
Dense Graph Pattern Mining and Visualization

Wang Nan

A THESIS SUBMITTED FOR THE DEGREE OF

Doctor of Philosophy

2011

School of Computing

The National University of Singapore

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48646254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I would like to thank my supervisor Associate Professor Anthony K. H. Tung

for his guidance on all my work during my PhD candidature, his guidance on how

to be a better researcher, and his suggestions on how to be a better person. I would

like to thank Professor Kian-Lee Tan and Professor Srinivasan Parthasarathy for

their guidance and contribution to the work on CSV: Cohesive Subgraph Mining. I

would like to thank Professor Kian-Lee Tan (again) and Mr. Jingbo Zhang for their

significant contribution to the work on Triangulation-based Dense Neighborhood

Graphs Discovery.

1

Dedication

To my parents, who offered me unconditional love and support throughout the

course of this thesis.

To my husband, Hongjun. Without him, I wouldn’t have the courage and

strength to finish this thesis.

To my cherish friends, Xiaoli Hu, He Shen, Bingtian and many more. They

share my joy and pain.

2

Contents

1. Summary . 7

2. Introduction . 14

2.1 Phenomenon of Graph Patterns 15

2.2 Dense Pattern Mining’s Challenges and Our Solutions 18

2.3 Thesis Contribution . 22

2.3.1 Contribution 1: an Algorithm that Locates Dense Sub-

graphs Effectively . 22

2.3.2 Contribution 2: Triangulation-Based Dense Pattern Mining 23

2.3.3 Contribution 3: DVIG, a Dynamic Visualization System . 24

2.4 Outline of the thesis . 25

3. Literature on Graph Model and Mining Algorithms 27

3.1 Graph Data Model . 28

3.2 Dense Graph Patterns . 29

3.3 Background of Graph Mining . 31

3.3.1 Basic Problem: Graph Matching 33

3.3.1.1 Exact Matching 34

3.3.1.2 Inexact Matching 38

3.3.2 Recent Advances in Graph Mining 41

3

Contents

3.4 Visualization of Mined Graphs 44

3.4.0.1 Interactive Graph Mining Tools 45

3.5 Chapter Summary . 47

4. Cohesive Subgraph Mining . 49

4.1 Preliminaries and Problem Definition 50

4.2 Algorithm CSV . 52

4.2.1 Multi-Dimensional Mapping 58

4.3 Experiment . 69

4.3.1 Effectiveness of CSV Plot 71

4.3.1.1 DBLP Plot . 71

4.3.1.2 Stock Market Data 76

4.3.2 Efficiency . 79

4.3.2.1 Graph Size and Running Time 79

4.3.2.2 Pivots Selection Algorithm and Their Effect on

Running Time 82

4.3.3 CSV as a Pre-selection Method 84

4.4 Chapter Summary . 86

5. On Triangulation-based Dense Neighborhood Graphs Discovery 87

5.1 DN-graph Mining, the Motivation 89

5.2 Dense Patterns Mining and Triangulation 92

4

Contents

5.3 DN -Graph as a Density Indicator 93

5.3.1 An Illustrative Example to Compare Different Dense Pat-

terns . 95

5.3.2 λ Value and Clique Size Changes inside a Dynamic Graph 96

5.3.3 Relationship between DN -graph and Closed Clique . . . 98

5.3.4 DN -Graph and λ(e) . 101

5.4 Local Triangulation and its Application in DN -Graph Mining . . 104

5.4.1 Triangulation Based DN Graph Mining 105

5.4.1.1 Generate Triangles to Refine Local Density . . . 106

5.4.1.2 λ(e) Bounding Choice 109

5.4.2 Triangulation based DN -Graph Mining Algorithm Com-

plexity Analysis . 111

5.5 Extension of DN Graph Mining to Semi-Streaming Graph 113

5.5.1 an Estimated Triangulation Algorithm 115

5.5.2 Streaming DN -Graph Mining Algorithm Detail 116

5.5.3 Error-Bound on Streaming DN -Graph Mining 117

5.5.4 Complexity Analysis for Streaming DN -Graph Mining . . 118

5.6 Dynamic DN -Graph Mining . 118

5.6.1 Complexity for Dynamic DN -Graph Mining 119

5.7 Experimental Study . 120

5.7.1 Performance Evaluation 121

5

Contents

5.8 Chapter Summary . 137

6. DVIG: On-Demand Visualization of Graph Patterns 138

6.1 Visualization Systems are Critical in Graph Mining Process 140

6.2 The DVIG Visualization Paradigm 142

6.3 Visualization Frontend . 142

6.3.1 Pattern Preprocessor . 146

6.3.2 Dynamic Layout Engine 148

6.4 Demonstration Overview . 148

6.5 Chapter Summary . 149

7. Conclusion and Future Work . 150

7.1 Future Work . 153

6

1
Summary

A graph is an intuitive abstraction that naturally captures data entities as well as

the relationships among those entities. It embeds complicated entity relationships

more succinctly, compared with the tabular representation in relational databas-

es. With the power of intuition and succinctness, the graph representations are

adapted into a wide spectrum of domains.

Thanks to the advantage of graph representations, researchers have employed

graph representation in advanced domains like bioinformatics and social network

study. Complications arise sometimes from sheer size of entities, sometimes due

to varieties of relations. Discovering the underlying relationships becomes a more

demanding task. This task requires not only identifying critical information (graph

7

patterns), but also presenting it intuitively. The process of pattern identification

is termed as graph mining, while presenting it in a graphical form is defined as

graph visualization.

There is one class of critical information within a graph that catches most re-

search attention, and it is called the dense subgraphs. A dense subgraph (pattern)

is one class of critical information within a graph that represents a high level of

interactions among entities. Such high level of interactions in many applications

implies outstanding level of interactions. It catches most research attention and is

also the focus of this thesis. It addresses the computational difficulty, the inter-

pretability and the results’ availability during the mining process of dense graphs.

Our thesis is organized in the following way. Firstly Chapter 4 introduces an

algorithm called CSV, that mines dense patterns (a.k.a. cohesive subgraphs) ef-

fectively. Besides discovering cohesive subgraphs, it also produces an ordering of

the vertices for further visualizing of the mining results. As CSV needs to detect

cliques (a fully connected pattern) within the graph, which runs in exponential

time, we propose a technique to reduce the algorithm’s running time. The tech-

nique swiftly computes an upper bound on the size of cliques within the graph

instead of trying to determine the exact clique size. By this means, we reduce the

running time significantly compared with a state-of-the-arts dense pattern mining

algorithm CLAN[WZZ06], based on experiments performed on real datasets.

Although CSV performs significantly better than CLAN[WZZ06], in the worst

8

case, it still exhibits high running time. In Chapter 5, we employed triangle count-

ing in dense subgraph mining, which enables us to handle large graphs more effi-

ciently. In this chapter, we propose a set of triangulation (the process of counting

triangles inside a graph) based solutions to mine DN -graphs 1 from large graphs.

This set of solutions target at different dense pattern mining settings, ranging from

in-memory to disc based graphs, and from static to dynamics. Experimental study

shows that it is able to produce high quality results within one hour for world-wide

photo sharing network Flickr [Inc10].

In Chapter 6, we showcase the DVIG, an on-demand visualization system for

graph mining pattern. DVIG presents the dynamic patterns in an intuitive manner

so that users can capture major trends of the target graph over time. Technical

contributions include an intuitive summarization of discovered graph patterns.

With above work, we conclude the thesis in Chapter 7 and discuss future work.

1 Intuitively, the DN -graphs are sub-graphs share more neighbors than its surroundings, Chap-
ter 5 will cover it in detail.

9

List of Figures

3.1 Graph Matching Problem Classification 34

4.1 CSV Plot Correctness Proof . 55

4.2 An Example of Graph Mapping 60

4.3 Estimation η between a and Its Neighbors 65

4.4 An Example of CSV Plot . 69

4.5 CSV Plot for DBLP 97-06 Co-authorship Graphs 72

4.6 Cliques Joined by 2 Co-authors in sg1 72

4.7 A large Clique in sg2 . 73

4.8 A Small Clique in sg3 . 73

4.9 Two Groups of Highly Cohesive Stocks 76

4.10 4D SMD95 CSV Plot with 45% Support Threshold 77

4.11 CSV Plot with 12 Pivots . 78

4.12 4D Mapping Time . 79

4.13 Tree Building Time . 80

4.14 CSV Core Algorithm Running Time 80

4.15 CSV vs. CLAN Running Time 81

4.16 CSV Core Algorithm Running Time Varying Dimensions 83

4.17 Three Different Pivot Selection Schemes and Resulting #Grid . . . 84

10

List of Figures

4.18 Efficiency of CSV as a Pre-selection Method 85

5.1 A DN -graph . 95

5.2 A Graph and Its Different Dense Sub Structures 95

5.3 The Growth in λ of a 20-Vertex Dynamic Graph 97

5.4 Proof of Theorem 5.3.1 . 103

5.5 Use Triangle to Refine λ̃(e) . 107

5.6 Fix |V | = 3000, Vary c . 122

5.7 Fix |V | = 3000, Vary p . 122

5.8 Fix p = 12%, Vary c . 123

5.9 Fix p = 12%, Vary |V | . 124

5.10 Fix c = 40, Vary |V | . 124

5.11 Fix c = 40, Vary p . 125

5.12 Convergence: Vary p, fixed c . 125

5.13 Convergence: Vary |V |, fixed c = 40 126

5.14 BiTriDN One Iteration: |V | = 3000 Vary p 126

5.15 BiTriDN One Iteration: |V | = 3000, Vary c 127

5.16 BiTriDN One Iteration: Vary |V |, c = 40 127

5.17 BiTriDN One Iteration: Vary p, fix c = 40 128

5.18 Efficiency BiTriDN vs CSV . 128

5.19 Improvement by Recursively Applying Triangulation 130

11

List of Figures

5.20 Memory Usage of TriDN and BiTriDN 131

5.21 Performance on Flickr Dataset: Convergence 132

5.22 Performance on Flickr Dataset: StreamDN Accuracy 133

5.23 Patterns Discovered in NetFlix 134

5.24 A 20-Protein Complex in Form of DN -Graph 134

5.25 9-protein exact match . 135

5.26 snRNP . 136

6.1 The DVIG Console . 143

6.2 The DVIG Pattern Summarization Zoom-In 145

6.3 The DVIG Pattern Subgraph View and Zoom-In 147

12

List of Tables

3.1 Complexity Comparison among Different Exact Matching Algo-

rithms . 37

3.2 Suitability of Exact Graph Matching Paradigms [MB00] 37

4.1 CSV Components Complexity 68

4.2 Stock Market Datasets (SMD) Statistics 70

4.3 Statistics of Largest Connected Components for Stock Market

Datasets’ Summary Graphs(SMD) 71

4.4 Large Cliques in DBLP . 75

5.1 A Family of DN -Graph Mining Algorithms 91

5.2 DN -Graph Mining Experiment Parameter Table 121

13

2
Introduction

A graph captures data entities and their relationships in an intuitive manner. Data

entities are represented as vertices in the graph and edges capture the binary re-

lationships between vertices. Although on-going researches in different domains

may create the need to capture non-binary relationships , we can still use sever-

al graphs to decompose those non-binary relationships into binary ones (similar

cases occur in traditional DBMS, where non-binary relationships are resolved via

table joins).

Graph representations are flexible and can be used to model data from a num-

ber of domains. In financial market monitoring, the graph model captures the cor-

relations of stock prices, which analysts use to infer stocks’ fluctuation in future.

14

2.1. PHENOMENON OF GRAPH PATTERNS

In molecular biology, protein protein interactions, which are the most fundamental

activities in any living cell, are modeled as graphs. While in social relation anal-

ysis, the interpersonal relationships are best abstracted as social networks. The

reason behind common choice of graphs is that data’s graph representation can

picture the changing trends more succinct and more intuitively, compared with

non-structured ones.

In this introduction, we firstly present examples of real life graph patterns and

their implications in several application domains in section 2.1 . A pattern indi-

cates a group of entities that behaves similarly, be it a group of correlated stocks or

a set of homogenous proteins. After that, section 2.2 further reviews challenges in

dense subgraph mining. We articulate the problems we would like to solve, give

an outline of works we have accomplished, and highlight the contributions of this

thesis in section 2.3. With an outline of the overall thesis, we end this chapter.

2.1 Phenomenon of Graph Patterns

Over the past few years, we have witnessed the growing popularity of graph rep-

resentations in various domains. With technology advancing, the application do-

mains of graphs become more complicated - more entities emerge and more in-

teractions. This brings challenges when we try to extract graph patterns. As the

graph keeps expanding, the pattern search space grows exponentially. In a mas-

15

2.1. PHENOMENON OF GRAPH PATTERNS

sive graph, we cannot afford to verify each candidate when searching for patterns,

even when it is static, not to mention more complicated situations when the graph

topology evolves over time. Taking one step back, when the graph is extremely

large, even collecting statistics to analyze its topological properties is difficult.

We thus have no better way to locate high information content sub areas, except

searching for sub areas that are substantially different from the rest of the graph.

Dense graph patterns (characterized by outstanding number of edges embed-

ded) are semantically prominent in many application domains, such as:

• Stock Market Analysis

The primary task in stock analysis is to predict stocks’ price change for

tasks such as estimating future return, allocating portfolio and controlling

risks. The stock price correlation graph contributes greatly in the analytical

process. Normally, the correlation history is transformed into a correlation

graph. Graph vertices and edges indicate stocks and their prices correlations

respectively. The dense patterns inside the correlation graph are typically

groups of companies involved in related industries or having implicit con-

nections in between. E.g. in the study carried out by [BBP06], researchers

discovered a dense pattern consisting of companies from IT industry sector,

such as Sun Microsystems Inc., Cisco Systems and IBM etc. The expansion

of the patterns over time indicates the booming of IT industry in the 90’s.

16

2.1. PHENOMENON OF GRAPH PATTERNS

By interpreting the stock correlation, financial professionals can observe

industry development trend to make wise investment decisions.

• Protein Protein Interaction

Biologists also observe the phenomenon that dense graph patterns exist in

protein protein interaction process. The protein protein interactions are the

fundamental activities for numerous living cells. The interactions among

proteins are represented as a graph. The vertices are individual proteins and

two proteins have an edge if they participate in some biological process. Re-

searchers discover that a dense graph pattern inside the protein protein inter-

action graph often indicates that these proteins have similar behavior. This

knowledge may further facilitate functional annotation[HYH+05, AUS07].

• Social Network

In the domain of social relations, dense patterns disclose critical informa-

tion such as community structure. A social network is a graph whose ver-

tices represent people and an edge connects two vertices if two people have

certain relationships. The Digital Bibliography & Library Project (DBLP)

network is an instance of a social network to capture the academic pub-

lication community in computer science. DBLP records relations such as

co-authorship and article-reference for further citation and referencing pur-

poses. The dense patterns in DBLP graph represent research groups, or

17

2.2. DENSE PATTERN MINING’S CHALLENGES AND OUR
SOLUTIONS

highly relevant papers.

Graph patterns especially dense patterns have various implications in wide

range of application domains. Researchers thus strive to seek for efficient solu-

tions for locating these patterns. The problem of mining (dense) graph patterns

becomes center of many research projects ([ARS02, AUS07, BBP06, BC96]).

With much effort put into the dense pattern mining research, researchers have

realized that finding dense pattern is a challenging task.

2.2 Dense Pattern Mining’s Challenges and Our

Solutions

Graph representation is more succinct when capturing complex relationships com-

pared to tabular representation. This compactness however, comes at a price.

When mining dense patterns, the fundamental task of deciding whether a sub-

graph is a dense pattern becomes difficult, as it is closely related to well-known

NP-complete clique detection problem. Subsequently, it takes intolerable long

time to mine huge graphs. What’s worse, even after locating dense patterns, we

can hardly interpret the semantics of the patterns due to its structural complexity.

In the following parts, we explain above mentioned challenges and our solutions

in detail.

18

2.2. DENSE PATTERN MINING’S CHALLENGES AND OUR
SOLUTIONS

• It is computationally expensive to identify dense patterns

The primary question for dense pattern mining is to decide whether a sub-

graph is a dense pattern. To answer this question, an algorithm needs to

check the candidate’s internal connections. For a dense pattern, the con-

nections are outstandingly intensive with respect to its neighbors. Here the

neighbors are the pattern’s immediately connected vertices. When search-

ing for dense patterns, existing algorithms enumerate possible vertex candi-

date sets. This enumeration results in combinatorial algorithmic complexity.

When the pattern is a fully connected subgraph (or in graph theory terms,

a clique), the algorithm is detecting cliques. In [?], Karp proves that i-

dentifying dense patterns (which are almost cliques) requires combinatorial

complexity.

Facing the complexity challenge, we opt for estimation with highly accurate

results, meanwhile overcoming the combinatorial complexity. One feasible

proposal is to provide an density upper bound for dense patterns within

the limit of computational resources. This upper bound can subsequently

reduce search space when requests to exactly locate dense patterns arise.

Chapter 4 presents our method of calculating the upper bound and explains

how to detect dense patterns with the upper bound.

• Large-scaled graphs processing faces physical constraints

19

2.2. DENSE PATTERN MINING’S CHALLENGES AND OUR
SOLUTIONS

When the graph size keeps on growing, it is even harder to locate dense

patterns. In extremely large graphs, simple tasks, such as loading graph

links, is challenging, not to mention more complicated tasks. The mining of

dense patterns depends on atom operations such as graph link scans. These

fundamental tasks consume extraordinary computational resources and s-

torage space. For instance, WWW has already reached 1010 indexed web

pages in year 2005, and each of the pages typically has twenty to thirty links

[GS05]. Even the world-leading search engine provider, Google, strives to

cache every web page and scan them periodically for updates. This simple

routine has already cost Google enormous energy and resources. Imagine

the resources needed when carrying out mining operations on WWW. This

calls for breakthrough in efficient mining of huge graphs.

In Chapter 5, we propose a triangulation-based solution to efficient mining

of huge graphs. This approach has three advantages. Firstly, most of the de-

tails involved in efficient processing like minimizing I/Os etc. are abstracted

within the triangulation algorithm. The abstraction ensures our approach’s

extensibility to different input settings. For example, when the graph to be

mine is too large to fit into memory, our approach only needs to change the

accessing method of the graph links. The estimation of local neighborhood

is enclosed in the triangulation algorithm. Secondly, as the estimation of

20

2.2. DENSE PATTERN MINING’S CHALLENGES AND OUR
SOLUTIONS

local density value improves in every iteration, users are able to obtain the

most updated results at any instance during the course of algorithm running.

Finally, when the graph is too large to fit into main memory, we can collect

statistics regarding the graphs in the first iteration to support effective buffer

management for storing the local density value on a disk. The collection of

statistics can be accomplished since the triangles come in the same order in

every iteration.

• Dense graph patterns are hard to be interpreted

In additional to effective algorithms, the collection of discovered dense pat-

terns need further processing to be meaningful to human beings. A dense

pattern embeds domain knowledge into its implicit structure. Its relation-

ship with other patterns also carries functional information. To interpret the

information, human analysts need to organize the pattern’s internal struc-

ture as well as its connections with other patterns. The interpreting process

becomes tedious when facing a large volume of mining results.

To free human beings from tedious works of organizing patterns, we devel-

oped a visual system DVIG. DVIG is a lightweight graph mining pattern vi-

sualization tool. It assists domain experts in understanding the summariza-

tion as well as individual mining graph patterns from external graph min-

ing algorithms. DVIG offers a visualization paradigm for dynamic graph

21

2.3. THESIS CONTRIBUTION

pattern visualization, and provides features to present semantics when vi-

sualizing domain data. The detail of DVIG system is explained in Chapter

6.

2.3 Thesis Contribution

With above proposed solutions, this thesis presents three relevant pieces of work

for graph dense pattern mining. The contributions of this thesis are summarized

below:

2.3.1 Contribution 1: an Algorithm that Locates Dense Subgraphs Effectively

The first work (which appears in Chapter 4) concerns how to locate the dense

subgraphs. More specifically:

• We propose a novel algorithm called CSV to compute an ordering on graph

vertices. CSV also has the capability of visualizing cohesive (a.k.a. dense)

subgraphs within the graph.

• As algorithm CSV needs to detect cliques within the graph, we propose

a technique to minimize running time. The technique swiftly computes an

upper bound on the size of cliques within the graph instead of deciding exact

clique size. By this means,our algorithm is up to 100 times faster compared

to a state-of-the-art dense pattern mining algorithm CLAN[WZZ06].

22

2.3. THESIS CONTRIBUTION

The technique employs a novel mapping to transform graph elements (ver-

tices and edges) into high-dimensional points while preserves graph ele-

ments’ connectivity relations. After the transformation, existing spatial in-

dices such as the R-tree can be applied to the transformed data. This makes

CSV more extendable to handle larger graphs.

• In addition to using CSV as a stand-alone tool for mining of dense sub-

components, we also pre-filter graph data using CSV to significantly speed

up exact clique finding algorithms such as CLAN[WZZ06]. Experiments

shows that CSV can save up to 84% running time.

2.3.2 Contribution 2: Triangulation-Based Dense Pattern Mining

Subsequently, we propose a triangulation-based solution to further mine larger

scaled graphs. We present our research findings in Chapter 5. In this work, we

achieve the following:

• We look at dense sub-graphs from a new perspective. A dense subgraph

contains a set of highly relevant vertices,which share many common neigh-

bors(two vertices are neighbors if they are connected by an edge). With that

in mind, we define the DN -graph, a more general view of dense patterns

discussed in Chapter 4. This definition lays foundation for triangulation-

based dense pattern mining.

23

2.3. THESIS CONTRIBUTION

• This work proposes a set of triangulation-based solutions to mine DN -

graphs from large graphs. This set of solutions target at different dense

pattern mining settings, ranging from in-memory to disc based graphs, from

static to dynamic. Experimental study shows that it produces quality results

within one hour for world-wide photo sharing network Flickr [Inc10].

2.3.3 Contribution 3: DVIG, a Dynamic Visualization System

In chapter 6, we showcase the DVIG dynamic visualization systems for graph

mining pattern. DVIG presents the dynamic patterns in an intuitive manner so

that users can capture major trends of the target graph over times. Technical con-

tributions include:

• An intuitive summarization of discovered graph patterns. Being an effective

visual tool, it is not sufficient to only provide visual image for individual

graph patterns. Since the discovered patterns are overwhelmingly numer-

ous, a wiser choice is to profile all interesting patterns and present the meta

information first before dill down into a specific graph pattern. Preferably,

the meta information should include indicative measurements of patterns’

interestingness, and guide users for potentially prominent patterns. Hence

domain experts are able to investigate patterns discovered on state-of-the-

arts graph mining algorithms while not hindered by the complexness of un-

derstanding mechanisms behind these algorithms.

24

2.4. OUTLINE OF THE THESIS

• An layout scheme that organizes the discovered patterns into a force-directed

structure. This layout captures the inter and intra relationships among dis-

covered patterns. It also possesses the dynamic power of display the chang-

ing trend of the graph patterns discovered due to the evolving of underlaying

graphs. The effect of time towards the interactions are better observed and

are ready for further analysis.

2.4 Outline of the thesis

The rest of the thesis is organized as follows: Chapter 3 gives a more detailed

description of the dense graph patterns, reviews commonly adapted dense pat-

terns and surveys state-of- the-art graph mining and visualization systems built by

different institutes and organizations.

Chapter 4 presents our proposed technique for locating dense subgraphs ef-

fectively: a cohesive subgraph mining algorithm CSV. The CSV solution consists

of three steps. Firstly, it utilizes a special space mapping to transform the graph

vertices and edges into high dimensional points. Secondly, it builds spacial index

on the transformed points. This index facilitates locating cohesive subgraphs.

Chapter 5 proposes a triangulation-based solution to extend CSV to larger

graphs. This work firstly provides an innovative way of using triangle counts

to locate dense patterns. Secondly, we extend this solution to handle streaming

25

2.4. OUTLINE OF THE THESIS

graphs, whose vertices can fit into main memory, while edges reside in secondary

storage media.

As visualization always plays an important role in interpreting graph mining

results, we develop a visualization tool for dense pattern mining. Chapter 6 show-

cases a visualization system DVIG: DVIG is a lightweight graph mining pattern

visualization tool. It assists domain experts in understanding individual graph

patterns and provides a summary of patterns. It also possesses the capability of

visualizing patterns’ dynamics from external graph mining algorithms.

With the above work, we conclude the thesis in Chapter 7.

Two papers have been published based on the work presented in this the-

sis. The work on cohesive subgraph mining algorithm has been published in

[WSTT08]. The triangulation based DN -graph mining work is to appear in

[WZTT11].

26

3
Literature on Graph Model and Mining

Algorithms

Graphs are the most pervasive model of entity interactions. Compared with un-

structured representations, graphs are more concise and intuitive in abstracting

entity interactions. When using graph representation, we do not need storage for

every combination of binary relationships. Another advantage is that graph re-

quires no normalization of relations which may lose data integrity [DBLEH07].

Inside a graph, some parts have more connections inside. Many researchers

agree that these dense patterns capture the most active involvement of entity inter-

actions thus prominent [ABC+04, ARS02, ATH03, BBP06, HYH+05]. The ap-

27

3.1. GRAPH DATA MODEL

plication of dense patterns can be found in various domains. In domains of social

network, a dense pattern indicates community. While in protein protein interac-

tion networks, a dense pattern may tell us functional similarity among proteins

[HYH+05].

Graph mining is a special category of structured data mining. The process of

graph mining is to abstract useful information from graph data, be it a collection

of graphs or a huge graph. In addition to getting useful information, it is more

desirable to present the findings in an intuitive way. This aids in better under-

standing of the semantics of the findings. With proper manifest, the distribution

of the patterns is also revealed.

The rest of this chapter is organized as follows. We first introduce current

understanding about graph dense patterns (section 3.2). After that, we investigate

related research works on effectively discovering of dense patterns. As visual-

ization is an important aspect in interpreting the graph patterns, this chapter then

discusses recent effort in visually presenting graph patterns.

3.1 Graph Data Model

A graph is a collection of items and their relationships. The items are graph ver-

tices, while their relationships are graph edges connecting two relevant vertices.

If the relationships are associative, we use undirect graph to model it. If the re-

28

3.2. DENSE GRAPH PATTERNS

lationships are comparable among themselves, we usually assign weights to the

edge. The weights are quantitative measures which enable relationship compari-

son. Through out this thesis, we concern only undirect un-weighted graphs. Other

classes of graphs can be transformed into this primitive model of graphs via setting

thresholds.

3.2 Dense Graph Patterns

A dense graph pattern is a connected subgraph that has significantly internal con-

nections with respect to the surrounding vertices. Depending on the semantic

meaning of the graph data, various forms of dense patterns are investigated in

literature.

• Clique/Quasi-Clique

A clique represents the highest level of internal interactions. Originally, the

meaning of the word clique is an inclusive group of people who share in-

terests, views, purposes, patterns of behavior, or ethnicity[Sco00]. In graph

theory, a clique is a fully connected subgraph. Each pair of vertices are

connected by an edge. While a quasi-clique is an “almost” clique with few

missing edges. If a clique is not a proper subgraph of a larger clique, we

call it a “closed clique”.

Recent researches confirmed that closed cliques/quasi - clique have impor-

29

3.2. DENSE GRAPH PATTERNS

tant domain implications [ABC+04, ARS02, ATH03, BBP06, HYH+05].

The clique related patterns in cellular phone calling networks indicate fam-

ilies, project teams or complicated romance relationships [ARS02]. While

closed cliques and quasi - clique in scientific network such as protein protein

interaction networks indicates potential protein complexes[HYH+05].

• High Degree Patterns

Another kind of dense substructures are high degree patterns. Inside them,

the average vertex degrees are above certain level or are outstanding among

surrounding vertices. Here a vertex’s degree refers to the number of edges

intercepting the vertex. Different from clique relation patterns, the high

degree patterns do not require high interconnection within the pattern. As

long as the vertices in the pattern have high degree in the graph to be mined,

it is included into the pattern ([GRT05] targets at these patterns). Thus

solution of mining high degree patterns only need to compute every vertex’s

degrees once and ensure the discovered patterns are connected subgraphs.

• Dense Bipartite Patterns

If the entities involved belong to two classes, and only entities from different

classes have associations, the graph is a bipartite graph. Similarity, a dense

bipartite pattern is a bipartite graph with outstandingly many edges.

The dense bipartite patterns arise in social network domain. In social net-

30

3.3. BACKGROUND OF GRAPH MINING

works, we constantly discover the structure of hubs and authorities. Many

researches argue that they are the core of communities [RRRT99]. In order

to search for the “signature” of communities, they look for a dense bipartite

graphs.

• Heavy Patterns

Previous patterns emphasize on the topological features. The heavy pattern,

on another hand, focus on the maximality of edge weights. The research

in [SK98] calls subgraphs of fixed number of vertices a heaviest pattern

if the sum of edge weight are maximized. The heavy pattern has closed

relationship with this paper’s focus: dense pattern. If graph edges’ weight

follows triangle inequality, the heavy pattern is also a dense pattern in the

un-weighted graph.

Even though this type of pattern is not our preliminary target for this thesis,

it is presented here for completeness.

3.3 Background of Graph Mining

Graph mining emerges along with the explosion of structured data. Advances in

technology have enabled us to collect vast amount of structured data across a myr-

iad of domains for various purposes, ranging from computational simulations to

network flow data, from genomic data to web access and linkage statistics. Dif-

31

3.3. BACKGROUND OF GRAPH MINING

ferent from unstructured data, these data have complicated relationships within.

Depending on the level of structure imposed, the structured data are extended from

semi-structured ones such as XML to well-structured form (for example, ordered

tree). The enormous amount of structured data require efficient graph mining tools

to abstract useful patterns out.

The application of the graph mining in computer science domain are heteroge-

nous from database applications to machine learning area[HK00]. In data base

applications, graph mining discovers structured patterns from multi-relational da-

ta base[Der03].In machine learning area, graph mining problems are approached

via kernel function centric, SVM-based methods[SMT91]. Without graph min-

ing techniques, the task of locating patterns requires logical analysis and domain

experience.

This thesis surveys graph mining research and classifies them into two direc-

tions. One direction is extending classical data mining concepts to graphs. This

direction targets at discovering context-free patterns. The other direction is taking

into the account of domain knowledge. Before presenting research literature from

the two directions, we first discuss current research advance of graph matching

research, which is a fundamental challenge many graph mining techniques face.

32

3.3. BACKGROUND OF GRAPH MINING

3.3.1 Basic Problem: Graph Matching

The matching of subgraphs is the performance bottleneck particularly in the Apriori-

based graph mining algorithms [ATH03, MK01, YH02, MK01]. Apriori refers to

a search paradigm that searches in breadth-first manner and uses a tree structure

to count candidate subgraph sets efficiently. It generates candidate subgraphs of

size k from size k−1. Then it prunes the subgraphs which does not satisfy mining

criteria [AS94]. According to the downward closure lemma, the candidate of size

k + 1 can not contain non-candidates of size k. During the candidate generating

process, we use graph matching to decide whether the two candidate subgraphs

are the same.

The process of graph matching is to form a one to one vertex mapping from

one subgraph to another subgraph, such that mapped vertices have the same topo-

logical structure. Graph matching is one of the complicated problems in graph

theory domain[Bas94, GJ79]. In fact, graph matching is NP-complete [GJ79].

The graph matching problem is: Given a model graph GM = (VM , EM) and

an input graph GD = (VD, ED) with |VM | = |VD|, look for a one-one mapping

f : VD → VM such that (u, v) ∈ ED if and only if (f(u), f(v)) ∈ EM . If a

mapping exists, we call f an isomorphism from GD to GM . Searching for this

mapping is the problem of exact graph matching. If it is not possible find such

mapping f , for example, the number of vertices are different in the 2 graphs, the

33

3.3. BACKGROUND OF GRAPH MINING

problem becomes looking for best matching between them. In that case, it is the

inexact matching problem. Figure 3.1 gives an overview of the classification of

the Graph matching problems.

 Graph
Isomorphism

 Subgraph
Isomorphism

 Labeled
Graph Matching

 Labeled
Subgraph Matching

 Eaxct
Graph Matching

 Inexact
Graph Matching

 Graph
 Matching

Fig. 3.1: Graph Matching Problem Classification

3.3.1.1 Exact Matching

The exact matching problem hasn’t been classified into any type of complexity

such as P or NP-complete yet. Depending on different assumptions on graphs,

[GJ79] and [Bas94] prove it as an NP-complete problem. Other researchers have

found polynomial solutions for some special graph classes such as planar graphs

[HW74]. Generally speaking, the complexity of the whole problem class remains

as an interesting open theoretical problem.

There are two categories of exact matching algorithms. The first approach is

based on group theory. It classifies the adjacent matrices into permutation groups.

34

3.3. BACKGROUND OF GRAPH MINING

The second approach constructively forms graph isomorphism.

Group Theory and Graph Matching [Bas94] gives a moderately exponential

bound for the general graph matching problem. If the graphs have constraints, the

matching problem is possible to have a polynomial bound[Luk82]. However, the

above approaches is only of theoretical interest due to its large constant overhead.

Practical Graph Matching

Depth-first backtracking search is the most established practical algorithm

class for graph matching way back in 70s. Based on that, further improvements,

such as combining backtracking with a forward checking procedure, are develope-

d. The basic idea for forward checking [Ull76] is: For an established matching,

check whether there is at least one mapping when adding more vertices. By this

way, an algorithm can immediately reject the mappings with no further extension.

Search space is thus reduced significantly.

Clique Searching is a class making use of association graphs and clique

searching [MARW90, KH04]. Inside an association graph, each consistent pair

of vertices, which are eligible to form a mapping, form an association vertex.

An association edge links two locally consistent mapping pairs. By this way, the

maximal clique in the association graph represents the largest common subgraph

between the two original graphs. The matching problem transforms to maximal

clique finding problem.

Rooted from clique detection, this approach has the drawback of high compu-

35

3.3. BACKGROUND OF GRAPH MINING

tational complexity. Given two graphs GM and GI with n and m nodes respective-

ly, the size of the association graphs and the number of possible cliques strongly

depend on the number of labels in GM and GI . The association graphs increases

its edge exponentially with the increase of consistent vertices.

Decomposition approach [MB00] tackles graph matching problem by firstly

decomposing the input graphs into smaller subgraphs. Next, it matches these

small pieces with the model graph respectively. The efficiency of such approach

depends on the choice of decomposition policy.

There are many different decompositions for a given graph. Find the optimal

one is expensive. It is more efficient to look for some sub-optimal yet inexpensive

ones. This approach is most suitable for relational database applications. How-

ever, it still faces the problem of exponentially increase of decomposition choic-

es. As for the problem of graph mining, since we are not sure about the target

sub-pattern’s distribution before performing the operation, it is possible that we

separate graph patterns into different pieces during decomposition process.

Computational complexity of practical exact graph matchings To summa-

rize above mentioned graph isomorphism checking technologies, we use table 3.1

to list theoretical computational bound for respective technologies. The bounds

are presented using the following quantities:

• D = number of input graphs

36

3.3. BACKGROUND OF GRAPH MINING

• vdc = number of vertices of a subgraph that is common to all input graphs

• vdu = number of vertices of a subgraph that is unique to each input graph

• vd = total number of vertices of a input graph

• vi = the number of vertices of model graph

Algorithm Heterogeneous Database Identical Database
Best Worst Best Worst

Clique Detection O(Dvdvi) O(D(vdvi)
vd) O(Dvdvi) O(D(vdvi)

vd)
DF Backtracking O(Dvdvi) O(D(v2dv

vd
i)) O(Dvdvi) O(D(v2dv

vd
i))

Decomposition O(Dvdvi) O(D(v2dv
vd
i)) O(vdvi) O(v2dv

vd
i)

Tab. 3.1: Complexity Comparison among Different Exact Matching Algorithms

Table 3.1 shows that Depth-First backtracking and decomposition approaches

out-perform clique detection based algorithm in the worst case. Yet if the database

has more homogeneous graphs, decomposition based approach will be more effi-

cient than the Depth-First backtracking.

exact graph matching unlabeled labeled
<20 vertices decision tree method decision

DF-backtracking decomposition
<500 vertices DF-backtracking decomposition
≥ 500 vertices continuous optimization methods

Tab. 3.2: Suitability of Exact Graph Matching Paradigms [MB00]

Table 3.2 from [MB00] suggests how to make decisions on graph matching

methods when facing different graph classes.The decision is based on graph char-

37

3.3. BACKGROUND OF GRAPH MINING

acteristics such as the size of database graph and the number of labels appearing

in the graphs.

In summary, most above mentioned exact matching algorithms face high com-

putational complexity. This restraints their application for large graphs. In fact, in

practical applications, we may not necessarily do exact matching. A high quality

approximate match usually is a wiser choice.

3.3.1.2 Inexact Matching

Compared with exact matching counterpart, inexact matching solutions are more

cost effective. For example, in computer vision and pattern recognition, graph

models are commonly used to represent fuzzy objects such as Chinese characters

and hand-draw images. These objects carry noise. It is thus desirable to look

for error-correction (inexact) graph matching methods. Inexact graph matching

algorithms commonly adopt heuristics, such as genetic algorithms and simulating

annealing, to improve matching efficiency while tolerant errors. It is thus not

surprise to see that many graph matching research favors this types of solutions.

Inexact solutions of graph matching commonly require measurements to de-

fine the similarity between two graphs. Besides calculating the similarity, a solu-

tion also needs a threshold to filter out unmatched subgraphs.

The most well-adapted metrics of graph similarity is graph edit distance. Sim-

ilar to string edit distance, the edit distance between two graphs is the minimum

38

3.3. BACKGROUND OF GRAPH MINING

cost of a sequence of edit operations that change one graph to an isomorphic graph

of another. [Bla94] gives a formal definition of the graph edit operation, for la-

beled graphs. A labeled graph is a graph G with 4-tuple G = (V,E, µ, ν), where

• V is the set of vertices.

• E ⊆ V × V is the set of edges.

• µ : V → LV is a function assigning labels to the vertices.

• ν : E → LE is a function assigning labels to the edges.

The edit operations δ on labeled graph are defined as any of of the following:

Definition 1. [Bla94]

• vertex label substitution: substitute the label µ(v) of vertex v with another

label l.

• edge label substitution: substitute the label ν(e) of edges e with another

label l′.

• vertex deletion: delete the vertex v and all edges connected to it from the

graph.

• edge deletion: delete an edge e from the graph.

• vertex insertion: insert a vertex v into the graph.

39

3.3. BACKGROUND OF GRAPH MINING

• edge insertion. insert an edge e between 2 existing vertices in the graph.

Based on this set of edit operations, the error-correction subgraph isomorphis-

m (a.k.a. inexact graph matching) is defined as following:

Definition 2. [Bla94] Given a labeled graph G = (V,E, µ, ν) and a sequence

of graph edit operations ∆ = (δ1, δ1, ..., δk), the edited graph ∆(G) is a graph

∆(G) = δk(...δ2(δ1(G))...). The error-correcting (ec) subgraph isomorphism f

from G to G′ is a 2-tuple f = (∆, f∆) where

1. ∆ is a sequence of edit operations such that there exists a subgraph isomor-

phism from ∆(G) to G′

2. f∆ is a subgraph isomorphism from ∆(G) to G′

The graph edit distance between two graphs is defined as:

Definition 3. For two graphs G and G′, the graph edit distance from G to G′,

d(G,G′) is the minimum cost over all error-correcting subgraphs isomorphisms f

from G to G’: d(G,G′) = min∆{C(∆)| there is an ec subgraph isomorphisms f

from G to G’ }.

Computing the exact graph edit distance is not an easy task. The combinatorial

nature of this problem makes the heuristic the only remedy.

40

3.3. BACKGROUND OF GRAPH MINING

3.3.2 Recent Advances in Graph Mining

Recently, research on discovering context-free graph patterns such as frequent

subgraphs and closed graph patterns become more and more active, due to the

demand for knowledge abstraction from increasingly large volume of graph data.

The researches on mining frequent subgraphs fall into four categories [WM03]:

Greedy methods, Apriori-based approaches, inductive logic programming (ILP)

oriented solutions, and methods based on feature selection.

Greedy search based approaches emerge along the research on discovering

conceptual graph inside a graph. SUBDUE [HCD94] and GBI [YMI94] are two

pioneer algorithms using this approach. They both greedily look for a subgraph

that maximizes certain measurements. After that, they compress the discovered

subgraph into a vertex. SUBDUE adopts Minimum Description Length principle

and GBI uses an empirical graph size definition. This definition considers both

the size of the discovered subgraph and the size of the compressed graph.

Apriori-based approach is the most explored branch. Solutions under this ap-

proach often represent a graph using some canonical forms. The canonical forms

impose a partial order to graphs vertices or edges. Based on the partial order, the

solutions explore the graph in the Apriori-based manner. AGM [ATH03] and F-

SG [MK01] are two well-known Apriori-based frequent sub-graph discovering

algorithms. They both adopt the breadth-first Apriori algorithm. In contrast,

41

3.3. BACKGROUND OF GRAPH MINING

gSpan[YH02] tries to apply Apriori principle to a graph labeling in depth first

manner.

Solutions based on ILP represent a general graph by first order predicate logic.

Graph mining problem is transformed to looking for hypothesis and using ”evi-

dence” to justify the hypothesis. The hypothesis is constrained by background

knowledge. The background knowledge thus have influence on the types of mined

subgraphs. System WARMR[DT99] and its improved version FARMER[NK99]

are the first few among ILP based graph mining approaches. By combining ILP

approach with Apriori-based search, they can predict carcinogenesis of chemical

compounds.

The feature selection approach is an application of SVM[Vap95] to graph min-

ing domain. The key issue is to find a suitable kernel function to measure the sim-

ilarity between two patterns [KI02]. Based on the kernel functions, patterns are

classified properly. We can find target patterns by analyzing most representative

patterns from each class.

Along with the discovery of more functional-structural correspondence, re-

searchers in bio-informatics domain discover that meaningful patterns usually

inherit certain structural characteristics. Recently a lot of research papers have

been published on cliques, densely-connected graph and another interesting graph

class the bipartite graph[ZWZK06, AUS07, WZZ06, HYH+05, YZH05, NJW01,

KV96, HMWD04]. Below we briefly describe the work that is most relevant to

42

3.3. BACKGROUND OF GRAPH MINING

the dense pattern mining problem.

One approach to mining dense patterns is via graph partitioning along a min-

imum cut. Ng and colleagues [NJW01] use spectral methods to interrogate large

complex networks in order to find cohesive (a.k.a dense) subgraphs. Since the

eigenvectors of a graph depict the graph’s topological information, they perform

spectral graph partitioning using the second eigenvector of a graph’s Laplacian

(also known as the Fiedler Vector). The algorithm recursively bisects the graph

until the number of partitions meet predefined values.

METIS [KV96] is an algorithm for graph partitioning, a related but different

problem to the theme of this thesis. The algorithm comprises three stages: a

coarsening step where tight groups of vertices are replaced with super nodes; a

partitioning step where the resulting coarsened graph is partitioned; and a refining

step where the original vertices are added back to the graph and the partitions are

refined accordingly. The approach is scalable but METIS targets a different task –

graph partitioning, and moreover tends to favor balanced partitions and does not

always effectively identify dense sub-graphs of interest[AUS07].

By applying special encoding techniques, some solutions convert the dense

graph mining problem into a traditional data mining algorithm. The Apriori

priciple[AS94], can be directly applied[ATH03, MK01, YH02, HYH+05]. Out of

many attempts, the one that is most germane to our work is CODENSE[HYH+05].

CODENSE mines frequent coherent cohesive subgraphs across a collection of

43

3.4. VISUALIZATION OF MINED GRAPHS

massive graphs. A coherent subgraph is a graph where all edges exhibit corre-

lated occurrences in the collection of graphs. The density of a graph is the ratio

of graph edge count in the graph to the same-sized, complete graph’s edge count.

CODENSE performs clustering on two meta-graphs summarizing the graphs to

be mined. CODENSE can discover overlapping clusters. This is important in bio-

logical applications since under different conditions, one gene may serve different

roles and be involved in different functional groups [GE02]. Aside from densi-

ty, in [YZH05], studies are also done on efficiently finding interesting subgraph-

s through combining connectivity constraints with column or row enumeration

methods [PCT+03, CTX+04, CTTP04, PTCX04, CTTX05].

In summary, the request for an efficient dense subgraph mining algorithm

urges us research on this topics. If we can derive an approach that can visual-

ize mining results, users can better identify graph structural features concretely.

We next describe effort researchers made to provide such visual graph mining

capabilities.

3.4 Visualization of Mined Graphs

Mining result visualization(MRV) is an important step towards a human-interpretable

data mining solution. With the aid of effective visualization techniques, analyst-

s can interpret and explore the mining results intuitively. Moreover, the human

44

3.4. VISUALIZATION OF MINED GRAPHS

feedback upon the visual representation may positively influence the mining al-

gorithm since it builds up an intuitive mental model of how the mining algorithm

works.

As with its counterpart in unstructured mining, the development of graph min-

ing results visualization can also be classes into two stages. Early works empha-

sis on displaying findings on the graphs. When mining huge graphs, it is natural

to organize the resulting subgraphs into hierarchy so that humans without prior

knowledge of graph mining technology can understand the meaning of discov-

ered patterns easily. Current state- of - the -arts [CFZ06] in graph mining result

visualization adopts such approach. Further development in this area makes inter-

active exploration of the graph mining results[RJTe06].

3.4.0.1 Interactive Graph Mining Tools

Interaction with users during mining process effectively guides further mining

process. It provides users with a more intuitive mental model. To our knowledge,

few researches focus on interactive features. Most of them are capable of visu-

alizing the graph topologies in different magnitude. They cannot presents inter-

mediate mining results for users to feedback and improve. Netmine[CFZ06] and

GMine[RJTe06] are two systems that provides interaction during mining process.

Netmine[CFZ06] is a systems to visualize network properties such as minimum-

cut. It includes an A-plots tool to present adjacency matrix of a graph visually

45

3.4. VISUALIZATION OF MINED GRAPHS

to facilitate outlier detecting. It also contains a procedural based R-MAT (Recur-

sive MAtrix) graph generator which produces graph patterns following power law.

By choosing proper parameters, the R-MAT graph generator produces a synthet-

ic graph that matches with the real data well. The failure of matching indicates

network abnormalities fast and accurately. To generate a bipartite graph, the adja-

cency matrix is rectangle. By setting the length and width of the adjacency matrix

to be different power of 2, it matches bipartite Click-stream data sets well.

GMine[RJTe06] is an initiative to perform interactive graph mining. It does

not only provide general topological information of the graph but also helps users

to look into of the detail of the graph. By hierarchically partitioning and arranging

the graph, it enables exploration of the graph in different scales. It proposes an

R-tree-like structure G-tree to store the graph to enable multi-resolution graph

exploration. Depending on the choice of partition methods, GMine is capable of

displaying the graph in different ways according to different application domains’

specific requirements. However, one serious limitation of this system is its failure

to deal with overlapping subgraph patterns due to its partition nature. Another

contribution is an interesting measure of the subgraphs. The score is based on

steady-meeting probability that two random moving objects meet each other at the

given node. More intuitively, it is the closeness of the connections among vertices

inside a subgraph. To locate the critical paths, GMine uses dynamic programming.

This proposed score has the tendency to group densely-connected vertices into a

46

3.5. CHAPTER SUMMARY

single G-tree node. GMine is suitable for isolating dense areas while may not be

able to handle overlapping patterns.

Although existing works make graph mining a navigational process, there is

no work to our knowledge that can handle adding and deleting vertices or edges

during navigation of the mining results. This missing piece towards the solution of

interactive graph mining worth time and energy to be investigated. Taking protein

protein interaction network as an example, the quantities of interactions are from

experimental data. Due to current experimental constraint, these data contain high

level of noises. Thus the interactions inside the protein-protein network may not

be 100% accurate. To overcome noisy data, we can adjust under lying network by

mining results and iterative such process to get optimal results. From this iterative

process, we may predict missing links in graphs or discover critical vertices and

edges.

3.5 Chapter Summary

In this chapter, we first discuss the graph data model to capture entity interaction-

s. After that, we present several important classes of dense graph patterns in the

graph mining literature. With different characteristics, these patterns have het-

erogenous implications in various application domains. Next, we investigate the

evolvement of techniques for graph mining with emphasis on dense patterns. S-

47

3.5. CHAPTER SUMMARY

ince graph matching is an elementary problem during mining process, we review

the graph matching techniques as part of the evolvement. After that, we exten-

sively survey mining techniques for afore mentioned patterns. In the last part of

this chapter, with the discussion on current trend in graph mining visualization,

we reconcile that visualization plays an important role in graph mining.

48

4
Cohesive Subgraph Mining

Cohesive subgraph is a synonym of dense subgraphs. Inside a cohesive subgraph,

vertices connect to each other with significantly higher number of edges. Cohe-

sive subgraphs have significant implications in various domains as discussed in

section 2.1. The answer to the questions of where cohesive subgraphs are, how-

ever requires excess effort.

This chapter presents our solution towards cohesive subgraph mining. In sec-

tion 4.1, we formally define the cohesive subgraph mining problem. The algo-

rithm to cohesive subgraph mining is introduced in section 4.2. In section 4.3,

we conduct extensive experiments on synthetic as well as real data to show the

effectiveness of our proposal. Section 4.4 concludes this work.

49

4.1. PRELIMINARIES AND PROBLEM DEFINITION

4.1 Preliminaries and Problem Definition

A graph G is a two tuple {V,E} where V is a set of distinct vertices {v1, ..., v|V |}

and E is a set of edges {e1, ..., e|E|}. A graph G′ = {V ′, E ′} is a subgraph of G if

V ′ ⊆ V , E ′ ⊆ E and all end-vertices of edges in E ′ are in V ′.

In this paper, we define the distance between two vertices vi and vj as the

number of edges on the shortest path connecting vi and vj . To simplify discus-

sion, we assume G is a connected graph. If G consists of a set of unconnected

components, the visualization technique in this chapter can be applied to each

component individually.

To determine the cohesiveness of a subgraph, two measurements are often

used: density [ARS02, HYH+05] and connectivity [YZH05].

Definition 4. Density of G′, γ(G′)

The density of a graph G′ = {V ′, E ′} is defined as:

γ(G′) =
2 ∗ |E ′|

|V ′| ∗ (|V ′| − 1)

Definition 5. Connectivity of G′,κ(G′)

The connectivity of a graph G′ is defined as κ(G′) = k, where k is the largest

integer such that there exists no k − 1 vertices whose removal disconnect the

graph. We also call G′ a k-connected graph.

50

4.1. PRELIMINARIES AND PROBLEM DEFINITION

Intuitively, inside a k-connected graph, there are at least k independent paths

from any vertex to any other vertex. The exact algorithm to decide vertex connec-

tivity is not trivial([CT96] proves that this problem is #P-complete).

Although the above two measurements of cohesiveness are inherently differ-

ent, both are however maximized when the graph is a clique. In this chapter, we

will mostly focus on finding this special type of highly cohesive subgraphs (i.e.,

cliques).

Given a graph G = {V,E}, we want to compute an ordering of vertices in G

and generate a density plot based on the ordering such that:

Problem 1: All cliques with size greater than k can be identified based on visual-

izing the density plot.

While our focus in this paper is on solving Problem 1, we will provide expla-

nation during the course of discussion on how our solution to Problem 1 can in

fact provide a solution to Problem 2 and 3 below:

Problem 2: All subgraphs with density greater than γmin and graph size greater

than sizemin can be identified based on visualizing the density plot.

Problem 3: All subgraphs with connectivity greater than k can be identified based

on visualizing the density plot.

51

4.2. ALGORITHM CSV

4.2 Algorithm CSV

Our CSV algorithm is an OPTICS [ABKS99] style plot which walks through the

vertices of the graph based on two local density measures: maximum participat-

ed clique size and maximum co-clique size.

Definition 6. maximum participated clique size, ζmax(v)

The maximum participated clique size of a vertex v, denoted as ζmax(v) is the size

of the biggest complete subgraph(i.e., a clique) in G that includes v.

Intuitively, ζmax(v) is analogue to the notion of spatial density in density-based

clustering [EKSX96, ABKS99]. Unlike spatial density, graph density must take

into account the number of both vertices and edges. The definition of ζmax(v)

naturally takes this into account.

Given a vertex vi, we also want to estimate how densely it is connected to

another vertex vj . For this purpose, we introduce another definition: maximum

co-clique size.

Definition 7. maximum co-clique size, ηmax(vi, vj)

The maximum co-cliques size for two vertices vi and vj denoted as ηmax(vi, vj) is

the size of the biggest complete subgraph(i.e., a clique) that contains both vi and

vj .

The CSV algorithm is shown in algorithm 4.1. The algorithm maintains a heap

52

4.2. ALGORITHM CSV

Algorithm 4.1 CSV Algorithm Skeleton
Require: Graph G={V,E}

return Density plot for visualizing cohesive subgraphs
HEAP=∅
for all v ∈ V do

v.ηmseen = 0
end for
while ∃v unvisited do

if HEAP==∅ then
v=randomly selected unvisited vertex from V

else
v=next vertex on HEAP

end if
plot v.ηmseen

for all v′ directly connected to v do
if v′ ∈ HEAP then
v′.ηmseen = max(v′.ηmseen, ηmax(v, v

′))
reorder HEAP

else
compute ζmax(v

′) (Algorith 4.2)
v′.ηmseen=ηmax(v, v

′)
add v′ into HEAP

end if
end for

end while

for storing visited vertices that have not been output. Vertices stored in the heap

are maintained in sorted order based on ηmseen and then by ζmax. The variable

v.ηmseen maintains the highest ηmax(v, v
′) value between v and any visited vertex

v′ known so far. Intuitively, sorting the vertices based on ηmseen means that ver-

tices that are strongly connected to previously visited vertices will be output first.

Among those that have the same value for ηmseen, vertices with higher value of

ζmax are ranked in front as they are more likely to lead the walk towards the region

53

4.2. ALGORITHM CSV

with higher graph connectivity.

The algorithm starts by either picking the next vertex v from the heap or a

random vertex v if the heap is empty. The value v.ηmseen (which have a value of

0 if it is the starting vertex) will then be output. All vertices v′ that are directly

connected to v are retrieved. For vertex v′ which is already in the heap, v′.ηmseen

is updated depending on whether the original value of v′.ηmseen or ηmax(v, v
′) is

higher. The heap is then reordered based on the updated value. For a vertex v′

which has not been visited, v′.ηmseen is set to ηmax(v, v
′)) and ζmax(v

′) is comput-

ed. After that, v′ is inserted into the heap. The process is repeated until all vertices

have been visited and its v.ηmseen has been output.

To see how the density plot output by CSV (henceforth referred to as the CSV

plot) can be used to visualize the distribution of cliques, we will first prove the

follow theorem.

Theorem 4.2.1. Let v′1,...,v
′
k be the vertices of a size k clique in G and assume that

they are already sorted based on the ordering computed by CSV. We claim that

for any vertex v (not necessary those in the clique) that fall between v′1 and v′k

(excluding v′1 but including v′k), v.ηmseen ≥ k.

The proof of theorem 4.2.1 is as follows.

Proof. : Any vertex v that falls within v′1 and v′k is either part of the size k clique

or it is not.

54

4.2. ALGORITHM CSV

If v is part of the clique, v.ηmseen ≥ k. This is because: (i) v′1 has been output,

(ii) all vertices v′i in the clique are directly connected to v′1 with ηmax(v
′
1, v

′
i) ≥ k,

and (iii) Line 12 of CSV in Figure 4.1 will update v.ηmseen for all vertices v that

directly connects to v′1 to the maximum of the original v.ηmseen or ηmax(v
′
1, v).

If v is not part of the clique, there must exist some i, 1 < i ≤ k such

that v.ηmseen ≥ v′i.ηmseen in order for v to be output before v′i in the heap. S-

ince v′2,...,v′k must be in the heap once v′1 is output, their corresponding value for

ηmseen must be equal or larger than k. Since v.ηmseen ≥ v′i.ηmseen, it must be that

v.ηmseen ≥ k.

potentially cotain
cliques of size larger
than k

ηv. mseen

k

v’1 v v’i v’k v’

upper bound
of clique size

between v and v’

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

Fig. 4.1: CSV Plot Correctness Proof

Based on Theorem 4.2.1, it is easy to see that any clique with a size larger

than or equal to k must fall into a region of the CSV plot in which there exists

a continuous set of more than k − 1 vertices with ηmseen ≥ k in the plot. As an

example, Figure 4.1 highlights regions in the CSV plot that potentially contain

55

4.2. ALGORITHM CSV

cliques of size larger than k. To be more precise, the CSV algorithm orders the

graph vertices into a CSV plot such that the following theorem can be inferred:

Theorem 4.2.2. The highest ηmseen value between two vertices v and v′ on the

CSV plot is an upper bound on the maximum clique size that can be found on the

subgraph that is induced by considering all the vertices between v and v′ in the

CSV plot.

For a clique mining algorithm such as CLAN [WZZ06], the CSV plot provides

a good exploratory tool that can highlights regions of interest for mining and also

guide parameter settings such as minimum clique size for the algorithm.1 Later on

in our experimental section, we will show that by using the CSV plot as a filtering

method, we can speed up the efficiency of CLAN by up to 80% while finding ex-

actly the same set of cohesive subgraphs that the original CLAN algorithm finds.

Finding Cohesive Subgraphs Based on Density

We will next discuss how the CSV plot can be used to provide a solution for

Problem 2 which is to find all subgraphs G’ such that |G′| ≥ sizemin and γ(G′) ≥

γmin. We will make use of Turan’s theorem [Tur41, Bol78] from extremal graph

theory for this purpose.

Theorem 4.2.3. Turan’s Theorem
1 The minimum clique size setting in CLAN is used to filter off all cliques that are of a size

smaller than a certain threshold

56

4.2. ALGORITHM CSV

Let G = (V,E) be a graph that contains no clique of size larger or equal to k;

then
|E| ≤ (k − 2)|V |2

2(k − 1)

Based on Turan’s theorem, we can now infer that subgraphs which exceed a

certain size and density must contain at least one clique exceeding a certain size.

As an example:

Let us assume that sizemin = 10 and γmin = 0.8. Let G′ be a subgraph that

just satisfies that criteria i.e., it has 10 vertices and 36 edges (thus ensuring

γ(G′) = 0.8). Based on reasoning from Turan’s theorem, such a subgraph

should contain at least one clique of size 5 (since the 10 vertices graph with

max-clique 4 can only have 33 edges maximum). It is also easy to see that

larger graphs that satisfy the density threshold must contain cliques of even

larger size.

As can be seen, the solution to Problem 1 which helps to identify and visualize

cliques of a certain size can be used to provide markers for Problem 2. As any

regions in the CSV that do not contain cliques of a sufficiently large size will not

contain any subgraphs of interest in Problem 2. Note that this approach of using

cliques in a subgraph to measure its cohesiveness is widely accepted in social

network analysis [Sei83].

Finding Cohesive Subgraphs Based on Connectivity

57

4.2. ALGORITHM CSV

We next examine the usefulness of the CSV plot in handling Problem 3. Note that

Problem 3 can be converted to a special instance of Problem 2 by observing the

following:

1. A k-connected graph must contain at least k vertices.

2. A k-connected graph must contain at least ⌈(kn/2)⌉ edges since each vertex

must connect to at least k other vertices.

Based on these observations, we can reduce an instance of Problem 3 into an

instance of Problem 2 where sizemin = k and the minimum density, γmin is set to

2⌈(kn/2)⌉
k∗(k−1)

. The CSV plot can thus be applied to solve Problem 3 as it is applied to

solve Problem 2.

4.2.1 Multi-Dimensional Mapping

As ζmax(v) and ηmax(vi, vj) is expensive to compute due to the clique detec-

tion, this section proposes a multi-dimensional mapping which computes an upper

bound of these two functions.

Given the graph G, we achieve multi-dimensional mapping by first selecting

n vertices as pivots based on the shortest path distance. Various methods for

selecting these pivots exist [FL95, FTCF01, BNC03]. Here, we adopt a simple

strategy of incremental selection. We iterate n rounds and select a vertex that

58

4.2. ALGORITHM CSV

is furthest away (based on average distance) from pivots selected from previous

rounds.

Given a pivot pi, the distance of the shortest path of a vertex v to pi is denoted

as SDi(v). For an edge e in the graph, we define SDi(e) as 1
2
× (SDi(v1) +

SDi(v2)) where v1 and v2 are the two vertices connected by e. We can now define

mappings of graph elements into n-dimensional space:

Definition 8. M(v), M(e)

Given a graph G = {V,E} and a set of pivots p1,...,pn, a vertex v will be mapped

into the point M(v) = (SD1(v), ..., SDn(v)) while an edge e will be mapped into

the point M(e) = ((SD1(v) + SD1(v
′))/2, ..., (SDn(v) + SDn(v

′))/2) where

e = (v, v′).

Figure 4.2 shows an example of how a graph is mapped into two-dimensional

space by picking two pivots v0 and v3. The mapping essentially divides the n-

dimensional space into grid cells of unit length and vertices are mapped into the

intersection of the grid lines with integer coordinates. Edges on the other hand are

mapped exactly in between the mapping of the two vertices that they connect. We

will use D∞(M(v1),M(v2)) to represent the distance between M(v1) and M(v2)

under L∞ norm, i.e.,

Definition 9. D∞(M(v1),M(v2))

D∞(M(v1),M(v2)) = maxi=1
i=n|SDi(v1)− SDi(v2)|

59

4.2. ALGORITHM CSV

v1
v0

v6
 v5

v4

v2

v3

e0

e1
 e2

e4
 e3

e5

distance

from v0

distance

from v3

1
 2
 3

1

2

3

v0

4

v1

v2(v5)

v6

v4

v3

e0

e1

e3

e2(e4)

e5

Fig. 4.2: An Example of Graph Mapping

Based on triangular inequality, it is possible to prove the following lemma:

Lemma 4.2.1. Let the length of the shortest path between two vertices v1 and v2 be

D(v1, v2), then D∞(M(v1),M(v2)) ≤ D(v1, v2)

Proof. Assuming otherwise, then there exists a pivot pi such that |SDi(v1) −

SDi(v2)| > D(v1, v2). Without loss of generality, SDi(v1) > D(v1, v2) +

SDi(v2), which means that SDi(v1) is not the shortest path distance to v1. This is

a contradiction.

Theorem 4.2.4. Let G′ = {V ′, E ′} be a clique of size k in G, then G′ will be

mapped into a unit grid cell C based on our high dimensional mapping such that:

• There exist at least k vertices with a degree greater than k − 1 in C.

• There exist at least k(k − 1)/2 edges in C.

Proof. All vertices in a clique are one edge away from each other. Combining

this with Lemma 4.2.1, we know that each pair of vertices v′1, v
′
2 ∈ V ′ will be

60

4.2. ALGORITHM CSV

mapped into n-dimensional space such that D∞(M(v1),M(v2)) ≤ 1. Since this

must be true for all pairs, the only possibility is that all vertices in the clique are

mapped into the same grid cell of unit length. Similarly, since edges are mapped

between the two points they connect, they must only be found in the same grid

cell. Furthermore, since the vertices belong to a clique of size k, they must at least

have degrees of k − 1 in order to connect to all the other vertices in the clique.

Algorithm 4.2 Algorithm to estimate ηmax and ζmax

Require: Mapping of graph G, an empty R-tree R
Ensure: ηmax(v, v

′) and ζmax(v) Upper bound actual η value
1: set v.ζmax = 0 for all v ∈ G
2: for each edge e ∈ G do
3: construct set of cells C containing e
4: for each cell c ∈ C do
5: Add e into c
6: if c is not found in R then
7: Insert c into R
8: end if
9: end for

10: end for
11: for each vertex v ∈ G do
12: Locate existing cells set C in R that contains v
13: Add v into every cell c ∈ C
14: end for
15: for each c in R do
16: Est ηζ(c)
17: end for
18: return ηmax(v, v

′) and ζmax(v) ∀e(v, v′) ∈ G

We will now explain how to compute upper bounds for ζmax(v) and ηmax(v, v
′)

for each vertex v and each of its connecting vertices v′.

Referring to algorithm 4.2, our algorithm first computes the coordinates of all

61

4.2. ALGORITHM CSV

vertices and edges of the graph after mapping and then insert them into an R-tree2.

Our R-tree stores unit cells. Each cell has unit length in all dimensions and stores

a list of vertices and edges that are mapped into it. To avoid introducing cells that

contain only vertices but no edges, we first insert edges into the R-tree and then

subsequently the vertices. Complexity arises when an edge is mapped into the

boundary of a cell. In that case, more than one cells are added into the R-tree.

This happens only when the vertices at the two end of an edge are having the

same distance to one or more of the pivots. To minimize such situation, we design

the pivot selection method such that the group of pivots are far apart from each

other. Experiments on pivot selection methods in later part of this paper support

our choice.

After the insertion of all graph elements, the algorithm will compute ηmax(v)

and ηmax(v, v
′) by processing each cell using the algorithm in Figure 4.3.

Given a cell c, algorithm Est ηζ in Figure 4.3 will compute an upper bounds

for ηmax(v, v
′) for every node v inside c and updates ζmax(v) or ηmax(v, v

′) for

some v′ the upper bound computed are found to be higher than their original

value. To achieve this, the algorithm iterates over all vertices mapped inside c.

We only start the estimation if c contains enough edges and vertices such that c

has potential to update some ηmax or ζmax values that are relevant to v(i.e. c is

2 Note that we use an R-tree as it is rather common and readers should feel free to use other
spatial indexes for this purpose.

62

4.2. ALGORITHM CSV

Algorithm 4.3 Algorithm to estimate η in c:Est ηζ(c)
Require: A unit cell c

1: return Estimate ηmax and ζmax for vertices in c, update value of ηmax or ζmax

when necessary
2: for every v mapped into c do
3: if c is sufficiently “dense” to change ζmax(v) or ηmax(v, v

′) then
4: V ′ = {v′|v′ directly connects to v and v′ is mapped into c}
5: for each v′ ∈ V ′ do
6: V ′′ ={v′′|v′′ connects to both v,v′

∧
v′′ ∈ V ′}

7: Let G′′ be subgraph induced from V ′′

8: Compute degree array DV ′′∀v′′ ∈ V ′′

9: such that DV ′′(v′′)=degree(v′′, G′′) + 1
10: DV ′(v′)=η bound(DV ′′(v′))
11: end for
12: DV = η bound(DV ′)
13: for each v′ ∈ V ′ do
14: if ηmax(v, v

′) < DV ′(v′) then
15: ηmax(v, v

′) = DV ′(v′))
16: if ζmax(v

′) < ηmax(v, v
′) then

17: ζmax(v
′) = ηmax(v, v

′)
18: end if
19: if ζmax(v) < ηmax(v, v

′) then
20: ζmax(v) = ηmax(v, v

′)
21: end if
22: end if
23: end for
24: end if
25: end for

sufficiently ”dense” enough for v in line 2). For each neighbor vertex v′ of v, we

find V ′′ a set of vertices that are connected to both v and v′ and which are also

found within c (V ′′ also contains v, v′). We induce a subgraph G′′ that contains all

vertices in V ′′ and all edges in the original graph that join two vertices in V ′′ (line

5). Based on G′′, we compute an array DV ′′ where DV ′′(v′′) stores the degree of

v′′ within G′′. This is the largest possible clique size v′′ can participate in G′′. It is

63

4.2. ALGORITHM CSV

Algorithm 4.4 Function η bound
Require: DV : an array of η bounds

1: return a new array of tighter η bounds
2: ηnew = 0
3: S = DV in descending order
4: for i = 1 TO |DV | do
5: if i ≥ S(i) then
6: ηnew = S(i)
7: BREAK FOR LOOP
8: end if
9: end for

10: for i = 1 TO |DV | do
11: if DV (vi) > ηnew then
12: DV (vi) = ηnew
13: end if
14: end for
15: return DV

also a loose upper bound of ηmax(v
′, v′′).

Since a clique of size k must contain k vertices each with degree of k − 1,

we will pass DV into a function called η bound(DV) in Figure 4.4 which will

compute an upper bound on the size of the biggest clique that could occur within

G′′. This is done by sorting DV in descending order, storing it in an array S and

going through S starting from the first element until the ith element is greater or

equal to S(i). Once the condition is satisfied, i will represent the size of the largest

possible clique in G′′ and will be use to update ηnew. Line 9-13 then update DV

such that DV (vi) stores the size of the largest clique that vi can participate in G′′.

Once the function is terminated, Line 7 of Algorithm Est η will update DV ′(v′)

with the result from function η bound. DV ′(v′) thus represent the biggest clique

64

4.2. ALGORITHM CSV

that v and v′ can participate in. Our next step is based on the observation that

a vertex v that participate in a clique of size k must have at least k − 1 direct

neighbors that participate in a clique of size k. As such, we pass DV ′ to func-

tion η bound in Line 9 of Algorithm Est ηζ to find the largest k, such that are k

vertices v′ which could participate with a clique of size k together with v. Upon

exiting from Est ηζ , DV ′ could contains a better bound that DV ′′ on ηmax(v, v
′)

for each v′ ∈ V ′. The values in DV ′ are then used to update the value of ηmax and

ζmax for v and v′ if the estimated upper bound is higher than the original value.

Note that in our algorithm description, we have certain redundancy in that when v′

is being processed, the same subgraph G′′ will again be induced for edge (v′, v).

This can be easily avoid by imposing an ordering on the vertices and we omit the

description to keep our discussion clean.

Fig. 4.3: Estimation η between a and Its Neighbors

65

4.2. ALGORITHM CSV

To illustrate how our algorithm in Algorithm 4.3 works, we present an example

in Figure 4.3. To estimate ηmax(a, f), we locate the neighborhood of a and f , {a,

b, c, d, e, f , g}. After sorting the degree array in descending order, we have array

{6(a), 6(f), 5(d), 4(b), 4(c), 4(e), 3(g)} (here we attach the vertex id to each de-

gree value for easy interpretation). Function η bound(DV) infers from the sorted

array that the upper bound of ηmax(a, f) is 5. Similarly, we can estimate an upper

bound on ηmax between a and all its neighbors(ηmax(a, f) = 4, ηmax(a, c) = 4,

ηmax(a, d) = 4, ηmax(a, e) = 5 and ηmax(a, g) = 4) and store them in DV ′. Af-

ter calling function η bound with DV ′, we tighten the value of ηmax(a, f) to be 4,

which is in fact the correct value for ηmax(a, f). Since ηmax(v, v
′) and ζmax(v) are

independent of CSV traversing order, we can pre-compute them and access them

directly when computing the CSV plot. We store the values of all ηmax(v, v
′)

inside a table of |E| entries and all values of ζmax(v) inside a table of size |V |.

Note that since the spatial mapping overestimates the clique size and our ap-

proximation computation of ηmax and ζmax are also upper bound, Theorems 4.1

and 4.2 will apply here. Correspondingly, any CSV plot that is computed based

on our approximation method will still be useful for solving Problems 2 and 3.

Complexity Analysis The execution of CSV consists of three parts. The multi-

dimensional mapping time, the tree building time and the core algorithm running

time.

The multi-dimensional mapping process is the process of computing the short-

66

4.2. ALGORITHM CSV

est path distance between the n pivots and the rest of the vertices. The standard

heap implementation has overall time complexity of O((|V |+ |E|) log |V |).

The R-tree that is built on the graph vertices and edges has a complexity of

O((|V | + |E|)log(|V | + |E|)) if each vertex and edge is inserted once into the

tree. The worst case is when each edge is mapped into 2n grids and so does each

vertex. The complexity increase to O(((|V |+ |E|)2n)log((|V |+ |E|)2n)). For η

estimation algorithm in figure 4.3, if a vertex has degree dv, the first run of estima-

tion requires dv rounds of sorting dv vertices. the total complexity is O(d2v log dv).

The next run of tightening the upper bound of η requires O(dv log dv). The

overall complexity for one vertex is thus O(d2v log dv). Due to the uncertainty

of mappings, the distributions of the vertices vary. The worst case arises when

the graph is a |V |-clique. This |V |-clique are mapped to 2d grids identically.

Inside each grid, there are |V | vertices and |E| edges. the complexity is thus

O(|V |2 log |V |2d). By checking whether a cell is sufficiently “dense” (as men-

tioned in algorithm in figure 4.2), the number of cells we actually need to perform

η estimation is greatly reduces.

The complexity of the core CSV algorithm depends on the number of compar-

isons to decide which vertex should enter the stack. Before any vertex is output,

all its neighboring vertices are checked. The total complexity is thus O(|E|).

The time complexity for each component of CSV is listed in Table 1. Note

that the above scenarios are extreme cases that occurred for extreme graphs. Ex-

67

4.2. ALGORITHM CSV

Mapping O((|V |+ |E|) log |V |)
Tree Building O(|V |2 log |V |2d)

CSV core O(|E|)

Tab. 4.1: CSV Components Complexity

periments on SMD datasets and DBLP datasets shows the number of grid cell are

far below the extreme case. Thus our algorithm achieves better performance for

real scenarios.

Example Output To give an example on how the output from CSV looks like,

we generate a synthetic graph with four cliques of size 8, remove 30% of the

edges and then embed the cliques into a random graph. Figure 4.4(a) shows the

generated graph with 60 vertices. The numbers shown on the vertices indicate

the order of DENSUE’s walk on the graph, and the corresponding plot using five

pivots for mapping is shown in Figure 4.4(b). Instead of being cliques of size 8,

they now become an overlapping set of cliques of size 6 or 7. However, since their

connectivity is still higher than the vertices outside the cliques, their presence can

still be discerned.

In conclusion, unlike existing “blackbox” algorithms for finding cohesive sub-

graphs, our visualization plot goes beyond highlighting them to showing their dis-

tributions and how they interact with other components in the graph.

68

4.3. EXPERIMENT

(a) Graph With Embedded Partial Cliques

0 10 20 30 40 50 60

2

4

6

Vertices

η
m

s
e
e
n

CSV Plot

(b) Corresponding CSV Plot

Fig. 4.4: An Example of CSV Plot

4.3 Experiment

Our experiments are evaluated on a Windows-based machine. The machine has

P4 3GHz CPU, 1G RAM and 75GB hard disc with Windows XP installed.

We use DBLP 10 years’ co-authorship dataset and Stock Market(SMD) data

69

4.3. EXPERIMENT

used in algorithm evaluation in [ZWZK06] to evaluate the effectiveness and ef-

ficiency of CSV. The DBLP data set covers co-authorships across year 1997 to

2006. Each graph vertex represents an author and two authors are connected by

an edge if they co-authored in at least one publication within a year. We consider

the co-authorship relations is significant only when the two researchers work to-

gether for at least two years. The compound DBLP 10-year co-authorship graph

contains 2819 vertices and 54990 edges.

The SMD data is a collection of three sets of 11 graphs from [ZWZK06] which

are named SMD-95, SMD-93 and SMD-90 respectively. Here, 0.95, 0.93 and 0.90

are correlation thresholds and an edge exists between two stocks in the graphs if

their correlation is found to be above the correlation threshold. Table 4.3 shows

the statistics of these three sets of graphs. For each set of 11 graphs, we create a

summary graph in which an edge exists between two stocks if it is found in more

than a certain number of graphs. Depending on the threshold applied to each of the

datasets, the final summary graphs’ size varies. For all our evaluation, the number

of pivots are set to 4 unless otherwise stated. We abstract the largest connected

component from each data set and performs CSV and CLAN on it.

Datasets # Graphs Avg. # of Avg. #
vertices edges

Stock Market 0.95 11 1683 20074
Stock Market 0.93 11 2618 68608
Stock Market 0.90 11 3636 206747

Tab. 4.2: Stock Market Datasets (SMD) Statistics

70

4.3. EXPERIMENT

Sup. SMD-95 SMD-93 SMD-90
V E V E V E

1 4264 132359 5323 403190 6008 1064133
2 3409 55945 4617 200882 5498 613823
3 2373 16462 3809 88301 4931 314421
4 1600 6893 2968 35892 4263 150692
5 425 1680 2148 14368 3587 69412
6 237 756 669 1771 2760 31462
7 84 315 361 723 1024 5611
8 65 183 219 364 635 3032
9 45 99 93 504 450 1681
10 13 20 214 409 356 1009
11 10 12 123 230 242 522

Tab. 4.3: Statistics of Largest Connected Components for Stock Market Datasets’ Sum-
mary Graphs(SMD)

4.3.1 Effectiveness of CSV Plot

In this section, we will look at the effectiveness of the CSV plot.3

4.3.1.1 DBLP Plot

We first test CSV on the DBLP dataset. As an instance of social networks, DBLP

data set reflects various social processes such as information processing, distribut-

ed search and diffusion of social influence [KW06]. We experiment on the largest

connected component of the compound ten years’ DBLP co-authorship data and

show it’s CSV plot in Figure 4.5.

3 In support of the SIGMOD’2008 experimental repeatability requirement, the ordering of the
DBLP (Figure 4.5) and stock(Figure 4.10) datasets together with their ηmseen values are made
available at:
http://www.comp.nus.edu.sg/˜atung/publication/cri.zip

71

4.3. EXPERIMENT

0 500 1000 1500 2000 2500 3000

2

4

6

8

10

12

14

Vertices

η m
se

e
n

CSV Plot

sg1

sg2

sg3

sg4

sg5

sg6

sg7 sg8

Fig. 4.5: CSV Plot for DBLP 97-06 Co-authorship Graphs

Fig. 4.6: Cliques Joined by 2 Co-authors in sg1

As an example to show how the distribution of cliques are depicted by the CSV

plot, we show subgraph sg1 in Figure 4.6 which consist of vertices ordered from

264 to 277 in the CSV plot. As can be seen from the plot, there are multiple small

peaks rising from an otherwise flat region. These are in fact small cliques that are

joined together by some co-authors from each clique. In this case, sg1 contains

three cliques that are joined together by 2 authors, namely, Dennis Shasha and

72

4.3. EXPERIMENT

Daniela Florescu. Here, Dennis Shasha is a member of two of the cliques while

Daniela Florescu is a member of the remaining clique with all three cliques having

a size of 5.

Fig. 4.7: A large Clique in sg2

Fig. 4.8: A Small Clique in sg3

Next, we will show an example of a highly connected subgraph marked as

sg2 in Figure 4.5 and displayed in Figure 4.7. Since the peak of sg2 seems to

featured prominently in a neighborhood with low cohesiveness, we also abstrac-

73

4.3. EXPERIMENT

t some partial neighbors of sg2 to confirm our suspicion. As can be seen from

Figure 4.7, sg2 in fact represent a group whose member are Russell Greiner, D-

uane Szafron, Brett Poulin , David S. Wishart, Roman Eisner, Alona Fyshe and

Brandon Pearcy. Within the CSV plot, they are ordered consecutively from 2013

to 2020. From the snippet in Figure 4.8, we can identify a “hub” person: Russell

Greiner who is ordered as the first person within sg2. Indeed he is a well-known

researchers in areas such as Bayesian Networks and leads several research groups

which explains his important role in linking up part of the DBLP co-authorship

graphs. In general, a sudden raise in the CSV plot usually indicates a key vertex

whose removal may greatly affects the density distribution of the graph. Note the

“sparseness” in other part of the graph in Figure 4.7 which corresponds to the low

density region around sg2 in the CSV plot.

As we have stressed, the strength of the CSV plot is not only on its ability

to find cliques but to also present the overall density distribution of a graph. As

can be seen from Figure 4.5, cliques of size 4 are in fact available in abundance

in the DBLP graph and a “blackbox” pattern mining algorithm will have found

many cliques of size 4 without knowing their relationship with their neighbor-

hood. From the CSV plot however, we can see that the subgraph sg3 is prominent

within its neighborhood despite it being just one of the many size 4 cliques in

the graph. The subgraph sg3 (Figure 4.8) consists of vertices ordered from 1683

to 1686 in Figure 4.5 and researchers in the group include: Ronen Basri , Eitan

74

4.3. EXPERIMENT

No. Size Order Members
sg4 14 0-13 J. Miller, S. Sudarshan, M. Nemeth, Rajeev Rastogi,

Jerry Baulier, Abraham Silberschatz, Peter McIlroy,
P. P. S. Narayan, Henry F. Korth, A. Khivesera, C.
Gupta, Philip Bohannon, S. Joshi, S. Gogate

sg5 9 153-161 Volker Markl, Rudolf Bayer, Timos K. Sellis, Roland
Pieringer, Klaus Elhardt, Frank Ramsak, Robert Fenk,
Aris Tsois, Nikos Karayannidis

sg6 7 352-358 Mitch Cherniack, Michael Stonebraker, Ugur C-
cediletintemel, Anurag Maskey, Stanley B. Zdonik,
Nesime Tatbul, Donald Carney

sg7 7 1131-1137 Bernhard Schoumllkopf, Thomas Navin Lal, Wolf-
gang Rosenstiel, Michael Schroumlder, N. Jeremy
Hill, Thilo Hinterberger, Niels Birbaumer

sg8 7 1162-1168 Peter M. G. Apers, Martin L. Kersten, Henk Ernst
Blok, Roelof van Zwol, Willem Jonker, Milan
Petkovic, Menzo Windhouwer

Tab. 4.4: Large Cliques in DBLP

Sharon, Achi Brandt and Meirav Galun. These four researchers’ major research

interests are in computer vision and maths. Besides common research interests,

they all currently work in Israel. Without prior background information of these

researchers, we will not identify this group of researchers from other cliques of

size 4 in the DBLP graph.

Finally, we show the remaining cliques that are of size 7 and above in Table 4.

Among these cliques, sg7 and sg8 are the closest to each other on the CSV plot.

This can be explain by the fact that both groups essentially work in Germany.

However, gp7 consists of members who do research in AI while gp8 consists of

members who do research in databases.

To assess the accuracy of our estimation for ηmax and ζmax, we also plot in

75

4.3. EXPERIMENT

Fig. 4.9: Two Groups of Highly Cohesive Stocks

red the actual ηmseen computed by CLAN in Figure 4.5. As can be seen, our

estimation of the ηmax and ζmax are highly accurate resulting in plot that show us

the various interesting discoveries that we have discussed earlier.

4.3.1.2 Stock Market Data

We also run CSV on SMD-95 with a support threshold of 45% (i.e. 5 graphs) and

generate a CSV plot shown in Figure 4.10. From the CSV plot, we identified two

closely related cliques which are at position 73 to 104.

The subgraph induced from the stocks within this region are shown in Figure

4.9. From the figure, we can see two distinct cohesive sub-components that are

yet closely related. Such form of nested structures will not be easily detected by

normal “blackbox” pattern mining algorithm but is easily indicated in the CSV

76

4.3. EXPERIMENT

0 50 100 150 200 250 300 350 400 450

2

4

6

8

10

12

14

Vertices

η
m

se
e

n

CSV Plot

two group of highly
cohesive stock

Fig. 4.10: 4D SMD95 CSV Plot with 45% Support Threshold

plot. The larger components consists of 14 stocks participating in 10-cliques. Out

of the 14 stocks, 5 stocks belong to BlackRock Group: BlackRock Broad(BCT),

BlackRock Advantage Term Trust, Inc(BAT), BlackRock Global Investment Man-

agement (BGT), BlackRock Investment Quality Term Trust(BQT), BlackRock

Municipal Target Term Trust (TTR). Anther well-known investment bank Mer-

rill Lynch (NBM) announced in Feb 2006 that it would combine with BlackRock

to form the World’s Largest Independent Investment Management Firms. The rest

of the 8 stocks are in areas of investment management as well. Two stocks in fact

are the same trust fund over different years(NGI and NGF are 2003 and 2004’s

national Government Income Term Trust respectively). We thus infer that this

large dense subgraph is formed mainly by BlackRock Group and Merrill Lynch

with other stocks in investment management field. The other smaller component

(9 stocks forming 8-cliques) has four bank and financial service stocks: Fidelity

Bancorp (FFFL), Seacoast Financial (SCFS), Jacksonville Bancorp (JXVL) and

77

4.3. EXPERIMENT

PennFed Financial (PFSB). Both the components have interest in insurance and

as such they are linked by some health service stocks such as Davita (DVA). CSV

plot makes it possible to identify how closely related these stocks are to each other

without drilling down to individual stocks.

Like in the DBLP case, we also indicated in red the actual ηmax values in

Figure 4.10. As can be seen, our estimation of the clique sizes are rather accurate.

We also investigate how the CSV plot of SMD-95 is affected when varying the

number of pivots by computing the CSV plot with 6, 8, 10 and 12 pivots. However,

due to the effectiveness of our bounding method, these plots look mostly the same.

As such we show only the plot for 12 pivots here in Figure 4.11.

0 50 100 150 200 250 300 350 400 450

2

4

6

8

10

12

14

Vertices

η
m

se
e

n

CSV Plot

Fig. 4.11: CSV Plot with 12 Pivots

78

4.3. EXPERIMENT

4.3.2 Efficiency

4.3.2.1 Graph Size and Running Time

By applying CSV on a set of relevant graphs with different sizes, we are able

to see how the sizes of the graphs affect the running time of CSV. Experiments

are ran on three sets of stock market data (SMD-90, SMD-93 and SMD-95) with

different support thresholds to vary the size of the graphs. Readers are referred to

Table 3 for the size of the largest connected component summary graphs. Note

that the number of edges doubles for every decrease of 1 in the support threshold.

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1 2 3 4 5 6 7 8 9 10 11

R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

Support

Stock Market-0.90
Stock Market-0.93
Stock Market-0.95

Fig. 4.12: 4D Mapping Time

Figure 4.12, 4.13 and 4.14 indicate the running time of the three components

of CSV on the three sets of SMD data. In Figure 4.12, we show the spatial map-

ping time for the three sets of data. As stated previously, the mapping is performed

79

4.3. EXPERIMENT

 2500

 500

 100

 10

 1

 0.01
 1 2 3 4 5 6 7 8 9 10 11

R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

Support

Stock Market-0.90
Stock Market-0.93
Stock Market-0.95

Fig. 4.13: Tree Building Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9 10 11

R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

Support

Stock Market-0.90
Stock Market-0.93
Stock Market-0.95

Fig. 4.14: CSV Core Algorithm Running Time

on the largest connected components of the graph. The mapping time ranges from

0.015 sec to 1.391 seconds for graph with size 10 vertices and 13 edges to graph

with 3409 vertices and 55945 edges. The mapping process only takes up 0.25-1%

out of total CSV running time for a large scale graph. The major time consuming

80

4.3. EXPERIMENT

part of CSV algorithm is the tree building process. Figure 4.13 shows the time

spent on building the R-trees on the same datasets. The building time does not

exceed 2500 seconds for the largest graph that we have process (smd95sp2 with

3409 vertices and 55945 edges). CSV core algorithm’s running time on SMD

datasets is shown in Figure 4.14. After building up the tree structure, the explo-

ration process is within a second. Note that sometimes the running time of CSV is

not monotonically increasing with the graph sizes. The distribution of the edges

inside a graph also determines the running time. Graphs with similar number of

vertices and edges may be mapping into different number of grids. It is the number

of grids and number of elements inside the grids that determine the total running

time of CSV algorithm.

2500

500

100

10

1

0.01
 1 2 3 4 5 6 7 8 9 10 11

R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

Support

CSV SMD-0.90
CSV SMD-0.93
CSV SMD-0.95

CLAN SMD-0.90
CLAN SMD-0.93
CLAN SMD-0.95

Fig. 4.15: CSV vs. CLAN Running Time

We also compared the overall running time of CSV (Mapping + Tree Building

+ Core Algorithm) with that of CLAN on SMD data sets. From Figure 4.15, CSV

81

4.3. EXPERIMENT

outperforms CLAN both in terms of capability and efficiency. CSV is able to

handle graphs 2-4 times larger than CLAN while the running time is only 10%-

1% of CLAN when dealing with moderate to large graphs. CSV proves itself to

be a good density estimation tool compromising little accuracy with an order of

magnitude time savings over exhaustive mining algorithm like CLAN.

4.3.2.2 Pivots Selection Algorithm and Their Effect on Running Time

Although the number of pivots does not affect the accuracy of the CSV plot sig-

nificantly, we are still interested in the cost when varying the number of pivots.

Thus we investigate the effect of the number of pivots selected on the running

time over the same SMD-90 datasets. Figure 4.16 presents the total running time

comparison of CSV algorithm on 4D to 12D multi-dimensional points of SMD-

90 datasets (with support from 8 to 11). As we increase the number of pivots, the

mapping dimension increases accordingly, which results in exponential increase

in the number of non-empty grids. During the process of mapping, we are only

interested in grids with edges in it. A large portion of grids thus become empty

and CSV does not need to spend time exploring those grids. The running time is

thus not exponentially increasing with number of pivots. This suggests that future

users should be cautious when choose more pivots in the mapping process. Our

suggestion here is not to use more than 6 pivots.

The algorithm for selecting the pivots also affects the efficiency of CSV. Fig-

82

4.3. EXPERIMENT

 230

 50

 10

 1

 0.01
1210864

R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

Dimension

SMD-90 SP=11
SMD-90 SP=10

SMD-90 SP=9
SMD-90 SP=8

Fig. 4.16: CSV Core Algorithm Running Time Varying Dimensions

ure 4.17 shows three lines representing three different approaches for selecting 4

pivots on the SMD-95 dataset. The “Random” approach simply picks the pivots

randomly. The “Separated” approach is the one we discussed in previous sections

while the “Central” approach is to pick the pivots with the minimum distance to

its furthest vertex. Instead of directly plotting the algorithm’s running time for the

three different approaches, we plot the number of non-empty grid cells that are

being handled in the algorithm. This quantity better reflects the pivots’ quality.

Results are averaged over 5 runs to off-set the randomness of the first approach.

From Figure 4.17, the number of visited grids is significantly reduced by carefully

picking the pivots.

In conclusion, our experiments show that CSV is an efficient and effective

tools for visual mining and exploration of dense subgraphs. CSV provides a very

useful alternative to the “blackbox” and exhaustive enumeration approach of other

83

4.3. EXPERIMENT

graph pattern mining algorithms [ZWZK06, WZZ06, HYH+05, YZH05], which

often have more parameters to specified as well.

4.3.3 CSV as a Pre-selection Method

Since CSV provides a method to quickly estimate a graph’s density distribution

and CLAN is an exact algorithm computing graph’s max closed cliques, we com-

bine the two algorithms in the hope to achieve fast and accurate computation of

graph density distribution. In this section, we first apply CSV on the stock market

data to obtained an estimation of graph vertices density. After that, we select those

vertices that could potentially contain cliques of required size and apply CLAN

on the subgraphs that is induced by these vertices. As expected, CSV does not

miss any cliques based on what we have proved earlier. Figure4.18 shows the

running time of such an approach compared with that of directly applying CLAN

 0

 2000

 4000

 6000

 8000

 10000

 1 2 3 4 5 6 7 8 9 10 11

of

 G
rid

s

Support

Random
Separated

Central

Fig. 4.17: Three Different Pivot Selection Schemes and Resulting #Grid

84

4.3. EXPERIMENT

on the data set. This set of experiments are run on 11 sets of stock market data.

The x-label of the graph indicates the characteristics of the data set. For example,

”90-11-5” denotes smd90 data with absolute support 11 and the minimum clique

setting is set to 5 (i.e. we want to find all cliques of size 5 and above). The results

show that running CSV as pre-selection method for CLAN saves 23% to 84% of

the time compared to running CLAN alone.

 0%

20%

40%

60%

80%

100%

95
-4

-8

95
-5

-5

95
-6

-4

93
-6

-8

93
-7

-6

93
-8

-5

93
-9

-4

90
-8

-9

90
-9

-8

90
-1

0-
6

90
-1

1-
5

%
 o

f C
LA

N
 T

im
e

SMD Dataset

Fig. 4.18: Efficiency of CSV as a Pre-selection Method

Note that the same method here can be used to find the top-k largest cliques in

the graphs by iteratively selecting the highest peak on the CSV plot and running

CLAN on the region around the peak. We plan to explore more towards this

direction in the future.

85

4.4. CHAPTER SUMMARY

4.4 Chapter Summary

In this chapter, we propose CSV , an algorithm for mining and visualizing cohe-

sive subgraphs. Existing approaches to the problem typically perform an exhaus-

tive enumeration and output a set of cohesive subgraphs which are often difficult

to correlate and understand. CSV relies on a locally measurable notion of density

coupled with novel mapping function to visualize and mine cohesive subgraphs.

We demonstrate the efficacy and efficiency of CSV on two real datasets. As an al-

gorithm that executes in polynomial time, CSV can be useful as a tool for general

exploration of a graph before a region of interest can be selected for more detailed

analysis. Additionally we demonstrate that one can use the CSV plot as a pre-

filtering method, to speed up the efficiency of clique mining algorithms such as

CLAN by up to 80% while finding exactly the same set of cohesive subgraphs as

the original algorithm (CLAN) does.

86

5
On Triangulation-based Dense

Neighborhood Graphs Discovery

As presented in section 4, mining for dense patterns are primary tasks in many ap-

plications. When the graph size keeps growing, the dense patterns become harder

to be located. To address this difficulty, This paper introduces a new definition

of dense subgraph pattern, the DN -graph. DN -graph considers both the size of

the sub-structure and the minimum level of interactions between any pair of the

vertices.

The mining of DN -graphs inherits the difficulty of finding clique, the fully-

connected subgraphs. We thus opt for approximately locating the DN -graphs

87

using the state-of-the-art graph triangulation methods. Our solution consists of

a family of algorithms, each of which targets a different problem setting. These

algorithms are iterative, and utilize repeated scans through the triangles in the

graph to approximately locate the DN -graphs. Each scan on the graph triangles

improves the results. Since the triangles are not physically materialized, the algo-

rithms have small memory footprint.

With our solution, the users can adopt a “pay as you go” approach. They have

the flexibility to terminate the mining process once they are satisfied with the

quality of the results. As a result, our algorithms can cope with semi-streaming

environment where the graph edges cannot fit into main memory. Results of ex-

tensive performance study confirmed our claims.

The rest of the chapter is organized as follows: First we explain the motiva-

tion for the triangle based DN -graph mining in section 5.1. In section 5.2, we

review recent research effort. The definition of DN -graph is formally presented

in section 5.3. This section also highlights DN -graph’s features with illustrative

examples. Algorithms TriDN and BiTriDN are presented in section 5.4. In sec-

tion 5.5, the paper describes the semi-streaming graph model. Following that, a

semi-streaming solution is presented. Experimental studies are then described in

Section 5.7. Section 5.8 concludes this chapter.

88

5.1. DN-GRAPH MINING, THE MOTIVATION

5.1 DN-graph Mining, the Motivation

Graphs are the most pervasive model of entity interactions as it concisely captures

the interactions among entities. However, for large graphs (which are becom-

ing increasingly common in many applications), it becomes too complicated for

human beings to find key information without the help of suitable graph mining

technology. Graph mining refers to the process of discovering designated sub-

graphs from a target graph, in the hope of uncovering unknown knowledge about

the graph. When facing unsolvable resource constraint, how to answer the mining

question to the best, becomes more challenging.

Most recent works on graph mining [ABC+04, ARS02, ATH03, BBP06, HYH+05]

believe that dense patterns are prominent. They capture the most active involve-

ment of entity interactions. Subsequently, researchers propose various definitions

of dense substructures. In section 3.2, we review some of these patterns.

Intuitively, a dense pattern contains a set of highly relevant vertices. They

usually share large number of common neighbors (two vertices are neighbors if

they connect to each other by an edge). The definition of DN -graph (a.k.a. Dense

Neighborhood graph) follows this intuition.

This paper provides a set of algorithms to mine DN -graphs from large scaled

graphs. The problem of mining DN -graphs is an NP-complete problem (due to

the close relationship between DN -graphs and cliques, lemma 5.3.1 will cover

89

5.1. DN-GRAPH MINING, THE MOTIVATION

this in detail). As such, in this paper, we opt to design approximate solutions.

In our solutions, the local neighborhood size is the most important, but difficult,

quantity to be computed. We associate this quantity with local triangle counting

in order to approximate it efficiently.

Graph triangulation refers to the process of generating all triangles in a

graph. Our approach locates DN -graph by using the state-of-the-art triangula-

tion algorithm [SW05, BBCG08]. As the storage of triangles can be expensive,

we do not store these triangles. Instead, we design our approach to operate iter-

atively. In each iteration, our scheme dynamically regenerates all triangles and

improve the connectivity estimation between vertices in each round.

Such an iterative, triangulation-based approach has three advantages. First-

ly, most of the details involved in efficient processing, such as minimizing I/Os,

are abstracted within the triangulation algorithm. The abstraction ensures our ap-

proach’s extensibility to different input settings, e.g. when the target graph is too

large to fit into memory, our approach only needs to change the access method of

the graph links. In addition, the estimation of the local neighborhood is encapsu-

lated within the triangulation algorithm. Secondly, as the estimation of the local

density value improves with each additional iteration, users can adopt a “pay as

you go” approach and obtain the most updated results on demand. Finally, when

the graph is too large to fit into the main memory, we can collect statistics in the

first iteration to support effective buffer management, should there be a need to s-

90

5.1. DN-GRAPH MINING, THE MOTIVATION

tore the local density value on a disk, since the triangles are generated in the same

ordering in every iteration.

In Time SpaceMemory

TriDN Yes O(klog|V ||E|
3
2)

O(|V |log|V |
+|E|)

BiTriDN Yes O(klog|V ||E|
3
2)

O(|V |log|V |
(Binary Bounding) +|E|)

StreamDN No O(k|E|) O(|V |)(Semi-Stream)

Tab. 5.1: A Family of DN -Graph Mining Algorithms

In this chapter, we present triangulation based dense graph mining algorithms.

Together they form an algorithm family. Their key features are compared in Table

5.1. For brevity, we name them respectively as 1) TriDN , 2) BiTriDN and 3)

StreamDN .

Algorithms TriDN and BiTriDN are two variances that handle in-memory

graphs. Both algorithms iteratively generate triangles to refine the λ value. These

two processes reach convergence when all λ values remain the same as previous

iteration.

The third algorithm, StreamDN , is for semi-streaming graph setting. In sec-

tion 5.5, we introduce the model of semi-streaming graph. To mine semi-streaming

graphs, algorithm StreamDN applies the min-wise independent set property, which

provides an approximation for triangulation using sequentially scan of graph edges,

with bounded error.

91

5.2. DENSE PATTERNS MINING AND TRIANGULATION

5.2 Dense Patterns Mining and Triangulation

A dense graph pattern is a connected subgraph that has significant internal con-

nections with respect to the surrounding vertices. (Depending on the semantic

meaning of the graph data, various forms of dense patterns have been investigated

in the literature. Please refer to chapter 3 for various types of dense patterns). In

this chapter, a dense subgraph is a set of vertices sharing many common neigh-

bors. If two connected vertices share one common neighbor, they form a triangle

together with their common neighbor. In view of the association between dense

patterns and triangles, we further study the problem of triangle counting.

Triangle counting and listing have been well studied in the literature. Given

a graph G with |V | vertices and |E| edges, [SW05] proposed a triangle-listing

algorithm with time complexity O(|E| 32) and with O(3|E| + 3|V |) space. Fur-

ther work [Lat07] improves the performance of the algorithm by separating the

vertices into two types, dense and sparse. The improved technique has the same

time complexity as the work in [SW05] while it reduces the space complexity to

O(|E|+ |V |). The above ideas count triangles by scanning graph edges, and join

adjacency list of the two vertices. The scanning of graphs makes these techniques

highly adaptable to streaming environment (In section 5.5, we discuss the graph

streaming model.).

Other research works on mining dense subgraphs can be classified according

92

5.3. DN -GRAPH AS A DENSITY INDICATOR

to their counterparts in item-set mining approaches. The most relevant work is

the density based solution [WSTT08]. This work provides not only a way to

find the closed cliques (biggest clique among the neighborhood) but to order all

graph vertices into a linear fashion for visualization purpose. One of the leading

approaches in [GRT05] adopts two-level-shingling method. Although the work

only demonstrates its power in collecting statistics from extremely large graph, its

performance is impressive and this approach can be employed into graph mining

domain to handle large scale graphs.

5.3 DN -Graph as a Density Indicator

This section presents how we characterize interesting patterns inside graphs. Be-

fore that, we introduce the symbols used in this paper.

A graph G(V,E) consists of a set of vertices V and a set of interactions E

over V × V . The size of G, denoted as |V |, is the number of vertices in V . The

neighborhood of a graph vertex v, is the set of vertices directly connecting to v.

We use N(v) to represent it. If vertex u and v share some common neighbors, we

use N∩(u, v) to represent the joint neighborhood. The neighborhood of e is the

joint neighborhood of its two end vertices. We denote the joint neighborhood as

Ne. For a subgraph G′ of G, the neighborhood of G′, N(G′), is the set of vertices

u ∈ G \ G′, which immediately connect with vertices in G′. Inside a graph, the

93

5.3. DN -GRAPH AS A DENSITY INDICATOR

measurement of minimal joint neighborhood size between any connected vertex

pair is denoted as λ. We use the notation λ(G)/λ(V) to refer to the measurement

of a graph G with vertex set V . For brevity, we omit the content inside bracket

and use λ when the context is clear. We also use ã to represent an upperbound of

quantity a. The upperbound of λ is thus written as λ̃.

As mentioned in previous chapters,a clique is a fully connected graph, in

which every pair of vertices are connected by an edge. If the size of a clique

is c, we call the clique a c-clique. When compared with clique of the same size,

a quasi-clique has only a fraction (say δ) of edges in the graph, it is a δ quasi-

clique.Conventionally δ is in the interval (0.5, 1].

Definition 10. DN -Graph

A DN -graph with parameter λ, denoted G′(V ′, E ′, λ), is a connected subgraph

G′(V ′, E ′) of graph G(V,E) that satisfies the following conditions: (1) Every

connected pair of vertices in G′ share at least λ common neighbors.

(2) for any v ∈ V \ V ′, λ(V ′ ∪ {v}) < λ; and for any v ∈ V ′, λ(V ′ − {v}) ≤ λ.

As the definition states, a DN -graph should be a connected subgraph in which

the lower bound of shared neighborhood between any connected vertices, λ, is

locally maximized. Being a DN -graph, it has local maximal λ value and the

size of the DN -graph is maximized. This ensures that the DN -graph has more

distinguishing power and maximal coverage. Similar with the graph’s diameter

94

5.3. DN -GRAPH AS A DENSITY INDICATOR

B

A

C

E

F

D

A’

Fig. 5.1: A DN -graph

and minimum cut, λ is an indicator of the graphs’ underlying density.

As proven in Theorem 5.3.1, it is a local maximum graph. For example, in

figure 5.1, subgraph ABCDEF is a DN -graph of λ value 3. If we include one

more vertex A′, the λ value of the graph A′ABCDEF ’s drops significantly to 0.

Similarly, taking away any vertex, say A, leads to a lower value λ. For further

illustration, we compare DN -graph with different dense patterns in next subsec-

tion.

5.3.1 An Illustrative Example to Compare Different Dense Patterns

C4

T(14,4)

(a) C4,T(14,4)

C4

T(14,4)

(b) δ Quasi clique

C4

T(14,4)

(c) Max Clique

Fig. 5.2: A Graph and Its Different Dense Sub Structures

Figures 5.2(a) to 5.2(c) present mining results of two different density criteria

95

5.3. DN -GRAPH AS A DENSITY INDICATOR

on an illustrative graph. The graph in Figure 5.2(a) contains a 4-clique loose-

ly attached to a Turan’s graph. A Turan’s graph T (M,N) is a special class of

graph, in which N graph vertices are divided equally (or as equal as possible) into

N groups. Every pair of vertices from two different groups has edge connecting

them, while members in the same group are not connected. In fact, Figure 5.2(a)

embeds a Turan’s graph T (14, 4). Judging by the interactions, there are two in-

teresting substructures in Figure 5.2(a). One is the 4-clique and the other is the

Turan’s graph. If we apply δ quasi-clique mining, when setting δ = 0.8, the min-

ing result includes the whole example graph (figure 5.2(b)). The mining results

are so relaxed that two dense substructures cannot be distinguished. If we insist

on regularity of the pattern (e.g. a clique), we can only find subgraphs of size 4

(as indicated in 5.2(c)) while missing the Turan’s graph.

DN -graph is designed to represent dense patterns, as it captures subgraphs

with more internal associations. It is thus not surprising to see the correlation

between DN -graph’s λ value and maximum clique size, which is another popular

dense indicator. In the following subsection, we demonstrate above facts using a

dynamical graph with increasing edge size.

5.3.2 λ Value and Clique Size Changes inside a Dynamic Graph

Figure 5.3 illustrates the relationship between λ value and clique size inside a

dynamic graph. The graph consists of 20 separated vertices and initially has no

96

5.3. DN -GRAPH AS A DENSITY INDICATOR

 0

 3

 6

 9

 12

 15

 18

 0 30 60 90 120 150 180

λ

Graph Size |E|

whole-Graph

dense-Graph

sparse-Graph

Fig. 5.3: The Growth in λ of a 20-Vertex Dynamic Graph

edges. The dynamic graph varies its topology by adding one edge each time. For

comparison purpose, the vertices are deliberately separated into two groups. Each

group consists of 10 vertices. One group (“dense”) has much higher probability

of adding a new edge. The other group’s probability of new edge appearing is

significantly lower, thus is considered as “sparse” sub graph. As the edge keeps

on adding, the whole graph becomes a 20-clique. Not surprisingly, the “dense”

group becomes a 10-clique (when adding up to 123 edges) faster compared with

“sparse” sub graph. Correspondingly, the λ value of the “dense” group grows sub-

stantially faster than the ”sparse” one. From this example, the λ value indicates

dense sub pattern well. With the illustrative example, we next analyze the rela-

tionship between DN -graph and a well-known dense pattern: the closed clique.

97

5.3. DN -GRAPH AS A DENSITY INDICATOR

5.3.3 Relationship between DN -graph and Closed Clique

Similar with the graph’s diameter and minimum cut, λ is an indicator of the graph-

s’ underlying density. It is not a magic number when applying our triangle based

algorithm in later sections. As proven in the Theorem 5.3.1, it is a local maximum.

For example, in figure 5.1, subgraph ABCDEF is a DN -graph of λ value 3. If

we include one more vertex A′, the λ value of the graph A′ABCDEF ’s drops

significantly to 0. Similarly, taking away any vertex, say A, leads to a lower λ

value than 3.

DN -graph is designed to represent dense patterns, as it captures subgraphs

with more internal associations. Appendix 5.3.2 depicts the relationship between

λ and the clique size using a dynamically changing graph.

Besides the level of connectivity, a DN -graph also imposes restrictions on the

minimal size of sharing neighborhood. This restriction is especially useful when

predicting protein complexes via densely connected proteins inside a protein-

protein interaction (PPI) graph. A protein complex’s formation often serves to

activate or inhibit one or more of the complex members[Wik06], in a PPI net-

work, we can observe the phenomenon that members of a protein complex share

(significantly many) neighbors. The DN -graph definition reconciles the sharing

of neighborhood.

Based on DN -graph, this chapter discusses effective solutions towards mining

98

5.3. DN -GRAPH AS A DENSITY INDICATOR

DN -graphs within a massive graph, Formally:

Definition 11. DN -graph mining problem

Given a graph G(V,E), we want to find all DN -graphs g(v, e, λ) in G.

Generally speaking, the level of interactions among entities determines the

density of the substructures. From this point of view, it is not surprising to see

that some patterns are transformable to others. For example, a DN -graph is a

more general case of a closed clique (Recall that a clique is a fully connected

graph, while the closed clique is the local maximal clique). In fact, a DN -graph

is a relaxation of a clique, with less rigid size constraints. Lemma 5.3.1 states the

relationship formally:

Lemma 5.3.1. DN -Graph and Closed Clique

A graph contains a closed clique of size d if and only if the graph contains a

DN -graph g with λ = d− 2 and |g| = d.

The proof of above lemma follows two steps. First we prove the necessary

condition. If a graph contains a DN -graph g with λ = d−2 and |g| = d, according

to the definition of DN -graph, g has d vertices, which shares (d − 2) common

neighbors with every connected vertices in g. For any two distinct vertices v and

u in g, if they are connected, they Both connect to every other vertices inside

g. This holds for every vertex pair, which indicates that if g has an edge, it is a

clique. While g is a DN -graph, it does not contain a proper super graph which is

99

5.3. DN -GRAPH AS A DENSITY INDICATOR

also a DN -graph, it thus does not have a proper super graph with λ = d − 1 and

|g| = d+ 1. It does not contain a clique of size d+ 1.

The sufficient conditions proof is: if a graph contains a closed clique of size

d (*), this clique has d vertices and each pair of vertices share d − 2 common

neighbors. λ = d− 2 in this case according to λ definition. Being a closed clique,

it does not have a proper super graph which is also a clique. This indicates that it

does not have a proper super graph with .λ ≥ d − 1 and size = λ + 2. Suppose

there is a super graph with lambda = d− 2 + δ and size = d + ϵ, there must be

some vertices which are not inside g connecting to at least d− 2 + ϵ− δ d-clique

vertices, while d − 2 + ϵ − δ ≤ d, indicating ϵ − δ ≤ 2, which means size ≤ λ.

This is either impossible or the super graph is a clique, which contradicts with the

assumption (*). So there is not possible such super graph exist. So the d-clique is

an DN -graph.

With about, we finished the proof.

Using Lemma 5.3.1, we are able to reduce the close clique mining problem

to DN -graph mining problem. The reduction signifies that DN -graph mining

is NP-complete. A closed clique is the local maximal clique, where no proper

super graph of it is also a clique. The problem of detecting cliques is a well

known NP-complete problem, which is first discussed in the landmark paper [?].

As a clique possessing certain property (here, local maximality), a closed clique

detection problem is also an NP problem. Prompted by this result, we seek to

100

5.3. DN -GRAPH AS A DENSITY INDICATOR

develop approximate solutions instead.

Like the closed clique mining problem, the computational bottleneck for DN -

graph mining is on counting degrees within a subgraph. In fact, the counting of

local degrees relies heavily on multiple joins of neighbors, which are computa-

tionally expensive. To avoid the complexity of multiple joins, we next introduce

the concept of λ(e).

5.3.4 DN -Graph and λ(e)

As discussed previously, the bottleneck of DN -graph mining is excessive number

of neighborhood joins required. This is because we have to test combinatorial

number of subgraphs for their λ value and most subgraphs tested are not DN -

graphs.

Most of λ value testings however are unnecessary. Due to the local maximal-

ity feature of a DN -graph, it is impossible for any two different DN -graphs to

share any common vertices or edges. Once we verify that a graph, gdn is a DN -

graph, we need not consider other subgraphs that intercept with gdn. In fact, by

computing the λ value of edges, we can locate DN -graphs. If we assign the λ

value of gdn as the density value of its edges, a DN -graph becomes a set of edges

with local maximal λ.

Before explaining the process of locating DN -graph using edge density, let us

first define edge density, λ(e), formally:

101

5.3. DN -GRAPH AS A DENSITY INDICATOR

Definition 12. λ(e)

Given a graph G(V,E) and an edge e ∈ E, λ(e) is the maximal λ(G′) value

where e ∈ E(G′) and G′ ⊆ (G).

The value λ(e) indicates quantitatively, the most prominent relationships be-

tween two linked vertices. With the definition of local density, we next prove that

using λ(e), we are able to find all DN -graphs.

Theorem 5.3.1. Locating DN -Graph Using λ(e)

A graph G′ is a DN -graph if and only if

• all edges e within G′ have equal λ(e) value, represented as λmax and,

• for all u ∈ N(G′) and v ∈ G′, λ(u, v) ≤ λmax.

Proof of Theorem 5.3.1 To prove the correctness of Theorem 5.3.1, we use

the abstract graph in figure 5.4. The complete proof consists of two steps. Firstly,

G′ must exist. Secondly, G′ must contain some DN -graph. To prove the existence

of G′, we construct G′ using graph vertices/edges and their λ values. First pick

a vertex v with λ(v) ≥ λ(u) for all (u ∈ N(v)). Denote λ(v) as λmax. By

the definition of local λ value, λ(v) participates in a connected graph G′ with

λ(G′) = λmax. From v, we find all its immediately connected neighbors that have

λ(u) = λmax. From each u, we find u’s immediately connected neighbors with

local λ value λmax. This process propagates until no such neighbor exists. The

collection of discovered vertices form a connected subgraph G′ with λ value λmax.

102

5.3. DN -GRAPH AS A DENSITY INDICATOR

V_max

G’

v_max

Fig. 5.4: Proof of Theorem 5.3.1

Next, we show that G′ contains a DN -graph. By first part of the proof, G′

contains all vertices and edges with λ value λmax. For a vertex v′ ∈ G′, it only

can form DN -graph of λ = λmax with vertices inside G′. If denoting the minimal

set of vertices from G′ that form an DN -graph with v′ as Vmin, the subgraph

Vmin ∪ v′ is also a DN -graph. This proves that a graph G′ containing the set of

vertices with λ(v) = λmax > λ(u) where u ∈ N(G′) must participate in a DN -

graph. The condition that λ(v) = λmax and λmax > λ(u), where u is the neighbor

vertices of G′, means the graph G′ contains vertices with local maximal λ value.

Since graph G′ is always a super graph of some DN -graph, If a solution can find

G′, the DN -graph can be located within G′.

With above two steps, we prove the correctness of Theorem 5.3.1.

Based on Theorem 5.3.1,we can locate the DN -graph by connecting edges

with local maximal λ(e).

Computing λ(e) for all edges is however computationally prohibitive, as dis-

cussed in section 5.3. To facilitate approximation efficiently, we first find an upper

103

5.4. LOCAL TRIANGULATION AND ITS APPLICATION IN
DN -GRAPH MINING

bound value for λ(e), the λ̃(e), and then iteratively refine λ̃(e) to capture the actual

λ(e) as accurately as possible.

The approximation is based on the fact that for an edge e, its λ(e) value is

upper bounded by the joint neighborhood size of the end vertices of e. This joint

neighborhood size is in fact the number of triangles e participates in a graph. Thus

we are inspired to use triangulation to approximate λ(e) for every graph edge.

5.4 Local Triangulation and its Application in

DN -Graph Mining

A triangle consists of a vertex triple (u, v, w) and three edges (u, v), (v, w) and

(u,w). The problem of counting or listing all triangles within a graph is referred

as Graph Triangulation in this paper:

Definition 13. Graph Triangulation

Given a graph G(V,E), Graph Triangulation finds all vertex triples (u, v, w),

where every vertex pair inside the triple are connected by an edge, denoted as

e(u, v), e(v, w) and e(u,w) respectively.

The joint neighborhood of an edge e(u, v) upper-bounds λ(e), while the num-

ber of triangles e(u, v) participates in is equal to the joint neighborhood size. This

indicates that graph triangulation provides an upper bound λ(e) for every edge e.

104

5.4. LOCAL TRIANGULATION AND ITS APPLICATION IN
DN -GRAPH MINING

Here we use λ̃(u, v) to represent the current upper bound of edge (u, v). What’s

more, given a graph triangle, the λ̃(u, v) can tighten the other two edges’ density

upper bound. The following proposition gives the relationship between an edge

e’s (λ̃(e)) and its neighbors’:

Proposition 5.4.1. Neighbor Bounding of λ̃(e)

Inside a triangle (u, v, w), if λ̃(u, v) ≤ min(λ̃(u,w), λ̃(v, w)), we say w supports

λ̃(u, v). λ̃(u, v) is valid if and only if |{w|w supports λ̃(u, v)}| ≥ λ̃(u, v)

The proof of necessary condition for proposition 5.4.1 follows the definition

of the λ̃ value and is omitted for brevity. Now we prove the sufficient condition: If

the number of supporting vertices is greater or equal to λ̃(e), then λ̃(e) is an upper

bound for λ(e). We prove this by contradiction. Suppose there are fewer than

λ̃(e) supporting vertices for λ̃(e), according to the definition of λ(e), λ(e) < λ̃(e),

which means λ̃(e) is larger than λ(e). In that case, λ̃(e) is not a valid upper bound

of λ(e) This contradicts with earlier assumption. With the above reasoning, we

complete the proof of proposition 5.4.1.

5.4.1 Triangulation Based DN Graph Mining

The elementary operation behind local triangulation is the joining of vertex neigh-

borhoods. As studied in [Lat07], the performance of a local triangulation algorith-

m heavily depends on the order of those join operations. In fact, it is a necessary

105

5.4. LOCAL TRIANGULATION AND ITS APPLICATION IN
DN -GRAPH MINING

preprocessing step to sort vertices according to their degrees for effective triangu-

lation. Below is the algorithm firstly proposed in [Lat07].

Algorithm 5.1 Local Triangulation Algorithm
Require: Graph G(V,E)

1: mk(e) = k(e) = TC(e) + 2, lbk(e) = 2
2: Order vertices and edges according to degrees
3: for all dense vertex v ∈ G do
4: Retrieve all v’s dense neighbors u
5: Joint v and u’s neighborhoods to find triangle < v, u, w >
6: end for
7: for all sparse vertex e(v, u) ∈ G do
8: Join v and u’s neighbor lists to find triangles containing edge triangle <

v, u, w >
9: end for

10: return All triangles in G

Algorithm 5.1 separates the vertices in G(V,E) into two classes: dense and

sparse. Vertices with degree greater or equal to
√
|V | are dense vertices, the re-

maining are sparse vertices. An edge with both end vertices being sparse vertices

is a sparse edge. For a dense vertex v, the local triangulation algorithm perform

a join on v’s immediate neighbors and the neighborhood list v’s neighbor, u. The

size of the join set is the triangle count of edge (v, u). Similarly, for sparse edge

(v′, u′), algorithm join the neighborhood list of v′ and u′

5.4.1.1 Generate Triangles to Refine Local Density

We adopt the graph triangulation algorithm in [Lat07]. The algorithm generates

triangles systematically for each edge of the graph. The generation of the triangles

106

5.4. LOCAL TRIANGULATION AND ITS APPLICATION IN
DN -GRAPH MINING

is a sequence of join operations between the neighbors of two connected vertices.

Based on a special order of joining operations, the triangles are generated in a

streaming fashion. The DN -graph mining algorithm thus obtains the local density

information gradually along the triangle streams. Based on proposition 5.4.1, we

can use the number of triangles an edge participates in (TC(e)) as the initial upper

bound of the λ(e), the λ̃(e). To give an even more accurate bound for λ(e), the

algorithm uses the density value of e’s neighbors’ to validate the current upper

bound λ(e). Figure 5.5 shows how this process works graphically.

nx nxnx

n1n1 n1
n2n2 n2

aa ab b b

n1 nx

a ab b

λ̃(e)λ̃(e) λ̃(e)

Fig. 5.5: Use Triangle to Refine λ̃(e)

In the first round of graph triangulation, we are aware of the triangular count

of e(a, b) (which is in fact λ̃(e)), and nothing about its neighbors. However, the

triangular counts of the neighbors (a.k.a local density estimation) are available

once the first round of graph triangulation is completed. To compute a more accu-

rate λ̃(e) for each edge, we will simply go through more rounds of triangulation

and make use of the density information of the neighbors to further validate a new

estimation of λ̃(e) for each edge.

107

5.4. LOCAL TRIANGULATION AND ITS APPLICATION IN
DN -GRAPH MINING

For a triangle (a, b, n1), the algorithm checks whether the triangles (a, b, n1)

can possibly be a supporting evidence that edge e(a, b) is in a DN -graph, with

λ̃(e). This is done by checking whether both the other two edges of triangle

(a, b, n1) (i.e. e(a, n1) and e(b, n1)) have λ̃ greater or equal to λ̃(e). If this is the

case, this means that n1 is such a supporting vertex.

The triangle is then represented as a solid line indicating that e(a, b) finds a

new supporting vertex n1 in DN -graph with λ̃(e). As new triangles approach,

the algorithm counts the number of supporting vertices for edge (a, b) to form

DN -graph, with current value of λ̃(e). After one pass of all triangles, the number

of vertices that support each edge’s density upper bound λ̃(e) are available for

further computation.

Algorithm 5.2 Triangulation based DN -Graph Mining
Require: Graph G(V,E)

1: Triangles = Triangulation(G), k(e)=Triangle count(e)
2: while converge AND iteration!=MAX ITR do
3: sc = 0, converge=TRUE
4: for all Triangles (a, b, c) ∈ G do
5: Increment corresponding sc(e) if e is supported
6: end for
7: for all edges e ∈ G do
8: if (sc(e) < λ̃(e)) then
9: Find next possible value λ̃(e) for e

10: converge = FALSE
11: end if
12: end for
13: Increment iteration by 1
14: end while
15: return λ̃(e) for each e ∈ E

108

5.4. LOCAL TRIANGULATION AND ITS APPLICATION IN
DN -GRAPH MINING

With the supporting neighbors’ information, the algorithm is able to determine

the upper bound of λ for each graph edge (the upper bound is denoted as λ̃(e)).

If sufficient supporting vertices are found for λ̃(e) for an edge e(a, b), λ̃(e) is a

valid upper bound of e(a, b)’s λ value. If there is not enough supporting vertices

for e(a, b), the algorithm finds the next possible λ̃(e) value and tests it in the

next round of triangulation. The algorithmic description is given in Algorithm

5.2. Within the algorithm, sc(e) records the number of vertices supporting current

λ̃(e) value.

5.4.1.2 λ(e) Bounding Choice

We can derive two variants of DN -graph mining algorithms from Algorithm 1,

namely algorithms TriDN and BiTriDN . The two algorithms have different ways

to decide the next possible λ̃(e) value. The first variant, called TriDN , decreases

λ̃(e) by one (Line 9 in Algorithm 5.2 becomes λ̃(e) = λ̃(e) − 1), if current

λ̃(e) cannot obtain sufficient supporting vertices count. This strategy is useful

when the triangle counts are close to the actual λ(e) values (qualitatively, when

|TC(e) + 2− λ(e)| ≤ logλ(e)).

When the triangulation results are far above actual λ(e), we can employ the

second variant, called BiTriDN , which adopts a binary search strategy for the

next possible value of DN(e). BiTriDN requires additional information of pos-

sible DN(e)’s range. We use two numbers lbk(e) and λ̃(e) to record the lower

109

5.4. LOCAL TRIANGULATION AND ITS APPLICATION IN
DN -GRAPH MINING

bound and upper bound of λ(e) value, and mk(e) denotes the medium of range

[lbk(e), λ̃(e)]. For completeness, we rewrite Line 7 onwards in Algorithm 5.2.

BiTriDN has the advantage of fast convergence if the graph to be mined has many

high degree vertices (qualitatively, when |TC(e) + 2− λ(e)| ≥ logλ(e)).

Algorithm 5.3 Binary DN -Graph Mining Variance “BiTriDN”
Require: Graph G(V,E)

1: mk(e) = k(e) = TC(e) + 2, lbk(e) = 2
2: Get support count scmk(e) for all edges’ λ̃(e) {This part is the same as in

Algorithm 5.2}
3: for all edge e ∈ G do
4: if (scmk(e) < mk(e) AND lbk(e) < λ̃(e)) then
5: λ̃(e) = mk(e)− 1, converge = FALSE
6: else
7: lbk(e) = mk(e)
8: end if
9: mk(e) = λ̃(e)+lbk(e)

2

10: end for
11: return λ̃(e) for each e ∈ E

Correctness of λ(e) Bounding Choices

If we denote the actual local λ value for an edge as λ(e), and exact supportive

neighbor count as sc. The upper bound of λ value is denoted as λ̃(e) and the

supportive neighbor count of λ̃(e) is denoted as sck(e). To prove the correctness

of algorithm DN -graph triangulation mining in Algorithm 5.2, we need to proof

that 1). λ̃(e) is always an upper bound of λ(e). 2). λ̃(e) converges.

Proof. 1) For the first bounding choice, At the beginning of the Algorithm 5.2,

λ̃(e) is equal to triangle count for e, TC(e). since λ̃(e) ≥ λ(e), if the algorithm

110

5.4. LOCAL TRIANGULATION AND ITS APPLICATION IN
DN -GRAPH MINING

stops now, the upperbound invariance holds. Suppose the invariance holds for

iteration i > 0, λ̃(e) ≥ λ(e), at iteration i + 1, λ̃(e) is updated to λ̃(e) − 1

when this condition holds: the number of neighbors having λ values greater or

equal to λ̃(e) is less than λ̃(e). This condition uses neighborhood vertices’ k

values to verify if current iteration’s λ̃(e) value is held. Since the neighbor’s

λ̃ values upperbounds their actual λ values, the number of qualified candidates

sc(e) ≥ sck(e). Thus when sck(e) is less than λ̃(e), λ̃(e) is definitely greater

than the real λ(e) value (as in 5.4.1). In that case, λ̃(e) is reduced by 1. And the

new λ̃(e) value is still an upperbound. The upper bounds invariance is proven to

hold. 2) For the second bounding choice (as in Algorithm 5.3), the proof of upper

bound invariance follows with the exceptions that this bounding choices test on

the median of possible λ range instead of λ̃(e)− 1.

The convergence of λ̃(e) is due to monotonic decreasing of λ̃(e) values. The

algorithm initializes λ̃(e) as triangle counts. This is an upper bound of λ(e). After

that, algorithm only decreases λ̃(e). As λa(e) always upperbounds actual value

λ(e), λa(e) value will converge.

5.4.2 Triangulation based DN -Graph Mining Algorithm Complexity Analysis

The triangulation algorithm (in Appendix 5.1) sorts vertex and adjacency list into

descending order of degrees. The operations require O(|V |log|V |) time complex-

ity. After that, it counts triangles inside the graphs for each vertex. To count trian-

111

5.4. LOCAL TRIANGULATION AND ITS APPLICATION IN
DN -GRAPH MINING

gles, algorithm separates vertices into dense vertices and sparse ones according to

vertices’ degrees. For dense vertex, the algorithm lists the number of triangles |V |

participating in O(|E|) time. The total complexity for counting dense vertices is

O(|V ||E|). For sparse vertices, the algorithm counts sparse edges that intersects

with sparse vertices. For a sparse vertex/edge, its neighborhood size is at most

constant (say S). The counting over sparse edges requires O(S|E|) time. If set-

ting S =
√

|E|, taking into consideration of the complexity of counting on dense

vertices, The time complexity for triangle counting procedure is O(|E| 32).

The algorithm TriDN in Algorithm 5.2 iterates on all triangles that form the

graph. Each iteration also requires O(|E| 32) time. For a fixed number of iteration

k, the algorithm needs O(k|E| 32) time in total. If insisting on convergence, the

algorithm may need up to O(k|V ||E| 32). As we may need to test local λ value λ(e)

from v− 2 down to 3. The iterative version of the algorithm for λ mining reduces

time complexity to O(klog|V ||E| 32) since it employs the binary search paradigm

to test possible λ(e) for every e. The space complexity of both DN -graph mining

algorithms are similar. The triangulation stage requires O(|V |log|V |+ |E|) while

the iteration process requires O(|E|).

When the triangulation results are far above the actual λ(e) value, we can

employ the second variant, called BiTriDN , which adopts a binary search strategy

for the next possible value of DN(e). BiTriDN requires additional information

of possible DN(e)’s range. We use two numbers lbk(e) and λ̃(e) to record the

112

5.5. EXTENSION OF DN GRAPH MINING TO SEMI-STREAMING
GRAPH

lower bound and upper bound of λ(e) value, and mk(e) denotes the medium of

range [lbk(e), λ̃(e)]. For completeness, we rewrite Line 7 onwards in Algorithm

5.2. BiTriDN has the advantage of fast convergence if the graph to be mined has

many high degree vertices (qualitatively, when |TC(e) + 2− λ(e)| ≥ logλ(e)).

5.5 Extension of DN Graph Mining to Semi-Streaming

Graph

The semi-streaming graph model assumes the vertices of the graph can be fitted

into main memory, and the interactions among vertices are stored in an ordered

manner within the secondary storage. While this assumption may not hold for

arbitrarily large graphs, we can still handle up to Giga scale vertices (assume

|V | vertices require |V |log|V | bits storage) with today’s main memory capacities.

Following the nature of physical storage devices, our streaming model assumes

random access in primary storage (i.e. memory) and only sequential access in

secondary storage. In the secondary storage, graph interactions are stored in the

form of adjacency list. As a feasible solution towards a streaming graph G(V,E),

it should not exceed log|V | scans of G’s adjacency list.

In the semi-streaming graph setting, the exact triangulation algorithm pro-

posed in [Lat07] cannot be directly applied in the DN -graph mining solutions.

The information of the neighbors are stored in secondary storage and may not be

113

5.5. EXTENSION OF DN GRAPH MINING TO SEMI-STREAMING
GRAPH

immediately available when the algorithm retrieves it.

In view of above difficulty, our streaming solution first performs a semi-streaming

triangulation, followed by the complete DN -graph mining solution in semi-streaming

setting.

The neighborhoods join operations are in fact the process of determining the

similarity between two sets. The most well-adapted measurement for set similar-

ity is Jaccard coefficient. For two sets A and B, Jaccard coefficient is calculated

as J(A,B) = |A∩B|
A∪B .

In the semi-streaming graph setting, it is however expensive to calculated Jac-

card coefficient between two neighborhoods. Since the operation of set joining

requires expensive pre-processing of sets such as sorting or heap building.

In view of above difficulty, we use the property of min-wise independent set

to approximate Jaccard coefficient. When dealing with large sets, min-wise inde-

pendent property approximate set intersection size using sequential scan only.

Suppose A and B are defined on the set universe X , and π is a permutation

over universe X , the min-wise independent property states: If π[X] is a uniformly

chosen random permutation over X , and W ⊂ [X] is any subset over the universe,

and π[W] is the projection of W by permutation π, then the probability that two

subsets’ minimal projected images are equal is the same as the Jaccard coefficient.

Formally, P [min(π[A]) == min(π[B])] = J(A,B).

114

5.5. EXTENSION OF DN GRAPH MINING TO SEMI-STREAMING
GRAPH

5.5.1 an Estimated Triangulation Algorithm

[BBCG08] proposes a streaming local triangle counting algorithm based on min-

wise independent property:

Algorithm 5.4 Streaming Triangulation Algorithm
Require: Graph G(V,E), r : # of scans of graph links, k : # of bits for hash

values
1: mk(e) = k(e) = TC(e) + 2, lbk(e) = 2
2: Y = 0, min(V) = 0
3: for s = 1 TO r do
4: Hash every vertex label hs(v) to any random k bits
5: for all vertex v ∈ V and its neighbor u do
6: min(v) = min(min(v),hs(u))
7: end for
8: for all vertex v ∈ V and its neighbor u do
9: if (min(u)==min(v)) then

10: Increment Y (u, v) by 1
11: end if
12: end for
13: end for
14: for all every vertex v in G do
15: TC(v) =

∑
u∈N(v)

Y (v,u)
Y (v,u)+r

(|N(v)|+ |N(u)|)
16: end for
17: return All triangles in G

The basic idea of streaming triangulation algorithm in Algorithm 5.4[BBCG08]

generates r times permutation over vertices set V . For each permutation, algorith-

m records every vertex’ minimal neighbors under this permutation. After getting

the minimal neighbors for each vertex, the algorithm scan the graph once to com-

pare if the minimal neighbors of two immediately connected vertices are equal.

If they are equal, algorithm increments count Y for the connected vertices. The

115

5.5. EXTENSION OF DN GRAPH MINING TO SEMI-STREAMING
GRAPH

estimator for vertex triangle count is

∑
u∈N(v)

Y (v, u)

Y (v, u) + r
(|N(v)|+ |N(u)|)[BBCG08]

. This estimator is derived from min-wise independent property. We use limited

number of permutation to estimate all permutations over graph vertices.

5.5.2 Streaming DN -Graph Mining Algorithm Detail

The algorithm 5.4 estimates local triangulation using edge scans. It forms the first

step of algorithm StreamDN . The next step is to calculate each edge’s λ value

using only edge scans 1. StreamDN , as presented in Algorithm 5.5, adopts the

bounding process as algorithm BiTriDN . That is:

Algorithm 5.5 Streaming DN -Graph Mining Algorithm “StreamDN”
Require: Graph G(V,E), r : # of scans of graph links k : # of bits for hash

values
1: mk(e) = λ̃(e) = TC(e), lbk(e) = 0
2: Triangulation and store triangle count TC(v, u) for all e ∈ E as in algorithm

5.4 in appendix.
3: while !converge AND iteration!=MAX ITR do
4: sck = 0 ubk(e) = λ̃(e) = TC(e), lbk(e) = 0
5: for all edge (u, v) ∈ G do
6: sck(u, v)=number of u’s neighbor with λ̃(u, v)
7: Bound λ̃(u, v) using ubk(u, v)/lbk(u, v)/sck(u, v) {the same as Algorith-

m 5.3}
8: end for
9: end while

10: return λ̃(e) value for every graph edge e

1 For brevity, in following parts of the paper, we use streaming DN -graph mining algorithm
instead of explicitly stating “semi-streaming”

116

5.5. EXTENSION OF DN GRAPH MINING TO SEMI-STREAMING
GRAPH

The only difference between the streaming version of the algorithm and BiTriDN

is when counting the supporting vertices. In StreamDN , we can only access the

graph edges sequentially. In view of the restriction, proposition 5.4.1 is relaxed to

as follows:

Proposition 5.5.1. Relaxed Neighbor Bounding of λ(e)

Given a graph edge e(u, v) and the joint neighbor set N∩(u, v), we say a vertex

w ∈ N∩(u, v) is a supporting vertex of λ̃(e) if λ(u,w) ≥ λ̃(e). An integer k is

a valid upper bound of λ̃(e) if and only if there are at least k of such supporting

vertices in N∩(u, v)

The proof for proposition 5.5.1 is omitted for brevity.

5.5.3 Error-Bound on Streaming DN -Graph Mining

As mentioned in the previous subsections, there may be error during the limited

number of permutations when applying min-wise independent set property. The

error, however, is bounded. If we denote the joint size as X = |A ∩ B| and the

estimated value X = TC(A,B), the error bound is:

P [|X −X| > ϵX] ≥ 2e−
ϵ2

3
rJ(A,B) +

m|A ∪B|
2k − 1

[BBCG08]

As mentioned in the previous subsections, the number of permutations adopted

determines the estimation accuracy of min-wise independent property. The error,

117

5.6. DYNAMIC DN -GRAPH MINING

however, is bounded. If we denote the joint size as X = |A∩B| and the estimated

value X = TC(A,B), the error bound is:

P [|X −X| > ϵX] ≥ 2e−
ϵ2

3
rJ(A,B) +

m|A ∪B|
2k − 1

[BBCG08]

5.5.4 Complexity Analysis for Streaming DN -Graph Mining

Since the algorithm Streaming DN -graph mining in Algorithm 5.5 first performs

semi-streaming triangulation following the idea proposed in [BBCG08]. While

the semi-streaming triangulation scans the graph r passes to apply min-wise in-

dependent set principle and an additional set to calculate the estimator of triangle

counts, its complexity is of O(r|E|). The following steps of streaming DN -graph

mining requires O(|E|) time for every iteration. For a fixed number of iteration w,

the algorithm needs O(w|E|) time. In summary, the time complexity of streaming

DN -graph mining is of O(k|E|), where k is a constant. In fact, the triangle based

approach can also be applied to dynamic graphs.

5.6 Dynamic DN -Graph Mining

This section discusses solution towards DN -graph mining for graphs whose topol-

ogy does not change over time. This solution can be extended to graphs with

dynamic topology with minimal modification.

118

5.6. DYNAMIC DN -GRAPH MINING

Recall that the triangulation based DN -graph mining solution consists of two

stages. In the first stage, algorithm in Algorithm 5.2 performs local triangulation

on the whole graph. The next step is to iterate on each discovered triangle. For

each triangle, the algorithm uses it to verify whether it can support its edges’ λa(e)

value. After scanning all triangle once, the λa(e) value for each edge are updated

accordingly.

A dynamic graph G(V , E) = {Gt(V t, Et)} changes its topology over time.

Such dynamics can also be modelled as the emerging and disappearing of triangles

inside G. At each discrete time t, the instance of a streamed graph is the set of

vertices and edges presented at t, we use Gt(V t, Et) to represent it. Without loss

of generally, this chapter only concerns the addition of edges. When a new edge

e appears between vertex a and b, this edge’s initial λa(e) is set to be the size of

N(a)∩N(b), while edge λa(a, n) and λa(b, n) increase by 1 if they share neighbor

vertex n before new edge comes. After the process of adjusting λa(e) values for

dynamically affected edges, we then iterate on the new set of triangles following

the same way as in algorithm in Algorithm 5.2.

5.6.1 Complexity for Dynamic DN -Graph Mining

Denote the total number of edges of a dynamic graph G as |E∗|. Followed pre-

vious discussion, we only process each edge when it first appears in the dynamic

graph or its neighborhood information changes. If the graph is a sparse graph, the

119

5.7. EXPERIMENTAL STUDY

neighborhood size of any vertex can be treated as a constant. Thus in sparse graph,

the complexity for dynamic DN -graph mining is of O(k|E∗|) where k is the num-

ber of iterations. Later in experimental section, we use real data to evaluate the

performance of the dynamic version of the algorithm and the empirical time effi-

ciency is always much smaller than the theoretical bound. The space complexity

is O(E∗) as we need to store λ̃ information for each edge appeared.

5.7 Experimental Study

In this section, we study the performance of the DN -graph mining algorithms.

Experimental data come from both theoretically proven data generators ([BC96]),

as well as domain datasets. All the experiments are conducted on a workstation

with a Quad-Core AMD Opteron(tm) processor 8356, 128GB RAM and 700GB

hard disk. The operating system is Windows server 2003, Enterprize x64 edition.

Synthetic Graph Generators (GEC). We use the clique hiding graph genera-

tor developed by M. Brockington and J. Culberson [BC96]. This graph generator

randomly embeds a fixed size clique (c) into a graph of (|V |) vertices. The graph

density, p, is calculated as p = 2|E|
|V |(|V |−1)

. The resulting graphs are random graphs

with one known fixed size clique embedded. Table 5.2 summarizes the key pa-

rameters, with the default values highlighted in bold.

Domain Graph Datasets We also employ 3 real life datasets in our study.

120

5.7. EXPERIMENTAL STUDY

Parameters Experimental Range

c: clique size [20, 40, 60, 80, 100]

|V |: # of vertices [1000,2000, 3000, 4000, 5000]

p: edge density(%) [4, 8, 12, 16, 20]

Tab. 5.2: DN -Graph Mining Experiment Parameter Table

These datasets are either collected by domain experts or extracted from well-

known public databases. 1) Protein Protein Interaction (PPI) dataset: This dataset

[XSe02] contains 17203 interactions among 4930 proteins.2) Netflix dataset: It

is compiled from Netflix raw data consisting of 480,000 customers and 17,000

movies records [net]. 3) Flickr dataset: This dataset is derived from the well-

known photo sharing network Flickr with 1,715,255 vertices and 22,613,982 edges.

Each vertex represents a person.

5.7.1 Performance Evaluation

The first set of experiments evaluate the accuracy of DN -Graph algorithms on

the synthetic data generated by GEC . We focused on two algorithms - TriDN and

BiTriDN . We compared the results and observed similar behaviors between the

two algorithms. Due to space limitation, we only present the results of algorithm

BiTriDN .

There are three groups of experiments, each of which fixes a GEC parameter

to the default value. Group 1: When we fixed |V | = 300, Figure 5.6 and figure 5.6

121

5.7. EXPERIMENTAL STUDY

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

λ

c

p4

p8

p12

p16

p20

Fig. 5.6: Fix |V | = 3000, Vary c

 0

 20

 40

 60

 80

 100

 4 8 12 16 20

λ

p

c20

c40

c60

c80

c100

Fig. 5.7: Fix |V | = 3000, Vary p

show the calculated λ values of different datasets. From figure 5.6, the algorithm

accurately reports the DN -graph size as c, when the embedded clique is in fact the

dense area of the dataset. When the graph is denser (p ≥ 0.12), the clique becomes

a less dense area. In these datasets, BiTriDN reports higher λ̃ value (up to λ̃ =

90). We examined the dataset and verified that BiTriDN did find DN -graph

122

5.7. EXPERIMENTAL STUDY

with higher λ̃ value (> c), and confirmed the correctness of BiTriDN ’s results.

Similarly, the results in figure 5.7 shows the λ̃ value over different densities, which

once more confirms BiTriDN ’s accuracy. Group 2: When we fixed p = 12%, the

results in figures 5.8 and 5.9 show that BiTriDN identifies the λ value accurately.

Similar observations are made for experiments in Group 3 when we fixed c = 40

(see figures 5.10 and 5.11).

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

λ

c

v1k

v2k

v3k

v4k

Fig. 5.8: Fix p = 12%, Vary c

Convergence of DN -Graph Mining Algorithms

In this set of experiments, we compare the pace of convergence between two

algorithms: TriDN and BiTriDN . The synthetic datasets are generated from GEC

as well. The maximal iteration is set to be 40 rounds to avoid pro-long running of

the experiments. Plots in figures 5.12 and 5.13 show the number of iterations to

reach convergence with different graph density p and graph size |V |. The results

from both plots show that algorithm BiTriDN can converge within 10 to 25 round-

123

5.7. EXPERIMENTAL STUDY

 0

 20

 40

 60

 80

 100

 1000 2000 3000 4000 5000

λ

|V|

c20
c40
c60
c80

c100

Fig. 5.9: Fix p = 12%, Vary |V |

 0

 40

 80

 120

 160

 1000 2000 3000 4000 5000

λ

|V|

p4

p8

p12

p16

p20

Fig. 5.10: Fix c = 40, Vary |V |

s on most parameter settings. However, in most of the experiments, TriDN has

not reached convergence after the preset maximal iteration. This provides strong

support on the claim that BiTriDN converges significantly faster than TriDN .

Time Performance in Memory

In this study, we evaluate the efficiency (i.e., running time) of the two algo-

124

5.7. EXPERIMENTAL STUDY

 0

 40

 80

 120

 160

 4 8 12 16 20

λ

p

v1k

v2k

v3k

v4k

v5k

Fig. 5.11: Fix c = 40, Vary p

 0

 10

 20

 30

 40

 4 8 12 16 20

It
e
ra

tio
n
s

p

BTv1K
BTv2K
BTv3K

BTv4K
BTv5K

Tv1K

Tv2K
Tv3K

Fig. 5.12: Convergence: Vary p, fixed c

rithms TriDN and BiTriDN over the synthetic data generated by GEC . For a

fixed parameter setting, the two algorithms converge at different iteration. To re-

move the effect of different convergence speed towards time performance, all time

are measured for only 1 iteration in this study. Both algorithms have almost same

125

5.7. EXPERIMENTAL STUDY

 0

 10

 20

 30

 40

 1000 2000 3000 4000 5000

It
e
ra

tio
n
s

|V|

BTp4

BTp8

BTp12

BTp16

BTp20

Tp4

Fig. 5.13: Convergence: Vary |V |, fixed c = 40

behavior for 1 iteration.

 0

 40

 80

 120

 4 8 12 16 20

E
la

p
se

d
 T

im
e
(s

e
c)

p

c20
c40
c60
c80

c100

Fig. 5.14: BiTriDN One Iteration: |V | = 3000 Vary p

Figure 5.14 and 5.15 show the running time when |V | is fixed. The results

match the complexity analysis in section 5.4.2. The effects of edges distribution

change are shown in figure 5.14 and 5.15. The synthetic graph generator GEC

126

5.7. EXPERIMENTAL STUDY

 0

 40

 80

 120

 20 40 60 80 100

E
la

p
se

d
 T

im
e
(s

e
c)

c

p4
p8

p12
p16

p20

Fig. 5.15: BiTriDN One Iteration: |V | = 3000, Vary c

varies the edge distribution by varying the embedded clique size c. Experiments

on these data always indicate that only |V | and p affect the running time. Figure

5.16 and 5.17 present the effect of different graph size |E| over the running time.

The trend over time roughly follows complexity O(E
3
2).

 0

 200

 400

 600

 800

 2 4 6 8 10 12

E
la

p
se

d
 T

im
e
(s

e
c)

Graph Size |E| (x10
6
)

p4
p8

p12
p16
p20

Fig. 5.16: BiTriDN One Iteration: Vary |V |, c = 40

Efficiency Improvement over Algorithm CSV

127

5.7. EXPERIMENTAL STUDY

 0.04

 0.2

 1

 5

 25

 125

 625

 4 8 12 16 20

E
la

p
se

d
 T

im
e
(s

e
c)

p

v1k

v2k

v3k

v4k

v5k

Fig. 5.17: BiTriDN One Iteration: Vary p, fix c = 40

Since both CSV algorithm presented in previous chapter (chapter 4) and the trian-

gle based DN -graph mining algorithms aims at discovering dense subgraphs out

of large graphs, we conducts a set of experiments to compare the time efficiency

between algorithms CSV and BiTriDN . The results are presented in figure 5.18.

Since CSV is an in-memory algorithm, we only compare it with BiTriDN , the

in-memory representative of DN -graph mining algorithm family.

15000

2500

500

100

10

1

0.01
 5 6 7 8 9 10 11

Ru
nn

ing
 T

im
e

(S
ec

on
ds

)

Support

CSV SMD-0.90
CSV SMD-0.93
CSV SMD-0.95

BiTriDN SMD-0.90
BiTriDN SMD-0.93
BiTriDN SMD-0.95

Fig. 5.18: Efficiency BiTriDN vs CSV

128

5.7. EXPERIMENTAL STUDY

To compare the time efficiency between CSV and BiTriDN algorithms, we

run both algorithms on the stock market data sets (the size of the dataset is list-

ed in table 4.3) with support 5 to 11. For fair comparison, we set the maximum

number of iterations of BiTriDN graph to be 20, and most stock market graphs

can reach convergence under this max iteration. The mapping dimension for CSV

is set to 4. From figure 5.18, we can see that BiTriDN algorithm out-performs

CSV more when the graph size increases. Taking the stock market graph with

correlation 90 and support 5 as an example, CSV takes 11630 seconds to pro-

duce results, while BiTriDN only requires 48 seconds. The significant reducing

in processing time is mainly because BiTriDN ’s adoption of triangulation based

approximation of neighborhood size. With triangulation, BiTriDN ’s complexity

in neighborhood approximation is O(|E| 32). Compared with the CSV’s complexi-

ty in neighborhood bounding O(|V |2 log |V |2d) (d is the mapping dimension), the

gain is in the order of magnitude.

Recursively Applying Triangulation for More Accurate results Since DN -

graph mining algorithms always discovers super graphs of actual DN -graph, if

we apply these algorithm recursively on discovered super graphs, we should be

able to local DN -graph more accurately and with less round of iteration.

To verify above assertion, we apply BiTriDN algorithm on a set of stock

market graphs twice. After the first run, we identify huge dense subgraphs. We

then abstract one with largest density and use BiTriDN to mining dense subgraphs

129

5.7. EXPERIMENTAL STUDY

out of it. The results are shown in figure 5.19.

0%

20%

40%

60%

80%

100%

95
-3

95
-2

95
-1

93
-3

93
-2

93
-1

90
-3

90
-2

90
-1

%
 o

f v
 im

pr
ov

ed

SMD Dataset

Time Saving

Fig. 5.19: Improvement by Recursively Applying Triangulation

Figure 5.19 shows the improvement of recursive BiTriDN over its non-recursive

application. The bars show the that among the 9 graphs we tested, recursive

BiTriDN can improve more than 85% vertices’ density. The line in figure 5.19

indicates the time savings of recursive BiTriDN , for the 9 stock market graph-

s, the gain of running time is around 50%. From this experiment, we conclude

that recursively applying BiTriDN can produce more accurate result quickly for

a specific subgraph.

Memory Usage

We also monitor the peak memory usage of both TriDN and BiTriDN on

the synthetic data. Figure 5.20 shows that both algorithms increase their memory

130

5.7. EXPERIMENTAL STUDY

usage when the graph size/density increase. Meanwhile, the results tell us that the

memory usage of TriDN is always slightly less than that of BiTriDN under the

same parameter setting. This is because in BiTriDN , additional memory is used

to store both the upper bound and lower bound of the λ value.

 0

 200

 400

 600

 800

 1000 2000 3000 4000 5000

P
e
a
k
 M

e
m

o
ry

 (
K

B
)

|V|

BTp8

BTp12

BTp16

BTp20

Tp8

Tp12

Tp16

Tp20

Fig. 5.20: Memory Usage of TriDN and BiTriDN

Test on Very Large Graph

In this experiment, we applied BiTriDN on the Flickr dataset. The running time

per iteration is between 55 minutes to 1 hour. The stable memory usage is less

than 1G. The program converges after 66 iterations. Each iteration’s λ values

are recorded for each vertex. When algorithm converges, the largest DN -graph’s

highest λ is 278. We note that at the 35th iteration, the largest λ value already

reaches 279. Figure 5.21 plots the trend of maximal vertex λ value’s change.

From this experiment, the DN -graph mining results have high availability as the

131

5.7. EXPERIMENTAL STUDY

results are updated at every iteration. What’s more, if allowing small errors, the

program converges very fast. These fast convergence feature is observed for all

real datasets we tested on. We did not reports all results due to space limitation.

 300

 400

 500

1 4 14 24 34 44 54 64

M
a
x
 λ

iteration

BiTrH Intermediate Result

BiTrH Final Result

Fig. 5.21: Performance on Flickr Dataset: Convergence

StreamDN Performance on Flickr Dataset

In this set of experiments, the StreamDN algorithm is ran on the Flickr dataset.

The implementation mimics the behavior of disk scan on main memory as our

experiment machine has large enough memory. The results in figure 5.22 shows

StreamDN over-estimates with respect to BiTriDN algorithm’s results by 72%

during the first 66 scans of the whole Flickr dataset. With the analysis of StreamDN ’s

running time complexity, we confirmed that the triangulation based DN -graph

mining algorithms can handle streaming setting with reasonable accuracy.

132

5.7. EXPERIMENTAL STUDY

 0

 100

 200

 300

 400

 500

1 4 14 24 34 44 54 64

%
 o

v
e
r

B
iT

ri
H

 M
a
x
 λ

scans

StreamH

BiTriH

Fig. 5.22: Performance on Flickr Dataset: StreamDN Accuracy

DN -graph Semantics in Various Domain

In the movie co-comments network, two movies are connected by a weighted edge

if these two movies share enough commenters such that the Jaccard Coefficient of

the two movies’ commenters sets is above a certain threshold. Figure 5.23 shows

a set of movies and their interactions found in 100 movies co-comments network

with a threshold of 0.5. These movies are reported with λ = 9. All of the 9

movies have exceptional high IMDB scores (> 8 out of 10, which means they are

exceptionally popular). Besides the popularity, we found 7 of them are from USA,

while the remaining 2 are from France and Japan respectively. The 9 movies all

belongs to genre Violence/Fantasy.

Many proteins are functional only when they are assembled into a protein com-

133

5.7. EXPERIMENTAL STUDY

The Lord of
the Rings

They Came Back

7 Seconds

The Frogmen

ABC
Primetime

WWE: Royal
Rumble 2005

Elfen Lied

WWE:
Armageddon 2003

Pitcher and
the Pin-Up

Fig. 5.23: Patterns Discovered in NetFlix

YAL043C

YDR195W

 YDR228C

YDR301W

YER133W
YGL044C

YGR156W

YJR093C

YKL018W

YKL059C

YKR002W

YLR115W

YLR277C

YMR061W

YNL222W
YNL317W

YOL123W

YOR179C

YOR250C

YPR107C

Fig. 5.24: A 20-Protein Complex in Form of DN -Graph

plex. Our DN -Graph mining algorithm can detect important protein complexes

out of large amount of protein-protein interaction (PPI) data. For example, mR-

134

5.7. EXPERIMENTAL STUDY

NA CF Complex in figure 5.24 is a 20 protein complex confirmed by the bench-

mark. The red colored nodes are active proteins that functionally interact with

other proteins within the complex. These proteins can be successfully detected as

an DN -Graph by our algorithm, while others (blue-colored nodes) are missed out

in our results. The reason for missing out those proteins is because these protein-

s have fewer interactions with the rest of the proteins. Even with those missing

points, our results are already a significant improvement over known results.

YBR079C

YDR429C

YLR192C

YMR146C

YMR309C

YNL244C

YOR361C

YPR041W

YPR086W

Fig. 5.25: 9-protein exact match

Figure 5.25 and figure 5.26 shows two additional DN -graphs identified by

DN -graph mining algorithm. Figure 5.25 is an exact 9-protein complex matched

by our algorithm from PPI dataset. Besides identifying known protein complex,

DN -graph mining results can also predict unknown proteins’ functionality. These

proteins are not included in the existing protein complexes benchmark due to sys-

135

5.7. EXPERIMENTAL STUDY

YBL026W

YDR378C

 YER112W

YER146W

YJL124C

YJR022W

YLR438C-A

YMR268C

 YNL147W

Fig. 5.26: snRNP

tematic experimental constraints. However, by constructing PPI across differen-

t experimental sources, this unknown protein may be included into a synerget-

ic DN -graph. In figure 5.26, protein YJL124C was predicted to have the same

functionality as the rest proteins inside the graph. We could not find supporting

evidence in the existing snRNP protein complex benchmark. However, by check-

ing other domain experts, we confirmed the correctness of our finding. Note that

some protein (such as YMR268C) could not be detected due to low connection

with other member proteins inside the complex. However, with the observation

of high connectivity among the rest proteins, we strongly urge biologists to ex-

perimentally search for the “missing“connections between missed proteins and

the rest protein members. (For clarity, matches are marked as red points; miss

136

5.8. CHAPTER SUMMARY

are marked as blue points. Proteins that are not presenting in known benchmark

pattern but discovered as members of a DN -graph are marked as yellow.)

5.8 Chapter Summary

In this paper, we present a new graph dense structure DN -graph. The DN -graph

complements popular dense structures by imposing both size and degree con-

straints. We then discuss the graph local triangulation problem and its connection

with DN -graph mining problem. Based on that, we propose solutions to effec-

tively locate DN -graphs. The solutions are set of algorithms catering for different

problem settings from in memory to streaming. The iterative, triangulation based

solution has the advantages that the details can be abstracted within the triangu-

lation algorithm. Since the algorithm improves the result at every iteration, users

can stop the algorithm at any time and get the best results within the time limit.

Our experimental study shows our solutions are both time and space efficient.

137

6
DVIG: On-Demand Visualization of

Graph Patterns

In previous chapters (Chapters 4 and 5) we address the dense pattern mining prob-

lem from the algorithm perspective. The algorithms we proposed help in finding

dense patterns. Both a dense pattern’s internal structure and its external rela-

tionships with other patterns contain important information. It is thus critical to

understand these relations. The dense patterns’ inter and intra relationships are

better to be represented visually for more intuitive understanding.

To help the visualization of patterns, we developed DVIG. DVIG is a lightweight

graph pattern visualization tool. With its help, domain experts can visually inter-

138

pret the inter and intra relationships among graph patterns. DVIG includes the

following components (1) a visualization frontend. Users can use it to explore the

graph pattern summarization and zoom in to a subset of graph patterns. The visu-

alization frontend also has the functionality to present corresponding subgraphs of

the selected patterns. (2) A pattern preprocessor. It is the interface between the D-

VIG frontend and the external mining algorithms and (3) a dynamic force-directed

layout module. It arranges the pattern subgraphs into an intuitive way. The DVIG

system also includes features to present patterns’ semantic information. In this

demonstration, we showcase the display and exploration of The Digital Bibliog-

raphy & Library Project (DBLP) network, thereby explaining the architecture and

features of the DVIG system.

This chapter consists of four parts. Firstly, in Section 6.1, we address the

critical role of a visualization tool plays in graph mining process. Being aware of

the importance, we design and develop the DVIG. In this section, we also highlight

the DVIG’s technical contributions. Secondly, in section 6.2, we present a running

example of using DVIG to visualize graph patterns and their semantics. The three

main components in the DVIG system and their functionalities are presented along

the running example. Thirdly, we describe a demonstrative plan in section 6.4. We

end this chapter with a brief summary of the DVIG system in chapter 6.5.

139

6.1. VISUALIZATION SYSTEMS ARE CRITICAL IN GRAPH MINING
PROCESS

6.1 Visualization Systems are Critical in Graph

Mining Process

More and more research attentions have been on visualization of graph mining

results. Recently there are many systems developed to address this issue[CFZ06,

RJTe06, CFZ06]. In these systems, the discovered patterns are presented in graph-

ical manifests such as charts and diagrams. Aided by these graphical representa-

tions, domain experts can understand the semantics of discovered patterns better

and these patterns’ structures are revealed in a more intuitive manner. Such sys-

tem further assists experts in deciding the appropriate graph parts which require

further analysis. the further analysis is confined into the most necessary parts. The

data analysis cost can be optimized via graph mining tools.

We can also use visualization system to explain the intuition behind graph

mining algorithms. For example, in previous chapter (Chapter 5), the DN -graph

mining algorithm iteratively searches for graph patterns. The patterns are quickly

located in the first iteration and are refined in the following iterations. If there is

a tool that can visualize the iterative process, users of the mining algorithms are

more convinced, as they can “see” the mining process.

In this demonstration, we showcase the DVIG On-Demand visualization sys-

tems using a running example. In this example, a fresh PhD student of computer

140

6.1. VISUALIZATION SYSTEMS ARE CRITICAL IN GRAPH MINING
PROCESS

science strives to get the most “comprehensive” understanding of how researchers

collaborate with each others. However, facing the large volume of citation data,

he can hardly read all papers in DBLP to analyze the citation relationship. The

DVIG system can help him with above task. By using the DVIG, not only does he

identify prominent researchers and research groups in computer science, he also

understands the collaboration among groups. The DVIG presents the patterns in

an intuitive manner. The DVID’s technical contributions include:

1) An intuitive summarization of discovered graph patterns. Being an effec-

tive visual tool, it is not sufficient to only visualize patterns individually, since

the patterns may be overwhelmingly numerous. A wiser choice is to profile all

interesting patterns and present the meta information first before dill down into

specific graph patterns. Preferably, The meta information should include an in-

dicative measurement of a pattern’s significanceF. The meta information can also

guide system users to further investigate those important patterns. With the sum-

marization, domain experts are able to investigate patterns discovered by advanced

graph mining algorithms and the complex mechanisms of the algorithms are not

visible to them.

2) An layout scheme that organizes the discovered patterns into a force - di-

rected structure. This structure captures the inter and intra relationships among

discovered patterns.

141

6.2. THE DVIG VISUALIZATION PARADIGM

6.2 The DVIG Visualization Paradigm

6.3 Visualization Frontend

DVIG visualizes graph patterns from three perspectives: Pattern Summarization

Context, Summarization Zoom-In and Pattern Subgraph View. Figure 6.1 is the

overview of how the DVIG console displays DBLP authorship patterns. At the

bottom left is the pattern summarization. The summarization presents discovered

patterns’ distribution. Depending on users’ choice, the DVIG system is able to

zoom into the selected patterns’ summarization at the top left area of the console.

The corresponding subgraphs are displayed at the right side of the console.

Pattern Summarization Context DVIG summarizes the discovered graph

patterns in the form of a 2D plot. The X-axis represents distinctive graph vertices

inside mined graphs, while the Y-axis measures the “connectivity”1 between this

vertex and its right neighbor vertex along the X-axis. The “connectivity” indicates

the interesting level of the relationships in which two vertices both participate.

The mining results of an algorithm is visualized as a plotting line in the 2D plot.

Depending on the adopted mining algorithms, the lines’ shapes vary. If we

use DN -graph mining algorithm as the back end algorithm for the DVI, the re-

1 The definition of “connectivity” varies from graph mining algorithms to algorithms. DVIG
however is not affected by such variance. It only requires the “connectivity” definition follows
certain partial order.

142

6.3. VISUALIZATION FRONTEND

Fig. 6.1: The DVIG Console

sulting plotting lines show “peaks” (i.e., consecutive regions with locally highest

“closeness” measure). As discussed previously in Chapter 5, the peaks represents

DN -graph patterns, since a vertex is surrounded by its neighbors having the high-

est “density”.

Moreover, the patterns having smaller distance along the X-axis indicates they

are more relevant to each other. This arrangement ensures the 2D plot captures

both patterns and their inter connections. By selecting consecutive regions, the

domain experts can conveniently select patterns with high relevancy.

From figure 6.1, we notice there are two plotting lines with similar shapes.

The two line represent the first and last iteration’s result (after program converges)

143

6.3. VISUALIZATION FRONTEND

of triangulation based DN -Graph mining algorithm 5.2. The two plotting lines

have similar shapes. The vertex connectivity measures of two lines differ only

slightly. This reassures that the algorithm can produce high quality results in the

first iteration.

With Pattern Summarization visualization stated above, system users can fur-

ther decide which patterns are more interesting to them. In the analysis process,

they perform operations such as drilling-down to part of the summarization to

have an detailed view of these more interesting patterns.

Summarization Zoom-In

After getting an overall summarization, users may further drill down to part of

the summarization to investigate interesting pattern. We incorporate a summariza-

tion zoom-in area into DVIG. Besides the magnified plot, users can also mouse

over this sub area to reveal vertex semantics. We can zoom-in to any consecutive

regions of the 2D plot by sliding or resizing the pink selected region. The summa-

rization zoom-in is displayed at the top left of the DVIG console. Figures 6.2(a)

and6.2(b) gives two zoom-in views on running example.If we compared the two

figures, the bottom summarization views are the same, except the focus areas (in

shaded rectangles) are different. At the top of each figure, the magnified views of

focus areas are presented to the users.

DVIG can also show vertex label when a user puts his mouse over the zoom-in

view. As shown in figures 6.2, the authors names are shown at the top right corner

144

6.3. VISUALIZATION FRONTEND

(a) Example 1

(b) Example 2

Fig. 6.2: The DVIG Pattern Summarization Zoom-In

of the zoom-in view. The colored dot indicates the correspondence between the

plotted line and the author name.

After having a zoom-in view of graph patterns, the users usually would like

to know the patterns’ graph structures. The DVIG also provides another view:

pattern subgraph view, to meet this requirement.

145

6.3. VISUALIZATION FRONTEND

Pattern Subgraph View

The patterns’ structure helps users in understanding the pattern semantics bet-

ter. With appropriate layout scheme, the structure intuitively shows relationships

within patterns and among patterns. In the running example below, After zoom-

in to the plot, We can choose to view the corresponding co-authorship subgraphs

formed by the selected authors. Figure 6.3 shows the subgraph view of Pattern

summarization Zoom-In in figure 6.2(a). As the pattern subgraph view can zoom-

in and out, we can investigate the subgraphs inside the rectangle in figure 6.3(a)

in a more refined scale as in figure 6.3(b).

In additional to above three console components, there is one important sub-

unit behind scene: The pattern preprocessor.

6.3.1 Pattern Preprocessor

Pattern preprocessor transforms the patterns produced by various graph mining

algorithms into a unified internal representation. The representation is an linear

order of distinctive vertices, according to their relationships within graph pattern-

s. In DVIG, the pattern preprocessor is designed as an layer with the flexibility

of importing results from other mining algorithms. This preprocessor may al-

so facilitate cross-algorithm comparative studies. For demonstrative purpose, we

implement the pattern preprocessor instance that can plug-in into triangle based

DN -graph mining algorithm [WZTT11]. The DVIG, however is not restricted

146

6.3. VISUALIZATION FRONTEND

(a) Example 1

(b) Example 2

Fig. 6.3: The DVIG Pattern Subgraph View and Zoom-In

to any specific graph mining algorithms. With other instances of preprocessors,

heterogenous mining algorithms can be incorporated into the DVIG.

147

6.4. DEMONSTRATION OVERVIEW

6.3.2 Dynamic Layout Engine

The dynamic layout engine provides system users with intuition behind graph

patterns. The spring-like force are assigned to graph edges and the magnitude of

the force is proportional to the number of common neighbors two end vertices

share.

With this force-direct layout, system users can have a more intuitive feeling

how these patterns are formed. We also color the vertices inside the layout such

that vertices from the same pattern have the same color. This brings more intuition

in additional to the layout.

6.4 Demonstration Overview

We plan to showcase the features of the DVIG system through a demonstration

scenario that visualizes the dynamic citation patterns discovered from the dblp

co-authorship graph. In this scenario, a researcher wants to know what are the

active research groups.

We demonstrate DVIG constructs Pattern Summarization Context, Summa-

rization zoom-in view and pattern subgraph view for the dblp co-authorship net-

works via the visualization paradigms described in section 6.2. We illustrate the

system by selecting different subset of patterns and visualize corresponding sub-

graphs in the DVIG.

148

6.5. CHAPTER SUMMARY

6.5 Chapter Summary

This chapter presents DVIG, a graph mining pattern visualization paradigm that

captures the distribution of graph patterns. Inspired by the need of showing the

intuition behind graph patterns, DVIG is designed as an platform to incorporate

heterogenous graph mining algorithms and visualize patterns’ inter and intra rela-

tionships.

DVIG includes two special components (1) A pattern preprocess that inte-

grates mining algorithms’s outcomes via a layer of extensible interfaces and (2) a

force-direct layout that dynamically shows the formation of graph patterns. Ad-

ditionally, DVIG supports semantic exploration of graph patterns, by the means

of color and vertex labels. In this demonstration, we showcase the DVIG system

running on the DBLP co-authorship graph.

149

7
Conclusion and Future Work

Technological advance has made the collection of large volumes of graph da-

ta possible in many domains. How to find important graph patterns becomes a

demanding task. Along the progress in graph mining, researchers reconcile that

dense patterns have various implications across heterogenous domains, such as so-

cial networks, bio-informatics etc. To discover dense patterns out of large graphs,

we need to overcome challenges such as: 1. how to decide whether a subgraph is a

dense pattern, efficiently; 2. when the graph size is extremely large, how to mini-

mize computational cost; and 3. Last but not lest, how to present the findings in an

interpretable way. In this thesis, we provide solutions to graph dense pattern min-

ing and visualization by addressing above challenges. Below is a summarization

150

of the contributions and results of this thesis.

To decide whether a subgraph is a dense pattern efficiently, we provide a den-

sity upper bound for each dense pattern. If we arrange graph vertices into a linear

order according to this upper bound , we can find all locally maximized fully-

connected subgraphs (closed cliques). Further more, the upper bound can sub-

stantially reduce search space when searching for exact dense patterns such as

closed cliques.

Based on this upper bound, We design a novel algorithm called CSV. It gener-

ates an ordering on the vertices of a graph. To quickly compute the upper bound,

in CSV, we apply a novel mapping that transforms graph elements (vertices and

edges) into high-dimensional points. Existing spatial indices such as the R-tree

can be applied to the transformed points, more efficient mining is thus possible.

What’s more, CSV produces an linear ordering of graph vertices, This order can

be used to visualize dense patterns and their distributions. We evaluate CSV on

real datasets drawn from stocks correlation networks and DBLP co- authorship

networks. The results show that our algorithm is especially useful to locate dense

patterns and show their relationships. We also demonstrate the algorithm’s effec-

tiveness and efficiency by comparing it with other state-of-the-arts algorithms. In

addition to using CSV as a stand-alone tool for visual exploration of dense sub-

components within large graphs we find that it can also be effectively used as a

pre-filtering step to significantly speed up exact clique finding algorithms such as

151

CLAN[WZZ06].

To provide mining solutions for large scaled graph, so that dense pattern min-

ing can carry out within reasonable time and storage constraints, we propos a

triangulation-based solution. Inside the iterative, triangulation-based approach,

most of the details involved in efficient processing like minimizing I/Os etc., are

abstracted within the triangulation algorithm. As the estimation becomes more

accurate in every iteration, users can obtain the most updated results at any in-

stance during the course of algorithm running. Further more, when the graph is

too large to fit into main memory, statistics can be collected in the first iteration

to support effective buffer management should there be a need to store the local

density value on a disk, since the triangles come in the same ordering in every

iteration.

These set of triangulation based algorithms are for different dense pattern min-

ing settings, ranging from in-memory to disc based graphs, from static to dynam-

ics. We also conduct extensive experiments on several synthetic and factual data

sets such as those abstracted from Flickr, the well-known photo sharing network.

The experiments show that triangle based solution has more flexibility and effec-

tiveness when handling large scaled graphs.

In additional to algorithms, we need to present the discovered dense patterns

in a meaningful way. We hope to uncover knowledge from the complicated in-

ternal structure and its relationship with other patterns of a dense pattern. The

152

7.1. FUTURE WORK

immediate action towards the discovered patterns is to organize them into a hu-

man interpretable way. An analyst organizing the patterns should possess domain

knowledge as well as understand the mining results. In fact, we can lighten his

load by using an effective mining visualization tool.

The DVIG system is designed to help humans in better interpreting graph min-

ing results. With its assistance, domain experts are able to view the summarization

as well as the structures of individual graph patterns. To better reveal the struc-

tures, We provide an layout scheme that organizes the structure of discovered

patterns into a force-directed way. In additional to that, we incorporate features to

display semantics when visualizing domain data in DVIG .

7.1 Future Work

There are several extensions we can continue for mining dense graph patterns.

When searching for dense patterns using CSV algorithm, the handling and use of

pivots can be extended in at least two directions. First, since the selection of the

pivots is done initially without a good understanding of the distribution, refine-

ment of pivots selection could be done after the CSV plot is available. Intuitively,

if a pivot is selected from a highly connected region in the graph, its shortest path

distances to other vertices in the highly connected region will be short, making it

difficult to separate these vertices apart after the mapping. One can also take ad-

153

7.1. FUTURE WORK

vantage of spectral plots in this regard. As such, reselecting pivots from less dense

regions of the CSV plot could serve to improve the quality of the plot. Second, as

mentioned earlier, it may make sense to add in additional pivots when there is a

need to hone in on smaller subgraphs.

The handling of directed graph could be useful for some applications like key-

word search [HGP03, HP02, BHN+02] where we want to measure the connectiv-

ity between keywords. Applying CSV on a directed graph is more complicated

in the following ways. Firstly, vertices might not be reachable from the pivots

selected. This can be overcome by adding virtual root node to the graph using

techniques described in [SU06]. Secondly, after mapping the edges into the high

dimensional space, we must record their directions within the grid cell (i.e. the

vertex it connects to) and take them into account when computing connectivity.

The details of such an approach will be ironed out as part of our future work.

154

Bibliography

[ABC+04] P. Aloy, B. BãPttcher, H. Ceulemans, C. Leutwein, C. Mellwig,

S. Fischer, and A.C. Gavin. In Structure-Based Assembly of Pro-

tein Complexes in Yeast, volume 303, pages 2026–2029, 2004.

[ABKS99] M. Ankerst, M. M. Breunig, H-P. Kriegel, and J. Sander. OPTICS:

Ordering points to identify the clustering structure. In SIGMOD’99,

pages 49–60, Philadelphia, PA, June 1999.

[ARS02] J. Abello, M.G.C. Resende, and R. Sudarsky. Massive quasi-clique

detection. In In Proc. 5th Latin American Symposium on Theoretical

Informatics, pages 598–612. Springer Verlag, 2002.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for

mining association rules. In Jorge B. Bocca, Matthias Jarke, and

Carlo Zaniolo, editors, VLDB’04, pages 487–499. Morgan Kauf-

mann, 12–15 1994.

[ATH03] I. Akihiro, W. Takashi, and M. Hiroshi. In Complete Mining of Fre-

quent Patterns from Graphs: Mining Graph Data, volume 50, pages

321–354, Hingham, MA, USA, 2003. Kluwer Academic Publishers.

[AUS07] S. Asur, D. Ucar, and P. Srinivasan. An ensemble framework for

155

Bibliography

clustering proteincprotein interaction networks. In ISMB’07, Vien-

na, Austria, 2007.

[Bas94] D.A. Basin. A term equality problem equivalent to graph isomor-

phism. In nformation Processing Letters, volume 51, pages 61–66,

1994.

[BBCG08] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-

streaming algorithms for local triangle counting in massive graphs.

In KDD’08, pages 16–24, New York, USA, 2008.

[BBP06] V. Boginski, S. Butenko, and Pardalos. P.M. Mining market da-

ta: a network approach. Computers and Operations Research,

33(11):3171–3184, 2006.

[BC96] M. Brockington and J. C. Culberson. Camouflaging independent

sets in quasi-random graphs. In Cliques, Coloring, and Satisfia-

bility: Second DIMACS Implementation Challenge, volume 26 of

dimacs, pages 75–88. American Mathematical Society, 1996.

[BHN+02] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudar-

shan. Keyword searching and browsing in databases using BANKS.

In KDD’02, pages 431–440, Edmonton, Alberta, Canada, 2002.

156

Bibliography

[Bla94] R.E. Blake. In Partitioning Graph Matching with Constraints, vol-

ume 27, pages 439–446, 1994.

[BNC03] B. Bustos, G. Navarro, and E. Chávez. In Pivot selection techniques

for proximity searching in metric spaces, volume 24, pages 2357–

2366, New York, USA, 2003. Elsevier Science Inc.

[Bol78] B. Bollobas. Extremal Graph Theory. Dover Publications, Incorpo-

rated, 1978.

[CFZ06] D. Chakrabarti, C. Faloutsos, and Y.P. Zhan. In Visualization of

Large Networks with Min-cut Plots, A-plots and R-MAT, 2006.

[CT96] J. Cheriyan and R. Thurimella. Fast algorithms for k-shredders and k

-node connectivity augmentation (extended abstract). In ACM Sym-

posium on Theory of Computing, pages 37–46, 1996.

[CTTP04] G. Cong, K.-L. Tan, A.K.H. Tung, and F. Pan. Mining frequent

closed patterns in microarray data. In ICDM’04, pages 363–366,

Washington, DC, USA, 2004. IEEE Computer Society.

[CTTX05] G. Cong, K.-L. Tan, A.K.H. Tung, and X. Xu. Mining top-k cov-

ering rule groups for gene expression data. In SIGMOD’05, pages

670–681, Chicago, IL, USA, 2005. ACM.

157

Bibliography

[CTX+04] G. Cong, A.K.H. Tung, X. Xu, F. Pan, and J. Yang. Farmer: find-

ing interesting rule groups in microarray datasets. In SIGMOD’04,

pages 143–154, Paris, France, 2004. ACM.

[DBLEH07] Skip Farmer David B Little and Oussama El-Hilali. Digital Data

Integrity: The Evolution from Passive Protection to Active Manage-

ment. Wiley, 2007.

[Der03] S. Deroski. Multi-relational data mining: an introduction. SIGKDD

Explorations Newsletter, 5(1):1–16, 2003.

[DT99] L. Dehaspe and H. Toivonen. Discovery of frequent datalog pattern-

s. Data Mining and Knowledge Discovery, 3(7-36), 1999.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algo-

rithm for discovering clusters in large spatial databases. In KDD’96,

pages 226–231, Portland, Oregon, Aug. 1996.

[FL95] C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing,

data-mining and visualization of traditional and multimedia dataset-

s. In SIGMOD’95, pages 163–174, San Jose, CA, May 1995.

[FTCF01] R.S. Filho, A. Traina, T.Jr. Caetano, and C. Faloutsos. Similarity

search without tears: The omni family of all-purpose access meth-

ods. In ICDE’01, Heidelberg, Germany, 2001.

158

Bibliography

[GE02] A.P. Gasch and M.B. Eisen. Exploring the conditional coregulation

of yeast gene expression through fuzzy k-mean clustering. Genome

Biology, 3(RESEARCH 0059), 2002.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: a Guide

to The Theory of NP-Completeness. Freeman and Company, New

York, 1979.

[GRT05] D. Gibson, K. Ravi, and A. Tomkins. Discovering large dense sub-

graphs in massive graphs. In VLDB’05, pages 721–732, Trondheim,

Norway, 2005.

[GS05] A. Gulli and A. Signorini. In The Indexable Web is More than 11.5

Billion Pages, Chiba, Japan, 2005.

[HCD94] L. Holder, D. Cook, and S. Djoko. Substructure discovery in the

SUBDUE system. In Proceedings of the Workshop on Knowledge

Discovery in Databases, pages 169–180, 1994.

[HGP03] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-

style keyword search over relational databases. In VLDB’03, pages

850–861, 2003.

[HK00] J. Han and M. Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000.

159

Bibliography

[HMWD04] Z. Hu, J. Mellor, J. Wu, and C. DeLisi. VisANT: an online visu-

alization and analysis tool for biological interaction data. In BMC

Bioinformatics, volume 5, pages 17–24, 2004.

[HP02] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search

in relational databases. In VLDB’02, pages 670–681, 2002.

[HW74] J.E. Hopcroft and J.K. Wong. Linear time algorithm for isomorphis-

m of planar graphs (preliminary report). In STO’74, pages 172–184,

1974.

[HYH+05] H. Hu, X. Yan, Y. Huang, J. Han, and X.J. Zhou. Mining coherent

dense subgraphs across massive biological networks for functional

discovery. In Bioinformatics, volume 1, pages 1–1, 2005.

[Inc10] Yahoo! Inc. Flickr - photo sharing. http://www.flickr.

com/, 2010. Online; accessed 20-Dec-2010.

[KH04] E.B. Krissinel and K Henrick. In Common subgraph isomorphis-

m detection by backtracking search, volume 34, pages 591 – 607,

2004.

[KI02] H. Kashima and A. Inokuchi. Kernels for graph classification. Pro-

ceeding of International Workshop on Active Mining, 2002.

160

Bibliography

[KV96] G. Karypis and K. Vipin. Parallel multilevel k-way partitioning

scheme for irregular graphs. In Supercomputing ’96: Proceedings

of the 1996 ACM/IEEE conference on Supercomputing (CDROM),

page 35, Washington, DC, USA, 1996. IEEE Computer Society.

[KW06] G. Kossinets and D. J. Watts. Empirical analysis of an evolving

social network. Science Magazine, 311(5757), 2006.

[Lat07] M Latapy. Practical algorithms for triangle computations in very

large (sparse (power-law)) graphs. volume 407 (1-3), pages 458 –

473, 2007.

[Luk82] E.M. Luks. Isomorphism of graphs of bounded valence can be tested

in polynomial time. Journal of Computer System Science, pages 42–

65, 1982.

[MARW90] E.M. Mitchell, P.J. Artymiuk, D.W. Rice, and P. Willett. Use of

techniques derived from graph theory to compare secondary struc-

ture motifs in proteins. Journal of Molecular Biology, 212:151–166,

1990.

[MB00] B.T. Messmer and H. Bunke. Efficient subgraph isomorphism detec-

tion: A decomposition approach. TKDE’00, 12(2):307–323, 2000.

161

Bibliography

[MK01] K. Michihiro and G. Karypis. Frequent subgraph discovery. In ICD-

M’01, pages 313–320, 2001.

[net] Netflix prize data set. http://www.netflixprize.com/.

[Online; accessed 20-March-2010].

[NJW01] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis

and an algorithm. In Advances in Neural Information Processing

Systems, volume 14, 2001.

[NK99] S. Nijssen and J. Kok. Fast association rules for multiple relations.

volume 3, 1999.

[PCT+03] F. Pan, G. Cong, A.K.H. Tung, J. Yang, and M.J. Zaki. Carpen-

ter: finding closed patterns in long biological datasets. In KDD’03,

pages 637–642, Washington, DC, USA, 2003. ACM.

[PTCX04] F. Pan, A.K.H. Tung, G. Cong, and X. Xu. Cobbler: Combining col-

umn and row enumeration for closed pattern discovery. In SSDBM

’04: Proceedings of the 16th International Conference on Scientif-

ic and Statistical Database Management, page 21. IEEE Computer

Society, 2004.

[RJTe06] J.F. Rodrigues Jr. and H.H. Tong etc. GMine: a system for scal-

162

Bibliography

able, interactive graph visualization and mining. In VLDB’06, pages

1195–1198, Seoul, Korea, 2006. VLDB Endowment.

[RRRT99] K. Ravi, Prabhakar R., Sridhar R., and A Tomkins. Trawling the we-

b for emerging cyber-communities. In Computer Networks, pages

1481–1493, 1999.

[Sco00] J. Scott. Social network analysis: A handbook. Sage, 2000.

[Sei83] S.B. Seidman. Network structure and minimum degree. Social Net-

works, 5:269–287, 1983.

[SK98] A. Srivastav and W. Katja. Finding dense subgraphs with semidef-

inite programming. In APPROX ’98, pages 181–191, London, UK,

1998. Springer-Verlag.

[SMT91] J.W. Shavlik, R.J. Mooney, and G.G. Towell. Symbolic and neural

learning algorithms: An experimental comparison. Machine Learn-

ing, 6:111–144, 1991.

[SU06] T. Silke and L Ulf. GRIPP - indexing and querying graphs based on

pre and postorder numbering. Technical report, 2006.

[SW05] T Schank and D. Wagner. Finding, counting and listing all triangles

in large graphs, an experimental study. In WEA, pages 606–609,

2005.

163

Bibliography

[Tur41] P. Turan. On an extremal problem in graph theory. Mat. Fiz. Lapok,

48:436–452, 1941.

[Ull76] J.R. Ullmann. An algorithm for subgraph isomorphism. Journal of

the ACM (JACM), 23(1):31–42, 1976.

[Vap95] V.N. Vapnik. The nature of statistical learning theory. Springer-

Verlag New York, Inc., 1995.

[Wik06] Wikipedia. Protein protein interaction — Wikipedia, the free ency-

clopedia, 2006. [Online; accessed 1-May-2010].

[WM03] T. Washio and H. Motoda. In State of the Art of Graph-based Data

Mining, volume 5, July 2003.

[WSTT08] N. Wang, P. Srinivasan, K.-L. Tan, and A.K.H. Tung. CSV: vi-

sualizing and mining cohesive subgraphs. In SIGMOD’08, pages

445–458, 2008.

[WZTT11] N. Wang, JB. Zhang, K.-L. Tan, and A.K.H. Tung. On triangulation-

based dense neighborhood graph discovery. In VLDB’11, volume 4,

2011.

[WZZ06] J. Wang, Z. Zeng, and L. Zhou. CLAN: An algorithm for min-

ing closed cliques from large dense graph databases. In ICED’06,

page 73, 2006.

164

Bibliography

[XSe02] I. Xenarios and Lukasz. Salwinski etc. DIP, the database of inter-

acting proteins: A research tool for studying cellular networks of

protein interactions. Nucleic Acids Research, 30(1):303–305, 2002.

[YH02] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pat-

tern mining. In Proceedings of the International Conference on Da-

ta Mining, pages 721–724, 2002.

[YMI94] K. Yoshida, H. Motoda, and N. Indurkhya. Graph based induction

as a unified learning framework. In Applied Intelligence, volume 4,

1994.

[YZH05] X. Yan, X.J. Zhou, and J. Han. Mining closed relational graphs with

connectivity constraints. In KDD’05, pages 324–333, Chicago, IL,

USA, 2005.

[ZWZK06] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-

clique discovery from large dense graph databases. In KDD’06,

pages 797–802, Philadelphia, USA, 2006.

165

