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Abstract 

ABSTRACT 

 
 Estrogen, a naturally-occurring female steroid growth hormone, has been 

implicated as a major risk factor for the development of breast cancer. Recent research 

into this disease has also correlated Annexin-A1 (Anx-A1), a gluccocorticoid-inducible 

protein, with the development of breast tumorigenesis. Since both estrogen and Anx-A1 

are implicated in breast cancer and have been shown in separate studies to be able to 

regulate the mitogen-activated protein kinase/ extracellular signal-regulated kinase 

(MAPK/ ERK) pathway, we hence hypothesize that estrogen (17-beta-estradiol/ E2) may 

induce the expression of Anx-A1 for the regulation of cell proliferation via the MAPK 

signalling pathway. Here, we show that prolonged exposure of MCF7 breast 

adenocarcinoma cells to high physiological levels of E2 led to an up-regulation of Anx-

A1 expression and a corresponding inhibition of cell proliferation. In addition, Anx-A1 

had direct anti-proliferative effects on cells, possibly via a constitutive over-activation of 

ERK. Finally, the anti-proliferative role of Anx-A1 was directly responsible, at least in 

part, for the reduced proliferation rates observed when cells were exposed to high E2 

doses for an extended period of time. We thus believe that Anx-A1 may act as a tumor 

suppressor in cells and that its expression can be increased in times of need to put a brake 

on uncontrolled cellular proliferation. 

(208 words) 
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Introduction 

1. INTRODUCTION 
 

 
 Breast cancer stands as one of the most common cancers among females and the 

second leading cause of cancer mortality for all women as of today1. As with all cancers, 

the cause of the disease is multi-factorial and several factors (including age, reproductive 

status and environmental insults) have been suggested to be associated with its 

development. In addition, there is also substantial evidence suggesting that high estrogen 

levels in postmenopausal women are associated with an increased risk to breast cancer, 

although the same association has not been established convincingly in pre-menopausal 

females (Bernstein and Ross, 1993). Yet, the mechanism by which estrogen may cause 

cancer remains unclear. It has been suggested that estrogen may promote breast cancer 

development by encouraging cell proliferation since it is a steroid growth hormone which 

promotes growth of breast tissues. In addition, studies have also shown that mammary 

tumors may be initiated by carcinogenic metabolites of estrogen which may react with 

DNA to induce oncogenic mutations (Devanesan et al., 2001 and Fernandez et al., 2006). 

The link between estrogen and an increased risk of breast cancer is hence very real and 

significant.  

 

 With a high incidence of breast cancer mortality throughout the world population, 

it is not surprising that research into this area has been conducted extensively. In 1993, a 

research study conducted by Schwartz-Albiez et al. became one of the earliest studies to 

link breast cancer development to a particular group of proteins termed as annexins. In 

this study, a protein with a molecular weight of 38 kD was extracted from rats and human 

                                                           
1 From the American Cancer Society – last revised on the 26th of September 2006 
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Introduction 

mammary tumor cell lines using affinity chromatography techniques and was 

subsequently identified as Annexin A2 (Anx-A2) using western blot analysis (Schwartz-

Albiez et al., 1993). Yet, interestingly, ensuing investigations showed that while Anx-A2 

was found to be present in normal and tumor mammary gland cells, an evolutionarily 

related protein, Annexin A1 (Anx-A1), was found to be conspicuously absent in normal 

human mammary gland cells. In vivo studies on the expression of Anx-A1 in mammary 

tissues were thus conducted and it was discovered that within the acini and ductal 

myoepithelium, Anx-A1 was found only in normal and not tumorigenic mammary gland 

cells. Yet, in the stroma, Anx-A1 could only be found in tumor and not normal stromal 

cells (Schwartz-Albiez et al., 1993). This differential expression of Anx-A1 in normal 

and malignant mammary cells thus highlights the possibility that Anx-A1 may be 

regulated differently in normal and tumorigenic tissues - a likelihood which was 

augmented when a study conducted by Ahn et al. in 1997 showed that Anx-A1 

expression was not demonstrable in the ductal cells of normal tissues and benign tumors, 

but was generally present in malignant tissues (Ahn et al., 1997).  

 

The disparate expression of Anx-A1 in normal and malignant mammary cells may 

suggest that this protein could be regulated differently during the process of 

tumorigenesis, which could in turn imply that Anx-A1 may play a specific role in breast 

cancer development. While the exact physiological functions of Anx-A1 remain unclear, 

it has been suggested to play a part in many diverse functions, including cell 

proliferation, differentiation and apoptosis, all of which are intimately linked to the 
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process of cancer development. It is hence of interest for us to examine in greater detail, 

the possible linkage between Anx-A1 and breast cancer. 

 

Anx-A1 

 Anx-A1 (also known as lipocortin-1) belongs to the annexin super family of 

proteins, which consists of a relatively large family of calcium and phospholipid-binding 

proteins that are evolutionarily conserved throughout animal and plant kingdoms (Gerke 

and Moss, 2002). By definition, an annexin protein has to fulfill two criteria – (1) it 

should be capable of binding (or ‘annexing’) to negatively-charged phospholipids in a 

calcium-dependent manner, and (2) it has to contain a conserved structural element 

termed as the ‘annexin repeat’, a segment of approximately 70 amino acid residues 

(Gerke and Moss, 2002). In addition, each annexin protein is composed of two major 

domains – a divergent N-terminal region and the conserved C-terminal protein core. 

While the C-terminal core harbors the calcium and membrane binding sites, the N-

terminal regions of annexins show much less similarity. It is not surprising hence, that the 

specific functions of different annexins are largely determined by their unique N-terminal 

regions (Nevid and Horseman, 1996).  

 

 Despite the fact that Anx-A1 makes up approximately 2 - 4% of total cytosolic 

protein in many cells and tissues, its endogenous physiological function(s) have remained 

largely unclear (Lim and Pervaiz, 2007). Nevertheless, many postulations have been 

proposed and unsurprisingly, most of them had focused on the anti-inflammatory and 

anti-migratory properties of Anx-A1 (Lim and Pervaiz, 2007), since it was first 
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discovered as a 37 kD protein factor which was induced by gluccocorticoids to suppress 

the inflammatory mediators of the ecosanoid family (Ahluwalia et al., 1996). Anx-A1 

can thus, act as an endogenous anti-inflammatory protein which exerts its anti-

inflammatory effects via down-regulation of phospholipase A2 activity and the 

subsequent inhibition of phospholipase A2-dependent inflammatory mediators such as 

prostaglandins and leukotrienes (Ahluwalia et al., 1996).  

 

 However, the anti-inflammatory effects of Anx-A1, albeit potent, are apparently 

not sufficient to represent the full spectrum of Anx-A1’s potential physiological 

functions. In 1990, it was noted that proliferating fibroblasts induced Anx-A1 production 

by about three to four fold, while the expression levels of other annexins remained 

relatively low in dividing cells (Schlaepfer and Haigler, 1990). In 1996, the proliferative 

potential of Anx-A1 was further reiterated by studies which showed that phosphorylation 

of Anx-A1 could act as a signal transducer to amplify the proliferating signal of the 

hepatocyte growth factor (Skouteris and Schroder, 1996). Yet, the role of Anx-A1 in the 

regulation of cell proliferation is not without controversy. Various studies have also 

independently, demonstrated an inhibitory role for Anx-A1 in cell growth and 

proliferation. As early as 1993, Croxtall et al. had already shown that peptide fragments 

of Anx-A1 were able to inhibit growth of lung cancer cells and block epidermal growth 

factor-induced stimulation of cell proliferation (Croxtall et al., 1993). A decade later, 

Alldridge and Bryant also reported that Anx-A1 could inhibit cell growth by disrupting 

the actin cytoskeleton and inhibiting cyclin D1 expression via a constitutively sustained 

activation of the ERK 1/2 MAPK signal (Alldridge and Bryant, 2003).   
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 Various other possible roles of Anx-A1 have also been suggested. In 2000, Rhee 

et al. reported that Anx-A1 could perhaps act as a stress protein as its expression was 

strongly induced upon cellular stresses such as heat and chemicals (Rhee et al., 2000). In 

2003, yet another plausible function of Anx-A1 was discovered – that of cellular 

apoptosis. Arur et al. had observed that Anx-A1 acted as an endogenous ligand which 

mediated apoptotic cell engulfment in a caspase-dependent manner both in vitro in 

various cell lines, and in vivo, in the nematode C. elegans (Arur et al., 2003). 

 

 It should be noted however, that although various potential functions of Anx-A1 

have been suggested in different studies, the exact physiological function(s) of Anx-A1 

remain to be elucidated. Work in this direction is hence important, especially if we are to 

achieve a deeper understanding of the possible role(s) of Anx-A1 in tumorigenesis.  

 

Anx-A1 and cancer 

 Since its discovery as a major cellular substrate for tyrosine phosphorylation by 

the epithelial growth factor (EGF) receptor, Anx-A1 has been implicated in various 

pathways known to be subverted or involved in cancer (Gerke and Moss, 2002). One of 

this is the ERK cascade - a major cell signalling pathway involved in the regulation of 

cell proliferation (Alldridge and Bryant, 2003). However, research in this area has been 

conflicting, and the major difficulty comes in the reconciliation of all the diverse reported 

effects of Anx-A1 on MAPK signalling, calcium-ions mobilization and apoptosis etc. 

(Gerke and Moss, 2002). While Anx-A1 has been shown to be strongly down-regulated 

in prostate cancer (Xin et al., 2003), head and neck cancer (Garcia Pedrero et al., 2004) 
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and oesophageal cancer (Hu et al., 2004), it was observed to be up-regulated in 

hepatocarcinoma (De Coupade et al., 2000) and pancreatic cancer (Bai et al., 2004).  

Clarification of these seemingly contradictory data will thus require much future work. 

 

 An important point to note is that while the correlation between cancer 

development and the up/down-regulation of Anx-A1 may appear striking, evidence in 

support of any causative role(s) for Anx-A1 in the development of the disease is still 

mainly circumstantial (Gerke and Moss, 2002) and requires further investigation. It is 

thus, our objective to examine the possible role(s) of Anx-A1 in breast cancer. In this 

study, we will hence specifically look at the possible regulation of Anx-A1’s expression 

and function(s) by estrogen in the breast cancer cell line MCF7.  

 

The possible linkage between estrogen, Anx-A1 and breast cancer development 

 It was mentioned earlier that prolonged exposure to estrogen has been identified 

as a major risk factor in the development of breast cancer and that Anx-A1 has also been 

implicated in the development of breast tumorigenesis. However, reports on the exact 

role of Anx-A1 in breast cancer have been conflicting. While earlier studies have shown 

Anx-A1 to be up-regulated in mammary adenocarcinoma (Ahn et al., 1997, Pencil and 

Toth, 1998), a recent report has demonstrated that a decreased Anx-A1 expression was 

correlated with development and progression of the disease, as determined by a tissue 

microarray analysis (Shen et al., 2006). Although it has been suggested that the 

contradictory reports on the expression of Anx-A1 in breast cancers may be correlated 

with estrogen receptor status (Lim and Pervaiz, 2007), an obvious association has not 
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been established. It is hence of interest for us to determine if Anx-A1 expression can be 

regulated by estrogen, since if Anx-A1 expression can indeed be induced by estrogen, 

disparate levels of estrogen and differing estrogen receptor status among individuals may 

well account for the inconsistencies observed with regards to Anx-A1 levels and breast 

cancer development.  

 

In addition to the fact that both estrogen and Anx-A1 have been linked to the 

development of breast tumorigenesis, another reason which suggests a possible linkage 

between the two is that Anx-A1 was first discovered as a gluccocorticoid-inducible 

factor. It is hence plausible that estrogen, being a naturally-occurring female steroid 

growth hormone chemically related to gluccocorticoids, may be able to induce the 

expression of Anx-A1 as well. 

 

 Moreover, both Anx-A1 and estrogen have been implicated in various 

independent studies, in the regulation of the MAPK/ ERK signalling pathway – a 

pathway often dysregulated in the events leading to the development of the cancer 

phenotype. The core of the MAPK cascade consists of an evolutionarily conserved 

module of three sequentially activated protein kinases, whereby catalytic activation of the 

MAP kinase (MAPK) requires phosphorylation by an upstream MAPK kinase (MAP2K/ 

MAPKK/ MEK), which is in turn, activated by yet another kinase upstream of itself 

(MAP2K kinase/ MAP3K/ MAPKKK/ MEKK) (Wilkinson and Millar, 2000). Since the 

activation of effector MAP kinases (the best characterized of which, belong to the 

mammalian extracellular signal-regulated kinase (ERK) family) results in multiple effects 
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ranging from the phosphorylation of cytoplasmic targets to the modulation of 

transcription factors that regulate gene expression (Wilkinson and Millar, 2000), it is not 

surprising that the activation/ inactivation kinetics of the MAPK signalling pathway have 

been associated with various biological responses, including cell proliferation and 

transformation (Alldridge and Bryant, 2003). As the functions of both Anx-A1 and 

estrogen may converge via this common pathway, it is hence possible that estrogen may 

somehow regulate the expression of Anx-A1 during its course of action in the cell. 

 

 We thus hypothesize that 17-beta-estradiol (E2), the major estrogen synthesized 

by the ovaries of the human female, can induce Anx-A1 expression in estrogen receptor-

positive breast adenocarcinoma cells (MCF7 cells), and that this induction may have a 

role in regulating cell proliferation. Research into this area can hence enhance our 

understanding of the possible role(s) of Anx-A1 in tumorigenesis, which is at present, 

fairly limited as evidence in support of any causative role(s) for Anx-A1 in the 

development of the disease is still mainly circumstantial (Gerke and Moss, 2002). At the 

same time, such investigations can also perhaps, pave the way for novel therapeutics for 

the disease via targeting of the protein and/or lead to the possible identification of Anx-

A1 as a potential biomarker in breast cancer development and progression.  
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Objectives of study 

2. OBJECTIVES OF STUDY 
 
 

(1) To investigate if E2 can regulate Anx-A1 expression levels in MCF7 
breast cancer cells and if so,  

 
(2) To investigate if the regulation of Anx-A1 by E2 has a physiological 

function  
 

(3) To examine the possible role(s) of Anx-A1 in breast tumorigenesis 
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Materials and Methods 

3. MATERIALS AND METHODS 
 
 

3.1 Tissue Specimens 
 

Breast tissue surgical samples were obtained from the Tissue Repository Centre 

of the National University Hospital (NUH). Tumour and matched control samples were 

requested from female patients who had not undergone any drug treatment. Samples 

collected were immediately homogenized and proteins were extracted on the day of 

collection. 

 

3.2 Tissue Homogenization and Protein Extraction 

 50-100 mg of tissue sample was homogenized in 1 ml of TRIzol Reagent 

(Invitrogen, Life Technologies) using a polytron power homogenizer. TRIzol Reagent is 

a ready-to-use reagent for the isolation of total RNA, DNA and proteins from cells and 

tissues. Insoluble material was then removed from the homogenate by centrifugation at 

12,000 x g at 2 to 8oC. Excess fats at the top layer were removed and the cleared 

homogenate solution was transferred to a fresh tube. 

Homogenate solutions were incubated for 5 min at room temperature and 0.2 ml 

of chloroform (Sigma Aldrich, St. Louis, USA) per 1 ml of TRIzol Reagent was then 

added. The tubes were shaken vigorously by hand for 15 s and incubated at room 

temperature for another 2 to 3 min. The tubes were next centrifuged at 12,000 x g for 15 

min at 2 to 8oC. Following centrifugation, the mixture separated into a lower red, phenol-

chloroform phase, an interphase and a colourless upper aqueous phase.  

The upper aqueous phase (containing RNA) was removed completely and 0.3 ml 

of absolute ethanol was next added. The samples were then incubated at room 
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temperature for 2 to 3 min and the DNA from the tissues was sedimented by 

centrifugation at 2,000 x g for 5 min at 2 to 8oC.  

Proteins were removed from the phenol-ethanol supernate with 1.5 ml of 

isopropyl alcohol. The samples were kept at room temperature for 10 min and the protein 

precipitate was sedimented at 12,000 x g for 10 min at 2 to 8oC. The supernatant was 

removed and the protein pellet was washed three times in 2 ml of a solution containing 

0.3 M guanidine hydrochloride in 95% ethanol. During each wash cycle, the protein 

pellet was stored in the wash solution for 20 min at room temperature and then 

centrifuged at 7,500 x g for 5 min at 2 to 8oC. After the final wash, the protein pellet was 

vortexed in 2 ml of absolute ethanol. The protein pellet was stored in ethanol for 20 min 

at room temperature and centrifuged at 7,500 x g for 5 min at 2 to 8oC. The protein pellet 

was next vacuum-dried for 5 to 10 min and dissolved in 1% SDS. Samples were later 

analyzed by western immunoblotting or stored at -20oC for future use.  

 

3.3 Cell Culture  

The human breast adenocarcinoma cell lines (MCF7 and MDA-MB-231) were 

obtained from the American Type Culture Collection (ATCC) and cultured in RPMI 

1640 media (Hyclone Laboratories) supplemented with 10% fetal bovine serum (FBS), 

1% L-glutamine and 1% penicillin-streptomycin (GIBCO-BRI, Gaithersburg MD, USA). 

These monolayer cells were maintained in a 37oC incubator with 5% CO2. Cells were 

checked regularly under the light microscope and were sub-cultured when they reached 

70-80% confluence.  
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24 hrs prior to drug treatment, cells were incubated with charcoal-treated cell 

culture medium. The constituents of the charcoal-treated medium were exactly the same 

as those mentioned above except that the 10% FBS was replaced by 10% charcoal-treated 

FBS. Charcoal-treated FBS was made by adding 0.5 g of activated charcoal (Sigma 

Aldrich, St. Louis, USA) to 50 ml of sterile FBS. The FBS was then left to stand at room 

temperature for one hour before it was centrifuged at 3,000 rpm for 10 min. The 

supernatant was removed and the above steps were repeated for a total of three times 

before the FBS was syringe-filtered and stored at -20oC under sterile conditions.  

MCF7 cells are estrogen-receptor positive breast cancer cells which have been 

shown previously to express Anx-A1. This thus supports the use of MCF7 cells in this 

study. In contrast, MDA-MB-231 cells lack the estrogen receptor-alpha, and were hence, 

used as a control in our experiments.  

 

3.4 Drug Treatment 

 Two days prior to drug treatment, 106, 800,000 or 650,000 cells were seeded in 25 

cm2 flasks in normal cell culture medium (for drug treatment over 24, 48 or 72 hrs 

respectively). One day later, the medium was replaced by charcoal-treated cell culture 

medium. The treatment of cells with charcoal-treated medium is a well-established 

method commonly employed in studies involving the usage of steroid hormones.  Since 

the activated charcoal would absorb the hormones present in the FBS, the pre-treatment 

of cells in charcoal-treated medium for a short while before drug treatment would allow 

for the removal of confounding factors, namely, the presence of other endogenous steroid 

hormones (such as estrogen and gluccocorticoids) within the FBS of the cell culture 
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medium. This is especially important in our study as it was observed by previous groups 

that the presence of endogenous gluccocorticoids in serum induced large amounts of 

Anx-A1 which in turn, masked any subsequent gluccocorticoid-induction of Anx-A1 

(Croxtall and Flower, 1992). 

 On the day of drug treatment, cells were incubated in fresh charcoal-treated 

medium. 17-beta-estradiol (Sigma Aldrich, St. Louis, USA) and/or tamoxifen (Sigma 

Aldrich, St. Louis, USA) were added at final concentrations of 10-7 M, 10-9 M and 10-11 

M. These concentrations were chosen because they represent the general physiological 

concentrations of estrogen in reproductive and post-reproductive females. 17-beta-

estradiol (E2) is one of the three naturally-occurring estrogens in the human body. It was 

utilized in our study because it is the most potent estrogen of the three and also, because 

it is the major estrogen synthesized by the ovaries of the human female. Tamoxifen was 

used because it is known to have both mildly estrogenic and anti-estrogenic effects on 

cells.  

Cells were harvested at different time-points (24 hrs, 48 hrs and 72 hrs) after drug 

treatment. 

 

3.5 MAPK Inhibition Studies 

For MAPK inhibition studies, cells were pre-treated with a MEK inhibitor, U0126 

(Promega), in solution or with DMSO as a control. On the day of drug treatment, MCF7 

cells were first serum-starved for 2 hrs before being incubated with 10 mM of U0126 for 

1.5 hrs. 10% charcoal-treated FBS and appropriate drug concentrations were then added 

before cells were maintained under normal cell culture conditions mentioned previously. 
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3.6 Extraction of Total Cellular Protein 

Following drug treatment, cells were washed with ice cold 1X PBS and 

immediately placed at -20oC for 5 min. This procedure is essential in maintaining the 

phosphorylation status of proteins of interest. The cells were then scraped in the presence 

of a lysis buffer (200 μl per 3 x 106 cells) which consists of 10 mM HEPES (pH 7.9) 

(Sigma Aldrich, St. Louis, USA), 10 mM KCl (Merck & Co., Inc.), 0.1 mM EDTA, 10% 

NP40, 1X protease inhibitor (Pierce Biotechnology), phosphatase inhibitor – 50 μM 

okadaic acid (Sigma Aldrich, St. Louis, USA) and 200 mM sodium vanadate (Sigma 

Aldrich, St. Louis, USA). This mixture was kept on ice at all times and vortexed for 1 

min every half an hour. After 2 hrs, the lysate was centrifuged at 12,000 x g for 20 min at 

4oC. The supernatant was then collected and subsequently stored at -20oC until evaluation 

by SDS-PAGE analysis.   

 

3.7 Fractionation of Cells 
 

In some experiments, cells harvested following drug treatment were also 

fractionated into membranal, cytoplasmic and nuclear fractions to allow for the study of 

Anx-A1 in different cellular fractions. The cytoplasmic fractions were then analyzed for 

Anx-A1 expression. 

Cells were washed twice with ice cold 1X PBS and resuspended in 400 μl of a 

buffer consisting of 10 mM Hepes (pH 7.9) (Sigma Aldrich, St. Louis, USA), 10 mM 

KCl, 1.5 mM MgCl2 and 1X protease inhibitor (Pierce Biotechnology) for 15 min. 25 μl 

of NP40 lysis buffer (Sigma Aldrich, St. Louis, USA) was then added and the mixture 

was vortexed for 15 seconds before being left to stand on ice for 1 min. This mixture was 
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centrifuged at 16,000 x g for 5 min at 4oC. The supernatant, consisting of the cytoplasmic 

and membranal fractions, was further spun using ultra-centrifugation at 100,000 x g for 1 

hr. After spinning, the supernatant containing the cytoplasm was collected and transferred 

to a fresh tube. All cytoplasmic samples were stored at -20oC until further evaluation.  

 

3.8 Protein Determination 

5 μl of protein albumin standards with known protein concentrations (Pierce 

Biotechnology) or 1 μl of protein sample was added to 150 μl of Comassie PlusTM Protein 

Assay Reagent (Pierce Biotechnology). Absorbance was measured at a wavelength of 

595 nm and the absorbance intensities of the protein standards were plotted to obtain a 

standard curve. Absorbance intensities of protein samples were then read off the standard 

curve to determine the amount of protein within the sample.  

 

3.9      SDS-PAGE and Western Immunoblot Analysis  
 
 Equal amounts of protein from each sample were subjected to 15% SDS-PAGE at 

a constant voltage of 125 V. The proteins were then transferred onto nitrocellulose 

membranes (Bio-Rad Laboratories) using a wet transfer apparatus (Bio-Rad 

Laboratories). 

 Following transfer, the membranes were washed with distilled water to remove 

traces of transfer buffer and then air-dried for several hours to allow for firm binding of 

proteins to membranes.  The membranes were rewetted with 1X TBS and blocked with 

5% w/v milk proteins in 1X TBST (BLOTTO) for 1 hr. Membranes were then washed for 

15 min with 1X TBST (TBS with 0.05% Tween 20) before incubation with the 
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appropriate primary antibody (see table below) at 4oC overnight. Membranes were next 

washed thrice with 1X TBST for a total of 30 min before incubation with secondary 

antibodies (see table below) conjugated to horseradish peroxidase for 1 hr. Three washes 

lasting 10 minutes each were carried out prior to the addition of the chemiluminiscent 

West Pico Substrate (Pierce Biotechnology). Blots were then exposed to X-ray films until 

bands were clearly seen after film development. 

 Primary Antibody Dilution

 
Secondary Antibody 
(HRP conjugated) 

 

Dilution

 
Monoclonal mouse anti-Anx-A1 
antibody (Biosource) 
 

1:3000 Goat anti-mouse IgG 
(Pierce Biotechnology) 1:5000 

 
Monoclonal mouse anti-p21waf/cip 
antibody (Santa Cruz) 
 

1:1000 Goat anti-mouse IgG 
(Pierce Biotechnology) 1:5000 

 
Polyclonal rabbit anti-phosphorylated 
p44/42 MAPK antibody (Cell Signaling 
Technology) 
 

1:2000 Goat anti-rabbit IgG 
(Pierce Biotechnology) 1:5000 

 
Polyclonal rabbit anti-p44/42 MAPK 
antibody (Cell Signaling Technology) 
 

1:2000 Goat anti-rabbit IgG 
(Pierce Biotechnology) 1:5000 

 
Monoclonal mouse anti-alpha-tubulin 
antibody (Santa Cruz) 
 

1:5000 Goat anti-mouse IgG 
(Pierce Biotechnology) 1:5000 

 
Monoclonal mouse anti-beta-actin 
antibody (Santa Cruz) 
 

1:5000 Goat anti-mouse IgG 
(Pierce Biotechnology) 1:5000 
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3.10 Western Blot Quantification 

 Where applicable, western blots were scanned at 600 dpi for densitometric 

quantification, using the NIH Image 1.37 software. Western blot densitometric values 

were then normalized with that of a control band (alpha-tubulin or ERK 1) so as to 

compare changes in protein expression or activation levels. Although the quantification of 

proteins by western blot densitometry reflects the nature of an indirect measurement 

method and does not directly indicate actual amounts of detected proteins, these 

measurements do however provide informative comparisons for relative amounts of 

proteins of interest.  

 

3.11 RNA Extraction 

Cells grown in each 25 cm2 flask were lysed directly by adding 2.5 ml of TRIzol 

Reagent (Invitrogen, Life Technologies), and passing the cell lysate through a pipette. 

Samples were then incubated for 5 min at room temperature and 0.2 ml of chloroform 

(Sigma Aldrich, St. Louis, USA) per 1 ml of TRIzol Reagent was added. The tubes were 

shaken vigorously by hand for 15 s and incubated at room temperature for another 2 to 3 

min. The tubes were next centrifuged at 12,000 x g for 15 min at 2 to 8oC. Following 

centrifugation, the mixture separated into a lower red, phenol-chloroform phase, an 

interphase and a colourless upper aqueous phase. The RNA which remained exclusively 

in the aqueous phase was then transferred into a fresh tube. 

RNA was precipitated from the aqueous phase by adding 0.5 ml of isopropyl 

alcohol per 1 ml of TRIzol reagent used for the initial cell lysis. Samples were then 

incubated at room temperature for 10 min and centrifuged at 12,000 x g for 10 min at 2 to 
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8oC. Following removal of the supernatant, the RNA pellet was washed once with 1 ml of 

75% ethanol per 1 ml of TRIzol Reagent used for the initial cell lysis. Samples were then 

mixed by vortexing and centrifuged at 7,500 x g for 5 min at 2 to 8oC. At the end of the 

procedure, the RNA pellet was air-dried for 5 to 10 min and dissolved in RNase-free 

water. All RNA samples were stored at -70oC and analyzed within a week by subsequent 

RT-PCR and DNA gel electrophoresis analysis.  

 

3.12     RT-PCR and DNA Gel Electrophoresis 

 RT-PCR was performed on total RNA extracted from MCF7 cells using the 

Qiagen® OneStep RT-PCR Kit (Qiagen Inc., CA, USA), which contains optimized 

components that allow both reverse transcription and polymerase chain reaction 

amplification to take place in a “one-step” reaction. Procedures were carried out in 

accordance to manufacturer’s instructions, using 1 μg of template RNA per reaction. 

(RNA concentration was determined by using a spectrophotometer with an ultraviolet 

absorbance set at 260 nm). The following primers were used: 

Anx-A1 Forward Primer (1st Base):  
5’-CTG GAA GCT TTG GTA TCA GAA TTC CTC AAG C-3’ 

Anx-A1 Reverse Primer (1st Base): 
5’-TCC TCC TAG AGT TTC CTC CAC AAA GAG CC-3’ 

GAPDH Forward Primer (1st Base): 
5’-AAC ACA GTC CAT GCC ATC AC-3’ 

GAPDH Reverse Primer (1st Base): 
5’-TCC ACC ACC CTG TTG CTG TA-3’ 
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 PCR was performed using the following parameters: 1 cycle for 30 min at 50oC 

for reverse transcription; 1 cycle for 15 min at 95oC for initial PCR activation; 25 or 29 

cycles at 94oC, 68oC and 72oC for 1 min each (for GAPDH and Anx-A1 cDNA 

amplification respectively); 1 cycle for 10 min at 72oC for the final extension; and 1 cycle 

at 4oC for overnight storage. 

 PCR products were separated by 1.5% agarose gel electrophoresis in 1X TAE 

electrophoresis buffer and visualized by ethidium-bromide staining. The resulting 

florescent bands were then video-digitalized by a GelDoc 1000UV-Gel camera and PCR 

products were identified as a single band corresponding to expected molecular sizes. 

 

3.13     Transfection Studies 

For functional studies involving Anx-A1, MCF7 cells were transfected with either 

Anx-A1 siRNA or a plasmid expressing Anx-A1, to produce cells with lower or higher 

Anx-A1 levels (as compared to normal cells) respectively.  

 

3.13.A  Transfection with Anx-A1 siRNA 

Cells were transfected with Anx-A1 siRNA (Dharmacon SMARTpool® siRNA) to 

produce MCF7 cells with lower levels of Anx-A1 as compared to normal MCF7 cells. 

Two sets of control experiments were also performed, whereby the cells were either 

transfected with scrambled ANX-A1 siRNA (Qiagen Inc., CA, USA), or the transfection 

reagent – oligofectamine (Invitrogen, Life Technologies) alone. (Scrambled siRNA 

sequence: sense strand – r(GGG GAC AUA CGU AAA CGU G)dTdT; anti-sense strand: 

r(CAC GUU UAC GUA UGU CCC C)dTdT) 
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On the day before transfection, 120,000 MCF7 cells were seeded in each well of a 

6-well plate. 3 hrs prior to transfection, the cell culture medium was replaced with serum-

free RPMI. 5 μl (100 nM) of siRNA and 12 μl of oligofectamine were then separately 

added to 70 μl of serum-free RPMI in the absence of antibiotics. This was then mixed 

gently and incubated at room temperature for 20 min to allow for the formation of the 

siRNA-oligofectamine complex. The cells were next incubated with the siRNA-

oligofectamine complexes in a 37oC incubator supplemented with 5% CO2 for 5 hrs, after 

which, 2 ml of normal cell culture medium was added. Transfected cells were then 

maintained in the incubator overnight, before being subjected to further tests or for 

protein extraction. 

 

3.13.B  Transfection with pcDNA3.1-V5 plasmid 

To produce MCF7 cells that over-express Anx-A1, a pcDNA3.1-V5 plasmid2 

expressing human Anx-A1 was used. The Anx-A1 was amplified by PCR using human 

peripheral blood mononuclear cells’ cDNA and PCR primers, and was then cloned in 

frame (without the stop codon) with the V5 tag at the COOH terminus.  

MCF7 cells were transfected using the same procedure as described above, except 

that the siRNA was replaced with the plasmid vector and that the transfection reagent 

used was replaced with SuperFect transfection reagent (Qiagen Inc., CA, USA). Cells 

transfected with an empty pcDNA3.1 plasmid and cells transfected with the SuperFect 

transfection reagent alone were used as controls. 

 

                                                           
2 The plasmid was kindly provided by Professor Fulvio D'Acquisto from the William Harvey Research 
Institute, Queen Mary's School of Medicine and Dentistry, London. 
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3.14  Cell Proliferation Assays  

 Both Cell Titer 96® Aqueous One Solution Cell Proliferation Assay (Promega) and 

alamarBlue® assay (Biosource) are colorimetric methods used for the determination of 

the number of viable cells in proliferation assays. While the former contains a novel 

tetrazolium compound which is bio-reduced by cells to a colored formazan product that is 

soluble in cell culture medium, the alamarBlue® assay incorporates an oxidation-

reduction indicator that both fluoresces and changes color in response to chemical 

reduction of growth medium resulting from cell growth. 

 

3.14.A  Cell Titer 96® Aqueous One Solution Cell Proliferation Assay 

1,500 cells were plated in each well of a 96-well plate and left to adhere for a 

minimum of 4 hrs, after which the cell culture medium was aspirated and replaced with 

100 μl of charcoal-treated cell culture medium. After 24 hrs, this was replaced with fresh 

charcoal-treated medium and drugs were added in the appropriate concentrations. After 

drug treatment, 20 μl of Cell Titer 96® Aqueous One Solution reagent was added into each 

well and the plates were left to incubate in a 37oC incubator with 5% CO2 for 3 hrs. The 

absorbance intensities were then measured at 490 nm and the cell proliferation relative to 

the control sample was calculated using the formula below: 

Mean of triplicate optical density values of test sample      X 100% 
Mean of triplicate optical density values of control 
 
 
3.14.B  alamarBlue® Assay 

1,500 cells were plated in each well of a 96-well plate and left to adhere for a 

minimum of 4 hrs, after which the cell culture medium was aspirated and replaced with 
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200 μl of charcoal-treated cell culture medium. After 24 hrs, this was replaced with fresh 

charcoal-treated medium and drugs were added in the appropriate concentrations. 1 day 

following the addition of drugs, 20 μl of alamarBlue® reagent was added into each well 

and the plates were left to incubate in a 37oC incubator with 5% CO2. The proliferation 

status of cells was continuously monitored over a period of up to 5 days, with absorbance 

intensities being measured at two different wavelengths of 570 nm and 600 nm everyday. 

Cell proliferation relative to the control sample was calculated using the formula below: 

 
(117, 216 x A570 of test sample) - (80, 586 x A600 of test sample)      X 100% 

(117, 216 x A570 of control) - (80, 586 x A600 of control) 
 
 
where 117, 216: Molar Extinction Coefficient of oxidized alamarBlue® dye measured at a 

wavelength of 600 nm (value given by manufacturer); 

80, 586: Molar Extinction Coefficient of oxidized alamarBlue® dye measured at a 

wavelength of 570 nm (value given by manufacturer); 

A570: absorbance measured at 570 nm and  

A600: absorbance measured at 600 nm. 

 

All samples for cell proliferation assays were analyzed in triplicates. 

  

3.15 MTT Cell Viability Assay 

 Cell viability under experimental conditions was determined by an assay that 

employed mitochondria-dependent reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium-bromide (MTT) to formazan. 0.2-0.3 million cells were plated onto 
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each well of a 24-well plate prior to drug treatment. Following drug treatment, cells were 

dislodged via vigorous pipetting. 50 μl of the cells in their cell culture medium were then 

placed in each well of a 96-well plate. Cells were next pulsed with 50 μl of freshly 

prepared MTT solution (3-5 mg of MTT reagent (Sigma Aldrich, St. Louis, USA) 

dissolved in plain RPMI) per sample in triplicates for 2 hrs at 37oC in the dark. After 

incubation, the plate was spun at 3,000 rpm for 5 min and the supernatant was removed. 

The crystals were then dissolved in 200 μl of DMSO and 10 μl of Sorenson’s glycine 

buffer. The absorbance intensities were measured at 570 nm and the cell viability relative 

to the control sample was calculated using the formula below: 

 
Mean of triplicate optical density values of test sample     X 100% 
Mean of triplicate optical density values of control   
 
 
 
3.16  Annexin V-FITC Apoptosis Detection 

 The Annexin V-FITC Apoptosis Detection Kit I (BD Biosciences Pharmingen) 

makes use of the ability of cells to lose membrane asymmetry in the early phases of 

apoptosis to quantitatively determine the percentage of cells that are actively undergoing 

apoptosis. 

 Following drug treatment, the cells were harvested via incubation with 1 mM of 

EDTA dissolved in 1X PBS. The cells were then washed twice with ice cold 1X PBS and 

resuspended in 1X binding buffer at a concentration of 106 cells/ ml. 100 μl of the cells 

(105 cells) were then transferred to a 5 ml culture tube. 5 μl of Annexin V-FITC and 5 μl 

of propidium iodide (PI) were added. The cells were then gently vortexed and incubated 
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in the dark at room temperature. 400 μl of 1X binding buffer was added to each tube and 

the samples were analyzed by flow cytometry within 1 hr.  

 

3.17 Statistical Data Analysis 

 In cases where multiple duplications were possible, data are represented as means 

+ SEM (standard error of the mean). Individual groups were compared using the 

Student’s t test with a two-tailed p value. A value of P <0.05 was taken as significant.  
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4.  RESULTS 
 
 

4.1 Anx-A1 is differentially expressed in tumor and normal tissues taken from 
breast surgical samples 

 
 

Because few studies have been done on Anx-A1 expression in breast cancer, we 

first seek to confirm that Anx-A1 is indeed differentially expressed in normal and tumor 

samples in the first place. As a confirmatory study, breast tumor tissue samples (with 

matched controls) were collected from four patients and the extracted proteins were 

analyzed by western immunoblotting. Out of the four, three patients had Anx-A1 

expressed at different levels between normal and tumorigenic tissues, although there was 

no sign that Anx-A1 was consistently up or down-regulated in all three samples (Figure 

1).  

  

 

 

 
   Anx-A1 (37 kD) 
 
  Beta-actin (42 kD) 

 
   T        N    T         N      T         N          T         N 

 
 

Figure 1: Western blot analysis of Anx-A1 expression in tumor and matched control 
samples. Anx-A1 was differentially expressed in three out of the four breast surgical 
samples collected (the first three samples from the left). Beta-actin was used as a control 
to ensure equal loading of protein samples during analysis. T: tumorigenic tissue sample; 
N: normal tissue (matched control) from the same patient. 
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4.2 E2 increases cytosolic Anx-A1 levels in MCF7 cells in a dose-dependent 
manner after 72 hrs 

  
 

There are three pools of Anx-A1 which are known to be present in cells, namely 

cytosolic, nuclear and membrane-associated Anx-A1. However, as the levels of nuclear 

and membranal Anx-A1 in MCF7 cells are so low as to be virtually undetectable (data 

not shown), this study will focus on the cytosolic and total Anx-A1 present in MCF7 

cells.  

The exogenous addition of E2 had no apparent effects on cytosolic Anx-A1 in 

MCF7 cells after 24 or 48 hrs, as shown by western blot analysis (Figures 2 and 3). 

However at 72 hrs, changes in Anx-A1 levels were observed, with a higher level of Anx-

A1 corresponding with a higher dose of E2 used (Figure 4). Interestingly, while cells 

treated with tamoxifen showed no increase in Anx-A1, cells treated with both E2 and 

tamoxifen showed an increase in cytosolic Anx-A1. It thus appears that 10-9 M of 

tamoxifen was unable to inhibit the expression of Anx-A1 induced by the same 

concentration of E2 used.  
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 24 hrs 
  

     

    

      

 
 
 
 

Figure 2: Western blot analysis of Anx-A1 expression after 24 hrs 
of drug treatment. No difference in expression level was observed. 
Alpha-tubulin was used as a control to ensure equal loading of 
protein samples. Data are representative of at least three blots. 

 
 
 
 
 

             

                    

 

 

 

 

  
Figure 3: Western blot analysis of Anx-A1 expression after 48 hrs 
of drug treatment. No difference in expression level was observed.  
Alpha-tubulin was used as a control to ensure equal loading of 
protein samples. Data are representative of at least three blots. 
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Figure 4: (A) Western blot of cytosolic Anx-A1 levels after 72 hrs of drug 
treatment. A higher level of Anx-A1 was correlated with a higher dose of E2 
treatment. 10-9 M of tamoxifen did not inhibit the increase in Anx-A1 level 
induced by the same dosage of E2. Alpha-tubulin was used as a control to 
ensure equal loading of protein samples. Data are representative of at least 
three blots.  
 
  (B) Densitometry plot of individual normalized samples against 
control sample. Values represented are means + SEM of three separate 
experiments. Bars represent standard error bars. Dashed line indicates 
densitometric intensity of control sample. C: control; E-7, E-9, E-11: E2 at 
concentrations of 10-7 M, 10-9 M and 10-11 M respectively; T-7, T-9, T-11: 
tamoxifen at concentrations of 10-7 M, 10-9 M and 10-11 M respectively.  
* P < 0.05. 
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4.3 Increase in cytosolic Anx-A1 levels induced by E2 after 72 hrs is not due to 
translocation 
  
 
There are two possible reasons which can explain the difference in cytosolic Anx-

A1 levels observed after 72 hrs. E2 could have possibly induced Anx-A1 expression in a 

dose-dependent manner. Alternatively, E2 could have stimulated the translocation of 

Anx-A1 from a stored pool to the cytosol, thereby leading to an observed increase in 

cytosolic Anx-A1.  We thus examined total Anx-A1 levels in MCF7 cells upon the 

addition of E2 after 72 hrs.  

Western blot analysis of total Anx-A1 extracted from these cells showed that E2-

treated MCF7 cells had higher amounts of Anx-A1 as compared to control cells. In 

addition, the increase in total Anx-A1 induced by E2 was also dose-dependent (Figure 5). 

Since both cytosolic and total Anx-A1 levels increased in a similar fashion, the increase 

in cytosolic Anx-A1 observed was not likely due to translocation but an induction of 

Anx-A1 expression by E2.  

  

 

 

 

 

 

 
Figure 5: Western blot analysis of cytosolic and total Anx-A1 levels after 
72 hrs of drug treatment. Both levels increased in a similar fashion, with a 
higher level of Anx-A1 being correlated with a higher dose of E2 used. 
Alpha-tubulin was used as a control to ensure equal loading of protein 
samples. Data are representative of at least three blots. 
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4.4 E2 increases Anx-A1 mRNA levels in MCF7 cells after 48 hrs 
 

Since the increase in cytosolic Anx-A1 levels was accompanied by an overall 

increase in total Anx-A1 expression, it seems likely that E2 can somehow stimulate the 

expression of Anx-A1 in MCF7 cells. This, coupled with the considerable time lag 

between drug administration and the observable increase in Anx-A1 levels, suggests that 

the induction of Anx-A1 expression by E2 is likely to be a result of gene transcription 

activated either directly or indirectly, by the binding of E2 to its receptor. We thus 

examined the total mRNA levels of Anx-A1 after 24, 48 and 72 hrs of E2 treatment.  

Following RNA extraction, RT-PCR and subsequent DNA gel electrophoresis 

showed that Anx-A1 mRNA levels increased in a time-dependent manner after treatment 

with E2 (Figure 6). In addition, while Anx-A1 protein levels showed no observable 

changes until after 72 hrs of drug treatment, the mRNA levels of Anx-A1 had already 

increased after 48 hrs at all concentrations of E2 used. This thus supports the hypothesis 

that E2 induces Anx-A1 expression at the gene transcriptional level. 

 

 

      

                                             

Anx-A1

GAPDH 

10-9 M E2 

24 hrs      48 hrs     72 hrs    24 hrs     48 hrs     72 hrs 

10-11 M E2 

  24 hrs      48 hrs     72 hrs 

10-7 M E2 

 
Figure 6: RT-PCR and DNA gel electrophoresis analysis of Anx-A1 mRNA levels after 
24, 48 and 72 hrs of E2 treatment. Anx-A1 mRNA levels increased in a time-dependent 
manner after 48 hrs, even though observable increases in protein levels occurred only 
after 72 hrs. GAPDH was used as a control to ensure equal loading of samples. Data are 
representative of at least three analyses. 
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4.5 Induction of Anx-A1 expression by E2 may occur via action of estrogen 
receptor-alpha 
 

There are two main estrogen receptors present in MCF7 cells, namely, estrogen 

receptors (ER) alpha and beta. Although the exact functions and mechanisms of action of 

the two receptors are not well understood, it has been thought that while the alpha 

receptors may have positive effects on cell growth and proliferation, the beta receptors 

may work to counter the effects of ER-alpha by inhibiting their transactivating functions 

(Macaluso et al., 2006).  Since MCF7 cells express both types of receptors, E2 could 

have induced Anx-A1 up-regulation via either receptor. We hence seek to investigate the 

possible regulation of Anx-A1 by E2 and/or tamoxifen in MDA-MB-231 breast cancer 

cells, which express ER-beta, but not ER-alpha.  

Western blot analysis of total Anx-A1 levels in MDA-MB-231 cells showed no 

changes in Anx-A1 expression even after 72 hrs of treatment with E2 and/or tamoxifen 

(Figures 7, 8 and 9). It is hence possible that E2 induces Anx-A1 expression via the 

action of ER-alpha. 

 

 

 

 

 

 

Figure 7: Western blot analysis of Anx-A1 expression after 24 hrs.  
No difference in expression level was observed. Beta-actin was used 
as a control to ensure equal loading of protein samples. Data are 
representative of at least three blots. 
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Figure 8: Western blot analysis of Anx-A1 expression after 48 hrs 
of drug treatment. No difference in expression level was observed. 
Beta-actin was used as a control to ensure equal loading of protein 
samples. Data are representative of at least three blots. 
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Figure 9: Western blot analysis of Anx-A1 expression after 72 hrs 
of drug treatment. No difference in expression level was observed. 
Beta-actin was used as a control to ensure equal loading of protein 
samples. Data are representative of at least three blots. 
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4.6 Induction of Anx-A1 expression by E2 is correlated with reduced cell 
proliferation 

 
 

Since E2 is a well-established growth stimulatory hormone, we seek to determine 

if cell proliferation was affected by the experimental conditions. Two different cell 

proliferation assays, Cell Titer 96® Aqueous One Solution Cell Proliferation Assay and 

alamarBlue® Assay, were hence performed. Whereas the former contains a tetrazolium 

compound that is converted by cells to a toxic product, the alamarBlue® Assay has been 

demonstrated to be non-toxic to cells and can be used to monitor cell proliferation 

continuously over a prolonged time period. Hence, while the Cell Titer 96® Aqueous One 

Solution Cell Proliferation Assay was used here as an end-point measurement of cell 

proliferation after the course of drug treatment, the alamarBlue® reagent was added a day 

after the addition of drug for the continuous monitoring of cell growth over four days.  

Both assays showed similar results. Upon 24 or 48 hrs of drug treatment, there 

were no significant changes in the cell proliferation status (Figure 10). However, 

following 72 hrs of drug treatment, drug-treated cells showed significant increased cell 

proliferation, which corresponded with the time of observable Anx-A1 induction. Yet, 

interestingly, cells treated with the highest dosage of E2 (10-7 M) showed the least 

increase in cell proliferation relative to the control, as compared to other E2 or 

tamoxifen-treated cells. A high expression of Anx-A1 was thus seemingly correlated 

with less cell proliferation (Figure 10).   
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Cell Proliferation Relative to Control
(as measured by Cell Titer 96® Aqueous One Solution Cell Proliferation Assay)
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Figure 10: Graphical representations of cell proliferation relative to control cells as 
measured by (A) Cell Titer 96® Aqueous One Solution Cell Proliferation Assay and (B) 
alamarBlue® Assay. Figures (C) and (D) show actual proliferation status of control cells 
before normalization. Significant cell proliferation was generally observed only after 72 
hrs of drug treatment, which corresponded to observable changes in Anx-A1 expression 
upon drug treatment. Anx-A1 expression and proliferation rates were apparently 
inversely correlated with each other, and treatment of cells with 10-7 M of E2 generally 
showed the least increase in cell proliferation after 72 hrs.  

 
Data represented are means + SEM of at least three separate experiments conducted in 
triplicates. Bars represent standard error bars. Dashed line indicates relative cell 
proliferation of control. C: control; E-7, E-9, E-11: E2 at concentrations of 10-7 M, 10-9 
M and 10-11 M respectively; T-7, T-9, T-11: tamoxifen at concentrations of 10-7 M, 10-9 
M and 10-11 M respectively. * P < 0.05 

(A) 
         *           *          * *            *              * 

(B) 

(D) 

         * *           * *           * *             *        * * *       * * *  *          

(C) 
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4.7 Differential Anx-A1 expression does not affect apoptosis of MCF7 cells 
  

Because Anx-A1 has been shown to be an endogenous ligand that mediates 

apoptotic-cell engulfment in a caspase-dependent manner (Arur et al., 2003), the reduced 

cell proliferation observed in cells treated with 10-7 M of E2 could be due to an increase 

in cell apoptosis mediated by a high expression level of Anx-A1. Annexin V-FITC 

apoptosis detection staining however showed no significant changes in the percentage of 

apoptotic cells, even after 72 hrs of drug treatment (Figure 11). The reduced proliferation 

observed in cells treated with 10-7 M of E2 was thus not due to an increase in the 

percentage of apoptotic cells mediated by a high level of Anx-A1 expression.  
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Figure 11: Graphical representation of the percentage of apoptotic cells. No 
significant changes were observed even after 72 hrs of drug treatment.  
 
Data represented are means + SEM of at least three separate experiments conducted 
in triplicates. Bars represent standard error bars. C: control; E-7, E-9, E-11: E2 at 
concentrations of 10-7 M, 10-9 M and 10-11 M respectively; T-7, T-9, T-11: tamoxifen 
at concentrations of 10-7 M, 10-9 M and 10-11 M respectively. 
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Results 

4.8 Cell viability is correlated with proliferation status of cells upon drug 
treatment 

  

Since cells showed increased proliferation rates which were not accompanied by 

changes in apoptosis, it is logical to deduce that cell viability would be correlated with 

cell proliferation upon drug treatment, as the number of viable cells will increase as cells 

divide. Cell viability relative to control cells was thus measured using the MTT assay in 

order to validate the observations of the cell proliferation and apoptosis assays. Results 

showed that cell viability was indeed generally consistent with observations from cell 

proliferation tests (Figure 12).  

   
 

 
 
Figure 12: Graphical representation of cell viability relative to control, as measured by 
MTT cell viability assay. Results were generally consistent with observations from cell 
proliferation assays.  
 
Data represented are means + SEM of at least three separate experiments conducted in 
triplicates. Bars represent standard error bars. Dashed line indicates relative cell viability 
of control. C: control; E-7, E-9, E-11: E2 at concentrations of 10-7 M, 10-9 M and 10-11 M 
respectively; T-7, T-9, T-11: tamoxifen at concentrations of 10-7 M, 10-9 M and 10-11 M 
respectively. 
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Results 

4.9 The reduced proliferation observed with a high dose of E2 is correlated with 
a high level of Anx-A1, an ERK activation that was sustained after 72 hrs 
and an up-regulation of p21waf/cip 

 
 

In 1999, Alldridge et al. had reported that while low levels of Anx-A1 expression 

caused prolonged stimulation of the MAPK pathway and subsequent increased cell 

proliferation, an over-expression of Anx-A1 led to a constitutively sustained stimulation 

of the same pathway via activation of ERK 1/2 and was accompanied by a reduction in 

cell proliferation, possibly due to an up-regulation of cell-cycle arrest proteins such as 

p21waf/cip (Alldridge et al., 1999). We thus compared the levels of Anx-A1, p21waf/cip and 

phosphorylated ERK 1/2 (since ERK 1/2 is activated by phosphorylation at residues Thr 

202 and Tyr 204) in the cells after 24 and 72 hrs of drug treatment.   

Western blot analysis showed that after 24 hrs of drug treatment, all drug-treated 

samples had relatively equal amounts of Anx-A1, p21waf/cip and phosphorylated ERK 

(Figure 13). After 72 hrs however, p21waf/cip expression was up-regulated when cells were 

treated with higher doses of E2, which correlated well with the lower proliferation 

observed in these samples (Figure 14). In addition, ERK activation was not sustained 

after 72 hrs when lower levels of E2 that could stimulate higher cell proliferation were 

used (Figure 14). Hence, it would appear that in line with Alldridge et al.’s observations, 

a constitutively sustained ERK activation and an up-regulation of Anx-A1 may indeed 

have led to the reduced proliferation observed when cells were treated with high E2 

doses.  

Tamoxifen, on the other hand, appears to act as an agonist in the context of our 

experiments and in contrast to E2, could induce cell proliferation despite an ERK 

activation that was sustained after 72 hrs.   
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ERK 1/2 (44/42 kD) 

 
 
 
 

 p21waf/cip (21 kD) 

 Alpha-tubulin (54 kD) 

 
Figure 13: Western blot analysis of ERK activation, p21waf/cip and Anx-A1 expression 
levels after 24 hrs of drug treatment. No significant differences were observed. Alpha-
tubulin and ERK 1/2 were used as controls to ensure equal loading of protein samples. 
Data are representative of at least three blots. 
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Phosphorylated ERK 1/2 
(44/42 kD) 

ERK 1 (44 kD) 

Alpha-tubulin (54 kD) 

p21waf/cip (21 kD) 

Figure 14: Western blot analysis of ERK activation, p21waf/cip and Anx-A1 expression 
levels after 72 hrs of drug treatment. Sustained ERK activation, high Anx-A1 and 
p21waf/cip levels were observed when cells were treated with a high dose of E2. This was 
in turn correlated with lower cell proliferation. In contrast, tamoxifen could induce cell 
proliferation despite a constitutive ERK activation. Alpha-tubulin and ERK 1 were used 
as controls to ensure equal loading of protein samples. Data are representative of at least 
three blots. 
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Results 

4.10 Anx-A1 inhibits cell proliferation, possibly via a constitutively sustained 
activation of ERK in MCF7 cells 

 

To investigate if the expression of Anx-A1 in MCF7 cells was induced by E2 for 

a specific reason, or if Anx-A1 was merely up-regulated as a by-stander gene, 

transfection studies were first performed to elucidate the physiological functions of Anx-

A1 in these cells.  

Gene expression of Anx-A1 was silenced via transfection of MCF7 cells with 

Dharmacon SMARTpool® siRNA, which utilizes a pool of four SMARTselection™ 

designed siRNA duplexes and could reduce the expression of Anx-A1 by approximately 

60% even after five days (Figure 15). Interestingly, while Anx-A1-knockdown cells had 

less ERK activation even after five days, they typically demonstrated a 20% increase in 

cell proliferation rates (Figures 15 and 16). In contrast, when gene expression of Anx-A1 

was increased via transfection of MCF7 cells with a plasmid expressing ANX-A1 fused 

with a V5 tag, cell proliferation rates were reduced, despite an enhanced ERK activation 

that was sustained even after five days (Figures 17 and 18).  

Such an observation is thus in line with the fact that while ERK is conventionally 

seen as a positive regulator of pro-proliferative processes, a sustained ERK activation 

may lead to anti-proliferative effects such as cell cycle arrest (Tang et al., 2002) and 

differentiation (Wang et al., 2003). At the same time, it also correlates well with a study 

which showed that Anx-A1 exerts anti-proliferative effects via sustained activation of 

ERK in macrophages and human embryonic kidney cells (Alldridge and Bryant, 2003). 

Anx-A1 is hence, able to inhibit cell proliferation in MCF7 cells, and may achieve this 

via a sustained over-activation of ERK. 
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Figure 15: (A) Western blot of total Anx-A1 levels five days after transfection with 
Dharmacon SMARTpool® siRNA. ERK 1 was used as a control to ensure equal loading of 
protein samples. Data are representative of at least three blots. Anx-A1 siRNA and 
Scrambled siRNA: transfection with Anx-A1 and scrambled siRNA respectively; Mock-
transfected: transfection with oligofectamine alone. (B) Densitometry plot of normalized 
samples against mock-transfected cells. Values represented are means + SEM of three 
separate experiments. Bars represent standard error bars. Dashed line indicates 
densitometric intensity of mock-transfected cells. * P < 0.05.  
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Figure 16: Graphical 
representations of cell 
proliferation relative to day 1 
of Anx-A1 siRNA, scrambled 
siRNA and mock-transfected 
cells, as measured by (A) Cell 
Titer 96® Aqueous One Solution 
Cell Proliferation Assay and 
(B) alamarBlue® Assay.  
 
Both assays showed similar 
results - cells transfected with 
Anx-A1 siRNA typically 
showed approximately 20% 
increase in cell proliferation 
rates, as compared to 
scrambled siRNA or mock-
transfected cells. Values 
represented are means + SEM 
of at least three separate 
experiments conducted. 
Anova p-values: (A) 0.00655 
and (B) 0.0149. 
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 Figure 17: (A) Western blot of total Anx-A1 levels five days after transfection with a DNA 

plasmid that expresses Anx-A1 fused with a V5 tag. ERK 1 was used as a control to ensure 
equal loading of protein samples. Data are representative of at least three blots. V5-Anx-A1 
and Empty Vector: transfection with Anx-A1 and empty vector respectively; Mock-
transfected: transfection with superfectamine alone. (B) Densitometry plot of normalized 
samples against mock-transfected cells. Values represented are means + SEM of three 
separate experiments. Bars represent standard error bars. Dashed line indicates 
densitometric intensity of mock-transfected cells. * P < 0.05. 
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Figure 18: Graphical 
representations of cell 
proliferation relative to day 1 
of V5-Anx-A1, empty vector 
and mock-transfected cells, as 
measured by (A) Cell Titer 
96® Aqueous One Solution Cell 
Proliferation Assay and (B) 
alamarBlue® Assay.  
 
Both assays showed similar 
results - cells transfected with 
V5-Anx-A1 typically showed 
approximately 20-30% 
decrease in cell proliferation 
rates, as compared to empty 
vector or mock-transfected 
cells. Values represented are 
means + SEM of at least three 
separate experiments 
conducted. Anova p-values: 
(A) 0.00627 and (B) 
0.006947. 

 41



Results 

4.11 Anx-A1 is required to sustain the activation of ERK observed in MCF7 cells 
exposed to high E2 doses after 72 hrs 

 
 

As our transfection studies have shown that silencing of Anx-A1 expression led to 

reduced ERK activation and that over-expression of Anx-A1 resulted in a corresponding 

increase in ERK activation even after five days, it can be postulated that Anx-A1 is able 

to activate ERK either directly, or indirectly. In addition, this sustained activation of ERK 

by Anx-A1 is likely to be responsible for Anx-A1’s anti-proliferative effects on cells as 

Alldridge and Bryant had demonstrated previously that Anx-A1 may inhibit cell 

proliferation via an ERK-mediated disruption of the actin cytoskeleton and ablation of 

cyclin D1 expression in macrophages and human embryonic kidney cells (Alldridge and 

Bryant, 2003). We hence seek to determine if the induction of Anx-A1 by E2 is 

responsible, at least in part, for the sustained ERK activation observed when cells were 

treated with high E2 doses for 72 hrs.  

Western blot analysis showed that similar to un-transfected cells, MCF7 cells 

transfected with scrambled siRNA showed high Anx-A1 expression and ERK activation 

after 72 hrs when treated with high E2 doses. In contrast, cells transfected with Anx-A1 

siRNA were unable to induce significant Anx-A1 expression and were consequently, 

unable to induce high ERK activation after 72 hrs when treated with high E2 doses 

(Figure 19). Anx-A1 is thus required to sustain the activation of ERK observed in MCF7 

cells exposed to high E2 concentrations.  
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Figure 19: Western blot analysis of ERK activation after Anx-
A1/ scrambled siRNA-transfected cells were treated with E2 
for 72 hrs. Scrambled siRNA-transfected cells showed a dose-
dependent increase of Anx-A1 after 72 hrs, and a higher ERK 
activation was also observed after 72 hrs of treatment with 
higher E2 doses. In contrast, Anx-A1 siRNA transfected cells 
were unable to induce significant Anx-A1 expression and ERK 
activation. ERK 1/2 was used as a control to ensure equal 
loading of protein samples. Data are representative of two 
blots. 
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Results 

4.12 Anx-A1 plays a direct role in the reduced cell proliferation rates observed 
when MCF7 cells were exposed to higher E2 concentrations 

 

Since Anx-A1 has direct anti-proliferative functions in MCF7 cells under normal 

experimental conditions, the up-regulation of Anx-A1 due to prolonged treatment of cells 

with high E2 doses could be responsible for the reduced growth rates observed for these 

cells. To confirm the direct role of Anx-A1 in the lower cell proliferation rates observed 

when cells were exposed to high E2 concentrations over a prolonged period of time (after 

72 hrs), cells were first transfected with either Anx-A1 siRNA or scrambled siRNA, 

before being treated with E2 and/or tamoxifen. Cell proliferation rates were then 

measured using the Cell Titer 96® Aqueous One Solution Cell Proliferation Assay and 

alamarBlue® Assay. 

Cells transfected with scrambled siRNA showed proliferation rates that were 

similar to un-transfected drug-treated cells – cells treated with 10-7 M of E2, 10-9 M of E2 

and 10-9 M of both tamoxifen and E2 typically showed the least increase in cell 

proliferation relative to the control (Figures 20B and 21B). In contrast, MCF7 cells with 

Anx-A1 expression suppressed via transfection with Anx-A1 siRNA, now demonstrated 

the highest proliferation rates when treated with high E2 doses (Figures 20A and 21A). 

Since suppression of Anx-A1 expression was able to remove the inhibition of cell growth 

induced by prolonged exposure to high levels of E2, it thus follows that Anx-A1 plays a 

direct role in the anti-proliferative effects brought about by high concentrations of E2.  
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Cell Proliferation of Anx-A1 siRNA-transfected MCF7 cells
(as measured by Cell Titer 96® Aqueous One Solution Cell Proliferation Assay)
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Figure 20: Graphical representations of cell proliferation relative to control of (A) Anx-
A1 siRNA-transfected and (B) scrambled siRNA-transfected cells as measured by Cell 
Titer 96® Aqueous One Solution Cell Proliferation Assay. Figures (C) and (D) show actual 
proliferation status of control cells before normalization. Silencing of Anx-A1 expression 
was able to remove the inhibition of cell growth induced by prolonged exposure to 10-7 
M of E2, 10-9 M of E2 and 10-9 M of both tamoxifen and E2. 
 
Data represented are means + SEM of at least three separate experiments conducted in 
triplicates. Bars represent standard error bars. Dashed line indicates relative cell 
proliferation of control. C: control; E-7, E-9, E-11: E2 at concentrations of 10-7 M, 10-9 M 
and 10-11 M respectively; T-7, T-9, T-11: tamoxifen at concentrations of 10-7 M, 10-9 M 
and 10-11 M respectively. * P < 0.05 
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Cell Proliferation of Anx-A1 siRNA-transfected MCF7 cells
(as measured by alamarBlue® assay)
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Figure 21: Graphical representations of cell proliferation relative to control of (A) Anx-
A1 siRNA-transfected and (B) scrambled siRNA-transfected cells as measured by 
alamarBlue® Assay. Figures (C) and (D) show actual proliferation status of control cells 
before normalization. Silencing of Anx-A1 expression was able to remove the inhibition 
of cell growth induced by prolonged exposure to 10-7 M of E2, 10-9 M of E2 and 10-9 M 
of both tamoxifen and E2. 

C D 

 
Data represented are means + SEM of at least three separate experiments conducted in 
triplicates. Bars represent standard error bars. Dashed line indicates relative cell 
proliferation of control. C: control; E-7, E-9, E-11: E2 at concentrations of 10-7 M, 10-9 M 
and 10-11 M respectively; T-7, T-9, T-11: tamoxifen at concentrations of 10-7 M, 10-9 M 
and 10-11 M respectively. * P < 0.05 
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4.13 The sustained ERK activation following prolonged exposure to high E2 doses 
does not provide the direct anti-proliferative signal to induce Anx-A1 
expression 

 

Because we have shown that Anx-A1 has direct anti-proliferative effects on MCF7 

cells, it is not likely that E2, being a well-established potent pro-proliferative hormone, 

would induce the up-regulation of Anx-A1 for its own purposes. Instead, it is more 

plausible that prolonged exposure to high levels of E2 had over-stimulated certain cell-

signaling pathways and that as a counter-mechanism, Anx-A1 was up-regulated to inhibit 

cell proliferation. 

 As mentioned previously, a constitutive activation of ERK may lead to anti-

proliferative effects such as cell cycle arrest and differentiation. We would hence, like to 

investigate if the direct signal for Anx-A1 up-regulation was in fact, an over-activation of 

ERK induced by high E2 doses in the first place. If the direct anti-proliferative signal for 

Anx-A1 expression indeed requires a prolonged over-activation of ERK, it would mean 

that Anx-A1 and ERK may partake in a feedback mechanism, whereby an over-activation 

of ERK leads to the up-regulation of Anx-A1, which is in turn, required to maintain this 

high ERK activation constitutively to repress cell proliferation (since we had previously 

established that the induction of Anx-A1 by E2 is required for the sustenance of a 

prolonged ERK activation after 72 hrs and an inhibition of cell proliferation). We thus 

examined Anx-A1 expression levels in MCF7 cells which were pre-treated with U0126 (a 

MEK inhibitor) prior to the addition of E2 after 72 hrs.  

Western blot analysis showed that inhibition of ERK activation by U0126 did not 

abolish the up-regulation of Anx-A1 as induced by E2 after 72 hrs (Figures 22 and 23). 

Hence, while it is still plausible that an over-activation of cell-signaling pathways by E2 is 
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the direct cause of Anx-A1 induction, the over-activation of ERK does not provide the 

direct signal to increase Anx-A1 expression in the context of this study. 
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Figure 22: (A) Western blot of ERK activation levels. Cells were pre-treated with either 
U0126 or DMSO (as control) before the degree of inhibition of ERK activation was 
measured after 72 hrs. ERK 1 was used as a control to ensure equal loading of protein 
samples. Data are representative of three blots. (B) Densitometry plot showing the level of 
ERK activation in U0126 and DMSO-treated cells. Data represented are means + SEM of 
three separate experiments. Bars represent standard error bars. Dashed line indicates 
densitometric intensity of DMSO-treated control cells. * P < 0.05. 
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 Figure 23: Western blot analysis of Anx-A1 expression after 72 hrs of 
drug treatment. Cells were pre-treated with U0126 to inhibit ERK 
activation prior to the addition of drugs. ERK inhibition had no apparent 
effects on the induction of Anx-A1 expression by E2. Beta-actin was 
used as a control to ensure equal loading of protein samples. Data are 
representative of three blots. 
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5.  DISCUSSION 
  
 
 In this study, we have demonstrated for the first time that Anx-A1 can be 

induced by E2 in MCF7 breast cancer cells and that this induction appears to be a delayed 

response occurring over a period of more than 48 hrs. Due to the considerable time lag 

between drug administration and the observable increase in Anx-A1 expression, as well 

as the fact that Anx-A1’s mRNA levels were increased following treatment of the cells 

with E2, the induction of Anx-A1 is likely to be a result of gene transcription activated 

either directly or indirectly, by the binding of E2 to its receptor. In addition, as mentioned 

previously, it is highly plausible that the up-regulation of Anx-A1 is due to the action of 

E2 on ER-alpha, and not ER-beta, since treatment of MDA-MB-231 cells (which express 

only ER-beta, and not ER-alpha) with E2 had no apparent effects on Anx-A1 expression 

whatsoever. Although the role of ER-beta remains elusive (Gustafsson and Warner, 

2000), some studies have suggested that while actions of E2 via ER-alpha are typically 

pro-proliferative, the effects of E2 on ER-beta are in contrast, anti-proliferative and tumor 

suppressive (Paruthiyil S. et al., 2004). Since Anx-A1 was likely up-regulated as a result 

of E2 on ER-alpha, the expression of Anx-A1 may have been induced as a result of E2’s 

pro-proliferative effects on cells.  

 

It should also be noted that whilst tamoxifen by itself, did not exert observable 

affects on Anx-A1 expression, treatment of the cells with 10-9 M of both tamoxifen and 

E2 led to an up-regulation of Anx-A1 expression. Tamoxifen, a drug used often as an 

anti-estrogen in breast cancer treatment, was thus unable to inhibit the induction of Anx-

A1 expression by E2. This is not however, a surprising observation since it is a well-
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known fact that tamoxifen can act either as an agonist or an antagonist of E2, depending 

on factors such as the cellular context and the dosage used. The agonistic effects of 

tamoxifen would be later confirmed by the fact that tamoxifen could induce proliferation 

of MCF7 cells in our study. 

 

 In 2001, Castro-Caldas et al. had reported that E2 can promote the synthesis and 

secretion of Anx-A1 in the human CCRF-CEM acute lymphoblastic leukemia cell line 

within 30 min, and that this may account for E2’s reported anti-inflammatory effects on 

lymphocytes (Castro-Caldas et al., 2001).  The considerable difference in terms of the 

time required to observe Anx-A1 up-regulation following E2 treatment between this 

study and Castro-Caldas’s report may be due to the usage of different cell lines. Since 

Anx-A1 has been implicated in various different cellular functions, it is possible that the 

induction of Anx-A1 by E2 serves different purposes in different cells and thus, E2 may 

require different amounts of time to increase Anx-A1 expression in lymphoid and 

mammary cells. In addition, the concentrations of E2 used in Castro-Caldas’s et al. study 

were in the micromolar range, whereas nanomolar concentrations of E2 were used in our 

study. Differences in concentrations of E2 used may hence also account for the disparity 

between our results and Castro-Caldas’s study.  

 

 The induction of Anx-A1 in MCF7 cells by E2 is an interesting observation, not 

only because of its possibly significant role in breast tumorigenesis, but also because it 

was reported previously that only gluccocorticoids, but not the chemically similar sex 

hormones, could induce Anx-A1 expression (Ahluwalia et al., 1996). While it is possible 
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that these differing results were due to the usage of different cell lines, the apparent lack 

of Anx-A1 induction by sex hormones in previous studies may also be due to the fact that 

endogenous steroids present in cell culture media had already induced a high expression 

level of Anx-A1 in cells, which may then mask any further induction of Anx-A1 

expression by estrogens (or androgens). The latter explanation is highly plausible since 

other groups had noted that the presence of endogenous gluccocorticoids in serum 

induced large amounts of Anx-A1 which in turn, masked any subsequent gluccocorticoid-

induction of Anx-A1 (Croxtall and Flower, 1992). Incubation of cells in serum-free or 

charcoal-treated cell culture medium may thus be an important precondition necessary to 

observe changes in cellular Anx-A1 expression.  

 

 The regulation of Anx-A1 expression by E2 can account for our observation 

that Anx-A1 was differentially expressed in the normal and tumorigenic breast tissues 

used in our study. Breast cancers can be classified as estrogen receptor-positive or 

negative, depending on whether the breast cancer cells contain estrogen receptors or not. 

If the induction of Anx-A1 by E2 can be confirmed in an in vivo model, it is possible that 

the tumor cells with higher Anx-A1 expression were estrogen receptor positive and that 

the patient had a physiologically high concentration of the hormone within the body. 

Within our study, data information with regards to the estrogen level and class of breast 

cancer of the patients was not given. It may thus be interesting if possible, to correlate the 

Anx-A1 expression in breast tumorigenic cells with such data. 
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In cell proliferation assays conducted within this study, it was observed that 

tamoxifen induced cell proliferation at a rate similar to that of low doses of estrogen. 

Tamoxifen works as an anti-cancer drug by competing with natural estrogens within our 

body for estrogen receptors. Because it acts as a weak estrogen, by binding to estrogen 

receptors, tamoxifen thus has seemingly anti-estrogenic effects, simply because it 

prevents beta-estradiol, the strongest natural estrogen within the body from acting. Yet, it 

should be remembered that tamoxifen, being an estrogen analogue, has mild estrogenic 

effects as well. In our study, cells were pre-incubated with charcoal-treated cell culture 

medium to remove the presence of endogenous steroid hormones. Because endogenous 

estrogen within the medium had been removed, it should not be unexpected that 

tamoxifen would exhibit its inherent mildly estrogenic effects. The observed increase in 

cell proliferation induced by tamoxifen is hence, not contradictory to the usage of 

tamoxifen as an anti-estrogen in cancer treatment. 

 

However, the consistent reduction in proliferation when cells were treated with 

10-7 M of E2 as compared to other drug-treated cells was a surprising result. E2, being a 

growth hormone, is well known for its growth-stimulatory effects, especially in breast 

tissues and a higher dose of E2 should therefore theoretically, induce a higher 

proliferation rate in MCF7 cells. Subsequent western blot analyses showed that treatment 

of the cells with 10-7 M of E2 had led to an ERK activation that was sustained even after 

72 hrs, unlike 10-9 M and 10-11 M which resulted in an ERK activation that was not 

sustained after 72 hrs. Since E2 has been shown to be able to activate the MAPK pathway 

in other studies as well (Improta-Brears et al., 1999) and that a constitutive activation of 
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the MAPK pathway often leads to anti-proliferative signals being generated to restrict 

cell proliferation (Tang at al., 2002 and Wang et al., 2003), it is likely that prolonged 

exposure to high levels of E2 had induced a constitutive over-activation of ERK that had 

in turn, resulted in anti-proliferative effects.   

 

As at this point, there are three possible hypotheses which can be put forward to 

explain the induction of Anx-A1 expression by E2 in MCF7 breast cancer cells – (1) 

Anx-A1 was up-regulated simply because other effectors upstream of Anx-A1 had been 

activated by E2 and that it plays no significant functional role in E2’s effects on MCF7 

cells; (2) E2 up-regulated Anx-A1 for pro-proliferative purposes and the resulting over-

activation of certain signaling pathways (such as the MAPK pathway) caused anti-

proliferative measures to be activated or (3) Anx-A1 is inherently, an anti-proliferative 

protein and its expression was increased to counter the over-activation of certain growth 

promoting signals caused by E2.  

 

Our transfection studies have shown Anx-A1 to be intrinsically an anti-

proliferative protein which may exert its effects in MCF7 cells via activating ERK 

constitutively. As can be construed thus, E2 could not have induced Anx-A1 expression 

for pro-proliferative purposes, as suggested by the second hypothesis. In addition, the 

results of the transfection studies are important for two other reasons. Firstly, they 

provide a causative role for Anx-A1 in the development of cancer. Since a basal level of 

Anx-A1 is required to put a brake on cellular proliferation (cells with Anx-A1 expression 

suppressed had increased proliferation rates) and that over-expression of Anx-A1 in 
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MCF7 cells led to decreased cellular proliferation, it would seem that at least in MCF7 

cells, Anx-A1 has tumor suppressive functions. Secondly, they are in direct confirmation 

with Alldridge and Bryant’s study which reported Anx-A1 to have a cell-type 

independent anti-proliferative function that acts through a sustained activation of the 

ERK signaling cascade, probably via an ERK-mediated disruption of the actin 

cytoskeleton and ablation of cyclin D1 protein expression (Alldridge and Bryant, 2003).  

 

In addition, when MCF7 cells that had Anx-A1 expression suppressed (via 

transfection with Anx-A1 siRNA) were treated with E2, cells treated with 10-7 M and 10-9 

M of E2 now showed the highest proliferation rates as compared to other cells - an 

observation which proved that the anti-proliferative role of Anx-A1 must have had been 

responsible, at least in part, for the reduced cell proliferation observed in cells exposed to 

high E2 doses over a prolonged period of time. This is hence, in direct opposition to the 

first hypothesis and supports the supposition that Anx-A1 was up-regulated to counter 

over-activation of pro-proliferative signals brought on by E2. Since Anx-A1 siRNA 

transfected cells were unable to sustain an activation of ERK after 72 hrs when treated 

with high E2 doses (unlike un-transfected and scrambled siRNA-transfected cells), Anx-

A1 is apparently required for the constitutive ERK activation observed in cells treated 

with high E2 concentrations over a prolonged period of time. Removal of this constitutive 

ERK activation by suppressing Anx-A1 expression may hence eliminate the inhibition of 

cellular proliferation, and may thus explain why Anx-A1 siRNA-transfected cells treated 

with 10-7 M and 10-9 M of E2 now showed the highest proliferation rates as compared to 

other cells. 
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 In summary, the experimental results generated within this study thus directly 

link Anx-A1 to a role in tumorigenesis (Figure 24). We have shown that prolonged 

exposure of MCF7 cells with E2 (after at least 48 hrs) can induce a dose-dependent up-

regulation of Anx-A1, and that a higher expression of Anx-A1 induced by E2 was 

seemingly correlated with a lower rate of cell proliferation, despite the fact that E2 is a 

well-established growth stimulatory hormone in mammary cells. In addition, we have 

also shown that Anx-A1 has direct anti-proliferative effects on cells, possibly via a 

constitutive over-activation of ERK and that the anti-proliferative role of Anx-A1 is in 

turn, directly responsible, at least in part, for the reduced proliferation rates observed 

when cells were exposed to high E2 concentrations for a prolonged period of time.  As 

such, we believe that Anx-A1 may act as a tumor suppressor in cells and that its 

expression may be increased in times of need to put a brake on cellular proliferation. Any 

mutations that occur in pathways that up-regulate Anx-A1 may hence render the cells 

incapable of inhibiting any uncontrolled proliferations and may thus in turn, explain why 

a decreased Anx-A1 expression has been implicated in breast cancer development and 

progression (Shen et al., 2006).   

  

As a side point, tamoxifen appears to act as an agonist within the context of our 

study as it not only failed to inhibit E2’s induction of Anx-A1, but also stimulated 

proliferation of MCF7 cells instead of inhibiting it. As mentioned earlier, it is likely that 

tamoxifen has agonistic effects in this study since endogenous estrogens that compete 

with tamoxifen for ER-binding sites had been removed with the usage of charcoal-treated 

cell culture media. In line with this hypothesis, the addition of E2 to tamoxifen-treated 
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cells is likely to increase the number of competitors for ER-binding sites and may thus 

hence explain why cells treated with both E2 and tamoxifen typically demonstrated 

proliferation rates that were in between cells treated with either E2 or tamoxifen alone.  

 

 In addition, tamoxifen may stimulate proliferation of MCF7 cells via a pathway 

different from that of E2. The above hypothesis was made in lieu of the observation that 

treatment of the cells with tamoxifen had led to high cell proliferation rates despite a high 

level of ERK activation even after 72 hrs. In other words, while a prolonged ERK 

activation induced by high E2 concentrations may result in anti-proliferative signals 

being generated to curb uncontrolled cellular proliferation, a similarly high level of ERK 

activation in tamoxifen-treated cells could in contrast, possibly promote cell growth. 

However, since Anx-A1 has no apparent role to play in tamoxifen’s effects on MCF7 

cells, the mechanism of tamoxifen-induced cell proliferation was not examined in greater 

detail here.  
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Figure 24: Simplified schematic diagram illustrating the possible role of Anx-A1 in 
breast tumorigenesis. (A): Possible scenario with low doses of E2; (B): Possible scenario 
upon over-expression of Anx-A1 induced by prolonged exposure to high E2 doses. A 
deregulation of pathways that increase Anx-A1 expression and/or loss-of-function 
mutations in Anx-A1 may result in uncontrolled cellular proliferation. (C): Possible 
scenario upon administration of tamoxifen. 
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Limitations of study and future work 

 A major limitation of this project is that the direct anti-proliferative signal 

responsible for the up-regulation of Anx-A1 has not been determined as at the conclusion 

of this study. As mentioned earlier, since the pro-proliferative effects of E2 on MCF7 

cells have been well-documented by various studies, it is unlikely that E2 will increase 

the expression of Anx-A1 (which we had established as an anti-proliferative protein in 

MCF7 cells) for its purposes. Prolonged exposure to high E2 doses must have thus, 

generated anti-proliferative signals which induced the expression of Anx-A1. Yet, 

although high E2 doses led to a prolonged activation of ERK which may act as an anti-

proliferative signal to up-regulate Anx-A1 expression, we have shown that this was not 

the case, since pre-treatment of the cells with U0126 inhibited ERK activation but not the 

induction of Anx-A1 by E2 after 72 hrs. The anti-proliferative signal to increase Anx-A1 

expression remains to be elucidated and future work should concentrate on this aspect.  

 

   

 

 

 

 

 

 

 

 

 58



Summary and General Conclusions 

6.  SUMMARY AND GENERAL CONCLUSIONS 
  
 

 We have shown for the first time that E2 can induce Anx-A1 expression in MCF7 
breast adenocarcinoma cells in a dose-dependent manner after at least 48 hrs. 

  
 The induction of Anx-A1 is likely to be a result of gene transcription activated 

either directly or indirectly, by the binding of E2 to the estrogen receptor-alpha. 
  

 A high expression level of Anx-A1 induced by E2 was correlated with a reduced 
rate of cell proliferation (which was not due to an increase in cell apoptosis 
mediated by Anx-A1). Relatively low levels (basal levels) of Anx-A1 in other 
drug-treated cells were however, correlated with an increased rate of cell 
proliferation.  

 
 Treatment of cells with a high dosage of E2 led to an activation of ERK that was 

sustained even after 72 hrs and which could in turn act as an anti-proliferative 
signal. In contrast, cells treated with lower E2 doses had an activation of ERK 
which was not sustained after 72 hrs. 

 
 Anx-A1 is required to sustain the ERK activation observed in cells treated with a 

high dose of E2 after 72 hrs. 
 

 Anx-A1 has an inherent anti-proliferative role to play in MCF7 cells and that in 
line with observations previously reported by another group, Anx-A1 may 
possibly inhibit cell proliferation via a constitutive over-activation of ERK. 

 
 The anti-proliferative role of Anx-A1 has a direct role to play in the reduced cell 

proliferation observed when cells were exposed to high E2 concentrations for a 
prolonged period. 

 
 In conclusion henceforth, to the best of our knowledge, we have shown for the 

first time that: 
 

Treatment of MCF7 cells with high E2 doses over a prolonged period leads to 
the up-regulation of Anx-A1, which in turn, has direct anti-proliferative 
effects on MCF7 breast adenocarcinoma cells, possibly via a constitutive 
activation of ERK. 
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