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Abstract of thesis  

 
Pre-eclampsia (PE) is a leading cause of maternal and fetal mortality and 

morbidity.  HLA-G is expressed predominantly on fetal extravillous trophoblasts that 

invade the maternal decidua during pregnancy and has been postulated to be 

important in the maintenance of a healthy pregnancy.  It has been thought that HLA-G 

exerts its protective functions through its inhibitory receptor, KIR2DL4, expressed on 

maternal natural killer cells.  Therefore, alleles/haplotypes of HLA-G and KIR2DL4 

were tested in a case-control study of 83 PE and 240 normotensive Malay women to 

determine if particular alleles or combinations of different alleles may predispose 

women to PE.  Case-control comparisons showed that risk for PE was significantly 

associated with fetal allele G*0106 (p=0.002, OR=5.0, 95%CI=1.8-13.8) but not 

maternal HLA-G.  No significant association was observed between KIR2DL4 alleles 

and PE in both maternal and fetal groups.  Gene-gene interaction analyses showed 

that combinations of maternal 2DL4*006 and fetal G*0106 significantly increases risk 

of PE (p<0.001).  Therefore, fetal G*0106 significantly increases risk for PE in 

pregnancies where the mother carries the 2DL4*006 allele. 
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Summary  

Pre-eclampsia (PE) is a leading cause of maternal and fetal mortality and 

morbidity and occurs only during pregnancy.  Although extensive studies have been 

carried out, the cause of PE is still unknown.  Accumulative evidence implicates that 

the placenta plays a role in the development of PE.  Human Leukocyte Antigen 

(HLA)-G expressed predominantly on fetal extravillous trophiblast cells from the 

placenta that invade the maternal decidua during pregnancy has been postulated to be 

important in the maintenance of a healthy pregnancy.  Structural or functional 

alterations of HLA-G may predispose women to PE.  It has been thought that HLA-G 

exerts its protective functions through its inhibitory receptor, killer-cell 

immunoglobulin-like receptor (KIR)2DL4, expressed on maternal natural killer cells.  

Pregnancy is the only physiological situation where KIRs may meet cognate non-self 

variants of HLA allotypes.    

 

Therefore, alleles/haplotypes of HLA-G and KIR2DL4 were tested in a case-

control study of 83 PE and 240 normotensive Malay women to determine if particular 

alleles or combinations of different alleles may predispose women to PE.  HLA-G and 

KIR2DL4 genes were amplified separately in 2 single-tube multiplex-PCR reactions 

and genotyped for 18 and 23 single nucleotide polymorphisms (SNPs), respectively, 

using multiplex-minisequencing strategy.  Case-control comparisons showed that risk 

for PE was significantly associated with fetal allele G*0106, interestingly only in 

multigravid pregnancies (p=0.002, OR=5.0, 95%CI=1.8-13.8) but no significance was 

observed in the maternal group.  Among multigravid pregnancies, the frequency of PE 

babies heterozygous or homozygous for G*0106 was also significantly higher 

compared to normal control babies (p=0.002. OR=5.4, 95%CI=1.9-15.4).  
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Multivariate analyses with adjustment for factors associated with PE revealed similar 

results (p=0.003, OR=10.1, 95%CI=2.2-46.8).  Additionally, a significantly higher 

frequency of fetal-maternal G*0106 genotype mismatch was observed in pre-

eclamptic compared to normal multigravid pregnancies (p=0.001, OR=9.6, 

95%CI=2.4-38.7).  No significant association was observed between KIR2DL4 alleles 

and PE in both maternal and fetal groups.  Gene-gene interaction analyses showed 

that combinations of maternal 2DL4*006 and fetal G*0106 significantly increases risk 

of PE (p<0.001).  Therefore, the presence of paternal G*0106 significantly increases 

risk for PE in pregnancies where the mother lacks the G*0106 allele and carries the 

2DL4*006 allele. 

 

 This study was carried out to test a larger sample size as well as to include 

HLA-G’s receptor, KIR2DL4, following a preliminary study on 31 PE and 164 

controls of the HLA-G gene where it was observed that there was significantly higher 

proportion of PE babies carrying the G*0106 allele.   

 

The work on HLA-G alleles/ haplotype in PE and controls as well as data on 

the frequencies of HLA-G alleles/ haplotypes in 3 local populations were published in 

Molecular Human Reproduction 2008: 14(5); 317-324 (Tan, Ho et al. 2008) and the 

work on KIR2DL4 alleles and PE was submitted to the Reproductive Sciences on the 

4th of March, 2009.  
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1.0 Introduction 

1.1 Pre-clampsia 

 Pre-eclampsia (PE) is a major cause of maternal and perinatal mortality and 

morbidity, causing 15  – 20 % of maternal death in developed countries each year 

(Sibai, Dekker et al. 2005).  PE occurs only during pregnancy and affects about 5-8% 

of healthy nulliparous women and the rate increases substantially in women with 

previous pre-eclampsia (18%) as well as women with twin gestation (14%) (Hauth, 

Ewell et al. 2000; Sibai, Hauth et al. 2000; Hnat, Sibai et al. 2002).  It is a 

multisystemic disorder that can manifest as either a maternal syndrome (hypertension 

and proteinuria, with or without other multisystem abnormalities) or fetal syndrome 

(fetal growth restriction, reduced amniotic fluid, and abnormal oxygenation) (2000; 

Sibai 2003; Sibai, Dekker et al. 2005).   

 

PE is defined as blood pressure of at least 140 mm Hg systolic or at least 90 

mm Hg diastolic measured on at least two occasions and at least 4 to 6 hours apart 

after the 20th week of gestation in women known to be normotensive beforehand in 

the presence of proteinuria of at least 300 mg per 24-hour period or a concentration of 

at least 30 mg/dL (or at least 1+ on dipstick) in two or more random urine samples 

collected at least 6 hours apart (2000; Sibai 2003).  PE is considered severe if there is 

severe gestational hypertension in association with severe proteinuria of at least 5 g 

per 24-hour period.  In addition to that, multiorganic involvement such as pulmonary 

edema, seizures, oliguria (less than 500 mL per 24-hour period), thrombocytopenia 

(platelet count less than 100,000/mm3), abnormal liver enzymes in association with 

persistent epigastric or right upper quadrant pains or persistent severe central nervous 
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system symptoms (altered mental status, headaches, blurred vision or blindness) may 

be observed in patients with severe PE (SPE) (Sibai 2003). 

 

There are 2 forms of PE, namely early and late onset with symptoms occurring 

before or after week 34 respectively (Redman and Sargent 2005; Oudejans, van Dijk 

et al. 2007).  The early onset form of PE is more severe and the fetus may suffer 

nutritional and respiratory insufficiency, resulting in a higher rate of neonates that are 

smaller size compared to neonates of the same gestational age.  Early onset PE also 

has higher recurrence rate compared with the late onset form of the disease (Redman 

and Sargent 2005).   

 

Risk factors for PE include primiparity, primipaternity, extremes of maternal 

age, PE in a previous pregnancy, family history of PE, multifetal gestations, long 

intervals between pregnancies, high pre-pregnancy body mass index (BMI), pre-

existing medical conditions such as chronic hypertension, diabetes, renal disease and 

urinary tract infection (Conde-Agudelo and Belizan 2000; Lee, Hsieh et al. 2000; 

Anorlu, Iwuala et al. 2005; Duckitt and Harrington 2005; Funai, Paltiel et al. 2005; 

Sibai, Dekker et al. 2005).  Interestingly, cigarette smoking during pregnancy was 

reported to be a protective factor against the development of PE (Conde-Agudelo and 

Belizan 2000).   

 

 Although the cause of PE is unknown, accumulative evidence strongly 

implicates the placenta (Redman 1991).  It has been suggested that PE is caused by 

the presence of the placenta itself or due to the maternal response to placentation, as 

PE occurs only during pregnancy and also, the fact that PE is promptly resolved after 
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the delivery of the placenta.  Moreover, development of PE does not require the 

presence of fetus as an increased risk of PE was observed in molar pregnancies (Ness 

and Roberts 1996).  Also, the uterus is not necessarily involved as PE can occur in 

extra-uterine pregnancies (Emembolu 1989; Piering, Garancis et al. 1993; Seki, 

Kuromaki et al. 1997).  

 

In normal pregnancy, placentation takes places before 20 weeks of gestation 

where extravillous trophoblast (EVT) cells from the placenta invade the maternal 

spiral arteries in the myometrium and remodels the arteries extensively causing them 

to lose their smooth muscle and becomes greatly dilated.  Proper trophoblast invasion 

to the inner third of the myometrium ensures sufficient blood flow to the feto-

placental unit, which in turns, ensures proper growth of the fetus (Trundley and 

Moffett 2004).  However, in pre-eclampsia, poor placentation occurs where the spiral 

arteries are poorly remodelled due to shallow trophoblastic invasion of the spiral 

arteries at the maternal-fetal interface (Redman 1991; Naicker, Khedun et al. 2003).  

This results in a markedly reduced volume of the uteroplacental circulation and failure 

of the EVT in gaining full access to maternal supplies.  

 

 Although extensive research addressing this disorder has been carried out in 

the past decade, the etiology and pathogenesis of PE remains unknown.  It has been 

suggested that the development of PE may be due to maternal immune maladaptation 

where a maternal alloimmune reaction takes place triggered by a rejection of the fetal 

allograft.  The immune maladaptation hypothesis is supported by findings of the 

protective effect of sperm exposure (Klonoff-Cohen, Savitz et al. 1989; Smith, 

Walker et al. 1997; Dekker 2002; Wang, Knottnerus et al. 2002; Einarsson, Sangi-
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Haghpeykar et al. 2003), higher incidence of PE in nulliparous women (Campbell, 

MacGillivray et al. 1985) and in women who are less exposed to their partners’ 

antigens (Robillard, Hulsey et al. 1994; Trupin, Simon et al. 1996; Smith, Walker et 

al. 1997; Lie, Rasmussen et al. 1998; Wang, Knottnerus et al. 2002; Saftlas, Levine et 

al. 2003) as well as an increased risk of PE in changing paternity (Trupin, Simon et al. 

1996; Tubbergen, Lachmeijer et al. 1999).  Furthermore, a genetic basis for PE has 

been demonstrated as a family history of PE increases the risk for developing the 

condition (Chesley, Annitto et al. 1968; Cincotta and Brennecke 1998).   

 

1.2 PE Genes 

Genome-wide scans have been performed in several association studies 

including the Dutch Preeclampsia study, the British Genetics of Pre-Eclampsia 

(GOPEC) consortium, the Norwegian HUNT cohort, Australian/New Zealand cohort, 

Finland, Iceland and other countries resulting in the identification of several 

susceptibility locus including 2p13, 2q22, 2p25, 4q32, 9p13 and 10q22 (Arngrimsson, 

Sigurard ttir et al. 1999; Moses, Lade et al. 2000; Laasanen, Hiltunen et al. 2003; 

Laivuori, Lahermo et al. 2003; Oudejans, Mulders et al. 2004; 2005; Moses, 

Fitzpatrick et al. 2006).  The GOPEC study genotyped 28 SNPs in 7 candidate genes 

conferring susceptibility to PE and concluded that none of the genetic variants tested 

in their study of strictly defined PE pregnancies confers a high risk of disease (2005). 

 

To date, more than 50 candidate genes for pre-eclampsia have been reported 

(Chappell and Morgan 2006). Several of these genes account for the majority of all 

pre-eclampsia candidate gene studies, including genes involved in the renin-

angiotensin system such as the angiotensinogen, angiotensin-converting enzyme and 

angiotensin receptors (AGTR1 and AGTR2) (Ward, Hata et al. 1993; Morgan, 
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Crawshaw et al. 1998; Plummer, Tower et al. 2004); in inherited thrombophilias such 

as coagulation factor V Leiden cariant, prothrombin and methylene tetrahydrofolate 

reductase (MTHFR) (Dizon-Townson, Nelson et al. 1996; Sohda, Arinami et al. 1997; 

Kupferminc, Eldor et al. 1999); in regulation of the synthesis of the vasorelaxant 

eNOS (endothelial nitric oxide synthase) such as the NOS3 gene (Yoshimura, 

Yoshimura et al. 2000) and in immunogenetics such as the Human Leukocyte Antigen 

(HLA)-DR, -DQ and -DP  (Kilpatrick, Gibson et al. 1990; de Luca Brunori, Battini et 

al. 2000; de Luca Brunori, Battini et al. 2003; Ooki, Takakuwa et al. 2008), HLA-C 

(Takakuwa, Arakawa et al. 1997; Hiby, Walker et al. 2004) and HLA-G genes.  

 

1.3 Human Leukocyte Antigens 

 Human Leukocyte Antigen (HLA) genes are part of the human major 

histocompatibility complex (MHC) located on the short arm of chromosome 6 on the 

6p21.3 region (Robinson, Waller et al. 2003).  The HLA genes are divided into 2 main 

classes (I and II) and among these 2 classes, class I genes are further sub-grouped into 

classical class Ia (HLA-A, -B and -C) and non-classical class Ib (HLA-E, -F and –G) 

genes whereas Class II genes includes HLA-DP, -DQ and –DR (Baines and Ebringer 

1992; 1999).   

 

Classical class Ia genes share some characteristics with the non-classical class 

Ib gene but the 2 groups have different expression patterns and also, class Ib genes 

have a lower allelic polymorphism compared to the former group (Geraghty, Koller et 

al. 1987; Koller, Geraghty et al. 1988; Geraghty, Wei et al. 1990; Heinrichs and Orr 

1990).  It is thought that the highly polymorphic classical class I molecules HLA-A, -

B, -C, which are expressed on almost all somatic cells, play a role in the induction of 

a specific immune response by presenting peptide antigens to T cells. In contrast, the 
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non-classical HLA class I molecules HLA-G and HLA-E are thought to be involved 

in the induction of immune tolerance by acting as ligands for inhibitory receptors 

present on natural killer (NK) cells and macrophages.  

 

 Among the HLA genes, the classical class Ia and II genes (HLA-A, -B, -C, -

DP, -DQ and -DR) genes are most widely studied due to their role in organ 

transplantation (Doherty and Zinkernagel 1975; Hurley, Wade et al. 1999; Schreuder, 

Hurley et al. 2005) and antigen-peptide presentation (Morris, Shaman et al. 1994; 

Chen and Jensen 2008) as well as their association with a range of autoimmune 

diseases (Manabe, Donaldson et al. 1993; Czaja, Santrach et al. 1995; Strettell, 

Thomson et al. 1997; Hunt, Marshall et al. 2001).  In addition to that, certain HLA 

genes, especially class Ib genes, has also been of much interest in studies of diseases 

in pregnancies such as recurrent spontaneous abortion (RSA) and PE as it is thought 

that the semiallogenic fetus carrying paternal genes foreign to the mother may trigger 

an alloimmune response in the mothers during pregnancy (Ober 1998; Ober, Hyslop 

et al. 1998; Ishitani, Sageshima et al. 2003; Ishitani, Sageshima et al. 2006). 

 

At the maternal-fetal interface, EVT cells are the only fetal cell type that is 

exposed to the maternal uterine decidua and comes into direct contact with maternal 

tissues in the pregnant uterus.  These cells exert a crucial role during implantation and 

placentation and are thought to play a role in the protection of the semiallogenic fetus 

from the maternal immune surveillance.  On the EVT, a unique combination of HLA 

class I molecules is expressed: the non-classical class Ib molecules, HLA-G, HLA-E 

and HLA-F, as well as the classical class Ia molecule, HLA-C (Kovats, Main et al. 

1990; Yelavarthi, Fishback et al. 1991; King, Boocock et al. 1996; Proll, Blaschitz et 
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al. 1999; King, Allan et al. 2000; King, Burrows et al. 2000; Blaschitz, Hutter et al. 

2001; Ishitani, Sageshima et al. 2003).  Classical class Ia genes expressed in nearly all 

other nucleated cells such as the HLA-A and HLA-B, as well as all HLA class II genes 

such as HLA-DR, HLA-DQ and HLA-DP are absent on the EVTs (Redman, 

McMichael et al. 1984).   

 

Interestingly, only HLA-G protein expression is primarily restricted to EVT 

(McMaster, Librach et al. 1995) whereas HLA-C and HLA-E have ubiquitous 

distribution (Koller, Geraghty et al. 1988; Kariyone, Tanabe et al. 1990) and HLA-F 

have been detected on a number of diverse tissues (Lury, Epstein et al. 1990).  

Therefore, the immunomodulatory role of HLA-G in complications of human 

pregnancies has been of much interest given its restricted expression on trophoblast 

cells that form the physical interface between fetus and mothers. 

 

1.4 HLA-G 

 HLA-G is a member of the non-classical MHC class Ib genes consisting of 6 

exons (O'Callaghan and Bell 1998; Robinson and Marsh 2007).  The HLA-G gene has 

almost the same structure as classical class Ia genes and shares more than 86% 

homology with HLA-A, -B and -C (Geraghty, Koller et al. 1987).  However, there are 

several features that sets HLA-G apart from classical class Ia genes.  Firstly, 

transcripts of HLA-G is able to undergo alternative splicing to generate at least 7 

distinct splice variants (HLA-G1 through HLA-G7) (Ishitani and Geraghty 1992; 

Fujii, Ishitani et al. 1994; Kirszenbaum, Moreau et al. 1994; Moreau, Carosella et al. 

1995; Hviid, Moller et al. 1998; Hiby, King et al. 1999; Paul, Cabestre et al. 2000), of 

which HLA-G1 to -G4 are membrane bound isoforms whereas HLA-G5 to -G7 are 

soluble isoforms due to the presence of a premature stop codon either in intron 2 
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(HLA-G7) or intron 4 (HLA-G5 and -G6).  This leads to the production of proteins 

lacking the transmembrane region.  Among the 7 isoforms, HLA-G1 isoform 

encoding the full length protein is the most abundant and may also be the only form 

expressed on cell surface (Bainbridge, Ellis et al. 2000; Mallet, Proll et al. 2000).  

 

Also, in contrast to other HLA class Ia molecules, HLA-G has limited allelic 

polymorphism and due to the presence of a stop codon in exon 7, HLA-G has a 

shortened cytoplasmic tail.  As a result, HLA-G proteins lack the endocytosis motifs 

found in the cytoplasmic tail of other HLA class Ia molecules. Absence of these 

motifs enables HLA-G proteins to have an extended surface half-life compared to 

other HLA molecules (Park, Lee et al. 2001).  

 

HLA-G transcripts were found to be upregulated in tumor tissues in the breast, 

kidney, lung, lymphoid, gastrointestinal tract and skin. (Paul, Rouas-Freiss et al. 

1998; Davies, Hiby et al. 2001; Ibrahim, Guerra et al. 2001; Urosevic, Kurrer et al. 

2001; Lefebvre, Antoine et al. 2002; Amiot, Le Friec et al. 2003; Ibrahim, Aractingi 

et al. 2004; Hansel, Rahman et al. 2005).  In addition to that, HLA-G has also been 

associated with a range of diseases including HIV-1 infection (Aikhionbare, 

Kumaresan et al. 2006; Tripathi and Agrawal 2007), systemic lupus erythematosus 

(Rizzo, Hviid et al. 2008), asthma (Ober 2005), juvenile idiopathic arthritis (Veit, 

Vianna et al. 2008), inflammatory diseases (Baricordi, Stignani et al. 2008), ulcerative 

colitis and Crohn’s disease (Rizzo, Melchiorri et al. 2008) among others.  

 

The most interesting feature of HLA-G is that its protein expression is 

restricted to the trophoblast cells of the fetal placenta and this has been shown 

repeatedly in different studies using different anti-HLA-G monoclonal antibodies as 
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well as different techniques.  In addition to that, transcripts of HLA-G have also been 

identified in a wide variety of tissues, including human oocytes, pre-implantation 

embryos (Jurisicova, Casper et al. 1996), maternal plasma, amniotic fluid (McMaster, 

Zhou et al. 1998; Rebmann, Pfeiffer et al. 1999), keratinocytes (Ulbrecht, Rehberger 

et al. 1994), peripheral blood B and T cells (Kirszenbaum, Moreau et al. 1994), fetal 

and adult thymus (Crisa, McMaster et al. 1997), kidney and eyes as well as fetal liver 

(Houlihan, Biro et al. 1992), lung and spleen (Onno, Guillaudeux et al. 1994).  

However, the expression of these transcripts in different tissues has been controversial 

because some of the anti-HLA-G antibodies used in the earlier studies were later 

shown to cross-react with other classical HLA molecules due to the high homology 

among members of the HLA family (Real, Cabrera et al. 1999; Apps, Gardner et al. 

2008).  Therefore, the expression of HLA-G in various tissues apart from trophoblast 

cells and perhaps also, its role in tumor development remains inconclusive. 

 

As HLA-G is the main HLA Class Ib gene being expressed by the fetal 

trophoblasts at the materno-fetal placental interface (King, Boocock et al. 1996),  it is 

possible that maternal NK cells found at the placental interface do not lyse the 

semiallogenic invasive fetal cytotrophoblasts due to their expression of HLA-G.  

Interestingly, the expression of HLA-G in the EVT is reduced in PE (Colbern, Chiang 

et al. 1994; Hara, Fujii et al. 1996; Goldman-Wohl, Ariel et al. 2000; Yie, Li et al. 

2004; Hackmon, Koifman et al. 2007).  It is possible that these cells are more 

susceptible to the attack by the maternal immune system and thereby results in the 

reduced invasion and poor remodeling of maternal spiral arteries as observed in PE 

placentas.  Other possible roles of HLA-G in the maintenance of pregnancy include 

participating in vascular remodeling through inhibition of angiogenesis (Fons, Chabot 
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et al. 2006; Le Bouteiller, Fons et al. 2007), influencing the maternal NK cell 

production of cytokines and angiogenic factors (Chumbley, King et al. 1994; Li, 

Charnock-Jones et al. 2001; Le Bouteiller, Pizzato et al. 2003) and inhibiting the 

transendothelial migration of NK cells across the placenta (Dorling, Monk et al. 

2000), thereby enhancing maternal tolerance to the fetus.   

 

In addition to that, HLA-G may also play a role in ensuring maternal tolerance 

to paternal alloantigens by reducing the population of activated CD4+ and CD8+ 

killer T cells that could be present in the blood in the intervillous space and decidua 

(Le Bouteiller, Legrand-Abravanel et al. 2003).  The finding that only embryos that 

express HLA-G are implanted successfully after in vitro fertilization (Fuzzi, Rizzo et 

al. 2002; Yie, Balakier et al. 2005) and have an increased cleavage rate (Jurisicova, 

Casper et al. 1996) as well as the reduced expression of HLA-G in PE (Colbern, 

Chiang et al. 1994; Hara, Fujii et al. 1996; Goldman-Wohl, Ariel et al. 2000; Yie, Li 

et al. 2004; Hackmon, Koifman et al. 2007), further highlights the importance of 

HLA-G in establishing and maintaining pregnancy. 

 

According to the World Health Organization (WHO) Nomenclature 

Committee for Factors of the HLA System, a total of 36 HLA-G alleles have been 

reported to date, of which 16 are major HLA-G alleles (HLA-G*0101 to HLA-

G*0116) (Robinson, Waller et al. 2003).  These alleles are characterized by single 

nucleotide polymorphisms (SNPs) that change the amino acid sequence of the HLA-G 

protein and these SNPs are distributed primarily between α1, α2 and α3 domains 

encoded by exons 2 to 4 (Table 1), unlike polymorphisms in classical class Ia 

molecules that are concentrated around the peptide binding groove.   
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Several studies have been performed to determine the association of HLA-G 

alleles with PE and the results have been inconclusive thus far, as positive 

associations of certain HLA-G alleles with PE are observed only in some study 

populations and not found in others.  For example, fetal inheritance of maternal 

G*0104 allele was reported to increase risk of PE in a study by Carreiras et al. 

(Carreiras, Montagnani et al. 2002) but a lack of association was observed in other 

studies (Hylenius, Andersen et al. 2004).  Therefore, further studies are necessary to 

determine if alleles of HLA-G is linked to PE.  

 

In addition to the SNPs coding for different HLA-G alleles, variations in the 5’ 

upstream region (UR), promoter and 3’ untranslated region (UTR) has been of much 

interest in association studies as well.  In contrast to the low level of polymorphism in 

the coding region, the 5’ flanking sequences of HLA-G is highly polymorphic, with 

18 SNPs identified in the region approximately 1500 base-pairs (bp) upstream of exon 

1 (Hviid, Sorensen et al. 1999).  Moreover, it has been proposed that this upstream 

region contains an important regulatory element that regulates the transcription and 

expression pattern of HLA-G (Schmidt, Ehlenfeldt et al. 1993; Moreau, Paul et al. 

1997).   
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Table 1. HLA-G alleles defined by SNPs (highlighted in bold) based on the WHO nomenclature.   

Protein domain Leader signal 
peptide α1 domain α2 domain α3 domain Transmembrane 

Exon Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 
Nucleotide 15 36 37 90 104 122 160 170 206 278 320 327 350 387 443 474 506 563 707 772 800 869 926 

Codon   13 31 35 41 54 57 69 93 107 110 117 130 148 159 169 188 236 258 267 290 309 
HLA G *01010101 GCG CTG TCC ACG CGG GCG CAG CCG GCC CAC GGA CTC GCC CTG GAG TAC CAC CAC GCA ACG CCG GGC AGA 
HLA G *01010201 GCA CTA      CCA  CAT            GGT AGG 
HLA G *010103        CCA   GGT             
HLA G *010104         GCT               
HLA G *010105           GGT             
HLA G *010106                  CAT     AGG 
HLA G *010107        CCA  CAT GGT             
HLA G *010108        CCA                
HLA G *010109               GAA         
HLA G *010111             GCG           
HLA G *010112      GCT  CCA  CAT              
HLA G *010113        CCA  CAT       CAT       
HLA G *010114     CGA   CCA  CAT              
HLA G *0102       CGG            GCC     
HLA G *0103    TCG              CAT     AGG 
HLA G *010401 GCA CTA      CCA    ATC           AGG 
HLA G *010402        CCC    ATC      CAT      
HLA G *010403            ATC            
HLA G *010404 GCA CTA      CCA    ATC         CCA  AGG 
HLA G *0105N GCA CTA      CCA  CAT    *TG        GGT AGG 
HLA G *0106  A      CCA  CAT          ATG  GGT AGG 
HLA G *0107 GCA CTA TTC     CCA    ATC           AGG 
HLA G *0108        CCA  CAT              
HLA G *0109        CCA  CAT      CAC        
HLA G *0110    ATG                    
HLA G *0111    ATG    CCA    ATC            
* Deletion 
 

Reference: 
1. IMGT/ HLA database 
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A 14 bp insertion/ deletion polymorphism (5’-ATTTGTTCATGCCT-3’) in 

the 3’UTR at nucleotide position 2961 (NP2961) of the HLA-G gene (Harrison, 

Humphrey et al. 1993) have been reported to affect HLA-G isoform splicing patterns 

and HLA-G transcript stability.  HLA-G mRNA transcripts with the 14-bp insertion 

undergoes further splicing of 92 bp in the 5’ UTR region (Hviid, Hylenius et al. 

2003), resulting in a more stable transcript compared to the complete form (Rousseau, 

Le Discorde et al. 2003).  Therefore, this polymorphism had been speculated to be 

involved in complications of pregnancies such as RSA and PE as it is associated with 

reduced expression of HLA-G. 

 

Although it has been reported that certain HLA-G alleles/ polymorphisms are 

associated with increased risk for PE, the results have not been conclusive.  

Furthermore, most previous studies have looked at individual HLA-G SNPs and not 

alleles.  Therefore, in this study, a more comprehensive approach is used to study 

polymorphisms of HLA-G at the haplotypes/ alleles level in addition to the individual 

SNPs to search for possible association with PE using a case-control approach. 

 

On the other hand, HLA-G may exert its protective functions by inhibiting 

maternal NK cells via interaction with inhibitory receptors expressed on NK cells and 

this may explain maternal tolerance of the semiallogenic fetus in the maintenance of a 

healthy pregnancy.  Inhibitory receptors of HLA-G are the immunoglobulin-like 

transcript ILT2 (also known as leukocyte Ig-like receptor 1, LILRB1, or CD58j) 

(Colonna, Navarro et al. 1997), ILT4 (also known as LILRB2 or CD85d) (Colonna, 

Samaridis et al. 1998; Allan, Colonna et al. 1999), and the killer-cell 

immunoglobulin-like receptor KIR2DL4 (CD158d) (Rajagopalan and Long 1999).  
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Both ILT2 and ILT4 are able to interact with classical HLA class I molecules 

although they have a higher affinity for HLA-G (Shiroishi, Tsumoto et al. 2003).  In 

contrast, KIR2DL4 has only one known ligand, HLA-G.  Furthermore, expression of 

KIR2DL4 is mainly restricted to NK cells. Therefore, the role of this inhibitory 

receptor, KIR2DL4, in association with PE was also included in this study.   

 

1.5 Natural Killer (NK) cells  

 NK cells are a highly specialized lymphoid population that is an important part 

of the innate immune defenses.  NK cells constitute an average of 10-15% of 

peripheral blood lymphocytes (PBL) from healthy individuals (Trinchieri 1989) and 

are found in many lymphoid tissues, including the spleen and lymph nodes, as well as 

in blood, lung, peritoneal cavity in human (Trinchieri 1989). NK cells are involved in 

two major effector functions, cytotoxicity and cytokine production, regulated by a 

series of activating and inhibitory cell surface receptors that is recognized by specific 

MHC class I or non-MHC ligands (Moretta and Moretta 2004).   

 

Apart from its presence in the peripheral circulation, a large population of NK 

cells are also found in the uterus (Trinchieri 1989) to prevent allograft rejection of the 

fetus and yet still maintain a competent immune defense against micro-organisms at 

the maternal-fetal interface.  Uterine NK (uNK) cells are phenotypically and 

functionally distinct from NK cells in peripheral blood (Moffett-King 2002) and they 

have been shown to be a distinct NK cell lineage (Koopman, Kopcow et al. 2003).  

These cells emerge as the most prominent subpopulation in the uterine in the 

beginning of pregnancy, constituting 50 to 90% of total leukocytes in the decidua 

(Parham 2004).  During early pregnancy, uNK cells accumulated as a dense infiltrate 

around trophoblast cells and from mid-gestation onwards, these cells progressively 



 
 

15 
 
 

disappear and are absent at term (Kam, Gardner et al. 1999).  Hence, the presence of 

uNK cells in the uterus during pregnancy is coincident with the period of trophoblast 

invasion, as placentation is complete by about 20 weeks gestation (Moffett-King 

2002).  The exact functions of uNK cells are not know but it has been suggested that 

they influence maternal mucosal and arterial function and/or regulate placental 

trophoblast invasion (Moffett-King 2002).   

 

 There are 5 main families of NK cell receptors, namely the C-type lectin 

heterodimer family (CD94/NKGs), the natural killer cytotoxicity receptors (NCR), the 

glycosylphosphatidylinositol-anchored CD160 receptor, the immunoglobulin-like 

transcripts (ILT) and the killer-immunoglobulin-like receptors (KIR) (Tabiasco, 

Rabot et al. 2006).   

 

1.6 Killer-Cell Immunoglobulin-like Receptors (KIR) 

KIR genes are located on chromosome 19q13.4 within the Leukocyte 

Receptor Complex (LRC) and are classified into 3 groups by the HUGO Genome 

Nomenclature Committee (HGNC) based on their number of extracellular Ig-like 

domains, cytoplasmic tail length, and sequence similarity (Robinson, Waller et al. 

2005).  According to the nomenclature, the first digit following the KIR acronym 

corresponds to the number of Ig-like domains in the molecule where the ‘D’ denotes 

‘domain’.  The D is followed by either a L (long cytoplasmic tail), S (short 

cytoplasmic tail) or P (pseudogenes).  The final digit indicates the number of the gene 

encoding a protein with this structure (Vilches and Parham 2002).   

 

KIRs with long cytoplasmic tails contains Immune Tyrosine-based Inhibitory 

Motifs (ITIM), which are tyrosine phosphorylated upon receptor engagement, and 
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subsequently bind the SH2 domains of protein-tyrosine phosphatases (SHP-1 and 

SHP-2) to transduce inhibitory signals to the NK cell (Vivier and Daeron 1997).  On 

the other hand, those with short (S) cytoplasmic tails activate NK cell cytoxicity 

through interactions with the adaptor molecule known as DAP12, which contains the 

immunoreceptor tyrosine-based activation motif (ITAM) (Lanier, Corliss et al. 1998).  

 

 The majority of human KIR has 2 extracellular Ig-like domains and theis 

group of 2 domain genes are further divided into 2 types: Type 1 and Type II KIR2D.  

Type I KIR2D has a D1 and D2 conformation and members of this group include 

KIR2DL1-3, KIR2DS1-5 and pseudogene KIR2DP1 whereas Type II KIR2D has D0 

and D2 conformation and its members are the KIR2DL4 and KIR2DL5.  In addition to 

having a different domain conformation, Type II KIR2D genes differs from Type I 

KIR2D genes by having a deletion in the region coresponding to exon 4 in all other 

KIR as well as an untranslated pseudoexon 3 sequence in place of the translated exon 

3.  Apart from the 11 KIR2D genes, there is a group of 4 KIR genes with 3 domains, 

namely the KIR3D genes.  These genes have 3 extracellular Ig-like domains with a 

D0, D1 and D2 conformation and members of this group includes the structurally 

related KIR3DL2, KIR3DS1, KIR3DL3 and KIR3DP1.  

 

 All known KIR haplotypes are flanked at their centromeric end by KIR3DL3 

and their telomeric end by KIR3DL2, together with the centric KIR3DP1 and 

KIR2DL4.  These 4 KIR genes constitute the framework genes found to be present in 

all haplotypes and they define the two intervals of the KIR gene complex containing 

genes that vary between haplotypes (Martin, Freitas et al. 2000; Wilson, Torkar et al. 

2000; Barten, Torkar et al. 2001).  The conservation of gene structures and sequence 

homologies between the different KIR receptor haplotypes indicates that the LRC 
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evolved by extensive gene duplication and recombination with insertion and deletion 

mechanisms leading to KIR gene diversification (Shilling, Guethlein et al. 2002). 

 

1.7 KIR2DL4 

KIR2DL4 is unique among members of the KIR family as it consists of 8 

exons compared to the 9 exons found on other two domain KIR molecules due to the 

complete absence of exon 4.  Also, as previously mentioned, KIR2DL4 is a Type II 

KIR with two Ig domains in a D0-D2 configuration whereas other two domain 

members of the family have a D1-D2 configuration and also, it is a framework gene 

that is present on all KIR haplotypes along with KIR3DL3, KIR3DP1 and KIR3DL2 

(Martin, Freitas et al. 2000; Wilson, Torkar et al. 2000; Barten, Torkar et al. 2001).  In 

addition to that, it possesses both an arginine residue in the transmembrane region as 

well as a long cytoplasmic tail with a single ITIM.  The combination of both the 

arginine residue and ITIM allows KIR2DL4 to elicit both inhibitory (Faure and Long 

2002) and activating (Rajagopalan, Fu et al. 2001; Kikuchi-Maki, Yusa et al. 2003) 

signals.   

 

The expression of KIR2DL4 had been reported in several studies, whilst one 

report had described expression on decidual NK cells during the first trimester of 

pregnancy and also on all NK cells obtained from the placenta at term, but not on NK 

cells obtained from the mother’s peripheral blood (Ponte, Cantoni et al. 1999), other 

studies found KIR2DL4 to be constitutively expressed in all NK cells at the 

transcriptional level (Valiante, Uhrberg et al. 1997; Rajagopalan and Long 1999; 

Goodridge, Witt et al. 2003).  Expression of KIR2DL4 in NK cells at the maternal-

fetal interface suggests that KIR2DL4 might play an important role in the maintenance 

of pregnancy. 
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Functionally,  KIR2DL4 has been reported to be an inhibitory receptor for 

peripheral NK cells (Riteau, Menier et al. 2001) and uterine NK cells (Ponte, Cantoni 

et al. 1999).  Additionally, KIR2DL4 has been shown to activate cytokine production, 

but not cytotoxicity, in resting NK cells from peripheral blood (Rajagopalan, Fu et al. 

2001).  Production of cytokines such as TNFα, IL-1β and IFN-γ induces vascular 

endothelial growth factor production in trophoblast cells and thereby influences 

uterine angiogenesis (Choi, Park et al. 2002).  These different functional activities are 

consistent with the fact that KIR2DL4 has both an ITIM and a charged residue, 

allowing it to mediate different functions under different circumstances.  A recent  

study on the possible roles of KIR2DL4 expression on human  uNK cells 

demonstrated that KIR2DL4 may be important in the maintenance of human 

pregnancy as it was observed that KIR2DL4 protein levels in isolated uNK cells is 

much higher in normal controls as compared to patients with a pregnancy disorder 

(Yan, Lin et al. 2007).   

 

According to the Immuno Polymorphism Database (IPD), 12 major alleles of 

KIR2DL4 characterized by 23 SNPs/polymorphisms have been identified based on 

various studies (Selvakumar, Steffens et al. 1996; Selvakumar, Steffens et al. 1997; 

Valiante, Uhrberg et al. 1997; Cantoni, Verdiani et al. 1998; Rajalingam, Gardiner et 

al. 2001; Gedil, Steiner et al. 2005; Robinson, Waller et al. 2005).  Of these 25 

KIR2DL4 SNPs/polymorphisms, 15 results in non-synonymous substitution of amino 

acids while the others are synonymous SNPs (Table 2).   

 

Among the 23 SNPs/polymorphisms, codon 248 in exon 6 is of much interest 

as it consists of two polymorphisms: a dA→dG transition that results in a non-

conservative amino acid substitution of Asn to Asp, and a single dA deletion within a 
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stretch of 10 adenines that results in a frameshift.  This deletion polymorphism results 

in 2 variants of the transmembrane exon, namely the 9A and 10A alleles (Witt, Martin 

et al. 2000), each with a population frequency of 50 % (Witt, Whiteway et al. 2002).  

The 10A allele encodes the full-length classical membrane-bound receptor with an 

ITIM motif in its cytoplasmic tail, whereas the 9A allele encodes a completely 

different amino acid sequence in exons 7 and 8 as a result of the frameshift mutation 

(Figure 1), leading to the production of a protein without an ITIM or alternatively, a 

more abundantly expressed mRNA lacking the transmembrane exon. 

 

Figure 1. Gene structure of KIR2DL4 and the 9A/10A splice variants. 
 

 
 

The association between alleles of KIR2DL4 and PE had only been reported in 

one study (Witt, Whiteway et al. 2002) and no association was detected between the 

two.  The authors hypothesized that the 9A alleles lacking the transmembrane exon 

would fail to prevent maternal NK cells from attacking the trophoblast and thereby 

lead to development of PE.  However, comparisons of the frequencies of the 9A/10A 

variants, polymorphisms in exons 3 and 4 as well as the KIR gene repertoire between 

PE and normotensive groups showed no significant difference between the 2 groups. 
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Table 2. KIR2DL4 alleles defined by SNPs (highlighted in bold) based on the IPD-KIR database.  
Extracellular Ig domain Protein domain 

D0 domain D2 domain 
Stem Transmembrane Cytoplasmic 

Exon Exon3 Exon 4 Exon 
5 Exon 6 Exon 

7 Exon 8 

Nucleotide 82 183 191 207 226 34 51 119 145 189 254 264 32 56 65 105 29 22 153 154 159 168 235 246 247 

Alleles/ Codon 30 64 66 72 78 109 115 137 146 161 182 186 206 231 234 248 257 273 316 317 318 321 344 347 348 

KIR2DL4 *00101 TAT GTG CCA TAC CAC CCG ACA GAA CCT CTG GAA GCG ACT TTT CTT AAT GCG CAG AGA GCG TTG GCC CTT TCT AAT 

KIR2DL4 *00102        GAG   GAG   TTC       TTA     

KIR2DL4 *0010301        GAG   GAG   TTC            

KIR2DL4 *00104           GAG   TTC            

KIR2DL4 *00105        GAG   GAG   TTC   GCA    TTA     

KIR2DL4 *00201       GCA    GAG CCG              

KIR2DL4 *00202       GCA GAG   GAG CCG              

KIR2DL4 *00203       GCA GAG   GAG CCG  TTC            

KIR2DL4 *003  CTG CCT     GAG   GAG  ACA TTC CTC GAT     TTA GCG  TCC CAT 

KIR2DL4 *004  CTG     GCA GAG   GAG CCG ACA TTC        GCG  TCC CAT 

KIR2DL4 *00501 TGT      GCA GAG   GAG CCG  TTC            

KIR2DL4 *00502 TGT      GCA GAG   GAG CCG  TTC       TTA     

KIR2DL4 *00601      CTG GCA GAG   GAG CCG ACA TTC            

KIR2DL4 *00602      CTG GCA GAG   GAG CCG  TTC            

KIR2DL4 *007    AAC CGC  GCA GAG   GAG CCG    *   AGT     *** *** 

KIR2DL4 *0080101       GCA GAG   GAG CCG    *          

KIR2DL4 *0080102       GCA GAG   GAG CCG    *    CCG      

KIR2DL4 *0080103       GCA GAG   GAG CCG    *          

KIR2DL4 *0080104       GCA GAG   GAG CCG    *       TTT   

KIR2DL4 *0080201       GCA    GAG CCG    *          

KIR2DL4 *009       GCA GAG  GTG GAG CCG    *          

KIR2DL4 *010      CTG GCA GAG CAT  GAG CCG  TTC            

KIR2DL4 *011 TGT      GCA GAG   GAG CCG    *          

KIR2DL4 *012 TGT      GCA GAG   GAG CCG  TTC    GAG        

* deletion 

References: 
1. IPD-KIR database
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1.8 KIR2DL4-HLA-G interaction 

HLAG exerts its function through interaction with KIR2DL4 and this signaling 

is supported by the fact that NK cells represent more than 80% of decidual 

lymphocytes and contact invading fetal trophoblast cells during pregnancy (King, 

Burrows et al. 1998; Loke, Hiby et al. 1999).  Interactions between HLA-G and its 

inhibitory receptor, KIR2DL4, has been shown in various reports (Rajagopalan and 

Long 1999; LeMaoult, Zafaranloo et al. 2005; Yan and Fan 2005).  Residues Met76 

and Gln79 in the α1 domain unique to HLA-G was observed to play an important role 

in the recognition of KIR2DL4 (Yan and Fan 2005) and may be involved in the 

regulation of NK functions.  Interestingly, all reported isoforms of HLA-G contains 

the α1 domain, which may explain why individuals that are homozygous for the 

HLA-G null allele (HLA-G*0105N) did not show any immunodeficiency and had 

healthy pregnancies (Ober, Aldrich et al. 1998; Casro, Morales et al. 2000).  

 

1.9 SNP Genotyping 

 SNPs are an invaluable tool for gene-disease associations as they are the most 

common type of genetic variation in the human genome and hence, many different 

methods are available for SNP genotyping.  Among them are hybridization-based 

methods whereby complementary DNA probes are utilized for hybridization to 

corresponding SNPs and these assays includes the use of molecular beacons 

(Abravaya, Huff et al. 2003) and SNP microarrays (Shen, Fan et al. 2005; Xiao, Segal 

et al. 2007).  In addition, enzyme-based methods such as restriction fragment length 

polymorphism (RFLP), 5’-nuclease allelic discrimination assay (Taqman) (Hui, 

DelMonte et al. 2008), primer extension as well as other methods such as high 
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resolution melting analysis (Liew, Pryor et al. 2004), and direct DNA sequencing are 

also frequently used for SNP genotyping.  

 

 Genotyping of HLA-G and KIR2DL4 SNPs were performed using a primer 

extension-based method known as minisequencing using a commercially available 

assay, the ABI PRISM® SnaPShot Multiplex kit by Applied Biosystems.  This single-

base extension assay was used as it is able to genotype multiple SNPs at known 

locations in a single tube using a small amount of amplified template and is relatively 

inexpensive for the detection of a fairly large number of SNPs in one reaction. 

 

1.10 Aims of study 

Pregnancy is the only physiological situation where HLA-specific inhibitory 

receptors expressed on maternal NK cells such as the Killer-cell Immunoglobulin-like 

Receptors (KIRs) may meet non-self variants of their otherwise cognate HLA 

allotypes, therefore, studies are currently underway to determine whether some 

combinations of maternal KIR genes and fetal HLA allotypes are less favorable for 

healthy pregnancy compared to others (Hiby, Walker et al. 2004; Trundley and 

Moffett 2004).  Inhibition of NK cells by HLA-G at the maternal-fetal interface 

presents an attractive hypothesis to explain maternal tolerance of the trophoblast as 

the trophoblast cells lack the highly polymorphic classical class Ia genes (apart from 

HLA-C), expressing only non-classical class Ib genes HLA-E, HLA-F and HLA-G 

with limited allelic variations (Yelavarthi, Fishback et al. 1991; King, Boocock et al. 

1996; King, Allan et al. 2000; Blaschitz, Hutter et al. 2001; Ishitani, Sageshima et al. 

2003). 
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Certain combinations of HLA-KIR may be favorable in the maintenance of a 

healthy pregnancy, as shown in a study of the effect of HLA-C and KIR haplotypes in 

association with PE (Hiby, Walker et al. 2004).  Therefore, it is possible that certain 

HLA-KIR combinations confer higher risk of PE in pregnancies.  This study proposes 

to investigate the relationship between particular HLAG and KIR2DL4 haplotypes in 

the development and risk for PE in the Malay population.  Studies examining the 

association of HLAG with pregnancy-related hypertensive disorders have been 

inconcordant and contradictory thus far whereas studies of KIR2DL4 alleles with PE 

are limited. Nevertheless, we hypothesize that certain HLAG and/or KIR2DL4 

haplotypes are associated with the development of PE.   
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2.0 Materials and Methods  

2.1 Sample Collection  

For the HLA-G and KIR2DL4 case-control studies, 83 Malay women with PE 

and 240 healthy normotensive Malay women being cared for in the Department of 

Obstetrics and Gynaecology in the National University Hospital (NUH, Singapore) 

and Hospital Sultanah Aminah (HSA, Malaysia) were recruited antenatally or in 

labour.  Among the PE group, 68 samples were collected from HSA and 15 samples 

were from NUH whereas for controls, a total of 125 subjects were recruited from 

HSA while 115 subjects were recruited from NUH.  Only subjects of Malay ethnicity 

were selected as we had more access to Malay patients.  The ethnicity of all subjects 

in this study was determined based on hospital records.  This study had been approved 

by the Domain Specific Review Board of the National Healthcare Group of Singapore 

and Ethics Review Board of Hospital Sultanah Aminah.  Informed written consent 

was obtained from all participants of the study. 

 

Clinical phenotyping was carried out by doctors of respective hospitals.  

Details of participant’s past obstetrics and medical history were noted to reduce other 

potential causes of hypertension such as autoimmune diseases, cardiac or renal 

complications.  Diagnosis of PE was made if there was a gestational hypertension, 

with a systolic blood pressure of at least 140 mmHg and/ or a diastolic blood pressure 

of at least 90 mmHg, measured on two separate occasions at least 6 hours apart after 

the 20th week of gestation, as well as proteinuria of at least 300 mg per day.  

Diagnosis of severe PE (SPE) was made if, in addition to symptoms above, signs of 

eclampsia such as headache, vomiting, visual disturbance and/ or epigastric pain were 

present.  
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Population HLA-G allele, genotype, and haplotype frequencies were also 

determined to confirm observed frequencies in the control group, and to compare 

against observed frequencies in other populations.  Population allele, genotype and 

haplotype frequencies of KIR2DL4 were not determined as KIR2DL4 was not 

significantly associated with PE.  Anonymized (except for gender and ethnicity) and 

unselected cord blood samples from a total of 90 Malay, 94 Chinese, and 90 Indian 

newborns were used to represent the 3 major ethnic groups in Singapore and 

Malaysia.   

 

2.2 DNA Extraction 

About 5 mL of venous blood was collected from each woman either in the 

delivery suite or in the antenatal ward, whilst 7 mL of blood from the umbilical cord 

was collected after the delivery of the baby.  Genomic DNA extraction was carried 

from the blood samples using the phenol-chloroform method.  First, blood samples 

with clots were passed through a 18g needle to shear the clots.  Following that, for 

each blood sample, TKM buffer 1 (comprising of Tris-HCl, KCl, MGCl2 and EDTA) 

and 2 % Triton X-100 was added to lyse the red blood cells and destabilize protein 

debris in the sample.  The mixture were mixed well and centrifuged to remove the 

supernant.  For the lysis of white blood cells, TKM buffer 2 (made up of Tris-HCl, 

KCl, MGCl2, EDTA and NaCl) and sodium dodecyl sulfate (SDS) were added and 

incubated for 10 minutes at 55°C.  After the incubation, RNase A was added to 

remove RNA in sample and the mixture was incubated at 37°C for up to 1 hour.   

 

 The supernatant containing DNA was added with a mixture of phenol: 

chloroform: iso-amylalcohol (25:24:1) and mixed for 10 minutes to remove protein 
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residues in the samples.  Following that, the samples were centrifuged and the top 

aqueous phase containing DNA was transferred to a clean tube.  Residual phenol in 

the sample was removed by the addition of choloform and iso-amylalcohol.  The 

mixture was centrifuged separate the aqueous and organic phase.  Finally, DNA was 

precipitated from the aqueous solution with the addition of ice-cold absolute ethanol.  

DNA sample was spooled out into a clean tube and 70% ethanol was added to wash 

the sample.  After removing the 70% ethanol from the DNA samples, rehydrating 

solution (TE 10:1) was added to reconstitute the DNA samples.  The extracted DNA 

samples were quantitated using the Spectramax M5 microplate reader after it is well 

dissolved in the rehydrating solution to obtain concentrations as well as the purity of 

the neat DNA.   

 

After that, the samples were divided into different groups based on the site of 

collection (NUH or HSA), diagnosis (SPE, PE or normal) as well as sample type 

(maternal or baby).  Following that, the DNA samples were diluted into 96-well plates 

of 500 ng/µl and 50 ng/µl concentrations to be kept as stock and working plates 

respectively.  The neat genomic DNA, stock and working DNA plates were then kept 

frozen in the -86ºC freezer until needed.   

 
2.3 HLA-G PCR Amplification 

Amplification of the HLA-G coding, 5’ and 3’ flanking regions containing the 

target single nucleotide polymorphism (SNP)/ polymorphisms was carried out using 

multiplex PCR.  All 6 exons of the HLA-G gene were amplified in 6 fragments using 

specific primers in a single tube multiplex polymerase chain reaction (PCR) (Figure 

2).  Each 25 µl PCR reaction contained 50 ng of DNA, 0.2 mM of each 

deoxynucleotide triphosphate (dNTP), 1 Unit of HotStarTaq DNA polymerase in 1 X 
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supplied PCR buffer (Qiagen), and 6 pairs of specific forward and reverse primers 

with concentrations as shown in Table 3.  Samples were amplified in a T3 thermal 

cycler (Biometra) with the following conditions: initial denaturation at 95 ºC for 15 

min, and a subsequent denaturation at 94 ºC for 2 min, followed by 30 cycles of 

denaturation at 94 ºC for 1 min, annealing at 63ºC for 1 min, and extension at 72 ºC 

for 1.5 min, with a final extension at 72 ºC for 10 min.  Following that, an 8 µl aliquot 

of each multiplex PCR product was analyzed by electrophoresis through a 1 % 

agarose gel in 1 X Tris-Borate-EDTA buffer at 15 volts/cm for an hour. 

 

Figure 2. Gene structure of HLA-G: the 6 PCR amplicons and locations of 
polymorphisms are shown below and above the gene map, respectively.   

 
 
 
 
 
 
 
 
 
 
 
 

2.4 HLA-G Minisequencing 

Genotyping of the target HLA-G SNPs/ polymorphisms was carried out using 

a multiplex mini-sequencing strategy.  The 18 SNPs/ polymorphisms of interest were 

genotyped in 2 panels, with each reaction assaying containing 9 polymorphic sites.  

Each minisequencing primer was designed to differ in length from the others, by the 

addition of non-specific GACT tetra-nucleotides at the 5’ end, so that they could be 

clearly separated and differentiated based on size.  Primers larger than 40 base-pairs 

(bp) were purified by polyacrylamide gel electrophoresis or HPLC to ensure that 

resulting primers are of specific desired lengths. 
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Table 3.  Primers used in the multiplex PCR amplification of the HLA-G exons. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aWith reference to the translation start site (+1). 
bConcentration of primer in the multiplex-PCR reaction mixture. 
ur: upstream region; ex: exon; NP: nucleotide position; CD: codon 

Primer Name Primer Sequence (5’3’) Length  
(bp) 

Nucleotide 
Positiona 

Conc. 
(M)b 

Amplicon  
size (bp) 

Region 
Amplified Polymorphisms within Amplicon 

HLAGu1F GTCCCTACAATGAACCAGGTATG 23 -1470 to -1492 0.3 

HLAGu1R CAGCACAAACTTTATTCACCTCAC 24 -894 to -917 0.3 
598 5’ur1 NP-1306 (A/G) 

HLAGu2F AACTTAGGGCTACGGAATGAAGG 23 -810 to -822 0.6 

HLAGu2R AGCGTTCTGTCTCAGTGTCTCC 22 -287 to -308 0.6 
536 5’ur2 NP-725 (C/G/T), NP-486 (C/A) 

HLAGe1F CAGGGCCTCAAGCGTGGCTC 20 -234 to -253 0.2 

HLAGe1R CCTCCGCGCAGGGGCTGTTT 20 95 to 114 0.2 
367 5’ur3  

and ex1 NP-56 (C/T), NP36 (A/G) 

HLAGe2/3F GCAGGACTCGGCAGCCGCG 19 140 to 158 0.8 

HLAGe2/3R GGCCAGGCTGAGAGGTCTACA 21 1009 to 1029 0.8 
890 ex23 

CD31 (A/T), CD54 (A/G), CD57 (A/G), 
CD69 (C/T), CD93 (C/T), CD107 (A/T), 
CD110 (C/A), CD130 (C) 

HLAGe4F GGTTCCCTTTGACCCCACAGC 21 1229 to 1249 0.2 

HLAGe4R TTTCCCTAACAGACATGATGCCT 23 1866 to 1888 0.2 
660 ex4 CD188 (C/T), CD258 (C/T) 

HLAGe5-6F TTTAACAGGGTCGGTGGTGAGG 22 1910 to 1931 0.3 

HLAGe5-6R GAAGGAATGCAGTTCAGCATGAG 23 3038 to 3060 0.3 
1124 ex56 CD290 (C/T), CD309 (G/A),  

NP2961 (14bp) 
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The World Health Organization (WHO) allele assignments are based mainly 

on polymorphisms present in exons 2, 3 and 4 of the HLA-G gene.  In recent years, 

more focus has been placed on the significance of a 14 base-pair (bp) insertion/ 

deletion in the 3’-untranslated region (3’UTR) and polymorphisms in the 5’ upstream 

region.  As such, these polymorphisms were included in the HLA-G haplotype profiles 

as well.   

 

After PCR amplification, 2.5 µL of PCR product was incubated with 0.5 µL of 

ExoI nuclease (10 U/µl) and 1 µL of shrimp alkaline phosphatase (SAP) (1 U/µl) 

(United States Biochemical, USA) at 37 C for 15 min, to remove and inactivate 

excess PCR primers and unincorporated dNTPs.  The reaction was terminated by 

incubating the mixture at 80 C for 15 min.  Two multiplex genotyping reactions were 

prepared by mixing 1 µL of ExoI-SAP treated PCR product, 0.5 µL of either Panel 1 

or 2 locus-specific detection primer mixture (Table 4), and 0.5 µL of SNaPshot™ 

Multiplex Ready Reaction Mix (Applied Biosystems, USA) containing AmpliTaq® 

DNA polymerase and fluorescently labeled dideoxynucleotide triphosphates 

(ddNTPs).  Each 2 µL genotyping reaction mixture was subjected to 25 single-base 

extension (minisequencing) cycles consisting of a 96 C for 10 s, 50 C for 5 s, and 60 

C for 30 s.  One microliter of SAP (1 Unit) was added to the completed cycle 

minisequencing reaction, and the mixture was incubated at 37 C for 1 h to inactivate 

unincorporated fluorescent ddNTPs, followed by a 75 C incubation for 15 min to 

terminate the SAP treatment. 
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Table 4.  Minisequencing primers used in multiplex genotyping of HLA-G polymorphisms. 

 SNP ID Primer 
Namea Primer Sequence (5’ to 3’)b Length 

(bp) Annealing Sitec Conc. 
(µM)d 

SNP allele / 
GS lengthe 

SNP allele / 
GS lengthe 

NP-1306 (A/G) NP-1306F (gact)4GAACAGTGCTAGAGCCACA 35 -1307 to -1325 0.12 dA / 39.2 dG / 38.7 
NP-486 (C/A) NP-486F (gact)2CGAGCTCACTCTCTGGCA 26 -504 to -487 0.12 dC / 31.2 dA / 31.9 
NP-56 (C/T) NP-56R (gact)7GCGAGGACTTTAGAACCAG 47 -55 to -37 0.05 dG / 51.0 dA / 52.1 
CD31 (A/T) CD31F t(gact)11ATGGGCTACGTGGACGAC 63 274 to 291 0.08 dA / 67.0 dT / 67.5 
CD57 (A/G) CD57R GTCTCCTCTTCCCAATACTC 20 373 to 392 0.30 dT / 28.0 dC / 25.6 
CD110 (C/A) CD110R ct(gact)9ATACTGTTCATACCCGCGGA 58 756 to 775 0.08 dG / 60.0 dT / 61.7 
CD130 (C) CD130F (gact)3CTCGCCCTGAACGAGGAC 30 797 to 814 0.20 dCf / 34.9 dTf / 36.1 
CD188 (C/T) CD188F act(gact)8AGACCCCCCCAAGACACA 53 1570 to 1587 0.08 dC / 54.5 dT / 55.6 

P
an

el
 1

 

CD258 (C/T) CD258F (gact)5TGGAGAGGAGCAGAGATACA 40 1779 to 1798 0.80 dC / 44.2 dT / 45.4 
NP-725 (C/G/T) NP-725R actgactTGCATCTAAAAGCATTACAACA 29 -724 to -705 0.10 dG / 29.9 dC / 31.1 (dA / 30.9) 
NP36 (A/G) NP36R ct(gact)8GTCAGGGCCCCCGAGAG 51 37 to 53 0.12 dT / 55.5 dC / 55.1 
CD54 (A/G) CD54Fg (gact)10GCGCCGTGGGTGGAGC 56 346 to 361 0.04 dA / 60.6 - 
CD69 (C/T) CD69Rg (gact)5ATTCTGTCAGTCTGTGCGTG 40 409 to 428 0.25 dG / 45.3 - 
CD93 (C/T) CD93R (gact)3CAATCATCCACTGGAGGGT 31 707 to 725 0.10 dG / 35.5 dA / 37.2 
CD107 (A/T) CD107F t(gact)7GACCTGGGGTCCGACGG 46 731 to 747 0.20 dA / 50.7 dT / 50.8 
CD290 (C/T) CD290F (gact)3ATCATGGGTATCGTTGCTGG 32 1998 to 2017 0.60 dC / 38.8 dT / 40.3 
CD309 (G/A) CD309F act(gact)10CGCTGCTGTGCTGTGGAG 61 346 to 361 0.08 dG / 65.4 dA / 66.2 

P
an

el
 2

 

NP2961 (14bp) NP2961R GTTCTTGAAGTCACAAAGGGA 21 2960 to 2980 0.80 dAh / 28.3 dCh / 25.9 

aPrimer names ending in F are forward primers, names ending in R are reverse complement primers 
bSequences in lowercases represent non-specific tails; subscripted numbers represent multiples of the GACT tetranucleotide. 
cWith reference to the translation start site (+1). 
dConcentration of primer in the multiplex minisequencing reaction mixture. 
eMean apparent nucleotide length of extended primer as analyzed by GeneScan (GS). 
fdC represents allele containing the C nucleotide at the insertion/deletion polymorphism site in exon 3. dT represents allele without the C nucleotide at the insertion/deletion 
polymorphism site. 
gThese primers detected only one allele in our population. 
hdA represents allele with the 14bp sequence at the insertion/deletion polymorphism site in the 3’UTR. dC represents allele without the 14bp sequence at the 
insertion/deletion  polymorphism site. 
ex: exon; NP: nucleotide position; CD: codon 
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2.5 KIR2DL4 PCR Amplification 

A multiplex PCR strategy was used to amplify exons 3 to 8 of the KIR2DL4 

gene containing the SNPs/ polymorphisms of interest in 5 fragments (Figure 3).  

Primers were designed in the intronic region as the KIR2DL4 gene is highly 

homologous to other genes of the KIR family and it is essential that the primers used 

are KIR2DL4 specific to avoid incorrect amplification and genotyping subsequently.  

A single tube multiplex PCR was carried out in a T3 thermal cycler (Biometra) in a 

total volume of 25 µl containing 50 ng of DNA, 0.2 mM of each dNTP, 1 Unit of 

HotStarTaq DNA polymerase in 1 X supplied PCR buffer (Qiagen), and 5 pairs of 

forward and reverse primers with concentrations as shown in Table 5.  PCR cycling 

conditions were as follow: an initial denaturation at 95 ºC for 15 min, followed by 30 

cycles of denaturation at 95 ºC for 45 sec, annealing at 60 ºC for 1 min and extension 

at 72 ºC for 1 min, with a final extension at 72 ºC for 7 min.  A 8 µl aliquot of each 

amplified product was resolved on a 2 % agarose gel in 1 X Tris-borate-EDTA at 15 

volts/cm for an hour.  

 

Figure 3. Gene structure of KIR2DL4: the 5 PCR amplicons and locations of 
polymorphisms are shown below and above the gene map, respectively 
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Table 5. Primers used in the multiplex PCR amplification of the KIR2DL4 exons. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aWith reference to the translation start site (+1). 
bConcentration of primer in the multiplex-PCR reaction mixture. 
ex: exon; CD: codon 

 
Primer name Primer Sequence (5'  3') Length 

(bp) 
Nucleotide 
Positiona 

Conc 
(µM)b 

Amplicon 
size (bp) 

Region 
Amplified Polymorphisms within Amplicon 

2DL4-Ex3F GGA GAC GCC ACG TCT ATG CG 20 981-1000 0.2 532 ex 3 

2DL4-Ex3R TGA TCG GAC TCT GGT GGA CAC 21 1512-1492 0.2   
Cd30, Cd64, Cd66. Cd72, Cd78 

2DL4-Ex4F GGG ATC GAC AGG AAG AGT TGG 21 2151-2171 0.2 653 ex 4 

2DL4-Ex4R GGA GCC CTT ACT GCA AGC TTC 21 2803-2783 0.2   

Cd109, Cd115, Cd137, Cd146, 
Cd161, Cd182, Cd186 

2DL4-Ex5F CCA GAT TGT AGA TTC TTC GAA CC 23 4819-4841 0.5 836 ex 5 

2DL4-Ex5R AAC CAG GGT TGG ATC ATG ACA G 22 5654-5633 0.5   
Cd206 

2DL4-Ex6F ACA CCC CTC CCA ATA GGC AC 20 9198-9217 0.2 446 ex 6 

2DL4-Ex6R CCA TCC TGC TTC CGC ACA GG 20 9643-9624 0.2   
Cd231, Cd234, Cd248 

2DL4-Ex7F GTT TYG ATT GCT TCC GTC TCC 21 10022-10042 0.5 482 ex 7  8 

2DL4-Ex8R GAA GAG TGA TGC TCT AAG ATG G 22 10503-10482 0.5   

Cd257, Cd316, Cd317, Cd318, 
Cd321, Cd348 
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2.6 KIR2DL4 Minisequencing 

The PCR-amplified products were genotyped for 23 KIR2DL4 polymorphisms 

in 2 multiplex minisequencing reactions, with reactions assaying 12 and 11 

polymorphic sites for Panels 1 and 2, respectively.  For the genotyping of each PCR 

product, a total of 24 mini-sequencing primers were used to detect the 22 SNPs and 1 

insertion/ deletion polymorphism that characterizes the 12 KIR2DL4 major alleles.  

For the detection of the SNP at codon 317, 2 minisequencing primers were used 

because this SNP is located next to a SNP at codon 316.  Therefore, the last 

nucleotide of the codon 317 minisequencing primer was designed with either of the 2 

possible nucleotides of codon 316 SNP (A or T) to enable phase detection of the 

codons 316 and 317 in addition to the detection of the codon 317 alleles.  In addition 

to that, for the detection of polymorphisms at codon 248, 2 different primers (1 in 

each panel) were also used because this codon consists of a SNP and a deletion 

polymorphism.   

 

Minisequencing primers for the detection of KIR2DL4 polymorphisms were 

designed to be similar to the primers used for genotyping the HLA-G SNPs/ 

polymorphisms whereby each minisequencing primer was added with different 

lengths of non-specific GACT nucleotides at the 5’ end to enable separation and 

differentiation.  The minisequencing protocol and analysis of KIR2DL4 genotype data 

were performed as described for the detection of HLA-G SNPs/ polymorphisms with 

the exception that different locus-specific detection primer mixtures were used for the 

detection of KIR2DL4 SNPs (Table 6). 
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Table 6.  Minisequencing primers used in multiplex genotyping of KIR2DL4 polymorphisms. 

aPrimer names ending in F are forward primers, names ending in R are reverse complement primers 
bSequences in lowercases represent non-specific tails; subscripted numbers represent multiples of the GACT tetranucleotide. 
cWith reference to the translation start site (+1). 
dConcentration of primer in the multiplex minisequencing reaction mixture. 
eMean apparent nucleotide length of extended primer as analyzed by GeneScan (GS). 
fThese primers detected only one allele in our population. 
gdG represents allele with a series of 9 adenines at the 9A/10A polymorphism site in exon 6. dT represents allele with a series of 10 adenines at the 9A/10A polymorphism site. 
hThis primer did not detect any allele in our population. 
ex: exon; NP: nucleotide position; CD: codon 

 SNP ID Primer Namea Primer Sequence (5’ to 3’)b Length (bp) Annealing Sitec Conc. (µM)d SNP allele / 
GS lengthe 

SNP allele / 
GS lengthe 

CD30 (A/G) CD30F GTGACTCTTCGGTGTCACT 19 1204-1222 0.2 dG / 22.4 dA / 25.5 
CD66 (A/T) CD66Ff (gact)11gTCATTAGCCCTSTGACCCC 64 1313-1331 0.3 dA / 67.6 - 
CD72 (T/A) CD72Ff (gact)2gaCWGCACACGCAGGGACC 27 1331-1347 0.2 dT / 31.4 - 
CD115 (A/G) CD115F (gact)4gaGGGCCCCACGGTTCGC 34 2340-2355 0.2 dG / 37.8 dA / 39.5 
CD146 (C/A) CD146Ff act(gact)4GCCCATGAACTTAGGCTCC 38 2431-2449 0.2 dC / 41.2 - 
CD182 (A/G) CD182Ff (gact)5gacTTCCATGGATCTCCCTACGA 43 2539-2558 0.6 dG / 46.3 - 
CD206 (T/A) CD206Ff t(gact)6gacGTAGTTGGCCTTCACCCAC 47 5200-5218 0.4 dT / 51.4 - 
CD231 (T/C) CD231F (gact)8TCAGTGGCCATCATCCTCTT 52 9517-9536 0.2 dC / 56.0 dT / 56.8  
CD248 (A/G) CD248R-2f (gact)10gTCTGCTTCGTGAGGCTTAC 60 9605-9587 0.8 dT/ 64.4 - 
CD317 (G/C) CD317F-Af (gact)2gacTCCAAATGCTGAGCCCAGA 30 10334-10352 0.2 dG / 33.6 - 
CD321 (C/G) CD321RF act(gact)11gaCCTGACTGTGGTGCTCATG 68 10386-10368 0.3 dG / 71.4 - 

P
an

el
 1

 

CD348 (A/C) CD348Rf act(gact)8gGATTCCAGCTGCTGGTACAT 56 10466-10447 0.2 dT / 60.0 - 

CD64 (G/C) CD64Ff AACAGTTTCCTCATTAGCCCT 21 1303-1323 0.08 dG / 24.6 - 
CD78 (A/G) CD78Rf t(gact)2gCAGTGGGGGAGTGCGGG 27 1384-1368 0.1 dT / 36.8 - 
CD109 (C/T) CD109F (gact)4gaCTTCGCTTACAGCCCGGC 36 2321-2338 0.5 dC / 39.7 dA / 40.8 (dT / 40.9) 
CD137 (A/G) CD137F (gact)5ATCTACCATCTATCCAGGGA 40 2404-2423 0.4 dG / 43.9 dA / 45.0 
CD161 (C/G) CD161Ff (gact)6gaATTCCAGGCCGACTTCCCT 45 2475-2493 0.2 dC / 48.8 - 
CD186 (G/C) CD186R (gact)8gCAGGCAGTGGGTCACTCG 51 2587-2570 0.3 dG / 54.6 dC / 55.0 
CD234 (T/C) CD234Rf act(gact)8CGATGAAGGAGAAAGAAGGG 55 9566-9547 0.4 dA / 59.5 - 
CD248 (A/C) CD248R-1 TTCGTGAGGCTTACYTTTTTTTT 23 9600-9578 0.2 dGg / 28.1 dTg / 30.9 
CD257 (G/A) CD257Rf (gact)10gCTGTTCACTGTTCTGTGTCC 61 10096-10077 0.5 dC / 64.7 - 
CD316 (A/T) CD316Ff (gact)11gTTCCAAATGCTGAGCCCAG 64 10333-10351 0.8 dA / 68.0 - 
CD317 (G/C) CD317F-Th (gact)2gacTCCAAATGCTGAGCCCAGT 30 10334-10352 0.1 - - 

P
an

el
 2

 

CD318 (G/A) CD318R ct(gact)12GTGCTCATGSGCAGGAGA 68 10376-10359 2.0 dC / 71.5 dT / 72.5 
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2.7 Capillary Electrophoresis and Genotype Analysis 

For the genotype analysis of HLA-G and KIR2DL4, a 1.5 µL aliquot of treated 

multiplex minisequencing product was mixed with 9 µL of HiDi™ formamide and 0.1 

µL of GeneScan-120 LIZ internal size calibrator (Applied Biosystems, USA).  The 

mixture was heated at 95 C for 5 min, snap-cooled on ice, then resolved by 

automated capillary electrophoresis on an ABI PRISM® 3100 Genetic Analyzer and 

analyzed using GeneScan™ application software (Applied Biosystems, USA).  Called 

alleles of samples were randomly selected for further confirmation by direct 

sequencing. 

 

2.8 Statistical Analysis 

Allele/ haplotype frequencies for HLA-G as well as KIR2DL4 were estimated 

based on an expectation-maximization (EM) algorithm using the SNPHap software 

(Clayton).  Only samples in which all loci were successfully genotyped were included 

in the allele/ haplotype frequency estimation.  Statistical analyses of HLA-G and 

KIR2DL4 allele/ haplotype as well as individual SNP frequencies were performed 

using SPSS 15.0 for Windows (SPSS Inc., USA).  Due to small number of subjects 

for certain alleles/ haplotypes, Fisher’s exact test was used to compare HLA-G as well 

as KIR2DL4 allele/ haplotype and genotype frequencies between case and control 

mothers, as well as between case and control babies to test for paternal contribution to 

disease development.  Logistic regression analyses were performed to determine the 

association between the presence of particular haplotypes in an individual (and thus 

genotype frequencies) and the development of PE with adjustments for maternal age, 

body mass index (BMI), maternal history of PE or pregnancy induced hypertension 
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(PIH), history of abortion, primigravidity and change of partner.  Deviation of HLA-G 

SNPs from Hardy-Weinberg equilibrium (HWE) was tested using the χ2 Goodness-of-

Fit test.   

 

In addition, for the statistical analysis of HLA-G alleles/ haplotypes and the 

risk of PE, the defining SNP for the particular haplotype showing significant 

association with PE was further analyzed at the mother-child genotype pair levels to 

test for association with disease.   

 

On the other hand, alleles of KIR2DL4 receptor were further analyzed with 

alleles of its ligand, HLA-G, to test the effect of gene-gene interaction on risk for PE.  

Logistic regression analyses were performed to compare maternal KIR2DL4 alleles 

with fetal HLA-G alleles to test for risk of PE.  Individual HLA-G or KIR2DL4 alleles 

that showed significant risk of PE following logistic regression analyses were further 

analyzed by comparing different fetal ligand-maternal receptor allele combinations to 

test for possible gene-gene interactions using Fisher’s exact test.   

 

The effect of an allele or genotype in relation to disease risk/ susceptibility 

was expressed as an odds ratio (OR) http://www.hutchon.net/ConfidOR.htm.  

Statistical significance was set at a more conservative p<0.01 to adjust for type I error 

in multiple comparisons. 
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3.0 Results  

3.1 Group-specific demographic and clinical characteristics 

Demographic characteristics and pregnancy outcome of the PE cases and 

controls in this study are summarized in Table 7.  The demographics characteristics of 

cases and controls were comparable with regards to their mean age.  In contrast, there 

are a significantly higher proportion of PE women with previous history of PE or PIH 

and a higher BMI.  Also, a nominally higher proportion of PE women was observed 

to be primigravids and had changed partners.   

 

Table 7.  Analysis of risk factors and pregnancy outcomes in pre-eclampsia cases and 
normal controls. 

Incidence 
Risk Factors and Pregnancy 

Outcomes Normal Controls 
N=240 

Pre-eclampsia 
N=83 

P-value 

    
Previous abortion 22.55% 20.51% 0.706 

Previous history of PE or PIH 2.13% 20.51% <0.001 

Gender of baby – Male 49.79% 60.34% 0.149 

                          – Female 50.21% 39.66% 0.149 

Primigravidity 24.69% 38.27% 0.019 

Change of partner 2.53% 8.75% 0.023 

Maternal age (years, mean±SD) 28.70 ± 5.66 29.83 ± 6.13 0.140 

BMI (kg/m2, mean±SD) 25.03 ± 4.86 28.42 ± 5.89 <0.001 

Gestational age (weeks, mean±SD) 39.08 ± 1.74 36.59 ± 3.43 <0.001 

Baby birthweight (g, mean±SD) 3145.75 ± 469.42 2684.81 ± 742.03 <0.001 
    

PE, pre-eclampsia; PIH, pregnancy induced hypertension; BMI, body mass index 
P-values 0.01 are highlighted in bold. 
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In addition to that, significantly different pregnancy outcomes were also 

observed between babies in the PE and normal control groups, including a shorter 

period of gestation and lower birthweight in PE babies.  The majority of the PE cases 

analyzed in this study involved late onset PE (68.2%) with symptoms observed after 

34 weeks’ gestation. 

 

3.2. HLA-G 

3.2.1 Multiplex PCR Amplification and Genotyping 

 Amplification of the 6 HLA-G fragments containing the target SNPs in the 

coding, 5’ and 3’ flanking regions were carried out in a single tube multiplex PCR 

reaction and resolved on agarose gel electrophoresis (Figure 4).  All samples analyzed 

in this study were succesfully amplified for the 6 fragments designed to genotype the 

SNPs of interest. 

 

Figure 4. Multiplex PCR amplified fragments of the HLA-G gene. 
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Genotyping of the 18 HLA-G SNPs were carried using a 2 panel multiplex 

mini-sequencing assay with 9 SNPs in each panel.  Figure 5 displays minisequencing 

traces for Panels 1 and 2 following capillary electrophoresis.  This minisequencing 

assay was designed to detect only 6 HLA-G alleles as other alleles were discovered 

more recently after the development of this assay.  In our study population, 5 major 

HLA-G alleles were present, namely G*0101, G*0103, G*0104, G*0105N and 

G*0106.  These alleles were further sub-grouped into haplotypes based on different 

SNPs in the 5’ UR and 3’ UTR. 

 

3.2.2 Comparisons of HLA-G Allele/ Haplotype Frequencies in PE and Controls 

Pair-wise comparisons revealed no significant differences in HLA-G allele 

frequencies between case and control mothers (Table 8).  However, there was a 

nominally higher frequency of G*0106 in PE babies compared with normal control 

babies (p=0.013) (Table 8).  The frequency of PE babies heterozygous or homozygous 

for G*0106 was also observed to be nominally higher than in the normal control 

group (p=0.012) (Table 9).  When multivariate logistic regression analysis was 

performed, with adjustments for maternal age, BMI, history of PE or PIH, history of 

abortion, primigravidity and change of partner, the difference between PE and normal 

control babies reached statistical significance (p=0.004, OR=6.4, 95% CI 1.8-23.0) 

(Table 9).  However, this association is not present in the maternal group (Table 10).   

 

As primigravidity is known to be a risk factor for pre-eclampsia, we further 

analyzed the primigravida sub-group separately from the multigravida sub-group, to 

exclude confounding due to unequal proportions of primigravidas between case and 

control groups.  No significant allele or genotype differences were observed between  
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Figure 5. GeneScan electropheromgram traces of panel 1 (a1-a3) and 2 (b1-b3) after 
multiplex minisequencing of HLA-G polymorphisms from 3 different individuals. 
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cases and controls in either primigravid or multigravid mother sub-groups (Table 10).  

However, a significantly higher frequency of G*0106 allele was observed in PE 

babies compared to normal control babies, but only in the multigravid sub-group 

(p=0.002, OR=5.0, 95% CI 1.8-13.8) (Table 9).  A significantly higher frequency of 

babies homozygous or heterozygous for G*0106 was also observed in the PE 

multigravid sub-group compared to babies in the normal control multigravid sub-

group (p=0.002, OR=5.4, 95% CI 1.9-15.4) (Table 9).  Logistic regression analysis 

with adjustments for maternal age, BMI, history of PE or PIH, history of abortion and 

change of partner also yielded similarly significant association between presence of 

fetal G*0106 in multigravid pregnancies and PE (p=0.003, OR=10.1, 95% CI 2.2-

46.8) (Table 9). 
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Table 8.  Analysis of maternal and fetal HLA-G allele/haplotype frequencies in cases and controls. 
Polymorphisms   

5' Upstream 
Region  Exon 

1  Exon 
2  Exon 

3  Exon 
4 

 Exon 
5  Exon 

6  

Maternal Frequencies 
 

Number (%) 
 

Fetal Frequencies 
 

Number (%) 
 Allele/Haplotypea 

N
P-

13
06

 

N
P-

72
5 

N
P-

48
6 

N
P-

56
 

 

N
P3

6  

CD
31

 

CD
54

 

CD
57

 

CD
69

 

 

CD
93

 

CD
10

7 

CD
11

0 

CD
13

0 
 CD

18
8 

CD
25

8 
 CD

29
0 

CD
30

9 
 N

P2
96

1b  
 

Normal 
Controls 
n=480 

Pre-
eclampsia 

n=166 
 

Fisher's 
Exact 
Test 

P-value 

 
Normal 
Controls 
n=480 

Pre-
eclampsia 

n=166 
 

Fisher's 
Exact 
Test 

P-value 

 G*0101                          250 (52.08) 81 (48.80)  0.473  244 (50.83) 85 (51.20)  1.000 

 G*010101                          139 (28.96) 45 (27.11)  0.691  117 (24.38) 47 (28.31)  0.352 

  G*010101a G C A C  CTG  ACG CAG CCG GCC  CAC GGA CTC CTG  CAC ACG  GGC AGA  G  136 (28.33) 45 (27.11)  0.841  113 (23.54) 47 (28.31)  0.251 

  G*010101b G G A C  CTG  ACG CAG CCG GCC  CAC GGA CTC CTG  CAC ACG  GGC AGA  G  3 (0.63) 0 (0.00)  0.573  4 (0.83) 0 (0.00)  0.577 

 G*010102                          22 (4.58) 5 (3.01)  0.502  24 (5.00) 5 (3.01)  0.385 

  G*010102a A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ACG  GGC AGG  T  7 (1.46) 0 (0.00)  0.200  10 (2.08) 1 (0.60)  0.305 

  G*010102b A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ACG  GGT AGG  T  15 (3.13) 4 (2.41)  0.793  9 (1.88) 3 (1.81)  1.000 

  G*010102d G C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ACG  GGC AGG  T  0 (0.00) 1 (0.60)  0.257  4 (0.83) 1 (0.60)  1.000 

  G*010102e A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ACG  GGT AGG  G  0 (0.00) 0 (0.00)  1.000  1 (0.21) 0 (0.00)  1.000 

 G*010103                          87 (18.13) 30 (18.07)  1.000  102 (21.25) 33 (19.88)  0.741 

  G*010103a A C C C  CTA  ACG CAG CCA GCC  CAC GGT CTC CTG  CAC ACG  GGC AGG  T  87 (18.13) 29 (17.47)  0.907  102 (21.25) 30 (18.07)  0.435 

  G*010103b G C A C  CTG  ACG CAG CCG GCC  CAC GGT CTC CTG  CAC ACG  GGC AGA  T  0 (0.00) 1 (0.60)  0.257  0 (0.00) 3 (1.81)  0.017 

 G*010108a A C C C  CTA  ACG CAG CCA GCC  CAC GGA CTC CTG  CAC ACG  GGC AGG  G  2 (0.42) 1 (0.60)  1.000  1 (0.21) 0 (0.00)  1.000 
                                    
 G*0103                          1 (0.21) 1 (0.60)  0.448  3 (0.63) 1 (0.60)  1.000 

  G*0103b G T A T  CTG  TCG CAG CCG GCC  CAC GGA CTC CTG  CAT ACG  GGC AGG  T  1 (0.21) 1 (0.60)  0.448  2 (0.42) 1 (0.60)  1.000 

  G*0103c A T A T  CTG  TCG CAG CCG GCC  CAC GGA CTC CTG  CAT ACG  GGC AGG  T  0 (0.00) 0 (0.00)  1.000  1 (0.21) 0 (0.00)  1.000 
                                     
 G*010401a A C C C  CTA  ACG CAG CCA GCC  CAC GGA ATC CTG  CAC ACG  GGC AGG  G  213 (44.38) 78 (46.99)  0.588  219 (45.63) 70 (42.17)  0.469 
                                     
 G*0105N                          4 (0.83) 1 (0.60)  1.000  5 (1.04) 0 (0.00)  0.335 

  G*0105Na A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC -TG  CAC ACG  GGT AGG  T  3 (0.63) 1 (0.60)  1.000  5 (1.04) 0 (0.00)  0.335 

  G*0105Nb A C C C  CTA  ACG CAG CCA GCC  CAC GGA CTC -TG  CAC ACG  GGT AGG  T  1 (0.21) 0 (0.00)  1.000  0 (0.00) 0 (0.00)  1.000 
                                    
 G*0106                          12 (2.50) 5 (3.01)  0.779  9 (1.88) 10 (6.02)  0.013 

  G*0106a A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ATG  GGT AGG  T  10 (2.08) 5 (3.01)  0.550  8 (1.67) 9 (5.42)  0.020 

  G*0106b A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ATG  GGC AGG  G  0 (0.00) 0 (0.00)  1.000  0 (0.00) 1 (0.60)  0.257 

  G*0106c A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ATG  GGC AGA  T  2 (0.42) 0 (0.00)  1.000  1 (0.21) 0 (0.00)  1.000 
                                    
aSub-haplotypes of the WHO defined alleles are indicated by the letters a, b, c, d, and e at the end. 
Nucleotide numberings are with reference to the translation start site; n represents the number of chromosomes examined. 
bT represents the allele containing the 14 bp insertion. 
NP: nucleotide position; CD: codon 
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Table 9.  Analysis of fetal HLA-G allele and genotype frequencies. 
             
 Fetal Allele Frequencies  Fetal Genotype Frequenciesa 

 Normal Controls Pre-eclampsia Fisher’s 
Exact Test  Normal Controls Pre-eclampsia Fisher’s 

Exact Test 
Logistic 

Regression 
             
All Pregnancies           

 n=480 % n=166 % P-value  N=240 % N=83 % P-value P-valueb 

G*0101 244 50.83 85 51.20 1.000  182 75.83 62 74.70 0.882 0.752 

G*0103 3 0.63 1 0.60 1.000  3 1.25 1 1.20 1.000 0.690 

G*0104 219 45.63 70 42.17 0.469  169 70.42 52 62.65 0.218 0.757 

G*0105N 5 1.04 0 0.00 0.335  5 2.08 0 0.00 0.333 0.999 

G*0106 9 1.88 10 6.02 0.013  9 3.75 10 12.05 0.012 0.004 
             
Primigravid Pregnancies           

 n=118 % n=62 % P-value  N=59 % N=31 % P-value P-valuec 

G*0101 63 53.39 38 61.29 0.345  47 79.66 27 87.10 0.563 0.953 

G*0104 53 44.92 23 37.10 0.344  42 71.19 19 61.29 0.353 0.360 

G*0106 2 1.69 1 1.61 1.000  2 3.39 1 3.23 1.000 0.678 
             
Multigravid Pregnancies           

 n=360 % n=100 % P-value  N=180 % N=50 % P-value P-valued 

G*0101 180 50.00 45 45.00 0.429  134 74.44 34 68.00 0.372 0.781 

G*0103 3 0.83 1 1.00 1.000  3 1.67 1 2.00 1.000 0.840 

G*0104 165 45.83 45 45.00 0.910  126 70.00 32 64.00 0.491 0.747 

G*0105N 5 1.39 0 0.00 0.590  5 2.78 0 0.00 0.588 0.999 

G*0106 7 1.94 9 9.00 0.002  7 3.89 9 18.00 0.002 0.003 
             
n, number of chromosomes examined. 
N, number of individuals examined. 
 aHeterozygosity or homozygosity for a particular allele. 
 bP-value of multivariate analysis after adjustment of maternal age, body mass index, history of PE or PIH, history of 
abortion, primigravidity and change of partner. 
 cP-value of multivariate analysis after adjustment of maternal age and body mass index. 
 dP-value of multivariate analysis after adjustment of maternal age, body mass index, history of PE or PIH, history 
of abortion and change of partner. 
 P-values 0.01 are highlighted in bold. 
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Table 10.  Analysis of maternal HLA-G allele and genotype frequencies. 
             
 Maternal Allele Frequency  Maternal Genotype Frequencya 

 Normal Controls Pre-eclampsia Fisher’s 
Exact Test  Normal Controls Pre-eclampsia Fisher’s 

Exact Test 
Logistic 

Regression 
             
All Pregnancies           

 n=480 % n=166 % P-value  N=240 % N=83 % P-value P-valueb 

G*0101 250 52.08 81 48.80 0.473  182 75.83 64 77.11 0.882 0.692 

G*0103 1 0.21 1 0.60 0.448  1 0.42 1 1.20 0.448 0.938 

G*0104 213 44.38 78 46.99 0.588  162 67.50 65 78.31 0.071 0.014 

G*0105N 4 0.83 1 0.60 1.000  4 1.67 1 1.20 1.000 0.410 

G*0106 12 2.50 5 3.01 0.779  11 4.58 5 6.02 0.568 0.053 
             
Primigravid Pregnancies           

 n=118 % n=62 % P-value  N=59 % N=31 % P-value P-valuec 

G*0101 66 55.93 31 50.00 0.529  46 77.97 24 77.42 1.000 0.440 

G*0104 49 41.53 29 46.77 0.529  37 62.71 24 77.42 0.235 0.052 

G*0106 3 2.54 2 3.23 1.000  2 3.39 2 6.45 0.606 0.066 
             
Multigravid Pregnancies           

 n=360 % n=100 % P-value  N=180 % N=50 % P-value P-valued 

G*0101 183 50.83 48 48.00 0.652  135 75.00 38 76.00 1.000 0.900 

G*0103 1 0.28 1 1.00 0.388  1 0.56 1 2.00 0.388 0.927 

G*0104 163 45.28 47 47.00 0.821  124 68.89 39 78.00 0.225 0.164 

G*0105N 4 1.11 1 1.00 1.000  4 2.22 1 2.00 1.000 0.498 

G*0106 9 2.50 3 3.00 0.729  9 5.00 3 6.00 0.727 0.300 
             
n, number of chromosomes examined. 
N, number of individuals examined. 
 aHeterozygosity or homozygosity for a particular allele. 
 bP-value of multivariate analysis after adjustment of maternal age, body mass index, history of PE or PIH, history of 
abortion, primigravidity and change of partner. 
 cP-value of multivariate analysis after adjustment of maternal age and body mass index. 
 dP-value of multivariate analysis after adjustment of maternal age, body mass index, history of PE or PIH, history 
of abortion and change of partner. 
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3.2.3 Comparisons of HLA-G SNP Frequencies in PE and Controls 

Comparisons of individual HLA-G SNPs did not reveal any significant 

difference between PE and control groups among the maternal samples (Table 11).  In 

the fetal group, a nominal increase was observed at codon 258 in the PE group 

compared to controls (p=0.013) (Table 12).  This is consistent with the observation of 

an association of fetal G*0106 allele with PE because based on WHO definitions, 

G*0106 is defined by a variant T-nucleotide at the second position of codon 258 

instead of a C-nucleotide, which results in a non-conservative threonine to methionine 

amino acid change.   
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Table 11.  Analysis of allele/genotype frequencies of individual HLA-G polymorphisms in case and 
control mothers. 

SNP Position Groups Number of 
samples  Genotype frequency (%)  Allele frequency (%)  Fisher's exact test 

P-value 
              
    AA GG AG   A G    
NP-1306 Normal 240  47.50 5.83 46.67   70.83 29.17   1.000 
 PE 83  51.81 9.64 38.55   71.08 28.92    
              
    CC CG CT GG  C G T   
NP-725 Normal 240  98.33 0.83 0.42 0.42  98.96 0.83 0.21  1.000 
 PE 83  97.59 1.20 1.20 0.00  98.80 0.60 0.60   
              
    AA CC AC   A C    
NP-486 Normal 240  5.83 47.50 46.67   29.17 70.83   0.921 
 PE 83  9.64 53.01 37.35   28.31 71.69    
              
    CC CT    C T    
NP-56 Normal 240  99.58 0.42    99.79 0.21   0.448 
 PE 83  98.80 1.20    99.40 0.60    
              
    AA GG AG   A G    
NP36 Normal 240  47.50 5.83 46.67   70.83 29.17   0.921 
 PE 83  53.01 9.64 37.35   71.69 28.31    
              
    AA AT    A T    
CD31 Normal 240  99.58 0.42    99.79 0.21   0.448 
 PE 83  98.80 1.20    99.40 0.60    
              
    AA     A     
CD54 Normal 240  100.00     100.00    1.000 
 PE 83  100.00     100.00     
              
    AA GG AG   A G    
CD57 Normal 240  47.50 5.83 46.67   70.83 29.17   0.921 
 PE 83  53.01 9.64 37.35   71.69 28.31    
              
    CC     C     
CD69 Normal 240  100.00     100.00    1.000 
 PE 83  100.00     100.00     
              
    CC TT CT   C T    
CD93 Normal 240  86.25 0.83 12.92   92.71 7.29   0.862 
 PE 83  86.75 0.00 13.25   93.37 6.63    
              
    AA TT AT   A T    
CD107 Normal 240  67.50 3.75 28.75   81.88 18.13   1.000 
 PE 83  67.47 3.61 28.92   81.93 18.07    
              
    AA CC AC   A C    
CD110 Normal 240  21.25 32.50 46.25   44.38 55.63   0.588 
 PE 83  15.66 21.69 62.65   46.99 53.01    
              
    CC CT    C T    
CD130 Normal 240  98.33 1.67    99.17 0.83   1.000 
 PE 83  98.80 1.20    99.40 0.60    
              
    CC CT    C T    
CD188 Normal 240  99.58 0.42    99.79 0.21   0.448 
 PE 83  98.80 1.20    99.40 0.60    
              
    CC TT CT   C T    
CD258 Normal 240  95.42 0.42 4.17   97.50 2.50   0.779 
 PE 83  93.98 0.00 6.02   96.99 3.01    
              
    CC TT CT   C T    
CD290 Normal 240  87.92 0.83 11.25   93.54 6.46   1.000 
 PE 83  87.95 0.00 12.05   93.98 6.02    
              
    AA GG AG   A G    
CD309 Normal 240  5.83 47.92 46.25   28.96 71.04   0.842 
 PE 83  9.64 54.22 36.14   27.71 72.29    
              
    GG TT GT   G T    
NP2961 Normal 240  53.33 5.83 40.83   73.75 26.25   0.759 
 PE 83  54.22 4.82 40.96   74.70 25.30    
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Table 12.  Analysis of allele/genotype frequencies of individual HLA-G polymorphisms in 
case and control babies. 

SNP Position Groups Number of 
samples  Genotype frequency (%)  Allele frequency (%)  Fisher's exact test 

P-value 
             

    AA GG AG  A G    
NP-1306 Normal 240  52.50 3.75 43.75  74.38 25.63   0.157 
 PE 83  46.99 9.64 43.37  68.67 31.33    
             
    CC CG CT  C G T   
NP-725 Normal 240  96.25 2.50 1.25  98.13 1.25 0.63  0.466 
 PE 83  98.80 0.00 1.20  99.40 0.00 0.60   
             
    AA CC AC  A C    
NP-486 Normal 240  3.75 53.75 42.50  25.00 75.00   0.154 
 PE 83  8.43 46.99 44.58  30.72 69.28    
             
    CC CT   C T    
NP-56 Normal 240  98.75 1.25   99.38 0.63   1.000 
 PE 83  98.80 1.20   99.40 0.60    
             
    AA GG AG  A G    
NP36 Normal 240  53.75 3.75 42.50  75.00 25.00   0.154 
 PE 83  46.99 8.43 44.58  69.28 30.72    
             
    AA AT   A T    
CD31 Normal 240  98.75 1.25   99.38 0.63    
 PE 83  98.80 1.20   99.40 0.60   1.000 
             
    AA    A     
CD54 Normal 240  100.00    100.00    1.000 
 PE 83  100.00    100.00     
             
    AA GG AG  A G    
CD57 Normal 240  53.75 3.75 42.50  75.00 25.00   0.154 
 PE 83  46.99 8.43 44.58  69.28 30.72    
             
    CC    C     
CD69 Normal 240  100.00    100.00    1.000 
 PE 83  100.00    100.00     
             
    CC TT CT  C T    
CD93 Normal 240  85.00 0.42 14.58  92.29 7.71   0.620 
 PE 83  84.34 2.41 13.25  90.96 9.04    
             
    AA TT AT  A T    
CD107 Normal 240  63.33 5.83 30.83  78.75 21.25   0.741 
 PE 83  63.86 3.61 32.53  80.12 19.88    
             
    AA CC AC  A C    
CD110 Normal 240  20.83 29.58 49.58  45.63 54.38   0.469 
 PE 83  21.69 37.35 40.96  42.17 57.83    
             
    CC CT   C T    
CD130 Normal 240  97.92 2.08   98.96 1.04   0.335 
 PE 83  100.00 0.00   100.00 0.00    
             
    CC CT   C T    
CD188 Normal 240  98.75 1.25   99.38 0.63   1.000 
 PE 83  98.80 1.20   99.40 0.60    
             
    CC CT   C T    
CD258 Normal 240  96.25 3.75   98.13 1.88   0.013 
 PE 83  87.95 12.05   93.98 6.02    
             
    CC TT CT  C T    
CD290 Normal 240  88.33 0.42 11.25  93.96 6.04   0.582 
 PE 83  87.95 2.41 9.64  92.77 7.23    
             
    AA GG AG  A G    
CD309 Normal 240  3.33 54.58 42.08  24.38 75.63   0.124 
 PE 83  8.43 46.99 44.58  30.72 69.28    
             
    GG TT GT  G T    
NP2961 Normal 240  50.83 10.00 39.17  70.42 29.58   0.921 
 PE 83  49.40 7.23 43.37  71.08 28.92    
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3.2.4 Comparisons of HLA-G 14 bp Insertion/Deletion Polymorphism Frequencies 

No significant differences were observed for the frequencies of the 14bp 

insertion/deletion polymorphism (NP2961) between PE and controls in both maternal 

and fetal groups.   Further analysis of primigravid and multigravid sub-groups did not 

reveal any significant association between cases and control groups (Table 13). 

 

Table 13.  Analysis of maternal and fetal 14 bp insertion/deletion polymorphism in 
cases and controls. 

 Maternal      Fetal     

 Normal Controls Pre-eclampsia Fisher’s 
Exact Test  Normal Controls Pre-eclampsia Fisher’s 

Exact Test 

All Pregnancies           

Allele n=480 % n=166 % P-value  n=480 % n=166 % P-value 

G 354 73.75 124 74.70 0.838  338 70.42 118 71.08 0.921 
T 126 26.25 42 25.30   142 29.58 48 28.92  

            

Genotype n=240 % n=83 % P-value  n=240 % n=83 % P-value 

GG 128 53.33 45 54.22 0.899  122 50.83 41 49.40 0.899 
TT 14 5.83 4 4.82 1.000  24 10.00 6 7.23 0.519 
GT 98 40.83 34 40.96 1.000  94 39.17 36 43.47 0.518 

            

Primigravid Pregnancies          

Allele n=118 % n=62 % P-value  n=118 % n=62 % P-value 

G 69 58.47 33 53.23 0.529  65 55.08 39 62.90 0.344 
T 49 41.53 29 46.77   53 44.92 23 37.10  

            

Genotype n=59 % n=31 % P-value  n=59 % n=31 % P-value 

GG 22 37.29 7 22.58 0.235  17 28.81 12 38.71 0.353 
TT 12 20.33 5 16.13 0.779  11 18.64 4 12.90 0.565 
GT 25 42.37 19 61.29 0.121  31 52.54 15 48.39 0.825 

            

Multigravid Pregnancies          

Allele n=360 % n=100 % P-value  n=360 % n=100 % P-value 

G 197 54.72 53 53.00 0.821  195 54.17 55 55.00 0.910 
T 163 45.28 47 47.00   165 45.83 45 45.00  

            

Genotype n=180 % n=50 % P-value  n=180 % n=50 % P-value 

GG 56 31.11 11 22.00 0.225  54 30.00 18 36.00 0.491 
TT 39 21.67 8 16.00 0.434  39 21.67 13 26.00 0.567 
GT 85 47.22 31 62.00 0.079  87 48.33 19 38.00 0.204 
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3.2.5 Maternal-fetal Histo-incompatibility Effect of HLA-G in PE and Controls 

Analysis of this SNP also revealed that the frequency of mother-child HLA-G 

genotype mismatches among multigravid pregnancies, where mothers who were 

homozygous C/C (i.e. G*0106-negative) carried fetuses who were heterozygous C/T 

(i.e. G*0106-positive), was significantly higher in PE pregnancies compared to 

normal pregnancies (p=0.001, OR=9.6, 95% CI 2.4-38.7) (Table 14). 

 

Table 14.  Analysis of mother-child genotype pairs at the codon 258 SNP locus in 
case and control pregnancies. 

Genotype Pair 
(Mother/Child) Normal Controls  Pre-eclampsia  Fisher’s Exact Test 

      
All Pregnancies     

 N=240 % N=83 % P-value 

CC/CC 226 94.17 71 85.54 0.019 

CC/CT 3 1.25 7 8.43 0.004 

CT/CC 5 2.08 2 2.41 1.000 

CT/CT 5 2.08 3 3.61 0.428 

TT/CT 1 0.42 0 0.00 1.000 
      

Primigravid Pregnancies     

 N=59 % N=31 % P-value 

CC/CC 57 96.61 29 93.55 0.606 

CT/CC 0 0.00 1 3.23 0.344 

CT/CT 1 1.69 1 3.23 1.000 

TT/CT 1 1.69 0 0.00 1.000 
      

Multigravid Pregnancies     

 N=180 % N=50 % P-value 

CC/CC 168 93.33 40 80.00 0.011 

CC/CT 3 1.67 7 14.00 0.001 

CT/CC 5 2.78 1 2.00 1.000 

CT/CT 4 2.22 2 4.00 0.613 
    

N, number of individuals examined. 
P-values 0.01 are highlighted in bold. 
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3.2.6 Comparisons of HLA-G Allele/ Haplotype Frequencies in 3 Local Populations 

As an independent verification of the observed HLA-G allele/ haplotype 

frequencies in control mothers and babies, the corresponding population allele/ 

haplotype frequencies in the Southeast Asian Malays, Chinese and Indians, the 3 main 

population groups in Singapore and Malaysia were also determined.  Consistent with 

the minimally polymorphic state of HLA-G, five or fewer WHO-designated HLA-G 

alleles accounted for at least 85% of the chromosomes in all 3 populations.  All 

polymorphisms were in HWE except for three SNPs in the Malay population, namely 

NP-486 (p=0.03), NP36 (p=0.03) and CD309 (p=0.04).  This observation is unlikely 

to be a result of sample bias as the majority of the SNPs genotyped were in HWE.  

Moreover, as the same genotyping strategy was applied to all samples, it is also 

unlikely that this deviation from HWE is due to genotyping artefact.  Hence, it is 

more likely that this deviation is due to chance as the statistical analysis performed 

was based on a 95% confidence interval.  Pair-wise comparisons between populations 

showed significant differences for certain haplotypes (Table 15).  Importantly, with 

the exception of the presumptive PE risk allele G*0106 in the PE babies, frequencies 

of the other HLA-G alleles in all case and control groups were very similar to each 

other and to the observed frequencies in the Malay population. 
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Table 15.  Analysis of HLA-G allele/haplotype frequencies in the Southeast Asian Chinese (CH), Indian (IN), and Malay (ML) populations. 
Polymorphisms 

5' Upstream Region  Exon 
1  Exon 

2  Exon 
3  Exon 

4  Exon 
5  Exon 

6 
Frequency 

Fisher's Exact  
Test 

P-value 
 Allele/Haplotypea 

N
P-

13
06

 

N
P-

72
5 

N
P-

48
6 

N
P-

56
 

 

N
P3

6  

C
D

31
 

C
D

54
 

C
D

57
 

C
D

69
 

 

C
D

93
 

C
D

10
7 

C
D

11
0 

C
D

13
0 

 

C
D

18
8 

C
D

25
8 

 

C
D

29
0 

C
D

30
9 

 

N
P2

96
1b   

Chinese 
n=188 (%) 

Indian 
n=180 (%) 

Malay 
n=180 (%) 

 

CH vs IN CH vs ML IN vs ML 

 G*0101                          127 (67.55) 110 (61.11) 92 (51.11)  0.231 0.002 0.071 

 G*010101                          78 (41.49) 57 (31.67) 45 (25.00)  0.052 <0.001 0.198 
  G*010101a G C A C  CTG  ACG CAG CCG GCC  CAC GGA CTC CTG  CAC ACG  GGC AGA  G  77 (40.96) 47 (26.11) 45 (25.00)  0.003 0.001 0.904 
  G*010101b G G A C  CTG  ACG CAG CCG GCC  CAC GGA CTC CTG  CAC ACG  GGC AGA  G  1 (0.53) 10 (5.56) 0 (0.00)  0.005 1.000 0.002 
 G*010102                          11 (5.85) 20 (11.11) 11 (6.11)  0.090 1.000 0.132 

  G*010102a A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ACG  GGC AGG  T  0 (0.00) 2 (1.11) 0 (0.00)  0.239 1.000 0.499 
  G*010102b A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ACG  GGT AGG  T  10 (5.4) 17 (9.44) 10 (5.56)  0.162 1.000 0.229 
  G*010102c A G C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ACG  GGT AGG  T  1 (0.53) 0 (0.00) 0 (0.00)  1.000 1.000 1.000 
  G*010102d G C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ACG  GGC AGG  T  0 (0.00) 0 (0.00) 1 (0.56)  1.000 0.489 1.000 
  G*010102e A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ACG  GGT AGG  G  0 (0.00) 1 (0.56) 0 (0.00)  0.489 1.000 1.000 
 G*010103                          38 (20.21) 31 (17.22) 35 (19.44)  0.505 0.896 0.683 

  G*010103a A C C C  CTA  ACG CAG CCA GCC  CAC GGT CTC CTG  CAC ACG  GGC AGG  T  37 (19.68) 31 (17.22) 35 (19.44)  0.592 1.000 0.683 
  G*010103c G C C C  CTA  ACG CAG CCA GCC  CAC GGT CTC CTG  CAC ACG  GGC AGA  T  1 (0.53) 0 (0.00) 0 (0.00)  1.000 1.000 1.000 

 G*010108b A C C C  CTA  ACG CAG CCA GCC  CAC GGA CTC CTG  CAC ACG  GGC AGG  T  0 (0.00) 1 (0.56) 0 (0.00)  0.489 1.000 1.000 

 G*010109a A C C C  CTA  ACG CAG CCG GCC  CAC GGA CTC CTG  CAC ACG  GGT AGG  T  0 (0.00) 0 (0.00) 1 (0.56)  1.000 0.489 1.000 

 G*010110a A G A C  CTG  ACG CAG CCG GCC  CAT GGA CTC CTG  CAC ACG  GGT AGA  T  0 (0.00) 1 (0.56) 0 (0.00)  0.489 1.000 1.000 
                                  
 G*0103                          2 (1.06) 3 (1.67) 1 (0.56)  0.679 1.000 0.623 

  G*0103a G C A T  CTG  TCG CAG CCG GCC  CAC GGA CTC CTG  CAT ACG  GGC AGG  T  2 (1.06) 3 (1.67) 0 (0.00)  0.679 0.499 0.248 
  G*0103c A T A T  CTG  TCG CAG CCG GCC  CAC GGA CTC CTG  CAT ACG  GGC AGG  T  0 (0.00) 0 (0.00) 1 (0.56)  1.000 0.489 1.000 
                                  
 G*010401                          52 (27.66) 47 (26.11) 81 (45.00)  0.814 <0.001 <0.001 

  G*010401a A C C C  CTA  ACG CAG CCA GCC  CAC GGA ATC CTG  CAC ACG  GGC AGG  G  52 (27.66) 47 (26.11) 80 (44.44)  0.814 0.001 <0.001 
  G*010401b A C C C  CTA  ACG CAG CCA GCC  CAC GGA ATC CTG  CAC ACG  GGC AGG  T  0 (0.00) 0 (0.00) 1 (0.56)  1.000 0.489 1.000 
                                   
 G*0105Na A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC -TG  CAC ACG  GGT AGG  T  5 (2.66) 5 (2.78) 2 (1.11)  1.000 0.449 0.449 
                                 
 G*0106                          2 (1.06) 15 (8.33) 4 (2.22)  <0.001 0.440 0.016 
  G*0106a A C C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ATG  GGT AGG  T  2 (1.06) 14 (7.78) 4 (2.22)  0.002 0.440 0.027 
  G*0106d A G C C  CTA  ACG CAG CCA GCC  CAT GGA CTC CTG  CAC ATG  GGC AGG  G  0 (0.00) 1 (0.56) 0 (0.00)  0.489 1.000 1.000 
                                   
aSub-haplotypes of the WHO defined alleles are indicated by the letters a, b, c, d, and e at the end. 
 Nucleotide numberings are with reference to the translation start site; n represents the number of chromosomes examined. 
 n, number of chromosomes examined; CH, Chinese; IN, Indian; ML, Malay. 
bT represents the allele containing the 14 bp insertion. 
P-values <0.01 are highlighted in bold. 
 NP: nucleotide position; CD: codon 
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 3.3 KIR2DL4  

3.3.1 Multiplex PCR Amplification and Genotyping 

Fragments of KIR2DL4 gene were amplified in a single tube multiplex PCR 

reaction to amplify exons 3 through 8 in 5 fragments containing SNPs of interest.  

PCR products were then resolved on agarose gel electrophoresis as shown in Figure 6.  

Amplification of all the 5 fragments containing the SNPs of interest was successful in 

all samples analyzed in this study.  

 

Figure 6. Multiplex PCR amplified fragments of the KIR2DL4 gene. 
 

 

 

 

 

 

 

 

 

 

For the genotyping of the 23 SNPs in the KIR2DL4 gene, a 2 panel multiplex-

minisequencing strategy assaying 11 and 12 SNPs in Panels 1 and 2, respectively, was 

used.  Minisequencing products were resolved on capillary electrophoresis as shown 

in Figure 7.  This minisequencing assay was design to genotype all the KIR2DL4 

alleles reported to date, with the exception of 2DL4*0080104 (characterized by codon 

344) and 2DL4*012 (characterized by codon 273), which were discovered very 

recently.  
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Figure 7. GeneScan electropheromgram traces of panel 1(a1-a3) and 2 (b1-b3) after 
multiplex minisequencing of KIR2DL4 polymorphisms from 3 different individuals. 
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3.3.2 Comparisons of KIR2DL4 Allele Frequencies in PE and controls 

Analysis of KIR2DL4 allele frequencies revealed no significant differences 

between PE and control groups in both maternal and fetal samples (Table 16).  As 

primigravidity is known to be a PE risk factor, we performed separate analyses of 

primigravida and multigravida sub-groups.  No significant difference in maternal 

allele or genotype frequencies between cases and controls was detected in either sub-

group, although there was a nominally lower frequency of PE mothers carrying the 

2DL4*001 allele in the primigravid sub-group (Table 17).  However, logistic 

regression analysis of genotype frequencies with adjustments for factors associated 

with PE did not reveal any significant association of the allele with PE (Tables 17).   

 

Among the fetal group, a nominal increase was observed in the frequencies of 

PE babies in the primigravid sub-group carrying the 2DL4*011 allele (Table 18).  

However, further analysis of genotype frequency showed no association between this 

allele and the development of PE (Table 18).  
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Table 16. Analysis of maternal and fetal KIR2DL4 allele frequencies in cases and controls. 
Polymorphisms   

Exon 
3  Exon 

5  Exon 
6  Exon 

7 
 Exon 

8  Exon 
9 

 
Maternal Frequencies 

Number (%)  
Fetal Frequencies 

Number (%) 

 Allele/Haplotypea 

CD
30

 

CD
64

 

CD
66

 

CD
72

 

CD
78

 

 

CD
10

9 

CD
11

5 

CD
13

7 

CD
14

6 

CD
16

1 

CD
18

2 

CD
18

6 
 CD

20
6 

 CD
23

1 

CD
23

4 

CD
24

8 
 CD

25
7 

 CD
31

6 

CD
31

7 

CD
31

8 

CD
32

1 

CD
34

8 

 Normal 
Controls 
n=480 

Pre-
eclampsia 

n=166 
 

Fisher's 
Exact 
Test 

P-value 

 
Normal 
Controls 
n=480 

Pre-
eclampsia 

n=166 
 

Fisher's 
Exact 
Test 

P-value 

2DL4*001                             171 (35.63) 56 (33.73)  0.706  170 (35.42) 55 (33.13)  0.637 

 2DL4*00102                             158 (32.92) 49 (29.52)  0.441  152 (31.67) 48 (28.92)  0.559 

  2DL4*00102a TAT GTG CCA TAC CAC  CCG ACA GAG CCT CTG GAG GCG  ACT  TTC CTT AAT  GCG  AGA GCG TTA GCC AAT  158 (32.92) 49 (29.52)  0.441  151 (31.46) 48 (28.92)  0.560 

  2DL4*00102b TAT GTG CCA TAC CAC  CTG ACA GAG CCT CTG GAG GCG  ACT  TTC CTT AAT  GCG  AGA GCG TTA GCC AAT  0 (0.00) 0 (0.00)  1.000  1 (0.21) 0 (0.00)  1.000 

 2DL4*00103                             13 (2.71) 7 (4.22)  0.311  18 (3.75) 7 (4.22)  0.816 

  2DL4*00103a TAT GTG CCA TAC CAC  CCG ACA GAG CCT CTG GAG GCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  9 (1.88) 6 (3.61)  0.231  17 (3.54) 6 (3.61)  1.000 

  2DL4*00103b TAT GTG CCA TAC CAC  CCG ACA GAG CCT CTG GAG CCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  1 (0.21) 1 (0.60)  0.448  0 (0.00) 0 (0.00)  1.000 

  2DL4*00103c TAT GTG CCA TAC CAC  CAG ACA GAG CCT CTG GAG GCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  3 (0.63) 0 (0.00)  0.573  0 (0.00) 1 (0.60)  0.257 
  2DL4*00103d TAT GTG CCA TAC CAC  CTG ACA GAG CCT CTG GAG CCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  0 (0.00) 0 (0.00)  1.000  1 (0.21) 0 (0.00)  1.000 
                                       

2DL4*00202 TAT GTG CCA TAC CAC  CCG GCA GAG CCT CTG GAG CCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  0 (0.00) 1 (0.60)  0.257  0 (0.00) 0 (0.00)  1.000 
                                       
2DL4*005                             126 (26.25) 47 (28.31)  0.612  120 (25.00) 48 (28.92)  0.356 

  2DL4*005a TGT GTG CCA TAC CAC  CCG GCA GAG CCT CTG GAG CCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  123 (25.63) 47 (28.31)  0.540  119 (24.79) 48 (28.92)  0.305 

  2DL4*005b TGT GTG CCA TAC CAC  CTG GCA GAG CCT CTG GAG CCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  1 (0.21) 0 (0.00)  1.000   1 (0.21) 0 (0.00)  1.000 
  2DL4*005c TGT GTG CCA TAC CAC  CTG ACA GAG CCT CTG GAG GCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  2  (0.42) 0 (0.00)  1.000  0 (0.00) 0 (0.00)  1.000 
                                        
2DL4*00602                             53 (11.04) 15 (9.04)  0.558  48 (10.00) 15 (9.04)  0.879 

  2DL4*00602a TAT GTG CCA TAC CAC  CTG GCA GAG CCT CTG GAG CCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  48 (10.00) 13 (7.83)  0.446  39 (8.13) 13 (7.83)  0.865 
  2DL4*00602b TAT GTG CCA TAC CAC  CAG GCA GAG CCT CTG GAG CCG  ACT  TTC CTT AAT  GCG  AGA GCG TTG GCC AAT  4 (0.83) 2 (1.20)  0.650  9 (1.88) 2 (1.20)  0.738 

  2DL4*00602c TAT GTG CCA TAC CAC  CAG GCA GAG CCT CTG GAG CCG  ACT  TTC CTT AAT  GCG  AGA GCG TTA GCC AAT  1 (0.21) 0 (0.00)  1.000  0 (0.00) 0 (0.00)  1.000 
                                       

2DL4*008                             37 (7.71) 9 (5.42)  0.384  46 (9.58) 12 (7.23)  0.432 

 2DL4*00801                             37 (7.71) 9 (5.42)  0.384  44 (9.17) 12 (7.23)  0.524 

  2DL4*0080101a TAT GTG CCA TAC CAC  CCG GCA GAG CCT CTG GAG CCG  ACT  TTT CTT *C  GCG  AGA GCG TTG GCC AAT  36 (7/5) 9 (5.42)  0.479  44 (9.17) 12 (7.23)  0.524 
  2DL4*0080101b TAT GTG CCA TAC CAC  CAG GCA GAG CCT CTG GAG CCG  ACT  TTT CTT *C  GCG  AGA GCG TTG GCC AAT  1 (0.21) 0 (0.00)  1.000  0 (0.00) 0 (0.00)  1.000 

 2DL4*00802 TAT GTG CCA TAC CAC  CCG GCA GAA CCT CTG GAG CCG  ACT  TTT CTT *C  GCG  AGA GCG TTG GCC AAT  0 (0.00) 0 (0.00)  1.000  2 (0.42) 0 (0.00)  1.000 
                                        
2DL4*011                             93 (19.38) 38 (22.89)  0.370  96 (20.00) 36 (21.69)  0.656 

  2DL4*011a TGT GTG CCA TAC CAC  CCG GCA GAG CCT CTG GAG CCG  ACT  TTT CTT *C  GCG  AGA GCG TTG GCC AAT  93 (19.38) 37 (22.29)  0.433  96 (20.00) 36 (21.69)  0.656 
  2DL4*011b TGT GTG CCA TAC CAC  CCG GCA GAG CCT CTG GAG GCG  ACT  TTT CTT *C  GCG  AGA GCG TTG GCC AAT  0 (0.00) 1 (0.60)  0.257  0 (0.00) 0 (0.00)  1.000 
                                        

aSub-haplotypes of the WHO defined alleles are indicated by the letters p, q, r, and s at the end. 
Nucleotide numberings are with reference to the translation start site; n represents the number of chromosomes examined. 
CD: codon. 
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Table 17. Analysis of maternal KIR2DL4 allele and genotype frequencies. 
             
 Maternal Allele Frequency  Maternal +- or ++ Genotype Frequency 

 Normal Controls Pre-eclampsia Fisher’s 
Exact Test  Normal Controls Pre-eclampsia Fisher’s 

Exact Test 
Logistic 

Regression 
             
All Pregnancies           

 n=480 % n=166 % P-value  N=240 % N=83 % P-value P-value* 

2DL4*001 282 58.75 86 51.81 0.123  141 58.75 43 51.81 0.304 0.104 

2DL4*002 0 0.00 2 1.20 0.066  0 0.00 1 1.20 0.257 1.000 

2DL4*005 226 47.08 74 44.58 0.589  113 47.08 37 44.58 0.704 0.286 

2DL4*006 100 20.83 30 18.07 0.501  50 20.83 15 18.07 0.637 0.523 

2DL4*008 66 13.75 18 10.84 0.422  33 13.75 9 10.84 0.574 0.685 

2DL4*011 166 34.58 66 39.76 0.260  83 34.58 33 39.76 0.427 0.445 
             
Primigravid Pregnancies           

 n=118 % n=62 %0.017 P-value  N=59 % N=31 % P-value P-value† 

2DL4*001 76 64.41 28 45.16 0.017  38 64.41 14 45.16 0.115 0.147 

2DL4*005 54 45.76 28 45.16 1.000  27 45.76 14 45.16 1.000 0.894 

2DL4*006 20 16.95 10 16.13 1.000  10 16.95 5 16.13 1.000 0.840 

2DL4*008 8 6.78 6 9.68 0.562  4 6.78 3 9.68 0.688 0.960 

2DL4*011 46 38.98 30 48.39 0.267  23 38.98 15 48.39 0.501 0.915 
             
Multigravid Pregnancies           

 n=360 % n=100 % P-value  N=180 % N=50 % P-value P-value‡ 

2DL4*001 204 56.67 56 56.00 0.910  102 56.67 28 56.00 1.000 0.243 

2DL4*002 0 0.00 2 2.00 0.047  0 0.00 1 2.00 0.217 1.000 

2DL4*005 172 47.78 44 44.00 0.571  86 47.78 22 44.00 0.749 0.173 

2DL4*006 80 22.22 20 20.00 0.683  40 22.22 10 20.00 0.847 0.335 

2DL4*008 58 16.11 12 12.00 0.349  29 16.11 6 12.00 0.656 0.382 

2DL4*011 118 32.78 32 32.00 0.905  59 32.78 16 32.00 1.000 0.278 
             
 +- or ++, heterozygosity or homozygosity for a particular allele. 
n, number of chromosomes examined. 
N, number of individuals examined. 
 *, P-value of multivariate analysis after adjustment of maternal age, body mass index, history of PE or PIH, history of 
abortion, primigravidity and change of partner. 
 †, P-value of multivariate analysis after adjustment of maternal age and body mass index. 
 ‡, P-value of multivariate analysis after adjustment of maternal age, body mass index, history of PE or PIH, 
history of abortion and change of partner. 
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 Table 18. Analysis of fetal KIR2DL4 allele and genotype frequencies. 
             
 Fetal Allele Frequency  Fetal +- or ++ Genotype Frequency 

 Normal Controls Pre-eclampsia Fisher’s 
Exact Test  Normal Controls Pre-eclampsia Fisher’s 

Exact Test 
Logistic 

Regression 
             
All Pregnancies           

 n=480 % n=166 % P-value  N=240 % N=83 % P-value P-value* 

2DL4*001 270 56.25 86 51.81 0.365  135 56.25 43 51.81 0.523 0.848 

2DL4*005 216 45.00 88 53.01 0.086  108 45.00 44 53.01 0.251 0.104 

2DL4*006 86 17.92 28 16.87 0.814  43 17.92 14 16.87 1.000 0.461 

2DL4*008 86 19.92 22 13.25 0.185  43 17.92 11 13.25 0.395 0.710 

2DL4*011 166 34.58 68 40.96 0.160  83 34.58 34 40.96 0.354 0.197 
             
Primigravid Pregnancies           

 n=118 % n=62 % P-value  N=59 % N=31 % P-value P-value† 

2DL4*001 66 55.93 34 54.84 1.000  33 55.93 17 54.84 1.000 0.829 

2DL4*005 52 44.07 26 41.94 0.874  26 44.07 13 41.94 1.000 0.836 

2DL4*006 26 22.03 6 9.68 0.042  13 22.03 3 9.68 0.245 0.391 

2DL4*008 18 15.25 8 12.90 0.824  9 15.25 4 12.90 1.000 0.363 

2DL4*011 34 28.81 30 48.39 0.014  17 28.81 15 48.39 0.104 0.222 
             
Multigravid Pregnancies           

 n=360 % n=100 % P-value  N=180 % N=50 % P-value P-value‡ 

2DL4*001 204 56.67 52 52.00 0.427  102 56.67 26 52.00 0.630 0.705 

2DL4*005 164 45.56 58 58.00 0.032  82 45.56 29 58.00 0.150 0.076 

2DL4*006 60 16.67 22 22.00 0.238  30 16.67 11 22.00 0.406 0.186 

2DL4*008 68 18.89 12 12.00 0.135  34 18.89 6 12.00 0.298 0.978 

2DL4*011 130 36.11 36 36.00 1.000  65 36.11 18 36.00 1.000 0.438 
             
 +- or ++, heterozygosity or homozygosity for a particular allele. 
n, number of chromosomes examined. 
N, number of individuals examined. 
 *, P-value of multivariate analysis after adjustment of maternal age, body mass index, history of PE or PIH, history of 
abortion, primigravidity and change of partner. 
 †, P-value of multivariate analysis after adjustment of maternal age and body mass index. 
 ‡, P-value of multivariate analysis after adjustment of maternal age, body mass index, history of PE or PIH, 
history of abortion and change of partner. 
 P-values 0.01 are highlighted in bold. 
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3.3.3 Comparisons of KIR2DL4 SNP Frequencies in PE and controls  

 The KIR2DL4 gene is minimally polymorphic in our study population, as 14 

of the 23 genotyped SNPs were monomorphic in all samples tested.  The 

monomorphic SNPs in our study population are codons 64, 66, 72, 78, 146, 161, 182, 

206, 234, 257, 316, 317, 321 and 348.  Pair-wise comparisons of KIR2DL4 SNPs 

between PE and controls revealed no significant differences in both maternal and fetal 

groups for all SNPs genotyped (Table 19 and 20). 
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Table 19. Analysis of individual KIR2DL4 SNPs/polymorphisms in case and control mothers. 
SNP position Groups Number of 

samples 
 Genotype frequency (%)  Allele frequency (%) 

  
 Fisher's exact test 

p-value 
                         

       AA GG AG    A G      
CD30 Normal 240  27.50 18.75 53.75    54.38 45.63    0.241 
  PE 83  26.51 28.92 44.58    48.80 51.20      
   

 
    

 
   

 
 

       GG        G        
CD64 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

       AA        A        
CD66 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

     TT     T        
CD72 Normal  240  100.00     100.00    1.000 
 PE 83  100.00     100.00     
   

 
    

 
   

 
 

    TT        T     
CD78 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

       TT CC CA CT  C A T    
Cd109 Normal 240  1.25 77.08 4.17 17.50  87.92 2.08 10.00  0.322 
  PE 83  0.00 81.93 2.41 15.66  90.96 1.20 7.83    
      

 
        

 
      

 
  

    AA GG AG    A G     
CD115 Normal 240  12.50 40.00 47.50    36.25 63.75    0.574 
  PE 83  15.66 48.19 36.14    33.73 66.27      
      

 
        

 
      

 
  

       GG        G        
CD137 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

    CC        C      
CD146 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

       CC        C        
Cd161 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

    GG        G     
CD182 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

       GG CC CG    G C      
CD186 Normal 240  40.00 12.08 47.92    63.96 36.04    0.638 
  PE 83  48.19 15.66 36.14    66.27 33.73      
      

 
        

 
      

 
  

    TT        T     
CD206 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

       CC TT CT    C T      
CD231 Normal 240  54.58 8.75 36.67    72.92 27.08    0.763 
  PE 83  51.81 8.43 39.76    71.69 28.31      
   

 
    

 
   

 
 

       AA        A        
CD234 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

    TT GG GT    T G    
CD248-1 Normal 240  54.58 8.75 36.67    72.92 27.08    0.763 
  PE 83  51.81 8.43 39.76    71.69 28.31      
      

 
        

 
      

 
  

       TT        T        
CD248-2 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
   

 
    

 
   

 
 

       C        C        
CD257 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

       AA        A        
CD316 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
      

 
        

 
      

 
  

       GG        G        
CD317 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
   

 
    

 
   

 
 

       TT CC TC    T C      
CD318 Normal 240  10.83 43.75 45.42    33.54 66.46    0.387 
  PE 83  10.84 51.81 37.35    29.52 70.48      
   

 
    

 
   

 
 

       GG        G        
CD321 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
   

 
    

 
   

 
 

    TT        T     
CD348 Normal 240  100.00        100.00      1.000 
  PE 83  100.00        100.00        
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Table 20. Analysis of individual KIR2DL4 SNPs/polymorphisms in case and control babies. 

SNP position Groups Number of 
samples 

 
Genotype frequency (%) 

 Allele frequency (%) 
  

 Fisher's exact test 
p-value 

                          

       AA GG AG       A G       
CD30 Normal 240  27.92 17.92 54.17       55.00 45.00     0.241 
  PE 83  24.10 25.30 50.60       49.40 50.60       
      

 
        

  
      

 
  

       GG         G        
CD64 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

    AA         A     
CD66 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

    TT         T     
CD72 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       TT         T        
CD78 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       CA CC TT CT AT   C A T     
Cd109 Normal 240  3.75 81.25 1.67 12.92 0.42   89.58 2.08 8.33   0.882 
  PE 83  3.61 81.93 1.20 13.25 0.00   90.36 1.81 7.83     
      

 
        

  
      

 
  

    AA GG AG       A G    
CD115 Normal 240  14.58 43.33 42.08       35.63 64.38     0.573 
  PE 83  14.46 48.19 37.35       33.13 66.87       
      

 
        

  
      

 
  

       GG GA         G A       
CD137 Normal 240  98.33 1.67         99.17 0.83     1.000 
  PE 83  100.00 0.00         100.00 0.00       
      

 
        

  
      

 
  

    CC         C     
CD146 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       CC         C        
Cd161 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

    GG         G     
CD182 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       GG CC CG       G C       
CD186 Normal 240  40.00 12.08 47.92       63.96 36.04     0.638 
  PE 83  48.19 15.66 36.14       66.27 33.73       
      

 
        

  
      

 
  

    TT         T     
CD206 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       CC TT CT       C T       
CD231 Normal 240  50.83 10.00 39.17       70.42 29.58     0.921 
  PE 83  49.40 7.23 43.37       71.08 28.92       
      

 
        

  
      

 
  

       AA         A        
CD234 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       TT GG GT       T G       
CD248-1 Normal 240  50.83 10.00 39.17       70.42 29.58     1.000 
  PE 83  49.40 8.43 42.17       70.48 29.52       
      

 
        

  
      

 
  

       TT         T        
CD248-2 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       C         C        
CD257 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       AA         A        
CD316 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       GG         G        
CD317 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

    TT CC TC       T C    
CD318 Normal 240  10.83 43.75 45.42       33.54 66.46     0.387 
  PE 83  10.84 51.81 37.35       29.52 70.48       
   

 
           

       GG         G        
CD321 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
      

 
        

  
      

 
  

       TT         T        
CD348 Normal 240  100.00         100.00      1.000 
  PE 83  100.00         100.00        
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3.3.3 Comparisons of KIR2DL4 9A/10A Allele Frequencies in PE and controls  

For the comparison of the 9A/10A polymorphism in cases and controls, no 

significant association was observed in both maternal and fetal groups (Table 21).   

 

Table 21.  Analysis of maternal and fetal KIR2DL4 9A/10A allele frequencies 

 Maternal  Fetal 

 Normal Controls  Pre-eclampsia  Fisher’s 
Exact Test 

 Normal Controls  Pre-eclampsia  Fisher’s 
Exact Test 

            

All Pregnancies          
 n=480 % n=166 % P-value  n=480 % n=166 % P-value 
            

9A 116 24.17 42 25.30 0.755  126 35.59 45 27.11 0.839 
10A 364 76.83 124 74.70   354 73.75 121 72.89  

            
Primigravid  Pregnancies          
 n=118 % n=62 % P-value  n=118 % n=62 % P-value 
            

9A 27 22.88 18 29.03 0.371  26 22.03 19 30.65 0.211 
10A 91 77.12 44 70.97   92 77.97 43 69.35  

            
Multigravid Pregnancies          
 n=360 % n=100 % P-value  n=360 % n=100 % P-value 
            

9A 88 24.44 22 22.00 0.692  99 27.50 24 24.00 0.525 
10A 272 75.56 78 78.00   261 72.50 76 76.00  

            

n, number of chromosomes examined. 
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3.4 Test of gene-gene interaction between HLA-G and KIR2DL4 

As HLA-G is the only known ligand for KIR2DL4, we tested for gene-gene 

interaction effects of particular combinations of ligand and receptor variants on risk for 

PE.  Fetal HLA-G and maternal KIR2DL4 come into contact only during pregnancy due 

to their predominant expression in EVT and uterine NK cells, respectively.  Logistic 

regression analysis of fetal HLA-G and maternal KIR2DL4 alleles showed that HLA-G 

allele *0106 is associated with PE in multigravid pregnancies (p=0.004), as previously 

observed, whereas no disease association was observed for any maternal KIR2DL4 allele 

(Table 22).   

 

Table 22. Analysis of fetal HLA-G and maternal KIR2DL4 alleles as PE risk predictors.  

P-value 
Alleles 

All pregnancies Primigravids Multigravids 

G*0101 0.766 0.586 0.560 

G*0103 0.944 NA 0.909 

G*0104 0.189 0.670 0.376 

G*0105N 0.999 NA 0.999 

Fetal 

G*0106 0.014 0.828 0.004 

2DL4*001 0.093 0.137 0.265 

2DL4*002 1.000 NA 1.000 

2DL4*005 0.225 0.739 0.268 

2DL4*006 0.218 0.561 0.324 

2DL4*008 0.203 0.838 0.216 

Maternal 

2DL4*011 0.826 0.893 0.460 

 

To exclude the possibility that potential ligand-receptor interactions could have 

been masked by sample size constraints, we further compared the effects of fetal HLA-

G*0106 allele in the presence or absence of different maternal KIR2DL4 alleles on risk 
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for PE.  For this gene-gene interaction analysis, HLA-G alleles *0103, *0105N and 

KIR2DL4 allele *002 were omitted as there were 5 or less positives in all case and control 

groups studied.  Presence of fetal HLA-G*0106 was significantly associated with PE in 

the multigravid sub-group, either when maternal KIR2DL4*001 is absent (p=0.008) or 

when the maternal KIR2DL4*006 is present (p<0.001) (Table 23).  Also, the analysis 

revealed that the absence of maternal 2DL4*001, 2DL4*005, 2DL4*008 and 2DL4*011 

alleles contributes to an increased risk of PE in the multigravid sub-group (p=0.008, 

p=0.016, p=0.011 and p=0.015, respectively) (Table 23).  Further analysis confirmed an 

interactive effect of fetal HLA-G*0106 and maternal KIR2DL4*006 in risk for PE among 

multigravidas (p=0.002) (Table 24).  These results indicate that KIR2DL4 itself does not 

contribute to risk of PE, but suggest that it may modulate the effect of HLA-G on PE risk.   
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Table 23.  Effect of fetal HLA-G*0106 in the presence or absence of particular maternal KIR2DL4 alleles. 
Maternal KIR2DL4*001 absent  Maternal KIR2DL4*005 absent  Maternal KIR2DL4*006 absent  Maternal KIR2DL4*008 absent  Maternal KIR2DL4*011 absent 

NC  PE  Fisher’s 
exact test  NC  PE  Fisher’s 

exact test  NC  PE  Fisher’s 
exact test  NC  PE  Fisher’s 

exact test  NC  PE  Fisher’s 
exact test  

All pregnancies                              
 n=99 % n=40 % P-value  n=127 % n=46 % P-value  n=190 % n=68 % P-value  n=207 % n=74 % P-value  n=157 % n=50 % P-value 
Fetal HLA-G*0106 absent 97 97.98 35 87.50 0.021  124 97.64 41 89.13 0.032  181 95.26 62 91.18 0.233  199 96.14 66 89.19 0.039  148 94.27 42 84.00 0.035 

Fetal HLA-G*0106 present 2 2.02 5 12.50   3 2.36 5 10.87   9 4.74 6 8.82   8 3.86 8 10.81   9 5.73 8 16.00  

Primigravid pregnancies                              
 n=21 % n=17 % P-value  n=32 % n=17 % P-value  n=49 % n=26 % P-value  n=55 % n=28 % P-value  n=36 % n=16 % P-value 
Fetal HLA-G*0106 absent 20 95.24 16 94.12 1.000  32 100.00 17 100.00 NA  47 95.92 25 96.15 1.000  53 96.36 27 96.43 1.000  34 94.44 15 93.75 1.000 

Fetal HLA-G*0106 present 1 4.76 1 5.88   0 0.00 0 0.00   2 4.08 1 3.85   2 3.64 1 3.57   2 5.56 1 6.25  

Multigravid pregnancies                              
 n=78 % n=22 % P-value  n=94 % n=28 % P-value  n=140 % n=40 % P-value  n=151 % n=44 % P-value  n=121 % n=34 % P-value 
Fetal HLA-G*0106 absent 77 98.72 18 81.82 0.008  91 96.81 23 82.14 0.016  133 95.00 35 87.50 0.142  145 96.03 37 84.09 0.011  114 94.21 27 79.41 0.015 

Fetal HLA-G*0106 present 1 1.28 4 18.18   3 3.19 5 17.86   7 5.00 5 12.5   6 3.97 7 15.91   7 5.79 7 20.59  

 

Maternal KIR2DL4*001 present  Maternal KIR2DL4*005 present  Maternal KIR2DL4*006 present  Maternal KIR2DL4*008 present  Maternal KIR2DL4*011 present 

NC  PE  Fisher’s 
exact test  NC  PE  Fisher’s 

exact test  NC  PE  Fisher’s 
exact test  NC  PE  Fisher’s 

exact test  NC  PE  Fisher’s 
exact test  

All pregnancies                              
 n=141 % n=43 % P-value  n=113 % n=37 % P-value  n=50 % n=15 % P-value  n=33 % n=9 % P-value  n=83 % n=33 % P-value 
Fetal HLA-G*0106 absent 134 95.04 38 88.37 0.155  107 94.69 32 86.49 0.140  50 100.00 11 73.33 0.002  32 96.97 7 77.78 0.111  83 100.00 31 93.94 0.079 

Fetal HLA-G*0106 present 7 4.96 5 11.63   6 5.31 5 13.51   0 0.00 4 26.67   1 3.03 2 22.22   0 0.00 2 6.06  

Primigravid pregnancies                              
 n=38 % n=14 % P-value  n=27 % n=14 % P-value  n=10 % n=5 % P-value  n=4 % n=3 % P-value  n=23 % n=15 % P-value 
Fetal HLA-G*0106 absent 37 97.37 14 100.00 1.000  25 92.59 13 92.86 1000  10 100.00 5 100.00 1.000  4 100.00 3 100.00 1.000  23 100.00 15 100.00 1.000 

Fetal HLA-G*0106 present 1 2.63 0 0.00   2 7.41 1 7.14   0 0.00 0 0.00   0 0.00 0 0.00   0 0.00 0 0.00  

Multigravid pregnancies                              
 n=102 % n=28 % P-value  n=86 % n=22 % P-value  n=40 % n=10 % P-value  n=29 % n=6 % P-value  n=59 % n=16 % P-value 
Fetal HLA-G*0106 absent 96 94.12 23 82.14 0.058  82 95.35 18 81.82 0.053  40 100.00 6 60.00 <0.001  28 96.55 4 66.67 0.070  59 100.00 14 87.50 0.043 

Fetal HLA-G*0106 present 6 5.88 5 17.86   4 4.65 4 18.18   0 0.00 4 40.00   1 3.45 2 33.33   0 0.00 2 12.50  

NC: Normal controls; PE: Pre-eclampsia 
n, number of individuals examined. 
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Table 24.  Effect of fetal HLA-G*0106 and maternal KIR2DL4*006 alleles. 

 NC  PE  Fisher’s exact test  

All pregnancies        

 n=240 %  n=83 %  P-value 
bG*0106+/m2DL4*006+ 0 0.00  4 4.82  0.004 
bG*0106+/m2DL4*006- 9 3.75  6 7.23  0.226 
bG*0106-/m2DL4*006+ 50 20.83  11 13.25  0.145 
bG*0106-/m2DL4*006- 181 75.42  62 74.70  0.884 

Primigravid pregnancies        

 n=59 %  n=31 %  P-value 
bG*0106+/m2DL4*006+ 0 0.00  0 0.00  1.000 
bG*0106+/m2DL4*006- 2 3.39  1 3.23  1.000 
bG*0106-/m2DL4*006+ 10 16.95  5 16.13  1.000 
bG*0106-/m2DL4*006- 47 79.66  25 80.65  1.000 

Multigravid pregnancies        

 n=180 %  n=50 %  P-value 
bG*0106+/m2DL4*006+ 0 0.00  4 8.00  0.002 
bG*0106+/m2DL4*006- 7 3.89  5 10.00  0.141 
bG*0106-/m2DL4*006+ 40 22.22  6 12.00  0.160 
bG*0106-/m2DL4*006- 133 73.89  35 70.00  0.592 
        

bG*0106+: presence of fetal HLA-G*0106 allele. 
bG*0106-: absence of fetal HLA-G*0106 allele. 
m2DL4*006+: presence of maternal KIR2DL4*006 allele. 
m2DL4*006-: absence of maternal KIR2DL4*006 allele. 
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4.0 Discussion 

4.1 HLA-G haplotypes/ polymorphisms in PE case-control study 

4.1.1 Positive association of HLA-G*0106 allele with PE 

In this study, we observed a significant association between presence of HLA-

G allele G*0106 in the fetus and an increased risk for PE, but only in multigravid 

pregnancies.  This observation is supported by a recent report of a significant increase 

of G*0106 allele frequency in PE placentas (Moreau, Contu et al. 2008).  However, 

two earlier studies of HLA-G polymorphisms in PE did not report any data to support 

an association with G*0106 (Hviid, Christiansen et al. 2001; Hylenius, Andersen et al. 

2004).  Hviid et al’s study was based on the difference in the overall proportion of 

HLA-G alleles shared between couples, and no information on fetal genotype and its 

potential interaction with maternal genotype was provided.  Similarly, information on 

paternal or maternal inheritance of G*0106 alleles was not provided in Hylenius et 

al’s study of PE triads.  As such, significant differences that were present could have 

been overlooked.  Although the antigen-presenting functions of HLA-G are yet to be 

established, it is possible that mismatched fetal-maternal HLA-G genotypes may 

adversely affect the maternal tolerance of the semiallogenic fetus.   

 

4.1.2 Positive association of codon 258 with PE 

The G*0106 allele is characterized by a non-synonymous substitution at codon 

258. This codon 258 CT change in the G*0106 peptide translates into a non-

conservative threonine to methionine amino acid substitution, which could alter its 

structure and/or function.  Interestingly, codon 258 is located in the α3 domain of 
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HLA-G, the candidate binding site for leukocyte Ig-like receptor 1 (LIR-1 or ILT2) 

and LIR-2 (or ILT4) (Clements, Kjer-Nielsen et al. 2005; Shiroishi, Kuroki et al. 

2006).  Both LIR1 and LIR2 receptors bind preferentially to HLA-G dimers 

(Shiroishi, Kuroki et al. 2006), the most common HLA-G conformation present on the 

surface of normal first trimester trophoblast cells (Apps, Gardner et al. 2007), 

suggesting that this antigen-receptor interaction is important in the maintenance of a 

healthy pregnancy.  Therefore, a non-conservative amino acid substitution at this site 

may also alter HLA-G’s binding affinity for its inhibitory receptors, thus adversely 

affecting its functions in protecting the semiallogenic fetus from maternal immune 

surveillance. 

 

4.1.3 Histo-incompatibility in PE mother-child pairs 

We also observed a significantly higher frequency of fetal-maternal HLA-G 

genotype mismatch in pre-eclamptic pregnancies compared to normal pregnancies, 

specifically involving G*0106-negative mothers with fetuses carrying paternally 

inherited G*0106.  Again, this positive association involved only multigravid 

pregnancies.  These observations strongly suggest that HLA-G variants foreign to the 

mother may lead to histoincompatibility between mother and child, suggesting an 

immunological basis for PE.  Therefore, maternal rejection of the semiallogenic fetus 

could represent one of the major contributors to the development of PE.  Also, it is 

important to consider the effects of paternal alleles in the fetus in studies of pregnancy 

complications and their interactions with the maternal genotype, which controls the in 

utero environment of the developing fetus. 
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4.1.4 Association of G*0106 is only in the multigravids 

Although PE has been postulated to be a disease of first pregnancies due to the 

higher risk of PE in primigravids, we observed significant association only in the 

multigravid sub-group.  The observation of an association between paternal G*0106 

and PE only in multigravid but not in primigravid pregnancies suggests a gradual 

rather than immediate alloimmune response.  This supposition is consistent with the 

observation that the G*0106 allele is unlikely to be highly immunogenic as this allele 

was not more likely to elicit HLA-G antibody production in mothers lacking G*0106 

(Hunt, Pace et al. 2003).  However, the lack of positive results in the Hunt et al. study 

could possibly be due to the failure of the wild-type sHLA-G*0101 protein used in the 

assay to recognize the anti-G*0106 antibodies generated in G*0106-naive mothers.   

 

On the other hand, Hunt et al. demonstrated that tolerance to HLA-G can be 

overcome by exposure during pregnancy, thereby suggesting that it is possible that the 

risk of a severe alloimmune reaction to G*0106 leading to PE in G*0106-naive 

mothers increases with each repeated exposure to the foreign HLA-G antigen from 

previous pregnancies.  This suggests that maternal-fetal incompatibility for G*0106 

does not predispose to PE per se as no significant association was observed in 

primigravids, but the presence of this antigen in the fetus can lead to a recurrence in a 

woman with a previous PE pregnancy. 

 

4.1.5 Population-specific differences in HLA-G haplotype/allele frequencies 

The availability of population allele/haplotype frequencies serves a useful 

purpose in case-control association studies as an independent check to minimize false 

positive results arising from sampling error or differences in racial admixture between 
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case and control groups.  Therefore, frequencies of HLA-G haplotype in the three 

main population groups in Singapore and Malaysia, namely the Southeast Asian 

Chinese, Indian and Malay populations, were determined.  As the G*0106 allele had 

only been discovered relatively recently, few studies have examined its population 

frequencies and also its association with PE.  A comparison of G*0106 allele 

frequencies among the Southeast Asian Chinese, Indian, Malay and Danish 

populations revealed differences, with frequencies of 1.1%, 8.3%, 2.2% and 4.0% 

respectively (Table 25).   

 

Since the Indian G*0106 allele frequency is nominally higher compared to the 

Malay population (8.33% vs. 2.22%, p=0.016) (Table 15), a high Indian admixture 

could theoretically lead to a spuriously high G*0106 allele frequency within the PE 

babies group.  However, the observed G*0104 allele frequencies in the various case, 

control, and population groups do not support this possibility.  The G*0104 allele 

frequencies in normal control mothers (45.28%) and babies (45.83%), as well as PE 

mothers (47.00%) and babies (45.00%) were very similar to each other and to the 

Malay population (45.00%), but significantly different compared to the Indian 

population (26.11%) (p<0.001).  A significant Indian admixture in the PE babies 

group would have been reflected by a significant, if not nominal, decrease in G*0104 

allele frequency in this group, which we did not observe.  Through the hospital’s 

records, we have also re-confirmed the Malay ethnicity of the fathers of each of the 

G*0106-positive babies in both case and control groups, thus ruling out the possibility 

of Indian paternity among the G*0106-positive PE babies. 
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Table 25.  HLA-G allele frequencies in different populations. 

Japaneseb Hutteritec German / 
Croatiand Portugesee Spanishf Danishg African 

Americanb 
African 

Ghanaianb 
African 
Shonah Chinesei Indiani Malayi 

Allelea 
n=82 n=160 n=344 n=234 n=228 n=154 n=84 n=84 n=216 n=188 n=180 n=180 

G*010101 42.7 45.5 32.1 37.2 30.2 61.7 70.2 83.3 39.3 41.5 31.7 25.0 

G*010102 14.6 20.3 36.3 31.4 21.9 27.2 6.0 2.4 14.4 5.9 11.1 6.11 

G*010103 4.9 2.0 6.8 17.4 7.0 5.1 2.4 0 0 20.2 17.2 19.4 

G*010104 - 4.4 - - - - - - 0 0 0 0 

G*010105 - - - - - - - - 0 0 0 0 

G*010106 - - - - - - - - 0 0 0 0 

G*010107 - - 1.9 - - - - - 0 0 0 0 

G*010108 - 7.6 9.1 - - - - - 14.4 0 0.6 0 

G*0102 - - - - - - - - 0 0 0 0 

G*0103  2.7 2.3 1.2 0 -   0 1.1 1.7 0.6 

G*0104 37.8 12.6 6.1 12.8 10.5 4.5 13.1 9.5 20.8 27.7 26.1 45.0 

G*0105 0 - 2.3 0 3.1 0.6 8.3 4.8 11.1 2.7 2.8 1.1 

G*0106 - - - - - 4.0i - - - 1.1 8.3 2.2 

aAlleles are numbered according to WHO nomenclature. 
n represents the number of chromosomes examined. 
Dashes (-) indicate that genotyping for that haplotype was not performed. 
b(Ishitani, Kishida et al. 1999), c(Ober, Rosinsky et al. 1996), d(van der Ven, Skrablin et al. 1998), e(Alvarez, Santos et al. 1999), f(Suarez, Morales et al. 1997), g(Hviid, 
Meldgaard et al. 1997), h(Matte, Lacaille et al. 2000), iThis study. 



 
 

71 
 
 

Given the variable but low frequency of the G*0106 haplotype in the different 

populations, its contribution to the total number of PE cases in any population group 

would be expected to be small.  However, the clinical significance of these findings 

lies in the fact that in those pre-eclampsia cases caused in part by maternal 

alloimmune response to foreign HLA-G*0106 antigen, it may now be possible to 

provide improved prognosis and preventive intervention in subsequent at-risk 

pregnancies. 

 

4.1.6 Lack of association of G*0105N allele with PE 

Although the G*0105N haplotype contains a frameshift mutation that leads to 

a premature stop, resulting in reduced expression of the most abundant HLA-G1 

isoform in heterozygotes (Ober, Aldrich et al. 1998), we did not find any association 

of this haplotype with PE in our study.  Association studies involving different sample 

populations also yielded similar results (Aldrich, Verp et al. 2000; Hylenius, 

Andersen et al. 2004), suggesting that reduced or absence of HLA-G1 expression is 

not a contributory factor to PE development as these individuals could still produce 

HLA-G2, -G3, -G6 and –G7 isoforms.  Furthermore, healthy multiparous individuals 

homozygous for the HLA-G*0105N null allele has also been reported (Ober, Aldrich 

et al. 1998; Casro, Morales et al. 2000).  The fact that this allele encodes functional 

HLA-G proteins capable of inhibiting NK cell-mediated cytotoxicity (Le Discorde, Le 

Danff et al. 2005) as well as inducing cell surface expression of HLA-E molecules 

(Sala, Del Moral et al. 2004) indicates that this null mutation does not affect the 

maintenance of a healthy pregnancy.  
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4.1.7 Lack of association of the 5’ UR polymorphism with PE 

 Variations in the 5’ UR and promoter region of the HLA-G gene may 

influence the regulation of its transcription and expression.  Polymorphisms located at 

this region include the NP-1306 SNP located within the locus control region that 

binds to nuclear factors to regulate the expression of HLA-G molecules (Hviid, 

Sorensen et al. 1999) as well as the NP-725 polymophism which forms a CpG 

dinucleotide flanking the interferon specific regulatory element (ISRE) and is 

associated with the status of methylation and expression of soluble HLA-G (Ober, 

Aldrich et al. 2003).  In addition to that, the NP-486 SNP located very close to a 

putative heat shock element (HSE) was reported to bind heat shock factor 1 (HSF1) 

under stress (Hviid, Rizzo et al. 2006).  Stressful condition such as heat shock was 

shown to induce the expression of HLA-G in tumor cells lines suggesting that a 

polymorphism at this region may affect binding of HSF1 to HSE leading to 

differences in HLA-G expression  (Ibrahim, Morange et al. 2000).  Also, a 

polymorphism at NP-56 located within the putative binding site for the polyomavirus 

enhancer-binding protein 2 (PEBP2) (Matte, Lacaille et al. 2002) may affect the 

binding of this protein to the enhancer core motif and thereby leading to reduced 

expression of HLA-G molecules.  However, we did not observe any significant 

association between the 5’ UR variations studied.  Consistent with our observation, a 

study of the association of NP-56 SNP with PE also revealed no significant 

association between the two (Doherty, Rush et al. 2006). 
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4.1.8 Lack of association of the +/-14bp polymorphism with PE 

The 14 bp insertion/deletion in the 3’ UTR of the HLA-G gene has been 

reported to affect the stability of the HLA-G transcript as well as the splicing patterns 

of HLA-G isoform (Rousseau, Le Discorde et al. 2003) and has also been found to be 

associated with PE (O'Brien, McCarthy et al. 2001; Hylenius, Andersen et al. 2004).  

However, our data does not support this conclusion (Table 13), as did several 

previous reports in other population groups (Humphrey, Harrison et al. 1995; 

Bermingham, Jenkins et al. 2000; Lin, Yan et al. 2006; Vianna, Dalmaz et al. 2007; 

Iversen, Nguyen et al. 2008).  The exact effect of this polymorphism remains unclear. 

 

4.2 KIR2DL4 haplotypes in PE case-control study 

4.2.1 Lack of association of KIR2DL4 alleles with PE 

In this study, we tested alleles of the KIR2DL4 receptor for contribution to the 

development of PE using a case-control design, and observed a lack of association 

with disease in both mothers and babies.  An earlier study that examined 

polymorphisms within exons 3 and 4 also found no significant association between 

KIR2DL4 and PE (Witt, Whiteway et al. 2002).  These 2 exons encode the 

extracellular immunoglobulin domains which are involved in HLA Class I ligand 

binding, and it was hypothesized that amino acid substitutions in these domains may 

affect KIR2DL4 binding to HLA-G molecules. 

 

These observations implicate that KIR2DL4 receptor may not be involved in 

the development of PE.  Of interest is a report of a multiparous woman who lacks this 

gene (Gomez-Lozano, de Pablo et al. 2003).  Although very few individuals are 



 
 

74 
 
 

known to lack KIR2DL4 (Norman, Carrington et al. 2002), these data suggests that 

KIR2DL4 may not be essential for the maintenance of human pregnancy, or that 

alternative genes such as ILT2 or ILT4 could function in place of KIR2DL4 in its 

absence. 

 

The KIR2DL4 gene is minimally polymorphic in our study population, as 14 

of the 23 genotyped SNPs were monomorphic in all samples tested.  According to the 

Immuno Polymorphism Database (IPD), these 23 SNPs/polymorphisms characterize 

the 12 major KIR2DL4 alleles (Selvakumar, Steffens et al. 1996; Selvakumar, 

Steffens et al. 1997; Valiante, Uhrberg et al. 1997; Cantoni, Verdiani et al. 1998; 

Rajalingam, Gardiner et al. 2001; Marsh, Parham et al. 2003; Gedil, Steiner et al. 

2005; Robinson, Waller et al. 2005).  However, in our study population, only 6 of the 

designated major alleles were observed (Table 16). 

 

4.2.2 Lack of association of KIR2DL4 frameshift mutation and PE 

The deletion polymorphism at codon 248 in exon 6 is of much interest as it 

results in 2 variants of the transmembrane exon, of which the 10A variant encodes the 

full-length classical membrane-bound receptor and the 9A variant either have a 

missing ITIM or lacking the transmembrane exon.  Truncated proteins produced by 

the 9A allele of KIR2DL4 may improperly insert into the cell membrane and/or bind 

its cognate ligand, and thus fail to prevent maternal NK cells from attacking the fetal 

trophoblasts.  A previous study did not detect any association between the 9A alleles 

and PE (Witt, Whiteway et al. 2002).  We also failed to observe an association 

between this allele and PE in both mothers and babies (Table 21). 
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4.3 HLA-G and KIR2DL4 gene-gene interaction 

Pregnancy is a unique situation where KIRs may come into contact with non-

self HLA ligands.  As KIRs interact with HLA molecules and also, because the two 

gene families segregate independently on different chromosomes, therefore, it is 

important to consider combinations of HLA molecules and KIRs as risk factors, in 

addition to studying each of them separately.  Several studies have examined whether 

some combinations of maternal KIR genes and fetal HLA allotypes may provide sub-

optimal conditions for a healthy pregnancy (Hiby, Walker et al. 2004; Trundley and 

Moffett 2004).  In this study, fetal HLA-G and maternal KIR2DL4 alleles were 

analyzed together to determine if certain HLA-G ligand variants, in combination with 

specific KIR2DL4 receptor variants, might be less favorable for the maintenance of a 

healthy pregnancy compared to others.   

 

Significant association with PE was observed for fetal HLA-G*0106 in 

combination with maternal KIR2DL4*006 allele among multigravid pregnancies 

(p<0.001).  It should be noted, however, that only 4 PE pregnancies were positive for 

maternal KIR2DL4*006 and fetal HLA-G*0106, and none in the controls.  These 

results should, therefore, be interpreted conservatively in the context of the sample 

size constraints, and additional studies are required to verify these observations.  

Therefore, it is likely that KIR2DL4 is not associated with risk of PE. 

 

Although HLA-G is the only known ligand of KIR2DL4, KIR2DL4 is not the 

sole receptor for HLA-G.  It is possible that other inhibitory receptors such as ILT2 or 

ILT4, which bind preferentially to HLA-G dimers (Shiroishi, Kuroki et al. 2006), may 

also play a role in the development of PE.  Furthermore, the interaction between 
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KIR2DL4 and its ligand HLA-G has been inconclusive.  Some studies have reported 

KIR2DL4 to be a specific receptor for HLA-G (Rajagopalan and Long 1999; 

LeMaoult, Zafaranloo et al. 2005; Yan and Fan 2005) while others have disputed this 

receptor-ligand interaction (Allan, Colonna et al. 1999; Boyson, Erskine et al. 2002).  

It is possible that the differences observed in different studies are due to the different 

techniques used to detect the interactions between KIR2DL4 and HLA-G. 

 

4.4 Limitation of this study 

This study is limited by a small sample size and therefore, the strong 

association observed between G*0106 and PE should be interpreted conservatively.  

Similarly, as previously mentioned, the observation of an increase risk of PE in 

multigravid pregnancies with fetal HLA-G*0106 in combination with maternal 

KIR2DL4*006 allele should also be interpreted carefully due to the low number of 

pregnancies positive for this allele combinations.  Therefore, a study with a larger 

sample size is necessary to confirm the observed results. 

 

4.5 Conclusion 

We conclude that the presence of paternal HLA-G G*0106 in the fetus 

significantly increases risk for PE in multigravidas who do not carry this allele.  This 

increased risk for PE may be mediated by an increasing alloimmune response to the 

variant paternal HLA-G antigen expressed in the fetal trophoblast following repeated 

exposure to the foreign antigen.  Presence of variant paternal HLA-G in the 

semiallogenic fetus may also cause a malfunctioning of the immune-protective effect 

of HLA-G due to possible changes in its interaction with maternal inhibitory 
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receptors, especially in pregnancies where the paternal allele in the fetus is foreign to 

the mother.  These findings are consistent with clinical observations that women are 

more at risk of PE with certain men (Astin, Scott et al. 1981).  On the other hand, 

KIR2DL4 is not associated with risk for PE.  However, certain maternal KIR2DL4 

alleles may lead to increase disease risk in the presence of fetal HLA-G*0106 allele. 
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