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Summary 
 
 

RhoA small GTPase, a member of Ras superfamily, plays pivotal roles in a wide 

variety of cellular events including cell motility, cell morphology, cell adhesion, 

differentiation, apoptosis and cell proliferation. It is also important for embryonic 

development, such as dorsal closure, gastrulation movements, head involution, 

segmentation and organogenesis. However, majority of these in vivo studies of RhoA 

have been done in the invertebrate model, Drosophila, while findings from other animal 

models may not reflect the specific function of RhoA due to non-specific inhibition of 

other closely related members of the RhoA family with the use of inhibitor or expression 

of the dominant negative form of RhoA or Rock. In addition, little is known about the 

signaling mechanism mediated by RhoA during developmental processes, such as cell 

movements and cell survival.  

To address these questions, rhoA gene is cloned from zebrafish, Danio rerio, and 

its temporal and spatial expression profile during embryonic development has been 

characterized. By capitalizing on the specific functional knockdown using morpholinos 

against rhoA and the availability of convergence and extension (CE) morphants defective 

in Wnt signaling, we show that rhoA morphants are reminiscent to noncanonical wnt 

morphants with serious disruption in CE movements. Injection of rhoA mRNA 

effectively rescues such defects in wnt5 and wnt11 morphants. Furthermore, CE defects 

in rhoA or wnt morphants can be suppressed by ectopic expression of the two 

mammalian Rho effectors, Rho kinase (Rock) and Diaphanous (mDia). These results 

provide the first evidence that RhoA in vivo acts downstream of Wnt5 and Wnt11 to 

regulate CE movements during zebrafish gastrulation without affecting cell fate.  



 x

Besides determining the function of RhoA in mediating zebrafish gastrulation 

movements through regulation of non-canonical Wnt signaling, I also explores the in vivo 

signaling mechanism of RhoA during post-gastrulation period of embryogenesis. 

Knockdown of RhoA function leads to extensive apoptosis during embryogenesis, 

resulting in an overall reduction of body size and body length. These defects are 

associated with reduced activation of growth-promoting Erk and decreased expression of 

anti-apoptotic bcl-2. Moreover, ectopic expression of rhoA, Mek or BCL-2 mRNA 

rescues such phenotypes. Consistently, combined suppression of RhoA and Mek/Erk or 

Bcl-2 pathways by suboptimal dose of rhoA morpholino and pharmacological inhibitors 

for either Mek (U0126) or Bcl-2 (HA 14-1) can induce developmental abnormalities and 

enhanced apoptosis, similar to those caused by effective RhoA knockdown. Furthermore, 

U0126 abrogates the rescue by RhoA and MEK but not BCL-2. In contrast, HA14-1 

effectively abolishes all functional rescues by RhoA, MEK or BCL-2, supporting that 

RhoA prevents apoptosis by activation of Mek/Erk pathway and upregulation of bcl-2 

expression. In addition, both Mek and BCL-2 can rescue gastrulation defects in RhoA 

morphants. Taken together, these findings reveal an important genetic and functional 

relationship between RhoA with Mek/Erk and Bcl-2 for cell survival and cell movements 

control during embryogenesis, and demonstrate the suitability of zebrafish for studying 

signaling mechanism of various classes of small GTPases in regulating cell dynamics in 

vivo. 

 

 
 

 



 xi

 
List of Tables 

 
 
Table 3.1 RhoA is required for zebrafish gastrulation and tail formation ....................... 74 

Table 3.2 RhoA, mDia and Rock suppress zebrafish gastrulation defects caused by rhoA, 

wnt5 and wnt11 morpholinos ...................................................................................... 81 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xii

 

List of Figures 
 
 
Figure 1.1 Phylogenetic analyses of the Rho GTPases family and representatives of other 

Ras GTPases superfamily.. ........................................................................................... 3 

Figure 1.2 Amino acid sequences alignment of mammalian RhoA, RhoB, and RhoC. .... 5 

Figure 1.3 The regulation of Rho GTPases........................................................................ 7 

Figure 3.1 Amino acid sequence analyses of the Rho subfamily. ................................... 68 

Figure 3.2 Expression of rhoA mRNA in adult zebrafish tissues. ................................... 70 

Figure 3.3 In situ hybridization analyses for zebrafish rhoA expression in different stages 

of embryonic development. ........................................................................................ 72 

Figure 3.4 RhoA is required for zebrafish gastrulation and tail formation...................... 73 

Figure 3.5 Expression of marker genes in rhoA morphants............................................. 78 

Figure 3.6 RhoA and mDia suppress wnt5 and wnt11 morphants. .................................. 83 

Figure 3.7 Wnt/RhoA signaling pathway regulates CE movement in zebrafish embryos 

via Rho kinase and Dia. .............................................................................................. 90 

Figure 4.1 RhoA knockdown causes reduced body size and body length in zebrafish 

embryos....................................................................................................................... 94 

Figure 4.2 RhoA knockdown induces apoptosis during zebrafish embryogenesis.......... 98 

Figure 4.3 RhoA MOs can elicit RhoA specific knockdown. ....................................... 101 

Figure 4.4 RhoA knockdown reduces phosphorylation of Erk...................................... 101 

Figure 4.5 Mek/Erk and Bcl-2 mediate RhoA signaling for cell survival control......... 106 

Figure 4.6 Mek/Erk and Bcl-2 act downstream of RhoA to control cell survival.. ....... 108 

Figure 4.7 RhoA knockdown reduces bcl-2 expression. ............................................... 110 



 xiii

Figure 4.8 Developmental defects caused by strong inhibition of Mek/Erk or Bcl-2 

signaling.................................................................................................................... 110 

Figure 4.9 Mek/Erk and Bcl-2 mediate RhoA signaling for gastrulation cell movement

................................................................................................................................... 115 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 

 

 

 



 xiv

List of Abbreviations 

 

ATP — adenosine triphosphate 

BCIP — 5-bromo-3-chloro-3-indolyl phosphate 

Bp — base pair 

BSA — bovine serum albumin 

cDNA — DNA complementary to RNA 

CE — convergence and extension 

CNS — central nervous system 

Cyc — cyclops 

ddH2O — double distilled water 

DEPC — diethyl pyrocarbonate 

DIG — digoxigenin 

DMSO — dimethylsulphoxide 

DNA — deoxyribonucleic acid 

dNTP — deoxyribonucleotide triphosphate 

DTT — dithiothreitol 

EDTA — ethylene diaminetetraacetic acid 

EST — expressed sequence tag 

EtOH — ethanol 

FCS — fetal calf serum 

FGF — fibroblast growth factor 

FGFR — fibroblast growth factor receptor 



 xv

GFP — green flurorescent protein 

GTP — guanosine triphosphate 

H2O — water 

H2O2 — hydrogen peroxide 

HCl — hydrochloric acid 

HEPES — hydroxyethylpiperazine ethanesulfonate 

hpf —hours post fertilization 

kb — kilo base pair 

KCl — potassium chloride 

KH2PO4 — potassium dihydrogen phosphate 

KOAc — potassium acetate 

LB — Luria-Bertani medium 

LiCl — lithium chloride 

MBT — mid blastula transition 

MgCl2 — magnesium chloride 

MgSO4 — magnesium sulphate 

MMLV — Moloney murine leukemia virus 

MnCl2 — manganese chloride 

MO — morpholino 

mRNA — messenger ribonucleic acid 

Na2HPO4 — disodium hydrogen phosphate 

NaCl — sodium chloride 

NaOAc — sodium acetate 



 xvi

NaOH — sodium hydroxide 

NBT — nitroblue tetrazolium 

NCBI — national centre for biotechnology information 

ntl — no-tail 

NTP — ribonucleotide triphosphate 

PAGE — polyacrylamide gel electrophoresis 

PBS — phosphate-buffered saline 

PBST — phosphate-buffered saline with 10% tween-20 

PCR — polymerase chain reaction 

PFA — paraformaldehyde 

RACE — rapid amplification of cDNA ends 

RNA — ribonucleic acid 

rpm — revolution per minute 

RT-PCR — reverse transcriptase-polymerase chain reaction 

SDS — sodium dodecylsulfate 

shh — sonic hedgehog 

SRF ― serum response factor 

SSC — sodium chloride-trisodium citrate solution 

SSCT — sodium chloride-trisodium citrate solution with 10% tween-20 

TEMED — N,N,N’,N’-tetramethylethylene-diamine 

TF— transcription factors 

tRNA — transfer ribonucleic acid 

UTR — untranslated region 



 xvii

WISH — whole-mount in situ hybridization 

YSL — yolk syncytial layer 

ZFIN — zebrafish information network 

TUNEL — terminal transferase dUTP nick end labeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xviii

List of Publications 
 
 
Publications relating to research works from the current thesis 
 
1. Zhu S, Korzh V, Gong Z, Low BC. (2007) RhoA prevents apoptosis during zebrafish 

embryogenesis through activation of Mek/Erk pathway. Oncogene 27(11):1580-1589. 

 

2. Zhu S, Liu L, Korzh V, Gong Z, Low BC. (2006) RhoA acts downstream of Wnt5 

and Wnt11 to regulate convergence and extension movements by involving effectors 

Rho Kinase and Diaphanous: Use of zebrafish as an in vivo model for GTPase 

signaling. Cell Signal.18(3):359-372. 

 
 
Talks or posters from the current thesis presented in conferences  
 

1. Model Systems for Infectious Disease and Cancer in Zebrafish workshop (Poster). 

July 15 - 19, 2007. Leiden, the NETHERLANDS. 2nd honor of poster presentation. 

 

2. The 5th European Zebrafish Genetics and Development Meeting (Poster). July 12 - 

15, 2007. Amsterdam, the NETHERLANDS. 

 

3. The 4th European Zebrafish Development and Genetics Meeting (Poster). July 13 –

July 16, 2005. Dresden, GERMANY. Travel Award from Department of 

Biological Sciences, NUS. 

 

4. The 7th International Conference on Zebrafish Development and Genetics (Poster) 

July 29 – Aug. 2, 2004. Madison-Wisconsin, U.S.A. Travel Award from the 

conference. 

 

5. Sir Edward Youde Memorial Fund Postgraduate Conference 2004 "Model Organism 

Research and Human Diseases" (oral presentation). June 14 – June 15, 2004. Hong 

Kong, CHINA. Travel Award from the conference. 



 xix

 

6. The 8th Biological Sciences Graduate Congress (Poster). Dec. 3 – Dec. 5, 2003. 

NUS, SINGAPORE. 

 

7. The 4th Sino-Singapore Conference in Biotechnology (Poster). Nov. 11 – Nov. 13, 

2003. NUS, SINGAPORE. 

 
 
 
 
 
Publications from other projects not included in the current thesis 
 
 
1. Kong X, Li Z, Gou X, Zhu S, Zhang H, Wang X, Zhang J. (2002) A Monomeric L-

Aspartase Obtained by in Vitro Selection. J Biol Chem 277(27):24289-93. 

 

2. Kong X, Zhu S, Gou X, Wang X, Zhang H, Zhang J. (2002) A Circular RNA-DNA 

Enzyme Obtained by in vitro Selection. Biochem Biophys Res Commun. 

292(4):1111-5. 

 

3. Kong X, Liu Y, Gou X, Zhu S, Zhang H, Wang X, Zhang J. (2001) Directed 

evolution of α-aspartyl dipeptidase from Salmonelia typhimurium. Biochem Biophys 

Res Commun. 289(1):137-42. 

 

4. Zhu S, Wang L. (2001) Advanced study in the relationship between the signal 

transduction of bFGF/FGFR1 and cardiovascular diseases. Mol Bio Foreign Med Sci. 

23(4):134-7. 

 
5. Zhu S, Wang L. (2001) The construction and expression of FGFR1 

immunoadhesion. US Chinese J Micro Immunol. 3(4):35-9. 
 
 
 
 



CHAPTER 1 INTRODUCTION                                                                                       1 

 

Chapter 1 Introduction 
 
 
 

 

Study of the normal physiology and development of organism is important for the 

understanding of living activity, prevention or cure of disease, and improvement of the 

quality of life. For a multi-cellular organism, cell-cell communication and signaling 

transduction is the pre-requisite and basis for the normal function of single cell and 

whole organism. As important signaling molecules and key regulators of cytoskeleton 

organization, Rho (Ras homologous) small GTPases play critical roles in a wide variety 

of biological and developmental processes, including cell morphogenesis, cell adhesion, 

cell migration, cytokinesis, gene transcription, cell survival, cell proliferation and 

organogenesis. 
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1.1  Rho small guanine nucleotide triphosphatases (GTPases) 
 
 

Rho small GTPases are members of Ras superfamily [Etienne-Manneville et al. 

2002; Wennerberg et al. 2005]. They share around 35% amino acid identity to Ras. Like 

Ras, they are approximately 21 kDa monomeric small GTPases and are highly conserved 

in plants, yeast, fruit flies, round worms and mammals [Etienne-Manneville et al. 2002]. 

In contrast to Ras, Rho proteins have a 13 amino acid insertion in the small GTPase 

domain, which is the characteristic structure feature to distinguish them from other small 

GTPases [Valencia et al. 1991]. Today, based on sequence homology, structure motif and 

biological function, 22 mammalian genes encoding at least 25 proteins have been 

identified and further divided into 5 subfamilies: the RhoA-related subfamily (RhoA, 

RhoB and RhoC); the Rac1-related subfamily (Rac1, Rac1b, Rac2, Rac3 and RhoG); the 

Cdc42-related subfamily (Cdc42, brain specific C-terminal splice variant G25K, TC10, 

TCL, Wrch-1, and Wrch-2/Chp); the Rnd subfamily (Rnd1, Rnd2, and Rnd3/RhoE); and 

the RhoBTB subfamily. Besides the above, there are three additional Rho GTPases, 

RhoD, Rif and RhoH/TTF, which do not obviously fall into any of these subgroups. The 

Miro subfamily, Miro-1 and Miro-2, has recently been included in the Rho family too. 

However, they have very low homology to the other Rho GTPases and lack the Rho 

specific insertion in their GTPase domains (Figure 1.1, [Wennerberg et al. 2004]).  
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Figure 1.1 Phylogenetic analyses of the Rho GTPases family and representatives of 

other Ras GTPases superfamily. A phylogenetic tree of the 22 mammalian Rho family 

members were generated from a ClustalW multiple sequence alignment. Six subfamilies 

can be further divided, including RhoA-related, Rac-related, Cdc42-related, RhoBTB, 

Rnd, and Miro proteins. Adapted from [Wennerberg et al. 2004]. 
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1.1.1 RhoA family GTPases 
 

Among all the Rho small GTPases, RhoA is the first Ras homologue to be 

identified from Aplysia in 1985 [Madaule et al. 1985]. Few years later, Ridley and Hall 

reported that overexpression of activated RhoA in fibroblasts can induce rapid formation 

of stress fibers (boundless of actin filaments) and assembly of focal adhesion (sites of 

cell/matrix contact) [Ridley et al. 1992]. This finding strongly impacts on the 

cytoskeleton field, because it was the first time to address the molecular mechanism 

underlying the assembly of the two prominent cytoskeleton structures, stress fibers and 

focal adhesion. On the contrary, no significant attention has been paid to the other two 

members of RhoA family GTPases, RhoB and RhoC, although they were characterized at 

the same time as RhoA [Madaule et al. 1985]. This is largely due to the findings that 

overexpression of activated RhoB or RhoC can induce the formation of stress fibers 

similar as that of RhoA. Besides, the three Rho isoforms share around 85% amino acid 

sequence identity across their full-length sequence (Figure 1.2, [Wheeler et al. 2004]), 

with highly conserved region at their N-terminal half and relatively divergent sequence 

close to the C-terminus. The majority of residues important for GTP binding and 

hydrolysis, and two consensus sequences, named switch I and switch II, involved in the 

conformational change between the GTP-bound and GDP-bound states, are located at the 

conserved N-terminal [Bishop et al. 2000]. Thus, RhoA family GTPases are thought to be 

regulated similarly and their functions are redundant. As such, they are often referred to 

collectively as “Rho”, and no distinction has been made in most experiments. However, 

several studies have shown that the divergent sequence at the C-terminal of Rho could be 

targeted by different proteins, resulting in their distinct sub-cellular localization and 
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variant biological activities [Wang et al. 2003]. Hence, these findings redraw attentions 

to explore the precise biological function of different Rho isoforms and their specific 

regulation in physiological and pathological processes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Amino acid sequences alignment of mammalian RhoA, RhoB, and RhoC. 

The divergent residues among RhoA, RhoB and RhoC are indicated in red. The residues 

that can affect GTPase function by their alteration are indicated in pink. The residues that 

are targets for toxins are indicated in cyan. The residues that are important for the 

interaction of Rho with their effectors are indicated in green. The cysteine 4 amino acids 

at the C terminus, which are critical for the prenylation, are indicated in cyan. Adapted 

from [Wheeler et al. 2004]. 
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1.1.2 Regulation of RhoA family GTPases  
 

Similar as other Rho small GTPases, members of RhoA subfamily cycles between 

GTP-bound active state and GDP-bound inactive state, and this cycling is tightly 

controlled by three large families of regulators, including nucleotide exchange factors 

(GEFs), GTPase-activating proteins (GAPs) and guanine nucleotide dissociation 

inhibitors (GDIs). In general, RhoGEFs activate Rho by catalyzing the exchange of GDP 

to GTP, whereas RhoGAPs stimulate the intrinsic of Rho GTPase activity leading to their 

inactivation, and RhoGDIs sequester the inactive Rho in the cytosol thus preventing them 

from their interacting with RhoGEFs and RhoGAPs at the plasma membranes [Hall 2005] 

(Figure 1.3, [Wang et al. 2007]). Because the amino acids important for the interaction 

with RhoGEFs or RhoGAPs are conserved in all three Rho isoforms, no obvious 

difference have been detected in the relative activity of these regulators on them in most 

of studies, except RhoGEF, XPLN, affects RhoA and RhoB but not RhoC [Arthur et al. 

2002]. 

In addition to the classical regulation by cycling between an inactive GDP-bound 

form and an active GTP-bound form, the post-translational modification of Rho proteins 

also appears to be essential for their subcellular localization, stability and function 

[Stamatakis et al. 2002; Wang et al. 2003]. All three Rho isoforms contain a C terminal 

CAAX motif that is a sequence signal for prenylation (farnesylation or 

geranylgeranylation). For example, RhoB are shown to be prenylated by either a 

geranylgeranyl (GG) or a farnesyl (F) isoprenoid group, and further modified by 

palmitoylation at C-terminal, which facilitates its localization mainly on late endosomes 

and lysosomes [Wherlock et al. 2004]. In contrast,  RhoA and RhoC are only 
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geranylgeranylated, and their further modification is through a polybasic domain close to 

the C-terminus [Adamson et al. 1992a], thereby they are found in the cytoplasm or at the 

plasma membrane [Adamson et al. 1992b; Wennerberg et al. 2004; Ridley 2006]. In 

addition, these post-translational modifications also enhance the association of Rho 

proteins with membranes, which contributes to their activation on membrane by 

RhoGEFs and subsequently interacts with their effector proteins to elicit downstream 

responses [Williams 2003; Wennerberg et al. 2004; Rossman et al. 2005].  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 The regulation of Rho GTPases. RhoGEFs, RhoGAPs and RhoGDIs are 

three major families of regulators to control the cycling of Rho GTPase between the 

active, GTP-bound form and the inactive, GDP-bound form. Upon the stimulation by the 

extracellular stimuli, RhoGEFs mediate the exchange of GDP to GTP leading to the 

activation of Rho, while the GTP can be quickly hydrolyzed to GDP by RhoGAPs. Then 

the GDP bound form of Rho is sequestered in cytoplasm maintaining inactivation by 

RhoGDIs. Adapted from [Wang et al. 2007]. 
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1.1.3 Effectors of RhoA family GTPases 
 

During the past decade, in the attempt to define the biochemical pathways 

activated by Rho, at least 11 potential targets (downstream effectors) have been identified 

by means of yeast two-hybrid selection, affinity chromatography techniques or specific 

interactions with RhoA-GTP bound form [Hall 1998; Kaibuchi et al. 1999]. Similar to 

RhoGEFs and RhoGAPs, the interaction of three Rho isoforms with their effectors is 

primarily through the conserved switch 1 and 2 regions, implicating that RhoA, RhoB 

and RhoC share overlapping targets [Wheeler et al. 2004]. However, the amino acids 

sequence in the Rho-binding domain has been found to be different in some of the Rho 

effecters [Kaibuchi et al. 1999], which suggests that the binding ability of effectors to 

Rho proteins may be variant. In fact, RhoC has been suggested to act more efficiently on 

Rho kinase and Citron, compared to RhoA and RhoB [Sahai et al. 2002b], but the 

underlying mechanism and the effect on their functions remain largely unknown.  

Rho kinase (Rho-associated kinase/ROK/ROCK) is the first kinase effector of 

RhoA to be discovered. It has been reported to be directly associated with the major 

activities of RhoA, namely formation of stress fibers and assembly of focal adhesions 

[Leung et al. 1995; Ishizaki et al. 1996]. Two ROCKs have been identified, p164ROKα 

(ROCK2) and p160ROKβ (ROCK1). They contain multiple domains proteins with a 

highly conserved kinase domain (90% identity) at the N-terminal, a coiled-coil domain in 

the middle, and a Rho-binding domain together with a pleckstrin homology-like domain 

at their C-terminal. The C-terminal region is a putative autoinhibitory domain of ROCKs.  

Upon binding to Rho GTP through the Rho-binding domain, ROCKs adopt open 

conformations and expose their N-terminal catalytic domains, leading to activation of 
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downstream signal cascades [Amano et al. 2000]. As Ser/Thr protein kinases, ROCKs 

have been shown to phosphorylate a serial of substrates. Two of them, which are likely to 

be key regulators for actomyosin assembly, are myosin light chain (MLC) [Amano et al. 

1996; Kawano et al. 1999; Wiedemann et al. 2006] and myosin-binding subunit (MBS) 

of MLC phosphatase [Kimura et al. 1996]. ROCKs can increase the levels of 

phosphorylated MLC by phosphorylating it directly or through the inactivation of the 

MBS of MLC phosphatase. This leads to enhanced actomyosin assembly and contractility, 

resulting in the formation of stress fibers and focal adhesions [Maekawa et al. 1999; 

Burridge et al. 2004]. Besides, ROCKs can stabilize filamentous actin through activation 

of LIM-kinase phosphorylation, which subsequently phosphorylates and inactivates 

cofilin [Maekawa et al. 1999]. In addition, other proteins have also been reported to be 

the substrates of ROCKs, including ERM (ezrin/ radixin/moesin) family of proteins, a 

Na1/H1 exchange protein (NHE1), and adducing, all of which had been implicated to 

mediate ROCKs signals to regulate actin cytoskeletal reorganization [Amano et al. 2000]. 

Although ROCKs have been shown to be essential for RhoA induced stress fibers 

and focal adhesion formation, their activation alone is not sufficient for these processes. 

More and more studies have implicated the requirement of mammalian homologue of 

Drosophila Diaphanous (mDia) in the proper formation of stress fibers [Watanabe et al. 

1997; Watanabe et al. 1999]. As proteins of formin-homology (FH) family, mDias have 

been shown to bind to profilin, an actin monomer-binding protein, through their FH 

domain [Sohn et al. 1994]. This interaction allows them to bind to the barbed ends of 

actin filaments, which antagonizes the binding of capping protein and allows the 

recruitment of actin monomers to the filament ends, leading to actin polymerization and 
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F-actin organization into stress fibers [Watanabe et al. 1997; Wasserman 1998; Watanabe 

et al. 1999]. Briefly, in RhoA-induced formation of stress fibers and focal adhesion, 

ROCKs regulate myosin light chain phosphorylation, leading to the bundling of F-actin 

and clustering of extracellular matrix-ligated integrins, while mDias correct the aberrant 

orientation of ROCK-induced actin bundles and cooperate with ROCKs for the alignment 

of these bundles [Watanabe et al. 1999]. Besides the above, mDias are also essential for 

microtubule stabilization at the leading edge of migrating cells [Palazzo et al. 2001; 

Palazzo et al. 2004]. As the microtubules and the actin cytoskeleton are coordinately 

involved in a variety of biological events [Lauffenburger et al. 1996; Ishizaki et al. 2001], 

the cooperative regulation of actin cytoskeleton rearrangement and microtubules 

dynamics by ROCKs and mDias would be very critical for both physiological and 

pathological processes.  

Besides ROCKs and mDias, more and more effector proteins of RhoA have been 

discovered, including protein kinases (protein kinase N/protein kinase C-related kinase 

(PKN/ PRK1), PRK2, citron kinase), non-kinases (Rhophilin, Rhotekin, Kinectin), lipid 

kinase (phospholipase D (PLD), and phosphatidylinositol 4-phosphate 5-kinase (PIP5K)) 

[Aspenstrom 1999; Bishop et al. 2000]. Some of them have been shown to play important 

roles in the RhoA-mediated actin cytoskeleton reorganization. For example, citron kinase 

controls actomyosin contraction in RhoA-regulated cytokinesis [Madaule et al. 1998], 

and PIP5K catalyses the formation of phosphatidylinositol 4,5-bisphosphate (PIP2), a 

regulator of actin-binding proteins [Janmey 1994; Homma et al. 1998]. Although the 

functions of some effectors are still not clear, the diverse targets suggest that Rho 
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proteins could be involved in a multitude of cytoplasmic signaling cascades to mediate 

their functions in various biological events.  

1.1.4 Functions of RhoA family GTPases 
 

After the role of RhoA in the formation of stress fibers and assembly of focal 

adhesion was first reported by Ridley and Hall in 1992 [Ridley et al. 1992], RhoA family 

proteins have been brought out from the shadow of Ras family members and to the center 

stage. In the numerous studies, RhoA has been demonstrated to be a key regulator for 

cytoskeleton reorganization and involved in a variety of cellular activities including cell 

migration, cell morphology, cytokinesis, endocytosis and phagocytosis. Besides, RhoA 

has also been shown to be essential for gene transcription, cell survival, cell cycle 

progression and cell differentiation [Etienne-Manneville et al. 2002].  

1.1.4.1 Functions of RhoA in cell biology 
 

1.1.4.1.1 Cell migration 
 

The way in which Rho controls cell movement represents the good regulatory 

systems involving the actin cytoskeleton rearrangement. For a cell to migrate, one of the 

prerequisites is the definition of the leading and tailing ends, which is primarily 

controlled by the spatial distribution of RhoA, Rac, and Cdc42 in cells through 

reorganization of actin cytoskeleton. In migrating cells, Cdc42 and Rac are often seen at 

the protruding edge whereas RhoA is seen at the retracting end [Nobes et al. 1995]. 

Generally, activation of Cdc42 at the cell front induces actin polarization and formation 

of filopodia, defining the leading edge and the direction for cells to migrate [Etienne-

Manneville et al. 2002; Itoh et al. 2002], whereas activated Rac at the cell front 



CHAPTER 1 INTRODUCTION 

 

12

stimulates the dendritic organization of lamellipodia, providing a protrusive force for cell 

directional migration [Pollard et al. 2003]. In contrast, RhoA is primarily activated at the 

tail of cells, which induces cell body contraction and rear end retraction through 

promoting focal adhesion assembly and cell contractility [Nobes et al. 1999; Kurokawa et 

al. 2005]. In some situations, RhoA can also be activated at the leading edge of migrating 

cells. For example, high RhoA activity is detected in both cell protruding and retarding 

ends by fluorescence resonance energy transfer (FRET) biosensors in randomly migrating 

fibroblasts and epithelial cells, [Pertz et al. 2004; Kurokawa et al. 2005]. Nevertheless, 

the spatial-temporal localization of Rho GTPase and the basic mechanism of cytoskeleton 

rearrangement regulated by them are consistent in plenty of cells [Nobes et al. 1999]. In 

addition, the crosstalk between Rho and Rac can also be controlled spatially. For instance, 

ROCK is found to suppress cell protrusion in a variety of cells. Recently, it has been 

shown that inhibiting of Rac induces lamellipodia formation through activation of one of 

the RacGAPs, FilGAP [Ohta et al. 2006]. Therefore, the proper spatiotemporal regulation 

of Rho GTPases and their functional cooperation is essential for cell migration. 

In addition to the determination of the tailing end before the commencement of 

cell movement, RhoA is primarily involved in two aspects during migration, generating 

actomyosin-based contractility in the cell body and promoting focal adhesion turnover at 

the rear of the cell. This is mainly elicited by two of its downstream effectors, ROCK and 

mDia. As we mentioned before, ROCK can activate LIMK by phosphorylation, which 

leads to inactivation of cofilin, thereby stabilizing the actin filaments [Maekawa et al. 

1999; Sumi et al. 2001]. ROCK can also phosphorylate MLC and MBS of MLC 

phosphatase, resulting in increased level of phosphorylated MLC, which in turn leads to 
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the cross-linking of actin filaments and generation of contractile force, consequently 

promoting cell movement [Mitchison et al. 1996]. MDia, on the other hand, cooperates 

with ROCK in the assembly of actin myosin filaments [Uehata et al. 1997; Watanabe et 

al. 1999] and regulates microtubule (MT) dynamics. It has been reported that activated 

mDia1 can induce longitudinally aligned MTs parallel to F-actin bundles along the long 

axis of the cell, and overexpression of GFP-mDia2 has been found to co-localize with 

Glu-MTs, leading to their stabilization [Ishizaki et al. 2001; Palazzo et al. 2001]. Also, 

mDia is able to mediate integrin-FAK signaling to facilitate MT stabilization in the 

leading edge of migrating cells [Palazzo et al. 2004]. Thus, through the cooperative 

regulation of actin cytoskeleton rearrangement and microtubule stabilization by ROCKs 

and mDias, RhoA promotes contractility during cell migration.  

In addition, focal adhesion turnover mediated by ROCK in the tail of migrating 

cells is also necessary for cell migration [Rodriguez et al. 2003; Small et al. 2003]. For 

instance, ROCK has been reported to be able to increase the number and size of integrin-

based focal adhesions in many different types of adherent cells [Ridley 2000; Linder et al. 

2003], and induces retraction of focal adhesions by strong actomyosin contraction, 

resulting in detachment of the tail in migrating cells [Meng et al. 2004]. Thus inactivation 

of RhoA leads to the formation of an elongated tail and failure in cell movement 

[Rodriguez et al. 2003; Small et al. 2003]. Taken together, through the precise 

spatiotemporal localization and specific activation of target proteins, RhoA cooperatively 

controls contractility and focal adhesion turnover during cell migration.   

1.1.4.1.2 Cell morphology 
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Similar to the regulation of cell movement, the basic mechanism of cytoskeleton 

rearrangement in the assembly of focal adhesion and generation of contractility mediated 

by RhoA is rather consistent with the establishment of cell morphology. For instance, 

RhoA has been shown to be essential for cell-cell adhesion, particularly for adherent 

junctions (AJs) and tight junctions (TJs) which are the major intercellular adhesive 

junctions for the establishment of epithelial cell shape. The AJs provide a strong 

mechanical connection between adjacent cells, whereas TJs form a physical barrier 

preventing the diffusion of both proteins and lipids between the apical and basolateral 

membranes. Studies show that the inhibition of endogenous RhoA by the bacterial toxin 

C3 transferase can inhibit the formation of both AJs and TJs, through disrupting the 

organization of actin filaments [Narumiya et al. 1993; Braga et al. 1997; Takaishi et al. 

1997; Zhong et al. 1997]. Similarly, overexpression of dominant negative mutant of 

ROCKs or Dias disrupts cytoskeletal organization, which leads to the partial perturbance 

or removal of cadherin receptors from newly formed or mature junctions, resulting in a 

loss of tension at these junctions [Nusrat et al. 1995; Jou et al. 1998]. In addition, the 

contractile event mediated by RhoA is also involved in the regulation of cell morphology. 

In macrophage cells and neuronal cells, activation of RhoA leads to cell rounding, which 

is resulted from the formation of contractile actin-myosin filaments, but not focal 

adhesions. In contrast, the flattened shape of fibroblasts is not affected by RhoA 

activation, possibly due to the formation of strong focal adhesion [Aepfelbacher et al. 

1996; Katoh et al. 1996; Postma et al. 1996; Tigyi et al. 1996; Allen et al. 1997; Kozma 

et al. 1997]. Hence, the differential regulation of cell adhesion and cell contractility by 

RhoA could lead to different changes in cell morphology.  
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1.1.4.1.3 Cytokinesis 
 

Cytokinesis, as the final step towards cell division, also requires Rho GTPases-

dependent spatial and temporal control of actin and microtubules. The direct evidence of 

the involvement of RhoA in cytokinesis lies in its restricted activation in the cortex prior 

to and during furrowing, which is revealed by the expression of fusion protein Rhotekin-

GFP in echinoderm or vertebrate embryonic cells. Bement and co-workers report that 

active RhoA during anaphase is accumulated at a restricted zone and the width of the 

zone remains constant during cleavage [Bement et al. 2005]. Besides, authors notice that 

RhoA may function in different stages during cytokinesis including centrosome 

separation, spindle orientation, chromosome congression, and contractile ring formation 

[Bakal et al. 2005]. For instance, knockdown of rho1 in C. elegans affects the cortical 

dynamics and centrosome positioning [Sonnichsen et al. 2005]. Similarly, inhibition of 

ROCK in cells by pharmacological inhibitor, Y-27632, impairs centrosome separation 

and results in aberrant spindle phenotypes [Rosenblatt et al. 2004].  

In comparison with centrosome separation and spindle orientation during 

cytokinesis, the role of RhoA in contractile ring formation is more extensively studied. 

Three of RhoA downstream targets, ROCK, mDia, and Citron kinase (Citron K), have 

been demonstrated to be essential for this process. Inhibition of anyone of them prevents 

the assembly of the contractile ring in a variety of mammalian cells resulting in 

multinucleate cells [Bhattacharyya et al. 2003]. Briefly, mDia1 localizes to the cleavage 

furrow during cytokinesis [Wallar et al. 2003], where it promotes local actin 

polymerization and/or coordinates microtubules with actin filaments at the site of the 

contractile ring. ROCK stimulates actomyosin assembly to generate the contractile force 
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that is necessary for driving contractile ring ingression, while Citron K, localizes to the 

cleavage furrow in a RhoA-dependent manner, and seems to be necessary for completion 

of cytokinesis by stably maintaining the ring components anillin and actin at the midbody 

[Eda et al. 2001; Shandala et al. 2004]. Besides, Rho upstream regulators, RhoGEFs, also 

contribute to cytokinesis through regulation of RhoA activity [Bement et al. 2005; 

Glotzer 2005]. It has been reported that the Drosophila RhoGEF, Pebble, can interact 

with components of centralspindlin complexes to mediate formation of the contractile 

ring [Somers et al. 2003]. Similarly, knockdown of RhoGEF, ECT2, using RNAi leads to 

complete inactivation of RhoA at the restricted zone where the contractile ring will be 

formed, and prevents localization of both actin and myosin II in the contractile ring and 

ingression [Yuce et al. 2005; Zhao et al. 2005].  

Taken together, all the above studies show the crucial functions of RhoA in cell 

biology through its regulation of actin and microtubule dynamics. In addition to the direct 

effect on cytoskeleton, RhoA also plays a role in gene expression, which makes it more 

important in a wider variety of biological events, such as cell proliferation and cell 

survival control.  

1.1.4.1.4 Cell proliferation 
 
 

The early implication of RhoA in cell proliferation comes from the observation 

that its inactivation can inhibit mitogen-stimulated G1–S phase progression in Swiss 3T3 

fibroblasts, whereas its activation triggers progression of the G1 phase in quiescent 

fibroblasts [Yamamoto et al. 1993; Olson et al. 1995]. Further studies show that RhoA 

could regulate G1-S phase progression via at least two ways: activation of cyclin D1 
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transcription and inhibition of cyclin/Cdk (cyclin-dependent kinase) expression [Olson et 

al. 1995; Olson et al. 1998; Welsh et al. 2001]. For instance, RhoA has been reported to 

sustain the activation of extracellular-signal-regulated kinase (ERK) under the 

stimulation of fibroblast-growth-factor, which is essential for cyclin D1 expression [Hirai 

et al. 1997; Laufs et al. 1999]. It can also function as the master of adhesion-dependent 

regulator of cyclin D1 expression, through its control in the assembly of integrins 

complex [Assoian et al. 1997; Welsh et al. 2001]. On the other hand, activation of RhoA 

has been shown to suppress Cdk inhibitor p21 and p27 transcription [Auer et al. 1998; Hu 

et al. 1998; Olson et al. 1998], whereas inactivation of RhoA leads to increased 

expression of these genes [Weber et al. 1997; Rivard et al. 1999]. Similarly, inhibition of 

RhoA signaling in vascular smooth muscle cells upregulates p27Kip1 expression and 

inhibits cell proliferation [Laufs et al. 1999], suggesting modulation of the expression of 

Cdk inhibitors by RhoA is important for cell proliferation. 

1.1.4.1.5 Cell survival 
 

To date, the mechanism underlying RhoA-mediated cell survival is largely 

unknown, but several anti-apoptotic pathways have been implicated in the RhoA-

dependent suppression of apoptosis. For example, the expression of constitutively-active 

RhoA induces assembly of cortical F-actin to promote activation of ERK and facilitates 

glomerular epithelial cells survival [Bijian et al. 2005], while over-expression of Rho 

downstream effector, Rhotekin, in human gastric cancer confers cell resistance to 

apoptosis through activation of NF-kB pathway [Liu et al. 2004]. Inhibition of RhoA can 

activate caspase-9- and caspase-3-dependent apoptosis in human umbilical cord vein 

endothelial cells [Hippenstiel et al. 2002] and induce p53 or other proapoptotic proteins 
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in human endothelial cells [Li et al. 2002]. Besides, RhoA has been reported to induce 

anti-apoptotic Bcl-2 expression in various cell lines, including murine T cell line [Gomez 

et al. 1997], vascular smooth muscle cells [Blanco-Colio et al. 2002], and human 

osteosarcoma cells [Fromigue et al. 2006].  

However, reports on the role of RhoA in cell survival are rather contradictory. 

Overexpression of RhoA is found to induce apoptosis in a range of cell lines, including 

NIH3T3 fibroblasts, human erythroleukemia K562 cells, and erythroblast cell lines. The 

RhoA-induced apoptosis appears to be associated with enhanced ceramide level or 

reduced Bcl-2 expression [Jimenez et al. 1995; Esteve et al. 1998]. Besides, the dynamic 

rearrangement of actin cytoskeleton by ROCK has been shown to be involved in the 

morphological changes in cell apoptosis. For instance, ROCK I can be cleaved by 

caspase 3 directly, leading to its activation, which subsequently generates actin-myosin 

contractile force and results in cell contraction and membrane blebbing [Leverrier et al. 

2001; Sebbagh et al. 2001] in apoptotic cells. In addition, catalytical activation of 

PRK1/PKN, another downstream effector of RhoA, has also been reported to induce 

apoptosis by promotion of actin stress fiber disassembly [Coleman et al. 2002]. However, 

several other studies suggest that the activation of RhoA might not be responsible for the 

apoptotic contraction and blebbing in the initiation of cell apoptosis. For example, pro-

apoptotic stimulus can not activate RhoA in Swiss 3T3 or NIH 3T3 cells [Coleman et al. 

2001] and inactivation of RhoA by bacterial toxin C3 transferase did not inhibit 

membrane blebbing in apoptotic cells [Coleman et al. 2001; Sebbagh et al. 2001]. 

Therefore, how RhoA signaling contributes to cell survival needs to be further elucidated. 
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1.1.4.2 Functions of RhoA in animal development 
 

1.1.4.2.1 Embryonic morphogenesis 
 

During embryonic development, cells undergo a range of morphological changes 

in their shape, polarity and cell-cell contact to form well-organized tissues, organs and 

whole embryos. Thus, RhoA, as a key regulator for the organization of actin cytoskeleton, 

has been shown to be necessary for these morphogenic processes. In Drosophila, loss of 

RhoA results in abnormal epithelial cells shape, disorganization of cells along the dorsal 

midline or in the internalization of anterior head structures, which consequently leads to 

an opening in dorsal closure and head [Lu et al. 1999b; Magie et al. 1999]. 

Overexpression of Rho1 specifically in Drosophila eyes can induce severe rough eye 

defects with a grossly abnormal morphology of the rhabdomeres [Hariharan et al. 1995]. 

Consistently, in Xenopus, overexpression of XRhoA increases cell adhesion by 

antagonizing XRnd1, which in turn affects head formation [Wunnenberg-Stapleton et al. 

1999].  

In addition to the control of actin dynamics, RhoA signaling could contribute to 

morphogenesis by regulation of cell size. In S. cerevisiae, the daughter cells of rhoA 

mutant or its downstream effectors mutants (skn7p, fks1p and mpk1p) display abnormally 

small size. This is probably due to the failure of mother cells (carrying mutation in rhoA 

or its effectors) in reaching an appropriate size before budding, or premature entry to 

mitosis [Kikuchi et al. 2007]. Besides, RhoA can regulate cell size by modulating IGF-

induced phosphorylation of cAMP response element binding protein (CREB). In p190-B 

RhoGAP knockout mice, abnormally high levels of active Rho protein were suggested to 

be associated with defects in CREB activation upon exposure to insulin or IGF-1, thereby 
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leading to 30% reduction of embryo size [Sordella et al. 2002]. Taken together, these 

studies suggest that RhoA is involved in different aspects in embryonic morphogenesis 

including control of cell shape, cell adhesion, and cell size. 

1.1.4.2.2 Cell movement  
 

In addition to the dramatic cell morphological changes, the accurate migration of 

cells to proper sites in response to specific cues is also critical for normal embryonic 

development. In Drosophila, one of the most severe defects in Rho1 loss of function 

mutants is imperfect dorsal closure. During normal Drosophila dorsal closure, the lateral 

epithelial sheets migrate towards dorsal midline and cover the dorsal region of the 

embryo. In contrast, this process is disrupted in Rho1 mutant and cells are disorganized at 

dorsal midline, which results in a big hole or “dorsal open” on the dorsal surface of 

embryos [Magie et al. 1999]. Similar defects are also observed in the loss of function 

mutant of Drosophila PKC-related protein kinases (Pkn), suggesting that Pkn could be 

one of the downstream effectors mdeiating RhoA-dependant cell movement during dorsal 

closure [Lu et al. 1999a]. Another characteristic zygotic defect of Rho1 mutant is in head 

involution, which is the result from the failure in internalization of anterior head 

structures [Magie et al. 1999]. Consistently, RhoA is also required for the invagination of 

epithelial cell and transepithelial migration of germ cell during Drosophila 

embryogenesis [Simoes et al. 2006]. Similarly, in C. elegans, disruption of cell 

movements, such as  epidermal P-cell migration, is also observed when rhoA signaling is 

inhibited either by the expression of dominant negative mutant of rho-1 or knockdown of 

ect-2, a GEF for RhoA [Spencer et al. 2001; Morita et al. 2005]. In Xenopus, RhoA has 

been shown to mediate p120 catenin signaling in the control of the migration of cranial 
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neural crest cells from the neural tube into the branchial arches [Ciesiolka et al. 2004]. 

Besides, RhoA also plays a critical role in gastrulation movements and midline 

convergence of organ primordia during Xenopus and zebrafish embryogenesis, which 

will be reviewed in detail in the section 1.2.2.2.2. Taken together, RhoA is critical for 

proper movements of multiple types of cells in different developmental stages during 

both invertebrates and vertebrates embryogenesis. 

1.1.4.2.3 Cell growth and survival 
 

In addition to the cell movement control, RhoA also plays pivotal roles in cell 

growth and cell survival during animal development. It has been shown that inhibition of 

RhoA activity by C3 transferase in murine thymus leads to a decrease in the number of 

thymocytes by increasing apoptosis and reducing proliferation [Henning et al. 1997]. 

Similarly, cardiac–specific inhibition of Rho by overexpression of RhoGDI in transgenic 

mice or inhibition of ROCK in cultured murine embryos disrupts cardiac morphogenesis 

and inhibits cardiomyocyte proliferation, but cell survival is not affected in both cases 

[Wei et al. 2002; Zhao et al. 2003]. Another study reveals that suppression of RhoA-

ROCK signaling by conditional expression of dominant negative RhoA or ROCK in 

transgenic mice reduces the number of motor neurons in the spinal cord by increasing 

apoptosis [Kobayashi et al. 2004]. Thus, the proper expression of RhoA is necessary for 

both cell proliferation and cell survival during organogenesis, but whether this also 

affects early embryonic development is still unclear. 

1.1.4.3 Other functions of RhoA family GTPases  
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In addition to the above developmental processes, more and more important roles 

of RhoA in animal development have been explored. This includes oogenesis, 

segmentation, tissue polarity [Strutt et al. 1997], T cell development [Corre et al. 2001], 

smooth muscle contraction [Webb 2003], skeletal muscle development [Charrasse et al. 

2003], cardiac morphogenesis [Wei et al. 2002; Kaarbo et al. 2003], head formation 

[Wunnenberg-Stapleton et al. 1999], and so on. Besides, RhoA is also involved in 

various aspects of neural development [Luo 2000], such as proliferation of neuroblasts 

[Lee et al. 2000], growth cone collapse, axon guidance [Bito et al. 2000], neurite 

outgrowth, dendritic patterning [Nakayama et al. 2000a; Pilpel et al. 2004], spine 

morphology [Nakayama et al. 2000b; Tashiro et al. 2000], and neurotransmitter release 

[Bito et al. 2000; Lee et al. 2000; Nakayama et al. 2000b; Tashiro et al. 2000; Huot 2004; 

Pilpel et al. 2004].  

Although the biological functions of RhoA have been studied in various in vitro 

and in vivo systems, many of the findings on its functions are obtained using expression 

of its constitutive active or dominant negative mutants, thus neglecting the possibility of 

functional interference by non-specific inhibition or activation of other closely related 

members. As we mentioned earlier, the primary protein sequence of RhoA, RhoB and 

RhoC are around 85% identical, and the majority of amino acids and motifs important for 

their interaction with regulators and effectors are rather conserved, which results in their 

extensive overlapping of RhoGEFs, RhoGAPs and target proteins [Wheeler et al. 2004]. 

As such, the overexpression of dominant-negative (DN) form of RhoA (T19N) may 

inhibit all three endogenous Rho signaling by sequestering their common upstream 

RhoGEFs, whereas the ectopic expression of constitutively activate (CA) mutant of 
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RhoA (G14V) may activate multiple downstream target proteins without distinction, 

leading to unspecific activation of all three Rho signaling [Wang et al. 2007]. Hence,  

found that overexpression of DNRhoA (T19N) can also inhibit RhoC-induced cancer cell 

migration and invasion [Clark et al. 2000], and more and more distinct function of  

individual Rho isoforms has been uncovered. For example, RhoB can act opposite to 

RhoA and RhoC on cell proliferation [Du et al. 1999; Chen et al. 2000b], and RhoB, but 

not RhoA and RhoC, can mediate the transport of late endosomes [Mellor et al. 1998; 

Gampel et al. 1999]. Consistently, in the in vivo studies, knockout RhoA leads to early 

embryonic lethality, while knock out of RhoB or RhoC do not cause obvious embryonic 

defects [Wang et al. 2007]. Therefore, application of proper approaches that could 

specific target to individual Rho proteins would help us better understand the precise 

gene functions and signaling capacity of Rho isoforms in both cellular and developmental 

processes. 

1.1.5 Functions of RhoA family GTPases in pathophysiological processes 
 

Being such an important player for proper cell behavior and normal development, 

the deregulation of Rho signaling pathway has been correlated with many 

pathophysiological processes, including tumorgenesis and progression, vascular disease, 

neural degeneration diseases, and so on. 

1.1.5.1 Tumorgenesis, invasion and metastasis  
 

The implication of RhoA in tumorgenesis comes from its high level of activity in 

a variety of cancers including colon, breast, lung, testicular germ cell, head, and liver 

[Sahai et al. 2002a] and its close family members, RhoB and RhoC, are also implicated to 
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be cancer-promoting genes [Wheeler et al. 2004]. It has been suggested that the 

involvement of RhoA in tumorgenesis could be linked to its role in the promotion of cell 

cycle progression. For example, RhoA controls the timing of cyclin D1 induction or 

induces its expression through sustained activation of ERK [Welsh et al. 2001]. RhoA 

can also inhibit activities of p21Cip1, p27Kip and p16Ink4, important regulators in G1 to 

S transition [Adnane et al. 1998; Olson et al. 1998; Laufs et al. 1999; Seasholtz et al. 

2001; Liberto et al. 2002; Vidal et al. 2002]. In addition to the involvement in 

tumorgenesis, RhoA contributes to invasion and metastasis [Ridley 2004; Titus et al. 

2005]. It has been reported that activation of RhoA not only enhances hepatoma cell 

motility but also promotes cells invasion [Yoshioka et al. 1998; Genda et al. 1999], while 

abrogation of ROCK signaling could inhibit cells metastatic potentials and decrease their 

invasive activities in a variety of tumor cell lines, such as rat MM1 hepatoma cell lines, 

pancreatic cancer cell-lines, and breast carcinoma cells [Bourguignon et al. 1999; Genda 

et al. 1999; Itoh et al. 1999; Somlyo et al. 2000; Takamura et al. 2001; Jo et al. 2002]. 

Thus, RhoA signaling is involved in different stages of tumor development through 

coordinative regulation of gene transcription and actin cytoskeleton dynamics. Besides, 

increasing studies have shown that inhibition of RhoA prenylation through various 

reductases including statins and its derivatives, fluvastatin or lovastatin, can reverse 

RhoA-dependent tumorgenesis and metastasis [Kusama et al. 2002], suggesting the 

RhoA/ROCK signaling pathway could be the potential target for cancer therapy in future. 

 

1.1.5.2 Cardiovascular disorders 
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 In addition to tumorgenesis and progression, RhoA appears to be involved in a 

variety of cardiovascular diseases, including atherosclerosis [Mallat et al. 2003], 

glomerulosclerosis [Nishikimi et al. 2004], vasospastic angina [Katsumata et al. 1997; 

Sato et al. 2000], ischemic stroke [Toshima et al. 2000], hypertension [Uehata et al. 1997; 

Higashi et al. 2003; Abe et al. 2004], myocardial ischemia-reperfusion injury [Bao et al. 

2004; Wolfrum et al. 2004], neointima formation [Sawada et al. 2000; Matsumoto et al. 

2004], vascular remodeling [Miyata et al. 2000], and endothelia dysfunction [Laufs et al. 

1998; Eto et al. 2001]. Growing evidence shows that the activity of RhoA/ROCK is often 

elevated in animal models of hypertension and disorders of the cardiovascular system. 

Inhibition of ROCK can normalize the arterial pressure in these hypertension models 

[Uehata et al. 1997] and suppress the development of atherosclerosis and arterial 

remodeling after vascular injury [Sawada et al. 2000; Mallat et al. 2003]. In addition, 

accumulating studies implicate that RhoA/ROCK may contribute to cardiovascular 

diseases through controlling vascular smooth muscle cell proliferation and contraction. 

For instance, RhoA can induce smooth muscle cell proliferation in response to different 

stimuli, including angiotensin II, and PDGF [Hengst et al. 1996; Laufs et al. 1999; 

Seasholtz et al. 1999; Yamakawa et al. 2000; Sauzeau et al. 2001], and the induced cell 

proliferation seems associated with deregulation of p27Kip1 activity [Hengst et al. 1996; 

Laufs et al. 1999]. Activation of Rho/ROCK pathway can also facilitate and prolong 

contraction of smooth muscle, which may lead to arterial remodeling during vascular 

pathologies [Chitaley et al. 2001]. In addition, a number of vascular diseases appear to 

benefit from inhibition of ROCKs by fasudil or statins [Laufs et al. 1998; Laufs et al. 

2000; Takemoto et al. 2002; Wolfrum et al. 2004], including systemic hypertension 
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[Masumoto et al. 2001], pulmonary hypertension [Fukumoto et al. 2005], vasospastic 

angina [Masumoto et al. 2002], stable effort angina [Shimokawa et al. 2002], stroke 

[Shibuya et al. 2005], and chronic heart failure [Kishi et al. 2005]. Hence, precise and 

tight regulation of Rho signaling pathway would be promising therapeutics for 

cardiovascular diseases.  

1.1.5.3 Other pathophysical processes 
 

In addition to the most popular and the worst prognostic diseases, cardiovascular 

disorder or tumor, deregulation of RhoA has been shown to be involved in other diseases, 

such as Alzheimer disease [Mueller et al. 2005], X-linked mental retardation (MRX) 

[Chelly et al. 2001; Frints et al. 2002; Negishi et al. 2002; Ramakers 2002; Chechlacz et 

al. 2003; Govek et al. 2005], bronchial asthma [Chiba et al. 2004], demyelinating 

diseases [Mueller et al. 2005], glaucoma [Honjo et al. 2001], and osteoporosis [Ohnaka 

et al. 2001]. In order to reveal the molecular mechanism and develop effective therapies 

for human diseases, understanding of the molecular basis mediated by RhoA in normal 

physiological processes is important and urgent. Moreover, choosing a proper in vivo 

model system would be necessary and valuable for us to address these issues accurately 

and effectively. 

1.2 Zebrafish model 
 

1.2.1 Zebrafish as an in vivo model 
 
 

Zebrafish, (Danio rerio), a small tropical freshwater teleost fish, has been 

introduced as model system few decades ago. With a combination of various features, it 
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has emerged as one of the most promising model organisms in the study of 

developmental biology. Generally, zebrafish is a small size fresh water fish (average 3.8 

cm in length for adult fish), thus large numbers of fish can be easily maintained in 

aquaria labs. It has a short generation time (around 3-4 month to mature) and produces 

large number of eggs per spawning, which makes it well-suited for genetic analysis. In 

addition, its embryos are optically transparent, and embryonic development occurs 

externally and rapidly. Thus, people can easily visualize the whole embryogenesis within 

a few days. It is also possible to monitor cell movement in vivo or internal organogenesis 

by labeling particular cell types or generation of transgenic lines with fluorescent proteins. 

Besides, the laboratory methods for its husbandry, and detailed description of 

developmental staging series during its early embryogenesis have been well established 

making it one of the most excellent vertebrate models for developmental study 

[Westerfield 2000].  

In addition to the above frequently mentioned advantages of zebrafish, the 

amenability to various cellular, molecular and genetic techniques makes it a powerful 

model not only for developmental but also for genetic study. Compared with Xenopus 

embryos, zebrafish embryos are very amenable to microinjection, which makes reverse 

genetics studies, including loss and gain-of-function studies, relatively easier. Although 

the techniques of recombinant gene knockout have not been established yet in zebrafish, 

morpholino (MO) antisense oligo-mediated functional knockdown has provided some 

significant advantages over knockout mouse models. For instance, by targeting the 

sequence between 5' UTR and the first 25 bases of coding sequence, translation initiation 

of the targeted gene can be blocked by MOs [Summerton et al. 1997]. As such, the 
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degree of a given gene knockdown can be controlled by the injection of different doses of 

MOs, making it possible to study the function of genes that could cause embryonic 

lethality by complete gene knockout. Moreover, several MOs targeting to different gene 

products can be co-injected into wild type or mutant embryos for combinational loss of 

function experiments [Ekker et al. 2001]. Additionally, MOs can also alter pre-mRNA 

splicing by targeting splice junctions in the nucleus, and this technique has been applied 

successfully to address the function of particular domains in vivo by exon(s) deletion or 

intron(s) retention [Morcos 2007; Summerton 2007]. Besides, the effectiveness and 

specificity of gene knockdown by MO can be simply confirmed through co-injection of 

MOs with related DNAs or mRNAs, which is called rescue experiment. In addition to 

functional knockdown by microinjection of MOs, application of effective 

pharmacological inhibitors and availability of numerous mutant lines make zebrafish a 

wonderful model to study the signaling mechanism underlying developmental processes 

and understand networks within different signaling pathways in vivo.  

In addition to amenability for loss of function studies, zebrafish is also powerful 

in gain of function studies. Similar to the rescue experiment, microinjection of DNA or 

synthetic mRNAs of interest into one-cell stage embryos has been extensively used in 

zebrafish as a form of gain-of-function study. Besides this early ubiquitous 

overexpression of gene of interest, cDNAs can also be overexpressed spatially, stably, or 

inducible under control of different promoters. For instance, fusion of green fluorescent 

protein (GFP) or red fluorescent protein (RFP) together with genes of interest have been 

ligated downstream of different tissue-specific promoters, enabling the identification of 

gene function specifically in tissue or organ development [Gong et al. 2001; Zhu et al. 
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2004]. Moreover, under the control of a heat shock-sensitive promoter or tetracycline 

response element, transgenic gene expression can be induced at any desired stage of 

development by increasing the water temperature (from 28 to 39 °C) or incubation in 

water containing tetracycline [Pyati et al. 2007]. Similarly, Gal4-UAS and Cre-LoxP 

systems have also been extensively applied to induce transgenes expression simply by 

crossing two individual transgenic lines [Scheer et al. 1999; Pan et al. 2005; Le et al. 

2007]. Taken together, amenability to various techniques makes zebrafish a promising 

vertebrate model to discover novel gene functions in development. 

Zebrafish has also emerged as an important disease model to unravel the 

molecular mechanism and therapeutic targets of disease processes. Most of the critical 

signaling pathways have been shown to be conserved between zebrafish and human, and 

zebrafish has very similar histology to human. Hence, various diseases, such as 

tumorgenesis, kidney discord, vascular diseases, Parkinson's disease, have already been 

studied on zebrafish. For example, in the study of tumor formation, a zebrafish transgenic 

line in which oncogenic c-Myc can be specifically overexpressed in T-lymphocytes was 

generated. In this transgenic fish, massive T-cell over-proliferation and metastasis 

occurred, which makes it a valuable animal model for human T-cell leukemia study 

[Langenau et al. 2003]. Recently, another conditionally inducible human constitutively 

activated K-ras transgenic line has been generated, which further establishes an in vivo 

tumor model for better understanding of general molecular basis underlying tumorgenesis 

and malignancy [Le et al. 2007]. Besides, zebrafish could be a wonderful model for 

pharmacological compounds screening, as large number of  embryos or larvae can be 

screened and analyzed at once using very little material [Yeh et al. 2003; Zon et al. 2005]. 
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Through this high-throughput screening, novel and potential anticancer agents would be 

discovered without any bias. Moreover, some of these studies have shown promising 

results in rescuing abnormal vascular network formation [Peterson et al. 2004] or cell 

cycle defects [Stern et al. 2005]. Therefore, combined with the power of zebrafish 

genetics, ease manipulation of gene expression, and elegancy in chemical compound 

screening, zebrafish is a good model system for exploring the molecular mechanism 

underlying both normal physiological and pathophysiological processes, and examining 

the efficacy of potential therapies.  

1.2.2 Zebrafish development 
 

1.2.2.1 Stages of embryonic development of zebrafish  
 

The development of zebrafish can be broadly divided into 4 stages, embryo (0 - 3 

dpf), larval (4 - 29 dpf), juvenile (30 - 89 dpf) and adult (90 dpf - 2 y). During the 

embryogenesis (first 3 days after fertilization), five periods can be further defined 

according to the morphological features, including the zygote, cleavage, blastula, gastrula, 

segmentation, pharyngula, and hatching periods [Kimmel et al. 1995]. After fertilization, 

embryos enter the first zygotic cell cycle, which is defined as the zygote period (0-0.75 

hpf). Following the zygote period is the cleavage period (0.75- 2.25 hpf), in which seven 

cycles of rapid and synchronous cell division occur. During blastula period (2.25 -5.25 

hpf), embryo continues two more synchronous cycles of cell division followed by 

lengthened and asynchronous cell division together with the commencement of epiboly 

movement. During gastrula period (5.25 – 10.33 hpf), three more types of movements 

(involution, convergence and extension) together with epiboly are taking place to shape 
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the embryonic axis. At the end of gastrulation, three germ layers are formed, and primary 

organogenesis begins. During segmentation (10.33 – 24 hpf), somites, neuromeres, and 

pharyngeal arch primordia develop and the tail appears. In the pharyngula period (24-48 

hpf), circulation, pigmentation, and fins begin to develop, and embryonic body axis is 

straightened. Finally, at the hatching period (48-72 hpf), rapid primary organ 

morphogenesis is completed and embryos hatch out from the chorine.  

1.2.2.2 Gastrulation 
 

During the early embryonic development, gastrulation is one of the most 

fundamental and important developmental processes, during which the basic vertebrate 

body plan of the zebrafish embryo is established, including the formation of the anterior-

posterior and dorsal-ventral axes, and the development of three germ layers — ectoderm, 

mesoderm and endoderm. Ectoderm is located on the outside of the three-germ layer-

embryo, giving rise to the epidermis and neural tissues. The endoderm is on the inside of 

embryo, which will form the digestive tube and its accessory organs; while the mesoderm 

between the ectoderm and endoderm is included in the generation of future middle layer 

of the adult body plan, including muscles, cardiovascular, urogenital and skeletal 

elements of the body [Kimmel et al. 1990].  

 

 

1.2.2.2.1 Cell movements during gastrulation  
 

During vertebrate gastrulation, four evolutionarily conserved morphogenetic 

movements have been characterized based on the morphogenetic changes they produce, 
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namely, epiboly, internalization, convergence and extension [Warga et al. 1990]. Epiboly 

movement starts before the germ layers arise, and continues throughout the gastrulation. 

In Xenopus and zebrafish, radial cell intercalation is the key cell behavior during epiboly, 

which is characterized by the interdigitation of deeper-layer-cells between more 

superficial cells or vice versa, resulting in the occupation of fewer layers of cells in a big 

area. Moreover, together with directed cell migration, the epiboly leads to thinning and 

expansion of surface tissue during gastrulation [Keller 2005] (Figure 1.4, [Montero et al. 

2004]). 

In contrast to epiboly, internalization of mesendodermal precursors is believed to 

be the defining event of gastrulation. Upon the mesoderm and endodermal precursors 

moving through the blastopore, internalization, which drives the cells moving from the 

blastula surface beneath the ectodermal via blastopore, occurs. The pattern of cell 

movements after invagination is different among vertebrates. For example, in Xenopus 

invagination is followed by involution, in which the cells move as one cohesive sheet 

[Trinkaus 1996]; whereas in chick and mouse [Kane et al. 2002], ingression movement 

occurs, whereby the mesoderm and endodermal precursors move individually via 

blastopore. Interestingly, in fish, both movements are involved. The mesendodermal 

precursors approach the blastopore as a coherent sheet and then loss the coherence, which 

in turn leads to individual but coordinative cell movements [D'Amico et al. 2001]. After 

internalization, the mesendodermal cell move away from the blastopore and the 

mesodermal and endodermal layers are formed eventually along the rostrocaudal 

embryonic axis [Warga et al. 1999] (Figure 1.4, [Montero et al. 2004]). 
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During vertebrate gastrulation movements, convergence and extension (CE) 

movements are most complicated and challenging because they represent a category of 

morphogenic process called “mass movement”. During CE, polarized cells elongate 

along the medio-lateral axis and undergo intercalation which leads to a medio-lateral 

narrowing (convergence) and an anterior-posterior lengthening (extension) of the forming 

embryonic axis [Keller et al. 1992]. In the recent time-lapse analyses of gastrulation in 

the fish Fundulus heteroclitus and zebrafish,  it was reported that mediolateral cell 

intercalation in the axial gastrula appears to be the driving force for axial mesodermal CE 

movements [Trinkaus et al. 1992; Trinkaus 1998; Glickman et al. 2003]. In addition, the 

mediolateral distance towards the dorsal midline is another critical factor for the 

directional CE movements. For example, the mesodermal and ectodermal cells in the 

more distal domain are only slightly mediolaterally elongated and migrate slowly, 

individually and indirectly; while as the cells approach the midline, they are more 

elongated and directed with increased rates of movements towards the dorsal midline. As 

they reach the shield, the cells undergo a bipolar mediolaterally directed protrusion, 

leading to convergent extension of mesoendoderm along the anterior-posterior axis. 

Therefore, both mediolateral intercalation and directed migration contribute to the 

convergence and extension of tissues [Keller et al. 2000; Keller 2002] (Figure 1.4, 

[Montero et al. 2004]).  
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Figure 1.4 Gastrulation movements in zebrafish. (a) At the onset of gastrulation, radial 

cell intercalations of blastodermal cells drive epiboly movements. (b) At early stages of 

gastrulation, mesendodermal progenitor cells undergo internalization. (c) During 

gastrulation, mediolateral cell intercalations of mesendodermal cells drive axial 

mesodermal convergence and extension movements. Arrows indicate the directions 

of cell or tissue movements. (ii) is the schematical illustration of cell movements in the 

boxed area of (i). Adapted from [Montero et al. 2004] 
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 1.2.2.2.2 Molecular mechanism underlying CE movements 
 
         Many molecules, especially those of the BMP, FGF and Wnt families, are known to 

play major roles in establishing cell fates and regulating cell movements during 

gastrulation. BMP family members are mostly responsible for cell fate determination, 

whereas FGF signaling and Wnt signaling have many functions both in cell fate 

determination and in morphogenesis [Myers et al. 2002; Leptin 2005]. Generally, the 

Wnt/β-catenin pathway, also referred as the canonical Wnt pathway, is mainly important 

for axis formation. However, it has also been reported to be essential for CE movements 

by activation of signal transducer and activator of transcription 3 (Stat3) which is 

required for the migration of mesodermal cells toward the dorsal midline during zebrafish 

gastrulation [Yamashita et al. 2002]. Besides, accumulating studies have demonstrated 

that non-canonical Wnt pathway, known as planar cell polarity (PCP) pathway in 

Drosophila, also plays pivotal role in the CE movements through the regulation of 

mediolateral cell polarization in vertebrates [Oates et al. 1999; Yeo et al. 2001; Kuhl 

2002; Tada et al. 2002]. In Xenopus, deregulation of two noncanonical Wnt ligand genes, 

wnt11 and wnt5, displayed CE movement defects without affecting cell fate. Consistently, 

the reduced CE movement phenotype was also observed in zebrafish silberblick (slb) 

/wnt11 and pipetail (ppt)/wnt5 mutants [Rauch et al. 1997; Heisenberg et al. 2000]. The 

Wnt11 (slb) mutant showed more anterior CE defects, whereas Wnt5a (ppt) functioned 

more in posterior regions [Rauch et al. 1997; Heisenberg et al. 2000]. However, they 

exhibited partially overlapping functions in regulating CE movements in lateral domains 

of the gastrula.  
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 In Drosophila, Rho small GTPases including RhoA were reported to function 

downstream of Wnt11 in regulating planar cell polarization [Wolff et al. 1998]. 

Consistently, PCP pathway-mediated by RhoA has been reported to regulate convergence 

and extension movements in Xenopus gastrulation. For instance, RhoA can be activated 

by Wnt/Frizzled through Daam1, a novel Formin-homology protein, or through xNET1, a 

RhoA-specific guanine nucleotide exchange factor, during Xenopus gastrulation 

movements [Habas et al. 2001; Miyakoshi et al. 2004]. RhoA also mediates the non-

canonical Wnt or Xenopus paraxial protocadherin (XPAPC) signals to control Xenopus 

CE movements by activation of ROKalpha, and/or JNK [Marlow et al. 2002; Unterseher 

et al. 2004; Kim et al. 2005]. In addition, the explanation of mesodermal cells in Xenopus 

reveals that both Rho and Rac modulate cell polarization, motility and protrusive activity 

in the trunk mesoderm, while Rho alone regulates the retraction of the lagging edge of the 

cell in the prospective head mesoderm  [Ren et al. 2006] with distinct and overlapping 

roles during CE [Tahinci et al. 2003]. However, whether RhoA is involved in non-

canonical signaling pathway to control convergence and extension movements and how 

the downstream effectors are involved in this process during zebrafish gastrulation has 

never been addressed.  

1.2.2.3 Apoptosis in zebrafish  
 

1.2.2.3.1 Apoptosis in normal development 
 

In addition to the contribution of gastrulation movements to the embryonic 

morphogenesis through forming three germ layers and generating body axes, 

programmed cell death (apoptosis) is also critical for embryogenesis in the maintenance 
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of tissue homeostasis [Sanders et al. 1995; Jacobson et al. 1997; Vaux et al. 1999]. For 

better understanding of the significance of apoptosis in development, Ernst and 

Glucksmann classified and named the apoptotic pattern into three classes, morphogenetic 

apoptosis, histogenetic apoptosis and phylogenetic apoptosis [Glucksmann 1965]. 

Morphogenetic apoptosis occurs during the formation of cavity, in which the folding, 

bending, cavitation, fusion, or separation of tissues and cells are involved. In contrast, 

histogenetic apoptosis takes place after tissue is maturated or remodeled through the 

elimination of cells, such as the clearance of neurons that loses their function in 

connecting with their targets. Phylogenetic apoptosis happens to remove the unneeded 

structures or embryonic cells during evolution or maturation, such as the elimination of 

the mesonephros and pronephros or the tadpole’s tail in adults in higher vertebrates. All 

three types of apoptotic patterns have been found in the normal development of 

vertebrates, including frog [Lamborghini 1987], chick [Garcia-Porrero et al. 1979; 

Ilschner et al. 1992], mouse [Young 1984], and rat [Kim et al. 1973; Pellier et al. 1994]. 

Consistently, in zebrafish, they also have been demonstrated to be important for 

embryonic development [Cole et al. 2001; Yamashita 2003].  

1.2.2.3.2 Mechanism of apoptosis  
 

The two best-studied mechanisms of apoptosis in vertebrates are the extrinsic 

(death receptor) and the intrinsic (mitochondrial) apoptotic pathways (Figure 1.5, [Pyati 

et al. 2007]). The extrinsic pathway is triggered upon the binding of extracellular ligands 

to their death receptors, such as the Fas ligand (FasL), tumor necrosis factor a (TNFa), or 

TNF-related apoptosis inducing ligand (TRAIL) binding to the Fas (CD95 or APO-1), 



CHAPTER 1 INTRODUCTION 

 

38

TNFa-, or TRAIL receptors, respectively. This activates the trimerization of the receptor, 

cytoplasmic adapter protein and Fas-associated death domain protein (FADD) to form a 

death-inducing signaling complex (DISC). Then, the DISC complex brings caspase-8 

proenzymes into close proximity to cleave and activate each other, which subsequently 

leads to the proteolytic cleavage and activation of procaspase-3, and other important 

downstream procaspases such as procaspase-6, -8, and -10. Consequently, the amplified 

activation of caspases signaling inhibits or activates various downstream target proteins 

or ‘‘death substrates’’ including poly(ADP)-ribose polymerase (PARP), endonucleases, 

protein kinase Cd, and structural proteins such as the lamins, Gas2 and a-fodrin, and 

gelsolin. In contrast, the intrinsic pathway is activated by many biochemical factors 

including environmental insults, DNA damage, abnormal covalent binding of toxins to 

macromolecules, oxidative stress, and lipid peroxidation [Nicholls et al. 2000]. These 

stresses or developmental cues induce the activation of p53, which transcribes genes 

encoding BH3-only pro-apoptotic proteins. This increased expression of pro-apoptotic 

proteins overcomes the blockage from anti-apoptotic Bcl-2 family members and allows 

Bak and Bax to oligomerize, which leads to mitochondrial outer membrane 

permeabilization (MOMP) and subsequent releasing of Cytochrome C. The cytoplasmic 

Cytochrome C then induces a conformational change of the cytosolic adapter molecule 

Apaf-1, allowing Apaf-1 to recruit and activate multiple caspase-9 proenzymes, which in 

turn cleaves and activates caspase-3, leading to further downstream caspases activation. 

By a self-amplificatory way, the mitochondria seemingly play a critical role in the 

intrinsic apoptosis to amplify the apoptotic signals, which leads to more releasing of 

Cytochrome c, subsequently resulting in DNA fragmentation, chromatin condensation in 
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nucleus, and cell death eventually [Pyati et al. 2007]. The intrinsic and extrinsic apoptosis 

have been extensively studied in the in vitro cell culture system, their roles and the 

molecular mechanism in the in vivo system especially in zebrafish embryonic 

development need to be further elucidated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5 The extrinsic and intrinsic apoptotic pathways of in vertebrate. Adapted 

from [Pyati et al. 2007]. Please see detailed description in the section 1.2.2.3.2. 
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1.2.2.3.3 Zebrafish as a powerful model for apoptosis study 
 

Besides the advantages of zebrafish as a model system mentioned before (detail 

see 1.2.1), the evolutionarily conserved core components of apoptotic pathways in 

zebrafish further suggests that it could be a powerful model to study cell death in vivo. By 

bioinformatics analyses, the full-length, functional homologs of most mammalian Bcl-2 

family members including anti-apoptotic bcl-xl, bcl-2, mcl-1, nr13, and boo/diva; 

proapoptotic bax and bok; and BH3-only genes bid, bad, bmf, noxa, puma, and bik have 

been found in zebrafish genome [Kratz et al. 2006]. Some of these homologs, such as 

bcl-2 [Langenau et al. 2005], mcl-1a [Chen et al. 2000a], bcl-xl [Chen et al. 2001], mcl-1 

[Hong et al. 1999], nrz [Arnaud et al. 2006] have been cloned and characterized in 

zebrafish. Overexpression of fusion transgene of bcl-2–EGFP in T- and B-lymphoid cells 

have been shown to cause a 2.5-fold increase in thymocyte numbers and a 1.8-fold 

increase in GFP-labeled B cells in the kidney marrow by suppression of apoptosis 

[Langenau et al. 2005]. Consistently, the homologs of anti-apoptotic mcl-1, zmcl-1a and 

zmcl-1b, have been demonstrated to be important for maintaining the health of zebrafish 

embryos and preventing them from death ligand (DL)-induced apoptosis during early 

development, whereas the zebrafish pro-apoptosis protein, bax1 and puma, play an 

essential role in irradiation-induced apoptosis [Kratz et al. 2006]. In addition to the bcl-2 

family members, other important components in the intrinsic apoptotic pathway, such as 

p53 and caspase 3, have also been characterized in zebrafish [Cheng et al. 1997; Thisse et 

al. 2000; Langheinrich et al. 2002]. Overexpression of caspase 3 in zebrafish embryos 

can induce extensive apoptosis and ceramide generation [Yabu et al. 2001a], while 
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antisense MO-mediated knockdown of p53 in flathead (fla) or Fancd2-deficient mutants 

leads to a striking rescue of developmental defects and restoration of normal cell 

survivals [Liu et al. 2003; Plaster et al. 2006]. Besides the above, more than 100 

zebrafish mutants with altered apoptosis in diverse tissues, such as neural crest [Stewart 

et al. 2006], pituitary gland [Pogoda et al. 2006], notochord [Nowak et al. 2005], lateral 

line [Kozlowski et al. 2005], heart [Yuan et al. 2004; Aiyer et al. 2005], muscle [Bassett 

et al. 2003], blood [Paw et al. 2003; Ransom et al. 2004; Craven et al. 2005; Langenau et 

al. 2005],  excretory system [Hammerschmidt et al. 1996; Pyati et al. 2006], germ cells 

[Koprunner et al. 2001; Weidinger et al. 2003; Ramasamy et al. 2006], and skin [Nowak 

et al. 2005], have been identified. Therefore, given the conserved function of core 

components in apoptotic pathways and the availability of various loss of function mutants, 

zebrafish is an excellent and powerful in vivo model to extend our understanding in the 

cellular and molecular basis underlying cell death during normal vertebrate development 

and a wide spectrum of human diseases including cancer and degenerative diseases. 

1.3 Objectives 
 

During early embryonic development, three germ layers, namely ectoderm, 

mesoderm and endoderm, are formed to shape the embryonic body through the process of 

gastrulation. In vertebrates, it involves four principal movements - epiboly, 

internalization of mesendoderm, convergence and extension (CE) [Keller et al. 2000]. 

Most of the pioneering studies for the vertebrate gastrulation movements have been 

performed in frog Xenopus, and shown to be largely conserved among vertebrates 

[Schoenwolf et al. 2000]. During CE, polarized cells elongate along the medial-lateral 

axis and undergo intercalation which leads to a medio-lateral narrowing (convergence) 
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and an anterior-posterior lengthening (extension) of the forming embryonic axis [Keller 

et al. 1992]. Such polarization and movements would require precise reorganization and 

regulation of the cytoskeleton network and cell adhesion.  

In addition to the massive gastrulation movements in the shaping of embryonic 

body, programmed cell death is also critical for the morphogenesis in developing 

organism. In zebrafish and Xenopus, apoptotic program responses to the developmental 

cues or environmental insults from the onset of gastrulation. During zebrafish normal 

embryonic development, only few cell apoptosis are observed at the end of gastrulation, 

and increased apoptosis is detected in those tissues undergoing extensive morphological 

changes, such as CNS [Cole et al. 2001; Yamashita 2003]. However, the molecular 

mechanism underlying dynamic changes of apoptosis and CE movement in zebrafish are 

poorly understood.  

RhoA plays pivotal roles in cytoskeletal rearrangement and gene transcription, 

which contributes to a wide variety of cellular events and developmental processes, 

including migration, adhesion, cytokinesis, proliferation, apoptosis, and morphogenesis 

[Van Aelst et al. 1997; Etienne-Manneville et al. 2002]. However, most of the studies on 

the role of RhoA in embryonic development have been done on Drosophila and Xenopus. 

Very little is known about the direct function of RhoA in zebrafish development in 

general or in the in vivo control of cell dynamics specifically. This is despite zebrafish 

being a well-established model for developmental studies, its increasing popularity as an 

alternative vertebrate model for human diseases, and its amenability to specific gene 

knockdown by MO and functional rescue, as well as treatment with pharmacological 

inhibitors [Kimmel et al. 1995; Amatruda et al. 2002; Neumann 2002; Beis et al. 2006]. 
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Furthermore, many findings on the inhibition of RhoA functions in vivo are obtained 

primarily using inhibitors to block Rho-Rock signaling, or over-expression of dominant 

negative forms of Rho or ROCK, thus it could neglect the possibility of functional 

interference due to non-specific inhibition on other closely-related members [Coleman et 

al. 2004]. 

Therefore, the major objectives of this work were to: i) isolate the zebrafish rhoA 

gene and characterize its temporal and spatial expression profile in zebrafish 

embryogenesis and adult tissues; ii) explore the functional importance of rhoA during 

zebrafish embryonic development using its MOs-mediated specific functional 

knockdown; iii) investigate the signaling pathways involved in rhoA-dependent 

developmental processes in vivo. 

           In the next chapter, essential methods and materials for the study of functions of 

RhoA in zebrafish embryogenesis will be introduced.   
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Chapter 2 Materials and methods 
 

2.1 Gene isolation and cloning  
 

2.1.1 Polymerase chain reaction (PCR)  
 

The rhoA specific upstream primer with start codon, named zebrafish rhoA F1: 

5’GAATTCATGGCAGCAATTCGCAAGAA3’, was designed based on the zebrafish 

EST sequence. Then, the zebrafish rhoA F1 and SK, the downstream primer of pBluscript 

SK+, were used to amplify the rhoA gene from an adult zebrafish cDNA library [Thisse 

et al. 1994]. Standard PCR was performed in a 50 µl reaction using the Perkin Elmer 

DNA thermal cycler Model 480 or 9600 (Perkin Elmer, USA). Each reaction included 5 

µl of 10X PCR buffer (0.5 M KCl; 0.1 M Tris-HCl, pH 8.8; 15 mM MgCl2; 1% Triton 

X-100), 2.5 µl of 2 mM dNTP, 0.5 µl of 0.2 ug/µl sense primer, 0.5 µl of 0.2 ug/µl 

antisense primer, 0.2 µl of 5 U/µl Taq polymerase and 1 µl template DNA. A typical 

program used for amplifying 1 kb DNA product was as follows: denaturation at 94 °C for 

5 minutes for 1 cycle, followed by 30 cycles of (denaturing at 94 °C for 30 seconds, 

annealing at 55 °C for 1 minute and extending at 72 °C for 1 minutes) and final extension 

at 72 °C for 10 minutes. The extension time was increased 1 min per 1 kb if the desired 

product was larger than 1 kb. 

2.1.2 Rapid amplification of cDNA ends (RACE) 
 

To amply full-length zebrafish rhoA gene including 5’UTR, coding region, and 

3’UTR, 5’ and 3’ RACE was applied. The cDNA library was generated using SMART 

TM RACE cDNA Amplification kit (Clontech), which was used as template for both 
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5’RACEs and 3’RACEs. Combination of designed antisense gene-specific primers and 

commercial universal primers were applied for 5’RACEs, and combination of sense 

gene-specific primers and commercial universal primers for 3’RACEs. RACE PCR 

conditions were essentially the same as the standard one as described above, except that 

different annealing temperatures were used depending on the melting temperature (Tm) 

of the gene-specific primers.  

2.1.3 Purification of PCR products 
 

PCR products can be directly purified using QIAquick PCR purification kit, or 

recovered from gel after electrophoresis using QIAquick Gel Extraction Kit (Qiagen, 

USA). For QIAquick PCR purification kit, 5X volume of Buffer PB was added to 1X 

volume of PCR sample. Then mixture was transferred to the QIAquick spin column. 

After short spin for 1 minute, the flow-through was discarded. Then wash the spin 

column with 0.75 ml of Buffer PE and followed by centrifugation for 1 minute. 

Discarding the flow-through again, and purified PCR product was then eluted with 20-30 

µl of sterile water or TE buffer by incubating for 1 minute and centrifuging for 1 minute. 

For QIAquick Gel Extraction Kit, the PCR band of interest was cut from the gel, melted 

at 50°C in Buffer QX1 for 10 minutes, and then loaded into a QIAquick spin column. 

The rest procedures were the same as purification using QIAquick PCR purification kit. 

The purified PCR product was used for cloning. 

2.1.4 Cloning of PCR products 
 

2.1.4.1 DNA ligation 
 



CHAPTER 2 MATERIALS AND METHODS    

 

46

The recovered PCR products were cloned into the pGEMT-vector system 

(Novagen, USA). DNA ligation reaction was carried out typically in a 20 µl volume, 

containing 2 µl of 10X ligation buffer (0.3 M Tris-HCl, pH 7.8; 0.1 M MgCl2; 0.1 M 

DTT and 5 mM ATP), insert DNA (PCR product), vector DNA (pGEMT-vector) and 1 

unit T4 DNA ligase. The molar ratio of insert to vector DNA was usually 2:1 or 4:1. 

Ligation reaction was incubated at 4°C overnight. Subsequently, the ligation reaction was 

terminated by inactivating the ligase by heating at 80°C for 5 minutes and then 

transformation was carried out. 

2.1.4.2 Preparation of competent cells 
 

Successful cloning relies on high transformation efficiency. Normally >107 

transformed colonies per µg of supercoiled plasmid is good for most cloning applications. 

For the preparation of competent bacteria cells, 2 ml of LB broth were incubated with a 

single fresh colony of Escherichia coli (E.coli) strain DH5α at 37°C with 250 rpm 

shaking overnight. On the following morning, 0.5 ml of the culture was re-inoculated into 

a 250 ml flask containing 50 ml of LB broth and shaken at 250 rpm at 37°C until OD600 

reached around 0.5. The culture was chilled on ice for 15 minutes after being transferred 

into 50 ml Falcon tubes. Cells were pelleted by centrifugation at 1,000 g at 4°C for 15 

minutes. The cell pellets were drained thoroughly and resuspended in RF1 (100 mM 

RbCl; 50 mM MnCl2; 30 mM Potassium acetate; 10 mM CaCl2 and 15% glycerol) with 

1/3 rd volume of the original bacteria culture. After incubation on ice for 15 minutes, the 

cells were spun down and resuspended in 1/12.5 of the original volume of RF2 (10 mM 

MOPS; 10 mM RbCl; 75 mM CaCl2; 15% glycerol). After another 15 minute-incubation 

on ice, the competent cells were transferred into 1.5 ml microcentrifuge tubes in aliquot 
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and fast-frozen in liquid nitrogen. These aliquots can be stored at -80°C for several 

months. 

2.1.4.3 Transformation 
 

Normally 10 µl of ligation reaction was added into 100 µl of E.coli DH5α 

competent cells. This transformation mixture was then incubated on ice for 30 minutes. 

The mixture was heated at 42°C for 90 seconds and cooled immediately on ice for 2 

minutes. 900 µl of LB medium was added to the mixture and incubated with shaking 

(200 rpm) at 37ºC for 1 hr. Alternatively, 800 µl of TSB and 20 µl of 1 M Glucose was 

added to the transformation mix and incubated with shaking at 37ºC for 1-1½ hrs. After 

incubation, 1/10 and 9/10 of the transformation reaction mixture was spread onto two 

separate LB plates supplemented with appropriate antibiotics in order to produce proper 

density of transformant colonies. The plates were incubated at 37°C overnight.  

2.1.5 DNA sequencing 
 

Automated sequencing reactions were carried out using the ABI PRISM™ 

BigDye™ Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer). The kit 

contains a sequencing enzyme AmpliTaq® DNA Polymerase called FS and a set of dye 

labeled terminators for fluorescent cycle sequencing larger fragments with more accuracy. 

Each sequencing reaction (20 µl) contains 8 µl of Terminator Ready Reaction Mix, 200-

500 ng of double strand DNA, and 1 µl of primer (0.2 µg/µl). PCR was performed on the 

GeneAmp PCR System 9600 (Perkin Elmer) or Peltier Thermal cycler PTC200 (MJ 

Research, USA) with 25 cycles of 96°C for 10 seconds, 50°C for 5 seconds and 60°C for 

4 minutes, and finally hold at 4°C. Ethanol precipitation was carried out to purify the 
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extension products. 2 µl of 3 M NaOAc (pH 4.6) and 50 µl of 95% ethanol was mixed 

with the 20µl of reaction mix, and incubated at room temperature for 15 minutes. The 

tube was spun at 4°C for 20 minutes at 14,000 rpm. The pellet was rinsed with 250 µl of 

70% ethanol and air-dried. The DNA pellet was dissolved in 6 µl of loading dye [50 ml 

contains EDTA (25 mM, pH8.0) 1 ml; 10 ml deionised formamide; 50 mg Dextran blue 

and 39 ml H2O] and heated at 92°C for 3 minutes. Samples were then chilled on ice for 2 

minutes before being loaded into the sequencing gel (18g urea; 5 ml 10X TBE; 5 ml long 

range gel solution and 26 ml H2O; 250 µl 10%APS and 35 µl TEMED). The 

electrophoresis was carried out at 1,690 volts for 5-9 hours. The sequencing ladders were 

analyzed automatically by an ABI377 sequencer system and software. 

 

2.2 Gene expression analysis 
 

2.2.1 RNA expression 
 

2.2.1.1 Isolation of total RNA from tissue or embryos 
 

Total RNAs from different stages of zebrafish embryos and different tissues were 

extracted using TRIzol reagent (Gibco BRL). Briefly, about 50-200 embryos or 100 mg 

of tissues were quickly frozen in liquid nitrogen and homogenized in 1 ml of TRIzol 

reagent. The homogenate was incubated at room temperature for 5 minutes to allow 

nucleoproteins to dissociate before 200 µl of chloroform was added in. The mixture was 

shaken by hand vigorously for 15 seconds and incubated at room temperature for another 

3 minutes, then centrifuged at 14,000 rpm for 15 minutes at 4°C to separate aqueous and 

organic phase. 500 µl of aqueous phase was then transferred to a new tube and an equal 
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volume of isopropanol was added. RNA was pelleted by centrifugation at 14,000 rpm for 

10 minutes at 4°C and washed with 1 ml of 70% ethanol. The RNA pellet was then 

dissolved in 20 µl of DEPC (Diethyl pyrocarbonate) water and stored at -80°C. 

2.2.1.2 Measurement of RNA concentration 
 

RNA was quantified by optical density reading at 260 nm and 280 nm using UV- 

1601 spectrophotometer (Shimadzu, Japan). One unit of OD 260 is equivalent to 40 

µg/ml of RNA. The ratio of OD 260: OD 280 at 1.8-2.0 indicates good quality of RNA 

products. 

2.2.1.3 RNA gel electrophoresis 
 

10 µg of total RNA was fractionated on 1.2% denaturing agarose gel (1.2% 

agarose, 1X MOPS, 6% formaldehyde). Each RNA sample contained 50% formamide, 

1X MOPS, 7% formaldehyde and 0.1 mg/ml ethidium bromide and was heated at 65°C 

for 10 minutes before loading with loading buffer (1X 0.4% bromophenol blue, 6% 

sucrose in water). The gel was run at 80 volts in running buffer containing 1X MOPS and 

3% formaldehyde until the dye runs out into the buffer. The gel was then rinsed in 

distilled water for photo-taking or Northern analysis. 

2.2.1.4 Northern blot 
 

After the agarose gel electrophoresis, RNA samples were transferred to 

Hybond™-N nylon membrane (Amersham, UK) overnight in 20X SSC. The membrane 

was then air-dried and cross-linked by UV irradiation on a 312 mm UV box for 3 minutes.  
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2.2.1.4.1 Prehybridization 
 

Prehybridization was conducted to prevent non-specific hybridization of the probe 

to the membranes. The denatured salmon sperm DNA acted as a blocking reagent and 

helped to reduce the background signal. The membranes were placed in a hybridization-

rolling bottle (HB-OV-BS, Hybrid) with the RNA side facing inwards. The bottle 

contains 5 ml of hybridization buffer (50% formamide; 5X Denhardt’s solution; 4X SET; 

0.2% NaPPi; 25 mM phosphate buffer; 0.5% SDS, 100 µg/ml denatured salmon sperm 

DNA and 10% w/v dextran sulfate). Salmon sperm DNA stock (10 mg/ml) was denatured 

in boiling water for 5 minutes and then kept on ice for 5 minutes. The bottle was then 

transferred to a hybridization incubator (Mini Oven MKII, Hybrid). Prehybridization was 

carried out at 42 °C for more than 2 hours with a spinning speed of 7 rpm. 

2.2.1.4.2 Hybridization 
 

Dig-labeled probe was denatured at 92 °C for 5 minutes in a heat-block (type 

17600, Thermolyne, USA) and then immediately chilled on ice for 5 minutes. The 

Hybridization bottle was added with the chilled probe to the final concentration of 0.5 - 

1X 106 cpm/ml buffer and swirled to mix the probe thoroughly. The bottle was re-capped 

and incubated at 42 °C for 16 hours. 

2.2.1.4.3 Post hybridization wash 
 

After hybridization, the buffer was discarded and 20 ml of washing solution (2X 

SET; 0.2% NaPPi and 0.5% SDS) was added. The hybridization bottle was agitated by 

gentle shaking at room temperature for 15 minutes. This washing step was repeated once. 

Afterwards, the following two washing steps were performed at 65 °C in the 
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hybridization incubator for 20 minutes each. Pre-warmed wash solution was used and the 

incubator was preset at 65 °C. A final stringent wash was carried out using a final wash 

solution (0.2X SET; 0.5% SDS) at 65 °C for 20 minutes. This was conducted only if the 

radioactivity count was still too high. 

2.2.1.4.4 Autoradiography 
 

The membrane was wrapped with a Saran polyethylene to keep the membrane 

moist. Once the membrane dries, it cannot be stripped and re-probed since the probe will 

be retained permanently on the blot. A Xomat (Kodak, USA) film was placed against its 

RNA side and then was put in an X-ray cassette with an intensifying screen at -80 °C for 

4 h - overnight. All film handling was performed in the dark room. The autoradiogram 

was developed using the M35 Xomat developer (Kodak, USA). 

2.2.1.5 Reverse-transcriptase PCR (RT-PCR) 
 

RT-PCR was performed in either two-step reaction or one-step reaction. In two-

step reaction, first step involved synthesis of first strand cDNA and the second step 

involved amplification of zebrafish rhoA and actin from single strand cDNA as template 

with gene specific primers for either zebrafish rhoA (forward 

(5’GAATTCATGGCAGCAATTCGCAAGAA3’ and reverse 

(5’TCACAGCAGACAGCATTTGTT3’) or β-actin (forward 5’-

CCGTGACATCAAGGAGAAGCT-3’, and reverse 5’-

TCGTGGATACCGCAAGATTCC-3’). The first strand cDNA was synthesized in 30 µl 

of reaction buffer containing 3 µl of 10X first-strand buffer (50 mM Tris-HCl, pH8.3, 75 

mM KCl, 3 mM MgCl2 and 10 mM DTT), 3 µl of 10 mM dNTP, 1 µl of RNAse inhibitor 
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(40U/µl), 3 µl of oligo dT primer (1µg/µl), 5 µg of total RNA, and 1 µl of MMLV 

reverse transcriptase (50U/µl). After incubating at 37°C for 1.5 hours, the reaction can be 

stored at -80°C or used as template for PCR immediately. PCR reaction was carried out 

using the standard condition described above. The one-step reaction was done using a 

Qiagen one-step RT-PCR kit (Qiagen, USA). The reaction mix contains all the 

components including a pair of gene specific primers as recommended by the kit 

specifications. 

2.2.1.6 In situ hybridization 
 

2.2.1.6.1 Synthesis of labeled RNA probe 
 

1 µg of linearized DNA was used as template to synthesize the DIG labeled probe. 

The reaction was performed at 37°C for 2 hours in a total volume of 20 µl containing 4 µl of 

5X transcription buffer (Stratagene, USA), 2 µl of DIG-NTP mix [10 mM ATP, 10 mM CTP, 

10 mM GTP, 6.5 mM UTP and 3.5 mM DIG -UTP (Boehringer Mannheim, Germany)], 1 µl 

of RNase inhibitor (40U/µl) (Promega, USA) and 1µl of T7 RNA polymerase (50 U/µl) 

(Promega, USA). Following the reaction, 2 µl of RNase-free DNase I was used to digest the 

DNA template at 37°C for 15 minutes. 1 µl of 0.5M EDTA (pH 8.0) was used to stop the 

digestion. Subsequently, 2.5 µl of 4 M LiCl and 75 µl of cold pure ethanol were added to 

precipitate the RNA. After washing with 75% ethanol, the RNA probe was resuspended in 

60 µl of DEPC treated water and cleaned using a Chroma Spin-100 DEPC H2O Column 

(Clontech, USA) by centrifuging at 700 g for 5 minutes to remove the impurity and small 

RNA fragments. Following probes were used: zebrafish rhoA 3’UTR, gsc [Stachel et al. 

1993], ntl [Schulte-Merker et al. 1994], hgg1 [Akimenko et al. 1994], dlx3 [Akimenko et al. 
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1994], papc [Yamamoto et al. 1998], eve1 [Joly et al. 1993], chordin [Sasai et al. 1994], 

bmp4 [Fainsod et al. 1994], shh [Krauss et al. 1993], pax2.1 [Krauss et al. 1991] and myoD 

[Weinberg et al. 1996].  

 2.2.1.6.2 Preparation of zebrafish embryos 
 

Different stages zebrafish embryos were fixed in 4% paraformaldehyde 

(PFA)/PBS (0.8% NaCl, 0.02% KCl, 0.0144% Na2HPO4. 0.024% KH2PO4, pH 7.4) for 

12 to 24 hours at room temperature or 4°C. After fixation, the chroins were remonved 

from embryo. Then the embryos were washed in PBST (0.1% Tween 20 in PBS) twice 

for 1 minute each, followed by four times for 20 minutes each on a nutator (ClAY 

ADAMS® Brand, Becton Dockinson, USA) at room temperature. After changing PBST 

to methanol, the embryos were kept at -20°C for several months. Before they were used 

for in situ hybridization, the embryos were rehydrated in PBS in two or three times by 

changing half volume of solution each time. For embryos older than 14 somites (>16 hpf), 

proteinase K (10 µg/ml) treatment is necessary. The time of exposure depended upon 

embryos age and the specific activity of proteinase K, which varied from batch to batch. 

For most cases, the conditions used are as given. 16-24 hpf 3-4 minutes; 24-32 hpf 5-6 

minutes; 32-50 hpf 10-20 minutes. To stop the reaction, the proteinase K solution was 

removed completely, and the embryos were fixed again in 4% PFA/PBS for 20 minutes 

at room temperature. Embryos were first washed in PBST twice for 1 minute and then 4-

5 times for 15-20 minutes each. 

2.2.1.6.3 Prehybridization 
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Prehybridization was performed by changing half volume of washing solution 

with hybridization buffer [50% formamide, 5X SSC, 50 µg/ml Heparin, 500 µg/ml tRNA, 

0.1% Tween 20, pH 6.0 (adjusted with bycitric acid)] and incubated at room temperature 

for 1 hour. This solution was removed and replaced with hybridization buffer; embryos 

were incubated at 68°C for 5-10 hours. 

2.2.1.6.4 Hybridization 
 

1-2 µl of DIG-labeled probe was diluted in 200 µl of hybridization buffer. The 

probe was denatured by heating at 80°C for 5 minutes followed by 2 minutes of ice bath. 

Embryos of different stages were selected and placed in one tube or separate tubes 

depending on the experimental conditions. The original buffer was replaced with the 

denatured probe dissolved in hybridization buffer. Hybridization was performed at 68°C 

in a circulating water bath overnight with shaking. 

2.2.1.6.5 Post-Hybridization washes 
 

The next day, the probe was removed and replaced with pre-warmed 100% 

hybridization wash solution (hybridization buffer without tRNA and heparin) for 15 

minutes. The embryos were then washed in the following order of wash solutions, 75% 

hybridization wash solution (25% 2X SSCT (SSC with 0.1% Tween　 20)), 50% 

hybridization wash solution (50% 2X SSCT), 25% hybridization wash solution (75% 2X 

SSCT) for 15-20 minutes each. This was followed by washing with 2X SSCT twice for 

30-45 minutes each and 0.2X SSCT twice for 30-45 minutes each. Subsequently, the 

embryos were washed twice with PBST (PBS with 0.1% Tween 　 20) at room 

temperature for 5 minutes each. 
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2.2.1.6.6 Antibody incubation 
 

2.2.1.6.6.1 Preparation of pre-absorbed DIG antibody 
 

Commercial DIG-AP antibodies (Boehringer) should be pre-incubated with 

biological tissues or embryos, preferably of the same origin as the sample used for 

hybridization, in order to decrease the staining background and increase signal-to-noise 

ratio. Anti-DIG-AP was diluted to 1:500 and 1:50 in Maleic Acid buffer (0.15 M Maleic 

acid, 0.1 M NaCl; pH 7.5)/10% FCS (Fetal calf serum, Gibco BRL) respectively and 

incubated with 50 zebrafish embryos of any stages on a nutator at 4°C overnight. After 

that, the antibodies solution was transferred to a new tube and further diluted 10X with 

Maleic Acid buffer/10% FCS. 10 µl of 0.5 M EDTA (pH 8.0) and 5 µl of 10% sodium 

azide were added to prevent bacterial growth. The pre-absorbed antibody was stored at 

4°C and can be used for many times. 

2.2.1.6.6.2 Incubation with pre-absorbed antibodies 
 

The embryos after hybridization and post hybridization washes were incubated in 

Maleic Acid buffer/10% FCS for 2 hours at room temperature to block non-specific 

binding sites for antibody. After removing the blocking solution, the embryos were 

incubated with pre-absorbed anti-DIG-AP antibody at 4°C overnight. 

2.2.1.6.7 Color development 
 

Embryos were washed in PBST twice for 1 minute each, and 4 times for 15-20 

minutes each on a nutator at room temperature followed by washing in buffer 9.5 (0.1 M 

Tris-HCl, pH 9.5, 50 mM MgCl2, 10 mM NaCl and 0.1% Tween 20) once for 30 seconds 

and twice for 10 minutes each. 4.5 µl of NBT (Nitroblue tetrazolium, Boehringer 
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Mannheim, 50 mg/ml in 70% dimethyl formamide) and 3.5 µl of BCIP (5-bromo, 4-

chloro, 3-indodyl phosphate salt, Boehringer Mannheim, Germany; 50 mg/ml in H2O) 

was added into 1 ml of buffer 9.5 with embryos and mixed thoroughly. Embryos were 

kept in dark at room temperature for few minutes to several hours, and the progress of 

staining was monitored from time to time under a Leica MZ12 microscope (Leica, 

Germany). To stop the reaction, staining solution was removed and the embryos were 

washed in 1X PBST twice for 10 minutes each. Embryos can be preserved in 4% 

PFA/PBS at 4°C. 

2.2.1.6.8 Mounting and photography 
 

Selected embryos were washed with PBST twice for 10 minutes each and 

transferred to 50% glycerol/PBS, equilibrated at room temperature for several hours. For 

whole mounts, a single chamber was made by placing stacks of 3-5 small cover glasses 

on both side of a 25.4X76.2 mm microscope slide. Small cover glasses in the stacks will 

be perfectly solid 1 hour after placing a drop of Permount between them. Selected 

embryo was transferred to the chamber in a small drop of 50% glycerol/PBS and oriented 

by a needle. A 22X44 mm cover glass with a small drop of the same buffer was 

superimposed onto the embryo. The orientation of the embryo can be adjusted by gently 

moving the cover glass. For flat specimen, the yolk of selected embryo was removed 

completely by needles. The embryo without yolk was then placed onto a slide with a 

small drop of 50% glycerol/PBS and adjusted to a proper orientation by removing excess 

of liquid and with the help of needles. A small fragment of cover glass (a bit larger than 

the specimen) was covered onto the embryo. Care was taken to avoid bubbles and a drop 

of 50% glycerol/PBS was added to fill the space under the cover glass. This specimen 
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was sealed with nail polish along the edge of the cover glass to prevent it from drying. 

Photographs were taken using a camera mounted to an Olympus AX-70 microscope 

(Olympus, Japan). The films used were Kodak Gold 200 and 400 ASA. 

2.2.1.7 Cryosection of embryos 
 

2.2.1.7.1 Preparation of slides and blocks 
 

The fixed and stained embryos were first transferred into molten 1.5% agar, 

equilibrated with 30% sucrose (at 48ºC) in a detached cap of eppendorf tube. The 

samples were adjusted to the required orientation with needles before the agar solidified. 

After the agar block solidified, a small block was cut with razor or blade in such a way 

that a flat base and a slanting top edge was created for proper positioning and sectioning 

of the sample. The block was then transferred to 30% sucrose solution and incubated at 

4ºC overnight for equilibration. 

2.2.1.7.2 Sectioning, mounting and photographing 
 

Subsequently, the block was placed on the frozen surface of a layer of tissue 

freezing medium cryostat (Reichert-Jung, Germany) on the pre-chilled tissue holder. The 

block was then coated with a drop of cryostat freezing medium and frozen in liquid 

nitrogen until the block had solidified completely. The frozen block was placed in the 

cryostat chamber (Reichert-Jung, Germany) for 30 minutes to 1 hour to equilibrate with 

chamber temperature of –25ºC. Normally, 10 µm thick sections were cut and placed on 

superfrost plus slides (Fisher, USA). The slides were dried on a 42ºC hot plate for about 

30 minutes to 1 hour. The sections were then fixed briefly with 4% PFA-PBS for 10 

minutes and washed gently with PBS for 3 times, 10 minutes each. These sections was 
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either embedded in several drops of glycerol and covered with glass cover-slip for 

photography or used for section in situ hybridization. 

2.2.2 Protein analysis 
 

2.2.2.1 Extraction of protein 
 

The pooled embryos injected with rhoA MO or control MO were dechorioned and 

deyolked manually at 18-somite stage, and lysed in T-PER reagent (BioRad, USA). 100 

µl of T-PER and 1 µl of proteinase inhibitor (100 X stock) was added to every 200 

embryos and homogenized well with a hand-held homogenizer (Sigma, USA). The 

homogenized sample was then centrifuged at 10,000 rpm for 5 minutes. The supernatant 

containing the total protein was collected and stored at –80ºC until further use. 

2.2.2.2 Estimation of protein concentration 
 

Concentration of the protein extracted from samples was estimated using Protein 

Assay Reagents (BioRad, USA). Initially the standard curve was plotted using different 

concentration of protein standards (0.1 µg/µl – 1.0 µg/ml). 1 µl of a particular 

concentration standard was mixed well with 800 µl of sterile water and 200 µl of Protein 

Assay Dye Reagent concentrate (BioRad, USA) and optical density read in a 

spectrophotometer at 595 nm. Graph was plotted with concentration of standard on X-

axis and OD 595 readings on the Y-axis. The samples were similarly mixed with 800 µl 

of sterile water and 200 µl of Protein Assay Dye Reagent concentrate and then measured 

at 595 nm. The corresponding protein concentration of the samples was estimated by 

extrapolating against the standard graph. In some cases, the protein samples were 
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required to be concentrated because of low initial concentration. The samples can then be 

stored at –80ºC until further use. 

2.2.2.3 SDS-PAGE gel electrophoresis 
 

The proteins were analyzed on 12.5 % or 10 % SDS polyacrylamide gels with a 

Mini Protean II electrophoresis apparatus (Bio-Rad Laboratories, California, USA). The 

gels were cast with 1.5 mm spacers and ten-well combs (Bio-Rad Laboratories, 

California, USA). The resolving gel contained 12.5% or 10 % (w/v) acrylamide, 0.48 % 

(w/v) N-N’-methylbisacrylamide, 0.375 mM Tris-HCl pH 8.8, 0.1 % 40 (w/v) SDS, 

0.0075 % (w/v) AMPS and 0.05 % (v/v) TEMED. After the resolving gel was poured 

into the gel cast, it was leveled with Milli-Q water. When the resolving gel had 

polymerized, the top edge of the gel was rinsed three times with Milli-Q water. The 

stacking gel which contained 4 % (w/v) acrylamide, 0.133 % (w/v) N-N’- 

methylbisacrylamide, 0.125 mM Tris-HCl pH 6.8, 0.1 % (w/v) SDS, 0.0075 %(w/v) 

AMPS and 0.08 % (v/v) TEMED was pipetted onto the top of the resolving gel. 100 µg 

of protein extract was mixed with 1/5 volume of 6 × loading buffer [0.2 M Tris-HCl pH 

6.8, 25 % (v/v) glycerol, 25 % (v/v) SDS, 12.5 % (v/v) 2-mercaptoethanol, 0.005 % (w/v) 

bromophenol blue] and boiled for 4 min at 85 °C. Electrophoresis was performed at 50 

mA/gel for 1 hr at room temperature in SDS-running buffer [25 mM Tris, 192 mM 

glycine and 0.1 % (w/v) SDS]. 

2.2.2.4 Western blotting 
 

After transferring, blots were incubated with blocking buffer (3% BSA in TBST) 

for 3h at room temperature or 4 °C overnight. Blots were then probed with primary 
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antibody diluted in Blocking buffer for 60 min at room temperature followed by 10 min 

washing with 0.1 % Tween 20 in PBS for three times. After that, blots were incubated 

with secondary antibody diluted in PBS with 0.1% Tween 20 for 60min at room 

temperature and followed by three times washing in PBS with 0.1% Tween 20. Blots 

were then subjected for detection with ECL kit. 

2.3 Functional study 
 

2.3.1 Maintenance and breeding of zebrafish  
 

Wild-type Zebrafish (Danio rerio) were purchased from a local supplier and 

raised under standard laboratory conditions [Salas-Vidal et al. 2005]. The embryos were 

collected by two techniques. On the day before embryo collection, a clean tray layered 

with clean marbles was placed on the bottom of the tank. Sometimes multiple trays were 

used depending on size of tank and number of fishes. The following morning embryos 

were collected by siphoning with a plastic pipe. Alternative method of breeding and 

spawning of zebrafish used 2-tank system (inner breeding tank and outer embryo 

collection tank), one tank placed inside another with the inner tank having a mesh bottom 

and sufficient distance between the bottom of inner and outer tank. Adult male and 

female zebrafish were segregated by a plastic divider and placed in the inner tank the day 

before spawning. Some plastic green plants available from the local aquarists were 

introduced into the breeding tank to simulate natural environment. The next morning the 

divider was removed and the fishes were allowed to breed and spawn. The embryos were 

collected from the bottom of outer tank by using a mesh sieve and grown at 28°C. The 

required developmental stages were presented as hours post-fertilization (hpf). 
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2.3.2 Synthesis of 5’ capped mRNA 
 

5’ capped mRNA was synthesized by mMessage Machine™ Sp6 or T7 kit 

(Ambion, USA). The typical reaction volume is 20 µl, containing 1 µg DNA linearized at 

3’ end of the clone for sense RNA, 2 µl 10X Reaction Buffer, 10 µl 2X NTP/Cap, 2 µl 

Enzyme Mix and nuclease-free water. The reaction was incubated at 37°C for 2 hours. 

After that, 1 µl RNase-free DNase I was added and mixed well. The tube was incubated 

for 15 minutes at 37°C. The recovery of RNA was performed by LiCl precipitation. First, 

30 µl Nucleasefree water and 25 µl Lithium Chloride Precipitation Solution were added 

into the reaction mix. Then the reaction was chilled at -20°C for 30 minutes and 

centrifuged at 14,000 rpm, 4°C for 15 minutes. The pellet was washed by 250 µl 70% 

ethanol and re-centrifuged at 14,000 rpm for another 5 minutes. Finally, RNA was 

resuspended with DEPC treated water and 1 µl of RNasin® (Promega, USA) was added 

to prevent degradation. The RNA sample can be stored at -80°C for 1 year. 

2.3.3 Morpholinos preparation 
 

Two non-overlapping anti-sense MOs against 5’UTR (rhoA MO1: 5’-

TCCGTCGCCTCTCTTATGTCCGATA-3’) or translation start-site of zebrafish rhoA 

gene (rhoA MO2: 5’-CTTCTTGCGAATTGCTGCCATTTTG-3’), one splicing MO 

targeting the rhoA splice donor site of exon 3 (E3I3 MO: 5’-

ACACCAAAGAGCATTCTTACTAAAC-3’), one 5-bp mismatch MO of rhoA MO1 

(5’-TCgGTCcCCaCTCTaATGTCgGATA-3’; mismatches in lower case), one anti-sense 

MO against zebrafish wnt5 gene (wnt5 MO: 5’-GTCCTTGGTTCATTCTCACATCCAT-

3’), and another one against zebrafish wnt11 gene (wnt11 MO: 5’-

GAAAGTTCCTGTATTCTGTCATGTC-3’), as well as one standard control MO (5’-
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CCTCTTACCTCAGTTACAATTTATA-3’) were synthesized by Gene Tools (Gene 

Tools, Inc.). All the MOs were resuspended in 1x Danieau buffer (58 mM NaCl, 0.7 mM 

KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, and 5.0 mM HEPES pH 7.6), and injected into 

embryos at one-cell stage. For effective functional knockdown, the dose of MOs injected 

per embryo are as follows, rhoA MO1 (2.4 ng), rhoA MO2 (5.7 ng), E3I3 MO (5.7 ng), 5-

bp mismatch MO (5.7 ng), and standard control MO (5.7 ng). In the combination of gene 

suppression with inhibitors treatment, 1.15 ng of rhoA MO1 or control MO was applied 

per embryo. For the rescue experiments, capped full length mRNA encoding zebrafish 

rhoA (PCS2+-rhoA), mouse prototype Mek1 (pXJ40-mMek1) and human BCL-2 

(pRCCMV-hBCL-2) were synthesized in vitro using the mMessage mMachine Kit 

(Ambion, USA). Each of these mRNAs was titrated and co-injected with rhoA MO1 (2.4 

ng) at one-cell stage. The sub-optimal dose for rhoA, Mek1 or BCL-2 mRNA that could 

effectively prevent RhoA knockdown defects was 11.25 pg, 60 pg and 5 pg, respectively.  

2.3.4 Microinjection into embryos 
 

The needles used for the microinjection were prepared using optimized conditions 

of heat and pull time for different purposes using the Sutter Micropipette puller P-97 

(Sutter Instruments Co, USA). RNAs, plasmid DNA and antisense oligos were injected 

into the cytoplasm of 1-cell stage zebrafish embryos using WPI's microprocessor-

controlled Nanoliter 2000 (World Precision Instruments, Inc., USA) by placing the 

embryos under a dissection microscope (Olympus SZX12). Each embryo received 2.3 nl 

of the samples for one injection. The injected embryos were reared in egg water (1 ml of 

egg water contains 10% NaCl, 0.3% KCl, 0.4% CaCl2, 1.63% MgSO4.7H2O, 0.01% 

methylene blue, and 95 ml ddH2O).  
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2.3.5 Treatment with pharmacological inhibitors   
 

Mek inhibitor (U0126, Promega), Jnk inhibitor (SP600125, Calbiochem), and 

Bcl-2 inhibibtor (HA 14-1, Calbiochem) were dissolved in dimethyl sulfoxide as 10 mM 

stock solution. They were titrated on wild type embryos before applied on morphants, e.g. 

U0126 (5-40 µM), SP600125 (0.3-1.2 µM), and HA 14-1 (0.5-2.5 µM). The optimal 

concentrations were chosen whereby the corresponding pathways could be effectively 

inhibited without generating excessive and non-specific global defects (suggesting no 

toxicity). Embryos at 2.5 hpf were emerged into the egg water with inhibitor and 

continuously incubated till 15-18 somites stage, then they were either collected for 

Western analysis and microscopy or fixed for apoptosis assay. 

2.3.6 TUNEL assay  
 

TUNEL assay (terminal deoxynucleotidyl transferase-mediated deoxyuridin 

triphosphate nick-end labeling) was performed using the DNA Fragmentation Assay Kit 

(Clontech, USA) to detect apoptotic cells. The preparation of embryos were followed the 

same protocol as that for in situ hybridization (details see section 2.2.1.6.2.). For better 

permeablization, embryos were immersed in aceton for 5 minutes at -20°C, followed by 3 

times’ washing with PBST for 5 minutes each at room temperature. Embryos were then 

equilibrated in 100 µl of Equilibration Buffer for 10 minutes at room temperature. After 

removing all the solution, embryos were incubated with enzyme mix (45 µl of 

Equilibration Buffer, 5 µl of Nucleotide Mix, 1 µl of TdT Enzyme) in dark for 2 hours at 

37°C degree. To terminate the tailing reaction, embryos were incubated in 2X SSC at 

room temperature for 15 min and followed by 3 times washing with PBST for 5 minutes 
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each. Because the dUTP has already been label with fluorescein at the free 3'-hydroxyl 

ends, embryos were ready for photography. 

2.3.7 Statistical analysis   
 

To check for the effectiveness of knockdown by MOs, rescue by mRNAs, or 

inhibition by pharmacological inhibitors, the percentage of normal or defected embryos 

in respective treatments were compared. The data are presented as means ± s.d.. Each 

experiment was repeated at least three times. The statistically significant differences in 

mean values were assessed with the two populations (paired) t-test (Origin Pro 6.1).  
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Chapter 3 The role of RhoA in convergence and extension 

movements during zebrafish gastrulation and tail formation  

 
Gastrulation shapes the early embryos by forming three germ layers, ectoderm, 

mesoderm and endoderm. In vertebrates, this process requires massive cell 

rearrangement including convergence and extension (CE) movements that involve 

narrowing and lengthening of embryonic tissues as well as cell elongation. Such 

polarization and movements require precise reorganization and regulation of the 

cytoskeleton network and cell adhesion. Rho small GTPases are key regulators for actin 

cytoskeleton dynamics. However, the signaling mechanisms underlying their functions in 

CE remain to be further elucidated. Here, we report the isolation and analysis of  the 

expression of rhoA gene and functional role of rhoA during early embryonic development 

in zebrafish, and confirm by morpholino-based specific functional knockdown of RhoA 

protein and mapping of specific gene markers that rhoA positively regulates CE 

movement without affecting cell fates determination during zebrafish gastrulation as well 

as the tail development. By functional rescues, we extend our findings that RhoA also acts 

potently downstream of Wnt5 and Wnt11 and it involves at least the mDia-equivalent as 

well as the Rho kinase as the downstream effectors during the CE movements. 
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3.1 Results  
 

3.1.1 Isolation of full length sequence of rhoA cDNA 

To examine functions of rhoA during vertebrate development, we first cloned the 

rhoA gene from zebrafish. Zebrafish rhoA gene contains a 582-bp open reading frame, a 

132-bp 5′UTR and a 650-bp 3′UTR (AY224600), and it is predicted to encode a 193-

amino acid protein that is highly conserved among human, mouse, Xenopus, and Fugu 

(Figure 3.1a). The divergence at C-terminus provides evidence for the phylogenetic 

relationship among different species for this protein family. As shown in Figure 3.1a and 

b, the gene we isolated shares the highest identity (99%) with the zebrafish Rhoab 

identified through genomic annotation [Salas-Vidal et al. 2005], while Fugu, Human and 

Mouse RhoA have almost the same sequence at their C-terminus. In addition, divergence 

at the C-terminus among different members specifies unique homologs within the Rho 

subfamily. Based on this, we believe that the gene isolated here represents zebrafish rhoA 

not rhoB or rhoC. 
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Figure 3.1 Amino acid sequence analyses of the Rho subfamily. (a) Alignment of 

zebrafish RhoA( AAO65961), zebrafish Rhoab (NP_997914.2), human RHOA 

(AAM21117), human RHOB (AAM21118), human RHOC (AAM21119), mouse RHOA 

(AAD52675), Xenopus RhoA (AAM47281), and Fugu RhoA (CA590877) proteins. “*” 

indicates the residues are identical in that column; “:” highlights the conserved 

substitution while “.” shows the semi-conserved substitution. The colors represent the 

properties of residues. b) A phylogenetic tree of the zebrafish RhoA and other species 

generated from a ClustalW multiple sequence alignment.  

3.1.2 Expression of rhoA in adult tissues and zebrafish embryogenesis  
 

To understand the potential roles of zebrafish rhoA during vertebrate 

development, its spatial and temporal expression pattern was examined. Northern blot 

analysis using the specific 3’UTR probe shows that zebrafish rhoA gene expression is 

ubiquitously distributed in the adult fish, with a relative low level in the skin and muscle 

(Figure 3.2).  

During embryonic development, rhoA expression was initially detected at the 

zygote period (1-cell stage, data not shown) by whole-mount in situ hybridization 

analyses. During the cleavage stage, the signals appeared to be distributed in the 

cytoplasm, with more intense expression in the centre of the cells in 80% of the embryos 

(Figure 3.3a-b). These signals coincided with nucleus as confirmed by DAPI staining 

b 
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(Figure 3.3c-d). This expression pattern is similar to that of zebrafish zinc finger 

transcription factor Churchill (chch), and author has demonstrated that nucleus-localized 

expression is due to zygotic expression of chch prior to MBT [Londin et al. 2007]. In 

gastrula stage embryos, zebrafish rhoA was mainly expressed in the tissue undergoing 

extensive morphogenetic changes such as germ ring and dorsal midline. At 60% epiboly 

stage, zebrafish rhoA expression was enriched in the marginal zone and dorsal organizer 

(Figure 3.3e). The expression in the germ ring (Figure 3.3f) then persisted until it was 

completely closed. At the end of gastrulation, rhoA mRNA accumulated in both anterior 

head region (Figure 3.3g) and posterior tail bud (Figure 3.3h), and was intense in the 

dorsal midline (Figure 3.3g). In the brain, rhoA was initially expressed uniformly (Figure 

3.3i-k). By the larval stage, the expression became intense in the medial and posterior of 

the tectum where the proliferation zones of midbrain is located [Wullimann et al. 2000], 

and also in the diencephalon as well as hindbrain (Figure 3.3m-o). It was reported that 

RhoA was present in the proliferation zones of the developing rat neocortex during 

neurogenesis, indicating that it is involved in neuron generation, migration and 

differentiation [Olenik et al. 1999]. The expression of rhoA in otic vesicle and retina was 

also detected (Figure 3.3n-q). Similar to our finding, RhoA mRNA was detected in chick 

retina suggesting that it was important for cell differentiation and the formation of 

synapses in the retina [Santos-Bredariol et al. 2002]. Besides the nervous system, 

zebrafish rhoA gene expression was elevated in the pharyngeal arches (Figure 3.3k), 

pronephric duct (Figure 3.3i-j), notochord (Figure 3.3i, k and n), heart (Figure 3.3k, n and 

p) and liver (Figure 3.3l, n and q). RhoA has been shown to regulate neural crest 

migration and cardiomyocyte proliferation [Wei et al. 2002], and is up-regulated in early 
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chick heart development [Kaarbo et al. 2003] as well as in rat kidney organogenesis 

[Bianchi et al. 2003].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Expression of rhoA mRNA in adult zebrafish tissues. Northern blot 

analyses for rhoA in both female (♀) and male (♂) adult zebrafish tissues using the 3′ 

UTR specific probe prepared as described in Materials and Methods. β-actin was used as 

an internal control.  



CHAPTER 3 RHOA IN CE MOVEMENTS                                                                    71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 RHOA IN CE MOVEMENTS                                                                    72 

 

Figure 3.3 In situ hybridization analyses for zebrafish rhoA expression in different 

stages of embryonic development. (a) 4-cell-stage embryo, animal view. (b) 128-cell-

stage, animal view. (c-d) Longitudinal section of 128-cell-stage embryo, lateral view. (c) 

In situ hybridization; (d) DAPI staining; arrows indicating the overlapping expression of 

rhoA with nucleus staining. (e) Shield stage embryo, animal view with dorsal to the right. 

(f) 90% epiboly stage embryo, vegetal pole view with dorsal to the top. (g-h) Tail bud 

stage embryo. (g) Dorsal view, anterior to the top. (h) Vegetal pole view with dorsal to 

the top. (i) 24 hpf, lateral view with anterior to the left. (j) 48 hpf, dorsal view, without 

body, anterior to the left. (k) 48 hpf, lateral view with anterior to the left. (l) 72 hpf, 

lateral view with anterior to the left. (m) 96 hpf, dorsal view with anterior to the left. (n) 

96 hpf, lateral view with anterior to the left. White lines indicate the location of section 

shown in (o), (p), (q) respectively. (o-q) Anterior cross sections of 96 hpf embryo with 

dorsal to the top. d, diencephalon; dm, dorsal midline; do, dorsal organizer; gr, germ ring; 

h, heart; i, intestine; l, liver; nc, notochord; ov, otic vesicle; pa, pharyngeal arches; pd, 

pronephric duct; pf, pectoral fin; r, retina; t, tectum; tb, tail bud; hpf, hours post-

fertilization.  

3.1.3 Interference with RhoA function disrupts convergence extension movements 

during gastrulation and tail formation  

 
To elucidate the functions of rhoA during zebrafish embryonic development, 

morpholino (MO)-mediated gene knockdown was applied. Two non-overlapping 

morpholinos (rhoA MO1 and rhoA MO2) were designed against the zebrafish rhoA gene. 

Injection of either morpholino produced similar phenotypes (Figure 3.4 b-c, e-f, h-i, k-l), 

whereas the injection of standard control morpholino had no effects (data not shown). 

The reduction of endogenous RhoA protein after rhoA morpholino knockdown had been 

detected by western blot analysis (see later Figure 4.3a), indicating the specificity of 

MOs targeting to rhoA transcript. Since the two rhoA MOs showed similar phenotypes, 

rhoA MO1 was applied for subsequent experiments. 
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Figure 3.4 RhoA is required for zebrafish gastrulation and tail formation. (a-l) 

Phenotypic analysis of embryos injected with rhoA MOs. (a-c) 1-somite stage embryos, 

lateral view, dorsal to the right; arrowheads mark the anterior limit of the hypoblast layer. 

(d-i) 8 somites stage embryos. (d-f) Lateral view, dorsal to the right. Arrows point at the 

misprotruded tail (e-f). (g-i) dorsal view, animal pole to the top. (j-l) enlarged tail region 

of 24 hpf embryos; arrowheads indicate the malformed somites and the undulated 

notochord. Overall, rhoA morphants display a shorten anterior-posterior body axis, 

vegetally mispositioned head, detached tail from yolk, and malformed somites.  
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The rhoA morphants could be morphologically identified at the end of 

gastrulation. The embryos injected with a medium dose of rhoA MO1 (4 ng) displayed 

shorter anterior-posterior body axis, with reduced and posteriorly-positioned head 

(Figure 3.4b-c). During somitogenesis, the somites were compressed in the anterior-

posterior axis and wider in the mediolateral axis (Figure 3.4h-i). The notochord was also 

shorter and broader, and mild undulation could be observed (Figure 3.4h-i). Similar 

defects were apparent in 1-day-old morphants. The notochord was more undulated and 

somites were not well-formed (Figure 3.4k-l). The morphological alterations in the axis 

of rhoA morphant indicate the defects in CE movements during gastrulation. These 

phenotypic defects can further be enhanced in a dose-dependent manner (Table 3.1).  

                    Table 3.1 RhoA is required for zebrafish gastrulation and tail formation  
 

 

 

 

 

 

 

 

 

 

 

Embryos were injected with control MO or the rhoA MO at the doses indicated, and 

observed for their defects in the presence or absence of co-injected rhoA mRNA for 

functional rescue. Embryos with their long tail detached from yolk, drastically reduced 
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head and anterio-posterior (AP) axis were scored as severe defects. Embryos with a 

reduced head and ventral movement of the tail bud along the yolk, shortened AP axis and 

an undulated notochord were scored as intermediate to mild defects. Differences from the 

control are statistically significant at p<0.01(*) for the rescue. 

 

To further determinate the specificity of rhoA MO, a rescue experiment was 

performed. Because rhoA MO was designed against 5’UTR region of zebrafish rhoA, 

there is no complementry sequence between rhoA MO and rhoA mRNA. Coinjection of 

RNA encoding the full-length rhoA with rhoA MO could suppress the gastrulation and 

tail CE defects in a dose-dependent manner (Table 3.1). When 45 pg/embryo of 

synthetically capped rhoA mRNA was coinjected with 8 ng of rhoA MO, the magnitude 

of defected embryos significantly decreased and the severity of the phenotype reduced to 

intermediate or mild levels, further supporting that the morphant phenotyped indeed were 

the result of specific interference with the function of the endogenous RhoA. 

In addition to the defects observed during gastrulation, the rhoA morphants also 

impaired in tail formation. Compared to the embryos injected with control MO (data not 

shown), the tail bud failed to move ventrally at the end of gastrulation, resulting in mis-

protruded tail (Figure 3.4e-f) or the tail even being detached from the yolk sac during 

earlier development in some severely affected morphants (data not shown). Till 24 hpf, 

the yolk extension appeared shorter and thicker. The tail posterior to the yolk extension 

was shorter, and the malformed somites and undulated notochord were more severely 

affected than those at the trunk region (Figure 3.4k-l). These results suggest that a 

reduction in the functional RhoA activity disrupts both axial and paraxial mesoderm 

development during the tail formation. The low percentage of rescue could be due to the 

special sensitivity of embryos to the co-injection of rhoA mRNA with rhoA MO (data 
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not shown). It has been suggested that the early onset of translation of rescue mRNA in 

the early zygote may mess up the developmental process. Moreover, RhoA protein had 

been implicated to be maternally provided in zebrafish [Lai et al. 2005], which may 

compensate for the reduction of maternal mRNA translation caused by rhoA MO. Thus, 

to avoid the toxicity and over-expression phenotype caused by high expression of rhoA, 

sub-optimal doses of mRNA was applied which may not sufficient to restore normal 

development to all rhoA morphants. Alternatively, RhoA was ubiquitously expressed 

during early zebrafish embryogenesis [Zhu et al. 2006a]. Thus, the mosaic nature of the 

mRNA and MO injections reported by other researchers [McClintock et al. 2002; 

McWhorter et al. 2003] may also affect the efficiency of rescue. 

 

3.1.4 Altered gene expression domains in rhoA morphants  
 

To elucidate the underlying mechanism for the CE defects in the rhoA morphants, 

the expression of several specific gene markers that specify the axial, paraxial mesoderm 

and neuroectoderm in trunk and tail were examined. At the onset of gastrulation, the 

expression of the goosecoid (gsc) gene (Figure 3.5a), which marks the presumptive 

dorsal mesoderm [Stachel et al. 1993], appeared normal at the shield stage, indicating 

that rhoA knockdown did not prevent mesoderm induction or differentiation. At the end 

of gastrulation, the prechordal plate, marked by hatching gland 1 (hgg1) expression 

(Figure 3.5b), was positioned slightly posteriorly with respect to the dlx3 expression in 

the anterior edge of the neural plate. Thus, it appears that the most anterior axial 

mesoderm is least affected.  
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Figure 3.5 Expression of marker genes in rhoA morphants. Wild type embryos 

and embryos injected with rhoA morpholino were analyzed for the expression domains 

of the marker genes by in situ hybridization. In each section (a-l), wild type is shown on 

the left and rhoA morphants on the right. Please refer to the text for detailed description. 

(b) gsc, shield stage, animal view, dorsal to the right; (b) hgg1, ntl and dlx3, tail bud 

stage, dorsal view: neural plate (*) is wider and prechordal plate (○) is slightly 

posteriorly located. (c) hgg1 and ntl, tail bud stage, dorsal view on spread embryo, 

anterior to the top: notochord (∆) is broader and shorter. (d) shh, 24 hpf, lateral view, 

dorsal to the right: notochord is wider and undulated (marked by arrow). (e) pax2.1, 8-

somite stage, dorsal view on spread embryo, anterior to the top: mid-hind brain boundary 

(▪) and the distance between otic placode is wider (shown by arrow). (f) pax2.1 and shh, 

tail bud stage, dorsal view, anterior to the top: rhoA morphant displays wider neural plate 

(¤) and notochord (∆). (g) papc, 2-somite stage, dorsal view, anterior to the top: the 

posterior paraxial mesoderm expands laterally. (h, i) myoD, bud stage (h) and 9-somite 

stage (i), dorsal view on spread embryo, anterior to the top: somites are a little 

compressed and laterally expanded. (j) eve1, 20 hpf, lateral view, dorsal to the right: eve1 

expression is normal in the tail bud. (k) bmp4, 70% epiboly, animal view, dorsal to the 

right: the expression domain of bmp4 in the ventral marginal zone was unaffected. (l) 

chordin, 70% epiboly stage, dorsal view: the expression domain of chordin remains 

unchanged.  

In contrast to the prechordal plate, the anterior-posterior extension and medio-

lateral convergence of the axial mesoderm was reduced in rhoA morphants, leading to 

shorter and broader notochord at the end of gastrulation, as indicated by the expression of 

no tail (ntl) [Schulte-Merker et al. 1994] (Figure 3.5c) and sonic hedgehog (shh) 

[[Krauss et al. 1993] (Figure 3.5f). At 24 hpf, the undulated notochord was obvious and 

appeared to be more affected in the tail region posterior to the yolk extension than in the 

trunk part. Sometimes it was even folded (Figure 3.5d). This shortened and broadened 

midline in rhoA morphant supports that the CE defect was associated with dorsal 

mesoderm.  
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In the paraxial mesoderm, two strips of adaxial cells were mediolaterally 

expanded and anterior-posteriorly shortened, as revealed by myoD expression [Weinberg 

et al. 1996] at the end of gastrulation  (Figure 3.5h). The expression domain of myoD 

appeared to be more extended in the posterior somatic mesoderm and compressed in 

anterior-posterior axis during somitogenesis (Figure 3.5i). The similar broader and 

shorter posterior paraxial mesoderm was shown by paraxial protocadherin (papc) 

[Yamamoto et al. 1998] staining at the early somites stage (Figure 3.5g). Thus, the CE 

movements in rhoA morphant were also inhibited in the non-axial mesoderm. 

In neuroectoderm, the laterally expanded expression domain of distal-less3 (dlx3) 

[Akimenko et al. 1994] (Figure 3.5b) and pax2.1 [Krauss et al. 1991] (Figure 3.5e-f) 

revealed broader neural plate. Compared to the control, the expression domain of pax2.1 

in the mid-hindbrain boundary (Figure 3.5f) and otic placode in rhoA morphants (Figure 

3.5e), extended obviously but without changes in the cell fate. In addition, the expression 

pattern of the ventral ectoderm marker, bone morphogenetic protein4 (bmp4) [Fainsod et 

al. 1994] (Figure 3.5k), the dorsal mesoderm marker, chordin [Sasai et al. 1994] (Figure 

3.5l), as well as the tail bud marker, eve1 [Joly et al. 1993] (Figure 3.5j) were all 

unaffected. These results indicate that lack of RhoA function does not affect dorsal-

ventral patterning and tail bud differentiation. 

3.1.5 RhoA is required for both Wnt5 and Wnt11 signaling to induce gastrulation 

movement  

In vertebrates, the Fz/Dsh PCP pathway is essential for cell polarity and 

movement during gastrulation [Sokol 2000]. In Xenopus, RhoA, together with another 

member of Rho small GTPases, Rac, mediates Wnt11/Frz signaling that regulates 
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gastrulation movements [Habas et al. 2003] whereas the RhoA effector Rho kinase 2 acts 

downstream of Wnt11 to mediate cell polarity and CE movement in the zebrafish 

[Marlow et al. 2002]. Since Rho kinase is a more potent effector for RhoC than RhoA or 

RhoB [Wheeler et al. 2004] and that these findings are derived from ectopic expression 

of constitutive active or dominant negative mutants of Rho GTPase [Barrett et al. 1997; 

Tahinci et al. 2003] or their effectors [Marlow et al. 2002], any non-specific functional 

interference to closely-related signaling proteins could not be completely ruled out. It 

remains to be seen which of the Rho GTPases is/are indeed involved during the CE 

movements in the zebrafish gastrula. Furthermore, ppt/wnt5 whose function partially 

overlaps with slb/wnt11, is also required for cell elongation and CE movements in the 

posterior mesendoderm during late gastrulation [Kilian et al. 2003]. Therefore, we 

hypothesize that RhoA could function downstream of both Wnt5 and Wnt11 for the CE 

movement during zebrafish gastrulation. Furthermore, we wished to establish whether 

effectors other than Rho kinase could also serve as downstream determinant of RhoA in 

eliciting CE movements. To address this issue, functional rescues of CE defects in wnt 

mutants were performed using rhoA mRNA. Different concentrations of wnt11 and wnt5 

morpholinos were titrated to reach an optimal level that could best phenocopy the slb-

specific gastrulation and eye phenotype and ppt-posterior gastrulation defects, which are 

indicative of their respective CE defects [Rauch et al. 1997; Heisenberg et al. 2000]. 

Same amount of rhoA mRNA used in the earlier rhoA morphant rescue experiment was 

then applied to the ppt/wnt5 and slb/wnt11 knockdowns. As determined by in situ 

hybridization and morphological criteria, RhoA could significantly (p<0.01) suppress 

both the reduction in anterior–posterior extension of the prechordal plate (Figure 3.6t-u) 
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and the cyclopia in wnt11 morphant (Figure 3.6i-j; Table 3.2). For the wnt5 rescue, 

nearly half of the embryos restored the normal body length (Figure 3.6c and g; Table 3.2), 

while the notochord and neural plate appeared normal (Figure 3.6p-q) upon injection of 

RNA encoding full-length rhoA. These results strongly suggest that RhoA is required for 

both Wnt5 and Wnt11 signaling in governing CE movements in the zebrafish embryos. 

Table 3.2 RhoA, mDia and Rock suppress zebrafish gastrulation defects caused by rhoA, 

wnt5 and wnt11 morpholinos  

 

 

 

 

 

 

 

 

Morpholino corresponding to RhoA, Wnt5 or Wnt11 were injected into embryos as 

described in Materials and Methods. Embryos with reduced anterio-posterior (AP) axis 

and broader medial-lateral axis at the end of gastrulation were scored as defected 

embryos. Each experiment was repeated at least three times and paired Student's t-test 

were performed. Differences from the controls are statistically significant at p < 0.01(*) 

for RhoA rescue and combined mDia and Rock rescue group, or at p < 0.05 (**) for the 

respective single rescue group from mDia or Rock. 
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Figure 3.6 RhoA and mDia suppress wnt5 and wnt11 morphants. (a-h) Lateral view 

and (k-m) dorsal view of tail bud-stage wt, rhoA, wnt5, wnt11 morphants and rescued 

embryos upon expression of zebrafish RhoA, human mDia, or human Rock. (i-j) ventral 

view of 24 hpf wnt11 morphant (Cyclops) and RhoA rescued embryo. At the end of 

gastrulation, the short and broad notochord (ntl) in rhoA (b, l), wnt5 (c, p) and wnt11 (d,t) 

morphants was suppressed by the coinjection of full-length rhoA RNA (e, g, h, m, q and 

u), mDia plasmid (f, n, r and v), or Rock plasmid (o, s and w). Defects of wnt11 

morphant in prechordal plate (hgg1) posterior positioned to neuroplate (dlx3) (t) and 

cyclopia (i) were also rescued by RhoA (u and j), mDia (v) or Rock (w).  
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3.1.6 Rho kinase and Dia function downstream of RhoA and Wnt in controlling CE 

movement  

 
RhoA plays an important role in cell movements by regulating reorganization of 

the actin cytoskeleton. This action is cooperatively mediated by its two downstream Rho 

effectors, Rho kinase and mDia [Watanabe et al. 1999]. However, there is no report 

showing the involvement of mDia in the CE movement. To investigate this, a series of 

further rescue experiments were performed by the expression of the human Rho kinase 

or/and mDia in the embryos coinjected with either rhoA or wnt morpholinos. Compared 

with the embryos injected with rhoA MO alone, embryos co-injected with pCMV-mDia 

and rhoA MO exhibited a marked reduction in the number and extents of gastrulation 

defect (p<0.05) (Figure 3.6f and n; Table 3.2). Consistently, mDia also effectively 

suppressed the CE defects in the wnt5 and wnt11 morphants (Figure 3.6r and v; Table 

3.2), further supporting that mDia is indeed involved in the regulation of CE movements 

by acting downstream of RhoA and Wnt signaling. Similar suppression of CE defects in 

the rhoA and wnt morphants was also observed when a human Rho kinase was expressed 

in the embryos (Figure 3.6o, s and w). RhoA thus acts downstream of the noncanonical 

Wnt signaling to control CE movement via at least two of its effectors, Rho kinase and 

Dia.  
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3.2 Discussion  

3.2.1 RhoA function is required for convergence extension movements during 

gastrulation and tail formation 

The spatial and temporal expression profiles of rhoA provide the first hint for its 

function in gastrulation. At the onset of gastrulation, rhoA is highly expressed in both 

dorsal and ventral marginal zone and dorsal organizer where dorsal mesoderm starts to 

internalize. Then during gastrulation, rhoA maintains high expression levels in marginal 

cell layer, which is the leading edge of active cell movement, and its expression in dorsal 

midline is more intense when the dorsal anterior-posterior extension occurs. At the end of 

gastrulation, its expression is enriched in the head and tail bud region, suggesting that 

rhoA is also important for head and tail formation, similar to the findings in Xenopus 

where RhoA induces the formation of head structures [Wunnenberg-Stapleton et al. 

1999]. Taken together, rhoA is expressed throughout the gastrulation, and is more highly 

expressed in cells undergoing extensive morphogenetic changes and movements.  

Moreover, rhoA morphants display embryonic defects similar to those when the 

convergent extension is disrupted. Reduced body axis, broader and compressed somites, 

shorter, broader and undulated notochord in rhoA morphant are reminiscent of the 

phenotype in trilobite (tri) mutants [Hammerschmidt et al. 1996]. Furthermore, the 

gastrulation defects appear to arise from morphogenetic problems and are not due to 

earlier failures in the mesoderm induction, since gene specific to axial mesoderm, eg. 

goosecoid (gsc) is still expressed. The mesoderm specification is also unaffected, 

because notochord and muscle are still differentiated as shown by ntl and myoD staining. 

Furthermore, rhoA morphants can be rescued in a dose-dependent manner by injection of 
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mRNA encoding full-length rhoA, indicating CE defect arose due to the loss of RhoA 

function. Consistent with our findings in zebrafish, RhoA was reported to control cell 

motility in convergent extension of axial mesoderm in Xenopus [Tahinci et al. 2003]. 

Furthermore, in Drosophila, inhibition of RhoA signaling, by injection of dominant 

negative mutant of RhoA, disrupted gastrulation [Barrett et al. 1997]. Beside this, 

zebrafish Rho kinase was also shown to mediate cell polarity and exert effect on 

convergence and extension movements [Marlow et al. 2002]. Therefore, the function of 

RhoA in gastrulation dynamics is conserved in both invertebrate and vertebrate. 

RhoA is not only required for convergent extension movements during 

gastrulation but also important for tail formation. Previous studies have shown that both 

the continuation of convergent extension movement initiated during gastrulation and 

novel tailbud-specific movement contribute to the tail formation [Kanki et al. 1997; 

Marlow et al. 2004]. The cells originating from dorsal gastrula regions occupy the 

anterior tailbud, and continue gastrulation-like convergence extension resulting in the 

elongation of axial mesoderm of the tail, whereas the ventrally originating cells 

constitute the posterior half and undergo subduction and then lateral divergence/CE 

movement, giving rise to the paraxial mesoderm of tail [Kanki et al. 1997]. In rhoA 

morphants, the obvious sign of tail defect can be first identified at 2-somites stage. After 

gastrulation, the tail bud fails to move ventrally on the yolk sac. Then till 24 hpf, the tail 

including yolk extension and the region posterior to that becomes shorter concurrent with 

the shorter body axis. These phenotypes are reminiscent of the tail mutants, pipetail (ppt) 

and knypek (kyn) [Hammerschmidt et al. 1996; Rauch et al. 1997]. The tail elongation 

defect in ppt mutants is neither due to the failure to specify or maintain posterior tissues, 
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nor decreased cell proliferation or increased cell death, but rather an impaired 

gastrulation-like convergence and extension movements and cell movements within the 

posterior tailbud [Hammerschmidt et al. 1996]. Beside those phenotypes similar to ppt 

mutants, rhoA morphants display more severe defects in the region posterior to the yolk 

extension than in trunk region: the notochord is more undulated and somites are 

malformed in the most severe embryos. Based on the expression of rhoA at both dorsal 

and ventral marginal zone at gastrula, we hypothesize that the inhibition of the dorsal 

expression of rhoA might cause less axial extension movement which results in 

undulated notochord in tail, whereas disruption of ventral rhoA expression could block 

the posterior tail-specific movement leading to abnormal development of somites. In 

addition to the spatial-temporal expression of rhoA, its upstream regulators or 

downstream effectors might also have differential distribution in gastrula embryo leading 

to the distinct signaling pathways in the regulation of tail and trunk development. In our 

study, we found that RhoA acts downstream of Wnt11 and Wnt5 in regulating 

gastrulation movement and tail formation. Wnt11 is known to be distributed and 

functions more anteriorly whereas Wnt5 acts more posteriorly [Kilian et al. 2003]. It has 

also been identified that Daam1 mediates RhoA activation by Wnt11 through a RhoGEF-

dependent manner during Xenopus gastrulation [Habas et al. 2001]. However, it remains 

unclear whether Daam1 or other regulators of RhoA exist in Wnt5 noncanonical pathway 

that could lead to RhoA activation in the posterior part of embryos.  

3.2.2 Wnt5 and Wnt11 requires RhoA in regulating CE movement  
 

RhoA, as a key regulator of actin cytoskeleton, mediates the establishment of 

planar cell polarity of ommatidia and wing hairs in Drosophila via PCP pathway [Fanto 
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et al. 2000]. In vertebrate, noncanonical Wnt signaling pathway similar to PCP pathway 

in Drosophila plays important roles in regulating convergence and extension movement 

during gastrulation. Several zebrafish mutants were found to exhibit reduced convergent 

extension movements without affecting cell fates, including two noncanonical Wnt 

ligand genes, wnt11 and wnt5. The silberblick (slb) /wnt11 mutant shows more anterior 

CE defects: shortened and broadened body axis at the end of gastrulation and a slight 

fusion of the eyes (Cyclops) at later developmental stages. In contrast, pipetail (ppt)/wnt5 

functions in posterior regions exhibiting a shortened body axis and compressed tail while 

the position of the eyes is only mildly affected [Rauch et al. 1997; Heisenberg et al. 

2000]. Although wnt11 and wnt5 function at different regions, they exhibit partially 

overlapping functions in regulating CE movements in lateral domains of the gastrula. 

The redundant function of Wnt11 and Wnt5 might be due to the sharing of same cellular 

component(s) in response to the signals. Supporting this, we found that rhoA was 

expressed in the entire germ ring during gastrulation, and coinjection of RNA encoding 

full-length rhoA with wnt11 MO or wnt5 MO indeed could suppress the phenotypic 

defects due to the loss of Wnt11 and Wnt5, respectively. This result strongly indicates 

that RhoA is the downstream mediator for both Wnt11 and Wnt5.  

3.2.3 Rock and Dia mediate Wnt-RhoA signaling in gastrulation and tail formation. 
 

The function of RhoA in regulating Drosophila planar cell polarity and vertebrate 

gastrulation has been shown to require Rho kinase as one of its effectors [Winter et al. 

2001]. In zebrafish, Rho kinase 2 acts downstream of Wnt11 to regulate cell polarity as 

well as the convergence and extension movements during gastrulation [Marlow et al. 

2002]. Moreover, Matsui et al (2005) has recently used the dominant negative mutant of 
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RhoA to show that it also acts downstream of Wnt4a, Wnt11 and Wnt11-related to 

primarily regulate the convergence of heart primordia during zebrafish development 

[Matsui et al. 2005]. However, it is not clear whether it would involve Rho kinase or/and 

Dia as observed in our current studies for the CE movements of mesoderm during 

gastrulation. In our study, we showed that expression of the human mDia effectively 

suppressed the CE defects due to RhoA knockdown, confirming that mDia activity is 

important for zebrafish gastrulation and tail formation. The temporal and localized 

stabilization of microtubules and actin plays crucial roles during many morphogenetic 

events, including cell migration, muscle development, neurite outgrowth, and epithelial 

polarization [Bulinski et al. 1991; Gundersen et al. 1999]. mDia mediates RhoA-induced 

microtubule formation [Palazzo et al. 2001] and is involved in the regulation of 

microtubule dynamics by stabilizing the microtubule at the leading edge of migrating 

fibroblast cells [Palazzo et al. 2004]. In addition, mDia can induce actin polymerization 

[Watanabe et al. 1997] and cooperate with Rho kinase for alignment of actin bundles to 

form stress fiber and focal adhesion [Watanabe et al. 1999] that provides the contractile 

forces for cell movement. Our results therefore are consistent with the view that mDia, 

like Rho kinase, is also a key component of the RhoA-induced cell polarization and 

migration during zebrafish gastrulation and tail formation (Figure 3.7). 
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Figure 3.7 Wnt/RhoA signaling pathway regulates CE movement in zebrafish 

embryos via Rho kinase and Dia. During zebrafish gastrulation, RhoA can be activated 

by both Wnt5 and Wnt11 signaling. The activation of RhoA leads to actin polymerization 

and microtubule dynamics via cooperative effects of Dia and Rho kinase, Rock. 

Consequently, the RhoA-induced cell polarization and migration could lead to 

convergence and extension movement during the gastrulation and tail formation in the 

zebrafish embryos. 



CHAPTER 3 RHOA IN CE MOVEMENTS                                                                    91 

 

3.3 Conclusion 
 

In summary, our morpholino-based functional knockdown of noncanonical Wnt 

and RhoA has established their direct functional interaction necessary for regulating cell 

dynamics in vivo. In this regard, at least Rho kinase and Dia represent two key 

determinants in mediating their downstream effects in the CE movements. Given the 

efficacy in functional knockdown by morpholinos and relative ease of embryonic studies, 

our results implicate the suitability of the zebrafish as a vertebrate model to further our 

understanding on the roles of various classes of small GTPases signaling in the control of 

cellular and developmental dynamics. 
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Chapter 4 RhoA prevents apoptosis during zebrafish 

embryogenesis through activation of Mek/Erk pathway  

Extending our finding that RhoA links Wnt signaling to the gastrulation 

movements in the zebrafish, we further explore  the in vivo signaling mechanism of RhoA 

during post-gastrulation periods of embryogenesis. In this chapter, we report that 

knockdown of RhoA by its specific anti-sense MOs causes marked increase in apoptosis 

during embryogenesis, leading to overall reduction in body size and length as well as 

severe shrinkage of brain. The knockdown of RhoA is also closely associated with 

reduced phosphorylation status of the growth-promoting kinase, Erk and a lack of 

expression of the key anti-apoptotic protein bcl-2. Using a combination of gene 

suppression and functional rescue experiments together with specific pharmacological 

inhibitors for Mek and Bcl-2, we show that RhoA prevents Bcl-2-dependent intrinsic 

apoptosis during zebrafish embryogenesis by activation of Mek/Erk signaling pathway.  

4.1 Results  

4.1.1 RhoA knockdown results in reduced body size and shortened body length in 

zebrafish embryos 

To study the role of RhoA in zebrafish embryogenesis beyond gastrulation, the 

two non-overlapping rhoA MOs (rhoA MO1 and rhoA MO2) which have been 

demonstrated to knockdown RhoA successfully in my previous study and a 5-bp 

mismatch MO of rhoA MO1 were applied. During the whole embryogenesis, the standard 

control MO- or 5-mismatch MO-injected embryos developed normally (Figure 4.1a-b, f-g, 
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i, k-l and p-q). In contrast, embryos injected with rhoA MO1 and rhoA MO2 displayed 

convergence and extension defects at the end of gastrulation (Figure 4.1c-d) as we 

reported previously [Zhu et al. 2006b]. During early somitogenesis, the apparent opaque 

region was observed in the head of rhoA morphants (Figure 4.1h), and cell corpuses were 

detected within or at the boundary of deformed somites (Figure 4.1j). By mid-

segmentation stage, the opaque regions were found throughout the morphants, but most 

were detected in head and tail (“opaque” phenotype) (Figure 4.1m-n). Till pharyngula 

stage, rhoA morphants exhibited shrinkage in the whole body, with severely reduced size 

in head and shortened body length including yolk extension and tail posterior to the yolk 

extension (Figure 4.1r-s). Most of the severely affected rhoA morphants died within 4 

days. Some of the mildly defected embryos could survive longer, but they never reached 

the similar body size and length as the control morphants (data not shown). The similar 

phenotype induced by two non-overlapping rhoA MOs suggests that the “opaque” 

phenotype and overall reduction of body size and body length in rhoA morphants could 

be resulted from specific knockdown of RhoA and is unlikely due to the non-specificity 

of MOs applied.  

To further rule out that such morphants are secondary effect of cell movement 

defects during gastrulation, one splice MO (E3I3 MO) targeting the 3rd exon/intron 

boundary of rhoA was designed as described by Morcos [Morcos 2007]. Compared to 

rhoA MO1&2, E3I3 MO did not cause cell movement defects at the end of gastrulation 

(Figure 4.1e), but it induced the “opaque” phenotype in rhoA morphants after gastrulation 

(Figure 4.1o and t). Hence, the result supports that the maternal rhoA contributes to the 
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control of gastrulation movement more than zygotic rhoA, and the opacity in rhoA 

morphants is independent of the cell movement defects during gastrulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 RhoA knockdown causes reduced body size and body length in zebrafish 

embryos. (a-t) Phenotypic analysis of embryos injected with control MO (control), 5-bp 

mismatch MO and rhoA MOs. (a-h and k-t) lateral view, dorsal to the right, (i and j) 

dorsal view, animal pole to the top. Embryos at the same stage are shown on the same 

row, and the developmental stages are indicated in the first column. Arrow heads 

highlight the opaque regions in head and tail (h, m-o and r-t) and the cell corpses within 

or around somites in rhoA morphants (j).  
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4.1.2 RhoA knockdown induces apoptosis during zebrafish embryogenesis 
 

It is reported that the opaque regions in the developing zebrafish embryos contain 

apparent cell death and could be a consequence of apoptosis in some cases [Langheinrich 

et al. 2002; Liu et al. 2003]. To investigate whether increased cell death in rhoA 

morphants was indeed due to enhanced apoptosis, we analyzed the phenotypic embryos 

by TUNEL assay. It has been shown that the embryonic programmed cell death in 

zebrafish initiates from the onset of gastrulation [Yabu et al. 2001a; Yabu et al. 2001b]. 

Hence, the TUNEL assay was carried out on the embryos from 60% epiboly stage 

onwards to 2 dpf. The apparently increased apoptosis in rhoA morphants was first 

observed at the end of gastrulation (29/34, Figure 4.2b) while no obvious apoptosis was 

detected in control MO-injected embryos at this stage (0/44, Figure 4.2a). This result is 

consistent with previous study that when embryos were treated with various stresses 

including heat, shock, UV and γ-ray irradiation at 3hpf, the earliest obvious apoptosis 

was detected at 1-somit stage [Yabu et al. 2001b]. Moreover, the stress-induced apoptosis 

is correlated with enhanced caspase-3-like enzymatic activity in embryos. The consistent 

appearance of apoptotic cells beginning after gastrulation in both rhoA morphants and 

stress-treated embryos suggests that the common apoptotic pathway could be specifically 

activated after gastrulation. Alternatively, the apoptosis could be induced during 

gastrulation, but the accumulated effects can be obviously detected by Tunel assay after 

gastrulation. During somitogenesis, only a few scattered apoptotic cells were distributed 

throughout the control MO-injected embryos (18/21, Figure 4.2c), consistent with the 

observation by Cole and Ross [Cole et al. 2001]. In contrast, apoptosis in rhoA 

morphants became more prominent during early somitogenesis (29/31, Figure 4.2d). By 
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mid-segmentation stage, much more TUNEL-positive cells were distributed throughout 

the whole embryo especially in the head and tail (52/52, Figure 4.2f; 33/35, Figure 4.2g; 

28/29, Figure 4.2h). The increased apoptosis in rhoA morphants was maintained 

throughout somitogenesis (47/48, Figure 4.2j; 18/18, Figure 4.2k; 23/26, Figure 4.2l). By 

2 dpf, the TUNEL-positive cells were detected in forebrain, midbrain, hindbrain (23/24, 

Figure 4.2n, p, r and t); and particularly concentrated in those tissues known to be highly 

proliferative during embryogenesis, such as the posterior tectum (Figure 4.2p) and neural 

retina (Figure 4.2r) [Wullimann et al. 2000]. This could result in much smaller head and 

eyes than those in control MO-injected embryos. In summary, this enhanced apoptosis 

was correlated with the cell death observed in rhoA morphants, suggesting that the 

developmental defects in reduced body size and shortened body length caused by RhoA 

knockdown was probably due to increased apoptosis.  
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Figure 4.2 RhoA knockdown induces apoptosis during zebrafish embryogenesis. 

TUNEL assay was performed on embryos injected with control MO (control) and rhoA 

MOs. (a-p) Whole-mount embryos, (a-n) lateral view, dorsal to the right, (o and p) dorsal 

view, animal pole to the top, (i-l) head region of 30-somite stage embryos, (q-t) anterior 

cross sections of 2 dpf embryos with dorsal to the top. (e-t)  Embryos at the same stage 

are shown on the same row, and the developmental stages are indicated in the first 

column. d, diencephalon; dpf, days post-fertilization; fb, forebrain; hb, hindbrain; hpf, 

hours post-fertilization; m, mesencephalon; mb, midbrain; nr, neural retina; pt, posterior 

tectum. 

 

To determine the effectiveness of RhoA knockdown by both translation- and 

splicing-blocking MOs, Western blotting and RT-PCR analysis were performed on the 

samples extracted from pooled rhoA morphants or control MO-injected embryos at 18-

somite stage, respectively. As shown in Figure 4.3a, the level of endogenous RhoA was 

dramatically reduced in either rhoA MO1- or rhoA MO2- injected embryos, indicating 

that RhoA translation can be successfully blocked by rhoA MO1&2. The E3I3 MO was 

expected to remove the exon3, resulting in the retention of intron3. This was verified by 

RT-PCR (Figure 4.3c), and sequencing analysis (data not shown). Thus, E3I3 MO 

resulted in a frame shift and a premature stop-codon in the transcript, leading to 

premature termination of RhoA synthesis (Figure 4.3b). To further confirm that the 

abnormal phenotypes and excessive apoptosis in rhoA morphants were due to knockdown 

of RhoA, we co-injected rhoA MO1 with rhoA mRNA which had no complementary 

sequence to rhoA MO1 and had been demonstrated previously to successfully rescue 

gastrulation defects in rhoA morphants [Zhu et al. 2006b]. Results showed that forced 

expression of rhoA mRNA can rescue both developmental defects and enhanced 

apoptosis caused by loss of RhoA function (see later in Figure 4.5). In addition, the 
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pattern of apoptotic cells in rhoA morphants partially overlaps with that of rhoA 

expression profile that we reported previously [Zhu et al. 2006b]. And the abnormal 

developmental defects in rhoA morphants were distinctly different from those induced by 

Ras GTPase knockdown (Liu and Low, unpublished data), further supporting that the 

increased apoptosis in rhoA morphants is due to loss of RhoA function rather than 

unspecific toxicity from the MOs used. Taken together, all these data suggest that 

knockdown of RhoA induce apoptosis during zebrafish embryogenesis, resulting in 

reduction of body size and shortening in body length.  Since all the rhoA anti-sense MOs 

induced very similar phenotypes and enhanced apoptosis from gastrulation onwards, 

rhoA MO1 was used for the subsequent studies. 

4.1.3 RhoA knockdown inhibits Mek/Erk activation   

    
Ras-MAPK pathway is well known for its important role in a multitude of cellular 

processes, including cell survival, gene expression and cell proliferation [Giehl 2005]. 

Thus, to investigate whether the regulation of cell survival by RhoA during early 

embryonic development is through cross talk with Ras-MAPK pathway, Western analysis 

was performed to examine Mek/Erk activation. As shown in Figure 4.4, the level of 

phospho-Erk, an indicator of Mek/Erk activation, was significantly reduced in rhoA 

morphants, while the total Erk level remained unchanged. Consistently, the 

phosphorylation of Mek was also decreased in rhoA morphants (data not shown). As a 

control, neither phospho-p38 nor total p38 showed detectable changes in rhoA morphants. 

Thus, these results suggest that RhoA could be important for the activation of Mek-Erk 

pathway during zebrafish embryogenesis. 
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Figure 4.3 RhoA MOs can elicit RhoA specific knockdown. Embryos injected with 

control MO (control) and rhoA MOs were lysed at 18-somite stage for Western blotting 

or Semi-quantitative RT-PCR analysis. (a) The protein of endogenous RhoA was 

dramatically reduced in both rhoA MO1&2 injected embryos. (b) Schematic transcript 

structure of zebrafish rhoA gene. P1 and P2 represent the primers for rhoA amplification 

in RT-PCR; the line “-” above E3 highlights the binding site of E3I3 MO. Injection of 

E3I3 resulted in the retention of intron3, which caused ORF shift and generated a 

premature stop codon in rhoA morphants transcript. (c) RT-PCR analysis of the embryos 

injected with E3I3 MO (E3I3) or control MO (control). β-Tubulin (a) and β-actin (c) 

show equal loading. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 RhoA knockdown reduces phosphorylation of Erk. Embryos injected with 

control MO (control) and rhoA MO1 were lysed at 18-somite stage for Western blotting 

analysis using antibodies against RhoA, MAP kinases, or phospho-MAPKs, as described 

in “Materials and Methods”. β-Tubulin staining shows equal loading.  

 

 

To determine whether the inactivation of Mek-Erk pathway is responsible for the 

developmental defects and enhanced apoptosis in rhoA morphants, we performed a series 
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of rescue experiments. In vitro synthesized mRNA encoding full length zebrafish rhoA or 

mouse Mek was titrated and co-injected with rhoA MO1 as described in the “Materials 

and Methods”. In rhoA MO1-injected group, 88.3% of embryos (n=149) showed 

“opaque” phenotype with reduced body size and shortened body length during 

somitogenesis (around 15-18 somites stage) (Figure 4.5b, g and k). In contrast, such 

developmental defects were corrected in 37.6% of embryos (Figure 4.5c and k, n=156, at 

p<0.05) and the induced apoptosis was dramatically decreased in those phenotypically 

rescued embryos (42/44, Figure 4.5h) after the forced expression of rhoA mRNA. 

Although the difference between RhoA knockdown and rhoA mRNA rescue was 

statistically significant at p<0.05, the percentage of rescue was relatively low. This could 

be due to the sensitivity of embryos to the co-injection of rhoA mRNA with rhoA MO1, 

or the early onset of translation from the rescue mRNA during the early zygote that could 

derail the proper developmental process. Also, to avoid such possible toxicity and over-

expression phenotype caused by high expression of rhoA, sub-optimal doses of mRNA 

was then applied and that might not have been sufficient to fully restore normal 

development to all the rhoA morphants. Alternatively, RhoA was ubiquitously expressed 

during early zebrafish embryogenesis [Zhu et al. 2006b] where the mosaic nature of the 

mRNA and MO injections as reported by others [McClintock et al. 2002; McWhorter et 

al. 2003] may also affect the efficiency of rescue. Similar to rhoA mRNA rescue, ectopic 

expression of Mek mRNA not only restored normal development in 28.9% of the 

embryos (Figure 4.5d and k, n=161, at p<0.05), but also prevented apoptosis in 93.6% 

phenotypically corrected embryos (n=47, Figure 4.5i).  
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Figure 4.5 Mek/Erk and Bcl-2 mediate RhoA signaling for cell survival 

control. Developmental defects and enhanced apoptosis caused by RhoA knockdown 

can be rescued successfully by forced expression of mRNA encoding zebrafish rhoA, 

mouse Mek and human BCL-2. Control MO-injected embryos are indicated as control. 

(a-e) 18-somite stage embryos, bright field, (f-j) 16-somite stage embryos, TUNEL-

positive cells are shown in green dots. (k-o) Percentages of normal embryos injected with 

rhoA MO1 alone or co-injected with rhoA MO1 and mRNAs encoding zebrafish rhoA, 

mouse Mek or human BCL-2 in the presence or absence of U0126 at 5-30 µM (l) and 15 

µM (m), SP600125 at 0.3-1.2 µM (n), or HA 14-1 at 1.5 µM (o). Different treatments are 

indicated in the x-axis, each repeated at least three times as described in the “Materials 

and Methods”. Abnormal embryos were scored according to their defects of “opaque” 

phenotype and overall reduction in body size and body length during somitogenesis 

(around 15-18 somites stage). Two populations (paired) t-test was applied. The 

difference between a and b is significant at p<0.05. Data sharing same letters are not 

significantly different at p<0.05. 

 

To further confirm that Mek/Erk acts downstream of RhoA to promote cell 

survival, the Mek inhibitor (U0126) [Hong et al. 2006] was used to block the activation 

of Mek/Erk in the embryos which was injected with rhoA MO1 alone, or co-injected with 

rhoA MO1 and mRNA encoding either Mek or rhoA. Serially diluted U0126 was tested 

on wild type embryos before it was applied on morphants at non-toxic concentration. As 

shown in Figure 4.5l, rhoA mRNA rescue could be inhibited by U0126 in a dose-

dependent manner. Compared to the group injected with rhoA MO1 alone (10.6% normal, 

n=251), U0126 abrogated both rhoA mRNA (from 40.5% normal, n=219, to 15.2% 

normal, n=240) and Mek mRNA rescue (Figure 4.5m, from 34.9% normal, n=250, to 

15.1% normal, n=248, at p<0.05). In contrast, no inhibition of rhoA mRNA rescue was 

seen for embryos treated with JNK inhibitor (SP600125) (Figure 4.5n). To further 
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substantiate the genetic link between RhoA and Mek, low concentration of U0126 and 

rhoA MO1 that would only cause mild developmental defects in few injected embryos 

were applied together to examine their possible synergy. Compared to the embryos 

injected with control MO alone (Figure 4.6a, e and m; 0.8% defected, n=67), rhoA MO1 

alone (Figure 4.6d, h and m; 15.3% defected, n=79) or control MO together with U0126 

treatment (Figure 4.6b, f and m; 5.7% defected, n=54), the effects observed upon rhoA 

MO1 injection together with U0126 treatment greatly increased to 52.8% embryos 

(Figure 4.6i, k and m, n= 108, at p<0.05). Taken together, these results demonstrate that 

RhoA could prevent apoptosis during zebrafish embryogenesis at least through the 

Mek/Erk pathway. 
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Figure 4.6 Mek/Erk and Bcl-2 act downstream of RhoA to control cell survival. With 

the combination of low concentration of rhoA MO1 or control MO (control) (1.15 

ng/embryo) injection and inhibitor treatment (U0126 at 17 µM or HA 14-1 at 1.7 µM), 

embryos appeared similar developmental defects and increased apoptosis as rhoA 

effective knockdown (at 2.4 ng/embryo). (a-d and i-j) 18-somite stage embryos, bright 

field, (e-h and k-l) 18-somite stage embryos, TUNEL-positive cells are shown in green 

dots. (m) Percentages of normal embryos injected with control MO alone, rhoA MO1 

alone, or in the presence or absence of U0126 or HA 14-1. Different treatments are 

indicated in the x-axis, each repeated at least three times, where abnormal embryos were 

scored according to the criteria as mentioned in Figure 4. Two populations (paired) t-test 

was applied. The difference between a, b and c is significant at p<0.05. Data sharing 

same letters are not significantly different at p<0.05. 
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4.1.4 RhoA knockdown suppresses bcl-2 expression  
 

In addition to activation of Mek/Erk pathway, we wonder whether RhoA may also 

prevent cells against apoptosis through antagonizing the intrinsic apoptotic pathway. 

Thus the protein level of Bcl-2, a critical anti-apoptotic gatekeeper for the intrinsic 

mitochondria pathway, was examined in rhoA morphants. Compared to control MO-

injected embryos, the protein level of Bcl-2 was significantly reduced in rhoA morphants 

(Figure 4.7). Consistently, ectopic expression of mRNA encoding human BCL-2 could 

correct both developmental defects in 29.1% embryos (Figure 4.4e and k, n=186, at 

p<0.05) and increased apoptosis in 97.7% phenotypically rescued embryos (n=43, Figure 

4.5j). Besides, antagonizing the anti-apoptotic function of Bcl-2 by its pharmacological 

inhibitor, HA 14-1 [Wang et al. 2000] (at a non-toxic concentration), effectively 

abolished all functional rescues elicited by rhoA (from 41.5% normal, n=149, to 21.9% 

normal, n=133, at p<0.05), Mek (from 35.7% normal, n=135, to 16.1% normal, n=106, at 

p<0.05), and BCL-2 mRNA (Figure 4.5o, from 31.6% normal, n=214, to 17.5% normal, 

n=168, at p<0.05). In contrast, Mek inhibitor, U0126, had no effect on the BCL-2 mRNA 

rescue (Figure 4.5m, from 28.2% normal, n=144, to 27.6% normal, n=95). Moreover, 

combined treatment of HA 14-1 with injection of rhoA MO1 at low concentration 

resulted in “opaque” phenotype, overall reduction of body size and body length, and 

enhanced apoptosis in 51.1% embryos (Figure 4.6c, g, j, l and m, n=141, p<0.05). 

Supporting this, high dose of HA 14-1 could induce very similar developmental defects 

as RhoA knockdown (Figure 4.8c). Taken together, these results suggest that Bcl-2, albeit 

mechanism unknown, may act as downstream response to anti-apoptotic signal from 

RhoA-Mek/Erk during zebrafish embryogenesis.  
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Figure 4.7 RhoA knockdown reduces bcl-2 expression. Embryos injected with control 

MO (control) and rhoA MO1 were lysed at 18-somite stage for Western blotting analysis 

using antibodies against RhoA and Bcl-2, as described in “Materials and Methods”. β-

Tubulin staining shows equal loading.  

 

 

 

 

 

 

 

Figure 4.8 Developmental defects caused by strong inhibition of Mek/Erk or Bcl-2 

signaling. (a-c) 18-somite stage embryos, lateral view, dorsal to the right, (a) wt, (b) 

embryos treated with U0126 at 35 µM, (c) embryos treated with HA 14-1 at 2.0 µM. For 

HA 14-1 treatment, embryos showed similar phenotype as rhoA morphants, including 

opaque region in head, deformed somites, and overall reduction of body size and length. 

For U0126 treatment, majority of embryos were dead. Few survived embryos showed 

severe apoptosis mainly at tail region, which led to loss of tail during further 

development. Scattered apoptosis was also seen in the head region in some embryos 

(data not shown). Arrowhead indicates the opaque and apoptosis regions. 
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4.2 Discussion 

4.2.1 RhoA controls cell survival via Mek/Erk activation during embryogenesis       
 

Rho GTPases are key regulators for cytoskeletal dynamics, but their involvement 

in executing apoptosis control during animal development is less well understood. Our 

present study shows that knockdown of RhoA in zebrafish causes increased apoptosis 

during embryogenesis, resulting in reduced body size and body length. Interestingly, the 

zebrafish rhoA morphants show some similar developmental defects as Erk2 knockout 

mice [Yao et al. 2003], but not to knockouts of other MAPKs including the Jnk and p38 

[Aouadi et al. 2006]. Consistently, the activation of Mek/Erk is greatly reduced in rhoA 

morphants, while p38 and Jnk signalings remain unaffected. Moreover, ectopic 

expression of Mek mRNA can faithfully correct such developmental abnormalities in 

rhoA morphants while inhibiting Mek/Erk by U0126 can block rhoA mRNA rescue in a 

dose-dependent manner. Furthermore, combined low dose of rhoA MO injection and 

U0126 treatment can recapitulate the level of apoptosis induced by RhoA knockdown. 

These data indicate that Mek/Erk activation is required for RhoA signaling to promote 

cell survival during embryonic development. However, distinct from Erk2 knockout mice, 

rhoA morphants exhibit unaltered cell fate determination [Zhu et al. 2006b], which is 

consistent with those observation in Xenopus [Tahinci et al. 2003]. Nonetheless, high 

dose of U0126 can induce embryonic lethality in the majority of treated embryos and 

severe apoptosis in few survivors (Figure 4.6b). Thise suggests that strong inhibition on 

Mek/Erk signaling could cause more severe embryonic defects than RhoA knockdown, 

reflecting broader biological roles of Mek/Erk in cell proliferation, cell cycle progression 

and gene transcription [Giehl 2005]. In addition, the genetic link between RhoA and 
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Mek/Erk pathway can be further supported by their reminiscent expression domain 

during embryonic development, e.g. rhoA [Zhu et al. 2006b] and erk [Krens et al. 2006] 

are both highly expressed in forebrain, midbrain-hindbrain boundary, hindbrain, eyes and 

tail region during zebrafish embryonic development. Indeed, the similar expression 

profile of RhoA and the phosphor-Erk are very conserved from fly to vertebrate, 

including Drosophila [Gabay et al. 1997a; Gabay et al. 1997b], Xenopus [LaBonne et al. 

1997; Christen et al. 1999; Wunnenberg-Stapleton et al. 1999] and mouse [Corson et al. 

2003], which suggests that the functions of these prauroteins could be linked during 

embryogenesis. 

4.2.2 RhoA prevents Bcl-2-dependent apoptosis via activation of Mek/Erk pathway  
 

Bcl-2, as one of earliest and best characterized anti-apoptotic proteins, plays a 

central role to inactivate the intrinsic apoptotic pathway by sequestering pro-apoptotic 

Bcl-2 family proteins (such as Bax) and blocking their targeting to mitochondria for 

cytochrome c release. Thus the ratio of anti-apoptotic Bcl-2 proteins with pro-apoptotic 

Bcl-2 family members is crucial for determination of cells surviving [Walensky 2006; 

Skommer et al. 2007]. Increasing evidence has shown that RhoA and Mek/Erk signalings 

are essential for cell survival by up-regulating the expression of Bcl-2 in a variety of cell 

lines [Navarro et al. 1999; Rios-Munoz et al. 2005], and ERK1/2 has been implicated to 

phosphorylate Bcl-2, leading to its full potency in anti-apoptotic function by stabilizing 

the Bcl-2-Bax heterodimerization in murine IL-3- dependent myeloid cell lines [Deng et 

al. 2000; Deng et al. 2001]. Consistently, our study demonstrates that the inactivation of 

Mek/Erk pathway and reduced Bcl-2 protein level caused by RhoA knockdown are 

closely associated with increased apoptosis in zebrafish rhoA morphants. Despite this, 
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our current study cannot rule out the involvement of other anti-apoptotic or pro-apoptotic 

Bcl-2 family members in RhoA-induced cell survival during zebrafish embryogenesis. 

This is because the pharmacological inhibitor, HA 14-1, may also inhibit Bcl-2 close 

homologue, such as Bcl-xL [Castelli et al. 2004; Doshi et al. 2006]. Besides,  RhoA and 

Mek/Erk have also been implicated to control the expression of other anti-apoptotic Bcl-2 

family members, such as Bcl-xL, myeloid cell leukemia-1 (Mcl-1) and pro-apoptotic Bcl-

2 family proteins including Bim, Bad and Bax, in a range of cell lines [Craxton et al. 

2005; Rios-Munoz et al. 2005; Betito et al. 2006; Del Re et al. 2007]. Nonetheless, our 

study supports the notion that RhoA-Mek/Erk signaling prevents intrinsic apoptosis in 

vivo at least through up-regulating the expression of bcl-2 (Figure 4.10). 

4.2.3 Actin dynamics control by RhoA as a possible link to apoptosis 
 

In addition to regulating the ratio of anti-apoptotic and pro-apoptotic Bcl-2 family 

proteins, the alteration of actin dynamics induced by RhoA knockdown may also 

contribute to apoptosis. It has been reported that an intact cytoskeleton mediated by 

Rho/ROCK is necessary for overall ERK1/2 activation and their nuclear translocation, as 

well as activation of transcription in SDF-1-stimulated cells [Zhao et al. 2006], whereas 

disruption of the actin cytoskeleton by inhibition of ROCK results in the induction of 

apoptosis in airway epithelial cells [Moore et al. 2004], human endothelial cells [Li et al. 

2002] and cytotoxic T lymphocytes [Subauste et al. 2000]. Similarly, disruption of actin 

cytoskeleton can also induce apoptosis mediated by Bcl-2 in MEK-transformed EpH4 

and MCF10A mammary epithelial cells [Martin et al. 2001; Pinkas et al. 2004]. On the 

contrary, stabilization of actin cytoskeleton by down-regulation of the actin severing 

protein, gelsolin [Harms et al. 2004] or by addition of jasplakinolide that induces the 
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accumulation of large F-actin aggregates can also lead to increased apoptosis in various 

cells [Posey et al. 1999; Odaka et al. 2000]. These data suggest that alterations in actin 

dynamics, either disruption or stabilization of actin cytoskeleton, could result in apoptosis. 

As such, this may help to explain the paradox that both down-regulation and over-

expression of RhoA could induce apoptosis in different cellular contexts. 

4.2.4 Cell survival is uncoupled from gastrulation control by RhoA 
 

Besides the prevention of cell death, cytoskeleton rearrangement regulated by 

RhoA during cell movements may also be mediated by Mek/Erk and Bcl-2 signaling 

pathways. It has been shown that Mek can enhance myosin light chain kinase (MLCK) 

activity and lead to phosphorylation of myosin light chains (MLC) in the control of cell’s 

motility [Klemke et al. 1997], while over-expression of Bcl-2 can inhibit actin 

depolymerisation to promote cell migration in myelocytic cell lines [Korichneva et al. 

1999]. Moreover, over-expression of Mek or Bcl-2 has also been reported to enhance the 

migration of a variety of cells including endothelial cells [Rikitake et al. 2000], human 

breast cancer cells [Del Bufalo et al. 1997], human bladder cancer cells [Miyake et al. 

1999], and glioma cells [Wick et al. 1998]. Consistently, our study shows that forced 

expression of either Mek or BCL-2 can correct gastrulation defect in rhoA morphants 

(Figure 4.9), suggesting Mek and Bcl-2 could act downstream of RhoA to control cell 

movement during zebrafish gastrulation. However, results from our splicing MO 

experiments revealed that knockdown of zygotic RhoA exhibit only reduced body 

size/length with increased apoptosis without any gastrulation movement defects. 

Therefore, our results imply that although these three proteins are important in both 
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processes, the mechanisms of their actions during CE movement and cell survival are 

likely to be different and could be uncoupled (Figure 4.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Mek/Erk and Bcl-2 mediate RhoA signaling for gastrulation cell 

movement. Gastrulation movement defect caused by RhoA knockdown can be rescued 

successfully by forced expression of mRNA encoding mouse Mek and human BCL-2. 

Control MO-injected embryos are indicated as control. (a-d) Tail bud stage embryos, 

lateral view, dorsal to the right, (e) Percentages of normal embryos injected with rhoA 

MO1 alone or co-injected with rhoA MO1 and mRNAs encoding mouse Mek or human 

BCL-2. Different treatments are indicated in the x-axis, each repeated at least three times 

as described in the “Materials and Methods”, where abnormal embryos were scored 

according to the defects in shortened anterior-posterior body axis. Two populations 

(paired) t-test was applied. The difference between a and b is significant at p<0.01. Data 

sharing same letters are not significantly different at p<0.05. 
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Figure 4.10 RhoA prevents apoptosis by activation of Mek/Erk pathways. 

 

 

 

 

 

 

 

 

 

 

During zebrafish embryogenesis, the anti-apoptotic effect of RhoA is elicited 

through activation of Mek/Erk signaling, which could antagonize the 

mitochondria-mediated intrinsic apoptotic pathway at least via the up-regulation 

of bcl-2 expression. Dotted lines indicate the effects between components, but the 

nature of their interaction (e.g. indirect or direct) remains to be investigated.  

 

4.3 Conclusion 
 

In summary, we have uncovered the genetic link between RhoA and Mek/Erk 

signaling as well as Bcl-2 in vivo, where RhoA prevents Bcl-2-dependent intrinsic 

apoptosis via activation of Mek/Erk pathway. This could pave the way to our better 

understanding of regulation for apoptosis by these key proteins and their related members 

during normal development and pathophysiological conditions.  
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Chapter 5 Concluding remarks 

5.1 Conclusions and contributions 

By using a combination of gene suppression and functional rescue experiments 

together with specific pharmacological inhibitors, we have demonstrated that RhoA is 

important for both cell movement and cell survival during zebrafish embryogenesis via 

different downstream signaling cascades. During zebrafish gastrulation, the basic body 

plan is established through four types of cell movements, namely epiboly, internalization, 

convergence and extension (CE). In our study, we find that RhoA acts downstream of 

non-canonical Wnt5 and Wnt11 to regulate CE movements, without affecting cell fate 

determination. This result not only extends our knowledge of the molecular mechanism 

underlying the gastrulation movements, it also supports the notion that the overlapping 

function of Wnt5 and Wnt11 in trunk region could be due to common downstream targets 

during zebrafish gastrulation. Besides, our study shows that the effect of RhoA on 

convergence and extension movements is elicited by two of its key downstream effectors, 

Rock and Dia, cooperatively. This is for the first time to demonstrate the cooperation 

between Rock and Dia in the control of cell movements in vivo, suggesting that zebrafish 

could be an excellent and powerful model system for further investigation of the roles of 

various classes of small GTPases in regulating cell dynamics in vivo. In addition to the 

control of CE movement, RhoA also plays a critical role in the prevention of cells from 

apoptosis during embryogenesis through activation of Mek/Erk signaling pathway and 

upregulation of bcl-2 expression. Moreover, ectopic expression of mRNA encoding for 

either MEK or BCL-2 can rescue gastrulation movement’s defects in rhoA morphants 
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sucessfully, suggesting that the Mek/Erk and Bcl-2 signaling are also involved in CE 

movement control during zebrafish gastrulation. However, knockdown of zygotic RhoA 

exhibits only reduced body size/length with increased apoptosis without any gastrulation 

movement defects, implicating that the cell survival is uncoupled from gastrulation 

control by RhoA. Taken together, our study has not only demonstrated the importance of 

RhoA in cell movements and cell survival in vivo, but also established a good in vivo 

model for better understanding of the regulation of these two processes by these key 

proteins (RhoA, Mek and Bcl-2) and their related members during normal development 

and pathophysiological conditions.  

5.2 Limitations 

The limitation of our study is mainly the result of inherent problems with the 

experimental model system and the morpholino (MO) technique employed. Zebrafish has 

been extensively accepted as an excellent model system for developmental and genetic 

studies, and MO is well known to mediate gene specific functional knockdown by either 

blocking gene translation or disrupting mRNA splicing. However, both of them have 

drawbacks. For example, similar to other experimental systems, maternally inherited 

gene products in zebrafish can often mask the effects elicited by MO. Our study and 

other’s work have shown that zebrafish RhoA protein is maternally provided. Although 

two non-overlapping translation-blocking MOs and one splicing-blocking MO can 

successfully disrupt rhoA translation or splicing, they have no effect on the maternal 

RhoA protein. Moreover, it is difficult to determinate how long the maternal RhoA 

protein lasts during embryonic development, because of the early and constant 
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expression of zygotic rhoA. Hence, the role of RhoA during very early embryogenesis 

could not be addressed by MO-based functional knockdown. 

Other MO drawbacks include short lifetime, no tissue or cell type specific 

inhibition, mis-targeting and toxicity. In general, MO can last for around 3-5 days, and it 

is normally microinjected into embryos at one-cell stage for even distribution. However, 

the ubiquitous inhibition of RhoA function in early embryogenesis by MO leads to 

lethality of majority of the morphants within 4 dpf. Therefore, the role of RhoA in later 

stage embryonic development could not be addressed in the current study. Recently, the 

mis-targeting and toxicity of MOs has attracted more and more attention. To avoid these 

possibilities, three RhoA-specific antisense MOs, one 5 bp-mismatch MO and one 

standard control MO combined with mRNA rescue have been applied. Although 

substantial evidence suggests that the developmental defects in rhoA morphants is due to 

knockdown of RhoA function, the effect of mis-targeting and toxicity of MOs could still 

not be completely ruled out.  

5.3 Suggestions for future studies 

In our study, we have demonstrated that RhoA is essential for both gastrulation 

movements and cell survival during zebrafish embryogenesis, which could be elicited by 

distinct downstream signaling pathways. Combined with previous studies in different 

model systems, all these experimental evidence reveals that RhoA plays widespread and 

diverse functions in multiple developmental processes. Therefore, how RhoA 

coordinately affects such distinct morphogenetic events in different developmental stage 

and tissue contexts of multi-cellular organisms needs to be further elucidated. One of the 
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possibilities could be the precise temporal and spatial regulation by its upstream 

regulators, such as the GAPs and GEFs. In mammals, more than 70 RhoGAPs and 80 

RhoGEFs have been identified, that presumably serve to regulate the 23 Rho proteins. 

This relatively large number of regulatory proteins could tightly control the activation of 

RhoA in particular regions at predetermined stages to elicit appropriate downstream 

responses. In addition, temporal-spatial expression of the multiple RhoA effectors may 

also contribute to diverse developmental functions mediated by RhoA. Therefore, 

detailed characterization of temporal and spatial expression profiles of each of the GAPs, 

GEFs and effectors for Rho GTPases during development, as well as their sub-cellular 

distribution during developmental processes would be great help in dissecting the 

molecular mechanism of Rho-mediated diverse functions during different developmental 

processes and  exploring cell lineage or tissue specific role of individual Rho proteins.  

Two major downstream effectors of RhoA, namely, Rock and Dia, have been 

shown to control cell migration by cooperative regulation of actin cytoskeleton 

rearrangement and microtubule stabilization in vitro. In our study, we have demonstrated 

that Rock and Dia coordinately elicit RhoA-mediated Wnt5 and Wnt11 signaling during 

zebrafish gastrulation movements, but that specific regulation of actin and microtubule 

dynamics in this process is still unclear. We also show that Mek/Erk and Bcl-2 can act 

downstream of RhoA to control both gastrulation movement and apoptosis during 

zebrafish embryogenesis. Although, accumulating studies suggest that actin-cytoskeleton 

arrangement could be involved in cell movements and apoptosis in vitro, the role of actin 

dynamics in these two processes in vivo remain largely unknown. Therefore, given the 

availability of actin- GFP/RFP and microtubule-GFP/RFP stable transgenic lines, the 
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optical transparent of zebrafish embryos during early development and the amenability to 

various cellular, molecular and genetic techniques, zebrafish could be an ideal model to 

address these questions in future.  

Besides the above, our current study focuses mainly on the understanding of the 

signaling mechanism underlying the role of RhoA in embryonic development. We have 

revealed the genetic links and functional relationship between RhoA and Wnt5/Wnt11 in 

the CE movements, and, RhoA with Mek/Erk as well as Bcl-2 in the cell survival during 

zebrafish embryogenesis. However, how are these signaling pathways linked? Are Rock, 

Dia and Mek/Erk as well as Bcl-2 cooperatively regulated in these two processes? Could 

RhoA activate Mek/Erk or Bcl-2 directly by forming a complex or indirect via other 

components? All these questions need to be further addressed.  

In addition to the understanding of the molecular basis of RhoA in cell movement 

and cell survival control during development, our current findings have immediate 

implications on the potential role of Rho GTPases in various pathophysiological settings 

including tumorgenesis that is closely associated with reduced cell death, increased cell 

proliferation and enhanced cell motility. Indeed, deregulation of RhoA activity has been 

detected in a variety of cancers in colon, breast, lung, testicular germ cell, head, and liver 

[Sahai et al. 2002a], while other close homologs such as RhoB and RhoC are also 

implicated to be cancer-promoting [Wheeler et al. 2004]. With the concerted regulation 

of Mek/Erk and Bcl-2 by RhoA as presented here, one would envisage that these 

tripartite signaling nodes should provide attractive alternatives for therapeutic 

intervention. Already, in acute myelogenous leukemia, synergistic induction of apoptosis 
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was achieved by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways 

[Milella et al. 2002], and RhoA GTPase inactivation by lipophilic statins induces 

osteosarcoma cell apoptosis through a caspase-dependent process by suppressing the 

ERK and BCL-2 signaling [Fromigue et al. 2006]. Besides the above, several stable 

transgenic lines with the overexpression of Rho GTPases specific in liver have been 

generated in our laboratory to investigate their function in tumorgenesis such as 

hepatocarcinoma. We hope that these stable transgenic lines would be valuable in vivo 

models for better our understanding of the cellular and molecular basis underlying 

tumorgenesis and malignancy, and for high-throughput pharmacological compounds 

screening in the discovery of the potential and promising anticancer drugs.  

Although our study has shed some light on the importance of RhoA during 

normal embryonic development, many questions remain to be addressed. With increasing 

findings about Rho small GTPases obtained from different model systems, their roles in 

physiological and pathological processes will be better understood, and to enable us to 

gain deeper understanding of the mechanism underlying related disease and to identify 

more effective therapeutic approaches. 
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