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SUMMARY 

 

In recent years, development of the science and technology of proton exchange 

membrane fuel cells (PEMFCs) has been an intense research area, of which the ultimate 

goal is to reduce our reliance on fossil oil and to cut down carbon dioxide emission in the 

transportation sector, as well as to enable clean and reliable energy for the portable power 

generators. As a crucial component of PEMFC, the traditional electrolyte membrane 

faces the key challenges from the elevated operation temperature and the suitability of 

liquid fuels such as methanol. Hence, high-performance proton exchange (electrolyte) 

membranes (PEMs) are in great demand. In this thesis, three types of composite 

membranes were fabricated by incorporating hybrid nanoparticles into a 

perlfuorosulfonic acid polymer matrix (i.e. Nafion® resin). These hybrid nanoparticles 

were prepared by different methods: grafting an oligomeric ionomer layer to an 

individual silica nanoparticle; or grafting oligomeric chains to a cubic siloxane molecule; 

or polymerizing vinyl cubic siloxane molecules in the host matrix. In addition to the 

Nafion-based nano composite membranes, H3PO4–doped polybenzimidazole (PBI) 

membrane was chemically modified as well to generate a novel type of composite matrix. 

It was obtained through introducing a macromer of unsaturated polyester (UP) into the 

polymerization system of PBI. As a result, a loosely crosslinked PBI-UP network, which 

encapsulates pristine H3PO4 as the proton conducting phase, was generated. The resulting 

network offers better anhydrous proton conductivity and stronger mechanical strength 

than the unmodified counterpart. Based on the membrane fabrications and fuel cell 

evaluations, the exploration of physicochemical mechanisms that cause changes in 

 ix



electrochemical behaviors, solvent affinity, and mechanical properties in the different 

composite membranes in question constitutes the major part of this thesis. In the 

following paragraphs, the main perspectives and accomplishments of different chapters 

of this thesis are highlighted respectively.   

 

A special type of microsphere that comprises a silica core and a densely grafted 

hydrophilic polymer layer was firstly synthesized by heterogeneous atom transfer radical 

polymerization (ATRP). This heterogeneous ATRP synthesis provides a novel way to 

confer only low-molecular-weight but closely packing polymer chains, which 

interpenetrate with the silica network in the outer layer of microspheres. With 

investigation into its interfacial behaviors and electrochemical properties in the different 

solution medium, it was found that such core-shell particles with polyelectrolyte chains 

can exhibit different hydrodynamic volumes in methanol-H2O mixtures with different 

ratios and in aqueous solution with different pH values. Most importantly, the 

polyelectrolyte layer can also offer a strong promoting proton transport.  

 

Such core-shell nano-particles with ionomer chains are considered as valuable materials 

to be used to modify Nafion matrix. It was found that the low content silica-poly (3-

sulfopropyl acrylic acid) (PSSA) core–shell nanoparticles, PSPA-SiO2, in the membrane 

matrix of Nafion enhances its performance in PEMFC by boosting the flux of protons and 

facilitating their transport. From further analysis, this boosting role comes from the fact 

that each PSPA-SiO2 particle bears a high density of sulfonic acid groups, and the 

 x



facilitating role is attributed to the hydrophilic interactions between PSPA-SiO2 particles 

and the sulfonic acid groups of Nafion chains.  

 

In contrast to silica nanoparticles, a new material, polyhedral oligomeric silsesquioxane 

(POSS), has also been used to modify Nafion matrix since it has well-defined cubic 

octameric siloxane skeleton (about 1-3 nm in size) with eight organic vertex groups, one 

or more of which is reactive or polymerizable to pursue the hybrid properties of organic 

polymer and ceramics. Firstly, vinyl-overhung Q8M8
V cubic molecules, 1, 3, 5, 7, 9, 11, 

13, 15- octakis (dimethylviylsiloxy) pentacycloc octasiloxane, have been polymerized 

with Nafion recasting process and the resulting rigid P(Q8M8
V) blocks have also yielded 

an impact on formatting the Nafion matrix. It was found that the P(Q8M8
V) blocks 

generated in-situ in the Nafion matrix played the blocking role in restricting random 

extensions of proton conducting channels (PCCs) and promoted ordered assembling of 

Nafion molecules. As a result, compared with the pristine Nafion membrane, the resultant 

composite membranes containing P(Q8M8
V) of 5 ∼ 15 wt.% manifested obvious 

improvement on both suppressing methanol permeability and raising power density 

output of the single direct methanol fuel cell (DMFC).  

 

The other hybrid POSS nanoparticles have been synthesized via grafting polyacrylonitrile 

short chains to the cubic methacryl-POSS molecules by ATRP. It was observed that by 

introducing this kind of branched nano particles (sb-POSS) into the Nafion matrix in an 

appropriate amount, a significant enhancement on the performance of Nafion membrane 

in a direct methanol fuel cell (DMFC) was attained. This revamping role is associated 

 xi



with the initial clustering of sb-POSS particles in the Nafion matrix from their fully 

dissolved state, which happens when the content of sb-POSS is increased to ~5 wt.%. It 

was found that this conversion brought about constriction to the maximal extent of 

hydrophilic proton conducting channels in the Nafion matrix according to the analysis by 

differential scanning calorimetry (DSC). As a result, the composite membrane containing 

sb-POSS of 5 wt.% produced more than double power density output than the native 

Nafion membrane. 

 

Finally, polybenzimidazole (PBI) was also studied as a host polymer matrix. In this work, 

unsaturated polyester (UP) macromer was introduced to crosslink PBI blocks and then to 

achieve reinforcing phosphoric acid (PA) – doped polybenzimidazole (PBI) membrane. 

Compared with the PA-doped PBI obtained from conventional impregnating method, the 

resulting membrane not only achieved much better mechanical properties of PBI 

membrane with a higher PA doping level, but also possessed the desired high-

temperature proton conductivity. Furthermore, a promising performance of the membrane 

in a single H2 fuel cell was accomplished at 150 oC without humidifying either electrode. 

 

 

 

 

 

 

 

 xii



ABBREVIATIONS 

 

A exposed area of the membrane (used in Equation 2.3 and 2.4) 

ABPBI poly(2, 5-benzimidazole)  

An acrylonitrile 

ATRP atom transfer radical polymerization 

AFC  alkaline fuel cell  

Bpy 2, 2′-bipyridyl 

CA the methanol concentration in the donor compartment (used in 
Equation 2.3) 

CB the methanol concentration in the receptor compartment (used in 
Equation 2.3) 

CDMVS chlorodimethylvinyl-silane 

CLPE cross-linked high-density polyethylene  

CTACl cetyltrimethyl ammonium chloride 

D the diffusion coefficient (used in Equation 2.3 and 2.4) 

DMA Dynamic Mechanical Analysis 

DMAc N, N’- dimethylacetamide 

DMF N, N’-dimethyl formaide 

DMFC direct methanol fuel cell, 

DMPA α, α-dimethylol propionic acid 

DSC Differential Scanning Calorimetry 

Ecell half-cell potential (used in Equation 2.5) 

EC ethylene carbonate 

 xiii



EDS Energy Dispersive X-ray Spectroscopy 

EIS Electrochemical Impedance Spectroscopy  

EMACI N, N’-methyl-(6-hexylcarbamatoethylmethacrylate) imidazolonium 
bromide 

FESEM Field Emission Scanning Electron Microscopy 

FT-IR Fourier Transform Infrared Spectroscopy 

FTIR-ATR Fourier Transform Infrared- Attenuated Total Reflectance 
Spectroscopy 

GC Gas Chromatograph 

GPC Gel Permeation Chromatography Analysis 

HEMA 2-hydroxyethyl methacrylate 

H2-FC fuel cell driven by hydrogen gas  

HPA heteropolyacid  

id limiting methanol permeation current density measured 
voltammetrically (used in Equation 2.7) 

i0 current density  

I.V. inherent viscosity 

IEC ion exchange capacity 

IEP isoelectric point 

K partition coefficient between the membrane and the adjacent 
solution (used in Equation 2.3 and 2.4) 

L thickness of the membrane (used in Equation 2.3, 2.4 and 2.8) 

MBA N, N’-methylenebisacrylamide  

MCFC molten carbonate fuel cell  

MDP monododecyl phosphate  

 xiv



MEA Membrane Electrode Assembly 

MSA methanesulfonic acid  

NMR Nuclear Magnetic Resonance Spectrum 

P power density 

PA phosphoric acid 

PAA poly(acrylic acid)  

PAAVS poly(vinylsulfonic acid/co-acrylic acid)  

PAFC phosphoric acid fuel cell  

PAMPS poly(2-acrylamido-2-methyl-1-propanesulfonic acid)  

PATBS poly(acrylamid tert-butyl sulfonic acid)  

PAZO poly(1-(4-(3-carboxy-4-hydroxyphenylazo benzene sulfonamide)-
1,2-ethanediyl, sodium salt)  

PBI poly(2, 2’-(m-phenylene)-5, 5’-bibenzimidazole)  

PCC proton conducting channels  

PDDA poly(diallydimethylammonium chloride)  

PEEK polyether(ether)ketone  

PEM proton exchange membrane 

PEMFC fuel cell includes proton exchange membrane fuel cell 

PES polyethersulfone  

PI polyimide 

PMA phosphomolybdic acid 

PPA poly(phosphoric acid) 

PPBP poly(4-phenoxybenzoyl-1,4-phenylene)  

PPQ polyphenylquinoxanline  

 xv



PPs poly(phthalazinones) 

POSS polyhedral oligomeric silsesquioxane  

PSSNa poly(sodium stryrene sulfonate) 

PSU poly(arylene-ether-sulfone)  

PTA phosphotungstic acid 

PTFE poly(tetrafluroroethylene) 

PVA poly(vinyl alcohol)  

PVDF polyvinylidene fluoride  

P4VI poly(4-vinylimidazole)  

Q8M8
V 1, 3, 5, 7, 9, 11, 13, 15- octakis (dimethylviylsiloxy) 

pentacyclococtasiloxane 

R the resistance of the membrane (used in Equation 2.8) 

RH relative humidity  

S the cross-sectional area of the membrane (used in Equation 2.8) 

SAXS Small Angle X-ray Scattering 

Sb-POSS starburst oligomeric structure 

SMA silicomolybdic acid  

SMP-K 3-sulfropopyl methacrylate, potassium salt 

SOFC solid oxide fuel cell  

SPA-K sodium 3-sulfopropylacrylate, potassium salt  

SPEEK sulfonated polyether(ether)ketone 

SPEK sulfonated polyetherketone 

SPFP sulfonated perfluoro-polymer 

SPOP sulfonated poly[bis(phenoxy)phosphazene] 

 xvi



SPSF sulfonated polysulfone 

SSNa sodium 4-styrenesulfonate  

STA silicotungstic acid  

STY styrene 

t permeation time (used in Equation 2.3 and 2.4) 

TEM Transmission Electron Microscopy 

TEOS tetraethoxysilane 

TEVS triethoxyvinylsilicane 

TFA trifluoroacetic acid  

TGA Thermogravimetric Analyser 

Tg glass transition temperature 

THF tetrahydrofuran 

TMAS tetramethylammonium silicate 

UI 2-undecylimidzole  

UP unsaturated polyester 

VB solution volume of the receptor compartment (used in Equation 2.3 
and 2.4) 

Vcell cell voltage (used in Equation 2.5) 

4VP 4-vinylpyridine  

VTF Vogel-Tamman-Fulcher equation 

xo molar fraction of methanol in the feed stream (used in Equation 2.7)

X acid-doping levels 

Z’ real component of impedance 

Z” imaginary part of impedance 

 xvii



Greek letters 

σ proton conductivity (used in Equation 2.8) 

χ a lumped term constant (used in Equation 2.6) 

η viscosity of the solution in the solvent (used in Equation 7.3) 

ηan anode overpotentials (used in Equation 2.5) 

ηcat  cathode overpotentials (used in Equation 2.5) 

η0 viscosity of pure solvent (used in Equation 7.3) 

ηi inherent of viscosity (used in Equation 7.4) 

ηr relative viscosity (used in Equation 7.3 and 7.4) 

ηxover methanol crossover overpotential (used in Equation 2.5) 

ηohmic ohmic overpotential. (used in Equation 2.5) 

ξ electroosmotic drag coefficient of protons in the membrane (used in 
Equation 2.7) 

ζ zeta potentials 

 

 

 

 

 

 

 

 

 xviii



LIST OF FIGURES 

 

Figure 2.1 Fuel cell diagram 12

Figure 2.2 Fuel cell distributions 14

Figure 2.3 Diagram of PEMFC 15

Figure 2.4 PEM fuel cell hardware 18

Figure 2.5 Cluster network model for Nafion perflorinated membrane 22

Figure 2.6   HPA structures: (a) “Keggin” structure, (b) Dawson structure 25

Figure 2.7 Structure of  poly(2,2’-(m-phenylene)-5,5’-bibenzimidazole) 31

Figure 2.8 Structure of poly(2,5-benzimidazole) 33

Figure 2.9 State diagram of the PPA sol-gel process 35

Figure 2.10 Schematic diagram of the concept of a pore-filling electrolyte 
membrane 

41

Figure 2.11 Chemical structure of (a) polybenzimidazole (PBI), (b) H3PO4 
protonated PBI, (c) proton transfer along acid-PBI-acid, (d) proton 
transfer along acid-acid 

46

Figure 2.12 Structural model of UI-MDP composite materials. The UI and MDP 
molecules construct the highly ordered lamellar structure with the 
proton-conducting pathway. UI and MDP molecules indicate the 
space-filling and line-drawings models. The insert shows the 
proton-conducting mechanism in the two-dimensional proton-
conducting pathway 

47

Figure 2.13 Proton sweeping transport scheme 48

Figure 2.14 Experiment setup for membrane methanol permeability 
measurement 

51

Figure 2.15 Impedance diagram of a typical polymer electrolyte with blocking 
electrodes 

55

Figure 2.16 Schematic of fuel cell i-V curve 58

Figure 2.17 Combine fuel cell i-V and power density curves 58

 xix



Figure 3.1 a. TEM image of vinyl-silica particle; b. FE-SEM image of vinyl-
silica particle; c. The schematic of forming 1, 2-dibromoethyl-silica 
particle       

68

Figure 3.2 EDX spectrum of the brominated silica particles 69

Figure 3.3 Transmission electron micrograph of a PSSNa-grafted silica 
particle  

71

Figure 3.4 FT-IR spectrum of the copolymer-grafted silica particles  72

Figure 3.5 Differential scanning calorimetric (DSC) analysis of pure PSSNa 
and vinyl-silica 

73

Figure 3.6 DSC analysis of the PSSNa and P4VP grafted silica particles 74

Figure 3.7 DSC analysis of the P(SSNa-co-4VP)-b and P(4VP-co-SSNa)-b 
grafted silica particles 

75

Figure 3.8 Variation of the mean dynamic diameter of P(SSNa-co-4VP)-b and 
P(4VP-co-SSNa)-b grafted silica particles with the methanol 
content in the aqueous dispersion medium. Inset represents PSSNa 
and P4VP grafted silica particles 

77

Figure 3.9 Influence of pH on zeta potential of polymer grafted silica particles 
in aqueous solution 

78

Figure 3.10 Influence of pH on the mean dynamic diameter of PSSNa and 
P4VPgrafted silica particles 

80

Figure 3.11 Influence of pH on the mean dynamic diameter of  P(SSNa-co-
4VP)-b and P(4VP-co-SSNa)-b grafted silica particles 

80

Figure 3.12 Conductivity of the acidified water (pH=3) loading different 
particles 

82

Figure 3.13 Conductivity of different ration DMF and water solution loading 
different particles 

84

Figure 4.1 FT-IR spectra of PSPA-K- SiO2 94

Figure 4.2 TEM of (a) SiO2 particles, (b) PSPA-K- SiO2 95

Figure 4.3 TGA profiles of the (a) pristine silica; (b) vinyl-SiO2; and (c) 
PSPA-K-SiO2  

96

Figure 4.4 TGA thermograms for a. Pure Nafion membrane and b. 
Nafion/PSPA-SiO2 (4 wt.%) 

98

 xx



Figure 4.5 Field emission scanning electron micrographs of: a. the cross-
section of Nafion/SiO2 composite membrane; and b. the cross-
section of Nafion/PSPA-SiO2 membrane 

99

Figure 4.6 Influence of temperature on the conductivity of various membranes 
under investigation 

101

Figure 4.7 The electrochemical performances of the four membranes 
respectively in a single direct methanol fuel cell operated at 50 oC 
and 80 oC   

103

Figure 4.8 The electrochemical performance of the four membranes 
respectively in a hydrogen-driven single fuel cell at the two 
elevated temperatures 

105

Figure 5.1 1H-NMR of 1, 3, 5, 7, 9, 11, 13, 15- octakis (dimethylviylsiloxy) 
pentacycloc octasiloxane (VinylMe2-SiOSiO1.5)8 (Q8M8

V) 
113

Figure 5.2 Synthesis of poly(Q8M8
V) fragments from Q8M8

V monomers 118

Figure 5.3 Schematic representation of the domain formation due to induction 
of the embedded P(Q8M8

V) blocks   
119

Figure 5.4 TGA data for recast Nafion and composite membranes with 5 wt.%, 
15 wt.% and 25 wt.% poly(Q8M8

V) loading 
120

Figure 5.5 The dynamic mechanical properties (real part) of the four recasting 
membrane 

121

Figure 5.6 DSC data for recast Nafion and composite membranes with 5 wt.%, 
15 wt.% and 25 wt.% poly(Q8M8

V) loading 
123

Figure 5.7 FTIR-ATR spectra of recast Nafion and composite membrane with 
5 wt.%, 15 wt.% and 25 wt.% P(Q8M8

V) loading 
123

Figure 5.8 FESEM cross-section micrographs of composite membrane with (a) 
recast Nafion, (b) cast Nafion-117, (c) 5 wt.%, (d) 15 wt.% and (e) 
25 wt.% poly(Q8M8

V) loading 

125

Figure 5.9 Schematic representation of the two types of chain-packing 
domains   

126

Figure 5.10 Solvent-swelling test for recast Nafion and composite membrane 
with 5 wt.%, 15 wt.% and 25 wt.% poly (Q8M8

V) loading 
129

Figure 5.11 Methanol permeability of commercial Nafion-117, recast Nafion 
and composite membrane with 5 wt.%, 15 wt.% and 25 wt.% 

129

 xxi



poly(Q8M8
V) loading 

Figure 5.12 Arrhenius plots of conductance vs. temperature for recast Nafion 
and composite membrane with 5 wt.%, 15 wt.% and 25 wt.% 
poly(Q8M8

V) loading 

132

Figure 5.13 Polarization curves and power output of a DMFC using recast 
Nafion membrane and composite membrane with 5 wt.%, 15 wt.% 
and 25 wt.% poly(Q8M8

V) loading measured at (a) 20 °C; (b) 50 °C  

134

Figure 6.1 

 

Growing oligomeric PAn chains on POSS by atom transfer radical 
polymerization (ATRP) method; 1H-NMR spectrum of sb-POSS 
synthesized with [CuBr]/[Bpy]/[An]=1:3:600 for reaction time 6 h 

139

Figure 6.2 FT-IR spectra of a, vinyl-POSS, b, sb-POSS-2; c, sb-POSS-6, 
whose synthetic conditions are listed in Table 6.1 

145

Figure 6.3 a. Schematic representation of the hydrogen bonding and polar 
interaction between sulfonic acid group and nitrile groups; b. 
Infrared spectra of the two membrane samples that show vibration 
band of nitrile group at different frequencies 

148

Figure 6.4 The composition-dependence of the intrinsic viscosity of the 
Nafion-PAn binary mixture  

148

Figure 6.5 (a) Field emission scanning electron microscopic (FE-SEM) image 
of composite membrane with 5 wt.% sb-POSS-6; (b) FE-SEM 
image of composite membrane with 25 wt.% sb-POSS-6; (c) 
Transmission electron microscope (TEM) image of sb-POSS-6 with 
Nafion as a background 

150

Figure 6.6 Differential scanning calorimeter (DSC) data for composite 
membranes with different weight percentage sb-POSS-6 loading in 
the Nafion matrix 

152

Figure 6.7 Illustrative representation of the matrix compressing effect on  PCC 154

Figure 6.8 The Arrhenius plot of proton conduction 157

Figure 6.9 The measurement of methanol diffusivity in the sb-POSS/Nafion 
composite membranes driven by concentration difference across the 
membrane: 2 M CH3OH solution vs. pure water    

158

Figure 6.10 The effect sb-POSS-6 content in Nafion membrane on the 
polarization curve and power output of the single DMFC at 80 oC 

160

Figure 6.11 The effect sb-POSS-6 content in Nafion membrane on the 
polarization curve and power output of the single DMFC at 50 oC 

160

 xxii



Figure 7.1 TGA of PBI-polymer powder and PA-doped PBI-UP membrane 174

Figure 7.2 TGA of PBI polymer powder and PA-doped PBI membrane from 
embedding method 

175

Figure 7.3 DSC of PBI polymer powder and PBI-UP polymer powder 176

Figure 7.4 DSC of PA-doped PBI-UP membranes 177

Figure 7.5 Mechanical strength of PA-doped PBI-UP membrane after densing 
and PA doped PBI from embedding method 

178

Figure 7.6 Influence of temperature on the conductivity of various membranes 
under investigation 

180

Figure 7.7 The electrochemical performance of PA-doped PBI-UP membrane 
after densing in a hydrogen-driven single fuel cell at the three 
elevated temperatures 

181

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xxiii



LIST OF TABLES 

 

Table 2.1 Description of Major Fuel cell Types 14

Table 2.2 Commercial SPFP membranes by producer 21

Table 2.3 Comparison of conductivity at different conditions according 
different references 

32

Table 3.1 The composition of the grafted SiO2 particles   70

  Effect of the monomer/catalyst ratio of ATRP on the size of sb-POSS 
particles 

145

Table 5.1 The ion-exchange capacity of the four membranes 128

Table 6.1 Effect of the monomer/catalyst ratio of ATRP on the size of sb-POSS 
particles 

147

Table 6.2 The specific energy barriers of the glass transition ascribed to the 
unperturbed PCC in the composite membranes 

155

Table 7.1 Effect of inherent viscosity on membrane development 172

Table 7.2 A comparison of H3PO4 doping levels in PBI matrix 173

Table 7.3 Mechanical properties of the two types of PA-doped PBI 179

 

 

 

 

 

 

 

 

 

 xxiv



 xxv

LIST OF SCHEMES 

 

Scheme 4.1 The schematic of forming PSPA-K-grafted silica particles 90

Scheme 4.2  
 

The structure representation of PSPA-grafted silica particles in 
Nafion matrix 

91

Scheme 7.1 In-situ synthesis of PBI-UP in PPA 
 

167

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



CHAPTER 1 

 

INTRODUCTION 

 

1.1 General background 

 

A fuel cell is an electrochemical energy conversion device. It produces electricity from 

external supplies of fuel (on the anode side) and oxidant (on the cathode side) in the 

presence of an intercalated electrolyte thin layer between the two electrodes. Generally, 

the fuel flows in and cathodic reaction products flow out while the electrolyte layer 

remains in the cell to separate the anodic reaction from the cathodic reaction. Fuel cells 

can operate virtually continuously as long as the necessary flows are maintained. 

Generally, there are many types of fuel cell available and among the fuel cell options, 

PEMFC is the most promising option due to the high power density, relatively quick 

start-up, rapid response to varying loads, as well as low operating temperatures provided 

by PEMFC and has been developed for transportation applications, as well as for 

personal devices such as laptops, cell phones and hearing aides and for stationary 

applications (Gottesfeld et al., 1997) In principle, PEMFC is classified into two 

subcategories according to fuel-supply. One is fuel cell driven by hydrogen gas (H2-FC) 

which uses hydrogen as fuel to transform chemical energy liberated during the 

electrochemical reaction of hydrogen and oxygen to electrical energy. (Won et al., 2003; 

Woo et al., 2003 and Boddeker et al., 2001) Presently, for producing H2-fuel, the most 
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developed industrial processes are steam reforming and partial oxidation with coal, 

methane or gasoline. In all of these cases, the CO level coming out of the processor can 

only be reduced to 50 or 100 ppm. (Pietrogrande and Bezzecheri, 1993) However, CO is 

a major problem because trace amounts of CO (less than 10 ppm) poison the Pt anode 

electrode catalyst in the state-of –the-art H2-FCs operating at 80 oC. CO-tolerant 

electrode catalysts (e.g. Pt-Mo, Pt-Ru) have been developed to enhance CO tolerance, but 

the problem still exists with these electrocatalysts. In order to alleviate the problem of CO 

poisoning and to improve the power density of the cell, it would be effective to lift up the 

operating temperature to above 100 °C. (Savinell et al., 1994; Alberti et al., 2001 and 

Yang et al., 2001) In addition, higher temperature (> 120 oC) operation also reduces 

system weight, volume and complexity (Li et al., 2003), which increases power density, 

specific power, and functionality through system and component simplification and 

enhances the electrode kinetics and the catalytic activity for electrode reactions. (Kreuer, 

1997)  

The second sub-category of PEMFC is fuel cell driven by methanol (direct methanol fuel 

cell, DMFC) or ethanol which enables the electrochemical process without the headache 

of handling hydrogen storage problem. However, two problems accompany with 

operating DMFC: The first problem is that a significant amount of methanol could easily 

penetrate across the electrolyte via diffusion to the cathode, known as methanol crossover. 

This drawback results in the polarization of cathode (Pu et al., 1995 and Burstein et al, 

1998) and thus contributes to decreased overall cell efficiency and lifetime. The second 

problem is that oxidation of methanol (CH3OH + H2O → CO2 + 6H+ + 6e-) on the anode 
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has a slower kinetics than that of hydrogen because it involves releasing six electrons and 

therefore consists of several elementary reaction steps.      

Such these obstacles for the development of PEMFC are related to the limitations 

associated with the proton electrolyte membranes usually employed [e.g. Nafion or other 

types of sulfonated perfluoro-polymer resins]. Therefore, in order to improve the 

performance of PEMFC from the perspective of cutting down methanol diffusion level 

through electrolyte, preparation of an applicable membrane that has a significantly lower 

methanol permeation coefficient (i.e. permeability) than Nafion but maintains the same 

proton conductivity has been a focus of research. Although there is not a remedy for both 

methanol crossover and slow anode kinetics, developing a PEM that could retain 

methanol crossover at the low level required and adequate mechanical stability at 

elevated temperatures will be also beneficial to accelerating oxidation of methanol on the 

anode.    

An ideal ion exchange membrane fuel cell electrolyte generally includes the following 

properties: high ionic conductivity, zero electronic conductivity, a substantially low gas 

permeability, dimensional stability, high mechanical toughness, and low transference of 

water by conducting ions, high resistance to thermal degradation, as well as chemical 

stability to oxidation and hydrolysis. Previously, some polymer electrolyte membranes 

have been traditionally considered as a blend consisting of a hydrophilic polymer and 

strong inorganic acid, such as poly (ethylene oxide)-H3PO4 (Donoso et al., 1988), 

polyacrylamide-H2SO4 (Rodriguez et al., 1993) and branched poly (ethylene imine)–

H2SO4 (Yoshida et al., 1994). However, the presence of strong inorganic acid in the 
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polymer matrixes has several disadvantages in potential applications, such as acid-

catalyzed polymer degradation and loss of hydrophilic polymer mechanical strength.  

Practically, three particular designs could satisfactorily meet the above criteria 

technically. The first design relies on amphiphilic polymers with the hydrophobic 

segments constituting a continuous phase to sustain mechanical features while the 

hydrophilic groups assembling to form the second continuous phase that allows ions to 

transport. The second design makes use of the polybenzimidazole as an “absorbent” to 

hold absolute phosphoric acid as the proton conducting channel under nil-humidity level 

and high temperature. The third design relies on using a robust hydrophobic polymer thin 

film, over which there are densely arrayed micropores penetrating through the film, as the 

host matrix. These pores are then filled with a hydrophilic ionic conducting polymer to 

generate proton conducting channels. 

 

As the model PEM of the first design, sulfonated perfluoro-polymer (SPFP) symbolizes 

the state-of–the-art of the plastic electrolyte membrane and can satisfy a number of 

requirements for effective, long-term use in fuel cells. (Eisenberg et al., 1982; Gottesfeld 

et al., 1997 and Datta et al., 2002) However, SPFP membrane is not able to hold matrix 

water when the fuel cell’s operating temperature is above 100 oC, which brings about a 

severe decrease in the proton conductivity of membrane. In addition, SPFP membrane 

also has very high methanol permeability because it can be swollen by the aqueous 

solution of methanol. Therefore, it is necessary to modify SPFP membrane to maintain 

high proton conductivity at elevated temperatures or to reduce its methanol permeability.  

Some modification methods attempted to add inorganic particle fillers such as SiO2, TiO2, 
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and ZrO2 into SPFP matrix. Among these approaches, in-situ formation of inorganic 

fillers which is based on sol-gel reactions within the pores of the membrane is most 

popular due to the fact that size and distribution of inorganic particles in the SPFP 

membrane can be well controlled by the concentration of precursors. (Adjemian et al., 

2002; Jalani et al., 2005; Xu et al., 2005 and Jiang et al., 2006) However, it should be 

noted that the modification also lowers markedly the proton conductivity of the 

membrane owing to introduction of these less proton conductive oxides. Besides this, 

poor dispersion of these inorganic particles in the membrane owing primarily to the lack 

of thermodynamic compatibility between the particles and matrix undermines mechanical 

strength of the membrane. Therefore, it needs to advance the embedding modification 

method by employing specially tailored particle filler that include conductive functional 

groups to render SPFP membranes with higher proton conductivity and better mechanical 

properties.   

 

The second design is performed based on poly(2, 2’-(m-phenylene)-5, 5’-

bibenzimidazole) (PBI), a polymer with very strong cohesive energy, extremely high 

temperature stability, and high chemical resistance. Hence PBI can be made into a fiber 

with excellent textile and tactile performance. (Wang et al., 1996) Although PBI is not 

ionic conductive by itself, it is a promising host matrix for some strong oxo-acids due to 

its imidazole groups and aromatic rings which can be sulfonated. Previously, sulfuric acid 

has been introduced to dope PBI membrane. (Glipa et al., 1997; Roziere et al., 2001 and 

Bae et al., 2002), or grafting sulfonate groups directly onto the PBI backbone was the 

other way to make PBI become proton exchangeable. With the second method, the 
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degree of sulfonation is an important parameter that directly affects the ion exchange 

capacity and specific hydration number, and the proton transport properties. A higher 

degree of sulfonation leads to higher proton conductivity of the membrane but also 

reduces the mechanical properties of the membrane because it promotes water-uptake 

capability. In addition, a low decomposition temperature of the sulfonated PBI also limits 

its application in the high temperature PEMFC. Therefore, as a substitute for sulfonic 

acid groups, phosphoric acid (H3PO4) has been applied to dope PBI membrane due to its 

higher decomposition temperature. Three different methods have been developed to dope 

PBI membranes with phosphoric acid (Ma et al., 2004): (1) casting from a solution of 

polymer in NaOH/ ethanol solution under N2 environment, followed by washing with 

water until pH=7, and then doping by immersion in phosphoric acid solution; (2) casting 

from a solution of 3-5% polymer in N, N’- dimethylacetamide (DMAc), followed by 

evaporation of DMAc, and then doping by immersing in phosphoric acid solution;  (3) 

directly casting from a solution of PBI and H3PO4 in a suitable solvent such as 

trifluoroacetic acid (TFA), followed by evaporation of the solvent and the film is ready 

for use. Because membranes cast using the DMAc method are stronger and have better 

mechanical properties than those prepared by the other two methods, most of the 

membranes reported in the literatures were prepared by the DMAc method (Li et al., 

2001; He et al., 2003 and Ma et al., 2004) However, for phosphoric acid doped PBI 

membrane by the above methods, a very high PA doping level can also deteriorate the 

mechanical properties of the membrane, especially at temperatures above 100°C even 

though these membranes have the desirable property of  high conductivity. Therefore, an 

alternative method is necessary. An in-situ doping PBI method using polyphosphoric acid 
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is a possible alternative for fabricating phosphoric acid doped PBI membrane with high 

proton conductivity and mechanical strength.  

 

Filling porous membranes, as the third design concept of fabricating PEM, is proposed by 

filling a polymer electrolyte into a porous hydrophobic polymer thin membrane. The 

strong and rigid film used as the porous substrate can allow the matrix to mechanically 

prevent any excess swelling of the filling polymer. This would also effectively suppress 

any fuel crossover through the membrane and reduce the change in area between the 

dried and wet states of the membrane. On the other hand, the filling polymer having high 

sulfonic acid content can exhibit high proton conductivity. (Nishimura and Yamaguchi 

2004; Kanamura et al., 2005) As a result, the membrane performance for single cell can 

be optimized by controlling the relationship between its proton conductivity and the fuel 

permeability.  

 

1.2 Research objectives and scope 

 

The development of high performance proton exchange membranes (PEMs) has been a 

challenge for PEMFC technology. The main theme of this research project is to pursue 

restructure the proton conducting channel of the exiting PEMs by creating hybrid 

nanoparticle fillers or macromer crosslinked network. Four different types of PEMs were 

fabricated and the physical chemistry of fundamental filler-matrix interactions was 

explored:  
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(1) To modify sulfonated perfluoro-polymer (SPFP) membranes via design and 

synthesis of hybrid nano-particles composed of inorganic core and organic thin 

graft layer as a specialty filler, and then assess proton conductivity, methanol 

permeability, mechanical properties, and most importantly single cell 

performance of the resultant composite membranes. 

 

(2) To reinforce H3PO4-doped PBI membrane through crosslinking PBI segments, 

while they were being grown, by an unsaturated polyester (UP) macromer to form 

a highly plastic network, which presents a stronger capability to hold dopant 

H3PO4 molecules and largely improved mechanical properties. This membrane 

targets high-temperature (120-150 oC) application under zero humidity condition. 

 

(3) To study the nature of the interactions between hybrid nanoparticles and the host 

matrix as well as impacts of such interactions on the electrochemical polarization 

behavior of the modified membranes in PEM fuel cell.  

 

To achieve the above goals, this research project investigated properties and 

performances of the composite membranes, and the results achieved can be divided into 

five parts as highlighted below:   

 

(1) Silica microspheres with densely anchored hydrophilic oligomeric chains 

consisting of conductive copolymer of homopolymer groups were prepared by 

atom transfer radical polymerization (ATRP). The particular traits of these core-
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shell particles including glass transition behaviors of the densely grafted polymer 

layer, as well as different responses of hydrodynamic volume and zeta potential 

of the particles to the change in solvating powder and pH values of the dispersion 

media will be studied. We will also examine how the ionic transport in the 

designated liquid medium is affected by the solvated particles with a substantially 

low volume fraction. 

 

(2) Nafion® membranes, as one kind of sulfonated perfluoro-polymer (SPFP) 

membranes were modified with different content of silica-poly (3-sulfopropyl 

acrylate acid) (PSPA) core–shell nanoparticles. Their thermal properties and 

proton conduction behaviors were investigated. Furthermore, single cell 

performances of modified membranes were compared with that of pure Nafion 

membrane. 

 

(3)  Nafion® membranes were also modified by in-situ polymerization of POSS 

(polyhedral oligomeric silsesquioxane) in the Nafion polymer matrix. 

Distribution of poly(POSS) in the polymer host matrix was investigated. 

Furthermore, effects of this distribution on repressing methanol permeation and 

restructuring proton channels in the membrane matrix were studied.  

   

(4) A novel hybrid structure material, starburst poss-g-acrylonitrile oligomer, was 

prepared by ATRP with monomer acrylonitrile. Different content of starburst 

poss-g-acrylonitrile oligomer was embedded in the Nafion polymer matrix. The 
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proton conduction mechanism of the composite membrane was investigated by 

Arrhenius plot of membrane proton conductivities as well as membrane structure 

characterization and thermal analysis.  

 

(5) Unsaturated polyester-reinforcing H3PO4-polybenzimidazole membrane which is 

a PEM for operating at nil matrix humidity condition was developed in this thesis. 

PBI membrane with unsaturated polyester (UP) as a crosslinker was doped with 

hydrolysis of polyphosphoric acid. Thermal physical properties of the doped PBI-

UP membrane were studied to investigate complexation of phosphoric acid with 

PBI-polyester and thus mechanism of proton conduction in the membrane was 

also established. 

 

The four types of hybrid structures obtained by incorporating the nano-particles with 

dense oligomeric ionomer layer, the starburst oligomeric molecules, the rigid molecular 

fragments, and the unsaturated polyester crosslinker were introduced into different host 

matrixes of PEMs respectively. Such PEMs displayed higher proton conductivity, lower 

methanol permeability and better mechanical properties. Furthermore, they should 

achieve better single cell performances. It is predicted that they can also be operated for a 

longer time than the respective homogeneous host PEMs. In addition, studies of proton 

conduction mechanisms that sustain the revamping effect could also provide some 

valuable suggestions for development of proton exchange membrane in the future.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Fuel cells  

 

2.1.1 Introduction  

 

Fuel cells have emerged as one of the most promising technologies for the power source 

of the future. Though Sir William Grove first introduced the concept of a fuel cell in 

1839, the fuel cell research has emerged as a potential field in recent decades. A fuel cell 

is an electrochemical energy conversion device. The anode provides an interface between 

the fuel and the electrolyte, catalyses the fuel reaction, and provides a path through which 

free electrons are conducted to the load via the external circuit. The cathode provides an 

interface between the oxygen and the electrolyte, catalyses the oxygen reduction reaction, 

and provides a path through which free electrons are conducted from the load to the 

electrode via the external circuit. The electrolyte acts as the separator between fuel and 

oxygen to prevent mixing and therefore, preventing direct combustion. Fuel cells differ 

from batteries in that they consume reactants, which must be replenished, while batteries 

store electrical energy chemically in a closed system. Additionally, while the electrodes 

with in a battery react and change as a battery is charged or discharged, a fuel cell’s 

electrodes are catalytic and relatively stable. 
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2.1.2 Fuel cell theory  

 

Several processes are involved in the operation of a fuel cell. The processes can be 

summarized as: gas transfer to the reaction sites, the electrochemical reaction at those 

sites, the transfer of ions and electrons as well as their combination at the cathode (Fig. 

2.1). Gases must diffuse through the electrode leaving behind any impurities which may 

disrupt the reaction while liquid produced at the surface of the electrolyte, or added 

through humidification must be either added to the electrolyte for hydration, or drawn 

away from the reaction sites so as not to block reaction sites based on the concentration 

gradient between the gas channel (high concentration) and the reaction sites (low 

concentration).  

Two main electrochemical reactions occur in a fuel cell at the anode and cathode 

respectively. 

Fuel  

Electrolyte  

          Anode 

               Cathode 

    LOAD 
e.g. electronic 
motor 

Electrons flow round  
the external circuit 

Oxygen 

Figure 2.1 Fuel cell diagram 
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The anode reaction in fuel cells is either direct oxidation of hydrogen, or methanol or 

indirect oxidation via a reforming step for hydrocarbon fuels. The cathode reaction is 

oxygen reduction from air in most fuel cells. For hydrogen/oxygen (air) fuel cells, the 

overall reaction is  

 

H2+ 2
1 O2  H2O     with    ΔG=-237 kJ/mol 

 

Where ΔG is the change in Gibbs free energy of formation. The product of this reaction is 

water released at cathode or anode depending on the type of the fuel cell. The theoretical 

voltage E0 for an ideal H2/O2 fuel cell at standard conditions of 25 oC and 1 atmosphere 

pressure is 1.23 V. The typical operating voltage is about 0.6-0.7 V for high performance 

fuel cells. 

 

2.1.3 Classification of fuel cells 

 

Fuel cell technologies are named by their electrolyte, as the electrolyte defines the key 

properties of a fuel cell, particularly the operating temperature. Generally, six distinct 

types of fuel cells have been developed and applied commercially as shown in the figure 

2.2. However, both hydrogen fuel cell (H2-FC) and direct methanol fuel cell (DMFC) use 

polymeric proton exchange membrane as electrolyte, so they are two subcategories of 

proton exchange membrane fuel cell (PEMFC).  
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 Figure 2.2 Fuel cell distributions 

While all five fuel cell types are based upon the same underlying electrochemical 

principles, they all operate at different temperature regimens, incorporate different 

materials, and often differ in their fuel tolerance and performance characteristics, as 

shown on table 2.1. 

 

Table 2.1 Description of Major Fuel cell Types (O’Hayer et al., 2006) 

Fuel cell type  PEMFC PAFC AFC MCFC SOFC 

Electrolyte 
Polymer 

membrane 

Liquid H3PO4 

(Immobilized) 

Liquid KOH 

(Immobilized) 

Molten 

carbonate 
Ceramic 

Charge carrier H+ H+ OH- CO3
2- O2- 

Operating 

temperature 
50-120 oC 200 oC 60-200 oC 650 oC 600-1000 oC 

Catalyst Platinum Platinum Platinum Nickle 
Perovskites 

(ceramic) 

Cell 

components 
Carbon based Carbon based Carbon based Stainless based Ceramic based 

Fuel 

compatibility 
H2, methanol H2 H2 H2, CH4 H2, CH4, CO 
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Among all above fuel cell options, PEMFC is the most promising option due to the high 

power density, relatively quick start-up, rapid response to varying loads, as well as low 

operating temperatures provided by PEMFC and has been developed for transportation 

applications, as well as for personal devices such as laptops, cell phones and hearing 

aides and for stationary applications. (Gottesfeld et al., 1997) A sign of dominance of 

PEMFC in recent time is reflected in the number of companies that have sprouted 

“manufacturing” these units, various demonstration programs, and increased in patents 

that have appeared. Moreover, the drive for zero emission vehicles has led to great 

technological strides in the development of PEMFC. (Basu, 2007) 

 

2.2 Proton Exchange Membrane fuel cells (PEMFCs) 

 

The proton exchange membrane fuel cell uses polymeric membrane as the electrolyte and 

is the best candidate for light-duty vehicles, buildings and much smaller applications. 

 

 

 

 

 

  

 

CO2 

Polymer Electrolyte Membrane 

 Anode

Cathode 

Fuel 

ygen  
 (Air) 

H
+ 

H
+ 

Ox Air 

   Figure 2.3 Diagram of PEMFC
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For H2-FC, the chemical energy liberated during the electrochemical reaction of 

hydrogen and oxygen can be transformed to electrical energy, as opposed to the direct 

combustion of hydrogen and oxygen gases to produce thermal energy.  

The oxidation half-cell reaction on the anode: 

 

H2  2H+ + 2e- 

 

The newly formed protons permeate through the polymer electrolyte membrane to the 

cathode side. The electrons travel along an external load circuit to the cathode side of the 

membrane electrode assembly (MEA), thus creating the current output of the fuel cell. 

The reduction half-cell reaction on the cathode: 

 

4H+ + 4e- + O2   2H2O 

 

At the cathode side oxygen molecules react with the protons permeating through the 

polymer electrolyte membrane and the electrons arriving through the external circuit to 

form water molecules. 

 

For DMFC, the fuel source, methanols can oxide on a catalyst layer to form carbon 

dioxide. Water is consumed at the anode and is produced at the cathode. Positive ions (H+) 

are transported across the proton exchange membrane to the cathode where they react 

with oxygen to produce water. Electrons are transported via an external circuit from 

anode to cathode providing power to external devices. 
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The half-reactions are: 

 

Anode: CH3OH + H2O   CO2 + 6H+ + 6e- 

 

Cathode: 3/2 O2 + 6H+ + 6e-   3H2O 

 

The primary components of a PEMFC are an ion-conducting electrolyte membrane, a 

cathode and an anode. The basic cell consists of a proton conducting membrane, such as 

a perfluorinated sulfonic acid polymer, sandwiched between two platinum impregnated 

porous carbon electrodes. The other side of the electrodes is made hydrophobic by 

coating with an appropriate compound, such as Teflon which provides a path for gas 

diffusion to the catalyst layer (GDL) (Stroh et al., 2001; Gottesfeld et al., 1997; Bevers et 

al., 1998 and Cha et al., 1999). Together, these three are often referred to as membrane 

electrode assembly (MEA), of simply a single fuel cell. In the simplest example, a fuel 

such as hydrogen is brought into the anode compartment and an oxidant, typically oxygen, 

into the cathode compartment. The other components are gas flow distribution plates for 

reactants, and mechanical components like end plates, current collectors, gaskets, bolts 

and nuts. The voltage of a fuel cell is small when drawing a useful current, that is, to 

produce a useful voltage many cells have to be connected in series. Such a collection of 

fuel cells in series is known a stack. The most obvious way to do this is to connect the 

anode plated with the adjacent cathode plate of the next cell with a wire all along the 

stack. A better method to do this is to use a “bipolar plate” where the entire face of the 
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anode plate (opposite the gas distribution side) is in contact with the obverse of the 

cathode plate (Borup et al., 1995; Stroh et al., 2001; Wilson and Busick 2001).  

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 PEM fuel cell hardware (Mehta and Cooper, 2003) 

 

Presently there are some technical problems that have to be overcome for the 

development of PEMFCs. Meanwhile, Tolerance to carbon monoxide (CO) is one 

important issue, particularly when hydrogen is formed from methanol by steam reforming. 

Methanol reformatted contains as much as 25% carbon dioxide (CO2) along with a small 

amount (1%) of carbon monoxide (CO) for H2-FC. It has been proven that PEM fuel cell 

performance drops with a CO concentration of only several parts per million. This is due 

to the strong chemisorption force of CO onto the catalyst. The other important issue is 

slow methanol oxidation kinetics and methanol diffusion from the anode to the cathode 

for DMFC. So in order to counter these problems, one (a binary catalyst) or sometimes 
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two elements (a ternary catalyst) are added to the base catalyst to form catalyst alloys. 

Binary and ternary anode catalysts such as Pt-Ru/C, Pt-Mo/C (Bauman et al., 1998), Pt-

W/C (Pinheiro et al., 2000), Pt-Ru-W/C (Holleck et al., 1998), Pt-Ru-Al4 (Denis et al., 

1998), and Pt-Re-(MgH2) (Dodelet et al., 2000) are typically. However, it is difficult that 

the catalyst alloys are produced as active as possible with reasonable cost to lower CO 

concentration below the level of 10 ppm and enable so high methanol conversion at the 

anode that methanol diffusion can be reduced through the electrolyte. Aiming to solve the 

above problems, this thesis research mainly focuses on fabricating high performance 

proton exchange membranes (PEMs) applied for both H2-FC and DMFC. Therefore, in 

the following part of literature review, (1) development of proton exchange membranes; 

(2) transport mechanism of PEMs; and (2) characterization methods of PEM performance 

will be reviewed. 

 

2.3 Proton exchange membranes 

 

In general, PEMFC requires an ion exchange polymer in the form of a continuous pore 

free sheet. The properties which characterize the ideal ion exchange membrane fuel cell 

electrolyte will include the following: high ionic conductivity, zero electrical 

conductivity, low gas permeability, dimensional stability, high mechanical strength, and 

low transference of water by conducting ions, high resistance to degradation, as well as 

chemical stability to oxidation and hydrolysis. A number of factors affect the 

conductivity of the membrane, e.g. ionic size, charge and the solvation. The most highly 

conducting membrane electrolytes for fuel cell application are those in which the mobile 
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ion is the hydrogen ion and the solvate is water at saturation. Proton exchange 

membranes are classified by materials applied for their fabrication into: (1) Sulfonated 

perfluoro-polymer membranes; (2) Sulfonated thermoplastic polymer membranes; (3) 

Phospohoric acid doped polybenzimidazole (PBI) membranes; (4) Polybenzimidazole 

(PBI) composite membranes; and (5) Other polymer membranes. 

 

2.3.1 Perfluorosulfonic acid membranes 

 

Sulfonated perfluoro-polymer and its derivatives (SPFP) symbolize the state-of–the-art of 

the plastic electrolyte membrane, satisfying in impressive fashion an array of 

requirements for effective, long-term use in fuel cells. In this ion exchange membrane, 

the sodium counter-ion can be easily exchanged with other cations by soaking the 

polymer in an appropriate aqueous electrolyte solution. For commercial materials, 

structure parameters are shown as the table 2.2. This gives rise to a molecular weight in 

the range of 100 to 1500 gram of resin (in its dry hydrogen ion form), per one mole of ion 

exchange sites. (Banerjee et al., and Manley et al., 1996) The commercialized 

perfluorinated membranes Nafion® series have emerged as standard materials for low-

temperature fuel cell applications. (Eisenberg et al., 1982; Gottesfeld et al., 1997 and 

Datta et al., 2002) No other type of materials could replace Nafion® for decades because 

of inability to provide high proton conductivity with high chemical and thermal stability. 
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Table 2.2 Commercial SPFP membranes by producer (Li et al., 2003)  

 

Sulfonated perfluoro-polymers have the branched chain architecture with sulfonic acid 

groups locating at the end of sides chains and hence thermoplastic and soluble in several 

organic polar solvents. It is widely accepted that sizeable ionic clusters scattered in a 

surrounding of hydrophobic organic medium can also exist in the polymer. By inspecting 

the change in fluorescence spectroscopy due to the diffusion of heavy cations into the 

matrix of hydrated Nafion polymers, Lee & Meisel (Lee and Meisel, 1980) have 

confirmed the existence of inverted misellar structure. Gierke & Hsu (Hsu and Gierke, 

1983) considered the clusters to be interconnected by short narrow channels in the 

hydrated Nafion matrix, as illustrated in Fig. 2.5. The microstructure offers both proton 

conducting channels (continuous phase) and mechanical framework (dispersed phase), 

upon which membrane of Nafion polymers exhibit it the dual properties when hydrated.  
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  2.5 Cluster network model for Nafion perflori
membrane (Hsu and Gierke 1983) 

nated 

  

However, Nafion® series are totally not able to hold matrix water when temperature is 

above 100 °C which decrease the proton conductivity of membranes and have high 

methanol permeability. Therefore, it is useful to make these membranes have high 

temperature resistance, low methanol cross-over, greater mechanical and high proton 

conductivity. Therefore, several recent modification approaches have been used to 

overcome these problems. Modified Nafion membranes containing inorganic fillers (SiO2, 

TiO2, ZrO2, and ZrP), hetero-poly-acids, and other polymers have been reported (Mauritz 

and Moore, 2004; Mauritz and Hassan, 2007). 

 

2.3.1.1 Inorganic oxides  

 

The approaches of synthesizing inorganic modified Nafion membranes include casting a 

bulk mixture of powder or colloidal state of inorganic with Nafion solution and in-situ 

formation of inorganic particles utilizing the membrane as template. Meanwhile, the 

advantage of in-situ method is that the particle size can be controlled by the concentration 
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of precursors because the size and dispersion of these solid particles are of utmost 

importance in final performance of fuel cells. Mostly, the in-situ method is based on sol-

gel reactions and water within the pores of the membrane. In the recent years, most 

reports focused on the development of the Nafion/TiO2, Nafion/SiO2 and Nafion/ZrO2 

composite membranes which applied Ti(OPr)4 (Sacca et al., 2005 and Jalani et al., 2005), 

tetraethoxysilane (TEOS) (Adjemian et al., 2002 and Jalani et al., 2005, Xu et al., 2005 

and Jiang et al., 2006)  and Zirconium (IV) tert-butoxide (Jalani et al., 2005) as 

precursors respectively by an impregnation of Nafion membrane via sol-gel processing of 

precursor solution or by preparing a recast film in alcohol solution or N, N’-

dimethylacetammide (DMAc) solution. The introduction of the fillers supplies the 

composite membrane with a good mechanical and thermal resistance as well as improves 

the water uptake and IEC values if compared to the commercial Nafion membrane. In 

addition, the methanol crossover of composite membranes is also reduced obviously. 

This may be because that the impregnation of the oxide particles into the nanopores of 

Nafion can prevent the membranes from hydration and lead to the destruction of the pore 

structure. Yet because the proton conductivity of the composite membranes containing 

these less proton conductive oxides is markedly lowered compared with that of a pristine 

Nafion membrane, introducing these inorganic oxides can not always lead to a desired 

improvement in the performance of the membrane electrode assembly (MEA). In order to 

enhance conductivity, besides remain membranes’ inherent property, some attempts have 

been reported to introduce some inorganic additives with some kinds of inorganic acid 

such as sulfonated acid (Rhee et al., 2006 and Zhai et al., 2006) and Heteropolyacid 

(Shao et al., 2004 and Xu et al., 2005) into Nafion matrix. The nanocomposite 
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membranes showed higher proton conductivity than composite membranes containing 

untreated inorganic oxide particles. The relative permeability of methanol through these 

composite membranes was also reduced in comparison with pristine Nafion membranes. 

However, from the SEM image, the particle dispersion is not uniform so that the 

membranes can not be applied for a long term fuel cell operation.   

 

2.3.1.2 Zirconium phosphate 

 

Zirconium phosphate was incorporated into Nafion with the procedure first described by 

Grot and Rajendran. (Grot and Rajendran, 1999) The treated Nafion membrane was 

dipped into zirconyl chloride solution for several hours and then immersed in phosphoric 

acid to form zirconium hydrogen phosphate in the membrane and re-protonate the 

sulfonate anions to regenerate the acidity of the membrane. The composite membrane 

revealed a slight reduction of ionic conductivity, a significant improvement of 

mechanical stability, and increased water retention. The overall efficiency at 130 oC was 

increased during DMFC operation because the reduction in the ionic conductivity is 

overcompensated for by the decrease in methanol crossover. With H2-FC, the slight 

reduction in overall efficiency corresponded to the decrease in ionic conductivity. 

However, they displayed better fuel cell performance than Nafion membrane when the 

fuel cell was operated at reduced humidity. (Bauer and Willer-Porada, 2006) 
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2.3.1.3 Heteropolyacid modification 

 

Heteropolyacid (HPA), an inorganic super acid, has two kinds of complex arrangement 

structure, commonly known as the “Keggin” and “Dowson” structure. (Fig. 2.6) HPA 

displays different reduced compounds when several electrons are introduced and is also 

very soluble in water and alcohols. Hence it is interesting to determine whether or not 

HPA has any effect on Nafion performance in proton electrolyte membrane fuel cell. 

Nafion-based organic/inorganic composite membranes with different heteropolyacid 

(HPA) additives have been shown in the above section. In the recent years, many reports 

have focused on preparing Nafion/HPA composite membranes with different HPAs 

(phosphotungstic acid (PTA), silicotungstic acid (STA), phosphomolybdic acid (PMA) 

and silicomolybdic acid (SMA) and different HPA concentrations. 

 

 

 

 

 

(a)                                             (b)  

 
Figure 2.6 HPA structures: (a) “Keggin” structure, (b) Dawson structure 

 

Tazi et al., (Tazi et al., 2000) developed an inexpensive and novel method of synthesizing 

cation exchange membranes based on Nafion® 117 solution and silicotungstic acid with 
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and without thiophene (named NASTATH and NASTA respectively). The water uptake 

and ionic conductivity of NASTA and NASTATH were compared with those of Nafion® 

117. It was shown that the water uptake of the composite membranes at 110 oC was 

significantly better than that of Nafion® 117 (27 wt.%) at 80 oC and the ionic conductivity 

of them was found to be significantly higher than that of the Nafion® 117. This is because 

the introduction of STA in the Nafion® 117 membrane to form the NASTA or 

NASTATH membranes may increase the number of protonic sites in the membranes. 

This may improve the membranes’ ionic conductivity and water uptake and also explain 

why stability of these membranes after pretreatment in hot deionized water though STA 

are soluble in water and alcohols.  

 

Malhotra and Datta (Malhotra and Datta, 1997) first proposed the incorporation of PTA 

in the Nafion membrane with the objective of serving the dual functions of improving 

water retention as well as providing additional acidic sites. Thus, they doped Nafion 

membranes with PTA, and were able to show high fuel cell performance at lower RH and 

elevated temperature (120 oC). Unfortunately, due to high water solubility, the PTA 

eventually leaches out from the PEM. Ramani et al. (Ramani et al., 2004) have more 

recently shown that Nafion-PTA membranes can be stabilized by heat treatment and the 

leaching of PTA can be reduced. In addition, this research group also evaluated the 

performance of Nafion/PTA, Nafion/PMA, Nafion/STA and Nafion/SMA at 

temperatures between 80 oC and 120 oC and under ambient pressure with cathode inlet 

relative humidities (CIRH) ranging from 100 to 35%.  
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2.3.1.4 Polymeric multilayer modification 

 

Various multilayer membrane structures have also been investigated with the aim of 

suppressing methanol crossover. Kim et al. (Kim et al., 2004) fabricated the membranes 

by blending Nafion solution with polyvinylidene fluoride (PVDF), this latter is 

considered as the structural component by virtue of its good methanol resistance as well 

as its excellent thermal stability. The laminated structure of the blended membrane 

overcomes the problem, which is poor contact with electrodes in the membrane electrode 

assembly (MEA) process, and reduces the interfacial resistance of the MEA. Yang and 

Manthiram studied the methanol crossover and conductivity of Nafion membranes with a 

thin barrier layer of sulfonated poly(ether ether ketone) (SPEEK). (Yang et al., 2004) Si 

et al. (Si et al., 2004) also developed trilayer membranes composed of one central 

methanol barrier layer and two conductive layers to suppress the methanol crossover. 

Casting non-conductive polymers such as poly(vinyl alcohol) (PVA) onto Nafion 

membranes can also reduce the methanol crossover. (Shao et al., 2002) However, in all 

these cases, the proton conductivity also decreased significantly due to the addition of a 

relatively thick barrier layer. 

 

The latest progress was the deposition of a very thin laminated top from multilayer of 

poly(diallydimethylammonium chloride) (PDDA, polycation), poly(sodium stryrene 

sulfonate) (PSSNa, polyanion) and poly(1-(4-(3-carboxy-4-hydroxyphenylazo benzene 

sulfonamide)-1,2-ethanediyl, sodium salt) (PAZO, polyanion) on the Nafion membrane 

surface at the anode side via layer-by-layer self-assembling (Jiang et al., 2006) tactic with 
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the aim of suppressing methanol crossover. The multilayer was anchored to the surface of 

Nafion through forming ion-pairs with it surface sulfonic groups, which can obstruct 

methanol effectively. However, such ion-pair binding mechanism disables the surface-

pendant sulfonic acid groups for transporting protons, and the surface layer will also be 

removed after a long contact with aquatic fuel solution. 

 

2.3.2 Sulfonated thermoplastic polymers for proton exchange membranes  

 

While modification of sulfonated perfluoro-polymer PEMs is still  a main research 

direction of the PEM industry, several thermoplastic aromatic polymers including 

polybenzimidazole (PBI), polyether(ether)ketone (PEEK), polyethersulfone (PES), 

polyphenylquinoxanline (PPQ), polyimide (PI), poly(4-phenoxybenzoyl-1,4-phenylene) 

(PPBP), poly(phthalazinones) (PPs), poly(arylene-ether-sulfone) (PSU), and 

polyphosphazene have been also used as high temperature proton exchange membrane in 

the recent years due to their excellent chemical resistance, high thermo-oxidative stability, 

and good mechanical properties. (Misha et al., 2000 and Karlsson et al., 2004) However, 

it is well known that these pristine polymers have very low conductivity. Therefore, in 

order to improve proton conductivity, some researchers have impregnated sulfonic 

groups to the polymers’ chains. Sulfonation, a powerful and versatile process, can be 

used to simultaneously render these polymers proton conductive as well as hydrophilic in 

nature. Generally, sulfonated polymers are prepared by introducing the sulfonic groups 

such as free acid (-SO3H), a salt (e.g. -SO3
-Na+) or an ester (-SO3R) onto the polymer 

backbone by modification or by polymerizing sulfonated monomers. (Noshay et al., 1976; 
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Glipa et al., 1997; Roziere et al., 2001; Bae et al., 2002; Smitha et al., 2003 and Xing et 

al., 2004) Furthermore, Kerres et al. (Kerres, 1999 and 2002) also developed the blends 

consisting of different sulfonated poly(ethersulfone)s and poly(etherketone)s as well as 

the blends of sulfonated poly(sulfone)/poly(ether sulfone) and SPEEK/poly(ether 

sulfone). Although these blends exhibited lower methanol permeability in DMFC tests 

than Nafion®, clear conclusions could not be drawn as proton conductivity was not 

measured. Gao et al. (Gao et al., 2003) also studied a novel class of sulfonated polymers 

(SPPs) including SPPESs, SPPEKs, and SPPESKs and found that highly sulfonated PPs 

showed proton conductivity about 10-2 S/cm at both room temperature and elevated 

temperature, which is in the range needed for high performance fuel cell PEM.  However, 

it was reported that unsulfonated aromatic polymers were more stable than their 

sulfonated derivatives under inert and saturated vapor conditions (Kopitzke et al., 2000) 

and the introduction of sulfonic groups into polymer chains can lead to a decrease in the 

decomposition temperature. (Gao et al., 2003) Smitha et al. (Smitha et al., 2003) also 

used the DSC spectra to observe Tg value after sulfonation is reduced from 87 °C to 

30 °C. This result is explained by the reason that the structural changes are introduced 

into the polymer on account of sulfonation, and the higher the degree of substitution, the 

greater is the free volume of a sulfonated product membrane enabling a change in the 

state of polymer from more amorphous to more crystalline resulting in the reduction of 

the glass transition temperature. However, in any case, WAXD studies would be needed 

to confirm this assumption. In addition, increasing in concentration of sulfonating agents 

can improve the conductivity of polymers, but can not ensure uniform distribution of 

sulfonic groups within the polymer matrix, which leads completely membranes of 
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polymer soluble. McGrath’s group applied disulfonated monomer to synthesize 

sulfonated poly(arylene ether sulfone) copolymers via direct copolymerization in any 

composition desired. (McGrath et al., 2001 and 2002) These random copolymers 

displayed a hydrophilic/hydrophobic phase separated morphology that varied depending 

on the degree of disulfonation. The conductivity and water uptake of this series of 

copolymers also increased with disufonation. However, once the degree of disulfonation 

reached 60 mol%, a semicontinuous hydrophilic phase was observed and the membranes 

swelled dramatically, forming a hydrogel that would not be useful as a proton exchange 

membrane. Hence, for different high temperature polymers we must control different 

degree of sulfonation to balance the proton conductivity with the water swelling and 

mechanical properties of the membrane in these thermoplastic polymers.  

 

2.3.3 Phospohoric acid doped polybenzimidazole (PBI) membranes 

 

Among above these thermoplastic polymers, polybenzimidazole (PBI), poly(2,2’-(m-

phenylene)-5,5’-bibenzimidazole), is most promising for high-temperature fuel cells 

when doped with a strong oxo-acid (phosphoric acid, H3PO4) (Wang et al, 1996 and 

Bozkurt et al., 1997) due to its exceptional thermal and chemical stability (Iwakura et al., 

1964 and Choe, 1994). For sulfonation of PBI, the conductivity of PBI membrane with 

sulfonic acid groups is dependent on the presence of water to solvate the protons of the 

sulfonic acid groups. Consequently the operational temperature is limited and high water 

contents must be ensured. A combination of PBI and phosphoric acid is therefore 

expected to have higher thermal and chemical stability as well as higher conductivity. 
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 Figure 2.7 Structure of poly(2,2’-(m-phenylene)-5,5’-bibenzimidazole) 

 

Of all PBI systems, phosphoric acid doped PBI membrane has been studied in the 

greatest detail, but the conductivity mechanism is still unclear phosphoric acid doped PBI 

membranes were first suggested for fuel cells applications in 1995. (Wainright et al., 

1995)  During this ten-year, two methods to dope phosphoric acid on PBI membranes 

have been developed, one is imbedding method and the other is sol-gel method.  

 

(1) Embedding method 

There are a lot of reports about H3PO4 doped PBI membranes and generally three 

methods of preparation (Litt et al., 1999): (1) casting form a solution of polymer in 

NaOH/ ethanol solution under N2 environment, followed by washing with water until 

pH=7, then doped by immersion in phosphoric acid solution; (2) casting from a solution 

of 3-5% polymer in N, N’- dimethylacetamide (DMAc), followed by evaporation DMAc, 

and then doped by immersion in phosphoric acid solution;  (3) directly casing from a 

solution of PBI and H3PO4 in a suitable solvent such as trifluoroacetic acid (TFA), 

followed by evaporation and the film is ready for use. Most of membranes reported in the 
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literature were prepared by the DMAc method because films cast using them were 

stronger and have better mechanical properties than those prepared by other two methods.  

 

Table 2.3 Comparison of conductivity at different conditions according different 

references 

 
Conductivity 

(S/cm) 

Relative 

humidity 
Doped levels temperature 

Wainringht et al., 

1995 
2.2×10-2 - 5.01 190 °C 

Fontanella et al., 

1998 
4.5×10-5 0% 6.0 Room temperature 

Bouchet et al., 

1999 
7×10-6 0% 3.05 30 °C 

Li et al., 2001 4.6×10-2 80-85% 4.5 165 °C 

Ma et al., 2004 4.5×10-2 30% 6.0 140 °C 

He et al.,2003 

2.0×10-2 20% 5.7 110 °C 

4.0×10-2 10% 5.7 140 °C 

7.9×10-2 5% 5.7 200 °C 

 

In Table 2.3, we need to emphasize that in the above report, conductivity measurements 

were based on the effect of the water content in both membranes and the atmosphere. On 

the contrary, in He’s paper, (He et al., 2003) special attention was attributed to the 

relative humidity (RH) in a hydrogen atmosphere. All of the above works were done 

based on PBI membranes, but the results varied from author to author due to various 

preparation processes for the membranes and various testing conditions. However, we 
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can conclude that phosphoric acid doped PBI membranes have higher conductivity at 

higher H3PO4 doping level of PBI membrane.  

 

Despite extensive work on PBI membranes, there are other members of the imidazole 

family, such as the simpler poly(4-vinylimidazole) (P4VI) and poly(2, 5-benzimidazole) 

(ABPBI), which are very much worth of attention and study. The synthesis, thermal and 

conduction properties of blends of poly(4-vinylimidazole) with phosphoric acid have 

recently been reported by Bozkurt and Meyer. (Bozkurt and Meyer, 2000) P4VI can be 

dissolved in acidic aqueous solution and then cast P4VI·xH3PO4 membrane, where x is 

the moles of acid per P4VI repeat unit. The influence of the acid concentration, 

temperature and pressure on the relative conductance and activation volume of P4VI 

blended with H3PO4 was studied. Moreover, the conductivities of P4VI blended with 

H3PO4 and H2SO4 were compared. (Pu et al., 2001) The conductivity of H3PO4 blended 

P4VI was lower than that of H2SO4 blended P4VI at the acid concentrations they studied. 

 

 

 

 

Figure 2.8 Structure of poly (2, 5-benzimidazole)  

Poly(2, 5-benzimidazole) (ABPBI) is indeed the simplest among benzimidazole type 

polymers since it can be prepared easily from a single, inexpensive and commercial 

monomer (3, 4-diaminobenzoic acid (DABA)) by condensation in polyphosphoric acid 

(PPA) (Asensio et al., 2002 and 2004a). Furthermore, impregnation of ABPBI with a 
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given phosphoric acid solution leads to higher acid uptake in comparison with 

commercial PBI. Litt (Litt et al., 1999) and Wainright (Wainright et al., 2003) have 

reported that direct acid casting of ABPBI/H3PO4, from trifluoroacetic acid (TFA) 

solutions improved the conductivity on ABPBI/H3PO4 and also allowed a better control 

of the acid content in the resulting membrane. Based on the above reports, Asensio 

(Asensio et al., 2004b) developed a procedure to prepare the phosphoric acid doped 

ABPBI membranes for PEMFC by simultaneously doping and casting from an ABPBI/ 

phosphoric acid/ methanesulfonic acid (MSA) solution. Membranes have been prepared 

with contents of up to 3.0 H3PO4 molecules per ABPBI repeating unit. These membranes 

achieved a maximum conductivity of 1.5 × 10-2 S/cm at temperatures as high as 180 oC in 

dry conditions. Both sulfonated SABPBI and ABPBI-PMo12 membranes have shown an 

enhanced capacity for phosphoric acid uptake and a consequent increase in conductivity, 

compared with the non-modificated counterparts. The maximum conductivities measured 

in dry conditions were 3.5 × 10-2 S/cm at 185 oC for SABPBI· 4.6 H3PO4 with a degree 

of sulfonation of 41% and 3.0 × 10-2 S/cm at 185 oC for ABPBI-PMo12· x H3PO4 

membrane with a degree of PMo12 of 45%. (Asensio et al., 2004c and Romero et al., 

2005) 

 

(2) Sol-gel process  

During the last ten years, there have been a lot of reports about H3PO4 doped PBI 

membranes. However, a very high acid doping level may deteriorate the mechanical 

properties of the acid doped polymer membranes, especially at temperatures above 

100 °C.  This factor limited improving conductivity at a high temperature, made working 
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time of fuel cells shorter and decreased mechanical stability of membranes. Recently, 

Xiao et al. reported a sol-gel process was described to produce phosphoric acid (PA)-

doped polybenzimidazole (PBI) (Xiao et al., 2005a) and pyridine-based 

polybenzimidazole (PPBI) (Xiao et al., 2005b) films that operated as fuel cell membranes 

above 150 °C for extended periods of time without the need to feed gas humidification. 

Polymerization to produce PBI or PPBI polymers was carried out using PPA as both the 

polycondensation agent. After polymerization, the PBI or PPBI solution in PPA was 

directly cast at approximately 200 to 220 oC without isolation of redissolution of the 

polymers. Upon casting, hydrolysis of the PPA to PA introduced a sol-gel transition that 

produced membranes with a desirable suite of physicochemical properties. The resulting 

membranes can display high PA doping level and exhibited high ionic conductivities and 

stable mechanical properties at elevated temperatures. However, for this method, high 

molecular PBI or PPBI which can be achieved from the strict experiment conditions has 

to be achieved by forming a piece of membrane for obtaining high mechanical properties. 

 

 

 

 

  

 

 

 

 Figure 2.9 State diagram of the PPA sol-gel process (Xiao et al., 2005a) 
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2.3.4 Polybenzimidazole (PBI) composite membranes 

 

High acid doping levels result in higher conductivity. However, a very high acid doping 

level may deteriorate the mechanical properties of the acid doped polymers membranes, 

especially at temperatures above 100°C. In order to overcome this limitation, additional 

studies also have focused on acid doped composite membranes of PBI with other 

polymers or inorganic compounds and studies of other derivatives. Introducing single 

solid proton conductor, e.g. SiO2, ZrP, PWA or SiWA as inorganic filler, not only 

improved the mechanical behavior as well as the thermal stability, but also increased the 

conductivity of the composite membranes (He et al., 2003). A higher conductivity of 

9.6×10-2 S/cm was observed for the acid doped membranes containing 15 wt.% of ZrP in 

a PBI membrane at 200 oC  and 5% RH. And homogeneous membranes with good 

mechanical strength were prepared by introducing PWA (20-30 wt.%) and SiWA(20-30 

wt.%) into PBI, and their conductivity were found to be higher than of comparable with 

that  of  the PBI membrane at temperatures up to 110 oC. Moreover, coupling SiWA/SiO2 

inorganic materials have been also applied for hybridization with PBI to get proton 

conductor membranes. (Staiti et al., 2000a and 2001) The membranes were thermally 

stable and the conductivity measured on a sample of membrane with 50 % of inorganic 

proton conductive component gave a value of 1.2 ×10−3 S/cm at 160 oC and 100 % RH.  

 

Pure PBI has a relatively high cost and performance tests of PBI fuel cells suggest that 

further optimization is needed. Hence blends of PBI with an inexpensive polymer were 

synthesized. Sulfonated thermoplastics such as polysulfone (SPSF) have been recently 
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proposed as possible polymer electrolytes and these PBI-SPSF blends exhibit excellent 

miscibility characteristics. Deimede and Hasiotis (Deimede et al., 2000; Hasiotis et al., 

2001a and 2001b) observed the conductivity of the PBI/SPSF blends possessing different 

phosphoric acid doping level and different degree of sulfonation and found that the 

conductivity of blends is dependent on the sulfonation degree of SPSF. Although the 

blending membrane has a highest conductivity of about 2.1×10-1 S/cm, it did not be 

applied for fuel cell due to its poor mechanical and thermal properties. Kerres (Kerres et 

al., 2000 and 2001) prepared ionically cross-linked blend membrane by mixing acidic 

polyaryl membranes such as sulfonated polysulfone (PSU), sulfonated 

polyether(ether)ketone (SPEEK), and sulfonated polyetherketone (SPEK), with basic 

membranes such as PBI. The conductivity of the blended membranes depended on the 

composition and ion exchange capacity (IEC) of the membranes. Also, they applied these 

membranes in H2 fuel cells and direct methanol fuel cells (DMFC), and concluded that 

low methanol-permeability makes this membrane suitable for DMFC even at 110 oC. 

Wycisk et al. (Wycisk et al., 2005) developed a series of proton-conducting fuel cell 

membranes prepared from blends of sulfonated poly[bis(phenoxy)phosphazene] (SPOP) 

and PBI, where the latter, being a polymer base, was used as a cross-linking component. 

The resulting membranes had a room temperature proton conductivity in the range 0.005-

0.08 S/cm and lower methanol permeability than Nafion® 117, but the DMFC 

performance of the membranes is not as good as Nafion® 117.  
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2.3.5 Other polymers for proton exchange membranes 

 

2.3.5.1 Organic-inorganic hybrids  

 

Peled et al. (Peled et al., 2000) developed composite membranes of PVDF filled with 

nanoparticles, such as silica, zirconium, and aqueous mixtures of acids. These 

membranes exhibited lower methanol crossover compared to Nafion ®, but due to the use 

of aqueous acids, corrosion-resistant materials for the fuel cell would be required in the 

fuel cell assembly. Aparicio et al. (Aparicio et al., 2005) synthesised poly(styrene-co-

methacrylate)–silica covalent hybrid membranes using copolymerization of monomers 

(styrene (STY) and 2-hydroxyethyl methacrylate (HEMA)), with formation of covalent 

bonds between hydroxyl group from the latter and pre-hydrolyzed tetraethoxysilane. 

Tungstophosphoric acid hydrate was incorporated to provide proton conductivity for the 

membranes. The combination of water uptake and water retention properties provided by 

SiO2 and tungstophosphoric acid leads to high proton conductivity (maximum values 

around 1 S/cm) at 120 °C. However, decay in conductivity was observed at higher 

temperatures, suggesting that dehydration of the membrane occurs. In this paper, it is 

shown that the rise of conductivity can only be associated with the higher percentage of 

silica in this membrane.  
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2.3.5.2 Blending proton exchange membranes 

 

Blending of hydrophilic and hydrophobic polymers is also one of the research areas of 

PEM. Such a composite structure allows both hydrophilic and hydrophobic domains to 

fulfill their respective functionalities as a PEM. Chen et al (Chen et al., 2002 and 2004) 

used a copolymer (PMMA-SSA) formed by styrene sulfonic acid as hydrophilic phase 

and methyl methacrylate to embed into hydrophobic poly(vinylidene fluoride) (PVDF) to 

prepare blends of P(MMA-SSA) and PVDF. The blending improved the thermal stability 

of the SSA and high SSA content can provide higher conductivity. However, because 

results which the blending membranes became fragile were observed when further 

increasing content of SSA, these blending membranes can not pursue a satisfied 

conductivity. Blends of PVA with sulfonic acid containing polymers have also been 

studied. PVA/PSSA blend membranes were investigated at various PSSA contents and 

annealing temperatures. (Wu et al., 2002) At 17 wt.% PSSA and annealing temperature 

of 110 oC, methanol crossover was half of Nafion®, but proton conductivity was an order 

of magnitude lower. Similarly, polymer blends of PVA and PSSA-MA were investigated, 

where introducing maleic acid reduced membrane swelling when compared with pure 

PSSA. (Kang et al., 2002 and 2005) Blending PVA with PSSA-MA (3:1 mol ratio) in a 

1:1 weight ratio yielded proton conductivities as high as 0.095 S/cm and methanol 

permeabilities an order of magnitude lower than Nafion®. (Kang et al., 2005) In 

comparison to PVA/PSSA membranes, PVA/PSSA-MA membranes exhibited a 46% 

increase in proton conductivity and almost a 5-fold decrease in methanol permeability. 

SAXS results suggest that crosslinked PVA/PSSA-MA membranes possess narrower 
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ionic channels when compared with Nafion®, which the authors attribute to the decrease 

in methanol permeability. Some reports investigated PVA/PAMPS blends, where PVA 

was crosslinked with aldehydes (glutaraldehyde, n-butylaldehyde/terephthalaldehyde, n-

hexylaldehyde/terephthalaldehyde, and n-octylaldehyde/terphthalaldehyde). (Qiao et al., 

2005b) By using different auxiliary aldehydes, the crosslinking spacer length can be 

controlled, where an increased crosslinker spacer length resulted in an increase in water 

sorption. Furthermore, Qiao et al. (Qiao et al., 2005a) introduced poly(vinylpyrrolidone) 

(PVP) as a stabilizer into the PVA/PAMPS blends . They reported a proton conductivity 

of 0.088 S/cm (four-electrode) and a methanol permeability of 6.0×10-7 cm2/s. 

 

2.3.5.3 Pore-filling electrolyte membranes 

 

A new membrane concept for fuel cell applications was proposed. Pore-filling 

membranes are composed of a porous substrate film, whose pores are filled with a 

polymer electrolyte (Fig. 2.10). Dividing the functions of the membrane into those of a 

substrate and a filling polymer is expected to induce better performance than can be 

developed using only single-component membranes. An electrolyte polymer with a 

proton conductive functional group, such as the sulfonic acid group, used to fill the pores 

of the substrate, is expected high proton conductivity. A strong and rigid film used as a 

porous substrate allows the porous substrate matrix to mechanically prevent any excess 

swelling of the filling polymer. 
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Figure 2.10 Schematic diagram of the concept of a pore-filling electrolyte 
membrane (Yamaguchi et al., 2003b) 

 

 

In the earlier report, perfluorosulfonic acid polymers have been used to impregnate 

porous support membranes. (Penner et al., 1985 and Liu et al., 2001) And further the 

properties of these ionomers in confined spaces and the effect of the porous material on 

the behaviour of the membranes have also been studied recently (Rodgers et al., 2008). 

However, such membrane cannot suppress membrane swelling. Therefore Yamaguchi’s 

groups have focused on this research area to develop this kind of pore-filling electrolyte 

membranes for a few years. Poly(acrylic acid) (PAA) (Yamaguchi et al., 2003b), 

poly(vinylsulfonic acid/co-acrylic acid) (PAAVS) (Nishimura and Yamaguchi 2004), 

poly(acrylamid tert-butyl sulfonic acid) (PATBS) (Nishimura and Yamaguchi 2004; 

Yamaguchi et al., 2003a ), and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) 

(PAMPS) crosslinked with N, N’-methylenebisacrylamide (MBA) (Kanamura et al., 2005) 

have been used as the filling electrolyte polymers to be introduced into  porous silica 

 41



(Kanamura et al., 2005), porous poly(tetrafluroroethylene) (PTFE) (Yamaguchi et al., 

2003a), porous cross-linked high-density polyethylene (CLPE) (Nishimura and 

Yamaguchi 2004), polyimide (PI) as the substrate respectively with impregnation 

polymerization method. For such composite membranes, porous substrates can suppress 

membrane swelling and then reduce the methanol permeability of membranes. The filling 

polymer having high sulfonic acid content can show high proton conductivity. The 

relationship between the proton conductivity and the methanol permeability of a single 

pore-filling polymer can be controlled by changing the substrate strength and pore-filling 

ratio. Further this can control the membrane performance for a given fuel cell application. 

 

2.4 Proton transport mechanism 

 

At a molecular level the proton transport mechanism is usually described as the lone 

proton migration mechanism and proton-carrying mechanisms. (Colomban, 1992) The 

lone proton migration mechanism (proton translocation or Grotthuss process) is following 

the process: (a) displacement of H+ along a hydrogen bond and (b) transport of the H+ ion 

form this hydrogen bond to the following one. For the proton-carrying mechanisms (the 

vehicle mechanism), the proton migrates in one direction as OH3
+, NH4

+, etc. bonded to a 

“vehicle” such as H2O, NH3 etc. whereas the “unladen” vehicles move in the opposite 

direction. For proton exchange membrane, one of the most difficult hurdles facing the 

development of novel PEM is understanding the proton transport mechanism. Proton 

conduction in proton exchange membrane is complicated and strongly dependent on 

humidity, the nature and content of acid as well as temperature.  
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2.4.1 hydrated acidic polymer membrane 

 

Some polymer membranes containing functional acidic groups have extremely high 

proton conductivity in the hydrated state. Such membranes combine in one 

macromolecule the hydrophilic character of terminal acidic functional groups and the 

hydrophobicity of the polymer backbone. Especially in the presence of water, this leads 

to some hydrophilic/hydrophobic separation. While this hydrated hydrophilic domain 

carries the transport of water and protonic charge, the hydrophobic domain gives the 

material it’s morphological. (Kreuer, 2001) The transport properties are determined by 

the confinement of water within the hydrophilic domain and the interaction with the 

acidic functional groups. Proton transport in water occurs by long proton migration 

mechanism and the proton-carrying mechanisms. At low water contents (low humidify), 

where the number of water/water contacts is significantly reduced compared with bulk 

water, hydrogen bonds are expected to be tightened. This is expected to lead to a reduced 

rate of bond breaking and forming processes and then the rate of proton transport is 

expected to be reduced by water confinement in the hydrophilic domain. Furthermore, the 

interaction of the water molecules with the acidic functional groups polarizes the protons 

in the hydrogen bonds towards the acidic anion, i. e. the hydrogen bonds, which are on 

average symmetrical in bulk water, become biased in this environment which can lead to 

a decreased activation enthalpy and therefore also to a improved rate of proton mobility. 

(Tuckerman, et al., 1997 and Kreuer, 2000) 
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2.4.2 Anhydrous acidic polymer membrane 

 

Anhydrous proton-conducting polymer membranes usually consist of a polymer matrix 

(base) with an appropriate proton solvent. In particular, composite membranes of strong 

acids, such as phosphoric acid or sulfuric acid, and basic heterocyclic molecules, such as 

imidazole and benzimidazole, have been found to show high proton conductivity under 

anhydrous (low humidity) and intermediate-temperature conditions. The proton transport 

of an acid – base composite membrane under anhydrous or low-humidity conditions is 

supposed to occur by a Grotthuss mechanism or proton sweeping mechanism, in which 

only protons are mobile from site to site without the presence of diffusible water 

molecules, such as H3O+ or H5O2
+. (Kreuer, 1996) Therefore, the molecular structure of 

the acid-base composite membrane is crucial for the rate of proton transport. (Goward et 

al., 2002; Munch et al., 2001 and Hickman et al., 1999) Namely, an existence of a proton 

conductive pathway in the membrane is one of the most important factors for the high 

conductivity. Most studies on a random proton-conductive pathway formed by simple 

mixing of acidic and basic molecules, such as embedding method to prepare H3PO4 or 

H2SO4 doping PBI or AB-PBI (Litt et al., 1999 and Wainright et al., 2003). For random 

proton-conductive pathway, at lower doping levels (x= 0-2, before the maximum 

protonation is reached,) H3PO4 protonates the nitrogen atom of the imino group of the 

PBI structure (Fig.2.11b). H2PO4
- seems to be the predominant anion over the entire acid 

concentration range with the appearance of HPO4
2- for small values of x (< 0.2) and 

H3PO4 for the highest values of x (> 1.2). Proton exchange mainly happens between 

protonated and nonprotonated imino nitrogen groups (N-H+...N-H) (Fig. 2.11b) on 
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neighboring polymer chains, considering the distance of N atoms in one repeat unit of 

PBI. The Tg increases with increasing concentration of H3PO4 in the polymer. (Glipa et 

al., 1999 and Bouchet et al., 1999) Membranes with phosphoric acid in the range of 

doping levels of 0 < x < 2 have too low a conductivity to be used as electrolytes in fuel 

cells. After the maximum degree of protonation is reached (x=2), excess acid exists in the 

membranes. However, for x < 3, there is not much excess H3PO4, and the average P-P 

distance is larger than the N-N distance and too large to allow proton jumps between the 

anions. Therefore, it can be suggested that the proton conductivity in acid-doped PBI in 

this doping range would rather result from a cooperative motion of two protons along the 

polymer-anion chain by the Grotthuss mechanism (Fig. 2.11c). With increasing doping 

level, there is more excess H3PO4. Now, protons migrate along the mixed H2PO4
-

 ...H3PO4 and N-H+...H2PO4
- anionic chains by successive proton transfer and anion 

reorientation steps (Fig. 2.11d) For x > 4.2, the further addition of H3PO4 leads to excess 

acid in the polymer, which has an NMR spectrum very similar to that given by pure 

phosphoric acid. Proton migration happens mainly along the acid and anion chain 

(H2PO4
- H+...H2PO4

-) (Fig. 2.11d) depending on the water content. Conductivity is 

increasing with doping level. In this case, the conductivity mechanism is more like that of 

a concentrated H3PO4 solution (Grotthuss mechanism). With these doping levels, the 

membranes have high conductivity and are most suitable for fuel cells. (Ma et al., 2004) 
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Figure 2.11 Chemical structure of (a) polybenzimidazole (PBI), (b) H3PO4 protonated 

PBI, (c) proton transfer along acid-PBI-acid, (d) proton transfer along acid-acid  
(Ma et al., 2004) 

 

 

 

 

 

 

 

 

 

 

However, this random proton-conductive pathway does not provide the maximum 

conductivity that can reached for that acid-base complex. Recently, it has been reported 

that a self-assembled acid-base complex membrane consisting of acidic and basic 

molecules. Yamada and Honma (Yamada and Honma, 2004) studied a kind of lamellar 

composite material with a highly ordered molecular array through the hybridization of 

acidic surfactant monododecyl phosphate (MDP) and basic surfactant 2-undecylimidzole 

(UI) molecules (Fig. 2.12). In this case, the transport of the proton can form protonated 

molecules to nonprotonated molecules. Therefore, the distance between the acidic and 

basic molecules is important for the formation of an effective proton-conducting pathway 

in an acid-base composite material. 
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Figure 2.12 Structural model of UI-MDP composite materials. The UI and MDP molecules 
construct the highly ordered lamellar structure with the proton-conducting pathway. UI and 
MDP molecules indicate the space-filling and line-drawings models. The insert shows the 

proton-conducting mechanism in the two-dimensional proton-conducting pathway.  
(Yamada and Honma, 2004) 

 

 

 

 

The other mechanism has been studied for anhydrous polymer material. Zhang et al. 

(Zhang et al., 2006) reported that two types of ionic monomers, one sodium 3-

sulfopropylacrylate, potassium salt (SPA-K) bearing anionic –SO3 group and the other N, 

N’-methyl-(6-hexylcarbamatoethylmethacrylate) imidazolonium bromide (EMACI) 

bearing cationic quaternary imidazole group, were grafted to nano silica particles (~7nm) 

via the heterogeneous ATRP. Grafted particles were then incorporated individually into 

Nafion membrane and then showed great promoting effect on proton-conductivity of the 
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membrane in anhydrous state due to noticeable proton-sweeping effect of the 

copolymeric grafted chains (Fig. 2.13).  

 

 

 

 

 

 

 

 

 

Figure 2.13 Proton sweeping transport scheme (Zhang et al., 2006)  

 

2.4.3 Temperature 

 

The temperature dependence of the conductivity in polymer electrolytes has been taken 

as an indication for a particular type of conduction mechanism. A distinction is generally 

made between systems that show the Arrhenius equation and those that present a 

curvature in log σ versus inverse temperature plots. In the latter case, empirical equations 

derived from the free volume theory have been used, as for example the Vogel-Tamman-

Fulcher (VTF) equation. (Armand, 1983 and Patner, 1987) For a hopping-like conduction 

mechanism (Grotthuss type mechanism), the conductivity follows the Arrhenius equation,  
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Where, 0σ  and A are pre-exponential factors and  the activation energy. The VTF 

behavior is characteristic of the conductivity of amorphous phases or polymer segmental 

motion and the proton transport could be described as a vehicle mechanism. The equation 

was originally used to fit the viscosity data in molten glasses. 
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                              …… Equation 2.2 

  

For proton exchange membrane, the conduction mechanism of membrane is, as known, 

dominated by polymer segmental motion (Vogel-Tamman-Fulcher (VTF) equation) at 

low water content. At high water content, the proton transport mechanism is much more 

liquid-like with some polymeric influence and showed an Arrhenius behavior. Therefore, 

the proton transfer is largely dependent on the water content in the membrane. However, 

for H3PO4 doped PBI membrane, the proton transport is mainly controlled by a 

“hopping” mechanism rather than by segmental motion at any controlled water content. 

(Fontanella et al., 1998) The activation energy for acid doped PBI membranes was 

approximately constant at the acid doping level of 0.2-3.05. (Ma et al., 2004 and He et al., 

2003) This is because a correlation between the conductivity and the nature of the 

predominant anion associated to the polymer is suggested and the conductivity properly 

originates for the proton hopping the N-H sites of the polymer to the anions of 

phosphoric acid or vice versa, while the proton hopping from one N-H site to another of 

the polymer contributes little to the proton conductivity. When increasing doping level 
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above this range and up to 7, the conductivity and activation energy suggest a quasi-

liquid like conduction of proton in the acid doped PBI membranes. For PBI composites 

with inorganic proton conductors such as ZrP, PWA and SiWA, the proton hopping 

mechanism still plays a dominant role for proton conduction. (He et al., 2003) 

 

2.5 Characterization of PEM performance 

 

2.5.1 Methanol crossover 

 

To determine the methanol permeability of the membranes, a side-by-side diffusion cell 

(Fig. 2.14) was used usually, where the PEM is sandwiched between donor (upstream 

side) and receptor (downstream side) compartments. The donor compartment is charged 

with methanol (ca. 1-2 M) and the concentration of methanol is measured on the 

downstream side as a function of time. The permeability can be determined from the 

slope of the early time data, (Elabd et al., 2003) where a variety of detection methods 

have been used, including gas chromatography (Lee et al., 2005; Carretta et al., 2000; 

Yin et al., 2003 and Rhim et al., 2004) refractometry (Li et al., 2003; Shen et al., 2005; 

and Park et al., 2005), and FTIR-ATR spectroscopy (Elabd et al., 2003 and 2004). From 

the relationship between the methanol concentration in receptor compartment and the 

permeation time, methanol permeability, P was calculated by the following equation: 
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L
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B ×−××=× )(                …… Equation 2.3 
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Where CB is the methanol concentration in the receptor compartment; CA, the methanol 

concentration in the donor compartment; D, the diffusion coefficient; K, the partition 

coefficient between the membrane and the adjacent solution; t, is the permeation time; A, 

is the exposed area of the membrane; L, the thickness of the membrane, and VB, the 

solution volume of the receptor compartment. 

 

 

 

 

 

 

 Figure 2.14 Experiment setup for membrane methanol permeability 
measurement 

 

One of the drawbacks of the diffusion cell is that a potential difference is not applied, and 

therefore, the permeability of methanol determined may be different to the crossover 

experienced in the DMFC. Several researchers have developed techniques to determine 

the methanol permeability in electrochemical cells using a variety of techniques, such as 

measuring CO2 formation at the anode (Saarinen et al., 2005) or crossover current. 

(Ravikumar et al., 1996; Xu et al., 2004 and Ren et al., 2000a) The crossover current can 
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be extracted from the DMFC potential, where the performance of a DMFC can be 

modeled as: 

 

ohmicxovercatancellcell EV ηηηη −−−−=                  …… Equation 2.5 

 

Vcell is the cell voltage, Ecell is the different between the half-cell potentials of the anode 

and cathode at the reference current density i0, ηan and ηcat are the anode and cathode 

overpotentials, respectively, ηxover is the methanol crossover overpotential, and ηohmic is 

the ohmic overpotential. The crossover overpotential is proportional to the flux of 

methanol through the membrane, which is governed by methanol concentration, pressure 

gradient, and electroosmosis: 

 

2jxover χη =                                                          …… Equation 2.6 

 

Where χ is a lumped term constant. From this relationship and the following expression, 

the methanol permeability can be determined experimentally (Shao et al., 2002 and Ren 

et al., 2000): 
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+

=                                          …… Equation 2.7 

 

Where id is the limiting methanol permeation current density measured voltammetrically, 

ξ is the electroosmotic drag coefficient of protons in the membrane, and xo is the molar 
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fraction of methanol in the feed stream. The experiment entails exposing the anode side 

of the MEA to a known concentration of methanol and the cathode side to a humidified 

nitrogen environment. (Ge et al., 2005) A dynamic potential (ca. 0.1-1 V at 1-2 mV/s) is 

applied to the cathode side, and the limiting methanol permeation current density is 

obtained by measuring the limiting current of the methanol electro-oxidation process at 

the platinum/membrane interface. 

 

2.5.2 Conductivity 

 

The proton conductivity of a polymer intended for the application in an electrochemical 

device is obviously an important parameter and has been calculated using the following 

equation by measuring the membrane resistance by direct current (D.C.) impedance and 

alternating current (A.C.) impedance.  

 

L                                                              …… Equation 2.8 
RS

σ =

 

Where σ, L, R, and S denote the proton conductivity, thickness of membranes, the 

resistance of the membrane and the cross-sectional area of the membrane, respectively. 

The D.C. method provides the most straightforward way for taking ionic conductivity of 

polymers. With a two-electrode cell, the polymer electrolyte is sandwiched between two 

metallic electrodes, so that a constant current flows around the circuit and through the 

cell upon application of a stable D.C. voltage. Despite the simplicity of the D.C. method, 

the interfacial resistances at the two electrodes are not negligible in comparison with the 
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bulk resistance of polymer electrolyte, therefore the D.C. method can not give the 

accurate electrolyte resistance. Although by adding the other two electrodes (four-

terminal method) it is possible to eliminate the influence from the electrode/electrolyte 

interface on the measurement outcome, it is often difficult to obtain sufficiently 

reversible electrode reactions that remain stable over a wide temperature range. In 

contrast to the D.C. method, the ions are driven in one direction during the first half of an 

A.C. cycle and in the opposite direction during the second half-circle and so net build-up 

and depletion at the electrodes do not occur. Such phenomenon also leads that the cycle 

time is shorter compared with the diffusion rate of the ions. Moreover, the problems of 

concentration polarization which complicates D.C. measurement are also largely avoided 

if an alternating current is used. Therefore, with respect to the known A.C. techniques, 

the impedance spectroscopy has become the most popular method in the determination of 

the electrical properties of solid electrolytes. Electrochemical impedance spectroscopy 

(EIS) applies an A.C. over a broad frequency range, where the resistance of the 

membrane can be determined from the real impedance data (or the x-intercept of the 

regression of imaginary vs. real impedance data over a high frequency range). There are 

two methods for A.C. impedance which are two-electrode method and four-electrode 

method. Using the two-electrode method for polymer electrolyte membrane with a low 

resistance, a high frequency is needed to separate membrane resistance for interfacial 

capacitance. Electrochemical impedance spectroscopy (EIS) analysis of membranes can 

be performed to provide the impedance plots (Nyquist form) at a frequency range. In the 

Nyquist impedance plot (Fig. 2.15), the imaginary part (Z”) of impedance is plotted as a 

function of its real component (Z’) in the frequency range. (Walls et al., 2003) Using the 
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four-electrode method, impedance independent of frequency over the frequency range 

can be observed. This meant the membrane resistance can be separated from interfacial 

resistance in this frequency region. The resistance of the membrane is obtained from a 

Cole-Cole plot after checking the frequency region over which the impedance had a 

constant value. (Sone et al., 1996) Typically, a four-electrode technique is preferred over 

the two-electrode, because of the significant frequency dependence on impedance at low 

frequencies due to interfacial impedance for the two-electrode. However, the two-

electrode technique measures the membrane impedance in the same direction as methanol 

transport, which is the direction that is relevant for the DMFC.  
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 Moreover, it was reported that the proton conductivity for Nafion® 117 shows a 2.5-fold 

difference in conductivity between the two techniques: 0.067 S/cm and 0.027 S/cm for 

the four and two-electrode techniques, respectively. (Elabd et al., 2003 and 2004) These 

Figure 2.15 Impedance diagram of a typical polymer electrolyte with 
blocking electrodes 
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values are similar to other values reported in literature for Nafion® 117 using these two 

techniques at similar temperatures: 0.067 S/cm, (Gardner and Anantaraman, 1995) 0.061 

S/cm, (Fontanella et al., 1993) 0.054-0.082 S/cm, (Tricoli et al., 2000) for the four-

electrode technique; and 0.024 S/cm, (Gardner et al., 1995) 0.022 S/cm, (Pourcelly et al., 

1990) for the two-electrode technique. Some researchers suggest that the differences are 

primarily due to the differences in the two techniques, while others suggest that there 

may be a slight ionic micro-domain orientation during the commercial extrusion process 

of Nafion® membranes causing this effect. However, the differences between these 

techniques should be considered more thoroughly when investigating other PEMs. A 

study by Elabd et al. (Elabd et al., 2003) demonstrates an order of magnitude reduction in 

proton conductivity, when comparing the two-electrode technique with the four-electrode 

technique, for sulfonated block copolymer membranes with a lamellar morphology with a 

preferred orientation in the plane of the membrane. The conductivity difference using the 

two techniques is about 5-10 times larger than Nafion® 117. Other investigations have 

demonstrated similar relationships between conductivity and structure in self-assembled 

oriented polymer systems. Moreover, it is reported that palladium coated Nafion® 

membranes has a proton conductivity of 0.11 S/cm using the four-electrode technique. 

However, from other three studies (Li et al., 2003; Kim et al., 2003 and Tang et al., 2005), 

similar membranes are reported to provide proton conductivities ranging from 0.003 to 

0.02 S/cm using the two-electrode technique. These reports highlight the importance of 

cautiously interpreting conductivity results in this field and stress the importance of 

critically examining transport data as it relates to polymer structure. 
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2.5.3 Single cell performance 

 

The performance of a fuel cell device can be summarized with a graph of its current 

voltage characteristics. (Fig. 2.16) This graph, called a polarization (i-V) curve, shows 

the voltage output of the fuel cell for a given current output. The current has to be 

normalized by the area of the fuel cell, giving a current density. An ideal fuel cell would 

supply any amount of current (as long as it is supplied with sufficient fuel) while 

maintaining a constant voltage determined by thermodynamics. In practice, however, the 

actual voltage output of a real fuel cell is less than the ideal thermodynamically predicted 

voltage. There are three major types of fuel cell losses, activation losses (losses due to 

electrochemical reaction), ohmic losses (losses due to ionic and electronic conduction, 

and concentration losses (losses due to mass transport), which give a fuel cell i-V curve 

its characteristic shape. Furthermore, the more current that is drawn from a real fuel cell, 

the lower the voltage output of the cell, limiting the total power that can be delivered. The 

power (P) delivered by a fuel cell is given by the product of current and voltage: 

 

P= i ×V                                                             …… Equation 2.9 

 

A fuel cell power density curve (Fig. 2.17), which gives the power density delivered by a 

fuel cell as a function of the current density, can be constructed from the information in a 

fuel cell i-V curve. 
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Figure 2.16 Schematic of fuel cell i-V curve 
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Figure 2.17 Combine fuel cell i-V and power density curves 
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Of these three major types of fuel cell losses, ohmic losses are crucial for evaluating the 

performance of proton exchange membrane. Fuel cell resistance contributions are 

additive from a few parts, electrical interconnections, anode electrode, cathode electrode, 

anode catalyst layer, cathode catalyst layer, electrolyte, and so on. An investigation of the 

various contributions to fuel cell resistance reveals that the electrolyte component to fuel 

cell resistance usually dominates. (O’Hayre et al., 2006) Therefore, recently, many 

reports have introduced single cell test to evaluate performance of their proton exchange 

membranes. Moreover, good mechanical and thermal properties of membranes are 

necessary for the fuel cell test, (Harrison et al., 2005 and Xiao et al., 2005a) because the 

membranes have to bear the pressure charged on the membrane electrode assemblies 

(MEAs). Besides, the membranes with good mechanical properties can also maintain the 

performance during a long operation time. In addition, hot pressing of fuel cell electrodes 

onto the membranes to form membrane electrode assemblies (MEA) has been reported. 

Such pressing can make the Nafion®-based electrodes to adhere sufficiently well to the 

membrane to form robust MEAs and improve fuel cell performance. (Wilson, 1993) 

                                                                           

 



CHAPTER 3  

 

INTERFACIAL BEHAVIORS OF DENSELY ANCHORED 

HYDROPHILIC OLIGOMERIC CHAINS ON SILICA 

MICROSPHERES 

 

3.1  Introduction  

 

Developing a chemically grafted polymer thin layer at the surface of a solid substrate has 

paramount technological implications in different combinatorial chemical systems, which 

include protein separation by adsorption (Coad et al., 2006), electrophoretic deposition 

(Pallandre et al., 2006), immobilization of bio-molecules (Padeste et al., 2006), and 

functional additives to various polymer formulations (Rong et al., 2001). Among various 

chemical means that have been developed to graft functional polymer chains to a solid 

surface, the atom transfer radical polymerization (ATRP) method is unique because it 

allows the control of polymer chain length via “living” polymerization mechanism. There 

is an increasing trend in recent years of performing ATRP on insoluble particles to grow 

a uniform and dense polymer layer on them; the main vinyl monomers that have been 

used include styrene, methyl methacrylate, t-butylacrylate, 2-hydroxyethylacrylate, 2-

(methacryloyloxy)ethyl trimethyl ammonium chloride and so on (Vestal et al., 2002; 
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Werne et al., 1999 and 2001; Percy et al., 2003; Pyun et al., 2003 and Pantoustier et al., 

2003)  

 

The interfacial properties of densely packed oligomeric chains whose one-end are 

covalently bound to the surface of inorganic particles have not yet received adequate 

attention to date. This is because the conventional graft polymerization via attaching pre-

formed polymer chains to a specific kind of organic anchor on the desired particles or via 

initiating random radical polymerization by surface-bound peroxide groups which are 

created by physical means will be normally not able to achieve a dense and uniform 

grafting polymer layer. (Bhat et al., 2006 and Ikada 1994) In addition, it is even more 

difficult through the conventional ways to graft di-block copolymer chains to the surface 

of particles so a copolymer double layer could not be achieved. This is, however, feasible 

by means of ATRP, which allows the creation of block copolymers not only in solution 

(Wang et al., 2005; Huang et al., 2005 and Shunmugam et al., 200 5) but also on 

insoluble substrates (Jia et al., 2005 and Xu et al., 2005). Such synthesized colloid 

particles are well defined so they can be applied for the studies of interfacial properties 

and colloidal behaviors.          

 

In this work, trisiloxyl(1, 2-dibromoethyl) groups ( Si-CHBrCH2Br) are anchored to the 

surface of silica microspheres as initiating sites where ATRP takes place. The monomers 

used include an anionic monomer, Sodium 4-styrenesulfonate (SSNa), and a proton-

acceptor monomer, 4-vinylpyridine (4VP). Therefore four types of grafting chain 

structures could be achieved: the homopolymers of SSNa and 4VP, and the block 
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copolymers in which the PSSNa and P4VP blocks are alternatively used as the interior 

block being anchored to the silica surface. The particular traits of these core-shell 

particles include glass transition behaviors of the densely grafted polymer layer, as well 

as different responses of hydrodynamic volume and ζ potential of the particles to the 

change of solvating power and pH values of the dispersion media. We also examine how 

the ionic transport in the designated liquid medium is affected by the solvated particles 

with a substantially low volume fraction. It is found that the extent of salvation on the 

inner polymer block affects the stretching of the exterior copolymer blocks, and hence the 

solvating extents of the copolymer chains in turn reveal different capabilities to channel 

conduction of ions in the liquid media of interest. On the whole, the interfacial properties 

can be related to the presence of a thick interfacial polymer layer and the reversed 

sequences of the PSSNa and P4VP blocks.            

 

3.2  Experimental  

 

3.2.1 Materials 

 

Tetraethyl orthosilicate (TEOS, Fluka, > 98.0%) and Triethoxyvinylsilicane (TEVS, 

Aldrich, > 97%), Ammonia (Merck, 25%), Cetyltrimethyl ammonium chloride (CTACl, 

Aldrich, 25% solution in water), Bromine (Mallinckrodt, AR®), Copper (I) bromide 

(Aldrich, 98%), Sodium 4-styrenesulfonate (SSNa Aldrich) and 4-vinylpyridine (4VP, 

Aldrich, 95%), 2, 2′-Bipyridyl (Bpy, Fluka, ≥ 99%)  were used as received. 
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3.2.2 Synthesis of 1, 2-di-bromoethyl pendant group on silica microspheres 

 

 A given amount of aqueous solution (10 ml, 25%) of cetyltrimethyl ammonium chloride 

(CTACl), de-ionized water (15 ml) and pure methanol (10 ml) were added into a 100 ml 

beaker with stirring. After the mixture converted to a homogenous solution, tetraethyl 

orthosilicate (TEOS, 6 ml, 98%) and triethoxyvinylsilicane (TEVS, 4 ml, 97%) were 

added into this solution subsequently, which was followed by introduction of ammonia 

solution (3 ml, 25%) dropwise under vigorous stirring. The resulting solution was stirred 

for 18 h and kept still at 80 ºC for 3 days for aging the resultant colloidal dispersion. A 

white vinyl-silica powder was finally obtained after the precipitate was washed twice in a 

mixed solvent of methanol and hydrochloric acid (HCl) (37%) (v/v =10/1) at 90 ºC. This 

purifying manipulation with the aim to extract CTACl was repeated twice and each 

washing lasted 24 h. A whith vinyl-silica powder was obtained after drying, which was 

identified, according to elemental analysis, to contain pendant vinyl group of 8.3 mmol/g. 

The given amount of the vinyl-silica powder (0.5 g) was then dispersed in chloroform (5 

ml) in a round bottom flask. To the resulting suspension (0-5 ºC) under vigorous stirring, 

a bromine solution containing Br2 of 19.5 mmol in chloroform (Br2:CHCl3=1:5 by 

volume) was slowly dropped in and the addition reaction was completed within 30 min. 

The brominated vinyl-silica powder was then purified by washing in pure chloroform 

three times to remove the adsorbed bromine. The brominated powder displays the 

characteristic IR absorption peaks of 1, 2-dibromoethyl group at BrC−υ (567 cm-1) and 

HC−υ  (2989 cm-1). According to elemental analysis of 1, 2-dibromoethyl-SiO2 powder, 

the equivalent of R-Br group in the resulting powder was 7.1 mmol per gram.    
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3.2.3 Grafting ionomer chains to 1, 2-di-bromoethyl silica particles through ATRP 

 

In a typical batch of polymerization, the 1, 2-bromoethyl-SiO2 particles (0.15 g, ca. 1.1 

mmol R-Br) was dispersed in a water/methanol mixture (12ml, v/v = 3:1). The monomer 

SSNa (0.5 g, 2.4 mmol) and 2, 2’-bipyridyl (0.03 g, 0.2 mmol) were then added to this 

dispersion. The mixture was purged by N2 for 30 min with continuous stirring at 

temperature 35-40 °C, and CuBr (0.06 g, 0.4 mmol) was then introduced into the 

dispersion. The reaction mixture was stirred for 4 h and quenched by air. The blue 

sediment was then washed in doubly Millipore water and centrifuged at 6000 rpm for 15 

min. This purifying procedure was repeated 3 times to clean up the catalyst residues as 

well as the monomer left from the PSSNa-grafted silica particles. In the case of 

constructing the pendant di-block P(SSNa-co-4VP)-b copolymer chains, 4VP was added 

to the ATRP system where SiO2-P(SSNa)-Br macroinitiator had been formed in advance, 

and the subsequent polymerization was carried out in the next 4 h. As to the chain 

composition, a molar ratio of SSNa to 4VP=3/2 in the monomer feed was set. Similarly, 

the sequence of these two blocks was swapped by introducing 4VP first and then SSNa 

into ATRP system to obtain the pendant P(4VP-co-SSNa)-b di-block copolymer chains. 

The samples synthesized are listed in Table 3.1.        

  

3.2.4 Instrumental characterizations 

 

The infrared spectra of the grafted silica powders obtained from the three synthetic stages 

were recorded on a spectrophotometer (Bio-Rad FTIR model 400). The bromination 
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extent of vinyl-silica powder was determined by both elemental analysis (PE 2400 Series 

II CHN analyzer from Perkin-Elmer) and EDX scanning (JGM-6700F from JEOL). The 

images of core-shell structure of the polyelectrolyte-silica microspheres were taken on a 

TEM instrument at 200 kV (JEM-2010). The glass transition behaviors of the grafted 

polymer layer on silica particles were recorded on a DSC set (Mettler Toledo DSC 822e) 

using heating rate of 10 oC/min. In order to remove those chain motion barriers left 

behind by the different thermal histories of sample preparation, all samples were scanned 

from room temperature to 100 oC and cooled down to -20 oC at the same rate, and then 

subjected to the second scan, of which the energy vs. temperature profiles were recorded, 

respectively. The influence of pH or the solvent polarity of the dispersion medium on the 

hydrodynamic dimension of the samples was investigated by dynamic light scattering 

(DLS, Brookhaven Instruments 90Plus particle size analyzer). The variation of interfacial 

charge, with the change of pH, due to the presence of the grafted ionomer layer was 

investigated by Zeta potential measurement (BIC Zetaplus zeta potential analyzer).  

  

3.2.5 Measurement of molecular weight of the grafted polymer chains 

 

The four grafted samples (ca.100 mg) were dispersed in 1ml aqueous HF (5%), and the 

suspension was stirred at room temperature for 4 h to allow dissolving the silica network. 

The grafted polymer chains from the disbanded particles became soluble in the HF 

solution. The resulting polymer solution was then diluted 10 times by water and sent for 

the measurement of molecular weight by gel permeation chromatography (GPC). The 

GPC analysis (Waters 1515) used water as eluent (flow rate=1.0 ml/min at 25 oC) and the 
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PEG calibration standard for the determining of molecular weight of the polyelectrolyte 

chains.  

 

3.2.6 Measurement of the ionic conductivity in the colloidal dispersions 

 

The samples of polyelectrolyte-grafted particles (Table 3.1) were dispersed respectively 

in aqueous solution of HCl (pH=3) with the aid of ultrasonication to form a colloidal 

dispersion. Each dispersion was designed to have the solid content of 1 mg/ml 

(equivalent to ca. 0.01 vol. %) and transferred into a curette (1 cm×1 cm×4 cm) installed 

with two stainless steel electrodes. The electric conductivity of each suspension was 

measured using the electrochemical analyzer (Autolab Instrument, frequency scanning 

range 1 Hz ~100 kHz). Similarly, the other set of colloidal suspensions was prepared by 

using a binary mixture, N, N’-dimethyl foramide (DMF) and deionized (DI) water, as the 

dispersing medium. With respect to a particular powder, the ratio of DMF to water was 

also varied but the solid content was maintained the same.      

 

3.3 Results and discussions 

 

3.3.1 Implantation of ATRP initiating sites to SiO2 particle  

 

When the sol-gel reaction of TEOS and TEVS took place together inside microspherical 

droplets surrounded by surfactant molecules, CTACl, the vinyl-SiO2 microsphere was 

generated and its TEM image showed that the particle had a dense core and a rather 
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porous thick shell wall surrounding the core (Fig. 3.1a, b). The porous shell was 

generated because it consists primarily of vinylsilane [(-O-)3Si-CH=CH2] units (Fig. 

3.1c), which is caused by the discrepancy in the reactivity between TEVS and TEOS, the 

former being far less reactive than the latter to undertake sol-gel reaction (Brickner and 

Scherer 1990) and therefore the major portion of TEVS was used to constitute the outer 

layer of the microsphere. 

 

According to elemental analysis of SiO2-vinyl particles, the molar ratio of the pendant 

vinyl group to silicon in SiO2-vinyl is about 0.4, and about 70% of the vinyl groups were 

brominated to form 1, 2-dibromoethyl groups according to the EDX surface analysis (Fig. 

3.2). For the liquid phase ATRP α-bromoalkyl acetate (AcOCR’Br) is conventionally 

adopted as the initiator, and some recent reports (Liu et al., 2003 and Mori et al., 2002) 

showed that the initiator could be anchored to a solid substrate through alkoxylcarbonyl 

(-OCOCHRBr) linkage and therefore polymer chains could be grown from the surface-

fastened α-bromoalkyl acetate groups. Compared with this traditional initiator, the 

pendant 1, 2-dibromoethyl initiator, which we developed in this work, leads to carbon-

carbon bond but rather oxygen-carbon bond linkage between the initiator and the solid 

substrate. The carbon-carbon linkage is intact in an acidic or alkaline medium.      
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Figure 3.1 a. TEM image of vinyl-silica particle; b. FE-SEM image of vinyl-silica particle; c. The schematic of 
forming 1, 2-dibromoethyl-silica particle 
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Figure 3.2 EDX spectrum of the brominated silica particles 
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3.3.2 The structural characteristics of the rigid core-soft shell microsphere  

 

Our study finds that the maximum molar ratio of monomer to the catalyst [Cu(I)] in the 

feed of ATRP was about 6 and a higher ratio did not help increase the grafted chain 

length furthermore. Therefore, this ratio was employed to develop both homo-polymer 

and di-block copolymer chains (Table 3.1).  
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Table 3.1 The composition of the grafted SiO2 particles 

Sample Average Molecular Weight Ratio of Composition 

SSNa        :     4VP 

SiO2-PSSNa 1323 Daltons - 

SiO2-P(SSNa-co-4VP)-b 1015 Daltons 2:9 

SiO2-P(4VP-co-SSNa)-b 1050 Daltons 1:3 

SiO2-P4VP 1294 Daltons - 

 

 

The generation of short chains was likely due to the entanglement among the growing 

polymer chains in the porous shell layer of individual SiO2 microsphere, on which the 

growing chains were rather cramped with the distending of polymerization. The chain 

propagating sites became more and more difficult to be accessed by monomers in the 

liquid phase. The similar phenomenon has also been reported recently (Chen et al., 2003), 

in which Chen et al. observed that the PSSNa-grafted silica particle has a relatively weak 

salt dependence that serves as an evidence of the low molecular weight of PSSNa chains. 

The above inference of oligomerization could be verified by the TEM image of the 

PSSNa-SiO2 particle (Fig. 3.3), which exhibits an expanded layer and an irregular core 

contour in contrast to its precursor as showed in Fig. 3.1a. This morphology can be 

rationally attributed to the growth of oligomeric PSSNa chains on and underneath the 

surface of the particle, and as a result, the oligomeric chains expanded the [(-O-)3Si-R] 

shell layer. As noted above, growing di-block copolymer chains on silica microsphere is 
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the other unique feature of ATRP. In this work two types of di-block copolymer chains, 

P(SSNa-co-4VP)-b and P(4VP-co-SSNa)-b, were realized, where suffix “-b” stands for 

the block type of copolymer. The P4VP block bears positive charges in an acidic medium 

because each 4VP unit is a proton acceptor, while PSSNa block carries negative charges 

in a neutral and weak alkaline aquatic medium. The IR spectrum of the SiO2-P(SSNa-co-

4VP)-b is taken an example to show the presence of both the 4VP and SSNa units (Fig. 

3.4).  
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       grafted-layer 

 

 

 
Figure 3.3 Transmission electron micrograph of a PSSNa-grafted 

silica particle  
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3.3.3 The unique response of the pendant polyelectrolyte short chains to thermal 

stimulus 

 

The thermal analysis of the grafted oligomeric chains is an effective way to probe the 

particular polymer chain-chain interactions on the surface of SiO2 beads. On the DSC 

diagram of SiO2-vinyl particles an endothermic peak emerged at 138 oC (Fig. 3.5); it can 

be attributed to the creeping of the porous silica network. Besides this reference sample, 

an unbound homo-polymer sample, PSSNa ( 410~nM ), was the other reference used, 

which displays a steep glass transition (Tg) peak consisting of two slopes at 106 oC and 

153 oC, respectively. Compared with the DSC profile of polystyrene, the presence of 

Figure 3.4 FT-IR spectrum of the copolymer-grafted silica particles   
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para-substituted sulfonate group in benzene ring increases Tg of the segment motions 

(from ca. 104±2 oC to 106-139 oC). This strong polar association of sulfonate groups 

provokes an energy barrier appearing at 153 oC. 
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Figure 3.5 Differential scanning calorimetric (DSC) analysis of pure 

PSSNa and vinyl-silica  

 

Furthermore the bound oligomeric PSSNa chains on silica particles reveal a higher 

segment motion barrier whose Tg appears at 123 oC in contrast to the foregoing 106 oC 

for the unbound PSSNa chains because most of the oligomeric chains are implanted in 

the rather stiff outer shell network, [(-O-)3Si-R], and this constraint environment also 

promotes the sulfonate group association, which shifts the onset of the corresponding 

glass transition temperature from 153 oC  to 157 oC (Fig. 3.6). Alternatively, in view of 

the DSC diagram of SiO2-P4VP, it exhibited an endothermic peak at 138 oC and a 
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shallow glass transition step at 166 oC, respectively. The first endothermic peak is known 

as the bulk characteristic of porous silica substrate as found on Fig. 3.5, whose intensity 

becomes stronger after ATRP, and the glass transition of the bound P4VP is higher than 

that of the unbound P4VP polymer that has Tg at 154 oC (Jian et al., 2001).                
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  Figure 3.6 DSC analysis of the PSSNa and P4VP grafted silica particles 
 

 

 

The glass transition diagrams of the two types of the two pendant di-block copolymer 

chain structures, SiO2-P(SSNa-co-4VP)-b and SiO2-P(4VP-co-SSNa)-b, show very 

different energy profiles (Fig. 3.7). For the former type, in which the SSNa blocks were 

fastened to the silica and the 4VP blocks comprise the outer layer, it displays rather 

analogous profile to SiO2-P4VP. This phenomenon is due to the external location of the 

compositionally predominant P4VP blocks. On the contrary, for the latter type, it displays 
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an intricate Tg profile, of which the first two endothermic peaks (116 oC and 127 oC) 

seem to be generated from certain kind of mutual entanglements of the two blocks 

because they resemble neither of the their homo-polymeric forms. This is the result of the 

external location of PSSNa blocks and of the longer internal P4VP blocks (Table 3.1). It 

also deserves to note that a strong exothermic peak appears at 182 oC, which we assume 

is the result of temperature-driven complexation of the pendant 4VP groups with sodium 

ions, which migrate from the PSSNa blocks to P4VP block when the chain motions gain 

momentum at this temperature.    
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3.3.4 The impacts of solvating power and pH on the hydrodynamic volume of the    

hybrid core-shell particles 

 

In this section, we look into how the solvating behavior and surface charge of the hybrid 

core-shell particles affect their hydrodynamic volume determined by the dynamic light 

scattering (DLS) and zeta potential methods. Fig. 3.8 shows the mean sizes of the 

particles in the mixture of (H2O-CH3OH), which reflect different solvating extents of the 

grafted oligomeric chains in the dispersion media. For the two types of homo-polymer 

grafted particles (inset), SiO2-P4VP and SiO2-PSSNa, they exhibit very different 

response to the increase of methanol mole fraction (x). SiO2-P4VP particles undergo a 

quick contraction in the range from pure water to 2.0=x , while SiO2-PSSNa particles 

undergo a consistent contraction till 5.0=x . A certain portion of the pendant 4VP groups 

may be protonated in water (pH = 6.4) to form pyridinium and therefore the repulsive 

interactions of positive pyridinium groups sustain the greatest particle sizes of SiO2-

P4VP. But the partially protonated P4VP chains quickly exhibit lyophobic tendency with 

a slight increase in the content of methanol in the dispersion medium. According to the 

above comparison, the bound PSSNa chains are better solvated in the binary solvent than 

the bound P4VP chains due to the strongly hydrophilic sulfonate group. Nevertheless, 

with inspecting the two copolymers, we found that, in contrast to the exteriorly located 

PSSNa blocks, the exteriorly located P4VP blocks favored solvating of the polymer layer. 

This result implies that solvating of the inner blocks could mount the solvating extent of 

outer blocks. In other words, a lyophilic internal layer could enhance affinity of the 

external lyophobic blocks to the dispersion medium.     
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 Figure 3.8 Variation of the mean dynamic diameter of P(SSNa-co-4VP)-b and P(4VP-
co-SSNa)-b grafted silica particles with the methanol content in the aqueous 
dispersion medium. Inset represents PSSNa and P4VP grafted silica particles 

 
 

With respect to the zeta potential measurement of the two homo-polymer-grafted types of 

particles (Fig. 3.9), as expected, SiO2-P4VP exhibited positive ζ potential in aqueous 

medium with pH ≈ 6.4 because of the protonation as aforementioned, whereas the system 

exhibited negative ζ potential when pH > 6.4, which implies the occurrence of OH- ion 

adsorption to the outmost pendant 4VP groups. The adsorption incurs a negatively 

charged slip plane of fluid (Cao, 2004) that moves as a part with the particle, which was 

sensed by ζ potential measurement. On the other hand, SiO2-PSSNa exhibited negative ζ 

potentials at pH values above its isoelectric point (IEP) that happens at pH =1.3 because 

the sulfonic acid is strongly acidic. Hence the slip layer of fluid in this case would be 
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formed by the outmost sulfonate groups and hydrated water molecules. Similar ATRP 

brush particle systems have been previously investigated by Armes and Advincula (Percy 

et al., 2003 and Fulghum et al., 2006) In light of the relation of ζ potential vs. pH of the 

two copolymer-grafted particles, the phenomenon of partial charge neutralization 

between the two blocks was observed. For SiO2-P(4VP-co-SSNa)-b particles, despite 

possessing a negatively charged outer PSSNa layer, its IEP occurs at almost pH=3 and 

hence its ζ-pH curve located quite above that of SiO2-PSSNa in Fig. 3.9. On the other 

hand, SiO2-P(SSNa-co-4VP)-b particles possess a thick P4VP outer layer and show 

almost the same IEP as SiO2-P4VP but its ζ-pH curve still located beneath that of SiO2-

P4VP due to the partial charge neutralization effect of the negatively charged inner layer. 

The charge neutralization is in principle driven by the softness of chains in the dispersion 

liquid medium.   

 

 

 

 

 

 

 Figure 3.9 Influence of pH on zeta potential of polymer grafted silica particles  
in aqueous solution 
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The DLS~pH curve of the dispersion of SiO2-PSSNa particles in aqueous solution shows 

that the hydrodynamic volume of the particles decreases with increasing pH (Fig. 3.10) 

and a steep decrease happens in the range pH = 6.0-6.5. Being a strong polyelectrolyte, as 

seen from the ζ potential measurement of SiO2-PSSNa in aqueous solution, the polymer 

chains bear negatively charged sulfonate groups and the charge density increases with 

increasing pH. At the same time, the counter-ion layer composed primarily of Na+ ions 

becomes thicker correspondingly. The observed reducing trend of hydrodynamic volume 

could be interpreted as the compressing effect of the counter-ion layer. In comparison 

with this, P(4VP-co-SSNa)-b particles show relatively slower size-contraction because of 

the buffering effect of the inner P4VP segments. This is particularly obvious in the basic 

medium. For instance, the DLS size of P(4VP-co-SSNa)-b is ca. 1350 nm while that of 

SiO2-PSSNa is ca. 950 nm at pH = 9 even though the latter has a slightly larger size than 

the former at pH = 1. The buffering effect as mentioned is deemed to cause by the move 

of some inner P4VP blocks into the outer PSSNa layer because of their flexibility in 

hydrated state. Alternatively, SiO2-P4VP particles also undergo contraction with the 

increase in pH of the dispersion medium due to the decrease of the pyridinium groups. 

This mounting effect of inner layer also happens for the P(SSNa-co-4VP)-b particles as 

presented in Fig. 3.11. 
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Figure 3.10 Influence of pH on the mean dynamic diameter of PSSNa 
and P4VPgrafted silica particles 
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3.3.5 The role of the grafted polymer chains in assisting with ion transport  

 

Whether or not and how the polymer chains grafted to SiO2 microspheres could assist ion 

transport in a liquid medium where they are dispersed is an appealing problem to study. 

As indicated in section 3.2.6, the dispersion was designed to have a substantially low 

volume fraction of the particles (~1.0×10-2 %), but this solid content is equivalent to 

about 109 particles moving about in 1cm3 liquid dispersion medium, which means on 

average a particle could be found in per 103 μm3 space. At this low occupancy level we 

examined how the pendant polymer chains acted on escalating ionic conduction in the 

liquid phase. Fig. 3.12 displays the proton conductivity of colloidal dispersions of which 

the dispersion medium is an aqueous solution of HCl (pH=3). The pendant sulfonic acid 

groups promote proton transport, while the pendant 4VP groups, being an organic base, 

retard proton conduction. For the copolymer arms, although P(4VP-co-SSNa)-b particles 

are less expanded (or solvated) than P(SSNa-co-4VP)-b in aqueous solution with pH =3 

(Fig. 3.11), the former one revealed stronger role in facilitating proton transport because 

of their exterior PSSNa blocks. The observation suggests that the surface layers of these 

floating particles, despite substantially low space occupancy, could confer an alternative 

proton-conducting channel wherein protons undertake faster hopping than in the bulk 

phase of solution. 
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     Figure 3.12 Conductivity of the acidified water (pH=3) loading different particles 

 

We further examine the ionic conductivity of the colloidal dispersion formed by 

dispersing the particles in dimethyl foramide (DMF)-water mixture (Fig. 3.13).This test 

involved three types of particles containing PSSNa blocks. The concentration of sodium 

ion, as the major charge carrier, in the resulting colloidal dispersions followed the order: 

SiO2-PSSNa > SiO2-P(4VP-co-SSNa)-b ≈ SiO2-P(SSNa-co-4VP)-b, because each 

dispersion system contained the same amount of particles, but each type of the hybrid 

particles possessed different contents of PSSNa as listed in Table 3.1. The resulting 

dispersions in DMF-H2O mixtures were very stable regardless of the ratio of DMF to 

H2O. The dispersions of SiO2-PSSNa exhibit the highest ionic conductivity and the 

conductivity increases with reducing DMF portion due to its highest Na+ concentration 

among the three and the fact that ionization dissociation of the SSNa groups becomes 
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stronger with increasing of water content. However, it is noteworthy that the unique 

observation comes from the differences between the two grafted-copolymer types of 

particles, SiO2-P(4VP-co-SSNa)-b and SiO2-P(SSNa-co-4VP)-b. Of the two, the former 

one contains the exteriorly located PSSNa blocks.  Hence it is supposed to be able to 

reveal higher ionic conductivity than the latter one. The measurement results yet were 

different from this prediction. The dispersion of the SiO2-P(SSNa-co-4VP)-b particles 

showed a clear increasing trend of sodium ion conductivity with increasing of water 

content in the dispersion medium. We are inclined to consider that the swelling of the 

P4VP block in DMF-H2O mixtures as well as the weak association between Na+ ion and 

4VP nitrogen play important roles in channeling transport of Na+ ions. This association 

(Gapeev and Dundar, 2003) is regarded to have a weak strength so that the migration of 

Na+ ions is not hindered. It deserves to note that the Na+ conductivity of this system 

jumps by 5 times from pure DMF to DMF-H2O (v/v =9), whereas the dispersion of SiO2-

PSSNa conferred only a 3-time increase in Na+ conductivity in response to the same 

variation of the water content. The inner PSSNa block functions like a switch, whose 

hydration triggers a clear ionic conductivity leap. On the contrary, SiO2-P(4VP-co-

SSNa)-b particles displayed only a slim superiority over SiO2-P(SSNa-co-4VP)-b 

particles in pure DMF. The outer PSSNa layer, albeit it swells better with increasing 

water content in the DMF-H2O mixtures, prevents the P4VP inner layer from acting as 

effective as the outer P4VP layer for channel transport of sodium ions. In brief, the 

sequence of the two blocks has a clear impact on sodium ion conduction, namely the 

inner PSSNa placement is superior over the its outer placement because P4VP blocks 

take part in shipping Na+ ions when they are exposed to liquid phase.       
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Figure 3.13 Conductivity of different ration DMF and water solution loading 
different particles 

 

3.4  Conclusions 

 

In this work, a specific structure of microsphere, comprising a silica core and a densely 

grafted hydrophilic polymer layer with low molecular weights, was synthesized by 

carrying out the atom transfer radical polymerization (ATRP) of 4-styrenesulfonate 

(SSNa) and 4-vinylpyridine (4VP). Thus four types of grafted chain structures were 

achieved: two homopolymers and two block copolymers with inverted block sequence. 

These four types of hairy microspheres exhibit different solvating volumes 

(hydrodynamic volumes) in methanol-H2O mixtures with different ratios of the two 

components and in aqueous solution with different pH values, respectively. These 
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variations are governed by solvating extent and charge repulsion or neutralization in the 

grafted polymer layers. Besides these two factors, the new insight gained from this study 

is the leverage of the inner blocks of copolymer on the magnitude of surface charge and 

hydrodynamic volumes of the particles in a dispersion medium. Furthermore, the study 

also examined whether or not the grafted polymer chains could assist with ion transport 

in the liquid medium where a substantially low portion of particles is dispersed. In the 

acidic medium the results showed that the grafted PSSNa chains facilitate but the grafted 

P4VP chains retard proton transport and the copolymer layer bearing the exterior PSSNa 

blocks offers a stronger promoting action than that with the PSSNa inner blocks. The 

investigation was extended to DMF-H2O dispersion medium, where Na+ from PSSNa 

became the major charge carrier. An obvious cooperative action between the inner 

PSSNa blocks and the outer P4VP blocks to strongly propel Na+ conduction was 

observed in DMF-H2O (v/v =9), while the reversed block sequence did not present such 

an assisting role in the same dispersion system.  

  



CHAPTER 4 

 

REINFORCING FLUORINATED POLYMER PEM BY 

“HAIRY” SILICA NANOPARTICLES AND IMPROVING 

TEMPERATURE AND METHANOL TOLERANCE   

 

4.1 Introduction 

 

Perfluoro-polymers bearing sulfonic acid groups at the terminal position of their side 

chains have become a very important type of cation-exchange resin, which have 

applications in electrochemical cells used in the large scale industrial production of 

NaOH, KOH, and Cl2 as a permselective membrane separator as well as in proton 

exchange membrane (PEM) fuel cells as solid electrolyte. Nafion® (with the 

perfluoroethylene polymer main chain) and Dow XUS 13204.10 (with the fluorinated-

styrenic polymer main chain) are commercial products. Although Dow® PEM exhibits 

superior performance over Nafion PEM in PEMFC, it has been less used because of the 

high cost in comparison with Nafion PEM.  

 

The main drawback of Nafion PEM lies in its a weak capability of preserving matrix-

water at temperatures above 80°C and an intrinsically high diffusivity of low- molecular-

weight alcohols. As a result, Nafion PEM cannot be used in a H2-FC operated at an 
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elevated temperature in order to promote electrode-catalytic efficiency because of a 

significant loss of proton conductivity caused by the reducing of humidity level in the 

membrane matrix. On the other hand, replacing H2 with methanol to power portable mini 

fuel cells (DMFC) has a promising commercial prospective, and Nafion PEM is 

inappropriate to this cell due to severe crossover of methanol through it, which results in 

the lowering of cell efficiency.   

 

Many strategies have been proposed to improve the high temperature performance and 

methanol rejection of Nafion PEM. Modified Nafion membranes containing inorganic 

fillers (SiO2, TiO2, ZrO2, and ZrP) have been reported. (Adjemian et al., 2002; Sacca et 

al., 2005; Xu et al., 2005; Jalani et al., 2005 and Jiang et al., 2006) However, these 

inorganic oxide particles are too large to disperse in the Nafion polymer matrix very well. 

On the other hand, due to the fact that these inorganic oxides have very low proton 

conductivity, introducing them can not always lead to a desired improvement in the 

performance of the membrane electrode assembly (MEA). In chapter 3, we introduced a 

special polymerization, heterogeneous ATRP to develop a special type of microsphere 

that comprise a silica core and a densely grafted hydrophilic polymer layer. Therefore, in 

the present write-up, we continue to apply this method to modify silica nano-particles 

with a thin layer of grafted ionomer chains, known as the “hairy” layer and then bring 

into the Nafion matrix a low content of resulting hairy-silica nano-particles. Such hairy-

silica nanoparticles present in the Nafion matrix exhibit an obvious role in enhancing the 

proton-conductivity at high temperature, and as a result, this unique type of composite 

PEM gives rise to superior electrochemical performances (cell voltage at higher current 
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density and power output) over the native Nafion PEM in the single cell driven by H2 and 

methanol, respectively. In conclusion, these miniature hairy particles help holding matrix 

bound water as well as blocking permeation of methanol through Nafion matrix.     

   

4.2 Experimental  

 

4.2.1 Materials 

 

Fume silica powder (average particle sizes 7 nm, Aldrich), triethoxyvinylsilicane (TEVS, 

98%, Aldrich), triethyl amine (Et3N, Merck), bromine(Mallinckrodt, AR®), copper(I) 

bromide (99%, Aldrich), 2, 2’-Bipyridyl (Bpy, ≥ 99%, Fluka), 3-sulfopropyl acrylate 

potassium salt (H2C=CHCO2(CH2)3SO3K, SPA-K, Aldrich), and Nafion® resin (Aldrich) 

was used  as received. 

 

4.2.2 Synthesis of PSPA-SiO2 particles through grafting polymerization 

 

As a typical synthetic procedure, the entire preparation includes the following four 

synthetic steps: 

 

Step 1: Silanization to prepare vinyl-silica nanoparticles   

 SiO2 (500 mg) and TEVS (1 ml) were added in toluene of 50 ml together with Et3N 

(0.15 ml) as the catalyst of silanization. The resulting mixture was stirred at room 

temperature under argon atmosphere for 24 h. The vinyl-SiO2 powder was recovered as 
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wet slurry after centrifuging the reaction mixture at 8000 rpm for 15 min. The slurry was 

washed with THF, re-dispersed in THF and re-centrifuged several times to remove the 

excess of TEVS. The slurry was dried at 60 ºC in a vacuum oven for 72 h. 

 

Step 2: Bromination of the grafted vinyl group to form 1, 2-dibromoethyl group 

The vinyl-SiO2 powder from the first step was then added into a round bottom flask 

holding chloroform (~5 ml). To this stirred suspension a chloroform solution of bromine 

(19.5 mmol) was slowly added in at temperature 0-5 ºC. After stirring for 30 min, the 

resulting 1, 2-dibromoethyl-silica powders were then purified by washing three times in 

pure chloroform. 1, 2-dibromoethyl groups on silica particles were created as the bound 

initiator for the grafting polymerization of SPA-K in the following step. 

 

Step 3: Grafting SPA-K oligimer chains to 1,2-dibromoethyl-silica particles  

The oligomer chains of SPA-K were grafted to silica nano-particles by the atom transfer 

radical polymerization (ATRP) method under the controlled conditions. The initiator-

grafted silica particles (0.15 g) were dispersed in a water-methanol mixture (3:1 v/v, 12 

ml) with the aid of ultrasonic mixing. Monomer SPA-K and catalyst-ligand, bpy, were 

then added into this suspension system. The mixture was degassed using nitrogen purge 

for 30mins with continuous stirring at temperature 35-40 °C. Copper (I) bromide (0.06 g) 

was then added into the flask and then the mixture was stirred for 4 h under the same 

conditions. The polymerization was terminated by exposing the mixture to air. The 

reaction mixture was finally centrifuged at the rate of 6000 rpm for 15 min. The 

supernatant was decanted and the centrifugation tube was charged with doubly distilled 

 89



DI water to wash the blue ATRP catalyst-contaminated sediment, and the washing was 

assisted with ultrasonic agitation. Such centrifugation-cleaning cycle was repeated three 

times to obtain purified PSPA-K-grafted silica particles. 

 

Br2/Cl3CH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Scheme 4.1 The schematic of forming PSPA-K-grafted silica particles 
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Step 4. Ion-exchange of PSPA-K-SiO2 to PSPA-SiO2 

The PSPA-K-SiO2 obtained from the previous step was introduced into an aquatic 

solution of sulfuric acid (30%) and the mixture was mildly stirred at room temperature 

for 6 h to convert the salt form –SO3K to its acid form –SO3H. After that, the acidified 

sample was washed with DI water and centrifuged at 6,000 rpm for 15 min for separating 

the powder from the liquid phase. This process was replicated two more times for 

cleaning up the attached residual acid. The PSPA-SiO2 powder was subjected to vacuum 

drying and stored for further use.   

 

4.2.3 Fabrication of the Nafion/PSPA-SiO2 composite membranes 

 

A 2-ml Nafion solution (5-10 wt.% in H2O-alcohol-DMF mixture) was mixed with a 

given amount of PSPA-SiO2 powder (2 wt.%, 4 wt.% and 6 wt.% of the dry Nafion resin, 

respectively), and the resulting blend was cast in a Petri dish (d = 3 cm) and placed in an 

oven (at 80 ºC) for 30 mins to remove the solvent and cure the film left behind. The 

composite film was then de-molded from the Petri dish after soaking in DI water and 

dried at room temperature.  

 

 

 

 

 
PSPA-SiO2 particles         Nafion matrix 

Scheme 4.2 The structure representation of PSPA-grafted silica particles  
in Nafion matrix 
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4.2.4 Instrumental Characterizations of the Materials Synthesized   

 

FT-IR spectra of the products from the different steps of synthesis of PSPA-SiO2 powder 

were recorded in air on a Bio-Rad FTIR model 400 spectrophotometer by accumulating 

16 scans. The particle images and cross-sectional matrix morphology of the membranes 

were investigated using FESEM (JGM-6700F from JEOL). Glass transition behaviors of 

the membranes were detected by DSC (Mettler Toledo DSC 822e), and the 

corresponding thermal stabilities and degradation behaviors were detected on a TGA 

Instrument (TA Instruments 2050 Thermogravimetric Analyzer) to obtain the TGA 

themograms under N2 at 100 ml/min with rate of 10 oC/min. For silica powders, the 

thermogrames were obtained from room temperature to 600 oC; for the membrane 

samples, the thermogrames were obtained from room temperature to 800 oC. 

 

4.2.5 Electrochemical Evaluations of the PSPA-SiO2/Nafion Composite Membranes 

 

The assessment of proton conductivity of the composite membranes at different 

temperatures were carried out by the AC impedance spectroscopic method using the 

frequency scanning range from 0.01 Hz to 1 MHz, an AC perturbation voltage of 10 mV 

and a DC rest voltage of  0.0 V on an electrochemical analyzer (Autolab Model). A 

circular shape of membrane (1.3 cm in diameter) was sandwiched and tightened by two 

smooth stainless steel discs (electrodes) in a Teflon sample holder, which was then 
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immersed in a water-bath with different temperatures. The proton conductivity of the 

membranes was calculated using the following equation: 

L
RS

σ =  

where σ, L, R, and S denote the proton conductivity (S/cm), thickness of membranes 

(cm), the resistance of the membrane (Ω) and the cross-sectional area of the membrane 

(cm2), respectively. 

 

The MEA (membrane electrode assembly) was made by compressing a sample 

membrane in between an anode sheet and a cathode sheet. For the DMFC test, the anode 

sheet was a carbon paper (SGL, Germany) with a carbon-supported Pt or Pt-Ru catalyst 

layer. The cathode sheet was a carbon paper with a carbon-supported 40 wt.% Pt catalyst 

layer supplied by E-TEK. The average platinum loadings in the anode and cathode were 

3 and 2 mg/cm2, respectively, and the effective electrode area was 5 cm2. The fuel was 2 

M CH3OH aqueous solution delivered at 2 ml/min by a micro-pump, and an oxygen flow 

rate of 500 cm3/min was regulated to purge the cathode side. For the H2-FC test, , The 

MEA was operated under 1 bar for both H2 and O2 without humidification using Arbin 

Electronic load and PC with MITS software. The anode and cathode sheet were a carbon 

paper (SGL, Germany) with carbon-supported 20 wt.% Pt catalyst layer supplied by E-

TEK, Natick, MA. The catalyst loadings at the anode and cathode were 2 mg/cm2, thus, 

Pt loadings at the anode and cathode were 0.4 mg/cm2. The effective electrode area was 5 

cm2. The gas flow rate was kept at a fixed stoichiometry (1.15 times stoichiometric for H2 

and 2 times stoichiometric for O2) at 1 A/cm2
 current density. 
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4.3 Results and discussions 

 

4.3.1 The structural characteristics of PSPA-K-SiO2 particles made by means of 

ATRP 

 

The FT-IR spectrum of the PSPA-K-SiO2 (Fig. 4.1) displays the main structural features 

of the grafted PSPA-K chains including the S=O stretching vibration absorption of 

sulfonate group occurring at around 1120 cm-1, the C-H stretching vibration absorption of 

–CH2CO-O- group and CH2 group (hydrocarbon backbone) at 3047 cm-1 and 2985 cm-1, 

the C=O stretching vibration absorption band of the ester group at approximate 1734 cm-1, 

and the C-H bending vibration absorption of the hydrocarbon backbone at 1420 cm-1. 

These absorptions show that PSPA groups are grafted on the silica particles.  
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Furthermore, by comparing Fig. 4.2b and TEM image of pure silica particles, we 

observed that the image of the ionomer-grafted particles shows light agglomeration 

among the particles was occurred. Such morphology change of particles may be caused 

by grafting of the soft PSPA-K (ionomer) chains to SiO2.   

 

 a 

 

 

 

 

 

 

b  

 

 

 

 

 

 

 

 
Figure 4.2 TEM of (a) SiO2 particles, (b) PSPA-K- SiO2 
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 The TGA curves of the pure SiO2, vinyl-SiO2 and PSPA-K-SiO2 are shown in Fig. 4.3. 

The pure fumed silica showed negligible mass loss over the temperature range under 

investigation, while vinyl-SiO2 powder showed a mass-loss stage (210-260 oC, labeled by 

two arrows) indicating the decomposition of vinyl groups that is anchored to SiO2 

particles via silanization of TEVS. Regarding PSPA-K-SiO2, there was dehumidifying 

mass-loss in the range below 100 oC, and a slight mass-loss stage (~ 2%) happening in 

the range of 160-260 oC. These two mass-losses could be due to the removal of moisture 

trapped in the silica cores. A strong mass loss gradient occurred from 260 oC and leveled 

off at about 600 oC. It was ascribed to the elimination of the grafted PSPA-K chains, 

which accounted for about 18% of mass in PSPA-K-SiO2 sample. In addition, this 

analytical result shows that PSPA-K-SiO2 is stable at temperatures below 160 oC.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.3 TGA profiles of the (a) pristine silica; (b) vinyl-SiO2; and (c) 
PSPA-K-SiO2 
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4.3.2 Characterization of Nafion/PSPA-SiO2 composite membranes 

 

The TGA thermogram (Fig. 4.4) shows that both pure Nafion membrane and composite 

membrane [Nafion/PSPA-SiO2 (4 wt.%)] retained more than 90% of total membrane 

weight up to a temperature of about 300 oC. The mass discarded before this temperature 

point is mainly caused by the vaporizing of small solvent molecules such as water, 

methanol and ethanol. Moreover, the mass loss of the two membrane samples occurred in 

the range from 300 to 600 oC. The results appear to confirm that the presence of the low 

content of PSPA-SiO2 in the Nafion matrix does not noticeably lower the thermal 

stability of Nafion matrix. 

 

The compatibility between the host polymer matrix (Nafion, in this case) and the powder 

filler influences the thermal, mechanical and electrical properties of the membrane. The 

agglomerates of pristine nano-silica particles formed could be clearly spotted in the cross-

section of the membrane, Nafion/SiO2, which was prepared by fracturing in liquid 

nitrogen (Fig. 4.5a). This morphology may account for spontaneous aggregation of silica 

particles in the Nafion matrix. In contrast, Fig. 4.5b shows no significant agglomerates of 

the PSPA-SiO2 particles were observable in the cross-section of membrane 

Nafion/PSPA-SiO2, and no embedded granules could be distinguished from the cross-

section image. This obvious difference of pure silica and PSPA-SiO2 particles 

distribution in the Nafion matrix indicates that the PSPA ionomer chains grafted onto 

fume silica nano-particles play a key role in boosting the dispersion extent of the silica 

particles in the Nafion matrix.      
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           Figure 4.4 TGA thermograms for a. Pure Nafion membrane and  
                                     b. Nafion/PSPA-SiO2 (4 wt.%) 
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Figure 4.5 Field emission scanning electron micrographs of: (a) the cross-section 
of Nafion/SiO2 composite membrane and (b) the cross-section of Nafion/PSPA-

SiO2 membrane 
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4.3.3 Investigation of proton conductivity of the composite membranes 

 

The dispersion extent of silica (pristine and modified) in the Nafion matrix was 

investigated from the perspective of the dispersing effect on proton conductivity at 

different temperatures (Fig. 4.6). We selected four membrane samples to study, which 

were native Nafion membrane, Nafion/SiO2 (2 wt.%) and Nafion/SiO2-PSPA (2 wt.% 

and 4 wt.%) composite membranes. For all membrane samples, with increasing 

temperature, the proton conductivity values increased. This is probably because high 

temperatures improve the motion of polymer chains and provides more free volume for 

sulfonic groups, and hence it is easy to transport proton in the membranes. However, 

after reaching maximum values their proton conductivities started to decrease with 

further increasing temperature, as shown in the Fig. 4.6. This is probably because higher 

temperature reduces water uptake of the membranes without controlling humidity in this 

experiment. On the other hand, Fig. 4.6 also shows the Nafion membrane doped with 2 

wt.% of pristine fume silica had lower proton conductivity than pure Nafion membrane in 

the temperature range of 50 to 80 oC and this difference is due to non-conductive 

property of pure silica particles as well as their agglomerated distribution in the Nafion 

matrix. In contrast, SiO2-PSPA particles in Nafion matrix at a low loading could 

apparently boost the proton conductivity of the membrane. This result manifests the 

crucial role of the SiO2 surface-grafted PSPA layer in facilitating H+ transport across the 

Nafion matrix. Further, it is noticeable that the two Nafion/SiO2-PSPA (2 wt.% and 4 

wt.%) membranes displayed superior proton conductivity over the native Nafion in the 

temperature range greater than 70 oC. This result strongly suggests that the SiO2 surface-
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grafted PSPA layer not only has the crucial role of facilitating H+ transport across Nafion 

matrix, but also preserves the matrix humidity.  
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 Figure 4.6 Influence of temperature on the conductivity of various  
membranes under investigation 

 

4.3.4 Single-cell performance of the composite membranes  

 

This part of the study aimed at unveiling the improved electrochemical performance of 

the composite membranes Nafion/PSPA-SiO2 relative to the native Nafion membrane in 

the two types of proton-exchange membrane fuel cells (PEMFC), of which one used 2 M-

methanol (DMFC) and the other used hydrogen (H2-FC) as fuel. 
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• The DMFC was operated at 50 oC and 80 oC (Fig. 4.7)   

 

The results (power density and cell voltage) showed that when DMFC was operated at 50 

oC (Fig. 4.7a), the membranes Nafion/PSPA-SiO2 had obviously better performances 

than Nafion, and the average increased with the loading of filler. The maximum open 

circuit voltage (OCV = c.a. 0.58 V) and powder density output (22.4 mW/cm2) were 

achieved with the use of PSPA-SiO2 of 6 wt.%. The difference between the two high 

loading membranes (4 wt.% and 6 wt.%) diminished quickly with the increase of current 

density. When the operation temperature was raised to 80 oC, the composite membranes 

though still showed better electrochemical cell performance than Nafion and the loading 

effect followed the trend observed previously at 50 oC. And the excess of the two cell 

parameters gained by the use of PSPA-SiO2 was reduced. This outcome implies that the 

swelling of Nafion matrix by methanol aqueous solution at the higher operation 

temperature become an important factor, which allows proton to pass through the matrix 

water channels.  
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• The H2-FC was operated at 23 oC and 80 oC (Fig. 4.8)   

 

Compared with DMFC, the cell assessment under lower humidity condition demonstrated 

more explicitly the advantage of the presence of PSPA-SiO2 nano-particles in the Nafion 

matrix. The composite membrane loaded with PSPA-SiO2 of 6 wt.% gives rise to the 

maximal OCV (0.96 V) and the power density of 19.6 mW/cm2 at the ambient 

temperature, which were the best output among the membranes examined. In contrast to 

their performance in DMFC at high temperature, the composite membranes manifested 

even better cell performance than the native Nafion at 80 oC; this is because of the two 

factors: firstly, the proton conductivity of the native Nafion membrane declined more 

rapidly with the increase of temperature (Fig. 4.6); and secondly, the composite 

membranes could still offer a continuous improvement, namely maintaining the similar 

maximal OCV at a higher current density setting. Taking the composite membrane (6 

wt.%) for example, it retained OCV of 0.95 V at the current density of ca. 3 mA/cm2, and 

had accordingly the highest maximal power density (21.9 mW/cm2) at 80 oC 
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Figure 4.8 The electrochemical performance of the four membranes respectively 

in a hydrogen-driven single fuel cell at the two elevated temperatures  
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4.4 Conclusions 

 

In conclusion, the presence of ionomer-grafted silica nano particles, PSPA-SiO2, in the 

membrane matrix of Nafion enhances its performance in PEMFC through boosting the 

flux of protons and facilitating their transport. The boosting role comes from the fact that 

each PSPA-SiO2 particle bear a high density of sulfonic acid groups, and the facilitating 

role is attributed to the hydrophilic interactions between PSPA-SiO2 particles and the 

sulfonic acid groups of Nafion chains. The composite membranes with different ratio of 

PSPA-SiO2 loading have better conductivity than the pristine Nafion membrane and 

Nafion/silica in the experiment temperature range. And the composite membrane with 

optimal PSPA-SiO2 (6 wt.%) has higher performance than pure Nafion membrane at 50 

oC and 80 oC operating temperature for DMFC and H2-FC. 

       

 

 

 

 

 

 

 

 

 

 



CHAPTER 5  

 

REFORMATTING NAFION MATRIX VIA IN-SITU 

GENERATED POLYPOSS BLOCKS TO PROMOTE ITS 

PERFORMANCE IN DIRECT METHANOL FUEL CELL 

 

5.1  Introduction 

 

In recent years, the development of direct methanol fuel cells (DMFCs) for powering 

small electronic devices has received increasing attention (Surampudi et al., 1994; Ren et 

al., 1996; Aramata et al., 1992; Arico et al., 1994; Wang et al., 1995 and Wasmus et al., 

1999) since storage of aqueous methanol solution is much easier than hydrogen. However, 

Nafion becomes unsuccessful for the application in DMFC as its matrix permits a 

methanol-diffusivity of 10-6 (cm-2⋅s-1) at room temperature. It has been found that over 

40% of methanol can be lost due to excessive swelling of Nafion in methanol solution 

(Heinzel and Barragan 1999). Besides this, the permeation of methanol through the 

membrane also results in a mixed potential at the cathode, and leads to lowering the 

voltage and electrochemical efficiency of DMFC (Chu et al., 1994; Surampudi et al., 

1994; Scott et al., 1999; Ren et al., 2000a and 2000b). It is thus meaningful for exploring 

effective solutions to this intrinsic drawback of Nafion. A variety of approaches has been 

attempted to modify Nafion matrix in order to cut down methanol permeability (Hong et 
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al., 1999; Kim et al., 2004; Adjemian et al., 2002; Staiti et al., 2001b and Jalani et al., 

2005). In general, there is a trade-off between proton conductivity and methanol 

diffusivity. For instance, inclusion of nano silica particles in Nafion matrix manifested a 

noticeable reduction in methanol crossover at the cost of proton conductivity because of 

using a rather high content (e.g., 20 wt.%) of SiO2. (Miyake et al., 2001)  

 

It is important to understand how the microstructure of Nafion matrix undergoes change 

upon adding nanoparticles. Nafion has a very hydrophobic poly (tetrafluoroethylene) 

main chain (~ 87 mol%) and short side chains terminated by sulfonic acid groups. The 

molecular weight of Nafion is known to fall into the range of 105-106 a.u., and on average 

each segment length of about 1440 a.u. contains one sulfonic acid group (Mauritz and 

Moore 2004). It is therefore rational to view Nafion as an anionic polymer surfactant. 

According to the previous studies on the microstructure of Nafion that were highlighted 

in the review article of Mauritz and Moore, negatively charged pendant sulfonic acid 

groups undergo association in the hydrophobic perfluoro matrix with the increase of 

water content and finally form numerous hydrophilic channels, which can be ideally 

envisioned as worm-like hydrophilic channels. It could be projected that this hydrophilic 

assembling process is to be deeply disturbed with including of pristine inorganic oxide 

nanoparticles or ionomer modified nanoparticles into the matrix as shown in the chapter 4 

because the oxide particles are adsorbent of sulfonic acid groups due to their hydrophilic 

surface predominated with –O- and –OH sites. As a result, methanol molecules are not 

easy to enter into the interface between particles and sulfonic acids, and protons transport 

along the interface between particles and sulfonic acid besides along the native 

 108



hydrophilic channels. It can be rationalized that the adsorption extent affects both proton 

conductivity and methanol diffusivity. Such composite matrix often forgoes some part of 

proton conductivity and mechanical strength of Nafion for the exchange of depressing 

methanol permeation. 

 

In contrast to these metal oxide nanoparticles, polyhedral oligomeric silsesquioxane 

(POSS) is a delicate molecule that could also be regarded as a hybrid nanoparticle since it 

has well-defined cube-octameric siloxane skeleton (about 1-3 nm in size) with eight 

organic vertex groups, one or more of which are reactive or polymerizable. (Lichtenhan 

et al., 1993 and 1995; Mantz et al., 1996; Haddad et al., 1996; Feher et al., 1999a and 

1999b) These particular structural features render POSS be a versatile additive for 

acquiring enhanced themomechanical properties, better thermal stability, (Huang et al., 

2003; Choi et al., 2003a and 2003b) atom oxygen resistance, abrasion resistance and low 

water uptake (Tsai et al., 2001 and Wright et al., 2003). In these applications precise 

control of nanoarchitecture of POSS derivatives in the host matrix is crucial to attain the 

desired features. (Zhao et al., 2005) POSS molecules have also been incorporated into a 

variety of polymer materials by means of blending, grafting or copolymerization with 

vinyl monomers in pursuit of nano-structured polymeric materials that possess the hybrid 

properties of organic polymer and ceramics. (Marcolli et al., 1999)   

 

This chapter advances the existing Nafion membrane modification strategies, as 

aforementioned, through introducing into the host matrix the hydrophobic 1, 3, 5, 7, 9, 11, 

13, 15- octakis (dimethylviylsiloxy) pentacycloc octasiloxane (Q8M8
V) molecules into the 
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host matrix. These molecules are polymerizable due to the presence of eight pendant 

vinyl groups (Fig 5.1). Naturally, these particulate molecules, Q8M8
V, do not behave like 

hydrophilic SiO2 nanoparticles as an adsorbent of pendant sulfonic acid groups when 

introduced into Nafion matrix. Q8M8
V could be very uniformly distributed in 

perfluorocarbon matrix via recasting because they are not only small but also compatible 

with perfluorocarbon backbone of Nafion molecules. Upon subjected to in-situ 

polymerization, these particulate molecules are converted to rigid blocks (Fig. 5.2), 

P(Q8M8
V), each of which consists of a certain number of Q8M8

V cubes depending upon 

the content designated. The blocks generated restrict, due to their geometric boundary 

effect, random extension and interconnections of hydrophilic proton-conducting channels 

(PCCs) composed of the sulfonic acid groups of Nafion molecules. As a result, the entire 

Nafion matrix will become less hydrophilic and PCC will also become more localized 

with increasing P(Q8M8
V) loading. Our experimental data showed that such change in 

PCC distribution lead to a series of variations of properties, typically, a clear reduction in 

methanol permeability, a sharp decrease in the activation energy of proton conduction, 

and an obvious increase in cell voltage and power density of single DMFC. This work 

attempts to offer an understanding of the relations between the microstructure of the 

P(Q8M8
V)-Nafion composite membrane and its unique properties on the basis of various 

instrumental characterizations.   
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5.2  Experimental 

 

5.2.1 Materials  

 

Tetraethylorthosilicate (TEOS, ≥ 98%, Fluka), tetramethylammonium hydroxide 

pentahydrate (≥ 97%, Sigma), chlorodimethylvinyl-silane (CDMVS, 97%, Aldrich), 

Nafion® perfluorinated ion exchange resin 5 wt. % soln in lower aliphatic alcohols/H2O 

mix (Aldrich), methanol (Merck), tetrahydrofuran (THF, Merck), N, N’-dimethyl formide 

(DMF, Merck) and N, N’-dimethylacetamide (DMAc) (99%, Aldrich) were used as 

received. 

 

5.2.2 Synthesis of 1, 3, 5, 7, 9, 11, 13, 15- octakis (dimethylviylsiloxy) pentacycloc 

octasiloxane (VinylMe2-SiOSiO1.5)8 (Q8M8
V) 

 

This compound was prepared following the Isao Hasegawa’s procedure (Hasegawa and 

Motojima 1992). The first step was the preparation of tetramethylammonium silicate 

(TMAS) methanolic solution (20 ml): 4.48 ml of TEOS was mixed with 

tetramethylammonium hydroxide pentahydrate methanol solution (10 ml) and water (1.8 

ml) by stirring, and methanol was then added into the mixture to bring the total volume to 

20 ml. The solution was then vigorously stirred at room temperature for one day to allow 

formation of tetramethyl- ammonium silicate solution, in which cubic octamer Si8O20
8- 

was the main product.  
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In the second step, CDMVS (8.5ml) was mixed with THF (16.5 ml) by stirring for 5 min 

to form an extractant of silicate acids. Then a 5-ml portion of the methanol solution of 

TMAS was added dropwise into this 25-ml extractant solution. The mixture was stirred 

for 1 h at room temperature. As the boundary between organic and aqueous phases of the 

mixture was unclear after the reaction, de-ionized and hexane were then added 

respectively into the reaction mixture to obtain two clear phase layers. The organic phase 

was transferred to a round bottom flask, and the organic solvent was removed via low-

pressure evaporation. After that, the residue was re-crystallized in a small amount of THF 

to generate cubic octamer particles, and subsequently the product was dried to obtain a 

white powder. The chemical shifts (ppm) of the product on 1H NMR spectrum are: 5.80-

6.20 (m, 18H, vinyl-Hs) (Fig. 5.1), and on 29Si NMR spectrum are: 100.4 (SiO4), 8.58 

and 9.026 (CH2=CHMe2OSi). 
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Figure 5.1 1H-NMR of 1, 3, 5, 7, 9, 11, 13, 15-octakis (dimethylviylsiloxy) pentacycloc octasiloxane 
(VinylMe2-SiOSiO1.5)8 (Q8M8

V)   113 

 113



 

5.2.3 In-situ polymerization of Q8M8
V in the Nafion matrix  

 

Nafion® solution (5 wt.%, 100 ml) in a crystallization dish was subjected to evaporation 

at 50 oC in a ventilation hood to remove the solvent (iso-propanol, n-propanol and water). 

The solid Nafion resin obtained was re-dissolved in N, N’- dimethylacetamide (DMAc) to 

prepare a 5 wt.%-solution. Different amounts of Q8M8
V compound were introduced into 

the solution respectively and the resulting suspensions were thoroughly mixed in an 

ultrasonic bath until a clear solution was formed. Then α,α-dimethylol propionic acid 

(DMPA), a polymerization initiator, was added into the solution with a Q8M8
V/DMPA 

ratio of 100:1 (w/w). The composite membranes were prepared by casting the solutions in 

separate Petri-dishes. Each dish was kept inside an oven at 60 oC for 3 h, and then baked 

at 120 oC for another 3 h. In this heating course polymerization of Q8M8
V took place 

partially in accompanying with evaporation of DMAc and finally the polymerization of 

Q8M8
V was completed in the Nafion matrix by placing the membrane in an UV oven 

(SpectroLinker UV Cross Linker, XL-1500) for 2 h. For recasting pure Nafion membrane, 

the same procedure was applied except UV baking. 

 

5.2.4 Characterizations of structures and properties 

 

5.2.4.1 Spectroscopy analysis 
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1H and 29Si NMR spectra of Q8M8
V were recorded on a Bruker ultrashield 400 

spectrometer, using chloroform-d as solvent and tetramethylsilane internal standard. 

Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) spectra 

of the membrane samples were obtained on a BioRad spectrometer (resolution 2 cm-1). A 

ZnSe crystal was used as the ATR plate with an angle of incidence of 45°. The cross-

section morphological images of the membrane samples were taken on a field emission 

scanning electron microscope (FESEM, JEOL-JSM-6700).   

 

5.2.4.2 Thermal analysis  

 

The thermal stability of the prepared membranes was evaluated by thermogravimetric 

analysis (TGA) using a TA Instruments 2050 Thermogravimetric Analyzer. The heating 

rate was 10 oC/min and the sample was under a dry nitrogen purge (100 ml/min) through 

the entire heating process. The glass transition behaviors of the membrane samples were 

measured on a Mettler Toledo DSC 822e equipped with a pressure DSC Cell. The 

scanning rate of 10 oC/min was set and the first scan (from rt. to 100 oC) was intended to 

remove different thermal history of the samples. The results from the second scan were 

recorded. The dynamic mechanical analysis (DMA) was performed on a TA Instruments 

(DMA 2980) using a heating rate of 3 oC/min from room temperature to 200 oC and a 

vibration frequency of 1 Hz.  

 

5.2.4.3 Solvent-matrix interactions analysis  
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Methanol permeability measurement was conducted using a glass diffusion cell. One 

compartment of the cell (VA =50 ml) was filled with 2 M methanol solution (8 vol.%, 

typical concentration used in current DMFC), and the other compartment (VB =50 ml) 

was filled with deionized water. The membrane (wetted area = 4.90 cm2) after fully 

hydrated with deionized water for 24 h was fastened between the two compartments 

where the two solutions were kept stirred throughout measurement. The concentration-

driven diffusion of methanol from compartment A to B across the membrane was 

measured against time using a Shimadzu GC2010 gas chromatograph (GC) equipped 

with a HP-Plot Q column (30 m×0.32 mm×20 µm) and a flame ionization detector. 1-

butanol was the internal standard for the GC analysis. The solvent-swelling of the 

membrane samples in a binary THF-DMF solution at room temperature was determined 

by gravimetric approach. The membrane samples were vacuum dried at 70 oC for 24 h in 

prior of measurement. Swelling degree (%) was evaluated using the following formula: 

 

Swelling percentage (%) %100×
−

=
dry

drywet

W
WW

   …… Equation 5.1 

 
 
5.2.4.4 Ionic exchange capacity (IEC) 

 

Each dry membrane was soaked in 10 ml 0.05 M sodium chloride aqueous solution for 24 

h to allow exchange of protons with sodium ions. The ion-exchanged solution (containing 

hydrogen chloride) was titrated to pH 7.0 using a standard 0.05 M sodium hydroxide 

aqueous solution and the end-point of titration was indicated by a pH meter (HORIBA). 
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Each exchanged NaCl solution was titrated twice and the mean titrate volume was used 

for the IEC calculation. 

 

5.2.4.5 Electrochemical analysis  

 

The proton conductivity, σ (S/cm), of membranes was gauged by AC impedance method 

on an Autolab electrochemical analyzer using a frequency scanning range of 0.01 Hz to 1 

MHz, AC perturbation of 10 mV and DC rest voltage of 0.0 V. A sample of the 

membrane (1.3 cm in diameter) was sandwiched by two stainless steel disk electrodes of 

the same diameter and fastened in a Teflon holder, and the holder was immersed in a 

heating bath with a setting temperature. The membrane electrode assembly (MEA) for 

the direct methanol fuel cell evaluation was made by sandwiching a membrane with an 

anode sheet and a cathode sheet. The anode sheet was a carbon paper (SGL, Germany) 

coated with a Pt-Ru/C catalyst layer and the cathode sheet was a carbon paper coated 

with a layer of carbon-supported 40 wt.% Pt catalyst supplied by E-TEK. The catalyst 

slurries were prepared by mixing de-ionized water, Nafion® solution (Aldrich), and 40 

wt.% Pt/C for cathode ink and 40 wt.% Pt-Ru/C for anode ink. The average platinum 

loadings at the anode and cathode were 3 and 2 mg/cm2, respectively, and the effective 

electrode area was 5 cm2. The fuel used was 2 M CH3OH delivered at 2 ml/min by a 

micropump, and the oxygen flow (500 cm3/min) was regulated by a flowmeter. 

 

5.3  Results and discussions 
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5.3.1 Structural characteristics of Nafion-P(Q8M8
V) composite membrane  

 

As a Q8M8
V cubic molecule bears eight vinyl groups, the free radical chain growth would 

be very localized because the polymerization medium (i.e. the cast Nafion solution in 

DMAc) is tranquil and the simultaneous three-dimensional growth would undergo 

quickly to generate rigid P(Q8M8
V) blocks as shown in Fig. 5.2. Consequently, nano-

blocks generated from the in-situ polymerization are distributed uniformly in Nafion 

matrix, and each of them interlocks a certain number of polytetrafluoroethylene (PTFE) 

backbones of Nafion due to the in-situ polymerization scenario. Furthermore, it is rational 

to consider that the Nafion molecules physically anchored to P(Q8M8
V) blocks will 

trigger formation of domains through the association of the sulfonic acid groups at the 

end of their side chains with those of the unbound Nafion molecules surrounded by the 

P(Q8M8
V) blocks as illustrated in Fig. 5.3. As a result of this boundary regulating effect, 

PCCs are formed primarily through assembling of the Nafion molecules in respective 

domains. To prove the happening of this domain-predominant matrix, thermal analyses 

(TGA, DMA and DSC) were employed to probe changes in thermal stability of the 

pendant sulfonic acid groups and, more importantly, in dynamic response of segment 

motions to increase of temperature.       

 

 

 
 
 
 
 
 

DMPA
Si

Si

Si

Si

Si

Si
Si

Si

UV

Figure 5.2 Synthesis of poly(Q8M8
V) fragments from Q8M8

V monomers 
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Figure 5.3 Schematic representation of the domain formation due to induction of 
the embedded P(Q8M8

V) blocks 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The TGA weight-loss profiles (Fig. 5.4) show no difference in the onset temperature 

(~355 oC) of the 1st weight loss slope, which is attributed to the degradation of sulfonic 

acid groups, between the pristine Nafion matrix and the composite membranes. But the 

first weight-loss plateau of the composite membranes is located below that of the pristine 

membrane, this phenomenon implies that the composite membranes are thermally more 

vulnerable, in particular the 15-wt.% membrane. It is contemplated that the unbound 

Nafion molecules in the composite membrane could undertake thermal motions to a 

greater magnitude than those in the pristine membrane because each individual Nafion 

molecule in the latter scenario takes part in more PCC branches and is therefore more 

strongly tightened. As to the viewpoint that a part of perfluoro-chains of Nafion was hung 
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on to P(Q8M8
V) blocks via physical interlocking, the variation of storage modulus of the 

composite membranes (Fig. 5.5) suggests the presence of such dispersed physical 

crosslinking sites over the bulk of membrane. With the increase in the content of 

P(Q8M8
V) blocks, more Nafion molecules are physically anchored to these blocks, which 

brings about reinforcing effect on the membrane because the affixed molecules interact 

with the other molecules via the association of their respective sulfonic acid groups as 

portrayed in Fig. 5.3. Hence macroscopically the storage modulus of the composite 

membranes shows a clear dependence upon the P(Q8M8
V) content.  
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Figure 5.4 TGA data for recast Nafion and composite membranes with 5 wt.%, 
15 wt.% and 25 wt.% poly(Q8M8

V) loading 
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 Figure 5.5 The dynamic mechanical properties (real part) of the four recasting membrane  
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The DSC experiment shows an appealing phenomenon: the glass transition step of 

composite membrane shifted toward low temperature direction with increasing the 

P(Q8M8
V) content in it as displayed in Fig 5.6. We have also identified, on the basis of 

the small angle X-ray scattering (SAXS) result, that nil crystallization of Nafion 

molecules occured in the recast pristine membrane and composite ones. Therefore the 

crystallization effect on the polymer chain motions is beyond the scope of consideration. 

In the Nafion membrane the energy barrier of the glass transition is affirmed to originate 

from strong attractive interactions of the pendant sulfonic acid groups in PCC. In this 

context rolling down of Tg implies that this cohesive interaction becomes weakened, and 

it is known from the above discussion that the P(Q8M8
V) blocks curb interconnecting 
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extents of PCC, or an individual Nafion molecule is involved in fewer PCC branches than 

it behaves in the pristine Nafion matrix. Consequently, segment motions of the Nafion 

molecules are needed to overcome weaker binding caused by the associations of the 

pendant sulfonic acid groups. When the P(Q8M8
V) content reaches 25 wt.%, the highest 

content in the three composite membranes, a broad and shallow endothermic bow appears 

on its DSC profile, which can be attributed to segment motions of unbound Nafion chains. 

Compared with the other two composite membranes, the strongest partitioning action of 

P(Q8M8
V) blocks exists in this membrane. Consequently the unbound Nafion molecules 

involve the least extent of inter-chain connections and have highest degree of freedom of 

chains motions. This rubbery behavior can also be spot from the infrared absorption 

spectra of the Nafion-P(Q8M8
V) composite membranes. According to the reflective IR 

spectrum of Nafion, three absorption bands at the wave-number of 806 cm-1, 972-984 cm-

1, and 1053 cm-1 are normally known as the finger prints of perfluorocarbon chain, in 

which the lowest energy band (806 cm-1) is generated from the carbon skeleton vibration 

modes (Fig. 5.7). It is found that this absorption band becomes broader and shift slightly 

to low frequency direction with the increase in P(Q8M8
V) loading, in particular from 5 

wt.% to higher ones. This phenomenon can be interpreted as the relaxation of a portion of 

perfluorocarbon chains. On the other hand, the ν(S=O) scissor peak of the pendant 

sulfonic acid group becomes flatter with increasing of the content of P(Q8M8
V) because 

the latter one has a very strong and broad absorption peak, ν(Si-O), appearing almost at 

the same frequency range as the ν(S=O). As a result, the ν(S=O) vibration peak is 

shielded by the ν(Si-O) peak.     
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Figure 5.6 DSC data for recast Nafion and composite membranes with 5 wt.%, 
15 wt.% and 25 wt.% poly(Q8M8

V) loading 
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Figure 5.7 FTIR-ATR spectra of recast Nafion and composite membrane 
with 5 wt.%, 15 wt.% and 25 wt.% P(Q8M8

V) loading 
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The cryo-fractured cross-sectional surfaces of the composite membranes were examined 

by FESEM (Fig. 5.8). As they were recast using the dipolar aprotonic organic solvent 

(DMAc) as aforementioned, this particular solvent (Jiang et al., 2006) possesses affinity 

with both perfluorocarbon backbone and pendant sulfonic acid groups, hence resulting in 

a matrix without a clear pattern (Fig. 5.8a). In contrast, a ribbon-like dense fractured 

surface (Fig. 5.8b) was obtained from the membrane developed by directly casting 

Nafion-117 solution (alcohols/water) because Nafion molecules undergo association to 

form rodlike aggregates in this very hydrophilic solvent environment (Mauritz and Moore 

2004). In Fig. 5.8c, a lamina-like fractured surface was observed because of the presence 

of 5 wt.%–P(Q8M8
V) in the Nafion matrix. The further increase in the P(Q8M8

V) content 

to 15 wt.% gave rise to a step-like matrix morphology. As per the preceding discussion, 

these two particular bulk phase morphologies are generated from the two types of chain 

packing manners as illustrated in (Fig. 5.9): the 5 wt.%-loading was only enough to 

induce laminar domains but 15 wt.%-loading could narrower down domains in 3-D 

assembly. Increasing the loading to 25 wt.% caused a bulk phase that is lack of a long 

range pattern. Obviously, a too crowded P(Q8M8
V) content is responsible for this 

randomness.    
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5 wt.%  (c) 15 wt.%  (d) 

Recast Nafion  (a) Cast Nafion-117  (b)  

25 wt.%  (e) 

Figure 5.8 FESEM cross-section micrographs of composite membrane with (a) recast Nafion, (b) cast Nafion-117, (c) 5 wt.%, (d) 15 
wt.% and (e) 25 wt.% poly(Q8M8

V) loading 
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Figure 5.9 Schematic representation of the two types of chain-packing domains     
 
 

5.3.2 An investigation of membrane-solvent interactions 

 

From the above discussion, the presence of P(Q8M8
V) blocks in Nafion matrix caused a 

reduction in the interconnecting extent of PCC, as a result, the composite matrixes can be 

more easily accessed by less polar solvents, for instance, tetrahydrofurane (THF) is less 

hydrophilic than N, N’-dimethylformide (DMF). The higher swelling extents of the three 

recast composite membranes in pure THF proved this estimation (Fig. 5.10). With adding 

a small amount of DMF (0.05 w/w) into THF, the pure Nafion membrane underwent a 

greater increase in swelling degree than the composite membranes. As a result, the 

discrepancy in swelling extent between the pristine Nafion membrane and the composite 

membranes was narrowed down. It seems that the inclusion of such a substantially small 

amount of DMF in THF triggered out swelling of the pristine Nafion matrix, which 

verifies the preceding inference that the pristine Nafion matrix contains a greater extent 
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of randomly interconnected PCC and thus is more hydrophilic. Thermodynamically, this 

prompt increase in swelling extent is also driven by the infinite partial molar properties 

(e.g. solvating enthalpy) of DMF in Nafion matrix. On the other hand, the three 

composite membranes displayed very close swelling extents in pure THF, namely the 

P(Q8M8
V) content affected insignificantly swelling of composite matrix in THF. However 

these congested swelling degrees in THF became differentiated with the introduction of a 

small amount of DMF into THF. This phenomenon could be interpreted as the DMF 

penetration through the interface between Nafion matrix and P(Q8M8
V). It was also 

observed that the further increase in DMF concentration up to 0.18 w/w (equivalent to 25 

vol. %) enhanced only slightly swelling degrees of the three composite membranes and 

did not alter their sequence as well. It is likely that there was a swelling saturation limit in 

each composite membrane in the concentration range of DMF-THF solvent and the 

existing of swelling limit was due to the presence of P(Q8M8
V) “grid” in the Nafion 

matrix. In contrast, the pristine Nafion membrane underwent more perceptible swelling 

with the increase of DMF concentration. 

 

How the content of P(Q8M8
V) in Nafion matrix affects methanol permeability is the key 

issue to understand. In the permeability measurement, the commercial Nafion-117 ® 

membrane (made by extrusion) was chosen as the control sample to benchmark the four 

recast membranes and the results are shown in Fig. 5.11. Firstly, it is clear that the 

methanol permeability of the commercial Nafion-117 membrane at room temperature is 

about double as much as that of the recast Nafion-117 membrane. This discrepancy can 

be attributed to the existence of an ordered and extensively distributed PCC network in 
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the former than in the latter membrane since methanol molecules permeate through PCC 

only. However, among the composite membranes the 15 wt.%-loading one exhibited the 

lowest methanol permeability (4.09×10-7 cm2/s), which is about 30% of the permeability 

of the recast pristine membrane. After passing this lowest point, a slightly higher 

permeability (5.55×10-7 cm2/s) was given by the membrane with the loading of 25 wt.%. 

A similar trend was also observed from the variation of ion exchange capacity (IEC) of 

the four membranes (Table 5.1), in which the 15 wt.% membrane showed the lowest IEC 

value while the 25 wt.% membrane displayed a higher IEC than the pristine Nafion on 

the equal Nafion mass basis. As described above, the 25 wt.% membrane contains 

randomly oriented PCC and the highest interfacial area between Nafion and P(Q8M8
V) 

blocks. These two factors make PCC be most easily accessible by sodium ions in the 

membranes of interest. It is comprehensible that implantation of P(Q8M8
V) blocks in 

Nafion matrix restricts random spread of PCC, and hence discourages diffusion of 

methanol molecules in the composite membranes. It is noteworthy that the ordered chain 

packing manner (refer to Fig. 5.9) also plays a favorable role in restricting methanol 

permeation.      

 
 

Table 5.1 The ion-exchange capacity of the four membranes 
 

Membrane sample Nafion 
Poly (Q8M8

V)-Nafion composite membranes 

5 wt.% 15 wt.% 25 wt.% 
Ion exchange 

capacity (meq/g)* 0.705±0.005 0.700±0.003 0.656±0.005 0.746±0.005 
* meq/g represents milli-equivalent per gram of pristine Nafion.    
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 Figure 5.11 Methanol permeability of commercial Nafion-117, recast Nafion and composite 

membrane with 5 wt.%, 15 wt.% and 25 wt.% poly(Q8M8
V) loading 
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5.3.3 Electrochemical Evaluations 

 

The proton conducting traits of the four recast membranes were evaluated by their 

particular Arrhenius plots, from which we find that the inclusion of 5 wt.% P(Q8M8
V) 

into Nafion matrix reduced about a half of its proton conduction activation energy, but 

the further increase in P(Q8M8
V) loading led to insignificant reduction of this kinetic 

energy barrier (Fig. 5.12). This outcome is deemed to have a direct relation with the PCC 

distribution in the bulk phase. Among the four membranes, PCC could achieve maximal 

extension in the matrix of pristine Nafion because each individual Nafion molecule in 

DMAc solvent is fully random and could therefore take part in forming the largest 

possible number of PCC during drying process. Also because of this greater extent of 

interconnection, PCC generated should contain relatively dilute sulfonic acid groups. A 

high interconnecting extent of PCC is an encouraging factor for proton transport but a 

low density of pendant sulfonic acid groups and tortuous channel structure will offset to a 

certain extent the advantage. Indeed, its high activation energy implies that proton 

transport relies on matrix water molecules as hopping sites since hydrogen bonding needs 

thermal energy to overcome it. (Ye et al., 2007) The high water uptake is an essential 

result of the large interconnecting extent of PCC. On the contrary, the laminar domains 

were induced upon in-situ formation of P(Q8M8
V) blocks in the recast Nafion matrix as 

shown in Fig. 5.8, which confined PCC formation primarily within individual lamina. 

This change would increase the density of sulfonic acid groups in PCC with sacrificing 

the interconnecting extent of PCC, which benefits cutting down water uptake and hence 

methanol diffusion as it has been examined above. Indeed, compared with the pristine 
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Nafion membrane, the fact that the 5 wt.%-membrane showed obviously lower activation 

energy means that proton transport through pendant sulfonic acid groups became 

significant. When the loading was raised to 15 wt.%, the membrane exhibited highest 

proton conductivity of the four over the temperature range of study. In this case, although 

the PCC interconnecting extent was farther decreased with narrowing down the laminar 

domains, which has been observed in IEC testing result (Table 5.1), they were likely 

more straightforward and less twisted, which can be inferred from its anisotropic matrix 

shown in Fig. 5.8d. In addition, with the increase of P(Q8M8
V) loading from 5 wt.% to 15 

wt.%, only a small decrease in the activation energy of proton migration implies that the 

density of sulfonic acid groups in PCC of the 5 wt.%-membrane already reached 

percolation of proton conduction that takes place through hopping over the pendant 

sulfonic acid groups. In pursuit of the loading up to 25 wt.%, it yielded a counter-

productive effect, namely the membrane exhibited the lowest proton conductivity of the 

four. It is rational to suggest that PCC were twisted by the random matrix resulted. This 

factor plus the minimum extent of interconnection of PCC in this particular membrane 

are responsible for lowest proton conductivity in the temperature span of study.  
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Figure 5.12 Arrhenius plots of conductance vs. temperature for 
recast Nafion and composite membrane with 5 wt.%, 15 wt.% and 

25 wt.% poly(Q8M8
V) loading 
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The above four recast membranes were evaluated in the single DMFC at room 

temperature and 50 oC, respectively (Fig. 5.13). Theoretically, the slow kinetics of the 

electrode-oxidation of methanol at the anode as well as the oxidation of methanol at the 

cathode generated detrimental impact on the cell performance of the DMFC (O’Hayre et 

al., 2006). Besides these two potential losses, the degree of ohmic loss is directly affected 

by the structure of PCC which sustains the flux of proton through the membrane. At 

ambient temperature (20 oC), the overall potential loss of the four membranes followed 

the order: recast Nafion > 25 wt.% > 5 wt.% > 15 wt.%, in which the position of Nafion 

dropped to the bottom from the 2nd rank in the order of proton conductivity. This 

flipping-over of order could be attributed to the methanol crossover from anode to 
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cathode through the membrane and the low efficiency of PCC due to their torturous 

structures in the pristine Nafion as concluded above. The methanol permeation 

measurement (Fig. 5.11) truly reflects the methanol crossover when the membrane is 

used in the DMFC environment, but the conductivity measurement only represents the 

situation when a substantially low proton transport flux going across the membrane. In 

the single cell assessment, the ohmic loss over the pristine Nafion membrane is an 

indication that its PCC do not possess adequate capability to sustain a high proton flux, or 

current density. Consequently, the membranes with different P(Q8M8
V) contents lead to 

very different power density output in the single DMFC loaded up with them respectively. 

For example, the maximum of the power density upheld by the 15 wt.%-membrane was 

13.92 mWcm–2, while the pristine Nafion membrane was merely 4.62 mWcm–2.        

 

When the testing temperature of the DMFC cell was raised to 50 oC,  the 5 wt.%-

membrane exhibited slightly better cell performance than the 15 wt.% one (Fig. 5.13b), 

which is reversed to their room-temperature performances. In light of the structure of 

PCC, rising of temperature would accelerate proton migration but also thermal motions 

of the pendant sulfonic acid groups; the latter factor will be a negative factor affecting 

transport of protons because of increasing chaotic collisions. Hence, there should be an 

optimal density of sulfonic acid groups in PCC that balances these two factors. From this 

perspective, proton transport in the 5 wt.% membrane is less affected by thermal motions 

of the pendant sulfonic acid groups than in the 15 wt.% membrane, because sulfonic acid 

groups in the former membrane are in general not as tight as those in the latter one as we 

know from the previous discussion. 
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 Figure 5.13 Polarization curves and power output of a DMFC using recast Nafion 

membrane and composite membrane with 5 wt.%, 15 wt.% and 25 wt.% poly(Q8M8
V) 

loading measured at (a) 20 °C; (b) 50 °C 
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5.4  Conclusions  

 

This work develops a special nano filler P(Q8M8
V) to enhance inherent traits of Nafion 

membrane for the use in direct methanol fuel cell (DMFC). The inclusion of the particles 

into the host matrix was carried out via polymerizing cubic octasiloxane molecules, 

Q8M8
V, inside the recast Nafion membrane. It is important to note that the P(Q8M8

V) 

blocks do not draw adsorption of sulfonic acid groups of Nafion molecules due to their 

intrinsic hydrophobicity, but rather, the in-situ polymerization renders P(Q8M8
V) blocks 

interlock perfluorocarbon backbones of Nafion molecules on them. As a result of the 

implantation of such rigid blocks in the Nafion matrix, the interconnecting extent of 

proton conducting channels (PCC) was confined and, in contrast to the pristine host 

matrix, the assembling of Nafion molecules displayed a long-range pattern depending 

upon the P(Q8M8
V) content. The understanding of the aforementioned structural 

characteristics was established on the basis of the thermal property, matrix morphology, 

solvating behavior, and kinetics of proton transport of the composite membranes. It is 

because of the unique matrix-formatting role of P(Q8M8
V) blocks, the composite 

membranes containing the filler of 5 wt.% to 15 wt.% impart apparently lower methanol 

permeation coefficients and far greater power density output of single DMFC than the 

pristine Nafion membrane.  

 
 
 
 
 
 
 



CHAPTER 6  

 

RESTRUCTURING PROTON CONDUCTING CHANNELS 

BY EMBEDDING STARBURST POSS-g-ACRYLONITRILE 

OLIGOMER IN NAFION® 

 

6.1 Introduction 

 

From the earlier chapter, it was reported that polymerizing vinyl-overhung octasiloxane 

(Q8M8
V) cubic molecules in the Nafion recasting process yields an impact on formatting 

the Nafion matrix. As a result, compared with the pristine Nafion membrane, the resultant 

composite membranes containing P(Q8M8
V) of 5 ∼ 15 wt.% manifested obvious 

improvement on both repressing methanol permeability and raising power density output 

of the single direct methanol fuel cell (DMFC). 

 

In this work, we continue to attempt to decrease methanol permeation level through the 

Nafion membrane by mean of incorporating another type of hybrid POSS nano-particles, 

composed of a pendant polymer outer layer and an inorganic core, into the matrix of 

Nafion. The starburst oligomeric structure, sb-POSS, is considered as a suitable candidate 

of the hybrid nanoparticles for this aim. The sb-POSS particle has a unique structure that 

is characterized by the anchoring of eight oligomeric polyacrylonitrile chains to cubic 
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polyhedral oligomeric silsesquioxane (POSS) core (Fig. 6.1). The atom transfer radical 

polymerization (ATRP) method was employed to synthesize the sb-POSS structure. Pyun 

et al. have investigated the kinetics of surface-initiated ATRP and morphology of the 

resultant hybrid particles. (Pyun et al., 2003a and 2003b) It is important to note that 

ATRP on a POSS core results in only oligomeric (short) polymer chains. As a result, the 

particles generated could still remain in the nano sizes range (< 20 nm) due to no chain 

entanglements.  

 

We observed via thermal analysis an appealing phenomenon: the sb-POSS particles, 

when dispersed in the Nafion matrix, caused restructuring of the hydrophilic proton 

conducting channels (PCCs) that are composed of the pendant sulfonic acid groups. 

Further investigations showed that this restructuring effect is sensitive to the sb-POSS (as 

filler) content. Indeed, the power output (in mW/cm2) of a single DMFC loaded with the 

sb-POSS/Nafion composite membrane was clearly affected by the sb-POSS content. The 

composite membrane containing 5 wt.% sb-POSS particle gave rise to the largest power 

output with a maximum power of 44.2 mW/cm2. In contrast, the Nafion membrane (e.g. 

the host matrix alone) conferred only a power density of 19.9 mW/cm2. Therefore, this 

work focused on elucidating the interactions between sb-POSS particles and Nafion 

molecules using the structural characterization results, and understanding the key factors 

responsible for the boost of fuel cell performance.     

 

6.2 Experimental  

 

6.2.1 Synthesis of starburst POSS-g-acrylonitrile oligomer (sb-POSS) 

 137
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The POSS (POSS-methacryl substituted cage mixture, Aldrich) was brominated in the 

chloroform solution at temperature 0-5 ºC for 30 min. The brominated POSS was then 

purified by washing in pure chloroform for three times. A typical procedure for the 

synthesis of sb-POSS by ATRP is as follows: Ethylene carbonate (5 g) (EC, Aldrich) and 

Dimethylformamide (1 ml) (DMF, Aldrich) as the co-solvent of reaction were added into 

a 25 ml round bottom flask, and acrylonitrile (6 ml) (+99%, Aldrich, inhibitor removed), 

the brominated POSS (0.073 g) and 2, 2’-bipyridyl (90.75 mg) (Bpy, Fluka) were 

introduced into the flask. The reaction flask was immersed in an oil heating bath (70 oC- 

80 oC). After 30 minute, a calculated amount of CuBr (27.9 mg) (> 98%, Aldrich) was 

added into the flask sealed and charged with argon gas. Samples were withdrawn from 

the reaction mixture by a syringe and dropped into a methanol water mixture (v:v=1:1) to 

form white sb-POSS precipitation for GPC measurement. In addition, the molecular 

structure of the sb-POSS was determined by 1H NMR in DMSO-d6 (Fig. 6.1). 
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Figure 6.1 Growing oligomeric PAn chains on POSS by atom transfer radical polymerization (ATRP) method; 1H-NMR 
spectrum of sb-POSS synthesized with [CuBr]/[Bpy]/[An]=1:3:600 for reaction time 6 h 
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6.2.2 Fabrication of sb-POSS/Nafion composite membranes  

 

Nafion® perfluorinated resin solution (5 wt.%, Aldrich) was placed in an ventilation hood 

at 50 oC to remove the solvent (iso-propanol, n-propanol and water). The solid Nafion 

gained was re-dissolved in N, N’-dimethylacetamide (DMAc) (99%, Aldrich) solvent to 

formulate a 5 wt.% solution. A calculated amount of sb-POSS obtained from the ATRP 

synthesis was introduced into the solution (5 ml) and mixed uniformly with the aid of 

ultrasonication. The resulting solution was cast in a Petri-dish (d = 6 cm). The dish was 

kept inside an oven at 60 oC for 3 h, and then the temperature was increased to 120 oC for 

additional 3 h to generate the composite membrane. The pristine Nafion membrane was 

also prepared using the same procedure. All membrane samples were around 60 μm 

thick. 

 

6.2.3 Instrumental characterizations 

 

6.2.3.1 Molecular weight distribution analysis of sb-POSS nanoparticles 

 

Gel permeation chromatography (GPC) analysis was carried out at 25 oC on Waters 1515 

using DMF as eluent at a flow rate of 1.0 ml min-1. PEG standards were employed to 

calibrate retention times.  

 

6.2.3.2 Intrinsic viscosity measurement of the Nafion-PAn mixtures 
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The intrinsic viscosity values of the four Nafion ( M ≈105 g mol-1) [26] and 

polyacrylonitrile ( M = 50,500 g mol-1) mixtures in DMF were measured using 

Ubbeldohe capillary viscometer that was immersed in a water bath with fixed 

temperature (20 oC). The mass ratios of PAn to Nafion of these four mixtures were varied 

from 0.05 to 0.3.  For the measurement of an intrinsic viscosity value, different 

concentrations (in the range from 0.1 g l-1 to 0.5 g l-1) of one of the above mixtures in 

DMF were used to obtain the linear cSP /η ~ c relation (where SPη  is th pecific viscosity 

and c is concentration). The intrinsic viscosity of the each mixture was determined by 

extrapolating the relation to zero concentration.    

e s

       

6.2.3.3 Spectroscopy analysis 

 

1H nuclear magnetic resonance (NMR) spectrum of sb-POSS was recorded on a Bruker 

Ultrashield-400 spectrometer using DMSO-d6 as the solvent. The fourier transform 

infrared (FT-IR) analysis was carried out on Bio-Rad FT-IR 400 spectrophotometer. The 

samples with exactly the same amount were ground together with KBr before pellets 

were pressed. Spectra of the samples were recorded in the range from 400 to 4000 cm-1 

using 64 cumulative scans. The images of sb-POSS particles in Nafion membranes were 

observed and recorded using both a transmission electron microscope (TEM, JEM 2010F 

JEOL) and a field emission scanning electron microscope (FE-SEM, JEOL-JSM-6700). 

For the TEM analysis, a carbon-coated copper grid was dipped in a dilute solution of a 

composite membrane in DMF (~ 0.05 % by weight), and a very thin liquid film 

developed was then dried. For the FE-SEM analysis, a cross section of the composite 
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membrane was prepared using the cryofixation method, e.g., the sample was ruptured in 

liquid nitrogen. Since the examined composite membrane is non-conductive, the cryo 

cross section was sputtered with a layer of Pt for 30 s at 10 mA.  

 

6.2.3.4 The analysis of thermal properties  

 

The thermal properties of the hybrid membranes were measured on a differential 

scanning calorimeter (Mettler Toledo DSC 822e). The analysis was performed using a 

two-scan mode, in which the first scan (25 oC→100 oC→0 oC) was designed to clean up 

discrepant thermal histories of the samples and the second one (0 oC→250 oC) for 

collating data. The same ramp (10 oC min-1) was set for running both heating and cooling 

courses. 

 

6.2.3.5 Measurement of proton conductivity 

 

The proton conductivity of the composite membranes at various temperatures was 

measured using an AC impedance spectroscopy (Autolab Instrument) over the frequency 

range from 0.01 Hz to 1 MHz, an AC perturbation of 10 mV and a DC rest voltage of 

0.01 V. The membrane (1.3 cm in diameter) was soaked in 1 M H2SO4 solution for 12 h 

and sandwiched in two smooth stainless steel disk electrodes in a cylindrical Teflon 

holder. The holder was then enclosed in a silicon rubber pouch, and it was immersed in 

an oil heating bath with a setting temperature to conduct the measurement.   
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6.2.3.6 Methanol permeability measurements 

 

Methanol permeability measurement was conducted in a cylindrical glass diffusion cell. 

One compartment of the cell (VA=50 ml) was filled with 2 M methanol solution (the 

typical concentration used in a DMFC), and the other compartment (VB=50 ml) was filled 

with deionized water. The membrane, after being soaked in deionized water for 24 h, was 

fastened between the two compartments, where the two solutions were stirred 

continuously throughout the measurement. The concentration-driven diffusion of 

methanol from compartment A to B across the membrane (area=4.90 cm2) was monitored 

as a function of time, using a Shimadzu GC2010 gas chromatography (GC), a HP-Plot Q 

column (30 m×0.32 mm×20 µm) and a flame ionization detector. 1-Butanol was 

employed as the internal standard. 

 

6.2.3.7 Setting up of single DMFC cell  

 

The membrane electrode assembly (MEA) for the direct methanol fuel cell evaluation 

was made by sandwiching a membrane with an anode sheet and a cathode sheet. The 

anode sheet was a piece of carbon paper (SGL, Germany) coated with a layer of carbon-

supported Pt-Ru (40% by weight) catalyst and the cathode sheet was a piece of the same 

type of carbon paper coated with a layer of carbon-supported Pt (40% by weight) catalyst 

supplied by E-TEK. The two catalyst slurries were prepared respectively by mixing de-

ionized water, Nafion® solution (Aldrich), and the catalyst powder to form an ink, which 

was then applied on the carbon paper. The average platinum loadings at the anode and 
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cathode were 3 and 2 mg cm-2, respectively, and the effective electrode area was 5 cm2. 

The fuel used was 2 M CH3OH delivered at 2 ml min-1 by a micropump, and the oxygen 

flow (500 cm3 min-1) was regulated by a flowmeter. 

 

6.3 Results and Discussions 

 

6.3.1 Interactions between sb-POSS particles and Nafion molecules   

 

The sb-POSS particles were synthesized by grafting polyacrylonitrile (PAn) oligomeric 

chains to eight corners of cubic POSS molecules using the ATRP approach (Zhao et al., 

2005 and Costa et al., 2001) (Fig. 6.1). In the reaction of growing PAn chains on cubic 

POSS, although the PAn chain length could be varied by adjusting the molar ratio of 

monomer/catalyst (An/CuBr), the effective range is actually rather narrow. Of the three 

molar ratios designed, the 400 and 600 could produce molecular weights much greater 

than the 200 according to GPC analysis (Table 6.1). However a further increase in the 

ratio does not increase the molecular weight of PAn but lowers the polymerization rate 

instead. It seems that oligomerization is the trait of ATRP when it takes place on pendant 

initiators, similar phenomenon has been reported by Laine and coworkers, (Costa et al., 

2001) in their work cross-star coupling of PMMA chains were observed. The grafting of 

PAn to POSS and the different PAn chain-lengths were characterized by FT-IR 

spectroscopy (Fig. 6.2). The -CH3 vibration (2990 and 2964 cm-1) and –C=O vibration 

(1730 cm-1) of the POSS-initiator became weaker with increasing PAn chain length, and 

sb-POSS-6 showed stronger –C≡N vibration (2254 cm-1) than sb-POSS-2 (see details of 

 144



these two sample names in Table 6.1). The GPC analysis also displayed that the 

molecular weight distribution ( wM / nM ) of sb-POSS increased slightly with the increase 

in molecular weight. 

  

 

Figure 6.2 FT-IR spectra of a, vinyl-POSS, b, sb-POSS-2; c, sb-POSS-6, whose  

synthetic conditions are listed in Table 6.1 
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Synthesis of this branched cubic structure is based on the anticipation that it would 

trigger both repulsive and attractive interactions when dispersed in the Nafion matrix. 

The repulsive interactions exist between the grafted PAn and the perfluorocarbon chains 

of Nafion (Drobny, 2001) because they are thermodynamically incompatible, a high 

Flory-Huggins interaction parameter χ is incurred between them. (Pimbert et al., 2002) 

As to the attractive interactions, the nitrile groups of the PAn chains possess intrinsic 
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affinity with the sulfonic acid groups of Nafion molecules because both functional groups 

can be associated via hydrogen bonding and dipole moment interactions (Fig. 6.3a). In a 

comparison of the infrared vibration frequency of C≡N bond of pure PAn to that of PAn 

distributed in Nafion matrix (by 15 wt.%), an increase in the bond strength by a few 

wavenumbers can be discerned (Fig. 6.3b). Such enhancement in bond strength is thought 

of to be the result of the formation of a six-membrane ring complex as illustrated in 

Figure 6.3a. Such an association between Nafion and PAn molecules could also be 

detected by their chain expansion extents in DMF via the measurement of intrinsic 

viscosity (Section 6.2.3.2). Figure 6.4 shows that the intrinsic viscosity of the binary 

solution varies with the mass ratio of PAn to Nafion. With the increase in the mass ratio 

from 0 to 0.1, the intrinsic viscosity of this binary polymer mixture reveals a fast 

decreasing trend, but after that a gradual rise of intrinsic viscosity is observed. The steep 

reduction of the intrinsic viscosity in the initial range is the result of contraction of 

Nafion molecules due to crosslinking with PAn molecules via sulfonic-nitrile group 

interactions. However when an excess of PAn molecules, which are free of interactions 

with Nafion molecules, is present, the intrinsic viscosity of the mixture increases since 

the PAn sample has a greater intrinsic viscosity than Nafion in DMF. It may also be 

noted that the POSS core of sb-POSS is incompatible with both the perfluorocarbon 

backbone and the sulfonic acid groups of Nafion.  



Table 6.1 Effect of the monomer/catalyst ratio of ATRP on the size of sb-POSS particles 
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Sb-POSS POSS-initiator (a) 

(mmol) 
Mol ratio 

ligand/CuBr 
Mol ratio 
AN/ CuBr 

nM (b) 
g/mol nw MM /  

Sb-POSS-2 0.024 3 200 11352 1.07 

Sb-POSS-4 0.024 3 400 32442 1.21 

Sb-POSS-6 0.024 3 600 33746 1.38 

[a] The molecular weight of POSS-initiator is 5175 by GPC measurement.   

[b] The reaction time to achieve the nM  listed is 6 h, and a further extension of reaction time to 20 h brings about 
less than 10% increase in molecular weight.      
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   Figure 6.3 a. Schematic representation of the hydrogen bonding and polar interaction 
between sulfonic acid group and nitrile groups; b. Infrared spectra of the two membrane 

samples that show vibration band of nitrile group at different frequencies 
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Figure 6.4. The composition-dependence of the intrinsic viscosity of the 
Nafion-PAn binary mixture. 
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The sb-POSS particles can be dissolved in the DMAc solution of Nafion, and their 

agglomeration (< 100 nm) could hardly be spotted in the dry matrix of the composite 

membrane formed at the content of 5 wt.% (Fig. 6.5a). The aggregation of sb-POSS in 

Nafion matrix became noticeable at 15 wt.%. At this point, the membranes became 

slightly translucent. The attractive interaction between the pendant nitrile groups and the 

sulfonic acid groups plays a key role in maintaining a low aggregating extent of sb-POSS 

particles in the range of low particle content. In spite of this, the composite matrix 

containing 25 wt.% of sb-POSS (Fig. 6.5b) exhibits a high concentration of sb-POSS 

agglomerations. Furthermore, the TEM image was obtained from the sample made by 

casting a substantially dilute solution of the composite membrane (5 wt. % sb-POSS) in 

DMF. The image displays discrete sb-POSS particles with particulate dimension below 

10 nm (Fig. 6.5c). Meanwhile, we were not able to detect individual particles of the pure 

sb-POSS alone under TEM. This result may retrospectively suggest that the associations 

of Nafion molecular chains with the PAn chains of sb-POSS assist in creating a clear 

boundary of sb-POSS particles as shown in Fig. 6.5c.      

 

 

 

 

 

 

 

 

 149



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

         

(b) 

(a) 

  

Figure 6.5 (a) Field emission scanning electron microscopic (FE-SEM) image of composite 
membrane with 5 wt.% sb-POSS-6; (b) FE-SEM image of composite membrane with 25 

wt.% sb-POSS-6; (c) Transmission electron microscope (TEM) image of sb-POSS-6 with 
Nafion as a background 

 

6.3.2 The leverage of sb-POSS particles on PCC structure of composite membrane 

 

DSC analysis is an apt approach to study effects of sb-POSS particles on the PCC in the 

Nafion matrix. The DSC charts of sb-POSS-6/Nafion composite membranes were 

carefully investigated (Fig. 6.6). As the reference, the pure Nafion matrix reveals two 

shadowy glass transition steps (at 133 oC and 155 oC respectively), and the major slope is 

 150
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the latter one that describes the energy barrier due to hydrogen bonding and polar 

association of the pendant –SO3H groups. This glass transition attribute undergoes a 

profound change when sb-POSS is incorporated into the Nafion matrix. The inclusion of 

sb-POSS-6 of 2 wt.% into Nafion matrix rolls down the major Tg step to ca. 140 oC, 

while the further increase in sb-POSS-6 loading to 5 wt.% leads to the two distinct Tg 

steps, of which the higher one occurred almost at the same temperature as that of the pure 

Nafion but extended farther to the high temperature direction and the lower one slides to 

ca. 125 oC. A further increase in the loading from 5 to 15 wt.% brings down the higher Tg 

step by ca. 5 oC. Finally, with the increase in the loading to 25 wt.% the previous two Tg 

steps merge at the temperature point close to that appearing on the 2 wt.% curve. Another 

unique phenomenon is that the glass transitions of the sb-POSS-6/Nafion membranes all 

reveal greater specific heat values (ΔHTg) than that of the pure Nafion. Accompanying the 

rise of sb-POSS-6 loading in the Nafion matrix, the variation of glass transition and 

energy signifies the structural change of PCC and will be stipulated in the following 

paragraph. 
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Figure 6.6 Differential scanning calorimeter (DSC) data for composite membranes with different weight percentage sb-POSS-6 
loading in the Nafion matrix 152
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The above observed glass transition behaviors of the pendant –SO3H groups can be 

attributed to the competition of the two types of interactions as stated in section 6.3.1. In 

the membrane containing 2 wt.% sb-POSS-6, the association of –SO3H groups in PCC is 

thawed due to the wedging of nitrile groups into them, which results in a downward shift 

of the Tg step. By raising the content of sb-POSS-6 to 5 wt.%, the coalescing trend of the 

particles lessens the participation of PAn segments in PCC, which thereby leads to the 

two kinds of PCC structures, the perturbed and unperturbed ones, represented by the two 

Tg steps, respectively. The unperturbed PCC are those involving segmental motions with 

higher energy barriers compared with the pure Nafion because of no involvement of 

nitrile groups. Although the 15 wt.% membrane still displays two Tg steps, the higher-

temperature one has already been below its counterpart in the 5 wt.% membrane by 5 oC, 

indicating the participation of PAn units into a part of prior unperturbed PCC and the 

generated perturbed PCC thus became stabilized. Lastly, increasing the loading of sb-

POSS-6 up to 25 wt.% allows greater involvement of nitrile groups in the PCC, which is 

evidenced by the fusing of the previous two glass transition steps and the display of a 

rather similar Tg location and energy absorption to those appearing on the DSC profile of 

the 2 wt.% membrane. In order to estimate the portion of unperturbed PCC component in 

the different composite membranes, an area covering the major glass transition bowl 

(152-167 oC) of the pure Nafion membrane was used as the reference for comparison, in 

which 156 oC is the temperature point at the dip of the endothermic bowl. The 

corresponding area of a composite membrane in its glass transition bowl could then be 

found and divided by the reference defined above. The ratios obtained from the four 

different membranes are listed in Table 6.2. As the respective area stands for the specific 
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heat of glass transition, the ratio thus represents the contribution of those segmental 

motions which takes place at temperatures above the upper Tg of the pure Nafion. It could 

be then concluded that among the four sb-POSS-6/Nafion composite membranes, the 5 

wt.% membrane contains the greatest portion of unperturbed PCC. From the viewpoint 

that the unperturbed PCC involve segmental motions with higher energy barriers, it is 

thus rational to deem that these channels comprise densely packed sulfonic acid groups 

due to the compression action of Nafion matrix. The origin of such matrix compressive 

action could be attributed to the formation of sb-POSS-6 agglomerations since the polar 

rejection and size exclusion between the perfluorocarbon matrix and these small granules 

cause the matrix compression as portrayed in Figure 6.7. In addition, it is noteworthy that 

this compression effect is size sensitive. The larger sb-POSS-6 particles function more 

intensely than the smaller sb-POSS-4 ones to cramp the unperturbed PCC. This feature is 

reflected by the rather different two ratios (22.9 vs. 17.3 in Table 6.2) between the two 

samples containing 5 wt.% sb-POSS supports the above inference.  
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Table 6.2 The specific energy barriers of the glass transition ascribed to the unperturbed PCC in the composite membranes a. 

Filler type and dose 
Sb-POSS-6 

(2 wt.%) 

Sb-POSS-6 

(5 wt.%) 

Sb-POSS-6 

(15 wt.%) 

Sb-POSS-6 

(25 wt.%) 

Sb-POSS-4  

(5 wt.%) 

Sb-POSS-4 

(25 wt.%) 

gTHΔ / )(NafionH
gTΔ b.  15.2 22.9 10.6 10.4 17.3 8.6 

a. Determined by the area (with T > 156 oC) of the larger glass transition step in each Tg curve. The samples for this measurement 
were controlled to have the same mass.        

b. the relative specific energy value of the composite membranes. 
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It is now rational to examine how the sb-POSS particles in Nafion matrix affect proton 

conduction. The Arrhenius-plots [ ( )RTET a 3.2/log)(log 0 −= σσ ] of the three selected 

membranes (Fig. 6.8) show that the two composite membranes displayed better linearity 

than the pure Nafion membrane because the pure one could no longer maintain its prior 

logσ-(1/T) relation when testing temperature reached 80 oC. It has been known that 

Nafion starts to lose its matrix water starting at 70 oC. This comparison means that the 

proton transport in the two composite membranes is less dependent on the matrix water 

content as compared to that of the pure Nafion membrane. The average activation 

energies ( ) followed the order: the pure Nafion > sb-POSS-4 (5 wt.%)/Nafion > sb-

POSS-6 (5 wt.%)/Nafion. The Ea of Nafion is quite close to the lower limit of the range 

defined by the Grotthuss mechanism (14 – 40 kJ mol-1). According to this mechanism, 

protons are transported through a succession of breaking and forming of hydrogen bonds 

with water molecules. (Ye et al., 2007) Apparently, the activation energies of the two 

composite membranes are below the lower Ea bound of this range, which implies that 

proton transport is relatively independent of the water molecules in PCC, and therefore 

the close-packed sulfonic acid groups in PCC would function as the main hopping sites 

for proton transport in these two composite membrane matrices. It is worth noting that 

despite the highest proton conductivity given by the Nafion membrane at 80 oC, this does 

not indicate that that Nafion membrane has better capability to transport protons in a 

DMFC since the proton conductivity measurement entails only a substantially low proton 

flux.    

aE
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          Figure 6.8 The Arrhenius plot of proton conduction 
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6.3.3 The blocking effect to methanol crossover and single DMFC evaluation  

 

The methanol permeability measurement at ambient temperature (Fig. 6.9), using 2 M 

CH3OH aquatic solution as feed, showed that the diffusion coefficient (in ) 

reduced from 10 in the pure Nafion membrane to 5 in the 2 wt.% composite membrane. 

This outcome is consistent with the PCC structures that are classified above, namely, the 

reduction in permeation of methanol is due to the involvement of nitrile groups into PCC, 

which results in an increase in their hydrophobicity. For the higher contents of sb-POSS-

6 in the Nafion matrix, the membranes showed slightly lower permeability values to 

12710 −− ⋅ scm
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around 4. This further decrease in permeability could be due to the unperturbed PCC 

because of the crowded sulfonic acid groups. Moreover, the methanol blocking effect was 

also observed in the composite membranes containing sb-POSS-4 that exhibited similar 

permeability. 
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When evaluated in the single DMFC cell, among the four sb-POSS-6/Nafion composite 

membranes, the 5 wt.% membrane demonstrated exceptionally well performance at 80 oC 

in contrast to the pure Nafion membrane and the other composite membranes (Fig. 6.10). 

This particular membrane exhibited the maximum power output of 44.2 mW cm-2 as 

compared to the 19.9 mW cm-2 of pure Nafion membrane at the identical current density 
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of 0.18 A cm-2. The outcome is deemed to the contribution of the unperturbed PCC 

structure, which the 5 wt.% membrane exhibits the largest portion among the four 

composite membranes (Table 6.2). The compact sulfonic acid groups in PCC would 

facilitate fast protons hopping along them because of their proximity to each other, and 

hence the electrochemical polarization phenomenon caused by slow kinetics of proton 

transport could be effectively alleviated. On the contrary, as to the perturbed PCC, the 

association of nitrile groups with the pendant sulfonic groups in PCC not only lowers 

down the methanol permeability but also the proton transport efficiency especially when 

the flux of proton across the membrane rises. On the other hand, although the other three 

hybrid composite membranes (2 wt.%, 15 wt.% and 25 wt.%) contained certain portions 

of unperturbed PCC as summarized in Table 6.2, the perturbed PCC were prevalent in 

these three membranes and thus they displayed inferior cell performance than the pure 

Nafion membrane. The same single DMFC evaluation was also carried out at 50 oC (Fig. 

6.11). It turned out that with respect to the 5 wt. % membrane this decrease in operation 

temperature (from 80 oC to 50 oC) led to a 2/3 lost in powder output owing to the drop in 

current density (i.e. proton flux).  The similar trend was also observed in the composite 

membranes using sb-POSS-4 particles as filler, in which the 5 wt.% membrane also 

offered the best cell performance, whose maximum power output was 34.6 mW cm-2 

occurring also at the same current density value of 0.18 A cm-2 as those used to evaluate 

the previous set of composite membranes. Compared with sb-POSS-6, the shorter grafted 

PAn chains of sb-POSS-4 are likely responsible for its weaker effect to augment the cell 

performance of membrane.  
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Figure 6.10 The effect sb-POSS-6 content in Nafion membrane on the polarization 
curve and power output of the single DMFC at 80 oC  
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Figure 6.11 The effect sb-POSS-6 content in Nafion membrane on the polarization 
curve and power output of the single DMFC at 50 oC 
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6.4 Conclusions 

 

This work synthesized a novel type of highly branched nanoparticles (sb-POSS) by 

grafting polyacrylonitrile (PAn) short chains to POSS, a cubic silicone molecule. The 

starburst architecture of sb-POSS particles and the strong polar nitrile groups of the 

grafted PAn oligomeric chains are the key structural traits that assist dispersion of the 

particles in the sulfonic perfluoro polymer matrix. There are two opposite effects 

affecting the dispersion states of sb-POSS particles in the matrix, namely, the association 

of the pendant sulfonic acid groups with nitrile groups of the PAn chains and the 

rejection of the particles by the perfluorocarbon chains. Consequently, the proton 

conducting channels (PCCs) of the pure Nafion undertake restructuring to form the 

perturbed and unperturbed PCC, coexisting in all the four composite membranes formed. 

In the former type of PCC, the participation of nitrile groups impedes methanol 

permeation as well as proton transport. On the contrary, for the unperturbed PCC, the 

close packing of sulfonic acid groups due to matrix compression on PCC, caused by the 

aforementioned repulsive action, allows faster proton hopping over them. It was 

identified through DSC characterization that the sb-POSS-6 content of 5 wt.% conferred 

the highest portion of the unperturbed PCC in the composite membrane, and as a result, 

the composite membrane displayed superior single DMFC performance over the pure 

Nafion and the other composite membranes. In addition, the length of PAn chains 

tethered to sb-POSS particles is the other key factor affecting the portion of unperturbed 

PCC in the composite membrane. The maximal PAn chain-length that could be realized 
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by the grafting method employed (i.e., ATRP) offered the best cell performance 

result.       

 



CHAPTER 7 

 

REINFORCING H3PO4-DOPED POLYBENZIMIDAZOLE 

PROTON-EXCHANGE MEMBRANE BY 

INCORPORATING UNSATURATED POLYESTER 

MACROMER AS CROSSLINKER  

 

7.1 Introduction  

 

From the earlier chapters, we have introduced three different hybrid structure nano-

particles, nano-particles with dense oligomeric ionomer layer, starburst oligomeric 

molecules and rigid molecular fragments to modify Nafion® PEMs. It was found that the 

presence of these nano particles in the membrane matrixes of Nafion can improve their 

performances in DMFC and low-temperature H2-FC significantly. However, currently 

there has also been an increasing interest in making use of PEMs for high temperature 

H2-FC (> 120 °C) applications due to the fact that lifting operation temperature of 

PEMFC will not only largely promote CO-tolerance of the anode, but also be of benefit 

to electrode kinetics and the catalytic activity for a better cell output. Many studies on 

phosphoric acid (H3PO4, PA) doped polybenzimidazole (PBI) membrane as the most 

promising one of these PEMs, have been published over the past decade (Fontanella et al., 

1998; Bouchet et al., 1999; Li et al., 2001; He et al., 2003and Ma et al., 2004). It has been 
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realized, nevertheless, a high H3PO4 doping level (> 10), though is needed to target 

designated proton conductivity, will thwart the structure of membrane, especially at 

temperatures above 100 °C, and therefore severely shortens the operation life of 

membrane at high temperatures. Recently, Xiao et al. (Xiao et al., 2005) reported a sol-

gel process to fabricate the H3PO4-doped PBI membrane and it can be operated in the H2-

FC at above 150 °C for an extended period of time without the need for feed gas 

humidification. It is interesting to note that a high PA doping level was reached in this 

PBI membrane, which exhibited high ionic conductivity and stable mechanical properties 

in the temperature range from 150-200 oC. Unlike the conventional H3PO4 doping 

process, the sol-gel way innovatively made polymerization that produces PBI 

macromolecular chains take place in pristine polyphosphoric acid (PPA) medium, which 

was followed by hydrolysis of PPA in-situ. It is deemed that the units of PBI chains have 

achieved to the maximum and special contact with PA molecules and should possess a 

semi-gel matrix. However, with this method, only if a series of strict polymerization 

conditions is satisfied, can the meaningful average molecular weight of PBI be achieved. 

These strict synthetic conditions of PBI include, in principle, highly pure monomers of 

PBI, anhydrous solvent for polymerization, and a high monomer conversion. 

 

In this work, we attempt to weave a network comprising PBI blocks and unsaturated 

polyester (UP) macromer crosslinker. This modifying measure alleviates the demand on 

the polymerization conditions and would be greatly beneficial to the industrial fabrication 

of this unique type of gel-matrix membrane. As far as the effect of modification is 
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concerned, the crosslinking not only reinforces the membrane and also promotes the 

complexation of PA with the polymer phase.              

 

7.2  Experimental  

 

7.2.1 Materials 

 

Isophthalic acid (99%), 3, 3’-diaminobenzidine tetrahydrochloride dehydrate (97%), and 

polyphosphoric acid (PPA, 115%) were purchased from Sigma-Aldrich. Unsaturated 

polyester (UP) resins, consisting of maleic anhydride, phthalic acid and propylene glycol, 

were obtained from Talton Technology Co.  

 

7.2.2 Preparation of PA doped PBI-unsaturated polyester (UP) membrane   

 

The general procedure for the preparation of PA-doped PBI-UP membrane (scheme 7.1) 

is described as follows: 3, 3’-diaminobenzidine tetrahydrochloride dehydrate (97%) (4.60 

g, 11.6 mmol) was added in a three-neck reaction flask with polyphosphoric acid (PPA) 

of 90 g. The mixture was stirred at 140 oC for 1 h to remove hydrochloride from the 

amine. After that, isophthalic acid (1.922 g, 11.6 mmol) was introduced into the flask and 

the reaction mixture was stirred using a mechanical overhead stirrer under the purge of a 

slow stream of nitrogen. The polymerization was maneuvered to proceed in the range of 

170-190 oC for 24 h. Through this course, the reaction mixture became more viscous and 

developed a dark brown color, which was the characteristic of forming the pre-PBI in 
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PPA. UP (2 wt.% of total reaction monomers) was introduced into the pre-PBI PPA 

solution and the polymerization reaction was continued for additional 12 h at 150-200 oC 

to allow generation of a loose crosslinking network consisting of rigid PBI blocks and UP 

chains. A small amount of specimen was withdrawn from the viscous solution and added 

into water to form a solid specimen, and then it was soaked in a dilute NaHCO3 solution 

for overnight, finally the specimen was washed thoroughly with water and methanol 

respectively, and dried in the vacuum oven for thermal and spectroscopy analysis. 

 

A membrane was developed by casting the hot PBI-UP PPA solution directly on a flat 

glass panel using a film applicator with a gate thickness of 150 μm. The cast membrane 

was allowed to cool down from reaction temperature to 60-70 oC, over which the 

hydrolysis of PPA to PA took place at the same time. After that, the membrane formed 

was transferred to a chamber where the relative humidity and temperature were 

controlled at 25±5% and 60 oC, respectively, for 24 h. In the final step the membrane was 

cured at 200 oC for 2 h and subsequently enclosed in a dry container to isolate it from 

moisture because the membrane would otherwise quickly absorb moisture from air and 

causes loss of mechanical properties and proton conductivity.   

 

For the comparison purpose, PA-doped PBI membrane was fabricated by applying the 

usual embedding method: The PBI powder separated from the polymerization system in 

PPA was dissolved in N, N’-dimethylacetamide (DMAc) at 150 oC under stirring to 

prepare a 5 wt.%-solution. Afterwards, the PBI solution was cast on a glass Petri dish and 

the solvent was slowly evaporated at 120 oC for a period of 20 h. The membrane was 
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further soaked in concentrated H3PO4 solution (85 wt.%) for a few days at room 

temperature. The doped PBI membrane was dried in a vacuum oven at 100 oC to conduct 

dehydration before the doping level of PA in the membrane was determined. 
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7.2.3 Characterizations of structure and properties  

 

7.2.3.1 Doping level 

 

The PA-doping level of membrane was determined by the titration method. A pre-

weighed piece of membrane sample was immersed in a sodium hydroxide solution (0.1 

M) for a few hours. The sample was then washed with water and dried in a vacuum oven 

at 100 °C for overnight to obtain the dry weight of polymer. The acid-doping levels X, 

expressed as moles of phosphoric acid per mole of PBI repeat unit were calculated from 

the equation: 

 

X =(VNaOH ×CNaOH)/(Wdry/Mw)                            …… Equation 7.1 

 

where, VNaOH and CNaOH are the volume and the molarity of the sodium hydroxide titer, 

while Wdry is the dry polymer weight and Mw is the formula weight of the repeating unit, 

respectively. 

 

 
7.2.3.2 Inherent viscosity  

 

Inherent viscosity (ηi) of a polymer solution depends on concentration and size of the 

dissolved polymer molecules. A polymer sample was dissolved in the concentrated 

sulfuric acid (96%) to make a solution of 0.2 g/dL and its ηi was measured using a 
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viscometer (Brookfield, DV-II+Pro). Let η0 be the viscosity of the pure solvent and η the 

viscosity of the solution in this solvent.  

1. Relative viscosity 

 

r
0

= ηη
η

                                                               …… Equation 7.2 

 

2. Inherent Viscosity 

 

r
i

ln=
c
ηη                                                             …… Equation 7.3 

 

 
7.2.3.3 Thermal and mechanical properties of the membrane 

 

The thermal stability of the samples was measured by on a High Resolution 

Thermogravimetric Analyzer (TA Instruments 2950) using a sample of 5 to 15 mg. The 

weight-loss was recorded in the range from 25 oC to 800 oC using a constant heating rate 

of 10 oC/min and N2 purge of 100 ml/min. The polymer segment motion behaviors of 

membrane were measured using a differential scanning calorimeter (DSC, Mettler Toledo 

DSC 822e) equipped with a pressure DSC cell. The temperature scanning range from 25 

oC to 160 oC was set for the first scan to erase the thermal history of a sample caused by 

particular preparation conditions. After the sample was cooled down to -50 oC, the 

second scan was followed and up to 160 oC as well, and the energy-temperature profile 

was recorded from this scan. Both heating and cooling rates were fixed at 10 oC/min in 
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the above two scans. The mechanical properties of membrane were tested on the 

instrument (Instron 5569) using a 10 N load cell.  

 

7.2.3.4 Proton Conductivity 

 

The proton conductivity of the membrane was measured using the normal four-point 

probe technique (Sone et al., 1996). The sample holder made from Teflon consists of two 

flat stainless steel ribbon as the outer current-carrying electrodes (2 cm apart) and two Au 

wire as the inner potential-sensing electrodes (1 cm apart). Membrane in 1 cm wide and 2 

cm long was mounted on the holder. The impedance was determined using the 

electrochemical analyzer (Autolab Instrument) at galvanostatic mode with an AC current 

amplitude of 0.1 mA and the frequency scanning range was from 1 MHz to 50 Hz. On the 

Bode plot there is a frequency range over which the impedance had a constant value, and 

the resistance corresponding to this frequency range could then be obtained from the 

Nyquist plot of this sample. The proton conductivity (σ) is calculated according to the 

following expression: 

 

RWd
L

=σ  …… Equation 7.4                                

 

where, R is the resistance of membrane specimen obtained, L is the distance between 

potential-sensing electrodes, W⋅d is the cross section area of the specimen. The cell was 

placed in a programmable furnace to control the temperature. The conductivity of the 

specimen was measured from 330K to 450K. Before the measurements at each set 

temperature point, the sample was held at constant temperature for at least 30 min.   
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7.2.3.5 Fuel cell test 

 

For the polarization measurements, a single cell was operated at 95, 115 and 150 oC and 

the pressure of both H2 and O2 streams was 1 bar without humidification. The 

measurement was carried out using Arbin Electronic loaded with MITS system. The 

anode and cathode sheet were a carbon paper (SGL, Germany) that is coated with a layer 

of carbon-supported Pt (20 wt.%) catalyst, which was supplied by E-TEK, Natick, MA. 

The Pt catalyst loadings at the anode and cathode were 2-3 mg/cm2, repectively. The 

effective electrode area was 5 cm2. The gas flow rate was kept at a fixed stoichiometry 

(the molar ratio of H2 to O2 was 1.15/2) at the current density of 1 A/cm2. 

 

7.3  Results and discussions 

 

7.3.1 Membrane formation and doping level 

 

Carrying out polymerization of 3, 3’-diaminobenzidine tetrahydrochloride dehydrate and 

isophthalic acid in PPA is a unique system because PPA is both polar solvent and the 

precursor of PA, an acid dopant. We have confirmed that the PBI synthesized in PPA 

could often reach only a low level of average molecular weight according to its ηi value 

(0.8 dL/g) in 96% sulfuric acid at 20 oC although occasionally higher molecular weight 

(~1.0-1.1 dL/g) could obtained be obtained. The low molecular weight PBI in PPA could 

hardly be converted to an integrity membrane through the casting procedure. In order to 

surmount this hurdle, UP macromer (2 wt.% of PBI) was incorporated into the 
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polymerization process with the aim of connecting individual PBI short segments 

together to form a loosely crosslinked structure. Experimentally, 2 wt.% UP is the highest 

possible dose that could be charged to PBI polymerization system in PPA, over which the 

casting cannot be proceeded due to a too viscous gum (PBI-UP in PAA) is resulted. The 

inherent viscosity measurement indeed showed that the PBI-UP polymer made has a 

greater ηi value (1.378 dL/g) than PBI alone, and an integrity membrane was obtained 

after hydrolysis of PPA and curing (Table 7.1).  

 

Table 7.1 Effect of inherent viscosity on membrane development 

Sample iη / (dL/g) 
Membrane formation process 

After hydrolysis  After curing 

PBI 0.802 No membrane formed 

PBI-UP 1.378 Mechanically week 
membrane 

Mechanically strong 
membrane 

 

The doping level of PBI-UP membrane was found not to be affected by thermal curing 

after the hydrolysis of PPA (Table 7.2). The PBI-UP network and PA molecules 

constitute a uniform semi-gel structure, which is characterized by a large doping extent 

and therefore expectedly maintained by the two layers of interactions: (1) the electrostatic 

interaction between protonated imidazole ring and dihydrogen phosphate anions as well 

as the hydrogen bonding between the PA molecules and oxygen-containing segments of 
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UP; and (2) the interaction between the PA molecules of the first layer and the rest PA 

molecules. 

 

Table 7.2 A comparison of H3PO4 doping levels in PBI matrix 

Doping method PA-doped PBI via 
immersion  

PA-doped PBI-UP via sol-gel 

After hydrolysis After curing 

 PA Doping level 9 24 23 

 

7.3.2 Thermal and mechanical properties of the membrane 

 

In the Figure 7.1 different thermal responsibilities of the PA-doped PBI-UP membrane 

and the PBI-UP powder are compared. Over the temperature range of investigation, the 

PA-doped PBI-UP membrane exhibited four weight loss slope (Fig. 7.1). The first slope 

(with peak value at 80 oC) reports a mass loss of 35 wt.%, which comprises mainly water 

due to the hygroscopic nature of PA and those PA molecules that are in the bulk of the 

trapped PA phase. The removal of the strongly bound PA took place in the range from 

160 oC to above 300 oC; this amount accounts for about 7 wt.% of mass loss, which is 

above the normal boiling point of absolute PA (at 158 oC), implying the effect of 

attractive interactions between PA and the polymer matrix. The last three mass loss 

slopes represent the decomposition of the matrix. On the contrary, for the PBI-UP 

powder, there were two weight loss-slopes below 800 oC. A small dehydration peak 

appeared at near 100 oC and the decomposition of PBI matrix started at 490 oC. It 
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deserves to note that the PA-doped PBI-UP matrix displayed a far stiffer matrix 

disassociation slope than that of the dry matrix. This difference reflects the effect of 

thermal curing treatment, which is the crucial step to complete the formation of 

crosslinked network. The higher the crosslinked extent of a network, the stronger will be 

the tendency that it shatters coincidently at its decomposition point.  
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In the Figure 7.2, the PA-doped PBI membrane developed via impregnation method and 

the dry PBI powder are compared. After the elimination of liquid component, the PA-

doped PBI membrane displays a similar TGA profile to that of PBI powder. However, 

compared with PA-doped PBI membrane the PA-doped PBI membrane has much better 

thermal stability. This observation is consistent with the above inference that increasing 

crosslinking extent leads to a faster decomposition rate.  

Figure 7.1 TGA of PBI-polymer powder and PA-doped PBI-UP membrane 
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Figure 7.2 TGA of PBI polymer powder and PA-doped PBI membrane 
from embedding method 
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From the DSC analysis (Fig. 7.3) of PBI powder and PBI-UP powder, it can be observed 

that the PBI-UP polymer displayed slightly higher glass transition temperature (Tg) than 

PBI powder. This result indicates that crosslinking extent in PBI-UP was mild before 

thermal curing. Namely there is only a low extent of crosslinking that takes place during 

the polymerization process. 
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Figure 7.3 DSC of PBI polymer powder and PBI-UP polymer powder 

Furthermore, regarding how the curing treatment augments the PBI-UP network, the two 

samples from PA-doped PBI-UP before and after curing were analyzed by DSC, 

respectively. (Fig. 7.4) A two-scan scheme was set to carry out the analysis. For each 

sample (with the identical mass), the first scan (from rt. to 160 oC) removed moisture and 

weakly held PA molecules from the sample and the second scan (from rt. to 550 oC) was 

recorded for the study. Both DSC diagrams revealed a broad endothermic transition peak 
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that spans from 150 oC to 360 oC. On the basis of the TGA profile of the cured PA-doped 

PBI-UP membrane presented in Fig. 7.1, the endothermic response of DSC describes the 

evaporation of PA molecules from the PBI-UP network. The PA-doped PBI-UP 

membrane without being cured in prior exhibited a stronger endothermic downturn (or 

specific heat) than its cured counterpart below 200oC, but the later one showed that a 

greater portion (ca. 6/7) of specific endothermic heat occurs in the upper temperature 

range (200 - 360oC) than then the former.  Besides this difference, the cured sample 

displayed a more symmetric endothermic contour than the the un-cured sample. The 

above outcomes clearly suggest that the cured PBI-UP network be a better lodger for the 

PA molecules in terms of holding affinity and uniformity of network distribution.  

 

 

 

 

 

 

 

 

 

 

 

 
         Figure 7.4 DSC of PA-doped PBI-UP membranes 
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From the above discussion, it has been established that two types of freestanding 

membranes have been prepared by means of the in-situ sol-gel polymerization method 

(i.e. PA-doped PBI-UP) and the post polymerization impregnating method (i.e. PA-doped 

PBI), respectively. The former membrane exhibited an yield strength of approximately 

1.7 MPa at the yield strain of 9.11% and an ultimate tensile strength of about 10.05 MPa 

at the elongation of 146.7%. As shown in Fig. 7.5, this membrane, because of its 

viscoelastic network structure, owns a far greater strength at breaking point and strain 

than the PA-doped PBI membrane (Fig. 7.5). The tensile stress and Young’s modulus 

data of these two membranes are given in Table 7.3. Regarding the PA-doped PBI 

membrane, it showed poorer mechanical properties primarily because all the PBI 

molecular segments are not interconnected by chemical bonding as aforementioned. 

Hence weaker H-bonding as well as van der Waals forces between PBI segments and 

between PBI and PA was not able to offer desired mechanical properties.   
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Table 7.3  Mechanical properties of the two types of PA-doped PBI 

Sample 
Load at Max. 
tensile stress 

(N) 

Tensile Modulus 
(GPa) 

Yield stress 
(MPa) 

Yield strain 
(%) 

Max. tensile stress 
(MPa) 

 
Strain 
(%) 

PA-doped PBI-UP 

after curing 
5.75 

33.70 (±1.33) 

×10-3 
1.70 9.11 10.05 

 

146.7 

PA-doped PBI 

via immersion 
1.53 

50.11 (±0.41) 

×10-3 
2.41 8.18 5.01 49.0 
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7.3.3 Proton conductivity and single fuel cell performance 

 

The most valuable trait of PBI-based membranes lies in its humidity-independent proton 

conductivity in the temperature range from 120 oC to 150 oC.  To assess the proton 

conductivity of these two particular membranes (as discussed in Fig. 7.5), the membrane 

samples were kept in an oven to maintain their anhydrous matrixes before measurement. 

Their temperature-dependent proton conducting behaviors, obtained by using the 4-probe 

method and under nil humidity circumstance, are concluded in Fig 7.6. The PA-doped 

PBI membrane provided maximum conductivity of 0.025 S/cm at just 110 oC. In contrast, 

the PA-doped PBI-UP membrane showed 0.072 S/cm at 60 oC and reached as high as 

0.125 S/cm at 160 oC followed by decrease in conductivity with increasing temperature. 

The key factor responsible for the superiority of the PA-doped PBI-UP membrane over 

the PA-doped PBI membrane was their largely different PA doping levels (Table 7.2), 

which according to previous discussion is supported by visoelastic network.     
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Figure 7.6 Influence of temperature on the conductivity of various membranes 
under investigation 
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On the basis of conductivity measurement, only the PA-doped PBI-UP membrane has 

significance of being assessed to determine its fuel cell performance. Figure 7.7 displays 

the polarization curves of this membrane in a single H2-PEMFC without humidifying 

either electrode. The membrane was evaluated at three temperature points and the power 

density is increased with increasing of temperature. At 150oC and the current density of 

0.9 A/cm2 the highest power output (0.3W/cm2) of the cell was achieved. This outcome 

confirms that the PA molecules constitute a continuous phase in the PBI-UP network, 

which permits transport of protons across the anhydrous membrane. For this conducting 

mechanism an operation temperature in the range of 150-200oC is imperative in order to 

achieve a high power output.   
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Figure 7.7 The electrochemical performance of PA-doped PBI-UP 
membrane after densing in a hydrogen-driven single fuel cell at the three 

elevated temperatures 
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7.4 Conclusions 

 

This work proposes an effective measure to conquer the problem caused by difficult 

control over the reaction conditions for fabricating H3PO4-doped polybenzimidazole (PBI) 

membrane in the in-situ sol-gel polymerization system. The measure is simply to include 

an unsaturated polyester (UP) macromer into the PBI polymerization system to form a 

crosslinked network. Sustained by this particular network, the resulting membrane scored 

a much higher H3PO4-doping level than the H3PO4-doped PBI membrane made by the 

conventional impregnating method, and such a high H3PO4 doping level brings about a 

proton conductivity of 10-1 S/cm at 160 oC and with zero matrix humidity. Furthermore, a 

promising performance of the membrane in a single H2 fuel cell was accomplished at 150 

oC without humidifying either electrode. Besides possessing the desired high-temperature 

proton conductivity, the H3PO4-doped PBI-UP membrane also exhibited sound 

mechanical properties and thermal stability.    

 

 

 



CHAPTER 8  

 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Conclusions 

 

This thesis focuses on fabrication and study of proton exchange polymer membranes 

(PEMs) which suit the applications for the fuel cells that are required to operate at 

high temperatures (80-150 oC) or use CH3OH instead of H2 as fuel. Three appealing 

types of hybrid sulfonic perfluoropolymer (SPFP) membranes have been fabricated 

through incorporating unique nano-particles, which have dense oligomeric ionomer 

outer layer, are starburst super-molecules, or own rigid 3-D architecture, into SPFP 

(e.g. Nafion) matrix. Besides these, the success in crosslinking polybenzimidazole by 

unsaturated polyester macromer to form a H3PO4-impregnated matrix, which is a 

promising high-temperature and non-humidified PEM, was achieved. All of these 

resulting composite membranes were characterized using pertinent instrumental 

methods with the aim to understand the fundamental interactions between filler (or 

macromer) and host matrix as well as the effects, generated due to formation of 

composite, on the proton conduction, electrochemical polarization in fuel cell, 

methanol diffusion, and mechanical properties. Of the preceding investigations, how a 

modification design alters or restructures hydrophilic proton conducting channels so 

as to benefit conveying a high flux of protons across membrane is the center issue to 
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explore. It is anticipated that these fundamental studies offer useful knowledge for the 

future researches attempting to revamp or synthesize PEMs to meet requirements of 

high-performance PEMFCs. The main triumph of this thesis work is the augmenting 

of membrane capacity to sustain a higher proton flux, consequently, the membranes 

achieved manifest superior single cell performances over their respective native 

membranes. The important findings of this work are summarized as follows: 

 

(1) A core-shell microspheric structure was constructed by growing the polymer 

chains on the surface of silica microspheres using the atom transfer radical 

polymerization (ATRP), which comprises the homo-polymer or the block-copolymer 

chains of sodium 4-styrenesulfonate (SSNa) and 4-vinylpyridine (4VP). Firstly, it was 

observed that the molecular weights of the grafted chains fell into the range of a 

dozen hundred Daltons. This result shows that such an oligomerization outcome is the 

characteristic of ATRP on an insoluble substrate. Further, the physical responses and 

colloidal behaviors of the resulting microspheres were also studied in this work. It 

was found that the grafted homo-oligomeric layers displays stronger chain-chain 

interactions than their unbound counterparts, and the more interesting observation was 

that the two mutually inverted sequences of copolymer block produce rather different 

impacts on the chain association pattern. Moreover, it was found that the functional 

group type and the sequence of the grafted copolymer blocks influenced the 

hydrodynamic volume of the particles in dispersing liquid solutions with different pH 

or polarity. This effect is mainly due to the leverage of the inner blocks of copolymer 
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on the magnitude of surface charge and hydrodynamic volumes of the particles, 

besides the known factors including solvating extent and charge repulsion 

/neutralization. In the final part of this work, electrochemical properties of the four 

types of grafted oligomeric chains were investigated in very dilute colloidal 

dispersion in HCl (pH=3) and DMF-H2O medium respectively. It was found that the 

two grafted copolymer sequences exhibited very different roles in mediating ion (H+ 

or Na+) transport in a liquid medium where substantially dilute microspheres were 

present. The solvating extent of the inner polymer block affects stretching of the 

copolymer chains, which in turn display different capabilities to sweep ions in the 

liquid media of interest. From this study, such core-shell particles with polyelectrolyte 

chains can be considered as valuable materials to be used to modify Nafion® matrix in 

the next section. 

 

(2) Modification of Nafion membrane with ionomer-grafted silica nano particles, 

PSPA-SiO2 was investigated. PSPA-SiO2 was synthesized by carrying out atom 

transfer radical polymerization (ATRP) of 3-sulfopropyl acrylate potassium salt 

(SPA-K) on nano silica particles. The composite Nafion membranes with different 

ratio of PSPA-SiO2 loading had higher conductivity than Nafion membrane and 

Nafion/silica in the experiment temperature range of 50 oC to 90 oC. Furthermore, it 

was found that the presence of ionomer-grafted silica nano particles, PSPA-SiO2, in 

the membrane matrix of Nafion improved its performance in PEMFC significantly, 

which is due to the fact that PSPA-SiO2 particles can boost the flux of protons and 
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facilitate their transport. The boosting role comes from the fact that each PSPA-SiO2 

particle bears a high density of sulfonic acid groups, and the facilitating role is 

attributed to the hydrophilic interactions between PSPA-SiO2 particles and the 

sulfonic acid group of Nafion chains.   

 

(3) Poly(Q8M8
V) fragments were incorporated into Nafion polymer matrix during 

embedded polymerization. It was found that these fragments can restrict, due to their 

geometric boundary effect, random extension and crosslinking of hydrophilic 

proton-conducting channels (PCC) composed of the sulfonic acid groups of Nafion 

molecules. Therefore, the whole Nafion matrix became less hydrophilic and PCC also 

became more localized with increasing P(Q8M8
V) loading. Such change in the PCC 

distribution led to the following results: the composite membranes containing the 

filler of 5 wt.% and 15 wt.% imparted apparently lower methanol permeation 

coefficients and far greater power density output of single DMFC than the pristine 

Nafion membrane. These results shows that introduction of poly(Q8M8
V) in the SPFP 

matrix is a potentially effective technique to minimize the methanol-crossover 

problem in DMFCs and further achieve a significant enhancement in the performance 

of DMFCs. However, in this work, we also observed that higher poly(Q8M8
V) loading 

did not provide better cell performance of DMFCs owing to negative effect for 

original Nafion structure. Therefore poly(Q8M8
V) loading for composite membranes 

need to be optimized. 

 

 186



(4) A novel type of highly branched nanoparticles (sb-POSS) was synthesized by 

grafting polyacrylonitrile (PAn) short chains to POSS, a cubic silicone molecule with 

atom transfer radical polymerization (ATRP) method. In this study, it was found that 

the proton conducting channels (PCCs) of the native Nafion undertake restructuring to 

form the perturbed and unperturbed PCCs which can coexist in the all composite 

membranes formed. This coexistence may be attributed to the fact that the starburst 

architecture of sb-POSS particles and the strong polar nitrile groups of the grafted 

PAn oligomeric chains are the key structural traits that assist dispersion of the 

particles in the Nafion membrane matrix. In addition, the performance of Nafion 

membrane with different content of sb-POSS particles in a direct methanol fuel cell 

(DMFC) was also evaluated. The single DMFC assessment showed that the composite 

membrane containing sb-POSS ( nM =33746) of 5 wt.% had more than double the 

power density output of the native Nafion membrane. This may be explained using 

the DSC characterization result that the sb-POSS content of 5 wt.% confers the 

highest portion of the unperturbed PCC in the composite membrane. Furthermore, the 

length of PAn chains grafted on sb-POSS particles was the other key factor affecting 

the portion of unperturbed PCC in the composite membrane. As a result, the maximal 

PAn chain-length that could be achieved by employing the present grafting method 

(ATRP) offers the best result in improving DMFC performance.      

 

(5) In the final part of this study, a PBI-Unsaturated polyester blending system was 

synthesized from 3, 3’-diaminobenzidine tetrahydrochloride dehydrate and 
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Isophthalic acid with unsaturated polyester (UP) macromer as crosslink agent in PPA 

solvent and subsequently high PA doped PBI-UP membrane (about 24 mol of PA per 

PBI repeat unit) was cast and polycondensed from this PBI-UP blending system with 

the hydrolysis of PPA to PA. It was observed that the resulting membrane scored a 

much higher H3PO4-doping level than the H3PO4-doped PBI membrane made by the 

conventional impregnating method, and also achieved higher mechanical strength. As 

a result, it was found that the membrane provided a higher conductivity at higher 

temperature (e.g. 0.125 S/cm at 160 oC) than the PA-doped PBI membrane obtained 

with conventional impregnating method (e.g. 0.025 S/cm at 110 oC). Single fuel cell 

performances of the membrane at different operated temperature 95 oC, 115 oC and 

150 oC without external humidification of the gases supplied to either electrode were 

also evaluated. The highest power density at operation pressure was about 30.24 

mW/cm2 at 0.9 A/cm2 at 150 oC.   

 

8.2 Recommendations 

 

On the basis of the above results of study, the following recommendations are 

considered relevant to the further research on the development of composite PEMs. 

 

(1) We have prepared a kind of core-shell silica nanoparticles bearing graft ionomer 

with pendant sulfonic acid groups to modify the Nafion matrix. This type of hybrid 

nanoparticles is used, for the first time, to modify Nafion membrane. However, other 
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vinyl monomers carrying sulfonic acid groups, such as 4-styrenesulfonate (SSNa), 

2-acrylamido-2-methyl propanesulfonic acid (AMPS), and 3-sulfropopyl methacrylate, 

potassium salt (SMP-K) have not been investigated yet in the previous work. 

Therefore, it is worth, in the future study, to graft these monomers to the particle 

surface via the living radical polymerization method. Moreover, in this study, we 

chose SiO2 nanoparticles as precursors of ATRP because it is the most popular 

inorganic oxide filler that supplies the composite membranes with a good mechanical 

and thermal resistance. Besides SiO2 particles, other types of inorganic oxides (e.g. 

TiO2 and ZrO2) may be employed to substitute SiO2. And these synthesized core-shell 

particles can also be studied to examine their effect on the Nafion membrane structure 

and performance.   

 

(2) As a novel hybrid precursor, polyhedral oligomeric silsesquioxane (POSS) can be 

extended by a variety of organic functional groups from its corner silicone atoms. We 

have selectively derived two kinds of functional groups, polyacryonitrile short chains 

and 2-methyl-vinyl, from cubic POSS to form two kinds of molecular particles and 

studied different effects of these hybrid particles on proton transport in the 

membranes in the Chapter 3 and 4. The aim of introducing these functionalized POSS 

into Nafion is to reduce methanol crossover of Nafion matrix and thus to improve the 

performance of membrane in DMFC. Some other functionalized POSS molecules can 

be further explored to modify Nafion matrix. For example, POSS could be grafted by 

vinyl monomers carrying sulfonic groups using ATRP method. It will be interesting 

 189



 190

to understand whether or not and to what magnitude this specific type of oligomeric 

molecular particles could bring about to enhance proton transport traits of the 

resulting composite Nafion membranes.  

 

(3) PA doped PBI-UP membrane has been synthesized in the final part of this work. 

From the study, high mechanical strength and doping level have been achieved at the 

same time. These properties are significant because they not only increase the 

conductivity of the membrane to higher level, but also allow the membrane to be 

applied in the high temperature fuel cell under the condition of zero humidity. 

However, explanations for proton transport in the membrane are limited in this study 

due to complexity of the composite membrane internal structure. Therefore, as a 

potentially valuable extension of this work, physical and chemical interaction between 

polymer chains and phosphoric acid molecules should be investigated by solid state 

NMR and simulation method. Besides, both chemical stability and mechanical 

durability of the membrane are also very important for PEM commercialization. 

Because the fuel cells are required to demonstrate durability of about 5000 h for 

automotive applications and 10,000-40,000 h for stationary application. Therefore, the 

decomposition issues of the membrane should be studied from a stress-cycle 

experiment in the future. And at the same time, durability issues of the membrane 

should also be investigated by accelerated experiment and durability evaluation. 
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