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 ABSTRACT 

 

Sequence-derived structural and physicochemical descriptors have frequently been used 

in machine learning prediction of protein functional families; there is thus a need to 

comparatively evaluate the effectiveness of these descriptor-sets by using the same 

method and parameter optimization algorithm, and to examine whether the combined use 

of these descriptor-sets help to improve predictive performance. Six individual 

descriptor-sets and four combination-sets were evaluated in support vector machines 

(SVM) prediction of six protein functional families. While there is no overwhelmingly 

favourable choice of descriptor-sets, certain trends were found. The combination-sets 

tend to give slightly but consistently higher MCC values and thus overall best 

performance; in particular, three out of four combination-sets show slightly better 

performance compared to one out of six individual descriptor-sets. This study suggests 

that currently used descriptor-sets are generally useful for classifying proteins and that 

prediction performance may be enhanced by exploring combinations of descriptors.  
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1 INTRODUCTION 

 

 One of the more challenging and unsolved problems in current proteomics is that 

of protein functional prediction, and increasingly, various machine learning approaches 

are utilized towards solving this problem. The first section (Sec. 1.1) gives an overview of 

the biological problem and considers the various computational approaches, with a focus 

on machine learning methods. The second section (Sec. 1.2) introduces various machine 

learning approaches, and the last section (Sec. 1.3) gives the motivation and objective for 

this thesis. 

 

1.1  Application of Machine Learning in Protein Functional Family 

Prediction 

 

1.1.1 Biological importance of protein functional prediction 

Proteins are involved in all of the processes that regulate the functional cycles of living 

organisms, performing a plethora of critical processes such as catalysis of biochemical 

reactions, transport of nutrients, recognition and transmission of signals. Thus, 

knowledge of protein function and interaction with other biomolecules is essential in a 

more fundamental understanding of biological phenomena such as gene regulation, 

disease pathology [1, 2], and cellular processes [3–6]. Though the genomes of over a 

hundred organisms are now known, the number of experimentally characterized proteins 
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lags far behind as traditional experimental techniques in determining protein structure and 

function such as X-ray diffraction or nuclear magnetic resonance methods, which remain 

difficult, costly and laborious; certainly they do not scale up to current sequencing speeds 

[7–10]. In addition, protein interactions and their native environments are highly complex 

and specific, which can make it difficult to replicate in the laboratory. As the sequencing 

of a growing number of genomes is completed, the gap between the flood of sequence 

information and their functional characterization is increasing rapidly [11, 12]. In current 

databases and sequencing projects, about 30% of proteins do not resemble any known 

sequence and have no assigned structure or function; another 20% were found to be 

homologous to a known sequence whose structure or function, or both, is largely 

unknown [10]. Computational biology is central in bridging this gap and the prediction of 

both protein structure and function are core unsolved problems in this area [13–18].  

 

 The prediction of protein function is the focus of many current studies; querying 

MEDLINE [19] with ‘predict protein function’ retrieves over 1000 papers from one year, 

of which the overwhelming majority describes single-case studies in which tools are 

combined in efforts to predict aspects of function for a particular protein or protein family 

[20].1 The authors found that the most successful approaches tend to combine artificial 

intelligence tools such as neural networks (NN) and support vector machines (SVM) with 

evolutionary information derived from multiple alignments and aspects of protein 

structure. Commonly used computational methods can be broadly divided into sequence-

based approaches, structure-based approaches and statistical learning approaches — most 

                                                 
1 The paper by Rost et al. was dated 2003. A latest MEDLINE query accessed 12 June 2007 retrieved 2279 
papers in 2006 with the same query terms, 2132 papers in 2005, and 1841 papers in 2004. 
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successful approaches are based on machine learning approaches such as SVM, which 

have been applied in a large number of applications such as computational gene finding 

[21], prediction of DNA active sites, sequence clustering and analysis of gene expression 

data [22]. 

 

1.1.2 The case for computational approaches 

As mentioned earlier, with the vast amount of biological information being generated, it 

is inefficient, or even impossible, to rely only on human analysis; even the highly 

experimentally annotated Caenorhabditis elegans ORFeome was significantly enriched 

by computational gene predictions [23]. Moreover, there are problems that cannot be 

tackled with traditional experimental approaches; hence, we would have to turn to 

computational approaches.  

 

Sequence-based approaches 

Studies have shown a distinct relationship between functional similarity and sequence 

similarity [24] — this fact constitutes the basis of sequence-based approaches. For 

example, Pawlowski et al. [25] examined the EC enzyme classification and found a good 

correlation between sequence and functional similarity, and Ahmad et al. [26] found 

sequence composition to be sufficient in predicting binding site predictions with good 

accuracies.  

 

 Sequence-based methods include such as homology searching, clustering and 

pattern identification; the most common is sequence alignment. These methods hinge on 
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the tenet that proteins that are similar in sequence are more likely to be similar in 

structure and function, thus, they attempt to identify pairs of homologous proteins that 

share, because of common ancestry, similar structure and/or function.  

 

 In sequence alignment methods, sequences of the unknown function protein are 

aligned with sequences of known function proteins at various levels of identities; from 

the level of sequence similarity, the potential function of the unknown function protein 

can then be estimated. The Needleman–Wunsch algorithm was proposed in 1970 [9] to 

solve global pairwise sequence alignment, and the Smith–Waterman algorithm was 

introduced in 1981 [27] to find related regions within sequences. The emphasis of 

pairwise sequence alignment methods is on finding the best-matching piecewise local or 

global alignments of sequences, however, these dynamic programming algorithms are 

inefficient when applied to a large sequence database. Lipman and Pearson proposed the 

FASTA algorithm in 1985 [28], and this was later superseded by the BLAST algorithm in 

1990 [29], which has since grown in popularity to become one of the most widely used 

bioinformatics program; the Institute for Scientific Information’s Web of Science has 

reported that the original paper by Altschul et al. [30] was the most third highly cited 

paper published in the past two decades [31] and the most highly cited in the 1990s [32], 

underscoring the rising importance of bioinformatics research. Unlike dynamic 

programming algorithms, the FASTA and BLAST algorithms do not aim to optimize 

alignments between sequences but instead rely on heuristic strategies to find approximate 

solutions — the BLAST algorithm, which gave a good balance between computational 

speed and sensitivity, approximates the Smith–Waterman algorithm, and though it is 
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slightly less accurate than Smith–Waterman, it is over 50 times faster. PSI-BLAST 

("Position Specific Iterated" BLAST), introduced in 1998, is an improvement upon the 

original BLAST and iteratively search protein databases for multiple alignments in order 

to find distant relatives and identify weak but biologically relevant similarities [33].  

 

 It is commonly observed in the literature that some regions within protein 

sequences are crucial for function and are thus better conserved among homologs as 

compared to surrounding regions [34, 35].  This led to the development of motif libraries 

such as Motifs [36] and Prosite [37], which catalog patterns repeatedly recurring in 

protein sequences. 

 

 However, there are drawbacks to a sequence-based approach. Not all homologous 

proteins have analogous functions [38]. Proteins with high sequence identity can fold into 

two different structures, hence giving different functionalities [39], and proteins with 

more than 30% sequence identity can adopt the same fold structures [40, 41]. In the 

absence of sequence similarities, particularly for proteins that are distantly related, this 

homology criterion becomes increasingly difficult to formulate [42]. It is also important 

to be aware of certain limitations and caveats when applying sequence alignment 

methods. Correlations thresholds between sequence similarity and functional similarity 

are a fundamental concern to groups utilizing sequence-based methods. In one study, 

Wilson et al. found that for pairs of domain that contain the same fold, precise function is 

usually conserved for sequence identity over 40%, approximately, and functional class is 

conserved for identity over 25% [43]. Generally, pairwise sequence identity is considered 



1   Introduction         6 

high for alignments greater than 40%, and Doolittle has coined the term ‘twilight zone’ to 

describe the region with 20–30% identity as methods often fail to correctly align protein 

pairs in this range.  

 

 To complicate matters, the functional annotation of genomes remains an issue of 

contention [44–46] — Devos and Valencia found that up to 30% of the annotations might 

be erroneous [47] and Brenner reported that 8% of the annotations of the Mycoplasma 

genitalium genome in three published papers were in serious disagreement [48]. Thus, it 

is important to be aware of possible erroneous functional annotations that could have 

been introduced by the standard function prediction practice during the initial analysis. 

 

Structure-based approaches 

If sequence-based approaches can be thought of as utilizing one-dimensional information, 

then analogously, structure-based approaches rely on the analysis of two- and three-

dimensional protein structures, under the assumption that proteins with similar structure 

have similar functions. Studies have found that proteins with similar sequences do adopt 

similar structures [49–52]; in fact, most protein pairs with more than 30% identity were 

found to be structurally similar [41]. Most sequence-based methods are based on the 

premise that there is an evolutionary relationship between sequences, thus, because 

structure is more conserved than sequence, structural information should enhance protein 

function prediction [53]. Families with low sequence identities (<30%) and yet have 

similar structural and functional characteristics are considered to possibly posses a 

common evolutionary origin, and such families are grouped into a superfamily [54]. Rost 
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et al. [20] have found that most successful approaches tend to contain evolutionary 

information derived from multiple alignments and aspects of protein structure.  

 

 In contrast to the effectiveness of sequence-based methods, structure alignment 

methods have uncovered homologous protein pairs with less than 10% pairwise sequence 

identity [55–57], and Rost [58] concluded that most similar protein structure pairs appear 

to have less than 12% pairwise sequence identity. Levitt and Gerstein [59] have found 

that structural comparison of protein pairs is able to detect approximately twice as many 

distant relationships as sequence comparison at the same error rate.  

 

 From shared protein folds, the function of an unknown protein could be deduced 

from existing structure-function knowledge of known proteins [60], and homology 

modelling approaches have been successfully implemented in this manner, by scanning 

new structures against a profile library [61–64]. The main limitation of this method is the 

restriction of sequence variation in the templates in the profile library. There are other 

drawbacks as well: (i) Knowledge of protein structures is necessary, and the gap between 

the number of sequences known and solved structures is increasingly rapidly to the extent 

that it becomes a serious limitation to the application of structure-based methods for 

predicting protein function — till now, the protein folding problem remains largely 

unsolved. Experimental methods to determine protein structures are time-consuming and 

have their own limitations, which in turn limits structure-based approaches [54, 65, 66]. 

Ab initio fold prediction methods can be applied to fill this gap, but they are 

computationally expensive and not as accurate [67]. (ii) Structure-based methods on their 
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own, without considering sequence similarity, are not very reliable [68–71]. (iii) 

Moreover, even if a group of proteins share a domain, it does not necessarily imply that 

these proteins have the same functionality [72, 73], for there are proteins with similar 

folds but no apparent sequence similarity, such collicins and globins [74].  

 

Machine learning-based approaches 

One restriction of sequence- and structure-based methods is that they require a certain 

level of similarity to exist (in sequence or structure). Also known as statistical learning 

approaches, the machine learning-based approaches are alternative methods that are not 

limited by this restriction, and while machine learning methods range from simple 

calculation of averages to the construction of complex models such as Bayesian 

networks, it is the latter end of the spectrum we are interested in for the purpose of this 

work, which includes methods such as naïve Bayes, C4.5 decision trees (DT), neural 

networks (NN) and support vector machines (SVM) [75]. Machine learning approaches 

aim to extract information from data through a process of training from examples. A 

certain number of representative examples, formed of positive samples from that specific 

functional class and negative samples of proteins outside of that functional class, are 

required to train a predictive model. Details of the theory as well as common methods 

will be elaborated in the subsequent section (Sec. 1.2). 

 

 There are advantages to a machine learning-based approach over the sequence- 

and structure-based approaches. For one, knowledge of the protein structure is not 

required, thus, these methods could be applied to cases in which the protein structure is 
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unknown or uncertain (highly flexible). Secondly, if the training samples are properly 

chosen and diverse, the predicted proteins will be more diverse as well. Thirdly, sequence 

similarity is not a requirement as some of these approaches are capable of utilizing only 

sequence-derived information.  

 

 However, there are still limitations to a purely statistical approach, for example, 

the ab initio prediction accuracy of tertiary structure from sequence alone remains 

unsatisfactory [76, 77], though interestingly, the best methods for protein secondary 

structure prediction are based on NN and SVM [78]. Furthermore, statistical approaches 

require accurate and sufficient training data, thus these methods are not applicable to 

problem domains that do not have enough pre-classified examples.  
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1.2 Introduction to Machine Learning 

 

To take current definitions, machine learning is an area of artificial intelligence 

concerned with the development of techniques that allow computers to optimize a 

performance criterion using example data or past experiences [79]. The goal of machine 

learning is to extract useful information from data by building good probabilistic models, 

mimicking the human reasoning process [80]. Numerous algorithms have been developed 

and applied to a surprisingly wide variety of tasks, from engineering and science to 

business and commerce. There are several reasons why machine learning is important, for 

example, the ability to learn is a hallmark of intelligent behavior, so any attempt to 

understand intelligence as a phenomenon might help us to understand how animals and 

humans learn [81]. However, more pertinent to biological problems, there are other 

important reasons as well: (i) Some tasks cannot be defined well except by examples, for 

instance, input/output pairs might be specified exactly but not a concise relationship 

between input and output. Machine learning algorithms might be able to, given a large 

training dataset, produce a suitably constrained input/output function that approximates 

the implicit relationship. (ii) There could be important relationships and correlations 

masked within large volumes of data. Data mining algorithms attempt to extract these 

relationships. (iii) Often, the specifics of the intended working environment might not be 

completely known at the time of design, and machine learning methods can be used to 

refine performance. In this manner, machines can also be exported to different 

environments and optimized as well. Also, environments might change over time, and 

constant redesign is inefficient. (iv) The amount of data might be too large for explicit 
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coding by humans, for instance, as more and more genomes are sequenced. (v) And 

finally, learning provides a potential methodology for building high-performance systems 

[81, 82]. The application of machine learning is particularly important in areas where 

there is a large amount of data but little theory [22], such as bioinformatics.   

 

 The problem of protein family recognition studied in this work is essentially a 

problem of machine learning pattern recognition, though pattern recognition methods 

have found applications in diverse areas from data-mining, document classification and 

biometrics to financial forecasting.  In particular, pattern recognition methods have 

recently gained increasing importance in bioinformatics in problems such as gene 

identification and protein differentiation. To define, pattern recognition is the study of 

how machines can observe the environment, learn to differentiate patterns of interest 

from their background, and make logical decisions about the categories of these patterns 

[83]. However, what constitutes a pattern? With reference to bioinformatics, a pattern 

may be a motif or a fingerprint, a particular sequence of amino acids or a specific set of 

physicochemical properties.  In this study, amino acid sequences are represented as 

descriptors of various properties, and their recognition and classification are carried out 

by a machine learning algorithm. 

 

1.2.1 Components of machine learning 

A machine learning system essentially involves three main components, the choices of 

which are dictated by the problem domain: (i) data acquisition and pre-processing; (ii) 

data representation; and (iii) decision making or hypothesis. The problem should be well-
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defined and sufficiently constrained (small intra-class variations and large inter-class 

variations), the data representation should be concise and the decision-making strategy 

simple [83]. Common issues regarding data and classifier are outlined below, while data 

representation — the main focus of this work — is introduced in greater detail in Sec. 

1.3. 

 

 Most of the issues to consider in machine learning revolve around the data and 

choice of classifier. The data set should be sufficiently large and, as far as possible, 

balanced [84]. Many learning algorithms assume that the goal is to maximize accuracy 

and that the classifier will operate on data drawn from the same distribution as the 

training data; however, with these assumptions, if the data is unbalanced, unsatisfactory 

classifiers will be produced as training will be skewed towards the majority class. 

Fortunately, there are methods to deal with imbalanced data [85, 86]. Another issue is 

that of optimal complexity. Many methods suffer from underfitting or overfitting the 

data: underfitting occurs when the algorithm used does not have the capacity to express 

the variability in the data, while in overfitting, the algorithm has ‘too much capacity’ and 

therefore also ‘fits’ in noise present in the data. The cause for under- and overfitting 

depends on the complexity with which the model allows to express the variability in the 

data — if too much complexity is allowed, the variability due to noise is worked in as 

well; however, if the complexity is too low, the model will not be able to adequately 

represent the diversity of the data. Overfitting or underfitting also depends on the size of 

the training set — with small training sets, large deviations are possible and thus 

overfitting might occur [87]. 
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 As for the classifier, the machine learning algorithm should also have good 

predictive accuracy and robustness. It should also be reasonable fast and not require too 

much computational space. Linear classifiers are generally more robust than their non-

linear counterparts as they have less free parameters to tune and are thus less prone to 

overfitting. Linear classifiers are also less affected by outliers or noise as compared to 

non-linear methods. The influence of outliers or noise can be tempered with methods 

such as regularization [88, 89]. Though a ‘simple’, i.e. linear, function that explains most 

of the data is generally preferable to non-linear functions that explain all of the data 

(Occam’s razor), many practical problems are intrinsically non-linear in nature. In such a 

situation, a linear classifier in the appropriate kernel feature space, for example SVM, 

works well. Another desirable feature in machine learning algorithms is that of good 

generalization properties (good generalization refers to the model’s ability to predict 

unseen data based on known learning data).  

 

1.2.3 Categories of machine learning 

Machine learning can be categorized based on the dataset. If the data used for learning is 

labeled, the problem becomes one of supervised learning, where the true label is known 

for a given set of data. Examples of such methods include kNN and SVM. If the labels 

are not known, then the problem is one of unsupervised learning, in which the aim is to 

characterize the structure of the data, for example by identifying groups of examples 

within the dataset that are collectively similar to each other (small intra-class distance) 

and distinct form other data (large inter-class distance). In other words, in supervised 
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learning, the classes are defined by the users or the system designer; but in unsupervised 

learning, the classes are learned based on the similarity of patterns. In supervised 

learning, the training data include training input and desired output and the task of the 

machine is to predict the value after being trained by the input samples. In contrast, there 

is no a priori output in unsupervised learning. All of the training examples are considered 

a set of random variables and treated evenly, and the model does not have any advance 

‘preconception’ of the correct or incorrect answers. Furthermore, if the labels are 

categorical, the problem becomes that of classification; if the labels are continuously-

valued, the problem is that of regression [10, 75, 83].  

 

1.2.3 Overview and comparison of common machine learning algorithms   

 

Decision trees 

The decision tree (DT) [90–92] is one of the most popular machine learning algorithms 

and is often used in data mining and pattern recognition applications. It is used to identify 

the strategy most likely to reach a defined goal — which is to predict a category given an 

event — and compared to many of the other methods introduced in the succeeding 

subsections, it is simple to construct and efficient. A DT classifier separates the labeled 

points of the training data using hyperplanes that are perpendicular to one axis and 

parallel to all other axes, via a greedy algorithm that iteratively selects a partition whose 

entropy is greater than a given threshold, and then splits the partition to minimize this 

entropy by adding a hyperplane through it [93].  
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Figure 1: Example of a simple decision tree classification. 

 

 Given an instance of an object or situation, which is specified by a set of 

properties or attributes, the DT will return a ‘yes’ or ‘no’ decision about that instance. In 

other words, a DT is equivalent to a set of ‘if-then’ rules. DTs generate a series of rules 

from the training input samples, which are applied to the classification of unknown 

samples. These rules are linked in a tree structure, starting from the topmost node or root. 

Each node branches out into multiple nodes, and every decision at a node determines the 

direction of the next node movement, i.e. each leaf node is a Boolean classifier for that 

input instance. In this way, an optimal path is traced through the tree recursively until the 

bottommost node is reached. The DT is built top-down using recursive partitioning and it 
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should be: (i) consistent with the training data; and (ii) simple, in accordance with 

Occam’s Razor. In simpler DTs, each node is usually based on more data and hence is 

more reliable. However, fully consistent DTs tend to over-generalize, especially if the DT 

is big or if there is not much training data, thus, there is a trade-off between full 

consistency and compactness — larger DTs can be more consistent but smaller DTs 

generalize better. The main aim of the DT algorithm is to select the attribute that contains 

the most information at each decision, i.e. the greatest improvement to the prediction 

accuracy [79, 92]. To achieve this, statistical properties such as information gain or 

information gain ratio are defined so as to quantitatively measure how well a given 

attribute separates the training samples according to their target classification.  

 

 The main advantages of DT are its speed and, in particular, its perspicuity (the 

ease with which the algorithm and its representation can be understood). With a DT, it is 

possible to interpret the decision rule in terms of individual features, i.e. the rules are 

human interpretable and can provide insights into the problem domains. This algorithm is 

good for tasks such as classification or predicting outcomes, or when the goal is 

assignment of a query to a few broad categories. Disadvantages with DTs include 

problems with sparse data and overfitting, moreover, DTs are not able to directly 

combine information about different features. Construction of the tree continues until all 

of the training examples are classified, however, noise or erroneous data are often 

present, leading to overfitting [79]. Overfitting may be alleviated by modifying the 

stopping criteria or by pruning the tree. There are numerous algorithms, depending on the 

level of interpretability desired, though C4.5 is the most popular choice [92].  
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k-nearest neighbors  

Nearest-neighbor (NN) models date back at least to 1951 and have been a standard 

method in statistics and pattern recognition, where it is one of the oldest and simplest 

methods for performing general, non-parametric classification [94, 95]. The basis of the 

NN classifier is to choose the class of the nearest example in the training set, as measured 

by a distance metric, when classifying an unknown query. The k-nearest neighbors (kNN) 

is an extension of this idea, where the most common class of k nearest neighbors is 

chosen to classify the unknown query instead. kNN falls under what is known as 

instance-based learning programs, which learns by storing examples as points in a feature 

space and requires some means of measuring distance between examples [96]; kNN is 

also known as lazy learning, where the function is only approximated locally and all 

computation is deferred until classification. Instance-based methods have been applied to 

problems such as prediction of cancer recurrence, diagnosis of heart disease, prediction of 

protein secondary structure and prediction of DNA promoter sequences, and have been 

shown to compare favorable to other algorithms such as DTs on a wide range of domains 

in which feature values were either numeric or binary [96–98].  

 

 The kNN algorithm is fairly straightforward: the training examples are 

represented as vectors in a multidimensional feature space, which is partitioned into 

regions by the locations and class labels of the training samples. A query instance is then 

assigned to the class that is the most frequent class label among the k nearest neighbors. 

Thus, there are two components to the kNN algorithm: the similarity measure 
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(determination of neighbors), and the query assignment. The similarity between two 

points can be determined in several ways; the Euclidean distance is the most often used. 

Another important parameter to consider is the value of k. The best choice of k depends 

on the data; generally, larger k values reduce the effect of noise on the classification but 

make the boundaries between classes less distinct as the larger classes will overwhelm the 

smaller ones. However, one advantage of the kNN algorithm is that it is able to learn 

from a large training set, thus if k is set too small, the training model may not benefit 

from the large training set. The value of k should be greater than one (when k=1, this 

becomes the nearest neighbor algorithm) but less than N, where N is the size of the entire 

dataset; Dasarathy found that the ideal value of k is usually less than N  [99], though the 

value of k in practice usually has to be estimated by cross-validation and then optimized 

through trial and error.  

 

 The main advantages of the kNN algorithm are its conceptual simplicity and its 

computational efficiency relative to other methods such as neural networks [79], and is a 

good choice when simplicity and accuracy are the predominant issues. Though simple, 

the algorithm returns good results and is used in numerous applications [100–103]. kNN 

is particularly suitable in cases where the training data set is very large and the dimension 

of the training vector is small (less than 20) [104], or when the training set is continually 

changing. Often, kNN is often used to pre-process data before applying more complicated 

methods. The performance of the nearest neighbor algorithm is also robust; as the amount 

of data approaches infinity, the kNN algorithm is guaranteed to approach the Bayes error 

rate, which is the minimum achievable error rate given the distribution of the data, for 
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some value of k, where k increases as a function of the number of data points [99]. 

Moreover, kNN can also be applied to datasets of continuous variables. However, the 

prediction accuracy of kNN can be badly affected by noise or irrelevant features, or if the 

feature scales are not consistent with their importance as the similarity measure considers 

all attributes from all training examples, thus, the selection or scaling of features to 

improve classification performance is an important research question [99].  

 

Figure 2: Example of a simple k Nearest Neighbour classification. 

 

 In Fig. 2, the query instance (shaded circle) will be classified as a square if k is 

small; on the other hand, it will be classified as a triangle if k is large. 

 

Neural networks 

Also sometimes known as artificial neural networks, a neural network (NN) is a linked 

group of simple processing element known as neurons that uses a mathematical model to 

process information based on a connectionist approach to computation. However, though 

these networks are called ‘neural’ in the sense that they were inspired by neuroscience 

and designed to emulate the central nervous system, they are not exact models of biologic 
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neural or cognitive phenomena, but instead tend to be more closely related to traditional 

mathematical and/or statistical models such as optimization algorithms and statistical 

regression models [105].  

 

 The concept of neural network dates back to 1957, when psychologist Frank 

Rosenblatt proposed a family of theoretical and experimental neural network models 

called perceptrons, which eventually set the foundations for important neural network 

models used today; this initial model of a learning machine marked the start of 

mathematical analysis of learning processes. Most crucially, the perceptron could learn, 

which was the breakthrough to pioneer today’s current neural network technologies. A 

perceptron is, simply, a connected network that simulates an associative memory. 

Composed of an input layer and output layer of nodes, each of which are fully connected 

to the other with adjustable weights, this network will produce an output. The adjustment 

of the weights to produce a particular desired output is called ‘training’ the network and 

this is the mechanism that allows the network to learn [106, 107]. That early theory of 

perceptrons has its limitations but it sets the basis for future works, such as multi-layer 

networks. The basis of any modern neural network algorithm remains to incrementally 

adjust the network weights so as to improve a predefined performance measure over time, 

analogous to an optimization process. In other words, the learning process can be thought 

of as a ‘search’ in a multidimensional parameter (weight) space for a solution, which 

gradually optimizes a specified objective function or criterion. Learning can be 

supervised, in which the weights are gradually synthesized and updated until each input 

pattern or signal approaches its associated desired target pattern, or unsupervised, in 
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which some criterion or performance function is optimized until the weights and outputs 

of the network converge to representations that capture the statistical regularities of the 

input data. It is this adaptive or learning characteristic that makes these neural networks 

appealing in application domains where one has little or incomplete understanding of the 

problem to be solved but where training data is readily available. Neural networks have 

been applied to a wide array of problems including pattern classification, clustering 

[105], drug discovery [108], protein structure prediction [109] and protein function 

prediction [110]. 

 

 Another key advantage of neural networks lies in their intrinsic parallelism, which 

allows for fast computation when these networks are implemented on parallel 

architectures [105]. Neural nets can also be extremely robust, if optimized well. They 

perform well on multivariate, non-linear domains, where other methods such as decision 

trees or rule induction system tend to falter [111].  

 

 There are significant disadvantages to using neural networks. Most neural net 

learning algorithms require significantly more time for training than other machine 

learning methods. Training is normally performed by repeatedly presenting the network 

with instances from a training set, and allowing it gradually to converge on the best set of 

weights for the task. For example, the training time for back-propagation, the most 

widely used neural net algorithm, is many orders of magnitude (102–104) greater than the 

training time for simpler algorithms such as ID3 [112–114]. Another important drawback 

of neural networks is that the model is implicit, hidden in the network structure and 
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optimized weights between the nodes. The individual relations between the input and 

output variables are not developed using an analytical basis so the model tends to be a 

black box [115, 116]. 

 

 

Figure 3: Example of a simple neural network. 

 

Support vector machines 

Support vector machines (SVM), which first proposed in the 1990s [117], fall under the 

umbrella of supervised machine learning methods of linear classifiers, which are used for 

binary classification (pattern recognition) and regression (real valued function 

approximation). SVM are called discriminatory approaches because they learn from the 

discrimination boundary; this is in contrast to learning a model for each class, for 

example, Bayesian classification, which is known as a generative approach. They have 

proven to be effective in diverse tasks from text categorization [118] and natural language 

processing [119] to bioinformatics, including cancer diagnosis [120], microarray gene 

Input layer 

Hidden layer 

Output layer 
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expression analysis [121], protein secondary structure prediction [122], protein-protein 

interaction prediction [123] and protein functional class prediction [7–9]. These studies 

have demonstrated that SVM is consistently superior to other supervised learning 

methods [7, 121, 124, 125]. 

 

 Based on the structural risk minimization (SRM) principle from statistical 

The primary advantage of SVM is that of good generalization; a theorem from 

learning theory (SLT) [126], SVM is a supervised learning classifier that maps data from 

feature vector space (input) to a higher dimensional class label space (output). Where 

classical statistics deal with large sample size problems, statistical learning theory is the 

first theory that is able to address also small sample learning problems. In this higher 

dimensional space, mathematical functions called kernel functions can be used to 

separate the two sample classes, and the goal of SVM is to select the optimal separating 

hyperplane. Details of SVM theory and mathematics can be found in Sec 2.1.  

 

 

SLT states that the choice of the maximum margin hyperplane (maximizing the margin of 

the training set) will minimize the generalization error, provided that the data is well-

behaved [127]. Thus, SVM avoids the problem of overfitting in high dimensional space. 

They are also able to deal with data of very high dimensionality and are able to ignore 

irrelevant dimensions. Unlike DTs, SVM is able to rank properties. This ability to rank, 

as compared to classification alone, allows the generation of smaller output sets with 

higher relevance [93]. Another important advantageous property of the SVM algorithm is 

that it will definitely converge on a global solution because training an SVM amounts to 
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solving a convex quadratic programming problem, which also means that even if the 

solution is not unique, the set of global solutions is convex, and if the objective function 

is strictly convex, the solution is guaranteed to be unique [128, 129].  This means that 

SVM training will always find a global solution, as compared to neural networks, where 

many local minima usually exist. The SVM algorithm can also be extended to cope with 

noise in the training set and with multiple classes [130]. Linear classifiers are generally 

more robust, and a kernel-based method such as SVM means all of the advantages of 

linear classification (such as optimality) are maintained but the overall classification is 

non-linear in input space, since the feature and input space are non-linearly related, 

allowing classification to be performed on non-linear datasets [126].  

  

 The biggest limitation of the support vector approach lies in choice of the kernel. 

Once the kernel is decided, SVM classifiers have only one user-chosen parameter (the 

error penalty), but the kernel is a very big rug under which to sweep parameters. Work 

has been done on limiting kernels using prior knowledge [124, 131], but the best choice 

of kernel for a given problem is still a research issue. A second limitation is the (slow) 

speed and (huge) size of the SVM classifier, both in training and testing. While the speed 

problem in test phase is largely solved by Burges [124, 132], this still requires two 

training passes. Training for very large datasets (millions of support vectors) is an 

unsolved problem. Discrete data presents another problem, although excellent results 

have nevertheless been obtained with suitable rescaling [133]. Finally, SVM classifiers 

are intrinsically binary. They can be easily combined to handle a multiclass case, for 
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example, by training N one-versus-rest classifiers [134], however, an optimal design for 

multiclass SVM classifiers is still an open question [124].  
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1.3 Thesis Focus: Efficacy of Descriptors in Protein Functional Family 

Prediction 

 

1.3.1 Role of descriptors 

One of the most important components of machine learning algorithms is the descriptor, 

or feature. (The two terms are sometimes used interchangeably in the literature parlance.) 

These descriptors serve to represent and distinguish proteins or peptides of different 

structural, functional and interaction profiles by exploring their distinguished features in 

compositions, correlations, and distributions of the constituent amino acids and their 

structural and physicochemical properties [7, 135–137]. Sequence-derived structural and 

physicochemical descriptors have frequently been used in the machine learning 

prediction of protein structural and functional classes [7–9, 135, 138–140], protein-

protein interactions [123, 137, 141], subcellular locations [142, 143] and peptide 

containing specific properties [138, 144].  

 

 In statistical pattern recognition, or classification, a pattern is represented by a set 

of d descriptors, giving a d-dimensional feature vector. Using statistical decision theory, 

decision boundaries between pattern classes are then established. As mentioned earlier, 

there are two parts to building a recognition model: training (learning) and testing 

(classification). In the training mode, feature extraction/selection is used to find the 

appropriate descriptors for representing the input patterns, and the classifier is trained to 

partition this feature space. In the testing mode, the trained classifier assigns the input 
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pattern to one of the pattern classes under consideration based on the measured features 

[83]. 

1.3.2 Types of descriptors 

There are many ways to classify descriptors. Commonly, they may be classified by their 

dimensionality, such as 1-, 2- and 3D descriptors that encode information on chemical 

composition (1D), topology (2D), and shape and functionality (3D), respectively [145, 

146]. Descriptors can also be classified as global, non-local and local, depending on the 

type of information they capture [147]; this is particularly useful when studying protein 

folding. They can also be classified by the type of information they encode, such as steric 

(molar refractivity), geometric (molecular surface area), electrostatic (charged polar 

surface area), and so on.  

 

 This study focuses on common individual and combinations of protein structural 

and physiochemical descriptors that can be derived from amino acid sequence: (i) 

composition descriptors; (ii) physicochemical and structural descriptors; (iii) 

autocorrelation descriptors, which describe the level of correlation between two objects 

(protein or peptide sequences) in terms of their specific structural or physicochemical 

property; and (iv) sequence order descriptors, which encode information about the amino 

acid distribution patterns of a specific physicochemical property along a protein or 

peptide sequence. Further details about each class of descriptors are given in Sec. 2.2. 
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1.3.3 Thesis motivation 

As protein functional prediction in supervised learning methods hinges upon the 

discriminative features that map a protein’s characteristics to structure or biological 

function, both the calculation and choice of descriptors are of fundamental importance. 

Many types of information may be extracted from sequence information; however, their 

relevance to the problem at hand is another matter. Inaccurate descriptors lower the 

prediction performance of the machine learning algorithm and non-informative features 

— even if they are accurate — add noise to the classification procedure, masking the 

information contained in the discriminating features [148]. There is thus a need to select 

descriptors. 

 

 There are also other reasons for the need to reduce the number of descriptors used. 

The choice of a classification algorithm depends on various factors, for example the 

amount of information available, however, no matter which classification algorithm is 

used, it must be trained using the available training samples. Thus, the performance of a 

classifier depends on both the number of training samples as well as the descriptors used 

to describe the samples. At the same time, the goal of building such a classification model 

is to recognize future test samples, which are likely to be different from the training 

samples; thus, optimizing a classifier to maximize its performance on the training set may 

not always result in a favorable prediction performance on a test set, a problem that is 

known as overtraining [127, 149]. Poor performance of a classification model in 

predicting test samples may be due to any of the following factors: (i) insufficient 

training samples; (ii) the number of descriptors is too large relative to the number of 
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training samples (curse of dimensionality) [150]; (iii) the number of unknown parameters 

associated with the classifier is too large; or (iv) overtraining [83].  

 

 Hence, the two main reasons for reducing the dimensionality of the input vector 

are computational cost and classification accuracy. The rationale for the former is 

evident; as for the latter, a smaller number of descriptors can alleviate the curse of 

dimensionality, particularly when the number of training samples is limited. However, a 

reduction in the number of descriptors may lead to a loss in discriminating ability and 

hence accuracy of the prediction model — the choice of descriptors is thus an important 

decision. Moreover, Watanabe has shown that it is possible to make two arbitrary patterns 

similar by encoding them with a sufficiently large number of redundant descriptors [151]. 

Therefore, the problem now lies in the selection of descriptors. 

 

 Descriptor selection or, as it is more commonly known, feature selection is a 

process commonly used in machine learning, whereby a subset that leads to the smallest 

classification error is chosen from a set of features or descriptors. Feature selection is 

sometimes necessary either because it is computationally infeasible to use all available 

features, or because of estimation problems that result when data samples are limited and 

yet the number of features is large (the so-called curse of dimensionality). With proteins, 

an additional complication may arise because of uncertainties in structural information. 

The objective of feature selection is three-fold: (i) improving the prediction performance 

of the predictors; (ii) providing faster and more cost-effective predictors; and (iii) 

providing a better understanding of the underlying process that generated the data. 
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 As of 1997, most problems under study often did not use more than 40 features. 

Since then, however, domains involving hundreds to tens of thousands of features are 

now common. For example, in gene selection from microarray data, in which the usual 

classification task is to separate healthy patients from the sick; while the number of 

patients (examples) usually number fewer than 100, the number of variables in the raw 

data ranges from 6000 to 60,000 [152]. 

 

 Note that there is a subtle difference between the terms feature extraction and 

feature selection, which are sometimes used interchangeably in the literature. Feature 

extraction algorithms create new features based on transformations or combinations of 

the original feature set, while feature selection algorithms aim to select the best subset of 

the input feature set, where the selected features retain their original physical 

interpretation. Feature extraction often precedes feature selection. Feature selection has 

two advantages over feature extraction: (i) it results in savings in computational cost 

since unnecessary features are discarded; and (ii) the selected features retain their original 

physical interpretation, which may be important for understanding the physical process 

that generates the discriminative patterns. On the other hand, even if the transformed 

features generated by feature extraction may not have a clear physical meaning, these 

transformed features may provide a better discriminative feature ability than the best set 

of selected features [83]. Though the focus of this work will lean more towards feature 

selection than extraction as the aim is to find descriptors that return the best performance, 

results from this study might be useful for future work on feature extraction as well.  
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 Descriptors are usually chosen based on intuition and/or chemical knowledge; 

however, the large variety of descriptors available makes the task of descriptors selection 

a complex issue. Important questions to consider include: How should descriptors be 

selected for different applications such as machine learning methods, docking or 

similarity searching? Which types of descriptors perform ‘best’; are there general 

preferences? Is there a universally preferred set of descriptors? Do complex descriptors 

perform better than simpler ones? What about combinations of descriptors? Selection of 

descriptors is often thus an arbitrary decision, for example based on favourable results 

reported by other researchers in the literature, or via a brute force method. However, the 

former may not be a reliable method as problem domains or classifiers may differ, and 

hence may not be directly applicable. Regarding the latter, feature selection methods can 

be extremely time-consuming, particularly for large datasets. For example, sequential 

backward selection (SBS), a common approach that removes one feature at a time until 

no improvement in the criterion function is obtained, scales on the order N2 [153]. 

Moreover, there is little transparency in feature selection methods, which work like a 

‘black box’; descriptors are not selected on an analytical basis but on how well they score 

on a cost function.  

 

 There has been a lot of work has been done on the performance of chemical 

descriptors [154–162]. Generally, researchers have found that there is no preferred set of 

chemical descriptors; instead, performance is highly dependent on application and 

dataset. In many cases, 2D descriptors, and in particular structural keys, are sufficient in 
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capturing differences between compounds. Moreover, combinations of a few selected 

descriptors perform better than all descriptors together, and combinations of a limited 

number of structural keys and 2D descriptors perform better than any combination of 

descriptors and the entire set of keys. In contrast, research on protein descriptors is more 

fledging and these works tend to focus on optimizing combinations of descriptor sets and 

predictive methods, or on the selection of best descriptors for a specific dataset [163–

165]. In summary, the importance of the role of descriptors in machine learning 

algorithms, the need to improve upon the selection of currently available descriptors and 

the lack of research especially pertaining to protein descriptors, all led to the motivation 

for this thesis. 

 

1.3.4 Research objective and scope  

As surmised from the preceding sections, there has been an increasing focus on the 

prediction of protein functional families, and particularly on using machine learning 

methods [20].  A review of the current literature showed that there have been no studies 

emphasizing a closer examination of various protein descriptor types in a manner 

independent of the problem domain, or one that objectively benchmarks various types of 

protein descriptors. Thus, there is a need to comparatively evaluate on a more 

fundamental level the effectiveness of commonly used descriptor sets for predicting 

different functional problems by using the same machine learning method and parameter 

optimization algorithm.   
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 SVM was chosen as the machine learning method for protein function family 

prediction because it is a popular method that has consistently been shown better 

performances than other machine learning methods [121, 166]. As this work is intended 

as a benchmarking study of the performance of various sets of descriptors, other than 

automatic optimization of results that is an integral part of the SVM programs, such as 

sigma value scanning, no further attempt was made to optimize the prediction 

performance of any descriptor class or of any dataset by manually tuning the parameters. 

Hence, prediction results reported in this work might differ from those in reported 

studies. As it would be impossible to study an exhaustive array of protein functional 

families, six diverse families were chosen instead to form the problem domains for this 

work. It should be emphasized that the performance evaluation for the studied descriptor 

sets are based only on these six datasets and the conclusions from this study might not be 

readily extended to other datasets. 

 

 In Sec. 2, methods used in this work will be introduced. The descriptor sets 

performance are presented and discussed in Sec. 3, and concluding comments as well as 

suggestions for future work are given in Sec. 4. 
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2  METHODOLOGY   

 

 In this section, the theory underlying support vector machine, the mathematical 

calculations behind the descriptors-sets and the computational method in which the 

datasets are generated, are explained. The descriptors can be computed online at the 

PROFEAT website (http://jing.cz3.nus.edu.sg/cgi-bin/prof/prof.cgi), which is available 

freely for non-commercial use.  

  

2.1 Support Vector Machines (SVM) 

 

2.1.1  Linear case 

In the simplest example, a two-dimensional grid of two types of data points that are 

separable linearly, SVM aims to draw a straight line so as to separate the two data classes 

(see Fig. 4). The training set is composed of n examples, represented as χ = {(x1, y1),…, 

(xn, yn)}, where the input xi ∈  RN is a vector in feature space and the output yi ∈  {−1, 1} 

denotes its class label. Suppose there exists a hyperplane that separates the positive from 

the negative samples (a ‘separating hyperplane’). The points xi that lie on the hyperplane 

satisfy wT · xi + b = 0, where w is a unit vector normal to the hyperplane and b is a 

parameter that minimizes the Euclidean norm ||w||2. 
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 The outputs yi is connected the inputs xi by the functional dependence, or the 

decision function, 

  

 ),()( bxwsignxf +><= , (1) 

 

where sign(u) = 1 if u > 0 and sign (u) = −1 if u ≤ 0. 

 

 Geometrically, the data points are divided into two regions in the output space: a 

region where the output yi takes the value 1 and a region where yi takes the value −1; and 

these two regions are separated by the hyperplane H. As shown in Fig. 5, there are a 

number of possibilities in which a hyperplane can separate the two classes, thus the 

objective of SVM is to choose the optimal plane. Assuming that all new data points lie 

somewhere near the training data, the hyperplane should be chosen such that small shifts 

in data do not produce fluctuations in prediction results; therefore, the hyperplane that 

separates the two classes with the largest margin is expected to produce the best 

generalization performance. This hyperplane is known as the Optimal Separating 

Hyperplane (OSH) [126, 130].  
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Figure 4: Finding a hyperplane to separate the positive and negative examples. 
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Figure 5: Optimal Separating Hyperplane (OSH). 
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 Now, the margin γi (w, b) of a training point xi is defined as the distance between 

H and xi

 )(),( bxwybw ii +⋅=γ , (2) 

and the margin of a set of vectors S = {x1, …, xn} is defined as the minimum distance 

from H to the vectors in S 
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The OSH can be formulated as follows: suppose that all the training data satis  

 for 

γ

fy the

following constraints: 

 1≥+⋅ bxw i 1=iy  (positive class), 

1−≤+⋅ bxw i  for 1−=iy  (negative class), 

(4) 

(5) 

which can be combined into one set of inequalities 

 

 1)( ≥+⋅ bxwy ii  for i = 1, 2, …, n. (6) 

 

onsider the points for which the equality (4) holds; these points lie on the hyperplane C

H1: xi·w + b = 1, with normal w and perpendicular distance from the origin |1− b | || w ||. 

Similarly, the points for which Eq. (5) holds lie on the hyperplane H2: xi·w + t 

d

b = −1. Le

+ (d−) be the shortest distances from the separating hyperplane to the closest positive 

(negative) sample; d+ = d− = 1/||w||, and the margin is simply 2/||w||. Note that H1 and H2 

are parallel and that no training points fall between them. Thus, we can find the pair of 

hyperplanes that give the maximal margin (OSH) by minimizing ||w||2, subject the 

constraints (6). The training points that define these hyperplanes are known as support 
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vectors, as the removal of these points would change the solution. The OSH is, in fact, a 

linear combination of support vectors.  

 

 This optimization problem could be more efficiently solved by the Lagrange 

ethodm . With the introduction of Lagrangian multipliers αi (i = 1, … n), one for each of 

the inequality constraints, we obtain the Lagrangian  

 
∑∑
==

++⋅−=
l

wxywL 2 (||||1 α
l

i
i

i
iiiP b

11
)

2
α . (7) 

 

o solve the above, we would have to minimize LP with respect to w and b, and T

simultaneously require that the derivatives of LP with respect to the multipliers αi vanish, 

subject to the constraints  αi ≥ 0. Requiring that the gradient of LP with respect to w and b 

vanish leads to  

 ∑=
i

iii xyw α , (8) 

and 

 0=∑
i

yi yα . (9) 

Substituting the above into Eq. (7), we get  

 ∑∑ −=L 1α ⋅
ji

jijiji
i

iD xxyy
,2

αα . (10) 

This particular dual formulation of the problem is called the Wolfe dual [129].  

that the Lagrangians are given different labels: P for primal, D for dual. The solution can 

                                                

2 (Note

 
2 This is a convex (QP) problem, since the objective function is itself convex, and the points that satisfy the 
constraints C1 also form a convex set (any linear constraint defines a convex set, and a set of N 
simultaneous linear constraints defines the intersection of N convex sets, which is also a convex set). This 
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be found by minimizing LP or by maximizing LD.) The corresponding bias b0 can be 

calculated as 

 { })(max)(min1 xwxwb ⋅−⋅−=  . (11) 
2 0}1|{0}1|{0 yxyx −==

 

This quadratic programming (QP) problem can be solved efficiently through standard 

lgorithms such as sequential minimization optimization (SMO) [167] or decomposition 

th respect to αi, subject to constraints (9) and positivity of αi, and the 

a

algorithms [168]. 

 To sum, support vector training (for the linear separable case) amounts to 

maximizing LD wi

solution is given by (8). In the solution, the points for which αi > 0 are called the support 

vectors, and lie on one of the hyperplanes H1, H2. The support vectors are the most 

important elements in the training set; they lie closest to the decision boundary, and if all 

of the other training samples were removed, or moved around but not crossing H1 or H2, 

and the training was repeated, the same separating hyperplane would be found [124]. 

 

                                                                                                                                                 
means that the solution can be obtained by equivalently solving the following ‘dual’ problem: maximize LP, 
subject to the constraints that the gradients of LP with respect to w and b vanish, and subject also to the 
constraints αi ≥ 0.] 
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2.1.2 Non-linear case 

In reality, however, most problems are non-linear. By introducing a kernel technique, 

which maps the input data to a higher dimensional feature space (see Fig. 6), yielding a 

non-linear decision boundary in input space, a linear classifier can be applied. A vector in 

n dimensions can be plotted and classified by a hyperplane of n–1 dimensions. The kernel 

trick is a method to convert a linear classifier algorithm into a non-linear algorithm by 

using a non-linear function known as a kernel to map the input vectors into a higher 

dimensional space. This makes a linear classification in the new feature space equivalent 

to the non-linear classification in the original input space.  

Input space Feature space 

Kernel function 

  

Figure 6: A kernel trick.  

 Let Φ denote an implicit mapping function from the input space to the feature 

space F. The, all of the above equations are transformed when we substitute xi and the 

inner product in input space (xi, x) by Φ(xi) and the inner product kernel K(xi, x) 

respectively.  

The kernel function is written as 
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and the Lagrangian (10) is now written as 
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subject to the constraints  and α0=∑
i

yi yα i ≥ 0 (I = 1, 2, …, n). The bias b0 is now 
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and the decision function  

 
⎥
⎦

⎤
⎢
⎣

⎡
+=⎥

⎦

⎤
⎢
⎣

⎡
+= ∑∑

=
00

1

),(),()( bxxKysignbxxKysignxf
n

SV
iii

n

i
iii αα . (15) 

 

 In other words, the kernel technique transforms any algorithm that depends solely 

on the dot product between two vectors, replacing any dot product used with the kernel 

function. In this manner, a linear algorithm can be transformed into a non-linear 

algorithm. Note that the Φ function is never explicitly computed; this is important 

because it reduces the computational load and because the feature space may be infinitely 

dimensional, as is the case when the kernel is a Gaussian [169]. A function can be used as 
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a kernel function if and only if it satisfies Mercer’s condition [170].3 Well-known kernel 

functions include 

 Polynomial:  pzxzxk )1.,(),( +<=

 Sigmoid: ),tanh(),( δκ −><= zxzxk  

 Radial basis function (RBF): ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
= 2

2

2
||||exp),(

σ
zxzxk  

In this work, the RBF kernel is used as it is the most popular kernel [171].  

 

 

                                                 
3 Mercer’s condition states that there exists a mapping Φ and an expansion 

 if and only if, for any g(x) such that ∑ Φ⋅Φ=
i

iii yxxxK )()(),( ∫ dxxg 2)(  is finite, then 

. ∫ ≥ 0)()(),( dxdyygxgyxK
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2.2 Calculation of Descriptor-sets  

 

A total of ten descriptor-sets are examined in this work. The descriptors chosen as some 

commonly found in the literature, and can be computed from the PROFEAT server [136]  

 

 Six sets of individual descriptors and three combination-sets have been separately 

utilized in machine learning prediction of different protein functional and structural 

properties, all of which have shown impressive predictive performances [136, 172, 173]. 

The six individual sets are amino acid composition (Set D1) , dipeptide composition (Set 

D2) [27], Moreau–Broto autocorrelation (Set D3) [174, 175], Moran autocorrelation (Set 

D4) [176], Geary autocorrelation (Set D5) [177], and the composition, transition and 

distribution of structural physicochemical properties (Set D6) [139, 178]. The three 

combination-sets are quasi sequence order formed by weighted sums of amino acid 

compositions and physicochemical coupling correlations (Set D7) [142-144, 179], pseudo 

amino acid composition (PseAA) formed by weighted sums of amino acid compositions 

and physicochemical square correlations (Set D8) [172, 180], and the combination of 

amino acid and dipeptide compositions (Set D9) [27, 173]. Finally, we also consider a 

fourth combination-set that collects descriptor-sets D1 through D8 (Set D10). Details of 

the descriptor-sets are described below and summarized in Table 1.  

 

 



[27] 

[27] 

[27] 
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Table 1: Protein descriptors commonly used for predicting protein functional families. 

Sets Descriptor-sets 
No. of 

descriptors 
(properties) 

No. of 
components Type Physicochemical properties Refs 

D1 Amino acid 
composition 1 20 Sequence 

composition  

D2 Dipeptide composition 1 400 Sequence 
composition  

D3 Normalized Moreau–
Broto autocorrelation 8 240 

Correlation of 
physicochemical 
properties 

Hydrophobicity scale, average flexibility index, polarizability 
parameter, free energy of amino acid solution in water, residue 
accessible surface area, amino acid residue volume, steric parameters, 
relative mutability 

[174, 175] 

D4 Moran autocorrelation 8 240 
Correlation of 
physicochemical 
properties 

Hydrophobicity scale, average flexibility index, polarizability 
parameter, free energy of amino acid solution in water, residue 
accessible surface area, amino acid residue volume, steric parameters, 
relative mutability 

[176] 

D5 Geary autocorrelation 8 240 

Square correlation 
of 
physicochemical 
properties 

Hydrophobicity scale, average flexibility index, polarizability 
parameter, free energy of amino acid solution in water, residue 
accessible surface area, amino acid residue volume, steric parameters, 
relative mutability 

[177] 

D6 
Descriptors of 
composition, transition 
and distribution 

21 147 

Distribution and 
variation of 
physicochemical 
properties 

Hydrophobicity, Van der Waals volume, polarity, polarizability, 
charge, secondary structures, solvent accessibility 

[7, 8, 123, 137{Cui, 
2006 #64, 139, 140, 178, 
181]} 

D7 Quasi sequence order 4 160 

Combination of 
sequence 
composition and 
correlation of 
physicochemical 

Hydrophobicity, hydrophilicity, polarity, side-chain volume [142, 143] 

D8 Pseudo amino acid 
composition 3 298 

Combination of 
sequence 
composition and 
square correlation 
of 
physicochemical 

Hydrophobicity, hydrophilicity, side chain mass [172, 180] 

D9 
Combination of amino 
acid and dipeptide 
composition 

2 420 
Combination of 
sequence 
compositions 

 

D10 
Combination of all 
eight sets of 
descriptors 

54 1745 Combination of all 
sets   

2 
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2.2.1 Composition descriptors  

Both amino acid (Set D1) and dipeptide composition (Set D2) are relatively simplistic 

protein sequence descriptors [182]. Amino acid composition has been used to predict 

secondary structural content [183]. They are also frequently used in combination for 

predicting protein fold and structural classes (accuracy 72–95%) [184, 185], functional 

classes (accuracy 83–97%) [27], and subcellular locations (accuracy 79–91%) [186, 187].  

 

Set D1  Amino acid composition is defined as the fraction of each amino acid type 

in a sequence [27, 186]  

 

N
N rrf =)( , (16) 

where r = 1, 2, …, 20, Nr is the number of amino acid of type r, and N is the length of the 

sequence.  

 

Set D2  Dipeptide composition is defined as  

 

1
),(

−
=

N
N rssrfr , (17) 

where r, s = 1, 2, …, 20, and Nij is the number of dipeptides composed of amino acid 

types r and s. For 20×20 amino acid combinations, we obtain a vector containing 400 

descriptor values.  
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2.2.2 Autocorrelation descriptors  

Autocorrelation descriptors are a class of topological descriptors, also known as 

molecular connectivity indices, that describe the level of correlation between two objects 

(protein or peptide sequences) in terms of their specific structural or physicochemical 

property [174], which are defined based on the distribution of amino acid properties 

along the sequence [188]. Eight amino acid properties are used to derive the 

autocorrelation descriptors used in this work: (i) hydrophobicity scale, derived from the 

bulk hydrophobic character for the 20 types of amino acids in 60 protein structures [189]; 

(ii) average flexibility index derived from the statistical average of the B-factors of each 

type of amino acids in the available protein x-ray crystallographic structures [190]; (iii) 

polarizability parameter computed from the group molar refractivity values [191]; (iv) 

free energy of amino acid solution in water [191]; (v) residue accessible surface areas 

taken from average values of folded proteins [192]; (vi) amino acid residue volumes 

[193]; (vii) steric parameters derived form the van der Walls radii of amino acid side-

chain atoms [194]; and (viii) relative mutability obtained by multiplying the number of 

observed mutations by the frequency of occurrence of the individual amino acids [195]. 

The amino acid indices were obtained from the Amino Acid index database (AAindex) 

[196]. Thus, each autocorrelation descriptor-set has 8 descriptors and 240 descriptor 

values, based on the parameter d set in the generation program.  

 

 In the literature, these descriptors have been used with good results. The Moreau–

Broto autocorrelation descriptor [174, 175] (Set D3) has been applied in predicting 

transmembrane protein types (accuracy 82–94%) [197] and protein secondary structural 
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contents (accuracy 91–94%) [197]. The Moran autocorrelation descriptor [176] (Set D4) 

has been used in the prediction of protein helix contents (accuracy 85%) [198], and the 

Geary autocorrelation descriptor [177] (Set D5) has been utilized in analyzing allele 

frequencies and population structures [199].  

 

Each of the properties is centralized and standardized such that  

 ' ( ) /r rP P P σ= − , (18) 

where P  is the average of the property of the 20 amino acids. P  and σ are given by 
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Set D3  Moreau–Broto autocorrelation descriptors are defined as [174, 175] 
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where d = 1, 2, … , 30 is the lag of the autocorrelation, and Pi and Pi+d are the properties 

of the amino acid at positions i and i+d respectively. After applying normalization, we 

get 
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Set D4  Moran autocorrelation descriptors are calculated as [176] 
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where d, Pi and Pi+d are defined in the same way as that for Moreau–Broto 

autocorrelation and P  is the average of the considered property P along the sequence: 
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The Moran descriptor differs from that of the Moreau–Broto descriptor in that, instead of 

using property values, property deviations from the average values are utilized instead as 

the basis for measuring correlations.  

 

Set D5  Geary autocorrelation descriptors are written as [177] 
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where d, P , Pi and Pi+d are defined as above. This algorithm differs from the other two 

algorithms in its use of square-difference of property values instead of vector-product of 

property values or deviations as the basis for measuring correlations. 
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2.2.3 Composition, transition and distribution descriptors  

In the Set D6, composition, transition and distribution descriptors represent the amino 

acid distribution patterns of a specific structural or physicochemical property along a 

protein or peptide sequence [139, 178], which have been used for the recognition of 

protein folds (accuracy 74–100%) [139] and the prediction of protein-protein interactions 

(accuracy 77–81%) [123, 137], protein functional families (accuracy 67–99%) [7, 8, 140, 

181] and MHC-binding peptides (accuracy 97–99%) [138]. Seven types of 

physicochemical properties are considered in computing these features: (i) 

hydrophobicity; (ii) normalized van der Waals volume; (iii) polarity; (iv) polarizability; 

(v) charge; (vi) secondary structures; and (vii) solvent accessibility [7, 139, 178].  

 

 For each of these seven properties, the amino acids are divided into three groups 

based on the main amino acid indices clusters taken from Tomii and Kanehisa [139, 200] 

such that those in a particular group are regarded to have approximately the same 

property. The reason for dividing amino acids into three groups is that while amino acids 

can be divided into a minimum of both two and three groups for most attributes, they can 

only be divided into a minimum of three groups for attributes such as charge (positive, 

negative and neutral) and secondary structure (helix, strand and coil); therefore, the 

choice of three groups appears to be a more rational choice [7, 8, 123, 137, 139, 140]. 

The ranges of these numerical values and the division of the amino acids are shown in 

Table 2. The three descriptors: composition (C), transition (T) and distribution (D), are 

then computed for each attribute. The composition descriptor C is defined as the number 

of residues with that particular property divided by the total number of residues in a 
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protein sequence; it describes the global percent composition of each group of amino 

acids in a protein. T characterizes the percent frequency with which residues with a 

particular property is followed by residues of a different property, i.e. the percent 

frequencies with which the attribute changes its index along the entire length of the 

protein. D describes the distribution pattern of the attribute along the sequence by 

measuring the chain length within which the first, 25%, 50%, 75% and 100% of the 

amino acids with a particular property are located respectively. 

 

 For instance, consider the hydrophobicity attribute. Residues can be divided into 

hydrophobic (CVLIMFW), neutral (GASTPHY), and polar (RKEDQN) groups. The 

composition descriptor C consists of three values: the global percent compositions of (i) 

polar, (ii) neutral, and (iii) hydrophobic residues, in the protein. The transition descriptor 

T also consists of 3 values: the percent frequency with which (i) a polar residue is 

followed by a neutral residue or a neutral residue by a polar residue, (ii) a polar residue is 

followed by a hydrophobic residue or a hydrophobic residue by a polar residue, and (iii) a 

neutral residue is followed by a hydrophobic residue or a hydrophobic residue by a 

neutral residue. The distribution descriptor D consists of 5 values for each of the three 

groups: (i) the fractions of the entire sequence, (ii) the location of the first residue of a 

given group, and (iii) where 25%, 50%, 75%, and 100% of those are contained. Thus, 

there are 21 elements representing these three descriptors: 3 for C, 3 for T and 15 for D, 

and the protein feature vector is constructed by sequentially combining the 21 elements 

for all of these properties, resulting in a total of 7×21=147 dimensions. As an example, 
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consider a sequence MTEITAAMVKELRESTGAGA. According to the hydrophobicity 

division in Table 2, its hydrophobicity descriptor is encoded as 32132223311311222222. 

 

Table 2: The division of amino acids into three groups for each attribute based on amino 
acid indices clusters. 

 
Attribute Divisions 

Hydrophobicity Polar 
R,K,E,D,Q,N 

Neutral 
G, A, S,T,P,H,Y 

Hydrophobicity  
C,L,V,I,M,F,W 

Normalized van der 
Waals volume 

Range 0–2.78 
G,A,S,T,P,D 

Range 2.95–4.0 
N,V,E,Q,I,L 

Range 4.03–8.08 
M,H,K,F,R,Y,W 

Polarity Values 4.9–6.2 
L,I,F,W,C,M,V,Y 

Values 8.0–9.2 
P,A,T,G,S 

Values 10.4–13.0 
H,Q,R,K,N,E,D 

Polarizability Values 0–1.08 
G,A,S,D,T 

Values 0.128–0.186 
C,P,N,V,E,Q,I,L 

Values 0.219–0.409 
K,M,H,F,R,Y,W 

Charge Positive 
KR 

Neutral 
ANCQGHILMFPSTWYV

Negative 
DE 

Secondary structure Helix 
EALMQKRH 

Strand 
VIYCWFT 

Coil 
GNPSD 

Solvent accessibility Buried 
ALFCGIVW 

Exposed 
PKQEND 

Intermediate 
MPSTHY 

 

 

Composition descriptors Composition refers to the global percent for each encoded 

class in each sequence, and can be calculated as 

 

N
nr

rC =  , (26) 

where r = 1, 2, 3, nr is the number of r in the encoded sequence and N is the length of the 

sequence. In the same hydrophobicity division example (32132223311311222222), the 

number for encoded classes ‘1’, ‘2’ and ‘3’ are 5, 10 and 5, and the compositions are 

%25
20
5
= , %50

20
10

=  and %25
20
5
= , respectively. 
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Transition descriptors A transition from the index 1 to 2 is the percent frequency 

with which 1 is followed by 2 or 2 is followed by 1 in the encoded sequence, and is 

defined as 

 
1−

+
=

N
nnT srrs

rs  , (27) 

 

where rs = ‘12’, ‘13’ and ‘23’, nrs and nsr are the numbers of dipeptide encoded as ‘rs’ 

and ‘sr’ respectively in the sequence, and N is the length of the sequence.  

 

Distribution descriptors This refers to the distribution of each attribute in the 

sequence. There are five distribution descriptors for each attribute and they are the 

position percents in the whole sequence for the first residue, 25% residues, 50% residues, 

75% residues and 100% residues, respectively, for a specified encoded class. Consider 

the same hydrophobicity division example as above (32132223311311222222). There are 

10 residues encoded as ‘2’: the 2nd residue, 5th, and so on, and the distribution descriptors 

for ‘2’ are 10.0 for the 2nd residue ⎟
⎠
⎞

⎜
⎝
⎛ ×100

20
2 , 25.0 for the 5th ⎟

⎠
⎞

⎜
⎝
⎛ ×100

20
5 , and so on.  

 

2.2.4 Combination sets of amino acid composition and sequence order  

Set D7  The quasi sequence order descriptors, proposed by Chou [142], are 

derived from both the Schineider–Wrede physicochemical distance matrix [143, 144, 

186] and the Grantham chemical distance matrix [179] between each pair of the 20 amino 

acids. Four physicochemical properties are computed: (i) hydrophobicity, (ii) 

hydrophilicity, (iii) polarity, and (iv) side-chain volume. Similar to the descriptors in Set 
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D6, sequence order descriptors can also be used for representing amino acid distribution 

patterns of a specific physicochemical property along a protein or peptide sequence [144, 

179]. For a protein chain of N amino acid residues R1R2…RN, the sequence order effect 

can be approximately reflected through a set of sequence order coupling numbers  

 
∑
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where τd is the dth rank sequence order coupling number (d = 1, 2,…, 30) that reflects the 

coupling mode between all of the most contiguous residues along a protein sequence, and 

di,i+d is the distance between the two amino acids at position i and i+d. For each amino 

acid type, the first part of the quasi sequence order descriptor is defined as 
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where r = 1, 2, …, 20, fr is the normalized occurrence of amino acid type i and w is a 

weighting factor (w = 0.1). The latter part of the quasi sequence order descriptor is 

defined as 
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where d = 21, 22, …, 50. The combination of these two equations gives us a vector that 

describes a protein: the first 20 components reflect the effect of the amino acid 

composition, while the components from 21 to 50 reflect the effect of sequence order.    

 

Set D8  The pseudo amino acid composition descriptor is actually an improvement 

upon the quasi sequence order descriptor [180]. Similar to the quasi-sequence order 
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descriptor, the pseudo amino acid descriptor (Set D8) is made up of a 50-dimensional 

vector in which the first 20 components reflect the effect of the amino acid composition 

and the remaining 30 components reflect the effect of sequence order, only now, the 

coupling number τd is now replaced by the sequence order correlation factor θλ. The set 

of sequence order correlated factors is defined as follows: 
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where θλ is the first-tier correlation factor that reflects the sequence order correlation 

between all of the λ-most contiguous resides along a protein chain (λ=1,…30) and N is 

the number of amino acid residues. Θ(Ri, Rj) is the correlation factor and is given by 
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where H1(Ri), H2(Ri) and M(Ri) are the hydrophobicity [201], hydrophilicity [202], and 

side-chain mass of amino acid Ri, respectively. Before being substituted in the above 

equation, the various physicochemical properties P(i) are subjected to a standard 

conversion,  
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(33) 

This sequence order correlation definition [Eqs. (31) and (32)] introduces more 

physicochemical effects correlation factors as compared to the coupling number [Eq. 

(28)], and has shown to be an improvement on the way sequence order effect information 
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is represented [180, 203, 204]. Thus, for each amino acid type, the first part of the vector 

is defined as 
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where r = 1, 2, …, 20, fr is the normalized occurrence of amino acid type i and w is a 

weighting factor (w = 0.1), and the second part is defined as  

 Xd =
wθd−20

rf + w ϑλ
d=1

30
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20
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(35) 
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2.3 Protein Functional Families Datasets 

 

The classification of proteins (by family) is widely accepted as an effective tool that can 

provide valuable insights into structure, activity and metabolic roles, and this 

organization of information is particularly important in the understanding of the vast 

amount of data from high-throughput genome projects. As a basic approach to large-scale 

genomic annotation, protein family classification has several advantages: (i) it improves 

the identification of proteins that are difficult to characterize based on pairwise 

alignments; (ii) it assists database maintenance by promoting family-based propagation of 

annotation and making annotation errors apparent; (iii) it provides an effective and 

efficient means to retrieve relevant biological information from vast amounts of data; and 

(iv) it reflects the underlying organization of gene families, the analysis of which is 

essential for comparative genomics and phylogenetics [205].  

 

 A number of different classification systems to organize proteins have been 

developed to address various annotation needs. To name a few of the most popular: (i) by 

protein domains, such as those in Pfam [206] and ProDom [207]; (ii) by hierarchical 

families, such as superfamilies/families [208] in the PIR-PSD, and protein groups in 

ProtoMap [209]; (iii) by sequence motifs or conserved regions, such as in PROSITE 

[210] and PRINTS [211]; (iv) by structural classes such as SCOP [212] and CATH [213]; 

or (v) through the integration of various family classifications such as ProClass/iProClass 

[214, 215] and InterPro [216]. In this work, the Pfam classification is used; i.e. proteins 

are classified by domains.  
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 The protein functional families studied in this work include the enzyme EC 2.4 

[203, 217–219], G-protein coupled receptors (GPCR) [220, 221], transporter TC 8.A 

[222, 223], chlorophyll [224], lipid synthesis proteins involved in lipid synthesis [225], 

and rRNA-binding proteins [140]. The dataset statistics are summarized in Table 3. 

 

 These six protein families were selected for testing the descriptor-sets based on 

their functional diversity, sample size and range of reported family member prediction 

accuracies [7, 135, 140, 181, 225]. Generally, these protein families play important roles 

in many cellular phenomenon vital to the proper functioning and regulation of living 

processes, and prediction of the functional roles are important not only in furthering our 

fundamental understanding of the mechanisms underlying various cellular processes, but 

also in the search for new therapeutic targets [226, 227]. The reported prediction 

accuracies for these families are generally lower than those of other families [8], which 

are ideal for critically evaluating the effectiveness of these descriptor-sets; having a lower 

accuracy should enable a better differentiation of the performance of the various classes. 

It should be noted that as SVM is essentially a statistical method, the datasets cannot be 

too small; yet it would also be convenient for the purposes of this study if they were not 

too large as to be unwieldy computationally.  
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2.3.1 Enzyme EC 2.4  

The Enzyme Commission (EC) number is a numerical classification scheme for enzymes, 

based on the chemical reactions they catalyze. Note that since EC numbers do not specify 

enzymes but enzyme-catalyzed reactions, if different enzymes catalyze the same reaction, 

then they are assigned the same EC number. Each EC number has up to four components. 

For example, the class EC 2 refer to the tranferases, enzymes that facilitate the transfer of 

a functional group from one molecule to another; the sub-class EC 2.4 refer to the 

glycosyltransferases; EC 2.4.1 refer to hexosyltransferases; and EC 2.4.1.1 refers to 

phosphorylase or 1,4-α-D-glucan:phosphate α-D-glucosyltransferase, a specific 

hexosyltransferase. 

 

 The dataset studied in this work is the enzyme sub-class EC 2.4. 

Glycosyltransferases are enzymes that catalyze the synthesis of glycoconjugates through 

the transfer of a glycosyl moiety and are involved in post-translational modification of 

proteins (glycosylation). Metals such as magnesium or manganese are usually found in 

the active site and acts as a Lewis acid by binding to the di(phosphate) leaving group. 

Increased levels of glycosyltransferases have been found in disease states and 

inflammation [228, 229]. 

 

2.3.2 G-protein coupled receptors  

G-protein coupled receptors (GPCR) are a large protein family of transmembrane 

receptors that transduct signals for inducing cellular responses. Ligands that bind and 

activate these receptors comprise a wide range, including light-sensitive compounds, 
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odors, pheromones, hormones and neurotransmitters, and vary in size from small 

molecules to large proteins. Members of GPCR are of great pharmacological importance, 

as 50–60% of approved drugs elicit their therapeutic effect by selectively addressing 

members of the GPCR family [230-233]. GPCR proteins are involved in just about every 

organ system and present a wide range of possible targets for diseases such as cancer, 

cardiac dysfunction, diabetes, central nervous system disorders, obesity, inflammation 

and pain [234].  

 

2.3.3 Transporter TC 8.A 

Transporters perform key roles in the transport of cellular molecules across cell and 

cellular compartment boundaries, mediating the absorption and removal of various 

molecules, including drugs, and regulating the concentration of metabolites and ionic 

species [235–237]. Functional transporter families are described according to the 

transporter classification (TC) system [222, 223] based on their mode of transport, energy 

coupling mechanism, molecular phylogeny and substrate specificity, particularly the first 

two characteristics as they are relatively stable [238]. Transporter families are classified 

based on five criteria, each corresponding to one of the five numbers or letters within the 

TC number, thus, a TC number (of a specific transporter protein) normally has five 

components (V.W.X.Y.Z): (i) V (a number 1, …, 9) corresponds to the transporter class; 

(ii) W (a letter A, B, …) corresponds to the transporter sub-class; (iii) X (a number) 

corresponds to the transporter family (sometimes actually a superfamily) under a sub-

class; (iv) Y (a number) corresponds to the sub-family under a family, in which a 

transporter is found; and (v) Z represents the individual transporter under a sub-family. 



2   Methodology         60 

 

 The transporter sub-class TC 8.A studied in this work consists of auxiliary 

transport proteins, which are proteins that function or are complexed to known transport 

proteins, facilitating transport across membranes [222]. In particular, the TC 8.A sub-

class comprise of proteins that in some way facilitate transport across one or more 

biological membranes but do not themselves participate directly in transport; these 

proteins always function in conjunction with one or more established transport systems. 

They may provide a function connected with energy coupling to transport, play a 

structural role in complex formation, serve a biogenic or stability function or function in 

regulation [222, 223].  

 

2.3.4 Chlorophyll proteins   

Chlorophyll proteins, a green photosynthetic pigment found in most plants, are essential 

for harvesting solar energy in photosynthetic antenna systems. Chlorophyll contains a 

porphyrin ring, a stable ring-shaped moiety around which electrons are free to migrate; 

thus, the ring has the ability to gain or lose electrons easily and hence provide energized 

electrons to other molecules — this is the fundamental process underlying 

photosynthesis. A magnesium ion is found in the center of the porphyrin ring, and the 

ring can have several different side chains [239].  

 

2.3.5 Lipid synthesis proteins 

Lipid synthesis proteins play central roles in processes such as metabolism and transport 

[240], cell signalling and membrane trafficking [241], and regulation of gene expression 
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and cell growth [242]. Deficiencies or altered functioning of lipid binding proteins are 

associated with disease states such as obesity, diabetes, atherosclerosis, hyperlipidemia 

and insulin resistance [240].  

 

 Lipid recognition by proteins is primarily mediated by some combination of a 

number of structural and physicochemical features including conserved fold elements 

[242], specific lipid-binding site architectures [243] and recognition motifs [244], ordered 

hydrophobic and polar contacts between lipid and protein [245], and multiple 

noncovalent interactions from protein residues to lipid head groups and hydrophobic tails 

[246]. 

 

2.3.6 rRNA binding proteins 

Most cellular rRNAs work in concert with protein partners and protein-RNA interactions 

are critically important in the regulation of gene expression [6]; in particular, rRNA-

binding proteins play central roles in the post-transcriptional regulation of gene 

expression [247, 248], and their binding capabilities are mediated by certain RNA 

binding domains and motifs [4, 249–251]. It is also known that binding of proteins to 

some catalytic RNA molecules will activate or enhance the activity of these molecules 

[252]. Correlated patterns of sequence and substructure, or motifs, in RNA-binding 

proteins have be shown to recognize and bind to specific RNA sequences and folds [253–

255], patterns which a learning approach such as SVM are able to detect [123, 140]. 

Factors found to play roles in the recognition of RNA-binding proteins include amino 

acid composition and hydrophobicity (important considerations in the interaction of a 
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protein with other biomolecules) and charge and polarity (electrostatic interactions and 

hydrogen bonding to RNA, as the backbone is charged) [256]. 
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2.4 Generation of Datasets  

The datasets were obtained from SWISS-PROT [257], with the exception of TC 8.A, 

which was downloaded from the Transport Classification Database (TCDB) [258]; both 

are public databases. All distinct members in these downloaded datasets were used to 

construct the positive dataset for the corresponding SVM classification system; multiple 

entries were evenly distributed to the training, testing and independent evaluation sets.  

 

Table 3: Summary of dataset statistics, including size of training, testing and independent 
evaluation sets, and average sequence length. 

 

 Total Training Testing Independent 
testing 

 P N P N P N P N 

A
ve

ra
ge

 
se

qu
en

ce
 

Si
ze

 

EC 2.4 3304 14373 1382 5068 1022 5859 900 3446 460 
GPCR 2819 21515 1580 7389 717 7333 522 6793 498 
TC 8.A 229 23096 94 7962 72 7962 63 7172 483 

Chlorophyll 999 22997 356 7928 333 7928 310 7141 480 
Lipid 2192 11537 850 5779 707 4483 635 1275 312 
rRNA 5855 13770 2004 5246 1940 4953 1911 3571 376 

 

 

 Next, the negative dataset, representing non-class members, is generated. It is 

impractical to include all proteins outside of a specific family as negative examples, thus, 

the approach to generative a comprehensive set of negative samples is to choose 

representative proteins from the all of the other protein families.  Thus, each negative set 

(training, testing and independent) contains at least one randomly selected seed protein 

from each of the Pfam families, which number over 7000, in the PFAM database [206], 

and the representative proteins of these families unrelated to the protein family being 
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studied were chosen as negative samples. Thus, each training and testing negative set 

contains at least one randomly selected protein from each of the Pfam families. The size 

of the negative dataset is usually higher than that of the positive samples; this dataset 

imbalance explains why the negative prediction accuracy (specificity) is usually higher 

than the positive prediction accuracy (sensitivity).  

 

 These proteins, positive and negative, were further divided into separate training, 

testing and independent evaluation sets by the following procedure. First, proteins were 

converted into descriptor vectors and then clustered using hierarchical clustering into 

groups in the structural and physicochemical feature space [259], where more 

homologous sequences will have shorter distances between them, and the largest 

separation between clusters was set to a ceiling of 20. One representative protein was 

randomly selected from each group to form a training set that is sufficiently diverse and 

broadly distributed in the feature space. Another protein within the group was randomly 

selected to form the testing set. The selected proteins from each group were further 

checked to ensure that they are distinguished from the proteins in other groups. The 

remaining proteins were then designated as the independent evaluation set, also checked 

to be at a reasonable level of diversity. Fragments, defined as smaller than 60 residues, 

were discarded. This selection process ensures that the training, testing and evaluation 

sets constructed are sufficiently diverse and broadly distributed in the feature space. 

Though an analysis of the ‘similar’ proteins in each cluster showed that the majority of 

the proteins in a cluster are quite non-homologous, the program CDHIT (Cluster 

Database at High Identity with Tolerance) [260–262] was further used after the SVM 
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model was trained to remove redundancy at both 90% and 70% sequence identity, so as 

to avoid bias as far as possible. CDHIT removes homologous sequences by clustering the 

protein dataset at some user-defined sequence identity threshold, for example 90%, and 

then generating a database of only the cluster representatives, thus eliminating sequences 

with greater than 90% identity. 
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2.5 Performance Evaluation Methods 

 

The aim of performance evaluation, of course, is to find out whether an algorithm has 

done well. Specifically in the case of prediction research, we want to know if a prediction 

algorithm is able to perform well on data that has not been used to construct the learning 

model, and the generalization capacity of the model to recognize new examples from the 

same data domain [263] — to do this, we would require comprehensive independent 

samples (the independent evaluation set). 

 

 As a discriminative method, the performance of SVM classification can be 

accessed by measuring the true positive TP (correctly predicted positive samples), false 

negative FN (positive samples incorrectly predicted as negative), true negative TN 

(correctly predicted negative samples), and false positive FP (negative samples 

incorrectly predicted as positive). As the numbers of positive and negative samples are 

imbalanced, the concepts of sensitivity and specificity are also introduced [124]. 

Sensitivity, or positive prediction accuracy, is the proportion of actual positives correctly 

predicted: 

 
)( FNTP

TPQP +
= . (36) 

Specificity, or negative prediction accuracy, is the proportion of actual negative correctly 

predicted: 

 
)( FPTN

TNQN +
= . (37) 
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The overall accuracy is defined as  

 
)( FPTNFNTP

TNTPQ
+++

+
= . (38) 

 

However, in some cases, Q, QP, and QN are insufficient to provide a complete assessment 

of the performance of a discriminative method, thus, the Matthews correlation coefficient 

(MCC) was chosen in this work to evaluate the randomness of the prediction [263, 264]: 

 
))()()(( FNTNFPTNFPTPFNTP

FNFPTNTPMCC
++++

×−×
= , (39) 

where , with a negative value indicating disagreement of the prediction and 

a positive value indicating agreement. A zero value means the prediction is completely 

random. The MCC utilizes all four basic elements of the accuracy and it provides a better 

summary of the prediction performance than the overall accuracy.  

]1,1[−∈MCC
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3 PERFORMANCE EVALUATION AND DISCUSSION 

 

 In this section, the performance of the various descriptor-sets are presented and 

discussed. Overall trends are first noted (Sec 3.1), and subsequent sections (Secs. 3.2–

3.5) consider each of the various descriptor-sets, including the problem with using all 

available descriptors (Sec. 3.6).    

 

3.1 Overall Trends 

 

Independent validation datasets were used to test the prediction accuracies. Training and 

prediction statistics for the six datasets, across the ten studied descriptor-sets, are given in 

Table 4. The program CDHIT [129, 260–262] was used to remove redundancy at both 

90% and 70% sequence identity so as to avoid bias; subsequently, the datasets are tested 

again with the independent evaluation sets and the statistics are given in Table 5.  
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Table 4: Dataset training statistics and prediction accuracies of six protein functional families. Predicted results given as TP (true positive), 

FN (false negative), TN (true negative), FP (false positive), Sen (sensitivity), Spec (specificity), Q (overall accuracy) and MCC (Matthews 

correlation coefficient). 

 
Training set Testing set Independent evaluation set 

P N P N Protein 
family Descriptor set P N TP FN TN FP TP FN Sen(%) TN FP Spec(%) Q(%) MCC 

AA D1 1249 2120 1154 1 9065 12 724 176 80.4 3244 202 94.1 91.3 0.74 
dipeptide D2 1319 2120 1080 5 8806 1 646 154 82.9 3349 97 97.2 94.1 0.80 

Moreau-Broto D3 1105 1756 1295 4 9166 5 768 132 85.3 3394 52 98.5 95.8 0.87 
Moran D4 1239 2221 1161 4 8701 5 756 144 84.0 3365 81 97.7 94.8 0.84 
Geary D5 1242 2223 1160 2 8690 14 753 147 83.6 3391 55 98.4 95.4 0.85 

C, T, D D6 1214 2077 1145 45 8846 4 741 159 82.3 3383 63 98.2 94.9 0.84 
quasi D7 1293 2624 1072 39 8295 8 696 204 77.3 3270 176 94.9 91.3 0.73 

pseAA D8 1226 3008 1177 1 7918 1 794 106 88.2 3387 59 98.3 96.2 0.88 
1+2 D9 1275 2747 1129 0 8177 3 782 118 86.9 3367 79 97.7 95.5 0.86 

EC
 2

.4
 

All  D10 1228 3254 1176 0 7672 1 798 102 88.7 3397 49 98.6 96.5 0.89 
                 

AA D1 1590 7458 1847 1 14166 3 505 17 96.7 6735 58 99.1 99.0 0.93 
dipeptide D2 564 711 1728 3 14121 5 510 12 97.7 6737 56 99.2 99.1 0.93 

Moreau-Broto D3 1169 4628 1122 4 10208 1 507 15 97.1 6737 56 99.2 99.0 0.93 
Moran D4 1257 4474 1037 1 10363 0 499 23 95.6 6745 48 99.3 99.0 0.93 
Geary D5 1290 4724 997 8 10113 0 494 28 94.6 6734 59 99.1 98.8 0.91 

C, T, D D6 757 2060 1536 2 12777 0 503 19 96.3 6742 51 99.2 99.0 0.93 
quasi D7 812 2950 1482 1 11887 0 495 27 94.8 6696 97 98.6 98.3 0.88 

pseAA D8 653 2171 1644 0 12550 1 501 21 96.0 6769 24 99.7 99.4 0.95 
1+2 D9 1590 7458 693 12 7322 57 512 10 98.1 6735 58 99.1 99.1 0.93 

G
PC

R
 

All  D10 672 2454 1625 0 12268 0 502 20 96.2 6757 36 99.5 99.2 0.94 
                 

AA D1 118  2858 49 0 13121 0 36 27 57.1 1843 2 99.9 98.5 0.73 
dipeptide D2 116 1100 50 0 14824 0 41 22 65.1 1843 2 99.9 98.7 0.78 

Moreau-Broto D3 94 7962 53 0 14501 0 42 21 66.7 1842 3 98.6 98.7 0.78 
Moran D4 94 7962 47 0 11250 0 37 26 58.7 1843 2 99.9 98.5 0.74 
Geary D5 94 7962 47 0 11137 0 37 26 58.7 1843 2 99.9 98.5 0.74 

C, T, D D6 94 7962 64 0 15283 0 44 19 69.8 1843 2 99.9 98.9 0.81 
quasi D7 94 7962 59 0 15045 0 43 20 68.3 1843 2 99.9 98.9 0.80 

pseAA D8 103 943 63 0 14981 0 48 15 76.2 1843 2 99.9 99.1 0.85 
1+2 D9 114 810 52 0 15114 0 41 22 65.1 1843 2 99.9 98.7 0.78 

TC
 8

.A
 

All  D10 102 1068 64 0 14856 0 48 15 76.2 1843 2 99.9 99.1 0.85 
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Table 4 (continued) 
 

Training set Testing set Independent evaluation set 
P N P N Protein 

family Descriptor set P N TP FN TN FP TP FN Sen(%) TN FP Spec(%) Q(%) MCC 

AA D1 1249 2120 1154 1 9065 12 724 176 80.4 3244 202 94.1 91.3 0.74 
dipeptide D2 1319 2120 1080 5 8806 1 646 154 82.9 3349 97 97.2 94.1 0.80 

Moreau-Broto D3 1105 1756 1295 4 9166 5 768 132 85.3 3394 52 98.5 95.8 0.87 
Moran D4 1239 2221 1161 4 8701 5 756 144 84.0 3365 81 97.7 94.8 0.84 
Geary D5 1242 2223 1160 2 8690 14 753 147 83.6 3391 55 98.4 95.4 0.85 

C, T, D D6 1214 2077 1145 45 8846 4 741 159 82.3 3383 63 98.2 94.9 0.84 
quasi D7 1293 2624 1072 39 8295 8 696 204 77.3 3270 176 94.9 91.3 0.73 

pseAA D8 1226 3008 1177 1 7918 1 794 106 88.2 3387 59 98.3 96.2 0.88 
1+2 D9 1275 2747 1129 0 8177 3 782 118 86.9 3367 79 97.7 95.5 0.86 

EC
 2

.4
 

All  D10 1228 3254 1176 0 7672 1 798 102 88.7 3397 49 98.6 96.5 0.89 
                 

AA D1 1590 7458 1847 1 14166 3 505 17 96.7 6735 58 99.1 99.0 0.93 
dipeptide D2 564 711 1728 3 14121 5 510 12 97.7 6737 56 99.2 99.1 0.93 

Moreau-Broto D3 1169 4628 1122 4 10208 1 507 15 97.1 6737 56 99.2 99.0 0.93 
Moran D4 1257 4474 1037 1 10363 0 499 23 95.6 6745 48 99.3 99.0 0.93 
Geary D5 1290 4724 997 8 10113 0 494 28 94.6 6734 59 99.1 98.8 0.91 

C, T, D D6 757 2060 1536 2 12777 0 503 19 96.3 6742 51 99.2 99.0 0.93 
quasi D7 812 2950 1482 1 11887 0 495 27 94.8 6696 97 98.6 98.3 0.88 

pseAA D8 653 2171 1644 0 12550 1 501 21 96.0 6769 24 99.7 99.4 0.95 
1+2 D9 1590 7458 693 12 7322 57 512 10 98.1 6735 58 99.1 99.1 0.93 

G
PC

R
 

All  D10 672 2454 1625 0 12268 0 502 20 96.2 6757 36 99.5 99.2 0.94 
                 

AA D1 118  2858 49 0 13121 0 36 27 57.1 1843 2 99.9 98.5 0.73 
dipeptide D2 116 1100 50 0 14824 0 41 22 65.1 1843 2 99.9 98.7 0.78 

Moreau-Broto D3 94 7962 53 0 14501 0 42 21 66.7 1842 3 98.6 98.7 0.78 
Moran D4 94 7962 47 0 11250 0 37 26 58.7 1843 2 99.9 98.5 0.74 
Geary D5 94 7962 47 0 11137 0 37 26 58.7 1843 2 99.9 98.5 0.74 

C, T, D D6 94 7962 64 0 15283 0 44 19 69.8 1843 2 99.9 98.9 0.81 
quasi D7 94 7962 59 0 15045 0 43 20 68.3 1843 2 99.9 98.9 0.80 

pseAA D8 103 943 63 0 14981 0 48 15 76.2 1843 2 99.9 99.1 0.85 
1+2 D9 114 810 52 0 15114 0 41 22 65.1 1843 2 99.9 98.7 0.78 

0.85 

TC
 8

.A
 

All  D10 102 1068 64 0 14856 0 48 15 76.2 1843 2 99.9 99.1 
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Table 5: Dataset statistics and prediction accuracies after homologous sequences removal 

(HSR) at 90% and 70% identity. Predicted results given as TP (true positive), FN (false 

negative), TN (true negative), FP (false positive), Sen (sensitivity), Spec (specificity), Q (overall 

accuracy) and MCC (Matthews correlation coefficient).  

 
Independent evaluation set 

P N Protein 
family % HSR* Descriptor set 

TP FN Sen(%) TN FP Spec(%) Q (%) MCC 

AA D1 552 250 68.8 3235 201 94.2 89.4 0.65 
dipeptide D2 626 176 78.1 3339 97 97.2 93.6 0.78 

Moreau-Broto D3 609 193 75.9 3384 52 98.5 94.2 0.80 
Moran D4 603 199 75.2 3355 81 97.6 93.4 0.78 
Geary D5 591 211 73.7 3381 55 98.4 93.7 0.79 

C, T, D D6 501 301 62.5 3374 62 98.2 91.4 0.70 
quasi D7 545 257 68.0 3261 175 94.9 89.8 0.66 

pseAA D8 666 136 83.0 3375 61 98.2 95.4 0.84 
1+2 D9 630 172 78.6 3357 79 97.7 94.1 0.80 

90
 

All  D10 670 132 83.5 3388 48 98.6 95.8 0.86 
           

AA D1 459 223 67.3 3193 199 94.1 89.6 0.62 
dipeptide D2 516 166 75.7 3296 96 97.2 93.6 0.76 

Moreau-Broto D3 503 179 73.8 3341 51 98.5 94.4 0.78 
Moran D4 495 187 72.6 3311 81 97.6 93.4 0.75 
Geary D5 484 198 71.0 3339 53 98.4 93.8 0.77 

C, T, D D6 399 283 58.5 3330 62 98.2 91.5 0.67 
quasi D7 452 230 66.3 3218 174 94.9 90.1 0.63 

pseAA D8 551 131 80.8 3331 61 98.2 95.3 0.83 
1+2 D9 520 162 76.3 3314 78 97.7 94.1 0.78 

EC
 2

.4
 

70
 

All (1–8) D10 554 128 81.2 3344 48 98.6 95.7 0.84 
            
            

AA D1 391 13 96.8 6724 58 99.1 99.0 0.91 
dipeptide D2 395 9 97.8 6744 38 99.4 99.4 0.94 

Moreau-Broto D3 393 11 97.3 6726 56 99.2 99.1 0.92 
Moran D4 386 18 95.5 6734 48 99.3 99.1 0.92 
Geary D5 381 23 94.3 6723 59 99.1 98.9 0.90 

C, T, D D6 391 13 96.8 6731 51 99.3 99.1 0.92 
quasi D7 382 22 94.6 6685 97 98.6 98.3 0.86 

pseAA D8 387 17 95.8 6758 24 99.7 99.4 0.95 
1+2 D9 391 13 96.8 6752 30 99.6 99.4 0.94 

90
 

All (1–8) D10 388 16 96.0 6762 20 99.7 99.5 0.95 
           

AA D1 307 8 97.5 6695 58 99.1 99.1 0.90 
dipeptide D2 309 6 98.1 6715 38 99.4 99.4 0.93 

Moreau-Broto D3 306 9 97.1 6697 56 99.2 99.1 0.90 
Moran D4 301 14 95.6 6705 48 99.3 99.1 0.90 
Geary D5 198 17 94.6 6694 59 99.1 98.9 0.88 

C, T, D D6 307 8 97.5 6702 51 99.2 99.2 0.91 
quasi D7 296 19 94.0 6656 97 98.6 98.4 0.83 

pseAA D8 301 14 95.6 6729 24 99.6 99.5 0.94 
1+2 D9 307 8 97.5 6723 30 99.6 99.5 0.94 

G
PC

R
 

70
 

All (1–8) D10 302 13 95.9 6733 20 99.7 99.5 0.95 
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Table 5 (continued) 
 

Independent evaluation set 
P N Protein 

family % HSR* Descriptor set 
TP FN Sen(%) TN FP Spec(%) Q (%) MCC 

AA D1 28 27 50.9 1846 2 99.9 98.5 0.68 
dipeptide D2 33 22 60.0 1846 2 99.9 98.7 0.75 
Moreau-

Broto 
D3 34 21 61.8 1845 3 99.8 98.7 0.75 

Moran D4 29 26 52.7 1845 3 99.8 98.8 0.75 
Geary D5 29 26 52.7 1845 3 99.8 98.8 0.75 

C, T, D D6 36 19 65.5 1846 2 99.9 98.9 0.78 
quasi D7 35 20 63.6 1845 3 99.8 98.8 0.76 

pseAA D8 40 15 72.7 1845 3 99.8 99.2 0.82 
1+2 D9 33 22 60.0 1846 2 99.9 98.7 0.75 

90
 

All (1–8) D10 40 15 72.7 1845 3 99.8 99.2 0.82 
           

AA D1 25 24 51.0 1828 2 99.9 98.6 0.68 
dipeptide D2 29 20 59.2 1828 2 99.9 98.8 0.74 
Moreau-

Broto 
D3 29 20 59.2 1827 3 99.8 98.8 0.73 

Moran D4 26 23 53.1 1828 2 99.9 98.7 0.70 
Geary D5 26 23 53.1 1828 2 99.9 98.7 0.70 

C, T, D D6 33 16 67.3 1828 2 99.9 99.0 0.79 
quasi D7 30 19 61.2 1827 3 99.8 98.8 0.74 

pseAA D8 36 13 73.5 1827 3 99.8 99.2 0.82 
1+2 D9 29 20 59.2 1828 2 99.9 98.8 0.74 

TC
 8

.A
 

70
 

All (1–8) D10 36 13 73.5 1827 3 99.8 99.2 0.82 
            
            

AA D1 159 127 55.6 1594 8 99.5 92.9 0.70 
dipeptide D2 205 81 71.7 1598 4 99.8 95.5 0.82 
Moreau-

Broto 
D3 224 62 78.3 1599 3 99.8 96.6 0.86 

Moran D4 222 64 77.6 1599 3 99.8 96.5 0.86 
Geary D5 211 75 73.8 1598 4 99.8 95.8 0.83 

C, T, D D6 182 104 63.6 1594 8 99.5 94.1 0.75 
quasi D7 159 127 55.6 1595 9 99.4 92.8 0.69 

pseAA D8 233 53 81.5 1595 7 99.6 96.8 0.87 
1+2 D9 224 62 78.3 1594 8 99.5 96.3 0.85 

90
 

All (1–8) D10 229 57 80.1 1597 5 99.7 96.7 0.87 
           

AA D1 113 118 48.9 1578 8 99.5 93.1 0.65 
dipeptide D2 155 76 67.1 1582 4 99.8 95.6 0.79 
Moreau-

Broto 
D3 171 60 74.0 1583 3 99.8 96.5 0.84 

Moran D4 171 60 74.0 1583 3 99.8 96.5 0.84 
Geary D5 161 70 69.7 1582 4 99.8 95.9 0.81 

C, T, D D6 137 94 59.3 1578 8 99.5 94.4 0.72 
quasi D7 114 117 49.4 1575 11 99.3 93.0  0.64 

pseAA D8 182 49 78.8 1579 7 99.6 96.9 0.85 
1+2 D9 172 59 74.5 1578 8 99.5 96.3 0.82 

C
hl

or
op

hy
ll 

70
 

All (1–8) D10 178 53 77.1 1581 5 99.7 96.8 0.85 
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Table 5 (continued) 
 

Independent evaluation set 
P N Protein 

family % HSR* Descriptor set 
TP FN Sen(%) TN FP Spec(%) Q (%) MCC 

AA D1 403 149 73.0 1213 59 95.4 88.6 0.72 
dipeptide D2 431 121 78.1 1256 16 98.7 92.5 0.81 

Moreau-Broto D3 436 116 79.0 1268 4 99.7 93.4 0.84 
Moran D4 421 131 76.3 1270 2 99.8 92.7 0.83 
Geary D5 416 136 75.4 1270 2 99.8 92.4 0.82 

C, T, D D6 449 103 81.3 1270 2 99.8 94.2 0.86 
quasi D7 435 117 78.8 1269 3 99.8 93.4 0.84 

pseAA D8 423 129 76.6 1265 7 99.5 92.5 0.82 
1+2 D9 449 103 81.3 1245 27 97.9 92.9 0.83 

90
 

All (1–8) D10 454 98 82.3 1265 7 99.5 94.2 0.86 
           

AA D1 316 138 69.6 1205 59 95.3 88.5 0.69 
dipeptide D2 343 111 75.6 1248 16 98.7 92.6 0.81 

Moreau-Broto D3 340 114 74.9 1260 4 99.7 93.1 0.82 
Moran D4 330 124 72.7 1262 2 99.8 92.7 0.81 
Geary D5 328 126 72.3 1260 4 99.7 92.4 0.80 

C, T, D D6 358 96 78.9 1244 20 98.4 93.3 0.82 
quasi D7 342 112 75.3 1257 7 99.5 93.1 0.82 

pseAA D8 331 123 72.9 1257 7 99.4 92.4 0.80 
1+2 D9 360 94 79.3 1237 27 97.9 93.0 0.81 

Li
pi

d 
sy

nt
he

si
s 

70
 

All (1–8) D10 360 94 79.3 1257 7 99.5 94.1 0.85 
            
            

AA D1 1407 91 93.9 3502 59 98.3 97.0 0.93 
dipeptide D2 1437 61 95.9 3510 51 98.6 97.8 0.95 

Moreau-Broto D3 1403 95 93.7 3529 32 99.1 97.5 0.93 
Moran D4 1347 151 89.9 3491 70 98.0 95.6 0.89 
Geary D5 1347 151 89.9 3533 28 99.2 96.5 0.91 

C, T, D D6 1451 47 96.9 3537 24 99.3 98.6 0.97 
quasi D7 1358 140 90.7 3429 132 96.3 94.6 0.87 

pseAA D8 1442 56 96.3 3531 30 99.2 98.3 0.96 
1+2 D9 1436 62 95.9 3518 43 98.8 97.9 0.95 

90
 

All (1–8) D10 1449 49 96.7 3537 24 99.3 98.6 0.97 
           

AA D1 924 83 91.8 3454 59 98.3 96.9 0.91 
dipeptide D2 952 55 94.5 3463 50 98.6 97.7 0.93 

Moreau-Broto D3 920 87 91.4 3483 30 99.2 97.4 0.92 
Moran D4 907 100 90.1 3444 69 98.0 96.3 0.89 
Geary D5 908 99 90.2 3485 28 99.2 97.2 0.92 

C, T, D D6 963 44 95.6 3493 20 99.4 98.6 0.96 
quasi D7 917 90 91.1 3382 131 96.3 95.1 0.86 

pseAA D8 654 53 94.7 3484 29 99.2 98.2 0.95 
1+2 D9 950 57 94.3 3471 42 98.8 97.8 0.94 

rR
N

A
 b

in
di

ng
 

70
 

All (1–8) D10 960 47 95.3 3490 23 99.4 98.5 0.96 
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 As the purpose of this work is to benchmark the performance of various 

descriptor-sets, it is helpful to perform an initial rough validation of the results from this 

work against other studies. For the dataset EC 2.4, the sensitivities, specificities and 

overall accuracies for the ten descriptor-sets ranged from 77.3–88.7%, 94.1–98.6% and 

91.3–96.5%, respectively. Differences in the choice of descriptors notwithstanding, these 

results are comparable to previously reported SVM prediction results for EC 2.4: Cai et 

al. [8] reported sensitivity, specificity and overall accuracy values of 70.5%, 94.2% and 

92.9% respectively. Similarly, a comparison of the SVM prediction results obtained from 

this work using a variety of different descriptor-sets with those previously reported in the 

literature [7, 8, 135, 140, 181, 225] is given in Table 6. Though the descriptors used in 

this study are not the same as those in the above-mentioned literature, by and large, the 

prediction results from this work agree with those in the literature. Note that the other 

studies were focused on developing a prediction system for a specific protein family such 

as enzymes, and did not consider various sets of descriptors, as in this work.  

 

 It is also observed that the prediction accuracies in this study for the non-members 

of a dataset (specificity) are always better than those for the members of a dataset 

(sensitivity). This is due to the way the negative training set is generated: as a highly 

diverse set of non-members for each dataset can be generated from the Pfam database, 

which comprise of over 8000 protein families [206], this results in a larger number of 

negative samples (Table 3), and hence, the SVM models were more comprehensively 

trained for the recognition of non-members. Moreover, this imbalance between the 

positive and negative training datasets tends to skew the SVM hyperplane closer to the 
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side with a smaller number of samples, which can lead to a lower prediction accuracy for 

those samples as compared to those on the other side of the hyperplane [265]. This is 

known as overfitting; it occurs when there is a large set of possible hypotheses and thus 

the learning algorithm can end up finding meaningless regularities. However, the size of 

the negative dataset cannot be simply reduced to match that of the positive dataset since 

this compromises the diversity required to fully represent all non-members in the feature 

space. There are computational methods to compensate for this imbalance [266], but as 

the focus of this current work is a comparative evaluation of different descriptor-sets, 

there was no need to employ such measures.  

 

Table 6: Comparison of range of prediction accuracies for 10 descriptor-sets with others 

reported in the literature (highlighted in grey). 

 
Dataset Source Sensitivity (%) Specificity (%) Overall accuracy 

(%) 
 77.3–88.7 94.1–98.6 91.3–96.5 

90% HSR 62.5–83.5 94.2–98.6 89.4–95.8 
70% HSR 58.5–81.2 94.1–98.6 89.6–95.7 EC 2.4 

Cai et al. [8] 70.5 94.2 92.9 
 94.6–98.1 98.6–99.7 98.3–99.4 

90% HSR 94.6–97.8 98.6–99.7 98.3–99.5 
70% HSR 94.0–97.5 98.6–99.7 98.4–99.5 GPCR 

Cai et al. [7] 95.6 98.1 97.4 
 57.1–76.2 98.6–99.9 98.5–99.1 

90% HSR 50.9–72.7 99.8–99.9 98.5–99.2 
70% HSR 51.1–73.5 99.8–99.9 98.6–99.2 TC 8.A 

Lin et al. [181] 74.3 99.8 99.5 
 57.4–82.3 99.3–99.9 92.7–96.9 

90% HSR 55.6–81.5 99.4–99.8 92.9–96.8 
70% HSR 48.9–78.8 99.5–99.8 93.0–96.9 Chlorophyll 

Cai et al. [7] 97.4 99.8 99.7 
 74.0–83.6 95.5–99.8 88.4–94.2 

90% HSR 73.0–82.3 95.4–99.8 88.6–94.2 
70% HSR 69.6–79.3 95.3–99.5 88.5–94.1 Lipid synthesis 

 Lin et al. [225] 82.2 99.6 98.1 
 93.3–97.9 97.4–99.3 96.0–98.6 

90% HSR 89.9–96.9 98.0–99.3 94.6–98.6 
70% HSR 90.1–95.3 98.3–99.4 95.1–98.6 rRNA binding 

Han et al. [140] 94.1 98.7 98.6 
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 As explained in Sec. 2.5, Matthews correlation coefficient (MCC) values were 

used instead of standard accuracy because it is a more robust measure of performance.   

The performances of the ten descriptor-sets were ranked by the MCC values of the 

respective SVM prediction of the six functional families, which are given in Table 7. The 

computed MCC scores for these descriptor-sets are in the range of 0.65–0.97 (90% 

homologous sequence removal, or HSR) and 0.62–0.96 (70% HSR) for all protein 

families studied. Accordingly, the performance of these descriptor-sets is categorized into 

two groups based on their MCC values: ‘Exceptional’ (>0.85) and ‘Good’ (≤0.85). At the 

same time, these descriptor-sets are aligned in the order of their MCC values with “=” 

being of equal values and “>” indicating that one is better than the other. It is noted that, 

as the differences of many of these MCC values are rather small, such alignment is likely 

superficial to some extent and may not best reflect the real ranking of performance. 

Overall, the performances of these descriptor-sets are not significantly different, there is 

no overwhelmingly preferred descriptor-set, and SVM prediction performance appears to 

be highly dependent on the dataset. 

 

 As shown in Tables 4 and 5, for many of the studied datasets, the differences in 

prediction accuracies and MCC values between different descriptor-sets are small. In 

particular, for GPCR and rRNA binding proteins, the results of almost all descriptor-sets 

are in the ‘Exceptional’ category. Examining the range of MCC values of the descriptor-

sets for each of the studied protein families (70% HSR), the differences between the 

largest and smallest MCC values are, in order of increasing magnitude: 0.10, 0.12, 0.14, 

0.16, 0.21 and 0.21 for rRNA binding proteins, GPCR, TC 8.A, lipid synthesis proteins,



Table 7: Descriptor sets ranked and grouped by MCC (Matthews correlation coefficient), before and after removal of homologous 
sequences at 90% and 70% identity, respectively.  
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Prediction performance 
Protein 
family 

%  
HRS* 

Exceptional 
> 0.85 

Good 
≤ 0.85 

NR D10 > D8> D9 > D3 D5 > D4=D6 > D2 > D1 > D7 

90% D10 D8 > D3=D9 > D5 > D2=D4 > D6 > D7 > D1 EC 2.4 

70%  D10 > D8 > D3=D9 > D5 > D2 > D4 > D6 > D7 > D1 

NR D8 > D10 > D1=D2=D3=D4=D6=D9 > D5 > D7  

90% D8=D10 > D2=D9 > D3=D4=D6 > D1 > D5 > D7  GPCR 

70% D10 > D8=D9 > D2 > D6 > D1=D3=D4 > D5 D7 

NR  D8=D10 > D6 > D7 > D2=D3=D9 > D4=D5 > D1 

90%  D8=D10 > D6 > D7 > D2=D3 =D4=D5=D9 > D1 TC 8.A 

70%  D8=D10 > D6 > D2=D7=D9 > D3 > D4=D5 > D1 

NR D8=D10 > D4 > D3=D9  D5 > D2 > D6 > D7 > D1 

90% D8=D10 > D3=D4 D9 > D5 > D2 > D6 > D1 > D7 Chlorophyll 

70%  D8=D10 > D3=D4 > D9 > D5 > D2 > D6 > D1 > D7 

NR D10 > D6 D7 > D2=D3=D9 > D4=D8 > D5 > D1 

90% D6=D10 D3=D7 > D4=D9 > D5=D8 > D2 > D1 Lipid 
synthesis 

70%  D10 > D3=D6=D7 > D2=D4=D9 > D5=D8 > D1 

NR D10 > D8=D9 > D2=D3=D6 > D1 > D7> D4=D5  

90% D6=D10 > D8 > D2=D9 > D1=D3 > D5 > D4> D7  rRNA 
binding 

70% D6=D10> D8 > D9 > D2 > D3=D5 > D1 > D4 > D7  

3   Evaluation & Discussion
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chlorophyll proteins and EC.2.4 families respectively. Given that a difference of 0.10 and 

0.20 in MCC values translates to an approximate 4% and 7% difference in overall 

prediction accuracy, this separation is not large indeed.  

 

Though the dataset is a more important determinant of prediction performance 

than the choice of descriptor class, a few general trends could be observed. Three out of 

four of the combination-sets tend to exhibit slightly but consistently higher MCC values 

for the protein families studied in this work. These sets are Sets D8, D9 and D10. In 

contrast, only one out of six individual sets, Set D6, tend to exhibit slightly but 

consistently higher MCC values for the protein families studied in this work. Therefore, 

statistically speaking, it appears that the use of combination-sets tend to give slightly 

better prediction performance than the use of individual-sets.  

 

3.2 Composition Descriptors  

 

It was found that the combination of amino acid composition and dipeptide composition 

(Set D9) tend to give consistently better results than that of the individual descriptor-sets 

(Set D1 and Set D2). It is known that one drawback of amino acid composition 

descriptors is that the same amino acid composition may correspond to diverse sequences 

as sequence order is lost [27, 173], and this sequence order information can be partially 

covered by considering dipeptide composition (Set D2). On the other hand, dipeptide 

composition lacks information concerning the fraction of the individual residue in the 

sequence, thus, a combination-set is expected to give better prediction results, which has 
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been confirmed by this and other studies [27, 173]. The consistently poor performance of 

Set D1 alone suggests that composition information alone is not sufficient to completely 

distinguish different proteins, and though the use of sequence order information does 

improve prediction results significantly, the combination of these two types of 

information (Set D9) returned the best performance. In fact, Set D9 often returned a much 

better or comparable prediction performance than more complex descriptors such as 

autocorrelation. 

 

3.3 Autocorrelation Descriptors   

 

Autocorrelation descriptor sets were expected to perform well as they should be better 

able to capture distinguishing motifs unique to a protein functional family; however, as 

seen from the moderate performance by the autocorrelation sets, this was not the case. 

The only dataset in which they showed slightly better results was the chlorophyll proteins 

dataset; it is possible that this is due to the porphyrin ring in chlorophyll proteins, which 

consists of four nitrogen atoms binding strongly to a coordinated magnesium atom in a 

square planar arrangement [239], for this unique feature suggests that geometrical and/or 

topological descriptors should perform well.   

 

3.4 Composition, Transition and Distribution Descriptors  

 

Like the autocorrelation sets, the performance of the composition, transition and 

distribution (CTD) descriptors (Set D6) tend to fall in the middle when ranked, though 
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this set displayed more consistent results. CTD descriptors are often used in protein 

folding studies [267, 268] as they are good at representing the amino acid distribution 

patterns of a specific structural or physicochemical property along a protein or peptide 

sequence [139, 178], though they have also shown good results in protein functional 

prediction [7, 8, 140, 181]. It is also noted that Set D6 showed better performance in the 

lipid synthesis proteins and transporter TC 8.A datasets, both of which contain distinctive 

functional groups; lipid synthesis proteins are highly polar [246] while TC 8.A proteins 

are auxiliary transport proteins that have to bind to a diverse range substrates that include 

complex polysaccharides (TC 8.A.3) and sugars (TC 8.A.7) as well as metal ions (TC 

8.A.11) [258].    

  

3.5 Quasi Sequence Order and Pseudo Amino Acid Descriptors   

 

Interestingly, though the combination sets D7 and D8 are similar, with the exception of 

lipid synthesis proteins, Set D8 always outperforms Set D7. In fact, while Set D8 is one 

of the top performers in this study, Set D7 ranks as one of the worst. The quasi sequence 

order descriptors (Set D7) were first proposed by Chou in 2000 [142] and takes in 

account both the amino acid composition as well as the effect of sequence order; 

subsequently, pseudo amino acid composition descriptors (Set D8) were introduced as an 

improvement upon the quasi sequence order descriptors. The basic method to extract 

composition and sequence order information from sequence remains the same, but the 

definition of pseudo amino acid composition can introduce more correlation factors of 

physicochemical effects [204]. Chou [142] found that the newer pseudo amino acid 
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descriptors improved prediction accuracy of nine membrane protein locations by about 

15%, twelve subcellular locations by about 5% and five types of membrane proteins by 

about 5%. Though the type of information used is largely the same in both descriptor-

sets, it is noteworthy that it is the difference in autocorrelation algorithms can lead to 

significantly different prediction results.  

 

3.6 Entire Descriptor Set  

 

Obviously, the inclusion of all descriptors is inefficient and computationally expensive, 

but more importantly, it was found that using all of the descriptor-sets (Set D10) 

generally, but not always, gives the best result. This is consistent with the findings on the 

use of molecular descriptors for predicting compounds of specific properties [160, 161], 

as well as studies on the use of feature selection methods [148, 269, 270]. For instance, 

Xue et al. found that feature selection methods are capable of reducing the noise 

generated by the use of overlapping and redundant molecular descriptors, and in some 

cases, improving the accuracy of SVM classification of pharmacokinetic behaviour of 

chemical agents [162]. The use of all available descriptors likely results in the inclusion 

of partially redundant information, some of which may to some extent become noise that 

interferes with the prediction results or obscures relevant information. In our study, for 

example, the three autocorrelation descriptor-sets (Sets D3, D4 and D5) all utilize the 

same physicochemical properties, only differing in the correlation algorithm. Amino acid 

composition information is also repeated in Sets D1, D7, D8 and D9. Based on the 

observation from this study as well as results of previous studies [148, 162, 269, 270], it 
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is possible that feature selection methods may be helpful in selecting the optimal set of 

descriptors to improve prediction accuracy in addition to computing efficiency for 

predicting protein functional families.  

  

   



4   Conclusion         83 

 

 

4 CONCLUSIONS AND FUTURE WORK 

 

 This last section summarizes the results of this work (Sec. 4.1) and its 

contribution towards the problem of protein functional prediction (Sec. 4.2). Caveats are 

noted (Sec. 4.3) and future directions (Sec. 4.4) are also suggested. 

 

4.1 Findings 

 

In this study, the efficacy of ten protein descriptor-sets in six protein functional family 

prediction using SVM was evaluated. Corroborating with previous work done on protein 

descriptors [135, 140, 180, 181, 203, 225, 271], it was found that the descriptor-sets 

evaluated in this work, which comprise some of the most commonly used descriptors, 

generally return good results and do not differ significantly. In particular, the use of 

combination descriptor-sets tends to give slightly better prediction performance than the 

use of individual descriptor-sets; moreover, the performance of pair-wise combination 

descriptor-sets were comparable to that of the entire combination of all descriptor-sets. 

This argues well for the use of a reduced descriptor-set. Lastly, descriptor-sets that utilize 

a combination of composition and sequence order or correlation information generally 

ranked well.  
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4.2 Contributions 

 

The ramifications of this work are two-fold — in the fields of protein functional 

prediction and machine learning, both of which will continue to grow in importance, 

particularly at this juncture in current research. The availability of entire genome 

sequences and high-throughput facilities makes the tasks of assigning functions to novel 

proteins one of the most pressing problems in the post-genomic era [272]. At the same 

time, the use of machine learning systems will similarly become more widespread as the 

volume of biological data grows rapidly and the data analysis required becomes more 

complex, resulting in problems that cannot be solved by classical programming 

techniques and necessitating the utilization of techniques that can deal with such problem 

domains. The search for reliable methods for assigning protein function is of paramount 

importance, and not only on the side of the computational biologists; laboratory biologists 

themselves remain divided over accuracy of functional annotations of genomes [44–48]. 

To this end, SVM is considered to be one such method and has in fact shown to be a 

robust learner for noisy and complex domains because of two key features: good 

generalization capability and kernel functions. This work explored one crucial component 

of the SVM methodology — the representation of data.  

 

4.3 Caveats 

 

It should be noted that the performance of machine learning methods depends critically 

on a number of factors such as the quality of the training dataset (in particular example 
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diversity) and the machine learning method used. The datasets used in this work are not 

expected to be fully representative of all protein functional families; similarly, the 

descriptor-sets covered in this study comprise a limited subset of the descriptors 

available. Therefore, conclusions from this study might not be readily extended to other 

datasets or other descriptor-sets. 

 

4.4 Future Directions 

 

While there seems to be no preferred descriptor-set that could be utilized for all datasets 

as prediction results is highly dependent on datasets, the performance of protein 

classification may be enhanced by using established feature selection methods [271, 273]. 

Future work could look into the selection of optimal combinations of descriptors using 

such methods, or through combinations of the better performing descriptors.  

 

 Some of the descriptor-sets used in this work were highly similar, yet showed 

significantly different performances. For example, the combination sets D7, D8 and D9 

all make use of only amino acid composition and sequence order information, yet there 

was a clear trend in predictive performance (D8 > D9 > D7). The most obvious difference 

between these sets lies in the way they represent sequence order information, thus, 

investigating the exact difference(s) and the reason for its effect(s) could further help to 

focus subsequent work in either improving existing descriptors or designing new 

descriptors. Alternatively, the incorporation of appropriate sets of physicochemical 



4   Conclusion         86 

properties not covered by some of the existing descriptor-sets could also help improve 

performance.  

 

 In conclusion, while current descriptors in machine learning methods have shown 

good results in protein functional prediction studies, there are still a lot of potential 

research areas that remains to be explored.  



Biblography         87 
BIBLIOGRAPHY 

 
1. Bork, P., et al., Predicting function: from genes to genomes and back. J Mol Biol, 1998. 

283: p. 707-725. 
2. Eisenberg, D., et al., Protein function in the post-genomic era. Nature, 2000. 405: p. 823-

826. 
3. Downward, J., The ins and outs of signalling. Nature, 2001. 411: p. 759–762. 
4. Draper, D.E., Themes in RNA-protein recognition. J Mol Biol, 1999. 293: p. 255-270. 
5. Lengeler, J.W., Metabolic networks: A signal-oriented appaoch to cellular models. Biol 

Chem, 2000. 381: p. 911–920. 
6. Siomi, H. and G. Dreyfuss, RNA-binding proteins as regulators of gene expression. Curr 

Opin Genet Dev, 1997. 7: p. 345–353. 
7. Cai, C.Z., et al., SVM-Prot: Web-based support vector machine software for functional 

classification of a protein from its primary sequence. Nuclei Acid Res, 2003. 31: p. 3692-
3697. 

8. Cai, C.Z., et al., Enzyme family classification by support vector machines. Proteins, 2004. 
55: p. 66-76. 

9. Karchin, R., K. Karplus, and D. Haussler, Classifying G-protein coupled receptors with 
support vector machines. Bioinformatics, 2002. 18: p. 147-159. 

10. Baldi, P. and G. Pollastri, A machine-learning strategy for protein analysis IEEE Intell 
Sys Biol, 2002. 17(2): p. 28–35. 

11. Hunkapiller, T., et al., Large-scale and automated DNA sequence determination. Science, 
1991. 254: p. 59-67. 

12. Roberts, L., Large-scale sequencing trials begin. Science, 1990. 250: p. 1336-1338. 
13. Fleischmann, W., et al., A novel method forautomatic functional annotation of proteins. 

Bioinformatics, 1999. 15: p. 228-233. 
14. Holm, L. and C. Sander, Protein folds and families: sequence and structure alignments. 

Nuclei Acid Res, 1999. 27: p. 244-247. 
15. Luscombe, N., R. Laskowski, and J. Thornton, Amino acid-base interactions: a three-

dimensional analysis of protein-DNA interactions at anatomic level. Nuclei Acid Res, 
2001. 29: p. 2860-2874. 

16. Thornton, J., From genome to function. Science, 2000. 292: p. 2095-2097. 
17. Valencia, A., Bioinformatics: biology by other means. Bioinformatics, 2002. 18: p. 1551-

1552. 
18. Valencia, A. and F. Pazos, Computational methods for the prediction of protein 

interactions. Curr Opin Struct Biol, 2002. 12: p. 368-373. 
19. Airozo, D., et al., MEDLINE® (Medical Literature Analysis and Retrieval System 

Online) 1999. 
20. Rost, B., et al., Automatic prediction of protein function. Cell Mol Life Sci, 2003. 60(12): 

p. 2637-2650. 
21. Pevzner, A., Computational Molecular Biology, An Algorithmic Approach. 2000: The 

MIT Press. 
22. Baldi, P. and S. Brunak, Bioinformatics: The Machine Learning Approach. 2nd ed. 2001: 

The MIT Press. 
23. Wei, C., et al., Closing in on the C. elegans ORFeome by cloning TWINSCAN 

predictions. Genome Res, 2005. 15: p. 577-582. 
24. Smialowski, P., et al., Predicting experimental properties of proteins from sequence by 

machine learning techniques. Curr Protein Pept Sci, 2007. 8(2): p. 121–133. 
25. Pawlowski, K., et al. Sensitive sequence comparison as protein function predictor. in 

Pacific Symposium on Biocomputing 2000. Hawaii: World Scientific Publishing. 



Biblography         88 
26. Ahmad, S., M. Gromiha, and A. Sarai, Analysis and prediction of DNA-binding proteins 

and their binding residues based on composition, sequence and structural information. 
Bioinformatics, 2004. 17(11): p. 1027-1034. 

27. Bhasin, M. and G.P. Raghava, Classification of nuclear receptors based on amino acid 
composition and dipeptide composition. J Biol Chem, 2004. 279: p. 23262-23266. 

28. des Jardin, M., et al., Prediction of enzyme classification from protein sequence without 
the use of sequence similarity. Proc Int Conf Intell Syst Mol Biol, 1997. 5: p. 92-99. 

29. Jensen, L.J., Prediction of human protein function from post-translational modifications 
and localization features. J Mol Biol, 2002. 319: p. 1257-1265. 

30. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-
410. 

31. Twenty years of citation superstars. Science Watch  2003  [cited 2007 April 17]; 
Available from: http://www.sciencewatch.com/sept-oct2003/sw_sept-
oct2003_page1.htm. 

32. Russo, E. and S. Bunk, Hot papers in bioinformatics. The Scientist, 1999. 13(8): p. 15. 
33. Altschul, S.F. and E.V. Koonin, Iterated profile searches with PSI-BLAST--a tool for 

discovery in protein databases. Trends Biochem Sci, 1998. 23: p. 444-447. 
34. Bork, P. and E.V. Koonin, Protein sequence motifs. Curr Opin Struct Biol, 1996. 6: p. 

366-376. 
35. Kasuya, A. and J.M. Thornton, Three-dimensional structure analysis of PROSITE 

patterns. J Mol Biol, 1999. 286: p. 1673-1691. 
36. Hodges, H.C. and J.W. Tsai, 3D-Motifs: An informatics approach to protein function 

prediction. FASEB J, 2002. 16: p. A543. 
37. Gattiker, A., E. Gasteiger, and A. Bairoch, ScanProsite: a reference implementation of a 

PROSITE scanning tool. Appl Bioinformatics, 2002. 1: p. 107-108. 
38. Benner, S.A., et al., Functional inferences from reconstructed evolutionary biology 

involving rectified databases--an evolutionarily grounded approach to functional 
genomics. Res Microbiol, 2000. 151: p. 97-106. 

39. Scott, K.A. and V. Daggett, Folding mechanisms of proteins with high sequence identity 
but different folds. Biochemistry, 2007. 46(6): p. 1545-1556. 

40. Blundell, T. and M. Johnson, Catching a common fold. Protein Sci, 1993. 2(6): p. 877-
883. 

41. Sander, C. and R. Schneider, Database of homology-derived protein structures and the 
structural meaning of sequence alignment. Proteins, 1991. 9: p. 56-68. 

42. Enright, A.J. and C.A. Ouzounis, GeneRAGE: a robust algorithm for sequence clustering 
and domain detection. Bioinformatics, 2000. 16: p. 451-457. 

43. Wilson, C.A., J. Kreychman, and M. Gerstein, Assessing annotation transfer for 
genomics: quantifying the relations between protein sequence, structure and function 
through traditional and probabilistic scores. J Mol Biol, 2000. 297(1): p. 233-249. 

44. Casari, G., et al., Challenging times for bioinformatics. Nature, 1995. 376: p. 647–648. 
45. Kryrpides, N.C. and C. Ouzounis, Whole-genome sequence annotation: ‘Going wrong 

with confidence’. Mol Microbiol, 1999. 32: p. 886-887. 
46. Ouzounis, C., et al., Novelties from the complete genome of Mycoplasma genitalium. Mol 

Microbiol, 1996. 20(4): p. 898-900. 
47. Devos, D. and A. Valencia, Intrinsic errors in genome annotation. Trends Genet, 2001. 

17(8): p. 429-431. 
48. Brenner, S.E., Errors in genome annotation. Trends Genet, 1999. 15: p. 132-133. 
49. Chothia, C. and A.M. Lesk, The relation between the divergence of sequence and 

structure in proteins. EMBO J, 1986. 5: p. 823-826. 
50. Doolittle, R.F., Similar amino acid sequences: chance or common ancestry? Science, 

1981. 214: p. 149-159. 



Biblography         89 
51. Doolittle, R.F., Of URFs and ORFs: A Primer on How to Analyze Derived Amino Acid 

Sequences. 1986, Mill Valley, CA, USA: University Science Books. 
52. Zuckerkandl, E. and L. Pauling, Evolutionary Divergence and Convergence in Proteins, 

in Evolving Genes and Proteins, V. Bryson and H.J. Vogel, Editors. 1965, Academic 
Press: New York. p. 97-166. 

53. Skolnick, J., J.S. Fetrow, and A. Kolinski, Structural genomics and its importance for 
gene function analysis. Nat Biotechnol, 2000. 18: p. 283-287. 

54. Holm, L. and C. Sander, Mapping the protein universe. Science, 1996. 273: p. 595-603. 
55. Brenner, S.E., et al., Understanding protein structure: using scop for fold interpretation. 

Methods Enzymol, 1996. 266: p. 635–643. 
56. Holm, L. and C. Sander, Dali/FSSP classification of three-dimensional protein folds. 

Nuclei Acid Res, 1996. 25: p. 231–234. 
57. Valencia, A., et al., GPTase domains of Ras p21 oncogene protein and elongation factor 

Tu: analysis of three dimensional structures, sequence families and functional sites. Proc. 
Natl Acad. Sci. USA, 1991. 88: p. 5443–5447. 

58. Rost, B., Protein structures sustain evolutionary drift. Folding Des, 1997. 2: p. S19–S24. 
59. Levitt, M. and M. Gerstein, A unified statistical framework for sequence comparison and 

structure comparison. Proc Natl Acad Sci USA, 1998. 95(11): p. 5913–5920. 
60. Andreeva, A., et al., SCOP database in 2004: refinements integrate structure and 

sequence family data. Nuclei Acid Res, 2004. 32: p. D226-229. 
61. Di Gennaro, J.A., et al., Enhanced functional annotation of protein sequences via the use 

of structural descriptors. J Struct Biol, 2001. 134: p. 232-245. 
62. Ivanciuc, O., et al., Using property based sequence motifs and 3D modeling to determine 

structure and functional regions of proteins. Curr Med Chem, 2004. 11: p. 583-593. 
63. Stark, A. and R.B. Russell, Annotation in three dimensions. PINTS: Patterns in Non-

homologous Tertiary Structures. Nuclei Acid Res, 2003. 31: p. 3341-3344. 
64. Wallace, A.C., N. Borkakoti, and J.M. Thornton, TESS: a geometric hashing algorithm 

for deriving 3D coordinate templates for searching structural databases. Application to 
enzyme active sites. Protein Sci, 1997. 6: p. 2308-2323. 

65. Brenner, S.E., Target selection for structural genomics. Nat Struct Biol, 2000. 7(Suppl): 
p. 967-969. 

66. Teichmann, S.A., C. Chothia, and M. Gerstein, Advances in structural genomics. Curr. 
Opin. Struct. Biol., 1999. 9: p. 390-399. 

67. Bonneau, R. and D. Baker, Ab initio protein structure prediction: progress and prospects. 
Annual Review of Biophysics and Biomolecular Structure, 2001. 30: p. 173–189. 

68. Bartlett, G.J., N. Borkakoti, and J.M. Thornton, Catalysing new reactions during 
evolution: economy of residues and mechanism. J Mol Biol, 2003. 331: p. 829-860. 

69. Orengo, C.A., A.E. Todd, and J.M. Thornton, From protein structure to function. Curr 
Opin Struct Biol, 1999. 9: p. 374-382. 

70. Shakhnovich, B.E., et al., Functional fingerprints of folds: evidence for correlated 
structure-function evolution. J Mol Biol, 2003. 326: p. 1-9. 

71. Todd, A.E., C.A. Orengo, and J.M. Thornton, Evolution of function in protein 
superfamilies, from a structural perspective. J Mol Biol, 2001. 307: p. 1113-1143. 

72. Henikoff, S., et al., Gene families: the taxonomy of protein paralogs and chimeras. 
Science, 1997. 278: p. 609-614. 

73. Lipman, D.J. and W.R. Pearson, Rapid and sensitive protein similarity searches. Science, 
1985. 227: p. 1435-1441. 

74. Holm, L. and C. Sander, Structural alignment of globins, phycocyanins and colicin A. 
FEBS Lett, 1993. 315: p. 301-306. 

75. Russell, S.J. and P. Norvig, Artificial Intelligence: A Modern Approach. 2003, Upper 
Saddle River, NJ, Great Britain: Prentice Hall. 



Biblography         90 
76. Shortle, D., et al., Protein folding for realists: a timeless phenomenon. Prot Sci, 1996. 5: 

p. 991–1000. 
77. van Gunsteren, W.F., Molecular dynamics studies of proteins. Curr Opin Struct Biol, 

1993. 3: p. 167–174. 
78. Wang, L.H., J. Liu, and H.B. Zhou. A comparison of two machine learning methods for 

protein secondary structure prediction. in Proceedings of 2004 International Conference 
on Machine Learning and Cybernetics. 2004. Shanghai, China. 

79. Mitchell, T.M., Machine Learning. 1997, New York: McGraw-Hill. 
80. Michie, D., D.J. Spiegelhalter, and C.C. Taylor, Machine Learning, Neural and 

Statistical Classification. 1994, London: Ellis Horwood. 
81. Nilsson, N.J., Introduction to Machine Learning, Draft of Incomplete Notes. 2005. 
82. Quinlan, J.R., Induction of decision trees. Mach Learn, 1986. 1(1): p. 81-106. 
83. Jain, A.K., R.P.W. Duin, and J. Mao, Statistical pattern recognition: a review. IEEE 

Trans Pattern Anal, 2000. 22(1): p. 4–37. 
84. ICML. Workshop on Learning from Imbalanced Datasets II. in 20th International 

Conference on Machine Learning. 2003. Washington, DC. 
85. Provost, F. Learning with imbalanced data sets 101. in AAAI'2000 Workshop on 

Imbalanced Data Sets. 2000. Austin, Texas. 
86. Provost, F. and T. Fawcett, Robust classification for imprecise environments. Mach 

Learn, 2001. 42: p. 203–231. 
87. Müller, K.R., et al., An introduction to kernel-based learning algorithms. IEEE Trans 

Neural Net, 2001. 12(2): p. 181–201. 
88. Müller, K.R. and G. Orr, eds. Neural Networks: Tricks of the Trade. Vol. 1524. 1998, 

Springer LNCS. 
89. Poggio, T. and F. Girosi, Regularization algorithms for learning that are equivalent to 

multilayer networks. Science, 1990. 247: p. 978–982. 
90. Breiman, L., Bagging predictors. Mach Learn, 1996. 24(2): p. 123–140. 
91. Chou, P.A., Optimal partitioning for classification and regression trees. IEEE Trans 

Pattern Anal 1991. 13(4): p. 340–321. 
92. Quinlan, J.R., C4.5: Programs for Machine Learning. 1993, San Mateo, California: 

Morgan Kaufmann. 
93. Winston, P.H., Artificial Intelligence. 3rd ed. 1992: Addison–Wesley. 
94. Cover, T. and P. Hart, Nearest neighbor pattern classification. IEEE Trans Inform Theor, 

1967. 13(1): p. 21–27. 
95. Fix, E. and J.L. Hodges, Discriminatory analysis—nonparametric discrimination: 

Consistency properties, Technical Report 21-49-004. 1951, USAF School of Aviation 
Medicine, Randolph Field: Texas. 

96. Cost, S. and S. Salzberg, A weighted nearest neighbor algorithm for learning with 
symbolic features. Mach Learn, 1993. 10(1): p. 57–78. 

97. Aha, D. and D. Kibler. Noise-tolerant instance-based learning algorithms. in 
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence. 
1989. Detroit, MI: Morgan Kaufmann. 

98. Salzberg, S. Nested hyper-rectangles for exemplar-based learning. in Analogical and 
Inductive Inference: International Workshop AII ’89. 1989. Berlin: Springer–Verlag. 

99. Dasarathy, B.V., Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. 
1990, Los Alamitos: IEEE Computer Society Press. 

100. Cabello, D., et al., Fuzzy K-nearest neighbor classifiers for ventricular arrhythmia 
detection. Int J Biomed Comput, 1991. 27: p. 77–93. 

101. Hoffman, B., et al., Quantitative structure-activity relationship modeling of dopamine 
D(1) antagonists using comparative molecular field analysis, genetic algorithms-partial 



Biblography         91 
least-squares, and K nearest neighbor methods. J Med Chem, 1999. 42(17): p. 3217–
3226. 

102. Kauffman, G.W. and P.C. Jurs, 2001QSAR and k-nearest neighbor classification analysis 
of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. 
J Chem Inf Comput Sci, 2001. 41: p. 1553–1560. 

103. Shen, M., et al., Quantitative structure-activity relationship analysis of functionalized 
amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS 
methods. J Med Chem, 2002. 45(13): p. 2811–2823. 

104. Vouros, G.A. and T. Panayiotopoulos. SETN 2004, LNAI 3025. 2004. Heidelberg, Berlin: 
Springer–Verlag. 

105. Hassoun, M.H., Fundamentals of Artificial Neural Networks. 1995, Cambridge: MIT 
Press. 

106. Rosenblatt, F., The Perceptron: A probabilistic model for information storage and 
organization in the brain. Psychol Rev, 1985. 65: p. 386–408. 

107. Vapnik, V.N., The Nature of Statistical Learning Theory. 2000: Springer. 
108. Winkler, D.A., Neural networks as robust tools in drug lead discovery and development. 

Mol Biotechnol, 2004. 27: p. 139–168. 
109. Cheng, J. and P. Baldi, Three-stage prediction of protein {beta}-sheets by neural 

networks, alignments and graph algorithms. Bioinformatics, 2005. 21(Suppl 1): p. i75–
i84. 

110. Yang, Z.R., Prediction of caspase cleavage sites using Bayesian bio-basis function 
neural networks. J Bioinform Comput Biol, 2005. 2: p. 511–531. 

111. Aleksander, I. and H. Morton, An Introduction to Neural Computing. 2nd ed. 1995, 
London: International Thomson Computer Press. 

112. Mooney, R., et al. An experimental comparison of symbolic and connectionist learning 
algorithms. in Proceedings of the International Joint Conference on Artificial 
Intelligence. 1989. San Mateo, CA: Morgan Kaufmann. 

113. Shavlik, J., R. Mooney, and G. Towell, Symbolic and neural learning algorithms: An 
experimental comparison (Technical Report #857). 1989, Computer Sciences 
Department, University of Wisconsin: Madison, WI. 

114. Weiss, S. and I. Kapouleas. An empirical comparison of pattern recognition, neural nets, 
and machine learning classification methods. in Proceedings of the International Joint 
Conference on Artificial Intelligence. 1989. San Mateo, CA: Morgan Kaufmann. 

115. Draghici, S. and R.B. Potter, Predicting HIV drug resistance with neural networks. 
Bioinformatics, 2003. 19: p. 98–107. 

116. Specht, D.F., Probabilistic neural networks. Neural Networks, 1990. 3: p. 109–118. 
117. Cortes, C. and V.N. Vapnik, Support vector networks. Mach Learn, 1995. 20: p. 273–297. 
118. Joachims, T. A statistical learning model of text classification with support vector 

machines. in Proceedings of the 24th Conference on Research and Development in 
Information Retrevial (SIGIR). 2001. New Orleans: Association for Computing 
Machinery. 

119. DeCoste, D. and B. Scholkopf, Training invariant support vector machines. Mach Learn, 
2002. 46(1): p. 161–190. 

120. Fritsche, H.A., Tumor markers and pattern recognition analysis: A new diagnostic tool 
for cancer. J Clin Ligand Assay, 2002. 25: p. 11–15. 

121. Brown, M.P., et al., Knowledge-based analysis of microarray gene expression data by 
using support vector machines. Proc Natl Acad Sci USA, 2000. 97(1): p. 262-267. 

122. Hua, S. and Z. Sun, A novel method of protein secondary structure prediction with high 
segment overlap measure: support vector machine approach. J Mol Biol, 2001. 308: p. 
397–407. 



Biblography         92 
123. Bock, J.R. and D.A. Gough, Predicting protein--protein interactions from primary 

structure. Bioinformatics, 2001. 17: p. 455-460. 
124. Burges, C.J.C., A tutorial on support vector machines for pattern recognition Data 

Mining and Knowledge Discovery, 1998. 2(2): p. 121–167. 
125. van der Walt, C.M. and E. Barnard. Data characteristics that determine classifier 

performance. in Proceedings of the Sixteenth Annual Symposium of the Pattern 
Recognition Association of South Africa. 2005. Langebaan, South Africa. 

126. Vapnik, V., The Nature of Statistical Learning Theory. 1995, Berlin: Springer-Verlag. 
127. Vapnik, V., Statistical Learning Theory. 1998, New York: Wiley. 
128. Burges, C.J.C. and D.J. Crisp. Uniqueness of the SVM solution. in Neural Information 

Processing Systems 2000. 2000. Vancouver, Canada. 
129. Fletcher, R., Practical Methods of Optimization. 2nd ed. 1987: John Wiley and Sons, Inc. 
130. Cristianini, N. and J. Shawe-Taylor, An Introduction to Support Vector Machines and 

other Kernel-based Learning Methods. 2000: Cambridge University Press. 
131. Schölkopf, B. and e. al. Prior knowledge in support vector kernels. in Advances in Neural 

Information Processing Systems. 1998. Denver, CO, USA: MIT Press. 
132. Burges, C.J.C. Simplified support vector decision rules. in Proceedings of the 13th 

International Conference on Machine Learning. 1996. Bari, Italy: Morgan Kaufmann. 
133. Joachims, T., Text categorization with Support Vector Machines. Technical Report, LS 

VIII Number 23. 1997, University of Dotmund. 
134. Boser, B.E., I.M. Guyon, and V. Vapnik. A training algorithm for optimal margin 

classifiers. in Fifth Annual Workshop on Computational Learning Theory. 1992. 
Pittsburg: ACM. 

135. Han, L.Y., et al., Predicting functional family of novel enzymes irrespective of sequence 
similarity: a statistical learning approach. Nuclei Acid Res, 2004. 32(21): p. 6437-6444. 

136. Li, Z.R., et al., PROFEAT: a web server for computing structural and physicochemical 
features of proteins and peptides from amino acid sequence. Nuclei Acid Res, 2006. 
34(Web Server issue): p. W32-W37. 

137. Lo, S.L., et al., Effect of training datasets on support vector machine prediction of 
protein-protein interactions. Proteomics, 2005. 5: p. 876-884. 

138. Cui, J., et al., Prediction of MHC-binding peptides of flexible lengths from sequence-
derived structural and physicochemical properties. Mol Immunol, 2006. 44(5): p. 866-
877. 

139. Dubchak, I., et al., Recognition of a protein fold in the context of the Structural 
Classification of Proteins (SCOP) classification. Proteins, 1999. 35: p. 401-407. 

140. Han, L.Y., et al., Prediction of RNA-binding proteins from primary sequence by a support 
vector machine approach. RNA, 2004. 10: p. 355-368. 

141. Bock, J.R. and D.A. Gough, Whole-proteome interaction mining. Bioinformatics, 2003. 
19: p. 125-134. 

142. Chou, K.C., Prediction of protein subcellular locations by incorporating quasi-sequence-
order effect. Biochem Biophys Res Commun, 2000. 278(2): p. 477-483. 

143. Chou, K.C. and Y.D. Cai, Prediction of protein subcellular locations by GO-FunD-
PseAA predictor. Biochem Biophys Res Commun, 2004. 320(4): p. 1236-1239. 

144. Schneider, G. and P. Wrede, The rational design of amino acid sequences by artificial 
neural networks and simulated molecular evolution: de novo design of an idealized 
leader peptidase cleavage site. Biophys J, 1994. 66: p. 335-344. 

145. Farnum, M., R. DesJarlais, and D.K. Agrafiotis, Molecular diversity, in Handbook of 
Chemoinformatics: From Data to Knowledge, J. Gasteiger, Editor. 2003, Wiley: 
Chichester. p. 1641-1685. 

146. Todeschini, R. and V. Consonni, Handbook of Molecular Descriptors. 2000, Weinheim: 
Wiley. 



Biblography         93 
147. Zhang, Z.D., S. Kochhar, and M.G. Grigorov, Descriptor-based protein remote homology 

identification. Protein Sci, 2005. 14: p. 431-444. 
148. Al-Shahib, A. and R.D.G. Breitling, Feature selection and the class imbalance problem 

in predicting protein function from sequence. Appl Bioinformatics, 2005. 4(3): p. 195-
203. 

149. Over, T.M., The best two independent measurements are not the two best. IEEE Trans 
Syst Man Cyb, 1965. 14: p. 326–334. 

150. Jain, A.K. and B. Chandrasekaran, Dimensionality and sample size considerations in 
pattern recognition practice, in Handbook of Statistics, P.R. Krishnaiah and I.N. Kanal, 
Editors. 1982, North-Holland: Amsterdam. p. 835–855. 

151. Watanabe, S., Pattern Recognition: Human and Mechanical. 1985, New York: Wiley. 
152. Guyon, I. and A. Elisseeff, An introduction to variable and feature selection. J Machine 

Learn Res, 2003. 3: p. 1157-1182. 
153. Reeves, S.J. An improved sequential backward selection algorithm for large-

scaleobservation selection problems. in Proceedings of the 1998 IEEE International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP). 1998. Seattle, 
Washington, USA. 

154. Brown, R. and Y. Martin, Use of structure-activity data to compare structure-based 
clustering methods and descriptors for use in compound selection. J Chem Inf Comput 
Sci, 1996. 36(3): p. 572-584. 

155. Cramer, R.D., D.E. Patterson, and J. Bunce, Comparative molecular field analysis 
(CoMFA): 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc, 
1988. 110: p. 5959-5967. 

156. Glen, W., W. Dunn, and R. Scott, Principal components analysis and partial least 
squares regression. Tetrahedron Comput Methodol, 1989. 2: p. 349-376. 

157. Matter, H., Selecting optimally diverse compounds from structure databases a validation 
study of two-dimensional and three-dimensional molecular descriptors. J Med Chem, 
1997. 40(8): p. 1219-1229. 

158. Matter, H. and T. Pötter, Comparing 3D pharmacophore triplets and 2D fingerprints. for 
selecting diverse compound subsets. J Chem Inf Comput Sci, 1999. 39: p. 1211-1225. 

159. Patterson, D.E.P., et al., Neighborhood behavior: A useful concept for validation of 
"molecular diversity" descriptors. J Med Chem, 1996. 39(16): p. 3049-3059. 

160. Xue, L. and J. Bajorath, Molecular descriptors in chemoinformatics, computational 
combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen, 
2000. 3(5): p. 363-372. 

161. Xue, L., J. Godden, and J. Bajorath, Identification of a preferred set of descriptors for 
compound classification based on principcal component analysis. J Chem Inf Comput 
Sci, 1999. 39: p. 669-704. 

162. Xue, L., J. Godden, and J. Bajorath, Evaluation of descriptors and mini-fingerprints for 
the identification of molecules with similar activity. J Chem Inf Comput Sci, 2000. 40(5): 
p. 1227-1234. 

163. de Cerqueira Lima, P., et al., Combinatorial QSAR modeling of P-glycoprotein 
substrates. J Chem Inf Model, 2006. 46(3): p. 1245-1254. 

164. Katritzky, A. and E. Gordeeva, Traditional topological indices vs electronic, geometrical, 
and combined molecular descriptors in QSAR/QSPR research. J Chem Inf Comput Sci, 
1993. 33(6): p. 835-857. 

165. Kovatcheva, A., et al., Combinatorial QSAR of ambergris fragrance compounds. J Chem 
Inf Comput Sci, 2004. 44(2): p. 582-595. 

166. Burbidge, R., et al., Drug design by machine learning: support vector machines for 
pharmaceutical data analysis. Comput Chem, 2001. 26(1): p. 5-14. 



Biblography         94 
167. Platt, J.C., Sequential Minimal Optimization: A fast algorithm for training support vector 

machines, in Microsoft Research. Technical Report MSR-TR-98-14. 1998. 
168. Osuna, E., R. Freund, and F. Girosi. An improved training algorithm for support vector 

machines. in Neural Networks for Signal Processing VII-Proceedings of the 1997 IEEE 
Workshop. 1997. Amelia Island, FL, USA. 

169. Aizerman, M., E. Braverman, and L. Rozonoer, Theoretical foundations of the potential 
function method in pattern recognition learning. Automat Rem Contr 1964. 25: p. 821–
837. 

170. Courant, R. and D. Hilbert, Methods of Mathematical Physics. 1953: Interscience. 
171. Schölkopf, B., et al., Comparing support vector machines with gaussian kernels to radial 

basis function classifiers. IEEE Trans Sign Process, 1997. 45: p. 2758–2765. 
172. Chou, K.C., Prediction of membrane protein types by incorporating amphipathic effects. 

J Chem Inf Model, 2005. 45(2): p. 407-413. 
173. Gao, Q.B., et al., Prediction of protein subcellular location using a combined feature of 

sequence. FEBS Lett, 2005. 579(16): p. 3444-3448. 
174. Broto, P., G. Moreau, and C. Vandicke, Molecular structures: perception, 

autocorrelation descriptor and SAR studies. Eur J Med Chem, 1984. 19: p. 71-78. 
175. Moreau, G. and P. Broto, Autocorrelation of molecular structures, application to SAR 

studies. Nour J Chim, 1980. 4: p. 757-764. 
176. Moran, P.A., Notes on continuous stochastic phenomena. Biometrika, 1950. 37: p. 17-23. 
177. Geary, R.C., The contiguity ratio and statistical mapping. The Incorporated Statistician, 

1954. 5: p. 115-145. 
178. Dubchak, I., et al., Prediction of protein folding class using global description of amino 

acid sequence. Proc Natl Acad Sci USA, 1995. 92: p. 8700-8704. 
179. Grantham, R., Amino acid difference formula to help explain protein evolution. Science, 

1974. 185: p. 862-864. 
180. Chou, K.C., Prediction of protein cellular attributes using pseudo-amino acid 

composition. Proteins 2001. 43(3): p. 246-255. 
181. Lin, H.H., et al., Prediction of transporter family from protein sequence by support vector 

machine approach. Proteins, 2006. 62: p. 218-231. 
182. Shepherd, A.J., D. Gorse, and J.M. Thornton, A novel approach to the recognition of 

protein architecture from sequence using Fourier analysis and neural networks. Proteins, 
2003. 50(2): p. 290-302. 

183. Eisenhaber, F., et al., Prediction of secondary structural content of proteins from their 
amino acid composition alone. I. New analytic vector decomposition methods. Proteins, 
1996. 25(2): p. 157-168. 

184. Grassmann, J., et al., Protein fold class prediction: new methods of statistical 
classification. Proc Int Conf Intell Syst Mol Biol, 1999: p. 106-112. 

185. Reczko, M. and H. Bohr, The DEF data base of sequence based protein fold class 
predictions. Nuclei Acid Res, 1994. 22(17): p. 3616-3619. 

186. Chou, K.C. and Y.D. Cai, Using functional domain composition and support vector 
machines for prediction of protein subcellular location. J Biol Chem, 2002. 277: p. 
45765-45769. 

187. Hua, S. and Z. Sun, Support vector machine approach for protein subcellular localization 
prediction. Bioinformatics, 2001. 17(8): p. 721-728. 

188. Kawashima, S. and M. Kanehisa, AAindex: amino acid index database. Nuclei Acid Res, 
2000. 28(1): p. 374. 

189. Cid, H., et al., Hydrophobicity and structural classes in proteins. Protein Eng, 1992. 5(5): 
p. 373-375. 

190. Bhaskaran, R. and P.K. Ponnuswammy, Positional flexibilities of amino acid residues in 
globular proteins. Int J Pept Protein Res, 1988. 32: p. 242-255. 



Biblography         95 
191. Charton, M. and B.I. Charton, The structural dependence of amino acid hydrophobicity 

parameters. J Theor Biol, 1982. 99: p. 626-644. 
192. Chothia, C., The nature of the accessible and buried surfaces in proteins. J Mol Biol, 

1976. 105: p. 1-12. 
193. Bigelow, C.C., On the average hydrophobicity of proteins and the relation between it and 

protein structure. J Theor Biol, 1967. 16: p. 187-211. 
194. Charton, M., Protein folding and the genetic code: an alternative quantitative model. J 

Theor Biol, 1981. 91: p. 115-123. 
195. Dayhoff, H. and H. Calderone, Composition of proteins. Altas Protein Seq Struct, 1978. 

5: p. 363-373. 
196. Japan, G., Amino acid indices and similarity matrices. 2005. 
197. Lin, Z. and X.M. Pan, Accurate prediction of protein secondary structural content. J 

Protein Chem, 2001. 20(3): p. 217-220. 
198. Home, D.S., Prediction of protein helix content from an autocorrelation analysis of 

sequence hydrophobicities. Biopolymers, 1988. 27: p. 451–477. 
199. Sokal, R.R. and B.A. Thomson, Population structure inferred by local spatial 

autocorrelation: an example from an Amerindian tribal population. Am J Phys 
Anthropol, 2006. 129: p. 121–131. 

200. Tomii, K. and M. Kanehisa, Analysis of amino acid indices and mutation matrices for 
sequence comparison and structure prediction of proteins. Protein Eng, 1996. 9: p. 27-36. 

201. Damborsky, J., Quantitative structure-function and structure-stability relationships of 
purposely modified proteins. Protein Eng, 1998. 11(1): p. 21-30. 

202. Hopp, T.P. and K.R. Woods, Prediction of protein antigenic determinants from amino 
acid sequences. Proc Natl Acad Sci USA, 1981. 78(6): p. 3824-3828. 

203. Chou, K.C., Using amphiphilic pseudo amino acid composition to predict enzyme 
subfamily classes. Bioinformatics, 2005. 21: p. 10-19. 

204. Feng, Z.P., An overview on predicting the subcellular location of a protein. In Silico 
Biol, 2002. 2: p. 291-303. 

205. Wu, C.H., et al., Protein family classification and functional annotation. Comput Biol 
Chem, 2003. 27: p. 37. 

206. Bateman, A., et al., The Pfam protein families database. Nuclei Acid Res, 2004. 
32(Database issue): p. D138-D141. 

207. Corpet, F., et al., ProDom and ProDom-CG: Tools for protein domain analysis and 
whole-genome comparisons. Nuclei Acid Res, 2000. 28: p. 267–269. 

208. Barker, W.C., F. Pfeiffer, and D.G. George, Superfamily classification in PIR 
international protein sequence database. Methods Enzymol, 1996. 266: p. 59–71. 

209. Yona, G., N. Linial, and M. Linial, ProtoMap: Automatic classification of protein 
sequences and hierarchy of protein families. Nuclei Acid Res, 2000. 28: p. 49–55. 

210. Falquet, L., et al., The PROSITE database, its status in 2002. Nuclei Acid Res, 2002. 
30(1): p. 235–238. 

211. Attwood, T.K., et al., PRINTS and PRINTS-S shed light on protein ancestry. Nuclei Acid 
Res, 2002. 30: p. 239–241. 

212. Lo Conte, L., et al., SCOP database in 2002: Refinements accommodate structural 
genomics. Nuclei Acid Res, 2002. 30: p. 264–267. 

213. Pearl, F.M.G., et al., A rapid classification protocol for the CATH domain database to 
support structural genomics. Nuclei Acid Res, 2001. 29: p. 223–227. 

214. Huang, H., C. Xiao, and C.H. Wu, ProClass protein family database. Nuclei Acid Res, 
2000. 28: p. 273–276. 

215. Wu, C.H., et al., iProClass: An integrated, comprehensive, and annotated protein 
classification database. Nuclei Acid Res, 2001. 29: p. 52–54. 



Biblography         96 
216. Apweiler, R., et al., The InterProt Database, an integrated documentation resource for 

protein families, domains, and functional sites. Nuclei Acid Res, 2001. 29: p. 37–40. 
217. Chou, K.C. and Y.D. Cai, Predicting enzyme family class in a hybridization space. 

Protein Sci, 2004. 13: p. 2857-2863. 
218. Chou, K.C. and D.W. Elrod, Prediction of enzyme family classes. J Proteome Res, 2003. 

2: p. 183-190. 
219. NC-IUBMB, Enzyme Nomenclature. 1992, San Diego, California: Academic Press. 
220. Chou, K.C., Prediction of G-protein-coupled receptor classes. J Proteome Res, 2005. 4: 

p. 1413-1418. 
221. Chou, K.C. and D.W. Elrod, Bioinformatical analysis of G-protein-coupled receptors. J 

Proteome Res, 2002. 1: p. 429-433. 
222. Busch, W. and M.H.J. Saier, The transporter classification (TC) system. Crit Rev 

Biochem Mol Biol, 2002. 37(5): p. 287-337. 
223. TCDB, Transport Classification Database, Saier Lab Bioinformatics Group. 
224. Suzuki, J.Y., D.W. Bollivar, and C.E. Bauer, Genetic analysis of chlorophyll 

biosynthesis. Ann Rev Genet, 1997. 31: p. 61-89. 
225. Lin, H.H., et al., Prediction of the functional class of lipid binding proteins from 

sequence-derived properties irrespective of sequence similarity. J Lipid Res, 2006. 47: p. 
827-831. 

226. Dutta, A.S. and A. Garner, The pharaceutical industry and research in 2002 and beyond. 
Drug News Perspect, 2003. 16(10): p. 637–648. 

227. Joet, T., et al., Why is the plasmodium falciparum hexose transporter a promising new 
drug target? Expert Opin Ther Target, 2003. 7(5): p. 593-602. 

228. Baenzigner, J.U., Protein-specific glycosyltransferase: how and why they do it! FASEB J, 
1994. 8(13): p. 1019-1025. 

229. Kapitonov, D. and R.K. Yu, Conserved domains of glycosyltransferase. Glycobiology, 
1999. 9: p. 961-978. 

230. Drews, J., Genomic sciences and the medicine of tomorrow. Nat Biotechnol, 1996. 
14(11): p. 1516-1518. 

231. Gudermann, T.B., B. Nurnberg, and G. Schultz, Receptors and G proteins as primary 
components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: 
structure and function. J MOl Med, 1995. 73(2): p. 51-63. 

232. Muller, G., Towards 3D structures of G protein-coupled receptors: a multidisciplinary 
approach. Curr Med Chem, 2000. 7(9): p. 861-888. 

233. Paulson, J.C. and K.J. Colley, Glycosyltransferase. J Biol Chem, 1989. 264(30): p. 
17645-17618. 

234. Filmore, D., It's a GPCR world, in Modern Drug Discovery (American Chemical 
Society). 2004. 

235. Borst, P. and R.O. Elferink, Mammalian ABC transporters in health and disease. Ann 
Rev Biochem, 2002. 71: p. 537-592. 

236. Hediger, M.A., Structure, function and evolution of solute transporters in prokaryotes 
and eukaryotes. J Exp Biol, 1994. 196: p. 15-49. 

237. Seal, R.P. and S.G. Amara, Excitatory amino acid transporters: a family in flux. Ann Rev 
Pharmacol Toxicol, 1999. 39: p. 431-456. 

238. Saier, M.H.J., A functional-phylogenetic classification system for transmembrane solute 
transporters. Microbiol Mol Biol Rev, 2000. 64: p. 351-411. 

239. Beale, S.I. and J.D. Weinstein, Biochemistry and regulation of photosynthetic pigment 
formation in plants and algae, in Biosynthesis of Tetrapyrroles, P. Jordan, Editor. 1991, 
Elsevier: Amsterdam. p. 155-235. 

240. Glatz, J.F., et al., Cellular lipid binding proteins as facilitators and regulators of lipid 
metabolism. Mol Cell Biochem, 2002. 239: p. 3-7. 



Biblography         97 
241. Downes, C.P., A. Gray, and J.M. Lucocq, Probing phosphoinositide functions in 

signaling and membrane trafficking. Trends Cell Biol, 2005. 15: p. 259-268. 
242. Bernlohr, D.A., et al., Intracellular lipid-binding proteins and their genes. Ann Rev Nutr, 

1997. 17: p. 277-303. 
243. Niggli, V., Structural properties of lipid-binding sites in cytoskeletal proteins. Trends 

Biochem Sci, 2001. 26: p. 604-611. 
244. Balla, T., Inositol-lipid binding motifs: signal integrators through protein-lipid and 

protein-protein interactions. J Cell Sci, 2005. 118: p. 2093-2104. 
245. Pebay-Peyroula, E. and J.P. Rosenbusch, High-resolution structures and dynamics of 

membrane protein--lipid complexes: a critique. Curr Opin Struct Biol, 2001. 11: p. 427-
432. 

246. Palsdottir, H. and C. Hunte, Lipids in membrane protein structures. Biochim Biophys 
Acta, 2004. 1666: p. 2-18. 

247. Burd, C.G. and G. Dreyfuss, Conserved structures and diversity of functions of RNA-
binding proteins. Science, 1994. 265: p. 615-621. 

248. Kiledjian, M., et al., Structure and function of hnRNP proteins, in RNA-Protein 
Interactions: Frontiers in Molecular Biology, K. Nagai and I. Mattaj, Editors. 1994, IRL 
Press: Oxford. p. 127-149. 

249. Fierro-Monti, I. and M.B. Mathews, Proteins binding to duplexed RNA: one motif, 
multiple functions. Trends Biochem Sci, 2000. 25: p. 241-246. 

250. Perculis, B.A., RNA-binding proteins: if it looks like a sn(o)RNA. Curr Biol, 2000. 10: p. 
R916-R918. 

251. Perez-Canadillas, J.M. and G. Varani, Recent advances in RNA-protein recognition. Curr 
Opin Struct Biol, 2001. 11: p. 53-58. 

252. Frank, D.N. and N.R. Pace, Ribonuclease P: Unity and diversity in a tRNA processing 
ribozyme. Ann Rev Biochem, 1998. 67: p. 153–180. 

253. Cesari, G., C. Sander, and A. Valencia, A method to predict functional residues in 
proteins. Nat Struct Biol, 1995. 2: p. 171–178. 

254. Elcock, A.H. and J.A. McCammon, Calculation of weak protein-protein interactions: 
The pH dependence of the second virial coefficient. Biophysical, 2001. 80: p. 613–625. 

255. Pawson, T., Protein molecules and signaling networks. Nature, 1995. 373: p. 573–580. 
256. Hermann, T. and E. Westhof, Simulations of the dynamics at an RNA-protein interface. 

Nat Struct Biol, 1999. 6: p. 540–544. 
257. Boeckmann, B., et al., The SWISS-PROT protein knowledgebase and its supplement 

TrEMBL in 2003. Nuclei Acid Res, 2003. 31(1): p. 365-370. 
258. Saier, M.H.J., C.V. Tran, and R.D. Barabote, TCDB: the Transporter Classification 

Database for membrane transport protein analyses and information. Nuclei Acid Res, 
2006. 34(Database issue): p. D181-D186. 

259. Heyer, L.J., S. Kruglyak, and S. Yooseph, Exploring expression data: identification and 
analysis of coexpressed genes. Genome Res, 1999. 9(11): p. 1106-1115. 

260. Li, W.Z. and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets 
of proteins or nucleotide sequences. Bioinformatics, 2006. 22: p. 1658-1659. 

261. Li, W.Z., L. Jaroszewksi, and A. Godzik, Clustering of highly homologous sequences to 
reduce the size of large protein database. Bioinformatics, 2001. 17: p. 282-283. 

262. Li, W.Z., L. Jaroszewksi, and A. Godzik, Tolerating some redundancy significantly 
speeds up clustering of large protein databases. Bioinformatics, 2002. 18: p. 77-82. 

263. Baldi, P., et al., Assessing the accuracy of prediction algorithms for classification: an 
overview. Bioinformatics, 2000. 16(5): p. 412-424. 

264. Provost, F., T. Fawcett, and R. Kohavi. The case against accuracy estimation for 
comparing induction algorithms. in Proc 15th International Conf on Machine Learning. 
1998. San Francisco, California: Morgan Kaufmann. 



Biblography         98 
265. Veropoulos, K., C. Campbell, and N. Cristianini. Controlling the sensitivity of support 

vector machines. in Proceedings of the International Joint Conference on Artificial 
Intelligence (UCAI99). 1999. Sweden: Morgan Kaufmann. 

266. Kim, H. and H. Park, Prediction of protein relative solvent accessibility with support 
vector machines and long-range interaction 3D local descriptor. Proteins, 2004. 54: p. 
557-562. 

267. Chinnasamy, A., W.K. Sung, and A. Mittal, eds. Protein structure and fold prediction 
using tree-augmented bayesian classifier. Pacific Symposium on Biocomputing, ed. R.B. 
Altman, et al. 2004, World Scientific Hawaii, USA. 387–398. 

268. Dubchak, I., et al., Prediction of protein folding class using global description of amino 
acid sequence. Proc Natl Acad Sci USA, 1995. 92(19): p. 8700–8704. 

269. Al-Shahib, A., R.D.G. Breitling, and D. Gilbert, FrankSum: new feature selection method 
for protein function prediction. Int J Neural Syst, 2005. 15: p. 259–275. 

270. Xue, Y., et al., Effect of molecular descriptor feature sleection in support vector machine 
classification of pharmacokinetic and toxicological properties of chemical agents. J 
Chem Inf Comput Sci, 2004. 44: p. 1630–1638. 

271. Chen, C., et al., Predicting protein structural class with pseudo-amino acid composition 
and support vector machine fusion network. Anal Biochem, 2006. 357: p. 116–121. 

272. Hodgman, T.C., A historical perspective on gene/protein funcitonal assignment. 
Bioinformatics, 2000. 16: p. 10–15. 

273. Yu, H., et al. Discovering compact and highly discriminative features or feature 
combinations of drug activities using support vector machines. in Proceedings of the 
IEEE Computer Society Bioinformatics Conference (CSB): 2003. 2003. Standford, CA. 

 
 


	EFFICACY OF DIFFERENT PROTEIN DESCRIPTORS IN PREDICTING PROTEIN FUNCTIONAL FAMILIES USING SUPPORT VECTOR MACHINE
	Prediction performance
	Exceptional
	Good


