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SUMMARY 

 

The purpose of this thesis is to model the reliability of some networked systems and 

study the related optimization problems. The reliability of a system is usually 

dependent on the structure of the system and the resources spent on the maintenance 

and protection of the system. Appropriate configuration of system structure and 

allocation of different kinds of resources are effective measures to increase system 

reliability and reduce the cost.  

      In many critical applications, fault tolerance has been an essential architectural 

attribute for achieving high reliability. However, faults in some elements of the system 

can remain undetected and uncovered, which can lead to the failure of the total system 

or its subsystem. As a result, the system reliability could decrease with the increase of 

redundancy over some particular limit if the system is subjected to imperfect fault 

coverage. Therefore the optimal system structure problem arises. The optimal structure 

of multi-state series-parallel systems with consideration of different kinds of imperfect 

fault coverage is studied. The linear multi-state consecutively connected system 

(LMCCS) is important in signal transmission and other network systems. The 

reliability of LMCCS has been studied in the past restricted to the case when each 

system element is associated with a constant reliability. In practice, a system usually 

contains elements with increasing failure rates and the availabilities of system elements 

are dependent on the maintenance actions taken. Different from existing works, the 

optimal component allocation and maintenance strategy in a linear multistate 

consecutively connected system is studied.  
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      Besides system with internal failures, this dissertation also studies the defense of 

system subjected to external attacks. For systems under external intentional attacks, 

protecting system elements and deploying false targets are two measures for system 

reliability enhancement. The protection is a technical or organizational measure which 

is aimed to reduce the vulnerability of protected system elements. The objective of a 

false target is to distract the attacker so that genuine elements are harder to locate. 

Existing papers have studied the efficiency of perfect false targets which are restricted. 

To move towards reality, system defense with imperfect false targets is studied. One 

work studies the defense of simple series and parallel systems with imperfect false 

targets. It is assumed that the detection probability of each false target is a constant. 

Another work studies the defense of a single object with imperfect false targets by 

assuming that the detection probability is a function of the attacker’s intelligence effort 

and the defender’s disinformation effort. For systems subjected to both internal failures 

and external impacts, maintenance and protection are two measures intended to 

enhance system availability. A tradeoff exists between investments into system 

maintenance and its protection. This dissertation proposes a framework to study the 

optimal maintenance and protection strategy for series-parallel systems. The 

methodology used can be extrapolated to study the protection and maintenance of 

other networked systems. 
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CHAPTER 1 INTRODUCTION 

 

 

This dissertation focuses on the reliability modeling and optimization of some networked 

systems. The reliability of a system is usually dependent on the structure of the system and 

the resources spent on the maintenance and protection of the system. Different kinds of 

networked systems are investigated in this dissertation, which involve series-parallel 

systems with imperfect fault coverage, linear multi-state consecutively connected systems 

comprising of elements with increasing failure rates, simple series and parallel systems 

exposed to external intentional attacks, and series-parallel systems subjected to both 

internal failures and external attacks. 

      The organization of this chapter is as follows. The introductory part first provides the 

background in section 1.1, and then states the motivation of research in section 1.2. 

Section 1.3 presents some important techniques used, which include universal generating 

function and genetic algorithm. The research scope and the organization of this 

dissertation are given in section 1.4. 
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1.1. Background  

Reliability is the probability that a system will perform satisfactorily for at least a given 

period of time when used under stated condition. It is an important measure of how well a 

system meets its design objective. As many of today’s systems are large and complicated, 

the reliability analysis of such systems has drawn much attention, see Cook and Ramirez-

Marquez (2009), Yeh and Lin (2009) and Huang and Xu (2010). 

      A system is a collection of independent and interrelated components connected as a 

unity to perform some specified functions. System reliability is usually evaluated by 

reliability block diagram, which is a graphic representation of the logic connections of 

system components within a system. Some common networked systems are single 

component systems, series systems, parallel systems, series-parallel systems, parallel-

series systems, and k-out-of-n partially redundant systems. Series and parallel are the two 

basic elements of logic connections, from which more complicated configurations can be 

formed. 

      A system is said to be a series system if the failure of any element results in the failure 

of the entire system. In other words, a series system functions only when all the elements 

function. The reliability of a series system is the product of the reliabilities of all the 

components within the system. For this reason the system reliability is no more than the 

reliability of any component. And the system reliability decreases drastically with the 

increase of the number of components. 
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      A system is said to be a parallel system if the system manages to work if at least one 

element is operational. The unreliability, one minus reliability, of a parallel system is the 

product of the unreliabilities of all the components. In contrast to a series system, the 

reliability of a parallel system increases with the number of components within the system. 

Thus parallel configuration is usually implemented in safety-critical systems such as 

aircraft and spaceships. However, parallel configuration is often restricted by other factors, 

such as cost and weight constraints. 

      There are situations in which series and parallel configurations are mixed in a system 

design to achieve functional and reliability requirements. The combinations form series-

parallel and parallel-series configurations. A series-parallel system is comprised of n 

subsystems in series with im  (i=1,…,n) components in parallel in subsystem i. The 

configuration is sometimes called the low-level redundancy design. A parallel-series 

system is comprised of m subsystems in parallel with in  (i=1,…,m) components in series 

in subsystem i. The configuration is sometimes called the high-level redundancy design. 

      A k-out-of-n system is a partially redundant system, which succeeds if and only if at 

least k (1≤k≤n) out of n components function. A series system can be regarded as an n-out-

of-n system whereas a parallel system can be regarded as a 1-out-of-n system. This kind of 

k-out-of-n systems is also noted as k-out-of-n: G systems, where G stands for “good”.  To 

the contrary, a k-out-of-n: F system, where F stands for “failure”, fails if and only if at 

least k components out of n components fail. The reliability of k-out-of-n systems has been 

studied in many papers, such as Ding et al. (2010), Tian et al. (2009), and Chakravarthy 

and Gómez-Corral (2009). 
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      As a kind of generalized k-out-of-n systems, the reliability of the consecutive-k-out-of-

n: F system has aroused a lot of attention, see Pekoz and Ross (1995) and Cluzeau et al. 

(2008). The usual definition of a consecutive-k-out-of-n: F system is a line of n 

components where the system fails if and only if any k consecutive components fail. One 

way to interpret such a system is to add a component 0 (source) and a component n+1 

(sink) to the system and that each component, if working, is directly connected to the 

subsequent k components (or all remaining components if the number is less than k), and 

that the source and sink always work. The system works if and only if a flow can be sent 

from the source to the sink. A consecutive-k-out-of-n: F system can be either a linear 

system or a circular system, depending on whether the components are arranged in a line 

or on a circle.              

 

 

1.2. Motivation 

1.2.1. Imperfect fault coverage 

In many critical applications, fault tolerance has been an essential architectural attribute 

for achieving high reliability (Lee and Na, 2009; Perhinschi et al. 2006; Tian et al. 2008). 

However, faults in some elements of the system can remain undetected and uncovered, 

which can lead to the failure of the total system or its subsystem (Amari et al., 2004; Xing, 

2007; Myers 2008). The optimal work sharing structure of a multi-state series-parallel 

system has been studied in Levitin (2008) with the incorporation of imperfect fault 
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coverage. The coverage model considered in Levitin (2008) applies only to element level 

coverage (ELC), that is, a particular fault coverage probability is associated with each 

element. In practice, there are different kinds of fault coverage models corresponding to 

different fault coverage techniques used. In order to adapt to different situations, we have 

studied the optimal work sharing structure problem with consideration of different kinds 

of fault coverage mechanisms. 

        

1.2.2. Linear multi-state consecutively connected systems 

The linear multi-state consecutively connected system (LMCCS) is important in signal 

transmission and other network systems. The system consists of N+1 linearly ordered 

positions (nodes). Each node can provide a connection between its position and the next 

few positions. The system fails if the first node (source) is not connected with the final 

node (sink). The reliability of LMCCS has been studied in the past restricted to the case 

when each system element is associated with a constant reliability (Malinowski and Preuss 

1996; Levitin 2003). In practice, a system usually contains elements with increasing 

failure rates and the availabilities of system elements are dependent on the maintenance 

actions taken (Lisnianski et al., 2008; Ding et al., 2009; Rao and Naikan, 2009). Different 

from existing works, we have studied the combined optimal maintenance and allocation 

strategy of the elements in LMCCS which minimizes the system maintenance cost 

restricted by a pre-specified system availability requirement.  

 



Chapter 1: Introduction
  

 

6 
 

1.2.3. Defending systems against intentional attacks 

Protecting against intentional impacts is fundamentally different from protecting against 

unintentional impacts, such as naturally occurring events or technological accidents. 

Adaptive strategy allows the attacker to target the most sensitive part of a system. Thus it 

is important for the defender to take into account the attacker’s strategy when it decides 

how to allocate its resources among several defensive measures (Azaiez and Bier, 2007; 

Dighe et al., 2009; Powell, 2007a; Powell, 2007b). For systems against intentional attacks, 

protecting system elements and deploying false targets are two important measures for 

system reliability enhancement.  

      The efficiency of false targets in defense strategy has been studied in Levitin and 

Hausken (2009a), which assumes the attacker cannot distinguish the genuine object from 

the false targets. In practice the false targets are after all different from the genuine object, 

and they are possible to be detected by the attacker. Different from Levitin and Hausken 

(2009a), we assume that there is a probability that a false target can be detected by the 

attacker. The detection probability of a false target is assumed to be either a constant or a 

function of the attacker’s intelligence effort and the defender’s disinformation effort. 

Frameworks of solving the optimal defense strategy are proposed. 

 

1.2.4. Optimal replacement and protection strategy  

Many systems contain elements with increasing failure rates and the availabilities of the 

system elements are dependent on the maintenance actions taken (Lisnianski et al., 2008; 
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Ding et al., 2009; Rao and Naikan, 2009). For systems containing elements with 

increasing failure rates, preventive replacement of the elements is an efficient measure to 

increase the system availability (Levitin and Lisnianski, 1999). Besides internal failures, 

an element may also fail due to external impacts, say, natural disasters (Zhuang and Bier, 

2007). In order to increase the survivability of a system element under external impacts, 

defensive investments can be made to protect the system element. A tradeoff exists 

between investments into the maintenance and the protection of system elements. For 

multistate systems, the system availability is a measure of the system’s ability to meet the 

demand (required performance level). In order to provide the required availability with 

minimum cost, the optimal maintenance and protection strategy is studied.  

 

 

1.3. Some important techniques 

1.3.1. Universal generating function 

The universal generating function (also called u-function or UGF) representing the pmf of 

a discrete random variable X is defined as a polynomial 

                   ,z)z(u
H

0h

hx
hX ∑

=

= ε                                               (1.1) 

where the variable X has H+1 possible values and }Pr{ hh xX ==ε .  
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      To obtain the UGF representing the pmf of a function of two independent random 

variables )Y,X(ϕ  the following composition operator is used:   

 ) ,(

0 000
),( )()( )()()( dyhx

d

H

h

D

d
h

D

d

dy
d

H

h

hx
hYXYX zzzzuzuzU ϕ

ϕϕϕ εεεε ∑∑∑∑
= ===

=⊗=⊗=       (1.2) 

The polynomial )z(U  represents all of the possible mutually exclusive combinations of 

realizations of the variables by relating the probabilities of each combination to the value 

of function )Y,X(ϕ for this combination. 

      The UGF is a convenient tool for evaluating the reliability and performance of multi-

state systems (MSS). In the case of MSS, UGF 

 ,)(
0

∑
=

=
jk

h

jhg

jhj zpzu                                                   (1.3) 

represent the pmf of random performances of system elements ),( jj pg . If, for any pair of 

elements connected in series or in parallel, their cumulative performance is defined as a 

function of individual performances of the elements, then the pmf of the entire system 

performance can be obtained using the following recursive procedure (Levitin, 2005). 

1) Find any pair of system elements (i and j) connected in parallel or in series in the 

MSS. 

2) Obtain the UGF of the pair using the corresponding composition operator 
ϕ
⊗           

over two UGF of the elements: 
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                                    ,)()()(
) ,( 

0 0
},{

jdgihg

jd

k

h

k

d
ihjiji zppzuzuzU

i j ϕ

ϕ ∑∑
= =

=⊗=                     (1.4)  

where the function ϕ  is determined by the nature of interaction between the elements’ 

performances. 

3) Replace the pair with a single element which has the UGF obtained in step 2. 

4) If the MSS contains more than one element, return to step 1. 

 

1.3.2. Genetic algorithm 

In many optimization problems, the solution space is too large that an exhaustive 

examination of all possible solutions is not realistic, considering reasonable time 

limitations. As in most combinatorial optimization problems, the quality of a given 

solution is the only information available during the search for the optimal solution. 

Therefore, a heuristic search algorithm is needed, which uses only estimates of solution 

quality, and which does not require derivative information to determine the next direction 

of the search.  

The genetic algorithm (GA) has proven to be an effective optimization tool for a large 

number of complicated problems in reliability engineering (Coit and Smith, 1996, Levitin 

et al., 1998; Huang et al., 2009). Basic notions of GA are originally inspired by biological 

genetics. GA operates with “chromosomal” representation of solutions, where crossover, 

mutation, and selection procedures are applied. Unlike various constructive optimization 
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algorithms that use sophisticated methods to obtain a good singular solution, the GA deals 

with a set of solutions (population), and tends to manipulate each solution in the simplest 

manner. “Chromosomal” representation requires the solution to be coded as a finite length 

string. 

Detailed information on GA and its basic operators can be found in Goldberg (1989), 

Gen and Cheng (1997), and Lisnianski and Levitin (2003). The basic structure of the 

version of GA referred to as GENITOR is as follows (Whitley, 1989).  

First, an initial population of Ns randomly constructed solutions (strings) is generated. 

Within this population, new solutions are obtained during the genetic cycle by using 

crossover, and mutation operators. The crossover produces a new solution (offspring) 

from a randomly selected pair of parent solutions, facilitating the inheritance of some 

basic properties from the parents by the offspring. Mutation results in slight changes to the 

offspring’s structure, and maintains a diversity of solutions. This procedure avoids 

premature convergence to a local optimum, and facilitates jumps in the solution space.  

Each new solution is decoded, and its objective function (fitness) values are estimated. 

These values, which are a measure of quality, are used to compare different solutions.  

The comparison is accomplished by a selection procedure that determines which 

solution is better: the newly obtained solution, or the worst solution in the population. The 

better solution joins the population, while the other is discarded. If the population contains 

equivalent solutions following selection, redundancies are eliminated, and the population 

size decreases as a result. 
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After new solutions are produced Nrep times, new randomly constructed solutions are 

generated to replenish the shrunken population, and a new genetic cycle begins.  

The GA is terminated after Nc genetic cycles. The final population contains the best 

solution achieved. It also contains different near-optimal solutions which may be of 

interest in the decision-making process. To apply the genetic algorithm to a specific 

problem, a solution representation and decoding procedure must be defined.  

 

 

1.4. Research objective and scope       

The purpose of this thesis is to model the reliability of networked systems with different 

structures and study the related optimization problems. The structure of this thesis is 

illustrated by Figure 1.1. 
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Figure 1.1 The structure of this thesis 

 

       Chapter 2 provides a brief literature review on the reliability of the selected systems 

and some other relevant issues.  

      Chapter 3 and 4 focus on networked systems subjected to only internal failures. 

Chapter 3 studies the optimal structure of multi-state series-parallel systems with 

consideration of different kinds of imperfect fault coverage. The components in the same 

subsystem can be allocated into different redundant work sharing groups in order to 

achieve reliability and performance requirement. An uncovered failure makes a whole 
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work sharing group fail and the fault coverage factor depends on the specific coverage 

technique used. A framework is proposed to solve the optimal allocation of components 

into different work sharing groups in order to maximize the system reliability. Chapter 4 

studies the optimal elements allocation and maintenance strategy in linear multistate 

consecutively connected systems. The objective is to minimize the total maintenance cost 

through optimal elements allocation onto different nodes when the system is subjected to 

pre-specified availability requirements. A framework is proposed to solve the combined 

elements allocation and maintenance strategy. 

      Chapter 5 and 6 focus on system defense against external attacks. Chapter 5 studies the 

defense of simple series and parallel systems with imperfect false targets. It is assumed 

that the detection probability of a false target is constant. The contest between defender 

and attacker is modeled as a two period game, where the defender moves first and the 

attacker attacks thereafter. The defender aims to minimize the expected system damage 

while the attacker aims to maximize the expected system damage. A framework is 

presented to solve the optimal attack and defense strategies. Different from Chapter 5, 

Chapter 6 studies the defense of a single object with imperfect false targets by assuming 

that the detection probability of a false target is a function of the attacker’s intelligence 

effort and the defender’s disinformation effort. A framework is presented to solve the 

optimal resource allocation into intelligence/disinformation actions and different kinds of 

defense/attack actions. 

      Both internal failures and external attacks are considered in Chapter 7, which studies 

the optimal elements maintenance and protection strategy in series-parallel systems. It is 
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assumed that the system consists of elements with increasing failure rates. Replacement of 

system elements can reduce their failures rates, and thus increase system availability. 

Besides internal failures, the system elements can be destroyed by external attacks, say, 

natural disasters. In order to achieve system availability requirement with minimum cost, 

the optimal trade-off between system maintenance and protection is studied. 

      Chapter 8 makes conclusions and suggests some potential future works. 
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CHAPTER 2  LITERATURE REVIEW 

 

 

According to different configurations, networked systems can be classified as single 

component systems, series systems, parallel systems, series-parallel systems, parallel-

series systems, etc. Besides system structure, there are some other factors that have 

impacts on system reliability, such as imperfect fault coverage and external attacks. A lot 

of research has been done to study the reliability of different systems with different 

features.      

      This chapter reviews some important works related to reliability studies of networked 

systems. The remainder of this chapter is organized as follows: Section 2.1 reviews the 

literatures on imperfect fault coverage. Section 2.2 focuses on the literatures related to 

linear consecutively connected systems. Section 2.3 reviews literatures on system defense 

strategies against external intentional attacks. 
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2.1. Different kinds of imperfect fault coverage techniques 

Redundancy is widely used to enhance system reliability, especially for systems with 

stringent reliability requirements, such as nuclear power controllers and flight control 

systems (Lee and Na, 2009; Perhinschi et al. 2006; Tian et al. 2008). Usually the fault 

tolerance is implemented by providing sufficient redundancy and using automatic fault 

and error handling mechanisms (detection, location, and isolation of faults/failures). 

However, as the fault and error handling mechanisms themselves can fail, some failures 

can remain undetected or uncovered, which can lead to the total failure of the entire 

system or its sub-systems (Bouricius et al., 1969; Arnold, 1973; Xing, 2007). Examples of 

this effect of uncovered faults can be found in computing systems, electrical power 

distribution networks, pipe lines carrying dangerous materials etc. (Amari et al., 2004; 

Chang et al., 2005). 

The probability of successfully covering a fault (avoiding fault propagation) given that 

the fault has occurred is known as the coverage factor (Bouricius et al., 1969). The models 

that consider the effects of imperfect fault coverage are known as imperfect fault coverage 

models or simply fault coverage models or coverage models (Amari, 1997). Depending on 

the type of fault tolerant techniques used, there are mainly three kinds of fault coverage 

models: 1. Element Level Coverage (ELC). A particular coverage factor value is 

associated with each element. This value is independent of the statuses of other elements. 

2. Fault Level Coverage (FLC). The coverage factor value depends on the number of good 

elements that belong to a specific group (i.e., the statuses of other elements). 3. 

Performance Dependent Coverage (PDC). The coverage factor value depends on the 
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cumulative performance of the available group elements at the moment when the failure 

occurs.  

The ELC model is appropriate when the selection among the redundant elements is 

made on the basis of a self-diagnostic capability of the individual elements. Such systems 

typically contain a built-in test (BIT) capability. Amari et al. (1999) studied the reliability 

of different systems with imperfect fault coverage. The systems considered include 

parallel, parallel-series, series-parallel, and k-out-of-n systems. Levitin (2007a) suggested 

a modification of the generalized reliability block diagram (RBD) method for evaluating 

reliability and performance indices of multi-state systems with uncovered failures. The 

fault coverage functions considered in these papers are performed at element level. 

      The FLC model is appropriate for modeling systems in which the selection among 

redundant elements varies between initial and subsequent failures. In the HARP 

terminology (Bavuso et al., 1994), ELC models are known as single-fault models, whereas 

FLC models are known as multi-fault models. Multi-fault models have the ability to 

model a wide range of fault tolerant mechanisms. An example is a majority voting system 

among the currently known working elements, see Myers and Rauzy (2008). A system 

with three or more redundant elements can be designed to assure extremely high levels of 

coverage so long as a mid value select voting strategy can be applied. However, selection 

from among the last two remaining elements, whose outputs do not agree by an amount in 

excess of some predetermined fault detection threshold, cannot be done with the same 

high level of coverage. In this case, the redundancy management process is unable to 

determine which element is the failed one. For this one-on-one case, redundancy 
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management function is typically accomplished by using built-in test, as done for ELC 

systems. Since the coverage for the initial faults is very close to unity and only the one-on-

one fault has a coverage level typical of an ELC system, and, as a result, FLC systems can 

be designed to achieve much lower levels of failure probability. For this reason, most 

digital aircraft flight control systems (typically designed to have a probability of failure on 

the order of 10-7–10-9 per flight hour) are designed as FLC systems. Levitin and Amari 

(2008b) proposed a universal generating function based methodology to calculate the 

reliability of complex multi-state systems with fault level coverage.  

      The performance dependent coverage considered in Levitin and Amari (2008a) takes 

place when the fault detection and recovery functions are performed by system elements 

in parallel with their main functions. The proposed model is suitable for systems that 

cannot change the states during task execution, such as alarm systems and data processing 

systems performing short tasks. The systems usually remain in idle mode, thus fault 

detection and coverage can be performed only during task execution. When the task 

arrives, the system can be in one of various states, depending on availability of its 

elements. Therefore, the coverage probability depends only on the performance available 

at the moment of task arrival and does not depend on the history of failures.  

Due to imperfect fault coverage, the system reliability can decrease with increase in 

redundancy over some particular limit (Amari et al., 2003; Levitin and Amari, 2008b). As 

a result the system structure optimization problems arise. Myers (2008) discussed the 

optimal redundancy level of k-out-of-n systems with the consideration of both element 

level coverage and fault level coverage. Levitin (2008) presented a model of series-
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parallel multi-state systems with two types of task parallelization: parallel task execution 

with work sharing, and redundant task execution. A framework is proposed to solve the 

optimal balance of the two kinds of parallelization which maximizes the system reliability 

based on the assumption that the ELC applies in each work sharing group. Myers and 

Rauzy (2008) proposed a binary decision diagram based algorithm to analyze the 

reliability of redundant systems with the consideration of imperfect fault coverage. 

 

 

2.2. Linear multi-state consecutively connected systems       

A linear multi-state consecutively connected systems (LMCCS) consists of N+1 

consecutively ordered positions (nodes) Cn, n=1,…,N+1. The first node C1 is the source 

and the last node CN+1 is the sink. The system fails if the first node (source) is not 

connected with the final node (sink). The LMCCS was first introduced by Hwang and Yao 

(1989) as a generalization of linear consecutive-k-out-of-n: F systems and linear 

consecutively connected systems with two-state elements (Shanthikumar 1987; Eryilmaz 

and Tutuncu, 2009). The basic assumptions are that the transmission range of each 

component is a random variable and the states of all the components are statistically 

independent. A recursive approach is proposed for obtaining the reliability of a LMCCS. 

The evaluation of LMCCS reliability was also studied in Zuo (1993) and Kossow and 

Preuss (1995). Zuo (1993) proposed an algorithm to evaluate the reliability of a LMCCS 

with two-state components with the consideration of the relevancy of the components to 
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the whole system reliability. A component is regarded as irrelevant to the system 

reliability if all the previous components that can reach the component can reach farther 

than the component. A universal generating function based approach was proposed in 

Levitin (2001) for the reliability evaluation of a linear multi-state consecutively connected 

signal transmission system with consideration of the possible delay of re-transmitters. 

When the re-transmitter delay is considered, the reliability of a LMCCS is defined as the 

probability that signal can be transmitted from the source to the sink within a pre-specified 

time. 

      Due to the structure of LMCCS, the reliability of a LMCCS is not only related to the 

respective reliability/performance of each element but also largely dependent on the 

allocation of the elements onto different nodes. The problem of optimal element allocation 

in LMCCS was first formulated by Malinowski and Preuss (1996). In this problem, 

elements with different characteristics should be allocated in different positions in such a 

way that maximizes the system reliability. It only studied the case when one and only one 

element can be allocated onto each node. The near-optimal components arrangement is 

solved by recursively changing the positions of two components to maximize the system 

reliability. As proved in Levitin (2003), even for M=N, greater reliability can be achieved 

if some of the M elements are gathered in the same position providing redundancy (in hot 

standby mode) than if all the M elements are evenly distributed between all the positions. 

The LMCCS considered in Levitin (2003) allows the system elements to be allocated onto 

the first N positions arbitrarily so that some positions may have multiple elements whereas 

the other positions may have no elements. A universal generating function is adopted for 
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system reliability evaluation and a genetic algorithm is employed to solve the optimal 

element allocation strategy. 

 

 

2.3. System defense strategies against intentional attacks  

There are three measures of passively defending objects against intentional attacks: 1) 

providing redundancy (and separating redundant elements, which makes it impossible to 

destruct multiple elements by a single impact); 2) protecting the system elements (where 

protection presumes actions aimed at reducing the destruction probability of an element in 

the case of any external impact); 3) deploying false targets (which dissipates the attacker 

resources among greater number of targets and reduces its per-target effort). Measure 1 

makes the system parallel (though each redundant object may have complex structure, it 

can be considered as a single target that can be destroyed/incapacitated by an impact from 

the defender's and attacker's points of view). The protection is a technical or 

organizational measure which is aimed to reduce the vulnerability of protected system 

element. The vulnerability of each element is its destruction probability when it is attacked. 

Besides direct protections, deploying false targets is another effective measure to defense 

systems against intentional attacks. The objective of a false target, sometimes referred to 

as a decoy, is to give the appearance that the element is something else than it actually is. 

A false target conceals or distracts something else, i.e. the genuine object, which the 

attacker actually searches for.  
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2.3.1. Redundancy and protection 

The pioneering works Bier and Abhichandani (2002) and Bier et al. (2005) studied the 

optimal protection resource allocation onto different system components in simple series 

and parallel systems. Whereas Bier and Abhichandani (2002) assumes that the attacker 

will maximize the success probability of an attack, Bier et al. (2005) assumes that the 

attacker will maximize the expected damage on the system. It has proposed a revised 

objective function which incorporates the inherent values of system components. Zhuang 

and Bier (2007) studied the equilibrium strategies for both attacker and defender in a fully 

endogenous model of resource allocation for countering terrorism and natural disasters. 

Although these models have demonstrated a general approach and suggested some useful 

recommendations, these models failed to consider some important aspects, such as the 

possibility of the destruction of several elements by a single attack and the damage caused 

by partial system incapacitation.  

      Levitin (2007b) considered the defense of a series-parallel system against intentional 

attacks with protection cases. The system consists of some subsystems connected in series, 

where each subsystem contains some parallel elements. It is assumed that the elements 

within the same subsystem can be separated and protected in different protection cases so 

that a single attack can at most destroy the elements in a single protection case. The 

defense and attack contest is modeled as a two period min-max game. The defender builds 

the infrastructure in the first period assuming that the attacker will use the most harmful 

attack strategy and the attacker attacks the system in the second period in order to incur 
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maximum system damage. A framework is proposed to solve the optimal allocation of 

different elements into different levels of protection cases, which aims to minimize the 

total expected system damage. In this paper, the optimal protection strategy is studied 

assuming that the system structure is fixed. Sometimes the defender needs to determine 

both the structure of the system and the protection strategy in order to maximize the 

system reliability. Levitin and Hausken (2008) studied the optimal resource allocation 

between deploying separated redundant elements and protecting these elements against 

external intentional attacks. In this case the defender needs to determine both the number 

of elements to construct and the number of elements to protect. Hausken and Levitin 

(2008) studied the efficiency of even separation of parallel elements. A framework is 

proposed to solve the optimal resource allocation between separation and protection of the 

system elements. It has also considered the possibility of the change of contest intensity 

after the separation of elements. Hausken (2008) studied the protection and attack 

strategies of series-parallel and parallel-series systems. The defense and attack of the 

systems are modeled as a simultaneous game. A framework is proposed to solve the 

optimal distribution of the defender’s protection resource and the attacker’s attack 

resource. Ramirez-Marquez et al. (2009) studied the optimal protection of general source-

sink networks via evolutionary techniques. It is assumed that the attacker has evenly 

distributed some attacking resource among all the links. The optimal allocation of defense 

resource onto the links which maximizes the survivability of the network is studied. 
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2.3.2. Deploying false targets 

Blanks (1994) provides historical examples for the use of decoys in WWII and the 1990-

1991 Operation Desert Storm, and writes that the U.S. Army (at one point prior to 1994) 

invested $7.5M into fielding multispectral tactical decoys. Although “initially, many 

company commanders were reluctant to include the decoys in their tactical planning,” 

Blanks (1994) “concludes that decoys do enhance combat effectiveness when decoy 

employment is incorporated into the tactical scheme of maneuver.” NATO commander 

Wesley Clark publicly admits that during the 1998-1999 Kosovo war the Serbs "did 

skillfully deploy lots of decoys”. Clark points out that very few damaged or destroyed 

vehicles have been found in Kosovo. The Serbs evidently fooled NATO airmen into 

attacking false tanks made from wooden frames covered with tarpaulins or plastic 

sheeting.     

      The aim of deploying false targets is to mislead the attacker so that the genuine target 

will be attacked with less probability or less attacking effort. The efficiency of false 

targets in defense strategy has been studied in Levitin and Hausken (2009a), which 

assumes that there is a single genuine target to be protected and false targets can be 

deployed to distract the attacker. When both the defender’s and the attacker’s resources 

are limited, the defender may consider whether it is more cost effective to spend more 

resources on protecting the genuine target to reduce its vulnerability or to spend more 

resource on deploying false targets to reduce the probability of attack against the genuine 

target. For variable defender’s and attacker’s resources, the defender and the attacker have 
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their own utility functions. The Nash equilibrium defense and attack strategies are solved. 

Levitin and Hausken (2009b) studied the optimal resource allocation between constructing 

redundant genuine elements, protecting these elements and deploying false targets. 

Hausken and Levitin (2009) studied the optimal resource allocation in protecting system 

elements and deploying false targets in series systems. It is assumed in these papers that 

the attacker cannot distinguish the genuine object from false targets, that is, it has no 

preference in attacking the genuine object and a false target.    
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CHAPTER 3 SYSTEM RELIABILITY WITH IMPERFECT 

FAULT COVERAGE 

 

 

Due to imperfect fault coverage (IFC), the system reliability can decrease with increase in 

redundancy over some particular limit (Myers 2008). As a result the system structure 

optimization problems arise. Some of these problems have been formulated and solved for 

parallel systems, k-out-of-n systems (Amari, 1997; Amari et al., 2004). Levitin (2008) 

presented a model of series-parallel multi-state systems with two types of task 

parallelization: parallel task execution with work sharing, and redundant task execution. A 

framework to solve the optimal balance of the two kinds of parallelization which 

maximizes the system reliability is proposed based on the assumption that the ELC applies 

in each work sharing group. Considering the different types of fault handling mechanisms 

in practice, the ELC model alone cannot adapt to all the cases.  

Depending on the type of fault tolerant techniques used, there are mainly three kinds 

of fault coverage models: 1. Element Level Coverage (ELC). A particular coverage factor 

value is associated with each element. This value is independent of the status of other 

elements. 2. Fault Level Coverage (FLC). The coverage factor value depends on the 
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number of good elements that belong to a specific group (i.e., the status of other elements). 

3. Performance Dependent Coverage (PDC). The coverage factor value depends on the 

cumulative performance of the available group elements at the moment when the failure 

occurs. The ELC model is appropriate when the selection among the redundant elements 

is made on the basis of a self-diagnostic capability of the individual elements. Such 

systems typically contain a built-in test (BIT) capability. The FLC model is appropriate 

for modeling systems in which the selection among redundant elements varies between 

initial and subsequent failures. In the HARP terminology (Bavuso et al., 1994), ELC 

models are known as single-fault models, whereas FLC models are known as multi-fault 

models. Multi-fault models have the ability to model a wide range of fault tolerant 

mechanisms. An example is a majority voting system among the currently known working 

elements, see Myers and Rauzy (2008). The performance dependent coverage considered 

in Levitin and Amari (2008a) takes place when the fault detection and recovery functions 

are performed by system elements in parallel with their main functions. The proposed 

model is suitable for systems that cannot change the states during task execution, such as 

alarm systems and data processing systems performing short tasks. When the task arrives, 

the system can be in one of various states, depending on availability of its elements. 

Therefore, the coverage probability depends only on the performance available at the 

moment of task arrival and does not depend on the history of failures.  

      In this chapter, the problem of finding the optimal balance between the two kinds of 

parallelization has been extended to the cases of FLC and PDC. Section 3.1 presents the 

model. Section 3.2 describes a universal generating function (UGF)-based algorithm for 

evaluating the reliability of series-parallel MSS with FLC and PDC. Section 3.3 discusses 
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the optimization procedures with the genetic algorithm technique. Several numerical 

examples are shown in section 3.4 to illustrate the possible applications of the results. 

 

 

3.1. Model description and problem formulation 

3.1.1. General model and assumptions 

Consider a system consisting of M subsystems connected in series. Each subsystem m 

contains Em different elements connected in parallel. Any system element j can have kj+1 

different states corresponding to the performance rates, represented by the set 

},...,,{ 10 jjkjjj ggg=g , where jhg  is the performance rate of element j in the state h, h 

∈{0, 1,…., kj}. The performance rate Gj of element j at any time instant is a random 

variable that takes its values from gj: Gj∈ gj. The probability associated with the different 

states of the system for a given element j can be represented by the set  

                                                                },...,,{ 10 jjkjjj ppp=p                                      (3.1)  

where  

                                                               }Pr{ jhjjh gGp ==                                          (3.2) 

The state 0 corresponds to the total element failure, and other kj states correspond to the 

working states with full or partial performance.  
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      The pmf of the performance of any system element j can be represented by the pair of 

vectors gj, pj. Since the element is always in one and only in one of the kj+1 states, we 

have 

                                                                      1
0

=∑
=

jk

h
jhp                                                    (3.3) 

The basic assumptions of our model are listed as follows: 

      1) The states of different system elements are mutually independent.  

      2) The elements belonging to the same subsystem can be separated into independent 

work sharing groups (WSG). The number of WSG in a subsystem m can vary from 1 

where all the elements belong to the same group, to Em where each element constitutes a 

separate group.  

      3) The available elements belonging to a WSG share their work in an optimal way that 

maximizes the performance of the entire group. In the case of detected failures of some 

elements, the redundancy management system is able to redistribute the task among the 

available elements. An undetected failure of any element belonging to a WSG cannot be 

covered within this WSG, and causes the failure of the entire group.  

      4) Different WSG belonging to the same subsystem perform the same task in parallel 

providing the task execution redundancy.  
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Figure 3.1 An illustrative series-parallel system with two types of parallelization 

 

      Figure 3.1 is shown for illustration. At each moment, the system elements have certain 

performance rates corresponding to their states. The performance rate of the entire system 

is unambiguously determined by its structure, and by the performance rates of its 

elements. Assume that the entire system has K+1 different states, and that vi is the entire 

system performance rate in state i. The MSS performance rate is a random variable V that 

takes values from the set {v0,…,vK}. The system structure function V=φ(G1,…,Gn), which 

maps the spaces of the elements’ performance rates into the space of the system’s 

performance rates, is determined by the system structure. In our model, the system 

structure function is affected by the distribution of elements among WSG in each 

subsystem. A real example is the data transmission system with multiple channels 
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connected in parallel in each subsystem. Each subsystem can be divided into some WSGs 

to transmit the data in parallel. If an element in a WSG fails and the failure is uncovered, 

the data assigned to the element is lost and the whole WSG fails to transmit the correct 

data.  

 

3.1.2. The formulation of elements distribution  

The elements’ distribution among WSG in each component m can be considered as a 

problem of partitioning a set Φm of Em items into a collection of Em mutually disjoint 

subsets Φmi, i.e. such that 

mmi

E

i

m

ΦΦ =
=
U

1
                                              (3.4) 

                                                                    ∅=mjmi ΦΦ I , i≠j                                     (3.5)      

Each set Φmi can contain from 0 to Em elements. The partition of the set Φm can be 

represented by the vector αm={αmj, 1≤j≤Em}, where αmj is the index of the subset to which 

element j belongs. 

      Concatenation of vectors α={α1,…, αM} determines the distribution of elements 

among the WSG for the entire system. For any given α, and given pmf of the system 

elements, one can obtain the pmf of the entire system performance V in the form 

                                                      }.Pr{  where,0 ,  , iiii vVQKivQ ==≤≤                  (3.6) 



Chapter 3: System Reliability with Imperfect Fault Coverage
  

 

32 
 

 

3.1.3. The formulation of system reliability  

The acceptability of a system state can usually be defined by the acceptability function 

f(V,θ*), representing the desired relation between the system performance V, and some 

limit value named system demand (f(V,θ*)=1 if the system performance is acceptable, and 

f(V,θ*)=0 otherwise). The MSS reliability is defined as its expected acceptability, the 

probability that the MSS satisfies the demand (Levitin, 2005). Having the pmf of system 

performance (3.6), one can obtain its reliability as 

                                                             ),()( *

1

* θθ i

K

i
i vfQR ∑

=

=                                       (3.7) 

      For example, in applications where the system performance is defined as a task 

execution time, and θ*= T* is the maximum allowed task execution time, (3.7) takes the 

form                  

                                                            )(1)( *

1

* TvQTR i

K

i
i <= ∑

=

                                     (3.8) 

whereas in applications where the system performance is defined as its 

productivity/capacity, and θ*= C* is the minimum allowed capacity, (3.7) takes the form                  

                                                            )(1)( *

1

* CvQCR i

K

i
i >= ∑

=

                                     (3.9) 
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3.1.4. The formulation of the entire problem  

The problem of solving the optimal elements allocation strategy in a multi-state series-

parallel system with imperfect fault coverage is formulated as follows.  

      Find vector α*(θ*)={α1,…, αM}, which maximizes the multi-state system reliability 

R(θ*) for a given demand θ*, 

                                                        )}.,(max{arg)( *** θθ αα R=                                 (3.10) 

 

 

3.2. Evaluating reliability of series-parallel MSS with uncovered 

failures 

3.2.1. Incorporating uncovered failures in WSG into the UGF technique 

The UGF representing the pmf of a discrete random variable X is defined as a polynomial 

(Ushakov, 1987) 

 ,)(
0

∑
=

=
H

h

hx
hX zzu ε                                              (3.11) 

where the variable X has H+1 possible values and εh = Pr {X = xh}.  
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      To obtain the UGF representing the pmf of a function of two independent random 

variables ϕ(X,Y), the following composition operator is used:   
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The polynomial U(z) represents all of the possible mutually exclusive combinations of 

realizations of the variables by relating the probabilities of each combination to the value 

of function ϕ(X, Y) for this combination. 

 

A.  The UGF of a WSG in the case of FLC 

In the case when multi-fault coverage takes place in each WSG, one needs to incorporate 

the coverage probabilities depending on the number of failed elements into the 

performance distribution of any WSG. Thus one has to know not only entire group 

performance but also the total number of failed elements in each state of this group 

(combination of states of its elements). To obtain both these indices, the performance 

distribution for system elements is described by a modified UGF as 

   ,)(
0

 ,~

∑
=

=
jk

h

jhgjhs

jhj zpzu                                      (3.13) 
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where jhs  represents the realization of the random number of failed elements in state h. 

The UGF of an individual element takes the form  

 ,)(
1

 ,00 ,1

0

~

∑
=

+=
jk

h

jhg

jh
jg

jj zpzpzu                               (3.14) 

where 0jg  corresponds to the case of failure of the element (1 failure), jhg  (1≤j≤kj) 

corresponds to the h-th working state of element j (0 failure). 

      Applying the operator                                                               

                                
) ,( ,

0 0

~~

},{

~
)()()( jdgihgjdsihs

jd

k

h

k

d
ihjiji zppzuzuzU

i j ω

ω

+

= =
∑∑=⊗=             (3.15) 

recursively one can obtain the UGF of the entire WSG i in subsystem m in the form.         

                                                   ∑
=

=
mi

mihmih

n

h

gs
mihmi zPzU

0

 ,
~

)(                                     (3.16) 

that represents the distribution of the number of failed elements and the corresponding 

performance of the WSG. Here w is the performance composition function for elements 

connected in parallel with work sharing, Pmih is the probability that WSG i in subsystem m 

contains exactly smih failed elements and functions at the performance level gmih given all 

the failures are covered (gmi0 correspond to the failures of all the elements in the group).  

     We assume that the coverage probability of a failure is determined by the total number 

of elements in the WSG and the number of failed elements in this group (which affects the 

load on the monitoring system). Let )( |,j|Φc mim  be the fault coverage probability in the 
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case of j-th failure in WSG i in subsystem m (when j-1 elements are already unavailable), 

and rmi(k) be the probability that the group does not fail after k failures have consecutively 

occurred. It can be seen, that 

                                              )()(
0

|,j|Φckr mim

k

j
mi ∏

=

=                                     (3.17) 

By definition 1)0()0( == |,|Φcr mimmi  and 0),( =||Φ||Φc mimim . 

      The unconditional probability that the WSG i in subsystem m can work with 

performance gmih  (h=1,…,nmi) after smih  elements have failed is  

                                                       )|,(|)(
0

jcPsrP
mihs

j
mimmihmihmimih ∏

=

= Φ                         (3.18) 

Thus the uncovered failures can be incorporated into the UGF by applying the following 

operator ε:   
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This UGF represents the unconditional distribution of performance of entire WSG i in 

subsystem m. 
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B.  The UGF of a WSG in the case of PDC 

In the case that the coverage probability of a WSG depends on the entire performance of 

the group, one can use )(gl im  to denote the fault coverage probability of WSG i in 

subsystem m in the case the entire performance of the group is g. By definition we have 

)0(iml =0. The uncovered failures can be incorporated into the UGF by applying the 

following operator:  
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               (3.20) 

This UGF represents the unconditional distribution of performance of entire WSG i in 

subsystem m. 

 

C.  The UGF of a subsystem 

Applying (3.12) with ϖϕ ≡                                                               

                                                   )()()(},{ zUzUzU mjmimjmi ϖ
⊗=                                      (3.21) 

recursively one can obtain the UGF of subsystem m in the form.       

                                                   ∑=
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Here ϖ  is the performance composition function for elements connected in parallel 

without work sharing, Pmh is the probability that the performance of subsystem m equals to 

gmh.  

 

D.  The UGF of the entire system 

Applying (3.12) with πϕ ≡                                                               

                                                    )()()(},{ zUzUzU lmlm π
⊗=                                         (3.23) 

recursively one can obtain the UGF of the entire system in the form.         

                                                   ∑
=

=
s

h

n

h

g
hs zPzU

0

 )(                                          (3.24) 

Here π  is the performance composition function for elements connected in series, Ph is 

the probability that the performance of the entire system equals to gh.  

      From the UGF Us(z) representing the pmf of the entire MSS performance (3.6), the 

system reliability can be obtained using (3.7). 

 

3.2.2. Performance composition functions 

The choice of functions φ depends on the type of connection between the elements, and on 

the type of the system. In our model, we have to distinguish three different functions: for 
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redundant parallel connection without work sharing ( ϖϕ ≡ ), for parallel connection with 

work sharing ( ωϕ ≡ ), and for series connection ( πϕ ≡ ). 

      Consider, for example, a task processing with performance defined as task completion 

time. Assume that each element j can complete the task by random time Gj, the case of 

total failure of the element corresponds to Gj=∞. If two elements i and j perform the same 

task in parallel, providing task execution redundancy, then the task completion time is 

equal to the time when the fastest element completes the task. The performance of the pair 

of elements in this case is determined by the function 

                                                        ).,min(),( jiji GGGG =ϖ                                       (3.25) 

As shown in Levitin (2005), if two parallel elements can share the work by dividing the 

task in proportion to their processing speed, the task completion time for the pair of 

elements is determined by the function 

.

  if 

  if 
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ji

GG

GG

GGGGGG

GGω                   (3.26) 

If two elements consecutively execute different subtasks, represented by series connection 

of the elements, the entire task completion time for the pair of elements is equal to the sum 

of their individual execution times. The performance of the pair of elements in this case is 

determined as 

                                                                  .),( jiji GGGG +=π                                    (3.27) 
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      Another example is a data transmission system with performance defined as 

transmission capacity (bandwidth). Assume that each element j has a random data 

transmission capacity Gj, the case of total failure of the element corresponds to Gj=0. If 

two elements i and j transmit the same data, providing data transmission redundancy, the 

transmission capacity of the pair of elements is determined by the element with greater 

performance. The performance of the two elements is determined by the function 

                                                        ).,max(),( jiji GGGG =ϖ                                (3.28) 

If the parallel elements share their work, then the entire capacity that they provide is equal 

to the sum of their individual capacities. The performance of the two elements is 

determined by the function 

                                                           .),( jiji GGGG +=ω                                           (3.29) 

If data flow is transmitted by two consecutive elements, the bandwidth of the slowest 

element becomes the bottleneck of the system. Therefore, the performance of the two 

elements is determined by the minimum of their individual performances, 

                                                         ).,min(),( jiji GGGG =π                                      (3.30) 
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3.3. Optimization technique 

Equation (3.10) formulates a complicated combinatorial optimization problem. An 

exhaustive examination of all possible solutions is not realistic, considering reasonable 

time limitations. The genetic algorithm (GA) has proven to be an effective optimization 

tool for a large number of complicated problems in reliability engineering, and it is used 

for our optimization.  

 

3.3.1. Solution representation 

In the considered problem, element separation is determined by vector α that contains 

∑
=

=
M

m
mEn

1
 items corresponding to elements composing the entire system. In our GA, 

solutions are represented by integer strings S={s1,s2,…sn}. For each jEi
m

k
k += ∑

−

=

1

1
, item si 

of the string corresponds to item αmj of the vector α, and determines the number of WSG 

to which the j-th element of the m-th subsystem belongs. Therefore, all the items si of the 

string S, corresponding to component m ( ∑∑
=

−

=

≤≤+
m

k
m

m

k
m EiE

1

1

1
1 ), should vary in the range 

(1, Em). Because the random solution generation procedure can produce strings with 

elements randomized within the same range, to provide solution feasibility one must use a 

transformation procedure that makes each string element belonging to the proper range. 

This procedure determines the value of αmj as 1+modEm(si). The range of values produced 

by the random generation procedure should be (1, m

M

m
E

1
max

=
).  
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3.3.2. Solution decoding procedure  

The following procedure determines the fitness value for an arbitrary solution defined by 

integer string S={s1,s2,…sn}. 

1) For each subsystem m=1,…,M: 

      1.1. Determine the number of WSG for each element of the m-th component:  

                                               ,1),(mod1 mjcEmj Ejs
m

≤≤+= +α                            (3.31) 

             where .
1

1
∑

−

=

=
m

k
kEc  

       1.2. For each WSG i (1≤i≤Em), create set Φmi using the recursive procedure 

                                                            Φmi =Ø, for i=1,…, Em: 

                                                       if αmj=i,  }.{ jcΦΦ mimi += U                            (3.32) 

2) Determine the system reliability by the algorithm presented in section 3.2. Assign 

the obtained system reliability to the solution fitness. 
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3.3.3.  Crossover and mutation procedures  

The cross operator for given parent strings P1, P2 and the offspring string O is defined as 

follows: the i-th element (1≤i≤n) of the string O is equal to the i-th element of either P1 or 

P2 both with probability 0.5. 

The mutation procedure swaps elements initially located in two randomly chosen 

positions.  

 

 

3.4. Illustrative examples 

Consider a data transmission system consisting of two consecutive multi-channel 

communication lines. Each channel can have failure state with zero transmission capacity 

and two working states with full and reduced transmission capacity. The distributions of 

the performances (transmission capacities) of channels are presented in Table 3.1.  

      Any subset of channels belonging to the same line can compose a WSG in which the 

data packages are divided into sub-packages transmitted by different channels. Undetected 

failures within any WSG remain uncovered. Depending on system monitoring architecture 

the probability of failure detection can be represented by different functions of number of 

elements in the WSG, the number of failed elements, and the entire group performance.  
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Table 3.1 Performance distributions of data transmission channels 

Performance levels  

Sub-
system 

 

Element 
Probability 

pj0 
capacity 

gj0 
probability 

pj1 
capacity 

gj1 
probability 

pj2 
capacity 

gj2 

1 0.15 0 0.7 10 0.15 20 
2 0.15 0 0.65 12 0.20 20 
3 0.20 0 0.60 15 0.20 25 
4 0.15 0 0.60 18 0.25 25 
5 0.15 0 0.70 14 0.15 20 
6 0.10 0 0.80 11 0.10 24 

 

 
 
1 

7 0.20 0 0.50 20 0.30 30 
8 0.20 0 0.60 12 0.20 25 
9 0.20 0 0.60 14 0.20 24 
10 0.20 0 0.70 15 0.10 25 
11 0.15 0 0.65 20 0.20 30 
12 0.15 0 0.70 12 0.15 20 
13 0.10 0 0.80 18 0.10 30 

 
 
2 

14 0.25 0 0.65 10 0.10 20 

 

A. FLC example 1 

In some occasions the load on monitoring system is proportional to the number of failed 

elements because it performs failure detection and monitoring actions and these actions 

are much more time consuming than monitoring the available elements. In this case it is 

reasonable to assume that )( |,j|Φc mim  depends only on j when 1|1 −≤≤ mi|Φj . As an 

illustration we assume that the coverage (detection) probability of j-th failure in WSG i in 

any subsystem m is a decreasing function of j as given in Table 3.2.  
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Table 3.2 Coverage probability after j-th failure in WSG with |mi|Φ  elements in FLC 
example 1 

|mi|Φ 

j 

1 2 3 4 5 6 7 

1 0 0.99 0.99 0.99 0.99 0.99 0.99 

2 - 0 0.63 0.63 0.63 0.63 0.63 

3 - - 0 0.36 0.36 0.36 0.36 

4 - - - 0 0.22 0.22 0.22 

5 - - - - 0 0.15 0.15 

6 - - - - - 0 0.08 

7 - - - - - - 0 

 

      Different WSG of the same line transmit the same data in parallel. The system 

transmission capacity should be greater than C*. The system corresponds to the flow 

transmission model with composition functions (3.28)–(3.30), and reliability defined 

according to (3.9). The problem is to find the optimal system configuration (distribution of 

the channels among the WSGs) that can provide certain system transmission capacity C* 

with maximal reliability. 
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Table 3.3 Parameters of solutions in FLC example 1 

 No sharing C*=20 C*=30 C*=40 No 
redundancy

Max capacity 30 70 89 90 164 

R(0) ≈1.0 0.9996 0.9961 0.9958 0.6865 

R(20) 0.3640 0.9932 0.9915 0.9909 0.6865 

R(30) 0.0 0.9113 0.9834 0.9601 0.6865 

R(40) 0.0 0.5658 0.7999 0.9119 0.6863 

Subsystem 
1 

(1),(2),(3), 

(4),(5),(6),(7)

(1,2,6), 

(3,4,5),(7)

(1,2,3,6), 

(4,5,7) 

(1,6,7), 

(2,3,4,5) 

(1,2,3,4, 

5,6,7) 

Structure 

Subsystem 
2 

(8),(9),(10), 

(11),(12), 

(13),(14) 

(8,10,14), 

(11,12, 

13),(9) 

(8,9,12,14),

(10,11,13) 

(8,11,14), 

(9,10,12, 

13) 

(8,9,10,11, 

12,13,14) 

 

Table 3.3 contains the optimal system configurations for C*=20 Kb/sec, C*=30 Kb/sec, 

and C*=40 Kb/sec obtained using the GA and characteristics of the corresponding 

transmission systems. This table also contains the characteristics of the system without work 

sharing, when all of the channels transmit the same data, and the characteristics of the system 

without redundancy, when all the channels within each line belong to a single WSG. Table 

3.3 presents the maximal possible system capacity, the probability that system does not fail 
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totally R(0), reliabilities for different values of C*, and the system structure. The system 

without work sharing has the greatest reliability R(0); however, it is not able to provide 

capacity greater than 30Kb/sec. On the contrary, the system without redundancy has the 

greatest possible performance of 164Kb/sec, but very low reliability. The structures optimal 

for different demands have intermediate values of maximal possible capacity, and R(0), 

while providing the greatest reliabilities R(C*). 

      The system reliabilities as functions of the minimum allowed transmission capacity for 

all the five cases are presented in Figure 3.2. 
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Figure 3.2  Function R(C*) for obtained configurations of the data transmission system in 

FLC example 1 
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B. FLC example 2 

In some occasions the load on monitoring system is proportional to the number of 

available elements because it switches the failed elements off and does not monitor them. 

In this case it is reasonable to assume that )( |,j|Φc mim  depends on |mi|Φ - j when 

1|1 −≤≤ mi|Φj .  

 

Table 3.4 Coverage probability after j-th failure in WSG with |mi|Φ  elements in FLC 
example 2 

|mi|Φ 

j 

1 2 3 4 5 6 7 

1 0 0.99 0.63 0.36 0.22 0.15 0.08 

2 - 0 0.99 0.63 0.36 0.22 0.15 

3 - - 0 0.99 0.63 0.36 0.22 

4 - - - 0 0.99 0.63 0.36 

5 - - - - 0 0.99 0.63 

6 - - - - - 0 0.99 

7 - - - - - - 0 
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      As an illustration we assume that the coverage probability of the j-th failure in WSG i 

in any subsystem m decreases with |mi|Φ  and increases with j as given in Table 3.4. Table 

3.5 contains the optimal system configurations for C*=20Kb/sec, C*=30Kb/sec, and 

C*=40Kb/sec obtained using the GA and characteristics of the corresponding transmission 

systems. 

 

Table 3.5 Parameters of solutions in FLC example 2 

 No sharing C*=20 C*=30 C*=40 No 
redundancy

Max capacity 30 60 65 74 164 

R(0) ≈1.0 0.9998 0.9998 0.9894 0.0952 

R(20) 0.3640 0.9772 0.9733 0.9375 0.0952 

R(30) 0.0 0.8461 0.9405 0.8656 0.0952 

R(40) 0.0 0.2393 0.2650 0.7526 0.0952 

Subsystem 
1 

(1),(2),(3), 

(4),(5),(6), 

(7) 

(1,2,5), 

(3,7), 

(4,6) 

(1,2,3), 

(4,5), 

(6,7) 

(1,4,5), 

(2,6,7), 

(3) 

(1,2,3,4, 

5,6,7) 

Structure 

Subsystem 
2 

(8),(9),(10), 

(11),(12),(13),

(14) 

(8,9), 

(10,12,14),

(11,13) 

(8,9,14) 

(11,12), 

(10,13) 

(8,9,13) 

(10,11,12), 

(14) 

(8,9,10,11, 

12,13,14) 
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      The system reliabilities as functions of the minimum allowed transmission capacity for 

all the five cases are presented in Figure 3.3. 
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Figure 3.3 Function R(C*) for obtained configurations of the data transmission system in 

FLC example 2 

 

      Comparing the solutions presented in Table 3.3 and Table 3.5 one can see that in the 

case when the coverage probability in a WSG decreases with the increase of total number 

of elements in this group the optimal configurations consist of smaller WSGs. 
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C. FLC example 3 

In some occasions the monitoring system uses voting among the remaining components to 

detect failures. In this case it is reasonable to assume that )( |,j|Φc mim  is determined by the 

number of remaining components. When there are at least 3 remaining components 

available, the coverage factor )( |,j|Φc mim  can be regarded as 1. When there are only 2 

remaining components, the monitoring system can no longer use voting to detect failures. 

In this case, failures can only be detected through built-in test (BIT) technology for each 

component with limited success probability. As an illustration we assume that the 

coverage probability of the j-th failure in WSG i in any subsystem m is as given in Table 

3.6.  

      Table 3.7 contains the optimal system configurations for C*=20Kb/sec, C*=30Kb/sec, 

and C*=40Kb/sec obtained using the GA and characteristics of the corresponding 

transmission systems.  
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Table 3.6 Coverage probability after j-th failure in WSG with |mi|Φ  elements in FLC 
example 3 

|mi|Φ 

j 

1 2 3 4 5 6 7 

1 0 0.9 1 1 1 1 1 

2 - 0 0.9 1 1 1 1 

3 - - 0 0.9 1 1 1 

4 - - - 0 0.9 1 1 

5 - - - - 0 0.9 1 

6 - - - - - 0 0.9 

7 - - - - - - 0 

 

      Table 3.7 shows that in this case single WSG consisting of all elements is preferred in 

each subsystem, as all failures in these WSGs are always covered until two available 

elements remain. 
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Table 3.7 Parameters of solutions in FLC example 3 

 No sharing C*=20 C*=30 C*=40 No 
redundancy

Max capacity 30 164 164 164 164 

R(0) ≈1.0 ≈1.0 ≈1.0 ≈1.0 ≈1.0 

R(20) 0.3640 0.9998 0.9998 0.9998 0.9998 

R(30) 0.0 0.9982 0.9982 0.9982 0.9982 

R(40) 0.0 0.9921 0.9921 0.9921 0.9921 

Subsystem 
1 

(1),(2),(3), 

(4),(5),(6), 

(7) 

(1,2,3,4, 

5,6,7) 

(1,2,3,4, 

5,6,7) 

(1,2,3,4, 

5,6,7) 

(1,2,3,4, 

5,6,7) 

Structure 

Subsystem 
2 

(8),(9),(10), 

(11),(12), 

(13),(14) 

(8,9,10,11, 

12,13,14) 

(8,9,10,11, 

12,13,14) 

(8,9,10,11, 

12,13,14) 

(8,9,10,11, 

12,13,14) 

 

       The system reliabilities as functions of the minimum allowed transmission capacity 

for all the five cases are presented in Figure 3.4. 
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Figure 3.4 Function R(C*) for obtained configurations of the data transmission system in 

FLC example 3 

 

D. PDC example 

In the case when the fault detection and recovery functions in a WSG are performed by 

the system elements in the WSG, it is reasonable to assume that the fault coverage 

probability of a WSG depends on the entire group performance. As an example we assume 

that the fault coverage probability takes the form 0.01g} ,1min{)( =gl im . Table 3.8 

contains the optimal system configurations for C*=20Kb/sec, C*=30Kb/sec, and 

C*=40Kb/sec obtained using the GA and characteristics of the corresponding transmission 

systems.  
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Table 3.8 Parameters of solutions in PDC example 

 No sharing C*=20 C*=30 C*=40 No 
redundancy

Max capacity 30 50 65 164 164 

R(0) 1.0 0.9937 0.9621 0.8336 0.8336 

R(20) 0.3640 0.9651 0.9486 0.8335 0.8335 

R(30) 0.0 0.6217 0.9353 0.8331 0.8331 

R(40) 0.0 0.0557 0.2633 0.8311 0.8311 

Subsystem 
1 

(1),(2),(3), 

(4),(5),(6), 

(7) 

(1,2),(3,4) 

(5,6),(7) 

(1,2,3), 

(4,5), 

(6,7) 

(1,2,3,4, 

5,6,7) 

(1,2,3,4, 

5,6,7) 

Structure 

Subsystem 
2 

(8),(9),(10), 

(11),(12),(13),

(14) 

(8,14),(9), 

(10,11), 

(12,13) 

(8,9,14), 

(10,13), 

(11,12) 

(8,9,10,11, 

12,13,14) 

(8,9,10,11, 

12,13,14) 

 

      It can be seen from Table 3.8 that although the fault coverage probability function 

equals to 1 when g is greater than 100, small WSGs are preferred in the cases C*=20 and 

C*=30. This is because redundancy prevents system failure even in the case, when the 

detected (covered) failures reduce the performance of certain WSG below the demand.  
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      The system reliabilities as functions of the minimum allowed transmission capacity for 

all the five cases are presented in Figure 3.5. 
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Figure 3.5 Function R(C*) for obtained configurations of the data transmission system in 

PDC example 

 

 

3.5. Conclusions 

This chapter extends the problem of finding optimal balance between redundancy and task 

sharing in multi-state systems with uncovered failures to the cases of multi-fault coverage 

and performance dependent coverage. It is assumed that the uncovered failures in the 

elements belonging to the group of elements sharing the same task can cause failure of the 
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entire group. Due to different fault covering mechanisms, the probability of such failure 

can be determined by different factors, such as the number of working elements in the 

group when the failure occurs, the number of failed elements in the group when the failure 

occurs, and the entire group performance. The procedures of finding the optimal system 

structure (distribution of different parallel elements among work sharing groups) have 

been described. The illustrative examples show the results obtained by the optimization 

algorithm for a data transmission system with performance defined as transmission 

capacity. Various assumptions of coverage factors are discussed to illustrate the 

application of the procedures in the cases of different fault covering mechanisms. It was 

shown that the greatest system reliability (defined as a probability of meeting a certain 

demand) can be achieved by proper balance between two types of task parallelization. 
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CHAPTER 4 RELIABILITY OF LINEAR MULTI-STATE 

CONSECUTIVELY CONNECTED SYSTEMS  

 

 

The linear multi-state consecutively connected system (LMCCS) consists of N+1 

consecutively ordered positions (nodes) Cn, n=1,…,N+1. The first node C1 is the source 

and the last node CN+1 is the sink. At each position, elements from a set E={e1,…,eM} can 

be allocated to provide a connection between the position in which it is allocated and the 

next few positions. The system fails if the first node (source) is not connected with the 

(N+1)th node (sink). Each system element ei in working state can connect the node it is 

located at with gi next nodes. Each element is also characterized by its lifetime distribution 

with an increasing failure rate. 

      An example of the LMCCS is a set of radio relay stations with a transmitter allocated 

at C1 and a receiver allocated in CN+1. Each station Cn (2≤n≤N) can have retransmitters 

generating signals that reach the next few stations. The farthest station that can be reached 

by a station depends on the amplifier power of the retransmitters allocated on the station 

and on the random signal propagation conditions. The aim of the system is to provide 

propagation of a signal from the transmitter to the receiver.  
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      The LMCCS was first introduced by Hwang and Yao (1989) as a generalization of 

linear consecutive-k-out-of-n: F systems and linear consecutively connected systems with 

two-state elements (Shanthikumar 1987; Eryilmaz and Tutuncu, 2009). The evaluation of 

LMCCS reliability was studied in Hwang and Yao (1989), Zuo (1993) and Kossow and 

Preuss (1995). Due to the structure of LMCCS, the reliability of a LMCCS is not only 

related to the respective reliability/performance of each element but also largely dependent 

on the allocation of the elements onto different nodes. The problem of optimal element 

allocation in LMCCS was first formulated by Malinowski and Preuss (1996). In this 

problem, elements with different characteristics should be allocated in different positions 

in such a way that maximizes the system reliability. It only studied the case when one and 

only one element can be allocated onto each node. As proved in Levitin (2003), even for 

M=N, greater reliability can be achieved if some of the M elements are gathered in the 

same position providing redundancy (in hot standby mode) than if all the M elements are 

evenly distributed between all the positions. In these works, the reliability of each element 

is assumed to be constant.  

      In practice, system elements usually fail with increasing failure intensity due to wear, 

rotting, deterioration, or aging effects (Lisnianski et al., 2008; Ding et al., 2009; Rao and 

Naikan, 2009; Wu et al., 2010). For systems containing elements with increasing failure 

rates, preventive replacement of the elements is an efficient measure to increase the 

system reliability (Nakagawa and Mizutani, 2009; Ambani et al., 2010; Liu et al., 2010). 

Replacing elements that have a high risk of failure, while reducing the chance of failure, 

can incur significant expenses, especially in systems with high replacement rates. Minimal 

repair, the less expensive option, enables the system element to resume its work after 
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failure, but does not affect its hazard rate (Beichelt and Fischer, 1980; Zhang and Jardine, 

1998; Sheu and Chang, 2010). Since the element replacement reduces its failure rate, the 

more frequently an element is replaced the higher the availability of the element is. 

Therefore there is a trade-off between the availability of the system and the total system 

maintenance cost. Since the reliability of a LMCCS can be comprehensively increased by 

adjusting the positions of system elements, this property can also be utilized to reduce the 

maintenance cost needed for the system to meet availability requirement. 

     In this chapter, the combined maintenance and allocation problem is studied. Different 

from Malinowski and Preuss (1996) and Levitin (2003), the objective of element 

allocation is to minimize the maintenance cost subject to a pre-specified system 

availability requirement. Section 4.1 formulates the problem. Section 4.2 describes the 

universal generating function technique used for evaluating the LMCCS availability. A 

genetic algorithm is adopted for optimization in section 4.3. Illustrative examples are 

presented in section 4.4. 

 

 

4.1. Problem formulation 

4.1.1. General model and assumptions 

The LMCCS consists of N+1 consecutively ordered positions (nodes) Cn, n=1,…,N+1. 

The lifetime for the system is denoted as Tc. At each position, elements from a set 
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E={e1,…,eM} can be allocated to provide a connection (also called path or arc) between 

the position in which it is allocated and the next few positions. For each element ei located 

at node j the connection of this node with nodes j+1,…, j+gi is provided in the working 

state. The expected number of failures of element ei during time interval (0,t] is denoted as 

)(tiλ , which is an increasing function of t. It is assumed that the following two kinds of 

maintenance actions can be taken (Feldman and Chen, 1996; Sheu and Chang, 2009): 

     1) Preventive replacement. The i-th element is replaced when it reaches an age Ti. The 

cost cpi of each replacement is constant. The average time for each replacement of element 

i is tpi.      

    2) Minimal repair. This action is used when the element fails between two consecutive 

replacements. Minimal repair resumes the failed element to work without affecting its 

hazard function. The average cost for a minimal repair of element i is cmi. The average 

time for a minimal repair of element i is tmi.        

      Another important assumption is that repair and replacement times are significantly 

shorter than the time periods between failures.  

 

4.1.2. The formulation of system maintenance cost 

The expected total maintenance cost for an element during the system life cycle is the total 

expected preventive replacement cost and minimal repair cost for the element. The 

expected total maintenance cost is the sum of these costs for all M elements. That is 
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where 1−=
i

c
i T

T
n  is the number of preventive replacements during the system life cycle 

for element i, and li is the expected minimal repair cost for element i. 

      The average number of failures during the period between replacements λi(Ti) can be 

obtained by using the replacement interval Ti  for each element. Furthermore, the total 

expected number of failures of the element i during the system life cycle can be obtained 

as  
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From (4.2), we can obtain the availability of element i as 
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and the expected minimal repair cost for element i as 
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From (4.1) and (4.4), we can obtain the expected total maintenance cost during the system 

life cycle as 
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4.1.3. The formulation of elements allocation 

The elements allocation problem can be considered as a problem of partitioning a set E of 

M elements into N mutually disjoint subsets En (1≤n≤N) such that 

                                                         ,
1

EEn

N

i
=

=
U                                                     (4.6) 

                                                             ji ,  E j ≠= ΦIiE                                             (4.7) 

where each set Ei corresponds to LMCCS node Ci and can contain from 0 to M elements. 

The partition of the set E can be represented by the vector H={h(i),1≤i≤M}, where h(i) 

denotes the number of the subset to which element i belongs. The cardinality of each 

subset Ei can be easily obtained as 

     .))((1
1

∑
=

==
M

j
i ijhE                                             (4.8) 

 

4.1.4. The combined optimization problem     

The combined element allocation and maintenance optimization problem is to find the 

optimal positions and replacement intervals for the system elements which minimize the 

total system maintenance cost subject to a pre-specified system availability requirement. 

The general formulation of the problem can be presented as follows: 

      Find vectors H={h(1), h(2),…, h(M)} and T={T1,T2,…,TM} that minimize the total 

maintenance cost. 
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where A* is some preliminary specified system availability requirement. 

 

 

4.2. LMCCS availability estimation based on a universal generating 

function 

The universal generating function (UGF) was introduced in Ushakov (1986) and proved to 

be extremely effective in evaluating reliability of complex multi-state systems. Much 

research has been done on incorporating UGF into reliability analysis of various k-out-of-

n systems, series-parallel systems, weighted voting systems, acyclic information networks, 

and manufacturing systems (Ding et al. 2010; Li et al. 2010; Yeh, 2009; Youssef and 

Elmaraghy, 2008). The UGF of a discrete random value X is defined as a polynomial 

,)(
1

1
∑

−

=

=
K

k

x
k

kzpzu                                             (4.10) 

where the variable X has K possible values and pk is the probability that X takes the value 

xk.    
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4.2.1. UGF for group of elements allocated at the same position 

Consider element ei located as position Cn. When the element is available, it connects the 

n-th node with the (n+1)-th, the (n+2)-th ,…, and the θ(n+gi)-th node, where 

θ(n+gi)=min{n+gi,N+1}. When the element is unavailable, it is not able to connect the n-

th node with any further remote positions. Thus the states of the element can be 

represented by the following UGF 

                                                  ,)(
1

∑
=

=
H

h

k
inhin

inhzpzu                                              (4.11) 

where H=2, ).(  ,  ,  ),1( 2211 iiniininiin gnkApnkAp +===−= θ  

      Let random value Tn be the number of the most remote position which can be reached 

by elements allocated on node Cn. When there are multiple elements allocated on Cn, the 

most remote position to which Cn can be connected is determined by the available element 

which has the greatest connecting range. To capture this feature, the following 

composition operator 
max
⊗  is used to obtain the combined UGF of a pair of elements        
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One can see that the operator 
max
⊗  satisfies the following conditions: 

))(),(())(),((
maxmax
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and 
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Therefore, the UGF un(z) for the group of elements allocated at Cn can be obtained by 

sequentially applying the composition operator 
max
⊗ .    

      In the case when node n contains no elements, no arc exists from Cn to any other node. 

In this case, the corresponding un(z) takes the form 

                                                       .)( n
n zzu =                                                        (4.15) 

 

4.2.2.  UGF for the entire LMCCS 

Let random value Yn be the number of the farthest position that can be reached by the 

elements allocated at the first n positions. The probabilistic distribution of Yn is denoted by 

u- function Un(z). According to the definitions of Tn and Yn, it can be seen that Y1=T1 and 

U1(z)=u1(z). 

      For an arbitrary pair of adjacent positions Cn and Cn+1, the paths provided by the 

elements belonging to the first n nodes can be continued by the elements allocated at 

position n+1 only if Yn≥n+1 (the path reaches Cn+1). If this condition is satisfied, the most 

remote position that can be reached by elements allocated on the first n+1 positions can be 

determined as Yn+1=max{Yn,Tn+1}. 
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     In order to consider only the combinations of states of elements from the first n 

positions which make the path from C1 to Cn+1 exist, the following φ operator is used to 

eliminate the term with Yn=n from Un(z) 
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+=
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==
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j
njn zqzqzU φφ                                 (4.16) 

Having the distributions of Yn and Tn+1, represented by Un(z) and un+1(z) respectively, the 

UGF Un+1(z) representing distribution of Yn+1 can be determined as 

))()),((()( 11 max
zuzUzU nnn ++ ⊗= φ                                          (4.17)      

By sequentially applying (4.17), one can obtain UN(z) containing two terms corresponding 

to YN=N and YN=N+1. ))(( zU Nφ  has only one term corresponding to the probability that 

the path from C1 to CN+1 exists. The coefficient of this term is equal to LMCCS 

availability A. 

 

4.2.3. Computational complexity analysis 

Since the farthest position that can be connected by each element i allocated at node Cn 

has at most N+2-n states (from n to N+1), combining UGF of any pair of elements 

allocated at node Cn by (4.12) has a computational complexity ).( 2NΟ  As the number of 

elements allocated at node Cn equals to nE , calculating un(z) by sequentially combining 

the UGF of elements allocated at node Cn has a computational complexity ).( 2NEn ⋅Ο  
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Furthermore, applying (4.16) and (4.17) to calculate each Un+1(z) based on Un(z)  and un(z) 

for n=1,…, N-1 has a complexity ).( 2NΟ  Thus the calculation of UN(z) has a complexity  

)).(()()()1( 2

1

22 NMNNENN
N

n
n +=⋅+− ∑

=

ΟΟΟ  

 

 

4.3. Optimization technique 

Equation (4.9) formulates a complicated combinatorial optimization problem. An 

exhaustive examination of all possible solutions is not realistic, considering reasonable 

time limitations. The genetic algorithm (GA) has proven to be an effective optimization 

tool for a large number of complicated problems in reliability engineering, and it is used 

for our optimization. To apply the GA to a specific problem the solution representation 

and the decoding procedures must be defined. 

 

4.3.1. Solution representation  

Each solution is represented by string S={s1,s2,…,sM}, where si corresponds to element i 

for each i=1,2,…,M.  

      Each number si determines both the number of the node onto which element i is 

allocated (h(i)) and the replacement interval of element i (Ti). To provide this property all 

the numbers si are generated in the range 
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Λ⋅<≤ Nsi0                                                 (4.18) 

where Λ  is the total number of considered replacement interval alternatives. 

 

4.3.2.     Solution decoding procedures  

       Step 1: Obtain the vectors (H, T) representing the position and replacement interval of 

each system element with the following procedures.  

      For a given S={s1,s2,…,sM}, calculate 

                                                               1]/[)( += Λisih                                              (4.19) 

                                                               ii sv Λmod1+=                                               (4.20) 

where vi is the number of replacement interval alternative for element i, [x] is the maximal 

integer not greater than x, and modxy=y-[y/x]x. The possible replacement interval 

alternatives are ordered in vector Q={q1,q2,…, Λq } so that qi<qi+1, where qi represents the 

replacement interval that corresponds to alternative i. After obtaining vi from decoding the 

solution string, the replacement interval for element i can be obtained as 

                                                               
ivi qT =                                                 (4.21)       

      Step 2: For each given pair of vectors (H,T), first determine the availability of each 

element Ai using (4.3) and then calculate the total expected system maintenance cost Ctot 

using (4.5). 
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      Step 3: From the vector H, determine the N mutually disjoint subsets En representing 

the elements allocated on the first N nodes of LMCCS.  

       Step 4: Obtain the entire system availability index A using the procedures presented in 

section 4.2. 

       Step 5: In order to let the genetic algorithm search for the solution with minimal 

maintenance cost, when A is not less than the required value A*, the solution quality 

(fitness) is evaluated as follows: 

        ∑
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where ω is a sufficiently large penalty.  

      For solutions that meet the requirements A≥A*, the fitness of the solution is equal to its 

total cost. 

 

4.3.3. Crossover and mutation procedures  

The cross operator for given parent strings P1, P2 and the offspring string O is defined as 

follows: the i-th element (1≤i≤M) of the string O is equal to the i-th element of either P1 

or P2 both with probability 0.5. 

      The mutation procedure swaps elements initially located in two randomly chosen 

positions.  
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4.4. Illustrative example 

Consider an LMCCS consisting of 9 nodes. M=8 elements are to be allocated onto the first 

8 nodes. The lifetime of the system Tc is 120 months. We assume that Λ=8 different 

replacement frequency alternatives are considered and the alternatives are 

h={29,24,19,14,9,4,2,1}. The replacement intervals corresponding to these alternatives are 

4 months, 4.8 months, 6 months, 8 months, 12 months, 24 months, 40 months and 60 

months respectively. The problem is to find the optimal positions and replacement 

intervals for all the 8 system elements so that the total system maintenance cost is 

minimized and the system availability requirement A* is satisfied. The characteristics of 

the elements are presented in Table 4.1. 

      According to (4.18) we have 

                                                                      640 <≤ is                                                        

For any given solution string, H and T can be decoded using (4.19), (4.20) and (4.21). 

Thereafter (4.22) can be used to obtain the fitness function F(H,T). The optimal element 

allocation and maintenance strategy (H,T) which minimizes F(H,T) can be found by 

genetic algorithm. 
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Table 4.1 The characteristics of the elements 

i 1 2 3 4 5 6 7 8 

gi 3 4 3 2 1 1 4 3 

tpi(month) 0.003 0.003 0.003 0.004 0.004 0.003 0.004 0.002 

cpi 100 110 100 80 50 45 105 95 

tmi(month) 0.036 0.042 0.040 0.035 0.025 0.025 0.045 0.034 

cmi 2 3 2 2 1 2 2 2 

λi(4) 0.8 0.72 0.64 0.6 0.72 0.7 0.6 0.5 

λi(4.8) 1.04 0.92 0.85 0.8 0.96 0.9 0.85 0.8 

λi(6) 1.6 1.5 1.4 1.2 1.5 1.4 1.4 1.4 

λi(8) 2.8 2.7 2.7 2.1 2.7 2.4 2.7 2.8 

λi(12) 5.5 5.2 5.4 4.2 5.3 4.8 5.4 5.8 

λi(24) 15 15 15 14 15 14 14 16 

λi(40) 33 32 31 32 33 32 31 33 

λi(60) 58 57 54 57 58 57 56 58 
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4.4.1. The fitness function for a given solution string  

As an illustration, the fitness function for the solution string S={3,15,21,46,47,34,54,57} 

is obtained by the following procedures: 

Step 1: S is decoded into H=(1,2,3,6,6,5,7,8) and T= (8,60,24,40,60,6,40,4.8) using (4.19), 

(4.20) and (4.21). 

Step 2: The availability for each system element is calculated using (4.3) as A1=0.9870, 

A2=0.9601, A3=0.9749, A4=0.9719, A5=0.9758, A6=0.9937, A7=0.9651, and A8=0.9939. 

The total maintenance cost is calculated using (4.5) as Ctot=6631. 

Step 3: From the vector H, the N mutually disjoint subsets En representing the elements 

allocated on the first N nodes of LMCCS are obtained as E1={1}, E2={2}, E3={3}, E4= 

Φ , E5={6}, E6={4, 5}, E7={7}, E8={8}. The allocation of elements in LMCCS is shown 

in Figure 4.1. 

 

 

Figure 4.1 The structure of the LMCCS 
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Step 4: From (4.11) we can have the UGF for each element as 
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Furthermore, the UGF un(z) for the group of elements allocated at Cn can be obtained as 
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The UGF for the entire LMSSC can be obtained by applying (4.17) sequentially as 
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The system reliability which equals to the coefficient of z9 in U8(z) can be calculated as 
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4.4.2. The optimization problem 

The problem is to find the optimal element allocation and maintenance strategy (H,T) 

which minimizes F(H,T). In order to show the influence of element allocation, the 

optimization problem is solved for three different cases: 1) Fixed element allocation; 2) 

Even elements distribution among the nodes (no node contains more than one element); 3) 

Arbitrary allocation of the elements. 

 

Case 1: Fixed element allocation  

Table 4.2 contains the optimal solutions obtained for different values of A* with fixed 

H=(1,2,3,4,5,6,7,8).  Each solution was obtained as the optimal one among five different 

runs of the GA with different randomly generated initial populations. The coefficients of 

variation among the values of F(H,T) obtained in the five runs are also presented in Table 

4.2. The low values of this coefficient evidence the good consistency of the GA.       

      With the increase of the availability requirement the elements need to be replaced 

more frequently, thus the total maintenance cost increases. The minimal availability 

A=0.9026 is achieved when T=(60,60,60,60,60,60,60,60) and the corresponding total 

maintenance cost is Ctot=2503. The maximum availability A=0.9794 is achieved when T= 

(4,4,4,4,4,4,4,4) and the corresponding total maintenance cost is Ctot=20182. 
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Table 4.2 Examples of solutions obtained for fixed elements distribution  

Constraints H T A F(T,x) variation

A*=0.90 (1,2,3,4,5,6,7,8) (60,60,60,60,60,60,60,60) 0.9026 2503 0 

A*=0.95 (1,2,3,4,5,6,7,8) (24,60,60,40,60,6,12,24) 0.9512 4340 0.46% 

A*=0.97 (1,2,3,4,5,6,7,8) (8,60,60,60,60,4.8,6,60) 0.9709 6229 0.90% 

 

Case 2: Even elements distribution among the nodes 

Table 4.3 contains the optimal solutions obtained for different values of A* when no more 

than one element is allowed to be allocated onto the same node. This is achieved by 

adding a large penalty to the fitness function when the corresponding H has at least two 

equal elements. Each solution was obtained as the optimal one among five different runs 

of the GA with different randomly generated initial populations. The coefficients of 

variation among the values of F(H,T) obtained in the five runs are also presented in Table 

4.3 to illustrate the good consistency of the GA. 

      With the increase of the availability requirement the elements need to be replaced 

more frequently, thus the total maintenance cost increases. Comparing with Table 4.2, less 

maintenance cost is needed to reach the same level of availability requirement. It can be 

seen that for A*=0.90 and 0.95, only the least frequent replacements 

T=(60,60,60,60,60,60,60,60) are needed to meet the availability requirement if the 

elements are allocated appropriately. In these cases the system reliability improvement is 

achieved solely by the optimal elements' allocation. 
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Table 4.3 Examples of solutions obtained for even elements distribution   

Constraints H T A F(T,x) variation

A*=0.90 (2,8,4,6,7,1,3,5) (60,60,60,60,60,60,60,60) 0.9045 2503 0 

A*=0.95 (7,6,8,3,5,2,1,4) (60,60,60,60,60,60,60,60) 0.9547 2503 0 

A*=0.97 (1,6,4,5,3,7,8,2) (24,60,60,60,60,60,60,60) 0.9726 2721 0.48% 

A*=0.98 (6,2,3,1,5,8,7,4) (60,60,60,12,60,60,60,60) 0.9835 2999 0 

A*=0.99 (5,4,6,1,8,7,2,3) (60,60,60,6,60,60,60,60) 0.9901 3763 0.88% 

A*=0.992 (4,2,6,1,7,8,5,3) (60,40,60,4.8,60,60,60,60) 0.9921 4211 0.24% 

       

Case 3: Arbitrary allocation of the elements 

Table 4.4 contains the optimal solutions obtained for different values of A* when multiple 

elements are allowed to be allocated onto the same node. Each solution was obtained as 

the optimal one among five different runs of the GA with different randomly generated 

initial populations. The coefficients of variation among the values of F(H,T) obtained in 

the five runs are also presented in Table 4.4. The low values of this coefficient evidence 

the good consistency of the GA. 

      Comparing with Table 4.2 and Table 4.3, higher levels of availability requirements can 

be achieved with less maintenance cost. It can be seen that even for availability 
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requirement as high as A*=0.998, only the least frequent replacements 

T=(60,60,60,60,60,60,60,60) are needed if the elements are allocated appropriately. The 

extremely high availability requirement A*=0.9999 can be achieved with just a 

maintenance cost as high as 8431. 

 

Table 4.4 Examples of solutions obtained for arbitrary elements distribution   

Constraints H T A F(T,x) variation

A*=0.997 (8,4,1,8,8,4,1,5) (60,60,60,60,60,60,60,60) 0.9971 2503 0 

A*=0.998 (1,4,5,4,8,8,1,6) (60,60,60,60,60,60,60,60) 0.9980 2503 0 

A*=0.999 (1,1,6,7,5,4,5,4) (24,40,60,60,60,60,60,60) 0.9991 2777 0.32% 

A*=0.9992 (6,1,3,1,5,5,1,6) (24,60,60,60,60,60,40,40) 0.99925 2849 1.16% 

A*=0.9995 (4,5,6,7,4,5,1,1) (24,24,24,40,60,60,24,12) 0.99950 4087 1.44% 

A*=0.9999 (1,4,4,7,8,8,4,1) (8,6,40,60,40,12,12,4.8) 0.99990 8431 0.94% 
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4.5. Conclusions 

This chapter presents a framework to solve the joint element allocation and maintenance 

optimization problem for linear multi-state consecutively connected systems. An example 

of such system is a set of radio relay stations in which multi-state retransmitters with 

different characteristics are allocated. Since a linear consecutively connected system is not 

symmetrical, the availability of such a system is not only related to the respective 

availability of each element but also to the arrangement of the elements. It is shown that 

through optimally allocating the elements onto different nodes one can reduce the 

maintenance cost needed to meet a pre-specified availability requirement. 

       A universal generating function is used to evaluate the availability of the system and a 

genetic algorithm is adopted for the joint elements allocation and maintenance 

optimization. The application of the proposed framework is illustrated by numerical 

examples. The optimal elements allocation and maintenance strategy are found in the 

example for three different cases: 1) Fixed element allocation; 2) Even elements 

distribution among the nodes (no node contains more than one element); 3) Arbitrary 

allocation of the elements. For all the cases, the minimum maintenance cost increases with 

the increase of the availability requirement. It is revealed clearly in the results that the 

flexibility of element allocation enables the system to achieve much higher availability 

with less maintenance cost. 



Chapter 5: System Defense with Imperfect False Targets
  

 

81 
 

CHAPTER 5 SYSTEM DEFENSE WITH IMPERFECT 

FALSE TARGETS 

 

 

For a system under intentional attacks, the attacker can take advantage of its knowledge 

about the system to optimize its attacking strategy so as to incur maximum expected 

damage to the system (Bier et al., 2005; Patterson and Apostolakis, 2007; Xiao et al., 

2008). Thus it is important for the defender to take into consideration the attacker’s 

strategy when he decides how to allocate its resource among several defensive measures 

(Dighe et al., 2009; Powell, 2007a; Powell, 2007b).    

As the two simplest systems, the protections of series systems and parallel systems 

against intentional attacks have been discussed in many papers, such as Bier and 

Abhichandani (2002), Bier et al. (2005), and Hausken (2008). The protection is a technical 

or organizational measure which is aimed to reduce the vulnerability of protected system 

elements. The vulnerability of each element is its destruction probability when it is 

attacked. It can be determined by an attacker-defender contest success function. The 

contest between the defender and the attacker is usually modeled as a two-period game 

(Azaiez and Bier, 2007; Levitin and Hausken, 2008). The defender moves first to 
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distribute its defending resource among different components to minimize the expected 

damage to the system assuming that the attacker will use the most harmful strategy to 

attack. When the attacker moves, it has full knowledge of the defender’s resource 

allocation and it can optimally allocate its attacking resource so that the expected damage 

to the system is maximized. In these papers the optimal resource allocation problem is 

formulated as a minmax problem: the defender chooses its free choice variables to 

minimize the system vulnerability corresponding to the most harmful attacker's action. 

Besides direct protections, deploying false targets (FTs) is another effective measure 

to defense systems under intentional attacks and it is an often employed strategy. The 

objective of a FT, sometimes referred to as a decoy, is to give the appearance that the 

element is something else than it actually is. A FT conceals or distracts something else, i.e. 

the genuine object, which the attacker actually searches for.  

      The aim of deploying FTs is to misinform the attacker so that the genuine element (GE) 

will be attacked with less probability or less attacking effort. Levitin and Hausken (2009a) 

has studied the efficiency of deploying FTs in defending a homogeneous parallel system. 

In Hausken and Levitin (2009), the defense strategy of deploying FTs in series systems is 

analyzed. Levitin and Hausken (2009b) studied the optimal resource allocation between 

constructing redundant genuine elements, protecting these elements and deploying false 

targets. All these papers assume that the FTs are perfect, that is, the attacker has no 

preference between attacking a genuine target and attacking a FT. In practice the false 

targets are after all different from the genuine target, and it is possible for the attacker to 

detect some of them.  
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      In this chapter, we consider defense of simple series and parallel systems that includes 

both protecting the elements and deploying FTs to distract the attacker. These FTs are 

imperfect and the attacker can detect each of them with the same probability. From 

practical point of view, the detection probability of a false target can be estimated from 

past experiences or experiments. Once the attacker detects a certain number of FTs, it 

ignores them and chooses such number of remaining elements randomly to attack that 

maximizes the expected damage to the system. The defender decides how many FTs to 

deploy to minimize the expected damage caused by the attacks assuming that the attacker 

always uses the most harmful strategy to attack. The expected damage to a series system is 

proportional to the probability of system destruction. Depending on the type of the system, 

the expected damage to a parallel system can be defined in two ways: as proportional to 

the loss of demand probability (the probability that the demand is not met) or as the 

expected amount of the unsupplied demand. 

Section 5.1 presents the general model. Section 5.2 analyzes the defense of a simple 

series system with imperfect FTs. Section 5.3 analyzes the defense of a homogeneous 

parallel system with imperfect FTs. Section 5.4 concludes. 

 

 

5.1. The model 

Assumptions: 
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1. The defender uses identical FTs with the same detection probability 

2. The attacker can detect each FT independently from other FTs 

3. The attacker knows the defender's effort distribution and number of GEs and FTs and 

decides how many elements to attack 

4. The attacker distributes its resources evenly among the attacked elements 

5. Each element is attacked separately. Single attack cannot destroy more than one 

element 

6. In a parallel system the genuine elements have identical performance  

7. The defender distributes its protection resources evenly among the genuine elements 

 

A system consisting of N identical genuine elements (GEs), which are connected either 

in series or in parallel. All system elements are exposed to intentional attacks. The 

defender and the attacker’s resources, r and R, are fixed. The unit costs for the attacker 

and the defender’s efforts are A and a respectively. The defender distributes its resource 

among deploying H FTs and protecting the GEs. Since an unprotected GE can be 

destroyed by an arbitrarily small but positive attack effort, we assume that the defender 

distributes its protection resource evenly among all the GEs.  The cost for deploying one 

FT is s. The FTs are imperfect i.e. the attacker can detect each FT with probability d. If the 

attacker detects k FTs (with probability kHk
k dd

k
H

p −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )1( ) it ignores the detected 
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FTs and attacks Qk randomly chosen elements out of N+H-k remaining undetected 

elements, as shown in Figure 5.1.  

 

 

The vulnerability (destruction probability) of the attacked object is determined by the 

attacker-defender contest success function modeled with the common ratio form (Tullock, 

1980; Skaperdas, 1996; Hausken, 2005) as        

                                                               [ ] 1)/(1 −
+=

+
= m

mm

m

Tt
tT

Tv                               (5.1)      

where T and t are the efforts allocated to the element by the attacker and the defender 

respectively, and m is a parameter that describes the intensity of the contest. Especially if 

an attacked element is without protection (T>0, t=0), the element will be destroyed with 

probability 1. When m=0, no matter what are the sizes of T and t the vulnerability of the 

element is 50%. When 0<m<1, there is a disproportional advantage of investing less than 

one’s opponent. When m=1, the investments have proportional impact on the vulnerability. 

N H

KN+H-K

Qk

Figure 5.1 Graphical illustration of the model 
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When m>1, there is a disproportional advantage of investing more than one’s opponent. 

When m=∞, v  is a step function where “winner-takes-all”. 

For each k the attacker solves the optimization problem and chooses the Qk which 

maximizes the expected damage to the system D(Qk,H). The entire expected damage is 

∑
=

=
H

k
kk HQDpHD

0
),()( . The defender solves the minmax problem: finds H that 

minimizes the maximal expected damage given that for any H the attacker chooses vector 

(Q0,…,QH) that maximizes the expected damage to the system D(Qk,H). Actually, this 

model applies also to the case when the attacker has no optimal strategy and chooses the 

value of Qk at random. The defender's most conservative strategy in this case is to 

anticipate the worst case scenario and assume that the attacker can guess the value of Qk, 

which makes the attack most effective and harmful. 

 

 

5.2. N genuine elements connected in series 

The system consists of N GEs connected in series. Destruction of any GE results in the 

destruction of the entire system. Since H (H≤r/s) FTs are deployed, the defense effort 

exerted on each genuine target is t=(r-Hs)/Na. In the case when k (0≤k≤H) FTs are 

detected by the attacker, it chooses Qk (1≤Qk≤N+H-k) targets out of N+H-k undetected 

elements to attack and the attack effort allocated onto each target is T=R/(QkA). The 

vulnerability of each GE is  
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where aA /=ε . For any k and Qk the random number of attacked GEs can vary from 

max(0,Qk–H+k) (all FTs are attacked) to min(N,Qk) (all genuine targets are attacked). The 

probability ),( iQkϕ  that among Qk attacked elements i elements are the genuine ones can 

be obtained using the hyper-geometric distribution: 
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The probability that at least one out of i attacked GEs is destroyed is 1-(1-v)i. The 

system destruction probability for any k and Qk can be obtained as 
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(5.4) 

The attacker chooses the Qk which maximizes the expected damage to the system. 

Thus the most harmful Qk can be expressed by ),(maxarg 1
* HQDQ kkHNQk k −+≤≤= .  

      Figure 5.2 presents the most effective attack strategies Qk
* (0≤k≤5) for N=5, H=5, 

1=ε , s=0.1, r=1 and different R and m. The attacker tends to attack more elements when 
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he has more resources. With the growth of the contest intensity it becomes more important 

for the attacker to achieve the effort superiority over the defender. Therefore the attacker 

concentrates greater per-target efforts by attacking fewer targets and Qk tends to decrease 

with the increase of m.  

 

 

Figure 5.2 Optimal number of attacked targets for series systems 

 

      The total expected damage to the entire system is 
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The defender chooses the H which minimizes D(H), thus we have the optimal number 

of deployed FTs 
⎣ ⎦ )(minarg /0

* HDH srH ≤≤=  . 
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Figure 5.3 H* and D(H*) as functions of d for series systems 

 

Figure 5.3 presents the optimal number of FTs H* and the corresponding D(H*) as 

functions of d for N=5, R=r=1 and 1=ε  and different combinations of s and m. It can be 

seen that H* decreases with the increases of s and d. Indeed, it is not cost-effective to build 

many FTs if they are too expensive or can be rather easily detected by the attacker. D(H*) 

increases with the increase of s and d.  
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Figure 5.4 H* and D(H*) as functions of m for series systems 
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It can be seen that H* and D(H*) are non-monotonic functions of m. Figure 5.4 

represents the optimal number of FTs H* and D(H*) as functions of m for N=5, r=1, 1=ε , 

s=0.05, d=0.4 and different values of R. When R=0.1 the defense effort is superior, the 

defender benefits from the increase of the contest intensity and D(H*) decreases with m. 

When R>0.1, D(H*)  as function of m demonstrates non-monotonic behavior. This can be 

explained by the fact that changes in optimal values of H* and Qk can make the defender's 

object protection effort either inferior or superior. In the former case D(H*) increases with 

m whereas in the latter case D(H*) decreases with m.  
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Figure 5.5 H* and D(H*) as functions of N for series systems 

 

Figure 5.5 presents the optimal number of FTs H* and the corresponding D(H*) as 

functions of N for R=r=1, 1=ε , s=0.05, d=0.4 and different values of m. It can be seen 
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that D(H*) increases with the increase of N. Obviously, the vulnerability of a series system 

increases with the growth of the number of elements in the system. 
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Figure 5.6 Efficiency analysis of deploying false targets for series systems 

 

Figure 5.6 presents the false targets deployment efficiency curves for r=1, 1=ε and 

different values of N, m, and R.  For any pair of (s,d) above the curve the deployment of 

any false target is not beneficial for the defender (H*=0). The (s,d) curves obtained for 

different combinations of model parameters can be used for making decisions about  false 

targets deployment.  

It is interesting that the critical value of d (the maximal value when the deployment of 

at least one FT is beneficial for the defender for a given s) can depend on the attacker's 

resource R non-monotonically. Figure 5.7 presents the critical value of d as a function of R 

for m=2, r=1, 1=ε , N=2 and different values of s. 
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Figure 5.7 The critical value of d as a function of R for series systems 

 

It can be seen that, when s=0.25, the deployment of the FTs is not efficient for small 

values of R, then with the growth of R, it becomes efficient and then from certain values of 

R it becomes again inefficient. Indeed, when R is much smaller than r the defender obtains 

overwhelming superiority in the attack-protection contests and does not need any FT. 

When R is much greater than r the attacker has enough resources to attack all targets 

(including the FTs) preserving its superiority in the attack-protection contest and the FTs 

are not effective. The FTs are most effective when the amounts of the attacker's and the 

defender's resources are close. In this case the optimal deployment of the FTs can 

considerably reduce the damage. A numerical comparison of the expected damage is 

presented below.  
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Numerical Comparison  

Here we show a numerical example and compare the efficiency of deploying FTs. 

Consider the FTs characterized by s=0.4 and d=0.2 when N=m=2, r= 1=ε . Since 
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For R=0.5, as D(H=0)=0.5, D(H=1)=0.6804, D(H=2)=0.9736, deploying FTs is not 

efficient. For R=1, D(H=0)=0.9697, D(H=1)=0.9596, D(H=2)=0.9999. Hence the damage 

is minimized when one FT is deployed in this case. For R=2 we get D(H=0)=0.9991, 

D(H=1)=0.9997, D(H=2)=1. Hence deploying FTs is not efficient again.  

The nonlinear dependence on R makes the intuitive decision about deploying the FTs 

impossible and emphasizes the importance of using the suggested model in the decision 

making process.  
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5.3. N genuine elements connected in parallel 

We consider a system that is built from N identical parallel GEs with the same 

functionality having performance g each. The system demand is F (F≤Ng). The system 

fails to meet the demand when at least ⎣ ⎦ 1/ +− gFN  elements are destroyed. 

      Since H (H≤r/s) FTs are deployed, the defense effort exerted on each genuine target is 

t=(r-Hs)/Na. In case that k (0≤k≤H) FTs are detected by the attacker, he chooses Qk 

( ⎣ ⎦ 1/ +− gFN ≤Qk≤N+H-k) targets out of N+H-k targets to attack and the attack effort 

allocated onto each target is T=R/(QkA). The vulnerability of each GE is determined in 

(5.2). 

      For any specific k and Qk the random number of attacked GEs can vary from 

max(0,Qk–H+k). The probability ),( iQkϕ  that among Qk attacked elements i elements are 

the genuine ones is determined in (5.3). The probability ),( jiθ that among the i attacked 

GEs j elements are destroyed is  

.0  ,)1(),( ijvv
j
i

ji jij ≤≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −θ                                    (5.6) 

 

5.3.1. Damage proportional to the loss of demand probability 

If the system totally fails when the demand is not met, the expected damage is 

proportional to the loss of demand probability. The demand is not met if the number of 
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destroyed GEs j is greater than N-F/g i.e. j≥ ⎣ ⎦ 1/ +− gFN . In this case the expected 

damage to the system can be obtained as 

         
⎣ ⎦⎣ ⎦

∑ ∑
+−+−= +−=

⋅⋅=
),min(

),1/max( 1/
),(),(),(

k

k

QN

kHQgFNi

i

gFNj
kk jiiQFHQD θϕ   .            (5.7) 

Thus the most harmful attacker's strategy is ),(maxarg 1
* HQDQ kkHNQk k −+≤≤= . The total 

expected damage to the entire system is obtained using (5.5). 

The defender chooses the H which minimizes D(H), thus we have the optimal number 

of deployed FTs ⎣ ⎦ )(minarg /0
* HDH srH ≤≤= . 
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Figure 5.8 H* and D(H*) as functions of d for parallel systems with damage proportional 

to the loss of demand probability  
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      Figure 5.8 presents the optimal number of FTs H* and the corresponding D(H*) as 

functions of d for N=8, R=r=1, 1=ε , F=4, g=1 and different combinations of s and m. It 

can be seen that, as in the case of series system, H* decreases with the increase of s and d.  
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Figure 5.9 H* and D(H*) as functions of m for parallel systems with damage proportional 

to the loss of demand probability  

 

As in the case of series system (Figure 5.4), H* and D(H*) are non-monotonic 

functions of m. Figure 5.9 presents the optimal number of FTs H* and D(H*) as functions 

of m for N=8, r=1, 1=ε , s=0.04, d=0.4, F=4, g=1 and different values of R. It can be 

explained in the same way as in the case of series system. When R=0.1 and 0.5 the defense 

effort is superior, the defender benefits from the increase of the contest intensity and D(H*) 

decreases with m. When R=1, D(H*) as function of m demonstrates non-monotonic 

behavior. This can be explained by the fact that changes in optimal values of H* and Qk 

can make the defender's object protection effort either inferior or superior. In the former 
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case D(H*) increases with m whereas in the latter case D(H*) decreases with m. When 

R=1.3 and 1.5 the defense effort is inferior, the attacker benefits from the increase of the 

contest intensity and D(H*) increases with m.    
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Figure 5.10 H* and D(H*) as functions of N for parallel systems with damage proportional 

to the loss of demand probability  

 

Figure 5.10 presents the optimal number of FTs H* and the corresponding D(H*) as 

functions of N for R=r=1, 1=ε , s=0.05, d=0.4, F=4, g=1 and different values of m. It can 

be seen that D(H*) decreases with the increase of N. Indeed increase of N makes the 

system less vulnerable because its redundancy increases. In this case the defender spends 

more resources for protection of the increased number of GEs and deploys fewer FTs for 

minimizing the system vulnerability. 
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Figure 5.11 Efficiency analysis of deploying false targets for parallel systems with damage 

proportional to the loss of demand probability  

 

As in the case of series systems, we have plotted the false targets deployment 

efficiency curves for F=4, g=1, r=1, 1=ε and different values of N, m, and R, as shown in 

Figure 5.11. Similar to the case of series system (Figure 5.6), the critical d depends on R 

non-monotonically. 

 

5.3.2.  Damage proportional to the unsupplied demand 

When j GEs are destroyed the amount of unsupplied demand is equal to max(0,F-(N-j)g). 

The unsupplied demand becomes positive when j≥ ⎣ ⎦ 1/ +− gFN . The expected 

unsupplied demand can be obtained as 
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The attacker chooses ),(maxarg 1
* HQDQ kkHNQk k −+≤≤= . The total expected damage 

to the system is obtained using (5.5). The defender chooses the H which minimizes D(H): 

⎣ ⎦ )(minarg /0
* HDH srH ≤≤=  . 
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Figure 5.12 H* and D(H*) as functions of d for parallel systems with damage proportional 

to the unsupplied demand  

 

      Figure 5.12 presents the optimal number of FTs H* and the corresponding D(H*) as 

functions of d for N=8, R=r=1, 1=ε , F=4, g=1 and different combinations of s and m. It 

can be seen that the function H*(d) in Figure 5.12 behaves similarly to that in Figure 5.8. 

Actually since the loss of demand probability and the unsupplied demand are positively 

correlated, H* that minimizes the loss of demand probability (Figure 5.12) is equal or 

close to H* that minimizes the unsupplied demand (Figure 5.8). D(H*) in Figure 5.12 is 

much lower than that in Figure 5.8. Indeed, the damage proportional to the unsupplied 

demand is always less than the damage proportional to the loss of demand probability 
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because when the demand is not met, in the former case the system can still function with 

reduced performance supplying the part of the demand whereas in the latter case the 

system totally fails.  
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Figure 5.13  H* and D(H*) as functions of m for parallel systems with damage proportional 

to the unsupplied demand  

 

      Figure 5.13 presents H* and D(H*) as functions of m for N=8, r=1, 1=ε , s=0.04, 

d=0.4, F=4, g=1 and different values of R. Similar to Figure 5.9, when R=0.1 and 0.5 

D(H*) decreases with m. When R=1, D(H*) as function of m demonstrates non-monotonic 

behavior. When R=1.3 and 1.5, D(H*) increases with m. Since the system doesn’t totally 

fail when the demand is not met, the D(H*) in Figure 5.13 is lower than that in Figure 5.9.   
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Figure 5.14 H* and D(H*) as functions of N for parallel systems with damage proportional 

to the unsupplied demand  

 

      Figure 5.14 presents the optimal number of FTs H* and the corresponding D(H*) as 

functions of N for R=r=1, 1=ε , s=0.05, d=0.4, F=4, g=1 and different values of m. 

Similar to Figure 5.10,  D(H*) decreases with N. As the system doesn’t totally fail when 

the demand is not met, the D(H*) in Figure 5.14 is considerably lower than that in Figure 

5.10. 
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Figure 5.15 Efficiency analysis of deploying false targets for parallel systems with damage 

proportional to the unsupplied demand  

 

As in subsection 5.3.1, we have plotted the false targets deployment efficiency curves 

for F=4, g=1, r=1, 1=ε and different values of N, m, and R, as shown in Figure 5.15.  

Similar to the cases considered above, the critical d depends on R non-monotonically. 

 

 

5.4. Conclusions 

This chapter considers defending series and parallel systems against intentional attacks. 

The defender allocates part of its resource into deploying FTs and uses its remaining 

resource to protect the genuine system elements. It is assumed that each FT has a nonzero 

probability to be detected by the attacker and the detections of different FTs are 

independent. Once the attacker has detected a certain number of FTs, it ignores them and 
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chooses such number of undetected elements to attack that maximizes the expected 

damage to the system. The defender decides how many FTs to deploy to minimize the 

expected damage to the system assuming that the attacker uses the most harmful attack 

strategy. The expected damage to the series system is proportional to the probability of 

system destruction. Depending on the type of system the expected damage to the parallel 

system is either proportional to the loss of demand probability or equal to the unsupplied 

demand. 

The chapter demonstrates the methodology of analysis of optimal defense strategy as 

the function of different parameters (number of GEs, contest intensity, total attacker's 

resource). It presents the decision curves that can be used for the making a decision about 

efficiency of deploying FTs depending on their cost and detection probability. 

For any type of considered systems, the optimal number of FTs decreases with the 

increase of the detection probability or the unit cost of each FT. The number of FTs also 

decreases with the growth of the number of GEs. For any type of systems the expected 

damage can be non-monotonic function of the contest intensity. 

With the increase of the number of GEs the expected damage to the series system 

increases, since the defender has to protect all N elements while the attacker can destroy 

the entire system by destroying any single GE. 

      With the increase of the number of GEs the expected damage to the parallel system 

decreases because of the increase of system redundancy.  
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The expected damage proportional to the unsupplied demand is always much lower 

than in the expected damage proportional to the loss of demand probability. 

The numerical analysis of the presented model shows the complicated interaction of 

free choice strategic variables and nonlinear dependence of the optimal number of FTs on 

different parameters. For example, the efficiency of FTs deployment can depend on the 

attacker's resource non-monotonically. Therefore, the intuitive decisions about the optimal 

strategy can be misleading and the use of the suggested model can be very helpful for 

supporting the decisions. 
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CHAPTER 6 FURTHER WORK ON SYSTEM DEFENSE 

WITH FALSE TARGETS 

 

 

In chapter 5, it is assumed that the detection probability of a false target is constant. This 

assumption does not address to the case when the attacker can take intelligence actions to 

detect false targets. In this chapter, we assume that the attacker allocates part of its budget 

into intelligence actions in order to detect false targets. Analogously, the defender 

allocates part of its budget into disinformation actions in order to deploy the false targets 

and prevent them from being detected. The detection probability of a false target is 

determined by the intelligence and disinformation efforts allocated on the false target by 

the attacker and the defender. In Levitin and Hausken (2009c) it is assumed that if the 

attacker's intelligence actions succeed, the attacker can identify and attack the defended 

object and ignore all false targets. However in many cases (for example, when the attacker 

can detect only specific features of the FTs) the intelligence actions can result in 

identifying part of FTs. In this case the attacker has a set of unidentified targets when it 

launches the attack. 
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This chapter considers defending a single genuine object including the strategy of 

deploying false targets that can be detected by the attacker individually and independently. 

We assume that both the attacker’s and the defender’s resources are fixed and both of 

them have full knowledge of each other’s efforts. The contest between the defender and 

the attacker is modeled as a two period game where the defender moves in the first period, 

and the attacker moves in the second period. The defender builds the system over time and 

the attacker takes it as given when it chooses its attack strategy. In this chapter we study 

the defender’s most conservative strategy which minimizes the probability of the object 

destruction assuming that the attacker always chooses the most harmful strategy no matter 

what the defender’s strategy is. It is pointed out in Shier (1991) that the most conservative 

strategy is “particularly appropriate in the design of robust military systems”.  

Section 6.1 presents the model. Section 6.2 assumes that the number of false targets is 

fixed and the attacker tries to detect all the false targets. In Section 6.3 we assume that the 

defender can choose how many false targets to deploy and the attacker tries to detect all 

the false targets. In Section 6.4 we assume that the defender can choose how many false 

targets to deploy and the attacker tries to detect only a subset of false targets.  

 

 

6.1. The model 

Assumptions: 
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1. The defender uses identical false targets and allocates the disinformation efforts evenly 

among them. 

2. The attacker allocates the intelligence efforts evenly among the targets it tries to detect. 

3. The attacker allocates the attack effort evenly among all the attacked targets. 

4. The attacker can successfully identify some targets as false targets (by detecting some 

features that characterize the FTs), but cannot confidently identify any target as the 

genuine object (the fact that specific FT features are not detected can mean either that 

the detection failed or that the target is the genuine object). 

 

The defender has deployed one genuine object and H false targets (FTs). The total 

attacker's resource is R. The attacker can allocate part of its resource RX (0≤X≤1) into 

intelligence effort aimed at detecting FTs. The cost of the intelligence effort unit is B. The 

attacker tries to detect FTs among the H+1 targets. The intelligence effort allocated on 

each target is S=RX/[B(H+1)]. Once the attacker has detected a certain number k (0≤k≤H) 

of FTs, it will choose Qk targets among the H-k+1 undetected targets to attack such that Qk 

maximizes the probability of the genuine object destruction. The cost of the attack effort 

unit is A. The attack effort allocated on each attacked target is T=R(1-X)/(QkA). 

The defender's total resource is r. It distributes xr (0≤x≤1) into disinformation actions, 

which includes deploying H FTs and preventing the FTs from being detected by the 

attacker, and distributes its remaining resource r(1-x) into protecting the genuine object. 
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The cost of the protection effort unit is a. The cost of the disinformation effort unit is b. 

The effort for protecting the defended object is t = r(1-x)/a, whereas the disinformation 

effort allocated on each FT is s=rx/(bH).  

We assume that two contests take place in the considered game: intelligence contest 

and impact (protection-attack) contest. We here apply the commonly used ratio form of 

the attacker-defender contest function (Hausken 2005, Tullock 1980, Skaperdas 1996). 

The probability of the attacker's success in the intelligence contest is  
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where f is a parameter that specifies the intensity of the contest, that is how decisively the 

agents fight or compete in the contest. f=0 gives egalitarian distribution. f=1 gives 

proportional distribution. f= ∞  gives winner-take-all. 
R
r

b
Bh ⋅=  is the defender's 

intelligence superiority parameter that specifies how the intelligence resource ratio x/X is 

realized into intelligence effort ratio s/S.  

      h>1 decreases the probability of detection which gives advantage to the defender, 

whereas h<1 increases the probability of detection which gives advantage to the attacker.  

      The probability that k (0≤k≤H) FTs are detected by the attacker is given by 

                                        kHk
k ww

k
H

p −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )1(                               (6.2) 



Chapter 6: Further Work on System Defense with False Targets 
 

 
 

110 
 

      The probability of the attacker's success in the impact contest (object vulnerability) is  

                                                   mm
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      In the case that k FTs are detected by the attacker (with probability pk), the attacker 

chooses Qk (1≤ Qk ≤ H-k+1) out of H-k+1 undetected targets to attack. Having the 

probability that the genuine object is attacked Qk /(H-k+1) and the probability of attack 

success (6.3)  one can get the  genuine object destruction probability as                                 
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where 
R
r

a
Ag ⋅=  is the defender's impact superiority parameter that specifies how the 

impact resource ratio (1-x)/(1-X) is realized into impact effort ratio t/T  when Qk=1. 

      g>1 decreases the probability of target destruction in the case of attack which gives 

advantage to the defender, whereas g<1 increases the probability of target destruction in 

the case of attack which gives advantage to the attacker.  

      For each combination of H, x, X and k the attacker chooses the optimal Qk=Qk
* which 

maximizes vk(Qk). For any combination of H, x, and X, the maximal object destruction 

probability can be expressed as 
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      For any defender's strategy (H,x) the attacker responds with X that maximizes V(H,x,X) 

obtained in (6.5). We use X* to denote the optimal X and V*(H,x) to denote V(H,x,X*). 

      The defender must choose the combination of (H,x), denoted as (H*, x*), which 

minimizes V*(H,x).    

 

 

6.2. Fixed number of deployed FTs  

In this section we assume that the number of deployed FTs H is fixed. From (6.4) we have 
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If m≤1, 0)(
>

∂
∂

k

kk

Q
Qv and maximal vk(Qk)  is achieved when Qk=H-k+1.  In this case we 

have    
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Observe, that when m>1 and F<H-k+1, Qk
* does not depend on H. 

      Figure 6.1 presents the most harmful attack strategies Qk
* (0≤k≤6) for H=6, g=1, x=0.8 

and different combinations of X and m. The attacker tends to attack more elements when it 

has reserved more resource for attacks R(1-X). With the growth of the contest intensity it 

becomes more important for the attacker to achieve the effort superiority over the defender. 

Therefore the attacker concentrates greater per-target efforts by attacking fewer targets 

and Qk
* tends to decrease with m. When k=H the attacker detects all the FTs and attack 

single defended genuine object: QH
*=1. 
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Figure 6.1 Optimal number of attacked targets for different X 

 

For m≤1, the expected object vulnerability is  
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For m>1, the expected probability of object destruction is  
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      The optimal value of X which maximizes V(x,X) can be expressed as 

X*=argmax0≤X≤1V(x,X) and the corresponding object destruction probability is 

V*(x)=V(x,X*). Figure 6.2 shows the attacker’s optimal intelligence resource portion X* 
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and the corresponding object destruction probability V*(x) as functions of the defender’s 

disinformation resource proportion x for H=6, g=1, m=1.5, f=1 and different values of h. It 

can be seen that the behavior of X* as function of x is irregular, however, in general, it 

takes an inversed u-shape form. V*(x) is u-shaped function of x. When x is small, the 

increase of disinformation actions will make the FTs harder to be detected and thus reduce 

the object destruction probability. Further increase of x can leave the genuine object 

poorly protected, which increases the possibility of its destruction with low attacker's 

effort. The u-shaped form of V*(x) shows that the optimal balance between the protection 

effort and disinformation effort minimizes the object vulnerability. It can also be seen that 

V*(x) decreases with the increase of h. Actually from (6.1) we can see that the increase of 

h will reduce the detection probability of each FT and thus reduce the object destruction 

probability.   
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Figure 6.2 X* and V*(x) as functions of x for different h 
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In order to understand the irregular behavior of X* with the increase of x, Figure 6.3 shows 

the object destruction probability V(x,X) as a function of the attacker’s intelligence 

resource proportion X for H=6, g=1, m=1.5, f=1, h=0.6 and different values of x. It can be 

seen that due to the complexity of V(x,X) the optimal value of X behaves non-

monotonically even when the value of x changes in a small range. When x=0.2, the 

optimal value of X is at point A. When the value of x increases to 0.25, the optimal value 

of X increases to point B. When the value of x increases to 0.3, the optimal value of X 

decreases to point C. The stepwise changes of  X*(x) are caused by discrete variations of 

the corresponding Qk
* in the optimal attacker's strategy.  
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Figure 6.3 V(x,X) as a function of X for different x 

 

      The optimal value of x (solution of the two-period minmax game) is x*=argmin0≤x≤1 

V*(x). The corresponding object vulnerability is V*=V*(x*). Figure 6.4 shows the 
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defender’s optimal disinformation resource proportion x*, the attacker’s optimal 

intelligence resource proportion X* and the object destruction probability V* as functions 

of the defender’s disinformation superiority parameter h for H=6, g=1, m=1.5 and 

different values of f. It can be seen that x* first increases with the increase of h and then 

decreases with the increase of h. When h is small, the increase of h makes FTs harder to 

be detected thus justifies the allocation of more disinformation resource. When h has 

reached a certain level the FTs are already very hard to be detected, thus it is more cost-

effective to spend more resource on protecting the genuine object. V* decreases with the 

increase of h, since the increase of h has reduced the detection probability of each FT. 

When h is low the attacker’s intelligence effort is superior, thus V* increases with the 

increase of f. When h is high the defender’s disinformation effort is superior, thus V* 

decreases with the increase of f.   

      The oscillations of X* are similar to those observed in Levitin and Hausken (2009c). 

The vulnerability function V(X) for fixed x has two maxima: one at some positive value of 

X and one at X=0. These maxima frequently have similar values, which cause the attacker 

to be indifferent between zero investment into the intelligence effort and a specific 

positive investment. In practice the oscillating behavior of the attacker's intelligence effort 

fraction X* causes the attacker to concentrate all its resources on impact effort sacrificing 

the intelligence. Indeed, the exact values of the contest intensities are hard to estimate and 

predict in practice. Small alterations of these intensities may make nonzero intelligence 

effort beneficial or not beneficial to the attacker. Hence the attacker can never be sure that 

the nonzero intelligence effort is justified. On the contrary the defender must invest a 
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nonzero resource fraction into counter-intelligence in order to maintain the optimal 

solution when the attacker's intelligence investment deviates from the optimal value. 
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Figure 6.4 x*, X* and V* as functions of h for different f   

 

      Figure 6.5 shows the defender’s disinformation resource proportion x*, the attacker’s 

intelligence resource proportion X*, the object destruction probability V* and V(x*,x*) as 

functions of the defender’s impact superiority parameter g for H=6, h=0.5, f=0.5 and 

different values of m. It can be seen that V* decreases with the increase of the defender's 
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impact superiority parameter g. When g is low the attacker’s attack effort is superior, thus 

V* increases with the increase of m. When g is high the defender’s protection effort is 

superior, thus V* decreases with the increase of m. The attacker's and defender's resource 

distribution parameters are very close or coincide, which is also consistent with the results 

of Levitin and Hausken (2009c).  
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Figure 6.5 x*, X* and V* as functions of g for different m 
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      Figure 6.6 shows the defender’s disinformation resource proportion x*, the attacker’s 

intelligence resource proportion X*, the object destruction probability V* and V(x*,x*) as 

functions of the number of false targets H for g=0.5, h=0.5, f=0.5 and different values of m. 

V* decreases with the increase of H. The increased number of FTs makes the attacker 

more difficult to locate the genuine object, which either reduces the probability for the 

genuine object to be attacked or the attack effort allocated into attacking the genuine 

object. When H is low the attacker’s attack effort on the genuine object is superior, thus V* 

increases with the increase of m. When H is high much of the attacker’s attack effort is 

distracted by the FTs, thus the attack effort on the genuine object becomes inferior. Hence 

V* decreases with the increase of m. The attacker's and defender's resource distribution 

parameters are very close or coincide, which is also consistent with the results of Levitin 

and Hausken (2009c).  
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Figure 6.6 x*, X* and V* as functions of H for different m 

 

 

6.3. Optimal number of FTs 

In this section we assume that the cost of each FT cannot be less than cmin and the defender 

can choose how many FTs to deploy. For each fixed H and x, the attacker chooses the 

most harmful X and (Q0,…QH) to maximize the overall destruction probability of the 

genuine object. The corresponding overall destruction probability of the genuine object is 

denoted as V*(H,x), which has the same form as V*(x) obtained in Section 6.2.  
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      The maximal possible number of FTs the defender can deploy must not exceed 

Hmax=r/cmin. For any chosen value of H, the defender's resource allocated into 

disinformation actions rx must not be less than Hcmin, from which follows that 

x≥xmin=Hcmin/r=H/Hmax. The defender chooses the optimal strategy (H*,x*) which 

minimizes V*(H,x):  

(H*,x*) = ).,(minarg *
1;0 minmax

xHVxxHH ≤≤≤≤  

In the following examples we use V* to denote V(H*,x*). Figure 6.7 shows the optimal 

number of false targets H*, the defender’s optimal disinformation resource proportion x*, 

the attacker’s optimal intelligence resource proportion X* and the object destruction 

probability V* as functions of the defender’s disinformation superiority parameter h for 

Hmax=50, g=1, m=1.5 and different values of f. Similar to Figure 6.4, V * decreases with the 

increase of h. When h is low the attacker’s intelligence effort is superior, thus V* increases 

with f. When h is high the defender’s disinformation effort is superior, thus V* decreases 

with f. When h reaches a certain level even the cheapest FTs cannot be detected by the 

attacker, thus V* doesn’t change much with variations of f and h.  

      We can get the asymptotic estimates of H*, x*, X* and V* for h→∞ as follows. When h 

approaches ∞, the detection probability w for any FT approaches zero for any f (see 

equation (6.1)) even when the defender distributes minimal resource into disinformation 

actions. In this case the defender always distributes rxmin= rH/Hmax=rH/50 into 

disinformation actions whereas the attacker does not invest any effort into intelligence 

contest (X*=0) as he has no chance to win it. In this case 
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From (6.4) we have  
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Solving the minmax problem 0maxmin v
oQH

 we get H*=25 and Q0
*=3. The corresponding 

values of x* and V* are x*=H*/50=0.5 and V*= V*(H*,x*)=0.0407. 

      It can also be seen from Figure 6.7 that H* and x* vary with h and f in very similar 

manner, which means that the fraction of the defenders resource invested into each FT 

remains almost the same. The cheapest false targets are most favorable in the cases we 

consider. Actually for fixed intelligence resource x, the defender prefers to deploy more 

false targets with less unit cost.  
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Figure 6.7 H*, x*, X* and V* as functions of h for different f 

 

      Figure 6.8 shows the optimal number of false targets H*, the attacker’s optimal 

intelligence resource proportion X*, and the object destruction probability V* as functions 

of the defender’s disinformation superiority parameter h for Hmax=50, g=1, m=1.5, f=2 and 

different fixed values of x. It can be seen that H* always equals to the maximum possible 

H (xHmax) except when h=0. 
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Figure 6.8 H*, X* and V* as functions of h for different x 

 

      Figure 6.9 shows the optimal number of false targets H*, the defender’s optimal 

disinformation resource proportion x*, the attacker’s intelligence resource proportion X* 

and the object destruction probability V* as functions of the defender’s impact superiority 

parameter g for Hmax=50, h=1, f=1 and different values of m. Similar to Figure 6.5, V* 

decreases with g. H* and x* vary with g and m in very similar manner. It can be explained 

in similar manner as for Figure 6.7.  
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      It can be seen that when g approaches infinity V* always approaches zero. Indeed, it 

follows from (6.7) that for 0<m≤1 0)(lim =
∞→ kkg

Qv  for any k and x<1. For m>1 and g→∞, 

we have 0
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, which means that the attacker attacks single target. 

Furthermore from (6.4) and (6.10) we have  
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Figure 6.9 H*, x*, X* and V* as functions of g for different m 
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      In order to show how the impact contest intensity m influences the game solution, 

Figure 6.10 presents the optimal number of false targets H*, the defender’s optimal 

disinformation resource proportion x*, the attacker’s optimal intelligence resource 

proportion X* and the object destruction probability V* as functions of the impact contest 

intensity m for Hmax=50, h=1, f=1 and different values of g. It can be seen that H*, x* 

become more sensitive to variations of m when g increases. X*(m) oscillates, which means 

that two different values of X produce very close values of V.  

      The attack effort on the genuine object can be either superior or inferior depending on 

the optimal values of the free choice variables H, x and X. Thus V* as function of m 

displays non-monotonic behavior. It can be seen from Figure 6.10 that for Hmax=50, h=1, 

f=1 the defender benefits from moderate values of the impact contest intensity (1<m<2).  
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Figure 6.10 H*, x*, X*  and V* as functions of m for different g 

 

 

6.4. The attacker attempts to detect a subset of targets  

In this section we assume that the attacker can distribute its intelligence efforts onto a 

subset of targets. In the case that the attacker chooses J (0≤ J ≤H+1) targets to detect, the 

intelligence effort allocated on each target is S=RX/BJ. The probability of the attacker's 

success in the intelligence contest is  
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      Once the attacker has detected a certain number k (0≤k≤J) of FTs, it will choose Qk 

targets among the H-k+1 undetected targets to attack such that Qk maximizes the 

probability of genuine object destruction.  

      In the case when the genuine object is among the checked targets (with probability 

J/(H+1)), at most J-1 FTs can be detected. The probability that k (0≤k<J) FTs are detected 

by the attacker is given by  

        kJk
k ww

k
J

p −−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= 1)1(

1~                                           (6.14)    

and the probability that all J FTs are detected is 0~ =Jp . 

      In the case that the genuine object is not among the checked targets (with probability 

1-J/(H+1)), the probability that k (0≤k≤J) FTs are detected by the attacker is given by  

                                   kJk
k ww

k
J

p −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )1(                                              (6.15)  

Thus the total probability that exactly k (0≤k≤J) FTs are detected by the attacker is                                
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      (6.16)  

      In the case that k FTs are detected by the attacker (with probability pk), the attacker 

chooses Qk (1≤ Qk ≤ H-k+1) out of H-k+1 undetected targets to attack. The genuine object 

destruction probability is given in (6.4).                                

      For each combination of H, x, X, J and k the attacker chooses the optimal Qk=Qk
* 

which maximizes vk(Qk). For any combination of H, x, X and J the maximal object 

destruction probability can be expressed as 

                                   )( ),,,( *

0
kk

J

k
k QvpJXxHV ∑

=

⋅=                                     (6.17) 

      For any defender's strategy (H,x) the attacker responds with the X and J that maximize 

V(H,x,X,J). We use X* and J* to denote the optimal X and J and V*(H,x) to denote 

V(H,x,X*,J*). Figure 6.11 shows the attacker’s optimal intelligence proportion X*, the 

optimal number of checked targets J* and the object destruction probability V*(H,x) as 

functions of the defender’s disinformation resource proportion x for H=6, g=1, m=3, f=3 

and different values of h. Similar to Figure 6.2 the behavior of X* as function of x is non-

monotonic, however, in general, it takes an inversed u-shape form.        
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Figure 6.11 X*, J* and V*(H, x) as functions of x for different h 

      V*(H, x) is u-shaped function of x and decreases with the increase of h. J* decreases 

with the increase of h, since the attacker needs to concentrate its intelligence effort on 

fewer targets in order to gain superiority in intelligence contest when h increases. When J* 

doesn’t change in some range of h, X* increases to cope with the increased x*. When the 

attacker prefers to concentrate its intelligence effort, J* decreases and X* decreases 

accordingly.  

      Similar to Section 6.3, the defender chooses the optimal strategy (H*,x*) which 

minimizes V(H,x): (H*,x*) = ).,(minarg *
1;0 minmax

xHVxxHH ≤≤≤≤  We also use V* to 

denote V(H*,x*). Figure 6.12 shows the optimal number of false targets H*, the defender’s 
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optimal disinformation resource proportion x*, the attacker’s optimal intelligence resource 

proportion X*, the optimal number of checked targets J* and the object destruction 

probability V* as functions of the defender’s disinformation superiority parameter h for 

Hmax=25, g=1, m=3 and different values of f. Similar to Figure 6.7, V* decreases with the 

increase of h. H* and x* vary with h and f in very similar manner. H*, x* and V* converge 

when h approaches infinity. X* and J* converge to 0 when h approaches infinity, since it is 

not possible for the attacker to detect any false target irrespectively how much resource is 

allocated into intelligence actions. The oscillations of X* and J* have the same nature as in 

Figure 6.4.  

      Figure 6.13 shows the optimal number of false targets H*, the defender;s optimal 

disinformation resource proportion x*, the attacker’s optimal intelligence resource 

proportion X*, the optimal number of checked targets J* and the object destruction 

probability V* as functions of the defender’s impact superiority parameter g for Hmax=25, 

h=1, f=3 and different values of m. H* and x* become more sensitive to variations of g as 

m increases. Similar to Figure 6.9 V* decreases with g and approaches 0 when g 

approaches infinity. H* and x* vary with g and m in very similar manner. The increase of g 

makes any intelligence activity ineffective for the attacker (X*=J*=0 for g>2).  
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Figure 6.12 H*, x*, X*, J* and V* as functions of h for different f 

 

       

 



Chapter 6: Further Work on System Defense with False Targets 
 

 
 

133 
 

0 1 2 3 4 5
0

2

4

6

8

10

12

14

g

H
*

 

 

m=1
m=2
m=3

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

g

x*

 

 

m=1
m=2
m=3

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

g

X
*

 

 
m=1
m=2
m=3

0 1 2 3 4 5
0

2

4

6

8

10

12

14

g

J*

 

 
m=1
m=2
m=3

 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

g

V
*

 

 
m=1
m=2
m=3

 

Figure 6.13 H*, x*, X*, J* and V* as functions of g for different m 
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6.5. Conclusions 

This chapter considers the deployment of false targets as a measure to defense systems 

against intentional attacks. The defender deploys a genuine object and multiple false 

targets to divert the attacker. The defender allocates its resource between defending the 

genuine object and investing into disinformation actions to ensure that the attacker cannot 

distinguish the false targets from the genuine object. The attacker allocates its resource 

between attacking and investing into intelligence actions trying to detect the false targets. 

The detection probability of a FT is determined by the attacker’s intelligence effort and 

the defender’s disinformation effort allocated on it. Each FT can be detected individually 

and independently. If the attacker detects a certain number of FTs, it attacks a subset of 

randomly chosen undetected targets (the attacker chooses such number of targets in the 

subset that maximizes the object destruction probability). The vulnerability of the genuine 

object is determined by the attack effort and the protection effort allocated in it. The 

defender seeks to minimize the object destruction probability. The attacker seeks to 

maximize the object destruction probability. We consider a minmax two period game in 

which the defender chooses its strategy in the first period assuming that the attacker 

responds with the most harmful strategy in the second period. 

      The complex interaction of the free choice variables and parameters in the game 

makes its intuitive analysis impossible. The chapter suggests the probabilistic model of the 

game and presents a methodology based on the analysis of numerically obtained solutions. 
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The cases when the number of FTs is exogenously given and when this number is 

optimized by the defender are considered as well as the cases when the attacker tries to 

detect all FTs or optimally chooses the number of targets he tries to detect. 

It is shown that in many cases the resource distribution parameters of both players (x 

and X) behave very similarly, however in some cases the attacker's resource distribution 

parameter demonstrates oscillating behavior. These effects are similar to those observed in 

Levitin and Hausken (2009c).  

It is demonstrated that for some parameters of the game any intelligence activity is not 

effective for the attacker. The methodology of numerical analysis that determines the 

intelligence effort efficiency conditions is presented. 
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CHAPTER 7 OPTIMAL SYSTEM REPLACEMENT AND 

PROTECTION STRATEGY  

 

 

For systems containing elements with increasing failure rates, preventive replacement of 

the elements is an efficient measure to increase the system reliability (Levitin and 

Lisnianski, 1999; Yeh et al., 2010; Chien et al., 2010). Replacing elements that have a 

high risk of failure, while reducing the chance of failure, can incur significant expenses, 

especially in systems with high replacement rates. Minimal repair, the less expensive 

option, enables the system element to resume its work after failure, but does not affect its 

hazard rate (Beichelt and Fischer, 1980; Beichelt and Franken, 1983; Chang et al., 2010). 

Since the component replacement reduces its failure rate, the more frequently the 

component is replaced the higher the availability of the component is. Besides internal 

failures, a component may also fail due to external impacts, say, natural disasters (Zhuang 

and Bier, 2007). In order to increase the survivability of a component under external 

impacts, defensive investments can be made to protect the component. It is reasonable to 

assume that the external impact frequency is constant over time and that the probability of 

the component destruction by the external impact decreases with the increase of the 

protection effort allocated on the component. A tradeoff exists between investments into 
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system maintenance and its protection. The optimal maintenance and protection strategy 

needs to take both of these factors into account in order to reach a solution that provides 

the desired system reliability at minimum cost.  

      This chapter considers a series-parallel system consisting of components with different 

characteristics (nominal performances, hazard functions, protection costs etc.). The 

objective is to minimize the total cost of the damage associated with unsupplied demand 

and the costs of the system maintenance and protection. A universal generating function 

(UGF) technique is used to evaluate the system availability for any maintenance and 

protection policy. A genetic algorithm is used for the optimization. Section 7.1 formulates 

the problem. Section 7.2 describes the method of calculating the system availability. 

Section 7.3 provides a description of the genetic algorithm. Numerical examples are 

shown in Section 7.4.  

      

 

7.1. Problem formulation and description of system model 

7.1.1. General model and assumptions 

Assumptions: 

1. All the system components are independent. 

2. The failures caused by the internal causes and external impacts are independent. 
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3. The time spent on replacement is negligible.  

4. The time spent on a minimal repair is much less than the time between failures.   

 

      A system that consists of M subsystems connected in series is considered. Each 

subsystem m contains Em elements connected in parallel. The lifetime for the system is 

denoted as Tc. For each component i, its nominal performance is denoted as Gi and the 

expected number of internal failures during time interval (0,t] is denoted as )(tiλ , which 

is an increasing function of t. Each component is subjected to internal failures and external 

impacts. The failures caused by internal failures and external impacts are fixed by minimal 

repairs. It is assumed that the following two kinds of maintenance actions can be taken 

(Sheu and Chang, 2009): 

     1) Preventive replacement. The i-th component is replaced when it reaches an age Ti. 

The cost Ci of each replacement is constant. As the preventive replacement is planned 

action the average time for the replacement is assumed to be negligible. 

     2) Minimal repair. This action is used after internal failures or destructive external 

impacts and doesn’t affect the hazard function of the component. The average cost for a 

minimal repair of component i is σi in the case of internal failure and θi in the case of 

external impact. The average time for a minimal repair of component i is ti in the case of 

internal failure and τi in the case of external impact. 
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7.1.2. The availability of each system element 

The average number of internal failures during the period between replacements λi(Ti) can 

be obtained by using the replacement interval Ti for each element. Therefore, the total 

expected number of internal failures of the component i during the system life cycle is  

                                         
i

cii
iii T

TT
Tn

)(
)()1(

λ
λ =+                                         (7.1) 

where 1−=
i

c
i T

T
n  is the number of preventive replacements ni during the system life cycle.  

We use xi to denote the protection effort allocated on component i and ai to denote the 

unit protection effort cost for component i. It is assumed that the external impact 

frequency q is a constant and the expected impact intensity is d. The component 

vulnerability (conditional probability of a component failure caused by an external impact) 

is evaluated using the contest function model (Hausken 2005, Tullock 1980, Skaperdas 

1996) as 

                                 
mm

i

m

i dx
ddxv
+

=),(                                                         (7.2) 

where m is the contest intensity parameter. The expected number of the failures caused by 

the external impacts is therefore 

                              
mm

i

m
c

ic dx
dTqdxvTq

+
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=⋅⋅ ),(                                               (7.3) 
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Hausken and Levitin (2008) discussed the meaning of the contest intensity parameter m. A 

benchmark intermediate value is m=1, which means that the investments into protection 

have proportional impact on the vulnerability reduction. 0<m<1 corresponds to the low 

effective types of protections with component vulnerability less sensitive to variation of 

the protection effort. m>1 corresponds to the highly effective types of protections with 

component vulnerability very sensitive to variation of the protection effort.   

From (7.1) and (7.3) we have the total expected repair time of component i as  

                             iic
i

ciii
i dxvTq

T
TTt

r τ
λ

⋅⋅⋅+= ),(
)(

                                       (7.4) 

Furthermore the availability of each element can be obtained as 

                     .
),()(

c

iiciciiic

c

ic
i T

dxvqT/ΤTTλtT
T

rT
A

τ− −
=

−
=                           (7.5) 

 

7.1.3. The system capacity distribution 

The system capacity distribution must be obtained to estimate the entire system 

availability and the expected unsupplied demand. We use G={Gv} to denote the vector of 

all the possible total system capacities, which corresponds to its V different possible states; 

and P={pv} to denote the vector of probabilities, which corresponds to these states.  

      The entire system capacity distribution can be defined by using the algorithm 

presented in Section 7.2 after the availabilities of the system elements are obtained with 
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(7.5). If we denote the system demand as W, the unsupplied demand probability should be 

calculated as 

                                 )0(1
1

>−⋅= ∑
=

v

V

v
vud GWpP                                     (7.6) 

The reliability of the entire system requires an availability index A=1-Pud that is not less 

than some preliminary specified level A*.  

      The total unsupplied demand cost can be estimated with the following expression 

                    )0(1)(
1

>−⋅−⋅= ∑
=

vv

V

v
vud GWGWpC α                            (7.7) 

where α is the cost of the unsupplied demand unit. 

 

7.1.4. The formulation of the optimization problem  

The optimization problem is to find the replacement intervals and protection efforts for 

system elements T=(T1,T2,…,TN) and x={x1,x2,…,xN} that minimize the sum of costs of 

the maintenance, protection, and unsupplied demand.  
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where ii xa  is the protection cost on component i, i
i

c
ii C

T
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Cn ⎟⎟
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preventive replacement cost of component i, and iic
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 is 

the expected minimal repair cost of component i .  

 

 

7.2.  System availability estimation method 

The entire system capacity distribution must be obtained in order to evaluate the 

availability index A and the total unsupplied demand cost Cud. The UGF was introduced in 

Ushakov (1986) and has proven to be extremely effective in evaluating reliability of 

complex multi-state systems (Liu and Huang, 2010; Yeh and He, 2010). The UGF of a 

discrete variable G is defined as a polynomial  

 ,)(
1

∑
=

=
J

j

jg
j zpzu  (7.9) 

where the discrete random variable G has J possible values and pj is the probability that G 

is equal to gj. In our case, the polynomial u(z) can define capacity distributions, meaning it 

represents all possible states of the system (or element) by relating the probabilities of 

each state pj with capacity gj of the system in this state.  
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      Since each component i has a nominal performance gi and its availability is Ai, the u-

function of component i has only two terms and can be defined as  

 ,)1()( 0 ig
iii zAzAzu +−=  (7.10) 

The cumulative performance of parallel elements is equal to the sum of individual 

performances of these elements. Thus, the u-function of elements connected in parallel 

can be obtained by using the 
+
⊗  operator 
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The 
+
⊗  operator is a product of polynomials representing the individual u-functions. Each 

term of the resulting polynomial is obtained by multiplying the probabilities that 

correspond to different states of elements and by reaching a summation of the elements’ 

capacities that correspond to these states. 

      If a system contains subsystem connected in series, the subsystem with the minimal 

capacity bottlenecks the system. Therefore, this subsystem defines the total system 

capacity. The 
min
⊗  operator should be used to calculate the u-function for a system 
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containing M subsystems connected in series. This operator for a pair of subsystems 

connected in series is defined as follows: 
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= ===
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The simple operator should be used to evaluate the probability that the random variable G 

represented by polynomial u(z) defined in (7.9) does not exceed the value W: 

 ∑
≤

==≤=
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Furthermore the availability index A of the entire system can be obtained as 

 ∑
≤

−=−=
Wg

jud
j

pPA 11 . (7.14) 

The total unsupplied demand cost can be estimated as 

 )( j
Wg

jud gWpC
j
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≤

α . (7.15) 

 

 

7.3. Optimization technique 

Equation (7.8) formulates a complicated combinatorial optimization problem. An 

exhaustive examination of all possible solutions is not realistic, considering reasonable 

time limitations. The genetic algorithm (GA) has proven to be an effective optimization 
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tool for a large number of complicated problems in reliability engineering (Coit and 

Smith, 1996, Levitin et al., 1998; Lisnianski and Levitin, 2003). To apply the GA to a 

specific problem the solution representation and the decoding procedures must be defined. 

 

A. Solution Representation and decoding procedures 

Each solution is represented by string S={s1,s2,…,sN}, where si corresponds to component 

i for each i=1,2,…,N.  

      Each number si determines both the replacement interval of component i (Ti) and the 

protection effort allocated on component i (xi). To provide this property all the numbers si 

are generated in the range 

          Λ⋅+<≤ )1(0 Msi           (7.16) 

where M  is the maximum protection effort allowed to be allocated on a component and Λ  

is the total number of considered replacement frequency alternatives. 

      The solutions are decoded in the following manner: 

 ]/[ Λii sx =                                              (7.17) 

                    ii sv Λmod1+=                                       (7.18) 
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where vi is the number of replacement frequency alternative for component i, [x] is the 

maximal integer not greater than x, and modxy=y-[y/x]x. For given vi and xi the 

corresponding si is composed as follows: 

            1−+Λ⋅= iii vxs                                             (7.19) 

Note that all Λ<is  corresponds to the solutions where the component i is not protected.  

      The possible replacement frequency alternatives are ordered in vector 

h={h1,h2,…, Λh } so that hi< hi+1, where hi represents the number of replacements during 

the operation period that corresponds to alternative i. After obtaining vi from decoding the 

solution string, the number of replacement for component i can be obtained as  

                                        
ivi hn =                                                     (7.20) 

Furthermore replacement interval for component i can be obtained as 

                       
11 +

=
+

=
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c
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c
i h

T
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T
T                                                 (7.21) 

      For each given pair of vectors (T,x) the decoding procedure first calculates the 

availability of each element using (7.5), after which the entire system capacity distribution 

can be obtained by using (7.10), (7.11) and (7.12). The availability index A and the total 

unsupplied demand cost Cud can be obtained using (7.13), (7.14) and (7.15). 
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      In order to let the genetic algorithm search for the solution with minimal total cost, 

when A is not less than the required value A*, the solution quality (fitness) is evaluated as 

follows: 

∑∑∑
===

++++−⋅−⋅=
N

i
ii

N

i
ic

N

i
iiud

** lC-/TTxaCAAAAω)F(
111

)1()()(1)( xT,xT,         (7.22) 

where ω is a sufficiently large penalty.  

      For solutions that meet the requirements A≥A*, the fitness of the solution is equal to its 

total cost. 

 

B. Crossover and mutation procedures  

The cross operator for given parent strings P1, P2 and the offspring string O is defined as 

follows: the i-th element (1≤i≤N) of the string O is equal to the i-th element of either P1 or 

P2 both with probability 0.5. 

      The mutation procedure swaps elements initially located in two randomly chosen 

positions.  
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7.4. Illustrative examples 

The system considered in this example consists of two subsystems. The first subsystem 

contains 5 components while the second subsystem contains 3 components. The lifetime 

of the system Tc is 120 months. The system demand W is 45. Figure 7.1 is shown for 

graphical illustration. 

 

      Figure 7.1 Graphical illustration of the considered system 

       

      We assume that totally Λ=6 different replacement frequency alternatives are 

considered and the alternatives are h={4, 9, 14, 19, 24, 29}. The corresponding 

alternatives for replacement interval are 24 months, 12 months, 8 months, 6 months, 4.8 

months and 4 months. The characteristics of the components are presented in Table 7.1. 

Subsystem 1 

Subsystem 2 

(T1,x1)

(T8,x8)

(T7,x7)

(T6,x6)(T2,x2) 

(T3,x3) 

(T4,x4)

(T5,x5) 
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Table 7.1 The characteristics of the components 

i 1 2 3 4 5 6 7 8 

Gi 10 10 12 12 14 15 15 20 

ai 7 8 8 9 10 10 11 12 

Ci 100 100 110 110 120 140 140 150 

ti(month) 0.030 0.033 0.036 0.042 0.045 0.045 0.048 0.048 

σi 8 8 8 7 8 6 8 7 

τi(month) 0.036 0.042 0.045 0.048 0.051 0.051 0.054 0.054 

θi 9 9 9 8 9 7 9 8 

λi(4) 0.8 0.72 0.64 0.6 0.72 0.7 0.6 0.5 

λi(4.8) 1.04 0.92 0.85 0.8 0.96 0.9 0.85 0.8 

λi(6) 1.6 1.5 1.4 1.2 1.5 1.4 1.4 1.4 

λi(8) 2.8 2.7 2.7 2.1 2.7 2.4 2.7 2.8 

λi(12) 5.5 5.2 5.4 4.2 5.3 4.8 5.4 5.8 

λi(24) 15 15 15 14 15 14 14 16 
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      For our example we assume that q=0.5, d=30, α=3000, and the maximum protection 

effort allowed to be allocated on a component is M=50. According to (7.16) we have 

 306)1(0 =Λ⋅+<≤ Msi   

For a given solution string, T and x can be decoded using (7.17), (7.18), (7.20) and (7.21). 

Thereafter (7.22) can be used to obtain the fitness function F(T,x). For example, the 

solution string S=[195 280 49 218 176 132 270 120] is decoded into T= (6 4.8 12 8 8 24 

24 24) and x = (32 46 8 36 29 22 45 20). For m=1 and A*=0.90, the fitness function for 

this solution takes the value F(T,x)=18190. 

      The problem is to find the optimal replacement and protection strategy (T,x) which 

minimizes F(T,x) subject to the availability requirement A>A*. 

      Table 7.2 contains the optimal solutions obtained for m=1 and different values of A*. 

Each solution was obtained as the optimal one among five different runs of the GA with 

different randomly generated initial populations. The coefficients of variation among the 

values of F(T,x) obtained in the five runs are also presented in Table 7.2. The low values 

of this coefficient evidence the good consistency of the GA. With the increase of the 

reliability requirement more resources need to be put into protection actions and the 

components need to be replaced more frequently, thus the total cost increases.  It can also 

be seen that Cud decreases with the increase of A*. Indeed, when the obtained system 

availability increases, the unsupplied demand decreases. 
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Table 7.2 Examples of solutions obtained for m=1   

Constraints T x A Cud F(T,x) variation

None (24 24 24 24 
24 24 24 24) 

(19 19 19 13  
19 13 13 10)

0.8946 1008.9 13143 0.02% 

A*=0.90 (24 24 24 24 
24 24 24 24) 

(21 21 21 14  
26 14 14 21)

0.9008 955.8333 13187 0.65% 

A*=0.95 (24 24 24 24 
6 24 24 4.8) 

(32 32 32 32 
42 32 32 50)

0.9505 549.9153 17482 1.66% 

       

      The maximum availability A=0.9645 can be achieved when maximal possible 

protection and replacement frequency are applied. In this case all the components are 

replaced every 4 months and the protection effort on each component is 50. The 

corresponding total cost is 34784. 

Table 7.3 contains the optimal solutions obtained for m=0.25 and different values of 

A*. Similar as in the case m=1, the total cost increases whereas unsupplied demand cost 

decreases with the increase of A*. For low intensive contest with m=0.25 the total incurred 

cost becomes lower than in the case of m=1 for small A* and greater than in the case of 

m=1 for high A*. Indeed, when A* is low the protection effort of an element is generally 

smaller than the external impact intensity. In this case for smaller m the sensitivity of the 

element vulnerability to the reduction of the protection effort decreases and the defender 
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can afford to spend less into the protection. On the contrary, when A* is high, the 

protection effort of an element is generally bigger than the external impact intensity. But 

for smaller m it becomes more difficult to achieve vulnerability reduction by increasing 

the protection effort and the defender must spend more into the protection.  

 

Table 7.3 Examples of solutions obtained for m=0.25 

Constraints T x A Cud F(T,x) variation

None (24 24 24 24 
24 24 24 24) 

(6 4 4 4 4 4 
4 4) 

0.8981 957.7501 12112 0.44% 

A*=0.90 (24 24 24 24 
24 24 24 24) 

(6 6 6 6 8 6 
6 6) 

0.9000 931.1970 12147 0.23% 

A*=0.95 (24 12 24 12 
4 12 24 4.8) 

(12 17 12 17  
32 17 12 32)

0.9501 486.5937 18842 1.04% 

       

      The maximum availability A=0.9591 can be achieved when maximal possible 

protection and replacement frequency are applied. The corresponding total cost is 35210, 

which is greater than the case m=1. This is because when m=0.25, the protection is not as 

effective as in the case m=1.  

      Table 7.4 contains the optimal solutions obtained for m=4 and different values of A*.      

Similar as in the cases m=1 and m=0.25, the total cost increases while the unsupplied 

demand cost decreases with the increase of A*. The results obtained for the first two cases 
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are very similar. Actually the near optimal solution obtained without availability 

constraint has an availability bigger than 0.90. Thus it is also a near optimal solution for 

the case A*=0.90. As can be seen the protection effort allocated on each element is always 

very big. This is because the domination of protection effort over external impact is very 

important when m=4.       

  

Table 7.4 Examples of solutions obtained for m=4 

Constraints T x A Cud F(T,x) variation

None (24 24 24 24 
24 24 24 24) 

(45 43 45 42  
43 41 41 41)

0.9238 569.7401 12865 0.08% 

A*=0.90 (24 24 24 24 
24 24 24 24) 

(44 44 44 41  
44 41 41 36)

0.9215 581.4035 12866 0.07% 

A*=0.95 (24 24 24 24  
8 24 24 8) 

(44 44 44 42  
50 42 42 49)

0.9556 397.0332 14931 0.25% 

       

      The maximum availability A=0.9792 can be achieved when maximal possible 

protection and replacement frequency are applied. The corresponding total cost is 33620, 

which is less than the case m=1. This is because the protection is more effective than in 

the case m=1.  
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Figure 7.2 Optimal F(T,x) as functions of A* for different values of m 

 

Figure 7.2 shows the optimal F(T,x) as functions of A* for different values of m. As 

can be seen the optimal F(T,x) curve for m=1 is above the curve for m=0.25 when A* is 

small and below the curve for m=0.25 when A* is big enough. The optimal F(T,x) curve 

for m=4 is always below that for m=1, as the dominant protection effort can considerably 

reduce the failures caused by external impacts when m=4. 

 

 

7.5.  Conclusions 

In this chapter the optimal resource allocation between replacement and protection of 

components in a series-parallel system is studied. It is assumed that the failure rate of each 

component is increasing over time and the failures between replacements are fixed by 
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minimal repairs. Since the component replacement reduces its failure rate, the more 

frequently a component is replaced the higher the availability of the component will be. 

On the other hand, the components may fail due to external impacts. It is assumed that the 

external impact frequency is constant. The destruction probability of a component in the 

case of an external impact is determined by the external impact intensity, the protection 

effort on the component and the contest intensity. The bigger the protection effort 

allocated on a component is, the lower its destruction probability will be. Thus a tradeoff 

exists between investments into system maintenance and its protection. In this chapter a 

framework is proposed to solve the optimal maintenance and protection strategy that 

provides the desired system reliability at minimum cost, which includes the total cost of 

the damage associated with unsupplied demand and the costs of the system maintenance 

and protection. Universal generating function technique is used to obtain the system 

availability and the total cost of the damage associated with unsupplied demand. Solutions 

are encoded into strings and a genetic algorithm is employed to search for the string with 

the best fitness function. Finally the optimal solution is obtained by decoding the optimal 

string.  

      Numerical examples are shown in this chapter. With the increase of the reliability 

requirement more resources need to be put into protection actions and the components 

need to be replaced more frequently, thus the total cost increases. Meanwhile with the 

increase of the obtained system availability, the unsupplied demand decreases. The 

maximum availability can be achieved when maximal possible protection and replacement 

frequency are applied.  
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      It is shown that whether the total cost increases or decreases with the increase of 

contest intensity depends on the element protection efforts. When the protection effort on 

each element is generally superior to the external impact intensity, the total cost decreases 

with the increase of the contest intensity. Otherwise the total cost increases with the 

increase of the contest intensity. 
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CHAPTER 8 CONLUSIONS AND FUTURE WORKS 

 

 

8.1. Conclusions 

In this thesis, the reliability of some networked systems is investigated. These systems 

include series-parallel systems subject to imperfect fault coverage, linear multi-state 

consecutively connected systems, series/parallel systems against external intentional 

attacks and series-parallel systems subjected to both internal failures and external attacks.  

      Chapter 3 studies the reliability of series-parallel systems with the consideration of 

imperfect fault coverage. It is assumed that the elements in the same subsystem can be 

divided into different work sharing groups to perform the same task. Due to imperfect 

fault coverage, a whole work sharing group can fail if one element fails and the failure is 

not covered. Different fault coverage models are discussed and the problem of finding the 

optimal balance between redundancy and task sharing is extended to the cases of multi-

fault coverage and performance dependent coverage. Illustrative examples are presented to 

show that the greatest system reliability (defined as a probability of meeting a certain 

demand) can be achieved by proper balance between two types of task parallelization.  
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      Chapter 4 studies a linear multi-state consecutively connected system (LMCCS) 

consisting of elements with increasing failure rates. A framework is proposed to solve the 

joint element allocation and maintenance optimization problem for LMCCS which 

minimizes the total system maintenance cost subject to pre-specified system availability 

requirements. The optimal elements allocation and maintenance strategy are found in the 

example for three different cases: 1) Fixed element allocation; 2) Even elements 

distribution among the nodes (no node contains more than one element); 3) Arbitrary 

allocation of the elements. For all the cases, the minimum maintenance cost increases with 

the increase of the availability requirement. It is revealed clearly in the results that the 

flexibility of element allocation enables the system to achieve much higher availability 

with less maintenance cost.  

      Chapter 5 and 6 study the defense of systems against external attacks. Chapter 5 

considers simple series and parallel systems against external intentional attacks. Different 

from existing papers which only consider perfect false targets, it is assumed that each false 

target (FT) has a nonzero probability to be detected by the attacker and the detections of 

different FTs are independent. The methodology of analysis of optimal defense strategy as 

function of different parameters (number of GEs, contest intensity, total attacker's resource) 

is demonstrated. The decision curves are also presented which can be used for the making 

a decision about efficiency of deploying FTs depending on their cost and detection 

probability. Chapter 6 considers defending a single genuine object with imperfect false 

targets. Different from Chapter 5, the detection probability of a false target is assumed to 

be a function of the attacker’s intelligence effort and the defender’s disinformation effort. 

The cases when the number of FTs is exogenously given and when this number is 
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optimized by the defender are considered as well as the cases when the attacker tries to 

detect all FTs or optimally chooses the number of targets he tries to detect.  

      Chapter 7 studies the optimal resource allocation between replacement and protection 

of components in a series-parallel system. It is assumed that the failure rate of each 

component is increasing over time and the failures between replacements are fixed by 

minimal repairs. On the other hand, the components may fail due to external impacts. It is 

assumed that the external impact frequency is constant. A framework is proposed to solve 

the optimal maintenance and protection strategy that provides the desired system 

reliability at minimum cost, which includes the total cost of the damage associated with 

unsupplied demand and the costs of the system maintenance and protection. Numerical 

examples are shown to illustrate the application. With the increase of the reliability 

requirement more resources need to be put into protection actions and the components 

need to be replaced more frequently, thus the total cost increases. Meanwhile with the 

increase of the obtained system availability, the unsupplied demand decreases.  

 

 

8.2. Future works 

This section discusses the limitations of the works contained in this thesis and suggests 

some directions for future research.  
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      In chapter 3, it is assumed that the same task can be shared by different components in 

the optimal way. An implicit assumption is that the task can be divided arbitrarily so that a 

component with greater capacity takes greater amount of task load. In reality, there may 

be situations where a task can only be divided into discrete number of subtasks. Although 

the insight of the current research still applies, a framework needs to be proposed to solve 

the optimal allocation of subtasks into different components. It would be an interesting 

and challenging issue to incorporate different kinds of fault coverage models with discrete 

division of tasks. Moreover, in chapter 3 universal generating function is used to calculate 

the performance distribution of the entire system, it would be interesting to try other 

methodologies, such as fault tree analysis and ordered binary decision diagram. 

      In chapter 4, it is assumed that the number of elements that are available is fixed and 

the allocation and maintenance of these elements are studied. There are situations where 

different versions of elements are available, say, in the market. In this case, the problem is 

to decide the number of each version of elements to be allocated into each position and the 

maintenance actions to be implemented on these elements. The total cost will contain not 

only the maintenance cost, but also the cost of elements themselves. Another thing that 

can be done is to use iterative methods instead of universal generating functions to 

calculate the reliability of linear multi-state consecutively connected systems. The 

computational complexity of different methods can be compared.  

There are a lot of things that can be done on defending system against intentional 

attacks. Chapter 5 studies the optimal defense of systems with imperfect false targets. It is 

assumed that only one type of false targets is available. It would be interesting to consider 
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the case where there are multiple types of false targets with different unit costs and 

detection probabilities. A framework needs to be proposed to solve the optimal 

combination of different types of false targets. Another research that can be done is to 

study the uncertainty that is caused by the contest intensity parameter. The model in 

chapter 5 uses the contest intensity parameter m that cannot be exactly evaluated in 

practice. Therefore the study of the influence of this parameter on the optimal and minmax 

strategies has a qualitative nature. Two ways of handling the uncertainty of the contest 

intensity can be outlined: first, m can be defined as a fuzzy variable and fuzzy logic model 

can be studied; second, the range of possible variation of m can be determined and the 

most conservative "worst case" defense strategy can be obtained under the assumption that 

m takes the values that are most favorable for the attacker (in this case m can be 

considered as an additional strategic variable that the attacker can choose within the 

specified range). The model consider in chapter 5 can also be extended to other systems, 

say, consecutively connected systems. In consecutively connected systems, some elements 

are in more important positions than others. Therefore the defender may prefer to allocate 

more protection efforts on some elements than others and the attacker also prefers to 

attack the most fragile parts of the system in order to maximize the system destruction 

probability. It would be very interesting to model the counter-contest between the 

defender and the attacker. In chapter 5 and 6, the contest between the defender and the 

attacker is modeled as a two-period game where the defender constructs the system at first 

period and the attacker attacks the system in second period. Further study can be done to 

study the case when the defender can take pre-strike to destroy or weaken the attacker’s 

base. 
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Chapter 7 studies the optimal system maintenance and protection strategy when the 

system is subjected to internal failures and external attacks. The external attacks 

considered are limited to unintentional attacks, say, natural disasters. It must be interesting 

to study the optimal resource allocation strategy when the system is subjected to internal 

failures and both unintentional and intentional attacks. Say, an attacker who does not have 

intention to attack may choose to attack when a system is weakened by internal failures or 

natural disasters. How to model the problem realistically and meanwhile maintain 

mathematical tractability is an issue to be investigated. 
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