
 
 
 
 
 
 

UNDERWATER ACOUSTIC COMMUNICATIONS IN 
WARM SHALLOW WATER CHANNELS 

 
 
 
 
 
 

MANDAR CHITRE 
B. Eng. (Hons), M. Eng., M. Sc. 

 
 
 
 
 
 
 
 
 
 

A THESIS SUBMITTED FOR THE DEGREE OF 
DOCTOR OF PHILOSOPHY 

 
 
 
 

ELECTRICAL & COMPUTER ENGINEERING 
NATIONAL UNIVERSITY OF SINGAPORE 

 
2006 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48645939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acknowledgements 

Although the completion of a Ph.D. is looked upon as an individual 

accomplishment, it is rarely achieved without the help of many people. The research 

presented in this thesis is no exception. 

I would like to thank my supervisors, A/Prof. Ong Sim Heng and A/Prof. John 

Potter, for their support and guidance in my academic pursuits. A/Prof. Ong Sim 

Heng has supported me through several projects over the past years, allowing my 

research interests in underwater acoustics and digital image processing an avenue for 

growth. A/Prof. John Potter introduced me to underwater acoustics and guided me 

through the learning process involved in theoretical and experimental aspects of the 

subject. Without his mentoring and support, I would not be pursuing independent 

research in this field today. 

I would also like to thank Prof. Chan Eng Soon, who first recognized my 

research interests during my undergraduate studies and helped me find numerous 

opportunities to further them. He has since supported me in several endeavors, 

eventually leading to my current research in underwater acoustics. 

I would like to express my gratitude towards the DSTAa and the ARLb for 

supporting most of the research presented in this thesis. Mr. Shiraz Shahabudeen, Dr. 

Venugopalan Pallayil, Mr. Koay Teong Beng, Ms. Tan Soo Pieng, Dr. Paul Seekings, 

Mr. Alan Low and Mr. Mohan Panayamadam contributed to numerous discussions, 

experimental deployments and data collection in support of this project, for which I 

am grateful. 
                                                 

a Defence Science & Technology Agency (DSTA), Singapore – http://www.dsta.gov.sg 
b Acoustic Research Laboratory (ARL), Tropical Marine Science Institute (TMSI), National 

University of Singapore (NUS) – http://www.arl.nus.edu.sg 

i 



I would also like to thank Prof. Lawrence Wong and Dr. Goh Joo Thiam, who 

kindly agreed to find time from their busy schedules to help monitor the technical 

progress during the course of the research. Their comments and feedback during the 

Ph.D. qualification defense proved valuable in helping define some of the key 

research directions for the project. 

Lastly, I would like to thank my lovely wife, Yun Ping, and my loving parents 

for their support, understanding and unconditional love. Without them, none of this 

work would have been possible. 

ii 



Table of Contents 

Summary.......................................................................................................................5 

List of Tables ................................................................................................................7 

List of Figures...............................................................................................................8 

Abbreviations and Symbols ......................................................................................11 

1. Introduction..........................................................................................................1 
1.1. Motivation.......................................................................................................1 

1.2. Objectives .......................................................................................................2 

1.3. Thesis Contributions .......................................................................................2 

1.4. Thesis Organization ........................................................................................4 

2. Background ..........................................................................................................5 
2.1. Brief History ...................................................................................................5 

2.2. Review of Research in UWA Communications .............................................5 

2.3. Signal Processing in Impulsive Noise...........................................................11 

2.4. Practical Considerations................................................................................14 

2.5. Performance of Modems in Singapore Waters .............................................16 

2.6. Conclusions...................................................................................................20 

3. Ambient Noise Model ........................................................................................22 
3.1. Power Spectrum............................................................................................22 

3.2. Probability Distribution ................................................................................24 

3.3. The SαS Noise Model...................................................................................26 

3.4. Properties of the SαS Random Variables .....................................................30 

3.5. Signal-to-Noise Ratio....................................................................................33 

3.6. Conclusions...................................................................................................34 

4. Signal Detection in SαS Noise ...........................................................................36 
4.1. Signal Detection............................................................................................36 

4.2. Locally Optimal Detector .............................................................................36 

4.3. Maximum Likelihood Estimator...................................................................38 

4.4. Sign Correlation Detector .............................................................................39 

4.5. Simulated Detection Performance ................................................................39 

4.6. Experimental Validation ...............................................................................43 

4.7. Conclusions...................................................................................................44 

5. Communication in SαS Noise ...........................................................................45 

iii 



5.1. Antipodal Signaling ......................................................................................45 

5.2. Tail Probability of SαS Noise.......................................................................46 

5.3. Antipodal Signaling in SαS Noise................................................................47 

5.4. Coded Communications in SαS Noise .........................................................50 

5.5. Conclusions...................................................................................................64 

6. Channel Model ...................................................................................................65 
6.1. Physical of Underwater Acoustic Propagation .............................................65 

6.2. Channel Measurements.................................................................................70 

6.3. Time-varying Channel ..................................................................................77 

6.4. The Channel Model.......................................................................................80 

6.5. Comparison with Experimental Data............................................................82 

6.6. Conclusions...................................................................................................85 

7. Proposed Communication Scheme...................................................................87 
7.1. Communication Scheme ...............................................................................87 

7.2. Selection of Parameters.................................................................................97 

7.3. Simulations .................................................................................................102 

7.4. Conclusions.................................................................................................107 

8. Experimental Results.......................................................................................109 
8.1. Sea Trial 1 ...................................................................................................109 

8.2. Sea Trial 2 ...................................................................................................117 

8.3. Conclusions.................................................................................................125 

9. Conclusions & Further Research ...................................................................126 

9.1. Conclusions.................................................................................................126 

9.2. Further Research .........................................................................................128 

Bibliography .............................................................................................................130 

Appendix A: Simulation of a Random Process with Exponential Correlation..137 

Appendix B: Related Publications..........................................................................140 
 

iv 



Summary 

The ability to communicate effectively underwater has numerous applications 

for marine researchers, oceanographers, marine commercial operators, off-shore oil 

industry and defense organizations. As electromagnetic waves propagate poorly in sea 

water, acoustics provides the most obvious choice of medium to enable underwater 

communications. Underwater acoustic (UWA) communications has been a difficult 

problem due to unique channel characteristics. Attempts at adapting communication 

techniques developed for other channels have yielded successful implementations in 

vertical deep water channels, but have had limited success in shallow  water channels. 

One of the most challenging UWA communication channels is the medium-range 

very shallow warm water channel, common in tropical coastal regions such as 

Singapore. This warm shallow water acoustic (WSWA) channel exhibits two key 

features – extensive time-varying multipath and high levels of non-Gaussian ambient 

noise due to snapping shrimp – both of which limit the performance of traditional 

communication techniques. 

We develop a physics-based channel model for the WSWA channel. The model 

also includes time-varying statistical effects observed during channel studies. The 

model is calibrated and its accuracy validated using channel measurements made at 

sea. In contrast with most UWA communications research which assumes Gaussian 

noise, we model the ambient noise as a symmetric α-stable (SαS) noise. We show 

that this model accurately describes the ambient noise found in WSWA channels. 

This has profound implications on the design of communication systems for the 

WSWA channel. Many commonly used techniques such as the linear correlator and 

the soft-decision Viterbi algorithm with Euclidean branch metric perform poorly the 
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in presence of SαS noise. We develop computationally efficient near-optimal 

solutions such as the sign correlator for detection and the 1-norm Viterbi decoder for 

decoding convolutional codes in the presence of SαS noise. 

Based on our channel and noise models, we develop an orthogonal frequency 

division multiplexing (OFDM) based communication scheme for use in WSWA 

channels. We adopt differential quadrature phase shift keying (QPSK) and a cyclic 

prefix to eliminate the need for an equalizer. We use a convolutional code and a 

channel interleaver to benefit from the time-frequency diversity available in the 

channel. The 1-norm Viterbi decoder ensures good decoding performance in 

impulsive noise. We adapt a method to use the cyclic prefix for symbol 

synchronization in the presence of SαS noise. 

Given estimates of channel coherence time and delay spread, we suggest an 

approach to determine the OFDM parameters to use. We use the channel model to 

simulate OFDM communications with the chosen parameters prior to field 

deployments. We tested the method via an experiment at sea. More than 27 kb of data 

was transmitted without errors at a data rate of 7.6 kbps at a range of 1 km. More than 

54 kb of data was transmitted at 15 kbps and a BER of 10-4 or better at a range of 800 

m. Thus, we demonstrated reliable communications in very shallow waters in 

Singapore at ranges of 800 m and 1 km. This is a large improvement when compared 

to the performance of the best commercial modems in similar environments. 
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1. Introduction 

1.1. Motivation 

The ability to communicate effectively underwater has numerous applications 

for marine researchers, oceanographers, marine commercial operators, off-shore oil 

industry and defense organizations. As electromagnetic waves cannot propagate over 

long distances in sea water, acoustics provides the most obvious choice of energy 

propagation to enable underwater communications. 

Underwater acoustic (UWA) communications has been a difficult problem due 

to unique channel characteristics such as fading, extended multipath and refractive 

properties of the sound channel [1;2]. Attempts at adapting communication techniques 

developed for other channels have yielded successful implementations in vertical deep 

water channels, but have had limited success in shallow* water channels [2-4]. One of 

the most challenging UWA communication channel is believed to be the medium 

range† very shallow‡ warm water channel, common in tropical coastal regions such as 

Singapore waters. This warm shallow water acoustic (WSWA) channel presents two 

key features – extensive time-varying multipath [5] and high levels of non-Gaussian 

ambient noise due to snapping shrimp [5-7] – both of which limit the performance of 

traditional communication techniques. 

Several commercial and research acoustic modems are available for use in deep 

waters and some are available for use in shallow waters. Although the shallow water 

modems demonstrate good performance in some shallow water environments, many 
                                                 

* Water depths of 50 m to 200 m are considered shallow. 
† Distances in the range of 200 m to 2 km are considered to be medium range. 
‡ Water depths of less than 50 m are considered very shallow. Most coastal regions in Singapore 

have water depth of less than 30 m. 
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of them perform poorly in Singapore waters. The research presented here seeks to 

better understand the warm shallow water environment in Singapore and develop 

suitable channel propagation and noise models. It also aims to develop a 

communication scheme that would provide robust performance in such environments. 

Although directional receivers and spatially distributed transmitters and 

receivers can significantly improve communication performance, we focus our efforts 

on the development of communication systems with a single omni-directional 

transducer. Such single-input-single-output (SISO) communication systems tend to 

yield relatively small, portable and low-cost implementations which are important in 

many underwater applications. 

1.2. Objectives 

With an aim to develop a better understanding of acoustic communications in 

WSWA channels, the primary objectives of the project are as follows. 

• To develop an ambient noise model for warm shallow waters. 

• To develop signal processing techniques to communicate effectively in presence 

of non-Gaussian ambient noise. 

• To develop a time-varying multipath propagation model for the medium range 

very shallow water environment. 

• To develop techniques for reliable high-performance communications in 

WSWA channels. 

1.3. Thesis Contributions 

Communication systems have been the subject of study for many decades. Most 

communication systems have evolved to be highly sophisticated and encompass 

several sub-systems such as modulation, signal detection, synchronization and coding. 
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This thesis contributes to our understanding of the WSWA channel and the design of 

several sub-systems for communications in WSWA channels. The key contributions 

are listed below. 

1. Non-Gaussian ambient noise from snapping shrimp in warm shallow 

waters is identified as a key performance hurdle for communication 

systems. It is shown that the Symmetric α-Stable (SαS) distributions 

model the observed ambient noise accurately. 

2. A theoretical framework for performance analysis of uncoded and coded 

communication systems in SαS noise is developed. The effect of SαS 

noise on antipodal communications is studied using this framework. 

3. A computationally simple detector – the sign correlator – is shown to be 

near-optimal in the presence of SαS noise. Its performance with relation to 

the commonly used linear correlator and computationally intensive optimal 

detectors is studied. 

4. To combat SαS noise, the adoption of a 1-norm metric in the Viterbi 

algorithm is proposed. The performance of the modified Viterbi algorithm 

is shown to be near-optimal in SαS noise. 

5. A physics-based channel model is proposed for very shallow water 

channels. The model is calibrated and validated via comparison with 

experimental results. A simulation software has been developed to enable 

researchers to perform numerical experiments using the channel model. 

6. Based on our improved understanding of the WSWA channel and signal 

processing in snapping shrimp noise, an orthogonal frequency division 

multiplexing (OFDM) based communication scheme is proposed for 

communications in the WSWA channels. The scheme was tested in 
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Singapore waters and was shown to demonstrate better performance as 

compared to the expected performance of commercial modems. 

1.4. Thesis Organization 

Chapter 2 presents a literature survey on shallow water ambient noise, 

underwater acoustic communications and OFDM communications in non-Gaussian 

noise. The results from tests of a commercial modem in Singapore waters are also 

presented to benchmark available commercial technology. 

Chapter 3 introduces SαS random variables and presents their key properties. 

The snapping shrimp dominated ambient noise from Singapore waters is shown to be 

modeled accurately using SαS random process. Chapter 4 presents an analysis of the 

performance of signal detection in SαS noise. Near-optimal detectors are developed 

and studied in this chapter. Chapter 5 presents an analysis of coded and uncoded 

communication performance in the presence of SαS noise. The 1-norm metric based 

Viterbi algorithm is developed and studied in this chapter. 

Chapter 6 presents a physics-based channel propagation model. The model is 

calibrated and validated against experimental results. 

In light of the findings from Chapters 3-6, an OFDM based communication 

scheme is proposed in Chapter 7. The scheme was tested in simulation using the 

channel and noise models developed. The scheme was further tested via a set of field 

experiments in Singapore waters and shown to demonstrate good performance. The 

results from these experiments are presented in Chapter 8. 

Chapter 9 summarizes the key findings from the research and outlines directions 

for further research. 
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2. Background 

2.1. Brief History 

The UWA channel is band-limited and reverberant. Until the late 1970's, 

communication systems had no means of mitigating the distortion introduced by such 

channels [8]. With the advent of digital communications and parallel developments in 

severely fading radio channels, some level of channel compensation and explicit error 

correction became possible. Since then UWA communications has seen a steady 

improvement in data rate and reliability. The initial improvements were based on 

incoherent modulation techniques such as frequency shift keying (FSK) due to their 

robustness. In the early 1980's it was believed that phase coherent modulation 

techniques would not work in UWA channels. However, interest in phase coherent 

systems due to their higher bandwidth efficiency led to a large number of publications 

in the 1990's. Powerful receiver algorithms coupled with decision feedback equalizers 

(DFE) and second-order phase-locked-loop (PLL) enabled phase coherent algorithms 

to achieve rates of up to 10 kbps in a medium range shallow UWA channel [9;10]. 

Later, data rates of 20 kbps have been reported in a very shallow UWA channel at 

Woods Hole harbor [11] while rates of nearly 15 kbps have been reported in the 

Baltic Sea [12]. 

2.2. Review of Research in UWA Communications 

Several review papers on underwater acoustic communications have appeared in 

the literature [1;2;4;8]. These papers provide an excellent overview of advances in the 

field of underwater communications in the past decades. In this section, we review 

some of the key papers and ideas relevant to the research presented in this thesis. 
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2.2.1. Channel Propagation Modeling 

A good understanding of the communications channel is important in the design 

of a communication system. It aids in the development of signal processing 

techniques as well as in the testing of the techniques via simulation. Ray theory and 

the theory of normal modes have provided the basis for such channel modeling [13]. 

At high frequencies, ray tracing is an appropriate model and is commonly used to 

determine the coarse multipath structure of the channel. 

In [14], Essebbar, Loubet and Vial have developed a ray tracing based channel 

simulator. They model the ocean as a layered medium with a constant sound velocity 

gradient in each layer. The simulator also takes into account the effects of the 

movement of the receiver on the channel. Apart from the movement of the receiver, 

the surface movement and environmental changes can contribute significantly to the 

variability of a channel. These have been modeled and measured in [15] and [16]. A 

simpler stochastic channel model has been presented in [17]. The model is validated 

against experimental results from a very shallow water channel in Southampton, UK. 

In wireless communications, it is common to model a multipath channel using a 

tapped delay line with tap gains as stochastic processes [18]. When the tap gains are 

modeled using complex Gaussian processes, the resulting channel is the well known 

Rayleigh fading channel. Some researchers consider the shallow water medium range 

channel to exhibit Rayleigh fading [1]. Experimental support for such claims is found 

in [17] and [19]. However, the model has been challenged in [14] and [20]. 

A hybrid model where the multipath tap delays are computed using a ray model 

and the tap variation is modeled using Ricean statistics is proposed in [20]. The 

motivation for such a channel model is discussed in depth but no results or validation 
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is presented. Although the model is physics-based, the model does not include known 

acoustic propagation physics such as spreading, absorption, etc. 

Currently there seems to be no consensus among researchers as to which 

channel model is best suited for very shallow water medium range channels. 

2.2.2. Channel Noise Modeling 

The natural soundscape in Singapore waters is dominated by shipping below 1 

kHz. Reclamation noise contributes between 300 Hz and 3 kHz. Beyond about 2 kHz, 

the ambient noise is dominated by snapping shrimp [6;7]. Snapping shrimp noise is 

expected in all warm shallow waters, except with very high winds or precipitation. 

Most medium range communication systems are expected to operate at snapping 

shrimp dominated frequency bands. 

Snapping shrimp are impulsive sources and the noise power distribution due to 

snapping shrimp is known to be approximately log-normal [7]. The pressure 

amplitude distribution is also known to be heavy tailed [5]. The noise amplitude 

distribution (pressure amplitude in case of acoustics) plays an important role in the 

analysis of communication schemes. A linear communication receiver designed with 

a Gaussian noise assumption is sub-optimal in the presence of non-Gaussian noise. 

With knowledge of the noise distribution, optimal or near-optimal non-linear 

receivers can be designed to outperform the linear receiver [21]. The development of 

such receivers is usually heuristic and is undertaken in communications only as a 

special case [22]. Such a development has not been undertaken for UWA channels 

with snapping shrimp noise. 

2.2.3. Communication Techniques 

As UWA propagation is predominantly linear, the frequency content of 

communication signals remains largely contained within its original frequency band. 
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The phase and amplitude of the signal can, however, vary widely. This observation 

led to the use of FSK as the incoherent method of choice for early UWA 

communication systems [8]. However, most incoherent communication systems yield 

relatively low data rates. Although it was believed in 1980s that coherent 

communication in UWA channels would not be possible, the 1990s saw the 

development of many coherent systems. 

Phase-coherent UWA communications has evolved significantly in the past two 

decades. Based on the carrier synchronization method, coherent communications falls 

into two categories – differentially coherent (such as differential phase shift keying or 

DPSK) or purely coherent (such as phase shift keying or PSK). Although 

differentially coherent methods use a simpler synchronization technique, they incur a 

performance penalty as compared to purely coherent methods [18]. The use of PLL 

and DFE in UWA were key milestones that made coherent UWA communication 

possible [10]. A coherent communication scheme with joint channel synchronization 

and equalization was presented and experimentally tested in [10]. A high-rate QPSK 

communication scheme with adaptive equalization was presented in [11]. In this 

paper, the authors showed that a high-rate system performed better in a medium-range 

shallow water channel due to enhanced tracking of the channel by the equalizer as a 

result of more frequent sampling of the channel. 

Spread spectrum systems provide robust communication in many frequency-

selective fading environments. As the UWA channel exhibits frequency-selective 

fading, one would expect that spread spectrum communications may perform well in 

such a channel. The performances of frequency-hopping spread-spectrum (FHSS) and 

direct-sequence spread-spectrum (DSSS) were studied in [23].  The authors found that 

both FHSS and DSSS performed well in two experimental scenarios. The DSSS raw 
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performance was better than that of FHSS. However, the simplicity of FHSS and its 

intrinsic near-far resistance make it attractive in some circumstances. Although spread 

spectrum systems provide robust performance, they are not bandwidth efficient except 

in the case of multi-user systems [24]. In bandwidth limited UWA channels, the low 

bandwidth efficiency of spread spectrum systems is a key drawback. 

The concept of using parallel data transmission by means of frequency division 

multiplexing (FDM) was published in the 1950s and 1960s. In 1971, the discrete 

Fourier transform (DFT) was identified as a convenient way to achieve FDM [25]. 

This led to the development of efficient OFDM systems in the 1980s and 1990s. The 

use of OFDM with a cyclic prefix simplifies the receiver structure in a frequency-

selective channel as each sub-carrier only experiences flat fading [26]. Additionally, 

robust performance can be achieved by introducing redundancy across carriers 

through the use of coding. UWA communication schemes based on coded OFDM 

were studied theoretically in a series of papers [27-30]. The authors, however, did not 

publish experimental results based on any of these schemes. Coatelan and Glavieux  

[31] designed and tested a low-speed OFDM communication scheme in cold shallow 

waters. Bejjani and Belfiore  [32] studied a multi-carrier QAM/QPSK UWA 

communication scheme. They modeled the UWA channel as a Rician or Rayleigh 

fading channel for simulation, but did not present any experimental results.  Kim and 

Lu [33] studied the effect of frequency and time selectivity on OFDM underwater 

communications via simulation and concluded that a robust scheme could be 

developed. Zhakharov and Kodanev [34] demonstrated a low-frequency long-range 

OFDM communication link the Baltic sea by exploiting the multipath Doppler 

diversity in the channel. Yeung et al. [35;36] demonstrated a high-speed multi-carrier 

communication link in very shallow coastal waters near Hong Kong. More recently, 
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Frassati et al. [37] successfully demonstrated low-speed long-range OFDM 

communication in the Mediterranean sea.   

OFDM has been used in many telecommunication systems, especially to combat 

impulsive noise [38-40]. As warm shallow waters have impulsive ambient noise, 

OFDM may be suitable for UWA applications. However, this property of OFDM has 

not been exploited by researchers in UWA communications. 

Time reversal mirroring (TRM) has been implemented in the laboratory and in 

the ocean [41;42]. Such mirrors utilize the time-symmetry in the wave equation to 

refocus energy back at a source despite the complexity of the channel by effectively 

using the ocean as an analog computer. This naturally leads to the idea of 

communication using TRM [43]. TRM requires that the acoustic propagation through 

the ocean does not vary significantly over the communication period. Long coherence 

times have been demonstrated at low-to-mid frequencies in shallow and deep waters. 

However, one would expect that small variations in the environment (such as wave 

action on the surface) would become significant at high frequencies. This would lead 

to very short coherence times, making the use of TRM for high-frequency 

communication impractical. TRM is often implemented using a large array of 

transducers. Although it may be possible to implement TRM with a single transducer, 

the gain from TRM in such a setup is expected to be very small. Hence we do not 

consider TRM as a serious candidate for a high-frequency single transducer UWA 

communication system. 

More recent research in UWA communications has focused on multiple input 

multiple output (MIMO) systems, space-time coding and spatial diversity processing 

[9;44;45]. As all of these techniques utilize arrays at the transmitter and/or receiver, 

they are not of direct relevance to the work presented in this thesis. 
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2.3. Signal Processing in Impulsive Noise 

As mentioned in the previous section, the ambient noise in Singapore waters is 

impulsive. Several signal processing and communication techniques have been 

developed for impulsive noise channels. We review some of the key noise models and 

signal processing techniques. 

2.3.1. Impulsive Noise Models 

The Middleton Class A and Class B noise models represent impulsive noise in a 

variety of environments [46;47]. The Class A model is applicable when the noise 

bandwidth is small or comparable to the receiver bandwidth. The Class B model is 

used if the receiver bandwidth is small as compared to the noise bandwidth. The 

model consists of a Gaussian noise component and an impulsive noise component. 

The impulsive component is governed by a Poisson process and impulse duration. 

The Johnson Su noise model, a parametric family of densities with heavy tails, has 

been used to represent underwater acoustic noise from biological sources [48]. The 

Laplacian density has been used to model a number of noise environments, including 

underwater acoustic channels [49]. Other densities such as the Gaussian mixture 

densities have also been used to model impulsive noise environments. However, none 

of these noise models have a strong physical or theoretical justification for use in the 

description of ambient noise in warm shallow waters. 

The family of stable distributions provide a useful theoretical tool for impulsive 

noise environments [50]. These distributions are a direct generalization of the 

Gaussian distribution and include the Gaussian as a limiting case. The stable family of 

distributions arises out of a generalized Central Limit Theorem which states that the 

sum of independent and identically distributed random variables with or without a 

finite variance converges to a stable distribution by increasing the number of variables 
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[51]. The SαS noise model arises as a special case of stable noise, if the positive and 

negative noise amplitudes are equally likely. The SαS noise model describes the 

ambient noise in warm shallow waters accurately, as we shall show in Chapter 3. 

2.3.2. Signal Detection in Impulsive Noise 

The problem of detecting a known signal with unknown amplitude in noise is 

commonly encountered in areas such as communications, target detection, ranging 

and environmental sensing. If the noise statistics are known, an optimal detector can 

be designed based on the maximum-likelihood (ML) criterion. When the noise is 

Gaussian and white, the ML detector is the linear correlator (LC) [21]. Unlike a 

general ML detector, the LC does not require knowledge of the parameters of the 

underlying probability distribution. In the presence of non-Gaussian noise, the LC is 

no longer optimal. In spite of this, many signal processing algorithms still use the LC 

for signal detection in non-Gaussian noise due to its simple implementation and the 

lack of detailed statistical information about the noise. 

Since the LC is not optimal in snapping shrimp dominated ambient noise, a 

significant potential exists for enhancing the detection performance of signal 

processing algorithms in these waters. Nielsen and Thomas [52] explored the use of 

non-parametric detectors in snapping shrimp noise but concluded that the LC 

performed better than non-parametric techniques. This conclusion is not in agreement 

with the results obtained during our research (presented in Section 4.1). More 

recently, Bertilone and Killeen [53] modeled snapping shrimp noise using a Gaussian-

Gaussian mixture but concluded that there were some inconsistencies. They found 

that locally optimal (LO) detectors performed better than the LC at low signal-to-

noise ratio (SNR) but failed at high SNR. 
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Nikias and Shao [50] explored the development of optimal detectors in presence 

of SαS noise. They showed that a globally optimal (commonly known as uniformly 

most powerful or UMP) receiver does not exist in the general SαS noise case. 

However, LO detectors can be designed for detection of weak signals by introducing a 

non-linear transfer function before a standard LC detector. These detectors perform 

better than LC detectors in detecting weak signals in the presence of SαS noise. 

However, they require detailed parametric knowledge of the noise distribution in 

order to design the non-linear transfer function. 

2.3.3. Communication in Impulsive Noise 

Soon after Middleton proposed his impulse noise models, Spaulding and 

Middleton [54;55] published a series of papers on optimum reception in impulsive 

noise. They developed detection algorithms for optimal detection in Middleton Class 

A noise and showed that a substantial saving in power could be achieved with these 

algorithms. Although the optimal algorithms were computationally impractical, they 

showed that a locally optimal algorithm with lower complexity could be developed. 

Tsihrintzis and Nikias [21;56] studied the performance of various coherent and 

incoherent receivers in the presence SαS noise. They showed that the linear receiver 

performed poorly in the presence of SαS noise. On the other hand, a Cauchy receiver 

exhibited relatively robust performance. 

As coded OFDM has been used in telecommunication systems to combat 

impulse noise, several publications on OFDM communications in impulse noise are 

available (e.g. [38-40]). However, none of the publications develop optimal coded 

OFDM receivers or analyze the performance of coded OFDM in the presence of SαS 

noise. 
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2.4. Practical Considerations 

Shannon showed that the channel capacity is a function of bandwidth and SNR 

[57]. If the communication is not inter-symbol-interference (ISI) -limited, SNR can be 

improved by increasing transmission power. Thus data rates can be increased by 

increasing signal bandwidth or power. In case of ISI-limited communication, 

increasing the transmission power increases the power of the ISI and thus does not 

improve communication performance. Communication channels are often classified 

as band-limited or power-limited based on the primary constraint limiting the data 

rate. The UWA channel is both power- and band-limited, thus imposing an upper 

bound on achievable data rates. 

2.4.1. Bandwidth Limitations 

The available communication bandwidth is determined by the upper and lower 

limits of the frequency band. The band is theoretically limited on the lower side at 0 

Hz, but practically limited by transducer characteristics and increased ambient noise 

[58]. Ambient noise levels in Singapore waters can be as high as 70-90 dB re* 

1µPa2/Hz at 1 kHz, reducing to 50-70 dB re 1µPa2/Hz by 100 kHz [7]. Additionally, 

low frequency transducers are physically larger and require more power. 

Transmissions at higher frequencies are typically limited by sound attenuation due to 

relaxation of MgSO4 in sea water and viscous absorption [59]. Attenuation increases 

rapidly with frequency (Figure 2.1); in warm shallow waters, it is about 0.4 dB/km at 

10 kHz and increases to >30 dB/km by 100 kHz. 

The frequency band for communication should be chosen based on local 

ambient noise conditions, acceptable SNR, transmission range, available power, 

                                                 

* with reference to 
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electronics and transducers.  For a typical 1 to 2 km transmission range, this results in 

a bandwidth availability of about 50 to 70 kHz. 
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Figure 2.1. Attenuation of sound in shallow warm sea water 

2.4.2. Transmission Power Limitations 

Transmission power is typically limited by electrical power availability 

considerations (such as battery life), electronics, transducers and cavitation 

limitations. Cavitation is the process in which vapor pockets are formed in the liquid 

medium due to very low instantaneous pressure as a result of a strong sound source. 

Cavitation reduces transmission efficiency, causes damage to transducer surface and 

introduces undesirable non-linear effects. The cavitation threshold depends on the size 

of the transducer producing the sound, depth of the transducer, frequency, pulse 

length and properties of sea water [58]. In very shallow waters, typical high frequency 

transducers can produce source levels of up to about 210 dB re 1µPa at 1m without 

significant danger of cavitation. Higher source levels may be produced if needed by 

careful design of transmitters. However, higher source levels increase the risk of 

biological damage and have safety and environmental implications. Practical 
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considerations on electronics and battery life limit communication systems to work at 

lower power levels of about 185 to195 dB re 1µPa at 1m. 

2.5. Performance of Modems in Singapore Waters 

Although data rates of up to 20 kbps have been reported for horizontal 

transmissions in shallow waters, these data rates do not seem to be representative of 

the communication data rates in Singapore waters. Based on discussions with leading 

commercial UWA modem vendors, most vendors do not expect to get more than 

about 1 kbps in medium range WSWA channels*. Although the Evologics modem 

(based on technology published in [12]) claims to work at up to 33 kbps†, the modems 

failed to establish a link during a test in Singapore waters at distances greater than 100 

m‡. The experimental setup and results are presented in the following sections. 

The lower performance of the modems in Singapore waters may be explained if 

the WSWA channel exhibits more time-variability as compared with the Baltic Sea. 

Comparative time-variability measurements are currently not available to verify this. 

Ambient noise in Singapore waters is known to be dominated by heavy shipping and 

snapping shrimp and consequently non-Gaussian in power distribution [6;7]. We 

believe that this may be a significant factor in the observed poor performance of 

commercial modems in these waters. In Chapters 3, 4 and 5, we demonstrate that 

                                                 

* The rates quoted are based on personal discussions with prominent modem vendors, LinkQuest 
and Benthos, during MTS/IEEE Oceans 2003 conference in San Diego. These rates are in agreement 
with modem specifications available at http://www.link-quest.com/html/models1.htm (as of November 
2, 2005) for modems UWM2000H and UWM3000H. 

† See http://www.evologics.de/documents/S2C%20180%20modem.pdf (as of November 2, 
2005). 

‡ The experimental results have been documented in a technical report submitted to Defence 
Science & Technology Agency (DSTA) in February 2004 – “TDP Ocean Acoustic Research Works 
D11: Trial / experimentation report on testing of acoustic modems and communication technology in 
Singapore shallow waters (version 1.1)”. 
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Gaussian noise based signal processing techniques degrade rapidly in the presence of 

snapping shrimp noise. 

2.5.1. Modems tested in Singapore Waters 

To build an understanding of performance limitations in Singapore waters, the 

ARL* invited several modem manufacturers for performance tests in early 2004. 

LinkQuest, Benthos and Evologics, three key players in the underwater acoustic 

modem market, were invited. Although all three parties initially expressed interest in 

the tests, Benthos later did not wish to participate. They orally indicated that they did 

not expect their modems to perform reliably with more than a few hundred bps in the 

noise and multi-path conditions expected in Singapore waters. Informal tests with the 

short-range LinkQuest modems (UWM1000 series) showed that they often failed to 

establish communication links in Singapore waters beyond about 50 to 100 m. 

LinkQuest believed that their newer longer-range modems (UWM3000 series) would 

perform much better in Singapore waters and recommended the use of those for the 

tests. The published data rates for the UWM3000 series modems are in the range of 

80 to 320 bps. As the expected data rate of the modem is quite low and the rental 

costs quite high, LinkQuest modems were eventually not included in these tests. 

Evologics is a spin-off company from the technical university at Berlin. They have 

developed acoustic communication technology, which has performed well 

(approximately 33 kbps) over medium range (1.7 km) in shallow-water conditions in 

the Baltic Sea. Evologics was confident that their S2C modem would be able to 

achieve high data rates (several tens of kbps) in Singapore waters, and kindly agreed 

to come to Singapore in February 2004 to test the modems. 

                                                 

* Acoustic Research Laboratory (ARL), Tropical Marine Science Institute (TMSI), National 
University of Singapore (NUS) –  http://www.arl.nus.edu.sg 
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The key technology used by the S2C modem is a sweep spread-spectrum 

communication scheme [12;60]. The communication is implemented over a linear 

frequency-sweep carrier. The advantage of such a carrier is in the separation of multi-

path arrivals. Applying a transform to the received signal, the linear sweep can be 

rotated in time-frequency space such that the multi-path arrivals are separated in 

frequency rather than in time. The strongest multi-path arrival can then be selected via 

a band-pass filter and then decoded to recover the transmitted data. The modem uses a 

frequency band between 40 kHz and 80 kHz (6 dB points) with a source level of 

about 194 dB re 1µPa2 with a peak power consumption of 400 W. 

2.5.2. Experimental Setup 

The sea trial was performed at Selat Pauh (1˚13.39’ N 103˚44.59’ E) in coastal 

Singapore waters. The water depth at the barge was approximately 15 m, with a 

relatively flat bathymetry over the experimental site. The S2C modems were mounted 

at the bottom of a 4 m pole. The setup is shown in Figure 2.2. One modem was 

mounted on the side of a barge while the other modem was mounted from the bow of 

a boat. The boat moved to various distances from the barge and made transmissions. 

The S2C modems have directivity with a beam-width of about 60˚, and had to be 

continuously aligned in order to test with optimal signal strength. 
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Figure 2.2. Sea trial setup for Evologics S2C modem (side view) 

The experiment consisted of sending files of varying sizes over a connection 

established between the two modems. The file sizes sent were varied depending on 

the quality of the connection. Modem parameters that affected performance were 

tuned before each quoted measurement was made. The success of transfer, raw data 

rate and effective data rate were recorded. The raw data rate is the data rate of the raw 

data transmitted, and does not take into account the overheads of forward error 

correction, packet headers, delay between packets and retransmissions. The effective 

data rate was computed based on the file size and the time taken to transfer the file. 

2.5.3. Experimental Results 

During the trials, the S2C modems managed to establish connection up to a 

distance of 330 m. The results of each transmission tests are shown below. The 

transmissions worked up to about 100 m, beyond which they consistently failed to 

establish a link. Many transmission failures occurred within a 100 m range as well. 

The transmission rates achieved were about 6 kbps at 10 m range, steadily reducing to 

about 1 kbps at 90 m range. 

MODEMMODEM

~4 m

~15 m

BARGE
10-330 m

~4 m
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Table 2.1. Sea trial results for the Evologics S2C modem 

Range (m) Connection 
Status 

File Size 
(bytes) 

Elapsed 
Time (s) 

Raw Rate 
(bps) 

Effective 
Rate (bps) 

10 Online 9,372 12.33 33,333 6,081 

30 Online 18,955 83.00 12,500 1,827 

40 Online 1,028 24.00 10,400 343 

40 Online 3,072 8.00 15,000 3,072 

40 Online 1,028 7.50 15,384 1,096 

70 Online 1,028 43.00 9,600 191 

70 Online 1,541 73.00 3,610 169 

90 Online 2,936 26.53 7,462 885 

90 Online 2,936 22.80 5,780 1,030 

90 Online 1,541 29.71 6,410 415 

90 Online 2,936 29.78 7,200 789 

130 Online 1,024 Very long - - 

130 Online 56 Short - - 

330 Online Unable to transmit, intermittent connection failure 

The S2C modems did not achieve the expected performance of several tens of 

kbps up to 1 km. The same modems achieved data rates of 33 kbps up to 1.7 km in the 

Baltic Sea. This shows that the environmental conditions in Singapore waters are 

significantly different than those in many other shallow water areas; the 

measurements in other areas should not be used as a benchmark of performance for 

Singapore waters. 

2.6. Conclusions 

In this chapter, we briefly reviewed UWA channel models, ambient noise 

models and communication techniques. Although several channel models have been 

developed, there is no consensus among researchers on a suitable model for medium-

range very shallow water channels. Researchers have been using a Gaussian noise 
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model for analysis of communication systems. This model is violated substantially 

and consistently in Singapore waters. Coherent PSK with PLL and DFE are the 

primary communication techniques for single-transducer UWA communications 

today. Spread spectrum communications are also often used to add robustness at the 

cost of reduced data rates due to lower bandwidth efficiency. 

We also reviewed several impulsive noise models and optimal or near-optimal 

detectors and receivers. Most detectors/receivers are based critically on the noise 

model and hence sensitive to the noise parameters. The Cauchy receiver is among one 

of few receivers which demonstrates robust behavior in SαS noise. Coded OFDM is 

known for its robustness to impulse noise. However, no theoretical framework for 

analysis of performance of coded OFDM in SαS impulse noise exists. 

We outlined the practical limitations on a medium-range UWA communication 

system in terms of bandwidth and power constraints. Finally, we presented the results 

from an experiment where a commercial modem was tested in Singapore waters. 

Although the modem demonstrated excellent shallow water performance in the Baltic 

Sea, its performance in Singapore water was very poor. We believe that this poor 

performance was primarily due to differences such as non-Gaussian noise between 

WSWA channels and other shallow water channels. 
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3. Ambient Noise Model 

As one of the key differences between the WSWA channel and other channels is 

the ambient noise structure, we seek to understand the characteristics of ambient noise 

found in warm shallow waters around Singapore. 

3.1. Power Spectrum 
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Figure 3.1. Ambient noise PSD for a coral reef site 

The ambient noise is believed to be dominated by shipping below 1 kHz and 

snapping shrimp above 2 kHz [6]. Reclamation noise contributes between 300 Hz and 

3 kHz. Figure 3.1 and Figure 3.2* show sample Power Spectral Density (PSD) of 

ambient noise from sites in Singapore waters [61] as compared to documented curves 

                                                 

* Both figures are reproduced here from [61] for ease of reference. The y-axis in both figures is 
marked as uncalibrated due to confidentiality requirements imposed by the funding agency of the data 
collection project. 
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[62]. At the coral reef site, the medium shipping curve had to be shifted up slightly to 

fit the data. At the shipping anchorage and channel site, the heavy shipping curve had 

to be significantly shifted up. This can be explained by the fact that Singapore is a 

busy port. In both cases, the snapping shrimp curve fit the data at higher frequencies 

very well. It is evident from the curves that while low frequency ambient noise is 

dominated by shipping, the high frequency ambient noise is dominated by snapping 

shrimp. 
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Figure 3.2. Ambient noise PSD for a shipping anchorage and channel 

As the attenuation of sound in the ocean is a frequency-dependent process, the 

ocean acts as a low-pass filter for ambient noise. The ambient noise PSD is thus 

usually “pink” i.e. the noise has more power at lower frequencies and less power at 

higher frequencies. 
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3.2. Probability Distribution 

Snapping shrimp noise is expected to dominate high frequency ambient noise in 

all warm shallow waters, except with very high winds or precipitation. Snapping 

shrimp are highly impulsive noise sources. Although each shrimp produces a distinct 

“snap”, the observed ambient noise is composed of a large number of overlapping 

snaps from many colonies of shrimp [63] and the reflected sounds from the sea 

surface and bottom [64]. The noise power distribution due to the snapping shrimp is 

known to be approximately log-normal [7]. The noise pressure amplitude distribution 

is of more interest in communication studies than the noise power distribution. As we 

shall see, the ambient noise pressure amplitude distribution is also highly non-

Gaussian. 

Gaussian distributed data appear linear on a normal probability plot, while 

deviation from linearity indicates non-Gaussian data. A representative normal 

probability plot [65] of the noise pressure amplitude is shown in Figure 3.3. The plot 

shows a non-Gaussian distribution with heavy tails. A plot of the empirical 

probability density function (PDF) of the noise sample against the best Gaussian fit* 

(Figure 3.4) shows that Gaussian PDF is a poor approximation of the observed PDF.  

The trimmed† Gaussian fitting yields a better fit, but is still quite poor. The 

improvement in fit is expected as trimming removes part of the heavy tails of the 

observed distribution and hence the fit in the central part of the distribution is better. 

                                                 

* The best Gaussian fit was computed using the MATLAB normfit function, which estimates the 
fit by computing the sample mean and sample standard deviation. 

† The trimming was performed by removing all samples more than 3 sample standard deviations 
away from the mean. 
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Figure 3.3. Normal probability plot of acoustic pressure of ambient noise 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

Pressure (Pa)

P
ro

ba
bi

lit
y 

D
en

si
ty

Empirical PDF
Gaussian Fit
Trimmed Gaussian Fit

 
Figure 3.4. Best Gaussian fit for probability density of ambient noise 

Several well-known PDFs were unsuccessfully tested for fit to the mesaured 

data. Gaussian mixture, generalized Gaussian and Gaussian double exponential 
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distributions have been reported to fit some non-Gaussian data well [66]. However, 

none of these PDFs were found to approximate the observed data accurately. 

3.3. The SαS Noise Model 

Impulsive noise tends to produce large-amplitude excursions from the average 

more frequently than Gaussian signals. The PDF for such noise decays less rapidly 

than the Gaussian PDF. It is for such signals that the stable distributions provide a 

useful theoretical tool [50]. Stable distributions are a direct generalization of the 

Gaussian distribution and include the Gaussian as a limiting case. A parameter, 

known as the characteristic exponent (α)*, of the distribution controls the heaviness 

of its tails. A small positive value for α represents highly impulsive distributions 

while α close to 2 indicates Gaussian-like behavior. When α = 2, the distribution 

reduces to a Gaussian distribution. The stable family of distributions arises out of a 

generalized Central Limit Theorem which states that the sum of independent and 

identically distributed random variables with or without a finite variance converges to 

a stable distribution by increasing the number of variables [51]. The defining feature 

of stable distributions is the stability property, which states that the sum of two 

independent stable random variables with the same characteristic exponent is stable 

with the same characteristic exponent [50]. 

The stable distribution can be most conveniently described by its characteristic 

function [50]: 

( ) ( ) ( ){ }[ ]αωβγϕ α ,sgn1||exp ttjtjatt +−=     (3.1) 

where 1−=j  and 

                                                 

* The characteristic exponent is represented by the symbol α such that 0 < α ≤ 2.  The 
distribution derives its name from this parameter, and therefore is often called the α-stable distribution. 
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In the above expression, α is the characteristic exponent controlling the 

heaviness of the tails, β is a symmetry parameter, γ is a scale parameter and a is the 

location parameter.  The scale parameter (γ), also known as dispersion, determines the 

spread of the distribution in a similar way as the variance in a Gaussian distribution. 

When α = 2, γ equals half the variance. For all other values of α, the variance of the 

stable distribution is infinite. A related parameter often used with stable distributions 

is the scale parameter (defined as γ1/α), which plays the same role as standard 

deviation in the case of Gaussian random variables. The location parameter (a) is the 

mean of the distribution when α > 1 and median of the distribution otherwise. The 

mean of stable distributions with  α ≤ 1 is infinite. 

The inverse Fourier transform of the characteristic function gives us the PDF. 

Unfortunately, no closed-form expressions exist for the general stable density and 

distribution functions, except for the Gaussian (α = 2), Cauchy (α = 1, β = 0) and 

Pearson (α = ½, β = -1) cases [50]. An important subclass of the α-stable 

distributions, known as the symmetric α-stable (SαS) distribution, is characterized by 

β = 0 and a = 0. Efficient numerical methods exist for computing the PDF of SαS 

distributions [67]. 

For modeling of ambient noise is the ocean, SαS distributions seem to be 

ideally suited due to their impulsive behavior. The mean noise pressure must be zero 

by definition; hence the location parameter for the distribution must be zero. Other 

parameters of the distribution need to be estimated. Several estimators for parameters 

of SαS have been developed [50]. Of these, fractile based estimators are easy to use 
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and are known to work well. To estimate parameters of ambient noise, we use a 

fractile estimator for α developed by McCulloch [68] and a fractile estimator for c 

developed by Fama and Roll [69]. After estimating the parameters for a noise 

realization, the empirical PDF of the data is compared against the estimated SαS fit (α 

= 1.563, c = 0.1178 Pa) in Figure 3.5. It is clear that the fit is much better than the 

Gaussian fit shown in Figure 3.4. 
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Figure 3.5. Best SαS fit for probability density of ambient noise 

A plot of PDF on a linear scale does not show detailed behavior of the tails of 

the distribution. As the difference between the Gaussian distribution and the SαS 

distribution is primarily in the tails, it is useful to study the amplitude probability 

(double-sided tail probability) plots of the distribution. These plots show the 

probability of the noise exceeding a given amplitude on a logarithmic scale. 

Differences in tail behavior can be seen more clearly on such plots. Figure 3.6 shows 

the best Gaussian and SαS fit for ambient noise data collected from a location in 
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Singapore waters. It is clearly seen that the SαS distribution provides a much better fit 

for the ambient noise than the Gaussian distribution. 
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Figure 3.6. Amplitude probability plot of snapping shrimp dominated ambient noise showing 

that the probability distribution can be well approximated using a SαS distribution 

To ensure that the SαS distributions are indeed good approximations of real 

ambient noise data, several samples of ambient noise collected at various times from 

different parts of Singapore waters were tested. All the samples yielded PDFs which 

could be approximated well by the SαS PDF with appropriate parameters. The values 

of α obtained were in the range of 1.5 to 1.9. 

The Chi-square test [70] and the Kolmogorov-Smirnov test [71] were applied to 

10,000 samples randomly chosen from the sample data sets to test the goodness of fit 

of the specified probability distribution to the data. The hypothesis that the data was 

obtained from a Gaussian distribution was rejected for sample data sets at a 1% level 

of significance in both tests. The hypothesis that the data was obtained from an SαS 
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distribution could not be rejected for sample data sets at a 1% level of significance in 

both tests. 

3.4. Properties of the SαS Random Variables 

As univariate SαS random variables and complex isotropic SαS random 

variables are extensively used to model noise in this thesis, we list down some of the 

important properties of these distributions. These properties and their proofs are given 

in [50;72]. 

Theorem 1: Stability Property 

A random variable X has a stable distribution if and only if for all X1 and X2 

which are independent random variables with the same distribution as X, and for 

arbitrary constants k1 and k2, there exists a constant k, such that 

kXXkXk
d
=+ 2211        (3.2) 

with 

ααα kkk =+ 21  

where α is the characteristic exponent of X. The symbol  is denotes equivalence in 

probability distribution. 

d
=

Theorem 2: Generalized Central Limit Theorem 

The random variable X is the limit in distribution of normalized sums of the 

form 

( ) nnnn baXXXS −+++= ...21      (3.3) 

where X1, X2, …, Xn, are identical and independently distributed (i.i.d.) and , if 

and only if the distribution of X is stable. 

∞→n
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In particular, if Xi have finite variance, the limit distribution is Gaussian, in line 

with the ordinary central limit theorem. However, when Xi have infinite variance, the 

limit distribution is stable. Additionally, if Xi have zero-mean symmetric distribution, 

the limit distribution is SαS provided bn = 0. 

Theorem 3: Existence of Moments 

Let X be a SαS random variable with characteristic exponent α. The p-order 

moment of X can be expressed as pXE . If α < 2, 

.

0

α

α

≥∞=

<≤∞<

pifXE

pifXE
p

p

      (3.4) 

When α = 2, 

pXE p ∀∞< .       (3.5) 

When α < 1, the SαS distribution has no finite first- or higher-order moments. For 1 < 

α < 2, the SαS distribution has a finite first-order moment and fractional low-order 

moments (FLOM) but an infinite variance and higher-order moments. When α = 2, all 

moments exist. 

Theorem 4: Fractional Low-Order (and Negative-Order) Moments 

Let X be a SαS random variable with characteristic exponent α and dispersion γ. 

For -1 < p < α, 

α
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p
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Here, Cpα depends only on p and α and not on X, and Γ(…) denotes the Gamma 

function [73]. 

Theorem 5: Closed-form Distributions 

The SαS distribution does not have a general closed-form PDF. However, in the 

special cases of α = 1 and α = 2, the SαS distribution reduces to Cauchy and 

Gaussian distributions respectively. For α = 1 and α = 2, the PDF fα(x;γ) can be 

expressed in closed-form as 

( ) ( )221 ;
γπ

γγ
+

=
x

xf        (3.7) 

and 
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2
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2

2
xxf .      (3.8) 

The SαS distribution does not have a general closed-form cumulative 

distribution function (CDF), Fα(x;γ). In the special case of the Cauchy distribution (α 

= 1), a closed-form CDF exists as 

( ) ⎟⎟
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⎞
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⎝
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γπ

γ xxF arctan1
2
1;1 .      (3.9) 

Theorem 6: Asymptotic Tail Probability 

Let X be a SαS random variable with characteristic exponent α (0 < α < 2) and 

unit dispersion. The asymptotic behavior of the tail probability* of X is algebraic: 

( )[ ] αα −

∞→
=− x

C
xF

x 2
1;1lim 1       (3.10) 

where 

                                                 

* Throughout this thesis, we use the term tail probability to mean right tail probability 
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Theorem 7: Complex Isotropic SαS Random Variables 

A complex SαS random variable X = X1 + jX2 is isotropic (or rotationally 

invariant) if X1 and X2 are SαS random variables and 

[ )πφφ 2,0∈∀= XXe
d

j       (3.11) 

If α = 2, the random variable is a complex isotropic Gaussian random variable. 

In this case, the isotropy condition is satisfied by X for i.i.d. X1 and X2 with Gaussian 

distributions. This is the well known fact that complex Gaussian noise has 

independent real and imaginary components. 

For α < 2, the X1 and X2 cannot be independent [72]. This implies that the real 

and imaginary components of complex isotropic SαS noise processes are dependent. 

3.5. Signal-to-Noise Ratio 

The performance of communication systems is commonly measured in terms of 

SNR. As an alternative to SNR, it is also common to use the ratio of signal energy per 

bit (Eb) to noise spectral density (N0). Both definitions are in terms of noise power, a 

quantity which is related to the variance of the noise. As the variance of SαS noise 

with α < 2 is infinite*, this definition cannot be directly used to measure 

communication performance in an additive SαS noise channel. The signal to 

dispersion ratio has been previously used as a measure of SNR [50]. As the units of 

                                                 

* As the variance of SαS noise is infinite, the power of discrete-time SαS noise is also infinite. 
However all practical systems have limited dynamic range. Hence the observed noise will be clipped 
and thus have finite power. 
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dispersion depend on the value of α, this definition does not lead to a dimensionless 

quantity for SNR. 

We define N0 in terms of the dispersion (γ) of the SαS noise, such that 

α

γ ⎟
⎟
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⎞
⎜
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2
0N

.        (3.12) 

When α = 2, this definition reduces to the standard definition of N0 for Gaussian 

white noise: 
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       (3.13) 

where σ2 is variance of the Gaussian white noise. Our generalized definition of N0 is 

thus consistent with previous literature. We use this generalized definition of N0 

throughout this thesis to compute SNR and Eb/N0. This enables us to study the 

performance of signal processing techniques in SαS noise for a given value of α, by 

varying SNR as a function of the noise dispersion γ. 

3.6. Conclusions 

In this chapter, we studied the power spectrum and PDF of ambient noise in 

WSWA channels. The snapping shrimp dominated ambient noise from these channels 

has a non-Gaussian PDF. We demonstrated that the SαS distribution accurately 

models the ambient noise pressure distribution. We listed some of the key properties 

of SαS distributions that will be useful in subsequent chapters. Finally, we modified 
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the commonly used definition of SNR to obtain a useful measure of SNR in SαS 

noise. 
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4. Signal Detection in SαS Noise 

In the previous chapter, we have shown that the ambient noise in WSWA 

channels is accurately modeled using the SαS distribution. In this chapter, we look at 

a common problem in communication systems where a known signal is to be detected 

in an additive noise channel, where the noise is SαS distributed and uncorrelated [74]. 

4.1. Signal Detection 

Detection of a known signal with unknown amplitude in noise has important 

applications in communication systems. Known signals are commonly used as 

preambles to help achieve frame synchronization. A set of pre-determined signals is 

also used as a signal constellation in most modulation schemes used in 

communication. 

Conventional communication systems make the assumption that the noise is 

additive white Gaussian in nature. Although this leads to a simple linear detector 

structure, the receiver is sub-optimal if the assumption is not met [21]. The ambient 

noise in WSWA channels is represented accurately by a SαS random process with α 

between 1.5 and 1.9. The impulsive nature of this noise significantly degrades the 

performance of conventional communication systems. Non-linear detectors can be 

developed for optimal or near-optimal performance in non-Gaussian noise; we shall 

explore a few such detectors in this chapter. 

4.2. Locally Optimal Detector 

Nikias and Shao have explored the development of optimal detectors in the 

presence of SαS noise [50]. They showed that a globally optimal (commonly known 
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as uniformly most powerful or UMP) receiver does not exist in the general SαS noise 

case. However, locally optimal (LO) detectors can be designed for detection of weak 

signals by introducing a non-linear transfer function before a standard linear 

correlation (LC) detector. These detectors perform better than LC detectors in 

detecting weak signals in the presence of SαS noise. The non-linear transfer function 

can be determined from the noise PDF [50]: 
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Figure 4.1. Sample LO transfer function for SαS with α = 1.5 and c = 1 

A typical transfer function is shown in Figure 4.1. For small values, the transfer 

function is approximately linear. For large values, the transfer function vanishes. This 

retains weak signals with minimal distortion while suppressing large amplitude noise, 

thus improving detector performance for very weak signals. However, when the 

signal is stronger, the signal gets distorted as well and the performance of the detector 

drops. 
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4.3. Maximum Likelihood Estimator 

A maximum likelihood (ML) estimator can be developed for signals of arbitrary 

strength in SαS noise. Letting sk be the signal, A the signal strength, nk the noise and k 

be the discrete-time index, the observed data xk can be written as 

kkk nAsx += .        (4.2) 

Given the noise PDF fn(n) of nk, a likelihood function L can be developed as a 

function of the estimated signal strength A as 

 .      (4.3) (∏ −=
k

kkn AsxfL )

Maximizing the likelihood L, or equivalently minimizing the negative log-likelihood 

L~  then gives us the best estimate of signal strength Â: 

( )

LA

AsxfLL
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k
kkn

~minargˆ

log~

=

−−=−= ∑
     (4.4) 

The estimated signal strength is expected to be close to zero when no signal is present. 

For the SαS distribution, the minimization of L~  does not yield a closed-form 

solution in general.  Numerical minimization of L~  leads to an optimal estimate of 

signal strength, but typically it is computationally very intensive. 

In the special case of α = 2 and real xk and sk, the SαS distribution reduces to a 

Gaussian distribution and the minimization results in the familiar LC detector. 
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4.4. Sign Correlation Detector 

The sign correlation (SC) detector is obtained by the introduction of a simple 

non-linearity (the sign function, sgn) in the LC detector. It is known that the sign 

correlation detector has robust performance in many types of non-Gaussian noise* 

[66]. As the detection statistic does not have any interpretation as an estimate of 

signal strength, the scale factor (denominator) in the linear correlation estimator can 

be dropped.  The SC detector is thus given by 

( )∑=
t

kk sxT sgn         (4.6) 

where 
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x
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The sign correlation detector is computationally simple and easy to implement, 

but sub-optimal. It has the advantage that it is non-parametric i.e. the parameters of 

the noise PDF are not required. 

4.5. Simulated Detection Performance 

We tested the effectiveness of LC, ML, LO and SC detectors for detecting a 

signal in additive ambient noise using Monte-Carlo simulations with 50,000 

iterations. During each iteration, a direct-sequence spread spectrum signal (50 kHz 

center frequency, 15 kHz spread, 2 ms length) was randomly added to a recorded 

ambient noise sample (α = 1.9). The detection performance of the detectors was then 

computed based on their ability to correctly determine the presence or absence of the 

                                                 

* The SC detector is a locally optimal detector in double exponential density noise. 
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signal. The simulations were repeated for varying values of signal strength to test 

performance as a function of SNR. 

Figure 4.2 shows the detection performance for the detectors at a low SNR of 5 

dB. It is seen that the ML and LO detectors display the best performances with the SC 

detector slightly worse than these optimal detectors. The LC detector has the worst 

performance as it is unable to achieve low false alarm probabilities (PFA). At higher 

PFA, the LC detection probability is slightly better than the SC. However, it is more 

common to operate the detector at low values of PFA. 
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Figure 4.2. Detection performance for ML, LO, SC and LC detectors at SNR of 5 dB 

Figure 4.3 shows the detection performance at a moderate SNR of 10 dB. The 

same trend is clearly visible; the ML and LO detectors are the best, followed by the 

SC and then the LC. The LC again cannot achieve as low a PFA as the others. At high 

values of detection probability and consequently PFA, the LC performance is slightly 

worse than the other detectors. At intermediate values of PFA, the SC and LC 

performances are similar, but not as good as the ML and LO detectors. 
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Figure 4.3. Detection performance for ML, LO, SC and LC detectors at SNR of 10 dB 

At a high SNR of 15 dB, the SC performs only slightly worse than the ML and 

LO (Figure 4.4). The LC is consistently inferior; it fails to achieve low PFA and this 

trend continues even at higher SNR. 
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Figure 4.4. Detection performance for ML, LO, SC and LC detectors at SNR of 15 dB 
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Figure 4.5 shows the performances of the detectors over a SNR range from 0 dB 

to 30 dB for a probability of false alarm of 10-3 selected by choosing a detection 

threshold empirically. Although the detection curves suggest that the ML and LO 

detectors are significantly better than the SC detector, the performance of the SC 

detector is only slightly inferior to the ML and LO detectors. The LC detector is 

considerably poorer, with a requirement of about 5-10 dB extra SNR to deliver the 

same detection performance as the other detectors. The LC detector performance 

shows considerable variation as its performance does not asymptotically converge due 

to the infinite variance of the SαS noise. 
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Figure 4.5. Performance of a detector based on ML, LO, SC and LC 

The near-optimal performance and low complexity of the SC detector at low 

SNR makes it attractive for use as a detector in snapping-shrimp dominated ambient 

noise channels. When performance requirements are critical and the noise probability 

distribution parameters are known, an ML or LO detector may be used. The LO 

detector is simpler to implement and computationally less intensive than the ML 
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detector. However, the latter has the advantage that it also provides an estimate of the 

signal amplitude, which the LO and SC detectors cannot do. 

4.6. Experimental Validation 

Although the simulations used ambient noise data recordings from the sea, 

actual mixing of the noise with the signal was performed numerically. The tests 

suggested that the SC detector should have a superior performance to the LC detector 

for data recorded in Singapore waters. To test whether this is indeed true, we tested 

both detectors with field data. The ML and LO detectors were not tested due to 

computational limitations and the unavailability of independent ambient noise 

samples to obtain detailed noise statistics. 

A spread-spectrum signal with center frequency 40 kHz, spread 40 kHz and 

duration 30 ms was transmitted and recorded over a distance of 550 m in Singapore 

waters. The signal was repeated 100 times at a repetition rate of 10 transmissions per 

second. The signal was acquired at a sampling rate of 250 kSa/s and stored for later 

analysis. 

Before detection, the received signal was pre-whitened and band-pass filtered to 

reduce out-of-band noise. The pre-whitening is necessary to compensate for the low-

pass filtering effect of the ocean as a result of higher absorption at high frequencies. 

The filtered signal was then passed through LC and SC detectors with a threshold 

chosen to satisfy a PFA of 10-6. For this false alarm rate and a 10 second data set 

sampled at 250 kSa/s, one would expect 2.5 false alarms. Of the 100 transmissions, 

the LC detector correctly identified 40 transmissions with 3 false alarms. The SC 

detector correctly identified 59 transmissions with 1 false alarm. The performance of 

the SC was better than the LC in terms of detection probability and number of false 
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alarms. As the SNR during the experiment is unknown, the results cannot be 

compared to the simulated results. However, the prediction that the SC performs 

better than the LC at low PFA is validated by the experimental data. 

4.7. Conclusions 

The knowledge of the noise probability distribution of ambient noise has 

enabled us to develop optimal ML and LO detectors. The performance of these 

detectors was found to be significantly better than the conventional LC detector. For 

weak signals, a lower SNR could produce the same detection performance if an 

optimal detector is used instead of a LC detector. When the noise distribution 

parameters are unknown, a non-parametric SC detector may be used. The 

performance of this detector was found to be comparable but slightly inferior to the 

optimal detectors. The simple implementation and near-optimal performance of the 

SC detector make it an attractive choice for communication systems in the presence of 

SαS noise. 
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5. Communication in SαS Noise 

In Chapter 3, we have shown that the ambient noise in WSWA channels is 

accurately modeled using the SαS distribution. In Chapter 4, we analyzed the 

performance of linear and non-linear detectors in the presence of SαS noise. In this 

chapter, we analyze the performance of antipodal signaling in the presence of SαS 

noise. We also analyze the performance of coded communications based on antipodal 

signaling in the SαS noise channel using Viterbi decoding. We show that the use of a 

1-norm metric (rather than the commonly used Euclidean metric) provides robust 

soft-decision decoding performance in the presence of SαS noise [75]. 

5.1. Antipodal Signaling 

Antipodal signaling is one of the basic signaling methods in digital 

communications. The commonly used BPSK modulation is antipodal. Although 

QPSK is not antipodal, a QPSK-based communication system is modeled using a pair 

of orthogonal BPSK systems. However, such analysis should take into consideration 

that the complex isotropic SαS noise process, which is relevant for QPSK systems has 

dependent real and imaginary components (Theorem 7). More complex modulation 

schemes such as OFDM often use BPSK or QPSK to modulate individual sub-

carriers. Thus these schemes can also be analyzed in terms of antipodal signaling. 

Additive white Gaussian noise (AWGN) is perhaps the most common noise 

model used for the analysis of communication systems. The use of Gaussian noise is 

justified by the central limit theorem which states that the sum of a large number of 

i.i.d. finite variance random variables tends towards a Gaussian distribution. The use 

is further motivated by the fact that the Gaussian distribution has an exponential form 
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which leads to mathematically tractable closed-form solutions in most cases. 

Antipodal communications in AWGN is well studied. 

In the case of the WSWA channel, the noise is known to be highly non-

Gaussian. Antipodal communications in the presence of non-Gaussian noise has 

received comparatively little attention. In this chapter, we develop a framework for 

the analysis of uncoded and coded antipodal communications in presence of non-

Gaussian noise modeled using the SαS distribution. 

We consider a channel which corrupts a signal only via additive SαS noise. If 

signal xk is passed through the channel, we receive yk such that 

kkk nxy +=         (5.1) 

where nk is a sequence of independent SαS noise samples. In line with an AWGN 

channel, we call this channel an additive white SαS noise (AWSαSN) channel. As 

ambient noise samples typically yield values of α between 1.5 and 1.9, we analyze the 

performance of this channel under the assumption α > 1. 

5.2. Tail Probability of SαS Noise 

The tail probabilities of the noise distribution are of interest in analysis of 

communication systems. In the case of AWGN, the tail probability of the Gaussian 

distribution is of interest. This is defined by the commonly used Q function: 
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Analogous to the Q function, we define a tail probability function Qα(x) for the 

SαS distribution: 

( ) ( )∫
∞

=
x

dttfxQ 1;αα        (5.3) 
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The choice of γ = 1 ensures that Qα(x) reduces to Q(x) when α = 2. Qα(x) is not 

known in closed-form. However, we can list several useful properties of this function: 

1. The tail probability function is the complement of the standard cumulative 

distribution function: 

( ) ( )1;1 xFxQ αα −=        (5.4) 

2. For α = 1, Qα(x) is known in closed-form. From Theorem 5 and (5.4), we have: 

( ) ( ) ( )xxFxQ arctan1
2
11;1 11 π

−=−=      (5.5) 

3. For α = 2, Qα(x) can be defined in terms of Q(x): 
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4. The asymptotic behavior of the tail probability is given by the algebraic tail 

behavior of stable distributions (Theorem 6): 

( ) αα
α

−
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= x

C
xQ

x 2
lim        (5.7) 

5. The tails of the SαS distribution become heavier as α decreases. Provided x is 

not too small (x > 1), the tail probability is bounded by the Gaussian and Cauchy 

tail probabilities: 

( ) ( ) ( )xQxQxQ 12 <≤ α       (5.8) 

5.3. Antipodal Signaling in SαS Noise 

In the following analysis we assume that bits 0 and 1 are transmitted with equal 

probability. Antipodal signals ψ0 and ψ1 (representing 0 and 1 respectively) can be 

represented in a one-dimensional signal space: 
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The performance of a communication system is usually measured in terms of 

the probability of bit error Pb. It can be expressed in terms of the tail probability of the 

noise for any γ, as γ1/α is a scale parameter of the SαS distribution [50], such that 
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For Eb/N0 > 0.25 (i.e. -6 dB), Pb is upper bounded by the tail probability of the 

impulsive Cauchy distribution. From Theorem 5 and (5.10), we have 
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For large Eb/N0, the performance can be approximated using the asymptotic tail 

probability. From (5.10) and (5.7), we have 
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     (5.12) 

When α = 2, (5.10) and (5.6) gives us the well known probability of bit error in 

case of antipodal BPSK in AWGN as 
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The numerical approximation of (5.10) based on (5.4) and [67], the Cauchy 

upper bound (5.11), the asymptotic approximation (5.12) and the AWGN case (5.13) 

are compared against simulation results in Figure 5.1. The random SαS noise samples 

were generated for the simulation using the method described in [76]. 
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Figure 5.1. Detection performance for antipodal signaling in AWSαSN for various values of 
α - based on Qα , Cauchy upper bound, asymptotic approximation, performance in Gaussian 

noise and simulation results 
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It can be seen from Figure 5.1 that the simulation results agree closely with the 

theoretical prediction based on (5.10). The performance in AWSαSN is significantly 

poorer at high Eb/N0 as compared to AWGN even when the deviation from Gaussian 

noise is small (e.g. α = 1.99). At high values of α and low Eb/N0, the performance is 

similar to the AWGN channel. At high Eb/N0, the asymptotic approximation is quite 

accurate. The Cauchy upper bound is quite loose at high Eb/N0, especially when the 

value of α is also high. 

5.4. Coded Communications in SαS Noise 

5.4.1. Viterbi Decoding of Convolutional Codes 

Convolutional codes are among the popular error control codes, routinely used 

in communication applications today. Convolutional codes can be represented using a 

trellis. The Viterbi decoding algorithm provides an efficient yet optimal algorithm to 

decode convolutional codes by searching through the trellis for the most probable 

sequence. 

We summarize the Viterbi algorithm here based on the description in [77]. A 

more complete treatment of the Viterbi algorithm is presented in [77] and [18]. 

1. Assuming that the convolutional encoder is at state zero initially, assign Viterbi 

metric zero to the initial node. Set depth m to zero. 

2. Increment m by 1. For each node j at depth m, find for each of the predecessor i 

at depth m-1 the sum of the Viterbi metric of the predecessor and the branch 

metric µm
ij of the connecting branch. Determine the maximum (in case of a 

likelihood metric, or minimum in case of cost metric) of these sums and assign 

it to this node; label the node with the shortest path to it. 
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3. If we have reached the end of the trellis, then stop and choose as the decoded 

codeword a path to the terminating node with the largest Viterbi metric; 

otherwise go to step 2. 

The exact probability of bit error for a coded communication system with 

Viterbi decoding is difficult to determine. However, an upper bound on the 

probability of bit error can be obtained in terms of the information error weight 

coefficients cd [18] as 

∑
∞

=

<
fdd

ddb pcP         (5.14) 

where df is the free distance of the code and pd is the pairwise probability of error with 

weight d. The free distance df and the weights cd for some good codes are published in 

papers such as [78]. Although the summation in (5.14) has an infinite number of 

terms, the series is convergent and the terms decrease in magnitude. Typically, the 

summation of the first few terms provides an acceptable upper bound. 

In the following sections, we analyze the performance of the Viterbi algorithm 

to decode convolutional codes in the presence of SαS noise. 

5.4.2. Hard-decision Decoding 

In a hard-decision decoded communication system, the receiver determines each 

received bit based on the output of the detector. The decisions are fed to the Viterbi 

decoder. The decoder selects the most likely transmitted data by minimizing the 

Hamming distance between the received data and all possible transmitted code words 

i.e. the Viterbi branch metric is the Hamming distance. 

Hard-decision decoding effectively converts the AWSαSN channel into a binary 

symmetric channel (BSC) with a transition probability given by 
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where Ec is the energy per coded bit. If R is the code rate, 

bc REE = .        (5.16) 
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The pairwise probability of error for a BSC is upper bounded by [18;77] 

( d

dp )1(2 εε −< ) .       (5.18) 

Combining (5.14) and (5.18), we have 

(∑
∞

=

−<
fdd

d

db cP )1(2 εε )

)

)

.      (5.19) 

5.4.3. Maximum Likelihood Decoding 

The Viterbi algorithm can be used with unquantized decisions from the detector 

to perform maximum likelihood decoding of the received sequence. The branch 

metric used for unquantized maximum likelihood decoding is the logarithm of the 

joint probability of the sequence conditioned on the transmitted sequence [18] 

( m
ij

m
ij p xy |log=µ        (5.20) 

where  is the branch metric for node j at depth m and predecessor i, y is the 

received sequence,  is the transmitted sequence for the branch and p(y|x) is the 

conditional probability function or conditional probability density function of the 

received sequence conditioned on the transmitted sequence. 

m
ijµ

m
ijx

In the case of the AWSαSN channel, p(y|x) is given by 

( ) (∏ −=
k

kk xyfp γα ;| xy       (5.21) 

The pairwise probability of error is then [77] 
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where P(X) denotes the probability of event X and the probability of error is measured 

without loss of generality between a codeword with weight d and the all zero 

codeword. 

In case of the AWSαSN channel, (5.22) cannot be simplified any further. Hence 

we are unable to obtain an analytical bound on the performance. However, we can 

implement the branch metric specified by (5.20) and (5.21) and investigate the 

performance of the maximum likelihood decoder via simulation. The results from 

such simulations are presented later in this chapter. 

5.4.4. Euclidean Norm Branch Metric 

In an AWGN channel, (5.20) and (5.22) can be simplified further. From (5.21) 

with α = 2, Theorem 5 and (5.20), we have 
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As the Viterbi metric can be translated and scaled without any effect on the algorithm, 

we can simplify the branch metric further to 

(∑
=

−−=
d

k

m
ijkk

m
ij xy

1

2µ ) .       (5.24) 

This is the Euclidean norm branch metric, commonly used in the soft-decision Viterbi 

algorithm. It is equivalent to the maximum likelihood metric when the channel is 

AWGN. However, in the AWSαSN channel, the Euclidean norm metric is not 

optimal. 

From (5.21) with α = 2, Theorem 5 and (5.22), we have 
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As the transmitted codeword has weight d, we can assume x1…xd to be 1. Substituting 

(5.1) and (5.16) in the above, we get 
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The noise term ∑nk is the sum of d SαS random variables with dispersion γ. From 

Theorem 1, the sum is also a SαS random variable with dispersion dγ.  Using (3.12) 

and (5.25), we get 
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Substituting (5.27) in (5.14), we get an upper bound on the bit error probability for 

Viterbi decoding with Euclidean metric in an AWSαSN channel as 
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5.4.5. 1-norm Branch Metric 

As the variance of SαS random variables is infinite, the expected value of the 

Euclidean norm metric in (5.24) is infinite. Hence the Viterbi algorithm does not 

perform well with this metric. 

It is known that the p-norm (p < α) is often a more robust cost function than the 

Euclidean norm in the presence of α-stable noise [50]. Inspired by this heuristic, we 
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use the p-norm as a branch metric for the Viterbi algorithm in presence of SαS noise. 

For mathematical simplicity and because α > 1, we select p = 1. This yields the 1-

norm branch metric which has been noted for its robustness in non-Gaussian noise 

[79;80] 
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The probability of bit error is then given by 
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We introduce a new function g(y) for convenience: 
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Hence, 
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As the transmitted codeword has weight d, we can assume x1…xd to be 1. Combining 

(5.1) and (5.32), 
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Although the random variable nk has an infinite variance, the random variable 

( )kc nEg +  has a finite variance as g(y) is bounded. For large d, the summation in 

(5.33) is the sum of a large number of finite variance i.i.d. random variables and 

hence approximately Gaussian. The mean and variance of the Gaussian distribution 
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can be computed if the mean and variance of ( )kc nEg +  are known. The PDF of 

( )kc nEg +  is given by 
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where δ(…) is the Dirac delta function and γ is given by (3.12). 

Unfortunately, the mean and variance of ( )kc nEg +  cannot be evaluated from 

(5.34) as the PDF fα(…) does not have a closed-form expression. However, we can 

find an upper bound on pd by assuming a Cauchy distribution for nk, which 

underestimates the mean µg and overestimates the variance σ2
g of ( )kc nEg + . With 

α = 1 and from Theorem 5, (5.34) and (5.5), we get 
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The approximate mean and variance of the summation in (5.33) are dµg and dσ2
g  

respectively. Hence, 
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As (5.37) depends only on the ratio of µ2
g and σ2

g, we can divide (5.35) by √N0 and 

(5.36) by N0 without changing the upper bound on pd. Combining this with (5.16), we 

have 
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Substituting (5.38) in (5.14), we get an upper bound on the bit error probability for 

Viterbi decoding with a 1-norm metric in an AWSαSN channel: 
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Due to the Cauchy noise assumption, the above bound is somewhat loose. To 

obtain a better approximation for higher values of α, we numerically computed the 

integrals in (5.35) and (5.36) using a numerical approximation of the PDF fα based on 

[67]. The ratio µ2
g/σ2

g was computed for values of α in the range 1.1 to 1.9 (in steps 

of 0.1) and values of Ec/N0 in the range of 0 dB to 15 dB (in steps of 1 dB). Fitting a 
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surface on the resulting numerical values of the ratio, we obtained an empirical 

expression for µ2
g/σ2

g in terms of α and Ec/N0, 
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Using (5.40), (5.37) and (5.14), we have an approximate bit error probability for 

Viterbi decoding with a 1-norm metric in an AWSαSN channel, 
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5.4.6. Simulations 

We simulated a coded BPSK communication system in an AWSαSN channel 

for various values of α (between 1.5 and 2) and Eb/N0 (between 0 and 10 dB). The 

code used was a 1/2 rate Odenwalder code with constraint length 7, generator 

polynomials (133, 171 octal) and free distance of 10 [81]. The distance spectrum and 

information error weights of this code are given in [78]. 

Viterbi decoding algorithms with hard-decision, maximum likelihood metric, 

Euclidean norm metric and 1-norm metric were used to decode the data and compute 

bit error rates (BER). During each run, 105 bits were transmitted through the channel. 

The observed BER was used as an estimate of the probability of bit error (Pb). 

The results from these simulations are presented in the next section. 
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5.4.7. Results 

Figure 5.2 compares the theoretical upper bound derived in (5.19) against the 

simulated performance of hard-decision decoding for varying noise impulsiveness. 

The bound is approximately 1 dB higher than the simulation results. The performance 

of the uncoded system is also shown for reference. As expected, the coded system 

performs better than the uncoded system. The theoretical upper bound derived in 

(5.28) for Euclidean norm decoding becomes trivial (>1) for most values of α and 

Eb/N0. This is not surprising as the Euclidean norm has an infinite expected value in 

the presence of SαS noise. 

Figure 5.3 compares the theoretical upper bound derived in (5.39) and the 

closed-form approximation in (5.41) against the simulated performance of 1-norm 

decoding for varying noise impulsiveness. The upper bound is approximately 2 to 4 

dB higher than the simulation results. At high values of α and low values of Eb/N0, the 

bound is quite loose. It becomes tighter when the noise becomes more impulsive and 

at higher values of Eb/N0. The closed-form approximation is quite close to the 

simulation results for α = 1.5 and α = 1.7. The performance of the uncoded system is 

also shown for reference. As expected, the coded system performs better than the 

uncoded system. 

Figure 5.4 compares the performance of various decoding schemes in Gaussian 

noise. As the Euclidean metric is equivalent to maximum likelihood decoding in 

Gaussian noise, the two performance curves overlap. The decoding using the 1-norm 

metric is only slightly inferior to the decoding using the Euclidean metric. As 

expected, the hard-decision decoding performs about 2 dB worse than the Euclidean 

metric. 
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Figure 5.2. Uncoded performance, theoretical upper bound and simulation results for hard-
decision decoding 
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Figure 5.3. Uncoded performance, theoretical upper bound, closed-form approximation and 

simulation results for 1-norm decoding 
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Figure 5.4. Performance of uncoded system in comparison to coded system with hard-
decision decoding, Euclidean metric, 1-norm metric and ML decoding in presence of 

Gaussian noise 

Figure 5.5 compares the performance of various decoding schemes in impulsive 

noise. The decoding with Euclidean metric shows poor performance with little gain 

over the uncoded system. The hard-decision decoding performs significantly better. 

As expected, the maximum likelihood decoding is optimal and demonstrates the best 

performance. It utilizes unquantized detector outputs and performs approximately 2 

dB better than the hard-decision decoding. The performance of the decoding using the 

1-norm metric is very close to that of the maximum likelihood decoding. As the 

computational complexity of the 1-norm metric is much lower than the maximum 

likelihood metric, it is a good alternative to maximum likelihood decoding. The 1-

norm metric also has an added advantage that it does not require an estimate of the 

noise dispersion. 
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Figure 5.5. Performance of uncoded system in comparison to coded system with hard-
decision decoding, Euclidean metric, 1-norm metric and ML decoding 
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5.5. Conclusions 

Although the Gaussian noise assumption is commonly used in the analysis of 

communication systems, even small deviations from Gaussian-ness can have a severe 

impact on the performance of communication systems. We have developed an 

impulsive channel model using additive SαS noise and analyzed the performance of 

antipodal signaling in the channel. 

We have derived theoretical performance bounds for Viterbi decoding of 

convolutional codes in a SαS noise channel for hard-decision decoding and the 

commonly used Euclidean metric, which is optimal in Gaussian noise. We have also 

derived a maximum likelihood Viterbi metric for the SαS noise channel. We adopted 

a p-norm based metric as an alternative to the Euclidean metric and derived an upper 

bound and an approximation for its performance. 

Through simulations, we found that the p-norm metric (with p = 1) is near-

optimal in both Gaussian and impulsive SαS noise. The Euclidean metric is optimal 

in Gaussian noise and its performance is slightly better than that of the 1-norm metric. 

However, in the presence of impulsive SαS noise, the Euclidean metric performs 

poorly while the 1-norm metric demonstrates robust performance. 
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6. Channel Model 

In Chapter 3, we showed that the ambient noise in WSWA channel can be 

modeled using the SαS probability distribution. In Chapters 4 and 5, we studied the 

problem of signal detection and decoding in AWSαSN channel. Although the noise in 

the WSWA channel is similar to AWSαSN, the WSWA channel is significantly more 

complex due to time-varying multipath propagation, frequency-dependent absorption, 

fading, etc. In this chapter, we develop a mathematical model for signal propagation 

through the WSWA channel. The model is primarily based on the physics of ocean 

acoustics. In addition, the model includes some statistical variations which are not 

included in the physics models that we have incorporated. The channel model is 

calibrated and validated via experimental channel measurements. 

6.1. Physical of Underwater Acoustic Propagation 

6.1.1. Ray Model 

Acoustic propagation in the ocean is governed by the wave equation. As 

solutions to the wave equation are difficult to find in general cases, approximations 

are often used to model propagation. The ray theory provides one such approximation, 

commonly used for high frequency* propagation modeling [59]. As medium range 

communication signals are usually high frequency, we use the ray model as a basis for 

our model of channel propagation. 

                                                 

* An acoustic wave in the ocean is considered as high frequency when its wavelength is much 
smaller than any characteristic length scale such as the water depth, the distance between source and 
receiver, other inhomogeneities, etc. 
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In the ray model, sound energy is conceptualized as propagating along rays, 

which are straight lines in the case of an isovelocity* fluid medium. They are partially 

reflected and partially refracted when they encounter a discontinuity in sound 

velocity. We model the WSWA channel as a Pekeris waveguide, consisting of an 

isovelocity layer over an isovelocity half-space (Figure 6.1). The isovelocity layer 

models the sea water while the isovelocity half-space models the seabed. The 

isovelocity assumption for sea water is justified as WSWA channels are usually well-

mixed and have relatively small increase in pressure over the depth of the water 

column. The assumption is further supported by numerous sound speed measurements 

in Singapore waters (Figure 6.2). The sea surface is modeled as a pressure-release 

boundary. 

 
Figure 6.1. Schematic showing a Pekeris waveguide model of the WSWA channel 

Let d1 be the depth of the source, d2 be the depth of the receiver, h be the height 

of the water column and R be the transmission range. The distance traveled by the 

                                                 

* Velocity here refers to the speed of sound in the fluid. 
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sound along various eigenrays can be computed using the method of images [59]. The 

distance along direct eigenray is denoted by D00 given by 

( )2
21

2
00 ddRD −+= .      (6.1) 

Let Dsb be the distance along an upward originating eigenray with s surface 

reflections and b bottom reflections. For such eigenrays, 0 ≤ s-b ≤ 1 and 
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21
2 12 ddbhRD bs
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−−−++= .     (6.2) 

Let Dsb be the distance along a downward originating eigenray with s surface 

reflections and b bottom reflections. For such eigenrays, 0 ≤ b-s ≤ 1 and 
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Figure 6.2. A typical sound speed profile from Singapore waters showing variation of less 

than 1 m/s over the depth of the water column 

6.1.2. Sound Speed 

Although the sound speed in a WSWA channel does not vary significantly with 

depth, it varies with temperature and salinity. An empirical relationship between 
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sound speed (c in m/s), temperature (T in °C) and salinity (S in ‰) at a nominal depth 

of 10 m is given by [59] 

)35)(01.034.1(00029.0055.06.436.1449 32 −−++−+= STTTTc . (6.4) 

6.1.3. Spherical Spreading 

We assume that our source is omni-directional and therefore produces a 

spherical wavefront in an isovelocity medium. The energy intensity at any point along 

the wavefront will then reduce as the square of the distance traveled by the wave 

(Gauss' theorem). A factor representing the apparent loss in pressure amplitude due to 

spherical spreading along an eigenray of length D can be written as 

DD
DLSS

11)( 2 == .       (6.5) 

6.1.4.  Volume Absorption 

When sound propagates in the ocean, part of the acoustic energy is continuously 

transformed into heat. This absorption is primarily due to the volume viscosity as a 

result of relaxation processes in sea water. An empirical expression for the attenuation 

coefficient β (in dB/km) at a frequency f (in kHz, between 3 kHz and 500 kHz), 

salinity S (in ‰) and hydrostatic pressure P (in kg/cm2) is given by [59] 
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At a nominal depth of 10 m, the hydrostatic pressure P is approximately 2 × 105 

Pa (i.e. 2 kg/cm2). Based on the attenuation coefficient, a loss factor (in pressure 
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amplitude) can be computed to account for the absorption at distance D along an 

eigenray. We have 
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The attenuation coefficient does not change significantly with small changes in 

depth. As the depth is constrained in a very shallow water channel, we may use this 

expression in WSWA channels without significant loss in accuracy. 

6.1.5. Reflection at the Sea Surface 

The impedance mismatch between the sea water and air causes the sea surface 

to be a very good reflector. If the sea surface is calm, the reflection is close to perfect 

but includes a phase shift by π radians i.e. the reflection coefficient is -1 [59]. If the 

sea surface is rough (due to waves), a small loss will be incurred for every surface 

interaction. We model this loss by allowing a constant loss factor of LSR per surface 

interaction. 

6.1.6. Reflection at the Sea Bottom 

The impedance mismatch between the sea water and seabed causes the sea 

bottom to reflect some of the sound incident on it. Let ρ and c be the density and 

sound speed in sea water respectively. Let ρ1 and c1 be the density and sound speed in 

the seabed respectively. For a smooth sea bottom, the reflection is angle dependent 

and is given by the Rayleigh reflection coefficient [59] as 
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where 

1

1 ,
c
cnm ==

ρ
ρ . 

The angle of incidence θ can be computed based on the geometry of the Pekeris 

waveguide. Let angle θsb correspond to an eigenray Dsb and angle θsb correspond to an 

eigenray Dsb. Then, we have 
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For a rough or absorbing sea bottom, additional reflection losses may be 

incurred. We model these losses by allowing an additional constant loss factor of LBR 

per bottom interaction. 

6.2. Channel Measurements 

Although it is known that the medium range shallow water channel is dominated 

by time-varying multipath, very few measurements of the variability of the multipath 

structure are available. To help determine a statistical model for the time-variation of 

the WSWA channel, we measured the channel experimentally [5]. 

6.2.1. Experimental Setup 

The channel measurements were conducted in February 2004 in Singapore 

waters near Selat Pauh (1˚13.35’ N 103˚44.60’ E). The chosen location allowed 

measurements up to 1 km range in a relatively flat area with an average depth of about 

15 m. Transmissions were made from an omni-directional transducer located at the 

bottom of a 4 m pole mounted on the bow of a research vessel. The signal was 

received using a hydrophone located at the bottom of a 4 m pole mounted on the side 
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of an anchored barge. The signal was sampled at 250 kSa/s and stored for later 

analysis. The research vessel moved to various locations and made transmissions. 

GPS coordinates of the vessel and the barge were noted for range computation. 

The signal used was a 30 ms direct sequence spread spectrum BPSK signal with 

a bandwidth of 40 kHz centered around 40 kHz. The signal was repeated 100 times at 

a rate of 10 Hz at each location of the research vessel. The different transmission 

locations corresponded to ranges of 50 m, 100 m, 550 m, 780 m and 1020 m. The 

measurements were made in relatively calm weather over a period of an hour. 

The recorded signals were post-processed using the sign correlator to obtain 

estimates of the time-variability of the multi-path structure of the channel.  The fading 

behavior of the signal was determined using the ML estimator.  The SαS distribution 

assumed for the ML estimator was calibrated using ambient noise samples recorded at 

the experimental site. 

6.2.2. Short Range Results 

Figure 6.3 shows the time variability of the multi-path structure over 100 

transmissions at short range (50 m and 100 m). The transmission time is shown on the 

y-axis, the delay on the x-axis and the darkness of each point represents the arrival 

strength. A ray model explained the observed data quite accurately. The direct arrival, 

surface reflected arrival and the bottom reflected arrival could be clearly 

distinguished. The arrival timings matched those predicted by the physics based 

model. 

71 



0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

10

Delay (ms)

Ti
m

e 
(s

)

Arrival structure at 50m

 

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

10

Delay (ms)

Ti
m

e 
(s

)

Arrival structure at 100m

 

-15 -10 -5 0-20
dB

 
Each circular marker represents an estimated arrival. The blue arrows mark the arrival times 
computed using the ray theory and the best estimates of range, water depth and transducer 
depths. At 50m nominal range, the parameters used were –  range: 55m, water depth: 12.5m, 
transducer depths: 2.4m & 2.6m. At 100m nominal range, the parameters used were – range: 
100m, water depth: 14.5m, transducer depths: 3m & 2m. 

Figure 6.3. Multipath arrival structure for 100 signal transmissions at 50 m and 100 m range 
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At 50 m, the direct and surface reflected arrivals are seen clearly. The surface 

reflected arrival shows very little variability in arrival time. However, it occasionally 

fades. The direct arrival and surface reflection are closely followed by secondary 

reflections with much lower amplitudes and are subject to more fading. The bottom 

reflected arrival is seen at about 2.2 ms after the direct arrival. This arrival shows 

considerable variability in time and amplitude. 

At 100 m, the surface reflected arrival is stable in arrival time and also more 

stable in amplitude. The bottom reflected arrival is seen at about 1.8 ms after the 

direct arrival. This is much more stable in time and amplitude and shows slow 

variation. The variation show a wavy pattern, which may arise from the movement of 

the barge and the boat with respect to the bottom. The bottom-surface and surface-

bottom reflections are clearly seen at about 2.5 ms after the direct arrival. 

The fading behavior of the direct arrival was determined by estimating the 

signal strength of 100 µs sections of the received signal using the ML estimator.  

Figure 6.4 shows the fading of a single path as compared to Rayleigh fading. The 

observed fading is similar, but slightly less severe than predicted by the Rayleigh 

distribution. Rayleigh fading usually occurs in a sum of a large number of multipaths. 

However, Rayleigh fading was observed on each individual eigenray during channel 

measurements. This may be due to micro-multipath as the eigenray is scattered by 

small inhomogeneities in the medium and other suspended scatterers [82]. 
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Figure 6.4. Cumulative distribution function of signal strength showing fading behavior of 

direct arrival at 50 m 

6.2.3. Medium Range Results 

The direct and surface reflected arrivals could not be independently resolved at 

medium range (550 to 1020 m). The interference of the two arrivals led to a Lloyds' 

mirror effect causing a transmission loss increase as the 4th power of range [58]. 

However, the combined arrival could still be detected at 1020 m and the combined 

fading behavior could be analyzed. The fading behavior of the combined arrival was 

determined by estimating the signal strength of 100 µs sections of the received signal 

using the ML estimator as before. A cumulative distribution plot of the fading is 

shown in Figure 6.5. The combined arrival exhibits much deeper fading than 

predicted by the Rayleigh distribution. 
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As the combined arrival is formed by the interference of the direct and surface 

reflected arrival, one would expect that the fading could be explained as a function of 

the fading of each of the arrival. From short range measurements, we know that the 

direct arrival and surface reflected arrival are approximately Rayleigh distributed. As 

the time difference between the arrivals is small as compared to the reciprocal of the 

center frequency of the signal, we may assume that the two arrivals interfere 

destructively as the surface reflection coefficient is -1. The resulting first arrival 

would then be distributed as the difference of two independent Rayleigh random 

variables. 

We simulated the above model by subtracting two sets of 5,000 Rayleigh 

distributed random numbers and plotting the cumulative distribution function of the 

resulting magnitude. The simulation yielded an expected fading as shown in Figure 

6.5. The remarkable similarity in the simulated fading and the observed fading, 

suggests that the simple model suggested above is a good approximation. A ray model 

with individual rays exhibiting independent Rayleigh fading explains the short and 

medium range data well. 
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Figure 6.5. Cumulative distribution function of signal strength showing fading behavior of the 
combined arrival at 1020 m, compared against Rayleigh fading and simulated 2-path Rayleigh 

fading 

6.2.4. Doppler Shift 

As we do not consider fast moving communication nodes in this research, we do 

not expect any significant Doppler shift. The channel measurements showed no 

measurable Doppler shift in agreement with this assumption. 

6.2.5. Doppler Spread & Coherence Time 

Time-variation of the channel leads to broadening of narrowband signals in a 

channel. This phenomenon is known as Doppler spread [83]. Doppler spread in the 

channel was measured by transmitting a long sinusoidal signal and measuring the 

bandwidth of the received signal. Doppler spread estimates between 5-10 Hz were 

obtained in most configurations. 
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The Doppler spread is related to the coherence time of the channel. An estimate 

of the coherence time τc can be obtained based on the Doppler spread Wd  [83], 

d
c W

423.0=τ .        (6.10) 

For a typical Doppler spread of 5-10 Hz, this leads to a channel coherence time 

of roughly 40-80 ms. 

6.3. Time-varying Channel 

The physics based model described in Section 6.1 yields a static model of the 

channel. However, the WSWA channel is a time-varying channel. To model the time 

variation, we introduce some statistical variations in the propagation model. 

6.3.1. Ray Fading 

Based on our experimental findings [5], we model the eigenray amplitude as a 

Rayleigh random process with a median determined by the physics based model and a 

time-correlation determined by the Doppler spread Wd. This leads to a statistical 

tapped delay line model which is a special case of the model proposed in [20], where 

the tap variation is modeled using Ricean statistics. 

6.3.2. Arrival Time Lag Jitter 

The arrival time lag of each eigenray with respect to the direct arrival is related 

to the difference in path length along the eigenray and the direct path. However, the 

arrival time lag exhibits variation over time, probably due to movement of the source, 

receiver and the surface. The stability of the arrival time lag with respect to small 

changes in source/receiver position can be analyzed using a ray model. Let τsb be the 

arrival time lag of eigenray Dsb and τsb be the arrival time lag of eigenray Dsb. We 

have 
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Substituting (6.1), (6.2) and (6.3) in the above, we have 
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As we are interested in medium range communications in shallow waters, we 

assume R >> d1, R >> d2 and R >> h. Using the Taylor series expansion 

xx
2
111 +≈+  if |x| << 1, we have 
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Similarly, 

( ) ( )[ ]2121
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To test the stability of arrival time lag, we differentiate the above with respect to 

the source depth d1, receiver depth d2 and range R to obtain 
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       (6.14) 

i.e. the arrival time jitter is, to first order, independent of the range, and 
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Using ∆ as a small change operator, we can write the change in arrival time lag 

as a function of the change of the source depth, receiver depth and range as 
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As the derivatives with respect to R are 0, the arrival time lags are not sensitive 

to small changes in range. If we model ∆d1 and ∆d2 as Gaussian random variables 

with variance σd
2, we can estimate the variance of the arrival time lags as 
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Similarly, 
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From this expression, we would expect that we have less arrival time lag jitter at 

further ranges than nearer ranges. We would also expect that the arrival time lag jitter 

would increase as the number of surface and bottom interactions of the eigenray 

increases. Both these observations are consistent with observations made during the 

channel measurement experiment described in the previous section. 
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6.4. The Channel Model 

In Sections 6.1 and 6.3 we have developed the components of a time-varying 

channel propagation model. We now put the components together into a ray theory 

based channel model. 

Let x(t) be a signal transmitted through the channel and y(t) be the 

corresponding received signal. Ignoring the absolute time delay between transmission 

and reception, we can express y(t) in terms of x(t) as 
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where Asb(t) and Asb(t) are modeled as independent Rayleigh processes with unit mean 

and an exponential autocorrelation specified by the Doppler spread Wd or channel 

coherence time τc. These processes represent the fading of individual eigenpaths. The 

quantities Jsb(t) and Jsb(t) are random variables denoting the time jitter, modeled as 

Gaussian processes with zero mean, variance σsb
2 (given by (6.17)) and an 

exponential autocorrelation specified by a transducer position coherence time τd. The 

noise n(t) is modeled as a SαS process as described in Chapter 3. We assume the 

noise to be white over the bandwidth of interest. This assumption is reasonable as 
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long as the signal bandwidth is not very large*. The quantities LSS, LA, Dsb, Dsb, LB, θsb, 

θsb, τsb and τsb are given by equations (6.1), (6.2), (6.3), (6.5), (6.7), (6.8), (6.9) and 

(6.13) respectively. 

Although the summations in (6.18) have infinite number of terms, the terms 

diminish in magnitude and the summations converge. Only terms significantly larger 

than the ambient noise need to be included in practice. For most channels in practice, 

it is sufficient to include the first few terms in both summations. 

The channel model in (6.18) should be interpreted as a passband channel model. 

The LA terms in the model are frequency dependent. If the bandwidth of the signal x(t) 

is much smaller than the carrier frequency Fc, the LA terms can be computed at the 

carrier frequency. For broadband transmission at long distances, this approach yields 

lower accuracy. However, for simplicity in the analytical model, we use the LA terms 

at frequency Fc irrespective of the bandwidth of the signal. 

A baseband channel model can also be implemented based on (6.18) with some 

small changes. The LA terms have to be computed at the appropriate carrier frequency. 

In addition, the real SαS ambient noise process n(t) needs to be replaced with an 

isotropic complex SαS noise process [72] to accommodate the complex noise 

requirement at baseband. 

This channel model can be interpreted as a tapped delay line with time-varying 

tap weights and tap delays. Equation (6.18) can be written in a simplified form with N 

significant terms, lumped coefficients Bj, delays τj, Rayleigh random processes Aj(t), 

Gaussian random processes Jj(t) and a SαS random process n(t): 

                                                 

* Due to limitations in efficient transducers for underwater transmission, typical acoustic 
communication systems are limited in usable bandwidth. 
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An implementation of this channel has been developed in MATLAB and is 

included as part of the communications simulation software developed in this 

research. The random noise process n(t) is simulated using the method described in 

[76]. 

6.5. Comparison with Experimental Data 

To validate the model, we compared the measured multipath structure in the 

channel over 100 transmissions against simulation results. Figure 6.6 shows a 

comparison between experiment and simulation in a 15 m deep channel at a range of 

100 m. Although similar validations were successfully performed at longer ranges (up 

to 1 km), we present the results at 100 m due to the high SNR at this range. This 

enabled us to study the similarities and differences between the experimental 

measurements and simulation in more detail than at greater ranges. 

The simulation parameters were chosen based on our knowledge of the 

experimental scenario. Some channel parameters were adjusted slightly to obtain a 

close match between measurement and simulation. The parameter values used in the 

simulation are listed in Table 6.1. 

Both, experimental and simulated arrival structures show 5 arrivals. The first 

arrival is the direct arrival, closely followed by the surface reflected arrival and then 

the bottom reflected arrival. The next 3 arrivals are a result of multiple surface and 

bottom interactions. We note that the mean arrival timings (relative to the direct 

arrival) agree closely between the simulation and measurement, as shown in Table 

6.2. The simulation also predicts the spread (standard deviation) of arrival time 

accurately. The measured data shows some correlation between the arrival times of 

82 



closely spaced iterations for some of the arrivals. This correlation is not captured in 

our simulation. However, it is not important if the transmission time between packets 

is large. The average measured and predicted arrival strengths (relative to the direct 

arrival) are quite close. The simulation predicts a little more fading than observed in 

the direct and surface reflected arrival. It also predicts a few stronger arrivals than 

those observed in the bottom reflected ray and higher order reflected rays. 

Table 6.1. Simulation parameters 

Parameter Symbol Value 

Range R 100 m 

Water depth h 14.5 m 

Source depth d1 3 m 

Receiver depth d2 2 m 

Center frequency Fc 40 kHz 

Sampling frequency Fs 500 kHz 

Surface reflection loss LSR 3 dB 

Bottom reflection loss LBR 10 dB 

Water density ρ 1023 kg/m3

Seabed density ρ1 1500 kg/m3

Seabed soundspeed c1 1650 m/s 

Water temperature T 27 °C 

Salinity S 35 ppt 

Doppler spread Wd 10 Hz 

Ambient noise α α 1.7 

Ambient noise level (integrated over 
the frequency band of interest) 

c 120,000 µPa 

Transducer RMS movement σd 0.25 m 

Transducer position coherence time τd 0.25 s 

Number of reflection terms N 3 
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Figure 6.6. Comparison of multipath arrival structure between experiment and simulation 

The slight mismatch in fading statistics between observation and simulation is a 

limitation of our model as we modeled all arrivals with similar fading statistics. 

Although a more comprehensive fading model could have been developed, we opted 
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to retain our simple fading model as the proposed channel model seemed to capture 

most of observed phenomenon in the channel. 

Table 6.2. Comparison of simulated channel statistics against experimental channel statistics 

  Simulation Measurement 

Mean Arrival Timing 0.08 ms 0.09 ms 

Arrival Timing Spread 0.01 ms 0.01 ms Arrival 2 

Mean Relative Strength 0 dB 1 dB 

Mean Arrival Timing 1.9 ms 1.9 ms 

Arrival Timing Spread 0.08 ms 0.07 ms Arrival 3 

Mean Relative Strength -7 dB -8 dB 

Mean Arrival Timing 2.5 ms 2.5 ms 

Arrival Timing Spread 0.07 ms 0.07 ms Arrival 4 

Mean Relative Strength -9 dB -9 dB 

Mean Arrival Timing 2.9 ms 3.0 ms 

Arrival Timing Spread 0.07 ms 0.09 ms Arrival 5 

Mean Relative Strength -9 dB -11 dB 

6.6. Conclusions 

In this chapter, we developed a channel model for the WSWA channel. The 

model was derived from physics of ocean acoustics and statistical observations based 

on channel measurements. The model is able to explain most of the key features 

observed via channel measurements. The model is shown to be equivalent to a tapped 

delay line channel model which is common in communication systems. However, the 

tap weights and tap delays are modeled as time-varying random processes. The tap 

weights, delays and the random processes parameters are derived in terms of 

physically measurable parameters such as water temperature, salinity, communication 

range, water depth, coherence time, etc. The channel model also includes an SαS 

ambient noise term. 
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The channel model provides a basis for communication system design, 

performance analysis and simulation. An implementation of the WSWA channel 

model is available as part of a simulation tool developed in MATLAB. The channel 

model and implementation was tested successfully by comparing the simulation 

against experimental channel measurements. 
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7. Proposed Communication Scheme 

In this chapter, we develop a communication scheme for use in WSWA 

channels. The scheme is inspired by the understanding of the channel and ambient 

noise developed in the previous chapters. We study the performance of the scheme via 

simulation. 

7.1. Communication Scheme 

7.1.1. Modulation Scheme 

Incoherent digital communication techniques such as FSK are known to be 

robust but suffer from low bandwidth efficiency. Coherent modulation techniques 

such as PSK have high bandwidth efficiency, but require complex adaptive equalizers 

to cope with time-varying frequency-selective fading channels. The complexity of the 

equalizer is often a function of the channel delay spread in relation to the symbol 

period. As the WSWA channel exhibits delay spreads in the order of several 

milliseconds, equalizer complexity increases rapidly as we approach signaling rates of 

several tens of kbps. Spread spectrum techniques such as frequency hopping and 

DSSS are known to be effective in frequency-selective fading channels. However, 

spread spectrum techniques have low bandwidth utilization and therefore are not 

desirable in band-limited channels. 

OFDM is a communication technique which divides the available bandwidth 

into several sub-carriers [26;84]. Each sub-carrier uses a narrow band (less than the 

coherence bandwidth of the channel) and hence experiences flat fading. This 

simplifies channel equalization. In addition, it increases the symbol length and 

consequently increases robustness to impulsive noise. Each sub-carrier in OFDM can 
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be modulated using any modulation scheme. We use OFDM with PSK modulation as 

the basis for our underwater communication scheme. As we shall show in subsequent 

sections, OFDM has many properties which are well suited to communications in the 

WSWA channel. 

OFDM can be implemented efficiently using the inverse DFT (IDFT) and DFT 

to map a series of symbols onto carriers and vise-versa. Let Nc be the number of 

OFDM sub-carriers and Sjm be the PSK modulated symbols to be transmitted on 

carrier m during symbol j in OFDM symbol xjk where k is the time index during 

symbol j. Then, 
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where IDFT{…} denotes an IFDT operation and  denotes the IDFT matrix. 1−
mkF

7.1.2. Cyclic Prefix 

One of the popular ways to avoid ISI due to multipath arrivals in an OFDM 

scheme is to introduce a guard interval between adjacent OFDM symbols. If the guard 

interval is larger than the delay spread of the channel, ISI is completely eliminated 

and the equalization becomes trivial. The guard interval is usually introduced in the 

form of a symbol prefix. However, a zero-filled symbol prefix destroys the 

orthogonality of the sub-carriers in the OFDM symbol. A cyclic prefix, on the other 

hand, maintains orthogonality while eliminating ISI [26]. Although OFDM schemes 

based on zero-padding can be developed [85], we use the cyclic prefix in our 

implementation. 

If we introduce a cyclic prefix of length Np, the actual symbol transmitted is 
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On reception, the cyclic prefix is simply removed before demodulation of the 

OFDM symbols. 

The use of cyclic prefix reduces the effective signaling rate due to the guard 

interval before every OFDM symbol. However, the benefit gained in terms of 

simplified equalization is often sufficient justification to accept the reduced data rate. 

7.1.3. Differential Sub-carrier Modulation 

The use of OFDM with cyclic prefix simplifies the equalizer for each sub-

carrier to a single tap complex multiplication provided that the sub-carrier bandwidth 

is smaller than the channel coherence bandwidth and that the cyclic prefix length is 

more than the delay spread of the channel [26]. 

If xjk is the received OFDM symbol, DFT{…} denotes a DFT operation and 

denotes the DFT matrix, the demodulation operation can be written as kmF
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Noisy estimates of transmitted symbols Sjm are obtained by a single-tap equalizer, 

jmjmjm SCS =         (7.4) 

where Cjm are the equalizer tap coefficients of carrier m during symbol j.  This can be 

equivalently written in terms of the transmitted symbols Sjm and a noise term njm as 

.
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      (7.5) 

The equalizer tap coefficients Cjm can be tracked over time using known pilots 

transmitted along with the data. However, differential modulation can remove the 

need to track equalizer tap coefficients and pilots provided the OFDM symbol period 
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is much smaller than the channel coherence time. Let Djm be the data symbols to be 

transmitted. We transmit symbols Sjm instead, such that 

.10
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jmmjjm
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        (7.6) 

The equivalent received symbols are now 
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nCSCS 11 −− += .      (7.7) 

Now, we compute noisy estimates Djm as 
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If the symbol period is much smaller than the channel coherence time, 
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Hence, with differential modulation, the transmitted signal can be derived from 

the received signal without the need to track the channel. The cost of this 

simplification is in terms of the additional noise terms in (7.9). The BER for 

differential PSK has been known to be twice that of fully coherent PSK [83]. 

The symbols Djm are obtained from the bits djm to be transmitted based on the 

PSK modulation order. For BPSK, the mapping is trivial (e.g. djm = 0  Djm = -1, djm 
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= 1  Djm = 1). For QPSK and higher modulation orders, the mapping should use 

Gray codes for optimum error performance [83]. 

7.1.4. Coding 

Coding allows us to introduce redundancy in the transmitted data in order to 

improve the robustness of the communication. Although several coding techniques 

have been studied in literature, we adopt convolutional coding in our communication 

scheme [77]. This decision is motivated by the fact that convolutional codes are 

simple to implement and we have explored decoding of convolutional codes in SαS 

noise in Chapter 5. The proposed communication scheme, however, does not depend 

on the detailed structure of convolutional codes. Hence the coding scheme may be 

easily changed at a later point in time without significant impact on the analysis 

presented here. 

A rate Rc convolutional code with a constraint length Lc spreads the energy from 

each bit to be transmitted over Lc coded bits. This increased redundancy improves the 

robustness of the scheme. The effective data rate of the communication link is 

reduced by a factor Rc in exchange for this higher robustness. 

The coding is implemented using a standard convolutional encoder [77]. The 

received data is decoded using the Viterbi decoder with the 1-norm branch metric 

developed in Chapter 5. 

7.1.5. Channel Interleaver 

Convolutional coding spreads the bit energy over Lc consecutive coded bits. 

These bits are usually encoded as symbols and transmitted over consecutive sub-

carriers over a short period of time. In the WSWA channel, we expect the noise to be 

impulsive. Impulses are short in time and hence have a wide bandwidth. When noise 

impulses occur, they affect all sub-carriers simultaneously. Moreover, for QPSK 
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symbols, the noise on the in-phase and quadrature channels is correlated (Theorem 7). 

Hence most of the energy from the Lc coded bits is likely to be affected by the noise 

and severely affect decoding performance. Sending the Lc coded bits over a single 

sub-carrier over a longer time does not solve the problem. If a sub-carrier fades, it will 

affect the symbols transmitted over the sub-carrier over the coherence time of the 

channel. If the Lc coded bits are transmitted over this time, many of the bits are likely 

to get affected simultaneously, affecting decoding performance. 

A random block interleaver can be used to spread the coded bits in a pseudo-

random pattern across a block. When the block is transmitted using OFDM, the Lc 

coded bits are spread randomly in time and frequency and are unlikely to be affected 

by impulse noise or sub-carrier fades at the same time. Hence the errors become 

uncorrelated over the constraint length of the code and the decoding performance 

becomes close to optimal. We effectively utilize the time and frequency diversity 

available across the OFDM sub-carriers through the use of interleaved coding. 

7.1.6. Frame Synchronization 

For transmission, the data is organized into packets or frames. Each frame is 

encoded with a known start and final encoder state, zero padded to become an integral 

multiple of the number of bits per OFDM symbol and interleaved with a block 

interleaver. The resultant data is modulated on OFDM sub-carriers, up-converted and 

transmitted. A short pseudo-noise sequence with the same center frequency and 

bandwidth as the modulated signal is sent as a frame preamble so that the receiver can 

identify the start of each frame. The pseudo-noise sequence is generated by BPSK 

modulating a carrier frequency with a long m-sequence. 
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7.1.7. Symbol Synchronization 

Several OFDM synchronization methods have been discussed in the literature 

[86-88]. In [86], the authors use the correlation between the cyclic prefix and the 

symbol to achieve symbol synchronization. Although the method in this paper is not 

directly usable due to their Gaussian noise assumption, we develop a symbol 

synchronization method based on this idea without using the normalization term 

which requires the Gaussian noise assumption. The method is outlined below. 

We compute a statistic based on the correlation between the received data and a 

time-lagged (by Nc) version of the received data. The statistic is averaged over a 

window of length equal to the cyclic prefix and scaled by the average energy in the 

window. Let x(t) represent the received data and Λ(t) represent the statistic. Then, 
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where x  represents the complex conjugate of x. 

As the correlation between the cyclic prefix and the end of the symbol is high, 

peaks appear in the time series of the statistic every time it encounters a cyclic prefix. 

A sample time series of the statistic Λ (for an OFDM signal with 512 carriers and a 

cyclic prefix of 32 samples) is shown in Figure 7.1. Statistic Λ has a peak at the start 

time of each symbol (every 22.3 ms in this example). 
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Figure 7.1. Statistic Λ shows a peak at the start of each OFDM symbol 

The symbol timing estimation algorithm can be summarized as follows: 

1. Start with an initial known position t0 for the first symbol 

2. Initialize j = 0 

3. Increment j 

4. Estimate the a-priori next symbol start, t’j = tj-1 + Nc + Np 

5. Compute Λ over the local neighborhood of t’j 

6. Find position t”j of maximum Λ over the local neighborhood of t’j 

7. Go to step 3 

The output time series t”j generated by the above algorithm is then passed 

through a low pass filter to yield final estimates tj. The low pass filter helps reduce the 

noise in the estimate based on the knowledge that the symbol timings change slowly 

(primarily due to the movement of the transducers). The bandwidth of the low pass 

filter is chosen based on the coherence time of transducer position. The algorithm is 

executed on a fractionally sampled received data to achieve higher timing resolution. 
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7.1.8. Carrier Synchronization 

A significant carrier frequency offset causes inter-carrier interference in OFDM, 

adversely affecting communication performance. Carrier synchronization has 

therefore been an area of interest among OFDM researchers [86-88]. 

In underwater communications, the carrier frequencies used are very low (in 

kHz). Hence, it is possible to sample the signal in passband and perform down-

shifting and demodulation digitally. Data acquisition systems at these low frequencies 

have stable sampling clocks and do not result in significant carrier offset. Moreover, 

any small carrier offset appears as a slowly rotating equalizer tap coefficient and is 

automatically compensated for by the differential modulation. We, therefore, do not 

require any algorithm specifically for carrier synchronization. 

7.1.9. Peak-to-Average Power Ratio 

A common problem in OFDM communication is that the peak-to-average power 

ratio (PAPR) of OFDM signals is usually very high. This affects the maximum 

average source level that can be attained via power amplifiers and transducers with 

limited dynamic range. Techniques are available in the literature to reduce the PAPR 

of OFDM signals [89;90]. 

Although our signals suffer from high PAPR (usually about 5), it is not a severe 

limitation at the transmission range of interest as the required source power level can 

be achieved by power amplifiers with sufficient dynamic range. Hence we do not 

apply any PAPR reduction techniques to our signals. Techniques from [89;90] may be 

applied during communications at longer ranges, where a lower PAPR is important. 

7.1.10. Proposed Scheme 

The communication scheme proposed in the past few sections is summarized in 

the block diagram shown in Figure 7.2. 
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The data to be transmitted is first encoded using a convolutional code, zero 

padded to an integral multiple of number of bits per OFDM symbol and then 

interleaved with a random block interleaver, henceforth known as the channel 

interleaver. It is then mapped to the appropriate PSK constellation using Gray coding. 

The data is then converted from serial to parallel by the S2P block. It is then 

differentially encoded by the ∆ block, OFDM modulated by the IFFT and converted 

back to serial by the P2S block. A cyclic prefix is then added by the CP insertion 

block. Finally, a pseudo-noise preamble is added, the data is up-sampled, up-

converted to the carrier frequency and transmitted. 

Encoder
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Figure 7.2. Overview of proposed OFDM communication scheme 

The received data is first down-converted, filtered and down-sampled. The 

preamble detection block uses the sign correlator to find the start of a frame. The 
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symbol detection block then finds the start of each symbol. The CP removal block 

removes the cyclic prefix. The S2P and the FFT blocks then perform OFDM 

demodulation. This is followed by a differential decoding process in the ∆-1 block and 

a conversion back to serial by the P2S block. The resulting data stream is de-mapped, 

de-interleaved and then decoded using a Viterbi decoder. The Viterbi decoder with a 

1-norm branch metric is the recommended method for decoding. However, we also 

present the results from hard-decision decoding and soft-decision Viterbi decoding 

using the conventional Euclidean norm in our simulation results and experimental 

analysis for comparison. The output of this decoder is the received data. 

7.2. Selection of Parameters 

7.2.1. Frequency Band 

The bandwidth available for underwater communication is typically limited by 

the transmission characteristics of the transducer. Energy efficient transducers usually 

operate near the resonant frequency and are therefore limited to few tens of kHz of 

usable bandwidth. In our simulations and experiments, we assume a bandwidth 

availability of about 25 kHz. 

The usage of the acoustic spectrum in the ocean is not regulated. However, 

natural characteristics of the channel and transducers limit the usable frequency band. 

Low frequencies are dominated by ambient noise [6]. High frequencies are attenuated 

by relaxation processes in sea water [59]. The optimal choice of center frequency is 

achieved by maximizing the SNR given the ambient noise curves and frequency 

dependent attenuation. If NA(f) is the ambient noise PSD at frequency f and LA(D, f) is 

the attenuation loss factor given by (6.7), then SNR can be maximized by maximizing 

the ratio LA/NA as a function of f at a given transmission range D. 
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Figure 7.3 shows a plot of LA/NA as a function of f at a water temperature of 

27°C and typical ambient noise PSD (based on recording in Singapore waters) for 

various transmission ranges of interest. We can see that the maximum SNR is 

achieved between 42-60 kHz at a range of 500 m and between 40-55 kHz at a range 

of 1000 to 1500 m. A frequency band of 25 kHz centered at 50 kHz is therefore well 

suited for communications at 500-1500 m range. 
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Figure 7.3. Ratio LA/NA plotted as a function of frequency at various transmission ranges 

Although a 50 kHz center frequency is ideally suited for the communication 

range of interest, transducers available to us are more efficient at higher frequencies. 

Taking this efficiency into account, we selected a center frequency of 51 kHz for our 

first sea trial and 62 kHz for subsequent trials. In line with the trials, the simulation 

results presented later in this chapter assume a frequency band of 25 kHz centered at 

62 kHz. 
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7.2.2. PSK Modulation Order 

In our proposed scheme, the OFDM sub-carriers are modulated using PSK. 

Lower order PSK modulation provides lower data rates but better error performance 

for the same signal power. On the other hand, high order PSK modulation provides 

higher data rates at the cost of error performance. As bit error performance was 

expected to be a limiting factor at long ranges, we choose a low order PSK 

modulation. Gray coded QPSK in AWGN has the same bit error performance as 

BPSK [83]. However, in presence of SαS noise the Gray coded QPSK performance is 

expected to be somewhat inferior to BPSK as the in-phase and quadrature components 

of the baseband complex isotropic noise are correlated (Theorem 7). Nevertheless, in 

simulations and a majority of the experiments, we use Gray coded QPSK as the sub-

carrier modulation scheme of choice. 

During the first sea trial (details in the next chapter), we confirmed that the 

achievable effective data rates with QPSK were indeed higher than BPSK and 8-PSK. 

Although BPSK has the same bit error performance, it achieves a lower data rate as 

fewer bits are transmitted per symbol. 8-PSK transmits more bits per symbol. 

However, the increased BER requires a lower rate coding scheme for acceptable error 

performance. With the additional overhead of this coding scheme, the effective data 

rate is reduced to less than that provided by QPSK with higher rate coding. 

7.2.3. Number of Carriers and Cyclic Prefix Length 

The number of carrier Nc and the cyclic prefix length Np are key parameters for 

any OFDM system. Let W be the bandwidth occupied by the OFDM signal and Fd be 

the symbol rate without cyclic prefix. Then, 

dc FNW = .        (7.11) 
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The time occupied by the prefix Tp and the symbol time Ts (including the prefix) 

can be expressed in terms of Nc, Np and W, 
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For good OFDM performance, we require that the prefix should be longer than 

the delay spread τds of the channel. As we use differential QPSK, we also require that 

the channel does not change significantly between two consecutive symbols. Hence 

the symbol length must be less than half the channel coherence time τc i.e. 

2
and c

sdsp TT
ττ <> .      (7.13) 

We estimate the coherence bandwidth based on the delay spread of the channel 

[83], 

ds
cW

τ
423.0= .        (7.14) 

We also require that the bandwidth of each sub-carrier be more than the 

coherence bandwidth of the channel so that each sub-carrier experiences flat fading. 

That is 
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As 2 bits are transmitted per carrier (QPSK) in one symbol interval, the 

bandwidth efficiency η of the OFDM scheme is given by 

c

ppc

c

s

c

N
NNN

W
W
N

WT
N

+
=

+
⋅==

1

222η  bps/Hz.    (7.16) 

100 



Thus, the efficiency depends only on the ratio Np/Nc and increases as this ratio 

reduces. Subject to constraints in (7.13) and (7.15), we would like to select Np and Nc 

such that the ratio Np/Nc is as small as possible. Practical considerations limit the 

value of Nc to be a power of 2 (for efficient FFT implementations of OFDM) and the 

value of Np to be a positive integer. 

We estimate the delay spread based on significant terms in (6.18). If we assume 

a 1 km channel with 20 m water depth and transducers at mid-water depth, we obtain 

a delay spread of about 1.5 ms. With a coherence time of 70 ms and a bandwidth of 

25 kHz, we represent various values of Nc from 64 to 512 and Np from 32 to 64 on a 

Nc-Np plane (Figure 7.4). 
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Figure 7.4. A plot of various OFDM schemes on a Nc-Np plane and constraint boundaries for 

good performance marked for τc = 70 ms, τds = 1.5 ms and W = 25 kHz 

In Figure 7.4, the horizontal dashed line represents the constraint on prefix 

length. We expect that schemes with much shorter prefix lengths would not perform 
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well. The two vertical dashed lines represent the constraints on symbol length. We 

expect that schemes with symbols between the two vertical constraint lines and above 

the horizontal constraint line will perform well. Viable schemes lie in the zone 

defined by these constraints. The bandwidth efficiency increases as we move towards 

the bottom-right of the plane. Hence we expect that the best performing* schemes 

would be close to the bottom-right corner of the viable zone. As the estimates for 

delay spread and coherence time are approximate, we consider the constraints defined 

by these as soft constraints. Hence we test several OFDM schemes (marked by stars) 

in the neighborhood of the constraint lines. 

7.3. Simulations 

To test the communication scheme proposed in this chapter, we simulated the 

performance of the scheme using the channel model developed in the previous 

chapter. Packets consisting of 3,456 uniformly distributed random bits were generated 

and coded using a serial concatenated (1/2, 1/3) rate convolutional code as shown in 

Figure 7.5. The use of serial concatenated convolutional coding was motivated by the 

fact that the 1-norm Viterbi algorithm that we have developed for near-optimal 

decoding can be used for decoding of the component convolutional codes. 

                                                 

* The performance criterion here is the effective data rate at a given maximum BER. 
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Figure 7.5. Encoder and decoder structures for serial concatenated convolutional codes 

The resulting code was a 1/6 rate code with a long constraint length. A random 

block interleaver is inserted between the 2 encoders (and decoders) to break error 

bursts. The packets were modulated and transmitted through the channel simulator. 

The received packets were processed to estimate the raw BER (without coding), 

coded BER with a 1/3 rate code and the coded BER with a 1/6 rate code. The serial 

concatenated code was decoded using an inner Viterbi decoder for the 1/3 rate code 

followed by an outer hard-decision Viterbi decoder for the 1/2 rate code. Inner Viterbi 

decoders with hard-decision decoding, Euclidean metric soft-decision decoding and 1-

norm metric soft-decision decoding were tested. Simulations were performed on a 

channel with 20 m water depth and transducers at near mid-water depth. Ranges from 

250 m to 1.5 km were numerically tested in steps of 250 m by transmitting 8 packets 

from each of 11 OFDM schemes (denoted in Figure 7.4 by stars) at each range. The 

total bandwidth used by each OFDM signal was 24,320 Hz. 
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Figure 7.6. Simulation results showing raw BER for 11 OFDM schemes at 1 km range 

Figure 7.6 shows the raw BER from the 11 OFDM schemes at 1 km range. The 

performance of Nc = 64 schemes is poor as the sub-carrier bandwidth is larger than the 

coherence bandwidth of the channel. The performance improves substantially at Nc = 

128 but steadily decreases up to Nc = 512 as the symbol length approaches the 

coherence time of the channel. 

Figure 7.7 shows the raw BER for 3 OFDM schemes with 128, 256 and 512 

carriers and a cyclic prefix of length 32. All schemes show the same trend over range. 

It is initially surprising that the performance at short ranges is inferior to that at 

medium range. However, we should note that the OFDM parameters chosen were 

based on channel characteristics at medium range and hence optimized for the range. 

At small ranges, the delay spread of the channel is longer than the cyclic prefix and 

therefore the performance is poor. As the range increases, the delay spread reduces 

and the performance improves. At long ranges, absorption reduces the signal strength 

substantially and the SNR drops and the performance degrades. The best performance 
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at 1 km is the result of our choice of parameters. If communication at a shorter or 

longer range is desired, optimal parameters for that range can be chosen based on the 

revised constraints. 
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Figure 7.7. Simulation results showing raw BER as a function of range for various OFDM 

schemes with Np = 32 

Figure 7.8 shows the coded performance of the OFDM scheme with 128 carriers 

and a cyclic prefix of length 32. Decoding was performed with a hard-decision Viterbi 

decoder, a soft-decision Viterbi decoder with Euclidean branch metric and a soft-

decision Viterbi decoder with 1-norm branch metric. Although all three decoders 

show an improvement over the uncoded data, the 1-norm branch metric based decoder 

performs best. The hard-decision decoder’s performance is slightly inferior. The 

Euclidean branch metric based decoder performs considerably poorer. These results 

agree with the theoretical predictions from Chapter 5. 
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Figure 7.8. Simulation results showing the 1/3 rate coded performance of OFDM with Nc = 
128, Np = 32 with hard-decision decoding, soft-decision decoding with Euclidean norm and 

soft-decision decoding with 1-norm 

Table 7.1 presents a summary of the simulated performance of all the 11 OFDM 

schemes at 1 km range decoded using a soft-decision Viterbi decoder with the 1-norm 

branch metric. The raw (uncoded), 1/3 rate coded and 1/6 rate coded performances are 

shown. We choose a performance criterion of BER < 10-4 or better as acceptable at 

the physical layer for most communication applications. None of the uncoded or 1/3 

rate coded schemes satisfy the performance criterion. All the 1/6 rate coded schemes 

satisfy the criterion. Out of the 1/6 rate coded schemes, the highest bandwidth 

efficiency (data rate of 7,630 bps) is achieved by the scheme with Nc = 512 and Np = 

32. If the performance criterion was relaxed to BER < 10-3 or better, a better data rate 

(12,971 bps) would be achieved by the 1/3 rate coded scheme with Nc = 128 and Np = 

32. Further improvements in effective BER can be obtained at higher protocol layers 

via error detection and retransmission schemes. 
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Table 7.1. Simulated performance of various OFDM schemes at 1 km range using soft-
decision Viterbi decoding with 1-norm metric 

  Uncoded 1/3 Rate Coding 1/6 Rate Coding 

Nc Np

Data Rate 
(bps) BER 

Data Rate 
(bps) BER 

Data Rate 
(bps) BER 

64 32 32,427 0.1063 10,809 0.0048 5,404 0.0000

64 48 27,794 0.1033 9,265 0.0027 4,632 0.0000

128 32 38,912 0.0750 12,971 0.0010 6,485 0.0000

128 48 35,375 0.0752 11,792 0.0006 5,896 0.0000

128 64 32,427 0.0802 10,809 0.0006 5,404 0.0000

256 32 43,236 0.0855 14,412 0.0015 7,206 0.0000

256 48 40,960 0.0800 13,653 0.0034 6,827 0.0000

256 64 38,912 0.0807 12,971 0.0010 6,485 0.0000

512 32 45,779 0.1093 15,260 0.0061 7,630 0.0000

512 48 44,471 0.1049 14,824 0.0064 7,412 0.0000

512 64 43,236 0.0974 14,412 0.0057 7,206 0.0000

The simulation results confirmed that our proposed communication scheme is 

viable for use for underwater communications. They helped validate our 

understanding of the constraints on the choice of number of carriers and prefix length. 

Although the exact experimental conditions may not be the same as the simulated 

channel conditions, the channel model helped us assess the likely performance of the 

communication scheme in warm shallow waters. Based on the simulations, we expect 

to be able to achieve data rates of about 7.6 kbps at a range of 1 km. 

7.4. Conclusions 

In this chapter, we developed a communication scheme for use in WSWA 

channels. The scheme was inspired by our understanding of the WSWA channel and 

the impulsive ambient noise. The scheme consists of OFDM modulation at its heart, 
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with differential QPSK being used to modulate each sub-carrier. The differential 

modulation eliminates the need for channel tracking and carrier synchronization. A 

cyclic prefix is employed to eliminate ISI due to multipath. A symbol synchronization 

scheme based on the correlation of the cyclic prefix with the symbol is employed to 

track the slow variation in symbol timing. Convolutional coding adds error correction 

capability to the scheme. The decoding is performed using a 1-norm Viterbi decoder 

to combat non-Gaussian ambient noise. A random block interleaver is used to 

effectively utilize the time-frequency diversity in the channel. Finally, a DSSS 

preamble is added for frame synchronization. 

The choice of parameters in the OFDM scheme is critical to its performance. 

We developed methods to select frequency band, number of carriers and the prefix 

length based on measurable channel characteristics such as delay spread, coherence 

time and ambient noise PSD. 

We simulated the communication scheme with various choices of parameters in 

a WSWA channel using the model developed in the previous chapter. The simulations 

helped to validate our understanding of the channel, choice of parameters and the 

overall communication scheme. Based on these simulations, we expect to be able to 

achieve data rates of 7.6 kbps at a range of approximately 1 km. 
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8. Experimental Results 

Apart from the field testing of the sign correlator described in Chapter 4 and the 

channel measurements described in Chapter 6, we performed two sea trials to validate 

our channel model and communication scheme. The first sea trial was designed 

primarily as an experiment to validate and calibrate the channel model at various 

ranges. During this trial, we captured a channel realization at 350 m range by 

transmitting an OFDM signal and recording the received signal. Analysis from this 

trial is presented in Section 8.1 [91]. 

The second sea trial was designed to test selected OFDM schemes developed in 

the last chapter at different ranges. In this trial, we successfully achieved reliable data 

communications up to a range of 1 km. Analysis of the data from this trial is 

presented in Section 8.2. 

8.1. Sea Trial 1 

8.1.1. Experimental Setup 

The first sea trial was performed in February 2005 in Singapore waters at 

Raffles Reserve (1˚12.10’ N 103˚44.58’ E). The location has a water depth of 15-20 

m and a sandy-muddy bottom. During the experiment, the sea was calm with mild 

winds but strong currents. The transmitter and receiver systems were deployed from 

two vessels as described below (Figure 8.1). 

The transmission system was deployed from a vessel at anchor. The transmitter 

consisted of a ruggedized desktop computer with a digital-to-analog converter card, 

power amplifier and an ITC1042 transducer. The transducer was deployed at a depth 

of approximately 5 to 8 m using a 10 kg weight. The receiver system was deployed 
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from another vessel at anchor. This vessel moved to several distances from the 

transmitting vessel and re-anchored. The receiver consisted of a laptop, an external 

firewire analog-to-digital converter, a pre-amplifier (with band-pass filter) and a 

TC4013 hydrophone. The hydrophone was deployed at a depth of approximately 3 to 

5 m using a 10 kg weight. The received signals were recorded for post-processing and 

analysis. 

Transmit Receive 

 
Figure 8.1. Schematic representation of the setup for Sea Trial 1 

Channel measurements to estimate coherence time and delay spread were made 

at various ranges from 350 m to 1.1 km. Long sinusoidal signals (at frequencies 45, 

55 and 65 kHz) and DSSS signals (25 kHz signals centered at 51 kHz) were used for 

channel measurement. An OFDM signal with 64 sub-carriers and a cyclic prefix of 

length 32 utilizing a bandwidth of 24 kHz around a center frequency of 51 kHz was 

transmitted at a range of 350 m. Although the peak transmission performance of the 

ITC1042 is at about 80 kHz, it has an acceptable transmit performance in the signal 

band (39-63 kHz). The total transmit source level was estimated to be approximately 

170 dB re 1 µPa2 at 1m. The TC4013 has an almost flat receive sensitivity over the 

above signal band. 

Vessel Vessel 

Not to scale Anchor 

To 
Anchor TC4013 

ITC1042 Weight 

Various Ranges 
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~3-5 m 
~5-8 m 
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The ambient noise at the location was analyzed and found to be non-Gaussian as 

expected. The average noise level was measured to be between 58 and 60 dB re 1 

µPa2/Hz. This amounts to a total ambient noise level of approximately 104 dB re 1 

µPa2 in the signal band. The amplitude probability distribution of the noise in the 

signal band was found to be SαS, as expected for snapping shrimp dominated ambient 

noise, with characteristic exponent 1.69 and scale parameter 6.8×104 µPa. 

8.1.2. Coherence Time and Delay Spread 

The coherence time of the channel was estimated using (6.10) and the measured 

Doppler spread of long sinusoidal signals (at 45, 55 and 65 kHz) transmitted through 

the channel. The coherence times computed for the three frequencies were averaged 

to yield the final estimate. The delay spread was estimated based on cross-correlation 

of a DSSS signal transmitted through the channel with a reference copy. Table 8.1 

shows the estimated coherence time and delay spread at various ranges. 

Table 8.1. Measured channel coherence time and delay spread 

Range 
(m) 

Coherence Time 
(ms) 

Delay Spread 
(ms) 

380 93 1.2 

700 62 1.3 

1090 79 0.9 

The coherence time of the channel is consistent with expected values 

documented in Chapter 6. Due to the low source level used in this experiment, the 

SNR is expected to be low. Weak arrivals would therefore be lost resulting in under 

estimating the delay spread. We compare the estimates of delay spread with 

simulation, taking into account only arrivals up to 20 dB lower than the direct arrival. 

The simulated delay spreads are shown in Table 8.2. 
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Table 8.2. Comparison of measured delay spreads against predictions based on simulation 

Range 
(m) 

Measured 
Delay Spread 

(ms) 

Predicted 
Delay Spread 

(ms) 

380 1.2 2.3 

700 1.3 1.3 

1090 0.9 0.8 

The measured delay spreads agree closely with simulations at 700 m and 1090 

m. However, at 380 m, the simulated delay spread is much longer than the measured 

delay spread. This may be the result of an absorbing seabed near the receiving vessel. 

8.1.3. Estimation of OFDM Performance 

Due to hardware constraints during this experiment, the source level of the 

OFDM signals was low. Hence we recorded OFDM signals with a good SNR only at 

the shorter range of 350 to 380 m. The OFDM signal used contained 64 sub-carriers at 

a spacing of 375 Hz. Based on the measured delay spread and (7.14), each sub-carrier 

bandwidth is slightly larger than the coherence bandwidth of the channel. The cyclic 

prefix length was 32 i.e. 1.3 ms, slightly longer than the measured delay spread of the 

channel at that range. Each symbol was 4 ms long, well within the measured 

coherence time of the channel. A total of 25,000 OFDM symbols (160,000 PSK 

symbols) were transmitted during the test. 

We captured a channel realization by transmitting random data symbols Tjm at 

symbol j on sub-carrier m and recording the resulting demodulated data symbols Rjm. 

Assuming that each sub-carrier undergoes flat fading and additive noise, we have 

jmjmjmjm NTHR +=        (8.1) 

where Hjm is the complex channel state and Njm is the complex noise. 
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The recorded channel realization enabled us to test various PSK modulation 

orders, coding schemes and interleavers in post-processing. We simulated the 

transmission of data symbols Xjm by assuming that symbols Xjm were mapped to Tjm 

using a set of phase rotations Mjm, such that 

jmjmjm XMT = .        (8.2) 

The expected received data symbols Yjm can then be estimated using 
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      (8.3) 

Received data symbols Yjm are therefore the symbols that would have been 

received in the experiment if we had transmitted Xjm instead of Tjm with the only 

difference arising from the noise. As Xjm and Tjm are PSK symbols, the magnitude of 

Mjm is always 1. Hence the effective noise level in the estimated received data is the 

same as the channel noise. 

8.1.4. OFDM Performance Results 

By computing phase rotations for various PSK modulations, coding schemes 

and interleavers, we were able to test the performance of these schemes as if the 

symbols transmitted through the channel were indeed generated using these schemes. 

All performance measurements in this section were made on a transmitted packet 

containing 160,000 coded symbols. 

The results are tabulated in Table 8.3. With no error correction coding, the 

performance of the system in terms of BER was poor. As expected, the system 
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showed an increase in BER with increased modulation order. In the presence of 

Gaussian noise, we would have expected the BER of BPSK and Gray coded QPSK to 

be the same. However, in presence of SαS noise, the noise on the in-phase and 

quadrature channels of QPSK are correlated (Theorem 7). This results in a higher 

BER than that in BPSK as expected. 

Table 8.3. Raw performance of OFDM with differential PSK during Sea Trial 1 

Modulation Effective 
Data Rate 

(bps) 

BER 

BPSK 16,000 7.2 × 10-2

QPSK 32,000 1.3 × 10-1

8-PSK 48,000 2.0 × 10-1

With error correction coding, the BER performance of the system could be 

improved at the cost of reduced data rate. The performance of various combinations 

of modulation order and coding schemes are shown in Table 8.4. The rows where 

only “Code 1 Rate” is specified show results from schemes which use single 

convolution codes for error correction. The rows where both “Code 1 Rate” and 

“Code 2 Rate” are specified show results from schemes with serial concatenated 

convolution codes (refer to Figure 7.5 for details) for error correction. A hard-decision 

Viterbi decoder was used throughout this experiment. 

The 5th column shows the BER without interleaver. This BER was computed by 

disabling the channel interleaver shown in Figure 7.2 but enabling the coding 

interleaver shown in Figure 7.5 during serial concatenated coding.  None of the 

coding schemes tested with the channel interleaver switched off met a BER criterion 

of <10-4. 
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With the channel interleaver switched on, the communication scheme can 

effectively utilize time and frequency diversity in the channel. Hence, the 

performance of the communication system could be improved via interleaving 

without incurring any cost in terms of data rate but a small cost in transmitter and 

receiver complexity. The results from schemes with coding and interleaving are 

shown in the 6th column (BER with interleaving). All modulation orders and coding 

schemes benefited from the use of the channel interleaver. 

Table 8.4. Coded performance of OFDM with differential PSK during Sea Trial 1 

Modulation Code 1 
Rate 

Code 2 
Rate 

Effective 
Data Rate 

(bps) 

BER 
(without 

interleaver) 

BER 
(with 

interleaver)

BPSK 1 / 2 - 8,000 2.5 × 10-2 1.2 × 10-2

BPSK 1 / 3 - 5,333 6.8 × 10-3 3.2 × 10-4

BPSK 1 / 4 - 4,000 4.4 × 10-3 < 10-4

QPSK 1 / 3 - 10,666 3.8 × 10-2 1.6 × 10-2

QPSK 1 / 4 - 8,000 1.2 × 10-2 1.5 × 10-3

QPSK 1 / 2 1 / 3 5,333 2.3 × 10-4 < 10-4

8-PSK 1 / 4 - 12,000 9.4 × 10-2 7.7 × 10-2

8-PSK 1 / 2 1 / 4 6,000 6.2 × 10-2 2.9 × 10-2

8-PSK 1 / 3 1 / 4 4,000 5.0 × 10-4 4.3 × 10-4

8-PSK 1 / 4 1 / 4 3,000 1.3 × 10-4 < 10-4

Figure 8.2 shows the performance of OFDM schemes with varying modulation 

orders and code rates. The effective data rate is a function of modulation order and 

coding. The BER obtained for different schemes (with channel interleaving) are 

plotted as a function of effective data rate. BPSK has a good error performance and 

therefore requires less coding. However, it offers a low data rate. 8-PSK offers a high 

raw data rate but requires a large degree of coding due to the high raw BER. Hence 
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the effective data rate is lower than BPSK. QPSK offers the best trade off between 

modulation order and coding. 

For a BER criterion of <10-4, differential QPSK with a serial concatenated code 

(outer code rate 1/2, inner code rate 1/3) demonstrated the highest effective data rate 

of 5.3 kbps in this experiment. 
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Figure 8.2. Performance of differential BPSK, QPSK and 8-PSK based OFDM schemes with 

different degrees of coding 

In this experiment, we demonstrated that OFDM could be successfully 

implemented in a WSWA channel with the use of a cyclic prefix and differential PSK 

modulation. The BER performance of uncoded OFDM was poor. The use of serial 

concatenated convolution coding and a channel interleaver improved the BER 

performance of OFDM significantly. We were able to demonstrate transmissions at an 

effective data rate of up to 5.3 kbps at a range of 350 m with a BER of 10-4 or better. 
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8.2. Sea Trial 2 

8.2.1. Experimental Setup 

We tested the performance of selected OFDM schemes in Singapore waters 

during a field trial conducted at Raffles Reserve (1˚11.55’ N 103˚45.00’ E) in 

November 2005. The location has water depths of 16 to 18 m. The experimental setup 

was similar to the preliminary trials with the transmission and reception systems 

deployed on two anchored research vessels. The transmission/reception systems from 

the first sea trial were replaced by a custom designed data transmission/acquisition 

system described below. The transducers for transmission and reception were 

deployed at about 8 to 10 m depth. The weather during the trials was windy with 

some rain, and the sea surface was mostly disturbed. There were strong currents 

during a significant part of the trial. 

The transmission and reception of the signals were achieved with a custom data 

transmission/acquisition system, capable of transmitting signals up to a source level of 

193 dB re 1 µPa2 at 1m. Due to the high PAPR of OFDM signals, the estimated 

source level during our trials was about 187 dB re 1 µPa2 at 1m. The transducer has a 

peak transmit response near 80 kHz. We used a frequency band of 24,320 Hz centered 

at 62 kHz during the trials. The system was set up to record short bursts of data at a 

sampling rate of 250 kHz and a resolution of 12 bits. The receiving sensitivity of the 

transducer is relatively flat over the signal bandwidth. The system is equipped with an 

automatic gain control to optimize the dynamic range during acquisition. 

OFDM signals similar to the ones used for simulation in Section 7.3 were used 

during the trial. We present the analysis for two signals – one which demonstrated 

lowest BER during the simulations, and another which had the highest bandwidth 

efficiency of all signals tested during simulations. The lowest BER signal had 128 
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carriers and a prefix length of 32 (referred to as OFDM-128/32). The most bandwidth 

efficient signal had 512 carriers and a prefix length of 32 (referred to as OFDM-

512/32). Both signals used differential QPSK to modulate the sub-carriers and serially 

concatenated (1/2, 1/3) rate convolutional codes in line with the simulations. The 

channel interleaver was used in all cases. Each packet consisted of a DSSS preamble 

to help locate the signal, followed by a 3 ms gap and an OFDM packet with 3,456 

data bits (20,736 coded bits). The packets were repeated at a rate of approximately 1 

Hz. During each acquisition, a burst of 3 to 5 packets was recorded (acquisition of 4 s 

of data). Two bursts of each signal type were recorded at each range with 

approximately half hour time difference between the two recordings. 

The trial was performed at 3 different ranges – 400 m, 800 m and 1 km. At 400 

m, the measured delay spread was approximately 4 ms. This delay spread is consistent 

with predictions from our channel model. As the delay spread is significantly longer 

than the cyclic prefix in the signals (1.3 ms prefix), the performance at this range was 

expected to be poor. The measured raw BER was between 0.16 and 0.20 and the data 

could not be successfully decoded. At ranges of 800 m and 1 km, the measured delay 

spread was approximately 1 ms and packets were successfully decoded. Analysis of 

data collected at these ranges is presented in the next section. 

8.2.2. Results 

Figure 8.3 shows the raw BER performance of 7 packets of OFDM-128/32 at a 

range of 800 m. The BER for each packet varies between 0.06 and 0.1. The average 

BER is shown in the last column and is approximately 0.08. This BER agrees closely 

with the simulated BER at 750 m for the same OFDM scheme (Figure 7.7).   
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Figure 8.3. Performance of OFDM-128/32 at 800 m range without coding 

Figure 8.4 shows the performance of OFDM-128/32 with 1/3 rate coding at a 

range of 800 m. The decoding performance of the 1-norm Viterbi decoder is better 

than the hard-decision and Euclidean norm Viterbi decoders for most packets. The 

Euclidean norm Viterbi decoder performs poorly; this was expected based on 

theoretical study and simulation in previous chapters. The average BER with 1-norm 

Viterbi decoding with the 1/3 rate code is 0.0007. This agrees closely with the 

simulated results (Figure 7.8). Using a 1/6 rate coding, OFDM-128/32 is able to 

recover all transmitted packets without any errors. With over 24,000 bits transmitted 

in 7 packets, this translates to a BER of 4 × 10-5 or better. 
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Figure 8.4. Performance of OFDM-128/32 at 800 m range with 1/3 rate coding 
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Figure 8.5. Performance of OFDM-512/32 at 800 m range without coding 

Figure 8.5 shows the performance of OFDM-512/32 at a range of 800 m without 

coding. The first 4 packets have a significantly lower BER than the next 4 packets. 
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The first 4 packets were transmitted during the first burst within a few seconds of 

each other, while the next 4 packets were transmitted during the second burst half an 

hour later. The increased BER during the second burst may be due to change in 

channel characteristics over that time. This may be a result of tidal water depth 

change, change in depth of transducers due to change in currents or movement of the 

vessels around the anchor. The average BER of 0.12 is not significantly different than 

the BER predicted via simulation (simulated BER = 0.11, see Figure 7.7). 
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Figure 8.6. Performance of OFDM-512/32 at 800 m range with 1/3 rate coding 

Figure 8.6 shows the performance of the OFDM-512/32 scheme with a 1/3 rate 

coding at 800 m. The Euclidean norm Viterbi decoder performs very poorly, 

especially for the later packets. The 1-norm Viterbi decoder demonstrates the best 

performance, yielding an average BER of 0.02. The hard-decision Viterbi decoder 

performance is only slightly inferior to the 1-norm Viterbi decoder. With a 1/6 rate 

coding, the OFDM-512/32 with hard-decision and 1-norm Viterbi decoding is able to 

recover all packets perfectly. 
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Figure 8.7 and Figure 8.8 show the raw and 1/3 rate coded performance of 

OFDM-128/32 at a range of 1 km. The first 3 packets have a much lower BER than 

the next 4 packets. These initial 3 packets were received during the first burst within a 

few seconds, while the next 4 packets were received during the second burst half an 

hour later. Thus the difference in BER is likely to be a result of changes in the channel 

as observed for OFDM-512/32 in the 800 m channel. The observed average raw BER 

of a little over 0.1 is somewhat higher than the simulated performance of 0.08 (Figure 

7.7). This may be a result of reduced SNR due to slightly lower source level used 

during the experiment as compared to the simulations. 
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Figure 8.7. Performance of OFDM-128/32 at 1 km range without coding 

The 1-Norm Viterbi decoding is able to successfully recover the initial 3 packets 

after the 1/3 rate decoding. However, in case of the last 4 packets, residual errors 

remain after the first stage of decoding. With the 1/6 rate decoding, all errors are 

corrected and the packets are successfully recovered. 
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Figure 8.8. Performance of OFDM-128/32 at 1 km range with 1/3 rate coding 

Figure 8.9 and Figure 8.10 show the raw and 1/3 rate coded performance of 

OFDM-512/32 at a range of 1 km. The average raw BER of 0.1 agrees closely with 

the performance predictions via simulations (Figure 7.7). The average 1/3 rate coded 

BER is 0.006 when decoded using the 1-norm Viterbi decoder; the equivalent 

simulated BER was 0.001 (Table 7.1). With a 1/6 rate code, OFDM-512/32 packets 

can be decoded without any errors. 

The results from this experiment demonstrate that both OFDM-128/32 and 

OFDM-512/32 with coding are viable communication schemes in WSWA at ranges 

between 800 m and 1 km. The observed performance of both schemes is close to the 

performance predicted via simulations. With a 1/3 rate code and the use of a 1-norm 

Viterbi decoder, many packets are recovered perfectly. However, a 1/6 rate code was 

required to ensure that all the packets were recovered without any errors. OFDM-

512/32 has higher bandwidth efficiency than OFDM-128/32. Its effective data rate 

with the 1/6 rate code was 7,630 bps. 
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OFDM-512/32 with 1/3 rate code was able to achieve an average BER < 10-4 at 

a range of 800 m. This translates to an effective data rate of 15,260 bps. 
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Figure 8.9. Performance of OFDM-512/32 at 1 km range without coding 
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Figure 8.10. Performance of OFDM-512/32 at 1 km range with 1/3 rate coding 
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8.3. Conclusions 

In this chapter, we described two field trials and analyzed the data collected. 

During the first trial, we demonstrated that coded OFDM could be successfully 

implemented in a WSWA channel with the use of a cyclic prefix and differential 

QPSK modulation. We were able to demonstrate error-free transmissions at an 

effective data rate of up to 5.3 kbps at a range of 350 m. We also successfully tested 

the prediction that a channel interleaver would improve communication performance 

in presence of snapping shrimp dominated ambient noise. 

The second trial tested the performance of two coded OFDM schemes at ranges 

of 800 m and 1 km. Both schemes were able to successfully recover all packets after 

decoding. At a range of 1 km, we were able to achieve error-free communications at 

7.6 kbps. Assuming a performance criterion of BER < 10-4, we were able to establish 

communications at 15 kbps at a range of 800 m. This performance is significantly 

better than performance of commercially available systems in local waters. Through 

this trial, we validated our prediction that the 1-norm Viterbi decoder is superior to 

the hard-decision and Euclidean Viterbi decoders in presence of impulsive ambient 

noise. The performance predictions from the simulations documented in the previous 

chapter agreed quite closely with the measured performances. This suggests that our 

channel model captures the essential characteristics of the WSWA channel. 
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9. Conclusions & Further Research 

9.1. Conclusions 

The WSWA channel has posed a challenge for communication systems. The 

performance of commercial communication systems in this channel has been poor. No 

commonly accepted channel model exists for this channel, and most researchers use a 

white Gaussian noise assumption, which is clearly violated in the channel. A lack of 

accurate understanding and modeling of the channel leads to development of 

communication schemes that perform poorly in the WSWA channel. 

We have developed a physics-based channel model for the WSWA channel. The 

model assumes ray propagation in an isovelocity medium and includes effects such as 

spreading, attenuation, reflection losses, etc. The model also includes time-varying 

statistical effects such as fading and movement of transducers. The model was 

calibrated using channel measurements made at sea. The channel was validated at two 

levels – the impulse response and time variation predicted by the model was 

compared against measurements, and the performance of OFDM in the simulated 

channel was compared against experimental performance of OFDM at sea. The 

channel model captures most aspects of WSWA channels accurately. 

The channel model has an additive ambient noise component. In contrast with 

most UWA communications research which assumes Gaussian noise, we have 

modeled the ambient noise in WSWA channels as SαS noise. This has many 

implications on the design of communication systems for the WSWA channel. For 

example, the noise on the in-phase and quadrature components of QPSK 

communication links is independent in the case of Gaussian noise, whereas in SαS 

noise it is correlated. The linear correlator is optimal in Gaussian noise, but performs 
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poorly in SαS noise. A soft-decision Viterbi decoder based on the Euclidean branch 

metric is optimal in Gaussian noise but performs very poorly in SαS noise. We 

developed a framework for analysis of communication links in SαS noise. We also 

developed computationally efficient near-optimal solutions such as the sign correlator 

for detection and the 1-norm Viterbi decoder for decoding of convolutional codes in 

presence of SαS noise. 

Based on the understanding of the channel developed during the research, we 

proposed an OFDM based communication scheme for use in WSWA channels. We 

used differential QPSK and a cyclic prefix to eliminate the need for an equalizer. We 

used a convolutional code and a channel interleaver to effectively benefit from the 

time-frequency diversity available in the channel. The channel interleaver avoids the 

performance impact from correlated errors due to broadband noise impulses, 

correlated in-phase and quadrature components of noise and correlated fading. The 

use of 1-norm Viterbi decoding ensures good decoding performance in impulsive 

noise. We also adapted a method which uses properties of the cyclic prefix for symbol 

synchronization to work in presence of non-Gaussian noise. 

Given estimates of channel coherence time and delay spread, we derived 

constraints on the choice of OFDM parameters. These constraints guided us to choose 

appropriate OFDM parameters such as the number of sub-carriers and prefix length. 

We used the channel model to simulate OFDM communications with selected 

parameters and validated our choice of parameters for sea trials. Finally, we 

demonstrated reliable communications in very shallow waters in Singapore at ranges 

of 800 m and 1 km. During the experiment, more than 27 kb of data was transmitted 

without errors at a data rate of 7.6 kbps at a range of 1 km. More than 54 kb of data 

was transmitted at 15 kbps and a BER of 10-4 or better at a range of 800 m. 
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We conclude that the proposed OFDM scheme with appropriate choices of 

parameters can provide good communication performance in WSWA channels. 

9.2. Further Research 

During this work, we have assumed a static transmitter and receiver. In many 

real applications for underwater mobile platforms, the transmitter and receiver may be 

moving with respect to each other. If the relative speed is large enough, Doppler 

compensation will be necessary for the recommended OFDM scheme to work. Carrier 

offset estimation and compensation in presence of SαS noise requires further 

research. 

We also assumed single transducers for our research. Significant amount of 

work has been done in the last decade with MIMO systems, space-time coding and 

spatial diversity combining. To achieve maximum benefit from multiple transducers, 

this work needs to be integrated with our understanding of the WSWA channel and 

SαS ambient noise. 

Even with a single transducer and a non-mobile environment, several 

improvements may be possible to the proposed OFDM communication scheme. For 

example, a soft output viterbi algorithm (SOVA) can be adapted to use the 1-norm 

branch metric. This will enable the use of iterative decoding techniques with serial 

concatenated codes and turbo codes to further improve decoding performance. 

Development of equalization techniques for OFDM in SαS noise may enable us to 

reduce the length of the cyclic prefix and increase the bandwidth efficiency of the 

communication link. 

We currently filter out all out-of-band noise to maximize SNR. However, the 

broadband nature of the impulses in SαS noise introduces a correlation between the 
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out-of-band noise and in-band noise. Thus, by observing the out-of-band noise, we 

may be able to partially de-noise the signal before processing. A related idea has been 

explored in [39;40]. Further research is required to implement such a method in UWA 

communications. 

Once UWA communication links can be reliably established, the next natural 

step is towards underwater networking. Preliminary research in UWA networks 

suggests that the requirements for such networks are significantly different from 

wireless networks [92;93]. The OFDM scheme developed here has to be evaluated 

and modified in light of requirements such as multiple access to the channel, carrier 

sensing, power control, etc. 
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Appendix A: Simulation of a Random Process 

with Exponential Correlation 

In this research, we have modeled time-variation in the WSWA channel as an 

exponentially correlated random process. This manifests itself in the channel model in 

the form of two random processes – the fading coefficients Asb(t) and the time jitter 

Jsb(t). In the implementation of a simulator for the channel, we need to generate 

instances of the random processes with SαS and Gaussian PDF and specified 

correlation as defined by the coherence time (or Doppler spread). Generating 

independent random numbers in MATLAB is easy. However, MATLAB does not 

have any functions to directly generate a correlated random process. In this appendix, 

we outline a simple procedure to generate a correlated random process. 

We model the autocorrelation of the random process X as an exponential 

function parameterized by λ: 

( ) ( ttRXX λ−= exp )        (9.1) 

For a channel fading process, the required autocorrelation is usually known in 

terms of the Doppler spread or coherence time. This is the 3 dB bandwidth of the 

Fourier transform of the autocorrelation. Taking the Fourier transform of (9.1), we 

get: 

( )
( )22 2
2

f
fS XX πλ

λ
+

=        (9.2) 

The maximum value of SXX(f) is 2/λ (obtained at f = 0). The 3 dB points are 

therefore obtained when the value of SXX(f) is 1/λ i.e. 
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The 3 dB bandwidth is then λ/π. If the 3 dB Doppler spread Wd is given, we can 

compute parameter λ for the desired autocorrelation function: 

dWπλ =         (9.4) 

If the coherence time τ is known instead of the Doppler spread, the equivalent 

Doppler spread can be estimated in terms of the coherence time using an approximate 

relationship [83]: 

τ5
1≈dW         (9.5) 

Let Yi be a zero-mean random process with independent samples distributed 

according to the desired PDF (SαS or Gaussian). We can compute a correlated zero-

mean random process Xi from Yi such that subsequent samples in the process have a 

correlation ρ using the following recursive relationship: 

iii YXX 2
1 1 ρρ −+= −        (9.6) 

If Xi represents a time series with a sampling rate of Fs, the samples Xi and Xi-1 

are 1/Fs apart in time. We obtain the desired exponential autocorrelation function by 

substituting t = 1/Fs in (9.1): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

sF
λρ exp         (9.7) 

Substituting (9.4) in the above, we have: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

s

d

F
Wπρ exp        (9.8) 
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Using this value of ρ and (9.6), we can generate a correlated random process 

with the desired exponential autocorrelation from an independent random process. 

The PDF of Xi is the same as the PDF of Yi due to the stability property of the PDF of 

Yi [50]. 
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