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Summary

Target tracking is an important key technology for many military and commercial

applications. The tracking problems are usually formulated by using the state space

approach for discrete-time dynamic systems. Under this framework, the tracking

is to estimate the state xt of target at time t, given the measurement sequence y1:t

of sensor from time 1 to t, or equivalently to construct the conditional probability

density function p(xt|y1:t). The theoretical optimal solution is provided by the

recursive Bayesian filter. However, for multi-sensor multi-target tracking, there

are many challenges to extend the single-sensor single-target Bayesian filter. In

this thesis, the focus is on extending the Bayesian filter to multi-camera or multi-

target visual tracking.

First, a spatio-temporal recursive Bayesian filter is formulated for tracking a target

using multiple cameras. We propose an adaptive mixed particle filter for the imple-

mentation of the spatio-temporal recursive Bayesian filter for the dynamic system.

viii
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In particular, the mixed importance sampling strategy is used to fuse temporal in-

formation of dynamic systems and spatial information from multiple cameras. It

is adaptive in sense that it automatically ranks data from multiple cameras and

assigns weights according to data’s quality in the fusion process. The results show

that this method is able to recover a target’s position even when it is completely

occluded in a particular camera for some time.

Second, a multi-target Bayesian filter, the probability hypothesis density (PHD)

filter, is designed to track unknown and variable number of targets in image se-

quences. Because the dimensions of state and observation are time-varying during

the tracking process, the PHD filter employs the random finite set representation of

multiple states and multiple measurements and the PHD is the 1st order moment

of random finite set. The PHD filter is implemented using two methods: both

particle filter and Gaussian mixture. For the particle PHD filter, two importance

functions and correspondent weight functions are proposed for survival targets

and new-birth targets, respectively. It is shown in the thesis that the importance

function for survival targets theoretically extends the optimal importance function

of the linear Gaussian model from single-measurement case to measurement-set

(multi-measurement) case. Whereas the importance function for new-birth targets

is a data-driven method which uses the current measurements in the sampling

process of the particle PHD filter. For the Gaussian mixture PHD filter, a scene-

driven method which incorporates the prior knowledge of scene into the PHD filter
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is presented. The results show that these PHD filters are able to track a variable

number of targets and derive their positions in image sequences.

This work suggests that stochastic methods for Bayesian filtering are powerful

means for multi-sensor multi-target tracking.
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Chapter 1

Introduction

Target tracking is a fundamental problem for many military and commercial appli-

cations such as battlefield monitoring, video surveillance, human motion analysis,

and human-computer interface. Different applications have different scenarios and

motivations. For example, in radar tracking for battlefield monitoring, the target

(e.g., airplane, missile, or ship) usually appears as a spot on the radar screen with

complex maneuvers such as acceleration, turns, or stops. Whereas in visual track-

ing for video surveillance, the target (e.g., person or vehicle) is usually captured

in form of image sequences. Rich information such as intensity, color, or contour

contained in target pictures can be used for distinguishing, tracking and other form

of analysis.

The tracking problems are usually formulated by using the state space approach for

1



CHAPTER 1. INTRODUCTION 2

discrete-time dynamic systems. Under this framework, the tracking is to estimate

the state of target xt (e.g., position, velocity, and identification) at time t given the

measurement sequence of sensor y1:t (e.g., image sequences captured by a camera)

from time 1 to t, or equivalently to construct the conditional probability density

function p(xt|y1:t). Successive estimates provide the track which describes the

trajectory of a target.

A simple form of tracking is tracking a single target. There are two main groups

of methods for tracking a single target: filtering methods and likelihood functions.

Filtering methods are mostly used in radar tracking and generally used to capture

the dynamics of targets. The commonly used methods include: i) Kalman filter

for linear system and Gaussian noise [68] and its extensions such as the extended

Kalman filter (EKF) [45, 5] and the unscented Kalman filter (UKF) [67]; ii) in-

teracting multiple models (IMM) for multiple motion models [20]; and iii) particle

filters for nonlinear and non-Gaussian problems [51, 39]. On another hand, like-

lihood functions are mostly used in visual tracking tasks and concentrate on how

to differentiate the target from the background. The typical likelihood functions

include intensity-based method [81], contour-based method [62], and color-based

method [32].

As tracking a single target using one sensor has many limitations, there is a recent

trends towards multi-sensor or multi-target tracking. There has been some research

done on tracking using multiple cameras [21, 78, 90, 97] and on tracking multiple



CHAPTER 1. INTRODUCTION 3

targets [43, 107, 101, 36].

When tracking multiple targets, data association methods are generally used to as-

sociate observations of sensors with targets. For example, if there are two targets, a

person and a car, and the camera detects three foreground blobs, data association

must determine which blob belongs to the person, the car, or the clutter environ-

ment, i.e., there are multiple choices for association. The aim of data association

is to find the best association scheme. There have been a few categories of data

association methods: i) joint probabilistic data association (JPDA) [43] which uses

the weighted average of functions of multiple observations to update the state of

a target, ii) multiple hypotheses tracking (MHT) [107] which enumerates multiple

possible association hypotheses during a period till one hypothesis can be veri-

fied, and iii) assignment algorithms [101, 36] which essentially perform constrained

optimization problems to find an optimal association solution.

Another trend for tracking multiple targets is tracking a variable number of targets.

When the target number is unknown and variable, data association must deal with

the variable dimension of state or observation. Some methods have been proposed

to overcome this difficulty: jump-diffusion process [89], reversible jump Markov

chain Monte Carlo method (RJMCMC) [72], and finite set statistics (FISST) and

probability hypothesis density (PHD) [49, 85].
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1.1 Motivations

Two stochastic methods for Bayesian filtering are closely related to this thesis,

particle filter and probability hypothesis density.

The particle filter, also called sequential Monte Carlo method, is a Monte Carlo sim-

ulation based method and can be applied to nonlinear or non-Gaussian problems.

The particle filter consists of 2 basic parts: importance sampling and resamping.

Gordon et al. proposed the first particle filter, the bootstrap algorithm [51]. Liu

and Chen presented a general framework for applying Monte Carlo methods to dy-

namic systems [80]. Their framework includes importance sampling, resampling,

rejection sampling, and Markov chain iterations. Doucet et al. provided a Bayesian

filtering framework of sequential simulation based methods for nonlinear and non-

Gaussian dynamic models [41]. Their other major contributions are summarizing

the methods for selecting importance sampling functions.

Much work has been done on tracking a visual target using particle filters. Isard and

Blake proposed the first particle filter based visual tracking algorithm, the conden-

sation (CONditional DENSity propogATION) algorithm [62], and later combined

it with the statistical technique of importance sampling [63]. They demonstrated

their method using a hand tracker which combines color blob-tracking with a con-

tour model.

There has some research on tracking multiple targets using particle filters. Isard
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and MacCormick presented a Bayesian multiple-blob tracker, BraMBle [64], to

track multiple persons using a particle filter. Vermaak et al. [121] introduced a

mixed particle filter to model each component (mode or target) with an individual

particle filter and form part of the mixture. Okuma et al. [98] combined Vermaak’s

method with the Adaboost algorithm [123] to track multiple hockey players.

While considerable work involving the particle filter has been done on tracking,

there has not been much work on multicamera tracking using particle filters. Oc-

clusion, especially long-time complete occlusion, is a serious problem for tracking

using a single camera. Multiple cameras provide information of a moving target

from multiple views. As such, occlusions do not occur in all cameras and fusion

of data from multiple cameras enables tracking of a moving target with desirable

performance. Both importance sampling and resampling strategies in particle fil-

ters provide a theoretical framework for information fusion of multiple cameras.

Therefore, how to design adaptive particle filter to fuse information of multiple

cameras remains a challenge.

Tracking becomes challenging when the number of targets is unknown and variable

because the state and observation dimensions are time-varying under this situation.

There has been some recent work that attempt to meet this challenge. Reid pro-

posed multiple hypothesis tracking (MHT) algorithm which enumerates multiple

track-to-measurement association hypotheses during a period till one hypothesis

can be verified [107]. The problem of MHT is the potential combinatorial explosion
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in the number of hypotheses. Miller et al. generated the conditional mean esti-

mates of an unknown number of targets and target types via jump-diffusion process

[89]. Musicki et al. proposed integrated probabilistic data association (IPDA) [95]

as a recursive formula for both data association and probability of target existence.

Vermaak et al. presented the existence joint probabilistic data association filter (E-

JUDAH) to track a variable number of targets [122]. E-JUDAH associates with

each target a binary existence variable that indicates whether the correspondent

target is active or not and assumes that a large and fixed target number (including

both active and inactive targets) is known in advance. Green proposed a reversible

jump Markov chain Monte Carlo (RJMCMC) approach [52] to generate samples

with different dimensions by ”jump” operations in a Markov chain. Khan et al.

used this method to track a variable number of interacting ants [71]. Smith et al.

used RJMCMC to track varying numbers of interacting people [114]. To simplify

the sampling procedure for “jump”, [71] and [114] restrict proposals of RJMCMC

to add or remove a single target. Mori and Chong gave a point process formalism

for multitarget tracking problems [93].

The FInite Set STatistics (FISST) proposed by Mahler is the first systematic treat-

ment of multisensor-multitarget tracking. FISST results in a systematic Bayesian

unification of detection, classification, tracking, decision-making, sensor manage-

ment, group-target processing, expert-systems theory and performance evaluation

in multiplatform, multisource, multievidence, multitarget, multigroup problems
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[49, 83]. The problem of FISST is its computational complexity when dealing with

multiple sensors and multiple targets. To reduce the complexity, Mahler devised

the Probability Hypothesis Density (PHD) filter as an approximation of multitar-

get filter [85]. There are two implementation methods for the PHD filter. One is

particle filter implemented by Zajic [131], Sidenbladh [112] and Vo et al. [125]. Jo-

hansen et al. [66] and Clark and Bell [28] demonstrated the convergence property of

the particle PHD filter respectively, which show that the empirical representation

of the PHD converges to the true PHD. The other is Gaussian mixture proposed

by Vo and Ma [124]. Clark and Vo [27] proved the convergence property of the

Gaussian mixture PHD filter.

The particle PHD filter differs from the other particle filters. There has been much

work on tracking multiple targets using particle filters. These works can mainly

be divided into two categories: 1) one particle filter with the joint state space for

multiple targets [60, 64, 72]; 2) one mixed particle filter, where each component

(mode or cluster) is modelled with one individual particle filter that forms part of

the mixture [121, 98]. The disadvantage of the 1st approach is that it is difficult

to find an efficient importance sampling function when the target number is large

and the dimension of the joint state space is high. The 2nd approach usually uses

some heuristic methods to determine the target number firstly and then derives

states of targets. For example, the boosted particle filter [98] adds, deletes, and

merges targets according to the overlapping regions between the targets detected
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by Adaboost algorithm and the existing targets (from the authors’ programs [3]).

The particle PHD filter is similar with the second approach but the particle PHD

filter has an important property that the integral of the PHD over a region in a

state space is the expected number of targets within this region. The PHD filter

can automatically determine the target number by this property, which differs from

the other multitarget particle filters.

There have been some applications of FISST and PHD. Sidenbladh tracked ve-

hicles in terrain using the FISST particle filtering [113]. Tobias and Lanterman

[118] applied the particle PHD filter for radar tracking problem. Clark and Bell

[29] used the particle PHD filter in tracking in sonar images. Ikoma et al. filtered

trajectories of feature points in images using the particle PHD filter [61]. Haworth

et al. presented a system to detect and track metallic objects concealed on people

in sequences of millimeter-wave images [55]. Clark et al. developed the Gaus-

sian mixture PHD multitarget tracker [25] and demonstrated it on forward-looking

sonar data [28]. While tracking people has wide applications and no work has been

done on automatically tracking people or human groups using the PHD filter.

Some applications in business intelligence such as customer statistics only care

about the number of people or groups near a store and do not need the identification

information of them. The PHD filter is suitable for these scenarios. Under these

cases, the current measurements for the PHD filter are not a single measurement

but a random measurement set. Therefore, how to design importance function
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of the particle PHD filter to incorporate the current measurement set remains a

challenge.

1.2 Objective of this study

The goal of this thesis is to extend mathematical methods of stochastic processes,

especially Bayesian filtering, to visual tracking problems. Two new developments

of Bayesian filtering, the particle filter and the probability hypothesis density filter,

are chosen them as our theoretical methods. The tracking scenarios are:

• The use of multiple cameras to track a target is investigated to deal with long-

time full occlusion in a particular camera. The two cameras have a common

overlapping field of view in the experiments. The target may be occluded by

the environment such as tree or building in one camera while it can be seen

by another camera. A spatio-temporal Bayesian filtering is designed to fuse

the spatial information from both cameras and the temporal information of

dynamic system. The spatio-temporal Bayesian filtering may be nonlinear

and non-Gaussian, so it is implemented using an adaptive particle filter which

can automatically rank data from two cameras and assigns weights according

to the quality of data in the fusion process.

• When the number of targets are unknown and time-varying, the dimensions of
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state and measurement of dynamic system are variable. Tracking pedestrians

in a corridor of a shopping center is an example. To deal with this problem,

tracking a variable number of people in image sequences using the probability

hypothesis density filter is investigated. When people appear, merge, split,

and disappear in the field of view of a camera, the aim is to track the time-

varying number of targets and their position.

1.3 Contributions

The contributions of this thesis are summarized as below:

• A data fusion approach is proposed for visual tracking using multiple cameras

with overlapping fields of view. A spatio-temporal recursive Bayesian filter

is designed to fuse spatial information from multiple cameras and temporal

information of dynamic systems. An adaptive mixed particle filter is for-

mulated to realize the spatio-temporal recursive Bayesian filter. The mixed

particle filter adapts to the dynamic change of data quality of two cameras.

The algorithm can recover the target’s position even under long-time com-

plete occlusion in a camera.

• A multitarget recursive Bayesian filter, the Probability Hypothesis Density

(PHD) filter, is applied to a visual tracking problem: tracking a variable

number of people or human groups in image sequences. The PHD filter
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is implemented using two methods: both sequential Monte Carlo method

and Gaussian mixture. Two importance functions and weight functions of

the particle PHD filter are developed. The importance function for survival

targets theoretically extends the optimal importance function of the linear

Gaussian model from single-measurement case to measurement-set (multi-

measurement) case. Whereas the importance function for spontaneous birth

targets is a data-driven method for spontaneous birth objects. A scene-

driven method is also proposed to initialize the Gaussian mixture probability

hypothesis density filter and model the birth of new objects. The results

show when people or groups appear, merge, split, and disappear in the field

of view, these PHD filters can track the variable number of objects and their

positions.

1.4 Organization of the thesis

This thesis is organized as follows. Chapter 2 provides a literature review for

target tracking. Chapter 3 presents an adaptive mixed particle filter for tracking

and data fusion of multiple cameras. Tracking a variable number of pedestrians or

human groups in image sequences using the probability hypothesis density filter is

introduced in chapter 4. Chapter 5 concludes this thesis and provides the future

work.



Chapter 2

Literature review

Tracking is a fundamental problem for many applications such as video surveillance

[30, 106] and human motion analysis [23, 4, 44, 91, 126]. Radar tracking [8, 9,

10] and visual tracking [18] are two important research fields and have different

scenarios and motivations. On one hand, the target (e.g., airplane, missile or

ship) in radar tracking usually appears as a spot on the radar screen with complex

maneuvers such as acceleration, turns, or stops. So research on radar tracking

focuses on capturing dynamics of targets accurately. On the other hand, the target

(e.g., person or vehicle) in visual tracking is usually captured in form of image

sequences. Rich information such as intensity, color, or contour contained in target

pictures can be used for distinguishing, tracking and other form of analysis. So

research on visual tracking concentrates on building an likelihood function which

can accurately differentiate the object from the background.

12
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Fig. 2.1 gives an overview of target tracking methods reviewed in this chapter.

Section 2.1 introduces the Bayesian filtering framework in target tracking. Sec-

tion 2.2 presents the basic filtering technologies for modelling dynamics of targets.

Section 2.3 describes some commonly used likelihood functions for visual tracking.

Multicamera tracking methods are introduced in section 2.4. Multitarget tracking

and tracking a variable number of targets is presented in section 2.5. A summary

is provided in section 2.6.

Target tracking

One-target tracking Multi-target tracking

Filtering Likelihood Data association Variable Number of targsets

KF IMM PF Intensity Color Contour JPDA MHT Assignment RJMCMC FISST

Multi-sensor tracking

Figure 2.1: Overview of target tracking methods.

2.1 Bayesian filtering framework

Most tracking problems are formulated using a dynamic system and a state space

approach [8, 9, 10]. Under the formulation of a dynamic system, the state of a
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target at time t is denoted as xt, which may be its position, velocity, acceleration,

width, height, etc. The observation or measurement of the sensor at time t is

denoted as yt, e.g., an image captured by a camera. The series of observations or

measurements from time 1 to t are denoted as y1:t. For simplicity, the dynamic

system is usually modelled as a first-order Markov process, representing it as a

dynamic equation:

xt = ft(xt−1, ut) (2.1)

where ft : Rnx × Rnu → Rnx is possibly a nonlinear function of the state, {ut} is

an independent identical distribution (i.i.d) process noise sequence, and nx, nu are

dimensions of the state and process noise vectors, respectively. The observation or

measurement equation is:

yt = ht(xt, vt) (2.2)

where ht : Rnx × Rnv → Rny is possibly a nonlinear function, {vt} is an i.i.d

measurement noise sequence, and ny, nv are dimensions of the measurement and

measurement noise vectors, respectively.

From a Bayesian perspective, the tracking problem is to recursively calculate some

degree of belief in the state xt at time t given the data y1:t up to time t, i.e., to

construct the conditional probability density function (pdf):

p(xt|y1:t) (2.3)

It is assumed that the initial pdf p(x0|y0) ≡ p(x0) is known as the prior. Then
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the pdf p(xt|y1:t) can be recursively obtained in two stages of Bayesian filtering:

prediction and update.

Suppose that the pdf at time t−1 is available. The prediction stage involves using

the dynamic model (2.1) to obtain the prior probability density function of the

state at time t via the Chapman-Kolmogorov equation [65]:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2.4)

At time t, a measurement yt becomes available and is used to update the prior pdf

via the Bayes’ rule:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(2.5)

where the normalizing constant is:

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt (2.6)

In this stage, the measurement yt is used to modify the prior pdf to obtain the

required posterior probability density function of the current state.

Equ. (2.4) and (2.5) comprise the recursive Bayesian filtering. The problem is

that the above method is only a conceptual solution; since the integrals are not

tractable in most cases.
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2.2 Filtering methods

Targets in radar tracking are usually the maneuvering objects (e.g., airplane or mis-

sile) and have complicated dynamics. Much work (including linear and nonlinear

filters) has been done to model dynamics of targets using the filtering technologies

[16, 12]. The Kalman filter and the interacting multiple model filter are two exam-

ples of linear filters, whereas the particle filter is an example of nonlinear filters.

Daum provided an review for nonlinear filters [35].

Kalman first described a recursive solution to the discrete-data linear filtering

problem [68]. The Kalman filter is the standard algorithm for radar tracking

scenarios. The Bayesian filtering (2.4) and (2.5) has a closed-form solution under

these conditions: i) the dynamic function f(·) of the system in (2.1) is linear; ii)

the measurement function h(·) of the system in (2.2) is linear; iii) the process noise

ut is Gaussian distribution; iv) the measurement noise vt is Gaussian distribution;

and v) the initial state error is Gaussian distribution. Under these conditions, The

dynamic system (2.1) and (2.2) can be written as

xt = Ftxt−1 + ut (2.7)

yt = Htxt + vt (2.8)

where Ft and Ht are known matrices defining the linear functions. The covariance

of ut and vt are Qt and Rt respectively. The posterior density is Gaussian and

can be parameterized by a mean and a covariance (only the first and second order
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moments) [127]:

p(xt−1|y1:t−1) = N(xt−1; mt−1|t−1, Pt−1|t−1) (2.9)

p(xt|y1:t−1) = N(xt; mt|t−1, Pt|t−1) (2.10)

p(xt|y1:t) = N(xt; mt|t, Pt|t) (2.11)

where

mt|t−1 = Ftmt−1|t−1 (2.12)

Pt|t−1 = Qt + FtPt−1|t−1F
T
t (2.13)

mt|t = mt|t−1 + Kt(yt −Htmt|t−1) (2.14)

Pt|t = Pt|t−1 −KtHtPt|t−1 (2.15)

and where N(x; m, P ) is a Gaussian density with argument x, mean m, and co-

variance P , and

Kt = Pt|t−1H
T
t S−1

t (2.16)

St = HtPt|t−1H
T
t + Rt (2.17)

Kt is the Kalman gain and St is the covariance of the innovation term yt−Htmt|t−1.

The transpose of a matrix F is denoted by F T . The Kalman filter is an estima-

tor with the minimum mean square error (MMSE) for linear systems with Gaus-

sian noise. When the system functions f(·) and h(·) are non-linear, the extended
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Kalman filter (EKF) uses their local linearization as an approximation of the op-

timal Bayesian filtering [45, 5]. The unscented transform has been used in a EKF

framework and the resulted filter is called the unscented Kalman filter (UKF) [67].

The Kalman filter requires that the target has only one motion model. However,

an actual maneuver target usually shows multiple motion behaviors. Blom and

Bar-Shalom introduced an interacting multiple model (IMM) approach as a hybrid

state estimation scheme to deal with this problem [20]. The main feature of IMM

is its ability to estimate the state of a dynamic system with several behavior modes

which can switch from one to another. IMM makes a good compromise between

complexity and performance: its computational requirements are nearly linear in

the size of the problem (number of models) while its performance is almost the

same as that of an algorithm with quadratic complexity. Yeddanapudi et al. ap-

plied IMM estimator for tracking formation and maintenance in a multisensor air

traffic surveillance scenario [129]. Kirubarajan et al. presented a variable struc-

ture interacting multiple model (VSIMM) estimator for tracking groups of ground

targets on constrained paths [73]. Mazor et al. provided a survey on interacting

multiple model methods for target tracking [88].

Particle filter, or called the sequential Monte Carlo method, [39, 37, 56], developed

from the 1990s, is a Monte Carlo simulation based method and can be applied

to solve nonlinear and non-Gaussian problems, which are usual for tracking under
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complex environments. The basic idea of particle filter is that the posterior prob-

ability distribution can be approximated by a set of randomly chosen weighted

samples (or particles). The first particle filter, bootstrap, was proposed by Gordon

et al. [51]. Liu and Chen presented a general framework for applying Monte Carlo

methods to dynamic systems [80]. Their framework includes importance sampling,

resampling, rejection sampling, and Markov chain iterations. Doucet et al. pro-

vided a Bayesian filtering framework of sequential simulation based methods for

nonlinear and non-Gaussian dynamic models [41]. Their other major contribution

are summarizing the methods for selecting importance sampling functions.

The basic particle filter includes two components: importance sampling and resam-

pling. Importance sampling introduces a new importance function (or importance

density, proposal density) and draws samples from the importance function instead

of the posterior distribution. The selection of the importance function is a key is-

sue for the particle filter as it affects the sampling efficiency of the particle filter

[41]. The bootstrap algorithm [51] uses the dynamic function (2.1) as the impor-

tance function. But this sampling method does not consider the information of

the current measurement so that it may be inefficient. Many methods have been

proposed to overcome this problem. For example, Doucet et al. presented a local

linearization method for the importance function [41]. Thrun et al. proposed a hy-

brid importance function to improve the sampling efficiency [117]. van der Merwe

et al. used the unscented Kalman filter to generate the importance function [120].



CHAPTER 2. LITERATURE REVIEW 20

If only importance sampling is used, the particle filter has the degeneracy problem,

i.e., after a few iterations, all but few particles will have negligible weights. Doucet

proved that the variance of the weights increases over time [41]. Therefore, it

is impossible to avoid the degeneracy problem. Resampling introduces a selection

step to eliminate samples with low weights and multiply samples with high weights

to reduce the variance of the weights. There are some resampling methods: sam-

pling importance resampling (SIR) [51], residual resampling [80], and systematic

sampling [74].

Resampling reduces the diversity of particles and this problem is known as sample

impoverishment. To solve this problem, Gilks and Berzuini combined the Markov

chain Monte Carlo (MCMC) method [47, 6] with the particle filter and proposed

the resample-move algorithm [46].

There have been some new developments on particle filters. Pitt and Shephard

proposed an auxiliary particle filter [104]. Kotecha and Djutic designed Gaussian

particle filter [76] and Gaussian sum particle filter [77]. Rao-Blackwellised particle

filter [80, 41] was used in dynamic Bayesian networks [40]. Particle filters have

been widely used in radar tracking scenarios [50, 22, 54, 69, 57, 92].

Much work has been done on tracking a visual target using particle filters. Isard and

Blake proposed the first particle filter based visual tracking algorithm, the conden-

sation (CONditional DENSity propogATION) algorithm [62], and later combined
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it with the statistical technique of importance sampling [63]. They demonstrated

their method using a hand tracker which combines color blob-tracking with a con-

tour model. Arnaud et al. [7] proposed a conditional particle filter for point

tracking. Rui and Chen used the unscented particle filter [120] to obtain a better

importance function [109]. Pérez et al. [103] introduced importance sampling for

data fusion of multiple cues (colour and motion) and different sensors (camera and

microphone).

There has been much work on tracking multiple visual targets using particle filters.

These works can mainly be divided into two categories: i) one particle filter with

the joint state space for multiple targets [64, 72]; ii) one mixed particle filter,

where each component (mode or cluster) is modelled with one individual particle

filter that forms part of the mixture [121, 98]. Isard and MacCormick presented

a Bayesian multiple-blob tracker, BraMBle [64], to track multiple persons using a

particle filter. Khan et al. used the trans-dimensional Markov chain Monte Carlo

method to track a variable number of ants [72]. Vermaak et al. [121] introduced a

mixed particle filter to model each component (mode or target) with an individual

particle filter and form part of the mixture. Okuma et al. [98] combined Vermaak’s

method with the Adaboost algorithm [123] to track multiple hockey players.
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2.3 Likelihood functions for visual tracking

Visual tracking focuses on the likelihood functions which represent objects in im-

ages. Blake [18] and Yilmaz et al. [130] provided the surveys for object track-

ing methods respectively. The typical likelihood functions include intensity based

methods, contour based methods, color based methods, motion feature based meth-

ods, spatio-temporal consistency based methods, and object priors based methods.

Template matching is an intensity-based method and to match a template on an

image to minimize the misregistration error [81, 119, 111]. Lucas and Kanade used

the spatial intensity gradient of images as feature to find a matching by the Newton-

Raphson iteration [81]. Tomasi and Kanade designed a method to determine the

feature windows that are best suitable for tracking [119]. Shi and Tomasi proposed

an optimal feature selection criterion and a feature monitoring method that can

detect occlusions [111].

Edge, contour and shape are important image features and can be used in visual

tracking. Isard and Blake parameterized the contour using spline functions [19] and

used contour as feature for tracking [62]. Paragios and Deriche applied geodesic

active contours and level sets method to detect and track moving objects [99].

Mansouri used the level sets approach to region tracking [87]. Zhou et al. presented

an information framework for robust shape tracking [133].

Color is usually selected as feature for tracking because it is rotation and scale
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invariant to a certain extent. Comaniciu et al. combined the mean shift algorithm

with the color histogram for visual tracking [32]. Pérez et al. [102] combined the

particle filter with the color histogram and proposed the color-based probabilistic

tracking. Nummiaro et al. [96] presented an adaptive color-based particle filter.

Motion features such as optical flow [59] are widely used in object tracking. Barron

et al. [14] evaluated the performances of different optical flow techniques which in-

clude differential, matching, energy-based, and phase-based methods. Their exper-

iments showed that the first-order, local differential method of Lucas and Kanade

[81] and the local phase-based method of Fleet and Jepson [42] were the most

reliable optical flow methods.

The spatio-temporal consistency is also used for moving object segmentation and

tracking. Zhong and Chan [132] combined edge and color information to improve

the object motion estimation result. Then they used the long-term spatio-temporal

constraints to track objects over long sequences.

The prior knowledge of objects has been used for constraining the object segmen-

tation/tracking process. For example, Rosenhaln et al. [108] integrated 3D shape

knowledge into a variational model for level set based image segmentation and

contour based 3D pose tracking.
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2.4 Multicamera tracking methods

Tracking using multiple cameras has been done in much work in recent years.

Multicamera tracking can be categorized into 2 classes: overlapping field with

view and non-overlapping field with view. Kettnaker and Zabih [70] and Pasula

et al. [100] introduced 2 multicamera tracking methods with non-overlapping field

of view respectively. As for multicamera tracking with overlapping field of view,

the commonly used methods include camera switching, geometry constraint and

appearance matching.

Nummiaro et al. [97] presented a color-based multiview tracking method. The cam-

era with the highest similarity for face’s color histogram is selected and switched

to carry on the tracking task. Cai and Aggarwal [21] presented a framework for

tracking coarse human models from sequences of synchronized monocular grayscale

images in multiple camera coordinates. When the system predicted that the active

camera would no longer have a good view of the subject of interest, tracking would

be switched to another camera which provides a better view and requires the least

switching to continue tracking.

Homography is an important geometry constraint for points in a plane and can

be used for multicamera tracking. Black and Ellis [15] presented a method for

multicamera image tracking in the context of image surveillance. Viewpoint cor-

respondence between the detected objects was established by using the ground
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plane homography constraint. M2Tracker developed by Mittal and Davis [90] was

a multiview approach to segmenting and tracking people in a cluttered scene using

a region-based stereo algorithm. The DARPA VSAM project [31] at CMU used

site model, camera calibration and model-based geolocation for video surveillance.

Chang and Gong [24] presented a multicamera system based on Bayesian modality

fusion to track multiple people in an indoor environment. Bayesian networks were

used to combine geometry-based modalities with recognition-based modalities for

matching subjects between consecutive image frames and between multiple camera

views. Krumm et al. [78] created a practical person-tracking system using 2 sets

of color stereo cameras. The stereo images were used to locate people, whereas the

color images are used to maintain the identities of people.

2.5 Multitarget tracking methods

When tracking multiple targets, one needs to use data association method to asso-

ciate observations of sensors with targets. For example, if there are two targets, a

person and a car, and the camera detects three foreground blobs, data association

must determine which blob belongs to the person, the car, or the clutter environ-

ment. As a result, there are multiple choices for association. The aim of data

association is to find the best association scheme. Bar-Shalom and Li introduced

multitarget multisensor tracking methods [11].
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Bar-Shalom and Tse presented a probabilistic data association (PDA) scheme to

calculate the association probability for each observation at the current time to the

target of interest [13]. PDA assumes that: 1) there is only one target of interest;

2) at most one of observation can be target-originated; 3) the other observations

are due to false alarm or clutter. On the basis of PDA, Fortmann and Bar-Shalom

proposed a joint probabilistic data association (JPDA) approach [43]. JPDA can

track multiple targets and assumes that: 1) the number of targets is known; 2)

each target has been initialized; 3)a target can generate at most one measurement;

and 4) a measurement could be originated from at most one target. JPDA allows

a target’s state to be updated by a weighted sum of all observations in its gate

scope. Therefore, JPDA is a spatial information fusion method.

Reid proposed a multiple hypothesis tracking (MHT) approach for data associ-

ation [107]. MHT is a deferred decision which forms multiple data association

hypotheses when observation-to-target are uncertain. Rather than selecting the

best hypothesis or combining multiple hypotheses as JPDA, the hypotheses are

propagated into the future until the subsequent data can resolve the uncertainty.

Therefore, MHT is a temporal information fusion method. MHT enumerates the

exhausted hypotheses and the computational complexity increases exponentially

with time. Cox and Hingorani [33] described a method to find m-best hypotheses

using Murty’s algorithm [94]. Blackman gave a summary of MHT for multiple

target tracking [17].
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The assignment algorithm [101, 36] essentially perform constrained optimization

problems to find an optimal data association solution. Pattipati et al. [101] devel-

oped a Lagrangian relaxation technique to solve the 2-D assignment problem. Deb

et al. [36] presented a generalized S-D assignment algorithm.

When the number of targets varies, the dimensions of the state and observation

vectors are time-varying. Many approaches have been proposed to solve this prob-

lem. Miller et al. generated the conditional mean estimates of an unknown number

of targets and target types via jump-diffusion process [89]. Mori and Chong gave

a point process [34, 116] formalism for multitarget tracking problems [93]. Green

proposed a reversible jump Markov chain Monte Carlo (RJMCMC) approach to

deal with the problems where the dynamic variable of the simulation does not have

fixed dimension [52, 53]. Godsill and Vermaak applied RJMCMC for tracking tasks

where that state process arrives at unknown times that differ from the observa-

tion arrival times [48]. Khan et al. used RJMCMC to track a variable number of

interacting ants [72].

The finite set statistics (FISST) proposed by Mahler is the first systematic treat-

ment of multisensor multitarget tracking. It contributes to a unified framework of

data fusion [49, 83, 84, 86]. Under this theory, the state of a target (e.g., position

and velocity) and the measurement of a sensor are represented by state and mea-

surement vector respectively; the state set of multiple targets and the measurement

set of multiple sensors are represented as Random Finite Sets (RFS).
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The problem of FISST is its computational complexity when dealing with multi-

ple sensors and multiple targets. To reduce the complexity, Mahler devised the

Probability Hypothesis Density (PHD) filter as an approximation of multitarget

filter [85]. The PHD filter can jointly estimate the time-varying number of objects

and their states from a sequence of measurement sets. The PHD filter was im-

plemented using particle filters (Zajic [131], Sidenbladh [112], and Vo et al. [125])

and Gaussian mixture (Vo and Ma [124]). Johansen et al. [66] and Clark and Bell

[26] demonstrated the convergence property of the particle PHD filter respectively,

which show that the empirical representation of the PHD converges to the true

PHD. Clark and Vo [27] proved the convergence property of the Gaussian mixture

PHD filter.

There have been some applications of FISST and PHD. Sidenbladh tracked vehi-

cles in terrain using the FISST particle filtering [113]. Tobias and Lanterman [118]

applied the particle PHD filter for the radar tracking problem. Clark and Bell

[29] used the particle PHD filter in tracking in sonar images. Ikoma et al. filtered

trajectories of feature points in images using the particle PHD filter [61]. Haworth

et al. presented a system to detect and track metallic objects concealed on people

in sequences of millimeter-wave images [55]. Clark et al. developed the Gaus-

sian mixture PHD multitarget tracker [25] and demonstrated it on forward-looking

sonar data [28].
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2.6 Summary

From the review of this chapter, target tracking has developed from single-sensor

single-target tracking to multisensor multitarget tracking. For multisensor multi-

target tracking, stochastic processes and Bayesian filtering provide powerful tools.

However, there are many unsolved problems, e.g., the information fusion of mul-

tiple cameras and tracking unknown and time-varying number of targets. In the

following two chapters, I present our contributions to solve these challenges.



Chapter 3

Adaptive particle filter for

tracking

3.1 Introduction

Occlusion, especially complete occlusion, is a difficult problem for visual tracking

using a single camera. Multiple cameras provide information of a moving target

from multiple views. As such, occlusions do not occur in all cameras and fusion

of data from multiple cameras enables tracking of a moving target with desirable

performance. The objective of this chapter is developing a method for combining

information from multiple cameras with emphasis on dealing with the problem of

occlusion.

30



CHAPTER 3. ADAPTIVE PARTICLE FILTER FOR TRACKING 31

There have been some research efforts on tracking using multiple cameras. In

most of these works, information from different cameras are analyzed and the one

with the best view is selected to overcome the problem of occlusion. Cai and

Aggarwal [21], for example, selected a camera using three criteria: i) ability to

track the object in the future; ii) robust spatial matching between cameras; and

iii) ability to maintain objects over the most number of frames. Nummiaro et al.

[97] selected the camera with the highest similarity for face’s colour histogram.

These switching criteria are often heuristic and have no theoretical basis. Only

one camera’s information is used although if multiple cameras can observe the

target. The key challenge is to design a data fusion method to fuse information

from multiple cameras.

An adaptive importance sampling strategy for the particle filter is proposed here,

which can automatically rank data from multiple cameras and assign weights ac-

cording to the quality of data in the fusion process.

This chapter is organized as follows. Section 3.2 provides a basic introduction to the

spatio-temporal recursive Bayesian filter. Section 3.3 introduces the particle filter.

Section 3.4 presents an adaptive particle filter which can combine information from

multiple cameras. The experimental results, presented in section 3.5, show that

the adaptive particle filter is able to recover the location of the occluded target.

The details are discussed in section 3.6 and the summary is provided in section

3.7.
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3.2 Spatio-temporal recursive Bayesian filter

Tracking a moving target using multiple cameras is represented as a dynamic sys-

tem. The state of a moving target at time t, which is its position and size, is

denoted as xt. The target observed in an image captured by a camera at time t

is denoted as yt and the series of observations (or measurements) from time 1 to t

are denoted as Y1:t = {yj : j = 1, . . . , t}

For simplicity, the dynamical system is modelled as a first-order Markov process,

representing it as a dynamic function (or a state transition function):

xt = ft(xt−1, ut) (3.1)

where ft is possibly a nonlinear function of the state xt−1, {ut} is an indepen-

dent identical distribution (i.i.d) noise sequence. The observation or measurement

function is:

yt = ht(xt, vt) (3.2)

where ht is possibly a nonlinear function and {vt} is an i.i.d noise sequence.

In this visual tracking task, the state xt is defined as:

xt = (locationt, sizet) (3.3)

where locationt is the image coordinate at time t of the top left corner of the

bounding box of the moving object, and sizet is the width & height at time t of

the bounding box of the moving object. The dynamic function is assumed to follow
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a constant position model:

xt = xt−1 + ut (3.4)

where ut is a zero-mean Gaussian white noise vector with variance Σu.

As defined, the measurement yt of a target from a camera is the target’s image

in the video frame at time t. Object recognition techniques are used to locate

targets from video frames. The mean shift algorithm [32] is used to locate the

target’s image in each camera. The measurement yt is a bounding box indicating

the target’s candidate location:

yt = (locationt, sizet) (3.5)

The resulting measurement yt is:

yt = xt + vt (3.6)

vt is a zero mean Gaussian white noise vector with variance Σv.

The number of cameras is denoted as C and yt,c is the measurement from the cth

camera at time t. Yt,1:C are measurements of all cameras at time t and Y1:t,1:C are

measurements of all cameras from time 1 to t, i.e.,

Y1:t,1:C = {Y1,1:C , Y2,1:C , . . . , Yt,1:C}

Our objective is to estimate the target’s state xt given all measurements from

multiple cameras Y1:t,1:C , i.e., to construct the conditional probability:

p(xt|Y1:t,1:C) (3.7)
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Suppose that the probability density function (pdf) p(xt−1|Y1:t−1,1:C) at time t− 1

is available. The recursive Bayesian filter consists of two stages: prediction and

update. The prediction stage involves obtaining the prior pdf of the state at time

t via the state transition function. The resulting prediction equation is:

p(xt|Y1:t−1,1:C) =

∫
p(xt|xt−1)p(xt−1|Y1:t−1,1:C)dxt−1 (3.8)

At time t, measurements Yt,1:C become available and are used to update the prior

pdf via the Bayes’ rule as follows:

p(xt|Y1:t,1:C) =
p(Yt,1:C |xt)p(xt|Y1:t−1,1:C)

p(Yt,1:C|Y1:t−1,1:C)
(3.9)

The denominator p(Yt,1:C |Y1:t−1,1:C) is called the evidence and it is determined as

follows:

p(Yt,1:C |Y1:t−1,1:C) =

∫
p(Yt,1:C|xt)p(xt|Y1:t−1,1:C)dxt (3.10)

Assume that all measurements are conditionally independent given the state be-

cause different measurements come from different cameras.

p(Yt,1:C|xt) =
C∏

c=1

p(yt,c|xt) (3.11)

Using (3.11) in (3.9), the update stage becomes

p(xt|Y1:t,1:C) =

∏C
c=1 p(yt,c|xt)p(xt|Y1:t−1,1:C)

p(Yt,1:C|Y1:t−1,1:C)
(3.12)

Equations (3.8) and (3.12) comprise the spatio-temporal recursive Bayesian filter.
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3.3 Particle filter

Particle filter (the sequential Monte Carlo method) [39, 37, 56], developed from

the 1990s, is a Monte Carlo simulation based method and can be applied to solve

nonlinear and non-Gaussian problems, which are usual for tracking under complex

environments. The first particle filter, bootstrap, was proposed by Gordon et al.

[51]. The basic idea of particle filter is that the posterior probability distribution

can be approximated by a set of N randomly chosen weighted samples or particles

{x
(i)
0:t, w

(i)
t }

N
i=1 as follows:

̂p(x0:t|y1:t) ≈
N∑

i=1

w
(i)
t δ(x0:t − x

(i)
0:t) (3.13)

where δ is Dirac delta function. Random samples {x
(i)
0:t}

N
i=1 are drawn from the

posterior distribution. Given the samples, the expectation of the function of the

state can be approximated as follows:

̂E(f(x0:t)) =

N∑

i=1

w
(i)
t f(x

(i)
0:t) (3.14)

Unfortunately, sampling directly from the posterior distribution is often impossible.

To overcome this difficulty, the basic particle filter uses two sampling methods:

importance sampling and resampling. Liu and Chen presented a general framework

for applying Monte Carlo methods to dynamic systems [80]. Their framework

includes importance sampling, resampling, rejection sampling, and Markov chain

iterations. Doucet et al. provided a Bayesian filtering framework of sequential
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simulation based methods for nonlinear and non-Gaussian dynamic models [41].

Their other major contribution are summarizing the methods for selecting the

importance sampling function.

Section 3.3.1 introduces the importance sampling technologies. Section 3.3.2 presents

the resampling methods. The generic particle filter is summarized in section 3.3.3.

3.3.1 Importance sampling

Importance sampling introduces a new importance function (or importance den-

sity, proposal density) q(x0:t|y1:t) and draws samples from the importance function

instead of the posterior distribution. Then the weights in (3.13) are defined as

w
(i)
t ∝

p(x
(i)
0:t|y1:t)

q(x
(i)
0:t|y1:t)

(3.15)

As for the sequential case, at each iteration, one could have samples constituting

an approximation to p(x0:t−1|y1:t−1) and want to generate a new set of samples to

approximate p(x0:t|y1:t). If the importance function can be factorized:

q(x0:t|y1:t) = q(x0)
t∏

k=1

q(xk|x0:k−1, y1:k) (3.16)

then one can obtain new samples as shown in Fig. 3.1:

The selection of the importance function is a key issue for the particle filter as it

affects the sampling efficiency of the particle filter [41]. The bootstrap algorithm

[51] uses the dynamic function (3.1) as the importance function. But this sampling
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For times t = 1, 2, · · ·

• For i = 1, · · · , N , sample x
(i)
t from q(xt|x0:t−1, y1:t) and set x

(i)
0:t = (x

(i)
0:t−1, x

(i)
t ).

• For i = 1, · · · , N , evaluate the importance weights up to a normalizing con-

stant:

w
(i)
t = w

(i)
t−1

p(yt|x
(i)
t )p(x

(i)
t |x

(i)
0:t−1)

q(xt|x0:t−1, y1:t)
(3.17)

• For i = 1, · · · , N , normalize the importance weights:

w̃
(i)
t =

w
(i)
t∑N

j=1 w
(j)
t

(3.18)

Figure 3.1: Sequential importance sampling algorithm

method does not consider the information of the current measurement yt so that it

may be inefficient. Many methods have been proposed to overcome this problem.

For example, Doucet et al. presented a local linearization method for the impor-

tance density [41]. Thrun et al. proposed a hybrid importance density to improve

the sampling efficiency [117]. van der Merwe et al. used the unscented Kalman

filter to generate the importance density [120].
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3.3.2 Resampling

If only importance sampling is used, the particle filter has the degeneracy problem,

i.e., after a few iterations, all but few particles will have negligible weights. Doucet

showed that the variance of the weights increases over time [41]. Therefore, it is im-

possible to avoid the degeneracy problem. Resampling introduces a selection step

to eliminate samples with low weights and multiply samples with high weights to

reduce the variance of the weights. There are some resampling methods: sampling

importance resampling [51], residual resampling [80], and systematic sampling [74].

The basic resampling algorithm is described in Fig. 3.2.

Resampling reduces the diversity of particles and this problem is known as sample

impoverishment. To solve this problem, Gilks and Berzuini combined the Markov

chain Monte Carlo (MCMC) method [47, 6] with the particle filter and proposed

the resample-move algorithm [46].
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[{x
(j∗)
t , w

(j)
t , i(j)}Nj=1] = RESAMPLE[{x

(i)
t , w

(i)
t }

N
i=1]

• Initialize the cumulative density function (CDF): c1 = 0,

• FOR i = 2 : N ,

Construct the CDF: ci = ci−1 + w
(i)
t

• END FOR

• Start at the bottom of the CDF: i=1

• Draw a starting point u1 ∼ Uniform[0, N−1].

• FOR j = 1 : N ,

Moving along the CDF: uj = u1 + N−1(j − 1)

WHILE uj > ci

i = i + 1

END WHILE

Assign sample: x
(j∗)
t = x

(i)
t

Assign weight: w
(j)
t = N−1

Assign parent: i(j) = i

• END FOR

Figure 3.2: Resampling algorithm
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3.3.3 Generic particle filter

A suitable measurement of the degeneracy problem of particle filter is the effective

sample size Neff introduced in [75] and defined as

Neff =
N

1 + var(w
∗(i)
t )

(3.19)

where w
∗(i)
t = p(x

(i)
t |y1:t)/q(x

(i)
t |x

(i)
t−1, yt) is referred as the “true weight”. This can

not be evaluated exactly, but an estimate N̂eff of Neff can be obtained in [38] as

follows:

N̂eff =
1

∑N
i=1(w

(i)
t )2

(3.20)

where w
(i)
t is the normalized weight obtained using (3.17). Notice that Neff ≤ N ,

and the greater the effective sample size N̂eff , the better the sampling efficiency

of the algorithm. The generic particle filter uses the effective sampling size as the

condition of resampling to implement the adaptive resampling. If the effective sam-

pling size is under a threshold (e.g. half of the sample number, N/2), the particle

filter does the resampling. Else the particle filter skips resampling procedure and

iterates to the next time instant.

The generic particle filter is summarized in Fig. 3.3:
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[{x
(i)
t , w

(i)
t }

N
i=1] = ParticleF ilter[{x

(i)
t−1, w

(i)
t−1}

N
j=1, yt]

• FOR i = 1 : N ,

Draw x
(i)
t ∼ q(xt|x

(i)
t−1, yt)

Assign the particle a weight, w
(i)
t , according to (3.17)

• END FOR

• Calculate total weight: W=SUM[{w
(i)
t }

N
i=1]

• FOR i = 1 : N ,

Normalize: w
(i)
t = W−1w

(i)
t ,

• END FOR

• Calculate N̂eff using (3.20)

• IF N̂eff < NT (a threshold of sampling efficiency)

Resample as the resampling algorithm (Fig. 3.2)

• END IF

Figure 3.3: Generic particle filter
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3.4 Adaptive mixed particle filter for multicam-

era tracking

In this section our adaptive mixed particle filter is introduced. Section 3.4.1 pro-

vides an overview of the adaptive mixed particle filter. Section 3.4.2 introduces the

object segmentation and detection methods. Section 3.4.3 presents the likelihood

function for evaluating particles. Section 3.4.4 proposes the mixed importance

sampling strategy of particle filter. The weight function of particle filter is intro-

duced in section 3.4.5. An adaptive importance sampling method is presented in

section 3.4.6. Section 3.4.7 summaries the algorithm.

3.4.1 Algorithm overview

Our algorithm takes as input, images from two wide baseline fixed cameras that

have an overlapping field of view. In addition to the two images, I1 from the 1st

camera and I2 from the 2nd camera (Fig. 3.5), the following are also input in our

algorithm:

• the target’s appearance model: 16 × 16 × 16 bins (RGB) colour

histogram {hist(target)}4096u=1 , where u is the bin index;

• the calibrated coordinate transform f : x2 → x1 and f−1 : x1 →

x2, where x1 is the target’s location in the 1st camera and x2 is
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the target’s location in the 2nd camera.

We make some assumptions for our algorithm: i) the target is in the same ground

plane; and ii) the target’s colour distribution does not change during tracking. The

homography transformation [15] is used to implement the coordinate transform

between cameras:

x̃1 = Hx̃2 (3.21)

where H is a 3 × 3 homogeneous matrix and x̃1 and x̃2 are the homogeneous

coordinates in two cameras.

The output of our algorithm is the target’s location x1 in the 1st view or x2 in the

2nd view.

3.4.2 Object segmentation

We use the background subtraction algorithm [31] to obtain the foreground object.

We are able to do this effectively because the camera is fixed and the background

image is therefore easily obtained. Let P (x, y) and B(x, y) represent a pixel inten-

sity value and the background intensity value at position (x, y). Then pixel (x, y)

belongs to the foreground region if:

|P (x, y)− B(x, y)| > Th (3.22)

where the threshold Th is set by the experiments. The foreground image obtained

using background subtraction and thresholding is usually noisy and morphological
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operations are performed to remove noise. Dilation and erosion are applied to

the binary foreground images. In order to eliminate ”noise objects” that are not

eliminated by morphological operations in the foreground image, small objects of

an area smaller than a threshold are eliminated from the foreground. The resulting

foreground object is our detected object. The object is occluded in a camera if

the object is in the overlapping fields of view of two cameras and only one camera

detects the object.

We use the mean shift algorithm [32] to obtain the current measurement. The

approximation of the estimated position x̂ of a target is obtained iteratively as

follows:

x̂t =
1

C

∑

x

xw(x)g(||x− x̂t−1||
2) (3.23)

where C =
∑

x w(x)g(||x−x̂t−1||
2), g is the derivative of a particular kernel function

used to build the spatial density function, and w(x) is a weight that measures the

degree of prevalence of the colour of pixel x in the target template relative to its

prevalence in the test target.

3.4.3 Likelihood function

To evaluate how likely an image at the candidate location represents the real target,

we define the likelihood of the particle by using the color likelihood in [102]. Colour

measure is selected because it is rotation and scale invariant to a certain extent.
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The colour histogram of the candidate image x
(i)
t , determined by our algorithm, is

{hist(x
(i)
t )}4096u=1 . The Bhattacharyya coefficient ρ represents the similarity between

the candidate image and the target image, defined as follows:

ρ[hist(x
(i)
t ), hist(target)] =

4096∑

u=1

√
hist(x

(i)
t )uhist(target)u (3.24)

The distance measure between two colour histograms is

Distance[hist(x
(i)
t ), hist(target)] =

√
1− ρ[hist(x

(i)
t ), hist(target)] (3.25)

This distance has several desirable properties: i) it is nearly optimal; ii) it imposes

a metric structure; and iii) it is invariable to the scale of the target etc. The

likelihood, which represents the similarity between the target’s template and the

particle’s region, is defined as follows:

p(yt|x
(i)
t ) ∝ −λDistance2[hist(x

(i)
t ), hist(target)] (3.26)

The greater a particle’s likelihood, the more likely the candidate image is the real

target. Pérez et al. [102] set λ = 20 empirically. In our experiments, our algorithm

works for values of λ from 20 to 100.

3.4.4 Mixed importance sampling

Our objective is the posterior distribution:

p(xt|x0:t−1, yt,1, yt,2) ∝ p(yt,1|xt)p(yt,2|xt)p(xt|xt−1) (3.27)
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In general this posterior distribution is complicated and has no closed-form solu-

tion; so we cannot directly sample from it. To overcome this difficulty, we use the

importance sampling strategy of the particle filter. Traditional particle filters such

as [51, 62] only use the dynamic function (3.1) as the importance function. But this

function does not consider the current measurement yt and its sampling efficiency

may be low [41]. We propose our mixed importance sampling method which gen-

erates the particles from both the dynamic function and the current measurement

as shown in Fig. 3.4.

For i = 1, . . . , N , generating a uniformly distributed random number r ∈ [0, 1):

• if 0 ≤ r < α1, generate a process noise u
(i)
t and a sample x

(i)
t = xt−1 + u

(i)
t

according to the dynamic function (3.4);

• if α1 ≤ r < α1 + α2, generate a measurement noise v
(i)
t,1 and a sample x

(i)
t =

yt,1 − v
(i)
t,1 according to the current measurement of the 1st camera(3.6);

• if α1 + α2 ≤ r < 1, generate a measurement noise v
(i)
t,2 and a sample x

(i)
t =

yt,2 − v
(i)
t,2 according to the current measurement of the 2nd camera (3.6);

Figure 3.4: Adaptive mixed importance sampling.

Let N be the total number of samples, and the coefficients α1, α2, and α3 (where
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α1 + α2 + α3 = 1) determine the respective contributions of the dynamic function,

the measurement of the 1st camera, and the measurement of the 2nd camera.

3.4.5 Weight function of particle filter

The weights of particles are updated in the update stage of the Bayesian filter

(3.12). From (3.12), the weight of a particle should be proportional to the product

of two likelihoods if the target is visible in the two cameras:

w
(i)
t ∝ p(yt,1|x

(i)
t )p(yt,2|x

(i)
t ) (3.28)

where p(yt|x
(i)
t ) is defined in our likelihood model (3.26). But if a target becomes

occluded in a camera, a particle may have a high likelihood for the visible camera

and a low likelihood for the occluded camera. If the weight function is the product

of two likelihoods, the weight of a particle is mainly affected by the low likelihood

of the occluded camera, which is not desirable. Our fusion method chooses the

high likelihood to update the weight and discard the low likelihood to reduce the

influence of occlusion. In summary, if the target is visible in the two cameras, we

use the product of two likelihoods to update the weight of a particle as follows:

w
(i)
t = p(yt,1|x

(i)
t )p(yt,2|x

(i)
t ) (3.29)

while if the target is occluded in a camera, we use the greater likelihood to update

the weight of a particle as follows:

w
(i)
t = max

c
p(yt,c|x

(i)
t ) (3.30)
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The object segmentation stage (section 3.2) determines whether the object is visible

in the two cameras or is occluded in a camera.

3.4.6 Adaptive importance sampling

Suppose we have no prior information on the mixed weights α1, α2, and α3 in the

importance sampling (Fig. 3.4), they may be uniform distributed, i.e.,

α1 = α2 = α3 =
1

3
(3.31)

Because the “quality of data” changes over time, the importance sampling method

should adapt to this change. For example, when occlusions occur in the 1st camera,

samples from the measurement of the 1st camera should be reduced. The goal of

this section is to propose an adaptive importance sampling method to track this

change.

The variance of measurement noise of sensor reflects the signal-to-noise ratio (SNR)

of measurement of sensor. The smaller the variance, the higher the SNR of mea-

surement. Therefore, the variance of measurement noise is helpful to adapt the

importance sampling.

Let Σv,1 and Σv,2 denote the variances of measurement noise of the 1st and 2nd

cameras respectively. From the measurement model (3.6), the linear estimator of

the position of target from measurements of the two cameras is

xt = (1− β)(yt,1 − vt,1) + β(yt,2 − vt,2) (3.32)
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where β is the parameter and can be varying during the tracking process. Thus,

E(xt) = (1− β)yt,1 + βyt,2 (3.33)

var(xt) = E(x2
t )− E2(xt) = (1− β)2Σv,1 + β2Σv,2 (3.34)

∂var(xt)

∂β
= 2(β − 1)Σv,1 + 2βΣv,2 (3.35)

then we get

β =
Σv,1

Σv,1 + Σv,2
(3.36)

Therefore, the optimal linear estimator of xt from the measurements of two cameras

is

E(xt) =
Σv,2

(Σv,1 + Σv,2)
yt,1 +

Σv,1

(Σv,1 + Σv,2)
yt,2 (3.37)

Now the problem is to determine the variance of measurements noise of cameras.

In particle filter, the weights of samples reflects the qualities of samples. For

example, if a measurement has high signal-to-noise ratio, the samples from that

measurement should have high weights and small weight variance. Therefore, the

variance of weights of samples is a suitable measure of the variance of measurement

noise of sensors.

The mean of weights of samples drawn from the measurement of the 1st camera is:

w̄1 =
1

|I1|

∑

i∈I1

w
(i)
t (3.38)

where I1 is the index set of samples drawn from the measurement of the 1st camera.

The variance of measurement noise of the 1st camera is estimated by the variance
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of weights of samples drawn from the measurement of the 1st camera:

Σv,1 =
1

|I1|

∑

i∈I1

(w
(i)
t − w̄1)

2 (3.39)

The mean of weights of samples from the measurement of the 2nd camera is:

w̄2 =
1

|I2|

∑

i∈I2

w
(i)
t (3.40)

where I2 is the index set of samples drawn from the measurement of 2nd camera.

The variance of measurement noise of the 2nd camera is estimated by the variance

of weights of samples drawn from the measurement of the 2nd camera:

Σv,2 =
1

|I2|

∑

i∈I2

(w
(i)
t − w̄2)

2 (3.41)

Thus, the adaptive importance sampling is proposed as follows:

α1 =
1

3
, α2 =

2Σv,2

3(Σv,1 + Σv,2)
, α3 =

2Σv,1

3(Σv,1 + Σv,2)
(3.42)

Our importance sampling uses both the state at the previous time and the current

measurements of two cameras to generate samples of the target’s state (Fig. 3.5).

This method may be generalized to information fusion of C(> 2) cameras. The

mean of weights of samples drawn from the measurement of the cth camera is:

w̄c =
1

|Ic|

∑

i∈Ic

w
(i)
t (3.43)

where Ic is the index set of samples drawn from the measurement of the cth camera.

The variance of measurement noise of the cth camera is estimated by the variance
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(a) Image I1 from the 1st camera (b) Image I2 from the 2nd camera

Figure 3.5: The samples (the target’s position and size) are generated by the

adaptive importance sampling method. The red boxes are samples generated from

the dynamic function, the green boxes are samples generated from the measurement

of the 1st camera, and the blue boxes are samples generated from the measurement

of the 2nd camera.

of weights of samples drawn from the measurement of the cth camera:

Σv,c =
1

|Ic|

∑

i∈Ic

(w
(i)
t − w̄c)

2 (3.44)

3.4.7 Algorithm summary

Our algorithm for data fusion of two cameras is summarized below.

1. Initialize the target models for two views when the target enters

the field of view. Set α1 = α2 = α3 = 1
3
.

2. For c = 1, 2, obtain the measurements yt,c of the cth camera.
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3. For i = 1, . . . , N , generating a uniformly distributed random num-

ber r ∈ [0, 1).

• if 0 ≤ r < α1, generate a process noise u
(i)
t and a sample

x̃
(i)
t = x

(i)
t−1 + u

(i)
t according to (3.4);

• if α1 ≤ r < α1 + α2, generate a measurement noise v
(i)
t,1 of the

1st camera and a sample x̃
(i)
t = yt,1 − v

(i)
t,1 according to (3.6);

• if α1 + α2 ≤ r < 1, generate a measurement noise v
(i)
t,2 of the

2nd camera and a sample x̃
(i)
t = yt,2 − v

(i)
t,2 according to (3.6);

4. For i = 1, . . . , N , evaluate the importance weights as (3.29) or

(3.30).

5. Normalize the importance weights:

w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

(3.45)

6. The current location is

Ê(xt) =
N∑

i=1

w
(i)
t x̃

(i)
t (3.46)

7. Compute the means and variances of weights of samples as (3.38)-

(3.41). Set α1, α2 and α3 as (3.42).

8. Resample x̃
(i)
t to get x

(i)
t and assign w

(i)
t = 1/N .

9. t← t + 1. Go to step 2 till the last frame of the image sequence.
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3.5 Experimental results

We test our adaptive particle filter using the PETS2001 dataset [1] and compare

our algorithm with the mean shift algorithm [32] and the condensation algorithm

[62]. The PETS2001 dataset has image sequences of two cameras from different

views. For the mean shift algorithm and the condensation algorithms, tracking is

carried separately for separate cameras (e.g., only using the image sequence of the

1st camera for the 1st camera’s tracking). In contrast, our algorithm tracks a target

using image sequences obtained from both cameras. The mean shift algorithm

generates an estimated position at each time while both our algorithm and the

condensation algorithm generate 50 candidate positions (i.e., 50 samples) at each

time. These three tracking algorithms are implemented in Matlab.

The mean shift algorithm fails to track the person for frames 352 and 465 of the

1st camera (Fig. 3.6(a)) but there is no problem in tracking the person for frames

352 and 465 of the 2nd camera (Fig. 3.6(b)). For the 1st camera, the person is

completely occluded by the tree in frame 352 and the target is lost in frame 352

because no information about the target is available. When the person reappears

in frame 465, the mean shift algorithm is not able to track him. As shown in Fig.

3.6(b), the mean shift algorithm is a good approach for tracking using a single

camera when there is no occlusion, but it has difficulties in tracking a completely

occluded target.
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(a) Camera 1 (b) Camera 2

Figure 3.6: Tracking results using the mean shift algorithm for frames 293, 352

and 465 superimposed on images obtained from two cameras.
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The condensation algorithm fails to track the person for frames 352 and 465 of the

1st camera (Fig. 3.7(a)) but there is no problem in tracking the person for frames

352 and 465 of the 2nd camera (3.7(b)). For the 1st camera, the person is lost

in frame 352 because no information is available to update the target’s position.

When the person reappears in frame 465, the condensation algorithm is not able to

track him. The results show that the condensation algorithm is good for tracking

using a single camera when there is no complete occlusion.

Our adaptive particle filter is able to track the person for frames 293, 352, 465,

651 and 837 of both cameras (Fig. 3.8). Some manually chosen correspondent

points are used to obtain the nine parameters of the homography transformation.

Although the target is occluded in the 1st camera, our algorithm is still able to

track the target in frame 352 using the information of the 2nd camera. When the

person reappears in frame 465, our algorithm is able to track him and continues to

track him for the subsequent frames till the person moves out of the field of view.

The results show that data fusion of multiple cameras can be used to solve the

long-duration occlusion problem.
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(a) Camera 1 (b) Camera 2

Figure 3.7: Tracking results using the condensation algorithm for frames 293, 352

and 465 superimposed on images obtained from two cameras.
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(a) Camera 1 (b) camera 2

Figure 3.8: Tracking results using the adaptive particle filter for frames 293, 352,

465, 651 and 837 superimposed on images obtained from two cameras.
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For the tracking task in Fig. 3.8, our data fusion method analyzes the quality of

data of two cameras and dynamically adapts the mixed weights α2 and α3 (3.42)

in our importance sampling (Fig. 3.9). At the beginning, most samples are drawn

from the measurement of the 1st camera. When a complete occlusion occurs in the

1st camera at about frame 320, the samples drawn from the 2nd camera increases.

When a partial occlusion in the 2nd camera occurs at about frame 420, less samples

are drawn from the 2nd camera.
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Figure 3.9: Dynamically allocated sample numbers during tracking. The solid line

is the number of samples drawn from the 1st camera. The dashed line is the number

of samples drawn from the 2nd camera.
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We also tested the condensation algorithm and our algorithm using the most recent

dataset of the European Commission Funded CAVIAR project [2] (Fig. 3.10). The

condensation algorithm succeeds to track the person in frames 840, 891, 897, 922

and 964 of the 1st camera (Fig. 3.10a); but it fails to track the same person in

frames 999 and 1041 of the 2nd camera (Fig. 3.10b) because the tracked person

is confused with a pillar in the background. Our data fusion algorithm is able to

track the target in frames 917, 968, 974, 999, and 1041 using information from both

cameras till the target moves out of the overlapping fields of view of two cameras

(Fig. 3.10c).
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(a) (b) (c)

Figure 3.10: (a) Tracking results using the condensation algorithm for frames 840,

891, 897, 922 and 964 of the 1st camera; (b) tracking results using condensation

algorithm for frames 917, 968, 974, 999 and 1041 of the 2nd camera; (c) tracking

results using the adaptive particle filter for frames 917, 968, 974, 999 and 1041 of

the 2nd camera. Frame 840 of the 1st camera and frame 917 of the 2nd camera are

at the same time.
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3.6 Discussions

3.6.1 Target size

The minimum size of the target is mainly determined by the colour distribution

of the target and the background. When the colour of the target differs from

the background, a portion of the target is sufficient to track the target. In our

experiments, the average size of the target is 22× 56 pixels (w× h) for Fig. 3.8(a)

and 13× 69 for Fig. 3.8(b), 18× 92 for Fig. 3.10(a) and 10× 47 for Fig. 3.10(c).

These experiments show that the minimum size of a person can be 10× 47 pixels.

3.6.2 Comparison with other multicamera tracking meth-

ods

Compared with other multicamera tracking methods such as [21, 97], our method

is a data fusion method while [21, 97] are switching methods. In [21, 97], there is

switching among cameras to choose one camera with the best view. For example,

Cai and Aggarwal [21] selected a camera using three criteria: i) ability to track the

object in the future; ii) robust spatial matching between cameras; and iii) ability

to maintain objects over the most number of frames. Nummiaro et al. [97] selected

the camera with the highest similarity for face’s colour histogram. For the tracking

task in Fig. 3.8, their methods always use information from the 2nd camera for
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tracking but not information from the 1st camera because the 2nd camera has the

best view. Their methods do not recover the trajectory of the occluded object in

the 1st camera. Only one camera’s information is used at every time instant. In

contrast, our method produces the candidate positions from information of two

cameras according to importance sampling. Next, we evaluate the weights of the

candidate positions using the likelihoods of two cameras. For Fig. 3.8(a), our

method tries to recover the position of the completely occluded object in the 1st

camera. Information of both cameras is always used at every time instant.

3.6.3 Adaptive mixed weights for importance sampling

We discuss here the influence of the mixed weights αi on our algorithm (Fig. 3.4)

using the effective sample size N̂eff (3.20). For the tracking task in Fig. 3.8, the

average effective sample size of the adaptive algorithm is 33 samples (the average

of the dashed line in Fig. 3.11) while the average effective sample size of the fixed

algorithm is 8 samples (the average of the solid line in Fig. 3.11) among the total

50 samples during the 290 frames. The solid line is the effective sample size of

the fixed importance sampling algorithm as (3.31). The dashed line is the effective

sample size of the adaptive importance sampling algorithm as (3.42).
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Figure 3.11: Comparison for the effective sample sizes. The solid line is the effective

sample size of the fixed importance sampling (3.31) and the dashed line is the

effective sample size of the adaptive importance sampling (3.42).
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3.7 Summary

This chapter proposes a data fusion method based on an adaptive particle filter

for visual tracking using multiple cameras with the overlapping fields of view. A

theoretical framework based on the spatio-temporal recursive Bayesian filter is pro-

posed for data fusion of multiple cameras. The spatio-temporal recursive Bayesian

filter is formulated using an adaptive particle filter. The adaptive particle filter

uses an adaptive importance sampling method to fuse information from multiple

cameras. The algorithm is able to automatically recover the location of an occluded

target while the mean shift algorithm and the condensation algorithm experience

difficulties when tracking an occluded target. Therefore, information fusion of data

from multiple cameras can solve the problem of occlusion.



Chapter 4

The PHD filter for visual tracking

4.1 Introduction

Tracking multiple targets remains a challenge [105]. Tracking problems are usually

modelled as a dynamic system [8, 9, 10] whose order is fixed when there is the fixed

number of targets. However, the problem becomes challenging when the number

of targets is unknown and variable because the state or observation dimensions is

time-varying under this situation. The following works are some attempts to meet

this challenge. Reid proposed multiple hypothesis tracking (MHT) algorithm which

enumerates multiple track-to-measurement association hypotheses during a period

65
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till one hypothesis can be verified [107]. The problem of MHT is the potential

combinatorial explosion in the number of hypotheses. Miller et al. generated the

conditional mean estimates of an unknown number of targets and target types via

jump-diffusion process [89]. Musicki et al. proposed integrated probabilistic data

association (IPDA) [95] as a recursive formula for both data association and proba-

bility of target existence. Vermaak et al. presented the existence joint probabilistic

data association filter (E-JPDAF) to track a variable number of targets [122].

E-JPDAF associates with each target a binary existence variable that indicates

whether the correspondent target is active or not and assumes that a large and

fixed target number (including both active and inactive targets) is known in ad-

vance. Green proposed a reversible jump Markov chain Monte Carlo (RJMCMC)

approach [52] to generate samples with different dimensions by ”jump” operations

in a Markov chain. Khan et al. used this method to track a variable number of

interacting ants [71]. Smith et al. used RJMCMC to track varying numbers of

interacting people [114]. To simplify the sampling procedure for “jump”, Ref. [71]

and [114] assume only one target dead or birth at every time. Mori and Chong

gave a point process formalism for multitarget tracking problems [93].

The FInite Set STatistics (FISST) proposed by Mahler is the first systematic treat-

ment of multisensor multitarget tracking. It contributes to a unified framework of

data fusion [49, 83]. The problem of FISST is its computational complexity when

dealing with multiple sensors and multiple targets. To reduce the complexity,
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Mahler devised the Probability Hypothesis Density (PHD) filter as an approxima-

tion of multitarget filter [85]. There are two implemented methods for the PHD

filter. One is particle filter implemented by Zajic [131], Sidenbladh [112] and Vo

et al. [125]. Johansen et al. [66] and Clark and Bell [28] demonstrated the conver-

gence property of the particle PHD filter respectively, which show that the empir-

ical representation of the PHD converges to the true PHD. The other is Gaussian

mixture proposed by Vo and Ma [124]. Clark and Vo [27] proved the convergence

property of the Gaussian mixture PHD filter.

The particle PHD filter differs from the other particle filters. There has been much

work on tracking multiple targets using particle filters. These works can mainly

be divided into two categories: 1) one particle filter with the joint state space for

multiple targets [60, 64, 72]; 2) one mixed particle filter, where each component

(mode or cluster) is modelled with one individual particle filter that forms part of

the mixture [121, 98]. The disadvantage of the 1st approaches is that it is difficult

to find an efficient importance sampling function when the target number is large

and the dimension of the joint state space is high. The 2nd approaches usually

use some heuristic methods to determine the target number first and derive the

states of targets. For example, the boosted particle filter [98] adds, deletes, and

merges targets according to the overlapping regions between the targets detected

by Adaboost algorithm and the existing targets (from the authors’ programs [3]).

The particle PHD filter is similar with the second approach but the particle PHD
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filter has an important property that the integral of the PHD over a region in a

state space is the expected number of targets within this region. The PHD filter

can automatically determine the target number by this property, which differs from

the other multitarget particle filters.

There have been some applications of FISST and PHD. Sidenbladh tracked ve-

hicles in terrain using the FISST particle filtering [113]. Tobias and Lanterman

[118] applied the particle PHD filter for radar tracking problem. Clark and Bell

[29] used the particle PHD filter in tracking in sonar images. Ikoma et al. filtered

trajectories of feature points in images using the particle PHD filter [61]. Haworth

et al. presented a system to detect and track metallic objects concealed on people

in sequences of millimeter-wave images [55]. Clark et al. developed the Gaus-

sian mixture PHD multitarget tracker [25] and demonstrated it on forward-looking

sonar data [28].

Some applications in business intelligence such as customer statistics only care

about the number of people or groups near a store and do not need the identi-

fication information of them. The PHD filter is suitable for these scenarios. In

this chapter, object detection is combined with the probability hypothesis density

filter to automatically track an unknown and variable number of people or groups

in image sequences without human intervention. The procedure is outlined in Fig.

4.1.
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Image data PHD filterdetection

Figure 4.1: PHD visual tracking implementation.

The PHD filter is implemented by 2 methods: both particle filter and Gaussian

mixture. A key issue for the particle PHD filter is the design of importance func-

tion. Most of previous works on importance function [51, 41] only care about the

fixed number of targets, whereas the PHD filter is to deal with the variable number

of targets. At the same time, the previous particle PHD filters [112, 125] use the

dynamic model of system as importance function. But this choice of importance

function does not consider the current measurements and may be inefficient. More-

over, the current measurements for the PHD filter are not a single measurement

but a random measurement set. Therefore, how to design importance function

of the particle PHD filter to incorporate the current measurement set remains a

challenge.

Assume that the tracked targets consist of two classes: survival targets and spon-

taneous birth targets. We propose importance functions and weight functions of

particle filter for survival targets and spontaneous birth targets. The importance

function for survival targets is an theoretical extension of the optimal importance

function of linear Gaussian model. For this extension we provide a mathematical
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proof under some assumptions. Whereas the importance function for spontaneous

birth targets is a Gaussian mixture with means being the centroids of new detected

foreground blobs. This is a data-driven method for particle PHD filter.

We also propose a scene-driven method to initialize the Gaussian mixture PHD

filter and to model the appearance/birth of new objects. This filter combines the

data-driven method (detection) with the model-driven method (the PHD filter)

and the scene-driven method (prior knowledge).

Our results show that both the particle PHD filter and the Gaussian mixture PHD

filter could track the variable number of people or groups and their positions when

people or groups appear, merge, split, and disappear in the field of view of a

camera.

4.2 Detecting foreground people

Detection methods for visual tracking include background subtraction with a mix-

ture of Gaussian as background model [115] and statistical background modelling

[79]. In our work, we use the statistical background modelling which incorporates

spectral, spatial, and temporal features to characterize the background appearance.

Background is divided into 2 classes: static background and dynamic background.

The color c = [R, G, B]T , the gradient e = [gx, gy]
T are selected as features of static
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background while the color co-occurrence cc = [cTt , cTt−1]
T (cTt = [Rt, Gt, Bt]

T ) is se-

lected as features of dynamic background.

The principal feature representation of background is constructed as follows. Let

vi be the feature vector sorted in descending order with respect to the probability

ps(vi|b) that is vi being observed as a background at the pixel s = (x, y). Then there

would be a small integer N(v), a high percentage value M1 and a low percentage

value M2 such that

N(v)∑

i=1

ps(vi|b) > M1 and

N(v)∑

i=1

ps(vi|f) < M2 (4.1)

where ps(vi|f) is the probability of vi being observed as a foreground at the pixel

s. The N(v) feature vectors are defined as the principal features of the background

at the pixel s. A table of statistics of principal features is established as follows:

Tv(s) =





ptv(b)

{St
v(i)} i = 1, · · · , M(v))

(4.2)

where ptv(b) is the learned prior probability of the pixel s belonging to the back-

ground based on the vector v and {St
v(i)} is the statistics of the M(v) most frequent

feature vectors and defined as follows:

St
v(i) =






ptvi
= Ps(vi)

ptvi|b
= Ps(Vi|b)

vi = (vi1, · · · , viD(v))
T

(4.3)
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where Ps(vi) is the prior probability of the feature vector vi being observed as the

position s and D(v) is the dimension of the feature vector v.

For gradual background changes, the table Tc(s) (v = c, e, or cc) is updated at

each time by:

pt+1
v (b) = (1− α)ptv(b) + αLt

b (4.4)

pt+1
vi

= (1− α)ptvi
+ αLt

vi
(4.5)

pt+1
vi|b

= (1− α)ptvi|b
+ α(Lt

bL
t
vi

) (4.6)

where α is a learning rate, Lt
b = 1 if s is classified as a background point at time t

in the final segmentation, otherwise, Lt
b = 0. Lt

vi
= 1 if the ith vector of the table

Tv(s) matches the input vector v, otherwise, Lt
vi

= 0. For “once-off” background

changes, the learning operation is:

pt+1
v (b) = 1− ptv(b) (4.7)

pt+1
vi

= ptvi
(4.8)

pt+1
vi|b

=
ptvi
− ptv(b)p

t
vi|b

pt+1
v (b)

(4.9)

for i = 1, · · · , N(v).

The foreground object detection consists of 4 stages: change detection, change

classification, background maintenance, and foreground segmentation. The back-

ground subtraction and the temporal (or interframe) difference are used for change

detection. Their results are used for classifying each pixel to static point or dynamic



CHAPTER 4. THE PHD FILTER FOR VISUAL TRACKING 73

point. For background maintenance, principal feature of static point is updated as

(4.4)-(4.6) while principal feature of dynamic point is updated as (4.7)-(4.9). The

morphological operation is applied to the foreground blobs and small regions are

removed to reduce noise. The centroids of remaining foreground blobs are chosen

as the measurements and are input to the following PHD filter.

4.3 Tracking model

The linear Gaussian dynamic model with the constant velocity (pp. 273, [12]) is

used:

xt+1 = Fxt + ut (4.10)

where the state of a target xt consists of its position and velocity

xt =

[
xt ẋt yt ẏt

]T
(4.11)

T is the transpose, [xt, yt]
T is the position and [ẋt, ẏt]

T is the velocity at time t,

the state-transition matrix is

F =




1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1




(4.12)

the system noise ut = [ut,1, ut,2, ut,3, ut,4]
T is mutually independent zero-mean Gaus-

sian white noise with covariance Σu = σ2
uI4, and In is n× n identify matrix. Only
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position measurements are available and the measurement model is

yt = Hxt + vt (4.13)

the measurement matrix is

H =




1 0 0 0

0 0 1 0


 (4.14)

the measurement noise vt = [vt,1, vt,2]
T is mutually independent zero-mean Gaus-

sian white noise with covariance Σv = σ2
vI2.

4.4 Finite set statistics

The finite set statistics contributes to a unified framework of multisensor multi-

target tracking and data fusion [49, 83, 84, 86]. There are a number of direct

mathematical parallels between single-sensor single-target statistics and multisen-

sor multitarget statistics. The parallels is summarized in Table 4.1.

In this section the major elements of FISST are introduced. The problem of accu-

rately modelling multitarget state spaces and multisensor multitarget measurement

spaces is described in section 4.4.1. Belief-mass functions, set integrals, and set

derivatives are introduced in section 4.4.2; and their application to multisensor

multitarget formal Bayesian modelling in section 4.4.3. The multisource multitar-

get Bayesian filter is described in section 4.4.4. Probability generating functionals

and their functional derivatives are introduced in section 4.4.5.
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Table 4.1: Single-target versus multi-target statistics

Random Vector Random Finite Set Random Finite Set

y Ψ Ψ

observation vector observation set

y Y

sensor model multitarget sensor model

yt = h(xt, vt) Σt = E(Xt)
⋃

C(Xt)

motion model multitarget sensor model

xt+1 = f(xt, ut) Ξt+1|t = Dt(X)
⋃

Bt(X)

probability mass function belief mass function probability generating

functional (p.g.fl.)

py(S) = Pr(y ∈ S) βΨ(S) = Pr(Ψ ∩ S) GΨ[h]

Radon-Nikodym derivative set derivative functional derivative

dpy
dy

δβΨ

δY
(S) δGΨ

δY
[h]

density function multitarget density multitarget density

fy(y) = dpy
dy

fΨ(Y ) = δβΨ

δY
(∅) fΨ(Y ) = δGΨ

δY
[0]

Lebegue integral set integral set integral
∫
S

fy(y)dy = py(S)
∫
S

fΨ(Y )δY = βΨ(S)
∫
S

hY fΨ(Y )δY =

GΨ[h]

expected value probability hypothesis den-

sity

probability hypothesis

density

ȳ =
∫

yfy(y)dy DΨ(y) =
∫

fΨ({y} ∪ Y )δY DΨ(y) = δGΨ

δy
[1]

likelihood function multitarget likelihood

ft(y|x) ft(Y |X)

Markov density multitarget Markov density

ft+1|t(x|x
′) ft+1|t(X|X

′)

posterior density multitarget posterior

ft|t(x|y1:t) ft|t(X|Y1:t)
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4.4.1 Random state sets and random measurement sets

The complete description of the state of a multitarget system requires a unified state

representation: a finite set of the form X = {x1, . . . , xn} where n is the number of

targets and x1, . . . , xn are the state vectors of the individual targets (in general, x is

assumed to include a discrete identity/label state variable). This description must

include the possibility n = 0, i.e., no target is present, in which case X = ∅. Such

a unified representation accounts for the fact that n is variable and that targets

have no physically inherent order. Thus {x1, x2} = {x2, x1} is a single unified state

model of two targets with state vectors x1, x2. On the other hand, vectors (x1, x2)

and (x2, x1) do not correctly represent the physical multitarget state since they do

so redundantly and cannot model its inherent permutation symmetry.

In a careful Bayesian approach the unknown state must be a random quantity.

Consequently, the unknown state set at time step t must be a randomly varying

finite set Ξt|t. One cannot define a random variable of any kind without, typically,

first defining a topology on the space of targets to be randomized and then defining

random elements of that space in terms of the Borel subsets [82]. The space of

state sets is topologized using the Mathéron “hit-or-miss” topology [49]. Once

this is done, the probability law of a finite random state-set Ξ is its probability-

mass function (a.k.a. probability measure) pΞ(O) = Pr(Ξ ∈ O) where O is any

Borel-measurable subset of the Mathéron topology.
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Similar considerations apply to observations. A unified observation representation

is a finite set of the form Y = {y1, . . . , ym} where m is the number of observations

and y1, . . . , ym are observation vectors generated by all sensors from all targets (in

general, y is assumed to include a discrete sensor tag describing the originating

sensor). When no observations have been collected, Y = ∅.

4.4.2 Belief-mass functions and multitarget integro-differential

calculus

Let Ψ denote a random finite subset of some space Y (e.g., the space of target

states or the space of measurements from any sensor). The statistical behavior

of Ψ is described by its probability-mass function (a.k.a. probability measure)

Pr(Ψ ∈ O). For engineering purposes it is inconvenient to deal with Borel sets O

which are continuously infinite sets whose elements are finite sets. The Choquet-

Mathéron theorem (pp. 96, [49]) states that the additive probability measure

pΨ(O) = Pr(Ψ ∈ O) is equivalent to the non-additive measure (a.k.a. “capac-

ity” or “Choquet functional”)

πΨ(S) = Pr(Ψ ∩ S 6= ∅)

where S is a subset of ordinary single-target state space. Therefore, pΨ(O) is also

equivalent to

βΦ(S) = 1− πΦ(Sc) = 1− Pr(Φ ∩ Sc 6= ∅) = Pr(Φ ⊆ S)
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For engineering purposes pΨ(O) is replaced by βΦ(S). By analogy with pΨ(O)

βΦ(S) is called the belief-mass function (a.k.a. belief measure) of the random finite

set Ψ.

In single target problems the density function fY (y) of pY (S) is defined as follows:

pY (S) =

∫

S

fY (y)dy (4.15)

in which case fY (y) is called the Radon-Nikodym derivative of pY (S).

In multitarget engineering a multitarget density function fΦ(Y ) of βΦ(S) is defined

by analogy with (4.15)

pΦ(S) =

∫

S

fΦ(Y )δY (4.16)

This equation does not make sense unless the indicated integral is defined firstly.

Let f(Y ) be any real-valued function of a finite set variable Y which has the fol-

lowing property. For each n ≥ 0, use the convention f({y1, . . . , yn}) = 0 whenever

yi = yj for some i 6= j, and also assume that
∫

f({y1, . . . , yn})dy1 · · ·dyn is finite

and has no units of measurement. Then the set integral of f(Y ) in a region S is

defined as

∫

S

f(Y )δY = f(∅) +

∞∑

n=1

1

n!

∫

Sn

f({y1, . . . , yn})dy1 · · ·dyn (4.17)

Given any belief-mass function βΦ(S), how to construct its corresponding density

function fΦ(Y ) so that (4.16) is satisfied? This requires the inverse operation of

the set integral, the set derivative. For arbitrary functions F (S) of a finite set
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variable S and for y1, . . . , yn distinct, it is defined by

δF

δy
(S) = lim

v(Ey)→0

F (S ∪ Ey)− F (S)

v(Ey)
(4.18)

δβ

δY
(S) =

δnβ

δyn · · · δy1

(S) =
δ

δyn

δn−1β

δyn−1 · · · δy1

(S) (4.19)

where Ey is a small neighborhood of y and v(S) is the hypervolume of set S.

The set derivative is the continuous variable analog of the Möbius transform of

Dempster-Shafer theory (pp. 149, [49]). It can be computed using “turn the

crank” rules such as the following (pp. 31-32, [83]):

• Sum Rule:

δ

δY
(α1β1(S) + α2β2(S)) = α1

β1

δY
(S) + α2

β2

δY
(S) (4.20)

• Product Rule:

δ

δY
(β1(S)β2(S)) =

∑

W⊆Y

δβ1

δW
(S)

δβ2

δ(Y −W )
(S) (4.21)

• Chain Rule:

δ

δy
f(β1(S), . . . , βn(S)) =

n∑

i=1

∂f

∂xi
(β1(S), . . . , βn(S))

βi
δy

(S) (4.22)

• Constant Rule: If Y 6= ∅ and K is a constant, then

δ

δY
K = 0 (4.23)
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• Power Rule: If p(S) is a probability mass function with density function

fp(y), then

δ

δY
p(S)n =





n!
(n−k)!

p(S)n−kfp(y1) · · ·fp(yk) if k ≤ n

0 if k > n

(4.24)

Given these it can be shown

βΨ(S) =

∫

S

δβψ
δY

(∅)δY (4.25)

that is,

fΨ(Y ) =
δβψ
δY

(∅) (4.26)

the multiobject density function of βΨ(S).

4.4.3 Multisensor multitarget Bayesian modelling

Belief-mass functions and their set derivatives provide the means for generalizing

formal Bayesian modelling to multisensor multitarget problems. Under FISST, the

motion model of multiple targets can be modelled as:

Ξt+1|t = Dt(X)
⋃

Bt(X) (4.27)

where Dt(X) models presumed target motion and the persistence/disappearance

of existing targets while Bt(X) models the appearance of new targets. The mea-

surement model of sensors can be modelled as

Σt = Et(X)
⋃

Ct(X) (4.28)
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where Et(X) models the self-noise of sensors and their detection probabilities while

Ct(X) models false alarms and clutter. Then their corresponding belief-mass func-

tions are constructed as follows:

βt+1|t(T |X) = Pr(Ξt+1|t ⊆ T |X) (4.29)

βt(S|X) = Pr(Σt ⊆ S|X) (4.30)

Finally, from (4.26) we can explicitly construct general, implementation-independent

formulas for the true multitarget likelihood function and the true multitarget

Markov density as follows:

ft+1|t(X|W ) =
δβt+1|t

δX
(∅|W ) (4.31)

ft(Y |X) =
δβt
δY

(∅|X) (4.32)

These multitarget density functions contain the same information as their respec-

tive belief-mass functions; and therefore the same information as the models used

to construct those belief-mass functions.

4.4.4 Unified fusion of multisource-multitarget information

With these preliminaries in place the single-sensor, single-target Bayesian filter of

(2.4)-(2.6) may be generalized to multisource multitarget problems. They become,
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respectively,

ft+1|t(X|Y
t) =

∫
ft+1|t(X|W )ft|t(W |Y

t)δW (4.33)

ft+1|t+1(X|Y
t+1) ∝ ft+1(Yt+1|X)ft+1|t(X|Y

t) (4.34)

ft+1(Yt+1|Y
t) =

∫
ft+1(Yt+1|X)ft+1|t(X|Y

t)δX (4.35)

Here ft|t(X|Y
t) is the multitarget posterior distribution; Y t = {Y1, . . . , Yt} is the

time sequence of multisource measurement sets; and the integrals are set integrals.

The multitarget posterior distribution has the form

ft|t(∅|Y
t): no targets present

ft|t({x1}|Y
t): one target with state x1

ft|t({x1, x2}|Y
t): two targets with states x1, x2

......

ft|t({x1, . . . , xn}|Y
t): n targets with states x1, . . . , xn

......
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4.4.5 Probability generating functionals and functional deriva-

tives

It is easy to extend the concept of a belief-mass function to fuzzy sets by rewriting

(4.16) as

βΦ(S) =

∫

S

fΦ(Y )δY =

∫
1YS fΦ(Y )δY

=
∞∑

n=0

1

n!

∫
1S(y1) · · · 1S(yn)fΦ({y1, . . . , yn})dy1 . . . dyn

(4.36)

where 1S(y) is defined by 1S(y) = 1 if y ∈ S and 1S(y) = 0 otherwise; and where

1YS =
∏

y∈Y

1S(y)

Now, let µ(y) be the membership function for a fuzzy set. Then (4.36) is generalized

as

GΦ[µ] =

∫
µY fΦ(Y )δY

=

∞∑

n=0

1

n!

∫
µ(y1) · · ·µ(yn)fΦ({y1, . . . , yn})dy1 . . . dyn

(4.37)

where

µY =
∏

y∈Y

µ(y) (4.38)

In the point process literature GΦ[µ] is known as the probability generating func-

tional (p.g.fl.) of Φ (pp. 141, 220, [34]). Note that GΦ[1S] = βΦ(S), so that p.g.fl.’s

do indeed generalize belief-mass functions.

The p.g.fl. GΦ[µ] is, like the multitarget density fΦ(X) and the belief-mass function
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βΦ(S), a fundamental descriptor of the statistics of Φ. But it is often more useful

than fΦ(X) or βΦ(S) because it results in much simpler formulas.

The set derivative of a belief-mass function can be generalized to functional deriva-

tives of p.g.fl.’s. Recall that the gradient derivative (a.k.a. directional or Frechét

derivative) of a real-valued function G(x) in the direction of a vector w is

∂G

∂w
(x) = lim

ε→0

G(x + ε · w)−G(x)

ε
(4.39)

where for each x the function x→ ∂G
∂w

(x) is linear and continuous; and so

∂G

∂w
(x) = w1

∂G

∂w1

(x) + . . . + wn
∂G

∂wn

(x)

for all w = (w1, . . . , wN), where the derivatives on the right are ordinary partial

derivatives. Likewise, the gradient derivative of a p.g.fl. G[h] in the direction of

the function g is

∂G

∂g
(x) = lim

ε→0

G[h + ε · g]−G[h]

ε
(4.40)

where for each h the functional g → ∂G
∂g

(h) is linear and continuous. In physics,

gradient derivatives with g = δx are called “functional derivatives” (pp. 140-141,

[110]). Using the simplified version of this physics notation employed in FISST,

the functional derivatives of a p.g.fl. G[h] is defined as:

δ0G

δx0
[h] = G[h],

δG

δx
[h] =

∂G

∂δx
[h] (4.41)

δnG

δx1 · · · δxn
[h] =

∂nG

∂δx1 · · ·∂δxn

[h] (4.42)
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It can be shown (p. 1162 of [85]) that the set derivative of βΞ(S) is a functional

derivative of GΞ[µ]

δβΞ

δx
(S) =

∂GΞ

∂δx
[1S] (4.43)

with g = δx and h = 1S. Likewise for the iterated derivatives:

δβΞ

δX
(S) =

δnβΞ

δx1 · · · δxn
(S) =

∂nGΞ

∂δx1 · · ·∂δxn

[1S] (4.44)

for X = {x1, · · · , xn} with x1, · · · , xn are distinct. So for X = {x1, · · · , xn}, the

multitarget probability distribution of a random state set Ξ is:

fξ(X) =
δnβΞ

δx1 · · · δxn
(∅) =

∂nGΞ

∂δx1 · · ·∂δxn

[0] (4.45)

4.5 Probability hypothesis density

Mahler devised the Probability Hypothesis Density filter as an approximation of

multitarget filter in FISST [85]. The 1st moment of a RFS is the analogue of the

expectation of a random vector. In the point process literatures [34, 116], a finite

subset X can also be equivalently represented by the counting measure NX defined

by NX =
∑

x∈X 1S(x) = |X
⋂

S|, where S is a measurement subset, 1S(x) is the

indicator function of S defined by 1S(x) = 1 if x ∈ S and 1S(x) = 0 otherwise, and

the notation |A| denotes the number of elements in A. Consequently, the random

finite set Ξ can also be represented by a random counting measure NΞ defined by

NΞ = |Ξ
⋂

S|.
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Using the random counting measure representation, the 1st moment or intensity

measure VΞ(S) of a RFS Ξ is defined as follows:

VΞ(S) ≡ E[NΞ(S)] =

∫
(
∑

x∈X

1S(x))PΞ(dX) (4.46)

for each measurable set S. The intensity measure VΞ(x) over a region S gives the

expected number of elements of Ξ that are in S.

The density of the intensity measure VΞ w.r.t. the Lebegue measure:

DΞ =
dVΞ

dλ
(4.47)

is called the intensity function or Probability Hypothesis Density (PHD) [85]. The

integral of the PHD DΞ over a region S in a state space
∫
S

DΞ(x)λ(dx) = E|Ξ
⋂

S|

is the expected number of targets within this region. Consequently, the peaks of

PHD DΞ are points the highest local concentration of expected number of targets

and can be used to generate estimates for the states of targets Ξ.

The generalized FISST calculus provides the foundation for a systematic procedure

for devising computational approximation strategies. This procedure has been

used, for example, to derive the predictor and corrector equations for the PHD

filter in [85]. Generally speaking this procedure consists of the following steps:

1. Rewrite the multitarget predictor integral, (4.33), in p.g.fl. form:

Gt+1|t[h] =

∫
Gt+1|t[h|X]ft|t(X|Y

t)δX (4.48)
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where

Gt+1|t[h|X] =

∫
hY ·Gt+1|t(Y |X)δY (4.49)

where hY is as defined in (4.38).

2. Given a multitarget Markov density based on a specific multitarget motion

model as in (4.27), derive a formula of the form Gt+1|t[h] = Gt|t[Φ[h]] for

some functional transformation h → Φ[h]. This formula can then be used

to derive approximate prediction equations, e.g., for the predicted first-order

multitarget moment

Dt+1|t(x|Y
t) =

δGt+1|t

δx
[1] (4.50)

3. Rewrite the numerator of multitarget Bayes’ rule, (4.34), as a p.g.fl.:

Ft+1[g, h] =

∫
hX ·Gt+1[g|X]ft+1|t(X|Y

t)δX (4.51)

where

Gt+1[g|X] =

∫
gY · ft+1(Y |X)δY (4.52)

4. Rewrite the multitarget Bayes rule, (4.34), in terms of p.g.fl.s and their func-

tional derivatives:

Gt+1|t[h] =

δFt+1

δYm+1
[0, h]

δFt+1

δYm+1
[0, 1]

(4.53)

5. Assume that the predicted p.g.fl. Gt+1|t[h] has a suitably simplified form such

as

Gt+1|t[h] = exp(−λ + λ

∫
h(x)s(x)dx) (4.54)
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(the Poisson approximation) or

Gt+1|t[h] =

n∏

j=1

(1− qj + qj

∫
h(x)fj(x)dx)) (4.55)

(the multi-hypothesis correlator approximation).

6. Using a multitarget likelihood function constructed from a specific measure-

ment model as in (4.28), derive the updated first-order moment (the PHD):

Dt+1|t+1(x|Y
t+1) =

δGt+1|t+1

δx
[1] (4.56)

7. Suppose that some objective function for use in sensor management is given,

such as the posterior expected number of targets

Nt+1|t+1 =
∂

∂y
Gt+1|t+1[e

y] =

∫
|X| · ft+1|t+1(X|Y

t+1)δX (4.57)

Use the approximations of Step 5 to derive approximate formulas for the

objective function.

Let Dt|t denote the probability hypothesis density associated with the multi-target

posterior pt|t(X|Y
t) at time t. The PHD filter consists of two steps: prediction and

update. The PHD prediction equation is:

Dt+1|t(x) = bt+1|t(x) +

∫
(pS(w)ft+1|t(x|w) + bt+1|t(x|w))Dt|t(w)dw (4.58)

where bt+1|t(x) denotes the intensity function of the spontaneous birth RFS, bt+1|t(x|w)

denotes the intensity function of the RFS of targets spawned from the previous
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state w, pS(w) is the probability that the target still exits at time t+1 given it has

previous state w, and ft+1|t(x|w) is the transition probability density of individual

targets. The PHD update equation is:

Dt+1|t+1(x) ∼= Ft+1(Yt+1|x)Dt+1|t(x) (4.59)

Ft+1(Y |x) = 1− pD(x) +
∑

y∈Yt+1

pD(x)pt+1(y|x)

λc(y) + Dt+1|t[pD(x)pt+1(y|x)]
(4.60)

where pD(x) is the probability of detection, pt+1(y|x) is the likelihood of individual

target, λ is the average number of clutter points per scan, c(y) is the probability

distribution of each clutter point, and Dt+1|t[h] =
∫

h(xt+1)D(xt+1|Y
t)dxt+1.

4.6 Particle PHD filter

In this section we introduce the basic particle PHD filter implemented using the

sequential Monte Carlo method. We assume that there are no spawned targets in

the prediction stage and all targets at time t + 1 consist of two classes: survival

targets and spontaneous birth targets.

Let Lt denote the particle number at time t, Jt denote the new particle number

for the spontaneous birth targets at time t, and w denote a particle’s weight. The

basic particle PHD filter is as follows:

At time t ≥ 0 , let {x
(i)
t , w

(i)
t }

Lt

i=1 denote a particle approximation of the

PHD.
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1. Detection

Detecting the foreground objects using background subtraction.

The centriods of all foreground blobs are the measurement set

Yt+1 at time t + 1.

2. Prediction

• For the survival targets, the importance function is the dy-

namic model (4.10). Therefore, for i = 1, ..., Lt, generate a

sample x̃
(i)
t+1 using (4.10) and compute the predicted weights

ŵ
(i)
t+1 = w

(i)
t

• For the spontaneous birth targets, we propose a uniform dis-

tribution on the whole image region as the importance func-

tion because we assume that we have no prior knowledge

about new-birth objects:

b(xt+1) ∼ U [1, width]× U [1, height] (4.61)

where width and height are the size of the image and U [c, d] is

a uniform distribution function on the interval [c, d]. Therefor,

for i = Lt+1, ..., Lt+Jt, sample x̃
(i)
t+1 using (4.61) and compute

the predicted weights

ŵ
(i)
t+1 = 1/Jt+1
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3. Update

• For each target, the centroid of its foreground blob is used as

the measurement to update the PHD filter. We propose the

likelihood function as follows:

p(y|xt+1) =
1

2π|Σv|
1/2

exp[−
1

2
(y − xt+1)

TΣ−1
v (y − xt+1)]

(4.62)

where Σv is the covariance matrix of the measurement noise.

• For each y ∈ Yt+1, use the likelihood and compute

Ct+1(y) =

Lt+Jt+1∑

i=1

pD(x̃
(i)
t+1)p(y|x̃(i)

t+1)ŵ
(i)
t+1

• For i = 1, ..., Lt + Jt+1, update weights

w̃
(i)
t+1 = [1− pD(x̃

(i)
t+1) +

∑

y∈Yt+1

pD(x̃
(i)
t+1)p(y|x̃

(i)
t+1)

λc(y) + Ct+1(y)
]ŵ

(i)
t+1

4. Resampling

• Compute the target number at time t + 1

N̂t+1 =

Lt+Jt+1∑

i+1

w̃
(i)
t+1

• Initialize the cumulative probability c1 = 0,

ci = ci−1 + w̃
(i)
t+1/N̂t+1, i = 2, ..., Lt + Jt+1.

• Draw a starting point u1 ∼ U [0, L−1
t+1].
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• For j = 1, ..., Lt+1,

uj = u1 + L−1
t+1(j − 1)

While uj > ci, i = i + 1. End while.

x
(j)
t+1 = x̃

(i)
t+1

w
(j)
t+1 = L−1

t+1

• Rescale (multiply) the weights by N̂t+1 to get

{x
(i)
t+1, N̂t+1/Lt+1}

Lt+1

i=1

5. State extraction

Do k-means clustering for particles {x
(i)
t+1}

Lt+1

i=1 with the cluster

number k = round(N̂t+1) and round(N) is the integer nearest to

N . The means of clusters are used as the state estimation of

targets.

4.7 Data-driven particle PHD filter

We proposed a data-driven method for the particle PHD filter in this section. The

“data-driven” means that the current measurement set is used to design the im-

portance function of the particle PHD filter. The design of importance function is

a key issue for particle PHD filter. Most of previous works on importance function



CHAPTER 4. THE PHD FILTER FOR VISUAL TRACKING 93

only care about the fixed number of targets, whereas the PHD filter is to deal

with the variable number of targets. Moreover, the current measurements for the

PHD filter are not a single measurement but a random measurement set. To meet

this challenge, we have modelled the targets into two categories: survival objects

and spontaneous birth objects. For survival objects, the importance function is

an theoretical extension of the optimal importance function of the linear Gaus-

sian model. Whereas for spontaneous birth objects, the importance function is

a Gaussian mixture with means being the centroids of new detected foreground

blobs.

The sequential importance sampling is described in section 4.7.1. The optimal

importance function of the linear Gaussian model is introduced in section 4.7.2.

The importance function for survival targets is proposed in section 4.7.3. The

importance function for spontaneous birth targets is presented in section 4.7.4.

The data-driven PHD filter is summarized in section 4.7.5.

4.7.1 Sequential importance sampling

Let q(x0:t+1|y1:t+1) be the importance function of particle filter and it can be fac-

tored into

q(x0:t+1|y1:t+1) = q(x0)

t∏

k=1

q(xk+1|x0:k, y1:k+1) (4.63)

then sequential importance sampling filter is
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For times t = 0, 1, 2, · · ·

• For i = 1, · · · , N , sample x
(i)
t+1 q(xt+1|x0:t, y1:t+1) and set x

(i)
0:t+1 =

(x
(i)
0:t, x

(i)
t+1).

• For i = 1, · · · , N , evaluate the importance weights up to a nor-

malizing constant:

w
(i)
t+1 = w

(i)
t

p(yt+1|x
(i)
t+1)p(x

(i)
t+1|x

(i)
t )

q(xk+1|x0:k, y1:k+1)
(4.64)

• For i = 1, · · · , N , normalize the importance weights:

w̃
(i)
t+1 =

w
(i)
t+1∑N

j=1 w
(j)
t+1

(4.65)

4.7.2 Optimal importance function

Lemma 4.1. The optimal importance sampling function q(xt+1|x
(i)
0:t, y1:t+1) which

minimises the variance of the importance weight w
(i)
t+1 is p(xt+1|x

(i)
t , yt+1) condi-

tional upon x
(i)
0:t and y1:t+1. The correspondent weight function is w

(i)
t+1 = w

(i)
t p(yt+1|x

(i)
t ).

Proof. Straightforward calculations using yield

var
q(xt+1|x

(i)
0:t,y1:t+1)

(w
(i)
t+1)

= E
q(xt+1|x

(i)
0:t,y1:t+1)

[(w
(i)
t+1)

2]− [E
q(xt+1|x

(i)
0:t,y1:t+1)

(w
(i)
t+1)]

2

=

∫
(w

(i)
t+1)

2q(xt+1|x
(i)
0:t, y1:t+1)dxt+1 − [

∫
w

(i)
t+1q(xt+1|x

(i)
0:t, y1:t+1)dxt+1]

2

= (w
(i)
t )2[

∫
[p(yt+1|x

(i)
t+1)p(x

(i)
t+1|x

(i)
t )]2

q(xt+1|x
(i)
0:t, y1:t+1)

dxt+1 − p2(yt+1|x
(i)
t )]

(4.66)
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When q(xt+1|x
(i)
0:t, y1:t+1) = p(xt+1|x

(i)
t , yt+1), the above variance is zero because

p(xt+1|x
(i)
t , yt+1) =

p(yt+1|xt+1, x
(i)
t )p(xt+1|x

(i)
t )

p(yt+1|x
(i)
t )

=
p(yt+1|xt+1)p(xt+1|x

(i)
t )

p(yt+1|x
(i)
t )

(4.67)

and the weight (4.64) is w
(i)
t+1 = w

(i)
t p(yt+1|x

(i)
t )

Lemma 4.2. For the linear Gaussian model (4.10) and (4.13), the conditional

distributions p(xt+1|x
(i)
t , yt+1) and p(yt+1|x

(i)
t ) are

p(xt+1|x
(i)
t , yt+1) ∼ N(mt+1, Σ) (4.68)

Σ−1 = Σ−1
u + HTΣ−1

v H (4.69)

mt+1 = Σ(Σ−1
u Fx

(i)
t + HTΣ−1

v yt+1) (4.70)

p(yt+1|x
(i)
t ) ∼ N(HFx

(i)
t , Σv + HΣuH

T ) (4.71)

Proof. From (4.10), it can be obtained that

xt+1 ∼ N(Fx
(i)
t , Σu) (4.72)

and from (4.13), it can be obtained that

xt+1 ∼ N(H−1y, (H−1)TΣvH
−1) (4.73)

where H−1 is the pseudo inverse of H. To combine (4.72) and (4.73), the linear

estimator of xt+1 is

xt+1 = (1− a)(Fx
(i)
t + ut) + a(H−1y −H−1vt+1) (4.74)
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where a is the hybrid parameter. Thus,

E(xt+1) = (1− a)Fx
(i)
t + aH−1y (4.75)

var(xt+1) = E(x2
t+1)− E2(xt+1) = (1− a)2Σu + a2H−1Σv(H

−1)T (4.76)

∂var(xt+1)

∂a
= 2(a− 1)Σu + 2aH−1Σv(H

−1)T = 0 (4.77)

then we get

a =
Σu

Σu + H−1Σv(H−1)T
(4.78)

Using (4.78) in (4.76) we obtain

Σ = var(xt+1) =
ΣuH

−1Σv(H
−1)T

Σu + H−1Σv(H−1)T
(4.79)

so (4.69) becomes

Σ−1 = Σ−1
u + [H−1Σv(H

−1)T ]−1 = Σ−1
u + HTΣ−1

v H (4.80)

Using (4.78) in (4.75), we obtain

mt+1 = E(xt+1) =
H−1Σv(H

−1)T

Σu + H−1Σv(H−1)T
Fx

(i)
t +

Σu

Σu + H−1Σv(H−1)T
H−1y (4.81)

Then (4.70) and (4.68) are obtained.

Using (4.10) in (4.13), we get

yt+1 = HFx
(i)
t + Hut + vt+1 (4.82)

then,

E(yt+1) = HFx
(i)
t (4.83)
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var(yt+1) = E(yTt+1yt+1)− E2(yt+1) = Σv + HΣuH
T (4.84)

Using (4.83) and (4.84), we obtain (4.71).

4.7.3 Importance function for survival targets

For our tracking task, the measurement at time t + 1 is not a single measurement

yt+1 but a measurement set Yt+1. The goal of this subsection is to derive the

analytical expressions for importance function and weight function of particle filter

for measurement sets.

Several measurements may be available at each time. Each measurement may be

generated by survival targets or spontaneous birth targets. Taking into account

measurements of spontaneous birth targets in the update of survival targets may

dramatically decrease the quality of the estimate of survival targets. To solve the

problem of distinguishing measurements of survival targets from spontaneous birth

targets, the validation gating technology (pp. 166, [12]) is introduced to filter the

measurements and obtain a validation measurement set of each particle for survival

targets near its predicted position as follows:

Ỹ
(i)
t+1 = {yt+1,k : (yt+1,k −HFx

(i)
t )TΣ−1

v (yt+1,k −HFx
(i)
t ) ≤ U} (4.85)

where U is the gating threshold, HFx
(i)
t is the predicted measurement for the

particle x
(i)
t , and yt+1,k is the kth measurement of the set Yt+1. The measurement
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set of survival targets is defined as the union of all survival measurement sets:

Ỹt+1 =
N⋃

i=1

Ỹ
(i)
t+1 (4.86)

and the residual measurement set is defined as:

Y t+1 = Yt+1 − Ỹt+1 (4.87)

We give an example to illustrate the gating technology in Fig. 4.2.

Figure 4.2: The two circles are the predicted gate regions of particle 1 and 2. A, B,

C, and D are four measurements. A and B are in the gate region of the 1st particle,

i.e., Ỹ
(1)
t+1 = {A, B}. C is in the gate region of the 2nd particle, i.e., Ỹ

(2)
t+1 = {C}. D

is the residual measurement, i.e., Y t+1 = {D}.

Let yt+1,j be the measurement which is nearest to the predicted measurement of
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the particle x
(i)
t of spontaneous birth targets in the residual measurement set, i.e.,

j = argmin
k
{|yt+1,k −Hx

(i)
t+1|}, yt+1,k ∈ Y t+1 (4.88)

We make an assumption for survival targets in our tracking scenario:

Assumption 4.1. For survival targets, the measurements of each target must

be within its validation measurement set (4.2). Thus, the conditional distribu-

tion p(xt+1|x
(i)
t , Yt+1) can be approximated by another conditional distribution

p(xt+1|x
(i)
t , Ỹ

(i)
t+1), i.e.,

p(xt+1|x
(i)
t , Yt+1) ∼= p(xt+1|x

(i)
t , Ỹ

(i)
t+1) (4.89)

The likelihood function can be approximated as follows:

p(Yt+1|x
(i)
t ) ∼= p(Ỹ

(i)
t+1|x

(i)
t ) (4.90)

and given the state, the measurements are conditionally independent from each

other:

p(Ỹ
(i)
t+1|x

(i)
t ) =

∏

y∈Ỹ
(i)
t+1

p(y|x
(i)
t ) (4.91)

From the above assumption, we propose importance functions and weight functions

of survival targets.

Proposition 4.3. The optimal importance function for each survival target is:

p(xt+1|x
(i)
t , Yt+1) ∼ N(m

(i)
t+1, Σ

(i)) (4.92)
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(Σ(i))−1 = Σ−1
u + |Ỹ

(i)
t+1|H

TΣ−1
v H (4.93)

m
(i)
t+1 = Σ(i)(Σ−1

u Fx
(i)
t + HTΣ−1

v

∑

y∈Ỹ
(i)
t+1

y) (4.94)

and the weight function is:

w
(i)
t+1 ∝ w

(i)
t exp{−

1

2

∑

y∈Ỹ
(i)
t+1

[(y −HFx
(i)
t )T (Σv + HΣuH

T )−1(y −HFx
(i)
t )]} (4.95)

I present two proofs for this proposition.

Proof. Let Mi = |Ỹ
(i)
t+1| and Ỹ

(i)
t+1 = {y

(i)
1 , · · · , y

(i)
Mi
}. From Lemma 4.1, we can

obtain that the optimal importance function is

p(xt+1|x
(i)
t , Yt+1) (4.96)

Using (4.89), we obtain

p(xt+1|x
(i)
t , Yt+1) ∼= p(xt+1|x

(i)
t , Ỹ

(i)
t+1)

From (4.10) and (4.13), we get

xt+1 ∼ N(Fx
(i)
t , Σu) (4.97)

xt+1 ∼ N(H−1y1, (H
−1)TΣvH

−1) (4.98)

xt+1 ∼ N(H−1y2, (H
−1)TΣvH

−1) (4.99)

· · · · · ·

xt+1 ∼ N(H−1yMi
, (H−1)TΣvH

−1) (4.100)
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As for (4.97) and (4.98), we use Lemma 4.2 (4.68)-(4.70) and can obtain

p(xt+1|x
(i)
t , y

(i)
1 ) ∼ N(mt+1,1, Σ1) (4.101)

Σ−1
1 = Σ−1

u + HTΣ−1
v H (4.102)

mt+1,1 = Σ1(Σ
−1
u Fx

(i)
t + HTΣ−1

v y
(i)
1 ) (4.103)

For (4.101) and (4.99), we use Lemma 2 (4.68)-(4.70) again and obtain

p(xt+1|x
(i)
t , y

(i)
1 , y

(i)
2 ) ∼ N(mt+1,2, Σ2) (4.104)

Σ−1
2 = Σ−1

1 + HTΣ−1
v H = Σ−1

u + 2HTΣ−1
v H (4.105)

mt+1,2 = Σ2(Σ
−1
1 mt+1,1 + HTΣ−1

v y
(i)
2 )

= Σ2[Σ
−1
1 Σ1(Σ

−1
u Fx

(i)
t + HTΣ−1

v y
(i)
1 ) + HTΣ−1

v y
(i)
2 ]

= Σ2[Σ
−1
u Fx

(i)
t + HTΣ−1

v (y
(i)
1 + y

(i)
2 )]

(4.106)

Repeat this process from y
(i)
1 to y

(i)
Mi

, we obtain

(Σ(i))−1 = Σ−1
Mi

= Σ−1
Mi−1 + HTΣ−1

v H = Σ−1
u + MiH

TΣ−1
v H (4.107)

m
(i)
t+1 = mt+1,Mi

= Σ(i)(Σ−1
Mi−1mt+1,Mi−1 + HTΣ−1

v y
(i)
Mi

)

= Σ(i)(Σ−1
u Fx

(i)
t + HTΣ−1

v

Mi∑

j=1

y
(i)
j )

(4.108)

i.e., (4.92)-(4.94).

From Lemma 4.1, the weight function is

w
(i)
t+1 = w

(i)
t p(Yt+1|x

(i)
t ) (4.109)
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using Assumption 4.1 (4.90) and (4.91), we obtain

w
(i)
t+1 = w

(i)
t

∏

y∈Ỹ
(i)
t+1

p(y|x
(i)
t ) (4.110)

using Lemma 4.2 (4.71) in (4.110), we obtain (4.95).

The following is the second proof method.

Proof. From (4.97) to (4.100), the linear estimator of xt+1 is

xt+1 = b0(Fx
(i)
t + ut) +

Mi∑

j=1

bjH
−1(y

(i)
j − vt+1,j) (4.111)

where {bj}, j = 0, · · · , Mi are the hybrid parameters and
∑Mi

j=0 bj = 1. We assume

that all measurements are the same contribution for the linear estimator (4.111),

thus, b1 = b2 = · · · = bMi
= b and b0 = 1−Mib, then (4.111) becomes

xt+1 = (1−Mib)(Fx
(i)
t + ut) + bH−1

Mi∑

j=1

(y
(i)
j − vt+1,j) (4.112)

The mean of the linear estimator (4.111) is:

E(xt+1) = (1−Mib)Fx
(i)
t + bH−1

Mi∑

j=1

y
(i)
j (4.113)

and the variance of the linear estimator (4.111) is

var(xt+1) = E(x2
t+1)− E2(xt+1) = (1−Mib)

2Σu + Mib
2H−1Σv(H

−1)T (4.114)

∂var(xt+1)

∂b
= 2Mi(Mib− 1)Σu + 2MibH

−1Σv(H
−1)T = 0 (4.115)

then we get

b =
Σu

MiΣu + H−1Σv(H−1)T
(4.116)
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Using (4.116) in (4.114), we obtain

var(xt+1) =
H−1Σv(H

−1)TΣu

MiΣu + H−1Σv(H−1)T
(4.117)

(Σ(i))−1 = (var(xt+1))
−1

= Σ−1
u + Mi(H

−1Σv(H
−1)T )−1

= Σ−1
u + MiH

TΣ−1
v H

(4.118)

i.e., (4.93). Using (4.116) in (4.113), we obtain

m
(i)
t+1 =

H−1Σv(H
−1)TFx

(i)
t + ΣuH

−1
∑Mi

j=1 y
(i)
j

MiΣu + H−1Σv(H−1)T

= Σ(i)(Σ−1
u Fx

(i)
t + HTΣ−1

v

Mi∑

j=1

y
(i)
j )

(4.119)

i.e.,(4.94).

4.7.4 Importance function for spontaneous birth targets

We make an assumption for spontaneous birth targets in our tracking scenario:

Assumption 4.2. For spontaneous birth targets, each target can generate at most

one measurement and the measurement is nearest to the predicted measurement

of its particle in the residual measurement set as (4.87). Thus, the likelihood

function of target p(Yt+1|x
(i)
t+1) can be approximated by the individual likelihood

p(yt+1,j|x
(i)
t+1), i.e.,

p(Yt+1|x
(i)
t+1)
∼= p(yt+1,j|x

(i)
t+1) (4.120)
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Proposition 4.4. For spontaneous birth targets, the importance function is a

Gaussian mixture with its means being the measurements in the residual measure-

ments (4.87), i.e.,

r(xt+1) ∼
1

Y t+1

∑

y∈Y t+1

N(xt+1; H
−1y, H−1Σv(H

−1)T ) (4.121)

where y is a measurement in the residual measurement sets Y t+1. The weight

function is:

p(Yt+1|x
(i)
t+1) ∝ exp[−

1

2
(yt+1,j −Hx

(i)
t+1)

TΣ−1
v (yt+1,j −Hx

(i)
t+1)] (4.122)

The goal of the importance function r(xt+1) of the spontaneous birth targets is

to generate the particles near the residual measurements. The Gaussian mixture

(4.121) is a suitable candidate because it may concentrate the samples in the region

of high probability. From the measurement model (4.13) and Assumption 4.2

(4.120), we obtain the weight (4.122). When there is only a residual measurement,

this importance function becomes a Gaussian distribution. When there are several

residual measurements, this importance function becomes a Gaussian mixture.

4.7.5 Data-driven particle PHD filter

Let Lt denote the particle number at time t, Jt denote the new particle number

for the spontaneous birth targets at time t, and w denote a particle’s weight. The

data-driven particle PHD filter is summarized as follows:
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At time t ≥ 0 , let {x
(i)
t , w

(i)
t }

Lt

i=1 denote a particle approximation of the

PHD.

1. Detection

Detecting the foreground objects using background substraction

with statistical background modelling. The centriods of all fore-

ground blobs are the measurement set Yt+1 at time t + 1.

2. Prediction

• Generate samples for survival targets

For i = 1, ..., Lt,

(a) generate a measurement set Ỹ
(i)
t+1 near the predicted posi-

tion of each particle x
(i)
t as (4.2),

(b) compute a Gaussian distribution (4.92) for each particle

using Ỹ
(i)
t+1,

(c) generate a sample x̃
(i)
t+1 from each Gaussian distribution,

(d) compute the predicted weights as (4.95)

• Generate samples for spontaneous birth targets

(a) Generate a residual measurement set Y t+1 as (4.86) and

(4.87),

(b) generate a Gaussian sum distribution (4.121) using (4.87),
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(c) sample x̃
(i)
t+1 from the Gaussian sum (4.121) distribution

for i = Lt + 1, ..., Lt + Jt,

(d) compute the predicted weights based on (4.122) as follows:

w
(i)
t+1 ∝

1

Jt+1
exp[−

1

2
(yt+1,j−Hx

(i)
t+1)

TΣ−1
v (yt+1,j−Hx

(i)
t+1)]

(4.123)

3. Update

For each y ∈ Yt+1, use the likelihood and compute

Ct+1(y) =

Lt+Jt+1∑

i=1

pD(x̃
(i)
t+1)p(y|x̃

(i)
t+1)w

(i)
t+1

For i = 1, ..., Lt + Jt+1, update weights

w̃
(i)
t+1 = [1− pD(x̃

(i)
t+1) +

∑

y∈Yt+1

pD(x̃
(i)
t+1)p(y|x̃

(i)
t+1)

λc(y) + Ct+1(y)
]w

(i)
t+1

4. Resampling

Compute the target number at time t + 1

N̂t+1 =

Lt+Jt+1∑

i=1

w̃
(i)
t+1

Initialize the cumulative probability c1 = 0, ci = ci−1 + w̃
(i)
t=1/N̂t+1,

i = 2, ..., Lt + Jt+1.

Draw a starting point u1 ∼ U [0, L−1
t+1].

For j = 1, ..., Lt+1,

uj = u1 + L−1
t+1(j − 1)
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While uj > ci, i = i + 1. End while.

x
(j)
t+1 = x̃

(i)
t+1

w
(j)
t+1 = L−1

t+1

Rescale (multiply) the weights by N̂t+1 to get {x
(i)
t+1, N̂t+1/Lt+1}

Lt+1

i=1

5. State extraction

Do k-means clustering for particles {x(i)
t+1}

Lt+1

i=1 with the cluster

number k = round(N̂t+1) and round(N) is the integer nearest to

N . The means of clusters are used as the state estimation of

targets.

4.8 Gaussian mixture PHD filter

The basic Gaussian mixture PHD filter is introduced in section 4.8.1. We propose

a scene-driven methods for the GMPHD filter in section 4.8.2.

4.8.1 Basic Gaussian mixture PHD filter

The GMPHD filter is initialized in Step 1 and iterates through Steps 2 to 6.

1. Initialization
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Initialize the algorithm with the weighted sum of J0 Gaussians,

D0|0 =

J0∑

i=1

w
(i)
0 N(x; m

(i)
0 , P

(i)
0 ) (4.124)

where N(x; m, P ) is a Gaussian distribution with the mean m and

the variance P . The sum of weights,

J0∑

i=1

w
(i)
0 = T̂0 (4.125)

is the expected number of objects at the beginning.

2. Prediction

The prediction density at time t + 1 is

Dt+1|t(x) = bt+1(x) + DS,t+1|t(x) (4.126)

The intensity of the spontaneous birth objects is

bt+1(x) =

Jb∑

i=1

w
(i)
b,t+1N(x; m

(i)
b,t+1, P

(i)
b,t+1) (4.127)

The intensity of the survival objects is

DS,t+1|t(x) = pS

Jt∑

i=1

w
(i)
t N(x; m

(i)
s,t+1, P

(i)
s,t+1) (4.128)

m
(i)
s,t+1|t = Fm

(i)
t (4.129)

P
(i)
s,t+1|t = Σu + FP

(i)
t F T (4.130)

3. Update
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When the measurements Yt+1 = {yt+1,1, ..., yt+1,|Yt+1|} at time t+1

are available, the posterior intensity is computed as follows:

Dt+1|t+1(x) = (1− pD)Dt+1|t(x)

+
∑

y∈Yt+1

Jt+1|t∑

i=1

w
(i)
t+1(y)N(x; m

(i)
t+1|t+1, P

(i)
t+1|t+1)

(4.131)

w
(i)
t+1(y) =

pDw
(i)
t+1|tN(y; Hm

(i)
t+1|t, Σv + HP

(i)
t+1|tH

T )

λc(y) +
∑Jt+1|t

j=1 pDw
(j)
t+1|tN(y; Hm

(i)
t+1|t, Σv + HP

(i)
t+1|tH

T )

(4.132)

m
(i)
t+1|t+1(y) = m

(i)
t+1|t + K

(i)
t+1(y −Hm

(i)
t+1|t) (4.133)

P
(i)
t+1|t+1 = [I −K

(i)
t+1H]P

(i)
t+1|t (4.134)

K
(i)
t+1 = P

(i)
t+1|tH

T (HP
(i)
t+1|tH

T + Σv)
−1 (4.135)

4. Pruning

In the pruning stage, the Gaussian components with low weights

are eliminated. Let the weights w
(1)
t+1, · · · , w

(NP )
t+1 be those which are

below the eliminated threshold, and the intensity after pruning is

Dt+1|t+1 =

∑Jt+1

l=1 w
(l)
t+1∑Jt+1

j=NP +1 w
(j)
t+1

Jt+1∑

i=NP +1

w
(i)
t+1N(x; m

(i)
t+1, P

(i)
t+1) (4.136)

5. Merging

In the merging stage, Gaussian components whose distance be-

tween the means falls within a threshold U are merged. For ex-

ample, if the means of components i and j satisfies

(m
(i)
t+1 −m

(j)
t+1)

T (P
(i)
t+1)

−1(m
(i)
t+1 −m

(j)
t+1) ≤ U (4.137)
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these components are merged into a single Gaussian.

Given {w
(i)
t+1, m

(i)
t+1, P

(i)
t+1}

Jt+1

i=NP +1, a merging threshold U , and a

maximum allowable number of Gaussian terms Jmax, the merg-

ing procedure is as follows:

Set l=0, and I = {i = 1, · · · , Jt+1|w
(i)
t+1 > τ}

Repeat

l = l + 1

j = argmax
i∈I

w
(i)
t+1

L = {i ∈ I|(m
(i)
t+1 −m

(j)
t+1)

T (P
(i)
t+1)

−1(m
(i)
t+1 −m

(j)
t+1) ≤ U}

w̃
(l)
t+1 =

∑

i∈L

w
(i)
t+1

m̃
(l)
t+1 =

1

w̃
(l)
t+1

∑

i∈L

w
(i)
t+1m

(i)
t+1

P̃
(l)
t+1 =

1

w̃
(l)
t+1

∑

i∈L

w
(i)
t+1[P

(i)
t+1 + (m̃

(l)
t+1 −m

(i)
t+1)(m̃

(l)
t+1 −m

(i)
t+1)

T ]

I = I\L

Until I = φ

If l > Jmax, replace {w̃
(i)
t+1, m̃

(i)
t+1, P̃

(i)
t+1}

l
i=1 by the Jmax Gaussians

with largest weights.

Output {w̃
(i)
t+1, m̃

(i)
t+1, P̃

(i)
t+1}

l
i=1 as the merged Gaussian components.

6. State estimation
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The states of objects are determined from the posterior inten-

sity by taking the components whose weights are above a specific

threshold, which represents the expectation of the object. For

example, if the weight is greater than 0.5, the expectation of an

object which falls within the region defined by component i is than

0.5. The state set estimates at time t + 1 is

X̂t+1 = {m
(i)
t+1 : w

(i)
t+1 > 0.5} (4.138)

4.8.2 Scene-driven method for new-birth objects

We found that new objects can only enter the field of view of the camera at 3

positions, i.e., position A, B, and C in Fig. 4.3.

We use this prior scene knowledge in tracking. For the initialization of Gaussian

mixture (4.124) and the model of new-birth objects (4.127), we model them with

3-components Gaussian mixture whose means are the locations of position A, B,

and C as follows:

1

3

∑

i=A,B,C

[N(xt+1; H
−1zi, H

−1Σv(H
−1)T )] (4.139)

where zi is the position of the ith entry point in the filed of view of camera.
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Figure 4.3: Scene-driven method. A, B, and C are the positions where new objects

may appear.

4.9 Results

4.9.1 Particle PHD filter

We test our method using the dataset of the European Commission Funded CAVIAR

project [2]. The parameters used in experiments are summarized in Table 4.2.

Video OneStopMoveEnter1front has 1588 frames. There are two human groups
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Table 4.2: Parameter list of the particle PHD filter

σu: standard deviation of state noise 3

σv: standard deviation of measurement noise 3

ρ: particle number per target 50

Jt particle number for spontaneous birth targets 50

PD: detection probability 0.99

λ: average number of clutter points per frame 0.01

c: probability distribution of each clutter point (352 ∗ 288)−1

PS: probability that the target exits 0.95

appearing, merging, splitting, or disappearing in the field of view of the camera.

The detection results using background subtraction [128] are shown in Fig. 4.4.

Fig. 4.5 shows 4 video frames with white circles indicating the tracking results:

the centroids of human groups. The particle number used for spontaneous birth

targets is 50 as shown in Table 4.2. Because the PHD filter explicitly models the

processes of birth, survival, death of targets and false alarms of clutter, as shown

by our experimental results, the particle PHD filter is able to track the variable

number of human groups and their positions.
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(a) frame 870 (b) frame 980

(c) frame 1010 (d) frame 1110

Figure 4.4: Detection results of adaptive background subtraction for frames 870,

980, 1010, and 1110 of video OneStopMoveEnter1front.
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(a) two groups appeared (frame 870) (b) two groups merged (frame 980)

(c) two groups split (frame 1010) (d) one group disappeared (frame 1110)

Figure 4.5: Tracking results of the particle PHD filter for frames 870, 980, 1010, and

1110 of video OneStopMoveEnter1front. The two human groups appear, merge,

split, and disappear in the field of view of the camera. The white circles are the

centroids of human groups.
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Fig. 4.6 provides the tracking results for the first 1000 frames of video OneStop-

MoveEnter1front. The correct frame number is 744 out of the 1000 frames. The

errors mainly come from two factors: i) the inaccuracy of measurements; ii) the im-

portance sampling for new-birth targets does not generate samples near the birth

target’s position.

Figure 4.6: Tracking result of the particle PHD filter for the number of targets.

The solid line is the ground truth number of people or groups. The dashed line is

the tracking result of the PHD filter.

The results confirm that the probability hypothesis density filter can track the
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variable number of targets and their positions. This property of the PHD filter

may be suitable for multisensor multitarget tracking under complex environments.

The results can be explained by the fact that the PHD filter explicitly models

the processes of birth, survival, death of targets and false alarms of clutter. This

is consistent with the earlier results of Vo et al. [125] and Sidenbladh [112]. It

is worth noting that the PHD filter differs from the traditional visual tracking

methods. The traditional visual tracking methods rely on only detection results to

determine the birth or death of targets. Therefore, they are data-driven methods.

On the other hand, the PHD filter explicitly models the birth, survival, or death

of targets in its dynamics. Therefore, the PHD filter is a model-driven method for

tracking.

4.9.2 Data-driven PHD filter

The data-driven particle PHD filter is tested using the dataset of the CAVIAR

project [2]. Some results of video OneStopMoveEnter1front using the statistical

background modelling described in Section 4.2 are shown in Fig. 4.7 .

Fig. 4.8 shows four video frames with white squares being the centroids of people

or groups. As shown by the experimental results, the data-driven particle PHD

filter is able to track a variable number of objects because the PHD filter explicitly

models the processes of birth, survival, death of targets and false alarms of clutter.
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It is noted that our method considers the left 2 people in Fig. 4.8c as a human

group. The reason is that the detection algorithm detects the two close targets

into one foreground objects as show in Fig. 4.7c.

Video Meet Split 3rdGuy has three people in the field of view of the camera. The

detection results using statistical background modelling are shown in Fig. 4.9.

The data-driven particle PHD filter is then applied for these detection results and

Fig. 4.10 shows 4 frames with white squares being the centroids of people or groups.

The particle number used for spontaneous birth targets is 50 as shown in Table

4.2. When a person at the bottom of Fig. 4.10a appears in the field of view of

the camera, the Gaussian mixture importance function (4.121) quickly generates

samples for the new-birth person and locate his position. When the left 2 people

in Fig. 4.10b merge into a group, the data-driven particle PHD filter tracks the

centroid of the group. When the left 2 people split, the data-driven particle PHD

filter tracks the positions of the 2 people (Fig. 4.10c). When a person at the

bottom of Fig. 4.10d moves out of the field of view of the camera, the data-driven

particle PHD filter detects the death of the existing target.
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(a) frame 870 (b) frame 980

(c) frame 1010 (d) frame 1110

Figure 4.7: Detection results for video OneStopMoveEnter1front.
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(a) two groups appeared (frame 870) (b) two groups merged (frame 980)

(c) two groups split (frame 1010) (d) one group disappeared (frame 1110)

Figure 4.8: Tracking results of the data-driven particle PHD filter for frames 870,

980, 1010, and 1110 of video OneStopMoveEnter1front. The white squares are the

centroids of people or groups.
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(a) frame 330 (b) frame 453

(c) frame 469 (d) frame 517

Figure 4.9: Detection results of statistical background modelling for frames 330,

453, 469, and 517 of video Meet Split 3rdGuy.
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(a) two groups appeared (b) two groups merged

(c) two groups split (d) one group disappeared

Figure 4.10: Tracking results of the data-driven particle PHD filter for frames 330,

453, 469, and 517 of video Meet Split 3rdGuy. The white squares are the centroids

of people or groups.
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We compare the data-driven particle PHD filter in section 4.7 with the particle

PHD filter in section 4.6. Fig. 4.11 shows the tracking results using the particle

PHD filter.

(a) frame 334 (b) frame 335

Figure 4.11: Tracking results of the particle PHD filter for video Meet Split 3rdGuy.

The white squares are the centroids of objects.

The particle number used for spontaneous birth targets is 50 as shown in Table 4.2.

The Gaussian mixture importance function (4.121) could track the new-birth tar-

get at frame 330 whereas the uniform importance function (4.61) started tracking

the new targets at frame 335. Increasing the particle number for spontaneous birth

targets should be able to speed finding new targets at the cost of increasing com-

putational load. The Gaussian mixture importance function uses the data-driven

information to concentrate samples on high-probability regions where new targets

may appear. On contrast, the uniform importance function must randomly search
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the whole image to verify the new target’s appearing. Therefore, the Gaussian

mixture importance function can track new birth objects faster than the uniform

importance function.

4.9.3 Gaussian mixture PHD filter

The GMPHD filter is tested using the CAVIAR dataset [2]. Fig. 4.12 shows

4 frames (frame 275, 391, 459, and 484) of video OneStopMoveEnter1front with

white squares being the tracking results.
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(a) appear (b) merge and appear

(c) split (d) disappear

Figure 4.12: Tracking result of the GMPHD filter for video OneStopMoveEn-

ter1front. The white squares are tracking results.
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Because the PHD filter explicitly models the processes of birth, survival, death

of targets and false alarms of clutter, as shown by the experimental results, this

method is able to track the variable number of people or groups. It is noted that

our method considered the 2 people on the right in Fig. 4.12a as a group. The

explanation for this is that the detection algorithm detects the two close targets

into one foreground object.

We compare the scene-driven GMPHD filter (section 4.8) with the particle PHD

filter (section 4.6). The scene-driven GMPHD filter can track the birth of new

objects faster than the particle PHD filter. Fig. 4.13 shows the first frame when

the new targets are tracked. The white squares in Fig. 4.13a are the results of the

GMPHD filter and the white squares in Fig. 4.13b are the results of the particle

PHD filter. Because the particle PHD filter uses a uniform distribution as the

proposal density of particle filter for new-birth objects and the sample number of

particle filter is limited in practice, it is possible that it does not generate samples

near the positions of new birth objects. While the GMPHD filter uses the prior

scene knowledge and is able to track the new-birth objects quickly.



CHAPTER 4. THE PHD FILTER FOR VISUAL TRACKING 127

frame 238 frame 251

frame 274 frame 294

(a) GMPHD (b) particle PHD

Figure 4.13: Comparison of the GMPHD filter and the particle PHD filter for

new-birth objects. The first row is the results for a person appearing at position

C and the second row is the results for a person appearing at position A.
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Fig. 4.14 provides the estimates of the target number of the GMPHD filter for

video OneStopMoveEnter1front. The correct frame number is 1148 out of the 1588

frames.

Figure 4.14: Absolute error in estimates of target number. The solid line is the

ground truth of the number of targets. The dashed line is the tracked target

numbers of the GMPHD filter.

For the estimated positions, the Wasserstein distance [58] is used as a metric to

measure the performance because it defines a metric for multitarget distance which
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penalizes when the estimated number of targets is incorrect. The above figure

of Fig. 4.15 is the Wasserstein distance between the estimated positions of the

GMPHD filter and the ground-truth positions. While the below figure of Fig.

4.15 is the Wasserstein distance between the positions of detected targets and the

ground-truth positions. The results show that the tracking errors mainly come

from the inaccuracy of measurements.

Figure 4.15: Wasserstein distance.
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Table 4.3: Comparison between the GMPHD filter and the particle PHD filter

GMPHD Particle PHD

Rate of frame with the correct number of targets 72.3 % 74.4 %

Average Wasserstein distance per frame 49.4153 72.4567

The comparison between the GMPHD filter and the particle PHD filter is sum-

marized in Table 4.3, which are based the statistical results of 1588 frames. The

particle PHD filter used 50 particles for each object.

4.10 Discussion

The results confirm that both the particle probability hypothesis density filter and

the Gaussian mixture probability hypothesis density filter can track a variable

number of targets and derive their positions. This property of the PHD filter

may be suitable for multisensor multitarget tracking under complex environments.

The results can be explained by the fact that the PHD filter uses samples and

the GMPHD filter used Gaussian components to explicitly model the processes of

birth, survival, death of targets, missed detection, and false alarms of clutter. This

is consistent with the earlier results of [125], [113] and [124].

When the target number is time-varying, the tracking algorithm usually determines
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the target number firstly, and then derives the states of targets. It is worth not-

ing that the PHD filter differs from the traditional multi-target tracking methods

in determining the target number. The traditional multi-target tracking methods

rely on only detection results of sensor to determine the numbers of targets and are

data-driven methods. For example, the boosted particle filter [98] adds, deletes,

and merges targets according to the overlapping regions between the targets de-

tected by Adaboost algorithm and the existing targets (from the authors’ programs

[3]). Reversible jump Markov chain Monte Carlo (RJMCMC) methods [72], [114]

uses “hypothesize and test” approach to determine the target number. For exam-

ple, [72] restricted proposals of RJMCMC to add or remove a single target and

[114] defined a global observation model to evaluate the configurations of variable

number of targets. Whereas the PHD filter automatically determines the target

number by using the integral of PHD over the field of view (the sum of weights of

all particles in particle filter based implementation and the sum of weights of all

Gaussian components in Gaussian mixture based implementation). This method

can track spontaneous birth and death of multiple targets in one frame. More-

over, the PHD filter explicitly models the birth, survival, or death of targets in

its dynamics and also explicitly models the missed detection and the false alarms

by clutter environment. Therefore, the PHD filter is a model-driven method. Our

contribution is: i) to combine the traditional visual tracking method and the PHD

filter according to the importance sampling of particle filter. This data-driven
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particle PHD filter automatically determines the target number in the tracking

region and improves the tracking performance of the PHD filter; ii) to combine the

data-driven method (detection) with the model-driven method (GMPHD) and the

scene-driven method (prior knowledge).

The detection and filtering was carried out in two separate phases in our experi-

ments using an Intel 1.86GHz CPU PC. Detection is achieved at a rate of 3 frames

per second for 352×288 images while the data-driven particle PHD filtering is

achieved at a rate of 15 frames per second. The computational complexity of the

particle PHD filter at time t + 1 is O((Lt + Jt+1)|Yt+1|). As we can see here, the

processing time is linearly proportional to the number of particles Lt at time t, the

number of particles for the spontaneous birth targets Jt+1 at time t + 1, and the

number of measurements |Yt+1| at time t + 1.

4.11 Summary

In this chapter, the probability hypothesis density filter is applied to a visual

tracking problem. Foreground objects are detected using the statistical background

modelling, and a variable number of people or human groups are tracked using the

PHD filter implemented by both sequential Monte Carlo method and Gaussian

mixture. We present a data-driven particle PHD filter and propose two importance

functions and weight functions for it. We also introduce a scene-driven Gaussian
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mixture PHD filter. The result shows both methods are able to track a variable

number of targets and derive their positions in image sequences.



Chapter 5

Conclusion and future work

Target tracking is the core of the systems that perform functions such as surveil-

lance or guidance. For multi-sensor multi-target tracking, the recursive state-space

Bayesian filter provides a framework to fuse the spatial and temporal information.

However, many issues in multisensor-multitarget tracking, especially the informa-

tion fusion of multiple cameras and tracking time-varying number of targets, remain

as very challenging problems. This thesis introduced two Bayesian filtering meth-

ods, namely, particle filter and the probability hypothesis density filter, to solve

these two challenges and demonstrated their use in real visual tracking scenarios.

The first contribution of this thesis is our proposal for a data fusion method based

on an adaptive mixed particle filter for visual tracking using multiple cameras

134
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with the overlapping fields of view. A theoretical framework based on the spatio-

temporal recursive Bayesian filtering was presented for data fusion of multiple

cameras. The spatio-temporal recursive Bayesian filtering was formulated using

an adaptive mixed particle filter. The particle filter uses the mixed importance

sampling strategy to fuse spatial information from multiple cameras and temporal

information of dynamic system. The particle filter is adaptive in sense that it

automatically ranks data from multiple cameras and assigns weights according

to quality of the data in the fusion process. The adaptive mixed particle filter

can automatically recover the location of an occluded target while the previous

methods (e.g. the mean shift algorithm [32] and the condensation algorithm [62])

experience difficulties.

The second contribution of this thesis is the ability to apply the probability hy-

pothesis density (PHD) filter to a visual tracking problem. Foreground objects

were detected using the statistical background modelling, and a variable number

of people or groups were tracked using the PHD filter, which was implemented us-

ing two methods: both particle filter and Gaussian mixture. For the particle PHD

filter, two importance functions and corresponding weight functions were proposed

for survival targets and spontaneous-birth targets, respectively. The importance

function for survival targets theoretically extends the optimal importance function

of the linear Gaussian model from single-measurement case to measurement-set

(multi-measurement) case. This is a data-driven importance sampling method.
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The importance function for spontaneous-birth targets is also a data-driven method

which uses the current measurements in the sampling process of the particle PHD

filter. For the Gaussian mixture PHD filter, a scene-driven method which incorpo-

rates the prior knowledge of scene into the PHD filter was presented. The results

demonstrated that these PHD filters are able to track a variable number of people

or groups in image sequences and might be used in tracking a variable number of

targets under complex environments.

In this work, we extended two Bayesian filtering methods, the particle filter and

the probability hypothesis density filter, to real visual tracking scenarios. There

remains a number of topics which invite further investigation.

• Tracking an unknown number of targets using multiple cameras is very im-

portant in video surveillance applications, and so far there are no suitable

solutions for this class of problems. Combining the adaptive particle filter

for information fusion of multiple camera and the PHD filter for tracking

unknown number of targets can provide a promising solution for this class of

problems.

• For very crowded scenes, the labels of objects may switch during occlusion.

For example, the soccer players may slow down, cease motion, and occlude

each other when they congregate and celebrate a goal. Deriving the contex-

tual three-dimension information could be helpful for resolving this situation.
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By this way the prior knowledge of scenes is integrated into the Bayesian fil-

tering framework for a more robust tracking system.

• The combination of information fusion of multiple sensors and tracking vari-

able number of targets may also be extended to other application fields such

as radar tracking, sonar tracking, or infrared tracking. In these tracking

scenarios, data association may be incorporated into this Bayesian filtering

framework to track both positions and identities of targets.
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