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Summary 

 

Protein and cell micropatterning have important applications in the development of 

biosensors and lab-on-a-chip devices, microarrays, tissue engineering and fundamental 

cell biology studies. The conventional micropatterning techniques involve patterning over 

a planar substrate. In this thesis, the introduction of topographical features on the 

adhesive regions to enhance proteins and cells behaviour is proposed. A textured 

substrate for proteins and cell adhesion is created by the assembly of micro and 

nanoparticles into an array of microwells on a silicon substrate. The topography can be 

controlled by varying the size and density of the particles.  

 

Firstly, a technique of generating spatial arrangement of particles on a non-fouling 

background is developed. This is achieved by using a bi-functional template which can 

overcome the conflict between the pre-requisites for particles assembly and 

micropatterning of biomolecules. A fluidic chamber was designed to control the 

movement of the particle suspension across the template so as to attain uniform particles 

pattern over a large area. 

 

After assembling the particle, proteins can be conjugated to the curve surface of the 

particles. Attachment of biomolecules on surfaces of particles can increase the density of 

biomolecules and proteins can retain its native structure and function better than on a 

planar surface. Alternatively, cell micropatterning can be performed and it was shown 

that the textured surface helped to improve the proliferation and adhesion of cells. 
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1.1 Introduction 

 

Protein micropatterning refers to the organization of proteins on surfaces with microscale 

resolution. The history of protein micropatterning can be dated back to 1978 when 

McAlear and Wehrung first patented their micropatterning technique which originated 

from the semiconductor industry. Their micropatterns were intended for the integration of 

protein molecules into bio-electronic microcircuits. Since then, a variety of techniques 

have been developed for protein and cell micropatterning. Protein and cell 

micropatterning have numerous applications in the biomedical field. Cellular patterns are 

used to address fundamental issues in cell biology, like cell-cell, cell-substrate and cell-

medium interactions. Patterning of two or more cell types in a co-culture system allows 

manipulation of cell-cell interaction which has potential in tissue engineering. The 

accurate positioning of cells and biomolecules is essential for the development of cell and 

molecular-based biosensors.  

 

In most of the micropatterning techniques, the proteins and cells are immobilized over a 

planar substrate. It is well documented that the substratum topography will have an 

influence on protein and cells functionality. Efforts have been made to engineer micro 

and nano scale features on implants and tissue engineering scaffolds to improve cellular 

behaviour. Similarly, topographical features can be introduced onto the substrate for 

patterning to improve protein bioactivity and enhance cellular response. A micro or 

nanotopograhy can be constructed easily by assembly of micro and nanoparticles.  
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In this chapter, the techniques that are commonly adopted for protein and cell 

micropatterning and its biomedical applications are reviewed. Next, the advantages of 

integrating micro and nanoparticles assembly with protein and cell micropatterning are 

discussed. The last section will give an overview of the thesis.   

 

 
1.2 Techniques for Micropatterning 

 

The main requirement for protein micropatterning is the selective attachment of protein at 

the desired regions and high protein resistivity by other regions on the substrate. Apart 

from surface coverage, there are two other key aspects for protein immobilization, i.e., 

protein orientation and protein functionality. Protein orientation is particularly important 

in the development of immunodiagnostic device as the optimum orientation of an 

antibody can increase the surface binding ability and therefore enhance the sensitivity of 

the assay (Alarie et al., 1990; Chen et al., 2003). Retaining the protein functionality is 

crucial for ensuring that the immobilized protein will serve its designated purpose and 

provide reliable analysis.   

 

Attachment of proteins falls into two basic categories, i.e. non-covalent and covalent 

interaction. Protein adsorption by non-covalent interactions can be based on hydrophobic, 

van der Waals interactions, hydrogen bonding or electrostatic forces. An advantage of 

these concepts is their ease of application since no chemical modification is required 

prior to immobilization. The drawback is that proteins may get denatured due to 

uncontrolled interactions between protein and the surface material. Physical adsorption of 
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proteins can also lead to problems with protein desorption during the assay, which will 

result in loss of signal (Sydor and Nock, 2003). A more stable means of protein 

immobilization is to link a protein to the surface covalently via a chemical bond. An 

example is the use of bi-functional cross linkers such as silanes, silica-based linkers 

which attach at one end to silicon wafer or metal surface via a silanol bond while the free 

end has a variable functional group for binding protein.  

 

When the patterned protein is a cell adhesive protein, e.g. fibronectin, laminin, collagen 

or vitronectin, the patterned substrate can be used to generate a cell pattern, the areas 

attached with adhesive protein allow the selective attachment of cells. Apart from 

physiological biomolecules, other materials like amino terminated self-assembled 

monolayers (SAM) and Arg-Gly-Asp (RGD) peptide can also mediate the attachment of 

cells (Folch and Toner, 2000).  

 

Microfabrication and robotic printing techniques are the basic tools for creating protein 

and cellular micropattern. The next section will describe the basic principles of these 

techniques with its advantages and drawbacks highlighted.  

 

1.2.1 Photolithography 

Photolithography which is used in the semiconductor industry for metal patterning in 

electronic microcircuits has been applied to protein micropatterning. Photolithography is 

the process of transferring geometric shapes on a mask to the surface of a wafer or 

substrate. In photoresist lithography, micropatterns are generated using light, photoresist 
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(light sensitive organic polymer) and mask as shown in Figure 1.1. A layer of photoresist 

is applied to the surface of the substrate and is selectively exposed to ultraviolet light 

through a mask containing the pattern. For positive photoresist, the exposed polymer 

becomes more soluble in a developer solution than the unexposed polymer, whereas for a 

negative photoresist, the exposed polymer becomes insoluble in the developer solution. 

The resulting photoresist pattern can then act as a mask for patterning the material of 

interest. A common adhesion promoting molecule is amino terminated silane, the silane 

is applied on the photoresist pattern and bound to the exposed areas. The photoresist is 

then lifted off by sonication in acetone to expose the remaining areas. Next, the chip is 

incubated with an adhesion resistant silane, typically a methyl or alkyl terminated silane, 

resulting in a cell adhesive and cell resistant micropattern. A number of groups had 

worked on patterning silanes using photoresist lithography to control protein attachment 

(Britland et al., 1992b; Lom et al., 1993) and cell growth (Britland et al., 1992a; Healy et 

al., 1996; Kleinfeld et al., 1988). The initial work was pioneered by Kleinfeld and 

colleagues with the patterning of cerebellar cells from perinatal rats on alternating lines 

of amino-silane and methyl terminated alkylsilane. The patterned growth of cerebellar 

cells was maintained up to 12 days in vitro and the cell morphology was indistinguishable 

from those cultured on conventional poly(D-lysine).  
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Figure 1.1. Micropatterning using photoresist lithography. 
 

Researchers have made use of photolithography to generate many different chemical 

micropatterns to assist them in their patterning of biomolecules and cells.  For instance, a 

hydrophobic-hydrophilic micropattern of octadecyltrimethoxysilane on silicon substrate 

was prepared for the selective assembly of carbohydrates (Miura et al., 2004); a layer-by-

layer (LbL) technique was combined with photolithography for the construction of 

bioactive nanocomposite film (Mohammed et al., 2004), and a high density array of PEG 

hydrogel microwells was fabricated to control mammalian cell – surface interactions 

(Revzin et al., 2003). 

 

Photolithography is the dominant technique for patterning solid-state devices; it can 

produce accurate patterns with submicron resolution. However, photolithography requires 

clean room facilities and expensive equipment which makes it inconvenient for 

Substrate with photoresist 

Exposure to ultra violet light 

Patterned photoresist 

Deposition of material of interest 

Development of photoresist 
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biologists. Furthermore, the chemicals used in the process are toxic to cells and they can 

denature biomolecules. Photolithography is not well suited for introducing specific 

chemical functionalities and delicate ligands required for bio-specific adsorption (Kane et 

al., 1999). 

 

1.2.2 Soft Lithography 

More recently, Whitesides and colleagues have developed a set of techniques which are 

more biocompatible for patterning biomolecules. These techniques are collectively 

known as “soft lithography” because a soft elastomeric stamp with patterned relief 

structures is used to generate patterns and structures with feature size ranging from 30 nm 

to 100 µm (Kane et al., 1999; Xia and Whitesides, 1998). Elastomer is the material of 

choice as they can make conformal contact with non-planar surfaces. The stamp is 

prepared by casting the liquid prepolymer of poly(dimethylsiloxane) (PDMS) against a 

master that has patterned relief structures (Figure 2). In soft lithography, 

photolithography is required only during the fabrication of the masters. As the stamps and 

masters can be reused indefinitely (Kane et al., 1999), soft lithography is a more 

convenient, effective and cheaper method compared to photolithography since the use of 

a clean room environment is minimized. Microcontact printing, microfluidic patterning 

and stencil patterning are the common soft lithography related techniques that are used 

for proteins and cells micropatterning.  
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1.2.2.1 Microcontact Printing 

Microcontact printing is based on the transfer of the material of interest from a PDMS 

stamp onto a surface at the areas contacted by the stamp. The stamp is fabricated by 

replica moulding using a rigid master. This procedure has been widely used for printing 

SAMs of alkanethiols on films of gold and silver. The stamp is ‘inked’ with a solution of 

an alkanethiol in ethanol and brought into conformal contact with a gold substrate (Kane 

et al., 1999). The alkanethiols are transferred from the PDMS stamp onto the substrate 

surface through a conformal contact with the surface. Upon removing the stamp from the 

surface, a pattern is left behind on the surface (Figure 1.2 A). The bare areas of the 

surface can be modified with another material by immersing it into a solution of another 

kind of alkanethiol.  

 

Mrksich et al.(1997) used microcontact printing to pattern hydrophobic, methyl 

terminated lines separated by SAMs terminated in oligo(ethylene glycol) groups. 

Fibronectin adsorbed only on the methyl terminated regions while oligo(ethylene glycol) 

successfully resisted protein adsorption. Bovine capillary endothelial cells attached 

selectively to the fibronectin coated methyl terminated region. The cells confined to the 

pattern of underlying SAMs for at least 5 - 7 days.  

 

Microcontact printing is a simple and inexpensive method. It is useful when one needs to 

patterns only one or two types of molecules. Microcontact printing is not limited to 

transferring alkanethiols to gold surface, the same principle works for patterning 

alkylsiloxanes on hydroxylated surfaces of glass and silicon dioxide (Xia et al., 1995); 
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the direct transfer of dried proteins from the PDMS stamp to various surfaces was 

demonstrated by Bernard et al.(1998) while Csucs et al.(2003) used the technique to 

transfer a polycationic graft copolymer, poly-l-lysine-g-poly(ethyleneglycol) to a 

negatively charged substrate. Microcontact printing is a versatile method for patterning as 

a variety of substrates and molecules are compatible with the technique. 

 

1.2.2.2 Microfluidic Patterning 

This method involves sealing a PDMS mould against a substrate to form a network of 

microchannels which defines the desired pattern. By injecting fluids into the 

microchannels, selected areas of the substrate are exposed to the microflow and result in 

the patterning of the material of interest onto the substrate (Figure 1.2 B). The fluid when 

placed at the open ends of the channels can be injected spontaneously into the 

microchannels by capillary force (Kim et al., 1995). However, capillarity driven flow is 

limited to small areas and channels and it is not suitable for viscous fluid. Toner’s group 

improved on this technique by using pressure assisted flow to pattern proteins (Folch and 

Toner, 1998) and cells (Folch et al., 1999). Microfluidic patterning is suitable for 

patterning delicate materials like proteins and cells on a variety of substrate; however, it 

is limited to interconnecting patterns.  

 

1.2.2.3 Stencil Patterning 

A thin sheet of material containing through holes laid on a substrate can be used to 

perform micropatterning. The substrate is prevented from coming into contact with the 

material for patterning while the holes are left exposed. PDMS is a suitable material for 
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stencil (Folch et al., 2000; Ostuni et al., 2000) as it seals spontaneously to most dry 

surfaces. These PDMS stencils are fabricated in a manner similar to the PDMS stamps 

used in microcontact printing. For fabrication of a stencil, the PDMS prepolymer should 

not cover the micropillars on the master so that through holes will be created on a thin 

film of PDMS (Figure 1.2 C). PDMS stencils were used to pattern 3T3 fibroblast cells 

(Folch et al., 2000) and fibronectin (Ostuni et al., 2000). The stencil was applied to the 

substrate before seeding. After the proteins or cells have attached, the stencil was 

removed and patterns with shapes similar to the holes remained on the substrate. Stencil 

patterning is a simple method which allows patterning even without chemical 

modification on the substrate.  

 

 

Figure 1.2. Schematic procedure for patterning using soft lithography related techniques. 
(A) Microcontact Printing, (B) Microfluidic Patterning, (C) Stencil Patterning.   

Negative photoresist pattern 

(A) Microcontact Printing (B) Microfluidic Patterning   (C) Stencil Patterning 

  PDMS casting  PDMS casting

PDMS stamp inked with alkanethiol 
and brought into contact with a gold 

coated substrate 

Patterned SAM formed after 
removal of PDMS stamp 

Exposure to second alkanethiol.  

Sealing a PDMS mold 
against the substrate forms 

PDMS stencil lay on a substrate

Exposure to material of interest 

Removal of PDMS stencil gives 
desired pattern

Flowing material of interest 
through the microchannels 

Removal of PDMS mold gives 
desired pattern 
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1.2.3 Robotic Printing 

Although lithographic techniques can produce patterns with sub-micron features, the 

number of ligands that can be patterned simultaneously on a substrate is limited. A high 

precision robotic printer can immobilize a variety of proteins on a solid substrate 

(MacBeath and Schreiber, 2000). It allows high throughput and rapid deposition of 

thousands of proteins onto different spots with sizes typically around 100 μm.  

 

There are two types of printing techniques for microarrays, contact and non-contact 

printing. The contact printing arrayer is capable of delivering sub nano-litre volume 

directly to the surface using tiny pins. Contact pin printing techniques tend to damage the 

surface mechanically, causing defects and irregular spots (Wagner and Kim, 2002). Non-

contact robotic printers uses ink jet technology; the piezoelectric fittings attached to glass 

capillaries allow the selective contraction of the capillaries in an electrically controlled 

manner (Lemieux et al., 1998). The ink jet microarrayer can be slow when spotting many 

different samples and the shearing force during drop formation may damage some 

samples (Haab, 2001). However, this technique is not hindered by surface structure since 

there is no contact between the nozzle and the surface.   

 

Apart from high precision robotic arrayer, researchers also make use of office based ink 

jet printer to deposit chemical and biomolecular substances. This non-contact technique 

can deliver a small sample volume onto the printing surface via controlling conventional 

word processing or graphics editing software. Multifunctional surface can be created 

easily by using a number of nozzles. Furthermore, mixing of the feed molecules is 
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possible by simultaneously actuating several nozzles, thus allowing chemical gradients to 

be created with relative ease (Pardo et al., 2003). Compared to the robotic arrayer, the ink 

jet printer has the advantage of being inexpensive, flexible, simple and desktop computer 

controlled. However, the size of the features created is larger than that of the robotic 

arrayer. Boland’s group has performed a series of research on using the ink jet printer to 

deposit a variety of molecules. They tested the technique by depositing a variety 

alkanethiols onto gold substrate. Their alkanethiol self-assembled monolayers patterns 

created by this method are comparable to those obtained by microcontact printing or 

solution adsorption (Pardo et al., 2003). The technique was also used to print biologically 

active collagen proteins to control cell attachment; the cellular pattern obtained had a 

resolution of  350 μm (Roth et al., 2004). The group also fabricated bacterial colony array 

by directly ejecting Escherichia coli onto agar-coated substrates at a rapid arraying speed 

of 880 spots per second (Xu et al., 2004). The concentration of bacterial suspensions can 

be adjusted to allow single colonies of viable bacteria to be obtained. 

 

 

1.3 Applications of Protein and Cell Patterning 

 

1.3.1 Protein Micropatterning 

1.3.1.1 Molecular Biosensors 

There is a growing interest in the use of molecular biosensors for environmental, medical, 

toxicological, and defence applications (Pancrazio et al., 1999). Molecular biosensors 

utilize biomolecules such as enzymes, antibodies, nucleic acids, receptors etc. The basic 

feature of the biosensor is the immobilization of biomolecules onto a conductive or semi-
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conductive support, and the electronic transduction of the biological functions associated 

with the biological matrices (Willner and Katz, 2000). The integration of micropattening 

techniques for biosensor applications requires patterning on substrate of more than one 

material, especially in an electrode-insulator format. Veiseh et al.(2002) developed a 

technique for patterning proteins on gold-silicon dioxide substrate using photolithography 

and chemical selectivity. The gold regions were modified to have a high affinity for 

proteins while the silicon regions were modified to resist protein adhesion. In this setting, 

the biomolecules are patterned on electrodes on a substrate that can be integrated with 

signal processing microdevices. 

 

1.3.1.2 Protein Microarray 

Robotic printing method is used to fabricate protein microarray which allows the 

simultaneous determination of a large variety of parameters from a minute amount of 

sample within a single experiment. Molecules are immobilized in rows and columns on a 

solid support and exposed to samples containing the corresponding binding molecules. 

Protein microarray can be used for identification, quantification and functional analysis 

of proteins that are of interest for proteomic research in basic and applied biology and for 

diagnostic application. They are also of interest to the pharmaceutical industry which 

focuses on the validation of potential target molecules (Stoll et al., 2004). Protein 

microarray is becoming an indispensable tool for protein profiling; however several 

challenges have to be overcome before the technique can be used successfully. Protein is 

a complex molecule. The tertiary structure of proteins are extremely sensitive to 

environmental and interfacial conditions such that most proteins will require customized 
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attachment solution to preserve their conformation and activity. This is complicated by 

diversity of proteins in terms of structure, function, expression level and stability 

(Wagner and Kim, 2002). 

 

1.3.2 Cell Micropatterning 

1.3.2.1 Fundamental Studies in Cell Biology 

The ability to position cells on a substrate has facilitated fundamental studies in cells. 

Micropatterned cell cultures are ideal to address fundamental issues like cell-cell 

interaction and cell-substrate interaction.  

 

Cell adhesive regions of varying shapes and sizes can be fabricated on a single substrate 

by using microfabrication techniques. When cells are plated on the substrate, the shape of 

the cells will match the size and shape of the adhesive patterns closely. In this way, the 

degrees of cell extension and spreading can be manipulated. Chen et al.(1997) studied the 

effect of spreading on cell growth and apoptosis for human and bovine capillary 

endothelial cells. As angiogenesis is the prerequisite for tumour growth, the 

understanding of how cell shape controls the apoptotic switch in capillary cells will have 

enormous clinical applications. It was found that when the adhesive island decreases in 

size, cells are limited from spreading and shifted from growth to apoptosis. Their studies 

demonstrated that cell shape affects cell growth and cell function. More recently, the 

issue of whether the form of the tissue can feedback to regulate patterns of proliferation 

was addressed by Nelson et al.(2005). The group demonstrated that the shape of the 

cellular island has a prominent effect on the pattern of proliferative foci by using 
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microfabricated extracellular matrix (ECM) protein islands of different geometric shape 

to control the organization of bovine endothelial cells. The regions of concentrated 

growth corresponded to sites with high tractional stress generated within the cell sheet. 

Their results demonstrated the existence of patterns of mechanical forces that originate 

from the contraction of cells and resulted in patterns of growth. 

 

Substrate patterning provides a useful tool for studying neuronal behaviour (Corey and 

Feldman, 2003). ECM proteins and cell-cell adhesion molecules (CAM) (Berry et al., 

2004) play important roles in the development and differentiation of neurons. 

Experiments performed using substrates with ECM and CAM patterns have provided 

unique insights into the roles of cell-substratum adhesion, cell shape, and ECM 

composition on important cell functions, including survival, migration, neurite 

outgrowth, and development of polarity. The behaviour of neurons on patterned 

substrates may aid in the design of scaffoldings and nerve guides tailored for regeneration 

and repair of the nervous system. 

 

In addition, micropatterning provides a miniaturized platform that allows parallel and 

quantitative analysis on cell population. Chin et al. (2004) microfabricated a high density 

array of microwells to analyze a heterogeneous neural stem cell population. This 

approach offers the ability to screen a large number of clonal populations and study the 

response of distinct stem cell subpopulations to micro environmental cues (mitogens, 

cell–cell interactions, and cell–extracellular matrix interactions) that govern their 

behaviour. 
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1.3.2.2 Tissue Engineering 

Micropatterned co-culture provides a platform for the study of cell-cell interaction 

between two or more types of cells in a functional tissue model. Cell-cell interactions are 

vital for normal physiology of many organ systems including vasculature (smooth muscle 

cell and endothelium), skeletal muscle (monocyte and peripheral nerve) and liver 

(hepatocyte and sinusoidal endothelium). Bhatia et al. (1997) first demonstrated co-

cultivation of hepatocytes and 3T3 fibroblast. Co-cultivation of hepatocytes and 

fibroblasts preserved the phenotype of hepatocytes for several weeks. The ability to 

modulate the function of multicellular systems by manipulation of the spatial relationship 

between cell populations will facilitate more effective in vitro reconstruction of liver, 

skin, vascular grafts, muscle, and many other tissues (Bhatia et al., 1999). 

 

The spatial organization of cells is vital in engineering tissues that require precisely 

defined cellular architectures. For example, functional nerve and blood vessels form only 

when group of cells are organized and aligned in specified geometries (Wang and Ho, 

2004). Most efforts in cell micropatterning use microfabrication techniques that are based 

on silicon or glass substrates which limits applications to tissue engineering. Creating 

cellular patterns on biocompatible and biodegradable biomaterials is the first step towards 

engineering functional tissues in vitro. Wang & Ho (2004) developed a technique to 

pattern human microvascular endothelial cells on chitosan and gelatin films. These two 

materials were chosen because of their high biocompatibility, low toxicity, and wide use 

in biomedical applications. In another paper by the same group (Co et al., 2005), 

fibroblast and human microvascular endothelial cells were patterned on a chitosan 
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substrate. The co-culture of the two cell types resulted in the structured assembly of 

capillary tube-like structures.   

 

1.3.2.3 Cell-based Biosensors 

Cell-based biosensors are sensors which incorporate cells as a sensing element that 

convert a change in environment to signals conducive for processing. Cells express an 

array of potential molecular sensors (such as receptors, channels, and enzymes) that are 

maintained in a physiological relevant manner by native cellular machinery. A cell-based 

biosensor has a distinct advantage over molecular sensor; in a cell-based biosensor, the 

sensing element is maintained in the native state, whereas in a molecular sensor, there is 

always the problem of protein degradation which will affect the affinity and accuracy of 

the sensor. Potential applications of cell-based biosensors include high throughput 

screening of drugs, clinical diagnosis and detection of toxicants, pathogens and other 

environmental threats (Pancrazio et al., 1999). 

 

Electrically excitable cells such as neurons and cardiomyocytes are particularly useful as 

the sensing element in cell-based biosensor as the activity of the cells can be monitored 

by recording the extracellular potentials with a microelectrode (Pancrazio et al., 1999). In 

neurons, a change in chemical environment will result in changes in action potential 

patterns, hence they can be used to screen for novel pharmacological substances, toxic 

agents, and for the detection of certain odorants (Gross et al., 1997). In order to measure 

electrical signals from cells, the cells must ‘sit’ on a microelectrode. In early works, cells 

were seeded on the substrate at a relatively high density with the hope of having good 
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coverage of cells on the electrodes (Connolly et al., 1990). More recently, chemical 

patterning on microelectrode array are used to guide the organization of the cells on the 

device. James et al. (2004) used microcontact printing and a photoresist lift off method to 

selectively localize poly-L-lysine on the surface of the array of microelectrode. 

Haptotaxis led to the organization of neurons into network localized adjacent to the 

microelectrodes.  

 

 

1.4 Integration of Micro / Nanoparticles with Protein and Cell Micropatterning 

 

Due to a strong interest in the various applications for protein and cell micropatterning, 

tremendous efforts have been put in by many research groups to develop techniques that 

are compatible for patterning biomolecules as reviewed in section 1.1.  Most of these 

conventional micropatterning methods involve attachment of biomolecules and cells over 

a planar substrate. In this project, a new technique of micropatterning that involves 

integration of a micro or nanostructured region for biomolecule and cell attachment is 

proposed. Topographical features can be fabricated by various techniques. Electron beam 

lithography and photolithography are well established methods that can create organized 

and highly reproducible features such as grooves, columns and pits (Dalby et al., 2004; 

Teixeira et al., 2003; Whitehead et al., 2005). Electrochemical techniques like acid 

etching, anodic dissolution and electropolishing are used to fabricate micro and nano-

structures on metals (Landolt et al., 2003). Polymer demixing, for example blends of 

hydrophobic polystyrene and hydrophilic poly(4-bromostyrene) undergo phase separation 
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during spin casting and form various topography depending on the blend composition 

(Affrossman et al., 1996). 

 

In this work, colloidal particles are utilized to modify the topography of the adhesive 

regions. By systemically varying the density and the size of particles, the surface 

roughness can be fine tuned and surfaces with micro or nano-topography can be produced 

without the need for state-of-the-art equipments or undergoing chemical processes. 

Biomolecules or cells are then selectively attached to the particles while the background 

regions are rendered protein resistant. The schematic diagram for the proposed technique 

is depicted in Figure 1.3. 

 

 

 

 

Figure 1.3. Procedure for proposed cell and protein micropatterning technique via 
assembly of particles. 
 

The rationale for utilizing micro and nanoparticles is easily understandable. The 

technology for synthesizing many types of inorganic (e.g. silica, gold, iron oxide) and 

organic (e.g. polystyrene, poly(methyl methacrylate)) particles is well established; 

particles of varying sizes ranging from nano to micro scale can be synthesized.  With an 

array of particles available for selection, the surface properties of the patterned substrate 

can be tailored by choosing the particles having the desired characteristics (for e.g. 

hydrophobicity / hydrophilicity, surface potential and functional groups on particles for 
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subsequent conjugation to biomolecules). The roughness of the topography can be fine-

tuned by using particles of different sizes. Furthermore, the unique properties of some 

types of particles can be utilized to serve as an additional functional role. For example, 

gold nanoparticles can be assembled to give rise to an electrode-insulator format which 

provides a pathway for measurement of electrical signal in biosensors; while an array of 

magnetic particles may be used for separation or purification purposes in microfluidic 

devices.  

 

Micro and nanoparticles functionalized with biomolecules already have numerous 

applications in the biomedical field, for example, drug and gene delivery, biosensors, 

immunoassay etc. The idea of patterning micro and nanometer scale particles into 

ordered arrays has generated much interest due to its unique potential for application in 

photonic (Wijnhoven and Vos, 1998; Yang et al., 2002) and optoelectronic devices 

(Veinot et al., 2002; Yamasaki and Tsutsui, 1998). The existing knowledge on particle 

functionalization and assembly gained from other fields can be integrated with protein 

and cell micropatterning.  

 

There are several advantages of introducing a nonplanar topography with protein and cell 

micropatterning. Firstly, the curve surfaces of the particles increase the surface area for 

immobilization of biomolecules. Although it is possible to achieve a high molecular 

density on a planar substrate, for example, via thiols-based self assembled monolayers on 

a gold substrate (Smith et al., 2004), the density can be further improved by using a 

nonplanar micro / nanostructure to enhance the surface available for attachment of 
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biomoleules. The amount of increase in the surface area can be calculated by considering 

that each closely packed particle occupies a hexagonal area on the surface (Figure 1.4).  

 

 

Figure 1.4. Each closely packed particle occupies a hexagonal area on the planar 
substrate. 

 

( )
( )
( )

particletheofradiustheisrwhere
areaplanartoareasurfacecurveofratio

resmicrospheronareasurfacecurve
rareahexagonalplanarofarea

3.181.1
2.12
1.136

2

2

=
=

=

π  

 

As derived above, the curve surface area created by closely packed particles is 

approximately 1.81 times higher than a planar surface, regardless of the size of the 

particles. The increment in the surface area will subsequently increase the density of 

biomolecules that can be immobilized and the sensitivity for detection. As the demand for 

sensitive biosensors continues (Mehrvar and Abdi, 2004), this technique may be used as 

an immobilization strategy in biosensor devices to enhance the signal for detection. More 

recently, patterning of biomolecules with nano-resolution has been made possible with 

the support of techniques such as dip pen lithography (Piner et al., 1999) and e-beam 

patterning (Eck et al., 2000). As the size of the pattern becomes smaller, it is crucial that 

sensitivity is not compromised due to a reduction in surface area. This strategy of using 

particles for patterning may resolve the conflict between feature size and sensitivity. 

   2r/√3 
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With the improvement in microfabrication techniques for patterning over the last couple 

of years, achieving a good spatial arrangement of protein is no longer a daunting task. On 

the other hand, the structure and functionality of the proteins after immobilization 

warrants further studies. It is well-documented that immobilization of protein on surfaces 

typically affects its conformation (Nakanishi et al., 2001); furthermore, the procedure for 

patterning may induce structural changes in the protein. A good protein micropatterning 

technique is one which does not damage the protein functionality in the process of 

patterning. By designating the attachment of proteins as the last step in the procedure will 

help to minimize the deleterious effect on protein. Furthermore, when protein is attached 

on surface assembled with nanoparticles, the protein is immobilized on the curve surfaces 

of the particles instead of the planar surface. As the surface is highly curved, there is a 

smaller area for interaction between the protein and the substrate and this will promote 

the retention of the protein native structure (Lundqvist et al., 2004; Vertegel et al., 2004). 

 

The topographical properties of  a substrate affect the cellular behaviour of anchorage-

dependent cells in terms of adhesion, spreading, proliferation, differentiation, apoptosis 

and gene expression (Curtis and Wilkinson, 1997; Dalby et al., 2003; Singhvi et al., 

1994). Topographical features created by assembly of particles at designated regions for 

cell attachment may be systematically varied to study its effect on cellular response and 

optimized to enhance cell adhesion and preserve cell phenotype.  
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1.5 Thesis Overview  

 

Performing protein and cell micropatterning on surfaces assembled with particles brings 

many advantages which cannot be realized via patterning a planar substrate.  The 

objective of this thesis is to develop a novel protein and cell micropatterning technique 

that can integrate with colloidal assembly. Each of the following four chapters will focus 

on a specific step in the developmental process.   

 

Step 1: Fabrication of a template (Chapter 2) 

The design of a bi-functional template that is compatible for colloidal assembly and 

protein and cell micropatterning is necessary. A hydrophilic-hydrophobic template that 

satisfies the pre-requisites of these two processes was fabricated. 

 

Step 2: Assembly of particles on the template (Chapter 3) 

Particles were assembled on the template by selective wetting of the hydrophilic regions. 

The assembly of a variety of particles, with various sizes and packing density was 

demonstrated.  

 

Step 3: Protein Micropatterning (Chapter 4) 

Protein micropatterning was performed on the colloidal assembled substrate. The protein 

density on the microsphere structured surface and a planar film was compared. The 

bioactivity of the patterned protein was also characterized. 
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Step 4: Cell Micropatterning (Chapter 5) 

Cell micropatterning was integrated with colloidal assembly. The adhesion, proliferation 

and morphology of the cells adhered onto the microstructured surface was characterized. 
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CHAPTER 2 

MICROFABRICATION OF A TEMPLATE COMPATIBLE FOR 
COLLOIDAL ASSEMBLY & PROTEIN AND CELL 

MICROPATTERNING 
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2.1 Introduction 

 

The ability to pattern colloids, proteins and cells in a bioinert environment play an 

important role for the development of biosensors and lab-on-chip devices (Willner and 

Katz, 2000) for use in diagnostic, therapeutic and basic science applications. The 

fabrication of a template is the first and foremost step towards micropatterning; therefore, 

it is crucial that the design and surface properties of the template are compatible with the 

requirements for colloidal assembly and proteins and cells micropatterning.  

 

Site selective assembly of particles can be achieved by using template with patterned 

surfaces having distinct differences in charge and / or wettability. Templates with relief 

structures can also be used for patterning particles by physical confinement. (The various 

techniques for colloidal patterning will be discussed further in Chapter 3.) On the other 

hand, protein and cell micropatterning is based on the patterning of substrate into regions 

that promote or resist adhesion of biomolecules. There are many surfaces that allow 

proteins and cells to adhere, but few that can prevent adhesion. The common repellent 

surface modifications include poly(ethylene glycol) (PEG) and poly(ethylene oxide) 

(Folch and Toner, 2000). Other materials that have been explored as viable bioinert 

alternatives include PEG-based hydrogels (Tziampazis et al., 2000), agarose (Folch and 

Toner, 1998), dextran (Massia et al., 2000), phosphorylcholine (Tegoulia et al., 2001), 

polyelectrolyte multilayers (Mendelsohn et al., 2003) and immobilization of albumin or 

other proteins that do not contain any known integrin binding domains (Folch and Toner, 

2000). As the background modifications required for bio-patterning is limited to the 
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above polymers, this may conflict with the requirements for colloidal assembly which 

commonly involve modification with hydrophobic and charged polymers on the 

background. Some template designs that can integrate patterning of colloids with proteins 

and cells are reviewed in the following paragraphs.  

 

Gleason et al.(2003) used a combination of gravimetric settling and electric field driven 

assembly to organize protein functionalized colloids onto gold coated substrates. 

Patterning of the colloids was guided by a separate piece of indium tin oxide coated glass 

template that served as an electrode. The areas that are not covered by particles were 

made non-adhesive to other proteins and cells by incubating with bovine serum albumin. 

In another paper, a simultaneous process for patterning of particles and passivation of 

template was developed by Pregibon et al.(2006) using photopolymerization of beads 

containing hydrogels precursors. In short, the process involved treatment of a glass 

substrate, conformal contact bonding of a PDMS microchannel on the substrate, filling of 

the channel with beads and prepolymer solution, and UV-initiated photopolymerization 

of a mask-defined pattern using a typical inverted microscope. This technique resulted in 

stable colloidal patterns which were covalently linked to the substrate. Both of these 

methods are fast and inexpensive; however, they involve the assembly of protein coated 

colloids which may become denatured in the process of assembly.  

 

Zheng et al.(2004) developed a polyelectrolyte multilayer template that involved 

assembly of pre-functionalized colloids. The template consisted of a polyamine surface 

patterned onto a poly(acrylic acid)/poly(allylamine hydrochloride) (PAA/PAH) using 
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PDMS stamping. The alternate deposition of PAA and PAH formed a polyelectrolyte 

multilayer platform that exhibited long term cell resistant properties (Mendelsohn et al., 

2003). The patterned polyamine surface (PAH) was used to direct the deposition of net 

negatively charged carboxyl amine functionalized polystyrene particles. The selectivity 

of particle deposition was controlled by manipulating the pH of the template 

environment. However, it was difficult to achieve closely packed monolayer of particles 

which is necessary for generating uniform protein spots.   

 

In view of the limitations of these techniques, the fabrication of a bi-functional template 

that is compatible with both colloidal assembly and protein and cell micropatterning is 

developed in this chapter. The template consisted of hydrophilic amine-terminated 

microwells surrounded by a parylene hydrophobic matrix which can facilitate patterning 

of colloids. After colloidal assembly; the parylene layer can be peeled off to expose a 

bioinert background, rendering the template useful for biological applications.  

 

 

2.2 Materials and Methods 

 

2.2.1 Materials 

AZ 4620 and AZ 400K Developer were purchased from Clariant (Singapore). Negative 

photoresist SU 8-50 and SU-8 Developer were purchased from MicroChem (MA, US). 

Poly(dimethylysiloxane) (PDMS) and curing agent (Sylgard 184 kit) were purchased 

from Dow Corning (Singapore). 2-[methyoxy(polyethylenoxy)propyl]trimethoxysilane 
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(MW460-590, PEG-silane) was purchased from Gelest, Inc. 4 inch (1 0 0) p-doped prime 

grade silicon wafers with 1-20 ohm/cm reisitivity was purchased from MOS Group Pte. 

Ltd. (Singapore). Sulphuric acid (98%), [3-(2-Aminoethylamino)propyl]trimethoxysilane 

(amino-silane), hydrogen peroxide, sulphuric acid, hydrochloric acid, Dulbecco’s 

Modified Eagle’s Medium (DMEM), phosphate buffer solution (PBS) and trypan blue 

were purchased from Sigma-Aldrich. Fetal bovine serum was bought from PAA 

Laboratories (Austria), while penicillin-streptomycin was purchased from Invitrogen 

(Singapore). HT-29 human adenocarcinoma cell line was obtained from American Type 

Culture Collection (Manassas, VA). All reagents and materials were used as received. 

 

2.2.2 Surface Modification 

Grafting of PEG. The silicon wafer was modified with PEG-silane to create a non-

fouling surface according to the method reported previously (Papra et al., 2001). The 

wafer was rinsed with deionized water prior to use. Oxidation of wafer was carried out by 

treatment with hot piranha solution (30 % hydrogen peroxide with 98 % sulphuric acid in 

ratio 1:4 v/v) at 100°C for 10 min. The mixture should be used with extreme caution due 

to its high oxidizing power and risk of explosion. The wafer was then rinsed with copious 

amount of deionized water and dried. Grafting was done by a solution of 3 mM PEG-

silane in toluene (with 0.8 mL of concentrated HCl /L) for 18 h at room temperature.  The 

PEG treated wafer was rinsed with toluene and ethanol, followed by sonication in 

deionized water for 2 min to remove the loosely bound molecules.  
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Grafting of amino-silane. The designated adhesive regions were modified with amino-

silane according to similar methods reported previously (Petri et al., 1999). The chips 

were immersed in 2% amino-silane in deionized water for 4 min at room temperature, 

followed by rinsing with deionized water and baking for 10 min at 120°C.  

 

2.2.3 Microfabrication 

Positive photoresist lithography. The PEG grafted silicon wafer was spin coated with a 

positive photoresist AZ 4620 at 2000 rpm for 30 s. The resist was soft baked at 95°C for 

1 min. The mask for photolithography containing a positive image of the design was 

created using AutoCAD (Autodesk, Inc., CA) and printed on a transparency with a high 

resolution printer. The transparency mask was adhered to a blank photomask and placed 

in contact with the resist under a mercury lamp (EVG EV620 Mask Aligner). The 

photoresist was exposed for 60 s at 10 mW/cm2. The resist was developed with AZ 400K 

Developer : deionized water 1: 4 for 2 min and rinsed with deionized water. This was 

followed by a post exposure bake at 95°C for 10 s.   

 

Fabrication of master. A master containing an array of cylindrical posts was fabricated 

with negative photoresist lithography. A piece of 4 inch silicon wafer is cleaned by 

rinsing in isopropyl alcohol, followed by deionized water. The wafer was subjected to a 

piranha clean (30% hydrogen peroxide with 98% sulfuric acid in a ratio of 1:4 v/v) at 100 

°C for 10 min. The wafer was then rinsed with copious amount of deionized water, dried 

with nitrogen stream and dehydrated at 200 °C for 5 min on a hotplate. Negative 

photoresist SU 8-50 was spin coated at 1500 rpm for 30 s. The wafer was then pre-baked 
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at 65°C for 8 min, followed by soft-bake at 95 °C for 25 min on a hotplate to evaporate 

the solvent and densify the film. Next, the wafer was exposed to collimated ultra violet 

light through a high resolution transparency mask pressed against the photoresist layer. 

Following exposure, the wafer was subjected to a two step post exposure bake at 65°C 

for 1 min and 95°C for 8 min to selectively cross-link the exposed portion of the film. 

The pattern was developed by immersion in SU-8 Developer for 8 min. The substrate was 

rinsed briefly with isopropyl alcohol and dried with a stream of nitrogen. Finally, the 

resist was hard baked at 150 °C for 5 min on a hotplate to further cross-link the material. 

 

Fabrication of PDMS stencil.  The PDMS stencils were fabricated using the procedure 

described by Jackman et al.(1999) PDMS prepolymer was prepared as a mixture of two 

components. The base and catalyst were mixed at 10:1 ratio by weight. The mixture was 

degassed to eliminate bubbles created during mixing by placing it in a desiccator at low 

vacuum. The PDMS prepolymer was spin cast onto the master at 2000 rpm for 60 s, 

followed by curing at 60°C for 2 h. The stencils were then peeled off from the master 

with a tweezer.  

 

Parylene template. Prior to the standard positive photolithography process, parylene was 

deposited onto the PEG grafted silicon wafer by chemical vapour deposition. Parylene C 

dimmer (di-para-xylylene) was used to deposit a pin-hole free conformal layer of 

parylene film of approximately 1 μm thick using the PDS-2010 Labcoater 2 Parylene 

deposition system (Specialty Coating Systems, Indianapolis, IN). Next, 

hexamethyldisilazane (HMDS) was spun at 3000 rpm for 30 s to improve the adhesion 
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between parylene and the photoresist. The standard process for positive photolithography 

was performed according to the procedure described earlier.  

 

Reactive ion etching. The exposed region on the wafer was subjected to reactive ion 

etching (SAMCO RIE-10NR). The exposed parylene film was etched by exposure to 

oxygen plasma (100 W, oxygen at 100 sccm) for 6 cycles of 1 min, with an interval of 1 

min between each cycle to allow the photoresist to cool down. PEG film was removed by 

exposing to oxygen plasma (100 W, oxygen at 100 sccm) for 1 min. The unit was then 

operated under a mixture of CF4 and oxygen gas (300W, CF4 at 30 sccm and oxygen at 5 

sccm) for 30 s to etch the silicon so as to give an outline of the microwell on the wafer.  

 

2.2.4 Cell Experiments 

Cell culture.  HT-29 human adenocarcinoma cell line was cultured in a humidified 

atmosphere of 5% CO2 in 25 cm2 flask and fed with fresh medium every 2-3 days. The 

growth medium consisted of DMEM supplemented with 10 % fetal bovine serum, 100 

units/mL penicillin, and 100 μg/mL streptomycin. Subconfluent cells were passaged by 

trypsinization in 1 mL of Trypsin-EDTA (50 μg/mL trypsin, 20 μg/mL EDTA in PBS) 

for 30 s. After removal of trypsin, the cells were incubated at 37°C for 5 min. Fresh 

medium was then added to inhibit the effect of trypsin and the cells were dispersed by 

pipetting. The cells were washed by centrifugation and resuspended in complete medium. 

The cell viability was determined by staining with Trypan Blue and the cell density was 

estimated by using a 0.9 mm3 hemocytometer.  
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Cell seeding. The substrates were immersed in 70% ethanol in deionized water for 30 

min to minimize the risk of bacterial and fungal contamination. It was then rinsed with 

copious amount of PBS to remove ethanol remnants. Cells were seeded on the substrates 

placed in 24-well culture plate at a density of 5 x 104 cells per well. The cells were 

allowed to adhere for 24 h under standard culture conditions. The substrates were rinsed 

vigorously with PBS to remove the non-adherent cells.  

 

 

2.3 Results & Discussion 

 

2.3.1 Template Design and Prerequisites 

The template contains an array of 50 x 50 microwells which form the designated adhesive 

regions. The diameter of each microwell is 35 μm with a centre to centre spacing of 100 

μm. The size of the microwell is sufficient to accommodate attachment of a few HT-29 

cells. The mask for photolithography was created using AutoCAD and printed on a 

transparency with a high resolution printer (Duffy et al., 1998). This method of mask 

printing is more efficient and economical than a chrome mask which is generated with 

electron beam lithography. The drawback of a transparency mask is that the edge 

resolution is less than 5 µm for linear features; however, this is not a constraint for cell 

micropatterning as the required feature size are typically more than 30 µm.  

 

As the template will be used for colloidal assembly and integrated with protein and cell 

micropatterning subsequently, it is important that the pre-requisites for the two processes 
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do not conflict with each other. The major requirement for biomolecules micropatterning 

is an inert background surface which is resistant to protein and cell adhesion. 

Poly(ethylene glycol) (PEG) is a non-toxic, non-immunogenic and non-antigenic polymer 

that can provide protein repellent surface on various kinds of substrates (Alcantar et al., 

2000; Massia and Stark, 2001; Zhang et al., 1998b). PEG is known to decrease the 

attractive forces between solid surfaces and proteins because of its highly hydrated 

polymer chains, steric stabilization forces, as well as chain mobility. PEG-silane was 

grafted onto the silicon wafer via covalent bonding to the hydroxyl groups onto silicon 

surfaces using a one step reaction method (Papra et al., 2001).  

 

The grafting of PEG onto the silicon wafer is the first step of the patterning procedure; 

therefore, it risks being damaged by the succeeding fabrication steps. Three 

microfabrication processes were designed to pattern PEG and its functionality was 

evaluated at the end of the process. In the first and second technique, PEG was patterned 

using conventional photoresist lithography and a PDMS stencil to act as a mask 

respectively. Both of these techniques induced deleterious effects on the PEG as evident 

by its inability to withstand cell adhesion. The third method makes use of photoresist 

lithography but an additional layer of parylene film was deposited between the PEG 

grafted surface and the photoresist, which successfully protected the PEG. The details of 

these fabrication procedures are described below. 
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2.3.2 Photoresist Lithography on PEG 

In the first attempt, conventional photoresist lithography was used to generate a PEG 

pattern. Firstly, PEG was grafted onto the silicon wafer and photolithography was 

performed on it. The positive photoresist was spin coated on the PEG film, followed by 

exposure to UV and developing. The schematic diagram for the procedure is depicted in 

Figure 2.1 A. Figure 2.1 B shows the SEM image of the photoresist pattern, the view was 

tilted by 45° in Figure 2.1 C to illustrate the depth of the photoresist wells. The profile of 

the microwells was characterized with an optical profiler (Wyko NT3300, Veeco, New 

York); the depth of the wells was approximately 12 µm (Figure 2.1 D). The photoresist 

pattern acts as a mask for reactive ion etching. The exposed regions on the wafer were 

subjected to oxygen plasma to remove the PEG film, while those regions below the 

photoresist were protected from oxygen plasma. The exact thickness of the photoresist 

layer is not critical but it must be sufficient to act as a protective layer during etching. 

The microwells were then modified with amino-silane to generate a hydrophilic domain; 

this is to facilitate assembly of colloids in the later stage. Finally, the photoresist was 

stripped by rinsing in acetone and deionized water. 

 

The silicon wafer was then used as a substrate for HT-29 cell culture to test the 

functionality of PEG after performing photolithography on it. The substrate was observed 

24 h after cell seeding. The results show that the substrate which was grafted with PEG 

was not efficient in resisting cell adhesion (Figure 2.1 E). On the other hand, the control 

substrate, which was grafted with PEG but not subjected to further processing, was able 

to resist cell adhesion (result not shown) This suggests that PEG grafting was performed 
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successfully but the direct contact of photoresist with the PEG film and the use of acetone 

to strip the photoresist may have affected the functionality of PEG. This result is not 

unforeseen as it is known that some classes of materials, for example, biological 

materials, gels, some polymers, and organic and organometallic species are often 

incompatible with the chemicals used in photolithography (Kane et al., 1999) and PEG is 

proved to be one of them.  
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Figure 2.1. Patterning of PEG with photoresist lithography. (A) Schematic diagram of the 
patterning process. SEM images of photoresist pattern (B) Top view; (C) Tilted at 45°. 
(D) Cross-sectional profile of photoresist pattern. (E) Optical image showing cells 
adhered on the PEG grafted silicon substrate. (A non-patterned region on the silicon 
wafer was used)  
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2.3.3 PDMS Master 

Due to the incompatibility of the PEG film with photoresist, it is necessary to modify the 

procedure. The use of the patterned photoresist as a mask can be replaced with a 

elastomeric PDMS stencil (Folch et al., 2000; Ostuni et al., 2000). The stencil can 

conform to and seal reversibly to most substrate, hence, it can serve as a mask for 

patterning. It is a “dry” mask as no solvents are involved when applying the patterned 

mask onto the substrate or removing it from the surface.  

 

The elastomeric stencil was fabricated by replica moulding of PDMS against a master 

consisting raised structures on a silicon wafer. A master containing of raised features was 

fabricated using negative photoresist lithography. The SEM images of the master 

containing micropillars are illustrated in Figure 2.2 B and C. The height of the 

micropillars is approximately 60 µm as characterized by the optical profiler (Figure 2.2 

D). In order to create stencil with through holes, the thickness of the PDMS prepolymer 

cast on the master must be smaller than the height of the micropillars. PDMS was spin 

cast onto the master and the thickness of the polymer can be controlled by varying the 

spinning speed. Stencils with through holes were obtained by spin casting PDMS at 2000 

rpm for 60 s on the master. Figure 2.2 E shows the SEM image of the PDMS stencil. The 

thickness was approximately 50 µm (Figure 2.2 F); which is less than the height of the 

micropillars.   

 

After fabrication of the stencil, it was laid in conformal contact with PEG-grafted wafer. 

The exposed regions were subjected to oxygen plasma to remove the PEG, followed by 



Chapter 2 

 39

modification with amino-silane. The PDMS stencil was then peeled off with a tweezer. 

The schematic procedure for patterning is depicted in Figure 2.2 A. 

 

HT-29 cells were seeded on the PEG grafted substrate to check for PEG functionality 

after the application and removal of a PDMS film. It was observed that there were several 

patches on substrate that were cell adhesive as shown in Figure 2.2 G. This may be 

attributed to the presence of unreacted highly mobile oligomers on the surface of the 

PDMS stencil which resulted in a strong adhesion between the surface of the stencil and 

the PEG film (Yao et al., 2004). The PEG molecules adhered to the stencil and were 

removed from the silicon wafer upon peeling of the stencil. Although there was some 

improvement in PEG preservation, the results was unsatisfactory for generating a high 

selectivity substrate for cell micropatterning.  
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Figure 2.2. Patterning of PEG with PDMS stencil. (A) Schematic diagram of the 
patterning process. SEM images of the negative photoresist master, (B) Top view; (C) 
tilted at 45°. (D) Cross sectional profile of master. (E) SEM image of PDMS stencil. (F) 
Cross sectional profile of PDMS stencil. (G) Optical image of the PEG grafted silicon 
substrate after subjected to cell culture.  
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2.3.4 Parylene Template 

The third approach made use of conventional photoresist lithography but with some 

modifications. Firstly, the silicon wafer was grafted with PEG; this was followed by 

chemical vapour deposition of a thin polymeric parylene film (Ilic and Craighead, 2000). 

The parylene film formed a conformal and pin-hole free inert polymer layer on the PEG 

grafted silicon wafer upon deposition. It acted as a barrier between the PEG and the 

photoresist, hence protecting the PEG from the deleterious effect of photoresist. It has 

been demonstrated previously that parylene is able to maintain the activity of PEG 

brushes as characterized by water contact measurement, fluorescently labelled proteins 

and cell adhesion experiments (Andruzzi et al., 2005).  

 

The thickness of the parylene film on a 4 inch silicon wafer was measured using a 

spectral reflectance system (F50 Automated Thin Film Mapping System, Filmetrics, Inc., 

San Diego). The average thickness of the film is 1.0614 ± 0.0255 μm, obtained from 41 

points spread over the wafer, the deviation is small and gives a uniformity of ± 4.8 %. It 

is crucial that the parylene film has consistent thickness so that the depth of the 

microwells created will be uniform across the entire wafer.  

 

Photoresist lithography was performed atop the parylene film to pattern it. After 

development, the wafer was exposed to oxygen plasma to etch the parylene film and the 

underlying PEG; this was followed by modification with amino-silane. After the 

photoresist was stripped off, a hydrophobic parylene template surrounding hydrophilic 

wells was left on the wafer. A schematic diagram of this process is shown in Figure 2.3 
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A. Figure 2.3 B and C depict the SEM images of the parylene template. The template was 

tilted at 45° in Figure C to show the thickness of the parylene film with respect to the 

diameter of the microwell. The depth of the features are uniform and approximately 1 μm 

(Figure 2.3 D), corresponding to the thickness of the parylene film characterized earlier.  

 

The parylene film was peeled off from the substrate by initiating the peeling at the edge 

with a piece of scotch tape and pulling it away from the substrate. HT-29 cells were 

seeded on the substrate to check for PEG activity. The substrate was successful in 

resisting cell adhesion, suggesting that the parylene film is effective in protecting the 

PEG from the negative effects of photoresist (Figure 2.3 E). The PEG film remained 

efficient even when it was tested 6 months after parylene deposition. 
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Figure 2.3. Fabrication of parylene template. (A) Schematic diagram of the patterning 
process. SEM image of an array of parylene microwells, (B) Top view, (C) 45° tilted 
view. (D) Cross sectional profile of the template. (E) Optical image of the PEG grafted 
silicon substrate after subjected to cell culture. 
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Apart from protecting the PEG modified surface, the hydrophobic parylene film plays an 

important role in facilitating colloidal assembly by selective wetting. The surface 

wettability determines the strength and direction of the capillary force acting on the 

particles and hence controls the deposition of the particles. The wettability of substrates 

was evaluated by measuring the static water contact angle on the non-patterned 

substrates. A small contact angle indicates that the surface is more wettable or 

hydrophilic, whereas a large contact angle suggests a hydrophobic surface. The contact 

angles for the oxidized, PEG-silane grafted, amino terminated and parylene coated silicon 

wafer were measured and summarized in Table 2.1.  

 

Table 2.1. Water contact angle on surface modified silicon substrates. 

Modification  θ ° 

Oxidized < 5 

PEG 38.1 ± 0.63 

NH2 40.7  ± 3.74 

Parylene 100.8  ± 0.63 
 

 

The template containing an array of hydrophilic amine-terminated wells is surrounded by 

a hydrophobic parylene matrix. A hydrophobic-hydrophilic template is suitable for 

patterning of colloidal particles via selective wetting in the hydrophilic regions (the 

mechanism for particles assembly will be discussed in chapter 3). The static contact angle 

of parylene film and the amine terminated silicon microwells is 100.8° ± 0.63°  and 40.7° 

± 3.7° respectively. A contrast in surface wettability is a prerequisite for assembly of 

particles, but this prerequisite may conflict with the requirements for protein and cell 
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micropatterning as non-fouling surfaces are not necessarily hydrophobic. The parylene 

film helps to overcome the incompatibility by acting as a sacrificial layer; after assembly 

of particles, the parylene can be peeled away. In this way, the base layer (PEG film, 

contact angle 38.1°) which is essential for device functionality does not have to be 

hydrophobic. Furthermore, any unspecific deposition of the particles on the parylene film 

can be removed by dry lift-off, giving a spotless background.  

 

 

2.4 Conclusion 

 

The PEG grafted surfaces hold delicate molecules which are incompatible with the 

chemicals used in photolithography. The conformal contact of PDMS stencil on the PEG 

modified surface also caused some regions on substrate to lose its cell resistant property. 

Nevertheless, PEG functionality can be preserved by deposition of a parylene film on the 

substrate prior to subjecting it to photoresist lithography. The parylene film acts as a 

barrier to protect the PEG film from the deleterious effects of the solvents and materials 

used in microfabrication. At the same time, the parylene matrix provides a hydrophobic 

background to facilitate particles assembly by selective wetting. The parylene template is 

bi-functional and is instrumental in providing a platform to integrate colloidal assembly 

with protein and cell micropatterning.  
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ASSEMBLY OF MICRO / NANOPARTICLES INTO TWO 
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3.1 Introduction 

 

Patterning micro and nanometer scale particles into ordered arrays has generated much 

interest due to its unique potential for application in photonic (Wijnhoven and Vos, 1998; 

Yang et al., 2002), optoelectronic devices (Veinot et al., 2002; Yamasaki and Tsutsui, 

1998), biochips (Stevens et al., 2003) and fabrication of porous structures (Velev and 

Kaler, 2000) and microlens array (Yabu and Shimomura, 2006). This promise cannot be 

fulfilled unless methods of accurate positioning the particles can be developed. Advances 

in top-down lithography techniques have enabled the precise and reproducible fabrication 

of features. A synergistic combination with bottom-up self assembly of colloidal particles 

into patterns is foreseen to generate new devices. Colloids such as metal nanocrystals 

(Cui et al., 2004), semiconductor quantum dots (Jun et al., 2006; Lu et al., 2004) and 

magnetic particles (Lyles et al., 2004; Pregibon et al., 2006) are promising building units 

as they can serve a specialized function when integrated into the device.   

 

The potential applications of these colloids ensemble have aroused interest in exploring 

methods for their assembly onto patterned substrate. A variety of methods have been 

explored for patterning of particles into well ordered array, this include electrostatic 

template (Aizenberg et al., 2000; Chen et al., 2000), confinement in physical templates 

(Maury et al., 2005; Xia et al., 2004; Xia et al., 2003), assembly on a hydrophilic 

hydrophobic pattern (Fan and Stebe, 2004; Fustin et al., 2004; Masuda et al., 2005), 

dielectrophoretics (Docoslis and Alexandridis, 2002; Suzuki et al., 2004), microcontact 
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printing (Yan et al., 2004) and ink-jet printing (Park and Moon, 2006). Some of these 

techniques are reviewed below. 

 

3.1.1 Electrostatic Template 

In a demonstration of using electrostatic forces for assembly of particles, Aizenberg et 

al.(2000) chemically micropatterned the substrate with anionic and cationic regions to 

control the deposition of charged polystyrene particles. The patterned substrate was 

immersed in a suspension of particles and the excess suspension was rinsed from the 

surface. The charged particles preferentially attached to oppositely charged regions on the 

substrate with little unspecific interactions. This method offers a simple and convenient 

way to direct the assembly of particles into ordered array.  

 

Hammond’s group performed extensive studies on patterning of particles based on 

electrostatic forces (Hammond, 2004). They used microcontact printed polyelectrolyte 

multilayer patterns to serve as an electrostatic template for particles deposition. The 

success of this technique depends on the interaction between the colloid and the 

polyelectrolyte surface and the background region. Chen et al.(2000) demonstrated 

control over particles density and selectivity of adsorption by using three mechanism: (1) 

pH of the colloidal suspension can determine the charge density of the polyelectrolyte 

and the colloids; (2) ionic strength of the colloidal suspension affects the degree of charge 

screening on the particles and the polyelectrolyte surface; and (3) addition of surfactant 

shield charges on the particles while increasing hydrophobic interaction between the 

surfactant and polyelectrolyte.  The group also demonstrated an approach to assemble 
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two different types of polystyrene microspheres by manipulating the adsorption 

conditions of the substrate (Zheng et al., 2002). The sorting of particles on the substrate 

requires careful manipulation of interactions that can prevent deposition, such as steric or 

hydration forces or electrostatic repulsion, and those that promote it.  

 

3.1.2 Hydrophobic-Hydrophilic Template 

A template consisting of a hydrophobic background surrounding hydrophilic domains is 

suitable for colloidal assembly. A colloidal suspension with the fluid contact line 

sweeping across the surface will result in the selective wetting of the hydrophilic regions 

and deposition at these regions. Fan & Stebe(2004) fabricated a substrate with 50 µm 

hydrophilic carboxylic-terminated features on a continuous hydrophobic methyl-

terminated background. Polystyrene microspheres were self-assembled into the 

hydrophilic regions by placing a drop of the suspension on the template and allowing it to 

evaporate. Evaporation of the droplet resulted in a moving fluid contact line on the 

substrate and particles were spontaneously assembled into the hydrophilic regions.  

 

Masuda et al.(2005) developed a novel two-solution self assembly method for 

micropatterning of silica particles. Silica particles dispersed in methanol was dispensed 

on a patterned hydrophobic octadecyltrichlorosilane (OTS) self assembled monolayer 

(SAM). The hydrophobic regions lightly repelled the particles suspension and it existed 

mainly on the hydrophilic silanol regions. The assembly was then immersed in hexane, 

and this drove the methanol to exist selectively on the hydrophilic regions. As the 

methanol slowly dissolved into hexane, the concentration of the particles increased and 
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close-packed structures was formed due to capillary force. This method of self-assembly 

is able to create colloidal crystal patterns with high edge acuity and regularity.  

 

3.1.3 Physical Confinement 

Xia et al.(2004) assembled silica nanoparticles into nanometer scale grooves and 

cylindrical holes by spin-coating. A combination of gravity-driven sedimentation, 

evaporation induced capillary forces, centripetal forces, and blocking forces from 

physical confinement at the edges of the pattern resulted in the assembly of the silica 

particles into the confined spaces. By varying the spin speed, pH value of the 

nanoparticle suspension, particle size, and the geometry of the grooves and cylindrical 

holes on the substrate, the group achieved linear, zizag and two columns of silica 

nanoparticles in narrow grooves. Two dimensional arrays of silica nanoparticle including 

colloidal clusters of monomers, dimmers, trimers and quatramers on patterned samples 

was achieved by tuning the ratio between diameters of the holes and particles.  

 

Xia and colleagues(2003) self-assembled polystyrene beads into holes patterned in a thin 

film of photoresist based on physical confinement and capillary force. The photoresist 

substrate was enclosed between two glass substrate with micrometer gap between them. 

A suspension of the beads was added into this cell and the front of this thin film of liquid 

was allowed to move slowly along the patterned substrate. When the front of the liquid 

crossed the hole, the beads were dragged into the hole by capillary force. The diameter 

and height of the hole will determine the number of beads that can be retained in it. By 
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varying the size of the holes, a range of uniform, polygonal cluster of beads was formed 

in the wells.  

 

Kim et al.(1996) formed well-ordered arrays of hexagonally packed polystyrene 

microspheres by microfluidic patterning. The poly(dimethylslioxane) (PDMS) channels 

sealed against the substrate confined a suspension of microspheres and water was allowed 

to evaporate through the opening of the channels. Crystalline arrays of microspheres 

remained on the substrate after removal of the PDMS master. Formation of this closely 

packed structure involves two steps, i.e. nucleation and growth. The attractive lateral 

capillary force among the microspheres causes the microspheres to aggregate into 

nucleation site while the growth of the array is attributed to fluid influx to the nucleation 

site so as to compensate water loss due to evaporation.  

 

3.1.4 Dielectrophoretics 

Dielectrophoresis is the phenomenon in which polarisable objects are manipulated due to 

their interaction with a non-uniform electric field, created by one or more pairs of 

oppositely charged electrodes. The movement of particles towards the strong electric 

field region is known as positive dielectrophoresis while movement towards the weak 

electric field region is called negative dielectrophoresis (Pohl, 1978). Dielectrophoresis 

was first investigated a few decades ago but interest in this phenomenon was recently 

revived due to its potential application for organization of particles. Docoslis and 

Alexandridis(2002) demonstrated the organization of one-, two- or three-dimensional 

colloids by using dielectrophoresis. Non-uniform electric fields were generated by sets of 
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gold electrode patterned on the glass substrate. By controlling parameters such as 

electrode configuration, voltage, AC frequency and particle concentration, particles were 

organized into the required pattern. To maintain the arrangement of the particles after the 

removal of the AC voltage, the particles were covalently linked to the substrate using 

cross-linking reagents.  

 

Instead of fabricating the electrodes on the patterning substrate, the electrode can be 

created on a separate substrate and place above the sample substrate. Suzuki et al.(2004) 

created patterns of microparticles using a dielectrophoretic cell composed of an electrode 

template and a substrate facing the template with a spacer. The frequency of the AC 

electric field was adjusted to obtain repulsive negative dielectrophoresis force that 

arranged the particles into pattern similar to the template electrode.  

 

3.1.5 Microcontact Printing 

Microcontact printing developed originally for patterning of biomolecules and organic 

chemicals can also be used to pattern microspheres. Yao et al.(2004) reported on a lift-up 

soft lithography technique to fabricate ordered colloidal crystals on a substrate. In brief, 

monodisperse silica microspheres were assembled into colloidal crystal on silicon wafer 

by evaporation. A PDMS stamp with relief features was then brought into contact with 

the crystal film. Upon peeling off the PDMS stamp, a layer of closely packed 

microspheres adhered to the stamp and the corresponding pattern was formed in the 

crystal film on the silicon surface. Yan et al.(2004) continued to demonstrate how the 

microspheres on the PDMS stamp can be printed onto polymer-coated solid substrate. 
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The printed patterns consisted of highly ordered silica microspheres packed in a 

hexagonal arrangement, indicating that there was perfect transfer of the ordered array of 

microspheres from the crystal film to the PDMS stamp and to the substrate. The success 

of this method depends on manipulating the interaction among the microspheres, PDMS 

stamp and the substrate for patterning. Due to the flexibility of the PDMS stamp, this 

technique can be used to pattern colloidal crystal on a nonplanar surface. 

 

A myriad of mechanism is capable of assembling colloids into pattern; however each 

technique has its limitation. Patterning of particles via electrostatic attraction allows one 

to control the packing density, however, even at a high density; the particles are not 

arranged in a closely-packed manner. This may be due to the strong adhesion between the 

particles and the oppositely charged substrate which inhibits the rearrangement and close 

packing of particles during the drying process (Zheng et al., 2002). On the other hand, 

when capillary force is involved in driving the assembly of particles, close packed array 

of particles will be produced. Patterning of particles by physical confinement is effective 

only when the dimension of the hole is comparable to the size of the particle. 

 

The assembly of colloidal particles is an important first step towards its integration with 

protein and cell micropatterning. In this work, the micro and nanoparticles will be 

assembled into designated regions to form the protein and cell adhesive areas. The micro 

or nanotopography created by the particles is expected to have several advantages over 

conventional micropatterning that are performed on a planar substrate (discussed in 

Chapter 4 and 5). To achieve this, micro and nanoparticles will be assembled into regions 



Chapter 3 

 54

that are several times larger than the diameter of the particle. The density of particles in 

these regions can vary between sparsely packed to closely pack ordered structures. A 

close packed ordered structure has the advantage of increasing the surface area for 

biomolecules conjugation to the maximal and creates uniform protein and cell adhesive 

regions. Furthermore, varying the density of particles deposited in the designated regions 

allows fine-tuning of the surface roughness and this can be used as a platform for 

studying the effect of roughness on cell adhesion. 

 

Although significant progress has been made to assemble particles into patterns, most of 

the methods are not compatible with protein and cell micropatterning. For example, in 

some techniques, particles are assembled into recessions that are comparable in size to 

the diameter of the particle (Cui et al., 2004; Xia et al., 2003) which is too small for cell 

adhesion. In other methods that involved assembly of particles into sufficiently large 

regions (Fan and Stebe, 2004), the particles failed to assemble into a monolayer of order 

structures. In addition, the background regions are usually hydrophobic (Fan and Stebe, 

2004; Masuda et al., 2005) or charged (Aizenberg et al., 2000; Xia et al., 2004) to prevent 

unspecific deposition of particles in the background but theses surface cannot resist 

adhesion of proteins and cells. In view of the restrictions inherent in these reported 

techniques, a new method of colloidal assembly has to be developed so that it can be 

incorporated with protein and cell micropatterning.  

 

The development of a bi-functional template which is compatible for colloidal assembly 

and cell micropatterning was described in Chapter 2. In this chapter, a technique of 
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generating spatial arrangement of microspheres on the bi-functional template is 

developed. As the template has hydrophilic microwells surrounded by hydrophobic 

parylene film on the background, particles were assembled by selective wetting of the 

hydrophobic-hydrophilic template. A fluidic chamber was designed to control the 

movement of the particle suspension across the template so as to attain uniform particles 

deposition over a large area. The topography of the adhesive regions was controlled by 

varying the size and the density of particles deposited onto it. After deposition of 

particles, the parylene film can be lift-off, revealing a protein resistant PEG background 

which is compatible with protein and cell micropatterning.  

 

 

3.2 Materials and Methods 

 
 
3.2.1 Materials 

0.454 μm (solid content 2.59 %), 0.984 μm (2.62 %) and 2.022 μm (2.65 %) 

carboxylated polystyrene (PS-COOH) microspheres, 0.913 μm (2.62 %) amino 

polystyrene (PS-NH2) microspheres and 0.3 μm silica microspheres were purchased from 

Polysciences, Inc. 50 nm gold nanoparticles was purchased from British Biocell 

International Ltd. All reagents and materials were used as received. 

 

3.2.2 Fabrication and Operation of Fluidic Chamber 

The chamber consisted of a polystyrene sheet with a channel cut on it and two pieces of 

PMMA (polymethyl methacrylate). The dimension of the PMMA is 6.5 x 3.0 x 0.4 cm. 
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The patterned substrate was sandwiched between the polystyrene sheet and the PMMA. 

The assembly was held together by four binder clips. A through hole of approximately 

1.5 mm in diameter was created on the top PMMA using a diamond driller. A hollow 

metallic tube (outer diameter 1.5 mm; inner diameter 1.0 mm) was fitted snugly into the 

hole and held firmly by applying epoxy adhesive. The polystyrene sheet containing the 

channel was adhered to the top PMMA using double sided adhesive. The other face of the 

polystyrene sheet was laminated with a layer of cellulose transparent tape. The device 

consisted of a single channel originating at the inlet with a 30° angle expansion to give a 

5 mm wide channel which runs for a length of 2.5 cm before it was subjected to a 30° 

angle contraction to form a 0.15 cm wide channel. The depth of the channel is 

approximately 630 μm, which is equivalent to the total thickness of the polystyrene sheet, 

a layer of double sided adhesive and cellulose adhesive tape.   

 

A suspension of monodispersed particles was injected into the channel with a syringe 

pump at a flow rate of 5 mL/h via a silicone tubing fitted to the metallic tube on the 

fluidic chamber. The assembly was kept in an upright position during injection so that the 

channel can be filled to the brink. The volume of the channel is approximate 150 μL. 

After the channel was filled, the fluidic chamber was laid horizontally and the syringe 

pump continued to inject air into the channel which resulted in a pressure driven fluid 

front moving along the channel. The density of particles in the microwells was controlled 

by varying the air flow rate between 5 - 50 μL/h, corresponding to a fluid front 

movement of 1.6 – 16 mm/h, while the concentration of the microsphere suspension 

injected ranged from 1.5 – 7.5% w/w.  
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3.2.3 Equipments 

Microscopy. The samples were visualized and images were captured using an upright 

optical microscope (Zeiss Axiostar Plus) equipped with a CCD camera (Media 

Cybernetics, EvolutionTM MP) with a pixel size of 3.4 x 3.4 μm.. The samples were 

sputter coated with gold (JEOL JFC-1600 Auto Fine Coater) for 50 s at 30 mA before 

examination with Hitachi field emission scanning electron microscopy (SEM), at an 

accelerating voltage of 15 keV.  

 

Image Analysis.  Images of microspheres deposited microwells were analyzed using 

ImageJ, a public domain image processing program by the U.S. National Institutes of 

Health (http://rsb.info.nih.gov/ij/ accessed in August 2006). 

 

 

3.3 Results & Discussion 

 

3.3.1 Mechanism for Assembly of Polystyrene Microspheres 

The fabricated template contains an array of hydrophilic microwells grafted with amino-

silane, surrounded by hydrophobic parylene film. To assemble particles on a hydrophobic 

hydrophilic template, a colloidal suspension with the fluid contact line sweeping across 

the surface will result in the selective wetting of the hydrophilic domains and deposition 

at these regions. Some of the techniques used to create a moving contact line include 

evaporation of a droplet (Fan and Stebe, 2004) and lifting of the patterned substrate 

vertically out of a colloidal suspension (Fustin et al., 2004).  In this section, two methods 
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were used to generate a moving fluid front. Due to the ease of the application, the first 

method tested was evaporation of a suspension droplet. However, the deposition of the 

particles was not uniform and a new technique was introduced to drive the fluid front 

along a channel in a fluidic chamber. The mechanisms involved for assembly of particles 

involved in these two techniques are discussed.   

 

3.3.1.1 Evaporation of a Droplet 

A 30 μL droplet containing suspended PS-COOH microspheres, at pH 4.3 was dispensed 

on the patterned substrate (Figure 3.1 A). The droplet was exposed to normal atmospheric 

condition of 25°C and relative humidity of 75% to evaporate over time. The droplet 

spread to a certain diameter, covering many microwells, with a contact angle of 98°. In 

the initial stages of evaporation, the contact line of the droplet remained unchanged while 

the contact angle decreased. During this period, there was a continuous radial outward 

flow of solvent from the centre of the droplet to the boundary to compensate for the 

volume lost by evaporation so that the diameter of the drop will not shrink (Deegan et al., 

1997). This convective flow carried suspended particles to the edge, resulting in a much 

higher concentration of particles at the contact line.  

 

After sometime, the contact line begin to recede, the microspheres were pushed inwards 

by capillary force. Figure 3.1 B depicts the process for the self assembly of PS-COOH 

microspheres into the mcirowells. When the contact line passes over the hydrophilic 

microwells, it becomes pinned at leading edge of the hydrophobic-hydrophilic substrate 

junction but pulled back from the hydrophobic regions. These local dynamics caused 
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solvent to flow out of the hydrophobic and into the hydrophilic region (Fan and Stebe, 

2004) resulting in a corrugated edge on the patterned surface (Figure 3.1 C). When the 

contact line is pinned at the microwells, particles are deposited due to the electrostatic 

attraction between the particles and the amino terminated surface. At pH 4.3, the -NH2 

groups on the surface of the microwells and the -COOH group on the polystyrene 

microspheres are ionized into -NH3
+ and -COO-, respectively (Saito et al., 2004).  

 

As the fluid in the microwells evaporated, the contact line de-pinned and receded from 

the domain, necking and tearing off to form a discrete fluid element in the microwell. 

When fluid between the microspheres in this element evaporated, the particles are tightly 

packed into ordered structures by the contraction of capillary bridges connecting them 

(Kralchevsky and Nagayama, 1994). When the contact line jumped from one hydrophilic 

microwell to the other, it moved across the hydrophobic parylene surface very quickly, 

capillary force pushed the particles inwards, hence no particles is deposited on the 

hydrophobic surface. When the contact line encountered another hydrophilic microwell, 

the process of particles deposition began again.  
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Figure 3.1. Evaporation driven assembly of particles on a hydrophilic-hydrophobic 
template. (A) Image of a droplet of microsphere suspension cast on the patterned 
substrate exposed to atmospheric conditions. (B) Schematic diagram for assembly of PS-
COOH microspheres. (i) When the contact line of the PS-COOH suspension meets the 
hydrophobic parylene surface, capillary forces pushes the microspheres inwards. (ii) As 
the contact line meets the hydrophilic microwells, it becomes pinned and microspheres 
flow into the microwell. (iii) The contact line recedes and microspheres are deposited in 
the microwell. As fluid in the microwell evaporates, the microspheres are packed into 
ordered structures. (C) Optical image of the contact line of a droplet of negatively 
charged PS-COOH (dark region) at pH 4.3 on 35 μm amine modified microwells with a 
hydrophobic parylene background. The irregular edge of the droplet is due to flow of 
particles into the hydrophilic wells. 
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The amount of particles deposited in the microwells is determined mainly by two factors.  

(1) The concentration of particles in the suspension. A higher concentration of particles at 

the contact line will result in a higher density of particles deposited in the microwells.  

(2) The rate of movement of the contact line. The slower the movement, the higher the 

amount of particles deposited.  

 

In order to obtain uniform deposition, the concentration of the colloidal suspension and 

the rate of movement of the contact line over the patterned substrate must remain 

consistent. It is difficult to achieve uniform deposition by using the evaporation technique 

as the rate of movement of the contact line and the concentration of particles at the 

contact boundary vary significantly during the course of evaporation. In the initial stages 

of evaporation, the contact line is pinned while there is continuous radial outward flow of 

solvent, carrying with it suspended particles from the centre of the contact area to the 

edge (Deegan et al., 1997). An increase in concentration of particles coupled with a 

pinned contact line resulted in a high density of particles deposited at the boundary, 

producing the “coffee ring” effect, while the centre regions are depleted of particles. This 

effect is evident in Figure 3.2 A, where a 30 µL droplet of 0.1% w/w 1 µm PS-COOH 

microspheres was dispensed on the substrate and allowed to evaporate until dry. A thick 

ring of microspheres assembled near the boundary of the droplet. The microwells at the 

centre regions are sparsely filled (Figure 3.2 B) while those at boundary has multilayer of 

microspheres (Figure 3.2 C).  
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Figure 3.2. PS-COOH microspheres assembled by evaporation. (A)“Coffee ring” effect 
observed by evaporation of a droplet of microsphere suspension on the patterned 
substrate. Microwells are sparsely filled with microspheres at the centre region of the 
droplet while those at the boundary are densely packed. The respective regions are 
indicated on the figure. Magnified images of (B) a sparsely packed microwell at the 
centre region and (C) a densely packed microwell at the boundary.  
 

3.3.1.2 Fluidic Chamber  

To achieve uniform particle distribution across the substrate, it is predominant that the 

water contact line shift at a constant rate while the concentration of the particles at the 

fluid front remains constant. This may be achieved by withdrawing the substrate out of a 
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colloidal suspension vertically (Fustin et al., 2004).   For this technique, the concentration 

of particles in the reservoir does not vary significantly and by adopting a fixed 

withdrawing speed, the movement rate of the contact line can be keep constant. However, 

the drawback is that a large amount of particles (typically a few millilitres) is required so 

that substrate can be immersed in the suspension. In this section, an alternate method 

which involves a fluidic chamber consisting of a channel was developed to control the 

flow of microsphere suspension over the patterned substrate. 

 

The fluidic chamber consists of a polystyrene sheet with a channel cut on it and two 

pieces of PMMA, sandwiching a strip of the patterned substrate (Figure 3.3 A). The 

depth of the channel is 630 µm and the shape was designed such that the flow across the 

channel is uniform (Figure 3.3 B). The schematic representation of the fluidic chamber 

ensemble is illustrated in Figure 3.3 C.  

 

The fluidic chamber was fabricated using PMMA instead of PDMS, which is commonly 

used for rapid fabrication of microfluidic systems (Duffy et al., 1998). Although PDMS 

has many desirable characteristic such as ease of moulding, surface modification, and 

conformal contact with many surfaces (Ng et al., 2002), the use of PDMS for this fluidic 

chamber is not suitable. As the microwells are fabricated on the silicon chip as a separate 

entity, the fluidic chamber should be demountable from the chip but at the same time the 

seal should be water-tight. PDMS can make reversible sealing to smooth surfaces, 

however, the seal is not sufficiently strong to withstand a pressure driven flow. Securing 

the PDMS slabs with mechanical force is not a viable option as it will deform the 
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channels due to the elastic nature of PDMS. Furthermore, PDMS tends to adhere to the 

parylene film on the template and peeled it off when the PDMS is demounted. Hence, the 

rigid PMMA was used to overcome these problems. The patterned substrate was 

sandwiched between the two pieces of PMMA using binder clips. In addition, PMMA 

has good optical property which allows observation with the microscope.  

 

As the dimensions of the required channel are larger than micron scale, it is not necessary 

to use micromachining to fabricate the channels. Instead, the channel was cut manually 

on a polystyrene sheet and adhered to the PMMA slab using double sided adhesive. The 

other face of the plastic sheet is laminated with a layer of cellulose adhesive tape to 

provide a soft finish to the otherwise rigid PMMA. The soft finish is essential for giving 

conformal contact between the substrate and the polystyrene sheet so as to prevent 

leakage of the colloidal suspension and minimize evaporation. 

 

After the chip was mounted in the fluidic chamber, a suspension of monodispersed 

particles was injected into the channel with a syringe pump to fill the channel completely. 

This was followed by injection of air into the channel to push the particle suspension into 

the outlet, which resulted in a pressure driven moving fluid front along the channel. By 

operating the syringe pump at a constant rate, the fluid front moved with a uniform 

velocity along the channel.  

 

The mechanism for selective deposition of  microspheres is similar to that reported by 

Yin et al. (2001). In their work, they reported the fabrication of a fluidic cell for assembly 
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of colloids into template by movement of the colloidal suspension induced by 

evaporation. Capillary force coupled with the confining effect of the template assembled 

the particles into the holes. In their work, the dimension of their microwell is comparable 

to the size of the particles; which is about 1 to 3 times larger than the diameter of the 

particles, allowing it to hold up to 8 particles. However, in this work, the microwell is 

about 35 times (considering 1 μm particles) larger than the diameter of the particles, 

which requires more than a thousand particles to fill up a microwell completely. Due to 

the sheer size of the microwell, it cannot rely on physical confinement exerted by its wall 

to trap the particles. 

 

In the present work, the patterned hydrophobicity and surface charge of the template 

affects the forces acting on the microspheres. The forces acting on the microsphere at the 

fluid interface include capillary force (FC), electrostatic interaction (FE) and gravitational 

force (FG). Figures 3.3 D and E show the longitudinal section of the channel. The forces 

acting on the microsphere when the fluid front meets the hydrophilic well and the 

hydrophobic parylene regions are indicated in the respective diagram. The shape of the 

fluid front depends on the wettability of the walls of the channel (Huang et al., 2006). 

The channel roof (PMMA) is slightly hydrophilic with a contact angle of approximately 

71°. When the fluid front meets the hydrophilic well, a concave meniscus is attained. 

Electrostatic attraction is present between the negatively charged PS-COOH 

microspheres and the positively charged amine-terminated microwell at pH 4.3. The 

capillary and electrostatic forces acting on the microsphere are in the direction that is 

favourable for the deposition of the microsphere into the microwell (Figure 3.3 D). When 
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the fluid front intersects with the hydrophobic background regions, a convex meniscus is 

formed; the capillary force pushes the microsphere away from the background regions. 

There is no electrostatic attraction between the microsphere and the parylene surface 

(Figure 3.3 E). The microspheres are not deposited on the background regions and this 

resulted in the selective deposition of microspheres in the microwells.   

 

Figure 3.3 F shows the SEM images of the microspheres assembled microwells obtained 

by this technique at different magnifications. The assembly of PS-COOH microspheres 

into the hydrophilic microwells was highly selective, with little unspecific deposition on 

the hydrophobic background. The distribution of particles in the microwells across the 

substrate is uniform.  
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Figure 3.3. Assembly of particles on a hydrophilic-hydrophobic template using a fluidic 
chamber. (A) Components of the fluidic chamber, which includes a top PMMA slab, a 
polystyrene sheet with the channel cut on it, the template and a bottom PMMA slab. (B) 
Illustration of the channel profile with the dimension given in centimetres. (C) Schematic 
representation of the fluidic chamber with the components assembled together. (D, E) 
Longitudinal view of the fluidic channel. The possible forces acting on the microspheres 
when the fluid front meets the (D) hydrophilic amine terminated microwells, and (E) 
hydrophobic parylene are indicated. Capillary force (FC), Electrostatic force (FE), 
Gravitational force (FG). The direction of the flow is shown with an arrow. Diagrams are 
not drawn to scale. (F) SEM images of 1 µm PS-COOH microspheres assembled in 
microwells at various magnifications.  
 

3.3.2 Controlling the Assembly of Particles  

The fluidic chamber offers a more controllable method for assembly of particles 

compared to the evaporation technique. The fluidic chamber was employed to control the 

packing density of particles deposited in the microwells. The patterning of PS-COOH of 

various sizes and different types of particles are also demonstrated.   
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3.3.2.1 Packing Density 

The amount of PS-COOH microspheres deposited in the microwells can be controlled by 

varying the concentration of the particles and the rate of movement of the fluid front. The 

amount of particles inside the microwells was quantified by acquiring the SEM images 

and the number of particles in the microwell was counted using the Cell Counter plug-in 

in ImageJ. The maximum number of particles that can be packed into a monolayer in the 

microwell, Nmax was estimated by dividing the area of the microwell with the hexagonal 

area occupied by a 1 μm particle. The Packing Density is expressed as:  

Packing Density (%) = No. of particles in microwell x 100 / Nmax 

 

To study the effect of suspension concentration on Packing Density, the concentration of 

the colloidal suspension was varied between 1.5 – 7.5% w/w while the fluid front was 

pushed at a constant rate of 10 μL/h, which is equivalent to 3.2 mm/h. The SEM images 

showing the typical amount of microspheres assembled in the microwells for different 

suspension concentration are shown in Figure 3.4 A-D. The Packing Density was 

quantified and summarised in Figure 3.4 E. Five- fold increase in the suspension 

concentration from 1.5 % w/w to 7.5 % w/w resulted in a 25% increase in Packing 

Density from 62% to 87%, When a higher concentration of particles was used, more 

particles are present at the fluid front and a larger amount of particles become deposited 

as the contact line shifted. With an increase in the suspension concentration, the 

occurrence of non-specific deposition on the background region becomes more 

prominent, this nevertheless can be removed when the parylene is peeled off. 
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Figure 3.4. Controlling the Packing Density of PS-COOH microspheres by varying the 
suspension concentration. (A-D) SEM images of microwells packed with different 
amount of 1µm PS-COOH microspheres. The fluid front was pushed at 10 µL/h while the 
concentration of the microsphere suspension injected into the channel was (A) 1.5, (B) 
2.5, (C) 5.0 and (D) 7.5% w/w. The scale bar represents 10 µm. (E) Graph of Packing 
Density in microwells as a function of micosphere suspension concentration. Results are 
mean values and standard deviations are indicated with error bars (n = 15; 3 microwells 
each from 5 arrays). 
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Next, the effect of rate of fluid front movement on Packing Density of particles was 

investigated by varying the flow rate between 5 – 50 μL/h (1.6 – 16 mm/h) while the 

concentration of the microsphere suspension was maintained at 2.5% w/w. The SEM 

images of the microwells having the typical Packing Density are shown in Figure 3.5 A-

D. As the fluid front movement becomes slower, more time is allowed for the deposition 

of particles into the hydrophilic domains, resulting in a higher Packing Density. When the 

Packing Density in the microwell is low (Figure 3.5 A), the edge of the microwell is more 

closely packed compared to the centre regions. At a flow rate of 5 μL/h, a monolayer of 

hexagonal closely packed microspheres was assembled in the microwells (Figure 3.5 D). 

In previous studies which involved colloidal deposition by withdrawing the patterned 

substrate from a suspension (Fustin et al., 2004),  a monolayer of closely particles in the 

hydrophilic domains was not achieved. Instead, multilayer of colloids was deposited with 

the number of layers increasing steadily from the edges of the hydrophilic domains to the 

centre. This may be attributed to the non-uniform height of fluid over the hydrophilic 

domain which arises when the microsphere suspension is not confined. In this work, the 

fluid conforms to the walls of the channel and hence the fluid thickness is consistent and 

equivalent to the height of the channel. The graph of Packing Density in microwells as a 

function of flow rate is plotted in Figure 3.5 E.  
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Figure 3.5. Controlling the Packing Density of PS-COOH microspheres by varying the 
rate of fluid front movement. (A-D) SEM images of microwells packed with different 
amount of 1µm PS-COOH microspheres. The concentration of the microsphere 
suspension injected into the channel was 2.5% w/w and the fluid front was pushed at 
different air flow rate, (A) 50, (B) 20, (C) 10 and (D) 5 µl/h. The scale bar represents 10 
µm. (E) Graph of Packing Density in microwells as a function of flow rate. Results are 
mean values and standard deviation are indicated with error bars (n = 15; 3 microwells 
each from 5 arrays). 
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The uniformity in the Packing Density on an array of 2500 microwells over an area of 

500 x 500 μm was assessed. Using a constant microsphere suspension of 2.5% w/w and a 

flow rate of 50, 20, 10 and 5 µL/h, the average Packing Density obtained was 25, 50, 70 

and 100% respectively (Figure 3.5). Three arrays were analyzed for each of these 

conditions. The number of microwells having the expected Packing Density (± 5%) was 

counted and expressed as percentage probability (Figure 3.6). Generally, the uniformity 

in the Packing Density in the microwells decreases as the Packing Density increases. At 

25% Packing Density, the uniformity was high, with more than 90% of the microwells 

possessing the expected density. However, the consistency for microwells with higher 

Packing Density decreases. For samples expecting 100% Packing Density, the percentage 

of microwells containing the expected amount of microspheres was around 70%. The 

repeatability was also lower as evident by a larger standard deviation. Nevertheless, the 

uniformity obtained with the fluidic chamber is significantly better than that achieved 

using the evaporation technique.  

 

 

 

 

 

 

 
 
 
Figure 3.6. Uniformity in Packing Density on an array of 2500 microwells. Graph of 
probability of microwells with the expected Packing Density as a function of average 
Packing Density. Results are mean values and standard deviation are indicated with error 
bars (n = 3; 2500 microwells from 3 arrays). 
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3.3.2.2 Particle Size 

Particles of different sizes ranging from nano to micron scale when assembled on the 

substrate create surfaces of varying roughness which may influence both protein and cell 

behaviour. In this section, PS-COOH microspheres of three sizes, 0.5, 1 and 2 μm are 

assembled into the microwells.  

 

The depth of the microwell affects the size of the microspheres that can be deposited. 

When microwells of 1 μm depth were used for assembling 2 μm microspheres, few 

microspheres were retained in the microwell.  This may be attributed to the height of the 

fluid element, which is equivalent to the depth of the microwell as it receded over the 

microwells. Particles that is larger than the height of the fluid element is not deposited but 

carried away as the fluid front shifted. When 2 μm deep microwells were used instead, 

closely packed monolayer of 2 μm particles was obtained (Figure 3.7 C). On the other 

hand, when the microspheres are smaller than the depth of the microwell, they can be 

accommodated in the fluid element and become deposited as the fluid receded. A 

monolayer of closely packed 0.5 μm PS-COOH microspheres was deposited in 1 µm 

deep microwells (Figure 3.7 A).  

 

The concentration of the microsphere suspension and the flow rate were optimized such 

that monolayers of closely packed microspheres of various sizes were assembled in the 

microwells. The SEM images for 0.5, 1 and 2 um PS-COOH microspheres assembled in 

a close packed arrangement in the microwells are depicted in Figure 3.3.7 and the 
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optimized conditions are summarized in Table 3.1. The effect of size of microsphere on 

surface properties and cell behaviour will be investigated in Chapter 4 and 5.  
 

 
Figure 3.7. Microwells assembled with a monolayer of closely packed PS-COOH 
microspheres of various sizes. SEM images with different magnifications. (A) 0.5 µm, 
(B) 1 µm, (C) 2 µm.  
 
 

Table 3.1 Optimized conditions for assembly of a monolayer of closely packed PS-
COOH microspheres of various sizes in the microwells 

 
Size of 

Microsphere (µm) 
Depth of  

Microwell (µm) 
Suspension concentration 

(% w/w) Flow rate (µl/h) 

0.5 1 2.5 5 
1 1 2.5 5 
2 2 5 5 
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3.3.2.3 Different Types of Particles 

The particles assembled regions form the protein and cell adhesive regions when 

integrated with protein and cell micropatterning. By assembling different types of 

particles, surface with different properties in terms of surface charge, wettability and 

functional groups can be tailored. The bioactivity of protein and cell functionality can be 

better preserved by using particles with the appropriate properties. Furthermore, the 

unique properties of some types of particles can be integrated into the device to serve a 

functional role. For example, gold nanoparticles can be assembled to give rise to an 

electrode-insulator format which provides a pathway for measurement of electrical signal 

in biosensors; while an array of magnetic particles may be used for separation or 

purification purposes in microfluidic devices.  

 

The assembly of different types of particles, namely 1 µm PS-NH2, 50 nm gold colloids 

and 0.3 µm silica microspheres was demonstrated (Figure 3.8). Microwells of 1 µm depth 

were used for the three types of particles. The surfaces of the microwells were modified 

such that they present functional groups that can facilitate the assembly of particles by 

electrostatic attraction or polar interaction.   

 

For assembly of PS-NH2 microspheres, the microwells were exposed to oxygen plasma 

before removal of photoresist to generate a layer of silanol (-Si-OH) groups. The silanol 

groups ionize to give a negatively charged surface at pH > 7 (Xia et al., 2004) while the 

primary amines on the polystyrene microspheres ionizes at pH < 9 to give a positively 
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charged interface. At pH 7.6, the amino groups ionize to NH3
+ and become deposited due 

to electrostatic attraction with the negatively charged OH- groups on the microwells.  

 

Negatively charged 50 nm gold nanoparticles were assembled on microwells modified 

with amine-terminated silanes. The gold nanoparticles are negatively charged due to 

adsorption of citrate and other anions during the synthesis process. When the amine-

terminated microwells were immersed into a suspension of gold nanoparticles, the amino 

groups were protonated since the pKa (7.4) (Zhang et al., 1998a) of amino groups of the 

amine-silane monolayers is larger than the pH (6.5) of the suspension. Hence, negatively 

charged gold nanoparticles can be assembled on the microwells with positively charged 

amino groups by electrostatic interaction.  

 

Similar to gold nanoparticle, the 0.3 µm silica microspheres were assembled onto 

microwells modified with amine-terminated silanes.  The surface of the particles is 

terminated with silanol group which ionizes to give negatively charged interface at pH > 

7 (Xia et al., 2004). At the pH (7.3) of the silica suspension, both the silanol groups on 

the silica particles and the amino groups (pKa 7.4) on the microwells are weakly 

dissociated; therefore the deposition of particles into the microwells is driven mainly by 

polar interactions, such as hydrogen bonding, with electrostatic attraction playing a minor 

role. The assembly conditions used for the various types of particles is summarized in 

Table 3.2. 
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These experiments demonstrated that the fluidic chamber is applicable to assembling 

particles of both nano and micro scale. Particles with various functional groups can be 

assembled by presenting the appropriate functional groups on the microwells.  

 
 

 

 

 

 

 

 

Figure 3.3.8. Microwells assembled with various types of particles at different 

magnifications. (A) 1µm PS-NH2 microspheres, (B) 50 nm gold nanoparticles, (C) 0.3 

µm silica microspheres.  

 

 

 

 

 

 

 
Figure 3.8. Microwells assembled with various types of particles. SEM images at 
different magnification. (A) 1 µm PS-NH2 microspheres, (B) 50 nm gold nanoparticles, 
(C) 0.3 µm silica microspheres.  
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Table 3.2. Assembly conditions for different type of particles 
 

Type and size of 
colloid 

Modification on 
microwell 

Suspension concentration 
(% w/w) Flow rate (µl/h) 

1 µm PS-NH2 Hydroxyl 2.5 5 

50 nm Gold Amine 0.1 5 

0.3 µm Silica Amine 2.5 10 
 

 

3.4 Conclusion 

 

Particles were assembled onto the hydrophobic-hydrophilic bi-functional template by 

selective wetting. Two methods were used to generate a moving fluid front over the 

template, namely, evaporation of a suspension droplet and driving the fluid front along a 

channel in a fluidic chamber. It is difficult to achieve uniform deposition by using the 

evaporation technique as the movement rate of the contact line and the concentration of 

particles at the contact boundary varies significantly during the course of evaporation. On 

the other hand, the fluidic chamber was able to maintain a constant fluid front velocity 

and suspension concentration, resulting in consistent packing density in the microwells 

over a wide region.  

 

With the fluidic chamber, different amount of PS-COOH microspheres, ranging from a 

sparsely distributed to a closely packed monolayer of particles was deposited in the 

hydrophilic domains by controlling the concentration of the microsphere suspension and 

the speed of the fluid front movement. The assembly of PS-COOH microspheres of 

various sizes and different types of particles was also demonstrated. This assembly 
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technique allows the integration of colloids at desired regions without compromising the 

functionality of the device, making it suitable for the fabrication of colloidal based 

devices.  
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4.1 Introduction 

 

Protein micropatterning refers to the organization of proteins on surfaces with micro scale 

resolution. Protein micropatterning plays an important role in the development of 

biosensors and lab-on-chip devices (Willner and Katz, 2000). A good protein 

micropattern is one that has high protein density at designated regions so as to enhance 

the sensitivity for detection in biosensors. It is also essential that proteins retain their 

functionality after immobilization. Nevertheless, it is unavoidable for protein to 

experience some conformational change upon immobilization to the surface (Nakanishi et 

al., 2001), therefore the micropatterning technique should minimize any further 

deleterious effect on the protein functionality.  

 

The conventional protein micropatterning technique involves conjugation of proteins to a 

planar substrate. In this chapter, a new protein micropatterning technique will be 

developed, whereby proteins selectively attach to regions that are assembled with 

colloids. The surfaces assembled with colloids create a micro or nanotopography for 

protein adhesion. The topography can be micro or nano scale, depending on the size of 

the particles. By using particles of varying sizes, surfaces with different roughness will be 

created.  

 

There are two main advantages of integrating colloidal assembly with protein 

micropatterning. Firstly, the curve surfaces of the particles increase the surface area for 

immobilization of biomolecules, therefore increases the density of the immobilized 
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protein. Secondly, it is known that substrates with nanotopography can affect the 

structure of the attached protein (Denis et al., 2002; Galli et al., 2001; Han et al., 2003; 

Sutherland et al., 2001). Topographies with feature size similar or smaller than the 

protein may be sensed by the protein and this may affect its structure, adsorption kinetics 

and amount adsorbed. On the other hand, a substrate with structures larger than the size 

of the protein may appear smooth to the protein and have minimal effect on it. Hence, it 

is possible to preserve the functionality of immobilized protein by adopting the 

appropriate topography. Improving the protein density and functionality are crucial 

towards the development of biosensors and lab-on-a-chip devices.  

 

Although it is known that the topographical cues can modulate the properties of the 

protein attached onto it, there is not much work on integrating topographical features with 

protein micropatterning. The use of colloids introduces a topography that is more 

controllable and significant than intrinsic roughness arising from microfabrication 

process, e.g. etching (Ding et al., 2004), grafting of marcomolecules like silanes, thiols 

and ionic layer by layer assembly (Mohammed et al., 2004). 

 

In this chapter, the integration of protein micropatterning with colloidal assembly was 

demonstrated with PS-COOH microspheres. The surface properties of the topography 

created by PS-COOH microspheres of various sizes were investigated so as to understand 

its influence on protein attached onto it. The density and bioactivity of the immobilized 

protein was characterized. The conformation of protein conjugated to nanoparticles was 

investigated using Circular Dichroism.  
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4.2 Materials and Methods 

 

Materials. N-hydroxy-succinimide (NHS), 1-ethyl-3-(3-dimethylamino-propyl) 

carbodiimide (EDAC) hydrochloride, bovine serum albumin conjugated to 

fluoresceinisothiocyanat (BSA-FITC), sheep anti-rabbit immunoglobulin G conjugated to 

Cy3 (IgG-Cy3) and FITC (IgG-FITC), human fibronectin, polyclonal anti human 

fibronectin developed in rabbit and phosphate buffered saline (PBS) solution were 

purchased from Sigma-Aldrich (Singapore). Recombinant human interferon-gamma 

(IFN-γ) and its monoclonal anti-mouse antibody conjugated to FITC (IFN-γ-FITC) were 

purchased from R&D Systems, Inc (Minneapolis, USA). BCA assay kit was purchased 

from Pierce Biotechnology, Inc. (Rockford, IL). 

 

Conjugation of proteins to PS-COOH microspheres. The substrates assembled with 

microspheres were immersed in aqueous solution of 150 mM EDAC and 30 mM NHS for 

30 min to attach the NHS group to the –COOH terminus on the microspheres (Veiseh et 

al., 2002). The substrates were rinsed extensively with PBS to remove the excess reactant 

and immersed in a 0.1 mg/mL protein solution in PBS (0.01 M, pH 7.4) at room 

temperature for 1 h. The proteins were bound covalently to the microspheres by replacing 

their NHS groups with the N-termini of protein. The samples were rinsed extensively 

with PBS and deionized water and air-dried before observing under a fluorescence 

microscope.  

 



Chapter 4 

 84

Preparation of PS-COOH film. Polystyrene films were prepared according to Qian et 

al.,(2000) but with some modifications. PS-COOH solution was prepared by dissolving 

0.905 μm PS-COOH microspheres. The microspheres suspension was washed with 

ethanol twice and allowed to dry. The microsphere powder was then dissolved in toluene 

at a concentration of 10 μg/mL. 1 cm x 1 cm silicon wafer were cleaned in piranha 

solution. After cleaning, the silicon wafers were immediately spin coated with PS-COOH 

solution at 3000 rpm for 30 s. Each piece of wafer was then spun to complete dryness for 

another 60 s. To fabricate an array of polystyrene film island, the polystyrene solution 

was spin coated onto photoresist pattern instead. After the film was dried, the photoresist 

was removed by rinsing in ethanol (acetone is not used as it dissolves the polystyrene 

film). Removal of the photoresist resulted in an array of polystyrene film island. 

 

Fluorescence microscopy. Fluorescent images of patterned protein were acquired by an 

upright fluorescent microscope (Zeiss Axiostar Plus) equipped with a CCD camera 

(Media Cybernetics, EvolutionTM MP) with a pixel size of 3.4 x 3.4 μm. The filters 

(Chroma Technologies) used to excite the FITC and Cy 3 probe were 450 – 490 nm and 

546/12 nm respectively. 

 

Contact angle. Contact angles were measured by the static drop technique using a video 

contact angle system (VCA Optima, AST Products Inc., MA, USA). A 1 μL drop of 

distilled water was applied to the substrate and the angle was measured within 30 s of 

contact. Five tests were conducted for each sample with the average and standard 

deviation reported.  
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AFM imaging. The Digital Instruments Dimension 3100 Scanning Probe Microscope 

was used. The images were acquired in tapping mode with 256 x 256 data acquisitions at 

a scan speed of 0.8 Hz at room temperature in air. Silicon tips with integrated cantilevers 

with a force constant of 42 N/m were used (Nano World, Switzerland). AFM was used to 

analyze the topographies of surfaces assembled with a monolayer of polystyrene particles 

of various sizes. The image surface area and roughness parameters such as the mean 

roughness (Ra) and the root means square roughness (Rq) are used to characterize the 

surface. Ra is defined as the mean value of the surface profile relative to the calculated 

centre plane where the volumes enclosed by the image above and below the plane are the 

same. It is calculated as:  

dxdyyxf
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yx
a ∫ ∫=

0 0
),(1  

where f(x, y) is the surface profile relative to the centre plane, and Lx and Ly are 

boundaries of the specific measured area in x and y dimensions, respectively. Rq (the 

RMS of the Z value) is the standard deviation of Z values within the specific area and 

is calculated as 
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where Zi is the current Z value, and Zavg and Np are the average of the Z values and the 

number of points within the given area respectively.  

 

Immunoassay.  The patterned microspheres were conjugated with human fibronectin or 

recombinant human interferon gamma (IFN-γ) using NHS-EDC as described above. The 

substrate was immersed in PBS containing 1% BSA for 30 min to block the empty sites. 
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The patterned surface was then covered with polyclonal anti-fibronectin developed in 

rabbit (10 μg/mL) or monoclonal anti-IFN-γ-FITC (10 μg/mL) developed in mouse for 

30 min at room temperature. Specific antibody binding for fibronectin was revealed by 

incubation with a FITC conjugated anti-rabbit IgG (10 μg/mL) for 30 min at room 

temperature. The substrate was rinsed with PBS to remove the loosely bounded 

molecules after each step. The control samples were subjected to the same protocol 

except that the microspheres were not conjugated to the antigen. The samples were then 

examined using a fluorescence microscope.  

 

Protein adsorption on gold nanoparticles. 3 mL of gold nanoparticles (0.01 wt %) was 

incubated in 0.1 mg/mL of BSA at room temperature for 2 h on a rotator. The gold 

particles were then centrifuged and the supernatant was carefully removed. The gold 

nanoparticles were washed thrice to remove the free proteins and suspended in PBS.  

 

BCA assay. The BSA concentration in the supernatant was measured with five test 

samples. The assay was carried out according to the manufacturer’s protocol for the 

microplate procedure. The absorbance was measured with a spectrophotometric plate 

reader (FLUOstar OPTIMA, BMG Lab Technologies, Germany) at 562 nm and 

correlated to a standard BSA protein curve to obtain the protein concentration. The 

amount of adsorbed protein was calculated from the difference between the initial and the 

equilibrated concentrations.  
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Circular dichroism spectroscopy. The far-UV CD spectra of BSA adsorbed on gold 

nanoparticles were recorded on a JASCO (J-810 UV-Vis, Japan) CD instrument. Each 

spectrum was recorded at 1 nm interval from 260 – 190 nm, using cylindrical quartz 

cuvettes of 1 cm path length with an integration time of 1 s. The CD spectra of free 

proteins, in the absence of gold nanoparticles were also recorded. All CD measurements 

were taken within 3 – 4 h of BSA adsorption onto gold nanoparticles to ensure adsorption 

equilibrium in the absence of particle aggregation. The protein spectra were corrected by 

subtracting the spectrum of a reference solution lacking the protein but otherwise 

identical. The spectra were averaged using a 13-point FFT algorithm. The α-helix content 

was calculated on the basis of the mean residue ellipticity at 222 nm, [θ]222 (Equation 4.1) 

(Berova et al., 2000). 

[ ] [ ]
a

W

Nlc
Mθ

θ
100

222 =          (4.1) 

where [θ] is the measured ellipticity in degrees, c is the protein concentration in g/L, l is 

the path length in cm, Mw is the molecular weight of the protein (66 000 for BSA), and Na 

is the number of amino acid residues (583 for BSA). The measured helicity was 

computed as [θ]222 /(-39 500), with a value of -39 500° cm2dmol-1 on the basis of both 

experimental and theoretical estimates of the value of [θ]222 for a polypeptide of 100% 

helicity (Foresta et al., 2002). The concentration of protein conjugated to the particles 

was evaluated by BCA assay. The CD spectrum for free BSA was conducted at 10 

µg/mL. 

 

 



Chapter 4 

 88

4.3 Results & Discussion 

 

4.3.1 Protein Micropatterning on Surfaces Modified by PS-COOH Microspheres 

In this work, a new protein micropatterning technique is developed, whereby proteins 

selectively attach to regions that are assembled with colloids.  The assembly of PS-

COOH microspheres into an array of microwells was discussed in Chapter 3. The 

templates with microwells assembled with a monolayer of closely packed PS-COOH 

microspheres were used for protein micropatterning so as to achieve uniform and high 

density protein spots. After patterning of PS-COOH microspheres, the parylene was 

peeled off (Figure 4.1 A). There were two surfaces on the silicon wafer; the background 

was grafted with PEG while the adhesive regions have carboxylic groups (on the 

microspheres). Proteins were attached to the microspheres through conjugation with 

carboxyl groups. Micropatterning of biomolecules was demonstrated with BSA-FITC and 

IgG-Cy3. It was observed that immersion of the chip in the protein solution did not result 

in observable disturbance to the microsphere pattern. The fluorescence images for 

patterning of BSA-FITC and IgG-Cy3 are depicted in Figure 4.1 B and C respectively. 

Both images confirmed that protein molecules were selectively adsorbed onto the PS-

COOH microspheres. The PEG modified regions between the microwells had resisted 

protein adsorption, resulting in precise deposition of protein on a non-planar surface 

created by the microspheres. Figure 4.1 D and E shows the surface and line profile of the 

fluorescent intensity. These two diagrams show that the signal to noise ratio is very high 

and the peak intensity is uniform, suggesting that the amount of PS-COOH microsphere 

in the microwells are consistent.  
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Figure 4.1. Integration of protein micropatterning with colloidal assembly. (A) 1 um PS-
COOH microspheres assembled in microwells. Fluorescent images of PS-COOH 
conjugated with (B) BSA-FITC and (C) IgG-Cy3. (D) Surface plot and (E) line profile of 
the fluorescent intensity of IgG-Cy3.  
 

In this method, protein immobilization is the last step in the micropatterning process. 

Hence protein is prevented from being exposed to the harmful physical (Biasco et al., 

2005) or chemical effects (Jackson and Groves, 2007) that may be induced during the 

process. In this way, the protein native conformation can be better preserved after they 

are attached to the substrate. Although this micropatterning method is demonstrated using 

proteins, this technique can be easily applied to patterning other biomolecules by 

ensuring that the microspheres and the background substrate have the relevant functional 

groups for adhesion and resistivity respectively. 

 

Apart from PS-COOH microspheres, protein micropatterning on other types of assembled 

particles, namely, 0.3 µm silica nanoparticles and 50 nm gold nanoparticles was also 

demonstrated. BSA-FITC was attached to the particles by physical adsorption. BSA 
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binds spontaneously to the negatively charged surface of silica and citrate coated gold 

nanoparticles by electrostatic interaction (Brewer et al., 2005). This is despite that BSA 

has an isoelectric point at 4.6 which makes it negatively charged at pH 7. Figure 4.2 A & 

B depict the fluorescent image of BSA-FITC micropattern on arrays assembled with 

silica and gold nanoparticles respectively. The silica and gold nanoparticles were not 

disturbed when immersed in the protein solution, the background remained free of 

nanoparticles and resulted in a distinct protein pattern.  

 

 

Figure 4.2. Protein micropatterning on microwells assembled with different types of 
particles. Fluorescent images of BSA-FITC conjugated to (A) 0.3 µm silica nanoparticles 
and (B) 50 nm gold nanoparticles.  
 

4.3.2 Surface Properties of Closely Packed Microspheres Assembled Surface 

In order to understand the behaviour of protein and cell adhesion (Chapter 5) on various 

microspheres modified surface, the surface properties of these substrates must be 

examined. In this section, the surface properties of a monolayer of closely packed PS-

COOH microsphere of various sizes (0.5 µm, 1 µm and 2 µm) and PS-COOH film is 

characterized and compared in terms of surface area, roughness and wettability. The film 

was prepared by dissolving the microspheres and the solution was spin cast onto the 

A 

   200 µm     200 µm
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substrate. The PS-COOH microspheres are synthesized by using a co-polymer to provide 

the carboxyl functionality; hence the carboxyl groups are presented uniformly throughout 

the microsphere (personal communication with Polysicences, Inc.). The film formed by 

dissolution of the microspheres will have the same chemical composition as the 

microspheres and it can serve as a valid control for studying the topographical effects 

induced by the microspheres. The morphology for closely packed PS-COOH microsphere 

of various sizes is illustrated in Figure 4.3 with a set of representative images consisting 

of the SEM, AFM height and AFM surface plot. The AFM images were acquired in a 

tapping mode with a scan area of 10 x 10 μm to record the surface area and roughness of 

the topographies.  

 

The curve surfaces of the microspheres assembled on a planar surface increase the 

surface area of the substrate. Theoretically, the increment in surface area is 1.81 times for 

hexagonally packed microspheres and this is independent of the size of the particles 

(discussed in Chapter 1). Base on AFM analysis, the increment was about 1.50, 1.57 and 

1.71 times for 0.5 μm, 1 μm and 2 μm microspheres respectively. This is lower than the 

theoretical increment due to the presence of voids and lines defects and deviation from 

the ideal hexagonal arrangement. The increment in surface area is slightly higher for the 

2 µm microspheres assembled surface, this may be attributed to the coarser surface on the 

microspheres, as observed with SEM and the section profile from AFM.  

 

The surface roughness of the PS-COOH microspheres assembled surfaces are compared 

with the PS-COOH thin film. The surface roughness was evaluated by two parameters, 
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mean roughness (Ra) and root mean square roughness (Rq). The results show that the 

polystyrene film was very smooth with a Ra of only 4 Å over an area of 100 µm2. The 

roughness for the microspheres assembled surfaces varies proportionally with the size of 

the microspheres. When the size of the microspheres doubles, the roughness increases by 

approximately two times. The results are summarized in Table 4.1.  

 

The wettability of the surface is affected by its topography. For hydrophobic surfaces 

(contact angle > 90 °), roughness will magnify its contact angle, while the contact angle 

of a hydrophilic surface (contact angle < 90 °) is diminished by roughness (Quere, 2002). 

Contact angle analysis was performed on monolayer of closely packed microspheres and 

thin film on a non-patterned substrate. The film is hydrophobic with a contact angle of 

102°. The 0.5 µm microsphere assembled surface has a larger contact angle 119° due to 

its increased roughness. Although the 1 μm and 2 μm microspheres assembled surface 

are rougher than the 0.5 µm, their contact angles are not larger; instead, the surfaces are 

hydrophilic and the contact angles are 33° and 29° respectively. This may be attributed to 

water infiltrating the interstices of the microspheres assembly. As a result, the water 

droplet is deposited on a patch work of solid and liquid, which increases the wettability of 

the surface (Quere, 2002). The larger interstices between the 1 μm and 2 μm 

microspheres is able to drive water into its texture while the smaller interstices for the 0.5 

µm microspheres prevented it and result in a pearl drop on its surface (Figure 4.4).  

 

The surface properties of the substrates are summarized in Table 4.1.  
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Figure 4.3. Morphology of PS-COOH assembled substrates. Corresponding SEM, AFM 
height and AFM surface plot of (A-C) PS-COOH film and monolayer of closely packed 
PS-COOH microspheres of various sizes; (D-F) 0.5 µm, (G-I) 1 µm and (J-L) 2 µm. 
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Figure 4.4. Contact angles on a monolayer of closely packed PS-COOH microspheres. 
Schematic diagram illustrating (A) a pearl drop on 0.5 µm PS-COOH microspheres and 
(B) an infiltrating droplet on 1 µm and 2 µm microspheres. 
 

Table 4.1.  Surface properties of closely packed PS-COOH microspheres and thin film. 
Results are mean values with standard deviation (n = 3). 

 

Surfaces Increment in 
surface area Ra (nm) Rq (nm) Contact 

Angle (°) 
PS-COOH film 1.00 ± 0.00 0.384 ± 0.010 0.545 ± 0.021 102 ± 1.39 

0.5 µm PS-COOH 1.51 ± 0.033 54.6 ± 2.21 74.8 ± 3.93 119 ± 2.26 
1 µm PS-COOH 1.57 ± 0.074 115 ± 7.71 145.3 ± 10.3 33.0 ± 1.27 
2 µm PS-COOH 1.71 ± 0.085 252 ± 19.3 315 ± 24.6  28.9 ± 1.65 

 

 

4.3.3 Proteins Conjugated on Microspheres Modified Substrates 

 

4.3.3.1 Protein Density 

Attachment of protein to the surface is affected by the surface properties such as 

wettability, electrostatic forces and its topography. Characterization of a monolayer of 

closely packed microspheres by AFM had shown that there is an increment in surface 

area compare to the planar substrate. This translates to increase in area for protein 

immobilization and therefore, an increase in protein density. Before measuring the 

protein density on microspheres assembled substrate, the confocal image of 3 µm PS-

COOH microspheres conjugated to BSA-FITC was acquired (Figure 4.5 A and B). The 

images show that the fluorescence concentrated on the surface of the particles. This 

A B
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suggests that the microspheres are not porous; hence the density of surface immobilized 

protein is dependent on the surface area (not volume) of the microspheres. 

 

The protein density of BSA-FITC conjugated to the monolayer of PS-COOH 

microspheres of 0.5 µm, 1 µm and 2 µm and PS-COOH film were compared by 

measuring the fluorescent intensity. The BSA-FITC conjugated substrates were imaged 

using a fluorescence microscope at 100 times magnification with the same exposure 

period (Figure 4.5 C-F). The fluorescent intensity was measured using Array Pro, for 

each image, 30 circular spots, with diameter of 10 µm were randomly selected to measure 

its intensity. The averaged results and standard deviation are presented in Figure 4.5 G. 

The increment in intensity for the microspheres assembled substrates was expressed 

relative to the film. The increment in intensity was around 2.5 – 2.6 times for the 

microspheres assembled surface of 0.5 µm, 1 µm and 2 µm. The insignificant difference 

in protein density between the three substrates may be attributed to their similar surface 

area. The significant differences in wettability between the substrates did not affect the 

amount of protein conjugated. This may be due to the fact that the contact angle test was 

conducted over a bed of assembled microspheres (macro wettability) instead of on a 

single microsphere (micro wettability). As the size of protein is in nano scale, the micro 

wettability affects the conjugation of protein molecules. While all the substrates have 

different topography, they have the same chemical properties and are likely to have 

similar micro wettability. This may explain the similarity in protein density on various 

sizes of PS-COOH microsphere assembled substrate.  
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Figure 4.5. Fluorescent intensity of protein conjugated on PS-COOH substrates. (A) 
Phase contrast and (B) confocal image of 3 µm PS-COOH microspheres conjugated to 
BSA-FITC.  Fluorescent images of BSA-FITC conjugated to (C) PS-COOH film and 
monolayer of closely packed microspheres of various sizes, (D) 0.5 µm, (E) 1 µm, (F) 2 
µm. (G) Graph of increment in fluorescence intensity for various PS-COOH substrates.  
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4.3.3.2 Bioactivity of Micropatterned Proteins Characterized Using Immunoassay 

Protein attachment to solid surfaces typically affects its structure and functionality. The 

bioactivity of the immobilized protein is a key factor in the development of biosensing 

microdevices. The bioactivity of the proteins was verified using two antigen-antibody 

immunoassay. Figure 4.6 A shows the image of an array of 1 µm PS-COOH 

microspheres after conjugation to IFN and exposed to a solution of FITC conjugated 

monoclonal antibody. The presence of fluorescence suggests that the specific binding 

domain on IFN corresponding to the monoclonal antibody was not denatured after 

conjugation to the microspheres. The recognition of the fluorescent anti-IFN was 

specified as verified by a control experiment where the microspheres were blocked with 

BSA solution and no fluorescence was detected on the array (Figure 4.6 B). This 

experiment was repeated using the human fibronectin and its polyclonal antibody. The 

result was positive, with specific binding of the FITC secondary antibody detected on the 

array (Figure 4.6 C & D). As a polyclonal antibody was used, this suggests that several 

binding domains on fibronectin remained functional after conjugation to microspheres. It 

is important to note that positive results from the antigen-antibody (monoclonal or 

polyclonal) immunoassay can only prove that the structure of a protein is preserved 

partially as it is possible for a partially denatured protein to exhibit affinity binding with 

its antibody. Therefore it is critical that the protein conformation is evaluated by different 

methods to substantiate the results.  
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Figure 4.6. Bioactivity of micropatterned protein determined by immunoassay. 
Fluorescent images of (A) IFN and monoclonal FITC conjugated anti-IFN, (B) IFN 
control, (C) Fibronectin, polyclonal anti-fibronectin and FITC conjugated secondary 
antibody (D) Fibronectin control 
 

4.3.3.3 Circular Dichroism of Proteins Conjugated on Nanoparticles  

Circular dichroism (CD) spectroscopy measures differences in the absorption of left-

handed polarized light versus right-handed polarized light which arise due to structural 

asymmetry. It can provide information on the type and amount of secondary structure 

present in the protein, in particular, the α helix content can be quantified by changes in 

ellipticity at 222 nm (Berova et al., 2000). This characterization has to be performed on 

protein immobilized on suspended particles instead of assembled on a substrate. 

However, valuable insights can be drawn from these studies due to similarity in terms of 

the surface properties and the topographical nature of the particles. As with other 

spectroscopy, the size of the colloids used must be small enough so as to minimize light 

 A  B 

   D C 
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scattering in the far-UV range. Hence, gold nanoparticles of 20 and 50 nm were used in 

this study instead of PS-COOH microspheres. Moreover, it is also more appropriate to 

use nanoparticles instead of microspheres as only particles with sizes that are comparable 

to the size of the protein is expected to influence the conformation of the protein upon 

conjugation to the particle (Nygren and Karlsson, 1992). 

 

Figure 4.7 A shows the CD spectra of BSA adsorbed on gold nanoparticles. The α helix 

content was calculated based on the ellipticity at 222 nm according to equation 4.1. The 

percentage of α helix content for BSA on various particle sizes is summarized in Figure 

4.7 B. The α helix content is significantly lower for BSA adsorbed onto gold 

nanoparticles when compared to the free BSA. Moreover, the α helix content strongly 

decreases as the size of the nanoparticle increases. The α helix content decreases from 

25% for freely soluble BSA to only 8.4% for BSA adsorbed on 50 nm gold particles. The 

result suggests that the conformation of a protein is affected by the size of the 

nanoparticles. This is in accordance with previous studies (Jiang et al., 2005; Lundqvist et 

al., 2004; Vertegel et al., 2004) that suggest particles of smaller sizes can preserve the 

conformation of protein better. The authors explained that this may be due to a greater 

surface curvature for smaller nanoparticles and hence a smaller area for interaction 

between the protein and particles. With a smaller area of interaction, the protein 

secondary structure will be affected to a smaller extent compared to those adsorbed on 

larger nanoparticles. There is no direct comparison of protein conformation adsorbed on 

particles and planar surface; however, a planar surface can be correlated to a large 

particle where the degree of curvature is small. Hence, it can be deduced from the above 
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results that proteins when immobilized on a nanoparticle can preserve its native structure 

and function better than when immobilized on a planar surface. The size of the 

nanoparticle should be comparable to the dimension of the protein in order for protein 

conformation to be retained.  
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Figure 4.7. Conformation of BSA conjugated to gold nanoparticles. (A) CD spectra; (×) 
free BSA; BSA adsorbed onto gold nanoparticles of various sizes, (■) 20 nm; (▲) 50 nm. 
(B)  Graph of percentage of alpha helicity for BSA adsorbed on gold nanoparticle and 
free BSA. 
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4.4 Conclusion 

 

In summary, a new method of protein micropatterning on a non planar topography 

integrated on a planar substrate via assembly of particles is presented. The particles 

assembled substrate was highly selectively for protein adhesion, resulting in a precise 

protein micropattern. The protein density increased by approximately 2.5 times compared 

to a planar topography. The proteins remained functional as verified using an antibody-

antigen immunoassay binding system. From the CD spectroscopy results, it can be 

inferred that proteins adsorbed on nanoparticles preserved its conformation better than on 

a planar substrate. Therefore, this protein micropatterning technique may be used in 

biosensors where both the density and bioactivity of proteins are important factors that 

will affect the device performance. The different parameters of the system, for example, 

the size, packing density and type of particles used for assembly can be varied according 

to the intended applications. This method is applicable for patterning a variety of 

biomolecules including antibodies, antigens, enzymes, receptors, peptides, 

oligonucleotides, DNA, and many more. 
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CHAPTER 5 
 
CELL MICROPATTERNING ON TWO DIMENSIONAL ARRAYS OF 

MICROSPHERES 
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5.1 Introduction 

 

The adhesion of cells within designated regions on solid surfaces while preventing non-

specific attachment at other regions is the basis of cell micropatterning. Cell 

micropatterning plays an important role in the development of biosensors and lab-on-chip 

devices (Willner and Katz, 2000), tissue engineering (Bhatia et al., 1999) and 

fundamental studies of cell biology (Whitesides et al., 2001). The two main requirements 

of a good cell pattern are 1) high selectivity between the cell adhesive and resistant 

regions, and 2) cells remain functional after adhesion. Hence, it is critical that the regions 

for cell adhesion provide favourable cell-substrate interaction that can promote cell 

adhesion and functionality.  

 

It is well known that the substrate topography has a profound effect on cell behaviour and 

this has been studied to understand fundamental cellular phenomena. Curtis (1964) 

pioneered the study on effects of topography on cells in 1964. Since then, much work has 

been carried out in this field and it is well documented that many type of cells respond to 

micro and nanotopography. For surface structures that are on a similar size scale as the 

extracellular matrix (ECM) proteins, the surface topography may alter the conformation 

or orientation of the ECM proteins, perhaps by revealing new binding sites or restricting 

access to previously available sites (Nygren and Karlsson, 1992). On the other hand, 

microtopography has structures that are larger than the size of proteins and they have 

negligible effect on protein behaviour. Therefore, the influence of microtopography on 

cellular response is due to its textured surface directly. The topographical properties of  a 
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substrate affect the cellular behaviour of anchorage-dependent cells in terms of adhesion, 

spreading, proliferation, differentiation, apoptosis and gene expression (Curtis and 

Wilkinson, 1997; Dalby et al., 2003; Singhvi et al., 1994). 

 

Micro or nanostructures that mimic the physiological interface are already implemented 

on surfaces of tissue engineering scaffolds and medical implants so as to better maintain 

cell morphology and functionality and also to enhance its biocompatibility (Desai, 2000). 

Similarly, topographical features can be integrated with cell micropatterning, the 

designated regions for cell attachment can boast topographical features that can enhance 

cell adhesion and preserve cell phenotype in an in-vitro environment. The following 

paragraphs will discuss the work done to investigate cell response on topography created 

by assembly of particles or other similar structures.    

 

Miyaki et al.(1999) studied the topographical effect of surfaces covered with polystyrene 

microspheres on cell function. A monolayer of well ordered hexagonally packed 

microspheres with sizes ranging from 0.6 μm to 1.2 μm was prepared. The 

microtopographical effect of these surfaces was investigated with neutrophil-like cells by 

measuring the amount of active oxygen released. The release of reactive oxygen was 

dependent on the diameter of the assembled microspheres and attained a maximum for 1 

μm particles. This study demonstrated that cells can recognize the surface roughness 

created by the closely packed microspheres. Cousins et al.(2004) created similar 

topography but in nano scale with 7 nm, 14 nm and 21 nm silica particles. The cellular 

response of L929 murine fibroblast was analyzed after one, three and seven days in 
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culture and compared with untreated glass surface. Generally, fewer cells attached to the 

silica modified surfaces and the cells that attached had a rounded morphology; after 

seven days, the fibroblast formed clusters of cells. This observation was distinctly 

different from fibroblast cultured on untreated glass surface whereby the cells 

proliferated with spread morphology and they were distributed evenly after seven days. 

This study shows that the nanotopography had initiated a cellular response that affects the 

morphology, adhesion and proliferation of fibroblast.  

 

Instead of studying the topographical effect of a monolayer of closely packed particles, 

some researchers studied the cellular response on loosely deposited particles. Gleason et 

al.(2003) fabricated patterned arrays of adhesion protein by depositing fibronectin-coated 

2 μm microspheres on the substrate. NIH 3T3 was cultured on these surfaces and the cells 

spread and attached on the fibronectin coated particles, it did not attach on the areas 

between the particles due to blocking with albumin. Surfaces with different densities of 

particles were produced so as to examine the effects of separation between adhesive 

islands on cell morphology. Cells attached on sparsely spaced particles exhibited a 

branched morphology while cells on closely packed particles had a compact morphology. 

The authors explained that with limited adhesive sites on a sparse array of particles, the 

cells had to adopt a branched morphology to maximize their surface contact. Another 

research group (Zheng et al., 2004) patterned NR6 fibroblast cells on an underlying layer 

of close or loosely packed particles. In their work, 1 μm carboxyl amine functionalized 

polystyrene particles were patterned on the substrate, the surface of the particles were 

then modified with cell adhesive peptide containing the RGD sequence. Their results 
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correlate well with Gleason’s, which confirmed that cells attached and spread on surfaces 

with sparsely packed particles, while surface with closely packed particles are 

undesirable for cell adhesion and spreading.  

 

Apart from using particles to create the underlying stratum for cell attachment, some 

researchers fabricated structurally similar topography using other techniques. Wan et 

al.(2005) produced hemispherical island structured on poly(L-lactide) surfaces by using 

polystyrene with hemispherical pits as template. The two sizes of island produced were 

2.2 μm and 0.45 μm. They found that the attachment efficiency of osteoblast-like cells on 

the hemispherical structured surface was better than on smooth surface. The cells were 

able to attach to the convex surface of the islands and their tiny pseudopodial protrusions 

strode from one island to another. Dalby et al.(2002a) investigated cell response to 

nanostructured surfaces created with polymer demixing. They created shallow islands of 

13, 35 and 95 nm. Of the three nantopographies, the 13 nm island gave the largest 

response to human endothelial cell, with highly spread morphologies containing well 

defined cytoskeleton. Human fibroblast cell responded in a similar manner to 13 nm 

island, it was observed that they were more spread with many filopodia as compared to 

the controlled surface (Dalby et al., 2002b). cDNA microarray was used to measure the 

response of genes due to the substrate and the results showed that broad gene up 

regulation was notable in cell signalling, proliferation, cytoskeleton and production of 

ECM proteins.   
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It is evident that a substrate with nano or microtopography plays a crucial role in 

affecting cellular response. The size of the particles or hemispherical island and its centre 

to centre spacing had resulted in varying response which is cell specific. Recognizing the 

types of topography that are favourable for preserving cell behaviour, and integrating it 

with micropatterning will lead to the development of functional cell patterns.  

 

In this chapter, surfaces modified by assembly of PS-COOH microspheres were studied. 

The topographical parameters were controlled by using particles of different sizes and 

varying the density of the particles deposited. The ability of the microstructured surface 

to alter cellular adhesion, proliferation and morphology was investigated. The colloidal-

based microstrutured surfaces were then incorporated into the patterned substrate to 

perform cell micropatterning.  

 

 

5.2 Materials & Methods 

 

Materials. 0.454 μm (2.59% w/w), 0.984 μm (2.62% w/w), 2.022 μm (2.65% w/w) 

carboxylated polystyrene microspheres (PS-COOH) and 0.913 μm (2.62 %) amino 

polystyrene microspheres (PS-NH2) were purchased from Polysciences, Inc. Molecular 

Probes CellTracker Red CMTPX was purchased from Invitrogen (Singapore). 

Dulbecco’s Modified Eagle’s Medium (DMEM), phosphate buffer solution (PBS) and 

trypan blue were purchased from Sigma-Aldrich. Fetal bovine serum was bought from 

PAA Laboratories (Austria) and penicillin-streptomycin was purchased from Invitrogen 
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(Singapore). Cell Titer 96 ® Aqueous One Solution Cell Proliferation Assay was 

purchased from Promega (Singapore). HT-29 human adenocarcinoma cell line was 

obtained from American Type Culture Collection (Manassas, VA). All reagents and 

materials were used as received. 

 

Cell culture.  The HT-29 human adenocarcinoma cell line was obtained from American 

Type Culture Collection (Manassas, VA). It was cultured in a humidified atmosphere of 

5% CO2 in 25 cm2 flask and fed with fresh medium every 2-3 days. The growth medium 

consisted of Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma) supplemented with 

10 % fetal bovine serum (PAA Laboratories, Austria), 100 units/mL penicillin, and 100 

μg/mL streptomycin (GIBCO, USA). Subconfluent cells were passaged by trypsinization 

in 1 mL of Trypsin-EDTA (50 μg/mL trypsin, 20 μg/mL EDTA in PBS) for 30 s. After 

removal of trypsin, the cells were incubated at 37°C for 5 min. Fresh medium was then 

added to inhibit the effect of trypsin and the cells were dispersed by pipetting. The cells 

were washed by centrifugation and suspended in complete medium. The cell viability 

was determined by staining with Trypan Blue and the cell density was estimated by using 

a 0.9 mm3 hemocytometer.  

 

Cell seeding. The substrates were immersed in 70% ethanol in water for 30 min to 

minimize the risk of bacterial and fungal contamination. It was then rinsed with copious 

amount of PBS to remove ethanol remnants. Cells were seeded on the substrates placed 

in 24-well culture plate at a density of 5 x 104 cells per well. The cells were allowed to 
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adhere for 24 h under standard culture conditions. The substrates were rinsed vigorously 

with PBS to remove the non-adherent cells. 

 

Viability assay. The viability of micropatterned cells was determined by using 

CellTracker Red CMTPX. Stock solution was prepared by dissolving CMTPX in DMSO 

to a concentration of 10 mM. The stock solution was then diluted to a working 

concentration of 2.5 μM in serum free DMEM. The working solution was warmed to 

37°C. The medium from the well is removed and replaced with the probe and incubated 

for 45 min under growth conditions. The probe solution was replaced with fresh medium 

and incubated for another 30 min. The micropatterned cells were washed with PBS. The 

adhered cells were fixed with 4% paraformaldehyde in PBS for 20 min at room 

temperature. The samples were then dehydrated in a graded ethanol series.  

 

Cell proliferation assay. HT-29 cells were seeded onto sterilized non-patterned substrate 

(1 cm x 1 cm) placed in a 24 well plate at a density of 3 x 104
 cells per well. A lower cell 

density was used for proliferation studies so that there would be sufficient space for cells 

to proliferate for 7 days. On day 1, 3, 5 and 7, cell proliferation was determined utilizing 

the MTS assay. Triplicate substrates were used for each condition.  

 

MTS assay. MTS assay was performed using Cell Titer 96 ® Aqueous One Solution. 

The MTS tetrazolium compound is bioreduced by metabolically active cells into a 

coloured formazan product that is soluble in culture medium. The substrate was rinsed 

with PBS twice and placed into a new 24 well plate. The substrate was incubated with 
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100 µL of MTS reagent diluted in 500 µL serum free DMEM for 3 h at 37°C in a 

humidified, 5% CO2 environment. Thereafter, 5 x100 µL aliquot from each well were 

pipetted into 5 wells of a 96-well plate. The 96-well plate was then placed into a 

spectrophotometric plate reader (FLUOstar OPTIMA, BMG Lab Technologies, 

Germany) to record the absorbance of formazan at 492 nm. The amount of absorbance is 

directly proportional to the number of living cells in culture.  

 

Microscopy. The cell pattern images were acquired using an upright microscope (Zeiss 

Axiostar Plus) equipped with a CCD camera (Media Cybernetics, EvolutionTM MP) with 

a pixel size of 3.4 x 3.4 μm. The filter (Chroma Technologies) used to excite the red 

CMTPX labelled cells was 546/12 nm. For SEM, the samples were sputter coated with 

gold (JEOL JFC-1600 Auto Fine Coater) for 50 s at 30 mA before examination with 

Hitachi field emission scanning electron microscopy, at an accelerating voltage of 10 

keV.  

 

 

5.3 Results and Discussion 

 

5.3.1 Cell Proliferation on Non-patterned Substrates 

Prior to performing cell micropatterning on the microspheres patterned substrate, 

preliminary studies were conducted to assess cell adhesion and proliferation on non-

patterned substrate. The proliferation of HT29 on the structured substrates was studied 

from Day 1 to 7 with the MTS assay. The polystyrene microspheres modified substrates 
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with different surface chemistry, Packing Density and size were investigated.  The results 

for the MTS assay are summarized in Figure 5.3.1 in terms of absorption values which is 

directly proportional to the number of viable cells. Generally, there was an increase in 

absorption from day 1 to 7, suggesting that cells are able to proliferate on the 

microspheres modified substrate.  

 

5.3.1.1 Surface Chemistry 

Firstly, polystyrene microspheres with different surface chemistry were studied. Two 

types of microspheres were used, namely the 1 µm PS-COOH and PS-NH2.  The Packing 

Density of the microspheres on the silicon substrate was approximately 95%. The 

absorption data from the MTS assay suggests approximately five fold increase in the cell 

population from Day 1 to Day 7. The proliferation results for both the substrate were 

similar and did not show pronounced difference over the 7 days (Figure 5.1 A). This may 

be attributed to their similar wettability as the contact angles for PS-COOH and PS-NH2 

are 33.0 ± 1.27° and 34.3 ± 1.50° respectively. Due to the similarity in cell proliferation 

results for these two types of microspheres, only PS-COOH microspheres was used for 

subsequent studies.  

 

5.3.1.2 Particle Size 

Cell proliferation on 0.5 µm, 1 µm, and 2 µm PS-COOH at 95% Packing Density and PS-

COOH film were compared to study the effect of roughness. The most obvious 

observation is that the proliferation rate on the PS-COOH film is about 2 times lower 

than other microspheres assembled substrate up to Day 7, implying that the surface 
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roughness plays a critical role in promoting cell adhesion and proliferation. For Day 1 

and 3, the proliferation on 0.5 µm PS-COOH assembled substrate was lower than 1 and 2 

µm (Figure 5.1 B).  

 

5.3.1.3 Packing Density 

1 µm PS-COOH were assembled on the substrate with Packing Density of 0%, 25%, 

45%, 75% and 95% on amine-terminated silicon surface. On Day 1 and 3, the number of 

cells increased as the Packing Density increased from 0% to 45%. The proliferation 

peaked on substrate with 45% Packing Density, suggesting that this is the optimal 

condition for cell adhesion and growth. With a further increase in Packing Density to 

75% and 95%, the cell number decreased. After five and seven days of culture, there was 

no distinct trend as the cells had proliferated profusely and resulted in an overcrowding 

environment (Figure 5.3.1 C).  
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Figure 5.1. Proliferation of HT-29 on polystyrene microspheres up to 7 days. (A) 1 µm 
microspheres with different surface chemistry. (B) PS-COOH microspheres of various 
sizes. (C) 1 µm PS-COOH assembled with different Packing Density.  
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5.3.2 Cell Micropatterning on Surfaces Assembled with Microspheres 

Here, a top down photolithography approach combined with bottom up self assembly of 

particles is used to guide cell adhesion. After assembly of microspheres, the parylene film 

was peeled off, revealing a non-fouling PEG background which is cell resistant while the 

microspheres patterned regions has carboxylic groups which have strong affinity for 

cells. Integrating colloidal assembly with cell micropatterning offers many advantages 

over the conventional micropatterning. In this technique, the topography can be fine-

tuned according to the cell type to improve cellular adhesion and function. The optimal 

substrate when incorporated with cell micropatterning based assays such as biosensors 

and lab-on-a-chip devices can improve the efficiency and functionality of the devices 

considerably.  

 

The cell micropatterning technique was demonstrated using HT-29 as the model cell line. 

HT-29 cells were seeded onto the micropatterned substrate and allowed to adhere for 24 h 

under standard culture conditions. Cell viability was assessed by staining with 

CellTracker Red CMTPX. The cells were fixed and observed. Figure 5.2 A shows the 

bright field image of an array of 1 µm PS-COOH microspheres and HT 29 cells attaching 

on the microspheres. There was no observable disturbance to the microspheres patterns 

after incubation in culture medium for one day. Figure 5.2 B shows the fluorescent image 

of the HT-29 cells stained with CMTPX, suggesting that the cell remained viable after 

attachment to the microspheres textured surface. The bright field and fluorescent image 

are overlay in Figure 5.2 C to show distinctly that the HT29 cells attached precisely to the 
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microspheres assembled surface while the background was effective in resisting cell 

adhesion. Figure 5.2 D is the SEM image of the patterned microspheres and cells.  

 

 
 
 

Figure 5.2. HT-29 cells micropatterned on surfaces assembled with 1 µm PS-COOH 
microspheres. (A) Bright field image, (B) Fluorescent image of cells stained with 
CMTPX, (C) Overlay of bright field and fluorescent image, (D) SEM image. The scale 
bar represents 100 µm. 
 

 

5.3.3 Topographical Effects on Cells 

In this section, the effects of topography on adhesion of HT-29 cells were investigated. 

The parameters that will shape the topography are Packing Density and size of the 

microspheres. Cell adhesion at randomly selected area on the array containing at least 
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300 microwells was quantified by counting the number of cells in each microwell under 

an optical microscope. Cell occupancy is defined as:  

Cell Occupancy (%) = no. of wells occupied by cells x 100 / total no. of wells. 

The Average number of cells per well was calculated as: 

Average Cell no. = no. of cells / total no. of wells.  

These two parameters are used to compare the adhesion of HT-29 cells on various 

topographies.  

 

Firstly, the effect of particle size was studied using microwells closely packed (Packing 

Density of ~ 95%) with 0.5 µm, 1 µm and 2 µm PS-COOH microspheres or coated with 

PS-COOH film (Figure 5.3). The Cell Occupancy for microwells coated with PS-COOH 

film was 20% and the Average Cell no. was 0.43. There was significant improvement in 

cell adhesion on 0.5 µm microspheres; 54% of the microwells were occupied and the 

average number of cells per well was 1.3. Comparing these two substrates (characterized 

in Chapter 4), both are hydrophobic with a slightly higher contact angle for the 0.5 µm 

microsphere assembled surface. The improvement in cell adhesion may be attributed to 

the increase in surface area and surface roughness of the microsphere assembled 

microwells.  

 

The cell adhesion efficiency for the 1 and 2 µm microspheres assembled microwells were 

similar; the Cell Occupancy and Average Cell no. was approximately 69% and 1.8 for 

both. The significant improvement in cell adhesion for the 1 µm and 2 µm, compared to 

0.5 µm microspheres assembled surfaces may be due to the change in wettability; the 1 
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µm and 2 µm surfaces are hydrophilic while the 0.5 µm surfaces is hydrophobic. The 

similarity in cell adhesiveness for the 1 µm and 2 µm microspheres may be attributed to 

their similar hydrophilicity, while their differences in surface roughness did not influence 

the adhesion of HT-29 cells extensively. The results obtained indicate that adhesion of 

HT-29 cells is generally better on hydrophilic surface and a certain degree of roughness 

promotes adhesion; this finding is consistent with other cell types like osteoblast 

(Anselme, 2000), epithelial (Andersson et al., 2003) and fibroblast (Webb et al., 1998). 

 

Next, the Packing Density of 1 µm PS-COOH microspheres was varied from 0% to 95% 

to study its influence on cell adhesion (Figure 5.4). The microspheres were deposited on 

an amino-silane modified surface in the microwells. The surface roughness increases 

proportionally with the Packing Density, whereas the contact angle is expected to be 

between that of amine-silane modified surface (empty microwell) and 1 um closely 

packed surface which is 30° - 40°. At 0% Packing Density, HT-29 adhered onto the 

amnio-terminated microwells with 40% Cell Occupancy and an average of 0.96 cell per 

well. At 25% Packing Density, the cells adhered on a composite surface consisting of 

microspheres and the amine modified background. The adhesion for HT-29 improved, 

suggesting that the cells prefer attachment to a microsphere decorated surface. As the 

density of particles increased to 45% or more, HT-29 cells are likely to be adhering solely 

on the microspheres and do not interact with the amine-terminated surface due to the 

small interparticle spacing. An increase in Packing Density in this range results in an 

increase in surface roughness and a decrease in the distance between adhesive sites. The 

number of cells adhered peaked at 45% Packing Density with 70% of the microwells 
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occupied and an average of 2.1 cells per microwell. This corresponds to 3.5 folds 

increase in Cell Occupancy when compared to microwells coated with PS-COOH film. A 

further increase in the Packing Density was accompanied by a slight decrease in cell 

attachment efficiency. This observation suggests that adhesion of HT-29 can be 

optimized by careful manipulation of surface roughness and distance between adhesive 

sites.  

 

Figure 5.5 shows the typical fluorescent images of micropatterned cell labelled with 

CMPTX on three selected substrates, A) PS-COOH film; B) amine terminated silicon 

wafer, and C) 1µm PS-COOH microspheres at 45% Packing Density. There were 

obvious differences in cell coverage between the three substrates. On the PS-COOH film 

and amine modified patterned substrates; the Cell Occupancy was very low, with only a 

few microwells occupied by cells. The cell coverage improved significantly for surfaces 

deposited with polystyrene microspheres. 

 

The topography presented to the cells influences its ability to adhere and spread. As the 

microspheres are not evenly distributed at low packing density, the number of 

micropheres underneath the cell was estimated so as to better describe the topography the 

cells are adhering to. The number of 1 um PS-COOH microspheres underneath each 

HT29 cells was estimated to be around 60, 85, 120, 135 and 300  for 25%, 45%, 65%, 

75% and 95% packed microwells respectively. The morphology of the HT-29 cells was 

examined with SEM. It is observed that HT-29 cells are more spherical when they 

attached on PS-COOH film (Figure 5.6 A), and on microwells with 45% Packing Density 
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or lower (Figure 5.6 E-G). They become more spread and flatten when adhered over 

microwells with higher Packing Density (≥ 65%)  (Figure 5.6 B-D, H,I). The morphology 

of cancer cells signifies the status of the cells, in terms of health and differentiation state 

(Cohen et al., 1999). 
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Figure 5.3.  Effect of the size of particle on adhesion of HT-29 cells. Graph of (A) Cell 
Occupancy and (B) Average Cell no. against particle size. Results are mean values and 
standard deviations are indicated with error bar (n = 3). t-test * p < 0.001, ** p < 0.005. 
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Figure 5.4.  Effect of Packing Density of particles on adhesion of HT-29 cells. Graph of 
(A) Cell Occupancy and (B) Average Cell no. against Packing Density. Results are mean 
values and standard deviations are indicated with error bar (n = 3). t-test * p < 0.001, ** p 
< 0.005, *** p < 0.01.  
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Figure 5.5. Comparison of HT-29 micropatterns obtained on microwells with different 
modifications. Fluorescent images of cells labelled with CMPTX on (A) PS-COOH film, 
(B) amine-terminated silicon surface, (C) 1 µm PS-COOH at 45% Packing Density.  
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Figure 5.6. Morphology of HT-29 cells adhered to substrates with different topography. 
SEM images of HT-29 on (A) PS-COOH film, closely packed (Packing Density ~ 95%) 
PS-COOH microspheres of various sizes, (B) 0.5 µm, (C) 1 µm, (D)  2 µm. 1 µm PS-
COOH microspheres with different Packing Density, (E) 0%, (F) 25%, (G) 45%, (H) 
65%, (I) 75%. The scale bar represents 10 µm.  
 

 

 

 

 

A B

D E F 

G H I 

C



Chapter 5 

 124

5.4 Conclusion 

 

In this chapter, a technique of cell micropatterning on colloidal assembly was 

demonstrated. The cells adhered selectively over the regions assembled with PS-COOH 

microspheres, while the background regions grafted with PEG resisted cell adhesion. The 

microspheres present a micro topography which increases the roughness and affects the 

wettability of the substrate. The adhesion and proliferation of HT-29 on microspheres 

modified substrate improved significantly, as compared to the PS-COOH film. The 

adhesion and proliferation peaked on substrates with 45% Packing Density of 1 µm PS-

COOH microspheres. The optimal substrate when incorporated with cell micropatterning 

based assays such as biosensors and lab-on-a-chip devices can improve the efficiency and 

functionality of the devices considerably 

 



 125

 

 

 

 

 

 

 

 

CHAPTER 6 

CONCLUSION & FUTURE WORK 
 

 

 

 

 

 

 

 

 

 



Chapter 6 

 126

6.1 Conclusion 

 

It is well known that the surface topography plays an important role in affecting protein 

and cell behaviour, however the benefits of using a structured surface has not been 

integrated with protein and cell micropatterning technique.  Therefore, the objective in 

this thesis is to develop a novel protein and cell micropatterning technique that involves 

integration with colloidal assembly. The assembly of colloids introduces a micro / 

nanotopogarphy for protein and cell adhesion that can be controlled precisely. The 

following paragraphs will outline the findings obtained in each steps of the 

developmental process.  

 

The first and foremost step is to design and fabricate a template that is compatible with 

both colloidal assembly and protein and cell mciropatterning. This was achieved with a 

bi-functional template which contains hydrophilic microwells surrounded by hydrophobic 

parylene film on the background. The hydrophilic template is suitable for assembly of 

colloidal particles by selective wetting and deposition of particles in the hydrophilic 

domains. After particle assembly, the parylene film can be peeled off to reveal a PEG 

grafted background, rendering the chip compatible with biopatterning.  

 

The next step is the assembly of particles onto the template by selective wetting. A fluidic 

chamber is designed to control the flow of colloidal suspension over the template. By 

using this device, the concentration and rate of flow of the suspension can be kept 

constant and this facilitates uniform deposition of particles over a wide area. The 
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topography of the adhesive regions was manipulated by the assembly of PS-COOH 

microspheres of various sizes with packing density ranging from a sparsely deposited 

microwell to a microwell containing a monolayer of closely packed microspheres. The 

assembly of different types of particles like silica and gold nanoparticles was also 

demonstrated. 

 

After colloidal assembly, the parylene film was removed; revealing a protein and cell 

resistant PEG grafted background. The templates with microwells assembled with a 

monolayer of closely packed PS-COOH microspheres were used for protein 

micropatterning so as to give uniform and high density protein spots. The protein density 

was 2.5 times higher than that obtained on a planar surface. The proteins remained 

functional as verified by antibody – antigen binding system. The CD spectra of proteins 

adsorbed onto nanoparticles suggested that the topography of the particles resulted in 

better preservation of the protein conformation than on a planar substrate. The advantages 

of this micropatterning technique are pertinent in biosensors where both protein density 

and functionality are critical.  

 

Cell micropatterning was demonstrated successfully with HT-29; the cells positioned 

precisely on the microspheres assembled microwells. The effects of topography on cell 

adhesion were studied by using microwells assembled with PS-COOH microspheres of 

different sizes and packing density. The adhesion and proliferation of HT-29 on the micro 

structured surface improved significantly as compared to surfaces coated with PS-COOH 

film. The optimal topography for HT-29 adhesion is on surfaces modified with 1 µm PS-
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COOH microspheres at 45% Packing Density; the increment in Cell Occupancy is 3.5 

folds, comparing to the microwells coated with PS-COOH film.  This study shows that 

the incorporation of topographical structures on the cell adhesive regions can improve the 

micropatterning efficiency significantly. 

 

 

6.2 Future Work 

 
Functionality of cells on microspheres assembled substrates 

It was shown that the adhesion and proliferation of HT-29 cells improved on PS-COOH 

microspheres assembled surfaces; the effects of topography on the functionality of cells 

can also be characterized. As there are no definitive markers and tests to determine the 

differentiation and functionality of HT-29 cells, other cell lines should be used for this 

study.  For example, the alkaline phosphatase activity can be measured for osteoblast 

cells to indicate its differentiation; or the functionality of hepatocytes can be determined 

by measuring the amount of urea and albumin production which are markers of liver 

metabolic and synthetic function respectively. Positive effects of topography on cell 

functionality will increase the merits of this cell micropatterning technique 

 

Different types of structured topography 

Apart from utilizing particles to modify the topography of the adhesive regions, other 

structures can be employed, for example, nanowires, nanotubes and micro / nanofibres. 

The challenge lies in achieving selective growth of structures on a patterned substrate 
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while maintaining a protein and cell resistant background. The growth conditions can be 

manipulated to synthesize structures of various sizes and packing density
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