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Summary

Summary

Modeling and control of marine flexible systems under the time-varying ocean dis-

turbances is a challenging task and has received increasing attention in recent years

with growing offshore engineering demands involving varied applications. There is a

need to develop a general control framework to achieve the performance for the con-

cerned systems. The main purpose of the research in this thesis is to develop advance

strategies for the control of marine flexible systems with guaranteed stability. By

investigating the characteristics of these flexible models, boundary control combining

with the robust adaptive approaches are presented for three classes of marine flexible

systems, i.e., mooring systems, installation systems, and riser systems. Numerical

simulations are extensively carried out to illustrate the effectiveness of the proposed

control.

Firstly, for the control of a thruster assisted position mooring system, the math-

ematical model of the flexible mooring lines is modeled as a distributed parameter

system by using the Hamilton’s method. Exact model based boundary control is

applied at the top boundary of the mooring lines to suppress the vessel’s vibrations.

Adaptive control is designed to handle the system parametric uncertainties. With

the proposed boundary control, uniform boundedness of the system under the ocean

current disturbances is achieved. The proposed control is implementable with actual
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instrumentations since all the signals in the control can be measured by sensors or

calculated by using of a backward difference algorithm.

Furthermore, robust adaptive boundary control of a marine installation system

is developed to position the subsea payload to the desired set-point and suppress

the cable’s vibration. The flexible cable coupled with vessel and payload dynamics

is described by a distributed parameter system with one partial differential equa-

tion (PDE) and two ordinary differential equations (ODEs). Boundary control is

proposed at the top and bottom boundary of the cable based on the Lyapunov’s

direct method. Considering the system parametric uncertainties and the unknown

ocean disturbances, the developed adaptive boundary control schemes achieve uni-

form boundedness of the steady state error between the boundary payload and the

desired position. The control performance of the closed-loop system is guaranteed by

suitably choosing the design parameters.

Thirdly, a coupled nonlinear flexible marine riser is investigated. Using the Hamil-

ton’s principle, we derive the dynamic behavior of the flexible riser represented by

a set of nonlinear PDEs. After further investigation of the properties of the riser,

we propose the boundary control at the top boundary of the riser based on the Lya-

punov’s direct method to regulate the riser’s vibrations. The boundary control is

implemented by two actuators in transverse and longitudinal directions. With the

proposed boundary control, uniform boundedness of the riser system under the ocean

current disturbances and exponential stability under the free vibration condition are

achieved. The proposed control is independent of system parameters, which ensures

the robustness of the system to variations in parameters.

Finally, boundary control of a flexible marine riser with the vessel dynamics is

studied. Both the dynamics of the vessel and the vibration of the riser are considered
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in the dynamic analysis, which make the system more difficult to control. Boundary

control is proposed at the top boundary of the riser to suppress the riser’s vibration.

Adaptive control is designed when the system parametric uncertainties exist. With

the proposed robust adaptive boundary control, uniform boundedness of the system

under the ocean current disturbances can be achieved. The state of the system is

proven to converge to a small neighborhood of zero by appropriately choosing the

design parameters.

x



List of Figures

List of Figures

3.1 A FPSO vessel with the thruster assisted position mooring system. . 23

3.2 Snapshots of the mooring system movements without control. . . . . 57

3.3 Snapshots of the mooring system movements with the proposed exact

model based boundary control. . . . . . . . . . . . . . . . . . . . . . 57

3.4 Snapshots of the mooring system movements with the proposed adap-

tive boundary control. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Displacement of the vessel, w(1000,t), without control. . . . . . . . . 59

3.6 Displacement of the vessel, w(1000,t), with the proposed control (3.89). 59

3.7 Adaptive control input (3.89). . . . . . . . . . . . . . . . . . . . . . . 60

4.1 A typical flexible marine installation system. . . . . . . . . . . . . . . 65

4.2 The distributed load at the top boundary of the cable f(L, t). . . . . . . . 91

4.3 Position of the cable without control. . . . . . . . . . . . . . . . . . . . 92

4.4 Boundary position of the cable without control. . . . . . . . . . . . . . . 92

4.5 Position of the cable with model based boundary control. . . . . . . . . . 93

xi



List of Figures

4.6 Boundary position of the cable with model based control. . . . . . . . . . 93

4.7 Model-based control input u1(t) and u2(t). . . . . . . . . . . . . . . . 94

4.8 Position of the cable with robust adaptive boundary control. . . . . . . . 94

4.9 Boundary position of the cable with robust adaptive control. . . . . . . . 95

4.10 Adaptive control input u1(t) and u2(t). . . . . . . . . . . . . . . . . . 95

5.1 A typical marine riser system. . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Surface current U(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 (a) Transverse displacement w(x, t) and (b) longitudinal displacement

v(x, t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 (a) Transverse displacement w(x, t) and (b) longitudinal displacement

v(x, t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 (a) Transverse displacement w(x, t) and (b) longitudinal displacement

v(x, t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 (a) Transverse displacement w(x, t) and (b) longitudinal displacement

v(x, t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.7 Transverse control input uT (t). . . . . . . . . . . . . . . . . . . . . . 127

5.8 Longitudinal control input uL(t). . . . . . . . . . . . . . . . . . . . . 127

5.9 Transverse displacements: (a) transverse displacement at x = 500m,

w(500, t) for controlled (solid) and uncontrolled (dashed) and (b) trans-

verse displacement at x = 1000m, w(1000, t) for controlled (solid) and

uncontrolled (dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xii



List of Figures

5.10 Longitudinal displacements: (a) longitudinal displacement at x = 500m,

v(500, t) for controlled (solid) and uncontrolled (dashed) and (b) lon-

gitudinal displacement at x = 1000m, v(1000, t) for controlled (solid)

and uncontrolled (dashed). . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 A typical flexible marine riser system. . . . . . . . . . . . . . . . . . . 135

6.2 Disturbance on the vessel d(t). . . . . . . . . . . . . . . . . . . . . . . . 159

6.3 Displacement of the riser without control. . . . . . . . . . . . . . . . . . 159

6.4 Displacement of the riser with exact model-based control. . . . . . . . . . 160

6.5 Displacement of the riser with adaptive control. . . . . . . . . . . . . . . 160

6.6 Control input u(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xiii



List of Symbols

List of Symbols

Throughout this thesis, the following notations and conventions have been adopted:

t temporal variable

x spatial variable

L length of flexible structure

Ms, M mass of surface vessel

m mass of payload

ds surface vessel motion damping

w(L, t) position of the vessel

ẇ(L, t), velocity of the vessel
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Ū mean current

D external diameter of the flexible systems

CD(x, t) drag coefficient

CL(x, t) lift coefficient

fv vortex shedding frequency

St Strouhal number

ρs density of seawater

θ phase angle

AD the amplitude of the oscillatory part of the drag force

pd desired set-point

d1, d2 damping coefficient at x = 0, L

n the total number of the mooring lines

Di the distance between the ith mooring line and the coordinate point

k, kp, kv control gains

xv



List of Symbols

λ, λ1 to λ3 positive constants

δ1 to δ5 small positive constants

X − Y the fixed inertia frame

x− y the local reference frame

α, β positive weighting constants

Γ adaptation gain

r positive constant

R the set of all real numbers

||A|| the Euclidean norm of vector A or the induced norm of matrix A

AT the transpose of vector or matrix A

e(t) the error signal

Ω compact set

∆t temporal step size

∆x spatial step size

N1 the subdivisions of the length

N2 the subdivisions of the time interval

tf the duration of the simulation

wi the frequencies of sinusoids singal

λmin(A) minimum eigenvalue of the matrix A where all eigenvalues are real

λmax(A) maxmum eigenvalue of the matrix A where all eigenvalues are real

(∗̂) estimate of (∗)
(∗̃) estimate error of (∗)
(∗)′, (∗)′′ first, second order derivatives of (∗) with respect to x

(∗)′′′, (∗)′′′′ third, fourth order derivatives of (∗) with respect to x

(∗̇), (∗̈) first, second order derivatives of (∗) with respect to t

xvi



Chapter 1

Introduction

1.1 Background and Motivation

In recent decades, dealing with the vibration problem of flexible systems has become

an important research topic, driven by practical needs and theoretical challenges.

Lightweight mechanical flexible systems possess many advantages over conventional

rigid ones, such as lower cost, better energy efficiency, higher operation speed, and

improved mobility. These advantages greatly motivate the applications of the me-

chanical flexible systems in industry. A large number of systems can be modeled

as mechanical flexible systems such as telephone wires, conveyor belts, crane cables,

helicopter blades, robotic arms, mooring lines, marine risers and so on. However, un-

wanted vibrations due to the flexibility property and the time-varying disturbances

restrict the utility of these flexible systems in different engineering applications.

Offshore engineering is concerned with the design and operation of the systems

both above and below the water. With the increased focus on offshore oil and gas
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development in deeper and harsher environments, researches on offshore engineering

have gained increasing attention. Modeling and control of marine flexible systems

compatible with the extreme marine environmental conditions is a most challenging

task in offshore engineering. Development of a general frame for control of the ma-

rine flexible systems in the presence of the unknown ocean disturbances is a quite

challenging research topic. The mooring system, installation system and riser sys-

tem can be modeled as a set of PDEs with the infinite dimensionality, which are the

key components of the modern offshore engineering, and serve a variety of functions.

These marine applications are characterized by the time-varying environmental dis-

turbances and the sea conditions. Vibration and deformation of the flexible structures

in offshore engineering due to the ocean current disturbances and the tension exerted

at the top can produce premature fatigue problems, which require inspections and

costly repairs. The proper control technique is desirable and available for preventing

damage and improving the lifespan of these structures.

In comparison with the dynamic positioning system, the thruster assisted position

mooring system for the anchored vessel is an economical solution in deep waters due

to the long operational period in harsh environmental conditions. Floating concepts

such as the use of Floating Production Offloading and Storage (FPSO) vessels in com-

bination with subsea systems and shuttle tankers have become possible with the use

of sophisticated positioning systems for precise and safe positioning. The two main

types of positioning systems are the dynamic positioning systems for free floating

vessels and the thruster assisted position mooring system for anchored vessels. Many

results have been obtained for control of dynamic positioning systems in recent years

by using model based approach [1,2] and backstepping based approaches [3,4]. In [5],

the problem of tracking a desired trajectory is discussed for a fully actuated ocean
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vessel with dynamic positioning system, in the presence of parametric uncertainties

and the unknown disturbances. In [6], a hybrid controller is developed to extend

the operability and performance of the dynamic positioning system. Station keep-

ing means maintaining the vessel within a desired position in the horizontal-plane,

which has been identified as one of the typical problems in offshore engineering. A

typical thruster assisted position mooring system consists of an ocean surface vessel

and several flexible mooring lines. The surface vessel, to which the top boundary of

the mooring lines is connected, is equipped with a dynamic positioning system with

active thrusters. The bottom boundary of the mooring lines is fixed in the ocean

floor by the anchors. Station keeping for the mooring system is hard to achieve due

to the complicated system model and the unknown time-varying ocean disturbances

including the ocean current, wave, and wind. The mooring lines spanning a long dis-

tance can produce large vibrations under the ocean disturbances, which can degrade

the performance of the system and result in a larger offset from the target position

of the vessel.

Marine installation system is used as the accurate position control for marine

installation operation in offshore engineering. Accurate position control for marine

installation operations has gained increasing attention in recent years [7, 8]. Due

to the requirements for high accuracy and efficiency arising from the modern ocean

industry, improving reliability and efficiency of installation operations during oil and

gas production in the ocean environment is an active research topic that has received

much attention in offshore engineering. A typical marine installation system consists

of an ocean surface vessel, a flexible string-type cable and a subsea payload to be

positioned for installation on the ocean floor. The surface vessel, to which the top

boundary of the cable is connected, is equipped with a dynamic positioning system

3
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with an active thruster. The bottom boundary of the cable is a payload with an end-

point thruster attached. This thruster is used for dynamic positioning of the payload.

The total marine installation system is subjected to the environmental disturbances

including the ocean current, wave, and wind. Taking into account the unknown

time-varying ocean disturbances of the cable leads to the appearance of oscillations,

which make the control problem of the marine installation system relatively difficult.

Vibration suppression and position control by proper control technique is desirable

and feasible for the marine installation system.

The marine riser is used as a fluid-conveyed curved pipe drilling crude oil, natural

gas, hydrocarbon, petroleum materials, mud, and other undersea economic resources,

and then transporting those resources in the ocean floor to the production vessel or

platform in the ocean surface [9]. A drilling riser is used for drilling pipe protection

and transportation of the drilling mud, while a production riser is a pipe used for

oil transportation [10]. The stiffness of a flexible marine riser depends on its tension

and length, thus a riser that spans a long distance can produce large vibrations

under the relatively small disturbances. In marine environment, vibrations excited

by vortices can degrade the performance of the flexible marine riser. Vibrations

of the riser due to the ocean current disturbances and the tension exerted at the

top can produce premature fatigue problems, which requires inspections and costly

repairs, and as a worst case, environmental pollution due to leakage from damaged

areas. Vibration suppression by proper control techniques is desirable for preventing

damage and improving the lifespan of the riser.

The remainder of this chapter is organized as follows. In Section 1.1.1, a brief

introduction of the control techniques for flexible mechanical systems, especially for

flexible string and beam systems, is presented. Background knowledge of flexible

4



1.1 Background and Motivation

systems is given first, and then the recent researches on boundary control of flexi-

ble systems are discussed. Some research problems to be studied in this thesis are

highlighted, such as boundary control and robust adaptive control, which are both

theoretically challenging and practically meaningful. In Section 1.1.2, control meth-

ods for flexible marine systems are briefly reviewed, where the researches on control

of mooring systems, installation systems and riser systems are discussed. Finally,

in Section 1.2, the objectives, scope, as well as the organization of the thesis are

presented.

1.1.1 Flexible Mechanical Systems

Many physical processes, cannot be modeled by ODEs since the state of the system

depends on more than one independent variable [11]. The state of a given physical

system such as flexible structure, fluid dynamics and heat transfer may depend on

the time t and the location x. The flexible mechanical systems are independent of the

spatial and temporal variables, which can be modeled as the distributed parameter

systems. The model are represented by a set of infinite dimensional equations (i.e.,

PDEs describing the dynamics of the flexible bodies) coupled with a set of finite di-

mensional equations (i.e., ODEs describing the boundary conditions). The dynamics

of the flexible mechanical system modeled by a set of PDEs is difficult to control due

to the infinite dimensionality of the system, since many control strategies for the con-

ventional rigid body system cannot be directly applied to solve the control problem

of the flexible system.

The most popular control approaches for the distributed parameter systems are

modal control based on the truncated discredited system model, distributed control
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1.1 Background and Motivation

by using distributed sensors and actuators, and boundary control. Modal control for

the distributed parameter systems is based on truncated finite dimensional modes of

the system, which are derived from element method, Galerkin’s method or assumed

modes method [12–20]. For these finite dimensional models, many control techniques

developed for ODE systems in [21–25] can be applied. The truncated models are

obtained via the model analysis or spatial discretization, in which the flexibility is

represented by a finite number of modes by neglecting the higher frequency modes.

The problems arising from the truncation procedure in the modeling need to be care-

fully treated in practical applications. A potential drawback in the above control

design approaches is that the control can cause the actual system to become unsta-

ble due to excitation of the unmodeled, high-frequency vibration modes (i.e., spillover

effects) [26]. Spillover effects which result in instability of the system have been inves-

tigated in [27,28] when the control of the truncated system is restricted to a few critical

modes. The control order needs to be increased with the number of flexible modes

considered to achieve high accuracy of performance and the control may also be diffi-

cult to implement from the engineering point of view since full states measurements

or observers are often required. In an attempt to overcome the above shortcomings of

the truncated model based modal control, boundary control where the actuation and

sensing are applied only through the boundary of the system utilizes the distributed

parameter model with PDEs to avoid control spillover instabilities. Boundary control

combining with other control methodologies such as variable structure control [29],

sliding model control [30], energy-based robust control [31,32], model-free control [33],

the averaging method [34–38], and robust adaptive control [39, 40] have been devel-

oped. In these approaches, system dynamics analysis and control design are carried

out directly based on the PDEs of the system.

6



1.1 Background and Motivation

Distributed control [41–45] requires relative more actuators and sensors, which

makes the distributed controller relatively difficult to implement. Compared with

distributed controllers, boundary control is an economical method to control the

distributed parameter system without decomposing the system into the finite dimen-

sional space. Boundary control is considered to be more practical in a number of

research fields including the vibration control of flexible structures, fluid dynamics

and heat transfer, which requires few sensors and actuators. In addition, the kinetic

energy, the potential energy, and the work done by the nonconservative forces in the

process of modeling can be directly used to design the Lyapunov function of the closed

loop system.

The relevant applications for boundary control approaches in mechanical flexible

structures consist of second order structures (strings, and cables) and fourth order

structures (beams and plates) [46]. The Lyapunov’s direct method is widely used

since the Lyapunov functionals for control design closely relate to kinetic, potential

and work energies of the distributed parameter systems. Based on the Lyapunovs

direct method, the authors in [10,20,26,29–33,39,40,47–78] have presented the results

for the boundary control of the flexible mechanical systems. In [39], robust adaptive

boundary control is investigated to reduce the vibration for a moving string with the

spatiotemporally varying tension. In [56], robust and adaptive boundary control is

developed to stabilize the vibration of a stretched string on a moving transporter.

In [59], a boundary controller for a linear gantry crane model with a flexible string-

type cable is developed and experimentally implemented. An active boundary control

system is introduced in [60] to damp undesirable vibrations in a cable. In [63], the

asymptotic and exponential stability of an axially moving string is proved by using a

linear and nonlinear state feedback. In [79], a flexible rotor with boundary control has

7
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been illustrated and the experimental implementation of the flexible rotor controller

is also presented. Boundary control has been applied to beams in [80] where boundary

feedback is used to stabilize the wave equations and design active constrained layer

damping. Active boundary control of an Euler-Bernoulli beam which enables the

generation of a desired boundary condition at any designators position of a beam

structure has been investigated in [81]. In [65], a nonlinear control law is constructed

to exponentially stabilize a free transversely vibrating beam via boundary control.

In [72,73], a boundary controller for the flexible marine riser with actuator dynamics

is designed based on the Lyapunov’s direct method and the backstepping technique.

In [76], a linear boundary velocity feedback control is designed to ensure exponential

stabilization of the vibration of a nonlinear moving string. In [61], boundary control

of a nonlinear string has been investigated where feedback from the velocity at the

boundary of a string is proposed to stabilize the vibrations. It is notable that robust

and adaptive control schemes have been applied to the boundary control design in

[39, 40, 56]. By using Laplace transform to derive the exact solution of the wave

equation, boundary impedance control for a string system is investigated in [62].

Recently, by combining the backstepping method with adaptive control design, a

novel boundary controller and observer are designed to stabilize the string and beam

model and tracking the target system. Many remarkable results in this area have been

obtained in [74,82–94]. However, this boundary control method is hard to be applied

to the marine flexible systems due to difficulties in finding a proper gain kernel. For

example, it is hard to find a gain kernel for the model of the mooring system subjected

to the unknown ocean disturbances.

In the literatures of boundary control for the distributed parameter systems, func-

tional analysis and semigroup theory are usually used for the stability analysis and

8
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the proof of the existence and uniqueness of PDEs, for example [95–103]. Such dis-

tributed parameter systems are described by operator equations on an infinite di-

mensional Hilbert or Banach space [104–106]. The stability analysis and the solution

existence are based on the theory of semigroup on the infinite dimensional state space.

In [72], the proof of existence and uniqueness of the control system is carried out by

using the infinite dimensional state space. In [39], the asymptotic stability the sys-

tem with proposed control is proved through the use of semigroup theory. In [95],

stability and stabilization of different infinite dimensional systems are studied based

on semigroup theory. In [94], semigroup theory is utilized to prove the strong sta-

bility of a one-dimensional wave equation with proposed boundary control. In [100],

stabilization of a second order PDE system under non-collocated control and obser-

vations is investigated in Hilbert spaces. In [107], a non-collocated boundary control

is developed to stabilize two connected strings with the joint anti-damping, and the

exponentially stability is proved by using the semigroup theory. With control at one

end and noncollocated observation at another end, the exponential stability of the

closed-loop system is proved in [101]. In [102, 103], a uniformly exponentially stable

observer is designed for a class of second-order distributed parameter systems, and

the uniqueness and stability of the system are proved based on semigroup theory.

Compared with the functional analysis based methods, the Lyapunov’s direct

method for the distributed parameter systems requires little background beyond cal-

culus for users to understand the control design and the stability analysis. In ad-

dition, the Lyapunov’s direct method provides a convenient technique for PDEs by

using well-understood mathematical tools such as algebraic and integral inequalities,

and integration by parts.

9
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1.1.2 Marine Flexible Systems

The three most common marine flexible systems, mooring systems, installation sys-

tems, and riser systems, are consisted by different flexible mechanical systems such

as beam and string. Many good results [108–112] for control design of the mooring

system in the literatures rely on the ODE model with neglecting the dynamics of the

mooring lines. These works on the control of the thruster assisted position moor-

ing systems mainly focus on the dynamics of the vessel, and the dynamics of the

mooring lines are usually ignored for the convenience of the control design. In ear-

lier research [108], a nonlinear passive observer for thruster assisted position moored

ships has been developed, where the force from the mooring lines are regarded as

external forces and mooring system is modeled as an ODE system. A finite element

model of a single mooring line is derived in [113], but the control is not proposed for

the system. More recently, by using a structural reliability measure for the mooring

lines, the paper [109] proposes the control to maintain the probability of the moor-

ing line failure below an acceptable level regardless of changing weather conditions.

In [110], the switching control is designed for a positioning mooring system which

allows the thrusters to assist the mooring system in the varying environmental con-

ditions. In [112], the modeling and control of a positioning mooring system with a

drilling riser is investigated. In these works, the dynamics of the mooring lines is

considered as an external force term to the vessel dynamics. These kind of model can

influence the dynamic response of the whole mooring system due to the neglect of the

coupling between the vessel and the mooring lines. To overcome this shortcoming, in

this thesis, the mooring system is represented by a number of PDEs describing the

dynamics of the mooring lines coupled with four ODEs describing the lumped vessel

dynamics. The paper [114] investigates the station keeping and tension problem in
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order to avoid line tensions rising for the multi-cable mooring systems, in which the

dynamics of the mooring lines are modeled as PDEs. But the paper does not provide

the detailed discussion for the control design. Considering a mooring system with ar-

bitrary mooring lines, the system is governed by nonhomogeneous hyperbolic PDEs,

which makes the system model quite different compared with the previous works due

to the coupling between the mooring lines and the vessel.

Traditional marine installation systems consist of the vessel dynamic position-

ing and crane manipulation to obtain the desired position and heading for the pay-

load [115, 116]. Such methods become difficult in deeper waters due to the longer

cable between the surface vessel and payload. The longer cable increases the natural

period of the cable and payload system which in turn increase the effects of oscilla-

tions. One solution to alleviate the precision installation problem is the addition of

thrusters attached the payload for the installation operation [7,117,118]. Such marine

installation system consists of an ocean surface vessel, a flexible string-type cable and

a subsea payload to be positioned for installation on the ocean floor. The control for

the dynamic positioning of the payload is challenging due to the unpredictable exoge-

nous disturbances such as fluctuating currents and transmission of motions from the

surface vessel through the lift cable. The unknown time-varying ocean disturbances

along the cable lead to the appearance of oscillations. Current researches [7, 8] on

the control of the marine installation systems mainly focus on the dynamics of the

payload, where the dynamics of the cable is ignored for the convenience of the control

design. The dynamics of the cable is considered as an external force term to the

payload. One drawback of the model is that it can influence the dynamic response of

the whole marine installation system due to the neglect of the coupling between the

vessel, the cable and the payload. To overcome this shortcoming, the flexible marine
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installation system with cable, vessel and payload dynamics is represented by a set

of infinite dimensional equations, (i.e., PDEs describing the dynamics of the flexible

cable) coupled with a set of finite dimensional equations, (i.e., ODEs describing the

lumped vessel and payload dynamics).

In earlier works of marine flexible risers [119–121], the modeling of the riser sys-

tems is investigated, and the simulations with different numerical methods are pro-

vided to verify the effectiveness of the models. In [122, 123], distributed parameter

models with PDEs have been used to analyze and investigate the dynamic response

of the flexible marine riser under the ocean current disturbances. But the stability

and control design are not mentioned in these works. The Timoshenko model also

can provide an accurate beam model, which takes into account the rotary inertial en-

ergy and the deformation owing to shear. Compared with the Euler-Bernoulli model,

the Timoshenko model is more accurate at predicting the beam’s response. How-

ever, the Timoshenko model is more difficult to implement for control design due to

its higher order. For this reason, most of the flexible marine risers with boundary

control are based on the Euler-Bernoulli model [124]. In [73], boundary control for

the flexible marine riser with actuator dynamics is designed based on the Lyapunov’s

direct method and the backstepping technique. In [72], the boundary control prob-

lem of a three-dimensional nonlinear inextensible riser system is considered via the

same method as [73]. In [10], a torque actuator is introduced at the top boundary

of the riser to reduce the angle and transverse vibration of the riser with guaranteed

closed-loop stability. In [78], boundary control for a coupled nonlinear flexible marine

riser with two actuators in transverse and longitudinal directions has been designed

to suppress the riser’s vibration. However, in these works, only the riser dynamics is

considered and the coupling between the riser and the vessel is neglected, which can
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influence the dynamic response of the riser system and lead to an imprecise model.

For the purpose of dynamic analysis, the riser is modeled as an Euler-Bernoulli beam

structure with PDEs since the diameter-to-length of the riser is small. Based on the

distributed parameter model, various kinds of control methods integrating computer

software and hardware with sensors and actuators have been investigated to design

control to suppress the riser’s vibration.

1.2 Thesis Objectives and Organization

The general objectives of the thesis are to develop constructive and systematic meth-

ods of designing boundary control for marine flexible systems with guaranteed sta-

bility. By investigating the characteristics of several different flexible marine models,

boundary control fused with robust adaptive approaches is proposed to achieve the

performance for the concerned systems and mitigate the effects of spillover without

truncating the continue system models.

The remainder of the thesis is organized as follows. In Chapter 2, some neces-

sary mathematical preliminaries are given. We will provide the brief introduction

of the Hamilton’s principle, the models of the ocean disturbances and some useful

inequalities, which will be used throughout the thesis.

In Chapter 3, we start with the study of modeling and control of a thruster assisted

position mooring system. In the first place, the mathematical model of the flexible

mooring lines is modeled as a distributed parameter system by using the Hamilton’s

method. Then, exact model based boundary control is applied at the top boundary

of the mooring lines based on the Lyapunov’s direct method to regulate the vessel’s

vibrations. In addition, adaptive control is designed to handle the system parametric
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uncertainties. With the proposed boundary control, uniform boundedness of the

system under the ocean current disturbances is achieved. The proposed control is

implementable with actual instrumentations since all the signals in the control can

be measured by sensors or calculated by using of a backward difference algorithm.

In Chapter 4, robust adaptive boundary control of a marine installation system

is developed to position the subsea payload to the desired set-point and suppress

the cable’s vibration. The flexible cable coupled with vessel and payload dynamics

is described by a distributed parameter system with one partial differential equation

(PDE) and two ordinary differential equations (ODEs). Boundary control is proposed

at the top and bottom boundary of the cable based on the Lyapunov’s direct method.

Considering the system parametric uncertainty, the developed adaptive boundary

control schemes achieve uniform boundedness of the steady state error between the

boundary payload and the desired position. The control performance of the closed-

loop system is guaranteed by suitably choosing the design parameters. Simulations

are provided to illustrate the applicability and effectiveness of the proposed control.

Chapter 5 studies the modeling and control of a coupled nonlinear flexible marine

riser subjected to the ocean current disturbances. Using the Hamilton’s principle,

we derive the dynamic behavior of the flexible riser represented by a set of nonlinear

PDEs. After further investigation of the properties of the riser, we propose the bound-

ary control at the top boundary of the riser based on the Lyapunov’s direct method to

regulate the riser’s vibrations. The boundary control is implemented by two actuators

in transverse and longitudinal directions. With the proposed boundary control, uni-

form boundedness under ocean current disturbances and exponential stability under

free vibration condition are achieved. The proposed control is independent of system

parameters, which ensures the robustness of the system to variations in parameters.
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Chapter 6 further investigates the control problem of a flexible marine riser with

considering the vessel dynamics. Compared with the model in Chapter 5, both the

dynamics of the vessel and the vibration of the riser are considered in the dynamic

analysis, which make the system more difficult to control. Boundary control is pro-

posed at the top boundary of the riser suppress the riser’s vibration. Adaptive control

is designed when the system parametric uncertainty exists. With the proposed robust

adaptive boundary control, uniform boundedness under ocean current disturbances

can be achieved. The state of the system is proven to converge to a small neighbor-

hood of zero by appropriately choosing design parameters.

Finally, Chapter 7 concludes the contributions of the thesis and makes recommen-

dation on future research works.
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Chapter 2

Mathematical Preliminaries

In this Chapter, we provide some mathematical preliminaries, useful technical lem-

mas, properties, the model of ocean disturbance which will be extensively used

throughout this thesis. The chapter is organized as follows. Firstly, the Hamil-

ton’s principle is introduced in Section 2.1. Then, a brief introduction of the ocean

disturbance on marine flexible structures is given in Section 2.2, followed by Section

2.3 about some useful technical lemmas for completeness.

2.1 The Hamilton’s Principle

As opposed to lumped mechanical systems, flexible mechanical systems have an in-

finite number of degrees of freedom and the model of the system is described by

using continuous functions of space and time. The Hamilton’s principle permits the

derivation of equations of motion from energy quantities in a variational form and

generates the motion equations of the flexible mechanical systems. The Hamilton’s

16



2.2 The Ocean Disturbance on Marine Flexible Structures

principle [125,126] is represented by

∫ t2

t1

δ(Ek − Ep + W )dt = 0, (2.1)

where t1 and t2 are two time instants, t1 < t < t2 is the operating interval and δ

denotes the variational operator, Ek and Ep are the kinetic and potential energies of

the system respectively, W denotes work done by the nonconservative forces acting

on the system, including internal tension, transverse load, linear structural damping

and external disturbance. The principle states that the variation of the kinetic and

potential energy plus the variation of work done by loads during any time interval

[t1, t2] must equal to zero.

There are some advantages using the Hamilton’s principle to derive the mathemat-

ical model of the flexible mechanical systems. Firstly, this approach is independent

of the coordinates and the boundary conditions can be automatically generated by

this approach [46]. In addition, the kinetic energy, the potential energy, and the work

done by the nonconservative forces in the Hamilton’s principle can be directly used

to design the Lyapunov function of the closed loop system.

2.2 The Ocean Disturbance on Marine Flexible

Structures

Vortex-induced vibration (VIV) is a direct consequence of lift and drag oscillations

due to the vortex shedding formation behind bluff bodies [127]. The marine flexible

structures used in offshore production system may get out of control when the struc-

tural natural frequency of the risers and cables equals frequency of vortex shedding.
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The effects of a time-varying ocean current, U(x, t), on a riser or a cable can be mod-

eled as a vortex excitation force [128, 129]. The current profile U(x, t) is a function

which relates the depth to the ocean surface current velocity U(t). The distributed

load on a marine flexible structure, f(x, t), can be expressed as a combination of the

in-line drag force, fD(x, t), consisting of a mean drag and an oscillating drag about

the mean modeled as

fD(x, t) =
1

2
ρsCD(x, t)U(x, t)2D + AD cos(4πfv(x, t)t + θ), (2.2)

and an oscillating lift force fL(x, t), perpendicular to fD(x, t), about a mean deflected

profile,

fL(x, t) =
1

2
ρsCL(x, t)U(x, t)2D cos(2πfv(x, t)t + ϑ), (2.3)

where ρs is the sea water density, CD(x, t) and CL(x, t) are the time and spatially

varying drag and lift coefficient respectively, D is the outer diameter of the flexible

structures, fv(x, t) is the shedding frequency, θ and ϑ are the phase angles, and AD

is the amplitude of the oscillatory part of the drag force, typically 20% of the first

term in fD(x, t) [129]. The non-dimensional vortex shedding frequency [10] can be

expressed as

fv(x, t) =
StU(x, t)

D
, (2.4)

where St is the Strouhal number.
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In this thesis, we consider the deflection of the marine flexible structures in trans-

verse and longitudinal directions. Hence, the distributed load can be expressed as

f(x, t) = fD(x, t)
1

2
ρsCD(x, t)U(x, t)2D + AD cos(4πfv(x, t)t + θ), (2.5)

The transverse vortex-induced vibration (VIV) from the lift component is not con-

sidered in this thesis but the proposed method can be similarly applied without any

loss of generality if only the lift component is considered.

2.3 Lemmas

Lemma 2.1. [130] Let φ1(x, t) ∈ R and φ1(x, t) ∈ R be functions defined on x ∈
[0, L] and t ∈ [0,∞), the Cauchy-Schwarz inequality is:

∫ L

0

φ1φ2dx ≤
(∫ L

0

φ2
1dx

) 1
2
(∫ L

0

φ2
2dx

) 1
2

(2.6)

Lemma 2.2. [46] Let φ1(x, t), φ2(x, t) ∈ R, the following inequalities hold:

φ1φ2 ≤ |φ1φ2| ≤ φ2
1 + φ2

2, ∀φ1, φ2 ∈ R. (2.7)

Lemma 2.3. [46] Let φ1(x, t), φ2(x, t) ∈ R, the following inequalities hold:

|φ1φ2| =

∣∣∣∣
(

1√
δ
φ1

)
(
√

δφ2)

∣∣∣∣ ≤
1

δ
φ2

1 + δφ2
2, ∀φ1, φ2 ∈ R and δ > 0. (2.8)

Lemma 2.4. [131] Let φ(x, t) ∈ R be a function defined on x ∈ [0, L] and t ∈ [0,∞)
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that satisfies the boundary condition

φ(0, t) = 0, ∀t ∈ [0,∞), (2.9)

then the following inequalities hold:

∫ L

0

φ2dx ≤ L2

∫ L

0

[φ′]2dx, (2.10)

φ2 ≤ L

∫ L

0

[φ′]2dx. (2.11)

If in addition to Eq. (2.9), the function φ(x, t) satisfies the boundary condition

φ′(0, t) = 0, ∀t ∈ [0,∞), (2.12)

then the following inequalities also hold:

[φ′]2 ≤ L

∫ L

0

[φ′′]2dx. (2.13)

Lemma 2.5. Let φ(x, t) ∈ R be a function defined on x ∈ [0, L] and t ∈ [0,∞) that

satisfies the boundary condition

φ(0, t) = C, ∀t ∈ [0,∞), (2.14)

where C is a constant. Then the following inequality hold:

(φ− C)2 ≤ L

∫ L

0

[φ′]2dx, ∀x ∈ ∀(x, t) ∈ [0, L]× [0,∞). (2.15)
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Proof: Define φ1(x, t) = φ′(x, t) and φ2(x, t) = χ(s− x) =





1, x ≤ s

0, x > s
, where

s ∈ [0, L) is a constant. Utilizing the Cauchy-Schwarz inequality, we have

∫ L

0

φ1φ2dx =

∫ L

0

φ′(x, t)χ(s− x)dx = φ(s, t)− C ≤ s
1
2

(∫ L

0

[φ′]2dx

) 1
2

≤ L
1
2

(∫ L

0

[φ′]2dx

) 1
2

(2.16)

Therefore, we have

(φ− C)2 ≤ L

∫ L

0

[φ′]2dx, ∀x ∈ ∀(x, t) ∈ [0, L]× [0,∞). (2.17)

Lemma 2.6. [132] Rayleigh-Ritz theorem: Let A ∈ Rn×n be a real, symmetric,

positive-definite matrix; therefore, all the eigenvalues of A are real and positive. Let

λmin and λmax denote the minimum and maximum eigenvalues of A, respectively; then

for ∀x ∈ Rn, we have

λmin||x||2 ≤ xT Ax ≤ λmax||x||2, (2.18)

where || · || denotes the standard Euclidean norm.
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Chapter 3

Mooring System

3.1 Introduction

Recent years, with the increasing trend towards oil and gas exploitation in deep

water (> 500m), fixed platforms based on the seabed have become impractical.

Instead, floating platforms such as anchored Floating Production Storage and Of-

floading (FPSO) vessels with thruster assisted position mooring systems have been

used widely. A thruster-assisted moored vessel is an economical solution for station

keeping in deep water due to the long operational period in harsh environmental con-

ditions. Station keeping means maintaining the vessel within a desired position in

the horizontal-plane, which has been identified as one of the most typical problems

in offshore engineering. The thruster assistance is required in harsh environmental

conditions to avoid mooring line failure. A typical thruster assisted position mooring

system consisting of an ocean surface vessel and a number of flexible mooring lines

is shown in Fig. 3.1. The surface vessel, to which the top boundary of the moor-

ing lines is connected, is equipped with a dynamic positioning system with active
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thrusters. The bottom boundary of the mooring lines is fixed in the ocean floor by

the anchors. The total mooring system is subjected to environmental disturbances

including ocean current, wave, and wind. The mooring lines that span a long distance

can produce large vibrations under relatively small disturbances, which can degrade

the performance of the system and result in a larger offset from the target position of

the vessel. Taking into account the unknown time-varying ocean disturbances of the

mooring lines leads to the appearance of oscillations, which make the control problem

of the mooring system relatively difficult.

Fig. 3.1: A FPSO vessel with the thruster assisted position mooring system.

Earlier research on the control of the thruster assisted position mooring systems

mainly focus on the dynamics of the vessel, where the dynamics of the mooring lines is

usually ignored for the convenience of the control design. In [109–111], the dynamics

of the mooring lines is considered as an external force term to the vessel dynamics.
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One drawback of the model is that it can influence the dynamic response of the

whole mooring system due to the neglect of the coupling between the vessel and the

mooring lines. To overcome this shortcoming, in this chapter, the mooring system is

represented by PDEs describing the dynamics of the mooring lines coupled with ODEs

representing the lumped vessel dynamics. We design the boundary control based on

the distributed parameter model of the mooring system. The stability analysis of

the closed-loop system is based on the Lyapunov’s direct method without resorting

to semigroup theory or functional analysis. The main contributions of this chapter

include:

(i) The dynamic model of a thruster assisted position mooring system with arbi-

trary mooring lines subjected to ocean current disturbance is derived for vi-

bration suppression. The governing equation of the system is represented as

nonhomogeneous hyperbolic PDEs.

(ii) Robust adaptive boundary control at the top boundary of the mooring lines is

developed for station keeping of the vessel. Adaptation laws are designed to

compensate for the system parametric uncertainties.

(iii) With the proposed boundary control, uniform boundedness of the mooring sys-

tem under ocean disturbance is proved via Lyapunov synthesis. The control

performance of the system is guaranteed by suitably choosing the design pa-

rameters.

The rest of the chapter is organized as follows. The governing equations (PDEs)

and boundary conditions (ODEs) of the flexible mooring system are derived by use

of the Hamilton’s principle in Section 3.2. The boundary control design via the

Lyapunov’s direct method is discussed separately for both exact model case and
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system parametric uncertainty case in Section 3.3, where it is shown that the uniform

boundedness of the closed-loop system can be achieved by the proposed control.

Simulations are carried out to illustrate performance of the proposed control in Section

3.4. The conclusion of this chapter is presented in Section 3.5.

3.2 Problem Formulation

In this chapter, we assume that the vessel is at the top boundary of the mooring lines

and all the mooring lines are filled with seawater. The flexible mooring lines with

uniform density and flexural rigidity are modeled as the mechanical string structure.

For the practical application of the thruster assisted position mooring system, there

are a total of n (n is a even number) mooring lines in the system, in which n
2

mooring

lines are located at the left and right hand sides of the vessel respectively. As shown

in Fig. 3.1, the numbers of mooring lines in the the left hand side of the vessel are

1, 2, 3, . . . , n
2
, and the numbers of the mooring lines in the the right hand side of

the vessel are n
2

+ 1, n
2

+ 2, n
2

+ 3, . . . , n.

The dynamics of the surface vessel can be modeled as

M
∂2w(L, t)

∂t2
+ ds

∂w(L, t)

∂t
= u(t)− τ(t) + d(t), (3.1)

where w(L, t), ∂w(L,t)
∂t

and ∂2w(L,t)
∂t2

are the position, velocity and acceleration of the

vessel respectively, M the mass of the surface vessel, ds the damping, u(t) the control

force from controller actuation, τ(t) the tension force exerted on the vessel from the

mooring lines, and d(t) the unknown disturbance on the vessel due to the ocean wave,

wind and current.
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The kinetic energy of the mooring system Ek can be represented as

Ek =
1

2
M

[
∂w(L, t)

∂t

]2

+
1

2

n
2∑

i=1

ρ

∫ L

0

[
∂[wi(x, t) + Di]

∂t

]2

dx

+
1

2

n∑

i=n
2
+1

ρ

∫ L

0

[
∂[wj(x, t)−Di]

∂t

]2

dx, (3.2)

where x and t represent the independent spatial and time variables respectively,

wi(x, t) is the position of the ith mooring line at the position x for time t, ρ > 0

is the uniform mass per unit length of the mooring lines, L is the length of the moor-

ing line, and Di is the distance between the ith mooring line and the coordinate point

at Y direction respectively. The actual vibration displacements of the mooring lines

are wi(x, t)+Di (i = 1, 2, 3, . . . , n
2
) and wi(x, t)−Di (i = n

2
+1, n

2
+2, n

2
+3, . . . , n)

with respect to their equilibrium positions.

Remark 3.1. From the Fig. 1, we can obtain the top positions of the mooring lines

are equal to the position of the vessel, i.e.,

wi(L, t) = w(L, t), (3.3)

∂wi(L, t)

∂t
=

∂w(L, t)

∂t
. (3.4)

The potential energy of the mooring system Ep can be represented as

Ep =
1

2

n
2∑

i=1

T

∫ L

0

[
∂[wi(x, t) + Di]

∂x

]2

dx +
1

2

n∑

i=n
2
+1

T

∫ L

0

[
∂[wi(x, t)−Di]

∂x

]2

dx,

(3.5)

The virtual work done by ocean current disturbances on the mooring lines and the
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3.2 Problem Formulation

vessel is given by

δWf =

n
2∑

i=1

∫ L

0

f(x, t)δ[wi(x, t) + Di]dx +
n∑

i=n
2
+1

∫ L

0

f(x, t)δ[wi(x, t)−Di]dx,

+d(t)w(L, t) (3.6)

where f(x, t) is the distributed transverse load on the mooring lines due to the hydro-

dynamic effects of the ocean current, and d(t) denotes the environmental disturbance

on the vessel. The virtual work done by damping on the mooring lines and the vessel

is represented by

δWd = −
n
2∑

i=1

∫ L

0

c

[
∂[wi(x, t) + Di]

∂t

]
δ[wi(x, t) + Di]dx

−
n∑

i=n
2
+1

∫ L

0

c

[
∂[w2(x, t)−D2]

∂t

]
δ[wi(x, t)−Di]dx− ds

∂w(L, t)

∂t
δw(L, t),

(3.7)

where c > 0 is the distributed damping coefficient for the mooring lines, and ds

denotes the damping for the vessel. We introduce the boundary control u(t) at the

top boundary of the mooring lines to produce a transverse motion for the vibration

reduction. The virtual work done by the vessel can be written as

δWm = u(t)δw(L, t), (3.8)
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3.2 Problem Formulation

and the total virtual work done on the system is given by

δW = δWf + δWd + δWm

=

n
2∑

i=1

∫ L

0

[
f(x, t)− c

∂[wi(x, t) + Di]

∂t

]
δ[wi(x, t) + Di]dx

+
n∑

i=n
2
+1

∫ L

0

[
f(x, t)− c

∂[wi(x, t)−Di]

∂t

]
δ[wi(x, t)−Di]dx

+

[
u(t) + d(t)− ds

∂w(L, t)

∂t

]
δw(L, t). (3.9)

Substituting Eqs. (3.2), (3.5), and (3.9) into the Hamilton’s principle Eq. (2.1), we

obtain the governing equations of the system as

ρẅi − Tw′′
i − f + cẇi = 0, (i = 1, 2, 3, . . . , n), (3.10)

∀(x, t) ∈ (0, L)× [0,∞), and the boundary conditions of the system as

wi(0, t) = −Di, (i = 1, 2, 3, . . . ,
n

2
), (3.11)

wi(0, t) = Di, (i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n), (3.12)

wi(L, t) = w(L, t), (i = 1, 2, 3, . . . , n), (3.13)
n∑

i=1

Tw′
i(L, t) = u(t) + d(t)− dsẇ(L, t)−Mẅ(L, t), (i = 1, 2, 3, . . . , n),

(3.14)

∀t ∈ [0,∞).

Remark 3.2. The notations (∗)′, (∗)′′, (∗)′′′ and (∗)′′′′ representing the first, second,

third and forth order derivatives of (∗) with respect to x respectively, (∗̇) and (∗̈)
denoting the first and second order derivative of (∗) with respect to time t, respectively
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3.3 Control Design

are used for clarity.

Remark 3.3. Combining the Eqs. (3.1) and (3.14), we obtain the total tension force

exerted on the vessel from all the mooring lines, τ(t) = −∑n
i=1 Tw′

i(L, t).

Assumption 3.1. For the distributed load f(x, t) on the mooring lines and the dis-

turbance d(t) on the vessel, we assume that there exist constants f̄ ∈ R+ and d̄ ∈ R+,

such that |f(x, t)| ≤ f̄ , ∀(x, t) ∈ [0, L]× [0,∞) and |d(t)| ≤ d̄, ∀(t) ∈ [0,∞). This is

a reasonable assumption as the time-varying disturbances f(x, t) and d(t) have finite

energy and hence are bounded, i.e., f(x, t) ∈ L∞([0, L]) and d(t) ∈ L∞.

Remark 3.4. For control design in Section 3.3, only the assertion that there exist

upper bounds on the disturbances in Assumption 1, |f(x, t)| < f̄ , |d(t)| ≤ d̄, is neces-

sary. The knowledge of the exact values for f(x, t) and d(t) is not required. As such,

different distributed load models up to various levels of fidelity, such as those found

in [127,128,133–135], can be applied without affecting the control design or analysis.

Property 3.1. [136]:If the kinetic energy of the system (3.10) - (3.14), given by

Eq. (3.2) is bounded ∀t ∈ [0,∞), then ẇ(x, t) and ẇ′(x, t) are bounded ∀(x, t) ∈
[0, L]× [0,∞).

Property 3.2. [136]: If the potential energy of the system (3.10) - (3.14), given

by Eq. (3.5) is bounded ∀t ∈ [0,∞), then w′(x, t) and w′′(x, t) are bounded ∀(x, t) ∈
[0, L]× [0,∞).

3.3 Control Design

The control objective is to keep the marine vessel within an envelope around the

desired position and stabilize the mooring lines at the small neighborhood of their
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3.3 Control Design

equilibrium positions in the presence of the distributed transverse load f(x, t) and the

disturbance d(t). In this section, the Lyapunov’s direct method is used to construct

a boundary control law u(t) at the top boundary of the mooring lines and to analyze

the close-loop stability of the system.

In this chapter, two cases are investigated for the mooring system: (i) exact

model-based control, i.e. T , M and ds are all known; and (ii) adaptive control for the

system parametric uncertainty, i.e. T , M and ds are all unknown. For the first case,

boundary control is introduced for the exact model of the mooring system subjected

to the ocean disturbances. For second case where the system parameters cannot

be directly measured, the adaptive control is designed to compensate the system

parametric uncertainties.

3.3.1 Boundary control based on exact model of the mooring

system

To stabilize the system given by governing Eqs. (3.10) and boundary conditions Eqs.

(3.11) - (3.14), we propose the following boundary control:

u =
n∑

i=1

Tw′
i(L, t)−

n∑
i=1

Mẇi
′(L, t) + dsẇ(L, t)− sgn(ua)d̄− kpw(L, t)− kua,

(3.15)

where sgn(·) denotes the sign function, kp and k are the control gains and the auxiliary

signal ua is defined as

ua = ẇ(L, t) +
n∑

i=1

w′
i(L, t). (3.16)
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3.3 Control Design

After differentiating the auxiliary signal Eq. (3.16), multiplying the resulting equation

by M , and substituting Eq. (3.14), we obtain

Mu̇a = −
n∑

i=1

Tw′
i(L, t) +

n∑
i=1

Mẇ′
i(L, t)− dsẇ(L, t) + d + u. (3.17)

We substitute Eq. (3.15) into Eq. (3.17), we have

Mu̇a = −kua + d− sgn(ua)d̄− kpw(L, t). (3.18)

Consider the Lyapunov function candidate

V (t) = V1(t) + V2(t) + η(t), (3.19)

where the energy term V1(t), the auxiliary term V2(t) and the small crossing term

η(t) are defined as

V1(t) =
1

2

n∑
i=1

βρ

∫ L

0

[ẇi(x, t)]2dx +
1

2

n∑
i=1

βT

∫ L

0

[w′
i(x, t)]2dx +

β

2
kp[w(L, t)]2,

(3.20)

V2(t) =
1

2
Mu2

a(t), (3.21)

η(t) =
n∑

i=1

αρ

∫ L

0

xẇi(x, t)w′
i(x, t)dx, (3.22)

where α and β are two positive weighting constants.

Lemma 3.1. The Lyapunov function candidate given by Eq. (3.19), can be upper

and lower bounded as

0 ≤ λ1(V1(t) + V2(t)) ≤ V (t) ≤ λ2(V1(t) + V2(t)), (3.23)
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3.3 Control Design

where λ1 and λ2 are two positive constants defined as

λ1 = 1− 2αρL

min(βρ, βT )
, (3.24)

λ2 = 1 +
2αρL

min(βρ, βT )
, (3.25)

provided

0 < α <
min(βρ, βT )

2ρL
. (3.26)

Proof: Substituting of Ineq. (2.7) into Eq. (3.22) yields:

|η(t)| ≤
n∑

i=1

αρL

∫ L

0

([ẇi(x, t)]2 + [w′
i(x, t)]2)dx

≤ α1V1(t), (3.27)

where

α1 =
2αρL

min(βρ, βT )
. (3.28)

Then, we obtain

−α1V1(t) ≤ η(t) ≤ α1V1(t). (3.29)

Considering α is a small positive weighting constant satisfying 0 < α < min(βρ,βT )
2ρL

, we
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can obtain

α2 = 1− α1 = 1− 2αρL

min(βρ, βT )
> 0, (3.30)

α3 = 1 + α1 = 1 +
2αρL

min(βρ, βT )
> 1. (3.31)

Then, we further have

0 ≤ α2V1(t) ≤ V1(t) + η(t) ≤ α3V1(t). (3.32)

Given the Lyapunov function candidate Eq. (3.19), we obtain

0 ≤ λ1(V1(t) + V2(t)) ≤ V1(t) + V2(t) + η(t) ≤ λ2(V1(t) + V2(t)), (3.33)

where λ1 = min(α2, 1) = α2 and λ2 = max(α3, 1) = α3 are positive constants.

Lemma 3.2. The time derivative of the Lyapunov function candidate Eq. (3.19) can

be upper bounded with

V̇ (t) ≤ −λV (t) + ε, (3.34)

where λ > 0 and ε > 0.

Proof: Differentiating Eq. (3.19) with respect to time leads to

V̇ (t) = V̇1(t) + V̇2(t) + η̇(t). (3.35)

33
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The first term of the Eq. (3.35)

V̇1(t) = A1 + A2 + βkpw(L, t)ẇ(L, t), (3.36)

where

A1 =
n∑

i=1

βρ

∫ L

0

ẇi(x, t)ẅi(x, t)dx, (3.37)

A2 =
n∑

i=1

βT

∫ L

0

w′
i(x, t)ẇ′

i(x, t)dx. (3.38)

Substituting the governing equation (3.10) into A1, we obtain

A1 =
n∑

i=1

β

∫ L

0

ẇi(x, t) (Tw′′
i (x, t)− cẇi(x, t) + f(x, t)) dx. (3.39)

Using the boundary conditions and integrating Eq. (3.38) by part, we obtain

A2 =
n∑

i=1

βT

∫ L

0

w′
i(x, t)d(ẇi(x, t))

=
n∑

i=1

βTw′
i(L, t)ẇi(L, t)−

n∑
i=1

βT

∫ L

0

ẇi(x, t)w′′
i (x, t)dx. (3.40)

Substituting Eqs. (3.39) and (3.40) into Eq. (3.36), we have

V̇1(t) =
n∑

i=1

βTw′
i(L, t)ẇi(L, t)−

n∑
i=1

β

∫ L

0

c[ẇi(x, t)]2dx

+
n∑

i=1

β

∫ L

0

f(x, t)ẇi(x, t)dx + βkpw(L, t)ẇ(L, t). (3.41)
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Substituting the Eq. (3.16) into Eq. (3.41), we obtain

V̇1(t) = −βT

2

[
[ẇ(L, t)]2 +

n∑
i=1

[w′
i(L, t)]2

]
+

βT

2
u2

a(t)− βT
n−1∑
i=1

n∑
j=i+1

w′
i(L, t)w′

j(L, t)

−
n∑

i=1

β

∫ L

0

c[ẇi(x, t)]2dx +
n∑

i=1

β

∫ L

0

f(x, t)ẇi(x, t)dx + βkpw(L, t)ẇ(L, t).

(3.42)

Using Ineq. (2.8), we obtain

V̇1(t) ≤ −βT

2

[
[ẇ(L, t)]2 +

n∑
i=1

[w′
i(L, t)]2

]
+

βT

2
u2

a(t)

+
n∑

i=1

(n− 1)βT

(
δ1 +

1

δ1

)
[w′

i(L, t)]2 −
n∑

i=1

β

∫ L

0

c[ẇi(x, t)]2dx

+
n∑

i=1

βδ2

∫ L

0

[ẇi(x, t)]2dx +
nβ

δ2

∫ L

0

f 2(x, t)dx +
βkp

δ3

[w(L, t)]2

+βkpδ3[ẇ(L, t)]2, (3.43)

where δ1, δ2 and δ3 are positive constants.

Substituting Eq. (3.18) into the second term of the Eq. (3.35), we have

V̇2(t) = Mua(t)u̇a(t)

= −ku2
a(t) + d(t)ua(t)− sgn(ua(t))d̄ua(t)− kpw(L, t)ua(t)

≤ −ku2
a(t) + kp[w(L, t)]2 + kpu

2
a(t)

= −ku2
a(t)− kp[w(L, t)]2 + 2kp[w(L, t)]2 + kpu

2
a(t). (3.44)

Using the Ineq. (2.17) and the boundary condition Eq. (3.11), we have

(w(L, t) + D1)
2 ≤ L

∫ L

0

[w′
1(x, t)]2dx. (3.45)

35



3.3 Control Design

Since

|w(L, t)| − |D1| ≤ |w(L, t) + D1| ≤
√

L

∫ L

0

[w′
1(x, t)]2dx, (3.46)

we obtain

|w(L, t)|2 ≤



√
L

∫ L

0

[w′
1(x, t)]2dx + |D1|




2

≤ 2L

∫ L

0

[w′
1(x, t)]2dx + 2D2

1. (3.47)

Substituting the above equation into Eq. (3.44), we have

V̇2(t) ≤ −ku2
a(t)− kp[w(L, t)]2 + 4kpD

2
1 + 4kpL

∫ L

0

[w′
1(x, t)]2 + kpu

2
a(t).(3.48)

The third term of the Eq. (3.35) is rewritten as

η̇(t) =
n∑

i=1

αρ

∫ L

0

[xẅi(x, t)w′
i(x, t) + xẇi(x, t)ẇ′

i(x, t)]dx

=
n∑

i=1

α

∫ L

0

xw′
i(x, t) [Tw′′

i (x, t) + f(x, t)− cẇi(x, t)] dx

+
n∑

i=1

αρ

∫ L

0

xẇi(x, t)ẇ′
i(x, t)dx

= B1 + B2 + B3 + B4, (3.49)
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where

B1 =
n∑

i=1

αT

∫ L

0

xw′
i(x, t)w′′

i (x, t)dx, (3.50)

B2 =
n∑

i=1

α

∫ L

0

f(x, t)xw′
i(x, t)dx, (3.51)

B3 =
n∑

i=1

αρ

∫ L

0

xẇi(x, t)ẇ′
i(x, t)dx, (3.52)

B4 = −
n∑

i=1

αc

∫ L

0

xw′
i(x, t)ẇi(x, t)dx. (3.53)

After integrating Eq. (3.50) by parts and using the boundary conditions, we

obtain

B1 =
n∑

i=1

αTL[w′
i(L, t)]2 −

n∑
i=1

αT

∫ L

0

{[w′
i(x, t)]2 + xw′

i(x, t)w′′
i (x, t)}dx.

Combining Eq. (3.50) and Eq. (3.54), we obtain

B1 =
n∑

i=1

αTL

2
[w′

i(L, t)]2 −
n∑

i=1

αT

2

∫ L

0

[w′
i(x, t)]2dx. (3.54)

Using Ineq. (2.8), we obtain

B2 ≤ nαL

δ4

∫ L

0

f 2(x, t)dx +
n∑

i=1

αLδ4

∫ L

0

[w′
i(x, t)]2dx, (3.55)

where δ4 is a positive constant. Integrating Eq. (3.52) by parts, we obtain

B3 = nαρL[ẇ(L, t)]2 −
n∑

i=1

αρ

∫ L

0

{[ẇi(x, t)]2 + xẇi(x, t)ẇ′
i(x, t)}dx. (3.56)
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The last term in Eq. (3.56) is equal to B3, and we have

B3 =
nαρL

2
[ẇ(L, t)]2 −

n∑
i=1

αρ

2

∫ L

0

[ẇi(x, t)]2dx. (3.57)

Applying Ineq. (2.8), we obtain

B4 ≤ nαcL

δ5

∫ L

0

[ẇi(x, t)]2dx +
n∑

i=1

αcLδ5

∫ L

0

[w′
i(x, t)]2dx, (3.58)

where δ5 is a positive constant. Substituting Eqs. (3.54), (3.55), (3.57) and (3.58)

into Eq. (3.49) and using the boundary conditions, we obtain

η̇(t) ≤
n∑

i=1

αTL

2
[w′

i(L, t)]2 −
n∑

i=1

αT

2

∫ L

0

[w′
i(x, t)]2dx

+
nαρL

2
[ẇ(L, t)]2 +

∫ L

0

(αLδ4 + αcLδ5)[w
′
i(x, t)]2dx

+
nαL

δ4

∫ L

0

f 2(x, t)dx−
n∑

i=1

(
αρ

2
− nαcL

δ5

) ∫ L

0

[ẇi(x, t)]2dx. (3.59)

Substituting Eqs. (3.43), (3.48) and (3.59) into Eq. (3.35), we obtain

V̇ (t) ≤ −
(

k − kp − βT

2

)
u2

a(t)−
n∑

i=1

(
αρ

2
+ cβ − βδ2 − nαcL

δ5

) ∫ L

0

[ẇi(x, t)]2dx

−
(

αT

2
− αLδ4 − αcLδ5 − 4kpL

) ∫ L

0

[w′
1(x, t)]2dx− kp

(
1− β

δ3

)
[w(L, t)]2

−
n∑

i=2

(
αT

2
− αLδ4 − αcLδ5

) ∫ L

0

[w′
i(x, t)]2dx +

(
nβ

δ2

+
nαL

δ4

) ∫ L

0

f 2(x, t)dx

−
n∑

i=1

[
βT

2
− (n− 1)βT

(
δ1 +

1

δ1

)
− αTL

2

]
[w′

i(L, t)]2

−
(

βT

2
− nαρL

2
− βkpδ3

)
[ẇ(L, t)]2 + 4kpD

2
1

≤ −λ3(V1(t) + V2(t)) + ε, (3.60)
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where the constants kp, k, α, β, δ1, δ2, δ3, δ4, and δ5 are chosen to satisfy the following

conditions:

α <
min(βρ, βT )

2ρL
, (3.61)

βT

2
− nαρL

2
− βkpδ3 ≥ 0, (3.62)

βT

2
− (n− 1)βT

(
δ1 +

1

δ1

)
− αTL

2
≥ 0, (3.63)

σ1 = k − kp − βT

2
> 0, (3.64)

σ2 =
αρ

2
+ cβ − βδ2 − nαcL

δ5

> 0, (3.65)

σ3 =
αT

2
− αLδ4 − αcδ5L− 4kpL > 0, (3.66)

σ4 =
αT

2
− αLδ4 − αcδ5L > 0, (3.67)

σ5 = 1− β

δ3

> 0, (3.68)

λ3 = min

(
2σ1

M
,
2σ2

βρ
,
2σ3

βT
,
2σ4

βT
,
2σ5

β

)
> 0, (3.69)

ε =

(
nβ

δ2

+
nαL

δ4

) ∫ L

0

f̄ 2dx + 4kpD
2
1 > 0. (3.70)

Combining Ineqs. (3.33) and (3.60), we have

V̇ (t) ≤ −λV (t) + ε, (3.71)

where λ = λ3/λ2 > 0 and ε > 0.

Remark 3.5. It is not difficult to find the proper δ1, α and β to satisfy (3.61) and

(3.62). No matter what values of δ1, α and β have been chosen, we can always find

proper δ2, δ3, δ4, δ5, kp, k to satisfy Ineqs. (3.63), (3.64) (3.65), (3.66), (3.67), (3.68)

respectively. Since λ3 and ε are positive definite, Ineqs. (3.69) and (3.70) always

hold. Therefore, we can conclude that a set of values for constants kp, k, α, β, δ1, δ2,
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δ3, δ4, δ5 can be found to satisfy the Ineqs. (3.61)-(3.70).

With the above lemmas, we are ready to present the following stability theorem

of the closed-loop mooring system.

Theorem 3.1. For the system dynamics described by (3.10)-(3.14), under Assump-

tion 3.1, and the boundary control Eq. (3.15), given that the initial conditions are

bounded, we can conclude that

(i) uniform boundedness (UB): the position of the vessel, w(L, t), will remain within

the compact set defined by

Ω1 :=
{
w(L, t) ∈ R

∣∣ |w(L, t)| ≤ H1, ∀(x, t) ∈ [0, L]× [0,∞)
}

, (3.72)

where the constant H1 =
√

2
βkpλ1

(
V (0) + ε

λ

)
. The vibration displacements of the

mooring lines, wi(x, t) + Di (i = 1, 2, 3, . . . , n
2
) and wi(x, t)−Di (i = n

2
+ 1, n

2
+

2, n
2

+ 3, . . . , n), will remain in the compact sets defined by

Ω2 : =
{
wi(x, t) ∈ R

∣∣ |wi(x, t) + Di| ≤ H2, ∀(x, t) ∈ [0, L]× [0,∞)
}

,

(i = 1, 2, 3, . . . ,
n

2
), (3.73)

Ω3 : =
{
wi(x, t) ∈ R

∣∣ |wi(x, t)−Di| ≤ H3, ∀(x, t) ∈ [0, L]× [0,∞)
}

,

(i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n), (3.74)

where the constants H2 = H3 =
√

2L
Tλ1

(
V (0) + ε

λ

)
.

(ii) uniform ultimate boundedness (UUB): the position of the vessel, w(L, t), will

eventually converge to the compact set defined by

Ω4 :=
{

w(L, t) ∈ R
∣∣ lim

t→∞
|w(L, t)| ≤ H4, ∀(x, t) ∈ [0, L]× [0,∞)

}
, (3.75)
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where the constant H4 =
√

2ε
βkpλ1λ

. The vibration displacements of the mooring lines,

wi(x, t)+Di (i = 1, 2, 3, . . . , n
2
) and wi(x, t)−Di (i = n

2
+1, n

2
+2, n

2
+3, . . . , n),

will eventually converge to the compact sets defined by

Ω5 : =
{

wi(x, t) ∈ R
∣∣ lim

t→∞
|wi(x, t) + Di| ≤ H5, ∀x ∈ [0, L)

}
,

(i = 1, 2, 3, . . . ,
n

2
), (3.76)

Ω6 : =
{

wi(x, t) ∈ R
∣∣ lim

t→∞
|wi(x, t)−Di| ≤ H6, ∀x ∈ [0, L)

}
,

(i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n), (3.77)

where the constants H5 = H6 =
√

2Lε
Tλ1λ

.

Proof: Multiplying Eq. (3.34) by eλt yields

∂

∂t
(V (t)eλt) ≤ εeλt. (3.78)

Integrating of the above inequality, we obtain

V (t) ≤
(
V (0)− ε

λ

)
e−λt +

ε

λ
≤ V (0)e−λt +

ε

λ
∈ L∞. (3.79)

which implies V (t) is bounded. Combining Eq. (3.20) and Ineq. (3.33) yields

βkp

2
[w(L, t)]2 ≤ V1(t) ≤ V1(t) + V2(t) ≤ 1

λ1

V (t) ∈ L∞. (3.80)

Then, we have

|w(L, t)| ≤
√

2

βkpλ1

(
V (0)e−λt +

ε

λ

)
≤

√
2

βkpλ1

(
V (0) +

ε

λ

)
, ∀t ∈ [0,∞). (3.81)
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From Eq. (3.119), we have

lim
t→∞

|w(L, t)| ≤
√

2ε

βkpλ1λ
, ∀t ∈ [0,∞). (3.82)

Utilizing Ineq. (2.17) and Eq. (3.20), we have

1

2L
T |wi(x, t) + Di|2 ≤ 1

2
T

∫ L

0

[w′
i(x, t)]2dx ≤ V1(t) ≤ V1(t) + V2(t) ≤ 1

λ1

V (t) ∈ L∞,

(i = 1, 2, 3, . . . ,
n

2
), (3.83)

1

2L
T |wi(x, t)−Di|i ≤ 1

2
T

∫ L

0

[w′
i(x, t)]2dx ≤ V1(t) ≤ V1(t) + V2(t) ≤ 1

λ1

V (t) ∈ L∞,

(i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n). (3.84)

Appropriately rearranging the terms of the above inequality, we obtain w1(x, t) + D1

and w2(x, t)−D2 are uniformly bounded as follows

|wi(x, t) + Di| ≤
√

2L

Tλ1

(
V (0)e−λt +

ε

λ

)
≤

√
2L

Tλ1

(
V (0) +

ε

λ

)
,

∀(x, t) ∈ [0, L]× [0,∞), (i = 1, 2, 3, . . . ,
n

2
), (3.85)

|wi(x, t)−Di| ≤
√

2L

Tλ1

(
V (0)e−λt +

ε

λ

)
≤

√
2L

Tλ1

(
V (0) +

ε

λ

)
,

∀(x, t) ∈ [0, L]× [0,∞), (i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n). (3.86)

From Eqs. (3.123) and (3.124), we have

lim
t→∞

|wi(x, t) + Di| ≤
√

2Lε

Tλ1λ
, ∀x ∈ [0, L], (i = 1, 2, 3, . . . ,

n

2
), (3.87)

lim
t→∞

|wi(x, t)−Di| ≤
√

2Lε

Tλ1λ
, ∀x ∈ [0, L], (i =

n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n).

(3.88)
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Remark 3.6. It is seen that the increase in the control gain k will result in a larger

σ1, which will lead a greater λ3. Then the value of λ will increase, which will reduce

the size of Ω1, Ω2, Ω3, Ω4, Ω5, Ω6 and produce a good control performance.

Remark 3.7. In the above analysis, it is clear that the steady vessel position and the

vibration displacements of the mooring lines can be made arbitrarily small the design

control parameters k are appropriately selected. However, increasing k will bring a

high gain control scheme, which should be avoided in practical applications.

Remark 3.8. From Eqs. (3.121) and (3.122), we can state that V1 and V2 are bounded

∀t ∈ [0,∞). Since V1 and V2 are bounded, ẇi(x, t) and w′
i(x, t) are bounded ∀(x, t) ∈

[0, L] × [0,∞) and ua is bounded ∀t ∈ [0,∞). Then, we can obtain that the kinetic

energy Eq. (3.2) and the potential energy Eq. (3.5) are bounded. Using Property 3.1,

we can obtain ẇi(x, t), and ẇ′
i(x, t) are also bounded ∀(x, t) ∈ [0, L] × [0,∞). Using

Property 3.2, we can further obtain that w′
i(x, t) and w′′

i (x, t) are bounded. Applying

Assumption 3.1, Eqs. (3.10) and the above statements, we can state that ẅi(x, t)

and ẅi(x, t) are also bounded ∀(x, t) ∈ [0, L] × [0,∞). From the above information,

it is shown that the proposed control Eq. (3.15) ensures all internal system signals

including wi(x, t), w′
i(x, t), ẇi(x, t), ẇ′

i(x, t) and ẅi(x, t) are uniformly bounded. Since

w′
i(x, t), ẇi(x, t), and ẇ′

i(x, t) are all bounded ∀(x, t) ∈ [0, L] × [0,∞), and we can

conclude the boundary control Eq. (3.15) is also bounded ∀t ∈ [0,∞).
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3.3.2 Robust adaptive boundary control for system paramet-

ric uncertainty

The previous exact model-based boundary control Eq. (3.15) requires the parametric

knowledge of the mooring system. Robust adaptive boundary control is designed to

improve the performance of the system via parameter estimation when the system

parameters are unknown. The exact model-based boundary control provides a step-

ping stone towards the adaptive control, which is designed to deal with the system

parametric uncertainty. In this section, the previous boundary control is redesigned

by using adaptive control scheme when M , T and ds are all unknown. We redesign

the following robust adaptive boundary control:

u(t) = −P (t)Φ̂(t)− kua(t)− sgn(ua(t))d̄− kpw(L, t), (3.89)

where the vector P (t) = [−∑n
i=1 w′

i(L, t)
∑n

i=1 ẇ′
i(L, t) − ẇ(L, t)], the parameter

estimate vector Φ̂(t) = [T̂ (t) M̂(t) d̂s(t)]
T , sgn(·) denotes the signum function,

kp and k are the control gains, and the auxiliary signal ua(t) is defined as Eq. (3.16).

We define the parameter vector Φ and the parameter estimate error vector Φ̃(t) as

Φ = [T M ds]
T , (3.90)

Φ̃(t) = Φ− Φ̂(t) = [T̃ (t) M̃(t) d̃s(t)]
T . (3.91)
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After differentiating the auxiliary signal Eq. (3.16), multiplying the resulting equation

by M , and substituting Eq. (3.12), we obtain

Mu̇a(t) = −
n∑

i=1

Tw′
i(L, t) +

n∑
i=1

Mẇ′
i(L, t)− dsẇ(L, t) + d(t) + u(t)

= P (t)Φ + d(t) + u(t). (3.92)

Substituting Eq. (3.89) into Eq. (3.92), we have

Mu̇a(t) = P (t)Φ̃(t)− kua(t) + d(t)− sgn(ua(t))d̄− kpw(L, t). (3.93)

The adaptation law is designed as

˙̂
Φ(t) = ΓP T (t)ua(t)− rΓΦ̂(t). (3.94)

where Γ ∈ R3×3 is a diagonal positive-definite matrix and r is a positive constant.

We define the maximum and minimum eigenvalue of matrix Γ as λmax and λmin

respectively. From Eq. (3.91), we have

˙̃Φ(t) = −ΓP T (t)ua(t) + rΓΦ̂(t). (3.95)

Remark 3.9. For the proposed control (3.89), a parameter estimation term, a signum

term and an auxiliary signal term are introduced to compensate for the system para-

metric uncertainties and the effect of unknown time-varying disturbance. The con-

trol is independent of system parameters and the knowledge of the exact values for

disturbance f(x, t) and d(t) are not required, thus possessing stability robustness to

variations in system parameters and unknown disturbances.

Remark 3.10. Both controllers (3.15) and (3.89) do not require distributed sensing
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and all the signals in the boundary control can be measured by sensors or obtained by a

backward difference algorithm. wi(L, t) can be sensed by a laser displacement sensor

at the right boundary of the mooring, and w′
i can be measured by an inclinometer.

In practice, the effect of measurement noise from sensors is unavoidable, which will

affect the control implementation, especially when the high order differentiating terms

with respect to time exist. In our proposed controllers (3.15) and (3.89), ẇ(L, t) with

only one time differentiating with respect to time can be calculated with a backward

difference algorithm. It is noted that differentiating twice and three times position

w(L, t) with respect to time to get ẅ(L, t) and
...
w(L, t) respectively, are undesirable in

practice due to noise amplification. For these cases, observers are needed to design to

estimate the states values according to the boundary conditions.

Remark 3.11. Both controllers (3.15) and (3.89) are based on the distributed pa-

rameter model Eqs. (3.10) to (3.14), and the spillover problems associated with tradi-

tional truncated model-based approaches caused by ignoring high-frequency modes in

controller and observer design are avoided.

Consider a new Lyapunov function candidate

Va(t) = V (t) +
1

2
Φ̃T (t)Γ−1Φ̃(t), (3.96)

where V (t) is defined as Eq. (3.19) and Φ̃(t) is the parameter estimate error vector.

Lemma 3.3. The Lyapunov function candidate given by Eq. (3.104), can be upper

and lower bounded as

0 ≤ λ1a(V1(t) + V2(t) + ||Φ̃(t)||2) ≤ V (t) ≤ λ2a(V1(t) + V2(t) + ||Φ̃(t)||2), (3.97)
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where λ1a and λ2a are two positive constants defined as

λ1a = min(1− 2αρL

min(βρ, βT )
,

1

2λmax

), (3.98)

λ2a = max(1 +
2αρL

min(βρ, βT )
,

1

2λmin

), (3.99)

provided

0 < α <
min(βρ, βT )

2ρL
. (3.100)

Proof: From the properties of matrix Γ and utilizing Lemma 2.6, we have

1

2λmax

||Φ̃(t)||2 ≤ 1

2
Φ̃T (t)Γ−1Φ̃(t) ≤ 1

2λmin

||Φ̃(t)||2. (3.101)

Combining Ineqs. (3.23) and (3.101), we have

0 ≤ λ1a(V1(t) + V2(t) + ||Φ̃(t)||2) ≤ Va(t) ≤ λ2a(V1(t) + V2(t) + ||Φ̃(t)||2), (3.102)

where λ1a = min(α2,
1

2λmax
) and λ2a = max(α3,

1
2λmin

) are two positive constants.

Lemma 3.4. The time derivative of the Lyapunov function in (3.104) can be upper

bounded with

V̇a(t) ≤ −λaVa(t) + ψ, (3.103)

where λa and ψ are two positive constants.

47



3.3 Control Design

Proof: Differentiating Eq. (3.104), we have

V̇a(t) = V̇ (t) + Φ̃T (t)Γ−1 ˙̃Φ(t). (3.104)

According to the similar derivation of Eq. (3.48), we obtain

V̇2(t) = Mua(t)u̇a(t)

≤ −ku2
a(t) + P (t)Φ̃(t)ua(t)− kp[w(L, t)]2 + 4kpD

2
1 + 4kpL

∫ L

0

[w′
1(L, t)]2

+kpu
2
a(t). (3.105)

Applying the results of Lemma 3.2 and substituting Eqs. (3.43), (3.105) and (3.59)

into V̇ , we obtain

V̇a(t) ≤ −λ3(V1(t) + V2(t)) + P (t)Φ̃(t)ua(t) + ε, (3.106)

where λ3 is defined in Eq. (3.69) and ε is defined in Eq. (3.66). Substituting of Ineq.

(3.106) into Eq. (3.104) yields

V̇a(t) ≤ −λ3(V1(t) + V2(t)) + Φ̃T (t)
(
P T (t)ua(t) + Γ−1 ˙̃Φ(t)

)
+ ε. (3.107)

Substituting Eq. (3.95) into Eq. (3.107), we have

V̇a(t) ≤ −λ3(V1(t) + V2(t)) + rΦ̃T (t)Φ̂(t) + ε

≤ −λ3(V1(t) + V2(t))− r

2
||Φ̃(t)||2 +

r

2
||Φ||2 + ε

≤ −λ3a(V1(t) + V2(t) + ||Φ̃(t)||2) +
r

2
||Φ||2 + ε, (3.108)

where λ3a = min(λ3,
r
2
) is a positive constant. From Ineqs. (3.102) and (3.108), we
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have

V̇a(t) ≤ −λaVa(t) + ψ, (3.109)

where λa = λ3a/λ2a and ψ = r
2
||Φ||2 + ε > 0.

With the above lemmas, the adaptive control design for the mooring system sub-

jected to the unknown disturbances can be summarized in the following theorem.

Theorem 3.2. For the system dynamics described by (3.10)-(3.14), under Assump-

tion 3.1, and the boundary control Eq. (3.89), given that the initial conditions are

bounded, we can conclude that

(i) uniform boundedness (UB): the position of the vessel, w(L, t), will remain

within the compact set defined by

Ω7 :=
{
w(L, t) ∈ R

∣∣ |w(L, t)| ≤ H7, ∀(x, t) ∈ [0, L]× [0,∞)
}

, (3.110)

where the constant H7 =

√
2

βkpλ1a

(
Va(0) + ψ

λa

)
. The vibration displacements of the

mooring lines, wi(x, t) + Di (i = 1, 2, 3, . . . , n
2
) and wi(x, t)−Di (i = n

2
+ 1, n

2
+

2, n
2

+ 3, . . . , n), will remain in the compact sets defined by

Ω8 :=
{
wi(x, t) ∈ R

∣∣ |wi(x, t) + Di| ≤ H8, ∀(x, t) ∈ [0, L]× [0,∞)
}

,

(i = 1, 2, 3, . . . ,
n

2
), (3.111)

Ω9 :=
{
wi(x, t) ∈ R

∣∣ |wi(x, t)−Di| ≤ H9, ∀(x, t) ∈ [0, L]× [0,∞)
}

,

(i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n), (3.112)

where the constants H8 = H9 =

√
2L

Tλ1a

(
Va(0) + ψ

λa

)
.
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(ii) uniform ultimate boundedness (UUB): the position of the vessel, w(L, t), will

eventually converge to the compact set defined by

Ω10 :=
{

w(L, t) ∈ R
∣∣ lim

t→∞
|w(L, t)| ≤ H10, ∀(x, t) ∈ [0, L]× [0,∞)

}
, (3.113)

where the constant H10 =
√

2ψ
βkpλ1aλa

. The vibration displacements of the mooring

lines, wi(x, t) + Di (i = 1, 2, 3, . . . , n
2
) and wi(x, t) −Di (i = n

2
+ 1, n

2
+ 2, n

2
+

3, . . . , n), will eventually converge to the compact sets defined by

Ω11 :=
{

wi(x, t) ∈ R
∣∣ lim

t→∞
|wi(x, t) + Di| ≤ H11, ∀x ∈ [0, L)

}
,

(i = 1, 2, 3, . . . ,
n

2
), (3.114)

Ω12 :=
{

wi(x, t) ∈ R
∣∣ lim

t→∞
|wi(x, t)−Di| ≤ H12, ∀x ∈ [0, L)

}
,

(i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n), (3.115)

where the constants H11 = H12 =
√

2Lψ
Tλ1aλa

.

Proof: Multiplying Eq. (3.103) by eλat yields

∂

∂t
(Va(t)e

λat) ≤ ψeλat. (3.116)

Integrating of the above inequality, we obtain

Va(t) ≤
(

Va(0)− ψ

λa

)
e−λat +

ψ

λa

≤ Va(0)e−λat +
ψ

λa

∈ L∞, (3.117)

which implies Va is bounded. Combining Eq. (3.20) and Ineq. (3.102) yields

βkp

2
[w(L, t)]2 ≤ V1(t) ≤ V1(t) + V2(t) + ||Φ̃(t)||2 ≤ 1

λ1a

Va(t) ∈ L∞. (3.118)
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Then, we have

|w(L, t)| ≤
√

2

βkpλ1a

(
Va(0)e−λt +

ψ

λa

)
≤

√
2

βkpλ1a

(
Va(0) +

ψ

λa

)
, ∀t ∈ [0,∞).

(3.119)

From Eq. (3.119), we have

lim
t→∞

|w(L, t)| ≤
√

2ψ

βkpλ1λ
, ∀t ∈ [0,∞). (3.120)

Utilizing Ineq. (2.17) and Eq. (3.20), we have

1

2L
T |wi(x, t) + Di|2 ≤ 1

2
T

∫ L

0

[w′
i(x, t)]2dx ≤ V1(t) ≤ V1(t) + V2(t) + ||Φ̃(t)||2

≤ 1

λ1a

Va(t) ∈ L∞, (i = 1, 2, 3, . . . ,
n

2
), (3.121)

1

2L
T |wi(x, t)−Di|2 ≤ 1

2
T

∫ L

0

[w′
i(x, t)]2dx ≤ V1(t) ≤ V1(t) + V2(t) + ||Φ̃(t)||2

≤ 1

λ1a

Va(t) ∈ L∞, (i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n). (3.122)

Appropriately rearranging the terms of the above inequality, we obtain wi(x, t) + Di

(i = 1, 2, 3, . . . , n
2
) and wi(x, t)−Di (i = n

2
+1, n

2
+2, n

2
+3, . . . , n) are uniformly

bounded as follows

|wi(x, t) + Di| ≤
√

2L

Tλ1a

(
Va(0)e−λat +

ψ

λa

)
≤

√
2L

Tλ1a

(
Va(0) +

ψ

λa

)
,

∀(x, t) ∈ [0, L]× [0,∞), (i = 1, 2, 3, . . . ,
n

2
), (3.123)

|wi(x, t)−Di| ≤
√

2L

Tλ1a

(
Va(0)e−λt +

ψ

λa

)
≤

√
2L

Tλ1a

(
Va(0) +

ψ

λa

)
,

∀(x, t) ∈ [0, L]× [0,∞), (i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n). (3.124)
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From Eqs. (3.123) and (3.124), we have

lim
t→∞

|wi(x, t) + Di| ≤
√

2Lψ

Tλ1aλa

, ∀x ∈ [0, L], (i = 1, 2, 3, . . . ,
n

2
), (3.125)

lim
t→∞

|wi(x, t)−Di| ≤
√

2Lψ

Tλ1aλa

, ∀x ∈ [0, L], (i =
n

2
+ 1,

n

2
+ 2,

n

2
+ 3, . . . , n).

(3.126)

Remark 3.12. From the similar analysis of Remark 3.6 and Remark 3.7, we can

conclude that the steady vessel position and the vibration displacements of the moor-

ing lines can be made arbitrarily small by choosing control gain k in Eq. (3.89)

appropriately.

Remark 3.13. From Eq. (3.117), we can obtain the parameter estimate error Φ̃ is

bounded ∀t ∈ [0,∞). Using the derivation similar to those employed in Remark 3.8,

we can state the proposed control Eq. (3.89) ensures all internal system signals in-

cluding wi(x, t), w′
i(x, t), ẇi(x, t), ẇ′

i(x, t), and ẅi(x, t) are uniformly bounded. Since

Φ̂, w′
i(x, t) and ẇi(x, t) are all bounded ∀(x, t) ∈ [0, L]× [0,∞), and we can conclude

the robust adaptive boundary control Eq. (3.89) is also bounded ∀t ∈ [0,∞).

3.4 Numerical Simulations

Simulations for a mooring system with four mooring lines under the ocean current

disturbances are carried out to demonstrate the effectiveness of the proposed control

(3.15) and (3.89). The eigenfunction expansion method based on Fourier series in [11]

cannot be used to solve the model of the mooring system (3.10)-(3.14) due to the
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unknown term f(x, t). Numerical methods are applied to get the approximate solution

of the system (3.10)-(3.14), when there is no obtainable analytical solution. Several

numerical methods such as finite difference (FD), assumed mode method (AMM),

finite element method (FEM), and Galerkin method can be used to discretize the

system for simulations. In this chapter, we select the finite difference scheme to

simulate the system performance with the proposed boundary control.

The vessel and the mooring lines, initially at rest, are excited by the disturbance

d(t) and the distributed transverse load f(x, t). The corresponding initial conditions

of the mooring system are given as

w(L, t) = ẇ(L, t) = 0, (3.127)

w1(x, 0) =

√
D2

1

L
x−D1, w2(x, 0) =

√
D2

2

L
x−D2, (3.128)

w3(x, 0) = −
√

D2
3

L
x + D3, w4(x, 0) = −

√
D2

4

L
x + D4, (3.129)

ẇ1(x, 0) = ẇ2(x, 0) = ẇ4(x, 0) = ẇ4(x, 0) = 0. (3.130)

Detailed parameters of the mooring system are given in the following table:

Table 1: Parameters of the thruster assisted position mooring system
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3.4 Numerical Simulations

Parameter Description Value

L Length of the mooring lines 1000.00m

T Tension of the mooring lines 4.00× 106N

D Diameter of the mooring lines 0.05m

D1 Distance between line 1 and coordinate point 50.00m

D2 Distance between line 2 and coordinate point 100.00m

D3 Distance between line 3 and coordinate point 50.00m

D4 Distance between line 4 and coordinate point 100.00m

M Mass of the vessel 9.60× 107kg

ds Damping coefficient of the vessel 9.00× 107NS/m

ρ Mass per unit length of the mooring lines 8.02kg/m

ρs Sea water density 1024.00kg/m3

c Damping coefficient of the mooring lines 1.00NS/m2

Large vibrational stresses are normally associated with a resonance that exists

when the frequency of the imposed force is tuned to one of the natural frequen-

cies [137]. In our simulation experiments, the ocean surface current velocity U(t) is

modeled as a mean flow with worst case sinusoidal components to simulate the moor-

ing systems with a mean deflected profile. The sinusoids have frequencies of ωj =

{0.867, 1.827, 2.946, 4.282}, for j = 1 to 4, corresponding to the four natural modes

of vibration of the mooring lines. The current U(t) is expressed as

U(t) = Ū + U ′
N∑

j=1

sin(ωit), (j = 1, 2, . . . , N), (3.131)

where Ū = 2ms−1 is the mean flow current and U ′ = 0.2 is the amplitude of the

oscillating flow. The full current load is applied from x = 1000m to x = 0m and

54



3.4 Numerical Simulations

thereafter linearly decline to zero at the ocean floor, x = 0, to obtain a depth depen-

dent ocean current profile U(x, t). The distributed load f(x, t) is generated by Eq.

(2.5) with CD = 1, θ = 0, St = 0.2 and fv = 2.625. The disturbance d(t) on the

vessel is generated by the following equation.

d(t) = [1 + 0.1 sin(0.1t) + 0.3 sin(0.3t) + 0.5 sin(0.5t)]× 106 (3.132)

With increasing time in the sequences for the duration tf = 1500s, the snapshots

of the mooring system movements without control inputs are shown in Fig. 3.2.

The snapshots of the mooring system movements with the proposed control (3.15),

by choosing kp = 1 × 107, k = 10, are presented in Fig. 3.3. The snapshots of the

mooring system movements with the proposed control (3.89), by choosing kp = 1×107,

k = 10, r = 0.001, Γ = diag{1, 1, 1}, are presented in Fig. 3.4.

It is obvious that both the proposed control (3.15) and (3.89) are effective and are

able to achieve a good performance for the mooring system. In the closed-loop system,

all the mooring lines is stabilized at the small neighborhood of their equilibrium

positions by appropriately choosing design parameters. The surface vessel’s position

w(1000, t) for controlled and uncontrolled responses is shown in Figs. 3.5 and 3.6,

where it can be observed that the proposed control is able to position the vessel near

to its desired position at the origin. The corresponding boundary control u(t) is

shown in Fig. 3.7.
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3.5 Conclusion

Modeling and control design for a thruster assisted position mooring system has been

investigated in this chapter. The mathematical model of the mooring system has been

derived by using the Hamilton’s principle. For this PDE model, both exact model

based boundary control and adaptive boundary control have been proposed based on

the Lyapunov’s direct method. With proposed control, all the signals of the closed-

loop system are proved to be uniformly bounded despite the presence of unknown

system parameters. The proposed control strategy only requires measurements of the

boundary displacement and slope of the mooring lines and the time derivatives of

these quantities. Numerical simulations for a mooring system with four mooring lines

have been presented to verify the effectiveness of the presented boundary control. It

can be concluded that the proposed boundary control has provided a good control

performance for the thruster assisted position mooring system in the presence of

unknown environmental disturbances.
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Fig. 3.2: Snapshots of the mooring system movements without control.
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Fig. 3.3: Snapshots of the mooring system movements with the proposed exact model
based boundary control.
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Fig. 3.4: Snapshots of the mooring system movements with the proposed adaptive
boundary control.
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Fig. 3.5: Displacement of the vessel, w(1000,t), without control.
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Fig. 3.6: Displacement of the vessel, w(1000,t), with the proposed control (3.89).
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Chapter 4

Marine Installation System

4.1 Introduction

The accurate position control for marine installation operations has gained increasing

attention when the trend in the offshore industry is towards the deep water. Due to

the requirements for high accuracy and efficiency arising from the modern ocean

industry, improving reliability and efficiency of installation operations during oil and

gas production in the ocean environment is a challenging research topic in offshore

engineering. Traditional marine installation systems consist of the vessel dynamic

positioning and crane manipulation to obtain the desired position and heading for

the payload [115, 116]. Such methods become difficult in deeper waters due to the

longer cable between the surface vessel and payload. The longer cable increases the

natural period of the cable and payload system which in turn increase the effects

of oscillations. One solution to alleviate the precision installation problem is the

addition of thrusters attached the payload for the installation operation [7].
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Such marine installation system consists of an ocean surface vessel, a flexible

string-type cable and a subsea payload to be positioned for installation on the ocean

floor is depicted in Fig. 4.1. The surface vessel, to which the top boundary of the

cable is connected, is equipped with a dynamic positioning system with an active

thruster. The bottom boundary of the cable is a payload with an end-point thruster

attached. This thruster is used for dynamic positioning of th e payload. The total

marine installation system is subjected to environmental disturbances including ocean

current, wave, and wind. A cable that spans a long distance can produce large vibra-

tions under relatively small disturbances, which can degrade the performance of the

system and result in a larger offset from the target installation site. The control for

the dynamic positioning of the payload is challenging due to the unpredictable exoge-

nous disturbances such as fluctuating currents and transmission of motions from the

surface vessel through the lift cable. Taking into account the unknown time-varying

ocean disturbances of the cable leads to the appearance of oscillations, which make

the control problem of the marine installation system relatively difficult. Current

research [7] on the control of the marine installation systems focuses on the dynamics

of the payload, where the dynamics of the cable is ignored for the convenience of the

control design. The dynamics of the cable is considered as an external force term to

the payload. In this chapter, all the dynamics of the vessel, the cable and the payload

are considered. The flexible marine installation system with cable, vessel and pay-

load dynamics is represented by a set of infinite dimensional equations, (i.e., PDEs

describing the dynamics of the flexible cable) coupled with a set of finite dimensional

equations, (i.e., ODEs describing the lumped vessel and payload dynamics).

For the marine installation system, the dynamic position control of the payload is

as vital as the vibration suppression of the cable. It is therefore necessary to consider
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both vibration suppression and the dynamic positioning in the control design. In

the framework of boundary control, we are going to investigate the robust adaptive

boundary control problem for the string-type model with system parametric uncer-

tainty and under unknown time-varying ocean disturbance. The adaptive control

design aims to compensate for the effects of both parametric and disturbance uncer-

tainties and achieve uniform ultimate boundedness. In this chapter, we design the

boundary control based on the distributed parameter model of the flexible marine

installation system. The stability analysis of the closed-loop system is based on Lya-

punov’s direct method without resorting to semigroup theory or functional analysis.

Although a flexible marine installation system is being considered in this chapter

specifically, the analysis and control design can be extended and applied for position

control and vibration suppression for a class of mechanical string-type system exposed

to undesirable distributed transverse loads. In this chapter, both the dynamics of the

vessel, payload and the vibration of the cable are considered in the dynamic analysis.

The main contributions of this chapter include:

(i) The dynamic model of a flexible marine installation system subjected to ocean

current disturbance is derived based on the Hamilton’s principle. The governing

equation of the system is represented as a nonhomogeneous hyperbolic PDE

with the unknown disturbance term f(x, t).

(ii) Two implementable boundary controllers at the top and bottom boundary of the

cable are designed to position the subsea payload to the desired set-point and

suppress the cable’s vibration. Robust adaptive boundary control is designed

to compensate for the system parametric uncertainty and the effect of unknown

time-varying distributed disturbance f(x, t).
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(iii) With the proposed boundary control, uniform boundedness of the installation

system under ocean disturbance is proved via Lyapunov synthesis. The con-

trol performance of the system is guaranteed by suitably choosing the design

parameters.

The rest of the chapter is organized as follows. The governing equation (PDE) and

boundary conditions (ODEs) of the flexible marine installation system are introduced

by use of the Hamilton’s principle in Section 4.2. The boundary control design via

Lyapunov’s direct method is discussed separately for both exact model case and

system parametric uncertainty case in Section 4.3, where it is shown that the uniform

boundedness of the closed-loop system can be achieved by the proposed control.

Simulations are carried out to illustrate performance of the proposed control in Section

4.4. The conclusion of this chapter is shown in Section 4.5.

4.2 Problem Formulation

For the marine installation system shown in Fig. 1, frame X − Y is the fixed inertia

frame, and frame x− y is the local reference frame fixed along the vertical direction

of the surface vessel. The top boundary of the cable is at the vessel and the bottom

boundary of the cable is at the underwater payload. Forces from thrusters on vessel

and payload are the control inputs of the system, and the boundary position and slope

of the cable are used as the feedback signals in the control design. pd is the desired

target position, p(t) is the position of the vessel, w(x, t) is the elastic transverse

reflection with respect to frame x − y at the position x for time t, and y(x, t) :=

p(t) + w(x, t) is the position of the cable with respect to frame X −Y at the position

x for time t. Note that w(L, t) = 0 due to the connection between the vessel and the
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top boundary of the cable.

In this chapter, we consider the transverse degree of freedom only. We assume

that the original position of the vessel is directly above the subsea payload with no

horizontal offset, and the payload is filled with seawater.

Fig. 4.1: A typical flexible marine installation system.

The kinetic energy of the installation system Ek can be represented as

Ek =
1

2
M

[
∂y(L, t)

∂t

]2

+
1

2
ρ

∫ L

0

[
∂y(x, t)

∂t

]2

dx +
1

2
m

[
∂y(0, t)

∂t

]2

, (4.1)

where x and t represent the independent spatial and time variables respectively,

M denotes the mass of the surface vessel, m denotes the mass of bottom payload,

y(L, t) = p(t), ∂y(L,t)
∂t

= ∂p(t)
∂t

and ∂2y(L,t)
∂t2

= ∂2p(t)
∂t2

are the position, velocity and accel-

eration of the vessel respectively, ρ > 0 is the uniform mass per unit length of the

cable, and L is the length of the cable.

The potential energy Ep due to the strain energy of the cable can be obtained
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from

Ep =
1

2
T

∫ L

0

[
∂w(x, t)

∂x

]2

dx, (4.2)

where T is the tension of the cable. Definition of y(x, t) yields ∂y(x,t)
∂x

= ∂w(x,t)
∂x

.

Then we have

Ep =
1

2
T

∫ L

0

[
∂y(x, t)

∂x

]2

dx. (4.3)

The virtual work done by ocean current disturbance on the vessel, the cable and the

payload is given by

δWf =

∫ L

0

f(x, t)δy(x, t)dx + d1(t)δy(L, t) + d2(t)δy(0, t), (4.4)

where f(x, t) is the distributed transverse load on the cable due to the hydrody-

namic effects of the ocean current, wave and wind, d1(t) denotes the environmental

disturbances on the vessel, and d2(t) denotes the environmental disturbances on the

paylaod. The virtual work done by damping on the vessel, the cable and the payload

is represented by

δWd = −
∫ L

0

c
∂y(x, t)

∂t
δy(x, t)dx− c1

∂y(L, t)

∂t
δy(L, t)− c2

∂y(0, t)

∂t
δy(0, t),(4.5)

where c is the distributed viscous damping coefficient of the cable, c1 denotes the

damping coefficient of the vessel, and c2 denotes the damping coefficient for the pay-

load. We introduce the control u1 applied to the top boundary of the cable from the

thruster attached in the vessel, and the control u2 applied to the bottom boundary

of the cable from the thruster attached in the payload. The virtual work done by the
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boundary control is written as

δWm = u1(t)δw(L, t) + u2(t)δw(0, t). (4.6)

Then, we have the total virtual work done on the system as

δW = δWf + δWd + δWm

=

∫ L

0

[
f(x, t)− c

∂y(x, t)

∂t

]
δy(x, t)dx +

[
u1(t) + d1(t)− c1

∂y(L, t)

∂t

]
δy(L, t)

+

[
u2(t) + d2(t)− c2

∂y(0, t)

∂t

]
δy(0, t). (4.7)

Applying the variation operator and integrating Eqs. (4.1), (4.3), and (4.7) by

parts respectively and substituting them into the Hamilton’s principle, we obtain the

governing equation of the system as

ρÿ(x, t)− Ty′′(x, t) + cẏ(x, t) = f(x, t), (4.8)

and the boundary conditions of the system as

u1(t) + d1(t)− c1ẏ(L, t)−Mÿ(L, t)− Ty′(L, t) = 0, (4.9)

u2(t) + d2(t)− c2ẏ(0, t)−mÿ(0, t) + Ty′(0, t) = 0, (4.10)

∀t ∈ [0,∞).

Remark 4.1. The notations (∗)′, (∗)′′, (∗)′′′ and (∗)′′′′ representing the first, second,

third, forth order derivatives of (∗) with respect to x respectively, (∗̇) and (∗̈) denoting

the first and second order derivative of (∗) with respect to time t, respectively, are

used for clarity.
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Remark 4.2. With consideration of the distributed transverse load f(x, t), the gov-

erning equation of the installation system Eq. (4.8) is represented by a nonhomo-

geneous hyperbolic PDE. This model differs from the string system governed by a

homogeneous PDE in [39,56,59–61,63,66,68,74,76].

Assumption 4.1. For the distributed load f(x, t) on the cable, the disturbance d1(t)

on the vessel, the disturbance d2(t) on the payload, we assume that there exist con-

stants f̄ ∈ R+, d̄1 ∈ R+ and d̄2 ∈ R+, such that |f(x, t)| ≤ f̄ , ∀(x, t) ∈ [0, L]× [0,∞),

|d1(t)| ≤ d̄1, ∀(t) ∈ [0,∞) and |d2(t)| ≤ d̄2, ∀t ∈ [0,∞). This is a reasonable assump-

tion as the time-varying disturbances f(x, t), d1(t) and d2(t) have finite energy and

hence are bounded, i.e. f(x, t) ∈ L∞([0, L]), d1(t) ∈ L∞ and d2(t) ∈ L∞.

Remark 4.3. For control design in Section 4.3, only the assertion that there exist

upper bounds on the disturbance in Assumption 1, |f(x, t)| < f̄ , |d1(t)| ≤ d̄1 and

|d2(t)| ≤ d̄2, is necessary. The knowledge of the exact values for f(x, t), d1(t) and

d2(t) is not required. As such, different distributed load models up to various levels

of fidelity, such as those found in [127,128,133–135], can be applied without affecting

the control design or analysis.

Property 4.1. [136]:If the kinetic energy of the system (4.8) - (4.10), given by Eq.

(4.1) is bounded ∀t ∈ [0,∞), then ẏ(x, t), ẏ′(x, t) and ẏ′′(x, t) are bounded ∀(x, t) ∈
[0, L]× [0,∞).

Property 4.2. [136]: If the potential energy of the system (4.8) - (4.10), given by

Eq. (4.3) is bounded ∀t ∈ [0,∞), then y′(x, t) and y′′(x, t) are bounded ∀(x, t) ∈
[0, L]× [0,∞).
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4.3 Control Design

The control objective is to design boundary control to position the subsea payload

to the desired set-point pd and simultaneously suppress the vibrations of the cable

in the presence of the time-varying ocean disturbance. The control forces u1(t) and

u2(t) are from the thruster in the vessel and the thruster attached in the subsea pay-

load respectively. In this section, the Lyapunov’s direct method is used to construct

boundary control u1(t) and u2(t) at the top and bottom boundary of the cable and

to analyze the stability of the closed-loop system.

In this chapter, we analyze two cases for the flexible marine installation system: (i)

exact model-based control, i.e. T , m, and c2 are all known; and (ii) adaptive control

for the system parametric uncertainty, i.e. T , m and c2 are unknown. For the first

case, robust boundary control is introduced for the exact model of the installation

system subjected to ocean disturbance. For second case where the system parameters

cannot be directly measured, the adaptive control is designed to compensate the

system parametric uncertainty.
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4.3.1 Exact model-based boundary control of the installation

system

To stabilize the system given by governing Eq. (4.8) and boundary condition Eqs.

(4.9) and (4.10), we propose the following boundary control

u1(t) = −kqy(L, t)− kvẏ(L, t)− sgn[ẏ(L, t)]d̄1, (4.11)

u2(t) = −kp(y(0, t)− pd)− ksua(t)− Ty′(0, t) + mẏ′(0, t) + c2ẏ(0, t)− sgn(ua)d̄2,

(4.12)

where sgn(·) denotes the signum function, kq, kv, kp and ks are the positive control

gains and the auxiliary signal ua is defined as

ua(t) = ẏ(0, t)− y′(0, t). (4.13)

After differentiating the auxiliary signal Eq. (4.13), multiplying the resulting equation

by m, and substituting Eq. (4.10), we obtain

mu̇a(t) = Ty′(0, t) + d2(t)−mẏ′(0, t)− c2ẏ(0, t) + u2(t). (4.14)

Substituting Eq. (4.12) into Eq. (4.14), we have

mu̇a(t) = −ksua(t)− kp(y(0, t)− pd) + d2(t)− sgn(ua)d̄2. (4.15)

Remark 4.4. The proposed boundary control does not require distributed sensing and

all the signals in the boundary control can be measured by sensors or obtained by a
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backward difference algorithm. y(L, t) and y(0, t) can be sensed by two the global po-

sitioning systems (GPS) located in the vessel and the end-point thruster respectively.

y′(0, t) can be measured by an inclinometer at the bottom boundary of the cable. For

the exact model based boundary control (4.12), the tension of the cable can be mea-

sured via a force sensor. In practice, the effect of measurement noise from sensors

is unavoidable, which will affect the controller implementation, especially when the

high order differentiating terms with respect to time exist. In our proposed controller

(4.11) and (4.12), ẏ(L, t), ẏ(0, t) and ẏ′(0, t) with only one time differentiating with

respect to time can be calculated with a backward difference algorithm.

Remark 4.5. The control design is based on the distributed parameter model Eqs.

(4.8) to (4.10), and the spillover problems associated with traditional truncated model-

based approaches caused by ignoring high-frequency modes in controller and observer

design are avoided.

Consider the Lyapunov function candidate

V = V1 + V2 + ∆, (4.16)

where the energy term V1 and an auxiliary term V2 and a small crossing term ∆ are

defined as

V1 =
β

2
ρ

∫ L

0

[ẏ]2dx +
β

2
T

∫ L

0

[y′]2dx +
β

2
M [ẏ(L, t)]2 +

βkp

2
[y(0, t)− pd]

2 +
βkq

2
[y(L, t)]2,

(4.17)

V2 =
1

2
mu2

a, (4.18)

∆ = αρ

∫ L

0

(x− L)ẏy′dx, (4.19)
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where α and β are two positive weighting constants.

Lemma 4.1. The Lyapunov function candidate given by (4.16), can be upper and

lower bounded as

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (4.20)

where λ1 and λ2 are two positive constants defined as

λ1 = 1− 2αρL

min(βρ, βT )
> 0, (4.21)

λ2 = 1 +
2αρL

min(βρ, βT )
> 1, (4.22)

provided

α <
min(βρ, βT )

2ρL
. (4.23)

Proof: Substituting of Ineq. (2.7) into Eq. (4.19) yields

|∆| ≤ αρL

∫ L

0

([y′]2 + [ẏ]2)dx

≤ α1V1, (4.24)

where

α1 =
2αρL

min(βρ, βT )
. (4.25)

Then, we obtain

−α1V1 ≤ ∆ ≤ α1V1. (4.26)
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Considering α is a small positive weighting constant satisfying 0 < α < min(βρ,βT )
2ρL

, we

can obtain

α2 = 1− α1 = 1− 2αρL

min(βρ, βT )
> 0, (4.27)

α3 = 1 + α1 = 1 +
2αρL

min(βρ, βT )
> 1. (4.28)

Then, we further have

0 ≤ α2V1 ≤ V1 + ∆ ≤ α3V1, (4.29)

Given the Lyapunov function candidate in Eq. (4.16), we obtain

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (4.30)

where λ1 = min(α2, 1) = α2 and λ2 = max(α3, 1) = α3 are positive constants.

Lemma 4.2. The time derivative of the Lyapunov function in (4.16) can be upper

bounded with

V̇ ≤ −λV + ε, (4.31)

where λ and ε are two positive constants.

Proof: Differentiating Eq. (4.16) with respect to time leads to

V̇ = V̇1 + V̇2 + ∆̇. (4.32)
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The first term of the Eq. (4.32)

V̇1 = A1 + A2 + βMÿ(L, t)ẏ(L, t) + βkp(y(0, t)− pd)ẏ(0, t), (4.33)

where

A1 = βρ

∫ L

0

ẏÿdx, (4.34)

A2 = βT

∫ L

0

y′ẏ′dx. (4.35)

Substituting the governing equation (4.8) into A1, we obtain

A1 = β

∫ L

0

ẏ (Ty′′ + f − cẏ) dx. (4.36)

Using the boundary conditions and integrating Eq. (4.35) by parts, we obtain

A2 = βT

∫ L

0

y′d(ẏ)

= βTy′(L, t)ẏ(L, t)− βTy′(0, t)ẏ(0, t)− βT

∫ L

0

ẏy′′dx. (4.37)

Substituting Eqs. (4.36) and (4.37) into Eq. (4.33), we have

V̇1 = βTy′(L, t)ẏ(L, t)− βTy′(0, t)ẏ(0, t)− βc

∫ L

0

[ẏ]2dx + β

∫ L

0

fẏdx

+βMÿ(L, t)ẏ(L, t) + βkp[y(0, t)− pd]ẏ(0, t) + βkqy(L, t)ẏ(L, t). (4.38)
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Substituting the Eqs. (4.9) and (4.13) into Eq. (4.38), we obtain

V̇1 = −βT

2

[
[ẏ(0, t)]2 + [y′(0, t)]2

]
+

βT

2
u2

a + β[u1 + d1 − c1ẏ(L, t)]ẏ(L, t)

−βc

∫ L

0

[ẏ]2dx + β

∫ L

0

fẏdx + βkp(y(0, t)− pd)ẏ(0, t) + βkqy(L, t)ẏ(L, t).

(4.39)

Substituting Eq. (4.11) and using Ineq. (2.8), we obtain

V̇1 ≤ −βT

2

[
[ẏ(0, t)]2 + [y′(0, t)]2

]
+

βT

2
u2

a − β(kv + c1)[ẏ(L, t)]2 − β(c− δ2)

∫ L

0

[ẏ]2dx

+
β

δ2

∫ L

0

f 2dx +
βkp

2δ1

[y(0, t)− pd]
2 +

βkpδ1

2
[ẏ(0, t)]2, (4.40)

where δ1 and δ2 are two positive constants.

The second term of the Eq. (4.32)

V̇2 = muau̇a,

≤ −ksu
2
a + kpu

2
a − kp[y(0, t)− pd]

2 + 8kpL

∫ L

0

[y′]2dx + 8kp[y(L, t)]2 + 4kpp
2
d,

(4.41)

where Ineqs. (2.7) and (2.11) are employed. We obtain the third term of the Eq.

(4.32) as

∆̇ = αρ

∫ L

0

((x− L)ÿy′ + (x− L)ẏẏ′)dx

= α

∫ L

0

(x− L)y′ [Ty′′ + f − cẏ] dx + αρ

∫ L

0

(x− L)ẏẏ′dx

= B1 + B2 + B3 + B4, (4.42)
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where

B1 = α

∫ L

0

T (x− L)y′y′′dx, (4.43)

B2 = α

∫ L

0

(x− L)fy′dx, (4.44)

B3 = −α

∫ L

0

c(x− L)y′ẏdx, (4.45)

B4 = αρ

∫ L

0

(x− L)ẏẏ′dx. (4.46)

After integrating Eq. (4.43) by parts and using the boundary conditions, we obtain

B1 = αTL[y′(0, t)]2 − αT

∫ L

0

(
[y′]2 + (x− L)y′y′′

)
dx. (4.47)

Combining Eq. (4.43) and Eq. (4.47), we obtain

B1 =
αTL

2
[y′(0, t)]2 − αT

2

∫ L

0

[y′]2dx. (4.48)

Using Ineq. (2.8), we obtain

B2 ≤ αL

δ3

∫ L

0

f 2dx + αLδ3

∫ L

0

[y′]2dx, (4.49)

B3 ≤ αcL

δ4

∫ L

0

[ẏ]2dx + αcLδ4

∫ L

0

[y′]2dx, (4.50)

where δ3 and δ4 are two positive constants. Integrating Eq. (4.46) by parts, we obtain

B4 = αρL[ẏ(0, t)]2 − αρ

∫ L

0

(
[ẏ]2 + xẏẏ′

)
dx. (4.51)
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The last term in Eq. (4.51) equals B4, and we have

B4 =
αρL

2
[ẏ(0, t)]2 − αρ

2

∫ L

0

[ẏ]2dx. (4.52)

Substituting Eqs. (4.48), (4.49), (4.50) and (4.52) into Eq. (4.42) and using the

boundary conditions, we obtain

∆̇ ≤ αTL

2
[y′(0, t)]2 − αT

2

∫ L

0

[y′]2dx +
αL

δ3

∫ L

0

f 2dx + αLδ3

∫ L

0

[y′]2dx +
αcL

δ4

∫ L

0

[ẏ]2dx

+αcLδ4

∫ L

0

[y′]2dx +
αρL

2
[ẏ(0, t)]2 − αρ

2

∫ L

0

[ẏ]2dx. (4.53)

Substituting Eqs. (4.40), (4.41) and (4.53) into Eq. (4.16), we obtain

V̇ ≤ −
(

βc +
αρ

2
− βδ2 − αcL

δ4

) ∫ L

0

[ẏ]2dx−
(

αT

2
− 16kpL− αLδ3 − αcLδ4

) ∫ L

0

[y′]2dx

−β(kv + c1)[ẏ(L, t)]2 −
(

ks − kp − βT

2

)
u2

a −
(

βT

2
− αρL

2
− βkpδ1

2

)
[ẏ(0, t)]2

−
(

βT

2
− αTL

2

)
[y′(0, t)]2 − kp(1− β

2δ1

)[y(0, t)− pd]
2 +

(
β

δ2

+
αL

δ3

) ∫ L

0

f̄ 2dx

+4kpp
2
d + 8kp[y(L, t)]2

≤ −λ3(V1 + V2) + ε, (4.54)

where the constants ks, kv, kp, kq, α, β, δ1, δ2, δ3 and δ4 are chosen to satisfy the
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following conditions:

α <
min(βρ, βT )

2ρL
, (4.55)

βT

2
− αρL

2
− βkpδ1

2
≥ 0, (4.56)

βT

2
− αTL

2
≥ 0, (4.57)

σ1 = βc +
αρ

2
− βδ2 − αcL

δ4

> 0, (4.58)

σ2 =
αT

2
− 16kpL− αLδ3 − αcLδ4 > 0, (4.59)

σ3 = β(kv + c1) > 0, (4.60)

σ4 = 1− β

2δ1

> 0, (4.61)

σ5 = ks − kp − βT

2
> 0, (4.62)

σ6 = 8kp > 0, (4.63)

λ3 = min

(
2σ1

βρ
,
2σ2

βT
,
2σ3

βM
,
2σ4

β
,
2σ5

m
,
2σ6

βkq

)
> 0, (4.64)

ε =

(
β

δ2

+
αL

δ3

) ∫ L

0

f̄ 2dx + 4kpp
2
d ∈ L∞. (4.65)

From Ineqs. (4.30) and (4.54) we have

V̇ ≤ −λV + ε, (4.66)

where λ = λ3/λ2 and ε are two positive constants.

With the above lemmas, the exact model-based control design for the flexible

marine installation system subjected to ocean current disturbance can be summarized

in the following theorem.

Theorem 4.1. For the system dynamics described by (4.8) and boundary conditions

(4.9) - (4.10), under Assumption 4.1, and the boundary control (4.11) and (4.12),
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given that the initial conditions are bounded, the transverse reflection w(x, t) of the

closed loop system is uniformly bounded, and the system boundary error signal e(t) =

y(0, t)− pd will remain within the compact set Ω defined by

Ω := {e ∈ R| |e| ≤ D} (4.67)

where D =
√

2
βkpλ1

(
V (0) + ε

λ

)
.

Proof: Multiplying Eq. (4.31) by eλt yields

∂

∂t
(V eλt) ≤ εeλt. (4.68)

Integration of the above inequality, we obtain

V ≤
(
V (0)− ε

λ

)
e−λt +

ε

λ
≤ V (0)e−λt +

ε

λ
∈ L∞, (4.69)

which implies V is bounded. Utilizing Ineq. (2.11) and Eq. (4.17), we have

β

2L
Tw2(x, t) ≤ β

2
T

∫ L

0

[w′(x, t)]2dx =
β

2
T

∫ L

0

[y′(x, t)]2dx ≤ V1 ≤ V1 + V2 ≤ 1

λ1

V.

(4.70)

Appropriately rearranging the terms of the above Ineq. (4.70), we obtain w(x, t) is

uniformly bounded as follows

|w(x, t)| ≤
√

2L

βTλ1

(
V (0)e−λt +

ε

λ

)
, ∀(x, t) ∈ [0, L]× [0,∞). (4.71)
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Combining Eq. (4.17) and Ineq. (4.70) yields

βkp

2
[y(0, t)− pd]

2 ≤ V1 ≤ V1 + V2 ≤ 1

λ1

V ∈ L∞, (4.72)

|y(0, t)− pd| ≤
√

2

βkpλ1

(
V (0)e−λt +

ε

λ

)
, ∀t ∈ [0,∞). (4.73)

Remark 4.6. In the above analysis, the deflection of the cable w(x, t) can be made

arbitrarily small provided that the design control parameters are appropriately selected.

By choosing the proper values of α and β, it is shown that the increase in the control

gains kv and ks will result in a larger σ3 and σ5, which will lead a greater λ3. Then

the value of λ will increase, which will reduce the size of Ω and bring a better vibration

suppression performance.

Remark 4.7. Even though the y(0, t) may be far from the desired position pd, it

is guaranteed that the steady bottom boundary state error y(0,∞) − pd can be made

arbitrarily small provided that the design parameters are appropriately selected. It

is easily seen that the increase in the control gains kv and ks will result in a better

tracking performance. However, increasing kv and ks will lead a high gain control

scheme. Therefore, in practical applications, the design parameters should be adjusted

carefully for achieving suitable transient performance and control action.

Remark 4.8. From Eq. (4.70), we can state that V1 and V2 are bounded ∀t ∈ [0,∞).

Use of boundedness of V1 and V2 produces ẏ(x, t), y′(x, t) are bounded ∀(x, t) ∈ [0, L]×
[0,∞) and ua is bounded ∀t ∈ [0,∞). Then, we can obtain that potential energy Eq.

(4.3) is bounded. Using Property 4.2, we can further obtain that y′′(x, t) is bounded.
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From the boundedness of ẏ(x, t), we can state that ẏ(0, t) and ẏ(L, t) are bounded.

Therefore, we can conclude that the kinetic energy of the system Eq. (4.1) is also

bounded. Using Property 4.1, we can obtain ẏ(x, t) and ẏ′(x, t) are also bounded

∀(x, t) ∈ [0, L]×[0,∞). Applying Assumption 4.1, Eq. (4.8) and the above statements,

we can state that ÿ(x, t) is also bounded ∀(x, t) ∈ [0, L] × [0,∞). From the above

information, it is shown that the proposed control (4.11) and (4.12) ensure all internal

system signals including w(x, t), y′(x, t), ẏ(x, t), ẏ′(x, t) and ÿ(x, t) are uniformly

bounded. Since y′(x, t), ẏ(x, t) and ẏ′(x, t) are all bounded ∀(x, t) ∈ [0, L]×[0,∞), and

we can conclude the boundary control (4.11) and (4.12) are also bounded ∀t ∈ [0,∞).

4.3.2 Robust adaptive boundary control for system paramet-

ric uncertainty

The previous exact model-based boundary control Eq. (4.11) requires the exact

knowledge of the marine installation system. Adaptive boundary control is designed

to improve the performance of the system via parameter estimation when the system

parameters are unknown. The exact model-based boundary control provides a step-

ping stone towards the adaptive control, which is designed to deal with the system

parametric uncertainty. In this section, the previous boundary control is redesigned

by using adaptive control when T , m, and c2 are all unknown. We rewrite Eq. (4.14)

as the following form

mu̇a = PΦ + d2 + u2, (4.74)
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where vectors P and Φ are defined as

P = [y′(0, t) − ẏ′(0, t) − ẏ(0, t)], (4.75)

Φ = [T m c2]
T . (4.76)

We propose the following adaptive boundary control for system

u1 = −kqy(L, t)− kvẏ(L, t)− sgn[ẏ(L, t)]d̄1, (4.77)

u2 = −P Φ̂− ksua − sgn(ua)d̄2 − kp(y(0, t)− pd), (4.78)

where parameter estimate vector Φ̂ is defined as

Φ̂ = [T̂ m̂ ĉ2]
T . (4.79)

The adaptation law is designed as

˙̂
Φ = ΓP T ua − rΓΦ̂, (4.80)

where Γ ∈ R3×3 is a diagonal positive-definite matrix and r is a positive constant. We

define all the eigenvalues of Γ are real and positive, and the maximum and minimum

eigenvalue of matrix Γ as λmax and λmin respectively. The parameter estimate error

vector Φ̃ ∈ R3 is defined as

Φ̃ = Φ− Φ̂. (4.81)

Substituting Eq. (4.78) into Eq. (4.74) and substituting Eq. (4.81) into Eq. (4.80),
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we have

mu̇a = P Φ̃− ksua + d2 − sgn(ua)d̄2 − kp(y(0, t)− pd), (4.82)

˙̃Φ = −ΓP T ua + rΓΦ̂. (4.83)

Remark 4.9. For the proposed adaptive control (4.78), a parameter estimation term,

a signum term and an auxiliary signal term are introduced to compensate for the

system parametric uncertainty and the effect of unknown time-varying distributed

disturbance. The control (4.77) and (4.78) are independent of system parameters

and the knowledge of the exact values for disturbance f(x, t), d1(t) and d2(t) is not

required, thus possessing stability robustness to variations in system parameters and

unknown disturbance.

Consider the Lyapunov function candidate

Va = V +
1

2
Φ̃T Γ−1Φ̃, (4.84)

where V is defined as Eq. (4.16), and Φ̃ is the parameter estimate error vector.

Lemma 4.3. The Lyapunov function candidate given by (4.84), can be upper and

lower bounded as

0 ≤ λ1a(V1 + V2 + ||Φ̃||2) ≤ Va ≤ λ2a(V1 + V2 + ||Φ̃||2), (4.85)

where λ1a and λ2a are two positive constants defined as

λ1a = min(1− 2αρL

min(βρ, βT )
,

1

2λmax

), (4.86)

λ2a = max(1 +
2αρL

min(βρ, βT )
,

1

2λmin

). (4.87)
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Proof: From Ineq. (4.20), we have

λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (4.88)

where λ1 and λ2 are two positive constants defined in Eqs. (4.21) and (4.22). Utilizing

the properties of matrix Γ and Lemma 2.6, we have

1

2λmax

||Φ̃||2 ≤ 1

2
Φ̃T Γ−1Φ̃ ≤ 1

2λmin

||Φ̃||2. (4.89)

Combining Ineqs. (4.88) and (4.89), we have

0 ≤ λ1a(V1 + V2 + ||Φ̃||2) ≤ Va ≤ λ2a(V1 + V2 + ||Φ̃||2), (4.90)

where λ1a = min(α2,
1

2λmax
) and λ2a = max(α3,

1
2λmin

) are two positive constants.

Lemma 4.4. The time derivative of the Lyapunov function in (4.84) can be upper

bounded with

V̇a ≤ −λaVa + ψ, (4.91)

where λa and ψ are two positive constants.

Proof: We obtain the time derivation of the Lyapunov function candidate Eq.

(4.84) as

V̇a = V̇ + Φ̃T Γ−1 ˙̃Φ. (4.92)
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Substituting Eq. (4.82) into the second term of the Eq. (4.32), we have

V̇2 = muau̇a

= −ksu
2
a − kpua[y(0, t)− pd] + d2ua − sgn(ua)d̄2ua + P Φ̃ua

≤ −ksu
2
a + kpu

2
a − kp[y(0, t)− pd]

2 + 16kpL

∫ L

0

[y′]2dx + 4kpp
2
d + P Φ̃ua.

(4.93)

Applying the results of Lemma 4.2 and substituting Eqs. (4.40), (4.93) and (4.53)

into Eq. (4.16), we obtain

V̇ ≤ −λ3(V1 + V2) + P Φ̃ua + ε, (4.94)

where λ3 is defined in Eq. (4.64) and ε is defined in Eq. (4.62). Substituting of Ineq.

(4.94) into Eq. (4.92) yields

V̇a ≤ −λ3(V1 + V2) + Φ̃T
(
P T ua + Γ−1 ˙̃Φ

)
+ ε. (4.95)

Substituting Eq. (4.83) into Eq. (4.95), we have

V̇a ≤ −λ3(V1 + V2) + rΦ̃T Φ̂ + ε

≤ −λ3(V1 + V2)− r

2
||Φ̃||2 +

r

2
||Φ||2 + ε

≤ −λ3a(V1 + V2 + ||Φ̃||2) +
r

2
||Φ||2 + ε, (4.96)

where λ3a = min(λ3,
r
2
) is a positive constant. From Ineqs. (4.90) and (4.96), we have

V̇a ≤ −λaVa + ψ, (4.97)
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where λa = λ3a/λ2a and ψ = r
2
||Φ||2 + ε > 0.

With the above lemmas, the adaptive control design for the marine installation

system subjected to ocean current disturbance can be summarized in the following

theorem.

Theorem 4.2. For the system dynamics described by (4.8) and boundary conditions

(4.9) - (4.10), under Assumption 4.1, and the boundary control (4.77) and (4.78),

given that the initial conditions are bounded, the closed loop system is uniformly

bounded, and the system boundary error signal e(t) = y(0, t)− pd will remain within

the compact set Ωa defined by

Ωa :=
{
e ∈ R

∣∣ |e| ≤ Da

}
, (4.98)

where Da =

√
2

βkpλ1a

(
Va(0) + ψ

λa

)
.

Proof: Multiplying Eq. (4.91) by eλat yields

∂

∂t
(Vae

λat) ≤ δeλat. (4.99)

Integrating of the above inequality, we obtain

Va ≤
(

Va(0)− ψ

λa

)
e−λat +

ψ

λa

≤ Va(0)e−λat +
ψ

λa

∈ L∞, (4.100)

which implies Va is bounded. Utilizing Ineq. (2.11) and Eq. (4.17), we have

β

2L
Tw2(x, t) ≤ β

2
T

∫ L

0

[w′(x, t)]2dx =
β

2
T

∫ L

0

[y′(x, t)]2dx ≤ V1 ≤ V1 + V2 ≤ 1

λ1a

Va,

(4.101)
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Appropriately rearranging the terms of the above inequality, we obtain w(x, t) is

uniformly bounded as follows

|w(x, t)| ≤
√

2L

βTλ1a

(
Va(0)e−λat +

ψ

λa

)
, ∀(x, t) ∈ [0, L]× [0,∞). (4.102)

Combining Eq. (4.17) and Ineq. (4.66) yields

βkp

2
[y(0, t)− pd]

2 ≤ V1 ≤ V1 + V2 ≤ 1

λ1a

Va ∈ L∞, (4.103)

|y(0, t)− pd| ≤
√

2

βkpλ1a

(
Va(0)e−λat +

ψ

λa

)
, ∀t ∈ [0,∞). (4.104)

Remark 4.10. From the similar analysis of Remark 4.6 and Remark 4.7, we can

conclude that both steady bottom boundary state error y(0,∞)− pd and the deflection

of the cable w(x, t) can be made arbitrarily small by choosing control gains kp, kq, kv

and ks appropriately.

Remark 4.11. From Eq. (4.100), we can obtain the parameter estimate error Φ̃ is

bounded ∀t ∈ [0,∞). Using the derivation similar to those employed in Remark 4.8,

we can state the proposed control Eqs. (4.77) and (4.78) ensure all internal system

signals including y(x, t), y′(x, t), ẏ(x, t), ẏ′(x, t) and ÿ(x, t) are uniformly bounded.

Since Φ̂, y′(x, t) and ẏ(x, t) are all bounded ∀(x, t) ∈ [0, L] × [0,∞), and we can

conclude the robust adaptive boundary control Eqs. (4.77) and (4.78) are also bounded

∀t ∈ [0,∞).

87



4.4 Numerical Simulations

4.4 Numerical Simulations

Simulations for a marine installation system under ocean disturbance are carried

out to demonstrate the effectiveness of the proposed boundary control Eq. (4.11)

and Eq. (4.12). Numerical methods are applied to obtain the approximate solution

of the system (4.8)-(4.10), when there is no obtainable analytical solution. In this

chapter, we select the finite difference method to simulate the system performance

with boundary control.

The cable, initially at rest, is excited by a distributed transverse disturbance due

to ocean current. The corresponding initial conditions of the marine installation

system system are given as

y(x, 0) = 0, (4.105)

∂y(x, 0)

∂t
= 0. (4.106)

The system parameters are given in Table 1.
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Table 1: Parameters of the flexible marine installation system

Parameter Description Value

L Length of the cable 1000.00m

D Diameter of the cable 0.05m

M Mass of the vessel 9.60× 107kg

m Mass of the payload 4× 105kg

c1 Damping coefficient of the vessel 9.00× 107NS/m

c2 Damping coefficient of the payload 2.00× 105NS/m

T Tension 4.00× 106N

ρ Mass per unit length of the cable 8.02kg/m

ρs Sea water density 1024.00kg/m3

c Distributed damping coefficient of the cable 1.00NS/m2

pd Desired set-point 50.00m

In the simulation, the ocean surface current velocity U(t) is given by Eq. (3.131).

We assume that the full current load is applied from x = 1000m to x = 0m and

thereafter linearly decline to zero at the ocean floor, x = 0, to obtain a depth de-

pendent ocean current profile U(x, t) as in Chapter 3. The distributed load f(x, t) is

generated by Eq. (2.5) with CD = 1, θ = 0, St = 0.2 and fv = 2.625. The distributed

load at the top boundary of the cable is shown in Fig. 4.2. The disturbance d1(t) on

the vessel is generated by the following equation

d1(t) = [3 + 0.8 sin(0.7t) + 0.2 sin(0.5t) + 0.2 sin(0.9t)]× 106. (4.107)

The disturbance d2(t) on the payload is given by the following equation

d2(t) = [3 + 0.8 sin(0.7t) + 0.2 sin(0.5t) + 0.2 sin(0.9t)]× 104. (4.108)
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Position of the cable for free vibration, i.e., u1(t) = u2(t) = 0, exposed to ocean

disturbance is shown in Fig. 4.3. The boundary position of the cable is given in Fig.

4.4. It is clear that the system is unstable and the vibration of the cable is quite

large. Position of the cable with exact model-based control Eqs. (4.11) and (4.12),

by choosing kv = 2 × 107, kp = 4 × 102, ks = 2 × 1010, under ocean disturbance is

shown in Fig. 4.5. The corresponding boundary position of the cable and boundary

control input are shown in Figs. 4.6 and 4.7. When the system parameters T , m

and c2 are unknown, position of the cable with adaptive control Eqs. (4.77) and

(4.78), by choosing kv = 2 × 107, kp = 4 × 102, ks = 2 × 1010, r = 0.001 and

Γ = diag{5×106, 1×104, 5×106}, under ocean disturbance is shown in Fig. 4.8. The

corresponding boundary position of the cable and boundary control input are shown

in Figs. 4.9 and 4.10.

Figs. 4.5 and 4.8 illustrate that both the model-based boundary control and the

adaptive boundary control are able to bring the subsea payload to the desired position

pd = 50m and stabilize the cable at the small neighborhood of its equilibrium position.

4.5 Conclusion

In this chapter, both position control and vibration suppression have been investigated

for a flexible marine installation system subjected to the ocean disturbance. Two

cases for the flexible marine installation system are studied: (i) exact model-based

control, and (ii) adaptive control for the system parametric uncertainty. For the

first case, a boundary controller is introduced for the exact model of the installation

system. For second case where the system parameters cannot be directly measured,

to fully compensate for the effect of unknown system parameters, a signum term
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and an auxiliary signal term are introduced to develop a robust adaptive boundary

control law. Both two types of boundary control are designed based on the original

infinite dimensional model (PDE), and thus the spillover instability phenomenon is

eliminated. All the signals of the closed-loop system are proved to be uniformly

bounded by using the Lyapunov’s direct method. The exact model based boundary

control (4.11) and (4.12) require the measurement of the tension, the top position

and slope of the cable. While the robust adaptive boundary control (4.77) and (4.78)

only require measurements of the top position and slope of the cable. The proposed

schemes offer implementable design procedures for the control of marine installation

systems since all the signals in the control can be measured by sensors or calculated by

a backward difference algorithm. The simulation results illustrate that the proposed

control is able to position the payload to the desired set-point and suppress the

vibration of the cable with a good performance.
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Fig. 4.2: The distributed load at the top boundary of the cable f(L, t).
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Fig. 4.3: Position of the cable without control.

Fig. 4.4: Boundary position of the cable without control.
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Fig. 4.5: Position of the cable with model based boundary control.

Fig. 4.6: Boundary position of the cable with model based control.
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Fig. 4.7: Model-based control input u1(t) and u2(t).

Fig. 4.8: Position of the cable with robust adaptive boundary control.
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Fig. 4.9: Boundary position of the cable with robust adaptive control.

Fig. 4.10: Adaptive control input u1(t) and u2(t).
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Chapter 5

Flexible Marine Riser

5.1 Introduction

Vibration problems of slender bodies in ocean engineering such as oil drilling and gas

exploration have received increasing attention. Improving reliability and efficiency of

operations during oil and gas production in the ocean environment is a challenging

research topic in offshore engineering. With the trends towards exploiting resources in

deep waters and harsher environments, the vibration problem of riser becomes more

and more significant [138]. A typical marine riser system depicted in Fig. 5.1 is the

connection between a vessel on the ocean surface and a well head on the ocean floor.

A drilling riser is used for drilling pipe protection and transportation of the drilling

mud, while a production riser is a pipe used for oil transportation. The stiffness

of a flexible marine riser depends on its tension and length, thus a riser that spans

a long distance can produce large vibrations under relatively small disturbances. In

marine environment, vibrations excited by vortices can degrade the performance of the

flexible marine riser. Vibrations of the riser due to the ocean current disturbance and
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tension exerted at the top can produce premature fatigue problems, which requires

inspections and costly repairs, and as a worst case, environmental pollution due to

leakage from damaged areas. Vibration reduction to minimize the bending stresses is

desirable for preventing damage and improving lifespan.

Fig. 5.1: A typical marine riser system.

For purpose of dynamic analysis, the flexible riser is regarded as a distributed

parameter system which is infinite dimensional and mathematically represented by

PDEs with various boundary conditions involving functions of space and time. The

riser system can be modeled as an Euler-Bernoulli beam structure since the diameter-

to-length of the riser is small from the ocean surface to the ocean floor. In practice,

dynamics of flexible risers are usually represented by a set of PDEs with appropri-

ate boundary equations or approximated by ordinary differential equations (ODEs).

97



5.1 Introduction

In [9,122,123], PDEs based on the Euler-Bernoulli beam model have been used to an-

alyze the dynamic response of the flexible marine riser system under the ocean current

disturbance. In [72], a boundary controller for the flexible marine riser with actua-

tor dynamics is designed based on Lyapunov’s direct method and the backstepping

technique. In [10], a boundary control law is designed to generate the required signal

for riser angle control and transverse vibration reduction with guaranteed closed-loop

stability and the exponential stability of the system is proved under the free vibration

conditions. The dynamics of the flexible mechanical system is modeled by a set of

PDEs with infinite number of dimensions which makes it difficult to control.

In this chapter, we design the boundary control law based on the distributed

parameter system model of the flexible riser system. As shown in Fig. 5.1, the control

is implemented at the top of the riser through two actuators respectively in transverse

and longitudinal directions. The control objective is to design a controller to reduce

both transverse and longitudinal vibrations of the riser. The control inputs from the

two actuators in the vessel are designed via Lyapunov’s direct method and the required

measurements for feedback are the displacement in the transverse and longitudinal

directions at the top of the riser. Although a flexible riser is being considered in this

chapter specifically, the analysis and control design can be extended and applied for

vibration control for a class of tensioned beams exposed to undesirable distributed

transverse loads. Other examples of practical application in the marine environment

include free hanging underwater pipelines or drill strings.

In former marine flexible riser research, the axial deformation of the riser is usually

ignored for the convenience of dynamic analysis. Only the transverse dynamics of the

riser is considered and the coupling between transverse and longitudinal displacements

is neglected, which can influence the dynamic response of the riser system and lead
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to an imprecise model. In this chapter, both the axial deformation and transverse

displacement of the riser are considered in the dynamic analysis. To the best of our

knowledge, this is the first application of boundary control to a flexible marine riser

for transverse and longitudinal vibrations reduction through two actuators. The main

contributions of this chapter include:

(i) A coupled nonlinear dynamic model of the marine flexible riser for transverse

and longitudinal vibrations reduction is derived under the distributed ocean

current disturbance.

(ii) An implementable boundary control with two actuators in transverse and lon-

gitudinal directions is designed to reduce both transverse and longitudinal vi-

brations of the marine flexible riser.

(iii) Uniform boundedness under ocean current disturbance and exponential stability

under free vibration condition are proved via Lyapunov’s direct method.

(iv) Numerical simulations via finite difference method are used to verify the effec-

tiveness and performance of the proposed controller.

The rest of the chapter is organized as follows. Section 5.2 illustrates the dynamic

equations (PDEs) of the flexible riser and boundary conditions by analyzing the dy-

namics of this flexible structure with fluctuant environmental disturbances. In Section

5.3, the boundary control design via Lyapunov’s direct method is discussed for this

coupled nonlinear flexible beam, where it is shown that the uniform boundedness of

the closed-loop system can be guaranteed under the distributed ocean current distur-

bance and the exponential stability can be achieved under free vibration condition.

The numerical simulation with finite difference method is presented in Section 5.4 to
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verify the performance of the proposed controller. The conclusion of this chapter is

shown in Section 5.5.

5.2 Problem Formulation

In this chapter, we assume that the vessel is directly above the subsea well head with

no horizontal offset and the riser is filled with seawater. The flexible marine riser

with uniform density and flexural rigidity is modeled as the Euler-Bernoulli beam

structure since the diameter-to-length of the riser is small.

The kinetic energy of the riser system Ek can be represented as

Ek =
1

2
ρ

∫ L

0

[(
∂w(x, t)

∂t

)2

+

(
∂v(x, t)

∂t

)2
]

dx, (5.1)

where x and t represent the independent spatial and time variables respectively,

w(x, t) and v(x, t) are the displacement in the transverse and longitudinal directions

of the riser at the position x for time t, ρ > 0 is the uniform mass per unit length of

the riser, and L is the length of the beam.

The potential energy Ep due to the bending and the axial deformation [18] can

be obtained from

Ep =
1

2
EI

∫ L

0

[
∂2w(x, t)

∂x2

]2

dx +
1

2
T

∫ L

0

[
∂w(x, t)

∂x

]2

dx

+
1

2
EA

∫ L

0

{
∂v(x, t)

∂x
+

1

2

[
∂w(x, t)

∂x

]2
}2

dx, (5.2)

where T is the tension of the riser, EI is the bending stiffness, and EA is the axial

stiffness. Both EI and EA are assumed to be constant throughout this chapter. The
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first term of Eq. (5.2) is due to the bending, the second term is due to axial force,

and the third term is due to the strain energy of the beam.

The work done by ocean current disturbance on the riser is given by

Wf =

∫ L

0

f(x, t)w(x, t)dx, (5.3)

where f(x, t) is the distributed transverse load due to the hydrodynamic effects of

the ocean current. The work done by linear structure damping is represented by

Wd = −
∫ L

0

c1

[
∂w(x, t)

∂t

]
w(x, t)dx−

∫ L

0

c2

[
∂v(x, t)

∂t

]
v(x, t)dx, (5.4)

where c1, c2 > 0 are the structural distributed transverse and longitudinal damping

coefficients respectively. Both c1 and c2 are assumed to be constant in this chapter.

We introduce the boundary control at the top boundary of the riser to produce a

transverse motion uT and a longitudinal motion uL for vibration reduction. The

work done by the two actuators can be written as

Wm = uT w(L, t) + uLv(L, t), (5.5)

and the total work done on the system, i.e. W , is given by

W = Wf + Wd + Wm

=

∫ L

0

{[
f(x, t)− c1

∂w(x, t)

∂t

]
w(x, t)− c2

[
∂v(x, t)

∂t

]
v(x, t)

}
dx

+uT w(L, t) + uLv(L, t), (5.6)

where Wf is the work done by the distributed transverse load f(x, t) due to the
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hydrodynamic effects of the ocean current and Wd is the work done by linear structural

damping with the damping coefficients, c1, c2 > 0.

Substituting Eqs. (5.1), (5.2) and (5.6) into the Hamilton’s principle Eq. (2.1),

we obtain the governing equations of the system as

ρẅ + EIw′′′′ − Tw′′ − f + c1ẇ − EAv′′w′ − EAv′w′′ − 3

2
EA (w′)2

w′′ = 0, (5.7)

ρv̈ + c2v̇ − EAv′′ − EAw′w′′ = 0, (5.8)

and the boundary conditions of the system as

w′′(0, t) = w′′(L, t) = w(0, t) = v(0, t) = 0, (5.9)

−EIw′′′(L, t) + Tw′(L, t) + EAv′(L, t)w′(L, t) +
1

2
EA [w′(L, t)]

3
= uT (t), (5.10)

1

2
EA [w′(L, t)]

2
+ EAv′(L, t) = uL(t), (5.11)

∀t ∈ [0,∞).

Remark 5.1. The notations w′(x, t) = ∂w(x,t)
∂x

, w′′(x, t) = ∂2w(x,t)
∂x2 , w′′′(x, t) = ∂3w(x,t)

∂x3 ,

w′′′′(x, t) = ∂4w(x,t)
∂x4 , v′(x, t) = ∂v(x,t)

∂x
, v′′(x, t) = ∂2v(x,t)

∂x2 , ẅ(x, t) = ∂2w(x,t)
∂t2

, ẇ(x, t) =

∂w(x,t)
∂t

, and v̇(x, t) = ∂v(x,t)
∂t

are used to reduce the notational complexity.

Property 5.1. [10, 136]: If the kinetic energy of the system (5.7) - (5.11), given

by Eq. (5.1) is bounded ∀(x, t) ∈ [0, L] × [0,∞), then ẇ′(x, t), ẇ′′(x, t), v̇′(x, t) and

v̇′′(x, t) are bounded ∀(x, t) ∈ [0, L]× [0,∞).

Property 5.2. [10, 136]: If the potential energy of the system (5.7) - (5.11), given

by Eq. (5.2) is bounded ∀(x, t) ∈ [0, L]× [0,∞), then w′′(x, t), w′′′(x, t), w′′′′(x, t) and

v′′(x, t) are bounded ∀(x, t) ∈ [0, L]× [0,∞).
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Assumption 5.1. For the distributed disturbance f(x, t), we assume that there exists

a constant f̄ ∈ R+, such that ||f(x, t)|| ≤ f̄ , ∀(x, t) ∈ [0, L] × [0,∞). This is a

reasonable assumption as the effects of the time-varying current f(x, t) have finite

energy and hence are bounded, i.e., f(x, t) ∈ L∞([0, L]).

Remark 5.2. For control design in Section 5.3, only the assertion that there exist

an upper bound on the disturbance in Assumption 1, ||f(x, t)|| < f̄ , is necessary.

The knowledge of the exact value for f(x, t) is not required ∀(x, t) ∈ [0, L] × [0,∞).

As such, different VIV models up to various levels of fidelity, such as those found

in [127,128,133–135], can be applied without affecting the control design or analysis.

Remark 5.3. The VIV problem can be separated into the drag and the lift compo-

nents, perpendicular to each other. The vector sum results in a force with oscillating

magnitude and direction, thereby producing of figure of “8” response in the riser. Un-

der Assumption 5.1, it is possible that control applied to these two cases in separate

axis may be sufficient for vibration reduction of the VIV problem. The combination

of drag and oscillating lift will be treated in future analysis using a 3D riser model.

5.3 Control Design

The control objective is to reduce the vibrations of the riser, i.e. w(x, t) and v(x, t),

under the time-varying distributed transverse load f(x, t) from the ocean current. In

this section, Lyapunov’s direct method is used to construct boundary control laws

uT (t) and uL(t) at the top boundary of the flexible marine riser and to analyze the

closed-loop stability of the system.

To stabilize the system given by Eqs. (5.7) and (5.8), we propose the following
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control laws:

uT = −k1ẇ(L, t)− k2w(L, t), (5.12)

uL = −k3v̇(L, t)− k4v(L, t), (5.13)

where ki, i = 1, 2, 3, 4, are positive constants.

Remark 5.4. The control is independent of system parameters, thus possessing sta-

bility robustness to variations in system parameters. The control design is based on

the distributed parameter system model Eqs. (5.7) and (5.8), and the spillover prob-

lems associated with traditional truncated model-based approaches caused by ignoring

high-frequency modes in controller and observer design are avoided. For recent results

on model-based control of distributed system which are helpful in avoiding spillover

effects, the readers can refer to [16,17].

Remark 5.5. In the proposed controller (5.12) and (5.13), w(L, t) and v(L, t) can

be measured through position sensors at the top boundary of the riser. In practice,

the effect of measurement noise from sensors is unavoidable, which will affect the

the controller implementation, especially when the high order differentiating terms

with respect to time exist. In our proposed controller (5.12) and (5.13), ẇ(L, t) and

v̇(L, t) with only one time differentiating with respect to time can be obtained through

a backwards difference algorithm of the values of w(L, t) and v(L, t). It is noted that

differentiating twice and three times positions w(L, t) and v(L, t) with respect to time

to get ẅ(L, t),
...
w(L, t), v̈(L, t), and

...
v (L, t) respectively, are undesirable in practice

due to noise amplification. For these cases, observers are needed to design to estimate

the states values according to the boundary conditions.
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5.3.1 Uniformly stable control under ocean current distur-

bance

Lemma 5.1. [139,140] For bounded initial conditions, ∀x and ∀t ≥ 0, if there exists

a C1 continuous and positive definite Lyapunov function V (x, t) : <n × <+ −→ <
satisfying κ1 (‖x‖) ≤ V (x, t) ≤ κ2 (‖x‖), such that V̇ (x, t) ≤ −λV (x, t) + c , where

κ1, κ2 : Rn → R are class K functions and c is a positive constant, then the equilibrium

point x = 0 of the system ẋ = f(x, t) is uniformly bounded.

Consider the Lyapunov function candidate

V (t) = Eb(t) + Ec(t) + Ed(t). (5.14)

The energy term Eb(t) and an auxiliary term Ec(t) and a small crossing term Ed(t)

are defined as

Eb =
1

2
ρ

∫ L

0

(
ẇ2 + v̇2

)
dx +

1

2
EI

∫ L

0

[w′′]2dx +
1

2
EA

∫ L

0

(
v′ +

1

2
[w′]2

)2

dx

+
1

2
T

∫ L

0

[w′]2dx, (5.15)

Ec =
k2 + β1k1

2
w2(L, t) +

k4 + β2k3

2
v2(L, t), (5.16)

Ed = β1ρ

∫ L

0

wẇdx + β2ρ

∫ L

0

vv̇dx, (5.17)

where ki, i = 1, 2, 3, 4, are positive control parameters, and βj, j = 1, 2, are two small

positive weighting constants.

Lemma 5.2. The Lyapunov candidate function given by (5.14), can be upper and
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lower bounded as

0 ≤ λ1(Eb(t) + Ec(t)) ≤ V (t) ≤ λ2(Eb(t) + Ec(t)), (5.18)

where λ1 and λ2 are positive constants.

Proof: Substituting Ineqs. (2.7) and (2.10) into Eq. (5.17) yields:

|Ed| ≤ β1ρ

∫ L

0

ẇ2dx + β1ρL2

∫ L

0

[w′]2dx + β2ρ

∫ L

0

v̇2dx + β2ρL2

∫ L

0

[v′]2dx

≤ αEb, (5.19)

where

α = 2ρ
max(β1, β1L

2, β2, β2L
2)

min(ρ, T, EI,EA)
, (5.20)

Then, we obtain

−αEb ≤ Ed ≤ αEb, (5.21)

Considering β1 and β2 are two small positive weighting constants, and by choosing

β1 and β2 properly, we can obtain

α1 = 1− α = 1− 2ρ
max(β1, β1L

2, β2, β2L
2)

min(ρ, T, EI,EA)
> 0, (5.22)

α2 = 1 + α = 1 + 2ρ
max(β1, β1L

2, β2, β2L
2)

min(ρ, T, EI,EA)
> 1, (5.23)

Then, we further have

0 ≤ α1Eb ≤ Eb + Ed ≤ α2Eb, (5.24)
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Given the Lyapunov function candidate in Eq. (5.14), we obtain

0 ≤ λ1(Eb(t) + Ec(t)) ≤ V (t) ≤ λ2(Eb(t) + Ec(t)), (5.25)

where λ1 = min(α1, 0.5(k2+β1k1), 0.5(k4+β2k3)) and λ2 = max(α1, 0.5(k2+β1k1), 0.5(k4+

β2k3)) are positive constants.

Lemma 5.3. The time derivative of the Lyapunov function in (5.14) can be upper

bounded with

V̇ (t) ≤ −λV (t) + ε, (5.26)

where λ and ε are two positive constants.

Proof: We differentiate Eq. (5.14) with respect to time to obtain

V̇ (t) = Ėb + Ėc + Ėd, (5.27)

The first term of the Eq. (5.27)

Ėb = B1 + B2 + B3 + B4, (5.28)
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where

B1 = ρ

∫ L

0

ẇẅdx + ρ

∫ L

0

v̇v̈dx, (5.29)

B2 = EI

∫ L

0

w′′ẇ′′dx, (5.30)

B3 = EA

∫ L

0

(
v′ +

1

2
[w′]2

)
(v̇′ + w′ẇ′) dx, (5.31)

B4 = T

∫ L

0

w′ẇ′dx. (5.32)

Using governing equation in the expression for B1, we obtain

B1 =

∫ L

0

ẇ

(
−EIw′′′′ + Tw′′ +

3

2
EA[w′]2w′′ + EAw′′v′ + EAw′v′′ + f − c1ẇ

)
dx

+

∫ L

0

v̇ (EAv′′ + EAw′w′′ − c2v̇) dx, (5.33)

Applying the boundary conditions and integrating Eq.(5.30) by parts, we obtain

B2 = EI

∫ L

0

w′′d(ẇ′)

= −EIw′′′(L, t)ẇ(L, t) + EI

∫ L

0

ẇw′′′′dx, (5.34)

Applying the boundary conditions and integrating Eq. (5.31) by parts, we obtain

B3 = EA

∫ L

0

v′v̇′dx + EA

∫ L

0

v′w′ẇ′dx +
1

2
EA

∫ L

0

[w′]2v̇′dx +
1

2
EA

∫ L

0

[w′]3ẇ′dx

= EAv′(L, t)v̇(L, t)− EA

∫ L

0

v̇v′′dx + EAv′(L, t)w′(L, t)ẇ(L, t)

−EA

∫ L

0

ẇ(v′′w′ + v′w′′)dx +
1

2
EA[w′(L, t)]2v̇(L, t)− EA

∫ L

0

v̇w′w′′dx

+
1

2
EA[w′(L, t)]3ẇ(L, t)− 3

2
EA

∫ L

0

ẇ[w′]2w′′dx, (5.35)
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Using the boundary conditions and integrating Eq. (5.32) by part, we obtain

B4 = T

∫ L

0

w′d(ẇ)

= Tw′(L, t)ẇ(L, t)− T

∫ L

0

ẇw′′dx, (5.36)

Substituting Eqs. (5.33), (5.34), (5.35), (5.36) into Eq. (5.28), we have

Ėb =

(
−EIw′′′(L, t) + Tw′(L, t) + EAw′(L, t)v′(L, t) +

1

2
EA[w′(L, t)]3

)
ẇ(L, t)

+

(
1

2
EA[w′(L, t)]2 + EAv′(L, t)

)
v̇(L, t)− c1

∫ L

0

ẇ2dx− c2

∫ L

0

v̇2dx

+

∫ L

0

fẇdx. (5.37)

Substituting the boundary conditions Eqs. (5.10) and (5.11) into Eq. (5.37), we

obtain

Ėb = uT ẇ(L, t) + uLv̇(L, t)− c1

∫ L

0

ẇ2dx− c2

∫ L

0

v̇2dx +

∫ L

0

fẇdx, (5.38)

Using Ineq. (2.8) , we obtain

Ėb ≤ uT ẇ(L, t) + uLv̇(L, t)− (c1 − δ1)

∫ L

0

ẇ2dx− c2

∫ L

0

v̇2dx +

∫ L

0

1

δ1

f 2dx,

(5.39)

where δ1 > 0 is a positive constant.

The second term of the Eq. (5.27)

Ėc = (k2 + β1k1)w(L, t)ẇ(L, t) + (k4 + β2k3)v(L, t)v̇(L, t), (5.40)
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The third term of the Eq. (5.27)

Ėd = β1ρ

∫ L

0

(ẇ2 + wẅ)dx + β2ρ

∫ L

0

(v̇2 + vv̈)dx

= β1

∫ L

0

[
−EIww′′′′ + Tww′′ + fw − c1wẇ +

3

2
EAww′2w′′ + EAww′′v′

+EAww′v′′ + ρẇ2
]
dx + β2

∫ L

0

[
EAvv′′ + EAvw′w′′ + ρv̇2 − c2vv̇

]
dx

= D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + D10 + D11 + D12,

(5.41)

where

D1 = −β1

∫ L

0

EIww′′′′dx, (5.42)

D2 = β1

∫ L

0

Tww′′dx, (5.43)

D3 = β1

∫ L

0

fwdx, (5.44)

D4 = −β1

∫ L

0

c1wẇdx, (5.45)

D5 = β1

∫ L

0

3

2
EAww′2w′′dx, (5.46)

D6 = β1

∫ L

0

EAww′′v′dx, (5.47)

D7 = β1

∫ L

0

EAww′v′′dx, (5.48)

D8 = β1

∫ L

0

ρẇ2dx, (5.49)

D9 = β2

∫ L

0

EAvv′′dx, (5.50)

D10 = β2

∫ L

0

EAvw′w′′dx, (5.51)

D11 = β2

∫ L

0

ρv̇2dx, (5.52)
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D12 = β2

∫ L

0

c2vv̇dx. (5.53)

After integrating Eqs. (5.42) and (5.43) by parts and using the boundary conditions,

we obtain

D1 = −β1EIw(L, t)w′′′(L, t)− β1EI

∫ L

0

[w′′]2dx,

D2 = β1Tw(L, t)w′(L, t)− β1T

∫ L

0

[w′]2dx,

Using the Ineqs. (2.8) and (2.10), we obtain

D3 ≤ β1

δ2

∫ L

0

f 2dx + β1δ2

∫ L

0

w2dx

≤ β1

δ2

∫ L

0

f 2dx + β1δ2L
2

∫ L

0

[w′]2dx (5.54)

D4 ≤ β1
c1

δ3

∫ L

0

ẇ2dx + β1c1δ3L
2

∫ L

0

[w′]2d, (5.55)

where δ2, δ3 > 0. Integrating Eq. (5.46) by parts, we obtain

D5 = β1

∫ L

0

3

2
EAww′2d(w′)

=
3β1

2
EAw[w′]3

∣∣∣∣
L

0

− 3β1

2
EA

∫ L

0

w′(w′[w′]2 + 2ww′w′′)dx, (5.56)

The polynomial of the last term in Eq. (5.56) is same as D5. Rewriting Eq. (5.56),

we obtain

D5 =
β1

2
EAw(L, t)[w′(L, t)]3 − β1

2
EA

∫ L

0

[w′]4dx, (5.57)

After integrating Eqs. (5.47), (5.50) and (5.51) by parts and using the boundary
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conditions, we obtain

D6 = β1EAw(L, t)w′(L, t)v′(L, t)− β1EA

∫ L

0

[w′]2v′dx−D7, (5.58)

D9 = β2EAv(L, t)v′(L, t)− β2EA

∫ L

0

[v′]2dx, (5.59)

D10 = β2EAv(L, t)[w′(L, t)]2 − β2EA

∫ L

0

v′[w′]2dx−D10, (5.60)

The last term in Eq. (5.60) is same as D10. Rewriting Eq. (5.60), we obtain

D10 =
β2

2
EAv(L, t)[w′(L, t)]2 − β2

2
EA

∫ L

0

v′[w′]2dx, (5.61)

Using the Ineq. (2.8), we obtain

D12 ≤ β2
c2

δ4

∫ L

0

v̇2dx + β2c2δ4L
2

∫ L

0

[v′]2dx, (5.62)

where δ4 > 0. Combining the above expressions D1−D12 and utilizing the boundary

conditions Eqs. (5.10), (5.11) , we obtain

Ėd(t) ≤ β1w(L, t)uT + β2v(L, t)uL − β1EI

∫ L

0

[w′′]2dx− β1T

∫ L

0

[w′]2dx +
β1

δ2

∫ L

0

f 2dx

+β1δ2L
2

∫ L

0

[w′]2dx + β1
c1

δ3

∫ L

0

ẇ2dx + β1c1δ3L
2

∫ L

0

[w′]2dx− β1

2
EA

∫ L

0

[w′]4dx

−β1EA

∫ L

0

[w′]2v′dx + β1

∫ L

0

ρẇ2dx− β2EA

∫ L

0

[v′]2dx− β2

2
EA

∫ L

0

v′[w′]2dx

+β2

∫ L

0

ρv̇2dx + β2
c2

δ4

∫ L

0

v̇2dx + β2c2δ4L
2

∫ L

0

[v′]2dx, (5.63)
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Substituting Eqs. (5.39), (5.40) and (5.63) into Eq. (5.27), we obtain

V̇ (t) ≤ [ẇ(L, t) + β1w(L, t)]uT + [v̇(L, t) + β2v(L, t)]uL

−
(

c1 − δ1 − β1ρ− β1
c1

δ3

) ∫ L

0

ẇ2dx−
(

c2 − β2ρ− β2
c2

δ4

) ∫ L

0

v̇2dx

−β1EI

∫ L

0

[w′′]2dx− β1

2
EA

∫ L

0

[w′]4dx−
(

β1 − β2

2

)
EA

∫ L

0

[w′]2v′dx

−(β2EA− β2c2δ4L
2)

∫ L

0

[v′]2dx− (
β1T − β1δ2L

2 − β1c1δ3L
2
) ∫ L

0

[w′]2dx

+

(
1

δ1

+
β1

δ2

) ∫ L

0

f 2dx + (k2 + β1k1)w(L, t)ẇ(L, t) + (k4 + β2k3)v(L, t)v̇(L, t),

(5.64)

Then substituting the control law Eqs. (5.12) and (5.13) into Eq. (5.64), we obtain

V̇ (t) ≤ −k1[ẇ(L, t)]2 − k2β1[w(L, t)]2 − k3[v̇(L, t)]2 − k4β2[v(L, t)]2

−
(

c1 − δ1 − β1ρ− β1
c1

δ3

) ∫ L

0

ẇ2dx−
(

c2 − β2ρ− β2
c2

δ4

) ∫ L

0

v̇2dx

−β1EI

∫ L

0

[w′′]2dx−
(

β1 − β2

2

)
EA

∫ L

0

(
v′ +

1

2
[w′]2

)2

dx

− (
β1T − β1δ2L

2 − β1c1δ3L
2
) ∫ L

0

[w′]2dx +

(
1

δ1

+
β1

δ2

) ∫ L

0

f 2dx

≤ −λ3(Eb + Ec) + ε, (5.65)
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where

λ3 = min

(
2k2β1

k2 + β1k1

,
2k4β2

k4 + β2k3

,
2σ1

mz

,
2σ2

mz

,
2σ3

EI
,
2σ5

EA
,
2σ7

T

)
> 0, (5.66)

σ1 = c1 − δ1 − β1ρ− β1
c1

δ3

> 0, (5.67)

σ2 = c2 − β2ρ− β2
c2

δ4

> 0, (5.68)

σ3 = β1EI > 0, (5.69)

σ4 =
β1

2
EA > 0, (5.70)

σ5 =

(
β1 − β2

2

)
EA > 0, (5.71)

σ6 = β2EA− β2c2δ4L
2 > 0, (5.72)

σ5 ≤ min(4σ4, σ6)

4
, (5.73)

σ7 = β1T − β1δ2L
2 − β1c1δ3L

2 > 0, (5.74)

ε =

(
1

δ1

+
β1

δ2

) ∫ L

0

f 2dx ≤
(

1

δ1

+
β1

δ2

) ∫ L

0

f̄ 2dx < ∞. (5.75)

From Ineqs. (5.25) and (5.65) we have

V̇ (t) ≤ −λV (t) + ε, (5.76)

where λ = λ3/λ2 > 0 and ε > 0.

With the above lemmas, we are ready to present the following stability theorem

of the closed-loop riser system subject to ocean current disturbance.

Theorem 5.1. For the system dynamics described by (5.7) and (5.8) and boundary

conditions (5.9) to (5.11), under Assumption 5.1, and the control laws (5.12) and

(5.13), given that the initial conditions are bounded, and that the required state in-

formation w(L, t), v(L, t), ẇ(L, t) and v̇(L, t) are available, the closed loop system is
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uniformly bounded as follows:

|w(x, t)| ≤
√

2L

Tλ1

(
V (0)e−λt +

ε

λ

)
, ∀x ∈ [0, L], (5.77)

|v(x, t)| ≤
√

2L

EAλ1

(
V (0)e−λt +

ε

λ

)
, ∀x ∈ [0, L], (5.78)

where λ and ε are two positive constants.

Proof: Multiplying Eq.(5.26) by eλt yields

∂

∂t
(V eλt) ≤ εeλt. (5.79)

Integration of the above inequalities, we obtain

V (t) ≤
(
V (0)− ε

λ

)
e−λt +

ε

λ
≤ V (0)e−λt +

ε

λ
∈ L∞, (5.80)

which implies V (t) is bounded. Utilizing Ineq. (2.11) and Eq. (5.15), we have

1

2L
Tw2(x, t) ≤ 1

2
T

∫ L

0

[w′(x, t)]2dx ≤ Eb(t) ≤ 1

λ1

V (t) ∈ L∞, (5.81)

1

2L
EAv2(x, t) ≤ 1

2
EA

∫ L

0

[v′(x, t)]2dx ≤ Eb(t) ≤ 1

λ1

V (t) ∈ L∞. (5.82)

Rearranging the terms of the above two inequalities, we obtain

|w(x, t)| ≤
√

2L

Tλ1

(
V (0)e−λt +

ε

λ

)
, ∀x ∈ [0, L], (5.83)

|v(x, t)| ≤
√

2L

EAλ1

(
V (0)e−λt +

ε

λ

)
, ∀x ∈ [0, L]. (5.84)

From Eqs. (5.81) and (5.82), we can state the Eb(t) is bounded ∀t ∈ [0,∞). Since

Eb(t) is bounded, ẇ(x, t), w′(x, t), w′′(x, t), v̇(x, t) and v′(x, t) are bounded ∀(x, t) ∈
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[0, L] × [0,∞). From Eq. (5.1), the kinetic energy of the system is bounded and

using Property 5.1, ẇ′(x, t) and v̇′(x, t) are bounded ∀(x, t) ∈ [0, L] × [0,∞). From

the boundedness of the potential energy Eq. (5.2), we can use Property 5.2 to con-

clude that w′′′′(x, t) and v′′(x, t) are bounded ∀(x, t) ∈ [0, L] × [0,∞). Finally, using

Assumption 5.1, Eqs. (5.7) through (5.11), and the above statements, we can con-

clude that ẅ(x, t) and v̈(x, t) are also bounded ∀(x, t) ∈ [0, L]× [0,∞). From Lemma

5.1 and the above proof, it is shown the deflection w(x, t) and v(x, t) are uniformly

bounded ∀(x, t) ∈ [0, L]× [0,∞).

Remark 5.6. From above stability analysis, ẇ(x, t), v̇(x, t), w(x, t) and v(x, t) are

all bounded ∀(x, t) ∈ [0, L]× [0,∞), and we can conclude the control inputs of uT and

uL are bounded ∀t ∈ [0,∞).

5.3.2 Exponentially stable control without disturbance

In this section, by using the same Lyapunov function candidate Eq. (5.14) and control

law Eqs. (5.12) and (5.13) of Section 5.3.1, we analyze the free vibration case of the

flexible riser system, i.e. ocean current disturbance f(x, t) = 0, and the exponentially

stability is proved.

Lemma 5.4. [140] For bounded initial conditions, ∀x and ∀t ≥ 0, if there exists

a C1 continuous and positive definite Lyapunov function V (x, t) : <n × <+ −→ <
satisfying κ1 (‖x‖) ≤ V (x, t) ≤ κ2 (‖x‖), such that V̇ (x, t) ≤ −λV (x, t), where κ1,

κ2 : Rn → R are class K functions, then the equilibrium point x = 0 of the system

ẋ = f(x, t) is an exponentially stable.

Theorem 5.2. For the system dynamics described by (5.7) and (5.8) and boundary

conditions (5.9) to (5.11), if the free vibration case is considered, i.e. f(x, t) = 0, the
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exponential stability under free vibration condition can be achieved with the proposed

boundary controllers (5.12) and (5.13) as follows,

|w(x, t)| ≤
√

2L

Tλ1

V (0)e−λt, ∀x ∈ [0, L], (5.85)

|v(x, t)| ≤
√

2L

EAλ1

V (0)e−λt, ∀x ∈ [0, L]. (5.86)

where λ and λ1 are positive constants.

Proof: From Ineq. (5.26), under the free vibration condition, i.e. f(x, t) = 0, we

obtain the time derivation of the Lyapunov function candidate (5.14) as

V̇ (t) ≤ −λV (t), (5.87)

where λ = λ3/λ2. Multiplying Eq.(5.87) by eλt yeilds

∂

∂t
(V eλt) ≤ 0. (5.88)

Integration of the above inequality, we obtain

V (t) ≤ V (0)e−λt ∈ L∞, (5.89)

which implies V (t) is bounded. Similarly, utilizing Ineq. (2.11) and Eq. (5.15),

we have

1

2L
Tw2(x, t) ≤ 1

2
T

∫ L

0

[w′(x, t)]2dx ≤ Eb(t) ≤ 1

λ1

V (t) ∈ L∞, (5.90)

1

2L
EAv2(x, t) ≤ 1

2
EA

∫ L

0

[v′(x, t)]2dx ≤ Eb(t) ≤ 1

λ1

V (t) ∈ L∞. (5.91)
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Rearranging the terms of the above two inequalities, we obtain

|w(x, t)| ≤
√

2L

Tλ1

V (0)e−λt, ∀x ∈ [0, L], (5.92)

|v(x, t)| ≤
√

2L

EAλ1

V (0)e−λt, ∀x ∈ [0, L]. (5.93)

From Lemma 5.4 and the above proof, we have the conclusion that the free vibration

riser system under the control law is exponentially stable.

Remark 5.7. For the free vibration case of the flexible riser system, the displacements

w(x, t) and v(x, t) exponentially converge to zero at the rate of convergence λ as

t −→∞.

5.4 Numerical Simulations

Simulations for a 1000m riser under ocean current disturbance are carried out to

demonstrate the effectiveness of the proposed control laws (5.12) and (5.13). Detailed

parameters of the riser system are shown in Table 1. Numerical methods are applied to

get the approximate solution of the system (5.7)-(5.11), when there is no obtainable

analytical solution. In this chapter, the finite difference (FD) scheme is chosen to

simulate the system performance.

Table 1: parameters of the riser system
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Parameter Description Value

L Length of riser 1000.00m

d Riser inner diameter 76.2mm

D Riser external diameter 152.40mm

EI Bending stiffness of the riser 1.22× 105Nm2

EA Axial stiffness of the riser 3.92× 108N

T Tension 1.11× 108N

ρ Mass per unit length of the flexible riser 108.00kg/m

ρs Sea water density 1024.00kg/m3

c1 Structural transverse damping coefficient 5.00Ns/m2

c2 Structural longitudinal damping coefficient 1.00Ns/m2

The riser, initially at rest, is excited by a distributed transverse disturbance due

to the ocean current. The corresponding initial conditions of the riser system are

given as

w(x, 0) = ẇ(x, 0) = v(x, 0) = v̇(x, 0) = 0. (5.94)

In the simulation, the ocean surface current velocity U(t) given by Eq. (3.131) is

shown in Fig. 5.2. We assume that the full current load is applied from x = 1000m to

x = 0m and thereafter linearly decline to zero at the ocean floor, x = 0, to obtain a

depth dependent ocean current profile U(x, t) as in Chapter 3. The distributed load

f(x, t) is generated by Eq. (2.5) with CD = 1, θ = 0, St = 0.2 and fv = 2.625. In

this chapter, we consider four simulation cases with different control inputs.

(i) The transverse and longitudinal displacements of the riser for free vibration (i.e.

without control input, k1 = k2 = k3 = k4 = 0) under ocean current disturbance
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are shown in Fig. 5.3.

(ii) With only transverse control input, i.e. k1 = k2 = 1 × 106, k3 = k4 = 0, the

transverse and longitudinal displacements of the riser are shown in Fig. 5.4.

(iii) With only longitudinal control input, i.e. k1 = k2 = 0, k3 = k4 = 1 × 108, the

transverse and longitudinal displacements of the riser are shown in Fig. 5.5.

(iv) With both transverse and longitudinal control inputs, i.e. k1 = k2 = 1 ×
106, k3 = k4 = 1 × 108, the transverse and longitudinal displacements of the

riser are shown in Fig. 5.6.

From Fig. 5.4 to 5.6, it is observed that there is a significant reduction of the riser’s

transverse displacement when the transverse control is applied. Similarly, when the

longitudinal control is applied, a significant reduction of the riser’s longitudinal dis-

placement is observed. When control inputs in transverse and longitudinal directions

are applied, the riser’s displacements in both transverse and longitudinal directions are

reduced. Peak displacement reduction in the middle and bottom of riser is observed

although the actuators are not located at these positions. The corresponding control

inputs uT (t) and uL(t) are shown in Fig. 5.7 and Fig. 5.8 respectively. It is shown

that transverse control input is a negative value, which means the actual transverse

control input is exerted in the opposite direction of the ocean disturbance f(x, t).

The transverse control input varies between 0 and 2.5 × 104N, and the longitudinal

control input varies between 0 and 1200N, which are implementable in practice.

Vibration displacements of the riser are examined at x = 1000m and x = 500m,

and the results for controlled and uncontrolled responses are shown in Fig. 5.9 and

Fig. 5.10 respectively. With the two control inputs, it can be observed that the vibra-

tion displacements are reduced at both locations, which brings the top displacements
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of the riser close to zero.

5.5 Conclusion

Vibration regulation of a distributed parameter marine flexible riser subject to the

ocean current disturbance has been investigated in this chapter. The boundary control

has been developed with two actuators in transverse and longitudinal directions based

on the distributed parameter system model with PDEs, and the problems associated

with traditional truncated-model-based design are overcome. With proposed control,

closed-looped stability under external disturbance and exponential stability under

free vibration condition have been proven based on Lyapunov’s direct method. The

control is easy to implement since they are independent of the system parameters

and only two sensors and actuators are required. Numerical simulations have been

provided to verify the effectiveness of the presented boundary control.
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Fig. 5.2: Surface current U(t).
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(a)

(b)

Fig. 5.3: (a) Transverse displacement w(x, t) and (b) longitudinal displacement v(x, t).
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(a)

(b)

Fig. 5.4: (a) Transverse displacement w(x, t) and (b) longitudinal displacement v(x, t).
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(a)

(b)

Fig. 5.5: (a) Transverse displacement w(x, t) and (b) longitudinal displacement v(x, t).
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(a)

(b)

Fig. 5.6: (a) Transverse displacement w(x, t) and (b) longitudinal displacement v(x, t).

126



5.5 Conclusion

Fig. 5.7: Transverse control input uT (t).

Fig. 5.8: Longitudinal control input uL(t).
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(a)

(b)

Fig. 5.9: Transverse displacements: (a) transverse displacement at x = 500m,
w(500, t) for controlled (solid) and uncontrolled (dashed) and (b) transverse displace-
ment at x = 1000m, w(1000, t) for controlled (solid) and uncontrolled (dashed).
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(a)

(b)

Fig. 5.10: Longitudinal displacements: (a) longitudinal displacement at x = 500m,
v(500, t) for controlled (solid) and uncontrolled (dashed) and (b) longitudinal dis-
placement at x = 1000m, v(1000, t) for controlled (solid) and uncontrolled (dashed).

129



Chapter 6

Flexible Marine Riser with Vessel

Dynamics

6.1 Introduction

With the increased focus on offshore oil and gas development in deeper and harsher

environments, vibration control of the flexible marine risers has gained increasing

attention. The marine riser is used as a fluid-conveyed curved pipe drilling crude oil,

natural gas, hydrocarbon, petroleum materials, mud, and other undersea economic

resources, and then transporting those resources in the ocean floor to the production

vessel or platform in the ocean surface [9]. Vibration and deformation of the riser

due to the ocean current disturbance and tension exerted at the top can produce

premature fatigue problems, which require inspections and costly repairs. Recent

advances in computer and electronics technology have allowed the development of

complex electromechanical control system to suppress the riser’s vibration. Vibration

suppression by proper control techniques is desirable and available for preventing the
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damage and improving the lifespan of the riser.

For the purpose of dynamic analysis, the riser is modeled as an Euler-Bernoulli

beam structure with PDEs since the diameter-to-length of the riser is small. Based

on the distributed parameter model, various kinds of control methods integrating

computer software and hardware with sensors and actuators have been investigated

to suppress the riser’s vibration. In [72], boundary control for the flexible marine riser

with actuator dynamics is designed based on the Lyapunov’s direct method and the

backstepping technique. In [10], a torque actuator is introduced at the top boundary

of the riser to reduce the angle and transverse vibration of the riser with guaranteed

closed-loop stability. In [78], boundary control for a coupled nonlinear flexible marine

riser with two actuators in transverse and longitudinal directions has been designed

to suppress the riser’s vibration. However, in these works, only the riser dynamics is

considered and the coupling between riser and vessel is neglected, which can influence

the dynamic response of the riser system and lead to an imprecise model.

Mathematically, the flexible marine riser with vessel dynamics is represented by a

set of infinite dimensional equations (i.e., PDEs describing the dynamics of the flexible

riser) coupled with a set of finite dimensional equations (i.e., ODEs describing the

vessel dynamics). The dynamics of the flexible mechanical system modeled by a set

of PDEs is difficult to control due to the infinite dimensionality of the system. Modal

control method for the control design of PDE is based on truncated finite dimensional

modes of the system, which are derived from finite element method, Galerkin’s method

or assumed modes method [12,13,16–19]. The truncated models are obtained via the

model analysis or spatial discretization, in which the flexibility is represented by a

finite number of modes by neglecting the higher frequency modes. The problems from

the truncation procedure in the modeling need to be carefully treated in practical
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applications. A potential drawback in the above control design approaches is that

the control can cause the actual system to become unstable due to excitation of

the unmodeled, high-frequency vibration modes (i.e., spillover effects) [26]. Spillover

effects which result in instability of the system have been investigated in [27,28] when

the control of the truncated system is restricted to a few critical modes. The control

order needs to be increased with the number of flexible modes considered to achieve

high accuracy of performance and the control may also be difficult to implement from

the engineering point of view since full states measurements or observers are often

required. In an attempt to overcome the above shortcomings of the truncated model

based control, control methodologies such as method based on bifurcation theory and

the application of Poincare maps [141], variable structure control [29], sliding model

control [30], energy-based robust control [31,32], model-free control [33] and boundary

control [8, 39, 40, 51, 55, 68, 69, 74, 76, 77] have been developed. In these approaches,

system dynamics analysis and control design are carried out directly based on the

PDEs of the system. In contrast, boundary control where the actuation and sensing

are applied only through the boundary of the system utilizes the distributed parameter

model with PDEs to avoid control spillover instabilities.

Boundary control is considered to be more practical in a number of research fields

including vibration control of flexible structures, fluid dynamics and heat transfer,

which requires relatively few sensors and actuators. The relevant applications for

this approach in mechanical flexible structures consist of second order structures

(strings, and cables) and fourth order structures (beams and plates) [46]. In [56],

robust and adaptive boundary control laws based on the Lyapunov synthesis are

developed to reduce the vibration of a stretched string on a moving transporter.

In [39], adaptive boundary control is designed for an axially moving string with a
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spatiotemporally varying tension, where the system is proved to be asymptotically

stable. In [63], a boundary control law based on the Lyapunov method with sliding

mode is employed to guarantee the asymptotic and exponential stability of an axially

moving string. In [59], boundary control for a linear gantry crane model with a

flexible cable is developed and experimentally implemented. In [74,89], backstepping

boundary controller and observer are designed to stabilize the string and beam model

respectively. In [80], boundary control is presented to stabilize beams by using active

constrained layer damping. In [65], nonlinear boundary control is constructed to

exponentially stabilize a free transversely vibrating beam.

In this chapter, both the dynamics of the vessel and the vibration of the riser

are considered in the dynamic analysis based on the Lyapunov’s direct method. The

main contributions of this chapter include:

(i) A dynamic model of the marine flexible riser with vessel dynamics subjected to

the ocean current disturbance is derived for vibration suppression.

(ii) An implementable robust adaptive boundary control at the top boundary of the

riser is designed to suppress the riser’s vibration.

(iii) With proposed boundary control, uniform boundedness of the riser system un-

der the ocean current disturbance is proved via the Lyapunov synthesis.

The rest of the chapter is organized as follows. The governing equation (PDE)

and boundary conditions (ODEs) of the flexible riser system are introduced by use of

Hamilton’s principle in Section 6.2. The boundary control design via the Lyapunov’s

direct method is discussed separately for both exact model case and system parametric

uncertainty case in Section 6.3, where it is shown that the uniform boundedness of the
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closed-loop system can be achieved by the proposed control. Simulations are carried

out to illustrate performance of the proposed control in Section 6.4. The conclusion

of this chapter is shown in Section 6.5.

6.2 Problem Formulation

Remark 6.1. For clarity, the notations, the notations w′(x, t) = ∂w(x,t)
∂x

, w′′(x, t) =

∂2w(x,t)
∂x2 , w′′′(x, t) = ∂3w(x,t)

∂x3 , w′′′′(x, t) = ∂4w(x,t)
∂x4 , ẇ(x, t) = ∂w(x,t)

∂t
, and ẅ(x, t) =

∂2w(x,t)
∂t2

are introduced throughout the chapter.

A typical marine riser system for crude oil transportation depicted in Fig. 6.1 is

the connection between a production vessel on the ocean surface and a well head on

the ocean floor. As shown in Fig. 6.1, the control is implemented from the actuator

in the vessel, i.e., the top boundary of the riser. In this chapter, we assume that the

original position of the vessel is directly above the subsea well head with no horizontal

offset and the riser is filled with seawater.

The kinetic energy of the riser system Ek can be represented as

Ek =
1

2
Ms[ẇ(L, t)]2 +

1

2
ρ

∫ L

0

[ẇ(x, t)]2dx, (6.1)

where x and t represent the independent spatial and time variables respectively, Ms

denotes the mass of the surface vessel, w(L, t) and ẇ(L, t) are the position and velocity

of the vessel respectively, w(x, t) is the displacement of the riser at the position x for

time t, ρ > 0 is the uniform mass per unit length of the riser, and L is the length of

the riser.
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Fig. 6.1: A typical flexible marine riser system.

The potential energy Ep of the riser system can be obtained from

Ep =
1

2
EI

∫ L

0

[w′′(x, t)]2dx +
1

2
T

∫ L

0

[w′(x, t)]2dx, (6.2)

where EI is the bending stiffness of the riser and T is the tension of the riser. The

first term of Eq. (5.2) is due to the bending, the second term is due to the strain

energy of the riser.

The virtual work done by the ocean current disturbance on the riser and the vessel

is given by

δWf =

∫ L

0

f(x, t)δw(x, t)dx + d(t)δw(L, t), (6.3)

where f(x, t) is the distributed transverse load on the riser due to the hydrodynamic
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effects of the ocean current, and d(t) denotes the environmental disturbances on the

vessel. The virtual work done by damping on the riser and the vessel is represented

by

δWd = −
∫ L

0

cẇ(x, t)δw(x, t)dx− dsẇ(L, t)δw(L, t), (6.4)

where c is the damping coefficient of the riser, and ds denotes the damping coefficient

of the vessel. We introduce the boundary control u from the actuator in the vessel, i.e.,

the top boundary of the riser, to produce a transverse force for vibration suppression.

The virtual work done by the boundary control is written as

δWm = u(t)δw(L, t). (6.5)

Then, we have the total virtual work done on the system as

δW = δWf + δWd + δWm

=

∫ L

0

[f(x, t)− cẇ(x, t)] δw(x, t)dx + [u(t) + d(t)− dsẇ(L, t)] δw(L, t).(6.6)

Substituting Eqs. (6.1), (6.2), and (6.6) into the Hamilton’s principle Eq. (2.1),

we obtain the governing equations of the system as

ρẅ(x, t) + EIw′′′′(x, t)− Tw′′(x, t)− f(x, t) + cẇ(x, t) = 0, (6.7)
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and the boundary conditions of the system as

w′(0, t) = 0, (6.8)

w′′(L, t) = 0, (6.9)

w(0, t) = 0, (6.10)

−EIw′′′(L, t) + Tw′(L, t) = u(t) + d(t)− dsẇ(L, t)−Msẅ(L, t), (6.11)

∀t ∈ [0,∞).

Assumption 6.1. For the distributed load f(x, t) on the riser and the environmental

disturbance d(t) on the vessel, we assume that there exist constants f̄ ∈ R+ and

d̄ ∈ R+, such that |f(x, t)| ≤ f̄ , ∀(x, t) ∈ [0, L]× [0,∞) and |d(t)| ≤ d̄, ∀(t) ∈ [0,∞).

This is a reasonable assumption as the time-varying disturbances f(x, t) and d(t) have

finite energy and hence are bounded, i.e., f(x, t) ∈ L∞([0, L]) and d(t) ∈ L∞.

Remark 6.2. For control design in Section 6.3, only the assertion that there exist

an upper bound on the disturbance in Assumption 1, |f(x, t)| < f̄ and |d(t)| ≤ d̄, is

necessary. The knowledge of the exact values for f(x, t) and d(t) is not required. As

such, different distributed load models up to various levels of fidelity, such as those

found in [127, 128, 133–135], can be applied without affecting the control design or

analysis.

For the convenience of stability analysis, we present the following properties for

the subsequent development.

Property 6.1. [136]: If the kinetic energy of the system (6.7) - (6.11), given by Eq.

(6.1) is bounded ∀t ∈ [0,∞), then ẇ(x, t), ẇ′(x, t), ẇ′′(x, t) and ẇ′′′(x, t) are bounded

∀(x, t) ∈ [0, L]× [0,∞).
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Property 6.2. [136]: If the potential energy of the system (6.7) - (6.11), given by

Eq. (6.2) is bounded ∀t ∈ [0,∞), then w′′(x, t), w′′′(x, t) and w′′′′(x, t) are bounded

∀(x, t) ∈ [0, L]× [0,∞).

6.3 Control Design

The control objective is to suppress the vibration of the riser and stabilize the riser

at the small neighborhood of its original position in the presence of the time-varying

distributed load f(x, t) and the disturbance d(t) due to the ocean current. In this

section, the Lyapunov’s direct method is used to construct a boundary control law

u(t) at the top boundary of the riser and to analyze the closed-loop stability of the

system.

In this chapter, we analyze two cases for the riser system: (i) exact model-based

control, i.e., EI, T , Ms and ds are all known; and (ii) adaptive control for the system

parametric uncertainty, i.e., EI, T , Ms and ds are unknown. For the first case, robust

boundary control is introduced for the exact model of the riser system subject to the

ocean disturbance. For second case where the system parameters cannot be directly

measured, the adaptive control is designed to compensate the system parametric

uncertainty.
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6.3.1 Exact model based boundary control of the riser sys-

tem

To stabilize the system given by governing Eq. (6.7) and boundary condition Eqs.

(6.8) - (6.11), we propose the following control law:

u = −EIw′′′(L, t) + Tw′(L, t)− sgn(ua)d̄ + dsẇ(L, t)− k1Msẇ
′(L, t)

+k2Msẇ
′′′(L, t)− kua, (6.12)

where sgn(·) denotes the signum function, k, k1, k2 are the control gains and the

auxiliary signal ua is defined as

ua = ẇ(L, t) + k1w
′(L, t)− k2w

′′′(L, t). (6.13)

After differentiating the auxiliary signal Eq. (6.13), multiplying the resulting equation

by Ms, and substituting Eq. (6.11), we obtain

Msu̇a = EIw′′′(L, t)− Tw′(L, t) + d− dsẇ(L, t) + k1Msẇ
′(L, t)− k2Msẇ

′′′(L, t) + u.(6.14)

Substituting Eq. (6.12) into Eq. (6.14), we have

Msu̇a = −kua + d− sgn(ua)d̄. (6.15)

Remark 6.3. All the signals in the boundary control can be measured by sensors

or obtained by a backward difference algorithm. w(L, t) can be sensed by a laser

displacement sensor at the top boundary of the riser, w′(L, t) can be measured by an

inclinometer and w′′′(L, t) can be obtained by a shear force sensor. In practice, the
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effect of measurement noise from sensors is unavoidable, which will affect the control

implementation, especially when the high order differentiating terms with respect to

time exist. In our proposed control (6.12), ẇ(L, t), ẇ′(L, t) and ẇ′′′(L, t) with only one

time differentiating with respect to time can be calculated with a backward difference

algorithm. It is noted that differentiating twice and three times position w(L, t) with

respect to time to get ẅ(L, t) and
...
w(L, t) respectively, are undesirable in practice due

to noise amplification. For these cases, observers are needed to design to estimate the

states values according to the boundary conditions.

Remark 6.4. The control design is based on the distributed parameter model Eqs.

(6.7) to (6.11), and the spillover problems associated with traditional truncated model-

based approaches caused by ignoring high-frequency modes in controller and observer

design are avoided. For results on model-based control of distributed parameter system

which is helpful in avoiding spillover effects, the readers can refer to [16,17].

Consider the Lyapunov function candidate

V = V1 + V2 + V3, (6.16)

where the energy term V1 and an auxiliary term V2 and a small crossing term V3 are

defined as

V1 =
βk2

2
ρ

∫ L

0

[ẇ]2dx +
βk2

2
EI

∫ L

0

[w′′]2dx +
βk2

2
T

∫ L

0

[w′]2dx, (6.17)

V2 =
1

2
Msu

2
a, (6.18)

V3 = αρ

∫ L

0

xẇw′dx, (6.19)

where k2 is the control gain, and α and β are two positive weighting constants.
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Lemma 6.1. The Lyapunov function candidate given by (6.16) is upper and lower

bounded as

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (6.20)

where λ1 and λ2 are two positive constants defined as

λ1 = 1− 2αρL

min(βρk2, βTk2)
and λ2 = 1 +

2αρL

min(βρk2, βTk2)
. (6.21)

Proof: Applying Ineq. (2.7) in Eq. (6.19) yields

|V3| ≤ αρL

∫ L

0

([w′]2 + [ẇ]2)dx

≤ α1V1, (6.22)

where

α1 =
2αρL

min(βρk2, βTk2)
. (6.23)

Then, we obtain

−α1V1 ≤ V3 ≤ α1V1. (6.24)

Considering α is a small positive weighting constant satisfying 0 < α < min(βρk2,βTk2)
2ρL

,

we can obtain

α2 = 1− α1 = 1− 2αρL

min(βρk2, βTk2)
> 0, (6.25)

α3 = 1 + α1 = 1 +
2αρL

min(βρk2, βTk2)
> 1. (6.26)
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Then, we further have

0 ≤ α2V1 ≤ V1 + V3 ≤ α3V1. (6.27)

Given the Lyapunov function candidate in Eq. (6.16), we obtain

0 ≤ λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (6.28)

where λ1 = min(α2, 1) = α2 and λ2 = max(α3, 1) = α3 are two positive constants.

Lemma 6.2. The time derivative of the Lyapunov function candidate (6.16) is upper

bounded with

V̇ ≤ −λV + ε, (6.29)

where λ and ε are positive constants.

Proof: Differentiating Eq. (6.16) with respect to time leads to

V̇ = V̇1 + V̇2 + V̇3. (6.30)

The first term of the Eq. (6.30)

V̇1 = A1 + A2 + A3, (6.31)
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where

A1 = βρk2

∫ L

0

ẇẅdx, (6.32)

A2 = βEIk2

∫ L

0

w′′ẇ′′dx, (6.33)

A3 = βTk2

∫ L

0

w′ẇ′dx. (6.34)

Substituting the governing equation (6.7) into A1, we obtain

A1 = βk2

∫ L

0

ẇ (−EIw′′′′ + Tw′′ + f − cẇ) dx. (6.35)

Using the boundary conditions and integrating Eq. (6.33) by parts, we obtain

A2 = βEIk2

∫ L

0

w′′d(ẇ′)

= βEIw′′ẇ′
∣∣∣∣
L

0

− βEI

∫ L

0

ẇ′w′′′dx

= −βEIk2w
′′′(L, t)ẇ(L, t) + βEIk2

∫ L

0

ẇw′′′′dx. (6.36)

Using the boundary conditions and integrating Eq. (6.34) by parts, we obtain

A3 = βTk2

∫ L

0

w′d(ẇ)

= βTk2w
′(L, t)ẇ(L, t)− βTk2

∫ L

0

ẇw′′dx. (6.37)

Substituting Eqs. (6.35), (6.36), and (6.37) into Eq. (6.31), we have

V̇1 = βk2 [−EIw′′′(L, t) + Tw′(L, t)] ẇ(L, t)− βck2

∫ L

0

[ẇ]2dx + βk2

∫ L

0

fẇdx.(6.38)
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Substituting the Eq. (6.13) into Ineq. (6.38), we obtain

V̇1 = −βEI

2

[
[ẇ(L, t)]2 + k2

2[w
′′′(L, t)]2 + k2

1[w
′(L, t)]2

]
+

βEI

2
u2

a

+β(Tk2 − EIk1)w
′(L, t)ẇ(L, t) + βEIk1k2w

′′′(L, t)w′(L, t)

−βck2

∫ L

0

[ẇ]2dx + βk2

∫ L

0

fẇdx. (6.39)

Using Ineq. (2.8), we obtain

V̇1 ≤ −βEI

2

[
[ẇ(L, t)]2 + k2

2[w
′′′(L, t)]2 + k2

1[w
′(L, t)]2

]
+

βEI

2
u2

a

+β|Tk2 − EIk1|δ1[w
′(L, t)]2 +

β

δ1

|Tk2 − EIk1|[ẇ(L, t)]2 + βEIk1k2w
′′′(L, t)w′(L, t)

−β(c− δ2)k2

∫ L

0

[ẇ]2dx +
βk2

δ2

∫ L

0

f 2dx, (6.40)

where δ1 and δ2 are two positive constants.

The second term of the Eq. (6.30)

V̇2 = Msuau̇a,

= −ku2
a + dua − sgn(ua)uad̄

= −ku2
a + dua − |ua|d̄

≤ −ku2
a. (6.41)

The third term of the Eq. (6.30)

V̇3 = αρ

∫ L

0

(xẅw′ + xẇẇ′)dx

= α

∫ L

0

xw′ [−EIw′′′′ + Tw′′ + f − cẇ] dx + αρ

∫ L

0

xẇẇ′dx

= B1 + B2 + B3 + B4 + B5, (6.42)
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where

B1 = −α

∫ L

0

EIxw′w′′′′dx, (6.43)

B2 = α

∫ L

0

Txw′w′′dx, (6.44)

B3 = α

∫ L

0

fxw′dx, (6.45)

B4 = −α

∫ L

0

cxw′ẇdx, (6.46)

B5 = αρ

∫ L

0

xẇẇ′dx. (6.47)

After integrating Eq. (6.43) by parts and using the boundary conditions, we obtain

B1 = −αEILw′(L, t)w′′′(L, t) + αEI

∫ L

0

w′w′′′dx + αEI

∫ L

0

xw′′w′′′dx.(6.48)

By integrating the second term of Eq. (6.48), we have

B1 = −αEILw′(L, t)w′′′(L, t)− αEI

∫ L

0

[w′′]2dx + αEI

∫ L

0

xw′′w′′′dx.(6.49)

By integrating the last term of Eq. (6.49), we have

B1 = −αEILw′(L, t)w′′′(L, t)− αEI

∫ L

0

[w′′]2dx− αEI

∫ L

0

(
[w′′]2 + xw′′w′′′) dx.

(6.50)

Combining the Eq. (6.49) and Eq. (6.50), we obtain

B1 = −αEILw′(L, t)w′′′(L, t)− 3αEI

2

∫ L

0

[w′′]2dx. (6.51)
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After integrating Eq. (6.44) by parts and using the boundary conditions, we obtain

B2 = αTL[w′(L, t)]2 − αT

∫ L

0

(
[w′]2 + xw′w′′) dx. (6.52)

Combining Eq. (6.44) and Eq. (6.52), we obtain

B2 =
αTL

2
[w′(L, t)]2 − αT

2

∫ L

0

[w′]2dx. (6.53)

Using Ineq. (2.8), we obtain

B3 ≤ αL

δ3

∫ L

0

f 2dx + αLδ3

∫ L

0

[w′]2dx, (6.54)

B4 ≤ αcL

δ4

∫ L

0

[ẇ]2dx + αcLδ4

∫ L

0

[w′]2dx. (6.55)

where δ3 and δ4 are two positive constants. Integrating Eq. (6.47) by parts, we obtain

B5 = αρL[ẇ(L, t)]2 − αρ

∫ L

0

(
[ẇ]2 + xẇẇ′) dx. (6.56)

The last term in Eq. (6.56) equals B5, and we have

B5 =
αρL

2
[ẇ(L, t)]2 − αρ

2

∫ L

0

[ẇ]2dx. (6.57)

Applying Eqs. (6.51), (6.57) and Ineqs. (6.53), (6.54), (6.55) in Eq. (6.42), we obtain

V̇3 ≤ −αEILw′(L, t)w′′′(L, t)− 3αEI

2

∫ L

0

[w′′]2dx +
αTL

2
[w′(L, t)]2 − αT

2

∫ L

0

[w′]2dx

+
αL

δ3

∫ L

0

f 2dx + αLδ3

∫ L

0

[w′]2dx +
αcL

δ4

∫ L

0

[ẇ]2dx + αcLδ4

∫ L

0

[w′]2dx

+
αρL

2
[ẇ(L, t)]2 − αρ

2

∫ L

0

[ẇ]2dx. (6.58)
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Applying Ineqs. (6.40), (6.41) and (6.58) into Eq. (6.16), and utilizing the Ineq.

(2.8), we obtain

V̇ ≤ −
(

βck2 +
αρ

2
− βδ2k2 − αcL

δ4

) ∫ L

0

[ẇ]2dx−
(

αT

2
− αLδ3 − αcLδ4

) ∫ L

0

[w′]2dx

−3αEI

2

∫ L

0

[w′′]2dx−
(

βEI

2
− β

δ1

|Tk2 − EIk1| − αρL

2

)
[ẇ(L, t)]2

−
(

βEIk2
1

2
− αTL

2
− β|Tk2 − EIk1|δ1 − |βEIk1k2 − αEIL|δ5

)
[w′(L, t)]2

−
(

βEIk2
2

2
− |βEIk1k2 − αEIL|

δ5

)
[w′′′(L, t)]2 −

(
k − βEI

2

)
u2

a

+

(
βk2

δ2

+
αL

δ3

) ∫ L

0

f̄ 2dx

≤ −λ3(V1 + V2) + ε, (6.59)

where ε =
(

βk2

δ2
+ αL

δ3

) ∫ L

0
f̄ 2dx =

(
βk2

δ2
+ αL

δ3

)
Lf̄ 2, the constants k, k1, k2, α, β, δ1,

δ2, δ3, δ4 and δ5 are chosen to satisfy the following conditions:

α <
min(βρk2, βTk2)

2ρL
, (6.60)

βEIk2
1

2
− αTL

2
− β|Tk2 − EIk1|δ1 − |βEIk1k2 − αEIL|δ5 ≥ 0, (6.61)

βEI

2
− β

δ1

|Tk2 − EIk1| − αρL

2
≥ 0, (6.62)

βEIk2
2

2
− |βEIk1k2 − αEIL|

δ5

≥ 0, (6.63)

σ1 = βck2 +
αρ

2
− βδ2k2 − αcL

δ4

> 0, (6.64)

σ2 =
3αEI

2
> 0, (6.65)

σ3 =
αT

2
− αLδ3 − αcLδ4 > 0, (6.66)

σ4 = k − βEI

2
> 0, (6.67)

λ3 = min

(
2σ1

βρ
,

2σ2

βEI
,
2σ3

βT
,
2σ4

Ms

)
> 0. (6.68)
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From Ineqs. (6.28) and (6.59) we have

V̇ ≤ −λV + ε, (6.69)

where λ = λ3/λ2 and ε are two positive constants.

With the above lemmas, the exact model-based control design for riser system

subjected to the ocean current disturbance can be summarized in the following the-

orem.

Theorem 6.1. For the system dynamics described by (6.7) and boundary conditions

(6.8) - (6.11), under Assumption 6.1, and the control law (6.12), given that the initial

conditions are bounded, we can conclude that uniform boundedness (UB): the state of

the closed loop system w(x, t) will remain in the compact set Ω defined by

Ω :=
{
w(x, t) ∈ R

∣∣ |w(x, t)| ≤ H1, ∀(x, t) ∈ [0, L]× [0,∞)
}

, (6.70)

where constant H1 =
√

2L
βTλ1k2

(
V (0) + ε

λ

)
.

Proof: Multiplying Eq. (6.29) by eλt yields

∂

∂t
(V eλt) ≤ εeλt. (6.71)

Integration of the above inequality, we obtain

V ≤
(
V (0)− ε

λ

)
e−λt +

ε

λ
≤ V (0)e−λt +

ε

λ
∈ L∞, (6.72)
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which implies V is bounded. Utilizing Ineq. (2.11) and Eq. (6.17), we have

βk2

2L
Tw2(x, t) ≤ βk2

2
T

∫ L

0

[w′(x, t)]2dx ≤ V1 ≤ V1 + V2 ≤ 1

λ1

V ∈ L∞. (6.73)

Appropriately rearranging the terms of the above inequality, we obtain w(x, t) is

uniformly bounded as follows:

|w(x, t)| ≤
√

2L

βTλ1k2

(
V (0)e−λt +

ε

λ

)
≤

√
2L

βTλ1k2

(
V (0) +

ε

λ

)
,

∀(x, t) ∈ [0, L]× [0,∞). (6.74)

Remark 6.5. By choosing the proper values of α and β, it is shown that the increase

in the control gain k will result in a larger σ4, which will lead a greater λ3. Then the

value of λ will increase, which will reduce the size of Ω and produce a better vibra-

tion suppression performance. We can conclude that the bound of the system state

w(x, t) can be made arbitrarily small provided that the design control parameters are

appropriately selected. However, increasing k will bring a high gain control problem.

Therefore, in practical applications, the design parameters should be adjusted carefully

for achieving suitable transient performance and control action.

Remark 6.6. From Eq. (6.73), we can state that V1 is bounded ∀t ∈ [0,∞). Since V1

is bounded, ẇ(x, t), w′′(x, t) and w′(x, t) are bounded ∀(x, t) ∈ [0, L] × [0,∞). From

Eq. (6.1), the kinetic energy of the system is bounded and using Property 6.1, ẇ′(x, t)

and ẇ′′′(x, t) are also bounded ∀(x, t) ∈ [0, L] × [0,∞). From the boundedness of

the potential energy Eq. (6.2), we can use Property 6.2 to obtain that w′′′(x, t) and

w′′′′(x, t) are bounded. Using Assumption 5.1, Eq. (6.7) and the above statements,

we can state that ẅ(x, t) is also bounded ∀(x, t) ∈ [0, L] × [0,∞). From the above
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information, it is shown that the proposed control Eq. (6.12) ensures all internal

system signals including w(x, t), w′(x, t), ẇ(x, t), ẇ′(x, t), ẅ(x, t), w′′′(x, t), ẇ′′′(x, t)

and w′′′′(x, t) are uniformly bounded. Since ẇ(x, t), w′(x, t), ẇ′(x, t), w′′′(x, t) and

ẇ′′′(x, t) are all bounded ∀(x, t) ∈ [0, L] × [0,∞), and we can conclude the boundary

control Eq. (6.12) is also bounded ∀t ∈ [0,∞).

Remark 6.7. For the system dynamics described by Eq. (6.7) and boundary condi-

tions (6.8) to (6.11), if f(x, t) = 0, the exponential stability can be achieved with the

proposed boundary control (6.12) as follows:

|w(x, t)| ≤
√

2L

βTλ1k2

V (0)e−λt, ∀(x, t) ∈ [0, L]× [0,∞). (6.75)

6.3.2 Robust adaptive boundary control for system paramet-

ric uncertainty

In Section 3.1, the exact model-based boundary control Eq. (6.12) requires the exact

knowledge of the riser system. Adaptive boundary control is designed to improve the

performance of the system via parameter estimation when there are some unknown

parameters. The exact model-based boundary control provides a stepping stone to-

wards the adaptive control, which is designed to deal with the system parametric

uncertainty. In this section, the boundary control Eq. (6.12) is redesigned by using

the adaptive control since the EI, T , ds and Ms are unknown. We rewrite Eq. (6.14)

as the following form

Msu̇a = PΦ + d + u, (6.76)
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where vectors P and Φ are defined as

P = [w′′′(L, t) − w′(L, t) − ẇ(L, t) k1ẇ
′(L, t)− k2ẇ

′′′(L, t)],(6.77)

Φ = [EI T ds Ms]
T . (6.78)

We propose the following adaptive boundary control law for system

u = −P Φ̂− kua − sgn(ua)d̄, (6.79)

where the parameter estimate vector Φ̂ is defined as

Φ̂ = [ÊI T̂ d̂s M̂s]
T . (6.80)

The adaptation law is designed as

˙̂
Φ = ΓP T ua − rΓΦ̂, (6.81)

where Γ ∈ R4×4 is a diagonal positive-definite matrix and r is a positive constant.

We define the maximum and minimum eigenvalue of matrix Γ as λmax and λmin

respectively. The parameter estimate error vector Φ̃ ∈ R4 is defined as

Φ̃ = Φ− Φ̂. (6.82)

Substituting Eq. (6.79) into Eq. (6.76) and using Eq. (6.82) in Eq. (6.81), we have

Msu̇a = P Φ̃− kua + d− sgn(ua)d̄, (6.83)

˙̃Φ = −ΓP T ua + rΓΦ̂. (6.84)
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Consider the Lyapunov function candidate

Va = V +
1

2
Φ̃T Γ−1Φ̃, (6.85)

where V is defined as Eq. (6.16), and Φ̃ is the parameter estimate error vector.

Lemma 6.3. The Lyapunov function candidate given by (6.85) is upper and lower

bounded as

0 ≤ λ1a(V1 + V2 + ||Φ̃||2) ≤ Va ≤ λ2a(V1 + V2 + ||Φ̃||2), (6.86)

where λ1a and λ2a are two positive constants defined as

λ1a = min(1− 2αρL

min(βρk2, βTk2)
,

1

2λmax

), λ2a = max(1 +
2αρL

min(βρk2, βTk2)
,

1

2λmin

).(6.87)

Proof: From Ineq. (6.20), we have

λ1(V1 + V2) ≤ V ≤ λ2(V1 + V2), (6.88)

where λ1 and λ2 are two positive constants defined in Eq. (6.21) . From the properties

of matrix Γ, we have

1

2λmax

||Φ̃||2 ≤ 1

2
Φ̃T Γ−1Φ̃ ≤ 1

2λmin

||Φ̃||2. (6.89)

Combining Ineqs. (6.88) and (6.89), we have

0 ≤ λ1a(V1 + V2 + ||Φ̃||2) ≤ Va ≤ λ2a(V1 + V2 + ||Φ̃||2), (6.90)
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where λ1a = min(λ1,
1

2λmax
) and λ2a = max(λ2,

1
2λmin

) are two positive constants.

Lemma 6.4. The time derivative of the Lyapunov function candidate (6.85) is upper

bounded with

V̇a ≤ −λaVa + ψ, (6.91)

where λa and ψ are two positive constants.

Proof: We obtain the time derivation of the Lyapunov function candidate Eq.

(6.85) as

V̇a = V̇ + Φ̃T Γ−1 ˙̃Φ. (6.92)

Substituting Eq. (6.83) into the second term of the Eq. (6.30), we have

V̇2 = Msuau̇a

= −ku2
a + dua − sgn(ua)d̄ua + P Φ̃ua

≤ −ku2
a + P Φ̃ua. (6.93)

Applying the results of Lemma 5 and utilizing Ineqs. (6.40), (6.93) and (6.58) in V̇ ,

we obtain

V̇ ≤ −λ3(V1 + V2) + P Φ̃ua + ε, (6.94)

where λ3 is defined in Eq. (6.68) and ε is a positive constant. Application of Ineq.
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(6.94) into Eq. (6.92) yields

V̇a ≤ −λ3(V1 + V2) + Φ̃T
(
P T ua + Γ−1 ˙̃Φ

)
+ ε. (6.95)

Substituting Eq. (6.84) into Ineq. (6.95), we have

V̇a ≤ −λ3(V1 + V2) + rΦ̃T Φ̂ + ε

≤ −λ3(V1 + V2)− r

2
||Φ̃||2 +

r

2
||Φ||2 + ε

≤ −λ3a(V1 + V2 + ||Φ̃||2) +
r

2
||Φ||2 + ε, (6.96)

where λ3a = min(λ3,
r
2
) is a positive constant. From Ineqs. (6.90) and (6.96), we have

V̇a ≤ −λaVa + ψ, (6.97)

where λa = λ3a/λ2a and ψ = r
2
||Φ||2 + ε > 0.

With the above lemmas, the adaptive control design for the riser system subjected

to the ocean current disturbance can be summarized in the following theorem.

Theorem 6.2. For the system dynamics described by (6.7) and boundary conditions

(6.8) - (6.11), under Assumption 6.1, and the control law (6.79), given that the initial

conditions are bounded, we can conclude that uniform boundedness (UB): the state of

the closed loop system w(x, t) will remain in the compact set Ωa defined by

Ωa :=
{
w(x, t) ∈ R

∣∣ |w(x, t)| ≤ H2, ∀(x, t) ∈ [0, L]× [0,∞)
}

, (6.98)

where constant H2 =

√
2L

βTλ1ak2

(
Va(0) + ψ

λa

)
.
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Proof: Multiplying Eq. (6.91) by eλat yields

∂

∂t
(Vae

λat) ≤ ψeλat. (6.99)

Integrating of the above inequality, we obtain

Va ≤
(

Va(0)− ψ

λa

)
e−λat +

ψ

λa

≤ Va(0)e−λat +
ψ

λa

∈ L∞, (6.100)

which implies Va is bounded. Utilizing Ineq. (2.11) and Eq. (6.17), we have

βk2

2L
Tw2(x, t) ≤ βk2

2
T

∫ L

0

[w′(x, t)]2dx ≤ V1 ≤ V1 + V2 ≤ 1

λ1a

Va ∈ L∞. (6.101)

Appropriately rearranging the terms of the above inequality, we obtain w(x, t) is

uniformly bounded as follows:

|w(x, t)| ≤
√

2L

βTλ1ak2

(
Va(0)e−λat +

ψ

λa

)
≤

√
2L

βTλ1ak2

(
Va(0) +

ψ

λa

)
,

∀(x, t) ∈ [0, L]× [0,∞). (6.102)

Remark 6.8. From the similar analysis of Remark 6.5, we can conclude that sys-

tem state w(x, t) with the proposed robust adaptive boundary control can be made

arbitrarily small by choosing control gain k in Eq. (6.79) appropriately.

Remark 6.9. From Eq. (6.100), we can obtain the parameter estimate error Φ̃ is

bounded ∀t ∈ [0,∞). Using the derivation similar to those employed in Remark 6.6,

we can state the proposed control Eq. (6.79) ensures all internal system signals in-

cluding w(x, t), w′(x, t), ẇ(x, t), ẇ′(x, t), ẅ(x, t), w′′′(x, t), ẇ′′′(x, t) and w′′′′(x, t) are
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uniformly bounded. Since Φ̂, w′(x, t), ẇ(x, t), w′′′(x, t) and ẇ′′′(x, t) are all bounded

∀(x, t) ∈ [0, L]× [0,∞), and we can conclude the boundary adaptive control Eq. (6.79)

is also bounded ∀t ∈ [0,∞).

Remark 6.10. For the system dynamics described by Eq. (6.7) and boundary condi-

tions (6.8) to (6.11), if there is no distributed disturbance for the riser system, i.e.,

f(x, t) = 0, the boundedness stability can be achieved with the proposed boundary

control (6.79) as follows:

|w(x, t)| ≤
√

2L

βTλ1ak2

(
Va(0)e−λat +

r||Φ||2
2λa

)
, ∀(x, t) ∈ [0, L]× [0,∞).(6.103)

6.4 Numerical Simulations

Simulations for a riser of length 1000m under the ocean current disturbance are carried

out to demonstrate the effectiveness of the proposed boundary control Eq. (6.12) and

Eq. (6.79).

The riser, initially at rest, is excited by a distributed transverse disturbance due

to the ocean current. The corresponding initial conditions of the riser system are

given as

w(x, 0) = 0, (6.104)

ẇ(x, 0) = 0. (6.105)

The system parameters are given in Table 1.

Table 1: parameters of the riser system
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Parameter Description Value

L Riser Length 1000.00m

D Riser external diameter 152.40mm

EI Riser stiffness 1.5× 107Nm2

Ms Vessel mass 9.60× 106kg

ds Vessel damping 1× 103NS/m

T Riser tension 8.11× 107N

ρ Riser mass per unit 500.00kg/m

ρs Sea water density 1024.00kg/m3

c Riser damping 2.00NS/m2

In the simulation, the ocean surface current velocity U(t) is generated by Eq.

(3.131).The full current load is applied from x = 1000m to x = 0m and thereafter

linearly decline to zero at the ocean floor, x = 0, to obtain a depth dependent ocean

current profile U(x, t) as in Chapter 3. The distributed load f(x, t) is generated by

Eq. (2.5) with CD = 1, θ = 0, St = 0.2 and fv = 2.625. The disturbance d(t) on the

vessel generated by the following equation is shown in Fig. 6.2.

d(t) = [3 + 0.8 sin(0.7t) + 0.2 sin(0.5t) + 0.2 sin(0.9t)]× 106. (6.106)

Displacement of the riser system for free vibration, i.e., u(t) = 0, under the ocean

disturbance is shown in Fig. 6.3. Displacement of the riser system with exact model-

based control Eq. (5.12), by choosing k = 1 × 107, under the ocean disturbance is

shown in Fig. 6.4. When the system parameters EI, T , ds and Ms are unknown,

displacement of the riser system with adaptive control Eq. (6.79), by choosing k =

1× 107, r = 0.0001 and Γ = diag{1, 1, 1, 1}, under the ocean disturbance is shown in

Fig. 6.5. Figs. 6.4 and 6.5 illustrate that the proposed boundary control (6.12) and
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(6.79) are able to stabilize the riser at the small neighborhood of zero by appropriately

choosing design parameters. The corresponding boundary control input for the exact

model-based control and the adaptive control are shown in Fig. 6.6. Both two control

inputs vary between 0 and 5× 104N, which are implementable in practice.

6.5 Conclusion

Vibration suppression for a flexible marine riser system subjected to the ocean current

disturbance has been presented in this chapter. Two cases have been investigated: (i)

exact model-based control, and (ii) robust adaptive control for the system parametric

uncertainty. Robust boundary control has been proposed based on the exact model

of the riser system, and adaptive control has been designed to compensate the system

parametric uncertainty. With the proposed control, closed-looped stability under the

external disturbance has been proven by using the Lyapunov’s direct method. The

proposed control is designed based on the original infinite dimensional model (PDE),

and the spillover instability phenomenon is eliminated. The control is implementable

since all the required signals in the control can be measured by sensors or obtained

by a backward difference algorithm. Numerical simulations have been provided to

illustrate the effectiveness of the proposed boundary control.
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Fig. 6.2: Disturbance on the vessel d(t).

Fig. 6.3: Displacement of the riser without control.
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Fig. 6.4: Displacement of the riser with exact model-based control.

Fig. 6.5: Displacement of the riser with adaptive control.
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Fig. 6.6: Control input u(t).
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Chapter 7

Conclusions

7.1 Conclusions

The thesis has been dedicated to the modeling and control design of the marine flexible

systems subjected to the environmental disturbances. In this chapter, the results of

the research work conducted in this thesis are summarized and the contributions

made are reviewed. Suggestions for future work are also presented. The key results

are as follows:

• Mooring System

We have studied the modeling and control design for a thruster assisted position

mooring system with arbitrary mooring lines. The mathematical model of the

mooring system has been derived by using the Hamilton’s principle. For this

PDE model, both exact model based boundary control and adaptive bound-

ary control have been proposed based on the Lyapunov’s direct method. With

proposed control, all the signals of the closed-loop system are proved to be
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uniformly bounded despite the presence of unknown system parameters. The

proposed control strategy only requires measurements of the boundary displace-

ment and slope of the mooring line and the time derivatives of these quantities.

The proposed boundary control has provided a good control performance for

the thruster assisted position mooring system with unknown environmental dis-

turbances. The main contributions include: (i) the dynamic model of a thruster

assisted position mooring system with arbitrary mooring lines has been derived;

and (ii) robust adaptive boundary control at the top boundary of the mooring

lines has been developed for station keeping of the vessel.

• Marine Installation System

Both position control and vibration suppression have been considered for a flex-

ible marine installation system. Two cases for the flexible marine installation

system are studied: (i) exact model-based control, and (ii) adaptive control for

the system parametric uncertainty. For the first case, a boundary controller

is introduced for the exact model of the installation system. For second case

where the system parameters cannot be directly measured, to fully compensate

for the effect of unknown system parameters, a signum term and an auxiliary

signal term are introduced to develop a robust adaptive boundary control law.

Both two types of boundary control are designed based on the original infinite

dimensional model (PDE), and thus the spillover instability phenomenon is

eliminated. All the signals of the closed-loop system are proved to be uniformly

bounded by using the Lyapunov’s direct method. The proposed schemes offer

implementable design procedures for the control of marine installation systems

since all the signals in the control can be measured by sensors or calculated

by a backward difference algorithm. The main contributions include: (i) the
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mathematical model of the marine installation system has been described as a

nonhomogeneous hyperbolic PDE; and (ii) two implementable boundary con-

trollers at the top and bottom boundary of the cable have been designed to

position the subsea payload to the desired set-point and suppress the cable’s

vibration.

• Flexible Marine Riser

We have studied the vibration problems of a coupled nonlinear marine flexible

riser subjected to the ocean disturbances. The riser system is modeled as a

nonlinear PDE system via the Hamilton’s principle. The difficulty of the con-

trol of the nonlinear PDE system lies in the couplings between the transverse

and longitudinal vibrations. To overcome this difficulty, we have developed the

boundary control with two actuators in transverse and longitudinal directions

based on the distributed parameter system model, and the problems associ-

ated with traditional truncated-model-based design are overcome. With the

proposed control, uniform boundedness under the ocean current disturbances

and exponential stability under free vibration condition have been theoretically

proved based on the Lyapunov’s direct method. The control is easy to imple-

ment since they are independent of the system parameters and only two sensors

and actuators are required. The main contributions are: (i) the coupled nonlin-

ear dynamic model of the marine flexible riser for transverse and longitudinal

vibrations reduction has been formulated; and (ii) the implementable boundary

control with two actuators in transverse and longitudinal directions has been

designed to reduce both transverse and longitudinal vibrations of the marine

flexible riser.

• Flexible Marine Riser with Vessel Dynamics
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Robust adaptive boundary control for a flexible marine riser with vessel dy-

namics has been designed to suppress the riser’s vibration. To provide an ac-

curate and concise representation of the riser’s dynamic behavior, the flexible

marine riser with vessel dynamics is described by a distributed parameter sys-

tem with a partial differential equation (PDE) and four ordinary differential

equations (ODEs). Two cases have been investigated: (i) exact model-based

control, and (ii) robust adaptive control for the system parametric uncertainty.

Robust boundary control has been proposed based on the exact model of the

riser system, and adaptive control has been designed to compensate the system

parametric uncertainty. With the proposed control, closed-looped stability un-

der the external disturbances has been proven by using the Lyapunov’s direct

method. The state of the system is proven to converge to a small neighborhood

of zero by appropriately choosing design parameters. The main contributions

are: (i) the model of the marine flexible riser with vessel dynamics has been

formulated; and (ii) robust adaptive boundary control at the top boundary of

the riser has been developed to suppress the riser’s vibration.

7.2 Recommendations for Future Research

In this section, some research topics are proposed for future investigation:

• Experiments for the proposed control

In this thesis, we focused on the vibration problems of the marine flexible sys-

tems, and numerical simulations are extensively provided to illustrate the per-

formance of the proposed control. One drawback of the current research is the
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lacks of the experimental results. There is no experiment for verifying the de-

rived model and the proposal control design since the the experiments would

involve a huge infrastructure investment in practice. Recent year, some re-

searchers in Norwegian University of Science and Technology (NUNT) used the

scale model to carry out the experiments in the ocean basin for the mooring

system and riser system [6,109–112]. In these experiments, the feasibility of the

proposed control has been well illustrated. In future, we plan to implement the

proposed control strategies based on a scale vessel model in the ocean basin for

demonstrating the control performance of the controllers.

• Control of vibrations in three three-dimensional space

In this thesis, we focused on a specific system model in the vertical plane, and

only transverse vibration is considered and controlled in the above control de-

signs. In practice, all the marine flexible systems are located in the Earth-frame,

which is a three-dimensional space including X, Y and Z axis. In the three-

dimensional space, there are strong couplings between motions of a flexible

marine system along the X, Y and Z axis. Due to the coupled effects, the mod-

eling and control design for the marine flexible systems in the three-dimensional

space is not a straightforward extension. These couplings make control a flexible

marine system in three-dimensional space more difficulties than the one studied

in this thesis. Therefore, the control problem of a flexible marine system that

deforms in three-dimensional space is an interesting and challenging topic. For

example, boundary control of a three-dimensional flexible marine riser has been

investigated in [73]. More investigations are needed to explore the characteris-

tics of such three-dimensional models with the available control techniques to

mitigate the effects of couplings while satisfying the basic requirements for the
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concerned system.

• Control of flexible systems with the time-varying distributed distur-

bance f(x, t)

In our control design, there is no term introduced to cope with the effect of

the time-varying distributed disturbance f(x, t). When the upper bound of

the time-varying distributed disturbance is large, the control performance will

be affected. For example, in the mooring system, H1 and H2 can receive a

large value when the upper bound of the time-varying distributed disturbance

increases. Even though the size of H1 and H2 can be reduced by choosing

the control gains kp, kv and ks appropriately, it may bring a high gain control

scheme. Observer for the time-varying distributed disturbance may be regarded

as one solution for such problem. State observers for distributed parameter

systems has been investigated in [102, 103, 142–148], which could be used to

deal with the the time-varying distributed disturbance f(x, t). In the marine

environment, the observer and control design is more challenging due to the

complicated flexible system models coupled with the vessel’s motion. Bound-

ary control of flexible systems is currently an active research area, and how to

take into account the time-varying distributed disturbance in the control design

becomes an important and challenging problem.

• Control of longitudinal vibrations and tension

During the lowering operation on long lines, there can be very significant dy-

namic effects on the lift cable and load. The excitation caused by the motions

of the surface vessel can be amplified with large oscillations and high dynamic

tensile loads in the lifting line which may result in breaking of the lifting cable.

Considering the ship motions, control of longitudinal vibrations and tension to

167



7.2 Recommendations for Future Research

reduce the high dynamic tensile loads is desirable in ocean engineering. Due to

the coupled effects, the control design and the direct proof for the Lyapunov

stability is quite difficult. Boundary control on axially moving systems has

been studied in [39, 63, 66, 76, 149], which may inspire the control design for

the longitudinal vibrations of the flexible systems. In the marine environment,

the control longitudinal vibrations and tension is challenging due to the un-

predictable ocean disturbances such as fluctuating currents and transmission of

motions from the surface vessel through the lift cable.

168



Bibliography

Bibliography

[1] J. Van Amerongen, “Adaptive steering of ships–A model reference approach,”

Automatica, vol. 20, no. 1, pp. 3–14, 1984.

[2] A. Sorensen, S. Sagatun, and T. Fossen, “Design of a dynamic positioning

system using model-based control,” Control Engineering Practice, vol. 4, no. 3,

pp. 359–368, 1996.

[3] T. Fossen and A. Grovlen, “Nonlinear output feedback control of dynamically

positioned ships using vectorial observer backstepping,” IEEE Transactions on

Control Systems Technology, vol. 6, no. 1, pp. 121–128, 1998.

[4] J. Ghommam, F. Mnif, A. Benali, and N. Derbel, “Asymptotic backstepping

stabilization of an underactuated surface vessel,” IEEE Transactions on Control

Systems Technology, vol. 14, no. 6, pp. 1150–1157, 2006.

[5] K. P. Tee and S. S. Ge, “Control of fully actuated ocean surface vessels using

a class of feedforward approximators,” IEEE Transactions on Control Systems

Technology, vol. 14, pp. 750–756, 2006.

[6] T. Nguyen, A. Sorensen, and S. Tong Quek, “Design of hybrid controller for

dynamic positioning from calm to extreme sea conditions,” Automatica, vol. 43,

no. 5, pp. 768–785, 2007.

169



Bibliography

[7] B. V. E. How, S. S. Ge, and Y. S. Choo, “Dynamic Load Positioning for Subsea

Installation via Adaptive Neural Control,” IEEE Journal of Oceanic Engineer-

ing, vol. 35, no. 2, pp. 366–375, 2010.

[8] B. V. E. How, S. S. Ge, and Y. S. Choo, “Control of Coupled Vessel, Crane,

Cable, and Payload Dynamics for Subsea Installation Operations,” IEEE Trans-

actions on Control Systems Technology, no. 99, pp. 1–13, 2010.

[9] S. Kaewunruen, J. Chiravatchradj, and S. Chucheepsakul, “Nonlinear free vi-

brations of marine risers/pipes transport fluid,” Ocean Engineering, vol. 32,

no. 3-4, pp. 417–440, 2005.

[10] B. V. E. How, S. S. Ge, and Y. S. Choo, “Active control of flexible marine

risers,” Journal of Sound and Vibration, vol. 320, pp. 758–776, 2009.

[11] J. D. Logan, Applied Mathematics (Third edition). New York, USA: Wiley,

2006.

[12] M. J. Balas, “Feedback control of flexible systems,” IEEE Transactions on

Automatic Control, vol. 23, pp. 673–679, 1978.

[13] M. W. Vandegrift, F. L. Lewis, and S. Q. Zhu, “Flexible-link robot arm control

by a feedback linearization/singular perturbation approach,” Journal of Robotic

Systems, vol. 11, no. 7, pp. 591–603, 1994.

[14] J. Lin and F. L. Lewis, “Enhanced measurement and estimation methodology

for flexible link arm control,” Journal of Robotic Systems, vol. 11, no. 5, pp. 367–

385, 1994.

170



Bibliography

[15] J. Lin and F. L. Lewis, “A symbolic formulation of dynamic equations for a

manipulator with rigid and flexible links,” The International Journal of Robotics

Research, vol. 13, no. 5, p. 454, 1994.

[16] A. Armaou and P. Christofides, “Wave suppression by nonlinear finite-

dimensional control,” Chemical Engineering Science, vol. 55, no. 14, pp. 2627–

2640, 2000.

[17] P. Christofides and A. Armaou, “Global stabilization of the Kuramoto-

Sivashinsky equation via distributed output feedback control,” Systems & Con-

trol Letters, vol. 39, no. 4, pp. 283–294, 2000.

[18] Y. Sakawa, F. Matsuno, and S. Fukushima, “Modeling and feedback control of

a flexible arm,” Journal of Robotic Systems, vol. 2(4), pp. 453–472, 1985.

[19] S. S. Ge, T. H. Lee, and G. Zhu, “A nonlinear feedback controller for a single-

link flexible manipulator based on a finite element model,” Journal of Robotic

Systems, vol. 14, no. 3, pp. 165–178, 1997.

[20] S. S. Ge, T. H. Lee, and G. Zhu, “Non-model-based position control of a planar

multi-link flexible robot,” Mechanical Systems and Signal Processing, vol. 11,

no. 5, pp. 707–724, 1997.

[21] J. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, USA: Pren-

tice Hall, 1991.

[22] M. Kristic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Con-

trol Design. New York, USA: Wiley, 1995.

[23] S. S. Ge, T. H. Lee, and C. J. Harris, Adaptive Neural Network Control of

Robotic Manipulators. London, UK: World Scientific, 1998.

171



Bibliography

[24] S. S. Ge, C. C. Hang, T. Lee, and T. Zhang, Stable Adaptive Neural Network

Control. Boston, USA: Kluwer Academic, 2001.

[25] H. K. Khalil, Nonlinear Systems. New Jersey, USA: Prentice Hall, 2002.

[26] S. S. Ge, T. H. Lee, and G. Zhu, “Improving regulation of a single-link flexible

manipulator withstrain feedback,” IEEE Transactions on Robotics and Automa-

tion, vol. 14, no. 1, pp. 179–185, 1998.

[27] M. J. Balas, “Active control of flexible systems,” Journal of Optimization The-

ory and Applications, vol. 25, pp. 415–436, 1978.

[28] L. Meirovitch and H. Baruh, “On the problem of observation spillover in self-

adjoint distributed systems,” Journal of Optimization Theory and Applications,

vol. 30, no. 2, pp. 269–291, 1983.

[29] S. S. Ge, T. H. Lee, G. Zhu, and F. Hong, “Variable structure control of a dis-

tributed parameter flexible beam,” Journal of Robotic Systems, vol. 18, pp. 17–

27, 2001.

[30] G. Zhu and S. S. Ge, “A quasi-tracking approach for finite-time control of a

mass-beam system,” Automatica, vol. 34, no. 7, pp. 881–888, 1998.

[31] S. S. Ge, T. H. Lee, and G. Zhu, “Energy-based robust controller design for

multi-link flexible robots,” Mechatronics, vol. 6, no. 7, pp. 779–798, 1996.

[32] T. H. Lee, S. S. Ge, and Z. Wang, “Adaptive robust controller design for multi-

link flexible robots,” Mechatronics, vol. 11, no. 8, pp. 951–967, 2001.

[33] S. S. Ge, T. H. Lee, and Z. Wang, “Model-free regulation of multi-link smart

materials robots,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 3,

pp. 346–351, 2001.

172



Bibliography

[34] J. Bentsman and K.-S. Hong, “Vibrational stabilization of nonlinear parabolic

systems with Neumann boundary conditions,” IEEE Transactions on Auto-

matic Control, vol. 36, no. 4, pp. 501–507, 1991.

[35] J. Bentsman, K.-S. Hong, and J. Fakhfakh, “Vibrational control of nonlinear

time lag systems: Vibrational stabilization and transient behavior,” Automat-

ica, vol. 27, no. 3, pp. 491–500, 1991.

[36] J. Bentsman and K.-S. Hong, “Transient behavior analysis of vibrationally con-

trolled nonlinear parabolic systems with Neumann boundary conditions,” IEEE

Transactions on Automatic Control, vol. 38, no. 10, pp. 1603–1607, 1993.

[37] K.-S. Hong and J. Bentsman, “Direct adaptive control of parabolic systems:

algorithm synthesis and convergence and stability analysis,” IEEE Transactions

on Automatic Control, vol. 39, no. 10, pp. 2018–2033, 1994.

[38] K.-S. Hong and J. Bentsman, “Application of averaging method for integro-

differential equations to model reference adaptive control of parabolic systems,”

Automatica, vol. 30, no. 9, pp. 1415–1419, 1994.

[39] K.-J. Yang, K.-S. Hong, and F. Matsuno, “Robust adaptive boundary control

of an axially moving string under a spatiotemporally varying tension,” Journal

of Sound and Vibration, vol. 273, no. 4-5, pp. 1007–1029, 2004.

[40] Q. C. Nguyen and K.-S. Hong, “Asymptotic stabilization of a nonlinear axially

moving string by adaptive boundary control,” Journal of Sound and Vibration,

vol. 329, no. 22, pp. 4588–4603, 2010.

173



Bibliography

[41] B. Bamieh, F. Paganini, and M. Dahleh, “Distributed control of spatially in-

variant systems,” IEEE Transactions on Automatic Control, vol. 47, no. 7,

pp. 1091–1107, 2002.

[42] F. Wu, “Distributed control for interconnected linear parameter-dependent sys-

tems,” IEE Proceedings-Control Theory and Applications, vol. 150, p. 518, 2003.

[43] H. Banks, R. Smith, and Y. Wang, Smart material structures: modeling, esti-

mation, and control. New York: John Wiley & Sons, 1997.

[44] S. S. Ge, T. H. Lee, J. Gong, and Z. Wang, “Model-free controller design for

a single-link flexible smart materials robot,” International Journal of Control,

vol. 73, no. 6, pp. 531–544, 2000.

[45] S. S. Ge, T. H. Lee, and J. Q. Gong, “A robust distributed controller of a single-

link SCARA/Cartesian smart materials robot,” Mechatronics, vol. 9, no. 1,

pp. 65–93, 1999.

[46] C. D. Rahn, Mechatronic Control of Distributed Noise and Vibration. New

York, USA: Springer, 2001.

[47] S. S. Ge, “Genetic Algorithm Tuning of Lyapunov-B ased Controllers: An Ap-

plication to a Single-Link Flexible Robot System,” IEEE Transactions on In-

dustrial Electronics, vol. 43, no. 5, p. 567, 1996.

[48] S. S. Ge, T. H. Lee, and G. Zhu, “Asymptotically stable end-point regulation

of a flexible SCARA/Cartesian robot,” IEEE/ASME Transactions on Mecha-

tronics, vol. 3, no. 2, pp. 138–144, 1998.

[49] O. Morgul, “Control and stabilization of a flexible beam attached to a rigid

body,” International Journal of Control, vol. 51, no. 1, pp. 11–31, 1990.

174



Bibliography

[50] O. Morgul, “Orientation and stabilization of a flexible beam attached to a rigid

body: planar motion,” IEEE Transactions on Automatic Control, vol. 36, no. 8,

pp. 953–962, 1991.

[51] O. Morgul, “Dynamic boundary control of a Euler-Bernoulli beam,” IEEE

Transactions on Automatic Control, vol. 37, no. 5, pp. 639–642, 1992.

[52] O. Morgul, B. Rao, and F. Conrad, “On the stabilization of a cable with a tip

mass,” IEEE Transactions on Automatic Control,, vol. 39, no. 10, pp. 2140–

2145, 2002.

[53] O. Morgul, “A dynamic control law for the wave equation,” Automatica, vol. 30,

no. 11, pp. 1785–1792, 1994.

[54] O. Morgul, “Control and stabilization of a rotating flexible structure,” Auto-

matica, vol. 30, no. 2, pp. 351–356, 1994.

[55] H. Geniele, R. Patel, and K. Khorasani, “End-point control of a flexible-link

manipulator: theory and experiments,” IEEE Transactions on Control Systems

Technology, vol. 5, no. 6, pp. 556–570, 1997.

[56] Z. Qu, “Robust and adaptive boundary control of a stretched string on a moving

transporter,” IEEE Transactions on Automatic Control, vol. 46, no. 3, pp. 470–

476, 2001.

[57] Z. Qu, “An iterative learning algorithm for boundary control of a stretched

moving string,” Automatica, vol. 38, no. 5, pp. 821–827, 2002.

[58] Z. Qu and J. Xu, “Model-Based Learning Controls And Their Comparisons

Using Lyapunov Direct Method,” Asian Journal of Control, vol. 4, no. 1, pp. 99–

110, 2002.

175



Bibliography

[59] C. Rahn, F. Zhang, S. Joshi, and D. Dawson, “Asymptotically stabilizing an-

gle feedback for a flexible cable gantry crane,” Journal of Dynamic Systems,

Measurement, and Control, vol. 121, pp. 563–565, 1999.

[60] C. F. Baicu, C. D. Rahn, and B. D. Nibali, “Active boundary control of elastic

cables: theory and experiment,” Journal of Sound and Vibration, vol. 198,

pp. 17–26, 1996.

[61] S. M. Shahruz and L. G. Krishna, “Boundary control of a nonlinear string,”

Journal of Sound and Vibration, vol. 195, pp. 169–174, 1996.

[62] J. Hu, “Active impedance control of linear one-dimensional wave equations,”

International Journal of Control, vol. 72, no. 3, pp. 247–257, 1999.

[63] R. F. Fung and C. C. Tseng, “Boundary control of an axially moving string via

lyapunov method,” Journal of Dynamic Systems, Measurement, and Control,

vol. 121, pp. 105–110, 1999.

[64] M. Fard and S. Sagatun, “Exponential stabilization of a transversely vibrating

beam via boundary control,” Journal of Sound and Vibration, vol. 240, no. 4,

pp. 613–622, 2001.

[65] M. Fard and S. Sagatun, “Exponential Stabilization of a Transversely Vibrat-

ing Beam by Boundary Control Via Lyapunovs Direct Method,” Journal of

Dynamic Systems, Measurement, and Control, vol. 123, pp. 195–200, 2001.

[66] J.-Y. Choi, K.-S. Hong, and K.-J. Yang, “Exponential stabilization of an axially

moving tensioned strip by passive damping and boundary control,” Journal of

Vibration and Control, vol. 10, no. 5, p. 661, 2004.

176



Bibliography

[67] K.-J. Yang, K.-S. Hong, and F. Matsuno, “Boundary control of a translating

tensioned beam with varying speed,” IEEE/ASME Transactions on Mechatron-

ics, vol. 10, no. 5, pp. 594–597, 2005.

[68] K.-J. Yang, K.-S. Hong, and F. Matsuno, “Robust boundary control of an

axially moving string by using a PR transfer function,” IEEE Transactions on

Automatic Control, vol. 50, no. 12, pp. 2053–2058, 2005.

[69] K.-J. Yang, K.-S. Hong, and F. Matsuno, “Energy-based control of axially trans-

lating beams: varying tension, varying speed, and disturbance adaptation,”

IEEE Transactions on Control Systems Technology, vol. 13, no. 6, pp. 1045–

1054, 2005.

[70] C.-S. Kim and K.-S. Hong, “Boundary control of container cranes from the per-

spective of controlling an axially moving string system,” International Journal

of Control, Automation and Systems, vol. 7, no. 3, pp. 437–445, 2009.

[71] Q. H. Ngo and K.-S. Hong, “Skew control of a quay container crane,” Journal

of Mechanical Science and Technology, vol. 23, no. 12, pp. 3332–3339, 2009.

[72] K. Do and J. Pan, “Boundary control of transverse motion of marine risers

with actuator dynamics,” Journal of Sound and Vibration, vol. 318, pp. 768–

791, 2008.

[73] K. Do and J. Pan, “Boundary control of three-dimensional inextensible marine

risers,” Journal of Sound and Vibration, vol. 327, no. 3-5, pp. 299–321, 2009.

[74] M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Back-

stepping Designs. Philadelphia, USA: Society for Industrial and Applied Math-

ematics, 2008.

177



Bibliography

[75] T. Li and Z. Hou, “Exponential stabilization of an axially moving string with

geometrical nonlinearity by linear boundary feedback,” Journal of Sound and

Vibration, vol. 296, no. 4-5, pp. 861–870, 2006.

[76] T. Li, Z. Hou, and J. Li, “Stabilization analysis of a generalized nonlinear

axially moving string by boundary velocity feedback,” Automatica, vol. 44,

no. 2, pp. 498–503, 2008.

[77] K. Endo, F. Matsuno, and H. Kawasaki, “Simple Boundary Cooperative Con-

trol of Two One-Link Flexible Arms for Grasping,” IEEE Transactions on Au-

tomatic Control, vol. 54, no. 10, pp. 2470–2476, 2009.

[78] S. S. Ge, W. He, B. V. E. How, and Y. S. Choo, “Boundary Control of a Cou-

pled Nonlinear Flexible Marine Riser,” IEEE Transactions on Control Systems

Technology, vol. 18, no. 5, pp. 1080–1091, 2010.

[79] M. S. de Queiroz and C. D. Rahn, “Boundary Control of Vibration and Noise in

Distributed Parameter Systems: An Overview,” Mechanical Systems and Signal

Processing, vol. 16, pp. 19–38, 2002.

[80] A. Baz, “Dynamic Boundary Control of Beams Using Active Constrained Layer

Damping,” Mechanical Systems and Signal Processing, vol. 11, no. 6, pp. 811–

825, 1997.

[81] N. Tanaka and H. Iwamoto, “Active boundary control of an euler-bernoulli

beam for generating vibration-free state,” Journal of Sound and Vibration,

vol. 304, pp. 570–586, 2007.

[82] M. Krstic, Delay compensation for nonlinear, adaptive, and PDE systems.

Boston, USA: Birkhauser, 2009.

178



Bibliography

[83] A. Smyshlyaev and M. Krstic, Adaptive Control of Parabolic PDEs. New Jersey,

USA: Princeton University Press, 2010.

[84] R. Vazquez and M. Krstic, “Control of 1-D Parabolic PDEs with Volterra Non-

linearities, Part I: Design,” Automatica, vol. 44, no. 11, pp. 2778–2790, 2008.

[85] R. Vazquez and M. Krstic, “Control of 1D parabolic PDEs with Volterra non-

linearities, Part II: Analysis,” Automatica, vol. 44, no. 11, pp. 2791–2803, 2008.

[86] M. Krstic, A. Siranosian, A. Balogh, and B. Guo, “Control of strings and flexible

beams by backstepping boundary control,” Proceedings of the 2007 American

Control Conference, pp. 882–887, 2007.

[87] M. Krstic, “Optimal Adaptive Control-Contradiction in Terms or a Matter

of Choosing the Right Cost Functional?,” IEEE Transactions on Automatic

Control, vol. 53, no. 8, pp. 1942–1947, 2008.

[88] M. Krstic and A. Smyshlyaev, “Backstepping boundary control for first-order

hyperbolic PDEs and application to systems with actuator and sensor delays,”

Systems & Control Letters, vol. 57, no. 9, pp. 750–758, 2008.

[89] A. Smyshlyaev, B. Guo, and M. Krstic, “Arbitrary Decay Rate for Euler-

Bernoulli Beam by Backstepping Boundary Feedback,” IEEE Transactions on

Automatic Control, vol. 54, no. 5, p. 1135, 2009.

[90] M. Krstic and A. Smyshlyaev, “Adaptive control of PDEs,” Annual Reviews in

Control, vol. 32, no. 2, pp. 149–160, 2008.

[91] M. Krstic and A. Smyshlyaev, “Adaptive boundary control for unstable

parabolic PDEsPart I: Lyapunov design,” IEEE Transactions on Automatic

Control, vol. 53, no. 7, p. 1575, 2008.

179



Bibliography

[92] A. Smyshlyaev and M. Krstic, “Adaptive boundary control for unstable

parabolic PDEs–Part II: Estimation-based designs,” Automatica, vol. 43, no. 9,

pp. 1543–1556, 2007.

[93] A. Smyshlyaev and M. Krstic, “Adaptive boundary control for unstable

parabolic PDEs–Part III: Output feedback examples with swapping identifiers,”

Automatica, vol. 43, no. 9, pp. 1557–1564, 2007.

[94] B. Guo and W. Guo, “The strong stabilization of a one-dimensional wave

equation by non-collocated dynamic boundary feedback control,” Automatica,

vol. 45, no. 3, pp. 790–797, 2009.

[95] Z. Luo, B.-Z. Guo, and O. Morgul, Stability and stabilization of infinite dimen-

sional systems with applications. London, UK: Springer Verlag, 1999.

[96] Y. Sakawa and Z. Luo, “Modeling and control of coupled bending and torsional

vibrations of flexible beams,” IEEE Transactions on Automatic Control, vol. 34,

no. 9, pp. 970–977, 1989.

[97] Z. Luo, “Direct strain feedback control of flexible robot arms: new theoretical

and experimental results,” IEEE Transactions on Automatic Control, vol. 38,

no. 11, pp. 1610–1622, 1993.

[98] Z. Luo and B.-Z. Guo, “Further theoretical results on direct strain feedback con-

trol of flexible robot arms,” IEEE Transactions on Automatic Control, vol. 40,

no. 4, pp. 747–751, 1995.

[99] Z. Luo, N. Kitamura, and B.-Z. Guo, “Shear force feedback control of flexible

robot arms,” IEEE Transactions on Robotics and Automation, vol. 11, no. 5,

pp. 760–765, 1995.

180



Bibliography

[100] B.-Z. Guo and Z.-C. Shao, “Stabilization of an abstract second order system

with application to wave equations under non-collocated control and observa-

tions,” Systems & Control Letters, vol. 58, no. 5, pp. 334–341, 2009.

[101] B.-Z. Guo and C.-Z. Xu, “The stabilization of a one-dimensional wave equation

by boundary feedback with noncollocated observation,” IEEE Transactions on

Automatic Control, vol. 52, no. 2, pp. 371–377, 2007.

[102] T. D. Nguyen, “Second-order observers for second-order distributed parameter

systems in R2,” Systems & Control Letters, vol. 57, no. 10, pp. 787–795, 2008.

[103] T. D. Nguyen, “Boundary output feedback of second-order distributed param-

eter systems,” Systems & Control Letters, vol. 58, no. 7, pp. 519–528, 2009.

[104] R. Curtain and H. Zwart, An introduction to infinite-dimensional linear systems

theory. New York, USA: Springer, 1995.

[105] A. Pazy, Semigroups of linear operators and applications to partial differential

equations. New York, USA: Springer, 1983.

[106] A. Bensoussan, G. Prato, M. Delfour, and S. Mitter, “Representation and Con-

trol of Infinite Dimensional Systems,” 2007.

[107] B.-Z. Guo and F.-F. Jin, “Arbitrary decay rate for two connected strings with

joint anti-damping by boundary output feedback,” Automatica, vol. 46, no. 7,

pp. 1203–1209, 2010.

[108] O. Aamo and T. Fossen, “Controlling line tension in thruster assisted moor-

ing systems,” in Proceedings of the IEEE International Conference on Control

Applications, Hawaii, US, vol. 2, pp. 1104–1009, 1999.

181



Bibliography

[109] P. Berntsen, O. Aamo, and B. Leira, “Ensuring mooring line integrity by

dynamic positioning: Controller design and experimental tests,” Automatica,

vol. 45, no. 5, pp. 1285–1290, 2009.

[110] D. T. Nguyen and A. J. Sorensen, “Switching control for thruster-assisted posi-

tion mooring,” Control Engineering Practice, vol. 17, no. 9, pp. 985–994, 2009.

[111] D. T. Nguyen and A. J. Sorensen, “Setpoint Chasing for Thruster-Assisted Po-

sition Mooring,” IEEE Journal of Oceanic Engineering, vol. 34, no. 4, pp. 548–

558, 2009.

[112] D. H. Nguyen, D. T. Nguyen, S. Quek, and A. Sorensen, “Control of marine

riser end angles by position mooring,” Control Engineering Practice, vol. 18,

no. 9, pp. 1013–1021, 2010.

[113] O. Aamo and T. Fossen, “Finite element modelling of moored vessels,” Mathe-

matical and Computer Modelling of Dynamical Systems, vol. 7, no. 1, pp. 47–75,

2001.

[114] A. J. Sorensen, J. P. Strand, and T. I. Fossen, “Thruster assisted position

mooring system for turret-anchored FPSOs,” Proceedings of the 1999 IEEE

International Conference on Control Applications, vol. 2, 1999.

[115] S. Rowe, B. Mackenzie, and R. Snell, “Deep water installation of subsea hard-

ware,” in Proceedings of the 10th Offshore Symposium, 2001.

[116] O. Engineer, “Wideband wins the day at Orman Lange,” Offshore Engineering,

vol. 12, pp. 32–34, 2005.

182



Bibliography

[117] H. Suzuki, Q. Tao, and K. Yoshida, “Automatic installation of underwater

elastic structures under unknown currents,” in Proceedings of 1998 International

Symposium on Underwater Technology, pp. 274–281, IEEE, 2002.

[118] K. Watanabe, H. Suzuki, T. Qi, and K. Toshida, “Basic research on underwater

docking of flexible structures,” in Proceedings of IEEE International Conference

on Robotics and Automation, vol. 1, pp. 458–463, IEEE, 1998.

[119] T. Huang and S. Chucheepsakul, “Large displacement analysis of a marine

riser,” Journal of Energy Resources Technology, vol. 107, p. 54, 1985.

[120] M. Bernitsas, J. Kokarakis, and A. Imron, “Large deformation three-

dimensional static analysis of deep water marine risers,” Applied Ocean Re-

search, vol. 7, no. 4, pp. 178–187, 1985.

[121] T. Huang and Q. Kang, “Three dimensional analysis of a marine riser with

large displacements,” International Journal of Offshore and Polar Engineering,

vol. 1, no. 4, pp. 300–306, 1991.

[122] M. Patel and A. Jesudasen, “Theory and model tests for the dynamic response

of free hanging risers,” Journal of Sound and Vibration, vol. 112, no. 1, pp. 149–

166, 1987.

[123] R. D. Young, J. R. Fowler, E. A. Fisher, and R. R. Luke, “Dynamic analysis

as an aid to the design of marine risers,” ASME, Journal of Pressure Vessel

Technology, vol. 100, pp. 200–205, 1978.

[124] O. Aldraihem, R. Wetherhold, and T. Singh, “Distributed Control of Laminated

Beams: Timoshenko Theory vs. Euler-Bernoulli Theory,” Journal of Intelligent

Material Systems and Structures, vol. 8, no. 2, p. 149, 1997.

183



Bibliography

[125] H. Goldstein, Classical Mechanics. Massachusetts, USA: Addison-Wesley, 1951.

[126] L. Meirovitch, “Analytical methods in vibration,” New York, NY.: The Mcmil-

lan Company, 1967.

[127] J. Wanderley and C. Levi, “Vortex induced loads on marine risers,” Ocean

Engineering, vol. 32, no. 11-12, pp. 1281–1295, 2005.

[128] R. Blevins, Flow-induced Vibration. New York, USA: Van Nostrand Reinhold,

1977.

[129] O. M. Faltinsen, Sea Loads on Ships and Offshore Structures. Cambridge, UK:

Cambridge University Press, 1990.

[130] M. Pedersen, Functional analysis in applied mathematics and engineering. New

York, USA: CRC press, 2000.

[131] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities. Cambridge, UK:

Cambridge University Press, 1959.

[132] R. Horn and C. Johnson, Matrix analysis. Cambridge, UK: Cambridge Univer-

sity Press, 1990.

[133] S. K. Chakrabarti and R. E. Frampton, “Review of riser analysis techniques,”

Applied Ocean Research, vol. 4, pp. 73–90, 1982.

[134] C. Yamamoto, J. Meneghini, F. Saltara, R. Fregonesi, and J. Ferrari, “Numer-

ical simulations of vortex-induced vibration on flexible cylinders,” Journal of

Fluids and Structures, vol. 19, no. 4, pp. 467–489, 2004.

[135] J. Meneghini, F. Saltara, R. Fregonesi, C. Yamamoto, E. Casaprima, and J. Fer-

rari, “Numerical simulations of VIV on long flexible cylinders immersed in

184



Bibliography

complex flow fields,” European Journal of Mechanics/B Fluids, vol. 23, no. 1,

pp. 51–63, 2004.

[136] M. S. Queiroz, D. M. Dawson, S. P. Nagarkatti, and F. Zhang, Lyapunov Based

Control of Mechanical Systems. Boston, USA: Birkhauser, 2000.

[137] A. Bokaian, “Natural frequencies of beams under tensile axial loads,” Journal

of Sound and Vibration, vol. 142, pp. 481–489, 1990.

[138] Y. H. Chen and F. M. Lin, “General drag-force linerization for nonlinear analysis

of marine risers,” Ocean Engineering, vol. 16, pp. 265–280, 1989.

[139] D. Dawson, Z. Qu, F. Lewis, and J. Dorsey, “Robust control for the tracking

of robot motion,” International Journal of Control, vol. 52, no. 3, pp. 581–595,

1990.

[140] S. S. Ge and C. Wang, “Adaptive neural network control of uncertain MIMO

non-linear systems,” IEEE Transactions on Neural Network, vol. 15, no. 3,

pp. 674–692, 2004.

[141] I. Karafyllis, P. Christofides, and P. Daoutidis, “Dynamics of a reaction-

diffusion system with Brusselator kinetics under feedback control,” Physical

Review E, vol. 59, pp. 372–380, 1999.

[142] T. Nguyen and O. Egeland, “Infinite dimensional observer for a flexible robot

arm with a tip load,” Asian Journal of Control, vol. 10, no. 4, pp. 456–461,

2008.

[143] M. Demetriou and F. Fahroo, “Model reference adaptive control of structurally

perturbed second-order distributed parameter systems,” International Journal

of Robust and Nonlinear Control, vol. 16, no. 16, pp. 773–799, 2006.

185



Bibliography

[144] M. Demetriou, “Natural second-order observers for second-order distributed

parameter systems,” Systems & Control Letters, vol. 51, no. 3-4, pp. 225–234,

2004.

[145] A. Smyshlyaev and M. Krstic, “Backstepping observers for a class of parabolic

PDEs,” Systems & Control Letters, vol. 54, no. 7, pp. 613–625, 2005.

[146] H. Bounit and H. Hammouri, “Observers for infinite dimensional bilinear sys-

tems,” European journal of control, vol. 3, no. 4, pp. 325–339, 1997.

[147] M. Balas, “Do all linear flexible structures have convergent second-order ob-

servers?,” Journal of Guidance, Control, and Dynamics, vol. 22, no. 6, pp. 905–

908, 1999.

[148] C. Xu, J. Deguenon, and G. Sallet, “Infinite dimensional observers for vibrating

systems,” in Proceedings of the 45th IEEE Conference on Decision and Control,

pp. 3979–3983, 2006.

[149] S. Lee and C. Mote Jr, “Vibration control of an axially moving string by bound-

ary control,” Journal of Dynamic Systems, Measurement, and Control, vol. 118,

p. 66, 1996.

186



Author’s Publications

Author’s Publications

The contents of this thesis are based on the following papers that have been published,

accepted, or submitted to the peer-reviewed journals and conferences.

Journal papers:

1. S. S. Ge, W. He, B. V. E. How, and Y. S. Choo, ”Boundary Control of a Cou-

pled Nonlinear Flexible Marine Riser,” IEEE Transactions on Control Systems

Technology, vol. 18, no. 5, pp. 1080-1091, 2010.

2. W. He, S. S. Ge, B. V. E. How, Y. S. Choo, and K.-S. Hong, ”Robust Adaptive

Boundary Control of a Flexible Marine Riser with Vessel Dynamics,” Automat-

ica, vol. 47, no. 4, pp. 722-732, 2011.

3. S. S. Ge, W. He, and S. Zhang, ”Dynamic Modeling and Control Design for

a Multi-cable Mooring System,” IEEE Transactions on Control Systems Tech-

nology, under review, 2011.

4. W. He, S. S. Ge, and S. Zhang, ”Adaptive Boundary Control of a Flexible

Marine Installation System,” Automatica, Accepted, 2011.

5. S. S. Ge, S. Zhang and W. He, ”Vibration Control of an Euler-Bernoulli Beam

under Unknown Spatiotemporally Varying Disturbance,” International Journal

of Control, vol. 84, no. 5, pp. 947-960, 2011.

187



Author’s Publications

Conference papers:

1. W. He, B. V. E. How, S. S. Ge, and Y. S. Choo, ”Boundary Control of a Flexible

Marine Riser with Vessel Dynamics”, Proceedings of the 2010 American Control

Conference, pp. 1532-1537, Baltimore, MD, USA, June 30-July 02, 2010.

2. S. S. Ge, W. He, B. Ren, and Y. S. Choo, ”Boundary Control of a Flexible Ma-

rine Installation System”, Proceedings of the 49th IEEE Conference on Decision

and Control, pp. 2590-2595, Atlanta, GA, USA, December 15-17, 2010.

3. W. He, S. S. Ge, C. C. Hang, and K.-S. Hong, ”Boundary Control of a Vibrating

String under Unknown Time-varying Disturbance”, Proceedings of the 49th

IEEE Conference on Decision and Control, pp. 2584-2589, Atlanta, GA, USA,

December 15-17, 2010.

4. S. S. Ge, S. Zhang, and W. He, ”Modeling and Control of a Vibrating Beam

under Unknown Spatiotemporally Varying Disturbance”, Proceedings of the

2011 American Control Conference, pp. 2988-2993, San Francisco, CA, USA,

June 29 - July 01, 2011.

5. S. Zhang, S. S. Ge, and W. He, ”Modeling and Control of a Nonuniform Vi-

brating String under Spatiotemporally Varying Tension and Disturbance”, the

2011 IFAC World Congress, Accepted, 2011.

188


