pearson correlation coefficients Cp, Spearman-rank Cs (ranks-based) and Kendall's Ck (relative ranks-based). (Upper diagonal) 
Correlation coefficients C(f, g). |C| ≤ 1.0, 1.0 for trend identical, -1.0 for perfect opposite, and 0.0 for complete independence. Bold, 0.9 ≤ |C| strongly 
correlated, 0.4 ≤ |C| < 0.9 moderately, and |C| < 0.4 weakly; (Diagonal) 95th percentile; (Lower diagonal) two-tailed p-values using the Student's t 
distribution for Cp. two-tailed p-values using the large-sample approximations for Cs and Ck. The pair(s) of variables with Cp > 0 (Cp < 0) and p-value 
< 0.001 tend to increase together (one variable decreases while the other increases).  



 133

Table B.7: The correlation coefficients, 95th percentile, and p-values for pre-miRs using First-order 

Markov Model algorithm. 

Cp(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.3777 -0.0366 -0.0784 -0.0567 0.0394 0.2737 0.2424 -0.4389 -0.1578 0.0208 0.0101 0.0641 -0.0880 
MFEI2 6.76E-77 -0.0296 0.5484 -0.0535 -0.2937 0.5478 0.3374 0.3401 -0.8925 0.4137 0.2179 0.2309 -0.1919 -0.7784 
MFEI1 8.36E-02 3.76E-176 -0.0064 0.3589 -0.5960 0.5644 0.4323 0.4228 -0.4084 0.9075 0.4930 0.4841 -0.5859 -0.4301 
%G+C 2.02E-04 1.14E-02 4.28E-69 62.3790 0.0701 -0.5437 0.0166 0.0364 -0.1909 0.3349 0.1979 0.1851 -0.0902 -0.0592 
dP 7.25E-03 7.98E-46 1.30E-215 8.91E-04 0.4000 -0.6030 -0.3244 -0.2649 0.0515 -0.5626 -0.2912 -0.2463 0.9177 0.0469 
dG 6.25E-02 1.11E-175 1.01E-188 1.23E-172 4.89E-222 -0.2937 0.3972 0.3745 -0.1964 0.5241 0.2892 0.2922 -0.4662 -0.3372 
dQ 8.69E-40 8.85E-61 1.05E-102 4.33E-01 4.43E-56 1.40E-85 0.2885 0.9829 -0.2230 0.4721 0.9417 0.9252 -0.3634 -0.1304 
dD 2.44E-31 8.42E-62 7.14E-98 8.48E-02 2.70E-37 1.57E-75 0.00E+00 0.0984 -0.2400 0.4644 0.9374 0.9514 -0.3104 -0.1612 
dF 3.50E-106 0.00E+00 8.37E-91 7.86E-20 1.47E-02 6.50E-21 1.17E-26 1.01E-30 0.3820 -0.2710 -0.1266 -0.1451 -0.0027 0.7941 
zG 5.85E-14 2.26E-93 0.00E+00 7.52E-60 2.67E-187 2.28E-158 8.60E-125 2.68E-120 5.21E-39 -1.0477 0.5781 0.5641 -0.6670 -0.3799 
zQ 3.24E-01 1.68E-25 1.40E-137 3.17E-21 4.84E-45 2.03E-44 0.00E+00 0.00E+00 1.82E-09 4.85E-200 -0.5572 0.9841 -0.4021 -0.1095 
zD 6.32E-01 1.71E-28 4.94E-132 1.01E-18 2.54E-32 2.42E-45 0.00E+00 0.00E+00 5.06E-12 1.65E-188 0.00E+00 -0.3779 -0.3481 -0.1437 
zP 2.39E-03 4.96E-20 1.08E-206 1.88E-05 0.00E+00 2.71E-121 6.46E-71 2.93E-51 8.98E-01 1.63E-288 7.14E-88 7.73E-65 3.6154 0.0103 
zF 2.99E-05 0.00E+00 1.33E-101 5.09E-03 2.64E-02 1.02E-60 5.84E-10 1.65E-14 0.00E+00 7.48E-78 2.04E-07 8.35E-12 6.26E-01 1.0988 

 

Cs(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.4177 0.0087 -0.0162 -0.0836 0.0175 0.1887 0.1679 -0.5274 -0.0590 -0.0226 -0.0232 -0.0054 -0.0992 
MFEI2 7.28E-190 -0.0296 0.3772 -0.0689 -0.2149 0.4190 0.3124 0.3092 -0.7060 0.2965 0.1407 0.1574 -0.1314 -0.5352 
MFEI1 5.42E-01 8.09E-158 -0.0064 0.2446 -0.4185 0.3975 0.3022 0.2865 -0.2376 0.7672 0.3276 0.3165 -0.4134 -0.2609 
%G+C 2.55E-01 1.03E-06 2.25E-67 62.3790 0.0245 -0.3586 0.0258 0.0277 -0.1374 0.2181 0.1694 0.1485 -0.0576 -0.0328 
dP 4.24E-09 2.66E-52 4.79E-193 8.24E-02 0.4000 -0.4024 -0.2048 -0.1539 0.0334 -0.3918 -0.1560 -0.1217 0.7789 0.0127 
dG 2.19E-01 3.87E-194 6.60E-175 1.70E-142 1.54E-178 -0.2937 0.2502 0.2357 -0.0917 0.3734 0.1408 0.1509 -0.3131 -0.2083 
dQ 3.22E-40 8.83E-109 6.25E-102 6.76E-02 1.15E-47 1.92E-70 0.2885 0.8927 -0.2253 0.3044 0.7211 0.7162 -0.2153 -0.1147 
dD 3.49E-32 1.59E-106 9.29E-92 4.95E-02 1.29E-27 1.18E-62 0.00E+00 0.0984 -0.2332 0.2905 0.7151 0.7564 -0.1666 -0.1393 
dF 1.05E-271 0.00E+00 1.40E-57 2.34E-20 2.47E-02 6.70E-10 5.89E-52 1.84E-55 0.3820 -0.1599 -0.0877 -0.1050 -0.0181 0.5805 
zG 3.28E-05 2.85E-98 0.00E+00 6.40E-54 1.91E-169 1.38E-154 2.06E-103 2.99E-94 5.06E-27 -1.0477 0.3807 0.3634 -0.4622 -0.2390 
zQ 1.12E-01 1.78E-23 1.54E-119 3.26E-33 2.23E-28 1.67E-23 0.00E+00 0.00E+00 3.53E-09 1.02E-160 -0.5572 0.8891 -0.2342 -0.0600 
zD 1.02E-01 6.02E-29 1.19E-111 6.55E-26 6.96E-18 9.78E-27 0.00E+00 0.00E+00 1.55E-12 1.41E-146 0.00E+00 -0.3779 -0.1891 -0.0937 
zP 7.03E-01 1.16E-20 4.54E-189 4.39E-05 0.00E+00 2.70E-109 1.16E-52 3.42E-32 2.22E-01 6.49E-236 5.17E-62 4.76E-41 3.6154 -0.0204 
zF 2.94E-12 0.00E+00 1.72E-76 2.01E-02 3.69E-01 2.13E-49 4.03E-16 5.36E-23 0.00E+00 1.64E-64 2.05E-05 2.93E-11 1.48E-01 1.0988 
 

Ck(f, g) Length MFEI2 MFEI1 %G+C dP dG dQ dD dF zG zQ zD zP zF 

Length 174.4500 0.5843 0.0136 -0.0244 -0.1230 0.0254 0.2765 0.2471 -0.6788 -0.0875 -0.0286 -0.0302 -0.0069 -0.1483 
MFEI2 2.38E-205 -0.0296 0.5299 -0.1018 -0.3162 0.5720 0.4496 0.4458 -0.8518 0.4190 0.2048 0.2288 -0.1933 -0.7159 
MFEI1 5.19E-01 1.76E-162 -0.0064 0.3509 -0.5911 0.5597 0.4326 0.4115 -0.3260 0.9157 0.4660 0.4514 -0.5841 -0.3788 
%G+C 2.48E-01 1.38E-06 6.04E-66 62.3790 0.0363 -0.5068 0.0376 0.0408 -0.1924 0.3120 0.2452 0.2158 -0.0854 -0.0488 
dP 5.17E-09 3.11E-53 3.14E-211 8.61E-02 0.4000 -0.5698 -0.3026 -0.2282 0.0475 -0.5569 -0.2324 -0.1819 0.9259 0.0193 
dG 2.30E-01 6.67E-195 5.31E-185 1.62E-146 4.43E-193 -0.2937 0.3630 0.3430 -0.1291 0.5265 0.2087 0.2232 -0.4511 -0.3057 
dQ 1.33E-40 6.12E-112 7.07E-103 7.50E-02 1.13E-48 9.35E-71 0.2885 0.9837 -0.3128 0.4352 0.8896 0.8884 -0.3171 -0.1701 
dD 1.58E-32 6.99E-110 2.52E-92 5.36E-02 7.35E-28 6.60E-63 0.00E+00 0.0984 -0.3237 0.4170 0.8853 0.9131 -0.2472 -0.2059 
dF 1.16E-302 0.00E+00 1.25E-56 3.95E-20 2.45E-02 8.69E-10 4.65E-52 8.18E-56 0.3820 -0.2171 -0.1201 -0.1439 -0.0258 0.7360 
zG 3.34E-05 5.47E-96 0.00E+00 8.92E-52 9.13E-183 4.62E-160 3.25E-104 5.16E-95 2.60E-25 -1.0477 0.5351 0.5135 -0.6441 -0.3468 
zQ 1.76E-01 1.21E-22 3.44E-121 4.98E-32 7.47E-29 1.76E-23 0.00E+00 0.00E+00 1.17E-08 3.23E-166 -0.5572 0.9826 -0.3437 -0.0882 
zD 1.53E-01 5.14E-28 5.89E-113 4.93E-25 4.08E-18 1.08E-26 0.00E+00 0.00E+00 7.62E-12 5.14E-151 0.00E+00 -0.3779 -0.2793 -0.1376 
zP 7.42E-01 2.59E-20 3.60E-205 5.14E-05 0.00E+00 9.54E-113 1.54E-53 1.54E-32 2.21E-01 7.85E-263 3.81E-63 1.94E-41 3.6154 -0.0302 
zF 1.73E-12 0.00E+00 2.31E-77 2.08E-02 3.61E-01 1.10E-49 5.16E-16 6.88E-23 0.00E+00 2.46E-64 2.93E-05 6.00E-11 1.53E-01 1.0988 

(Three tables of Pearson correlation coefficients Cp, Spearman-rank Cs (ranks-based) and Kendall's Ck (relative ranks-based). (Upper diagonal) 
Correlation coefficients C(f, g). |C| ≤ 1.0, 1.0 for trend identical, -1.0 for perfect opposite, and 0.0 for complete independence. Bold, 0.9 ≤ |C| strongly 
correlated, 0.4 ≤ |C| < 0.9 moderately, and |C| < 0.4 weakly; (Diagonal) 95th percentile; (Lower diagonal) two-tailed p-values using the Student's t 
distribution for Cp. two-tailed p-values using the large-sample approximations for Cs and Ck. The pair(s) of variables with Cp > 0 (Cp < 0) and p-value 
< 0.001 tend to increase together (one variable decreases while the other increases).  
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Table C.1: The prediction performances of miPred evaluated on the pre-miR datasets TR-H, TE-H, and 

IE-NH. 

 Species     Genus TP FN P FP TN N %SE %SP %FPR %ACC 

Homo sapiens  Vertebrata 176 24 200 10 390 400 88.00 97.50 2.50 94.33 
Homo sapiens Vertebrata 104 19 123 5 241 246 84.55 97.97 2.03 93.50 
Anopheles gambiae Arthropoda 37 1 38 1 75 76 97.37 98.68 1.32 98.25 
Apis mellifera Arthropoda 25 0 25 2 48 50 100 96 4 97.33 
Arabidopsis thaliana Viridiplantae 101 7 108 2 214 216 93.52 99.07 0.93 97.22 
Ateles geoffroyi Vertebrata 2 0 2 0 4 4 100 100 0 100 
Bos taurus Vertebrata 8 3 11 2 20 22 72.73 90.91 9.09 84.85 
Caenorhabditis briggsae Nematoda 72 4 76 1 151 152 94.74 99.34 0.66 97.81 
Caenorhabditis elegans Nematoda 96 17 113 7 219 226 84.96 96.9 3.1 92.92 
Canis familiaris Vertebrata 3 0 3 0 6 6 100 100 0 100 
Danio rerio Vertebrata 235 11 246 19 473 492 95.53 96.14 3.86 95.94 
Drosophila melanogaster Arthropoda 67 6 73 4 142 146 91.78 97.26 2.74 95.43 
Drosophila pseudoobscura Arthropoda 32 3 35 1 69 70 91.43 98.57 1.43 96.19 
Epstein barr virus (EBV) Viruses 22 0 22 2 42 44 100 95.45 4.55 96.97 
Fugu rubripes Vertebrata 68 2 70 2 138 140 97.14 98.57 1.43 98.1 
Gallus gallus Vertebrata 87 5 92 4 180 184 94.57 97.83 2.17 96.74 
Glycine max Viridiplantae 20 1 21 0 42 42 95.24 100 0 98.41 
Herpes simplex virus (HSV) Viruses 1 0 1 0 2 2 100 100 0 100 
Human cytomegalovirus (HCMV) Viruses 11 0 11 1 21 22 100 95.45 4.55 96.97 
Kaposi sarcoma-associated herpesvirus (KSHV) Viruses 11 1 12 0 24 24 91.67 100 0 97.22 
Lagothrix lagotricha Vertebrata 1 1 2 0 4 4 50 100 0 83.33 
Lemur catta Vertebrata 2 1 3 0 6 6 66.67 100 0 88.89 
Macaca mulatta Vertebrata 1 1 2 0 4 4 50 100 0 83.33 
Medicago truncatula Viridiplantae 17 1 18 0 36 36 94.44 100 0 98.15 
Mouse γ-herpesvirus (MGHV68) Viruses 8 1 9 1 17 18 88.89 94.44 5.56 92.59 
Mus musculus Vertebrata 166 33 199 9 389 398 83.42 97.74 2.26 92.96 
Oryza sativa Viridiplantae 140 12 152 4 300 304 92.11 98.68 1.32 96.49 
Ovis aries Vertebrata 2 0 2 0 4 4 100 100 0 100 
Pan troglodytes Vertebrata 2 1 3 1 5 6 66.67 83.33 16.67 77.78 
Physcomitrella patens Viridiplantae 17 0 17 0 34 34 100 100 0 100 
Populus trichocarpa Viridiplantae 144 13 157 13 301 314 91.72 95.86 4.14 94.48 
Rattus norvegicus Vertebrata 56 12 68 10 126 136 82.35 92.65 7.35 89.22 
Rhesus lymphocryptovirus Viruses 16 0 16 2 30 32 100 93.75 6.25 95.83 
Saccharum officinarum Viridiplantae 3 1 4 0 8 8 75 100 0 91.67 
Saguinus labiatus Vertebrata 1 1 2 0 4 4 50 100 0 83.33 
Simian virus (SV40) Viruses 1 0 1 0 2 2 100 100 0 100 
Sorghum bicolor Viridiplantae 48 2 50 2 98 100 96 98 2 97.33 
Sus scrofa Vertebrata 1 1 2 0 4 4 50 100 0 83.33 
Tetraodon nigroviridis Vertebrata 40 3 43 0 86 86 93.02 100 0 97.67 
Xenopus laevis Vertebrata 4 1 5 0 10 10 80 100 0 93.33 
Xenopus tropicalis Vertebrata 119 6 125 4 246 250 95.2 98.4 1.6 97.33 
Zea mays Viridiplantae 79 0 79 5 153 158 100 96.84 3.16 97.89 
Total samples  2046 195 2241 114 4368 4482     

(Species) Row 1 (TR-H), row 2 (TE-H), and the remaining rows 3−43 (IE-NH). TP (real pre-miRs detected), FN (real pre-miRs missed), P (real pre-
miRs), FP (pseudo hairpins detected), TN (pseudo hairpins missed), N (pseudo hairpins), %SE (Sensitivity), %SP (Specificity), %FPR (False-positive 
rate), and %ACC (Accuracy).  

 

 



 136

Table C.2: The prediction performances of miPred-NBC evaluated on the pre-miR datasets TR-H, TE-H, 

and IE-NH. 

Species Genus TP FN P FP TN N %SE %SP %FPR %ACC 

Homo sapiens  Vertebrata 200 0 200 0 400 400 100.00 100.00 0.00 100.00 
Homo sapiens Vertebrata 46 77 123 36 210 246 37.40 85.37 14.63 69.38 
Anopheles gambiae Arthropoda 12 26 38 7 69 76 31.58 90.79 9.21 71.05 
Apis mellifera Arthropoda 6 19 25 6 44 50 24.00 88.00 12.00 66.67 
Arabidopsis thaliana Viridiplantae 20 88 108 27 189 216 18.52 87.50 12.50 64.51 
Ateles geoffroyi Vertebrata 0 2 2 1 3 4 0.00 75.00 25.00 50.00 
Bos taurus Vertebrata 1 10 11 2 20 22 9.09 90.91 9.09 63.64 
Caenorhabditis briggsae Nematoda 27 49 76 20 132 152 35.53 86.84 13.16 69.74 
Caenorhabditis elegans Nematoda 51 62 113 26 200 226 45.13 88.50 11.50 74.04 
Canis familiaris Vertebrata 0 3 3 1 5 6 0.00 83.33 16.67 55.56 
Danio rerio Vertebrata 71 175 246 62 430 492 28.86 87.40 12.60 67.89 
Drosophila melanogaster Arthropoda 21 52 73 17 129 146 28.77 88.36 11.64 68.49 
Drosophila pseudoobscura Arthropoda 12 23 35 5 65 70 34.29 92.86 7.14 73.33 
Epstein barr virus (EBV) Viruses 6 16 22 4 40 44 27.27 90.91 9.09 69.70 
Fugu rubripes Vertebrata 10 60 70 18 122 140 14.29 87.14 12.86 62.86 
Gallus gallus Vertebrata 24 68 92 22 162 184 26.09 88.04 11.96 67.39 
Glycine max Viridiplantae 2 19 21 3 39 42 9.52 92.86 7.14 65.08 
Herpes simplex virus (HSV) Viruses 0 1 1 1 1 2 0.00 50.00 50.00 33.33 
Human cytomegalovirus (HCMV) Viruses 0 11 11 5 17 22 0.00 77.27 22.73 51.52 
Kaposi sarcoma-associated herpesvirus (KSHV) Viruses 1 11 12 5 19 24 8.33 79.17 20.83 55.56 
Lagothrix lagotricha Vertebrata 0 2 2 0 4 4 0.00 100.00 0.00 66.67 
Lemur catta Vertebrata 0 3 3 2 4 6 0.00 66.67 33.33 44.44 
Macaca mulatta Vertebrata 0 2 2 0 4 4 0.00 100.00 0.00 66.67 
Medicago truncatula Viridiplantae 4 14 18 4 32 36 22.22 88.89 11.11 66.67 
Mouse γ-herpesvirus (MGHV68) Viruses 2 7 9 3 15 18 22.22 83.33 16.67 62.96 
Mus musculus Vertebrata 37 162 199 52 346 398 18.59 86.93 13.07 64.15 
Oryza sativa Viridiplantae 35 117 152 37 267 304 23.03 87.83 12.17 66.23 
Ovis aries Vertebrata 0 2 2 0 4 4 0.00 100.00 0.00 66.67 
Pan troglodytes Vertebrata 2 1 3 1 5 6 66.67 83.33 16.67 77.78 
Physcomitrella patens Viridiplantae 3 14 17 3 31 34 17.65 91.18 8.82 66.67 
Populus trichocarpa Viridiplantae 33 124 157 41 273 314 21.02 86.94 13.06 64.97 
Rattus norvegicus Vertebrata 23 45 68 11 125 136 33.82 91.91 8.09 72.55 
Rhesus lymphocryptovirus Viruses 5 11 16 2 30 32 31.25 93.75 6.25 72.92 
Saccharum officinarum Viridiplantae 1 3 4 0 8 8 25.00 100.00 0.00 75.00 
Saguinus labiatus Vertebrata 0 2 2 1 3 4 0.00 75.00 25.00 50.00 
Simian virus (SV40) Viruses 0 1 1 1 1 2 0.00 50.00 50.00 33.33 
Sorghum bicolor Viridiplantae 7 43 50 13 87 100 14.00 87.00 13.00 62.67 
Sus scrofa Vertebrata 0 2 2 1 3 4 0.00 75.00 25.00 50.00 
Tetraodon nigroviridis Vertebrata 9 34 43 9 77 86 20.93 89.53 10.47 66.67 
Xenopus laevis Vertebrata 2 3 5 4 6 10 40.00 60.00 40.00 53.33 
Xenopus tropicalis Vertebrata 35 90 125 33 217 250 28.00 86.80 13.20 67.20 
Zea mays Viridiplantae 16 63 79 18 140 158 20.25 88.61 11.39 65.82 
Total samples  724 1517 2241 504 3978 4482     

(Species) Row 1 (TR-H), row 2 (TE-H), and the remaining rows 3−43 (IE-NH). TP (real pre-miRs detected), FN (real pre-miRs missed), P (real pre-
miRs), FP (pseudo hairpins detected), TN (pseudo hairpins missed), N (pseudo hairpins), %SE (Sensitivity), %SP (Specificity), %FPR (False-positive 
rate), and %ACC (Accuracy).  
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Table C.3: The prediction performances of Triplet-SVM evaluated on the pre-miR datasets TR-H, TE-H, 

and IE-NH. 

Species   Genus TP FN P FP TN N %SE %SP %FPR %ACC 

Homo sapiens  Vertebrata 172 28 200 12 388 400 86.00 97.00 3.00 93.33 
Homo sapiens Vertebrata 79 29 108 10 206 216 73.15 95.37 4.63 87.96 
Anopheles gambiae Arthropoda 33 4 37 1 73 74 89.19 98.65 1.35 95.50 
Apis mellifera Arthropoda 23 2 25 1 49 50 92.00 98.00 2.00 96.00 
Arabidopsis thaliana Viridiplantae 69 2 71 5 137 142 97.18 96.48 3.52 96.71 
Ateles geoffroyi Vertebrata 2 0 2 0 4 4 100.00 100.00 0.00 100.00 
Bos taurus Vertebrata 7 1 8 3 13 16 87.50 81.25 18.75 83.33 
Caenorhabditis briggsae Nematoda 68 2 70 6 134 140 97.14 95.71 4.29 96.19 
Caenorhabditis elegans Nematoda 94 13 107 4 210 214 87.85 98.13 1.87 94.70 
Canis familiaris Vertebrata 3 0 3 1 5 6 100.00 83.33 16.67 88.89 
Danio rerio Vertebrata 201 32 233 30 436 466 86.27 93.56 6.44 91.13 
Drosophila melanogaster Arthropoda 57 9 66 7 125 132 86.36 94.70 5.30 91.92 
Drosophila pseudoobscura Arthropoda 28 7 35 1 69 70 80.00 98.57 1.43 92.38 
Epstein barr virus (EBV) Viruses 19 3 22 0 44 44 86.36 100.00 0.00 95.45 
Fugu rubripes Vertebrata 48 16 64 5 123 128 75.00 96.09 3.91 89.06 
Gallus gallus Vertebrata 73 14 87 4 170 174 83.91 97.70 2.30 93.10 
Glycine max Viridiplantae 16 0 16 0 32 32 100.00 100.00 0.00 100.00 
Herpes simplex virus (HSV) Viruses 0 1 1 0 2 2 0.00 100.00 0.00 66.67 
Human cytomegalovirus (HCMV) Viruses 8 3 11 0 22 22 72.73 100.00 0.00 90.91 
Kaposi sarcoma-associated herpesvirus (KSHV) Viruses 4 8 12 0 24 24 33.33 100.00 0.00 77.78 
Lagothrix lagotricha Vertebrata 1 0 1 0 2 2 100.00 100.00 0.00 100.00 
Lemur catta Vertebrata 2 0 2 0 4 4 100.00 100.00 0.00 100.00 
Macaca mulatta Vertebrata 1 0 1 0 2 2 100.00 100.00 0.00 100.00 
Medicago truncatula Viridiplantae 15 0 15 2 28 30 100.00 93.33 6.67 95.56 
Mouse γ-herpesvirus (MGHV68) Viruses 5 4 9 1 17 18 55.56 94.44 5.56 81.48 
Mus musculus Vertebrata 145 41 186 5 367 372 77.96 98.66 1.34 91.76 
Oryza sativa Viridiplantae 106 9 115 11 219 230 92.17 95.22 4.78 94.20 
Ovis aries Vertebrata 1 0 1 0 2 2 100.00 100.00 0.00 100.00 
Pan troglodytes Vertebrata 2 1 3 0 6 6 66.67 100.00 0.00 88.89 
Physcomitrella patens Viridiplantae 14 0 14 0 28 28 100.00 100.00 0.00 100.00 
Populus trichocarpa Viridiplantae 106 15 121 12 230 242 87.60 95.04 4.96 92.56 
Rattus norvegicus Vertebrata 50 12 62 5 119 124 80.65 95.97 4.03 90.86 
Rhesus lymphocryptovirus Viruses 16 0 16 1 31 32 100.00 96.88 3.13 97.92 
Saccharum officinarum Viridiplantae 0 0 0 0 0 0 NaN NaN NaN NaN 
Saguinus labiatus Vertebrata 0 1 1 0 2 2 0.00 100.00 0.00 66.67 
Simian virus (SV40) Viruses 1 0 1 0 2 2 100.00 100.00 0.00 100.00 
Sorghum bicolor Viridiplantae 33 2 35 2 68 70 94.29 97.14 2.86 96.19 
Sus scrofa Vertebrata 0 2 2 0 4 4 0.00 100.00 0.00 66.67 
Tetraodon nigroviridis Vertebrata 39 2 41 3 79 82 95.12 96.34 3.66 95.94 
Xenopus laevis Vertebrata 2 3 5 1 9 10 40.00 90.00 10.00 73.33 
Xenopus tropicalis Vertebrata 101 21 122 7 237 244 82.79 97.13 2.87 92.35 
Zea mays Viridiplantae 50 2 52 7 97 104 96.15 93.27 6.73 94.23 
Total samples  1694 289 1983 147 3819 3966     

†, Triplet-SVM model was trained on 200 human pre-miRs and 400 pseudo hairpins randomly selected using the latest libSVM 2.82 (the "-b 1" option 
was enabled) and the optimal hyperparameter pair (C, γ). (Species) Row 1 (TR-H), row 2 (TE-H), and the remaining rows 3−43 (IE-NH). TP (real pre-
miRs detected), FN (real pre-miRs missed), P (real pre-miRs), FP (pseudo hairpins detected), TN (pseudo hairpins missed), N (pseudo hairpins), %SE 
(Sensitivity), %SP (Specificity), %FPR (False-positive rate), and %ACC (Accuracy). 
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Table C.4: The prediction performances of Triplet-SVM-NBC evaluated on the pre-miR datasets TR-H, TE-

H, and IE-NH. 

Species  Genus TP FN P FP TN N %SE %SP %FPR %ACC 

Homo sapiens  Vertebrata 196 4 200 13 387 400 98.00 96.75 3.25 97.17 
Homo sapiens Vertebrata 71 37 108 51 165 216 65.74 76.39 23.61 72.84 
Anopheles gambiae Arthropoda 27 10 37 18 56 74 72.97 75.68 24.32 74.77 
Apis mellifera Arthropoda 20 5 25 9 41 50 80.00 82.00 18.00 81.33 
Arabidopsis thaliana Viridiplantae 44 27 71 30 112 142 61.97 78.87 21.13 73.24 
Ateles geoffroyi Vertebrata 1 1 2 1 3 4 50.00 75.00 25.00 66.67 
Bos taurus Vertebrata 4 4 8 4 12 16 50.00 75.00 25.00 66.67 
Caenorhabditis briggsae Nematoda 52 18 70 23 117 140 74.29 83.57 16.43 80.48 
Caenorhabditis elegans Nematoda 87 20 107 39 175 214 81.31 81.78 18.22 81.62 
Canis familiaris Vertebrata 3 0 3 2 4 6 100.00 66.67 33.33 77.78 
Danio rerio Vertebrata 140 93 233 112 354 466 60.09 75.97 24.03 70.67 
Drosophila melanogaster Arthropoda 38 28 66 31 101 132 57.58 76.52 23.48 70.20 
Drosophila pseudoobscura Arthropoda 20 15 35 15 55 70 57.14 78.57 21.43 71.43 
Epstein barr virus (EBV) Viruses 12 10 22 9 35 44 54.55 79.55 20.45 71.21 
Fugu rubripes Vertebrata 31 33 64 33 95 128 48.44 74.22 25.78 65.63 
Gallus gallus Vertebrata 48 39 87 44 130 174 55.17 74.71 25.29 68.20 
Glycine max Viridiplantae 5 11 16 5 27 32 31.25 84.38 15.63 66.67 
Herpes simplex virus (HSV) Viruses 0 1 1 0 2 2 0.00 100.00 0.00 66.67 
Human cytomegalovirus (HCMV) Viruses 3 8 11 1 21 22 27.27 95.45 4.55 72.73 
Kaposi sarcoma-associated herpesvirus (KSHV) Viruses 2 10 12 5 19 24 16.67 79.17 20.83 58.33 
Lagothrix lagotricha Vertebrata 1 0 1 0 2 2 100.00 100.00 0.00 100.00 
Lemur catta Vertebrata 2 0 2 0 4 4 100.00 100.00 0.00 100.00 
Macaca mulatta Vertebrata 1 0 1 1 1 2 100.00 50.00 50.00 66.67 
Medicago truncatula Viridiplantae 8 7 15 6 24 30 53.33 80.00 20.00 71.11 
Mouse γ-herpesvirus (MGHV68) Viruses 4 5 9 7 11 18 44.44 61.11 38.89 55.56 
Mus musculus Vertebrata 110 76 186 83 289 372 59.14 77.69 22.31 71.51 
Oryza sativa Viridiplantae 73 42 115 56 174 230 63.48 75.65 24.35 71.59 
Ovis aries Vertebrata 1 0 1 1 1 2 100.00 50.00 50.00 66.67 
Pan troglodytes Vertebrata 2 1 3 1 5 6 66.67 83.33 16.67 77.78 
Physcomitrella patens Viridiplantae 7 7 14 3 25 28 50.00 89.29 10.71 76.19 
Populus trichocarpa Viridiplantae 73 48 121 52 190 242 60.33 78.51 21.49 72.45 
Rattus norvegicus Vertebrata 39 23 62 24 100 124 62.90 80.65 19.35 74.73 
Rhesus lymphocryptovirus Viruses 10 6 16 6 26 32 62.50 81.25 18.75 75.00 
Saccharum officinarum Viridiplantae 0 0 0 0 0 0 NaN NaN NaN NaN 
Saguinus labiatus Vertebrata 0 1 1 0 2 2 0.00 100.00 0.00 66.67 
Simian virus (SV40) Viruses 1 0 1 0 2 2 100.00 100.00 0.00 100.00 
Sorghum bicolor Viridiplantae 19 16 35 14 56 70 54.29 80.00 20.00 71.43 
Sus scrofa Vertebrata 1 1 2 0 4 4 50.00 100.00 0.00 83.33 
Tetraodon nigroviridis Vertebrata 18 23 41 17 65 82 43.90 79.27 20.73 67.48 
Xenopus laevis Vertebrata 0 5 5 1 9 10 0.00 90.00 10.00 60.00 
Xenopus tropicalis Vertebrata 68 54 122 49 195 244 55.74 79.92 20.08 71.86 
Zea mays Viridiplantae 18 34 52 30 74 104 34.62 71.15 28.85 58.97 
Total samples  1260 723 1983 796 3170 3966     

(Species) Row 1 (TR-H), row 2 (TE-H), and the remaining rows 3−43 (IE-NH). TP (real pre-miRs detected), FN (real pre-miRs missed), P (real pre-
miRs), FP (pseudo hairpins detected), TN (pseudo hairpins missed), N (pseudo hairpins), %SE (Sensitivity), %SP (Specificity), %FPR (False-positive 
rate), and %ACC (Accuracy).  
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Table C.5: The mean sensitivity and specificity of miPred, miPred-NBC, Triplet-SVM, and Triplet-SVM-

NBC evaluated on the non-human pre-miR dataset IE-NH categorized by genus of pre-miRs. 

  miPred miPred-NBC  Triplet-SVM‡ Triplet-SVM-NBC 

Genus No. of species %SE %SP %SE %SP No. of excluded  
species 

%SE %SP %SE %SP 

Arthropoda 4 95.14  
± 2.11 

97.63  
± 0.63 

29.66  
± 2.20 

90.00  
± 1.14 

0 86.89  
± 2.57 

97.48  
± 0.94 

66.92  
± 5.71 

78.19  
± 1.41 

Viridiplantae 9 93.11  
± 2.47 

98.72  
± 0.51 

19.02  
± 1.60 

90.09  
± 1.40 

1 95.92  
± 1.57 

96.31  
± 0.93 

51.16  
± 4.31 

79.73  
± 1.92 

Vertebrata† 18 79.29  
± 4.56 

97.53  
± 1.05 

15.91  
± 4.43 

84.83  
± 2.60 

0 76.44  
± 7.48 

96.11  
± 1.35 

61.23  
± 7.22 

79.58  
± 3.53 

Nematoda 2 89.85  
± 4.89 

98.12  
± 1.22 

40.33  
± 4.80 

87.67  
± 0.83 

0 92.50  
± 4.65 

96.92  
± 1.21 

77.80  
± 3.51 

82.68  
± 0.90 

Viruses 7 97.22  
± 1.81 

97.01  
± 1.08 

12.72  
± 5.23 

74.92  
± 6.81 

0 64.00  
± 14.04 

98.76  
± 0.84 

43.63  
± 12.49 

85.22  
± 5.36 

†, Homo sapiens is excluded. ‡, Triplet-SVM model was trained on 200 human pre-miRs and 400 pseudo hairpins randomly selected using the latest 
libSVM 2.82 (the "-b 1" option was enabled) and the optimal hyperparameter pair (C, γ). %SE (Sensitivity) and %SP (Specificity). Values are 
expressed as mean ± standard error. 
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Table C.6: The prediction performances of miPred, miPred-NBC, Triplet-SVM, and Triplet-SVM-NBC 

evaluated on the non pre-miR datasets IE-NC and IE-M. 
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Accession Type† Class N TN %SP TN %SP N  TN %SP TN %SP 

RF00001 5S ribosomal RNA Gene|rRNA 589 409 69.44 517 87.78 2  2 100.00 1 50.00 
RF00002 5.8S ribosomal RNA Gene|rRNA 63 59 93.65 59 93.65 1  1 100.00 1 100.00 
RF00003 U1 spliceosomal RNA Gene|snRNA|splicing 54 38 70.37 45 83.33 0  0 NaN 0 NaN 
RF00004 U2 spliceosomal RNA Gene|snRNA|splicing 73 8 10.96 53 72.60 0  0 NaN 0 NaN 
RF00005 tRNA Gene|tRNA 1114 953 85.55 969 86.98 158  150 94.94 142 89.87 
RF00006 Vault RNA Gene 9 5 55.56 8 88.89 3  3 100.00 1 33.33 
RF00007 U12 minor spliceosomal RNA Gene|snRNA|splicing 7 4 57.14 7 100.00 0  0 NaN 0 NaN 
RF00008 Hammerhead ribozyme (type III) Gene|ribozyme 84 61 72.62 68 80.95 1  1 100.00 1 100.00 
RF00009 Nuclear RNase P Gene|ribozyme 53 16 30.19 50 94.34 0  0 NaN 0 NaN 
RF00010 Bacterial RNase P class A Gene|ribozyme 236 77 32.63 203 86.02 0  0 NaN 0 NaN 
RF00011 Bacterial RNase P class B Gene|ribozyme 30 12 40.00 28 93.33 0  0 NaN 0 NaN 
RF00012 U3 small nucleolar RNA Gene|snRNA|guide|C/D-box 21 10 47.62 18 85.71 0  0 NaN 0 NaN 
RF00013 6S / SsrS RNA Gene 7 1 14.29 6 85.71 2  0 0.00 1 50.00 
RF00014 DsrA RNA Gene|sRNA 3 0 0.00 2 66.67 0  0 NaN 0 NaN 
RF00015 U4 spliceosomal RNA Gene|snRNA|splicing 25 21 84.00 25 100.00 1  1 100.00 1 100.00 
RF00016 U14 small nucleolar RNA Gene|snRNA|guide|C/D-box 18 17 94.44 16 88.89 2  2 100.00 2 100.00 
RF00017 Eukaryotic type signal recognition particle RNA Gene 70 3 4.29 61 87.14 0  0 NaN 0 NaN 
RF00018 CsrB/RsmB RNA family Gene|sRNA 9 9 100.00 8 88.89 0  0 NaN 0 NaN 
RF00019 Y RNA Gene 15 9 60.00 12 80.00 5  5 100.00 2 40.00 
RF00020 U5 spliceosomal RNA Gene|snRNA|splicing 32 12 37.50 26 81.25 0  0 NaN 0 NaN 
RF00021 Spot 42 RNA Gene|sRNA 8 0 0.00 8 100.00 0  0 NaN 0 NaN 
RF00022 GcvB RNA Gene|sRNA 5 3 60.00 5 100.00 0  0 NaN 0 NaN 
RF00023 tmRNA Gene 87 53 60.92 79 90.80 0  0 NaN 0 NaN 
RF00024 Vertebrate telomerase RNA Gene 35 10 28.57 31 88.57 0  0 NaN 0 NaN 
RF00025 Ciliate telomerase RNA Gene 16 13 81.25 12 75.00 0  0 NaN 0 NaN 
RF00026 U6 spliceosomal RNA Gene|snRNA|splicing 53 52 98.11 48 90.57 0  0 NaN 0 NaN 
RF00028 Group I catalytic intron Intron 30 15 50.00 29 96.67 0  0 NaN 0 NaN 
RF00029 Group II catalytic intron Intron 116 37 31.90 89 76.72 0  0 NaN 0 NaN 
RF00030 RNase MRP Gene|ribozyme 26 9 34.62 25 96.15 0  0 NaN 0 NaN 
RF00031 Selenocysteine insertion sequence Cis-reg 64 52 81.25 50 78.13 56  56 100.00 50 89.29 
RF00032 Histone 3' UTR stem-loop Cis-reg 64 64 100.00 57 89.06 26  26 100.00 26 100.00 
RF00033 MicF RNA Gene|antisense 9 8 88.89 6 66.67 0  0 NaN 0 NaN 
RF00034 RprA RNA Gene|sRNA 9 7 77.78 9 100.00 0  0 NaN 0 NaN 
RF00035 OxyS RNA Gene|sRNA 6 4 66.67 6 100.00 0  0 NaN 0 NaN 
RF00036 HIV Rev response element Cis-reg 65 0 0.00 39 60.00 0  0 NaN 0 NaN 
RF00037 Iron response element Cis-reg 39 39 100.00 33 84.62 0  0 NaN 0 NaN 
RF00038 PrfA thermoregulator UTR Cis-reg|thermoregulator 11 11 100.00 11 100.00 5  5 100.00 5 100.00 
RF00039 DicF RNA Gene|antisense 5 5 100.00 5 100.00 2  2 100.00 2 100.00 
RF00040 RNase E 5' UTR element Cis-reg 7 5 71.43 7 100.00 0  0 NaN 0 NaN 
RF00041 Enteroviral 3' UTR element Cis-reg 60 49 81.67 45 75.00 0  0 NaN 0 NaN 
RF00042 CopA-like RNA Gene|antisense 17 0 0.00 11 64.71 0  0 NaN 0 NaN 
RF00043 R1162-like plasmid antisense RNA Gene|antisense 6 6 100.00 5 83.33 0  0 NaN 0 NaN 
RF00044 Bacteriophage pRNA Gene 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00045 U17/E1 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 23 16 69.57 18 78.26 0  0 NaN 0 NaN 
RF00046 Small nucleolar RNA R30/Z108 Gene|snRNA|guide|C/D-box 6 6 100.00 2 33.33 0  0 NaN 0 NaN 
RF00048 Enterovirus cis-acting replication element Cis-reg 56 31 55.36 35 62.50 56  30 53.57 23 41.07 
RF00049 U36/R47/Z100 small nucleolar RNA Gene|snRNA|guide|C/D-box 20 20 100.00 19 95.00 3  3 100.00 2 66.67 
RF00050 FMN riboswitch (RFN element) Cis-reg|riboswitch 48 41 85.42 45 93.75 0  0 NaN 0 NaN 
RF00054 U25 small nucleolar RNA Gene|snRNA|guide|C/D-box 8 8 100.00 7 87.50 2  2 100.00 1 50.00 
RF00055 Small nucleolar RNA Z37 Gene|snRNA|guide|C/D-box 8 8 100.00 5 62.50 0  0 NaN 0 NaN 
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RF00056 U71 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 15 10 66.67 11 73.33 0  0 NaN 0 NaN 
RF00057 RyhB RNA Gene|sRNA 9 9 100.00 6 66.67 0  0 NaN 0 NaN 
RF00058 HgcF RNA Gene 4 0 0.00 4 100.00 0  0 NaN 0 NaN 
RF00059 TPP riboswitch (THI element) Cis-reg|riboswitch 236 223 94.49 201 85.17 4  4 100.00 4 100.00 
RF00060 HgcE RNA Gene 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00061 Hepatitis C virus IRES Cis-reg|IRES 786 658 83.72 674 85.75 1  0 0.00 0 0.00 
RF00062 HgcC family RNA Gene 22 7 31.82 22 100.00 0  0 NaN 0 NaN 
RF00063 SscA RNA Gene 5 5 100.00 3 60.00 0  0 NaN 0 NaN 
RF00064 HgcG RNA Gene 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00065 snoR9 / snoR19 family Gene|snRNA|guide|C/D-box 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00066 U7 small nuclear RNA Gene|snRNA 28 24 85.71 24 85.71 7  7 100.00 7 100.00 
RF00067 U15 small nucleolar RNA Gene|snRNA|guide|C/D-box 18 16 88.89 15 83.33 2  1 50.00 2 100.00 
RF00068 U21 small nucleolar RNA Gene|snRNA|guide|C/D-box 5 5 100.00 4 80.00 3  3 100.00 1 33.33 
RF00069 U24/Z20/U76 small nucleolar RNA Gene|snRNA|guide|C/D-box 14 14 100.00 10 71.43 3  3 100.00 3 100.00 
RF00070 Small nucleolar RNA U29 Gene|snRNA|guide|C/D-box 10 10 100.00 6 60.00 2  2 100.00 2 100.00 
RF00071 U73 small nucleolar RNA Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 2  2 100.00 2 100.00 
RF00072 U23 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 6 2 33.33 3 50.00 0  0 NaN 0 NaN 
RF00077 SraB RNA Gene|sRNA 4 4 100.00 3 75.00 0  0 NaN 0 NaN 
RF00078 SraD RNA Gene|sRNA 5 5 100.00 4 80.00 0  0 NaN 0 NaN 
RF00079 SraE/RygA/RygB family RNA Gene|sRNA 6 5 83.33 4 66.67 0  0 NaN 0 NaN 
RF00080 yybP-ykoY element Cis-reg|riboswitch 74 52 70.27 70 94.59 2  2 100.00 1 50.00 
RF00081 SraH RNA Gene|sRNA 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00082 SraG RNA Gene|sRNA 5 4 80.00 5 100.00 0  0 NaN 0 NaN 
RF00083 SraJ RNA Gene|sRNA 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00084 CsrC RNA family Gene|sRNA 5 1 20.00 4 80.00 0  0 NaN 0 NaN 
RF00085 U28 small nucleolar RNA Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 2  2 100.00 1 50.00 
RF00086 U27/Z191/snR74/Z4 small nucleolar RNA Gene|snRNA|guide|C/D-box 10 10 100.00 7 70.00 0  0 NaN 0 NaN 
RF00087 U26 small nucleolar RNA Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 2  0 0.00 2 100.00 
RF00088 U30 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 2  1 50.00 1 50.00 
RF00089 U31 small nucleolar RNA Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 4  4 100.00 2 50.00 
RF00090 U19 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 3 0 0.00 2 66.67 0  0 NaN 0 NaN 
RF00091 Small nucleolar RNA E2/ACA6/M2/MBI-136 Gene|snRNA|guide|H/ACA-box 10 2 20.00 8 80.00 0  0 NaN 0 NaN 
RF00092 E3 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 9 4 44.44 9 100.00 0  0 NaN 0 NaN 
RF00093 U18 small nucleolar RNA Gene|snRNA|guide|C/D-box 16 16 100.00 14 87.50 10  9 90.00 8 80.00 
RF00094 Hepatitis delta virus ribozyme Gene|ribozyme 15 14 93.33 15 100.00 0  0 NaN 0 NaN 
RF00095 Pyrococcus C/D box small nucleolar RNA Gene|snRNA|guide|C/D-box 38 38 100.00 37 97.37 18  18 100.00 17 94.44 
RF00096 U8 small nucleolar RNA Gene|snRNA|guide|C/D-box 5 2 40.00 3 60.00 0  0 NaN 0 NaN 
RF00097 Plant small nucleolar RNA R71 Gene|snRNA|guide|C/D-box 21 18 85.71 21 100.00 0  0 NaN 0 NaN 
RF00098 Snake H/ACA box small nucleolar RNA Gene|snRNA|guide|H/ACA-box 22 22 100.00 20 90.91 0  0 NaN 0 NaN 
RF00099 U22 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 2 66.67 2 66.67 0  0 NaN 0 NaN 
RF00100 7SK RNA Gene 4 4 100.00 3 75.00 0  0 NaN 0 NaN 
RF00101 SraC/RyeA RNA Gene|sRNA 7 3 42.86 7 100.00 0  0 NaN 0 NaN 
RF00102 VA RNA Gene 23 0 0.00 22 95.65 0  0 NaN 0 NaN 
RF00105 HBII-52 small nucleolar RNA Gene|snRNA|guide|C/D-box 23 23 100.00 14 60.87 1  1 100.00 1 100.00 
RF00106 RNAI Gene|antisense 10 0 0.00 6 60.00 0  0 NaN 0 NaN 
RF00107 FinP Gene 6 0 0.00 6 100.00 0  0 NaN 0 NaN 
RF00108 HBII-85 small nucleolar RNA Gene|snRNA|guide|C/D-box 7 7 100.00 7 100.00 0  0 NaN 0 NaN 
RF00109 Vimentin 3' UTR protein-binding region Cis-reg 12 12 100.00 11 91.67 2  2 100.00 2 100.00 
RF00110 RybB RNA Gene|sRNA 4 2 50.00 4 100.00 2  2 100.00 0 0.00 
RF00111 RyeB RNA Gene|sRNA 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00112 RyeE RNA Gene|sRNA 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00113 QUAD RNA Gene|sRNA 15 6 40.00 15 100.00 0  0 NaN 0 NaN 
RF00114 Ribosomal S15 leader Cis-reg 11 11 100.00 7 63.64 0  0 NaN 0 NaN 
RF00115 IS061 RNA Gene|sRNA 5 5 100.00 2 40.00 0  0 NaN 0 NaN 
RF00116 C0465 RNA Gene|sRNA 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
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RF00117 C0719 RNA Gene|sRNA 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00118 rydB RNA Gene|sRNA 5 5 100.00 4 80.00 5  5 100.00 0 0.00 
RF00119 C0299 RNA Gene|sRNA 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00120 C0343 RNA Gene|sRNA 4 4 100.00 1 25.00 0  0 NaN 0 NaN 
RF00121 MicC RNA Gene|sRNA 4 3 75.00 3 75.00 0  0 NaN 0 NaN 
RF00122 GadY Gene|sRNA 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00124 IS102 RNA Gene|sRNA 8 1 12.50 8 100.00 0  0 NaN 0 NaN 
RF00125 IS128 RNA Gene|sRNA 3 1 33.33 3 100.00 0  0 NaN 0 NaN 
RF00126 ryfA RNA Gene|sRNA 6 0 0.00 6 100.00 0  0 NaN 0 NaN 
RF00127 t44 RNA Gene|sRNA 9 4 44.44 9 100.00 0  0 NaN 0 NaN 
RF00128 tke1 RNA Gene|sRNA 7 2 28.57 5 71.43 0  0 NaN 0 NaN 
RF00132 Small nucleolar RNA R24 Gene|snRNA|guide|C/D-box 12 7 58.33 9 75.00 4  2 50.00 1 25.00 
RF00133 Small nucleolar RNA Z195 Gene|snRNA|guide|C/D-box 8 8 100.00 8 100.00 0  0 NaN 0 NaN 
RF00134 Small nucleolar RNA Z196 Gene|snRNA|guide|C/D-box 7 7 100.00 3 42.86 0  0 NaN 0 NaN 
RF00135 Small nucleolar RNA Z223 Gene|snRNA|guide|C/D-box 5 4 80.00 4 80.00 2  2 100.00 0 0.00 
RF00136 U81 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00137 U83/U84 small nucleolar RNA Gene|snRNA|guide|C/D-box 7 7 100.00 7 100.00 0  0 NaN 0 NaN 
RF00138 U16 small nucleolar RNA Gene|snRNA|guide|C/D-box 5 3 60.00 5 100.00 3  2 66.67 2 66.67 
RF00139 U72 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 7 4 57.14 7 100.00 0  0 NaN 0 NaN 
RF00140 Alpha operon ribosome binding site Cis-reg 9 3 33.33 8 88.89 0  0 NaN 0 NaN 
RF00141 Small nucleolar RNA R39/R59 Gene|snRNA|guide|C/D-box 6 6 100.00 6 100.00 0  0 NaN 0 NaN 
RF00142 Small nucleolar RNA Z118/Z121/Z120 Gene|snRNA|guide|C/D-box 7 4 57.14 4 57.14 2  2 100.00 1 50.00 
RF00145 Small nucleolar RNA Z105 Gene|snRNA|guide|C/D-box 5 5 100.00 5 100.00 1  1 100.00 1 100.00 
RF00146 Small nucleolar RNA U33 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00147 Small nucleolar RNA U34 Gene|snRNA|guide|C/D-box 9 9 100.00 8 88.89 4  3 75.00 3 75.00 
RF00149 Small nucleolar RNA Z103 Gene|snRNA|guide|C/D-box 9 9 100.00 7 77.78 0  0 NaN 0 NaN 
RF00150 Small nucleolar RNA U42 Gene|snRNA|guide|C/D-box 7 7 100.00 6 85.71 0  0 NaN 0 NaN 
RF00151 Small nucleolar RNA U58 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00152 Small nucleolar RNA U79/Z22 Gene|snRNA|guide|C/D-box 6 6 100.00 6 100.00 3  3 100.00 0 0.00 
RF00153 Small nucleolar RNA U62 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 1  1 100.00 1 100.00 
RF00154 Small nucleolar RNA U63 Gene|snRNA|guide|C/D-box 2 2 100.00 1 50.00 1  1 100.00 1 100.00 
RF00155 Small nucleolar RNA U66 Gene|snRNA|guide|H/ACA-box 3 1 33.33 2 66.67 0  0 NaN 0 NaN 
RF00156 Small nucleolar RNA U70 Gene|snRNA|guide|H/ACA-box 14 11 78.57 13 92.86 0  0 NaN 0 NaN 
RF00157 Small nucleolar RNA U39/U55 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00158 Small nucleolar RNA U82/Z25 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 1  1 100.00 1 100.00 
RF00159 Small nucleolar RNA Z168/Z174 Gene|snRNA|guide|C/D-box 6 6 100.00 6 100.00 0  0 NaN 0 NaN 
RF00160 Small nucleolar RNA Z159/U59 Gene|snRNA|guide|C/D-box 10 10 100.00 9 90.00 0  0 NaN 0 NaN 
RF00161 Nanos 3' UTR translation control element Cis-reg 2 1 50.00 1 50.00 0  0 NaN 0 NaN 
RF00162 SAM riboswitch (S box leader) Cis-reg|riboswitch 71 53 74.65 60 84.51 1  1 100.00 0 0.00 
RF00163 Hammerhead ribozyme (type I) Gene|ribozyme 74 72 97.30 67 90.54 39  36 92.31 26 66.67 
RF00164 Coronavirus 3' stem-loop II-like motif (s2m) Cis-reg 37 37 100.00 37 100.00 33  33 100.00 32 96.97 
RF00165 Coronavirus 3' UTR pseudoknot Cis-reg 14 14 100.00 13 92.86 0  0 NaN 0 NaN 
RF00166 PrrB/RsmZ RNA family Gene|sRNA 6 6 100.00 5 83.33 0  0 NaN 0 NaN 
RF00167 Purine riboswitch Cis-reg|riboswitch 37 36 97.30 23 62.16 0  0 NaN 0 NaN 
RF00168 Lysine riboswitch Cis-reg|riboswitch 60 37 61.67 54 90.00 0  0 NaN 0 NaN 
RF00169 Bacterial signal recognition particle RNA Gene 70 43 61.43 52 74.29 58  55 94.83 32 55.17 
RF00170 Retron msr RNA Gene 8 7 87.50 6 75.00 2  2 100.00 1 50.00 
RF00171 Tombusvirus 5' UTR Cis-reg 9 9 100.00 9 100.00 1  0 0.00 1 100.00 
RF00172 ctgf/hcs24 CAESAR Cis-reg 9 9 100.00 8 88.89 0  0 NaN 0 NaN 
RF00173 Hairpin ribozyme Gene|ribozyme 3 3 100.00 3 100.00 1  1 100.00 0 0.00 
RF00174 Cobalamin riboswitch Cis-reg|riboswitch 170 135 79.41 157 92.35 0  0 NaN 0 NaN 
RF00175 Retroviral Psi packaging element Cis-reg 168 168 100.00 156 92.86 0  0 NaN 0 NaN 
RF00176 Tombusvirus 3' UTR region IV Cis-reg 18 18 100.00 17 94.44 0  0 NaN 0 NaN 
RF00177 Small subunit ribosomal RNA, 5' domain Gene|rRNA 358 175 48.88 325 90.78 0  0 NaN 0 NaN 
RF00179 GAIT element Cis-reg 8 8 100.00 8 100.00 4  4 100.00 4 100.00 
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RF00180 Renin stability regulatory element (REN-SRE) Cis-reg 13 13 100.00 13 100.00 0  0 NaN 0 NaN 
RF00181 C/D box small nucleolar RNA 14q(I)/14q(II) Gene|snRNA|guide|C/D-box 59 57 96.61 50 84.75 36  36 100.00 33 91.67 
RF00182 Coronavirus packaging signal Cis-reg 15 10 66.67 15 100.00 15  5 33.33 5 33.33 
RF00183 G-CSF factor stem-loop destabilising element (SLDE) Cis-reg 6 6 100.00 6 100.00 0  0 NaN 0 NaN 
RF00184 Potato virus X cis-acting regulatory element Cis-reg 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00185 Flavivirus 3' UTR pseudoknot Cis-reg 14 3 21.43 11 78.57 0  0 NaN 0 NaN 
RF00186 Small nucleolar RNA U101 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 3  3 100.00 3 100.00 
RF00187 Small nucleolar RNA U102 Gene|snRNA|guide|C/D-box 2 2 100.00 2 100.00 2  2 100.00 2 100.00 
RF00188 Small nucleolar RNA U103 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00189 Small nucleolar RNA U95 Gene|snRNA|guide|C/D-box 5 5 100.00 4 80.00 5  5 100.00 5 100.00 
RF00190 U98 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00191 U99 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 3 1 33.33 3 100.00 0  0 NaN 0 NaN 
RF00192 Bovine leukaemia virus RNA packaging signal Cis-reg 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00193 Citrus tristeza virus replication signal Cis-reg 9 9 100.00 9 100.00 0  0 NaN 0 NaN 
RF00194 Rubella virus 3' cis-acting element Cis-reg 9 9 100.00 9 100.00 0  0 NaN 0 NaN 
RF00195 RsmY RNA family Gene|sRNA 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00196 Alfalfa mosaic virus RNA 1 5' UTR stem-loop Cis-reg 4 2 50.00 0 0.00 2  2 100.00 0 0.00 
RF00197 rbcL 5' UTR RNA stabilising element Cis-reg 3 2 66.67 3 100.00 0  0 NaN 0 NaN 
RF00198 SL1 RNA Gene 28 0 0.00 24 85.71 0  0 NaN 0 NaN 
RF00199 SL2 RNA Gene 32 10 31.25 24 75.00 0  0 NaN 0 NaN 
RF00200 Small nucleolar RNA Z199 Gene|snRNA|guide|C/D-box 8 8 100.00 7 87.50 6  6 100.00 4 66.67 
RF00201 Small nucleolar RNA Z278 Gene|snRNA|guide|C/D-box 7 5 71.43 7 100.00 7  7 100.00 5 71.43 
RF00202 Small nucleolar RNA R66 Gene|snRNA|guide|C/D-box 6 6 100.00 6 100.00 1  1 100.00 1 100.00 
RF00203 Small nucleolar RNA R160 Gene|snRNA|guide|C/D-box 9 9 100.00 9 100.00 4  4 100.00 4 100.00 
RF00204 Small nucleolar RNA R12 Gene|snRNA|guide|C/D-box 9 9 100.00 8 88.89 2  2 100.00 2 100.00 
RF00205 Small nucleolar RNA R41 Gene|snRNA|guide|C/D-box 7 7 100.00 6 85.71 7  7 100.00 1 14.29 
RF00206 Small nucleolar RNA U54 Gene|snRNA|guide|C/D-box 13 13 100.00 11 84.62 1  1 100.00 1 100.00 
RF00207 K10 transport/localisation element (TLS) Cis-reg 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00208 Small nucleolar RNA R72 Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 0  0 NaN 0 NaN 
RF00209 Pestivirus IRES Cis-reg|IRES 25 1 4.00 20 80.00 0  0 NaN 0 NaN 
RF00210 Aphthovirus IRES Cis-reg|IRES 32 2 6.25 29 90.63 0  0 NaN 0 NaN 
RF00211 Small nucleolar RNA U35 Gene|snRNA|guide|C/D-box 8 8 100.00 5 62.50 1  1 100.00 0 0.00 
RF00212 U38 small nucleolar RNA Gene|snRNA|guide|C/D-box 7 7 100.00 6 85.71 3  3 100.00 2 66.67 
RF00213 Small nucleolar RNA R38 Gene|snRNA|guide|C/D-box 12 10 83.33 11 91.67 6  6 100.00 3 50.00 
RF00214 Retrovirus direct repeat 1 (dr1) Cis-reg 25 24 96.00 21 84.00 1  0 0.00 1 100.00 
RF00215 Tombus virus defective interfering (DI) RNA region 3 Cis-reg 48 48 100.00 34 70.83 6  6 100.00 6 100.00 
RF00216 c-myc IRES Cis-reg|IRES 23 23 100.00 21 91.30 0  0 NaN 0 NaN 
RF00217 Small nucleolar RNA U20 Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 4  4 100.00 3 75.00 
RF00218 Small nucleolar RNA U40 Gene|snRNA|guide|C/D-box 9 9 100.00 9 100.00 8  8 100.00 4 50.00 
RF00219 Small nucleolar RNA U32 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00220 Human rhinovirus internal cis-acting regulatory element  Cis-reg 12 12 100.00 12 100.00 10  10 100.00 10 100.00 
RF00221 Small nucleolar RNA U43 Gene|snRNA|guide|C/D-box 6 5 83.33 3 50.00 3  2 66.67 3 100.00 
RF00222 Bag-1 IRES Cis-reg|IRES 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00223 bip IRES Cis-reg|IRES 4 4 100.00 4 100.00 2  2 100.00 2 100.00 
RF00224 FGF-2 IRES Cis-reg|IRES 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00225 Tobamovirus IRES Cis-reg|IRES 7 7 100.00 7 100.00 0  0 NaN 0 NaN 
RF00226 n-myc IRES Cis-reg|IRES 6 6 100.00 6 100.00 0  0 NaN 0 NaN 
RF00227 FIE3 (ftz instability element 3') element Cis-reg 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00228 Hepatitis A virus IRES Cis-reg|IRES 23 9 39.13 22 95.65 0  0 NaN 0 NaN 
RF00229 Picornavirus IRES Cis-reg|IRES 195 96 49.23 180 92.31 0  0 NaN 0 NaN 
RF00230 T-box leader Cis-reg 66 28 42.42 60 90.91 0  0 NaN 0 NaN 
RF00231 U93 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 3 1 33.33 3 100.00 0  0 NaN 0 NaN 
RF00232 Spi-1 (PU.1) 5' UTR regulatory element Cis-reg 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00233 Tymovirus/Pomovirus tRNA-like 3' UTR element Cis-reg 27 27 100.00 23 85.19 0  0 NaN 0 NaN 
RF00234 glmS glucosamine-6-phosphate activated ribozyme Cis-reg|riboswitch 14 10 71.43 11 78.57 0  0 NaN 0 NaN 
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RF00235 Plasmid RNAIII Gene 7 0 0.00 7 100.00 0  0 NaN 0 NaN 
RF00236 ctRNA Gene|antisense 17 0 0.00 16 94.12 0  0 NaN 0 NaN 
RF00238 ctRNA Gene|antisense 48 5 10.42 44 91.67 0  0 NaN 0 NaN 
RF00240 RNA-OUT Gene 7 0 0.00 3 42.86 7  2 28.57 3 42.86 
RF00242 ctRNA Gene|antisense 15 6 40.00 10 66.67 0  0 NaN 0 NaN 
RF00243 traJ 5' UTR Cis-reg 6 2 33.33 6 100.00 0  0 NaN 0 NaN 
RF00250 Trans-activation response element (TAR) Cis-reg 416 26 6.25 370 88.94 412  49 11.89 221 53.64 
RF00252 Alfalfa mosaic virus coat protein binding (CPB) RNA Cis-reg 18 2 11.11 18 100.00 0  0 NaN 0 NaN 
RF00259 Interferon gamma 5' UTR regulatory element Cis-reg 5 5 100.00 2 40.00 0  0 NaN 0 NaN 
RF00260 Hepatitis C virus (HCV) cis-acting replication element  Cis-reg 52 52 100.00 52 100.00 52  52 100.00 46 88.46 
RF00261 L-myc IRES Cis-reg|IRES 2 2 100.00 2 100.00 0  0 NaN 0 NaN 
RF00262 sar RNA Gene 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00263 U68 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 4 3 75.00 3 75.00 0  0 NaN 0 NaN 
RF00264 Small nucleolar RNA U64 Gene|snRNA|guide|H/ACA-box 3 1 33.33 3 100.00 0  0 NaN 0 NaN 
RF00265 Small nucleolar RNA U69 Gene|snRNA|guide|H/ACA-box 3 1 33.33 2 66.67 0  0 NaN 0 NaN 
RF00266 Small nucleolar RNA Z17 Gene|snRNA|guide|C/D-box 4 4 100.00 2 50.00 0  0 NaN 0 NaN 
RF00267 Small nucleolar RNA R64 Gene|snRNA|guide|C/D-box 3 3 100.00 0 0.00 0  0 NaN 0 NaN 
RF00268 Small nucleolar RNA snoZ7/snoR77 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00270 U61 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 2  2 100.00 2 100.00 
RF00271 U60 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00272 U67 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 10 10 100.00 8 80.00 0  0 NaN 0 NaN 
RF00273 U59 small nucleolar RNA Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 2  2 100.00 2 100.00 
RF00274 U57 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 1  1 100.00 1 100.00 
RF00275 U56 small nucleolar RNA Gene|snRNA|guide|C/D-box 7 7 100.00 7 100.00 1  1 100.00 0 0.00 
RF00276 U52 small nucleolar RNA Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 3  3 100.00 2 66.67 
RF00277 U49 small nucleolar RNA Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 1  1 100.00 0 0.00 
RF00278 U50 small nucleolar RNA Gene|snRNA|guide|C/D-box 6 6 100.00 6 100.00 1  1 100.00 1 100.00 
RF00279 U45 small nucleolar RNA Gene|snRNA|guide|C/D-box 11 11 100.00 10 90.91 7  7 100.00 7 100.00 
RF00280 U51 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 1  0 0.00 1 100.00 
RF00281 U47 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00282 U48 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 1  1 100.00 1 100.00 
RF00283 U91 small nucleolar RNA Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00284 Z18 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 2  2 100.00 2 100.00 
RF00285 Z6 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 1  1 100.00 1 100.00 
RF00286 U92 small nucleolar RNA Gene|snRNA|guide|H/ACA-box 3 1 33.33 2 66.67 0  0 NaN 0 NaN 
RF00287 U44 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 2 66.67 1  1 100.00 1 100.00 
RF00288 Z30 small nucleolar RNA Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 4  4 100.00 1 25.00 
RF00289 Z12 small nucleolar RNA Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 2  2 100.00 2 100.00 
RF00290 Bamboo mosaic potexvirus (BaMV) CE Cis-reg 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00291 Small nucleolar RNA snoR639/H1 Gene|snRNA|guide|H/ACA-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00292 Small nucleolar RNA TBR5 Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 0  0 NaN 0 NaN 
RF00293 Small nucleolar RNA snoM1 Gene|snRNA|guide|H/ACA-box 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00294 Small nucleolar RNA TBR17 Gene|snRNA|guide|C/D-box 4 3 75.00 4 100.00 0  0 NaN 0 NaN 
RF00295 Small nucleolar RNA TBR7 Gene|snRNA|guide|C/D-box 6 6 100.00 5 83.33 1  1 100.00 1 100.00 
RF00296 Small nucleolar RNA R16 Gene|snRNA|guide|C/D-box 6 6 100.00 5 83.33 2  2 100.00 2 100.00 
RF00297 Small nucleolar RNA Z177 Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 0  0 NaN 0 NaN 
RF00299 Small nucleolar RNA Z200 Gene|snRNA|guide|C/D-box 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00300 Small nucleolar RNA Z221 Gene|snRNA|guide|C/D-box 3 3 100.00 2 66.67 2  2 100.00 1 50.00 
RF00301 Small nucleolar RNA Z256 Gene|snRNA|guide|C/D-box 3 3 100.00 1 33.33 0  0 NaN 0 NaN 
RF00302 Small nucleolar RNA U65 Gene|snRNA|guide|H/ACA-box 4 0 0.00 4 100.00 0  0 NaN 0 NaN 
RF00303 Small nucleolar RNA snoR86 Gene|snRNA|guide|H/ACA-box 3 3 100.00 1 33.33 0  0 NaN 0 NaN 
RF00304 Small nucleolar RNA Z279 Gene|snRNA|guide|C/D-box 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00305 Small nucleolar RNA Z248 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00306 Small nucleolar RNA Z178 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00307 Small nucleolar RNA snoR98 Gene|snRNA|guide|H/ACA-box 5 5 100.00 5 100.00 1  1 100.00 1 100.00 
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RF00308 Small nucleolar RNA Z268 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 2  2 100.00 1 50.00 
RF00309 Small nucleolar RNA snR60/Z15/Z230/Z193/J17 Gene|snRNA|guide|C/D-box 24 23 95.83 21 87.50 5  4 80.00 1 20.00 
RF00310 Small nucleolar RNA Z165 Gene|snRNA|guide|C/D-box 3 3 100.00 1 33.33 3  3 100.00 0 0.00 
RF00311 Small nucleolar RNA Z188 Gene|snRNA|guide|C/D-box 4 1 25.00 4 100.00 3  0 0.00 3 100.00 
RF00312 Small nucleolar RNA Z206 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00313 Small nucleolar RNA Z173 Gene|snRNA|guide|C/D-box 3 1 33.33 3 100.00 0  0 NaN 0 NaN 
RF00314 Small nucleolar RNA Z182 Gene|snRNA|guide|C/D-box 7 7 100.00 7 100.00 4  4 100.00 0 0.00 
RF00315 Small nucleolar RNA J33 Gene|snRNA|guide|C/D-box 5 5 100.00 3 60.00 2  2 100.00 0 0.00 
RF00316 Small nucleolar RNA R43 Gene|snRNA|guide|C/D-box 16 16 100.00 16 100.00 6  6 100.00 5 83.33 
RF00317 Small nucleolar RNA Z163 Gene|snRNA|guide|C/D-box 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00318 Small nucleolar RNA Z175 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00319 Small nucleolar RNA MBI-1 Gene|snRNA|guide|H/ACA-box 4 2 50.00 4 100.00 0  0 NaN 0 NaN 
RF00320 Small nucleolar RNA Z185 Gene|snRNA|guide|C/D-box 3 2 66.67 2 66.67 1  1 100.00 0 0.00 
RF00321 Small nucleolar RNA Z247 Gene|snRNA|guide|C/D-box 6 6 100.00 6 100.00 0  0 NaN 0 NaN 
RF00322 Small nucleolar RNA MBI-161 Gene|snRNA|guide|H/ACA-box 4 4 100.00 3 75.00 0  0 NaN 0 NaN 
RF00323 Small nucleolar RNA R79 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00324 Small nucleolar RNA MBII-202 Gene|snRNA|guide|C/D-box 5 5 100.00 4 80.00 0  0 NaN 0 NaN 
RF00325 Small nucleolar RNA U53 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 3  3 100.00 3 100.00 
RF00326 Small nucleolar RNA Z155 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00327 Small nucleolar RNA Z194 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00328 Small nucleolar RNA Z161/Z228 Gene|snRNA|guide|C/D-box 7 7 100.00 5 71.43 2  2 100.00 2 100.00 
RF00329 Small nucleolar RNA Z162 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00330 Small nucleolar RNA Z43 Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 2  2 100.00 1 50.00 
RF00331 Small nucleolar RNA Z169 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 2  2 100.00 2 100.00 
RF00332 Small nucleolar RNA Z266 Gene|snRNA|guide|C/D-box 4 4 100.00 2 50.00 2  2 100.00 0 0.00 
RF00333 Small nucleolar RNA Z157/R69/R10 Gene|snRNA|guide|C/D-box 10 8 80.00 5 50.00 2  2 100.00 0 0.00 
RF00334 Small nucleolar RNA MBI-28 Gene|snRNA|guide|H/ACA-box 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00335 Small nucleolar RNA Z13/snr52 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 3  3 100.00 3 100.00 
RF00336 Small nucleolar RNA J26 Gene|snRNA|guide|C/D-box 5 5 100.00 3 60.00 0  0 NaN 0 NaN 
RF00337 Small nucleolar RNA Z112 Gene|snRNA|guide|C/D-box 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00338 Small nucleolar RNA snR53 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 1  0 0.00 1 100.00 
RF00339 Small nucleolar RNA snoR60 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00340 Small nucleolar RNA snoMBI-87 Gene|snRNA|guide|H/ACA-box 6 0 0.00 4 66.67 0  0 NaN 0 NaN 
RF00341 Small nucleolar RNA Z39 Gene|snRNA|guide|C/D-box 5 5 100.00 5 100.00 4  4 100.00 4 100.00 
RF00342 Small nucleolar RNA Z40 Gene|snRNA|guide|C/D-box 5 5 100.00 3 60.00 5  5 100.00 5 100.00 
RF00343 Small nucleolar RNA Z122 Gene|snRNA|guide|C/D-box 3 3 100.00 0 0.00 1  1 100.00 1 100.00 
RF00344 Small nucleolar RNA Z267 Gene|snRNA|guide|C/D-box 5 5 100.00 3 60.00 2  2 100.00 2 100.00 
RF00345 Small nucleolar RNA snoR1 Gene|snRNA|guide|C/D-box 7 7 100.00 6 85.71 3  3 100.00 1 33.33 
RF00346 Small nucleolar RNA snoZ1 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00347 Small nucleolar RNA Z50 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 1  1 100.00 0 0.00 
RF00348 Small nucleolar RNA snoR9 Gene|snRNA|guide|C/D-box 7 7 100.00 6 85.71 3  3 100.00 3 100.00 
RF00349 Small nucleolar RNA R11/Z151 Gene|snRNA|guide|C/D-box 5 5 100.00 3 60.00 0  0 NaN 0 NaN 
RF00350 Small nucleolar RNA Z152/R70/R12/ Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 0  0 NaN 0 NaN 
RF00351 Small nucleolar RNA R20 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 2  2 100.00 0 0.00 
RF00352 Small nucleolar RNA R21 Gene|snRNA|guide|C/D-box 4 4 100.00 2 50.00 0  0 NaN 0 NaN 
RF00353 Small nucleolar RNA snoR31/Z110/Z27 Gene|snRNA|guide|C/D-box 8 5 62.50 2 25.00 0  0 NaN 0 NaN 
RF00355 Small nucleolar RNA snoR28 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00356 Small nucleolar RNA R32/R81/Z41 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 4  4 100.00 1 25.00 
RF00357 Small nucleolar RNA R44/J54 Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 3  3 100.00 3 100.00 
RF00358 Small nucleolar RNA Z101 Gene|snRNA|guide|C/D-box 3 3 100.00 2 66.67 2  2 100.00 0 0.00 
RF00359 Small nucleolar RNA Z102/R77 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 2  2 100.00 2 100.00 
RF00360 Small nucleolar RNA Z107/R87 Gene|snRNA|guide|C/D-box 6 5 83.33 6 100.00 0  0 NaN 0 NaN 
RF00361 Small nucleolar RNA Z119 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00362 Pospiviroid RY motif stem loop Cis-reg 16 14 87.50 15 93.75 11  11 100.00 3 27.27 
RF00368 sroB RNA Gene|sRNA 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
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RF00369 sroC RNA Gene|sRNA 5 0 0.00 4 80.00 0  0 NaN 0 NaN 
RF00370 sroD RNA Gene|sRNA 3 2 66.67 3 100.00 0  0 NaN 0 NaN 
RF00371 sroE RNA Gene|sRNA 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00372 sroH RNA Gene|sRNA 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00373 Archaeal RNase P Gene|ribozyme 40 16 40.00 33 82.50 0  0 NaN 0 NaN 
RF00374 Gammaretrovirus core encapsidation signal Cis-reg 23 11 47.83 23 100.00 0  0 NaN 0 NaN 
RF00375 HIV primer binding site (PBS) Cis-reg 373 265 71.05 334 89.54 0  0 NaN 0 NaN 
RF00376 HIV gag stem loop 3 (GSL3) Cis-reg 1374 1371 99.78 1200 87.34 9  9 100.00 4 44.44 
RF00377 Small nucleolar RNA U6-53/MBII-28 Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 0  0 NaN 0 NaN 
RF00378 Qrr RNA Gene|sRNA 14 7 50.00 9 64.29 0  0 NaN 0 NaN 
RF00379 ydaO/yuaA element Cis-reg|riboswitch 35 35 100.00 32 91.43 0  0 NaN 0 NaN 
RF00380 ykoK element Cis-reg|riboswitch 39 25 64.10 32 82.05 0  0 NaN 0 NaN 
RF00381 Antizyme RNA frameshifting stimulation element Cis-reg|frameshift 13 12 92.31 12 92.31 10  10 100.00 7 70.00 
RF00382 DnaX ribosomal frameshifting element Cis-reg|frameshift 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00383 Insertion sequence IS1222 ribosomal frameshifting element Cis-reg|frameshift 6 6 100.00 6 100.00 0  0 NaN 0 NaN 
RF00384 Poxvirus AX element late mRNA CE Cis-reg 7 7 100.00 7 100.00 0  0 NaN 0 NaN 
RF00385 Infectious bronchitis virus D-RNA Cis-reg 10 6 60.00 10 100.00 10  8 80.00 6 60.00 
RF00386 Enterovirus 5' cloverleaf cis-acting replication element Cis-reg 60 5 8.33 52 86.67 0  0 NaN 0 NaN 
RF00387 FGF-1 IRES Cis-reg|IRES 6 6 100.00 6 100.00 0  0 NaN 0 NaN 
RF00388 Qa RNA Gene|antisense 5 2 40.00 3 60.00 0  0 NaN 0 NaN 
RF00389 Bamboo mosaic virus satellite RNA CE Cis-reg 42 42 100.00 41 97.62 0  0 NaN 0 NaN 
RF00390 UPSK RNA Cis-reg 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00391 RtT RNA Cis-reg 19 16 84.21 18 94.74 0  0 NaN 0 NaN 
RF00392 Small nucleolar RNA ACA5 Gene|snRNA|guide|H/ACA-box 6 6 100.00 4 66.67 0  0 NaN 0 NaN 
RF00393 Small nucleolar RNA ACA8 Gene|snRNA|guide|H/ACA-box 5 4 80.00 4 80.00 0  0 NaN 0 NaN 
RF00394 Small nucleolar RNA ACA4 Gene|snRNA|guide|H/ACA-box 7 4 57.14 7 100.00 0  0 NaN 0 NaN 
RF00395 Small nucleolar RNA ACA10 Gene|snRNA|guide|H/ACA-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00396 Small nucleolar RNA ACA13 Gene|snRNA|guide|H/ACA-box 3 0 0.00 1 33.33 0  0 NaN 0 NaN 
RF00397 Small nucleolar RNA ACA14 Gene|snRNA|guide|H/ACA-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00398 Small nucleolar RNA ACA15 Gene|snRNA|guide|H/ACA-box 4 2 50.00 4 100.00 0  0 NaN 0 NaN 
RF00399 Small nucleolar RNA ACA24 Gene|snRNA|guide|H/ACA-box 5 5 100.00 4 80.00 0  0 NaN 0 NaN 
RF00400 Small nucleolar RNA ACA28 Gene|snRNA|guide|H/ACA-box 3 2 66.67 3 100.00 0  0 NaN 0 NaN 
RF00401 Small nucleolar RNA ACA20 Gene|snRNA|guide|H/ACA-box 17 4 23.53 14 82.35 0  0 NaN 0 NaN 
RF00402 Small nucleolar RNA ACA25 Gene|snRNA|guide|H/ACA-box 9 7 77.78 8 88.89 0  0 NaN 0 NaN 
RF00403 Small nucleolar RNA ACA41 Gene|snRNA|guide|H/ACA-box 6 1 16.67 6 100.00 0  0 NaN 0 NaN 
RF00404 Small nucleolar RNA ACA46 Gene|snRNA|guide|H/ACA-box 3 1 33.33 2 66.67 0  0 NaN 0 NaN 
RF00405 Small nucleolar RNA ACA44 Gene|snRNA|guide|H/ACA-box 6 6 100.00 6 100.00 1  1 100.00 1 100.00 
RF00406 Small nucleolar RNA ACA42 Gene|snRNA|guide|H/ACA-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00407 Small nucleolar RNA ACA50 Gene|snRNA|guide|H/ACA-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00408 Small nucleolar RNA ACA1 Gene|snRNA|guide|H/ACA-box 6 5 83.33 5 83.33 0  0 NaN 0 NaN 
RF00409 Small nucleolar RNA ACA7 Gene|snRNA|guide|H/ACA-box 8 8 100.00 6 75.00 1  1 100.00 1 100.00 
RF00410 Small nucleolar RNA ACA2/ACA34 Gene|snRNA|guide|H/ACA-box 18 5 27.78 16 88.89 0  0 NaN 0 NaN 
RF00411 Small nucleolar RNA ACA9 Gene|snRNA|guide|H/ACA-box 6 3 50.00 5 83.33 0  0 NaN 0 NaN 
RF00412 Small nucleolar RNA ACA21 Gene|snRNA|guide|H/ACA-box 5 1 20.00 3 60.00 0  0 NaN 0 NaN 
RF00413 Small nucleolar RNA ACA19 Gene|snRNA|guide|H/ACA-box 4 1 25.00 3 75.00 0  0 NaN 0 NaN 
RF00414 Small nucleolar RNA ACA22 Gene|snRNA|guide|H/ACA-box 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00415 Small nucleolar RNA ACA30/ACA37/MBI-26 Gene|snRNA|guide|H/ACA-box 6 6 100.00 6 100.00 0  0 NaN 0 NaN 
RF00416 Small nucleolar RNA ACA43 Gene|snRNA|guide|H/ACA-box 7 7 100.00 6 85.71 0  0 NaN 0 NaN 
RF00417 Small nucleolar RNA ACA56 Gene|snRNA|guide|H/ACA-box 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00418 Small nucleolar RNA ACA52 Gene|snRNA|guide|H/ACA-box 4 0 0.00 3 75.00 0  0 NaN 0 NaN 
RF00419 Small nucleolar RNA ACA52 Gene|snRNA|guide|H/ACA-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00420 Small nucleolar RNA ACA61 Gene|snRNA|guide|H/ACA-box 4 3 75.00 3 75.00 0  0 NaN 0 NaN 
RF00421 Small nucleolar RNA ACA32 Gene|snRNA|guide|H/ACA-box 9 6 66.67 6 66.67 0  0 NaN 0 NaN 
RF00422 Small nucleolar RNA ACA12 Gene|snRNA|guide|H/ACA-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00423 Small nucleolar RNA ACA26 Gene|snRNA|guide|H/ACA-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 



 147

    
miPred miPred-NBC 

  

Tr
ip

le
t-

SV
M

‡  

Tr
ip

le
t-

SV
M

-
N

BC
 

Accession Type† Class N TN %SP TN %SP N  TN %SP TN %SP 

RF00424 Small nucleolar RNA ACA47 Gene|snRNA|guide|H/ACA-box 6 2 33.33 4 66.67 0  0 NaN 0 NaN 
RF00425 Small nucleolar RNA ACA18 Gene|snRNA|guide|H/ACA-box 6 3 50.00 3 50.00 0  0 NaN 0 NaN 
RF00426 Small nucleolar RNA ACA45 Gene|snRNA|guide|H/ACA-box 3 1 33.33 3 100.00 0  0 NaN 0 NaN 
RF00427 Small nucleolar RNA ACA11 Gene|snRNA|guide|H/ACA-box 3 1 33.33 3 100.00 0  0 NaN 0 NaN 
RF00428 Small nucleolar RNA ACA38 Gene|snRNA|guide|H/ACA-box 5 4 80.00 5 100.00 0  0 NaN 0 NaN 
RF00429 Small nucleolar RNA ACA29 Gene|snRNA|guide|H/ACA-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00430 Small nucleolar RNA ACA54 Gene|snRNA|guide|H/ACA-box 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00431 Small nucleolar RNA ACA55 Gene|snRNA|guide|H/ACA-box 3 0 0.00 3 100.00 0  0 NaN 0 NaN 
RF00432 Small nucleolar RNA ACA51 Gene|snRNA|guide|H/ACA-box 9 8 88.89 9 100.00 0  0 NaN 0 NaN 
RF00433 Hsp90 CE Cis-reg|thermoregulator 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00434 Luteovirus cap-independent translation element (BTE) Cis-reg 17 17 100.00 13 76.47 0  0 NaN 0 NaN 
RF00435 Repression of heat shock gene expression (ROSE) element Cis-reg|thermoregulator 3 2 66.67 2 66.67 0  0 NaN 0 NaN 
RF00436 UnaL2 line 3' element Cis-reg 144 141 97.92 113 78.47 50  49 98.00 13 26.00 
RF00437 Hairy RNA localisation element (HLE) Cis-reg 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00438 Small nucleolar RNA ACA33 Gene|snRNA|guide|H/ACA-box 5 5 100.00 4 80.00 0  0 NaN 0 NaN 
RF00439 Small nucleolar RNA U87 Gene|snRNA|guide|C/D-box 4 4 100.00 3 75.00 0  0 NaN 0 NaN 
RF00440 Small nucleolar RNA U37 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 3  3 100.00 3 100.00 
RF00441 Small nucleolar RNA Z242 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00442 ykkC-yxkD element Cis-reg|riboswitch 16 15 93.75 14 87.50 0  0 NaN 0 NaN 
RF00443 Small nucleolar RNA ACA27 Gene|snRNA|guide|H/ACA-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00444 PrrF RNA Gene|sRNA 7 2 28.57 7 100.00 0  0 NaN 0 NaN 
RF00447 Voltage-gated potassium-channel Kv1.4 IRES Cis-reg|IRES 6 5 83.33 6 100.00 0  0 NaN 0 NaN 
RF00448 Epstein-Barr virus nuclear antigen (EBNA) IRES Cis-reg|IRES 8 8 100.00 8 100.00 0  0 NaN 0 NaN 
RF00449 HIF-1 alpha IRES Cis-reg|IRES 7 7 100.00 7 100.00 0  0 NaN 0 NaN 
RF00450 Small nucleolar RNA R105/R108 Gene|snRNA|guide|C/D-box 4 3 75.00 4 100.00 0  0 NaN 0 NaN 
RF00453 Cardiovirus cis-acting replication element  Cis-reg 12 11 91.67 9 75.00 2  2 100.00 2 100.00 
RF00454 p27 CE Cis-reg 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00457 Mnt IRES Cis-reg|IRES 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00458 Cripavirus IRES Cis-reg|IRES 7 6 85.71 6 85.71 0  0 NaN 0 NaN 
RF00459 Mason-Pfizer monkey virus packaging signal Cis-reg 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
RF00460 U1A polyadenylation inhibition element (PIE) Cis-reg 6 6 100.00 6 100.00 3  3 100.00 3 100.00 
RF00461 Vascular endothelial growth factor (VEGF) IRES A Cis-reg|IRES 7 7 100.00 7 100.00 0  0 NaN 0 NaN 
RF00462 APC IRES Cis-reg|IRES 6 6 100.00 2 33.33 0  0 NaN 0 NaN 
RF00463 Apolipoprotein B (apoB) 5' UTR CE Cis-reg 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00465 Japanese encephalitis virus (JEV) hairpin structure Cis-reg 20 19 95.00 19 95.00 12  12 100.00 5 41.67 
RF00466 Agrobacterium tumefaciens ROSE element Cis-reg|thermoregulator 3 1 33.33 3 100.00 0  0 NaN 0 NaN 
RF00467 Rous sarcoma virus (RSV) primer binding site (PBS) Cis-reg 23 1 4.35 21 91.30 22  13 59.09 18 81.82 
RF00468 Hepatitis C stem-loop VII Cis-reg 63 9 14.29 32 50.79 63  45 71.43 63 100.00 
RF00469 Hepatitis C stem-loop IV Cis-reg 109 2 1.83 109 100.00 109  109 100.00 61 55.96 
RF00470 Togavirus 5' plus strand CE Cis-reg 32 5 15.63 29 90.63 0  0 NaN 0 NaN 
RF00471 Small nucleolar RNA snR48 Gene|snRNA|guide|C/D-box 6 6 100.00 5 83.33 1  1 100.00 0 0.00 
RF00472 Small nucleolar RNA snR55/Z10 Gene|snRNA|guide|C/D-box 7 7 100.00 4 57.14 0  0 NaN 0 NaN 
RF00473 Small nucleolar RNA snR54 Gene|snRNA|guide|C/D-box 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00474 Small nucleolar RNA snR57 Gene|snRNA|guide|C/D-box 6 6 100.00 5 83.33 2  2 100.00 0 0.00 
RF00475 Small nucleolar RNA snR69 Gene|snRNA|guide|C/D-box 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00476 Small nucleolar RNA snR61/Z11 Gene|snRNA|guide|C/D-box 9 9 100.00 8 88.89 0  0 NaN 0 NaN 
RF00477 Small nucleolar RNA snR66 Gene|snRNA|guide|C/D-box 5 5 100.00 5 100.00 0  0 NaN 0 NaN 
RF00478 Small nucleolar RNA U88 Gene|snRNA|guide|C/D-box 4 0 0.00 3 75.00 0  0 NaN 0 NaN 
RF00479 Small nucleolar RNA snR71 Gene|snRNA|guide|C/D-box 5 5 100.00 3 60.00 0  0 NaN 0 NaN 
RF00480 HIV Ribosomal frameshift signal Cis-reg|frameshift 768 152 19.79 704 91.67 765  719 93.99 107 13.99 
RF00481 Hepatitis C virus 3'X element Cis-reg 22 0 0.00 13 59.09 0  0 NaN 0 NaN 
RF00482 Small nucleolar RNA F1/F2/snoR5a Gene|snRNA|guide|H/ACA-box 8 5 62.50 6 75.00 0  0 NaN 0 NaN 
RF00483 Insulin-like growth factor II IRES Cis-reg|IRES 8 8 100.00 7 87.50 0  0 NaN 0 NaN 
RF00484 Connexin-32 IRES Cis-reg|IRES 6 6 100.00 5 83.33 0  0 NaN 0 NaN 
RF00485 Potassium channel RNA editing signal Cis-reg 85 76 89.41 69 81.18 13  10 76.92 7 53.85 
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RF00487 Connexin-43 IRES Cis-reg|IRES 13 13 100.00 12 92.31 0  0 NaN 0 NaN 
RF00488 Yeast U1 spliceosomal RNA Gene|snRNA|splicing 6 0 0.00 5 83.33 0  0 NaN 0 NaN 
RF00489 ctRNA Gene|antisense 15 6 40.00 14 93.33 10  8 80.00 7 70.00 
RF00490 S-element Cis-reg 13 13 100.00 9 69.23 3  3 100.00 3 100.00 
RF00491 Simian virus 40 late polyadenylation signal (SVLPA) Cis-reg 3 3 100.00 2 66.67 0  0 NaN 0 NaN 
RF00492 Small nucleolar RNA U12-22 Gene|snRNA|guide|C/D-box 7 7 100.00 6 85.71 3  3 100.00 3 100.00 
RF00493 Small nucleolar RNA U2-30 Gene|snRNA|guide|C/D-box 3 3 100.00 3 100.00 0  0 NaN 0 NaN 
RF00494 Small nucleolar RNA U2-19 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 1  1 100.00 1 100.00 
RF00495 Heat shock protein 70 (Hsp70) IRES Cis-reg|IRES 13 13 100.00 13 100.00 0  0 NaN 0 NaN 
RF00496 Coronavirus SL-III cis-acting replication element  Cis-reg 5 5 100.00 5 100.00 3  3 100.00 1 33.33 
RF00497 Dengue virus 3'-SL cis-acting replication element  Cis-reg 23 5 21.74 21 91.30 0  0 NaN 0 NaN 
RF00498 Equine arteritis virus leader TRS hairpin (LTH) Cis-reg 4 4 100.00 4 100.00 4  4 100.00 4 100.00 
RF00499 Human parechovirus 1 (HPeV1) cis regulatory element  Cis-reg 5 2 40.00 5 100.00 0  0 NaN 0 NaN 
RF00500 Turnip crinkle virus (TCV) repressor of minus strand synthesis H5 Cis-reg 3 2 66.67 3 100.00 3  3 100.00 2 66.67 
RF00501 Rotavirus cis-acting replication element  Cis-reg 14 14 100.00 8 57.14 4  4 100.00 1 25.00 
RF00502 Turnip crinkle virus (TCV) core promoter hairpin (Pr) Cis-reg 4 4 100.00 4 100.00 4  4 100.00 2 50.00 
RF00503 RNAIII Gene 12 2 16.67 12 100.00 0  0 NaN 0 NaN 
RF00504 gcvT element Cis-reg|riboswitch 117 111 94.87 102 87.18 3  3 100.00 2 66.67 
RF00505 RydC RNA Gene|sRNA 3 3 100.00 3 100.00 2  2 100.00 2 100.00 
RF00506 Threonine operon leader Cis-reg 27 1 3.70 25 92.59 0  0 NaN 0 NaN 
RF00507 Coronavirus frameshifting stimulation element Cis-reg|frameshift 18 12 66.67 15 83.33 0  0 NaN 0 NaN 
RF00509 Small nucleolar RNA snR64 Gene|snRNA|guide|C/D-box 4 4 100.00 4 100.00 0  0 NaN 0 NaN 
− mRNAs − 31 27 87.10 27 87.10 0  0 NaN 0 NaN 
Total ncRNA samples (exclude mRNAs) − 12387 8507  10771  2404 1884  1199  

†, cis-regulatory element (CE); internal ribosome entry site (IRES). N (non pre-miRs), TN (non pre-miRs missed), and %SP (Specificity). ‡, Triplet-
SVM model was trained on 200 human pre-miRs and 400 pseudo hairpins randomly selected using the latest libSVM 2.82 (the "-b 1" option was 
enabled) and the optimal hyperparameter pair (C, γ). 
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Table C.7: The mean specificity of miPred, miPred-NBC, Triplet-SVM, and Triplet-SVM-NBC evaluated on 

the non pre-miR dataset IE-NC categorized by classes of ncRNAs. 

  miPred miPred-NBC  Triplet-SVM† Triplet-SVM-
NBC 

Classes of ncRNAs No. of types %SP %SP No. of excluded types %SP %SP 

Cis-reg 77 74.91 ± 4.03 87.99 ± 2.03 46 83.36 ± 5.60 69.96 ± 5.61 
Cis-reg|frameshift 5 75.75 ± 15.27 86.80 ± 5.68 3 96.99 ± 3.01 42.00 ± 28.01 
Cis-reg|IRES 24 85.47 ± 6.02 91.02 ± 3.06 22 50.00 ± 50.00 50.00 ± 50.00 
Cis-reg|riboswitch 12 82.28 ± 3.96 85.77 ± 2.56 8 100.00 ± 0.00 54.17 ± 20.83 
Cis-reg|thermoregulator 4 75.00 ± 15.96 91.67 ± 8.33 3 100.00 ± 0.00 100.00 ± 0.00 
Gene 24 34.73 ± 7.71 86.65 ± 3.03 18 70.57 ± 18.19 45.23 ± 3.26 
Gene|antisense 10 41.93 ± 13.01 78.05 ± 5.03 8 90.00 ± 10.00 85.00 ± 15.00 
Gene|ribozyme 9 60.08 ± 10.10 91.54 ± 2.36 6 97.44 ± 2.56 55.56 ± 29.40 
Gene|rRNA 3 70.66 ± 12.94 90.74 ± 1.70 1 100.00 ± 0.00 75.00 ± 25.00 
Gene|snRNA 1 85.71 ± 0.00 85.71 ± 0.00 0 100.00 ± 0.00 100.00 ± 0.00 
Gene|snRNA|guide|C/D-box 165 94.61 ± 1.28 84.59 ± 1.58 72 92.78 ± 2.32 68.60 ± 4.06 
Gene|snRNA|guide|H/ACA-box 71 60.97 ± 4.33 84.97 ± 2.04 68 100.00 ± 0.00 100.00 ± 0.00 
Gene|snRNA|splicing 7 51.16 ± 13.89 87.30 ± 3.83 6 100.00 ± 0.00 100.00 ± 0.00 
Gene|sRNA 42 65.71 ± 5.90 87.53 ± 2.81 39 100.00 ± 0.00 33.33 ± 33.33 
Gene|tRNA 1 85.55 ± 0.00 86.98 ± 0.00 0 94.94 ± 0.00 89.87 ± 0.00 
Intron 2 40.95 ± 9.05 86.70 ± 9.98 2 NaN NaN 

†, Triplet-SVM model was trained on 200 human pre-miRs and 400 pseudo hairpins randomly selected using the latest libSVM 2.82 (the "-b 1" option 
was enabled) and the optimal hyperparameter pair (C, γ). %SP (Specificity). Values are expressed as mean ± standard error. 
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Table C.8: F1 and F2 scores for features of miPred and Triplet-SVM, sorted by descending F1 scores. 

  miPred Triplet-SVM† 

Rank Features F1 score F2 score ΔF = F1 − F2 Features F1 score F2 score ΔF = F1 − F2 

01 MFEI1 1.28 1.52 -2.42E-01 A((( 8.20E-01 6.97E-01 1.22E-01 
02 zG 1.27 1.48 -2.15E-01 U((( 7.58E-01 6.12E-01 1.46E-01 
03 dP 1.03 1.18 -1.49E-01 G... 4.57E-01 2.05E-01 2.52E-01 
04 zP 9.67E-01 1.03 -6.33E-02 A... 4.42E-01 1.94E-01 2.47E-01 
05 zQ 8.33E-01 7.29E-01 1.04E-01 C... 4.31E-01 1.84E-01 2.47E-01 
06 dG 8.23E-01 7.50E-01 7.31E-02 G.(( 3.81E-01 1.62E-01 2.20E-01 
07 dQ 7.99E-01 6.67E-01 1.32E-01 A(.. 3.50E-01 1.31E-01 2.19E-01 
08 zD 7.92E-01 6.70E-01 1.23E-01 A..( 3.28E-01 1.17E-01 2.11E-01 
09 dD 7.46E-01 5.91E-01 1.55E-01 C((. 3.19E-01 1.12E-01 2.07E-01 
10 MFEI2 4.41E-01 1.53E-01 2.88E-01 G(.. 3.07E-01 9.75E-02 2.10E-01 
11 %UA 3.87E-01 1.56E-01 2.31E-01 U... 3.05E-01 9.74E-02 2.08E-01 
12 %G+C 3.06E-01 1.04E-01 2.02E-01 C..( 2.97E-01 9.54E-02 2.02E-01 
13 zF 2.88E-01 7.13E-02 2.16E-01 G((( 2.84E-01 8.95E-02 1.94E-01 
14 %UU 2.83E-01 8.91E-02 1.94E-01 C(.. 2.70E-01 7.93E-02 1.91E-01 
15 %GU 2.64E-01 7.71E-02 1.87E-01 G((. 2.63E-01 7.62E-02 1.87E-01 
16 %GC 2.44E-01 6.57E-02 1.79E-01 G..( 2.48E-01 6.69E-02 1.81E-01 
17 dF 2.42E-01 5.16E-02 1.90E-01 U..( 2.19E-01 5.20E-02 1.67E-01 
18 %CC 2.04E-01 4.59E-02 1.58E-01 C.(( 1.89E-01 3.92E-02 1.50E-01 
19 %AA 1.83E-01 3.73E-02 1.46E-01 C((( 1.87E-01 3.88E-02 1.48E-01 
20 %GG 1.82E-01 3.68E-02 1.45E-01 G.(. 1.82E-01 3.52E-02 1.47E-01 
21 %CA 1.77E-01 3.48E-02 1.42E-01 U.(. 1.71E-01 2.88E-02 1.42E-01 
22 %CG 1.73E-01 3.30E-02 1.40E-01 U(.. 1.56E-01 2.69E-02 1.30E-01 
23 %GA 1.41E-01 2.13E-02 1.19E-01 U(.( 1.37E-01 2.08E-02 1.16E-01 
24 %AU 1.25E-01 1.69E-02 1.08E-01 A.(. 1.22E-01 1.52E-02 1.07E-01 
25 %AG 1.08E-01 1.28E-02 9.54E-02 C.(. 1.10E-01 1.32E-02 9.68E-02 
26 %UG 6.31E-02 4.42E-03 5.87E-02 G(.( 1.02E-01 1.13E-02 9.05E-02 
27 %AC 3.71E-02 1.53E-03 3.55E-02 C(.( 6.68E-02 4.95E-03 6.19E-02 
28 %CU 3.21E-02 1.13E-03 3.09E-02 A(.( 6.06E-02 4.06E-03 5.65E-02 
29 %UC 2.18E-02 5.21E-04 2.13E-02 A.(( 5.90E-02 3.87E-03 5.52E-02 
30 − − − − A((. 3.21E-02 1.14E-03 3.10E-02 
31 − − − − U.(( 3.28E-03 1.20E-05 3.26E-03 
32 − − − − U((. 6.80E-05 0.00E+00 6.80E-05 

  0.429 ± 0.0711 0.332 ± 0.0872 −  0.252 ± 0.0336 0.103 ± 0.0277 − 

†, Triplet-SVM model was trained on 200 human pre-miRs and 400 pseudo hairpins randomly selected using the latest libSVM 2.82 (the "-b 1" option 
was enabled) and the optimal hyperparameter pair (C, γ). 
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Table C.9: Effects of feature selection on miPred's accuracy. 

Classifiers Human pre-miRs (TR-H and TE-H) Non-human pre-miRs (IE-NH) ncRNAs (IE-NC) mRNAs (IE-M) 

miPred 93.60 95.64 68.68 87.10 
miPred3 94.12 95.69 68.31 87.10 
miPred3/5 92.67 95.36 71.20 100.00 
miPred3/10 93.40 95.64 69.82 83.87 
miPred3/15 93.40 95.79 60.93 80.65 
miPred3/20 92.67 94.68 72.18 100.00 
miPred3/21 92.67 95.29 72.01 100.00 
miPred3/22 92.57 95.15 71.26 100.00 
miPred3/23 92.67 95.22 70.15 100.00 
miPred3/24 92.98 95.39 64.56 100.00 
miPred3/25 91.64 93.52 63.16 96.77 
miPredI 77.30 76.35 67.53 90.32 
miPredII 93.81 95.83 61.38 54.84 
miPredIII 93.60 95.69 66.13 70.97 

miPred3 contains a subset of 26 features from miPred that excludes dQ, dD, and zD. Derived from miPred3, the remaining nine variants denoted as 
miPred3/5, miPred3/10, …, miPred3/24, and miPred3/25 only include the top ranking 21, 16, 11, 6, 5, 4, 3, 2, and 1 feature(s), respectively. miPredI (17 
features: 16 dinucleotides frequencies and %G+C), miPredII (12 features; MFEI1, MFEI2, dP, dG, dQ, dD, dF, zP, zG, zQ, zD, and zF), and miPredIII (9 
features; a subset of miPredII that excludes dQ, dD, and zD). 
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Table C.10: Putative viral-encoded pre-miRs in four viruses. 

S SP L Epstein barr virus (EBV; AJ507799.2); 5' → 3' 

+  147303 92 CCAGAGGAGUGUCCCGGGGCCACCUCUUUGGUUCUGUACAUAUuuuGUUAUUGUACAUAACCAUGGAGUUGGCUGUGGUGCACUCCAUCUGG (ebv-miR-
BART10) 

+ 7681 94 AUAUAGAUUAGGAUAGCAUAUGCUAUCCAGAUAUUUGGGUAGUAuaugcUACCCAGAUAUAAAUUAGGAUAGCAUAUACUACCCUAAUCUCUAU (ebv-miR-p1) 

+ 140016 92 UGACCUUGUUGGUACUUUAAGGUUGGUCCAAUCCAUAGGCUUUUUuuguGAAAACCCGGGGAUCGGACUAGCCUUAGAGUAACUCAAGGCCA (ebv-miR-BART6) 

+ 7693 95 AUAGCAUAUGCUAUCCAGAUAUUUGGGUAGUAUAUGCUACCCAGAUauaaAUUAGGAUAGCAUAUACUACCCUAAUCUCUAUUAGGAUAGCAUAU (ebv-miR-p2) 

+ 7932 94 GCAUAUGCUACCCAGAUAUAGAUUAGGAUAGCCUAUGCUACCCAGauaUAGAUUAGGAUAGCAUAUGCUAUCCAGAUAUUUGGGUAGUAUAUGC (ebv-miR-p3) 

+ 9007 91 UAGGACCCUUUUACUAACCCUAAUUCGAUAGCAUAUGCUUCCCguuGGGUAACAUAUGCUAUUGAAUUAGGGUUAGUCUGGAUAGUAUAUA (ebv-miR-p4) 

+ 7708 95 CAGAUAUUUGGGUAGUAUAUGCUACCCAGAUAUAAAUUAGGAUAGcauauaCUACCCUAAUCUCUAUUAGGAUAGCAUAUGCUACCCGGAUACAG (ebv-miR-p5) 

+ 146422 94 GGAUCCAGUGUCCUGAUCCUGGACCUUGACUAUGAAACAAUUCUaaaAAAAUGCAUCAUAGUCCAGUGUCCAGGGACAGUGCACUCGGAAGUCU (ebv-miR-
BART7) 

+ 9031 95 UCGAUAGCAUAUGCUUCCCGUUGGGUAACAUAUGCUAUUGAAUUAGGguuagUCUGGAUAGUAUAUACUACUACCCGGGAAGCAUAUGCUACCCG (ebv-miR-p6) 

+ 152730 92 CUGGUGGACUUCCAGACUAUUUUCUGCAUUCGCCCUUGCGUGUccauuGUUGCAAGGAGCGAUUUGGAGAAAAUAAACUGUGAGUUUCACAG (ebv-miR-BART2) 

+ 146753 95 GGUCGAUGGGUUCACUGAUUACGGUUUCCUAGAUUGUACAGAUgaacuagAACUGUCACAAUCUAUGGGGUCGUAGACAGUGUGCUUACCAGACU (ebv-miR-
BART8) 

+ 42832 95 AAUGACCCGGCCCCCACUUUUAAAUUCUGUUGCAGCAGAUAGCUGAUacccAAUGUUAUCUUUUGCGGCAGAAAUUGAAAGUGCUGGCCAUAUCU (ebv-miR-
BHRF1-2) 

+ 139064 93 AGGCAUUGUUAACCUUUGGUGGAACCUAGUGUUAGUGUUGUGCUGUaaauAAGUGUCCAGCGCACCACUAGUCACCAGGUGUCACCGGAGGCU (ebv-miR-
BART3) 

+ 139898 95 AACAGGAUGUGGCACCCUAAGAGGACGCAGGCAUACAAGGUUauuacccAGUCCUUGUAUGCCUGGUGUCCCCUUAGUGGGACGCAGGCCUAGGU (ebv-miR-p7) 

+ 12549 93 GGCAGAGGGUCGGCCUAGGCCCGGGGAAGUGGAGGGGGAUCgcccgGGUCUCUGUUGGCAGAGUCCGGGCGAUCCUCUGAGACCCUCCGGGCC (ebv-miR-p8) 

+ 139206 95 GGGGCUCUGUAACAUUUGGUGGGACCUGAUGCUGCUGGUGUGCUGUaaauAAGUGCCUAGCACAUCACGUAGGCACCAGGUGUCACCAGGGCUAC (ebv-miR-
BART4) 

+ 42950 95 UAUACGCCUGUGGUGUUCUAACGGGAAGUGUGUAAGCACACACGUAauuUGCAAGCGGUGCUUCACGCUCUUCGUUAAAAUAACACAAGGACAAG (ebv-miR-
BHRF1-3) 

+ 7754 94 AUAUACUACCCUAAUCUCUAUUAGGAUAGCAUAUGCUACCCGGAUacagAUUAGGAUAGCAUAUACUACCCAGAUAUAGAUUAGGAUAGCAUAU (ebv-miR-p9) 

+ 156856 94 UUUUGCGCCUGGAAGUUGUACUCCCGGAAGAUGCCCUCCAGGUCAAagacgUUGGAGGCACGCUGUUCGUCCCGUGAGUACAGCUCCAGGGAGG (ebv-miR-p10) 

+ 140356 94 CUGGAGACCUGCUAUGUGGCUAGACGUAUGGCCUACCCAAGACGUuggGGGUCUCGGGUAGGCCAUGAUUCUUCCAGGCAUAGGUUACAACCAG (ebv-miR-p11) 

+ 146941 94 UGUGGCAGCUGUUGUUUGUACUGGACCCUGAAUUGGAAACAGUAACUuggAUUCUGUAACACUUCAUGGGUCCCGUAGUGACAACUAUGCUGAA (ebv-miR-
BART9) 

+ 139778 95 GCUUUCAGGUGUGGAAUUUAGAUAGAGUGGGUGUGUGCUCUUGUUUaauuACACCAAGAUCACCACCCUCUAUCCAUAUCCCACAAUUGAUAAAC (ebv-miR-p12) 

+ 165115 94 UUCUUGGGUGAGCGAGUCACCCUGACCUCCUACUGGAGGAGGgugagCCUCGGUCCAGAGAUUGAGGUCAGCUGGUUUAAACUGGGCCCAGGAG (ebv-miR-p13) 

+ 139333 95 UAACAAACCCGUGGGGGGUCUUAGUGGAAGUGACGUGCUGUGAAUacagGUCCAUAGCACCGCUAUCCACUAUGUCUCGCCCGGGCUAUAUGUCG (ebv-miR-
BART1) 

+ 139658 93 GAUGCUCUGUGGCACCUCAAGGUGAAUAUAGCUGCCCAUCGACGUAUCgcugGAAACCGGUGGGCCGCUGUUCACCUAAAGUGACGCAAGGUC (ebv-miR-
BART5) 

+ 140396 87 GACGUUGGGGGUCUCGGGUAGGCCAUGAUUCUUCCAGGCAUAGGUuacAACCAGUCACUGCUAUCAAGCCUACUCAGUUCCCAACGC (ebv-miR-p14) 

+ 7666 94 GCAUAUGCUACCCAGAUAUAGAUUAGGAUAGCAUAUGCUAUCCAGauauUUGGGUAGUAUAUGCUACCCAGAUAUAAAUUAGGAUAGCAUAUAC (ebv-miR-p15) 

+ 165097 95 GGCCAGGCUGUCACCGCUUUCUUGGGUGAGCGAGUCACCCUAGCCUCCuacuGGAGGAGGGUGAGCCUCGGUCCAGAGAUUGAGGUCAGCUGGUU (ebv-miR-
p16) 

+ 48951 93 GACCGUGGCUCCCGCCUCUUGGAUGCCAUCAUCCCCUGCUUGGgacCCGACCGCACUUGCAUGCGGCCGGUGGUCCUGCGGGGGGUGACGGUC (ebv-miR-p17) 

+ 103504 95 UGGCAGAGCUUUCACCGGUGGAACUCGUGACAGAUGUCUACGCCACCcuaGGCAUCGUGGAGAUCAUCGACGAGCUCUACCGGAGCAGUCGCCUG (ebv-miR-
p18) 

+ 68250 94 CUGAGUGUGGGGCCAUACGAGGCCUUCACUGGCCCUGUGGCCaaggcucaGGACGUGGGGGCCGUUGAGGCCCACGUUGUCUGCUCGGUAGCAG (ebv-miR-p19) 

+ 74472 94 UUGUGGCACAAACAAAACAGGCGGAAGCCCUCGUCAGGCCGcgagaggaUGGCAUCGAGGAUGGCCUCCGCAAUGUCAGUGUUUGAGGCCACAA (ebv-miR-p20) 

+ 153549 95 UGUAGGCUGAGAGCUUGCGGCUGAGCUCCGUUGAAAAGCAGAGCUCCCCcauGGGGACCCUGCCUUCACGGAGGUCUGUGUAGGCCUGGUUUAGG (ebv-miR-
p21) 

+ 145656 87 GAGUGGGGGAUGCUAGCCAAUUUAGCUUCCCCUCCCCUUaacAGGGGGUCUCGCGGGGUGCCAAUUGUCGCCUGCCUUCCCCCGCUU (ebv-miR-p22) 

+ 132971 95 CCGUGCUGGGCAGUCAGGGCCUGGAAGUCUUGGCGGCGUUGGUAUUuaaAAACCAGCGAUCCCUGAGAACGCUCCAGGUAGAGUUUCCAGCCCUG (ebv-miR-
p23) 

+ 41458 94 AAGGACGGCUCCUUAUUAACCUGAUCAGCCCCGGAGUUGCCUGUuucAUCACUAACCCCGGGCCUGAAGAGGUUGACAAGAAGGGUCAAGGUUU  (†ebv-miR-
BHRF1-1) 

S SP L Kaposi sarcoma-associated herpesvirus (KSHV; U75698.1); 5' → 3' 

− 119293 93 UCCAGUAGGUAUACCCAGCUGGGUCUACCCAGCUGCGUAAACCCcgcuGCGUAAACACAGCUGGGUAUACGCAGCUGCGUAAACCCGGCUGGG (‡kshv-miR-K12-
9) 
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− 119273 94 UGGGUCUACCCAGCUGCGUAAACCCCGCUGCGUAAACACAGCUGGGuauaCGCAGCUGCGUAAACCCGGCUGGGUAAAUCCAGCUGUAAUUCUA (Δkshv-miR-
K12-9) 

− 120744 94 GCGGGUUUAGAAAGACUUGUCCAGCAGCACCUAAUCCAUCGGCggucggGCUGAUGGUUUUCGGGCUGUUGAGCGAGUCUUUUUAUCUAGUCGC (kshv-miR-K12-
6) 

− 121535 89 GCCUGUGAUGGGCUAUCACAUUCUGAGGACGGCAGCGACGUGugucUAACGUCAACGUCGCGGUCACAGAAUGUGACACCCCUCCAGGU (kshv-miR-K12-3) 

− 23628 94 GUUUAAUUAUAGAAUUGCAGCUGGGUAUACCCAGCUGGGUUCACCCaccuGGGUAUACCUACUGGAUUACCCAGCUGGGUAUACCUACUGGAAU (kshv-miR-p1) 

− 119320 93 GCGCAGCUGAGUCAUCGCAGCCCCUAUUCCAGUAGGUAUACCCagcuGGGUCUACCCAGCUGCGUAAACCCCGCUGCGUAAACACAGCUGGGU (kshv-miR-p2) 

− 121400 95 GAACCGGGCAGUAUAACUAGCUAAACCGCAGUACUCUAGGGCAuucauuUGUUACAUAGAAUACUGAGGCCUAGCUGAUUAUACUACCUCCGUCC (kshv-miR-K12-
4) 

− 81073 86 UACCCAGUUUGUCAUGACACCGACAGAAGCUGGUGCUGGCGAcgucuUCGCCGCGCCACUCGUCCGGUGGACAGGCUGAUUUGAAA (kshv-miR-p3) 

− 133793 94 AUUAUGCAGGCUGUUAUGAUAUCCCUGGGGGCAGACCUGCUACCGcuggCGGUGCAGGCUUCAACCGGGGACAAUUAUAACGUGGCCAGGUACU (kshv-miR-p4) 

− 79458 93 AGGACGCUGACGUUGGGGCCCCCGUAAGGACGUCGGCGAUCGUCucgGCGCUGUCGCCACUCGUACAAAAAAUAACCCUUACUGUCAGCGCCU (kshv-miR-p5) 

− 9635 95 GCCGUGAUCUCGUUGGCCACAAAGUGGAAGCUGUCCUCGUGGGUAGUcuggAUGGAGCGCGGGAAGGUUUUCCACAGUGCCAGCGGACACACGGC (kshv-miR-
p6) 

− 77286 95 GUAUAUCUUUGUUUUUUCAAGUUUGUGGACGAGGUGGUCCAUGCAUAgacUGGCAUGUGAUUACUCGCACAAGCGCUGACGAAAGCUAUGGUUUU (kshv-miR-p7) 

− 121856 95 GCAGGGUGCGGUGCUGCCCAGGACGGCCGGAUGCGGGCGAUUACAGgaaaCUGGGUGUAAGCUGUACAUAAUCCCCGGCAGCACCUGUUUCCUGC (kshv-miR-
p8) 

− 108693 94 UGGAGUGUGGAUGGUGAUAUGGUCUCCUGGGCCUGGCCGGCCACCGuguCUAUGGUGGCCAACAGGAGGCCGGCCUGCUCCGCUUCCUGUACCA (kshv-miR-
p9) 

− 120342 95 GCGCAUAUUGGCGUUGAGCGCCACCGGACGGGGAUUUAUGCUGUAucuUACUACCAUGAUCCCAUGUUGCUGGCGCUCACGGCCCGUGUGCCAGC (kshv-miR-
K12-7) 

S SP L Mouse γ-herpesvirus 68 strain WUMS (MGHV68; U97553.2); 5' → 3' 

+ 1320 59 AACCACCUCCCACAAUUUCAGAGUCUuagccAGAUUAUCUGAAACUGUGUGAGGUGGUU (mghv-miR-p1) 
+ 636 67 ACGAAGUAGCGAACCUCUGCUCACUGCCCGGGcccUCCGGGAGGUGAGCAGGAGUUGCGCUUUUCUU (mghv-miR-M1-3) 

+ 739 93 CACGCUGCCAAUCUCACCCUGACAGCUGUCAGGGGUUACAUGAGagaacUUCAUGUAACCCCUGACAGCUGUCAACCUAAUCCUGACCGUGAG (mghv-miR-p2) 

+ 104268 94 CAGCUAACUGGUGUUGAGAGUACAUGUUUGCUUUGGAUACACUUgugAAGUUUAUUCAAAGUGUAGGGAUGUGUGCUACUAAACAUAACAGCUG (mghv-miR-p3) 

+ 548 91 CCCGAGCCCUGGUUGAGAGGGGGAGUGUGUGGUCUGUAGAGAGACaugaGUUGAUCGGCAGACCCCCUCUCCCCCUCUUUCCCUCUUUACG (mghv-miR-M1-2) 

+ 107005 94 UCUUUAGCAGACAGGUUAGAGCACUGUUGUGUGAUGUGAGAGGAGUaaguGUGUCUCCACCAUCGCAUAACAGUUGAUAGGUGGGCUUUAAAGA (mghv-miR-p4) 

+ 112453 95 GUUCUAUGGUACCAACAGACUCUUGUGUUUCUUGAAUGGUUCCAGuuucauuCUGGACAAGUAAGAAUACUUGAUCUGUUGUCACAUUAAGGAAU (mghv-miR-p5) 

+ 112662 95 GUGAGUAUUUCUUGGAUGGAGCACCUGACCUGUGGCAUCAUGGACcggauGUAACAGGCGUGAGAAAGGUCUUUGGUCCAUUCUUGUAAUACUCU (mghv-miR-
p6) 

+ 3794 94 UGUGAGCUCUUCUUUACCAGCACUCACUGGGGGUUUGGUCAGGAGAUCaaguaGAUCUGACCAACCCUAAGUGAGUUUUUCUUCUUGCUUAACA  (§mghv-miR-
M1-8) 

S SP L Human cytomegalovirus strain AD169 (HCMV; X17403.1); 5' → 3' 

− 49486 94 GCAAGGUAAGCCCCACGUCGUUGAAGACACCUGGAAAGAGGACGUUCgcucGGGCACGUUCUUUCCAGGUGUUUUCAACGUGCGUGGAUUUUUU (hcmv-miR-
UL36) 

+ 49484 94 AGAAAAAAUCCACGCACGUUGAAAACACCUGGAAAGAACGUGCCcgaGCGAACGUCCUCUUUCCAGGUGUCUUCAACGACGUGGGGCUUACCUU (hcmv-miR-p1) 

− 174048 95 AUUGACGUCAAUGGGUGGAGUAUUUACGGUAAACUGCCCACUUGGcaguacaUCAAGUGUAUCAUAUGCCAAGUACGCCCCCUAUUGACGUCAAU (hcmv-miR-p2) 

+ 203097 95 UCUUCGGAAACUGUGGACGCUGUUUCCGAAUACCGGGAGGAGaucgugcuuccCUCUUCCAAGGAUCGGAAAGUAGCGUCCGUCGUUUCCGCGGA (hcmv-miR-p3) 

+ 93409 94 GCCGCGGAAUGGACGGGACCCGGGGUCCGCGCCCUUCCCCUCCccccacGGGGGGCUGGGUCGCGGACCCCGGUUCCUAGGCUCGUUCCGCGGU (hcmv-miR-
p4) 

− 155177 78 AAAGGACGACCCGUCUCCCCCCGCACCCGGGUUUUUUCucuuGGUCGAACCCGGCUUGCGACGACGGGUUGUUCCUUU (hcmv-miR-p5) 

+ 27628 95 GUUUCUUCCCAUAGCCUGUCUAACUAGCCUUCCCGUGAGAGUUUAUgaacAUGUAUCUCACCAGAAUGCUAGUUUGUAGAGGCUAUGCGGGAUGC (hcmv-miR-
UL22A) 

− 35809 94 CAGAAAUAGGGCGACGGUGUUUUUAUAACCGAAAGUAGCGUGUUUgagACACGCGCUUCUGGUCGGUUUUUUCACCGUCGUCGCUCUAGGUUUG (hcmv-miR-p6) 

− 147717 94 ACGUGCACGGUGAAAGUGGCGUCGUCGCUCGGCGGGUGCGCACCgccGGUGCUGCUGCUGACUUCCACGACGUUGUUUUCACCGUCGCCGUCGU (hcmv-miR-
p7) 

+ 38054 87 CUCGUCAGCUUCACGGAGCUGUUGUUACCGCCGCCGUccgucgccGCCGCUGCGGUGGCGGCGACAGCGACGAGCGAGGUGGGCGAG (hcmv-miR-p8) 

− 65216 95 AGUACCUGCUCGACGACGCGUUCCAUCUGCUUCAGGUCCUCUaccggcaaaAAGCCGUUAAGGAUGUGAUUGUGCACGCGCGUCAGCAGCUGCGU (hcmv-miR-p9) 

+ 116589 91 AUCACCGGCCUAUUACCGUCGGCGCGACUCUCCGGGCGGUAUGGaugaaCCACCGUCCGGAUGGGAGCGUUACGACGGUGGUCACCGUGGU (hcmv-miR-p10) 

− 7091 90 UUCGUCCCGUCUCCCUCUGUGGUCGUGGGUGGUGCGAGAGUACACgauggGUGGCUCUCGUCUCGGGGGACCACAGGGGGAGGGGGGUAA (hcmv-miR-p11) 

− 25058 95 ACGCCGGUUUCAUCAUAAACCACCGUGAGAACCGGCGCGGGUUUCaacacGAAACCGCGUCACUCACGGACGUAGGUUAUUUCGAAAACCUACGU (hcmv-miR-
p12) 

+ 174048 95 AUUGACGUCAAUAGGGGGCGUACUUGGCAUAUGAUACACUUGAUGuacUGCCAAGUGGGCAGUUUACCGUAAAUACUCCACCCAUUGACGUCAAU (hcmv-miR-
p13) 

− 194927 94 GUACGGUGUCGCCACCGUUGACGUGGGCGGCGAUGAGAACGUCAgcggUGGCGAAACCGCCGUGCGGAAAGUCCCGGUGCCGAAAUCACCGUGU (hcmv-miR-
p14) 

− 49464 94 GAAGACACCUGGAAAGAGGACGUUCGCUCGGGCACGUUcuuuccagguguuuucAACGUGCGUGGAUUUUUUCUAUUCUCUACCAGGUGCUUAC (hcmv-miR-p15) 
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− 93410 92 CCGCGGAACGAGCCUAGGAACCGGGGUCCGCGACCCAGCCCCCCGUgggGGGAGGGGAAGGGCGCGGACCCCGGGUCCCGUCCAUUCCGCGG (hcmv-miR-p16) 

− 140853 95 GAAGUUUCGCGGCAGCGCAAGCCGUGGUAACCGUCGCCGCUGGCGgcgcUGCCGCGAGACGACGUGGACGGCACUACGGGCCGACGCAGGUUCUC (hcmv-miR-
p17) 

+ 196047 90 UCUGAUCCAACACUGAACGCUUUCGUCGUGUUUUUCAUGCAGCUUUuacAGACCAUGACAAGCCUGACGAGAGCGUUCAUCGGGGCAUGA (hcmv-miR-US5-1) 

+ 174117 95 UAAAUACUCCACCCAUUGACGUCAAUGGAAAGUCCCUAUUGGCGUuacuAUGGGAACAUACGUCAUUAUUGACGUCAAUGGGCGGGGGUCGUUGG (hcmv-miR-
p18) 

− 27632 90 CAUCCCGCAUAGCCUCUACAAACUAGCAUUCUGGUGAGAUACAUguucAUAAACUCUCACGGGAAGGCUAGUUAGACAGGCUAUGGGAAG (hcmv-miR-p19) 

− 52491 89 CAUGUGCGCUCACCCGGCGUUCUGGCCACCGGUUACGCCGccaacaUGGCGUAAUUGACGGUGAGAACUCGGAGACCGAGCGGUCCGUG (hcmv-miR-p20) 

+ 35813 92 CCUAGAGCGACGACGGUGAAAAAACCGACCAGAAGCGCGUGUcucAAACACGCUACUUUCGGUUAUAAAAACACCGUCGCCCUAUUUCUGGG (hcmv-miR-p21) 

− 90766 95 GGCGGUUCUUUGUGAUUUAAAAACACCGUGUUCGUGAAACGUGAcuuuUCACGGUUUGUUAGCUGAUGUGAUUUUGGAGGUCACAAACACCGUAC (hcmv-miR-
p22) 

+ 25058 95 ACGUAGGUUUUCGAAAUAACCUACGUCCGUGAGUGACGCGGUUUCGuguUGAAACCCGCGCCGGUUCUCACGGUGGUUUAUGAUGAAACCGGCGU (hcmv-miR-
p23) 

− 25024 94 CGCGGGUUUCAACACGAAACCGCGUCACUCACGGACGUAGGUUAUUucgAAAACCUACGUUAAUCCUGAACGCGUUUUGUGUCACGCGUCCCCG (hcmv-miR-p24) 

+ 92228 94 GACGUAGCGAGCGUAGCGAGCUACGUCACGUAUGCGUGCGUCAUCUccggcGGAAAUCAUCUCUGAUGACGUAGCGAGCGAAGCGAGCUACGUC (hcmv-miR-p25) 

+ 25023 94 GCGGGGACGCGUGACACAAAACGCGUUCAGGAUUAACGUAGGUUUUcgaAAUAACCUACGUCCGUGAGUGACGCGGUUUCGUGUUGAAACCCGC (hcmv-miR-
p26) 

+ 139178 89 GUUACCUGUUGUAUCGCAAGGCUCACGUGGAGCUGUCACUCUccagcaACAAGGUGCAACACGUGGAAGCCGUGCUGCGACAGGUGUAC (hcmv-miR-p27) 

+ 146735 94 CGCGCCAGCUAGGGUGCGCUGGCCUCGGCCGUGACUACGGACGCCgauGAGCGUCGGCGCGGCCUAGAGCAGCGUAGCGCCGUGUUGGCGCGCG (hcmv-miR-
p28) 

+ 37292 95 GCUUCGCUCUGGAUGGGCUCCGGGUCCGUCAACACGCGACUCGCgcgGCAAAAGGCACGCUGUUGACGGCGCGAGAGCCCGUCGUGAUAGUCCAU (hcmv-miR-
p29) 

+ 173784 95 GCCCAUUUGCGUCAAUGGGGCGGAGUUGUUACGACAUUUUGGAAAGUcccGUUGAUUUUGGUGCCAAAACAAACUCCCAUUGACGUCAAUGGGGU (hcmv-miR-
p30) 

+ 25076 94 ACCUACGUCCGUGAGUGACGCGGUUUCGUGUUGAAACCCGCGCCGGuucuCACGGUGGUUUAUGAUGAAACCGGCGUUGGGGAUCUACGCGGGU (hcmv-miR-
p31) 

− 134672 93 AUCGUCAGCGAACCGCGCUUCAAACGCCAGAUCCGAAUACAGGUGCGuuucCAUAUUCGGAACGCAUCUGUUUCAGAAGCGCGUCCUCGCGCU (hcmv-miR-p32) 

+ 32963 95 GGCCUUGCGGCGGCAGCGGUUGGCGUGGUUGCUCAGCUCGGCGUCcgaGAGCGCCGAGCUGAACUGCGGCAGCCGCGUGCGAUCCUGCGGCGCGU (hcmv-
miR-p33) 

− 90873 95 GGCGGAGCGCAGCGAAAAUCGGUGGUGAUAGCGGCGAUUGAGGUUGCGagaCCAGAUUCAUCGCGCUUGUACCACCGUGGUGCGGUGUUUCUGCU (hcmv-miR-
p34) 

− 162576 95 CGGAGCAGAGGGUCGUUGUCCUCCUCGUCCUCGUGGCGGUUGUUUCuccGUCGCGAUCUCCGAGAGGAGGAGGACGACGACGAUGCAGCCUGCCG (hcmv-miR-
p35) 

+ 30965 94 CCAGAGCCGUUCGGGGCGUGCGGCCGCGCUAGCGCUUCAUUUUCUcacgucACGAAAAGGAGUGACGGACGGCCAGUACGCCACGUCUCUGCGG (hcmv-miR-
p36) 

+ 222717 95 UUACUCUCGAGUGCGGUCGGUGUCUCGUCGGUGAGACGAGGCCGCCgcccGACAAGUUCGAUCUCAUGUCGCUCUUGGAGCGCGAAGAGAGUUGG (hcmv-miR-
p37) 

− 210170 94 CGCUGCUUUCGCAUGCCCAAGUUCUUUCCGCCGCCCAUGUGCCGCGUuccGUACAACGAAUGCGGCGUCGAAUUACCGGGCGGCGAUAGCAGCG (hcmv-miR-
p38) 

− 203097 95 UCCGCGGAAACGACGGACGCUACUUUCCGAUCCUUGGAAGAGGgaagcacgaUCUCCUCCCGGUAUUCGGAAACAGCGUCCACAGUUUCCGAAGA (hcmv-miR-p39) 

− 174118 92 AACGACCCCCGCCCAUUGACGUCAAUAAUGACGUAUGUUCCCAUaguaACGCCAAUAGGGACUUUCCAUUGACGUCAAUGGGUGGAGUAUUU (hcmv-miR-p40) 

+ 93225 94 CCCGCUCGACCCCCCCAUCCGACGGCCCGGCCGGGCUGGGACCcccGCACCGGGGUCCCGGUUCCCGUCCGUGGCCCGGGGGGACCCGAGCGGG (hcmv-miR-
p41) 

+ 20175 95 ACCCGCUGGGAGGAAAGCAACGUCGUGAGCCAGACGGCCACGCGaguaCGUACGUGGUUCGUGGAAAGAACCACGUUUUGGCGUCGCACGUGGGU (hcmv-miR-
p42) 

+ 163175 94 UCCCGGCGCUCUGACAGCCUCCGGAUCACAUGGUUACUCAGCGUCUgccAGCCUAAGUGACGGUGAGAUCCAGGCUGUCCGUGCACCACGGUGA (hcmv-miR-
UL112) 

− 174625 92 GCCGAUGUGAGUUUCUGUGUAACUGAUAUCGCCAUUUUUCCAAAAGugaUUUUUGGGCAUACGCGAUAUCUGGCGAUAGCGCUUAUAUCGUU (hcmv-miR-p43) 

+ 124992 95 CGCGGUUUACGUAGGCUACGCAGGUAUUUGACGUGUAACccagacccauGUCUACGGUGUUAAUGUUCUGCGUGACGUGGUACGUAGUGCUGAUG (hcmv-miR-
p44) 

− 119625 94 AUCCUCGGCGACGGCGUGCACGUCGGGCGUUAUGACACGCGGCCgccuuaaGGCCGAGUCCACCGUCGCGCCCGAAGAGGACACCGACGAGGAU (hcmv-miR-
p45) 

− 36838 94 UCCUCUGCCUGGGCACGCGCGUCGGCCGCGUCGCAAACGCUGCUUGGuacCCGAGGUCUUUUGCACGCGCGACUUGGCCGACCUGUGCGUGCGA (hcmv-miR-
p46) 

− 197467 90 GUGGGUGCCCACGGACUUGGACCAUCUCACUCUGCAUUUGGUGCcguGCACCAAAUGCAAACCCAUGUGGUGCCAGCCUCGGUACCAUAU (hcmv-miR-p47) 

+ 119625 94 AUCCUCGUCGGUGUCCUCUUCGGGCGCGACGGUGGACUCGGCCUUaagGCGGCCGCGUGUCAUAACGCCCGACGUGCACGCCGUCGCCGAGGAU (hcmv-miR-
p48) 

+ 147719 93 GACGGCGACGGUGAAAACAACGUCGUGGAAGUCAGCAGCAGCACCggcGGUGCGCACCCGCCGAGCGACGACGCCACUUUCACCGUGCACGUU (hcmv-miR-p49) 

− 194965 93 UGACGUGACUCUUGACGUUUAUAAACCGCAUGGGAAAGUACGGUGucgcCACCGUUGACGUGGGCGGCGAUGAGAACGUCAGCGGUGGCGAAA (hcmv-miR-p50) 

+ 128612 95 ACUGGGUCGUCUGUUACUGGGACCCGUGGCCGUACCCUGUUUUUGcgaCGGUGAAGUGGAGGGCCACGGUGAACAUCUGGUACCUACGACGCAGU (hcmv-miR-
p51) 

Putative viral-encoded pre-miRs having maximum length (≤ 95 nucleotides), minimum size of terminal loop (≥ 3 nucleotides), Minimum Free Energy 
of folding (≤ -25 kcal/mol), and miPred scores ≥0.815 (except for †ebv-miR-BHRF1-1 and §mghv-miR-M1-8). They are categorized according to 
Epstein barr virus, Kaposi sarcoma-associated herpesvirus, Mouse γ-herpesvirus 68 strain WUMS, and Human cytomegalovirus strain AD169; sorted 
in descending miPred scores. S (+/− strand), SP (start position), and L (length of the putative pre-miRs). 25 true positives and 1 false negative match 25 
published pre-miR sequences (red regions) and their mature miRNAs (underlined regions) as obtained from miRBase 8.2 (Griffiths-Jones et al., 2006); 
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predicted terminal loop ≥3 nucleotides (bold lowercase nucleotides). ‡/Δkshv-miR-K12-9 are the accepted and incorrect positives of kshv-miR-K12-9. 
†ebv-miR-BHRF1-1 (0.437 miPred score) and §mghv-miR-M1-8 (0.658). 
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Table D.1: Distribution of concatamers, small RNAs, non-annotated small RNAs (candidate miRNAs), 

candidate pre-miRs, putative pre-miRs, and putative miRNAs.  

Small RNAs Non-annotated  
small RNAs  

(candidate miRNAs) 

Libraries Concatamers 

Non 
unique 

Unique Non 
unique 

Unique 

Candidate 
pre-miRs 

Putative 
pre-miRs 

Putative 
miRNAs 

ATE 1536 2494 1953 1362 1262 2004 682 14 
AOV 1632 5870 2523 1294 1211 818 142 11 
5WT 1440 3002 2167 1514 1283 3977 2882 16 
5WO 1432 1990 1414 1010 844 827 102 9 

5WMB 1536 2917 1991 1479 1224 2075 513 19 
5WFB 2880 2743 1743 1809 1140 3747 1881 9 
Total 10456 19016 11791 8468 6964 13448 6202 78 

ATE, adult testis; AOV, adult ovary; 5WT, 35 days post fertilization juvenile testis; 5WO, 35 days post fertilization juvenile ovary; 5WMB, 35 days post 
fertilization juvenile male brain; 5WFB, 35 days post fertilization juvenile female brain. 
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Table D.2: Raw expression profiles of 780 small RNAs matching 88 known miRNAs and two novel 

miRNAs expressed across six miRNA Libraries.  

MicroRNAs Adult Testis (ATE) Adult Ovary (AOV) Juvenile Testis 
(5WT) 

Juvenile Ovary 
(5WO) 

Juvenile Male Brain 
(5WMB) 

Juvenile Female 
Brain (5WFB) 

dre-let-7a 17.450 12.050 31.800 15.983 30.400 17.433 
dre-let-7b 8.667 6.333 18.333 12.833 16.000 9.833 
dre-let-7c 15.533 9.800 31.183 19.233 27.567 16.367 
dre-let-7d 15.467 9.600 30.033 18.833 26.467 15.567 
dre-let-7e 12.983 10.450 22.183 11.650 19.433 11.700 
dre-let-7f 15.117 11.383 27.133 13.983 23.233 13.767 
dre-let-7g 16.950 11.883 28.133 13.983 23.233 14.267 
dre-let-7h 3.000 2.000 5.000 4.500 9.333 5.833 
dre-let-7i 0.000 2.000 0.000 1.000 0.333 2.333 
dre-let-7j 3.833 1.500 7.200 1.000 1.000 1.900 
dre-miR-101a 1.000 1.000 0.500 0.000 1.500 0.000 
dre-miR-101b 1.000 1.000 0.500 0.000 0.500 0.000 
dre-miR-122 0.000 2.000 0.000 3.000 0.000 0.000 
dre-miR-124 0.000 0.000 0.000 0.000 0.000 8.000 
dre-miR-125a 0.000 0.000 0.000 0.000 1.000 0.000 
dre-miR-125b 2.500 0.000 2.500 4.000 6.000 4.000 
dre-miR-125c 0.500 0.000 0.500 0.000 0.000 0.000 
dre-miR-126 3.000 2.000 3.000 1.000 2.000 0.000 
dre-miR-126* 2.000 1.000 2.000 0.000 3.000 0.000 
dre-miR-128 0.000 0.000 0.000 0.000 1.000 0.000 
dre-miR-130a 1.000 1.000 0.333 0.000 1.000 1.500 
dre-miR-130b 0.000 0.500 0.833 0.000 0.000 2.000 
dre-miR-130c 1.000 1.500 0.833 0.000 1.000 2.500 
dre-miR-132 0.000 0.500 0.000 0.000 0.000 0.000 
dre-miR-138 0.000 0.000 0.000 0.000 0.000 1.000 
dre-miR-139 0.000 0.000 0.000 1.000 1.000 0.000 
dre-miR-140* 0.000 0.000 0.000 1.000 0.000 0.000 
dre-miR-141 0.000 0.000 0.000 0.000 0.500 0.000 
dre-miR-142a-3p 5.000 10.333 12.000 7.000 2.000 1.000 
dre-miR-142a-5p 5.000 9.333 9.000 7.000 2.000 1.000 
dre-miR-142b-5p 0.000 0.333 0.000 0.000 0.000 0.000 
dre-miR-143 37.000 30.000 78.000 49.000 75.000 31.000 
dre-miR-144 0.000 0.000 1.000 0.000 0.000 0.000 
dre-miR-145 0.000 0.000 2.000 2.000 1.000 0.000 
dre-miR-146a 2.000 2.000 1.000 0.000 6.000 1.000 
dre-miR-146b 1.000 4.000 0.000 1.000 0.000 0.000 
dre-miR-150 3.000 1.000 4.000 3.000 7.000 4.000 
dre-miR-17a 0.333 0.333 0.667 0.000 0.667 0.333 
dre-miR-194a 0.000 0.000 0.500 0.000 0.000 0.000 
dre-miR-194b 0.000 0.000 0.500 0.000 0.000 0.000 
dre-miR-196a 1.000 0.000 0.500 0.000 0.000 0.000 
dre-miR-196b 1.000 0.000 0.500 0.000 0.000 0.000 
dre-miR-199 0.000 0.000 2.000 0.000 0.000 0.000 
dre-miR-199* 0.000 2.000 2.000 2.000 4.000 0.000 
dre-miR-19a 0.250 2.917 0.000 0.250 0.750 0.750 
dre-miR-19b 0.250 2.917 0.000 0.250 0.750 0.750 
dre-miR-19c 0.250 2.917 0.000 0.250 0.750 0.750 
dre-miR-19d 0.250 2.250 0.000 0.250 0.750 0.750 
dre-miR-200a 0.000 0.000 0.000 0.000 0.500 0.000 
dre-miR-202* 3.000 3.000 6.000 1.000 0.000 0.000 
dre-miR-204 0.000 0.000 1.000 0.000 0.000 0.000 
dre-miR-20a 0.333 0.333 0.667 0.000 0.667 0.333 
dre-miR-20a* 0.000 0.000 0.000 0.000 0.000 1.000 
dre-miR-20b 0.333 0.333 0.667 0.000 0.667 0.333 
dre-miR-210 0.000 0.000 0.000 1.000 0.000 0.000 
dre-miR-212 0.000 0.500 0.000 0.000 0.000 0.000 
dre-miR-214 1.000 1.000 0.000 1.000 1.000 0.000 
dre-miR-221 0.000 0.000 0.000 1.000 0.000 0.000 
dre-miR-222 1.000 0.000 0.000 0.000 1.000 0.000 
dre-miR-24 1.000 0.000 1.000 1.000 0.000 0.000 
dre-miR-25 8.000 2.000 14.000 6.000 17.000 8.000 
dre-miR-26a 0.000 0.000 0.000 0.000 0.500 0.000 
dre-miR-26b 0.000 0.000 0.000 0.000 0.500 0.000 
dre-miR-27b 0.000 0.500 0.833 0.000 0.000 0.333 
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MicroRNAs Adult Testis (ATE) Adult Ovary (AOV) Juvenile Testis 
(5WT) 

Juvenile Ovary 
(5WO) 

Juvenile Male Brain 
(5WMB) 

Juvenile Female 
Brain (5WFB) 

dre-miR-27c 0.000 0.500 0.833 0.000 0.000 0.333 
dre-miR-27d 0.000 0.000 0.333 0.000 0.000 0.333 
dre-miR-29a 1.000 0.000 2.000 0.000 1.000 0.000 
dre-miR-29b 0.000 0.000 0.000 0.000 1.000 0.000 
dre-miR-301a 0.000 1.000 0.000 0.000 0.333 0.000 
dre-miR-301b 0.000 0.000 0.000 0.000 0.833 0.500 
dre-miR-301c 0.000 0.000 0.000 0.000 0.833 0.500 
dre-miR-30a 0.000 0.000 0.000 0.000 0.500 0.000 
dre-miR-30b 0.000 0.000 0.000 1.000 1.000 0.000 
dre-miR-30c 0.000 0.000 0.000 0.000 1.000 0.000 
dre-miR-30d 0.000 0.000 0.000 0.000 0.500 0.000 
dre-miR-30e* 0.000 0.000 0.000 1.000 1.000 0.000 
dre-miR-31 0.000 0.000 1.000 1.000 1.000 2.000 
dre-miR-34 0.000 0.000 0.000 0.000 1.000 0.000 
dre-miR-430c 0.000 1.000 0.000 0.000 0.000 0.000 
dre-miR-456 0.000 1.000 0.000 0.000 0.000 5.000 
dre-miR-457a 0.000 0.000 0.000 0.000 0.000 1.000 
dre-miR-459* 0.000 0.000 0.000 1.000 0.000 0.000 
dre-miR-489 1.000 0.000 1.000 0.000 0.000 2.000 
dre-miR-735 0.000 0.000 0.000 1.000 0.000 0.000 
dre-miR-7a 4.000 0.000 2.500 2.500 0.500 0.500 
dre-miR-7b 4.000 0.000 2.500 2.500 0.500 0.500 
dre-miR-92a 0.000 0.500 1.500 0.000 0.000 0.500 
dre-miR-92b 0.000 0.500 1.500 0.000 0.000 0.500 
dre-miR-N1 1.000 0.000 0.000 0.000 0.000 0.000 
dre-miR-N2 0.000 0.000 0.000 0.000 0.000 1.000 

The counts of small RNAs matching several known miRNAs are equally divided between them.  
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