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Summary 
 

As a mechanism for the development of the Chinese stock markets, the Chinese 

government has adopted a market segmentation policy that divides its stock market 

into a domestic board (A shares) and a foreign board (B shares and H shares, etc). 

Because of the isolation of Chinese currency from foreign currencies, different 

information environments, different regulatory policies, and different investors, the 

segmented markets have shown different patterns of evolution.  

Though there is a vast literature on various issues related to Chinese segmented 

stock markets, their analyses are usually based on traditionally linear econometric 

models, while the nonlinearity property in market variables has been neglected. In 

recent years, researchers have demonstrated numerous evidences of the nonlinearity 

in economic and finance time series.Thus previous analyses solely depending on 

conventional linear methods may lead to incomplete and incorrect statistical 

inference.  

The objective of this thesis is to adopt three different nonlinear econometric 

models to explore three issues which have been widely studied in recent years. The 

nonlinear modeling techniques adopted in the essays have different features and 

advantages, which enable us to capture three different types of nonlinearity: i.e. 

regime structure shift, long memory process and nonlinear causality in financial time 

series. With these techniques, we study three topics with different research emphases. 

Investigating these issues from a nonlinear point of view will shed more light on 

understanding of the segmentation of Chinese stock markets. 
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The first essay adopts a nonlinear Markov switching GARCH model 

(MS-GARCH) to examine the volatility structure switching across high-low regimes 

in A-share and B-share stock indices in mainland China over years. This chapter aims 

to provide more insightful information on the evolution of volatility characteristics of 

the segmented stock markets. We find evidence of a regime shift in the volatility of 

the four markets, and the MS-GARCH model appears to outperform the single regime 

GARCH model.  The evidence suggests that B-share markets are more volatile and 

shift more frequently between high- and low-volatility regimes. B-share markets are 

found to be more sensitive to international shocks, while A-share markets seem 

immune to international spillovers of volatility. Finally, we find volatility linkage 

asymmetry across A-share and B-share stock markets. 

   The second essay adopts a nonlinear Fractionally Integrated VECM multivariate 

GARCH approach to examine the bilateral relationships among the A-share and 

B-share stock markets in mainland China and the H-share stock market in Hong Kong. 

Our evidence shows that these stock markets are fractionally cointegrated. In each of 

the six pairs, the H-share stock market adjusts to return to equilibrium with the two 

A-share stock markets as well as the two B-share markets, while two B-share markets 

adjust to return to equilibrium with the corresponding two A-share markets. We 

conclude that A-share markets have strongest power in the long run. Analyses of the 

spillover effects across these markets indicate that the H-share market plays a very 

influential role in influencing segmented stock markets in mainland China. 

Investigation of the dynamic path of correlation coefficients suggests the relaxation of 
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government restrictions on the purchase of B shares by domestic residents accelerates 

the market integration process of A-share markets with the B-share and H-share 

markets. The effects of the Asian crisis on the stock-return dynamic correlations vary 

across these markets. 

The third essay adopts both linear and nonlinear Granger causality tests to 

investigate the lead-lag relation among four Chinese segmented stock markets before 

and after Chinese government relaxed the restriction on the purchase of B shares by 

domestic investors. The evidences show that there exists strong nonlinear dependence 

among the four stock markets. Our findings reveal that the causality relation among 

China stock indices is more complicated than what the linear causality test reveals. 

More specifically, only linear causality from Shenzhen A index to Shenzhen B index 

is present after China implemented the policy, while our nonlinear Granger causality 

test reveal evidence of stronger bi-directional causal relationship between two A-share 

markets as well as between two B-share markets after the implementation of the 

policy. Furthermore, A-share markets tend to lead their B-share counterparts in the 

same stock exchange since the implementation of this new policy.  
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Chapter 1:  Introduction  

 

1.1 Research Background 

China has experienced dramatic economic growth in the past decade. Its average 

annual growth rate is about 9%, much higher than that of the world economy. As one 

important component of the Chinese economy, Chinese stock markets have also 

expanded rapidly. Within only 11 years, the number of listed companies traded in 

Mainland China has grown from 323 in 1995 to 1380 in December 2005, and its total 

market capitalization has increased from RMB 348 billion to RMB 3243 billion.  

As a mechanism for developing its stock markets, the Chinese government has 

adopted a market segmentation policy, which has two implications. Firstly, each 

company’s stock is restricted to one of the two exchanges, i.e. Shanghai Stock 

Exchange (SHSE) and the Shenzhen Stock Exchange (SZSE). In this way, the 

markets in these two exchanges remain distinct. In addition, the companies listed in 

SHSE are likely to be state-owned big companies, many of which monopolize 

supplies to the domestic market (Kim and Shin, 2000). Whereas those listed in the 

SZSE tend to be smaller export-oriented companies, many of which are joint ventures. 

Although cross listing is not permitted, the two exchanges are subject to the same 

macroeconomic and policy factors.  

Secondly, to cater to the needs of different investors, Chinese companies can issue 

A shares to Chinese citizens living in mainland China and B shares to foreign 
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investors, including Chinese investors residing in Hong Kong, Macau, or Taiwan1. 

Though investors trading A shares outnumber those trading B shares, the former 

group is composed mostly of individual investors without much experience or many 

resources to obtain and analyze new information, while the latter group is dominated 

by experienced foreign institutional investors (Tian and Wan, 2004). A and B shares 

are listed on the SHSE and the SZSE, namely, SHA, SHB, SZA, and SZB. A shares 

are denominated in the local currency (RMB), while B shares are denominated in U.S. 

dollars on the SHSE and Hong Kong dollars on the SZSE.  

Besides A shares and B shares, the Chinese government also allows some 

companies to issue red chip, H, N, and S shares in accordance with different listing 

locations and investors. Interestingly, although mainland enterprises are allowed to 

issue two classes of shares in China-related stock markets, the shares are usually 

observed to trade at significantly different prices2. Among these types of shares, H 

and red-chip shares are traded on the Hong Kong Stock Exchange (HKSE) and are 

denominated in HK dollars. H-shares are usually the stocks of state-owned enterprises 

(SOEs) incorporated in mainland China. Red Chips are the stocks of companies 

controlled by mainland government or SOEs, but incorporated in Hong Kong. The 

Hong Kong entity is usually a shell corporation of mainland counterpart and is 

                                                 
1 This restriction was relaxed on February 19, 2001, when it became permissible for domestic citizens to buy and 
sell B shares. Since then, Chinese citizens are allowed to hold B shares. Though they still cannot freely exchange 

foreign currency, they are allowed to exchange some quota of foreign currencies and put them in special accounts 

to invest in B shares. Due to this policy more and more Chinese investors are willing to trade in B-share stocks 

now.  
2 A listed company can issue shares on either the A- and B-share markets, or the A- and H-share markets. 
 

 2



capitalized through public offering. The so called N shares and S shares are the stocks 

of Chinese enterprises that have been chosen to be listed on the New York Stock 

Exchange (NYSE) as American Depository Receipts (ADRs)3 and in Singapore Stock 

Exchange (SSE). They are denominated in U.S. dollars and Singapore dollars, 

respectively.  

Information environment and regulatory policies are also different among 

segmented stock markets. Because foreign broad stocks, namely red-chip, B, H, N 

and S shares, are traded in other locations and subject to different groups of investors 

and market conditions, the information environment and regulatory policies of these 

shares are different from those of A-share (Abdel-khalik et al. (1999), Cheng (2000) 

and Sami and Zhou (2004)).     

The information environment of A shares seems to be dominated by local 

regulations and customs at the time of offering or trading. In addition, the information 

environment of A shares appears to be relatively unstructured, underdeveloped and is 

affected by informal communication between various groups. In addition, the 

financial reporting of A-share stocks adheres to the Chinese local markets, which are 

prepared and audited, respectively under the Chinese Generally Accepted Accounting 

Principles (Chinese GAAP). As to external monitoring, other than the roles played by 

state officials and appointed managers, external monitoring of A shares appears to be 

                                                 
3 Most non-U.S. issuers enter the U.S. markets by creating ADRs. ADRs are issued by a U.S. depository bank (e.g., 

Bank of New York, Citibank, J.P. Morgan) and represent shares of a foreign corporation. The U.S. bank is 

responsible for currency conversion between underlying foreign shares and ADRs, for dividend payments, and for 

information collection and dissemination. All China-backed companies listed on NYSE are in the form of ADRs. 
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limited.  Independence and social acceptance of auditing appear to be making slow 

progress, especially when the majority of domestic CPA (Certificated Public 

Accountant) firms are government owned4.  

In contrast, the information environment for the foreign broad shares is more 

structured, developed and is not too different from information environment present in 

developed capital markets. Their financial reporting adheres to International 

Accounting Standards (IASs) and financial statements are audited by CPA firms with 

international practice. The information-release requirements for these shares are more 

stringent than those for the firms issuing A-share only. Finally, foreign investors, 

mainly large financial institutions, also act as external monitors. 

There are reasons for issuing different types of stocks in Chinese markets.  First, 

the traditional economic units were believed to lack the capacity to compete with 

modern corporate power. To insulate these units from the impact of external shocks, 

the domestic broad was artificially separated from foreign broad.  Second, issuances 

of a variety of stocks are designed to cater to the needs of different financial 

environments that will help Chinese businesses to raise capital in order to facilitate 

their functioning. However, due to the existence of dual economic characteristics, 

accompanied by the restriction of foreign currency conversion, different regulations 

and different information environments, the segmented markets have shown different 

patterns of evolution. Figure 1.1 shows these patterns5.  

 
                                                 
4 For A-share, and the independence of the auditors is not guaranteed.  
5 As two A-share, two B-share and H-share are the focus of our research in this thesis, we present the price indices 
of these shares only.   
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Price indices of Chinese stock markets 

 

1.2 Objectives   

   Due to its rapid growth and unique features of market segmentation, Chinese 

stock markets have attracted great attention of investors and researchers. Many 

researchers have analyzed Chinese segmented stock markets and their research has 

focused on topics as diverse as, volatility behavior, volatility spillover, lead-lag 

relation in return, stock market efficiency, dynamic linkages with international 

financial markets, long run equilibrium relations among segmented stock markets, 

information asymmetry and price discount etc. However their analyses are usually 

based on traditionally linear econometric methodology while the nonlinearity property 

in market variables has been neglected. 

In recent years, researchers have demonstrated numerous evidences of the 

nonlinearity in economic and finance time series.6 Thus previous analyses solely 

                                                 
6 For instance, there are reports of nonlinearity of the time series for exchange rates (Sarno, 2000; Baum et al., 
2001; Liew et al. 2003, 2004, 2005; Baharumshah and Liew, 2006; among many others), interest rates (van Dijk 
and Franses, 2000; Shively, 2005; Baillie and Kilic, 2006), stock prices (Kanas, 2005; Lim and Liew, 2006), 
relative income (Liew and Lim, 2005), balancing items (Tang et al., 2006), etc..   
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depending on conventional linear methods may lead to incomplete and incorrect 

statistical inference.  

   The objective of this thesis is to adopt three different nonlinear econometric 

models to explore three issues which have been widely studied in recent years. The 

nonlinear modeling technique adopted in each essay has different features and 

advantages, which motivate us to study topics focusing on different research 

emphases for each essay7. Investigation of these issues from a nonlinear point of view 

will shed more light on understanding of the segmentation of Chinese stock markets. 

The empirical results derived from this thesis reveal more complicated nature of 

segmented stock markets, which, in turn, provides useful information to investors and 

fund managers for their investment decisions and strategy in these markets. Our 

findings are also useful for policy makers in setting regulations for these markets.  

 

1.3 Survey of This Thesis 

The first essay investigates volatility structure switching across high-low regimes 

in four stock indices in mainland China (SHA, SZA, SHB and SZB) over years. This 

chapter aims to provide broader and more insightful information on the evolution of 

volatility characteristics of segmented stock markets in China. The structure stability 

issue is particularly relevant to China, since the stock markets over recent years have 

experienced a sequence of policy innovations, reforms, “Asia disease,” and “Russian 

crisis.”  All these shocks are likely to have a significant impact on return correlations 

                                                 
7 There are many forms of nonlinearity. Each type of model can only address one specific form. In addition, three 
essays focus on different research issues in the Chinese segmented market.  
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and volatility covariances as is evident from Karolyi and Stulz’s study (1996). To 

provide more insight into the volatility characteristics and evaluate how external 

shocks are affecting Chinese stocks, it is crucial to distinguish between the 

high-volatility state and the low-volatility state, since market behavior is expected to 

be different in different states. This motivates us to adopt the Markov switching 

GARCH (MS-GARCH) model (Gray, 1996), which allows stochastic regime shifts in 

both the conditional mean and conditional volatility, to analyze the volatility 

evolution in Chinese stock markets. More important, this model has the capacity to 

deal with abrupt changes. The by-product of the estimation of Markov switching 

GARCH model, estimates of the “smoothed probability,” offers us a very powerful 

tool for studying the evolution of volatility switching behaviors in each of the 

segmented stock markets. In our first essay the features of MS-GARCH model 

produce interesting results.  

   The second essay investigates the bilateral relations among two A-share and two 

B-share stock markets in mainland China and the H-share stock market in Hong Kong. 

Within a multivariate system, this essay aims to explore the long-run equilibrium, 

short run dynamic and spillover effects among these markets. Another purpose of this 

essay is to evaluate the effects of changes in financial policy on the dynamic 

correlations between the markets. In particular, we examine the fractional 

cointegration mechanism with a nonlinear Fractionally Integrated VECM (FIVECM) 

model. As a generalization of the standard linear VECM, which allows only the 

first-order lag of the cointegration residual to affect the equilibrium relationship, the 
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nonlinear fractional integrated VECM is superior because it not only enables investors 

to reveal the long-term equilibrium relationships and short-run adjustments among 

co-integrated variables but it also accounts for the possible long memory in the 

cointegration residual series that otherwise might distort the estimation. In addition, 

this chapter specifies the conditional variances of VECM residuals with the 

multivariate GARCH model (Yang, 2001, Giovannini and Grasso, 2004 and Chen et 

al., 2006). Within this framework, both long run relationships, short term adjustment 

and empirical relationships in the mean as well as volatility in a cross-market setting 

can be simultaneously estimated, which is expected to produce more consistent and 

accurate estimation. The empirical results derived from this essay reveal the nature of 

the complicated structure between two different markets, which, in turn, provides 

additional information to investors and fund managers for their investment decisions 

and strategy in these markets.  

  On February 19, 2001, Chinese government adopted a new policy which removes 

the previous restriction on trading B shares by domestic citizens. Due to foreign 

exchange restriction, they may exchange some quota of foreign currencies and put 

them in special accounts for investment in B shares. Since the implementation of this 

policy, more and more Chinese investors now are willing to trade in B-share stocks. 

The third essay thus focuses on analyzing the effect of change in the government 

policy concerning the lead-lag relations among segmented A-share and B-share 

markets. The unique features of A-share and B-share markets in mainland China 

provide a sound background to examine a few well-known finance theories on 
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information transmission between different investors and between stocks of different 

sizes. The financial literature is rife with claims on lead-lag relationship among 

Chinese segmented stock market. However their methodology is based on traditional 

linear models such as Granger causality test, which is well known to possess a low 

power in detecting nonlinear causal relationships. To circumvent this problem, this 

essay contributes by utilizing a nonlinear Granger causality test developed by 

Hiemstra and Jones (1994) in order to investigate existence of any nonlinear lead-lag 

relationship among Chinese segmented stock markets. As this nonlinear test has very 

good power in detecting nonlinear relationships between economic and finance 

variables, it has been widely used by researchers especially in recent years. As 

indicated by our empirical results, nonlinear Granger causality test provides very 

different findings from those based on its linear counterpart. Therefore, this essay also 

recommends that nonlinear Granger causality test should be used in conjunction with 

the conventional linear Granger causality test in practice. 
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Chapter 2: Literature Review 

 

Chinese stock markets have attracted great attention of investors and researchers 

for its rapid growth and unique features of market segmentation. The literature is 

filled with many research papers on Chinese segmented stock markets. The previous 

research related to this thesis can be categorized into following areas in this chapter.  

 

2.1 Price Discount Puzzle8 

Various papers have explored the distinct price behaviors of stocks that are 

simultaneously traded in Chinese segmented markets. Among these studies, one very 

interesting issue related to this thesis is the price differentials among different classes 

of shares.  

Using one year of weekly data (March 1992 to March 1993) on eight stocks that 

have both A shares and B shares for that period, Baily (1994) first reports that B 

shares traded by foreign investors are sold at discounts relative to A shares traded by 

domestic investors, a phenomenon that is inconsistent with the price premiums 

commonly found in other countries (e.g., Bailey and Jagtiani, 1994; Domowitz et al., 

1997; Stulz and Wasserfallen, 1995; Bailey et al., 1999).  

Several explanations have been provided for this exception. Baily (1994) 

hypothesizes this could be due to a lower cost of capital in China, a perception that 

Chinese economic and political risk is not diversifiable, or unduly optimistic Chinese 

                                                 
8 Although price discount puzzle is not the main focus of this thesis, the literature reviewed on this issue provides 
useful information to understand Chinese segmented stock markets, which is related to the three topics of this 
thesis.     
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investors as a source of high prices of A-share stocks. However, his results are based 

on a basic statistical analysis of one year’s weekly data. In a later comprehensive 

study of 11 countries with similar stock market segmentation structures, Bailey et al. 

(1999) conclude that China is a “strange” case and “difficult to explain.” 

Applying both cross sectional and time series analysis, Ma (1996) extends 

Bailey’s (1994) work with a larger data set (weekly data of 38 listed companies that 

have both A and B listed shares, with sample period from August 1992 to August 

1994). Based on his analysis, he provides five possible explanations for the puzzle of 

B-share discounts. These are (1) a lower cost of capital in China; (2) the speculative 

behavior of Chinese investors; (3) low liquidity in the market for B-share stocks; (4) 

low demand for B-share stocks; (5) regulatory changes. He argues that the Chinese 

markets are highly speculative and are driven by the risk preferences of Chinese 

investors. 

Fernald and Rogers (1998) argue that the lower return required by domestic 

investors, and little domestic investment opportunities in China contribute to the price 

discount. Gordan and Li (1999) argue that legal restrictions create the segmented 

market and limit investment opportunities. Thus, domestic investors have inelastic 

demands for equity due to insufficient supply, pushing up the price of class A shares. 

Using data of 70 listed companies for the period January 1995 to August 1999, 

Bergstrom and Tang (2001) address the price discount issue with both cross-sectional 

analysis and time-series analysis. From the cross-sectional analysis, they find that 

information asymmetry between domestic investors and foreign investors, illiquid 
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trading of B shares, diversification benefits from investing in B shares and clientele 

bias against stocks on SHSE are significant determinants in explaining the 

cross-sectional variations in the discount on B shares. In additional, the significance 

of information asymmetry and clientele bias confirms the findings of Chakravarty et 

al. (1998). Moreover, their time series analyses confirm the explanatory power of 

risk-free return difference and foreign exchange risk for the time-variations in the 

discount.  

Chen et al. (2001) implement several tests to examine the price difference 

between A-share and B-share stocks. In their paper, they consider four hypotheses, i.e. 

asymmetry information hypothesis, differential demand hypothesis, liquidity 

hypothesis and differential risk hypothesis. Their panel data analysis indicates that 

price difference is mainly due to illiquid B-share markets: relative illiquid B-share 

stocks have a higher expected return and are priced lower to compensate foreign 

investors for increased trading cost. However, they find that between the two classes 

of shares, B-share prices tend to move more closely with the markets fundamentals 

than do A-share process. They conclude that there exist A-share premium rather than 

B-share discount in Chinese segmented stock markets.  

Focusing on risk analyses, Zhang and Zhao (2003) develop an model to 

decompose the price differential into components attributable to the effects four 

different risks, such as political risk, exchange rate risk, interest rate risk and market 

risk. They attribute the price differentials between A- and B-, and B- and H-shares to 

the different responses of the respective investors to country-specific risk. Their 
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empirical tests show there is a significant difference between the foreign investor's 

attitudes toward the political risk of China. Compared with domestic investors of 

A-shares, foreign investors would require a higher rate of return for B-shares to adjust 

for the country specific political risk of China. Interestingly, they find the valuation 

differential between A-shares and H-shares is more related to firm-specific risk and 

market risk premium differentials. They suggest that their finding implies that, 

because of the increasing integration between the Hong Kong and Chinese mainland 

markets (“one country and two systems”), Hong Kong investors, who have a greater 

tolerance of the political risk involved in H-shares, thus are willing to pay a higher 

price for H-shares relative to B-shares. 

Li et al. (2006) conducts an exploratory study of price discounts on H-share 

relative to A-share. His approach is the conventional asset pricing theory. By studying 

the price behaviors of 13 firms both listed on mainland and Hong Kong stock markets 

over January 1997–March 2002, they find that A-share excess returns are primarily 

explained by the market risk premium from the mainland China. In contrast, their 

results show that H shares excess returns can be explained by risk premiums from 

both Hong Kong and mainland China’s markets, with a larger portion pertaining to 

the former. These results indicate that the price differentials in the Chinese dual-listed 

A shares and H shares are mainly attributable to the deviation in the systemic risk 

premiums of the local markets. Further more, they find that the exchange rate change 

between the currencies of Hong Kong and mainland China does not have any 

significant effects on the price discounts of H shares below A shares. 
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2.2 Volatility Modeling 

Modeling the volatility is an important part of a financial economist job in any 

financial market. Due to its importance, several scholars have examined the behavior 

of the volatility of Chinese segmented stock markets.  

Bailey (1994) analyzes one year of weekly data (March 1992 to March 1993) on 

eight stocks that had both A shares and B shares for that period. He finds B shares to 

be more volatile than A shares.  

   Yu (1996) utilizes the ARCH/GARCH framework to study the volatility of the 

Chinese stock exchanges. He studies daily index return data for both the Shanghai and 

Shenzhen exchanges from their inception date (SHSE December 19, 1990; and SZSE, 

April 3, 1991) to 28 April 1994. He finds evidences in favor of an ARCH (2) model 

for the Shenzhen index returns and a GARCH (1,1) model for the Shanghai index 

returns. 

Su and Fleisher (1998) also adopt an ARCH/GARCH framework to study the 

volatility of the Chinese segmented stock markets. In this paper, they study the 

distributional assumptions underlying the ARCH/GARCH model with a view to 

explaining the fat-tailed property of Chinese stock returns. Three possible error 

distributions, i.e. Normal, Student-t and Stable are considered in their analyses. Their 

empirical results show Stable distribution is favored for all the markets. Finally, they 

report that the volatility changes can be linked to changes in the market regulation 

policies such as price limit policy. 
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   Su and Fleisher (1999) find that A-shares are much more volatile than B-shares. 

They try to explain their finding with an assumption that the contemporaneous 

dependence of stock returns and trading volume on an underlying mixing variable 

represent unobserved intensity of information arrival. They estimate a dynamic model 

under a modified mixture of distribution hypothesis (MMDH). In this study, they 

offers three key findings to explain this question: (1) news enters the A-share market 

more intensively than the B-share market; (2) news is more highly correlated with 

trading for A-shares than for B-shares; and (3) news is more persistent for A-shares 

than for B-shares. Their results also indicate that cross-section variation in 

volatility-related expected intensity of information flows and the amount of informed 

trading are related to information correlates, namely number of investors, variation in 

profits, and firm size. They conclude that the MMDH provides useful insights into the 

underlying causes of A- and B-share volatility behavior in Chinese stock markets.  

   Yeh and Lee (2000) analyze the asymmetric reaction of return volatility to good 

and bad news by utilizing GARCH model. They report that the impact of bad news 

(negative unexpected return) on future volatility is greater than the impact of good 

news (positive unexpected return) of the same magnitude in Taiwan and H-share in 

Hong Kong However, just the opposite is found in the Shanghai and Shenzhen 

B-share stock markets, implying good-news-chasing behavior of the investors. They 

also find that the leverage and volatility feedback effects, although supported by 

Taiwan and H-share data, failed to capture the essence of investor behavior in 
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Mainland China. Moreover, the investors in the two B-share markets in mainland 

China tend to support the trading noise hypothesis. 

   Fredimann and Kohle (2003) analyze volatility clustering in two A-share and two 

B-share indices of the Chinese stock markets with an EGARCH model and a GJR 

GARCH model. They find that these two approaches perform quite similarly. They 

also examine the effect of reintroducing daily price change limits in December 1996 

and find that it is successful in reducing the deterministic volatility component 

significantly in the stock indices.  

 

2.3 Information Asymmetry and Information Transmission 

   Another interesting issue closely related to Chinese stock market segmentation is 

the information asymmetry pattern in Chinese stock markets. Some equilibrium 

pricing models of Chinese market segmentation (e.g., Chakravarty et al. 1998) are 

based on the assumption of the information asymmetry pattern in Chinese stock 

markets. Many other works concerning Chinese stock markets, such as return 

volatility (Su and Fleisher, 1999) and initial public offerings (Mok and Hui, 1998) 

have also produced important implications for the information asymmetry issue, 

regarding whether foreign or domestic investors are better informed in these markets. 

In this section, we review the key findings in the literature. 

   Chakravarty et al. (1998) develop a model, incorporating both information 

asymmetry and market segmentation, and derive a relative equilibrium pricing models 

for A shares and B shares. They find the prices of B-shares are sensitive only to 
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A-share prices and have little relationship to the foreign markets. However, they find 

the prices of A-shares are not sensitive to B-share prices. Based on this, they argue 

that, due to language barriers, different accounting standards and a lack of reliable 

information about the local economy and firms, foreign investors in B-share stock 

markets have less information on Chinese stocks than domestic investors9.  

   By focusing on relationship between the differences in A- and B-share expected 

intensity of information flows and the average B-share discounts, Su and Fleisher 

(1999) hypothesize that the information asymmetry increases international investors’ 

required risk premium for B-shares and reduces their incentives to trade. As a 

consequence, information-induced B-share trading volume is less than that of A-share. 

Their empirical result suggests that one of the reasons for B-shares discount, even 

though both share types are entitled to the same rights and dividends, is that the 

intensity of information arriving at B-share markets is smaller than for A-share 

markets, which lends support to their hypothesis that information asymmetry is 

important in explaining B-share discounts. Generally, their conclusion is consistent 

with that of Chakravarty et al. (1998), which supports foreign investors are less 

informed.  

   Using portfolio returns sorted by liquidity, Chui and Kwok (1998) find positive 

cross-autocorrelation between B- (A-) share stock returns on time t-1 and the 

corresponding A- (B-) share stock returns on time t. They conclude that both A-share 

and B-share affect each other through prior price movement. Further analysis show 

                                                 
9 They believe that this is one reason for the large price discount of B shares. 
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that A-share traders condition much of their trading on the more informative B-share 

returns, implying A-share investors tends to gain more information from the trading 

of B-shares and information mainly flows from the price of B-shares to the price of 

A-shares. In all, they find foreign investors are better informed. They think this is 

because foreign investors may receive information faster than the domestic investors 

due to information barrier in Chinese stock markets created by local government. 

Their results, however, are based on an implicit assumption of a complete long-run 

segmentation between A- and B-shares. This is no basis on which to make such 

assumptions about the relationship between the prices of A- and B-shares (Sjoo and 

Zhang, 2000). 

Focusing on the initial public offerings IPOs in SHSE, Mok and Hui (1998) find 

that A-share initial public offerings IPOs in SHSE are 289% under priced, against a 

mere 26% for B-share IPOs. Based on the theory of Rock (1986), who postulates that 

information about the issuing firm’s value is distributed asymmetrically among the 

informed and the uninformed investors, they find information asymmetry are key 

determinants of this large underpricing discrepancy. They argue that the domestic 

A-share investors are inevitably naive both in the concepts and practices of stock 

investment. In contrast, company information disclosures to foreign investors are well 

provided in B-share IPOs markets. As a consequence, the foreign investors are much 

better informed than the domestic Chinese investors, which would increase the 

ex-ante uncertainty for A-share IPOs, and thus a higher underpricing for A-share IPOs 

than B-share IPOs is expected. 
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   Recently, several groups have studied the information asymmetry and information 

transmission among these Chinese segmented stock markets by carrying out Granger 

causality tests.  

Laurence et al. (1997) examine causality among the two A-share and two B-share 

stock markets in mainland China by applying bivariate causality tests. Their results 

suggest a causal relationship running from the SHB to all other markets and from 

SHA and SZB back to SHB. They argue that the causal relationships from the B-share 

markets to the A-share markets imply that foreign investors in B-share markets exert a 

significant influence on the markets open only to Chinese nationals. 

   Based on the returns of portfolios of individual stocks instead of stock indices, 

Sjoo and Zhang (2000) find that in the larger and more liquid SHSE, information 

flows from foreign to domestic investors, while in the smaller and less liquid SZSE, 

the information diffusion goes in the opposite way. Therefore, their study indicates 

that the direction of the information diffusion is determined by the choice of stock 

exchange. They argue that foreign investors drive the prices of A shares in SHSE 

because domestic investors have problems in acquiring relevant and trustworthy firm 

information from domestic and foreign media. Domestic investors therefore condition 

their investment decisions on observed B-share prices. However, in the smaller SZSE, 

this foreign information advantage might not exist and foreign investors rely on the 

domestic investors to obtain the information on the prospects of the listed companies.  

   Using four Chinese stock indices and applying Granger causality test, Kim and 

Shin (2000) find that stocks listed in Chinese stock exchanges, particularly B shares, 
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tend to lead H-shares in Hong Kong after 1996. They argue that Chinese stocks listed 

in the two exchange of mainland China can incorporate Chinese information into the 

price more efficiently than H-share stocks in Hong Kong. Additionally, they find 

A-shares tended to lead B-shares before 1996, but such relationships either disappear 

or are reversed after 1996. They argue that A-share markets may reflect new 

information more efficiently into price through active trading. Finally, they find B 

shares listed in SHSE tend to lead those in SZSE before 1996. Since then, the 

situation has been reversed. They attribute this finding to a substantial increase in 

trading activities in Shenzhen B shares.  

   Focusing on risk premiums, Fung et al. (2000) apply Granger causality test for the 

cross-market relation between SHSE and SZSE. Their results suggest the latent risk 

premiums in SZA or SZB shares do not reflect information of the latent risk 

premiums in the SHA or SHB. In contrast, the latent risk premiums in SHA or SHB 

respond to information in the corresponding market on the Shenzhen stock exchange. 

However, the latent risk premiums in Shenzhen A or B shares do not reflect 

information of the latent risk premiums in SZA or SZB. Therefore, their study 

suggests the Shenzhen markets lead the Shanghai markets rather than the other way 

around. 

   Using daily time series and a new Granger causality testing procedure developed 

by Toda and Yamamoto (1995) 10 , Tian and Wan (2004) investigate a causal 

relationship among A-, B- and H-shares. Their results suggest that there are 

                                                 
10 This is still a linear econometric methodology. 
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bi-directional causal relations between two B-share markets during the entire period 

between 1993 and 1999 but this pattern does not exist within two A-share markets. 

Furthermore, they provide evidence of a Granger causality running from H-share 

market to two B-share markets and from SHB to all the rest Chinese markets for the 

post-1996 period. Overall, their results suggest that foreign investors in B-shares 

market particularly Shanghai market might more cost effectively acquire both 

market-wide and company-wide information than domestic traders and Hong Kong 

traders in turn have better information than these foreign institutional investors in 

B-share markets in Mainland China. 

Yeh and Lee (2000) examine information transmission of contemporaneous and 

cross-period by exploring the interaction of unexpected returns among these four 

markets. The results of their VAR model reveal that the H-share market does not have 

impact on the Shanghai and Shenzhen composite indices, which are dominated by 

A-share. However, the unexpected shocks coming from the H-share stock market do 

have most influential contemporaneous and cross-period influence on the Taiwan, 

Shanghai, and Shenzhen B-share markets. 

Several researchers have extended the research work from return linkages to 

volatility linkage among Chinese segmented stock markets.  

Focusing on causal relationships in both stock return and return volatility, Chen et 

al. (2001) test the Granger causal relationship between A-share and B-share stocks. 

Their results show that, there is no causal relations between A-share return (volatility) 
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and B-share (volatility). This implies that the changes in A-share returns are not 

informative for the change in B-share returns, and vice versa11.  

   Li (2003) applies a TGARCH model and he finds that information transmission in 

return volatility, which is defined as the impact of volatility of one market on the 

volatility of the other market, is weak. His results indicate the existence of three 

groups of information linkages, respectively. He uses the symbol of arrow to indicate 

the direction of information transmission and summarizes his finding as: (1) no 

information transmission (SHA SZA, SHB SHA, SHB SZB, SZB SHA and 

SZB SZA); (2) weak information transmission (SHA SHB, SHA SZB, 

SHB SZA, SZA SHB and SZA SZB); and (3) strong information transmission 

(SZA SHA and SZB SHB).  

Brooks and Ragunathan (2003) examine the Chinese stock volatility linkage with 

AR, VAR and univariate GARCH model. Unlike Chui and Kwok (1998) who find 

evidence of spillovers from B shares to A shares, bi-directional spillovers are found 

for stock return in their analysis. In contrast, no such spillovers are found for the 

volatility of returns: A-share market volatilities are driven by factors in A share 

markets themselves, while B market volatilities are driven by factors in B-share 

markets themselves. They conclude that their results may be consistent with Su and 

Fleisher’s (1999) findings of news having impacts A-shares and B-shares in a 

different manner.  

                                                 
11 Their finding is not consistent with the asymmetric information hypothesis, which anticipates a one way causal 

direction between A-share return (volatility) and B-share (volatility).  
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   A few researchers also try to investigate the information transmission mechanism 

within multivariate GARCH framework, which is believed can capture both return 

linkages and volatility linkages between any two segmented stock markets.  

Pong and Fung (2000) apply multivariate EGARCH-in-mean model to examine 

the information flow between H-shares, red chips, Shanghai Composite and Shenzhen 

Composite. They find there is no linkage between the conditional mean and volatility 

in all index returns. Both current and future conditional returns and volatility in all 

indices can be predicted by past information with the exception of the return on the 

Shenzhen Composite Index. They provide evidences of significant return spillover 

effects from the red-chip to the Shenzhen Composite index, then from the Shenzhen 

Composite index to the Shanghai Composite index, and from the Shanghai Composite 

index to the H-share index. As to volatility spillovers, they find volatility spillovers 

running from the red-chip market to the Shanghai equity market and the H-share 

market; then from the H-share market to the Shanghai equity and the Shenzhen equity 

market; and finally from the Shenzhen equity market to the Shanghai equity market. 

Generally, this study demonstrates that red chips play a leading role in the flow of 

information among China-backed securities.  

Adopting VAR and bivariate GARCH-M models, Yeh et al. (2002) analyze the 

information content in premiums of A shares over B shares. They find that the 

unexpected changes in the premium ratio of A-share price over B-share price 

contribute to the return volatility of both A and B shares. 
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   Using weekly stock index data from the period 1992 through 2005, Zheng and 

Wong (2007) employ a two-stage bivariate GARCH model incorporating external 

shocks, to study spillover effect between price return of A-share and B-share and the 

impacts of US and Hong Kong on Chinese markets. Their empirical results show that 

overall, there are spillover effects between A-share and B-share but the evidence is 

not strong. In Shanghai markets, B-share is more influential in the information 

transmission. However, in Shenzhen markets, the spillover effect direction is more 

from A-share to B-share. Moreover, they provide evidence that external effects from 

US and Hong Kong market are much stronger after 1996 and that Hong Kong, as a 

neighbor of mainland China’s economy, is more influential on Shanghai and 

Shenzhen stock markets than US -the superpower economy in the world.  

 

2.4 Long Run Relationships 

 

Ahlgren et al (2003) use a panel cointegration method to examine the 

cointegration between the A and B share prices on two Chinese stock exchanges. The 

data they use is the monthly data of 88 firms listing both A and B shares on either of 

two stock exchanges and sample period is from January 1993 to July 2002. They find 

that the A and B shares prices are cointegrated. They therefore conclude that domestic 

and foreign investors share information in the long run. Further more, their results 

show that cointegration is more likely to be found for firms in the service sector and 

for firms that listed their B shares recently. 
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   Applying a recursive cointegration technique (Diamandis et al., 2000; Hansen and 

Johansen, 1993) and standard cointegration technique, Yang (2003) analyze the long 

run relationship between A-share markets and B-share markets and H-share and 

red-chip in Hong Kong. He finds that each of six markets is not linked with other 

markets in the long run. 

Applying standard cointegration technique, Geng et al. (2005) find there are 

cointegration relations between two A-share markets as well as between two B-share 

markets. However, they do not find the evidence supporting A-share and B-share 

markets are cointegrated with each other.  
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Chapter 3: An empirical analysis of stock volatility under segmented Chinese 

stock markets: A Markov switching GARCH approach 

 

3.1 Introduction   

   As a mechanism for the development of the Chinese stock markets, issues of 

Chinese stocks are mainly divided into A shares (SHA and SZA) and B shares (SHB 

and SZB); both A shares and B shares are listed on the Shanghai Stock Exchange 

(SHSE) and the Shenzhen Stock Exchange (SZSE) of mainland China.12   

 Researchers in international finance (Frankel and Schmukler, 2000; Yang 2003) 

recognize that the issue of market segmentation is closely tied to information 

asymmetry. Given the fact that rational B-share investors have relatively less 

knowledge about Chinese corporate structure and market fundamentals, they are 

unwilling to pay the same prices as the well-informed domestic investors do. 

Asymmetric information thus implies a discount on B-shares (See, for example, 

Bailey (1994), Su (1998) and Chen et al. (2001)).13   

A separate line of research has been advanced by examining the linkage between 

Chinese stock markets and international stock markets (See, for example, Chakravarty 

et al. (1998), Lean and Wong (2004), Brooks and Ragunathan (2003), Wang and Firth 

                                                 
12 As these four shares are the main components in the Chinese markets and they are all traded in mainland China, 

our investigation shall focus on these four markets.  
13 Following this line of reasoning, Chakravarty et al.(1998) and Su and Fleisher (1999) argue that domestic 

investors are better informed than foreign investors about the value of local assets because of the familiarity of the 

language, culture, and institutional setting.  However, no supportive evidence is found by Chui and Kwok (1998) 

and Mok and Hui (1998).  
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(2004) and Zheng and Wong (2006)) or the linkages among four segmented markets 

(See, for example, Laurence et al. (1997), Sjoo and Zhang (2000), Kim and Shin 

(2000), Fung et al. (2000), Yeh and Lee (2000), Tian and Wan (2004), Li (2003) and 

Brooks and Ragunathan (2003)).14 

 Notice that the evidence on the stock return relationship between A- and B- share 

markets or their linkages with foreign markets is useful, since this information can be 

used to justify market efficiency or to construct an optimal, internationally 

diversifiable portfolio.  The evidence of volatility spillover is also meaningful, since 

it provides information about checking for risk shifting.  Despite the 

investment/financial significance of the stability of the stock return correlations and 

cross-market volatility covariances, very few attempts have been made to investigate 

volatility changes across regimes and markets in Chinese stock indices.  This 

stability issue is particularly relevant to China, since the stock markets over recent 

years have experienced a sequence of policy innovations, reform, “Asia disease,” and 

“Russian crisis.”  All these shocks are likely to have a significant impact on return 

correlations and volatility covariances as is evident from Karolyi and Stulz’s study 

(1996). To provide more insight into the volatility characteristics and evaluate how 

external shocks are affecting Chinese stocks, it is crucial to distinguish between the 

high-volatility state and the low-volatility state, since market behavior is expected to 

be different in different states.  This motivates us to adopt the Markov switching 

GARCH (MS-GARCH) model, which allows stochastic regime shifts in both the 

                                                 
14 For detailed information about these papers, please refer to Chapter 2.  
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conditional mean and conditional volatility, to analyze the volatility behavior in 

Chinese stock markets15.  More important, this model has the capacity to deal with 

abrupt changes; the by-product, estimates of the “smoothed probability,” offers us a 

very powerful tool for studying the volatility of switching behaviors in each of the 

segmented stock markets.16    

 The remainder of this chapter is organized as follows. Section 3.2 briefly reviews 

the features of Markov switching models and discusses the MS-GARCH model 

specification as well as its estimation procedure. Section 3.3 presents the data used 

and their corresponding descriptive statistics. Section 3.4 provides empirical results of 

the MS-GARCH model and a discussion. Section 3.5 investigates volatility spillover 

effects among the four segmented markets. Section 3.6 contains concluding remarks. 

 

3.2 Methodology  

3.2.1 Brief Review of Markov Switching Models 

   Many economic and financial time series exhibits occasional structural breaks in 

their levels or volatility. Examples of those include the October 1987 crash of stock 

market and July 1997 Asia Financial Crisis. Regime shifts such as these extreme 

events induce substantial nonlinearities in the stochastic process. This has led to much 

interest among econometricians in models which have the ability to adequately 

                                                 
15 A few researchers (see for example, Bailey (1994), Yu (1996), Su and Fleisher (1998, 1999),  Yeh and Lee 

(2000) and Fredimann and Kohle (2003)  have examined the volatility issue of Chinese stock markets, please 

refer to Chapter 2 for more information.  
16  The properties of the Markov switching GARCH model and its strengths will be discussed in more detail in 

the next section.  
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capture nonlinearities arising from the stochastic shift in regimes (or states). One such 

class of model is Markov switching model, which originally proposed by Hamilton 

(1989) in studying GNP of the USA.   

In the Markov switching models, the mean and (or) variance of a time series can 

switch stochastically between a finite number of regimes where the regime could 

represent distinct phases such as economic expansion or contraction as in Hamilton 

(1989) or stages of high and low volatility in stock market associate with different 

states of the business cycle as in Hamilton and Susmel (1994). See also Cai (1994) 

and Fong (1997) for more information in this line. In all these models, the transition 

between regimes from one period to another is assumed to follow a finite-order 

Markov process (usually the first order).  

Markov switching models are attractive to researchers for many reasons. Firstly, 

in Markov switching models, regimes are assumed to be endogenously decided. This 

feature enables regime shifts can be modeled as a systematic part of data generating 

process. Secondly, regimes are not assumed to be observable to the researchers. 

Instead, they are treated as latent variables which can nevertheless be inferred on the 

basis of observed data (i.e. data itself decides the regime characteristics). Thirdly, 

regime shifts are a source of nonlinearity in the data generation process. Markov 

switching models provide tractable approach for modeling these nonlinearies. Fourth, 

Markov switching models are appealing to diverse group of researchers. For example, 

economic historians and policy makers may wish to understand the timing, duration 

and causes behind regimes shifts. These issues can be analyzed with the aid of 
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smoothed probability curve which is an output of the estimation process. This curve 

essentially summarizes the probability of each regime at any time t over sample 

period, conditional on the whole sample of data available. For example, probability 

curve has been used in the literature to “date” business cycle turning points (See for 

example, Hamilton 1989 and Filardo 1994).         

All the features above, combined with the possibility this nonlinear models may 

deliver better forecasts than linear models, provided for a growing number of 

successful applications using the Markov switching models. The time series examined 

in these applications include interest rates (Hamilton 1988, Cai 1994 and Gray 1996), 

exchange rate (Engle and Hamilton 1990), stock returns (Turner et al. 1989, Schwert 

1989a, 1989b, Hamilton and Susmel 1994, Fong 1997, 2003 and Scaller and Van 

Norden 1997), future market return (Fong 2001, 2002), stock index options (Duekker 

1996), aggregate output (Hamilton 1989, Lam 1990) and arrogate consumption 

(Cechetti et al. 1990)17.  

 

3.2.2 Markov switching GARCH model 

3.2.2.1 Structure of the model 

 The observed financial time series often undergo alternating periods of calm and 

turbulence with clusters of volatility.  To model this phenomenon, a GARCH type 

model has been widely used (Engle, 1982; Bollerslev, 1986; Nelson, 1991; Bollerslev 

et al., 1992). Schwert and Seguin (1990); Nelson (1991); Engle and Mustafa (1992) 

                                                 
17 For detailed review of Markov switching models, please refer to Fong et al. (2003).  
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point out that GARCH models may be limited in their ability to model the volatility of 

financial time series if structural breaks, caused by certain dramatic evens such as the 

stock market crash in 1987, are present.  This means that to obtain more robust 

estimates of conditional volatility would require a more general class of GARCH 

models, allowing for regime shifts as part of the data-generating process.18 

 The Markov switching ARCH/GARCH models introduced by Hamilton (1990), 

Hamilton and Susmel (1994), Cai (1994), and Gray (1996) help us to address this 

issue19. These models allow the conditional volatility process to switch between a 

discrete number of states, with the transitions between states governed by a hidden 

and finite order Markov chain.  In addition, the transition probability of the Markov 

process determines the probability of volatility switching, thus indicating the expected 

duration of each regime.  To examine the behavior of the conditional volatility of 

return of the four segmented Chinese stock markets by incorporating these dynamic 

features, in this paper, we apply a Markov Switching GARCH model (MS-GARCH) 

by first employing a Markov switching model proposed by Gray (1996) as a 

mixture-of-distributions representation such that:  
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18 Although the power ARCH model has been designed to take care of the long memory property of the stock 
return volatility, the regime shift issue has not been resolved (Ding et al., 1993). 
19 For bivariate Markov switching GARCH model, please refer to Edwards and Susmel (2001 and 2003), Fong 
(2003), Lee and Yoder (2006, 2007a and 2007b). 
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where  is the stock return for each series on the time t,tR itμ and are the 

conditional mean and conditional variance at time t, respectively. Both

ith

itμ and are 

allowed to switch between two regimes; for instance, regime 

probability  is probability for Regime 1 conditional on a past 

information set available up to time t-1.  To construct the model, we further specify 

conditional mean by using an AR (1) process due to partial-price adjustment, 

limit-price policy, the existence of feedback trading, or other forms of market frictions 

(Kim and Rogers, 1995; Koutmos, 1998; Antoniou et al., 2005).  The conditional 

estimate volatility is thereafter assumed to evolve by a GARCH (1, 1) process as 

popularized by (Bollerslev et al., 1992): 
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where  and  to ensure that the conditional variance is positive. 

All variance and mean parameters are regime-dependent.  Finally, Markov switching 

is assumed to be governed by a first-order Markov process with the following 

transition probability matrix:  
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where P (Q ) is the transition probability for State =1 (2) conditional on State 1 (2). 

A similar definition applies to Regime (1-P) and (1-Q).
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20  Thus, the state variable 

depends on the previous realization of  through . For example, if =1， and 

P is high, then  is more likely to be drawn from the distribution 1. if =1， and 

P is low, then  is more likely to be drawn from the distribution 2. This thus allows 

for some regimes to be more persistent than others. As stated earlier, a special feature 

of this model is that in addition to capturing the stochastic volatility, it allows us to 

estimate the probability of regime shifting and shed some light on the duration of 

volatility, which is one of the research interests of this study.    

tR 1 1−ts
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One important point is that even though this model has fixed transition 

probabilities, the mixing probability is still time-varying. For the regime probability 

of state 1, it can be written as follows: 

                                                 
20  In his recent paper, Engle (2002) provides alternative stochastic volatility models. In SV models, variance is 

specified to follow some stochastic process. This specification makes SV models very attractive for theoretical 

finance. It has been found that the prices of options based on SV models are more accurate than those based on the 

Black-Scholes model (see, for example, Melino and Turnbull (1990)). Moreover, the SV model is more flexible 

and more powerful than GARCH-type models to explain the well documented time varying volatility. Empirical 

successes of the lognormal SV model relative to GARCH-type models are documented in Danielsson (1994), 

Geweke (1994), and Kim, Shephard and Chib (1998) in terms of in-sample fitting and Yu (2002) in terms of 

out-of-sample forecasting. 
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Based on the Markov assumption: 
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 Clearly, even with fixed transition probabilities, the mixing probability of each 

state is time-varying. The special structure of the Markov switching models makes 

parameter estimation much more complicated than the standard models.  

  

3.2.2.2 Estimation  

 Conditional on Regime i, the normal density function of the stock return, , 

defined in (3.1) is given by: 
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Following Gray (1996), regime probability can be expressed as a nonlinear 

recursive function of the transition probabilities and the conditional distribution of the 

return innovation such that:  

itp
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Thus, the log-likelihood function of this model can be written as: 
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where T is the number of observations. The above log-likelihood function can then be 

constructed recursively using the following expressions for tε and : th
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Equation (3.12) implies: 
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Apparently, Equation (3.13) is not path dependent, as it does not depend on the entire 

past history of conditional variance. Therefore, it can be used recursively to construct 

 via Equation (3.3).  ith

In addition, the estimation of the model gives the “smoothed 

probability” )( Tt isprob Φ= , which provides information about the likelihood that the 

market is in a particular volatility state at time t based on the full sample of 

observations.  Three different algorithms for computing the smoothed probabilities 

were proposed respectively by Hamilton (1989 and 1990), Kim (1994) and Gray 

(1996), respectively. All give identical inference. An r-lag smoothed probability can 

be constructed through a recursive procedure developed by Gray (1996)21 as follows: 
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where  
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dditional 21 It is easy to calculate the r-lag smoothed probability as mentioned by Hamilton (1989), which uses the a

information of r sub-samples up to t-1. 
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The estimation is implemented with GAUSS computation software and its 

constrained maximum likelihood (CML) module. Initial values for the optimization 

are based on estimates from a standard GARCH (1, 1) model. To obtain the negative 

minimum likelihood function values as well as to reduce the possibility of hitting a 

local minimum, we conduct an experiment by employing several starting values.  

Here, we report the estimates with the highest likelihood. As indicated by Gray (1996), 

Fong and Kim (2001, 2002), Fong and Koh (2002) and Fong (2003) etc, some 

parameters might fall to the boundary during estimation process.  

 

3.3 Data and Preliminary Analysis 

3.3.1 Sample Data and Study Period  

 The weekly price indices in this study are Shanghai A-share (SHA), Shenzhen 

A-share (SZA), Shanghai B-share (SHB), and Shenzhen B-share (SZB) taken from 

DataStream International and our sample covers January 1995 through June 2005. 

Weekly indices are used to avoid representation bias from some thinly traded stocks.  

 

3.3.2 Descriptive Statistics  

 Table 3.1 contains information on the mean, standard deviation, skewness 

coefficient, kurtosis coefficient, the Jarque-Bera normality test (JB) and ARCH –LM 
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test. As may be seen from the skewness coefficients, all the returns except SZA are 

skewed to the right. The kurtosis coefficients are in excess of 3.0, implying that the 

distributions of the series have fat tails. The JB statistic suggests that all of the stock 

returns fail to be normally distributed, which is quite typical for financial time series.  

ARCH-LM test is adopted here to examine whether there is ARCH effect. The 

corresponding test statistics at lag 10 signify the presence of ARCH effects in our 

data.  

 

Table 3.1  
Descriptive Statistics for Chinese Stock Market Returns  

 SHA SZA SHB SZB 
Mean 0.101 0.121 0.011 0.170 

Median 0.071 -0.001 -0.229 -0.033 

Maximum 30.485 27.372 19.501 32.306 

Minimum -26.874 -30.877 -17.819 -32.590 

Std. Dev. 3.922 4.328 4.902 5.689 

Skewness 0.497 -0.141 0.494 0.919 

Kurtosis 14.639 12.005 5.391 10.575 

Jarque-Bera 3115.460*** 1853.540*** 152.783*** 1387.251*** 

ARCH-LM(10) 18.303** 34.270*** 63.709*** 34.270*** 
Note: *** and ** indicate significance at the 1% and 5% level, respectively. ARCH-LM (10) is the 

ARCH-LM test statistics up to the 10th order. 

  

With this evidence in hand, it is natural to inquire whether volatilities of stock 

returns in these segmented markets are time varying.  Are the volatility patterns 

among the segmented stock markets different?  What are the durations of volatility 

staying in the high versus the low regime for these markets?  The following sections 

address these issues. 
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3.4 Empirical Results  

3.4.1 Hansen Test for Multiple Regimes 

We begin by testing whether there are indeed regime shifts in the four segmented 

Chinese stock markets by applying Hansen’s (1992, 1996) modified likelihood ratio 

test. Tests of whether there is more than one regime using Markov switching models 

cannot be resolved using standard specification tests such as the likelihood ratio (LR) 

test or its asymptotic equivalent like the Lagrange Multiplier (LM) or Wald tests. This 

is because the asymptotic theory justifying the use of such tests is based on certain 

regularity conditions which are violated in the case of Markov switching models. One 

of these conditions is that all parameters must be identified under the null hypothesis 

of a single regime, in order that the information matrix is non-singular. However, 

under the null of a single regime, parameters related to the second regime cannot be 

identified. Thus, the classical likelihood surface is flat with respect to these 

unidentified “nuisance” parameters. Another regularity condition is that the score 

must not be identically zero under the null hypothesis (i.e. the score must have a 

positive variance). To satisfy the condition, the null hypothesis must not yield a local 

maximum or a point of refection. However, since a single regime model is nested 

within a model of multiple regimes, this regularity condition will be violated under 

the null.  

  To overcome this problem, Hansen (1992, 1996) developed a general but 

computationally demanding standardized likelihood ratio test procedure using 
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empirical process theory that can be applied under non-standard conditions. The 

following is a brief description of the set-up of the Hansen test22.  

  Suppose we have a sample of T observations and we write the log-likelihood 

function as follows: 

 

),(),(
1

θαθα ∑
=

=
T

i
iT lL                                     (3.18) 

 

where θ  denotes parameters identified under both the null and the alternative 

and )''( γβα =  where γ  is a vector of nuisance parameters not identified under the 

null. To simplify the test, we concentrate the parameter vector θ  out of the sample 

likelihood function. Let  

 

),(maxarg)( θααθ
θ TL=

∧

                                  (3.19) 

 

denotes the maximum likelihood estimates of θ  for fixed values of α . The 

concentrated likelihood function is  

 

))(ˆ,()(ˆ αθαα TT LL =                                     (3.20) 

 

Next, define the following statistics which will be used to construct the likelihood 

                                                 
22 A number of other papers have also attempted to address the problems of hypothesis testing under non-standard 

conditions (e.g. Davies, 1977, 1987; Garcia, 1992). 
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ratio LR statistic for testing the number of regimes: 
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The standardized likelihood ratio statistic is: 
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Hansen proves that  is bounded by an asymptotic distribution 

 where the distribution  is defined by: 
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Under the null hypothesis, 0)([ ≤αTLRE

)(* α

(* αTQ

, assuming an empirical Central Limit 

Theorem holds,  which is a Gaussian process with a known 

covariance function. The distribution can be simulated and the supremum 

obtained by taking over all possible values of

)(* α QQT →

)

α . This explains why the test is 

computationally intensive for all but the simplest Markov switching models. In 

practice, the simulations are carried out over a finite grid of nuisance parameters.  

We apply the Hansen’s test to evaluate the null hypothesis of a geometric random  
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walk against the alternative of a two-state Markov switching model with switches in 

mean and variance. In returns form, the single regime random walk model can be 

written as ttR σεμ +=

tts

 while the Markov switching model can be written as 

tit sR εσμ )(+)(=  where )1,0(...~ Ndiitε and i =1, 2 denote two states. The law 

of motion governing switch is assumed to be a first-order Markov process specified in 

Equation (4). Let P and Q denote the Markov transition probabilities for states 1 and 2 

respectively. We start the algorithm by using the stable probabilities for the first state, 

i.e. )Q−2/()1()1 Q(sP t P−−== . Under the null, all parameters γ  associated with 

the second state are unidentified. For the Markov switching model, we have 

)( ,2,2 Q,1P σμγβ =−=  and )( 1,1 σμθ = . Given the computationally intensive 

nature of the test, we consider three grids for ),,( 1,1 QP σμα = . The grids are: 

 

P = .75, .80, .85, .90, .95 

2μ = -.10, -.08, -.06, -.04, -.02, .00, .02, .04, .06, .08 

2σ = .10, .25, .40, .55, .70, .85, 1.00, 1.15, 1.30, 1.45 

 

Grid 1 

Q = .75, .80, .85, .90, .95 

 

P = .75, .80, .85, .90, .95 

2μ = -.10, -.09, -.08, -.07, -.06, -.05, -.04, -.03, -.02, 

-.01, .00, .01, .02, .03, .04 

2σ = .10, .20, .30, .40, .50, .60, .70, .80, .90, 1.00, 1.10, 1.20, 1.30, 

1.40, 1.50 

 

 

Grid 2 

Q = .75, .80, .85, .90, .95 
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P = .40, .50, .60, .70, .80, .90 

2μ = -.10, -.09, -.08, -.07, -.06, -.05, -.04, -.03, -.02, 

-.01, .00, .01, .02, .03, .04 

2σ = .10, .20, .30, .40, .50, .60, .70, .80, .90, 1.00, 1.10, 1.20, 1.30, 

1.40, 1.50 

 

 

Grid 3 

Q = .40, .50, .60, .70, .80, .90 

 

   Grid 1 has 2500 points, grid 2 has 5625 points and grid 3 has 8100 points. Table 

3.2 presents the results of the simulations. For each grid, we report the standardized 

LR statistic, the simulated p-value and the computation in Table 3.2. As indicated, the 

p-values are well below 1%, thus providing formal evidence that there are two 

volatility regimes in four Chinese segmented stock index returns. We conclude from 

the Hansen test that the regimes detected using the Markov switching model are not 

spurious. 

 

Table 3.2 
Results of Hansen Test 

 Grid 1 Grid 2 Grid 3 

SHA 6.940 (0.000) 6.894(0.000) 6.567(0.000) 

SZA 9.185 (0.000) 9.015 (0.000) 8.482 (0.000) 

SHB 8.735 (0.000) 8.698 (0.000) 8.112 (0.000) 

SZB 10.92 (0.000) 10.97 (0.000) 10.43 (0.000) 

Note: The standardized likelihood statistic is computed as )(/)(sup αα TTa VLR where T is sample size, α is 

the vector of nuisance parameters under the null, )(αTLR is the sample likelihood ratio function and )(αTV  is 

the sample variance function to ensure that all values of a yield the same variance for the likelihood ratio. 

Numbers in parentheses are asymptotic p-values obtained via 1000 Monte Carlo simulations for each grid. 
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3.4.2 Performance of MS-GARCH model VS. GARCH model 

 For illustrative purposes and to set a basis for comparison, it is convenient to start 

with an estimation of a standard GARCH (1, 1) model.  The results for the four 

Chinese stock index returns are reported in Table 3.3. Consistent with most financial 

markets, the estimated coefficients of GARCH effects are highly significant for all of 

the markets.   

 

Table 3.3 
Estimates of the AR (1)-GARCH Model 
 

Panel A SHA SZA SHB SZB 

φ0 -0.041(0.125) -0.135 (0.135) -0.153(0.192) -0.037(0.215) 

φ1 0.047(0.048) 0.061(0.048) 0.099(0.049)** 0.134(0.051)*** 

a0 0.650(0.164)*** 0.426 (0.113) *** 1.535(0.367)*** 5.511(1.046)*** 

a1 0.141(0.024)*** 0.116(0.017) *** 0.127(0.024)*** 0.204(0.037)*** 

b1 0.826(0.024)*** 0.868(0.015) *** 0.812(0.028)*** 0.601(0.063)*** 

Panel B Summary statistics and diagnostics 

Log-likelihood -1471.818 -1511.416 -1604.128 -1646.329 

LB(10) 14.865 10.243 17.270 12.358 

LB2(10) 6.388 5.289 11.582 5.601 

Note: *** and ** indicate significance at the 1% and 5% level, respectively. Numbers in parentheses 
are standard errors. LB (10) is the Ljung -Box statistics based on the standardized residuals up to the 
10th orders. LB2 (10) are the Ljung-Box statistics based on the squared standardized residuals. Both 

statistics on the level and squared level are asymptotically distributed as , respectively. )10(2χ
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To highlight the feature of stochastic volatility embodied in Chinese segmented 

markets, we estimate the MS-GARCH model and compare its performance with a 

standard GARCH model.  

 

Table 3.4 
 Estimates of the Markov Switching AR (1)-GARCH Model 

Panel A SHA SZA SHB SZB 

φ10 -0.156(0.141) -0.263 (0.148)* -0.539(0.198)*** 0.463(0.235)** 

φ20 1.277(0.930) 1.732(1.005)* 0.551(0.477) -0.152(0.648) 

φ11 0.056(0.055) 0.038(0.058) -0.124(0.071) -0.025(0.068) 

φ21 -0.093(0.184) -0.022(0.117) 0.308(0.113)*** 0.219(0.156) 

a10 6.977(0.651)*** 7.203(0.664)*** 5.467(1.292)*** 9.458(1.553)*** 

a20 26.073(11.815)** 40.289(14.581)*** 29.556(9.893)*** 27.660(6.453)***

a11 0.031(0.064) 0.101(0.077) @0  0.019(0.041) 

a  
0.024(0.064) 0.001(0.063) 0.046((0.113) 0.526(0.341) 21

b11
@0  @0  0.046(0.158) @0  

b21 0.749(0.3 )** 0.593(0.2 )** 0  0.365(0.1 )** 44 96 .564(0.281)** 72

P 0.973(0.012)*** 0.976(0.011)*** 0  .822 (0.007)*** 0.855(0.068)*** 

Q 0.890(0.043)*** 0.896(0.043)*** 0.736(0.092)*** 0.740(0.091)*** 

d1  
37.037 41.667 5.618 6.897 

d2 9.091 9.615 3.788 3.846 

Panel B Summary statistics and diagnostics 

Lo od -1388.832 -1574.275 g-likeliho -1425.681 -1516.166 

LB(10) 13.402 10.452 14.124 13.783 

LB2(10) 4.698 3.902 13.269 15.482 

Not and * indi nificance at t 5% and 10% respectively. s in e: ***, ** cate sig he 1%,  level,  Number
parentheses are standard errors. @ indicates parameter fell to the boundary. P (Q ) is the transition 
probability for State ts =1 (2) conditional on State 1 (2). d1 and d2 are the duration of regimes 1 and 2, 

which equals 1/(1-P) and 1/ (1-Q), respectively. LB (10) is the Ljung -Box statistics based on the 
standardized residuals up to the 10th orders. LB2 (10) are the Ljung-Box statistics based on the squared 
standardized residuals. Both statistics on the level and squared level are asymptotically distributed as 

)10(2χ , respectively. 
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Table 3.4 reports the estimates of Markov switching GARCH models for four 

stock markets. Apparently, volatilities in the two states are sharply diverse, indicating 

the existence of two distinct volatility regimes.  The unconditional volatility 

parameters (a10 and a20) are statistically significant at the 5% and 1% levels, 

respectively. The evidence shows that the MS-GARCH models fit data much better 

than standard GARCH models.  The log-likelihood values for all MS-GARCH (1, 1) 

models are larger compared to their counterparts of the single regime GARCH (1, 1) 

models. For example, the log-likelihood value of the MS-GARCH (1, 1) model for 

SHA in Table 3.4 is -1388.832, which is much larger than the value -1471.818 to be 

obtained from a single regime GARCH (1, 1) model in Table 3.3.  

   To test the difference in performance, we first calculate the standard likelihood 

ratio (LR) statistic for each pair of models. The likelihood ratio LR statistic is given by: 

LRλ = 2*[(Log L - Log L ], where ( ) is the unconstrained estimator, the 

MS-GARCH (1, 1) model, and (  is the constrained model, GARCH (1, 1) model.  

Under the null hypothesis, the test statistic has a Chi-squared distribution with J 

degrees of freedom, where J is the number of restrictions.  As may be seen in 

Column 4 in Table 3.5, the null hypothesis is decisively rejected and the results favor 

the Markov switching GARCH (1, 1) model for all markets.

)ˆ(θ )~(θ

~θ

θ̂

)

23  To formally evaluate 

these two models, we further compute the statistics proposed by Schwartz (1978) and 

                                                 
23 For example, the LR statistic for SHA is 165.972; its p-value is significant at the 1% level. Notice that the LR 
tests employed in the text should not be viewed as a formal diagnostic checking, since the two models are not 
strictly nested.  The existence of unidentified parameters under the null of a single-regime model may cause the 
MS-GARCH model to violate the assumption for justifying the use of standard LR tests. Moreover, standard 
likelihood ratio (LR) statistic tests may be biased, since it no longer follows the standard distribution. 
Following Gray (1996), we take this test results only for reference.  

2χ
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Akaike (1976). As shown in Table 3.5, the SBC and AIC values of MS-GARCH 

models are significantly higher than those of the standard GARCH models, supporting 

the data-fitting ability of the Markov switching GARCH (1, 1) model over the 

standard GARCH(1,1) model in all markets.  

 

Table 3.5 
The Summary Statistics for GARCH and MS-GARCH Models 

Model No. of 
Parameters

Log- 
likelihood 

LR 
Statistics SBC AIC 

Panel A: SHA 

GARCH (1,1) 5 -1471.818 / -1487.584 -1476.818 

MS-GARCH(1,1) 12 -1388.832 
165.972 

(0.000)*** 
-1426.670 -1400.832 

Panel B: SZA 
GARCH (1,1) 5 -1511.416 / -1527.182 -1511.416 

MS-GARCH(1,1) 12 -1425.681 
171.47 

(0.000)*** 
-1463.519 -1437.681 

Panel C: SHB 
GARCH (1,1) 5 -1604.128 / -1619.894 -1609.128 

MS-GARCH(1,1) 12 -1516.166 
175.924 

(0.000)*** 
-1554.004 -1528.166 

Panel D: SZB 
GARCH (1,1) 5 -1646.329 / -1662.095 -1651.329 

MS-GARCH(1,1) 12 -1574.275 
144.108 

(0.000)*** 
-1612.113 -1586.275 

Note: LR statistics refers to the likelihood ratio test statistic. Numbers in parentheses below the LR statistic are p-value. The 
likelihood ratio LR statistics is computed as follows: 2*(likelihood of 01  of likelihood HH − ), where is the MS-GARCH 
(1, 1) model and is the GARCH (1, 1) model. *** and ** denote statistical significance at the 1% and 5% level, 
respectively. SBC is the Schwarz Bayesian criterion for testing model adequacy and it is calculated as likelihood function 
value-(k/2) ln (T). T is the number of samples. AIC is Akaike’s information criterion and AIC is calculated as the likelihood 
function value-k, k is the model parameter number. 

1H
0H

 

As part of the evaluation process, it is useful to compare the forecast abilities of 

MS-GARCH models and standard GARCH models. To this end, we evaluate the 
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models based on their forecasting accuracy. The forecast errors of one-week-ahead 

forecasts are measured by MSE, RMSE, LES, and |LE|, which are defined as below: 

22
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Table 3.6 displays the results: 

 

Table 3.6 
One-week-ahead Forecast Errors of GARCH and MS-GARCH Models  

Model MSE RMSE LES |LE| 

Panel A: SHA 

GARCH (1,1) 3235.183 56.879 9.230 2.095 

MS-GARCH (1,1) 3130.0466 55.947 9.3076 2.0782 

Panel B: SZA 

GARCH (1,1) 3775.082 61.442 9.961 2.193 

MS-GARCH (1,1) 3608.849 60.074 8.843 2.134 

Panel C: SHB 

GARCH (1,1) 2187.573 46.771 9.186 2.204 

MS-GARCH (1,1) 1983.374 44.535 8.840 2.189 

Panel D: SZB 

GARCH (1,1) 6927.442 83.231 11.539 2.508 

MS-GARCH (1,1) 6872.797 82.902 10.540 2.371 
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It consistently shows that the MS-GARCH models outperform the standard GARCH 

models in forecasting.  

 

3.4.3 Empirical Evidence from the MS-GARCH model 

 Having demonstrated the relative performance, the next question is: what other 

empirical regularities can be derived from the estimates of the MS-GARCH models?  

We shall summarize our findings as follows: First, the estimated volatilities in four 

markets are distinguished from each other in two different states.  It can be shown 

that regime one is a low-variance regime, while regime two is a turbulent state, as 

evidenced by the ratios (3.73, 5.59, 5.41 and 2.92, respectively) of high variance to 

low variance (a20/a10) for SHA, SZA, SHB, and SZB.  

Second, the transition probabilities, P and Q, are highly statistical significant and 

close to one, suggesting the volatility regime is persistent (i.e. market switching 

between high volatility regime and low volatility regime is not so frequent). These 

probabilities measure the magnitude of persistence of each volatility state and a higher 

value suggests a longer length of stay. For instance, the duration of a low volatility 

state  for SHA is about 37 [1/ (1-0.973)] weeks. As indicated in Table 4, the 

values of P (the probability of staying at low volatility) and Q (the probability of 

staying at high volatility) are close to one for all of the markets.

1d

24  In contrast, (1-P) 

(the probability of shifting from a low volatility state to a high volatility state) and 

(1-Q) (the probability of shifting from a high volatility state to a low volatility state) is 

                                                 
24 The fact that these probabilities are relatively large also suggests a meaningful decomposition of the time series 
in terms of volatility regimes.  
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small. This indicates that volatility clustering, i.e., low (high) volatility usually 

followed by low (high) volatility, exists in all segmented markets. Nevertheless, the 

evidence of P being larger than Q for all markets signifies that the low-volatility 

regime dominates the market.  

 Although there are some features commonly shared by the estimates of four 

markets, two different points deserve our attention.  First, despite the fact that not all 

of the unconditional mean return parameters (φ10 and φ20) are highly significantly 

different from zero in two regimes, it appears to have opposite signs among the four 

stock markets. For SHA, SZA, and SHB, we find that negative returns tend to be 

associated with a low variance regime, while positive returns are associated with 

turbulence. This phenomenon is different from Hamilton and Susmel’s (1994) finding, 

which shows that higher volatility regimes tend to be associated with slumps in US 

stock market. Our results imply a rather interesting behavior of investors in Chinese 

stock markets: when stock returns are positive, investing activities vary dramatically, 

accelerating the stock volatility; when stock returns are negative, investors tend to be 

slowing down, rather than engaging in a short sell. This finding is consistent with the 

naïve, highly speculative, and information asymmetric behavior presented in the 

Chinese stock markets (Ma, 1996; Chen et al., 2001; Mei et al., 2004).25  In sum, 

investors in Chinese markets focus more on the speculative profits when the market 

moves upward, whereas investors in the US market concentrate on minimizing losses 

                                                 
25 It is widely recognized that China’s stock market is a “policy oriented market,” meaning that it is government 
policy, rather than economic fundamentals, that drives the stock market. Ma (1996) finds that the Chinese markets 
are highly speculative and are driven by the risk preferences (or risk seeking) of Chinese investors. Chen et al. 
(2001) and Mei et al. (2004) found that China’s stock returns cannot be explained by fundamental factors.  
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as the market moves downward. It appears that US markets are dominated by 

risk-averse, rational investors, whereas investors in Chinese markets tend to assume 

excess risk.    

Second, the evidence clearly indicates that the volatility switching behavior with 

A-share markets differs from that of B-share markets.  In particular, the values of P 

and Q for B-share markets are much smaller than those of A-share markets, implying 

that B-share markets are more volatile and more apt to shift between a high-volatility 

state and a low-volatility state. The state duration indicators, d1 and d2, provide more 

straightforward evidence for illustration: for SHA and SZA, a low-volatility state lasts, 

on average, about 37-42 weeks, while a high-volatility state lasts, on average, 9-10 

weeks; for B-share markets, however, both low-volatility and high-volatility states 

have much shorter “survival” times: for SHB and SZB, a low-volatility state lasts, on 

average, about 6-7 weeks, while a high-volatility state lasts only about 4 weeks.  

The weekly stock return series and smoothed probability for each market are 

displayed in Figures 3.1 through 3.4.  In each figure, the upper panel plots the stock 

return series, the middle and bottom panels plot the smoothed probabilities for the 

market in State 1 (low volatility) and State 2 (high volatility), respectively.  The 

plots follow Hamilton’s (1989) procedure of dating regime switches, which classifies 

an observation as staying at State i if the smoothed probability 

),,( 1 L−= TTt RRisprob is greater than 0.5.  
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      Fig. 3.1 AR (1)-MS-GARCH (1, 1) Estimation for SHA 

40

 
 
 

Fig. 3.2 AR (1)-MS-GARCH (1, 1) Estimation for SZA 
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Fig. 3.3 AR (1)-MS-GARCH (1, 1) Estimation for SHB 

20

 
 
 

Fig. 3.4 AR (1)-MS-GARCH (1, 1) Estimation for SZB 
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These figures offer us a visual illustration of the volatility patterns presented in 

different markets. We observe that both SHA and SZA markets actually have a 

similar volatility pattern, especially for the period after October 1997.  A similar 

volatility pattern also holds true for the two B-share series, although the stocks are 

traded in different currencies and in different places. Noticeably, the volatility 

patterns of the two A-share markets have quite contrasting dynamic variations as 

compared to those on the two B-share markets:  the two A-share markets are 

relatively stable and dominated by a low-volatility state most of time, while the two 

B-share markets are much more volatile and switch very frequently between a 

high-volatility and a low-volatility state. This scenario is especially true before Feb 18, 

200126, when Chinese government allows domestic citizens to buy and sell B-share 

stocks. One possible explanation for this is that the B-share holders are sophisticated 

foreign investors consisting of major international financial institutions. These 

investors hold more diversified international assets. It follows that their portfolio 

decisions and, hence, their adjustments are responsive to a broader set of global 

information. Any shock that disturbs international asset return parity conditions or 

risk comportment will lead them to adjust their portfolio allocation, generating market 

volatility. On the contrary, A-share investors do not have sufficient market 

information, nor do they have alternative investing instruments. These restrictions 

                                                 
26 From February 19, 2001, Chinese citizens are allowed to hold B shares. As they still can not freely exchange 

foreign currency, they are allowed to exchange some quota of foreign currencies and put them in special accounts 

to invest in B shares.  
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prevent A-share investors from shuffling their portfolios and, hence, reducing the 

volatility switching.  

 Figure 3.1 through Figure 3.4 also provide us a very convenient instrument for 

tracking the regime switching in the segmented markets. Eyeballing these figures, the 

volatility switching of A-share and B-share markets is subject to major “domestic” 

events that have occurred in recent history.  For instance, the adoption of “price 

limits” (12/16/1996) by SHSE and SZSE as a regulatory tool helped the markets shift 

to a low-volatility state effectively (This finding is consistent with the findings of 

Friedmann and Sanddorf-Kohle (2002).  In contrast, the death of Chinese leader Den 

Xiaoping (02/19/1997), policy change to issue new stocks to the investors on 

secondary market (02/13/2000),27 and suspension of the sale of state shares via stock 

markets (6/24/2002) pushed the markets to a high-volatility state.   

 With respect to the B-share market volatility switching, it appears that the spell of 

high-volatility states on two B-share markets corresponds closely to the major 

international financial crises, while the two A-share markets seem immune to these 

events: as international crises take place, these two A-share markets stay at a 

low-volatility state or switch to a low-volatility state rapidly.  It is of interest to 

check some of the recent international events and their impact on volatility switching.  

As the Asian crisis started to transpire in early July 1997, the two B-share markets 

                                                 
27 To improve the method of issuing new stocks, China Securities Regulatory Commission (CSRC) adopted a new 

policy that allows new shares to be purchased by the investors on secondary market. Before this date, new 

securities were only sold to some “special” investors, who can obtain much higher profit than investors on 

secondary market (security transaction market). This policy innovation has significant impact on fund flows, 

stimulating the transactions in two exchanges.  
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switched to a high-volatility state immediately, while the two A-share markets 

switched from high volatility to low volatility. During the Asian financial crisis, the 

two A-share markets stayed at a low-volatility state up to May 1999, while the two 

B-share markets remained sensitive to the volatility changes in the global markets. 

For example, during the global stock market collapse caused by the drastic change in 

Hong Kong’s Hang Seng Index in late October 1997, the two A-share markets 

remained calm, while the two B-share markets switched to high volatility quickly and 

remained highly volatile for about 2 months. When the Russia financial crisis broke 

out in mid-July 1998, the two B-share markets also switched to a high-volatility 

regime and hung on there until early September 1998.  The same scenario holds true 

for the incidence of global stock market collapses triggered when the IT bubble burst 

on April 14, 2000; both SHB and SZB moved to a high-volatility state on May 4 and 

May 11, 2000, respectively, and remained in a high-volatile state for about one month. 

However, the two A-share markets remained in a low-volatility state.  All of these 

incidences provide strong support for the market segmentation argument that 

international volatility spillovers do affect the segmented stock markets profoundly 

and the sterilization policy in China has been an effective instrument for shielding the 

A-share markets from external turbulence. Nevertheless, it can be argued that A-share 

investors are insensitive to external shocks owing to a lack of investment 

sophistication or simply because they fail to switch to alternative investment 

instruments.  
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3.5 Volatility Spillover among Segmented Stock Markets 

   Although the above analyses offer some significant insight into the nature of 

volatility associated with different markets, the possibility of volatility linkages 

among the four segmented markets has been abstract.  In this section, we fill in this 

gap28.  As high volatility regime is what investors concern most, we investigate 

whether there is any markets linkage asymmetry across A-share and B-share stock 

markets. The way we handle it is to modify the variance equation by adding a 

conditional variance derived from a cross-market.  More subtly, we shall investigate 

regime-dependency of the volatility linkages among the four segmented markets by 

introducing an indicator ID  to the following specifications:  

 

ttt RR εφφ ++= −110                                                     

    where ),0(~1 ttt hN−Ωε                       

 +11
2

110 −− ++= ttt hbaah ε IDh tr ⋅⋅ ,δ                            (3.29) 

                                    

where  is an index return of a particular stock market. is the conditional 

variance derived from the estimation of the MS-GARCH model based on a cross 

stock market. ID is an indicator variable, which takes the following forms: 

tR trh ,

 

                                                 
28 Different from the methodology adopted here and the multivariate GARCH framework adopted in Chapter 4, 

Hong (2000) proposed a class of asymptotic N (0, 1) tests, which based on the sample cross-correlation function 

between two squared standardized residual series, to examine volatility spillover. The simulation results show that 

this approach has strong power to test volatility spillover.  
 

 58



1=ID ，if 5.0),,2( 1 >= − LTTt RRsprob                   

0=ID ，if 5.0),,2( 1 ≤= − LTTt RRsprob                      (3.30)   

 

Equation 3.30 states that when a cross stock market is in a high volatility regime, 

i.e., the smoothed probabilities are greater than 0.5, ID equals one; otherwise, it 

equals zero. It follows that conducting a significant test on parameter δ  provides us 

a direct test for analyzing the volatility linkages among the four segmented stock 

markets. If δ  is significantly different from zero, it suggests the existence of 

cross-market spillover; the sign, however, will signify the direction of impact. The 

estimates of volatility linkages under a high-volatility regime are reported in Table 

3.7.  

 

Table 3.7 
Analyses of Volatility Linkages among Four Segmented Stock Markets at High 
Volatility Regime 

 SHA SZA SHB SZB 

SHAIDHV / 1.823(0.422)*** 0.027(0.008)*** 0.231 (0.049)*** 

SZAIDHV 1.647 (0.203)*** / 0.019(0.005)*** 0.161(0.035)*** 

SHBIDHV -0.005(0.008) -0.005(0.006) / 1.975(0.215)*** 

SZBIDHV 0.010(0.006) 0.003(0.004) 1.178(0.214)*** / 

Note: This table contains regression coefficients of volatility linkages for Shanghai A shares (SHA), Shenzhen A 

shares (SZA), Shanghai B shares (SHB), and Shenzhen B shares (SZB). *** and ** indicate significance at the 1% 

and 5% level, respectively. Numbers in parentheses are standard errors.   

 

 The findings are interesting.  As we inspect the impact of A-shares on other 

markets, the estimated values of the coefficient δ  are positive in high-volatility 
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regimes. More important, all of the coefficients from A-share markets are statistically 

significant.  This suggests that the A-share markets’ volatility has a spillover effect 

on all of the market. Specifically, when the highly volatile regime is prevailing, it 

provokes more volatility over other segmented markets. However, for two B-share 

markets, the findings are different. That is, the volatility coefficients are positive 

between the two B-share markets in the high-volatility regime. However, there is no 

impact from B-share markets to A-share markets in the high-volatility regime. One 

possible explanation is that in the high-volatility regime, the volatile movements in 

B-share markets are often more sensitive to the disturbances from international 

markets. The A-share markets, however, do not react in the same way owing to a lack 

of information or overconfidence. Generally speaking, we find volatility spillover 

asymmetry across A-share and B-share stock markets. 

 

3.6 Conclusions of Chapter 3 

 This study adopts a Markov switching GARCH model to examine the volatile 

nature among the four major segmented Chinese stock indices.  We also conduct 

statistical tests to examine the volatility spillover effects among these four segmented 

markets at high volatility regimes. Our empirical findings are consistent with the 

following notions. First, there is strong evidence of regime shift in the volatility of the 

four segmented markets, and the MS-GARCH model appears to outperform the single 

regime GARCH model in modeling the volatility of stock markets in China. Second, 

although there are some common features of volatility switch in A-share and B-share 
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markets, B-share markets appear to be more volatile and shift more frequently 

between a high-volatility state and a low-volatility state, which implies comparatively 

higher investment risk in B-share stock market. Therefore, investors interested in B 

shares ought to be more careful and should pay more attention to the volatility 

changes in B-share market as this is highly related to their portfolio construction and 

risk diversification. Our estimated results on duration of high volatility regime and 

frequency of high-low volatility switching should be useful for their investment 

decisions. Third, for SHA, SZA, and SHB, we find that negative returns tend to be 

associated with a low variance regime, while positive returns are associated with a 

turbulent market. This phenomenon is different from Hamilton and Susmel’s (1994) 

finding, which shows that higher volatility regimes tend to be associated with the 

slumps in the US stock market. Our finding suggests that investors’ behavior in light 

of profit maximization between Chinese and US markets is quite diverse. US 

investors are more sensitive to the downside of the market due to risk aversion, while 

Chinese investors are more excited by the upside of the market because they are more 

apt to pursue a speculative opportunity. Four, the volatility switch of A-share markets 

and B-share markets is subject to different major events.  The volatile movements in 

B-share markets are sensitive in reacting to international shocks.  A-share markets 

seem to be immune to the volatility spillover from international financial markets. 

Our results show that the market segmentation policy imposed by the policy makers 

of Chinese authority is very helpful in protecting domestic A-share markets from 

external turbulence. Five, evidence strongly indicates that, in high volatility regime, 
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A-share volatility has a positive and significant impact on all of the alternative 

markets. However, the volatility spillover of B-share markets occurs only between the 

B-share markets and has no impact on the A-share markets. We find volatility 

spillover asymmetry across A-share and B-share stock markets. 
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Chapter 4: Long-run equilibrium, short-term adjustment, and spillover effects 

across Chinese segmented stock markets  
 
 
 

4.1 Introduction  

 As a mechanism for developing the Chinese stock market, the Chinese 

government has adopted a market segmentation policy that divides its stock market 

into a domestic board and a foreign board to cater to the needs of different investors. 

Companies can issue A shares, which only Chinese citizens living in mainland China 

can buy, and some companies are allowed to issue B shares and H shares, which can 

be bought by foreign investors29. A and B shares are listed on the Shanghai Stock 

Exchange (SHSE) and the Shenzhen Stock Exchange (SZSE), namely, SHA, SHB, 

SZA, and SZB, of mainland China.  

Unlike A shares and B shares which are traded in the same stock exchanges within 

mainland China, A shares and H shares are segmented in terms of the stock ownership 

as well as the listing and trading locations (Li, et al., 2006). Since the RMB is not yet 

convertible to foreign currencies and the HKSE provides a stable and established 

system of stock market, many overseas investors prefer trading H-shares in Hong 

Kong rather than B-shares in mainland Chinese markets (Kim and Shin, 2000).  

   Whether stock markets are cointegrated with each other carries important 

implications for policy makers and investors. Cointegrated markets imply that there is 

                                                 
29 From February 19, 2001, Chinese citizens are allowed to hold B shares. However, due to foreign exchange 

restriction, they may exchange some quota of foreign currencies and put them in special accounts for investment in 

B shares. 
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a common force, such as market fundamentals, investors’ preferences and government 

interventions, which bring the stock markets together in the long run. In theory, if 

stock markets are not cointegrated, this implies that there is no long run relationship 

between the markets. 

Since China’s stock market is relatively new, the long run relationship among 

China’s segmented stock markets has not been investigated extensively.  Ahlgren et 

al (2003) use a panel cointegration method to examine the cointegration between the 

A and B share prices on two Chinese stock exchanges. They find that the A and B 

shares prices are cointegrated. Applying a recursive cointegration technique 

(Diamandis et al., 2000; Hansen and Johansen, 1993) and standard cointegration 

technique, Yang (2003) analyzes the long run relationship between A-share markets 

and B-share markets and H-share and red-chip in Hong Kong. He finds that that each 

of six markets is not linked with other markets in the long run. Applying standard 

cointegration technique, Geng et al. (2005) find there are cointegration relations 

between two A-share markets as well as between two B-share markets. However, they 

do not find the evidence supporting A-share and B-share markets are cointegrated 

with each other.  

A great number of researchers have examined the information transmission among 

Chinese segmented stock markets. However, most of them focus on the information 

transmission of stock return (i.e the first moment). See, for example, Laurence et al. 

(1997), Chakravarty et al. (1998), Chui and Kwok (1998), Sjoo and Zhang (2000), 

Kim and Shin (2000), Fung et al. (2000), Yeh and Lee (2000), Chen et al. (2001) and 
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Tian and Wan (2004) etc.. A few researchers also have examined the information 

transmission of stock return volatility (i.e the second moment), see, for example, Chen 

et al. (2001), Li (2003) and Brooks and Ragunathan (2003). Elucidating the 

advantages of multivariate GARCH model in modeling stock return linkage and 

return volatility linkage simultaneously, three recent papers adopt this approach to 

examine the short run dynamic relationships among the segmented Chinese stock 

markets. Pong and Fung (2000) apply multivariate EGARCH-in-mean model to 

examine the information flow between H-shares, red chips, Shanghai Composite and 

Shenzhen Composite. They provide some evidences of return and return volatility 

spillover effects among the markets. Generally, they argue that red chips play a 

leading role in the flow of information among China-backed securities. Adopting 

VAR and bivariate GARCH-M models, Yeh et al. (2002) find that the unexpected 

changes in the premium ratio of A-share price over B-share price contribute to the 

return volatility of both A and B shares. Zheng and Wong (2006) employ a two-stage 

bivariate GARCH model incorporating external shocks to study spillover effect 

between price return of A-share and B-share and the impacts of US and Hong Kong 

on Chinese A-share and B-share markets. Their empirical results show that overall, 

there are spillover effects between A-share and B-share but the evidence is not 

strong30.  

Different from previous research, in this study, we apply a nonlinear fractional 

integrated vector error correction model (FIVECM) multivariate GARCH framework 

                                                 
30 For detailed information about these papers, please refer to Chapter 2.  
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to examine the bilateral relationships between any pair of the following six pairs of 

stock markets31: H-SHA, H-SHB, SHB-SHA; H-SZA, H-SZB and SZB-SZA. More 

specifically, instead of using a VAR model or a VAR model with exogenous variable 

(VARX) to examine the dynamic relationships between stock returns32, we use a 

FIVECM to examine the fractional cointegration mechanism between these six pairs 

of stock markets. In particular, we shall explore whether there is fractional 

cointegration between stock markets. This finding will be very useful to investors 

because the presence of fractional cointegration implies the existence of both long-run 

co-memories and non-periodic long cycles between the two markets.  As a result, it 

would affect investors’ asset allocation strategies in the long and medium terms 

(Cheung and Lai, 1995). At the same time, the presence of a fractional cointegrating 

relationship between two stock markets has an important implication for their 

short-run linkages. As a generalization of the standard linear VECM, which allows 

only the first-order lag of the cointegration residual to affect the equilibrium 

relationship, the FIVECM is superior because it not only enables investors to reveal 

the long-term equilibrium relationships and short-run adjustments among 

co-integrated variables but it also accounts for the possible long memory in the 

cointegration residual series that otherwise might distort the estimation (Ding et al., 

                                                 
31 It should be fine to investigate the possibility that there is a third variable, which can influence the cointegration 

relationship between two series. For our analysis, we did not do this because: (i) It is not easy to identify the third 

variable. (ii) Compared with other markets, the impacts from international markets on our Chinese stock markets 

are small. For A-shares, it is isolated from outside. For B-share market, there are evidences to show that their 

correlation with the major international stock markets, such as USA and Japan, are very low and these markets do 

not have much influences to B-share markets. 
32 If two stock indices are cointegrated or (fractionally) cointegrated, it is improper to use simple VAR or VARX to 
model their dynamic relationships in returns. Instead, we should use VECM or FIVECM as shown in this paper. 
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1993). Therefore, our FIVECM approach is a more general specification because it 

incorporates both the traditional VECM and the effects of the long memory of the 

cointegrating relationship, which is important for revealing the true relationships 

among markets (Baillie, 1996). In addition, this chapter specifies the conditional 

variances of VECM residuals with the multivariate GARCH model (Yang, 2001, 

Giovannini and Grasso, 2004 and Chen et al., 2006). Within this framework, 

empirical long-run relation, short term adjustment and spillover relationships in the 

mean as well as volatility in a cross-market setting can be simultaneously estimated33.  

The empirical results derived from this research reveal the nature of the complicated 

structure between two different markets, which, in turn, provides additional 

information to investors and fund managers for their investment decisions and 

strategy in these markets. Findings from this chapter are also useful for policy makers 

in setting regulations for these markets.   

   The empirical results show that all six pairs of stock markets are fractionally 

cointegrated. In each of the six pairs, the H-share stock market adjusts to return to 

equilibrium with the two A-share stock markets as well as the two B-share markets, 

while two B-share markets adjust to return to equilibrium with the corresponding two 

A-share markets. We find that there are bidirectional volatility spillover effects 

between the H-share and two A-share markets and between H-share and the two 

B-share markets. However, we find only unidirectional mean spillover effects from 

H-share market to the two A-share and two B-share stock markets and from SZA to 

                                                 
33 The specification of FIVECM-BEKK will be discussed in more detail in Section 4.3. 
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SZB market. We find that H-share market plays very influential role in influencing 

four segmented stock markets in mainland China. Investigation of the dynamic path 

of correlation coefficients suggests that relaxation of government restrictions on the 

purchase of B shares by domestic residents increased the correlation between the A- 

and B-share markets and accelerated the market integration process of the A-share 

markets with the H-share stock market. The results also disclose that the Asian crisis 

had a different effect on stock-return dynamic correlations across Chinese segmented 

markets. 

The remainder of this chapter is organized as follows. Section 4.2 discusses the 

data and methodology. Section 4.3 provides empirical results, and Section 4.4 

summarizes the conclusions and comments.  

 

4.2 Data and Methodology   

4.2.1 Data 

The data used in this study are weekly price indices of Shanghai A-share (SHA), 

Shenzhen A-share (SZA), Shanghai B-share (SHB), Shenzhen B-share (SZB), and 

H-share (H). All data are taken from DataStream International, and the sample covers 

January 1994 through the most recent October 2006. Weekly indices are used to 

alleviate the effects of noise characterizing daily data and to avoid the 

day-of-the-week effect (Lo and MacKinlay, 1988). The total number of observations 

in our study is 669.  
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4.2.2 Methodology  

One of the principal tasks in this paper is to examine the stock-return behavior by 

exploring the short-run dynamics in relation to the long-run equilibrium in a 

cross-market setting. To achieve this end, we employ a cointegration test.  The 

essence of the cointegration test is to examine whether two series that drifted apart in 

long-run equilibrium have a tendency to be brought back together again. Usually, the 

disequilibrium error used in the VECM framework is neither I(1) nor I(0) but follows 

a fractionally integrated process, I(d)34, where -0.5<d <0.5 (Engle and Granger, 1987). 

Without accounting for the long memory (when d<0.5) feature of the disequilibrium 

error, the true relationships among cointegrated variables disclosed by traditional 

VECM may be misspecified. To circumvent this problem, we employ a fractionally 

integrated VECM (Engle, 1986) to study the nature of co-movements for each pair of 

stock-return series35.  

   First we employ the Engle-Granger (1987) two-step approach. In the first step, 

following Saikkonen (1991), we fit a dynamic ordinary least squared model (DOLS) 

to the pairs of stock indices and thereafter obtain the estimated cointegrating residual 

as follows: tẑ
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−221 ωβα                   

ttt yyz 21
ˆˆ β−=                                   (4.1) 

                                                 
34 A series, say yt , that has a stationary, invertible, and stochastic ARMA representation after differencing d times 
is said to be integrated of order d, and denoted as yt = I(d). 
35 For more information on FIVECM, please refer to Baillie (1996) 
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Here,  and  are logarithm values of two stock indices; each could be SHA,  ty1 ty2

SHB, SZA, SZB, and H; and  is the differenced series of . This Regression is 

preferred to ordinary least squares, because it remove the deleterious effect of 

short-run dynamics in the equilibrium error  and the estimate  has been 

demonstrated by Stock and Watson (1993) to be super-consistent

ty2Δ ty2

tv β̂

36 as well as efficient. 

In the second step, we use both rescaled range (R/S) test and modified R/S test (Lo, 

1991) to test for the existence of any long memory in the series. If  is 

confirmed to follow an I(d) (-0.5<d<0.5) process, then  and  are said to be 

fractionally cointegrated and we proceed to estimate the fractional difference 

parameter d using each residual series.  

tẑ

y2

 tẑ

ty1 t

A few methods have been proposed to estimate the parameter d based on either 

time domain or frequency domain, and the research in this line is still an active 

research field, say, for example, Shimotsu and Phillips (2005)37. In this study, we 

apply a robust R/S analysis shown by Taqqu and Teverovsky (1995, 1998) to estimate 

the fractional difference parameter d.  Given the partial sums of a time series 

 and its sample variance , the R/S statistics (Hurst, 1951) is 

defined as:  
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36 This means that the estimate converges to true value β̂ β at faster rate than usual OLS estimate. 
37 For other methods of estimating the parameter d, refer to Mandelbrot and Wallis(1969), Mandelbrot and 
Taqqu,(1979), Fox and Taqqu(1986), Beran (1994) Samorodnitsky and Taqqu(1994), Peng et al.(1994), Robinson 
(1995) and Kokoszka and Mikosch(1995, 1996b, 1996c) etc. 
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Lo (1991) pointed out that the R/S statistic above is not robust to short range 

dependence. Instead, Lo (1991) proposed a modified R/S statistic as follows: 
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Therefore, the sample standard deviation  in Equation (4.2a) is replaced by 

the square root of the Newey-West estimate of the long run variance  in 

Equation (4.2b).  

)(nS

)(
~
nS

Because of the asymptotic scaling property of ,  behaves like 

. Here 

)(tY )(nR

α/1+= dH nn α  is a real number between 0 and 1 and H is known as the Hurst 

coefficient (see Hurst, 1951) to measure long memory. is just the square root of 

the sample variance, which is proportional to . Thus,  behaves 

like . Since, in fact, one has joint convergence of ( , ), 

)(nS

1−α/2n )(nS

(nS2/1/1 −αn )(nR ) )(n
S
R  

behaves like , as . This provides a way of estimating d, whatever the 

value of

α/1+dn ∞→n

α 38.  

   The actual method divides the original time series of length N into K blocks, each 

of size N/K. Then for each lag n, we compute , starting at points 

 such that 

),(/),( nkSnkR ii

,...2,1,1/ =+= iKiNki Nnki ≤+ . As for large values of , it is not 

robust to calculate R/S statistics. To mitigate this problem, we use least absolute 

deviation (LAD) method for robust estimation of d.  

ik

                                                 
38 For more detailed discussion, please refer to Taqqu and Teverovsky (1998). 
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According to Engle and Granger (1987), if there is any cointegration relationship 

among the variables, a VECM representation can be established to adequately capture 

the relevant long-run and short-term relationships. Then VECM is extended to the 

FIVECM to account for the fractional integration property in  series. The bivariate 

FIVECM will then take the following form

tẑ

39: 

 

       (4.3)                  

t

m

i
it

i
m

i
it

i
t

d
t

t

m

i
it

i
m

i
it

i
t

d
t

yyzBBcy

yyzBBcy

2
1

222
1

121222

1
1

212
1

111111

ˆ)]1()1[(

ˆ)]1()1[(

εφφα

εφφα

+Δ+Δ+−−−+=Δ

+Δ+Δ+−−−+=Δ

∑∑

∑∑

=
−

=
−

=
−

=
−

 

where 

      ∑
∞

= +Γ−Γ
−Γ

=−
0 )1()(

)()1(
k

k
d

kd
BdkB                                     (4.4) 

In the above equations40, B is a backward shift operator and  is Gamma 

function taking the form: 

(.)Γ

 

                                             (4.5) ∫
∞

−−=Γ
0

1)( dtetx tx

 

Here  and  denote the differenced series of  and , respectively. 

They represent the return series for each pair of stock indices, namely, H-SHA, 

H-SHB, SHB-SHA; H-SZA, H-SZB and SZB-SZA.  is the vector of 

ty1Δ ty2Δ ty1

1( tε

ty2

'
2 ), tt εε =

                                                 
39 For more discussion of the FIVECM framework, please refer to Davidson (2002). 
40 This fractional difference filter can be handled as an infinite order autoregressive process. In practice, we could 
use its truncated case of 200 lags here. 
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error terms; and the coefficients 1α  and 2α  indicate the short-run dynamic 

adjustments with their magnitudes representing the speeds of the adjustment. We 

employ a VAR (m) structure in the VECM model, in particular m=1, in this chapter. 

The lag terms in (4.3) account for the AR structure of the tyΔ  series, with their 

coefficients reflecting the return transmissions between different stock markets.  

To capture the heteroskedasticity in the VECM residuals, we follow the practice 

of a few papers to model it with a bivariate GARCH specification (Yang, 2001, 

Giovannini and Grasso, 2004 and Chen et al., 2006). To ensure that the variance 

matrix of error terms is positive definite, a bivariate BEKK (1, 1) model (Engle and 

Kroner, 1995) is adopted here such that41: 

 

),0(~| 1 ttt N ∑Ω −ε  for t=1, 2, ….. T;                           (4.6) 
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Here, tε  is assumed to follow a bivariate normal distribution conditional on the 

past information set ;  denotes the variance-covariance matrix of 1−Ω t t∑ tε , which 

is symmetric and positive semi-definite;  is a lower triangular matrix; and  and 

 are unrestricted square matrices. Adopting this framework, the dynamics of  

are fully displayed, since the dynamics of conditional variance and the conditional 

covariance are modeled directly. The volatility spillover effects across return series 

C A

B t∑

                                                 
41 BEKK (1, 1) is usually sufficient to model volatility in financial time series. See, for example, Baba et al. 

(1990). 
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indicated by the off-diagonal entries of coefficient matrices  and  are also 

estimated. The expansion of BEKK (1, 1) into individual dynamic equations generates 

the following variance and covariance:  

1A 1B
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The conditional correlation between market 1 and 2 at any time t thus is defined as: 
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One weakness of BEKK model is that it requires estimation of a large number of 

parameters, especially when the dimensions of the variance-covariance matrix 

increase. However, this weakness will not bother much in this study as our model is in 

a bivariate framework. Instead, we prefer to use BEKK specification in our study 

because of its advantage of generality and flexibility. In fact, the BEKK specification 

appears to be a more general and flexible multivariate GARCH model as there are no 

restrictions imposed on the coefficients. In this chapter, the FIVECM-BEKK model 

(i.e., systems (4.3) and (4.8) jointly) is estimated jointly and the coefficient estimates 

would be more efficient, and the relationships among the series would be delineated 
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more accurately. The estimates of parameters, conditioning on the starting value of 

conditional variance; the popular optimization algorithm BHHH (Berndt, Hall, Hall & 

Hausman) is employed in maximizing likelihood. 

 

4.3 Empirical Results42 
 
4.3.1 Data Preliminary Analysis 

   We report the basic statistics of five stock indices43 in Table 4.1. These statistics 

provide an overview on the five segmented stock markets.  

 
Table 4.1 
Descriptive Statistics for Chinese stock indices 

 SHA SHB SZA SZB H 
Mean 5.035 4.289 3.738 2.902 6.021 

Median 5.126 4.291 3.878 2.863 6.122 

Maximum 5.636 5.480 4.443 4.006 6.955 

Minimum 3.663 3.124 2.403 1.753 4.969 

Note: These are descriptive statistics of the logarithms of stock indices. Sample covers January 1994 through 

October 2006. The total number of observations is 669. 

 

 

We then conduct augmented Dikey-Fuller (ADF) and Philips-Perron (PP) unit 

root tests to examine the stationary property for the five logarithm indices in this 

study: SHA, SZA, SHB, SZB, and H. The results presented in Table 4.2 above clearly 

indicate that all of the indices are I (1)44 process by adopting both ADF and PP unit 

root testing procedures. The findings are consistent with the results widely reported in 

the literature.  
                                                 
42 The empirical part is done with the S-Plus of Insightful Corporation. 
43 The indices in this paper are referred to as logarithm indices. 
44 For all series, we further test for I(2). Our findings reject the hypothesis that the series are I(2), inferring that the 

series are I(1). We skip the I(2) results, which are available on request.  
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Table 4.2 
Unit Root Tests for Chinese Stock Index Series 

ADF PP        Test 

Market t-statistic p-value t-statistic p-value 

SHA -2.146 0.519 -2.238 0.467 

SZA -1.549 0.812 -1.640 0.776 

SHB -2.051 0.572 -2.225 0.474 

SZB -2.839 0.184 -2.602 0.280 

H -1.639 0.777 -1.742 0.732 

Note: The null hypothesis of ADF test and PP test is that the series has unit root. ***, ** and * indicate 

significance at the 1%, 5% and 10% level, respectively. 

 
 

4.3.2 Test for Long Memory   

The next step is to estimate the six cointegration residuals  based on Equation 

(4.1) for the six pairs of stock indices of interest to us: H-SHA, H-SHB, SHB-SHA; 

H-SZA, H-SZB and SZB-SZA. This is done by performing a DOLS estimation with 

lag length p=2. The resulting error series are denoted by , , , ,  

and  respectively, where a superscript stands for a dependent variable and a 

subscript for an independent variable.    

tẑ

H
SHB

H
SHAz z SHB

SHAz H
SZAz H

SZBz

SZB
SZAz

We then adopt both R/S test and Lo's modified R/S test (Lo, 1991) to examine the 

long memory behavior in the six residual series mentioned above and report the 

results in Table 4.3 below. The results indicate that all these six residual series have 

long memory.   
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Table 4.3 

Long Memory Tests on Cointegration Residuals 

R/S test Modified R/S test        Test 

Residual series Test statistic Test statistic 

H
SHAz  9.039*** 3.496*** 

H
SHBz  11.674*** 4.470*** 

SHB
SHAz  9.436*** 3.597*** 

H
SZAz  8.539*** 3.304*** 

H
SZBz  11.687*** 4.473*** 

SZB
SZAz  11.249*** 4.289*** 

Note: The residual series are constructed using Equation (4.1) in the text; superscript stands for a dependent 

variable and subscript for an independent variable. *** and ** indicate significance at the 1% and 5% level, 

respectively. 

 

With these evidences of existence of long memory property in the six residual 

series, therefore, we proceed to apply robust R/S analysis (Taqqu and Teverovsky, 

1998) to estimate the fractional difference parameter d for each of these six series. For 

the purpose of comparison, we also do the R/S analysis. We display the estimated 

results using the two methods in Table 4.4.  

It can be seen that all of the estimated values of d fall into the range (0, 0.5). This 

evidence thus confirms that the cointegrating variables follow long memory stationary 

processes. We, therefore, conclude that the six pairs of stock markets are fractionally 

cointegrated with each other. This finding also carries important implication for the 

investors: when these stock markets are cointegrated, the potential for making 

supra-normal profits through portfolio diversification is limited in the long run.   
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Table 4.4 

Estimation of fractional parameter d using R/S Analysis 

R/S Analysis 
Robust R/S 

Analysis 

     Method 

Residual  

d d 

H
SHAz  0.450 0.478 

H
SHBz  0.456 0.470 

SHB
SHAz  0.452 0.477 

H
SZAz  0.457 0.474 

H
SZBz  0.453 0.472 

SZB
SZAz  0.446 0.461 

Note: The residual series are constructed using Equation (4.1) in the text; 

superscript stands for a dependent variable and subscript for an independent 

variable.  
 

 

Having verified the feature of the long-term cointegration relationships between 

each pair of the stock indices, we proceed to employ the FIVECM-BEKK(1,1) model 

to model each  pair of log-returns, including the pairs of log-returns for HK-SHA, 

H-SHB, SHB-SHA; H-SZA, H-SZB and SZB-SZA. The results are presented in 

Tables 4.5 and 4.6, respectively45.   

The statistical results shown in these tables allow us to analyze the short-term 

adjustment, the long-term equilibrium relationship, and the spillover effects between 

each pair of segmented Chinese stock market. For instance, the estimated coefficient 

 for H-SHA pair measures the mean spillover effect from the Shanghai A-share 1
12φ

                                                 
45 When estimated FIVECM-BEKK in Table 4.5 and 4.6, we used the estimated d based on Robust R/S analysis 
reported in the second column of Table 4.4. 
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stock market to the H-share stock market, while  measures the mean spillover 

effects from the H-share stock market to the Shanghai A-share stock market. 

Similarly, ARCH(1,2) and GARCH(1,2) measure the volatility spillover effects from 

the Shanghai A-share stock market to the H-share stock market, while ARCH (2,1) 

and GARCH(2,1) measure the volatility spillover effects from the H-share stock 

market to the Shanghai A-share stock market. Parameters 

1
21φ

1α  and 2α  indicate 

short-term adjustments to the equilibrium of the H-share stock market and Shanghai 

A-share stock market, respectively.  

Finally, we adopt Ljung-Box test of white noise for the purpose of model 

adequacy diagnostics. It is applied to both standardized residuals and squared 

standardized residuals to test for possible remaining serial correlation in the first and 

second moments of residuals. The number of lags employed in both Ljung-Box tests 

is 10, thus the test statistics follow Chi-square distribution with 10 degree of freedom. 

All the tests are applied to two individual residual series, separately. Insignificant 

Ljung-Box test statistics suggest that the fitted model is adequate and successful in 

capturing the dynamics in the first as well as second moments of index return series. 

 

4.3.3 Relationships among H-share, Shanghai A- and B- Share Stock Markets  

   In Panel A of Table 4.5, we present the estimation results of FIVECM-BEKK (1, 

1) bivariate GARCH models for three pairs of stock market: i.e., H-SHA, H-SHB and 

SHB-SHA. 

 

 

 79



Table 4.5 
Estimates for FIVECM-BEKK (1, 1) Fitted on H-SHA, H-SHB and SHB-SHA 

Markets 

 

Estimates 

 

H-SHA 

 

 

H-SHB 

 

SHB-SHA 

Panel A: Estimated results 

1c  0.008(0.003)*** 0.008 (0.003)** 0.002 (0.002) 

2c  0.000 (0.002) 0.002 (0.003) 0.001 (0.001) 

1
11φ  -0.044 (0.039) -0.010 (0.049) 0.162 (0.049)*** 

1
12φ  0.024 (0.039) -0.022 (0.046) -0.006 (0.041) 

1
21φ  0.060 (0.024)*** 0.075 (0.033)*** 0.036 (0.032) 

1
22φ  -0.006 (0.040) 0.073 (0.050) -0.003 (0.042) 

1α  -0.016 (0.006)*** -0.017 (0.008)** -0.039 (0.016)** 

2α  -0.001 (0.003) -0.010 (0.008) -0.013 (0.011) 

A(1,1) 0.006 (0.002)*** 0.003 (0.004) 0.014 (0.001)*** 

A(2,1) 0.008 (0.002)*** 0.016 (0.020) 0.008 (0.001)*** 

A(2,2) 0.005 (0.002)*** 0.003 (0.096) 0.003 (0.001)*** 

ARCH(1,1) 0.220 (0.028)*** 0.222 (0.037)*** 0.346 (0.039)*** 

ARCH(1,2) 0.149 (0.040)*** 0.106 (0.037)*** 0.096 (0.034)*** 

ARCH(2,1) -0.116 (0.024)*** -0.135 (0.040)*** -0.012 (0.028) 

ARCH(2,2) 0.504 (0.029)*** 0.374 (0.039)*** 0.405 (0.022)*** 

GARCH(1,1) 0.966 (0.007)*** 0.982 (0.012)*** 0.892 (0.017)*** 

GARCH(1,2) -0.072 (0.016)*** -0.071 (0.026)*** -0.032 (0.013)*** 

GARCH(2,1) 0.016 (0.007)** 0.052 (0.013)*** -0.024 (0.013) 

GARCH(2,2) 0.851 (0.016)*** 0.865 (0.022)*** 0.919 (0.008)*** 
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Panel B: Diagnostic tests 

LB (10)-H 11.510 10.919 NA 

LBS (10)-H 9.418 7.581 NA 

LB (10)-SHA 13.259 NA 16.34 

LBS (10)-SHA 7.096 NA 7.837 

LB (10)-SHB NA 15.759 17.26 

LBS (10)-SHB NA 7.253 8.551 

Jarque-Bera-H  18.38*** 29.07*** NA 

Jarque-Bera-SHA 354.58*** NA 431.6*** 

Jarque-Bera-SHB NA 207.52*** 138.3*** 

Note: The estimates are based on Equations (4.3) and (4.8) in the text. The dependent variable in each model 

is marked in bold. The first-order ARCH(i,j) and GARCH(i,j) terms are the elements of the ARCH and 

GARCH coefficient matrices A1 and B1 in Equations (4.6) and (4.7). Numbers in parentheses are standard 

errors. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively. LB (10) and LBS (10) 

are the Ljung-Box statistics based on the level and the squared level of the time series up to the 10th lag. 

Jarque-Bera is Jarque-Bera normality test statistics. 

 

 

The first column of Table 4.5 report the estimates of FIVECM-BEKK (1,1) model 

for the H-SHA pair. For the estimates of mean equations,  has a positive sign and 

is statistically significant, but  is not significant.  This suggests that there is a 

mean spillover effect from the H-share stock market in Hong Kong to the Shanghai 

A-share stock market but the reverse relationship does not hold. The value of the 

short-term adjustment parameter 

1
21φ

1
12φ

1α  is -0.016, which is significant at the 1% level, 

suggesting that the H-share stock market makes a partial adjustment when it drifts 

away from long-run equilibrium. The 2α  bears a negative sign; however, it is not 

statistically significant.  This suggests that the cointegrating relationship between the 
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two markets does not reveal the movements on the part of the Shanghai A-share stock 

market. So the adjustment scheme is only unilateral. For the variance equation, we 

find that off-diagonal ARCH (1,2), ARCH (2,1), GARCH (1,2) and GARCH(2,1) are 

all significant, indicating the existence of a bidirectional volatility spillover effect 

between Shanghai A-share stock market and H-share stock market.   

With respect to the estimates of the H-SHB pair market, the evidence reported in 

the second column of Table 4.5 shows that  is not significant, but  is, 

indicating a unidirectional mean spillover effect from the H-share to the Shanghai 

B-share stock market.  In other words, H-share stock market Granger-causes or leads 

Shanghai B-share stock market in returns. The value of the short-term adjustment 

parameter 

1
12φ 1

21φ

1α  is -0.017, which is significant at about 5% level, suggesting that the 

H-share market adjusts when it drifts away from long-run equilibrium. The 

non-significance of the 2α  estimate indicates that the Shanghai B-share stock market 

is not bound by the cointegration relationship. For the variance equation, the test 

results show that all off-diagonal ARCH terms and GARCH terms are significant and 

disclose a bidirectional volatility spillover effect between the H-share stock market 

and Shanghai B-share stock market, implying strong transmission of information 

between these two stock markets.  

The third column of Table 4.5 provides the estimates for the SHB-SHA pair of 

stock returns. From the results, we find that neither  nor  is significant, 

concluding that there is no spillover effect in the first moment between the Shanghai 

B-share stock market and the Shanghai A-share stock market. The adjustment speed 

1
12φ 1

21φ
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coefficient 1α is significantly negative, while coefficient 2α  is insignificant, implying 

that the Shanghai A-share stock market is not bound by the cointegration relationship 

and Shanghai B-share stock market adjusts when it drifts away from long-run 

equilibrium. For the spillover effect of volatility, evidence shows that only ARCH (1, 

2) and GARCH (1, 2) terms are significant, while ARCH(2,1) and GARCH(2,1) terms 

are insignificant. Thus, we conclude that there exists strong and unidirectional 

transmission of information from the Shanghai A-share stock market to the Shanghai 

B-share stock market. 

To sum up, evidence shows that there are bi-directional volatility spillover effects 

between H-share stock market and Shanghai A-share stock market, between H-share 

stock market and Shanghai B-share stock market, but only a unidirectional volatility 

spillover effect from the Shanghai A-share stock market to the Shanghai B-share 

stock market. In addition, we find H-share market also pass mean spillover effect to 

both Shanghai A-share and Shanghai B-share stock markets. We conclude that the H 

market plays a very influential role among the three markets: it not only passes return 

realizations to the Shanghai A-share and Shanghai B-share stock markets, but it also 

leads in the transmission of their volatilities. We also find that among three pairs of 

stock markets, only one market is found to adjust to return to equilibrium: the H-share 

market adjusts disequilibrium conditions with the Shanghai A-share and Shanghai 

B-share stock markets, while the Shanghai B-share stock market adjusts in response 

to disequilibrium with the Shanghai B-share stock market. Among the three markets, 
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we find Shanghai A-share stock market has strongest market power as other two 

segmented markets move to it in the long run. 

The model diagnostics are reported in Panel B of Table 4.5. Ljung-Box tests of 

white noise are applied to both the standardized residuals and the squared 

standardized residual series to test joint significance for serial correlation in the first 

and second moments of residuals. As indicated, all Ljung-Box test statistics are not 

significant at conventional level, and we conclude that our fitted FIVECM-BEKK 

GARCH models are adequate and successful in capturing the dynamics in the first 

two moments of three index return series. The normality test shows the residuals are 

non-normal46. 

 

4.3.4 Relationships among H-share, Shenzhen A- and B- Share Stock Markets  

   We report the estimated results of FIVECM-BEKK for H-SZA, H-SZB and 

SZB-SZA in Table 4.6.  

 

Table 4.6 
Estimates for FIVECM-BEKK (1, 1) fitted on H-SZA, H-SZB and SZB-SZA 

Markets 

 

Estimates 

 

H-SZA 

 

 

H-SZB 

 

SZB-SZA 

Panel A: Estimated results 

1c  0.008 (0.003)*** 0.008 (0.003)*** 0.004(0.002)* 

2c  -0.001 (0.002) 0.002 (0.004) -0.001(0.002) 

                                                 
46 In literature, it is reported that the distribution of the residuals sometime is different from the distribution 
assumption of the econometrics models. The reason to explain this issue is an open question for further research. 
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1
11φ  -0.029 (0.038) -0.027 (0.042) 0.171 (0.045)*** 

1
12φ  -0.033 (0.041) 0.030 (0.029) 0.071 (0.041)* 

1
21φ  0.044 (0.026)* 0.098 (0.034)*** 0.028 (0.034) 

1
22φ  0.011 (0.039) 0.112 (0.049)** 0.081 (0.045)* 

1α  -0.016 (0.006)*** -0.021 (0.009)** -0.044 (0.028) 

2α  0.001 (0.005) -0.008 (0.014) -0.004 (0.017) 

A(1,1) 0.005 (0.002)*** 0.006 (0.002)*** 0.010 (0.001)*** 

A(2,1) 0.006 (0.002)*** 0.023 (0.006)*** 0.006 (0.001)*** 

A(2,2) 0.003 (0.002) 0.000 (0.501) 0.002 (0.001)*** 

ARCH(1,1) 0.217 (0.027)*** 0.214 (0.032)*** 0.381 (0.026)*** 

ARCH(1,2) 0.130 (0.029)*** 0.099 (0.034)*** -0.020(0.029) 

ARCH(2,1) -0.070 (0.023)*** -0.188 (0.040)*** 0.014 (0.016) 

ARCH(2,2) 0.399 (0.027)*** 0.466 (0.042)*** 0.305 (0.023)*** 

GARCH(1,1) 0.969 (0.007)*** 0.982 (0.010)*** 0.915 (0.009)*** 

GARCH(1,2) -0.053 (0.009)*** -0.096 (0.030)*** -0.002 (0.008) 

GARCH(2,1) 0.015 (0.006)*** 0.064 (0.016)*** -0.016 ( 0.056) 

GARCH(2,2) 0.912 (0.010)*** 0.748 (0.046)*** 0.950 (0.006)*** 

Panel B: Model diagnostic statistics 

LB (10)-H 11.758 11.326 NA 

LBS (10)-H 7.972 6.466 NA 

LB (10)-SZA 11.542 NA 15.70 

LBS (10)-SZA 4.745 NA 7.112 

LB (10)-SZB NA 16.122* 13.12 
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LBS (10)-SZB NA 11.657 14.052 

Jarque-Bera-H 16.56*** 21.62*** NA 

Jarque-Bera-SZA 644.59*** NA 600.20*** 

Jarque-Bera-SZB NA 580.20*** 550.30*** 

Note: The estimates are based on Equations (4.3) and (4.8) in the text. The dependent variable in each model 

is marked in bold. The first-order ARCH(i,j) and GARCH(i,j) terms are the elements of the ARCH and 

GARCH coefficient matrices A1 and B1 in Equations (4.6) and (4.7). Numbers in parentheses are standard 

errors. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively. LB (10) and LBS (10) 

are the Ljung-Box statistics based on the level and the squared level of the time series up to the 10th lag. 

Jarque-Bera is Jarque-Bera normality test statistics. 

 

In general, we find that the relationships are very similar to those of their 

counterparts presented in the sub-section above. For the H-SZA pair, which is 

reported in the first column of Table 4.6, we find that is positively significant, but 

the coefficient of  is insignificant.  This evidence is consistent with a 

unidirectional mean spillover from the H-share stock market to the Shenzhen A-share 

stock market. Next, the estimated parameter 

1
21φ

1
12φ

1α  has a value of -0.016, which is 

statistically significant at 1%, suggesting that the H-share stock market adjusts as it 

diverges from its long-run equilibrium with the Shenzhen A-share stock market. On 

the other hand, the estimate of 2α  is found to be not significant, indicating that the 

movement of the Shenzhen A-share stock market is not governed by the cointegrating 

relationship between these two markets. By checking with the variance equations, 

results show that all off-diagonal ARCH terms and GARCH terms, ARCH (1,2), 

ARCH (2,1), GARCH (1,2) and GARCH(2,1), are significant, indicating that there 

are bidirectional volatility spillover effects between the two markets. 
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As we inspect the H-SZB pair relationship shown in the second column in Table 

4.6, the estimate of  is statistically significant and   is not significant., 

showing a unidirectional mean spillover effect from H-share stock market to 

Shenzhen B-share stock market. Looking at the short-term adjustment parameter, we 

find 

1
21φ 1

12φ

1α  to be -0.021 and statistically significant. The comparable coefficient, 2α , 

also shows a negative sign; however, it is insignificant, suggesting that the H-share 

market makes the adjustment when it deviates from a long-run equilibrium 

relationship. In contrast, no evidence indicates that the Shenzhen B-share stock 

market is bound by the cointegration relationship.  On the basis of the conditional 

variance equations, we find that all off-diagonal ARCH terms and GARCH terms, 

ARCH (1,2), ARCH (2,1), GARCH (1,2) and GARCH(2,1), are significant. Therefore, 

we conclude that there are bidirectional volatility spillover effects between the 

H-share and Shenzhen B-share stock markets, implying strong transmission of 

information between the two stock markets.  

Finally, we examine the SZB-SZA pair of markets. Since only  is significant, 

there is evidence to indicate spillover effect in stock returns from the Shenzhen 

A-share stock market to Shenzhen B-share stock market. As far as the adjustment 

coefficient is concerned, the estimated 

1
12φ

1α  is -0.044 and marginally significant at 

about 11% level, while 2α  is insignificant, revealing that the disequilibrium between 

the two markets will be corrected only by the Shenzhen B-share stock market. With 

respect to the spillover effect of volatility, evidence indicates there is no volatility 

spillover effect between the SZB and SZA markets.  
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The model diagnostics, as shown in Panel B of Table 4.6, demonstrate that none 

of the Ljung-Box test statistics is statistically significant for both the standardized 

residuals and the squared standardized residual series, implying no serial correlation 

in the first and second moments of residuals. This indicates the adequacy of our 

FIVECM-BEKK(1,1) bivariate GARCH model in modeling the dynamics of the 

conditional mean and conditional variance47.  

In short, interrelationships among these three markets are very similar to those 

among the H-share, Shanghai A-share and Shanghai B-share stock markets: there are 

bidirectional volatility spillover effects between H-share and Shenzhen A-share stock 

markets as well as between H-share and Shenzhen B-share stock markets and only a 

unidirectional mean spillover effect from the H-share stock market to these two stock 

markets in SZSE. It seems that H-share market is more influential in short run 

dynamic relationships among the three markets. Moreover, among the three pairs of 

stock markets, H-SZA, H-SZB and SZB-SZA, H-share market is characterized by a 

partial adjustment process to return to long-run equilibrium with Shenzhen A-share 

stock market and Shenzhen B-share stock market, respectively, while Shenzhen 

B-share stock market adjusts when it deviates from a long-run equilibrium 

relationship with Shenzhen A-share stock market. Generally speaking, we find 

Shenzhen A-share stock market has strongest market power in the long run as other 

                                                 
47 Again, here the residuals are non-normal. In literature, it is reported that the distribution of the residuals 
sometime is different from the distribution assumption of the econometrics models. The reason to explain this 
issue is an open question for further research. 
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two markets will move to it when they deviate from a long-run equilibrium 

relationship with it, respectively48. 

 

4.3.5 Analyses of Dynamic Correlations  

   Having modeled the long-term equilibrium, short-term adjustment, and spillover 

effects across these markets, it is of interest to analyze the effects of changes in 

financial policy on the dynamic correlations between the markets. In Fig. 4.1, we plot 

the time-varying conditional correlation coefficients estimated from the 

FIVECM-BEKK model for each pair of markets.  

 

Figure 4.1 Conditional Correlations among the Markets 

 

                                                

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

94 95 96 97 98 99 00 01 02 03 04 05 06

CORR_HSHA

 
48 Interesting enough, the results indicate that H-share stock market has a little bit faster speed of adjustment in 

response to disequilibrium with the Shenzhen B-share stock market than what it does with the Shanghai B-share 
stock market (for SHB, 1α =-0.017; for SZB, 1α =-0.021), implying its price discovery process of H-share stock 
market relative to Shenzhen B-share market is more efficient than its price discovery process relative to the 
Shanghai B-share. It might be due to the facts that same denominated currency of H-share and Shenzhen B-share 
(i.e. Hong Kong dollars) and their geographical proximity.  
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Note: This figure shows the time-varying correlation coefficient of six pairs of stock markets: HSHA, HSHB, SHBSHA, 

HSZA, HSZB and SZBSZA for the period January 1994 through October 2006 

 

By visual inspection of these figures above, we could identify two very interesting 

points. First, after February 2001, the correlations between the SHA-SHB and 

SZA-SZB markets show an upward trend over time. This pattern may be attributable 

to the more liberal governmental policy allowing domestic citizens who invest in 

A-share markets to invest in B-share markets.  

Second, the time-varying correlation coefficients show different patterns of 

evolution during the Asian financial crisis, which started in early July 1997. For 

example, from late 1997 through early 1998, we find that the correlations between 

any of the A-share markets and the H or B-share markets decrease, but, in contrast, 

the correlations between any of the B-share markets and the H market increase.   

In light of these observations, we proceed to examine the time-varying correlation 

coefficients between any two markets in response to unusual market conditions, such 
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as a financial crisis and changes in regulation policy. Expressing this notion in a 

regression model, we write: 

 

tttttij FPdcrisisdcrisisdd ερ ++++= 3210, 21                  (4.10) 

 

where tij ,ρ  are the conditional correlation coefficients between Markets i and j 

estimated from FIVECM-BEKK GARCH models based on Equation (4.9). 

and  are dummy variables, denoting the early stage (7/2/1997 -10/15/1997) 

and the effective stage (10/22/1997-12/28/1998) of the Asian financial crisis, 

respectively. We select mid-October, 1997 as cutting date because: although the Asia 

financial crisis originated in Thailand and the market declined sharply in June 1997, 

followed by the collapse of the Indonesian market in August, no serious attention was 

given to these markets until the crisis hit the Hong Kong market in mid-October 

(between October 20 and October 

tcrisis1  

tcrisis2

23 the Hang Seng Index dipped by 23%). From the 

perspective of Chinese stock investors, the Hong Kong market crash in mid-October 

was a direct threat to their investments, since the portfolio performance in the B-share 

markets is perceived to be highly correlated with that of Hong Kong’s market and 

Shenzhen B shares are measured in HK dollars. Furthermore, H-shares are traded in 

Hong Kong stock exchange. FPt is a dummy to capture the impact of the removal of 

the restriction on investment in B shares in February 2001 by Chinese government 

(2/22/2001-12/28/2005). The dummy variables are set to unity to indicate the 

presence of an effect and are zero otherwise.  

 92

http://en.wikipedia.org/wiki/October_23
http://en.wikipedia.org/wiki/Hang_Seng_Index


We display the estimated coefficients for Equation (4.9) in Table 4.7.  

 

Table 4.7  
Effects of Crisis and Policy Change on Conditional Correlation across Chinese 
Segmented Stock Markets 
 

Markets 

 

Estimates 

H-SHA H-SHB SHB-SHA 

0d  0.111 (0.012)*** 0.321 (0.009)*** 0.412 (0.011)*** 

1d  -0.033 (0.053) 0.031 (0.039) -0.018 (0.048) 

2d  -0.213 (0.029)*** 0.156 (0.021)*** -0.278 (0.026)*** 

3d  0.194 (0.017)*** -0.056 (0.013)*** 0.272 (0.015)*** 

 

Markets 

 

Estimates 

H-SZA H-SZB SZB-SZA 

0d  0.132 (0.012)*** 0.272 (0.008)*** 0.372 (0.012)*** 

1d  -0.030 (0.054) 0.085 (0.036)** 0.060 (0.051) 

2d  -0.140 (0.029)*** 0.133 (0.019)*** -0.134 (0.028)*** 

3d  0.167 (0.017)*** 0.072 (0.011)*** 0.315 (0.016)*** 

Notes: The estimates are based on Equation (4.9) in the text. Numbers in parentheses are standard errors. 

***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.  
 

 

From the above table, we find that the indicator of the effect of the early stage of 

Asian financial crisis, , is insignificant for all pairs of markets except H-SZB1d 49. 

                                                 
49 We think this is a reasonable finding as both of them are measured in HK dollars. 
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Thus, in the early stage of the crisis, 7/2/1997-10/15/1997, the effect was not fully 

hitting these six markets. However, from Hong Kong and Chinese investors’ point of 

view, the crisis took effect on October 20, 1997. This led to the negative and highly 

significant  for H-SHA, SHB-SHA, H-SZA, and SZB-SZA. In contrast, the 

contagion effect spread the crisis to the H- and two B-share markets, as evidenced by 

a positive correlation and significant  on the H-SHB and H-SZB pair. Our 

findings are useful for the Chinese policy makers to evaluate their market 

segmentation policy. In all, we find this market segmentation policy is very successful 

to shield the A-share markets from the external shock.  

2d

2d

3d The coefficient of the  variable, , is significantly positive for SHB-SHA 

and SZB-SZA, indicating that the correlations between A- and B-share markets 

increased after domestic investors in A-share markets were allowed to purchase B 

shares. Interestingly, we find that  for H-SHA and H-SZA are also positive and 

highly significant, suggesting that even domestic investors in A-share markets are still 

not allowed to invest in the H market and their participation in B-share markets tends 

to stimulate active transmission of information between the A-share and the H-share 

markets. We conclude that this more relaxed policy on purchasing B shares helped to 

accelerate the market integration process of A-share markets with international 

financial markets. In contrast, we find that  for H-SHB is negative and highly 

significant, suggesting that the participation of domestic citizens in Shanghai B-share 

stock market is less efficient in transmitting information between the Shanghai 

B-share market and the H-share market and, consequently, reduces the correlation 

tFP

3d

3d
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between these two markets.  

 

4.4 Conclusions of Chapter 4 

In this chapter we apply a nonlinear FIVECM bivariate GARCH framework to 

examine the long-term equilibrium, short-term adjustment, and spillover effects 

among six pairs of stock markets, namely, H-SHA, H-SHB, SHB-SHA, H-SZA 

H-SZB and SZB-SZA. Our FIVECM approach is considered to be more general than 

the traditional linear VECM approach, since it can measure the effect of the long 

memory on the cointegrating relationship, which is important for revealing the true 

relationships between the relevant stock markets. Furthermore, augmenting the 

FIVECM with a bivariate GARCH formulation, we investigate the mean and 

volatility spillover effects across these markets simultaneously.  

   Our empirical results show that all six pairs of stock markets are fractionally 

cointegrated. In each of the six pairs, the H-share stock market adjusts to return to 

equilibrium with the two A-share stock markets as well as the two B-share markets, 

while two B-share markets adjust to return to equilibrium with the corresponding two 

A-share markets. We conclude that A-share markets have strongest market power in 

influencing other markets in the long run.  

We find that there are bidirectional volatility spillover effects between the H-share 

and two A-share markets and between H-share and the two B-share markets. However, 

we find only unidirectional mean spillover effects from H-share market to the two 

A-share and two B-share stock markets and from Shenzhen A-share stock market to 
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Shenzhen B-share stock market. We conclude that H-share market plays a very 

influential role in influencing short-run dynamics of stock markets in mainland China. 

This may be due to the fact that: (1) H-share market are better managed and their 

management is more transparent as a result of their management style; and (2) 

investors are more conscious of economic content of news as Hong Kong market is 

subject to less manipulation vis-à-vis the China stock market.  

Further investigation of the dynamic path of correlation coefficients suggests that 

relaxation of government restrictions on the purchase of B shares by domestic 

residents increased the correlation between the A- and B-share markets and 

accelerated the market integration process of the A-share markets with the H-share 

stock market. Our results also disclose that the Asian crisis had a different spillover 

effect on stock-return dynamic correlations across Chinese segmented markets. We 

conclude that the market segmentation policy imposed by the Chinese authority is an 

effective instrument for shielding the domestic A-share markets from external 

turbulence.  
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Chapter 5:  Lead-lag relations among Chinese segmented stock markets  

 
 

5.1 Introduction  

   China’s stock markets, initiated in early 1990’s, have been expending 

tremendously in the past decade. As a mechanism for developing its stock markets, 

the Chinese government has adopted a market segmentation policy50. Firstly, each 

company’s stock is restricted to one of the two exchanges, i.e. Shanghai Stock 

Exchange (SHSE) and the Shenzhen Stock Exchange (SZSE). In this way, the 

markets in these two exchanges remain distinct. In addition, the companies listed in 

SHSE are likely to be state-owned big companies, many of which monopolize 

supplies to the domestic market (Kim and Shin, 2000). Whereas those listed in the 

SZSE tend to be smaller export-oriented companies, many of which are joint ventures. 

Although cross listing is not permitted, the two exchanges are subject to the same 

macroeconomic and policy factors. Depending on the nature of the companies listed 

in each exchange, the sensitivities of stock price movements caused to the common 

market factors might be different between the two stock exchanges (Kim and Shin, 

2000).  

   Secondly, to cater to the needs of different investors, Chinese companies can issue 

A shares to Chinese citizens living in mainland China and B shares to foreign 

                                                 
50 For detailed introduction on segmentation of Chinese stock markets, please refer to Chapter 1. 
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investors, including Chinese investors residing in Hong Kong, Macau, or Taiwan51. A 

and B shares are listed on the SHSE and the SZSE, i.e. SHA, SHB, SZA, and SZB.  

Due to features of different type of shares (A- and B-share) and of different 

exchanges (SHSE and SZSE) dominated by stocks of different sizes, it is an 

interesting issue for both academic and practitioners to investigate the lead-lag 

relations among these stock markets. In the finance literature, it is a widespread 

assumption that foreign investors are less informed than domestic investors about the 

value of local assets (See, for example, Brennan and Cao, 1997; Kang and Stulz, 1997; 

Stulz and Wasserfallen, 1995). These authors think that this could be due to various 

factors such as language barriers, different accounting standards in the recipient and 

investing economies, and due to lack of reliable information about the local economy 

and firms. However, there are also evidences supporting foreign investors are better 

informed. For example, Froot, O’Connell, and Seasholes (2001) document that 

foreign investors’ portfolio inflows have a noticeable ability to predict positive future 

returns in emerging markets but not in developed markets. Pan, Chan, and Wright 

(2001) also find that foreign investors are better informed than domestic investors in 

six East Asian emerging markets. Thus A detailed investigation of the dependence 

dynamics between A and B shares could lead to better understanding of the behaviors 

of domestic and foreign investors. If Chinese stock markets are efficient, any firm 

specific information should be reflected in prices of both A and B shares and also 

result in the same degree of price changes simultaneously as both A and B shares are 

                                                 
51 Some companies are allowed to issue H, N, and S shares, which are traded on the Hong Kong Stock Exchange, 

New York Stock Exchange, and Singapore Stock Exchange. 
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issued by the same company. However, in practice, as the two shares are traded by 

distinct groups of investors, departure from the perfect dependence situation will 

reveal the existence of asymmetric information and different behaviors of domestic 

and foreign investors in Chinese stock markets.  

As stated by Tian and Wan (2004), there could be four possible results on this 

issue between A- and B-share markets: (1) experienced foreign investors have 

information advantage, thus the prices of B shares would lead those A shares. (2) 

domestic investors can better acquire relevant news from local sources, resulting in 

the prices of A shares leading the prices of B shares. (3) different investor groups can 

have different comparative advantages in acquiring information so that price 

information can transmit in both directions. Finally, the markets for A and B shares 

might be completely segmented, showing no correlation among prices. Therefore, 

empirical work is required to identify the possible results in reality. 

   Furthermore, information transmission between same types of shares in two 

exchanges also deserves analyses. Research in financial economics suggests that 

market-wide information may impact the prices of large-capitalization stocks more 

quickly than small-capitalization stocks, thus information transmission is from stocks 

of large firm to stocks of small firms. The evidences supporting this assumption are 

numerous. See, for example, Lo and MacKinlay (1990), Conrad et al (1991), Brennan 

et al. (1993), Mech (1993), Badrinath et al (1995), McQueen et al (1996), and Chordia 

and Swaminathan (2000)). However, there are also evidences of bi-directional 

information transmission between the large and small firms, see, for example, Robert 
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(1996). Studies the lead-lag relation between A-(B-) shares in SHSE and SZSE may 

provide more empirical results to this issue. 

   The lead-lag relations among these segmented markets have been widely studied52. 

Several groups have applied Granger causality tests to determine the lead-lag 

relationships between the A-share and B-share markets, which in turn could also offer 

evidence on which group of investors is more efficient in obtaining and processing 

relevant information and trading upon it. For example, Laurence et al. (1997) observe 

a causal relationship from the SHB to all other Chinese markets and from SHA and 

SZB feedback to SHB. Kim and Shin (2000) find that the A-share markets lead the 

B-share markets before 1996, but the relationship either disappears or reverses after 

1996. Sjoo and Zhang (2000) find that information flows from foreign to domestic 

investors in the SHSE, the direction is reversed in the smaller and less liquid SZSE. 

Chen et al. (2001) test the Granger causal relationship between A-share and B-share 

stocks. Their results show that, there is no causal relations between A-share return 

(volatility) and B-share (volatility). Tian and Wan (2004) find SHB and SZB exhibit 

causality relations with each other during the period from 1993 to 1999. However, 

this relationship does not exist within SHA and SZA.  

   On February 19, 2001, Chinese government adopts a new policy which removes 

the previous restriction on trading B shares by domestic citizens. From this date, 

domestic investors are allowed to exchange some quota of foreign currencies for the 

purpose of B-share investment and more and more domestic investors are interested in 

                                                 
52 For detailed review on the information transmission among Chinese segmented stock markets, please refer to 
Chapter 2. 
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trading B-share stocks. Thus, it is of interest to explore the change in lead-lag relation 

among segmented stock markets caused by this liberal policy. Our findings will shed 

more light on understanding the dynamic interrelationships between the segmented 

markets, which are both useful in theoretical and empirical academic work.  

   In this paper, we aim to explore the lead-lag relationships among Chinese 

segmented stock markets before and after the relaxation of government restrictions on 

the purchase of B shares by domestic investors. Our work extends the existing 

literature in the following two ways. Firstly, besides standard linear Granger causality 

test which have been applied extensively in analyzing the linear lead-lag relations 

between stock markets, we apply a nonlinear Granger causality test developed by 

Hiemstra and Jones (1994) (hereafter refered as HJ test) to investigate existence of 

any nonlinear lead-lag relationship among Chinese segmented stock markets. Many 

studies have reported that financial time series exhibit nonlinear dependence (e.g., 

Hsieh, 1991; Scheinkman and LeBaron, 1989 et al), thus nonlinear Granger causality 

test is more suitable than traditional linear Granger causality tests, which generally 

have low power against nonlinear relationships (Baek and Brock, 1992). There have 

been some research works applying HJ test to explore the nonlinear causal relation in 

the literature, for instance, between trading volume and stock/futures returns 

(Hiemstra and Jones, 1994; Ciner, 2002), between volume and volatility in stock 

market and futures markets (Brooks ,1998; Abhyankar, 1998; Silvapulla and Moosa, 

1999), between exchange rates (Ma and Kanas, 2000), among real estate prices and 

stock markets (Okunev et al., 2000) , between GDP growth and the composite leading 
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index (Huh, 2002) and between London Metal Exchange cash prices and some of its 

possible predictors (Chen and Lin, 2004), etc. To our knowledge, there has no 

research applying this test to explore the causal relation between stock markets. Our 

work thus aims to fill in this literature gap by applying this test to study the 

information transmission among Chinese segmented stock markets.  

   Secondly, we use more recent data to comparatively analyze the Granger causality 

relations among Chinese segmented stock markets before and after Chinese 

government relax the restriction on the purchase of B shares by domestic investors, to 

study the impact of the China government’s policy on the lead-lag relations among 

segmented stock markets. This issue has not been analyzed by other researchers.  

Our findings reveal that the causality relation among China’s stock indices is more 

complicated than what the linear causality test reveals. We find that the linear causal 

relations diminish whereas the nonlinear causality relations strengthen after China 

adopted this more liberal policy. More specifically, our results show that there exists 

nonlinear dependence among the four stock markets. Contrast sharply with those of 

the linear causality test in which only the causality relation from SZA to SZB is 

present after the adoption of this liberal policy, nonlinear Granger causality test 

provides evidence of bi-directional causal relationship between two A-share markets 

as well as between two B-share markets. Further more, we find that SHA tends to lead 

SHB and SZA tends to lead SZB after this new policy has been implemented on 

February 19, 2001.   
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   The remainder of this chapter proceeds as follows. Section 5.2 discusses the data 

and methodology. Section 5.3 provides empirical results, and Section 5.4 summarizes 

our conclusions and comments.  

 

5.2 Data and Methodology   

5.2.1 Data 

   The data used in this study are daily price indices of Shanghai A-share (SHA), 

Shenzhen A-share (SZA), Shanghai B-share (SHB) and Shenzhen B-share (SZB). All 

data are taken from DataStream International. Our sample covers January 1996 

through December 2005. To study the possible change in the lead-lag relation among 

segmented stock markets, the sample is divided into two sub-samples which roughly 

have same number of observations. The first sub-sample covers the period from 1 

January 1996 to 16 February 2001 and the second covers the period from 19 February 

2001 to 30 December 200553. All of these indices are based on closing prices in US 

dollars and stock index returns are continuously compounded.  

 

5.2.2 Methodology  

   This section presents the methodologies used to investigate the causal relations 

among segmented Chinese stock markets by first introducing the linear Granger 

causality test and thereafter presenting the nonlinear Granger causality test in detail. 

 

                                                 
53 As February 17 and 18, 2001 are weekend, the stock markets are closed. We choose February 19, 2001 as a 
cut-off point as since this date, Chinese government adopts a new policy to remove the restriction on trading B 
shares by domestic citizens. 
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5.2.2.1 Cointegration and Linear Granger Causality  

   In order to test for linear causal linkages between segmented stock markets, we 

proceed in the following steps. First, we apply augmented Dikey-Fuller (ADF) and 

Philips-Perron (PP) unit root tests to examine the stationary property for the four 

logarithm indices being studied in the paper to ensure these indices to be integrated of 

the same order before further examination. Second, if, as expected, these indices are 

found to be I(1), then we apply well-known Johansen procedure to test possible 

cointegration between any two series. Third, if any pair of series is not cointegrated, 

we will adopt the following bivariate VAR model to test for the Granger causality54:  

 

                   (5.1)            
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where  and ty1Δ ty2Δ  denote the return series for any two stock markets being 

examined,  is the vector of the corresponding error terms')(tε = 21 , tt εε 55,  is the 

optimal lag lengths which is obtained using AIC criterion.  

m

   On the other hand, if two series are cointegrated, we follow Granger (1981, 1988) 

and Sims et al. (1990) to impose the error-correction mechanism (ECM) on the VAR 

to test for the Granger causality between these variables. The ECM-VAR framework 

is as follows: 

                                                 
54 The shortcoming of usual Granger causality test is that it might produce spurious causal relationship if the third 

variable is involved. However, as it is not easy to be clear about what other variables should be included in the 

Granger causality test framework. In this paper, we adopted the usual bivariate framework to do this analysis.  
55 We assume the error term follows the normal distribution. 
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Here, the term  is the error correction term, the coefficients tect 1α  and 2α  

indicate the short-run dynamic adjustments with their magnitudes representing the 

speeds of the adjustment. Thereafter, the Granger causality test is conducted on the 

null hypotheses  or 12 0i =φ 21 0iφ = , for all i (i=1,2, . . . , m), in an usual manner56. 

 

5.2.2.2 Nonlinear Granger Causality57  

   The linear Granger causality test is known to possess a low power in detecting 

nonlinear causal relationships (Baek and Brock, 1992). To circumvent this problem, 

we utilize a nonlinear Granger causality test on the residuals from the linear VAR 

(ECM-VAR) model as discussed above. This approach enables us to detect the 

existence of any strictly nonlinear causality relations among the variables being 

studied as the VAR (ECM-VAR) has already purged the residuals of linear causality.  

   The nonlinear Granger causality test developed by of Baek and Brock (1992) has 

further been modified by Hiemstra and Jones (1994). This modified approach enables 

us to examine whether, by removing all the linear predictive power, any remaining 

incremental predictive power of one residual series for another can be considered 

nonlinear predictive power. A nonparametric statistical method is then proposed 
                                                 
56 When the coefficient for error correction term, i.e. 1α  and 2α , is statistically significant, some researchers 
refer this as “long run” causality in literature. Here we focus on usual “short run” causality, which capture the lead 
lag relation in stock return in the short run.   
57 The nonlinear Granger causality test is done with C++. 
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employing the correlation integral (a measure of spatial dependence across time) to 

uncover any nonlinear causal relation between two time series. 

   Consider two strictly stationary and weakly dependent time series  and { , 

t=1,2,.... Let  be the m-length lead vector of , and let  and be the 

-length and -length lag vectors of  and  respectively. For given values of 

m, , and  and for any distance e, 

{ }tX

Y

}tY

m
tX

L

yL

tX

tY

X

X

L
LtX −

y

y

L
Lt−

xL y tX

xL { }tY  does not strictly Granger cause  

if: 

{ }tX

 

),|Pr( eYYeXXeXX Ly
Lys

Ly
Lyt

Lx
Lxs

Lx
Lxt

m
s

m
t <−<−<− −−−−  

             = )|Pr( eXXeXX Lx
Lxs

Lx
Lxt

m
s

m
t <−<− −−                   (5.3) 

 

where  and )Pr( ⋅ ⋅  denote probability and maximum norm respectively58.  

 

In the above equation, the left-hand side is the conditional probability that two 

arbitrary m-length lead vectors of { }tX

L

 are within a distance e of each other, given 

that the corresponding -length and -length lag vectors of xL y { }tX  and {  are 

within a distance e of each other. The right-hand side is the conditional probability 

that two arbitrary m-length lead vectors of 

}tY

{ }tX  are within a distance e of each other, 

given that the corresponding -length lag vectors of are within a distance e of 

each other. The strict Granger noncausality condition in Equation (5.3) can be 

xL tX

                                                 
58 The maximum norm for is defined as max(  i=1,2…K. K

K RZZZZ ∈= ),,( 21 L )iZ ,
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implemented by expressing it in terms of the corresponding ratios of joint 

probabilities as follows: 
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where , ,  and  are the correlation-integral estimators of the joint 

probabilities, which have been discussed in detail by Hiemstra and Jones (1994).  
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Correlation-integral estimators of the joint probabilities are used to test the 

non-causality condition. Let  denote a kernel that equals 1 when two 

vectors  and  are within the maximum-norm distance e of each other and 0 

otherwise. Then we have: 
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For given values of m, and  and , under the assumptions that  

and  are strictly stationary and weakly dependent, if 

xL 1≥yL 0>e { }tX
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where n=T+ 1-m-max( , ) and xL yL 1m-T,1,), max(, ++= Lyx LLst .  

Following Hiemstra and Jones (1994),  can be estimated as 

follows. Defining the joint probabilities , , 

 and , which are conditioned on combinations of the 

realizations  ,  and  as: 
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Using above equation and the delta method (Serfling, 1980, pp.122-125), under 

the assumption that the underlying series are strictly stationary, weakly dependent, 

and satidy the mixing condition of Denker and Keller (1983), an expression for the 

variance in equation (5.7) is given by: 

 

∑ ′= ddeLLm yx ),,,(2σ                                      (5.9) 
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and where E  in Equation (5.11) denotes expected value and the  terms are 

defined in Equation (5.5). 

)(⋅iC

   Using the results of Denker and Keller (1983) and Newey and West (1987), a 

consistent estimator of the elements in Equation (5.9) is given by ∑ ji,
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and where  correlation integrals are defined in Equation (5.5). The 

 correlation integrals provide a consistent estimator of  in Equation (5.10), 

namely, 
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A consistent estimator for  in Equation (5.7) can then be 

expressed as follows: 
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A significant positive value of the test statistic implies that lagged values of  { }tY
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help to predict{ , whereas significant negative value suggests that lagged values of 

 rather confuse the prediction of 

}tX

{ }tY { }tX . This test has very good power properties 

against a variety of nonlinear Granger causal and non-causal relations, and its 

asymptotic distribution is the same if the test is applied to the estimated residuals from 

a VAR model (Hiemstra and Jones, 1994).  

 

5.3 Empirical Results 

   We summarize the basic statistics of the natural logarithm values of price indices 

for each sub-period in Table 5.1.  

 
Table 5.1 
Descriptive Statistics for Chinese Stock Indices of Two Sub-samples 

 

Index SHA SHB SZA SZB 
Sub sample period 1: January 1, 1996 to February 16, 2001 

Mean 5.057 3.908 3.868 2.471 

Median 5.058 3.921 3.919 2.457 

Maximum 5.604 4.587 4.443 3.243 

Minimum 4.157 3.063 2.563 1.680 

Std. Dev. 0.342 0.332 0.425 0.331 

Skewness -0.642 -0.220 -1.465 -0.057 

Kurtosis 3.212 2.449 5.178 2.307 

Observations 1236 1236 1236 1236 

Sub sample period 2: February 19, 2001 to December 30, 2005 

Mean 5.239 4.709 3.932 3.436 

Median 5.242 4.749 3.952 3.408 

Maximum 5.643 5.480 4.434 4.023 

Minimum 4.855 3.939 3.387 2.796 

Std. Dev. 0.177 0.334 0.250 0.165 
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Skewness 0.226 -0.161 0.003 0.924 

Kurtosis 2.824 2.285 2.452 4.463 

Observations 1173 1173 1173 1173 
Note: These are descriptive statistics of the stock indices. Sample covers January 1996 through 

December 2005. The total number of observations is 2408.  
 

We then conduct both ADF and PP unit root tests to reveal the stationary property 

for each logarithm index. The results in Table 5.2 indicate that all of the indices are 

I(1), which are consistent with the results found in the literature.  

 
 
Table 5.2 
Unit Root Test Results 
 

Panel A: Unit root test results for the stock indices  
 SHA SHB SZA SZB 

Sub sample period 1: January 1, 1996 to February 16, 2001 

ADF Statistic -2.727 -1.176 -2.502 -1.825 

PP Statistic -2.832 -1.121 -2.564 -1.900 

Sub sample period 2: February 19, 2001 to December 30, 2005 
ADF Statistic -2.582 -0.474 -2.756 -0.409 

PP Statistic -2.610 -0.765 -2.872 -0.207 

Panel B: Unit root test results for the stock index returns 

 △SHA △SHB △SZA △SZB 
Sub sample period 1: January 1, 1996 to February 16, 2001 

ADF Statistic -35.106*** -29.810*** -34.477*** -30.111*** 

PP Statistic -35.123*** -29.810*** -34.635*** -30.359*** 

Sub sample period 2: February 19, 2001 to December 30, 2005 

ADF Statistic -33.734*** -31.105*** -33.068*** -30.600*** 

PP Statistic -33.731*** -31.316*** -33.069*** -32.284*** 

Note: The null hypothesis of the ADF test and PP test is that the variable has a unit root. ***, ** and * 

indicate significance at the 1%, 5% and 10% level, respectively. 
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Upon confirmation of possessing unit roots of the same order by these results, we 

apply the Johansen procedure to look for evidence of cointegration for any pair of 

indices, i.e. SHA-SHB, SZA-SZB, SHA-SZA and SHB-SZB, in each sub-period59. 

We find evidence of one cointegration relation in SHB-SZB for the first sub-period 

whereas another cointegration relation in SHA-SHB for the second sub-period with 

their p-values smaller than conventional levels. Thus, for these two pairs, we further 

utilize the linear Granger causality test to examine their relationships in the 

ECM-VAR framework as shown in Equation (5.2). For other pairs of markets, instead, 

the usual VAR displayed in Equation (5.1) is adopted60. We conduct the conventional 

linear Granger causality test and report the results in Table 5.3.  

The results in the Table 5.3 indicate that before Chinese government relaxed the 

restrictions on the purchase of B shares by domestic investors, A-share markets in 

Shanghai and Shenzhen exhibit strong causality relations with each other. For B-share 

stock markets, we find strong causal relation from SZB to SHB, while the causal 

relation running from SHB to SZB is very weak (significant only at the 8% level). 

This result suggests that there are bi-directional information transmission between the 

big stocks and small stocks for A shares, which is consistent with the finding of 

Robert (1998). However, for B shares, our finding supports small stocks lead big 

stocks. As to interaction between A-share and B-share markets, we only find the 

evidence that SZB weakly leads SZA, implying foreign experienced institutional 

                                                 

ere 

59 We only report the lead-lag relations between different types of shares in the same exchange and display 
relations between same types of shares in different exchanges. Nevertheless, the results for SHA-SZB and 
SZA-SHB, though not being reported, are available upon request.    
60 Johansen cointegration test results and complete estimation results for VAR and ECM-VAR are not reported h
but available upon request. 
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investors have some information advantage against domestic individual investors in 

SZSE.  

 

Table 5.3  
Testing for Linear Granger Causality 

             Test 
Markets Wald statistics LB(6) 

Panel A:  January 1, 1996 to February 16, 2001 

SHA SHB 1.081(0.356) 1.061(0.983) 

SHB SHA 0.684(0.562) 3.114(0.794) 

SZA SZB 1.362(0.227) 0.111(1.000) 

SZB SZA 2.040(0.058)* 0.536(0.997) 

SHA SZA 2.961(0.000) *** 0.101(1.000) 

SZA SHA 2.419(0.002) *** 0.238(1.000) 

SHB SZB 9.801(0.081)* 0.422(0.999) 

SZB SHB 14.560(0.012)** 0.072(1.000) 

Panel B:  February 19, 2001 to December 30, 2005 

SHA SHB 1.658(0.437) 4.853(0.563) 

SHB SHA 3.122(0.210) 2.801(0.833) 

SZA SZB 5.340(0.000) *** 4.495(0.610) 

SZB SZA 0.569(0.685) 0.679(0.995) 

SHA SZA 0.089(0.765) 3.350(0.764) 

SZA SHA 0.412(0.521) 3.962(0.682) 

SHB SZB 1.364(0.208) 2.797(0.834) 

SZB SHB 1.615(0.116) 1.716(0.944) 

Note: Numbers in parentheses are p-values. LB (6) is the Ljung-Box statistics based on the level of the 

residual series of dependent variables in Equation (5.1), or (5.2) when cointegration relation exists, up to the 

6th lag. The results of the Ljung-Box, however, are robust to other lag length specification. ***, ** and * 

indicate significance at the 1%, 5% and 10% level, respectively. 

 

 

  In contrast, for the sub-sample period 2, after Chinese government adopts more 

liberal policy allowing domestic investors to invest in B-share markets, linear Granger 

 114



causality test shows that there only exists a causality relation from SZA to SZB and 

there is no lead-lag relation between other pairs of markets at all. This suggests that 

after Feb 19, 2001, the information transmission among these four markets becomes 

much weaker.  

   Before testing for nonlinear Granger causality in the residuals from the linear 

VAR (ECM-VAR), two sets of diagnostic tests are conducted on the residuals from 

the VAR models. First, the Ljung–Box -test is used to determine whether any 

linear dependency remains in the residuals.  
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where T is the size of the sample and is the simple i-order correlation coefficient. 

In this null of no serial correlation (5.17) follows distribution with k degrees of 

freedom. 

ir  

2χ

Secondly, we perform a formal nonlinear dependence test, known as the Brock, 

Dechert, and Scheinkman (BDS) test (1987 and 1996), on the residuals. The BDS test 

is a portmanteau test for time based dependence in a series. The BDS approach 

essentially tests for deviations from identically and independently distributed (i.i.d) 

behavior in the time series of residuals. This test can be used to validate estimated 

models, since it detects any structure in the error term, be it linear, nonlinear or 

chaotic. 

   Given  (t=1,...,T), they are considered segments of the same size, called 

m-stories and form the m-dimensional vector,  

tx

)()( 1,2,1, −+++= mttttt xxxxmx L . The  
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BDS test computes the correlation integral  of m dimension and l distance as: )(, lC Tm
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The BDS test for an m fix dimension, an l distance and a T sample size is: 
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where , and . C is consistently estimated 
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We reject the null hypothesis of a random iid series if the probability that any two 

m-dimensional vectors are close together exceeds the power of the probability of 

any two points being close together. The properties of this test on finite samples were 

studied by Brock et al.(1987), Brock et al. (1996), Brock et al. (1991) or Lee et al. 

(1993), among others. Brock et al. (1987) showed that, under the null of iid series, the 

BDS statistic follows a normal distribution. However, for series with unusual 

distributions, the test may not be normal. For this reason, and given the high non 

normality of the corresponding residual series, p-values are calculated through 

bootstrap with 1000 replications. The test is applied for common lag lengths of 2–10 

lags and a common scale parameter of 

thm

σ5.1=e  are used, where σ =1 denotes the 

standard deviation of standardized series.  

   The results of Ljung–Box -test as reported in the last column of Table 5.3 point 

out that the VAR (ECM-VAR) models successfully account for linear dependency, as 

indicated by insignificant values of -test. In Table 5.4, we report the BDS test 

results. As indicated, all the residual series from VAR (ECM-VAR) models are 

nonlinear dependent.  

Q
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Table 5.4 BDS Test Results for the VAR (ECM-VAR) Residuals  

 
Sub sample period 1: January 1, 1996 to February 16, 2001 

Dimension SHA SHB SHB SHA 
2 9.597 (0.000) *** 9.751 (0.000) *** 
3 11.623 (0.000) *** 11.708 (0.000) *** 
4 13.304 (0.000) *** 13.239 (0.000) *** 
5 14.394 (0.000) *** 14.031 (0.000) *** 
6 15.620 (0.000) *** 14.789 (0.000) *** 
7 16.710 (0.000) *** 15.612 (0.000) *** 
8 17.724 (0.000) *** 16.452 (0.000) *** 
9 19.042 (0.000) *** 17.359 (0.000) *** 
10 20.383 (0.000) *** 18.410 (0.000) *** 

Dimension SZA SZB SZB SZA 
2 12.540 (0.000) *** 12.814 (0.000) *** 
3 14.523 (0.000) *** 15.577 (0.000) *** 
4 16.212 (0.000) *** 17.355 (0.000) *** 
5 17.343 (0.000) *** 18.910 (0.000) *** 
6 18.103 (0.000) *** 20.277 (0.000) *** 
7 18.800 (0.000) *** 21.588 (0.000) *** 
8 19.562 (0.000) *** 22.954 (0.000) *** 
9 20.453 (0.000) *** 24.630 (0.000) *** 
10 21.349 (0.000) *** 26.364 (0.000) *** 

Dimension SHA SZA SZA SHA 
2 13.153 (0.000) *** 9.074 (0.000) *** 
3 15.435 (0.000) *** 10.849 (0.000) *** 
4 17.213 (0.000) *** 12.370 (0.000) *** 
5 18.798 (0.000) *** 13.250 (0.000) *** 
6 20.203 (0.000) *** 14.020 (0.000) *** 
7 21.579 (0.000) *** 14.788 (0.000) *** 
8 22.981 (0.000) *** 15.667 (0.000) *** 
9 24.673 (0.000) *** 16.681 (0.000) *** 
10 26.456 (0.000) *** 17.877 (0.000) *** 

Dimension SHB SZB SZB SHB 
2 12.698 (0.000) *** 9.454 (0.000) *** 
3 14.660 (0.000) *** 11.271 (0.000) *** 
4 16.320 (0.000) *** 12.917 (0.000) *** 
5 17.543 (0.000) *** 13.995 (0.000) *** 
6 18.418 (0.000) *** 15.164 (0.000) *** 
7 19.250 (0.000) *** 16.216 (0.000) *** 
8 20.107 (0.000) *** 17.218 (0.000) *** 
9 21.090 (0.000) *** 18.529 (0.000) *** 
10 22.076 (0.000) *** 19.870 (0.000) *** 
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Panel B: February 19, 2001 to December 30, 2005 
Dimension SHA SHB SHB SHA 

2 7.552 (0.000) *** 2.618 (0.009) *** 
3 9.759 (0.000) *** 4.622 (0.000) *** 
4 11.265 (0.000) *** 6.028 (0.000) *** 
5 12.050 (0.000) *** 6.879 (0.000) *** 
6 12.487 (0.000) *** 7.472 (0.000) *** 
7 12.937 (0.000) *** 7.870 (0.000) *** 
8 13.498 (0.000) *** 8.204 (0.000) *** 
9 14.072 (0.000) *** 8.820 (0.000) *** 
10 14.681 (0.000) *** 9.527 (0.000) *** 

Dimension SZA SZB SZB SZA 

2 6.526 (0.000) *** 3.365 (0.001) *** 
3 9.333 (0.000) *** 5.946 (0.000) *** 
4 11.018 (0.000) *** 7.478 (0.000) *** 
5 11.873 (0.000) *** 8.408 (0.000) *** 
6 12.420 (0.000) *** 9.054 (0.000) *** 
7 13.012 (0.000) *** 9.626 (0.000) *** 
8 13.711 (0.000) *** 10.087 (0.000) *** 
9 14.278 (0.000) *** 10.728 (0.000) *** 
10 14.895 (0.000) *** 11.541 (0.000) *** 

Dimension SHA SZA SZA SHA 

2 3.364 (0.001) *** 2.586 (0.010) *** 
3 5.892 (0.000) *** 4.527 (0.000) *** 
4 7.529 (0.000) *** 5.838 (0.000) *** 
5 8.526 (0.000) *** 6.617 (0.000) *** 
6 9.221 (0.000) *** 7.162 (0.000) *** 
7 9.834 (0.000) *** 7.535 (0.000) *** 
8 10.367 (0.000) *** 7.830 (0.000) *** 
9 11.070 (0.000) *** 8.405 (0.000) *** 
10 11.931 (0.000) *** 9.057 (0.000) *** 

Dimension SHB SZB SZB SHB 

2 5.160 (0.000) *** 6.235 (0.000) *** 
3 8.025 (0.000) *** 8.488 (0.000) *** 
4 9.803 (0.000) *** 9.957 (0.000) *** 
5 10.685 (0.000) *** 10.858 (0.000) *** 
6 11.212 (0.000) *** 11.485 (0.000) *** 
7 11.743 (0.000) *** 12.074 (0.000) *** 
8 12.406 (0.000) *** 12.824 (0.000) *** 
9 12.945 (0.000) *** 13.537 (0.000) *** 
10 13.406 (0.000) *** 14.292 (0.000) *** 
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Notes: This table reports the results of the normalized BDS test statistics proposed by Brock et al (1987 

and 1996). Each cell contains two numbers: numbers without parenthesis are the standardized BDS test 

statistics based on the level of the residual series of dependent variable in Equation (5.1) or (5.2); 

numbers in parenthesis are the corresponding p-values, which are simulated using bootstrap with 1000 

replications. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively. 

Considering the low power of conventional linear Granger causality against 

nonlinear relationships, we apply the HJ nonlinear Granger causality test to the 

residuals from the above linear VAR (ECM-VAR) model. To implement the HJ test, 

values for the lead length, m, the lag lengths, and , and the scale parameter, e, 

have to be selected. Following Hiemstra and Jones (1994), we set lead length m=1 

and =  for all cases. Also, common lag lengths of 1–10 lags and a common 

scale parameter of 

xL yL

xL yL

σ5.1=e  are used, where σ =1 denotes the standard deviation of 

standardized series. The results of nonlinear causality tests are displayed in Table 5.5. 

Different from its linear counterpart test for the first sub-sample, nonlinear 

Granger causality test reported in Panel A of Table 5.5 indicates there are not only 

strong bi-directional information transmission between two A-share markets, there are 

also strong bi-directional information transmission between two B-share markets. 

This provides strong support to Robert’s argument (1998) that information 

transmission between the large and small firms is bi-directional61. Further more, 

nonlinear Granger causality test shows that SZB strongly leads SZA for the first 

sub-sample, suggesting more sophisticated institutional investors in B-shares market 

in SZSE might more cost effectively acquire both market-wide and company-wide 

information than corresponding domestic traders62.  

                                                 
61 It implies that investors can use the information of one market to forecast the movement of another market, 
which also suggests both markets are not efficient. 
62 We do not find evidence of information exchange between SHA and SHB, implying no information asymmetry 
between foreign investors and domestic investors in SHSE (Chen et al., 2001). The exact reason for this deserves 
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Table 5.5 
Testing for Nonlinear Granger Causality 

Sub sample period 1: January 1, 1996 to February 16, 2001 
Lx=Ly SHA SHB SHB SHA 

1 0.447 (0.327) 0.631 (0.264) 
2 -0.759 (0.224) 0.072 (0.471) 
3 -1.022 (0.153) -0.626 (0.266) 
4 -1.192 (0.117) -1.424 (0.077) 
5 -1.416 (0.078) -2.158 (0.015) 
6 -1.799 (0.036) -2.768 (0.003) 
7 -1.804 (0.036) -3.474 (0.000) 
8 -1.979 (0.024) -3.237 (0.001) 
9 -2.033 (0.021) -2.920 (0.002) 
10 -1.880 (0.030) -2.687 (0.004) 

Lx=Ly SZA SZB SZB SZA 
1 1.372 (0.085)* 2.385 (0.009)*** 
2 0.900 (0.184) 2.189 (0.014)** 
3 -0.423 (0.336) 1.837 (0.033)** 
4 -1.298 (0.097) 1.183 (0.118) 
5 -1.182 (0.119) 0.869 (0.192) 
6 -0.798 (0.212) 0.789 (0.215) 
7 -0.664 (0.253) 0.553 (0.290) 
8 -0.251 (0.401) 0.340 (0.367) 
9 -0.068 (0.473) -0.120 (0.452) 
10 0.092 (0.463) 0.038 (0.485) 

Lx=Ly SHA SZA SZA SHA 
1 3.606 (0.000) *** 4.037 (0.000) *** 
2 3.808 (0.000) *** 4.482 (0.000) *** 
3 4.402 (0.000) *** 4.661 (0.000) *** 
4 4.342 (0.000) *** 4.758 (0.000) *** 
5 3.811 (0.000) *** 4.956 (0.000) *** 
6 4.184 (0.000) *** 4.687 (0.000) *** 
7 4.020 (0.000) *** 4.328 (0.000) *** 
8 3.756 (0.000) *** 4.091 (0.000) *** 
9 4.007 (0.000) *** 3.439 (0.000) *** 
10 4.241 (0.000) *** 3.230 (0.000) *** 

Lx=Ly SHB SZB SZB SHB 
1 3.320 (0.000) *** 3.397 (0.000) *** 
2 4.355 (0.000) *** 2.741 (0.003) *** 
3 4.879 (0.000) *** 3.568 (0.000) *** 
4 4.442 (0.000) *** 3.326 (0.000) *** 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

                                                                                                                                            
further investigation.  
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5 4.412 (0.000) *** 3.304 (0.000) *** 
6 4.015 (0.000) *** 2.922 (0.002) *** 
7 3.230 (0.001) *** 2.778 (0.003) *** 
8 3.308 (0.000) *** 2.201 (0.014) ** 
9 2.922 (0.002) *** 1.935 (0.027)** 
10 2.799 (0.003) *** 2.144 (0.016)** 

Panel B: February 19, 2001 to December 30, 2005 
Lx=Ly SHA SHB SHB SHA 

1 0.108 (0.457) 0.711 (0.239) 
2 0.707 (0.240) 0.483 (0.315) 
3 0.915 (0.180) -0.108 (0.457) 
4 0.966 (0.167) -0.144 (0.443) 
5 0.649 (0.258) -0.302 (0.381) 
6 1.051 (0.147) -0.491 (0.312) 
7 1.299 (0.097)* -0.391 (0.348) 
8 1.922 (0.027)** -0.279 (0.390) 
9 1.756 (0.040)** -0.033 (0.487) 
10 1.999 (0.023)** 0.519 (0.302) 

Lx=Ly SZA SZB SZB SZA 
1 0.519 (0.302) -0.900 (0.184) 
2 0.507 (0.306) -0.538 (0.295) 
3 -0.257 (0.398) -1.059 (0.145) 
4 0.191 (0.424) -1.465 (0.071) 
5 -0.012 (0.495) -1.385 (0.083) 
6 1.097 (0.136) -1.450 (0.074) 
7 1.156 (0.124) -1.393 (0.082) 
8 1.694 (0.045)** -1.438 (0.075) 
9 1.984 (0.024)** -0.771 (0.220) 
10 2.024 (0.022)** -0.485 (0.314) 

Lx=Ly SHA SZA SZA SHA 
1 0.395 (0.347) 0.842 (0.200) 
2 0.438 (0.331) 3.707 (0.000) *** 
3 1.100 (0.136) 4.071 (0.000) *** 
4 1.108 (0.134) 4.815 (0.000) *** 
5 1.428 (0.077)* 4.397 (0.000) *** 
6 1.427 (0.077)* 4.425 (0.000) *** 
7 1.244 (0.107) 4.329 (0.000) *** 
8 1.837 (0.033)** 4.073 (0.000) *** 
9 2.166 (0.015)** 4.657 (0.000) *** 
10 1.658 (0.049)** 4.846 (0.000) *** 
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Lx=Ly SHB SZB SZB SHB 
1 2.946 (0.002) *** 0.881 (0.189) 
2 2.941 (0.002) *** 2.316 (0.010) *** 
3 2.660 (0.004) *** 2.575 (0.005) *** 
4 1.768 (0.039)** 2.344 (0.010) *** 
5 1.606 (0.054)* 1.676 (0.047)** 
6 1.854 (0.032)** 2.416 (0.008) *** 
7 2.473 (0.007) *** 2.296 (0.011)** 
8 2.611 (0.005) *** 2.048 (0.020)** 
9 2.837 (0.002) *** 1.892 (0.029)** 
10 2.769 (0.003) *** 1.868 (0.031)** 

Notes: This table reports the results of the nonlinear Granger causality test proposed by Hiemstra and 

Jones (1994). Each cell contains two numbers: numbers without parenthesis are the standardized HJ test 

statistics as per Equation (5.7) and numbers in parenthesis are the corresponding p-values. Under the 

null hypothesis of nonlinear Granger noncausality, the test statistics is asymptotically distributed N (0, 
1) and is a one-tail test. A significant positive test statistic implies that lagged values of { }tY  nonlinear 

Granger causes{ }tX . ***, ** and * indicate positive significance at the 1% (critical value=2.326), 5% 

(critical value=1.645) and 10% (critical value=1.280) level, respectively.  

 

 

 

 

 

 

 

 

 

 

 

   In the second sub-sample when more relaxed policy on purchasing B shares are 

implemented, nonlinear Granger causality reports very different scenario: there is 

evidence of a strong bi-directional causal relations between two A-share markets as 

well as between two B-share markets. Overall, our findings derived from both linear 

and nonlinear Granger causality tests contradicts the findings of Lo and MacKinlay 

(1990), Conrad et al (1991), Brennan et al. (1993), Mech (1993), Badrinath et al 

(1995), McQueen et al (1996), and Chordia and Swaminathan (2000)), while support 

that of Robert (1996). We find there are bi-directional information transmission 

between large stocks and small stocks in two sub samples. 

   Further more, we find some evidence that SHA leads SHB and SZA leads SZB. 
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Thus, since Feb. 19, 2001, the information transmission among the four segmented 

markets becomes stronger in that A-share markets tend to lead their B-share 

counterparts in the same stock exchange. We think this is a valid conclusion. As the 

number of domestic investors participating in the transaction of B-share stocks 

increases, previous possible factors causing B-share stock markets to lead A-share 

stock markets, such as foreign investors in B-share markets having much more 

advanced technology for processing and analyzing information than domestic 

investors, become comparatively less important than before. Since A-share markets 

have much larger market capitalization, faster growth rate and higher liquidity, it is 

logical that they would attract more attentions from investors, and thus information is 

more likely to flow from A-share to B-share stock markets, resulting in A-share 

markets leading B-share stock markets. In Figure 5.1, we summarize the findings of 

this chapter.  

 

Figure 5.1 Summary of Granger Causalities among Four Chinese Stock Indices 
 

 
A: Granger causal relations based on linear Granger causality test 
 

SHA SHB

SZB SZA SZA SZB 

SHBSHA

After Before  
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B: Granger causal relations based on nonlinear Granger causality test 
 

SHA SHB

SZB SZA 

SHA SHB

SZB SZA 

After Before  
Note: This figure demonstrates the Granger causal relations among our Chinese stock indices based on linear and 

nonlinear Granger causality tests before and after Chinese government relaxed the restriction on the purchase of B 

shares by domestic investors. Solid line indicates the Granger causal relation is significant at 5% or above, while 

dash line indicates the Granger causal relation is significant at 10%. 

 

 

5.4 Conclusions of Chapter 5 

The unique features of Chinese segmented stock markets provide a sound 

background to examine information transmission between different investors and 

between stocks of different sizes. Many researchers have investigate the lead-lag 

relations among Chinese segmented stock markets, however, their methodology is 

based on traditional linear models such as Granger causality test, which is well known 

to possess a low power in detecting nonlinear causal relationships.  

   This chapter paper has set out to examine the lead-lag relationships among four 

Chinese stock markets before and after Chinese government relaxed the restriction on 

the purchase of B shares by domestic investors. Besides linear Granger causality test, 

we apply a nonlinear Granger causality test to investigate existence of any nonlinear 

information transmission among Chinese segmented stock markets. Our findings 
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reveal that the causality relation among China stock indices is more complicated than 

what linear causality test reveals. More specifically, our analyses show that there 

exists strong nonlinear dependence among the four stock markets.  

In a sharp contrast with the results of the linear causality test, nonlinear Granger 

causality test provides evidence of strong bi-directional causal relations between two 

A-share markets as well as between two B-share markets both before and after the 

adoption of the more liberal governmental policy allowing domestic citizens who 

invest in A-share markets to invest in B-share markets. This contradicts the widely 

reported evidences in finance literature which concludes that large stocks lead small 

stocks (Lo and MacKinlay (1990), Conrad et al (1991), Brennan et al. (1993), Mech 

(1993), Badrinath et al (1995), McQueen et al (1996), and Chordia and Swaminathan 

(2000)). Our finding challenges a widespread assumption that information 

transmission is from big stocks to small stocks in the literature and supports the 

finding of bi-direction information transmission between these two types of stocks.   

Furthermore, different from the results of linear Granger causality test indicating 

little lead-lag relation between A-share and B-share stock markets, our nonlinear 

causality test shows that before the adoption of the new policy, SZB leads SZA, while 

after the adoption of the new policy, A share stock markets tend to lead B-share stock 

markets in the same exchange. Our findings in this chapter are useful to regulators, 

investors, speculators, and hedgers. We also recommend that nonlinear Granger 

causality test should be used in conjunction with the conventional linear Granger 

causality test in practice. 
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Chapter 6 Concluding Remarks 

 

The rapid growth and unique features of market segmentation in China have 

attracted great attention of researchers to study Chinese stock markets. The finance 

literature is rife with many papers analyzing various topics on Chinese segmented 

stock markets such as: volatility behavior, long run equilibrium relations and 

information transmission among segmented stock market etc. However these analyses 

are usually based on linear econometric methodology while the nonlinearity property 

in market variables has been neglected.  

In recent years, researchers have demonstrated numerous evidences of the 

nonlinearity in economic and finance time series. Thus previous analyses solely 

depending on conventional linear methods may lead to incomplete and incorrect 

statistical inference. This thesis studies three widely investigated issues on Chinese 

segmented stock markets and contributes to the literature by focusing on the nonlinear 

property in the market variables. In particular, the three essays examine three different 

types of nonlinearity: i.e. structural breaks, long memory process and nonlinear 

causality, respectively. The nonlinear modeling techniques adopted in the essays have 

different features and advantages, which enable us to capture the above mentioned 

nonlinearities in a parsimonious way63.  Our analyses from a nonlinear point of view 

will shed more light on understanding of the segmentation of Chinese stock markets, 

                                                 
63 This thesis aims to contribute the literature by doing nonlinear analyses to study three topics which have been 
extensively studied in the literature. However, I find that there are many types of nonlinearity and so far each 
econometric model can only handle one type of nonlinearities. Therefore, I have to adopt three different models to 
focus on three types of nonlinearity respectively in these three chapters. These three types of nonlinearity are the 
common features of the market variables and it should be more parsimonious to study them and their relations 
within one system. Developing more powerful and flexible econometric models could be an important further 
work for econometricians.  
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which, in turn, provides useful information to investors and fund managers for their 

investment decisions and strategy in these markets. Our findings are also useful for 

policy makers in setting regulations for these markets.  

The first essay adopts a nonlinear MS-GARCH model to examine the volatility 

nature in A-share and B-share stock indices in mainland China over the years. It also 

conducts statistical tests to examine the volatility spillover effects among these four 

segmented markets at high volatility regimes. This essay reaches following 

conclusions. First, there is strong evidence of volatility regime shift in the four 

segmented markets, and the MS-GARCH model appears to outperform the single 

regime GARCH model in modeling the volatility of stock markets in China. Second, 

B-share markets is more volatile and to shift more frequently between a 

high-volatility state and a low-volatility state.  Third, for SHA, SZA, and SHB, we 

find that positive returns are associated with a turbulent market, which is different 

from Hamilton and Susmel’s (1994) finding. Our finding suggests that Chinese 

investors are more excited by the upside of the market because they are more apt to 

pursue a speculative opportunity. Four, the volatility switch of A-share markets and 

B-share markets is subject to different major events. The volatile movements in 

B-share markets are sensitive in reacting to international shocks. Five, evidence 

strongly indicates volatility spillover asymmetry across A-share and B-share stock 

markets. 

The second essay applies a nonlinear FIVECM bivariate GARCH framework to 

examine the long-term equilibrium, short-term adjustment, and spillover effects 
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among H-SHA, H-SHB, SHB-SHA, H-SZA H-SZB and SZB-SZA. It shows that all 

these pairs of stock markets are fractionally cointegrated. In each of the six pairs, the 

H-share stock market adjusts to return to equilibrium with the two A-share stock 

markets as well as the two B-share markets, while two B-share markets adjust to 

return to equilibrium with the corresponding two A-share markets. We conclude that 

A-share markets have strongest market power in influencing other markets in the long 

run. As to short run dynamic relations, we find that H-share market in Hong Kong 

plays a very influential role in influencing stock markets in mainland China. The 

explanations on this are addressed in this essay as well.  Finally, this essay also 

evaluates the effects of changes in financial policy and economic conditions on the 

dynamic correlations between the markets. We find that relaxation of government 

restrictions on the purchase of B shares by domestic residents increased the 

correlation between the A- and B-share markets and accelerated the market 

integration process of the A-share markets with the H-share stock market. Our results 

also disclose that the Asian crisis had a different spillover effect on stock-return 

dynamic correlations across Chinese segmented markets. We conclude that the market 

segmentation policy imposed by the Chinese authority is an effective instrument for 

shielding the domestic A-share markets from external turbulence. 

The third essay examines the lead-lag relationships among four Chinese stock 

markets before and after Chinese government relaxed the restriction on the purchase 

of B shares by domestic investors. Besides linear Granger causality test, we apply a 

nonlinear Granger causality test in our analyses. Our analyses show that there exists 
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strong nonlinear dependence among the four stock markets. In a sharp contrast with 

the results of the linear causality test, nonlinear Granger causality test provides 

evidence of strong bi-directional causal relations between two A-share markets as 

well as between two B-share markets both before and after the adoption of the more 

liberal governmental policy allowing domestic citizens who invest in A-share markets 

to invest in B-share markets. This contradicts the widely reported evidences in finance 

literature which concludes that large stocks lead small stocks and supports the finding 

of bi-direction information transmission between these two types of stocks.  Finally, 

different from the results of linear Granger causality test indicating little lead-lag 

relation between A-share and B-share stock markets, our nonlinear causality test 

shows that before the adoption of the new policy, SZB leads SZA, while after the 

adoption of the new policy, A-share stock markets tend to lead B-share stock markets 

in the same exchange. The explanations of our findings are also provided in this 

essay.  

  Although three different nonlinear econometric models are adopted to study three 

different issues on Chinese segmented stock markets in this thesis, we can draw 

following conclusions on Chinese segmented stock markets.   

  First, two A-share stock markets are the major components of Chinese stock 

markets. Not only do they have the largest market capitalization, but they also have a 

significant impact on other segmented stock markets. They play the dominant role in 

Chinese stock markets in the long run and their evolution pattern could be taken as the 

development trend of Chinese stock markets. Furthermore, compared with B-share 
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markets, the volatility of A-share stock markets, especially when they move to high 

volatility state, deserves more attention of investors.  

   Second, compared with the investors in more developed market, such as USA, 

Chinese domestic investors have more risk preference. Chinese domestic investors 

focus more on the speculative profits when the market moves upward, whereas 

investors in the US market concentrate more on minimizing losses as the market 

moves downward. Generally speaking, Chinese stock markets are highly speculative.  

   Third, B-share markets have become less and less important in Chinese stock 

markets. This is especially true after Chinese government allowed domestic investors 

to purchase B-share stocks in 2001. After the adoption of the more liberal policy, the 

B-share markets have moved very closely with A-share markets. Complete merger of 

A-share and B-share markets is anticipated in the near future. 

   Fourth, the market segmentation policy and the more liberal policy allowing 

domestic citizens to invest in B-share markets adopted by Chinese government are 

very successful. The latter is an effective step to merge A-share and B-share stock 

markets, while the former protects the domestic A-share stock markets from the 

external turbulence such as Asian financial crisis of 1997 and other unexpected events 

in the international financial markets. Considering the current developing stage of 

Chinese financial markets, it is suggested that the Chinese government should keep 

this policy instead of rushing to open A-share stock markets completely to foreign 

investors. The methodology applied in this thesis will also be useful for government 

policy makers to evaluate the effectiveness of their similar policies in the future. 
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    Finally, the empirical findings of this thesis are also helpful to investors. For 

example, the existence of Granger causality implies that investors could use the 

information of one market to predict the future movement of another market, by 

which they could make profit in the short run. In reality, the Granger causal 

relationship could be both linear and nonlinear. Therefore, investors should not focus 

only on linear causal relationship, which has been widely acknowledged by public. 

Instead, more sophisticated investors could use the nonlinear Granger causality 

relationships disclosed by our nonlinear causality test of this thesis in practice to get 

additional investment profit, at least in the short run. In addition, the dominant role 

played by A-share markets as showed in our analyses suggests that investors in other 

segmented stock markets should be more careful about the movements of A-share 

markets, especially when they move to high volatility regime. 
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