NUMERICAL INVESTIGATION OF FLUID-

STRUCTURE INTERACTION NEAR THE SEA-BED

SHEN LINWEI

(B. Sci., SCUT; M. Eng., NUS)

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CIVIL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2007

Acknowledgements

I have been fortunate in my studies to have an adviser, Professor Chan Eng Soon. Without his support and consistent encouragement, the thesis cannot be successfully completed. I therefore would like to express my deepest appreciation to Prof. Chan for his many years of guidance, insights, and high standards of quality which made this work possible.

I would like to thank Professor Philip L.-F. Liu at Cornell University and Professor Lin Pengzhi of Civil Engineering Department for their valuable conversations and advice. I have also benefited from the interaction with many people and many thanks go to them. I would also like to thank Professor Yeo Khoon Seng of Mechanical Engineering Department for his insightful comments on my work.

I thank my colleagues at Physical Oceanography Research Lab, Tropical Marine Science Institute. I thank Zhu Xinzhao, Lim Sin Hwei Lydia, Sundarambal Palani, Ma Peifeng, Oleksandr Nesterov, Karanam A P Roopsekhar, Zhang Qingyu, Zhang Hong, Pang Wei Chong, Sannasiraj S.A. for their discussions and help. Special thanks go to Choo Heng Kek, Goh Kim Leng, Tay Yen Hai Harold for their technical support on the computational resources. I would like to thank all staff in Tropical Marine Science Institute for their all kind assistance.

I must thank my family. I would like to thank my parents, wife Zhang Hong and daughter Jingjing for their love and support. I would like to dedicate this dissertation to my late Grandma.

CONTENTS

Acknowled	lgem	ients	ii
Contents			iii
Summary			vii
List of Tab	oles		ix
List of Fig	ures		Х
List of Syn	nbols	8	xxi
Chapter 1	Int	roduction	1
	1.1	Background	1
	1.2	Inviscid Flow Models	2
	1.3	Viscous Flow Models	4
	1.4	Navier-Stokes (N-S) Solvers	7
	1.5	Solid Boundary Treatment	9
	1.6	Free Surface Treatment	11
	1.7	Objectives of the Research	14
	1.8	Scope of the Research	15
Chapter 2	Ma	thematical Formulation	18
	2.1	Introduction	18
	2.2	Navier-Stokes Equations and Boundary Conditions	19
	2.3	The Filtered Navier-Stokes Equations	21
		2.3.1 Filter Operations	21
		2.3.2 Filtered Navier-Stokes Equations	22
		2.3.3 Subgrid Scale Stress Model	23

Chapter 3	Imn	nersed Boundary (IB) Method and Its Application	28
	3.1	Introduction	28
	3.2	IB Method description	30
	3.3	Acting Forces Calculation	31
	3.4	Numerical Implementation of the IB Method	38
		3.4.1 Numerical Scheme	38
		3.4.2 Numerical Implementation for Imposed Terms f_i^{n+1}	44
		3.4.3 Computational Cycle	46
	3.5	Method Calibration and Application	48
		3.5.1 Open Flow around a Square Cylinder	48
		3.5.2 Open Flow around a Circular Cylinder	65
		3.5.3 Oscillatory Flow Induced by an In-line Moving Cylinder	80
		3.5.4 Flow induced by a cylinder in rotatory and rectilinear	
		motion	95
		3.5.5 Vortex-induced Vibration	97
		3.5.6 Open Flow around a Sphere	102
Chapter 4	Vol	ume of Fluid (VOF) Method	105
	4.1	Introduction	105
	4.2	Two-dimensional VOF Method	106
		4.2.1 Interface Reconstruction Algorithm	106
		4.2.2 Advection Algorithm	112
		4.2.3 Example: Movement of a Circle of Fluid	114

	4.3	Three-	-dimensional VOF method	118
	4.4	Comp	utational Cycle	123
	4.5	Implei	mentation of the Free Surface Boundary Conditions	124
		4.5.1	Intermediate Velocities	124
		4.5.2	Pressure Field	126
		4.5.3	Final Velocities	127
	4.6	Valida	ation of the VOF Method and its Application	129
		4.6.1	Free Surface Sloshing in 2D Water Tank	129
		4.6.2	Solitary Wave Flow over Flat Bottom in 2D	134
		4.6.3	Free Surface Evolution in a Rectangular Basin	136
	4.7	Nume	rical Sponge Layer	142
		4.7.1	Method Review	142
		4.7.2	Numerical Test	144
	4.8	Discus	ssions	148
Chapter 5	Cor	nbined	IB-VOF Model Applications in 2D	151
	5.1	Introdu	action	151
	5.2	Valida	tion of the Combined IB-VOF model	151
		5.2.1	Solitary Wave Passing over Shelf	151
		5.2.2	Solitary Wave Passing over a Submerged Rectangular	156
			Object	
		5.2.3	Progressive Periodic Wave Propagating over a Submerged	162
			Trapezoid	
		5.2.4	Wave Generation by Moving Bed	167
	5.3	Interac	tion Between Waves and a Submerged Circular Cylinder	181

		5.3.1 A Submerged Circular Cylinder Close to the Bottom	182
		5.3.2 A Bed-mounted Circular Cylinder	206
		5.3.3 Comparison with Experimental Results	230
	5.4	Wave-current Interaction with a Bed-mounted Circular Cylinder	232
Chapter 6	Der	nonstrations of the Combined Model in 3D	239
	6.1	Introduction	239
	6.2	Calibration of the Model	242
		6.2.1 Solitary Wave Passing over a Submerged Rectangular	242
		Cylinder	
		6.2.2 Uniform Flow over a Bed-mounted Circular Cylinder	247
	6.3	Wave Flow over a Bed-mounted Horizontal Circular Cylinder	256
Chapter 7	Cor	clusions and Future Work	264
	7.1	Conclusions	264
References	5		268
Appendix ANumerical Implementation of Multigrid Method293			293

Appendix B Convergence Examination for Oscillating Flow Simulations

Summary

In this dissertation, two- and three-dimensional numerical models have been developed to study the physics of fluid-structure interactions near the sea bed. Apart from the details of flow separation and vortex generation, the models have been developed with the ability to model arbitrary moving boundaries, including the free surface and the boundary of a moving solid object, in inertial Cartesian coordinate system without the need for grid regeneration. The two-dimensional model solves the Navier-Stokes equations directly. The three-dimensional model is based on the filtered Navier-Stokes equations, in which the large eddies are solved explicitly and the subgrid-scale flow effects are modeled using a dynamic eddy viscosity model.

A numerical scheme based on immersed boundary (IB) method has been developed to capture the physics of fluid interactions with both stationary and moving objects. Based on the IB methodology, general formulae have been derived to calculate the hydrodynamic force components acting on objects of arbitrary shapes, either stationary or in motion. The formulae highlight the fact that the imposed force term introduced in the IB method contributes to both the force applied by the object on the fluid and the unsteady flow inside the virtual space occupied by the object in the IB formulation. The derived formulae are particularly useful when dealing with objects in unsteady motion. Several case studies, including the simulation of the vortex-induced vibration (VIV) of a circular cylinder, are carried out in the thesis to demonstrate the flexibility of the IB scheme.

In the integrated modeling effort, free surface motions are tracked with the Volume of Fluid (VOF) method including the use of a piecewise linear interface calculation (PLIC) scheme. The free surface boundary condition for the pressure is accurately satisfied in the computation.

Both the IB and VOF methods have been validated separately by carrying out various case studies in two and three dimensions. In addition, the combined twodimensional IB-VOF model has also been rigorously validated by carrying out several case studies, including the simulations of a solitary wave passing over a shelf and a submerged rectangular object, progressive periodic waves propagating over a submerged trapezoid, and wave generation induced by a moving bed. The numerical results compared very well with the experimental data and numerical results reported by other researchers, including the details of free surface evolutions and the velocity field near the object. These case studies not only exhibit the model's capability in predicting the nonlinear free surface movement accurately in the presence of a submerged stationary object of regular/irregular geometry, but also demonstrate the model's ability to deal with the moving solid boundary in a flexible manner.

The well-validated IB-VOF model has been applied to simulate the progressive periodic waves propagating over a circular cylinder close to or sitting on the bed. The mechanism of the boundary layers separation, vortex shedding and advection of vortices is explored by carefully examining the instantaneous flow fields in the first two wave cycles. For the case of a small separation gap between the cylinder and the sea bed (e = 0.1D), the flow is characterized by a jet-like flow between the cylinder and the bed and the vortex shedding mode is found to be of the type '2P+S'. In the case of a cylinder sitting on the bed (e = 0), a vortex pair (or vorticity concentration pair) is formed in each half wave cycle and the vortex shedding mode is 'P+S'. In the latter case, the vortex pair rotates due to the unequal strengths of the two vortices and therefore moves towards the bed. This mechanism, together with the bed-shear stress distributions, clearly explains the possible occurrence of local scouring which is also observed in laboratory experiments.

The integrated three-dimensional model has also been carefully validated by simulating the cases of a solitary wave passing over a submerged rectangular body and a uniform flow over a bed-mounted short circular cylinder. The model's capability in handling three-dimensional objects of complex geometry is demonstrated. The numerical model has been applied to examine the case of regular waves propagating over a bed-mounted horizontal short circular cylinder. In this study, the Reynolds number is around 40,000 and the Keulegan-Carpenter (KC) number is about 3.5. A vortex is generated and shed behind the cylinder in each half wave cycle and the end effect is very small. Under this condition, the numerical results show that the three-dimensional model can still predict reasonable flow fields to some extent.

List of Tables

3.1	Computed flow variables in steady flow around a square cylinder	51
3.2	Comparison of flow variables in periodic vortex shedding flow around a	
	square cylinder at $Re = 100$	56
3.3	Computed flow variables in periodic vortex shedding flow around square	
	cylinder	63
3.4	Computed flow variables in steady flow around a circular cylinder	66
3.5	Comparisons of flow variables in periodic vortex shedding flow around a	
	circular cylinder at $Re = 100$	72
3.6	Computed flow variables in periodic vortex shedding flow around a	
	circular cylinder	78
3.7	Flow and structure parameters about VIV application	99
3.8	Comparison of VIV results for $Re = 100$	99
3.9	Comparison of the results obtained by 1-dof and 2-dof model	100
3.10	Computed flow variables in steady flow around a sphere	103
4.1	Parameters associated with the periodic linear wave	144
5.1	The parameters for periodic waves flow over a bed-mounted cylinder	207
5.2	Flow parameters used in the laboratory experiments	230

List of Figures

2.1	Illustration of the two-dimensional computational domain and coordinate system	18
3.1	Illustration of flow around a rigid body in IB method. (<i>a</i>) The original flow domain Ω is bounded by S_{out} and body surface S_b ; (<i>b</i>) the total force acting on the fluid by the object; (<i>c</i>) the submerged object is replaced by the same fluid with proper force terms applied on the surface S_b . The domain Ω'' is enclosed inside the body	32
3.2	Illustration of the staggered grid system in two dimensions	41
3.3	The discretized variable ϕ in x-direction	42
3.4	(a) Inner grid; (b) boundary cell	42
3.5	Illustration of the imposed force positions	47
3.6	The forces are imposed for both the outside and inside flow. The positions for the horizontal momentum force are illustrated for flow around a circular cylinder. "•" denotes the position	47
3.7	Illustration of the computational domain	51
3.8	The wake flow field consists of two symmetrical vortexes at low Reynolds number (a) $Re = 10$; (b) $Re = 20$; (c) $Re = 30$	52
3.9	Variation of the recirculation length with Reynolds number in steady flow. •: the present work; ▲: Sharma & Eswaran (2004)	53
3.10	Comparison of the drag force coefficient. ▲: Formulae I; •: Formulae II; ◀: Formulae III; ◀: Sharma & Eswaran (2004); ►: Okajima et al. (1997); +: Shimizu & Tanida (1978)	53
3.11	Pressure coefficients at base and stagnation positions in steady flow $\blacktriangle: c_{ps}; \bullet: -c_{pb}$	53
3.12	Time-dependent coefficients. (a) Drag force; (b) lift force; (c) base pressure; (d) stagnation pressure	57
3.13	Velocity vectors and associated stream lines under Re = 100 in one period of time. (a) $t = t_a$; (b) $t = t_b$; (c) $t = t_c$; (d) $t = t_d$	58
3.14	Instantaneous vorticity field in one period of time. (a) $t = t_a$; (b) $t = t_b$; (c) $t = t_c$; (d) $t = t_d$	60

3.15	Instantaneous pressure field in one period of time. (a) $t = t_a$; (b) $t = t_b$; (c) $t = t_c$; (d) $t = t_d$	61
3.16	Pressure and vorticity fields at time $t = t_e$. (a) pressure; (b) vorticity	62
3.17	Variation of the flow variables with Reynolds number. (a) Mean drag force; (b) lift force and; (c) Strouhal number	64
3.18	Definition of the flow separation angle and circulation length	65
3.19	Velocity vectors in steady flow. (a) $Re = 20$; (b) $Re = 30$, and (c) $Re = 40$	67
3.20	Comparison of computed flow variables with those reported by other researchers (a) recirculation length; (b) base pressure coefficient and (c) drag coefficient.	68
3.21	Comparison of the flow variables along the cylinder surface at $Re = 40$. (a) Vorticity and ; (b) pressure coefficient	69
3.22	Time-dependent coefficients. (a) drag force; (b) lift force; (c) base pressure coefficient; (d) stagnation pressure coefficient	73
3.23	Instantaneous velocity vectors near the cylinder in one period time. (a) $t = t_a$; (b) $t = t_b$; (c) $t = t_c$; (d) $t = t_d$	74
3.24	Pressure distribution near the cylinder in one period time. (a) $t = t_a$; (b) $t = t_b$; (c) $t = t_c$; (d) $t = t_d$	75
3.25	Instantaneous vorticity fields in one period time. (a) $t = t_a$; (b) $t = t_b$; (c) $t = t_c$; (d) $t = t_d$	76
3.26	Instantaneous flow variables distribution at time $t = t_e$. (a) pressure; (b) vorticity	77
3.27	Comparison of the present numerical results with numerical and/or experimental results reported by other researchers. (a) mean drag coefficient; (b) mean base pressure coefficient; (c) Strouhal number. •: the present; ►: Henderson (1995); ▲: Posdziech & Grundmann (2001); <: Zhang et al. (1995); +: Williamson & Roshko (1990)	79
3.28	Sketch of the computational domain for oscillating circular cylinder with two reference frames	81
3.29	Relationship between the time and phase angle	83
3.30	Four fixed locations relative to the moving cylinder at a phase angle of	

 0° and 210°

- 3.31 Flow field near the cylinder at time (a) $n \cdot T$; (b) $n \cdot T + T/4$; (c) $n \cdot T + T/2$; (d) $n \cdot T + 3T/4$. n is the cycle of oscillation 84
- 3.32 Comparison of the velocity components at four cross sections at time $t = n \cdot T + T/2$. •: experimental data (Dutsch et al., 1998); \blacktriangle : numerical results (Dutsch et al., 1998); Solid line: the present. (a) Horizontal velocity component, (b) vertical velocity component 85
- 3.33 Comparison of the velocity components at four cross sections at time $t = n \cdot T + 7T/12$. •: experimental data (Dutsch et al., 1998); \blacktriangle : numerical results (Dutsch et al., 1998); Solid line: the present. (a) Horizontal velocity component, (b) vertical velocity component
- 3.34 Comparison of the velocity components at four cross sections at time $t = n \cdot T + 11T/12$. •: experimental data (Dutsch et al., 1998); \blacktriangle : numerical results (Dutsch et al., 1998); Solid line: the present. (a) Horizontal velocity component, (b) vertical velocity component 87
- 3.35 (a) Predicted x-component force of the oscillating cylinder acting on the fluid through the approach in a body-fixed coordinate system; (b) Comparison of the in-line force acting on a moving cylinder. Solid line: the present; *: numerical result by Dutsch et al. (1998). $C_x = F_x / 0.5 \rho U_{\infty}^2 D$
- 3.36 Flow field near the cylinder at time (a) $n \cdot T + T/2$; (b) $n \cdot T + 7T/12$; (c) $n \cdot T + 11T/12$ 90
- 3.37 Comparison of the velocity components at four cross sections at time $t = n \cdot T + T/2$. •: experimental data (Dutsch et al., 1998); : numerical results (Dutsch et al., 1998); solid line: the present; *: $-U_{\infty} \cos(2\pi t/T)$. (a) Horizontal velocity component and, (b) vertical velocity component 91
- 3.38 Comparison of the velocity components at four cross sections at time $t = n \cdot T + 7T/12$. •: experimental data (Dutsch et al., 1998); \blacktriangle : numerical results (Dutsch et al., 1998); Solid line: the present; *: $-U_{\infty} \cos(2\pi t/T)$. (a) Horizontal velocity component, (b) vertical velocity component
- 3.39 Comparison of the velocity components at four cross sections at time $t = n \cdot T + 11T/12$. •: experimental data (Dutsch et al., 1998); \blacktriangle : numerical results (Dutsch et al., 1998); Solid line: the present; *: $-U_{\infty} \cos(2\pi t/T)$. (a) Horizontal velocity component, (b) vertical velocity component 93

83

86

88

xiii

(a) In-line force coefficient without being filtered; (b) Comparison of the in-line force predictions. Solid line: numerical result by Dutsch et al. (1998); solid circle and triangle: numerical results by equation (3.27) and equation (3.9), respectively	94
Comparison of the instantaneous streamlines for Re = 200, α = 2.07. (<i>a</i>) Experimental flow visualization (Coutanceau & Menard, 1985); (<i>b</i>) numerical results (Chen et al., 1993); (<i>c</i>) the present numerical results	96
Time history of (a) the lift and (b) drag coefficients for flow past a rotating circular cylinder at Re = 200 and α = 2.07	97
Vortex-induced vibration problem under consideration	98
(a) Time traces of the cylinder motion. (b) Force coefficients as a function of time. Solid line: drag coefficients; dashed line: lift force coefficients	101
 (a) Time traces of the cylinder allowed to move in z-direction only. (b) Force coefficients as a function of time. Solid line: drag coefficients; dashed line: lift force coefficients 	101
(a) Trajectory of the cylinder which is allowed to move in x- and z-direction. (b) Force coefficients as a function of time. Solid line: drag coefficients; dashed line: lift force coefficients	101
Distribution of the velocity $U = \sqrt{u^2 + v^2 + w^2}$ along the line $y = 0$ and $z = 0$ in the wake field of the sphere	104
Comparisons of the computed flow variables as a function of Reynolds number in steady flow. (a) wake length; (b) base pressure coefficient and (c) drag coefficient	104
The interface in a grid cell is approximated by a straight line. The polygon is formed by the vertexes 1-2-3-4-5 in sequence	107
A typical case of the three groups in which the number of the vertex is immersed in the water. (a) One vertex; (b) two vertices; (c) three vertices.	109
Illustration of the determination of the normal vector for the interface	110
Illustration of outflow fluid fluxes in the fraction advection scheme	113
Initial position of the circle fluid for its moving in a vortical flow	114
A circular fluid placed in vortical flow of $T = 2$. (a) $t = 0.5$; (b) $t = 1.0$; (c) $t = 1.5$; (d) $t = 2.0$	115
	(a) In-line force coefficient without being filtered; (b) Comparison of the in-line force predictions. Solid line: numerical result by Dutsch et al. (1998); solid circle and triangle: numerical results by equation (3.27) and equation (3.9), respectively Comparison of the instantaneous streamlines for Re = 200, α = 2.07. (a) Experimental flow visualization (Coutanceau & Menard, 1985); (b) numerical results (Chen et al., 1993); (c) the present numerical results Time history of (a) the lift and (b) drag coefficients for flow past a rotating circular cylinder at Re = 200 and α = 2.07 Vortex-induced vibration problem under consideration (a) Time traces of the cylinder motion. (b) Force coefficients as a function of time. Solid line: drag coefficients; dashed line: lift force coefficients (a) Time traces of the cylinder allowed to move in z-direction only. (b) Force coefficients as a function of time. Solid line: drag coefficients (a) Trajectory of the cylinder which is allowed to move in x- and z-direction. (b) Force coefficients (a) Trajectory of the cylinder which is allowed to move in x- and z-direction. (b) Force coefficients Distribution of the velocity $U = \sqrt{u^2 + v^2 + w^2}$ along the line $y = 0$ and $z = 0$ in the wake field of the sphere Comparisons of the computed flow variables as a function of Reynolds number in steady flow. (a) wake length; (b) base pressure coefficient and (c) drag coefficient The interface in a grid cell is approximated by a straight line. The polygon is formed by the vertexes 1-2-3-4-5 in sequence A typical case of the three groups in which the number of the vertex is immersed in the water. (a) One vertex; (b) two vertices; (c) three vertices. Illustration of outflow fluid fluxes in the fraction advection scheme Initial position of the circle fluid for its moving in a vortical flow A circular fluid placed in vortical flow of $T = 2$. (a) $t = 0.5$; (b) $t = 1.0$; (c) $t = 1.5$; (d) $t = 2.0$

4.7	A circular fluid placed in vortical flow of $T = 4$. (a) $t = 1.0$; (b) $t = 2.0$; (c) $t = 3.0$; (d) $t = 4.0$	116
4.8	A circular fluid placed in vortical flow of $T = 8$. (a) $t = 1.0$; (b) $t = 2.0$; (c) $t = 3.0$; (d) $t = 4.0$; (e) $t = 5.0$; (f) $t = 6.0$; (g) $t = 7.0$; (h) $t = 8.0$	117
4.9	Typical cases with different number of vertex (or vortices) immersed in the water. (a) One vertex; (b) two vertices; (c) three vertices	121
4.10	Typical cases with four vertexes immersed in the water. (a) Four vertices are in the same plane; (b) four vertices are not in the same plane	122
4.11	Computational cycle in VOF	123
4.12	Determination of the intermediate velocities in different situations	125
4.13	Computation of the pressure field. The parameters d_1 and d_2 denote the distances from the free surface to the centers of cell (i, j) and $(i+1, j)$, respectively	127
4.14	Final velocities determination	128
4.15	Illustration of the computational domain and coordinate system	130
4.16	Comparison of the simulated free surface profiles with analytical ones at different time. (a) Initial surface profile; (b) $t = 0.5 s$; (c) $t = 1.0 s$; (d) $t = 1.5 s$; (e) $t = 2.0 s$; (f) $t = 2.5 s$; (g) $t = 3.0 s$; (h) $t = 3.5 s$; (i) $t = 4.0 s$	131
4.17	Comparison of the wave profile between the numerical results with the analytical solutions at $t = 4 s$, 7.5 s, 11 s. Solid line: numerical results; solid circle: analytical solutions	135
4.18	Comparison of the velocity components at location $z = -0.3325 m$ at time $t = 4 s$. (a) horizontal velocity; (b) vertical velocity. Solid line: numerical results; solid circle: analytical solutions.	135
4.19	Problem set-up with the definition of the coordinate system	136
4.20	Comparison of the predicted free surface evolutions with analytical results at center and corner points. (<i>a</i>) $c = 0.5$; (<i>b</i>) $c = 1$; and (<i>c</i>) $c = 2$. Solid line: numerical results; solid circle: analytical solutions	139
4.21	Comparison of the free surface profiles and its contours at time (a) $t = 5 s$; (b) $t = 10 s$; (c) $t = 20 s$; (d) $t = 30 s$. Numerical results are the lift column, and analytical ones in the right column	140

- 4.22 Predicted wave profiles using the sponge layer technique. (a) T = 1 s; (b) T = 1.5 s; (c) T = 2 s 146
- 4.23 Sponge layer validation in 3D waves. (a) Wave profile at t = 15 s; (b) t = 20 s; (c) comparison of the free surface profiles in the plane y = 0at instant time of 15 and 20 sec 147
- 4.24 Interface reconstruction by PLIC method for uniform grids and non-uniform grids. (a) uniform grids; (b) non-uniform grids; (c) non-uniform grids after searching for minimum function of Eq. (4.13). Solid line: original interface; dashed line: interface obtained by the VOF method
 150
- 5.1 Schematic computational domain for a solitary wave passing over a 153 shelf
- 5.2 Snapshots of the free surface profile between t = 0.0 s and t = 5.5 s 154
- 5.3 Comparison of the predicted free surface evolutions with the experimental measurements and numerical results reported by others. Solid line: present numerical results; solid circle: experimental measurements (Seabra-Santos et al., 1987);
 results (Liu & Cheng, 2001)
- 5.4 Schematic computational domain for a solitary wave passing over a submerged rectangular cylinder 157
- 5.5 Snapshots of the free surface profile during the computation 158
- 5.6 Velocity vectors in the wake field and corresponding free surface profile at time t = 2.45 s 159
- 5.7 Comparison of the velocity distribution at time t = 2.45 s. (*a*) Horizontal velocity and; (*b*) vertical velocity. Solid circle: exp. (Chang, et al., 2001); cross: num. (Chang, et al., 2001); solid line: the present 160
- 5.8 Sketch of the computational domain with a submerged trapezoid 163
- 5.9 Comparison of the free surface evolutions at six stations. ---: the present; •: Experimental data by Beji & Battjes (1994); +: BIEM results by Ohyama et al. (1994); Δ: MAC results by Huang & Dong (1999)
- 5.10 Free surface profiles at time (a) t = 15 s; (b) t = 16 s; (c) t = 17 s; (d) t = 18 s; (e) t = 19 s; (f) t = 20 s; (g) t = 21 s; (h) t = 22 s. 165
- 5.11 Schematic drawing of the wave generator 171

5.12	Experimental data for monotonic bed motion (digitized from the paper by Hammack & Segur, 1974) and its fitted line	171
5.13	Free surface profiles corresponding to the moving bed in time history	172
5.14	Velocity vectors near the moving bed at sequent times	173
5.15	Comparison of the predicted free surface evolution with experimental data at three stations for monotonic bed motion. —: the present; *: exp. by Hammack & Segur (1974)	176
5.16	Comparison of the maximum wave amplitude leaving the generation region of $x = 0.61 m$. $\varepsilon = \eta/h$, where η is the maximum wave amplitude	177
5.17	Free surface evolutions under different bed motion with the same bed motion amplitude at (<i>a</i>) at $x = 0.61 m$; (<i>b</i>) $x = 1.61 m$; (<i>c</i>) $x = 9.61 m$	178
5.18	Free surface profiles at the end of the bed motion	179
5.19	Oscillatory bed motion digitized from the original paper and its fitted line	179
5.20	Comparison of the predicted free surface evolution with experimental data at three stations for oscillatory bed motion. —: numerical results with oscillatory bed motion; •: exp. by Hammack & Segur (1974); *: numerical results with monotonic bed motion having the same bed motion duration time and displacement ($t_c = 1 s$; $\xi_0 = 0.01 m$)	180
5.21	Sketch of the computational domain for a circular cylinder close to a flat bottom under waves	182
5.22	Free surface profiles at different times. Wave period is $T = 2 s$, wave amplitude $a = 0.01 m$. Dashed lines denote the cylinder position in x-direction.	186
5.23	Instantaneous vorticity fields around the circular cylinder in first two wave cycles. $e/D = 0.1$	189
5.24	Instantaneous velocity vectors around the circular cylinder in first two wave cycles. $e/D = 0.1$	193
5.25	Stream lines near the cylinder at typical instants. $e/D = 0.1$	197
5.26	Definition of the angle for stagnation point	199
5.27	Comparison of the bed-shear stress at one position when a laminar oscillatory flow over a smooth bed. Dash-dot line: free stream velocity	

	of Eq. (5.2); solid line & dashed line: numerical results with near bed vertical resolution $\Delta z = 0.0001 m$ and $\Delta z = 0.0002 m$, respectively; solid triangle: analytical result of Eq. (5.3)	200
5.28	Distribution of the instantaneous bed-shear stress for $e/D = 0.1$. The red dashed lines represent the critical shear stress τ_c	203
5.29	The bed-shear stress distribution and the vorticity field at time $t/T = 2.58$	205
5.30	Sketch of scour holes generation near the cylinder	206
5.31	Motion of two point vortices with opposite rotation and unequal strengths	209
5.32	Instantaneous free surface profiles in the first two wave cycles. Dashed lines denote the cylinder position in x-direction.	211
5.33	Instantaneous vorticity distributions around the bed-mounted cylinder in the first two wave cycles	214
5.34	Instantaneous velocity vectors around the bed-mounted cylinder in the first two wave cycles	218
5.35	Bed-shear stress distribution near the bed-mounted cylinder at different times. The red dashed lines represent the critical shear stress τ_c	222
5.36	Sketch of holes generation at the each side of the bed-mounted cylinder	225
5.37	Instantaneous velocity and vorticity fields around a bed-mounted cylinder for $KC = 5.3$ (a) Velocity field; (b) stream lines; (c) vorticity field	226
5.38	Instantaneous velocity and vorticity fields around a bed-mounted cylinder for $KC = 8.4$ (a) Velocity field; (b) stream lines; (c) vorticity field	227
5.39	Instantaneous velocity and vorticity fields around a bed-mounted cylinder for $KC = 10.3$ (a) Velocity field; (b) stream lines; (c) vorticity field	228
5.40	Bed-shear stress distribution under different KC number when maximum value happens. (a) $KC = 5.3$; (b) $KC = 8.4$; (c) $KC = 10.3$	229
5.41	Steady bed profiles after enough wave motion time. (a) Case 1; (b) case 2	231

5.42	Sketch of the computational domain for wave-current interaction with a bed-mounted circular cylinder	232
5.43	Vorticity fields under combined wave and current effect. $\alpha = 0.5$	235
5.44	Vorticity fields under combined wave and current effect. $\alpha = 1$	237
6.1	(a) Simulated 3D free surface profile at time $t = 2.45 s$; (b) comparison of the free surface predicted by 3D and 2D models.	244
6.2	Comparison of the velocities predicted by the present 3D model and experimental measurements as well as 2D numerical results reported by Chang et al. (2001). —: the present 3D model; •: exp; +: 2D numerical results.	245
63	Schematics of flow over a bed-mounted circular cylinder	248
0.5		210
6.4	Vortical structure in the wake at Re = 1500 at three instantaneous times. (a) $t = 6$; (b) $t = 8$; (c) $t = 10$ ($\lambda_2 = -1$)	249
6.5	(a) Velocity vectors at plane $x = 6$; (b) schematics of the effect of the bottom on the vortex evolution in the wake	250
6.6	(a) Vortex detachment angle at $Re = 1500$; (b) typical length of the vortical area	251
6.7	Instantaneous vortex structures at Re = 1500 and θ = 5 (deg) at time (a) $t = 6$; (b) $t = 8$; (c) $t = 10$; (d) top-view at $t = 10$. ($\lambda_2 = -1$)	252
6.8	Instantaneous velocity vectors at time $t = 10$ when $\theta = 5$ (deg). (a) In plane $y = 0$; (b) in plane $z = -4.5$	254
6.9	Instantaneous vortical structure at time $t = 8$ when $\theta = 10$ (deg). (b) Bird –view of figure in (a). ($\lambda_2 = -1$)	255
6.10	Instantaneous free surface profiles at different times	258
6.11	Velocity vectors in the plane $y = 0$ at different times	259
6.12	Velocity vectors in the plane $z = -3.9 m$ at different times	261
6.13	Vortical structures at $t = 14.5 s$ and 16.0 s	263
A1	V-cycle scheme in multigrid method. Ω^h , Ω^{2h} and Ω^{4h} denote the grids of size <i>h</i> , 2 <i>h</i> , 4 <i>h</i> , respectively.	296

A2 Arrangement of the fine and coarse grids. Solid lines represent the fine

	grid, and the dashed lines represent coarse grid.	297
B1	Sketch of the computational domain for a circular cylinder close to a flat bottom under oscillating flow	299
B2	Time-dependent drag and lift force coefficients in a case of a circular cylinder close to the wall. $e/D = 0.1$. (<i>a</i>) In coming horizontal velocity; (<i>b</i>) drag force coefficient; (<i>c</i>) lift force coefficient.	300
	Solid line: $\Delta z_{\min} = 0.0002 \ m$; dashed line: $\Delta z_{\min} = 0.0001 \ m$	500
B3	Comparison of the vorticity fields with two grid systems in the case of $e = 0$. (a) $\Delta z_{\min} = 0.0002 \ m$; (b) $\Delta z_{\min} = 0.00005 \ m$	301
B4	Acting force coefficients as a function of the dimensionless time. (a) Incoming horizontal velocity; (b) lift force coefficient. Solid line: numerical results ($\Delta x_{\min} = \Delta z_{\min} = 1 \times 10^{-4} m$); circle: experimental data (Sumer et al., 1991) for Re = 8×10^4 , <i>KC</i> = 10.	302
B5	Comparison of the predicted bed-shear stress at position A with three different grid system. Solid line: $\Delta z_{\min} = 2 \times 10^{-4} m$; solid triangle: $\Delta z_{\min} = 1 \times 10^{-4} m$ solid circle: $\Delta z_{\min} = 2 \times 10^{-5} m$	302

List of Symbols

а	Wave amplitude
a_r	Reflected wave amplitude
А	Matrix with the coefficients a_e , a_s , etc; Cylinder oscillatory
	amplitude
a_e, a_w, a_s, a_n	Coefficients in PPE.
В	Matrix with the coefficient $b_{i,j}$
$b_{i,j}$	Coefficient in PPE
С	Damping coefficient
с*	Dimensionless damping coefficient
$C_{\scriptscriptstyle D}$	Drag coefficient
$\overline{C}_{\scriptscriptstyle D}$	Mean drag coefficient
$C_{\it Damp}$	Amplitude of the periodic oscillatory coefficient C_D
$C_{\scriptscriptstyle L}$	Lift force coefficient
$\overline{C}_{\scriptscriptstyle L}$	Mean lift force coefficient
$C_{L \max}$	Amplitude of the periodic oscillatory coefficient C_L
C_{Lrms}	Root-mean-square lift coefficient
C_P	Pressure coefficient
$C_{ ho}$	Variable associated with a straight line or a plane
C_{PB}	Pressure coefficient at base point
$\overline{C}_{\scriptscriptstyle PB}$	Mean pressure coefficient at base point

C_{PS}	Pressure coefficient at stagnation point	
----------	--	--

- \overline{C}_{PS} Mean pressure coefficient at stagnation point
- C_s Smagorinsky constant
- $C_{\rm r}$ In-line force coefficient
- CFL Courant Friedrichs Lewy number
- D Cylinder size
- d Sand size
- e Gap between the cylinder and the bed
- *f* Imposed force term; color function; frequency
- *F* Hydrodynamic force
- F_x, F_y, F_z Hydrodynamic force components in x-, y- and z-direction respectively
 - F_L Lift force
 - *g* Magnitude of gravitational acceleration
 - *G* Low-pass filter function; Wake vertical region length
 - h Water depth
 - H Wave height
 - *k* Spring constant
 - *k** Dimensionless spring constant
 - *KC* Keulegan Carpenter number
 - L Length scale
 - l_x, l_y Numerical sponge layer sizes in x- and y-direction, respectively
 - m Cylinder mass
 - *m** Dimensionless cylinder mass

m_d	= $\rho \Lambda$, fluid mass occupied by the submerged solid object
n	Normal vector; number of the oscillation cycle
ñ	Normal vector
р	Fluid pressure
Р	Matrix with discrete pressure $p_{i,j}$
Pe	Grid Peclet number
Re	Reynolds number
\overline{S}_{ij}	Strain-rate tensor
S _{out}	Bounding surface of domain Ω'
St	Strouhal number
t	Time
Т	Wave period; oscillating flow period
t _c	Bed motion duration time
U_{∞}	Amplitude of incoming oscillating velocity or oscillating speed
<i>u</i> , <i>v</i> , <i>w</i>	Fluid velocity component in x-, y-, and z-direction
$\hat{u}, \hat{v}, \hat{w}$	Fluid velocity component in \hat{x} -, \hat{y} -, and \hat{z} -direction
$\widetilde{u}, \widetilde{v}, \widetilde{w}$	Intermediate fluid velocity component in x-, y-, and z-direction
u _b	Incoming horizontal velocity amplitude near bed
u _c	Uniform current velocity
u_w	Horizontal velocity amplitude associated with wave motion
u_{τ}	Friction velocity
V	Volume of a cell
X	Longitudinal coordinate in Cartesian system

- x_e, x_s Start and end points of a numerical sponge layer in x-direction
- x_R, x_L Distances from two scouring holes (on the each side of the cylinder) to the cylinder
 - y Lateral coordinate in Cartesian system
 - z Vertical coordinate in Cartesian system
- z_b, z_f Bottom and free surface positions of a numerical sponge layer in zdirection
- $\hat{x}, \hat{y}, \hat{z}$ Coordinates in body-fixed Cartesian system

Greek Symbols

α	Sponge layer damping coefficient; stagnation angle; vortex departing
	angle; $\alpha = u_c / u_w$; $0.5 D \omega / U_{\infty}$

- α_{f} Artificial negative coefficient in feedback forcing model
- β_f Artificial negative coefficient in feedback forcing model
- Γ Strength of vortex or vorticity concentration
- Γ^* Dimensionless parameter of Γ , $\Gamma^* = \Gamma/\pi u_b D$
- δ_{ii} Kronecker delta
- $\overline{\Delta}$ Filter width
- Δt Time step
- Δx , Δy , Δz Grid size in x-, y- and z-direction respectively
 - ε Internal energy; prescribed small positive value
 - η Kolmogorov scale
 - θ Cylinder orientation

- θ_s Flow separation angle
- *K* Wave number; artificial coefficient in feedback forcing model
- λ_2 Second largest eigenvalue of a symmetric tensor used to identify a vortex
- Λ Volume of the enclosed domain Ω''
- μ Dynamic viscosity coefficient
- *v* Kinematic molecular viscosity coefficient
- v_T Eddy viscosity coefficient
- ξ Distance of the sea-bed movement
- ξ_0 Bed motion displacement
- π =3.141592654...partition coefficient
- ρ Fluid density
- au Stress
- ω Flow vorticity; oscillating frequency; angular velocity of the rotating cylinder
- ω_k Weight function
- ω_i *i*-th mode frequency
- Ω Flow domain bounded by S_{out} and S_b
- Ω' Flow domain equals $\Omega + \Omega''$
- Ω'' Virtual flow domain enclosed by S_b
- Ψ Stream function

Subscripts

- *b* Solid boundary
- c Cylinder

- *i*, *j* Tensor notations
- *i*, *j*, *k* Grid position
- *n* Normal direction
- rms Root-mean-square
- S_b Body surface
- x, y, z Components in x, y, z direction
 - w Wall

Superscripts

- *n* Number of time step lengths
- + In wall unit