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Summary

Network models with resources that are utilized concurrently to process jobs are consid-

ered in this thesis. The research on such models is motivated by issues in logistics manage-

ment and communication systems.

The first part of the thesis studies the stability of network with random job arrival and

service. In particular, each job upon arrival will be routed to a route that consists of a set

of links (resources). We suppose that the network allows routing of jobs to achieve more

flexibility in the allocation. The allocation of capacities of the link in the network is dy-

namically determined by some allocation policy, which is derived by solving a optimization

problem that maximizes some utility function. A network is said to be stable under a given

capacity allocation policy if roughly speaking the number of ongoing jobs in the network do

not blow up over time. Using the fluid model approach, we show that the network is stable

if the nominal workload offered to each link is within the link capacity.

The second part of the thesis is motivated by the work of Li and Yao (2004), in which

a booking limit control policy based on a fixed point approximation was developed for a

network with concurrent resources. When specific to the airline industry, the objective is to

optimize the expected revenue subjected to the availability of seats on the flights. In our

work, we allow batch passenger arrival. Our solving methodology involves deriving a fixed
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point approximation to express the network operating under a set of booking limits, and

reformulating it into a linear program to solve for the booking limits. We show that the pol-

icy is optimal under certain limit. We also carry out extensive simulation studies, and draw

interesting insights regarding the effect of the batch size on the expected revenue. Another

contribution made is to study the updating mechanism for the booking limit, which turns

the originally static policy to a dynamic one. Numerical analysis demonstrates significant

improvement of dynamic policy.

Keywords:

concurrent resources, asymptotic optimality, batch size, booking limit, fluid limit
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Chapter 1

Stability of stochastic network with

routing

This chapter focuses on the study of the stability of a generic network which consists of a

set of links and a set of possible routes which can be represented as fixed subsets of the

links. The stability issue of a fixed routing network is studied by Ye, et al.(2005). We

extend the result of the stability of the stochastic network models with fixed routing to the

case with routing. The allocation of capacities of the link in the network is dynamically

determined by some allocation policy, which is derived by solving a optimization problem

that maximizes some utility function. A network model is said to be stable under a given

capacity allocation policy if the number of ongoing jobs in the network does not “blow” up

over time. We consider the stationary network model. The necessary stability condition

(capacity constraint at each link) is clear, but the sufficient condition for stability requires a
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more rigorous proof. Our attempt to prove stability is via a fluid network approach.

1.1 Introduction/Outline

Our study is based on a class of stochastic networks with concurrent occupancy of resources

shared by a number of different classes of jobs/customers. Such networks are present in

many different applications. One example is the planning of a multi-leg flight on an airline

reservation system. In order for a customer to book a 2 leg flight, seats on both legs must be

reserved concurrently. Other examples include a make-to-order or assemble-to-order manu-

facturing system. When an order arrives, the production of all the components required will

be processed simultaneously.

Analogously, the study of such a class of stochastic networks is closely related to the

engineering design of Internet protocols. In modern data communication networks, digitized

documents, like emails, files, images and sound, are transmitted from one source to another

in packets. Often, there is no direct route from one source to another; hence the packets

get routed to a series of transmission links before reaching its destination. Given today’s

technology, the speed of the packets is in the high range of 155Mbit/s to 2.5Gbit/s, hence a

good approximation is to assume a concurrent usage of all the transmission links involved.

An extension to the model is the introduction of routing in the system. In the airline

reservation system, often there is a choice for the planner to allocate to the customer on his

choice of routes. We introduce the notion of routing in our stochastic network. Suppose a

customer can go to his destination via two routes, say route A and route B. The planner
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will decide if it is more profitable or feasible to route the customers via route A or route B.

Constraints like availability of seats in routes, cost and distance of the both routes and any

interference from other airline using the same routes have to be considered. In the example

of Internet protocols, the notion of routing gives the transmission of data more flexibility

and robustness.

An abstract mathematical model of this class of network consists of a set of transmission

links, and a set of possible routes with each route traversing a subset of links. It is straight-

forward to assume that the arrivals follow a Poisson process, and we build our model from

there. Certain generalization can be made to the arrival process. It can be assumed to be

a stationary renewal process. The arrival process can also be modeled in a bursty model

introduced by Cruz (1991a,b). The service rate is assumed to be exponentially distributed

for ease of technical analysis. One of the main concerns in such application is to derive a

policy/protocol to control the routing of connections/job allocations. We assume that the

routing of the connections in the network is determined according to some protocol/policy.

The maximum throughput, proportionally fair and the minimum potential delay are some

examples of such policies. The real-time allocation of the capacity of the links to each class

of jobs/customers is derived from solving an optimization problem for each network state.

Our study involves the macroscopic behavior of the network, i.e. the asymptotic convergence

of the network. The microscopic study of how the jobs/connections are being established

dynamically is beyond the content of this chapter. Essentially, we assume that the allocation

is adapted accordingly and immediately.
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Our main concern for the network is its stability, that is, given a allocation policy, will

the queue of the network builds up to infinity over time. One obvious necessary condition

for the stability of the network is that the average offered traffic on each link must be within

the link’s capacity. Subsequently, we will see that this condition is not a sufficient one. The

use of the fluid model approach to analyze such networks is widely accepted, since there are

results that state that a queueing network is stable if its corresponding fluid model (a contin-

uous analog of the queueing network) is stable. Consequently, in order to use this result, our

next task is to identify the corresponding fluid network model, followed by the establishment

of the stability of the fluid network model. One technique in proving the stability is via the

use of the Lyapunov function. This will be shown in the subsequent section of this chapter.

Outline

The outline of the chapter is as follows. We review some of the relevant papers related

to this field of studies in section 1.1.1. In section 1.2, we introduce the mathematical model

for the stochastic network and present some common policies. The notion of routing will be

incorporated into the mathematical model. One contribution is to generalize the properties of

the utility function. Thereafter, the stationary network model will be introduced in section

1.3. The stability results of the stationary network model will be given in the respective

subsections. We also describe a bursty network model, and give the model and the similar

results in the appendix. The fluid model for the network models used to prove the stability

of the actual network will be given in section 1.4. In conclusion, we will close this chapter
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by consolidating our results in section 1.5.

1.1.1 Literature Review

This work is closely related to Ye, et al.(2005). They studied the stability of the network

via fluid modelling. The conditions of the network are relaxed, and the results focused on

a stationary network and a bursty network. However, an additional property, the partial

radial homogeneity property, has to be assumed for the U-utility function in order to prove

the stability results. The model presented in this chapter is similar to theirs. Assumptions

like the service rate of jobs/arrivals following a exponential distribution remains unchanged.

Properties like concurrent resource occupancy (See Whitt (1985)) is preserved. The ma-

jor addition to the model is the feature of routing, which adds to the complication of the

stochastic network. We seek to prove the stability of the routing network with respect to

the U-utility allocation policy introduced in their paper, using the fluid model approach. We

assume that the allocation allocated to each job converges to the solution of an optimization

problem that maximizes some utility objective function after a short transitional period.

Thus we assume that the allocated jobs are established dynamically, and the allocation is

set up instantaneously upon solving the optimization problem for the optimal allocation. We

referred such a equilibrium property as a microscopic stability property of the rate control

and allocation of networks. For the microscopic aspect of such network, Kelly (1991) stud-

ied the problem of routing of such queueing networks. The multi-class flow model, which

includes queueing and road traffic networks and telecommunication networks, was studied
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in that paper. One of the results is that the microscopic behavior of a telephone network, in

terms of random arrival streams and rules for accepting and routing calls, cause the network

to behave as if it is attempting to minimize some potential objective function. Analyzing

such issues is beyond the scope of this chapter. Our concern is the macroscopic stability of

networks. Another explanation for the focus on the macroscopic aspect of such network is

the ”separation of time scales”. To be more precise, we treat the queueing of packets at the

links and the bandwidth allocation to be set up immediately. Hence, we treat the time scale

of the packet level rate control, which refers to the queueing of packets and bandwidth allo-

cation of network, is small compared with the time scale of the connection level dynamics,

which refers to the transmission duration for a connection.

Review of some allocation policies

With today’s technology, research in loss networks has developed into area called the

bandwidth sharing networks. The service capacity or the bandwidth on each link/server is

shared at any time among all related jobs in the process at the link. These networks used

to be focus on the study of internet protocols (e.g. TCP). Now it leads to the studies of

new allocation schemes with applications to other areas like manufacturing and servicing

industries. There are many studies on allocation schemes. We give a few schemes studied.

Bertsekas and Gallager (1992) studied the classical max-min allocation policy, which gives the

greatest possible allocation to the most poorly treated jobs. In short, an allocation is called a

max-min fair allocation if the allocation to a job cannot be increased without decreasing that
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of another job having a smaller or equal allocation. There are many variations of the max-min

allocation policies. To name a few, Cao and Zegura (1999) studied a bandwidth allocation

scheme which can be viewed as a particular case of the bandwidth max-min allocation when

the utility of all applications are equal. Fayolle et al.(2001) introduce the so-called min

bandwidth sharing policy which is a conservative approximation to the classical max-min

policy. The necessary and sufficient ergodicity conditions for best-effort networks under such

a min policy is established.

The proportional fairness allocation policy by Kelly (1997), proposed an allocation which

is determined by how much the user contributes. In the paper, it is shown that if each user

is given the choice of charge per unit time that it is prepared to pay, and if the the allocated

rates are determined by the network such that the rates per unit charge are proportion-

ally fair, then the system optimum is achieved when the users’ choices of charges and the

network’s choice of allocated rates are in equilibrium. Using such an allocation favor those

poorly treated jobs but it is still not as much as the max-min allocation. In short, the objec-

tive can be interpreted as maximizing the overall utility of rate allocations. The logarithmic

utility function is used to capture the characteristic of the law of diminishing return. This

policy is further experimentally validated by Hurley, et al.(1999). A variation of the propor-

tional fairness property is done by Mo and Walrand (2000). In their paper, the end-to-end

window based congestion control protocols for packet switched networks with first come first

served routers is studied. In their policy, the user controls its window size based on the total

delay, whereas the user in Kelly’s (1997) model controls the rate based on the feedback from

7



the routers the connection goes through. Mo and Walrand’s definition of fairness generalizes

proportional fairness and strike a compromise between the user fairness and resource utiliza-

tion. They went on deeper into the problem and further generalized to (p, α)-proportional

fairness allocation policies. They have shown that the protocol converges at a fast rate and

their proof is done using a Lyapunov function. Massoulie and Roberts (1999) introduced

another criterion to the proportional fairness criterion, which is interpreted in terms of over-

all potential delay of the transfer of network flow in progress. Minimizing potential delay as

a sharing objective provides an intermediate solution which is a compromise between max-

min and proportional fairness. They also investigated the issue of deriving different possible

bandwidth sharing allocations objectives and the design of flow control algorithms.

In particular for the case of the current Internet network, Kelly (2001) derived the

arctan(·) scheme that approximated the bandwidth allocation achieved by a type of TCP

rate control protocol, called the Jacobson’s TCP algorithm operating in the current Internet.

The paper also address the issue on how mathematical models are being used to handle the

problem of stability and fairness of rate control algorithms for the Internet. The models

presented are a simplication of the complicated Internet, but nevertheless, it gives us a in-

sight on how the Internet works. Such dynamic allocation takes the form of a solution to

an optimization problem, with the objective being a utility function (of the state and the

allocation), and the capacity constraints of the links (reflecting the concurrent resource occu-

pancy). Low (2002) proposed a duality model of congestion control and applied the model to

have a deeper understanding of the properties of the protocols used in Internet. Congestion
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control represent a distributed algorithm that optimally allocated network resources among

competing sources that share the same type of resources. It consists of two components : a

primal algorithm that determines the source rates in response to the congestion in its flow

path, and a dual algorithm that updates a congestion measure and sends feedback to the

sources that use that link. In the current Internet, the primal algorithm is carried out by

the TCP algorithms, and the dual algorithm is carried out by the active queue management

(AQM) schemes.

Stability of network

One of the concerns of such network is the stability of it. In other words, is the underlying

Markov process positive recurrent? This forms the main thrust of this chapter. We have

given a review of a number of allocation policies studied. We assume that the connections of

the network is established according to some given protocol/allocation. Given an allocation

policy, the network model is said to be stable if the flow in the network will not “blow up”

over time. A necessary condition, called the normal offered load condition, which states

that the average offered load on each link is within its link’s capacity. However, Bonald and

Massoulie (2001) have shown that this is not sufficient for the stability of the network with

a counterexample.

For studies of stability of such networks, Bonald and Massoulie(2001) and de Veciana, et

al.(2001) have shown the stability of network for a broad class of fair allocation under normal

offered load conditions. Ye (2003) generalized their work and show that a number of common
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allocation schemes can be represented as a general utility function with certain properties.

In the paper, it is shown that under the normal offered load condition, a network is stable

using the bandwidth flow allocated according to the optimal solution when maximizing a

class of general utility functions.

Fluid Model

With complications from the probabilistic behavior of such network even under Marko-

vian assumptions, this motivated the use of fluid models of such networks, where the dis-

creteness and randomness of the jobs are transformed via law of large numbers scaling, into

continuous and deterministic values. Using the fluid model, one can obtain the stability of

the network. The fluid model approach was first proposed by Rybko and Stolyar (1992),

and has been an area of active research in the past decade. However, the converse is not

necessarily true, that is, there exists queueing networks that are stable, but whose fluid mod-

els are instable. Bramson (1998) investigated this issue and presented a family of queueing

networks with this characteristic. However, often we are interested in the stability of the

original queueing network and not on the associated fluid model. We list some of the research

work in this area.

Dai(1995) proved that a queueing network is positive Harris recurrent (which implies

that the invariant measure is finite) if the corresponding fluid limit model converges to zero

regardless the initial system configuration. To illustrate the result, the result was applied to

a number of network like the single class network and multiclass network under the normal
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offered load condition. Chen (1995) extends the results and prove the stability of multiclass

queueing network with general work-conserving disciplines. However, a queueing network (

fluid network) may be stable under one service discipline, but proved to be unstable under

another. Rybko and Stolyar (1992) provided a two-station queueing network which is stable

under First-in-First-out (FIFO) but unstable under a priority service discipline. Dai and

Meyn (1995) did a study on the open multiclass queueing network and one of their focus

is on the moments on the queue length. Using the fluid approach, they provide sufficient

conditions on the existence of bounds on long-run average moments of the queue lengths, and

bound the rate of convergence of the mean queue length to its steady state value. Stolyar

(1995) showed that the sequence of scaled (in space and time) underlying stochastic processes

converges to a fluid process along some sample paths. The convergence together with the

continuity and similarity properties of the sample paths of the fluid process shows that the

original network is stable if each sample path of the fluid process with non-zero initial state

falls below the initial value at least once. Bramson (1998) investigated the stability of two

families of queueing network, namely the head-of-the-line network and the re-entrant network

in a deterministic setting.

The application of these results require us to identify the corresponding fluid network

model and use the Lyapunov function approach to prove the stability of the fluid network.

This is one of the primary tools in establishing the stability of the fluid network. Following

that, the stability of the original data network can be derived accordingly. Bonald and Mas-

soulie (2001) prove the stability of of data network with (p, α)-proportionally fair bandwidth
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allocation with such a fluid model approach. Ye and Chen (2001) studied the use of the

Lyapunov function and gave a theorem which facilitates the use of the fluid model approach.

In their paper, they derive a necessary and sufficient condition for the stability of a generic

fluid network, which is the existence of a Lyapunov function for its fluid level process. Chen

and Ye (2002) utilize a piecewise Lyapunov function to obtain the sufficient conditions for

the stability of a multiclass fluid network under priority service discipline. This work extends

and generalizes the work by Ye and Chen (2002) that is based on a linear Lyanuov function.

1.2 Introduction to Network Infrastructure and Ca-

pacity Allocation

Consider a network with a set L of links/servers where each link l ∈ L has a bandwidth of

capacity Cl. Let S denote the set of sources. Each route in the network can be described by

an index (s, r), where s is a source (describing a joint or distribution point) and r is a route

directed from the source. We use the notation r ∈ s where s ∈ S denote a route r being

one of the choice of route from source s. It follows that for s ∈ S and r ∈ s, the index (s, r)

represents a particular route.

The work allocation policies we consider depend only on the ongoing jobs in all routes.

Suppose ns is the number of ongoing jobs on source s and let n = {ns : s ∈ S}. Hence,

ns =
∑

r∈s ns,r for some ns,r ≥ 0. ns,r represent the number of ongoing jobs going to route

(s, r) from source s. We denote as(n) as the work allocation(amount of work per unit time)
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allocated to each job on source s. Using this definition, the total work allocation to all jobs

on source s is Λs = nsas(n) . Thus Λs =
∑

r∈s Λs,r, for some Λs,r(n) = ns,ras(n) ≥ 0. Λs,r is

the total work allocation allocated to all jobs on route (s, r) from source s.

An allocation Λ(n) = {Λs(n)|s ∈ S} is feasible if and only if the following feasible condi-

tions are satisfied. For ease of presentation, we replace Λ(n) by Λ. The feasible conditions

are as follows:

∃Λs,r ≥ 0 s.t. Λs =
∑
r∈s

Λs,r for s ∈ S∑
s∈S,l∈r,r∈s

Λs,r ≤ Cl for l ∈ L

Λs = 0 if ns = 0 for s ∈ S

Λs ≥ 0 for s ∈ S. (1.1)

Let Mr denote the feasible set of the routing model. Without routing, the feasible set

∑
l∈r

Λr ≤ Cl for l ∈ L

Λr = 0 if nr = 0 for r ∈ R

Λr ≥ 0 for r ∈ R. (1.2)

where the set R denotes the set of fixed routes in the network. Let Mnr denote the feasible

set of the fixed route model. It is obvious that the feasible set for the fixed route model is

smaller than that with routing. Hence, Mnr ⊂Mr.

Remarks:
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1. Note that the feasible region Mr for the routing case and Mnr for the non-routing case

are convex polyhedral. The feature of routing increases the number of free variables in

the feasible region and enlarges the size of the feasible region. To further generalize our

results, our results hold as long as we restrict the feasible region to a convex polyhedral.

1.2.1 U-utility maximization allocation

As mentioned in the introduction, our main emphasis is to investigate the network stability.

In this section, we introduce a generic class of utility maximization allocation policy, called

the U-utility maximizing policy, which covers a number of allocation policies. The U-utility

maximization allocation refers to the unique optimal solution of the following optimization

problem:

max
Λ∈Mr

∑
s∈S

Us(ns,Λs) (1.3)

where Us satisfy the following properties:

1. Us(ns,Λs) are second-order differentiable on <+ × (0,∞).

2. Us(0,Λs) = 0 for Λs > 0.

3. ∂2Us(0,Λs) = 0 for Λs > 0.

4. ∂2Us(ns,Λs) > 0 for Λs, ns > 0

5. ∂1∂2Us(ns,Λs) > 0 for Λs, ns > 0
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6. Us(ns, ·) is strictly concave for fixed ns > 0.

For technical requirement, we need the following condition.

Partial radial homogeneity property :

ΛU
s (cns) = ΛU

s (ns) (1.4)

for any s ∈ S with ns > 0 and any c > 0.

Remarks:

1. The first four assumptions are intuitively appealing. The fifth assumption states that

increasing the allocation is more rewarding in the case of a higher ns. The sixth

constraints implies concavity. Intuitively, this means that adding an extra allocation

is more beneficial when the allocated allocation is small than when it is large. (See Ye

et al. (2005) for more details).

Technically, it can be shown that this generic class of utility policy leads to a unified

treatment for the stability problem of some more specified policies. Some examples of such

specified policies which fall under this category is as follows:

1. the proportionally fair allocation: Us(ns) = ns log(Λs),

2. the minimum potential delay allocation : Us(ns) = −n2
s

Λs
,
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3. the (p, α)-proportionally fair allocation : Us(ns) = psn
α
s

Λ1−α
s

1−α where ps, s ∈ S are fixed

parameters.

The assumption on partial radial homogeneity is a technical requirement and it is not as

restricted as it seems. It can be verified that utility functions for allocations like the propor-

tionally fair allocation, the minimal potential delay allocation and the (p, α)-proportionally

fair allocation satisfied all the above assumptions.

It may not seem obvious how we verify the partial radial homogeneity property for the

allocation policy. A more ‘convenient’ form to verify the partial radial homogeneity property

is to use the following lemma.

Lemma 1. Suppose there exist a positive function f : <+ → <+ such that Us(cn,Λ) =

f(c)Us(n,Λ), for any s ∈ S with ns > 0 and any c > 0, then the partial radial homogeneity

property is satisfied.

Proof. Let ΛU(n) = {Λ(n) : maxΛ∈Mr

∑
s∈S Us(ns,Λs)}. Then

ΛU(cn) = {Λ(n) : max
Λ∈Mr

∑
s∈S

Us(cns,Λs)}

= {Λ(n) : max
Λ∈Mr

∑
s∈S

f(c)Us(ns,Λs)} (by assumption)

= {Λ(n) : max
Λ∈Mr

f(c)
∑
s∈S

Us(ns,Λs)}

= {Λ(n) : f(c) max
Λ∈Mr

∑
s∈S

Us(ns,Λs)}

= {Λ(n) : max
Λ∈Mr

∑
s∈S

Us(ns,Λs)}

= ΛU(n) (1.5)
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As an illustration, consider the proportionally fair allocation, Us(ns) = ns log(Λs). Our

objective function is U(n,Λ) =
∑

s∈S ns log(Λs) =
∑

s∈S Us(ns,Λs). Let f(x) = x. Hence,

Us(cns,Λs) = cns log(Λs) = f(c)ns log(Λs) = f(c)Us(ns,Λs). Hence the proportionally fair

allocation satisfies the partial homogeneity property.

Remarks:

1. One can verify that the arctan-utility maximization allocation ,Us(ns) = wsns arctan( Λs
wsns

)

where ws is a positive constant) is not a special case of the U-utility maximizing alloca-

tion. This is due to a violation of the partial radial homogeneity property or property

1.

2. The simplest utility function is the maximum throughput allocation, Us(ns,Λs) = Λs.

But, in general, the maximum throughput allocation does not give a unique allocation

for a fixed set of n jobs. It also does not fall under the category of the U-utility

maximization allocation.

We see that the U-utility maximizing allocation is a representation of several common

allocations. Hence, we use the U-utility maximizing allocation in our analysis for the rest

of the paper. One of the drawbacks is that the U-utility maximizing allocation is unable to

capture the characteristics of the arctan-utility maximization allocation, which is seen as a

good approximation for the internet protocol.
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1.3 Network Models

The allocation of service capacities takes place in each state n, and is determined by some

optimizing problem (1.3). In the case of data transmission for internet protocols, connections

for data transmission are established and terminated dynamically in real data networks

according to some optimization problem. In order to ease the theoretical analysis and yet gain

acceptable approximation to real problems, the assumption that the arrival processes of jobs

are independent stationary renewal processes, for example, independent Poisson processes,

is often used. However, such assumption can be unrealistic as arrival processes are often

correlated and bursty, and this can affect the performance of the network. One approach to

handle this is to use the bursty model introduced in Cruz (1991). To prevent further digress

from the topic, we will present the bursty model in the appendix and focus our analysis on

the stationary network model.

In this section, we present the stationary network model in detail and propose a comple-

mentary model for the stationary network model. The concept of stability in the network

is defined. In an analogous way, the stability of the stationary network can be described as

positive Harris recurrence of the underlying Markov process that captures the dynamics of

the model. In order to set up the main result for this chapter, we first present the main

theorem in this section which we will prove subsequently.
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1.3.1 Stationary Network Model

In the stationary network, job arrivals to source s ∈ S form independent stationary renewal

process with mean arrival rate λs. Let us(i) denote the interarrival time between (i − 1)th

and the ith job on source s. Hence us(i)(i ≥ 2) are i.i.d. random variables with mean 1/λs,

while the first residual arrival us(1) is the residual arrival time. The work processed by the

ith job on source s is denoted by vs(i), which are i.i.d. exponentials with mean νs.

We need two technical conditions on us(i) : an unbounded condition and a spread out

condition.

Unbounded condition:

P{us(1) ≥ x} > 0, for any x > 0 (1.6)

Spread out condition:

There exist some integer js and some function ps(x) ≥ 0 for x ≥ 0 with
∫∞

0
ps(x)dx > 0 such

that

P{a ≤
js∑
i=1

us(i) ≤ b} ≥
∫ b

a

ps(x)dx, for any 0 ≤ a < b (1.7)

It is worth mentioning that the above two conditions are necessary for our results to

hold, but we do not apply it directly. In the proof for the stability result for the stationary

network model, the above conditions are relaxed by introducing the concept called the petite

set, see Bramson(1998).
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Let λ = {λs : s ∈ S} and ν = {νs : s ∈ S}. Then the average offered traffic load to each

source s ∈ S in terms of amount of work per unit time is:

ρs = λsνs (1.8)

With routing, we see that there exists some average offered traffic load to each route

from related source, represented by ρs,r ≥ 0, such that:

ρs =
∑
r∈s

ρs,r (1.9)

for some ρs,r ≥ 0 for all r ∈ s, s ∈ S. We interpret ρs,r as the average offered traffic on route

(s, r).

Given a state dependent allocation policy Λ(.), the dynamics of the stationary model can

be captured by a Markov process. Let Ns denote the number of jobs to be processed from

source s. Then N(t) = {Ns(t) : s ∈ S} is the ongoing job process. We now have for each

s ∈ S

Ns(t) =
∑
r∈s

Ns.r(t) (1.10)

for some Ns,r(t) ≥ 0.

If the job arrival processes are Poisson process, N(t) is a continuous time Markov chain

with transition rates given by
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q(n, n′) =


λs for n′ = n+ es

ν−1
s Λs(n) for n′ = n− es, ns ≥ 1

0 otherwise.

where n, n′ ∈ Z |S|+ .

In the more general case, i.e. general stationary renewal arrival processes, it is necessary

to refine the structure of the network model by introducing more measures in order to capture

the network dynamics accurately. Let Us(t) denote the remaining time before the next job

arrival on source s at time t and Vs(i, t) denote the amount of work of ith job on source s

that has not been processed at time t. We treat the ongoing connections on a source to be

lined up in the order of the arrival. Then (N(t), U(t), V (t)) = {Ns(t), Us(t), Vs(t); s ∈ S}

is a strong Markov process describing the dynamics of the data network.(See Dai(1995) or

Davis(1984) for a more comprehensive explanation.) The network model is said to be stable

if the Markov process is positive Harris recurrent.

A necessary condition for stability is that the normal offered load condition holds, i.e.

the average offered load to every link in the network is within the capacity of the link:

∑
s∈S,l∈r,r∈s

ρs,r < Cl, for l ∈ L (1.11)

for some ρs,r ≥ 0 where ρs =
∑

r∈s ρs,r.

We adopt a process sharing (PS) system for the stationary network in this section. In

short, for this system, the capacity of a link (e.g. the processor) allocated to each route is
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shared equally by all ongoing jobs. The analysis using the PS system is in general difficult.

Hence, we consider an alternative stationary model under the head-of-the-line processor

sharing (HOLPS) system. Under the HOLPS, all the capacity allocated to a route goes

to the ongoing job which is established first. The similarity for the two system is that it is

sufficient to capture the network dynamics of the two system by a Markovian state descriptor,

also denoted as (N(t), U(t), V (t)). The mathematical details for this is omitted since it is

not used explicitly in the rest of the paper.

Under the exponential assumption of the processing workload, the ongoing job process

is equal in distribution in the two systems. This is so because, in both systems, the rate at

which ongoing connections in a route finish transmissions depends on the allocation allocated

to the route, which in turns depends only on the number of ongoing jobs on each route. This

leads to the deduction that the other two Markovian state descriptor, U(t) and V (t), are

equivalent in distribution, since both depends on the ongoing connection process N(t). Thus,

we claim that the positive Harris recurrence of the HOLPS system implies the positive Harris

recurrence of the PS since they have the same distribution. Therefore, in order to facilitate

us in our technical analysis of the network, we assume that the stationary model is a HOLPS

system for the rest of the paper.

1.3.2 HOLPS system

In the network model (HOLPS) we are working on, it is useful to introduce more perfor-

mance measures to describe the network dynamics better.
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Performance measures:

1. Queue length process : X(t) = {Xs(t) : s ∈ S}

2. Job arrival process : E(t) = {Es(t) : s ∈ S}

3. Workload arrival process :A(t) = {As(t) : s ∈ S}

4. Capacity allocation process : D(t) = {Ds(t) : s ∈ S}

5. Job departure process : S(t) = {Ss(t) : s ∈ S}

Xs(t) is the immediate remaining work load (in terms of the amount of work) embodied

in the Ns(t) ongoing jobs on source s at time t ≥ 0 and is given by:

Xs(t) =

Ns(t)∑
i=1

Vs(i, t)

=
∑
r∈s

Ns,r(t)∑
i=1

Vs(i, t)

=
∑
r∈s

Xs,r(t) (1.12)

where Xs,r(t) =
∑Ns,r(t)

i=1 Vs(i, t). Recall that Vs(i, t) is the amount of work of ith job on

source s that has not been processed at time t. With routing, for each job i at the source s,

it will be routed to one of the routes r ∈ s. Hence, Xs,r(t) is the queue length at the route

(s, r).
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Es(t) is the total number of jobs that have arrived to source s during the time interval

[0, t] for t ≥ 0, and is given by:

Es(t) = sup{i : Us(0) + Us(1) + ...+ Us(i) ≤ t} (1.13)

Recall that Us(t) is the remaining time before the next job arrival on source s at time t.

As(t) is the total amount of workload embodied in all jobs that have been established at

source s during time interval [0, t] for t ≥ 0, and is given by:

As(t) =

Es(t)∑
i=1

vs(i) (1.14)

Ds(t) is the total amount of work that has been processed via source s during the time

interval [0, t] for t ≥ 0, and is determined by the capacity allocation process/policy Λ. Then

at source s, we have:

Ds(t) =

∫ t

0

Λs(Ns(τ))dτ (1.15)

and Λs is solved from the optimization problem:
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max
∑
s∈S

Us(ns,Λs)

s.t. ∃Λs,r ≥ 0 that Λs =
∑
r∈s

Λs,r for s ∈ S∑
s∈S,l∈r,r∈s

Λs,r ≤ Cl for l ∈ L

Λs = 0 if ns = 0 for s ∈ S

Λs ≥ 0 for s ∈ S. (1.16)

where Us(ns,Λs) is some utility function. Note that Λs and Λs,r are both decision variables

for r ∈ s, s ∈ S. From (1.15), we have

Ds(t) =

∫ t

0

Λs(Ns(τ))dτ

=

∫ t

0

∑
r∈s

Λs,r(Ns(τ))dτ

=
∑
r∈s

∫ t

0

Λs,r(Ns(τ))dτ

=
∑
r∈s

Ds,r(t) (1.17)

where Ds,r(t) =
∫ t

0
Λs,r(N(τ))dτ .

Ss(y) is the number of jobs that have been processed if amount of work that has been

processed via source s is equal to y, and under HOLPS, is given by:

Ss(y) = max{i : vs(1) + ...+ vs(i) ≤ y} (1.18)
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Thus, Ss(Ds(t)) is equal to the number of jobs that have been processed up to time t.

Finally, the processes X,N,A,E,D, S are related by the following job flow balance equa-

tions and the job flow at each node:

Xs(t) = Xs(0) + As(t)−Ds(t) (1.19)

Ns(t) = Ns(0) + Es(t)− Ss(Ds(t)) (1.20)∑
r∈s

Xs,r(t) = Xs(t) for some Xs,r ≥ 0 (1.21)∑
r∈s

Ns,r(t) = Ns(t) for some Ns,r ≥ 0 (1.22)∑
r∈s

Ds,r(t) = Ds(t) for some Ds,r ≥ 0 (1.23)

Before we proceed further, we list the main result of this chapter, which provides the

necessary and sufficient conditions for the stability of the stationary network.

Theorem 1. Suppose the normal offered load condition (1.11) is satisfied for the stationary

network model (L,C,R,M, λ, ν). Then the allocations Λpp,Λpd,Λmm,Λα and ΛU ensure the

stability of the model.

From the theorem, we see that the stability of the model depends heavily on the allo-

cation policy we choose. An important observation is that the maximum throughput and

priority based allocation policy does not fall under the conditions of theorem 1. We know

that the normal offered load condition is not sufficient to guarantee the stability of the net-

work in the fixed route case. The conclusion is similar for the routing case. We give a simple

example to highlight our point.
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Example 1 (Maximum throughput allocation in a priority network with routing)

Consider a network with three links L = {1, 2, 3}. We have three classes of jobs to be

processed. Suppose that job class 1 is given a higher priorty than job class 2 and 3. Assuming

the arrival processes are Poisson, then the dynamics of this network can be expressed by the

ongoing job process N(t), which is a continuous Markov chain with transition rates

q(n, n′) =



λs for n′ = n+ es

ν−1
s1
C2 for n′ = n− es1 , ns1 ≥ 1

ν−1
s2
C1 for n′ = n− es2 , ns1 = 0, ns2 ≥ 1

ν−1
s3
C3 for n′ = n− es3 , ns1 = 0, ns3 ≥ 1

0 otherwise.

In the routing case, assume we have a choice of allocation for job class 2. We can route

some of the job of class 2 to link 3. Hence, the necessary and sufficient condition for the

positive recurrence of the Markov chain N(t) is:

ρs2 = ρs2,1 + ρs2,3,
ρs3 + ρs2,3

C3

< 1,
ρs1 + ρs2,1

C1

< 1,
ρs2,1
C1

+
ρs1
C2

< 1. (1.24)

But the normal offered load condition is:

ρs2 = ρs2,1 + ρs2,3,
ρs3 + ρs2,3

C3

< 1,
ρs1 + ρs2,1

C1

< 1,
ρs2,1
C1

< 1. (1.25)
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By inspection, we see that the condition (1.24) is stronger than (1.25).

1.4 Fluid Network and its stability

In this section, we prove theorem 1 by a fluid model approach. First of all, we introduce a

fluid network model and prove its stability. If properly scaled, we show that the stationary

network model will converge to the limits that satisfy the fluid network model. The stability

of the stationary model can be deduced from the stability of the fluid model.

1.4.1 Introduction of Fluid Network Model

We introduce a fluid network model corresponding to the stationary network model with

the U-utility maximizing allocation. The fluid network model has the same infrastructure

as the stationary network model. The difference is that in the fluid network, the routes

carry continuous fluid flows. In particular, on source s, the fluid flows exogenously into the

network at a rate less than or equal to ps, and is transmitted through routes r ∈ s at a rate

subject to a given allocation policy.

We introduce the following fluid processes to describe the dynamics of the fluid network.

1. Fluid queue level process : X̄(t) = {X̄s(t) : s ∈ S}

X̄s(t) is the amount of fluid waiting to be transmitted at source s at time t. With

routing, at each source s ∈ S, we have X̄s(t) =
∑

r∈s X̄s,r(t), where X̄s,r(t) is the
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amount of fluid being assigned by the allocation Λ for indented processing at route

(s, r).

2. Job level process : N̄(t) = {N̄s(t) : s ∈ S}

N̄s(t) is the number of jobs at source s in fluid form at time t. With routing, at each

source s ∈ S, we have N̄s(t) =
∑

r∈s N̄s,r(t), where N̄s,r(t) is the amount of fluid jobs

being assigned by the allocation Λ at route (s, r).

3. Fluid arrival process :Ā(t) = {Ās(t) : s ∈ S}

Ās(t) is the cumulative amount of fluid that has arrived at source s during the time

interval [0, t].

4. Capacity allocation process : D̄(t) = {D̄s(t) : s ∈ S}

D̄s(t) is the total amount of fluid that has been transmitted via all routes (s, r) from

source s during the time interval [0, t].

5. Allocation process : Λ̄(n, q) = {Λ̄s(n, q) : s ∈ S}

Λ̄s(n, q) is the allocation rate allocated to source s when the job level state is N̄(t) = n

and the fluid inflow rate is ˙̄A(t) = q. To be more precise, we define the allocation rate

as

Λ̄U
s (n, q) =

 ΛU
s (n) if ns > 0

qs if ns = 0
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Using routing, we have Λ̄s(n, q) =
∑

r∈s Λ̄s,r(n, q), where Λ̄s,r(n, q) is the allocation

rate allocated to route (s, r) from source s.

Fluid network model

Given the allocation Λ̄U , the dynamics of the fluid network model is characterized by the

following system of equations:

For s ∈ S,

X̄s(t) = X̄s(0) + Ās(t)− D̄s(t) (1.26)

N̄s(t) = X̄s(t)/vs (1.27)

Ās(t)is Lipschitz continuous and 0 ≤ ˙̄As(t) ≤ ρs a.s. (1.28)

D̄s(t) =

∫ t

0

Λ̄s(N̄(τ), ˙̄As(τ))dτ

=

∫ t

0

∑
r∈s

Λ̄s,r(N̄(τ), ˙̄As(τ))dτ

=
∑
r∈s

∫ t

0

Λ̄s,r(N̄(τ), ˙̄As(τ))dτ (1.29)∑
r∈s

X̄s,r(t) = X̄s(t) for some X̄s,r ≥ 0 (1.30)∑
r∈s

N̄s,r(t) = N̄s(t) for some N̄s,r ≥ 0 (1.31)∑
r∈s

Ās,r(t) = Ās(t) for some Ās,r ≥ 0 (1.32)∑
r∈s

Λ̄s,r(n, q) = Λ̄s(n, q) for some Λ̄s,r ≥ 0 (1.33)

where (1.26) and (1.27) are the flow balance equation. The job level process N̄(t) is in-

troduced to maintain the similarity of fluid network to the stationary network. (1.28)is a
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regularity arrival processes, and (1.29) is self-explanatory.(1.30)-(1.33) captures the charac-

teristic of routing at each source s ∈ S.

The above system of equations defines a fluid network model. Any solution satisfying the

above system is called a fluid solution. By definition, the fluid model is said to be stable if

there exists a time τ > 0 such that X̄(τ + ·) ≡ 0 (or equivalently N̄(τ + ·) ≡ 0) for any fluid

solution X̄(t) with initial condition ‖X̄(0)‖ = 1. For the stationary network, it is clear that

the normal offered load condition is necessary for the fluid network model to be stable under

any allocation policy. For the normal offered load condition to be a sufficient condition, we

need to impose conditions on the allocation policy. To state more formally, we show the

stability of the fluid network model under the U-utility allocation policy under the normal

offered load condition. We will need the following results in our proof.

Proposition 1. Suppose the normal offered load condition (1.11) is satisfied for the fluid

network model. Then the U-utility maximizing allocation Λ̄U ensure the stability of the fluid

network model.

Proof. : Stability of the fluid network model with allocation Λ̄U(., .) follows from Theo-

rem 2.3 (i) of Ye and Chen (2001) after the following claims (a)-(c) are verified.

(a) (Scale property) For any fluid solution ¯N(.), the process 1
z
N̄(z)̇ is also a fluid solu-

tion for any fixed z > 0.

(b) (Shift property)For any fluid solution ¯N(.), the process N̄(s + ·) is also a fluid solu-
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tion for any fixed s > 0.

(c) (Lyapunov condition) For any fluid solution ¯N(.), there is an absolutely continuous

function f(t) such that for almost all t ≥ 0,

w1(‖N̄(t)‖) ≤ f(t) ≤ w2(‖N̄(t)‖), (1.34)

ḟ(t) ≤ −w3(‖N̄(t)‖) (1.35)

where wi(.), i = 1, 2, 3 are three strictly increasing continuous functions with wi(0) = 0, i =

1, 2, 3.

Claims (a) and (b) are straightforward to verify. We prove claim (c). Let

f(t) =
∑
s∈S

∫ N̄s(t)

0

vs∂2Us(y, ρs(1 + δ))dy

such that N̄s(t) =
∑

r∈s N̄s,r(t) for some N̄s,r(t) ≥ 0 (1.36)

where δ is sufficiently small so that {ρs(1 + δ), s ∈ S} still satisfies the normal offered load

condition (1.11) with ρs replaced by ρs(1 + δ). Then f(t) is absolutely continuous because

N̄(t) is Lipschitz continuous and the integrands are uniformly bounded on any compact set

of y. This can be deduced from condition 2 and 5 of the property of Us.

Define three strictly increasing continuous functions wi(.), i = 1, 2, 3 as follows:
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w1(y) =
y

2|S|
w(

y

2|S|
)

w2(y) = yw̄(y)

w3(y) = (min
s∈S

λs)δw(
y

|S|
)

(1.37)

where w(y) = mins∈S{vs∂2Us(y, ρs(1 + δ))} and w̄(y) = maxs∈S{vs∂2Us(y, ρs(1 + δ))}.

Then w1(0) = w2(0) = w3(0) = 0. We first verify (1.34). Let ŝ ∈ S such that N̄ŝ(t) =

max{N̄s(t) : s ∈ S}. Consider the left hand side of (1.34):

f(t) ≥
∑
s∈S

∫ N̄s(t)

N̄s(t)
2

w(y)dy

≥
∑
s∈S

N̄s(t)

2
w(
N̄s(t)

2
)

≥ N̄ŝ(t)

2
w(
N̄ŝ(t)

2
)

≥ ‖N̄ŝ(t)‖
2|S|

w(
‖N̄ŝ(t)‖

2|S|
)

= w1(‖N(t)‖) (1.38)

We now verify the right hand side of (1.34). Assuming condition 5 of property of Us, we

have:
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f(t) ≤
∑
s∈S

∫ N̄s(t)

0

w̄(y)dy

≤
∑
s∈S

w̄(N̄s(t))N̄s(t)

≤ w̄(‖N̄(t)‖)‖N̄(t)‖

= w2(‖N̄(t)‖) (1.39)

The next step is to verify (1.35):

ḟ(t) =
∑
s∈S

˙̄Ns(t)νs∂2Us(N̄s(t), ρs(1 + δ))

=
∑
s∈S

˙̄Xs(t)∂2Us(N̄s(t), ρs(1 + δ))

=
∑
s∈S

[ ˙̄As(t)−
∑
r∈s

Λ̄U
s,r(N̄(t), ˙̄A(t))]∂2Us(N̄s(t), ρs(1 + δ)) for some Λ̄s,r

=
∑
s∈S

[ ˙̄As(t)− Λ̄U
s (N̄(t), ˙̄A(t))]∂2Us(N̄s(t), ρs(1 + δ))

=
∑

s∈S,N̄s>0

[ ˙̄As(t)− Λ̄U
s (N̄(t), ˙̄A(t))]∂2Us(N̄s(t), ρs(1 + δ))

≤
∑

s∈S,N̄s>0

[ρs − Λ̄U
s (N̄(t), ˙̄A(t))]∂2Us(N̄s(t), ρs(1 + δ))

(1.40)

Consider the following optimization problem:

max
∑

s∈S,N̄s>0

Us(N̄s(t),Λs)

s.t.
∑

l∈r,r∈s,N̄s>0,s∈S

Λs,r ≤ Cl for l ∈ L,

Λs ≥ 0 where Λs =
∑

r∈s Λs,r for some Λs,r ≥ 0 (1.41)
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By our choice of δ, we see that ρs(1+δ) is feasible solution to the above optimization problem,

and {Λ̄U
s (N̄(t), ˙̄A(t))|N̄s > 0} = {Λ̄U

s (N̄(t))|N̄s > 0} is optimal. Using the property that

∂2Us(ns,Λs) > 0 for ns,Λs > 0 and the feasibility of ρs(1 + δ), we have

∑
s∈S,N̄s>0

ρs(1 + δ) ≤
∑

s∈S,N̄s>0

Λ̄U
s (N̄(t), ˙̄A(t))

⇒
∑

s∈S,N̄s>0

ρs − Λ̄U
s (N̄(t), ˙̄A(t)) ≤ −

∑
s∈S,N̄s>0

δρs

(1.42)

Back to our equation (1.40):

ḟ(t) ≤ −
∑

s∈S,N̄s>0

ρsδ∂2Us(N̄s(t), ρs(1 + δ))

= −
∑
s∈S

ρsδ∂2Us(N̄s(t), ρs(1 + δ))

≤ −
∑
s∈S

λsδw(N̄s(t))

≤ −(min
s∈S

λs)δ
∑
s∈S

w(N̄s(t))

≤ −(min
s∈S

λs)δw(max
s∈S

N̄s(t))

≤ −(min
s∈S

λs)δw(
‖N̄(t)‖
|S|

)

= −w3(‖N̄(t)‖) (1.43)

Hence, we have prove the Lyapunov condition and conclude the stability of the fluid

network model under normal offered load condition.
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At this point, we have proved the stability of the fluid model. In the next section, we

will establish the relationship of the fluid model and the original network.

Remarks:

1. One alternative way to forumlate the problem is to consider the workload along the

routes rather than at the source. However, the proof given here will not be applicable

in this case. In this case, our Lyapunov function will be

f(t) =
∑
s∈S

∫ N̄s,r(t)

0

vs∂2Us,r(y, ρs,r(1 + δ))dy

such that N̄s(t) =
∑

r∈s N̄s,r(t) for some N̄s,r(t) ≥ 0 (1.44)

where δ is sufficiently small so that {ρs,r(1 + δ), s ∈ S} still satisfies the normal offered

load condition (1.11) with ρs,r replaced by ρs,r(1+δ). In the proof, we require ρs,r(1+δ)

to be feasible in the region for the optimization problem (1.41). But for δ > 0,

∑
l∈r,r∈s,N̄s>0,s∈S

Λs,r(1 + δ) ≤ Cl for l ∈ L,

Λs ≥ 0 where Λs =
∑

r∈s Λs,r(1 + δ) for some Λs,r ≥ 0

⇐⇒
∑

l∈r,r∈s,N̄s>0,s∈S

Λ′s,r ≤ Cl for l ∈ L,

Λs ≥ 0 where Λs =
∑

r∈s Λ′s,r for some Λ′s,r > 0 (1.45)

Hence, we cannot deduce that ρs,r(1 + δ) is feasible in the region for the optimization

problem (1.41).
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2. To further generalize the result, note that no assumption is made on the feasible region:

∑
s∈S,l∈r,r∈s

ρs,r < Cl, for l ∈ L (1.46)

for some ρs,r ≥ 0 where ρs =
∑

r∈s ρs,r

Hence, we can generalize to any convex feasible region and the result will still hold.

1.4.2 Use of Fluid Network Model to prove Theorem 1

In this section, we will prove theorem 1. We first prove the convergence of a sequence of

networks to a fluid solution of the fluid model. Given the convergence, we can work on the

fluid solution. Using theorem 3 of Bramson (1998) and the results from proposition 1 and

proposition 2, we can derive theorem 1.

Consider a sequence of such stationary models, indexed by k = 1, 2, .... The superscript k

described the kth model. Specially, for the k-th model, we have X̄(k)(t), N̄ (k)(t), Ē(k)(t), Ā(k)(t), D̄(k)(t)

and S̄(k)(t).

Let {zk} be an increasing sequence of the positive numbers with zk →∞ and let

N̄ (k)
s (t) =

1

zk
N (k)
s (zkt)

X̄(k)
s (t) =

1

zk
X(k)
s (zkt)

Ā(k)
s (t) =

1

zk
A(k)
s (zkt)

D̄(k)
s (t) =

1

zk
D(k)
s (zkt)

(1.47)
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In the fluid approach to show stability, we make use the limits of the processes above.

Before presenting the main proposition needed to prove the theorem, we state a lemma which

will be used in our proof.

Lemma 2. (Partial continuity) Suppose a sequence of states {nj, j = 1, 2, ...} ⊂ <|S| con-

verges to n ∈ <|S| as j →∞. Then for the U-utility allocation policy ΛU , we have

ΛU
s (nj)→ ΛU

s (n) as j →∞ (1.48)

for any s ∈ S such that ns > 0.

Proof. Prove by contradiction. Suppose not, then there exist a sequence of states {nj, j =

1, 2, ...} ⊂ <|S| converging to state n ∈ <|S| as j → ∞, and for some s ∈ S with ns > 0,

ΛU
s (nj)→ Λ∗ 6= ΛU

s (n).

Define Y = {s ∈ S|ns > 0} and Yj = {s ∈ S|njs > 0}. Assume that Y ⊂ Yj for all

j = 1, 2, ....

Let Λ̄s = Λ∗s for s ∈ Y and Λ̄s = 0 otherwise. We can check that ΛU(n) and Λ̄ are unique

solution and a feasible solution respectively to optimization problem:

max
∑
s

Us(ns,Λs)

s.t. ∃Λs,r ≥ 0 that Λs =
∑
r∈s

Λs,r for s ∈ S∑
s∈S,l∈r,r∈s

Λs,r ≤ Cl for l ∈ L

Λs = 0 if ns = 0 for s ∈ S

Λs ≥ 0 for s ∈ S. (1.49)
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Thus, we have

∑
s∈Y

Us(ns, Λ̄s) =
∑
s∈Y

Us(ns,Λ
∗
s) <

∑
s∈Y

Us(ns,Λ
U
s (n)) (1.50)

Note that convexity of the feasible region allows us to find a solution to the optimization

problem and strict concavity of the objective function allows us to have uniqueness of the

solution.

On the other hand, we can verify that ΛU(nj) and ΛU(n) are the unique solution and

feasible solution respectively, to the optimization (1.49) with n replaced nj, noting that

Y ⊂ Yj for all j.

Thus we have

∑
s∈Y

Us(n
j
s,Λ

U
s (nj)) ≥

∑
s∈Y

Us(n
j
s,Λ

U
s (n)) (1.51)

for all j.

Let j →∞, from the joint continuity of Us, s ∈ S, we have

∑
s∈Y

Us(ns, Λ̄s) ≥
∑
s∈Y

Us(ns,Λ
U
s (n)) (1.52)

since ns = 0 for s ∈ S\Y and Us(0, .) = 0 for s ∈ S. And hence contradiction.

Remarks:

1. Note that the proof relies on the strict concavity of the objective function, U . Other-

wise, the limit of convergence, Λs(n) will not be unique.
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2. The proof for the lemma is similar to Ye,Ou and Yuan (2003) because the strict con-

cavity of the objective function is retained.

Proposition 2. Given the allocation Λ(.), and suppose that X̄(k)(0) converges as k → ∞.

Then for almost all sample paths and any subsequence of {k}, there exists a further subse-

quence, also denoted by {k}, such that

(N̄ (k)(t), X̄(k)(t), Ā(k)(t), D̄(k)(t))→ (N̄(t), X̄(t), Ā(t), D̄(t)) u.o.c. (1.53)

and (N̄(t), X̄(t), Ā(t), D̄(t)) is a fluid solution to the fluid network model.

Proof: The u.o.c. convergence of Ā(k)(t) follows from the functional strong law of large

numbers.

Note that at source s, we have:

0 ≤ D̄(k)
s (t) ≤ min

(s,r)
{

∑
l∈r,r∈s

Cl}(t) (1.54)

This is so because the capacity allocation process at source s is bounded above by the

minimum of the set of links connected to source s via route (s, r). Hence the processes are

pointwise bounded. Since

|D̄(k)
s (t)− D̄(k)

s (w)| ≤ min
(s,r)
{

∑
l∈r,r∈s

Cl}|t− w|, (1.55)

the processes are also equicontinuous. Thus we deduce that the scaled processes D̄(k)(t)

are u.o.c. convergent. Consequently, convergence of X̄(k)(t) follows from (1.26). Using

the similar arguement, theorem 6.5 of Chen and Yao (2001) yields the u.o.c. convergence of
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N̄ (k)(t). (1.27) can also be proven by similar arguement to the corresponding part in theorem

6.5 of Chen and Yao (2001).

We now verify (1.29). It suffices to show that

˙̄Ds(t) = ˙̄As(t)(= ρs), if N̄s(t) = 0 (1.56)

and

˙̄Ds(t) = Λ̄s(N̄(t), ˙̄As(t)) = Λs(N̄(t)), if N̄s(t) > 0 (1.57)

for any t ≥ 0 such that all the related processes are differentiable.

When N̄s(t) = 0 or X̄s(t) = 0, we have ˙̄Ns(t) = 0 since t is a local minimum of the

function X̄s(.). Thus (1.56) follows.

Consider the case N̄s(t) > 0. For any small positive h and a sufficiently large index k

along a convergent subsequence, we have:

|1
h

(D̄k
s (t+ h)− D̄k

s (t))− Λs(N̄(t))|

= |1
h

∫ h

0

Λs(N(zk(τ + t)))− Λs(N̄(t))dτ |

≤ 1

h

∫ h

0

|Λs(N(zk(τ + t)))− Λs(N̄(t))|dτ

≤ 1

h

∫ h

0

|Λs(N(zk(τ + t)))− Λs(N̄(t+ τ))|dτ

+
1

h

∫ t

0

|Λs(N̄(τ + t))− Λs(N̄(t))|dτ

(1.58)
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Using the partial radial homogeneity and partial continuity of Λs and the convergence of

a subsequence N̄ (k)(.) , we get

Λs(N(zk(τ + t)))− Λs(N̄(t+ s))

= Λs(N̄
(k)(τ + t))− Λs(N̄(t+ s))

→ 0 (1.59)

as k →∞, for all τ ∈ (0, h).

Thus let k →∞ in (1.58), we have:

|1
h

(D̄k
s (t+ h)− D̄k

s (t))− Λs(N̄(t))|

≤ 1

h

∫ t

0

|Λs(N̄(τ + t))− Λs(N̄(t))|dτ

(1.60)

By the Lipschitz continuity of N̄(t) and the partial continuity property of ΛU(·), right

hand side of the above inequality tends to 0 as h→ 0+.

Hence ˙̄Ds(t+) = Λ̄s(t) and thus ˙̄Ds(t) = Λ̄s(t) a.e..

The proof of theorem 1 follows from proposition 1, proposition 2 and theorem 3 of

Bramson (1998).
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Having proved theorem 1, we have established the necessary and sufficient conditions for

the stability of the network under some allocation, in particular, the U-utility maximizing

allocation.

1.5 Conclusion

In this chapter, we are concerned with the stability of a stochastic network with a wide range

of allocation policies. The policy is given in terms of solving an optimization problem with a

unique objective function to represent a certain allocation policy. Given the wide collection

of such policies, we seek to unify all the policies and use a U-utility allocation policy to

represent the policies, and carry our analysis on it. The partial radial homogeneity property

of the utility function is further generalized for easy identification of allocation policies.

The main result is to extend the result for the stochastic network with fixed routing to

the case of routing. This enlarges the solution space of the problem. In order to work on such

stochastic network (with or without routing), in particular the stationary network, we make

the assumption that the processing workload is i.i.d. exponential. This serves to ease the

technical difficulty in proving the stability of the network. The case for the bursty network

model is presented in the appendix. The defined stationary network in this chapter is a PS

system, but our analysis are based on a HOLPS system, which is sufficient for proving the

positive Harris recurrence of the PS system.

The network models we introduce in the paper view the network at the higher level, and

focus on the dynamic nature of work traffic in the network, but ignore some details on how
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the jobs are established and stabilized at the each instance. We proved the stability of the

network via a fluid limit approach. The technique of Lynapunov function is used to help us

in the proof for the stability.

1.6 Appendix: Bursty Network Model

In the bursty model (see Cruz (1991a,b)), work loads are injected by ”an adversary” to the

network, such that the arrivals do not depend on any particular probability assumptions.

The arrivals to different routes may even be correlated. The results based on this is more

robust in that they do not depend on any particular probability assumption. However, it

only serves as an approximation to the network. Given this, the stationary model will not

be good enough to describe the network dynamics of this network.

To overcome this, we consider a specific path realization of the network, and make use

of three deterministic processes:

1. queue length process : X(t) = {Xs(t) : s ∈ S}

2. workload arrival process :A(t) = {As(t) : s ∈ S}

3. capacity allocation process : D(t) = {Ds(t) : s ∈ S}

The meaning of the above processes is similar to that of the stationary model except

for some slight technical differences. In the bursty model, we also have the following flow

balance equation:
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Xs(t) = Xs(0) + As(t)−Ds(t) for t ≥ 0, s ∈ S (1.61)

and constraints (1.21) to (1.23).

To relate the bursty model to the stationary model, we define an ongoing job process

N(t) = {Ns(t) : s ∈ S} with Ns(t) given as:

Ns(t) =
Xs(t)

νs
, for t ≥ 0, s ∈ S, (1.62)

which approximately represents the number of jobs on source s. The approximation can be

justified for network with large number of arrivals and that the average workload on route r

is νs.

We adopt the input model by Cruz (1991a) to capture the burstiness of inputs into the

network. We assume that the arrival As(t) at a source s need not have regularity properties

like continuity or differentiability, but just follow the following bursty constraint:

0 ≤ As(t1)− As(t2) ≤ ρs(t1 − t2) + w, for t1 ≥ t2 ≥ 0, s ∈ S (1.63)

where ρs is a constant in units of work amount per unit time, and w is a constant in units of
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work amount. (This constraint is further explored by Borodin, et al. (2001).) Cruz (1991a)

defines constraint (1.63) as a (w, ρs) regulator that controls the rate of a particular arrival

session via a path in the network so that during any time interval [t1, t2], the arrival traffic

is bounded by ρs(t1− t2) +w of traffic. Such an arrival process can be viewed as the output

of a ”leaky bucket model” of a flow control, where input is rejected whenever the constraint

(1.63) is violated.

Suppose the chosen state dependent allocation policy at source s is Λs. Then we have

Ds(t) =
∑
r∈s

∫ t

0

Λs,r(N(τ))dτ, for some Λs,r and t ≥ 0, s ∈ S (1.64)

where Λ(N(t)) = {Λs(N(t)) : s ∈ S} with Λs(N(t)) being the bandwidth or transmission

rate allocated to source s at time t when the network state is n = N(t).

Thus, our bursty model can be represented by the octuple (L,C,R,M, λ, ν, ρ, w). With

A(t) and Λ(.) specified, the network dynamics is characterized by (1.61), (1.62), (1.63) and

(1.64).

Definition 1. The bursty model is said to be stable if for any X(0), there exists a constant

MX(0) such that

sup
t≥0
‖X(t)‖ ≤MX(0) (1.65)

One must be careful when we use the bursty model. The constraint (1.63) is an ap-

proximation of the actual number of workload. Hence, we should bear in mind that the
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bursty model only serves as the workload approximation of the actual model. The necessary

condition for the stability of the bursty model is the same as that of the stationary model,

which is the capacity constraint. One can construct examples to illustrate this.

Theorem 2. Suppose the normal offered load condition is satisfied for the bursty network

model (L,C,R,M, λ, ν). Then the allocations Λpp,Λpd,Λmm,Λα and ΛU ensure the stability

of the model.

1.6.1 Use of Fluid Network to prove Theorem 2

The steps involved here are similar to that for the stationary model. The difference is that

in the bursty model, we need to scale the process and take the proper limits.

Let {tk} and {zk} be increasing sequences of the numbers with tk → ∞ and zk → ∞

respectively. tk represent a sequence of times and zk represent a sequence of positive numbers.

Define:

N̄ (k)(t) =
1

zk
N(zkt+ tk)

X̄(k)(t) =
1

zk
X(zkt+ tk)

Ā(k)(t) =
1

zk
(A(zkt+ tk)− A(tk))

D̄(k)(t) =
1

zk
(D(zkt+ tk)−D(tk))

(1.66)

We have the following proposition on the limits of these scaled processes.
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Proposition 3. Given the bandwidth allocation ΛU(.), and suppose that {X̄(0)} (or { 1
zk
X(tk)})

has convergent subsequences. Then there exists a subsequence of {k}, such that

(N̄ (k)(t), X̄(k)(t), Ā(k)(t), D̄(k)(t))→ (N̄(t), X̄(t), Ā(t), D̄(t))u.o.c. (1.67)

and (N̄(t), X̄(t), Ā(t), D̄(t)) is a fluid solution to the fluid network model.

Proof. We give an outline of the proof. The u.o.c. convergence of the scaled processes

Ā(k)(t) and D̄(k)(t) along a subsequence to Ā(t) and D̄(t) is a direct result from lemma 6.3

of Ye, et al.(2005). Hence, u.o.c. convergence of N̄ (k)(t) and X̄(k)(t) follows consequently

from (1.26) to (1.33). The case of u.o.c. convergence of D̄(k)(t) is proved exactly the same

as the stationary case, but with a change in time scale. i.e. zkt+ tk instead of zkt.

Hence, from the stability of the fluid model and proposition (3), we have prove theorem

2. (See Ye et al. (2005) for more details.)
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Chapter 2

Control in Stochastic Networks with

Concurrent Resource Occupancy and

Batch Arrivals

This chapter is motivated by the work of Li and Yao (2004), in which a booking limit control

policy based on a fixed point approximation was developed for a network with concurrent

resources. It builds on their model and further generalize the conditions required for the

model. There are many applications to this. We chose the airline industry to present

our ideas. The objective is to optimize the expected revenue subjected to the availability

of seats on the flights. In our work, we further generalize the arrival process to a batch

arrival process. Our solving methodology involves deriving a fixed point approximation to

express the network operating under a set of booking limits, and reformulating it into a
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linear program to solve for the booking limits. We show that the policy is optimal under

certain limit. In order to show the accuracy of our approximation, we carry out extensive

simulation studies. Another contribution made is to study the updating mechanism for the

booking limit, which turns the originally static policy to a dynamic one. Numerical analysis

demonstrates significant improvement of dynamic policy.

2.1 Introduction

We have seen that concurrent resource occupancy is a prevalent feature in many engineering

and service systems. A multi-leg airline booking seat allocation, which involves concurrent

seat reservations on several connecting flights, is one example. In the shipping, one has

to ensure the concurrent availability of empty containers, the lift capacity at the terminal,

and the space slots for containers on board the vessel. Yet another example involves hotel

occupancy. A customer often books a room for a certain time duration and that room

is blocked off from sale during that duration. Other examples include a make-to-order

processing company, which requires concurrent processing of all its components, and file

transfer on the internet, which involves the utilization of bandwidths on all links along its

route from the source to the destination. These are real-life situations and the development

of a robust stochastic network to accommodate concurrent resource occupancy is apposite.

The stochastic and dynamic nature of the demand process makes such problems challenging

to solve. To address this, we derive a control policy for these problems, and this forms the

motivation of this chapter.
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In this part of the thesis, we develop a static stochastic model with concurrent resources

with an appropriate control policy. The idea of concurrent resource occupancy was called to

attention by Whitt (1985) who mooted the notion of concurrent resource occupancy when he

studied the blocking phenomenon in loss networks. Kelly (1988) went further and studied the

behaviour of large loss network using a fixed point approximation for blocking probabilities.

In addition, he examined properties of fixed point mappings in these loss networks. Kelly’s

work focuses on applications concerning circuit-switched communication networks. One

of the similarities is the characteristic of concurrent occupancy of more than one type of

resources. Our model of interest is the logistics of a network model that represents the

airline transportation hub which displays the similar feature.

Online airline seat reservation is now a common feature. As such, this makes our problem

more significant since we want to develop a robust stochastic network that can benefit the

airlines. If one books a flight from Singapore to Hong Kong via Bangkok, the reservation

system will process the seat reservation from Singapore to Bangkok and then from Bangkok

to Hong Kong. This is a clearly a case of concurrent resource allocation, and the reservation

process affects the concurrent allocation of resource almost instantaneously. This underlies

the need for a computationally fast method to compute the control policy.

A fixed point approximation scheme is proposed to address the problem. Li and Yao

(2004) studied a stochastic network with simultaneous resource occupancy and introduced a

threshold control policy based on a fixed point approximation. Ye and Yao (2006) extended

Li and Yao by establishing the asymptotic optimality of the control policy under fluid and
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diffusion scaling. Li and Yao optimize the revenue for flows through the network by resource

control (i.e., developing policies for resource allocation amongst the various job classes). Our

aim is to generalize the results of their paper. Though the model can be applied to a wide

range of scenarios, we use the airline seat reservation system to present our model and its

accompanying algorithm.

To generalize the model, we introduce batch arrival process rather than single arrival

process. The underlying rationale is that customers book more than one seat. As such, a

Poisson process for the arrival will not capture this feature accurately. A travel agency books

in batches, and each batch depends on the number of customers who purchase their package.

Instead of a Poisson process to represent the customer arrival, we assume that the arrivals

follow a compound Poisson process. The main difficulty lies with the distribution of the

batch size. Assuming that the batch sizes are independent and identical random variables,

we can then generalize the results by Li and Yao (2004) and demonstrate that the single

batch arrival studied is a special case. However, the analysis pertaining to a general batch

size is much more complicated. Assuming a discrete distribution for the batch size proved to

be computationally difficult to solve. Hence, we seek an approximation using a continuous

distribution, and claims that the approximation is accurate at least in a limiting regime.

Although our results focus on the limiting regime, it also suggests that the policies derived

provides good results when implemented on a system with large mean demand and large

capacity of the resources. This forms the main contribution.

Static policies are easy to implement but at the expense of the performance of the pol-
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icy. Dynamic policy are known to be more accurate if applied in a “smart” way but the

explosion of dimension of the problem due to updating of the state of the system prevents

one from implementing it successfully, especially so in large-scale network problems. Our

derived control policy is a static one. We introduce a booking limit policy to set a fixed

threshold on the utilization of the resources in the network. It will be interesting to extend

our static policy to a dynamic policy, one which includes the updating of the current state

of the system. We analyze a few updating strategies numerically, and proposed a updating

mechanism. By simulation, the performance of our updating policy is tested numerically

against the hindsight optimum and the static case.

Outline

In this section, we formulate a revenue optimization problem with the concurrent resource

occupancy and compound Poisson arrival process. We then derive a control policy with the

use of a booking limit. We introduce a fixed point approximation for a network operating

under a set of thresholds that control the access of jobs from each class. Solving it is compu-

tationally difficult. We therefore propose an approximation via a continuous distribution. In

particular, we use the standard normal distribution to approximate the general batch. We

justify such an approximation and claim that it is accurate at least in the asymptotic sense.

We outline the proof for the asymptotic optimality of the method in the appendix.

Finally, we conclude the paper by demonstrating the results using some numerical exam-

ples. In reality, the actual distribution of the batches is unknown. Given this, it is interesting
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to see what impact the distribution assumed for the batch has on the revenue generated by

the network. We investigate this further numerically.

A possible extension to our control policy is to introduce a new booking limit during

the time horizon via some effective method of updating the system. We suggest a updating

mechanism and show the effectiveness of it numerically.

2.2 Literature Review

Control or management policies are closely related to revenue management in airline, ho-

tel and manufacturing industries. McGill and Van Ryzin (1999) provided a comprehensive

survey of the research done on revenue or yield management. It is clear that revenue man-

agement will continue to interest academics because it is a rich area for research and for

practitioners because they can learn how to increase their corporate revenue.

Adopting a sound control policy is important. Simulation results have demonstrated gains

from using proper control policies. While the precise improvement is dependent on factors

like the type of network, the demand distribution, the load factor, etc., improvements of up

to 1.5% under moderate load conditions and up to 3% or more under high load conditions

can be expected (Talluri and van Ryzin (1999)). These gains make the implementation of

such policies relevant in practical applications. While the benefits of such policies are high,

the complexity of the implementation is often difficult given that the actual distribution of

the demand is unknown. The policies can be derived in two main ways, namely, using a

static model or a dynamic model. It is impossible to list all the papers done till date. Hence,
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we list the more relevant ones in this section.

2.2.1 Dynamic Model

A control policy derived from a dynamic model takes into account the state of the pro-

cess throughout the planning horizon. The downside is that it is usually computationally

expensive to derive a control policy using the dynamic model.

Peng (1999) considered a multiple booking class airline-seat inventory control problem

that takes into account either a single flight leg or a multiple flight-leg case. Peng formu-

lated a dynamic model, in which the demand for the arrival is modeled as a discrete time

stochastic process. The computation time of the dynamic model was reduced by consoli-

dating the decision-making period into sets of critical decision periods. Another example

of dynamic programming (Markov decision process) being applied to revenue management

is Subramanian, Stidham and Lautenbacher (1999). They analyzed the airline seat allo-

cation on a single-leg flight multiple fare class using a Markov decision process (dynamic

programming) model. Contributing factors such as cancellation, no-shows and overbooking

are taken into consideration for the control policy. There are many works that focus on a

Markov-decision-process-type model. Lee and Hersh (1993) studied such model based on a

single-leg flight, and uses discrete time dynamic programming to develop the optimal policy.

Other works include Lautenbacher and Stidham (1999), Liang (1999) and Zhao and Zheng

(2001). Most of the work focused on a single-leg scenario and provided a deep insight into the

problem. However, practical problems often involve a network of flight legs, and this makes
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such implementation almost impossible due to an increase in dimension of the problem when

applying dynamic programming approach.

An interesting approach using dynamic programming is the use of the bid price control,

which is a method that sets a control policy based on the dual prices in the model. This

technique was first suggested by Simpson (1989) and was later studied by Williamson (1992).

Talluri and van Ryzin (2004) analyzed the use of bid-price as a form of threshold control. In

short, using this approach, a class of customer is accepted only if its fare exceeds the sum of

the bid price along the affected route. Their model takes account the demand uncertainty

and allows the flexibility of random prices set within a fare class. The problem was analyzed

via a dynamic programming approach. Using their general model, they proved that the

bid-price control was suboptimal and investigated further the conditions that the bid-price

scheme would fail to produce the right solution. They were able to prove that when the

capacities and the arrival process were scaled by the same factor, the bid price control was

shown to be optimal in the asymptotic sense. Feng and Gallego (2000) studied the problem

of a fixed number of items to be sold over a finite horizon and used pricing as a tool to

maximize the expected revenue. Extensions of Feng and Gallego’s work involving dynamic

pricing were carried out by Feng and Xiao (2000a) and Feng and Xiao (2000b).

The dynamic model is more accurate in that it takes into account the state of the problem

at that time interval into consideration. However, a weakness of the dynamic approach is

that it is computationally expensive to compute the optimal policy. This motivates us to

take one step back to find some static control policies that are computationally feasible and
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yet yield good performance. Next, we summarize the literatures on the static model.

2.2.2 Static Model

In a static model, we treat the booking period as a single interval, and the aim is to set

a booking limit for every booking class at the start of the booking process. Most static

policies are derived by solving a deterministic version of the actual problem. The weakness

in such an approach is that it is unable to consider the actual state during the process.

Hence, the tradeoff is the accuracy of the policy. In contrast to the dynamic approach, it

is generally computationally cheaper to compute the optimal solution, and large problems

can be handled more readily. Hence, it is possible to compute a control policy for a general

network. The control policy derived from static policies are simpler when compared to their

dynamic counterparts. However, results have shown that such static policies are asymptoti-

cally optimal, in the sense that the policy is close to being an optimal one under appropriate

scaling.

Glover et al. (1982) were amongst the first to study a deterministic network flow. They

formulated the problem as a minimum cost (maximum profit) network flow problem to find

the optimal allocation of seats between passenger itineraries and fare classes. The execution

time on a 16bit microcomputer used then was linearly proportional to the number of arcs

and nodes in the network. They kept computation cost at a manageable level. This renders

further analysis on the system, which would otherwise be impossible on a dynamic policy,

manageable.
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Cooper (2002) studied similar problems in a stochastic framework, and derived a man-

agement policy from a deterministic optimization problem, which is asymptotically optimal

in the sense that the normalized optimal revenue converges in distribution to a constant

upper bound. Their focus centers around the use of a LP-based allocation to generate a

simple policy which produces good results. Cooper made a counter-intuitive observation

that a standard updating practice may not necessarily brings better performance than the

case of no updating. This suggests that much research has to be put into this area to find a

more effective method of introducing updating of the system.

Gallego and Van Ryzin (1994) considered varying the price to maximize the expected

revenue. They computed an upper bound for the expected revenue based on a deterministic

version of the problem. They proved that a static fixed price policy is asymptotically optimal

as the volume of expected sales gets larger. In fact, a simple fixed price policy works well in

many situations. This is encouraging since optimal dynamic pricing policies are difficult to

implement since they require more monitoring and adjusting according to the state of the

system.

A deterministic network model based on origin-destination pairs is studied by Talluri

(1993). His model was based on the airline revenue management problem, that manages

passenger routing using seat inventory control. Most revenue management models empha-

size sales control of low fare class on a high demand situation. Talluri worked on the low

demand alternative route to increase the expected revenue further. Numerical studies in

large scale problems have showed improved revenue without sacrificing the service level.
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The computational cost is also kept at a manageable level. Another work which is based

on a deterministic network flow is by Gallego and Van Ryzin (1997). They investigated the

problem of pricing finished products in a firm, and aim to maximize total expected revenue

over a finite sales horizon. The problem was analyzed via deterministic version of the prob-

lem. The heuristics proposed were shown to be asymptotically optimal as the expected sales

volume increases.

Most of the proposed static policies are asymptotically optimal on the fluid scale. Reiman

and Wang (2006) studied a control policy for a revenue management problem in a network

setting and proposed an accurate policy which is optimal on the more sensitive diffusion

scale. Their policy consists of two stages and it is a mix of a static and dynamic policies.

In the first stage, it begins by solving the deterministic version of the problem and using

the computed results to form a probabilistic admission rule. In the second stage, the actual

state of the system is tracked by a trigger function, which is the difference between the actual

realized acceptance and the expected customer acceptance. Certain thresholds are defined

and, if violated, they trigger a reoptimization of the problem with the parameters updated.

Hence, the second stage is a dynamic one. They demonstrated that their policy is optimal

on the diffusion scale.

Li and Yao (2004) proposed the policy. Ye and Yao (2006) studied the asymptotic

optimality of the policy under both fluid and diffusion scaling. The class of the routes are

categorized into two groups, namely, the H-class (the high revenue or premium class) and

the L-class (low revenue or lower priority). They managed to show the results derived from
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Li and Yao (2004) are asymptotically optimal on the diffusion scale, but required a condition

that states that each bottleneck link in the system contains at most one H-class route.

2.3 Introduction of Network

Suppose a network consisting of a set of links, L, with each link connecting a pair of nodes.

Each link l ∈ L has capacity limit Cl.

Let R denote the set of routes/classes.(The term route and class is used interchangeably

here, but this should not cause any ambiguity in the presentation.) Each route r ∈ R is a

subset of links connecting a source node to a sink node. Denote l ∈ r if link l is part of

route r. In the airline revenue problem, we can interpret R as the classes of customers or

the set of routes. Hence, if a class r1 customer uses link l1, l3 and l5, r1 = {l1, l3, l5}. For the

rest of the paper, we will use the route and the class of customer interchangeably and this

should not cause any confusion. For a more general framework, we assume the demand on

each route r follow a Compound Poisson process with rate independent of the demand on

all other routes.

2.3.1 Revenue Management problem

Our main objective is to maximize the expected revenue over a finite time horizon. Let wr be

the price charged to each route r, and let Ar denote the number of orders that are accepted

during the time horizon. Consider a time period of 1. To motivate, consider the following

revenue optimization problem:
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max
Ar

∑
r∈R

wrAr

s.t.
∑

s 6=r,s3k

As ≤ Cl for l ∈ r, r ∈ R

0 ≤ Ar ≤ Nr(1) (2.1)

where Nr(t) denotes the number of class r arrivals in the period [0, t]. The optimal solution

to (2.1) is defined to be the hindsight optimum. Solving for the hindsight optimal solution

is impossible because we do not know the number of class arrival beforehand. Even the

most sophisticated method for forecast will not allow us to predict the exact number of the

class arrival. Hence, in a real life application, we can at best seek an approximation to

it. However, we can treat the hindsight optimum as a benchmark by which we judge the

accuracy of our approximation scheme.

The main focus is to construct a control policy on the arrival with the objective of

maximizing expected revenue. Our control policy involves setting a threshold (“booking

limit”) yr on the number of orders that will be accepted on each route r for a given time

horizon. In the planning process, we have to optimize the decision variables yr at time

zero, using the model formulation as proposed. Once the decision variables are decided, the

orders from all the routes are accepted on a first-come-first-served basis. The acceptance

of the orders from the route is determined purely by the booking limit and the capacity

available. In short, an order for a route r will be rejected once yr is reached or the capacity

of the links affected are all utilized, whichever happens first.

Let the arrival process {Nr(t), t ≥ 0} denote the compound Poisson process. Thus we
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have

Nr(t) =

N̂r(t)∑
i=1

Bi,r (2.2)

where {N̂r(t), t ≥ 0} is a Poisson process with rate λr and {Bi,r, i ≥ 1} be the independent

and identically distributed random variables denoting the batch size of the arrival, which

is independent of {N̂r(t).t ≥ 0}. We can interpret Nr(t) as the total number of orders

requesting route r up to t. To ease the notations, let Nr denote the total number of arrivals

for the indented time horizon.

At a particular route r, the sum of the number of orders accepted by all the class must

be less than the capacity of the links affected. Hence, we have the constraint:

Ar ≤ Cl −
∑

s 6=r,s3l

As,∀l ∈ r (2.3)

Therefore, the number of accepted orders is the minimum value of the booking limit,

the arriving process and the remaining capacity of the link affected. Hence, the fixed point

model representing this is

E[Ar] = E[Nr ∧ yr ∧min
l∈r
{Cl −

∑
s 6=r,s3l

As}] (2.4)

which says that the expected value of the accepted orders for route r is the expected value of

the minimum of the arrival process, the booking limit and the remaining capacity available

on the link which route r uses.

Expression (2.4) is difficult to solve, since there is random variables present on both side

of the equation. An approximation for E(Ar) was proposed by Li and Yao (2004) and it is
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as follows:

E(Ar) ≈ E[Nr ∧ yr ∧min
l∈r
{Cl −

∑
s 6=r,s3l

E(As)}] (2.5)

Denote xr = E[Ar] and mr = minl∈r{Cl −
∑

s 6=r,s3l xs}. We let N(λ, N̂) denote a com-

pound Poisson variate where N̂ denotes the Poisson variate with mean λ and i.i.d. batch

sizes Bi,r. We denote h(λ, n) = E[N(λ, N̂) ∧ n]. By conditioning on the Poisson process for

the arrival, we have:

h(λ, n)

= E[N(λ, N̂) ∧ n]

= n− E[n−N(λ, N̂)]+

= n−
∑
j

E[n−N(λ, N̂)|N̂ = j]+P (N̂ = j) (2.6)

At this point, we assume that the batch size follow some distribution. Under the approxi-

mation (2.5) and using the function h derived from (2.6), we have

xr = E[Ar] = h(λ, yr ∧mr), r ∈ R (2.7)

Hence, given yr, the system of equations from (2.7) defined a fixed point model to ap-

proximate the expected number of expected orders on each route r. In order to compute

(2.6) and (2.7), we need to assume a discrete distribution for the batch size. We present

some of the common distributions for the batch size in the following section.
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2.3.2 Assuming some common distribution for the batch

By assuming a distribution for the batch, we can compute (2.6). The batch size can be

categorized into a single batch case and the non-single batch case.

Single batch Poisson arrival

A particular case of distribution for the batch size is assuming that all Bi,r are constant. In

particular, let Bi,r = 1 for all i. This is exactly the standard Poisson process for the arrival.

From (2.6), we have

h(λ, n)

= n− E[n−N(λ, j)]+

= n−
∑
j≥0

E[n−N(λ, N̂)|N̂ = j]+P (N̂ = j)

= n−
∑
j≥0

n∑
k=0

(n− k)P [

j∑
i=1

Bi,r = k]e−λ
λj

j!

(2.8)

From above, we see that P [
∑j

i=1 Bi,r = k] = 1 if j = k and P [
∑j

i=1Bi,r = k] = 0 otherwise.

Thus, we can simplify it to:

h(λ, n)

= n−
∑
j≥0

(n− j)e−λλ
j

j!

= n−
n∑
j=0

(n− j)e−λλ
j

j!

(2.9)
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which is exactly the form given in Li and Yao (2004). Hence, the formulation given by them

is a special case of our formulation. In the next section, we will discuss on the more general

case, the non-single batch size.

Non-single batch size

In this section, we will introduce the formulation of the non-single batch size. Having a gen-

eral distribution for the batch size, Bi,r makes the result more interesting, but complicates

the formulation. Hence we give the formulation of the case when batch sizes are Poisson

random variables and Geometric random variables. In this section, to simply our formula-

tions, we drop the subscript r and we consider the batch size at a route r.

Poisson batch size

A more general assumption is that the batch sizes, Bi are all independent Poisson random

variables with mean β for all i. i.e. P (Bi = k) = e−ββk/k!.

We know that
∑n

i=1 Bi is Poisson distributed with mean nβ. Hence

E[n−N(λ, N̂)|N̂ = j]+

= E[n−N(λ, j)]+

=
n∑
k=0

(n− k)P [

j∑
i=1

Bi = k]

=
n∑
k=0

(n− k)e−jβ
(jβ)k

k!
(2.10)
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Figure 2.1: Probability distribution of Poisson batch with different β
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Hence,

h(λ, n)

= n−
∑
j≥0

E[n−N(λ, N̂)|N̂ = j]+P (N̂ = j)

= n−
∑
j≥0

n∑
k=0

(n− k)P [

j∑
i=1

Bi = k]P (N̂ = j)

= n−
∑
j≥0

n∑
k=0

(n− k)e−jβ
(jβ)k

k!
e−λ

λj

j!

(2.11)

The function h in (2.11) will be used in the fixed point approximation as shown later.

Figure 1 shows the distribution of the Poisson batch size.

Geometric batch size

In this section, we assume that the batch size Bi follow a Geometric distribution with

parameter p, 0 < p < 1. Then we have

P (Bi = k) = (1− p)kp, for k = 0, 1, 2, 3, ... (2.12)

Having a high value of p puts more weight on a smaller value of the batch size.

From (2.6), in order to evaluate h(λ, n), we need to find the value of P [
∑j

i=1 Bi = k]. If

Bi are independent geometrically distributed variables with parameter p, then
∑j

i=1Bi = k

follows a negative binomial distribution with parameters j and p. See figure 2 for the graph

for the Geometric batch size. The probability mass function of a random variable with a

negative binomial distribution (NegBin(j, p) )takes the following form:
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Figure 2.2: Probability distribution of Geometric batch with different p
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f(k; j, p) =
Γ(j + k)

k!Γ(j)
pj(1− p)k for k = 0, 1, 2, ... (2.13)

where Γ is the gamma function.

Thus, we have

h(λ, n)

= n−
∑
j≥0

n∑
k=0

(n− k)P [

j∑
i=1

Bi = k]P (N̂ = j)

= n−
∑
j≥0

n∑
k=0

(n− k)f(k; j, p)e−λ
λj

j!
(2.14)

where f(k; j, p) is defined by (2.13).

In the rest of the chapter, we consider general batch size distribution. Recall that the main

focus is to seek a control policy on the arrival with the objective of maximizing expected

revenue. Our control policy involves finding a booking limit yr, which acts as a threshold

on the number of accepted orders. Hence, the booking limit problem is equivalent to solving

the following optimization problem:

max
yr

∑
r∈R

wrxr (2.15)

where xr is given by (2.7). This can be simplified and formulated as the following:

max
y

∑
r∈R

wrxr

s.t. yr +
∑

s 6=r,s3k

xs ≤ Ck for k ∈ r, r ∈ R

xr = h(λr, yr), r ∈ R (2.16)
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Note that the final model (2.16) is similar to the model by Li and Yao (2004), but our

model is based on a more general setting, which is assuming that the arrival process is a

Compound Poisson process.

However, the linear program (2.16) is restricted to certain distribution for the batch size.

We have presented a few distribution of the batch sizes which does not make the evaluation

of (2.6) too computationally expensive. For more general distribution for the batch size

Bi, it becomes more difficult to compute the expected value of the accepted orders, since it

involves calculating the probability of sum of random variables which involves the convolution

of probability space. Hence, we seek an approximation in the next section.

2.4 Approximation via continuous distribution for ar-

rival

In this section, our aim is to get a approximation for a Compound Poisson process with

general batch size. We have defined the Compound Poisson process as {Nr(t), t ≥ 0} as

Nr(t) =

N̂r(t)∑
i=1

Bi,r (2.17)

where {N̂r(t), t ≥ 0} is a Poisson process with mean λrt and {Bi,r, i ≥ 1} be the independent

and identically distributed random variables denoting the batch size of the arrival, which

is independent of {N̂r(t), t ≥ 0}. Let br and σ2
b,r be the mean and variance of the batch

size for route (or class) r respectively. Hence, E[Nr(t)] = λtE[Br] = λrtbr and V ar[Nr] =

λtE[B2
r ] = λt(σ2

b,r + b2
r).
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Given that using a general discrete distribution for the batch size proves to be a difficult

problem and computationally difficult to solve, our aim is to approximate the batch arrival

process using a continuous distribution. We first state a theorem from Rényi,1970.

Theorem 3. Let X1, X2, .. be independent, identically distributed random variables with

mean 0 and positive, finite variance σ2. Set Sn =
∑n

k=1 Xk, n ≥ 1. Suppose that {N̂(t), t ≥

0} is a family of positive, integer-valued random variables, such that, for some 0 < λ <∞,

N̂(t)

t
→p λ as t→∞.

Then,

SN̂(t)

σ

√
N̂(t)

→d N(0, 1) as t→∞,

SN̂(t)

σ
√
λt
→d N(0, 1) as t→∞

where N(0, 1) denote the standard normal distribution.

Definition : Let Y and Yn be random variables for n = 1, 2, .... Yn is said to converge to

Y in probability, written as Yn →P Y if limn P [|Yn − Y | ≥ ε] = 0 holds for all ε > 0. If Yn is

said to converge in distribution to Y , written as Yn →d Y , then limn P [Yn ≤ y] = P [Y ≤ y]

holds for every y such that P [Y = y] = 0.

Back to our problem, we first consider the Poisson process, N̂(t), t ≥ 0. Let Tn denote

the elapsed time between (n − 1)st and the nth event and let Ŝn =
∑n

i=1 Ti, n ≥ 1. We
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know that N̂r(t) ≥ n⇐⇒ Ŝn ≤ t and Tn are independent identically distributed exponential

random variables with mean 1/λ. As t → ∞, n → ∞ and using the strong law of large

numbers,

P [ lim
n→∞

Ŝn
n

=
1

λ
] = 1.

Hence,

P [
Ŝn
n

=
1

λ
] = P [Ŝn =

n

λ
]

= P [N̂(
n

λ
)− ε < n < N̂(

n

λ
) + ε] for some arbitrary ε > 0

= P [N̂(t)− ε < λt < N̂(t) + ε] (let t = n
λ
)

= P [
N̂(t)

t
− ε

t
< λ <

N̂(t)

t
+
ε

t
]

(2.18)

Let t→∞ on both sides, we have

P [ lim
t→∞

N̂(t)

t
= λ] = 1 (2.19)

which implies N̂(t)/t→p λ as t→∞. Denote S̃r,n =
∑n

i=1 Bi,r where {Bi,r, i ≥ 1} are inde-

pendent and identically distributed random variables denoting the batch size of the arrival,

with mean and variance of br and σ2
b,r respectively. Hence, Nr(t) = S̃r,N̂r(t). We standardize

the random variable S̃r,n into the random variable S̃∗r,n = (S̃r,n − E[S̃r,n])/(
√
var[S̃r,n]) =

(S̃r,n − nbr)/(
√
nσb,r), which have 0 expectation and standard deviation 1. Thus, using

theorem 3, we can deduce that as t→∞, we have (S̃r,N̂r(t) − λtbr)/(σb,r
√
λt)→d N(0, 1).

Denote z(Nr(t), t) = (Nr(t)− λrtbr)/(σb,r
√
λt). Therefore,
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lim
t→∞

P [Nr(t) ≤ x] = P [z(Nr(t), t) ≤
z − λrtbr
σb,r
√
λt

]

=

∫ x

0

Φ(
u− λrtbr
σb,r
√
λt

)d(u)

=

∫ x

0

Φr(z(u, t))d(u) (2.20)

where Φr(·) is the density probability function for the normal random variable associated to

route r.

We consider the limiting region, that is, when t is large. For ease in illustration, we

drop the term t in our steps, and let Ñr denote the arrival process in some limiting regime.

Let Fr(x) be the cumulative distribution function for the corresponding normal distribution

function. Denote:

E[Ñr ∧ n] = hc(Φr, n)

=

∫ n

0

kΦr(z(k))dk +

∫ ∞

n

nΦr(z(k))dk

= kFr(z(k))|n0 −
∫ n

0

Fr(z(k))dk + nFr(z(k))|∞n

= nFr(z(n))−
∫ n

0

Fr(z(k))dk + n− nFr(z(n))

= n−
∫ n

0

Fr(z(k))dk

=

∫ n

0

1− Fr(z(k))dk

=

∫ n

0

F̄r(z(k))dk (2.21)

Note that we introduce a new notation hc to denote the continuous case. Similarly as the

discrete case, under the approximation (2.5) and using the function hc derived from (2.21),
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we denote:

xr = E[Ar] = hc(Φ, yr ∧mr), r ∈ R (2.22)

Hence in the limiting region, given yr, the system of equations from (2.22) defined a fixed

point model to approximate the expected number of expected orders on each route r.

Remark:

1. The expression for hc(f, n) in (2.21) holds for any probability distribution function, f ,

and corresponding cumulative distribution function, F . Hence, if we approximate the

batch size using some arbitrary continuous distribution, we can use (2.21) to evaluate

E[Ñr ∧ n].

2.5 Revenue Management Problem

Assume the setting of the network we described in the previous section. Our aim is to set

the booking limit yr by maximizing the expected revenue. Hence, the booking limit problem

is equivalent to solving the following optimization problem:

max
yr

∑
r∈R

wrxr (2.23)
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where xr = E[Ar] is given by (2.22). Then the revenue optimization problem becomes

max
yr

∑
r∈R

wrxr

s.t. yr +
∑

s 6=r,s3l

xs ≤ Cl for l ∈ r, r ∈ R

xr = hc(Φr, yr), r ∈ R (2.24)

Using (2.21),

max
yr

∑
r∈R

wr

∫ yr

0

F̄r(z(k))dk

s.t. yr +
∑

s 6=r,s3l

∫ ys

0

F̄s(z(k))dk ≤ Cl for l ∈ r, r ∈ R (2.25)

One can check that the objective function
∑

r∈R wr
∫ yr

0
F̄r(z(k))dk is an increasing con-

cave function with respect to yr. Hence, this is a convex linear programming problem. Let

ηrk be the Lagrangian multipliers. Using K.K.T. conditions, we have the following optimality

equations:

wrF̄r(z(yr))−
∑
l∈r

ηrl − (
∑
s 6=r

∑
l∈s∩r

ηsl)F̄r(z(yr)) = 0 (2.26)

To simplify the notations, let πr =
∑

l∈r ηrl and γr =
∑

s 6=r
∑

l∈s∩r ηsl. Thus,

wrF̄r(z(yr))− πr − γrηslF̄r(z(yr)) = 0

⇒ F̄r(z(yr)) =
πr

wr − γr
⇒ Fr(z(yr)) =

wr − πr − γr
wr − γr

(2.27)

Hence, the optimal booking limit for route r should be set at yr, such that P (Nr ≤

yr) = Fr(z(yr)) which is the proportion of orders accepted for that route is the ratio as
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derived above. The term πr represents the penalty cost from using the links, and the term

γr represents the indirect penalty cost which represents the impact on other routes that share

the link with route r. We see that the numerator of the ratio represents the net profit from

each accepted order for route r and the denominator of the ratio represent the net profit

plus the indirect cost penalty.

2.5.1 Solving Methodology

From (2.21), we see that E[Nr ∧ n] is increasing with respect to n. Assume n is an integer.

Then, we can write:

E[Nr ∧ n] =

∫ n

0

F̄r(z(k))dk

=
n∑
j=0

θr,j

∫ j+1

j

F̄r(z(k))dk (2.28)

where θr,j = 1⇐⇒ θr,j+1 > 0, θr,j ≤ θr,j+1 and θr,j ∈ [0, 1] for all j ≥ 0 and r ∈ R.

From the constraint in (2.24), we see that yr ≤ Cl−
∑

s 6=r,s3lE[As] = mr for l ∈ r, r ∈ R.

Thus E[Ar] = E[Nr ∧ yr ∧mr] = E[Nr ∧ yr]. Let Ĉr = minl∈rCr. Note that yr ≤ Ĉr for all

r ∈ R. In order to keep the feasible region as small as possible, we can write:

E[Ar] = E[Nr ∧ yr] = E[Nr ∧ Ĉr] =
Ĉr∑
j=0

θr,j

∫ j+1

j

F̄r(z(k))dk (2.29)

yr =
Ĉr∑
j=0

θr,j (2.30)

Using (2.29) and (2.30), we express (2.24) as a optimization problem. Our decision

variables becomes θr,j ∈ [0, 1].
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max
θr,j

∑
r∈R

wr

Ĉr∑
j=0

θr,j

∫ j+1

j

F̄r(z(k))dk

s.t.
Ĉr∑
j=0

θr,j +
∑

s 6=r,s3l

Ĉs∑
j=0

θs,j

∫ j+1

j

F̄s(z(k))dk ≤ Cl for l ∈ r, r ∈ R

θr,j = 1⇐⇒ θr,j+1 > 0,∀j, r ∈ R

θr,j ≤ θr,j+1,∀j, r ∈ R

0 ≤ θr,j ≤ 1,∀j, r ∈ R (2.31)

The program (2.31) is not easy to solve since it involves a integer constraint. One can show

that the function hc(Φ, n) is a increasing concave function in n. Using this property, we can

remove the integer constraint θr,j = 1 ⇐⇒ θr,j+1 > 0 and constraint θr,j ≤ θr,j+1,∀j, r ∈ R.

The linear program becomes

max
θr,j

∑
r∈R

wr

Ĉr∑
j=0

θr,j

∫ j+1

j

F̄r(z(k))dk

s.t.
Ĉr∑
j=0

θr,j +
∑

s 6=r,s3l

Ĉs∑
j=0

θs,j

∫ j+1

j

F̄s(z(k))dk ≤ Cl for l ∈ r, r ∈ R

0 ≤ θr,j ≤ 1,∀j, r ∈ R (2.32)

Solving the above linear program (2.32), the optimal booking limit is

y∗r =
Ĉr∑
j=0

θ∗r,j, r ∈ R (2.33)

where θ∗r,j, r ∈ R is the optimal solution to (2.32).
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2.5.2 Asymptotic Optimality under Fluid Scaling

In this section, we discuss the optimality of our control policy. We know that the stochastic

model corresponding to the single Poisson arrival process is asymptotically optimally under

fluid scaling. The same conclusion can be drawn from the same stochastic model but with

the single Poisson arrival process replaced by the more general compound Poisson process.

We first state the result and highlight the outline for the proof, which follows from the idea

of Ye and Yao (2006), in the appendix.

We introduce a sequence of networks, indexed by the superscript k. Each of the network

in the sequence is exactly the same as the network introduced, but with its arrival rates and

link capacities replaced by kλr, r ∈ R and kCl, l ∈ L respectively. We denote the superscript

k for the variables in the k-th network. The variables concerned are Akr(t), N
k
r (t), ykr . The

price wr for each sequence of network remains unchanged. Recall that z(Nk
r (t), t) = (Nk

r (t)−

kλrtbr)/(σb,r
√
kλt). Let the time horizon t be 1. Note that there is no loss in generality

when we drop the time argument, t, and assume t = 1. Omitting the time argument does

not change the proof, and it can be easily generalize to the case of an arbitrary t. To ease

the notation, we omit the variable t. From (2.25), the k-th network becomes:

max
xk,yk

∑
r∈R

wrx
k
r

s.t. ykr +
∑

s 6=r,s3l

xks ≤ kCl for l ∈ r, r ∈ R

xkr =

∫ ykr

0

F̄r(z(u))du (2.34)

78



Under fluid scaling, we denote:

(Ākr(t), N̄
k
r (t), ȳkr , x̄

k
r) = (

1

k
Akr(t),

1

k
Nk
r (t),

1

k
ykr ,

1

k
xkr) (2.35)

Using the notations from fluid scaling, we transform the problem (2.34) into

max
x̄k,ȳk

∑
r∈R

wrx̄
k
r

s.t. ȳkr +
∑

s 6=r,s3l

x̄ks ≤ Cl for l ∈ r, r ∈ R

x̄kr =

∫ ȳkr

0

F̄r(
u− λrbr√
λtσ2

b,r/k
)du (2.36)

We first state the result in the following theorem.

Theorem 4. Suppose for each k, (x̄kr , ȳ
k
r )r∈R is an optimal solution to the k-th network in

(2.36).

1. Then, for any subsequence of this solution sequence, there exists a further subsequence

that converges to a limit, (ȳr)r∈R, and the limit (ȳr)r∈R is an optimal solution to the

following problem:

max
x̄

∑
r∈R

wrx̄r

s.t.
∑
r∈l

x̄r ≤ Cl for l ∈ r, r ∈ R

x̄r = ȳr ∧ λrbr (2.37)

2. Under the threshold control with ykr = kȳkr , r ∈ R, the (fluid scaled) accepted orders

converge to the optimal solution of (2.37), i.e.,

Ākr → x̄∗r as k →∞, r ∈ R, (2.38)
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along the convergent subsequence.

3. The threshold control is asymptotically optimal (under fluid scaling) in the following

sense:

Let (Ak,Gr )r∈R denote the number of accepted order associated with any (general) thresh-

old control scheme G for the k-th network; and let (Āk,Gr )r∈R = ( 1
k
Ak,Gr )r∈R. Then we

have

lim sup
k→∞

∑
r∈R

wrĀ
k,G
r ≤

∑
r∈R

wrx̄
∗
r (2.39)

where x̄∗r solves (2.37).

Proof : See appendix.

Theorem 4 shows that the original problem (2.24) is asymptotically optimal in the fluid

sense. To be more precise, the original problem can be approximated by solving (2.37) for the

optimal booking limit. The approximation is more accurate when the arrival rate λr, r ∈ R

and the capacity of the link Cl, l ∈ L are scaled up by the same factor.

2.6 Numerical Studies for Static policies

In this section, we illustrate our results by some numerical examples. In the first subsection,

we focus on the accuracy of the static policies which we have introduced. Our aim is to
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show the accuracy of our proposed approximation using (2.32) and compare it with the

approximation using exact discrete distribution for the batch size. We first show numerically

that our proposed approximation is close to that of the discrete approximation proposed by

Li and Yao (2004). Although our proposed allocation is based on the usage of the normal

distribution to approximate the allocation method given by Li and Yao (2004), it provides

more generality in the assumption of the batch size distribution for the compound Poisson

process, yet maintain the gap between the two approximations. Given that our proposed

allocation is still an approximation, it is interesting to see how it fare with the actual optimal

allocation. We compare the expected result computed from our approximation with results

from the hindsight optimum.

Generalizing the arrival process allows us to explore deeper into the problem such as the

effect of the batch size has on the expected revenue obtained. In example 3, we compare

the accuracy of our approximation policy with the hindsight optimum. The accuracy of our

approximation policy is compared with the policy using discrete distribution for the batch

size. In reality, it is unrealistic to assume a certain distribution for the batch size. Hence,

our approximation assumes a general batch size distribution and the results obtained by the

policy is compared with the hindsight optimum.
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2.6.1 Implementation of Static Policies

In this subsection, we will deal with the implementation of the static policies and test the

accuracy of our proposed approximation with the hindsight optimal solution.

Example 1 (Comparison of the result from the normal distribution approxi-

mation with the result using the discrete distribution)

We first compare the numerical result from our proposed approximation with that of the ap-

proximation from using the discrete distribution for the batch size. For ease of presentation,

we refer the approximation by Li and Yao (2004) as approximation 1.

We consider an example with 2 classes of customers, r1 and r2, using the same resources

from 1 link with capacity C = 10. Classes r1 and r2 follow a Compound Process with rates

λr1 = 5 and λr2 = 10. Revenue earned from accepting one entry from classes r1 and r2 are

w1 = 2 and w2 = 1 respectively. We assume a Poisson batch size. Batch size from class r1

and r2 are independent Poisson random variables with mean 2 and 1 respectively.

We test the two approximations using the same set of parameters. The arrival rates and

the capacities are scaled by a factor of k, k = 1, ...10. For each k, we compute the expected

revenue under the two approximations. The result is presented in table 2.1.

The difference and the absolute difference in the expected revenue, represented by the

gap and absolute gap respectively, is monitored and presented in figure 2.4.
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Figure 2.3: Expected revenue vs the scaling factor k

Figure 2.4: Optimal gap vs the scaling factor k
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k revenue (discrete) revenue (normal)

1 19.08 19.17

2 39.05 39.07

3 59.03 59.05

4 79.03 79.04

5 99.02 99.04

6 119.02 119.03

7 139.02 139.03

8 159.02 159.02

9 179.01 179.02

10 199.01 199.02

Table 2.1: Expected revenue

From figure 2.3, we see that the expected revenue computed under the two approxima-

tions are very close. As expected, the expected revenue for both cases increases with the

problem size. Figure 2.4 shows that the absolute gap between the two approximations is

small. The absolute gap decreases with the problem size and remain consistent at about

0.05 with a scaled factor of 10. Hence, our approximation gets closer to the approximation

1 with the problem size. This shows that our method approximates the discrete case well.

Comparing with simulated results

We know that our proposed allocation is not optimal. Hence, we seek to see how large

is the optimal gap with the hindsight optimum of simulated results.

Similarly, we have 2 classes of customers, r1 and r2, using the same resources from 1 link
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with capacity C = 20. Classes r1 and r2 follow a Compound Process with rates λr1 = 3

and λr2 = 5. Revenue earned from accepting one entry from classes r1 and r2 are w1 = 1

and w2 = 2 respectively. We suppose that the batch size from class r1 and r2 are random

variables with mean 1 and 2 respectively. The variance of the batches are both 1.

In order to obtain the simulated results, we generate 500 sample paths for the arrival

process. For each sample path, we solve for the hindsight optimum. With the booking limit,

the revenue earned under each sample path arrival can also be computed. The mean revenue

is estimated by averaging the revenues.

Using the approximation method by normal distribution, we can compute the booking

limit under the set of parameters in this example. Likewise with each sample path, we apply

the booking limit on the arrival process. In this way, we can calculate the revenue for each

sample path and the mean revenue can be computed similarly.

We apply the same scaling as in example 1, to the arrival rates and the capacities by a

factor of k, k = 1, ...10. For each k, we compute the mean revenue from the simulation and

the average expected revenue from our policy derived from approximation implemented on

the simulated results.

In figure 2.5, we see that the revenue from the simulated results and the approximation

increases with the problem size. The results derived from the two methods are very close.

Note that the simulated results is always larger than that of the approximated result. This

is obvious since we applied the booking limit to the simulated data.
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Figure 2.5: Revenue vs the scaling factor k

Figure 2.6: Optimal gap vs the scaling factor k
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Figure 2.7: Network with 5 nodes and 11 links

For ease of comparison, we compute the gap which is the difference of the exact rev-

enue from simulation and the revenue obtained from the proposed booking limit. The error

can be better analyzed by taking the absolute value of the gap which is presented in figure

2.6 graph 2. A more accurate comparison is to compare the normalized gap, which is the

absolute gap divided by the scale factor. The normalized gap will tell us the accuracy of

the approximation with respect to the size of the problem. It is clear from figure 2.4 that

the normalized gap decreases to 0 as the problem size increases. This further illustrates the

asymptotical optimality of the proposed approximation.

Example 2 (Arbitrary network)

In this example, we want to show the accuracy of our approximation for a more compli-
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cated network as compared to example 1. We compare our approximation with the allocation

from simulated results in a arbitrary network shown in figure 2.7. The parameters for this

network is presented in table 2. There are 5 nodes and 10 links in the network. Each link has

a capacity of 10. 22 routes are present and their arrival follow a compound Poisson process

with arrival rate and the mean of the batch size given in the table. Each route brings a

certain revenue for every acceptance of entry for that route and pass through certain links.

For example, arrival from route 2 passes from node A to node B using link 1 and passes from

node B to its destination node D using link 8, and each accepted arrival will fetch a revenue

of 1 unit.

Similarly, we generate 1000 sample paths for the arrival process. For each sample path,

we solve for the hindsight optimum. With the booking limit based on our approximation,

the revenue earned under the sample path arrival can be computed. The mean revenue

is estimated by averaging the revenues. Using our proposed approximation, we solve the

network using the set of parameters in table 2.2. For each sample path, we apply the

computed booking limit from our approximation. In this way, we can compute the revenue

under our booking limit policy for each sample path. The average of the approximated

revenue is being recorded. Hence, the gap(exact revenue - approximated revenue) can be

calculated easily.

We apply the same scaling as in the previous example, i.e. the arrival rates and the

capacities by a factor of k, k = 1, ...10. For each k, we compute the mean revenue from the

simulated sample path and the average expected revenue from our approximation applied to

88



Route Nodes Link used Price Arrival rate Mean of batch size

1 A-B 1 1 3 2

2 A-B-D 1,8 2 5 1

3 A-C 3 1 6 1

4 A-E 5 1 4 2

5 A-E-D 5,7 2 3 1

6 B-A 2 1 4 1

7 B-D-C 8,10 2 6 2

8 B-A-E 2,5 3 3 1

9 C-A 4 1 2 1

10 C-A-E 4,5 4 6 2

11 D-B 9 1 6 1

12 D-B-A 2,9 3 6 2

13 D-C 10 1 4 1

14 D-C-A 4,10 1 2 1

15 E-D 7 1 2 1

16 E-D-C 7,10 4 4 2

17 E-A 6 2 5 1

18 E-A-B 1,6 1 2 1

19 E-A-C 3,6 1 6 1

20 E-D-B 7,9 1 6 1

21 E-D-B-A 2,7,9 5 6 1

22 C-A-B 1,4 2 3 2

Table 2.2: Parameters for Network
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k Exact rev(’000) Approx rev(’000) Gap Normalized gap % of error

1 0.1300 0.1229 7.0906 7.0906 5.45

2 0.2689 0.2589 10.2010 5.1005 3.79

3 0.4060 0.3902 15.8404 5.2801 3.90

4 0.5480 0.5296 18.4139 4.6035 3.36

5 0.6879 0.6700 17.9160 3.5832 2.60

6 0.8279 0.8055 22.3724 3.7287 2.70

7 0.9659 0.9427 23.1526 3.3075 2.40

8 1.1043 1.0790 25.3246 3.1656 2.29

9 1.2406 1.2070 33.6060 3.7340 2.71

10 1.3851 1.3504 34.7566 3.4757 2.51

Table 2.3: Revenue from simulation and the revenue computed from approximation

the simulated results. The result is shown in table 2.3.

In order to give more insight, we plot the percentage of the gap i.e. gap/hindsight

optimum. From figure 2.9, we see that the gap percentage decrease with the scale of the

problem. The percentage of error decreases to an average of 2.5% when the problem is scaled

up by a factor of of more than 5.

The numerical result illustrates that our approximation method works well with an ar-

bitrary network in the asymptotical sense. i.e. the results gets more accurate as the scale of

the problem gets scaled up.

Example 3 (Varying batch size)

With an extension from the assumption of single Poisson arrival process to a compound
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Figure 2.8: Normalized revenue vs the scaling factor k

Figure 2.9: ratio of gap to exact revenue (percentage gap) vs the scaling factor k
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Poisson process, we are able to analyze the impact of the distribution of the batch size has

on the performance of the policy. In this example, we investigate the impact of the distri-

bution of the batch size has on the accuracy of our approximation. Consider a single link

of capacity 20, with 2 classes of customer, class 1 and class 2 with arrival rates λ1 = 3 and

λ2 = 8 respectively. Both arrivals follow a Compound Poisson process. The batch sizes for

class 1 and class 2 have mean β1 = 3 and β2 = 2 respectively. We assume that the batch

sizes for both classes have variance of 2.

We know that mean of the class 1 and class 2 are λ1β1 and λ2β2. We vary the batch

size by a factor k and reduce the arrival rate by a factor of k to keep the overall mean the

same. i.e. Arrival mean of class 1 = (λ1/k)(kβ1). Hence, the larger the value k, the larger

the batch size mean and the smaller is the arrival rate.

We generate 5000 sample paths for the arrival process. For every k, we solve for the

hindsight optimum which we will use as our benchmark. In reality, we do not know the

actual distribution of the batch size. Hence, we assume 3 cases, namely, the Poisson batch

size, the Geometric batch size and the general batch size. The first two cases can be evaluated

using the actual discrete distribution. The general batch size case will be computed using

our proposed normal distribution approximation. Figure 2.10 shows the average revenue

computed vs the factor k. It is clear that as k increases, the variation of the batch sizes gets

larger and the revenue decreases. This is intuitive because with an increase in batch size

and decrease in arrival rate, the problem becomes a 0-1 problem, accept all the arrival and

reject all the arrival.
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Figure 2.10: Graph of expected revenue vs factor k

Figure 2.11 shows the gap when computing using the discrete approximation and the

normal distribution. Hence, using our approximation method to compute the expected

revenue in reality is fairly accurate under varying batch size.

2.7 Implementation of Updating Policies

It is established that the static policies proposed approximates the optimal solution well.

Static policies are easier to compute but the policies derived do not take into account the

actual state of the system. In our case, a single booking limit is being applied to the entire

time horizon. On the other hand, dynamic policies derived their policies by observing the

states of the system produce a more realistic solution. However, the well-known curse of
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Figure 2.11: Graph of gap vs factor k

dimensionality of dynamic programming prevents it from being successfully implemented in

large scaled applications.

We suggest some possible dynamic implementation of the policy. We show the accuracy

of such dynamic implementation using numerical simulation. A updating mechanism is

proposed and its performance is compared with that of a static policy (no updating). Our

contribution involves deriving the policy and test it with some simulation results against

the hindsight optimum and other updating strategies. Extensive simulation shows that our

proposed updating policy produces better results.
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2.7.1 Introducing updating policies

Solving revenue management problems using mathematical modeling often give rise to Markov

decision process models. Such problems uses dynamic programming to produce the policy.

However, in many cases, getting a exact solution from these models is close to impossible

given the curse of dimension phenomenon. The computation cost is magnified greatly by the

scale of the problem that it is difficult to solve even with today’s supercomputers. Hence,

practitioners have turned to approximate methods for their policies. Using the fixed point

approximation as discussed is one of the tools available.

An intuitive way to improve the performance of the static policy is to introduce updating

of the system to take account of the state of the problem into consideration before deriving

the policy. This makes the policy a dynamic one. Dynamic policies are known to be more

accurate, if implemented properly, than static policies because the former takes into account

the state of the problem into consideration before a decision is made.

Secomandi(2007)studied the re-solving issue in a control algorithm for a class of revenue

management problems. Their approach consists of heuristically solving a Markov decision

process formulation of the problem and categorizes the different re-solving algorithm into

different groups with distinct properties. However, their paper does not deal with the prob-

lem of selecting the re-solving time. The issue of selecting a re-solving time remains a topic

for further research. Much consideration has to be put into deciding when the updating of

the problem takes place. Cooper(2002) has investigated the updating procedure and stated

that if the time to update is not chosen carefully, the end result for the case of updating
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will be less than that without updating. Secomandi (2007) analyze the problem further and

attribute the inaccurate re-solving method to a lack of sequential consistency. The updating

has to be done early enough for the change to be made to the existing policy to correct

the deviation of the realized demand, and not too early to render the updating redundant.

Deriving a protocol to determine the updating is not trivial. After the time to update is

determined, the problem is resolved with the parameters of the existing model.

Before we go on, we present a numerical example which provide the motivation for the

study of updating policy.

Example 4 (Comparison of the different updating strategies)

In this example, we investigate the accuracy of the different updating strategies. Consider

a single link of capacity 6, with 2 classes of customer, class 1 and class 2 with arrival rates

λ1 = 8 and λ2 = 3 respectively. Both arrivals follow a Poisson process. Revenue earned per

arrival is 2 units and 5 units respectively.

Consider 2 updating strategies. Assume a time horizon of 1. The system is solved at

time 0 and the optimal booking limit is implemented on the system until the next update

time. The first strategy is to update the system every 0.2 time units (update 5 times) and the

second strategy is to update the system every 0.5 time units (update 1 time). After updating

the system (the arrival rate will be updated to the arrival mean of the remaining time and

the capacity of the link will be updated according to the number of resources remaining),
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the problem is resolved for a new booking limit. The new booking limit will be implemented

until the next updating time or the end of the planning time horizon. We compare this two

updating strategy with that of the static policy (no updating). The hindsight optimum is

used as a benchmark for comparison.

We generate 1000 sample paths for the arrival process. For every sample paths, we solve

for the hindsight optimum which we will use as our benchmark,and apply the static policy

and the dynamic policy. We apply the same scaling as in the previous examples, i.e. the

arrival rates and the capacities by a factor of k, k = 1, ...10. For each k, we compute the

revenue from the simulated sample path based on the booking limit policy computed from

our approximation. The mean revenue from each of the policy is recorded and plotted against

the scaling factor, k. For a better comparison, we plotted the percentage gap which is the

ratio of the absolute gap of the policy (compared to the hindsight optimum) to the hindsight

optimum.

Figure 2.12 shows comparison of the mean revenue derived from the hindsight optimum

and the updating policies. We can see that the percentage gap of the 2 updating policies

is marginally better than that of the static policy in this example in figure 2.13. Hence,

arbitrary updating of the system in this case increase the expected revenue slightly. This

further reemphasize on the fact that the updating time has to be carefully chosen to ensure

the effectiveness of the policy. One possible explanation of the relatively poorer performance

of the updating policy is that in the process of updating at many intervals without justifi-

cations, important information regarding the network system over the entire time horizon
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Figure 2.12: Graph of revenue/k vs k

may be lost. Hence, much care has to be taken into implementing a updating criteria.

Proposed updating mechanism

Consider a problem with a single general updating scheme. The problem is solved at time 0

and resolved at a updating time τ with the parameters of the system being updated. Let Ar1

be the accepted orders for route r ∈ R before the updating time. Let Ar2 be the accepted

orders for route r ∈ R after the updating time for the remaining time horizon. Thus, the

total expected orders for route r ∈ R is E[Ar1 + Ar2]. The accepted orders Ar1 and Ar2 are
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Figure 2.13: graph of percentage gap vs k

not independent. Hence,

E[Ar1 + Ar2] =
∑
x

{x+ E[Ar2|Ar1 = x]}P [Ar1 = x] (2.40)

Using the fixed point model, for r ∈ R,

E[Ar1] = E[Nr ∧ yr1 ∧min
l∈r
{Cl −

∑
s 6=r,s3l

Ar1}] (2.41)

E[Ar2] =
∑
x

E[{Nr − x} ∧ yr2 ∧min
l∈r
{Cl − x−

∑
s 6=r,s3l

Ar2}]P [Ar1 = x] (2.42)

Note that there are two stages to the problem now. The first stage is before the updating

time and the second stage is after the updating time. We have not found the updating point,

hence we have to solve for it. As a result, the revenue optimization problem is

max
(yr1,yr2)r∈R

E[Ar1] + E[Ar2] (2.43)
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The problem (2.43) is not easy to solve. Hence, we propose an approximation to it.

Suppose the length of the time horizon is 1. Consider the single stage problem:

max
y

∑
r∈R

wrE[Ar]

s.t. yr +
∑

s 6=r,s3k

E[As] ≤ Cl for l ∈ r, r ∈ R

E[Ar] = h(λr, yr), r ∈ R (2.44)

Solving it at time 0 will give us a booking limit y∗r1, r ∈ R. Implement the booking limit

to the arrival process. Find the updating time, τ which is defined as min{t|Nr(t) ≥ y∗r1}.

In short, τ is the time when the booking limit of any class is first exceeded by the arrival

process. Using τ as our resolving time, we have for stage 2,

E[Ar2] = E[{Nr(1)−Nr(τ)} ∧ yr2 ∧min
l∈r
{Cl −

∑
r∈l

Nr(τ)−
∑

s6=r,s3l

Ar2}] (2.45)

Using the similar method for formulating, we have

max
yr2

∑
r∈R

wrE[Ar2]

s.t. yr2 +
∑

s 6=r,s3k

E[As2] ≤ Cl −
∑
s3l

Nr(τ) for l ∈ r, r ∈ R

E[Ar2] = h(λr(1− τ), yr2), r ∈ R (2.46)

Solving (2.46) will gives us the optimal booking limit, y∗r2, r ∈ R for the remaining time

horizon. We accept the arrivals according to the booking limit, y∗r2, r ∈ R for the remaining

time horizon. We summarize the updating mechanism in the following algorithm.

Summary of Updating Algorithm:
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1. Solve the revenue optimization at time 0 for the booking limit, y∗r1, r ∈ R.

max
y

∑
r∈R

wrxr

s.t. yr +
∑

s 6=r,s3k

xs ≤ Ck for k ∈ r, r ∈ R

xr = h(λr, yr), r ∈ R (2.47)

2. Let the realized demand be denoted as Nr(t) up to time t. Find the updating time, τ

which is defined as min{t|Nr(t) ≥ y∗r1}.

3. We have two cases:

(a) If τ ≥ 1, then no updating is done. Accept the arrivals according to the booking

limit, y∗r1, r ∈ R, for the whole time horizon.

(b) If τ < 1, resolve the problem (2.47) with the updated parameters, λr → λr(T −τ)

and Ck → Ck −
∑

s 6=r,s3kNr(τ).

max
y

∑
r∈R

wrxr

s.t. yr +
∑

s 6=r,s3k

xs ≤ Ck −
∑

s 6=r,s3k

Nr(τ) for k ∈ r, r ∈ R

xr = h(λr(T − τ), yr), r ∈ R (2.48)

Solving (2.48) will gives us the optimal booking limit, y∗r2, r ∈ R for the remaining

time horizon.

Accept the arrivals according to the booking limit, y∗r2, r ∈ R for the remaining

time horizon.
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We implement the proposed updating policy on the same network as above to obtain the

expected revenue and the percentage gap. From figure 2.12, the performance of the proposed

updating policy is better than that of the static policy throughout the scaling factor k. The

percentage gap for the proposed updating policy is also lower than the other policies. Hence,

the updating policy is effective in this problem. With just one updating from our updating

mechanism, the performance of the proposed updating policy is significantly better than the

static policy and the two policies which requires more than one updating.

However, it may not be the most efficient method of updating. Future challenge will be

to provide a more accurate form of updating the problem.

2.8 Conclusion

In this part of the thesis, we have formulated a general stochastic framework for network

problems, in particular, the revenue management problem for airline industry. Our concern

is to derive a control policy by setting a booking limit on classes of customers, with the

aim of maximizing revenue. The feature of concurrent resources occupancy makes solving

such problems complicated, given the randomness of the arriving flows. Hence, we seek an

approximation to such problems.

Assuming the arrival process as Compound Poisson processes is a more realistic assump-

tion to real life situations, since orders for airline tickets often come in batches. Hence, we

are able to generalize the assumptions of Li and Yao (2004). Maintaining the assumption

that the distribution for the batch size is discrete proves to be difficult to solve when we
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assume the distribution is general. We are able to give computations for batch size with

Poisson distribution and Geometric distribution. We argue that in the limiting regime, that

is when the time horizon is infinite, we can use the normal distribution, to approximate the

batch size. While there are no accurate ways to derive a optimal control policy under the

randomness of the unrealized demand, we can at best compute a approximate one. Under

such the fixed point approximation, we proved that the solution is optimal in the asymptotic

sense under fluid scaling. Our numerical studies have verified the accuracy of the proposed

method.

From the numerical examples, we can see that the approximation does act as a good

booking limit control policy, especially so in a scaled up problem. Our normal approximation

approximates the general batch well. Using our proposed approximation technique, we are

able to consider the general case when the batch size are random variables. The approximated

results from the numerical examples are very promising. With our approximation, it opens

up the option of exploring the impact of the batch size. Hence, we are able to investigate

further the effect of the varying batch sizes has on the control policy. In the case of the

varying batch sizes, the gap from using the normal approximation is reasonable, considering

that as the batch size increase and the arrival rate decreases, the number of accepted orders

becomes more difficult to compute.

Dynamic policies are better at considering the exact state of the problem before making

a decision. However, the curse of dimension in the former prevents the implementation of it

on large-scaled problems. We proposed a extension of our static policy to a dynamic policy,
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which involves updating of the system based on a stopping criteria. The results computed

from simulation is encouraging, hence it suggests that more research work can be done in

this direction.

2.9 Appendix : Proof for Theorem 4

Proof :

The existence of a convergent subsequence is assured since the sequence (x̄kr , ȳ
k
r )r∈R is

positive and bounded by Cl, l ∈ L.

Note that the batch size Bi,r has finite mean. Hence, when k →∞, using the functional

strong law of large numbers (See Chen and Yao(2001), Chapter 5),

N̄k
r → λrbr u.o.c. (2.49)

(u.o.c. stands for “uniformly on compact intervals.”)

Hence, z(N̄k
r (t)) = (N̄k

r (t)− λrbr)/(σb,r
√
λ/k)→ 0 as k →∞.

1. If ȳkr ≤ λrbr, then x̄kr =
∫ ȳkr

0
F̄r(0)d(N̄k

r ) =
∫ ȳkr

0
d(N̄k

r ) = ȳkr .

2. If ȳkr > λrbr, then x̄kr =
∫ ȳkr

0
F̄r(0)d(N̄k

r ) =
∫ λrbr

0
d(N̄k

r ) = λrbr.

Thus, at the limit, x̄kr = ȳkr ∧λrbr. Using this value, from the constraint ȳkr +
∑

s 6=r,s3l x̄
k
s ≤

Cl, we have
∑

r∈l x̄
k
r ≤ Cl. Thus, when k →∞, the limit of any convergent sequence feasible

104



solution in (2.36) will be a feasible solution to the problem (2.37):

max
x̄,ȳ

∑
r∈R

wrx̄r

s.t.
∑
r∈l

x̄r ≤ Cl for l ∈ r, r ∈ R

x̄r = ȳr ∧ λrbr, r ∈ R

ȳr ≥ 0, r ∈ R (2.50)

Let (x̄∗r, ȳ
∗
r)r∈R be the limit of the convergent subsequence. Then (x̄∗r, ȳ

∗
r)r∈R is a feasible

solution to (2.37).

Claim: (x̄∗r, ȳ
∗
r)r∈R is an optimal solution to (2.37).

Suppose not. There exists (x̃r, ỹr)r∈R such that

(x̃kr , ỹ
k
r )r∈R → (x̃r, ỹr)r∈R as k →∞, (2.51)

and (x̃r, ỹr)r∈R is another feasible solution to (2.37) with a greater objective function.

i.e.
∑

r∈R wrx̄
∗
r <

∑
r∈R wrx̃r. Thus, we have

∑
r∈R

wrx̃
k
r →

∑
r∈R

wrx̃r >
∑
r∈R

wrx̄
∗
r as k →∞. (2.52)

We can choose a k large enough such that
∑

r∈R wrx̃
k
r >

∑
r∈R wrx̄

k
r . Note that we have

assumed that (x̄kr , ȳ
k
r )r∈R is an optimal solution to the k-th network in (2.36), thus there is

a contradiction and hence our claim.
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The solution for each k-th network may not be unique. As a result, the solution sequence

(x̄r, ȳr)r∈R may not converge as k →∞. But, for any subsequence of the solution sequence,

there will always be a convergent subsequence such that its limit is a solution to the problem

(2.37), which is the limit of the sequence of problems, with the values of the variables at

their limits.

We now prove the second part of the theorem. Note that a ∧ b = a − (a − b)+. Using

this identity, problem (2.37) can be converted to

max
x̄,ȳ

∑
r∈R

wrx̄r

s.t.
∑
s∈l

x̄s ≤ Cl −max
r3l

(ȳr − λrbr)+ for l ∈ r, r ∈ R

x̄r = ȳr ∧ λrbr, r ∈ R

ȳr ≥ 0, r ∈ R. (2.53)

From the optimal solution computed from (2.37), we can find a set of bottleneck link. A

bottleneck link is defined to be the links which contain a binding constraint in the optimal

solution, i.e.,
∑

r3l x̄r = Cl. Let L∗ denote the set of all the bottleneck links associated with

the optimal solution, and let R∗ denote the set of all bottleneck routes. We define a route

as a bottleneck route if it contains at least one bottleneck link.

Consider any r ∈ R∗. Choose any bottleneck link l ∈ L∗ such that r 3 l. Thus,

(ȳ∗r − λrbr)+ ≤ Cl −
∑
s3l

x̄∗s = 0.

Note that the inequality is from the capacity constraint in (2.53) and the equality is due
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to the choice of a bottleneck link. Thus, ȳ∗r ≤ λrbr. Hence, we can deduce that x̄∗r = ȳ∗r from

the second constraint of (2.53).

For r ∈ R \ R∗, we claim that x̄∗r = λrbr. Suppose not. Then x̄∗r = ȳ∗r < λrbr. We define

(x̄∗r = ε, ȳ∗r + ε) and (x̄′s, ȳ
′
s) = (x̄∗s, ȳ

∗
s) for s 6= r, where ε > 0. Since ε is arbitrary, we can find

another feasible solution (x̄′s, ȳ
′
s), s ∈ R to (2.53) but with a greater objective value than the

optimal (x̄∗s, ȳ
∗
s), s ∈ R. This is a contradiction, and hence our claim.

Recall that from the definition of accepted orders Ar(t) from our model, we have

Ar = Nr ∧ yr ∧min
l∈r
{Cl −

∑
s 6=,s3l

As}.

We assume that ȳkr → ȳ∗r as k →∞ along a convergent subsequence. Call the subsequence

K. Applying fluid scaling to the above equation for each network. It can be shown that the

u.o.c. limit of Ār, r ∈ R of any convergent subsequence of (Ā)r∈R, k ∈ K satisfies

Ār = λrbr ∧ ȳ∗r ∧min
l∈r
{Cl −

∑
s 6=,s3l

Ās}.

We are done if we can show that the limit Ār = x̄∗r. We can rewrite the above equation as

Ār ≤ λrbr ∧ ȳ∗r = x̄∗r. Hence,

min
l∈r
{Cl −

∑
s 6=,s3l

Ās} ≥ min
l∈r
{Cl −

∑
s 6=,s3l

x̄∗s} ≥ ȳ∗r

Thus, we can write Ār = λrbr ∧ ȳ∗r = x̄∗r. Since Ār is unique, it implies that Ākr → Ār

uniformly along the whole subsequence K, and we are done.

The results in the third part follows from the second part and the fact that the limit of

any convergent subsequence of (Āk,Gr ) is a feasible solution to the problem in (2.37).
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