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 1

SUMMARY 

 

 Cells are constantly maintained and renewed in our body under a stringent 

homeostatic regulation. In the event when cellular damages are beyond repairs, these 

cells will be destroyed via the programmed cell death (PCD) pathway. In cancer, the 

PCD pathway becomes dysfunctional due to genetic mutations. Consequently, cells 

proliferate uncontrollably and lead to disruption of the vascular network. This results 

in the formation of hypoxic microenvironments within the tumor due to insufficient 

oxygen supply to the cells and the presence of hypoxic regions has been shown to 

correlate with poor prognosis and therapeutic resistance. Cellular activities of cancer 

cells undergo changes to cope with the oxygen-deprived (hypoxia) condition and 

these changes are achieved mainly by the action of hypoxia-inducible factor-1 (HIF-

1), a transcription factor. In the presence of hypoxia, apoptotic-resistant tumor cells 

are selected, such as through the attenuation of p53 apoptotic response. However, 

attempts to confirm the relationship between p53 and hypoxia/HIF-1 have met with 

conflicting results. In this study, we investigate the differential gene expression in 

cultured human colorectal cancer cells, HCT116, subjected to hypoxic condition using 

isobaric tags (iTRAQ) and mass spectrometry. Using p53 knockout (KO) cells, we 

also examine the elusive relationship between hypoxia and p53 by analyzing their 

protein profiles. At 95% C.I., a total of 217 proteins were identified in our iTRAQ 

experiments and of which, the expression levels of 54 proteins were found 

significantly altered with at least 30% fold change in terms of protein abundance. 

Among the significantly affected proteins, 14 were potentially regulated by hypoxia 

and this includes the known hypoxia affected proteins, PGK1, LDHA, and FAS. 

Fifteen proteins were found potentially regulated by p53 and the remaining 25 
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proteins were affected by both hypoxia treatment and the presence of p53. An 

ontology analysis of these 54 proteins revealed that they were mainly involved in the 

regulation of cellular growth and proliferation. Downstream validation analysis using 

RT-PCR and immunoblotting assays further confirmed the observations in our 

iTRAQ results. Both RT-PCR and immunoblotting results strongly indicate that 

ANXA2 and PCBD1 may be novel interacting targets of p53 while the regulation of 

EFHD2 and CKS2 may be influenced by hypoxia (1% O2) treatment. Therefore, we 

proposed that these distinct differentially expressed proteins may be used as potential 

biomarkers and/or therapeutic targets in colorectal cancer. 
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CHAPTER 1 – INTRODUCTION 

 

Cells are constantly kept in a dynamic equilibrium of proliferation and cell 

death. At any given time point in their life spans, the number of cells in each organism 

is kept relatively constant, with each individual cell being highly regulated by 

transcription factors that control the expression of genes to synthesize the necessary 

proteins for carrying out all cellular functions in order to maintain this homeostatic 

condition and viability in response to extracellular biological (e.g. hormones and 

neurotransmitters) and non-biological (e.g. temperature and oxygen fluctuations) 

signals. In the presence of cellular dysfunction, genes regulating cell cycle (e.g. p16, 

p21WAF1/CIP1, p53, cyclins, and CDKs) will be activated to arrest the cell for repair 

(Brugarolas et al., 1995; Gartel and Radhakrishnan, 2005; Zhang et al., 1994). If the 

damage is extensive and beyond repair, the dysfunction cells will be directed for 

programmed cell death (PCD) by activation of pro-apoptotic genes such as p53, BID, 

BAX and caspases. Hence, a constant homeostatic condition is maintained in the body. 

  

In cancer, this dynamic equilibrium does not exist or is being disrupted. Thus, 

cells proliferate uncontrollably and are more resilient to cell death. This phenomenon 

is mainly due to multiple genetic alterations or mutations in the genome that impaired 

the cell’s ability to regulate its cellular activities normally (Calabretta et al., 1985; 

Renan, 1993). As a result, in the presence of cellular dysfunction, the cell is not 

arrested and bypasses PCD, leading to tumor formation and cancer development. 

Therefore, tumors are characterized by cells which have the ability to escape the 

natural cell death program that maintain cellular homeostasis. Newly developed tumor 

can be benign initially and are non-cancerous. However, they can develop, gain 
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malignancy and become capable of invading into surrounding tissues or metastasize – 

a key characteristic of cancer cells (Hanahan and Weinberg, 2000). Other hallmarks 

of cancer include the ability to evade apoptosis, self-sufficiency in growth signals, 

insensitive to anti-growth signals, sustained angiogenesis and unlimited replicative 

potential. 

 

Cancer develops as a result of a series of genetic mutations, which gives rise 

to the 6 key characteristics of cancer. Among the many genes that are affected, the 

gene that encodes for a transcription factor known as p53 is frequently found mutated 

in cancer. The p53 protein is also a well known tumor suppressor protein that plays 

important roles in cell cycle arrest and apoptosis in the event of cellular dysfunctions 

(Yu et al., 1999). However, these functions of p53 can be abolished when mutations 

occur in the p53 gene or its upstream/downstream regulating genes. This results in 

cellular dysfunction and cells containing genetic defects get propagated, leading to the 

development of cancer. 

 

In cancer, the microenvironment plays an important part in affecting cancer 

progression as well as cancer treatment. The presence of hypoxic microenvironment is 

a common phenomenon observed in many cancer tumors. Rapid cell growth during 

cancer development results in the disruption of vascular network within the cancerous 

tissue/tumor. As a consequence, the supply of oxygen and nutrients supplied to the 

cells becomes inadequate and certain regions in the tumor become hypoxic (Semenza, 

2000b). Hypoxic cells in tumors undergo a series of biological changes in order to 

survive since hypoxia is an unfavorable condition for cell growth. These biological 

changes are controlled by a major transcription factor, called hypoxia inducible 
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factor-1 (HIF-1), that acts as a chief regulator of oxygen homeostasis. The activation 

of HIF-1 downstream target genes promotes the survival of hypoxic cells as well as 

selection of apoptosis-resistant cells in the tumor and hence, promoting a more 

malignant cancer phenotype (Giaccia et al., 2004). 

 

Interestingly, although hypoxia positively correlates with  tumor malignancy, 

several contrasting reports have indicated that hypoxia can cause accumulation of p53 

in a HIF-1 dependent manner as well as inducing cell death via the p53-dependent 

pathway (An et al., 1998; Graeber et al., 1994; Yao et al., 1995). These conflicting 

findings question the intriguing, yet elusive, relationship between hypoxia, HIF-1 and 

p53. Thus, it is critical to elucidate this complex relationship to better understand the 

hypoxic effects in cancer progression. 

 

In the following chapters, I aim to review the intertwining relationship shared 

between cancer, p53 and HIF-1 under hypoxic condition. This chapter may also 

provide the updated background of my thesis studies. 

 

1.1 CANCER 

1.1.1 Cancer Development 

Cancer is a disease of genes and it involves dynamic genetic alterations or 

mutations in the genome that produce over-active oncogenes (gain-of-function) and 

inactivated/attenuated tumor suppressor genes (loss-of-function) (Bishop and 

Weinberg, 1996). The former promotes the abnormal rapid proliferation and survival 

of cells under unfavorable condition while the latter allows cells to evade cell cycle 

arrest/checkpoints and thus, apoptosis too. Although most types of cancers have been 
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reported to be sporadic, some are recognized as hereditary due to the inheritance of a 

mutated allele, often a tumor suppressor. A classic example is familial adenomatous 

polyposis (FAP) which is an autosomal dominant inherited colorectal cancer 

syndrome. The cause of this disorder has been attributed to germline mutations in the 

adenomatous polyposis coli (APC) gene inherited from the parents (Lamlum et al., 

2000; Miyoshi et al., 1992). APC gene is a tumor suppressor gene that promotes 

apoptosis in colonic cells and is also involved in the sequestration of β-catenin, which 

leads to an inhibitory effect on the β-catenin’s stimulatory effects on the cells 

(Neufeld et al., 2000). Mutations in the APC gene result in a truncated/non-functional 

protein that does not trigger apoptosis and instead allows β-catenin to accumulate in 

the cell, promoting abnormal cell proliferation. Thus, FAP patients are characterized 

by multiple non-cancerous polyps growing in the colon and the number of polyps will 

increase with age. If these benign polyps are not removed, they will eventually 

become malignant and develop into colorectal cancer. 

 

On the other hand, patients with sporadic cancers do not inherit cancer-causing 

mutated alleles/genes from their parents. Instead, the spontaneous mutations are 

usually the results of DNA damage that can be caused by exposures to carcinogens 

and/or mutagens. Carcinogens are cancer-causing agents (e.g. asbestos, cigarette 

smokes, acrylamide, etc.) and typically, mutagens are carcinogenic as multiple 

mutations will lead to development of cancers. Mutagens are any substance that 

causes genetic mutations; for example, ethidium bromide (EtBr), nitrous acid (HNO2), 

sodium azide (NaN3) and radiations (ultraviolet and gamma). Some carcinogens do 

not cause mutations but affect the level of transcriptions of certain genes that are 

critical to cell regulation instead. Furthermore, not all genetic mutations are caused by 
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mutagens. Some are due to errors in DNA replication (e.g. base pair substitution, 

frame-shifts), repair (e.g. mismatch repair) and recombination of DNA sequences. 

Normally, these genetic errors would be repaired or the cells would be destroyed if 

the genetic damage is irreparable; but due to the multiple mutations, the genetic 

defects get retained and are propagated to future generations which can lead to cancer 

development. Typically, highly proliferating tissues such as liver and bone marrow, 

which divide more frequently, will have a higher risk of developing cancer. 

 

Cancer can occur in any person, regardless of races, genders and ages. 

Generally, the risk increases with age too (Jemal et al., 2006) and there are many 

types of cancers (e.g. breast, colorectal, skin, prostate, cervical, etc.), with occurrences 

reported in most, if not all, tissues in human. Currently, it is reported that there are 

more than 11 million people diagnosed with cancer each year and the number of new 

cases reported will soar to a predictive number of 16 million every year by 2020 (Cho, 

2007). Cancer is also one of the leading causes of death in the world, accounting for 

7.6 million (13%) of the global mortality in 2005 alone (Cho, 2007). In Singapore, 

death by cancer is the 2nd highest mortality rate listed (Figure 1.1) according to a 

report released by National Cancer Center Singapore (NCCS), with colorectal cancer 

(CRC) as the commonest cancer diagnosed – with 1 in 4 cancer patients detected 

(Seow et al., 2004). The average 1- and 5-year survival rates1 for CRC are 83% and 

62% respectively (Kauh and Umbreit, 2004). However, if CRC is detected at an early 

stage (modified Dukes’ stage A and B), the 5-year survival percentage has been 

shown to be higher compared to detection at a later stage (modified Dukes’ stage C 

and D) (Table 1.1). Yet, only a low percentage of CRC patients are typically detected 
                                                 
1 Cancer survival rates or survival statistics indicates the percentage of people who survive a certain type of cancer 
for a specific amount of time and they are based on research that comes from information gathered on a big 
population of cancer patients. 
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Figure 1.1: Singapore mortality rates for all causes from 1990 to 2001. Death caused 
by cancer was maintained constantly at 2nd place with no sign of decrease. Extracted 
from NCCS Singapore Cancer Registry report volume 6, pp 9 (Seow et al., 2004). 

Table 1.1: Colorectal cancer staging, stage distribution, and survival. Data obtained 
is just a representation as actual percentage might vary among different surveys. 
(Extracted from Melville et al., 1998) 
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at the early stages (Kauh and Umbreit, 2004; Melville et al., 1998). Therefore, it is 

critical to have more sensitive and accurate cancer diagnostic methods such that 

patients suffering from cancer can be diagnosed at an earlier stage. This leads to a 

strong urgency and requirement for the development of key biomarkers. 

 

1.1.2  Colorectal Cancer 

Colorectal cancer refers to the cancer of the colon and rectum. The colon is the 

longest portion of the large intestine, measuring about 5 to 6 feet in length. The main 

function is to convert liquid stool into solid stool by absorbing excess water into the 

body. This process can take several hours to several days. On the other hand, the 

rectum, which is located at the end of the colon, is about 5 inches in length and is 

usually empty except prior to excretion of stool. CRC normally develops initially in 

the colon and spread to the rectum in most cases, thus leading to the commonly use of 

the combined name. It may be hereditary or spontaneous. However, only about 

5~10% of CRC are linked to inherited genes, e.g. APC, MYH. There are many causes 

that have been proposed to influence CRC development and some examples are 

family history, diet, environment, gender, lifestyle, and the number of existing polyps. 

 

1.1.3 Diagnosis & Treatment 

Diagnosis of cancer is an attempt to accurately identify the origin and 

malignancy of the disease, as well as the type of cells involved. The effectiveness of 

treatment and prospects for survival depend critically on early detection of cancer. 

Currently, diagnostic methods in practice include the use of ultrasound equipment to 

detect lumps, blood tests, computed tomography (CT) scan, and tumor biopsy. An 

example of cancer markers is carcinoembryonic antigen (CEA) used for detecting 
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several types of cancer (such as gastrointestinal, lung and breast cancers). However, 

the sensitivity and specificity of these diagnostic methods are often insufficient and 

inaccurate. Moreover, early detection of cancer is made more difficult due to the lack 

of specific symptoms in the early stage (before invasion – Dukes’ stage A) as well as 

limited understanding of etiology and oncogenesis. For example, the use of CA 15-3, 

a blood tumor marker for breast cancer, is useless for early detection as it has low 

sensitivity (41.9%) (Lumachi et al., 2000). Thus, there is a critical need for an 

expedited development of biomarkers with greater specificity and accuracy and the 

use of proteomic technique is a common approach used for identification of novel 

potential biomarkers that can be used for cancer diagnosis and even cancer therapies. 

 

Conventionally, cancer patients undergo a combination series of therapeutic 

treatments involving surgery (excision of tumors), radiotherapy, and chemotherapy to 

control and eradicate the cancer cells from their bodies. Radiotherapy involves the use 

of ionizing radiations, usually X-rays, to damage DNA and kill the cancer cells while 

chemotherapy utilizes chemical substances, called anticancer chemo-drugs, to treat 

cancer. Adriamycin®, Platinol® (cisplatin), 5-fluorouracil and hydroxyurea are some 

common examples of chemo-drugs used in chemotherapy to slow and hopefully halt 

the growth and spread of a cancer. These chemodrugs are developed to (i) damage 

DNA in cells (induce apoptosis), (ii) inhibit new DNA strands synthesis (inhibits 

repair), and/or (iii) stop mitosis/cytokinesis (inhibits cell multiplications). Nonetheless, 

like radiotherapy, a majority of these drugs are not specific, i.e. they target normal 

cells too, and often many common side effects (e.g. hair loss, weight loss, edema, etc.) 

arise when used in cancer therapy. Furthermore, the administration of cancer 

treatments and their efficiencies are often influenced or hindered by various biological 
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and non-biological factors, including tumors’ location(s), the stage of cancer 

development, presence of drug resistance transporters, altered drug metabolism, 

altered DNA repair, over-expression of anti-apoptotic genes, inactivity of pro-

apoptotic genes, and non-autonomous features of tumor growth in vivo, such as the 

presence of hypoxic microenvironments in solid tumors (Albiero and Pozzi, 1994).  

 

1.1.4 Hypoxic Effects on Diagnosis, Treatments and Prognosis 

The effects of oxygen are of interest in cancer treatment because high levels of 

hypoxia in tumors have been shown positively to be correlated with treatment failure 

or relapse for many cancers, independently of treatment (Brizel et al., 1997; Fyles et 

al., 1998; Sundfor et al., 2000). Solid tumors are often in a low-oxygen state known as 

hypoxia due to the existence of limited arteriolar supply and arteriolar deoxygenation 

(Dewhirst et al., 1996), low vascular density and disrupted vascular architecture 

(Secomb et al., 1993), insufficient oxygen supply (Secomb et al., 1995), and an 

unstable blood supply to the tumor cells (Kimura et al., 1996). Although angiogenesis 

and neovascularisation do occur in these tumors, the newly formed blood vessels are 

often inadequate, disorganized and prone to collapse (Helmlinger et al., 1997). 

Together, these physiological factors contribute to the formation of hypoxic 

microenvironments/regions heterogeneously distributed within the solid tumors 

(Padhani et al., 2007; Semenza, 2003).  

 

The presence of hypoxic regions poses a huge obstacle for effective cancer 

therapies as cells in hypoxic regions are less sensitive to the effects of radiotherapy 

and chemotherapeutic drugs than their normal counterparts (Erler et al., 2004; Teicher, 

1994; Vaupel, 2004). In radiotherapy, oxygen are essential to make DNA damage 
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permanent and it is known that DNA damage can be chemically restored in hypoxia 

(Alper and Howard-Flanders, 1956; Harrison et al., 2002). According to the oxygen 

fixation hypothesis (OFH), developed based on the works of Alexander and Charlesby 

on polymer chemistry in the 1950s, oxygen is a radiation sensitizer. DNA radicals 

produced by radiation will react with oxygen to form organic peroxides that in turn 

“protects” radiation-damaged DNA from restoring to an undamaged state. Stable 

DNA damage accumulates and leads to an increased lethality from a given dose of 

radiation in cells, inducing apoptosis eventually. Therefore, in a hypoxic condition, 

DNA damage is not accumulated as much as under normal condition and tumors 

become more resistant to the effects of radiation. The solid mass of tumor also makes 

it difficult for radiation to penetrate into the tumor core. It has been reported that for a 

similar biological effect in hypoxic tissues as in normoxic tissues, a higher therapeutic 

dose of 2.5- to 3-fold of radiation (e.g. x-rays and gamma rays) is required (Teicher, 

1995; Wachsberger et al., 2003) or only about one third lethal DNA lesions reported 

in hypoxic cells compared with aerobic cells when subjected to the same amount of 

irradiation (Koch, 1982). Much research has been done to improve radiotherapy 

efficiency on solid tumors and one such promising method is the use of metal-based 

small molecules, such as 64Cu-ATSM, as agents for higher effective cancer 

radiotherapy (Lewis et al., 2001; Obata et al., 2005). 

 

The disordered tumor cell profusion and constricted blood vessels that 

contributes to hypoxia also leads to an inefficient delivery of some chemotherapeutic 

drugs to the site of action as the delivery relies on the tumor vasculature. Studies on 

solid tumor cells have also further suggested that through induction of apoptosis by 

cytotoxic chemotherapeutic drugs, hypoxia may select for cells with defective 
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apoptotic regulators such as p53 and thus, gaining a more malignant phenotype in the 

end (Graeber et al., 1996). Furthermore, the presence of multiple hypoxic regions 

within a tumor may confer tumor inhomogeneity, resulting variations towards 

treatment sensitivities (Vaupel et al., 2002). Inevitably, this may contribute to relapses 

even after years of remission as not all cancer cells were eradicated by the treatment. 

 

In cancer treatment, the level of hypoxia in a tumor may also be used to help 

predict the response of the tumor to the treatment. The poor prognosis association 

with tumor hypoxia has stimulated the development of equipment for measuring 

oxygen concentrations of tumors in vivo. Such tools can be used to evaluate patient-

specific distributions of hypoxia within a tumor so that more effective treatment can 

be administered. An example is the use of polarographic electrodes, commonly 

known as the Eppendorf electrode, to measure partial pressure of oxygen (pO2) of 

tumor in vivo (Fyles et al., 1998; Movsas et al., 2002; Parker et al., 2004). The 

downside is that this method is invasive and it is restricted to only superficial tumors. 

On the other hand, techniques such as positron emission tomography (PET) and the 

use of endogenous hypoxia-induced proteins can allow the potential for non-invasive 

assessment of a tumor’s hypoxic condition. Hence, there is a paramount importance 

for a deeper understanding of the biological mechanism behind hypoxia in tumors in 

order for the discovery of endogenous protein markers as well as the development of 

more effective and sensitive cancer treatments. 
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1.2 HYPOXIA 

1.2.1 The Nature of Hypoxia 

Hypoxia is a condition in which the level of oxygen supplied to the 

body/tissue becomes inadequate, i.e. much lesser than the norm. It is also a hallmark 

characteristic of most tumors and tumor hypoxia results from an imbalance between 

the cellular oxygen consumption rate and the oxygen supply to the cells (Semenza, 

2003; Vaupel and Harrison, 2004). During tumor expansion, growing cells rapidly 

outstrip the supply of oxygen and nutrients while the growing cell mass also limits the 

availability of oxygen and nutrients to each individual cell by existing blood vessels. 

Formation of new blood microvessels within the tumor (i.e. tumor neovascularisation) 

would be required for growth beyond 2 mm in order to supply adequate oxygen and 

nutrients to the cells. Although many factors can contribute to tumor hypoxia, they 

can be classified generally into 3 types – perfusion-, diffusion-, or anemia-related 

(Hockel and Vaupel, 2001; Padhani et al., 2007; Vaupel et al., 2002). Perfusion-

related hypoxia is an acute type of hypoxia and it is often temporary. It arises as a 

result of inadequate blood flow (ischemic) in the tissues due to severe structural and 

functional abnormalities of tumor neovascularisation, such as disorganized vascular 

network, dilations, lack of functional receptors, incomplete endothelial lining, absence 

of flow regulation, and an elongated tortuous shape. Diffusion-related hypoxia, on the 

other hand, is a chronic type of hypoxia that results as a consequence of tumor 

expansion which increases the oxygen diffusion distance. Tumor cells that are distant 

(greater than 70 µm) from the microvessels receive inadequate oxygen supply. 

Anaemic hypoxia results from reduced oxygen-carrying capacity of the blood which 

may be due to factors relating to treatments or tumor-associated. Furthermore, it has 

been shown experimentally that the combined effects of low blood perfusion rate to 
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tumors and low oxygen-carrying capacity of blood amplifies hypoxia due to lowered 

oxygen supply to the tumors (Figure 1.2) (Vaupel et al., 2001). 

 

1.2.2 The Flipside of Hypoxia 

Interestingly, despite conferring resistance to cancer treatment, hypoxia can 

also have a direct toxic effect as a form of stress on many cell types. Numerous 

reports have shown that hypoxia can induce necrosis and apoptosis in normal cells 

(Yamaguchi et al., 2001; Zhu et al., 2002) as well as in tumor cells with cell death 

observed most notably in the zones furthest from the tumor vasculature (Shimizu et al., 

1995; Yao et al., 1995). Therefore, this illustrates hypoxia with two seemingly 

opposing effects on tumor biology – one protective and the other toxic. The toxic 

effect of hypoxia is exhibited by its ability to arrest cell at G0/G1 checkpoint and 

induce p53 accumulation, which can lead to p53-dependent PCD (Graeber et al., 

1994). Although, p53 is known to be involved in cell cycle regulation, many reports 

indicated that hypoxia-induced p53 is transcriptionally inactive but serves more as a 

transcription repressor in tumor cells (Koumenis et al., 2001). Further evidences have 

also indicated that p53 accumulation induced by hypoxia did not induce p21WAF1/CIP1, 

a well-established p53 downstream gene involved in cell cycle G1 arrest (Gartel and 

Radhakrishnan, 2005; Koumenis et al., 2001). Therefore, the accumulation of p53 

during hypoxia does not play a role in cell cycle arrest. Hypoxia has also been 

implicated with the development of a more malignant cancer phenotype and 

metastases through functioning as a selection pressure for p53-deficient tumor cells 

with reduced apoptotic potential to hypoxic areas within the tumors (Graeber et al., 

1996). While it has been widely known that hypoxia can protect tumors by increasing 

their resistance to radiotherapy and chemotherapy, there is a possibility that these
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Figure 1.2: Effects of tumor blood flow and oxygen-carrying capacity of blood in 
tumor tissue. Low rate of tumor blood flow and low oxygen-carrying capacity can 
decrease pO2 further and aggravate hypoxic condition in tumor. (Extracted from 
Vaupel et al., 2001) 
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 treatments may actually “assist” hypoxia and promote a more malignant phenotype 

by killing off cells containing wildtype p53 in conjunction with the toxic effect of 

hypoxia instead (Lechanteur et al., 2005). Therefore, regardless the existence of two 

opposing effects of hypoxia, hypoxia fundamentally leads to a more aggressive 

phenotype (Figure 1.3). 

 

On the other hand, the ability of cancer cells to survive and further develop 

into a more aggressive phenotype under hypoxic condition appears to be paradoxical 

since hypoxia is a condition unfavorable for cell growth and may even stimulate cell 

death. Clearly, many biological changes must have occurred in the tumor cells for 

survival response to hypoxia and these changes promote anaerobic energy metabolism, 

metastasis, angiogenesis, and selection of cells with diminished apoptotic potential 

(Giaccia et al., 2004). Therefore, in order for hypoxia to stimulate these relevant 

changes, the tumor cells must first have the ability to detect fluctuations in oxygen 

level and respond accordingly to hypoxia. One way that the cells respond to hypoxia 

is through hypoxia inducible factor-1 (HIF-1) – the major transcription factor that is 

responsible for the resulting adoptive responses during hypoxia and acts as a global 

regulator of cellular and systemic oxygen homeostasis, facilitating oxygen delivery 

and adaptation to oxygen deprivation (Pouyssegur et al., 2006; Semenza, 1999; Wang 

and Semenza, 1995). 

 

1.3 HYPOXIA-INDUCIBLE FACTOR-1 

1.3.1 The Structure of HIF-1 

HIF-1 is a heterodimer protein composed of two constitutively expressed 

subunits, namely HIF-1α and HIF-1β (Figure 1.4A). Both subunits contain two 
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Figure 1.3: A flow diagram showing how hypoxia leads to therapy resistance and the 
development of a more aggressive tumor phenotype. (Extracted from Vaupel and 
Harrison, 2004) 
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[B] 

Figure 1.4: HIF-1 structure and its regulation. [A] The basic helix-loop-helix (bHLH) 
and the PER-ARNT-SIM (PAS) domains of HIF-1α and HIF-1β (yellow) are crucial for 
dimerization and DNA binding. In addition, HIF-1α contains an N- and C-terminal 
nuclear localization sequence (N-NLS and C-NLS respectively, blue) and an oxygen 
dependent degradation (ODD) domain (red) that regulates its stability.  Transcriptional 
activity of HIF-1 is facilitated transactivation domains (TAD) in both subunits (green). 
[B] Under normoxia, O2 and 2-OG (2-oxoglutarate) are available and hydroxylation via 
FIH-1 and PHDs proceeds. FIH-1 hydroxylates Asn803 in the C-TAD of HIF-1α. This 
modification causes CBP/p300 to dissociate from HIF-1α thus repressing HIF-1 
transcriptional activity. PHDs hydroxylate Pro402 and Pro564 within the ODD domain 
(red) of HIF-1α thereby making it available for the binding of pVHL, which forms an 
E3-ubiquitin ligase complex with co-factor, leading to poly-ubiquitination of HIF-1α and 
thus degradation by the 26S proteasome. Under hypoxia, O2 is limited and PHDs as well 
as FIH-1 are inactive. HIF-1α stabilizes and associates with β-subunit upon recruitment 
of the co-factor p300 to form a transcriptionally active HIF-1, activating genes that 
contain HIF-responsive elements (HRE) in their promoter regions. (Extracted from 
Schmid et al., 2004a) 

[A] 
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characteristic domains: the basic helix-loop-helix (bHLH) domain and the PAS (Per-

AHR-ARNT-Sim) domain. The bHLH domain is a common characteristic for many 

transcription factors that facilitates protein dimerization and DNA binding while the 

PAS domain is highly conserved throughout evolution, consisting of two internal 

homology units (A and B repeats) which are involved in protein-protein interactions 

(Wang et al., 1995a). The latter was termed as an acronym with respect to the first 

three proteins found in this motif, namely the Drosophila period (Per) and single-

minded (Sim) proteins and the mammalian aryl hydrocarbon receptor (AHR) and aryl 

hydrocarbon receptor translocator (ARNT) proteins (Schmid et al., 2004a). Both 

domains are essential for HIF-1 heterodimerization and both intact domains must be 

present in order for the highest efficiency of heterodimerization to occur (Jiang et al., 

1996). Other splice variants of HIF-1α and β subunits have also been reported and 

both contain multiple potential phosphorylation sites, indicating a high possibility for 

posttranslational modifications (PTMs) in both subunits (Wang et al., 1995b). 

 

1.3.2 HIF-1α & β subunits 

The HIF-1α subunit contains 826 amino acids (aa) and has a molecular weight 

(MW) of 120 kilodaltons (kDa) observed under reducing condition. The bHLH 

domain and the PAS domain with PAS-A and PAS-B repeats, are localized at the N-

terminus of HIF-1α. At its C terminus, there are two transactivation domains (N-TAD 

and C-TAD) and an oxygen-dependent degradation domain (ODD), which is 

responsible for the degradation of HIF-1α during normoxic conditions, (Huang et al., 

1998; Pugh et al., 1997). The ODD domain contains two PEST-like motifs, a 

commonly found motif in many proteins with a short half-life of less than 2 hrs 

(Rechsteiner and Rogers, 1996). These motifs are potential signals for rapid protein 



 25

degradation and the sequences are rich in proline, glutamic acid, serine, and threonine. 

In fact, under normoxic conditions, the half-life of HIF-1α has been reported to be 

less than 10 min and it has a very low steady-state level that is undetected by 

immunoblotting assays (Chun et al., 2002; Pan et al., 2007). In addition, HIF-1α 

contains N- and C-terminal nuclear localization signals (termed as N-NLS and C-NLS, 

respectively) and it has been reported that only the C-NLS is crucial for nuclear 

import of HIF-1α (Kallio et al., 1998). The detailed mechanism is not yet known. 

 

HIF-1β, also commonly known as aryl hydrocarbon nuclear receptor 

translocator (ARNT), was first identified as a heterodimer with aryl hydrocarbon 

receptor (AHR) to form the functional dioxin receptor. Two isoforms have been 

identified (774 and 789 aa) and they differ only by the presence of the sequence 

encoded by a 45 basepairs (bp) alternative exon (Wang et al., 1995a). Little progress 

has been made for the β subunit but it is crucial as a dimering partner to produce a 

functional HIF-1 transcription factor as well as a dioxin receptor. 

 

There are two other α subunits identified and they are HIF-2α (also known as 

endothelial PAS protein or HIF-related factor) and HIF-3α (also known as inhibitory 

PAS protein) These two isoforms were identified by homology screening for 

interaction partners with HIF-1β and both were implicated in hypoxia responses (Ema 

et al., 1997; Hogenesch et al., 1997). HIF-2α is very closely related with HIF-1α, 

sharing a 48% overall amino acid identity, and transactivates HRE-containing genes 

when dimerized with HIF-1β (Wenger, 2002). Interestingly, HIF-3α is only distantly 

related to HIF-1α and lacks a C-terminal transactivation domain. It is thought that 

transcription factors that contain the HIF-3α subunits are dominant negative 
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regulators of HIF transcriptional activities (Jang et al., 2005). Furthermore, knockout 

and knockdown studies have demonstrated that HIF-1α and HIF-2α give rise to 

different phenotype(s) and analysis of the expression profiles of the 3 α subunits 

indicates that HIF-2α and HIF-3α appears to be tissue-specific while HIF-1α is 

ubiquitously expressed (Wiesener et al., 2003). For example, HIF-2α has been 

identified only in certain cell types such as macrophages and endothelial cells and is 

found up-regulated only in certain cancers, such as non-Hodgkin lymphoma and 

bladder cancers (Semenza, 2000a). This observation suggests that HIF-1α, HIF-2α 

and HIF-3α each regulate a different set of distinct transcription targets. 

 

1.3.3 The Regulation of HIF-1 

The regulation of HIF-1 activity is a multistep process involving HIF-1α 

stabilization, nuclear translocation, hetero-dimerization, transcriptional activation and 

interaction with other proteins. Although several steps of this process are 

independently regulated by oxygen, the oxygen-dependent regulation of the 

proteasomal degradation of HIF-1α stability is the most important step in regulating 

HIF-1 transcriptional activity (Berra et al., 2006; Salceda and Caro, 1997). This is 

because the availability of HIF-1α will determine the activity of HIF-1. Therefore, the 

transcriptional activity of HIF-1 is primarily controlled through the stability of its 

α subunit – HIF-1α. Although both the α and β subunits are constitutively transcribe 

and translated, HIF-1α is rapidly ubiquitinated and degraded via the 26S proteasome 

pathway under normoxic conditions (Kallio et al., 1999). This rapid degradation of 

HIF-1α is facilitated by the direct interaction between the β domain of von Hippel-

Lindau protein (pVHL), a substrate recognition component of an E3 ligase complex, 
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and the ODD domain of HIF-1α that must be preceded by the hydroxylation of 

proline residues (Pro402 and Pro564) within the ODD domain of HIF-1α by HIF-1 

prolyl hydroxylases (HPHs/PHDs) (Figure 1.4B). Molecular oxygen and iron (Fe) are 

essential for prolyl hydroxylation to occur and therefore, interaction between pVHL 

and HIF-1α occur only during normoxia and not hypoxia (Maxwell et al., 1999). 

Hence, under hypoxic conditions, the latter is not degraded but accumulates since 

prolyl hydroxylation does not take place and proteasomal degradation decreases. In 

addition, hypoxia has been shown to not only block HPH activity but also results in a 

downregulation of HPH/PHD proteins via E3 ligase, Siah2, that is activated during 

hypoxia (Nakayama et al., 2004). 

 

The DNA binding and transcriptional activity of HIF-1 is also oxygen-

dependently regulated by the hydroxylation of a critical asparagine residue (Asn803) 

located within the C-TAD of HIF-1α. Under normoxia, this highly conserved 

asparagine residue is hydroxylated by an asparaginyl hydroxylase, identified as Factor 

Inhibiting HIF-1 (FIH-1) (Lando et al., 2002), and prevents interaction with 

transcriptional coactivator, p300/CBP. Similar to HPHs/PHDs, this hydroxylation 

activity of FIH-1 requires molecular oxygen and Fe to take place. Therefore, during 

hypoxia, the C-TAD of HIF-1α is not silenced and is possible to interact with 

p300/CBP, leading to the recruitment of transcriptional coactivator complex. 

 

Beside hypoxia, stability of HIF-1α can be regulated by gene mutations, 

inhibitors of HPHs, hormones and cytokines, and other physiological stresses under 

normoxia too. For example, the inactivation of pVHL has been associated with the 

development of highly vascularised tumors with constitutive HIF-1 expression due to 
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HIF-1α accumulation (Ivan et al., 2001) while the mutated Ras gene can increase 

HIF-1α protein level and HIF-1 activity during normoxia . Increased temperature can 

also directly promote the stabilization of HIF-1α as reported by Wenger’s group 

(Katschinski et al., 2002).  

 

1.3.4 Target Genes of HIF-1 

HIF-1 has been referred also as the “guardian” of oxygen homeostasis, 

inducing a vast array of gene products that regulate energy metabolism, 

neovascularization, survival, pH and cell migration, and a strong promoter of tumor 

growth (Pouyssegur et al., 2006; Semenza, 2003). There are more than sixty putative 

direct HIF-1 regulated genes reported (Figure 1.5) and the list still grow continuously 

(Semenza, 2003).  These genes have been identified through various methods such as 

identification of a cis-acting hypoxia-response element (HRE) that contains a HIF-1 

binding site (Semenza and Wang, 1992), overexpression of HIF-1α using von Hippel-

Lindau (VHL)-null cells or HIF-1α transfected cells (Carmeliet et al., 1998; 

Krishnamachary et al., 2003), and knockout or knockdown expression of HIF-1α 

(Wykoff et al., 2000).  The DNA consensus sequence for HIF-1 binding is identified 

as 5’-(A/G)CGTG -3’ and it is common for many genes that are up-regulated in the 

presence of oxygen deprivation (Semenza et al., 1996). 

 

These HIF-1 downstream target genes serve various functions and biological 

processes that are ultimately involved in the survival of the tumor cells during 

hypoxia. Furthermore, these genes have been categorized into four main groups 

according to their biological involvement (Table 1.2) (Zagorska and Dulak, 2004). 

The first group of genes (e.g. vascular endothelial growth factor (VEGF), VEGF 
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Figure 1.5: Genes that are transcriptionally activated by HIF-1. Over 60 putative 
HIF-1-regulated genes have been reported and these genes are separated into groups 
according to their functions (Extracted from Semenza, 2003). 
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Table 1.2: Genes upregulated by HIF-1 classified into four main categories based 
on their biological involvements (extracted from Zagorska and Dulak, 2004). 
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receptor 1, inducible nitric oxide synthase, and adrenomedullin) is involved in the 

control of vascular system through angiogenesis and regulation of vasculogenesis. 

The second group comprises of genes (e.g. erythropoietin and transferring) that 

induces red blood cell formation and maturation. The third group of genes 

(phosphoglycerate kinase 1, aldolase A and C, glucose transporters 1 and 3, and 

triosephosphate isomerase) mediates a switch in the main source of energy through a 

change in energy metabolism from aerobic metabolism to anaerobic glycolysis and an 

increased uptake of glucose. The fourth group includes genes (e.g. clusterin, 

p21WAF1/CIP1, Nip3-like protein X, insulin-like growth factor 2) whose products are 

responsible for apoptosis and cell proliferation. Lastly, there are also other equally 

important HIF-1 target genes that are involved in other biological aspects other than 

these four main categories. They are grouped together in a separate category. 

 

 1.3.5 HIF-1α & Cancer 

Immunohistochemical analyses for the presence and distribution of HIF-1α 

protein revealed that it is highly overexpressed in many cancers (Talks et al., 2000). 

In some cancers such as cancers of the brain, breast and cervix, strong positive 

correlation between HIF-1α overexpression and patient mortality has been reported 

for either all stages or specific stages of cancer development (Aebersold et al., 2001; 

Birner et al., 2000). Interestingly, in other cancers like head and neck cancer and non-

small lung cancer, a decreased mortality was observed in patients with tumors 

overexpressing HIF-1α (Volm and Koomagi, 2000). Furthermore, studies have shown 

that the presence of functional or non-functional pro- and anti-apoptotic factors can 

affect the overall patient survival. One such example is the overexpression of HIF-1α 

and mutant p53 (non-functional) in ovarian cancers which significantly increase 
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mortality through lowered apoptosis (Birner et al., 2000). Therefore, the effect of 

HIF-1α overexpression is dependent on the type of cancer as well as the functional 

implications brought by other genetic alterations. 

 

1.4 TP53: Tumor Protein 53 

1.4.1 Tumor Suppressor p53 

TP53 is a well known tumor suppressor gene and in human, it is located on 

chromosome 17p13.1. Perhaps this gene is more popularly known by its encoded 

protein – p53, a transcription factor that regulates the expression of many target genes 

(Vogelstein et al., 2000). It has been credited with titles like “guardian of the genome” 

(Lane, 1992), “death star” (Vousden, 2000) and “savior and slayer” (Bensaad and 

Vousden, 2005) over the years since its discovery in 1979. There are nearly 40,000 

publications on p53 to date and it was voted as the “Molecule of the Year” in 1993 by 

Science journal. Originally, TP53 was thought to be an oncogene with 

immunocytochemical and immunohistochemical studies indicating accumulation of 

p53 protein observed only in the nucleus of transformed or tumor cells but not in 

normal cells. Furthermore, p53 level was found highly overexpressed in 

approximately half of the cancer cells tested. However, this notion was refuted when 

p53 gene of these tumors was found with mutations (Finlay et al., 1988; Hainaut and 

Hollstein, 2000). In addition, of those tumors not carrying mutated p53, majority was 

found with p53 inactivated at either the transcriptional or posttranscriptional level 

(Bykov and Wiman, 2003). Together, these arguably justify the importance of p53 in 

cell regulation and cancer biology even till today. 

 



 33

The fact that p53 function is impaired in the majority of human cancers has 

stimulated many efforts in deciphering the activation and function of this gene in cell 

at both normal and neoplastic states. Regulation of p53 level in cell is mainly under 

the control of Mdm2 while activation of p53 involves its dissociation from Mdm2 and 

this can be triggered in response to a wide variety of stimuli (Refer to Section 1.4.3). 

Many functions have been attributed to p53 and these include cell cycle regulation, 

apoptosis, angiogenesis, intracellular reactive oxygen species (ROS) removal, and 

genetic stability (Levine, 1997; Sablina et al., 2005; Yu et al., 1999). Figure 1.6 

summarizes the different factors that activate (blue boxes) p53 and the many functions 

(pink boxes) performed by p53. Among the many publications on p53, the most well-

studied biochemical function of p53 was its ability to bind specific genomic 

sequences and activate transcription of adjacent genes, which account for the variety 

of functions exhibited by p53. It was predicted that there could be as many as 300 

genes under the control of p53 (el-Deiry, 1998). 

 

 Besides being a transcription factor and found predominantly as a nuclear 

protein, the cytoplasmic fraction of p53 is found translocated to the mitochondria and 

to perform a non-transcriptional function. It induces apoptosis by directly binding to 

pro-apopototic proteins like Bax and Bak (Leu et al., 2004; Mihara et al., 2003). The 

interaction will cause the inner mitrochondrial membrane to become permeable and 

this will allow cytochrome c and other pro-apoptogenic factors to be released into the 

cytosol, leading to apoptotic cell death. During genotoxic stress, cytoplasmic p53 is 

bound by Bcl-xL, an anti-apoptotic protein, and PUMA, a transcription target of p53, 

mediates the release of p53 so that it can interacts with pro-apoptotic proteins (Chipuk 

et al., 2005). Thus, two functions of p53 exist – One, as an important 
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Figure 1.6: Activation and functions of p53. p53 has key roles in integrating cellular 
responses (pink boxes) to different types of stress (blue boxes). Activation of p53 can 
result in a number of cellular responses, and it is possible that different responses are 
induced by different stress signals. This is evidence that p53 can play a part in 
determining which response is induced through differential activation of target-gene 
expression. (Vousden and Lane, 2007) 
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transcription factor to regulate pro-apoptotic genes; two, directly interacts with pro-

apoptotic proteins to initiate apoptosis. 

 

1.4.2 The Structure of p53 

The human p53 protein is made up of 393 aa and has a MW of 53 kDa under 

reducing condition. Although it has a complex domain structure, its structure can be 

simply broken down into 3 main regions – the N-terminal region, the core region, and 

the C-terminal region (Figure 1.7). The N-terminal region comprises of two 

transactivation domains (TDI aa 1-40 and TDII 40-60) and a proline-rich region (aa 

40-94). The two transactivation domains, especially TDI, are important for 

interactions with other regulatory proteins, such as negative regulator MDM2 (Marine 

et al., 2006; Momand et al., 2000), components of transcription initiation complex (Lu 

and Levine, 1995), and coactivators (Gu et al., 1997). The proline-rich region is 

highly conserved and contains a SH3-domain binding motifs (PXXP). It is also 

responsible for the higher molecular weight observed on SDS-PAGE than the 

theoretical. The core region makes up the majority of the molecule, containing a 

DNA-binding domain (DBD, aa 94-292) that is responsible for the DNA-protein 

interactions. This core region is also the hotspot for most of p53 mutations found in 

human. In the C-terminal region, several nuclear localization sequences (NLS), a 

nuclear export signal (NES) and most importantly, an oligomerization domain can be 

found. The oligomerization domain is crucial for the formation of homotetramer of 

p53. 
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Figure 1.7: A schematic diagram illustrating the domains of p53. The transactivation 
domain (TD) is critical for the regulation of transcriptional activity of p53. (Fuster et 
al., 2007) 
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1.4.3 The Regulation of p53 

Similar to the subunits of HIF-1, p53 is constitutively expressed and can be 

found in all tissues. However, at its steady state, p53 level is low and its activity is 

inhibited, mainly by the actions of its negative regulator Mdm2. This regulation is 

important as inappropriate activation of p53 can induce cell cycle arrest, premature 

senescence, or cell death. Mdm2 regulates p53 activity through at least 3 ways. First, 

Mdm2 can bind directly to the transactivation domain of p53 and block the 

recruitment of transcriptional co-activators to p53 (Vlatkovic et al., 2000) and C-

terminal acetylation (Jin et al., 2002). Second, the binding of Mdm2 promotes nuclear 

export of p53 to the cytoplasm and this relocalization is shown to be dependent on the 

intact RING-finger domain of Mdm2 as well as the NES of p53 (Geyer et al., 2000). 

Third, Mdm2 acts as an E3-ubiquitin ligase, which is also the main form of inhibitory 

action exhibited. The association promotes p53 ubiquitination, followed by 

degradation via the proteasome pathway (Haupt et al., 1997; Honda et al., 1997). In a 

way, this can be akin to the relationship shared between HIF-1α and its negative 

regulator pVHL. Under normal conditions, the half-life of inactive p53 is only about 

20-30 min (Prives and Hall, 1999). Interestingly, the expression of Mdm2 is 

positively regulated by p53 (Prives, 1998). Furthermore, it has been shown that there 

are other proteins cooperating with Mdm2 in the regulation of p53 stability. Mdm2-

dependent p53 poly-ubiquitination and degradation can be enhanced by Yin Yang 1 

(YY1) transcription factor, which can increase the interaction between Mdm2 and p53 

(Gronroos et al., 2004). 

 

In response to various stimuli, such as oncogene expression, DNA damage, 

nucleotide depletion, and hypoxia, the association between Mdm2 and p53 is 
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abrogated, resulting in rapid accumulation and activation of p53 protein (Levine, 1997; 

Prives and Hall, 1999). Two mechanisms have been proposed to explain the 

dissociation of Mdm2 from p53 under such stressed conditions. The first proposed 

mechanism is that p19ARF can antagonize the ubiquitin ligase activity of Mdm2 on 

p53 by binding to it directly (Michael and Oren, 2003; Pomerantz et al., 1998). 

Expression of p19ARF is stimulated in response to DNA damage. Moreover, in many 

cancers, mutations in the human homologue p14ARF gene are commonly found. The 

second mechanism that mediates the dissociation is the N-terminal phosphorylation of 

p53 induced by stress. In vitro binding affinity between Mdm2 and p53 peptides was 

prevented when Thr18 or Ser20 on p53 was phosphorylated (Craig et al., 1999). 

 

The stabilization of p53 is highly mediated by phosphorylation and other 

forms of post-translational modifications  (e.g. dephosphorylation, acetylation, 

methylation, ribosylation, O-GlcNAcylation, etc.) invoked by the stimuli (Sakaguchi 

et al., 1998; Unger et al., 1999; Yang et al., 2006). In fact, more than 18 

phosphorylation sites have been reported for p53. Although some sites (e.g. Thr155, 

Ser389) are phosphorylated under normal conditions (Bech-Otschir et al., 2001), most 

sites are modified in response to DNA damage or various stresses (Higashimoto et al., 

2000; Sakaguchi et al., 2000). One example is the product of ataxia telangiectasia 

(ATM) gene, a kinase that precedes p53 accumulation by phosphorylating multiple 

sites on p53 such as Ser15, Ser20, and Ser46 (Canman et al., 1998; Saito et al., 2002). 

In addition, Ser15 was identified as one of the major sites on p53 that is 

phosphorylated in response to cellular stress (Siliciano et al., 1997). Upon release 

from Mdm2, PTMs also promote tetramerization of p53 which is the most active 

DNA binding form. Other kinases, such as casein kinase I and II, protein kinase A, 
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CDK7, DNA-activated protein kinase, and Jun-NH2 kinase (JNK), also mediate 

phosphorylation of p53 and play important roles in regulating p53 function. 

 

1.4.4 Target Genes of p53 

Wild-type p53 binds, as a homotetramer, to specific sites on the genome with 

a consensus binding sequence 5'-PuPuPuC(A/T)(T/A)GPyPyPy-3' and stimulates 

expression of downstream genes that are involved in various activities (el-Deiry et al., 

1992). Depending on the conditions of cell growth, DNA damage, and the type/ 

duration of stress, p53 selectively activates a different group of target genes which are 

involved in reversible cell cycle arrest, DNA repair, angiogenesis, and/or apoptosis. 

One of the first identified transcriptional targets of p53 is cyclin dependent kinase 

(CDK) inhibitor p21 (el-Deiry et al., 1994). CDKs are important in regulating 

successful progression through the whole cell cycle and their activities can be 

inhibited by p21. This results in a p53-induced cell cycle arrest and allows DNA 

repairs to take place. Other p53-activated genes, such as GADD45, WIP1, MDM2, 

EGFR, PCNA, Cyclin D1, Cyclin G, TGFα and 14-3-3σ, are also involve in cell 

cycle regulation. In situations when cells are beyond repair, activated p53 will induce 

apoptosis by stimulating the extrinsic death-receptor pathway or the intrinsic 

mitochondrial pathway. Some examples of p53 transcriptional targets in this pro-

apoptotic category include Puma, Noxa, and Bax. These proteins cause the inner 

mitochondrial membrane to become “leaky” and result in the release if cytochrome c 

and other apoptogenic factors, which eventually leads to apoptosis (Villunger et al., 

2003; Yu et al., 2003). There are other pro-apoptotic genes (PIG11) activated by p53 

that induce apoptosis via increasing intracellular ROS too (Liang et al., 2004). The 
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DNA damage results from an increased intracellular ROS by these genes can further 

activates p53, forming an amplification loop. 

 

1.4.5 p53, Hypoxia and HIF-1α 

The tripartite relationship between hypoxia, HIF-1α and p53 has always been 

a complex and debatable issue. Conflicting reports have led to questionable doubts 

whether and to what extent p53 accumulates under hypoxia. One group has shown 

that in transformed cells, p53 stabilization under hypoxia is HIF-1-dependent too (An 

et al., 1998). Furthermore, although this hypoxia-induced p53 was found 

transcriptionally inactive, the ability to induce apoptosis is retained (Koumenis et al., 

2001) and this could be through the non-transcriptional function of p53 mentioned 

earlier (Section 1.4.1). On the other hand, this concept was challenged by other 

reports showing p53 did not accumulate under hypoxic conditions (Wenger et al., 

1998). One reason for these differences may be the severity and extent of hypoxia 

used in different experiments. HIF-1α becomes stabilized when oxygen drops to 

1~2% (mild to moderate hypoxia) but for p53 to stabilize, a more severe or prolonged 

hypoxia or anoxia (0.0~0.2%) is required. The presence of acidosis and nutrient 

deprivation in the tumor may have mediated the accumulation of p53 observed under 

hypoxia instead (Pan et al., 2004). 

 

Furthermore, interactions between HIF-1α and p53, under mediations from 

Mdm2 and/or p300, have been reported and the transcriptional activity of p53 has 

been shown to result in the degradation of HIF-1α in several studies (An et al., 1998; 

Chen et al., 2003; Schmid et al., 2004b). This, in turn, will lead to a decrease in HIF-1 

activity. Direct interaction was proposed to have occurred between the ODD domain 
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of HIF-1α, with two p53-binding sites were identified, and the DBD of p53 (Sanchez-

Puig et al., 2005). In addition, HIF-1 activity can be attenuated by the accumulated 

p53 in another manner too and this is through competitive binding for a common 

transcriptional co-activator, p300. Thus, it can be further argued that the mechanism 

behind p53 accumulation under hypoxia is unlikely dependent on HIF-1. But it is 

important to note that a much higher level of p53 is required to induce HIF-1α 

degradation than for transactivation of p53 target genes (Blagosklonny et al., 1998). 

The accumulation pattern and role of p53 in regulating HIF-1α under various extents 

of hypoxic conditions is illustrated in a proposed model by Schmid et al. in figure 1.8. 

Further analysis is required for a more complete understanding of this tripartite 

relationship and therefore, in this project, we have adopted a proteomic approach to 

perform comparative analyses. 

 

1.5 Proteomics 

The word “proteomics” was only coined in the early 1990s by Marc Wilkins, 

PhD candidate, in the Macquarie University, Sydney, Australia, even though the first 

high resolution 2D gel electrophoresis was performed in 1975. However, back in 

those times, tools for protein identification were unavailable and reproducibility was 

difficult. It was only in the 1980s that reproducibility of 2D experiments improved 

with the introduction of immobilized pH gradients (IPG) strips and the introduction of 

mass spectrometry allowed protein identification at a large scale which eventually 

became the mainstream method for protein identification in the 1990s. 

 

Proteomics can be defined simply as the study of proteins but to many, this 

will be considered as superficial. The best definition is probably given by Howard 



 42

 

 

 

 

 

 

 

 

 

Figure 1.8: Proposed model showing different levels of HIF-1-p53 interactions in the 
presence of hypoxia and anoxia (Extracted from Schmid et al., 2004). 
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Hughes Medical Institute investigator, Professor Stanley Fields in Science who wrote 

“Proteomics: the analysis of complete complements of proteins. Proteomics includes 

not only the identification and quantification of proteins, but also the determination of 

their localization, modifications, interactions, activities, and, ultimately, their 

function” (Fields, 2001). Furthermore, this will include three-dimensional (3D) 

protein structure study at a large scale. Initially, proteomics study was restricted to 

only two-dimensional (2D) gel electrophoresis for protein separation and 

identification. Today, proteomics is referred to any methods used for the large scale 

characterization of proteins. There are currently many existing and emerging methods 

and approaches (e.g. 2D DIGE, shotgun proteomics, cleavable ICAT, iTRAQ, SILAC) 

available as technology for protein study becomes more sensitive and precise, 

resulting in a big influx of newly discovered proteins joining inline with already 

known proteins involved in known processes. Therefore, it is important that the new 

and old data are stringently curated. 

 

1.5.1 Proteomics versus Genomics 

Both proteomics and genomics studies contribute greatly and significantly to 

human health studies by allowing analysis of large scale of genes and proteins in a 

single experiment and thus, bypassing the traditional cumbersome and time-

consuming protein characterization methods. Still, the shift in research from genome 

to proteome is a challenge for many scientists, mainly because the proteome, unlike 

the genome, is dynamic. If one is to liken genome to a blueprint of a house, the 

proteome will be the finished product that you see at the end of the day, with errors 

and changes made along the way or after it is finished (Fields, 2001). Likewise, 

proteins are subjected to many forms of PTMs such as phosphorylation, glycosylation, 
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acetylation, ubiquitination, farnesylation, and many others, to influence its cellular 

location, stability, binding affinity to other molecules, and activity. Furthermore, a 

gene can produce many different splice isoforms due to alternate splicing, or even a 

few different proteins due to varying translation start or stop sites, as well as frame 

shifts. The resulting protein products may have different or opposing functions and 

this can be exemplified in the case of p53 gene whereby several splice isoforms have 

been reported in human and mouse (Arai et al., 1986; Courtois et al., 2004; Courtois 

et al., 2002). These isoforms are either truncated at the N- or the C-terminal but all 

retain the characteristic core domain critical for DNA binding as well as function 

relating to apoptosis (Figure 1.9). Thus, all these possibilities can contribute to a more 

complicated proteome that is much bigger than the corresponding genome. 

 

Through genomics, we can only understand that the gene exists and is 

activated by observing the synthesized mRNA level. On the other hand, the stability 

of mRNA is often short-lived and it has also been reported that mRNA levels are 

often not a true reflection of protein levels (Gygi et al., 1999). The direct 

measurement of protein will allow bypass of any mRNA inconsistencies that can arise 

and provides a more accurate level of gene activity. An example illustrating this is the 

expression of HIF-1α which is constitutively expressed but the protein level is nearly 

undetectable in all cell types under normoxic conditions (Kallio et al., 1999). Lastly, a 

protein can have several functions and may be involved in more than one process and 

likewise, similar functions may be carried by different proteins. A proteomic 

approach will allow the analysis of intact protein complexes from lysed cells and 

provide clues for their functions. Together, these reasons support the concept that 
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Figure 1.9: Different p53 isoforms and their mechanisms of production. [A] Human 
p53 isoforms. [B] Asp53, a mouse-specific isoform. Yellow: N-terminal domain; 
blue: DNA-binding domain; green: C-terminal domain; grey: noncoding exons of 
RSp53 and p53II; red: alternative exon identified in I9t p53; purple: alternative exon 
incorporated in ASp53. Major ATG and STOP codons are indicated in black. A 
second, alternative ATG at position 40 in DNp53 or in p53/47 is indicated in green. 
The corresponding ATG in the mouse is at codon 41. TA: transactivation domain; 
PR: proline-rich domain; DBD: DNA-binding domain; OD: oligomerization domain; 
RD: regulatory domain; NLS: nuclear localization signal. (Extracted from Courtois et 
al., 2004).  

[A] 

[B] 
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proteomics can allow a bigger and clearer picture of the actual cellular activities 

occurring in an organism. 

 

1.5.2 Proteomic Techniques 

Applications of proteomic approaches have been on the rise since the days of 

protein chemistry before the term “proteomics” was coined. This is evident by the 

exponential growth in the number of publications in proteomics compared to that in 

genomics as observed from 1995 to 2006 (Figure 1.10). The rapid development of 

better equipment and methods that can provide a quicker and more precise analysis 

might have promoted crucially to this trend. In this section, a brief introduction on a 

few currently popular methods used in proteomic study will be given.  

 

1.5.2.1 Two-Dimensional Gel Electrophoresis & Two-Dimensional Difference Gel 

Electrophoresis 

Two-dimensional gel electrophoresis (2D GE) is probably the oldest, yet 

popular, technique used today. This method is developed based on protein separation 

by their isoelectric points (pI) and molecular weights (MW), usually in a gel interface. 

The isoelectric point referred to as the pH at which a molecule carries no net electrical 

charge. The 2D GE is a two-step method – proteins are separated initially according 

to their pI (1st dimension) in an IPG strip under the influence of an applied electric 

field, followed by MW separation (2nd dimension) in a SDS-PAGE. Separated protein 

spots are visualized using various protein staining methods, such as silver staining. 

Typically, under reducing condition, an average of 2000~3000 protein spots can be 

visualized in a 20 by 20 cm high-resolution polyacrylamide gel. Comparative analysis 

is possible by loading equal amounts of proteins from test and control samples in  
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Figure 1.10: Numbers of publications in proteomics (top) and genomics (bottom) 
each year from 1995 to 2006 according to PubMed database. The search terms were 
the year and the words ‘proteomics’ or ‘proteome’ and ‘genomics’ or ‘genome’. 
Search is limited to research/review articles or cited in PMC or manuscripts or open 
access articles or articles with supplementary material. 
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individual 2D GE under similar conditions. Several software (e.g. PDQuest, Melanie 

II, Genebio), some of which are free, have been developed for improving comparative 

analysis between two samples too. Protein spots can then be excised and sent for 

protein identification by mass spectrometry (MS). Two-dimensional difference gel 

electrophoresis (2D DIGE) is a similar technique but with some advantages over 

conventional 2D GE. It is a technique that incorporates protein fluorescent labeling 

with 2D GE and allows multiple protein samples that is labeled with different 

fluorescence dyes to be separated in the same IPG strip under identical experimental 

conditions. Comparative analysis is improved since the same protein from different 

samples will be located on the same spot. Although the total amount of protein is 

halved in 2D DIGE, it is claimed that the sensitivity is enhanced by the dyes. 

Differential expression profiles of each sample can also be visualized at each CyDye’s 

excitation wavelengths under a fluorescence scanner. The disadvantage is that 2D 

DIGE is a lot more costly than conventional 2D GE. 

 

The restricted pI and MW range used for protein separation is a limitation to 

this technique. Proteins with MW smaller than 10 kDa and greater than 200 kDa are 

usually hard to identify or resolve on PAGE gels. The presence of abundant proteins 

in protein samples can also prevent effective separation of proteins. However, this 

shortcoming can be overcome by removal of abundant proteins such as albumin using 

albumin depletion kit, or by fractionation of cellular proteins to selectively analyze 

the specific cellular fraction such as mitochondria. 
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1.5.2.2 Cleavable Isotope-Coded Affinity Tags & Isobaric Tags for Relative and 

Absolute Quantification 

Cleavable isotope-coded affinity tags (cICAT) is a technique that utilizes 

cysteine-specific, light (12C) and heavy (13C), isotopic tags to label peptides (duplex 

labeling) for comparative proteomic analysis between two protein samples. On the 

other hand, a similar technique called isobaric tags for relative and absolute 

quantification (iTRAQ) can perform multiplex peptide labeling (currently up to four 

different samples) using four different amine-reactive isobaric tags with MW ranging 

from 114 to 117 Da instead. Both are able to provide a more complete protein 

identification and quantification data than with 2-D gels and are currently used 

popularly in many researches (Maurya et al., 2007; Tannu and Hemby, 2006). 

However, it is important to point out that in order to provide a more accurate analysis, 

relatively equal amounts of protein samples must be used for labeling. In addition, 

one critical downside is the limitation of information from databases which implies 

that not all detected peptides can be matched to known proteins. 

 

1.5.2.3 Stable isotope labeling with amino acids in cell culture 

Stable isotope labeling with amino acids in cell culture (SILAC) is a 

straightforward method that relies on in vivo metabolic incorporation of amino acids 

with substituted stable isotopes such as deuterium, 13C, and 15N. It shares a similar 

idea with cICAT and uses “light” and “heavy” forms of amino acids instead of tags. 

For example, in an experiment, two cell populations are grown in culture media that 

are identical except with one containing a ‘light’ and the other a ‘heavy’ form of a 

particular amino acid (e.g. 12C and 13C labeled L-lysine, respectively). In this way, the 

cells in both populations will uptake the amino acid from the media and incorporate 
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into all newly synthesized proteins. Therefore, labeling is possibly 100% and allows 

complete analysis of the whole cell proteome. The cells can then be lysed and the 

proteins can be pooled and processed (e.g. trypsin digestion, 2-dimensional liquid 

chromatography) before analysis by mass spectrometry. It is possible that SILAC is 

used as a multiplex technique like iTRAQ with different stable isotopes. Like any 

other techniques, SILAC has its own limitations and one limitation is that this 

technique is restricted to experiments involving cell culture. 
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CHAPTER 2 – OBJECTIVES 

 

 In this project, we adopt a quantitative proteomic approach using a recent 

method called iTRAQ and perform a multiplex comparative analysis on colorectal 

cancer cell line HCT116 that is either containing wildtype (WT) p53 or p53 knockout 

(KO), grown under normoxic or hypoxic conditions over a fixed period of time. The 

normoxic condition refers to the normal growing condition in cell culture, i.e. 5% CO2; 

rest air, while hypoxic condition is set as 1% O2; 5% CO2; rest N2. 

 

 In this study, we attempt to: 

1. Identify novel targets regulated by p53 through comparative analysis 

between wild-type (WT) p53 cells and p53 knockout (KO) cells. 

2. Identify novel targets regulate by hypoxia through comparative analysis 

between normoxic and hypoxic cells. 

3. Elucidate possible relationships shared between proteins regulated by 

hypoxia and p53. 

4. Construct the signaling pathways that are possibly regulated by hypoxia 

and p53. 

5. Validate the potential markers regulated by p53 and hypoxia using RT-

PCR and immunoblotting assays. 
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CHAPTER 3 – MATERIALS AND METHODS 

 

3.1 Antibodies 

Anti-p53 (DO-1), anti-Annexin II (3D5), anti-LDH-A (N-14) and anti-PGK1 

(Y-12) were purchased from Santa Cruz Biotechnology (California, USA). Anti-HIF-

1α and anti-EFHD2 were purchased from Becton Dickinson (BD) Biosciences (New 

Jersey, USA) and Novus Biologicals (Colorado, USA) respectively. Anti-PCBD1 was 

purchased from Abnova (Taipei City, Taiwan). Loading control anti-αtubulin (clone 

B-5-1-2) was purchased from Sigma-Aldrich (Missouri, USA). Secondary antibodies 

against mouse, rabbit and goat were also purchased from Santa Cruz Biotechnology. 

All antibodies were pre-diluted with 1X Tris-buffered saline Tween20 (TBST) (25 

mM Tris-base, 150 mM NaCl, 0.05% (v/v) Tween-20, pH 7.4) before usage. 

 

3.2 Primers 

All primers were designed using ABI Primer Express® software (v3.0) 

(Applied Biosystems, California, USA) and purchased from 1st Base (Singapore), 

with the exception of GRIM19, ANXA2, PGK1, and MAPRE1, which were 

purchased from Research Biolabs (Singapore). Primers (Stock = 100 µM) used for 

conventional PCR were diluted individually to a working concentration of 10 µM 

while primer pairs used in quantitative RT-PCR were diluted to 5 µM per primer with 

RNase-free water.  

 

3.3 Cell culture 

Human colon carcinoma cell lines, HCT116 p53 knockout (KO) and its 

corresponding wild-type (WT), kindly provided by Dr. Yu Qiang (Genome Institute 
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of Singapore, Singapore), were cultured in Dulbecco’s modified Eagles medium 

(DMEM), containing 4.5 g/L glucose, 4.0 mM L-glutamine, 10 % heat inactivated 

fetal bovine serum (FBS), 3.7 g/L sodium bicarbonate solution (NaHCO3) and 100 

units/mL penicillin-streptomycin (PS) solution. All were purchased from HyClone 

(Logan, Utah, USA). The cells were maintained under standard cell culture 

environment (5 % CO2-containing humidified atmosphere) in a MCO-18AIC CO2 

incubator (Sanyo, Japan) at 37oC. 

 

3.4 Normoxia, hypoxia and hypoxia-mimetic drugs treatments 

Both HCT116 p53 KO and HCT116 WT cells were initially seeded in 10 cm 

culture dishes (Nunc, Roskilde, Denmark) and cultured in DMEM, containing 4.5 g/L 

glucose, 4.0 mM L-glutamine, 10 % FBS, 1 % PS and 3.7 g/L NaHCO3, under 

standard cell culture condition for 24 hours (hr) in the CO2 incubator at 37 oC.  

 

Subsequently, the cells were incubated under hypoxic (1 % O2, 5 % CO2, rest 

N2) or normoxic (5 % CO2, rest air) conditions for 18 hrs at 37 oC in fresh culture 

medium.  In a separate experiment to stimulate hypoxic signaling pathways, we also 

treated cells with 100 µM cobalt chloride (CoCl2) from Fluka (Sigma-Aldrich, 

Missouri, USA) for 18 hr at 37 oC in normoxic condition. 

 

3.5 Protein extraction 

Total cell extracts were prepared from HCT116 WT and HCT116 p53 KO 

immediately after 18 hr of hypoxic or normoxic or drug treatment. Each plate of cells 

was washed twice with ice-cold 1X phosphate-buffered saline (PBS; 3.2 mM 

Na2HPO4, 0.5 mM KH2PO4, 2.7 mM KCl, 135 mM NaCl, pH 7.4) briefly and the 
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cells were lysed in 400 µL radioimmunoprecipitation assay (RIPA) buffer (50 mM 

Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 1 % (v/v) NP-40, 0.5 % (w/v) sodium 

deoxycholate, and 0.1 % (w/v) SDS) prepared with some modifications to original 

recipe. Proteases inhibitors, containing 1 mM phenylmethylsulfonyl fluoride, 1 mM 

aprotinin, 1 mM pepstatin A, and 1 mM leupeptin were added into the RIPA buffer 

just before use. All protease inhibitors were purchased from Sigma-Aldrich (Missouri, 

USA). The cells lysates were then transferred into individual 1.5 mL microfuge tube 

(Axygen, California, USA) and incubated in ice for 15 minutes (min), vortexing for 1 

min after every 5 min of incubation. The lysed samples were then centrifuged at 

16,000 x g for 1 hr and clarified supernatants were collected in fresh 1.5 mL 

microfuge tubes for further experiments or stored at -80 oC. All steps were performed 

on ice or at 4 oC unless otherwise stated. 

 

3.6 Protein Quantification 

Protein concentrations of each sample collected were determined using a 

reducing agent compatible and detergent compatible (RC DC) Protein Assay Kit from 

Bio-Rad (California, USA) by following the instructions provided. A standard curve 

with 6 dilutions (0.2 to 1.5 mg/mL) of a protein standard (bovine serum albumin, 

provided by the kit) was also generated for each new assay. The samples were also 

diluted appropriately (between 2X to 25X dilutions) and prepared in duplicates each 

time. Absorbance values were read at wavelength 750 nm using Beckman DU®-65 

photospectrometer (California, USA) and protein concentrations of each sample were 

calculated according to the protein concentration standard curve generated in each 

assay each time. 
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3.7 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Different percentages of SDS-PAGE gels, ranging from 8% to 15%, were 

prepared with Bio-Rad Mini-PROTEAN 3 (MP3) gel casting system (California, 

USA) as shown in table 3.1. Extracted protein lysates were mixed by vortexing with 

6X SDS sample loading buffer (3 % (w/v) SDS, 40 % (v/v) glycerol, 600 mM β-

mercaptoethanol, and 0.1 % (w/v) bromophenol blue in 150 mM Tris-HCl pH 6.8). 

Samples were then “cooked” at 95 oC for 10 min, following centrifugation at 

maximum speed for 1 min at room temperature to pellet down any residues before use. 

Gel electrophoresis was carried out in Tris-Glycine buffer (25 mM Tris-base, 192 mM 

Glycine, 0.1 % (w/v) SDS) at a constant current of 12 mA per gel at room temperature. 

Acrylamide/Bis solution (30 % stock; 29:1 ratio (3.3 % C)), ammonium persulfate 

(APS) and SDS powder were purchased from Bio-Rad. Tris-base and TEMED were 

purchased from 1st Base (Singapore) and Invitrogen (California, USA) respectively. 

 

3.8 Staining and destaining of SDS-PAGE gels 

The SDS-PAGE gels were stained in Coomassie Brilliant Blue staining 

solution (0.25 % (w/v) Coomassie Blue R-250 in 50 % (v/v) methanol and 10 % (v/v) 

glacial acetic acid), shaking for 30min at room temperature on an orbital shaker 

(Heidolph® unimax 2010, Germany). The gels were then destained with destaining 

buffer (30 % (v/v) methanol, 10 % (v/v) glacial acetic acid) to remove excess 

background. 

 

3.9 Immunoblot Assay 

Extracted protein lysates were mixed thoroughly with 6x SDS sample buffer 

and resolved on SDS-PAGE gels as described in the previous section 3.7. The
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Resolving gel per 10mL 
Stacking gel 

per 4mL Reagents 

8% 10% 12% 15% 5% 

30% 

Acrylamide/Bis 
2.7 3.3 4.0 5.0 0.67 

1.5M Tris-HCl, 

pH8.8 
2.5 2.5 2.5 2.5 -- 

1.0M Tris-HCl, 

pH6.8 
-- -- -- -- 0.5 

MilliQ 

Water 
4.6 4.0 3.3 2.3 2.7 

10% (v/v) 

SDS 
0.1 0.1 0.1 0.1 0.04 

10% (v/v) 

APS 
0.1 0.1 0.1 0.1 0.04 

TEMED 6µL 4µL 4µL 4µL 4µL 

 

Table 3.1: Preparation for different percentages of SDS-PAGE gels. Measurement 
units are all in milliliter (mL) unless otherwise stated. 
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proteins were then electroblotted to BioTraceTM polyvinylidene fluoride (PVDF) 

transfer membranes (0.45 µm) (PALL, Florida, USA). The membranes were then 

blocked with 2 % bovine serum albumin (BSA) prepared in 1X TBST and incubated 

for 1h. Subsequently, they were rinsed briefly with copious 1X TBST twice, followed 

by 1 hr or overnight incubation with primary antibodies. The membranes were then 

incubated with secondary antibodies conjugated with horseradish peroxidase (HRP) 

for 1 hr after removal of primary antibodies. Membranes were washed 3 x 5 min with 

copious 1X TBST after each antibody incubation step. Target proteins were visualized 

by enhanced chemiluminescence (Super Signal®, Pierce, Illinois, USA) and X-ray 

films (Fuji SuperRX Film, Fuji, Japan), which were developed using a Kodak X-ray 

film processor.  

 

Unless otherwise stated, all steps were performed at room temperature and all 

incubation was done on an orbital shaker. Overnight primary antibody incubation was 

performed in a 4 oC cold room on a Belly Dancer® shaker (Stovall, North Carolina, 

USA). 

 

3.10 iTRAQ 

All steps were performed according to the manufacturer’s protocol (ABI, 

Applied Biosystems iTRAQ™ Reagents Chemistry Reference Guide, 2004, 

http://docs.appliedbiosystems.com/pebiodocs/04351918.pdf) with minor 

modifications. The experiment was repeated 3 times under the same condition as 

stated below. 
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3.10.1 iTRAQ – Protein Extraction 

Protein sample preparation for iTRAQ differed slightly from the above 

“Protein Extraction” method used. The cell samples were washed twice with ice-cold 

PBS and harvested with 300 µL lysis buffer (0.1 M triethylammonium bicarbonate 

(TEAB) pH 8.5, containing 1 % (w/v) SDS) per 10 cm culture dish. The mixtures 

were transferred into individual 1.5 mL microfuge tubes and boiled at 100 oC for 15 

min, followed by 15 min incubation on ice, vortexing for 1 min after every 5 min. The 

tubes were then centrifuged at 16,000 x g for an hour at 4 oC and clarified 

supernatants were transferred to new microfuge tubes. A small volume from each 

sample was aliquot and used for protein quantification using Bio-Rad’s RC DC 

Protein Assay Kit. Remaining sample was stored in -80 oC. 

 

In this study, the different samples were labeled as “WT-N”, “WT-H”, “KO-

N” and “KO-H”, with “N” and “H” representing “normoxia” and “hypoxia” 

respectively. 

 

3.10.2 iTRAQ – Reduction & Cysteine blocking 

After protein quantification, 100µg of proteins from each sample was aliquot 

into fresh individual 1.5 mL microfuge tubes and the final volume was adjusted to 40 

µL with the lysis buffer. Disruption of the disulphide bonds in each protein sample 

was carried out by adding 5 mM of tris-(2-carboxyethyl)phosphine (TCEP), a 

reducing agent provided by iTRAQ kit, to each sample and mixed by vortexing. Each 

sample mixture was then incubated at 60 oC for 1 hr. Thereafter, 10 mM methyl 

methanethiosulfonate (MMTS), a cysteine blocking reagent provided by iTRAQ, was 
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added to each tube and mixed thoroughly. This was followed by 10 min of incubation 

at room temperature. 

 

3.10.3 iTRAQ – Trypsin Digestion 

After reduction & cysteine blocking, the samples were diluted 20 times with 

0.5 M TEAB to reduce SDS concentration to less than 0.05 %. High concentrations (> 

0.1 %) of SDS would decrease or inhibit the activity of trypsin. 25 µg of porcine 

trypsin prepared in MilliQ (MQ) water was added to each diluted sample and vortex. 

The resulting mixture for each sample was incubated in a 37 oC incubator oven for 16 

hr. Thereafter, the trypsin-digested samples were speed-vac to dryness and 

reconstituted in 25 µL dissolution buffer (containing 0.5 M TEAB) provided by the 

iTRAQ kit. 

 

3.10.4 iTRAQ – Sample Labeling 

 All iTRAQ isobaric labels (114, 115, 116, & 117) were individually dissolved 

in 70 µL ethanol and the entire content of each dissolved label was mixed thoroughly 

by votexing with each sample as stated below. 

• iTRAQ label 114    WT-N 

• iTRAQ label 115    WT-H 

• iTRAQ label 116    KO-N 

• iTRAQ label 117    KO-H 

The 4 samples were incubated at room temperature for 1 hr and they were then 

combined together. 
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3.10.5 iTRAQ – Sample Clean-up Prior to LC/MS/MS Analysis 

Before performing LC/MS/MS analysis, the iTRAQ-labeled peptides were 

cleaned up using cation exchange chromatography with the Applied Biosystems 

cation-exchange cartridge system (P/N 4326747) to remove unbound iTRAQ tags and 

salts. 

 

The combined iTRAQ-labeled peptides were diluted at least 10 fold with 

Cation Exchange Buffer (CEB)–Load (10 mM potassium phosphate (KH2PO4) in 25 

% (v/v) acetonitrile, pH 3.0) and the pH was adjusted with phosphoric acid to 2.5~3.5. 

Prior to injection of the sample mixture, the SCX cartridge was conditioned with the 

same loading buffer. Injection of sample mixture into the SCX cartridge was done 

manually using a sterile 5 mL syringe (Becton Dickinson (BD), Singapore) at the rate 

of approximately 1 drop per second and the flow-through was collected in a fresh 15 

mL Falcon® tube (Becton Dickinson, New Jersey, USA). The flow-through was re-

injected into the SCX cartridge two more times and the final flow-through was 

collected and stored at -20 oC. An additional 1 mL of CEB–Load was injected to wash 

excess iTRAQ reagents, salts, and SDS from the cartridge with the flow-through 

collected and stored too. 

 

Bound iTRAQ-labeled peptides were eluted by slowly injecting 500 µL of 

CEB–Elute (10 mM KH2PO4 in 25 % (v/v) acetonitrile containing 350 mM potassium 

chloride (KCl), pH 3.0) and the eluate was collected. Subsequently, the collected 

eluate was diluted 10 times with Buffer A (98 % MQ water; 2 % (v/v) acetonitrile; 

0.05 % (v/v) TFA) prior to passing through a C18 Sep-Pak® cartridge (Waters, USA) 

for desalting. The cartridge was pre-activated by injecting 10 mL 100 % acetonitrile 
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(ACN) and pre-equilibrated with 10 mL Buffer A before injecting the diluted eluate 

slowly into it. The flow-through was collected and re-injected two more times and 

finally collected and kept at -20 oC.  

 

The bound peptides were eluted using 5 mL elution buffer (50 % MQ water; 

50 % ACN), following by another 5mL of Buffer B (20% MQ water; 80% (v/v) ACN; 

0.05 % (v/v) TFA). The eluted peptides were collected in a fresh 50mL Falcon® tube 

(Becton Dickinson, New Jersey, USA) and mixed with 10 mL MQ water. The diluted 

eluate was flash-frozen with liquid nitrogen and lyophilized. Lyophilized eluate was 

then re-constituted in 1mL Buffer A and transferred into a fresh 1.5 mL microfuge 

tube. The reconstituted solution was then speed-vac to dryness and stored at -20 oC 

before LC/MS/MS analysis. All flow-through fractions collected were kept until 

MS/MS analysis verified the success loading onto SCX cartridge.  

 

3.10.6 iTRAQ – Two-dimensional Liquid Chromatography (LC) separation & 

MS/MS 

The dried 400 µg iTRAQ-labeled peptides were subsequently processed in the 

Protein and Proteomics Centre in National University of Singapore – Department of 

Biological Sciences (NUS-DBS). 

 

Two-dimensional LC separation of the peptides was carried out using an 

UltiMateTM dual-gradient LC system (Dionex-LC Packings, California, USA). The 

peptides were solubilized in 30 µL Buffer A solution and 27 µL was injected into a 

0.3 x 150 mm strong-cation exchange (SCX) column (FUS-15-CP, Poros 10S) 

(Dionex-LC Packings, California, USA). The composition of Mobile Phase A was 
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5mM KH2PO4 and 5 % (v/v) ACN (pH 3.0). Mobile Phase B was the same as Mobile 

Phase A with an additional 500 mM KCl added. The first flow-through (unbound 

peptides) was collected as the first fraction. Subsequently, 8 more fractions were 

separated by step gradients of Mobile Phase B (0-5, 5-10, 10-15, 15-20, 20-30, 30-40, 

40-50, 50-100% B) at a flow rate of 6.0µL/min. All 9 fractions were captured 

alternatively onto two 0.3 x 1.0 mm PepMapTM C18 trap columns (3 µm, 100 Å) 

(Dionex-LC Packings, California, USA) and washed with 0.05 % (v/v) TFA. The 

captured peptides were then resolved on a reverse-phase PS-DVB capillary 

monolithic column (Dionex-LC Packings, California, USA) at a flow rate of 2.7 

µL/min over a 20 min linear gradient from 0 to 60 % of Buffer B (20% MQ water; 

80% (v/v) ACN; 0.05 % (v/v) TFA) solution, followed by a constant 2 min 90 % 

Buffer B solution. 

 

The eluate was mixed with MALDI matrix (7mg/ml α-cyano-4-

hydroxycinnamic acid; 130 µg/ml ammonium citrate in 75 % A(v/v) CN) at a ratio of 

1:2 through a 25 nL mixing tee (Upchurch Scientific, Washington, USA) at a flow 

rate of 5.4 µL/min. The resulting mixture was spotted onto 192-well stainless steel 

MALDI target plates (Applied Biosystems, California, USA) using a offline ProbotTM 

Microfraction Collector (Dionex-LC Packings, California, USA) at an interval of 5 

sec per well. 

 

The peptides were analyzed on a 4700 Proteomics Analyzer (Applied 

Biosystems, California, USA) with MALDI source and TOF/TOFTM optics. Default 

calibrations in MS and MS/MS were updated regularly and the deflector plates (X1, 

Y1, X2 and Y2) were optimized constantly for optimal sensitivity. All positive ion 
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MS/MS data were acquired using nitrogen with collision energy of 1 keV and a 

collision gas pressure of ~1 x 10-6 Torr. MS spectra were recorded for all 192 spots on 

each MALDI plate and each spectrum was generated in the mass range of 850– 3500 

amu by averaging 1,000 laser shots. MS precursor ions that met the precursor 

selection criteria were selected for subsequent MS/MS analyses. An initial 6000 laser 

shots were combined to obtain precursor ions with signal to noise (s/n) greater or 

equal to 100. A subsequent 10,000 laser shots were acquired for precursor ions with 

s/n ratio between 50 and 100 inclusively.  

 

3.10.7 iTRAQ – MS data analysis and protein identification 

Peptide and protein identifications were performed by searching the MS/MS 

spectra against the International Protein Index (IPI) database (version 3.2.3) using a 

local MASCOTTM search engine (version 2.1; Matrix Science), with human chosen as 

the source of the proteins and the search was restricted to tryptic peptides. The 

following parameters were also set for the search: trypsin with maximum one missed 

cleavage was allowed; precursor error tolerance was set to 100 ppm and MS/MS error 

tolerance to 0.3 Da; iTRAQ-labeled N-termini and lysines as well as methyl 

methanethiosulfonate (MMTS) labeled cysteines were chosen as fixed modifications 

and methionine oxidation as variable modifications. The MASCOT-matched peptides 

included for protein identification and quantification analysis were filtered 

accordingly with confidence interval (C.I.) values no less than 85 % and maximum 

peptide rank set as 2. 
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3.10.8 iTRAQ – Protein Quantification and Statistical Analysis 

Relative quantification of proteins was performed on the MS/MS scans. The 

reporter ion (m/z 114, 115, 116 and 117 – masses of tags that corresponds to the 

iTRAQ reagents) peak areas (RPAs) were extracted from the raw MS spectra and 

normalized among the samples using GPS ExplorerTM software (version 3.6) (Applied 

Biosystems, California, USA). Individual protein pair expression ratios were 

computed based on the RPAs (m/z 115, 116, and 117) measurements relative to WT-

N measurements (m/z 114) initially. Further expression ratios for KO-H 

measurements (m/z 117) relative to WT-H measurements (m/z 115) and to KO-N 

measurements (m/z 116) were also generated to allow greater magnitude of 

comparisons among the 4 samples. 

 

With reference to previous work done earlier (DeSouza et al., 2005), many 

identified proteins were found with an expression ratio close to 1.0 after 

normalization. Therefore, protein targets exhibiting fold expression changes greater 

than 30% were classified as proteins showing potentially, significant altered 

expression. In addition, this group of selected targets must exhibit a confidence 

interval (C.I.) greater than or equal to 95% and were reported in at least 2 

experimental replicates. Subsequently, each protein that showed significant changes 

was manually screened by studying their MS/MS spectra. Protein targets, satisfying 

the criteria, were selected for downstream verification using immunoblotting and real-

time quantitative PCR (RT Q-PCR). 
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3.11 RNA purification  

Total RNA of  HCT116 WT and HCT116 p53 KO cells were extracted using 

TRIZOL
® reagent (Invitrogen, California, USA), immediately after 18 hr of hypoxic or 

normoxic treatment. The procedure was carried out according to the product’s 

instruction manual with minor modifications. Briefly, each plate (10 cm culture dish) 

of cells was harvested with 1 mL of TRIZOL
® reagent. The harvested samples were 

homogenized and incubated at room temperature for 5 min before 0.2 mL of 

chloroform was added to each sample and shook vigorously. Next, the samples were 

left undisturbed at room temperature for 3 min, following by centrifugation at 11,000 

x g for 15 min at 4 oC. The aqueous layer was then carefully transferred to a fresh 

tube and 0.5 mL isopropanol were added and mixed well to allow precipitation of 

RNA. The mixture was centrifuged at 11,000 x g for 10 min at 4 oC, preceding 

incubation at room temperature for 10 min. Supernatant was discarded and the pellet 

was washed with 1 mL of 75 % (v/v) ethanol by vortexing, following centrifugation at 

7,000 x g for 5 min at 4 o. The resulting pellet was air-dried briefly and re-dissolved in 

DECP-treated sterile MilliQ-water at 60 oC prior to storage at -80 oC. 

 

The quality and concentration of each dissolved RNA pellet were measured at 

wavelengths 260 nm and 280 nm. The ratio of absorbance readings at 260 nm to 280 

nm indicates the quality and purity of the RNA extracted. All RNA samples were 

diluted with RNase-free water to a concentration of 0.6 µg/µL. 

 

3.12 cDNA synthesis 

The diluted RNA samples were used to obtain complementary DNA (cDNA) 

through reverse transcription using SuperScript™ First-Strand Synthesis System for 
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RT-PCR kit from Invitrogen (California, USA). Generation of first-strand cDNA was 

carried out strictly according to the kit’s instruction manual. For each 20 µL reaction, 

4.2 µg RNA was mixed with 1 mM dNTP mix and 1 mM Oligo(dTs). RNase-free 

water was used to top up the volume to 13.25 µL. The resulting mixture was 

incubated at 65 oC for 5 min, followed by 1 min incubation in ice. Thereafter, 4 µL of 

5X RT buffer, 10 mM DTT and 0.5 µL RNAseOUTTM Recombinant RNase Inhibitor 

were added, mixed and incubated for 2 min at 42 oC. Fifty units (0.25 µL) of 

SuperScriptTM II RT was then added, mixed and incubated at 42 oC for another 50 min. 

Reaction was then terminated at 70 oC for 15 min. All cDNAs generated were stored 

in -20 oC for further applications. 

 

3.13 Quantitative Real-Time Polymerase Chain Reaction (RT-PCR) 

Quantitative RT-PCR was performed according to the instruction manual from 

Applied Biosystems (ABI, Applied Biosystems SYBR® Green PCR Master Mix and 

RT-PCR, 2002) using ABI Prism 7000 Sequence Detection System (Applied 

Biosystems, California, USA) and SYBR® green dye (Applied Biosystems, 

Warrington, United Kingdom), as the reporter probe. 

 

The cDNA samples were diluted 84 times with sterile MilliQ water for RT-

PCR. For each RT-PCR reaction, 3 µL of pre-diluted cDNA were mixed with 400 nM 

of each gene specific primer pair and 10 µL of SYBR® green master mix (2X). Sterile 

MilliQ water was used to make up the volume to 20 µL. The RT-PCR was carried out 

in optical 96-well reaction plates from Applied Biosystems. Cycle threshold (Ct) 

value and baseline were set at 0.2 and from cycle 6 (start) to 15 (end) respectively. All 

primers’ specificities were checked by observation of singular peaks from their 
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dissociation curves with no signals detected from their respective no-template controls 

(NTC). Results were normalized against β-actin as the internal control. 
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CHAPTER 4 – RESULTS 

 

4.1 HIF-1α protein stabilizes and accumulates in cells under artificially-

induced hypoxia 

To confirm if our hypoxic chamber is capable of inducing low oxygen tension 

in cells, we used immumoblotting assays to examine the stabilization and 

accumulation of HIF-1α from the treated cells. Accumulation of HIF-1α protein was 

observed in both HCT116 p53 KO and its corresponding WT grown under hypoxic 

condition (1% O2; 5% CO2; rest N2) as well as cells treated with CoCl2 (positive 

control) while it was undetectable in both cells under a normoxic condition (Figure 

4.1A).  CoCl2 has been widely used as a hypoxia mimic in both in vivo and in vitro 

experiments (Wang and Semenza, 1993) and it is known to exhibit hypoxia-like 

responses through activation of hypoxia signaling by stabilizing HIF-1α (Vengellur et 

al., 2003). A higher amount of HIF-1α accumulation (approximately 2 to 3 folds) was 

also observed in HCT116 WT samples compared to corresponding hypoxia-treated 

HCT116 p53 KO samples (Figure 4.1B), hinting a possible influence of p53 on the 

stability of HIF-1α protein. There was no significant change in the level of p53 

protein (Figure 4.1C) observed when the cells were treated with hypoxia. The 

stabilization of HIF-1α observed in the cells indicated that our artificial hypoxic 

system was a success and cells were able to be cultured under low oxygen condition. 

 

4.2 iTRAQ Data Analysis 

4.2.1 Effects of Hypoxia on protein profiles in the presence/absence of p53 

To examine the effects of hypoxia treatment in the presence or absence of p53 

at proteome level, HCT116 cells were either treated with normoxia or hypoxia for 18  
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Figure 4.1: Stabilization and accumulation of HIF-1α under hypoxia. [A] Proteins 
(50µg) from each sample were separated by SDS-PAGE and the protein levels of 
HIF-1a and p53 were detected with respective antibodies. Accumulation of HIF-1α 
was observed in hypoxic samples and CoCl2-treated cells (positive control). Dotted 
arrow indicates phosphorylated HIF-1α while solid arrow indicates non-
phosphorylated HIF-1α. No significant change in p53 protein level was noted in both 
hypoxic sample as well as CoCl2-treated cells. No p53 protein was detectable in all 
HCT116 p53 KO samples. A graphical representation of HIF1α [B] and p53 [C] 
protein levels in normal and hypoxic samples after normalization against αtubulin. 
Band quantitation was performed by calculating the base intensity peak area using 
Image J (http://rsb.info.nih.gov/ij/). All samples were compared with reference to 
their respective normoxic controls. (‘WT-N’: normoxia-treated HCT116 WT; ‘WT-
H’: hypoxia-treated HCT116 WT; ‘KO-N’: normoxia-treated HCT116 p53 KO; 
‘KO-H’: hypoxia-treated HCT116 p53 KO; asterisk (*) denotes sample harvested 
using triethylammonium bicarbonate (TEAB) (pH 8.5), containing 1% SDS; 
α−tubulin serves as a loading control.) 

[A] 

[B] [C] 

CoCl2      N         H         H     CoCl2      N        H          H 
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hrs, harvested, and labeled with specific iTRAQ isobaric tags for each sample. A 

multiplexed iTRAQ-based quantitation in protein profiling was performed. In addition, 

protein identification was done by searching the MS/MS spectra against the IPI 

human database using signature peptides that are generated during trypsin digestion 

and identified by MS/MS. The iTRAQ quantitation strategy is based on the derivation 

of quartet samples with isotopically distinct tags, and the relative peak intensities of 

the resultant isotope clusters were determined to represent changes in peptide 

abundance among the samples. Figure 4.2 is a representative MS/MS spectrum used 

for peptide ratio determination with reference to the peak intensities of signature 

peaks (m/z 114 to 117) of iTRAQ reagents.  

 

At confidence interval (CI) greater than or equal to 95% and detected in at 

least two biological replicates, 217 confidently identified proteins were reported by 

MASCOTTM (Table 4.1). After analyzing the iTRAQ expression ratios of each 

identified protein, we were able to recognize two groups of proteins whose 

expressions were significantly altered by p53 and hypoxia. The expression levels for 

101 proteins (46.5%) were found altered in the absence of p53 while another 99 

proteins (45.6%) exhibit changes in their protein expression levels when subjected to 

an 18 hrs hypoxia treatment. Several proteins were also observed to be affected by 

both the presence of p53 and the treatment of hypoxia.  Moreover, out of the 217 

proteins identified, 70 proteins (32.3%) were unaffected by both p53 and hypoxia 

treatment (refer to supplementary table 2 for details). 
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Figure 4.2: A representation of a MS/MS spectrum used to determine protein 
abundance ratio in iTRAQ-labeled samples. The ratio of the four signature peaks (m/z 
114 to 117) (see left blowup insert) reflects the relative abundance ratio of the peptides 
in the four samples. Signature peptides, such as the one shown “SYSPYDMLESIR, 
were then used for identification of proteins by searching against protein databases, 
e.g. international protein index (IPI) database. 
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  No. of Proteins Identified 
  In at least 2 

sets 
In all 3 sets 

Total 343 91 

CI ≥ 95% 217 88 

Potentially influenced by p53 101 29 

Pr
ot

ei
ns

 d
et

ec
te

d 
by

 L
C

/ M
S/

M
S 

Potentially influenced by 
Hypoxia 99 29 

Table 4.1: Number of proteins identified by LC/MS/MS through iTRAQ-based 
quantitation strategy. 

Table 4.2: Number of potential protein targets influenced by p53 and/or hypoxia 
satisfying the given criteria. Venn diagram further illustrates the proportion of 
proteins that may be influenced by p53 and/or hypoxia under mentioned criteria. 
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 Based on 30% fold change in protein abundance, a total of 54 proteins were 

obtained. The expression levels of 15 proteins were found significantly changed in the 

absence of p53; in this group, 6 proteins were found up-regulated while 9 were down-

regulated. In addition, 14 proteins were significantly altered in the case of hypoxia 

treatment (Table 4.2); the number of up-regulated proteins and down-regulated 

proteins was 5 and 9, respectively. The remaining 25 proteins appeared to be 

regulated, synergistically or antagonistically, in the presence of p53 and hypoxia. Our 

results also provided a greater confidence to our hypoxia experimental setup. For 

instance, there are several known hypoxia-induced proteins, such as phosphoglycerate 

kinase 1 (PGK1), lactate dehydrogenase A (LDHA), and fatty acid synthase (FAS), 

were definitely identified. 

 

4.2.2 Gene ontology and protein-protein interaction analysis using Ingenuity 

Pathway Analysis (IPA) Tool 

A gene ontology (GO) analysis for the two groups of targets that exhibited 

significant protein abundance changes in the absence of p53 or hypoxia was carried 

out using ingenuity pathway analysis (IPA) tool (www.ingenuity.com) (Figure 4.3). 

The top 5 biological functions and diseases identified by IPA is shown in table 4.3 

and the significance value assigned to the functions is calculated using the right-tailed 

Fischer’s Exact Test in IPA to determine the probability that the genes/proteins-of-

interest participate in the biological functions. Furthermore, from the result, cellular 

growth and proliferation has the smallest assigned p-value, and is therefore the most 

significant biological function related to our proteins-of-interest. 25 out of 38 (~ 66%) 

p53-affected targets and 26 out of 35 (~ 74%) hypoxia-affected targets were classified 

according to their biological functions while the biological functions of the remaining 
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 Amino Acid Metabolism  Cell Cycle
 Cell Death  Cell Morphology
 Cell-To-Cell Signaling and Interaction  Cellular Assembly and Organization
 Cellular Compromise  Cellular Development
 Cellular Function and Maintenance  Cellular Growth and Proliferation
 Cellular Movement  DNA Replication, Recombination, and Repair
 Drug Metabolism  Energy Production
 Gene Expression  Lipid Metabolism
 Molecular Transport  Nucleic Acid Metabolism
 Post-Translational Modification  Protein Synthesis
 Protein Trafficking  RNA Post-Transcriptional Modification
 Small Molecule Biochemistry  Vitamin and Mineral Metabolism
Unknown

Figure 4.3: Gene ontology (GO) analysis of potential iTRAQ targets affected by p53 
and hypoxia according to their biological functions using IPA tool. IPA generated 
histograms illustrating the classifications of targets affected by p53 [A] and hypoxia 
[B], according to their biological functions. In both groups, most of the targets are 
involved in cellular growth and proliferation. Pie charts represent iTRAQ targets 
affected by p53 [C] and by hypoxia [D], separated according to their biological 
functions proportionally. 

[C] 

[D] 
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Functions & 
Diseases 

Significance No. of associated 
targets 

Associated targets’ 
ID 

    
Cellular growth & 
proliferation 

2.17E-8 – 4.93E-2 25 ANXA2, 
C6ORF108, CAPN1, 

CCT2, CDC2, 
EIF3S2, FASN, 

LDHA, LGALS1, 
MAPRE1, MCM2, 

MCM3, NDUFA13, 
NOP5, PGK1, 

PRPF8, PSMC4, 
SF3B2, SLC3A2, 

SMC3, VIL2, RBP1, 
CDC123, CKS2, 

GPIAP1 
    
Cancer 2.15E-3 – 4.93E-2 13 FASN, LGALS1, 

PTGES3, CDC2, 
C6ORF108, EIF3S2, 

LDHA, SLC3A2, 
SMC3, HSPA4, 
MCM2, CAPN1, 

EEF2 
    
Cell cycle 2.15E-3 – 4.93E-2 10 FASN, LGALS1, 

PTGGES3, CKS2, 
SMC3, CDC2, 
MAPI, MCM2, 

SMC3, CDC123, 
    
RNA post-
transciptional 
modification 

2.56E-2 – 4.1E-2 4 CDC2, NOP5, 
PRPF8, SF3B2 

    
DNA regulation, 
recombination, and 
repair 

3.01E-3 – 4.93E-2 3 MCM2, MCM3, 
FASN 

    

Table 4.3: Top 5 functions and diseases of the 54 significantly affected targets by p53 
and/or hypoxia identified by IPA. 



 77

number were not found by IPA. Furthermore, although the majority of the proteins 

were involved in cellular growth and proliferation in both p53-affected group (18 

proteins; 16.7%) and hypoxia-affected group (19 proteins; 18.0%), several of these 

proteins were identified with more than one biological function. For example, annexin 

A2 (ANXA2), which is a calcium-dependent, phospholipid-binding protein, was 

reported in 8 of the biological functions reported by IPA and these included amino 

acid (aa) metabolism, lipid metabolism, cellular growth and proliferation, and cell 

death.  

 

Networks of direct interactions were also generated and the top 3 networks 

were merged to allow identification of overlapping molecules in each network using 

IPA tool. By comparing the networks generated from the p53-affected group with 

another from the hypoxia-affected group, common proteins that were affected by p53 

as well as hypoxia, either in a synergistic or antagonistic manner, can be determined 

easily (Figure 4.4). As an example, the top protein-protein interaction network 

generated by IPA tool allows examination of protein targets that were up-regulated or 

down-regulated under hypoxia in the presence and absence of p53 (Figure 4.5) as well 

as different regulation pattern of proteins observed in the absence of p53 under 

normoxia and hypoxia (Figure 4.6). In both figures, proteins that were commonly 

(blue-dotted boxes) or reversely (red-dotted boxes) regulated can be observed and the 

results are also tabulated in table 4.4. 

 

4.3 Downstream validations using a subset of iTRAQ results 

To further examine and provide a greater level of confidence to our observed 

result, a subset of the proteins exhibiting at least 30% abundance change was selected.  
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Description iTRAQ 
comparison set Down-regulated Up-regulated No change 

     
Hypoxia 

treatment in 
the presence 

of p53 

115/114 

CCT6A, 
MAPRE1, 

CAPN1, CDC2, 
CKS2 

SF3B2, SLC3A2, 
MCM3, 

SPTAN1, ASNS 

COTL1, 
VIL2, 

MCM2 

     
Hypoxia 

treatment in 
the absence 

of p53 

117/116 
CCT6A, 

SPTAN1, CDC2, 
MCM3, CKS2 

SF3B2, SLC3A2, 
MAPRE1, 

CAPN1, ASNS 

COTL1, 
VIL2, 

MCM2 

     

Absence of 
p53 under 
normoxia 

116/114 

COTL1, VIL2, 
MAPRE1, 

CAPN1, ASNS, 
MCM2, MCM3, 
SLC3A2, CKS2 

CCT2, SF3B2, 
SPTAN1, CDC2 -- 

     

Absence of 
p53 under 
hypoxia 

117/115 

COTL1, VIL2, 
MAPRE1, 

SPTAN1, ASNS, 
MCM2, MCM3, 
SLC3A2, CKS2 

CCT2, SF3B2, 
CDC2, CAPN1 -- 

     
 
 
 

Table 4.4: Tabulation of common proteins regulated in cells under hypoxia in the 
presence and absence of p53 as well as in the absence of p53 under hypoxia and 
normoxia. 
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 This subset of proteins was also selected based on the generated IPA networks 

which suggested possible indirect interactions between the potential novel proteins 

affected by p53 and/or hypoxia. Under these conditions, 20 targeted proteins (37%) 

were selected (Figure 4.7); these selected proteins were categorized into 3 groups, 

namely “affected by p53”, “affected by hypoxia”, and “affected by both p53 and 

hypoxia” (see Table 4.5).  In addition, two methods of validation analysis were used: 

one was through detection of the mRNA levels in the cells using quantitative real-

time polymerase chain reaction (RT-PCR) and the other was to determine the protein 

level using immunoblotting. Samples from both p53 WT and KO cells were prepared 

and subjected to either normoxia or hypoxia for 18 hrs prior harvesting. Furthermore, 

the proteins selected for downstream validations also include some known proteins 

affected by hypoxia (e.g. PGK1 and LDHA) and p53 (e.g. SMC3). 

 

4.3.1 Real-Time PCR analysis 

Total RNA was isolated from the cells, followed by determination of the 

purity and concentration for each RNA sample. Out of the 20 targets, 8 target genes 

exhibited similar changing trend in their mRNA level as observed in their 

corresponding iTRAQ result (Figure 4.8). This observation included the known 

hypoxia-induced genes, PGK1 and LDHA, which changed 3 to 4 folds higher than 

their normoxic counterparts. Other validated targets included SMC3, NSUN2, 

ANXA2, PCBD1, EFHD2, and G3BP1. Interestingly, the mRNA level of HIF-1α, 

which accumulates under hypoxia, was found significantly decreased instead. The 

RT-PCR result of the remaining 12 targets did not reflect the expression level or trend 

observed in our iTRAQ result. HIF-1α and VEGFA acts as a positive control for 

hypoxia while p53 was used to confirm the absence of p53 in the p53 KO cells. 
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Figure 4.7: A subset of iTRAQ targets chosen for downstream validation. [A] Total 
number of targets identified using iTRAQ-based quantitation strategy and the 
proportion of targets chosen for verification analysis summarized in a pie-chart. [B] 
Heatmap showing the relative expression ratios for each of the 20 targets. 115/114 
denotes WT-H : WT-N; 116/114 denotes KO-N : WT-N, 117/115 denotes KO-H : 
WT-H; 117/116 denotes KO-H : KO-N. Red and green colors indicate up- and down-
regulation of the targets respectively. Histograms illustrate the relative abundance 
ratio of the targets chosen for p53-affected group (COTL1, PCBD1, SMC3, NSUN2 
and ANXA2) [C], hypoxia affected group (EVX2, PGK1, LDHA EFHD2, DDX46 
and CKS2) [D], and by both p53 and hypoxia (MAPRE1, CDC2, G3BP1, MCM3, 
ERP29, PD2 CAND1, GRIM19 and NUP93) [E]. All results were compared with 
respect to WT-N. Dotted lines across the graphs indicate the upper and lower limit of 
30% fold change. 
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Protein Name Symbol Accession 
Number

iTRAQ ratio 
115:114

iTRAQ ratio 
116:114

iTRAQ ratio 
117:115

iTRAQ ratio 
117:116

Coactosin-like protein COTL1 IPI00017704 1.14791 0.85081 0.67787 0.90000

Pterin-4-alpha-carbinolamine 
dehydratase PCBD1 IPI00218568 0.88842 0.63199 0.57762 0.79904

Structural maintenance of 
chromosome 3 SMC3 IPI00219420 1.02334 1.45287 1.57244 1.08990

NOL1/NOP2/Sun domain family 2 
protein NSUN2 IPI00306369 1.0213 1.9822 1.6543 0.8541

Annexin A2 ANXA2 IPI00455315 0.9815 0.6476 0.6904 1.0468

Homeobox even-skipped homolog 
protein 2 EVX2 IPI00012495 1.5355 1.1954 1.0761 1.3829

Phosphoglycerate kinase 1 PGK1 IPI00169383 1.6054 1.2898 1.0197 1.2698

Lactate dehydrogenase A LDHA IPI00217966 1.3507 1.0381 1.0020 1.3043

EF hand domain containing 2 EFHD2 IPI00552365 1.4554 1.2468 1.2913 1.5081

DEAD box protein 46 DDX46 IPI00657954 0.7100 0.8645 1.1932 0.9805

Cyclin-dependent kinases 
regulatory subunit 2 CKS2 IPI00015105 0.25874 0.92993 1.32141 0.36180

Microtubule-associated protein 
RP/EB family member 1 MAPRE1 IPI00017596 1.3809 0.4925 0.7528 2.1119

Cell division control protein 2 CDC2 IPI00026689 0.6836 1.1640 1.5774 0.9282

Ras-GTPase-activating protein-
binding protein 1 G3BP1 IPI00012442 1.1063 0.9288 0.7442 0.8882

DNA replication licensing factor 
MCM3 MCM3 IPI00013214 1.15723 0.94376 0.68099 0.82171

PD2 protein PD2 IPI00300333 0.8986 0.7453 0.9548 1.1517

Isoform 2 of Cullin-associated 
NEDD8-dissociated protein 1 CAND1 IPI00604431 1.18748 1.32727 0.91727 0.80758

Endoplasmic reticulum protein 
ERp29 precursor ERP29 IPI00024911 0.8058 0.6998 0.9640 1.1106

Cell death-regulatory protein 
GRIM19 GRIM19 IPI00219685 0.7473 0.7153 0.7575 0.7917

Nucleoporin Nup93 NUP93 IPI00644506 0.6769 0.5843 0.8283 0.9600

Selected Targets that satisfied the criteria

Table 4.5: List of selected targets based on iTRAQ result and selection criteria for 
downstream verifications. Targets are classified into 3 groups: potentially 
influenced by p53 (highlighted in red); potentially influenced by hypoxia 
(highlighted in blue); potentially influenced by both p53 and hypoxia (highlighted 
in yellow). 



 87

 
 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

be
ta-
AC
TIN

HI
F-
1a
lph
a

TP
53

VE
GF
A

R
el

at
iv

e 
Fo

ld
 C

ha
ng

e 
in

 m
R

N
A

 le
ve

l

 
 
 
 
 

0.4

0.9

1.4

1.9

2.4

be
ta-
AC
TIN

SM
C3

NS
UN
2

AN
XA
2

CO
TL
1

PC
BD
1

R
el

at
iv

e 
Fo

ld
 C

ha
ng

e 
in

 m
R

N
A

 le
ve

l

 
 
 
 

[A] 

[B] 



 88

 
 

0.4

0.9

1.4

1.9

2.4

2.9

3.4

3.9

4.4

be
ta-
AC
TIN

EV
X2

PG
K1

EF
HD
2

LD
HA

DD
X4
6

CK
S2

R
el

at
iv

e 
Fo

ld
 C

ha
ng

e 
in

 m
R

N
A

 le
ve

l

 
 
 

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

be
ta-
AC
TIN

MA
PR
E1

CD
C2

G3
BP
1

MC
M3

ER
P2
9

PD
2

CA
ND
1

GR
IM
19

NU
P9
3

R
el

at
iv

e 
Fo

ld
 C

ha
ng

e 
in

 m
R

N
A

 le
ve

l

 
 
 
 
 
 
 
 
 
 
 
 
 
 

WT-N WT-H KO-N KO-H

Figure 4.8: Representative graphs of real-time PCR results for targets selected from 
iTRAQ results. [A] Relative mRNA levels of HIF-1alpha, TP53, and VEGFA. [B] 
Relative mRNA levels of genes (SMC3, NSUN2, ANXA2, COTL1 and PHS) whose 
protein levels were significantly altered due to presence/absence of p53. [C] Relative 
mRNA levels of genes (EVX2, PGK1, EFHD2, LDHA and DDX46) with 
significantly altered protein levels due to hypoxic stress. [D] Relative mRNA levels 
of genes (MAPRE1, CDC2, G3BP1, MCM3, ERP29, PD2 and CAND1) exhibiting 
enhanced altered protein levels due to synergistic or antagonistic effects of p53 and 
hypoxia. All results were normalized against β-actin and compared with respect to 
WT-N. Dotted lines across the graphs indicate the upper and lower limit of 30% fold 
change. 

[C] 
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Interestingly, mRNA level of HIF-1α was found lower in the presence of hypoxia. β-

actin serves as an internal control. 

 

4.3.2 Immunoblotting 

To ensure a greater confidence in our iTRAQ results, immunoblotting was 

performed using total cell lysates from each sample and protein levels of PGK1, 

LDHA, EFHD2, CKS2, ANXA2 and PCBD1 in each sample were assayed using 

corresponding antibodies against each respective protein. As expected, the known 

hypoxia-induced proteins, PGK1 and LDHA, exhibited an increased level of 

expression under hypoxia (Figure 4.9). The protein expression profile of hypothesized 

p53-affected proteins, like ANXA2 and PCBD1, were also found significantly 

lowered in the absence of p53. Interestingly, the expression of CKS2 protein was 

found lowered under hypoxia with an opposite phenomenon observed in the absence 

of p53 under normoxia whereby CKS2 was found to be highly overexpressed. This 

was also observed in the RT-PCR but was not represented in the iTRAQ result. On 

the other hand, EFHD2 was only found significantly increased under hypoxia in the 

absence of p53 even though it was shown to be up-regulated under hypoxia in the 

both iTRAQ and RT-PCR results (Figure 4.7D and 4.8C, respectively). 
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Figure 4.9: Downstream verifications of iTRAQ results by immunoblotting. [A] 
Expression levels of PGK1, LDHA, EFHD2, CKS2, ANXA2, and PCBD1 in total cell 
lysates were determined in both WT and p53 KO cells, subjected to 18 hrs of normoxia 
or hypoxia, using corresponding antibodies against each of the protein. Cells treated with 
CoCl2 were used as a positive control.  [B] A graphical representation of the immunoblot 
results. All results were initially normalized against α-tubulin and all graphs were plotted 
with reference to (w.r.t) WT-N. Band quantitation is performed using Image J software. 
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CHAPTER 5 – DISCUSSION 

 

From the literature review (see section 1.4.5), we understand that the 

relationship between p53 and hypoxia in signaling transduction is controversial and 

therefore, this prompted us to explore plausible targets that might help to provide an 

explanation for the elusive relationship shared between p53 and hypoxia. In our study, 

we investigated the effects of hypoxia in human colon cancer cells, HCT116, in the 

presence and absence of p53. It has been properly demonstrated in these cells that 

hypoxia failed to induce apoptosis when p53 is absent (Yu et al., 2002) and only 

under extreme hypoxic conditions (<0.1 % O2), p53-dependent apoptosis will occurs 

(Koumenis et al., 2001; Lechanteur et al., 2005). To monitor the changes of protein 

profiles, we adopted a well-established technique, called iTRAQ, and mass 

spectrometry to perform a global multiplex comparative proteomic analysis. The 

hypoxic condition was simulated using a CO2 incubator that regulated the oxygen 

level within and thus, mimicking the low oxygen tension observed in tumors during 

tumorigenesis. It is important to understand that the simulation of environmental 

conditions using artificial setups (e.g. hypoxia) is a very difficult task to truly 

represent the actual situation in real biological circumstances. Development of better 

equipment and experimental designs has allowed closer replicates of the real 

situations, leading to many positive outcomes (Kubota et al., 1998; Moulder et al., 

2001). Furthermore, through our approach, we are able to identify promising novel 

targets that are under the regulation of hypoxia/HIF-1 as well as p53. In this section, 

we will discuss our findings in greater details with respect to our approach and its 

reliability. Furthermore, a great number of background information on the selected 

validated targets will be discussed. 



 92

5.1 Increased accumulation of HIF-1α in HCT116 cells in the presence of p53 

Under our induced hypoxia system (1% O2, 5% CO2, rest N2), we reported 

successful stabilization and accumulation of HIF-1α in the HCT116 cells regardless 

of the presence of p53 with a higher accumulation observed in HCT116 p53 WT cells 

compared to its p53 KO counterpart. Although this observation clearly contradicted 

previous results from other studies which have suggested that the interaction between 

p53 and HIF-1α can evoke HIF-1α degradation in a pVHL-independent manner, it is 

also mentioned that this phenomenon will occur only at a high expression level of p53. 

In the presence of a low p53 expression level, interaction between p53 and HIF-1 will 

only attenuate HIF-1 transactivation due to competition for a common transcriptional 

co-activator, p300, but not its protein level (Ravi et al., 2000; Schmid et al., 2004b; 

Vleugel et al., 2006). However, it has also been pointed out that under hypoxic 

condition, p53 primarily binds to a transcriptional corepressor mSin3A instead of 

p300 and this may provide an explanation for the lack of p53-dependent apoptotic 

activity observed during hypoxia observed in some studies (Koumenis et al., 2001). 

Another possible reason for the lower level of HIF-1α observed in p53 KO cells may 

be due to the interaction of HIF-1α with HDM2 (human homolog of MDM2) which 

can be induced via p53-independent means (Nelson et al., 2006). Possibly similar to 

the case of p53 and HIF-1α competing for p300 mentioned earlier, the absence of p53 

allows more HIF1α-HDM2 interactions to occur. As a result of the interaction, HIF-

1α can be targeted for ubiquitylation and degradation subsequently by the p53-

associated E3 ligase, MDM2/HDM2 (Ravi et al., 2000). These two possibilities may 

have accounted for the lower level of HIF-1α observed in HCT116 p53 KO cells 

treated with hypoxia. However, further investigations will be required in order to 
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confirm whether p53, though attenuates HIF-1 transcriptional activities, can promotes 

HIF-1α stability under mild hypoxia. 

 

5.2 p53 protein does not accumulate under hypoxia 

After 18 hrs of hypoxia, we observed that the expression of p53 protein 

remains unaffected albeit an increased mRNA level was reported in the RT-PCR 

analysis. Even though hypoxia-induced accumulation of p53 has been reported in 

many studies, this was only observed more distinctively under prolonged hypoxia or 

near-anoxia conditions (Schmid et al., 2004a). Such situations usually lead to the 

activation of p53-dependent apoptotic responses involving activation of apoptotic 

genes. At 1% O2, it has been shown that p53 level remains unchanged and p53 is 

transcriptionally inactive (Achison and Hupp, 2003; Koumenis et al., 2001). Under 

normal unstressed condition, p53 interacts with its E3 ligase MDM2 and the level is 

kept at a low or undetectable level in normal cells. MDM2 is a known downstream 

transcriptional target of p53 and therefore, forms a negative feedback regulatory loop 

whereby in the presence of p53, MDM2 level will increase and p53 gets degraded. 

Interestingly, in our control HCT116 p53 WT cells, the level of p53 can be observed 

clearly by immunoblotting (see Figure 4.1A). A verification check with ATTC 

(www.atcc.org) indicates that HCT116 cells contain a mutation in codon 13 of the ras 

proto-oncogene and studies have shown that mutations in ras gene can stabilize p53 

by the p14ARF-MDM2 pathway (Honda and Yasuda, 1999; Kamijo et al., 1998). 

Interaction between p14ARF and MDM2 releases p53 from MDM2 association. This 

observation may explain for the noticeable expression of p53 in HCT116 cells under 

normoxic condition. Although p53 is stabilized in HCT116 WT cells, it does not 

induce apoptosis or cell cycle arrest. However, p53 is still functional and p53-
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dependent apoptosis can take place when the cells are treated with cytotoxic drugs 

such as 5-fluorouracil (5-FU) (Yu et al., 1999; Zhang et al., 2000). 

 

5.3 A multiplex comparative proteomic analysis using iTRAQ and mass 

spectrometry 

The combined use of iTRAQ and LC-MS results in the discovery and 

identification of 54 differentially expressed proteins that are influenced by hypoxia 

and/or p53. Fifteen proteins were found differentially expressed only in the absence of 

p53 while 14 were found differentially expressed only when the cells were subjected 

to hypoxia. The remaining 25 appeared to be influenced by both the presence of p53 

and hypoxia treatment. Downstream validation analysis has been performed for some 

of the targets that showed significant change in their expression levels when 

compared to the normal state. The targets and their validation results are discussed 

below. These proteins may be used for further studies as potential diagnostic 

biomarkers for tumor hypoxia and therapeutic targets for novel drug design. 

 

5.3.1 Gene Ontology – potential p53 and hypoxia affected targets 

A gene ontology analysis shows that majority of the targets affected by p53 

(e.g. CDC2, SF3B2, ANXA2, SMC3, etc.) and hypoxia (e.g. LDHA, PGK1, CKS2, 

NOP5, etc.) in the study are involved in cellular growth and proliferation (see Figure 

4.3). This is expected as one of the major functions of p53 is cell cycle regulation 

whereby cell cycle will be arrested in a p53-dependent manner in the presence of 

cytotoxicity (although a high level of cytotoxicity will induce apoptosis). Therefore, 

in the absence of p53, the p53-dependent cell cycle arrest does not occur and the 

absence of p53 has been shown to promote cell proliferation in mouse mammary 
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tumor (Guevara et al., 1999; Jones et al., 1997). Similarly, one of the key 

characteristic of tumor progression is cell cycle dysfunction and several studies have 

reported that hypoxia and accumulation of HIF-1α can promote rapid hypoxic cell 

proliferation in both normal and tumor cells (Humar et al., 2002; Schultz et al., 2006). 

Thus, the targets identified in this study might provide greater insights into the 

mechanism that promotes enhanced aggressive nature of hypoxic tumors carrying 

dysfunctional p53 gene. 

 

5.3.2 Downstream validations of iTRAQ results 

To validate our iTRAQ results, we screened through all targets that were 

identified at least twice in our biological replicates at 95% confidence interval (C.I.). 

Thereafter, based on the set criteria (see section 3.10.8) and an extensive literature 

search, a total of 20 targets were chosen for RT-PCR to determine if their mRNA 

levels reflect the results shown by iTRAQ-based MS/MS. Several of these targets are 

known hypoxia- (PGK1, LDHA) or p53-related proteins (SMC3); while the others are 

potential novel targets that are affected by the presence of p53 and/or hypoxia. Five of 

the selected targets were classified as affected by p53 while 6 affected by hypoxia; the 

other 9 exhibits changes due to both p53 and hypoxia (Figure 4.7). Although the 

mRNA level may not be a true reflection of protein level, it offers two advantages as a 

tool for validation analysis. Firstly, it is a rapid, inexpensive and reliable technique. 

The primers are more inexpensive compared to antibodies which may be of doubtful 

quality too. Secondly and more importantly, through the analysis of mRNA level, we 

can determine whether the observed changes have occurred at a transcriptional or a 

post-transcriptional level. For example, RT-PCR results indicates that the mRNA 

level of PGK1, LDHA, ANXA2, EFHD2, SMC3, G3BP1, PCBD1 and NSUN2 exhibits 
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similar regulation trend as the results obtained from our iTRAQ result. This hints a 

possibility that the mode of regulation brought by hypoxia and/or p53 is at a 

transcriptional level and this hypothesis can be verified further using tools such as 

luciferase-promoter assays. 

 

Interestingly, while it is shown that hypoxia leads to an accumulation of HIF-

1α protein in HCT116 cells (Figure 1A), our RT-PCR results indicate that hypoxia 

decreases the mRNA level of HIF-1α with a more distinct reduction observed when 

p53 is absent too (Figure 4.8A). The positive up-regulation of VEGFA, PGK1 and 

LDHA mRNA suggests that it is not due to a mix up of samples or experimental errors. 

Although the exact mechanism is unknown, a similar observation has been reported 

recently in human monocytes, THP-1 cells, whereby the HIF-1α mRNA and protein 

level of cells treated with either hypoxia or normoxia was determined (Frede et al., 

2006). The results were similar to our study. On the other hand, previous studies have 

shown that hypoxia can increase the mRNA level of HIF-1α as well as stabilize HIF-

1α protein (Semenza, 2000b; Yu et al., 1998) but it was also reported that HIF-1α 

levels can decrease in cells under prolonged exposure to hypoxia (Wiesener et al., 

1998). Therefore, the decrease may indicate the existence of a feedback mechanism 

during hypoxic conditions to regulate HIF-1α expression and HIF-1 transcriptional 

activities. It is likely that this feedback mechanism is not in place during normoxic 

conditions as HIF-1α mRNA is found ubiquitously expressed in the cells. 

 

Out of the 8 verified targets which showed similar trend in their mRNA 

expression profiles, immunoblotting assay was carried out for 6 of them, including 

two known HIF-1 downstream targets PGK1 and LDHA. The positive correlation 
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observed between the immunoblot results and the RT-PCR results of the selected 

targets – PGK1, LDHA, ANXA2, and PCBD1 – further affirmed the reliability of our 

experimental results using the iTRAQ-based quantitation approach and the potential 

use of this multiplex comparative proteomic strategy in identifying novel targets. 

Furthermore, from our study, it is highly likely that the regulation of ANXA2 and 

PCBD1 are related to the activity of p53 in a direct or indirect manner. Although 

CKS2 and EFHD2 showed slight variations between the two verification approaches, 

their expression levels were nonetheless significantly altered.  

 

The remaining 12 targets were not validated by RT-PCR and were not 

considered for immunoblotting assay initially. However, this does not indicate that 

these 12 targets are not affected by hypoxia treatment and/or the presence of p53 but 

instead implies that they may not be affected at a transcriptional level. The 

implication of two factors (hypoxia and p53) in influencing the expression levels can 

provide a tricky situation as one factor might exert an influence at transcriptional level 

while the other at post-transcriptional level. Hence, it is somewhat not surprising that 

only close to half of our targets were validated using RT-PCR analysis. 

 

5.3.3 Proposed targets influenced by p53 

5.3.3.1 Annexin A2 

 Annexin A2 (ANXA2/ANX2) belongs to the Annexin family whose members 

are calcium-dependent phospholipid-binding proteins. Annexins are involved in the 

regulation of cellular growth, signal transduction pathways and possible 

tumorigenesis and there have been more than 160 annexins reported but only 10 of 

them are of human origin. These include the more well-studied annexins such as 
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annexin 1, 5 and 7 (ANX1, ANX5, and ANX7 respectively) and the dysregulation of 

annexins have been reported commonly in many human cancers. For example, ANX1 

has been reported up-regulated in breast cancer (Ahn et al., 1997), pancreatic cancer 

(Bai et al., 2004) and hepatocellular carcinomas (Masaki et al., 1996) but down-

regulated in prostate cancer (Paweletz et al., 2000). Likewise, up-regulation of 

ANXA2 has been found associated with a number of cancers such as colorectal and 

breast cancers. It has also been proposed as a possible prognostic marker for 

colorectal cancer (Emoto et al., 2001; Sharma et al., 2006). 

 

In cells, ANXA2 can exist in 3 different forms, namely monomeric, 

heterodimeric and heterotetrameric. The most dominant form in most cells is the 

heterotetrameric form composed of two ANXA2 monomers and two S100A10 (p11) 

proteins. ANXA2 can also bind with PGK1 to form a heterodimer known as primer 

recognition protein (PRP), a cofactor for DNA polymerase alpha, and this 

heterodimeric form has been proposed to play a role in DNA synthesis and cell cycle 

progression (Kumble et al., 1992). Coinciding with our RT-PCR results, several 

studies have also shown that the mRNA level of ANXA2 is found elevated in the 

presence of hypoxic stress and is HIF-1α dependent (Hu et al., 2006; Maxwell et al., 

2003). However, in our proteomic result (both immunoblot and iTRAQ), the 

expression level of ANXA2 protein was unaffected by hypoxia treatment. This can be 

due to two possibilities: (1) either the mRNA is not being translated into proteins or (2) 

the newly translated ANXA2 monomers do not undergo post-translational 

modifications and therefore, are rapidly degraded under hypoxic conditions. 
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Annexin A2 has been associated with apoptosis induced by a widely used 

chemodrug in cancer therapy, 5-fluorouracil (5-FU). Upon treatment with 5-FU, an 

up-regulation of ANXA2 had been reported in MCF-7, a breast adenocarcinoma cell 

line, as well as in HCT116 cells (Kho et al., 2004; Maxwell et al., 2003). The 

apoptotic effect of 5-FU has also been shown to be dependent on the tumor suppressor 

protein p53; the absence of p53 can attenuate the genotoxic effects of 5-FU (Bunz et 

al., 1999). Furthermore, Maxwell et al. (2003) had also shown that the induction of 

ANXA2 by 5-FU was significantly reduced in the absence of p53 through cDNA 

microarray. Similarly, in our result, the level of ANXA2 protein was found to be 

down-regulated in HCT116 p53 KO.  An up-regulation of ANXA2 was also observed 

in transient over-expression of p53 in several lung cancer cell lines; however, the 

exact molecular mechanism has not been reported (Huang et al., 2005). Taken 

together, these results suggest that ANXA2 is a potential downstream regulatory 

target of p53 and our result also further supports its potential use as a biomarker for 

determining the activity of p53-dependent responses during cancer therapy. 

 

5.3.3.2 Pterin-4 alpha-carbinolamine dehydratase 

 The PCBD1 (official gene name: pterin-4 alpha-carbinolamine 

dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha (TCF1)) gene 

encodes an 11 kDa bifunctional enzyme called pterin-4 alpha-carbinolamine 

dehydratase. This enzyme participates in the recycling of tetrahydrobiopterin (BH4) 

which is an essential cofactor of several metabolic functions, such as amino acid 

phenylalanine hydroxylation. Therefore, a decrease in PCBD1 can result in an 

elevated level of phenylalanine due to a deficiency of tetrahydrobiopterin (Citron et 

al., 1993). In addition, it can also regulate the homodimerization of the transcription 
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factor hepatocyte nuclear factor 1 (HNF1) by stabilizing its dimer, HNF1α and 

HNF1β subunits (Citron et al., 1992). The binding of PCBD1 to HNF1 also allows 

HNF1 to bind DNA sequences that deviate considerably from the consensus sequence; 

hence, modifying the DNA binding specificity of HNF1 and influencing its 

transcriptional activity (Rhee et al., 1997). 

 

 In colorectal cancer tissues and cell lines, PCBD1 has been found highly 

overexpressed but absent in their normal counterparts (Eskinazi et al., 1999). This 

distinct difference in its expression level in cancer and normal tissues may indicate its 

potential role in promoting cancer progression as a modulator of transcriptional 

activity. In HCT116 WT cells, strong expression of PCBD1 protein was also observed 

(Figure 4.9A) under both hypoxic and normoxic conditions. However, in the absence 

of p53, PCBD1 was found to be down-regulated by approximately 50% regardless of 

the conditions (hypoxia or normoxia) the cells were subjected under. Furthermore, the 

RT-PCR analysis of the PCBD1 mRNA level suggests that the decreased level of 

PCBD1 proteins is likely due to a reduced mRNA expression. Although several 

studies indicate that p53 is transcriptional inactive in hypoxic HCT116 cells, this is 

only with reference to p53 apoptotic response (Koumenis et al., 2001). Therefore, it is 

likely that the downstream p53 non-apoptotic target genes can still be expressed, 

whereby PCBD1 might be one of them (Wu et al., 2006). 

 

Interestingly, structural studies of p53 and PCBD1 have shown that both 

proteins can individually form a homotetramer through a four helix bundle 

oligomerization interface. This four helix bundle is formed with each monomer 

contributing one helix to this central antiparallel helix bundle (Eskinazi et al., 1999; 
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Lee et al., 1994). Although the four helix bundle is a commonly observed structural 

motif (Harris et al., 1994), only a few proteins are known where it forms the 

oligomerization interface to give rise to a tetrameric form. It is possible that PCBD1 

and p53 may bind to each other through this similar oligomerization interface by 

contributing a helix stand from each of their monomer and further stabilizes PCBD1. 

Indeed, a possible novel relationship may exist between PCBD1 and p53. However, 

more stringent studies are required in order to confirm this novel relationship between 

PCBD1 and p53. Proposed future studies can focus on whether PCBD1 stability is 

influenced by a direct interaction with p53 or it is regulated by p53 transcriptional 

activities. 

 

5.3.4 Proposed targets influenced under hypoxia treatment 

5.3.4.1 Cyclin-dependent kinase subunit-2 

The cyclin-dependent kinase subunit-2 (CKS2), also known as CDK1/CDC28 

protein kinase regulatory subunit-2, belongs to the Cks family that is composed of 

small proteins ranging from 9-18 kDa. CKS2 protein is approximately 9 kDa in size 

and has been shown highly expressed in colorectal cancer tissues (Lin et al., 2002). 

Two paralogs, CKS1 and CKS2, are expressed in mammalian cells and they exhibit 

an 81% identity in their amino acid sequence, suggesting possible overlapping of 

functions (Pines, 1996). Both paralogs were found with similar binding affinity for 

cyclin-dependent kinase 2 (CDK2) (Bourne et al., 1996). On the other hand, distinct 

functions have been reported for each paralog too. CKS1, but not CKS2, has been 

shown to participate in inducing the degradation of p27, a CDK inhibitor, by binding 

with E3 ligase of p27, SKP2 (Spruck et al., 2001). Furthermore, CKS2-deficient mice 

failed to exhibit similar phenotype that is related to p27 accumulation found in CKS1-
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deficient mice; CKS2-deficient mice are found viable but sterile in both sexes due to 

the failure to enter anaphase during cell cycle progression (Spruck et al., 2003). 

Therefore, suggesting role of CKS1 and CKS2 in regulating mitotic cell cycle in 

distinct ways. 

 

In our initial result (iTRAQ), a distinct negative influence on CKS2 expression 

in hypoxia-treated HCT116 cells independent of p53 was observed. This was further 

confirmed in subsequent validation results obtained from RT-PCR and immunoblot 

assays. Although there is no direct link between CKS2 and hypoxia or HIF-1, CKS2 

has been found highly expressed in metastatic tumor tissues, promoting  proliferation, 

oxidative phosphorylation, invasiveness, and tumor size (Li et al., 2004; Lyng et al., 

2006). Since hypoxia also promotes metastasis, the decreased level of CKS2 in 

hypoxic HCT116 cells was puzzling. The contrasting result obtained may be due to 

the starting biological material used for the studies since biological tissues are known 

to comprise of more than one cell type, ranging from epithelial cells to vascular cells; 

mixture of normal and cancerous cells are also found in a biological tissue sample too. 

Furthermore, it was not mentioned that the cancer tissues used in the studies were 

hypoxic in nature. Therefore, a more thorough analysis on the effect of hypoxia on 

CKS2 regulation is required. 

 

Interestingly, in the validation results, we observed an increased CKS2 level in 

the p53 KO cells and this suggested possible regulation of CKS2 by p53. Initially, we 

suspected that this phenomenon may be due to the primers and antibody used since 

both proteins shared high similarity in their DNA and amino acid sequences. 

Furthermore, according to the data sheet, the antibody against CKS2 was also used for 
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detecting CKS1. However, a recent article published confirmed our observation that 

the expression of CKS2 can be repressed by p53 at both mRNA and protein levels in a 

dose-dependent manner (Rother et al., 2007). This has been observed in many 

different cell lines, including HCT116, but the exact mechanism is still unknown. The 

authors suggested that this phenomenon was not due to direct or indirect binding of 

p53 to the CKS2 promoter since high dosage of YA13m29, a dominant-negative 

mutant of NF-Y subunit NF-YA, did not affect the repression of CKS2 by p53. 

Chromosomal immunoprecipitation (ChIP) assay also showed that p53 itself does not 

bind to CK promoter. NF-Y is a transcription activator that binds to CCAAT-boxes to 

mediate p53-dependent repression on gene expression (Imbriano et al., 2005; Yun et 

al., 1999). An analysis of the status of p53 should be carried out to identify whether 

PTM of p53 is required to repress CKS2 since mutations of p53 are found in 

approximately 50% of the cancers reported which might be accountable for the high 

expression of CKS2 in colorectal cancers mentioned earlier. Also, the CKS2 antibody 

used in our study can target CKS1 and this suggests that CKS1 may be potentially 

repressed by p53 too. 

 

5.3.4.2 EF-hand domain family, member D2 

There is little information available on this protein EF-hand domain family, 

member D2 (EFHD2), also known as swiprosin-1 (SWS1),  except that it may play a 

role in macrophage activation and function (Jin et al., 2006). The protein contains two 

EF-hand domains which are involved in binding intracellular calcium. Furthermore, 

expression of EFHD2 was found up-regulated in ovarian cancer cells treated with 

ciglitazone, a peroxisome proliferator–activated receptor γ (PPARγ) ligand that has 

been used to treat cancer through inhibition of cell growth and induction of cell death 
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by activating transcription factor PPARγ (Vignati et al., 2006). Although this previous 

study suggests a possible role in inducing cell death, the up-regulation of EFHD2 in 

ciglitazone-treated ovarian cancer cells may be a form of apoptotic resistance 

produced by the cancer cells against the anticancer drug instead. This possibility is 

supported by the up-regulation of EFHD2 observed in human thyroid autonomous 

adenomas and thyrocytes treated with thyroid-stimulating hormone (TSH), which can 

activate the cyclic adenosine monophosphate (cAMP) pathway (van Staveren et al., 

2006; Vlaeminck-Guillem et al., 2002). Activation of TSH-cAMP pathway has been 

shown to promote tumorigenesis by inducing inhibitor of apoptosis protein-2 (IAP-2) 

and suppressing apoptosis through ERK/MAPK pathway in colon cancer cells 

(Nishihara et al., 2004). In our study using iTRAQ-MS/MS approach, we identified 

that EFHD2 protein is up-regulated in hypoxic cells regardless of p53 presence 

(Figure 4.7D). Furthermore, the increased expression level was validated in the RT-

PCR analysis of its mRNA level (Figure 4.8C), suggesting that EFHD2 may play a 

potential role in promoting anti-apoptotic mechanism in the presence of mild hypoxic 

stresses. 

 

5.5 General comments on application of iTRAQ and mass spectrometry to 

multiplex comparative proteomic studies 

Interest has been growing over the past years to study cancer using proteomic 

approaches. Previously, 2-D GE was the most common method to perform 

comparative proteomic analysis between normal and cancer tissues/cells. The 

disadvantage of such method is that differentially expressed spots are not identified 

until they are excised and sent for identification using MS. Furthermore, quantitation 

of the differentially expressed spots is only possible using image analysis software 
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based on the intensity of the protein stain used which might be difficult when there is 

a high background staining. Accuracy of quantitation and the large error margin are 

also a problem. With the development of isobaric/isotopic tags such as iTRAQ, such 

gel-based protein analysis can be avoided and because the entire experiment sample is 

coupled to mass spectrometry, identification and quantitation of the protein peptides 

can be obtained without further downstream work. The fully-annotated protein profile 

will also allow ease of data analysis as well as successfulness of the experiments from 

analyzing the expression levels of control targets. 

 

The use of iTRAQ labeling also allows greater magnitude of investigation 

since it virtually labels all the peptides at their amine group. This will allow 

identification of small and huge protein molecules which cannot be resolved using 

SDS-PAGE. Furthermore, proteins exhibiting close pH and similar molecular weight 

can be found hard to separate in the gel-base separation system due to the restricted pI 

and molecular weight ranges presented. This will not be a problem in using iTRAQ 

since protein identification will be based on distinct signature peptides found in highly 

curated databases. In our study we have shown what may be the first use of iTRAQ to 

perform a four-plex comparison against the different combination of hypoxia 

treatment and p53 presence. Although iTRAQ was originally developed as a 

multiplex peptide labeling system to allow simultaneous analysis of 4 different 

samples using tandem mass spectrometry, there had been few publications exploiting 

its potential. Most groups used this technique to perform replication sets instead. 

Identification of distinct proteins that are only affected by each condition as well as by 

both conditions yield positive results according to our validated data. 
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CHAPTER 6 – CONCLUSION AND FUTURE PERSPECTIVES 

 

 The application of proteomic approaches in the study of cancer can allow us to 

study and understand better the actual ongoing that is occurring within the cancer 

tissues at both cellular and molecular levels. Proteomics provides a truer picture in 

identifying targets that are involved in the process of cancer development as it allows 

us to study the final output than the intermediate products. Studies performed in this 

project aim to identify potential novel targets affected by p53 and/or hypoxia as well 

as identify common targets that might provide an explanation for the ever elusive 

relationship between p53 and hypoxia. 

 

While the results obtained from the multiplex comparative proteomic 

approach we adopted provides us with exciting possibilities, they are only early 

indicators of potential novel targets of p53 and hypoxia/HIF-1. On the other hand, the 

successful validations of the selected targets though RT-PCR and immunoblot assays 

provided a greater confidence for our results and also illustrate the advantage of 

iTRAQ analysis as a multiple marker technique for initial biomarker discovery. 

 

From our study, we propose ANXA2 and PCBD1 as potential novel targets of 

p53, while EFHD2 and CKS2 as novel targets regulated under hypoxia. ANXA2 and 

PCBD1 are both identified and validated to be down-regulated in the absence of p53, 

hinting a p53-dependency for the accumulation observed in WT. CKS2 is found 

down-regulated during hypoxia while EFHD2 is proposed to be up-regulated during 

hypoxia. Both have been verified using RT-PCR and immunoblotting assay. Further 

studies on these targets can be designed to further confirm whether this phenomenon 
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is at a transcriptional or post-transcriptional regulation and also determine whether the 

interaction is direct or indirect. Experiments, such as luciferase-promoter assays, may 

help to confirm whether the proposed targets are direct downstream genes regulated 

by p53.  A detailed study will also help to identify the mechanism involved. This can 

be done by designing experiments involving over-expression and 

knockout/knockdown of the selected targets in order to determine their respective 

functions in the cells as well as in well-established mammalian models. 

 

To provide further confidence on our results, a screen of the various cancer 

tissues using these selected targets can be done. This will allow a better insight on the 

expression levels of our selected targets in different types of cancer and determine if 

the observed trend is specific only to colorectal cancer cell lines. In addition, the 

screening will also allow us to determine if the targets are suitable to be used as a 

universal cancer biomarker or as a specific cancer biomarker. Nevertheless, the 

targets we have identified in this project hold potential uses in the biomedical field of 

cancer research. 
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APPENDICES 
 

 
 
 

 
 
 

[A] 

[B] 

Supplementary figure 1: Dissociation curve and amplification plot of PGK1 primer 
set. [A] A single peak observed in the primer pair dissociation curve indicates 
specificity of primers used as well as absence of amplification of primer pairs due to 
primer dimerization. [B] Amplification curves of the gene-of-interest in each sample 
performed in duplicates. The different rates (curves) observed indicates the different 
cycle threshold values obtained in each sample. 
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Supplementary table 1: List of primers used for RT-PCR. All primers are arranged in 
the order of 5’ to 3’ 
 
COTL1 
Forward Primer  GCAGGGAGCGGAGTACCA 
Reverse Primer  GCAAACAACCGGACGTCATC 
 
PHS/PCBD1 
Forward Primer  GGGCCTTTGGGTTCATGAC 
Reverse Primer  GGATGGTGGTCCAGTTTCTCA 
 
SMC3 
Forward Primer  CGAGACTCGTGCCAAACTTG 
Reverse Primer  TGTCTGGATTTTTCTCCACTAGTCTCT 
 
NSUN2 
Forward Primer  TCGTCAAGAAGCTGTTAGCATGA 
Reverse Primer  TGATGAGGCCGCACGTT 
 
ANXA2 
Forward Primer  GCCTATTGAAGACACCTGCTCAGT 
Reverse Primer  CAGCCCCTTCATGGAAGCT 
 
EVX2 
Forward Primer  CGCCGCTCAGCTTAAGGA 
Reverse Primer  CAGCCGAGCCGCTCTCT 
 
PGK1 
Forward Primer  CCGAGCCAGCCAAAATAGAA 
Reverse Primer  CATAGACATCCCCTAGCTTGGAA 
 
LDHA 
Forward Primer  TGGCCTGTGCCATCAGTATC 
Reverse Primer  CGATGACATCAACAAGAGCAAGT 
 
EFHD2 
Forward Primer  GGCGGGACGGCTTCA 
Reverse Primer  CCCCAAGTTTCTCCATCATGA 
 
DDX46 
Forward Primer  CCCACGCCCATCCAAA 
Reverse Primer  CCAATCAAATCTCGTCCAGACA 
 
CKS2 
Forward Primer  TGGCCCACAAGCAGATCTACT 
Reverse Primer  CATGCCGGTACTCGTAGTGTTC 
 
MAPRE1 
Forward Primer  GGCTGCCAGA CAAGGTCAA 
Reverse Primer  TTTATTCAGAGCTGGAGCAACAAG 
 
CDC2 
Forward Primer  CCTCAAAATCTCTTGATTGATGACA 
Reverse Primer  GCTCTGGCAAGGCCAAAAT 
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G3BP1 
Forward Primer  TTCGCCATGTTGATGCTCAT 
Reverse Primer  CCCCATCACCTGGACTACCA 
 
MCM3 
Forward Primer  CCCCGCGGACTCTTACCT 
Reverse Primer  GACAATGCCCTCCACACAGA 
 
PD2 
Forward Primer  CGCATCGACCCCAATGTT 
Reverse Primer  GCCTGAATCTCCTCTTCCAAAA 
 
CAND1 
Forward Primer  GCTTCCAGTGGCTCTGCATT 
Reverse Primer  ATTGCACTTGTAAGACGTCCAGTAA 
 
ERP29 
Forward Primer  CCCTACGGTGAGAAGCAGGAT 
Reverse Primer  ATCGCTGGAAGCCGAGTTTT 
 
NUP93 
Forward Primer  AGGACAATGCCCTGCTGTCT 
Reverse Primer  CCATGCCGAAGGTCCTCTT 
 
GRIM19 
Forward Primer  CATAGGGATTGGAACCCTGATC 
Reverse Primer  CGCTCACGGTTCCACTTCAT 
 
HIF-1α 
Forward Primer  AGCCGAGGAAGAACTATGAACATAA 
Reverse Primer  GTGGCCTGTGCAGTGCAA 
 
p53 
Forward Primer  TCTGTCCCTTCCCAGAAAACC 
Reverse Primer  CAAGAAGCCCAGACGGAAAC 
 
VEGFA 
Forward Primer  AACCATGAACTTTCTGCTGTCTTG 
Reverse Primer  TGGTGGAGGTAGAGCAGCAA 
 
β-ACTIN 
Forward Primer  CTGGCACCCAGCACAATG 
Reverse Primer  GCCGATCCACACGGAGTACT 
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