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Summary  

Summary 

 

Products made from polyethylene are very common in everyday life; these include 

kitchenware, containers for pharmaceutical drugs, wrapping materials for food and 

clothing, high frequency insulation, and pipes in irrigation systems. A very flexible 

and branched low density polyethylene (LDPE) is obtained commercially by high-

pressure polymerization of ethylene, in the presence of chemical initiators (i.e., 

peroxides, oxygen, azo compounds), in long tubular reactors or well-stirred 

autoclaves. The polymerization in tubular reactors involves very severe processing 

conditions such as pressures from 150 – 300 MPa and temperatures from 325 – 625 K. 

No work in the open literature discusses multi-objective optimization (MOO) of 

LDPE tubular reactors even though multiple objectives are essential for overall 

optimum operation. Also, understanding the dynamic behavior of tubular reactor is 

essential in order to produce optimally thirty to forty grades of polymer in a single 

plant. Hence, this study focuses on modeling and simulation of LDPE tubular reactor 

and its optimization for multiple objectives for operation, design and grade-change 

policies. 

A detailed survey of modeling studies on LDPE tubular reactors in the literature 

showed significant discrepancies in the kinetic rate parameters from different sources. 

Therefore, these kinetic data can not be relied on for simulation and optimization. 

Some authors have obtained these parameters by validating industrial results but they 

did not reveal the values of some parameters due to proprietary reasons. Thus, in our 

study, best-fit values of the model parameters are obtained by comparing the 

predictions with the available industrial data. This steady-state model is then used for 
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Summary  

multi-objective optimization of an industrial LDPE reactor. Further, the reactor model 

with all parameter values, developed in this study, is available for any one to use. 

Multiple objectives are important to the industry for best utilization of resources. 

The productivity of LDPE using high-pressure technology in industrial tubular reactor 

is reported to be 30 – 35% per pass which is quite low. At the same time, severe 

operating conditions deteriorate quality of the polymer due to formation of undesired 

side products (short chain branching and unsaturated groups). Therefore, reactors 

should be operated so as to minimize these side products and maximize the monomer 

conversion for a given feed flow rate, while the LDPE produced should have the 

desired properties defined in terms of number-average molecular weight. All these 

lead to constrained, multi-objective optimization problem.  

In this study, the multi-objective problem for an industrial LDPE reactor is solved 

at both operation and design stage, using a binary-coded elitist non-dominated sorting 

genetic algorithm (NSGA-II) and its jumping gene (JG) adaptations. The difficulty in 

finding appropriate penalty parameter in penalty function approach led us to 

implement a systematic approach of constrained-dominance principle for handling the 

constraints in the binary-coded NSGA-II-JG and NSGA-II-aJG. The effectiveness of 

this approach is evaluated for the design stage MOO of the industrial LDPE reactor. 

The Pareto-optimal sets for both operation and deign problems are obtained. The 

results show that much higher monomer conversion at relatively lower side products 

can be obtained compared with the current industrial operating condition. The Pareto-

optimal set gives many equally good points (non-dominated solutions) to the decision 

maker so that s/he can use her/his industrial experience and intuition to select one of 

these points for process design and/or operation. 
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Summary  

A multitude of LDPE grades is usually produced from a single reactor. The major 

task in the operation of a tubular LDPE reactor is the minimization of off-spec 

polymer production during a grade transition. Hence, a comprehensive dynamic 

model is developed and used for optimizing the grade-change policies so as to 

minimize the grade change-over time and off-spec polymer defined in terms of 

polymer properties. The Pareto-optimal solutions of this dynamic optimization 

problem are successfully obtained using NSGA-II-aJG. The resulting optimal grade-

change policies are better in terms of reaching the new steady-state faster with 

relatively less off-spec product.  

Considering the unavailability of complete details of an LDPE tubular reactor 

model in the open literature and lack of MOO studies on LDPE reactors for 

industrially important objectives, the present work, its approach and results are of 

significant interest to both researchers and practitioners.  
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Nomenclature  

Nomenclature  

 

A   frequency factor (1/s; m3/kmol-s; m3.3/kmol1.1-s) 

Ci  concentration of the ith component (kmol/m3) 

CP  specific heat of the reaction mixture (kJ/kg-K) 

De    equivalent diameter of the jacket (m) 

Dint    inside diameter of reactor (m) 

Djacket    inner diameter of jacket wall (m) 

Do    outer diameter of the inner (reactor) pipe (m) 

E    activation energy (kJ/kmol) 

Ev    activation energy for viscous flow (kJ/kmol) 

Fi    flow rate of the ith component (kg/s) 

fm   initiator efficiency 

fr    friction factor 

Gi    ith objective function in multi-objective optimization problem 

Ji  ith objective function  

ΔH    heat of polymerization (kJ/kmol) 

hi    inside (the reactor) film heat transfer coefficient (W/m2-K) 

ho    outside (jacket side of reactor) film heat transfer coefficient (W/m2-K) 

hw    wall (reactor) heat transfer coefficient (W/m2-K) 

Ii    ith initiator 

K    thermal conductivity of the reaction mixture (W/m-K) 

k    kinetic rate constant (1/s; m3/kmol-s; m3.3/kmol1.1-s) 

L    reactor length (m) 

laJG    length of the replacing jumping gene 
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Nomenclature  

lchrom    total length (number of binaries) of a chromosome 

lsubstr   length (number of binaries) of a substring representing a decision 

variable 

Lt    total reactor length (m) 

Lzi  axial length of ith zone (m) 

M    monomer 

M'    molecular weight of ethylene (kg/kmol)  

Me    methyl end group (short-chain branches) 

Mn    number-average molecular weight 

Ngen    generation number 

Npop    total number of chromosomes in the population 

Nu    Nusselt number 

o    oxygen (initiator) 

P    reactor pressure at any axial position (MPa) 

Pr    Prandtl number 

Pc    critical pressure (MPa) 

Pi(x)   dead polymer molecule with x monomer units and i long-chain 

branches  

pc    crossover probability 

pJG    jumping probability for the JG operator 

pm    mutation probability 

R    ideal gas constant (kJ/kmol-K) 

Re    Reynolds number 

Ri(x)   growing macro-radical with x monomer units and i long-chain 

branches 
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Nomenclature  

S    solvent (telogen) 

Sr    seed for random number generator 

T    temperature of the reaction mass (K) 

Tc    critical temperature (K) 

TJ,i  jacket fluid temperature in the ith jacket (K) 

Tr    reduced temperature  

U    overall heat transfer coefficient (W/m2-K) 

ΔV    activation volume (m3/kmol)  

Vi    vinyl group 

Vid     vinylidene group 

VJ,i    flow rate of jacket fluid in ith jacket (m3/s) 

VM    specific volume of monomer (kg/m3) 

Vp    specific volume of polyethylene (kg/m3) 

v    velocity of the reaction mixture (m/s) 

vJ,i  velocity of coolant in the ith jacket (m/s) 

wi  weighting factor in the ith objective function  

WM    monomer weight fraction 

Wp    polymer weight fraction 

XM    monomer conversion at any axial position 

z    axial distance (m) 

 

Greek symbols 

ΔP   pressure drop (MPa) 

δij    delta of Kronecker 

η    dense gas viscosity of the monomer (Pa-s) 
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Nomenclature  

ηo    low-pressure monomer viscosity (Pa-s) 

ηs    viscosity of the ethylene-polyethylene solution (Pa-s) 

λnp   n, p order moments for the chain length distribution of macro-radicals 

(kmol/m3); n  = 0, 1; p  = 0, 1, 2 

μJ    viscosity of the jacket fluid (Pa-s) 

μnp n, p order moments for the chain length distribution of the dead 

polymer molecules (kmol/m3); n = 0, 1; p = 0, 1, 2 

ξ    defined in Eq. 4.6b in Table 4.2 (Pa-s)-1

ρ    density of the reaction mixture (kg/m3) 

ρJ    density of the jacket fluid (kg/m3) 

ρM    monomer density (kg/m3) 

ρr    reduced density  

 

Subscripts 

b    β-scission of a secondary radical 

bb    backbiting  

b1    β-scission of a tertiary radical 

d    desired value 

dm    decomposition of mth peroxide (initiator); m = 1, 2 

f    (final) reactor exit 

I,m    mth initiator; m = 1, 2 

in    inlet of reactor 

J    jacket 

M  monomer 

Me  methyl end group 
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max    maximum 

O  oxygen (initiator) 

p    propagation 

S  solvent 

tc    termination by combination 

tdt    thermal degradation 

trm    chain transfer to monomer 

trp    chain transfer to polymer 
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Chapter 1 Introduction 

Chapter 1  

Introduction 

 

1.1 Polyethylene and its Significance  

Products made from polyethylene (PE) are very common in everyday life. The 

prevalence of polyethylene can be noted by the variety of products made form 

polyethylene such as kitchen utility ware, containers for pharmaceutical drugs, 

wrapping materials for food and clothing, high frequency insulation, and pipes in 

irrigation systems. PE is the largest production polymer with annual worldwide output 

of almost 84 millions tonnes (Kondratiev and Ivanchev, 2005). 25% of this is low-

density polyethylene (LDPE) produced in auto-clave and tubular high-pressure 

reactors and remaining comprises of high-density polyethylene (HDPE) and linear 

low-density polyethylene (LLDPE) in low pressure reactors. The production of LDPE 

at high-pressure using tubular reactors is an important commercial process despite 

many developments in low-pressure processes such as gas phase and slurry 

polymerization.  

Density and degree of branching are the most important physical and molecular 

characteristics of PE, respectively. In the past, the PE industry was conveniently 

classified by product density and process type. LDPE, in the density range of 910 to 

925 kg/m3, is manufactured by a high-pressure process. Medium density polyethylene 

lies in the range of 926 to 940 kg/m3. HDPE (Linear Polyethylene), synthesized by a 

low pressure process, has a density in the range of 941 to 961 kg/m3 (Kiparissides et 

al., 1993a). Low pressure processes are further classified into three categories namely 

suspension process, solution process, and gas process. LLDPE comprising a wide 

density range of 880 to 950 kg/m3 is produced at low pressure by copolymerization of 

 1
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ethylene with an alpha-olefin, such as 1-butene, 1-hexene or 1-octene. Polymer chains 

are branched at high temperature due to occurrence of side reactions. The density of 

PE is determined by the degree of short chain branching (SCB). The density and 

crystallinity are inversely proportional to the SCB. Today, PEs are more appropriately 

described as branched PEs and linear PEs.  

Branched PE is made with a free-radical catalyst and contains long-chain branches 

(LCB). Linear PE is made with a transition metal catalyst and copolymerization of 

ethylene with an alpha-olefin and contains no long-chain branching. Both branched 

and linear PE may contain SCB as shown in Figure 1.1. The range of SCBs (CH3 per 

1000 C) for the three common PEs are: 

LDPE: 10 – 50 [SCB = 30 per 1000 C (Gupta et al., 1985) for typical LDPEs]  

HDPE:   2 – 3 

LLDPE: 3 – 30   

 

Figure 1.1 Molecular Structure: Branched Vs Linear Polyethylene 

  

The molecular weight of LDPE ranges from waxy products at about 500 kg/kmol 

to very tough products at about 60,000 kg/kmol. One unique feature of LDPE, as 

opposed to HDPE or LLDPE, is the presence of both LCB and SCB along the 
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polymer chain. Another important feature of LDPE is its ability to incorporate a wide 

range of comonomers that can be polar in nature along the polymer chain.  

1.2 LDPE Process Technology 

A very flexible and branched LDPE, typically in the range of 915 – 925 kg/m3, is 

obtained commercially by high-pressure polymerization of ethylene, in the presence 

of chemical initiators (i.e. peroxides, oxygen, azo compounds), in long tubular 

reactors (Figure 1.2) or well-stirred autoclaves. This process in tubular reactors 

involves extreme process conditions, namely, 150 – 300 MPa and 325 – 625 K.  

A tubular reactor typically consists of several hundred meters of jacketed high-

pressure tubing as long as 1.6 km arranged as a series of straight sections connected 

by 180 degree bends. Inner diameters of 25 – 75 mm have been quoted, but 60 mm or 

somewhat larger is probably typical of modern tubular reactors. Wall thickness equal 

to inner diameter is used to provide the necessary strength for the high-pressure 

involved. The first section of the tubular reactor behaves as a preheater to raise 

ethylene to a sufficiently high temperature for polymerization to start. This 

temperature depends on initiator employed, ranging from 190 °C for oxygen to 140 

°C for a peroxydicarbonate. The latter part of the tubular reactor acts as a product 

cooler.  

The heat of polymerization and specific heat of ethylene are 89.57 kJ/mol (3199 

kJ/kg) and 2168 J/kg-K (Chen et al., 1976), respectively. Thus, adiabatic temperature 

rise in the gas phase is around 15 °C for each 1% conversion of monomer to polymer. 

Therefore, heat removal is a key factor in a commercial polymerization process. This 

heat of reaction is partially transferred to water flowing co- or counter-currently 

through the reactor jacket. But it is not possible to maintain isothermal conditions, and 

temperature peaks occur. 

 3



Chapter 1 Introduction 

Primary
compressor

Hyper
compressor

First zone

HP
separator

LP
separator

Vent

Initiator Initiator

Cooler

Cooler

Ethylene
Last zone

Tubular
Reactor

ExtruderPelletingPurge Bins

Air  

Figure 1.2 Simplified Diagram of the High-pressure Polyethylene Process 

 

Reactor feed includes ethylene, oxygen and/or initiators and chain transfer agents. 

A commercial reactor may be divided into multiple reactor zones, heating and cooling 

zones. However, multiple temperature peaks, responsible for increasing the 

conversion, are obtained by injecting initiators, monomer, and solvents in different 

tubular reactor zones.  Conversion of ethylene is reported in the range of 20-35% in 

the literature. PE is precipitated in the boundary layer (near to any relatively cold 

surfaces in the reactor or downstream lines) due to its solubility in ethylene at very 

high pressure. The build up of the polymer on the wall, if not removed, can lead to the 

runaway reaction due to decreased heat transfer from the hot gas-polymer solution. 

The precipitated PE from the wall is eliminated by opening the expansion valve more 

fully than required, about once every 2 – 3 seconds, causing a decrease in pressure by 

as much as 300 – 600 atm. The concomitant rapid increase in velocity of the gas 
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phase shears the walls and strips off any deposited PE so that a reasonably steady-

state heat transfer situation exists. 

The product mixture containing unconverted ethylene and PE is sent to a series of 

high- and low- pressure separators where polymer is obtained. These are also termed 

as primary- and secondary separators. The unconverted ethylene is cooled and de-

waxed prior to being recycled to primary- and hyper- compressors, whereas molten 

polyethylene obtained from the low pressure separator is fed into an extruder to be 

pelleted, cooled and finally sent to storage. 

 

1.3 LDPE Reactor Modeling and Optimization 

In the past 30 years, various complex mathematical models have been developed 

to produce LDPE in high-pressure tubular reactors. These models are reviewed in 

detail in chapter 2 of this thesis. These models provide a sound basis for mathematical 

description of production of LDPE in commercial plants. But, they sometimes present 

complexities in the system. Thus, some assumptions are made to simplify the model 

without loosing its validity in commercial processes. In particular, the following 

model assumptions should be emphasized while studying a mathematical model in 

LDPE tubular reactor.  

1. Physical state of the reaction mass mixture – one phase versus two phase 

system.  

2. Kinetic mechanism and selection (estimation) of the kinetic parameters 

3. Reactor flow conditions and mixing effects 

4. Variation of the physical properties of the reaction mixture 

5. Average jacket fluid temperature  
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6. Heat of reaction due to chain initiation, termination and transfer reactions is 

negligible. 

7. Constant initiator efficiency 

In general, a mathematical model for a tubular reactor includes a set of non-linear 

differential equations coupled with algebraic equations. These model equations take 

into account the conservation of various molecular species, total mass, energy, and 

momentum in the reactor and variation of kinetic, physical, and transport parameters 

with respect to operating variables.  

A comprehensive mathematical model for LDPE production in tubular reactor 

should be able to predict the profiles of monomer conversion, initiator conversion, 

reaction mass temperature, pressure, the moments of free-radical and polymer chain 

length distribution, the SCB and LCB, and the number of unsaturated bonds (vinyl 

and vinylidene content) in the polymer chains. These quantities are affected by 

initiator concentration, inlet temperature and pressure, concentration of chain transfer 

agent, heat transfer coefficient, and other design and operating variables in the process.  

Out of LDPE’s annual production of almost 84 million tonnes worldwide, 22 

million tonnes is produced by high-pressure technology (Kondratiev and Ivanchev, 

2005). Therefore, even small improvement in the economic performance (polymer 

production) can generate huge revenues for the polyolefin industry. Various grades of 

LDPE are required due to its commercial application in diverse polymer products. 

These grades require different physical, chemical, and mechanical properties which 

are difficult to express in a single objective function. The end properties of polymer, 

viz. tensile strength, stiffness, tenacity etc. are related to molecular parameters. These 

parameters include average molecular weight, polydispersity index, SCB and LCB, 

distribution of functional groups etc. Therefore, the end properties of a polymer will 
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depend on the precise control of these variables. However, the end properties are 

generally experimentally measured, and define the quality and strength of the polymer. 

The operating and design variables often influence the molecular parameters in non-

commensurable ways. Therefore, these applications are perfect scenarios for multi-

objective optimization (MOO). 

The LDPE, which is produced in the tubular reactor at high pressure conditions, 

consists of several short chain branches, primarily, ethyl and butyl groups. These 

branches deteriorate quality and strength of the polymer by lowering crystallinity, 

density, melting point, tensile strength, etc. (Luft et al., 1982). Therefore, these groups 

should be minimized to enhance quality and strength of the product. Also, some 

unsaturated groups (vinyl and vinylidene) are present in the LDPE chains, which 

make the product susceptible to cracking due to oxide formation. Hence, the 

minimization of these groups enhances the strength of the polymer product. Another 

important objective is to maximize the monomer conversion per pass for the constant 

monomer feed to the reactor. Indeed, any amount of improvement in the production 

by such studies leads to significant profits to the PE industry.  

Various polymer grades are required in the industry for different end-uses. These 

grades are defined by the number-average molecular weight, Mn,f, of the polymer 

product. Therefore, an end-point equality constraint on the Mn,f is imposed to meet the 

market requirements. Reaction mixture temperature may shoot up to a very high value 

due to exothermic polymerization reactions. Therefore, safe operation of the reactor is 

ensured by putting an inequality constraint on reactor temperature, locally, to avoid 

run-away condition. 
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1.4 Motivation and Scope of Work 

Several publications (Asteasuain et al., 2001a, Asteasuain et al., 2001b; 

Asteasuain et al., 2001c; Cerventes et al., 2000; Iedema et al., 2000; Zhou et al., 2001; 

Bokis et al., 2002 etc.) were coming out on improving the modeling approach of 

tubular reactor. These mathematical models were reviewed by Kim and Iedema 

(2004), Kiparissides et al. (1993a), and Zabisky et al. (1992). The economic 

importance of the process and the necessity of studying safely and economically the 

influence of the different design and operating variables, have motivated us the 

development of a mathematical model for the LDPE tubular reactor. Also, no work 

was done on multi-objective optimization of these reactors which motivated us to 

choose this process. In fact, in the recent past, there are several studies published on 

the tubular reactor processes, which show the interest and development of this process 

in industrial and research community (Kim and Iedema, 2004; Kiparissides et al., 

2005; Buchelli et al., 2005a; Buchelli et al., 2005b; Buchelli et al., 2005c; Hafele et al., 

2005; Hafele et al., 2006; Asteasuain and Brandolin, 2008). In fact, SABIC UK 

Petrochemicals is commissioning soon the new LDPE plant based on tubular reactor 

technology (www.sabic.com/corporate/en/binaries/Annual%20Report-2006_tcm4-

3241.pdf). Similarly, three new plants in People’s Republic of China have been 

started earlier in this year and one more plant in Bangkok is starting-up in the 4th 

quarter of 2008 (http://www.azom.com/news.asp?newsID=3610); all these use high-

pressure tubular reactor technology. There may be more plants coming in the near 

future using tubular reactor technology which justifies its continuous development 

and application in the industrial sector. 

Several detailed studies have been reported on the modeling of LDPE tubular 

reactor in the literature. The most interesting observation that can be made from these 
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studies is the significant discrepancies in the values of the rate constants. Therefore, 

these data can not be relied on to simulate the industrial LDPE tubular reactor. In 

more recent studies, the kinetic parameters are estimated using industrial data but, 

again, they did not provide the complete details due to proprietary reasons. Therefore, 

it gives motivation to develop a sufficiently complex model using industrial data 

available in the literature and tune the model to estimate the kinetic parameters and 

provide the reasonable values for all the missing information. Therefore, we provided 

a descriptive steady-state model which is quite complete and useful for researchers. 

Best-fit values of several model parameters are obtained using the reported industrial 

data. This model is then used to optimize the steady-state operation and design of 

LDPE tubular reactor.  

Even though the process of LDPE production in tubular reactor is well established 

but there are few studies, available in the literature, which deal with dynamic behavior 

of this process. Also, relatively simpler models have been presented in the literature 

for analysis of dynamic behavior. Thus, we developed a comprehensive dynamic 

model which comprises the time and spatial variations of all the physical and 

transport parameters. Also, it includes the detailed reaction kinetic mechanism which 

provides SCB, and the number of unsaturated bonds (vinyl and vinylidene content) in 

the polymer chains. Thereafter, this dynamic model is used in minimizing the amount 

of off-specification polymer for a grade change-over problem, using dynamic 

optimization methods. 

A detailed literature review shows that a very limited work on MOO of LDPE 

tubular process is carried out. In these studies, MOO problems were solved using a 

single scalar objective function, which was a weighted average of several objectives 

(“scalarization” of the vector objective function). This process allows a simpler 
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algorithm to be used, but unfortunately, the solution obtained depends largely on the 

values assigned to the weighting factors used, which is done quite arbitrarily. An even 

more important disadvantage of the scalarization of the several objectives is that the 

algorithm may miss some optimal solutions, which can never be found regardless of 

the weighting factors chosen (Zhou et. al., 2000).  

In recent years, a robust technique, genetic algorithm (GA), and its adaptations 

have become very popular for complex processes (MOO of steam reformers by 

Rajesh et al., 2000; and PMMA reactors by Zhou et al., 2000). These do not need any 

initial guesses. It uses a population of several points simultaneously, and it works as 

well with probabilistic (instead of deterministic) operators. In addition, it uses the 

information on the objective function and not its derivative, nor does it require any 

other auxiliary knowledge. An elaborate description of GA is available in Holland 

(1975), Goldberg (1989) and Deb (2001). One of its recent adaptations, the elitist non-

dominated sorting genetic algorithm (NSGA-II; Deb et al., 2002) can be used to solve 

MOO problems. The performance of NSGA-II has been further enhanced by 

incorporating one of several recent jumping gene (JG) adaptations. Kasat and Gupta 

(2003) observed that the JG concept borrowed from nature provides the genetic 

diversity in the pool thus counteracting the negative effect of elitism; overall, it 

decreases computational time (number of generations) required for solving the multi-

objective problem. In this study, constrained MOO problems at operation and design 

stage are solved using binary-coded NSGA-II and its JG adaptations. 

Multiple objectives are important to the industry for the best utilization of 

resources and maximization of productivity while minimizing the side products which 

are responsible for degradation of polymer quality and strength. Different polymer 

grades are required for various applications in the downstream products. These results 
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in constraints on polymer properties which are defined in terms of easily measurable 

quantities such as Mn. Reactor should also be operated in the safer region to avoid 

run-away situation due to decomposition of ethylene. All these lead to constrained 

MOO problems. The correct global optimal solutions could not be obtained when 

equality constraint on Mn,f is placed. But, the Pareto-optimal sets are obtained when 

softer constraints on Mn,f are used. A Penalty function method is used to handle the 

constraints.  

Although binary-coded NSGA-II-JG and NSGA-II-aJG performed better than 

NSGA-II in multi-objective operation optimization of an industrial LDPE tubular 

reactor near the hard-end point constraints, but constraints in these JG variants of 

NSGA-II are dealt with penalty function method. Deb (2001) showed that the penalty 

parameter for handling constraints plays an important role in multi-objective 

evolutionary algorithms. If the parameter is not chosen properly then it may create a 

set of infeasible solutions or a poor distribution of solutions. Therefore, a systematic 

approach of ‘constrained-dominance principle’ for handling the constraints was 

proposed by Deb et al. (2002) for MOO. This shows the need for further improving 

JG variants of NSGA-II for handling the constraints. The current study also presents 

successful application of constrained-dominance principle in the binary-coded 

NSGA-II-aJG and NSGA-II-JG for handling the constraints for the first time.  

 

1.5 Organization of Thesis  

This dissertation is organized into seven chapters. Following this introduction to 

the high-pressure technology to produce LDPE in tubular reactors, in the subsequent 

chapter, several reaction kinetic schemes, various modeling and optimization work 

and recent developments of LDPE production in tubular reactor are reviewed. This is 
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followed by a review on multi-objective evolutionary algorithms and their 

applications in chemical engineering problems. 

In Chapter 3, the methodology of NSGA-II and its JG variants is described in 

detail. Their implementation for MOO of industrial LDPE tubular is discussed. 

Thereafter, working principles of two constraint handling technique, i.e., penalty 

function method and constrained-dominance principle are given for handling the 

constraints. The implementation of constrained-dominance principle in JG variants of 

binary-coded NSGA-II is narrated and its performance is investigated on several test 

problems.  

Chapter 4 includes the process description, detailed reaction kinetic scheme, and 

model assumptions required in modeling and simulation of industrial LDPE tubular 

reactor. Then, the steady-state model is tuned with the available industrial data and it 

is used in multi-objective operation optimization of tubular reactor. The objective 

functions: maximization of monomer conversion and minimization of normalized side 

products at the reactor exit, are optimized simultaneously using binary-coded NSGA-

II and its JG adaptations. A four-objective optimization problem (with each of the 

three normalized side products concentrations taken individually as objective 

functions) is also formulated.  

In Chapter 5, a brief introduction to modeling and simulation of LDPE tubular 

reactor is provided. Thereafter, MOO problem at design stage is formulated which 

includes reactor design variables and therefore increases the complexity of the 

problem by expanding the decision variable space. The two objectives were similar to 

what were used in operation stage optimization. The constraints are handled by 

penalty function method and constrained-dominance principle and the results 

obtained using these methods are compared. A three-objective optimization problem 
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with the compression power (associated with the compression cost) as the third 

objective along with the aforementioned two objectives, is also studied.  

In Chapter 6, the steady-state model of Agrawal et al. (2006) is modified to study 

the dynamic behavior of an industrial tubular reactor. The dynamic model contains 

differential, partial differential and algebraic equations inclusive of the detailed 

reaction mechanism and kinetics. The dynamic model is used to study the effects of 

the disturbances in inlet pressure and concentrations of initiators and telogen on 

transient profiles of polymer properties, monomer conversion, and reactor 

temperature. Thereafter, the dynamic model is used to optimize the grade transition 

policies. 

All the inferences and conclusions made from this research work and the 

directions for the future work are summarized in the Chapter 7.  
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Chapter 2  

Literature Review  

 

2.1 Introduction 

This chapter starts with the reaction mechanism used in production of LDPE. Note 

that LDPE can be produced in tubular and autoclave reactors using high-pressure 

technology. However, we are referring to LDPE production in tubular reactors using 

high-pressure technology in entire work. LDPE is produced by free-radical 

polymerization in presence of initiators and ethylene. The detailed literature on 

various possible reactions is provided in this chapter.   

LDPE is produced in tubular reactor at extremely critical conditions, namely, in 

the range of 325 – 625 K and 150 – 300 MPa. Thus, it poses safety and other 

associated constraints on experimentation of this process. This gave an impetus to 

research community to work on mathematical model which could alleviate the need of 

experimentation and describes the complex behavior of the process. The modeling of 

this process started in late sixties and plethora of steady-state models are now 

available in literature which are reviewed in section 2.3. Many steady-state models are 

available in the open literature but only a few studies deal with the dynamic models. 

Subsequently, these dynamic models are also reviewed. 

The productivity of LDPE using high-pressure technology in industrial tubular 

reactor is reported to be 30 – 35% per pass which is quite low. Thus, even small 

improvement in the reactor performance may lead to high-revenue to the poly-olefin 

industry. Therefore, process industry always aims to maximize the monomer 

conversion. At the same time, due to complex operating conditions, quality of 

polymer also deteriorates and pose safety constrains on reactor operation. Thus, 
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studies comprising of LDPE reactor optimization at steady-state, unsteady-state and 

for grade transition are reviewed in the last section.  

 

2.2 Reaction Kinetics  

A lot of work has been done on the kinetics of free-radical ethylene 

polymerization due to commercial importance of the high-pressure process 

(Woodbrey and Ehrlich, 1963; Ehrlich and Mortimer, 1970; Luft et al., 1982 and 

1983; Goto et al., 1981; Brandolin et al., 1996). The conventional high-pressure 

process operates by a free-radical mechanism. Free radicals are generated by 

decomposition of initiators (organic peroxides, oxygen, azo compounds) employed at 

different locations of the tubular reactor. The generation of free radicals is called 

initiation.  

Oxygen was used as initiator in the early industrial process due to its ease of 

feeding into the reactor. However, with the development of high-pressure pumps and 

compressors and new initiators, new plants employ solutions of liquid catalyst. This is 

to ensure the precise control of temperature profiles inside the reactor. The 

mechanism by which oxygen generates the free-radicals is rather complicated and it is 

not well understood. It can act as inhibitor at lower temperatures. In general, oxygen 

is believed to react in multi-step manner where oxygen first reacts with monomer to 

form peroxides. These peroxides then decompose and progressively react with 

monomer to generate chain radicals which initiate the polymerization. Tatsukami et 

al. (1980) studied the oxygen initiation of ethylene at high-pressures. They postulated 

the reactions which account for initiation and inhibition effects of oxygen. In the 

tubular reactor process, oxygen is still widely used, either alone, or sometimes in 

combination with liquid initiators. Brandolin et al. (1988) fitted the measured 
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temperature profile to obtain the kinetic rate parameters. Reaction rate order of 1.1 

with respect to oxygen for the initiation reaction involving monomer and oxygen as 

reactants was obtained in their work. The initiators are selected based on their half 

lives at the reaction temperature. Their half lives should be in the range of 1 s to get 

control over the reaction rate. The initiators should be readily soluble in the alkanes 

and should produce active radicals.  

Bubak (1980) demonstrated the thermal initiation of ethylene in the experimental 

studies carried out at high-pressures up to 2500 atm and temperature between 180 to 

250 ºC. The overall order for this reaction was reported to be three. The thermal 

polymerization is very slow and thought to be very minor for ethylene at certain 

operating conditions (Brandolin et al., 1988). However, Hollar and Ehrlich (1983) 

discussed that this reaction might be important at higher temperatures causing run-

away conditions in the tubular reactor.  

The free radicals react with ethylene to form a primary alkyl radical. These 

radicals add to ethylene molecules during propagation and increase the chain length. 

The growing radicals react with each other and form one or two dead polymers due to 

termination by combination or by disproportionation, respectively. A terminal double 

bond is formed in the dead chain from the disproportionation reaction. Thermal 

degradation is another termination reaction in which growing radical dissociates into 

dead chain and initiation radical.  

Active free-radical sites on a live polymer chain can jump to a solvent, monomer, 

or modifier molecule, or the radical site could break away from the live polymer 

chain. It can also jump to another site on the same polymer chain or another polymer 

chain. These chain transfer reactions, which can affect the size, structure, and end 

groups on the polymer, are described below.  
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In chain transfer to monomer, transfer of the active radical can occur between 

a live polymer chain and a monomer molecule (ethylene).  

~ CH2 – ĊH2  +  C2H4 trmk⎯⎯⎯→  ~ CH2 – CH3   +  CH2 – ĊH  

A dead polymer chain and a new polymer radical are formed. This reaction occurs 

through a hydrogen abstraction mechanism and leaves an unsaturated end segment on 

the dead polymer chain. Chain transfer to monomer is small in case of ethylene. This 

reaction is quite similar in other monomer systems as well.  

Chain transfer agents such as impurities (propane, butane, hexane etc), are 

added in the reaction mixture to control the chain length of growing molecule or in 

other words the molecular weight of growing polymer. Reactivity of a growing 

macromolecule is transferred to the telogen leading to formation of dead polymer and 

initiation radical, in chain transfer to solvent reaction (Zabisky et al., 1992). Such 

reactions occur via the same mechanism (hydrogen abstraction) as chain transfer to 

monomer.  

~ CH2 – ĊH2  +  R – CH3 trsk⎯⎯⎯→  ~ CH2 – CH3   +  R – ĊH2  

LCBs are produced in LDPE through an intermolecular chain transfer reaction 

between a polymer radical and a dead polymer chain. The active radical attacks the 

dead chain at an internal carbon, transferring the radical to the dead chain and 

terminating itself. The new polymer radical then continues to propagate from the free 

radical on the internal carbon to form a long chain branch. Pladis and Kiparissides 

(1998) concluded that chain transfer to polymer is the primary reaction in the 

formation of LCBs. These branches widen the molecular weight distribution in high 

pressure PEs. The reactions of termination by disproportionation, β-scission and 

transfer to monomer produce polymer chains with terminal double bonds. These 

double bonds might react with radicals and can propagate to form LCBs (Zabisky et 
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al., 1992). The LCBs can also be obtained using metallocene catalyzed low pressure 

ethylene polymerization. 

~ CH2 – ĊH2  +  ~ CH2 – CH2 ~ trpk
⎯⎯⎯→  ~ CH2 – CH3   +  ~ CH2 – ĊH  

The back-biting or intramolecular chain transfer reaction is the major source 

of SCBs in LDPE. The number of short chain branches found on the backbone 

polymer chain primarily controls the density of homopolymer LDPE. Chain transfer 

can also occur within the growing free radical or between the two growing chains. 

The former is called intra-molecular chain transfer or back-biting reaction, and 

accounts for the SCBs. The latter reaction, inter-molecular chain transfer, produces 

LCBs in LDPE. The back-biting reaction, which was proposed by Rodel (1953), 

occurs with the carbon atom preceded by four carbons back down the chain. 

Subsequent studies have shown that these branches contain entirely ethyl- and butyl-

groups along the chain. These groups are formed due to second back-bite which 

occurs immediately after the first was done, which was investigated and concluded by 

Willborn (1959) by infra-red treatment. Experimental evidence has been presented for 

multiple back-bites also. These short branches account for the lower crystallinity, 

density, melting point, and other associated physical properties of commercial high-

pressure polyethylene.  

~ CH2 – CH2 – CH2 – CH2· bbk
⎯⎯⎯→  ~ CH2 – ĊH – CH2 – CH3    

Another structural impurity known to exist in polyethylene produced at high 

pressure is vinyl and vinylidene type unsaturation. The formation of vinyl and 

vinylidene type unsaturation is closely associated with the SCB mechanism. These 

unsaturations are due to the scission of secondary and tertiary radicals. The ‘multiple 

back-biting’ mechanism can lead to tertiary radicals which undergo β-scission to form 

vinylidene.  
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~ CH2 – ĊH – C4H9 b1k
⎯⎯⎯→  ~ CH2 – CH ═ CH2 + CH3CH2ĊH2

Similarly, the formation of vinylidene groups (> C ═ CH2) can be explained by the 

following scission reaction of tertiary radicals: 

              C2H5                                            C2H5
              │                                                  │ 

~ CH2 – C̣ – CH2 – C4H9 bk
⎯⎯→  ~ CH2 – C ═ CHCH3 + CH3CH2ĊH2

The thermal decomposition of monomer and polymer into carbon and a 

mixture of methane and hydrogen is highly exothermic reaction which may result in 

reactor run away in the form of huge temperature, and hence the pressure evolution.  

 

2.3 Reactor Modeling and Simulation  

Ethylene, along with oxygen, initiators and telogens, is used as main building 

block to produce LDPE by free radical polymerization in a tubular reactor at very 

rigorous conditions. An appropriate mathematical model for the process should be 

able to predict the product properties as close as possible to the real plants. The 

accuracy of model depends on various assumptions made in the model. Thus, a model 

builder should keep in mind that one must often compromise model details and 

complexity with available information and final use of the model. The model 

alleviates the use of pilot plant and trial-and-error procedures in the industrial plants. 

Also, it helps in understanding the effects of operating variables on the product 

properties and estimating the optimal operating conditions to achieve certain 

performance criteria.  

A detailed study has been carried out on modeling of LDPE process (Agrawal and 

Han, 1976; Chen et al., 1976; Goto et al., 1981; Donati et al., 1982; Zabisky et al., 

1992; Kiparissides et al., 1993b; and Brandolin et al., 1996). Agrawal and Han (1975) 

studied the effects of axial mixing and various operating parameters on the reactor 
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performance. In tubular reactors, pressure pulse is sent using control valve for a short 

time which subsequently increase the reaction mixture velocity and strip the deposited 

polymer in the tubular reactor wall. Some researchers have argued that this pulse 

valve effect inside the LDPE tubular reactor should be modeled with axial mixing in 

the plug flow. Chen et al. (1976) showed that axial mixing can be neglected for all 

practical purposes using the same reactor system of Agrawal and Han (1975). Their 

observations were based on Peclet number which was quite high due to high Reynolds 

number (large turbulence). Moreover, Donati et al. (1982) and Yoon and Rhee (1985) 

also observed that axial mixing has minor effect on the reactor performance and 

therefore can be neglected under typical industrial operating conditions. 

In most of the studies, single phase (homogeneous phase) of ethylene and 

polyethylene is assumed. This will be a good assumption because the reaction mixture 

is homogeneous under many industrial operating conditions. Zabisky et al. (1992) 

showed that polymer-rich phase may exist near the tube wall and reaction rates will be 

much different there. However, they discussed that a typical characteristic, grainy film 

appearance, of two-phase resins is not observed in the LDPE produced from high-

pressure tubular reactors. Thus, the assumption of single phase was employed in their 

modeling study. Bubak (1980) showed that the reaction mixture exists as single phase 

in an extended pressure and temperature region above 1500 bar and 150 ºC, 

respectively.  

Many studies have used constant velocity along the tube length which varies with 

the reaction mixture density. The density depends on reaction mass temperature, 

pressure, and composition and therefore it varies along the tubular reactor axis. Thus, 

variation in velocity should be accounted in a comprehensive model. 
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 A detailed survey of modeling studies on LDPE reactors in the open literature 

showed significant discrepancies in the kinetic rate parameters from different sources 

as summarized by Gupta et al. (1985). Therefore, these kinetic data can not be relied 

on for simulation and optimization.  It gave us an impetus to look for the model which 

used the kinetic data to verify the industrial result. Brandolin et al. (1996) calculated 

rate parameters and molecular-weight parameters by non-linear regression from 

measured temperature profile and molecular properties. However, they showed the 

kinetic rate parameters for initiators and telogen in a range due to confidential reasons. 

Zabisky et al. (1992) also did not reveal the kinetic rate parameters obtained after 

validation of model to industrial data due to proprietary reasons. Asteasuain et al. 

(2001b) gave the design features, steady-state operating conditions, measured 

temperature profile along the reactor length, monomer conversion and number-

average molecular weight at reactor exit. They adopted the simplified model and 

kinetic parameters from Brandolin et al. (1996) and Asteasuain et al. (2001a). The 

model selected from Asteasuain et al. (2001b) was modified in our study. Physical 

properties variations and pressure variation along the axial length are included in the 

model. Chain transfer to polymer, β-scission of secondary radical and tertiary radicals 

reactions are involved in reaction kinetic scheme apart from the reactions taken from 

Asteasuain et al. (2001b). These reactions affect the SCB and LCB. An error function 

representing the sum of the square of difference between the model predicted and 

industrial values is employed for getting the best-fit (tuned) values of the parameters 

in the model. The similar approach has been reported in the literature (Brandolin et al., 

1988; Zabisky et al., 1992; Brandolin et al., 1996; and Asteasuain et al., 2001a; in 

production of LDPE in high-pressure tubular reactor; Bhaskar et al., 2001 on PET and 

nylon 6 by Wajge et al., 1994) to obtain reactor kinetic parameters. These tuned 
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parameters predicted the results in good agreement with industrial results 

(temperature profile, end point monomer conversion and number-average molecular 

weight reported by Asteasuain et al., 2001b).  

Buchelli et al. (2005a) determined the fouling thickness using the heat-transfer 

model and industrial plant data. They calculated the fouling thickness and fouling 

deposition rate over time, and concluded, using mass transfer rate and Reynolds 

analogy, that a small fraction of precipitated polymer gets attached to reactor inner 

wall to produce fouling. In their subsequent study (Buchelli et al., 2005b), the authors 

modeled formation of fouling layer by considering two phase behavior of ethylene 

and polyethylene mixture at the lower temperature near the reactor inner wall using 

CFD simulation. It was suggested that polymer rich phase and monomer rich phase 

exist near the boundary layer. It was further suggested that coolant temperature on 

jacket side should be increased so that reactor wall temperature increases and 

therefore deposited polymer temperature will be increased, to take away deposited 

polymer by the ethylene stream. However, prediction of reactor wall inside 

temperature was opposite to observed temperature in the real plant. The effect of 

fouling on reactor temperature, polymer properties, fractional conversion, and axial 

mixing were studied in Buchelli et al. (2005c). The focus of these studies was on 

modeling the fouling behavior and determination of fouling thickness, and its effect 

on reactor performance using CFD simulations. Their studies did not carry out any 

optimization study using the developed model. 

The LDPE production using tubular reactor technology at high-pressure is well 

established in the industry. Many steady-state models are available in the open 

literature (e.g., Zabisky et al., 1992; Kiparissides et al., 1993b; Brandolin et al., 1996; 

Agrawal et al., 2006) but only a few studies deal with the dynamic models (e.g., 
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Kiparissides et al., 1996; Cervantes et al., 2000; Asteasuain et al., 2001b). These 

dynamic models are fairly small and simple. Kiparissides et al. (1996) carried out the 

on-line optimization on a high-pressure tubular reactor. But, they have assumed quasi-

steady state and negligible dynamics in the model based on measurements and control. 

These assumptions are not admissible as discussed by Hafele et al. (2006). Cervantes 

et al. (2000) minimized the grade transition time between two steady-states 

corresponding to two polymer grades in a large-scale industrial LDPE plant. 

Asteasuain et al. (2001b) presented a dynamic model of an LDPE reactor, and then 

obtained the optimal start-up policies. They maximize the outlet conversion and 

minimize the time required for the reactor to stabilize, while forcing the polymer 

properties at some desired values during start-up. Again, these studies did not account 

for the spatial and time variations in the physico-chemical properties. Also, some 

reactions are not included in the reaction kinetics, which are important in defining the 

polymer quality. In this study, a comprehensive dynamic model for the production of 

LDPE in a tubular reactor is presented and simulation results using this model are 

discussed in detail. Hafele et al. (2005) simulated an industrial tubular reactor for 

LDPE production using an adaptive method of lines where adaptation of grid nodes is 

done dynamically. Hafele et al. (2006) used this dynamic model to study the effects of 

reactor wall and material recycles on the plant dynamics. However, they did not 

provide complete details on their approach for proprietary reasons.  

 

2.4 LDPE Tubular Reactor Optimization 

Process industries always aim to run at the maximum production capacities due to 

economic reasons while simultaneously maintaining the polymer quality. Kiparissides 

et al. (1994) singled out ethylene conversion as the most prominent objective due to 
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high cost involved in the operation of high-pressure tubular LDPE reactor. However, 

several end use properties, e.g., strength, impact resistance, etc. are governed by 

average-molecular weight of the polymer produced and in turn depends on the reactor 

operating variables. Safety requirement in the reactor and specific polymer grade 

(determined by Mn and PDI) impose multiple constraints to the process. Thus, the 

design and operation of LDPE polymerization reactor require optimization using 

multiple objectives and constraints, which are often conflicting in nature as discussed 

in detail by Lee and Marano (1979). Yoon and Rhee (1984) adopted maximum 

principle theory to find out the optimum temperature policy which would maximize 

the exit monomer conversion. But, they did not consider polymer quality 

specifications in the optimization study. Mavridis and Kiparissides (1985) maximized 

the productivity of ethylene using a single scalar objective function, which was a 

weighted average of other two objectives (Mn and PDI). Optimal wall temperature 

and the initiator and chain transfer agent concentrations in a fixed-size tubular reactor 

were obtained. Kiparissides et al. (1994) employed almost the same objective function 

in terms of the ethylene conversion and quality (melt index and density) of the final 

product for on-line optimization of a high-pressure LDPE tubular reactor. The 

problem was divided in two phases with firstly tuning some key model parameters to 

eliminate any mismatch in the process and then used this adapted model to optimize 

the process. Brandolin et al. (1991) maximized the conversion while considering 

several operational policies relating to polymer properties. Temperature and initiator 

concentration were considered as optimal control variables. Cervantes et al. (2000) 

minimized the switching time between two steady states corresponding to two 

different polymer grades. Optimum butane flow rate was determined by employing 

dynamic optimization on the whole plant. Asteasuain et al. (2001b) found the optimal 
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start-up policies for attaining maximum productivity and steady-state operation in 

minimum time. This was a dynamic optimization problem involving the initiator and 

telogen concentration as control variables. Finally, Yao et al. (2004) maximized the 

productivity while considering jacket temperature, as a function of reactor length, as 

the control variable. Genetic algorithm was utilized for the steady state optimization 

of LDPE tubular reactor. A direct comparison of their simulation results with 

experimental data could not be established due to unavailability of these data. 

Moreover, no product quality specifications were considered in the optimization.  

A few optimization studies have also been reported under unsteady (dynamic) 

operation of LDPE reactors. Asteasuain et al. (2001b) first presented a dynamic model 

of an LDPE reactor, and then obtained the optimal start-up policies. They maximized 

the outlet conversion and minimized the time required for it to stabilize, while forcing 

the properties at some desired values during start-up. The feed flow rates of the two 

initiators and of telogen were used as decision variables. Cervantes et al. (2000) 

presented a dynamic model for an entire LDPE plant with a feed mixture of ethylene, 

methane, butane and impurities. They minimized the switching time between two 

steady-states corresponding to two different grades of polymer.  

Polymer industries are subjected to market fluctuations which necessitate 

producing as many as 30-40 different grades in a single polyolefin plant 

(Chatzidoukas et al., 2003). The production of LDPE in tubular reactors is a typical 

process where unsteady states during plant operation are commonly observed. Also, 

the stocking costs are huge thus what is required for the market should be produced 

just in time. So, frequent grade changes are expected in a LDPE plant. In addition, 

LDPE plants are connected with the upstream and downstream processes which 

influence the throughput of the plant directly (Hafele et al., 2006). Therefore, grade 
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transition of polymers with high quality in a polymer plant becomes an essential and 

important issue. During grade change, off-specification product is produced which 

incurs loss of revenue to the polymer industry. Thus, change in the polymer grade 

should be made with minimum polymer off-specification and grade change over time.  

The polymer grades are typically characterized by the various attributes such as 

average molecular weight, density, melt-index, and other physical properties. The 

different grades of LDPE of desired specifications are obtained by switching between 

appropriate steady-states (Cerventes et al., 2000). The grade transition coupled with 

control strategies in any polyolefin industry can be carried out in two steps. First, the 

optimal grade transition recipes are identified offline for manipulated and controlled 

variables in the presence of constraints on process input, output and state variables 

using a dynamic model. Next, these optimal trajectories are implemented after 

selecting the feedforward and feedback controllers and their parameters 

(Chatzidoukas et al., 2003). This study focuses on the first aspect where optimal grade 

transition trajectories are obtained using offline optimization.  

In all the studies involving more than one objective, a weighted sum of the 

multiple objectives is used as a single, scalar objective function. This allows the use 

of simpler optimization algorithms, but the solution depends on the values selected for 

the weighting factors, and so there is some degree of arbitrariness involved. A more 

important disadvantage of the combining the several objectives into a scalar quantity 

(‘scalarization’) is that the algorithm may miss some optimal solutions (Haimes, 

1977). In recent years, several multi-objective adaptations of GA that can solve such 

problems have become available. These have been used in the present study to obtain 

solutions of a few meaningful MOO problems for an industrial LDPE reactor.  
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2.5 Summary 

This chapter presented detailed information available in literature for reaction 

mechanism scheme in free-radical polymerization of ethylene. Various research 

groups used different set of reactions in narrating the polymer properties and process 

behavior. Thereafter, various steady-state mathematical models are reviewed for their 

merits and limitations. These models are then used in optimizing LDPE reactor 

operation. A thorough review of optimization studies of LDPE tubular reactor showed 

that most of the articles combine multiple objectives into single objective by assigning 

arbitrary weights to individual objective and solve the resulting problem using single 

objective optimization algorithms. 
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Chapter 3  

Genetic Algorithms and Constraint-handling Techniques for MOO 

 

3.1 Introduction 

The chapter starts with an overview of genetic algorithms (GAs) used for solving 

multi-objective optimization (MOO) problems. These are classified into non-elitist 

and elitist algorithms based on elite-preserving mechanism. Then, an elitist non-

dominated sorting GA (NSGA-II) and its jumping gene (JG) adaptations are 

described. All these algorithms are discussed for unconstrained MOO problems. But, 

real-world problems without constraints are very rare. Hence, a popular and easy-to-

apply approach, penalty function method, for solving constrained MOO problems is 

presented and its merits and limitations are outlined. Penalty function approach is 

susceptible to the penalty parameter value; therefore, a systematic approach, 

constrained-dominance principle, is suggested in the literature which is illustrated in 

this chapter. This approach is implemented in NSGA-II-JG and NSGA-II-aJG for the 

first time for solving the constrained MOO problems. These algorithms are tested on 

constrained problems and the results are compared to those using the real-coded 

NSGA-II.  

 

3.2 Genetic Algorithms for Multi-objective Optimization  

GA (Goldberg, 1989) is a robust and popular technique for global optimization; it 

mimics natural genetics, using operators like reproduction, crossover and mutation to 

guide the search in the feasible domain. It requires only the values of the objectives 

and does not require any initial guesses and derivatives of functions involved. Most 

real-world problems require the simultaneous optimization of several objectives 
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(MOO) which are often conflicting in nature. Also, some objectives are non-

commensurate and these can not be combined into single and meaningful scalar 

objective function. In several, earlier studies, these objectives were combined into 

single scalar objective function, using arbitrary weighting factors and the resulting 

problem was solved by single objective optimization algorithms. But, this approach 

suffers from assigning a-priori basis weighting factors and losing some optimal 

solutions (Chankong and Haimes, 1983; Haimes, 1977).  

Instead of pre-fixing a weighting factor and finding the corresponding Pareto-

optimal solution, multi-objective evolutionary algorithms (MOEAs) were suggested 

to find multiple trade-off solutions in one single run. The first real MOEA was 

suggested by Schaffer (1984) with the name of vector evaluated genetic algorithm 

(VEGA). This was the first multi-objective genetic algorithm (MOGA) used to find a 

set of non-dominated solutions, which are equally good (i.e., none of them is better 

than the others with respect to all objectives). The non-dominated solutions are also 

called Pareto-optimal solutions or set in the context of MOO. The curve formed by 

joining these solutions is called Pareto-optimal front. In VEGA, each objective was 

treated as an element of an objective vector (instead of scalar objective function) and 

represented truly the MOO. Though, the population members had tendency to crowd 

near an individual optimal solution due to lack of explicit diversity-preserving 

mechanism. This problem was later eliminated by careful implementation of the non-

domination concept and explicit diversity-preserving operator. The three 

implementations – multi-objective GA (called MOGA; Fonseca and Fleming, 1993), 

niched-Pareto GA (NPGA; Horn et al., 1994), and non-dominated sorting genetic 

algorithm (NSGA; Srinivas and Deb, 1994) – used the suggestions of Goldberg 

(1989) and found well-converged and well-distributed sets of non-dominated 

 29



Chapter 3 GAs and Constraint-handling Techniques for MOO 

solutions in both test and application problems. The common aspect of these 

algorithms is that none of them has used elite-preserving operator. NSGA has been 

applied successfully to optimize several industrially important systems (Bhaskar et al., 

2000). 

 Elite-preserving operator favors the elites of a population by giving them an 

opportunity to be part of the next generation. The elitism can be introduced either 

locally or globally in MOO. For local elitism, consider two off-springs generated from 

two parents after crossover and mutation operations; out of these four solutions, the 

best two solutions are selected for the next generation. Thus, the two elite parents are 

given opportunity for their survival for next generations. Similarly, in global elitism, 

the parent population (N) and off-spring population (N) are combined, and the N 

better solutions from these 2N members are selected for the next generation. The use 

of elitism makes sure that the fitness of the best solution in the population does not 

deteriorate. In fact, Rudolph (1996) has proved that GAs converge to the global 

optimal solution of some functions in the presence of elitism. Rudolph (2001) used 

elitism in multi-objective evolutionary algorithms but this algorithm lacked diversity 

preservation mechanism. Thereafter, Deb et al. (2002) suggested an elitist non-

dominated sorting GA (NSGA-II) which contains both elite-preservation strategy and 

diversity-preserving mechanism. A detailed account of various adaptations of GAs 

proposed by researchers for generating Pareto-optimal solutions can be found in the 

recent textbooks (Deb, 2001; Coello et al., 2002).  

The performance of NSGA-II has been further enhanced by incorporating one of 

several jumping gene (JG) adaptations (Simoes et al., 1999; Kasat and Gupta, 2003; 

Man et al., 2004; Guria et al., 2005). Kasat and Gupta (2003) observed that JG 

concept borrowed from nature provides the genetic diversity in the pool thus 
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counteracting the negative effect of elitism; overall, it decreases computational time 

(number of generations) required for solving the multi-objective problem. The 

existence of JG, a DNA, is predicted in 1940s by McKClintock (1987) which could 

come in and out of the chromosome. But, it was believed that DNA is stable and 

invariable until 1960s when JG could be isolated in E. Coli. And these are named as 

transposons. Later, the role of transposons was understood in transferring bacterial 

resistance to antibodies and genetic diversity in natural populations. There are various 

kind of transposons. Of these, two types of transposons are taken into consideration 

by Kasat and Gupta (2003), and applied them in NSGA-II algorithm.  

 

3.3 NSGA-II and its JG Variants 

The binary-coded elitist NSGA-II is a population-based search technique. It starts 

with mapping the decision variable vector on to their binary equivalents (lsubstr: 

number of binaries representing a decision variable), via linear mapping formula 

(Deb, 2001). The mapped binary variables are placed side by side so as to form an 

individual, called a chromosome. Now, the parent population (say set PP), comprising 

a set of such chromosomes (Npop), is created using a sequence of random numbers 

(generated using the random seed parameter, Sr). Each of these chromosomes is 

decoded into real values of the decision variables to calculate the objective function 

values. The available NSGA-II code maximizes all the objective functions. Hence, a 

problem involving the minimization of a function, J, is converted to a maximization 

problem by using the transformation: I = 1/(1+J). These objective function values are 

called fitness values, which are the indices of the merit of an individual. The parent 

population is then distributed to various fronts based on the non-domination criteria. 

Also the crowding distance for each chromosome in each front is calculated. The 
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crowding distance of a solution is a measure of the search space around it not 

occupied by any other solution in the population.  

Now, the better parents (say, set BP) are selected, based on their ranking and 

crowding distance, from the parent population. The daughter population is obtained 

after performing crossover and mutation (using crossover (pc) and mutation (pm) 

probabilities, respectively) on the better parents. At this stage, JG/aJG operation is 

checked (whether needed or not) on each chromosome (say, 1001|10011|0) 

sequentially based on the specified jumping gene probability (pJG) and a random 

number. If JG/aJG is needed, another random number is generated between 0 and 1, 

and then multiplied by lchrom, the total number of binaries in the chromosome. The 

resulting number is rounded off to convert into an integer. It defines the position of 

the beginning of a transposon or jumping gene (for instance, at the end of the fourth 

binary in the above chromosome). Similarly, the second location is identified by 

generating another random number (say, after 9th binary in the chromosome). While, 

in aJG operation, this second location is found out by using the specified string length, 

laJG (for example, laJG = 5; so a bar is placed after the 4 + 5 = 9th binary), of the 

jumping gene (Guria et al., 2005). Then, the set of binaries between these two 

locations are replaced by a new set of randomly generated binaries of the same size. 

The individuals after crossover, mutation and jumping gene operations on the set BP, 

form another population set (say, set DP). Objective function at each of these 

individuals is calculated. The set DP is then added to better parent population (set 

BP). After reclassifying the combined BP and DP sets into fronts, the better 

individuals (sat set EP) are selected as the population for the next generation. This 

completes one generation and the process is carried on until the stopping criterion 
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(Ngen,max: maximum number of generations) is met. The working principle of NSGA-II 

and its JG adaptations is also shown in Figure 3.1.  

 

Combine BP and DP (2Npop)

Classify the population into fronts

EP: Select the best Npop from this set
(Elitism)

Evaluate objective functions

PP: Generate parent (initial)
population, Npop, randomly.

Evaluate objective functions

Classify and calculate Irank and Idist
of chromosomes in PP

BP: Copy better chromosomes

Do crossover and mutation on BP

DP: Do JG or aJG operation

No
Is Ngen < Ngen,max?

Stop

Yes

Ngen = Ngen + 1
Replace PP by EP

Set Ngen = 0

 

Figure 3.1 Flow chart of NSGA-II and its JG adaptations 
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3.4 Penalty Function Method 

The constraints are quite common in real-world optimization problems. They 

might be equality and/or inequality constraints, and divide the search space into 

feasible and infeasible regions. And, similar to single objective optimization (SOO), 

Pareto-optimal solutions (for MOO) should be feasible. Coello and Christiansen 

(1999) suggested that any solution which violates any of the constraints should be 

ignored. But, it becomes quite difficult to find feasible solutions (each of which 

satisfies all the assigned constraints) in most real-world problems. So, Deb (2000) 

suggested that infeasible solutions should be evaluated and compared among 

themselves and with feasible solutions. Also, the measure of overall constraint 

violation of an infeasible solution is suggested in SOO. In this way, GAs can be 

guided into feasible region by emphasizing the solutions with less overall constraint 

violation.  

In trying to solve constrained optimization problems using GAs or classical 

optimization methods, penalty function methods have been the most popular 

approach, because of their simplicity and ease of implementation (Deb, 2000). For 

each solution/chromosome, constraint violation of each constraint is calculated. And, 

all these violations are summed up together to calculate the overall constraint 

violation. This violation is then multiplied with the penalty parameter, R, and the 

product is subtracted from each of the objective function values (for a problem of 

maximization of objective functions). This parameter for each objective function may 

be different such that the constraint violation is comparable to the objective function 

value. The overall constraint violation becomes zero if a solution is feasible else it 

penalizes the original objective function. Once the penalized function is formed, then 

any unconstrained MOO methods discussed earlier can be used. 
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In single objective GA literature (e.g., Michalewicz, 1992; Homaifair et al., 1994), 

a number of static and dynamic strategies are given to update the penalty parameter. 

The dependency of GA's performance on the penalty parameter has led researchers to 

devise sophisticated penalty function approaches such as multi-level penalty functions 

(Homaifair et al., 1994), dynamic penalty functions (Joines and Houck, 1994), and 

penalty functions involving temperature-based evolution of penalty parameters with 

repair operators (Michalewicz and Attia, 1994). All these approaches require 

extensive experimentation for setting up appropriate parameters needed to define the 

penalty function. Michalewicz and Schoenauer (1996) concluded that static penalty 

function method is more robust than any sophisticated method (dynamic strategies). It 

is because each sophisticated method is problem-dependent; it may work well on one 

problem but may not work so well on other problems, as discussed by Deb (2000). 

Deb (2001) has presented the working methodology of penalty function approach 

and illustrated its application to MOO of a test problem. NSGA is applied to obtain 

the Pareto-optimal solutions. The effects of choosing various penalty parameters were 

also studied. It was noted that if an adequate penalty parameter is not chosen, then 

infeasible Pareto-optimal set is obtained. However, when an appropriate parameter is 

chosen (by slowly increasing the parameter value) the resulting Pareto-optimal front 

was feasible and close to the true Pareto-optimal set. Interestingly, a large value of 

penalty parameter over-emphasized the constraints in initial generations and NSGA 

converged near to a portion of the Pareto-optimal set. 

 

3.5 Constrained-Dominance Principle for Handling Constraints 

Several constraint-handling techniques have been used with evolutionary 

algorithms, and a bibliography of articles on this topic is available in Coello and 
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Coello (1999) (this is a technical report and it is available on 

http://www.cs.cinvestav.mx/~constraint). Deb (2001) illustrated the application of 

penalty function approach, a popular constraint handling strategy, in NSGA-II on a 

test problem for handling the constraints. He observed that, when the chosen penalty 

parameter is small, the penalty effect is less and therefore the resulting optimal 

solutions are infeasible. On the other hand, a large value of penalty parameter over-

emphasizes the constraints in the initial populations, which results in poor distribution 

of solutions in the Pareto-optimal front. Thus, multi-objective evolutionary algorithms 

work well if an appropriate penalty parameter is chosen; else, a set of infeasible 

solutions or a poor distribution of solutions is likely.  

Therefore, a systematic approach of constrained-dominance principle for handling 

the constraints in MOO was proposed by Deb et al. (2002). Motivated by these, 

constrained-dominance principle is successfully implemented in the binary-coded 

NSGA-II-aJG and NSGA-II-JG for handling the constraints for the first time and its 

effectiveness is evaluated for the test problems. 

 

3.5.1 Implementation and Testing 

Deb et al. (2002) proposed a more systematic and parameter-less constraint-

handling approach for solving constrained MOO problems. This approach is referred 

as constrained-dominance principle, which is used in selecting the better one of the 

two solutions chosen in the binary tournament selection. In the presence of 

constraints, there exist three possible scenarios: (1) both the solutions are feasible, (2) 

one solution is feasible and other is infeasible, and (3) both solutions are infeasible. 

For SOO, Deb (2000) proposed the efficient and simple strategy of selecting the 
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solution with better function value in case of 1, feasible solution in case of 2 and the 

solution with less overall constraint violation in case of 3.  

Later, Deb et al. (2002) incorporated this strategy in MOO by modifying the 

definition of domination between two solutions, i and j, as follows. 

Definition: A solution i is constraint-dominating solution j, if any of the following 

conditions is true. 

(1) Solution i is feasible and solution j is infeasible. 

(2) Both solutions are infeasible but solution i has a smaller overall constraint 

violation.  

(3) Solutions i and j are feasible and solution i dominates solution j in the usual 

manner. 

The detailed description of this method can be found in Deb et al. (2002). We 

implemented it in the binary-coded NSGA-II-aJG and the results of testing it on four 

constrained problems (Table 3.1) are discussed in this section. The same 

implementation can be used with NSGA-II and NSGA-II-JG. The test problems are 

defined in Deb et al. (2002), where they used them to compare constrained-dominance 

principle approach in the real-coded NSGA-II (NSGA-II-RC) with other constraint-

handling methods. The available NSGA-II-aJG code maximizes the objective 

functions; hence a problem involving the minimization of a function, J, is converted 

to a maximization problem by using the transformation, G = 1/(1 + J).  

The design of an industrial LDPE tubular reactor (Agrawal et al., 2007) is 

optimized for two objectives using NSGA-II and its JG variants with constrained-

dominance principle to handle the constraints. The results obtained are compared with 

those obtained with the penalty function method for constraint-handling in NSGA-II-

aJG. These results are discussed later on in Chapter 5. 
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Table 3.1 Constrained test problems used in this study (Deb et al., 2002) 

Problem Variable 
bounds 

Objective functions Constraints 

CONSTR 0.1 ≤ x1 ≤ 1.0 
0 ≤ x2 ≤ 5.0 

f1(x) = x1
f2(x) = (1 + x2)/x1

g1(x) = 9x1 + x2 ≥ 6 
g2(x) = 9x1 - x2 ≥ 1 

    
SRN -20 ≤ x1 ≤ 20 

-20 ≤ x2 ≤ 20 
f1(x) = (x1 - 2)2 + (x2 - 1)2 
+ 2 
f2(x) = 9x1 – (x2 - 1)2

g1(x) = x1
2 + x2

2 ≤ 225 
g2(x) = x1 - 3x2 ≤ -10 

    
TNK 0 ≤ x1 ≤ π 

0 ≤ x2 ≤ π 
f1(x) = x1
f2(x) = x2

g1(x) = -x1
2 - x2

2 + 1 +  
0.1cos(16arctan(x1/x2)) ≤ 0 
g2(x) = (x1 - 0.5)2 + (x2 - 
0.5)2 ≤ 0.5 

    
WATER 0.01 ≤ x1 ≤ 

0.45 
0.01 ≤ x2 ≤ 0.1 
0.01 ≤ x3 ≤ 0.1 

f1(x) = 106780.37(x2 + 
x3) + 61704.67 
f2(x) = 3000x1  
f3(x) = (305700)2289x2/ 
[(0.06)2289]0.65  
f4(x) = (250)2289exp(-
39.75x2 + 9.9x3 + 2.74) 
f5(x) = 25(1.39/(x1x2) + 
4940x3 – 80) 
 

g1(x) = 0.00139/(x1x2) + 
4.94 x3 – 0.08 ≤ 1.00 
g2(x) = 0.000306/(x1x2) + 
1.082x3 – 0.0986 ≤ 1.00 
g3(x) = 12.307/(x1x2) + 
49408.24x3 + 4051.02 ≤ 
50000.00 
g4(x) = 2.098/(x1x2) + 
8046.33x3 – 696.71 ≤ 
16000.00 
g5(x) = 2.138/(x1x2) + 
7883.39x3 – 705.04 ≤ 
10000.00 
g6(x) = 0.417/(x1x2) + 
1721.26x3 – 136.54 ≤ 
2000.00 
g7(x) = 0.164/(x1x2) + 
631.13x3 – 54.48 ≤ 550.00 

Note: All objective functions are of minimization type. 

 

3.5.2 Results and Discussion  

The values of the computational parameters in NSGA-II-RC are taken from Deb 

et al. (2002). We have not attempted to get the best values of computational 

parameters for the three test problems (CONSTR, SRN, and TNK) for NSGA-II-aJG 

but with a few exceptions for WATER problem as discussed below. The results of the 

first three test problems were practically in-variant to the computational parameters. 
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Each test problem is solved by an algorithm using 500 generations with a population 

of 100 so that the results by NSGA-II-RC and NSGA-II-aJG could be compared for 

the same number of generations and population size. Figure 3.2 shows that NSGA-II-

RC and NSGA-II-aJG produced the same Pareto-optimal set for the CONSTR 

problem. The second problem, SRN, was originally described in Srinivas and Deb 

(1995). Here, the constrained Pareto-optimal set is a subset of the unconstrained 

Pareto-optimal set. Both objective functions, f1 and f2, in the SRN minimization 

problem were maximized using the transformation G = 1/(1000 + J) to avoid division 

by zero. NSGA-II-aJG produced non-dominated solutions which are the same as those 

obtained by NSGA-II-RC, as shown in Figure 3.3.  

f1

f 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2
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8

10

NSGA-II-RC
NSGA-II-aJG

 

Figure 3.2 Pareto-optimal sets by NSGA-II-RC (○) and NSGA-II-aJG (Δ) for the 

CONSTR problem. 
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Figure 3.3 Pareto-optimal sets by NSGA-II-RC (○) and NSGA-II-aJG (Δ) for the 

SRN problem. 

 

The third problem TNK was suggested by Tanaka et al. (1995), and has a 

discontinuous Pareto-optimal region, falling entirely on the first constraint boundary. 

In the Figure 3.4 shows the 100 non-dominated points obtained using NSGA-II-aJG 

for the TNK problem. The Pareto-optimal front is very close to that obtained by 

NSGA-II-RC. Here, the Pareto-optimal region is discontinuous but both these 

algorithms could easily find it without difficulty. The last problem, WATER, involves 

five objective functions, seven constraints, and three decision variables. This problem 

is for optimal planning for a storm drainage system in an urban area. It was described 

originally in Musselman and Talavage (1980), and subsequently studied by Cheng 

and Li (1999), Ray et al. (2001) and Deb et al. (2002). The variables are: x1 = local 

detention storage capacity, x2 = maximum treatment rate and x3 = the maximum 
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allowable overflow rate. The objective functions to be minimized are: f1 =drainage 

network cost, f2 = storage facility cost, f3 = treatment facility cost, f4 = expected flood 

damage cost, and f5 = expected economic loss due to flood. The detailed description 

of the problem and constraints can be obtained from Musselman and Talavage (1980). 

 The objectives are normalized via f1/80000, f2/1500, f3/3000000, f4/6000000 and 

f5/8000, as was done in Deb et al. (2002). The Pareto-optimal solutions are shown in 

Figure 3.5 in terms of some pair-wise interactions among normalized objective 

functions; other pair-wise interactions were quite scattered and not plotted here but 

can be provided if needed. It can be seen from Figure 3.5 that NSGA-II-aJG 

performed reasonably well on the WATER problem compared to NSGA-II-RC. Both 

these algorithms produced scattered solutions unless the best values of computational 

parameters are used. The best set for NSGA-II-aJG includes – Sr = 0.2, pJG = 0.8, pm = 

0.001, pc = 0.8 and laJG = 15. Deb et al. (2002) did not provide the seed parameter, Sr, 

and therefore different values for it were tried; NSGA-II-RC gave scattered solutions 

for all seed values tried except for Sr = 0.45. The results for NSGA-II-RC shown in 

Figure 3.5 are obtained using this particular seed value.  
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Figure 3.4 Pareto-optimal sets by NSGA-II-RC (○) and NSGA-II-aJG (Δ) for the 

TNK problem. 
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Figure 3.5 Pareto-optimal sets by NSGA-II-RC (○) and NSGA-II-aJG (Δ) for the 

WATER problem. 

 

3.6 Conclusions 
  

 In this chapter, the basic understanding of non-elitist and elitist GA for MOO is 

presented. These algorithms simultaneously optimize multiple objectives in a single 

run and do not require pre-fixed weighting factors to produce the Pareto-optimal 

solutions. NSGA-II incorporates diversity preserving mechanism and elite-

preservation strategy. The working methodology of binary-coded NSGA-II and its JG 

adaptations is presented. For handling the constraints in MOO, a popular approach, 

namely, penalty function method is discussed. However, the difficult aspect of the 

penalty function approach is to find appropriate penalty parameters needed to guide 

the search towards the constrained optimum. Therefore, a systematic approach of 
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constrained-dominance principle for handling the constraints is implemented and 

tested in the binary-coded NSGA-II-JG and NSGA-II-aJG, for the first time. NSGA-

II-aJG performed equally well as NSGA-II-RC did for three of the four test problems. 

However, for a difficult problem, WATER, NSGA-II-aJG performed reasonably as 

compared to NSGA-II-RC for handling the constraints.  
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Chapter 4  

Reactor Modeling, Simulation and Optimization 

 

4.1 Introduction 

Ethylene, along with initiators and telogens, is used for producing LDPE by free 

radical polymerization in a tubular reactor at extreme conditions, namely, 150 – 250 

MPa and 325 – 625 K. A typical commercial reactor has several reactions, heating 

and cooling zones, with intermediate addition of initiators, monomer and solvent, so 

that the conditions of polymerization differ significantly in each zone. The single-pass 

conversion of ethylene in this reactor is reported to be about 20 – 35 %. The LDPE 

produced in these reactors contains several short-chain branches (mainly ethyl- and 

butyl-groups), which are responsible for (Luft et al., 1982) its lower crystallinity, 

density, melting point, tensile strength, etc. The minimization of these groups would 

improve the quality and strength of the polymer. Some vinyl and vinylidene groups 

(unsaturated) are also present on the polymer chains. These are undesirable, since they 

make the final product susceptible to cracking due to oxide formation. Optimum 

operation of reactors should attempt to minimize these side products too. Yet another 

important requirement for optimal reactor operation is the maximization of the 

production (maximization of the monomer conversion for a given feed flow rate), 

while producing a product having a desired value of the number (or weight) average 

molecular weight, Mn (or Mw), so that the product has the desired physical properties.  

Several detailed studies have been reported on the modeling of LDPE reactors in 

the literature. Agrawal and Han (1975) studied the effects of various operating 

parameters on the performance of the reactor. They incorporated axial mixing to 

simulate the effect of pressure pulsing. However, Chen et al. (1976) showed that axial 
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mixing can be neglected because the Peclet number is quite high due to turbulence. 

Donati et al. (1981) and Yoon and Rhee (1985) also observed that axial dispersion has 

negligible effect on the reactor performance. Hence, an ideal plug flow model can be 

used to describe LDPE reactors. A pressure drop (Brandolin et al., 1996) of 10 – 30% 

along the reactor length is observed in industrial practice. This also affects the 

molecular weight of the polymer since the propagation rate constant is dependent on 

the pressure (Anspon, 1964). In fact, the molecular weight distribution of the product 

is broader because of this. Some workers (Agrawal and Han, 1975; Yoon and Rhee, 

1985; Goto et al., 1981; Gupta et al., 1985; Kiparissides et al., 1993b; Mavridis and 

Kiparissides, 1985; Zabisky et al., 1992) used the quasi steady state approximation to 

avoid integrating stiff ordinary differential equations (ODEs). This need not be 

assumed these days due to the availability of powerful algorithms and computers. The 

most interesting observation that can be made from a survey of these modeling studies 

is the significant discrepancies in the values of the rate constants. These have been 

alluded to by Gupta et al. (1985). In more recent studies, (Brandolin et al., 1996; 

Zabisky et al., 1992) the rate constants were estimated using industrial data. For 

example, Brandolin et al. (1996) simulated an industrial LDPE reactor and calculate 

the kinetic parameters using the temperature profiles and the properties of the product. 

Since industrial data were involved, these workers did not provide complete 

information due to proprietary reasons. The same is true for the study of Zabisky et al. 

(1992) who also did not provide exact values of their tuned kinetic parameters. 

Asteasuain et al. (2001b) provided the design features, steady-state operating 

conditions, measured temperature profiles, and the monomer conversions and 

number-average molecular weights at the reactor exit for yet another industrial 

reactor. Again, a few important details are not provided.  
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The dynamic model of Asteasuain et al. (2001b) has been modified to the steady-

state model for use in this study. The model incorporates the axial variation of 

physical properties and pressure in addition to temperature and concentration as well 

as several main and side reactions, e.g., intramolecular chain transfer, chain transfer to 

polymer, β-scission of secondary and tertiary radicals, etc. (the latter give the extent 

of long- and short-chain branching and the amount of unsaturation). We assume (and 

provide) reasonable values for all the missing information. Our model description is 

therefore, quite complete and useful for researchers. Best-fit values of several model 

parameters are obtained using the reported industrial data (Asteasuain et al., 2001b). 

A similar approach has been used earlier for LDPE (Brandolin et al., 1996; Zabisky et 

al., 1992; Asteasuain et al., 2001a; Brandolin et al., 1988), PET (Bhaskar et al., 2001), 

and nylon 6 (Wajge et al., 1994). This model is then used to optimize the LDPE 

reactor operation.    

Several studies on the optimization of LDPE reactors have been reported. A 

variety of objective functions, decision variables and constraints have been used (Lee 

and Marano, 1979). Yoon and Rhee (1985) used the maximum principle to obtain the 

optimum temperature policy required to maximize the monomer conversion at the 

exit. Polymer quality (through Mn, Mw, or the side products) is not a concern in this 

study. Brandolin et al. (1991) obtained the optimal temperature and initiator 

concentration profiles that maximize the monomer conversion, while using several 

constraints on the polymer properties [through Mn, PDI, etc.]. Mavridis and 

Kiparissides (1985) maximized the productivity of ethylene while controlling Mn and 

PDI in the product, using reactor wall temperature and the concentrations of the 

initiator and the chain transfer agent as decision variables. Kiparissides et al. (1994) 

tuned an industrial reactor and use almost the same objective function for on-line 
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optimization of an LDPE tubular reactor. Yao et al. (2004) used genetic algorithm 

(GA) to obtain the optimal jacket temperature profile required to maximize the 

polymer production. No requirements on the product properties were considered.  

A few optimization studies have also been reported under unsteady (dynamic) 

operation of LDPE reactors. Asteasuain et al. (2001b) first presented a dynamic model 

of an LDPE reactor, and then obtained the optimal start-up policies. They maximized 

the outlet conversion and minimized the time required for it to stabilize, while forcing 

the properties at some desired values during start-up. The feed flow rates of the two 

initiators and of telogen were used as decision variables. Cervantes et al. (2000) 

presented a dynamic model for an entire LDPE plant with a feed mixture of ethylene, 

methane, butane and impurities. They minimized the switching time between two 

steady-states corresponding to two different grades of polymer.  

In all the studies involving more than one objective, a weighted sum of the 

multiple objectives is used as a single, scalar objective function. This allows the use 

of simpler optimization algorithms, but the solution depends on the values selected for 

the weighting factors, and so there is some degree of arbitrariness involved. A more 

important disadvantage of the combining the several objectives into a scalar quantity 

(‘scalarization’) is that the algorithm may miss some optimal solutions (Haimes, 

1977). In recent years, several multi-objective adaptations of GA that can solve such 

problems have become available. These have been used in the present study to obtain 

solutions of a few meaningful multi-objective optimization problems for an industrial 

LDPE reactor.  

GA (Holland, 1975; Goldberg, 1989; Deb, 2001) is an extremely robust technique 

that mimics natural genetics using operators like reproduction, crossover and mutation 

to guide the search in the feasible domain. It requires only the values of objectives and 
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does not require any initial guesses. One of its recent adaptations, the elitist non-

dominated sorting genetic algorithm (NSGA-II; Deb, 2001) can be used to solve 

multi-objective optimization (MOO) problems. This algorithm and its earlier versions 

(NSGA/NSGA-I) have been applied successfully to optimize several industrially 

important systems (Bhaskar et al., 2000). The performance of GA including NSGA-II 

has been further enhanced by incorporating one of several jumping gene (JG) 

adaptations (Kasat and Gupta, 2003; Simoes et al., 1999; Guria et al., 2005). Very 

recently, multi-objective differential evolution was applied to optimizing an adiabatic 

styrene reactor (Babu et al., 2005) that was solved earlier (Yee et al., 2003) by NSGA 

for multiple objectives. 

In this study the operation of an industrial LDPE tubular reactor is optimized 

using two objectives: maximization of the monomer conversion and minimization of 

the (weighted average value of the) concentration of the undesirable side products 

(methyl, vinyl, and vinylidene groups). The binary-coded NSGA-II (Deb, 2001) and 

its JG adaptations, NSGA-II-JG (Kasat and Gupta, 2003) and NSGA-II-aJG (Guria et 

al., 2005) are used. Pareto-optimal solutions (sets of non-dominated or equally good 

solutions, in which, on moving from any one point to any other, one objective 

function improves while the other worsens) are obtained. A decision maker can be 

provided these and he/she can use his/her industrial intuition to select any one of these 

points as the ‘preferred’ solution. To the best of our knowledge, this is the first study 

using multiple objectives (without scalarization) for an industrial LDPE reactor.  
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4.2 Reactor Modeling and Simulation  

4.2.1 Formulation 

Figure 4.1 shows the industrial LDPE tubular reactor (Asteasuain et al., 2001b) 

simulated and optimized in this study. It is typical of several industrial reactors. 

Equations T1-1 – T1-10 in Table 4.1 give the fairly general kinetic scheme which 

captures all molecular developments in LDPE product. All the reactions are 

considered to be elementary except reaction 1, which is of order 1.1 with respect to 

oxygen (Brandolin et al., 1988). The elementary reaction mechanism includes 

initiation, propagation, termination by combination, thermal degradation, transfer to 

polymer, transfer to solvent, β-scission of secondary and tertiary radicals, and 

intramolecular chain transfer. The reactor model includes mass, energy, and 

momentum balances for a tubular reactor. Ideal plug flow conditions are assumed in 

the reactor and jacket sides, i.e., there are no radial temperature or concentration 

gradients in the tubular reactor and jackets, and no axial mixing. These underlying 

assumptions are valid for high Reynolds numbers (Chen et al., 1976) and very high 

Lt/Dint ratio (Zabisky et al., 1992). The reaction mixture is assumed to be 

homogeneous (single phase), i.e., ethylene-polyethylene mixture behaves as a 

supercritical fluid in the range of the given operating conditions. The polymer 

condensation, either due to large temperature difference or higher conversion, near the 

reactor wall implies the presence of two-phase reaction mixture (polymer rich and 

monomer rich) in these reactors. The reaction rates will be very different there. 

However, the grainy film appearance of polymer, a typical characteristic of two-phase 

reaction for polymers obtained in autoclave reactors, is not observed in the polymer 

product obtained from tubular reactors (Zabisky et al., 1992). Assumption of constant 

initiator efficiency provided the good agreement of model prediction to the industrial 

 50



Chapter 4 Reactor Modeling, Simulation and Optimization 

data in the mathematical model of Brandolin et al. (1996). Asteasuain et al. (2001b) 

simplified this model considering reduced reaction mechanism, constant initiator 

efficiency, constant jacket fluid temperatures, and constant physical properties 

throughout the reactor. Thereafter, this model was used in the optimization framework 

to obtain the optimal start-up policies using gPROMS. Since the model developed in 

our study is based on these two models, constant initiation efficiency was retained in 

our study also. The model is written using axial length, z, as the independent variable, 

and the differential equations are integrated along the reactor length. Equations T1-11 

– T1-19 constitute mass balance on each species in the reactor, and heat transfer 

(Equation T1-20) from the reaction-mixture to the coolant through jacket walls 

followed by momentum balance (Equation T1-21). The characteristic equations 

(Equations T1-24 and T1-25) describe the growing and dead polymer concentrations 

in terms of bivariate moments (Equations T1-22 and T1-23) of orders n and p. The 

complete set of model equations (Equations T1-11 – T1-25; Brandolin et al., 1996; 

Katz and Saidel, 1967) for steady state operation is similar to those presented by 

Brandolin et al. (1996).  Moment closure equations relating the third order moments to 

the lower ones, based on the log-normal distribution (Zabisky et al., 1992), are also 

included in this table (Equations T1-26 and T1-27). The physical properties of the 

reaction mixture such as the density (ρ), viscosity (μ), and the thermal conductivity 

(K), vary along the axial location (Equations T2-1, T2-5, and T2-7 respectively). 

Linear additivity (Gupta et al., 1985) is assumed for these. Table 4.2 (Gupta et al., 

1985; Mavridis and Kiparissides, 1985; Zabisky et al., 1992; Asteasuain et al., 2001b; 

Micheles and Geldermans, 1942; Parks and Richards, 1948; Poling et al., 2001; 

Kiparissides et al., 1993b; Lacunza et al., 1998; Coulson et al., 1996) gives the 

correlations used.  
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Figure 4.1 Schematic diagram of an industrial LDPE reactor (Asteasuain et al., 
2001b) 
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Table 4.1 Kinetic Scheme and Model Equations for the LDPE Reactor (Brandolin 
et al., 1996) 

 

KINETIC SCHEME (x, y = 0, 1, 2, . . . ;  i, j = 1, 2, . . .) 
Oxygen initiation 

( )2 2 0okO M R+ ⎯⎯→ 1

R

i

                                                                                    (T1-1) 
Peroxide initiation   

( )1
d 2 0m

m mf k
I ⎯⎯⎯→ ;  m = 1, 2                                                                        (T1-2) 
Propagation 

( ) ( )p 1i
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R x M R x+ ⎯⎯→ +                                                                              (T1-3) 
Termination by combination 
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i j i j
kR x R y P x y+ −+ ⎯⎯⎯→ +                                                                  (T1-4) 

Thermal degradation 
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Chain transfer to telogen or solvent 
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Chain transfer to polymer 
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Intramolecular chain transfer (short-chain branching) 
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i

k
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                                                                                        (T1-8) 
β-Scission of secondary radical (vinyl group formation)  

( ) ( ) (1
b11i i

k
R x P x R+ ⎯⎯⎯→ +                                                                         (T1-9) 
β-Scission of tertiary radical (vinylidene group formation)  

( ) ( ) (1
b1i i

k
R x P x R+ ⎯⎯→ +                                                                        (T1-10) 

 
MODEL EQUATIONS: 
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Table 4.1 …. continued…b 
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Moment Equations: 
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                                                                                                       n = 0, 1, . . . ; p = 0, 1, 2, . . .     
Moment Closures: 
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Table 4.1 …. continued…c 
Definitions: 
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⎟⎟                                                                                        (T1-28) 
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Table 4.2 Property Correlations  
 
ΔH(kJ/kmol) = − 21500 × 4.1868 ; (Asteasuain et al., 2001b) 
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int
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1 1 1 D
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An average constant temperature of jacket fluid in each zone is assumed in this 

study. The jacket fluid normally flows counter-currently in industrial LDPE reactors. 

The ‘correct’ modeling of such systems requires the solution of the coupled set of 

several ODEs for the inner (reacting) fluid and the energy balance of the outer 

(counter-currently flowing) fluid. This needs iterative solutions (Asteasuain et al., 

2001b) and is prohibitively time consuming, and unsuited for optimization studies 

(where the model has to be solved several times over for each chromosome in each 

generation). The assumption of a constant (average) temperature of the coolant, 

though not exact, goes around this problem. And, since data are being ‘tuned’, errors 

associated with this assumption will be taken care of by tuning.  

The coupled non-linear ODEs describing the reactor are integrated using the 

D02EJF subroutine in the NAG library. This subroutine uses Gear’s technique (Ray 

and Gupta, 2001) to integrate the stiff equations. A tolerance (TOL) of 10-5 is used. A 

decrease in the value of this parameter to 10-8 changes the results only in the fourth 

decimal place. Oxygen is used as the initiator and n-butane (Brandolin et al., 1988) as 

the inert solvent in the feed stream, while initiator, I1 (tert-butyl peroxypivalate; Goto 

et al., 1981), and initiator I2 (tert-butyl 3,5,5 trimethyl-peroxyhexaonate; Kiparissides 

et al., 1993b) are used as intermediate feeds, as shown in Figure 4.1. Details of the 

industrial system (Asteasuain et al., 2001b) are given in Table 4.3. This table also 

includes reasonable values (assumed for this study) of the missing details (Asteasuain 

et al., 2001b) of the reactor. The rate constants (Brandolin et al., 1996) are provided in 

Table 4.4. On integration, the model gives the profiles of several molecular properties 

of LDPE [Mn, Mw, PDI, SCB), and the vinyl and vinylidene group concentrations, as 
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defined in Equations T1-29 – T1-34 in Table 4.1], the temperature, pressure and 

concentrations of the monomer, telogen, and initiators, as a function of the axial 

position, z.  

 

Table 4.3 Details of the Industrial LDPE Tubular Reactor Studied (Asteasuain et 
al., 2001b) 

 
Quantities Numerical values 

Total reactor length (Lt) 1390 m 
Inside diameter of reactor (Dint) 0.05 m 
*Wall thickness of reactor (t) 0.0254 m 
Number of zones (Nz) 5 
*Inner diameter of outer (jacket) wall (DJi) 0.2032 m 
Axial lengths of zones (Lzm, m = 1, . . . , 5) 60, 100, 180, 510, 540 m 
Flow rate of monomer (FM)  11 kg/s 
Flow rate of oxygen (Fo)  6.8 × 10-5 kg/s 
Flow rate of telogen (FS)  7.4 × 10-2 kg/s 
Flow rate of inert (Finert) 0.22 kg/s 
Flow rate of initiator-1  (FI,1)  1.0 × 10-3 kg/s 
Flow rate of initiator-2 (FI,2)  1.6 × 10-4 kg/s 
*Flow rates of jacket fluids (VJm, m = 2, . . . , 5) 4.03 × 10-3, 3.94 × 10-3, 3.32 × 10-3, 

0.26 × 10-3 m3/s 
Inlet temperature (Tin) 349.15 K 
Inlet pressure (Pin) 227.98 MPa 
Mean jacket temperatures (TJ,m, m = 1, . . . , 5)  441.15, 498.15, 498.15, 441.15, 

441.15 K 
Specific heat of reaction mixture (CPm, m = 1, . . . , 
5) 

2.42834, 2.42834, 3.1401, 3.1401, 
4.01933 kJ/kg-K 

Initial conditions for moments (λnp, μnp; n = 0, 1; 
 p = 0, 1, 2) 

0.0 kmol/m3

* Values of the parameters assumed in this study  

 

The model parameters are tuned using three sets of industrial data (Asteasuain et 

al., 2001b): the temperature, Tind(zj), read from the plot (Asteasuain et al., 2001b), 

with an accuracy of ± 2 K at several discrete points, zj; j = 1, 2, . . . , 33 (with zj = 0, 

23, 51, 56, 79, 107, 135, 166, 180, 205, 266, 308, 350, 387, 429, 467, 509, 546, 597, 

635, 677, 714, 751, 803, 855, 898, 929, 971, 1022, 1101, 1162, 1241, 1321 m for the 

five zones: 0 ≤ z ≤ 60 m, 60 ≤ z ≤ 160 m, 160 ≤ z ≤ 340 m, 340 ≤ z ≤ 850 m, and 850 
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≤ z ≤ 1390 m), and the values of the monomer conversion, the number-average 

molecular weight and the side-product concentrations in the final product. The sum-

of-squares of the normalized error, I, between the model-predicted and the industrial 

values: 

( )
2ind

m
,

( )
1

( )
i j

i j i j

S z
I

S z
⎛ ⎞

= −⎜⎜
⎝ ⎠

∑u ⎟⎟                           (4.1) 

is minimized. In Equation (4.1), Si is the value of the ith property, and superscripts m 

and ind represent the values predicted by the model and the industrial values, 

respectively. u represents the vector of parameters that are tuned. Binary-coded 

NSGA-II (Deb, 2001) is used to minimize I. 

 

4.2.2 Estimation of Model Parameters 

The rate constants in Table 4.4 are taken mostly from Brandolin et al. (1996) 

except the parameters, Atrs, Etrs, and ΔVtrs, characterizing chain transfer to the telogen. 

These are taken from Asteasuain et al. (2001a). The kinetic parameters, Ad1, Ed1, ΔVd1, 

Ad2, Ed2, and ΔVd2, for the two initiators are given (Brandolin et al., 1996) as ranges 

due to proprietary reasons. The activation energies of the two initiators (Ed1 and Ed2) 

need to be tuned using the industrial data. While average values (of the ranges given 

by Brandolin et al., 1996) of Ad1, ΔVd1, Ad2, and ΔVd2 are used in the model. Similar 

tuning (Brandolin et al., 1996; Zabisky et al., 1992; Asteasuain et al., 2001a; 

Brandolin et al., 1988) of kinetic parameters has been used earlier, too, to obtain the 

rate constants for ethylene polymerization. The first four industrial values (j = 1 – 4) 

of the temperatures, Tind(zj), are not used for tuning since no reaction is taking place in 

this zone, and the reactor is only acting as a heat exchanger. It is found that the model 

tuned with only these two parameters underestimates the values of the monomer 
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conversion, XM,f, and the number-average molecular weight, Mn,f, of the product. 

Moreover, the temperature peak in the first zone is overestimated while the peak in 

the second zone is underestimated. This suggests that we use additional parameters 

for accurate prediction of industrial data.  

 

Table 4.4 Rate Constants (Brandolin et al., 1996; Asteasuain et al., 2001a) 

310
R

⎛ ⎞+ Δ
−⎜ ⎟⎜ ⎟

⎝ ⎠=
E P V

Tk Ae  
A: (1/s; m3/kmol-s; m3.3/kmol1.1-s); E: kJ/kmol; P: MPa; ΔV: m3/kmol; T: K; R = 

8.314 kJ/kmol-K       
                                                                   

Rate constant A E ΔV 
ko

+1.6 × 1011 *132168 -12.1 × 10-3

kd1
o1.0 × 1014 *119929 o14.0 × 10-3

kd2
o1.0 × 1012 *123117 o11.6 × 10-3

kp 4.0 × 105 *17431 -16.8 × 10-3

ktc 8.7 × 108 15282 9.2 × 10-3

ktdt 7.7 × 109 79968 -10.0 × 10-3

†ktrs 7.0 × 104 *18406 0.0 
ktrp 5.2 × 104 36844 -19.0 × 10-3

kbb 1.2 × 1010 *60537 0.0 
kb1 1.4 × 109 *84747 -9.90 × 10-3

kb 4.4 × 109 *70205 -9.90 × 10-3

* Values of the parameters obtained in the present study. These differ from those of 
Brandolin et al. (1996) and Asteasuain et al. (2001a). 
+ m3.3/kmol1.1-s 
† Asteasuain et al. (2001a). 
o Average values of the parameters based on the ranges reported by Brandolin et al. 
(1996). 
Note: Efficiencies, f1 and f2, of the two initiators are 0.98 (fitted in the range of 0.75 – 
1.00; Brandolin et al., 1996), and 1.00 (Brandolin et al., 1996), respectively. The 
efficiency of oxygen is assumed to be 1.00. 
 

Several simulations were made to study the effect of the individual parameters on 

the results. The set of tuning parameters used is expanded in stages till satisfactory 

agreement is attained. The activation energy, Eo, characterizing initiation by oxygen, 

and the activation energy, Ep, describing the propagation reaction are incorporated in 

the earlier set (to give a total of four parameters). The former should help in 
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improving the agreement of the temperature peak in the first zone (since oxygen 

affects the exothermic polymerization in this zone), while the latter affects the 

polymerization in the entire reactor, and should help to improve the agreement of the 

results elsewhere. Unfortunately, this does not help too, since the temperature peak in 

the second zone is still underestimated. The parameters influencing the rates of heat 

transfer are then incorporated. Since steam is used for heating the reaction mixture in 

the first zone, use of the high value of ho (10,000 W/m2-K; Coulson et al., 1996) for 

condensing steam would not help. Hence, the four volumetric flow rates, VJ2 – VJ5, of 

the jacket fluid (that influence ho in those zones) are added on to the set of parameters 

used for tuning. Kiparissides et al. (1993b) cited the value of av (Equation 53) in their 

work) as 0.0225. However, the same group of workers (Kiparissides et al., 1993a) 

used a different value of 0.017 (Equation 68) in another paper. This suggests that this 

parameter, which influences the viscosity of the reaction mass and hence the value of 

hi, also needs to be included in the set of tuning parameters. The tuning with two 

parameters in the first stage also led to the underestimation of Mn,f. Since the solvent 

(chain transfer) controls the molecular weight of the product without affecting the 

temperature of the reaction mass much, the corresponding rate parameter, Etrs, is also 

included for tuning purposes. 

Asteasuain et al. (2001b) do not provide the concentrations of the side products, 

methyl, vinyl and vinylidene groups, in the final polymer. The tuned model predicts 

results for these that agree qualitatively with those reported by Brandolin et al. (1996). 

However, quantitative agreement is necessary for a good model. Most workers 

(Brandolin et al., 1996; Anspon, 1964; Goto et al., 1981; Gupta et al., 1985; 

Kiparissides et al., 1993b; Gaylord and Mark, 1959; Kalyon et al., 1994; Woodbrey 

and Enrlich, 1963) report methyl (Me), vinyl (Vi) and vinylidene (Vid) contents in the 
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product as 25 – 30, 0.08 – 0.13, and 0.4 – 0.8, respectively, per 1000 CH2. Values 

([Me]f, [Vi]f, and [Vid]f) of SCB/1000 CH2 of 30, vinyl/1000 CH2 as 0.1, and 

vinylidene/1000 CH2 of 0.7 (Goto et al., 1981; Gupta et al., 1985) are used as 

‘industrial’ values for tuning the model. The parameters, Ebb, Eb1, and Eb, associated 

with the corresponding reactions, also need to be used for tuning. The complete set of 

13 model parameters used finally for tuning all the available results are: u ≡ [Eo, Ed1, 

Ed2, Ep, Etrs, Ebb, Eb1, Eb, VJ2, VJ3, VJ4, VJ5, av]. The exact objective function to be 

minimized, is given by 

( )
n M

e i id

2 2 2ind33
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2 22
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e f i f id f
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I W

T mX
⎞
⎟⎟
⎠        (4.2) 

In Equation (4.2), Wj is the weighting factor associated with the normalized square 

error of the jth quantity. The values of these weighting factors are set to one except for 

nMW [= 15] and 
MXW [= 5] to give more emphasis for better prediction of Mn,f and XM,f. 

The lower and upper bounds and the final tuned values of these parameters are shown 

in Table 4.5. The values used for the computational parameters (best values) in the 

binary-coded NSGA-II are given in Table 4.6. Figure 4.2 shows that the agreement 

between the model predictions (for the temperature profile, the monomer conversion 

and the number-average molecular weight at the end, and estimates of the several side 

products (Goto et al., 1981; Gupta et al., 1985; Asteasuain et al., 2001b) and the 

industrial results is quite good. Table 4.7 shows a comparison of these quantities at 

the end of the reactor.  
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Table 4.5 Bounds, Final Tuned Values, and Reported Values of the Parameters 
 

Bounds Final tuned values Reported values (Brandolin 
et al., 1996) 

125604 < Eo < 138164 132168 135945 
117230 < Ed1 < 136071 119929 94621 – 133140 
117230 < Ed2 < 133977 123117 94621 – 132721 
14653 < Ep < 18003 17431 17626 
14653 < Etrs < 20934 18406 +17253 
56521 < Ebb < 66988 60537 61964 
71175 < Eb1 < 87922 84747 79967 
62802 < Eb < 87922 70205 79967 
0.5 × 10-3 < *VJ2 < 7.0 × 10-3 4.03 × 10-3 o1.2 × 10-3

0.5 × 10-3 < *VJ3 < 7.0 × 10-3 3.94 × 10-3 o1.2 × 10-3

0.5 × 10-3 < *VJ4 < 5.0 × 10-3 3.32 × 10-3 o1.2 × 10-3

0.1 × 10-3 < *VJ5 < 5.0 × 10-3 0.22 × 10-3 o1.2 × 10-3

0.009 < av < 0.0185 0.018 ∆0.017 
* Values of parameters in m3/s        
+  Asteasuain et al. (2001a). 
o  Yao et al. (2004). 
∆  Kiparissides et al. (1993a). 

 

Table 4.6 Values of the (best) Computational Parameters Used in Binary-coded 
NSGA-II, NSGA-II-JG, and NSGA-II-aJG 

 
Parameter NSGA-II 

(for parameter 
estimation) 

NSGA-II 
(for 

optimization) 

NSGA-II-JG NSGA-II-aJG 
(for 2- and 4-obj 

optimization) 
Ngen 100 *600 *900 *700 
Npop 100 200 200 200 
lsubstr 30 30 30 30 
lchrom 390 330 330 330 
laJG --- --- --- 70 
pc 0.8 0.95 0.9 0.8 
pm 0.01 0.015 0.005 0.01 
pJG --- --- 0.8 0.8 
Sr 0.9 0.95 0.9 0.6 
* Generations required for convergence of the Pareto-optimal set for Mn,f = 21900 ± 
200 kg/kmol 
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Table 4.7 Comparison of the Model-Predicted Values to the Industrial Data 
(Goto et al., 1981; Gupta et al., 1985; Asteasuain et al., 2001b) 

 
Quantity at the reactor exit Industrial data Model prediction 

Monomer conversion (Asteasuain et al., 
2001b) 

0.30 0.2971 

Number-average molecular weight (kg/kmol; 
Asteasuain et al., 2001b) 

21900 21901 

CH3 groups (SCB) per 1000 CH2 (Gupta et 
al., 1985) 

30 30.13 

Vinyl groups per 1000 CH2 (Goto et al., 
1981) 

0.1 0.1 

Vinylidene groups per 1000 CH2 (Gupta et 
al., 1985) 

0.7 0.7 

Weight-average molecular weight (kg/kmol) - 145380 
    

The temperature profile in Figure 4.2a shows that the first two zones are acting as 

preheating zones to heat the reaction mixture. Reaction is not occurring in these two 

zones. The free radical population is generated in the third zone after feeding in the 

first initiator, and these radicals react with monomer molecules to form polymer via 

polymerization reaction. A sharp temperature peak is observed in this zone due to the 

exothermic nature of polymerization reaction. Monomer conversion (XM) also shows 

sudden jump corresponding to this temperature peak and almost all initiator is 

exhausted at this point. After that, XM remains practically constant until another 

initiator is added in the fifth zone. Second initiator is added in the fifth zone to boost 

the monomer conversion as shown in Figure 4.2b. This initiator is also depleted soon 

after its introduction into the reactor. Note that the reaction mixture is cooled in the 

fourth zone to the optimal level for half-life of second initiator which governs the 

maximum efficiency of initiator.  

Number-average molecular weight (Mn) profile shows that it suddenly drops in the 

third zone and becomes steady as the reaction mixture enters the cooling zone (Figure 

4.2c). This decrease in molecular weight corresponds to the increase in the reaction 

temperature. Initiator decomposition is more temperature dependent than chain 
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growth, while chain termination is hardly affected (Luft et al., 1983). Thus free 

radical population is increased and they react with monomer molecules to form 

polymer chains, but these chains tend to be smaller. Hence average molecular weight 

is reduced. However, the change in Mn at the beginning of the fifth zone is less abrupt 

than the one observed in the third zone which might be due to the presence of already 

formed polymer in the reaction mixture (Brandolin et al., 1996). Figure 4.2d shows 

that SCB in LDPE is observed once polymer is formed in the third zone and it 

remains almost constant till the second peroxide is injected in the fifth zone. The less 

abrupt change in methyl group concentration again accounts for already formed 

polymer change. The trends for vinyl and vinylidene concentrations can similarly be 

explained (Figures 4.2e and f).  
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Figure 4.2 Model predictions; (▼): industrial data (Asteasuain et al., 2001b); (♦): 
industrial estimate (Goto et al., 1981) and (■): industrial estimates (Gupta et al., 

1985) for the LDPE reactor of Figure 4.1. 
 

Note that the tuning of the model parameters is performed using a single set of 

operating conditions even though several sets of operating conditions should be used 

for  reliable modeling. Jacket fluid flow rates are included in the set of tuned model 

parameters which should have been part of the operating data used in the model 

parameter estimation. Both these could have been avoided if more data were available 

(Asteasuain et al., 2001b) or we had industrial data of our own. We did not provide 

the statistical inferences (confidence intervals and correlation structure) on the 

parameter estimates due to high complexity of the problem and limited industrial data. 

However, over-parameterization of the problem is avoided by addition of extra 

parameters only after careful examination. We started with tuning only 2 parameters 

and progressively added more parameters to improve the predictions. In fact, the 

model was tuned with 26 parameters (pre-exponential factors and activation volumes 

along with activation energies for the respective rate parameters), but later we found 

that almost the same results could be obtained with only 13 model parameters.  
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4.3 Multi-Objective Optimization of LDPE Tubular Reactor 

4.3.1 Formulation 

MOO of the industrial LDPE reactor described above is now carried out using the 

model developed. The two objective functions used are: maximization of the 

monomer conversion, XM,f, and minimization of the (weighted average value of the) 

undesirable side product contents ([Me]f, [Vi]f, and [Vid]f). In industry, number-average 

molecular weight of the product is normally fixed depending on the required polymer 

grade but it can vary within an acceptable range about this fixed value. On the other 

hand, undesired side products should be minimized to improve the polymer quality 

and strength although some may place them appropriately in constraints. Although 

thermodynamics and safety considerations govern conversion, other factors such as 

economics can lead to an optimal conversion. Also, multi-objective optimization 

provides the opportunity to consider more objectives. Hence, we choose conversion 

and side products as objectives. Solution of this problem provides a range of solutions 

to the decision maker, who can choose one of them depending on other considerations 

such as safety, ease of operability, market demand, economics etc. The binary-coded 

NSGA-II (Deb, 2001), as well as its two JG adaptations, NSGA-II-JG (Kasat and 

Gupta, 2003) and NSGA-II-aJG (Guria et al., 2005) (both binary-coded) are used. In 

this study, the optimization assumes that the reactor geometry (reactor length (Lt), 

inside diameter (Dint) and jacket diameter (DJi), monomer feed rate (FM), and flow 

rates of the jacket fluid are fixed and only the 'operating' variables are used as the 

decision variables for the optimization, which are the inlet temperature, Tin, the feed 

flow rates, Fo, FS, FI,1, and FI,2, of oxygen, solvent and the two additional initiators 

added in-between, the five average temperatures, TJ,1 − TJ,5, of the jacket fluids and 

the inlet pressure, Pin. In total, there are 11 decision variables. The temperature of the 
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reaction mass along the axial length at one meter interval is stored and then the 

maximum temperature in the reactor, Tmax(z), is found. A local constraint, Tmax(z) ≤ 

Tmax,d (= 610.15 K), is imposed on the temperature to ensure safety, while the number 

average molecular weight, Mn,f, of the product is constrained to lie (exactly) at a 

desired value of Mn,d of 21,900 kg/kmol (Asteasuain et al., 2001b). These two 

constraints are handled by incorporating them as penalty functions (Deb, 2001; Edgar 

et al., 2001) with weighting factors, w1 = 109 and w2 = 1010, respectively, in both the 

objective functions. Both these constraints are used in the normalized forms. It should 

be noted that the constraint on temperature is an inequality constraint while that on Mn 

is an equality constraint. The bracketed inequality constraint (Deb, 2001) is used in 

the penalty term for the former. Lower and upper bounds are placed on each of the 

decision variables. The above problem is written mathematically as:  

2 2

n,f max
1 M,f 1 1

n,d max,d

( )Max 1 1
⎛ ⎞

≡ − − − −⎜ ⎟⎜ ⎟
⎝ ⎠

M T zG X w w
M T

  (4.3a)

  

[ ] [ ] [ ]

2 2

n,f max
2 2

n,d max,de i idf f f

( )1Max 1 1
1

30 0.1 0.7

⎛ ⎞
≡ − − −⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠+ + +⎜ ⎟⎜ ⎟

⎝ ⎠

M T zG w w
M TM V V 2 −           (4.3b)               

Subject to 

Bounds: 

323.15 ≤ Tin ≤ 403.15 K (Brandolin et al., 1988) (4.3c) 

5 × 10-5 ≤ Fo ≤ 10 × 10-5 kg/s (Brandolin et al., 1988)              (4.3d)  

5 × 10-5 ≤ FS ≤ 0.5 kg/s (Asteasuain et al., 2001b)     (4.3e)  

5 × 10-5 ≤ FI,1 ≤ 5 × 10-3 kg/s (Asteasuain et al., 2001b)                     (4.3f)                           

5 × 10-5 ≤ F I,2 ≤ 5 × 10-3 kg/s (Asteasuain et al., 2001b)                          (4.3g)                   
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383.15 ≤ T J,m ≤ 543.15 K ;  m = 1, . . . , 5                        (4.3h)  

192.52 ≤ Pin ≤ 253.31 MPa (Brandolin et al., 1988)           (4.3i) 

Local constraints: 

Model equations                                                                                             (4.3j) 

The bracket operator, <α>, denotes the absolute value of the operand (α), if the 

operand is negative. Otherwise, it returns a value of zero if α is non-negative. The 

bounds (Equations 4.3c – 4.3g); Equation 4.3i) for most of the decision variables have 

been chosen based on information in the literature (Asteasuain et al., 2001b; 

Brandolin et al., 1988). The bounds (Equation 4.3h) for the five average jacket 

temperatures have been selected so as to give a range around the values reported by 

Asteasuain et al. (2001b). The available NSGA-II codes maximize all the objective 

functions. Hence, a problem involving the minimization of a function, J, is converted 

to a maximization problem by using the transformation, G = 1/(1 + J) [see the first 

term on the right hand side in Equation 4.3b]. 

While solving Equation (4.3), it was observed that the simulation was taking an 

excessive amount of CPU time for some chromosomes. These chromosomes were 

then studied in detail, individually. It was found that this occurred only when FS was 

selected below a certain value. Under these conditions, the balance equations became 

extremely stiff in certain ranges of z, as reflected by the very high number of function 

evaluations called by the NAG library subroutine, D02EJF. Hence, the lower bound 

of FS was increased. Since FS also affects the other decision variables, the bounds of 

these, too, were changed from those selected initially (Equation 4.3). Rajesh et al. 

(2000) had encountered a similar problem in the MOO of steam reformers. One of the 

decision variables, (H/C)in, had to be constrained to lie within a certain range of 

values selected by GA for two other decision variables, viz., the inlet temperature and 
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(S/C)in to avoid getting negative values of the intra-pellet mole fractions 

(chromosome-specific bounds). The modified bounds for the decision variables used 

in place of those in Equation (4.3) are given below:                                                                                 

323.15 ≤ Tin ≤ 403.15 K    (4.4a) 

5 × 10-5 ≤ Fo ≤ 10 × 10-5 kg/s                                                                  (4.4b) 

2 × 10-2 ≤ FS ≤ 0.5 kg/s        (4.4c) 

5 × 10-5 ≤ FI,1 ≤ 5 × 10-3 kg/s  (4.4d) 

5 × 10-5 ≤ FI,2 ≤ 5 × 10-3 kg/s                  (4.4e) 

413.15 ≤ TJ,1 ≤ 543.15 K    (4.4f) 

473.15 ≤ TJ,2 ≤ 543.15 K (4.4g) 

473.15 ≤ TJ,3 ≤ 543.15 K (4.4h) 

413.15 ≤ TJ,4 ≤ 543.15 K (4.4i) 

413.15 ≤ TJ,5 ≤ 543.15 K                                                           (4.4j) 

182.39 ≤ Pin ≤ 248.25 MPa                                                                       (4.4k) 

The solution of Equation (4.3) with these bounds overcomes the problem of excessive 

CPU time.  

 

4.3.2 Results and Discussion 

The solution of the MOO problem is obtained using an empirically determined 

best set of values of the several computational parameters. These are given in Table 

4.6. The CPU time for a typical (reference) run of 700 generations on a P4 computer 

(3.0 GHz, 1 GB RAM) is 7 hours and 5 minutes. This computer system can do 220 

MFlops (million floating point operations per second) according to the LINPACK 

benchmark program available at http://www.netlib.org for a matrix of order 500. 

Some solutions, perhaps local optimal (see Figure 4.3), are obtained with NSGA-II 
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for Mn,f = Mn,d ± 0 kg/kmol (a ‘hard’ constraint) rather than a Pareto-optimal set of 

solutions. We then relax (‘soften’) the end-point constraint and allow Mn,f to lie within 

a small range of Mn,d (well within the experimental error of ± 10 % for molecular 

weights), in particular, Mn,f = Mn,d ± 200 kg/kmol, Mn,f = Mn,d ± 20 kg/kmol, and Mn,f 

= Mn,d ± 2 kg/kmol. Interestingly, Pareto sets of optimal points are obtained with 

excellent spreads (see Figure 4.3a). The Pareto sets for the first two problems 

superpose, giving confidence on the solutions. Since it is difficult to distinguish the 

overlapping points, these results are re-plotted in Figure 4.3b using vertical 

displacements of 0.2. It is observed from Figure 4.3a that the results for the Mn,f = 

Mn,d ± 0 kg/kmol case are quite far from those for the other two cases. This gives rise 

to a suspicion that the algorithm may be converging to local optima. The results 

obtained with a smaller range of Mn,f (= Mn,d ± 2 kg/kmol) do not converge to the 

common Pareto set even for a very large number of generations (it seems to converge 

to the same Pareto set, however, in 10,000 generations when different algorithms, 

NSGA-II-JG and NSGA-II-aJG are used; this is discussed later). These possibly 

reflect the failure of the binary-coded NSGA-II to converge to the global optimal 

solution when one attempts to satisfy the constraint on Mn,f  exactly (hard constraint).   

We attempt to improve the solutions by using NSGA-II-JG and NSGA-II-aJG. 

Best values of the computational parameters are again obtained empirically for each 

of the JG adaptations. These values are also listed in Table 4.6. Figure 4.4 shows the 

converged Pareto sets generated using the three techniques, NSGA-II, NSGA-II-JG, 

and NSGA-II-aJG, for the case when Mn,f = Mn,d ± 200 kg/kmol. Hereafter, the 

problem with Mn,f = Mn,d ± 200 kg/kmol using NSGA-II-aJG is referred to as the 

reference case. It is clear that all the three techniques give almost similar Pareto sets, 

with a larger range, a good distribution of points (good spread) though NSGA-II 
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converges to the Pareto-optimal set in the lowest number of generations (600), as 

compared to NSGA-II-aJG (700 generations) or NSGA-II-JG (900 generations).  
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Figure 4.3 (a) Converged solutions for several end-point constraints on Mn,f using 
NSGA-II. Numbers in parenthesis refer to the number of generations. (b) The 
results of Figure 4.3a are re-plotted with vertical shifts of 0.2 (i.e., the values of 
the ordinate for Mn,f = 21900 ± 20 kg/kmol are displaced vertically upwards by 

0.2, etc.) 
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Figure 4.4 (a) Converged Pareto-optimal sets for Mn,f = 21900 ± 200 kg/kmol 
using NSGA-II and its JG adaptations. Numbers in parenthesis indicate the 

number of generations. (b) Results of Figure 4.4a re-plotted with vertical shifts of 
0.2, as in Figure 4.3b. 
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Figure 4.5 shows how the solutions converge for the reference case with NSGA-

II-aJG. It is clear that the solutions at the 700th generation can be considered to be 

acceptable (converged). In contrast, Figure 4.6 shows that when the MOO problem is 

solved using Mn,f = Mn,d ± 20 kg/kmol, the convergence is extremely slow, and the 

same Pareto set is obtained only after about 6000 generations. The solutions for 

several cases (± 1100, ± 20, ± 2 kg/kmol) by both NSGA-II-JG and NSGA-II-aJG 

converged to the reference Pareto (in Figure 4.6). (The results for NSGA-II-JG are not 

shown in Figure 4.6 for clarity, but can be provided on request.). Since NSGA-II did 

not converge for the Mn,f = Mn,d ± 2 kg/kmol case (Figure 4.3) while NSGA-II-aJG did 

(Figure 4.6, as did NSGA-II-JG), this indicates better performance of the latter 

technique(s) than NSGA-II when (near) hard end-point constraints are used. NSGA-II 

uses the concept of elitism, borrowed from nature, in which better chromosomes are 

copied to the next generation. But, diversity decreases due to elitism. To avoid this, 

Kasat and Gupta (2003) introduced jumping genes (JG) into NSGA-II. It seems that 

the relatively poor performance of NSGA-II for problems with (near) hard end-point 

constraints is due to the loss in diversity of chromosomes while NSGA-II-JG and 

NSGA-II-aJG introduce higher exploratory capability into the algorithm. Thus, they 

perform better than NSGA-II to solve difficult problems similar to the one studied 

herein. In fact, Kasat and Gupta (2003) too observed that NSGA-II could not 

converge to the global Pareto-optimal set for ZDT4 (Zitzler et al., 2000) problem but 

NSGA-II-JG did, indeed, converge. We could not converge to the reference Pareto set 

for the Mn,f = Mn,d ± 0 kg/kmol case by all the three techniques, NSGA-II, NSGA-II-

JG and NSGA-II-aJG. This is shown in Figure 4.7.  
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Figure 4.5 (a) Pareto-optimal sets for Mn,f = 21900 ± 200 kg/kmol (reference case) 
using NSGA-II-aJG for different number of generations (indicated in 

parenthesis). (b) Results of Figure 4.5a re-plotted with vertical shifts of 0.2, as in 
Figure 4.3b. 
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Figure 4.6 (a) Converged Pareto sets for problems having different end-point 
constraints on Mn,f using NSGA-II-aJG. Numbers in parenthesis indicate the 

generation numbers. (b) Vertically shifted converged Pareto sets of Figure 4.6a 
(as in Figure 4.3b) 
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Figure 4.7 Solutions for Mn,f = 21900 ± 0 kg/kmol using NSGA-II and its JG 
adaptations. Numbers in parenthesis indicate the generation number. Results for 

NSGA-II-aJG (1050) and NSGA-II (1600) are the same as those in Figures 4.6 
and 4.3, respectively. 

 

Our attempts on using different computational parameters to improve these 

results, failed. All these indicate that the solutions (in Figures 4.3, 4.6 and 4.7) of the 

Mn,f = Mn,d ± 0 kg/kmol case are local optima or that the methods have failed. NSGA-

II could have failed due to the loss in diversity of the chromosomes in this particular 

problem. However, jumping genes (JG) are supposed to counteract this problem but 

they also failed to create diversified pool for chromosomes. In general, optimization 

methods are guaranteed to converge only when the underlying assumptions (such as 

continuity and convexity) are satisfied. Further, stochastic methods including NSGA-

II do not have guarantee that they will converge in a limited number of 

generations/iterations. Convergence to the global optimum is even more difficult for 

complex problems with equality constraints.  
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An interesting observation was made by identifying solutions having Mn,f = Mn,d ± 

0.1 kg/kmol (the range of values actually present in the solutions for the Mn,f = Mn,d ± 

0 kg/kmol case) in the several Pareto sets of Figure 4.6. These are shown in Figure 

4.8. In the Pareto set corresponding to Mn,f = 21900 ± 20 kg/kmol, two chromosomes 

(XM,f = 0.3003; normalized side products = 2.2597 and XM,f = 0.3401; normalized side 

products = 2.5106) are found having Mn,f = 21900.04 kg/kmol and 21899.98, 

respectively. Six solutions (shown by triangles; two are very close) having Mn,f  = 

21900 ± 0.1 kg/kmol are identified in the near-converged Pareto set for Mn,f  = 21900 

± 2 kg/kmol. No such solutions are found in the Pareto sets for Mn,f  = 21900 ± 1100 

kg/kmol and Mn,f  = 21900 ± 200 kg/kmol. The existence of such solutions, lying on 

the converged Pareto set and satisfying the end-point constraint of Mn,f  = 21900 ± 0.1 

kg/kmol, and their not being ‘caught’ by the algorithms when used with  Mn,f  = 21900 

± 0 kg/kmol, confirms the failure of the binary-coded NSGA-II  and its JG variants 

for problems in which the end-point constraint on Mn,f is forced exactly. We suggest 

that solutions of such problems should be assembled by screening the solutions of 

several MOO problems with softer constraints of the type Mn,f = Mn,d ± µ kg/kmol, 

where µ is an arbitrary number. Our earlier study (Bhaskar et al., 2001) on the MOO 

of the third-stage wiped-film PET reactor also involved similar hard end-point 

constraints on the molecular weight, and unique solutions were obtained. However, 

the MOO code was run using different values of the random seed, a computational 

parameter, and Pareto sets were then assembled. One must be extremely careful while 

solving MOO problems involving hard end-point constraints on the molecular weight 

(and, possibly, other properties) before inferring that the solution is unique rather than 

a Pareto set. Indeed, it may be worthwhile to re-visit some of the earlier studies 

 79



Chapter 4 Reactor Modeling, Simulation and Optimization 

involving hard end-point constraints and explore if the correct solutions are, indeed, 

Pareto sets.     

Figure 4.9 shows the Pareto-optimal set for the reference case as well as plots of 

the decision variables and constraints corresponding to the several points in the Pareto 

set. Plots of the methyl, vinyl, and vinylidene contents are also shown. It is observed 

from the Pareto set that higher monomer conversions can be achieved only with 

higher side products. The actual operating point (shown by filled delta) for the 

industrial reactor gives much higher concentrations of the side products (for the same 

conversion), and so this type of study offers scope of considerable improvement of 

industrial LDPE reactors. The plots of the decision variables reveal that the optimal 

solution depends, to a large extent, on four decision variables, FS, FI,1, FI,2 and Pin. 

When the flow rates, FI,1 and FI,2, of the two initiators are increased, higher 

conversions (at the cost of higher side products) are obtained, as expected. The effect 

of increasing these two flow rates need to be counteracted by a decrease in FS (to 

maintain the molecular weight). Other decision variables are almost constant with 

some amount of scatter.  

Ehrlich and Mortimer (1970) mention that an increase in pressure helps lower the 

SCB, vinyl and vinylidene contents significantly. Figure 4.9 shows that higher inlet 

pressures (and therefore, higher pressures in the entire reactor) are indicated at higher 

monomer conversions so as to keep the side product concentrations in check. The 

decrease of the concentration of the methyl group as the pressure goes up (till it 

attains its upper bound; see Figures 4.9(l) and 4.9o) is attributed to the fact that the 

pressure dependence of the propagation rate constant is more significant than that of 

the branching reactions, as shown by Machi et al. (1966; 1968).  
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Figure 4.8 Points having Mn,f = 21900 ± 0.1 kg/kmol from among the Pareto sets 
of Figure 4.6a. These points are compared to the reference case. 
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Figure 4.9 Pareto-optimal points and the corresponding decision variables and 
constraints for the reference case (Mn,f = 21900 ± 200 kg/kmol; NSGA-II-aJG). 

Industrial data (▼) are shown. 
 

Validity of whole range of optimization variables with the industrial data is shown 

by generating temperature, monomer conversion, and number-average molecular 

weight profiles for chromosomes A, B, and C chosen from the Pareto-optimal set 

(Figure 4.9a). These chromosomes cover the complete range of non-dominated 

solutions in the Pareto-optimal set. The profiles in Figure 4.10 for these three 

chromosomes are comparable to those in Figure 4.2 for the industrial operation. 

Temperature profile for chromosome A in Figure 4.10a shows that the initial rate of 

polymerization in 5th reactor zone decreases due to low initiator flow rate (FI,2). It 

reflects lower monomer conversion as against the chromosome C shown in Figure 

4.10b. This is obvious as higher initiator concentration increases the concentration of 

free radicals, and subsequently the conversion of the monomer molecules (Yao et al., 
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2004). At this point, butane flow rate (FS) is reaching to the lower bound and thus 

making the chain transfer reaction less significant (Cervantes et al., 2000); 

consequently the product molecular weight (Mn) increases. These molecular weight 

profiles for the chromosomes are shown in Figure 4.10c.  
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Figure 4.10 Temperature, monomer conversion and number-average molecular 
weight profiles for chromosomes A (---), B (―) and C (− − −) shown in Figure 

4.9a 
 

In the Pareto-optimal set, there exist some points for which monomer conversion 

reach values of about 38% (Figure 4.9a). These values are higher than the usual 

reported values (20 - 35%) in the industrial reactors and there might be some 

problems of high viscosities, reactor fouling and even clogging at that level of 
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conversion. In fact, this is the advantage with multiple non-dominated solutions 

(equally good points) in the Pareto-optimal set; the decision maker can choose a point 

(based on his/her industrial experience and intuition) which has an acceptable/lower 

monomer conversion (around 35%) for operating the plant. In general, ‘higher level 

qualitative considerations’ are required to decide upon the preferred solution as 

suggested by Deb (2001). We also studied the effect of monomer flow rate, FM, on the 

Pareto-optimal set. As expected, Figure 4.11 shows that monomer conversion can be 

reduced with higher amount of monomer fed to the tubular reactor. These results 

provide more options to the decision maker to choose from.   
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Figure 4.11 Effect of FM on the Pareto-optimal set (reference case) 
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4.3.3 Four-objective Optimization 

A 4-objective optimization problem is now studied in which each of the side 

products is taken as an independent objective function, i.e., there are four objective 

functions: maximization of the monomer conversion, XM,f, minimization of methyl 

([Me]f), vinyl ([Vi]f) and vinylidene ([Vid]f) contents in the product, respectively, per 

1000 CH2. This problem is formulated to study the formation of each side product 

individually instead of the weighted average of the side-products, which was done in 

the 2-objective problem. These results will identify the need and potential for 

selectively reducing a particular side product. Binary-coded NSGA-II-aJG is used for 

MOO of reference case, i.e., Mn,f = 21900 ± 200 kg/kmol. Decision variable set and 

local constraint on reactor temperature are the same as described those in formulation 

of 2-objective optimization problem. Again, the constraints are handled by the penalty 

function method with weighting factors, w1 = 109 and w2 = w3 = w4 = 1010, 

respectively, in all the objective functions.  The mathematical formulation of above 

problem is written as follows:  

1 MMax ≡G X ,f  (4.5a) 

[ ]2
e f

1Max 
1

30

≡
⎛ ⎞

+ ⎜ ⎟⎜ ⎟
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G
M

 (4.5b)   

[ ]3
i f
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G
V

 (4.5d)   

Subject to 

Bounds: 
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Equation (4.4)               (4.5e) 

Constraints: 

Mn,f = 21,900 ± 200 kg/kmol (reference) (4.5f) 

Tmax(z) ≤ 610.15 K (4.5g) 

Model equations                                                                                (4.5h) 

Figure 4.12 shows solution of the optimization problem. The best set of computational 

parameters is given in Table 4.6. Since it is not possible to plot these results as a 4-

dimensional Pareto set, the four objective functions are plotted as a function of the 

chromosome number (after rearranging the results so that the conversion increases 

continuously with the chromosome number). Much more scatter is observed for the 

methyl group concentrations in this 4-objective problem than was observed for the 

earlier 2-objective problem. This scatter could not be reduced by a change of the 

computational parameters. However, vinyl and vinylidene group concentrations are 

showing the increasing trends with monomer conversion (Figures 4.12c and 4.12d). 

Similar trends were also observed in 2-objective problem. The optimal values of the 

individual (normalized) side product concentrations have been summed up and plotted 

as a function of the monomer concentration in Figure 4.12f. The two objective 

references Pareto sets (in Figure 4.5a) are also plotted. The results for the two and 

four objective optimization problems are comparable. This suggests that one can 

easily combine the three side products into a single objective for this problem, and it 

is not necessary to solve a four objective optimization problem. Nevertheless, the 

Pareto-optimal set for the 2-objective problem is superior to the Pareto-optimal 

solutions obtained from the 4-objective problems. The optimal solutions for the 4-

objetive problem show some scatter but with somewhat increased range of solutions.  
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Figure 4.12 Results for the 4-objective optimization problem in Equation (4.5) 
(NSGA-II-aJG) 

 

The computational parameters were varied, in the range of ±10 % of the best 

values in Table 4.6, one by one to see their effect on the results. It was observed that 

the Pareto-optimal set is not too sensitive to these variations in the range. These 

results are, therefore, not provided here (but can be supplied on request).  
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4.4 Conclusions 

A comprehensive mathematical model for the production of LDPE in high-

pressure tubular reactors is developed. Complete details are provided. Tuned values of 

the several model parameters are obtained so as to get good agreement of model 

predictions with industrial data on the temperature profile, the monomer conversion 

and the number-average molecular weight of the product, as well as estimates of the 

concentrations of the several side products. Thereafter, a two objective optimization 

study of the operating reactor (with constraints on the molecular weight and the 

temperature of the reaction mass) is carried out. Considerable improvement in the 

reactor performance is indicated. Pareto-optimal solutions are obtained. The present 

study suggests that solutions of problems involving hard (equality) end-point 

constraints should be assembled by obtaining solutions of several MOO problems 

with softer constraints, rather than by solving the problem only once, lest erroneous 

results are obtained. Furthermore, the binary-coded NSGA-II-aJG and NSGA-II-JG 

perform better than NSGA-II near the hard end-point constraints. The results of a four 

objective problem (with each of the three normalized side product concentrations 

taken individually as objective functions) are found to be comparable to that of a two 

objective problem in which these three are added together and taken as a single 

objective function. 
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Chapter 5  

Design Stage Optimization 

 

5.1 Introduction 

LDPE is one of the most widely used polymers in the world. Nearly one quarter of 

its annual production of 84 million tones worldwide, is produced by high-pressure 

technology (Kondratiev and Ivanchev, 2005). Therefore, even small improvement in 

polymer production and/or properties can generate large revenue for the poly-olefins 

industry. The end properties of polymer, viz., tensile strength, stiffness, tenacity etc. 

are related to molecular parameters, which include average molecular weight, 

polydispersity index, SCB and LCB, and distribution of functional groups etc. The 

operating and design variables often influence the molecular parameters in non-

commensurable ways. Therefore, these applications are perfect scenarios for MOO. 

This article presents enhancement in the production, quality and strength of LDPE, 

simultaneously, by MOO of an industrial high-pressure tubular reactor for ethylene 

polymerization at design stage. The non-dominated sorting genetic algorithm (NSGA-

II; Deb, 2001) and its JG adaptations (Simoes et al., 1999; Kasat and Gupta, 2003; 

Man et al., 2004; Guria et al., 2005) are used to optimize the reactor performance. 

NSGA-II-JG introduces a new JG operator along with the usual operators of NSGA-

II; it probabilistically selects two sites in the chromosome string and replaces the in-

between portion with a new, same-sized, randomly generated binary string (Kasat and 

Gupta, 2003). Where as, in binary-coded NSGA-II-aJG, the second site in the 

chromosome is selected by the pre-defined string length of jumping genes, as 

described by Guria et al. (2005). The working methodology of these three algorithms 

is described in Kasat and Gupta (2003) and Agrawal et al. (2006). 
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Many studies on the modeling and simulation of high-pressure tubular reactor to 

produce LDPE have been reported in the literature, which were reviewed by Zabisky 

et al. (1992) and Kiparissides et al. (1993a). In contrast, only some studies (Yoon and 

Rhee, 1985; Mavridis and Kiparissides, 1985; Brandolin et al., 1991; Kiparissides et 

al., 1994; Cervantes et al., 2000; Asteasuain et al., 2001b; Yao et al., 2004) have 

appeared on the optimization of LDPE tubular reactor in the open literature. But, 

interestingly, all the studies on modeling used different kinetic parameters to simulate 

the reactor. Zabisky et al. (1992), Kalyon et al. (1994), and Brandolin et al. (1996) 

used industrial data and tuned the kinetic parameters but they did not provide the 

complete details of either tuned kinetic parameters or the reactor data due to 

proprietary reasons. In our earlier study (Agrawal et al., 2006), we modified the 

model of Asteasuain et al. (2001b), simulated an industrial high-pressure tubular 

reactor and tuned the model parameters using reported industrial data (Asteasuain et 

al., 2001b). Complete details of the model including parameter values are available in 

Agrawal et al. (2006), and are not reported here for brevity.  

Agrawal et al. (2006) used the developed model for MOO of the industrial LDPE 

tubular reactor at operation stage. The two important objectives considered for 

optimization were maximization of XM and minimization of normalized side products 

(short chain branches, vinyl, and vinylidene groups), both at the reactor exit. The 

LDPE, which is produced in the tubular reactor at high-pressure conditions, consists 

of several short chain branches, primarily, ethyl and butyl groups. These branches 

deteriorate quality and strength of the polymer by lowering crystallinity, density, 

melting point, tensile strength, etc. (Luft et al., 1982). Therefore, these groups should 

be minimized to enhance quality and strength of the product. Also, some unsaturated 

groups (vinyl and vinylidene) are present in the LDPE chains, which make the 
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product susceptible to cracking due to oxide formation. Hence, the minimization of 

these groups enhances strength of the polymer product. Another important objective is 

to maximize the monomer conversion per pass for the constant monomer feed to the 

reactor. Various polymer grades are required in the industry for different applications. 

These grades are defined by the number-average molecular weight, Mn,f, of the 

polymer product. Therefore, an end-point equality constraint on the Mn,f is imposed to 

meet the market requirements. Indeed, a polymer is characterized by its several 

physical attributes such as density, melt flow index, degradation by sunlight, optical 

clarity, etc. These are related (often in an imprecise manner) to several molecular 

parameters, e.g., the entire molecular weight distribution (MWD, which could 

possibly be inferred through the number- and weight-average molecular weights), 

SCB, LCB, concentration of double bonds, etc. One has to select only a few of these 

molecular properties to get results that can be computed, as well as can be interpreted 

meaningfully. Since the MWD of the LDPE produced in high pressure reactors is 

‘normal’ (unlike for polypropylene, using the Zeigler-Natta system), Mw and Mn are 

related. Also, Asteasuain et al. (2006) and Padhiyar et al. (2006) have used Mn as the 

variable describing quality of the polymer, when minimizing the amount of off-

specification polymer for a grade change-over problem. In addition, Mavridis and 

Kiparissides (1985) and Asteasuain et al. (2001b) have used Mn as the single 

molecular property to represent the grade of the polymer. Brandolin et al. (1991) have 

optimized LDPE reactors using several single objective functions (the weighted sum 

of the final values of XM, Mn, and the weight-average number of branch points). 

Moreover, reaction mixture temperature may shoot up to a very high value due to 

exothermic polymerization reactions. Polyethylene molecule starts decomposing at 

about 350°C, which creates the run-away condition in the reactor and may blow up 
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the reactor, if the pressure valve is not relieved. Therefore, safe operation of the 

reactor is ensured by incorporating an inequality constraint on reactor temperature, 

locally, to avoid this condition.  

In the earlier study (Agrawal et al., 2006), eleven decision variables were used to 

optimize the operation of the high-pressure tubular reactor for LDPE production. The 

focus of the present study is the optimization of this tubular reactor at design stage for 

multiple objectives, which involves more decision variables and hence is more 

challenging. As in our previous study (Agrawal et al., 2006), binary-coded NSGA-II 

and its JG adaptations failed to converge to the Pareto-optimal set when an hard 

equality constraint on Mn,f is imposed; however, correct global Pareto-optimal points 

are obtained by running several problems involving softer constraints of the type: Mn,f 

= Mn,d ± an arbitrary number. These interesting results are discussed in detail.  

Deb (2001) showed that the penalty parameter for handling constraints by penalty 

function approach plays an important role in multi-objective evolutionary algorithms. 

If the parameter is not chosen properly, then it may create a set of infeasible solutions 

or a poor distribution of solutions. Therefore, a systematic approach of constrained-

dominance principle for handling the constraints was proposed by Deb (2001). 

Motivated by these, constrained-dominance principle is successfully implemented in 

the binary-coded NSGA-II-aJG and NSGA-II-JG for handling the constraints for the 

first time and its effectiveness is evaluated for the design stage optimization of the 

industrial LDPE reactor. 

 

5.2 Modeling and Simulation of LDPE Tubular Reactor 

Commercially, LDPE is produced in tubular reactors, which consist of several 

tubes connected together with 180° bends. This is a well-established technology for 
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producing LDPE worldwide. The tubular reactor (Asteasuain et al., 2001b; Figure 4.1) 

used in our study, is 1390 m long and 0.05 m in diameter. The tubular reactor is 

divided into five zones, which are decided due to change in jacket fluid temperature 

and/or introduction of initiators. The monomer (ethylene), solvent (n-butane), and 

oxygen (an initiator) are fed into the reactor at 2250 atm and 76°C. The reaction 

mixture is preheated in the first two zones and then initiator, I1, is injected in the third 

zone to start the polymerization reaction. The reaction mixture reaches 325–335°C 

due to large heat of reaction. Therefore, to avoid run-away condition, the reactant–

product mixture is cooled in the third and fourth zones using cooling water flowing 

counter-currently in the jackets. In order to further increase the monomer conversion, 

initiator, I2, is fed into the fifth zone. Later part of this zone acts as a cooler to reduce 

the mixture temperature to ease separation in downstream operations. The monomer 

conversion per pass is about 30% at the reactor exit. Solvent is used to control the 

molecular weight of polyethylene by the process of chain transfer to the solvent. The 

number-average molecular weight of the polymer at the reactor exit is reported to be 

21900 kg/kmol.  

For simulating the industrial LDPE reactor, the dynamic model of Asteasuain et al. 

(2001b) is modified to the steady-state model (Agrawal et al., 2006). In brief, the 

model is based on plug flow assumption, and incorporates axial variation of 

concentration, temperature, pressure and hence physical properties, and also several 

main (Asteasuain et al., 2001b) and side reactions, e.g., intra-molecular chain transfer, 

chain transfer to polymer, β-scission of secondary and tertiary radicals etc. (the latter 

give the extent of long- and short-chain branching and the amount of unsaturation). 

The detailed kinetic scheme is given in Agrawal et al. (2006). The model equations 

can be described in the following form: 
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d ( , )
d

f
z

=
x x u ; x(z = 0) = x0 (5.1) 

Where x represents the vector of state (dependent) variables and u is the control 

(independent) variables.  

x = [v, ρ, , , , , , , , , T, P, λI,1C I,2C
2OC SC MC

eMC
iVC

idVC np, μnp]T;  

                                                                              n = 0, 1; p = 0, 1, 2  (5.2) 

In Equation (5.1), z denotes the axial distance in the tubular reactor. The model 

equations are simultaneous, stiff ordinary differential equations which are integrated 

using D02EJF subroutine (based on Gear’s method) in the NAG library. The 

numerical solution provides profiles of temperature (T), pressure (P), and 

concentrations of initiators ( , , and ), solvent ( ), and monomer ( ) 

along the reactor length. The variation in several molecular properties [M

I,1C I,2C
2OC SC MC

n, Mw, short-

chain branching (SCB), and the vinyl and vinylidene group concentrations] as a 

function of z, is also calculated. 

Complete details (for instance, some of the kinetic rate parameters) of the 

industrial tubular reactor were not provided by Brandolin et al. (1996) and Asteasuain 

et al. (2001a) due to proprietary reasons. Therefore, the model parameters were tuned 

using the industrial data on reactor temperature at several discrete points along the 

reactor axis, and the values of XM, Mn, and the side-product concentrations in the final 

product (Goto et al., 1981; Gupta et al., 1985; Asteasuain et al., 2001b). Binary-coded 

NSGA-II was used to minimize the sum-of-squares of the normalized error between 

the model-predicted and the industrial values. The model predicted values (the 

temperature profile, XM,f and Mn,f, and estimates of the several side products) were 

found to be in good agreement with the industrial data. Details of all the model 
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equations, parameter values, and model validation are reported elsewhere (Agrawal et 

al., 2006). 

 

5.3 Multi-Objective Optimization 

5.3.1 Formulation 

For the design stage MOO study of the industrial LDPE tubular reactor, twenty-

two decision variables are used: the inlet temperature (Tin), the feed flow rates of 

oxygen (Fo), solvent (FS) and the two additional initiators (FI,1, and FI,2) added in-

between, the five average jacket fluid temperatures (TJ,1 − TJ,5), the inlet pressure (Pin), 

the axial lengths of five zones (Lz1 – Lz5), inside diameter (Dint), jacket diameter 

(DJacket), and flow rates of the jacket fluid (VJ,2 − VJ,5). Note that Dint and DJacket are 

constant for all zones. Saturated steam is used to preheat the reaction mixture in the 

first zone and therefore jacket fluid flow rate for zone one (VJ,1) is not included as a 

decision variable. The monomer feed rate (FM) to the reactor is kept constant in this 

study. The details of the MOO problem for simultaneous maximization of conversion 

and minimization of normalized side products at the reactor exit are given in Table 

5.1. The variables: Lz1 – Lz5, Dint and DJacket are allowed to vary within ± 20% of their 

reference values (mostly industrial values). The bounds for the decision variables: Tin, 

Fo, FS, FI,1, FI,2, Pin, TJ,1 − TJ,5 have been chosen based on information in the open 

literature (Asteasuain et al., 2001b; Brandolin et al., 1988). The bounds for VJ,2 − VJ,5 

are chosen based on industrial practice (Kalyon et al., 1994). Lower limit of FS is 

changed to 5 × 10-2 kg/s (it was 2 × 10-2 kg/s in operation stage optimization) because 

simulation was found taking an excessive CPU time for some chromosomes. Bounds 

on other decision variables are same as in our previous study (Agrawal et al., 2006). 
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Both the equality and inequality constraints are incorporated in the objective 

functions in the form of penalty functions with weighting factors of w1 = 109 and w2 = 

1010, respectively. This is not required if constraints are handled directly through the 

constrained-dominance principle (Chapter 3). 

2 2

n,f max
1 M,f 1 1

n,d max,d

( )Max 1 1
M T zG X w w
M T

⎛ ⎞
≡ − − − −⎜ ⎟⎜ ⎟

⎝ ⎠
  (5.3a)

  

[ ] [ ] [ ]

2 2

n,f max
2 2

n,d max,de i idf f f

( )1Max 1 1
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30 0.1 0.7

⎛ ⎞
≡ − − −⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠+ + +⎜ ⎟⎜ ⎟

⎝ ⎠

M T zG w w
M TM V V 2 −    (5.3b)   

The bracket operator, <α>, used for handling the inequality constraint on temperature, 

returns the absolute value of operand α if the operand is negative otherwise gives a 

value of zero. The objective functions, G1 and G2, are thus penalized by a large value 

if either of the two constraints is violated. Therefore, the infeasible chromosomes are 

killed in the subsequent generations, even if these are produced in the initial 

population in the optimization by NSGA-II and its JG adaptations.   

Preliminary optimization results showed that the jacket fluid velocities in the 

second and third zones were becoming quite low and consequently resulting in large 

temperature change in the jacket fluid. Therefore, constraints on jacket fluid velocities 

were added in the mathematical formulation as depicted in Table 5.1. These bounds 

on the jacket fluid velocities are based on the typical range reported in the literature 

(Sinnott, 1999). 
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Table 5.1 Objectives, constraints and decision variables in the MOO 

 
Objective functions Constraints Decision variables 

5 × 10-5 ≤ Fo ≤ 10 × 10-5 kg/s   
2 × 10-2 ≤ FS ≤ 0.5 kg/s   Case 1: 
5 × 10-5 ≤ FI,1 ≤ 5 × 10-3 kg/s   
5 × 10-5 ≤ F I,2 ≤ 5 × 10-3 kg/s 
413.15 ≤ T J,m ≤ 543.15 K ;   

m = 1, 4, 5
473.15 ≤ T J,n ≤ 543.15 K ;   

                           n = 2, 3 
182.39 ≤ Pin ≤ 248.25 MPa 
50 ≤ Lz1 ≤ 70 m    
80 ≤ Lz2 ≤ 120 m 
140 ≤ Lz3 ≤ 220 m 
400 ≤ Lz4 ≤ 600 m 
430 ≤ Lz5 ≤ 650 m 
0.04 ≤ Dint ≤ 0.06 m 
0.1778 ≤ DJacket ≤ 0.2286 m 
0.5 × 10-3 ≤ VJ,m ≤ 25 × 10-3  

m3/s ; m = 2, 3, 4
0.1 × 10-3 ≤ VJ,5 ≤ 25 × 10-3  
                    m3/s                      

1 MMax ,fJ X≡  Mn,f = Mn,d ± ΔMn

[ ] [ ] [ ]e i idf f
2Min 

30 0.1 0.7
M V V

J
⎛

≡ + +⎜ ⎟⎜
⎝

f
⎞
⎟
⎠

 
Mn,d = 21,900 
kg/kmol 
ΔMn = 0, 2, 20, or 
200 
 
Tmax(z) ≤ 610.15 K 
 
0.3 ≤ vJ,m ≤ 1.0 
m/s;  
m = 2, . . . , 5 
 
d ( , )
d

f
z

=
x x u  

Case 2: 
Same as Case 1 plus 

( )0.23
M in M,f

3

233.8 649.8 986.8
Min 

6468
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+ −

≡

 

Same as Case 1 
except  
ΔMn = 200 
kg/kmol 
 

Same as Case 1 

 

 
5.3.2 Results and Discussion  

The MOO problem was solved using NSGA-II and its JG adaptations. Initially, 

penalty function approach was employed for handling constraints. The best values of 

the computational parameters in the NSGA-II algorithms for generating solutions of 

the design problem are provided in Table 5.2. These values for NSGA-II are same as 

those used in the operation stage MOO as reported in Agrawal et al. (2006). The 

computer code was run on a HP workstation (3.60 GHz and 3.25GB RAM). The CPU 

time on this machine was nearly 8 hours for a typical optimization run for 1000 

generations involving 200 chromosomes. This machine can perform 325 MFlops 
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according to the LINPACK program (available at http://www.netlib.org) for a matrix 

of the order of 500.  

First, the design problem with the equality constraint on Mn,f was solved using 

NSGA-II. It was observed that some non-dominated solutions were obtained rather 

than the Pareto-optimal solutions (Figure 5.1), which are perhaps the local optimal 

solutions. NSGA-II took a large number (12000) of generations to give the converged 

solutions for this case. Now, the end-point constraint on Mn,f was relaxed to lie within 

±1% (which is well within the experimental error) of the desired molecular weight 

(Mn,d), in particular, Mn,f = 21900 ± 200 kg/kmol, Mn,f = 21900 ± 20 kg/kmol, and Mn,f 

= 21900 ± 2 kg/kmol. For the first problem of Mn,f = 21900 ± 200 kg/kmol, the 

Pareto-optimal set was obtained using NSGA-II with good distribution (spread) of 

points as shown in Figure 5.1 Hereafter, the Pareto-optimal set obtained for Mn,f = 

21900 ± 200 kg/kmol case is referred as the reference Pareto-optimal set.  

The solutions of the second problem (Mn,f = 21900 ± 20 kg/kmol) superimposed 

on the Pareto-optimal set of the first problem (Figure 5.1), giving confidence on the 

solutions obtained. However, the solutions of Mn,f = 21900 ± 0 kg/kmol, are quite far 

away from the reference Pareto-optimal set. The solutions of Mn,f = 21900 ± 2 

kg/kmol, which has a small variability in Mn,f, did not converge to the reference 

Pareto-optimal set, even after 18000 generations (Figure 5.1). (NSGA-II-aJG and 

NSGA-II-JG seems to be converging to the same Pareto set in 19500 and 18000 

generations, respectively; this is discussed later.) This shows that NSGA-II is 

converging to the local or sub-optimal solutions when the MOO problem includes the 

equality constraint on molecular weight.  
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Table 5.2 Values of the computational parameters used in the binary-coded 

NSGA-II, NSGA-II-JG, and NSGA-II-aJG for two-objective design optimization 
 

 Penalty function approach Constrained-dominance principle 
Parameter NSGA-II NSGA-II-

JG 
NSGA-II-

aJG 
NSGA-II NSGA-II-

JG 
NSGA-
II-aJG 

Ngen* 3000 3300 2500 4500 3200 3000 
Npop 200 200 200 200 200 200 
lsubstr 30 30 30 30 30 30 
lchrom 660 660 660 660 660 660 
lJG --- --- 70 --- --- 70 
pc 0.95 0.9 0.8 0.95 0.9 0.8 
pm 0.015 0.005 0.01 0.015 0.005 0.01 
pJG --- 0.8 0.8 --- 0.6 0.3 
Sr 0.95 0.9 0.6 0.95 0.3 0.1 
* Number of generations required for convergence for the case of Mn,f = 21900 ± 200 
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Figure 5.1 Converged solutions for several end-point constraints on Mn,f using 

NSGA-II. Numbers in parenthesis refer to the number of generations. 
 

In order to improve upon the optimization results, NSGA-II-aJG and NSGA-II-JG 

were endeavored. The best values of computational parameters in both these 

algorithms are also reported in Table 5.2, which are same as in Agrawal et al. (2006). 

For the Mn,f = 21900 ± 200 kg/kmol case, the converged Pareto-optimal sets by 

NSGA-II, NSGA-II-JG, and NSGA-II-aJG are shown in Figure 5.2a. To distinguish 
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the converged Pareto-optimal sets in Figure 2a due to overlapping points, these results 

are re-plotted with vertical displacements of 0.2 as shown in Figure 2b. NSGA-II-aJG 

and NSGA-II produced the best Pareto-optimal set in terms of convergence and 

distribution of points followed by NSGA-II-JG. In addition, NSGA-II-aJG took the 

least number of generations (2500) in converging to Pareto-optimal solutions in 

comparison to NSGA-II-JG (3300) and NSGA-II (3000). Guria et al. (2005) also 

observed that NSGA-II-aJG with the best set of computational parameters is the most 

rapidly converging technique for the MOO of reverse osmosis desalination units. 

The converged Pareto-optimal sets are shown in Figure 5.3 for various end-point 

constraints on Mn,f (± 200 kg/kmol, ± 20 kg/kmol, and ± 2 kg/kmol) using NSGA-II-

aJG. Mn,f = 21900 ± 20 kg/kmol showed slow convergence and took 9000 generations 

to converge to the reference Pareto-optimal set of Mn,f = 21900 ± 200 kg/kmol, 

whereas Mn,f = 21900 ± 2 kg/kmol required 19500 generations to nearly converge to 

the same. Similarly, NSGA-II-JG converged to the reference Pareto set for Mn,f = 

21900 ± 20 kg/kmol in 14000 generations, whereas Mn,f = 21900 ± 2 kg/kmol took 

18000 generations to nearly converge to the reference Pareto (Figure 5.4). Figure 5.5 

shows the converged Pareto-optimal sets for the Mn,f = 21900 ± 2 kg/kmol case using 

NSGA-II and its JG variants. It is clear from the figure that Pareto-optimal sets using 

NSGA-II and NSGA-II-aJG were closer to the reference Pareto set than that using 

NSGA-II-JG for Mn,f = 21900 ± 2 kg/kmol case. However, neither NSGA-II, NSGA-

II-JG nor NSGA-II-aJG could converge to the reference (for Mn,f = 21900 ± 200 

kg/kmol) Pareto set for Mn,f = 21900 ± 0 kg/kmol case (Figure 5.6). Similar results 

were obtained in our earlier study on the MOO of the LDPE tubular reactor at 

operation stage (Agrawal et al., 2006). Therefore, all these results indicate that either 
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the solutions for equality constraint on Mn,f  are local optimal solutions or NSGA 

algorithms have failed. 

The non-dominated solutions satisfying Mn,f = 21900 ± 2 kg/kmol were collected 

from the Pareto-optimal sets of Mn,f = 21900 ± 200 kg/kmol and Mn,f = 21900 ± 20 

kg/kmol cases using NSGA-II-aJG, and are shown in Figure 5.7; three (shown by 

open squares) and eight (shown by open triangles) solutions were collected, 

respectively, from these cases. These solutions were found to be covering the whole 

range of the reference Pareto set whereas single run of 21900 ± 2 kg/kmol case 

distributes the non-dominated solutions in the higher conversion side (Figure 5.3). 

High-conversion solutions are undesirable since the decision maker might be 

interested in operating the plant at low conversion to produce higher product quality 

and strength (low side product concentration). Also, Mn,f = 21900 ± 2 kg/kmol 

required almost 18000 generations to converge; therefore, it involves enormous 

amount of CPU time. In the same CPU time, one could run four optimization cases of 

Mn,f = 21900 ± 200 kg/kmol (with different seeds or by different algorithms) or two 

cases of Mn,f = 21900 ± 20 kg/kmol. Therefore, we suggest to obtain diversified 

solutions near to hard equality constraints on Mn,f by identifying the points from 

among the Pareto-optimal sets of various softer constraints of the type: Mn,f = Mn,d ± 

arbitrary number. 
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Figure 5.2 (a) Converged Pareto-optimal sets for Mn,f = 21900 ± 200 kg/kmol 
using NSGA-II and its JG adaptations. Numbers in parenthesis indicate the 

number of generations. (b) The results of Figure 5.2a are re-plotted with vertical 
shifts of 0.2 (i.e., values of the ordinate are displaced vertically upwards by 0.0, 

0.2, or 0.4). 
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Figure 5.3 Converged Pareto sets for problems having different end-point 
constraints on Mn,f using NSGA-II-aJG. Numbers in parenthesis indicate the 

generation numbers. 
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Figure 5.4 Converged Pareto sets for problems having different end-point 
constraints on Mn,f using NSGA-II-JG. Numbers in parenthesis indicate the 

generation numbers. 
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Figure 5.5 Converged Pareto sets for Mn,f = 21900 ± 2 kg/kmol using NSGA-II 
and its JG adaptations. Numbers in parenthesis indicate the generation number. 
Results for NSGA-II-aJG (19500) and NSGA-II-JG (21000) are the same as those 

in Figures 5.3 and 5.4, respectively 
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Figure 5.6 Solutions for Mn,f = 21900 ± 0 kg/kmol using NSGA-II and its JG 
adaptations 
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Figure 5.7 Points satisfying Mn,f = 21900 ± 2 kg/kmol from among the Pareto sets 
of Mn,f = 21900 ± 200 kg/kmol and Mn,f = 21900 ± 20 kg/kmol cases using NSGA-

II-aJG. These points are compared to the reference case. 
 

A sudden jump (at XM,f ≈ 0.42) is observed in the Pareto-optimal set for the Mn,f = 

21900 ± 200 kg/kmol case using NSGA-II-aJG (Figure 5.3). Similar sudden breaks 

are also observed in the Pareto-optimal sets using different algorithms (NSGA-II and 

its JG variants) and constraint-handling techniques (these results are discussed later). 

The plots of decision variables corresponding to this Pareto-set are investigated. It is 

observed that the sudden jump in the optimal Pareto-set is due to jump in some 

decision variables, namely, FS, FI,1, and FI,2 (Figures 5.11d – f; these are shown and 

discussed later) etc., which makes it difficult for the optimizer to choose non-

dominated points in this region.  
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5.3.3 Constraint Handling by Constrained-dominance Principle 

We tried to improve the performance of NSGA-II and its JG variants by 

incorporating constrained-dominance principle instead of penalty function for 

constraint handling. Deb (2001) showed that the penalty parameter for handling 

constraints plays an important role in multi-objective evolutionary algorithms. If the 

parameter is not chosen properly then it may create a set of infeasible solutions or a 

poor distribution of solutions. Therefore, the approach of constrained-dominance 

principle for handling constraints in MOO was proposed by Deb et al. (2002). The 

detailed description of this method can be found in Deb (2001). The design of an 

industrial LDPE tubular reactor is optimized for two objectives using NSGA-II and its 

JG variants with constrained-dominance principle to handle the constraints. The 

results obtained are compared with those obtained with the penalty function method 

for constraint-handling in NSGA-II-aJG. 

The best values of computational parameters in NSGA-II-aJG, NSGA-II, and 

NSGA-II-JG were obtained for constrained-dominance principle, and these are listed 

in Table 5.2. These values were obtained by varying computational parameters, one 

by one, and keeping other parameters at their reference values. Sr, pc, and pJG were 

varied with the step size of 0.1, while pm and LaJG were varied with the step size of 

0.005 and 40, respectively, to see the effect on the Pareto set. It was observed that the 

performance of NSGA-II-aJG was somewhat dependent on the random seed 

parameter (Sr) and jumping gene probability (pJG) but was practically in-variant to 

other computational parameters. The converged Pareto-optimal set using the 

constrained-dominance principle has a slightly wider range of non-dominated points 

and is marginally better for the reference case (Mn,f = 21900 ± 200 kg/kmol) (Figure 

5.8); but, the constrained-dominance principle took more generations (3000) than the 
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penalty function approach (2500). Note that the Pareto set using penalty function 

approach was not improved even after 3000 generations; these results are shown in 

Figure 5.8 for both 2500 and 3000 generations but with a shift of 0.4 for clarity.  

The Pareto-optimal set for the Mn,f = 21900 ± 2 kg/kmol case using the 

constrained-dominance principle is closer to the reference Pareto-optimal set than that 

using penalty function (Figure 5.9). Similar results were obtained by the NSGA-II-JG 

upon inclusion of constrained-dominance principle for constraint handling. All these 

results indicate that the performance of NSGA-II-JG and NSGA-II-aJG has 

marginally improved when constraints are dealt with the systematic approach of 

constrained-dominance principle rather than the penalty function method. The points 

satisfying Mn,f = 21900 ± 2 kg/kmol were collected from the converged Pareto-

optimal sets of Mn,f = 21900 ± 200 kg/kmol and Mn,f = 21900 ± 20 kg/kmol cases 

using NSGA-II and its JG variants with constrained-dominance principle for 

constraint handling. These points (Figure 5.10) show uniform distribution along the 

reference Pareto set. This uniformity could not be captured by any algorithm along 

with constrained-dominance principle when the MOO problem with the constraint: 

Mn,f = 21900 ± 2 kg/kmol, was solved using inequality (softer) constraints rather, non-

dominated points were accumulated towards the higher end of conversion.   
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Figure 5.8 Converged Pareto-optimal sets for Mn,f = 21900 ± 200 kg/kmol using 
NSGA-II-aJG for constrained-dominance principle and penalty function 

method. Pareto-optimal sets for 2500 and 3000 generations using the latter 
method are plotted with a vertical shift to show the convergence. 
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Figure 5.9 Pareto-optimal solutions for Mn,f = 21900 ± 2 kg/kmol using NSGA-II-

aJG for constrained-dominance principle and penalty function method. These 
solutions are compared to those for the reference case 
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Figure 5.10 Points satisfying Mn,f = 21900 ± 2 kg/kmol from among the Pareto 
sets of Mn,f = 21900 ± 200 kg/kmol and Mn,f = 21900 ± 20 kg/kmol cases using 
NSGA-II and its JG adaptations and constrained-dominance principle. These 

solutions are compared to those for the reference case. 
 

The Pareto-optimal set for the reference case as well as plots of the decision 

variables and constraints corresponding to the points in the Pareto set obtained by 

NSGA-II-aJG are shown in Figure 5.11. The decision variables: Tin, TJ,2 – TJ,5 are 

reaching their lower bounds whereas Lz4 – Lz5, VJ,4 are at their upper bounds, and 

hence these variables are not plotted in Figure 5.11. It is clear that even better 

optimization results can be found by relaxing one or more of these bounds. However, 

this was not tried with the view of keeping the decision variables within the ranges 

inferred from the literature. When one goes from point A to point C on the Pareto-

optimal set (Figure 5.11a), monomer conversion increases at the expense of increased 

side products. The two objectives, maximization of monomer conversion and 

minimization of normalized side products (branching and unsaturation), are 

contradictory in nature. Therefore, these were simultaneously optimized using multi-
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objective evolutionary algorithms. The Pareto-optimal solutions show that much 

higher conversions can be obtained with the same normalized side product 

concentrations, as compared to current plants (Asteasuain et al., 2001b; Agrawal et al., 

2006). Our study offers the scope for obtaining similar products but with higher 

productivity. The trends of decision variables: Tin, Fo, FS, FI,1, FI,2, TJ,1 − TJ,5, and Pin 

which were used in the operation optimization of LDPE tubular reactor by Agrawal et 

al. (2006), are almost similar to our earlier study. 

The Pareto-optimal set (in Figure 5.11a) largely depends on three decision 

variables, Pin, FS, and FI,1.  Initially, XM,f increases with  Pin (Figure 5.11b) and, later 

on, FI,1 contributes to higher conversion as shown in  Figure 5.11e. The FS (Figure 

5.11d) decreases as XM,f increases, to maintain Mn,f at the required value; at higher 

conversion, more and more polymer chains are formed which reduces Mn,f and 

therefore less FS is required. The flow rates of two other initiators, Fo, and FI,1 (Figures 

5.11c and f), are at their lower bounds. Machi et al. (1968) observed that the reaction 

temperature had profound effect on short chain branching and unsaturation; therefore, 

jacket fluid temperatures (TJ,1 − TJ,5), Tin, Lz2 (Figure 5.11i), VJ,2 and VJ,3 (Figures 

5.11m and n) attain appropriate values to keep the reactor temperature optimum so as 

to minimize the side product concentrations and also maximize conversion. The 

optimal Lz1, Lz3, Dint and DJacket (Figures 5.11h, j, k, l) are somewhat scattered. 

Polymerization reaction generates enormous amount of heat which is removed by 

higher VJ,4 and VJ,5 (Figure 5.11o) and by larger Lz4 and Lz5.  
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Figure 5.11 Pareto-optimal points and the corresponding decision variables and 
constraints for   the reference case (Mn,f = 21900 ± 200 kg/kmol) using NSGA-II-
aJG. The Pareto-optimal points for design stage (○) are compared to those for 

the operation stage optimization (Δ) in Figures 5.11a and p. 
 

The solutions for design optimization are compared to the Pareto-optimal set 

obtained at operation stage optimization for the same case using NSGA-II-aJG 

(Figure 5.11a). The results show significant improvement in the Pareto-optimal set for 

the design case. This improvement is attributed to the reactor temperature in design 

case where the maximum temperature (Tmax; therefore temperature inside the whole 

reactor; Figure 5.11p) is lesser than that found in the operation stage. To illustrate this, 

chromosomes B and B’ (identified in Figure 5.11a) are selected from the Pareto-

optimal sets of design and operation optimization, respectively. Monomer conversion 

for each of these two chromosomes is similar but normalized side products are quite 

different (Figure 5.11a). Profiles for the temperature, monomer conversion, and 

initiator concentrations (CI,1 and CI,2) are generated for these chromosomes (along 

with for chromosomes A and C, identified in Figure 5.11a), as shown in Figure 5.12. 

(In Figure 5.12c, CI,1 for chromosome A (– – –) is beyond the limits shown in the y-
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axis and so its profile could not be shown completely; rather, two vertical dashed lines 

are shown.)  Maximum temperature for chromosomes B and B’ (Figure 5.12a) is 499 

K and 590 K, respectively. Therefore, the side products concentration, which 

decreases with temperature, is very low in the design stage optimization. But, the 

same conversion is achieved due to gradual decomposition (unlike in the operation 

stage optimization) of initiators in the tubular reactor as shown in Figure 5.12c. 

Similar trends were observed for chromosome C giving highest conversion, where 

temperature in the fifth zone is below the optimum temperature for decomposition of 

second initiator (I2) and then temperature of reactant-product mixture increases slowly 

and correspondingly monomer conversion increases (see Figures 5.12a and b).  
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Figure 5.12 Temperature (T), monomer conversion (XM), and initiator 
concentrations profiles for chromosomes A (---), B (-·-·-·-), B’ (―) and C (− − −) 

shown in Figure 5.11a 
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In Figure 5.11b, it is observed that two chromosomes (say D and D’) show a 

break in the inlet pressure, whereas the monomer conversion and normalized side 

products for these two chromosomes are nearly the same. For chromosome D, 

monomer conversion should have decreased, because the inlet pressure is lowered; 

but, the same conversion level is maintained by the sudden increase in FI,1 and FI,2 

(Figures 5.11e and f). Also, solvent flow rate, FS, is reduced to satisfy constraint on 

the number-average molecular weight (Figure 5.11d). These solutions (D and D’) 

reveal that different sets of decision variables may give the same Pareto-optimal 

solutions. Therefore, they are possibly the multiple near-optimal solutions and could 

be produced due to random nature of the algorithm. To confirm, Pareto-optimal set 

and some associated decision variables obtained using NSGA-II-JG for the reference 

case are plotted (Figure 5.13). Results by NSGA-II-JG also showed a similar jump in 

the inlet pressure profile (Figure 5.13f) and associated changes in FS and FI,1 (Figures 

5.13c and d), but at a different monomer conversion. Similarly, there are differences 

in the maximum temperature profiles obtained by NSGA-II-aJG and NSGA-II-JG 

(Figures 5.11q and 5.13(l)).  

In the high pressure process, the product mixture passes through a let-down valve 

(used to reduce the pressure; Cervantes et al., 2000). Thereafter, this mixture is sent to 

a flasher (high-pressure separator). The half-life of the second initiator (I2; tert-butyl 

3,5,5 trimethyl-peroxyhexaonate) is about 1 s at the reaction temperature of 211°C. 

This means that the reaction will continue to take place in the pipes after the reactor 

(till before the flasher) for Pareto solutions that are associated with unreacted I2 at the 

end. We solved the MOO problem with an additional constraint on the concentration 

of the second initiator at the reactor exit, i.e., CI,2,f ≤ 0.0001CI,2,O (where CI,2,O is the 

concentration of the second initiator at its feed point in the fifth zone), for Mn,f = 
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21900 ± 200 kg/kmol. The solutions are compared to the earlier Pareto-optimal set 

(without this constraint) in Figure 5.14. It is observed that the Pareto-optimal set in 

the presence of this extra constraint superimposes on the reference Pareto set (without 

the penalty on CI,2,f), but that the optimal solutions extend only over monomer 

conversions of about 40% (the presence of this constraint on CI,2,f eliminates solutions 

corresponding to XI,2,f  ≤ 99%). Again, a decision maker can use only the relevant part 

of the Pareto set to select a preferred solution. 
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Figure 5.13 Pareto-optimal points and the corresponding decision variables and 
constraints for the reference case (Mn,f = 21900 ± 200 kg/kmol) using NSGA-II-

JG 
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Figure 5.14 Pareto-optimal solutions for Mn,f = 21900 ± 200 kg/kmol using 
NSGA-II-aJG with and without penalty on CI,2,f

 

It is the lower density and crystallinity (inversely proportional to the SCB: short 

side-chain branching frequency) of LDPE that makes it soft. The value of SCB in 

LDPE also influences its heat softening point, yield strength, stiffness, impermeability 

to gases and liquids, film drawdown, and optical clarity (Luft et al., 1982), and, hence, 

determines its use for its various applications. LDPEs having an extended range of 

properties (SCBs) can be produced by the high pressure process. The range of SCBs 

(CH3 per 1000 C) for the three common PEs are: LDPE: 10 – 50 [SCB = 30 per 

1000C (Gupta et al., 1985) for typical LDPEs]; HDPE:   2 – 3; LLDPE: 3 – 30. 

Minimization of SCB in our study leads to values of SCB in the range of 2.5 - 23 CH3 

per 1000 C, corresponding to different points on the Pareto set (Figure 5.11a). If the 

decision maker wishes to produce LDPE with an SCB of, say, 5.0 (higher than that for 

HDPE, but lower than that for the LDPE produced usually, which will have properties 
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intermediate between LDPE and HDPE), he has to select the appropriate point on the 

Pareto set. Our study offers scope of producing additional grades of LDPE. If one 

does not wish to do so, all he has to do is to select an appropriate point in the Pareto 

set of optimal solutions, or solve another MOO problem with SCBs omitted in the 

objective function. Figure 5.15 gives the Pareto solutions without the SCB in the 

objective function.  
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Figure 5.15 Pareto-optimal solutions for Mn,f = 21900 ± 200 kg/kmol using 
NSGA-II-aJG with and without minimization of SCB 

 
 

5.3.4 Three-objective Optimization  

The three objectives: maximization of monomer conversion, XM,f, minimization of 

the (weighted average value of the) undesirable side product contents ([Me]f, [Vi]f, and 

[Vid]f), and minimization of normalized compression power, are simultaneously 

optimized for the high-pressure polymerization of ethylene (case 2 in Table 5.1). To 

 117



Chapter 5 Design Stage Optimization 

 
understand the third objective, consider a simplified process flow sheet for LDPE 

production (Figure 5.16). Fresh make-up ethylene, at a flow rate of FMXM,f, available 

at 1 atm, is pressurized to 350 atm in the primary-compressor (Cervantes et al., 2000). 

It is then mixed with the recycled stream after the polymer is separated (it contains 

inert, un-reacted monomer and solvent), and fed to the hyper-compressor to be 

pressurized to reactor inlet pressure (~ 2250 atm). This reaction mixture produces 

polyethylene (FMXM,f) in the tubular reactor, which is removed from the product 

mixture in the high-pressure separator. The operating cost of primary- and hyper- 

compressors forms a major part of the total production cost. The compression power 

can be calculated from the equation given in Table 5.1 (case 2). This equation is 

derived based on several compression stages shown for an industrial LDPE process by 

Cervantes et al. (2000). These compression stages are confirmed to require minimum 

compression work before deriving the expression for compression power. A 

compression efficiency of 75% is assumed in deriving the expression. The binary-

coded NSGA-II-aJG is used for solving the three-objective optimization problem. 

Penalty function approach is used to handle the inequality constraints. The 

computational parameter values used for the three-objective optimization were the 

same as those used for the two-objective optimization.  

NSGA-II-aJG required 3000 generations to produce converged non-dominated 

solutions shown in Figure 5.17; in this figure, the three objectives are plotted against 

the chromosome number after rearranging the results so that the conversion increases 

with the chromosome number. Figure 5.17 shows that higher conversion is achieved 

only at the higher normalized side products and higher compression power. Some 

scatter is observed in the plots of normalized side products and compression power 

(Figures 5.17b and c). This scatter could not be reduced by increasing number of 

 118



Chapter 5 Design Stage Optimization 

 
generations or by changing values of the computational parameters. The scatter in 

Figures 5.17b and c could be attributed to the dominance criterion, which is satisfied 

even if any one of the three objectives has a better value and other two objectives are 

worsened (Tarafder et al., 2006).  

 

Figure 5.16 Simplified process flow diagram of the LDPE production (Cervantes 
et al., 2000) 
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Figure 5.17 Results for the three-objective optimization problem using NSGA-II-
aJG 
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The Pareto-optimal results obtained by three-objective optimization are also 

plotted in terms of two combinations of two-objectives: normalized side products vs. 

monomer conversion and compression power vs. monomer conversion (Figures 5.18 

and 5.19). The results of three-objective optimization and those from the simultaneous 

maximization of monomer conversion and minimization of normalized side products 

are included in Figure 5.18 for comparing the results of two- and three-objective 

problems. Note that the compression power was calculated using the results of two-

objective optimization. Although Figure 5.18a shows that the normalized side 

products-monomer conversion Pareto-optimal set of three-objective optimization 

problem is scattered and worse than the Pareto of two-objective optimization, this 

compromise was done to minimize the compression power, simultaneously. Similar 

observations were made by Tarafder et al. (2005) in three-objective optimization of 

styrene manufacturing process. Now, the two objectives – maximization of monomer 

conversion and minimization of compression power, are optimized and compared in 

Figure 5.19 with the Pareto-optimal set of three-objective optimization. The Pareto-

optimal set of compression power vs. monomer conversion of two-objective 

optimization showed slightly faster convergence (with no scattering) than the Pareto-

optimal set of compression power vs. monomer conversion of three-objective 

optimization (see Figure 5.19b). However, the three-objective optimization gives 

better objective values than the two-objective optimization, except at higher 

conversion. Thus, the simultaneous optimization of three-objectives is needed to 

obtain the best product quality with minimum compression cost and maximum 

throughput, simultaneously.   
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Figure 5.18 Comparison of Pareto sets obtained for (a) normalized side products 
Vs XM,f  and (b) compression power Vs XM,f, from the three-objective 

optimization (Δ) and two-objective optimization of normalized side products and 
XM,f (○)  
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Figure 5.19 Comparison of Pareto sets obtained for (a) normalized side products 
Vs XM,f  and (b) compression power Vs XM,f from three-objective optimization (Δ) 

and two-objective optimization of compression power and XM,f (○)  
 

Figure 5.20 shows the plots of Pareto-optimal sets of three objective optimization 

problem and some decision variables and constraints corresponding to non-dominated 

solutions in these plots. Decision variables: Tin, Fo, TJ,1 – TJ,3, Lz1 – Lz5, VJ,2 − VJ,5, Dint, 

and DJacket, and constraints: vJ,2 - vJ,5 are not plotted since their optimal values are 

scattered, and TJ,4 – TJ,5 are reaching their lower bounds. It is observed from the 

Pareto-optimal sets (Figures 5.20a and b) that higher monomer conversions can be 

achieved only at the cost of higher side products and higher compression power. The 
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plots of decision variables in Figure 5.20 show that the optimal solutions depend, 

primarily, on three decision variables, Pin, FS, and FI,1 (Figures 20c - e). The 

dependency of the Pareto-optimal set in Figure 5.20a on these decision variables can 

be explained in a similar fashion as explained for the results of two objective 

optimization problem (Figure 5.11). For example, Figure 5.20c shows predominant 

effect of Pin on compression power. Thus, it is trying to reach the lower bound to 

minimize the compression power, as expected. But, higher inlet pressure (therefore 

higher pressure throughout the reactor) is required to lower the side product contents 

as discussed by Ehrlich and Mortimer (1970). Therefore, higher Pin is observed at 

higher monomer conversions to keep the check on side products concentration.  
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Figure 5.20 Objectives, selected decision variables and constraints corresponding 
to the Pareto-optimal points for the three-objective optimization problem for the 

reference case (Mn,f = 21900 ± 200 kg/kmol) using NSGA-II-aJG. 
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5.4 Conclusions 

Design of an industrial tubular reactor for high-pressure polymerization of 

ethylene to produce LDPE is optimized for multiple objectives using the elitist binary-

coded NSGA-II and its JG adaptations. The monomer conversion is maximized and 

normalized side products are minimized, with constraints on Mn,f, reactor temperature, 

and jacket fluid velocities. The design stage optimization showed significant 

improvement in the reactor performance, when compared with the operation stage 

optimization. The correct global Pareto-optimal solutions could not be obtained by 

any of the NSGA-II, NSGA-II-JG, and NSAG-II-aJG algorithms tried, when the hard 

equality constraint on Mn,f is imposed. Comparison of the Pareto-optimal sets for Mn,f 

= 21900 ± 2 kg/kmol case obtained by the three algorithms showed that NSGA-II-aJG 

and NSGA-II are better than NSGA-II-JG. However, solution of this problem by any 

algorithm requires a lot of CPU time and the converged Pareto is limited to a small 

range. For the near hard end-point constraints, for instance, Mn,f = 21900 ± 2 kg/kmol, 

Pareto-optimal solutions over a wider range can be assembled from among the Pareto-

optimal sets of several MOO problems with softer constraints, optimized by NSGA-II 

and its JG adaptations. This approach takes less CPU time too. For the LDPE design 

problem, constrained-dominance principle worked marginally better than the penalty 

function approach for handling constraints in the binary-coded NSGA-II-JG and 

NSGA-II-aJG. The three-objective optimization of the LDPE design problem 

produced optimal solutions comparable to or better than those by the two-objective 

optimization. 
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Chapter 6  

Dynamic Modeling, Simulation and Optimal Grade Transition  

 

6.1 Introduction 

Low-density polyethylene (LDPE) is one of the most highly used polymers in the 

world. It is produced in autoclave and tubular reactors using high pressure technology. 

In this study, dynamic optimization of an industrial tubular reactor for LDPE 

production is considered. The operating conditions in the reactor are very extreme, 

namely, 150–250 MPa and 325–625 K. Because of these extreme conditions, the 

polymerization kinetics is quite complex and undesired products are generated. 

Initiators such as azo compounds, organic peroxides, and oxygen are used to generate 

free-radicals which react with the monomer (ethylene) to produce polyethylene. The 

polymerization reaction is highly exothermic. Therefore, the tubular reactors are very 

long with coolant flowing counter-currently in the jackets to remove the heat of 

reaction. The monomer conversion per pass is low (for a single-injection of the 

monomer-initiator mixture at the feed end), but is enhanced by multiple injections of 

monomer and initiators along the reactor axis. Nevertheless, the monomer conversion 

per pass is reported to be 30 – 35 % in industrial reactors. The unconverted monomer 

is separated using high- and low-pressure separators in downstream operations and 

recycled to the reactor.  

Polymer industries are subject to market fluctuations. This necessitates producing 

as many as thirty to forty different grades of polymer in a single polyolefin plant 

(Chatzidoukas et al., 2003). Indeed, the production of LDPE in tubular reactors is a 

typical example of a process where unsteady states during plant operation are 

commonly observed. Also, the cost of maintaining large inventories is huge. Thus, 
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what is required for the market should be produced just-in-time. So, frequent grade 

changes are expected in an LDPE plant. In addition, LDPE plants are connected to 

upstream and downstream processes which influence the throughput of the plant 

directly (Hafele et al., 2006). Therefore, grade-change of polymers while ensuring 

high quality becomes an essential and important issue in a polymer plant. Off-

specification (off-spec) product is produced during grade change. This leads to loss of 

revenue. Thus, a change in the polymer grade should be made with the minimum 

production of the off-spec polymer and in the minimum time required for grade 

changeover.   

The different grades of LDPE having desired specifications are obtained by 

switching between appropriate steady states (Cervantes et al., 2000). Grade-change, 

coupled with control strategies, can be carried out in two steps in any polyolefin 

industry. First, the optimal grade-change procedures are identified off-line to obtain 

the decision variables. This is done using appropriate constraints on the input, output 

and state variables of the process, using a good dynamic model. In the second step the 

optimal solutions are implemented using properly designed (values of their 

parameters) feed-forward and feed-back controllers (Chatzidoukas et al., 2003). This 

study focuses on the first aspect where optimal grade-change trajectories are obtained 

using off-line optimization.  

LDPE production using tubular-reactor technology at high pressures is well 

established in industry. Many steady state models are available in the open literature 

(e.g., Zabisky et al., 1992; Kiparissides et al., 1993a; Brandolin et al., 1996; Agrawal 

et al., 2006), but only a few of these deal with dynamic models (e.g., Kiparissides et 

al., 1994; Cervantes et al., 2000; Asteasuain et al., 2001b). These dynamic models are 

fairly simple. Kiparissides et al. (1994) carried out on-line optimization of a high-
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pressure tubular reactor. But, they used a steady state model, assuming that the 

dynamic response of this process is an order of magnitude faster than the grade-

change. Their assumptions are not justified, as discussed by Hafele et al. (2006). 

Cervantes et al. (2000) minimized the grade-change time between two steady-states in 

a large-scale industrial LDPE plant, for two polymer grades. Asteasuain et al. (2001b) 

presented a dynamic model of an LDPE reactor and then obtained the optimal start-up 

policies. They maximized the outlet conversion and minimized the time required for 

the reactor to stabilize, while forcing the polymer properties to have some desired 

values during start-up. Again, these studies did not account for the spatial and time 

variations of the physico-chemical properties. Also, some reactions were not included 

in their reaction scheme. These are important for defining the polymer quality. Hafele 

et al. (2005) simulated an industrial tubular reactor for LDPE production using an 

adaptive method of lines where the adaptation of grid nodes was done dynamically. 

Hafele et al. (2006) used their model to study the effects of the thickness of the 

reactor wall and the recycle of the materials on the dynamics of the plant. However, 

they did not provide complete details of their approach for proprietary reasons. In the 

present study, a very comprehensive dynamic model for the production of LDPE in 

tubular reactors is presented and simulation results using it are discussed in detail.    

In this work, the steady-state model of Agrawal et al. (2006) is modified to study 

the dynamic behavior of an industrial tubular reactor. The dynamic model comprises 

of a set of partial differential and algebraic equations, and uses a detailed reaction 

scheme and kinetics. The variations in the physical and transport properties are also 

included in the model. The dynamic model is used to study the effects of step-changes 

of the inlet pressure and of the concentrations of initiators and telogen, on the 

transient profiles of the monomer conversion, polymer properties and the reactor 
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temperature. Complete details of the model parameters and the simulation results for 

the industrial tubular reactor are provided. Thereafter, the dynamic model is used to 

optimize the grade-change policies. The objectives used are the time taken for grade 

changeover and the specifications on the quality of the product (Mn and the 

normalized concentration of the side-products in the exit stream). An end-point 

constraint on exit value, Mn,exit, is also used. These two objectives are simultaneously 

optimized using the binary-coded elitist non-dominated sorting genetic algorithm 

(NSGA-II; Deb, 2001) with the jumping gene (JG) adaptation (Simoes et al., 1999; 

Kasat and Gupta, 2003; Man et al., 2004; Guria et al., 2005). The details of NSGA-II-

aJG are described in Guria et al. (2005). A multi-objective optimization (MOO) 

problem will not have a unique solution unless the objectives are non-conflicting. It 

will have several equally-good optimal solutions, which are known as Pareto-optimal 

or non-dominated solutions; i.e., each of the solutions is better than the others in the 

Pareto set in terms of at least one objective. However, the Pareto solutions are better 

than all other feasible solutions as far as all the objectives are concerned. Interested 

readers are referred to Deb (2001) and Rangaiah (2007) for more details on MOO and 

its applications. 

 

6.2 Dynamic Modeling and Simulation 

The industrial high-pressure tubular reactor for LDPE production contains several 

tubes which are inter-connected by 180 ° bends. The steady-state model of Agrawal et 

al. (2006) is modified to give a dynamic model for optimal grade-change studies. The 

detailed description of the tubular reactor, the kinetic scheme, and the process 

parameters are reported in Agrawal et al. (2006). The design features and model 

parameters are summarized in Table 6.1. In brief, the steady state model is based on 
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the plug flow assumption, and incorporates the axial variation of the concentrations, 

temperature and pressure (and the physical properties). In addition, several main 

(Asteasuain et al., 2001b) and side reactions, e.g., intra-molecular chain transfer, 

chain transfer to polymer, β-scission of secondary and tertiary radicals, etc. (the latter 

give the extent of long- and short-chain branching and the amount of unsaturation in 

the polymer) are included.  

During grade-change, the concentrations, Cj(z, t), and the temperature, T(z, t), of 

the polymerizing mixture are functions of both the axial location, z, and the time, t. It 

is assumed that there are no radial gradients present in view of the high velocity of the 

reaction mass. The model equations for Cj(z, t) and T(z, t) can be written for a 

differential length, dz, as  
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j j
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In Equation (6.1), Cj is the concentration of the jth species, and its subscripts denote 

the various species: initiator 1, initiator 2, oxygen, solvent, monomer, methyl, vinyl, 

vinylidene, free-radicals without monomer unit, nth- and pth-order moments for the 

chain length distribution of macro-radicals and dead polymer molecules, respectively. 

The other symbols in Equations (6.1) and (6.2) are: rj is the rate of generation of the jth 

species, v is the axial velocity, ρ, Cp and T are the density, specific heat and the 

temperature of the reaction mixture, respectively, U is the over-all heat transfer 

coefficient, TJ is the jacket fluid temperature, Dint is the inside diameter of the reactor, 

kp is the propagation rate constant, and HΔ  is the heat (enthalpy) of polymerization. 
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The expressions for the reaction rate and the parameters are given in Agrawal et al. 

(2006) and are not repeated here. Constant (average) values of the temperature of the 

jacket fluid in each zone, and of the specific heat of the reaction mixture are assumed. 

The velocity of the reaction mixture is calculated by the over-all mass balance 

equation:  

v v
z z

ρ
ρ

∂ ⎛= − ⎜∂ ∂⎝ ⎠
∂ ⎞

⎟  (6.3) 

Since ρ  depends on the monomer concentration, CM(z, t), and the temperature of the 

reaction mass, T(z, t), its variation with respect to the axial position, z, is given by  

M

M

CT
z T z C z
ρ ρ ρ ∂∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

 (6.4) 

The pressure at the axial location, z, and time, t, is computed using the following 

equation in fluid-mechanics 

2
6 r

int

210 f vP v v
z D z

ρ ρ− ⎛ ⎞∂
= − +⎜∂ ∂⎝ ⎠

∂
⎟

L⎪
⎬

 (6.5) 

There are a total of twenty five partial differential equations (PDEs) in the dynamic 

model. The model also contains fifteen algebraic equations given in Agrawal et al. 

(2006) (Equations T2-1 to T2-15). The initial conditions (at t = 0) and the boundary 

conditions (at z = 0) are given by: 

( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

ss

ss

ss

ss

ss

0,  

0,  

ρ 0,  ρ 0

0,  

0,  

j jC t z C z

T t z T z

t z z z

v t z v z

P t z P z

⎧ ⎫= =
⎪ ⎪
⎪ ⎪= =⎪ ⎪
⎪ = = ≤ ≤⎨
⎪ ⎪

= =⎪ ⎪
⎪ ⎪
⎪ ⎪= =
⎩ ⎭

 (6.6) 
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( ) ( )
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The quantities, SS
jC , TSS, etc., in Equation (6.6) are the steady-state (SS) profiles that 

can be obtained using the steady-state model of Agrawal et al. (2006). It is assumed 

that the tubular reactor is operating at steady-state for t ≤ 0, and that changes in the 

operating conditions are introduced from t = 0.  

The PDEs describing the homogeneous reaction mixture in the tubular reactor are 

converted into ordinary differential equations (ODEs) using the finite difference 

method (method of lines; Gupta, 1995) using equally spaced grid points. The PDEs 

are discretized in time, t, using the backward finite difference technique, with an 

accuracy of O(z). The resulting coupled non-linear ODEs (in z) are integrated using 

the D02EJF subroutine in the NAG library. This subroutine uses Gear’s technique for 

integrating the stiff equations. A tolerance (TOL) of 10-5 is used for solving the ODEs. 

The discretization in t (instead of the commonly used space variable, z) is chosen in 

this work so as to decrease the computational time for each simulation, enabling the 

model to be used for optimization. Note that a typical LDPE tubular reactor is very 

long (more than 1000 m) and has several zones, whereas the grade-change time is 

small (~ 5 minutes). To obtain the steady-state profiles for the state variables [ SS
jC , 

TSS, etc., in Equation (6.6)], the steady-state model of Agrawal et al. (2006) is coupled 

with the dynamic model. Owing to the discretization in t, values of the state variables, 

x, are needed at the feed end (z = 0) at different times. These values, x (t, z = 0), are 

the same as those at t = 0 and z = 0, i.e., x (t = 0, z = 0) until step changes are 

introduced. Thereafter, they are given by the boundary conditions [Equation (6.7); 
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step inputs]. Then, the integration of the ODEs in z (as the independent variable) will 

produce profiles (function of the axial length) of the state variables at different times. 

 
Table 6.1 Design and operating conditions of the industrial LDPE tubular 

reactor studied (Asteasuain et al., 2001b; Agrawal et al., 2006) 
 

Quantities Numerical values 
Total reactor length, Lt 1390 m 
Inside diameter of reactor, Dint 0.05 m 
Wall thickness of reactor  0.0254 m 
Number of zones, Nz 5 
Inner diameter of outer (jacket) wall, DJi 0.2032 m 
Axial lengths of zones, Lzm, m = 1, . . . , 5 60, 100, 180, 510, 540 m 
Specific heat of reaction mixture, CPm, m = 1, . . . , 
5 

2.428, 2.428, 3.140, 3.1401, 
4.019 kJ/kg-K 

Initial conditions for moments, λnp, μnp; n = 0, 1; 
 p = 0, 1, 2 

0.0 kmol/m3

Flow rate of monomer, FM 11 kg/s 
Flow rate of inert, Finert 0.22 kg/s 
Flow rates of jacket fluids, VJm, m = 2, . . . , 5 4.03 × 10-3, 3.94 × 10-3, 3.32 

× 10-3, 0.26 × 10-3 m3/s 
 

The computer code for solving the differential equations for the dynamic 

simulation of the LDPE reactor was written in FORTRAN 90. The computer code 

was run on an HP workstation (3.60 GHz and 3.25GB RAM). The CPU time required 

on this machine was nearly 8.5 min for a typical dynamic simulation run using a time 

step of 0.2 min (referred to as ∆t0.2) and tf = 8 min. This workstation can perform 325 

MFlops according to the LINPACK program (available at http://www.netlib.org) for a 

matrix of order 500 × 500. The code was tested by solving the dynamic model with no 

perturbations and comparing the final results with those obtained from the SS code of 

Agrawal et al. (2006). The two sets of results were found to match exactly. Thereafter, 

a perturbation (step change) was introduced in one of the operating variables in the 

dynamic model and the differential equations were solved until the final SS was 

attained. The results generated at large values of t from the dynamic code matched 

those generated from the SS code under corresponding conditions.  
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The step size, ∆t, for discretization the time, t, is selected carefully such that 

transient responses of acceptable accuracy are obtained within reasonable 

computational times. For this, step changes were introduced in four operation 

variables simultaneously: the solvent flow rate, FS, the flow rates, FI,1 and FI,2, of both 

the initiators and the inlet pressure, Pin. The initial operating conditions used were 

those given in Table 6.2 for the initial grade, and the values of the above four 

variables were changed later to the values corresponding to the final grade in Table 

6.2. The time dependence of the temperature, number average molecular weight, 

monomer conversion and the normalized side-product content at the reactor exit (Texit, 

Mn,exit, XM,exit and NSPexit) are shown in Figure 6.1 for several different values of ∆t: 

1.0, 0.5, 0.2, 0.1 and 0.05 min. NSPexit is calculated using e iiM ,exit V ,exitV ,exit

30 0.1 0.7
C CC⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

d  

. The final steady states for these values of ∆t are reached in 12, 10, 8, 5 and 3 min, 

respectively, and the corresponding CPU times are 0.5, 1.5, 8.5, 16.5 and 30 min. 

These data show that simulations with higher step sizes, for instance, 1 min and 0.5 

min (∆t1 and ∆t0.5), took the least CPU time to reach the final SS. But, these results do 

not show all the dynamic characteristics shown by simulations using ∆t0.2, ∆t0.1 and 

∆t0.05, as shown in Figure 6.1b for XM,f. Though results obtained using ∆t0.05 show the 

best dynamic results, the CPU time is exorbitant, and so such a small step size is not 

practical for multi-objective optimization which requires numerous simulations of the 

dynamic model. Hence, ∆t0.2, which produces results close to those generated using 

∆t0.05, is chosen for subsequent simulations and optimization. 
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Figure 6.1 Effect of step size on the histories of the values at the exit of the 
reactor: (a) temperature (Texit), (b) monomer conversion (XM,exit), (c) number-

average molecular weight (Mn,exit), and (d) normalized side products (NSPexit) at 
the reactor exit 

 

6.3 Effects of Changes in the Operation Variables 

Having established a suitable value of ∆t, we now generate results for step 

changes in the operation variables. The changes are carried out one by one. First, the 

solvent flow rate, FS, is changed from 0.13 kg/s to 0.049 kg/s as a step. The variation 

of the concentration, CS, of the solvent along the axis of the reactor is shown in Figure 

6.2a for different times. The decrease of the solvent concentration at the reactor exit 

with time is shown in Figure 6.2b. The solvent is used in the feed to control the 

propagation of the chains. Therefore, it affects Mn(z, t) as well as Mn,exit(t), as 

observed in Figures 6.2c and d.   
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The flow rate, FI,1, of initiator 1 is decreased (alone) next from 2.23 × 10-3 kg/s to 

1.7 × 10-3 kg/s. This initiator is introduced in the third zone (the propagation reaction 

is highly exothermic and the temperature peaks in the third zone) where it 

decomposes into free-radicals which react with the monomer present at that point. 

When the quantity of initiator is decreased, the temperature peak is lowered from 

590.2 to 589.4 K and shifts towards the end of the reactor (from z = 305 to 320 m). 

These results are not shown here but are available from the authors. On the contrary, 

the temperature peak becomes steeper on increasing FI,2 from 6.8 × 10-5 kg/s to 8.2 × 

10-5 kg/s, as shown in Figure 6.3a. Similarly, T and XM at the reactor exit increase as 

shown in Figures 6.3b and c, whereas Mn remains unaffected (not shown). Similar 

effects are observed when Pin is increased from 183.11 MPa to 187.53 MPa. These 

results are not shown here for the sake of brevity but can be provided on request.  

In any industrial plant, changes in more than one variable can occur simultaneously. 

This complex problem is studied next. Step changes in FS, FI,1, FI,2 and Pin are 

introduced simultaneously, with values as mentioned in the earlier cases. The 

transient behaviors of Mn, XM and T at the reactor exit have already been shown in 

Figure 6.1. The profiles of XM and Mn along the reactor axis at different times are 

plotted in Figures 6.4a and 6.4b. The effect of a decrease in FS is observed in Figure 

6.4b where Mn starts increasing as soon as the solvent concentration is lowered and a 

sudden dip in Mn is seen at the point of injection of the first initiator in the third zone. 

This is due to the generation of free-radicals. Similarly, the monomer conversion at 

the reactor exit first increases due to the sudden increase in FI,2 and then decreases to 

account for the reduction in FI,1. 
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Figure 6.2 Transient profiles for a step decrease in FS alone: (a) variation of the 
solvent concentration along the reactor axis at different times, (b) variation of 

the solvent concentration at the reactor exit, (c) variation of Mn along the reactor 
axis at different times, and (d) variation of Mn at the reactor exit 
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6.4 Optimal Grade-change for LDPE Tubular Reactor 

6.4.1 Formulation 

Optimal grade-change of polymers in a polymer plant is an important issue. 

During grade change, off-spec product is produced which leads to a loss of revenue. 

Thus, changes in the polymer grade should be made with the minimum amount of off-

spec material being produced, as also in as short a grade-change time as possible. It is 

expected that the minimization of the grade-change time would simultaneously 

minimize the amount of off-spec products. The grade of the polymer is typically 

characterized by several physical properties of the product, namely, the average 

molecular weight, density, melt-index, etc. In this study, the molecular variables that 

represent these physical properties, the number-average molecular weight, Mn, and the 

normalized side products, NSP, etc., are used for characterizing the off-spec product 

during the grade change period. The integral of the squared deviations/errors (ISE) of 

Mn,exit and NSPexit from their desired values over the grade-change period can be used 

as objective functions. The minimization of these objective functions not only ensure 

the specs on the polymer quality but also minimizes the grade-change period, tf, since 

the latter is treated as an additional optimization variable (Chatzidoukas et al., 2003). 

Padhiyar et al. (2006) and Asteasuain et al. (2006) also used the deviation of Mn for 

optimizing the grade-change period. Chatzidoukas et al. (2003) used an objective 

function in terms of the squared deviation of the polymer density and the melt index 

from their corresponding desired values. These two properties were related to Mn 

through empirical correlations.   

The SS model of Agrawal et al. (2006) was first used to obtain the optimal 

operating conditions at steady state, both before and after grade-change. Two 

objective functions were considered: the monomer conversion, XM,exit, was maximized 
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and the normalized side product concentration was minimized, both at the exit of the 

reactor. These were carried out for two different desired values of Mn,exit, 21900 

kg/kmol (initial grade, A) and 29000 kg/kmol (final grade, B). These runs provide 

information on the manipulated (decision) variables to be used for optimization of the 

grade-change problem. The product specifications and the steady-state operating 

conditions for grades A and B are reported in Table 6.2. The NSP for these two grades 

are 2.265 and 2.307, respectively. It should be mentioned that soft constraints 

(Agrawal et al., 2006) on Mn,exit, with a 1 % variation around the desired value 

permitted, were used to obtain the Pareto-optimal solutions and so the values of Mn,exit 

given in Table 6.2 are very slightly different from the desired values.  

The Pareto optimal solutions and the associated decision variables for these two 

grades of LDPE are shown in Figures 6.5 and 6.6. Chromosomes ‘a’ and ‘b’ (Figures 

6.5a and 6.6a) are selected for grade-change optimization. These have the same values 

of the monomer conversion. After comparing Figures 6.5 and 6.6, seven of the eleven 

decision variables (FS, FI,1, FI,2, TJ,1, TJ,2, TJ,3 and Pin) were found to be different in the 

two steady-state optimizations, corresponding to grades A and B (Table 6.2). 

However, TJ,1 − TJ,3 do not differ much and also do not affect the Pareto optimal set 

significantly. This was also confirmed, when plots of Pareto optimal results for two 

other polymer grades (Mn,exit = 16000 kg/kmol and Mn,exit = 25000 kg/kmol) were 

compared with that for grade A. These results are not presented here but can be 

presented on request. Therefore, TJ,1 − TJ,3 can be eliminated from the set of decision 

variables so as to reduce the complexity of the dynamic optimization problem. 

Steady-state optimization, using only four decision variables (FS, FI,1, FI,2, Pin) for 

Mn,exit = 29000 kg/kmol, and with the remaining decision variables kept constant at 

their optimal values corresponding to grade A, produced Pareto optimal solutions for 
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grade B that were quite similar to those obtained with eleven decision variables. 

Hence, only the five decision variables, FS, FI,1, FI,2, Pin and tf, are used for the 

optimal grade-change problem.  

The first four decision variables, FS, FI,1, FI,2, and Pin, are changed continuously 

with time, over 0 ≤ t ≤ tf (where t = 0 is the beginning of the grade change operation 

and tf is the end). The starting values of each of the four decision variables at t = 0 are 

those corresponding to grade A, while the values at tf and thereafter are those for 

grade B. To simplify the problem, however, each of these four decision variables, ξi, 

are represented by two discrete (intermediate) values, ξi,j, at times, ti,j (ith decision 

variable at the jth time; j = 1 and 2), with a ramp function connecting these discrete 

points. Thus, the continuous functions are represented by a set of three ramps over 

three intervals, Δti,j; (j = 1, 2, 3), used for discretization of the ith decision variable 

(hence, ). This is done to keep the 

algorithm simple.   

3

,0 , , ,3 ,
1 1

0; ; 1,2;
k

i i k i j i f
j j

t t t k t t
= =

= = Δ = = = Δ∑ i jt∑

The mathematical formulation of the MOO grade-change problem is as follows: 

26
n,exit n,exit(f)

1 S I,1 I,2 in f
n,exit(0) n,exit(f)0

( )
[ ( ), ( ), ( ), ( ), ] d

M t M
J F t F t F t P t t t

M M
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
∫   (6.8a) 

26
exit exit(f)

2 S I,1 I,2 in f
exit(0) exit(f)0

( )
[ ( ), ( ), ( ), ( ), ] d

NSP t NSP
J F t F t F t P t t t

NSP NSP
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
∫   (6.8b) 

subject to 

0.02 ≤ FS(t) ≤ 0.5 kg/s (6.8c)  

5 × 10-5 ≤ FI,1(t) ≤ 5 × 10-3 kg/s (6.8d)                          

5 × 10-5 ≤ F I,2(t) ≤ 5 × 10-3 kg/s                              (6.8e)                   

182.39 ≤ Pin(t) ≤ 248.25 MPa (6.8f) 

f0.4 3t≤ ≤   (6.8g) min
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,0.2 2.6i jt≤ Δ ≤  ; i = 1, 2, 3, 4; j = 1, 2 (6.8h) min

Tmax(z, t) ≤ 610.15 K (6.8i) 

Mn,exit(t) ≥ 22050 - 200  (6.8j) kg/kmol

Mn,exit(t) ≤ 28970 + 200  (6.8k) kg/kmol

Model equations                                                                                           (6.8l)  

In Equations (6.8a) and (6.8b), subscripts ‘0’ and ‘f’ represent the values of Mn,exit and 

NSPexit at the initial and final times of the grade change-over. The bounds of the 

decision variables have been chosen based on information in the literature (Asteasuain 

et al., 2001b; Brandolin et al., 1988; Agrawal et al., 2007).  

It may be emphasized that even though the decision variables have been indicated 

as continuous functions of t in Equation (6.8), only the set of discretized values, ξi,j (i 

= 1, . . . , 4; j = 1, 2) and Δti,j (i = 1, . . . , 4; j = 1, 2) are actually to be used. Note that 

the values of ξi,j at t = 0 and t = tf are fixed at the initial and final SS values and so 

cannot be used for optimization. The third discretization interval, Δti,3 for each 

decision variable is calculated using Δti,3 = tf - Δti,1 - Δti,2. The lower bound on Δti,j is 

decided based on the integration step size of 0.2 min used in the dynamic model, 

while the upper bound (Equation 6.8h) is selected so as to allow two additional 

intervals, each of 0.2 min, before tf. The ramp trial function for the parameterization 

of a typical decision variable, say, FS(t), is shown in Figure 6.7. Two values (referred 

to as the amplitudes), FS,1 and FS,2, and two ‘discretization’ intervals, Δt1,1 and Δt1,2, 

(and tf, it being a decision variable, too) are used to define the solvent flow rate as a 

function of time. Thus, there are a total of 17 (including tf) decision variables for the 

dynamic optimization problem. The upper bound on tf is chosen as 3 min (Cervantes 

et al., 2000). However, the upper bound (horizon of the dependent variables) on the 

two integrals in Equations (6.8a and 6.8b) is taken to be larger (= 6 min) than tf 
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(horizon of the decision variables), so that the final optimal steady state is attained 

after the introduction of the inputs. A local constraint is imposed on the reaction mass 

temperature to ensure safety (Equation 6. 8i). The inequality constraints on Mn,exit(t) 

(Equations 6.8j and 6.8k) are imposed to avoid undershoot and overshoot. The 

constraints (Equations 6.8i – 6.8k) are handled using the constrained dominance 

principle (Deb et al., 2001; Agrawal et al., 2007). Chromosomes with the computed 

value of Δti,3 < 0 are not passed on to the dynamic model so as to save computational 

time, and the values of their objective functions are assigned very low values (-1.0 × 

1012) so that they are killed in subsequent generations. 
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Figure 6.5 Pareto optimal solutions and the corresponding decision variables for 
the initial grade, A (Mn,exit = 21900 ± 200 kg/kmol) using NSGA-II-aJG 
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Figure 6.6 Pareto optimal solutions and the corresponding decision variables for 
the final grade, B (Mn,exit = 29000 ± 300 kg/kmol) using NSGA-II-aJG 
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Table 6.2 Steady-state operating conditions and product specifications for the 
initial (A) and final (B) grades 

 
Operating conditions Initial: Grade A Final: Grade B 

Tin (K) 323.20 323.20 
Fo (kg/s) 5 × 10-5 5 × 10-5

FS (kg/s) 0.1319 0.049 
FI,1 (kg/s) 2.23 × 10-3 1.7 × 10-3

FI,2 (kg/s) 6.8 × 10-5 8.2 × 10-5

TJ,1 (K) 413.25 413.48 
TJ,2 (K) 473.36 473.36 
TJ,3 (K) 473.27 473.19 
TJ,4 (K) 413.19 413.16 
TJ,5 (K) 414.47 413.41 

Pin (MPa) 183.11 187.53 
Product Specifications 

Mn,exit (kg/kmol) 22050 28970 
XM,exit 0.30096 0.30009 
NSPexit 2.265 2.307 
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Figure 6.7 Ramp trial function for the discretization of the decision variable, 
FS(t) 
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6.4.2 Results and Discussion  

The MOO problem described above is solved using the binary-coded NSGA-II-

aJG (Guria et al., 2005). The best values of the computational parameters in NSGA-

II-aJG are obtained by trial and are given in Table 6.3. These values are the same as 

used in the design-stage MOO of the LDPE reactor using the constrained dominance 

principle, as reported in Agrawal et al. (2007). The CPU time on the HP workstation 

(3.60 GHz and 3.25 GB RAM) was about 200 hr for a typical optimization run with 

50 chromosomes and for 250 generations (the CPU time for the first 200 generations 

is not accounted due to infeasible solutions; these are discussed later). Because of 

large computational time, it becomes difficult to run the optimization for more 

generations and/or chromosomes. Therefore, attainment of reasonable non-dominated 

solutions is considered to be satisfactory. Nandasana et al. (2003) also faced a similar 

problem of high computational times for the MOO of unsteady state operation of an 

industrial steam reformer.  

It may be noted that the first feasible solution (chromosome) was obtained in the 

205th generation and all fifty chromosomes were feasible only in the 220th generation. 

This occurs due to infeasible chromosomes associated with Δti,3 < 0 for any of the 

decision variables. It may be noted that only one non-dominated solution (J1 = 3.21, 

J2 = 1.86) could be obtained in the 220th generation while all others were dominated 

solutions. Values of the objective functions, J1 and J2, obtained using a step change in 

all four decision variables, ξi(t), from their initial optimal SS values to their final SS 

values, starting right from t = 0, are obtained by solving the dynamic model. These 

integrals are found to be 1.86 and 1.22, respectively. These are shown as inverted 

filled triangle in Figure 6.8 and are non-optimal (note that optimal grade change 

involves continuous changes of the decision variables over time, rather than step 
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changes). Interestingly, these values are better than the results obtained with MOO in 

the 220th generation. This shows that optimization needs to be run for more 

generations.  

 
Table 6.3 Values of the computational parameters used in the binary-coded 

NSGA-II-aJG for the two-objective dynamic optimization problem 
 

Parameter Values 
Ngen 350 
Npop 50 
lsubstr 30 
lchrom 510 
laJG 70 
pc 0.8 
pm 0.01 
pJG 0.3 
Sr 0.1 

 

Non-dominant solutions at four selected generations are shown in Figure 6.8. One 

objective, J1, increases and the other, J2, decreases as one goes from the left-most 

point in any generation to the right. Hence, the solutions in a generation are non-

dominated. Reasonable convergence to the Pareto optimal set can be seen at about the 

330th generation. The distribution (spread) of points in the Pareto optimal set could 

possibly be improved by solving for more generations and/or using more 

chromosomes, but excessive CPU times limits doing this. The Pareto optimal 

solutions show that smaller amounts of off-spec product (i.e., lower J1) is obtained but 

at the cost of a higher value of the normalized side products in the polymer (i.e., 

higher J2) during the grade-change. The non-dominated optimal solutions are better 

than and dominate over the single step-change policy (shown with a filled inverted 

triangle). This shows the usefulness of using MOO for this problem. 

The histories of the two squared deviations used in the two objectives (not the 

values of the integrals) for chromosome C in Figure 6.8 (corresponding to a maximum 
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value of J1 and a minimum value of J2) over the grade-change period, are shown in 

Figures 6.9a and 6.9b, respectively. The integral of the squared deviation in the 

objective functions emphasizes considerably on the large errors at the beginning of 

the grade-change period. The relatively smaller deviations near the final steady state 

do not contribute much to the objective function, due to the squaring of the error. This 

can be seen in Figure 6.9a. The value of the square of the deviation in Mn,exit 

approaches zero as soon as Mn,exit increases to the proximity of the final steady-state 

value. Though Mn,exit differs by 500 kg/kmol from the final steady-state value (Figure 

6.9c), its contribution to the objective function, J1 is negligible (Figure 6.9a). Similar 

comments are applicable for the squared deviations of NSPexit (Figures 6.9b and 6.9d).  
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Figure 6.8 Non-dominated solutions for the 2-objective optimization problem in 
Equation (6.8) (ISE approach) using NSGA-II-aJG, at different number of 

generations 
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Figure 6.9 Histories of the squared errors of: (a) Mn,exit, (b) NSPexit, and the 
optimal histories of:  (c) Mn,exit, and (d) NSPexit, over the grade-change period for 

chromosome C in Figure 6.8. 
 

It is more important to emphasize deviations near the final steady state during 

grade-change. This can be achieved by using the integral of the product of time and 

the absolute error (ITAE) in the two objectives. The two objectives can then be 

defined as 

6
n,exit n,exit(f)

1
n,exit(0) n,exit(f)0

( )
d

M t M
I t t

M M
−

=
−∫   (6.9a) 

6
exit exit(f)

2
exit(0) exit(f)0

( )
d

NSP t NSP
I t t

NSP NSP
−

=
−∫   (6.9b) 

The non-dominated solutions for the MOO problem using these objectives (along 

with Equations 6.8c – 6.8l), after the 250th, 280th and 310th generations, are shown in 
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Figure 6.10. The Pareto solutions occur at larger values of both the objective 

functions when compared to the results in Figure 6.8. Note that, as before, the first 

feasible chromosome was found only in the 202nd generation and all chromosomes in 

the population were found to be feasible only after 222 generations.  
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Figure 6.10 Non-dominated sets for the two objectives in Equation (6.9) (ITAE 
approach) using NSGA-II-aJG, at different number of generations 

 

The histories of the product of the time and the absolute error (TAE) (used as the 

integrand in Equation 6.9) corresponding to the two objectives in Equation (6.9) for 

chromosomes D (I1 is minimum, I2 is maximum) and E (I1 is maximum, I2 is 

minimum), are plotted in Figures 6.11a and 6.11b, respectively. The corresponding 

histories of Mn,exit and NSPexit are also plotted in Figures 6.11c and 6.11d. It is evident 

from these plots that the TAE becomes zero only when Mn,exit (or NSPexit) becomes 

extremely close to the final steady-state value of the new grade. In the ITAE 

approach, polymer properties (Mn,exit and NSPexit) reach their new steady state quickly 
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(~ 3.2 min). On the other hand, in the ISE approach, errors near the final steady state 

are not penalized in the objectives, and the final steady state for the two attributes 

(Mn,exit and NSPexit) of the polymer is attained quite late (~ 5 min). Thus, it can be 

concluded that the ITAE approach (and not the use of the ISE) should be used in 

formulating the objectives for polymer grade-change so as to reach to the new grade 

quickly, with the least off-spec product produced during the grade-change period. 
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Figure 6.11 Histories of the product of the time and the absolute error (TAE) of: 
(a) Mn,exit, (b) NSPexit, and the optimal histories of:  (c) Mn,exit, and (d) NSPexit over 

the grade-change period for chromosomes D (---) and E (―) in Figure 6.10 
 

The history of the molecular weight of the product in Figure 6.11c shows that, 

initially, Mn,exit remains unchanged till about 1.4 min and then it starts rising until 

about 4.2 min to reach a value within ±100 kg/kmol of the new grade of the polymer. 
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This causes the TAE for Mn,exit to be quite high initially whereas NSPexit rises quickly 

in about 1 min (see Figure 6.11d). Thus, I2 equals the minimum value since NSPexit 

does not show the same sluggish response initially as for Mn,exit. On the other hand, 

the history of NSPexit for chromosome D (Figure 6.10; I1 is minimum and I2 is 

maximum) shows a sluggish nature at the start of the grade-change and large errors 

are accumulated in I2 (Figure 6.11d). Thus, the objective function, I2, attains a large 

value. The rise time for the molecular weight plot is ~ 3.2 min and the new steady-

state is attained quickly, as shown in Figure 6.11c.  

Plots of the decision variables for chromosomes D and E are shown in Figure 

6.12. As can be seen from the points in these plots, the discretization time intervals 

are different for each decision variable. The optimal ‘recipes’ generated by NSGA-II-

aJG using the ITAE approach involve large changes at the beginning of the grade-

change period. The plots of the decision variables for chromosome E are now 

discussed. Figure 6.12a shows that the optimal FS first decreases to close to its lower 

bound in the first discretization interval (Δt1,1 ~ 1 min) so that the value of Mn,exit 

comes close to that for the new grade. But, decrease in the solvent concentration also 

leads to higher monomer conversion. So, to retain the same level of the monomer 

conversion, the amount of the first initiator, FI,1, decreases during this time (Δt2,1 ~ 1 

min; see Figure 6.12b). However, FI,2 increases sharply (Figure 6.12c) in this interval 

(Δt3,1 ~ only 0.3 min, different from 1 min). This generates more free radicals in the 

reaction mixture to increase the monomer conversion at the end of the reactor. The 

increase in the monomer conversion also corresponds to higher values of NSPexit 

(Agrawal et al., 2006). Also, increase in the inlet pressure helps in lowering the SCB, 

vinyl, and vinylidene group concentrations and therefore the value of NSPexit (Ehrlich 

and Mortimer, 1970; Agrawal et al., 2006). Hence, the inlet pressure, Pin, also 
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increases sharply almost in the same discretization interval (Δt4,1 ~ 0.3 min), so as to 

keep the concentrations of the side products in check, as shown in Figure 6.12d. 

Similarly, the amplitudes and the discretization intervals for the decision variables 

occur optimally such that the amount of off-spec product is minimized. Results for 

chromosome D can be explained similarly.  
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Figure 6.12 Optimal grade-change histories of the four decision variables for the 
MOO problem in Equation (6.9) (ITAE approach): flow rates of solvent (FS), 

initiator 1 (FI,1), and initiator 2 (FI,2) and the inlet pressure (Pin) for 
chromosomes D (---) and E (―) in Figure 6.10 

 

6.5 Conclusions  

A comprehensive dynamic model for the production of LDPE in high-pressure 

tubular reactors is developed and validated by comparing its predictions with those of 
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the SS model. Complete details of the dynamic model are provided for use by other 

workers. The effects of changes in the operation variables are first studied. Thereafter, 

optimal ‘recipes’ for grade-change using two objective functions are obtained. The 

binary-coded NSGA-II-aJG is used for solving the multi-objective optimization 

problem. A set of Pareto optimal solutions is obtained. These provide several choices 

to the decision maker for grade-change in the LDPE reactor. Two approaches were 

used, one using the ISE and the other using the ITAE. The latter is better.   
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Chapter 7  

Conclusions and Recommendations  

 

7.1 Conclusions   

The present work was on modeling, simulation and optimization of an industrial 

tubular reactor for LDPE production so as to improve its overall performance. 

Operation, design and grade-change optimization of an LDPE reactor for multiple 

objectives were successfully carried out using NSGA-II and its JG adaptations. The 

conclusions and contributions of this work are outlined in following paragraphs.  

A comprehensive, steady-state model for LDPE production in high-pressure 

tubular reactors was developed. A review of available models in open literature 

showed inconsistency in the values of the rate constants (possibly due to different 

operating conditions) and/or unavailability of a few rate constant values (due to 

proprietary reasons). Hence, the steady-state model in our study was tuned using the 

reported industrial data (Asteasuain et al., 2001b). We assumed and provided 

reasonable values for all the missing information. Our model description and details 

are complete and useful for researchers (Chapter 4).  

Thereafter, the developed model is used for operation optimization of the LDPE 

tubular reactor for the industrially important objectives: maximization of monomer 

conversion and minimization of normalized side products concentration (SCB and 

unsaturated products) in the product. The binary-coded NSGA-II and its JG 

adaptations were used to solve this constrained MOO problem for LDPE tubular 

reactor operation. The resulting Pareto-optimal solutions show that higher monomer 

conversions (close to 38%) can be achieved with almost similar concentrations of the 

side products of current industrial operation (XM,f = 30% for the actual operating 
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point). Thus, this study offers considerable scope for improving the operation of 

industrial LDPE reactors. 

It was found that NSGA-II and its JG adaptations failed to converge to the global 

optimal solutions when an equality constraint on number-average molecular weight at 

reactor exit, Mn,f = Mn,d kg/kmol, is placed. Thus, it was suggested that solutions of 

problems involving hard (equality) end-point constraints should be assembled by 

obtaining solutions of several MOO problems with softer constraints, rather than by 

solving the problem only once; otherwise, erroneous results could be obtained 

(Chapter 4). In addition, it was observed that the binary-coded NSGA-II-aJG and 

NSGA-II-JG performed better than NSGA-II near the hard end-point constraints. We 

also studied a four-objective problem (with each of the three normalized side product 

concentrations taken individually as objectives), and demonstrated that the resulting 

non-inferior solutions were comparable to those for the two-objective problem 

(Chapter 4). 

Thereafter, optimal design of a LDPE tubular reactor for two objectives: 

maximization of monomer conversion and minimization of normalized side products 

concentration was investigated. This complex problem involved 22 decision variables 

and several constraints on average molecular weight, reactor temperature and jacket 

fluid velocities. Binary-coded NSGA-II, NSGA-II-JG, and NSGA-II-aJG could not 

converge to the correct global Pareto-optimal solutions for the case of equality 

constraint on Mn,f.  However, for the near equality constraints, for instance, Mn,f = Mn,d 

± 2 kg/kmol, the Pareto-optimal solutions were obtained but these were limited to 

higher monomer conversion and required intensive computational time. Thus, 

solutions satisfying the above constraint were picked up from among the Pareto-

optimal sets corresponding to several MOO problems with more relaxed bounds on 
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Mn,f. These solutions are spread over a wider range and can be obtained with less total 

CPU time. Also, NSGA-II-aJG and NSGA-II performed better than NSGA-II-JG in 

terms of convergence to and diversity of the Pareto-optimal sets for the near equality 

constraints (Chapter 5).   

A three-objective optimization of the LDPE design problem, which included 

minimization of normalized compression power along with the earlier mentioned two 

objectives, was also solved using NSGA-II-aJG. The results show that the Pareto-

optimal solutions for this problem were comparable to or better than those obtained 

by the two-objective optimization (Chapter 5). 

In view of the difficulty in handling the equality constraint on molecular weight in 

the LDPE optimization, a systematic approach of constrained-dominance principle for 

handling the constraints was implemented and tested in the binary-coded NSGA-II-JG 

and NSGA-II-aJG for the first time (Chapter 3). This approach performed marginally 

better than the penalty function approach for these algorithms for handling the 

constraints in the LDPE design problem (Chapter 5).  

Now, to optimize the frequent changes in polymer grades encountered in a LDPE 

plant, a comprehensive dynamic model for the reactor is developed (Chapter 6) and its 

complete details are provided. Thereafter, this model is used to find the optimal 

grade-transition policies for two objectives (namely, specifications on the quality of 

the product, Mn and the normalized concentration of the side-products in the exit 

stream) and in the presence of constraints. These profiles were presented and 

discussed. It was observed that the ISE approach is not sensitive to errors near to the 

steady-state of new grade whereas the ITAE approach penalizes these errors and is 

better. Hence, the optimal trajectories for grade transition should be obtained using 

the ITAE approach and to reach the final steady state quickly. 
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In this study, two conflicting objectives which are industrially important are 

identified for LDPE reactor optimization, and reactor performance is significantly 

improved using MOO. Thus, our study provides sufficient value addition to the 

research and scientific community. The lessons learnt from these optimizations 

include the ability of formulating the reactor optimization problems and solving them 

with complex multivariate optimization techniques such as binary-coded NSGA-II 

and its JG adaptations. The major constraint to be considered and dealt with is the 

heat generation since the polymerization is extremely exothermic and the reaction 

temperature is very high. These issues are discussed in the thesis. The vector 

optimization approach is never studied for optimizing this process system prior to our 

study. The quality and usefulness of this work are evident by our journal publications 

(Agrawal et al., 2006 and 2007). 

 

7.2 Recommendations for Future Work 

Based on experience gained and outcomes of the present work, several 

suggestions to further extend this work are outlined below. 

A comprehensive dynamic model is presented in this work to study the dynamics 

of LDPE tubular reactor. It was limited to the tubular reactor only; however, scope of 

the model can be expanded by considering the associated down-stream units (high- 

and low pressure separators and primary- and hyper compressors typically found in 

the LDPE plant) and recycle of unconverted ethylene. It will then be useful to 

understand the plant-wide behavior including instabilities and multiple steady-states 

caused by recycles as observed by Hafele et al. (2006). 

Grade-change, coupled with control strategies, can be carried out in two steps in 

any polyolefin industry. First, the optimal grade-change procedures are identified off-
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line to obtain the decision variables. This is done using appropriate constraints on the 

input, output and state variables of the process, and a good dynamic model. In the 

second step the optimal solutions are implemented using properly designed (values of 

their parameters) feed-forward and feed-back controllers (Chatzidoukas et al., 2003). 

This study focuses on the first aspect where optimal grade-change trajectories are 

obtained using off-line optimization. The second step of implementing the optimal 

solutions should be investigated, possibly for multiple objectives to maintain the 

process within a safe operating envelope and to ensure rejection of disturbances, if 

any, during the transition. Furthermore, for ensuring the optimality of the selected 

control structure, the transition policy and control configuration should be optimized 

simultaneously, and not sequentially.  

In the MOO of LDPE tubular reactors, when number-average molecular weight is 

constrained to lie exactly at the desired value, global optimal solutions could not 

obtained using the NSGA-II and its JG adaptations. Thus, it poses a challenging 

problem to the research community to work on new MOO algorithms and constraint 

handling techniques. Also, the gray-coding can be implemented instead of binary-

coding in these algorithms to check the improvements. In gray-coding, the usual 

binary string is converted into an equivalent sequence of 1’s and 0’s, and it has the 

unique property of representing any two neighboring integers in the gray space by the 

difference of one bit only (Chakraborti, 2004). Caruana and Schaffer (1988) and 

Schaffer et al. (1989) showed empirically that gray encoding usually performs better 

than binary encoding for some cases. 

During MOO, some chromosomes were generated for which the simulation of 

tubular reactor model was taking excessive time due to stiffness of model equations.  

Thus, the limits of decision variables (for instance, solvent flow rate, FS) were 
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shortened to speed up the optimization. However, these solutions could be of 

importance considering the failure of NSGA-II and its JG adaptations for the equality 

constraints and therefore it is recommended that these solutions should be studied for 

the reactor performance by more powerful integrating techniques so as to overcome 

the stiffness of model equations.  

Guria et al. (2005) observed that NSGA-II-aJG with the best set of computational 

parameters is the most rapidly converging technique for the MOO of reverse osmosis 

desalination units. Kachhap and Guria (2005) showed that NSGA-II-JG is superior to 

NSGA-II-aJG and NSGA-II in the MOO of copoly(ethylene-polyoxyethylene 

terephthalate) batch reactor. In the present study, NSGA-II-aJG and NSGA-II-JG 

were comparable for operation optimization but the former is better than the latter for 

design optimization. Hence, these algorithms should be thoroughly evaluated on both 

benchmark and application problems to establish their relative superiority, if any. 
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Appendix A  

Moment Closure Technique by Assuming a Log-Normal Distribution 

 

The moment closure technique has been adapted from Zabisky et al. (1992). If the 

molecular-weight distribution is assumed to be log-normal then the moment closure 

problem can be solved by expressing any integer moment of the distribution (r > 2) as 

a function of its lower moments. Thus, the log-normal distribution is defined as: 
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Here, H(x) is the unit step function (i.e., H(x) = 1 when x > 0 and H(x) = 0 for x ≤ 0), 

and μ and σ are parameters.  

The rth moment of a variable x about the origin is defined as: 
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For log-normal distribution, Equation (A.2) turns out to be: 
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By using appropriate variable changes, the integral in Equation (A.3) gives: 
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Thus, substituting the equivalent of the integral in Equation A.3, the rth moment of a 

variable x for log-normal distribution becomes: 

2 2
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rm r σμ
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Note that the zeroth moment (r = 0) calculated from Equation (A.4) is unity due to 

probability density function f(x). In order to satisfy this condition, the zeroth moment 
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of the molecular-weight distribution need to be normalized and the general result is 

given by: 

* i
i

o

QQ
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where the superscript * denotes the normalized moment. Thus, Equation (A.4) for the 

ith moment is defined by: 
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It should be noted that:  
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Now, the parameters, μ and σ2, defined in Equation (A.1) are obtained in terms of the 

moments using Equation (A.6), which are given below. 
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In order to express any integer moment (r > 2) as a function of its lower moments, we 

need to find a relationship among the moments. From Equation (A.4): 
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Substituting Equations (A.8), (A.9) and then (A.6) into Equation (A.10), the third 

order moment is obtained as follows:  
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This equation is used for bi-variate moments in our study in the following forms: 
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