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SUMMARY 
 

The genes controlling cell-cell contact and cellular polarity are known to be heavily 

involved in cancer progression. Tumorigenic mouse GIF cells isolated from Runx3-/-  

gastric epithelium attached weakly to each other and did not form glandular structures 

on collagen gels as previously reported, suggesting that cellular polarity could not be 

established in the Runx3-/-  cells. In a search for RUNX3 target genes functioning in 

gastric carcinogenesis, claudin-1, a gene from the tight junction protein family which 

functions in cell-cell contact and cellular polarity was found to be expressed at high 

level in Runx3+/+ mouse gastric epithelial cells, but at very low level in Runx3-/- ones.  

In human gastric cancer cell line, SNU16, RUNX3 is expressed in the 

cytoplasm in an inactive form and, upon treatment of cells by TGF-β, RUNX3 

translocates into the nucleus and functions as a tumor suppressor. In SNU16, claudin-

1 is expressed after the treatment of cells with TGF-β. The TGF-β-dependent 

expression of claudin-1, however, was not observed in RUNX3-knocked-down 

SNU16 cells. Furthermore, hclaudin-1 promoter activity was dose-dependently up-

regulated by expression of RUNX3. Chromatin immunoprecipitation assay showed 

that RUNX3 is bound to the cognate RUNX3 binding site in the promoter region of 

hclaudin-1.  

SNU16 cells express claudin-1 and knock-down of claudin-1 expression 

enhanced tumorigenicity in nude mice. Furthermore, the tumorigenicity of Runx3-/- 

GIF clones stably expressing claudin-1 was significantly less than parental cell lines. 
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Altogether, these results showed that claudin-1 has a tumor suppressor activity in 

gastric epithelial cells. Consistent with these observations, expression of claudin-1 

and RUNX3 expression were found to be correlated in the human gastric cancer 

specimens. 

 For the first time, claudin-1 was identified as a novel downstream target of 

RUNX3 in the TGF-β pathway. Strong evidence showed that RUNX3 transcriptionally 

regulates the expression of claudin-1. Since claudin-1 exhibits tumor suppressive 

activity, a part of tumor suppressor activity of RUNX3 is likely to be mediated by 

claudin-1.   
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CHAPTER 1  OBJECTIVE 
 
 
 
The aim of the study is to understand the full potential of RUNX3 as a tumor 

suppressor. Since RUNX3 is a transcription factor, the identification of the target 

genes that are induced or suppressed by RUNX3 should provide important insights 

into the molecular mechanism behind its tumor suppressor activity. Since RUNX3 is a 

nuclear effecter of TGF-β pathway and  TGF-β pathway is considered to be a tumor 

suppressor pathway, it is important to identify TGF-β dependent, RUNX3 mediated 

target genes.  

Based on a previous observation that the loss of RUNX3 affects cell-cell 

contact and polarity, I would like to examine whether RUNX3 regulates genes involve 

in this function and its possible link to gastric carcinogenesis. Previously, it was 

observed that claudin-1, a member of the tight junction protein family exhibited a 

similar knockout phenotype as those of Runx3-/-. As RUNX3 functions as a tumor 

suppressor under the TGF-β pathway, it would be feasible to observe if tight junction 

genes are regulated under this pathway in the gastric epithelial cells, which is an area 

yet to be examined. Findings of possible connections between RUNX3 and tight 

junction proteins in the gastric system may enable the development of useful 

molecular markers for diagnostic purposes. 
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CHAPTER 2  INTRODUCTION 
 
 
 
2.1 Gastric Cancer 
 
  

With the steady decline in the incidence of gastric cancer worldwide, it has become 

the fourth most common cancer, after cancers of the lung, breast, and colorectal. This 

is in comparison to its ranking as the second most common cancer worldwide in the 

past (1). However, gastric cancer remains a major public health problem as it remains 

the second most common type of fatal cancer worldwide (1, 2). There has been little 

improvement in survival as gastric cancer is too often diagnosed at an advanced stage, 

despite the extensive diagnostic and therapeutic investigations of gastric cancer.  

Although gastric cancer frequencies have been clearly linked to environmental 

factors, such as Helicobacter pylori infection and diet, the genetic basis for gastric 

cancer development is still largely unclear. It is evident that transformation of a 

normal epithelial cell to a malignant cell is a result from the accumulation of several 

gene abnormalities which involves multiple steps. Correa postulated a model 

involving histomorphological changes that leads to gastric cancer (3). In this model, 

development of chronic gastritis, atrophy, intestinal metaplasia and eventually 

dysplasia results in gastric cancer. However, this model is still open to debate as it 

remains unclear whether these changes follow each other step by step, or whether 

some histomorphological changes directly precede gastric cancer development (3, 4).  
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2.1.1 Genetics of Gastric Cancer 

 

Over the years, various genetic and epigenetic alterations have been associated with 

the development and progression of gastric cancer. These include microsatellite 

instability (MSI), reactivation of telomerase, inactivation of tumor suppressor genes 

and activation of oncogenes.   

Due to DNA mismatch repair deficiency, replication errors in simple 

repetitive microsatellite sequences may occur which is defined as MSI. MSI can be 

classified as high-frequency (MSI-H), low-frequency (MSI-L), or stable (MSS). MSI 

has been recognized as one of the earliest changes in carcinogenesis, resulting in 

genomic instability. It was discovered that gastric cancer cases with MSI-H often 

show hypermethylation of CpG islands in the promoter region of the hMlh1 gene 

which is associated with decreased hMlh1 protein expression. This indicates that 

epigenetic inactivation of hMlh1 due to promoter methylation could be the underlying 

cause of MSI (5, 6). A subset of gastric cancers including gastric tumors was found to 

harbor MSI (7, 8). Various genes involved in the regulation of cell-cycle progression 

and apoptotic signaling that have been found to be specifically altered in gastric 

cancer displaying MSI include BAX, hMSH3, hMSH6, E2F-4, TGF-β receptor II, and 

insulin-like growth factor receptor II (7). In view of this, MSI has been suggested as a 

genetic marker for the development of multiple gastric cancers (9).  
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Tumor suppressor genes and oncogenes play a general role in regulating the 

developmental and differentiation processes. Deregulation of these genes enables the 

development of cancer. Inactivation of tumor suppressor genes is frequently 

discovered in gastric carcinogenesis (10). It is known that at least two independent 

‘hits’ are required to fully inactivate a tumor suppressor. The attention in cancer 

research has typically been on two of the mechanisms that inactivate tumor 

suppressors, namely loss of heterozygosity (LOH) or homozygous deletion. LOH in 

chromosomal loci such as 1p, 2q, 4p, 5q, 6p, 7q, 11q, 12q, 14q, 17p, 18q and 21q 

have been discovered in differentiated type of gastric cancer (11-14). However, it 

remained unclear which are the genes that are specifically involved in gastric 

carcinogenesis. It was then found that DNA methylation is also a powerful 

mechanism that suppresses gene transcription, which represents an alternative 

mechanism of tumor suppressor inactivation in cancer. Genes that are inactivated by 

DNA methylation include RB, the von Hippel-Lindau gene (VHL), CDKN2A 

(p16INK4A), CDKN2B (p15INK4B), E-cadherin (E-cad), hMLH1, APC, RASSF1 and 

caspase-8 (15-17).  

 The group of activated oncogenes consists primarily of various growth factors 

and growth factor receptors. c-met, a proto-oncogene which encodes a tyrosine kinase 

receptor for the hepatocyte growth factor, was overexpressed in 50% of diffuse and 

intestinal-type of gastric cancers. Tumors overexpressing c-met also display increased 

invasiveness and are poorly differentiated (18). The overexpression of c-erB2 (HER-

2/neu) gene, a proto-oncogene and a transmembrane tyrosine kinase receptor was also 



5 
 

found to associate with approximately one-fourth of all gastrointestinal tract 

malignancies (19), and has been implicated as a potential marker for the prognosis in 

gastric cancers (20). Oncogenes, such as cyclin E and and c-myc were also discovered 

to be amplified and overexpressed in gastric carcinoma (21, 22). 

 Though numerous genetic abnormalities associated with gastric cancer have 

been described, they were either associated with a limited number of cases or were 

still poorly understood. The molecular mechanisms underlying the pathogenesis of 

gastric cancer have only been characterized recently with the discovery of RUNX3 

and its role in gastric carcinogenesis. The reason why RUNX3 was not identified as a 

tumor suppressor earlier could be because this gene is inactivated mainly by 

epigenetic modification and genetic alteration of both alleles is very rare. RUNX3 

appears to be a new addition to the list of genes that are inactivated by DNA 

methylation. Since its discovery as a strong candidate tumor suppressor in gastric 

carcinogenesis (23), the underlying mechanisms of RUNX3 regulation and its 

downstream target genes in gastric carcinogenesis became the subject of active 

investigations.  

 

2.2      RUNX Protein Family 

 

RUNX genes encode the α subunits called the polyomavirus enhancer-binding protein 

2 (PEBP2)α/core binding factor (CBF)α of the Runt domain transcription factors. The 

α subunit heterodimerizes with the β subunits (PEBP2β/CBFβ) to form the 
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heterodimeric transcription factor, initially discovered as the PEBP2, or the CBF, 

which interacts with the enhancer core of Moloney murine leukemia virus. RUNX 

proteins alone are unstable, as they are subjected to ubiquitination followed by 

proteolytic degradation by proteasome enzymes (24). Heterodimerization with the β 

subunit prevents ubiquitination, thus stabilizing RUNX proteins (Figure 2.1).  

However, RUNX heterodimers are relatively weakly acting transcriptional 

regulators. Associations with transcriptional co-activators, such as MYB, ETS, and 

p300/CBP, or co-repressors such as TLE1 and mSin3A however can induce the 

potency of its transcriptional function (25). Due to the low expression level of RUNX 

proteins, subcellular localization of RUNX proteins has been studied largely using 

exogenously expressed RUNX proteins in fibroblasts and leukemic cells. 

Immunocytochemistry shows that RUNX proteins are localized in the nucleus, 

whereas exogenously expressed PEBP2β/CBFβ is in the cytoplasm.  

To date, three RUNX genes, namely RUNX1, RUNX2 and RUNX3 have been 

identified in mammals, whereby all three genes contain a conserved region, termed 

the Runt domain (26). By comparing between the mouse PEBP2αA1 (Runx2), mouse 

PEBP2αB1 (Runx1), and human PEBP2αC1 (RUNX3) as well as Drosophila Runt 

proteins, PEBP2αA1 and PEBP2αC1 was found to be 93.8% identical in homology, 

whereas PEBP2αB1 and PEBP2αC1 was 93.0% identical in homology. Besides, all 

three Runt domain proteins also have a C-terminal end containing a unique five 

amino-acid sequence, identified as VWRPY, which is 100% conserved from 
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Drosophila to human (27). This C-terminal part of the RUNX molecule plays a role 

in transcription regulation (28, 29).  

 

 

 

 

 

 

 

 

Figure 2.1: Crystal structure of the Runt domain heterodimerized with the 134 
amino-acid region of PEBP2/CBF bound to DNA. [Ref. 23] 
 

 

2.2.1 Nomenclature of RUNX 

 

The runt-domain transcription factors RUNX1, RUNX2 and RUNX3 have previously 

been assigned various designations by different laboratories. The designation acute 

myelogenous leukemia (AML) factors (ie. AML1, AML2 and AML3) was generated 
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based on the genetic studies of leukemia-related chromosomal translocations. Core-

binding factor alpha (CBFA) was initially characterized as sequence specific DNA-

binding proteins that interact with the enhancers of retroviruses. PEBP2 was named 

after the murine cDNAs polyoma enhancer-binding proteins. Other aliases, such as 

nuclear matrix protein 2 (NMP2), osteoblast-specific complex (OBSC) and 

osteoblast-specific factor 2 (OSF2) were also generated. In November 1999, the 

Nomenclature Committee of the Human Genome Organization (HUGO) adopted the 

use of the term ‘RUNX’ to refer to the genes encoding the runt-related proteins, also 

an abbreviation for the term ‘runt-related protein’. The mammalian RUNX proteins 

and their synonyms as well as their locus are as listed in Table 2.1. The order of the 

numbers was given according to the order in which the knock-outs for each of the 

mouse Runx genes were published (Runx1/Aml1 in 1996 (30, 31), Runx2/Cbfa1 in 

1997 (32, 33) and Runx3/Pebp2αC in 2002 (23).    

 

Table 2.1: The mammalian RUNX genes synonyms and their locus  

                  (Adapted from Oncogene 2004; 23:4209-10) 

RUNX1 CBFA2 AML1  PEBP2alphaB  21q22 

RUNX2 CBFA1 AML3  PEBP2alphaA  6p21 

RUNX3 CBFA3 AML2  PEBP2alphaC  1p36  
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2.2.2 Evolutionary Conservation of RUNX   

 

Besides the three RUNX genes in mammals, four genes have been reported in D. 

melanogaster (34), (35), (36), one in sea urchin (37), one in Xenopus (38), four in 

zebra fish (39), (40), (41), and one in C. elegens (42). RUNX genes also appear to be 

conserved throughout in metazoa, the most primitive organism described so far, with 

the findings of RUNX homologs in basal metazoans such as starlet sea anemone 

(Nematostella vectensis) (43) and sponge (Oscarella carmela) (44). This shows that 

RUNX genes were highly conserved throughout the evolution, and very likely to play 

an important role in the early metazoan development and evolution. Like their 

counterparts in D. melanogaster and C. elegans, mammalian RUNX family 

transcription factors also play important roles in cell fate determination during 

development. As reported for Runx1 (30), Runx2 (32, 33) and Runx3 (23), genetic 

ablation of all these genes have profound effects on development processes.  

 

2.3 Role of RUNX Protein Family 

  

2.3.1 RUNX1   

 

RUNX1 is known to play a critical role in hematopoietic development and is 

genetically altered in leukemia. RUNX1 is the most frequent target of chromosomal 

translocations associated with human leukemia, with the TEL-AML t(12;21) fusion 
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accounting for 20% of acute lymphoblastic leukemia (ALL) cases and the AML-ETO 

t(8;21) fusion accounting for 12% of acute myeloid leukemias (AML) (45). 

Heterozygous loss-of-function mutations which cause haploinsufficiency of RUNX1 

are associated with familial platelet disorder with predisposition to acute myeloid 

leukemia (FPD-AML) (46). This supported the hypothetical function of RUNX1 as 

tumor suppressor for AML. Besides, sporadic heterozygous mutations and point 

mutations of RUNX1 are also leukemogenic (47, 48). Its association with several 

autoimmune diseases, namely, systemic lupus erythematosus, rheumatoid arthritis 

and psoriasis has also been reported (49), (50).  

 In mouse model, genetic ablation of Runx1 results in embryonic lethality and 

a complete lack of fetal liver hematopoiesis (30), (31). Runx1 is also essential for the 

generation of hematopoietic stem cells (HSCs) (51, 52). Runx1-deficient hematogenic 

endothelial cells are incapable of producing hematopoietic stem cells (HSCs), 

suppo rting its role in the initiation of the hematopoietic system. However, Runx1 is 

not necessary for the maintenance of HSCs in the adult stage or expansion of 

HSC/progenitor cells (HSC/Ps). Instead, lack of Runx1 induces myeloproliferative 

disease and T-cell lymphoma. It was thus suggested that Runx1 plays a role as a 

global regulator of hematopoiesis, from initiation to terminal differentiation.  
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2.3.2 RUNX2 

 

RUNX2 is essential in osteogenesis. In human and mice, deletions, insertions or 

mutations that inactivates one allele of the RUNX2 gene causes the autosomal 

dominant bone disorder, called cleidocranial dysplasia (33, 53, 54). Runx2 gene 

product is necessary for osteoblast differentiation and bone ossification as Runx2-

knockout mice display complete bone loss, whereas Runx2 heterozygous mice 

displayed hypoplasia of the clavicle and delayed development of membranous bones 

which were all typical features of cleidocranial dysplasia (32, 33). 2Interestingly 

however, Runx2 has also been described as an oncogene whereby the overexpression 

of Runx2 pertubates T cell development in lymphomagenesis by its cooperation with 

c-myc (55). However, the oncogenic property of Runx2 is something yet to be fully 

understood since both RUNX1 and RUNX3 are well-documented tumor suppressors. 

 

2.3.3 RUNX3 

 

As compared to RUNX1 and RUNX2, RUNX3 is involved in more diverse biological 

pathways. Besides playing a role in gastric carcinogenesis as shown by targeted 

deletion of Runx3 in mice (23), its role in CD8-lineage T-cells development (56, 57) 

and in dendritic cells (58) have also been reported. Besides, absence of Runx3 also 

affects the biological function of the TrkC-dependent dorsal root ganglion neurons as 

reported by Inoue et al. (2002) (59) and Levanon et al. (2002) (60). Possible 
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involvement of RUNX3 in the cancers of the lung, colon, pancreas, liver, prostate, bile 

duct, breast, larynx, esophagus, endometrium, uterine cervix and testicular yolk sac 

was also reported (61-75). Since RUNX3 is involved in so many different cancer 

types, it may also be playing critical roles in different aspects of carcinogenesis.  

 

2.4 RUNX and TGF-β Tumor Suppressor Pathway 

 

Transforming growth factor-β (TGF-β) is a family of multifunctional cytokines that 

regulate the growth, differentiation, apoptosis and matrix accumulation of wide 

varieties of cells (76). It is a member of the TGF-β superfamily which includes bone 

morphogenetic proteins (BMPs), activins, Nodal, myostatin, and anti-Mullerian 

hormone (AMH). TGF-β, activin, Nodal and myostatin activates the TGF-β-like 

signals, whereas BMPs and AMH activates BMP-like signals.  

TGF-β is essential in many development and physiological processes. It acts 

as a potent growth inhibitor of most cell types, such as the epithelial cells, endothelial 

cells, hematopoietic cells, and lymphocytes. Abnormalities in the TGF-β receptor 

affect downstream signal transduction pathways involved in the control of cell growth 

and differentiation, which often results in tumor progression, thus is regarded as a 

tumor suppressor pathway (77-79). Heterozygously disrupted TGF-β1 displayed 

increased hepatocyte proliferation and decreased apoptosis in liver and lung, which 

induced liver and lung cancer when challenged with chemical carcinogen (80). TGF-
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β1 knockout mice also show hyperplasia in the epithelial cells of glandular stomach 

(81).  

It is interesting to note that some functions of the TGF-β superfamily 

cytokines are similar to those of RUNX proteins. For example, TGF-β acts on B 

lymphocytes and induces synthesis of IgA, and Runx1 exhibits a similar effect. BMPs 

induce bone formation, which is similar to the function of Runx2. TGF-β also 

regulates growth and apoptosis of gastric epithelial cells, which are also regulated by 

Runx3. True enough, Runt domain transcription factors were found to be important 

targets of TGF-β superfamily signaling. Smad2 and Smad3 which acts as signal 

transducers in the TGF-β signaling pathway were shown to interact with RUNX1, 

RUNX2 and RUNX3 in vitro (82). Physiologically, endogenous RUNX2 also 

interacts with endogenous Smad3 in 10T1/2 and ROS17/2.8 cells (83).   

In the TGF-β signaling pathway, members of the TGF-β superfamily bind to 

two distinct transmembrane receptors, the type I, which is a threonine kinase receptor, 

and type II, which is a serine kinase receptor (84). Upon binding of their 

corresponding ligand to type I and type II receptors, type II receptor kinases 

transphosphorylate the juxtamembrane domains of the type I receptor kinases, 

forming a heterotetramers. This activated form of receptor then phosphorylates the 

receptor-regulated Smads (R-Smads), namely Smad2 and Smad3, which will then 

form hetero-oligomeric complexes with the common-partner Smad (Co-Smads), 

Smad4. The R-Smad-Co-Smad complexes then translocate into the nucleus and binds 

to transcription factors to regulate the transcription of target genes. These 
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transcription factors would act along with other transcription factors, co-activators 

and co-repressors to regulate various genes upon stimulation by members of the TGF-

β superfamily (Figure 2.2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: The TGF-β tumor suppressor pathway. Mutations in the genes encoding 
TGF-β type I and type II, Smad2/3 and Smad4 are linked to various cancers as 
indicated. The transcriptional co-activator p300 is also mutated in several cancers. 
RUNX3 is a target of TGF-β tumor suppressor pathway. [Ref. 100] 
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Both TGF-β signaling components and RUNX establish a functional 

relationship by working synergistically to regulate the downstream target genes.  

Figure 2.2 shows a schematic diagram of the transcription regulation by RUNX3 

under the TGF-β tumor suppressor pathway. Various cancers linked to mutations in 

the gene encoding TGF-β type I and type II receptors, Smad2/3, Smad4 (DPC4) and 

the transcriptional co-activator p300 were depicted in the diagram (78, 85-87). 

 

2.5 RUNX3 and Gastric Cancer 

 

Identification of Runx3 expressing tissues has been challenging and complicated since 

results generated from different methods of detection were different. Besides, 

temporal and spatial changes of expression also add to the complexity. However, 

Runx3 appears to be expressed ubiquitously in many cell types including epithelial 

cells, mesenchymal cells and blood cells. Expression in peripheral nervous system 

including dorsal root ganglion neurons, epithelial cells in the adult gastrointestinal 

tract and hematopoietic cells are especially prominent (88).    

RUNX3 has been identified as the smallest gene in the family, which span 

about 67kb with six exons. Based on the genomic structure complexity, Bangsow et 

al. (2001) (89) proposed that RUNX3 is the most primitive of the three genes though 

the precise chronology of evolutional diversification of the genes still remains to be 

determined (36). However, it is still interesting to note that Runx3 is involved in the 

development of primitive monosynaptic neurons (59, 60). Both C. elegens and sea 
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urchins also contain one Runx gene, which are expressed in the intestine and foregut 

respectively (42, 90). In mouse, Runx3 is expressed in the gastrointestinal organs of 

the developing embryo and throughout the adulthood of the mouse. RUNX3 function 

in the stomachs of mammals may therefore be evolutionarily conserved.  

In human, RUNX3 is found in locus 1p36, a region that is frequently deleted in 

many type of cancers, and was postulated to contain other important tumor suppressor 

gene(s) (91). Several lines of evidence have demonstrated that RUNX3 is a tumor 

suppressor of gastric cancer (23, 92). Work by Li et al (2002) shows that while Runx3 

knockout mice are born in Mendelian ratios, they die soon after birth, possibly due to 

starvation. The gastric epithelium of Runx3 knockout mice displays hyperplasia due 

to an increase in cell proliferation and a reduced apoptosis rate (23, 93). A reduced 

sensitivity to TGF-β1 was also shown in Runx3 knockout mice, suggesting that 

RUNX3 operates downstream of the TGF-β signaling pathway, which is a well-known 

tumor suppressive pathway. Runx3-/- gastric epithelial cells in a p53-/- background 

are tumorigenic in nude mice, whereas those from Runx3+/+p53-/- mice are not. This 

suggests that Runx3 functions in keeping cell proliferation under control, which is a 

typical feature of a tumor suppressor. 

Studies in mice have implicated the importance of Runx3 in the growth and 

differentiation of mouse gastric epithelial cells (93-95). Observation of the 

Runx3+/+p53-/- and Runx3-/-p53-/- cells using phase contrast microscopy showed 

that both types of cells were relatively homogenous in appearance, and exhibited 

polygonal morphology, a characteristic of epithelial cells (Fig. 2.3A and B). Further 
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examination of the Runx3+/+ and Runx3-/- gastric epithelial cells revealed that when 

cultured between collagen gels, Runx3+/+ cells formed simple columnar epithelia 

with occasional glandular structures. The cells showed polarity with positive staining 

for PAS, which stains mucus localized on the luminal surface, a characteristic of 

mucous neck cells, indicating that they retain the phenotype of relatively 

undifferentiated gastric epithelial cells (Fig. 2.3C) In contrast, Runx3-/- cells attached 

weakly to each other and did not form glandular structures, but piled between 

collagen gels. Some cells were weakly stained with PAS, indicating that they 

synthesized and secreted mucus, but mucus droplets were evenly distributed in their 

cytoplasm, suggesting that cellular polarity could not be established when cells were 

combined with collagen gels (Fig. 2.3D) (95).  

Besides, it was also found that primary gastric cancer specimens express 

significantly lower levels of RUNX3 due to a combination of hemizygous deletion 

and hypermethylation of the RUNX3 promoter region. Of 46 primary human gastric 

cancer specimens, 30% displayed hemizygosity of RUNX3. Intragenic mutation in the 

remaining allele was however very rare. Instead, RUNX3 gene was silenced by DNA 

methylation on the CpG island located in the proximal (P2) promoter region, which 

resulted in reduced RUNX3 level in 45-60% of the primary human gastric tumors 

analyzed, which further rised to nearly 90% among the late stage, representing highly 

metastatic tumors. One incidence of a single point mutation involving a single-

nucleotide transition of arginine 122 to cysteine (R122C) within the conserved Runt 

domain was also discovered in the 119 human tumors investigated. When tested on 
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nude mice, exogenous RUNX3 greatly reduced tumor growth, while the R122C 

mutation abolished the tumor-suppressor activity of RUNX3 (23).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Characteristic of mouse gastric epithelial cell lines in vitro. Phase 
contrast micrographs of Runx3+/+p53-/- GIF9 cell line (A), and Runx3-/-p53-/- GIF5 
cell line (B) in culture. Light micrographs of Runx3+/+p53-/- GIF9 (C) and Runx3-/-
p53-/- GIF5 cells (D) cultured between collagen gels, and stained with PAS-
hematoxylin. [Ref. 95]  
 
 

 

In N-methyla-N-nitrosourea (MNU)-treated mice that developed gastric 

cancer, Runx3 was also inactivated by DNA methylation (92). Although the exact 

mechanism by which MNU induces gastric carcinomas remains unknown, Runx3 
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appeared to be the major target of the carcinogen, since CpG islands in the Runx1 and 

Runx2 promoter regions were not methylated (92). Ras and p53 genes also do not 

appear to play important role in these changes (96). Collectively, these results 

provided strong evidence that RUNX3 is a tumor suppressor in gastric cancer, 

whereby inactivation of RUNX3 is causally associated with human gastric 

carcinogenesis.  

On a separate investigation, the authors also found that RUNX3 was 

inactivated in more than 80% of gastric cancer not only by gene silencing but also by 

protein mislocalization (97). In a total of 97 gastric cancer samples tested, 44% did 

not express RUNX3. From the remaining 56% that expressed RUNX3, 38% were 

detected exclusively in the cytoplasm, and only 18% showed nuclear localization. 

Unlike RUNX3 in nuclear, those that were expressed in the cytoplasm of cancer cells 

were inactive as tumor suppressor. Several other groups also reported the role of 

RUNX3 in gastric cancer, whereby the lack of RUNX3 function is linked to the 

genesis and progression of gastric cancer (68, 70, 98). Collectively, all these 

observations indicate the importance of RUNX3 in the normal function of stomach as 

well as its role as tumor suppressor in gastric carcinogenesis.  

 

2.5.1 Tumor Suppressive Mechanism of RUNX3  in Gastric Cancer  

 

RUNX3 is a downstream target of the TGF-β signaling pathway, whereby RUNX3 

forms complexes with Smads which in turn regulates target gene expression (99, 100).  
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Runx3 knockout mice which displayed a reduced sensitivity to TGF-β supported the 

notion that RUNX3 operates downstream of the TGF-β signaling pathway (23). 

Apoptosis induced by TGF-β is a well-documented phenomenon that occurs 

in many different cell types (101). The activation of Smad proteins seems to play a 

crucial role in the TGF-β-induced apoptosis, as shown by the induction of apoptosis 

with the overexpression of Smad4 (102), whereas overexpression of a dominant-

negative Smad3 inhibits TGF-β-dependent apoptosis (103). Several proapoptotic 

target genes regulated by the TGF-β signaling pathyway, such as Bcl-2, Bcl-xL, Bax 

and the zinc-finger trasnscription factor (TIEG) were also reported (104-106). 

However, the underlying mechanism mediated by TGF-β that regulates these 

proapoptotic genes was not understood. Recently, Bim was discovered as a 

downstream target of RUNX3. RUNX3 was shown to transcriptionally upregulates 

Bim which functions in the TGF-β induced apoptosis in gastric epithelial cells (107).  

This indicates that RUNX3 plays a role in apoptosis to regulate proliferation of gastric 

epithelial cells.   

TGF-β mediated growth arrest works through two classes of antiproliferative 

gene responses namely the inactivation of cyclin-dependent kinases (cdks) through 

the induction of cdk inhibitors, and the downregulation of c-Myc (108).  It was 

recently reported that RUNX3 mediates the TGF-β induced cell growth arrest in 

gastric epithelial cells by activating the cyclin-dependent kinase inhibitor, p21WAF1/Cip1. 

The authors showed that the overexpression of RUNX3 potentiates TGF-β-dependent 

endogenous p21 induction. RUNX3 also cooperates synergistically with Smad to 
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activate the p21 promoter. This associates the RUNX3 tumor suppressor function to 

its ability to induce cdk inhibitors (109). Taken together, these findings pointed to the 

ability of RUNX3 in inhibiting proliferation, further support the role of RUNX3 as a 

tumor suppressor under the TGF-β pathway in the gastric system.  

 

2.6 Tight junction (TJ) Protein Family  

 

Tight junctions are one of the four main structures regulating cell-to-cell interactions 

in the epithelial and endothelial cells. Adherens junctions (AJ) and desmosomes are 

mainly involved in cell to cell adhesion, and gap junctions in cell to cell 

communication, whereas TJs provide cell to cell contact with a seal between the 

apical portions of adjacent basolateral membranes (110). On ultrathin section electron 

micrographs, TJs are viewed as a series of fusion points between the plasma 

membranes of adjacent cells located at the most apical regions of the junctional 

complex. TJs contain aqueous pores that are permeable to small molecules, such as 

inorganic ions, with size and charge selectivity (111). In normal epithelial tissues, 

various tight junction proteins are connected through protein-protein interactions to 

form a complex that provide tight sealing of the cellular sheets and to control 

paracellular ion flux, thereby maintaining tissue homeostasis. Besides, tight junctions 

help to maintain cell polarity by forming a barrier that prevents diffusion of 

membrane proteins and lipids from the apical to the basolateral cell membrane (112). 
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 Three integral proteins that are found at the TJ include the transmembrane 

proteins, namely occludin, claudins and junctional adhesion molecules (JAMS) (113). 

Occludin and claudins constitute the backbone of TJ strands and are found abundantly 

in the epithelial and endothelial cells, while JAM appears to be important for the 

routine trafficking of T-lymphocytes, neutrophiles and dendritic cells from the 

lymphoid and vascular compartments to the tissues during immune surveillance and 

inflammatory responses (114). There are also TJ proteins found within the myelin 

sheaths, such as the OSP / claudin-11 (115) and PMP22 / gas-3 (116) that play a role 

in the establishment and maintenance of TJs in epithelia of the central nervous system 

(CNS). JAM as its role suggests, belong to the immunoglobulin superfamily of the TJ 

tetraspan proteins (117).  

 Besides, TJ proteins can also be classified into those containing PDZ domains 

such as the MAGUK (membrane associated guanylate kinase homologues) family 

proteins  ZO-1 (118), ZO-2 (119) and ZO-3 (120), the PAR (partitioning-defective 

proteins) (121-123), the MUPP1 (mu

 

lti-PDZ domain protein 1) (124), and the AF-6 / 

Afadin protein, which is found both at the TJs (125) and AJs (126). Other TJ proteins 

that lack PDZ domain include cingulin (127) and symplekin (128). Through protein-

protein interactions, ZOs, AF-6 and cingulin are recruited to form a complex with the 

TJ on the plasma membrane, providing a link to the actin cytoskeleton for transducing 

regulatory signals to and from tight junctions. 
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2.7 Claudin Superfamily 

  

2.7.1 Emergence of Claudin Superfamily 

 

In 1991, a novel and unique sequence named RVP.1 was found during the studies of 

genes that were up-regulated in rat ventral prostate epithelial cells in response to 

androgen withdrawal (129). Six years later, a receptor for the Clostridium perfringens 

enterotoxin (CPE-R) was characterized (130). With this, the high homology between 

the RVP.1 and CPE-R was revealed. RVP.1 and CPE-R were since renamed as 

claudin-3 and claudin-4 respectively and were functionally deomonstrated to be the 

low affinity and high affinity receptor for CPE respectively (131). In 1996, an 

oligodendrocyte-specific protein, which was renamed claudin-11, with homology to 

claudin-3 and claudin-4 was discovered (132, 133). In 1998, with the findings of two 

homologous novel molecules, named claudin-1 and claudin-2, which was discovered 

to form normal appearing, functional tight junctions in the absence of occludins, the 

claudins were recognized as a new superfamily of homologous protein that 

contributes to the major structural and functional components of tight junctions (134). 

Claudins were named after the Latin word ‘claudere’ – to close. To date, at least 23 

members of the claudin family have been identified in mouse and human, mainly 

through database searches, each having its own characteristic sequence and 

expression pattern. 
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2.7.2 Evolution of Claudin Genes Family   

 

Claudins are crucial members of the transmembrane tetraspan family that constitute 

the tight junctions, usually present on the membranes of epithelial and endothelial 

cells and thus are found throughout the body (135). Individual claudin family 

members can be expressed ubiquitously or is cell-type specific (136). Besides, 

individual cells can express either multiple claudin family members or a single 

claudin species (135, 136).  

 Invertebrates such as C. elegans or D. melanogaster only possess four to five 

claudin-related genes (137, 138). This is in contrast to the many claudin genes present 

in mammals. This, together with the frequently observed tissue- and cell-type specific 

expression of individual claudins in mammals (136, 139), indicates that the expansion 

of the claudin gene family in parallel with the evolution of increasingly complex 

tissue and organs was probably to accommodate new or overlapping functions. A 

total of 56 Fugu claudin genes have also been identified in the teleost fish, Fugu 

rubripes (Fugu), with 35 of them having orthology to 17 mammalian claudin genes, 

and the remaining 21 genes being specific to the fish lineage. The more or less tissue-

specific or developmental stages-specific expression of Fugu claudin genes supported 

the notion that the expansion of claudin gene family during evolution was probably to 

allow acquisition of novel functions and to contribute to the distinct physiology of 

fishes and mammals (140). 
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2.7.3 Claudin Protein Structure and Functions 

  

A typical claudin superfamily protein has a molecular weight of ~21 kDa. The 

putative protein structure of claudins is predicted to consist the cytoplasmic N- and C-

termini, four transmembrane domains, and two extracellular loops (Figure 2.4c). 

Among the claudins, the amino acid sequences of the first and fourth transmembrane 

segments and the first and second extracellular loops are highly conserved, whereas 

the sequence of the second and third transmembrane segments are more diversified. 

The first extracellular loop is larger and more hydrophobic than the second 

extracellular loop and is believed to bridge the intercellular space. Claudins on 

adjacent cells interact with each other through these extracellular loops (141).  

The tight junction protein occludin has the same tetraspanning structure like 

claudins. However, claudins are the main tight junction proteins that function in the 

sealing of the TJ (142). The crucial task of claudins in the TJs was highlighted by the 

following evidence. Firstly, claudin-1 co-localizes with occludin in the most apical 

regions of the second layer of the stratum granulosum in the skin. Epidermal barrier 

of claudin-1 deficient mice was severely affected leading to dehydration, wrinkled 

skin and death of mice within 1 day of birth. In the wild-type epidermis which was 

positive for both claudin-1 and occludin, TJs efficiently prevented the diffusion of 

subcutaneously injected tracer. The claudin-1 deficient and occludin positive 

epidermis however failed to prevent this diffusion from happening, indicating that 

claudin-based TJs in combination with occludin are crucial for the barrier function 
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(143). Secondly, transfection of claudin into human breast cancer cells that have lost 

the expression of claudin-1 decreases the paracellular flux of tracer despite the 

absence of occludin (144).  

Claudins function by limiting the exchange of lipids between the apical and 

basal membranes of epithelial and endothelial cells, hence define the membrane 

polarity, provide a continuous intercellular seal, and regulate the paracellular 

transport of water, solutes and immune cells (112, 145-147) (Figure 2.4a and b). The 

tight sealing function of claudins is also probably mediated through phosphorylation 

at the cytoplasmic C-terminus of claudins which has the consensus motifs of protein 

kinase C (PKC), casein kinase II and cyclin adenosine monophosphate (cAMP)-

dependent kinase. Different claudin species possess different type and number of 

phosphorylation site, suggesting the role of C-terminus in different functions between 

claudin species. Phosphorylation at this region by proteins such as mitogen-activated 

protein kinase (MAPK) and cAMP-dependent kinase, resulted in increased 

permeability of tight junctions, probably through the removal of claudin from the 

tight junction (148, 149).  

Claudins being the major component of tight junctions, interact directly with 

occludin and zonula occludens (ZO), and indirectly with AF-6 and the myosin-

binding molecule cingulin (150-152). Claudins bind to the PDZ-domain-containing 

proteins such as ZO-1, -2 and -3 through its PDZ-binding motif at the C-terminal 

region. As ZO proteins function as scaffolding proteins which are able to bind to 

cytoskeletal proteins, interactions between claudins and ZO proteins promote 
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scaffolding of the tight junction transmembrane proteins, providing a link to the actin 

cytoskeleton for transducing regulatory signals to and from tight junctions (153). Due 

to its crucial role in regulating signaling pathways, loss of normal tight junction 

functions, especially those that are related to claudins has been widely linked to a 

hallmark of cancers (154-159). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Claudin-based tight junctions in simple epithelia. (a) Location of TJs at 
the most apical region of lateral membranes. (b) Enlargement of the boxed area in (a). 
TJ strands are embedded within the lipid bilayer of each membrane. Each TJ strand 
tightly associates with another TJ strand in the opposing membrane of adjacent cells 
to form a paired strand. (c) Enlargement of the boxed area in (b). Structure of 
claudins. It bears four transmembrane domains with a short cytoplasmic tail and two 
extracellular loops. [Ref. 147]  
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2.8 Claudin and Cancer 

 

Depending upon the cancer type, expression of claudins were observed to be 

diminished or elevated in cancer cells compared to normal adjacent cells or tissue 

(Table 2.2). Although the aberrant expression of claudins in cancer has been well 

established, whether claudins play a functional role in tumorigenesis and cancer 

progression remains unclear.  

Based on its primary role in the formation of tight junctions, it has been 

hypothesized that the loss of claudin expression may reduce cell adhesion, hence 

increase tumor cell motility and invasive potential. In line with this hypothesis, a 

correlation has been established between the loss of tight junction protein claudin-7 

and the invasiveness of ductal carcinoma of the breast (158). Besides, the loss of 

claudin expression was also associated with increased motility and invasiveness 

during epithelial mesenchymal transition (160, 161). In vitro studies by 

overexpression claudin-4 in gastric and pancreatic cancer cell lines also showed 

decreased motility, invasiveness and anchorage-independent growth (162, 163). In 

addition, mice injected with pancreatic cancer cells overexpressing claudin-4 formed 

fewer pulmonary metastases (163).  
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Table 2.2: Claudin expression in human cancer 

Cancer type Claudin involved Expression 

pattern 

References 

Colon 1 Elevated (164) 

Gastric 1, 3, 4, 18, 23 

4, 7 

Diminished 

Elevated 

(155, 165-167) 

(162, 168) 

Prostate 3, 4 Elevated (159) 

Breast 1, 2, 4, 7 

3, 4 

Diminished 

Elevated 

(158, 169, 170) 

(171) 

Hepatocellular  carcinoma 10 Elevated (172) 

Ovarian 3, 4 Elevated (173) 

Head and neck 7 Diminished (174) 

Melanoma 1 Diminished (175) 

Pancreatic 4 Elevated (176) 

 

 

Paradoxically, small interfering RNA (siRNA) knock-down of claudin-3 and 

claudin-4 in ovarian cancer cell lines inhibited invasive ability, consistent with the 

increase of motility and invasiveness when these two genes were overexpressed in 

human ovarian surface epithelial cells (177). Overexpression of claudin-1 in colon 

cancer cells resulted in increased tumor growth and metastasis in vivo, whereas 

siRNA knock-down of claudin-1 in metastatic colon cancer cells inhibited migration 

and invasion (178). This apparently contradicting role of claudins in different cancers 
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suggests that claudins may have cell-specific effects and that a balance of claudin 

expression is physiologically necessary. A shift in either direction may result in the 

disruption of the function and alterations in cellular behavior. This phenomenon could 

well be demonstrated whereby both claudin-1 knock-down and claudin-6 

overexpression were lethal due to defect in epithelial barrier function (143, 179). 

 

2.8.1 Claudin and Gastric Cancer 

 

Among the claudin family members, claudin-1, -3, -4, -7, -18 and -23 have been 

reported to play a role in gastric cancer. It was reported that diffuse type of gastric 

carcinomas shows lack of claudin-1 and claudin-4 expression (169). A tissue 

microarray study also shows a lower expression of claudin-1, -3 and -4 in diffuse type 

of gastric cancer (165). Study by Lee et al. observed that loss of claudin-4 promotes 

the advancement of gastric adenocarcinoma (155). Quantitative RT-PCR and 

immunostaining method also revealed the down-regulation of claudin-18 in intestinal 

type of gastric cancer, which was postulated to be an early event in gastric 

carcinogenesis (166). Claudin-23 on the other hand, was found to be down-regulated 

in the intestinal type of gastric cancer (167). All these reports pointed to the link of 

the diminished level of claudins and gastric carcinogenesis. On the contrary, reports 

also show the up-regulation of claudin-4 and -7 in gastric cancer (139, 162). Despite 

all these findings, the mechanism by which various claudins are regulated and their 

function in gastric cancer is still poorly understood.   
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2.9 Crosstalk of TJ Components with Signaling Pathways 

 

β-catenin was reported to regulate claudin-1 expression, evidenced by the 

decreased in claudin-1 expression when intracellular β-catenin was reduced by 

adenovirus-mediated transfer of wild-type APC into the APC-deficient colon cancer 

cells. Two putative Tcf4 binding elements in the claudin-1 promoter were tested to be 

responsible for activating its transcription. Primary colorectal cancers also expressed 

higher level of claudin-1 as compared to the adjacent noncancerous mucosa, 

indicating that claudin-1 is involved in the β-catenin-Tcf / LEF signaling pathway, 

and increased expression of claudin-1 may have some role in colorectal 

carcinogenesis (164). Likewise, activity of the claudin-2 promoter was elevated in 

mouse mammary epithelial C57 cells expressing Wnt-1. Expression of LEF-1 and 

beta-catenin also enhanced claudin-2 promoter activity, which was reduced when the 

LEF-1 binding sites within the claudin-2 promoter was mutated (180).  

The beta-catenin signaling pathway is activated in the MDCK cells expressing 

(181) the mutant ZO-1 protein which encodes the PDZ protein, but no longer 

localizes at the plasma membrane. These cells also induce a dramatic epithelial to 

mesenchymal transition (EMT), indicating the loss of ZO-1 function in tumor 

metastasis initiation (182). Exogenous transfection of ZO-1 on the other hand was 

reported to activate the Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) 

expression and cell invasiveness by concomitantly activating the beta-catenin / TCF / 

LEF signaling pathway in the human breast cancer cells (181).  
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Mitogen-activated protein (MAP) kinases are Ser / Thr protein kinases that 

respond to extracellular stimuli such as growth factors and stress. There are four 

distinct groups of MAPKs present in mammals. The first known as the classical MAP 

kinases or the extrcellular signal-regulated kinases (ERKs) is activated by growth 

factors and regulates cell proliferation and differentiation. c-Jun N-terminal kinases 

(JNKs) and p38 isoforms are two other groups of MAPKs activated by stress stimuli 

and involved in cell differentiation and apoptosis. The forth group, named ERK5 is 

activated by growth factors and stress stimuli and is involved in cell proliferation.    

MAPK signaling pathway modulates TJ paracellular transport by up- or 

down-regulating the expression of several TJ proteins. Activation of the MAPK 

pathway can lead to TJ opening which perturbs the barrier function, or the assembly 

of TJ which promotes barrier function. Treatment with the cytokine IL-17 activated 

the ERK1/2 and increased the expression of claudin-1 and -2 in intestinal cells, which 

also increased the barrier function of TJs (183). Similarly, the expression of claudin-1 

and ZO-2 which were upregulated by TGF-β in kidney and intestinal cells 

respectively through the activation of ERK1/2 also increased TJ barrier function (184, 

185). On the other hand, Ras transfected MDCK cells show perturbs TJ barrier 

function due to the absence of occludin, claudin-1 and ZO-1 (186). In mouse hepatic 

cell lines, transfection with oncogenic Raf also decreased claudin-2 expression, 

altering the distribution of ZO-1 at cell borders and perturbs TJ barrier function (187).  

The Snail family of transcription factors which function under the MAPK 

pathway were also identified to regulate claudin-1 expression. In human epithelial 
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cells and invasive human breast tumors, high levels of Snail and Slug were correlated 

with low levels of claudin-1 expression, indicating the Snail family transcription 

factors as repressors of claudin-1 (188). Other tight junction proteins including 

claudin-3, -4 and -7, occludin and ZO-1 were also reported to be down-regulated by 

Snail (160, 189).  

Several growth factors and cytokines were also identified to affect claudin 

expression under the MAPK pathway. The tumor promoting factors hepatocyte 

growth factor (HGF) and epidermal growth factor (EGF) were shown to decrease 

claudin-7 expression and increase claudin-1, -3 and -4 expressions (158, 190). 

Exposure of the cytokines tumor necrosis factor α (TNF-α), interleukin 1β (IL-β) and 

IL-17 also cause increased claudin-1 expression (183).  

 

2.10 TJ, AJ and Mechanism in Tumor Metastasis 

 

Tight junctions are crucial players in the normal function of epithelial cells, such as 

the regulation of proliferation and differentiation. According to the theory proposed 

by Mullin (2004), when tight junction barrier functions are interrupted due to the loss 

of claudins expression, growth factors and cytokines freely penetrate from the 

surrounding tissue, increasing paracellular flux of growth factors, which subsequently 

give rise to auto- and paracrine stimulation of tumorigenic epithelial cells (Figure 2.5). 

This lowering of diffusion barrier leads to an improved nutrient supply and adds to 

the selective advantage for developing tumor cells (191, 192).  
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Figure 2.5: Model of claudin-based TJ and its alteration during cancer progression 
due to the loss of claudin expression and reconstitution in an experimental cancer 
model. In normal epithelial tissues, the passage of solutes including growth factors 
and cytokines, is regulated through the normal paracellular fence function of TJs, 
consisting of an intact basement membrane and endogenous claudin expression. Only 
a limited amount of these factors traverse the cell membrane to reach the tissue 
stromal. In in situ or invasive cancer, loss of claudin expression and breakdown of TJ 
barrier functions allow growth factors and cytokines to penetrate freely from the 
surrounding tissue. With the reconstitution of claudin expression, some or all the TJ 
functions are restored, resulting in a reduced paracellular flux of growth factors 
[Ref.191]. 
 

It is well-known that tumor metastasis can be initiated by epithelial-

mesenchymal transition (EMT) (193). This cellular transformation results in the loss 

of cell adhesion and apical-basal polarity, followed by a shift in cytoskeletal 

dynamics from epithelial toward the mesenchymal phenotype. This alteration in 

cellular morphology is typically characterized by changes in cell polarity and loss of 

adhesion protein such as E-cadherin. Suppression of E-cadherin has been linked to 

various transcription factors such as Snail, Slug, SIP-1, ZEB-1, E12 / E47 (194, 195) 

and Twist (196). 
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It was known that up-regulation of Snail expression by MAPK and PI3K are 

responsible for suppressing approximately half of the total cellular E-cadherin (194). 

However, full repression of E-cadherin was shown to associate with nuclear 

localization and transcriptional activities of Smad4 and LEF-1, suggesting that both 

Snail and LEF-1 are necessary for complete loss of E-cadherin and completion of 

TGF-β1-induced EMT (Figure 2.6). Up-regulation of Snail also inhibits expression of 

claudin-1, claudin-2 and occludin. Both Smad-dependent and Smad-independent 

signaling pathways were shown to be necessary for EMT (161).  

Downregulation of ZO-1 through the beta-catenin / TCF / LEF (182) and 

MAPK pathway (197) as well as suppression of occludin through the Snail 

transcription family (160, 198, 199) were also linked to the formation of EMT. Snail 

up-regulation through the MMP-3-Rac1-ROS pathway was also reported to promote 

EMT (200). Other pathways such as Notch (201, 202) and RhoA (203, 204), (205) 

have also been implicated in EMT.  
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Figure 2.6: A schematic representation of the proposed TGF-β1 signaling mechanism 
that promotes EMT. Up-regulation of Snail expression happens in response to early 
signaling through Ras-Raf-MEK-ERK-AP-1. Snail then inhibits expression of 
claudin-1, claudin-2 and occludin. Snail causes partial loss of E-cadherin, decreasing 
the level of substrate for β-catenin. Further stabilization of cytoplasmic β-catenin is 
achieved through PI3K signaling, through phosphorylation and deactivation of p-
GSK-3 β by AKT downstream of PI3K. Absence of p-GSK-3β inhibits the ubiquitin 
proteosome pathway and degradation of β-catenin and Snail. Smad signaling, 
controlled through endocytosis of TGF-β receptor complex, promotes transcription of 
LEF-1, an alternative substrate for β-catenin, through the Smad2/3-Smad4 
transcription complexe. In early endosome, TβR1 phosphorylates Smad proteins upon 
their recruitment by SARA. SARA binds to PIP3 for proper association with the 
receptor. Formation of β-catenin / LEF-1 complexes acts to transcribe genes that 
promote EMT [Ref. 161].  
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The vascular endothelial (VE)-cadherin at AJ has recently been reported to 

up-regulate the gene encoding TJ protein claudin-5 by inducing the phosphorylation 

of FoxO1 through Akt activation and by limiting the translocation of beta-catenin to 

the nucleus (206). These results offer a molecular basis for the link between AJ and 

TJ in maintaining cell function. Although AJ and TJ can be functionally linked, 

reports have also shown that AJ assembly is not a pre-requisite for TJ formation (186, 

207, 208). Inactivation of the von Hippel-Lindau (VHL) gene in the kidney epithelium 

triggers a downregulation of TJ molecules occludin and claudin-1, resulting in a 

dismantling of intercellular junctions and EMT. However, the disruption of these TJ 

proteins is not dependent on E-cadherin downregulation as re-expression of E-

cadherin in von Hippel-Lindau (VHL) defective cells did not rescue TJ formation nor 

restore an epithelial-like cell shape (209).  

Another mechanism of EMT was recently reported by Lehembre et al. (2008) 

(210) (Fig. 2.7). The authors demonstrated that the loss of E-cadherin function up-

regulates expression of the neuronal cell adhesion molecule (NCAM). A subset of 

NCAM translocates from the fibroblast growth factor receptor (FGFR) complexes 

outside lipid rafts into lipid rafts where it stimulates the non-receptor tyrosine kinase 

p59 (Fyn), leading to the phosphorylation and activation of the focal adhesion kinase 

(FAK) and the assembly of β1-integrin-dependent focal adhesion assembly in cells 

that retain epithelial-mesenchymal plasticity. NCAM is not only needed for induction 

of EMT but also for maintenance of the mesenchymal state. Enforced expression of 

NCAM promotes mesenchymal-like properties in some epithelial cells in culture. 
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High NCAM expression is also correlates with tumor invasion. On the contrary, 

abolition of NCAM expression during EMT inhibits focal adhesion assembly, cell 

spreading and EMT. This proposed model established a link between the loss of E-

cadherin expression, NCAM function, focal adhesion and cell migration and invasion.   

 

 

 
Figure 2.7: Putative NCAM-associated signaling changes during EMT. Induction of 
EMT, induced via TGF-β or cadherin loss, causes NCAM-mediated weakening of 
cell-cell adhesions and also formation and dynamic turnover of focal adhesions.  
Elevation in NCAM expression leads to altered signaling complexes. NCAM binding 
to PLCγ and cortactin is diminished, and forms a complex with Fyn and FAK. These 
signaling induce a more mesenchymal and migratory phenotype associated with 
aggressive cancers of epithelial origin. Knockdown of NCAM induces the reversal of 
EMT [Ref. 210] 
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CHAPTER 3  MATERIALS AND METHODS 

 

3.1 MATERIALS 

 

3.1.1 Primers 

  

hCldn1-F: 5’-CCAACGCGGGGCTGCAGCT-3’  

Primers for semiquantitative RT-PCR 

hCldn1-R: 5’-TTGTTTTTCGGGGACAGGA-3’ 

Hu_Gapdh-F: 5’-GGTCGGAGTCAACGGATTTGGTCG-3’ 

Hu_Gapdh-R: 5’-CCTCCGACGCCTGCTTCACCAC-3’ 

 

hRUNX3 (Identifier, Hs00231709_m1) 

Primers for quantitative real time RT-PCR (pre-made by ABI) 

hclaudin-1 (Identifier, Hs00221623_m1) 

hGAPDH (Identifier, Hs99999905_m1) 

 

hclaudin-1 promoter 1530-F:  

Primers for cloning hclaudin-1 promoter 

5’-CGGGGTACCCCCTGGGATACAACACG-3’ (KpnI site at 5’) 

hclaudin-1 promoter 1530-R:  

5’-CGAGCTCCCCAGGCTCGGGAACTGAG-3’ (SacI site at 5’) 
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mclaudin-1 ORF/Myc-F: 

Primers for cloning mclaudin-1 ORF with Myc-Tag into pcDNA3.1/HisC 

5’-CGAGATATCATGGCCAACGCGGGG-3’ (EcoRV site at 5’) 

mclaudin-1 ORF/Myc-R: 

5’-GTATGCGGCCGCGTCGACTCACAG-3’ (NotI site at 5’) 

 

AShclaudin-1 ORF-F: 

Primers for cloning AS hclaudin-1 ORF into pcDNA3.1/HisC 

5’-CTATTGCGGCCGCATGGCCAACG-3’ (NotI site at 5’) 

AShclaudin-1 ORF-R: 

5’-GGCGGCCGATATCTCACACGTAGTC-3’ (EcoRV site at 5’) 

 

Cldn1PromMut1F:  

Primers for SDM on 1st RUNX binding site on hclaudin-1 promoter 

5’-GCTTCCCCTCCCATT

Cldn1PromMut1R:     

ACACTCGCACCACACACAAAAAGCAG-3’  

5’-CTGCTTTT TGTGTGTGGTGCGAGTGTAA

 

TGGGAGGGGAAGC-3’ 

Cldn1PromMut2F: 

Primers for SDM on 2nd RUNX binding site on hclaudin-1 promoter 

5’-GCT TCCCCTCCCACCACACTCGCATT

 

ACACACAAAAAGCAG-3’ 
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Cldn1PromMut2R: 

5’-CTGCTTTTTGTGTGTAA

 

TGCGAGTGTGG TGGGAGGGGAAGC-3’ 

Cldn1PromMut3F: 

Primers for SDM on 3rd RUNX binding site on hclaudin-1 promoter 

5’-GCAGTT GGAAAAACATTTCAATGATTCCTAATT

Cldn1PromMut3R: 

ACAACAGCAC-3’ 

5’- GTGCTGT TGTAA

 

TTAGGAATCATTGAAATGTTTTTCCAACTGC-3’ 

Cldn1PromMut1+2F: 

Primers for SDM on 1st + 2nd  RUNX binding site on hclaudin-1 promoter 

5’-GCT TCCCCTCCCA TTACACTCGCATT

Cldn1PromMut1+2R: 

ACACACAAAAAGCAGTTGG 3’  

5’-CCAACTGCTTTTTGTGTGTAATGCGAGTGTAA

 

TGGGAGGGGAAGC-3’ 

Cldn1PromSeq-F: 

Primers for mutagenesis check 

 5’-GGAAATGAAGGTGGTGGGGCTTGGCC-3’    

Cldn1PromSeq-R: 

5’-GGCAAAAGGACTGGGCTGGAGTTGAGG-3’  
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Cldn1CHIP-2F: 5’ AAAACCATAGAAGCTTCCCCTCCC 3’  

ChIP primers for amplifying hclaudin-1 (specific for hclaudin-1 promoter) 

Cldn1CHIP-2R: 5’ CCTCTATGTTTCTCCAAAGCTTCC 3’ 

 

FOR: 5’-TACTAGCGGTTTTACGGGCG-3’  

ChIP primers for amplifying GAPDH (specific for GAPDH promoter) 

REV: 5’-TCGAACAGGAGGAGCAGAGAGCGA-3’ 

 

3.1.2 Oligonucleotide probes for EMSA 

 

WT-WT:  

Probes for site 1 and 2 

5’-TCCCCTCCCACCACACTCGCACCACACACAAAAAG-3’  

5’-CTTTTTGTGTGTGGTGCGAGTGTGGTGGGAGGGGA-3’ 

WT-MT:  

5’-TCCCCTCCCACCACACTCGCATTACACACAAAAAG-3’  

5’-CTTTT TGTGTGTAATGCGAGTGTGGTGGGAGGGGA-3’ 

MT-WT: 

5’-TCCCCTCCCATTACACTCGCACCACACACAAAAG-3’  

5’-CTTTT TGTGTGTGGTGCGAGTGTAATGGGAGGGGA-3’ 

MT-MT:  

5’-TCCCCTCCCATTACACTCGCATTACACACAAAAAG-3’  
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5’-CTTTTTGTGTGTAATGCGAGTGTAATGGGAGGGGA-3’  

 

WT:  

Probes for site 3 

5’-TTCAATGATTCCTAACCACAACAGCACTTCTGACT-3’  

5’-AGTCAGAAGTGCTGTTGTGGTTAGGAATCATTGAA-3’ 

MT: 

5’-TTCAATGATTCCTAATTACAACAGCACTTCTGACT-3’  

5’-AGTCAGAAGTGCTGTTGTAATTAGGAATCATTGAA-3’ 

 

3.1.3 Commercial kit 

 

RNeasy mini kit, 74104, Qiagen  

Omniscript reverse transcription kit, 205111, Qiagen 

TaqMan Fast Universal PCR Master Mix, 4352042, Applied Biosystems 

QuickChange XL site-directed mutagenesis kit, 200516, Stratagene 

Dual-Luciferase Reporter Assay System, E1910, Promega 

EnVision+ system (DAB), K4010; Dako 

NE-PER Nuclear and Cytoplasmic Extraction Reagents, 78833, Pierce 

Biotechnology 

LightShift Chemiluminescent EMSA kit, 20148, Pierce Biotechnology 
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EZ ChIP Chromatin Immunoprecipitation kit, 17-371, Upstate cell signaling 

solutions 

ECL Direct Nucleic Acid Labelling and Detection System, RPN3000, Amersham 

Pharmacia Biotech 

 

3.1.4 Antibodies 

  

Anti-RUNX3 (R3-5G4), mAb, mouse IgG, 0.5 µg/ml; a monoclonal antibody against 

RUNX3 established in our laboratory 

Anti-RUNX3 (R3-6E9), mAb, mouse IgG, 0.7 mg/ml; a monoclonal antibody 

against RUNX3 established in our laboratory 

Anti-Claudin-1, pAb, rabbit IgG, 0.5 ml concentrate, 18-7362, Zymed 

Anti-Claudin-2, pAb, rabbit IgG, 0.25 µg/µl, 51-6100; Zymed 

Anti-Claudin-3, pAb, rabbit IgG, 0.25 µg/µl, 34-1700; Zymed 

Anti-Claudin-4, pAb, rabbit IgG, 0.25 µg/µl, 36-4800; Zymed 

Anti-Claudin-7, pAb, rabbit IgG, 0.25 µg/µl, 34-9100; Zymed 

Anti-Claudin-11, pAb, rabbit IgG, 0.25 µg/µl, 36-4500; Zymed 

Anti-Claudin-16, pAb, rabbit IgG, 0.25 µg/µl, 34-5400; Zymed 

Anti-ZO-1, pAb, rabbit IgG, 0.25 µg/µl, 61-7300; Zymed 

Anti-ZO-2, pAb, rabbit IgG, 0.25 µg/µl, 71-1400; Zymed 

Anti-ZO-3, pAb, rabbit IgG, 0.25 µg/µl, 36-4100; Zymed 

Anti-Occludin, pAb, rabbit IgG, 0.25 µg/µl, 71-1500; Zymed 
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Anti-E-cadherin, mAb, mouse IgG, 250 µg/ml, 610181; BD Pharmingen 

Anti-β-actin, mAb, mouse IgG, AC-15; Sigma 

Donkey Anti-Rabbit IgG, Horseradish Peroxidase linked whole antibody, 1 ml, 

NA934V; Amersham Pharmacia Biotech 

Sheep Anti-Mouse IgG, Horseradish Peroxidase linked whole antibody, 1 ml, 

NA931V; Amersham Pharmacia Biotech 

Normal Mouse IgG, 200 µg, sc-2025, Santa Cruz Biotechnology 

Biotinylated Goat Anti-Rabbit IgG (H + L), 1.5 mg, BA-1000, Vector Labs 
 
Fluorescein Avidin D, 5 mg, A-2001, Vector Labs 

 

3.1.5 General Buffer Preparation 

 

Phosphate buffered saline (PBS) [137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 

1.4 mM KH2PO4, pH7.4] 

TE buffer [10 mM Tris-HCL, 1mM EDTA, pH 8.0] 

 

LB broth [1% (w/v) Bacto-tryptone, 0.5% (w/v) Bacto-yeast extract, 0.5% (w/v) 

NaCl; pH 7.0] 

Bacteria Transformation 

LB agar [1% (w/v) Bacto-tryptone, 0.5% (w/v) Bacto-yeast extract, 0.5% (w/v) NaCl, 

2% (w/v) Bacto-agar] 
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SOC media [2% Bacto-tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCL, 10 

mM MgCl2, 10 mM MgSO4, 20 mM glucose] 

NZY broth [1.0% NZ amine (Casein hydrolysate), 0.5% NaCl, 0.5% Yeast Extract, 

0.2% MgSO4, 0.2% MgCl2, 20 mM glucose] 

 

10X TBE [0.89 M Tris, 0.89 M Boric Acid, 0.02 M EDTA] 

Agarose Gel Electrophoresis 

6X Sample loading buffer [0.25% (w/v) Bromophenol blue, 0.25% (w/v) Xylene 

cyanol, 30% (v/v) Glycerol] 

 

Tris, pH 8.8 [1.5 M Tris base, 0.4% (w/v) SDS, pH adjusted to 8.8 with concentrated 

HCl] 

SDS-PAGE and Western Blotting 

Tris, pH 6.8 [0.5 M Tris base, 0.4% (w/v) SDS, pH adjusted to 6.8 with concentrated 

HCl] 

10X Laemli running buffer [0.25 M Tris base, 1.92 M Glycine, 1% (w/v) SDS] 

Towbin transfer buffer [10% (v/v) 10X Laemli buffer, 20% (v/v) Methanol] 

Blocking buffer [5% skim milk powder in 1X PBS]  

Wash buffer [1X PBS, 0.1% Tween 20]  

Stripping buffer [0.1X SSC, 0.1% (w/v) SDS, 0.2 M Tris-HCl, pH 7.5] 
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10% Resolving Gel:     

SDS-PAGE Gel 

30% Acrylamide 3.3 ml 

1.5 M Tris (pH 8.8) 2.5 ml  

10% APS  0.1 ml 

10% SDS  0.1 ml 

TEMED         0.004 ml 

dH2O           4.0 ml 

Total volume           10.0 ml 

 

6% Resolving Gel:     

30% Acrylamide 2.0 ml  

1.5 M Tris (pH 8.8) 2.5 ml  

10% APS  0.1 ml   

10% SDS  0.1 ml   

TEMED                  0.008 ml            

dH2O   5.3 ml    

Total volume           10.0 ml 

 

5% Stacking Gel: 

30% Acrylamide 0.17 ml 

1.0 M Tris (pH 6.8) 0.13 ml  



48 
 

10% APS  0.01 ml 

10% SDS  0.01 ml 

TEMED           0.001 ml 

dH2O   0.68 ml   

Total volume               1.0 ml 

 

4% PFA [Add 16 g of PFA to approximately 300 ml of preheated dH2O; Use NaOH 

to dissolve mixture and add 40 ml of 10X PBS; measure pH and adjust with 1 M HCl 

till pH reaches 7.2-7.4; top up to 400 ml with dH2O and filter]  

Tissue Fixation 

 

Lysis buffer [9 M Urea; 2% Triton-X; 5% final concentration of 2-mercaptoethanol 

is added freshly before use]  

Protein Extraction 

 

EMSA 

30% polyacrylamide  2.2 mL 

0.5X TBE Gel (1.5 mm SDS-PAGE plate) 

1X TBE   6.6 mL 

10% APS   110 µL 

TEMED     11 µL 

dH2O    4.4 mL 

Annealing buffer [20 mM Tris (pH7.5), 50 mM NaCl and 10 mM MgCl2] 
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3.2 METHODS 

 

3.2.1 Establishment of Gastric Epithelial Cell Lines 

 

Runx3 knock out mice was collaboratively generated by Drs. Kosei Ito (Kyoto 

University, Japan) and Suk-Chul Bae (Chungbuk National University, South Korea) 

as described in Li et al. (2002). In brief, A phage DNA clone containing exon 3 of the 

Runx3 gene was isolated from a 129/SvJ mouse genomic library (Stratagene). The 

LacZ gene was introduced into the Sma1 site (12th codon in-frame) of exon 3 of the 

phage clone to generate a gene-targeting vector (appendix 1). The generated plasmid 

was transfected by electroporation into the E14 mouse ES cells. Correctly targeted ES 

cells were injected into C57BL/6 blastocysts, and the resulting chimeras were crossed 

with C57BL/6 females. p53-deficient mice with C57BL/6 genetic background was  

provided by Drs. Aizawa S and Katsuki M and generated as described previously by 

Tsukada T et al. (1994) (211).  

All mouse gastric epithelial cell lines used in this experiment were generated 

and provided by Dr. Hiroshi Fukamachi (University of Tokyo, Japan) through 

crossing the Runx3 and p53 knock out mice. All animal experiments were carried out 

in accordance with the guidelines for the care and use of laboratory animals of 

University of Tokyo. Runx3+/-p53+/- mice were mated to obtain Runx3-/-p53-/- and 

Runx3+/+p53-/- fetuses (Figure 3.1). Gastric epithelial cells from 16.5-day fetuses were 

separated from attaching mesenchymes by treating gastric tissues with 30 mM 
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EDTA-Hanks’ solution and cultured separately in wells precoated with rat tail 

collagen gels. Cells were seeded in Ham’s F12 medium (Sigma) supplemented with 

10% horse serum (Trace Biosciences), bovine pituitary extract (100 µg/ml; Gibco-

BRL), epidermal growth factor (10 ng/ml; Upstate Biotechnology), insulin (3 µg/ml; 

Sigma), cholera toxin (300 ng/ml; List Biological Laboratories), and hydrocortisone 

(3 µg/ml; Sigma), and cultured in a humidified atmosphere of 5% CO2 in air at 37°C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: Schematic diagram showing the generation of Runx3+/+p53-/- and 
Runx3-/-p53-/- cell lines.  

Runx3+/- p53+/- 
(back crossing) 

Runx3+/- p53+/- 

pups at E16.5 dpc 

                Runx3+/+ p53-/-          Runx3-/- p53-/- 

100% pure epithelial cells 
(culture on collage) 

Runx3+/+ p53-/-                Runx3-/- p53-/- 
   cell lines                             cell lines 



51 
 

Rapidly growing cells were treated with trypsin-EDTA and dispersed cells 

were re-seeded on new collagen gels in the first 5-7 passages, and on plastic 

substratum after 6-8 passages. Once the cells began to proliferate rapidly on plastic 

substratum, at about passage number 12, the culture medium was changed to 

Dulbecco’s modified Eagle’s medium (Sigma) supplemented with 10% fetal bovine 

serum (Sigma), as cells grow faster in this medium. GIF5 and 14 cells were 

established from Runx3-/-p53-/- mice while GIF9 and 13 cells were established from 

Runx3+/+p53-/- mice.  

 

3.2.2 Cell Lines and Cell Culture 

 

SNU16 gastric cancer cell line was maintained in RPMI-1641 medium supplemented 

with 10% fetal bovine serum (BDH Biosciences). AGS and 293T cells were cultured 

in DMEM supplemented with 10% fetal bovine serum. GIF cells (Runx3+/+ and 

Runx3-/-) were maintained in Ham’s F-12 medium (Sigma) supplemented with 10% 

horse serum (Trace Biosciences), bovine pituitary extract (100 µg/ml; Gibco-BRL), 

epidermal growth factor (10 ng/ml; Upstate Biotechnology), insulin (3 µg/ml; Sigma), 

cholera toxin (300 ng/ml; List Biological Laboratories), and hydrocortisone (3 µg/ml; 

Sigma), and cultured in a humidified atmosphere of 5% CO2 in air at 37°C. When the 

cells reach passage number 12, the culture medium was changed to Dulbecco’s 

modified Eagle’s medium (Sigma) supplemented with 10% fetal bovine serum (BDH 

Biosciences). 
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3.2.2.1 Treatment of Cells by TGF-β1 

 

Regulation of target genes by TGF-β was observed by treating cells with the 

recombinant human TGF-β1 (R&D systems, USA). SNU16 and ASSNU16 cells were 

treated with 3 ng/ml of TGF-β1. Cells at 0 hr before treatment and 6, 12 and 24 hr 

after treatment were collected for protein extraction, followed by Western blot 

analysis.  

To observe the effect of TGF-β inhibitor on the expression of claudin-1, same 

number of SNU16 cells was seeded and grown overnight in three separate 75 cm3 

flask. One flask of cells was added 3 ng/ml of TGF-β1, another flask with same 

amount of TGF-β1 and 1 µg/ml of TGF-β inhibitor (SB431542) (GlaxoSmithKline 

Pharmaceuticals). The flask without any treatment was used as control. After 24 hr 

treatment, cells were collected and protein extraction from these cells was performed. 

Protein samples were used for Western blot analysis.  

 
 
3.2.3 Semiquantitative RT-PCR, Quantitative RT-PCR   

 

Total RNA was extracted from SNU16 cells and AS SNU16 cells using the RNeasy 

mini kit (Qiagen) and cDNAs were synthesized from total RNA using the Omniscript 

reverse transcription kit (Qiagen) according to the manufacturer’s protocol. 

Semiquantitative reverse transcription-PCR (RT-PCR) for the detection of hClaudin-
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1 was carried out using the hCldn1-F and hCldn1-R primers, whereas detection of 

GAPDH was carried out using the Hu_Gapdh-F and Hu_Gapdh-R primers.  

Quantitative RT-PCR was performed on cDNA from SNU16 control cells 

stably expressing pcDNA3 and SNU16 stable cells expressing Flag-Runx3 using the 

real-time TaqMan Fast Universal PCR Master Mix system on an ABI PRISM 

7900HT instrument (Applied Biosystems) for the detection of hRUNX3 (identifier, 

Hs00231709_m1) and hclaudin-1 (identifier, Hs00221623_m1). hGAPDH (identifier, 

Hs99999905_m1) was used for normalization. Analysis was performed using the 

SDS database (version 2.2.1).  

 

3.2.4 Protein Isolation  

 

Adherent cells with 90% confluency were washed twice with ice-cold PBS. 10% of 

ice-cold TCA (in PBS) was added to the cells and incubation at 4 ºC for 20 minutes 

was carried out. Cells were rinsed with ice-cold PBS twice and harvested into a 1.5 

ml eppendorf tube using a rubber policeman. Cells were centrifuged to collect cell 

pellet. Protein lysis buffer were added to the cell pellet followed by sonication twice 

for approximately 10 sec each on ice until cells were completely lysed. 1 µl of protein 

lysate was used for protein concentration measurement using the Bradford method on 

the Beckman Coulter DU530 machine. The remaining protein lysate were added 10% 

lithium dodecyl sulphate (LDS) to a final concentration of 2%. Samples were kept on 

ice and were ready to load. Suspension cells were collected from culture flask into 
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falcon tube and centrifuged to collect cell pellet, which was then rinsed twice with 

ice-cold PBS. Washed pellet was added protein lysis buffer and the same extraction 

procedure was carried out as above. 

 

3.2.5 SDS-PAGE and Western Blot Analysis 

 

SDS-PAGE was run in 1X Laemli buffer at 100 V for approximately 1.5 hr until the 

bromophenol blue dye migrated out of the gel. Proteins on SDS-PAGE gel were 

transferred to the PVDF membrane (pretreated with methanol) using the Western 

blotting apparatus (BioRad). Western blot was carried out in transfer buffer at 70 V 

for 90 min at 4 ºC. Transferred membrane was blocked with 5% skim milk in PBS for 

1 hr, rinsed once with PBST and incubated with the respective primary antibody at 4 

ºC overnight. Membrane was washed three times for 5 min each with 1X PBST, 

followed by incubation with HRP-conjugated secondary antibody for 1 hr at RT. 

Membrane was washed again three time for 5 min each with 1X PBST, and develop 

with the chemiluminescence detection solutions (Amersham Pharmacia Biotech.) 

using an X-ray film developer (Kodak).   

Western blot for the detection of claudin-1, claudin-2, claudin-3, claudin-4, 

claudin-7, claudin-11, claudin-16, ZO-1, ZO-2, ZO-3, occludin, E-cadherin and β-

actin expression in GIF cells and SNU16 cells was performed using a final 

concentration of 1:200 dilution for anti-claudin-1, 1 µg/ml for anti-claudin-2, 1 µg/ml 

for anti-claudin-3, 1 µg/ml for anti-claudin-4, 1 µg/ml for anti-claudin-7, 2 µg/ml for 
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anti-claudin-11, 2 µg/ml for anti-claudin-16, 0.5 µg/ml for anti-ZO-1, 1 µg/ml for 

anti-ZO-2, 2 µg/ml for anti-ZO-3, 0.25 µg/ml for anti-occludin, 1:2500 dilution for 

anti-E-cadherin (BD Pharmingen) and 1:10000 dilution for β-actin (Sigma) 

antibodies, respectively. Expression of RUNX3 in SNU16 and AS SNU16 cells were 

detected using 0.05 ug/ml of anti-RUNX3 (R3-5G4) (97).  

 

3.2.6 Promoter Assay 

 

3.2.6.1 Cloning of  hclaudin-1 Promoter 

 

The promoter region of human claudin-1, which span a segment of 1.53 kb upstream 

from the claudin-1 transcription start site (appendix 2), was amplified from the 

SNU16 genomic DNA by PCR using the hclaudin-1 promoter 1530-F and hclaudin-1 

promoter 1530-R primers. PCR was carried out at 94ºC for 1 min, and 35 cycles of 

94ºC for 30 sec, 68ºC for 30 sec, 72ºC for 2 min and a final cycle at 72ºC for 5 min 

using the Pfu Ultra polymerase (Stratagene). The amplified DNA segment was cloned 

into the pGL3-Basic vector (Promega) (appendix 3) between the KpnI and SacI sites. 

Ligation product was transformed into the E. coli DH5α strain. Positive clones were 

picked and checked by sequencing. One clone with the right sequence was selected 

and used as the wt hclaudin-1 promoter. 
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3.2.6.2 Site-Directed Mutagenesis 

 

Three RUNX binding sites found within the hclaudin-1 promoter were mutated 

(point-mutation) using the QuikChange XL site-directed mutagenesis kit (Stratagene) 

with the following primers: Cldn1PromMut1F and Cldn1PromMut1R for site 1, 

Cldn1PromMut2F and Cldn1PromMut2R for site 2, Cldn1PromMut3F and 

Cldn1PromMut3R for site 3, and Cldn1PromMut1+2F and Cldn1PromMut1+2R for 

sites 1+2. Reporter plasmid with mutated site 2 was used as template to generate 

reporter plasmid with mutated sites 2+3 using primers set for site 3. Reporter plasmid 

with all sites being mutated were generated using reporter plasmid with mutated sites 

1+2 and primers set for site 3.  

An overview of QuikChange XL site-directed mutagenesis method is 

illustrated in Figure 3.2. Generally, site-directed mutagenesis can be used to create 

point mutations, switch amino acids, delete or insert single or multiple amino acids. 

In this approach, PfuTurbo DNA polymerase, which has a 6-fold higher fidelity in 

DNA synthesis than Taq DNA polymerase was used. It is able to replicate both 

plasmid strands in a supercoiled double-stranded DNA (dsDNA) vector without 

displacing the mutant oligonucleotide primers. Incorporation of the oligonucleotide 

primers generates a mutated plasmid containing staggered nicks. As plasmid DNA 

isolated from almost all of the commonly used E. coli strains (dam+) is methylated, 

the Dpn I endonuclease which is specific for methylated and hemimethylated DNA is 

used to digest the parental DNA template for selection of mutation-containing 
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synthesized DNA. The XL1-Gold ultracompetent cells repair the nicks in the mutated 

plasmid upon transformation of the mutated form of dsDNA into these cells. Being 

endonuclease deficient (endA1) and recombinant deficient (recA), XL10-Gold 

ultracompetent cells greatly improves the quality of plasmid miniprep DNA, and also 

to ensure insert stability upon transformation.  

 

 

 

  

 

 

 

 

 

 

      

 

 

 

 

Figure 3.2: Overview of QuikChange XL site-directed mutagenesis procedure.         
(Adapted from the Stratagene QuikChange XL Site-Directed Mutagenesis kit manual) 
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3.2.6.3 Dual-Luciferase Reporter Assay 

 

Transfections into the SNU16 and AGS cell lines were carried out using the 

Lipofectamine 2000 (Invitrogen) and Fugene 6 (Roche) respectively according to the 

manufacturer’s protocol. Fugene 6:DNA amount of 3:1 ratio was used throughout the 

experiment. Upon transfection, SNU16 cells were incubated at 37 ºC for 

approximately 36 hrs. After incubation, 50% of each transfected sample, labeled as 0 

hr time point, were collected and stored as cell pellet at -20ºC. The remaining cells 

were added 3 ng/ml of TGF-β and incubated for 12-18 hrs before cell pellets were 

harvested. These cells were labeled as 12-18 hr time point samples. Similarly, the 

transfected AGS cells were incubated at 37 ºC for approximately 36 hrs before cells 

were harvested. 

All cells were subjected to the luciferase assay using a Dual-Luciferase 

Reporter Assay system (Promega) according to the manufacturer’s protocol. Active 

lysis was carried out for SNU16 cell pellets collected in 1.5 ml eppendorf tubes. AGS 

cells on the other hand were harvested using the passive lysis method. Cells were 

pelleted after cell lysis and 20 µl of cell supernatant was used for the luciferase assay. 

Luciferase assay was carried out as depicted in Figure 3.3 using the Sirius 

luminometer (Berthold Detection System) in triplicates. All firefly luciferase activity 

was normalized by the renilla luciferase activity of the promoterless pRL-SV40 

vector (appendix 4).  
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Figure 3.3: Format of the Dual-Luciferase Reporter Assay. The firefly reporter assay 
is initiated by mixing an aliquot of lysate with the Luciferase Assay Reagent II. Upon 
completion of the firefly luciferase assay, the firefly luminescence is quenched and 
Renilla luminescence is simultaneously activated by adding Stop & Glo Reagent to 
the sample tube. (Adapted from the Dual-Luciferase Reporter Assay kit manual)  
 

 

 

100µl of Luciferase Assay 
Reagent II. 

Transfer 20µl of cell lysate 
in lysis buffer. Mix.  

 Measure firefly luciferase activity. 

100µl of Stop & Glo 
reagent. 

Measure Renilla luciferase activity. 



60 
 

3.2.7 Generation of Stable Cell Line 

 

3.2.7.1 Plasmids and Stable Cell Line 

 

The AS RUNX3 plasmid construct was generated by inverting the RUNX3 cDNA 

(RUNX3 coding region + 5’ and 3’ UTR) (appendix 5), followed by cloning into the 

pEFBos/Neo vector between the XbaI site by blunt end ligation (generated and 

provided by Dr. Suk Chul Bae from Chungbuk National University, South Korea). 

This expression construct was transfected into the SNU16 cells to generate AS 

SNU16 stable cell line. RUNX3 cDNA was also cloned into the Flag-tagged 

pcDNA3/Neo vector (Invitrogen). This expression construct was transfected into the 

SNU16 cells to generate SNU16 stable cell line harboring exogenous RUNX3.  

Mouse claudin-1 ORF (666 bp) (appendix 6) was amplified from pBIG-

mClaudin-1/Myc (kindly provided by Dr. Eveline Schneeberger, University of 

Harvard, USA) using the mclaudin-1 ORF/Myc-F and mclaudin-1 ORF/Myc-R 

primers. The amplified product was cloned into the pcDNA3.1/Hygro vector 

(Invitrogen) between the EcoRV and NotI sites. The expression construct and 

pcDNA3.1/Hygro vector alone was transfected seperately into GIF5 and GIF14 cells. 

hclaudin-1 ORF (636 bp) (appendix 7) was inverted and cloned into 

pcDNA3.1/Hygro between the EcoRV and NotI sites using the AShclaudin-1 ORF-F 

and AShclaudin-1 ORF-R primers. This expression construct and the 

pcDNA3.1/Hygro vector alone were transfected separately into the SNU16 cells. 
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Transfections into SNU16 cells were carried out using Lipofectamine 2000 

(Invitrogen), whereas transfections into GIF5 and GIF14 cells were carried out using 

Fugene 6 (Roche).  

 

3.2.7.2 Stable Transfection and Stable Cloning 

 

Transfection into the SNU16 cell line was carried out using Lipofectamine 2000 

(Invitrogen), whereas transfection into the AGS, GIF5 and GIF14 cell lines were 

carried out using Fugene 6 reagent (Roche). All transfections were carried out in 6-

well plates. Cells were allowed to grow for 48 hrs, followed by the addition of 

antibiotic for selection of transfected cells. 0.6 mg/ml of Neomycin or 125 µg/ml of 

Hygromycin was used depending on the antibiotic selection of the vector used. Cell 

growth was monitored in the presence of antibiotic.  

For attachment cells like AGS, GIF5 and GIF14, dead floating cells were 

discarded and fresh medium was changed every 2-3 days to allow attached cells to 

grow till at least 50% confluency. Cells were then trypsinized and well-suspended 

cells were subcultured into multiple 10 cm dish in dilutions of 1:500, 1:1000 and 

1:2000. Dispersed single cells were allowed to attach on dish and grow. Expansion of 

attached cell colonies was monitored in the presence of antibiotic. When cell colonies 

grow to approximately 2-3 mm in size, cells were trypsinized in cloning ring and 

subcultured to 12-well plates. Cells that continue to grow in the presence of antibiotic 

were again subcultured to 6-well plates and allowed to grow to approximately 90% 
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confluency. Cells were harvested and divided into three portions: for protein 

extraction, subculturing and storage purposes. Presence of selected genes in stable 

clones was determined using western blotting. For SNU16 suspension cells, selection 

of stable clones was carried out in 96-well plates using the serial dilution method. 

Wells that contained 1-3 cells that continued to grow in the presence of antibiotic 

were monitored and new medium was added every 2-3 days. Expended cells were 

subcultured to 24-well plates, followed by 12-well and 6-well plates. Cells were 

harvested and divided as mentioned above. Positive stable clones were determined 

through western blotting.   

 

3.2.8 Xenografts in Nude Mice 

 

Each of GIF5+pcDNA3.1 and GIF5+mclaudin-1, GIF14+pcDNA3.1 and 

GIF14+mclaudin-1 as well as SNU16+pcDNA3.1 and SNU16+AShclaudin-1 stable 

cell lines (5 x 106 cells respectively in PBS) were injected subcutaneously into the 

flanks and back of 10 approximately 2-mth old female nude mice using a 27 ½ gauge 

needle (Figure 3.4). When the tumors grow to approximately 1 cm of size, they were 

cut out and weight (gm) was measured. Tumors were kept in 80% ethanol for long 

term storage or future use. 
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(A) 

 

(B) 

 

Figure 3.4: Nude mice assay in Runx3-/- GIF and SNU16 cell lines. (A) Rescue 
experiment to observe if exogenous expression of mclaudin-1 in Runx3-/- GIF cells 
reduces tumorigenecity in nude mice. (B) Experiment to observe if knock-down of 
hclaudin-1 in tumorigenic SNU16 cells enhances tumorigenicity in nude mice. 
 
 

 

 

 

 

SNU16 
Cldn-1 (+) 

AS hcldn- 1  stable cell 
line 

SNU16 + 
pcDNA3.1 

SNU16 + 
AShcldn-1 

SNU16 + 
 AShcldn-1 

 
GIF5/14 (-/-) 
Cldn-1 (-) 

S mcldn- 1  

GIF5/ 14 + 
pCDNA3.1 

GIF5/ 14 + 
Smcldn-1 

stable cell 
line 

GIF5/ 14 + 
Smcldn-1 

Nude mice 



64 
 

3.2.9 Collection and Processing of Mouse and Human Tissue Samples 

 

3.2.9.1 Fixing, Processing and Embedding of Mouse Stomach 

 

Freshly dissected neonatal 0 day mice stomach was fixed in 4% paraformaldehyde 

(PFA) for approximately 2 hrs at 4ºC, briefly rinsed with dH2O, followed by 70% 

ethanol overnight at RT. The specimen was then transferred to the tissue processor 

(Tissue Tek Citabel 2000) for dehydration and processing. The specimen was 

subjected to dehydration in a series of ethanol followed by xylene and paraffin as the 

following: 1X 80% ethanol for 1 hr, 1X 90% ethanol for 1 hr, 2X 100% ethanol at 1 

hr each, 2X xylene at 1 hr each, 1X xylene + paraffin (1:1) for 2 hrs, 1X paraffin for 1 

hr followed by a final immersion in paraffin until the specimen was taken out for 

embedding. The processed specimen was taken out and immediately embedded on a 

paraffin block which was then left to solidify. Paraffin blocks were kept at RT until 

ready to be sectioned.    

 

3.2.9.2 Human Gastric Cancer Specimens  

 

52 surgically resected gastric adenocarcinoma samples and their corresponding non-

cancerous tissues were obtained from the Department of Pathology and Surgery, 

National University of Singapore under a protocol approved by the Institutional 

Review Board. According to Lauren’s classification for gastric adenocarcinoma, there 
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were 29 differentiated/ intestinal type of gastric adenocarcinoma, and 23 diffuse type 

of gastric adenocarcinoma. 

  

3.2.10 Microscopy Technique 

 

3.2.10.1 Immunocytochemistry (IF) 

 

GIF cells grown on cover slips in 6-well plates that reached approximately 90% 

confluency were fixed with 4% PFA for 10 min at RT. Cells were rinsed briefly with 

PBS, followed by permeabilization with 0.1% Triton X-100 for 10 min at RT, and 

rehydration with PBS. After blocking with hydrogen peroxide for 5 min at RT, cells 

were incubated with 1:100 of rabbit anti-claudin-1 diluted in antibody diluent for 1 hr 

at RT. Cells were washed three times for 5 min each with PBST at RT. Biotinylated 

anti-rabbit IgG (1:200 dilution) and fluorescein avidin D (1:2000 dilution) were used 

as secondary and tertiary antibody respectively and incubated for 1 hr each at room 

temperature. Cells were washed three times for 5 min each with PBST at RT in 

between the secondary and tertiary antibodies. Slides were counterstained with DAPI 

(D8417; Sigma) diluted to 0.2 µg/ml in PBS for 3 min at RT. Slides were washed 

three times with PBS for 3 min each at RT. Mounted slides were subsequently used 

for immunofluorescence imaging with Zeiss microscope (Axioplan 2 imaging 

system).   
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3.2.10.2 Immunohistochemistry (IHC) 

 

Mouse tissues embedded in paraffin blocks were sectioned into 5 µm using a 

microtome (Leica RN2255) to obtain a series of approximately 10 continuous 

sections. Sections were placed on the surface of 80% Ethanol to facilitate separation 

of serial sections into single section. Each serial section was transfered to water bath 

at approximately 42ºC and left for few seconds for rehydation and fished out and 

displayed onto the poly-L-lysine coated slides. Slides were left on heating block set to 

37ºC for approximately 1 hr until sections were dry. Deparaffinization was carried out 

in xylene followed by rehydration of specimen in ethanol. Deparaffinized tissues 

were incubated at 96°C for 40 min with antigen retrieval solution (S1700; Dako) and 

cooled down for 30 min at RT. After blocking with hydrogen peroxidase for 5 min, 

the specimens were incubated with rabbit anti-Claudin-1 (1:100 dilution) for 1 hr at 

RT, followed by three time washing for 5 min each with PBST at RT. Secondary 

antibody and chromogen-substrate for visualization were added according to the 

instructions given by the EnVision+ system (DAB) kit. After development with 

diaminobenzedine, the sections were counterstained with hematoxylin, dehydrated 

and mounted with coverslips.  

52 human tissues were fixed with 10% neutral-buffered formalin, embedded 

in paraffin, and serially sectioned at 4 µm. After routine deparaffinization and 

rehydration, specimen was treated at 96°C for 40 min with antigen retrieval solution. 

Specimens were cool down for 30 min at room temperature. After blocking with 
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hydrogen peroxidase, the specimens were incubated with rabbit anti-Claudin-1 (1:100 

dilution) and mouse anti-RUNX3 (1 μg/ml, R3-6E9) (97) for 1 hr at RT. The 

EnVision+ system (DAB) kit was used for visualization. After development with 

diaminobenzedine, the sections were counterstained with hematoxylin, dehydrated 

and mounted with coverslips. Cases showing RUNX3 expression in the nucleus were 

counted as positive. Cases with no expression or showing RUNX3 expression in the 

cytoplasm were counted as negative.   

 

3.2.11 Electrophoresis Mobility Shift Assay (EMSA)  

 

EMSA was carried out according to the manufacturer’s protocol provided by the 

LightShift Chemiluminescent EMSA kit and the Chemiluminescent Nucleic Acid 

Detection Module. Labeled probes were prepared by annealing six pairs of 5’ 

biotinylated oligomers with nonlabeled complementary oligomers; unlabeled 

competitor probes were prepared by annealing six pairs of two unlabeled 

complementary oligomers in annealing buffer comprising of 20 mM Tris (pH7.5), 50 

mM NaCl and 10 mM MgCl2.  Complementary oligomers were denatured at 95°C for 

5 min and left to cool down at room temperature to enable annealing to happen. First 

set of probes cover the first and second RUNX binding sites, whereas the second set 

of probes cover the third RUNX binding site. Four pairs of oligonucleotides that were 

used as probes for site 1 and 2 include WT-WT, WT-MT, MT-WT and MT-MT. 

Probes for site three include WT and MT. A final concentration of 30 fmol of labeled 
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probes and 4 pmol of unlabeled probes were used for the binding reactions in the 

presence of 1 µg/µl of poly (dI-dC) and 1x binding buffer. 200 ng of anti-RUNX3 

(R3-5G4) were added to the control reaction to check the specificity of binding.           

 Briefly, binding reactions were prepared on ice with the addition of distilled 

water, 10X binding buffer, 1 µg/µl of poly (dI-dC), unlabeled probe and protein 

extract (293T cells with or without exogenous RUNX3) in sequence. The binding 

reaction was performed at RT for 20 min before the biotin-labeled probe was added. 

Loading buffer was mixed with the binding reactions and loaded into 0.5X TBE gel. 

Gel electrophoresis was carried out at 100 V until the bromophenol blue dye migrated 

¾ down the length of the gel. DNA on gel was transferred to nylon membrane in ice-

cold 0.5X TBE buffer at 100 V for 30 min. Cross-linking of DNA to membrane was 

performed twice for 1 min each at 120 mJ/cm2 using a UV-cross-linker. Nylon 

membrane was then incubated with blocking buffer for 15 min with gentle shaking, 

followed by incubation with streptavidin-horseradish peroxidase conjugate for 15 min 

with gentle shaking. Membrane was washed four times for 5 min each with 1X wash 

solution with gentle shaking. Substrate equilibration buffer was added for 5 min with 

gentle shaking. Finally, membrane that has been removed from the substrate 

equilibration buffer was added the mixture of luminal/ enhancer solution and stable 

peroxide solution (1:1 ratio) and ready to be exposed to X-ray film.  
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3.2.12 Chromation Immunoprecipitation (ChIP)  

 

Chromatin immunoprecipitation (ChIP) was performed according to the 

manufacturer’s protocol provided by the EZ ChIP Chromatin Immunoprecipitation kit. 

Crosslinking of histones to DNA in formaldehyde was carried out for 5 min at 37°C. 

Sheering of DNA was done by sonication using 8 sets of 12-second pulses with 30% 

of maximum power on a sonicator (Sonifier 150; Branson). 5 µg of anti-RUNX3 (R3-

6E9) was used to immunoprecipitate endogenous RUNX3 from the SNU16 cells. 

Protein G Agarose was used to collect the antibody/ histone complex. As control, 5 

µg of mouse normal IgG (sc-2025; Sigma) was used in a separate reaction. Washing 

of protein G agarose/ antibody/ chromatin complex was carried out followed by 

elution in elution buffer (1% SDS, 0.1 M NaHCO3).  

 The chromatin complex was reverse cross-linked and DNA was recovered 

by phenol/ chloroform extraction and ethanol precipitation. Primers Cldn1CHIP-2F 

and Cldn1CHIP-2R which are specific to the human claudin-1 promoter were used to 

amplify the DNA fragment comprising of all three RUNX binding sites. Primers FOR 

and REV specific for the GAPDH promoter were used to perform PCR on the pull-

down DNA, acting as a negative control. PCR for claudin-1 was carried out at 94ºC 

for 5 min and for 32, 35 or 37 cycles each of 94ºC for 30 sec, 58ºC for 30 sec, 72ºC 

for 30 sec and final cycle of 72ºC for 10 min. PCR for GAPDH was carried out at 

94ºC for 5 min and for 32 cycles each of 94ºC for 30 sec, 60ºC for 30 sec, 72ºC for 30 
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sec and final cycle of 72ºC for 10 min. PCR amplification product was visualized on 

a 2% agarose gel.  
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CHAPTER 4  RESULTS AND DISCUSSIONS 

 

4.1 Results 

 

4.1.1 Expression of TJ Proteins in Mouse Gastric Epithelial Cells  

 

RUNX3 was found to be a strong candidate for gastric cancer tumor suppressor as loss 

of expression or mislocalization of RUNX3 protein are associated with gastric 

carcinogenesis (23, 97). In a previous report, Runx3-/- gastric epithelial cells were 

shown to attach weakly to each other, suggesting a loss of Runx3 function may be 

responsible for the reduction of cell-cell contact and polarity (95). To investigate 

whether RUNX3 plays a role in the regulation of cell-cell contact and polarity, 

Western blot analysis was performed on a series of mouse embryonic gastric 

epithelial cells (GIF cells), namely the GIF5 and GIF14 Runx3-null cells and the 

Runx3 expressing GIF9 and GIF13 cells, to examine the relationship between Runx3 

expression and expression of proteins involved in cell-cell contact. 

The AJ and TJ proteins are known to function in the maintenance of cell-cell 

contact and polarity. Thus the expression level of E-cadherin, an AJ protein known to 

play a role in gastric carcinogenesis and TJ proteins including claudin-1, claudin-2, 

claudin-3, claudin-4, claudin-7, claudin-11, claudin-16, ZO-1, ZO-2, ZO-3 and 

occludin was examined using these cell lines.  
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 Interestingly, the TJ  proteins, claudin-1, claudin-3, ZO-3 and occludin were 

found to be expressed in high abundance in Runx3 expressing GIF9 and GIF13 cells, 

whereas none or very low level were detected in Runx3-null GIF5 and GIF14 cells 

(Fig. 4.1). These results suggest that presence of Runx3 has a direct or indirect effect 

on the expression of claudin-1, claudin-3, ZO-3 and occludin in the mouse embryonic 

gastric epithelial cells. In contrast, the expression of E-cadherin was not affected by 

the presence or absence of Runx3. Claudin-2, -4, -7, -11 and -16 however were not 

detected in GIF cell lines.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Western blot analysis of tight junction (TJ) and adhesion junction (AJ) 
proteins in Runx3-/- and Runx3+/+ mouse gastric epithelial GIF cell lines. claudin-1, 
claudin-3, ZO-3 and occludin were expressed in high abundance in Runx3 expressing 
GIF9 and GIF13 cells, whereas none or very low level were detected in Runx3-null 
GIF5 and GIF 14 cells. Claudin-2, claudin-4, claudin-7, claudin-11 and claudin-16 
were not detectable using these cell lines.  
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4.1.2 TJ Proteins and TGF-β Pathway 

 

RUNX3 functions as a tumor suppressor under the TGF-β pathway. To observe if the 

TJ proteins as well as E-cadherin tested in section 4.1 were regulated downstream of 

RUNX3, the expression level of these proteins in the presence and absence of TGF-β 

were observed. As Runx3 expressing GIF cell lines expressed relatively low level of 

Runx3, it was not the best cell line to be used for this study. For this purpose, the 

SNU16 cell line which is a human gastric cancer cell line that expresses relatively 

high level of RUNX3 and responses to the treatment of TGF-β was used. SNU16 cell 

lysate was collected at 0 hr before addition of TGF-β and at 6, 12 and 24 hr after 

addition of TGF-β, followed by Western blot analysis with the antibody against the 

respective TJ proteins (Fig. 4.2).  

  From the series of TJ and AJ proteins tested, only claudin-1 showed 

responsiveness towards TGF-β, whereby its expression increased in a time dependent 

manner upon addition of TGF-β. This indicates that TGF-β is involved in the 

induction of claudin-1 expression in SNU16 gastric epithelial cells. This regulation 

pattern however was not observed in other TJ and AJ proteins. Hence, claudin-1 was 

selected for further analysis whereas claudin-3, ZO-3 and occludin were omitted even 

though their expression showed a positive correlation with Runx3 in mouse 

embryonic gastric epithelial cells (Fig. 4.1).  
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4.1.3 RUNX3 and claudin-1 in TGF- β Pathway 

 

To further confirm that claudin-1 expression is regulated by TGF-β, experiment in 

(Fig. 4.3A) was carried out. SNU16 cells that were treated with TGF-β for 24 hr 

showed a higher claudin-1 expression level as compared to the untreated one (Lane 1 

& 2). When the TGF-β inhibitor was added to SNU16 cells in the presence of TGF-β, 

the induction of claudin-1 expression greatly diminished (Lane 3). This clearly shows 

that the TGF-β signaling pathway is involved in the regulation of claudin-1 

expression in the SNU16 cell line.  

To observe if RUNX3 is involved in the regulation of claudin-1 under the 

TGF-β pathway, the expression of claudin-1 was compared between the SNU16 cell 

line and the AS SNU16 cell line, in which RUNX3 was knocked-down by using the 

antisense DNA against RUNX3 (Fig. 4.3B). Both RT-PCR and Western blot analysis 

showed a time-dependent increased of claudin-1 expression in SNU16 cell line upon 

treatment by TGF-β. This pattern of claudin-1 expression however was not observed 

in the AS SNU16 cell line. This shows that RUNX3 is necessary for the regulation of 

claudin-1 expression under the TGF-β pathway.     
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Figure 4.2: TGF-β treatment and expression of tight junction and adhesion junction 
proteins. SNU16 cell lysates were collected at 0 hr before treatment with TGF-β and 
at 6, 12 and 24 hr upon treatment with TGF-β. Western blot analysis was carried out 
using antibodies against the respective tight junction and adhesion junction proteins. 
claudin-1 expression increased in response to TGF-β, indicating that claudin-1 
expression is regulated by the TGF-β signaling pathway. claudin-2, claudin-11 and 
claudin-16 were not detectable in these cell lines. 
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(A) 
 
 
 
 
 
 
 
 
 
 
 
 
(B)

 
Figure 4.3: Regulation of claudin-1 by TGF-β. (A) Induction of claudin-1 by TGF-β 
was highly reduced in the presence of TGF-β inhibitor, confirming the involvement 
of TGF-β signaling pathway in the regulation of claudin-1 expression. (B) RT-PCR 
and Western blot analysis showing claudin-1 expression in the presence and absence 
of RUNX3. AS SNU16 is a RUNX3-knocked-down SNU16 cell line using the 
antisense DNA against RUNX3. Reduced level of RUNX3 was confirmed by Western 
blot analysis. The TGF-β dependent expression of claudin-1 was greatly reduced 
when majority of RUNX3 was knocked-down, indicating the involvement of RUNX3 
in the regulation of claudin-1 expression.   
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Figure 4.4: Quantitative RT-PCR analysis of claudin-1 expression upon induction by 
RUNX3 in SNU16 cell line. Stable SNU16 cell line expressing exogenous RUNX3 
was assigned SNU16+FlagRUNX3 (black bars). Basal expression level of RUNX3 
and claudin-1 in SNU16 were adjusted to 1 (white bars) for comparison purposes. 
Claudin-1 expression was increased by approximately 2.7 folds in the presence of 
exogenous RUNX3, indicating that RUNX3 is involved in the induction and 
regulation of claudin-1 expression in the SNU16 gastric epithelial cell line.  
 
 
 
4.1.4 claudin-1 Expression in Mouse Gastric Epithelial Cells 

 

The expression pattern of claudin-1 was further confirmed by immunofluorescence 

staining using the Runx3+/+ and Runx3-/- GIF cell lines. Runx3+/+ GIF9 and GIF13 

cell lines were positively stained by claudin-1, whereas Runx3-/- GIF5 and GIF14 cell 

lines were either not stained, or stained at very low level by claudin-1 (Fig. 4.5A). 

These results correlated well with the results of Western blot analysis in Fig. 4.1.  
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(A) 

 

(B) 

 

 
Figure 4.5: Immunodetection of claudin-1 in mouse gastric epithelial cells and tissue 
samples. (A) Immunofluorescence analysis of claudin-1 in Runx3-/- and Runx3+/+ 
GIF cell lines. Runx3+/+ cells showed clear claudin-1 staining at cell-cell boundaries. 
Runx3-/- GIF cells showed none or very low level of claudin-1 expression. Scale bar, 
50 µm. (B) Immunohistochemistry analysis of neonatal 0 day mice stomach. Left and 
middle panels represent stomach sections from wild-type mice; right panel represents 
stomach section from Runx3 knock-out mice. Scale bar, 100 µm. 
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Immunohistochemistry staining was also performed on sections of wt and 

Runx3 knock-out mouse gastric epithelial tissues which were embedded into paraffin 

blocks. Results showed that claudin-1 stained positively on the surface membrane of 

wt mouse gastric epithelial cells. Runx3 knock-out gastric epithelial cells on the other 

hand show greatly diminished level of claudin-1 expression (Fig. 4.5B). These results 

collectively show that claudin-1 expression is positively correlated to the expression 

of Runx3 in mouse gastric epithelial model.  

 
4.1.5 claudin-1 Promoter Assay 

 

Results from section 4.13 shows that RUNX3 mediates induction of claudin-1 

transcription. In order to examine the direct involvement of RUNX3 in the regulation 

of claudin-1 expression, a human claudin-1 promoter was examined. The constructed 

promoter contains three putative RUNX binding elements (Fig. 4.6A). The proposed 

consensus sequence for RUNX binding element was 5’-PuACCPuCA-3’, or in the 

reverse orientation, 5’-TG(T/G)GGT-3’, with 5’-AACCACA-3’ being the regular 

type of sequence found in most bona fide RUNX target promoters (212). The second 

and third RUNX binding consensus, which happened to be the regular type, were 

found to be highly conserved in the mouse and human claudin-1 promoter (Fig. 4.6B). 

Seven types of luciferase reporter plasmids were constructed, each containing one 

(M1, M2 & M3), two (M1+2, M1+3, M2+3) or three (M1+2+3) mutant binding 

elements, upstream of the luciferase gene. All reporter activity was normalized 

against the luciferase activity expressed by the promoterless pRL-SV40 vector.  
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Reporter assay was first performed using the SNU16 cell line. Figure 4.7 showed that 

the reporter activity of WT promoter increased in a dose dependent manner, both 

before and after the addition of TGF-β. In the AGS cell line in which RUNX3 is not 

expressed, the reporter activity of WT promoter increased in consistent with the 

addition of RUNX3 and was RUNX3-dose-dependent (Fig.4.8A). In Figure 4.8B, the 

reporter activity increased for about 1.7 folds when Smad3 and Smad4 were added as 

compared to control. This was possible as there were six Smad binding elements 

found within the human claudin-1 promoter downstream of the third RUNX binding 

site and this verifies the proper function of the promoter. The promoter activity 

increased by another 2.2 folds when RUNX3 was added in addition to Smad3 and 

Smad4, resulting in an approximately 4 folds increase of promoter activity compared 

to the control.  

The reporter activity of wild type plasmid was also significantly higher than 

that of any reporter plasmid containing one or more mutant elements. When all three 

RUNX binding elements were mutated, the reporter activity was abolished (Fig. 

4.8B). These results collectively indicate that RUNX3 induces claudin-1 expression in 

cooperation with Smad proteins.  
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Figure 4.6: hclaudin-1 promoter. (A) Schematic diagram of the hclaudin-1 promoter, 
1500 bp upstream of the transcriptional start site. Three RUNX consensus binding 
sequence, with their respective mutants were highlighted in red. Mutants were 
generated using the site-directed mutagenesis method. (B) Schematic diagram 
showing conservation of the second and third RUNX binding sites in the human and 
mouse claudin-1 promoter region.  
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Figure 4.7:  hclaudin-1 reporter assay in SNU16 cell line. hclaudin-1 promoter 
activity was up-regulated by the expression of RUNX3 in a RUNX3-dose dependent 
manner. 0 hr represents sample before addition of TGF-β, 12 hr represents sample at 
12 hr time point upon addition of TGF-β.  
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Figure 4.8: hclaudin-1 reporter assay in AGS cell line. (A) Up-regulation of promoter 
activity was RUNX3-dose-dependent. (B) WT represents wild-type reporter construct. 
M1, M2 and M3 represent reporter constructs with single mutant at first, second and 
third RUNX binding sites. M1+2, M1+3, M2+3 and M1+2+3 represent reporter 
constructs with compound mutants at RUNX binding sites. As compared to the WT 
promoter, single and compound mutants show significant reduction of promoter 
activity in the presence of RUNX3 and Smads. Two tailed Student’s t test: (*) p<0.05; 
(**) p<0.01.    
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4.1.6 Electrophoretic Mobility Shift Assay (EMSA) 

 

To investigate the possibility of direct interaction between the putative binding 

elements in the claudin-1 promoter and RUNX3, EMSA was performed using double-

stranded DNA probes containing either the wild type or mutant sequences of the 

binding elements (Fig. 4.9). Protein extracts were obtained from 293T cells which do 

not contain endogenous RUNX3, and 293T cells exogenously expressing RUNX3. 

IgC-alpha promoter region contains three RUNX binding sites, thus were used as the 

control probe in this assay (Lane 1-3). Four pairs of probes covering first and second 

RUNX binding elements, which contain both wild type (WT-WT), one wild type and 

one mutant (WT-MT; MT-WT) or both mutant (MT-MT), and 2 probes covering 

third RUNX binding element (WT and MT) were used.  

A band corresponding to RUNX3 binding to probe containing two wild type 

RUNX binding elements was observed as shown in lane 6. Addition of unlabelled 

wild type competitor probe blocked this association (Lane 7), but not for unlabelled 

competitor probe containing both mutated RUNX binding sites (Lane 8). These 

results were likewise observed for probes with one wild type and one mutant RUNX 

binding sites (WT-MT and MT-WT) (Lane 16-19). These results collectively show 

that RUNX3 binds to the first and second RUNX binding sites in the claudin-1 

promoter. When either one of these RUNX binding sites was being mutated, the 

binding affinity of RUNX3 to the probe became weaker, as shown by the weaker 

bands in lane 16 and 18 as compared to lane 6. RUNX3 also binds to the third RUNX 
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binding site, with a stronger affinity, as shown by the stronger bands in Lane 11 & 13. 

To confirm the specificity of these shifts, the anti-RUNX3 (R3-5G4) monoclonal 

antibody which is specific for RUNX3 was added. A supershifted band was observed, 

confirming that RUNX3 protein was present in the DNA-protein complexes (Lane 

20). These observations clearly show the direct binding of RUNX3 to claudin-1 

promoter in vitro.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9: Electrophoretic Mobility Shift Assay (EMSA). Protein extract was 
obtained from 293T cells in the presence and absence of exogenous RUNX3. IgCα 
WT probe which contains RUNX binding sites acts as positive control. Both biotin-
labeled and unlabeled probes of 35 mers were used. First set of probes contain either 
wild-type or mutated forms of first and second RUNX binding sites (WT-WT, WT-MT, 
MT-WT, MT-MT); second set of probes contain only wild-type or mutated form of 
third RUNX binding site (WT, MT). Results showed that RUNX3 binds to all 3 
putative RUNX binding sites on hclaudin-1 promoter, with third RUNX binding site 
as the seemingly favorable binding site. Arrow; DNA-protein complex. SS; DNA-
protein-antibody complex. 
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4.1.7 Chromatin Immunoprecipitation (ChIP)   

 

To observe if RUNX3 also binds to claudin-1 in vivo, ChIP assay was carried out 

using the SNU16 cells containing endogenous RUNX3. As shown in Figure 4.10, the 

anti-RUNX3 (R3-6E9) monoclonal antibody was able to successfully pull down 

claudin-1 promoter region. Upon TGF-β treatment, RUNX3 localized in the 

cytoplasm is translocated into the nucleus. Hence, more RUNX3 is available to bind 

to the claudin-1 promoter, resulting in the increase in immunoprecipitated claudin-1, 

as shown by the higher intensity of the PCR product. Quantitation of the ChIP band  

was done by increasing cycles of PCR. PCR using the GAPDH primers and pull-

down by a normal mouse IgG acted as negative controls, to show that the pulled-

down chromatins by the RUNX3 antibody was specific. Thus, the results show that 

RUNX3 binds to the claudin-1 promoter in vivo and claudin-1 is a direct target of 

RUNX3 in SNU16 cells.  
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Figure 4.10: Chromatin Immunoprecipitation (ChIP) assay. PCR results with primers 
specific to hclaudin-1 promoter indicates the specificity of pull-down product as well 
as specificity of antibody used. Figures on the right panel indicate number of PCR 
cycles. PCR for input is done using primers specific to hclaudin-1 promoter. A 
smaller band detected below the claudin-1 band in the 6E9 precipitates is a result of 
primer dimer formation. 
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4.1.8 Nude Mice Assay 

 

4.1.8.1 Restoration of claudin-1 Expression and Its Tumor Suppressive Effect  

 

As shown in Fig. 4.1 and Fig. 4.5A, Runx3-/- GIF5 cell line does not express claudin-1 

whereas Runx3-/- GIF14 cell line expresses very low level of claudin-1. A previous 

publication showed that GIF cells from Runx3-/- mice were tumorigenic in nude mice, 

whereas GIF cells from Runx3+/+ mice were not (23). To check if claudin-1 acts as a 

tumor suppressor in gastric epithelial cells, GIF5 and GIF14 stable cell lines 

expressing exogenous claudin-1 in the pcDNA3.1 vector were generated. 

Interestingly, restoration of exogenous claudin-1 in both GIF5 and GIF14 cells 

greatly suppress tumorigenicity in nude mice, and the tumor suppressive effect was 

correlated well to the level of claudin-1 expression in these stable cell lines. The 

number of tumors was lower when the level of exogenously expressed claudin-1 was 

higher (Fig. 4.11 & 4.12). These results show that restoration of claudin-1 expression 

contributes to the tumor suppressive effect in the tumorigenic mouse gastric epithelial 

cell lines.  
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GIF5 
(gm) 

clone1 
(gm) 

clone2 
(gm) 

0.62 NA NA 
0.65 NA NA 
0.44 NA NA 
0.83 0.06 NA 
0.7 NA NA 
0.9 NA NA 
0.29 NA NA 
0.39 NA NA 
0.32 NA NA 
0.57 NA NA 

 

Figure 4.11: Nude mice assay in Runx3-/- GIF5 cell line. GIF5 stable cell lines 
expressing exogenous mclaudin-1 (clone 1 and 2), and GIF5 control cell line stably 
expressing pcDNA3.1 were used. GIF5 stable cell lines expressing mclaudin-1 highly 
reduced tumorigenicity in nude mice as compared to control GIF5 cells, indicating 
the possible role of claudin-1 as a tumor suppressor, functioning as a target of RUNX3.  
NA: no tumor observed. 
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GIF14 
(gm) 

clone2 
(gm) 

clone3 
(gm) 

0.26 NA NA 
0.27 0.05 NA 
0.05 NA NA 
0.13 NA NA 
0.17 NA NA 
0.2 0.13 NA 
0.24 0.17 NA 
NA NA NA 
NA NA NA 
NA NA NA 

 

 

Figure 4.12: Nude mice assay in Runx3-/- GIF14 cell line. GIF14 stable cell lines 
expressing exogenous mclaudin-1 (clone 2 and 3), and GIF14 control cell line stably 
expressing pcDNA3.1 were used. GIF14 stable cell lines expressing mclaudin-1 
highly reduced tumorigenicity in nude mice as compared to control GIF14 cells, 
indicating the possible role of claudin-1 as a tumor suppressor, functioning as a target 
of RUNX3. NA: no tumor observed. 
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SNU16 
(gm) 

clone8 
(gm) 

clone9 
(gm) 

NA NA 0.04 
NA 0.13 0.04 
NA 0.06 0.1 
NA 0.02 0.14 
NA 0.17 0.17 
NA 0.18 0.18 
NA 0.25 0.21 
0.14 0.14 0.21 
0.1 0.31 0.2 
NA 0.27 0.36 

 

 

Figure 4.13: Nude mice assay in the SNU16 human gastric cancer cells. SNU16 
stable cell lines whereby endogenous claudin-1 was stably knocked-down (clone 8 
and 9), and SNU16 control cell line stably expressing pCDNA3.1 were used. Knock-
down of hclaudin-1 in SNU16 stable cell lines enhances tumorigenicity as compared 
to the control SNU16 cells, supporting the role of claudin-1 as a tumor suppressor. 
NA: no tumor observed. 
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4.1.8.2 Reduced claudin-1 Expression Enhances Tumorigenicity 

 

The effect of reduction of claudin-1 expression on tumorigenicity was then examined. 

SNU16 stable cell line with reduced level of claudin-1 was generated using the 

antisense DNA against claudin-1. Consistence with the observations in GIF5 and 

GIF14, reduction of claudin-1 enhanced tumorigenicity in nude mice (Fig. 4.13). 

These observations collectively show that claudin-1 has the tumor suppressive 

property in gastric epithelial cells, whereby its restoration helps to lower the 

incidence of tumor formation.   

 

4.1.9 Claudin-1 and RUNX3 Expression in Human Gastric Cancer Samples 

 

A total of 52 gastric cancer samples were analyzed for the expression of RUNX3 and 

claudin-1. Figure 4.14 shows the expression pattern of RUNX3 and claudin-1 in 

normal human adult gastric mucosa. Both RUNX3 and claudin-1 are expressed most 

strongly in chief cells and surface epithelial cells and to a lesser degree in parietal 

cells. RUNX3 stains the nucleus whereas claudin-1 stains at cell-cell boundaries and 

in the cytoplasm.  

Table 4.1 and 4.2 show a summary of RUNX3 and claudin-1 expression in the 

52 gastric cancer cases whereby 29 samples (55.8%) were differentiated type whereas 

23 samples (44.2%) were diffuse (undifferentiated) type. RUNX3 expression that was 

detected in nucleus was scored as positive, whereas no expression or those in the 
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cytoplasm was scored as negative. Base on the results, these samples were 

categorized into three groups according to the expression of RUNX3 and claudin-1, 

whereby 15 samples (28.8%) expressed both RUNX3 and claudin-1 (Fig. 4.15A); 17 

samples (32.7%) neither express RUNX3 nor claudin-1 (Fig. 4.15B); and 20 samples 

(38.5%) expressed only claudin-1 but not RUNX3 (Fig. 4.16).  

RUNX3 was only expressed in a total of 15 samples (28.8%) and it was 

interesting to observe that claudin-1 was also expressed in all these cases. This 

suggests that when RUNX3 was present, claudin-1 was also induced. Besides, it was 

also interesting to note that all 32.7% of samples that stain negatively for claudin-1 

was in fact in the subset of RUNX3 negative cases, indicating that loss of RUNX3 

expression also inhibited the expression of claudin-1. These results collectively show 

that expression of claudin-1 and RUNX3 is correlated in approximately 61.5% 

(28.8% + 32.7%) of the gastric cancer cases.  

The third group of results showed that claudin-1 was expressed in the absence 

of RUNX3 (38.5%). This suggested that claudin-1 was also regulated by factors other 

than RUNX3. However, as shown in Figure 4.16, in samples that RUNX3 was absent, 

claudin-1 expression level also appeared to be lower as compared to samples with 

RUNX3 expression. This observation was consistent throughout the three types of 

tissues that were analyzed, namely the poorly-differentiated, the well-differentiated 

and the diffuse type of gastric cancer. This suggested that RUNX3 plays a crucial role 

in the regulation and expression of claudin-1 in the human gastric cancer samples.  
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Figure 4.14: Expression pattern of claudin-1 and RUNX3 in normal human gastric 
sample. Both RUNX3 and claudin-1 are expressed most strongly in chief cells and 
surface epithelial cells and to a lesser degree in parietal cells. RUNX3 stains the 
nucleus whereas claudin-1 stains at cell-cell boundaries and in the cytoplasm.  
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Figure 4.15: RUNX3 and claudin-1 expression pattern in differentiated and diffuse 
type of human gastric cancers. (A) 15 samples (28.8%) expressed both RUNX3 and 
claudin-1. (B) 17 samples (32.7%) did not express both RUNX3 and claudin-1. Scale 
bar, 100 µm. 
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Figure 4.16: Staining pattern of claudin-1 in the RUNX3 positive and negative cases 
from the poorly-differentiated, well-differentiated and diffuse type of gastric cancer. 
A total of 38.5% cases express only claudin-1 but not RUNX3. When RUNX3 was 
absent, claudin-1 expression also appeared to be lower as compared to those with 
RUNX3 expression. This suggested that claudin-1 expression is RUNX3 dependent. 
Scale bar, 100 µm. 
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Table 4.1: RUNX3 vs claudin-1 expression in 52 gastric cancers 
 
  Sample Claudin-1 RUNX3   Sample Claudin-1 RUNX3 
U GT24 N N U GT53 P P 
U GT25 N N D GT54 P N 
U GT26 P P D GT55 P N 
U GT27-1 N N U GT57 P P 
U GT27-2 N N D GT61 N N 
U GT30 P N U GT63 P N 
U GT31 N N D GT64 N N 
U GT32 N N U GT67 P N 
U GT34 N N D GT69 N N 
D GT37 N N D GT71 N N 
D GT39 N N D GT73 P N 
D GT40 P P U GT76 P P 
D GT42 P N U G10 P P 
D GT44 N N D G54 P N 
U G00104 P N D G55 P N 
U G00143 P P D G84 P N 
U G01032 P P D G111 P N 
U G01058 P N D G118 P N 
D G02005 P N D G136 P P 
D G04142 P N D G148 P N 
D G04202 P P D G0102 P P 
U G04197 P P D G0155 P N 
D GT2 N N U G0158 P P 
U GT4 N N D G0182 P N 
D GT51 N N U G0204 P P 
D GT52 P P D G0250 P N 

P = positive; N = negative 
# U = Diffuse; D = Differentiated 
^ RUNX3 negative samples included cytoplasmic positive cases 
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Table 4.2: RUNX3 vs claudin-1 expression in differentiated and diffuse type of 
gastric cancers 
 

  
RUNX3 negative, 
n (%) 

RUNX3 positive, 
n (%) 

Claudin-1 negative, 
n (%) 

Claudin-1 positive, 
n (%) 

Differentiated 
(n=29) 24 (83.0)   5 (17.0)  9 (31.0) 20 (69.0) 
Diffuse (n=23) 13 (56.5) 10 (43.5)  8 (35.0) 15 (65.0) 
Total (n=52) 37 (71.2) 15 (28.8) 17 (32.7) 35 (67.3) 
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4.2  Discussions  

 

Due to the lack of cell-cell contact and polarity in Runx3-/- mice, the possible role of 

RUNX3 in this function was investigated by screening several TJ proteins and the E-

cadherin AJ protein to check their correlation with RUNX3. E-cadherin AJ molecule 

was included in the screen as dysfunction of E-cadherin has been a well-known cause 

of gastric carcinogenesis (213, 214). Results showed that RUNX3 transcriptionally 

regulated the expression of claudin-1. Claudin-1 was also shown to have tumor 

suppressive activity. Therefore, a part of tumor suppressor activity of RUNX3 is likely 

to be to positively regulate the expression of claudin-1.   

Various claudin genes including claudin-1 have been reported to play a role in 

gastric cancer. Recently, it was reported that diffuse type of gastric carcinomas shows 

lack of claudin-1 and claudin-4 expression (169). A tissue microarray study shows a 

lower expression of claudin-1, -3, -4 and ZO-1 in diffuse type of gastric cancer (165). 

Study by Lee et al. also observed that loss of claudin-4 promotes the advancement of 

gastric adenocarcinoma (155).  

  Quantitative RT-PCR method also revealed the down-regulation of claudin-18 

in intestinal type of gastric cancer, which was postulated to be an early event in 

gastric carcinogenesis (166). Claudin-23 on the other hand, was found to be down-

regulated in the intestinal type of gastric cancer (167). All these genes were hence 

thought to be tumor suppressor genes in gastric cancer, though their mechanisms 

were not clearly understood. Results using GIF and SNU16 cells however showed no 
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regulation of claudin-3, -4 and ZO-1 by RUNX3. RT-PCR results on SNU16 and AS 

SNU16 cells also did not show clear correlation between claudin-18 and -23 with 

RUNX3 (data not shown). It is possible that other than claudin-1, the expression of 

these proteins must be regulated by genes other than RUNX3.   

Claudin-1 knockout mice confirmed its important role in maintaining the 

barrier integrity in the epidermis (143). The up- and down-regulation of claudin-1 

expression have been well-documented in cancers. Decreased expression of claudin-1 

has been linked to the induction of tumor spheroids and recurrence status in breast 

cancer (170, 215). On the other hand, upregulation of claudin-1 expression 

contributes to colorectal carcinogenesis (164, 178, 216). Overexpression of claudin-1 

was also linked to the development of intestinal neoplasia (217). Two main signaling 

pathways have been described to regulate claudin-1 expression. The increased 

expression of claudin-1 in the β-catenin-Tcf / LEF signaling pathway was found to 

play a role in colorectal carcinogenesis (164). On the other hand, claudin-1 was 

identified as a direct downstream target gene of the Snail family of transcription 

factors, in the MAPK pathway. In human epithelial cells and invasive human breast 

tumors, high levels of Snail and Slug were correlated with low levels of claudin-1 

expression, indicating the Snail family transcription factors as repressors of claudin-1 

(188).  

  It is worth noting that a similar characteristic wrinkled skin appearance was 

observed in the Runx3 knockout mice (unpublished observation) as those observed in 

the claudin-1 knockout mice. The wrinkled skin appearance, a result from the loss of 
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epidermal barrier function, causes the claudin-1 knockout mice to die within 1 day of 

birth (143). 75% of Runx3 knockout mice died in the first day after birth, and none 

survived beyond 10 days. Though it was postulated that the Runx3 knockout mice 

may have died from starvation (23), the precise reason was not known. It could also 

be possible that lost of epidermal barrier function in the skin also contributed to the 

death of Runx3 knockout mice as those observed in claudin-1 knockout mice. These 

observations indicated a possible correlation between RUNX3 and claudin-1 

expression in the gastric epithelial cells which was worth investigating. 

Induction of claudin-1 expression by TGF-β is regulated at transcriptional 

level, as confirmed by RT-PCR and western analysis. The nuclear import of 

transcription factors is an essential factor in many signaling pathways to allow access 

of transcription factors to their target genes. Transcription factors such as the signal 

tranducers and activators of transcription (STAT) and Smads, require receptor-

mediated phosphorylation for conversion to their active state. The unstimulated forms 

of these proteins remain in the cytoplasm (218). Thus, transcription factors localized 

in the cytoplasm are thought to be in a basal, inactive state. TGF-β was recognized as 

the factor that stimulates nuclear translocation of RUNX3, thus switching the inactive 

form of RUNX3 to their active counterpart (97). This allows RUNX3 to physically 

bind to the promoter of their target genes, hence activating their expression, as 

observed in the case of claudin-1 induction upon stimulation by TGF-β.  

  It has been well documented that transcription factors like Snail and Slug act 

as repressors of claudin-1 expression in epithelial cells (188). Snail family genes are 
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transcription factors that play a central role in epithelial-mesenchymal transition 

(EMT), a process that occurs during cancer progression. During EMT, epithelial cells 

lose polarity. Though SNU16 cell line appeared to be unsuitable for the study of 

claudin-1 promoter assay in this study, it opens up new areas which could be explored 

to investigate possible connection between RUNX3 and Snail family transcription 

factor in the regulation of gastric epithelial cells. If their interaction is true, it would 

be interesting to observe how two antagonizing pathways could work together in the 

regulation and maintenance of epithelial cells.    

It has been postulated that TJ functions are altered during cancer progression 

due to loss of claudins expression. In non-tumorigenic epithelial tissues, TJ functions 

to regulate the flow of solutes between cell membranes, such as growth factors and 

cytokines. When TJ barrier functions are interrupted, growth factors and cytokines 

freely penetrate from the surrounding tissue, increasing paracellular flux of growth 

factors, which subsequently give rise to auto- and paracrine stimulation of 

tumorigenic epithelial cells. This lowering of diffusion barrier leads to an improved 

nutrient supply and adds to the selective advantage for developing tumor cells (191).  

This model could well explain the results in tumorigenicity assay using nude 

mice, whereby reintroduction of claudin-1 may have restored tight junction functions, 

thus reducing paracellular flux of growth factors, and minimizing tumorigenic 

epithelial cells and tumor formation. Collagen gel assay showed no reconstitution of 

cell polarity in GIF5 and GIF14 cells expressing exogenous claudin-1 (data not 

shown). Thus, the reduction of tumorigenicity could have worked through 
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mechanisms other than preserving the cell polarity, like the reconstitution of TJ 

barrier function. To confirm this, the use of electronmicroscopy technique (EM) may 

be needed for a detailed observation of the TJ strands.  
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CHAPTER 5   CONCLUSIONS AND FUTURE PERSPECTIVE  

 

For the first time, these findings supported the unsuspected role of RUNX3 as a tumor 

suppressor in gastric carcinogenesis through its direct regulation of tight junction 

protein, claudin-1. Claudin-1 also appears to be a tumor suppressor in the gastric 

system. It is also the first detailed report describing the regulation of claudin-1 by 

TGF-β signaling pathway. Therefore, a signaling cascade involving TGF-β, RUNX3 

and claudin-1 in the tumor suppression of gastric epithelial cells is proposed.  

 Based on the expression pattern of RUNX3 and claudin-1 in the human gastric 

cancer samples, RUNX3 was either not expressed or expressed but mislocalized in 

the cytoplasm as an inactive form in 71.2% (37/52) of the cases. RUNX3 negative 

cases were especially high (83%) in the differentiated type of gastric cancer. As such, 

RUNX3 is highly suitable to be used as a marker for diagnostic purposes. Claudin-1 

was either not expressed (32.7%) or expressed at a minimal level (38.5%) in the 

human gastric cancer samples. Although its expression pattern correlated with the 

expression of RUNX3, usage of claudin-1 alone as a diagnostic marker is deemed not 

sufficient.  

Unlike the staining pattern of RUNX3 which is easier to determine (in nucleus 

or cytoplasm), the claudin-1 expression level in the positive cases (high or low) may 

be harder to be determined by eye, unless a fixed parameter is utilized through the use 

of a software. Even then, a positive reference or normal tissue counterpart need to be 

tested alongside each time a sample is to be tested for claudin-1 expression. As 
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availability of normal tissue counterpart may not be feasible all the time, plus the fact 

that the expression level of claudin-1 may vary in between tissue samples, 

comparison of claudin-1 expression level in each patient tissue can become daunting 

and less accurate. Thus, it will be more meaningful to carry out RUNX3 and claudin-

1 expression at the same time for diagnosis purposes. With this, markers with better 

diagnostic value may be developed through the use of RUNX3 and claudin-1. 
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APPENDIX 1 
 

GENOMIC STRUCTURE OF Runx3, STRUCTURE OF THE TARGETING 

VECTOR FOR HOMOLOGOUS RECOMBINATION, AND THE GENE 

STRUCTURE OF THE TARGETED LOCUS   
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APPENDIX 2 
 

FULL LENGTH SEQUENCE OF hCLAUDIN-1 PROMOTER (1530 bp) 

(RUNX BINDING SITES HIGHLIGHTED IN YELLOW) 

 
CCCTGGGATACAACACGAACATGGTCTTGTCCTAAACAGCTGATAGGAGAAAGACAG
TATTCACTGTGTTAATCTCAGTCCAAATTAATTGTCTTCATCTAGCTCCTGTCTTAC
ATTCTTCATTGCTTGTCCCTAAATCCTAGCACGGCCAAGTCCTTTAGTTTTAAGCCT
ACATGAAAGGCATCCAGGGAGAGCCAGGTGGAAATGAAGGTGGTGGGGCTTGGCCTT
TCTTCCCATTCCCACCTTGAGAATTTGCACCTTTCCTTCTCTGTCACCAACTAGCAG
TTGCCATGGTATATAAGGGTATATCTTATTTTATCCTTAATATGTTTATTTCTGCTT
CCAAGATGCTTCTGTTTTTACTAAAACCATAGAAGCTTCCCCTCCCACCACACTCGC
ACCACACACAAAAAGCAGTTGGAAAAACATTTCAATGATTCCTAACCACAACAGCAC
TTCTGACTAACTACAAAGAAGGAAGCTTTGGAGAAACATAGAGGGAAACTACAGTCC
CAGCGAGACCGAAACCGGAGGGGTGAGATAGCCAGTCACAGTAAAAGCTGGAACCAG
AGCCCAGACTTCCTCAACTCCAGCCCAGTCCTTTTGCCACTGGGGAAACGCTGTTTA
CATGTCCTCACCTGCGACGAACAACATTTGATAACTCACAAAATTAACACCTTTCAG
GGAGAGCGGGGCACTGGCCAGGTCCCTCTGATAATGAATTGCTGCTCTAAGACATAA
CTGCTGTGGGGAGGAGGTTGGTGTTTGGCGGGGAAGGGCTGCTAGCCTGCAGTTTCA
TAAGGACAATAATACATCAAAAAGGACAATCATAGATCAAAGGGGATATTTTGGGTC
AACTTGATATGTAGTGGAAAGCAGATTGGGAGGGGAGCCAAGTACTGGATATGCTCC
GTGCGTGAGTGTGTCTGTGTGTGTGTGTGTGTGTGTGTGTAAATCATGTTGCTCTCT
GGGTCTGTTTCCCAATCTGTAGAGTGTAAAAGTCTCTGAGGCTCCTTGCAGAGACAA
GTGATGGAACGACCTTGACAGAAGAGAGCAGAGAGAGGAAAGAAGGGGGAGGAAGCC
AAGCAAAGGAGAGAGAAATGGTGTGATGGGGGAGGAGACGCGGAGTTGGGTAGAAAT
GCCTTTTAATAAGATATTGGGAAAAAAGTATTAAACCTAAAACTGCAGCTCTTGAAG
GATCATTTTTTCATCTTTGTGTTAGGATTTACAAGTACAGTGCATAGTAATTTTTGG
ATAATTGGAGTGAATGAATGAAAAGCGTGAAACGCCTTACAGGAGCGAGAAGATCCA
CGAGAGAAAGCGAGCAGGGACGCAGCTCTGGTGCCTGGTCCTGCCGGGTGGTCCCCA
CGCCGCCAGCCGCGCGTTCCCCAACCGGGCGCTCCCGGCGCCCTCTCGGTGAGCCGC
CCTGAAACCGCCAGGGGGCGCTCCCCGGCTGCCGGGGCTGAGGCGGGCGGAGCTGCT
TTAAATCGCGGCGCCCAGCGGTTCTGCGTCTCAGTTCCCGAGCCTGGG 
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APPENDIX 3 

pGL3 VECTOR FOR CLONING OF PROMOTER 
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APPENDIX 4 

pRLSV40 VECTOR 

 

 

 

 

 
 

 

 
Note: The SV40 promoter was removed at the Bgl II and Hind III restriction sites and 

ligated through blunt-end ligation.  
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APPENDIX 5 

 
Human RUNX3 cDNA  

(nucleotide 1-1784; Genbank accession no. Z35278) 

 
gccgctgttatgcgtattcccgtagacccaagcaccagccgccgcttcacacctccctcc
ccggccttcccctgcggcggcggcggcggcaagatgggcgagaacagcggcgcgctg
agcgcgcaggcggccgtggggcccggagggcgcgcccggcccgaggtgcgctcgatg
gtggacgtgctggcggaccacgcaggcgagctcgtgcgcaccgacagccccaacttc
ctctgctccgtgctgccctcgcactggcgctgcaacaagacgctgcccgtcgccttc
aaggtggtggcattgggggacgtgccggatggtacggtggtgactgtgatggcaggc
aatgacgagaactactccgctgagctgcgcaatgcctcggccgtcatgaagaaccag
gtggccaggttcaacgaccttcgcttcgtgggccgcagtgggcgagggaagagtttc
accctgaccatcactgtgttcaccaaccccacccaagtggcgacctaccaccgagcc
atcaaggtgaccgtggacggaccccgggagcccagacggcaccggcagaagctggag
gaccagaccaagccgttccctgaccgctttggggacctggaacggctgcgcatgcgg
gtgacaccgagcacacccagcccccgaggctcactcagcaccacaagccacttcagc
agccagccccagaccccaatccaaggcacctcggaactgaacccattctccgacccc
cgccagtttgaccgctccttccccacgctgccaaccctcacggagagccgcttccca
gaccccaggatgcattatcccggggccatgtcagctgccttcccctacagcgccacg
ccctcgggcacgagcatcagcagcctcagcgtggcgggcatgccggccaccagccgc
ttccaccatacctacctcccgccaccctacccgggggccccgcagaaccagagcggg
cccttccaggccaacccgtccccctaccacctctactacgggacatcctctggctcc
taccagttctccatggtggccggcagcagcagtgggggcgaccgctcacctacccgc
atgctggcctcttgcaccagcagcgctgcctctgtcgccgccggcaacctcatgaac
cccagcctgggcggccagagtgatggcgtggaggccgacggcagccacagcaactca
cccacggccctgagcacgccaggccgcatggatgaggccgtgtggcggccctactga
ccgccctggtggactcctcccgctggaggcggggaccctaacaaccttcaagaccag
tgatgggccggctccgaggctccgggcgggaatgggacctgcgctccagggtggtct
cggtcccagggtggtcccagctggtgggagcctctggctgcatctgtgcagccacat
ccttgtacagaggcataggttaccacccccaccccggcccgggatactgcccccggc
ccagatcctggccgtctcatcccatacttctgtggggaatcagcctcctgccacccc
cccggaaggacctcactgtctccagctatgcccagtgctgcatgggacccatgtctc
ctgggacagaggccatctctcttccagagagaggcagcattggcccacaggataagc
ctcaggccctgggaaacctcccgacccctgcaccttcgttggagcccctgcatcccc
tgggtccagccccctctgcatttacacagatttgagtcagaactggaaagtgtcccc 
cacccccaccaccc 
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APPENDIX 6 

 
FULL LENGTH SEQUENCE OF mCLAUDIN-1  

OPEN READING FRAME (636 bp) 

 

 
atggccaacgcggggctgcagctgctgggtttcatcctggcttctctgggatggatc
ggctccatcgtcagcactgccctgccccagtggaagatttactcctatgctggggac
aacatcgtgaccgctcaggccatctacgagggactgtggatgtcctgcgtttcgcaa
agcaccgggcagatacagtgcaaagtcttcgactccttgctgaatctgaacagtact
ttgcaggcaacccgagccttgatggtaattggcatcctgctggggctgatcgcaatc
tttgtgtccaccattggcatgaagtgcatgaggtgcctggaagatgatgaggtgcag
aagatgtggatggctgtcattgggggcataatatttttaatttcaggtctggcgaca
ttagtggccacagcatggtatggaaacagaattgttcaagaattctatgaccccttg
acccccatcaatgccaggtatgaatttggccaggccctctttactggctgggccgct
gcctccctctgccttctgggaggtgtcctactttcctgctcctgtccccggaaaaca
acctcttacccaacaccacggccttatcccaagccaacaccttctagtgggaaagac
tatgtgtga 
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APPENDIX 7 

 
FULL LENGTH SEQUENCE OF hCLAUDIN-1  

OPEN READING FRAME (636 bp) 

 

 
atggccaacgcggggctgcagctgttgggcttcattctcgccttcctgggatggatc
ggcgccatcgtcagcactgccctgccccagtggaggatttactcctatgccggcgac
aacatcgtgaccgcccaggccatgtacgaggggctgtggatgtcctgcgtgtcgcag
agcaccgggcagatccagtgcaaagtctttgactccttgctgaatctgagcagcaca
ttgcaagcaacccgtgccttgatggtggttggcatcctcctgggagtgatagcaatc
tttgtggccaccgttggcatgaagtgtatgaagtgcttggaagacgatgaggtgcag
aagatgaggatggctgtcattgggggtgcgatatttcttcttgcaggtctggctatt
ttagttgccacagcatggtatggcaatagaatcgttcaagaattctatgaccctatg
accccagtcaatgccaggtacgaatttggtcaggctctcttcactggctgggctgct
gcttctctctgccttctgggaggtgccctactttgctgttcctgtccccgaaaaaca
acctcttacccaacaccaaggccctatccaaaacctgcaccttccagcgggaaagac
tacgtgtga 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


