

DESIGN AND ANALYSIS OF ALGORITHMS FOR
SOLVING A CLASS OF ROUTING SHOP

SCHEDULING PROBLEMS

LIU SHUBIN

NATIONAL UNIVERSITY OF SINGAPORE
2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48646464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN AND ANALYSIS OF ALGORITHMS FOR
SOLVING A CLASS OF ROUTING SHOP

SCHEDULING PROBLEMS

LIU SHUBIN
(M.Eng. NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE

2008

 i

Acknowledgements

First and foremost, I would like to express my sincere gratitude and

appreciation to my two supervisors, Associate Professor Ong Hoon Liong and Dr. Ng

Kien Ming, for their invaluable advice and patient guidance throughout the whole

course of my research. It would be impossible for me to carry out the research work

reported in this dissertation without their guidance. In addition, their meticulous

attitude towards research and their kind personality will always be remembered. I

would also like to take this opportunity to thank all the other faculty members of the

department of Industrial & Systems Engineering, from whom I have learned a lot

through both coursework and seminars.

Special appreciation also goes to my fellow research students in the department

of Industrial & Systems Engineering. Particularly, I am grateful to Han Dongling,

Wang Qiang, Zhou Qi, Li Juxin, Sun Hainan, Fu Yinghui, Bae Minju, Chen Liqin,

Xing Yufeng, Chang Hongling and Lahlou Kitane Driss, who kindly offered help in

one way or another. I would also like to extend my appreciation to those students

whose names are not listed here.

Last but not least, special thanks are due to my parents, my wife Zeng Ling,

and my son Xin Ji. They gave me continuous encouragement and warm support during

the course of my Ph.D. study. This dissertation is dedicated to them.

 ii

TABLE OF CONTENTS

Acknowledgements ... i
Abstract… ... iv
List of Tables ..vii
List of Figures… ...viii
List of Symbols.. ix
Chapter 1 Introduction ... 1

1.1 Background ... 1
1.2 Overview of General Solution Methodology .. 2
1.3 Motivation and Purpose of this Study... 4
1.4 Organization of this Dissertation... 5

Chapter 2 Literature Review.. 6
2.1 Classification of of Machine Scheduling Problems.. 6
2.2 Algorithms for Classical Machine Scheduling Problem................................ 10

2.2.1 Single Machine Scheduling Problem.. 11
2.2.2 Flow Shop Scheduling Problem .. 16
2.2.3 Job Shop Scheduling Problem .. 18
2.2.4 Open Shop Scheduling Problem ... 22

2.3 Algorithms for Routing Shop Scheduling Problem 25
2.3.1 Single Machine Scheduling Problem with Transportation 26
2.3.2 Flow Shop Scheduling Problem with Transportation Times................. 29
2.3.3 Open Shop Scheduling Problem with Transportation Times................ 29

2.4 Limitation of Previous Research Work .. 30
Chapter 3 Branch-and-Bound Algorithm for Solving Single Machine

Total Weighted Tardiness Problem with Unequal Release
Dates.. 31

3.1 Introduction... 31
3.2 Dominance Rules... 33
3.3 Lower Bound ... 38
3.4 Branch-and-Bound Procedure... 44

3.4.1 Enumeration Method... 44
3.4.2 Tree Reduction Criteria .. 45
3.4.3 Implementation of the Branch-and-Bound Algorithm........................... 46

3.5 Computational Results ... 48
3.5.1 Computational Comparison of Lower Bounds 49
3.5.2 Efficiency of Tree Reduction... 51
3.5.3 Comparison of the Three Lower Bound Strategies 56

3.6 Conclusions .. 60
Chapter 4 An Overlapped Neighborhood Search Algorithm for

Sequencing Problems .. 62
4.1 Introduction... 62
4.2 Overlapped Neighborhood Search Algorithm ... 64

4.2.1 Overlapped Neighborhoods .. 65
4.2.2 ONS Algorithm Framework ... 65

4.3 Block Improvement Procedures .. 67
4.3.1 Generalized Crossing (GC) Method... 68
4.3.2 Problem Independent Algorithms Developed for TSP........................... 69

 iii

4.3.3 Insertion and Interchange Based Local Search Procedures 71
4.4. Implementation Procedure ... 72
4.5 Computational Experiments .. 73

4.5.1 Computational Experiments for the SMSP with Unequal Release
Dates… ... 73

4.5.2 Computational Experiments for the SMSP Sequence with Dependent
Setup Times ... 84

4.6. Concluding Remarks ... 92
Chapter 5 Tabu Search Algorithms for the Open Shop and Routing

Open Shop Scheduling Problems ... 93
5.1 Introduction... 93
5.2 Problem and Schedule Formulation.. 94

5.2.1 Disjunctive Graph Problem Representation ... 95
5.2.2 Acyclic Graph Schedule Representation ... 96

5.3 Feasibility Checking Procedure... 99
5.4 Tabu Search Strategies... 102

5.4.1 Aspiration Criterion .. 103
5.4.2 Back Jump Tracking ... 103
5.4.3 Cycle Detection Method .. 105

5.5 Application of TS to the Open Shop Scheduling Problem 106
5.5.1 Initial Solutions .. 106
5.5.2 Lower Bound .. 107
5.5.3 Neighborhoods.. 107
5.5.4 Tabu Search Algorithm for the OSSP ... 110

5.6 Application of TS to the Routing Open Shop Scheduling Problem 117
5.6.1 Initial Solutions .. 118
5.6.2 Lower Bound .. 118
5.6.3 Neighborhoods.. 119
5.6.4 Tabu Search Algorithm ... 120
5.6.5 Computational Results .. 121

5.7 Conclusions .. 124
Chapter 6 Conclusions and Future Research Work 125

6.1 Summary and Conclusions... 125
6.2 Future Research .. 128

References... 129

 iv

Abstract

 The role of manufacturing scheduling is to allocate scarce resources to tasks in

order to maximize or minimize one or more objectives. Scheduling is a key decision

making process and plays an important role in modern manufacturing systems. In

modern manufacturing system, the resources may be machines, time, manpower, space,

or all of them. In the last four decades, considerable research work have been

conducted on classical machine scheduling problems, in which it is often assumed that

products can be moved between machines instantaneously, or that machines can travel

from one location to another location instantaneously. This assumption may not be

valid as it ignores product or machine traveling times, or machine setup times that are

inevitable in practice. Therefore, it is necessary to develop machine scheduling

algorithms which consider transportation or setup times, in order to reflect real

manufacturing scheduling environments better.

 By considering transportation times or sequence dependent setup times, the

routing shop scheduling problems considered in this research work become an

extension of classical shop scheduling problems. As classical shop scheduling

problems are special types of routing shop scheduling problems where transportation

or setup times are ignored, the algorithms developed for the routing shop scheduling

problems can also be applied to the corresponding classical shop scheduling problem

where the transportation or setup times are ignored.

 In this study, a branch-and-bound algorithm for solving single machine total

weighted tardiness problem with unequal release dates was developed. The objective

of the problem is to minimize the total weighted tardiness by sequencing the job

processing order on a single machine. Three global dominance rules as well as a lower

bound computational method were proposed to prune the search tree branches. The

 v

efficiency of the dominance rules and the lower bound computational method were

assessed based on comprehensive computational experiments. Our computation results

show that the dominance rules and the lower bound are effective in pruning the search

tree branches.

 In this study, we also developed a general-purpose heuristic, named overlapped

neighborhood search (ONS) algorithm, for single machine scheduling problems with

or without transportation or setup times. The basic idea of the ONS algorithm is to

divide a permutation of the schedule into overlapped blocks; subsequently, the

neighborhood of each block is explored independently. The ONS algorithm is also

applicable to a wide variety of sequencing problems, such as various single machine

scheduling problems, the traveling salesman problem, the linear ordering problem, the

quadratic assignment problems, the bandwidth reduction problems and other problems

whose solutions can be represented by permutations. The ONS algorithm has been

applied to single machine scheduling problems with unequal release dates and the

single machine scheduling problem with sequence dependent setup times. The

computational experiments carried out in our research work show that the ONS

algorithm is efficient in finding near optimal solutions for single machine scheduling

problems within reasonable computation times.

 The previously mentioned work focuses on single machine scheduling

problems. In this research work, heuristics were also developed for two multi-machine

scheduling problems, open shop scheduling problems and routing open shop

scheduling problems. New neighborhood structures were defined for the two multi-

machine scheduling problems. In addition, an exact and fast operation move feasibility

checking method was developed for the multi-machine scheduling problems to remove

infeasible operation moves quickly. Tabu search algorithms were developed for open

 vi

shop and routing open shop scheduling problems based on the new neighborhoods and

the new feasibility checking method. To test the performance of the neighborhood

structures and the feasibility checking method, comprehensive computational

experiments were conducted based on benchmarks and randomly generated problem

instances. The computational results show that the tabu search algorithms embedded

with the new neighborhoods are able to find optimal or near optimal solutions for most

of the problem instances tested, within reasonable computation times.

 vii

List of Tables

Table 3.1 Settings for generating problem instances .. 48

Table 3.2 Comparison of lower bounds.. 50

Table 3.3 Global dominance relationships.. 52

Table 3.4 Comparison of efficiency of dominance rules based on Strategy I 54

Table 3.5 Comparison of efficiency of dominance rules based on Strategy II............. 55

Table 3.6 Comparison of efficiency of dominance rules based on Strategy III 55

Table 3.7 ANOVA for dominance rules and lower bounds.. 56

Table 3.8 Computational results for n = 10 .. 56

Table 3.9 Computational results for n = 20 .. 57

Table 3.10 Computational results for n = 30 .. 58

Table 3.11 Computational results of Akturk and Ozdemir (2000) for n = 20 59

Table 4.1 Problem generating parameters .. 74

Table 4.2 Computational results of ONS and LDR .. 75

Table 4.3 The average improvement in percentage for n = 100 78

Table 4.4 Computational results for iterative ONS .. 83

Table 4.5 Experimental design of problem instances ... 88

Table 4.6 Comparison of experimental results for small problem set 90

Table 4.7 Comparison of experimental results for large problem set........................... 91

Table 5.1 Results for the Taillard’s benchmark problems.. 115

Table 5.2 Settings for generating ROSSP instances ... 121

Table 5.3 Computational results ... 122

Table 5.4 ANOVA for TS solution relative deviations .. 123

Table 5.5 ANOVA for TS computation time.. 123

 viii

List of Figures

Figure 1.1 The relationship of three types of schedules ... 10

Figure 3.1 Illustration of exchanging jobs .. 35

Figure 3.2 Job relationships after exchanging jobs... 38

Figure 4.1 Black box model for the ONS algorithm... 64

Figure 4.2 Illustration of the overlapped blocks ... 65

Figure 4.3 Initial sequence in a block ... 69

Figure 4.4 Sequences generated by re-sequencing three strings................................... 69

Figure 4.5 Average improvement for problems with different characteristics 80

Figure 4.6 Average number of improvements for problems with different

characteristics.. 80

Figure 4.7 Average computation time for problems with different characteristics 80

Figure 4.8 Number of strings explored with different sizes of blocks.......................... 82

Figure 5.1 An example of disjunctive graph for the OSSP and the ROSSP................. 96

Figure 5.2 Illustrationa feasible schedule ... 97

Figure 5.3 An illustration of recorded makespans for cycle detection 106

Figure A1 Initial schedule... 148

 ix

List of Symbols

JSSP Job shop scheduling problem

OSSP Open shop scheduling problem

FSSP Flow shop scheduling problem

ROSSP Routing open shop scheduling problem

RSSP Routing shop scheduling problem

TSP Traveling salesman problem

VRP Vehicle routing problem

SMSP Single machine scheduling problem

jr The release date of job j

jw The weight of job j , which is a priority factor to denote the importance of

job j . It also denotes the tardiness penalty factor for tardiness related

problem.

Cj Completion time of job j

Tj Tardiness of job j

Cmax The makespan of a machine scheduling problem

Oij Operation of job Jj processed on machine i

Cmin(S) The minimum completion time for the jobs in set S

Cmax (S) An upper bound of maximum completion time for the optimal schedules

IPM(i) The immediate predecessor of operation i on machine Mi in a schedule

ISM(i) The immediate successor of operation i on machine Mi in a schedule

IPJ(i) The immediate predecessor of operation i belonging to job Ji in a schedule

ISJ(i) The immediate successor of operation i belonging to job Ji in a schedule

hi The head of operation i, which is the longest path from source node to

node i

ti The tail of operation i, which is the longest path from sink node to node i

 1

Chapter 1 Introduction

 This dissertation focuses on the design and analysis of algorithms for solving a

class of routing shop scheduling problems. In the last four decades, considerable

research work has been carried out on manufacturing scheduling problems, where

different jobs are sequenced in order to optimize one or more criteria. However, most

of the previous research work focused on classical shop scheduling problems without

considering transportation times of the semi-finished product, traveling times of

machines (in the case where the machines need to travel from job to job) or sequence

dependent machine setup times. By considering transportation times or sequence

dependent setup times, the scheduling problems considered in this research work

become an extension to the classical shop scheduling problems.

1.1 Background

 The role of scheduling is to allocate scarce resources to tasks over time to

maximize or minimize one or more objectives. As pointed out by Pinedo (2002), the

resources and tasks can take many forms depending on the type of organization, e.g.

personnel, space and time in a restaurant, processing power of a server, machines and

raw material in a manufacturing company and so on. The objective of the scheduling

problem is to assign machines and resources to jobs in order to complete all jobs under

the pre-specified constraints to optimize one or more criteria.

 In the last four decades, considerable research work was carried out on the

classical machine scheduling problem. The classical machine scheduling problem

normally assumes that there are an infinite number of transport vehicles and that the

semi-finished products can be delivered instantaneously from one location to another.

 2

Realistically, in typical manufacturing environments, this assumption is not valid as

the semi-finished products have to take some time to be delivered from one location to

another. In some cases, such as engine casings of ships, the parts are too big or too

heavy to be moved between machines and hence the machines have to travel between

jobs (Averbakh and Berman 1996). Another example is the scheduling of robots that

perform daily maintenance of operations on immovable machines located in different

locations (Averbakh and Berman 1999). The machine scheduling problem that takes

transportation or setup times into consideration is referred to as the routing shop

scheduling problem (RSSP). The RSSPs include both single machine scheduling

problems and multi-machine scheduling problems. It is noted that transportation times

and sequence dependent setup times are considered equivalent to each other for the

RSSPs as the two types of problems can be tackled in the same way.

1.2 Overview of General Solution Methodology

The general algorithms that are applicable to many different types of machine

scheduling problems can be classified into six categories. They are dispatching rules,

mathematical programming, branch-and-bound techniques, neighborhood based local

search algorithms, artificial intelligence, and constraint programming techniques,

respectively.

Dispatching rules, which are also called priority rules, are probably the most

frequently applied heuristics for solving machine scheduling problems in practice

because of their ease of implementation and low requirements on computational power.

Most of the machine scheduling problems are combinatorial optimization

problems. One of the most popular solution techniques for combinatorial optimization

problems is branch-and-bound. The principle of the branch-and-bound technique, as

 3

described by Agin (1966), is the enumeration of all feasible solutions of the problem.

The basic idea of branching is to conceptualize the problem as a decision tree with

each branch defining a subset of all feasible solutions of the original problem. The

decision tree grows until leaf nodes, which cannot branch further, are reached. In

general, the union of the subsets of solutions at the same depth level is equal to the set

of the original problem’s feasible solutions and there is no intersection with each other.

To speed up the enumeration procedure, the objective value of the best solution from a

subset is estimated as the lower bound for a minimization problem. Whenever the

lower bound is equal to the best known upper bound, the branch is pruned from further

consideration. For integer programming formulation of the machine scheduling

problem, the Lagrangian relaxation technique described by Shapiro (1979) can be used

to solve the relaxed problem by omitting certain specific integer-value constraints to

obtain a lower bound.

 A local search algorithm starts from an initial candidate solution and then

iteratively moves to a neighboring solution based on a pre-defined neighborhood space.

Typically, every candidate solution has more than one neighboring solution and the

choice of which one to move to is based only on information found in the

neighborhood of the current solution.

Constraint programming (CP) is a relatively new technique for solving

combinatorial optimization problems in the computer science community. Constraint

programming is based on finite domains and is particularly suited to combinatorial

optimization problems as it is an assignment of values to variables such that a set of

constraints on variable pairs are satisfied as claimed by Minton et al. (1992).

Artificial intelligence (AI) techniques have been applied to job shop scheduling

problems (JSSP) since the early 1980s. AI techniques include the use of expert systems,

 4

knowledge-based systems and several other techniques. AI techniques have four main

advantages compared with other methods, as stated by Jones and Rabelo (1998). First,

AI techniques use both quantitative and qualitative knowledge in the decision making

process. Second, they generate solutions using complex heuristics rather than simple

dispatching rules. The third advantage is that AI techniques select the heuristic

depending on the entire scheduling decision-making related information. The final

advantage is that they can capture complex relationships in elegant new data structures

and contain some unique techniques to manipulate the information in these data

structures. However, AI techniques have two serious disadvantages. Firstly, an AI

system is difficult to be built, implemented and maintained. Secondly, it is difficult to

evaluate the closeness of the solutions generated using AI techniques to the optimal

solutions.

1.3 Motivation and Purpose of this Study

 It is commonly assumed that transportation times can be ignored or that setup

times are independent of the job processing sequence. However, significant setup times

may elapse in situations where the machine is setup to process different types of jobs.

Many practical industrial situations require consideration of transportation or setup

times. These situations can be found in various environments, such as in production,

services industry, and information processing. As stated by Lee and Chen (2001), the

coordination of manufacturing and distribution systems must be made carefully in

order to achieve ideal overall system performance. It is also obvious that to reflect a

realistic manufacturing system, machine scheduling problems that consider

transportation or setup times are superior to classical machine scheduling problems

that do not take these times into account.

 5

 The purpose of this study is to design and analyze algorithms for solving a

class of RSSPs. The RSSPs that consider transportation or setup times are able to

reflect realistic machine scheduling systems better than classical machine scheduling

problems. Therefore, it is possible to design algorithms that are able to improve the

overall system performance by considering both the job processing times, and the

transportation or setup times.

 In this research, we first consider the single machine total weighted tardiness

problem with unequal release dates. Then, a new general-purpose heuristic, named

overlapped neighborhood search (ONS) algorithm, is presented to solve the general

single machine scheduling problems. Finally, we propose new neighborhood structures

for multi-machine scheduling problems with and without transportation times.

1.4 Organization of this Dissertation

 This dissertation is organized as follows. In Chapter 2, a literature review of the

algorithms developed for the machine scheduling problems is presented. A branch-

and-bound algorithm is proposed for the single machine total weighted tardiness

problem with unequal release dates in Chapter 3. In Chapter 4, we present a brand new

heuristic, called overlapped neighborhood search algorithm, for the general sequencing

problems whose solutions can be represented by permutation. New neighborhood

structures are defined for both the open shop scheduling problem (OSSP) and the

routing open shop scheduling problem (ROSSP) in Chapter 5. Tabu search algorithms

that are based on existing and new neighborhoods are presented for both the OSSP and

ROSSP. In Chapter 6, the summary, conclusions and suggestions for future research

are provided.

 6

Chapter 2 Literature Review

 In this chapter, heuristic and exact algorithms developed for both classical

machine scheduling problems and RSSPs are reviewed. We first give a review of the

general algorithms developed for the machine scheduling problem. Then, a detailed

review is presented for classical machine scheduling problems and RSSPs based on the

optimization criteria.

2.1 Classification of Machine Scheduling Problems

 The scheduling problems are generally denoted by the three-field scheduling

notation γβα || proposed by Graham et al. (1979) and extended by Błażewicz et al.

(2001). The first field denotes the machine environment and contains a single entry.

The second field provides details of the processing characteristics and the constraints,

and may contain no entries or multiple entries. The third field describes the objective

to be optimized and usually contains one entry. In the scheduling problems considered

in this research work, the number of jobs and machines are assumed to be finite, and

are denoted by n and m respectively. Usually, we use j to denote a job and i to

denote a machine. If a job requires a number of operations to be completed, then the

pair),(ji refers to the operation of job j to be processed on machine i .

 Some machine environments (specified in the field α) that have been studied in

literature are summarized below.

Single machine (1) Only one machine in this problem, it is a special case of all
other more complicated problems.

Identical machines in
parallel (mP)

There are n single-operation jobs and m identical
machines. Each job may be processed on one or more
machines but can only be processed on one machine at a

 7

time.
Parallel machines with
different speeds, also
called uniform
machines (mQ)

There are m parallel machines with different speeds. The
time spent to process job j is ijij vpp /= , where jp is
the standard processing unit of job j and iv is the speed
of machine i .

Unrelated machines in
parallel (mR)

There are m machines in parallel with processing speed of
ijv if job j is processed on machine i . The time spent to

process job j is ijjij vpp /=
Flow shop (mF) There are m parallel machines. A job consists of a

collection of operations and all jobs will follow the same
route.

Open shop (mO) There are m machines. Each job has to be processed on
each of the m machines. There are no restrictions on the
routing of each job through the machine environment.

Job shop (mJ) In a job shop environment with m machines, a job consists
of a collection of operations that have a predetermined
route to follow.

The processing constraints specified in the field β may contain more than one entry.

Some machine environments are given below.

Release dates (jr) If jr does not appear in the β field, the processing of job
j may start at any time; otherwise the job cannot be

processed before its release date jr .
Preemptions (prmp) Preemption denotes that a job can be stopped from

processing before its completion and its processing can be
resumed later.

Precedence constraints
(prec)

For single machine and parallel machine environments, one
or more jobs have to be completed before another job is
allowed to be processed.

Sequence dependent
setup times (jks)

The jks indicates the sequence dependent setup time
between jobs j and k . If jks does not appear in field β , all
setup times are assumed to be 0 or sequence independent.

Permutation (prmu) This is a constraint that may appear in a flow shop
environment. It restricts the queues in front of each
machine to operate according to the First in First out
(FIFO) rule. The prmu constraint implies that the sequence
in which the jobs are processed in the first machine is
maintained throughout the system.

Machine eligibility
restrictions (jM)

The jM symbol in the mP environment in the field β
implies that only machines in the set jM can process the
job j . If jM does not appear in the mP environment, it
means the job j can be processed on any machine.

 8

Recirculation (recrc) Recirculation will occur in a flexible job shop or job shop
when a job is required to visit a machine more than once.

No wait (no-wait) Buffers at the machines have zero capacity and a job, upon
finishing its processing on one machine, must immediately
start on the next machine.

 For the scheduling problem, the objectives to be optimized are always

functions of the completion times of the jobs. The completion time of the job j on the

machine i is denoted by ijC . The objective may also be a function of due date jd . The

lateness of a job is defined as

jjj dCL −= .

 It is obvious that jL is negative if the corresponding job is completed late and

positive if completed early. The tardiness of job j is defined as

if

0 otherwise
j j j j

j

C d C d
T

− >⎧
= ⎨
⎩

.

 Another due date related penalty function is whether a job is late or not. It is

defined as

1 if

0 otherwise
j j

j

C d
U

>⎧
= ⎨
⎩

.

 The objectives of scheduling problems are divided into two classes, namely,

regular measures of performance and non-regular measures of performance. For the

regular measures of performance, the objective value is nondecreasing with job

completion times. That is to say, if any job is made to finish later, the measure, for e.g.,

flow time, makespan, lateness, tardiness, etc, will stay the same or increase. The non-

regular measures of performance evaluate the objectives other than the regular

measures of performance. An example is the sum of earliness and tardiness penalties,

where the larger the deviation, the larger the penalty. For the regular measures of

 9

performance, there always exists an active schedule that is optimal (Baker 1974).

Some objectives of the scheduling problem to be minimized are summarized below.

Makespan (maxC) The makespan is the maximum completion time of all jobs
in the system. It is defined as { }max 1max , , nC C C= … .

Maximum lateness
(maxL)

The maximum lateness maxL is a measure of the worst
violation of due dates among all the jobs, which is defined
as { }max 1max , , nL L L= … .

Maximum tardiness
(maxT)

The maximum tardiness is equivalent to maxL when
0max ≥L , 0max =T when 0max <L . The maximum tardiness

is defined as { }max 1max , , nT T T= … .
Total weighted
completion time

)(∑ jjCw

The sum of the completion times is known as the flow time.
∑ jjCw is also called the weighted flow time. If jw

denotes the inventory holding cost and jC denotes the
holding time, the total weighted completion time indicates
the total holding cost.

Total weighted
tardiness (∑ jjTw)

The total weighted tardiness objective function is to
minimize the total weighted tardiness of the tardy jobs.

Total earliness penalty
(∑ jE)

The objective is called non-regular objective as its
objective value is nonincreasing with respect to .jC

 Before the end of this subsection, we give a classification of the type of

schedules defined by Baker (1974).

 A feasible schedule is called a semi-active schedule if no operation can be

started earlier without altering the order of jobs on any machine. An active schedule is

a schedule in which no operations can be relocated to a position to complete earlier

without delaying other operations. A schedule is defined as a non-delay schedule if no

machine is kept idle at a time when at least one operation is available for processing.

The relationship of the three types of schedules is illustrated in Figure 1.1.

 10

Figure 1.1 The relationship of the three types of schedules

2.2 Algorithms for Classical Machine Scheduling Problem

 Machine scheduling is concerned with scheduling computer or manufacturing

processes because the same model and algorithm can be applied to the two different

areas. In the last four decades, a lot of research work was done on deterministic and

stochastic machine scheduling problems and an astounding number of machine

scheduling problems have been defined. For different kinds of problems, many exact

and heuristics can be found in the literature. As it is impossible to give a detailed

review of all machine scheduling problems in this dissertation, this review will focus

on the deterministic single machine problem, the open shop problem, the flow shop

problem and the job shop problem. As there are different objective criteria for each

type of scheduling problem, we will only concentrate on the models and algorithms

that aim to minimize the makespan and total weighted tardiness. For a complete review

of machine scheduling problems, models and algorithms, the reader is referred to

Baker (1974), Błażewicz et al. (2001), and Pinedo (2002).

Semi-active

Active

Non-delay

 11

2.2.1 Single Machine Scheduling Problem

 This subsection reviews the single machine scheduling problem, which is the

simplest scheduling problem with only one machine available. The models and

algorithms developed for the single machine scheduling problem not only provide

insights into this problem but also provide a basis for more complicated scheduling

problems, such as the JSSP, the FSSP and the OSSP. This subsection is organized as

follows. The models and algorithms for minimizing makespan are reviewed for

different types of single machine scheduling problems. Then it is followed by the

models and algorithms that were developed for minimizing the total weighted tardiness.

Minimizing the Makespan

 The makespan of a single machine scheduling problem is the maximum

completion time of all jobs. The problem of minimizing makespan is one of the

simplest machine scheduling problems and polynomial algorithms are available for

some of these problems.

Problem max||1 Crj

 For problem max||1 Crj , the optimal solution can be obtained by ordering the

jobs in nondecreasing order of release dates. When the release dates for all the jobs are

zero, the above problem is reduced to max||1 C with the makespan ∑
=

=
n

j
jpC

1
max .

Problem
~

max1| , |jjr d C

 This problem is to minimize the makespan with a specified release date jr and

deadline jd� for each job. This problem is NP-hard in the strong sense as proven by

Lenstra et al. (1977). Bratley et al. (1973) developed a branch-and-bound algorithm

 12

based on the implicit enumeration of a search tree for this problem. From the root node

of the search tree, n new branches are generated at the first level of the descendant

nodes. Assume jJ is at the ith node in level k, it represents the job jJ sequenced at the

k position in the schedule. It is evident that all the n! possible schedules have to be

enumerated following the search tree. To reduce the number of nodes to be searched,

the following node elimination criteria are used.

(1) Exceeding deadline. If a job is scheduled at a level with the completion time

exceeding its deadline, we know that this schedule is infeasible and this node is

fathomed.

(2) Problem decomposition. Consider a job jJ , which is scheduled at level k. If

the completion time of jJ is greater than or equal to the earliest release date of

the unscheduled jobs, then there is no need to enter another branch at level k.

The reason for this node elimination feature is that the best schedule for the

remaining jobs may not be started prior to the earliest release date, and hence

cannot complete earlier than the completion time of jJ . From another point of

view, since the active schedules contain at least one optimal schedule,

assigning other unscheduled jobs before job jJ will generate a non-active

schedule that is not needed.

Problem max||1 Cs
kj

 In many manufacturing environments, the setup times depend on the type of

job that is just completed as well as on the job to be processed. Sequence dependent

setup times are commonly found where a single machine is the resource used to

produce different kinds of products. This type of problem is often interpreted as a

traveling salesman problem (TSP) as claimed by Baker (1974). The setup time jks

 13

corresponds to the distance between two nodes j and k. It is noted that in an

asymmetric TSP, jks may not be equal to kjs .

Minimizing the Total Weighted Tardiness

 In this subsection, we review those problems whose objective is to minimize

the total weighted tardiness, which is equivalent to the mean weighted tardiness. The

objective is to measure the time-dependent penalties on late jobs but without any

benefits derived from completing the jobs early. For a recent complete review of the

single machine weighted tardiness problem, the reader can refer to Abdul-Razaq et al.

(1990) and Sen et al. (2003).

Problem ∑ jT||1

 The problem ∑ jT||1 has attracted many researchers and received an

enormous attention in the literature. Its complexity was open until Du and Leung (1990)

proved that ∑ jT||1 is NP-hard in the ordinary sense. Many algorithms, including

priority rule based heuristics, local search and branch-and-bound, have been proposed

to deal with problem ∑ jT||1 . The simplest rules are shortest processing time (SPT)

and earliest due date (EDD) rules. Montagne (1969) proposed a rule in which the jobs

are sequenced in nonincreasing order of
1

/()
n

j i j
i

p p d
=

−∑ . Baker and Bertrand (1982)

developed a dynamic implementation of the EDD rule based on modified due dates

(MDD). The MDD rule is to schedule the jobs dynamically according to the earliest

MDD, where { }max ,i iMDD C p d= + , with C being the completion time of the last

scheduled job. Rachamadugu and Morton (1981) proposed an apparent urgency (AU)

rule, in which the priority is defined as () { }()1/ exp max 0, /j j j jAU p d t p kp= − − − ,

 14

where k is called the lookahead parameter which is set according to the tightness of the

due date, p is the average processing time, and t is the current time. It is noted that the

priority rules developed for problem ∑ jT||1 can also be extended to solve other

single machine tardiness problems.

 Wilkerson and Irwin (1971) proposed a heuristic based on the idea of adjacent

pairwise interchange. The conditions under which the jobs with earlier due dates

should be scheduled earlier are identified. Adjacent pairwise interchange will be

carried out if the conditions are violated. Fry et al. (1989) developed an adjacent

pairwise interchange based local search method. Holsenback and Russell (1992)

presented a net benefit of relocation (NBR) heuristic method, where a job will be

relocated if the net change in tardiness due to the relocation of the job is negative. Potts

and Van Wassenhove (1991) proposed a simulated annealing based meta-heuristic

method.

Problem ∑ jj Tr ||1

 Chu and Portmann (1992) showed that problem ∑ jj Tr ||1 can be simplified

by using a modified due date and a branch-and-bound method was developed based on

the modified due date. Baptiste et al. (2004) developed a tighter lower bound than that

defined in Chu and Portmann (1992) for problem ∑ jj Tr ||1 .

Problem ∑ jjTw||1

 Problem ∑ jjTw||1 is NP-hard in a strong sense as shown by Lenstra et al.

(1977). This problem is extended from problem ∑ jT||1 by considering different

weights. Therefore the priority rules for problem ∑ jT||1 can all be extended to solve

problem ∑ jjTw||1 by considering the weights. It is noted that the algorithms

 15

developed for weighted tardiness problems may not always be effective methods for

equal weighted problems because the latter has some special structures. Branch-and-

bound algorithms have been developed by Elmaghraby (1968), Rinnooy et al. (1975),

and Potts and Van Wassenhove (1985) for problem ∑ jjTw||1 .

Problem ∑ jjj Twr ||1

 Akturk and Ozdemir (2000) developed the first branch-and-bound approach for

problem ∑ jjj Twr ||1 . Another branch-and-bound algorithm was proposed by

Jouglet et al. (2004). In addition to the exact approaches, a local dominance rule was

presented by Akturk and Ozdemir (2001) for problem ∑ iii Twr ||1 and a pairwise

improvement heuristic was proposed by Chou (2005). Jouglet et al. (2008) introduced

a tabu search algorithm based on dominance rules.

Problem ∑ jjjk Tws ||1

Raman et al. (1989) gave a method derived from the apparent tardiness rule

(ATC) to take setup times into account. Ragatz (1993) presented a branch-and-bound

algorithm to minimize the total tardiness with sequence dependent setup times. The

lower bounds used by them are weak and the performance of the procedure is highly

dependent on the problem’s characteristics. Rubin and Ragatz (1995) developed a

genetic algorithm where a local search method based job exchange or single random

exchange was embedded to improve the solutions produced by the genetic operators

further. Tan and Narasimhan (1997) applied simulated annealing to minimize the total

tardiness on a single machine with sequence dependent setup times. A comparison

work of the four algorithms, namely branch-and-bound, genetic algorithm, simulated

annealing, and random start pairwise interchange was conducted by Tan et al. (2000).

França et al. (2001) proposed a mimetic algorithm (MA), in which a new solution was

 16

generated from the genetic operators of selection, crossover and mutation. A local

search method was then applied to the new solution to improve it further. Gagné et al.

(2002) presented an ant colony optimization (ACO) algorithm for the single machine

scheduling problem with sequence dependent setup times.

Gupta and Smith (2006) presented two algorithms, a problem space-based local

search heuristic, and a GRASP algorithm with path relinking for the single machine

scheduling problem with sequence dependent setup times. The authors claimed that the

space-based local search method performed equally well as the ACO algorithm and

that the GRASP gave better solutions than the ACO in general. Armentano and de

Araujo (2006) proposed several variants of the GRASP based algorithm by

incorporating memory-based mechanisms.

2.2.2 Flow Shop Scheduling Problem

In many manufacturing environments, it is required that a number of operations

be processed on every job. If the machines are assumed to be set up in series and the

operations have to be done on all jobs in the same order, then the manufacturing

system is referred to as a flow shop. A typical FSSP consists of m machines that

perform operations on all the n jobs. There are several constraints for the FSSP.

(1) There are no precedence relations among the operations of different jobs;

(2) Each machine can perform only one operation at a time and cannot be

interrupted;

(3) Each job can only be processed on one machine at a time.

Most of the research conducted on FSSP is limited to a special case of the flow

shop, called the permutation flow shop, where the jobs are processed on each machine

in the same order. For the permutation FSSP, once the job sequence on the first

 17

machine is fixed, it becomes fixed for the other machines as well. The typical

objectives of FSSP include minimizing the makespan, minimizing the average flow

time, and minimizing the mean tardiness or the number of tardy jobs. A brief review is

given in the following subsection for the permutation flow shop problem. A recent

complete review for FSSPs can be found in Framinan (2004), and Kis and Pesch

(2005), where exact algorithms are provided.

Minimizing the Makespan

Minimizing makespan for the FSSP is shown to be NP-hard by Garey et al.

(1979), except for some special cases. The two-machine flow shop case, max||2 CF is

easy and a polynomial algorithm was developed by Johnson (1954).

As max|| CFm is NP-hard for 3≥m , many researchers focused on the

development of priority rules and local search based heuristics. The heuristic method

developed by Campbell et al. (1970) obtains a complete schedule by solving m - 1 of a

two-machine approximation, based on Johnson’s algorithm (Johnson 1954). Gupta

(1971) generalized Johnson’s two-machine flow shop algorithm to solve the FSSP

with more than three machines. The index of job jJ is defined as,

1,
1 1

/ { } 1, ,minj i j i j
i m

s p p for j nλ +
≤ ≤ −

= + = … , where
⎩
⎨
⎧

−

≤
=

otherwise

ppif jji

1

1 1λ .

Ho and Chang (1991) presented an improved heuristic method by minimizing the gaps

between successive operations in a schedule. Tabu search algorithms for the flow shop

problem were developed by Widmer and Hertz (1989), and Taillard (1990)

independently. The neighbors are defined similar to those in the TSP as given below.

(1) Exchange two adjacent jobs;

(2) Exchange the jobs placed at two different positions;

 18

(3) Move a job to another position.

Some other heuristic methods for the FSSP are simulated annealing by Osman

and Potts (1989), and genetic algorithm developed by Reeves (1995). Huang and

Wang (2006) proposed a local search method with escape-from-trap procedures for the

FSSP.

Minimizing the Total Tardiness

The problems of minimizing average flow time and due date related objectives

tend to be even harder. Compared to the algorithm for minimizing the makespan, there

are fewer algorithms for minimizing the total tardiness of a FSSP. Onwubolu and

Michael (1999) developed a genetic algorithm considering three objectives, namely

minimizing the total tardiness, minimizing the makespan, and minimizing the number

of tardy jobs. Pan et al. (2002) proposed a branch-and-bound algorithm to minimize

the total tardiness for a two-machine FSSP. Hasija and Rajendran (2004) presented a

simulated annealing method in which two perturbation schemes and a new improved

scheme were incorporated to to minimize the total tardiness. Kyparisis and Koulamas

(2006) presented an algorithm considering all the regular objective functions with tight

worst-case performance bounds by utilizing the optimal permutations for the

corresponding single machine problems.

2.2.3 Job Shop Scheduling Problem

A JSSP consists of a set of different machines on which the operations of each

job are processed. Unlike the FSSP and OSSP, the JSSP has a specific operation

processing order for each job. The three constraints of FSSP detailed in subsection

2.2.2 also apply to the JSSP. The JSSP is a well-known NP-hard problem; see Lenstra

et al. (1977). The JSSP has received enormous attention and considerable research

 19

papers on it have been published. In this subsection, we will give a review of the JSSP

algorithms for minimizing makespan and total weighted tardiness. The survey papers

on JSSP techniques were given by Panwalker and Iskander (1977), Blackstone et al.

(1982), Haupt (1989), Vaessens et al. (1996), Błażewicz et al. (1996), and Jones and

Rabelo (1998).

Minimizing the Makespan

The techniques for minimizing the makespan for a JSSP are classified into four

categories, namely priority rules, heuristics, exact methods, and artificial intelligence

based methods. It must be noted that the techniques for solving JSSPs are not limited

to the four categories as research work is still very active.

Priority rules

Priority rules are the most widely applied technique in practice because of their

ease of implementation and low requirements of computational power. Most of the

priority rules are based on the active schedule generation algorithm proposed by

Giffler and Thompson (1960). Their algorithm always tries to assign the currently

available operations to a machine and conflicts are resolved randomly. The survey

paper on scheduling priority rules can be found in Panwalker and Iskander (1977),

Blackstone et al. (1982), and Haupt (1989). Some commonly used rules are

summarized in Table 2.1.

Heuristic Search Methods

The shifting bottleneck procedure (SBP), proposed by Adams et al. (1988), is one

of the most powerful procedures among all heuristic methods developed for the JSSP.

 20

The idea of the SBP is to solve a max||1 L problem for each machine to optimality

under the assumption that the optimal schedule sequences of problems max||1 L

coincide with an optimal JSSP schedule. Based on the idea of SBP, Dauzere-Peres and

Lasserre (1993) proposed a modified shifting bottleneck procedure for the JSSP.

Table 2.1 Priority rules

 Rule Description

1. SPT (shortest processing time) Select the job with the shortest processing time

2. FCFS (first come first served) Schedule the first operation waiting in the queue first

3. Random The next operation is selected randomly

4. SRPT (shortest remaining
processing time)

Select the operation with the shortest remaining job
processing time

5. LPT (longest processing time) Select the job with the longest processing time

6. SOT(shortest operation time) Select the operation with the shortest processing
time for the machine being considered

7. LOT (longest operation time) Select the operation with the longest processing time
for the machine being considered

Different neighborhoods were also devised and simulated annealing methods

were developed by Matsuo et al. (1988) and van Laarhoven et al. (1992). Based on the

same neighborhood definition, tabu search based heuristic procedures were proposed

by Dell'Amico and Trubian (1993), Taillard (1994), Barnes and Chambers (1994), Sun

et al. (1995), Nowicki and Smutnicki (1996), and Balas and Vazacopoulos (1998).

Another meta-heuristic method, genetic algorithm, is also applied to the JSSP. Nakano

and Yamada (1991) proposed an encoding method for the JSSP by using a 0-1 matrix

to present a solution. Dorndorf and Pesch (1995) presented an encoding method by

interpreting an individual solution as a sequence of decision rules. Bierwirth (1995)

 21

introduced a representation of an individual as a string of length equal to the number of

operations in the problem. Gonçalves et al. (2005) presented a hybrid genetic

algorithm, in which the chromosome representation of the problem is based on random

keys.

Unlike traditional heuristic methods, some multi-agent based algorithms used in

the field of artificial intelligence have been proposed in order to solve the JSSP.

Ghedira and Ennigrou (2000) proposed an algorithm to solve the JSSP based on the

cooperation of different agents. A negotiation based scheme was developed by

MacChiaroli and Riemma (2002) to make scheduling decisions based on the multi-

agent system. In the paper by Aydin and Fogarty (2004), autonomous agents

cooperated by sharing solutions via a common-memory. Caridi and Cavalieri (2004)

gave a review of multi-agent systems for production planning.

Exact Methods

Considerable amount of work have been done to develop efficient exact

algorithms for the JSSP. JSSPs have been formulated using integer programming by

Manne (1960) and Balas (1969, 1985), and using mixed integer programming by

Adams et al. (1988). A survey of the mathematical programming models was given by

Błażewicz et al. (1991). A polynomial lower bound computation method was first

proposed by Balas (1985). The branch-and-bound algorithm developed by Carlier and

Pinson (1989) is based on a polynomial lower bound obtained for the single machine

problems with precedence constraints, task arrival times, and allowed preemptions.

Some other efficient branch-and-bound methods have been developed by Applegate

and Cook (1991), Brucker et al. (1994), and Martin and Shmoys (1996).

 22

In recent years, constraint propagation techniques were shown to be highly

effective for solving the JSSP, such as the algorithm developed by Caseau and

Laburthe (1995), Nuijten and Le Pape (1998), and Sourd and Nuijten (2000). A

comprehensive summary of constraint-based methods for scheduling can be found in

Baptiste et al. (2001).

Minimizing the Total weighted Tardiness

In contrast to the numerous publications on max||mJ C∑ , only several papers on

the ||m j jJ w T∑ problem have been published. Pinedo and Singer (1999) presented a

heuristic for problem ||m j jJ w T∑ based on the famous shifting bottleneck heuristic

method of Adams et al. (1988). The critical machine is identified based on the solution

of a modified ATC scheduling rule for the JSSP. A computational study of branching

techniques for problem ||m j jJ w T∑ was conducted by Singer and Pinedo (1998).

Theoretical problem difficulty analysis based on statistical methods was carried out to

analyze the properties of the problem instances. Asano and Ohta (2002) considered

problem ||m j jJ w T∑ and proposed a heuristic based on a tree search procedure, in

which a JSSP to minimize the maximum tardiness, subject to fixed sub-schedules, was

solved at each node of the search tree. Mason et al. (2005) presented a mixed integer

programming (MIP) model to minimize the total weighted tardiness for a complex

JSSP.

2.2.4 Open Shop Scheduling Problem

OSSP is similar to FSSP except that there are no operation precedence

relationships for any job. The OSSP can be formally described as follows: there are a

 23

set of jobs and the operations of each job have to be processed on different machines,

within a fixed duration, without any restrictions on the operation processing order. In

addition, each machine can only process at most one operation at a time and an

operation cannot be interrupted once started. This problem is also called a non-

preemptive OSSP. The two common objectives of an OSSP are minimizing the

maximum finish time of operations (or makespan), and minimizing the total tardiness.

A survey on the recent research achievements on the OSSP can be found in the paper

by Dorndorf et al. (2001).

Minimizing the Makespan

The problem of minimizing the makespan is denoted as max||O C according to the

classification by Graham et al. (1979). A schedule for an OSSP is an assignment of the

operations to the machines with the operation processing order on each machine and

the processing order of the operations belonging to the same job. The OSSP is similar

to the JSSP with the exception that there is no processing order restriction placed on

the operations that belong to the same job. Therefore, the OSSP has a larger solution

space compared to the JSSP. Similar to the JSSP, the OSSP is also a NP-hard problem

(Garey and Johnson 1979). However, it has also been shown that some specially

structured OSSPs with 3m ≥ are polynomially solvable (Fiala 1983).

Compared with the JSSP, the OSSP received less attention in the mathematics

and operations research communities. When there are only two machines, that is,

2m = , a polynomial computational complexity algorithm was developed by Gonzalez

and Sahni (1976). A shifting bottleneck procedure was presented by Ramudhin and

Marier (1996) for the general OSSP based on the shifting bottleneck procedure (SBP)

for the JSSP proposed by Adams et al. (1988). Brucker et al. (1997) proposed a

 24

branch-and-bound algorithm that is based on the disjunctive graph formulation of the

OSSP.

Two dispatching rule based heuristics were developed by Guéret and Prins (1998)

and the performance of the two heuristics was evaluated based on both randomly

generated problem instances as well as benchmark problem instances. The first of their

heuristic is a list scheduling algorithm with two different priorities while the second

heuristic is based on the construction of matchings in a bipartite graph. Liaw (1998)

developed an iterative improvement approach based on Benders’ decomposition, in

which the sequencing and scheduling of operations were attacked individually. A

neighborhood structure for the OSSP was proposed by Liaw (1999) and a tabu search

algorithm was proposed based on the neighborhood structure proposed by the author.

The performance of the tabu search algorithm was evaluated based on both randomly

generated problem instances as well as benchmark problem instances. It was claimed

by the author that the tabu search algorithm performed extremely well on all the test

problems. The same author also developed a hybrid algorithm by incorporating the

tabu search algorithm with a genetic algorithm (Liaw 2000). Pinedo (2002) developed

a dispatching rule called Longest Alternative Processing Time first (LAPT) rule for

problem 2 max||O C , which was able to produce an optimal solution within polynomial

computation time. Another exact branch-and-bound algorithm was developed by

Dorndorf et al. (2001). This branch-and-bound algorithm focuses on constraint

propagation based methods to reduce the search space. Puente (2004) described an

algorithm that combined heuristic rules and genetic algorithms. Senthilkumar and

Shahabudeen (2006) presented a genetic algorithm based heuristic for the OSSP. The

performance of their algorithm was tested on small sized, randomly generated

problems. An exact algorithm was proposed by Tamura et al. (2006) by encoding

 25

Constraint Satisfaction Problems (CSPs) and Constraint Optimization Problems (COPs)

with integer linear constraints into Boolean Satisfiability Testing Problems (SATs).

The performance of their algorithm was evaluated based on benchmark problem

instances. This algorithm found and proved 192 optimal solutions from among the 194

problem instances.

Minimizing the Tardiness

A tabu search approach was proposed by Liaw (2003) when considering a two-

machine preemptive OSSP 2 | | jO prmp T∑ , in which a linear programming model is

used to generate the optimal job completion times and a tabu search approach was then

applied to generate the schedule. Liaw (2005) developed a branch-and-bound method

to solve the | |m jO prmp T∑ optimally.

2.3 Algorithms for Routing Shop Scheduling Problem

In classical shop scheduling models, it is normally assumed that the jobs can be

moved between the machines instantaneously. However, this assumption is seldom

valid, as it ignores the product or machine transportation times, which are, in practice,

not negligible. The scheduling problem that takes into account these transportation

times is called a routing shop scheduling problem. Two models are used by Lee and

Strusevich (2005) to incorporate transportation times into the flow shop and open shop

scheduling problems. In the first model, the machines are located at fixed positions and

jobs move between the machines. It is therefore reasonable to assume that there is a

time lag between the completion time of a job on one machine and its subsequent start

time on another machine. This lag is called transportation time. In the second model, it

is assumed that jobs which are located at the nodes of some transportation network and

 26

the machines have to travel between the jobs. It is also assumed that all the machines

are located at the same node (depot) initially and have to return to the depot after all

jobs are completed. The RSSP is NP-hard as even its relaxed problem, the TSP, is

already NP-hard. Most publications in the literature concentrate on the special RSSPs,

such as two-machine flow shop and two-machine open shop problems, because of their

complexity. A review of some of the RSSPs was made by Lee and Chen (2001).

2.3.1 Single Machine Scheduling Problem with Transportation Times

In a single machine scheduling problem with sequence dependent setup times, n

jobs have to be sequenced on a machine to minimize the total tardiness. Let pi, di

denote the processing time and the due date of job i respectively. Let ski denote the

setup times when job i succeeds job k immediately, where i = 1, …, n. The tardiness

of job i is denoted by Ti and Ti is defined as { }max , 0i i iT C d= − , where iC is the

completion time of job i. It is assumed that all the processing times, due dates, and

setup times are non-negative integers for this problem. In addition, job preemptions are

not allowed. According to the standard scheme introduced by Graham et al. (1979), the

single machine scheduling problem with sequence dependent setup times minimizing

the total tardiness of jobs is represented as ∑ iki Ts ||1 . Problem ∑ iki Ts ||1 is NP-

hard since its relaxation problem, problem ∑ iT||1 , was proven to be NP-hard by Du

and Leung (1990). Since the problem is NP-hard, it is unlikely that any algorithm will

always find an optimal solution within polynomial computation times.

Raman et al. (1989) provided a modification of the apparent tardiness cost (ATC)

heuristic rule in order to consider setup times. Lee et al. (1997) proposed a

generalization of the ATC rule, called the apparent tardiness cost with setups (ATCS)

rule. For the ATCS rule, the priority index was computed using the following formula,

 27

 { }
1 2

max , 0
(,) exp expi ii li

i
i

d p tw sI t l
p k p k s

− −⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
,

where t denotes the current time, l is the index of the job just completed, wi is the

weight of tardiness for Ji, p is the average processing time of the remaining jobs, s is

the average setup time of the remaining jobs respectively, and k1 and k2 are two scaling

parameters. It was claimed by Lee et al. (1997) that the ATCS rule is superior to the

modified ATC rule proposed by Raman et al. (1989).

Ragatz (1993) presented a branch-and-bound algorithm to minimize the total

tardiness with sequence dependent setup times. The lower bounds used by them are

weak and the performance of the procedure is highly dependent on the problem’s

characteristics. A genetic algorithm was developed by Rubin and Ragatz (1995), in

which a local search method based job exchange or single random exchange was

embedded to improve the solutions produced by the genetic operators further. The

performance of their genetic algorithm was compared to the branch-and-bound

algorithm and it is claimed that their genetic algorithm is as competitive as the branch-

and-bound algorithm. Tan and Narasimhan (1997) applied simulated annealing

technique to minimize the total tardiness on a single machine with sequence dependent

setup times. A comparison work of four algorithms, namely branch-and-bound, genetic

algorithm, simulated annealing, and random start pairwise interchange was conducted

by Tan et al. (2000). Based on their computational experiments, the authors concluded

that the simulated annealing and random start pairwise interchange algorithms yielded

good solutions within practical computation time limits. França et al. (2001) proposed

a memetic algorithm (MA), in which a new solution is generated from the genetic

operators of selection, crossover and mutation. A local search method is then applied

to the new solution to improve it further.

 28

Gagné et al. (2002) presented an ant colony optimization (ACO) algorithm for

the single machine scheduling problem with sequence dependent setup times. The

ACO algorithm utilizes a lookahead feature when selecting the next job to be included

in the partial schedule. Two local search methods were included in the ACO algorithm.

The first of these two methods is a restricted 3-opt method developed by Dorigo and

Gambardella (1997) for the traveling salesman problem (TSP). The second method,

proposed by Rubin and Ragatz (1995), is called random search pairwise interchange,

which proceeds to invert pairs of adjacent jobs in turn. The ACO algorithm was

compared to the branch-and-bound algorithm proposed by Ragatz (1993), the genetic

algorithm and the random search pairwise interchange local search method developed

by Rubin and Ragatz (1995), and the simulated annealing algorithm proposed by Tan

et al. (2000). It was shown that the ACO algorithm is competitive to all four

algorithms compared.

Gupta and Smith (2006) presented two algorithms, a problem space-based local

search heuristic and a GRASP algorithm with path relinking for SMSPs with sequence

dependent setup times. The authors claimed that the space-based local search method

performs as well as the ACO algorithm and that the GRASP gave better solutions than

the ACO in general. Several variants of the GRASP based algorithm, incorporating

memory-based mechanisms, were proposed by Armentano and de Araujo (2006). Two

mechanisms utilizing long-term memory composed from the elite solutions were

applied. The first mechanism is used to influence the construction of the initial solution

by extracting attributes from the elite solutions. The second mechanism makes use of

path relinking to look for a better solution based on the elite solutions. The

computational experiments conducted by the authors showed that their GRASP

algorithms are robust and competitive to the ACO and the MA algorithms.

 29

2.3.2 Flow Shop Scheduling Problem with Transportation Times

Under the permutation assumption of the two-machine flow shop problem,

Maggu and Das (1980) solved the problem in O(nlogn) by extending Johnson’s (1954)

algorithm for the problem 2 max||F C . A Tabu search algorithm was presented by

Dell’Amico (1996) for a two-machine JSSP and a FSSP with transportation times.

Strusevich (1999) presented a 1.5-approximate algorithm for the two-machine open

shop problem with job-dependent transportation times. It has been proved by

Rayward-Smith and Rebaine (1992) that the two-machine open routing shop

scheduling problem is NP-hard even when all the transportation times are equal. Lee

and Strusevich (2005) presented a heuristic for both the two-machine open shop and

the flow shop scheduling problems with job dependent transportation times.

2.3.3 Open Shop Scheduling Problem with Transportation Times

Strusevich (1999) considered a two-machine OSSP with transportation times to

minimize the makespan. The author assumed a known time lag between the

completion of an operation and the beginning of the next operation for the same job. A

1.5-approximate algorithm was proposed by the author. A
5
6 -approximate algorithm

was proposed by Averbakh et al. (2005) for a ROSSP with two machines on a 2-node

network. Averbakh et al. (2006) proved that the ROSSP with two machines on a 2-

node network with n jobs is NP-hard; a heuristic was also developed for this problem.

The same authors also proposed a heuristic for the general ROSSP based on the

conclusions obtained for the routing flow shop problem.

 30

2.4 Limitations of Prior Research Work

Based on the literature review, it is shown that only limited research work has

been done on routing shop scheduling problems which consider transportation or setup

times. For the single machine scheduling problem with different release dates, which is

relaxed from the single machine scheduling problems with sequence dependent setup

times by ignoring the transportation or setup times, there is only limited research work

focusing on local search algorithms and only two exact algorithms were proposed in

the prior work. Although there is some research done on single machine scheduling

problems with sequence dependent setup times, as presented in Section 2.3.1, the

previous work focused on problem specific algorithms which were developed for

solving only one type of problem. There is even less research work reported for

multiple machine routing scheduling problems. Moreover, for multiple machine

routing shop scheduling problems, only 2-machine problems were analyzed and only

simple heuristics were developed.

In this research, we first work on simple single machine scheduling problem.

Global dominance rules and lower bound computational methods are proposed for the

single machine scheduling problem with different release dates. Then we focus on

more complex single machine scheduling problem by considering transportation/setup

times. A generic algorithm, which is applicable to the single machine problem

with/without transportation/setup times, is developed and tested based on different

categories of single machine problems. At last, we presented algorithms for multiple

machine routing scheduling problems and the algorithms were tested based on both

benchmark problem instances and randomly generated problem instances.

 31

Chapter 3 Branch-and-Bound Algorithm for Solving Single Machine
Total Weighted Tardiness Problem with Unequal Release Dates

 In this chapter, we present a branch-and-bound algorithm for solving the single

machine total weighted tardiness problem. The objective of the problem is to schedule

the jobs to minimize the total weighted tardiness. Three global dominance rules are

proposed to reduce the search tree, and a method to compute the lower bound of the

total weighted tardiness is also introduced. The resulting branch-and-bound algorithm

has been implemented and the computational results show that the dominance rules are

efficient in reducing the size of the search tree and computation time. The

computational experiments conducted in this research also provide useful guidelines

for future implementation of the branch-and-bound algorithm to solve the single

machine total weighted tardiness problem.

3.1 Introduction

 This chapter considers a single machine scheduling problem with the objective

of minimizing total weighted tardiness. Akturk and Ozdemir (2000) states the problem

as follows. For a single machine, n independent jobs are released continuously, where

each job has a processing time ip , a release date ir , a due date id , and a tardiness

penalty weight iw . Minimizing the total weighted tardiness is one of the important

objectives for the single machine scheduling problem in practice. In manufacturing

environments, different orders have different priorities and accordingly, different

penalties for delayed deliveries. By minimizing the total weighted tardiness,

unacceptably long waiting times of any given job is likely to be avoided, especially for

those jobs with high priority. Besides manufacturing environments, minimizing total

weighted tardiness is also important in a multi-tasking computer operating system,

 32

where one of the functions of the system is to perform scheduling such that the central

processing unit (CPU) can be devoted to different programs or processes in order to

complete all tasks without any long delays.

 According to the standard scheme introduced by Graham et al. (1979), the

single machine total weighted tardiness problem is represented as ∑ iii Twr ||1 . This

problem is known to be NP-hard in the strong sense (Jouglet et al. 2004) and even its

relaxed problem, problem ∑ iiTw||1 , is proven to be NP-hard by Lenstra et al. (1977).

While many types of single machine scheduling problems have been well studied by

researchers, few have focused on problem ∑ iii Twr ||1 . Akturk and Ozdemir (2000)

developed the first branch-and-bound approach for problem ∑ jjj Twr ||1 . However,

the lower bound computational method proposed by Akturk and Ozdemir (2000)

ignores job releasing date difference and is very weak. Moreover, the dominance rules

proposed by the authors are condition-based rules, whose validity is based on partial

schedules. A constraint programming based branch-and-bound algorithm was

proposed by Jouglet et al. (2004). Their branch-and-bound algorithm focuses on

searching strategies and valid lower bound computational method was not discussed.

 In this chapter, we present an efficient branch-and-bound algorithm to solve

problem ∑ iii Twr ||1 . Three global dominance rules are developed to eliminate non-

optimal schedules. Any schedule violating the dominance rules can be removed from

searching candidates. Moreover, a lower bound computational method, which

considers job release dates, is also developed in this research work.

 The following symbols are used throughout this chapter.

Ji Job i, where i is the index of a job
N The number of jobs in a single machine scheduling problem

 33

ip The processing time of Ji

ir The release date of Ji

id The due date of Ji

iw The tardiness penalty weight for Ji

ijC The lower bound of completion time if Ji is scheduled at the jth position

ijT The lower bound of weighted tardiness of Ji if it is scheduled at the jth
position

Ai The set of jobs that have to be processed after Ji according to the
dominance rules

Bi The set of jobs that have to be processed before Ji according to the
dominance rules

S A set of jobs
|| S The number of elements in set S

SumS The sum of processing time for jobs in set S
LBCS The lower bound of completion time for jobs in set S
UBCS The upper bound of optimal schedule completion time for jobs in set S
LB The lower bound of total weighted tardiness for the problem
LUB The local upper bound schedule of the unscheduled jobs
UB The upper bound schedule of the problem, which is the current best

schedule
T(Schedule) The total weighted tardiness of a schedule or partial schedule
⎡ ⎤x The smallest integer greater than or equal to x

 This chapter is organized as follows. In Section 3.2, three global dominance

rules and a local dominance rule are presented. Section 3.3 introduces a lower bound

computational method for problem ∑ iii Twr ||1 by formulating and solving

appropriate assignment problems. The details of the implementation of the branch-and-

bound algorithm are given in Section 3.4. The proposed algorithm has been coded in

C++. The computational results of applying the proposed algorithm to certain problem

instances are reported in Section 3.5, and conclusions as well as some possible future

research work are provided in Section 3.6.

3.2 Dominance Rules

In this section, we present three global dominance rules for problem

∑ iii Twr ||1 . The three global dominance rules are based on the dominance rules

 34

developed by Emmons (1969) for problem ∑ iT||1 and the dominance rules

developed by Rinnooy Kan et al. (1975) for problem ∑ ii Tw||1 . We first define some

concepts that will be used to present the dominance rules. In an optimal schedule, Bi is

used to denote the set of jobs preceding Ji and Ai is used to denote the set of jobs

following Ji. For a set of jobs S with nS = , we can schedule the jobs in S in

nondecreasing order of the release dates with time complexity O(nlogn) and the

makespan obtained is the lower bound of the optimal schedule completion time,

denoted by LBCS. The upper bound of the optimal schedule completion time for the set

of jobs in S can be obtained with time complexity O(n) from the function below,

∑
∈∈

+=
Si

iiSiS prUBC }{max .

It is noted that SUBC can possibly be reduced further if some of the global dominance

relationships are known and considered.

The three global dominance rules are presented below and the proof is given in

Appendix A.

Global dominance rule 1A: Let Ji and Jk be two jobs (i, k S∈). If

(a) ki rr ≤ ,

(b) ki ww ≥ ,

(c) ki pp = , and

(d) { }{ }max , max ,
ki k k B kd d r LBC p≤ + ,

then Ji precedes Jk.

Rule 1A ensures that total weighted tardiness will not increase when jobs Ji and

Jk are exchanged. Condition (d) in Rule 1A is to make sure that the total tardiness of

jobs Ji and Jk will not increase when the due date of job Ji is not later than that of job Jk

or the earliest completion time of job Jk, which is given by { }max ,
kk B kr LBC p+ .

 35

Condition (a) in Rule 1A guarantees that exchanging jobs will not violate release date

constraints, as shown in Figure 3.1. Condition (b) in Rule 1A ensures that the total

weighted tardiness of jobs Ji and Jk will not increase after the exchange. Condition (c)

in Rule 1A can guarantee that the start time of job Jk after the exchange is the same

with that of jobs Ji before the exchange and therefore the start time of the other jobs

are not affected. Therefore, Rule 1A is able to guarantee that the total weighted

tardiness for the schedule will not increase after the exchange.

Figure 3.1 Illustration of exchanging jobs

If all the jobs have the same release date, the following global dominance rule

proposed by Rinnooy Kan et al. (1975) is valid. Condition (a) in Rule 1A can be

removed and Condition (c) in Rule 1A can be relaxed in the following Rule 1 (b) when

the release dates of all jobs are the same.

Global dominance rule 1B: Let Ji and Jk be two jobs (i, k S∈). If

(a) ki ww ≥ ,

(b) ki pp ≤ , and

(c) },max{ kBki pSumdd
k
+≤ ,

then Ji precedes Jk.

Global dominance rule 1A is dominated by global dominance rule 1B due to

the relaxation of conditions (a) and (b) in Global dominance rule 1A. Therefore, it is

preferable to apply global dominance rule 1B instead of global dominance rule 1A

when all the release dates of the unscheduled jobs are the same.

Jk Ji……

Ji Jk……

 36

Global dominance rule 2: Let Ji and Jk be two jobs (i, k S∈). If

(a) ki rr ≤ ,

(b) ki pp = , and

(c)
iASk SumUBCd −≥ , then Ji precedes Jk.

In Global dominance rule 2, the expression
iAS SumUBC − in Condition (c) is

the latest completion time of job Ji in any optimal schedule. As
iASk SumUBCd −≥ ,

job Jk will not be tardy after it is exchanged with job Ji. Therefore, there exists at least

one optimal solution with Ji preceding Jk when the conditions in Global dominance

rule 2 are satisfied.

Global dominance rule 3: For any job Jk (k S∈), if Sk UBCd ≥ , then Jk can be

assigned last. In the situation that there are 1≥m jobs satisfying Sk UBCd ≥ , then the

m jobs can be assigned in the last m positions in any sequence without sacrificing the

optimality of the schedule.

It is noted that there always exists at least an optimal schedule if global

dominance rules are followed.

Local dominance rule

Local dominance rules were originally presented by Akturk and Ozdemir (2001)

and Jouglet et al. (2004, 2008) for the single machine scheduling problem with

different release dates. We have implemented a simplified version of these local

dominance rules: Let Ji and Jk be two jobs scheduled next to each other in a schedule

or partial schedule. If interchanging the positions of Ji and Jk can produce a schedule

which satisfies

(1) same completion time with smaller weighted tardiness, or

 37

(2) smaller completion time with equal or smaller weighted tardiness,

then we can say that the current schedule is not locally optimal and the total weighted

tardiness will decrease or not change if the positions of the two jobs are interchanged.

Here, we use local dominance both to prune the search tree and to explore the

neighborhood.

In our proposed branch-and-bound algorithm, a local search method applying

the above local dominance rule is developed to improve the upper bound solution

obtained. The implementation of the local search method is based on a backtracking

strategy. Whenever an improvement is made by interchanging two adjacent jobs

according to the above two conditions, the search procedure will backtrack one

position to check for possible improvement. This backtracking search procedure is

repeated until no improvement is possible. It is noted that the final schedule obtained

by the above local search method may not be adjacent pairwise interchange optimal as

another condition, namely the completion time increases but the total weighted

tardiness decreases for two adjacent jobs, is not considered. This is to reduce

computation time that is incurred to compute the change of the total weighted tardiness.

Another reason is that it is impossible to determine whether a partial schedule is

locally optimal or not when some jobs have not been scheduled.

As mentioned by Rinnooy Kan et al. (1975), the implementation of the global

dominance rules may generate a precedence cycle when two rules contradict each

other. To overcome this problem, the global dominance rules are implemented based

on the procedure proposed by Rinnooy Kan et al. To avoid precedence cycles, only the

pair of jobs (i, k) without any relationship is considered to find a possible precedence

sequence by applying the three global dominance rules. Whenever a new precedence

Ji preceding Jk is found, the transitive closure of the set of known precedence

 38

relationships will be constructed immediately. For example, if we find that Ji precedes

Jk based on any of the global dominance rules, then Jk and all the jobs following Jk

(exclude Ji itself) will follow Ji, and Ji and all the jobs preceding Ji will precede Jk as

illustrated in Figure 3.2. Thus, the sets of jobs, kjj AkAA ∪∪ }{:= for

every iBij ∪}{∈ , and the sets of jobs ill BiBB ∪∪ }{:= for every kAkl ∪}{∈ , are

constructed accordingly. Formula kjj AkAA ∪∪ }{:= for every iBij ∪}{∈ denotes that

if job Ji is scheduled before job Jk, job Jk and its following jobs will be scheduled after

all those jobs which are scheduled before job Ji. Similarly, formula ill BiBB ∪∪ }{:=

for every kAkl ∪}{∈ means that if job Ji is scheduled before job Jk, all jobs which

precede job Ji will be preceding jobs of job Jk and its following jobs.

Figure 3.2 Job relationships after exchanging jobs

3.3 Lower Bound

For problem 1| |i i ir wT∑ , relaxing the release date or weight or both will

produce problems 1|| i iwT∑ , 1| |i ir T∑ and 1|| iT∑ respectively, which are also NP-

hard problems. Akturk and Ozdemir (2000) used the lower bound developed for

∑ iiTw||1 to compute the lower bound for problem ∑ iii Twr ||1 . Jouglet et al. (2004)

computed the lower bound for problem ∑ iii Twr ||1 based on the job splitting lower

bound computational method developed by Belouadah et al. (1992) for problem

1| |i i ir w C∑ . In this study, we extend the method proposed by Rinnooy Kan et al.

(1975), in which the lower bound is computed by solving an appropriate assignment

Ji JkBi Ak

Job Set 1 Job Set 2

 39

problem. The cost coefficients of the assignment problem are the lower bounds of the

weighted tardiness by putting job Ji at the jth position in the schedule.

In order to consider arbitrary release dates, the formulae defined by Rinnooy

Kan et al. (1975) are modified to compute the lower bound for problem ∑ iii Twr ||1 .

The modified formulae are given below:

},||)},}{({|{)(KQAJBSQQqKR iiii =−⊆∈= ∪∪

)1||(−−=
iiii BjRJBij LBCC ∪∪ ,

{ }max , 0 for | | {1,..., }

 otherwise
ij i i i i

ij

C d w B j n A
T

⎧ − × < ≤ −⎪= ⎨
+∞⎪⎩

 , (3.1)

where)(KRi denotes choosing K jobs from a given set of jobs and S denotes the set of

unscheduled jobs. The expression 1ij B− − is the number of jobs to be scheduled

before job Ji except for jobs in iB and)1||(−−=
iiii BjRJBij LBCC ∪∪ is the lower bound of

completion time of job Ji if it is scheduled at jth position. ijT is the lower bound of

weighted tardiness of job Ji. As pointed in Baker (1974), an optimal schedule can

easily be obtained by a polynomial time algorithm where jobs are scheduled in order of

nondecreasing release dates for problem max1 jr C . From the definition of Ri(K), we

know that the number of sets Q increases exponentially with the increase of

|)}{(| iii AJBS ∪∪− , and hence it is difficult to find the set Q which minimizes ijC .

However, we can get the lower bound of completion time for K jobs by scheduling all

jobs in set ({ })i i iS B J A− ∪ ∪ in nondecreasing order of release dates and then replace

the processing times of the first K jobs with the K smallest processing times.

Here, we construct K virtual jobs in order to design a polynomial method to

compute ijC . The steps of constructing virtual jobs are given below:

 40

Step 1: Let Q1 denote the jobs from the set)}{(iii AJBS ∪∪− with the smallest

release date, where |Q1| = K and the jobs in Q1 are sorted in nondecreasing

order of release date;

Step 2: Let Q2 denote the jobs from the set)}{(iii AJBS ∪∪− with the smallest

processing time, where |Q2| = K and the jobs in Q2 are sorted in

nondecreasing order of processing time;

Step 3: Construct K new jobs as follows: The ith new job is constructed by using

the ith smallest release date in Q1 as the new job’s release date and the ith

smallest processing time in Q2 as the new job’s processing time.

Then ijC can be obtained by scheduling jobs ()i iB R k∪ in nondecreasing order of

release date and followed by job Ji. Based on the procedure described above, the time

complexity for computing ijC is O(| ({ }) |i i iS B J A− ∪ ∪ log(| ({ }) |i i iS B J A− ∪ ∪))

when iA and iB are known.

By defining 1ijx = if job Ji is scheduled at the jth position and 0 otherwise, we

can formulate the mathematical programming model of the assignment problem to

compute the lower bound of weighted tardiness as follows:

 ∑∑
= =

n

i

n

j
ijij xT

1 1
min ,

1
1 for 1, ...,

n

ij
j

x i n
=

= =∑ ,

1

1 for 1, ...,
n

ij
i

x j n
=

= =∑ ,

.0 for , 1, .., .ijx i j n≥ = (3.2)

Note that the dual problem of the above assignment problem is given by

 41

∑∑
==

+
n

j
j

n

i
i vu

11
max ,

 for , 1,...,i j iju v T i j n+ ≤ = . (3.3)

We assume that an optimal solution to the assignment problem (*
ijx) has the

objective value LB* and a corresponding dual solution),(**
ji vu . As ijC will not

decrease with the increase of j, ijT will not decrease either. If the lower bound for the

descendant assignment problems after scheduling job Jk at the lth position is LB*, then

,andwhere),,(** ljkivu ji ≠≠ is a feasible solution to the dual problem of the

descendant node of the search tree. Therefore, the lower bound for the descendant

nodes can be obtained with time complexity O(1) by the formula given below:

lklj jki i vuLBvu −−=+∑∑ ≠≠
. (3.4)

It is easy to see that the lower bound obtained by Eq. (3.1) is stronger than that

obtained by Eq. (3.4).

Our preliminary computational experiments showed that the branch-and-bound

algorithm spent most of the time on computing the lower bound solution by solving the

assignment problem. There are two methods to reduce this computation time:

(1) Use the dual solution of the parent node as the initial dual solution of the

descendant assignment problem to reduce the computation effort;

(2) Do not solve the assignment problem at every node as Eq. (3.4) can be used

to get a lower bound for each of the descendant nodes.

From our experiments, we found that the first method was unable to reduce the

computation time efficiently and so we focus on the second method. As pointed out by

 42

Rinnooy Kan et al. (1975), it is necessary to develop a stronger lower bound especially

for the upper levels of the search tree for a large reduction in the search tree. While in

the deep levels of the search tree, it is preferable to use a simple lower bound

combined with extensive enumeration. Based on this strategy, they proposed using the

lower bounds of varying computational complexities throughout the search tree,

known as the gliding lower bound. However, their computational experiments only

showed a small decrease in computation time.

For the branch-and-bound algorithm proposed in this chapter, experiments will

be conducted to compare the efficiency of the three strategies introduced by Rinnooy

Kan et al. (1975), with the computational results being presented in Section 3.6. The

three strategies are described below:

I. Find the global dominance rules and solve the assignment problem at the

root node, and then use Eq. (3.4) to get the lower bounds at the descendant

nodes;

II. Find the global dominance rules and solve the assignment problem at every

node;

III. Find the global dominance rules and solve the assignment problem at the

upper tree levels, and then use Eq. (3.4) to get the lower bounds at the deep

tree levels.

Although the above three strategies are discussed in (1975), the details of

implementing strategy III were not given. In order to implement strategy III, we

determine the tree levels at which the global dominance rules are checked and the

assignment problems are solved to get the lower bounds. These tree levels are obtained

from the following set:

 43

{ }2| 2 , for {1, 2,..., }L l l n nd d d n⎡ ⎤∈ = − − ∈⎢ ⎥ .

It is noted that the formula 22nd d− represents one quarter of the y values in

a circle centered at (n, 0). As an example, let n = 10. Figure 3.3 illustrates that the set

of y values is {4.4, 6.0, 7.1, 8.0, 8.7, 9.2, 9.5, 9.8, 9.9, 10.0} for the corresponding

integer values of x from 1 to 10, and hence we can get the tree levels from the set {0, 1,

2, 4, 5} based on the above formula. While there could be other methods to implement

strategy III, we find that our proposed procedure is simple and can be implemented

easily. Moreover, there is no necessity to fine-tune any parameter for this procedure.

Based on the method presented above for strategy III, it can be seen that the

lower bounds are obtained at the predetermined upper levels of the search tree by

solving the relevant assignment problems and also by Eq. (3.4) at the other levels of

the search tree.

Figure 3.3 10-job problem example for Strategy III

 0 1 2 3 4 5 6 7 8 9 10

0

4.

4

 6
.0

7.

1

8.
0

 1

0.
0

 44

3.4 Branch-and-Bound Procedure

For a single machine scheduling problem, any enumeration scheme is able to

find and verify the optimal solution if sufficient computation time is given. However,

for the NP-hard problem ∑ iii Twr ||1 , the computation time increases significantly

with the size of the problem and hence it is too time consuming to perform direct

enumeration search. As such, we present an efficient search tree enumeration method

together with some search tree reduction criteria in this section. The details of the

implementation of the branch-and-bound algorithm are also provided.

3.4.1 Enumeration Method

 A simple enumeration method was proposed by Rinnooy Kan et al. (1975) for

problem ∑ iiTw||1 . From the root node without any job being scheduled, n different

nodes are branched from the first level with each node corresponding to a specific job

being scheduled at the first position. Each of these nodes will produce n – 1 new nodes

on the second level, corresponding to one of the remaining n – 1 jobs filling the second

position of the schedule. The whole search tree can thus be generated by implementing

this procedure.

 To speed up the search, we modify the above enumeration procedure. We first

present a ATC priority rule to generate an upper bound solution for problem

∑ iii Twr ||1 . It was shown by Vepsalainen and Morton (1987) that the ATC rule

outperforms other priority rules in minimizing the weighted tardiness for the JSSP.

Based on the ATC rule, the job assignment priority index is computed using the

formula given below:

 45

{ }max , 0
() exp i ii

i
i

d p twATC t
p kp

− −⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, (3.5)

where p is the average processing time of the unscheduled jobs, t is the current time

and k is a lookahead parameter. A fixed value of 1=k is used in our computational

experiments because our preliminary experimentation shows that 1=k can produce

slightly better results than other values of k in general.

 From the root node, the ATC values are computed for the n jobs and these

values are sorted in nonincreasing order. Then n different nodes are branched with

each job corresponding to one of the n jobs at the first level in the order of the sorted

ATC values. Each of the tree nodes will be branched to generate n – 1 nodes for the

second level and the procedure is repeated to enumerate the search tree. The purpose of

using the ATC priority rule here is to try to prevent the depth-first search of the

branch-and-bound algorithm from making a wrong choice and getting trapped with

going down a very deep tree level when a different choice would have led to a better

schedule.

3.4.2 Tree Reduction Criteria

The method described in the previous section is an explicit enumeration

scheme that has to be incorporated with a search tree reduction method to make it more

efficient. The following search tree reduction criteria are applied in the proposed

branch-and-bound algorithm to eliminate certain search tree nodes:

1) Active schedule generation rule;

2) Global dominance relationships;

3) Local dominance rule;

 46

4) Lower bound.

As it is well known from Baker (1974) that any optimal schedule must be an

active schedule for the machine scheduling problem, the active schedule generation

rule is used to prune the non-active schedules. If S is the set of unscheduled jobs, then

let }|min{* SiCC i ∈= be the earliest completion time among all the unscheduled jobs.

Only those jobs that satisfy *Cri < will be considered for scheduling at the current

node in order to generate an active schedule. If a job has at least one preceding job

based on the global dominance rules, the node is fathomed and hence eliminated from

branching; otherwise it is possible to branch from this node. If the schedule generated

after scheduling a job is not locally optimal, the node can also be pruned from

branching. A lower bound (LB) of the total weighted tardiness for a single machine

scheduling problem can be obtained by

)('* STLBLB += ,

where 'S denotes the scheduled jobs and)('ST denotes the total weighted tardiness for

the scheduled jobs, and LB* can be obtained based on the methods described in Section

3.4. Thus, a tree node is fathomed if LB at the current tree node is greater than or equal

to the total weighted tardiness of the current best schedule, which is the upper bound

(UB) schedule. The total weighted tardiness of the UB schedule is denoted by T(UB).

3.4.3 Implementation of the Branch-and-Bound Algorithm

 The depth-first branch-and-bound algorithm is implemented with a recursive

routine that calls itself on each of its descendant nodes in turn. In the branch-and-

bound routine, a local upper bound (LUB) schedule is obtained by the ATC rule for the

 47

unscheduled jobs. We use T(LUB) to denote the total weighted tardiness of the LUB

schedule. The main search routine and the branch-and-bound routine are given below:

Solver()

BEGIN
 Obtain an initial UB schedule by the ATC rule;
 Find job dominance relationships;
 Compute the cost matrix values for the assignment problem;
 Solve the assignment problem to obtain LB* and),(**

ji vu ;
 IF (LB* < T(UB)) THEN
 Branch_and_Bound (unscheduled jobs);
 ELSE
 UB schedule is optimal, stop;
 ENDIF
END

Branch_and_Bound (unscheduled jobs)

BEGIN

IF (partial schedule is local optimal) THEN
 IF (number of unscheduled jobs > 0) THEN
 IF (construct assignment problem condition satisfied) THEN
 Find job dominance relationships for the unscheduled jobs;
 Compute the cost matrix values for the assignment problem;
 Solve the assignment problem to obtain LB* and),(**

ji vu ;
 ELSE
 **** : lk vuLBLB −−= ; /* Here k and l refer to job Jk being */
 /* scheduled in the lth position at one */
 /* upper level of the current level */
 ENDIF
 Get LUB schedule by the ATC rule;
 IF (T(S’) + T(LUB) < T(UB)) THEN
 Replace UB schedule by a combination of the partial schedule
 and LUB schedule;
 ENDIF
 IF (LB* + T(S’) < T(UB)) THEN
 Apply tree reduction criteria;
 FOR EACH branching node
 Schedule a job;
 Branch_and_Bound (remaining unscheduled jobs);
 END FOR
 ENDIF
 ENDIF

ENDIF
END

 48

3.5 Computational Results

To test the performance of the proposed branch-and-bound algorithm, random

problem instances are generated with a scheme similar to that in Akturk and Ozdemir

(2001). As pointed out in Akturk and Ozdemir (2000) it is difficult for commercial

optimization software packages, such as ILOG CPLEX, to find an optimal solution

even for a 10-job problem. Therefore, the sizes of the problems in the computational

experiments carried out are limited to 10, 20 and 30 jobs. Each instance is generated

based on four uniformly distributed parameters ri, pi, di and wi. The values of pi and wi

are uniformly distributed on some bounded interval. The distributions of ri and di

depend on two parameters: .and βα For each job Ji, ri is generated from the uniform

distribution on [0, ∑
i

ipα] and)(iii prd +− is generated from the uniform distribution

on [0, ∑
i

ipβ], where }5.1,1,5.0,0{∈α and }5.0,25.0,05.0{∈β . The settings for

generating the random problem instances are given in Table 3.1 and 10 random

instances are generated for each combination of the settings.

Table 3.1 Settings for generating problem instances

Factor Setting
Number of jobs 10, 20, 30
Variability of pi [1, 10]
Variability of wi [1, 10]

The branch-and-bound algorithm has been coded in C++ and the assignment

problem is solved by ILOG CPLEX Network Simplex algorithm (2006). One of the

most efficient implementation of the Network Simplex algorithm reported in literature

is by Goldberg et al. (1989) with a complexity of O(n3logn). The computational

experiments are carried out on a Pentium IV PC with 2.6GHz CPU and 512MB RAM

 49

running on Windows XP operating system. All the computation times reported are in

seconds.

3.5.1 Computational Comparison of Lower Bounds

To evaluate the efficiency of the lower bound computational method proposed

in this study, computational experiments are carried out to compare the lower bound

used by Jouglet et al. (2004), denoted as 1LB , and the assignment problem-based lower

bound proposed in this chapter, denoted as 2LB . For LB1, the lower bound of the

weighted completion time is first computed based on the general job splitting method

described in Belouadah et al. (1992). Then the lower bound of the weighted tardiness

is computed by 1 i i i iw CLB LB w d= −∑ ∑ , where
i iw CLB∑ is the lower bound of the

weighted completion time obtained by general job splitting method.

Our preliminary computational results show that the total weighted tardiness for

the problem instances approaches zero when 0.5β > . Therefore, our computational

comparison of lower bound values is only based on {0.05, 0.25, 0.5}β ∈ . For each

combination of n , α and β , 10 problem instances are generated randomly. The

minimum lower bound, the average lower bound and the maximum lower bound

among the 10 random instances are given in Table 3.2. The larger average lower

bounds obtained by the two lower bound computation methods are highlighted using

bold font. Since the tightness of due dates is determined by β , it is expected that 2LB

would give a tighter lower bound than 1LB when β is large because the due dates are

ignored when 1LB is computed. This is reflected by the computational results

presented in Table 3.2, which indicate that the average lower bound value of 2LB

 50

tends to exceed 1LB when β increases from 0.05 to 0.5. When 0.5β > , the tightness

of 1LB and 2LB is the same because the optimal value of the total weighted tardiness is

0.

Table 3.2 Comparison of lower bounds

1LB 2LB n α β
Min. Avg. Max. Min. Avg. Max.

 0.05 503 764.9 1452 473 683.9 1405
 0.0 0.25 306 521.5 836 258 490.9 852
 0.5 0 71.3 285 67 183.9 271
 0.05 60 280.6 521 72 219.1 508
 0.5 0.25 0 85.6 313 53 155.3 275
10 0.5 0 0.0 0 0 29.4 80
 0.05 26 151.6 308 1 80.0 275
 1.0 0.25 0 0.0 0 0 15.6 65
 0.5 0 0.0 0 0 3.1 31
 0.05 0 12.7 64 0 7.1 17
 1.5 0.25 0 0.0 0 0 0.0 0
 0.5 0 0.0 0 0 3.8 30
 0.05 1213 1807.2 2191 1109 1629.3 1997
 0.0 0.25 616 1229.8 1973 530 1017.1 1902
 0.5 0 364.1 983 169 550.4 1008
 0.05 362 697.0 971 278 410.2 704
 0.5 0.25 0 75.3 276 95 185.2 319
15 0.5 0 0.0 0 0 62.5 212
 0.05 0 159.5 414 0 33.3 119
 1.0 0.25 0 0.0 0 0 10.2 67
 0.5 0 0.0 0 0 0.0 0
 0.05 0 33.3 198 0 9.3 63
 1.5 0.25 0 0.0 0 0 0.0 0
 0.5 0 0.0 0 0 0.0 0
 0.05 2262 3110.0 3803 1748 2639.2 3253
 0.0 0.25 1494 2110.9 3205 1370 1771.0 2929
 0.5 0 603.0 1692 537 800.0 1345
 0.05 632 1205.2 1776 403 822.6 1358
 0.5 0.25 0 213.6 1081 182 386.0 759
20 0.5 0 0.0 0 0 158.6 423
 0.05 69 304.6 859 0 98.2 299
 1.0 0.25 0 0.0 0 0 4.2 15
 0.5 0 0.0 0 0 0.0 0
 0.05 0 19.9 117 0 0.8 4
 1.5 0.25 0 0.0 0 0 0.0 0
 0.5 0 0.0 0 0 0.0 0

 51

3.5.2 Efficiency of Dominance Rules

To evaluate the performance of the global dominance rules, the number of

dominance relationships found by the three global dominance rules is summarized in

Table 3.3 for problem instances with different characteristics. The preliminary

computational experiments show that the efficiency of the global dominance rules

depends on problem characteristics. Moreover, it is also shown that none of the three

global dominance rules always dominates any other dominance rules. For a given

problem instances with unknown problem characteristics, it is preferred to apply all the

three dominance rules to prune more search nodes. The minimum number of

dominance relationships, the average number of dominance relationships and the

maximum number of dominance relationships of 10 randomly generated problem

instances for different combinations of n, α and β are given in the last three columns

of Table 3.3 respectively. It can be seen from Table 3.3 that the average number of

dominance relationships tends to decrease with the increase of α . When 0α > , the

range of release dates increases with the increase of α and hence the chance of

satisfying the condition ki rr ≤ becomes lower. When 0α = , all the jobs have the same

release times and hence the global dominance rule 1B, which dominates global

dominance rule 1A, is valid and could find more dominance relationships than global

dominance rule 1A.

In general, the average number of dominance relationships decreases slightly

with the increase of β . When the value of β is small, the range of the due dates is

small and hence the global dominance rule 1A is likely to be valid because its

condition (d) has a large possibility of being satisfied. However, when the value of β

is large, the range of the due dates is large and hence the global dominance rules 2 and

 52

3 are likely to be valid. It is noted that the global dominance rules 1A, 2 and 3 are valid

only when the processing times of the two jobs are the same. Therefore, it is possible

that less dominance relationships can be found when the range of the processing times

is large.

Table 3.3 Global dominance relationships

Number of global dominance relationships found n α β
Min. Avg. Max.

 0.05 16 24.5 31
 0.0 0.25 11 16.7 23
 0.5 11 18.5 32
 0.05 0 3.1 5
 0.5 0.25 1 2.6 4
10 0.5 0 2.1 4
 0.05 1 2 4
 1.0 0.25 0 1.9 3
 0.5 0 2.2 5
 0.05 1 3.4 6
 1.5 0.25 0 2.1 4
 0.5 1 2.7 5
 0.05 42 61.1 79
 0.0 0.25 24 35.2 44
 0.5 10 31.3 46
 0.05 2 5 8
 0.5 0.25 2 5.7 12
15 0.5 1 5.3 10
 0.05 4 7.1 10
 1.0 0.25 3 4.9 7
 0.5 1 4.7 8
 0.05 3 7.3 11
 1.5 0.25 1 5.3 11
 0.5 3 5.3 10
 0.05 70 95.7 113
 0.0 0.25 42 68.1 79
 0.5 44 67.5 88
 0.05 6 12.2 26
 0.5 0.25 4 10 15
20 0.5 2 6.3 11
 0.05 3 10.9 21
 1.0 0.25 5 9 19
 0.5 5 10.9 15
 0.05 3 9.8 19
 1.5 0.25 4 9.7 16
 0.5 0 8.5 15

 53

To further test the efficiency of the global and local dominance rules, additional

computational experiments are carried out. When the size of the problem is small, the

optimal solution can be found and verified within a very short computation time, when

the size of the problem is large, only a few problems can be solved optimally.

Therefore, we chose n = 20 jobs based on our preliminary computational experiments

to test the efficiency of the dominance rules in reducing the number of nodes of the

search tree and the computation time. As pointed out in Chu (1992) for problem

∑ ii Tr ||1 , there is no simple relationship between problem difficulty and the

variation of β , except when β is very large. In this case, the due dates are so

scattered such that there are many solutions with zero tardiness. When α is small, the

problem difficulty increases with β .

In our computational experiments, the branch-and-bound algorithm has been

run with n = 20 jobs using various combinations of α and β . For each lower bound

implementation strategy described in Section 3.4, the branch-and-bound algorithm has

been run under the following conditions, (a) without global and local dominance rules,

(b) with only the local dominance rule, and (c) with both global and local dominance

rules. Our preliminary computational experiments show that there is no interaction

between the local dominance rule and the global dominance rules. Therefore, we do

not present the computational results for the global dominances without local

dominance rule. The computational experiments are carried out with a computation

time limit of 600 seconds for each problem instance as our preliminary computational

experiments show that schedule quality improvement is marginal even though

computation time is extended to 3600 seconds. It is pointed out here that setting a time

limit does not mean transforming an exact algorithm to a heuristic one, but is helpful to

 54

evaluate the performance of the exact algorithms when solving difficult problem

instances.

Table 3.4 Comparison of efficiency of dominance rules based on Strategy I

(a) (b) (c)
α β #opt.1 #nodes2 Time3 #opt. #nodes Time #opt. #nodes Time
 0.05 10 550 0.19 10 357 0.12 10 23 0.04

0.0 0.25 0 3,624,509 600.01 5 2,254,387 465.84 10 14,695 3.42
 0.5 0 5,331,096 600.01 0 3,915,386 600.01 7 1,796,872 300.10
 0.05 0 4,778,997 600.01 8 1,437,915 241.01 10 306,720 55.82

0.5 0.25 0 6,405,399 600.01 0 4,131,127 600.01 4 2,845,301 417.57
 0.5 0 7,571,075 600.01 0 4,839,537 600.01 0 4,800,565 600.01
 0.05 5 3,726,173 328.46 10 164,079 20.94 10 32,291 4.47

1.0 0.25 6 4,221,314 290.25 10 240,029 24.62 10 122,478 12.65
 0.5 6 3,751,128 246.95 7 1,736,099 184.79 9 989,015 114.83
 0.05 10 42,198 5.45 10 842 0.16 10 356 0.07

1.5 0.25 10 28,166 2.51 10 428 0.07 10 264 0.05
 0.5 9 567,447 60.01 10 329,116 51.15 10 25,589 3.76

1 – Number of optimal solutions found and verified within 600 seconds among the 10 instances
2 – The average number of nodes explored
3 – The average computation time for the 10 random instances

The computational results are summarized in Tables 3.4, 3.5 and 3.6. Table 3.4

indicates that when the dominance rules are applied, the total number of optimal

solutions which are found and verified within 600 seconds increases from 56 for

setting (a) to 80 for setting (b), and then to 100 for setting (c). The average number of

nodes explored and the average computation time decrease significantly when more

dominance rules are applied, as shown in the “#nodes” and “Time” columns

respectively. The computational results show that the local dominance and global

dominance rules are efficient in reducing the search tree when they are applied in the

branch-and-bound algorithm. Tables 3.5 and 3.6 also show similar results as Table 3.4.

Hence we can conclude that the dominance rules proposed in this chapter are efficient

in reducing the size of the search tree and are independent of the lower bound strategy.

 55

Table 3.5 Comparison of efficiency of dominance rules based on Strategy II

(a) (b) (c)
α β #opt. #nodes Time #opt. #nodes Time #opt. #nodes Time
 0.05 10 534 0.25 10 347 0.24 10 22 0.04

0.0 0.25 0 1,609,093 600.01 5 682,489 449.84 10 13,054 12.08
 0.5 0 1,472,419 600.01 3 698,939 512.68 7 416,321 319.62
 0.05 5 937,252 423.05 10 44,663 33.82 10 17,690 14.06

0.5 0.25 3 1,262,324 489.67 8 315,978 225.49 10 162,864 128.54
 0.5 3 922,581 469.00 8 363,339 241.47 9 278,917 193.42
 0.05 10 49,061 36.43 10 1,429 1.47 10 880 0.89

1.0 0.25 10 43,660 19.91 10 5,294 3.30 10 3,768 2.65
 0.5 8 461,000 194.60 9 127,764 73.63 9 102,612 70.01
 0.05 10 1,300 1.55 10 153 0.21 10 118 0.18

1.5 0.25 10 1,208 0.64 10 146 0.16 10 100 0.13
 0.5 9 138,632 60.01 10 34,249 19.99 10 3,765 2.39

Table 3.6 Comparison of efficiency of dominance rules based on Strategy III

(a) (b) (c)
α β #opt. #nodes Time #opt. #nodes Time #opt. #nodes Time
 0.05 10 534 0.28 10 347 0.19 10 22 0.06

0.0 0.25 0 1,890,758 600.01 6 820,988 435.77 10 13,124 9.63
 0.5 0 2,008,913 600.01 2 998,875 524.29 7 535,957 295.87
 0.05 5 1,211,375 430.38 10 54,831 33.00 10 20,289 12.48

0.5 0.25 3 1,864,982 516.12 8 450,469 232.48 10 225,682 115.90
 0.5 3 2,441,772 481.97 8 967,751 276.23 8 634,601 204.44
 0.05 10 101,762 32.93 10 2,319 1.43 10 1,306 0.78

1.0 0.25 10 218,247 27.06 10 11,446 2.98 10 8,159 2.42
 0.5 8 2,480,433 236.62 9 336,642 81.50 9 209,466 71.62
 0.05 10 2,699 1.44 10 230 0.20 10 168 0.16

1.5 0.25 10 1,827 0.46 10 169 0.14 10 116 0.10
 0.5 10 199,995 45.16 10 42,815 12.98 10 4,198 1.38

Tables 3.5 and 3.6 also show similar results with Table 3.4. Analysis of

Variance (ANOVA) is conducted in order to analyze the effect of dominance rules and

lower bounds effect on the number of nodes being searched by the branch-and-bound

procedure and the results are presented in Table 3.7. Table 3.7 shows that P-Value

(Lower bound) = 0.0001 and P-Value(Dominance rule) =0.0000 respectively, which

are all smaller than 0.01α = . Therefore we can conclude with strong evidence that

lower bound strategy and dominance rules are significant factors that affect the branch-

and-bound procedure performance.

 56

Table 3.7 ANOVA for dominance rules and lower bounds

Source Sum of
Squares D.F. Mean

Square F-Ratio P-value

Lower bound 3.24e+013 2 1.62e+013 9.9061 0.0001

Dominance rule 5.90e+013 2 2.95e+013 18.0350 0.0000

RESIDUALS 1.68e+014 103 1.64e+012

TOTAL
(CORRECTED) 2.59e+14 107

3.5.3 Comparison of the Three Lower Bound Strategies

 To compare the performance of the three lower bound strategies described in

Section 3.4, computational experiments are also carried out based on randomly

generated problem instances. The computational results for the branch-and-bound

algorithm with both local and global dominance rules applied to problem instances

with n = 10, 20 and 30 are given in Tables 3.8, 3.9 and 3.10 respectively. It is noted

that a new set of problem instances with n = 20 has been randomly generated and thus

these results would be independent from those in Tables 3.4, 3.5 and 3.6.

Table 3.8 Computational results for n = 10

Strategy I Strategy II Strategy III
α β #opt. #nodes Time #opt. #nodes Time #opt. #nodes Time
 0.05 10 5 0.03 10 5 0.03 10 5 0.04

0.0 0.25 10 48 0.01 10 45 0.02 10 46 0.13
 0.5 10 272 0.03 10 154 0.07 10 164 0.06
 0.05 10 140 0.02 10 53 0.03 10 64 0.02

0.5 0.25 10 198 0.03 10 49 0.04 10 59 0.03
 0.5 10 1,431 0.12 10 185 0.10 10 288 0.07
 0.05 10 141 0.02 10 51 0.03 10 63 0.03

1.0 0.25 10 218 0.02 10 56 0.03 10 63 0.02
 0.5 10 277 0.03 10 75 0.04 10 104 0.03
 0.05 10 38 0.01 10 27 0.02 10 26 0.01

1.5 0.25 10 29 0.01 10 19 0.01 10 21 0.02
 0.5 10 13 0.01 10 8 0.01 10 8 0.01

 57

As shown in Table 3.8, all the problem instances with n = 10 can be solved

almost instantaneously because of the small size of these instances. The average

number of nodes shown in Table 3.8 indicates that Strategy I is likely to explore more

nodes to find and verify optimal solutions than Strategies II and III. Similar results are

also obtained in Tables 3.9 and 3.10. As the lower bounds obtained by Strategies II and

III at the same level of the search tree are likely to be tighter than the lower bounds

obtained by Strategy I based on Eq. (3.4) as described in Section 3.4, Strategy I may

have to explore more nodes than Strategies II and III to find and verify the optimal

solutions. Since Strategy III solves assignment problems only at the pre-specified

levels of the search tree, the tightness of its lower bounds at the same search tree level

lies between Strategy I and Strategy II, and hence it is reasonable that the average

number of nodes explored also lies between that of Strategy I and Strategy II in general.

Table 3.9 Computational results for n = 20

Strategy I Strategy II Strategy III
α β #opt. #nodes Time #opt. #nodes Time #opt. #nodes Time
 0.05 10 21 0.02 10 21 0.04 10 21 0.03

0.0 0.25 10 13,738 3.26 10 11,652 11.26 10 12,055 9.48
 0.5 7 1,481,830 270.74 7 262,216 245.24 7 369,243 238.86
 0.05 10 544,972 94.69 10 44,513 33.36 10 53,980 30.52

0.5 0.25 6 2,230,043 345.37 9 159,085 134.28 9 230,491 127.16
 0.5 0 4,338,258 600.01 8 233,932 185.61 8 415,523 199.08
 0.05 10 58,090 7.75 10 872 0.93 10 1,177 0.81

1.0 0.25 10 80,634 12.43 10 3,845 3.29 10 6,753 2.57
 0.5 10 591,307 61.52 10 36,014 16.65 10 84,427 14.47
 0.05 10 1,163 0.17 10 168 0.20 10 215 0.15

1.5 0.25 10 620 0.15 10 114 0.26 10 226 0.22
 0.5 10 11 0.01 10 9 0.01 10 10 0.02

The computational results in Tables 3.9 and 3.10 show that the three lower

bound strategies have different effects on the performance of the branch-and-bound

algorithm for problem instances with different characteristics. For 0=α and

 58

{ }25.0,05.0∈β , strategy I is the most efficient one among the three lower bound

strategies when both the number of optimal solutions found and verified and the

average computation time are considered. For 0=α and 5.0=β , strategies II and III

are more efficient than Strategy I when considering the number of optimal solutions

found and verified and the average computation time. For { }5.1,1,5.0∈α , Strategy III

in general is the most efficient one when compared with Strategies I and II.

Table 3.10 Computational results for n = 30

Strategy I Strategy II Strategy III
α β #opt. #nodes Time #opt. #nodes Time #opt. #nodes Time
 0.05 10 159 0.11 10 159 0.56 10 159 0.52

0.0 0.25 5 1,009,147 397.86 2 300,078 503.29 2 367,079 498.13
 0.5 0 2,082,874 600.01 0 486,087 600.01 0 738,627 600.01
 0.05 0 2,318,068 600.01 2 415,905 516.11 2 605,595 515.15

0.5 0.25 0 2,600,571 600.01 0 365,066 600.01 0 645,449 600.01
 0.5 0 3,114,820 600.01 0 339,162 600.01 0 880,342 600.01
 0.05 7 1,411,320 241.90 8 69,430 130.82 8 207,907 133.83

1.0 0.25 3 3,681,516 461.15 6 524,107 311.14 6 1,488,158 292.15
 0.5 5 2,606,561 302.88 5 831,444 302.77 6 1,786,525 242.63
 0.05 10 14,646 1.92 10 606 1.35 10 5,692 4.97

1.5 0.25 10 19,023 4.67 10 4,249 6.15 10 2,361 3.70
 0.5 10 1 0.03 10 1 0.03 10 1 0.03

The different efficiencies of the three strategies are due to the different

characteristics of the problem instances. When α and β are small, all jobs have

similar release dates and the variation of due dates is small. Therefore, all the jobs

become both available and tardy rapidly after a few jobs are scheduled. As a result,

stronger lower bounds are likely to be obtained at the upper levels of the search tree,

and hence strategy I is efficient when both α and β are small. When the variation of

due dates is large, it is possible that most of the early assigned jobs will not be tardy

and the lower bounds obtained at the upper levels of the search tree by solving the

 59

assignment problem are weak. Therefore, it is not likely that stronger lower bounds can

be obtained at the upper levels and hence strategy II may be efficient. Strategy III on

the other hand is a balance between Strategies I and II, and may be efficient for

moderate variation of due dates. Thus, we conclude that different strategies should be

applied to solve problems with different characteristics.

Table 3.11 Computational results of Akturk and Ozdemir (2000) for n = 20

n= 20
α β #opt. #nodes1 Time (seconds)
 0.05 10 352.7 0.7

0.0 0.25 10 1977373.2 1569.3
 0.5 5 2902084.0 3071.3
 0.05 10 712961.4 387.0

0.5 0.25 10 1129594.0 1765.7
 0.5 7 1107718.1 1348.2
 0.05 10 114840.5 160.9

1.0 0.25 10 593646.4 1107.0
 0.5 10 443117.0 1336.7
 0.05 10 66543.1 54.1

1.5 0.25 10 6781.5 37.8
 0.5 10 61.1 0.1

 1 – Average number of nodes. Maximum number of nodes = 4000000.

The branch-and-bound method of Akturk and Ozdemir (2000) was

implemented using the GNU C compiler with the -02 optimizer option and ran on a

SPARC Station 10 under SunOS 5.4. Their branch-and-bound algorithm will stop if

optimal scheduled cannot be verified after the algorithm has reached the maximum

node limit of 4000000. 10 random replications were generated based on the setting

presented in Table 3.1 and the computational results for 20-job problems are presented

in Table 3.11. For 0=α and 0.05β = , the Strategy III of the proposed branch-and-

bound method can find and verify optimal solutions with an average running time of

0.03 seconds and average 21 nodes being searched. While the branch-and-bound

 60

method of Akturk and Ozdemir (2000) had to enumerate an average of 352.7 nodes to

find and verify all optimal solutions. For harder problems with 0.5α = and 0.5β = ,

the Strategy III of the branch-and-bound method proposed in this research work

enumerated an average of 415523 nodes in an average of 199.08 seconds and proved 8

optimal solutions. Akturk and Ozdemir’s (2000) method searched an average of

1107718.1 nodes in an average of 1348.2 seconds but only proved 7 optimal solutions.

Since different hardware and platforms were used for computational experiments, it is

difficult to compare the computation time without bias. However, the proposed branch-

and-bound method generally enumerates less nodes than Akturk and Ozdemir’s (2000)

method to find and prove optimal solution

3.6 Conclusions

In this chapter, three global dominance rules and a simplified version of a local

dominance rule for problem ∑ iii Twr ||1 have been proposed. The computational

experiments show the efficiency of the proposed dominance rules through a reduction

in the size of the search tree and the computation time for solving the problem. An

assignment problem-based lower bound computation method is also proposed and

compared with another method that uses a general job splitting method to obtain the

lower bound. Three lower bound implementation strategies are tested based on

randomly generated problem instances and the computational results provide useful

guidelines for the future use of the branch-and-bound algorithm to solve problem

∑ iii Twr ||1 . However, it is possible to improve the performance of the branch-and-

bound algorithm by incorporating stronger and more efficient lower bound

 61

computation methods and intelligent backtracking strategies, and these are areas of

future research work.

 62

Chapter 4 An Overlapped Neighborhood Search Algorithm for
Sequencing Problems

In this chapter, an original heuristic, named overlapped neighborhood search

(ONS) algorithm, is presented for single machine scheduling problems whose

solutions can be represented with permutations. The ONS algorithm decomposes the

sequence of a solution into small sized overlapped blocks; the solution space of each

block is then explored independently. In addition, the ONS algorithm is a general-

purpose algorithm that is able to solve a wide variety of sequencing problems, such as

various single machine scheduling problems (SMSPs), the traveling salesman problem

(TSP), linear ordering problems (LOP), quadratic assignment problems (QAP), and

bandwidth reduction problems (BRP). To test the performance of the ONS algorithm,

comprehensive computational experiments are carried out for SMSPs. Our

computational results show that the ONS algorithm is efficient in solving these

problems.

4.1 Introduction

Many decision problems encountered in manufacturing environments, such as

various SMSPs, are formulated as combinatorial optimization problems and their

solutions can be represented with permutations. Due to the computational complexity

of combinatorial optimization problems - in particular, the large sized problems

encountered in practice - the performance of exact algorithms are often poor as these

problems are too difficult to be solved exactly within reasonable computation times.

As a result, heuristics are developed to generate satisfactory solutions within

reasonable computation time. If the solutions obtained using simple solution

 63

construction heuristics are not satisfactory, one can often resort to local search

heuristics to improve the existing solutions further. However, the main drawback of

local search algorithms is that they are often trapped in local optimal solutions. This

drawback has led to the consideration of algorithms that can guide the local search

algorithms in getting out of traps and further improve the existing solutions.

To overcome the drawback of local search algorithms, researchers in the areas of

operations research and artificial intelligence have introduced meta-heuristics that were

applied successfully in solving many complex optimization problems. These meta-

heuristics include a simulated annealing (SA) algorithm introduced by Kirkpatrick et al.

(1983), tabu search (TS) algorithm proposed by Glover (1989, 1990), ant system (AS)

algorithm developed by Colorni (1991), Dorigo et al. (1996), as well as the Greedy

Randomized Adaptive Search Procedure (GRASP) implemented by Feo and Resende

(1995), and Resende and Ribeiro (2003). However, the most efficient meta-heuristics

often rely on the problem’s information and can be viewed only as customized

heuristics based on problem specific information, see Campos et al. (2005). Hence,

these solution procedures cannot be separated from the optimization problem models.

The general purpose and problem independent algorithms are anticipated for

combinatorial optimization problems. The advantage of general purpose and problem

independent algorithms is that these algorithms can be applied to a wide variety of

problems without modification of the fundamental models. The disadvantage of the

problem independent algorithms is that they may be inferior to those of specialized

procedures because the problem specific information is ignored.

We will present a general purpose algorithm for the single machine scheduling

problem in this chapter. This chapter is organized as follows. Section 4.2 presents the

details of the ONS algorithm. Several local search methods, which can be used to

 64

explore the solution space of blocks, are provided in Section 4.3. The detailed

implementation issues of the ONS algorithm for single machine scheduling problems

with or without setup times are provided in Section 4.4. To illustrate the performance

of the proposed algorithm, computational experiments based on SMSP instances were

carried out and the computational results are presented in Section 4.5. Section 4.6

gives some concluding remarks.

4.2 Overlapped Neighborhood Search Algorithm

As a general purpose sequencing algorithm, the ONS algorithm explores the

solution neighborhood and treats the objective function evaluation as a black box. The

black box model for the ONS algorithm is illustrated in Figure 4.1. As the objective

function is evaluated outside the ONS algorithm, the ONS algorithm does not know

anything about how the solution is evaluated.

Figure 4.1 Black box model of ONS algorithm

As stated by Glover et al. (1993), the meta-heuristics often require a definition of

the neighborhood. The use of large neighborhoods is attractive when searching for

good solutions, but it is time consuming to explore the neighborhood fully. Smaller

neighborhoods are both simpler and faster to explore, but they may not produce

satisfactory solutions. Overall, it is preferable to use a small neighborhood if the

quality of the solution obtained is reasonably good. For a sequencing problem, it is

conjectured that it would be unlikely to improve an existing good solution very much

ONS Algorithm

Evaluate objective value

π f(π)

 65

by relocating an object to positions far away from their original positions. The ONS

algorithm proposed in this dissertation is based on this conjecture.

4.2.1 Overlapped Neighborhoods

The sequencing problem is to find a permutation ()1 2, , , np p pπ = … of the

objects {1,2,..., }n in order to minimize or maximize the objective function value,

where ip is the index of the object at position i . The general purpose ONS algorithm

is a methodology that operates on a solution vector, which is one of the possible

permutations of objects. The ONS algorithm divides an existing solution into blocks

that overlap the blocks next to them; each block is then explored independently by

utilizing block improvement procedures (BIPs) which are described in Section 4.3.

The overlapped neighborhoods for a sequencing problem are illustrated in Figure 4.2.

As shown in Figure 4.2, a sequence of the objects is divided into overlapped blocks

321 ,, BBB , and so on. There is an overlap between any two adjacent blocks.

Figure 4.2 Illustration of the overlapped blocks

4.2.2 ONS Algorithm Framework

The existence of overlaps makes it possible that overlapped partial solutions are

explored at least twice. This is equivalent to the intensification strategy of Tabu Search

(TS), where the search focuses on the examination of elite solutions (Glover 1989).

For the ONS algorithm, the intensification strategy is implemented by intensive search

on the overlapped partial permutations. As the search on a block reaches a local

B3 B2 B1

overlap of B1 and B2

 66

optimum and is improved by BIP, the previously searched block will be searched again

for a possible improvement. Therefore, the overlap between any two blocks makes it

possible to improve further the search on a particular block, as well as the whole

solution, if the permutation of objects in its next block is changed. This procedure is

repeated until no further improvement is possible. In this way, a large sized

combinatorial problem can be improved based on its constituent small neighborhoods.

For the example illustrated in Figure 4.2, if the local optimal solution of B2 is obtained

and the objective of the problem is improved, the ONS algorithm will backtrack to B1

to implement BIP. If block B2 cannot be further improved, BIP will proceed to explore

block B3. This backtrack search procedure is repeated until no improvement is possible.

As the backtrack search procedure is a local search algorithm, it will terminate when

the current solution cannot be further improved.

Let SB denote the size of the block, and let SO be the size of the overlap. The sizes

of the block and overlap are the number of objects in the block and in the overlap

respectively. For a sequencing problem of size n, a solution can be divided into

() /() 1B B On S S S− − +⎡ ⎤⎢ ⎥ blocks. The ONS algorithm can also be implemented for all

the possible BS , where { }2,3, ,BS n∈ … . For 2BS = , the ONS algorithm reduces to an

adjacent pairwise interchange local search method (Baker 1974).

The computational requirements of the ONS algorithm can be reduced as follows.

The BIP will backtrack to the recently searched block only when the permutation of

objects in the overlapped neighborhood is changed; otherwise, it will move to the next

block.

The search procedure described above is summarized as follows.

Step 1. Generate an initial solution;

 67

Step 2. Apply BIP to the current block. If the solution is improved, go to Step 3;

otherwise, go to Step 4;

Step 3. If the permutation of the block is changed and the current block is not the first

block, set the previous block as the current block and go to Step 2; otherwise,

go to Step 4;

Step 4. If the current block is the last block, stop; otherwise, move to the next block

and go to Step 2.

4.3 Block Improvement Procedures

As the ONS algorithm is developed as a general purpose and problem

independent algorithm, it is required that the BIPs are general procedures in order to

explore the solution spaces of different problems. The criteria to design the block

improvement strategies are:

(1) The block improvement method must be problem independent;

(2) The block improvement method should be able to explore the solution space

as much as possible;

(3) The block improvement method should be computationally efficient.

We use two local search algorithms developed for the TSP to illustrate the

difference between a problem independent algorithm and a problem dependent

algorithm.

One of the most well known local search algorithms for the TSP is the 2-opt local

search algorithm developed by Croes (1958), which is based on performing a move to

improve a given solution. Each move consists of exchanging 2 edges from the current

tour with 2 edges not in that tour as long as the result remains a tour. The 2-opt

algorithm is a problem independent algorithm which does not utilize the distance

 68

matrix information as it explores the solution neighborhood. A problem dependent

algorithm restricts the exchange of edges by considering only those nodes that are

relatively close to each other. For example, Steiglitz and Weiner (1968) proposed a

restricted 3-opt method which stores, for each node i , a list of neighboring remaining

nodes in an order of increasing distances from i. This truncated neighborhood is

smaller than the original neighborhoods and the computation time can hence be

reduced. However, the problem dependent information used in the restricted 3-opt

local search method may not exist for other sequencing problems such as SMSPs.

Hence, those problem specific algorithms cannot be embedded in the ONS algorithm.

Several problem independent BIPs are provided in the subsection below.

4.3.1 Generalized Crossing (GC) Method

GC method was initially proposed by Zeng et al. (2007) for solving vehicle

routing problems (VRP). The advantage of the GC method is that it is simple, fast, and

it defines a large sized neighborhood. In this study, the GC method is adapted to solve

the sequencing problem.

 Figure 4.3 Initial sequence in a block

Unlike the VRP, the nodes in the sequencing problem are decomposed into three

strings, represented by A, B, and C respectively, as illustrated in Figure 4.3. Five new

partial sequences can be generated by reordering the three strings, as illustrated in

Figure 4.4. As any of the three strings A, B, and C can also be reversed to form new

sequences, 7 new sequences can be produced by reversing nodes in one string, two

A

n6 n2 n3 n4 n5

B C

n1

 69

strings, or three strings. Therefore, up to 48 different blocks (including the original

block) may be generated from one original block.

Figure 4.4 Sequences generated by re-sequencing three strings

4.3.2 Problem Independent Algorithms Developed for TSP

As shown in Figure 4.3, each block can be represented by a Hamiltonian path. In

the mathematical field of graph theory, a Hamiltonian path is a path in an undirected

graph that visits each vertex exactly once (Christofides 1970). It was shown by

Christofides (1970) and Boffey (1973) that the problem of finding the minimal length

Hamiltonian path is equivalent to finding the shortest tour of the TSP.

We will show how to convert the Hamiltonian path problem to a TSP problem by

modifying the distance matrix. Here, we assume that the Hamiltonian path problem

and the TSP are symmetric. For the asymmetric problem, the distance matrix will be

modified accordingly. Let {1,2, , }N n= … denote the set of objects in a block and let

[]ijC c= , where , 1, 2...,i j n= , denote the distance matrix respectively, and let M be a

large positive number, e.g. greater than the sum of the matrix element values. For each

B
n6 n4 n1 n2 n5

A C
n3

B
n2 n4 n5 n6 n1

C A
n3

C
n4 n6 n1 n1 n3

A B
n5

A
n4 n2 n5 n6 n3

C B
n1

C
n2 n6 n3 n4 n1

B A
n5

 70

block defined in the ONS algorithm, let p and s denote the objects of a block

immediately preceding and succeeding the current block (dummy objects may be

required if the current block is the first block or the last block). We add vertices p and s

as well as a dummy object d into N to form the vertex set ' { , , ,1,2, , }N p s d n= … . The

revised distance matrix 'C is given below:

'

' '

' '

' '

' ' ' '

for , {1, 2,... },

for {1, 2,... },

for {1, 2,... },

2 for {1,2,... },

0.

ij ij

ip pi ip

is si is

di id

dp pd ds sd

c c i j n

c c c i n

c c c i n

c c M i n

c c c c

= ∈

= = ∈

= = ∈

= = ∈

= = = =

 (4.1)

Under the transformation given in (4.1), the optimal or local optimal solutions to

the TSP are guaranteed to contain the partial path ()p d s− − . Therefore, the solution

to the TSP problem with vertex set ' { , , ,1,2, , }N p s d n= … and distance matrix 'C is

equivalent to the solution to the problem with vertex set {1,2, , }N n= … and distance

matrix C . As a result, any algorithm developed for the TSP can be applied to find the

minimal length Hamiltonian path.

The above transformation of the Hamiltonian problem to the TSP is

demonstrated based on the distance matrices C and 'C . For those problems that do

not have distance matrix C for the original problem, e.g. SMSP without setup times,

'C can be defined as follows:

'

' '

' '

' '

' ' ' '

0 for , {1,2,... },

0 for {1, 2,... },

0 for {1,2,... },

2 for {1,2,... },

0.

ij

ip pi

is si

di id

dp pd ds sd

c i j n

c c i n

c c i n

c c M i n

c c c c

= ∈

= = ∈

= = ∈

= = ∈

= = = =

 (4.2)

 71

Based on (4.2), the optimal or local optimal solution to the TSP is also

guaranteed to contain the partial path ()p d s− − .

One should note that the purpose of the problem transformation above is to

explore the block’s solution space instead of finding the minimal length of

Hamiltonian path. The objective value of the block will be evaluated by the objective

function defined for the original problem to be solved. Based on the previous

discussion, it is obvious that any of the problem independent procedures developed for

the TSP can be applied to explore the solution neighborhood. Some of these algorithms

are 2-opt (Croes 1958), 3-opt, and r-opt (Lin and Kernighan 1973) local search

algorithms as well as the Or-opt local search algorithms proposed by Or (1976).

4.3.3 Insertion and Interchange Based Local Search Procedures

The insertion and interchange based heuristics have been applied to many

different optimization problems. In an insertion operation, an element at position i is

inserted into another position j (i j≠). Formally, the insertion operation for a

permutation 1 1 1 1 1(, , , , , , , , , ,)i i i j j j np p p p p p p pπ − + − += … … … is defined as:

1 1 1 1 1

1 1 1 1 1

(, , , , , , , , , ,),
insert(, ,)

(, , , , , , , , , ,),
i i j j i j n

j i j j i i n

p p p p p p p p i j
i j

p p p p p p p p i j
π − + − +

− + − +

<⎧⎪= ⎨ >⎪⎩

… … …
… … …

.

The interchange local search procedure swaps the element at position i with the

element at position j, for i j≠ , as shown below:

1 1 1 1 1Interchange(, ,) (, , , , , , , , , ,)i j i j i j ni j p p p p p p p pπ − + − += … … … .

It is noted here that we are not aiming to enumerate all the BIPs for the ONS

algorithm. There are many other problem independent local search methods that can be

embedded in the ONS algorithm, and the efficiency of the ONS algorithm may be

affected by the BIP employed.

 72

4.4. Implementation Issues

The ONS algorithm can be implemented in many variants. One of the typical

implementation procedures is given here.

Step 1. Generate an initial solution, set SB : = 3, := CoefficientO BS S×

(0 1Coefficient< <), maximum size of block;

Step 2. Define the overlapped blocks based on the values of SB, SO and get the

number of blocks that the initial solution is divided into; set Current Block

Index: = 1;

Step 3. If Current Block Index = 0, reset Current Block := 1; if Current Block is

greater than the number of blocks obtained in Step 2, go to Step 8;

Step 4. Implement BIP within the current block until no improvement can be made;

Step 5. If the current block is improved in Step 4, go to Step 6; otherwise, go to

Step 7;

Step 6. Set Current Block Index := Current Block Index - 1, go to Step 3;

Step 7. Set Current Block Index := Current Block Index +1, go to Step 3;

Step 8. Increase SB by a step size. If SB is less than the maximum size of block, set

:= O BS Coefficient S× and go to Step 2; otherwise, go to Step 9.

Step 9. Stop.

The general procedure described above is able to explore different sizes of blocks

iteratively. There are several control parameters in the ONS algorithm. They are the

size of block SB, the size of overlap SO, and the step size of the increment of SB in Step

8. In general, the ONS algorithm will produce a better solution with a large SO and a

small step size of the increment of SB, albeit with the cost being longer computation

times.

Based on the previous discussion in this chapter, we can see that the ONS

algorithm developed in this research work is different from existing local search

algorithms and meta-heuristics. Firstly, it is a general purpose heuristic for a wide

 73

variety of sequencing problems. Any problem whose solution can be represented by

permutations can be solved by the ONS algorithm. Secondly, many existing local

search methods can be used as BIPs for the ONS and hence makes ONS an expandable

heuristic. Thirdly, the ONS algorithm is able to explore problem solution space of each

block independently and enlarge the solution space, which makes it possible to find a

good solution. Moreover, the computation complexity of the ONS algorithm is

controllable by setting different sizes of blocks and overlaps. This feature makes it

suitable to solve different size of problems with controllable computation time.

4.5 Computational Experiments

To test the performance of the proposed ONS algorithm, computational

experiments were carried out based on TSP benchmark problem instances and SMSP

instances. The ONS algorithm was coded in C++ and all computational experiments

were conducted on a Pentium 4 PC with 2.6 GHz CPU with 512MB RAM running the

Windows XP operating system. The computation time reported is in seconds.

4.5.1 Computational Experiments for the SMSP with Unequal Release Dates

In a single machine scheduling problem with the objective of minimizing the

total weighted tardiness, n independent jobs are released continuously and each job has

a processing time pi, a release date ri, a due date di, and a tardiness penalty weight wi.

Compared to the TSP, the evaluation of the SMSP neighbors is more time consuming

as the weighted tardiness of all the jobs following the first job that is moved forward

have to be updated. The GC method is applied as the BIP for the SMSP with unequal

release dates. Our computational experiments for the SMSP were conducted based on

 74

the random problem instances generated using the scheme in Akturk and Ozdemir

(2001).

Each instance is generated from four uniformly distributed parameters of ri, pi, di,

and wi. The values of pi and wi are all uniformly distributed between a lower bound

value and an upper bound value. The distributions of ri and di depend on two

parameters: α and β . For each job, ir is generated from the uniform distribution

0, ipα⎡ ⎤⎣ ⎦∑ and)(iii prd +− is generated from the uniform distribution [0, ∑ ipβ],

where }5.1,1,5.0,0{∈α and }5.0,25.0,05.0{∈β . The settings of the problem

generating parameters are shown in Table 4.1. For each combination of settings, 20

random instances were generated and hence 2880 random problem instances were

generated in total.

The relative improvement in percentage is defined in Akturk and Ozdemir (2001)

as:

()Improve / 100 if 0
Impr. ,

0 otherwise

h h hWT WT WT WT⎧ − × >⎪= ⎨
⎪⎩

where WTh is the total weighted tardiness value of the initial schedule obtained by

heuristic rules and Improve WT is the total weighted tardiness value obtained using an

improvement algorithm.

Table 4.1 Problem generating parameters

Factors Number of levels Setting
Number of jobs 3 50, 100, 150
Variability of pi 2 [1, 10], [1, 100]
Variability of wi 2 [1, 10], [1, 100]

The ATC heuristic rule developed by Rachamadugu and Morton (1981), the

weighted short processing time rule (WSPT), and the weighted earliest due date (WDD)

 75

rule are used to generate initial solutions. Of the three heuristic rules, it was shown by

Akturk and Ozdemir (2001) that the WDD and WSPT rules performed poorly

compared to the ATC since these two rules does not consider the unequal release dates.

As the three heuristic rules showed different efficiency in producing initial schedules,

we were able to analyze the sensitivity of the ONS algorithm to the quality of the

initial schedules. For the ATC rule, a fixed value of 1=k was used throughout the

computational experiments because our preliminary computational experiments

showed that 1=k generated slightly better results compared to other values.

Compared with the local dominance rule (LDR) proposed by Akturk and

Ozdemir (2001), which produces schedules that cannot be improved by adjacent

pairwise interchange (API), the ONS algorithm is able to produce larger sizes of

neighborhoods due to the larger size of neighborhoods generated by the GC BIP. Even

when SB = 3, SO = 1, the neighbors generated by the LDR local search method is only a

subset of the neighbors generated by the GC BIP.

Table 4.2 Computational results of ONS and LDR

 LDR ONS

n Method Average
tardiness1

Average
Impr.%2 Time3 Average

tardiness1
Average
Impr.%2 Time3

50 ATC 114118 12.0 0.026 113708 13.5 0.027
 WSPT 133957 28.7 0.057 130916 32.9 0.059
 WDD 120220 41.0 0.125 117586 44.4 0.123
100 ATC 416150 13.7 0.050 415274 15.3 0.053
 WSPT 489644 28.8 0.081 480071 33.7 0.167
 WDD 446481 43.7 0.666 435284 48.6 0.635
150 ATC 958655 16.8 0.126 957136 18.5 0.109
 WSPT 1118483 27.6 0.181 1102218 32.6 0.149
 WDD 1037425 44.5 1.134 1007544 49.2 1.396

1 – The average tardiness of 960 problem instances
2 – The average improvement in percentage over 960 instances
3 – The average computation time for each replication based on PC with 2.6GHz CPU and

512MB RAM in seconds

 76

The computational results of the ONS algorithm with SB = 3, SO = 1 and the LDR

local search method developed by Akturk and Ozdemir (2001) for 50, 100 and 150

jobs are summarized in Table 4.2. For each of the three heuristic rules, the average

tardiness, the average improvement in percentage, and the average computation time

over the 960 runs were reported. The computation time reported in Table 4.2 is the

time taken for performing the local search only; furthermore, it is only a rough

estimation of the time taken, since the computing time is too small to be measured

accurately.

The corresponding results in columns 4 and 7 in Table 4.2 show that the ONS

method tends to outperform LDR for different sizes of problems based on different

initial solutions. The computation time taken by the ONS algorithm is similar to the

computation time taken by the LDR method.

For the success of the ONS algorithm, it is conjectured that it is unlikely to

improve a good existing solution by relocating an object to positions far away from its

original position. In order to validate this conjecture, the performance of the ONS

algorithm was further evaluated with different sizes of blocks and overlaps for problem

instances with n = 100. The sizes of blocks were set as {3, 8, 32, 64, 96} BS ∈ with

various sizes of overlap. It has to be pointed out that when the size of the block is

small, the relocation of jobs is limited to those positions that are within the vicinity of

their original positions. However, when the size of the block is large, it is possible to

relocate a job to positions that are both within the vicinity of their original positions,

and also to positions that are far away. As it is shown that the ATC rule can produce

good initial schedules and good improved schedules, the following computational

experiments will use the ATC heuristic rule to generate the initial schedules. The

 77

detailed computational results with different parameter settings are summarized in

Table 4.3.

 78

Table 4.3 The average improvement in percentage for n = 100

 1 – The largest average improvement obtained by the ONS method with different parameters

SB = 3 SB = 8 SB = 32 SB = 64 SB = 96 α β
SO = 1 SO = 2 SO = 2 SO = 4 SO = 6 SO = 8 SO = 16 SO = 24 SO = 16 SO = 32 SO = 48 SO = 24 SO = 48 SO = 72

0.05 0.03 0.041 0.03 0.03 0.04 1 0.01 0.02 0.03 0.01 0.01 0.02 0.01 0.01 0.01
0.25 0.10 0.10 0.06 0.08 0.11 1 0.02 0.04 0.07 0.05 0.07 0.08 0.01 0.01 0.01

0.0

0.50 0.22 0.25 0.17 0.34 0.43 0.74 0.96 1.35 0.94 1.09 1.39 1 0.80 0.93 0.90
0.05 2.40 2.48 2.36 2.64 3.35 1 0.98 1.04 1.60 0.56 0.85 1.14 0.51 0.62 0.98
0.25 1.36 1.72 2.15 2.33 3.06 3.00 3.71 5.21 1 2.14 3.32 4.61 2.19 2.38 3.51

0.5

0.50 1.93 2.08 2.05 2.77 3.45 6.11 7.50 9.15 6.02 11.40 1 11.02 7.17 7.95 9.70
0.05 14.51 16.10 11.09 15.45 20.42 1 3.70 6.17 9.18 1.74 3.18 3.84 1.42 1.93 1.99
0.25 42.48 46.43 42.41 44.67 49.68 1 26.58 34.29 39.54 10.79 18.61 27.39 6.98 10.58 14.15

1.0

0.50 36.56 40.28 40.72 1 40.72 1 40.72 1 28.27 33.53 35.32 14.46 23.86 27.86 11.70 12.11 13.24
0.05 32.01 35.79 1 19.57 25.55 35.28 6.05 8.07 17.40 3.13 4.72 5.22 2.96 2.90 2.82
0.25 33.24 1 33.24 1 25.90 32.78 32.72 11.71 22.00 23.91 4.53 8.00 14.39 5.98 4.71 4.28

1.5

0.50 19.29 1 19.29 1 18.04 16.79 18.04 8.54 10.31 13.25 9.04 9.59 9.23 4.76 7.26 4.76

 79

The computational results in Table 4.3 show that with an increase of the sizes of

overlap, there is a general increase in average improvement. This is logical as larger

overlap sizes will increase the solution space, and it is therefore possible to find better

solutions. The computational results in Table 4.3 also show that the largest

improvement is likely to be obtained with smaller sizes of blocks and larger sizes of

overlaps.

As the sizes of the blocks are not evenly distributed as seen from Table 4.3, more

computational experiments were carried out to determine how to choose the

appropriate size of blocks for the ONS algorithm. The additional sizes of blocks tested

were 90,100} 80, 70, 60, 50, 40, 30, 20, 10, {5, ∈BS with the sizes of overlaps being

⎡ ⎤4/3 BO SS ×= . Here we set ⎡ ⎤4/3 BO SS ×= to try to balance the computation time

with the quality of the final schedules.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 20 40 60 80 100

Size of block

Av
er

ag
e

Im
pr

.(%
)

α=0.0
β=0.05
α=0.0
β=0.25
α=0.0
β=0.50
α=0.5
β=0.05
α=0.5
β=0.25
α=0.5
β=0.50
α=1.0
β=0.05
α=1.0
β=0.25
α=1.0
β=0.50
α=1.5
β=0.05
α=1.5
β=0.25
α=1.5
β=0.50

Figure 4.5 Average improvements for problems with different characteristics

 80

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

0 20 40 60 80 100

Size of block

Av
er

ag
e

#I
m

pr
.

α=0.0
β=0.05
α=0.0
β=0.25
α=0.0
β=0.50
α=0.5
β=0.05
α=0.5
β=0.25
α=0.5
β=0.50
α=1.0
β=0.05
α=1.0
β=0.25
α=1.0
β=0.50
α=1.5
β=0.05
α=1.5
β=0.25
α=1.5
β=0 50

Figure 4.6 Average number of improvements for problems with different
characteristics

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

0 20 40 60 80 100

Size of block

Av
er

ag
e

co
m

pu
ta

tio
n

tim
e

α=0.0
β=0.05
α=0.0
β=0.25
α=0.0
β=0.50
α=0.5
β=0.05
α=0.5
β=0.25
α=0.5
β=0.50
α=1.0
β=0.05
α=1.0
β=0.25
α=1.0
β=0.50
α=1.5
β=0.05
α=1.5
β=0.25
α=1.5
β=0.50

Figure 4.7 Average computation time for problems with different characteristics

The average improvement in percentage, average number of improvements, and

average computation time based on different sizes of blocks for problems with

different characteristics are presented in Figures 4.5, 4.6 and 4.7 respectively. Figure

 81

4.5 shows that the average improvement is small with 0=α and is larger with

5.1,1=α . The maximum average improvement is obtained for most of the problems

when 10=BS except for 5.0,0 == βα and 5.0=α , }5.0,25.0{∈β . When the size

of the block is very large, i.e. 100=BS , the local search method becomes very

inefficient. Figure 4.5 also shows that the efficiency of the ONS method is not

sensitive to the size of the blocks when 10≤BS as the difference of the average

improvement is small when the size of the blocks changes. From Figure 4.6, we can

see that 10=BS also gives the maximum average number of improvements for most

of the problems and that the average number of improvements will decrease

significantly when the size of the block increases. Comparing Figures 4.5 and 4.6, we

can see that the average improvements and the average number of improvements

follow the same trends as the size of the block changes. It is noted that the maximum

average number of improvements in Figure 4.6 is obtained for 05.0,0.1 == βα while

the maximum average improvement is obtained for 25.0,0.1 == βα . This

discrepancy comes about because the average improvement not only depends on the

absolute reduction of total weighted tardiness, but also on the total weighted tardiness

of the initial schedule, which may be substantially different for problems with different

characteristics.

The results of the average computation times are presented in Figure 4.7. With

the increase of the size of the block, the average computation time increases and

subsequently decreases. As the GC method can generate (1) / 2B BS S − strings for each

block and the size of overlap is ⎡ ⎤4/3 BO SS ×= in our computational experiments, the

total number of strings that is explored by the GC method is approximately equal

to 2 2() /() 1 (1) / 2 (4 4 1)() / 2.B B O B B B B B Bn S S S S S nS S S S⎡ ⎤− − + × − ≈ − + −⎡ ⎤⎢ ⎥⎣ ⎦ The

 82

relationship between the total number of strings being explored and the size of the

blocks for 100n = is illustrated in Figure 4.8. Figure 4.8 provides the relationship

between the number of strings being explored and the size of the blocks. It can be seen

that the computation time is proportional to the number of strings being explored.

Moreover, it can be seen in Figure 4.7 that the computation time for problems with

5.0,0 == βα and }5.0,25.0{,5.0 ∈= βα increases faster than the computation

times for those problems with other characteristics. One possible reason is that

for 5.0,0 == βα and }5.0,25.0{,5.0 ∈= βα , there are more average number of

improvements that incur additional backtrack, hence increasing computation times

rapidly. For some problems, i.e. 5.0,5.0 == βα , the computation time increases

faster compared to the computation times for other problems due to the backtrack

incurred.

Number of strings explored with different sizes of blocks

0

5000000

10000000

15000000

20000000

25000000

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99
Size of block

N
um

be
r o

f s
tri

ng
s

ex
pl

or
ed

Figure 4.8 Number of strings explored with different sizes of blocks

Figures 4.5 and 4.6 show that it is not likely to improve an existing good solution

significantly by relocating jobs to positions far away from their original positions.

Based on the previous analysis, we were able choose the appropriate parameters for the

ONS algorithm for problems with different characteristics. However, it is difficult to

 83

choose the appropriate parameters when the problem characteristics are unknown. In

this situation, the ONS algorithm can be run iteratively with different sizes of blocks.

As it is likely to improve a schedule with small sizes of blocks within short a running

time, as shown in Figures 4.5 and 4.7, it is preferable to implement the ONS algorithm

with small sizes of blocks. Our implementation of the ONS algorithm is set as follows:

the size of block is set to r times of the previous size of block until the size of block

exceeds the size of the problem. For example, with a starting size of a block being 3

and 2=r , 100=n , the set of sizes of blocks is 96} 48, 24, 12, 6, {3,∈BS with the

sizes of overlaps being ⎡ ⎤4/3 BO SS ×= except for 3=BS with .2=OS

The computational results of the iterative ONS are presented in Table 4.4. The

average improvement seen in Tables 4.3 and 4.4 shows that the iterative ONS

algorithm always outperforms all the ONS methods with single size of block and the

computation time is also acceptable. The computational results for the SMSP with

unequal release dates indicate that the improvement of the quality of the solution is

significant when using the iterative ONS algorithm, albeit at the expense of longer

computation times.

Table 4.4 Computational results for iterative ONS

α β Impr. (%)1 #Impr.2 Time3
0.05 0.05 9.19 1.479
0.25 0.16 14.89 1.632 0.0
0.50 1.64 39.01 2.281
0.05 4.34 37.01 1.653
0.25 7.79 48.55 2.414 0.5
0.50 13.99 36.25 2.765
0.05 26.00 43.05 1.890
0.25 55.85 8.04 1.429 1.0
0.50 41.08 0.71 1.342
0.05 45.22 15.73 1.514
0.25 34.78 0.80 1.331 1.5
0.50 19.29 0.33 1.325

1- Average improvement from initial solution in percentage
2- Average number of improvement achieved
3- Average computation time in seconds

 84

4.5.2 Computational Experiments for the SMSP with Sequence Dependent Setup

Times

In a single machine scheduling problem with sequence dependent setup times, n

jobs have to be sequenced on a machine to minimize the total tardiness. Let pi, di

denote the processing time and the due date of job i respectively, and let ski denote the

setup time when job i succeeds job k immediately, where i = 1, …, n. The tardiness of

job i is denoted by Ti and Ti is defined as { }max , 0i i iT C d= − , where iC is the

completion time of job i. For this problem, it is assumed that all the processing times,

due dates, and setup times are non-negative integers. In addition, job preemptions are

not allowed. According to the standard scheme introduced by Graham et al. (1979), the

SMSP with sequence dependent setup times minimizing the total tardiness of jobs is

represented as ∑ iki Ts ||1 . Problem ∑ iki Ts ||1 is NP-hard as even its relaxed

problem, problem ∑ iT||1 , is shown to be NP-hard by Du and Leung (1990). Since

this problem is NP-hard, it is unlikely for any algorithm to always find an optimal

solution within polynomial computation times.

In this subsection, the ONS algorithm is hybridized with GRASP to test its

performance based on the SMSP with sequence dependent setup times. GRASP is a

meta-heuristic which has been applied successfully to solve a variety of combinatorial

optimization problems. It is a multi-start method having two phases, a construction

phase and an improvement phase. The two phases are repeated a number of times and

the best solution found is reported as the final solution. The detailed implementation

of GRASP is described in Feo and Resende (1995), Resende and Ribeiro (2003), and

Fernandes and Ribeiro (2005).

 85

Fernandes and Ribeiro (2005) pointed out that path relinking is important to the

basic GRASP and described two strategies to implement path relinking. The first

strategy is to apply path relinking to a GRASP local optimal solution with a randomly

selected elite solution; the second strategy is post-optimization, in which the elite

solutions are connected via path relinking. Path relinking generates new solutions by

exploring the trajectories that connect elite solutions. Starting from one of the elite

solutions, called the initiating solution, a move is made in the neighborhood space of

the initiating solution toward another solution, called the guiding solution. This is

accomplished by selecting moves that introduce the attributes that are contained in the

guiding solution but not in the initiating solution. These moves can be any of the

neighborhood search moves, such as pairwise interchange, forward insertion, or

backward insertion. As pointed out by Gupta and Smith (2006), the feasibility of the

trial solutions after some or all attributes of the guiding solution have been included

must be preserved and the attributes in the guiding solution must be introduced into the

initiating solution. This process continues until all the attributes in the guiding solution

are inherited by the initiating solution, that is, the initiating solution is the same as the

guiding solution. Based on the procedure described above, it is possible that better

solutions are found during the moves from the initiating solution to the guiding

solution. In this study, the path relinking is used as a post-optimization mechanism.

Path relinking procedure is applied to every pair of elite solutions as a post-

optimization method to improve the elite solutions further. If a solution that is better

than the current incumbent solution is found, the current incumbent solution is

replaced by this solution. For path relinking, moves are made based on pairwise

interchange, and forward or backward insertion.

The steps of the GRASP algorithm with path relinking are as follows.

 86

Step 1. Initialization. Set Iteration := 0, MaxIter;

Step 2. Construct a solution;

Step 3. Improve the solution obtained in Step 2 by ONS algorithm until local optimal

solution is reached. Set Iteration := Iteration + 1;

Step 4. If the local optimal solution obtained in Step 3 is better than the incumbent

solution, replace the incumbent solution by the local optimal solution;

Step 5. If Iteration ≤ MaxIter, go to Step 2; otherwise, go to Step 6;

Step 6. Perform path relinking post-optimization and report the current incumbent

solution. Stop.

The ATCS rule proposed by Lee et al. (1997) is applied to compute the job

scheduling priority index. At the initial stage, the set of candidate jobs consists of all

the jobs to be sequenced. The Restricted Candidate List (RCL) is constructed based on

the greedy function, which is the ATCS priority index function in this study. Let Imax

and Imin denote the maximum and minimum priority indices at time t over all the

candidate jobs. The number of jobs in the RCL is determined by a threshold parameter

]1,0[∈α . All the jobs in the candidate jobs with priority indices greater or equal to

max max min()R R Rα− − are included in the RCL. Thus 0=α corresponds to the pure

greedy function while 1=α corresponds to a random job selection. A feasible solution

is built in the construction phase by randomly selecting the next job according to a

uniform distribution from the RCL at each reiteration, until all the jobs are included in

the solution.

It is claimed by Gupta and Smith (2006) that the threshold parameter α is very

important in the construction phase. As pointed out in Resende and Ribeiro (2003), it

 87

is preferable to vary the value of α dynamically in order to obtain better final results.

The value of α is chosen randomly from a uniform distribution [0, 1] in this study.

To test the performance of the ONS algorithm hybridized with the GRASP,

denoted as GRASP+ONS, comprehensive computational experiments were conducted.

In this study, a maximum number of 40 elite solutions were retained and the

GRASP+ONS algorithm was run 20 times with different random seeds for each

problem instance. The computational experiments were carried out based on test

problem instances widely used in the literature. Some or all of the testing problem

instances used in this computational experiment have also been used by Ragatz (1993),

Rubin and Ragatz (1995), Tan et al. (2000), Gupta and Smith (2006), and Armentano

and de Araujo (2006).

The testing problem instances consist of two sets. The first set consists of

problem instances with 15, 25, 35 and 45 jobs, and is referred to as a small problem set.

The second set consists of problem instances with 55, 65, 75 and 85 jobs, and is

referred to as a large problem set. The problem instances of each size are derived from

a 222 ×× experimental design related to three problem factors which are set at two

levels. These three factors are the processing time variance (PTV) of the jobs, the

tardiness factor (TF), and the due date range (DR). Each of these three factors is set at

two levels. L and H stand for low and high levels for PTV and TF, respectively, while

N and W stands for narrow and wide due dates respectively, as shown in Table 4.5.

The computational results based on the testing problem instances are presented in

Tables 4.6 and 4.7 for both the small problem set and the large problem set

respectively. The column BnB (denoting “branch and bound”) in Table 4.6 is the

objective value obtained by the branch-and-bound method reported by Ragatz (1993).

The branch-and-bound algorithm is limited to the exploration of two million nodes and

 88

optimal solutions were obtained for only some of the problems. For the small problem

set, the results are represented in relative deviation from the BnB. The relative

deviation in percentage is calculated using the function below,

()()alg. / BnB 1 100%x = − × ,

where alg. denotes the objective value of the heuristic. If the objective value obtained

by BnB is equal to zero, the relative deviation is set to zero.

Table 4.5 Experimental design of problem instances

Problem no. PTV TF DR
1 L L N
2 L L W
3 L H N
4 L H W
5 H L N
6 H L W
7 H H N
8 H H W

The computational results of the GRASP+ONS algorithm were compared with

the results of the ACO algorithm proposed by Gagné et al. (2002) and the GRASP

algorithm developed by Gupta and Smith (2006). For the small problem set, the best,

median, worst solutions, and computation times are presented. Besides the best,

median, worst solutions, and the computation time, the average results are also

reported for the large problem set.

For the small problem set, 31 best solutions obtained by ACO were better or

equal to the branch-and-bound, denoted as BnB, solutions among the 32 test problem

instances. The best solutions obtained by GRASP and GRASP+ONS were all better or

equal to the BnB solutions. For the 15-job problem instances, ACO, GRASP and

GRASP+ONS had the same performance in terms of the best solutions found. For the

seventh 25-job problem instances, the best solution obtained by ACO has a 7%

deviation from the BnB solution, while GRASP and GRASP+ONS found the same

 89

solution as that obtained by the BnB. For the 35-job problem instances, ACO, GRASP

and GRASP+ONS obtained better solutions than the branch-and-bound solutions.

Moreover, GRASP found 4 better solutions than the ACO, and GRASP+ONS found 3

better solutions than the ACO in terms of the best solution found. For the 45-job

problem instances, GRASP+ONS obtained 5 better solutions than the ACO while

GRASP obtained 4 better solutions than the ACO in terms of the best solutions found.

The median and worst solutions among 20 runs for each problem instance are also

presented in Table 4.6. In general, GRASP+ONS and GRASP outperformed the ACO

in terms of the median and worst solutions. Table 4.6 also provides the computation

times taken by the ACO, GRASP and GRASP+ONS. However, the computation times

can only be compared approximately as different hardware platforms were used to

conduct the computational experiments.

Table 4.7 presents the computational results of the ACO, GRASP and

GRASP+ONS for the large problem set. Both GRASP+ONS and GRASP have 13

better solutions than the ACO in terms of the best solutions. For the problem instances

with low PT, low TF, and narrow due date range, both the ACO and GRASP+ONS

outperformed the GRASP. In terms of median and worst solutions, GRASP+ONS and

GRASP outperformed the ACO in general. It is noted that the best solution reported in

Gagné et al. (2002) for the first 75-job problem is 63. However, this value seems

incorrect compared with the lower bound obtained by the branch-and-bound technique

of Ragatz (1993).

 90

Table 4.6 Comparison of experimental results for small problem set
Problem No. ACO GRASP GRASP+ONS

 # Jobs BnB Best Median Worst Time1 Best Median Worst Time2 Best Median Worst Time3

1 15 90* 0.0 4.4 7.8 1.3 0.0 0.0 0.0 4.0 0.0 3.3 4.4 3.3
2 15 0* 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 15 3418* 0.0 1.1 2.1 1.5 0.0 0.0 0.0 3.7 0.0 0.0 0.0 3.9
4 15 1067* 0.0 0.0 0.0 1.4 0.0 0.0 0.0 2.5 0.0 0.0 0.0 3.5
5 15 0* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 15 0* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 15 1861* 0.0 0.0 1.1 1.5 0.0 0.0 0.0 3.9 0.0 0.0 0.0 3.0
8 15 5660* 0.0 1.1 1.5 1.5 0.0 0.0 0.0 3.2 0.0 0.0 0.0 3.1
1 25 264 -1.1 0.8 1.9 7.2 -1.1 -0.4 -0.4 14 -1.1 -0.8 -0.4 19.5
2 25 0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 25 3511 -0.4 0.3 0.9 7.8 -0.4 -0.4 -0.4 18.5 -0.4 -0.4 -0.4 21.5
4 25 0* 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
5 25 0* 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
6 25 0* 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 25 7225 0.7 1.8 3.7 9.8 0.0 0.0 0.0 24.4 0.0 0.0 0.4 21.1
8 25 2067 -5.9 5.9 14.2 8.6 -7.4 -7.4 -7.4 23.3 -7.4 -7.4 -7.4 18.6
1 35 30 -46.7 -13.3 6.7 29.8 -46.7 -20.0 -3.3 53.3 -33.3 3.3 33.3 75.3
2 35 0* 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
3 35 17774 -0.5 0.1 0.3 32.2 -1.1 -0.9 -0.8 94.4 -0.9 -0.5 -0.1 88.4
4 35 19277 -0.8 0.3 1.3 32.2 -0.9 -0.8 -0.6 88.8 -0.7 -0.5 -0.1 71.2
5 35 291 -15.1 -8.8 -1.0 31.0 -16.5 -14.1 -13.4 59.0 -16.5 -11.3 -4.1 76.0
6 35 0* 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
7 35 13274 -1.4 -0.1 0.6 27.9 -2.3 -2.2 -1.8 88.0 -2.3 -2.0 -1.2 71.2
8 35 6704 -29.4 -24.8 -20.1 33.0 -29.4 -29.4 -29.4 83.5 -29.4 -29.4 -29.3 63.9
1 45 116 -11.2 -5.6 0.0 83.2 -11.2 0.4 2.6 122.5 -1.7 3.4 9.5 183.6
2 45 0* 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
3 45 27097 -1.6 -1.0 -0.5 91.8 -1.8 -1.6 -1.3 216.4 -2.1 -1.5 -1.1 226.5
4 45 15941 -2.8 -1.1 -0.3 89.2 -4.6 -4.6 -4.4 201.3 -4.6 -4.0 -3.7 170.9
5 45 234 -5.1 5.6 15.4 77.6 -5.1 5.1 6.8 129.9 -7.7 7.3 10.3 191.4
6 45 0* 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
7 45 25070 -4.2 -3.3 -2.9 78.6 -5.0 -4.6 -4.4 253.3 -5.1 -4.6 -4.1 187.6
8 45 24123 -3.2 -1.7 -0.6 84.7 -5.5 -5.4 -5.3 267.0 -5.5 -4.9 -4.3 165.7

* - Optimal solution objective values obtained by the branch-and-bound algorithm proposed by Ragatz (1993)
1- Intel Pentium Ш 733MHz CPU with 256MB RAM personal computer
2- Intel Pentium IV 2.4GHz CPU with 1 GB RAM personal computer
3- Intel Pentium IV 2.6GHz CPU with 512MB RAM personal computer

 91

Table 4.7 Comparison of experimental results for large problem set

Problem
No.

 ACO GRASP GRASP+ONS

 Jobs Best Median Average Worst Time Best Median Average Worst Time Best Median Average Worst Time
1 55 212 237.5 241.3 273 167.6 242 263.0 260.4 269 258.2 242 275.0 272.4 293 396.8
2 55 0 0.0 0.0 0 2.3 0 0.0 0.0 0 0.0 0 0.0 0.0 0 0.2
3 55 40828 41104.0 41110.9 41303 227.5 40678 40853.5 40835.6 40927 511.8 40640 40953.5 40961.2 41138 460.2
4 55 15091 15576.0 15621.3 16423 221.2 14653 14653.0 14655.7 14675 497.1 14653 14870.5 14854.9 15060 320.8
5 55 0 0.0 2.1 12 100.9 0 0.0 0.7 3 219.8 0 5.0 4.8 11 414.6
6 55 0 0.0 0.0 0 2.1 0 0.0 0.0 0 0.0 0 0.0 0.0 0 0.2
7 55 36489 37357.5 37308.6 37973 163.2 35883 35976.0 35972.1 36066 557.0 35979 36234.0 36235.6 36424 380.0
8 55 20624 21417.0 21386.7 22457 236.3 19871 19871.0 19871.4 19880 541.8 19871 19984.0 19980.9 20117 296.8
1 65 295 317.5 319.1 350 354.5 333 358.5 355.7 368 460.8 331 365.0 361.3 391 701.9
2 65 0 0.0 0.0 0 4.0 0 0.0 0.0 0 0.0 0 0.0 0.0 0 0.3
3 65 57779 58249.5 58266.8 58653 440.7 57880 58122.0 58097.1 58276 1023.0 57947 58276.5 58288.3 58590 911.5
4 65 34468 35399.0 35365.4 36107 466.7 34410 34535.0 34522.5 34628 939.7 34457 34898.0 34874.5 35138 647.0
5 65 13 24.5 25.3 38 347.5 30 35.5 35.0 41 521.2 28 37.5 36.7 42 710.0
6 65 0 0.0 0.0 0 4.0 0 0.0 0.0 0 0.0 0 0.0 0.0 0 0.3
7 65 56246 57037.5 57027.5 57825 352.7 55355 55488.5 55473.6 55612 1143.4 55331 55718.0 55676.6 56075 718.1
8 65 29308 30099.5 30155.9 31074 349.9 27114 27115.5 27130.6 27164 1029.9 27164 27393.5 27428.9 27715 601.1
1 75 63 313.0 311.6 368 610.2 317 334.0 334.1 347 811.1 287 335.0 331.2 356 1225.9
2 75 0 0.0 0.0 0 6.6 0 0.0 0.0 0 0.1 0 0.0 0.0 0 0.4
3 75 78211 78541.5 78604.1 79088 738.9 78211 78691.0 78689.4 78859 1875.0 78330 78708.5 78697.7 79162 1601.2
4 75 35826 37592.0 37514.3 38333 537.1 35323 35433.0 35413.6 35487 1671.1 35335 36056.5 35986.0 36280 1040.5
5 75 0 0.0 0.0 0 7.0 0 0.0 0.0 0 0.0 0 0.0 0.0 0 15.1
6 75 0 0.0 0.0 0 7.9 0 0.0 0.0 0 0.0 0 0.0 0.0 0 0.7
7 75 61513 62201.0 62216.8 63284 564.6 60217 60481.0 60452.6 60556 1848.9 60332 60730.5 60701.9 61014 1187.9
8 75 40277 42271.0 42018.5 42964 719.7 38368 38453.0 38456.8 38548 2000.3 38426 39025.0 39033.2 39333 996.5
1 85 453 515.5 511.0 557 883.8 531 563.0 559.2 579 1355.5 519 545.0 547.9 599 1990.8
2 85 0 0.0 0.0 0 10.6 0 0.0 0.0 0 0.0 0 0.0 0.0 0 0.6
3 85 98540 98957.0 98949.0 99250 1075.8 98794 99122.5 99118.6 99296 3022.4 98389 99058.5 98969.0 99524 2684.9
4 85 80693 81785.5 81702.6 82728 1301.3 80338 80731.5 80695.5 80962 2832.4 80797 81283.0 81330.0 82031 1778.3
5 85 333 374.5 373.5 409 971.0 393 418.0 417.5 436 1400.8 375 415.0 409.7 443 1986.2
6 85 0 0.0 0.0 0 10.7 0 0.0 0.0 0 0.1 0 0.0 0.0 0 0.6
7 85 89654 90574.5 90569.2 91447 905.6 88089 88441.0 88402.1 88598 3217.0 88130 88624.5 88585.4 88984 2046.4
8 85 77919 79368.5 79299.5 80612 1057.8 75217 75424.0 75401.9 75517 3714.4 75317 76212.0 76206.1 76794 1637.6

 92

The computational results in Tables 4.6 and 4.7 show that GRASP+ONS is

competitive to the ACO and GRASP algorithms with respect to the best solutions

found. In terms of median and worst solutions, GRASP outperformed GRASP+ONS

marginally. The path relinking method employed in the GRASP+ONS is also shown

to be efficient in improving solution quality. We also found that for problem instances

with low processing time variances, low tardiness factors, and narrow due date ranges,

GRASP+ONS outperformed GRASP in terms of best, median, and worst solutions.

4.6. Concluding Remarks

In this chapter, we presented a new problem independent algorithm, named ONS

algorithm, for single machine scheduling problems. As a general purpose and problem

independent algorithm, the ONS algorithm is also applicable to solving a wide variety

of problems whose solutions can be represented with permutations. The performance

of the ONS algorithm was evaluated based on SMSP with unequal release dates and

SMSP with sequence dependent setup times. The computational results show that the

ONS algorithm is efficient in solving these single machine

 93

 Chapter 5 Tabu Search Algorithms for the Open Shop and Routing
Open Shop Scheduling Problems

In this chapter, fast tabu search meta-heuristics for the open shop scheduling

problem (OSSP) and the routing open shop scheduling problem (ROSSP) are

presented. One new neighborhood is proposed for the OSSP and two new

neighborhoods are proposed for the ROSSP. Moreover, an exact feasibility checking

method is developed to remove infeasible moves quickly. To test the performance of

the proposed tabu search algorithms, comprehensive computational experiments were

carried out. The computational results show that the algorithms proposed in this

chapter are able to find high-quality solutions within reasonable computation times.

5.1 Introduction

The OSSP can be described as follows. There are a set of jobs and the operations

of each job have to be processed on different machines without restrictions to the

operation processing order. In addition, each machine can only process, at most, one

operation at a time and the operation cannot be interrupted once it is started. This

problem is also called a non-preemptive OSSP. The OSSP whose objective is

minimizing makespan is denoted as max||O C according to the classification of Graham

et al. (1979). A schedule of an OSSP is an assignment of the operations with the

operation processing order on each machine and the processing order of the operations

belonging to the same job.

The OSSP is similar to the job shop scheduling problem (JSSP) with the

exception that there is no processing order restriction placed on operations that belong

to the same job. As a result, the OSSP has a larger solution space compared to the

 94

JSSP. It was shown by Garey and Johnson (1979) that the general OSSP is an NP-hard

problem. It was also proved by Gonzalez and Sahni (1976) that the OSSP with 3m =

is NP-complete, where m is the number of machines. However, it has been shown that

some specially structured OSSPs with 3m ≥ are polynomially solvable (Fiala 1983).

By considering the transportation or setup times, the ROSSP becomes an

extension of the OSSP, and is denoted as max||RO C . It is assumed in the ROSSP that

machines are initially located at the same node (depot node) and have to travel along

the transportation network to process the jobs and will return to the depot after all

operations are processed. The transportation or setup times can be symmetric or

asymmetric. In this study, we only consider the symmetric transportation times and the

objective of the ROSSP is to minimize the makespan. It is noted that the transportation

times and setup times can be handled in the same way in the ROSSP.

5.2 Problem and Schedule Formulation

In this section, we give a formal definition of the OSSP and the ROSSP followed

by the definition of schedules.

The following notations are used throughout this chapter.

Mi The machine on which operation i is processed
Ji The job to which operation i belongs
PM(i) The predecessor(s) of operation i on machine Mi in a schedule
PJ(i) The predecessor(s) of operation i belonging to job Ji in a schedule
di The processing time of operation i
pij The processing time of an operation that belongs to job Ji and has to be

processed on machine Mj
Bi the ith block on the critical path

 95

5.2.1 Disjunctive Graph Problem Representation

For an OSSP or ROSSP, there are a set of jobs 1{ ,..., }nJ J J= , and a set of

machines 1{ ,..., }mM M M= . We assume that each job has m operations and all the

operations of any job have to be processed on different machines. The first assumption

can be relaxed because when a job has less than m operations, dummy operations with

zero processing time can be added. The processing time of operation i is denoted as pi.

The OSSP and the ROSSP are generally modeled using a disjunctive graph, which was

originally proposed by Roy and Sussmann (1964) for the JSSP. In the disjunctive

graph G for the OSSP or ROSSP, the nodes, which correspond to the operations, are

numbered from 1 to N, where N m n= × is the total number of operations. Any two

operations that belong to the same job are connected to each other by two disjunctive

arcs that go in opposite directions. Any two operations that have to be processed on the

same machine are also connected to each other by two disjunctive arcs that go in

opposite directions. The oppositely directed arcs between two operations denote that at

most one operation can be processed at a time on a machine or at most one operation

of a job can be processed at a time. The disjunctive arcs in graph G form m n+ cliques.

m cliques correspond to m machine and n cliques correspond to n job. In graph theory,

a clique is defined as a graph where any two nodes are connected with each other. For

an OSSP, all arcs emanating from a node each have a length equal to the processing

time of the source operation that is represented by the node. For a ROSSP, all arcs

emanating from a node each have a length equal to the sum of the processing time of

the source operation that is represented by the node and the transportation time from

the source operation to this node. In addition, there are two dummy nodes with zero

processing time, nodes 0 and 1N + , representing the source node and the sink node

respectively. The source node has a conjunctive arc sinking into each of the N

 96

operations. The sink node has a conjunctive arc emanating from each of the N

operations. A disjunctive graph of an OSSP with 3n m= = is illustrated in Figure 5.1,

in which the solid lines denote the conjunctive arcs and the dotted lines denote

disjunctive arcs. For the example in Figure 5.1, operations 1, 2 and 3 belong to 1J ,

operations 4, 5 and 6 belong to 2J , operations 7, 8 and 9 belong to 3J , operations 1, 4

and 7 have to be processed on machine 1M , operations 2, 5 and 8 have to be processed

on machine 2M , and operations 3, 6 and 9 have to be processed on 3M .

Figure 5.1 An example of a disjunctive graph for an OSSP

5.2.2 Acyclic Graph Schedule Representation

A schedule of an OSSP or ROSSP is an assignment of the operations with the

operation processing order on each machine and the processing order of the operations

belonging to the same job. Finding a feasible schedule is equivalent to selecting arcs

from all the oppositely directed arcs, which means that the two operations on each end

of the arc must be processed in the order either preceding or succeeding the other one.

0

1 2 3

4 5 6

7 8 9

10

 97

As stated by Brucker et al. (1997), a selection S defines a feasible schedule if and only

if,

(1) all disjunctive arcs are fixed, that is, there is no dotted line in the graph, and

(2) the resulting graph ()G S is acyclic.

Figure 5.2 Illustration of a feasible schedule

An acyclic graph can be constructed easily based on a feasible schedule. In an

acyclic graph, each node has at most two source nodes and two sink nodes. This is

because each operation can have at most one immediate preceding operation that is

processed on the same machine and at most one immediate preceding operation that

belongs to the same job. Correspondingly, each operation can have at most one

immediate succeeding operation that is processed on the same machine and at most

one immediate succeeding operation that belongs to the same job. Topological sorting

of a network is to sort the nodes in a network into topological order in which no node

appears in it until after all nodes appearing on all paths leading to the particular node

have been listed. Given a feasible schedule, the longest path in the corresponding

acyclic graph is defined as the critical path and the length of the critical path is called

0

1 2 3

4 5 6

7 8 9

10

 98

the makespan, which is equal to the maximum completion time among all the 2N +

operations. The critical path and the makespan of a schedule can be obtained based on

the following steps proposed by Christofides (1975).

Step 1. Topological sorting of the acyclic graph. Topological sorting can be

carried out by the labeling algorithm proposed by Kahn (1962). In a

topologically sorted acyclic graph, node i is always sorted prior to j if arc

(i, j) exists;

Step 2. Determine the heads and tails of all nodes in the acyclic graph. The heads

and tails are initially set to zero.

{ }() () () ()max ,i IPM i IPM i IPJ i IPJ ih h d h d= + + ,

 { }() () () ()max ,i ISM i ISM i ISJ i ISJ it t d t d= + + ;

 Step 3.To find a critical path, we need to track backwards from the sink of the

acyclic graph towards the source following the critical nodes. If more

than one critical node exists, select one arbitrarily.

Topological sorting is to sort the nodes in a network in topological order; no

node appears in the sorted node list until all nodes leading to the particular node have

been listed. An acyclic graph with a critical path (bold line) for a feasible schedule is

illustrated in Figure 5.2. The makespan of the schedule or the acyclic graph is given by

max 0 1NC t h += = . Node i is on a critical path or called a critical node if maxi i ih d t C+ + = .

A critical path can be decomposed into blocks. Here a block is defined as a chain of

successive operations on a critical path that have to be processed on the same machines,

or that belong to the same job. It is noted that there are at least two operations in any

block. For example, the critical path in Figure 5.2 is 0 4 1 2 10→ → → → , which can

 99

be decomposed into blocks {4 1}→ and {1 2}→ . Operations 1 and 4 have to be

processed on machine 1M and operations 1 and 2 belong to job 1J .

5.3 Feasibility Checking Procedure

When more than one move is carried out simultaneously, or a move that is not

along the critical path is carried out, it is possible to create a directed cycle in the graph,

which means that the corresponding solution obtained is infeasible. To perform a

feasibility test, the standard labeling algorithm described in Kahn (1962) can be used.

As this procedure is computationally expensive, Dell’Amico and Trubian (1993)

presented an estimated method to test the operation move feasibility. The basic idea of

their feasibility checking method is that there cannot exist a path from i to j if

i i jh d h+ > holds. This method is widely used by many researchers who have worked

on the JSSP and the OSSP. However, applying this method to ensure the feasibility

comes at the expense of omitting a few feasible solutions, as pointed out by

Dell’Amico and Trubian (1993). In this subsection, we present an exact method for the

feasibility test. This method is also applicable to the JSSP.

We first describe four lemmas before the details of the feasibility checking

method are presented.

Lemma 5.1: In a feasible solution, for a move of an operation i to the first position for

the successive operation sequence (,..., ,)j ko o i to produce the successive operation

sequence (, ,...,)j ki o o on the same machine, a cycle in the resulting graph exists if and

only if there is a path from at least one of the operations ()ISJ v to operation i, where

{ ,..., }j kv o o∈ .

 100

Proof:

We assume there is a path from operation ()ISJ v to i, that is, the following successive

operation processing sequence exists.

The solid line indicates the immediate succeeding relationship and the dotted line

indicates the succeeding operation relationship respectively. After moving operation i

to the first position of the block, we have the following new processing sequence of

operations.

It is indicated that there is a cycle in the new sequence that results in an infeasible

schedule, thus completing the proof.

Lemma 5.2: In a feasible solution, for a move of operation i to the last position for the

successive operation sequence (, ,...,)j ki o o to produce the successive operation

sequence (,..., ,)j ko o i on the same machine, a cycle in the resulting graph exists if and

only if there is a path from operation i to at least one of the operations ()IPJ v , where

{ ,..., }j kv o o∈ .

Proof: Refer to the proof of Lemma 5.1.

Lemma 5.3: In a feasible solution, for a move of operation i to the first position for the

successive operation sequence (,..., ,)j ko o i to produce the successive operation

sequence (, ,...,)j ki o o belonging to the same job, a cycle in the resulting graph exists if

oj, …, ov, …,ok, i

ISJ(v)

i, oj, …, ov, …, ok

ISJ(v)

 101

and only if there is a path from at least one of the operations ()ISM v to operation i,

where { ,..., }j kv o o∈ .

Proof: Refer to the proof of Lemma 5.1.

Lemma 5.4: In a feasible solution, for a move of operation i to the last position for the

successive operation sequence (, ,...,)j ki o o to produce the successive operation

sequence (,..., ,)j ko o i belonging to the same job, a cycle in the resulting graph exists if

and only if there is a path from operation i to at least one of the operations ()IPM v ,

where { ,..., }j kv o o∈ .

Proof: Refer to the proof of Lemma 5.1.

To check whether there is a path from a node to another node, we use a

precedence matrix to record the precedence relationships. In our implementation, a

square matrix whose dimension is equal to the number of operations is used to record

the precedence relationships. The precedence matrix not only records the immediate

precedence relationships but also the non-immediate precedence relationships. In an

acyclic graph, the value of cell(i, j) of the precedence matrix is set to TRUE if node i is

a predecessor of node j in the corresponding topological acyclic graph.

The procedure to build the precedence matrix for a topologically sorted acyclic

graph is as follows:

Step 1: Initialize all the cell values of the precedence matrix to FALSE;

Step 2: Starting from node 1i = , find the immediate successors ()ISM i and ()ISJ i of

node i, set the cell values (, ())i ISM i := TRUE and (, ())i ISJ i := TRUE;

Step 3: Find the predecessors ()PM i and ()PJ i of node i, set the cell values

((),)PM i i := TRUE and ((),)PJ i i := TRUE;.

Step 4: Set : 1i i= + , if i N< , go to Step 2; otherwise, stop.

 102

Based on the precedence matrix, it is easy to check whether there exists a path

from a node to another node.

After performing a move of operations, a topological sorting should be carried

out. Since the nodes affected are limited in proximity within the old topological sorting,

topological sorting is applied only to those nodes that are affected and hence most of

the old topological sorting can be kept. Accordingly, the precedence matrix needs only

to be updated partially based on the change of the old topological sorting of the graph.

This strategy can reduce the computation time significantly.

5.4 Tabu Search Strategies

Tabu search is an iterative improvement approach designed for optimization

problems. Tabu search (TS) was initially proposed by Glover (1986); it has now

become one of the most efficient meta-heuristics for solving combinatorial

optimization problems. The basic idea of TS is of using short-term memory to record

recent moves in the search to prevent the search from returning to a previously visited

neighbor. The short-term memory is also called the tabu list. Moreover, a long-term

memory for diversification purpose is applied to ensure that the search will not be

restricted to a small neighborhood. Recording the recent moves in the tabu list does

not mean recording the whole or part of the solution in memory. On the contrary, the

tabu list only memorizes the attributes of the moves. Under certain circumstances, the

memory may forbid some moves that may lead to an improvement of the solution. In

this case, an aspiration criterion is introduced which is used to disable the memory

function temporarily. Tabu search prevents cycling and guides the search toward

unexplored regions by forbidding solutions with certain attributes.

 103

As TS has been shown to be one of the most efficient meta-heuristics for solving

difficult combinatorial optimization problems (Taillard and Parallel 1994, Nowicki,

and Smutnicki 1996, Liaw 1999), we use TS as a platform to evaluate the efficiency of

the neighborhoods and search strategies proposed in this research work. The tabu

search strategies used in this study are given in the following sub-sections.

5.4.1 Aspiration Criterion

Under certain circumstances, the tabu search may forbid a move that may

generate an improved solution. Therefore, an aspiration criterion is introduced to

disable temporarily the tabu status of the prospective move so that the move is

allowable. The aspiration criterion in the proposed tabu search is as follows: a move is

allowed only if the estimated makespan is less than the makespan of the best solution

found so far.

It may happen that at certain iterations, all possible moves are forbidden and

none of the moves satisfies the aspiration criterion. In this case, we follow the strategy

described in Glover (1989) to remove the oldest tabu in the tabu list and additionally

replicate the most recent tabu and add it to the tabu list until the moves selected are

allowable.

5.4.2 Back Jump Tracking

Back jump tracking strategy was proposed by Nowicki and Smutnicki (1996).

Unlike the multi-start strategy, which starts from different initial solutions whenever

the best solution cannot be improved within a fixed number of iterations, the back

jump tracking strategy records a certain number of best solutions found during

previous iterations. When the best solution is not improved for a fixed number of

 104

iterations, a solution stored previously is used as the initial solution to restart the

search. In addition, to prevent repetition of the same search history, the tabu list

associated with the solution generated in the next iteration at which the best solution is

found is also recorded. This strategy is able to use the information found during the

previous runs and always does intensive search to explore the neighbors of the best

solutions found at different iterations. Nevertheless, in the case that the initial solution

is a good solution and cannot be improved within a certain number of iterations, the

search will stop after a certain number of iterations without implementing back jump

tracking. To overcome this disadvantage, we propose to store some solutions in the

elite solution list before the tabu search starts. This strategy is able to overcome the

disadvantages of both the multi-start strategy and the original back jump tracking

strategy.

The modified back jump tracking strategy in TS is implemented as follows. A

maxb number of solutions are stored in the elite solution list B, where maxb is a fixed

number. If a best solution 's is found at iteration k, the updated tabu list at iteration

1k + is stored into the elite solution list B together with the solution 's . If the total

number of solutions in B is more than maxb, the oldest solution is removed from the

list. Whenever the number of iterations that have no improvements is reached, the most

recent solution in the elite solution list B is used as the new starting solution to restart

the search and is removed from the elite solution list B simultaneously. The iteration

counter is reset to zero whenever the search starts from a new solution in the elite

solution list B. Each single back jump tracking search stops when the total number of

iterations performed exceeds the maximum number of iterations, maxiter. The whole

back jump tracking process stops when either the elite solution list B is empty or the

 105

optimal solution is found and proved. The elite solutions list B is implemented as a

first in last out (FILO) list.

5.4.3 Cycle Detection Method

Cycle detection strategy is used to reduce the fruitless cycle search when it exists

but does not affect the final solution quality. We adopt the cycle detection strategy

used by Nowicki and Smutnicki (1993). In a cycle situation, a solution after iteration

k is similar to the solution after k + Δ , 2k + ×Δ , 3k + ×Δ ,…, where Δ is the length

of the cycle. In order to detect a cycle, the makespans of a period length of iterations,

maxδ , which must be greater or equal to Δ , is recorded. If there is a period ,δ where

max1 δ δ≤ ≤ , and max max
k kC C−Δ = is true for 1k iter δ= + − , where max

kC is the makespan

found at iteration k, a cycle is detected.

Figure 5.3 An illustration of recorded makespans for cycle detection

The cycle detection mechanism described above is illustrated in Figure 5.3. With

a larger value of maxδ , the mechanism is able to detect a longer cycle but at the expense

of higher memory needed to record the makespan list and longer computation time. A

234
246
258
269
…
273
234
246
258
269

maxδ

Δ

3δ =

 106

larger value of δ increases the confidence level of the cycle detection results but may

increase the number of unnecessary comparisons of makespans. The values of δ and

maxδ are set experimentally as a compromise between the amount of computation

required and the confidence level of the cycle detection result. It is noted that the

values of δ and maxδ are dependent on the problem characteristics and other tabu

search parameters, i.e. the range of objective values of the solution space, the move

attributes, and the length of the tabu list. Our computational experiments show that

setting 3 5δ≤ ≤ is enough to detect the cycle with less than 1% occurrence of false

alarms.

5.5 Application of TS to the Open Shop Scheduling Problem

 In this section, we apply the tabu search algorithm to the OSSP using the

search strategies discussed in Section 5.4. The objective of the problem max|| COm is to

minimize the makespan.

5.5.1 Initial Solutions

We apply the dispatching rule, DS/LTRP rule, described in Liaw (1999), to

generate the initial solutions. The dispatching rule is described as follows. When more

than one machine is idle at the same time, select the machine that has the longest total

remaining processing time; otherwise, choose the first idle machine and choose the

operation belonging to the job that has the longest total remaining processing time on

the other machines. If no such operation exists, the machine remains idle until an

operation has been completed on some other machine such that an operation is ready to

be processed by the machine that was chosen previously. As stated in Section 5.4,

initial solutions are stored in the elite solution list B before the tabu search starts. Here,

 107

we prefer to store different initial solutions in the elite solution list B to prevent

repetition. However, the DS/LTRP rule is a deterministic procedure and can only

generate one unique solution. To overcome this drawback, we implement a greedy

randomized procedure to generate different initial solutions. Whenever more than one

job is available, we select the next job to be scheduled using a greedy cost function as

stated in Armentano and Araujo (2006). A restricted candidate list (RCL) is formed to

select the operation to be scheduled next. Let maxR and minR denote the maximum and

minimum total remaining processing time on the other machines respectively for the

jobs whose operations are available on the selected machine. The number of jobs in the

RCL is limited by using a threshold parameter [0,1]α ∈ . As we want to select the job

with the longest remaining processing time, all jobs with costs larger or equal to

max max min()R R Rα− ⋅ − are included in the RCL. A job is selected randomly from the

RCL using a uniform distribution and the available operation belonging to the selected

job is scheduled next. Thus, 0α = corresponds to the greedy choice and 1α = results

in a pure randomized job selection. Therefore, the threshold parameter α controls the

balance between the greedy and the randomized solution construction.

5.5.2 Lower Bound

The OSSP lower bound is computed using the method proposed by Pinedo

(2002):

max
1 1

max max , max
n m

LB
ij ijj ii j

C p p
= =

⎧ ⎫⎧ ⎫⎧ ⎫⎪ ⎪= ⎨ ⎨ ⎬ ⎨ ⎬⎬
⎩ ⎭⎪ ⎪⎩ ⎭⎩ ⎭
∑ ∑ . (5.1)

5.5.3 Neighborhoods

Neighborhood 1N :

 108

Liaw (1999) defined a neighborhood structure for the OSSP. The neighborhood

defined by Liaw (1999) is called neighborhood N1 in this thesis. N1 considers the

reversal of arc (i, j) in a block where either node i is the first node or j is the last

operation in the block. These arcs are called candidate arcs. For each candidate arc

(,)i j , the following arc reversals are considered if i jM M= ,

(1) Arcs (,)i j ;

(2) Arcs (,)i j and ((),)IPJ j j ;

(3) Arcs (,)i j and (, ())i ISJ i ;

(4) Arcs (,)i j , ((),)IPJ j j and (, ())i ISJ i .

Similarly, for an candidate arc (,)i j with i jJ J= , the following arc reversals are

considered

(5) Arcs (,)i j

(6) Arcs (,)i j and ((),)IPM j j

(7) Arcs (,)i j and (, ())i ISM i

(8) Arcs (,)i j ((),)IPM j j and (, ())i ISM i .

However, as pointed out in Liaw (1999), it may happen for 1N that at certain

iterations, all feasible moves are forbidden and no move satisfies the aspiration

criterion. The reason for this is that the size of the neighborhood N1 is too small. In this

study, we propose a neighborhood N2 that is able to circumvent the disadvantage of

neighborhood N1.

Neighborhood 2N :

Let operation v be an operation in block ' "{ , , }B b v b= , where v denotes an

operation whereas 'b and "b denote blocks having at least one operation.

 109

Neighborhood 2N is defined by moving v to the first or last position in block B and

relocating v to the appropriate position on the non-critical path at the same time.

The neighborhood 2N , which concentrates on moving an operation within a

block to the first or last position of the block, has a larger size than 1N . Moving v to

the first or last position in block B obtains two schedules, ()' ", ,v b b and ()' ", ,b b v . In

addition, relocating operation v to some position on the non-critical path is carried out

simultaneously. Let us assume that the operations in block B have to be processed on

the same machine and the first operation in block 'b is operation w and hence we have

() () () ()w IPJ w IPJ w IPM w IPM wh h d h d= + ≥ + . When an operation v is moved to the first

position in block B, the head of operation v is determined by

{ }' ' '
() () () ()max ,v IPM w IPM w IPJ v IPJ vh h d h d= + + , where '

vh stands for the head of operation v

after it is moved to the new position.

 Two cases will be considered in order to relocate v onto the non-critical path.

Case 1: () () () ()IPM w IPM w IPJ v IPJ vh d h d+ < +

 Relocating operation v to a position in the operation sequence of job Jv such

that ' '
() () () () () ()IPM w IPM w IPJ v IPJ v IPJ v IPJ vh d h d h d+ < + < + . It is noted that there is

no need to move operation v to a position such that

' '
() () () ()IPM w IPM w IPJ v IPJ vh d h d+ ≥ + , as the head of operation v is determined

by the maximum value of () ()IPM w IPM wh d+ and ' '
() ()IPJ v IPJ vh d+ .

Case 2: () () () ()IPM w IPM w IPJ v IPJ vh d h d+ ≥ +

 Do nothing as relocating operation v to a position in the operation sequence of

job Jv cannot reduce '
vh .

 110

For Case 1, it is possible that there is more than one position where operation v

can be moved to. In this circumstance, all the possible positions should be tested.

Similarly, moving an operation to the last position in a block is also considered in

neighborhood 2N .

To estimate the effect of the move of operations for neighborhoods 1N and 2N ,

we use the approach similar to that proposed by Dell’ Amico and Trubian (1993) for

the JSSP. For each new possible solution, its estimated makespan is computed by the

heads and tails of those operations whose preceding or succeeding (including the non-

immediate predecessors and the non-immediate successors) operations are changed.

The maximum value of i i ih d t+ + is the estimated makespan. The estimated makespan

provides a valid lower bound for the exact makespan of the new solution. Once a new

solution is accepted, its exact makespan is calculated using the approach developed by

Christofides (1975) as described in subsection 5.2.2.

5.5.4 Tabu Search Algorithm for the OSSP

Tabu list is used to memorize the moves and to prevent cycle traps. Each time a

move is performed, the attributes related to the move are pushed back into the tabu list.

The moves are forbidden only for a certain number of iterations in tabu search. This

mechanism helps to prevent cycle traps after a deterioration of the objective value

move has been accepted. However, it is critical to design the move attributes so that

cycle traps can be prevented and the potentially good solution space is not forbidden

from being searched at the same time.

For neighborhood 1N , we follow Liaw (1999) to memorize the reversal of all

arcs involved. For neighborhood 2N , its immediate succeeding operations,

 111

()ISM i and ()ISJ i in the new solution are found and the move attributes (, ())i ISM i

and (, ())i ISJ i are added to the tabu list for the forward move of an operation i. For a

backward move of an operation i, its immediate preceding operations,

()IPM i and ()IPJ i in the new solution are found and the moves (, ())i ISM i and

(, ())i ISJ i are added to the tabu list. If the immediate preceding operation or

immediate succeeding operation is a dummy node, we will ignore the related attributes.

A move is forbidden if at least one of the arcs involved is in the tabu list. It is noted

that the move attributes defined for neighborhood 2N is not as straightforward as those

defined for neighborhood 1N . However, our computational experiments show that the

move attributes defined here for neighborhood 2 2N is very effective in finding better

solutions and preventing cycle traps.

Tabu list is implemented as a first-in-first-out list with a tabu length, which is the

number of iterations a move is kept as tabu, and varies according the rules given below.

(1) If a new best solution is found, increase the length of the tabu list if its length is

less than a threshold maxTabuLength.

(2) Each time a back jump tracking is triggered, decrease the length of the tabu list

if its length is greater than a threshold value minTabuLength.

If the threshold value of minTabuLength is too large, the tabu list will forbid too

many moves even when there are potentially better moves; on the other hand, using too

small a value of minTabuLength can possibly cause the search to be trapped into cycles.

The length of the tabu list should be set experimentally.

It is quite easy to implement a classical tabu search algorithm. We will start from

a feasible initial solution. At each iteration, the best feasible non-tabu move is selected

and a new solution is generated by carrying out the move. If the makespan of the new

 112

solution is better than the best solution found so far, it is added to the elite solution list.

The algorithm stops in either of the two cases: (1) a solution with makespan is equal to

the lower bound of makespan is found, or (2) the elite solution list is empty and the

number of iteration is greater than maxIteration.

The procedure of the tabu search algorithm for OSSP is given below.

Step 1. Set iter :=0, initialize maxiter, maxb, max#NoImprov., minTabuLength,

maxTabuLength, compute the lower bound of makespan max
LBC ;

Step 2. Construct maxb number of solutions based on the procedure described in

subsection 5.5.1 with 0α > ;

Step 3. Construct an initial solution based on the procedure described in subsection

5.5.1 with 0α = ;

Step 4. Set iter:= iter + 1. If (iter > maxiter) OR (#NoImprov. > max#NoImprov.) go

to Step 8; otherwise, find the best feasible move from all the possible moves

of 1N and 2N , compute the exact makespan '
maxC of the new solution 's ,

update the tabu list;

Step 5. If (isCycle(iter, '
maxC) = TRUE) go to Step 8; otherwise, go to Step 6;

Step 6. If ('
max max

bestC C<) set '
max max:bestC C= , go to Step 7; otherwise, go to Step 4;

Step 7. If ('
max max

LBC C=), Stop; otherwise push the solution 's into elite solution list B;

go to Step 4;

Step 8. If the elite solution list B is empty, stop; otherwise, use the most recent

solution in elite solution list B as the starting solution and remove the elite

solution from list B, set iter := 0, go to Step 4.

In Step 1, the problem lower bound is computed using formula (5.1). In Step 5,

the function isCycle(iter, '
maxC) is used to detect whether there exists a cycle or not

 113

based on the procedure described in subsection 5.4.3. If isCycle(iter, '
maxC) = TRUE,

then the search procedure will jump to Step 8 to use the most recent solution in the

elite solution list B as the new starting solution.

5.5.5 Computational Results

To test the performance of the tabu search algorithm proposed in this work, the

TS algorithm was coded in C++ and implemented on a Pentium 4 personal computer

with 2.6GHz CPU and 512MB RAM. The widely used benchmark problems described

in Taillard (1993) are used to evaluate the performance of the algorithm proposed in

this chapter. The set of problems contains 60 hard benchmark problem instances

ranging from small problems with 16 operations to large problems with 400 operations.

Moreover, these problems are all square problems, in which the number of jobs is

equal to the number of machines. It was observed by Taillard (1993) that the square

OSSPs are harder to be solved compared to other problems.

The parameters of the tabu search algorithm should be set experimentally to

ensure a compromise between computation time and quality of final solution obtained.

In our implementation, the parameters are set to the following values: maximum

number of iterations maxiter: = 40,000, maximum number of elite solutions, maxb =10,

maximum number of no improvement, max#NoImprov. = 20,000, the lower threshold

value of tabu length minTabuLength () / 2n m= +⎡ ⎤⎢ ⎥ , and the upper threshold value of

the tabu length maxTabuLength ()n m= + . The detailed computational results are

presented and compared with the results given by Liaw (1999) in Table 5.1. The first

column in Table 5.1 indicates the problem type with the number of jobs, the number of

machines, and the problem instance replication number. The lower bound of makespan

max
LBC , obtained from formula (5.1), is shown in the second column. The third column

 114

shows the optimal solution makespan of the corresponding OSSP. The best makespan

obtained and its deviation from the optimal solution makespan, and the computation

time in seconds are presented for both the algorithm of Liaw (1999) and our tabu

algorithm. The relative deviation from the optimum solution objective is defined as

follows: .(%) ((.) / .) 100%bestDev Z opt opt= − × .

 115

Table 5.1 Results for the Taillard’s benchmark problems

 Liaw (1999) Tabu Search Algorithm
Problem

max
LBC opt . Zbest

Dev.
(%) Time1 Zbest Dev. (%) Time

Taillard 4×4_1 186 193 193* 0.00 0 193* 0.00 0.67
Taillard 4×4_2 229 236 236* 0.00 0 236* 0.00 2.17
Taillard 4×4_3 262 271 271* 0.00 0 271* 0.00 0.55
Taillard 4×4_4 245 250 250* 0.00 0 250* 0.00 0.61
Taillard 4×4_5 287 295 295* 0.00 8 295* 0.00 0.64
Taillard 4×4_6 185 189 189* 0.00 1 189* 0.00 2.00
Taillard 4×4_7 197 201 201* 0.00 0 201* 0.00 1.41
Taillard 4×4_8 212 217 217* 0.00 8 217* 0.00 1.44
Taillard 4×4_9 258 261 261* 0.00 0 261* 0.00 2.69
Taillard 4×4_10 213 217 217* 0.00 1 217* 0.00 1.44

Taillard 5×5_1 295 300 300* 0.00 2 300* 0.00 9.25
Taillard 5×5_2 255 262 262* 0.00 0 262* 0.00 9.70
Taillard 5×5_3 321 323 326 0.93 82 323* 0.00 11.14
Taillard 5×5_4 306 310 310* 0.00 0 310* 0.00 9.64
Taillard 5×5_5 321 326 326* 0.00 14 326* 0.00 10.88
Taillard 5×5_6 307 312 312* 0.00 1 312* 0.00 12.69
Taillard 5×5_7 298 303 303* 0.00 2 303* 0.00 8.41
Taillard 5×5_8 292 300 300* 0.00 32 300* 0.00 12.25
Taillard 5×5_9 349 353 353* 0.00 16 353* 0.00 14.44
Taillard 5×5_10 321 326 326* 0.00 24 326* 0.00 6.88

Taillard 7×7_1 435 435 435* 0.00 21 435* 0.00 17.75
Taillard 7×7_2 443 443 447 0.90 55 443* 0.00 1.09
Taillard 7×7_3 468 468 474 1.28 128 471 0.64 43.83
Taillard 7×7_4 463 463 463* 0.00 75 463* 0.00 13.78
Taillard 7×7_5 416 416 417 0.24 94 416* 0.00 6.99
Taillard 7×7_6 451 451 459 1.77 87 457 1.33 37.78
Taillard 7×7_7 422 422 429 1.66 75 425 0.71 34.69
Taillard 7×7_8 424 424 424* 0.00 32 424* 0.00 5.39
Taillard 7×7_9 458 458 458* 0.00 22 458* 0.00 1.23
Taillard 7×7_10 398 398 398* 0.00 11 398* 0.00 1.83

Taillard 10×10_1 637 637 646 1.41 190 643 0.94 78.48
Taillard 10×10_2 588 588 588* 0.00 1 588* 0.00 6.55
Taillard 10×10_3 598 598 601 0.50 126 601 0.50 53.89
Taillard 10×10_4 577 577 577* 0.00 101 577* 0.00 0.13
Taillard 10×10_5 640 640 644 0.63 188 640* 0.00 33.41
Taillard 10×10_6 538 538 538* 0.00 2 538* 0.00 0.66
Taillard 10×10_7 616 616 616* 0.00 23 616* 0.00 9.05
Taillard 10×10_8 595 595 595* 0.00 25 595* 0.00 55.85
Taillard 10×10_9 595 595 597 0.34 157 595* 0.00 8.77
Taillard 10×10_10 596 596 596* 0.00 55 596* 0.00 5.63

Taillard 15×15_1 937 937 937* 0.00 1 937* 0.00 0.61
Taillard 15×15_2 918 918 920 0.22 303 919 0.11 134.35
Taillard 15×15_3 871 871 871* 0.00 9 871* 0.00 0.66
Taillard 15×15_4 934 934 934* 0.00 3 934* 0.00 0.48
Taillard 15×15_5 946 946 949 0.32 293 948 0.21 149.45
Taillard 15×15_6 933 933 933* 0.00 32 933* 0.00 6.66
Taillard 15×15_7 891 891 891* 0.00 299 891* 0.00 68.78
Taillard 15×15_8 893 893 893* 0.00 3 893* 0.00 0.52
Taillard 15×15_9 899 899 910 1.22 301 905 0.67 136.94
Taillard 15×15_10 902 902 906 0.44 263 902* 0.00 75.92

Taillard 20×20_1 1155 1155 1155* 0.00 114 1155* 0.00 39.19
Taillard 20×20_2 1241 1241 1246 0.40 654 1249 0.64 201.36
Taillard 20×20_3 1257 1257 1257* 0.00 2 1257* 0.00 2.31
Taillard 20×20_4 1248 1248 1248* 0.00 71 1248* 0.00 10.33
Taillard 20×20_5 1256 1256 1256* 0.00 14 1256* 0.00 0.66
Taillard 20×20_6 1204 1204 1204* 0.00 31 1204* 0.00 5.31
Taillard 20×20_7 1294 1294 1298 0.31 400 1294* 0.00 47.17
Taillard 20×20_8 1169 1169 1184 1.28 866 1182 1.11 138.47
Taillard 20×20_9 1289 1289 1289* 0.00 13 1289* 0.00 1.56
Taillard 20×20_10 1241 1241 1241* 0.00 14 1241* 0.00 0.42

Average 0.23 0.12
1- Computation time reported in seconds on Pentium-133 PC
(An asterisk indicates that the solution found is optimal and boldface indicates better solutions found by
our tabu search algorithm or the algorithm proposed by Liaw (1999))

 116

The computational results in Table 5.1 show that the proposed tabu search

algorithm found 50 optimal solutions among the 60 problem instances. For the small

sized problem instances, e.g. Taillard’s 4×4 problem instances, all the 10 optimal

solutions can be found in a short time. For problem instances of Taillard 5×5, our tabu

search algorithm obtained 10 optimal solutions while the algorithm proposed by Liaw

(1999) only obtained 9 optimal solutions. For Taillard’s 7×7, 10×10, 15×15 and

20×20 problem instances, our tabu search algorithms obtained 6 more optimal

solutions than the algorithm proposed by Liaw (1999). In addition, our tabu search

algorithm found 15 better solutions than the algorithm proposed by Liaw (1999).

Where the average relative deviation from the optimal solution makespan is concerned,

our tabu search algorithm obtained an average deviation 0.12% for the 60 problem

instances while the algorithm proposed by Liaw (1999) only obtained an average of

0.23%. The improvement is not very significant because both methods can get very

good solutions that are optimal or near optimal solutions. As the computational

experiments were conducted on different platforms, the computation times can only be

compared approximately. However, the computation time in column 9 indicates that

the computation time of our tabu search algorithm is reasonable. By analyzing max
LBC ,

Zbest and the computation time in Table 5.1, we find that when the final value of Zbest is

larger than max
LBC , the TS algorithm will normally spend longer computation times than

for other problem instances of the same size; the gap is large especially when the size

of the problem is large. This is because once the objective value is equal to max
LBC ,

meaning that the optimal solution is found and proved, the search procedure will stop.

If the Zbest is larger than max
LBC , the TS algorithm will search for better solutions until the

elite solution list B is empty.

 117

5.6 Application of TS to the Routing Open Shop Scheduling Problem

Machine scheduling problems where machines travel between jobs located at

different nodes were studied by Averbakh and Berman (1996) and Averbakh and

Berman (1999) for the flow shop problem. A
5
6 -approximate algorithm was proposed

by Averbakh et al. (2005) for a ROSSP with two machines on a 2-node network.

Averbakh et al. (2006) proved that the ROSSP with two machines on a 2-node network

with n jobs is NP-hard. The same authors also proposed a heuristic for the general

ROSSP based on the conclusion obtained for the routing flow shop problem.

For a routing open shop scheduling problem, it is assumed that jobs are located at

nodes of an undirected transportation network >=< EVG , with a set of nodes V and a

set of edges E. It is also assumed that the machines are located at the same node

(depot), have to travel between jobs to process operations, and will return to the depot

after all operations are processed. The routing open shop is denoted as max|| CRO in

Averbakh et al. (2006). The following notations are used throughout this subsection.

T - the optimum objective value for the transport network of the problem, related

to traveling salesman problem TSP(G)

∑ =
=

n

j jii pl
1

: is the load of machine Mi;

∑=
=

m

i jij pp
1

: is the length of job Jj;

jjj dpp 0
' 2×+= is the job length plus two times of the distance from the depot

to job j.

ii lL max:= is the maximum machine load

jj pP max:= is the maximum job length

'' max: jj pP =

For ease of presentation and without loss of generality, we assume that | |V mn=

and there is only one job at each node. Therefore, Jj can be used to denote both job and

 118

network node. Here J0 is used to denote the depot node where all machines are initially

located and we let J0 denote a job with m operations with zero processing. In the

undirected transportation network >=< EVG , , the distance between different jobs

can be represented by a nn× symmetric matrix, which is similar to the distance matrix

in a symmetric traveling salesman problem. Adding the two matrices and considering

the depot node J0, a)1()1(+×+ nn asymmetric distance matrix Mi can be formulated

for each machine Mi.

5.6.1 Initial Solutions

Every time a machine is available, select an operation with the earliest start time

from all the operations available on the selected machine. When more than one

machine is available, select the machine with the maximum remaining loads.

The steps for generating initial solutions are summarized below.

Step 1. Select an available machine. If more than one machine is available, select the

machine with the largest remaining loads;

Step 2. Select an available operation to be processed on the machine, and then assign it

to the machines. If all operations have been assigned, go to Step 4;

Step 3. If no operation is available, wait until one machine is available. Go to Step 1;

Step 4. Stop.

5.6.2 Lower Bound

Averbakh et al. (2006) proposed a lower bound { }max ,T L P+ for the 2-

machine ROSSP. For the m-machine case, the value { }{ }max max , ,L P T was used as

the lower bound. We proposed a lower bound that is tighter than the lower bound

proposed by Averbakh et al. (2006) as follows.

 119

{ }'max max ,LBC T L P= + for the m-machine ROSSP. (5.2)

The proof is straightforward. For any machine, the optimal tour for the TSP is

independent of the job processing time. Therefore, LT + is a lower bound of

completion for the machine with the maximum load. For any job, one machine has to

travel to the location of the job to process its first operation. If an operation of the job

Jj is the first operation to be processed on the machine, the traveling distance is d0j;

otherwise, the distance is longer than d0j based on the triangle inequality property. The

machine has to travel back to the depot position after its last operation is processed. As

all machines are located at the same depot node, and will return to the same depot node

after all operations are processed, '
jp is a valid lower bound of time to complete job j.

Therefore, { }'max ,T L P+ is a valid lower bound for the ROSSP.

5.6.3 Neighborhoods

Neighborhood N1 is adapted from the neighborhood structure defined by Liaw

(1999) for the OSSP. As the neighborhood defined by Liaw (1999) does not consider

the transportation or setup times, neighborhood N1 for the ROSSP is extended from the

neighborhood N1 for the OSSP by taking the transportation or setup times into account

when makespan is estimated for the ROSSP. Neighborhood N2 for the ROSSP is

extended from the neighborhood N2 for the OSSP described in subsection 5.5.3 by

considering the transportation or setup times. For the ROSSP, the makespan is

composed of three components of time, namely operation processing time, waiting

time, and machine traveling time. Therefore, it is possible to change the operation

processing order inside a block to reduce the machine traveling time for those

operations that require the same machine. Neighborhood N3 is defined by changing of

the operation processing order within a block where the operations have to be

 120

processed on the same machine. In this work, adjacent pairwise interchange (API) of

operations is implemented for the neighborhood N3.

Lemma 5.5: For two adjacent operations which are inside of a block (but neither of the

two operations is the first or the last operation of the block), and have to be processed

by the same machine, the makespan of the ROSSP cannot be reduced if the

transportation or setup times cannot be reduced after pairwise interchange.

Proof: If the transportation or setup times are ignored, the ROSSP is reduced to OSSP.

For the OSSP, the adjacent pairwise interchange of operations within a block will not

reduce the makespan (Mattfeld 1996). When the transportation or setup times are

considered, the increase of transportation or setup times by adjacent pairwise

interchange of operations will also increase the makespan of the ROSSP.

5.6.4 Tabu Search Algorithm

The same aspiration criterion, back jump tracking method and cycle detection

method described in Section 5.4 are used for the tabu search algorithm developed for

the ROSSP. For neighborhood N1, the reversal of all arcs involved are stored in the

tabu list. For neighborhood N2, the arcs (, ())i ISM i and (, ())i ISJ i in the new solution

are added to the tabu list. As for the neighborhood N3, the arc reversed by adjacent

pairwise interchange is recorded. The detailed implementation of the tabu search

algorithm for the ROSSP is the same as that for the algorithm developed for the OSSP

described in subsection 5.5.4.

 121

5.6.5 Computational Results

Random problem instances are generated to test the performance of the tabu

search algorithm developed for the ROSSP. Each problem instance is generated with

four parameters: number of jobs, number of machines, the distribution of operation

processing time, and the distribution of the network node coordinates. The settings for

generating the random problem instances are given in Table 5.2.

Table 5.2 Settings for generating ROSSP instances

Factors Setting
Number of jobs (n) 5, 10, 20

Number of machines (m) 5, 10, 20
Uniform distribution of operation

processing time (PT) (1, 10), (1, 100)

Uniform distribution of network
node coordinates (NC) (1, 10), (1, 100)

Let PT and NC denote the variation of the uniform distribution for operation

processing time and the uniform distribution for the network node coordinates

respectively, and let L and H denote the low variation and high variation for PT and

NC respectively. There are 36 combinations of settings in total. One instance is

generated for each setting and the computational results are shown in Table 5.3. In

Table 5.3, column 1 is the index of the problem instance. The number of jobs and

number of machines for each instance are shown in columns 2 and 3 respectively. The

settings of PT and NC are provided in columns 4 and 5 respectively. The lower bound

of the ROSSP instance makespan is computed based on the lower bound

computational method described in subsection 5.6.2 and the TSP tour length is

obtained by solving the corresponding TSP problem optimally. Therefore, the lower

bound is a strong lower bound for the ROSSP, meaning that it is possible for the

problems’ optimal makespan to be equal to the lower bound value. The initial solutions

are constructed using the method described in subsection 5.6.1 and the corresponding

 122

makespans are given in column 7 in Table 5.3. The TS solutions' makespans are listed

in column 9. The relative deviation from the lower bound of the initial solution in

percentage and the TS solution is given in columns 8 and 10 respectively. The

computation time (excluding the lower bound computation time) of the TS algorithm is

given in column 11.

Table 5.3 Computational results

problem n m PT NC Lower
bound

Initial
solution

Initial
solution

Dev.
(%)

TS
solution

TS
solution

Dev.
(%)

TS
computation

Time

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1 5 5 L L 50 57 14.00 50 0.00 0.84
2 5 5 L H 345 390 13.04 348 0.87 5.91
3 5 5 H L 346 354 2.31 346 0.00 0.75
4 5 5 H H 648 720 11.11 648 0.00 0.06
5 5 10 L L 80 81 1.25 80 0.00 0.95
6 5 10 L H 303 356 17.49 324 6.93 2.86
7 5 10 H L 636 636 0.00 636 0.00 0.39
8 5 10 H H 747 845 13.12 747 0.00 1.11
9 5 20 L L 144 144 0.00 144 0.00 0.91

10 5 20 L H 268 313 16.79 268 0.00 4.34
11 5 20 H L 1285 1285 0.00 1285 0.00 0.06
12 5 20 H H 1417 1417 0.00 1417 0.00 0.61
13 10 5 L L 96 106 10.42 98 2.08 1.58
14 10 5 L H 434 511 17.74 441 1.61 12.69
15 10 5 H L 651 658 1.08 651 0.00 1.75
16 10 5 H H 922 1083 17.46 933 1.19 31.30
17 10 10 L L 95 111 16.84 104 9.47 5.00
18 10 10 L H 362 453 25.14 410 13.26 38.22
19 10 10 H L 644 722 12.11 650 0.93 103.51
20 10 10 H H 881 1062 20.54 914 3.75 158.48
21 10 20 L L 137 148 8.03 137 0.00 12.44
22 10 20 L H 427 525 22.95 514 20.37 94.32
23 10 20 H L 1293 1293 0.00 1293 0.00 5.30
24 10 20 H H 1374 1475 7.35 1375 0.07 291.13
25 20 5 L L 154 168 9.09 162 5.19 6.61
26 20 5 L H 475 632 33.05 541 13.89 59.03
27 20 5 H L 1243 1249 0.48 1248 0.40 14.54
28 20 5 H H 1639 1763 7.57 1663 1.46 50.96
29 20 10 L L 169 182 7.69 173 2.37 16.92
30 20 10 L H 476 630 32.35 584 22.69 201.29
31 20 10 H L 1325 1343 1.36 1339 1.06 73.46
32 20 10 H H 1667 1838 10.26 1751 5.04 395.40
33 20 20 L L 172 227 31.98 220 27.91 24.11
34 20 20 L H 556 740 33.09 719 29.32 251.36
35 20 20 H L 1300 1369 5.31 1300 0.00 407.34
36 20 20 H H 1682 2209 31.33 1917 13.97 384.55

Average 12.57 5.11 73.89

 123

Comparing columns 8 and 10, we find that the tabu search algorithm is very

efficient in reducing the makespans of the initial solutions. In average, the relative

deviation from the lower bound makespan is reduced from 12.57% to 5.11%. In order

to illustrate the effect of the four factors on the relative deviation, an analysis of

variance (ANOVA) was conducted and the results are shown in Table 5.4.

Table 5.4 ANOVA for TS solution relative deviations

Source Sum of
Squares D.F. Mean

Square F-Ratio P-Value

N 564.974 2 282.487 8.05 0.0017
M 178.001 2 89.0003 2.54 0.0965
NC 200.742 1 200.742 5.72 0.0234
PT 455.751 1 455.751 12.99 0.0012

RESIDUAL 1017.25 29 35.0775
TOTAL

(CORRECTED) 2416.72 35

Table 5.5 ANOVA for TS computation time

Source Sum of
Squares D.F. Mean

Square F-Ratio P-Value

n 147347 2 73673.5 9.81 0.0006
m 70923.1 2 35461.6 4.72 0.0168

NC 47463 1 47463 6.32 0.0177
PT 38764.4 1 38764.4 5.16 0.0307

RESIDUAL 217757.0 29 7508.85
TOTAL

(CORRECTED) 522254.0 35

From Table 5.4 we get P-value(n) = 0.0017 and P-value(PT) = 0.001, which are

considerably smaller than 0.01α = . Therefore, we have strong evidence to conclude

that the number of jobs (n) and the distribution of operation processing times (PT)

affect the final relative deviation obtained by the tabu search algorithms.

Similarly, ANOVA was conducted for the computation time and the results are

summarized in Table 5.5. It shows that P-value(n) = 0.0006, which is significantly

smaller than 0.01α = . Hence, we have strong evidence to conclude that the

 124

computation time of the TS algorithm for the ROSSP is influenced by the number of

jobs.

5.7 Conclusions

In this chapter, we developed two tabu search algorithms to minimize the

makespan for the OSSP and the ROSSP respectively. New neighborhoods were

defined for both of the two problems. Moreover, an exact method was developed to

remove infeasible move of operations quickly. To overcome the disadvantage of the

existing back jump tracking technique, we modified the existing back jump tracking

technique by generating different starting solutions and storing them in the elite

solution list before a search procedure is launched. Our tabu search algorithms were

tested based on both benchmark and randomly generated problem instances. The

computational results show that our algorithm performs very well for both small sized

with less than 100 operations as well as large sized problems with up to 400 operations.

Moreover, our algorithms were able to find the optimal solutions for many of the

OSSP and ROSSP problem instances. For those problem instances whose optimal

solutions were not verified, the gaps between the makespans obtained and the optimal

solution makespans or lower bound of makespans were quite small.

 125

Chapter 6 Conclusions and Future Research

In this dissertation, we have covered a number of routing shop scheduling

problems, i.e. the single machine scheduling problem with unequal release dates, the

single machine scheduling problem with setup times, the open shop scheduling

problem, and the routing open shop scheduling problem. In this chapter, we summarize

the research work conducted in this study and provide some concluding remarks to

close our research dissertation. We also provide suggestions for future research at the

end of this chapter.

6.1 Summary and Conclusions

 In the last four decades, researchers in the area of operations research have

worked on different types of manufacturing problems, and numerous exact and

heuristics have been proposed to solve these problems. However, most of the research

work conducted in the literature ignores product traveling times, machine traveling

times and machine setup times. To improve the overall manufacturing system

performance, we propose both exact and heuristics to solve the routing shop

scheduling problems that consider machine or product transportation or setup times.

Chapter 3 of this dissertation provides a detailed description of a branch-and-

bound algorithm that was developed to minimize the total weighted tardiness for the

single machine scheduling problem with unequal release dates. To make the branch-

and-bound algorithm more efficient, three global dominance rules, one local

dominance rule, and a lower bound computational method were introduced to prune

the search tree. The performance of the branch-and-bound algorithms was tested based

on randomly generated problem instances and the computational results show that the

 126

branch-and-bound algorithm is efficient in solving the SMSP with unequal release

dates.

To solve large sized single machine scheduling problems, a brand new heuristic,

named overlapped neighborhood search (ONS) algorithm, is proposed in Chapter 4.

The ONS algorithm is a general-purpose algorithm that is applicable to those problems

whose solutions can be represented by permutations. The basic idea of the ONS

algorithm is to divide the permutation of a solution into overlapping blocks; each block

is then explored independently. The whole solution can be further improved due to the

existence of the overlaps between adjacent blocks. Results from the computational

experiments conducted in this research work show that the ONS algorithm is efficient

in solving both the single machine total weighted tardiness problem with unequal

release dates and the single machine total weighted tardiness problem with sequence

dependent setup times.

In Chapter 5, we introduce new neighborhoods for both the open shop scheduling

problem and the routing open shop scheduling problem. In order to remove the

infeasible move of operations quickly, we propose an exact feasibility checking

method for the OSSP and the ROSSP. The computational results for the OSSP show

that our tabu search algorithms performed very well for both small sized problems

with less than 100 operations and large sized problems with up to 400 operations.

Moreover, our tabu search algorithms were able to find the optimal solutions for most

of the problem instances. For the ROSSP, computational experiments were conducted

based on randomly generated problem instances. A lower bound computational

method, which is tighter than the existing lower bound, is developed for ROSSP. The

computational results show that the tabu search algorithm embedded with new

 127

neighborhoods and new back jump tracking strategy is able to improve the initial

solutions significantly within a short computation time.

The main contributions of this study are summarized below.

(1) New global dominance rules and a lower bound computational method were

developed and integrated into a branch-and-bound algorithm. The

computational experiments, which are based on randomly generated problem

instances, show that the global dominance rules and the lower bound

computational method proposed in this study are efficient in reducing the size

of the search tree;

(2) A brand new general purpose heuristic, called overlapped neighborhood search

(ONS) algorithm, was developed for machine scheduling problems whose

solutions can be represented with permutations, such as various single machine

scheduling problems, the traveling salesman problem (TSP), linear ordering

problems (LOP), quadratic assignment problems (QAP) and bandwidth

reduction problems (BRP) etc. Our computational results show that the ONS

algorithm is an efficient and fast local search algorithm for solving single

machine scheduling problems;

(3) New neighborhood structures were defined for two multi-machine scheduling

problems, the open shop scheduling problem, and the routing open shop

scheduling problem. Numerical experiments show that our new neighborhoods,

exact feasibility checking methods, and new back jump tracking strategy,

which are embedded into the tabu search algorithms, are efficient in

minimizing the makespan for the OSSP and ROSSP.

 128

6.2 Future Research

In Chapter 3, we demonstrated that the branch-and-bound algorithm that was

developed for the single machine total weighted tardiness problem is an efficient

algorithm. It is expected that the performance of the branch-and-bound algorithm can

be improved further by incorporating sophisticated search strategies. Moreover, a

stronger and more efficient lower bound computational method is also helpful for

improving the performance of the exact algorithm.

The ONS algorithm proposed in Chapter 4 is a promising general-purpose

algorithm for sequencing problems, such as the traveling salesman problem with time

windows, quadratic assignment problems, linear ordering problems, and bandwidth

reduction problems, etc. Comprehensive computational experiments are required in

order to test the performance of the ONS algorithm for different types of sequencing

problems. Furthermore, we provided several block improvement procedures for the

ONS algorithm in Chapter 4. The efficiency of different BIPs should be evaluated to

provide guidelines for other researchers. Another promising area is to extend the ONS

algorithm to accept “worse-of” solutions based on a probabilistic strategy to jump out

of the local optima. In addition, the ONS algorithm can be hybridized with other meta-

heuristics, such as tabu search, simulated annealing, ant colony optimization algorithm,

etc. to improve its performance.

As the exact feasibility checking method proposed in Chapter 5 is also applicable

to the classical job shop and the open shop scheduling problems, it is possible to

improve the performance of the existing algorithms developed in the literature for

these two problems further by applying the exact feasibility checking method. Further

work is expected to evaluate the influence of the exact feasibility checking method on

the existing job shop and open shop scheduling algorithms.

 129

References

[1] Abdul-Razaq, T.S., Potts, C.N. and Van Wassenhove, L.N. A survey of

algorithms for the single machine total weighted tardiness scheduling problem,

Discrete Applied Mathematics, 26, pp.235–253. 1990.

[2] Adams, J., Balas, E. and Zawack, D. The shifting bottleneck procedure for job

shop schedule, Management Science, 34(3), pp.391-401. 1988.

[3] Agin, N. Optimum seeking with branch and bound, Management Science, 13,

pp.176-185. 1966.

[4] Akturk, M.S. and Ozdemir, D. An exact approach to minimizing total weighted

tardiness with release dates, IIE Transactions, 32, pp.1091-1101. 2000.

[5] Akturk, M.S. and Ozdemir, D. A new dominance rule to minimize total

weighted tardiness with unequal release times, European Journal of Operational

Research, 135, pp. 394-412. 2001.

[6] Applegate, D. and Cook, W. A computational study of the job-shop scheduling

problem, ORSA Journal on Computing, 3, pp.149-156. 1991.

[7] Armentano, V.A. and de Araujo, O.C.B. Grasp with memory-based mechanism

for minimizing total tardiness in single machine scheduling with setup times,

Journal of Heuristics, 12, pp.427-446. 2006.

[8] Asano, M. and Ohta, H. A heuristic for job shop scheduling to minimize total

weighted tardiness, Computers and Industrial Engineering, 42, pp.137-147.

2002.

 130

[9] Averbakh, I. and Berman, O. Routing two-machine flowshop problems on

networks with special structure, Transportation Science, 30(4), pp.303–314.

1996.

[10] Averbakh, I. and Berman, O. A simple heuristic for m-machine flow-shop and

its applications in routing-scheduling problems, Operations Research, 47(1),

pp.165–170. 1999.

[11] Averbakh, I., Berman, O. and Chernykh, I.D. A 6/5 –approximation algorithm

for the two-machine routing open-shop problem on a 2-node network,

European Journal of Operational Research, 166 (1), pp.3–24. 2005.

[12] Averbakh, I., Berman, O. and Chernykh, I.D. The routing open-shop problem

on a network: complexity and approximation, European Journal of Operational

Research, 173, pp.531-539. 2006.

[13] Aydin, M.E. and Fogarty, T.C. A simulated annealing algorithm for multi-

agent systems: a job shop scheduling application, Journal of Intelligent

Manufacturing, 15(6), pp. 805-814. 2004.

[14] Baker, K.R. and Bertrand, J.W.M. A dynamic priority rule for scheduling

against due-dates, Journal of Operations Management, 3, pp.37-42. 1982.

[15] Baker, K.R. Introduction to sequencing and scheduling. John Wiley & Sons,

Inc. New York. 1974.

[16] Balas, E. and Vazacopoulos, A. Guided local search with shifting bottleneck

for job-shop scheduling, Management Science, 44(2), pp.262-275. 1998.

 131

[17] Balas, E. Machine sequencing via disjunctive graphs: An implicit enumeration

algorithm, Operations Research, 17, pp.941-957. 1969,

[18] Balas, E. On the facial structure of scheduling polyhedra, Mathematical

Programming Study, 24, pp.179-218. 1985.

[19] Baptiste, P., Carlier, J. and Jouglet, A. A branch-and-bound procedure to

minimize total tardiness on one machine with arbitrary release dates, European

Journal of Operational Research, 158, pp.595-608. 2004.

[20] Baptiste, P., Le Pape, C. and Nuijten, W. Constraint-Based Scheduling,

Applying Constraint Programming to Scheduling Problems, International

Series in Operations Research and Management Science, 39, Kluwer. 2001.

[21] Barnes, J.W. and Chambers, J.B. Solving the job shop scheduling problem

using tabu search, IIE Transactions, 27, pp.257-263. 1994.

[22] Belouadah, H., Posner, M.E. and Potts, C.N. Scheduling with release dates on a

single machine to minimize total weighted completion time, Discrete Applied

Mathematics, 36, pp.213-231. 1992.

[23] Berry, W. L., Penlesky, R. J. and Vollmann, T. E. Critical ratio scheduling

dynamic due date procedures under demand uncertainty, IIE Transactions, 16

(1), pp. 81-89. 1984.

[24] Bierwirth, C. A generalized permutation approach to job shop scheduling with

genetic algorithms, OR Spectrum, 17, pp.87-92. 1995.

 132

[25] Blackstone, J., Phillips, D. and Hogg, G. A state-of-the-art survey of

dispatching rules for manufacturing job shop operations, International Journal

of Production Research, 20(1), pp.27-45. 1982.

[26] Błażewicz, J., Domschke, W. and Pesch, E. The job shop scheduling problem:

Conventional and new solution techniques, European Journal of Operational

Research, 93, pp.1-33. 1996.

[27] Błażewicz, J., Dror, M. and Weglarz, J. Mathematical programming

formulations for machine scheduling: A survey, European Journal of

Operational Research, 51, pp.283-300. 1991.

[28] Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G. and Węglarz, J. Scheduling

Computer and Manufacturing Processes. (2nd ed.) Springer, New York. 2001.

[29] Boffey, T.B. A note on minimal Hamilton path and circuit algorithms,

Operational Research Quarterly, 24(3), pp.437-439. 1973.

[30] Bratley, P., Florian, M. and Robillard, P. On Sequencing with Earliest Starts

and Due-Dates with Application to Computing Bounds for the (n/m/ G/Fmax)

problem, Naval Research Logistics Quarterly, 20, pp.57-67. 1973,

[31] Brucker, P., Hurink, J., Jurish, B. and Wostmann, B. A branch and bound

algorithm for the open-shop problem, Discrete Applied Mathematics, 76, pp.

43-59. 1997.

[32] Brucker, P., Jurisch, B. and Sievers, B. A branch and bound algorithm for the

job-shop scheduling problem, Discrete Applied Mathematics, 49, pp.107-127.

1994.

 133

[33] Campbell, H.G., Dudek, R.A. and Smith, M.L. A heuristic algorithm for the n

job, m machine sequencing problem, Management Science, 16B, pp.630-637.

1970.

[34] Campos, V., Laguna, M. and Martí, R. Context-independent scatter and tabu

search for permutation problems, INFOMRS Journal on Computing, 17(10)

pp.111-122. 2005.

[35] Caridi, M. and Cavalieri, S. Multi-agent systems in production planning and

control: an overview, Production Planning and Control, 15, pp. 106–118. 2004.

[36] Carlier, J. and Pinson, E. An algorithm for solving the job-shop problem,

Management Science, 35, pp.164-176. 1989.

[37] Caseau, Y. and Laburthe, F. Disjunctive scheduling with task intervals.

Working paper, Ecole Normale Supérieure, Paris. 1995.

[38] Chou, F.D., Chang, T.Y. and Lee, C.E. A heuristic algorithm to minimize total

weighted tardiness on a single machine with release times, International

Transactions in Operational Research, 12, pp.215-233. 2005.

[39] Christofides, N. Graph Theory: An algorithmic approach. Academic Press,

New York. 1975.

[40] Christofides, N. The shortest Hamiltonian Chain of a graph, SIAM Journal on

Computing, 19(4), pp.689-696. 1970.

[41] Chu C. A branch-and-bound algorithm to minimize total tardiness with

different release dates, Naval Research Logistics, 39, pp.265-283, 1992.

 134

[42] Chu, C. and Portmann, M.C. Some new efficient methods to solve the

∑ ii Trn ||1| scheduling problem, European Journal of Operational Research,

58, pp.404-413. 1992.

[43] Cochrane, E.M. and Beasley, J.E. The co-adaptive neural network approach to

the Euclidean traveling salesman problem, Neural Networks, 16, pp.1499-1525.

2003.

[44] Colorni, A., Dorigo, M.and Maniezzo, V. Distributed Optimization by ant

colonies. In Varela, F. and Bourgine, P. Editors. Proceedings of the European

Conference on Artificial Life. Elsevier, Amsterdam. 1991.

[45] Croes, G.A. A method for solving traveling salesman problem, Operations

Research, 6, pp.791-812. 1958.

[46] Dauzere-Peres, S. and Lasserre, J.B. A Modified Shifting Bottleneck Procedure

for Job-Shop Scheduling, International Journal of Production Research, 31,

pp.923-932. 1993.

[47] Dell’Amico, M. Shop problems with two machines and time lags, Operations

Research, 44, pp.777–787. 1996.

[48] Dell’Amico, M. and Trubian, M. Applying tabu-search to the job shop

scheduling problem, Annals of Operations Research, 41, pp.231-252. 1993.

[49] Dorigo, M. and Gambardella, L.M. Ant colonies for the traveling salesman

problem, Biosystems, 43, pp.73-81. 1997.

 135

[50] Dorigo, M., Maniezzo, V. and Colorni, A. The ant system: optimization by a

colony of cooperating agents, IEEE Transactions on Systems, Man and

Cycbernetics, Part B (26), pp.29-41. 1996.

[51] Dorndorf, U. and Pesch, E. Evolution based learning in a job shop scheduling

environment, Computers & Operations Research, 22, pp.25-40. 1995.

[52] Dorndorf, U., Pesch, E. and Phan, H.T. Solving the open shop scheduling

problem, Journal of Scheduling, 4, pp.157-174. 2001.

[53] Du, J. and Leung, J.Y.T. Minimizing total tardiness on one machine is NP-hard,

Mathematics of Operations Research, 15, pp.483-495. 1990.

[54] Elmaghraby, S.E. The one-machine sequencing problem with delay costs,

Journal of Industrial Engineering, 19, pp.105-108. 1968.

[55] Emmons, H. One-machine sequencing to minimize certain functions of job

tardiness, Operations Research, 1, pp.701-715. 1969.

[56] Feo, T. and Resende, M.G.C. Greedy randomized adaptive search procedures,

Journal of Global Optimization, 6, pp.109-133. 1995.

[57] Fernandes, E.R. and Ribeiro, C.C. A multistart constructive heuristic for

sequencing by hybridization using adaptive memory, Electronic Notes in

Discrete Mathematics, 19, pp.41-47. 2005.

[58] Fiala, T. An algorithm for the open-shop problem, Mathematics of Operations

Research, 8(1), pp.100-109. 1983.

 136

[59] Framinan, J. M., Gupta, J. N. D. and Leisten, R. A review and classification of

heuristics for permutation flow-shop scheduling with makespan objective,

Journal of the Operational Research Society, 55(12), pp. 1243-1255. 2004.

[60] França, P.M, Mendes, A. and Moscato, P. A Memetic algorithm for the total

tardiness single machine scheduling problem, European Journal of Operational

Research, 132, pp.224-242. 2001.

[61] Fry, T.D., Vickens, L., MacLeod, K. and Fernandez, S. A heuristic solution

procedure to minimize t bar on a single machine, Journal of the Operational

Research Society, 40, pp.293-297. 1989.

[62] Gagné, C., Price, W.L. and Gravel, M. Comparing an ACO algorithm with

other heuristics for the single machine problem with sequence dependent setup

times, The Journal of the Operational Research Society, 53, pp.895-906. 2002.

[63] Garey, M.R. and Johnson, D.S. Computers and intractability: A guide to the

theory of NP-completeness. San Francisco: W.H. Freeman. 1979.

[64] Ghedira, K. and Ennigrou, M. How to Schedule a Job Shop Problem through

Agent Cooperation Source, Lecture Notes in Computer Science, 1904,

pp.132 – 141. 2000.

[65] Giffler, B. and Thompson, G.L. Algorithms for solving production scheduling

problems, Operations Research, 8, pp.487-503. 1960.

[66] Glover, F. Tabu search – Part I, ORSA Journal on Computing, 1, pp.190-206.

1989.

 137

[67] Glover, F. Tabu search – Part II, ORSA Journal on Computing, 2, pp.4-32.

1990.

[68] Glover, F. Tabu search and adaptive memory programming - advances,

applications and challenges. In: Barr RS, Helgason RV, Kennington JL. (Eds.),

Computing tools for modeling, optimization and simulation: interfaces in

computer science and operations research, Kluwer, Boston, pp.1–75. 1996.

[69] Glover, F., Taillard, E. and de Werra, D. A user’s guide to tabu search, Annals

of Operations Research, 41, pp.3-28. 1993.

[70] Goldberg, A.V., Grigoriadis, M.D. and Tarjan, R.E. Efficiency of the Network

Simplex Algorithm for the Maximum Flow Problem, Working paper, Report

No. STAN-G-89-1248. Department of Computer Science, Stanford University.

1989.

[71] Gonçalves, J. F., José de, J. Mendes, M. and Resende, M.G.C. A hybrid

genetic algorithm for the job shop scheduling problem, European Journal of

Operational Research, 167, pp.77-95. 2005.

[72] Gonzalez, T. and Sahni, S. Open shop scheduling to minimizing finish time,

Journal of ACM, 23, pp. 665-679. 1976.

[73] Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy Kan AHG.

Optimization and approximation in deterministic sequencing and scheduling: a

survey, Annals of Discrete Mathematics, 5, pp.287-326. 1979.

 138

[74] Guerét, G. and Prins, C. Classical and new heuristics for the open-shop

problem: a computational evaluation, European Journal of Operational

Research, 107, pp.306-314. 1998.

[75] Gupta, J.N.D. A functional heuristic algorithm for the flow-shop scheduling

problem, Operations Research Quarterly, 22, pp.39-47. 1971.

[76] Gupta, S.R. and Smith, J.S. Algorithms for single machine total tardiness

scheduling with sequence dependent setups, European Journal of Operational

Research, 175, pp.722-739. 2006.

[77] Hasija, S. and Rajendran, C. Scheduling in flowshops to minimize total

tardiness of jobs, International Journal of Production Research, 42(11), pp.

2289-2301. 2004.

[78] Haupt, R. A survey of priority-rule based scheduling, OR Spectrum, 11, pp.3-

16. 1989.

[79] Ho, J.C. and Chang. Y.L. A new heuristic for the n-job, M-machine flow shop

problem, European Journal of Operational Research, 52, pp.194-202. 1991.

[80] Holsenback, J.E. and Russell, R.M. A heuristic algorithm for sequencing on

one machine to minimize total tardiness, Journal of the Operational Research

Society, 43, pp. 53-62. 1992.

[81] Huang, W. Q. and Wang, L. A local search method for permutation flow shop

scheduling, Journal of the Operational Research Society, 57(10), pp.1248-1251.

2006.

[82] ILOG. ILOG CPLEX, Reference and User’s Manual, version 10.0, ILOG. 2006.

 139

[83] Johnson, S.M. Optimal two- and three-stage production schedules with set up

times included, Naval Research Logistics Quarterly, 1, pp.61-68. 1954.

[84] Jones, A. and Rabelo, L.C. Survey of job shop scheduling techniques, NISTIR–

–National Institute of Standards and Technology, Gaithersburg, MD. 1998.

[85] Jouglet, A., Baptiste, P. and Carlier, J. Branch-and-bound algorithms for total

weighted tardiness. In Leung J. Y-T. (Ed.) Handbook of Scheduling:

Algorithms, Models, and Performance Analysis. Chapter 13, Chapman & Hall.

CRC Press, 2004.

[86] Jouglet, A., Savourey, D., Carlier, J. and Baptiste, P. Dominance-based

heuristics for one-machine total cost scheduling problem, European Journal of

Operational Research, 184, pp.879-899. 2008.

[87] Kahn, A.B.N. Topological sorting of large networks, Communications of the

ACM, 5, pp.558-561. 1962,

[88] Kirkpatrick, S., Gelatt, C.C. and Vecchi, M.P. Optimization by simulated

annealing, Science, 220, pp.671-680. 1983.

[89] Kis, T. and Pesch, E. A review of exact solution methods for the non-

preemptive multiprocessor flowshop problem, European Journal of Operational

Research, 164(3), pp.592-608. 2005.

[90] Kyparisis, G. J. and Koulamas, C. Flexible flow shop scheduling with uniform

parallel machines, European Journal of Operational Research, 168(3), pp.985-

997. 2006.

 140

[91] Lee, C.Y. and Chen Z.L. Machine scheduling with transportation

considerations, Journal of Scheduling, 4(1), pp.3-24. 2001.

[92] Lee, C.-Y. and Strusevich, V.A. Two-machine shop scheduling with an

uncapacitated interstage transporter, IIE Transactions, 37, pp.725-736. 2005.

[93] Lee, Y.H., Bhaskaran, K. and Pinedo, M. A heuristic to minimize the total

weighted tardiness with sequence-dependent setups, IIE Transactions, 29,

pp.45-52. 1997.

[94] Lenstra, J.K, Rinnooy Kan A.H.G. and Brucker, P. Complexity of machine

scheduling problems, Annals of Discrete Mathematics, 1, pp.343-362. 1977.

[95] Liaw, C.F. An iterative improvement approach for the nonpreemptive open

shop scheduling problem, European Journal of Operational Research, 111,

pp.509-517. 1998.

[96] Liaw, C.F. A tabu search algorithm for the open shop scheduling problem,

Computers & Operations Research, 26, pp.109-126. 1999.

[97] Liaw, C.F. A hybrid genetic algorithm for the open shop scheduling problem,

European Journal of Operational Research, 124, pp.28-42. 2000.

[98] Liaw, C.F. An efficient tabu search approach for the two-machine preemptive

open shop scheduling problem, Computers & Operations Research, 30,

pp.2081-2095. 2003.

[99] Liaw, C.F. Scheduling preemptive open shops to minimize total tardiness,

European Journal of Operational Research, 162 (1), pp.173-183. 2005.

 141

[100] Lin, S. and Kernighan, B.W. An effective heuristic algorithm for the traveling

salesman problem, Operations Research, 21, pp.498-516. 1973.

[101] MacChiaroli, R. and Riemma, S. A negotiation scheme for autonomous agents

in job shop scheduling, International Journal of Computer Integrated

Manufacturing, 15, pp.222-232. 2002.

[102] Maggu, P.L. and Das, G. On the 2 × n sequencing problem with transportation

time of jobs, Pure and Applied Mathematical Sciences, 12, pp.1–6. 1980.

[103] Manne, A.S. On the job shop scheduling problem, Operations Research, 8,

pp.219-223. 1960.

[104] Martin, P. and Shmoys, D.B. A New Approach to Computing Optimal

Schedules for the Job-Shop Scheduling Problem, Proceedings of the 5th

International Conference on Integer Programming and Combinatorial

Optimization, IPCO'96. 1996.

[105] Mason, S.J., Kutanoglu, E. and Fowler, J.W. Manufacturing and Logistics

Applications of Multiple Orders Per Job Scheduling, Proceedings of 14th

Industrial Engineering Research Conference, IIE, Atlanta, GA. 2005.

[106] Matsuo, H., Suh, C.J. and Sullivan, R.S. A controlled search simulated

annealing method for the general job shop scheduling problem. Working paper

03-04-88, University of Texas Austin. 1988.

[107] Mattfeld, D. C. Evolutionary search and the job shop: investigations on genetic

algorithms for production scheduling. Physica-Verlag, Heidelberg. 1996.

 142

[108] Minton, S., Johnston, M.D., Philips, A.B. and Laird, P. Minimizing conflicts: A

heuristic repair method for constraint satisfaction and scheduling problems,

Artificial Intelligence, 58, pp.161-205, 1992.

[109] Montagne, E.R. Sequencing with time delay costs. Industrial Engineering

Research Bulletin, Arizona State University, Tucson. 1969.

[110] Nakano, R. and and Yamada, T. Conventional genetic algorithm for job shop

problems, in: R.K. Belew and L.B. Booker (eds.), Proc. 4th. International

Conference on Genetic Algorithms, Morgan Kaufmann, pp.474-479. 1991.

[111] Nowicki, E., Smutnicki, C. A fast taboo search algorithm for the job shop

problem, Management Science, 42(6), pp. 797-813. 1996.

[112] Nuijten, W., Le Pape, C. Constraint-based job shop scheduling with ILOG

SCHEDULER, Journal of Heuristics, 3, pp.271-286. 1998.

[113] Onwubolu, G.C. and Mutingi, M. Genetic algorithm for minimizing tardiness

in flow-shop scheduling, Production Planning & Control, 10(5), pp.462-471.

1999.

[114] Or, I. Traveling salesman-type combinatorial problems and their relation to the

logistics of blood banking. Ph.D. Thesis, Department of Industrial Engineering

and Management Sciences, Northwestern University. 1976.

[115] Osman, I.H. and Potts, C.N. Simulated Annealing for permutation flow-shop

scheduling, Omega, 17, pp. 551-557. 1989.

[116] Pan, J.C.H., Chen, J.S. and Chao, C.M. Minimizing tardiness in a two-machine

flow-shop, Computers and Operations Research, 29(7), pp. 869-885. 2002.

 143

[117] Panwalker, S. and Iskander, W. A survey of scheduling rules, Operations

Research, 25(1), pp.45-61. 1977.

[118] Pinedo, M. and Singer, M. A shifting bottleneck heuristic for minimizing the

total weighted tardiness in job shop, Naval Research Logistics, 46, pp.1-12.

1999.

[119] Pinedo, M. Scheduling: theory, algorithms, and systems. 2nd ed., Prentice Hall,

New Jersey. 2002.

[120] Potts, C.N, and van Wassenhove, L.N. A branch and bound algorithm for the

total weighted tardiness problem, Operations Research, 33, pp.363-377. 1985.

[121] Potts, C.N. and van Wassenhove LN. Single machine tardiness sequencing

heuristics, IIE Transactions, 23, pp.346-354. 1991.

[122] Puente, J., Diez, H.R., Varela, R., Vela, C.R and Hidalgo, L.P. Heuristic rules

and genetic algorithms for open shop scheduling problem, Current Topics in

Artificial Intelligence Lecture Notes in Computer Science, 3040, pp.394-403.

2004.

[123] Rachamadugu, R.M.V. and Morton, T.E. Myopic heuristics for the single

machine weighted tardiness problem. Working Paper #28-81-82, Graduate

School of Industrial Administration, Carnegie-Mellon University. 1981.

[124] Ragatz, G.L. A branch-and-bound method for minimum tardiness sequencing

on a single processor with sequence dependent setup times. In: Proceedings:

twenty-fourth annual meeting of the Decision Sciences Institute, pp.1375-1377.

1993.

 144

[125] Raman, N, Rachamadugu, R.V. and Talbot, F.B. Real-time scheduling on an

automated machine center, European Journal of Operational Research, 40,

pp.222-242. 1989.

[126] Ramudhin, A. and Marier, P. The generalized shifting bottleneck procedure,

European Journal of Operational Research, 93, pp.34-48. 1996.

[127] Rayward-Smith, V.J. and Rebaine, D. Open shop scheduling with delays,

Theoretical Informatics and Applications, 26, pp.439-448. 1992.

[128] Reeves, C. A genetic algorithm for flow shop sequencing, Computers &

Operations Research, 22, pp.5-13. 1995.

[129] Resende, M.G.C. and Ribeiro C.CGreedy randomized adaptive search

procedures. In Handbook of Metaheuristics. Glover, F.W, G.A. Kochenberger,

eds. International Series in Operations Research and Management Science.

Kluwer Academic Publishers: Boston, pp.219-250. 2003.

[130] Rinnooy Kan, A.H.G., Lageweg, B.J., and Lenstra, J.K. Minimizing total costs

in one-machine scheduling, Operations Research, 23, pp. 908-927. 1975.

[131] Roy, B. and Sussmann, B. Les problemes d'ordonnancement avec contraintes

disjonctives, SEMA, Note D.S. No. 9. 1964.

[132] Rubin, P.A. and Ragatz, G.L. Scheduling in a sequence dependent setup

environment with genetic search, Computers and Operations Research, 22,

pp.85-99. 1995.

 145

[133] Sen, T., Sulek, J.M. and Dileepan, P. Static scheduling research to minimize

weighted and unweighted tardiness: A state-of-the-art survey, International

Journal of Production Economics, 83, pp.1-12. 2003.

[134] Senthilkumar, P. and Shahabudeen, P. GA based heuristic for the open job shop

scheduling problem, International Journal of Advanced Manufacturing

Technology, 30, pp.297–301. 2006.

[135] Shapiro, J. A survey of Lagrangian techniques for discrete optimization,

Annals of Discrete Mathematics, 5, pp.113-138. 1979.

[136] Singer, M. and Pinedo, M. A computational study of branch and bound

techniques for minimizing the total weighted tardiness in job shops, IIE

Transactions Scheduling and Logistics, 30, pp. 109-118. 1998.

[137] Somhom, S., Modares, A. and Enkawa, T. A self-organising model for the

traveling salesman problem, The Journal of the Operational Research Society,

48, pp.919-928. 1997.

[138] Sourd, F. and Nuijten, W. Multiple-machine lower bounds for shop-scheduling

problems, INFORMS Journal on Computing, 12, pp.341-352. 2000.

[139] Steiglitz, K. and Weiner, P. Some improved algorithms for computer solution

of the traveling salesman problem. Proceedings of the 6th Annual Allerton

Conference on Communication, Control and Computing. Department of

Electrical Engineering and the Coordinated Science Laboratory, University of

Illinois, Urbana, IL. 814-821. 1968.

 146

[140] Strusevich, V.A. A heuristic for two-machine open shop scheduling problem

with transportation times, Discrete Applied Mathematics, 93, pp.287-304. 1999.

[141] Sun, D., Batta, R. and and Lin, L. Effective job shop scheduling through active

chain manipulation, Computers & Operations Research, 22, pp.159-172. 1995.

[142] Taillard, E. Some efficient heuristic methods for the flow shop sequencing

problem, European Journal of Operational Research, 47, pp.65-74. 1990.

[143] Taillard, E. Benchmarks for basic scheduling problems, European Journal of

Operational Research, 64, pp.278-285.1993.

[144] Taillard, E. Parallel tabu search technique for the job shop scheduling problem,

ORSA Journal on Computing, 6, pp.108-117. 1994.

[145] Taillard, E. An introduction to ant systems. In Computing Tools for Modeling,

Optimization and Simulation. Laguna, M., J.L. González-Velarde, eds. Kluwer,

Boston. pp.131-144. 2000.

[146] Tamura, M., Taga, A., Kitagawa, S. and Banbara, M. Compiling Finite Linear

CSP into SAT, Lecture Notes in Computer Science, 4204, pp.590-603. 2006.

[147] Tan, K.C. and Narasimhan R. Minimizing tardiness on a single processor with

sequence dependent setup times: a simulated annealing approach, Omega,

25(6), pp.619-634. 1997.

[148] Tan, K.C., Narasimhan, R., Rubin, P.A. and Ragatz, G.L. A comparison of four

methods for minimizing total tardiness on a single processor with sequence

dependent setup time, Omega, 28, pp.313-326. 2000.

 147

[149] Vaessens, R.J.P. Aarts, E.H.L. and Lenstra, J.K. Job shop scheduling by local

search, Journal on computing, 8, pp.302-317. 1996.

[150] van Laarhoven, P.J.M., Aarts, E.H.L. and Lenstra, J.K. Job shop scheduling by

simulated annealing, Operations Research, 40, pp.113-125. 1992.

[151] Vepsalainen, A.P.J. and Morton, T.E. Priority rules for job shops with weighted

tardiness costs, Management Science, 33, pp.1035-1047. 1987.

[152] Widmer, M. and Hertz, A. A new heuristic method for the flow shop

sequencing problem, European Journal of Operational Research, 41, pp.186-

193. 1989.

[153] Wilkerson, L. J. and Irwin, J. D. An Improved Method for Scheduling

Independent Tasks, IIE Transactions, 3(3), pp.239 - 245. 1971.

[154] Zeng, L., Ong, H.L. and Ng, K.M. A generalized crossing local search method

for solving vehicle routing problem, The Journal of the Operational Research

Society, 58, pp.528-532. 2007.

 148

Appendix A

Proof of global dominance rules

Global dominance rule 1A: Let Ji and Jk be two jobs (i, k S∈). If

(a) ki rr ≤ ,

(b) ki ww ≥ ,

(c) ki pp = , and

(d) { }{ }max , max ,
ki k k B kd d r LBC p≤ + ,

then Ji precedes Jk.

Proof:

Consider two jobs Ji and Jk in a schedule which satisfy the above conditions but with Jk

preceding Ji. We assume that the initial start time of Jk and the completion time of Ji

are Sk and Ci respectively. Suppose the positions of the two jobs are interchanged. Note

that this interchange is valid as conditions (a) and (c) are also satisfied, and the

completion time of the other jobs does not change.

Figure A1 Initial schedule

From Figure A1 we can obtain

.ikik CppS ≤++ (A1)

It is noted that (A1) is applicable to all the three global dominance rules.

The net decrease in tardiness of Ji by interchanging Ji and Jk is

Jk Ji

CiSk

 149

{ } { }max , 0 max , 0i i i i k i iw C d w S p d− − + − . (A2)

Similarly, the net increase in tardiness of Jk by interchanging Ji and Jk is

{ } { }max , 0 max , 0k i k k k k kw C d w S p d− − + − . (A3)

Case 1. ki dd ≤ . We consider the following three sub-cases:

(1) If iki Cdd <≤ , the net decrease in tardiness due to the interchange of the two

jobs is

{ } { }(A2) (A3) [max , 0 max , 0]i i i i k i iw C d w S p d− = − − + − −

{ } { }
{ } { }

{ } { }
{ } { }

{ }

max , 0 max , 0

[max ,] [max ,]

() [max , max ,]

() [max , max ,]

[max ,]() 0.

k i k k k k k

i i k i i k i k k k

i i k k k i k i k i i

i i k k k i i i k i i

i k i i i k

w C d w S p d

w C S p d w C S p d

C w w w S p d w S p d

C w w w S p d w S p d

C S p d w w

− − + −⎡ ⎤⎣ ⎦
= − + − − +

= − + + − +

≥ − + + − +

= − + − ≥

(2) If kii dCd ≤≤ , the net decrease in tardiness due to the interchange of the two

jobs is

{ } { }
{ } { }

{ } { }
{ } { }

(A2) (A3) [max , 0 max , 0]

[max , 0 max , 0]

[max , 0] max , 0

min , max , 0 0.

i i i i k i i

k i k k k k k

i i i k i i k k k k

i i i i k i k k k k

w C d w S p d

w C d w S p d

w C d S p d w S p d

w C d C S p w S p d

− = − − + − −

− − + −

= − − + − + + −

≥ − − − + + − ≥

(3) If kii ddC ≤< , the net decrease in tardiness due to the interchange of the two

jobs is

{ } { }
{ } { }

(A2) (A3) [max , 0 max , 0]

[max , 0 max , 0] 0.
i i i i k i i

k i k k k k k

w C d w S p d

w C d w S p d

− = − − + − −

− − + − =

Thus the net decrease in tardiness is nonnegative, and so the interchange of the

two jobs can be made without increasing the total weighted tardiness.

 150

Case 2. { }max ,
ki k B kd r LBC p≤ + . We have { }max ,

kk k BS r LBC≥ because

{ }max ,
kk Br LBC is the earliest start time of job Jk. Therefore, we obtain

iikki pCpSd −≤+≤ .

The net decrease in tardiness due to the interchange of the two jobs is

{ } { }
{ } { }

{ } { }
{ } { }
{ }

(A 2) (A3) [max , 0 max , 0]

[max , 0 max , 0]

[() ()] [max , 0 max , 0]

() [max , 0 max , 0]

() [max , max

i i i i k i i

k i k k k k k

i i i i k i i k i k k k k k

i i k i k i k k k k

i i k i k i k k

w C d w S p d

w C d w S p d

w C d w S p d w C d w S p d

w C S p w C d S p d

w C S p w C d S

− = − − + − −

− − + −

= − − + − − − − + −

= − − − − − + −

= − − − − { }
{ } { }

,]

[max , max , ()].
k k

i i i k k k k k k

p d

w C C d S p d S p

+

≥ − + + − +

We consider the following two sub-cases:

(1) If ,ki dC ≥ then the above expression can be simplified as follows:

{ } { }
{ }

[max , max , ()]

[max , ()] 0.
i i i k k k k k k

i k k k k k

w C C d S p d S p

w S p d S p

− + + − +

= + − + ≥

(2) If ,ki dC < then the above expression can be simplified as follows:

{ } { }
{ }

{ }

[max , max ,]

[max ,]

[max , ()] 0.

i i i k k k k k k

i i k k k k k k

i k k k k i k k

w C C d S p d S p

w C d S p d S p

w S p d d C S p

− + + − −

= − + + − −

= + − + − − >

Thus the net decrease in tardiness is nonnegative, and so the interchange of the two

jobs can be made without increasing the total weighted tardiness.

Global dominance rule 2: Let Ji and Jk be two jobs (i, k S∈). If

(a) ki rr ≤ ,

(b) ki pp = , and

(c)
iASk SumUBCd −≥ ,

then Ji precedes Jk.

 151

Proof:

Consider two jobs Ji and Jk in a schedule which satisfy the above conditions but with Jk

preceding Ji. We assume that the start time of Jk and the completion time of Ji are Sk

and Ci respectively. Suppose the positions of the two jobs are interchanged. Note that

this interchange is valid as conditions (a) and (b) are also satisfied, and the completion

time of the other jobs does not change.

Based on the definition of UBCS we know that iAS CSumUBC
i
≥− . From (c), we

obtain kkiASk pSCSumUBCd
i

+>≥−≥ .

The net decrease in tardiness due to the interchange of the two jobs is

{ } { }
{ } { }
{ } { }
{ } { }

(A2) (A3) [max , 0 max , 0]

[max , 0 max , 0]

max , 0 max , 0

[max , max ,] 0.

i i i i k i i

k i k k k k k

i i i i k i i

i i i k i i

w C d w S p d

w C d w S p d

w C d w S p d

w C d S p d

− = − − + − −

− − + −

= − − + −

= − + ≥

Thus the net decrease in tardiness is nonnegative, and so the interchange of the two

jobs can be made without increasing the total weighted tardiness.

Global dominance rule 3: For any job Jk (k S∈), if Sk UBCd ≥ , then Jk can be

assigned last. In the situation that there are 1≥m jobs satisfying Sk UBCd ≥ , then the

m jobs can be assigned in the last m positions in any sequence without sacrificing the

optimality of the schedule.

Proof:

As Sk UBCd ≥ , the tardiness of job Jk is zero for any position where it is placed in an

active schedule. Therefore, assigning Jk at the last position will not affect other jobs.

