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Summary 

This thesis reports the structure and function of two key enzymes that represents a 

valid model for the plant enzymes. Plant enzymes are relatively more difficult to isolate 

and characterize. The plant homologs of the two enzymes taken for this thesis work, 

namely Sucrose phosphate synthase (SPS) and Fructokinase (FRK), were particularly 

shown to be highly unstable and could not be characterized. This motivated us to take the 

Halothermothrix orenii as a model system for the plant enzymes to characterize the 

structure and function. H. orenii and plant enzymes share significant sequence homology. 

A detailed general introduction on the sugar metobolism enzymatic pathway is given in 

the first chapter. 

Sucrose phosphate synthase (SPS; EC 2.4.1.14) catalyzes the transfer of a 

glycosyl group from an activated donor sugar such as uridine diphosphate glucose (UDP-

Glc) to a saccharide acceptor D-fructose 6-phosphate (F6P), resulting in the formation of 

UDP and D-sucrose-6’-phosphate (S6P), a central and regulatory process in the 

production of sucrose in plants, cyanobacteria and proteobacteria. The second chapter  

reports the first crystal structure of SPS from H. orenii, and its complexes with the 

substrate F6P and the product S6P. SPS has two distinct Rossmann-fold domains, A- and 

B- domains, with a large substrate binding cleft at the interdomain interface. Structures of 

two complexes show that both the substrate F6P and the product S6P bind to the A-

domain of SPS. The donor substrate, nucleotide diphosphate glucose (NDP-Glc), binds to 

the B-domain of SPS based on comparative analysis of the SPS structure with other 

related enzymes. 



 viii  

Fructokinase (FRK; EC 2.7.1.4) catalyzes the transfer of phosphate group from an 

ATP donor to a saccharide acceptor D-fructose resulting in the formation of D-fructose 6-

phosphate (F6P). As an irreversible and near rate-limiting step, it is important for 

regulating the rate and localization of carbon usage by channelling fructose into a 

metabolically active state for glycolysis in plants and bacteria. The third chapter reports 

the crystal structure of FRK from Halothermothrix orenii, a first representative of any 

species structurally chracterized, and the possible mechanism of action. FRK possesses a 

β-sheet “lid” and an α/β (Rossmann-like) fold at its catalytic domain. FRK dimerization 

is through the lid domain and held in a β-clasp form.   

The conclusions and future directions are provided in the fourth chapter. Our 

findings indicate that the H. orenii  represent  valid models of both plant SPSs and FRKs 

and thus provide useful insight into the reaction mechanism of the plant enzymes.  As 

SPS has been implicated in stress response and food productivity, structure-based 

mutagenesis of SPS in plants may result in high yielding crops with greater resistance to 

osmotic fluctuations in the face of climate changes today.  
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1.1 Introduction 
 

Plants harness energy from sunlight through a series of chemical reactions to be 

the earth’s primary producers of food. These important reactions are catalysed by 

enzymes to which functional and structural characterization would greatly aid in 

increasing the productivity of food to cope with the increasing human population.  Plant 

enzymes, however, are relatively difficult to isolate due to their instability in 

heterologous systems.  Fortunately, these enzymes possess homologs in many bacterial 

systems that can be well-characterized.  This motivated us to use Halothermothrix orenii 

as a model system for understanding plant enzymes through structural chacterization. H. 

orenii and plant enzymes share significant sequence homology. This thesis reports the 

structures and their derived catalytic mechanisms of two ubiquitous enzymes in all plants, 

sucrose phosphate synthase (SPS) and fructokinase (FRK), which represent valid models 

for their plant counterparts.   

 

1.2 Carbon 

Carbon is an essential element in all living organisms.  About 1900 gigatons of 

carbon is present and continuously being exchanged between living and non-living 

components of the biosphere in a biogeochemical process called the carbon cycle.  

Inorganic carbon in the environment is unusable by organisms and needs to be converted 

into organic form first.  Auxotrophs (e.g. plants) do this through an anabolic pathway 

called photosynthesis, using atmospheric carbon dioxide, water and sunlight:   

 

6CO2(gas) + 12 H2O(liquid) + photons → C6H12O6(aqueous) + 6 O2(gas) + 6 H2O(liquid) 
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There are two stages of photosynthesis.  The light-dependant reaction is the first 

stage, where light energy and cholophyll are used in photophosphorylation and photolysis 

of  water.  Products from the light reaction are used in the next stage – known as the 

light-independant reaction or Calvin cycle, where carbon dioxide is reduced into sugars. 

The end products of photosynthesis are basic energy sources for all organisms as 

substrates of respiration, a process through which sugar is oxidized back into carbon 

dioxide to yield energy for growth and development. 

 

1.3 Key Enzymes of Source and Sink Tissues of Plants 

Most plant cells contain chloroplasts for the purpose of photosynthesis.  The plant 

organs involved in carbohydrate production are known as source tissues (Figure 1.1).  

Most of the carbohydrate produced during photosynthesis converted to sucrose for 

transport to other areas for storage, growth and respiration. Plant organs that utilize the 

synthesized sucrose are known as sink tissues.   SPS catalyses the production of sucrose-

6-phosphate in source tissues, the final substrate in the sucrose synthesis pathway. FRK is 

a phosphotransferase at sink tissues; it produces fructose-6-phosphate from sucrose 

breakdown, an important initiation substrate in many catabolic pathways such as 

glycolysis. 
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Figure 1.1 SPS and FRK roles in sugar metabolism in plants. 
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1.4 Sugar 

 Sugar (from the Sanskrit word sharkara) is a type of edible crystalline solid. 

Scientifically, sugar refers to any type of monosaccharide (simple sugar) or disaccharide.  

Monosaccharides (Greek: mono – 1; sacchar – sugar) are the basic building unit of 

carbohydrates.  Examples of monosaccharides include glucose, fructose, galactose, 

ribose, xylose.  Most monosaccharides self-cyclize between an alcohol group and a 

carbonyl group to form a ring structure (Figure 1.2).  Carbon 1 (C1) is the carbon atom of 

the aldehyde group or the carbon atom immediately adjacent to a ketose group. 

 

 

 

 
 

 

 
 
 

 
Figure 1.2 Haworth projection of fructose, a monosaccharide. 
(http://en.wikipedia.org/wiki/Image:Beta-D-Fructofuranose.svg) 
 
 

Disaccharides are sugar molecules with two monosaccharide units joined by a 

glycosidic bond in a condensation reaction between their respective hydroxyl groups.  

Sucrose (Figure 3) comprises of a fused glucose and fructose unit at a α(1→2) linkage, 

lactose of galactose and glucose in a β(1→4) linkage, maltose of two α(1→4) linked 

glucose entities.  alpha- or beta- refers to the stereochemistry of the bond and (1→4) the 

carbon at which the linkage is formed. 

1 

2 

3 4 

5 

6 
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Sugars are central compounds in nature that serve as essential metabolic nutrients 

and structural components for most organisms. They are also major regulatory molecules 

that control gene expression, metabolism, physiology, cell cycle, and development in 

prokaryotes and eukaryotes. In plants, it has been shown that sugars regulate the 

expression of a broad spectrum of genes involved in many essential processes. 

Furthermore, sugars affect developmental and metabolic processes throughout the life 

cycle of the plant. These processes include germination, growth, flowering, senescence, 

photosynthesis and sugar metabolism. 

 

1.5 Sugar phosphates  

Sugar phosphates are abundant in cells and important compounds in nature.  They 

are intermediates common to pathways of synthesis and degradation and therefore the 

principle site at which pathways converge.  Sugar phosphates are derived from 

breakdown of polysaccharides, photosynthesis and gluconeogenesis.  Common examples 

are triose phosphate (TP), formed during photosynthesis and basic substrates for amino 

acid and complex carbohydrate synthesis.  Glucose-6-phosphate (G6P) and glucose-1-

phosphate (G1P) are the basic reactants in starch metabolism, and can be interconverted 

or converted to fructose-6-phosphate (F6P) by phosphoglucomutase, glucose-6-isomerase 

for oxidation through the glycolytic pathway.  F6P itself is both a substrate and product 

of sucrose biosynthesis and hydrolysis respectively, while sucrose-6-phosphate (S6P) is 

an intermediate during synthesis of sucrose.  Taken together, sugar phosphates form a 

pool from which intermediates can be drawn or added to. 
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1.6 Sucrose 

 
 
Figure 1.3. Molecular structure of sucrose. α(1→2) disaccharide formed by linking 
carbon atom 1 of glucose and carbon atom 2 fructose monosaccharides. 
(http://academic.brooklyn.cuny.edu/biology/bio4fv/page/disaccharide.html) 
 

Sucrose is a α(1→2) disaccharide of glucose and fructose (Figure 1.3).  It is solely 

formed by plants where it has three fundamental and interrelated roles. First, it is the 

principal product of photosynthesis and accounts for most of the CO2 absorbed by a plant 

in this process. Secondly, sucrose is a major transportable metabolite through which 

carbon is translocated from source to sink tissues through plants’ vascular system. 

Thirdly, sucrose is the main storage sugar in plants, serving as a main source of organic 

carbons for the synthesis of structural elements and the production of energy in future 

growth. Lastly, it acts as an osmolyte to prevent water loss in times of stress. 
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1.7 Sucrose synthesis 

Most of the carbon needed for the production of sucrose originate from triose-

phosphate molecules produced by the light-independent pathway of photosynthesis, when 

carbon dioxide is reduced by reacting with ribulose 1,5-bisphosphate to form two 

molecules of glycerate 3-phosphate. By using ATP and NADPH from the light dependant 

reactions, glycerate 3-phosphate is further reduced to triose phosphate.  Triose phosphate 

is a three-carbon sugar. One out of six molecules produced will condense to form 

fructose 6-phosphate, which is then exported to the cytoplasm of a plant cell for sucrose 

synthesis. Only a small amount of ready-made hexose molecules, produced in the 

chloroplasts, are transported to the cytoplasm and are utilized for sucrose synthesis.  The 

rest of TP molecules are recycled to form ribulose 1,5-bisphosphate (Figure 1.4). 

The reaction following triose phosphate production occurs in the cytoplasm.  The 

first step is the priming of glucose by glucose phosphorylase.  This involves attaching a 

UDP moiety: 

 

Glucose-1-phosphate + UTP ↔↔↔↔ UDP-glucose +PPi 

 

The amount of F6P available is held in equilibrium by the interconversion of 

fructose-1,6-bisphosphate (FBP) and F6P through the action of three enzymes, which are 

also key regulatory points in the synthesis of sucrose. Cytosolic fructose-1,6-

bisphosphatase (cyFBPase) produces F6P from FBP and is inhibited by fructose-2,6-

bisphosphate.  Conversely, phosphofructokinase catalyzes the backward reaction to FBP 

from F6P.  Pyrophosphate:fructose-6-phosphate-1-phosphotransferase (PFP) is able to  
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Figure 1.4. The light-independent pathway of photosynthesis 

(http://www.msu.edu/~smithe44/calvin_cycle_process.htm). 
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drive the reaction either way, and the synthesis of F6P is stimulated by fructose-2,6-

bisphosphate. 

Sucrose phosphate synthase (SPS; E.C. 2.4.1.14) next catalyses the first step in 

the pathway of sucrose synthesis, by transferring a glycosyl group from activated donor 

sugar, uridine diphosphate glucose (UDP-Glc) to a sugar acceptor D-fructose 6-

phosphate (F6P), resulting in the formation of UDP and S6P: 

 

UDP-glucose + F6P ↔↔↔↔ S6P + UDP (SPS) 

 

Finally, a dephosphorylation of S6P to sucrose by sucrose phosphatase (SPP; E.C. 

3.1.3.24) concludes the sucrose biosynthesis pathway. As a large free energy change 

occurs during this process, the forward reaction is irreversible.   

 

S6P +H2O →→→→ sucrose + Pi (sucrose phosphatase) 

 

 In an alternative pathway, sucrose synthase is able to bypass the need for S6P and 

synthesize sucrose directly from NDP-glucose and fructose: 

 

NDP-glucose + D-fructose <=> NDP + sucrose (sucrose synthase) 

 

1.8 Sucrose and environmental stress 

In 1979, Munn and co-workers observed that when Triticum aestivum was 

subjected to water stress, its floral apex exhibited an initial elevation of sucrose levels, 
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followed by increase in amino acid levels (Munn et al., 1979). Subsequently, similar 

observations were made in other plants (Hubac and Da Silva, 1980); when Chlorella cells 

were plasmolysed by steep increase in sucrose concentration, the rate of sucrose synthesis 

increased.   

This increase was sufficient for a partial restoration of the osmotic volume of the 

cells. (Greenway and Munns, 1980).  It is thus known today that sucrose contributes to 

osmotic adjustments in a plant and reduces tissue damage to enhance survivability when 

loss of turgor occurs.  In plants surving winter, sucrose contributes to tissue cryo-

protection against frost, and sugar content is proportional to freezing tolerance of tissue 

(Levitt, 1980). 

Interestingly, the halophilic bacteria Dunaliella has elevated sucrose production in 

the dark at elevated temperatures when glycerol, its natural osmolyte is used for 

production of hexose phosphates (Muller and Wegmann, 1978; Wegmann, 1979; 

Wegman et al., 1980), suggesting the intimate link between the sugar metabolic pathway 

and osmolytic homeostasis.  

 

1.9 Fate of synthesized sucrose  

The rate of sucrose synthesis increases with the rate of photosynthesis. In 

photosynthetic tissues, sucrose is predominantly exported from cells, most probably by 

facilitated diffusion and subsequently taken up by the phloem complex by a specific, 

active sucrose/H+ co transport mechanism. Once in the phloem complex sucrose is 

transported to cells in the sink tissues. At least two distinct classes of sink tissues can be 

distinguished: (1) tissues that are highly metabolically active such as rapidly growing 
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tissues and (2) tissues that are for storage purposes.  Accordingly, the sucrose that arrives 

will be either used for respiration or starch synthesis. 

 Sucrose delivered to the sink tissues is cleaved by two mechanisms. In apoplast, 

cytosol or the vacuole, invertase (EC 3.2.1.26) cleaves sucrose to glucose and fructose; 

sucrose synthase (SS; EC 2.4.1.13) hydrolyses sucrose to UDP-Glc and fructose in 

(Keller et al, 1988), tonoplast (Etxeberria E and Gonzalez P, 2003) or inassociation with 

the plasmalemma (Amor et al., 1995; Carlson and Chourey, 1996).  Through either 

pathway, half of the carbon imported as sucrose into the sink tissues is converted to free 

fructose, which is phosphorylated and channeled into other pathways. 

  

1.9.1 Starch synthesis 

Starch is the dominant storage polysaccharide in plants and an important 

metabolic substrate in both plants and many herbivores. It is present in all major organs 

of higher plants, accounting for 65 -75% dry weight of cereal grains and 80% of potato 

tubers.  It is a major immediate product of photosynthesis from sucrose and mobilized in 

the dark by hydrolysis back to sucrose and transported to respiring tissues. 

 Starch is a polymer of repeating glucose units; all fructose units derived from the 

breakdown of incoming sucrose must therefore first be converted to G6P by G6P 

isomerase.  Phosphoglucomutase then transfers the phosphate group from C6 to C1 to 

produce glucose-1-phosphate (G1P).  In the presence of ATP, ADP-glucose 

phosphorylase catalyses the formation of ADP-glucose and releases an inorganic 

phosphate in the process.  Glucose monomers from invertase action can join the pathway 

through phosphorylation, while UDP-Glu from SS can be utilized directly. Fructose 
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requires an additional phosphorylation step by fructokinase (Frk) before initiation into the 

pathway.  G1P and ADP-glucose are the substrate for starch synthase to produce 

amylase; branching enzyme later synthesizes amylopectin.  Together, amylose and 

amylopectin are known as starch.   

 

1.9.2 Glycolysis  

Glycolysis is the initial pathway of carbohydrate oxidation (Figure 1.5).  It serves 

three functions: The generation of high-energy molecules (ATP and NADH) as cellular 

energy sources as part of aerobic respiration and anaerobic respiration; that is, in the 

former process, oxygen is present, and, in the latter, oxygen is absent, production of 

pyruvate for the citric acid cycle as part of aerobic respiration and the production of a 

variety of six- and three-carbon intermediate compounds, which may be removed at 

various steps in the process for other cellular purposes. 

Glycolysis, through anaerobic respiration, is the main energy source in many 

prokaryotes, eukaryotic cells devoid of mitochondria (e.g., mature erythrocytes) and 

eukaryotic cells under low-oxygen conditions (e.g., heavily-exercising muscle or 

fermenting yeast).  It is a catabolic process that takes place in the cytosol and drains the 

hexose phosphate (specifically F6P) pool.  F6P is an important compound in glycolysis 

because, contary to starch synthesis, all glucose units must be converted to F6P before 

proceeding. The first committed and rate limiting step converts F6P to F1,6P using ATP 

as a phosphate donor, through the synchronized action of phosphofructokinase and 

pyrophosphate:fructose-6-phosphate phosphotransferase. F1,6P is then broken into two 

molecules of glyceraldehyde 3-phosphate by aldolase.  During the phosphorylation of 
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glyceraldehyde 3-phosphate to 1,3 diphosphoglycerate by pyrophosphate dependant 

phosphofructokinase using pyrophosphateas a phosphate donor, two molecules of NAD 

are reduced to NADH. Subsequently in the production of 3-phosphoglycerate, two 

molecules of ATP are released from the enzymatic transfer of a phosphate group from 

1,3-bisphosphoglycerate to ADP by phosphoglycerate kinase.  In the final steps of 

glycolysis, enolase and pyruvate kinase sequentially forms phosphoenolpyruvate and 

pyruvate respectively. 

 

1.10 Sugar phosphorylation in sucrose catabolism 

Phosphorylation of free monosaccharides (glucose and fructose) is not only the initial 

step of metabolic pathways but also essential for the mobilisation of all hexoses taken up 

by the cell for downstream processes. Phosphorylation traps a sugar in the cell and 

furthermore, feedback inhibition by free fructose on sucrose synthase prevents further 

hydrolysis of sucrose. Therefore, removal of free fructose by phosphorylation helps in 

establishing sink strength of the tissue and facilitates the formation of a sucrose gradient 

between the phloem and cells in the sink.  A majority of the glucose and fructose 

phosphorylating activities are thought to be present in the cytosol or associated with the 

mitochondrial and plastid membranes. Two enzymes are responsible for phosphorylation 

of sucrose cleavage products fructose and glucose: Fructokinase (FRK; EC 2.7.1.4) 

catalyzes the transfer of a phosphate group from adenosine triphosphate (ATP) donor to a 

saccharide acceptor D-fructose resulting in the formation of D-fructose 6-phosphate 

(F6P). Hexokinases (Hxk) preferentially phosphorylates glucose (Figure 1.1).   
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Figure 1.5. The glycolytic pathway.   
http://www.biologyclass.net/glycolysis.jpg 
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1.11 Sugar kinases 

 Based on sequence and structural classifications, there are three superfamilies of 

sugar kinases responsible for the phosphorylation of all sugars in a cell.  

 

1.11.1 Hexokinase superfamily 

The hexokinase superfamily members represent a class of enzymes that possess 

an ATPase domain with same basic fold and active site as actin and Hsp70 of the heat 

shock proteins. There are two distinct domains: the N-terminal domain has a regulatory 

function and C-terminal catalytic. Members of this family include eukaryotic hexokinases 

and glucokinases, prokaryotic glucokinase, gluconokinase, xylulokinase, glycerol kinase, 

fructokinase, rhamnokinase and fucokinases.   

 

1.11.2 Galactokinase superfamily 

The galactokinase superfamily is still structurally uncharacterized.  However, other 

sequence studies have shown that all members of this family share common motifs. This 

family consists of mevalonate kinase and a functionally unrelated homoserine kinase.   

 

1.11.3 Ribokinase superfamily (also known as pfkb family in Prosite sequence 

collection) 

The ribokinase superfamily of proteins consists of fructokinases, E. coli’s minor 

6-phosphofructokinase, 1-phosphofructokinase, 6-phosphotagatokinases, E. coli inosine-

guanosine kinase.  Following the structure determination of ribokinase (Sigrell et al., 

1998),  many members of the ribokinase superfamily have been solved to-date.  Namely, 
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THZ kinase (Campobasso er al, 2000), HMPP (Cheng et al., 2002), pyridoxal kinase (Li 

et al., 2002), AIRs kinase / KDG kinase (Zhang et al., 2004), adenosine kinase 

(Schumacher et al., 2000) and glucokinase (Ito et al., 2001).  In addition, two kinases of 

unknown function (PDB codes: 1KYH and 1O14) have been identified as part of this 

superfamily based on their structure, active sites residues, monomer topology, and 

quaternary structure (Zhang et al., 2004).  It was found that the catalytic portion of these 

enzymes possess a Rossman fold similar to other nucleotide binding proteins. 

 

1.12 Halothermothrix orenii  

H. orenii is an anaerobic, thermohalophilic bacterium from the class Clostridia.  It is 

found in the sediment of a Tunisian salted lake as a long rod, present only in the 40- to 60-

cm layer below the surface.  The strain isolated, H168, produced acetate, ethanol, H2, and 

CO2 from glucose metabolism. Fructose, xylose, ribose, cellobiose, and starch were also 

oxidized. The optimum temperature for growth was 60º C. No growth was obtained at 42 

or 70º C. Strain H168 grew optimally in NaCl concentrations ranging from 50 to 100 g 

per liter, with the upper and lower limits of growth around 200 and 40 g per liter, 

respectively. The G+C ratio of the DNA was 39.6 mol%. The phylogeny, physiology, 

morphology, lipid content, and high G+C content of strain H168 are sufficiently different 

from those of genera belonging to the family Haloanaerobiaceae to justify the definition 

of a new genus.  The SPS and FRK open reading frames (ORF) were identified in the 

course of a random sequence analysis of the H. orenii genome (Mijts and Patel, 2001).  

The following chapters of this thesis report the structures and catalytic mechanisms of 

SPS and FRK, which represent valid models for their plant counterparts. 
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2.1 Introduction 

Enzymes sucrose phosphate synthase (SPS; E.C. 2.4.1.14) and sucrose 

phosphatase (SPP; E.C. 3.1.3.24) are involved in the synthesis of sucrose, a process that 

is believed to be restricted to plants, cyanobacteria (bacterial ancestors of the plant 

chloroplasts; Cumino et al., 2002) and some proteobacteria (Lunn, 2002). SPS is a 

ubiquitously expressed enzyme in plants and green algae.  It catalyses the first step in the 

pathway of sucrose synthesis, by the transfer of a glycosyl group from an activated donor 

sugar such as uridine diphosphate glucose (UDP-Glc) to a sugar acceptor D-fructose 6-

phosphate (F6P), resulting in the formation of UDP and D-sucrose-6’-phosphate (S6P) 

(Figure 2.1). This upstream, reversible reaction is followed by an irreversible reaction by 

SPP resulting in the dephosphorylation of S6P to sucrose, which concludes the sucrose 

biosynthesis pathway.  

SPS is proven to be the only enzyme responsible for the formation of S6P (and 

ultimately, sucrose) from UDP-glucose and F6P, it therefore has major role in the control 

of sucrose production in leaves. Firstly, there is a close correlation between the rate of 

sucrose synthesis and the extractable activity of SPS (Stitt et al., 1987). Secondly, three- 

to seven-fold over-expression of maize SPS in transgenic tomato plants results in a small, 

but significant increase in leaf sucrose synthesis (Frommer and Sonnewald, 1995). 

Thirdly, the known regulatory properties of SPS are entirely consistent with this enzyme 

having an important role in the regulation of sucrose synthesis. High SPS activities found 

in leaves are subjected to complex regulatory controls involving:  
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Figure 2.1 A schematic diagram of the reaction involving SPS and F6P. The synthesis of S6P involves the action of SPS (EC 

2.4.1.14), which catalyzes the transfer of a glycosyl group from an activated donor sugar such as UDP-Glc to a saccharide acceptor 

F6P, resulting in the formation of UDP and S6P, a central and regulatory process in the production of sucrose in plants and 

cyanobacteria. 
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1) Metabolite regulation. Spinach SPS is subjected to metabolite dependent post-

translational modification (Huber et al., 1989) involving allosteric activation by G6P 

and inhibition by Pi.  Divalent cations such as Mn2+ or Mg2+ has also been shown 

activate the enzyme. while  UDP competitively inhibits activity with UDP-glucose. 

2) Protein phosphorylation. SPS phosphorylation was originally characterized as the 

mechanism underlying light/dark modulation of SPS activity.  There are two 

kinetically distinct forms of SPS that differ in substrate affinities, sensitivity to 

inhibition by Pi and activation by G6P: the dephosphorylated (active) and the 

phosphorylated (inactive) form. Multi-site Seryl phosphorylation: pSer158 reduced 

F6P and G6P affinity in spinach (McMichael et al., 1993). S158E mutant 

constitutively deactivated: negative charge responsible for regulating activity – may 

be involved in activation of SPS in response to stress (Toroser and Huber, 1997).  

More recently, phosphorylation of SPS has also been implicated in the activation of 

the enzyme that occurs when the leaf tissue is subjected to osmotic stress.  

3) Molecular genetic regulation of gene expression and steady state enzyme protein 

contents, such as photosynthetic light conditions and osmotic stress that result in 

changes to endogeneous hormonal factors regulating SPS steady state level.  In 

soybean and spinach, artificial addition of gibberellic acid (GA) upregulated the 

expression of SPS protein (Cheikh and Brenner, 1992 Cheikh et al., 1992; Walker 

and Huber, 1989). 

 The SPS from the photosynthetic cyanobacteria Anabaena sp. PCC 7120 

and Synechocystis sp. PCC 6803 (Lunn et al., 1999, Porchia and Salerno, 1996) has been 

characterized and its respective putative SPS genes have also been identified in several 
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other cyanobacterial species, including Synechococcus sp. WH 8102 and 

Prochlorococcus marinus (Lunn, 2002). The functional and physiological role of the SPS 

gene in these photosynthetic prokaryotes, however, is unknown, and it has been 

speculated that, like in plants, the SPS may play a role in adaptation to osmotic stress. 

The presence of SPS in prokaryotes suggests that sucrose synthesis is an ancient trait 

(Cumino et al., 2002, Lunn et al., 1999). The recent identification of a putative SPS in 

Halothermothrix orenii, a non-photosynthetic prokaryote, provided a possibility to 

answer questions about the molecular and physiological role of SPS enzymes.  

H. orenii is an anaerobic, thermohalophilic bacterium from the class Clostridia, 

with an optimum condition of growth at temperature 60°C in 10% NaCl (Cayol et al., 

1994). An open reading frame (ORF) has been identified as SPS in the course of a 

random sequence analysis of the H. orenii genome (Mijts and Patel, 2001). The 

recombinant H. orenii SPS exhibits cross-reactivity with polyclonal antibodies raised 

against plant SPSs (AgriSera, Sweden) suggesting antigen conservation among the SPSs 

of bacteria and plants (Huynh et al., 2005).  

In this chapter we report the crystal structure of the first SPS from H. orenii in the 

apo form, as well as complexes with the substrate F6P and the product S6P refined at 1.8, 

2.8 and 2.4 Å resolutions, respectively. The report on H. orenii SPS provides insight into 

structure and function of SPS from cyanobacteria and plants with which it shares a close 

similarity. Based on comparative analysis of previously published structures of other GT 

enzymes, we propose a mechanism for the transfer of the glycosyl group by SPS from 

NDP-Glc to F6P, leading to the formation of S6P.  
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2.2 Material and Methods 

2.2.1 Cloning, expression and purification.  

 Primers containing BamH1 and Kpn1 restriction sites at the 5’ and 3’ ends 

respectively were used in PCR to amplify the spsA gene. The PCR product was digested 

by these restriction enzymes, followed by its ligation with the pTrcHisA expression 

vector (Invitrogen) encoding an N-terminal, non-cleavable His6 tag (Mijts and Patel, 

2001). The plasmid was transformed into BL21 (DE3) and grown in 1 L of LB broth with 

0.1mM Ampicillin at 37°C until it reached an optical density (OD600nm) of about 0.6-0.7. 

The culture was cooled down and induced with 1mM IPTG overnight at 25°C. The H. 

orenii SPS has 499 amino acid residues with a molecular weight of 56.815 kDa. The 

recombinant H. orenii SPS, consisting of a hexahistidine tag and a linker, is expressed as 

a 61.1 kDa protein. The cells were harvested by centrifugation (9000g; 30min, 4°C) and 

resuspended in 30 ml of 20mM Tris-HCl pH 7.5, 200mM NaCl and 10mM imidazole and 

1 tablet of EDTA-free Complete™ Protease Inhibitor Cocktail (Roche Diagnostics). 

Selenomethionine-substituted SPS was expressed using methionine auxotroph E.coli 

DL41 in LeMaster medium supplemented with 25mg/L selenomethionine (SeMet). The 

cells were lysed by sonication, followed by centrifugation at 11000rpm (Eppendorf 

5804R) for 30min. Cell lysate was transferred to a chromatography (affinity) column 

containing Ni-NTA agarose (Qiagen). 1h of incubation was performed at 25°C with 

gentle agitation. The non-cleavable His6-tag SPS was eluted with 500mM imidazole 

following three wash steps to remove non-specific binding. In the 12.5% SDS-PAGE 

viewed by Coomassie staining, the purified SPS migrated as a single band (Figure 2.5) 

just between the 66.2kDa and the 45kDa of the protein ladder (SDS-PAGE Molecular 

Weight Standard, Low-range by BioRad). The recombinant SPS was further purified 
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using FPLC Hiload 16/60 Superdex200 gel filtration column using AKTA FPLC UPC-

900 system (Amersham Biosciences). The recombinant SPS was eluted at the flow-rate 

of 0.5ml/min, as a single peak (Figure 2.6) between 75ml and 90ml, in a buffer 

containing 0.2M NaCl and 10mM dithiothreitol (DTT) in 20mM Tris-HCl at pH7.5. This 

was followed by ultrafiltration to bring to a final concentration of the recombinant SPS to 

10 mg/ml (Bradford method, Bradford, 1976). 

 

2.2.2 MALDI-TOF analysis.  

 The native and SeMet-substituted SPS was further analyzed for the incorporation 

of selenium on a Voyager STR MALDI-TOF mass spectrometer (Applied Biosystems) 

by comparing the experimentally measured molecular weight of the native SPS with that 

of the SeMet protein and confirmed the proper incorporation of selenium (Figure 2.7). 

 

2.2.3 Dynamic Light Scattering (DLS).   

 Dynamic light scattering measurements were performed at room temperature by a 

DynaPro (Protein Solutions) DLS instrument (Figure 2.8). The homogeneity of native 

SPS and SeMet-SPS was monitored during the various stages of concentration steps to 

avoid aggregation, prior to crystallization. The percentage of polydispersity was 14.1% 

for all protein samples at about 10 mg/ml. 

 

2.2.4 Isothermal Titration Calorimetry (ITC).  

 ITC experiments were carried out by a VP-ITC calorimeter (Microcal, LLC) 

using 0.01-0.02 mM of the SPS in the sample cell and 0.1-0.2mM of F6P in the injector 

(Figure 2.9). Injection volumes of 4-5 µL each were used and the number of injections 
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was 60. The heat of dilution for each ligand was measured differentially with the 

reference cell as a control titration experimental runs for the protein. Consecutive 

injections were separated by time duration of at least 4 mins to allow the peak to return to 

the baseline. The ITC data was analyzed using a single site fitting model using Origin 7.0 

(OriginLab Corp.) software. 

 

 2.2.5 Crystallization.  

 Initial crystallization conditions were screened at 25°C by hanging-drop vapor-

diffusion technique using Hampton Research (Aliso Viejo, CA, USA) crystallization 

screens and by micro batch under-oil technique using JB crystallization screens (Jena 

Biosciences, Jena, Germany). Initially, apo and SeMet SPS crystals were plate-like and 

were obtained after 2 days directly from JB3 screen C2. Further optimization with 

extensive additive screens (Hampton Research) for best diffraction quality crystals was 

obtained by hanging-drop vapor-diffusion method using a reservoir solution containing 

20% PEG 4000, 0.6M NaCl and 0.1M Na MES pH6.5 with a drop size 1µl of the 

reservoir solution with 1µl of protein against 1 ml reservoir solution. Crystals had 

approximate dimensions of 0.45 × 0.3 x 0.2 mm (Figure 2.10). They diffracted up to 1.8 

Å and belonged to space group C2 with a = 154.23, b=48.50, c =75.05 Å and β=100.92º.   

 

2.2.6 Data collection, structure solution and refinement.  

 Crystals were directly taken from the drop, and flash cooled in a N2 cold stream 

at 100ºK. The apo-SPS crystals were diffracted up to 2.4 Å resolution using an R-axis 

IV++ image plate detector mounted on a RU-H3RHB rotating anode generator (Rigaku 

Corp., Tokyo, Japan). Synchrotron data were collected at beam lines X12C and X29, 
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NSLS, Brookhaven National Laboratory for the SeMet protein (Figure 2.11). Complete 

MAD datasets were collected at three wavelengths (Table 2.1) using Quantum 4-CCD 

detector (Area Detector Systems Corp., Poway, CA, USA) to 1.8 Å resolution. Data was 

processed and scaled using the program HKL2000 (Otwinowski and Minor, 1997).   

 

2.2.7 Structure solution and refinement.  

 Out of the seven expected selenium sites in the asymmetric unit, five were located 

by the program SOLVE (Terwillinger and Berendzen, 1999). The N terminal, as well as 

the C terminal methionine, was disordered. Initial phases were further developed by 

RESOLVE (Terwillinger, 2000) and improved the overall figure of merit (FOM) to 0.73 

which made it possible to build automatically approximately 70% of the molecule. The 

remaining parts of the model were built manually using the program O (Jones et al., 

1991). Further cycles of model building alternating with refinement using the program 

CNS (Brunger et al., 1998) resulted in the final model, with an R-factor of 0.226 

(Rfree=0.252) to 1.8 Å resolution with reflections I>σI was used in the refinement.  The 

final model comprises of 455 residues (Ile7-Arg462) and 287 water molecules. The N 

terminal His tag with the linker residues and the C-terminal 32aa were not visible in the 

electron density map. PROCHECK (Laskowski et al., 1993) analysis shows two residues 

in the disallowed regions of the Ramachandran plot. 

 

2.2.8 F6P-SPS and S6P-SPS complexes 

 Two complexes F6P-SPS and S6P-SPS were obtained by soaking crystals of apo-

SPS respectively in 20mM F6P and 20mM S6P for 12 hours at 25ºC. Complete datasets 

of both complexes were collected on an R-axis IV++ area detector with an RU300 
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rotating anode generator as the X-ray source and diffracted to 2.8 Å and 2.4 Å 

respectively. Crystals were cryo-protected as described above. The apo-SPS model used 

to calculate the difference electron density maps revealed the presence of ligands. Two 

models were refined with CNS (Brunger et al., 1998), combined with manual refitting 

with the program O and appropriate entries were made in their respective dictionaries. 

Both F6P-SPS and S6P-SPS complex models consist of residues from Ile7 to Arg462 

with 312 and 294 water molecules respectively. The simulated annealing Fo-Fc omit map 

of the ligands are shown in Figures 6a and 6b. Crystallographic statistics are presented in 

Table 2.1.   

 

2.2.9 Bioinformatics analyses.  

 Sequence database searches were carried out with PSI-BLAST (Altschul et al., 

1997). Sequences of SPS homologs were clustered using CLANS (Frickey and Lupas, 

2004) and genuine members of the SPS family were aligned using CLUSTALX. 

Phylogenetic analyses were done with MEGA 3.1 (Kumar et al., 2004), using the 

minimum evolution method, JTT matrix, and pair wise deletion of gaps. Protein structure 

prediction for sequence segments present in SPS homologs from other species but 

missing from the H. orenii SPS was carried out via the GeneSilico metaserver (Kuroski 

and Bujnicki, 2001). Docking of flexible ADP and UDP structures to SPS was carried out 

using FlexX (Kramer et al., 1999) with default parameters. Ten top-scoring poses were 

considered. 

 

2.2.10 Protein Data Bank accession code.  

 Coordinates and structure factors for the apo, F6P and S6P complexes have been 
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deposited with RCSB Protein Data Bank (PDB) with code 2R60, 2R66 and 2R68 

respectively. 

 

2.3 Results and Discussion  

2.3.1 Sequence Analysis 

Sequence database searches also revealed a large family of sequences similar to H. orenii 

SPS. Top six homologs of the H. orenii SPS exhibit sequence identities varying from 

54% for Petrotoga mobilis SJ95 to 33% for Synechocystis sp. PCC 6803. Similarly, six 

closest plant SPS homologs show sequence identities of approximately 32% (Figure 3a). 

Further analysis by CLANS (Frickey and Lupas, 2004) to cluster all sequence homologs 

into families according to the BLAST sequence similarity P-value is shown in Figure 2.2. 

SPS sequences form a well-defined group, whose nearest neighbors are sucrose synthases 

(SS; mostly from plants) and bacterial glycogen synthases. Other homologs, including 

starch (bacterial glycogen) synthases, are more remotely related. These phylogenetic 

relationships suggest that the SPS (as well as SS) have originated in Bacteria, and were 

transferred to plants via the chloroplast endosymbiont. The phylogenetic tree of the SPS 

family (Figure 2.3) shows several well-resolved branches, among which only green 

plants are monophyletic, while others comprise genes from cyanobacteria, as well as 

from diverse other species, suggesting multiple horizontal gene transfers. Thus, SPS from 

H. orenii also appears to have been derived by horizontal gene transfer from 

cyanobacteria and thus is a member of a sister group of plant SPS enzymes. 
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Figure 2.2 Sequence similarity between SPS and its homologs, as visualized with CLANS. Points indicate sequences; lines indicate 

similarities according to the BLAST P-value (the darker, the more similar). H. orenii SPS is shown as a big red dot. Individual 

families are labeled. All SPS sequences are encircled in red. Sequence similarity is visualized with CLANS (Fricky and Lupas, 2004).
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Figure 2.3 Phylogenetic tree of the SPS family. Monophyletic branches are collapsed, shown as triangles and labeled with the 

taxon’s name. Statistical support for individual branches is shown in percent values, according to the interior branch test. H. orenii 

sequence is indicated in bold. 
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Figure 2.4 Schematic diagram of H. orenii SPS with S. tuberosum SPS (closest homolog of H. orenii SPS belonging to Plant 

SPS), Synechocystis sp. PCC 6803 SPS and Synechocystis sp. PCC 6803 SPP. F6P and NDP-Glc binding domains of SPS 

homologs are deduced by H. orenii SPS-F6P complexed structure and docked model analysis, are represented by blue and red bars 

respectively. The missing N-terminal region in the bacterial SPS which contains the phosphorylation site is represented in brown. The 

SPP-related C-terminal domain (green) which is joined by a linker (light blue), is present in most bacterial and plant SPS homologs 

but absent in H. orenii SPS. 
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Approximately 180aa at the N-terminal region of plant SPSs are missing in bacterial 

SPSs (Figure 2.4). This region containing a phosphorylation site (Ser-162 in maize and 

Ser-158 in spinach) is involved in light-dark regulation, and is essential for the activation 

of the enzymatic activity in plant SPSs (Castleden et al., 2004, Curatti et al., 1998, Huber 

et al., 1989, Lunn, 2002, Lunn and MacRae, 2003). According to our bioinformatics 

analysis carried out via the GeneSilico metaserver (Kuroski and Bujnicki, 2001), the N-

terminal region of plant SPSs is intrinsically disordered. Nonetheless, it exhibits a 

potential to form several α-helices, which, under some specific conditions, e.g. in the 

presence of a ligand, could potentially fold to form a stable three-dimensional structure.  

Many bacterial and plant homologs also possess an additional C-terminal domain, 

which is missing from the H. orenii SPS (Figure 2.4). This additional domain possesses 

sequence similarity to the catalytic domain of SPPs, which catalyzes the final step in the 

pathway of sucrose biosynthesis, by dephosphorylating S6P to sucrose (Lunn, 2002). In 

plant SPS, the SPP-related C-terminal domain is joined by a linker to the NDP-Glc 

binding domain. A shorter version of this linker is also present in H. orenii and 

Synechocystis sp SPS (Figure 2.4). It has been proposed that in most cyanobacterial SPS 

this SPP domain is an inactivated pseudo-enzyme because of the absence of conserved 

Asp residues potentially critical for catalysis (e.g. replaced by Ala4 and Gln6 in the 

enzyme from Synechocystis sp. 6803), which is further supported by the lack of 

experimentally detectable SPP activity (Fieulaine et al., 2005, Lunn, 2002, Lunn and 

MacRae, 2003). However, in some proteobacteria, including A. ferrooxidans and N. 

europaea, the SPP-like domain of predicted SPS enzymes contains all of the conserved 

residues, suggesting that these enzymes are bi-functional with both SPS and SPP 
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activities (Cumino et al., 2002, Lunn, 2002, Lunn and MacRae, 2003). The absence of 

the active SPP domain from SPS is usually correlated with the presence  of a separate      

SPP-encoding gene (Lunn, 2002). Thus, we predict that if H. orenii is to synthesize 

sucrose (this capability has yet to be confirmed experimentally), then it must utilize a 

separate yet to be discovered SPP enzyme. 

  Under the classification of glycosyltransferases (GTs; EC 2.4.x.y.) based on 

sequence similarities and stereochemistries of their substrates and products, SPSs are 

categorized under the CAZy [Carbohydrate Active Enzymes database, (Coutinho and 

Henrissat, 1999); http://www.cazy.org/] Family 4, known as retaining GTs (MacGregor, 

2002, Ullman and Perkins, 1997). GTs are enzymes involved in the biosynthesis of 

carbohydrates and glycoconjugates (a). In general, GT structures adopt 3 folds, dubbed 

‘GT-A’, ‘GT-B’ and ‘GT-C’ (Breton et al., 2006, Gibson et al., 2002, Horcajada et al., 

2006, Lunn and MacRae, 2003). The ‘GT-A’ fold consists of two dissimilar domains 

with the nucleotide binding domain that resembles a Rossmann fold and another smaller 

acceptor domain (Breton et al., 2006). The ‘GT-C’ fold is found in integral membrane 

GTs (Breton et al., 2006, Liu and Mushegian, 2003). The ‘GT-B’, also known as the 

“glycogen phosphorylase glycosyltransferase” (GPGTF) superfamily (Wrabi and Grishin, 

2001) comprises of two distinct Rossmann-fold domains: a sugar acceptor and a sugar 

donor domain.  Hence, SPS is generally categorized under the retaining GT-B family. 

Although some SPSs have been reported to be metal-dependent (Porchia and Salerno, 

1996), retaining GT-B is believed to exhibit a metal ion independent mechanism (Breton 

et al., 2006, 6, Gibson et al., 2002, Liu and Mushegian, 2003) and no metal ion has been 

identified in the structures solved so far. In addition, it is reported that plant SPSs are 
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specific for UDP-Glc, whereas bacterial SPSs (Synechocystis and Anabaena) are not 

(Curatti et al., 1998, Gibson et al., 2002, Lunn et al., 1999). The H. orenii SPS, like the 

Synechocystis SPS, is able to accept other NDP-Glc such as ADP-Glc and GDP-Glc 

(Huynh et al., 2005). 

 

2.3.2 Characterization of SPS 
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Figure 2.5 SDS-PAGE gel image of H. orenii SPS purification. The purified SPS 

migrated as a single band between 66.2 kDa and 45 kDa (Protein Ladder, SDS-PAGE 

Molecular Weight, Low-range by BioRad) in 12.5% SDS-PAGE, viewed by Coomassie 

staining. 

SPS 
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Figure 2.6 Gel filtration profile of SPS.  The X-axis indicates the elution volume in mL 

and the Y-axis indicates the UV absorbance at 280 nm measured in mAU (arbitrary 

units). The elution profile is for protein injected into FPLC Hiload 16/60 Superdex75 gel 

filtration column (Amersham Biosciences). 

SeMet SPS 
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(a) Native SPS (b) SeMet SPS 

  

 
Figure 2.7 MALDI-TOF MS results for native and selenomethionyl SPS. (a) MALDI-TOF MS spectrum for native SPS. (b) 

MALDI-TOF MS spectrum for SeMet SPS.
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Figure 2.8 Dynamic Light Scattering results for SeMet SPS. The % Polydispersity, molecular weight and SOS error are indicated 

by red, green and blue boxes respectively.
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(a) (b) 

  

 

Figure 2.9 ITC profile of H. orenii SPS and substrate F6P. (a) Baseline subtracted raw 

ITC data for injections of F6P is indicated in the upper panel of the ITC profiles shown. 

The peaks normalized to 1:1 ligand and protein molar ratio were integrated as is shown in 

the bottom panel. (b) Control experiment: ITC data same as (a) except no F6P. The solid 

dots indicate the experimental data and the best fit to the experimental data were obtained 

from a non-linear least squares method of fitting using a one-site binding model depicted 

by a solid line. The Gibbs free energy change (∆G = -2.26 ×106 kcal/mol) implies a 

favorable enzymatic reaction. 
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2.3.3 Crystallization and data collection 

Diffraction quality crystals were obtained according to the procedure as described in the 

“Method and Materials” section. 

 

Figure 2.10 Crystals of SeMet SPS. SeMet SPS crystals were obtained by the hanging 

drop vapor diffusion method. 

100µm 



 40

 

 
Figure 2.11 Sample diffraction pattern of SeMet SPS crystal. Sample diffraction 

pattern collected from ADSC Q210 diffractometer system at X12C beamline (NSLS, 

BNL) for SeMet SPS crystal. 
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Table 2.1 Data collection and refinement statistics 

Data set Peak Inflection Remote F6P Complex S6P Complex High Resolution 
       
Data collection       
Resolution range (Å) 50.0-2.0 (2.1-2.0) 50.0-2.1 (2.1-2.0) 50.0-2.0 (2.1-2.0) 50.0-2.7 (2.8-2.7) 

 
50.0-2.3 (2.4-2.3) 
 

50.0-1.8 (1.9-1.8) 
 

Wavelength (Å) 0.9788 0.9794 0.9600 1.5418 1.5418 0.9788 
Observed reflections > 1 211355 220102 243363 55492 92403 266501 
Unique reflections 37156 34739 37435 13734 25868 48898 
Completeness (%) 99.3 99.8 99.9 99.0 99.8 95.7 
Overall (I/σ) 17.9 (1.8) 15.0 (3.4) 14.7 (2.8) 13.4 (3.1) 15.5 (2.0) 12.1 (1.8) 
Rsym (%)a 5.6 (18.8) 6.2 (27.0) 5.9 (32.2) 7.9 (32.2) 5.0 (33.5) 6.0 (29.0) 
Refinement and qualityb       
Resolution range (Å)    20.0-2.8 20.0-2.4 20.0-1.8 
Rwork (no. of reflections)c    0.210 (11318) 0.210 (17949) 0.226 (36349) 
Rfree (no. of reflections)d    0.267 (1282) 0.268 (1998) 0.252 (4056) 
rmsd bond lengths (Å)    0.005 0.009 0.010 
Rmsd bond angles    1.0 1.3 1.4 
Average B-factors (Å2)e        
Main-chain    42.101 40.386 32.639 
Side-chain    44.314 46.533 35.458 
Ramachandran plot        
Most favored regions (%)    86.7 87.2 89.7 
Additional allowed 
regions (%) 

   12.3 11.8 9.2 

Generously allowed 
regions (%) 

   0.5 0.5 0.5 

Disallowed regions (%)f    0.5 0.5 0.5 
 

a Rsym=|Ii−<I>|/|Ii| where Ii is the intensity of the ith measurement, and <I> is the mean intensity for that reflection. 
b For all models, reflections with I>σI was used in the refinement. 
c Rwork=|Fobs–Fcalc|/|Fobs| where Fcalc and Fobs are the calculated and observed structure factor amplitudes, respectively. 
d Rfree=as for Rwork, but for 10% of the total reflections chosen at random and omitted from refinement. 
e Individual B-factor refinement was carried out. 
f  Residues in the disallowed regions are well defined in the electron density map 
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2.3.4 Overall Structure.  

The structure of recombinant SPS from H. orenii was solved by Multi-wavelength 

Anomalous Dispersion (MAD) method from synchrotron data and refined to a final R-

factor of 0.226 (Rfree=0.252) at 1.8 Å resolution. The structure of F6P-SPS complex was 

refined at 2.8 Å resolution, to an R-factor of 0.210 (Rfree=0.267). Data for the S6P-SPS 

complex were collected to 2.4 Å resolution, and refined to an R-factor of 0.210 

(Rfree=0.268). All three models have been refined with good stereochemical parameters 

(Table 2.1). Statistics for the Ramachandran plot from an analysis using PROCHECK 

(Kuroski and Bujnicki, 2001) for these three models gave approximately 88% of non-

glycine residues in the most favored region, with Tyr128 and His151 in the disallowed 

regions. Interestingly, these two residues are well-defined in the electron density map and 

are key amino acids involved in the substrate binding and reaction. It is worth mentioning 

that a similar observation of key substrate-recognizing residues in the forbidden region 

has been previously reported for the SPS structural homologs such as trehalose 6-

phosphate synthase, OtsA (PDB code 1GZ5, Gibson et al., 2002), and glycogen synthase 

(PDB code 1RZU, Buschiazzo et al., 2004). The hexahistidine tag present in the protein 

used for crystallization is not visible in the electron density and, additionally, 37 C-

terminal residues (Lys463-Glu499) are disordered.  The asymmetric unit consists of a 

SPS/complex molecule. This monomer observation is consistent with the gel filtration 

result. 

 The SPS molecule consists of two domains (A-domain: Ile7-Gly229 and Tyr443-

Arg462, and B-domain: Val230-Arg442) that form a deep substrate binding cleft at the 

interface with a dimension of approximately 20 Å wide and 30 Å deep.  Each domain 
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topology is similar to a Rossmann fold (Figure 2.12). The A-domain (mostly the N-

terminal residues) has a central core β-sheet consisting of eight mostly parallel β strands 

(β1↑β2↑β3↓β4↑β5↑β6↑β7↑β8↑) flanked on three sides by seven helices; of which three 

are 1-2 turn small helices. The B-domain (mostly comprising of C-terminal residues) has 

a central parallel β-sheet of six strands (β9↓β10↓β11↓β12↓β13↓β14↓) flanked by nine α-

helices (three of which are 1-2 turn helices). The A- and the B-domains are connected 

through the loops Pro228-Val230 and Arg442-Gln446. The latter loop is considered as a 

part of the kink crossing over the domains and connecting two α-helices, a general feature 

for enzymes belonging to the GT-B fold superfamily (Breton et al., 2006, Gibson et al., 

2002, Horcajada et al., 2006). The A- and B-domains superimpose with an rmsd of 3.2 Å 

for 104 Cα atoms and exhibit 11.5% sequence identity. 

 

2.3.5 Structural Comparisons to Other Proteins.  

 Structural comparison of H. orenii SPS with other protein structures was 

performed using the program DALI (Holm and Sander, 1993). Significant structural 

similarities were found with glycogen synthase, trehalose 6-phosphate synthase (OtsA) 

and glycogen phosphorylase (Figure 2.13 and Figure 2.14), all of which belong to the 

GT-B family and possess catalytic mechanisms of retaining GTs. The closest structural 

similarity is observed between SPS and Agrobacterium tumefaciens glycogen synthase 

complexed with ADP (PDB code 1RZU) from the CAZy Family 5, yielding an rmsd of 

4.4 Å for 365 Cα atoms, with approximately 11% sequence identity. This is followed by 

Escherichia coli trehalose 6-phosphate synthase complexed with G6P-UDP (OtsA; PDB 
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code 1GZ5) from the CAZy Family 20 (rmsd = 4.4 Å for 269 Cα atoms; approximately 

13% sequence  

 

Figure 2.12 Ribbon diagram showing the structure of SPS. A-domain (residues 7-229; 

443-462) is depicted in blue and the B-domain (residues 230-442) in red. The bound 

substrate molecule D-Fructose-6-Phosphate (F6P) is depicted as a ball-and–stick 
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representation. The N- and C-terminals are labeled. This figure was prepared using the 

programs MOLSCRIPT (Kraulis, 1991) and Raster3D (Merritt et al., 1997). 

identity) and Oryctolagus cuniculus glycogen phosphorylase complexed with 

glucopyranose spirohydantoin (PDB code 1A8I), from the CAZy Family 35 (rmsd = 4.2 

Å for 311 Cα atoms; approximately 7% sequence identity). 

 

 However, the superimposition of individual domains of SPS and its homologs 

exhibit a good fit. The A-domain of the SPS superimposes on the corresponding domains 

of glycogen synthase, trehalose 6-phosphate synthase (OtsA) and glycogen 

phosphorylase with a rmsd of 2.6 Å for 197 Cα atoms, 3.2Å for 191 Cα atoms and 2.9 Å 

for 184 Cα atoms respectively. Similarly, the B-domain of SPS superimposes on the 

corresponding domain of these same homologs with a rmsd of 2.8 Å for 178 Cα atoms, 

3.2 Å for 188 Cα atoms and 3.1 Å for 187 Cα atoms respectively. Thus, the comparison 

of the full length SPS with its structural homologs shows variations in the relative 

disposition of A- and B-domains of these enzymes (Figure 2.14). This type of flexibility 

in two-domain enzymes is not unusual and has been reported for several two domain 

enzymes (Breton et al., 2006, Buschiazzo et al., 2004, Horcajada et al., 2006, 

MacGregor, 2002). Furthermore, these structural comparisons suggest a possibility of 

different conformations of GT-B structures. Structures of SPS (or its two complexes) and 

the glycogen synthase-ADP complex may represent an open conformation (Buschiazzo et 

al., 2004), whereas the trehalose 6-phosphate synthase-G6P-UDP complex may represent 

a closed conformation (Buschiazzo et al., 2004, Gibson et al., 2002).  
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Figure 2.13  Structure based sequence alignment of H. orenii SPS. (a) Top 3 rows: 

Structure based sequence alignment of SPS (blue), Glycogen synthase (PDB code 1RZU, 

green) and Trehalose 6-phosphate synthase (PDB code 1GZ5, magenta). The independent 

domains are superimposed. The amino acids are in one-letter codes; the conserved 

residues are highlighted. Strictly conserved residues are shaded red with semi-conserved 

residues lettered in red. Secondary structural elements of H. orenii SPS belonging to A- 

and B-domains are shown in blue and red respectively. This figure was created using the 

program ESPript (Gouet et al., 1999). Middle 4-9th rows: Sequence alignment of H. 

orenii SPS (top, blue) with the closest six SPS homologs (black) was carried out using 

ClustalW (Chenna et al., 2003) and ESPript (Gouet et al., 1999). Bottom 10-15th rows: 

Sequence alignment of H. orenii SPS (top, blue) with the closest six SPS plant homologs 

(orange). Key substrate binding residues in A- and B-domains are indicated by blue and 

red asterisks respectively. Suffix: SPS_Ho: SPS, H. orenii; GSA_At: Glycogen Synthase, 

Agrobacterium tumefaciens (1RZU, Buschiazzo et al., 2004); TSU_Ec: Trehalose 6-

phosphate synthase OtsA, E. coli (1GZ5, Gibson et al., 2002); SPS_Pm: SPS, Petrotoga 

mobilis SJ95; SPS_Fn: SPS, Fervidobacterium nodosum Rt17-B1; SPS_S7: SPS, 

Synechococcus sp. PCC 7002; SPS_Ms: Magnetococcus sp. MC-1; SPS_Mf: SPS, 

Mariprofundus ferrooxydans PV-1; SPS_S6: SPS, Synechocystis sp. PCC 6803; SPS_St: 

Solanum tuberosum; SPS_Cm: Cucumis melo; SPS_Le: Lycopersicon esculentum; 

SPS_Cu: Citrus unshiu;  SPS_Vv: Vitis vinifera; SPS_Os: Oryza sativa. 
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Figure 2.14 Ribbon diagrams showing three complex structures side-by-side: SPS-F6P complex (left, cyan), Glycogen synthase-

ADP complex (centre, green; PDB code 1RZU, Buschiazzo et al., 2004) and Trehalose 6-phosphate synthase-G6P-UDP complex 

(right, magenta; PDB code 1GZ5, Gibson et al., 2002). The ball-and-stick representation shows the bound F6P, ADP and G6P-UDP 

respectively. The open and closed conformation of the substrate binding cleft observed in SPS-F6P (open), Glycogen synthase-ADP 

(open) and Trehalose 6-phosphate synthase-UDP (closed). These figures were prepared using the program PyMOL (DeLano, 2002).   
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 The transformation of GT-B from an open to the closed conformation involves a 

small twist between the two domains (Buschiazzo et al., 2004), bringing to close the 

substrate binding cleft. For instance, in the open GT-B conformation (e.g. H. orenii SPS), 

the entrance of the substrate binding cleft is over 20 Å, whereas in the closed GT-Bs 

(OtsA) it is approximately 6 Å. To illustrate this, a closed model of SPS was generated by 

independently superimposing the A- and B-domains of SPS on the respective domains of 

the closed OtsA-UDP-G6P complex structure. A figure was prepared by superimposing 

the B-Domain of the closed SPS-UDP model on the open SPS-F6P complex (Figure 

2.15). By comparing the open SPS-F6P complex and the closed SPS-UDP model, the 

conformational change upon domain movement is shown. 

 Comparison of three-dimensional structures of SPS, OtsA and glycogen synthases 

indicates that catalytic domains of these enzymes are evolutionarily related. This is 

further supported by the presence of several invariant residues at the substrate binding 

sites. This structural similarity exists despite their low sequence identities, suggesting that 

the structure is often more conserved than the primary sequence. However, sequence 

identities among all SPS (including plant SPSs) are much higher than sequence identities 

of these three structural homologs (mentioned above) (Figure 2.13). These observed 

similarities of sequences, and overall structures suggest a common structural and 

mechanistic framework for all SPS enzymes. Therefore, the structure of H. orenii SPS is 

a valid model for the catalytic domain of plant SPSs providing valuable insight into the 

reaction mechanism of the plant enzyme that had not been available previously.  
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Figure 2.15 Superimposed, stereo diagram of the open SPS-F6P complex (yellow) and the closed SPS-UDP model (blue). The 

ball-and-stick representation shows the bound F6P and UDP at the substrate binding cleft observed in the open and closed SPS. The 

superimposition was performed with DALI (Holm and Sander, 1993) and O program (Jones et al., 1991). These figures were prepared 

using the program PyMOL (DeLano, 2002).   
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2.3.6 SPS-F6P complex.  

 Prior to the crystallization of the SPS-F6P (enzyme-substrate) complex, the 

formation of the complex was verified by Isothermal Titration Calorimetry (ITC) 

experiments. The molar ratio between SPS and F6P was determined to be 0.966 (~1), 

suggesting a 1:1 complex (Figure 2.9a and 2.9b).  In order to obtain this complex, we 

soaked the apo-SPS crystals in a solution containing the substrate F6P and collected a 

complete X-ray diffraction data-set. The difference electron density map clearly showed a 

substrate molecule bound to one of the two domains of SPS (Figure 2.16a). The F6P 

binds in a deep depression in the A-domain, in the interdomain interface cleft (Figure 

2.17a and 2.17b). The substrate is located between two helices of A-domain such that α4 

is close to the phosphate group and α1 is close to the sugar side of F6P. Side chains lining 

the binding pockets are from Gln16, Gly33, Gln35, Lys96, Tyr128, Ser152, Lys157 and 

Arg180 (Figure 2.16a and 2.18). These residues are conserved among the bacterial and 

plant SPSs (Figure 2.13).  In addition, the structure and sequence analyses reveal that the 

binding residues of SPS to the fructose moiety of F6P (Gly33, Gln35, Lys96 and Tyr128) 

and to the diphosphate group of UDP-Glc (Arg270, Lys275, Glu369 and Phe367) are 

conserved in plant and bacteria sucrose synthases (SS). A total of nine hydrogen bonds 

and several hydrophobic interactions are formed between F6P and the SPS molecule. Of 

these, four strong hydrogen bonding contacts (<3 Å) are found between the phosphate 

group of F6P and highly conserved residues of SPS such as Tyr128, Ser152, Lys157 and 

Arg180. In the substrate binding cleft region adjacent to the F6P binding pocket there are 

several well-ordered water molecules, which could be replaced by the incoming second 

substrate NDP-Glc. 
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 The binding of F6P does not cause any major conformational changes in the SPS 

structure. Furthermore, the superimposition of SPS apo- and F6P complex- structures 

(rmsd of 0.266 Å for 455 Cα atoms) reveals no domain movement. Only the key side-

chains, Gln35, Lys157 and Arg180, show a small movement towards the F6P. It must be 

emphasized that the substrate was soaked into the crystal; therefore no major structural 

rearrangement of SPS was anticipated.  

 

2.3.7 SPS-S6P complex.  

            Similar to the SPS-F6P complex, apo-SPS crystals were soaked in a solution 

containing S6P (product) and a complete X-ray diffraction data-set was collected. The 

electron density map clearly showed the presence of one S6P molecule bound at the A-

domain in the domain interface cleft (Figure 2.16b). The location of the product 

molecule, S6P, is in the same region as F6P of the F6P-SPS complex, between the two 

helices of A-domain such that α4 is close to the phosphate group and α1 is close to the 

sugar side of S6P. Similarly, the S6P binds in a deep depression in the A-domain, at the 

domain interface cleft (Figure 2.17c). The overall hydrogen bonding contacts of F6P and 

S6P complexes are the same except for His151 (Figure 2.18). In SPS-F6P complex, 

His151 has no interaction with F6P molecule due to the absence of the glycosyl group. 

Here in the SPS-S6P complex, His151 forms a strong hydrogen bond (<3 Å) with the O 

atom of the transferred glycosyl group (Figure 2.16b). A total of thirteen hydrogen 

bonding contacts and several hydrophobic interactions are formed between S6P and SPS 

molecules. Noteworthy, similar to SPS-F6P complex, five strong hydrogen bonding 

contacts (<3 Å) are found between the phosphate group of S6P and the highly conserved 



 53

residues (Tyr128, Ser152, Lys157 and Arg180). The binding of S6P does not cause any 

major conformational changes in the SPS structure. The superimposition of apo-SPS and 

S6P complex structures (rmsd of 0.266 Å for 455 Cα atoms) reveals no significant 

differences. Key side-chains, such as Gln35, Lys157 and Arg180, interacting with S6P 

show a small movement (<1 Å) towards S6P.  

 

(a) 
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(b) 

 

 

Figure 2.16 Simulated-annealing Fo-Fc omit map of (a) F6P and (b) S6P in the 

substrate binding site of SPS contoured at a level of 3.0σ. All atoms within 3.5 Å of 

F6P and S6P were omitted prior to refinement and map calculation. For figure clarity, 

maps are shown only for the substrates F6P and S6P and not all binding residues are 

shown. The hydrogen bonding contacts are shown in black dashes. Atoms are shown in 

gray (C), blue (N), red (O) and orange (P). This figure was prepared using the program 

PyMOL (DeLano, 2002). 
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Figure 2.17 (a) Molecular surface of SPS showing the distinct two domains 

separated by a large substrate binding cleft. The bound F6P/S6P molecule is shown in 

the cleft region. The orientation is same as of Figure 2.12. (b) Close-up view of the F6P 

binding site. Atoms are shown gray (C), red (O) and yellow (P). These figures were 

produced using GRASP (Nicholls et al., 1991). (c) Close-up view of the S6P binding 

site. Atoms are shown gray (C), red (O) and orange (P). This figure was produced using 

PyMOL (DeLano, 2002) using electrostatic potential generated by APBS (Baker et al., 

2001) 
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Figure 2.18 Superimposition of F6P-SPS and S6P-SPS complexes. The important 

difference between the 2 complexes is the hydrogen bond contact of ND1 atom of His151 

and the glycosyl group-O6 atom of S6P in the S6P-SPS complex. The hydrogen bonding 

contacts are shown in black dashes. In the F6P-SPS complex and S6P-SPS complex, the 

C atoms are shown in gray and cyan respectively. The rest of the atoms are shown in blue 

(N), red (O) and orange (P). This figure was prepared using the program PyMOL 

(DeLano, 2002). 
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2.3.8 Putative ADP / UDP binding pocket.  

            It is reported that plant SPSs are specific for UDP-Glc, whereas bacterial SPSs 

(Synechocystis and Anabaena) are not (Curatti et al., 1998, Gibson et al., 2002, Lunn et 

al., 1999). The recombinant H. orenii SPS, like the Synechocystis SPS, is able to accept 

other NDP-Glc such as ADP-Glc and GDP-Glc (Huynh et al., 2005). Although we did 

not obtain the position of a second NDP-Glc substrate in the SPS structure through 

crystallization, the binding site of ADP-Glc and UDP-Glc can be predicted by a 

comparison with the structure of glycogen synthase-ADP complex (Buschiazzo et al., 

2004) and trehalose 6-phosphate synthase (OtsA)-UDP complex (Gibson et al., 2002) 

respectively (Figure 2.14). The overall architecture of the nucleotide binding site is very 

similar in SPS, glycogen synthase and trehalose 6-phosphate synthase. In the open form 

of SPS, ADP/UDP is predicted to bind to a pocket on the B-domain of the interdomain 

cleft adjacent to the A-domain F6P binding pocket. This binding pocket is lined up by 

Ser268-Arg270; Thr299-Ile303; Pro370-Ser381 and Pro341-Tyr352.  

To provide independent support for the predicted NDP-Glc binding site in H. 

orenii SPS, we carried out computational docking of NDP molecules with the FlexX 

algorithm (Kramer et al., 1999). The result gave ten docked models of UDP to H. orenii 

SPS (Figure 2.17a). A similar result was obtained in the course of ADP docking to SPS 

with a similar orientation of the ligand (Figure 8b). Furthermore, to validate the proposed 

NDP-Glc binding site of SPS, we superimposed B-domains of SPS-UDP/ADP docked 

models on the trehalose 6-phosphate synthase OtsA-UDP (Figure 2.21) and glycogen 

synthase-ADP (Figure 2.22) respectively. It clearly shows the agreement between the 

NDP-Glc predicted binding pocket and key conserved residues of SPS, trehalose 6-
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phosphate synthase (OtsA) and glycogen synthase. Arg270, Lys275, Glu369 and Glu377 

are key residues and highly conserved among the plant SPS homologs (Figure 2.13). The 

NDP-Glc binding pocket remains the same for both the open form (SPS, Glycogen 

synthase) and closed form (OtsA) of these GTs. By analogy, we propose that the NDP-

Glc will occupy the same binding pocket in the closed form of SPS.  It should be noted 

that for the binding of NDP-Glc the side-chains of Arg270 and Arg301 may have a 

different orientation. Docked ADP and UDP at the SPS NDP-binding site form several 

hydrogen bonds and van der Waals interactions with the SPS molecule (Figure 2.19 and 

2.20). It is known that bacterial SPSs exhibit little specificity against NDPs whereas 

plants SPSs are more specific to UDP-Glc than other NDP-Glc (Curatti et al., 1998, 

Gibson et al., 2002, Jones et al., 1991). Most of residues interacting with the diphosphate 

group and the ribose moiety of NDP-Glc are well conserved in both plants and bacteria, 

whereas, residues interacting with the base moiety of the NDP-Glc are less conserved 

among bacteria than plant SPSs. Above considerations may indicate why plant SPS are 

specific for UDP, while bacterial SPS do not discriminate among NDP (Figure 2.19 and 

Figure 2.21). Unlike plant SPS, both plant and bacterial SS show similarities to bacterial 

SPS utilizing NDP-Glc as glycosyl donor (Porchia et al., 1999). Based on the docked 

models (Figure 2.19 and 2.20) and sequence analysis, three nucleotide binding residues 

of H. orenii SPS (Thr299, Leu300 and Leu342; Figure 2.13) are identified.  In contrast, 

the corresponding positions in plant SPS are substituted by conserved large side chain 

residues, Ile, Met and His (Figure 2.13). These variations also suggest a possible basis for 

the more diverse binding modes of bacterial SS, plant SS and bacterial SPS, and the 

stringent binding mode of plant SPS to UDP-Glc. 
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Figure 2.19 Ten docked models of UDP interacting with the binding residues of H. 

orenii SPS. Docked models of UDP (gray) obtained by the ‘ab initio’ method reveal 

the NDP-Glc binding mode of H. orenii SPS (cyan). From these models, most of the 

conserved residues are found to interact with the diphosphate group and the ribose moiety 

of the NDPs. Atoms are shown red (O) and orange (P). Hydrogen bonding contacts are 

shown in black dashed lines. This figure was prepared using the program PyMOL 

(DeLano, 2002). 
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Figure 2.20 Ten docked models of ADP interacting with the binding residues of H. 

orenii SPS. Docked models of ADP (gray) obtained by the ‘ab initio’ method reveal 

the NDP-Glc binding mode of H. orenii SPS (cyan). From these models, most of the 

conserved residues are found to interact with the diphosphate group and the ribose moiety 

of the NDPs. Atoms are shown red (O) and orange (P). Hydrogen bonding contacts are 

shown in black dashed lines. This figure was prepared using the program PyMOL 

(DeLano, 2002).  
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Figure 2.21 Superimposition of one docked-UDP ligand and the actual UDP ligand.  

The superimposition of the conserved, binding residues of SPS (cyan) and trehalose 6-

phosphate synthase (magenta; PDB code 1GZ5, Gibson et al., 2002) interacting with one 

UDP docked model (gray) and UDP ligand (magenta) respectively. The NDP-Glc 

binding mode of H. orenii SPS was deduced from the UDP-bound docked model by an 

‘ab initio’ method. For figure clarity, only four of the conserved, key residues of H 

.orenii SPS: Arg270, Lys275, Glu369 and Glu377, and the corresponding residues of 

trehalose 6-phosphate synthase. The hydrogen bonding contacts are shown in black 

dashes. This figure was prepared using the program PyMOL (DeLano, 2002).  
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Figure 2.22 Superimposition of one docked-ADP ligand and the actual ADP ligand. 

The superimposition of the conserved, binding residues of SPS (blue) and corresponding 

residues of glycogen synthase (green; PDB code 1RZU, Buschiazzo et al., 2004) 

interacting with one of the ADP docked models (gray) and its ADP ligand (green) 

respectively. The docked models of ADP deduced the NDP-Glc binding mode of H. 

orenii SPS by the ‘ab initio’ method. For figure clarity, only four of the conserved, key 

residues of H .orenii SPS: Arg270, Lys275, Glu369 and Glu377, and the corresponding 

residues of glycogen synthase are shown. The hydrogen bonding contacts are shown in 

black dashes. This figure was prepared using the program PyMOL (DeLano, 2002).  
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Cid et al. (2000) proposed the E-X7-E motif for the C-terminal of GTs, in which 

the Glu residues have a catalytic role in the reaction (Cid et al., 2000). This motif is also 

found in H.orenii SPS and residues Glu377 and Glu369 (Figure 2.13) are known as the 

motif positions 1 and 2 respectively (Cid et al., 2000, Gibson et al., 2002, Liu and 

Mushegian, 2003, Wrabi and Grishin, 2001). In SPS-UDP docked models, we observed 

that the carboxylate group of Glu369 interacts with the distal phosphate group of a few 

UDP docked models while that of Glu377 interacts with the ribose moiety in all ten 

docked models of UDP. Since all NDP-Glc share the same ribose and disphosphate 

backbone, we speculate that these conserved Glu residues will most certainly play an 

equivalent role in binding to other NDP-Glc donors. 

 

2.3.9 Mechanism of action 

The successful crystallization of the H. orenii enzyme provides the first 

opportunity to understand the structure of SPS from any organism. Based on our 

structural and bioinformatics analysis of the NDP-Glc binding pocket, in particular the 

detected similarity to retaining GTs of known structure (see above), we propose a 

possible mechanism of SPS action.  

The inverting GT-A, in the presence of a DXD motif, adopts a divalent metal ion 

dependent catalytic mechanism, whereas the retaining GT-B, in the absence of such 

motif, exhibits the metal ion independent mechanism (Breton et al., 2006, Buschiazzo et 

al., 2004, Gibson et al., 2002, Liu and Mushegian, 2003). Although the mechanism of 

retaining GTs is not well understood, Gibson et al. (2002) proposed a putative transition 

state for the transfer of glycosyl group by OtsA, which is metal ion independent (Gibson 
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et al., 2002). To verify the property of H. orenii SPS to bind to divalent metal ion with 

and without substrates, we made several attempts using Isothermal Titration Calorimetry 

(ITC) and co-crystallization / soaking experiments to trap the Mg2+ ion.  None of the 

results supported the binding of Mg2+ under the conditions tested, and in the crystal 

structure no electron density corresponding to a divalent metal-ion was observed near the 

diphosphate groups of the docked NDPs.  

Figure 2.23 shows superimposed model of catalytic regions of 2 complexes: (i) 

open SPS-F6P and (ii) the closed SPS-S6P-UDP model. The closed model of SPS was 

generated by independently superimposing the A- and B-Domain of SPS on the 

respective domains of the closed OtsA-UDP-G6P complex structure. Gly33, Gly34 and 

Gln35 of domain-A of SPS are highly conserved among SPS homologs (Figure 2.13). 

These three residues are also corresponding to the conserved Gly-Gly-Leu motif of OtsA 

(Gibson et al., 2002). In the open SPS-F6P and SPS-S6P complex crystal structures, F6P 

(or S6P) forms hydrogen bonds with the main chain amide of Gly33 and Gln35 (Figure 

2.18). In the closed SPS model (Figure 2.23), the main chain amide of Gly34 is found 

interacting with the diphosphate group of UDP at B-Domain, while Gly33 and Gln35 

maintain the interactions with F6P (or S6P). In the case of closed OtsA structure, UDP at 

the B-domain interacts with the main-chain amides of the corresponding two glycines of 

the Gly-Gly-Leu motif at A-domain (Gibson et al., 2002).  Although the role of the SPS 

Gly33 is different from its corresponding Gly in OtsA, both the second glycine of the 

Gly-Gly-Leu motif in SPS and OtsA binds to the diphosphate group of UDP at their 

respective B-domain. Hence, based on the closed model of SPS and the OtsA complex 
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structure, Gly34 of SPS may play a crucial role in providing a linkage between NDP-Glc 

and A-domain, and may also involved in domain closure upon substrates binding. 
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Figure 2.23 Superimposition of the catalytic regions of the open SPS-F6P complex 

(cyan) and the closed SPS-S6P-UDP model (magenta). SPS residues proposed to bind 

to the glycosyl group of S6P (or UDP-Glc) and its binding residues from A-domain are 

shown. An arrow illustrates the movement of the binding residues from A-domain upon 

domain closure. Carbon atoms of F6P and UDP are shown in green and gray, 

respectively. The carbon atoms of S6P are also shown in green with its glycosyl group 

shown in yellow. The rest of the atoms are blue (N), red (O) and orange (P). The 

superimposition was performed with DALI (Holm and Sander, 1993) and O program 

(Jones et al., 1991). This figure was prepared using the program PyMOL (DeLano, 

2002).  
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Figure 2.24 Schematic diagram of the reaction between F6P and UDP-Glc in the 

binding cleft of SPS. The A- and B-domain binding residues and two substrates 

respectively are labeled in blue, red and black. The hypothetical hydrogen bond between 

O2 of the F6P and the diphosphate group of UDP-Glc is shown as a dotted line. Both the 

orientation of O2 of F6P and the C1 of UDP-Glc are labeled accordingly. The red arrow 

indicates the transfer of the glycosyl group (shaded) from UDP-Glc (sugar donor) to F6P 

(sugar acceptor).   

The position of the glycosyl group of S6P in the closed SPS model is believed to 

be the catalytic reaction centre of SPS. The closed SPS model has revealed several 

interactions between the glycosyl group of S6P and SPS residues (Figure 2.23). 

Conserved residues Glu369, Phe371, Gly372, Leu373 (B-domain) and His151 (A-

domain) of the closed SPS model are found to be interacting with the glycosyl group of 

S6P. The corresponding residues of OtsA are also found interacting with the glycosyl 

group of UDP-Glc in the closed OtsA-UDP-Glc complex structure (PDB code 1UQU, 

Gibson et al., 2004). The UDP-Glc in this complex structure is constrained to adopt a 

folded shape by these interactions (Breton et al., 2006, Gibson et al., 2004). Interestingly, 

the same conformation of a glycosyl group was also observed in UDP-Glc-OtsA complex 

structure. 

In the structure of the SPS-F6P complex, atom O2 of F6P is found to have a 

strong hydrogen bond (<3.0 Å) with one water molecule. By comparison with the 

structure of OtsA, this water molecule may get replaced by the phosphate of the incoming 

donor molecule (Breton et al., 2006). In addition, it is possible that as the two domains 

close upon binding of a second substrate NDP-Glc, a hydrogen bond is established 
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between the atom O2 of the F6P and the diphosphate group of NDP-Glc, which is 

observed in the closed SPS model (Figure 2.24). This hydrogen bond lowers energy 

barrier, facilitates the formation of a late oxonium-ion like transition-state, as a result of a 

nucleophilic attack by the deprotonated atom O2 of F6P at the weakened, anomeric C1 of 

NDP-Glc, leading to the cleavage of NDP-Glc (Breton et al., 2006, Gibson et al., 2002). 

In the SPS-F6P and the SPS-S6P complexes, highly conserved His151 from the 

A-domain of SPS is found to be the only residue that binds to the glycosyl group of the 

product S6P and has no interaction with F6P (Figure 2.18). Previously, for the OtsA-

G6P-UDP complex (Gibson et al., 2002), Gibson et al. had proposed a possible 

interaction of the corresponding His154 with the glycosyl group of UDP-Glc (substrate), 

which was later confirmed with the OtsA-UDP-Glc complex (Gibson et al., 2004). 

According to the closed SPS model, while the conserved Gly34 from A-domain interacts 

with the diphosphate group of UDP at B-domain, His151 remains the only residue from 

the A-domain interacting with the glycosyl moiety of S6P (or UDP-Glc).  Similar to 

Gly34, His151 may provide a linkage between NDP-Glc and A-domain of SPS, and 

possibly involved in domain closure upon substrates binding. Most importantly, we 

propose an active role for the conserved His151 during the transfer of the glycosyl group 

from NDP-Glc bound to the B-domain to F6P on the A-domain, resulting in the 

formation of S6P and followed by its release from this domain.  
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3.1 Introduction 

Phosphorylation of free monosaccharides (glucose and fructose) is the initial step 

of metabolic pathways. Sugar kinases are broadly classified into three superfamilies: the 

galactokinases, hexokinases and ribokinases. Members of the galactokinase family are 

involved in diverse pathways, ranging from cholesterol and amino acid synthesis to 

galactose phosphorylation.   

 

 

 

Figure 3.1. A schematic diagram of the reaction involving FRK and Fructose. The 

synthesis of F6P involves the action of FRK, which catalyzes the phosphorylation of 

fructose to fructose-6-phosphate (F6P). Phosphate group from ATP to a fructose an 

acceptor, resulting in the formation of F6P and ADP, a central and regulatory process in 

sucrose mobilization of plants and bacteria.  
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Sucrose is the major saccharide in plants; two enzymes are responsible for the 

phosphorylation of sucrose cleavage products fructose and glucose. Fructokinase (FRK; 

EC 2.7.1.4) is a ubiquitous, highly specific enzyme that primarily catalyzes the transfer of 

a phosphate group from adenosine triphosphate (ATP) donor to a saccharide acceptor D-

fructose resulting in the formation of D-fructose 6-phosphate (F6P) and ADP (Baker et 

al., 2001). Hexokinases (Hxk; EC 2.7.1.1) preferentially phosphorylates glucose (Figure 

3.1). 

FRK was first reported in 1956 although it was only isolated and characterized 20 

years later.  It belongs to the ribokinase superfamily of sugar kinases and evolutionary 

tree suggests that family divergence of the fructokinase from the ribokinase ancestor 

occurred prior to species divergence, thus explaining the high substrate specificity 

compared with hexokinases.  FRK specifically phosphorylates fructose with a Km of 41-

220µM, at a pH 8.0 and have much higher affinities for fructose than Hxk (Renz and 

Stitt, 1993). As fructose phosphorylation by FRK is irreversible and near rate-limiting, it 

is important for regulating the rate and localization of carbon usage by channelling 

fructose into a metabolically active state for glycolysis in plants and bacteria (Zhang et 

al., 2003).  This reaction is particularly important in plant tissues where sucrose 

assimilation and its conversion to starch or other storage sugars are in progress (e.g. 

tubers, seeds, fruits).  In sink tissues where sucrose degradation is mediated by invertase 

and/or sucrose synthase to produce fructose, fructose must be phosphorylated to maintain 

the carbon flux to starch or respiration.  FRKs are widely reported to have a preference 

for ATP over other nucleotides as the principle source of phosphate, although the enzyme 

is also able to utilize GTP or UTP when present in high concentrations, ATP will be the 
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principle source of phosphate (Chaubron et al., 1995; Mertinez-Barajas et al., 1997).  

Mg2+ is an essential cofactor for this reaction while in some cases, K+ was reported to 

improve the enzyme’s activity (Chaubron et al., 1995).   

Sequence alignment of different plant species FRKs revealed significant sequence 

conservation in the ATP and sugar binding pockets.  There are two known isoforms of 

FRK, both differing in regulation by substrate and cellular location.  Analytical ultra-

centrifugation studies suggests that FRK1 is associated with the chloroplast 

(Schnarrenberger et al., 1990).  In barley and tomato, FRK1 is constitutively expressed 

and shown to exhibit little substrate inhibition properties (Baysdorfer et al., 1989; 

Kanayama et al., 1998).  

FRK2 on the other hand, forms the major pool of FRK that is located in the 

cytosolic fraction.  It is involved in stem and root growth as well as storage organ 

development (Dai et al., 2002b; Davies et al., 2005).  Its expression is predominantly 

sink and source leaves specific (Kanayama et al., 1997; Kanayama et al., 1998). 

Suppression of FRK2 resulted in stunted growth, reduction in flower number, seeds per 

fruit, tuber number and size (Odanaka et al., 2002; Davies et al., 2005) but 

overexpression did not result in elevated levels of tuber growth (Davies et al., 2005). 

FRK2 is potently inhibited by fructose with Ki values of 1-6mM in barley, tomato, pea 

and maize.  As the expression patterns of FRK2 and sucrose synthase (SS) activity are 

correlated in several plant species (Schaffer and Petreikov, 1997), and SS exhibits similar 

inhibition rates of FRK2 by fructose, it has been postulated that FRK2 plays a role in 

starch production in sink tissues where SS cleaves incoming sucrose.  The activity of 

fructokinase greatly exceeds glucokinase in many tissues and this finding is consistent 
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with view that sucrose synthase rather than invertase is a major route for sucrose 

degradation, resulting in a larger amount of fructose being produced over glucose. 

In the course of a random sequence analysis of the Halothermothrix orenii genome, 

the FRK open reading frame (ORF) was identified (Mijts et al., 2001). Sequence database 

searches also revealed a large family of sequences similar to H. orenii FRK (HoFRK). 

HoFRK shared between 30 and 40% sequence identity (50 to 60% similarity) with the top 

twelve aligned sequences and conserved residues from bacteria and plants.  No structural 

characterization available for FRK in the literature, although several ribokinase structures 

are known to-date (Sigrell et al., 1998).  

Here we report a 2.8Ǻ resolution crystal structure of H. orenii FRK and a proposed 

mechanism for the phosphorylation of fructose. Comparative analysis revealed a close 

similarty to plant FRKs and thus refined up to 2.8Ǻ resolution. The report on H. orenii 

FRK provides an insight into their structure and function of FRK from plants with which 

it shares a close similarity. Based on comparative analysis of FRK structure and 

combined with literature, we propose a mechanism for phosphorylation of fructose.   

 

3.2 Material and Methods 

3.2.1 Cloning, expression and purification.  

 Primers containing BamHI and KpnI restriction sites at the 5’ and 3’ ends 

respectively were used in PCR to amplify the FRK gene. The PCR product was digested 

by these restriction enzymes, followed by its ligation with the pTrcHisA expression 

vector (Invitrogen) encoding an N-terminal, non-cleavable His6 tag (Mijts et al., 2000). 

The plasmid was transformed into BL21 (DE3) and grown in 1 L of LB broth with 
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0.1mM Ampicillin at 37°C until it reached an optical density (OD600nm) of about 0.6-0.7. 

The culture was cooled and induced with 1mM IPTG overnight at 25°C. The H. orenii 

FRK has 327 amino acid residues with a molecular weight of 36.074 kDa. The 

recombinant H. orenii FRK, consisting of a hexahistidine tag and a linker, was expressed 

as a 40.359 kDa protein. The cells were harvested by centrifugation (9000xg; 30min, 

4°C) and resuspended in 30 ml of 20mM Tris-HCl pH 7.5, 200mM NaCl and 10mM 

imidazole and 1 tablet of EDTA-free Complete™ Protease Inhibitor Cocktail (Roche 

Diagnostics). Selenomethionine-substituted FRK was expressed using methionine 

auxotroph E.coli DL41 in LeMaster medium supplemented with 25mg/L 

selenomethionine (SeMet). The cells were lysed by sonication, followed by 

centrifugation at 11000rpm (Eppendorf 5804R) for 30min. Cell lysate was transferred to 

a chromatography (affinity) column containing Ni-NTA agarose (Qiagen). 1h of 

incubation was performed at 25°C with gentle agitation. The non-cleavable His6-tag SPS 

was eluted with 500mM imidazole following three wash steps to remove non-specific 

binding. In the 12.5% SDS-PAGE viewed by Coomassie staining, the purified FRK 

migrated as a single band (Figure 3.2a) just between the 31kDa and the 45kDa protein 

ladder (SDS-PAGE Molecular Weight Standard, Low-range by BioRad). The 

recombinant FRK was further purified using FPLC Hiload 16/60 Superdex200 gel 

filtration column using AKTA FPLC UPC-900 system (Amersham Biosciences) and 

eluted at the flow-rate of 0.5ml/min as a single peak (Figure 3.2b) at 80ml in 20mM Tris-

HCl pH7.5, 0.2M NaCl and 10mM dithiothreitol (DTT). This was followed by 

ultrafiltration to bring to a final concentration of the recombinant FRK to 10 mg/ml 

(Bradford method, Bradford, 1976). 
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Figure 3.2 Top a) SDS-GEL image of purified FRK. Bottom b) Gel filtration profile 

of FRK. (a) The purified FRK migrated as a single band between 45 kDa and 31 kDa 

(Protein Ladder, SDS-PAGE Molecular Weight, Low-range by BioRad) in 12.5% SDS-

PAGE, viewed by Coomassie staining.  (b) The X-axis indicates the elution volume in 

mL and the Y-axis indicates the UV absorbance at 280 nm measured in mAU (arbitrary 

units). The elution profile is for protein injected into FPLC Hiload 16/60 Superdex75 gel 

filtration column (Amersham Biosciences). 

SeMet 
FRK 



 79

3.2.2 Crystallization.  

 Crystallization screen was carried out through hanging-drop vapour-diffusion 

method using Hampton Research (Aliso Viejo, CA, USA) screens as well as by micro 

batch under-oil technique using JB crystallization screens (Jena Biosciences, Jena, 

Germany) at room temperature. Initially, apo and SeMet FRK crystals were small in size 

and appeared after two weeks. After extensive optimization, only a few out of the many 

crystals that grew were of diffraction quality (Figure 3.3). Obtaining the diffraction 

quality crystals was the most challenging aspect in this project. The present data set is the 

best of many data sets collected. As an approach to improve the data quality, we have 

also attempted to co-crystallize/soak with the substrates. So far no complex was 

crystallized. The best diffraction quality crystals were obtained from 8% PEG 4000, 

0.8M LiCl2 and 0.1M Tris-HCl, pH 8.5 by using micro batch under-oil technique with 

2µl of the crystallization solution mixed with 2µl of protein under 15µl of paraffin oil. 

Native and SeMet crystals diffracted up to 2.8 Å and belonged to space group P21 with a 

= 43.85, b=172.84, c =47.01 Å and β=113.29º. 
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Figure 3.3 Crystal of SeMet FRK. SeMet FRK crystals were obtained by the micro 

batch under-oil technique. 

 

100 µm  
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Figure 3.4 Sample diffraction pattern of SeMet FRK crystal. Diffraction pattern 

collected from ADSC Q210 diffractometer system at X12C beamline (NSLS, BNL) for 

SeMet FRK crystal. 
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Table 3.1  Data collection and refinement statistics. 

Data set Peak Inflection Remotea 
    
Data collection    
 Resolution range (Å) 50.0-2.8 50.0-28 50.0-2.8 
 Wavelength (Å) 0.9790 0.9794 0.9600 
 Observed reflections > 1 117292 117115 116025 
 Unique reflections 30770 30424 30193 
 Completeness (%) 99.9 99.9 99.9 
 Overall (I/σI) 19.8 18.9 16.7 
 Rsym (%)b 4.6 4.5 4.9 
Refinementc and quality    
 Resolution range (Å)   50.0-2.8 
 Rwork (no. of reflections)d   0.2541 
 Rfree (no. of reflections)e   0.2880 
 R.M.S.D. bond lengths (Å)   0.008 
 R.M.S.D. bond angles   1.59 
Average B-factors (Å2)    
 Main-chain   40.37 
 Side-chain   40.45 
Ramachandran plotf    
 Most favored regions (%)   82.6 
 Additional allowed regions (%)   15.0 
 Generously allowed regions (%)   1.5 
 Disallowed regions (%)   0.9 

aNCS restraint was kept throughout the refinement of the remote dataset. 
bRsym=|Ii-<I>| / |Ii| where Ii is the intensity of the ith measurement, and <I> is the mean intensity for that 
reflection. 
cFor all models, reflections with I>σI was used in the refinement. 
dRwork=100 x Σ|FP-FP(calc)|/ΣFP. 
eR-free was calculated with approximately 2000 reflections in the test set. 
fStatistics for the Ramachandran plot from an analysis using PROCHECK (Laskowski et al, 1993). 
 

 
 

3.2.4 Data collection, structure solution and refinement.  

 Crystals were directly taken from the drop, and flash cooled in a N2 cold stream at 

100ºK. The SelMet FRK crystals were diffracted up to 2.8 Å resolution using an R-axis 

IV++ image plate detector mounted on a RU-H3RHB rotating anode generator (Rigaku 

Corp., Tokyo, Japan). Synchrotron data were collected at beam lines X12C and X29, 

NSLS, Brookhaven National Laboratory for the SeMet protein (Figure 3.4). Complete 

MAD datasets were collected at three wavelengths (Table 1) using Quantum 4-CCD 
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detector (Area Detector Systems Corp., Poway, CA, USA) to 2.8 Å resolution. Data was 

processed and scaled using the program HKL2000 (Otwinowski and Minor, 1997)).   

 

3.2.5 Structure solution and refinement.  

 All four selenium sites in the asymmetric unit were located by the program 

SOLVE (Terwilliger and Berendzen, 1999). Initial phases were further developed by 

RESOLVE (Terwilliger, 2000) and improved the overall figure of merit (FOM) to 0.66 

which made it possible to build automatically approximately 50% of the residues of one 

asymmetric unit. The remaining parts of the molecules were built manually using the 

program O (Jones et al., 1991). Further several cycles of model building alternating with 

refinement using the program CNS (Brunger et al., 1998) resulted in the final model, 

with an R-factor of 0.254 (Rfree=0.288) to 2.8 Å resolution with reflections I>σI was used 

in the refinement.  The final model comprises of 276 residues (Leu22-Ile306) and 114 

water molecules. The His tag with the linker, first N terminal 21 residues and the C-

terminal 21 residues were not visible in the electron density map. PROCHECK 

(Laskowski et al., 1993) analysis shows two residues in the disallowed regions of the 

Ramachandran plot.  
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3.3 Results and discussion 

3.3.1 Overall structure.  

The crystal structure of recombinant FRK was determined by the MAD method 

using the synchrotron data set and refined up to 2.8Å resolution (Figure 3.5, Table 3.1).  

Each FRK monomer consists of residues from Leu22 to Ile306. Neither the N-terminal 21 

residues nor the C-terminal 21 residues had interpretable electron density map and were 

not modelled. FRK crystallized with two molecules in the asymmetric unit and they are 

related by a 2-fold noncrystallographic symmetry is approximately parallel to the a-axis. 

Interestingly, these two molecules are packed one over other through the lid region β-

strands, resulting in a formation of a continuous β-sheet extending across the dimer 

interface which stabilizes the dimeric structure. Gel filtration chromatography experiment 

indicated that FRK exists as a dimer in solution which is consistent with the dimeric 

arrangement observed in the crystal structure.   

Each FRK molecule consists of a mixed α/β fold; a characteristic nucleotide 

binding domain resembles Rossmann fold (Leu22-Ile30, Ser56-Thr108, Ala128-Ile306) 

(hereafter referred as catalytic domain) and a small β-sheet “lid” (or lid region) (Leu31-

Gly55, Thr109-Glu127). The substrate binding cleft is located at the interface between 

the catalytic domain and the lid region with a dimension of approximately 18 Å wide and 

22 Å deep.  The catalytic domain has a central core β-sheet consisting of eight mostly 

parallel β-strands flanked on both sides by eight helices; of which two are 1-2 turn small 

helices. The lid region from both monomer forms a tilted antiparallel β-sheet consisting 

of four strands from each monomer and runs from one monomer to other monomer at the 

dimer interface. This β-sheet maintains the dimeric architecture of FRK, with the dimer 
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having approximate dimensions of 90 x 40 x 36 Å. The observation of a dimeric FRK in 

solution as well as in crystal structure suggests a functionally important role for 

dimerization.   

.  
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Figure 3.5 Crystal structure of HoFRK.  (a) Shows the ribbon representation of the 

HoFRK monomer. (b) Ribbon diagram showing the dimeric HoFRK in the asymmetric 

unit. The catalytic domain (residues Leu22-Ile30; Ser56-Thr108 and Ala128-Ile306) is 

depicted in blue and the β-sheet “lid” region (residues Leu31-Gly55 and Thr109-Glu127) 

in red. The N- and C-terminals are labelled. These figures were prepared using the 

programs PYMOL (DeLano, 2002). 
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3.3.2 Sequence and structural similarity  

A search for proteins homologous to H. orenii FRK (HoFRK) was performed 

against all bacteria and plant Genbank sequences using BLAST (Altschul et al., 1990).  

The four bacterial and plant FRK sequences that were significantly most similar to 

HoFRK were chosen for sequence alignment using ClustalW (Larkin et al., 2007) are 

shown in Figure 3.6.  Overall, H. orenii FRK shares between 30 and 40% sequence 

identity (50 to 60% similarity) with the sequences from bacteria and plants.  The bacterial 

FRK most similar to H. orenii FRK belonged to Petrotoga mobilis, a thermophilic 

eubacteria of the family Thermotogaceae.  This is followed by FRKs from flavobacteria 

Polaribacter dokdonensis, Dokdonia donghaensis and Psychroflexus torques.  Most 

similar plant FRKs were taxonomically varied.  The closest homologous sequence was 

from Solanum lycopersicum (potato), followed by FRK from Arabidopsis thaliana, Zea 

mays (maize), and Beta vulgaris (sugar beet) (Figure 3.6).  

A search for HoFRK structural homologs was performed using the program DALI 

(Holm and Sander, 1993). Structures showing overall structural similarity particularly 

belong to the ribokinase superfamily of proteins, and the most common feature of these 

proteins is the substrate binding cleft. These structural similarities corresponded to 

similarities in protein sequences observed via a BLAST search of protein sequences from 

the PDB. The highest structural similarity is observed between HoFRK and AIR kinase 

(PDB code 1TZ6) yielding an rmsd of 2.0Å for 262 Cα atoms, with 24% identity. This is 

followed by KDG kinase (PDB code 1V19; rmsd=2.3Å for 261 Cα atoms; 26% identity) 

and ribokinase (PDB code 1RKD; rmsd=2.2Å for 252 Cα atoms; 23% identity). In 

addition, a recently deposited pdb on FRK from Bacteroides thetaiotaomicron VPI-5482 
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(PDB code 2QHP; rmsd=2.2Å for 247 Cα atoms; 17% identity) is structurally related. In 

several cases the individual domains of FRK and ribokinase homologs superpose well, 

although the relative disposition of the two domains often varies, especially the β-sheet 

lid region. 

 The structure based sequence alignment of HoFRK with the homologs from 

ribokinase family showed that residues were predominantly conserved in substrate- 

binding pockets (Figure 3.7).  Incidentally, AIR kinase (1TZ6), KDG kinase (1V19) and 

ribokinase (1RKD) were crystallized as complexes with their respective substrates. KDG 

kinases and ribokinases utilize ATP as a phosphate donor and complexed with ATP or 

ADP, we analysed the structure alignment with HoFRK to infer the conserved ATP 

binding residues of HoFRK.  The mode of ATP binding can be classified into two broad 

categories: phosphate binding and base (A) binding.  The phosphate binding residues 

mainly interact with ATP by direct or water mediated hydrogen bonds, while residues 

binding to the adenine interact hydrophobically.  Although all ATP binding residues are 

found in the latter half of the protein, conserved residues interacting with adenine are 

found clustered around Phe263 to Ala267 and Asn299 of HoFRK.  



 90

 



 91

Figure 3.6 Structure based sequence alignment of HoFRK. (a) Top 4 rows: Structure 

based sequence alignment of HoFRK (blue), ARK (PDB code 1TZ6, green), KDK (PDB 

code 1V19,  yellow) and RK (PDB code 1RKD, magenta). The amino acids are in one-

letter codes; the conserved residues are highlighted. Strictly conserved residues are 

shaded red with semi-conserved residues lettered in red. Secondary structural elements of 

HoFRK belonging to the α/β domain and the β “lid” are shown in blue and red 

respectively. This figure was created using the program ESPript (Gouet et al., 1999). 

Middle 5-8th rows: Sequence alignment of HoFRK (top, blue) with the closest four 

HoFRK homologs (black) was carried out using ClustalW (Larkin et al., 2007) and 

ESPript (Gouet et al., 1999). Bottom 9-12th rows: Sequence alignment of HoFRK (top, 

blue) with the closest four FRK plant homologs (orange). The anion hole motif GAGD is 

indicated by magenta asterisks. Proposed key substrate binding residues of fructose and 

ATP are indicated by blue and red asterisks respectively. Proposed K+ coordinating 

residues are indicated by open circles. Suffix: FRK_Ho: FRK, H. orenii; ARK_Se: 

Aminoimidazole riboside kinase, Salmonella enterica (1TZ6); KDK_Tt: 2-Keto-3-

Deoxygluconate Kinase, Thermus thermophilus (1V19); RKK_Ec: Ribokinase, 

Escherichia coli (1RKD); FRK_Pm: FRK, Petrotoga mobilis SJ95; FRK_Pd: FRK, 

Polaribacter dokdonensis; FRK_Cs: FRK, Cellulophaga sp MED134; FRK_Pt: FRK, 

Psychroflexus torquis ATCC 700755; FRK_Sl: FRK, Solanum lycopersicum; FRK_At: 

FRK, Arabidopsis thaliana; FRK_Zm: FRK, Zea mays; FRK_Bv: FRK, Beta vulgaris. 
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3.3.3 Putative ATP binding pocket 

 Although we did not obtain the positions of ATP and fructose in the HoFRK 

structure through crystallization, the binding site of ATP and fructose can be predicted by 

a comparison with the structures of three known ribokinase family members complexed 

with ATP/ADP. (Figure 3.8a and 3.8b) The overall architecture of the nucleotide binding 

site is very similar in HoFRK, AIR kinase (Zhang et al, 2004), KDG kinase (Ohshima et 

al., 2004) and ribokinase (Sigrell et al, 1998).  The ATP/ADP is predicted to bind to a 

pocket on the catalytic domain lined up by residues Asp181-Cys183; Lys210-Asp215; 

Thr243-Gly248; Ala267-Gly274; Leu297; Asn299; Val301 and Phe304. Similarly the 

fructose binding pocket is predicted to be lined by residues Leu31, Asp33, Leu43, Gly54-

Ser56, Asn59, Phe153 and Asp275. It is noteworthy that Leu31 and Asp33 are from the 

β-sheet lid region. Thr243, Gly274 and Asn299 are the three residues which are totally 

conserved among all of the analysed sequences. Furthermore, in the superimposed 

structures these residues are located in the ATP/ADP binding pocket. (Figure 3.8a and 

3.8b) The equivalent residues of Thr243 and Gly274 in ribokinase, KDG and AIR 

kinases were found to interact with the phosphate group of the bound ATP mainly 

through water mediated hydrogen bonds, while Asn299 interacts with the adenosine base. 

These residues in HoFRK probably play a role in forming the oxyanion hole to stabilize 

the intermediate during phosphorylation as they bind to both substrates. 
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Figure 3.7 Stereo diagram of the conserved, binding residues of RK (magenta; PDB 

code 1RKD) interacting with both of its ligands ADP (white) and Ribose (white), 

with the corresponding and conserved residues of HoFRK (cyan) superimposed. For 

figure clarity, only eleven of the conserved, key residues of RK and HoFRK are shown. 

Both labelled Leu244 and Asp275 of HoFRK represents Gly243-Gly245 and Gly273-

Asp275 respectively shown in the diagram. Residues of HoFRK are labelled in bracket. 

This figure was prepared using the program PyMOL (DeLano, 2002).  
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Figure 3.8 (a) Stereo diagram of HoFRK (cyan) and the complex structures of the 

three ribokinase family members, superimposed on the HoFRK model at the 

catalytic domain. Coloured lines represent the Cα trace of AIR kinase (1TZ6, green), 

RDK kinase (1V1B, yellow) and RK (1RKD, magenta). Substrates in the various 

structures are represented by the stick models. (b) Close-up view of the substrates binding 

sites of the superimposed model of HoFRK (cyan) and the complex structures of the three 
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ribokinase family members at the catalytic domain. Substrates in the various structures 

are represented by the stick models. The colour of the substrates of AIR kinase, RDK 

kinase and RK were green, yellow and magenta respectively. These figures were 

produced using PyMOL (DeLano, 2002). 

 

The HoFRK structure revealed a possible movement of the loop region between 

Ile260 and Val270 to accommodate the incoming substrates. In the present study, the apo 

HoFRK loop occludes a part of the substrate binding pocket (Figure 3.9). Based on the 

structural comparisons with the ATP ribokinase complexes and the sequence analysis, 

both the ATP and fructose interacting residues are established.  All the substrate binding 

residues are located in the well defined binding pocket and these residues are highly 

conserved (Figure 3.7, 3.8a and 3.8b).  The occluding loop however, is not well defined 

in the electron density map, when compared with the rest of the molecule. It indicated 

that the binding of the incoming substrate will move and stabilize this loop region.  
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Figure 3.9 Superimposed ribbon diagram of HoFRK (cyan) and RK-ADP (magenta-

white) complex structure.  The diagram shows a loop region (Ile260-Val270) of 

HoFRK which occludes a part of the ATP/ADP binding pocket.  There is a possible 

movement of this loop region to open and accommodate the incoming substrates.  
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3.3.4 Proposed mechanism of action 

AIR (Zhang et al., 2004), KDG kinases (Ohshima et al., 2004) and ribokinase 

(RK) are structurally similar to HoFRK with fully formed β-sheet lids and catalytic 

domains.  Figure 3.8a and 3.8b show the superimposition of these homologs with bound 

substrates.  All the substrate binds in the same cleft region.  It is clearly evident that RK 

lid region is found in the closed form and interacting with the substrates. However the lid 

in RK is the most complex and comprises of a total of 50 residues, which is about 5-10 

amino acids more than its structural homologs. The β-sheet lid of HoFRK is a total of 42 

residues, comprising of four β-strands and a long loop between residues Ser36 and 

Glu48.  Of these, six residues (Lys115-Pro120) were not observed in the electron density 

map. Residues Leu31 to Gly55 are from the extreme N-terminal and Gly109 to Glu127 

from the middle of the sequence. In comparison to RK, the HoFRK lid region represents 

a more open form.  As the ribose substrate of RK is structurally most similar to fructose 

of FRK, predictions based on the structure of RK ribose complex was speculated to be 

applicable to interpreting FRK substrate binding mechanism. Structure based sequence 

alignment of FRK with RK showed that of the active site residues, Asp33 (Asp16 in RK), 

Phe53 (Phe40 in RK) and Gly55 (Gly42 in RK) were highly conserved.  Theses residues 

in RK interact with the hydroxyl groups in ribose sugar through direct and water-

mediated hydrogen bonds. 

For all members of the ribokinase superfamily, the substrate binding site is 

surrounded by two conserved N-terminal α-helices and C-terminal β-strands. One of the 

signature motifs of this family is a Gly-Gly dipeptide. It was found to undergo a 

conformational switch upon substrate binding to bring the enzyme from open to closed 
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state relative to the lid region for substrate sequesteration (Schumacher et al, 2000).  The 

GG dipeptide is present in all structures where the lid region connects to the catalytic 

domain.  In HoFRK, this Gly-Gly motif is found at position of residues 54-55 and 

possibly act as a hinge like the others.  Gly42 in RK and possibly its equivalent in 

HoFRK may also interact with a hydroxyl group on its sugar substrate.   

The closure of the lid about Gly54-Gly55 is followed by the formation of the 

anion hole, induced by an essential K+ ion to activate the enzyme.  This K+ ion is 

coordinated by the carbonyl oxygen of Asp246, Thr248, Ala287, Ala290 and Gly292 in 

AIR kinase.  Based on the structure alignment, the K+ ion coordination residues in 

HoFRK are predicted to be Asp269, Thr271, Ala303, and Ile306 respectively. These 

residues are found conserved among the homologs. Unfortunately, similar to RK no 

electron density can be assigned as K+ ion in HoFRK.  Adjacent to the metal ion binding 

region, the GAGD motif forms anion hole through its main chain nitrogen atoms.  This 

motif is the most highly conserved region among members in the ribokinase superfamily. 

In HoFRK, this motif is found between Gly272 and Asp275. Figure 3.10 shows the 

simulated-annealing Fo-Fc omit map of part of these residues including Asp275 in FRK. 

This anion hole helps to neutralize the accumulated negative charge during the 

phosphorylation of the substrate.  

The last residue of the GAGD motif, Asp275 of HoFRK, is found near to the 

phosphate acceptor hydroxyl group of the sugar ring (Figure 3.11a and 3.11b). In 

homologs structures, it is proposed to act as a general base to extract the proton from the 

5’ hydroxyl-group during nucleophilic attack in the first step of the phosphotransferase 

reaction and we speculate that this may be applicable for FRKs (Matthews et al, 1998; 
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Schumacher et al, 2000; Sigrell, 2000). Subsequently, the negatively charged hydroxyl 

group performs nucleophilic attack on the γ-phosphate group of bound ATP.  The 

intermediate formed is stabilized by the anion hole.  This intermediate eventually 

decomposes into ADP and fructose-6-phosphate by a SN2 reaction.   

 

 
 

Figure 3.10 Stereo diagram of simulated-annealing Fo-Fc omit map of residues in 

HoFRK. The map contoured at a level of 2.0σ. All atoms within 2 Å of Ala273 to 

Trp278 were omitted prior to refinement and map calculation. Atoms are shown in cyan 

(C), blue (N), red (O) and orange (P). This figure was prepared using the program 

PyMOL (DeLano, 2002).  

 

 

Asp275 Asp275 
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Figure 3.11 (a) Molecular surface of HoFRK showing the distinct domain and lid 

structural features separated by a large substrate binding cleft. The inferred fructose 

(ribose) and ATP molecule is shown in the cleft region. (b) Close-up view of the inferred 

fructose (ribose) and ATP binding site. Atoms are shown white (C), red (O) and orange 

(P). These figures were produced using PyMOL (DeLano, 2002) using electrostatic 

potential generated by APBS (Baker et al., 2001). 

 

Asp275 
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Chapter IV 
 
 
 
 
 
 
 
 

Conclusions and Future Directions 

 
 
 
 
 
 
 
 
 
 
 



 104

The crystal structures of SPS and FRK from H. orenii were determined and have 

been thoroughly described in this thesis. In addition, their mechanisms of action were 

proposed based on these structures combined with bioinformatics analyses, ITC data, 

enzyme-substrate/product complexes in the case of SPS and inferred complex models in 

the case of FRK. The elucidation of  their structures and mechanisms  are significant in 

these family of enzymes. These structures are the first unique structures of their 

respective enzymes to be characterized structurally. SPS and FRK from the plant source 

was shown to be very difficult for purification and characterization. In order to 

understand the mechanism of the plant enzyme, a closest homolog was taken from the 

bacterial system. H.orenii SPS and FRK exhibits close sequence homology with their 

plant counterparts.  Thus our findings on the structure and mechanism can be easily 

extended to describe plant SPS and FRK enzymes.  Present demonstrations on H. orenii 

enzymes  represent valid models for their plant homologs.  

The availability of both apo- and complexed SPS structures contribute invaluable 

insight to its catalytic mechanism. It is the first enzyme of its family to be structurally 

characterized  as apo as well as with a bound substrate/product. Our study uncovered the 

importance of His151 for its role in domain closure and the transferring the glucose 

moiety of UDP Glu from B-domain to A-domain.  

SPS has been implicated in food productivity and stress response.  As a continuation 

of this project, in the future, we will determine the structure of the complex with both 

substrates.   In addition, the structure based mutagenesis will be performed on its catalytic 

site to select for transgenic high yielding crops with a greater resistance to osmotic 

fluctuations. We are also interested to study the full length plant SPS structure 
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comprising of the N-terminal domain, catalytic domain (similar to HoSPS, present work) 

and the SPP like domain will also be determined, as well as their independent domains to 

widen our understanding of the catalytic mechanism of SPS in plants   

 This thesis also reported the structure and the proposed mechanism of FRK for 

the first time. The crystallization of HoFRK is the most challenging part of this project. 

Although we have attempted to determine the crystal structres of the complexes, no 

enzyme-substrate complex was trapped in the crystal. However, a comparative study with 

other members of the ribokinase family demonstrated that FRK adopts a similar 

mechanism as the other members of this group using the highly conserved GAGD motif 

which forms an anion hole during catalysis. Furthermore, Asp275 acts to remove a proton 

from fructose and the fuuctose hydroxyl-FRK intermediate attacks ATP nucleophillically 

and decomposes into ADP and F6P. 

   For future studies, the next immediate procedure would be therefore to confirm 

these propositions by obtaining the crystal structures of FRK in complex with the 

substrates ATP and/or fructose.  These studies will enhance our understanding on the 

mechanism of action of FRK. Further this will confirm or refute the abovementioned 

conclusions drawn based on the comparative study.  This will conclude FRK mechanism 

in plants.   
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