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Summary 

Agrobacterium tumefaciens is a soil-borne plant pathogen that can transfer part 

of its DNA (T-DNA) into plant cells and integrate the DNA into the plant genome.  It 

has been widely used as a vector for plant transformation to create transgenic plants.  

However, the host range of A. tumefaciens is not limited to plant species as it has been 

shown to be capable of transferring its DNA into yeasts, fungi as well as some 

mammalian cells, such as human cells.  While the virulence proteins of A. tumefaciens 

have been well characterized, the studies on the host factors are still emerging. 

In this study, it was shown that when the plant factor – A. tumefaciens VirD2-

Interacting Protein, DIP, was “knocked down” transiently in tobacco BY-2 cells or 

tobacco leaf tissues by RNA interference (RNAi), the plant cells and tissues were 

shown to become less receptive to transformation by A. tumefaciens.  When the DIP 

“knock down” genotype was selected on the selective medium, the resultant stable 

transgenic BY-2 cells were found to possess a slower rate of growth as well as a 

similarly reduced efficiency of transformation by A. tumefaciens.  Subsequently, it was 

found that homozygous DIP -/- “knock out” Arabidopsis plants from heterozygous seed 

line could not be generated.  Taken together, these results demonstrate that DIP plays a 

critical role in the basic biological process(es) and it is important for Agrobacterium-

mediated transformation of plant cells. 

Furthermore, the delineation of DIP-interacting domain of VirD2 via yeast two-

hybrid analysis has indicated that the nuclear localization sequences (NLSs) of VirD2 

are not required for its interaction with DIP.  This sets DIP apart from those plant 

factors that bind to the NLSs of VirD2 to localize the T-DNA to the nucleus.  Based on 

 xii



its identity as a homologue of the evolutionarily conserved exocyst complex subunit 

and its conserved Vps52 domain, DIP may receive the T-DNA from host factors 

interacting with the A. tumefaciens T-DNA export machinery during the early phase of 

Agrobacterium-mediated transformation of plant cells and subsequently direct the T-

DNA to the endocytotic pathway. 

Subsequent study of DIP homologues has shown that the mammalian 

homologues are homologous to one another, especially between the human and the 

mouse that share over 95 % amino acid sequence identity. This is reflected in the fact 

that antibodies against the human homologue, hDIP, could not be raised in both rabbits 

and mice.  Such findings imply that the conserved exocyst complex function in the 

secretion and/or endocytotic pathway is likely to be ‘hijacked’ and manipulated for its 

own cause when A. tumefaciens transforms its host cell. 

 xiii



Chapter 1.  Literature Review 

Agrobacterium tumefaciens is a Gram-negative, soil-borne phytopathogen that 

causes crown gall disease on a wide range of plant species, particularly the 

dicotyledonous plants (van Larebeke et al, 1974; Waston et al, 1975).  Initial research 

in Agrobacterium-plant interaction was aimed to understand the molecular mechanism 

of Agrobacterium-mediated tumor formation and to shed light on animal tumors.  

Although no relationship was found between animal and plant tumors, the research 

effort has culminated in the possible revolution in plant genetic engineering and 

transgenic technology. Agrobacterium-mediated transformation of plant cells has since 

become the mainstay in plant molecular biology and a useful tool for scientists to 

create transgenic plants possessing various desirable characteristics, such as herbicide 

resistance.   

An overview on the mechanism of Agrobacterium-plant cell interaction is 

illustrated in Fig. 1.1.  In brief, when A. tumefaciens encounters and is attracted to the 

wounded plant cell by chemotaxis, part of its DNA (the transferred DNA or T-DNA) is 

processed from the large tumor-inducing (Ti) plasmid to give rise to a T-strand.  This 

T-strand is made up of the single stranded T-DNA with the A. tumefaciens virulence 

(Vir) protein VirD2 bound to its 5’ end. A. tumefaciens VirE2 proteins, which bind 

single stranded DNA non-specifically, will then associate with the T-strand to form the 

T-complex.  Whether this T-complex is formed within the bacterial cell or assembled 

within the plant cell cytoplasm still remains controversial.  However, it is clear that the 

T-DNA is eventually transferred into the plant cell via the VirB/D4 channel, a transfer 

apparatus formed by 11 different VirB proteins and a single VirD4 protein.  After its 

successful passage through the plant cell cytoplasm, possibly by interacting with 
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various plant factors, the T-complex is targeted to the plant cell nucleus, where the T-

DNA is integrated into the plant genome.  In nature, the subsequent expression of the 

genes carried on the T-DNA, which encodes plant hormone genes, will result in the 

formation of neoplastic growths, known as crown gall tumors that secrete opines.  

These opines, which are major sources of carbon and nitrogen, can only be catalyzed 

by the infecting A. tumefaciens strain.  In this manner, A. tumefaciens can effectively 

transform plant cells and manipulate the plant cell metabolism to create a favorable 

niche for itself.  It is for this reason that A. tumefaciens has been dubbed the natural 

genetic engineer, a prokaryotic organism that can genetically modify its eukaryotic 

host for its own benefit. (Kado, 1991; Sheng and Citovsky, 1996; Zupan and 

Zambryski, 1997; Stafford, 2000; Zhu et al, 2000; Gelvin, 2003).   

Besides its natural hosts, which are dicotyledonous plants such as fruit trees and 

grape vines, A. tumefaciens has also been successfully used to transform 

monocotyledonous plants like rice (Komari et al, 1998; Hiei et al, 1994; 1997) and 

wheat (Cheng et al, 1997).  Furthermore, the accumulated knowledge of 

Agrobacterium-mediated transformation has been applied to fungus, yeast and 

mammalian cells as well (Bundock et al, 1995; Relic et al, 1998).  Undoubtedly, the 

development of A. tumefaciens as a plant genetic vector has been one of the most 

important technical developments in the past two decades.   
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Fig. 1.1.  Agrobacterium-plant cell interaction.  Critical steps that occur to or within 
the bacterium and those within the plant cell are highlighted, along with genes 
and/or proteins known to mediate these events: 
1. Attachment of A. tumefaciens to host cell surface receptors;  
2. Recognition of plant signals by bacterial VirA/VirG sensor-transducer system;  
3. Activation of bacterial vir genes;  
4. Processing and production of transferable T-strand;  
5. Export of T-DNA into plant cell via VirB/D4 channel;  
6. Intracytoplasmic transport of T-complex; 
7. Nuclear import of  T-complex;  
8. T-DNA integration. 
IM, bacterial inner membrane; NPC, nuclear pore complex; OM, bacterial outer 
membrane; PP, bacterial periplasm. 
 

(Cited from Tzfira and Citovsky, 2002) 
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1.1.  Overview of Agrobacterium-mediated transformation  of plant cells 
 

Agrobacterium-mediated transformation of plant cells is the only well studied 

example of natural interkingdom gene transfer.  This process of T-DNA transfer 

involves several critical steps: bacterial chemotaxis and attachment to plant cell surface 

receptors, signal perception and transduction by the highly conserved two-component 

regulatory system, vir gene induction, T-DNA processing, T-DNA transfer into plant 

cells, nuclear localization of T-complex into plant cell nucleus, T-DNA integration 

into the plant genome and the expression of transferred gene, as illustrated in Fig. 1.1.   

This T-DNA transfer is initiated when A. tumefaciens perceives and responds to 

certain phenolic compounds, sugar, acidic pH and low phosphate level, which are 

present at plant wound sites.  The signal perception is mediated by the VirA/VirG two-

component transduction system.  Autophosphorylation of VirA protein and the ensuing 

transphosphorylation of VirG protein results in the activation and transcription of 

virulence (vir) genes.  These vir gene products or Vir proteins are directly involved in 

the processing of T-DNA from the Ti-plasmid and the transfer of T-DNA from the 

bacterium into the plant cell nucleus (reviewed in Tzfira et al, 2000; Kado, 2000; 

Gelvin, 2000). 

The T-DNA transfer process from A. tumefaciens into a plant cell involves many 

factors from both the bacterium and the host.  There are at least three genetic 

components of A. tumefaciens that are essential for plant cell transformation.  The first 

component is the T-DNA, the transferred segment, which is transported from the 

bacterium into the plant cell (Wang et al, 1984; 1987).  The T-DNA is located on the 

200-kb Ti-plasmid of A. tumefaciens and is delimited by two flanking 25-bp imperfect 

direct repeats known as the T-DNA borders or T-borders.  Since border sequences of 
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the T-DNA are the only cis elements necessary for effective transformation of the 

plant cell, any foreign DNA placed between the T-borders will be transferred into the 

host plant cell (Miranda et al, 1992).  The second component is the aforementioned vir 

genes that are also located on the Ti-plasmid.  This 35-kb region of DNA, which is not 

transferred to the plant cells, codes for proteins that are required for the sensing of 

plant wound metabolites as well as the processing, transfer, nuclear targeting and 

integration of T-DNA.  There are eight major loci (virA, virB, virC, virD, virE, virG, 

virJ and virH) in this region.  All of the vir operons are induced as a regulon via the 

VirA/VirG two-component system by plant phenolic compounds, such as 

acetosyringone (AS) and specific monosaccharides.  The third component is a set of 

chromosomal virulence (chv) genes, which have been identified as necessary for 

tumorigenesis.  Some of the chv genes are involved in bacterial chemotaxis and 

attachment to wounded plant cells, while others might be involved in the regulation of 

vir gene expression (Uttaro et al, 1990; Thomashow et al, 1987; O'Connell and 

Handelsman, 1989; Kamoun et al, 1989; Sheng and Citovsky, 1996).   

1.2.  A. tumefaciens genes involved in plant transformation 

Both vir genes and chv genes play important roles in the processing and transfer 

of the T-DNA from A. tumefaciens into the plant cell nucleus, as described briefly 

above.  In the following sections and subsections, the characteristics and functions of 

these Vir proteins, Chv proteins and other A. tumefaciens gene products that are 

involved in the transformation of plant cells are described in detail. 

1.2.1.  VirA/VirG, a conserved two-component regulatory system 

Perception of signal molecules released by wounded plant cells is the first step of 

signal transduction that will lead to the expression of vir genes in A. tumefaciens.  The 
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vir operons constitute a regulon which is strongly and coordinately induced in bacterial 

cells growing under acidic pH conditions by two classes of plant signal molecules: 

phenolic compounds, such as acetosyringone, and sugars such as glucose and 

glucuronic acid.  The expression of these virulence genes is under the control of a 

highly conserved two-component regulatory, which is comprised of VirA and VirG 

(Winans, 1992; Olson, 1993).   

Based on protein sequence similarities, VirA and VirG have been assigned to a 

large group of His-Asp two-component regulatory systems, involving a sensor and a 

response regulator.  Functioning as an inner membrane histidine kinase, when VirA 

senses the phenolic compounds released from the wounded plant cells, it will get 

autophosphorylated at His-474 (Lee et al, 1995; 1996; Ninfa et al, 1988; 1991; 1993). 

This phosphorylated VirA will then transfer the phosphate moiety to the response 

regulator, VirG, at Asp-52 before the phosphorylated VirG activates the transcription 

of the vir genes.  

Both physical and genetic evidences have indicated that VirA protein exists as a 

homodimer in its native conformation and the homodimer is the functional state in the 

plant-bacterium signal transduction (Pan et al, 1993).  The VirA protein can be divided 

into four functional domains, which include periplasmic, linker, kinase and receiver 

domains.  The periplasmic domain has been found to sense a variety of 

monosaccharides required for vir gene induction and also to interact with a periplasmic 

sugar-binding protein, ChvE (Cangelosi et al, 1990; 1991).  Though its interaction with 

ChvE alone does not induce vir gene expression, this periplasmic domain sensitizes the 

VirA molecule to the phenolic inducers.  The fact that VirA protein has variable 

efficiency in different strains of A. tumefaciens suggests that different chromosomal 
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backgrounds, especially the difference in ChvE, may give rise to differential degrees of 

VirA function.   

Found on the same protein, the VirA linker domain has been reported to be 

necessary for perceiving phenolic compounds and acidity while the kinase domain that 

contains the conserved phosphorylatable His-474 is found to be required for signal 

transduction in all sensor molecules.  Single-base mutations that cause the change of 

this residue from His-474 to Gln-474 have resulted in a VirA protein with abolished or 

attenuated functions.  VirA with such mutations could no longer be phosphorylated at 

this residue and a mutant carrying this modification has been shown to be avirulent and 

unable to induce vir gene expression in the presence of plant signal molecules (Huang 

et al, 1990; Jin et al, 1990a; 1990b; 1990c).  Despite its similarity to the region of 

VirG that is phosphorylated by VirA, the function of VirA receiver domain still 

remains unclear and it has been proposed to play an inhibitory role in signal 

transduction.  This stems from the observation that once the receiver domain was 

deleted, monosaccharides alone could induce vir gene expression even in the absence 

of phenolic compounds (Jin et al, 1990a; 1990b; 1990c).  

Unlike VirA, VirG is a cytoplasmic protein that can bind specifically to a 12-bp 

conserved consensus, termed the vir-box.  This vir-box is present in the upstream 

region of most of the vir genes.  By binding to this vir-box, VirG acts as a 

transcriptional activator of these vir genes.  While the C-terminus region of VirG is 

responsible for this DNA binding activity, its N-terminal is the phosphorylation 

domain that shows high homology to the VirA receiver (sensor) domain.  Regardless 

of the mutagenesis approach chosen, mutants with non-phosphorylatable VirA or VirG 
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protein have not been able to induce vir gene expression (Jin et al, 1990a; 1990b; 

1990c).  

In addition, the number of copies and the types of virG gene can influence some 

biological properties of A. tumefaciens.  For instance, multiple copies of VirG in A. 

tumefaciens can greatly enhance vir gene expression and thus the transient 

transformation frequency of some plants tissues (Liu et al, 1992).  Having multiple 

copies of VirG also allow a higher level of vir gene induction by acetosyringone (AS) 

even at alkaline pH (Liu et al, 1993).   

Recently, studies have revealed that quantitative differences exist in the 

interactions between VirG and vir boxes of different Ti-plasmids, suggesting that 

efficient vir gene induction in octopine and nopaline strains requires virA, virG, and vir 

boxes from the respective Ti-plasmids for maximal induction efficiency. 

1.2.2.  VirC, VirD and VirE 

1.2.2.1.  Formation of T-complex 

A. tumefaciens virulence proteins responsible for the production of T-complex 

are encoded by virD and virE operons (Grimsley et al, 1989; Toro et al, 1989; 

Citovsky et al, 1988; 1989; Gietl et al, 1987; Sen et al, 1989).  The T-complex is made 

up of the T-strand that is coated with a large number of VirE2 proteins along its entire 

length.  This T-strand is the end product after the single-stranded T-DNA is processed 

from the Ti-plasmid with a molecule of VirD2 covalently bound to its 5’ end.   

The T-DNA is delimited by two 25-bp imperfect direct repeats, also known as 

the T-border, at its ends.  Since any DNA between the T-borders can be transferred 

into the plant cell as a single-strand DNA and integrated into the plant genome, 
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transformation vectors harboring T-borders have been used widely to facilitate the 

creation of transgenic plants.   

In vivo, VirD2, together with VirD1, is sufficient for T-DNA processing in both 

E. coli and A. tumefaciens.  VirD2 is an endonuclease, which cleaves the bottom strand 

of the T-DNA at the T-borders and remains covalently bound to the 5’ end of the 

nicked DNA (Pansegrau et al, 1993; Jasper et al, 1994; Zupan et al, 2000; Gelvin, 

2000).  This endonuclease domain lies in the N-terminal 228 aa of VirD2 and is the 

only known highly conserved domain in VirD2 protein besides the two short NLS 

regions near the C-terminus.   

VirD1 might assist the endonuclease activity of VirD2 through its interaction 

with the T-borders, where ssDNA is originated.  This interaction can induce local 

double helix DNA destabilization and provide a single-stranded loop substrate for 

VirD2.  In vitro studies have shown that VirD2 alone is enough for mediating the 

precise cleavage of T-border sequence carried by ssDNA templates even in absence of 

VirD1 protein.  However, VirD1 is essential for the cleavage of T-borders on plasmid 

or supercoiled DNA substrate by VirD2.   

Another factor, VirC1, has been found to increase the efficiency of T-strand 

production when VirD1 and VirD2 proteins were limited (De Vos and Zambryski, 

1989).  It can specifically recognize and bind to an enhancer or overdrive sequence 

next to the right T-border, found on many Ti-plasmids.   For optimal T-DNA 

formation, this additional VirC1-mediated function appears to be non-redundant. 

After the processing of T-strand from Ti-plasmid, VirE2 subsequently coats the 

single stranded T-DNA along its entire length, forming the so called T-complex 

(Citovsky et al, 1988; 1989; Gietl et al, 1987; Sen et al, 1989; Zupan et al, 2000).  As 
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a non-sequence-specific ssDNA binding protein, VirE2 can protect the T-DNA from 

potential nucleolytic attacks.  However, recent evidences have suggested that VirE2 

protein might function primarily in the plant cell but not necessarily in the bacterium 

because plants expressing virE2 can be successfully transfected by A. tumefaciens 

lacking virE2 (Citovsky et al, 1992).     

Currently, it is still unclear whether the association of VirE2 with the T-strand 

occurs within the bacterial cell soon after the T-strand is formed or VirE2 and T-strand 

molecules meet each other only inside the host plant cell. Due to the controversial 

nature with regards to the actual mechanism of VirE2 association with the T-strand, 

there are two major proposed models for this process and VirE2 transport.   

In the first model, VirE2 is thought to bind to the T-strand in the early steps of the 

infection process since it is one of the most abundant Vir proteins in A. tumefaciens 

and it can bind ssDNA strongly in a cooperative way.  In addition, VirE2 and T-strand 

are believed to be transported from the bacterium into the plant cells through the same 

VirB/D4 channel, described in a later section.  The supporting evidence for this model 

is based on the finding that T-strand and VirE2 could be coimmunoprecipitated from 

the extracts of vir-induced A. tumefaciens.   

In the second model, T-strand and VirE2 are proposed to be independently 

exported into plant cells from the bacterium.  This is based on the accumulating 

evidence and research data which begin to support such notion.  Findings from 

complementation and co-infection studies have indicated that VirE2 is not required for 

the export of T-strand, while VirE2 export can be inhibited without affecting T-strand 

export (Citovsky et al, 1992),.  Furthermore, a recent biophysical observation has 

suggested that VirE2 itself could form channels on the artificial membranes and this  
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implies that VirE2 is transported through the VirB/VirD4 channel or an alternative 

route and subsequently inserts into the plant plasma membrane, allowing the transport 

of the T-strand (a ss-T-DNA-VirD2 complex) (Dumas et al, 2001). 

In support of the second model, a specific molecular chaperone for VirE2, VirE1, 

is found to be essential for the export of VirE2 to plant cells, but not that of the T 

strands (McBride and Knauf, 1988; Winans et al, 1987; Deng et al, 1999).  VirE1 is a 

small, acidic protein with an amphipathic α-helix at its C-terminus.  Yeast two-hybrid 

studies and extracellular complementation suggest that VirE1 mediates T-complex 

formation in several possible ways.  First of all, though VirE1 does not influence virE2 

transcription from the native PvirE promoter, VirE1 indeed regulates the efficient 

translation of VirE2.  Secondly, VirE1 stabilizes VirE2 via an interaction with the N-

terminus of VirE2 and such VirE1-VirE2 complex is composed of one molecule of 

VirE2 and two molecules of VirE1.  Apart from these, the formation of VirE1-VirE2 

complex, which inhibits self-interacting of VirE2 to form aggregates, might help to 

maintain the VirE2 molecule in an export-competent state. 

Based on the current research data reported by various groups, it is hard to 

ascertain which model is the correct model for the actual mechanism of T-complex 

formation and where this complex is formed.  To elucidate this pathway, more 

investigations coupled with better research tools may be necessary before this mystery 

can be unraveled.  

1.2.2.2.  Nuclear localization of T-complex 

Despite the controversial nature of T-complex formation, it is certain that T-

complex will be targeted to the plant cell nucleus and this nuclear localization is a 

critical step for tumorigenesis.  Since T-DNA itself does not contain any specific 
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sequence and the fact that any foreign DNA fragment placed between T-DNA borders 

can be transported into the plant cells and subsequently integrated into the plant 

genome, this implies that the associated protein components must have played some 

roles in the nuclear localization of the T-complex.  They must have specifically 

mediated T-complex nuclear localization instead of the nucleic acid molecule itself.   

Indeed, both VirD2 and VirE2, which are the integral subunits of T-complex, 

contain conserved bipartite nuclear localization sequence (NLS) that can direct the T-

complex into the plant nucleus through the nuclear pores (Tinland et al, 1992; 

Citovsky et al, 1992; 1994).  VirD2 mutants with altered or mutated NLS have been 

shown to possess a reduced capability for tumorigenesis, while the VirE2 mutants 

were completely avirulent.  For the import of short ssDNA, VirD2 alone was 

sufficient, but the import of long ssDNA required VirE2 additionally (Ziemienowicz et 

al, 2000; 2001).  These research data imply that the NLS of these two proteins might 

play different roles in nuclear localization.   

The targeting of T-complex to the nucleus is thought to occur in a polar fashion 

(Howard et al, 1992).  VirD2, which is attached to the 5' end of the T-strand, may 

provide this piloting function.  VirD2 molecule contains two NLS sequences, one at 

each end of the molecule (Herrera-Estrella et al, 1990; Howard et al, 1992).  The N-

terminal NLS of VirD2 is a monopartite NLS that resembles the NLS found in the 

SV40 large T-antigen, whereas the C-terminal NLS is a bipartite NLS which is 

characterized by two adjacent basic amino acids, a variable-length spacer region and a 

basic cluster in which any three out of the five contiguous amino acids must be basic 

(Dingwall and Laskey, 1991, Howard et al, 1992).   
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The N-terminal half of VirD2 required for nicking at the T-border sequences may 

be involved in T-DNA integration in the plant nucleus, but it is not required for T-

DNA transfer because mutations in this domain could not affect T-DNA transfer 

significantly (Koukolikova-Nicola et al, 1993; Shurvinton et al, 1992).  It has been 

reported that the N-terminal NLS of VirD2 might be occluded by the covalently bound 

T-DNA because the tyrosine-29 residue, with which VirD2 is bound to T-DNA, is only 

a few amino acids away from the N-terminal NLS.   

The C-terminal NLS has been found to be involved in the tumorigenesis of A. 

tumefaciens (Rossi et al, 1993; Narasimhulu et al, 1996).  A. tumefaciens mutants with 

genes that code for a VirD2 protein missing its C-terminal part have been found to lose 

their ability to induce tumors but were efficient in the processing of T-DNA (Young 

and Nester, 1988).  Results from translational fusion protein and 

coimmunoprecipitation experiments showed that the C-terminal of VirD2 was capable 

of directing a reporter gene into the plant cell nucleus.  Interestingly, the C-terminal 

NLS of VirD2 protein was found to retain this function even in the mammalian cell 

systems.   

Recent evidences have supported that VirD2 alone is sufficient to transfer short 

single stranded DNA into the nuclei of tobacco cell and this function is strictly 

dependent on the presence of the C-terminal NLS of the VirD2 protein.  A VirD2 

mutant lacking its C-terminal NLS was unable to mediate the plant nuclear targeting of 

the T-complexes (Rossi et al, 1993; Ziemienowicz et al, 2000; 2001).  

VirE2 protein contains two separate bipartite NLS regions (NLS1 and NLS2) that 

are located in the central region of the molecule in residues 212-252 and residues 288-

317 respectively.  Both NLSs might participate in piloting the T-DNA into the plant 
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cell nucleus (Gietl et al, 1987; Christie et al, 1988; Citovsky et al, 1988; Das, 1988).  

Nonetheless, the relative importance of VirE2 NLSs for T-strand transfer is difficult to 

assess because mutations in these sequences might also affect the binding of VirE2 

proteins to ssDNA.  

Analysis of VirE2 sequence has revealed that the ssDNA binding domain or the 

cooperativity domain is overlapped with the NLSs of VirE2 (Citovsky et al, 1992; 

Citovsky et al, 1994).  Based on the results obtained from such analysis, NLS1 and 

NLS2 might also be involved in binding the single stranded T-DNA.  Deletion of 

NLS1 in VirE2 would reduce its cooperative ssDNA binding activities while deletion 

of NLS2 or both NLS1 and NLS2 together would completely abolish ssDNA binding 

and nuclear localization activities.  Therefore, the contribution of VirE2 NLSs for T-

complex nuclear targeting is still a controversial issue.  Some research groups have 

thus suggested that both VirD2 and VirE2 proteins play important roles in the nuclear 

targeting of T-complex and both are needed for the optimal nuclear localization 

activity.  

 In one experiment, the VirE2-GUS fusion protein was found to localize in the 

plant cell nuclei due to the nuclear targeting function of VirE2.  Meanwhile, another 

experiment showed that the fluorescently labeled single stranded DNA together with 

VirE2 proteins were found to accumulate in the plant nuclei after microinjection into 

plant cells, but the naked single stranded DNA remained exclusively in the cytoplasm.  

Also, VirE2 mediated nuclear localization was found to be blocked by nuclear import 

inhibitors (Guralnick et al, 1996; Zupan et al, 1996).  

Unlike that in VirD2 and octopine VirE2, the NLSs of VirE2 derived from the 

nopaline-specific Ti-plasmids are not functional in the nuclear import of proteins in 
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Xenopus oocytes, Drosophila embryos (Guralnick et al, 1996) and yeast cells (Rhee et 

al, 2000).  However, the modified VirE2 whose NLS amino acids was altered to 

resemble more closely to animal NLS sequences could target DNA to animal cell 

nuclei (Guralnick et al, 1996), suggesting that nuclear targeting signals in plant and 

animal cells might differ slightly (Gelvin, 2000). 

On the other hand, recent studies from Ziemienowicz group showed that VirD2 

alone could import a small covalently attached oligonucleotide into the plant nucleus 

without VirE2 NLS function and that this import was absolutely dependent on the C-

terminal NLS of VirD2.  Additional evidences showed that the presence of VirE2 

protein could not functionally compensate for the deletion of the VirD2 NLS 

(Ziemienowicz et al, 1999; 2001).  However, when it comes to the nuclear import of 

large ssDNA above 250nt, VirE2 molecule is required even in the presence of 

functional VirD2 molecules.   

In an attempt to clear up the controversy surrounding VirE2 and its NLS function, 

a series of nuclear import assays were performed using nopaline VirE2 and octopine 

VirE2 into both dicotyledonous and monocotyledonous plants, as well as living 

mammalian and yeast cells by one research group (Tzfira and Citovsky, 2001).  Their 

research findings clearly demonstrate that nuclear import of both nopaline and 

octopine VirE2 proteins is plant-specific, occurring in plant but not in non-plant 

systems.  Their results also suggest that the nuclear import of VirE2 in a cell-free 

system (Ziemienowicz et al, 1999) may be different from that within living cells and 

this difference may be the reason why octopine VirE2 alone does not mediate the 

import of ssDNA into the nuclei of permeabilized plant protoplasts (Ziemienowicz et 

al, 2001). As for the lack of nuclear import of VirE2 in animal and yeast cells, it is 
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suggested that plant-specific host cellular factors are involved in interacting with 

VirE2 to facilitate its nuclear uptake and this NLS function of VirE2 in animal and 

yeast cells may be substituted by unidentified unknown cellular proteins. 

Furthermore, it has also been found that RecA, which is an ssDNA binding 

protein, could be a substitute for VirE2 in the nuclear import of T-DNA but not in the 

efficient T-DNA transformation of tobacco.  This research finding suggests the 

following implications.  Firstly, VirD2 might play a role in directing the T-complex to 

the nuclei and the NLS in VirE2 is perhaps really not necessary for the nuclear 

localization because RecA protein contains no motif resembling known NLSs.  

Secondly, VirE2 may assist nuclear uptake of the T-complex more by keeping the T-

strand in an unfolded state to facilitate the traverse through nuclear pore complex 

rather than by its NLS function.   

In order to decipher the relative roles of the VirD2 and VirE2 NLSs in nuclear 

targeting of the T-strand and to ascertain their respective contributions to nuclear 

localization, more experiments may have to be performed to dissect and understand the 

complicated and intertwined pathways in which the recognition and functionality of 

these NLSs are involved.  

Aside from the VirD and VirE elements mentioned above, VirE3 has just 

recently been shown to be involved in the nuclear targeting of T-complex by 

facilitating the nuclear import of VirE2 via the karyopherin α-mediated pathway and 

thus allowing the subsequent T-DNA expression (Lacroix et al, 2004).  Earlier studies 

have suggested that VirE3 is exported into the host yeast (Schrammeijer et al, 2003) 

and plant cells (Vergunst et al, 2003) during transformation.  VirE3 is now eventually 
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demonstrated to act as an ‘adaptor’ molecule between VirE2 and karyopherin α and to 

‘piggy-back’ VirE2 into the host cell nucleus (Lacroix et al, 2004). 

1.2.2.3.  Integration of T-DNA  

Upon its entry into the plant cell nucleus, the final step of T-DNA transfer is its 

integration into the plant genome.  Due to the lack of suitable systems for detailed 

investigation, the mechanism of T-DNA integration into the plant genome is still 

unclear.  It has been proposed that this process occurs by illegitimate recombination 

and most of the T-DNA transferred to the plant cell nucleus does not integrate into the 

plant genome.  It is also perceivable that various host factors of the DNA 

repair/synthesis machinery are involved in this process and a few models have been 

proposed for the mechanism of T-DNA integration (reviewed in Tzfira et al, 2004).  In 

this process, the bacterial components that can participate in this process are those that 

make up the T-complex and translocated through the nuclear pore, namely VirD2 and 

VirE2. 

The integration of the 5' end of the T-strand into the plant genomic DNA is 

generally precise as VirD2 is covalently linked to the 5’ end of T-strand.  These facts 

suggest that VirD2 might play an active role in the precise T-DNA integration into the 

plant chromosome although it does not influence the efficiency of the integration step 

(Tinland et al, 1992).  Shurvinton et al. (1992) demonstrated that deletion of the 

conserved omega domain located near the C-terminal end of VirD2 resulted in an 

approximate two orders of magnitude decrease in tumorigenesis, while the same 

mutation resulted in only a three to five fold decrease in T-DNA transient expression in 

tobacco and Arabidopsis cells (Mysore et al, 1998; Narasimhulu et al, 1996).  These 

results indicated that this mutation affected T-DNA integration to a much greater extent 
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than it affected T-DNA transfer and nuclear targeting.  Mysore et al. (1998) further 

proved that an A. tumefaciens strain harboring this mutation was deficient in T-DNA 

integration.   

The function of VirE2 protein in integration of the T-DNA into the plant genome 

is still unclear. Rossi (1996) suggested that, instead of contributing to the efficiency of 

integration, VirE2 might be involved in maintaining the integrity of the T-DNA during 

the integration process.   

1.2.3.  VirB and VirD4, a type IV secretion system (T4SS) 

A type IV secretion system (T4SS) that is assembled from 11 VirB proteins and 

the VirD4 protein is responsible for the transfer of T-DNA from A. tumefaciens into 

plant cells (Zupan et al, 1998; Deng and Nester, 1998).  This T4SS apparatus has a 

pilus and a transmembrane complex for translocating the oncogenic T-DNA and 

effector proteins from the donor to recipient cells during the process of Agrobacterium-

mediated transformation of host cells.   

The 9.5 kb virB operon is the largest operon of the vir region and it encodes 11 

proteins, VirB1 to VirB11, which are thought to be located in or transported to the A. 

tumefaciens inner membrane (Thompson et al, 1988; Ward et al, 1988; 1990; Kuldau 

et al, 1990; Shirasu et al, 1990).  The proteins VirB2 through VirB11 are absolutely 

required for gene transfer and the efficient assembly of extracellular T pili, while 

VirB1 is an efficiency factor for T-complex transmembrane assembly (Berger and 

Christie, 1994; Fullner, 1998; Lai and Kado, 1998; Dale et al, 1993).   

Sequence analysis has revealed that the N-terminus of VirB1 is predicted to 

contain motifs conserved among lysozymes and lytic transglycosylases, suggesting its 
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role as a putative lysozyme that can locally lyse the murein cell wall to create channels 

for transporter assembly (Mushegian et al, 1996; Baron et al, 1997a).  This hypothesis 

is supported by the findings that mutants with deletion in the putative lysozyme motif 

were attenuated in virulence (Mushegian et al, 1996).    

Processed from VirB1, VirB1* is a smaller protein that contains only the C-

terminal 73 amino acids of VirB1 protein.  This VirB1* protein is found to be secreted 

and loosely associated with the outer membrane.  Coimmunoprecipitation analysis 

showed that VirB1* and VirB9 form a large complex (Baron et al, 1997b).  These 

findings suggest that VirB1* may mediate pilus formation by stabilizing pilus-based 

contacts between A. tumefaciens and plant cells (Zupan et al, 1998).   

Suggested to be the major structural component, the processed form of VirB2 

proteins will form a pilus with VirB5 proteins, which function as essential protein 

stabilizers.  This is the T-pilus which presumably promotes host-recipient interaction 

(Lai and Kado, 1998; Shirasu and Kado, 1993).  Though they are not the structural 

components, VirB3 and VirB4 might be accessory pilus proteins that are required for 

pilus assembly (Jones et al, 1994; Shirasu et al, 1994; Dang and Christie, 1997; Dang 

et al, 1999).   

Other than the T-pilus, a putative transmembrane apparatus or complex, possibly 

assembled from the other five VirB proteins (VirB6 to VirB10) is also an essential 

feature of T4SS (reviewed in Kado, 2000).  Most of these proteins interact with one 

another and form various protein complexes.   

Firmly embedded in the inner membrane with its five transmembrane regions, 

previous studies have suggested that the presence of VirB6 is required for the stability 
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of several other VirB proteins.  Recently, it has been proven to localize to the cell poles 

and 5 proteins, VirB7 to VirB11, are required for its polar localization. When a 

conserved tryptophan residue at position 197 and the extreme C-terminus were altered 

or deleted respectively, mislocalization of the mutant VirB6 protein was observed, 

indicating their importance for the subcellular location of VirB6. Subsequent 

colocalization experiments showed that VirD4 colocalized to the same pole as that of 

VirB6, demonstrating that the two proteins are in close proximity and VirB6 is 

probably a component of the transport apparatus (Judd et al, 2005). 

  Aside VirB6, the core of the transfer apparatus is likely to be composed of 

VirB7-VirB9 heterodimers that are linked by a disulfide bridge and anchored in the 

outer membrane by lipid modification of VirB7.  This VirB7-VirB9 heterodimer 

interacts, either directly or indirectly, with VirB10 and is shown to be required for the 

stability of VirB4, VirB8, VirB10 and VirB11 (Christie, 1997; Kado, 2000).  Recently, 

VirB10 has been proposed to function as an energy sensor for the VirB/D4 T4SS, 

based on the findings that VirD4 and VirB11 ATP-binding subunits induce a structural 

transition in VirB10 that most probably is necessary for a late stage of machine 

biogenesis and, in turn, passage of substrate from the inner membrane to the cell 

surface (Cascales and Christie, 2004a; 2004b). 

 Purified VirB4 (Shirasu et al, 1994; Dang and Christie, 1997; Dang et al, 1999) 

and VirB11 (Christie et al, 1989; Rashkova et al, 1997) were shown to possess 

ATPase and this has reaffirmed the notion that export of T-DNA is an energy 

dependent process.  Mutations in VirB4 ATPase have been shown to abolish the 

biogenesis of T-pilus and this clearly indicates that VirB4 promotes the production of 
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T-pilus and configures the transfer apparatus as a dedicated export machinery via an 

energy dependent mechanism.   

As for VirB11, it has been postulated to function as chaperones to facilitate the 

movement of unfolded proteins and DNA substrates across the cytoplasmic membrane, 

by supplying energy for a possible gated secretion channel (Lai and Kado, 2000).   

Besides that, VirB11 was found to localize at the inner face of the cytoplasmic 

membrane independently of interactions with other VirB proteins.  Analysis of mutants 

with defects in the nucleotide triphosphate binding pocket (Walker A motif) suggests 

that this membrane interaction is modulated by ATP binding or hydrolysis.   

The third ATPase, VirD4 that is encoded by the virD operon, is also 

demonstrated to be essential for T-DNA transfer into plant cells because the VirD4 

mutants showed complete inactivity in T-DNA transfer (Zupan et al, 1998).  VirD4 is 

an inner membrane protein with two membrane spanning domains near its N-terminus, 

while both its N- and C-termini are cytoplasmic.  The large cytoplasmic region of 

VirD4 contains a nucleotide-binding domain, and both the periplasmic and 

cytoplasmic domains are essential for substrate transfer.  Although VirD4 is not 

required for T-pilus assembly, it is required for virulence and possibly plays a role as 

the coupling protein for the transfer of virulence factors (VirD2, VirE2, VirE3, VirF 

and T-DNA) to the membrane bound components of the type IV transporter by an 

energy dependent mechanism.  It has been recently demonstrated to localize to the cell 

pole and a polar VirD4 –VirB complex of this kind is likely to function in substrate 

transfer from the cytoplasm (Pantoja et al, 2002; Kumar and Das, 2002).  

By using a simple but sensitive and elegant TrIP (transfer-DNA 

immunoprecipitation) assay and by examining a variety of vir mutants, a temporal 
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order of proteins the T-DNA comes in contact with as it journeys through the T4SS 

has been established (Cascales and Christie, 2004a; Lybarger and Sandkvist, 2004). 

Based on this latest research finding and the existing literature, a model of bacterial 

DNA transfer with unprecedented detail has been proposed.  Fig. 1.2 depicts the 

possible subcellular locations and interactions of various VirB/D4 components 

involved in T-DNA translocation.  In the postulated pathway, the T-DNA first binds 

the VirD4 receptor and thereafter forms close contacts with the VirB11 ATPase, the 

VirB6 and VirB8 inner membrane (IM) subunits before its final interactions with 

VirB2 and VirB9 localized in the periplasm and outer membrane (OM). As for the 

remaining VirB subunits that do not form detectable contacts with the translocating 

substrate, VirB4 coordinates substrate transfer to the VirB6 and VirB8 subunits, 

whereas VirB3, VirB5, and VirB10 promote transfer from VirB6 and VirB8 to the 

VirB2 and VirB9 subunits (Cascales and Christie, 2004a; 2004b). 

Though the assembly and functions of some of the components of VirB/D4 T4SS 

are better understood now, further investigations are still necessary to elucidate the 

detailed mechanism of assembly and function of this T4SS, especially on how the 

interplay of various subunits and other factors involved in these processes can bring 

about the efficient translocation of T-DNA and/or other substrates from A. tumefaciens 

to its host cells.   
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Fig. 1.2.  A model depicting the subcellular locations and interactions of the VirB and 
VirD4 subunits of the A. tumefaciens VirB/D4 T4SS.  The VirD4 coupling protein 
assembles as a homohexameric, F1-ATPase-like structure juxtaposed to the VirB 
channel complex. VirB11, a hexameric ATPase structurally similar to members of the 
AAA ATPase superfamily, is positioned at the cytoplasmic face of the channel 
entrance, possibly directing substrate transfer through a VirB6/VirB8 inner membrane 
(IM) channel. The VirB2 pilin and VirB9 comprise channel subunits to mediate 
substrate transfer to and across the outer membrane (OM). VirB10 regulates substrate 
transfer by linking IM and OM VirB subcomplexes.  

 (Cited from Cascales and Christie, 2004a) 
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During the interaction with their hosts, many animal pathogens also employ 

T4SS and these include Bartonella henselae, Bordetella pertussis, Brucella abortus, 

Brucella suis, Helicobacter pylori, Legionella pneumophila and Rickettsia prowazekii.  

In these pathogens, proteins homologous to the subunits of A. tumefaciens VirB/VirD4 

system can be found.  In these mammalian pathogens, the T4SS is required for the 

delivery of pathogenesis-related effector proteins and other molecules as well as for 

intracellular survival.  But in the case of A. tumefaciens, both the T-strand and its 

associated proteins are transferred into the plant cells through this T4SS.   

In any of the conjugal transfer systems found in the pathogens mentioned above, 

the precise role of the pilus and the transport complex in substrate transfer still remains 

elusive.  But in the case of A. tumefaciens T-pilus, several plausible functions have 

been assigned to it (Hwang and Gelvin, 2004; Gelvin, 2003).  First and most possibly, 

the T-pilus could serve as a conduit for export of several components needed for 

virulence, including T-pilin subunits, VirE2, VirE3, VirF proteins, and single stranded 

T-DNA that is piloted by the covalently linked VirD2 protein.  

Secondly, the T-pilus could serve as a bridge to bring the bacterium and the host 

cell into close proximity while T-DNA is transferred into the host cell through some 

other transfer apparatus (Lai and Kado, 2000; Kado, 2000). Based on the research 

findings, the T-pilus has been proposed to retract and subsequently draw the bacterial 

cell into sufficiently close contact with the host cell to permit the transfer of T-DNA 

and Vir proteins to the recipient cell.  

Thirdly, the T-pilus could also serve as a sensor for potential mating-signal 

molecules from the host cell as plant cells may have a receptor for the T-pilus or a pore 

for T-DNA transfer through the plant cell wall and plasma membrane. 
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In order to firmly assess and ascertain these ascribed functions of T-pilus and that 

of the VirB/D4 transport complex for efficient Agrobacterium-mediated 

transformation of host cells, further studies are needed. 

1.2.4.  VirF 

VirF is a 23-kDa protein that is encoded by a gene presents in only the vir region 

of the octopine-type Ti-plasmid but absent from the nopaline-type Ti-plasmid 

(Melchers et al, 1990; Schrammeijer et al, 1998).  It is originally ascribed a role as the 

host range determinant, because the presence of virF gene on the octopine-type Ti-

plasmid made Nicotiana glauca susceptible to the infection by A. tumefaciens virF 

mutants.   

Besides VirD2, VirE2 and VirE3, VirF is another Vir protein that is exported to 

the plant cells from A. tumefaciens.  The transport of VirF from A. tumefaciens into the 

plant cells is depended on the VirB/D4 transport system.  The C-terminal amino acid 

motif Arg-Pro-Arg, which is also present on the VirE2 molecule, is thought to be the 

export signal that can be recognized by the VirB/D4 secretion system. 

VirF might function in the plant cells because virF mutant strain can be 

complemented by the expression of the virF gene in the plant host cells.  The results 

from yeast two-hybrid experiment suggest that VirF is the first prokaryotic protein 

with an F box, by which it can interact with the plant homologue of Skp1 protein of the 

yeast.  Since Skp1 proteins are part of the complexes involved in targeted proteolysis 

and are thought to regulate the cells into S phase, it is suggested that VirF might help 

in stimulating the plant cells to divide and become more susceptible to transformation 

by A. tumefaciens (Schrammeijer et al, 2001). 
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1.2.5.  VirJ  

virJ lies between virA and virB in the vir region of an octopine-type Ti-plasmid, 

but it is not found in the nopaline-type Ti-plasmid, pTiC58 (Pan et al, 1995; 

Kalogeraki and Winans, 1995).  VirJ protein shares about 50% identity in its amino 

acid sequence with the chromosomally encoded protein, AcvB, which could be found 

in both octopine-type and nopaline-type strains.  The homologous region lies in the C-

terminal half of AcvB.  However, the virJ gene contains a putative vir box and can be 

induced in a VirA/VirG dependent fashion by the vir gene inducer acetosyringone 

which has no effect on acvB.   

Currently, the exact role of VirJ and that of AcvB in tumorigenesis are still not 

clear.  It has been shown that either VirJ or AcvB is required for the transfer of T-DNA 

from A. tumefaciens into the plant cells (Pan et al, 1995).  The two proteins share at 

least some degree of functional similarity because virJ could heterologously 

complement an acvB mutation in the tumorigenesis of A. tumefaciens on plant wound 

sites.  Though both proteins did not affect the attachment of A. tumefaciens to plant 

cells, agroinfection experiments had proven that VirJ or AcvB might be required for 

the T-DNA transfer (Pan et al, 1995).  

It has also been reported that AcvB might play a role in virulence by influencing 

the formation of the pili (Parimal et al, 1999).  In this report, AcvB is thought to be a 

single stranded DNA binding protein that could interact with the T-strand and assist in 

the export of T-DNA from the bacteria to the host cells.   If proven correct, this model 

would explain how the T-strand could be transferred from A. tumefaciens as a T-

strand/protein complex independent of VirE2.   
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1.2.6.  VirH 

With the aid of an electron microscope, a Ti-plasmid converged genetic locus 

was identified at the left end of known vir genes.   This locus flanks an operon 

designated as virH.  The virH operon contains two genes that resemble P-450-type 

monooxygenases (Kalogeraki and Winans, 1998), which may detoxify plant defense 

compounds and allow the bacteria to survive in the presence of bacteriocidal or 

bacteriostatic plant compounds.  Since VirH1 and VirH2 are homologous to each 

other, it seems plausible that they could be functionally redundant.  The role of VirH in 

plant–microbe interaction requires additional studies before their roles can be 

accurately assessed. 

1.2.7.  Other genes on Ti plasmid 

In addition to the vir genes and their protein products described above, there are 

some other gene loci on the Ti plasmid besides vir genes.  Some of them confer 

ancillary functions in tumor formation, such as inter-bacterial conjugation genes and 

vegetative replication genes.  The inter-bacterial conjugation genes, which include 

oriT, traAFB and trbB, are involved in controlling the conjugative transfer of Ti-

plasmid.  On the other hand, the vegetative replication genes, which include repAB 

and repC, are involved in controlling the replication and partition of Ti-plasmid.   

Some of the T-DNA genes, which direct the production of plant growth 

hormones in plants, also affect tumor morphology and physiology.  Interestingly, the 

non-transcribed regions of these genes possess many features of plant genes, including 

typical eukaryotic TATA and CAAT boxes, transcriptional enhancers and poly (A) 

sites.  These genes include iaaM (also called aux1, tms1), iaaH (also called aux2, 

tms2) and ipt (also called cyt, tmr), which encode enzymes catalyzing the synthesis of 
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auxin and cytokinin respectively.  Added to that, the gene ons (or 6a) controls octopine 

and nopaline export from plant cells, while tml (or 6b) increases the sensitivity of plant 

cells to phytohormones (Kado, 1991; Sheng and Citovsky, 1996; Winans et al, 1986; 

1989). 

1.2.8.  Chromosomal virulence genes  

Apart from vir genes encoded by the Ti-plasmid, chromosomal virulence (chv) 

genes have also been shown to play important roles in tumorigenesis (Gelvin, 2000; 

Zhu et al, 2000; Zupan et al, 2000; Liu et al, 2001).  Unlike the virulence genes on the 

Ti-plasmid, the functions of chromosomal virulence genes have not been well 

elucidated, as the pleiotropic functions of these genes make it difficult to assess their 

precise roles in tumorigenesis.   

chv genes exert their functions mainly in the events of bacterial attachment to the 

plant cell wall, the promotion of growth efficiency in wound site on the plant and the 

regulation of virulence genes on the Ti plasmid during the early stages of infection 

(Sheng and Citovsky, 1996; Zupan and Zambryski, 1997).  In contrast to those vir 

genes on the Ti-plasmid, which are dedicated solely to specific steps in the interaction 

of A. tumefaciens with its host, the chromosomal virulence genes exert their functions 

by regulating the general physiology of A. tumefaciens and have been conscripted to 

play ancillary but significant roles in the interaction of the bacterium with its host 

plants.   

The best understood chromosomal virulence gene is chvE.  It was shown to play 

important roles in the sugar enhancement of vir gene induction and in bacterial 

chemotaxis, as mutants at this locus displayed a strongly attenuated vir gene induction 

and limited host range.  chvE codes for a periplasmic glucose-galactose binding 
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protein, which is required in the VirA/VirG two-component regulatory system 

(Winans et al, 1994; Doty et al, 1996).  This protein can sense monosaccharides in the 

environment and then interact with the periplasmic domain of VirA, a requirement for 

maximal activation of VirG and the subsequent activation of all Ti-plasmid encoded vir 

genes.  

Characterizing the beginning of infection is chemotaxis and attachment of A. 

tumefaciens to wounded plants (Vande Brock and Vanderleyden, 1995).  Genetic 

studies have shown that non-attaching mutants could not cause tumors on plants and 

that this attachment to the plant cells is a two-step process.  The first step involves a 

cell-associated acetylated and acidic capsular polysaccharide and this step is reversible 

because vortexing or washing with a stream of water could dislodge the bacteria.   attR 

encodes a transacetylase, which is required for the synthesis of this polysaccharide.  

attR mutants that could not synthesize the acetylated polysaccharide were found to be 

avirulent and could not attach to carrot suspension cells (Matthysse and McMahan, 

1998).   

In the second step of attachment, the cellulose fibrils are elaborated by the 

bacterium, causing a large number of bacteria to colonize at the wound surface 

(Matthysse and McMahan, 1998).  Three chromosomal virulence genes, chvA, chvB, 

and pscA (exoC), are required for this process and they are involved in either the 

synthesis (chvB and pscA) or export (chvA) of cyclic ß-1,2-glucans and other sugars 

into the periplasm (Uttaro et al, 1990; Thomashow et al, 1987; O'Connell and 

Handelsman, 1989; Kamoun et al, 1989) and may be involved indirectly in bacterial 

attachment by an unknown mechanism.  chvA or chvB mutants were found to have lost 

the ability to attach to the host cells and to cause tumor formation under normal 
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inoculation conditions (Douglas, 1982; 1985).  Interestingly, chvB mutants could 

partially regain virulence if the bacteria were grown and inoculated at 19°C, a lower 

culture and cocultivation temperature. 

chvH is a recently characterized chromosomal gene that encodes a homologue of 

an elongation factor P (efp) involved in protein synthesis (Peng et al, 2001).  This 

gene is present as a single copy in A. tumefaciens and is important but not essential for 

the growth of A. tumefaciens. The chvH mutant A6880 is an avirulent, pleiotropic 

mutant which is more sensitive to detergents such as SDS and acidic pH than its parent 

strain, suggesting that the integrity of the outer membrane is impaired. In E. coli, the 

elongation factor P can increase the efficiency of formation of peptide bonds involving 

aminoacyl acceptors that bind poorly to the ribosome in its absence (Glick 1980).  

Since heterologous complementation of chvH mutation in A. tumefaciens could be 

achieved by the expression of the efp gene of E. coli, chvH and efp are probably 

functionally homologous. 

Functioning as an elongation factor protein, ChvH exerts its roles at the 

posttranscriptional level. And the avirulence of the chvH mutant is due to the low level 

expression of key proteins required for T-DNA transfer such as VirB, VirE2 and VirG, 

though the possibility that the chvH gene product may contribute in other ways to 

tumorigenesis cannot be ruled out.  Other studies showed that wild-type chvH locus is 

essential not only for full expression of vir genes encoded by the Ti-plasmid but also 

for that of some chromosomal genes.  These genes might code for particular sequences 

of amino acids, perhaps near the start of translation, which are exceptionally dependent 

on elongation factor P for translation.  
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In addition, some other genomic genes such as chvD, ros and miaA are also 

involved in virulence (Gray et al, 1992; D’souza-Ault et al, 1993).  chvD encodes an 

ABC transporter homologue that plays important roles in the virulence regulatory 

pathway.  Findings from Liu et al. (2001) have indicated that ChvD controlled the 

virulence genes by affecting the virG expression and A. tumefaciens strains carrying a 

mutant chvD gene showed greatly attenuated virulence and vir gene expression, while 

constitutive expression of virG in the same strain restored the virulence.  Furthermore, 

even though the interaction between VirB8 and ChvD has been verified by using yeast 

two-hybrid screening, the biological relevance of this interaction still remains a puzzle.   

ros encodes a 15.5-kDa C2H2 zinc finger protein that represses the expression of 

virC and virD (Cooley et al, 1991) and a plant oncogene ipt, whose promoter contains 

typical TATA boxes and is regulated by eukaryotic transcriptional machinery in the 

host plant (Chou et al, 1998).  C2H2 zinc finger proteins are a large superfamily of 

eukaryotic transcription factors that are originally thought to occur exclusively in 

eukaryotes.  Phylogenetically, ros is distantly related to eukaryotic zinc finger 

regulators. 

Some chv genes have counterparts in other bacteria that are associated pericelluar 

or intracellularly with animals and plants, either as pathogens or as endosymbionts.  A 

good example is the chvG/chvI genes that have been under extensive studies and are 

found widely in the chromosomal loci of many organisms such as A. tumefaciens, 

Brucella abortus and Sinorhizobium meliloti (Sola-Landa et al, 1998; Galibert et al, 

2001).  These genes are found to be required for establishing a successful relationship 

between the bacteria and their hosts and sequence analysis of the 16S rRNA gene 

showed that these genera all belong to the same α-2 subdivision of the proteobacteria.   
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Based on the amino acid sequence analysis, the chvG/chvI genes encode a two-

component signal transduction system.  Once bacteria are internalized into plant or 

animal cells, it is quite likely that they will encounter an acidic pH environment within 

the vesicles containing them.  Sensing the acidity appears to be important for A. 

tumefaciens to cope with the environment in plants and to cause tumors on these 

plants.  ChvG is proposed to be a histidine protein kinase that might act as the sensor 

to directly or indirectly sense extracellular acidity, while ChvI is suggested to be the 

response regulator.  Site-specific insertion mutations in either chvG or chvI have been 

shown to make A. tumefaciens avirulent (Charles and Nester, 1993).   

Recently, our lab has identified two additional chromosomal genes, katA and 

aopB, both of which are participants in A. tumefaciens tumorigenesis (Xu and Pan, 

2000; Jia et al, 2002).  katA encodes a catalase that is involved in the dismutation of 

hydrogen peroxide to water and oxygen (Xu and Pan, 2000).  Mutation in this gene 

highly attenuates the bacterial ability to cause tumors on plants and tolerate H2O2, but 

not the bacterial viability in the absence of exogenous H2O2.  Further research showed 

that mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration 

in the bacteria grown on an acidic medium (Xu et al, 2001). These suggest that during 

the Agrobacterium-plant interaction, plants might produce an H2O2 burst and KatA 

would serve to detoxify the H2O2 released by plant cells.  This process will protect the 

bacterial cells against the damage caused by reactive oxygen species to cellular 

components, including nucleic acids, proteins and cell membranes (Imlay and Linn, 

1988; Storz and Imlay, 1999). 

Even though A. tumefaciens does not elicit a typical hypersensitive response (HR) 

on its host plants, unlike other plant pathogens (Staskawicz et al, 1995; Deng et al, 
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1995), it might still trigger some other kinds of plant defense response when it interacts 

with the host cell, such as the H2O2 burst.  Thus, proteins like KatA are quite likely to 

be involved in the Agrobacterium-plant interaction, in order to ensure a higher chance 

of successful transformation. 

Another chromosomal gene, aopB, is homologous to a Rhizobium gene encoding 

an outer membrane protein and when this gene is mutated, the bacterial ability to form 

tumors on plants is very much attenuated (Jia et al, 2002).  Interestingly, the 

expression of this gene required the wild type ChvG/ChvI two-component system.  

Further research is needed before the roles of AopB and other membrane proteins in 

Agrobacterium-mediated plant transformation can be established. 

1.2.8.  Summary of roles of A. tumefaciens virulence genes  

The functions of A. tumefaciens virulence proteins, both Ti-plasmid encoded and 

chromosomally encoded, can be summarized as shown in Table 1-1.  Although the 

roles of these virulence factors in plant cell transformation have been relatively and 

progressively well understood, the mechanisms of the transport or the pathways some 

of these factors take to achieve their functional roles still remain unclear. For instance, 

whether the binding of VirE2 to T-strand occurs in the bacterium (Christie et al, 1988) 

or in the plant cell (Binns et al, 1995; Sundberg et al, 1996) still remains a much 

debated topic.  What is certain is that mutations in the virA, B, D, E and G loci result in 

avirulence, whereas mutations in virC causes attenuated virulence (Yanofsky et al, 

1985; Horsch et al, 1986).  Some members of vir operon, such as virJ, F, H and E3, 

are required for tumorigenesis in specific instead of all hosts or play other roles in 

pathogenesis.   
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Results from recent studies showed that the exported virulence proteins, VirD2, 

VirE2 and VirF, could also be exported from bacterial cells by a specific pathway 

independent of VirB/D4 (Chen et al, 2000).  Although the precise biological function 

of this process is still not clearly addressed, it suggests that the transfer of the T-DNA 

from A. tumefaciens may take place in two steps, with the first step mediated by an 

unidentified pathway and the second step by the virB/D4 system (Chen et al, 2000).  

The fact that A. tumefaciens possesses genes which are not only typically 

eukaryotic genes with eukaryotic expression signals but also prokaryotic genes coding 

for proteins with eukaryotic features, such as the nuclear localization sequences 

(VirD2, VirE2 and VirE3), the F box (VirF) and eukaryotic promoter (iaaM and iaaH), 

infers that A. tumefaciens is not a typical pathogenic bacterium but a sophisticated 

manipulator of its environment (Valentine, 2003).  It is also perhaps for this reason and 

the plasticity of these genes to function in various eukaryotic cells that A. tumefaciens 

can interact with diversely different host cells such as plant cells, yeast and 

mammalian cells and transform them for its own benefits.   
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Table 1-1.  Functions of A. tumefaciens virulence proteins involved in plant  

                  transformation.* 

Virulence 
protein Function(s) in A.  tumefaciens and/or plant cells #

Ti plasmid encoded virulence proteins

VirA Phenolic sensor of VirA/VirG two-component regulatory system 

VirG Phenolic response regulator of VirA/VirG two-component regulatory system 

VirB1-11 Synthesis and assembly of T-pilus and transmembrane apparatus 

    VirB1 Transglycosylase 

    VirB1* Bacterial-host cell contact 

    VirB2 Cyclic T-pilin subunit; cell contact 

    VirB3 Minor component of T-pilus; requires VirB4 for stability 

    VirB4 ATPase; VirB4–VirB4 self-association; transport activation 

    VirB5 Probable chaperone; minor component of T-pilus as stabilizer 

    VirB6 Component of transport apparatus; candidate pore former 

    VirB7 Lipoprotein; VirB7–VirB7 homodimer; VirB7–VirB9 heterodimer required 
for stability of VirB4, VirB9, VirB10 and VirB11; probable chaperone 

    VirB8 VirB8–VirB8, VirB8–VirB9 and VirB8–VirB10 interactions 

    VirB9 VirB9–VirB9, VirB8–VirB9, and VirB9–VirB10 interactions 

    VirB10 VirB10–VirB10, VirB10–VirB8, and VirB10–VirB11 interactions; 
thermostability; energy sensor 

    VirB11 ATPase; VirB11–VirB11 self association; transport activation 

VirC1 Putative "overdrive" binding protein; enhancement of T-strand formation 

VirD1 Required for T-DNA processing in vivo and for double stranded T-DNA 
border nicking in vitro 

VirD2 1. T-border specific endonuclease 

 2. Putative "pilot protein" that leads T-strand through transfer apparatus into 
the plant cell 

 3. Nuclear targeting of the T-strand 

 4. Protection of T-strand from 5' exonucleolytic degradation 

 5. T-strand integration into the plant genome 

VirD4 ATPase;  coupling protein for the transfer of virulence factors to VirB channel 
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VirE1 Association with VirE2; may be needed for VirE2 export from A.  tumefaciens 

VirE2 1. Binding to T-strand to form T-complex  

 2. Protection of T-strand from nucleolytic degradation 

 3. Nuclear targeting of the T-strand 

 4. Passage of T-strand through the nuclear pore complex 

VirE3 ‘Adaptor’ between VirE2 and karyopherin α; facilitation of nuclear import of 
VirE2 and T-complex 

VirF Host range factor;  interaction with Skp1 proteins to regulate plant cell division 

VirH 
(PinF) Putative cytochrome P450 enzyme; detoxification of toxic plant compounds 

VirJ/AcvB Putative T-strand binding protein; T-strand export from A.  tumefaciens 

Chromosomally encoded virulence factors

AttR Transacetylase; required for synthesis of a capsular polysaccharide involved in 
host cell attachment 

ChvA Export of cyclic ß-1,2-glucans and sugars involved in host cell attachment 

ChvB Synthesis of cyclic ß-1,2-glucans and sugars  involved in host cell attachment 

PscA 

 

(ExoC) Synthesis of cyclic ß-1,2-glucans and sugars  involved in host cell attachment 

ChvD Control of virulence genes by affecting virG expression 

ChvE Sensing of monosaccharides and interaction with VirA periplasmic domain 

ChvH A homologue of elongation factor P; pleiotropic effect on tumorigenesis 

ChvG Acidity sensor of ChvG/ChvI two-component regulatory system 

ChvI Acidity response regulator of ChvG/ChvI two-component regulatory system 

Ros Repression of virC , virD and  ipt expression 

KatA Detoxification of H2O2 released by plant cells 

AopB Outer membrane protein; required for tumorigenesis 

*Adapted and modified from Gelvin, 2000  

# References to these functions can be found in Gelvin, 2000 and in the subsections of     
   Section 1.2 from 1.2.1 to 1.2.7. 
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1.3.  Plant genes involved in Agrobacterium-mediated transformation 

From the perspective of host-pathogen interaction, A. tumefaciens infection 

represents a major physiological, biochemical and genetic challenge to the host plant.  

Based on the research findings from the past three decades, the molecular events that 

occur within the bacterium during this process are partially understood.  However, 

little is known about the plant genes and their encoded factors that are involved in the 

tumorigenesis.  In recent years, some plant factors that are involved in this process are 

gradually being discovered (reviewed in Tzfira and Citovsky, 2002).   

Even though it does not induce the hypersensitive response in plants, A. 

tumefaciens can trigger changes in the gene expression patterns by inducing or 

repressing specific sets of plant genes.  By using cDNA amplified fragment length 

polymorphism (AFLP) technique, four plant genes whose expression were uniquely 

regulated by A. tumefaciens infection have been identified (Ditt et al, 2001).  One of 

them encodes a nodulin-like protein belonging to a class of proteins induced in the root 

nodules of Rhizobium-infected plants and might be involved in cell division and 

differentiation, while another one encodes a lectin-like protein kinase, which has been 

proposed to play a role in cell-to-cell recognition.  Both genes might play putative 

roles in plant signal transduction and defense response, indicating that A. tumefaciens 

and Rhizobium might elicit similar changes in gene expression in their host cells. 

By adopting combinatorial approaches of suppressive subtractive hybridization, 

macroarray and RNA blot analyses, Veena et al. (2003) have identified numerous 

genes that were differentially expressed during the early stages of Agrobacterium-

mediated transformation of tobacco BY-2 cells.  Genes that were differentially 

expressed include those involved in defense responses, cell division and growth, 
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chaperones, as well as primary and secondary metabolism.  Their findings indicate that 

A. tumefaciens infection has induced the expression of plant genes necessary for the 

transformation process while simultaneously repressing host defense response genes.  

The expression profiles strongly suggest that A. tumefaciens is capable of successfully 

utilizing existing host cellular machinery for its genetic transformation purposes.   

The various steps in which plant factors are likely to be involved in the 

Agrobacterium-mediated transformation process include (1) bacterial attachment to the 

plant cell surface; (2) transfer of T-DNA from the bacteria to plant cells across the 

plant cell wall and membrane; (3) nuclear localization of T-complex and (4) stable 

integration of T-DNA into the plant genome.  In the following sections, the plant 

factors involved in these steps are described in details. 

1.3.1.  Plant factors involved in bacterial attachment to the plant cell surface 

For efficient A. tumefaciens infection, it generally requires wounding and/or a 

rapidly dividing cell suspension culture.  In the absence of a wound site, the efficiency 

of such infection is low.  Earlier experiments showed that the bacterial attachment to 

the plant cell was inhibited when the plant cell surface was treated with various 

proteinases (Wagner and Matthysse, 1992; Swart et al, 1994), suggesting that some 

cell wall materials present on the cell surface might play a role in A. tumefaciens 

attachment. 

Research in this direction has given rise to two plant cell wall proteins, a 

vitronectin-like protein and a rhicadhesin-binding protein, which might mediate such 

bacterial attachment.  Since many pathogenic bacteria utilized vitronectin as a specific 

receptor in their interactions with their animal hosts, it is quite likely that plant 

vitronectin-like protein might also be required for A. tumefaciens binding.   
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Indeed, among the 21 identified Arabidopsis rat mutants, which are resistant to 

A. tumefaciens transformation, rat1 and rat3 have been shown to be blocked at the 

early steps in Agrobacterium-mediated transformation and microscopic analysis 

revealed that these ecotypes are deficient in the binding of A. tumefaciens to their roots 

under various incubation conditions (Nam et al, 1998).  DNA sequence analysis has 

subsequently revealed that rat1 encodes an arabinogalactan protein (AGP) and rat3 

encodes a small protein that is a potential cell-wall protein.  The involvement of AGPs 

in Agrobacterium-mediated transformation was then confirmed by using ß-glucosyl 

Yariv reagent, which binds AGPs specifically. When Arabidopsis root segments were 

incubated with an active Yariv reagent prior to inoculation with A. tumefaciens, 

transformation was blocked. This result was verified with control experiments which 

indicated that ß-glucosyl Yariv reagent did not affect the viability of Arabidopsis root 

segments or A. tumefaciens cells.  

1.3.2.  Plant factors involved in the export of T-DNA 

For the translocation of T-DNA from A. tumefaciens into the plant cell through a 

type-IV secretion system, the assembly of the virulence pilus and the transporter 

complex might not be sufficient to initiate such export.  Physical contact with the 

recipient plant cell might be required to activate the transport machinery, suggesting 

that unidentified host factors are most probably required for the export of T-DNA and 

Vir proteins into the plant cells. 

Recently, three VirB2-interacting proteins (BTI), BTI1, BTI2 and BTI3, and a 

membrane-associated GTPase, AtRAB8, were identified from an Arabidopsis thaliana 

cDNA library via yeast two-hybrid system (Hwang and Gelvin, 2004).  Besides their 

interaction with VirB2, these three related BTI proteins were found to interact with one 
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another and with AtRAB8 in vitro and when pre-incubated with 100 μg/ml of GST-

BTI1 protein, the ability of A. tumefaciens to transform Arabidopsis suspension cells 

was decreased by about 25%.  This suggests that a competitive binding of GST-BTI1 

to VirB2, which is the major component of T-pilus, has decreased the number of 

available T-pili for interaction with Arabidopsis cells. 

Apart from this, transgenic Arabidopsis plants with disrupted BTI and AtRAB8 

expression (via antisense or RNAi constructs) have been shown to be less susceptible 

to transformation by A. tumefaciens, whereas overexpression of BTI1 protein in 

transgenic Arabidopsis has given rise to plants that are hyper-susceptible to 

Agrobacterium-mediated transformation.  When BTI1 was inserted with T-DNA 

through mutagenesis, reduced levels of Agrobacterium-mediated root transformation 

were observed in the mutant Arabidopsis plants.  All these results demonstrate the 

functional significance of these plant factors in transformation.   

Further results have shown that the level of BTI1 protein is transiently increased 

immediately after A. tumefaciens infection, and confocal microscopic data have 

indicated that GFP tagged BTI proteins preferentially localize to the periphery of root 

cells in transgenic Arabidopsis plants.  All these suggest that BTI proteins may contact 

the A. tumefaciens T-pilus and it is quite likely that they are essential in assisting the 

export of T-DNA due to their interaction with VirB2. 

Sequence analysis has revealed that the three BTI proteins contain a C-terminal 

150 to 201 amino acid reticulon homology domain comprising of two large 

hydrophobic regions separated by a 66 amino acid loop. Based on the reticulon domain 

present in their C termini, 15 reticulon-like proteins are found in Arabidopsis and 

BTI1, BTI2, and  BTI3 are found to correspond to RTNLB1, RTNLB2, and RTNLB4 
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(Oertle et al, 2003).  Though the functions of RTN are unknown, more than 250 

reticulon-like (RTNL) genes were identified in divergent eukaryotes, fungi, plants, and 

animals (Oertle and Schwab, 2003; Oertle et al, 2003).  It is probable these genes 

encode protein factors that interact with VirB2 or T-pilus components during 

Agrobacterium-mediated transformation of these eukaryotic cells.  

As for AtRAB8, little is known about its functions in plant cells. Previous studies 

have suggested that AtRAB8 is similar to RAB8 and RAB10 of mammals, to Ypt2 of 

the fission yeast Schizosaccharomyces pombe and to Sec4 of the budding yeast 

Saccharomyces cerevisiae (Haubruck et al, 1990; Rutherford and Moore, 2002). Sec4 

is essential for post-Golgi events in yeast secretion, while Rab8 regulates transport 

from the trans-Golgi network to the basolateral plasma membrane in epithelial cells 

and to the dendritic plasma membrane in cultured hippocampal neurons (Huber et al, 

1993).  Overall, this class of Rab proteins is found to be membrane associated proteins 

that modulate tubulovesicular trafficking between compartments of the biosynthetic 

and endocytic pathways (Olkkonen and Stenmark, 1997; Martinez and Goud, 1998; 

Schimmoller et al, 1998; Moyer and Balch, 2001). 

  It is probable that during Agrobacterium-mediated transformation of these 

eukaryotic cells, AtRAB8 and its homologues in these cells might be utilized by A. 

tumefaciens to interfere with the membrane trafficking pathways for its own purposes.  

Further characterization of BTI and AtRAB8 proteins and those yet unidentified 

proteins that potentially interact with T-pilus components will provide information on 

how T-DNA is transferred from A. tumefaciens into plant cells and how the A. 

tumefaciens T-pilus contacts the plant cell surface. 
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1.3.3.  Plant factors necessary for nuclear localization of T-complex  

After translocation, the entry of T-complex into the host cell nucleus is the 

central event in the genetic transformation of plants by A. tumefaciens.  A number of 

proteins from plant cells have been identified to bind with VirD2 or VirE2, which are 

integral subunits of the T-complex.  These plant factors are probably intrinsic plant 

proteins with their own cellular functions that have been ‘hijacked’ for the delivery or 

targeting of the T-complex into the plant cell nucleus.   

With the use of yeast two-hybrid system (Golemis et al, 1994), several plant-

encoded proteins have been identified to interact with VirD2 nuclear localization 

sequence (NLS).  This includes an Arabidopsis karyopherin α (AtKAPα, importin-α1) 

protein that specifically binds to the NLS of VirD2 (Ballas and Citovsky, 1997).   In 

other species, importin-α has been shown to bind to NLS regions of karyophilic 

proteins to assist their nuclear targeting (Gorlich and Mattaj, 1996; Catimel et al, 2001).  

Using a similar approach, a tomato DIG3 cDNA clone that encodes an enzymatically 

active type 2C serine/threonine protein phosphatase (PP2C) was shown to interact with 

VirD2 (Tao et al, 2004; Gelvin, 2000).  Co-electroporation of GUS (β-glucuronidase)-

VirD2 NLS gene together with PP2C protein has resulted in the cytoplasmic 

localization of GUS in the majority of tobacco BY-2 cells and overexpression of PP2C 

has been shown to enhance nuclear localization.   

Apart from AtKAPα and PP2C, Arabidopsis cyclophilins, RocA, Roc4 and 

CypA, have been shown to interact with VirD2 as well (Deng et al, 1998). The 

findings have shown that when VirD2-cyclophilins interaction was disrupted by an 

inhibitor, cyclosporin A, Agrobacterium-mediated transformations of Arabidopsis and 

tobacco were inhibited.  Also, it has been found that these cyclophilins did not interact 
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with VirD2 NLS domain and the VirD2 domain interacting with these cyclophilins is 

distinct from the endonuclease, omega and the NLS domains.  Since some cyclophilins 

possess peptidyl-prolyl isomerase activity, it has been hypothesized that this protein 

might serve as a chaperone for VirD2 during the T-strand trafficking in the plant cell. 

Besides those VirD2 interacting proteins, a VirE2 interacting protein from 

Arabidopsis, VIP1, was identified.  VIP1 has been implicated to be required for the 

nuclear import of VirE2 and tumorigenesis of A. tumefaciens during the early stages of 

T-DNA gene expression (Tzfira et al, 2001).  This plant protein contains a β-ZIP motif 

made up a long basic domain followed by a leucine zipper, which is composed of 

seven leucine repeats evenly separated from each other by six amino acid residues.  

When disrupted by antisense approach, the VIP1 antisense plants were shown to be 

resistant to A. tumefaciens induced tumor formation, suggesting that this plant factor 

plays a critical role in this process.  By conducting a recently developed genetic assay 

for nuclear import and export (Rhee et al, 2000), VIP1 was shown to facilitate the 

transport of VirE2 into the nuclei of yeast and mammalian cells and participate in the 

early stages of T-DNA expression (Tzfira et al, 2001).   

Other than VIP1, VIP2 was also demonstrated to interact with VirE2 and VIP1 

but had no effect on intracellular localization of VirE2 when co-expressed in yeast or 

mammalian cells.  In order to define the precise role of this protein in nuclear 

localization in plant cells, new nuclear import system using purified plant nuclei and 

fractionated cellular extracts has to be developed (Gelvin, 2000). 
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1.3.4.  Plant factors involved in T-DNA integration 

T-DNA does not have to been integrated into the plant genome before the genes 

between the T-borders are expressed.  As such, transient expression of reporter genes 

has been used to assay for the efficiency of T-DNA transfer in many experiments.  It is 

perhaps for the same reason that some A. tumefaciens cocultivated plant cells or tissues 

with high transient expression of reporter genes have actual low transformation 

efficiency or are sometimes recalcitrant to transformation to the extent that transgenic 

plants cannot be regenerated from these cocultivated samples.  

The roles of plant proteins in the T-DNA integration process are only beginning 

to be defined recently.  After inoculation by A. tumefaciens, one of the Arabidopsis rat 

mutants (rat5) was found to be deficient in T-DNA integration, despite the observation 

that T-DNA encoded reporter gene was expressed in the plant cells.  Subsequent 

genetic analysis showed that rat5 contains two tandem copies of T-DNA integrated 

into the 3' untranslated region of a histone H2A gene and complementation of the rat5 

mutant with histone H2A gene resulted in restored tumorigenesis phenotype.  When 

overexpressed in plants, H2A has been shown to increase the susceptibility of these 

plants to transformation.  The histone H2A genes comprise a small multigene family in 

Arabidopsis and histone H2A might potentially specify the conformation at the T-

DNA integration site (Mysore et al, 2000). To understand the exact mechanism of the 

involvement of histone H2A and other still unidentified factors in T-DNA integration, 

further investigations are necessary to shed light on how this process occurs within the 

plant cell nucleus.    
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1.3.5.  Summary of roles of plant genes involved in transformation 

 The roles and possible functions of the various plant genes encoded factors that 

are involved in Agrobacterium-mediated transformation can be summarized in Table 

1-2 and in Fig. 1.3.  The functions of some of these factors require further studies and 

characterization before their roles can be ascertained.  Unlike the A. tumefaciens 

virulence factors which have been relatively well characterized, the studies of their 

host cellular partners are just beginning.  Identification and characterization of these 

host factors will lead to a better understanding of basic biological processes such as 

cell communication, intracellular transport and DNA repair and recombination, 

because it is highly probable that A. tumefaciens has adapted these and other existing 

cellular processes for its own purposes of genetic transformation (Tzfira and Citovsky, 

2002). 

  As a genetic engineering tool, it is perceivable that the modulation of these host 

factors may be the next step forward in increasing the transformation efficiency by A. 

tumefaciens and in expanding the host range to those recalcitrant species, especially 

many of those agronomically important species that still cannot be transformed by A. 

tumefaciens. 
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Table 1-2.  Functions of plant factors involved in various steps of Agrobacterium- 

                  mediated transformation †

Plant factor/mutant Roles and possible functions #

Bacterial recognition and attachment

Vitronectin Binding of A. tumefaciens to host cells 

Rhicadhesin-binding protein Binding of A. tumefaciens adhesion protein 

Arabidopsis rat1 mutant 
(arabinogalactan protein) Mutant does not bind to A. tumefaciens 

Arabidopsis rat3 mutant 
(putative cell-wall protein) Mutant does not bind to A. tumefaciens 

Arabidopsis ecotypes BI-1 and 
Petergof (unknown factors) * Ecotypes do not bind to A. tumefaciens 

Nodulin-like protein Might be involved in cell-to-cell recognition 

Lectin-like protein kinase Might be involved in cell-to-cell recognition 

Export of T-DNA

VirB1* interactor  
(still unknown) * Establishing cell-cell contact 

BTI1, BTI2, BTI3, AtRAB8 
(VirB2 interacting proteins) 

Recognition of T-pilus and activation of 
transporter complex 

VirB5 interactors 
(still unknown) *

Recognition of T-pilus and activation of 
transporter complex 

T-complex nuclear localization 

RocA, Roc4, CypA 
(cyclophilins) 

Chaperones that are possibly involved in 
maintaining VirD2 conformation 

AtKAPα (importin α-1) Binds to VirD2 NLS; facilitates VirD2 nuclear 
import 

Abi 1 mutant  
(type 2C serine/threonine protein 
phosphatase, PP2C) 

Mutant has increased susceptibility to A. 
tumefaciens infection; overexpression of PP2C 
enhances activity of the VirD2 NLS 

Putative protein kinase 
(still unknown) *

Downregulates VirD2 nuclear import by 
phosphorylating its NLS region 

Ran * Facilitates nuclear import of VirD2 and VirE2 
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VIP1 
Binds to VirE2 to facilitate VirE2 nuclear import; 
might assist subsequent intranuclear transport of 
T-complexes and T-DNA integration 

Intranuclear transport of T-complexes and T-DNA integration

VIP2 
Binds to VirE2 and VIP1; might participate in 
intranuclear transport of VirE2 and T-complexes 
and/or in T-DNA integration 

ASK1 and SCF complex 
components *

Targeted proteolysis during uncoating of T-
complexes and/or exposing the host cell genome 
DNA prior to or during  integration 

DNA Ligase * Ligation of integrating T-DNA into the plant 
genomic DNA 

DNA Polymerase * T-strand conversion to double-stranded DNA 

Arabidopsis rat5 mutant 
(H2A histone) 

Mutant deficient in T-DNA integration; H2A 
histone might specify chromatin conformation at 
the integration site 

Arabidopsis ecotype UE-1 
(unknown factor) * Ecotype deficient in T-DNA integration 

 

†  Adapted and modified from Tzfira and Citovsky, 2002  

# References to these functions can be found in Tzfira and Citovsky, 2002 and in the  
   subsections of section 1.3 from 1.3.1 to 1.3.4 

* The functions of these factors require further studies for verification and are not  
   discussed in section 1.3 
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Fig. 1.3.  Possible interactions between host cell proteins and the molecular 
components of the mature A. tumefaciens T-complex.  The mature T-complex is 
thought to comprise multiple VirE2 molecules bound along the length of the T-strand 
and interacting with each other for binding cooperativity, and a single molecule of 
VirD2 covalently attached to the 5′ end of the T-strand. This T-complex interacts with 
the following host cell proteins: to preserve its proper conformation within the plant 
cell, VirD2 might bind to the CypA chaperone; for nuclear import, VirD2 interacts 
directly with AtKAPα, whereas VirE2 interacts with AtKAPα via VIP1; for 
intranuclear transport to the integration site, VirE2 might interact with VIP2 (VIP1, 
which also binds to VIP2, might also play a role in this process); for uncoating of the 
T-complex and/or removal of its cellular interactors, VirF might bind to VIP1 and 
bridge it with ASK1 and AtCUL components of the targeted proteolysis machinery.  
 

(Cited from Tzfira and Citovsky, 2002) 
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1.4.  Environmental factors affecting Agrobacterium-mediated transformation 

Agrobacterium-mediated transformation of plant cells is a complex process that 

involves both bacterial and host factors.  Aside from these factors, many parameters 

may potentially influence the final outcome as to whether a successful and efficient 

transformation is achieved.  Growth conditions, such as pH, temperature and ionic 

composition of the external medium, have been demonstrated to affect the virulence 

functions of many pathogenic bacteria including A. tumefaciens. When the growth 

conditions are altered, virulence gene expression in plant and animal pathogenic 

bacteria will shift in concert with incubated conditions, reflecting their adaptation to 

the host environment.  In many cases, regulation occurs at the level of gene expression 

by modulating the activity of specific two-component regulatory systems, commonly 

found in bacteria.   

Research findings from previous studies have indicated that a high level of vir 

gene induction could be obtained at a pH below 6.0 and a temperature below 28°C.  It 

has been reported that environmental acidity plays an important role in inducing the 

virulence gene expression in A. tumefaciens (Olson, 1993; Foster, 1999), as acidic pH 

in the minimal medium resembles the plant environment that A. tumefaciens usually 

encounters during infection.  At least two independent regulatory pathways are 

required for vir gene induction by acidic pH (Winans et al, 1988; Winans, 1990; Chen 

and Winans, 1991; Mantis and Winans, 1992).  The first one is the pH-inducible 

promoter of virG.   Transcription of virG is initiated at two promoters, called P1 and 

P2.  While the upstream promoter P1 is inducible by phenolic compounds in the usual 

VirA/VirG dependent manner and by phosphate starvation, the P2 promoter is 

primarily induced by low pH and secondarily responsive to certain stress stimuli 

 49



(Mantis and Winans, 1992).  The other low pH regulatory pathway is the maintenance 

of an active conformation of VirA in acidic media that affects the VirA periplasmic 

domain.   

Other than acidity or low pH, the activation of vir system is also dependent on 

external temperature.  The ability of A. tumefaciens to cause tumor on plant wound site 

was strongly reduced at temperatures above 29°C when compared to that at 22°C.  This 

could attribute to the inefficient expression of some vir genes and the denaturation of a 

protein complex at these elevated temperatures.  Studies have shown that the 

expression of some virulence genes is specifically inhibited at temperature above 32°C, 

even when the virA and virG are expressed under a constitutive promoter instead of 

their native ones.  This suggests that the signal transduction mediated by VirA and the 

subsequent transfer of phosphate to VirG might be sensitive to ambient temperature 

above 32°C.  It has been proposed that the conformational change of VirA protein at 

high temperature was responsible for the thermal sensitivity of vir gene expression (Jin 

et al, 1993). 

Besides the expression of virulence genes, the VirB/D4 secretory machinery of 

A. tumefaciens was also affected by high temperature (Fullner and Nester, 1996).  At 

19 °C, pili could be readily observed on the surface of cultured A. tumefaciens cells but 

not at 28°C.  The reasonable explanation for this phenomenon is that the degradation 

of a limited set of virulence proteins prevents the assembly of the type IV transporter at 

elevated temperatures. Interestingly, a low temperature also enhances the virB-

independent secretion of VirE2 and VirD2 and at least fivefold more of VirE2 and 

VirD2 proteins were shown to be present in the supernatant fraction of cells grown at 

19°C when compared to that at 28°C.  
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1.5.  Agrobacterium-mediated transformation of other eukaryotic cells 

The host range of A. tumefaciens has expanded from its native dicotyledonous 

host plants to include monocotyledonous plants and the number of transformable plant 

species is increasing.  When appropriate conditions and modified parameters are used, 

A. tumefaciens has been proven to be capable of transferring its T-DNA into yeasts, 

fungi such as Kluyveromyces lactis, as well as some mammalian cells.  

The transfer of T-DNA from A. tumefaciens into S. cerevisiae is very similar to 

that into the plant cells in that the Ti-plasmid encoded vir genes required for T-DNA 

transfer into plant cells were also found to be required for T-DNA transfer into S. 

cerevisiae and that vir gene induction is also necessary (Bundock et al, 1995; Piers et 

al, 1996).  The frequency of A. tumefaciens mediated transformation of S. cerevisiae is 

approximately 10-3–10-6 transformants per recovered recipient, expectably lower than 

the transformation of its native host plants.   

Despite the aforementioned similarities, the mechanisms of transformation are 

not entirely conserved.  Studies have shown that when chromosomal virulence genes 

of A. tumefaciens involved in attachment and subsequent transformation of plant cells 

were mutated, no effect was observed on the efficiency of T-DNA transfer into S. 

cerevisiae.  This suggests that the yeast transformation system does not emulate plant 

cell transformation in the attachment step.   

Apart from this, the T-DNA integration step is also slight different in the case of 

T-DNA transfer into yeast.  If the T-DNA shares homology with the genome of S. 

cerevisiae, it is able to efficiently integrate into the host genomic DNA via 

homologous recombination, while T-DNAs lacking homology with S. cerevisiae 

genome could still integrate via illegitimate recombination, albeit at a very low 

 51



frequency.  However, this is not the case in plants, where gene targeting is difficult to 

achieve and T-DNA that shares extensive homology with the plant genome integrates 

primarily via illegitimate recombination.   

Besides yeast, it has been demonstrated that the expanded host range of A. 

tumefaciens also includes the filamentous fungi (de Groot et al, 1998).  Although the 

mechanism of this transfer is not fully understood, it has been proven that this transfer 

is dependent on the induction of the bacterial virulence genes, which will lead to the 

processing of the T-strand and the establishment of VirB pilus that can mediate the 

transfer of T-strand into these fungal cells.  In nature, A. tumefaciens and certain 

species of filamentous fungi share the same habitat and if T-DNA transfer from A. 

tumefaciens to filamentous fungi indeed occurs in nature when these organisms 

encounter each other, then the interkingdom horizontal DNA transfer may be more 

extensive than expected. 

In 2001, the exciting possibility that the host range of A. tumefaciens could be 

expanded to include human cells was first reported (Kunik et al, 2001).  Research 

findings have confirmed that A. tumefaciens could transfer its T-DNA into human cells 

and integrate the  T-DNA into the human cell genomes, with an efficiency of stable 

transfection of about 1.6 ± 3 × 10-5 cells.  In stably transformed HeLa cells, the 

integration event was found to occur at the right border of T-DNA.  Such T-DNA 

transfer supports the notion that A. tumefaciens transforms human cells by a 

mechanism similar to that which it uses to transform the plant cells.  Indeed, mutant 

strains with mutations in the vir or chv genes (virA, virB, virG, virD, virE, chvA and 

chvB) were found to have lost their transformation ability, producing no geneticin-

resistant cells under the same experimental conditions. 
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However, Agrobacterium-mediated transformation of mammalian cell does not 

always agree with that of plant transformation because mammalian cell transformation 

could occur at 37°C and uninduced A. tumefaciens could still transform HeLa cells.  

Under these conditions, the expression of virA, which is involved in perceiving the vir-

inducing plant signals and other components of the T-DNA transfer machinery, is 

inhibited (Winans et al, 1994).  Thus, additional experiments have to be performed to 

elucidate the exact mechanism by which A. tumefaciens transforms mammalian cells. 

In addition to human cells, recent research data from our lab have indicated that 

A. tumefaciens is capable of transfecting cultured fish cells (Lin and Pan, unpublished) 

and mice cells (Hou and Pan, unpublished) under similar conditions in which the 

human cells were transformed.  Despite the establishment of these new findings, 

further investigations are required to determine if the T-DNA transfer into these cells 

also emulate that of the plant or human cells. 

Regardless of the difference in species, cell types and mechanisms of T-DNA 

transfer, it is certain that host factors play important roles in Agrobacterium-mediated 

transformation of these diverse types of cells from various organisms.  Also, it is 

perceivable that A. tumefaciens may ‘hijack’ evolutionary conserved cellular 

machineries and/or pathways to achieve this incredible feast of gene transfer, when 

they interact with these cells.  Further research in this direction may shed some light on 

how this remarkable and unusual pathogenic bacterium performs such gene transfer 

‘trick’. 
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1.6.  DIP, a novel Arabidopsis VirD2 interacting protein 

 By using a yeast 2-hybrid system, our lab identified a novel plant gene product 

designated as DIP (VirD2 Interacting Protein) from an Arabidopsis cDNA library that 

can interact with A. tumefaciens VirD2 protein (Chang, 2002).  This VirD2-DIP 

interaction was confirmed by an independent in vitro immunoprecipitation assay and 

sequence analysis of DIP protein revealed that it is homologous to yeast Sec3p protein, 

a subunit of the yeast exocyst complex involved in secretion (Finger et al, 1997; 1998; 

Wiederkehr et al, 2003).  Since exocyst complex is evolutionary conserved, DIP or 

Sec3p homologues are also found in various organisms, including human (Matern et 

al, 2001) and mice (Zhang et al, 2001). 

 Subsequent immunohistology and confocal microscopy experiments have 

revealed that DIP colocalizes with GUS reporter protein and T-DNA molecules in the 

cytoplasm of the same transformed plant cells but not in those untransformed cells or 

cell clusters.  All the data indicate that DIP proteins are usually randomly located in 

the cytoplasm of plant cells, but become coexisted with T-DNA in the A. tumefaciens 

cocultivated cells.  This suggests that DIP not only could interact with VirD2 in vivo 

and in vitro, but also is involved in Agrobacterium-mediated transformation of plant 

cells, by assisting the T-complex movement within the plant cell cytoplasm. 
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1.7.  Objectives of this study 

Nuclear localization of T-complex is a central event in Agrobacterium-mediated 

transformation of its host cells and several host factors have been shown to be 

necessary or rather utilized in assisting such intra-cytoplasmic transport (Section 1.3.3).  

The newly identified DIP protein has been shown to be involved in Agrobacterium-

mediated transformation of plant cells by probably aiding in the nuclear localization of 

T-complex through its interaction with VirD2.   

This study is aimed to establish the functional significance of DIP in 

Agrobacterium-mediated transformation of plant cells and to characterize DIP and its 

evolutionarily conserved homologues in other host cells, especially the homologues 

from human cells, in order to ascertain whether the T-DNA transfer into these cells 

may involve exocyst complex or secretion pathway. 
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Chapter 2.  General Materials and Methods 

2.1.  Bacterial strains, yeast strains, plant species and human cell lines  

Bacterial strains, yeast strains, plant species and human cell lines used in this 

study are listed in Table 2-1.  Escherichia coli strains were grown at 37 °C in LB 

(Sambrook et al, 1989) and Agrobacterium tumefaciens strains were grown at 28 °C in 

MG/L, AB or IB media (Cangelosi et al, 1991) supplemented with the appropriate 

antibiotic when necessary.  For long-term storage, the bacteria were kept in LB with 50 

% glycerol at –80 °C.  Yeast strains were grown at 30 °C in either YPD or SD medium 

containing the appropriate drop-out formulation.  For long-term storage, the yeast cells 

were kept in YPD or the appropriate SD medium with 50 % glycerol at –80 °C. 

Plant cell cultures were grown at room temperature (RT) in MS medium.  For 

selection and subsequent maintenance of transformants, the medium was supplemented 

with the appropriate selective agent.  For long-term storage, the cell cultures were 

cryopreserved with 5 % DMSO under liquid nitrogen (Menges and Murray, 2004).  

The human cell lines used in this study were grown at 37 °C in DMEM in a 5 % (v/v) 

CO2 incubator.  For long-term storage, the cell lines were cryopreserved with DMSO 

under liquid nitrogen following the instructions of the suppliers. 

2.2.  Media, stock solutions, plasmids and primers 

The media used to culture the bacteria, yeast, plants and human cell lines are 

listed in Table 2-2.  The preparation and concentration of antibiotics and other 

solutions used in this study are listed in Table 2-3, while the plasmids and primers used 

are listed in Table 2-4 and Table 2-5 respectively.  
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Table 2-1.  Bacterial strains, yeast strains, plant species and human cell lines 

Strains or cell lines Relevant characteristics Source or reference

E. coli                         

DH5α EndA1 hsdR17 supE44 thi-1 recA1 gyrA96 relA1 
Δ(argF-lacZYA)U169 φ80dlacZ ΔΜ15 

Bethesda Research 
Laboratories 

BL21(DE3) B F- dcm ompT hsdS(rB-mB BB-) gal (DE3) Stratagene 

A. tumefaciens   

LBA4404 Ach5, pTiAch5 Sm/Sp®  Ooms et al, 1982 

MX243 virB mutant strain, derived from A348 Stachel and Nester, 
1986 

WR1715 virD2 mutant strain, 70 % of virD2 deleted Shurvinton et al, 
1992 

Yeast (Saccharomyces cerevisiae)

CG-1945  

MATa, ura3-52, his3-200, ade2-101, lys2-801, 
trp1-901, leu2-3, 112, gal4-542, gal80-538, cyhr2, 
LYS2 :: GAL1UAS 

-GAL1TATA 
-HIS3, URA3 :: GAL4 

17-mers(x3 )
-CYC1TATA 

–lacZ 

Clontech,  
Feilotter et al, 1994 
 

Y187 
MATα, ura3-52, his3-200, ade 2-101, trp 1- 901, 
leu 2-3, 112, gal4Δ, met-, gal80Δ, URA3 :: 
GAL1UAS 

-GAL1TATA 
-lacZ, MEL1 

Clontech,  
Harper et al, 1993 
 

Plant species           

BY2 Nicotiana tabacuum L. cv. Bright Yellow 2 Laboratory 
Collection 

Col-0 Arabidopsis thaliana Columbia wild-type LEHLE seeds 

SALK-140590 Arabidopsis thaliana Columbia T-DNA inserted 
DIP+/- mutant 

SALK Institute 
seeds 

Xanthi Nicotiana tabacuum L. cv. Xanthi Laboratory 
Collection 

Human cell lines   

EcoPack2-293 
An ecotropic, HEK 293-based packaging cell line 
used for transiently or stably producing virus 
capable of infecting mouse and rat cells 

Clontech 

An embryonal carcinoma cell line derived from a 
human teratocarcinoma that can differentiate into 
neuron-like NT2N cells in vitro upon retinoic acid 
treatment; also known as NT-era2 cells 

NT2 
American Tissue 
Culture Collection 
(ATCC) 
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Table 2-2.  Media preparation 
 
 

Media or solutions Preparation a, b Reference 

E. coli   

LB (Luria broth) Tryptone, 10 g; yeast extract, 5 g; NaCl, 10 
g; pH 7.5 

Sambrook et al, 
1989 

SOB 

Tryptone, 20 g; yeast extract, 5 g; NaCl, 0.5 
g; 10 ml of 250 mM KCl; pH 7.0; sterilize 
by autoclaving and add 5ml of filter-
sterilized 2 M MgCl2 before use 

Sambrook et al, 
1989 

TB 10 mM PIPES, 55 mM MnCl2, 15 mM 
CaCl2, 250 mM KCl 

Sambrook et al, 
1989 

A. tumefaciens   

MG/L  
LB, 500 ml; mannitol, 10 g; sodium 
glutamate, 2.32 g; KH2PO4, 0.5 g; NaCl, 0.2 
g; MgSO4

. 7H2O, 0.2 g; biotin, 2 μg; pH 7.0 

Cangelosi et al, 
1991 

AB (Minimal 
medium) 

20 × AB salts, 50 ml; 20 × AB buffer, 50 ml; 
0.5 % glucose, 900 ml; autoclave each 
constituent separately before mix together 

Cangelosi et al, 
1991 

IB (Induction 
Medium) 

20 × AB salts, 50 ml; 20 × AB buffer, 1 ml; 
0.5 M MES (pH 5.5), 8 ml; 30% glucose, 60 
ml; autoclave each constituent separately 
before mix together 

Cangelosi et al, 
1991 

20 × AB salts NH4Cl, 20 g; MgSO4
. 7H2O, 6 g; KCl, 3 g; 

CaCl2, 0.2 g; Fe SO4
. 7H2O, 50 mg 

Cangelosi et al, 
1991 

20 × AB buffer K2HPO4, 60 g; NaH2PO4, 23 g; pH7.0 Cangelosi et al,  
1991 

0.5 M MES MES, 97.6 g; pH5.5 Cangelosi et al, 
1991 

1000 × AS c 14.6 mg/ml AS in DMSO Sambrook et al, 
1989 

Yeast   

YPD Difco peptone, 20 g; yeast extract, 10 g; 
glucose, 20 g 

Clontech user 
manual 

SD medium Minimal SD base, 26.7 g; appropriate drop-
out  

Clontech user 
manual 
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Plant   

MS medium 
 

Murashige and Skoog salts and vitamin 
mixture, 4.42 g; sucrose, 30 g; 2,4-D (0.1 
mg/ml), 2 ml 

Murashige and 
Skoog, 1962 

Human cell lines   

25 mM HEPES; 4 mM L-glutamine; 4.5 g/l 
glucose; 10% (v/v) heat inactivated fetal 
bovine serum; 100 units/ml penicillin; 100 
μg/ml streptomycin 

DMEM Sigma 

 

a Preparation for 1 liter and sterilized by autoclaving 
b For solid media, 1.5 % agar was added 
c No autoclaving is necessary 
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Table 2-3.  Antibiotics and other stock solutions used in this study 

 

Names Preparations Stock con.* 

(mg/ml) 

Working 
con. in E. 

coli (μg/ml)

Working 
con. in A. 

tumefaciens 
(μg/ml) 

Working 
con. in 
Plant 

(μg/ml) 

Ampicillin  
(Ap) 

Dissolved in dH2O, 
filter sterilized 100 100 _ _ 

Kanamycin 
(Km) Same as above 100 100 100 100 

Carbenicillin 
(Cb) Same as above 100 100 100 300 

Cefotaxime 
(Cef) Same as above 200 _ _ 200 

Acetosyringone 
(AS)  

Dissolved in 
dimethyl sulfoxide 100 mM _ 100 μM _ 

IPTG Dissolved in dH2O, 
filter sterilized 24 24 24 _ 

X-Gal Dissolved in 
dimethyl sulfoxide 20 20 20 _ 

X-Gluc Dissolved in dH2O 100 _ _ 0.5 

Proteinase K Dissolved in dH2O 20 50 50 _ 

RNase Dissolved in dH2O 10 20 20 _ 

Phosphinothricin 
(ppt) None 150 _ _ 5 

* ‘con.’ is the abbreviation for ‘concentration’  

 

 

 
 

 60



Table 2-4.  Plasmids used in this study 

 

     Plasmid Characteristics Source or reference 

pUCA19 pUC19 (US Biochemical) harboring repA for efficient 
replication in both E. coli and A. tumefaciens, AmpR Lab collection 

pIG121-Hm Vector for plant transformation containing a 
35S:intron:GUS reporter gene, KmR Ohta et al, 1990 

pCB302-1 Vector for plant transformation containing 35S:bar 
herbicide (phosphinothricin) resistance gene, KmR Xiang et al, 1999 

pHC19 
pCB302-1 harboring the C-terminal 588 bp fragment 
(from nucleotides no. 1899 to 2486) of the 2664-bp 
coding sequence of DIP, KmR

This study 

pHC20 
pCB302-1 harboring the antisense sequence to the first 
498 bp (from nucleotide no. 1899 to 2396) of the 
fragment from pHC19, KmR

This study 

pHC18 
pCB302-1 harboring the adjoining sequences of the 
588 bp fragment and the 498 bp fragment from pHC19 
and pHC20 respectively, KmR

This study 

     pRSET Vector for overexpression of proteins, AmpR Invitrogen 

pDual GC 

High-level dual mammalian and bacterial protein 
expression vector containing human ORF coding for 
hypothetical protein FLJ10893 (Accession: 
AF208854), corresponding to the C-terminus of hDIP, 
the human homologue of DIP, KmR

Stratagene 

     pHC2 pRSET-A containing the C-terminal 621 bp EcoR I 
subtending fragment of pDual GC, AmpR This study 

     pAS2-1  Vector for expressing bait:GAL4 DNA-BD fusion 
protein, AmpR Clontech 

     pACT2 Vector for expressing prey:GAL4 AD fusion protein, 
AmpR Clontech 

     pCL1 Positive control plasmid, encoding the full-length wild-
type GAL4 protein, AmpR Clontech 

     pVA3-1 Positive control plasmid used with pTD1-1, encoding a 
DNA-BD/murine p53 fusion protein in pAS2-1, AmpR Clontech 

     pTD1-1  
Positive control plasmid used with pVA3-1, encoding 
an AD/SV40 large T-antigen fusion protein in pACT2, 
AmpR

Clontech 
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    pLAM5'-1 False positive detection plasmid, encoding a DNA-
BD/human lamin C fusion protein in pAS2-1, AmpR Clontech 

    pGAD10-DIP 
pGAD vector (Clontech) encoding GAL4 AD fused to 
VirD2-interacting protein (DIP) that was fished out 
from Arabidopsis cDNA library  

Lab collection 

    pAS-D2  pAS2-1 harboring VirD2:GAL4 DNA-BD fusion, 
AmpR Lab collection 

    pAS-D2 (74) pAS-D2 harboring a fusion construct with VirD2 
lacking the N-terminal 73 amino acids This study 

    pAS-D2 (174) pAS-D2 harboring a fusion construct with VirD2 
lacking the N-terminal 173 amino acids This study 

    pAS-D2 (274) pAS-D2 harboring a fusion construct with VirD2 
lacking the N-terminal 273 amino acids This study 

    pAS-D2 (354) pAS-D2 harboring a fusion construct with VirD2 
lacking the N-terminal 353 amino acids This study 

    pAS-D2 (-NLS) pAS-D2 harboring a fusion construct with VirD2 
lacking the C-terminal NLS sequence This study 

    pAS-D2 (N) pAS-D2 harboring a fusion construct with VirD2 
containing only the N-terminal 212 amino acids This study 

pAS-D2 harboring a fusion construct with VirD2 
containing only the C-terminal 212 amino acids     pAS-D2 (C) This study 
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Table 2-5.  Primers used in this study 
 

 

     Primer Relevant sequence 

     S1(C) 5’-AACTGCAGGATTTGTTCGCCTTTTGCTTGG-3’ 

     S2 5’-CGGGATCCTTGCTGCAATCGATTTGTCC-3’ 

     AS1 5’-TCCCCCGGGTATCTCTTCAGGGGTGATAG-3’ 

AS2 5’-CGGAATTCCTGCAGGATTTGTTCGCC-3’ 

D2 (1) 5’-CATGCCATGGATGCCCGATCGCGCTC-3’ 

D2 (74) 5’-CATGCCATGGGACGATGATAGGCAA C-3’ 

D2 (174) 5’-CATGCCATGGCACGGCATAGTCCTG G-3’ 

D2 (274) 5’-CATGCCATGGCGGATCCGCGTATCATTG-3’ 

D2 (354) 5’-CATGCCATGGGGATTGAAGGCTGCGC-3’ 

D2 (-NLS) 5’-CGGAATTCTGATCGCTGCTGGCGC-3’ 

D2 (N) 5’-CGGAATTCTTCGAATTGAATCTTTTGAG-3’ 

D2 (C) 5’-CATGCCATGGGATACAGATTTTGATG-3’ 

D2 (end) 5’-CGGAATTCGGTCCTTCCTTCCTGTC-3’ 

Dip-ex1 5’-ATGGCGAAATCAAGCGCCGAC-3’ 

Dip-ex2 5’-AAGAAATGCTTTCTTTCGTGGACCCTTTG-3’ 

     RT-PCRF 5’-CGGGATCCATGACAGCAATCAAGCATGCA-3’ 

     RT-PCRR 5’-CCCAAGCTTTTAGTGGGACTGTGCAATGCTG-3’ 

     Mid-Up 5’-GCTCAGTGTTCAGAGTTCAGGG-3’ 

Mid-Down 5’-GCTCATTCGCGAACCCTGAACTCTGAAC-3’ 

FWD 5’-GTACCACTGGCATCGTGATG-3’ 

BCK 5’-GCTTGCTGATCCACATCTGC-3’ 

BM012F 5’-CGGGATCCATGCCTGGAACTATG-3’ 

BM012R 5’-CGGGATCCTTAGTGGGACTGTGC-3’ 
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2.3.  Cell and tissue cultures 

2.3.1.  Plant cell culture and subculture 

Tobacco BY2 (Nicotiana tabacuum L. cv. Bright Yellow 2) calli were 

maintained on solid Murashige and Skoog medium (MS; Murashige and Skoog, 1962) 

supplemented with 3 % sucrose and 0.2 mg/ml 2,4-D.  These calli were subcultured or 

transferred to fresh MS plates every 3 to 4 weeks before they turned black or brownish, 

an indication of dead tissues.  For use in A. tumefaciens mediated transformation, BY2 

cells were grown in liquid MS medium at RT with shaking at 100 rpm and were 

subcultured every week with a 5 % inoculum.   

2.3.2.  Human cell culture and subculture 

DMEM was used to culture the human embryonic kidney (HEK) EcoPack2-293 

cells (Clontech) and NT2 cells (ATCC).  For optimal growth, DMEM was 

supplemented with 1nM sodium pyruvate for the culture of HEK-293 cells, while 

DMEM was supplemented with 1.5 mg/ml of sodium bicarbonate (NaHCO3) for the 

culture of NT2 cells.  Both EcoPack2-293 and NT2 cells were grown in the 

recommended media following the instruction of suppliers at 37 °C in a 5 % (v/v) CO2 

incubator.  EcoPack2-293 cells were grown as a monolayer in 75 cm2 flasks and 

subcultured at least once every 5 days by trypsin/EDTA treatment and at a dilution of 

1:4 in fresh medium.  NT2 cells were subcultured similarly, except that a sterile cell 

scrapper was used to scrap down the cells from the flask surface instead of using the 

trypsin/EDTA treatment to dislodge the cells from the flask surface.  
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2.4.  DNA manipulations 

2.4.1.  Plasmid DNA preparation from E. coli 

Plasmid DNA was prepared following the method described previously with 

some modifications (Sambrook et al, 1989).  Briefly, E. coli cells from 2 ml of 

overnight culture were collected by centrifugation at 10, 000 rpm (Eppendorf 5417C) 

for 1 min.  The cell pellet was resuspended in 100 μl of ice-cold solution I (50mM 

glucose, 25 mM Tris-HCl, 10 mM EDTA, pH 8.0) thoroughly by vigorous vortex.  

Then, 200 μl of freshly prepared solution II (0.2 N NaOH, 1 % SDS) was added and 

the contents were mixed by inverting gently for 4 to 6 times.  After the addition of 150 

μl of Solution III (3 M potassium, 5 M acetate), the mixture was inverted for 4 to 6 

times to disperse Solution III through the viscous bacterial lysate.  The lysate was 

extracted with equal volume of chloroform once by centrifuging at 14, 000 rpm 

(Eppendorf 5417C) for 5 min.  The supernatant was then transferred to a clean 

Eppendorf tube.  To precipitate the plasmid DNA, 2 volumes of ethanol was added and 

the mixture were centrifuged as above.  The DNA pellet was washed once with 70 % 

ethanol and dried in a vacuum concentrator.  The extracted plasmid DNA was 

dissolved in 20 μl of sterile water and stored at -20 °C, ready for subsequent use after 

thawing.     

2.4.2.  Plasmid DNA preparation from A. tumefaciens 

 Plasmid DNA was isolated from A. tumefaciens cultures using the QIAprep Spin 

Miniprep Kit (QIAGEN) following the user-developed protocol (Weber et al, 1998) 

with some modifications.  Briefly, 10 to 15 ml of overnight MG/L culture (Cangelosi 

et al, 1991) supplemented with antibiotics was harvested by centrifugation at 10, 000 

rpm (Eppendorf 5417C) for 1 min.  The resultant combined cell pellet was 
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resuspended in 500 μl of buffer P1 before 500 μl of lysis buffer P2 was added to the 

suspension.  After gentle mixing by inverting 4 to 6 times, 1 ml of neutralization buffer 

N3 was added to the mixture.  Another gentle inversion of 4 to 6 times was performed 

and the mixture was then subjected to centrifugation at 14, 000 rpm (Eppendorf 

5417C) for 10 min.  The cell lysate was applied into a QIAprep column and 

centrifuged at 14, 000 rpm for 30 sec to1 min.  After discarding the flow through, the 

spin column was washed with PB buffer and then PE buffer, following the standard 

procedure for plasmid isolation using this kit.  The plasmid DNA was finally eluted in 

30 to 50 μl sterile water and subjected to further analysis or manipulation. 

2.4.3.  DNA digestion and ligation 

DNA digestion and ligation were conducted following the instructions of the 

manufacturers supplying the enzymes (Fermentas).  The digestion reaction system 

used in this study is comprised of buffer, enzyme, DNA and sterile deionized water, 

with incubation at 37 °C or other recommended temperature for 1 hr to overnight.  For 

vectors digested with a single restriction enzyme, dephosphorylation was carried out 

by adding 0.5 μl (1 unit) of shrimp alkaline phosphatase into the digestion mixture.  

Digested vectors and gene fragments used for ligation were cleaned or purified by 

using the Gel Extraction Kit (QIAGEN) before the ligation reaction was carried out by 

incubating the mixture of T4 DNA ligase (Fermentas), vector DNA, insert DNA, 

ligase buffer and sterile water at RT for 4 hrs or overnight. 
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2.4.4.  Polymerase chain reaction (PCR) 

 Polymerase chain reaction was carried out using a PCR machine in a thin-walled 

PCR tube with a volume of 200 μl to amplify any target DNA fragment.  The reaction 

mixture for PCR was made up of the following components in a final volume of 50 μl: 

10 × PCR buffer (without MgCl2) 5 μl 

25 mM MgCl2 3 μl 

Primer 1 (10 pmol/μl) 1 μl 

Primer 2 (10 pmol/μl) 1 μl 

dNTPs (10 mM each)  1 μl 

Template DNA 20 to 100 ng 

Taq DNA polymerase (Fermentas) 1 μl (1 unit) 

Add sterile distilled water to a final volume of 50 μl 

 

 The PCR was run using the following program:  

1 cycle   95 °C for 1 min 

25 to 30 cycles 95 °C for 30 sec 

 Annealing at (Tm-5) °C or lower  for 30 sec 

 Extension at 72 °C for 1 min per kb 

1 cycle 72 °C for 10 min 
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2.4.5.  DNA gel electrophoresis and purification 

DNA fragments or PCR products were electrophoresized in a 1 × TAE (0.04 M 

Tris-acetate, 0.001 M EDTA, pH 8.0) agarose gel along with a standard DNA marker 

(Fermentas).  Digested DNA vectors and fragments or PCR products to be used for 

ligation and subsequent transformation reaction were purified with QIAquick Gel 

Extraction Kit (QIAGEN) following the instructions provided by the manufacturer.  

Briefly, DNA was separated in a 1 % agarose gel before the gel slice containing the 

desired DNA band was excised and transferred to a pre-weighted Eppendorf tube.  

Then, 3 gel volumes (100 mg gel ≈ 100 μl) of buffer QG were added and the tube was 

incubated in a 55 °C waterbath for 5 to 10 min to dissolve the gel completely.  For 

DNA fragments larger than 4 kb or smaller than 500 bp, 1 gel volume of isopropanol 

was added prior to transferring the mixture into a QIAquick spin column in a 2-ml 

collection tube.  The binding of DNA to the column was achieved by centrifugation for 

1 min at 14, 000 rpm (Eppendorf 5417C).  After discarding the flow through, the 

column was then washed once by applying 750 μl of buffer PE to the column and 

subjecting the column to centrifugation at 14, 000 rpm for 30 sec to 1 min.  A second 

centrifugation at 14, 000 rpm for 1 min was then performed, after the removal of the 

flow through, to eliminate any residual ethanol.   The column was placed into a clean 

1.5-ml centrifuge tube before 30 to 50 μl of sterile water was applied to the center of 

the column membrane.  To elute the DNA, the column was centrifuged at 14, 000 rpm 

for 1 min. 
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2.4.6.  DNA sequencing 

Adapting from the instructions of Big DyeTM automated sequencing protocol, the 

PCR reaction mixture, the PCR program and the subsequent post-PCR precipitation of 

PCR products for sequencing reaction were carried out as outlined below. 

 

PCR reaction mixture: 

Big DyeTM Ready Mix (Version 3.0 or 3.1)   2 μl 

Primer (10 pmol/μl)                            1 μl 

Plasmid or DNA  100 to 500 ng 

Add distilled water to a final volume of  10 μl 

  

 PCR program: 

1 cycle   96 °C for 15 sec 

25 cycles 50 °C for 5 sec 

 60 °C for 4 min 

1 cycle 4 °C for ∞ 

 

Post-PCR precipitation mixture: 

PCR product 10 μl 

3 M sodium acetate (pH 4.6)  1.5 μl 

Non-denatured 95 % Ethanol 31.25 μl 

Sterile distilled water 7.25 μl 

 

After adding the PCR product, the precipitation mixture in a sterile 1.5-ml 

microcentrifuge tube was vortexed and kept at RT for 30 min before the tube was spun 
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in a microcentrifuge (Eppendorf 5417C) at 14, 000 rpm for 30 min.  Thereafter, the 

supernatant was carefully aspirated without disturbing the pellet. The pellet was 

washed with 500 μl of 70 % ethanol, followed by centrifugation at 14, 000 rpm for 10 

min before the 70 % ethanol was removed.  After a repeat wash at the same conditions, 

the pellet was dried in a vacuum centrifuge or concentrator and then kept at -20 °C, 

ready to be sent to a DNA sequencer. 

2.4.7.  Introduction of plasmid DNA into E. coli 

2.4.7.1. “Heat shock” transformation 

E. coli DH5α was routinely used as the host for cloning experiments unless or 

otherwise specified.  High efficient competent cells were prepared as described 

previously (Inoue et al, 1990).  E. coli cells were streaked from frozen stock and 

cultured overnight on a LB plate at 37 °C.  Then, several colonies were picked and 

inoculated into 100 ml of SOB medium in a 1-liter conical flask.  The cells were 

cultured at RT (around 20 °C) with vigorous shaking (250 rpm) to an OD600 of 0.5 to 

0.7.  The cells were chilled on ice for 10 min before they were collected by 

centrifugation at 2600 rpm (Eppendorf 5810R) for 5 min at 4 °C.  The cell pellets were 

resuspended in 30 ml of ice-cold TB buffer (10 mM PIPES, 55 mM MnCl2, 15 mM 

CaCl2, 250mM KCl, pH 6.7; all components except MnCl2 were dissolved and 

autoclaved; 1 M MnCl2 solution was filter-sterilized and added to make TB buffer; 

stored at 4 °C) and then incubated on ice for 10 min.  Cells were collected by 

centrifugation as above and resuspended in 5 ml of ice-cold TB buffer.  Thereafter, 

DMSO was added to a final concentration of 7 % and the cell suspension was 
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aliquoted into pre-cooled sterile Eppendorf tubes at 100 μl each. The competent cells 

were kept at -80 °C until needed. 

To introduce a plasmid or a ligation reaction product into E. coli by 

transformation for amplification or screening (Sambrook et al, 1989), a frozen vial of 

competent cells (100 μl) was thawed on ice.  Plasmid DNA (50 to 100 ng in 10μl or 

less sterile water) or ligation product (10 to 20 μl) was added and the contents of the 

tube were mixed by gently tapping the tube a few times.  The tube was then incubated 

on ice for 30 min before the mixture of cells and DNA was heat shocked at 42 °C for 

90 sec.  After chilling the cells on ice for 2 min, 900 μl of fresh LB medium was added 

and the culture was incubated at 37 °C for 45 min to 1 hr with agitation.   The cells 

were then collected by centrifugation at 10, 000 rpm for 1 min and resuspended in 50 

to 100 μl of LB before the cell suspension was spread onto a LB agar plate containing 

the appropriate antibiotic(s) or substrate(s).  Colonies would usually appear after 12 to 

16 hrs of incubation at 37 °C.   

2.4.7.2.  Electrotransformation 

The electrocompetent E. coli cells were prepared following the method described 

by Dower et al. (1988).  E. coli cells were grown overnight on LB plate supplemented 

with the appropriate antibiotics at 37°C, before suitable amount of the cells was 

scraped off the plate and resuspended in 1 ml of cold 1 mM HEPES (pH 7.0).  The 

cells were spun down at 10,000 rpm in for 1 min at RT.  The resultant pellet was 

washed twice with 1 ml of cold 1 mM HEPES (pH 7.0) and spun down as above.  The 

cells were resuspended in 50 μl cold 10 % glycerol after which the cells may be used 

immediately or frozen in liquid nitrogen and stored at -80 °C. 
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The electrotransformation of E. coli was carried out following the protocol 

described previously (Dower et al, 1988).  In brief, the electrocompetent E. coli cells 

were gently thawed on ice before 1 to 2 μl of plasmid DNA was added and mixed well 

with the cells.  After incubating the mixture on ice for 1 min, the mixture was 

transferred into a cold, 0.2 cm electroporation cuvette (BioRad).  One pulse was 

applied to the electroporation cuvette on the pulse generator at the settings of 25 μF 

capacitor, 2.5 kV, and 200 Ω in parallel with the sample chamber.  This should result 

in a pulse of 12.5 kV/cm with a time constant of 4.5 to 5 sec.  Immediately after the 

pulse, 800 μl of LB medium was added to the cuvette and the cells were gently 

resuspended with pipette.  The cell suspension was transferred to a 1.5 ml centrifuge 

tube and incubated at 37°C for 45 min to 1 hr with shaking before appropriate aliquots 

were plated on selective LB plates.  Colonies would usually appear after overnight 

incubation of these plates at 37°C. 

2.4.8.  Introduction of plasmid DNA into A. tumefaciens by electroporation 

Electrocompetent A. tumefaciens cells were prepared as follows.  Cells cultured 

overnight at 28 °C were scraped from the plate with a sterile wooden stick and then 

transferred into a sterile Eppendorf tube.  The cells were washed once with ice-cold 

water and once with ice-cold 15 % glycerol.  The cell pellet was resuspended in 50 to 

100 μl of ice-cold 15 % glycerol and then plasmid DNA (50 to 100 ng in 10 μl or less 

sterile water) was added.  The mixture of cells and DNA was transferred into a chilled 

BioRad electroporation cuvette and kept on ice for 10 min.  Gene Pulser II 

Electroporation System (BioRad) was set to the 25 μF capacitor, voltage of 2.5 kV and 

a controller unit of 400 Ω.  The outside of the cuvette was wiped with tissue paper to 

get rid of moisture before the cuvette was slide into the shocking chamber base.  The 
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cells were usually pulsed once with a time constant of 8 to 10 msec.  Then, 1 ml of 

MG/L medium was immediately added and the mixture was transferred into a 15-ml 

culture tube.  After culturing at 28 °C for 45 min to 1 hr, the cells were collected and 

spread onto an MG/L plate containing the selectable antibiotics.  Colonies would 

usually appear 2 to 3 days later.  

2.5.  RNA manipulations 

2.5.1.  RNA isolation from human cells 

Total RNA of mammalian cells was prepared using TRIZOL Reagent 

(GIBCO/Life Technologies, Grand Island, NY) according to the manufacturer’s 

instructions.  In brief, mammalian cells from one 75 cm2 flask were washed once with 

10 ml of PBS before 2 ml of TRIZOL Reagent was added onto the flash surface.  The 

homogenized sample was then vortexed for 30 sec and incubated at RT for 5 min.  

Residual protein was removed after the addition of 400 μl of chloroform, mixing for 

30 sec, incubation at RT for 3 min and centrifugation for 15 min at 12000 × g and 4 °C.  

The RNA in the colorless aqueous phase was precipitated in 1 ml of isopropanol by 

mixing for 15 sec, incubation for 10 min at RT and centrifugation for 10 min at 

12000×g and 4 °C.  The resulting RNA pellet was washed with 1 ml of 75 % ethanol 

and centrifuged for 5 min at 7500 × g and 4 °C.  The RNA pellet was air dried, 

resuspended in DEPC treated water and stored at -80 °C.  The extracted RNA was 

treated with RNase-free DNase before RT-PCR was conducted.   

2.5.2.  RNA isolation from Arabidopsis tissues 

 Total RNA was isolated from Arabidopsis plant tissues using the RNeasy® Plant 

Mini Kit (QIAGEN), following the instructions of the manufacturer.  First of all, 
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leaves or other tissues were collected and weighed to ensure that the weight of each 

sample was less than 100 mg.  After weighing, the tissues from each sample were flash 

frozen in liquid nitrogen before they were ground in an appropriate volume of liquid 

nitrogen by using a mortar and pestle.  Thereafter, the powder derived from each 

sample was decanted into a pre-chilled Eppendorf tube.  Upon the evaporation of 

liquid nitrogen but before the tissues started to thaw, 450 µl of buffer RLT was added 

to the sample and then vortexed vigorously.  The resultant lysate was pipetted directly 

into a QIAShredder spin column placed in a 2-ml collection tube and centrifuged for 2 

min at 14,000 rpm (Eppendorf 5417C).  The supernatant of the flow-through fraction 

was then transferred carefully into a new 1.5-ml tube, without disturbing any pellet 

that might have formed.  Then, 0.5 volume of absolute ethanol was added and mixed 

by pipetting.  The mixture was subsequently applied into an RNeasy minicolumn 

placed in a 2-ml collection tube and subjected to centrifugation for 15 sec at 8000 g.  

After discarding the flow through, 350 µl of buffer RW1 was added into the column 

and the sample was centrifuged for 15 sec at 8000 g.  Following that, the second flow 

through was discarded and an incubation mixture of 10 µl of DNase I stock solution 

and 70 µl of buffer RDD was added directly onto the membrane of the column and 

incubated at RT for 15 min.  After the on-column DNase digestion, the ensuing washes 

with buffer RW1 and buffer RPE were carried out as recommended in the protocol 

before the RNA was eluted with RNase-free sterile water in a sterile microcentrifuge 

tube provided in the kit. 
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2.5.3.  RT-PCR 

 Reverse transcription polymerase chain reaction (RT-PCR) was carried out using 

QIAGEN One-step RT-PCR kit (QIAGEN).  The 50-μl RT-PCR reaction mixture was 

comprised of the following components: 

5 × RT-PCR buffer 10 μl 

RNase-free water 19.7 μl 

Primer 1 (10 pmol/μl) 3 μl 

Primer 2 (10 pmol/μl) 3 μl 

dNTP Mix   2 μl 

RNase inhibitor 0.3 μl 

RNA template 10 μl 

QIAGEN One-step RT-PCR Enzyme Mix 2 μl 

 

 The RT-PCR was run using the following program: 

1 cycle 50 °C for 30 min 

1 cycle 95 °C for 15 min 

40 cycles 94 °C for 1 min 

 Annealing at (Tm-5) °C for 30 sec 

 Extension at 72 °C for 1 min per kb 

1 cycle 72 °C for 10 min 
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2.6.  Protein techniques 

2.6.1.  Buffers for protein manipulations  

Buffers used in protein manipulations are listed in Table 2-6.  

2.6.2.  SDS-PAGE gel electrophoresis 

 Protein profiles were analyzed using SDS-PAGE (Laemmli, 1970) based on 

molecular weight.  The electrophoresis apparatus used was the Mini-Protean III 

Electrophoresis Cell (BioRad).  The apparatus was assembled according to the 

instructions provided by the manufacturer.  The monomer stock solution of 

acrylamide/bis-acrylamide (30.8 % T : 2.7 % C) was prepared as described in 

Molecular Cloning (Sambrook et al, 1989) and stored in dark at 4 °C.  Ammonium 

Persulfate (APS) (10 %) solution was freshly prepared before each use.  Separating gel 

buffer (4 ×, 1.5 M Tris-HCl, pH 8.8) and stacking gel buffer (4 ×, 0.5 M Tris-HCl, pH 

6.8) were stored at RT.  Tank buffer was prepared as a 10 × stock solution (0.25 M 

Tris-HCl, 1.92 M glycine, 1 % SDS, pH 8.3) and stored at RT.  Gel loading buffer (2 ×, 

100 mM Tris-HCl, pH 6.8, 4 % SDS, 0.2 % bromophenol blue and 20 % glycerol, 0.2 

M DTT) was prepared without DTT and stored at RT.  DTT was added from a 2 M 

stock solution that was stored at -20°C before each use.  The preparation of 

polyacrylamide gel and the separation of protein were performed following the 

instructions of Hoefer Scientific Instruments (Protein electrophoresis-applications 

guide, 1994).  In this study, 10 or 12 % PAGE gel was used for the analysis of proteins, 

unless or otherwise specified.   
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Table 2-6.  Buffers used in protein manipulations 

Name Components (for 1 L) pH adjustment 

0.2 M Tris base
1.37 M Sodium chloride 

10 × Tris-buffered saline 

(10 × TBS)  
38 ml 1M Hydrochloric acid 

Adjust pH to 7.6 

1 × TBST 0.1 % Tween-20 (v/v) in 1 × TBS  

0.25 M Tris 

1.92 M Glycine 

10 × Tank buffer 

0.1 % SDS 

No need to check 
pH 

48 mM Tris  

38 mM Glycine 

0.37 g SDS 

10 × Transfer buffer 

 

20 % Methanol 

Adjust pH to 8.3 

4 × Separating gel buffer  1.5 M Tris-HCl  Adjust pH to 8.8 

4 × Stacking gel buffer 0.5 M Tris-HCl Adjust pH to 6.8 

50 mM Tris-HCl (pH 6.8) 

100 mM Dithiothreitol 

2 % SDS 

0.1 % Bromophenol blue 

1 × SDS gel-loading buffer 

20 % Glycerol 

 

0.25 g Coomassie Brilliant blue R 
(Gibco) 

400 ml Methanol 

Staining solution 

70 ml Acetic acid 

 

400 ml Methanol Destaining solution I 

70 ml Acetic acid 

 

70 ml Acetic acid  Destaining solution II 

50 ml Methanol  
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2.6.3.  Staining of SDS-PAGE separated proteins with standard Coomassie blue  

SDS-PAGE separated proteins were stained according to the instructions of 

Hoefer Scientific Instruments (Protein electrophoresis-applications guide, 1994).  The 

gel was placed in the staining solution and shaked at low speed for 1 h.  The staining 

solution was then discarded and replaced with destaining solution I.  After the gel had 

been destained for 30 min, destaining solution I was removed and replaced with 

destaining solution II.  The destaining solution II was changed twice a day until the gel 

background was clear. 

2.6.4.  Western blot analysis 

The sample was mixed with equal volume of 2 × loading dye buffer (Laemmli, 

1970), and boiled in a water bath for 5 to 10 min.  After cooling down, the sample was 

loaded into a 10 or 12 % SDS polyacrylamide gel and separated at a constant voltage 

of 100 V.  The protein was transferred to an Immun-BlotTM PVDF membrane (BioRad) 

from the gel in Mini Gel Transfer System for 4 hr to overnight at 200 mA, before the 

non-specific binding sites on the membrane were blocked by immersing the membrane 

in 10 % non-fat milk (Nestle) in TBST for 2 h at RT on an orbital shaker.  The 

membrane was then washed in TBST buffer for 3 times, with each wash that lasted 10 

min.  The membrane was then incubated in the diluted primary antibody for 1 h at RT 

and washed three times as above before incubation in the diluted secondary antibody 

for 1 h at RT.  After washing thoroughly as above, the membrane was processed for 

signal detection according to the recommendations of the manufacturer (Amersham). 
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Chapter 3.  Functional Characterization of DIP by RNA 

Interference  

3.1.  Introduction 

 As mentioned in sections 1.6 and 1.7 of Chapter 1, Arabidopsis DIP (VirD2 

Interacting Protein; At1g47550) was found to interact with A. tumefaciens virulence 

protein, VirD2, both in vitro and in vivo via independent immunoprecipitation, 

immunohistological and confocal microscopy assays.  The series of analyses have 

indicated that DIP is localized in the cytoplasm of the plant cells and the exclusive 

colocalization of DIP with T-DNA in A. tumefaciens transformed plant cells but not in 

those untransformed cells has strongly suggested DIP is involved in Agrobacterium-

mediated transformation of plant cells, by probably assisting the T-complex movement 

within the plant cell cytoplasm (Chang, 2002).   

 The proposed role of DIP as the facilitator of T-complex trafficking within the 

plant cell cytoplasm can be attributed to the fact that DIP is homologous to yeast 

Sec3p protein, which is a subunit of the yeast exocyst complex involved in secretion 

(Finger et al, 1997; 1998; Wiederkehr et al, 2003).  Sequence analysis has revealed 

that the subunits of the exocyst complex are evolutionarily conserved and homologues 

can be found in various organisms, including human and mice (Matern et al, 2001; 

Zhang et al, 2001). 

 Despite a strong correlation between the colocalization of DIP with T-DNA and 

the involvement of DIP in Agrobacterium-mediated transformation of plant cells, a 

direct functional assay of the involvement of DIP in such process has not been 

demonstrated.  To verify such a correlation, a RNA interference approach was used in 
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our study to directly establish the functional role or significance of DIP in 

Agrobacterium-mediated transformation of plant cells.  

3.1.1.  General overview of RNA interference 

3.1.1.1.  Definition and assay of RNA interference 

 Cropping up again and again in biology research these days, RNA interference 

(RNAi) is a powerful laboratory tool, partly because it is a widespread natural 

phenomenon (Novina and Sharp, 2004).  Hailed as the “Scientific Breakthrough of the 

Year” for 2002 by the journal Science (Couzin, 2002), RNAi is a recently discovered 

and evolutionarily conserved gene silencing phenomenon in which small pieces of 

double-stranded RNA (dsRNA) suppress the expression of genes with sequence 

homology (Fire et al, 1998; Dykxhoorn and Lieberman, 2005).  Together with quelling 

in fungi and posttranscriptional gene silencing (PTGS) in plants, RNAi in animals and 

basal eukaryotes are examples of a broad family of phenomenon collectively called 

RNA silencing (Kooter et al, 1999; Li and Ding, 2001; Matzke et al, 2001; Vaucheret 

et al, 2001; Waterhouse et al, 2001; Hannon, 2002; Plasterk, 2002). 

 In a recent attempt to advocate the standardized use of terms for RNAi 

experimentation, RNAi has been defined as ‘the inhibition of gene expression 

requiring a dsRNA or dsRNA domain-containing molecule processed by a RNase III-

like endonuclease and/or the generation of a ribonucleoprotein (RNP) complex 

containing a small RNA molecule and member(s) of the Argonaute (Ago) family of 

proteins’ (Huppi et al, 2005).   

 As a terminology in the newly standardized usage, functional analysis using 

RNAi will thus be referring to an assessment of protein function through the use of 
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RNAi-based methods, resources, and technologies.  The assumed aim is that silencing 

is mediated through transcript cleavage using most of the approaches developed to date 

and that downstream phenotypes are as consequence of a reduction in the level of the 

target protein (Huppi et al, 2005).  Such an approach is thought to produce a “knock 

down” phenotype as a result of the decrease in the protein level, but not total 

elimination as in the case of the “knock out” approach.   

3.1.1.2.  Mechanism of RNA interference 

 Although the exact and detailed mechanism of RNAi is not fully understood, 

biochemical and genetic studies have begun to unravel the mystery surrounding the 

once puzzling natural phenomenon that contributes to a wide range of developmental, 

cellular-defensive and regulatory processes (reviewed in Novina and Sharp, 2004).  As 

illustrated in Fig. 3.1, RNAi is a cellular process in which small or short interfering 

RNAs (siRNAs) of about 21 to 25 nucleotides induce sequence-specific degradation of 

cognate mRNAs. 

 As shown in Fig. 3.1, when dsRNAs that are produced from an introduced 

transgene, a viral intruder or a parasitic genetic element such as transposon are cleaved 

by the ribonuclease III enzyme – Dicer, into siRNAs, RNA-induced silencing complex 

(RISC) will incorporate a single-stranded RNA (ssRNA) into this complex.  This 

ssRNA is usually, though not always, the antisense strand of the siRNAs after the 

unwinding of siRNAs by a yet unidentified unwinding enzyme. The incorporated 

ssRNA is also known as the ‘guide’ strand and upon its incorporation into RISC, it will 

serve as the guide to target those mRNAs with sequence complementarity for 

destruction (Novina and Sharp, 2004; Sontheimer, 2005).  Besides participating in the 

initiation phase of RNAi, where dsRNAs are cleaved to produce siRNAs, Dicer  
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Fig. 3.1.  The mechanism of RNA interference (RNAi).  RNAi is triggered when a cell 
encounters a long double-stranded RNA (dsRNA), which might be produced from an 
introduced transgene, a viral intruder or a rogue genetic element, e.g. transposon.  An 
enzyme called Dicer cleaves the long dsRNA into small or short interfering RNAs 
(siRNAs).  An RNA-induced silencing complex (RISC) then distinguishes between the 
different strands of the siRNA.  The sense strand (blue) is degraded.  The antisense 
strand (yellow) is used to target genes for silencing, and has one of several fates 
depending upon the organism.  In fruitflies and mammals, the antisense strand is 
incorporated directly into RISC to target a complementary mRNA (green) for 
destruction.  In the absence of siRNAs, the RISC lacks sequence-specific mRNA-
binding properties.  But when bound to the antisense strand, the now activated RISC 
can participate in repeated cycles of degradation of specific mRNAs, such that no 
protein is made — effectively silencing the gene from which the mRNAs are produced.  
In worms and plants, the antisense strand of the siRNA might first be used in an 
amplification process.  The antisense strand, bound by an RNA-dependent RNA 
polymerase (RdRP) enzyme, can pair up with a complementary mRNA (green) and act 
as a start point for the synthesis of a new long dsRNA.  Dicer is then required to 
generate new siRNAs (red), which are specific to different sequences on the same 
mRNA.  Again, the target mRNA is destroyed.   

(Cited from Novina and Sharp, 2004)  
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might also be involved in the effector phase of RNAi, where siRNA programmed 

RISC degrades target mRNAs (Sontheimer, 2005). 

 Despite the widespread occurrence of RNAi in virtually every eukaryotic system 

apart from Saccharomyces cerevisiae and some trypanosomes (reviewed in Ullu et al, 

2004) and its associated cellular functions in transcriptional regulation of gene 

expression, heterochromatin formation, centromere maintenance and more recently in 

DNA elimination and silencing of unpaired DNA during meiosis (Matzke and 

Birchler, 2005), this evolutionarily conserved pathway runs differently in different 

organisms and a few important distinctions are apparent among the RNAi pathways in 

different species (reviewed in Tian et al, 2004).  

 First of all, research findings have indicated that different proteins are involved 

in different RNAi pathways in different organisms. For example, no R2D2/RDE-4 

homologue has been found in human, though this protein was well characterized and 

shown to function in the fruitfly, Drosophila. Other than that, the double-stranded-

RNA-binding motif (dsRBM) containing proteins from different organisms were found 

to possess different domain structures (Tian et al, 2004).   

 Similarly, biochemical analyses with various techniques which include X-ray 

crystallography and nuclear magnetic resonance (NMR) have revealed that different 

homologues of Argonaute (Ago) protein and Dicer or Dicer-like (DCL) proteins were 

found in different organisms (Lingel and Sattler, 2005).  While these Ago and DCL 

proteins all contain the conserved PAZ domain, these crucial components of RISC are 

not found in equal number in different organisms.  For instance, 4 Dicer homologues 

and 10 Ago proteins were found in Arabidopsis while C. elegans harbors only 1 Dicer 

but 27 Ago proteins (Matzke and Birchler, 2005). 
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 Therefore, it is perceivable that RISC is probably differentially assembled in 

various organisms and such assembly is likely to involve different subunits or 

associated proteins, some of which could exclusively be found in certain organisms but 

not in others (reviewed in Sontheimer, 2005).  This demonstrates that RNAi is an 

ancient mechanism which might have been adopted to achieve a similar regulatory 

function, but was then adapted to suit the need or customized design in different 

organisms. 

 In addition to the involvement of different proteins or conserved proteins with 

different structures and numbers, RNAi in some species, such as plants and worms, 

entails an amplification step by an RNA-dependent RNA polymerase (abbreviated as 

RDR or as RdRP in Fig. 3.1) (Tian et al, 2004).  Besides this difference, systemic 

RNAi effects were also observed in these species where siRNAs could be used by 

RDR for amplification and the RNAi signal could be transported across the cells.  In 

the case of plants, the channel of such translocation of signal was the plasmodemata, 

the pore channels linking the plant cells (Voinnet, 2005).   

3.1.1.3. Relation of microRNAs and other short RNAs to siRNAs 

 MicroRNAs (miRNAs) have been dubbed the ‘cousins’ of siRNAs (Tomari and 

Zamore, 2005).  They are a class of 19 to 25 nucleotides ssRNAs that are encoded in 

the genomes of most multicellular organisms studied.  Some are evolutionarily 

conserved and are developmentally regulated (Novina and Sharp, 2004).  They silence 

certain cellular genes at the stage of protein synthesis by repressing the expression of 

target genes (reviewed in He and Hannon, 2004).  As shown in Fig. 3.2, miRNAs and 

siRNAs have a shared central biogenesis, which involved the processing by both Dicer 

and RISC.  Therefore, as two separate classes of silencing RNAs, miRNAs and  
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Fig. 3.2.  Biogenesis of miRNAs and siRNAs and post-transcriptional suppression. 
The nascent primary-microRNA (pri-miRNA) transcripts are first processed into ~70-
nucleotide pre-miRNAs by the ribonuclease Drosha inside the nucleus. Pre-miRNAs 
are transported to the cytoplasm by Exportin 5 and are processed into 
miRNA:miRNA* duplexes by Dicer. Dicer also processes long dsRNA molecules into 
siRNA duplexes. Only one strand of the miRNA:miRNA* duplex or the siRNA duplex 
is preferentially assembled into the RNA-induced silencing complex (RISC) , which 
subsequently acts on its target by translational repression or mRNA cleavage, 
depending, at least in part, on the level of complementarity between the small RNA 
and its target. ORF, open reading frame. 
 

(Cited from He and Hannon, 2004) 
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siRNAs cannot be distinguished by their chemical composition or mechanism of action.  

However, important distinctions can still be made in regard to their origin, 

evolutionary conservation and the types of genes they silence (reviewed in Bartel, 

2004). 

 Although the discovery of miRNAs has added a new dimension to the 

understanding of complex gene regulatory networks, the question as to ‘whether 

miRNAs are truly different from siRNAs or the current understanding fails to 

functionally distinguish these two species of small RNAs under physiological 

conditions’ still remains to be addressed (He and Hannon, 2004).  What is better 

elucidated from various studies is that like siRNAs, plant and animal miRNAs can 

direct cleavage of their mRNA targets when the two are extensively complementary 

(Hutvágner and Zamore, 2002; Llave et al, 2002; Tang et al, 2003; Xie et al, 2003; 

Zeng and Cullen, 2003; Mallory et al, 2004; Okamura et al, 2004; Yekta et al, 2004), 

but repress mRNA translation when they are not (Olsen and Ambros, 1999; Chen, 

2004; Doench et al, 2003; Saxena et al, 2003; Zeng et al, 2003; Doench and Sharp, 

2004). 

 Aside from miRNAs, tiny non-coding RNAs (tncRNAs) as well as small 

modulatory RNA (smRNA) have been discovered. But their precise functions are still 

not very well understood  or are localized to neuron-specific genes only, respectively 

(Novina and Sharp).  It is probable that other species of small RNAs are yet to be 

discovered.  Thus, it is important to consider the potential effect, if any, of all these 

small RNAs when performing RNAi experiments. 
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3.1.1.4. Relation of cosuppression and antisense inhibition to RNAi 

The discovery of RNAi in C. elegans (Fire et al, 1998) had precedents that dated 

back to the late 1980s and early 1990s.  At those times, plant biologists working with 

petunias were surprised to find that when they introduced numerous copies of a gene 

that codes for deep purple flowers into the plants, the resultant transgenic petunias 

produced white or patchy flowers instead of flowers with darker purple hue associated 

with overexpression of the transgene, chalcone synthease (Napoli et al, 1990; van der 

Krol et al, 1990). The transgenes had somehow silenced both themselves and the 

plants’ endogenous ‘purple flower’ genes.  Similarly, when plants were infected an 

RNA virus that had been genetically engineered to contain fragments of a plant gene, 

the plant’s gene itself became silenced (Wassenegger et al, 1994).  These phenomena 

have led to the coining of the term ‘cosuppression’.   

On the other hand, antisense sequences or transgenes have also been found to be 

capable of silencing genes, albeit with a relatively low efficiency with weak 

suppression (Bruening, 1998; Murfett et al, 1995).  This is a seeming paradox when 

the potential of antisense transgene to form duplex RNA with the target mRNA is 

taken into account.  This phenomenon can be termed as antisense inhibition.   

Though the molecular bases of sense and antisense transgene-mediated silencing 

still remain unclear, it is believed that the ‘copying’ of these transgene-encoded 

ssRNAs into dsRNAs is responsible for converting them into silencing triggers and 

such ‘copying’ is mediated by RNA-dependent RNA Polymerase 6 (RDR6 in Fig. 3.4) 

(Baulcomble, 1996; 2004; Jorgensen, 2003; Tomari and Zamore, 2005; Gendrel and 

Colot, 2005). Based on this, a threshold sensing model has been proposed, in which 
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“aberrant” single-stranded RNA accumulates in vivo beyond some critical level before 

triggering its ‘copying' into dsRNA (Zamore 2001; Jorgensen, 2003).   

In an alternative nuclear model, nuclear accumulated sense and/or antisense 

transcripts have been proposed to form pre-miRNA-like structure that upon cleavage 

by Dicer or Drosha-like proteins will give rise to miRNA-like small RNAs, which can 

then be amplified or enter the RNAi pathway as outlined in Fig. 3.3 (Wang and 

Metzlaff, 2005; Voinnet, 2003).   

 Even though the molecular bases of sense and antisense transgene-mediated 

silencing are still not well characterized, these transgenes have the potential to cause 

gene silencing, possibly through the RNAi pathway.  Therefore, in addition to 

expressing the inverted repeat transgene that will give rise to hairpin RNAs (hpRNAs) 

responsible for siRNA generation, over-expression of sense and antisense sequences of 

the introduced transgene should also be included as controls when designing an RNAi 

experiment.  

3.1.1.5.  Advantages and applications of RNAi 

As a simple, cheap and powerful tool, RNAi has been used extensively in the 

laboratory to generate cells, tissues, or even animals with reduced expression of 

specific genes, allowing scientists to probe the functional significance of the genes of 

interest (Dillon et al, 2005).  It has also facilitated the study of physiological processes 

by offering a quicker way to generate transgenic “knock down” animals when 

comparing to the conventional approaches, such as “knock out” mice (Leung and 

Whittaker, 2005).  The RNAi approach has perceivably the added advantage of being 

able to generate transgenic cell lines or animals even in the event of a lethal mutation.   
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Fig. 3.3.  A nuclear model for sense and antisense transgene-mediated silencing. (a) 
Nuclear-accumulated sense transcript forms a pre-miRNA-like structure and, upon 
cleavage by Dicer or Drosha-like proteins, gives rise to miRNA-like small RNAs. 
These small RNAs are then used as primers by RNA-dependent RNA polymerase 
(RdRP) to synthesize secondary dsRNA, resulting in gene silencing (cosuppression). 
(b) Similarly, nuclear-localized antisense transcript can also form pre-miRNA-like 
structures and hence miRNA-like small RNAs. These small RNAs have perfect 
complementarity with the target mRNA. They guide RISC to cleave target mRNA or 
are used as primers for RdRP or both. Alternatively, nuclear sense or antisense 
transcript is the preferred template for RdRP to synthesize secondary dsRNA in either 
a primer-dependent or a primer-independent manner. Another possibility is that read-
through transcription occurs in a tail-to-tail inverted transgene repeat, generating long 
hairpin RNA (hpRNA) and triggering silencing. Ter, transcriptional terminator; DCL, 
Dicer-like. 

(Cited from Wang and Metzlaff, 2005) 
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This is because the varying degrees of gene silencing or “knock down” by RNAi will 

ensure at least that in some transgenic lines, residual expression of the targeted 

endogenous gene is still feasible for the survival of the transgenic lines, a feast which 

is not quite possible in the “knock out” scenario.    

As a powerful reverse genetic tool for research, RNAi has also been applied to 

plant science in the study of plant cytoskeleton (Klink and Wolniak, 2000), root 

biology (Limpens et al, 2004), oncogene silencing in crown gall tumors caused by A. 

tumefaciens (Escobar et al, 2001) as well as other studies that aim to understand plant 

biology or for crop improvement (Pattanayak et al, 2005).   

Likewise, RNAi is also applied to research studies based in animals, worm, fly 

and other organisms.  However, in the mammalian and some non-plant systems, 

research findings have shown that long dsRNA more than 30 bp will give rise to non-

specific effects, which are characterized by degradation of all mRNAs and the 

inhibition of all protein synthesis.  These non-specific effects were found to arise as a 

consequence of activation of two enzymes, PKR and 2,’5’ oligoadenylate synthetase 

(2’, 5’-AS), and could be circumvented by using duplexes of siRNAs of about 21- to 

22-nt instead of the inverted repeat sequence used in plant studies (Bass, 2001; 

Elbashir et al, 2001; Zamore, 2001).  This difference in non-specific effects reflects the 

divergent evolutions of various organisms while the ancient cellular pathway of RNAi 

is evolutionarily conserved.  And such difference should be taken into consideration 

when using RNAi as an experimental approach in different systems originated from 

different organisms  

Besides its usefulness as an experimental tool, RNAi is also a potent therapeutic 

approach to silence the expression of exogenous disease causing genes, such as those 
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from pathogens, as well as endogenous genes that play a role in the disease process 

(Dillon et al, 2005).  Its use in therapeutic approaches for cancer, neurological 

diseases, infectious diseases, respiratory diseases and its potential use in treatment for 

human immunodeficiency virus (HIV-1) induced diseases has been explored (Shankar 

et al, 2005; Leung and Whittaker, 2005; Forte et al, 2005; Cullen, 2005; Dillon et al, 

2005).  In addition, its use as a therapeutic strategy against viral infections both in 

plants and animals has been well examined too (Voinnet, 2005; Tan and Yin, 2004).  

Despite several obstacles or limitations to its use that include aspects of delivery, 

vector system, safety, efficacy and “off target” effect, phase I clinical studies of RNAi 

are on the horizon (reviewed in Dillon et al, 2005; Shankar et al, 2005; Leung and 

Whittaker, 2005). 

Apart from all the aforementioned applications, RNAi has also revolutionized the 

functional analysis of genomes, as genome-scale RNAi analyses have provided new 

approaches for probing the inner workings of the cell.  With the myriad of phenotypic 

data collected from these studies at hand, a new era of bioinformatics related to the 

phenome has emerged (reviewed in Gunsalus and Piano, 2005; Bengert and Dandekar, 

2005).  Even though it is still a budding technology, RNAi cell microarrays is a 

promising approach and tool that can increase the efficiency, economy and ease of 

genome-wide RNAi screens in metazoan cells (reviewed in Wheeler et al, 2005). 

As a natural occurring and endogenous cellular pathway, the applications of 

RNAi in many aspects are still being studied, discovered and refined for its usage.  Just 

like any newly emerging technology, RNAi has also some limitations and drawbacks 

that have to be considered and, if possible, overcome before its current and future 
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applications will yield maximum benefits to whichever arena it is applied (Campbell 

and Choy, 2005). 

3.1.2.  RNAi-mediated silencing pathways in plants 

 RNAi in plants is also known as posttranscriptional gene silencing (PTGS) and it 

is related to or at least shares similar, if not identical, silencing pathway with virus 

induced gene silencing (VIGS) (Voinnet, 2005).  Research findings have indicated that 

PTGS or RNAi in plants is likely to involve a number of RNA-dependent RNA 

polymerases (RdRP or RDR) and Dicer or Dicer-like (DCL) factors (Xie et al, 2004).   

 As illustrated in Fig. 3.4, studies of Arabidopsis insertion mutants have revealed 

that unlike many animals, plants encode multiple DCL and RDR proteins.  DCL1 was 

found to be involved in miRNA processing, DCL3 for that of endogenous siRNAs and 

DCL2 for viral siRNAs.  Though Arabidopsis contains 4 DCL factors, function for 

DCL4 is yet to be determined.  As for RDR proteins, RDR2 was found to be required 

for all endogenous siRNAs analyzed, while RDR6 was necessary for sense transgene 

mediated RNAi (Gendrel and Colot, 2005; Xie et al, 2004; Tang et al, 2003; Beclin et 

al, 2002; Dalmay et al, 2000; Mourrain et al, 2000). 

 While there is only one Dicer in mammals and C. elegans, the flowering plant 

Arabidopsis has 4 DCL factors.  At the same time, while RDR was not found to be 

involved in RNAi in human and fly, at least 2 such polymerases (RDR2 and RDR6) 

were found to be working in plants.  Together with other silencing pathways that are 

operating simultaneously, such as RNA-dependent DNA methylation (RdDM), it is 

apparent that transgene induced RNAi is only just a small part of the complicated 

regulatory circuit found in the plant systems.  Therefore, when designing 
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Fig. 3.4.  RNAi-mediated silencing pathways in plants. Genomic sources of RNAs that 
are processed into small RNAs are illustrated at the top. Open arrows and question 
marks indicate transcription start sites and uncharacterized transcription, respectively. 
Filled circles indicate DNA methylation; the open arrow with a red cross indicates 
promoter silencing by RNA-dependent DNA methylation (RdDM). For simplicity, the 
RdDM pathway that is associated with posttranscriptional gene silencing is not 
depicted and neither is the distinction between nucleus and cytoplasm.  DCL, Dicer-
like; RDR, RNA-dependent RNA polymerase; ncRNA, non-coding RNA. 
 

 (Cited from Gendrel and Colot, 2005) 
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an RNAi experiment using the plant systems, it is crucial to consider a number of 

factors such as the genomic locus of the endogenous gene to be silenced, the sequence 

of the siRNA used or whether to use a viral vector to deliver the transgene. 

3.1.3.  RNAi in suspension cultured plant cells 

 Cultured Drosophila cells (Caplen et al, 2000) and mammalian cells such as 

human embryonic kidney 293 (HEK-293) and HeLa cells (Elbashir et al, 2001) have 

been used for the studies of RNAi.  Suppression of gene expression by RNAi was 

subsequently shown in suspension cultured tobacco BY-2 cells (Akashi et al, 2001). 

As mentioned earlier, Arabidopsis DIP is a protein that has been shown to interact with 

A. tumefaciens VirD2 protein.  Western blot analysis of DIP has shown that this 

protein, or rather its conserved homologue, could also be detected in tobacco BY-2 

cells, as detection has yielded a protein of the correct and expected size in both species 

of plants.  Subsequent investigations in BY-2 cells have further verified the 

cytoplasmic location of such DIP homologue and its colocalization with T-DNA and 

involvement in Agrobacterium-mediated transformation of plant cells (Chang, 2002). 

 Despite the absence of the actual or exact sequence of tobacco DIP homologue in 

the current tobacco sequence database, the lack of PKR and 2’, 5’-AS mediated non-

specific effects observed in mammalian RNAi experiments means that a larger 

inverted repeat of DIP sequence can be utilized for RNAi experiment.  This dsRNA-

forming transgene of sense and antisense sequences joined in a head-to-head manner 

with a loop between them, i.e. sense-loop-antisense, will generate a number of 

siRNAs, some of which, if not all, are capable of inducing RNAi in tobacco BY-2 

cells.  For example, if the sense and antisense DIP sequences are 500 bp each, then the 

endogenous cellular machinery involving DCL factor will generate about 23 to 24 of 
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21-nt siRNAs from the hairpin dsRNA that is formed after the transcription of the 

sense-loop-antisense transgene.  Depending on the sequence homology between DIP 

and the tobacco DIP homologue, some of the siRNAs with high sequence homology 

will target the mRNAs of tobacco DIP homologue in BY-2 cells for degradation, or for 

translational repression of the homologue if the homology is low.  For the intended 

aim of achieving RNAi in tobacco cells and tissues in this study, all that is needed is 

just one single siRNA which can induce the degradation or cleavage of the mRNAs of 

tobacco DIP homologue. 

3.1.4. Novel approach of  sequential Agrobacterium-mediated transformations of 

suspension cultured plant cells 

 As one of the important objectives of this study is to verify and establish the 

functional significance of DIP in the process of Agrobacterium-mediated 

transformation of plant cells, the use of an RNAi approach will lead inevitably to the 

circumstances where the plant cells will have to be transformed twice.  This is because 

the first round of transformation used to induce RNAi is designed to study the 

phenomenon of Agrobacterium-mediated transformation of plant cells, which itself is a 

transformation process.   

 In other words, while the first round of transformation is used to introduce a 

transgene to induce the “knock down” of DIP via an RNAi pathway, the second round 

of transformation is to assay whether the “knock down” of DIP will have any effect on 

the Agrobacterium-mediated transformation of plant cells.  Therefore, the approach of 

co-transformation cannot be used in this study.  Neither is any harsh or inefficient 

approach of transformation.  For the first round of transformation, the chosen approach 

must be efficient and does not require extensive manipulations or disturbance to the 
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cells.  This is to ensure that the viability of the cells is retained or not compromised 

before they are transformed again by A. tumefaciens.  For this purpose, 

Agrobacterium-mediated transformation was chosen to bring about RNAi in our study.   

 Unlike the approach adopted by Akashi et al (2001), which requires the 

manipulation of protoplasts and the subsequent electroporation of protoplasts, the 

tobacco cells or tissues were subjected to two rounds of Agrobacterium-mediated 

transformations in our study, the first round for RNAi and the second round for 

examining the effect of DIP “knock down” on the efficiency of Agrobacterium-

mediated transformation.  This sequential Agrotransformation approach has been 

chosen for our study because Agrobacterium-mediated transformation of plant cells is 

efficient, mild to the plant cells that are to be subjected to further analysis and it 

usually inserts only a copy of the T-DNA into the plant genome, while affecting the 

viability of the cells the least.  
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3.2.  Materials and methods 

3.2.1.  Construction of plasmids and strains 

pGAD10-81 harboring DIP (also named as pGAD-DIP) was isolated from A. 

thaliana cDNA library via the GAL4-based two-hybrid system.  DIP (VirD2 

Interacting Protein) encoded by this plasmid was found to interact with VirD2 of 

pTiA6 (encoded by pAS-D2) from A. tumefaciens strain A348 (Chang, 2002).  To 

construct a plant transformation plasmid for RNAi experiments, the C-terminal 588-bp 

fragment (from nucleotides no. 1899 to 2486) of the coding sequence of DIP , which is 

2664 bp, was amplified from pGAD10-DIP using primers S1(C) and S2. This 588-bp 

fragment contains a 90-bp spacer or loop sequence downstream of the 498-bp region 

chosen for RNAi analysis.   After a double digestion with Pst I and BamH I, the PCR 

fragment was cloned into Pst I and BamH I digested pUCA19 (lab collection) to obtain 

pHC9.  After verification by DNA sequencing, the Pst I and BamH I fragment was 

subcloned into the MCS2 of the low-copy pCB302-1 binary vector (Xiang et al, 1999) 

to obtain pHC19 (Fig. 3.5). 

Likewise, the antisence sequence to the 498-bp region was also amplified from 

pGAD10-DIP by using primers AS1 and AS2.  After a sequential digestion by Sma I at 

30 ºC and EcoR I at 37 ºC, the PCR fragment was ligated into Sma I and EcoR I 

digested pUCA19 to obtain pHC10.  After verification by DNA sequencing, the Sma I 

and EcoR I fragment was subcloned into the MCS2 of pCB302-1 to create pHC20 

(Fig. 3.6).  Excision and ligation of the antisense fragment from pHC10 into Sma I and 

EcoR I digested pHC9 was subsequently performed to obtain pHC12.  After 

verification by DNA sequencing, the Pst I RNAi fragment (sense-loop-antisense) was 

subcloned from pHC12 into Pst I digested pCB302-1 to give rise to pHC18.  Double 
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digestion by Pst I and EcoR to create pHC18 was not necessary since the antisense 

sequence also contains a Pst I site (Fig. 3.7).  The expression of the RNAi DIP 

fragment (sense-loop-antisense) encoded by pHC18 in plant cells will produce 

dsRNAs which has been shown to be responsible for the RNAi phenomenon in 

cultured plant cells (Akashi et al, 2001).   

The constructed plasmids mentioned above were then transformed into A. 

tumefaciens strain LBA4404 (Ooms et al, 1982) via electroporation (Cangelosi et al, 

1991), as described in Chapter 2.  Serving as a negative control, the empty binary 

vector, pCB302-1, was also transformed into LBA4404.  As a summary, the T-DNA 

regions, between the left border (LB) and right border (RB), of all these plasmids can 

be outlined as shown in Fig. 3.8.  Plasmid DNA from the LBA4404 based strains 

harboring these plasmids were then isolated by a modified Miniprep procedure (Weber 

et al, 1998) and verified by restriction digestion analysis, as outlined in Chapter 2 (data 

not shown).  These strains were used in all the ensuing RNAi experiments. 

 To serve as a positive transformation control, LBA4404 harboring pIG121-Hm 

(Ohta et al, 1990) was used in all transformation and RNAi experiments (Fig. 3.9).  

pIG121-Hm contains a GUS reporter gene inserted with a modified intron of the castor 

bean catalase.  This intron inserted GUS reporter gene that is fused to the 35S 

cauliflower mosaic virus promoter and can only be expressed in plant cells but not in 

A. tumefaciens cells, due to inability of the prokaryotic cellular machinery to excise 

this intron.  After a histochemical GUS assay, LBA4404(pIG121-Hm) transformed 

plant cells will be stained blue.  If fluorogenic GUS assay was performed, the 

transformed plant cells will emit a fluorescence that can be measured by using a 

fluorometer. 
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 PCR of sense + loop fragment (1899 to 2485 bp)  
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Fig. 3.5.  Construction of pHC19.  A 588-bp DIP fragment was amplified from 
pGAD10-81 (also renamed as pGAD10-DIP), digested with Pst I & BamH I and then 
ligated into the Pst I & BamH I digested pUCA19 to obtain pHC9.  pHC19 was 
derived by subcloning the Pst I & BamH I fragment (verified by DNA sequencing) 
from pHC9 into pCB302-1.  
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 PCR of antisense fragment (2407 to 1899 bp) Sma I & EcoR I  
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Fig. 3.6.  Construction of pHC20.  A 498-bp antisense DIP fragment was amplified 
from pGAD10-81 (also renamed as pGAD10-DIP), digested with Sma I & EcoR I and 
then ligated into the Sma I & EcoR I digested pUCA19 to obtain pHC10.  pHC20 was 
derived by subcloning the Sma I & EcoR I fragment (verified by DNA sequencing) 
from pHC10 into pCB302-1. 
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Fig. 3.7.  Construction of pHC18.  The Sma I & EcoR I fragment from pHC10 was 
subcloned into Sma I & EcoR I digested pHC9 to obtain pHC12, as both pHC9 and 
pHC10 possess the same pUCA19 vector backbone.  Since the antisense sequence also 
contains a Pst I site, the Pst I RNAi fragment (sense-loop-antisense; verified by DNA 
sequencing) was subcloned from pHC12 into Pst I digested pCB302-1 to give rise to 
pHC18.  
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Fig. 3.8.   T-DNA regions of the DIP RNAi, sense and antisense expression plasmids.  
The circular mini binary vector pCB301 that is commonly used for the construction of 
plant transformation plasmids is linearized in this schematic representation.  pCB302-1 
is identical to pCB301 except for the sequences contained between the RB and LB of 
T-DNA and that is the only region illustrated (Xiang et al, 1999). The numbers under 
each DNA region indicate the approximate size of that region in base pairs and the 
arrow indicates the orientation.  The plasmids used for RNAi experiments, pHC18, 
pHC19 and pHC20, are constructed with pCB302-1 as the vector backbone containing 
a DIP fragment in MCS2.  pHC19 contains a fragment of the C-terminal region of the 
DIP coding sequence (2664 bp) that ranges from nucleotides no. 1899 to 2486.  This 
region is inclusive of a spacer or loop region that is made up of 90 nucleotides 
downstream of the chosen sequence (the hatched box).  pHC20 contains the antisense 
sequence (the cross-hatched box) to the chosen DIP region without the spacer or loop.  
Ligation of the sense-loop-antisense RNAi sequence into pCB302-1 gives rise to 
pHC18.  The expression of the DIP fragment encoded by pHC18 in plant cells will 
produce dsRNAs which has been shown to be responsible for the RNAi phenomenon 
in cultured plant cells (Akashi et al, 2001).  bar, gene for phosphinothricin 
acetyltransferase; LB, left border of T-DNA; MCS, multiple cloning site (from 
pBluescript II); nptIII, gene for neomycin phosphotransferase for kanamycin resistance 
(from pBIN19); oriV, part of RK2 origin of replication (from pBIN19); P35S

2, 35S 
cauliflower mosaic virus promoter with double enhancers; Pnos, promoter of nos 
(nopaline synthase) gene; RB, right border of T-DNA; Tnos, terminator of nos 
(nopaline synthase) gene; TP, plastid targeting sequence of Rubisco small subunit; trfA, 
part of RK2 origin of replication. 
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Fig. 3.9.  GUS reporter plasmid, pIG121-Hm.  This plasmid contains a CaMV 35S 
promoter-a modified intron of the castor bean catalase-GUS chimeric gene (CaMV 
35S::Intron-GUS in pIG121-HM).  It was constructed from pBI101 (vector; Jefferson 
et al, 1987), pIG221 (35S:Intron-GUS; Ohta et al, 1990) and pLAN101MHYG (Hygr; 
Dr. Ko Shimamoto) (Akama et al, 1992; Hiei et al, 1994). 
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3.2.2.  Agrobacterium-mediated transformation of tobacco BY-2 cells 

 Nicotiana tabacuum BY-2 suspension cultured cells were maintained in 

Murashige and Skoog (MS) liquid medium supplemented with 0.2 mg/L of 2,4-D 

(Linsmaier and Skoog, 1965). The cultures were incubated at room temperature (RT) 

with shaking at 100 rpm and subcultured every week with a 4 % inoculum.  

A. tumefaciens strain was grown overnight in AB minimal medium, supplemented with 

the appropriate antibiotics, in a 28 °C incubator before the bacterial cells were 

collected and then resuspended in IB medium supplemented with 100 µM 

acetosyringone (AS) as well as the appropriate antibiotics and further incubated at 28 

°C for 16 to 18 hrs for the induction of virulence gene expression (Cangelosi et al, 

1991).  After washing with MS medium, 100 µl of the bacterial cell suspension (5 X 

108 cells/ml) was added to 4 ml of BY-2 cell suspension that was 3 to 5 days old after 

the weekly subculture, in a small petri dish with a diameter of 4 cm.  After incubation 

at RT for a certain period of time (ranging from 1 to 4 days), the bacterial cells were 

washed away from the plant cells as described previously (Lee et al, 1999) before the 

cocultivated plant cells were then subjected to GUS assays (Jefferson et al, 1987; 

1991; Cao et al, 1998), induction of transformed or transgenic calli on selective 

medium or another round of cocultivation with the GUS reporter strain, 

LBA4404(pIG121-Hm). 

3.2.3.  Sequential Agrotransformations of tobacco BY-2 cells 

 To investigate the effect of transient “knock down” of DIP on Agrobacterium-

mediated transformation (Agrotransformation) of BY-2 cells, these cells were 

subjected to 2 rounds of cocultivation with A. tumefaciens.  BY-2 suspension cultured 

cells that was 5 days old after the weekly subculture were cocultivated with pre-
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induced A. tumefaciens LBA4404 harboring pHC18, pHC19, pHC20, pCB302-1 or 

pIG121-Hm during the first round of cocultivation, following the conditions outlined 

in the previous section.   

 After cocultivation for 1, 2 or 3 days, the cocultivated cells were collected in 50-

ml sterile tubes and the volume of each tube was made up to 50 ml with fresh MS 

medium before the samples were centrifuged at 1000 rpm for 4 min at RT with soft 

start/stop (Eppendorf 5810R).  This washing step was repeated once or twice with 

additional 50-ml volumes of fresh MS medium and centrifugations under the same 

conditions.  The washed cells from each sample were then cocultivated with the pre-

induced GUS reporter strain, LBA4404(pIG121-Hm), for 3 to 4 days. 

 After the second cocultivation with the GUS reporter strain, the BY-2 cells were 

collected, washed and then subjected to histochemical GUS assay (Jefferson et al, 

1987; Cao et al, 1998) with some modifications.  In brief, the cocultivation mixture in 

a petri dish was pelleted down by centrifugation at 660 rcf for 1 min and the 

supernatant was removed before the cells were incubated in the GUS staining solution 

containing 100 mM sodium phosphate buffer (pH 7), 0.5 mM potassium ferricyanide, 

0.5 mM potassium ferrocyanide, 10 mM Na2EDTA, 0.5 % (v/v) Triton X-100 and 5-

bromo-4-chloro-3-indolyl β-D-glucuronide (X-Gluc) at 0.5 mg/l at 37 °C for 4 hrs to 

overnight to obtain the final staining results.  As the controls, (i) un-cocultivated BY-2 

cells; (ii) BY-2 cells cocultivated with the GUS reporter strain only once during the 

first round of cocultivation; and (iii) BY-2 cells cocultivated with the GUS reporter 

strain only once during the second round of cocultivation, were also assayed for GUS 

activity. 
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3.2.4.  Selection and subsequent Agrotransformation of stably transformed 

tobacco BY-2 cell lines 

 To investigate the effect of stable “knock down” of DIP on Agrobacterium-

mediated transformation of BY-2 cells, 5 days old BY-2 cells were cocultivated with 

pre-induced A. tumefaciens LBA4404 harboring pHC18, pHC19, pHC20, pCB302-1 

or pIG121-Hm for 3 to 4 days.  According to the results of previous cytotoxicity 

assays, the cells were washed with fresh MS medium as described in the previous 

section before they were plated on MS agar plates supplemented with 5 μg/ml of 

phosphinothricin (ppt), 200 μg/ml of cefotaxime and 300 μg/ml of carbenicilin.  For 

LBA4404(pIG121-Hm) cocultivated BY-2 cells, they were plated on MS agar plates 

containing 100 μg/ml of kanamycin instead of ppt.  The plates were sealed with 

Parafilm and incubated in the dark at RT for 3 to 4 weeks until transformed calli were 

observed on the plates.  These calli were then transferred onto fresh plates containing 

the appropriate antibiotics or selective agents as before and allowed to grow for a 

further 3 to 4 weeks under the same conditions.  Subsequent subcultures were carried 

out every 3 to 4 weeks after the calli had reached a suitably large size and before they 

turned brown.  After a few such transfers, the stable transformants or calli were 

initiated into liquid suspension cultures.   

 The suspension cultures of the transformed BY-2 cell lines were subcultured 

weekly with a 15 to 20 % inoculum into fresh MS medium supplemented with 100 

μg/ml of kanamycin [for LBA4404(pIG121-Hm) transformed line] or 5 μg/ml of ppt 

(for all other transformed lines).  Five days after such subculture, cells from each line 

were cocultivated with pre-induced A. tumefaciens LBA4404(pIG121-Hm), the GUS 

reporter strain, for 3 to 4 days.  Following that, the cells from each line were collected 
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in Eppendorf tubes by centrifugation at 660 rcf for 1 min, resuspended in 1 to 1.5 ml of 

GUS extraction buffer (10 mM EDTA, 0.1% Triton X-100, 10mM β-mercaptoethanol 

in 50 mM phosphate buffer at pH 7.0) and vortexed vigorously for 1 min before the 

supernatants were collected for fluorogenic GUS assay by using 4-methylumbelliferyl 

β-D-glucuronide (4-MUG) as the substrate and the fluorescence readings were 

measured by using a fluorometer (Martin et al, 1992; Jefferson et al, 1991).  To 

compare the relative transformation efficiency of these cell lines by the GUS reporter 

strain, the fluorescence readings were normalized to the protein content of each 

sample, which was measured by using the Bradford assay (Coomassie PlusTM Protein 

Assay Reagent, Pierce). 

3.2.5.  Agroinfiltration of tobacco plants 

 To investigate the effect of transient “knock down” of DIP on the efficiency of 

Agrobacterium-mediated transformation of tobacco plants, infiltration of Nicotiana 

tabacuum cv. Xanthi and Nicotiana benthamiana by A. tumefaciens was performed 

according to the protocol used in Baulcombe’s lab (Voinnet et al, 2000) with some 

modifications.  A. tumefaciens strain LBA4404 harboring pHC18, pHC19, pHC20, 

pCB302-1 or pIG121-Hm was first streaked on MG/L plate containing 100 μg/ml of 

kanamycin and incubated at 28 ºC for 1 to 2 days (Cangelosi et al, 1991). A single 

colony was then picked for each strain and inoculated into 50 ml of MG/L 

supplemented with 100 μg/ml of kanamycin. After overnight culture with vigorous 

shaking at 28ºC, the bacterial suspensions (OD600 ≈ 1.0) were spun down at 4000 g for 

10 min and the pellets were resuspended each in 50 ml of 10 mM MgCl2 before 75 µl 

of 100 mM acetosyringone was added. The bacteria were then kept at RT for at least 3 

hrs without shaking. 
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 Infiltration was performed with a 1ml syringe without needle. Nicotiana 

benthamiana or Nicotiana tabacuum cv. Xanthi plants with 5 to 7 leaves were used for 

infiltration. Two to three well expanded leaves were punched with a needle and the 

syringe was applied to the hole on the leaf with blocking by finger from the other side. 

The syringe barrel was gently pushed and the bacterial suspension was delivered into 

the intercellular space of the leaf.  Three to five plants were infiltrated with each strain 

of A. tumefaciens as described above.  As a control, 3 to 5 uninfiltrated plants were 

maintained together with the infiltrated plants.  Three to four days after infiltration, the 

infiltrated leaves were subjected to a second round of infiltration with the pre-induced 

GUS reporter strain, LBA4404(pIG121-Hm), following the same infiltration procedure 

just described.  Three days after the second round of infiltration, the leaves from each 

plant were excised and homogenized in GUS extraction buffer (10 times w/v) and the 

resultant leaf extract was subjected to fluorogenic GUS assay (Martin et al, 1992; 

Jefferson et al, 1991), as described in the previous section. 

3.2.6.  Analysis of DIP +/- heterozygous mutant plants 

 Both wild-type Col-0 (LEHLE seeds) and T-DNA inserted DIP +/- heterozygous 

mutant (SALK institute seeds) Arabidopsis plants were grown in soil.   Arabidopsis 

seeds were allowed to imbibe on water wetted filter paper at 4 ºC for 7 days and then 

planted on Arabidopsis mix (three parts Florobella potting compost per 1 part sand). 

The plants were grown in a growth room with a photoperiod of 16 hrs light and 8 hrs 

darkness at 20 to 23 ºC.  After flowering and seed collection, the seeds from DIP +/- 

mutant plants were germinated and the plants were grown again as above.  The 

progenies were then propagated for a few generations following the same procedure in 

an attempt to obtain homozygous DIP -/- mutant plants through self fertilization or 
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selfing.  Total RNAs were then isolated from the tissues of both the mutant plants 

(after several generations of selfing) and the control wild-type plants, following the 

procedure outline in Chapter 2.  By using Dip-ex1 and Dip-ex2 primers, the RNAs 

isolated from these plants were used as the templates for one-step RT-PCR analysis 

following the instructions of the manufacturer (QIAGEN), also outlined in Chapter 2.  

3.3.  Results 

3.3.1. Transient DIP “knock down” and antisense inhibition decrease the 

efficiency of Agrobacterium-mediated transformation of BY-2 cells 

To establish a direct functional link of DIP with Agrobacterium-mediated 

transformation of plant cells, RNA interference (RNAi) approach was used to study 

the effect of DIP “knock down” on this process.  Fig. 3.8 shows the derivation of plant 

transformation plasmids that were introduced into A. tumefaciens LBA4404 for 

subsequent RNAi experiments.  As shown in Fig. 3.10 panel D, after the first round of 

cocultivation with LBA4404(pHC18) for 1 day, BY-2 cells became subsequently 

recalcitrant to transformation by the GUS reporter strain, LBA4404(pIG121-Hm), as 

evident by the lack of visible blue GUS staining.  The expression the DIP fragment 

encoded by pHC18 in plant cells will produce dsRNAs, which have been shown to be 

responsible for the RNAi phenomenon in cultured plant cells (Akashi et al, 2001).  

Therefore, it is possible that when the expression of tobacco DIP homologue is 

“knocked down” in BY-2 cells, the subsequent T-complex’s passage within the plant 

cells’ cytoplasm is disrupted and thus prevented T-DNA from entering the nuclei of 

the cells for the intron inserted GUS gene to get expressed. 
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Fig. 3.10.   Transient “knock down” of DIP decreases the efficiency of Agrobacterium-
mediated transformation of  BY-2 cells.  Five days after subculture, tobacco BY-2 
cells were cocultivated with pre-induced A. tumefaciens LBA4404 harboring pIG121-
Hm (panel B), pCB302-1 (panel C), pHC18 (panel D), pHC19 (panel E) or pHC20 
(panel F) for 1 day respectively.  After washing with fresh MS medium, the cells 
(panel B to F) were subjected to a second round of cocultivation with pre-induced 
LBA4404(pIG121-Hm).  3 to 4 days after the second cocultivation, the cells were 
subjected to histochemical GUS assay.  As a control, 5 days old BY-2 cells that were 
not cocultivated with A. tumefaciens (panel A) during the first round of cocultivation 
were washed with fresh MS medium and subjected to GUS assay 3 to 4 days later 
together with other samples . 

 

 110



 However, when pre-cocultivated with LBA4404 harboring the DIP fragment 

overexpression plasmid, pHC19 (panel E), or the empty binary vector, pCB302-1 

(panel C), a positive GUS staining pattern was observed after cocultivation by the 

GUS reporter strain.  This staining pattern is similar to the positive control, in which 

the BY-2 cells were cocultivated with the GUS reporter strain twice (panel B).  When 

BY-2 cells were pre-cocultivated with LBA4404 harboring pHC20, which expresses 

an antisense DIP fragment (panel F), a partial GUS staining pattern was observed after 

cocultivation with the GUS reporter strain.  This partial stain is characterized by a light 

blue to faint blue or almost white (but still with a faint streak of light blue) coloration.  

Although this partial stain was observed in the repeat experiments, the degree of blue 

coloration varied from one experiment to the other (data not shown).  It is possible that 

the degree of antisense inhibition on the expression of DIP might differ from one 

experiment to the other.  Nonetheless, it is apparent that this antisense inhibition of 

DIP has resulted in a decreased efficiency of Agrobacterium-mediated transformation 

of BY-2 cells, confirming a functional role for DIP in assisting the T-complex to 

traverse across the plant cell cytoplasm. 

 When assayed for GUS activity, the other two controls, (i) BY-2 cells 

cocultivated with the GUS reporter strain only once during the first round of 

cocultivation and (ii) BY-2 cells cocultivated with the GUS reporter strain only once 

during the second round of cocultivation, also showed a blue stain similar to that of the 

positive control (panel B) (data not shown).  This indicates that both rounds of 

transformations were successful and the T-DNAs were delivered into the plant cells.  

Additional transformation controls, both MX243 (an A348 based virB- mutant) and 

WR1715 (virD2 mutant; 70 % of virD2 deleted) strains harboring pIG121-Hm were 
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used as the negative controls.  Negative GUS staining similar to that shown in panel A 

of Fig. 3.10 have been observed when these strains were used (data not shown).  

 Apart from the lag time of 1 day between the two rounds of cocultivations, GUS 

assays were also performed for samples in which the lag time was 2 or 3 days between 

the two rounds of cocultivations.  This lag time is equivalent to how long the bacterial 

and the plant cells were cocultivated during the first round of cocultivation.  Unlike the 

reproducible results associated with the lag time of 1 day between the two rounds of 

cocultivations, a few GUS staining patterns were observed for some or all of the 

experimental samples after many repeat experiments, in which 2 to 3 independent 

samples were processed for each treatment group.  Despite such unpredictability of 

GUS staining pattern, the GUS assays revealed a few major trends in the staining 

patterns after cocultivation with the experimental strains for 2 or 3 days at RT and then 

another cocultivation with the GUS reporter strain for 3 to 4 days at RT   

 In the first pattern, most or all of the 3 to 5 tubes of the experimental treatment 

groups showed a negative GUS staining such as that shown in Fig. 3.11, except the 

positive controls that were cocultivated with the GUS reporter strain twice (panel B of 

both Fig. 3.10 and Fig. 3.11).  This is probably due to the decreased cell viability after 

prolonged incubation with A. tumefaciens after the two rounds of cocultivations, as the 

experimental conditions are markedly different from the routine culture conditions in 

which fresh MS medium is supplied to the cells and the culture is gyrated at 100 rpm  

to supply the cells with maximal nutrients.  In addition, disruption of DIP expression 

by RNAi, overexpression or antisense inhibition for a longer period of time may also 

be detrimental to the overall physiological conditions of the cocultivated cells, since  
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Fig. 3.11.   Predominantly negative GUS staining after two rounds of Agrobacterium-
mediated transformations of BY-2 cells.  Five days after subculture, tobacco BY-2 
cells were cocultivated with pre-induced A. tumefaciens LBA4404 harboring pIG121-
Hm (panel B), pCB302-1 (panel C), pHC18 (panel D), pHC19 (panel E) or pHC20 
(panel F) for 2 days respectively.  After washing with fresh MS medium, the cells 
(panel B to F) were subjected to a second round of cocultivation with pre-induced 
LBA4404(pIG121-Hm).  3 to 4 days after the second cocultivation, the cells were 
subjected to histochemical GUS assay.  As a control, 5 days old BY-2 cells that were 
not cocultivated with A. tumefaciens (panel A) during the first round of cocultivation 
were washed with fresh MS medium and subjected to GUS assay 3 to 4 days later 
together with other samples. 
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 DIP is found to be a crucial subunit of the evolutionarily conserved exocyst complex 

involved in secretion via the sequence analysis BLAST programs.   

 In contrast to the first pattern, all or almost all the samples in the experimental 

groups were stained blue after GUS assays in the second major staining pattern, such 

as that shown in Fig. 3.12.  It is apparent from Fig. 3.12 that the decrease in the 

efficiency of Agrotransformation of BY-2 cells could still be reflected in the partial 

stain or a light blue coloration for the RNAi (panel D) and antisense inhibition (panel 

F) samples.  However, this partial stain is not observed in all the repeated experiments.  

In some repeated experiments, similar or same degree of blue staining was observed 

for all the experimental samples, except the negative control (data not shown).   

 As for this second staining pattern, it is probable that the overall competency of 

the BY-2 cells to being transformed by the GUS reporter strain was quite high under 

the experimental circumstances.  The cells might still be in relatively better 

physiological conditions after the first round of transformation and thus might possess 

better overall cell viability for the second round of transformation by the GUS reporter 

strain.  Alternatively, the efficiency of first round of transformation might have been 

too low to achieve a “knock down” effect associated with RNAi.  This observation is 

in congruence with the fact that the cells used in the experiments were unsynchronized 

BY-2 cells (Nagata et al, 1992) and that the competency of the suspension cultured 

cells to transformation by A. tumefaciens may differ from one experiment to the next.   

 In other words, the difference between the first staining pattern and that of the 

second one may be attributed to the fact that the majority of the cells used for 

Agrotransformations could reside in different cell cycle stages and that most of the 

cells used were in a more competent stage to give rise to the second staining pattern.  
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Fig. 3.12.   Predominantly positive GUS staining after two rounds of Agrobacterium-
mediated transformations of BY-2 cells.  Five days after subculture, tobacco BY-2 
cells were cocultivated with pre-induced A. tumefaciens LBA4404 harboring pIG121-
Hm (panel B), pCB302-1 (panel C), pHC18 (panel D), pHC19 (panel E) or pHC20 
(panel F) for 3 days respectively.  After washing with fresh MS medium, the cells 
(panel B to F) were subjected to a second round of cocultivation with pre-induced 
LBA4404(pIG121-Hm).  3 to 4 days after the second cocultivation, the cells were 
subjected to histochemical GUS assay.  As a control, 5 days old BY-2 cells that were 
not cocultivated with A. tumefaciens (panel A) during the first round of cocultivation 
were washed with fresh MS medium and subjected to GUS assay 3 to 4 days later 
together with other samples. 
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Aside from these, it is also probable that the effect caused by the transiently expressed 

genes carried by the T-DNAs outlined in Fig. 3.8 might have been lost or decreased 

upon prolonged incubation during or after the first round of cocultivation.  The cellular 

machinery might have been trying to bypass the detrimental effects that arise as a 

consequence of the disruption of DIP expression by RNAi, overexpression or antisense 

inhibition. 

 In the less frequently observed third major staining pattern (Fig. 3.13), the RNAi 

sample (panel D), the overexpression sample (panel E) and the antisense inhibition 

sample (panel F) showed similar degree of GUS staining.  These results indicate that 

the overexpression of sense or antisense DIP fragment were equally efficient in 

decreasing the amount of blue staining.  This goes to show that the efficiency of 

Agrobacterium-mediated transformations of BY-2 cells in these samples was relatively 

diminished when compared to the empty vector control (pCB302-1; panel C).  These 

results might have arisen due to the sense and antisense transgene-mediated silencing, 

as outline in section 3.1.1.4.   

 From the unpredictability of GUS staining profiles that arose when the lag time 

between the two rounds of cocultivations was set at 2 or 3 days, the resultant major 

staining patterns have reflected the complex nature of Agrobacterium-mediated 

transformation of plant cells in which numerous parameters are involved.  By 

examining the various staining patterns observed for all the repeat experiments, it is 

certain that when the lag time between the two rounds of cocultivation was set at 1 day 

apart, the RNAi and antisense inhibition derived decrease in the efficiency of 

Agrotransformation of BY-2 cells by the GUS reporter strain was more readily  
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Fig. 3.13.   Less frequently observed GUS staining pattern after two rounds of 
Agrobacterium-mediated transformations of BY-2 cells.  Five days after subculture, 
tobacco BY-2 cells were cocultivated with pre-induced A. tumefaciens LBA4404 
harboring pIG121-Hm (panel B), pCB302-1 (panel C), pHC18 (panel D), pHC19 
(panel E) or pHC20 (panel F) for 3 days respectively.  After washing with fresh MS 
medium, the cells (panel B to F) were subjected to a second round of cocultivation 
with pre-induced LBA4404(pIG121-Hm).  3 to 4 days after the second cocultivation, 
the cells were subjected to histochemical GUS assay.  As a control, 5 days old BY-2 
cells that were not cocultivated with A. tumefaciens (panel A) during the first round of 
cocultivation were washed with fresh MS medium and subjected to GUS assay 3 to 4 
days later together with other samples. 
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observed and the results were similar to the staining profile illustrated in Fig. 3.10.   

 It is quite likely that when the two rounds of cocultivations are 1 day apart, the 

cells are in a relatively viable and competent stage for the second round of 

transformation by the GUS reporter strain.  Yet at the same time, any detrimental 

effect due to the disruption of DIP expression by RNAi, overexpression or antisense 

inhibition might not have arisen due to the short cocultivation time of 1 day.  Since 

transient expression of any transferred gene begins at around 2 days after the 

cocultivation of BY-2 cells with A. tumefaciens, this timing is just right for the early 

examination of the effects of the transient expression of DIP dsRNA, overexpression 

and antisense inhibition gene fragments on the trafficking and targeting of the GUS 

reporter T-DNAs from the plant cell cytoplasm to the plant cell nucleus, before the 

viability of the cells are detrimentally affected. 

 In other words, when the transgenes on the T-DNAs delivered into the nuclei of 

the plant cells by the first cocultivation are just being transiently expressed, without 

much detrimental effect on cell viability yet, the T-DNAs harboring the GUS reporter 

construct delivered into the plant cell cytoplasm by the second round of cocultivation 

are still being trafficked within the cytoplasm of the plant cells and being targeted to 

the plant cell nuclei.  Therefore, any effect on the trafficking of the GUS-reporter-

harboring T-DNAs may be attributed to the transiently expressed transgene. This may 

serve to explain why a comparatively reproducible negative effect of DIP ‘knock 

down” by RNAi or to a certain extent by antisense inhibition was observed, even 

though the degree and extent of the blue coloration might differ among different 

experiments.  
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  Last but not least, the more important observation from our data is the 

occurrence of the highly reproducible negative white GUS staining for almost all the 

RNAi samples in almost all the experiments performed, except in the predominantly 

positive GUS staining pattern.  Beside this exception, the RNAi sample had always 

produced the negative stain.  This shows that when DIP is “knocked down” by RNAi, 

the efficiency of Agrobacterium-mediated transformation of plant cells is 

unquestionably and markedly reduced. 

 Taken together, the results from this series of sequential transient 

Agrotransformations have demonstrated clearly that DIP is functionally crucial for a 

successful transformation by A. tumefaciens. 

3.3.2. Transient DIP  “knock down” and antisense inhibition decrease the 

efficiency of Agrobacterium-mediated transformation of tobacco plant 

tissues 

To verify if the RNAi disruption of DIP expression totally abolishes 

Agrobacterium-mediated transformation of plant cells or only decreases its efficiency, 

a two-round Agroinfiltration approach coupled with a more sensitive fluorogenic GUS 

assay (Martin et al, 1992; Jefferson et al, 1991) was adopted.  BY-2 cells were not 

used because when the lag time between the two rounds of Agrobacterium-mediated 

transformation increases, the cells (which are usually subcultured weekly) may not be 

in good physiological conditions for this experiment and that unpredictable GUS 

profiles may also be observed.  Unlike single cells in suspension cultures, such as BY-

2 cells, leaves attached to intact plants are nourished by the nutrients transported to 

them via the plant vascular system and are thus chosen for this experiment.  In 

addition, infiltrated leaves have been shown to be able to recover after Agroinfiltration. 
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Similar to that of the BY-2 cells based experiment, the DIP overexpression and 

empty vector samples gave a positive GUS result.  When viewed under UV, these were 

the only samples where a weak fluorescence could be observed (data not shown).  This 

fluorescence was unlike the high-intensity and strong fluorescence of the positive 

controls.  For the antisense sample, a very weak to almost null fluorescence was 

observed.  Like the BY-2 cells based experiment, the fluorescence intensity of the 

antisense sample varied from one experiment to the other.  But in the whole plant 

based experiments, the degree of variation is much smaller. 

After normalization to the protein content of each sample, quantitative 

fluorescence readings (Table 3-1 and Fig. 3.12) reveal that when DIP expression was 

“knocked down” by RNAi, the efficiency of Agrobacterium-mediated transformation 

of tobacco leaf tissues was decreased, but not totally abolished, to a level comparable 

to that of the negative control (the uninfiltrated leaves).  Likewise, the antisense 

inhibition of DIP also decreased the transformation efficiency, as indicated by the 

fluorescence reading.  But the reading is higher than that of RNAi sample by 

approximately 25%.   

Surprisingly, the DIP overexpression sample gives a higher reading than the 

empty vector control sample, though the reading is still way below that of the positive 

controls (Table 3-1, c).  It is quite probable the overexpression of DIP may enhance the 

interaction between VirD2 and DIP and thus a more efficient intracellular transport 

within the cytoplasm may give rise to slightly higher fluorescence reading as an 

indication of a slightly more efficient Agrotransformation. 
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Table 3-1.   The effect of transient DIP “knock down” on Agrobacterium-mediated  

                    transformation of tobacco leaf tissues 

 

Leaf extracts from infiltrated leaves d
Abbreviation a

1st infiltrated strain 2nd infiltrated strain 

Relative fluorescence 
per mg protein e

No Agro          
No Agro Not infiltrated Not infiltrated 158 ± 28 

RNAi         
Reporter LBA4404(pHC18) LBA4404(pIG121-Hm) 201 ± 23 

Sense       
Reporter LBA4404(pHC19) LBA4404(pIG121-Hm) 431 ± 15 

A/S b      
Reporter LBA4404(pHC20) LBA4404(pIG121-Hm) 266 ± 9 

Empty Vector 
Reporter LBA4404(pCB302-1) LBA4404(pIG121-Hm) 381 ± 31 

Reporter c 

Reporter LBA4404(pIG121-Hm) LBA4404(pIG121-Hm) 5614 ± 424 

Reporter c       
No Agro LBA4404(pIG121-Hm) Not infiltrated          3687 ± 2 

No Agro c 

Reporter Not infiltrated LBA4404(pIG121-Hm)          5467 ± 581 

a These abbreviations are used in Fig. 3.14. 

b A/S = Antisense DIP sequence harbored in pHC20 

C The relative fluorescence per mg protein of the leaf extracts under these treatment 
groups are not plotted and included in Fig. 3.14 for clarity reason, as the high 
fluorescence readings will skew the histogram and depress the bar heights of the other 
treatment groups markedly.  They serve as the positive controls. 

d 2 to 3 leaves from 3 to 5 different plants were infiltrated for each treatment group 

e 5 to 6 independent experiments were performed using leaves from both Nicotiana 
benthamiana  (shown here) and Nicotiana tabacuum cv. Xanthi (data not shown).  A 
similar trend was observed for each experiment despite the difference in absolute 
readings when leaves from both species of tobacco plants were used. 
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Fig. 3.14.   Transient “knock down” of DIP decreases the efficiency of Agrobacterium- 
mediated transformation of  tobacco leaf tissues.  Young expanded leaves of Nicotiana 
benthamiana plants were infiltrated with A. tumefaciens LBA4404 harboring pHC18, 
pHC19, pHC20 or pCB302-1 respectively.  After 3 to 4 days, the infiltrated leaves 
were subjected to a second round of infiltration by the GUS reporter strain, 
LBA4404(pIG121-Hm).  The infiltrated leaves were assayed for GUS protein 
accumulation by fluorogenic GUS assay.  The detailed results of the GUS assays are 
shown in Table 3-1. 
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Overall, the Agroinfiltration results support the findings of the BY-2 cell based 

experiments in that when the DIP expression is transiently “knocked down” via RNAi 

or to a lesser extent by antisense inhibition, a negative effect on the efficiency of 

Agrobacterium-mediated transformation of plant cells or tissues is observed.  The 

perturbations of DIP expression do not, however, abolish totally the event of 

Agrotransformation altogether.   

This is in concurrence with the notion that even in the event of a lethal mutation 

or mutation of a gene with crucial function, varying degree of RNAi in different cell 

lines or tissues will ensure that at least some transformed cell lines or tissues will 

harbor residual expression of the targeted endogenous gene for their survival.  In 

tobacco tissues where RNAi did indeed abolish DIP function totally, the leaf tissues 

would have withered and died, as were observed for some leaves in the experiments. 

However, more often than not, total abolishment does not take place in most 

circumstances. 

3.3.3. Stable DIP “knock down” decreases the efficiency of Agrobacterium-

mediated transformation of BY-2 cells 

As a further verification of the transient DIP “knock down” assays, BY-2 cells 

cocultivated with LBA4404 harboring pHC18, pHC19, pHC20, pCB302-1 or pIG121-

Hm  were plated on MS agar plates supplemented with antibiotics or selective agents 

in order to obtain the stably transformed BY-2 cell lines.  LBA4404(pIG121-Hm) 

cocultivated BY-2 cells were selected on MS plates supplemented with 100 μg/ml of 

kanamycin.  As for BY-2 cells cocultivated with other strains harboring pHC18, 

pHC19, pHC20 or pCB302-1, the bar gene encoded by these plasmids codes for 

phosphinothricin acetyltransferase that confers resistance to phosphinothricin (ppt).  
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To determine the cytotoxicity effect of phosphinothricin (ppt) on BY-2 cells, 

various concentrations of ppt were added to untransformed BY-2 cell immediately 

after the subculture of cell suspension and the subsequent increases in settled cell 

volume (SCV) of the suspension cultures were monitored.  As shown in Fig. 3.15, 1 

μg/ml of ppt was already sufficient to suppress the growth of untransformed BY-2 

cells not harboring a bar gene expressing plasmid, even though higher concentrations 

of ppt ranging from 2 to 5 μg/ml were also found to inhibit the proliferation of 

untransformed BY-2 (data not shown). This is in contrast to the control, where the 

proliferation of BY-2 cells followed the growth curve reported by Nagata et al (1992). 

Besides assaying the untransformed wild-type BY-2 cells for ppt cytotoxicity, the 

empty vector strain, LBA4404(pCB302-1), cocultivated BY-2 cells were plated on MS 

plates supplemented with various concentration of ppt in an attempt to determine a 

suitable ppt concentration for the selection of transformed BY-2 cells after their 

cocultivation with LBA4404 strains harboring pHC18, pHC19 and pHC20.   

As illustrated in Fig. 3.16, when ppt concentration was lower than 4 μg/ml or 

when no ppt was added to the MS plates, cocultivated BY-2 cells would proliferate 

and covered up the whole plate (panel A).  This suggests that to select the cocultivated 

BY-2 transformants on MS plates clearly, a higher ppt concentration is required.  

However, when un-cocultivated BY-2 cells were spread onto MS plates supplemented 

with various concentrations of ppt, 1 μg/ml was already sufficient to suppress the 

growth of untransformed wild-type BY-2 cells, tallying with the result of the 

cytotoxicity assay described and shown earlier in Fig. 3.15. 

On the other hand, when the ppt concentration was 6 μg/ml or higher, it became 

toxic to even the cocultivated BY-2 transformants, as shown in panel F of Fig. 3.16, 
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Fig. 3.15.  Cytotoxicity effect of phosphinothricin (ppt) on untransformed wild-type 
BY-2 cells.  Immediately after the weekly subculture, 1 μg/ml of ppt was added to the 
newly diluted BY-2 cell suspension culture, which was then cultured in the usual 
manner.  As a control, no ppt was added to a similar culture. Every 24 hours, 1 ml of 
each culture was allowed to settle in a microcentrifuge tube before the supernatant was 
removed.  Such procedure was performed for 7 days for the culture added with 1 μg/ml 
of ppt (panel B) and for the control culture (panel A), where no ppt was added.  
Similar approach was taken to measure settled cell volume (SCV; Rempel and Nelson, 
1995) of 50-ml cultures in 50-ml centrifuge tubes for 7 days for cultures added with 1 
μg/ml of ppt or cultures where no ppt was added.  The SCV readings were then used to 
plot the graph illustrated in panel C. 
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Fig.3.16.  Determination of suitable phosphinothricin (ppt) concentration for the 
selection of transformed BY-2 cells.   After cocultivation with the empty vector strain, 
LBA4404(pCB302-1), BY-2 cells were plated on MS plates supplemented with 
various concentrations of ppt ranging from 0 μg/ml of ppt to 10 μg/ml of ppt.  
Photographs of BY-2 cells selected on MS plates supplemented with no ppt (panel A), 
4 μg/ml of ppt (panel B), 4.5 μg/ml of ppt (panel C), 5 μg/ml of ppt (panel D), 5.5 
μg/ml of ppt (panel E) and 6 μg/ml of ppt (panel F) were taken about 2 months after 
the initial plating where further proliferation of BY-2 cells was no longer feasible.  
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where only minute amount of callous tissues was visible.  On plates where ppt 

concentration exceeded 6 μg/ml, ranging from 7 μg/ml to 10 μg/ml, no visible callous 

tissue could be observed 2 months after the initial plating (data not shown). 

Therefore, the effective concentration of ppt for a clearly discernable selection of 

BY-2 transformants, after cocultivations with the LBA4404 strains harboring pHC18, 

pHC19, pHC20 and pCB302-1, only ranges from 4 to 5.5 μg/ml (panel B to E).  To 

achieve a balance between the number of available transformants on plate and the 

selective pressure of ppt on non-transformants, the ppt concentration of 5 μg/ml was 

used for subsequent selections both on MS plates and in liquid suspension cultures. 

After a few subcultures of the transformed calli to fresh selective plates every 3 

to 4 weeks, differential grow rates of the transformed BY-2 cell lines were observed 

(Fig. 3.17).  Calli of the stable DIP “knock down”  line (panel A) grew at a much 

slower rate than the other stably transformed lines (panel B to E).  Though growing at 

a faster rate than the stable DIP “knock down” line, the stable DIP antisense line 

(panel C) still grew comparatively and slightly slower than the other lines.  As such, 

more cell mass or calli from more plates were used to initiate these two cell lines into 

liquid suspension cultures.  These demonstrate that the expression of DIP is essential 

for the proper physiological function of the plant cells. 

After initiation into liquid suspension and cocultivation with the GUS reporter 

strain, the cells from each line were subjected to fluorogenic GUS assay (Fig. 3.18 and 

Table 3-2).  The results confirm the Agroinfiltration data that RNAi “knock down” of 

DIP decreases the efficiency of Agrobacterium-mediated transformation of plant cells 

but does not abolish or prevent the transformation of plant cells.  The fluorescence 

reading of the stable DIP “knock down” line was about half that of the DIP  
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Fig. 3.17.   Stable DIP “knock down” transformant grows slower than other stably 
transformed BY-2 cell lines.  After cocultivation with A. tumefaciens LBA4404 
harboring pHC18 (panel A), pHC19 (panel B), pHC20 (panel C), pCB302-1 (panel D) 
or pIG121-Hm (panel E) for 3 to 4 days, BY-2 cells were washed and selected on MS 
plates supplemented with 5 μg/ml of ppt (panel A to D) or 100 μg/ml of kanamycin 
(panel E). The resulting transformed calli were transferred to fresh plates and these 
transformed cell lines are subcultured every 3 to 4 weeks.  The above photographs 
were taken one month after the previous subculture.  The pictures above show that the 
transformed BY-2 cell lines grow at different rates. 
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Table 3-2.   The effect of stable DIP “knock down” on Agrobacterium-mediated  

                    transformation of BY-2 cells 

 

Abbreviation a BY-2 cell line b Relative fluorescence per 
mg protein c

WT (-) Uninfected wildtype 504 ± 46 

WT Cocultivated wildtype 3168 ± 49 

RNAi LBA4404(pHC18) transformed 1333 ± 167 

Sense LBA4404(pHC19) transformed 3072 ± 103 

Antisense (A/S) LBA4404(pHC20) transformed 2110 ± 442 

Empty Vector LBA4404(pHC302) transformed 2492 ± 167 

Reporter LBA4404(pIG121-Hm) transformed 10727 ± 522 

a These abbreviations are used in Fig. 3.13 

b Except WT (-), all the lines were cocultivated with the GUS reporter strain 
LBA4404(pIG121-Hm) 

C 2 to 3 samples from each line were processed for GUS assay in 4 to 5 independent 
experiments.  A similar trend is observed for each experiment despite the difference in 
absolute readings. 
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Fig. 3.18.   Stable “knock down” of DIP decreases the efficiency of Agrobacterium-
mediated transformation of BY-2 cells.  Stably transformed BY-2 cell lines were 
cocultivated with pre-induced GUS reporter strain, LBA4404(pIG121-Hm) for 3 to 4 
days before the cells were collected and subjected to fluorogenic GUS assay.  WT (-), 
uninfected wildtype BY-2 cell line; WT, wildtype BY-2 cell line cocultivated with 
GUS reporter strain.  The detailed results of the GUS assay are shown in Table 3-2. 
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overexpression line, which gave roughly the same fluorescence reading as that of the 

wild-type BY-2 cell line cocultivated with the GUS reporter strain.  In addition, the 

empty vector transformed line gave a fluorescence reading that was slightly lower than 

that of the DIP overexpression line.  This is in concurrence with the Agroinfiltration 

data in which the DIP overexpression sample is also slightly more susceptible to 

transformation by the GUS reporter strain, perhaps as a consequence of the increased 

interaction between DIP and VirD2.  As for the stably transformed antisense cell line, 

the reading was also found to be around 25% higher than the “knock down” line but 

lower than overexpression cell line, when compared to Agroinfiltration results.   

 Taken together, these data indicate that A. tumefaciens T-complex utilizes DIP 

and its associated cellular pathway to facilitate its passage through the plant cell 

cytoplasm on its way to and into the nucleus.  And when DIP is “knocked down” by 

RNAi or inhibited by antisense suppression, the efficiency of Agrobacterium-mediated 

transformation is decreased due to the disruption of the intrinsic DIP based transport 

pathway.  Although the overexpression of DIP seems to enhance the Agrobacterium-

mediated transformation of plant cells slightly, it does not increase the susceptibility of 

these cells to transformation markedly.  In another words, the slight increase in 

fluorescence is most likely not significant and the overexpression may affect the 

proper functioning of the other subunits or factors participating in the same pathway. 

3.3.4.   DIP is essential for the growth and viability of Arabidopsis DIP +/-

heterozygous mutant plants 

 Besides confirming both the effects of transient and stable DIP “knock down” 

and antisense inhibition on Agrotransformations, an attempt was made to characterize 
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DIP mutant plants and to investigate if Agrotransformation of these plants is also 

affected.   

 As shown in Fig. 3.19, intron inserted Arabidopsis mutant plants (Alonso et al, 

2003) are available from the SALK institute at the Arabidopsis Biological Resource 

Center at Ohio State University (http://arabidopsis.org/abrc/).  Though 4 independent 

SALK seed lines are available (Fig.3.19; A and B), sequence alignment has shown that 

that SALK_140590 line is equivalent to SALK_145185 line.  Both these lines are 

highly homologous to SALK_145187 line from nucleotide no. 66 to 172 and all lines 

were mapped to the same locus (Fig. 3.19; C).  As such, SALK_140590 line was 

selected for subsequent experiments. 

Since the seeds from the SALK institute would give rise to T3 plants that are 

heterozygous for DIP mutation, the T3 plants germinated from SALK_140590 seeds 

were allowed to self fertilize and the resultant seeds were used to go through a few 

generations of selfing in an attempt to obtain the homozygous DIP -/- mutant line.   

Genomically, the approximately 6.6.kb DIP or At1g47550 [accession no: 

AC007519 (F16N3.18)] is made up of 25 exons and 24 introns.  After splicing, the 

final mRNA is around 2.6 kb.  As shown in Fig. 3.19 (A and B) and Fig. 3.20 (A), the 

T-DNA is inserted at intron 1 (the largest intron; 790 bp), between exon 1 (175 bp) and 

exon 2 (71 bp), of DIP gene.   

After a few such generations of selfing, the RNAs from 24 selected 

independent seed lines and the wild-type Col-0 seed line were isolated and used as the 

templates for RT-PCR using the Dip-ex1 and Dip-ex2 primers.  The gel photograph 

illustrated in Fig. 3.20 (B) clearly demonstrates that all the DIP mutant seed lines  
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Fig. 3.19.  Arabidopsis DIP +/- heterozygous mutant plant line, SALK_140590. 
Arabidopsis gene At1g47550, named as DIP, was inserted at intron 1 with A. 
tumefaciens T-DNA (Alonso et al, 2003) (A).  Four independent SALK T-DNA 
inserted DIP mutant lines are available from the Arabidopsis Biological 
Resource Center at Ohio State University (http://arabidopsis.org/abrc/) (B).  Sequence 
alignment of the T-DNAs has shown that SALK_140590 line is equivalent to 
SALK_145185 line and both lines are highly homologous to SALK_145187 line from 
nucleotide no. 66 to 172 and all lines were mapped to the same locus (C).    

 

 133

http://arabidopsis.org/abrc/


 

 A 

D ip-ex1 

Intron 1 

Dip-ex2 

 
 
 
 
 
 
 

1 kb 

500 bp  

200 bp 

W
T

W
T 

D
N

A
 c

on
tro

l 

DIP mutants 

 
 B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.20.  Analysis of Arabidopsis DIP insertional mutant plants after several 
generations of self fertilizations.  SALK_149590 DIP +/- heterozygous mutant line 
contains a T-DNA inserted in intron 1 (790 bp), between exon 1 (175 bp) and exon 2 
(71 bp), of DIP gene (A).  After several generations of selfing, total RNAs were 
isolated from wild-type (WT) and 24 independent SALK_140590 DIP mutant seed 
lines and used as templates for RT-PCR, which was performed by using the Dip-ex1 
and Dip-ex2 primers.  As a DNA contamination control, total DNA from WT plant 
was subjected to the same PCR amplification program (WT DNA control) (B). 
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examined were heterozygous DIP +/- seed lines, since all the DIP mutant plant samples 

gave a RT-PCR product of the correct size that is found in the WT plant sample (a 

joined DNA fragment of exon 1 and exon 2 of 267 bp).  The intensity of the 267-bp 

band in all these DIP mutant plant samples was roughly halved that of the WT 

sample, as shown in Fig. 3.20 (B), indicating a heterozygous genotype.  No such band 

would be observed if a homozygous DIP -/- mutant was derived after several rounds of 

selfing, which according to Mendelian genetics has a 25 % chance of obtaining such 

homozygous mutant. 

 The failed attempt to generate a homozygous DIP -/- mutant may reflect the 

indispensability of DIP for the proper physiological functions, probably in secretion or 

intracellular transport based on its identity as an evolutionarily conserved exocyst 

complex’s subunit.  If DIP is indeed crucial functionally, this implies that the stably 

transformed DIP “knocked down” BY-2 cell line obtained in the previous studies (Fig. 

3.17, Fig, 3.18 and Table 3-2) may have an up-regulated expression of other gene(s) 

with a similar function to DIP to compensate for such “knock down” and that the 

suppression of DIP function in that particular BY-2 cell line is not absolute and 

residual DIP function might still be present in those cells. 

3.4.  Discussion 

Although not all plants could be transformed by A. tumefaciens, its host range is 

increasing and has extended to include HeLa cells (Kunik et al, 2001), yeast (Bundock 

et al, 1996) and fungi (de Groot et al, 1998).  Since any foreign DNA placed between 

the T-DNA borders can be transferred to the host cells (Zambryski, 1992), the protein 

components of the T-complex, VirD2 and/or VirE2, must have played important roles 

in targeting the T-complex to the host cell nucleus and integrating the T-DNA into the 
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host genome.  During the course of such events, it is likely that various host factors are 

involved and are compatible for the pathway or the process which the T-complex or 

the T-DNA may undertake.  Despite the intrinsic differences of the cellular 

machineries of different host cells, their transformability points towards a notion that 

these hosts share many factors or components with which the T-complex interacts.  

These host proteins may be involved in common cellular pathways involved in 

nucleoprotein uptake, trafficking, nuclear import, and DNA recombination and 

integration.  The lack of some important factors to recognize the T-complex may also 

explain why some plants or host cells are recalcitrant to transformation by A. 

tumefaciens.   

Even though both VirD2 and VirE2 contain nuclear localization signals (NLSs), 

VirE2 nuclear targeting has been shown to occur in plant but not in animal cells, unlike 

the more conserved VirD2 nuclear localization mechanism (Guralnick et al, 1996; 

Rhee et al, 2000; Relic et al, 1998; Ziemienowicz et al, 1999). This plant specific 

nuclear targeting is reported to be facilitated by the cellular VIP1 protein, which 

interacts with VirE2 and functions as a molecular bridge between VirE2 and 

karyopherin α (Tzfira et al, 2001; 2002; Ward et al, 2002; Citovsky et al, 2004).  

Before this, VirE2 has been postulated to localize into the nucleus via a karyopherin 

independent pathway.  Due to this plant cells specificity and the controversial VirE2 

contribution to nuclear targeting by contrasting reports, VirD2 instead of VirE2 was 

chosen for the yeast two-hybrid analysis in previous study conducted by our lab 

(Chang, 2002).  In addition, it is also our intention to correlate any potential plant 

VirD2 interacting protein identified through this study to the homologues in fish, 

mouse and human cells which have shown to be transformable by A. tumefaciens in 

our lab (Lin, S. & Pan, S.Q. and Hou, Q. & Pan, S.Q., unpublished). 
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From the GAL4 based yeast two-hybrid analysis, a previously unidentified 

VirD2 interacting protein, DIP, was isolated from the Arabidopsis cDNA library 

(Chang, 2002).  DIP was found to interact with A. tumefaciens VirD2, but subsequent 

β-galactosidase assay has revealed that the interaction between DIP and VirD2 was 

weak and could be transient.  To ascertain the interaction of DIP and VirD2, an in vitro 

pull down assay using an amylose resin column was performed with a negative 

control, katA protein, which is a catalase involved in Agrobacterium-plant interaction 

(Xu et al, 2001). After BLAST analysis and sequence alignment, the identity of DIP, 

an unnamed Arabidopsis protein, and its homologues in various organisms that include 

human, mouse, Drosophila, C. elegans and yeast have been confirmed.  These 

homologous proteins constitute a family of evolutionarily conserved exocyst proteins 

and DIP is found to be homologous to the yeast Sec3p and the human Sec3 protein.   

Sec3p is a subunit the exocyst complex and is involved in polarized secretion by 

acting as a spatial landmark for secretion in budding yeast (Finger and Novick, 1997; 

Finger et al, 1998; Guo et al, 1999; Zhang et al, 2001; Wiederkehr et al, 2003).  The 

yeast exocyst is composed of 8 subunits: Sec3p, Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, 

Exo70p and Exo84p.  Though the exocyst’s role in exocytosis is not understood, it has 

been proposed to tether secretory vesicles to specialized exocytic sites on the plasma 

membrane prior to docking and fusion.  And Sec3p has been shown to localize to the 

sites of exocytosis at each stage of the cell cycle and serve as an interface with other 

subunits prior to exocytosis. Unlike Sec3p, the human Sec3 is cytosolically located and 

does not appear to function as a spatial landmark for secretion (Brymora et al, 2001; 

Matern et al, 2001), while the two homologous Arabidopsis genes for Sec3p have not 

been characterized yet (Elias et al, 2003).  Despite such differences, it is quite probable 
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that T-complex may interact with and utilize the same Sec3p related cellular pathway 

for its traverse across the cytoplasm of the various host cells.   

To confirm the cytosolic location of DIP, polyclonal antibody against DIP was 

generated and used in Western blot analysis to assay for the presence of DIP in plant 

cells (Chang, 2002). The subcellular localization of DIP in plant cells was then verified 

by in situ hybridization and DIP was found to be present in the cytoplasm of 

Arabidopsis and surprisingly also in tobacco BY-2 cells.  Since the tobacco homologue 

of DIP was found to be of the same size as that of DIP and tobacco BY-2 cell 

suspension has a faster growth and is a better established cell culture system, the 

ensuing studies have been focused on and conducted with tobacco BY-2 cells (Chang, 

2002).   

Subsequent immunohistology and confocal microscopy experiments have further 

confirmed that DIP colocalized with GUS protein and T-DNA molecules in the same 

transformed BY-2 cells but not in those untransformed cells or cell clusters.  Taken 

together, these results indicate that DIP proteins are usually randomly located in the 

cytoplasm of BY-2 cells, but become coexisted with T-DNA in the infected BY2 cells, 

suggesting that DIP may assist the T-complex movement within cytoplasm.  After 

infection or cocultivation for 3 days, the DIP proteins became free again in the 

cytoplasm of plant cells just like the uninfected cells due to the entry of T-DNA into 

the nuclei of the cells (Chang, 2002). 

From these previous findings (Chang, 2002), it can be deduced that VirD2 

interacts with DIP on its way to the nucleus of the plant cells and that DIP is a subunit 

or a factor that is involved in one of the complicated intracellular transport pathways 

within the cytoplasm.  Indeed, previous studies using endocytotic inhibitors, brefeldin 
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A and  monesin which are Golgi-disrupting agents, have shown that when these 

inhibitors were added to the plant cells prior to their cocultivation with the GUS 

reporter strain, LBA4404(pIG121-Hm), a much reduced efficiency of Agrobacterium-

mediated  transformation of  BY-2 cells was observed (Chang, 2002). These results 

show that these inhibitors are effective in blocking the T-DNA movement inside the 

plant cell cytoplasm, suggesting that the A. tumefaciens T-DNA transport inside the 

plant cells most likely occurs through an endocytotic vesicular protein trafficking 

pathway.  Whether DIP is part of this pathway or that of the still unconfirmed plant 

exocyst based secretion pathway still remains to be elucidated.   

To establish a direct functional link of DIP with Agrobacterium-mediated 

transformation of plant cells, an RNAi approach (Akashi et al, 2001; Limpens et al, 

2004) adapted for novel use with two rounds of Agrobacterium-mediated 

transformation was adopted in this study. After the first round of cocultivation with 

LBA4404 harboring the plasmids as shown in Fig. 3.8 and Fig. 3.9, the transient DIP 

“knock down” BY-2 cells (Fig. 3.10 panel D) and tobacco leaves (Fig. 3.14 and Table 

3-1) have become less susceptible to transformation by the GUS  reporter strain, 

LBA4404(pIG121-Hm), in the second round of cocultivation.  These results imply the 

direct involvement and the important significance of DIP in the T-complex trafficking 

within the plant cell cytoplasm.  When stably transformed BY-2 cell lines were 

assayed for GUS activity after cocultivation with the GUS reporter strain, the results 

confirmed the important requirement of DIP for the T-complex movement in the 

cytoplasm (Fig. 3.17, Fig. 3.18 and Table 3-2).  

A vast array of host factors have been reported to be involved in the 

Agrobacterium-plant interaction (reviewed in Tzfira and Citovsky, 2002).  Among 
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these are the VirD2 interacting proteins, including cyclophilin A, RocA and Roc4  

identified by Deng et al (1998), AtKAPα (now known as importin-α1) by Ballas and 

Citovsky (1997) and the type 2C serine/threonine protein phosphatase, PP2C, 

characterized by Tao et al (2004), Ran protein (Goldfarb, 1994) and the VirE2 

interactor, VIP1 (Tzfira et al, 2001; 2002; Ward et al, 2002; Citovsky et al, 2004).  

These are the host factors that are involved in localizing the T-complex to the nucleus 

by interacting with VirD2, VirE2 or both VirD2 and VirE2.  It is still unknown 

whether all these factors function synergistically in targeting the T-complex to the 

nucleus.  Much less is known about the order and sequence they are acting on the T-

complex during its traverse through the cytoplasm.  It is currently still not clear as to 

where the functionally indispensable DIP (Fig. 3.20) fits into the whole scenario of 

trafficking, in conjunction with these factors.  It is probable that the T-complex may 

just interact and use the intrinsic DIP as part of the endocytotic pathway machinery in 

getting towards the nucleus.  To resolve the mystery, further investigations are 

certainly needed to address the various questions outlined above. 

Although DIP is not the only plant factor interacting with T-complex within the 

plant cell cytoplasm, this study has shown that it is a functionally critical “stepping 

stone” for  the translocation of T-complex within the plant cell cytoplasm and from the 

cytoplasm to the nucleus.   
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Chapter 4.  Nuclear Localization Sequence of VirD2 is not 

Required for DIP Interaction 

4.1.  Introduction 

 Prior studies from our lab have confirmed that A. tumefaciens VirD2 protein 

interacts with Arabidopsis factor DIP (VirD2 Interacting Protein), both in vitro and in vivo 

(Chang, 2002).  As shown in Fig. 4.1, our lab’s GAL4 based yeast two-hybrid screen of 

the Arabidopsis cDNA library has identified a previously unidentified protein, DIP, in 

addition to cyclophilin A that was identified by Deng et al (1998) using the LexA based 

yeast two-hybrid system.  

 As illustrated clearly in Fig. 4.2, the yeast two-hybrid analysis showed that VirD2 

interacted with the plant factor DIP (A), but not with DNA binding domain only (C) or a 

random protein, lamin C (D).  Sector B of the filter shown in Fig. 4.2 was the positive 

control where the SV40 large T-antigen, which was fused to the GAL4 AD in pTD1-1, 

interacted with the p53 murine protein that was encoded as a fusion to GAL4 DNA-BD in 

pVA3-1.  When SV40 large T-antigen interacted with p53, they brought the GAL 4 AD 

and GAL 4 DNA-BD together to activate the transcription of the LacZ reporter gene, thus 

giving rise to a positive β-galactosidase assay that was visible as a blue color.  These 

results demonstrate that VirD2 protein could truly interact with DIP in the two-hybrid 

system.  By using the same GAL4 based yeast two-hybrid system, one of the objectives of 

this study is to delineate the DIP-interacting domain of VirD2.   
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Fig. 4.1.  Isolation of VirD2-interacting proteins using the GAL4 based yeast two-hybrid 
system.  (A) VirD2 fused to the GAL4 DNA binding domain (GAL4 BD) was used as a 
bait protein in the GAL4 based yeast two-hybrid system to isolate GAL4 activation 
domain (GAL4 AD) containing prey proteins that interact with VirD2.  One such 
previously unidentified protein was isolated and named as DIP (VirD2 Interacting Protein).  
(B) Such interaction between the bait and the prey proteins will bring the GAL4 AD and 
GAL4 BD together to effect the transcription of reporter genes, HIS3 or lacZ, which will 
confer the His+ and blue coloration phenotype to the host cells.  By assaying for the 
presence of the reporter gene activity, the specific interaction between the bait and the 
prey proteins can be confirmed.   
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Fig. 4.2.  Interaction of Arabidopsis DIP with VirD2 in the yeast two-hybrid assay. The 
indicated combinations of bait and prey proteins were achieved by introducing into the 
yeast host strain, CG-1945, the following plasmids:  

 
A:  pAS-D2 and pGAD10-DIP, expressing VirD2 and DIP, respectively;  
B:  pTD1-1 and pVA3-1, expressing T40 large antigen and p53, respectively; 
C:  pAS2-1 and pGAD10-DIP; expressing DNA-BD and DIP, respectively;  
D:  pLAM5’-1 and pGAD10-DIP, expressing Lamin C and DIP, respectively. 
 

Protein-protein interaction was determined by the β-galactosidase assay on a Whatman 
filter following the recommended protocol (CLONTECH).   
 

(Adapted from Chang, 2002) 
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4.2.  Materials and methods 

 Unless or otherwise stated, all materials and methods used in this chapter are as 

described in Chapter 2. 

4.2.1.  Construction of VirD2 deletion plasmids and strains 

 By using pAS-D2 as the template, a series of deletions of the virD2 gene were 

generated by PCR amplification by using the primer pairs shown in Table 4-1.  The gene 

fragments were then subjected to double restriction digestion by Nco I and EcoR I before 

they were ligated into Nco I and EcoR I digested pAS2-1 to obtain the resultant VirD2 

deletion plasmids, shown in Fig. 4.3.  These plasmids were then introduced into the yeast 

strain CG-1945 harboring pGAD10-DIP by using the high-efficiency transformation 

approach adapted from Gietz and Schiestl (1995).  The latest version of this approach can 

be found at http://www.umanitoba.ca/faculties/medicine/biochem/gietz/method.html.  

4.2.2.  Yeast two-hybrid analysis 

 The yeast two-hybrid analysis was performed following the instructions of the 

manufacturer, using the strains, which harbor the pDAD10-DIP plasmid and a VirD2 

deletion plasmid, in accordance to the protocols of MATCHMAKER GAL4 two-hybrid 

system (CLONTECH).  Protein-protein interaction was determined by both the β-

galactosidase assay on a Whatman filter or by assaying for the His+ phenotype of the 

transformed yeast cells. 
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Table 4-1.  VirD2 deletion plasmids 

 

     Plasmid Characteristics PCR Primers 

pAS-D2  pAS2-1 harboring GAL4 BD fused to full length 
VirD2, AmpR PCR template 

pAS-D2 (74) pAS2-1 harboring GAL4 BD fused to VirD2 
lacking the N-terminal 73 amino acids  D2 (74) & D2 (end) 

pAS-D2 (174) pAS2-1 harboring GAL4 BD fused to VirD2 
lacking the N-terminal 173 amino acids D2 (174) & D2 (end) 

pAS-D2 (274) pAS2-1 harboring GAL4 BD fused to VirD2 
lacking the N-terminal 273 amino acids D2 (274) & D2 (end) 

pAS-D2 (354) pAS2-1 harboring GAL4 BD fused to VirD2 
lacking the N-terminal 353 amino acids D2 (354) & D2 (end) 

pAS-D2 (-NLS) pAS2-1 harboring GAL4 BD fused to VirD2 
lacking the C-terminal NLSs and omega sequences D2 (1) & D2 (-NLS) 

pAS-D2 (N) pAS2-1 harboring GAL4 BD fused to VirD2 
containing only the N-terminal 212 amino acids D2 (1) & D2 (N) 

pAS-D2 (C) pAS2-1 harboring GAL4 BD fused to VirD2 
containing only the C-terminal 212 amino acids D2 (C) & D2 (end) 
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1. PCR Amplification  
2. Cloning into pAS2-1 

 
 

 
 

 
 

 

 
 
 
Fig. 4.3.  Construction of VirD2 deletion plasmids.  These plasmids were constructed by 
PCR amplification of various virD2 fragments from pAS-D2 and the subsequent 
subcloning of these fragments into pAS2-1. 
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4.3.  Results 

 By assaying for the β-galactosidase activity of the transformed CG-1945 harboring 

pGAD10-DIP and a VirD2 deletion plasmid, it was found that the C-terminal bipartite 

nuclear localization sequences (NLSs) of VirD2 are not required for interaction with DIP 

(Fig. 4.4 and Fig. 4.5).  The NLSs have been reported to be essential for the translocation 

of T-complex from the cytoplasm to the nucleus (Sheng and Citovsky, 1996).  Similarly, 

the C-terminal end omega sequence that was thought to be important for tumorigenesis 

(Shurvintion et al, 1992) is also not needed for the interaction of VirD2 with DIP.  

 The aforementioned deductions are made on the basis of the β-galactosidase staining 

observed for sector I of Fig. 4.4, where a positive blue coloration could be observed for 

CG-1945[pGAD10-DIP & pAS-D2 (-NLS)] cells.  Such blue coloration was similar to 

that produced by the positive control (sector D of Fig. 4.4), but was absent from other 

control or experimental samples, where the yeast cells harbored different combination of 

the bait and prey proteins fused to the GAL4 BD and the GAL4 AD domains respectively.  

 As indicated in Fig. 4.5, the endonuclease domain of VirD2 as well as the domain 

between the endonuclease domain and the NLSs domain are both crucial for the 

interaction of VirD2 with DIP.  The β-galactosidase assay results were subsequently 

reaffirmed by similar results from the histidine (His-) selection assay shown in Fig. 4.6.  

When selected on SD His- Leu- Trp- plates, only CG-1945[pGAD10-DIP & pAS-D2 (-

NLS)] cells and those of the positive controls could grow on SD plates lacking histidine.   
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Fig. 4.4.  Interaction of Arabidopsis DIP with VirD2 deletion fragments in the yeast two-
hybrid assay. The indicated combinations of bait and prey proteins were achieved by 
introducing into the yeast strain, CG-1945, the following plasmids:  

 
A:   pAS-D2, expressing VirD2 only;  
B:   pGAD10-DIP, expressing DIP only; 
C:    pLAM5’-1 and pGAD10-DIP, expressing Lamin C and DIP, respectively; 
D:  pAS-D2 and pGAD10-DIP, expressing VirD2 and DIP, respectively; 
E:   pAS-D2 (74) and pGAD10-DIP, expressing VirD2 (74-424) and DIP, respectively;  
F: pAS-D2 (174) and pGAD10-DIP, expressing VirD2 (174-424) and DIP, respectively; 
G:  pAS-D2 (274) and pGAD10-DIP, expressing VirD2 (274-424) and DIP, respectively;  
H:  pAS-D2 (354) and pGAD10-DIP, expressing VirD2 (354-424) and DIP, respectively; 
I:   pAS-D2 (-NLS) and pGAD10-DIP, expressing VirD2 (1-337) and DIP, respectively;  
J:   pAS-D2 (N) and pGAD10-DIP, expressing VirD2 (1-212) and DIP, respectively; 
K:   pAS-D2 (C) and pGAD10-DIP, expressing VirD2 (213-424) and DIP, respectively;  
L:   pAS2-1 and pGAD10-DIP, expressing GAL4 BD and DIP, respectively. 
 

Protein-protein interaction was determined by the β-galactosidase assay on a Whatman 
filter following the recommended protocol (CLONTECH).   
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Fig. 4.5.  Delineating the DIP-interacting domain of VirD2.  A series of deletions of the 
virD2 gene were generated by PCR amplification, subcloned into pAS2-1 and then 
subjected to the GAL4 based yeast two-hybrid analysis that used the β-galactosidase assay 
on a Whatman filter following the recommended protocol (CLONTECH).  A positive 
interaction was scored if a positive blue coloration was observed after the β-galactosidase 
assay.  Boxes represent the VirD2 region present in pAS-D2.  The DIP-interacting domain 
is indicated by the bar.  The endonuclease (Yanofsky et al, 1986), NLSs (Sheng and 
Citovsky, 1996) and omega domains (Shurvintion et al, 1992) are indicated.  The 
rectangle within the endonuclease domain denotes critical residues essential to 
endonuclease activity (Tinland et al, 1995; Vogel et al, 1995).  Results of the yeast two-
hybrid analysis are shown to the right of the figure. 
 

(Adapted and modified for illustration from Deng et al, 1998) 
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Fig. 4.6.  Selection of CG-1945 transformants on His- plates.  Together with a positive 
control, CG-1945 harboring pVA3-1 and pTD1-1 (panel A), CG-1945 strains harboring 
pGAD10 and a VirD2 deletion plasmid were plated on SD His- Leu- Trp- plates to assay 
for protein-protein interaction:  (B) CG-1945 harboring pGAD10-DIP and pAS-D2; (C) 
CG-1945 harboring pGAD10-DIP and pAS-D2 (74); (D) CG-1945 harboring pGAD10-
DIP and pAS-D2 (174); (E) CG-1945 harboring pGAD10-DIP and pAS-D2 (274); (F) 
CG-1945 harboring pGAD10-DIP and pAS-D2 (354); (G) CG-1945 harboring pGAD10-
DIP and pAS-D2 (-NLS); (H) CG-1945 harboring pGAD10-DIP and pAS-D2 (N); and (I) 
CG-1945 harboring pGAD10-DIP and pAS-D2 (C.) 
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4.4.  Discussion 

 Recent characterization of VirB2-interacting proteins (BTI), BTI1, BTI2 and 

BTI3, from Arabidopsis thaliana has suggested that these plant factors may contact the A. 

tumefaciens T-pilus and it is quite likely that they are essential in assisting the export of T-

DNA due to their interaction with VirB2 (Hwang and Gelvin, 2004).  These BTI proteins 

were also found to interact with membrane associated AtRAB8, which has been shown to 

be homologous to Sec4p of the budding yeast Saccharomyces cerevisiae (Haubruck et al, 

1990; Rutherford and Moore, 2002).   

Since the evolutionarily conserved yeast exocyst complex, which contains Sec3p 

(DIP homologue in yeast), is an effector for Sec4p and that both Sec3p and Sec4p are 

essential for yeast secretion (Finger and Novick, 1997; Finger et al, 1998; Guo et al, 1999; 

Zhang et al, 2001; Wiederkehr et al, 2003), it is probable that during Agrobacterium-

mediated transformation of host cells, host factors interacting with the A. tumefaciens T-

pilus or T-DNA export machinery (such as BTI proteins) may subsequently direct the T-

DNA or T-complex to the route of endocytosis.  This notion is based on the early research 

findings which showed both AtRAB8 and Sec4p belongs to a class of membrane 

associated Rab proteins that modulate tubulovesicular trafficking between compartments 

of the biosynthetic and endocytic pathways (Olkkonen and Stenmark, 1997; Martinez and 

Goud, 1998; Schimmoller et al, 1998; Moyer and Balch, 2001). 

Based on the finding from this study in which the NLSs of VirD2 is not required for 

its interaction with DIP and the aforementioned relations of Sec4p to AtRAB8 and Sec3p 

to DIP, it is probable that DIP interaction with VirD2 within the plant cell cytoplasm 
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could have taken place quite early prior to VirD2 association with other VirD2 interacting 

proteins, such as cyclophilin A, RocA and Roc4  that function as a chaperones (Deng et 

al, 1998) and AtKAPα (Ballas and Citovsky, 1997), PP2C (Tao et al, 2004) and Ran 

protein (Goldfarb, 1994) that bind to VirD2 NLSs and are involved in facilitating or 

enhancing the nuclear localization of T-complex into the nucleus.  

Although the VirD2 interacting proteins in other transformable hosts, e.g. 

mammalian cells (Kunik et al, 2001), still await to be discovered, the presence of AtRAB8 

homologues in other organisms such as mammals and fission yeast (Haubruck et al, 1990; 

Rutherford and Moore, 2002) suggests that the evolutionarily conserved DIP homologues 

in other organisms may also be involved in a similar process during their transformations 

by A. tumefaciens.   
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Chapter 5.  Characterization of DIP Homologues 

5.1.  Introduction 

 Earlier work by Chang (2002) has shown that DIP, AC007519 (Gen Bank 

AAD46030), is homologous to human sec3p like protein FLJ10893 (GenBank NP060731) 

and yeast sec3p protein.  Alignment of the amino acid sequences of DIP and human sec3-

like protein by using NCBI BLAST has yielded a significant 27 % identical residues.  DIP 

homologues are also found in other species: Mus musculus AK013041 (29% identity), 

Drosophila melanogaster AE003524 (23% identity), C. elegans F52E4.7 (22% identity) 

and yeast sec3p protein (21% identity). Brymora et al (2001) has concluded that each of 

these proteins represents a sec3p homologue in each of these species.  The sec3p protein is 

a subunit of the exocyst complex and is involved in secretion and morphogenesis in the 

budding yeast Saccharomyces cerevisiae (Finger et al, 1998). Fig. 5.1 shows the 

identification of DIP as the plant homologue of yeast Sec3p. 

 A more recent BLAST analysis has resulted in a greater number of hits – 244 hits in 

90 organisms.  Additional Sec3 or Sec3-like homologues are found in rice, maize, zebra 

fish, chicken, dog, rat and orang utan, and 2 to 3 isoforms of Sec3 are reported for some 

homologues.   Other than this, a conserved domain search has also revealed that DIP 

harbors a Vps52 conserved domain, as shown in Fig. 5.2.  In vivo, Vps52 complexes with 

Vps53 and Vps54 to form a multi-subunit complex that is involves in regulating 

membrane trafficking events.  Albeit a low alignment score of 19.3 %, DIP relation to 

Vps52 further reaffirms its role as an exocyst complex subunit or a subunit of an intra-

cytoplasmic transport complex that is functionally essential for Agrobacterium-mediated 
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Pla    1 --------------------------------------------------MAKSSADDEE 
Hum    1 -----------------------------------------------------MTAIKHA 
Yea    1 MRSSKSPFKRKSHSRETSHDENTSFFHKRTISGSSAHHSRNVSQGAVPSSAPPVSGGNYS 
 
Pla   11 LRRACEAAIEGTKQSIVMSIRVAKSRGVWG------------------------------ 
Hum    8 LQRDIFTPNDERLLSIVNVCKAGK------------------------------------ 
Yea   61 HKRNVSRASNSSQTSNFLAEQYERDRKAIINCCFSRPDHKTGEPPNNYITHVRIIEDSKF 
 
Pla   41 -KSGKLGRQMAKPRVLALSVKSKGPRKKAILRVMKYSSGGVLEPAKMYDLKHLSKVEVIT 
Hum   32 ---------KKKNCFLCATVTTERPVQVKVVKVKKSDKGDFYKRQIAWALRDLAVVDAKD 
Yea  121 PSSRPPPDSKLENKKKRLLILSAKPNNAKLIQIHKARENSDGSFQIGRTWQLTELVRVEK 
 
Pla  100 SDPSGCTFTLGFDNLRSQSVAPPQWTMRNTDDRNRLLV-CILNICKDVLGRLPKVVGIDI 
Hum   83 AIKENPEFDLHFEKIYK-------WVASSTAEKNAFIS-CIWKLNQRYLRKKIDFVNVSS 
Yea  181 DLEISEGFILTMSKKYY-------WETNSAKERTVFIKSLITLYIQTFEGHVPELVNWDL 
 
Pla  159 VEMALWAKDNTPVVTTQR------------------------------------------ 
Hum  135 QLLEESVPS--------------------------------------------------- 
Yea  234 SLFYLDERSYQRAVITNRPGSVSPIKSPTSNFTTNTTQSVGSVPFSAPTERTRRSETESV 
 
Pla  177 ---------------STEDGEPVAESVTESALKVTVEKELVSQAEEEDMEALLGTYVIGI 
Hum  144 -------------------GE--NQSVTGGDEEVVDEYQELNAREEQDIEIMMEGCEYAI 
Yea  294 NPVSTPASVEYHAGMKSLNKAPYSSNSTLNEVNKRYELEQQQQQEEAELRRLEEQKRLQL 
 
Pla  222 GEAEAFSERLKRELQALEAANVHAILESEPLVDEVLNGLEAATNIVDDMDEWLGIFNIKL 
Hum  183 SNAEAFAEKLSRELQVLDGANIQSIMASEKQVNILMKLLDEALKEVDQIELKLSSYEEML 
Yea  354 QKENEMKRLEEERRIKQEERKRQMELEHQRQLEEEERKRQMELEAKKQMELKRQRQFEEE 
 
Pla  282 RHMREDIESIEIRNNKLEMQSVN---------------------------------NKAL 
Hum  243 QSVKEQMDQISESNHLIHLSNTN---------------------------------NVKL 
Yea  414 QRLKKERELLEIQRKQREQETAERLKKEEQEALAKKEEEEKSKRNKVDNESYTQEINGKV 
 
Pla  309 IEELDKVIERLRVPSEYAASLTGGSFDEAD----------MLQNIEACEWLAKALRGLEV 
Hum  270 LSEIELLVNHMDLAKGHIKALQEGDLASS------------RG-IEACTNAADALLQCMN 
Yea  474 DNLLEDLNAVLAEETETTPTMQNGTYVPERSTARAHDQLKKPLNIAKVESLGGSDLNDSI 
 
Pla  359 PNLDPIYANMRAVKEKRAELEKLKATFVRRASEFLRDYFASLVDFKFSDKSYFSQRGQLK 
Hum  317 VALRPGHDLLLAVKQQQQRFSDLRELFARRLASHLNNVFVQQGHDQSS--TLAQHSVELT 
Yea  534 SLSDEIAGLNTSNLSGEDQDEKNDLSFEKGDEVRYSNNFEGEAPHVYHEVSIIQEEAPAV 
 
Pla  419 ------------------------------------------------------------ 
Hum  375 ------------------------------------------------------------ 
Yea  594 SQKLILPEENNESEALIESKEEIKTMENIDDEVLLEILTDINWSIEDDADSMIERIDLRL 
 
Pla  419 -----------------------------------RPDHADLRYKCRTYARLMQHLKGLN 
Hum  375 -----------------------------------LPNHHPFHRDLLRYAKLMEWLKSTD 
Yea  654 AETEYLFNQNLLSLQKIGPNIRPYEDKVNDECHRIIPTLSLFLMEMSNFSNDIENVESQD 
 
Pla  444 ----------------KNCLGPLRKAYCSSLNLLLRREAREFAKELRASTK--------- 
Hum  400 ----------------YGKYEGLTKNYMDYLSRLYEREIKDFFEVAKIKMTGTTKESKKF 
Yea  714 NGLQVESANKKLLWNTLDELLKTVSLDEISLNQLLECPIREKNLPWMENQLNLLLKAFQA 
 
Pla  479 ----------------VSRNPTVWLEGSTG------------SSQNANTDTSAVSDAYAK 
Hum  444 ATLP--------RKESAVKQETESLHGSSGKLTGSTSSLNKLSVQSSGNRRSQSSSLLDM 
Yea  774 IGSDGNEVEYNLREISGLKQRLQFYEKVTKIFLN--RIVEEMQKKFSNIRGQDISHDQMI 
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Pla  511 MLTIFIPLLVDESSFFAHFMCFEVPALAPPGGAGNDKK----------SQSNNDDGNDND 
Hum  496 GNMSASDLDVADRTKFDKIFEQVLSELEPLCLAEQDFISKFFKLQQHQSMPGTMAEAEDL 
Yea  832 RILTTLLIFSPLILFCKEISQKSYQAIVENWNVSIQPVYMELWTKKISQLQGIDTNDEKM 
 
Pla  561 DLGIMDIDEADKKPGKNSPDLTALNESLQDLLDGIQEDFYAVVDWAYKIDPLRSISMHG- 
Hum  556 DGGTLSRQHNCGTPLPVSSEKDMIRQMMIKIFRCIEPELNNLIALGDKIDSFNSLYMLVK 
Yea  892 NELSLSQLLNEWDTFRKERKTNDINPVFKNSFSLLTECLQTMRQECIVYQNFVEVFFHIS 
 
Pla  620 --ITERYLSGQKADAAG------------------------------------------- 
Hum  616 --MSHHVWTAQNVDPAS------------------------------------------- 
Yea  952 SKHNFEEYIKHFNDPDAPPILLDTVKVMQSDREAAVIETQLVSRIFQPIVTRLSSYFVEL 
 
Pla  635 ----------------------------FVRLLLGDLESRISMQFSHFVDEACHQIEKNE 
Hum  631 ----------------------------FLSTTLGNVLVTVKRNFDKCISNQIRQMEEVK 
Yea 1012 VKAEPTVAPALTFYLENEIKSLESSNHEFLLSAVTRMYTQIKQVWSDNVEEQVLHFERIS 
 
Pla  667 RNVR-QMGVLPYIPRFAALATRMEQYIQ-GQSRNLVDQAYTKFVSILFVTLEKIAQQDPK 
Hum  663 ISKKSKVGILPFVAEFEEFAGLAESIFKNAERRGDLDKAYTKLIRGVFVNVEKVANESQK 
Yea 1072 NATT-NGEILPGILDLPVGLKNSEDLFQFAKRSMDIKDTDEGYESIELMNSSFRKLSIAA 
 
Pla  725 -YADILLLENYAAFQTCLFDLANV-VPTLAKFYDQAMEAYEQACTRHISMIIYYQFERLF 
Hum  723 TPRDVVMMENFHHIFATLSRLK---ISCLEAEKKEAKQKYTDHLQSYVIYSLGQPLEKLN 
Yea 1131 -TRSITHKEVNSSINPNLSDTAALNNDYMETISLLVNSNWLTEMLSMLNFNKDGIFDTSL 
 
Pla  783 LFDKKIKD---------LMYTITPEEIPFQLGLS-----------------KVELRKMLK 
Hum  780 HFFEGVEAR--------VAQGIREEEVSYRLAFN-----------------KQELRKVIK 
Yea 1190 QNVKKVFDVEKESYASFLLRDTMPKLTAFVYGVSNIIENTNNVNMTNPSRWAAYSRQNLE 
 
Pla  817 SSLSG-VDKSIAAMYKKLQKNLAS-----------EELLPSLWDKCKKEFLDKYESFVQL 
Hum  815 EYPGKEVKKGLDNLYKKVDKHLCEE----------ENLLQVVWHSMQDEFIRQYKHFEGL 
Yea 1250 NILLAYTSHEIETLVKRLHTHMVNDFGYHQENAINNVLCDKLWSCIQGQTVSLYLKLYTV 
 
Pla  865 VAKVYPSENVPGVTEMRGLLASM------- 
Hum  865 IARCYPGSGVTMEFTIQDILDYCSSIAQSH 
Yea 1310 IDKHYRGTNIRFTKNDIISAFEEYKNA--- 
 
 
 
Fig. 5.1.   Identification of DIP homologues in yeast and human.  The amino acid 
sequence of DIP (Pla) was aligned with the homologous sequence from human Sec3p-like 
protein (Hum) and from yeast Sec3p (Yea) using Clustal W.  Identical amino acids were 
shown in black boxes, while similar amino acids were shown in gray boxes.   
 

(Cited from Chang, 2002) 
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gnl|CDD|9688 pfam04129, Vps52, Vps52 / Sac2 family. Vps52 complexes with Vps53 
and Vps54 to form a multi-subunit complex involved in regulating membrane trafficking 
events. 
 
 
 
 
B 

CD-Length = 509 residues, only 19.3% aligned 
Score = 41.5 bits (97), Expect = 4e-04 
 
Query:  246 ILESEPLVDEVLNGLEAATNIVDDMDEWLGIFNIKLRHMREDIESIETRNNKLEMQSVNN 305   
Sbjct:  10  IDESENLAS-LHNQIAACDSVLERMEDMLTSFQSDLSSISQDIKFLQEKSNEMQLRLENR  68 
 
Query:  306 KALIEELDKVIERLRVPSEYAASLTGGSFDEADMLQNIE 344 
Sbjct:  69  QAVESKLSQFVDDLIVPPELIDTIIDGDVNEPFFLEALE 107 
 
 

Fig. 5.2.  Conserved Vps52 domain of DIP.  NCBI Conserved Domain Search (Marchler-
Bauer and Bryant, 2004) was performed by using the amino acid sequence of DIP 
[NP_175186; AC007519 (F16N3.18); At1g47550]. (A) The bar represents protein 
sequence of DIP, while the number on top denotes the amino acid number from 1 to 887.  
The light blue rectangles depict the masked-out regions with low complexity.  The text 
below the bar provides information about the conserved Vps52 domain, shown in grey 
open box immediately beneath the bar.  (B) Alignment of DIP sequence (Query) to 
conserved amino acid sequence of Vps52 (Sbjct) from 246 to 344.  Identical amino acids 
were shown in red, while similar amino acids were shown in blue. The above search result 
was cited from the following URL at NCBI Conserved Domain Search Website: 
http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/Structure/cdd/wrpsb.cgi?RID=1123744
645-30676-51198934593.BLASTQ3. 
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transformation of plant cells. 

 To establish if DIP homologues are also essential for Agrobacterium-mediated 

transformation of other host cells, such as human cells (Kunik et al, 2001), human Sec3 

protein, which is the human DIP homologue (hDIP), was chosen for our study.  

5.2.  Materials and methods 

 Unless or otherwise stated, all materials and methods used in this chapter are as 

described in Chapter 2. 

5.2.1.  Cloning of hDIP 

 hDIP (AK027413) was cloned from NT2 cells (ATCC) following the approach 

outlined in Fig. 5.3.  Firstly, total RNA was isolated from NT2 cells by using the TRIZOL 

Reagent (GIBCO/Life Technologies, Grand Island, NY) according to the manufacturer’s 

instructions.  By using two different sets of primers: RT-PCRF & Mid-Down and Mid-Up 

& RT-PCRR, as shown in Fig. 5.3, the N-terminal half and the C-terminal half of the 

hDIP gene were amplified from total RNA isolated from NT2 cells respectively, following 

the protocol for One-step RT-PCR kit (QIAGEN).  The RT-PCR products were then 

mixed together and used as the template for the subsequent overlapping PCR to amplify 

the full length hDIP gene.  The full length hDIP gene was then cloned into pTZ19R (US 

Biochemical) and subjected to DNA sequencing to verify its sequence with that of the 

database.  As a control, total RNA from HEK-293 cells was also isolated and subjected to 

the same RT-PCR reactions as that for NT2 cells’ total RNA.  In addition, another pair of  
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hDIP mRNA  

P2 

P3 

(2 Separate RT-PCRs) 

1404 bp 

1236 bp (22 bp overlap) 

hDIP gene (2640 bp) 

(PCR using RT-PCR products & P1 + P4) 

P1 

P4 

 

Fig. 5.3.  Cloning of hDIP from NT2 cells.  By using 2 different sets of primers (P1 to 
P4), the N-terminal half and the C-terminal half of the hDIP gene were amplified from 
total RNA isolated from NT2 cells, following the protocol for One-step RT-PCR kit 
(QIAGEN).  The RT-PCR products were then used as the template for PCR amplification 
to obtain the full length hDIP gene.  P1, RT-PCRF; P2, Mid-Down; P3, Mid-Up; P4, RT-
PCRR.   
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primers, FWD and BCK, which would amplify the human ß-actin gene, was also used as a 

control for both NT2 and HEK-293 RNA samples. 

5.2.2.  Generation of antibody against hDIP 

5.2.2.1.  Cloning of hDIP gene into the expression vector 

 As illustrated in Fig. 5.4, a C-terminal 621-bp EcoR I digested fragment of the hDIP 

gene was cloned from the GeneConnectionTM  expression-tested clone (STRATAGENE  

E05869; UniGene no. Hs.22394; reference accession no. AF208854 or GenBank 

NP060731), which expresses the hypothetical human protein FLJ10893, into the 

expression vector pRSET-A (Invitrogen®) to obtain pHC2.  The proper construction of 

pHC2 was confirmed by restriction digestion and the proper in-frame fusion of hDIP with 

the ATG under the control of the T7 promoter in the vector was confirmed by DNA 

sequencing.  After proper verification, pHC2 was transformed into competent cells of 

BL21(DE3) (Invitrogen®).  

5.2.2.2.  Pilot expression experiment to monitor the protein expression 

 In order to determine the optimal time of post isopropyl β-D-thiogalactoside (IPTG) 

induction, the pilot expression experiment was conducted following the instructions of the 

manufacturer.  In brief, when the cell culture reached a cell density of OD600 = 0.6 – 0.8, 

100 μl samples of BL21(DE3)/pRSET-A and BL21(DE3)/pHC2 were harvested as the 

uninduced control.  The rest of the cells were induced by adding IPTG to a final 

concentration of 1 mM, followed by incubation with shaking for an additional 2 to 4 hrs.   
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Fig. 5.4.  Construction of the expression vector pHC2.  pDual®GC vector 
(STRATAGENE) containing the coding domain for the human hypothetical protein 
FLJ10893 (reference accession: AF208854) was restriction digested by EcoR I to release a 
621-bp fragment from the open reading frame (ORF).  The fragment was ligated into the 
EcoR I digested pRSET-A expression vector (Invitrogen®), which contained an 6X His-
Tag, to create an expression vector, pHC2, that would express the histidine-tagged fusion 
protein. 
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100 μl aliquots of the cultures were saved at 30 min intervals following IPTG addition.  

As an additional control, 100 μl of overnight pre-culture of BL21(DE3)/pRSET-A and 

BL21(DE3)/pHC2 just prior to the pilot experiment were also harvested.  After the cells 

were collected by centrifugation at each time point, the cell pellet was suspended in 50 μl 

of 1 × SDS gel sample buffer [50 mM Tris-HCL (pH 6.8), 100 mM dithiothreitol, 2 % 

SDS, 0.1 % bromophenol blue, 20 % glycerol] and frozen at –20 °C.  When the samples at 

all the time points were collected, they were boiled for 10 min at 95 °C and run on a SDS-

PAGE gel.  An anti-His monoclonal antibody (CLONTECH) was used as the primary 

antibody to detect the His-containing proteins by Western Blotting to check if the protein 

was correctly expressed. 

5.2.2.3.  Expression of recombinant proteins 

A single colony of an E. coli strain harboring the fusion protein construct was 

inoculated into 400 ml of LB (with 100 μg/ml carbenicillin, Cb100) and the culture was 

grown at 37 °C with shaking for overnight.  After that, the cells were harvested by 

centrifugation at 4,000 rpm for 5 min.  

5.2.2.4.  Protein Purification 

 After harvesting the cells, the cell pellet was resuspended in minimal volume of 

Lysis Buffer (50 mM sodium phosphate, 10 mM Tris-HCl, 8 M urea, 100 mM NaCl, pH = 

8.0) as far as possible.  Thereafter, the sample was loaded into a Mini Cell and subjected 

to lysis at 1000 psi by using the FRENCH® Pressure Cell Press, following the instructions 
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of the manufacturer.  The supernatant collected after such cell lysis was used for further 

purification. 

 The supernatant collected after the treatment of French Press was the clarified 

sample containing His6-fusion proteins.  These proteins were purified from the bacterial 

lysates by affinity chromatography, with the use of TALON resins (CLONTECH) in the 

batch/gravity-flow column purification approach outlined below. 

 The TALON resins were thoroughly equilibrated following the protocol supplied by 

the manufacturer before the sample from bacterial lysates was added.  After gently 

agitating at RT for 1 hr on a platform shaker to allow the polyhistidine-tagged protein to 

bind the resins, the mixture was then separated by centrifugation at 700 g for 5 min.  The 

supernatant was carefully removed without disturbing the resin pellet.  The resins were 

washed with 10 to 20 bed volumes of 1 × Extraction/Wash Buffer (50 mM sodium 

phosphate, 8 M urea, 100 mM NaCl, pH = 7.0) and the mixture was gently agitated at RT 

for 20 min to promote thorough washing.  Following that, the mixture was centrifuged as 

above and the resultant supernatant was discarded.  After the washing step was repeated as 

above, one bed volume of the 1 × Extraction/ Wash Buffer was added to the resins and the 

pellet was resuspended by vortexing. 

 After all the aforementioned washing, the mixture was transferred into a 2-ml 

gravity-flow column with an end cap in place.  When the resins had settled out of the 

suspension, the end cap was removed and the buffer was allowed to drain until it reached 

the top of the resin bed.  After ensuring that no air bubbles were trapped in the resin bed., 

the column was washed once with 5 bed volumes of 1 × Extraction/Wash Buffer and the 
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polyhistidine-tagged protein was finally eluted by adding 5 bed volumes of Elution Buffer 

(50 mM sodium phosphate, 8 M urea, 20 mM MES, 100 mM NaCl, pH = 5.0) to the 

column.  The elution was collected in 0.5 ml fractions, and analyzed by spectrophotometer 

and SDS-PAGE to determine which fraction(s) contained the majority of the 

polyhistidine-tagged protein. 

5.2.2.5.  Gel purification of protein samples 

 The protein fractions eluted from the TALON resin column were gel purified as 

described by Hager and Burgess (1980).  In brief, the column purified protein was 

subjected to PAGE and the PAGE gel was stained in 1 M KCl for 10 min at RT with 

shaking before the subsequent white protein band was excised.  The gel slices containing 

the protein were put into a dialysis tube (PIERCE) and eluted electrophoretically 

overnight in tank buffer in a transfer apparatus at 200 mA in a cold room.  The gel was 

removed from the tube, and the samples were dialyzed in dH2O with agitation for at least 

18 hr in a cold room, with 3 to 4 changes of dH2O.  The dialyzed sample with a white 

colloidal appearance was aliquoted and then stored at –20 °C. 

5.2.2.6.  Antibody production and immunoblot analysis 

 To obtain polyclonal antibody against hDIP, the partially purified fusion protein was 

used to raise antibody in a white local female rabbit by intramuscular injection.  2 ml of 

blood sample was drawn from the rabbit as the negative control before immunization was 

carried out.  A 0.5 ml (100 μg) sample of the purified fusion protein was mixed and 
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emulsified with an equal volume of Freund’s incomplete adjuvant.  The preparation was 

used immediately to inject into one limb of the rabbit.   

 One month later, 0.5 ml (50 μg) of freshly prepared emulsion was injected into 

another limb.  The limbs were used in rotation every week during each subsequent booster 

injection.  5 ml of blood was drawn weekly before each booster injection, and the serum 

was tested for the presence of antibody by Western Blotting (immunoblotting).  After the 

fifth booster, the blood was collected before the rabbit was sacrificed. 

 Blood from the rabbit was collected in a sterile centrifuge tube, and was allowed to 

clot at RT for 12 hrs.  The supernatant was collected and transferred into a fresh tube, and 

the antiserum was separated from the clot by centrifugation at 1500 g for 10 min at RT.  

The antiserum was stored in small aliquots at –20 °C. 

5.2.3.  Expression profiles of hDIP gene and hDIP protein 

 To examine the accumulation of hDIP mRNAs in various human tissues, a Human 

12-Lane Multiple Tissue Northern (MTNTM) Blot (CLONTECH) was probed with 32P-

labeled hDIP gene fragment.  This hDIP probe was amplified from the pDual®GC clone 

(STRATAGENE) by using the BM012F and BM012R primers and was labeled with 32P 

by using the rediprimeTM II random prime labeling system (Amersham).  The probe, 

which is about 1 kb, was produced and hybridized to the MTN Blot by following the 

instructions of the manufacturers and required the use of the ExpressHybTM Hybridization 

Solution (CLONTECH).  As a control, the human β-actin control probe that was provided 
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together with the MTN Blot was also labeled and used to probe the blot, according to the 

instructions of the manufacturer. 

 Before the examination of the distribution of hDIP protein in various human tissues, 

a short and unique peptide of hDIP, KKFGLHGSSGKLTGSTSSLNKL, was 

commercially synthesized and conjugated to bovine serum albumin (BSA) protein before 

the conjugated protein was injected into mice to raise antibody against hDIP.  This 

antibody was commercially prepared and obtained from the commercial supplier 

(InvitrogenTM).  The antibody was used as the primary antibody to probe the Human Adult 

Normal Tissue Western Blot IV (BioChain Institute, Inc; http://www.biochain.com) by 

following the instructions of the manufacturer.  

5.3.  Results 

5.3.1.  Cloned hDIP contains several point mutations 

 The coding domain sequence of hDIP is 2640 bp.  Repeated effort to clone this gene 

from the NT2 cells by using one pair of primers for the One-step RT-PCR reaction have 

failed to amplify this gene from the total RNA of these cells.  As such, an approach that 

used two pairs of primers and a subsequent overlapping PCR was adopted (Fig. 5.3) to 

clone this gene.  As shown in Fig. 5.5, when the N-terminal half (1404 bp; lane 3) and the 

C-terminal half (1236 bp; lane 4) of this gene were independently amplified from the total 

RNA of NT-2 cells, one-step RT-PCR products could be obtained.  However, these gene 

fragments could not be amplified from the total RNA samples of HEK-293 cells (lanes 7 

and 8).  This is in contrast to that of the control human ß-actin gene, which could be 
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Fig. 5.5.  Cloning of hDIP from cultured human cells.  Primers RT-PCRF and Mid-Down 
were used to amplify the N-terminal half of hDIP gene (lanes 3 and 7) from human RNA 
samples from both NT2 cells and HEK-293 cells, while primers Mid-Up and RT-PCRR 
were to use to amplify that of the C-terminal half (lanes 4 and 8).  As a control for One-
step RT-PCR (QIAGEN), primers FWD and BCK were used to amplify the human ß-actin 
gene from the RNA samples of both types of cells (lanes 2 and 6).  Lane 5 denotes the 
purified product of overlapping PCR outlined in Fig. 5.3, while lane 1 shows the DNA 
ladder. 
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amplified from RNA samples of both types of cells (lanes 2 and 6).  The full length hDIP 

gene was finally obtained when purified RT-PCR products from that illustrated in lanes 3 

and 4 of Fig. 5.5 were used as the template for overlapping PCR.  

 After DNA sequencing, it was found that the N-terminal half of the cloned hDIP 

gene contains several point mutations, unlike that published online at the NCBI database.  

Despite the mutations at the N-terminal half, the nucleotide sequence was not mutated at 

all for the C-terminal half.  As shown in Fig, 5.6, all sequenced clones contain a single 

base mutation at nucleotides no. 221 and 897.  While the mutation at nucleotide no. 897 

does not change the ensuing amino acid, the mutation at 221 (from G to A) has resulted in 

a change of amino acid from glycine to aspartate.  Besides the change of bases of the 

nucleotides at these locations, which were observed for all sequenced clones, there were 

other mutations that were observed only once or twice for different individual clones at 

various locations indicated in Fig. 5.6.  It is still unclear as to why such a phenomenon is 

observed.    

5.3.2.  Antibody against hDIP could not be raised in rabbits and mice 

 As illustrated in Fig. 5.7, the pilot expression experiment has demonstrated that 

when the histidine-partial hDIP fusion protein, His6-FLJ10893(127 - 333), was overexpressed 

in BL21(DE3) harboring pHC2, a protein slighter larger than 25 kD could be obtained 

after overnight culture of the bacterial strain.  The amount of protein obtained was even 

more than that after IPTG induction.  In both samples, a smaller band was observed after 

immunoblotting, possibly due to the degradation of the protein into smaller proteins.  
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1     ATGACAGCAATCAAGCATGCATTACAAAGAGACATTTTTACACCAAATGATGAACGCCTG  60  

61    CTGAGCATTGTGAATGTCTGCAAAGCAGGAAAAAAGAAAAAGAACTGTTTTTTATGTGCC  120  

121   ACAGTGACAACTGAACGCCCTGTGCAGGTTAAGGTGGTCAAAGTCAAGAAATCCGATAAG  180  

181   GGAGATTTCTACAAAAGGCAGATTGCATGGGCCCTTCGAGGTCTTGCTGTGGTAGATGCC  240  

241   AAAGATGCTATCAAAGAAAATCCTGAATTTGATTTACACTTTGAAAAAATATATAAATGG  300 

301   GTTGCCAGCAGCACTGCTGAAAAGAATGCATTTATTTCATGCATTTGGAAATTGAATCAG  360 

361  CGATATCTCCGGAAGAAAATTGATTTTGTCAATGTTAGCTCACAGCTTTTGGAAGAATCT  420 

421   GTTCCAAGTGGAGAAAATCAGAGTGTGACAGGAGGTGATGAAGAAGTAGTAGATGAATAC  480  

481   CAAGAGTTAAATGCAAGAGAAGAACAGGATATCGAAATAATGATGGAAGGCTGTGAATAT  540  

541   GCAATCTCGAATGCGGAAGCCTTTGCAGAAAAATTGTCCAGAGAGCTGCAGGTGCTAGAT  600  

601   GGGGCTAACATCCAGTCAATCATGGCATCTGAAAAACAAGTCAACATCCTGATGAAATTG  660  

661   CTAGATGAGGCTCTAAAGGAGGTAGATCAGATTGAATTGAAACTGAGCAGTTATGAGGAA  720  

721   ATGCTCCAAAGTGTAAAAGAACAAATGGATCAGATCTCTGAAAGCAACCACCTAATTCAT  780  

781   CTTAGTAACACTAATAATGTAAAACTCCTATCTGAGATAGAGTTCCTTGTGAACCACATG  840  

841   GACTTGGCCAAAGGTCATATAAAGGCCCTTCAGGAAGGAGATCTTGCTTCTTCCAGGGGC  900  

901   ATTGAGGCCTGCACCAATGCTGCTGATGCCCTTCTGCAGTGCATGAATGTAGCTCTTCGA  960  

961   CCAGGCCATGACTTGCTTCTGGCAGTCAAACAGCAACAGCAGCGATTCAGTGATTTGCGA  1020  

1021  GAGCTTTTTGCCCGGAGACTGGCCAGTCACCTCAACAATGTTTTTGTTCAACAGGGTCAT  1080  

1081  GATCAGAGTTCGACTCTTGCCCAACACTCTGTTGAACTGACTTTACCCAATCATCATCCA  1140  

1141  TTTCATAGAGATTTGCTCCGATATGCCAAGCTGATGGAGTGGCTAAAGAGTACAGATTAT  1200  

1201  GGAAAATATGAAGGACTAACAAAGAATTACATGGATTATTTATCCCGACTATATGAAAGA  1260    

1261  GAAATCAAAGATTTCTTTGAAGTTGCAAAGATCAAGATGACTGGCACAACTAAAGAAAGC  1320  

1321  AAGAAGTTTGGTCTTCATGGAAGTTCGGGGAAATTAACTGGATCTACTTCTAGTCTAAAT  1380  

1381  AAGCTCAGTGTTCAGAGTTCAGGGAATCGCAGATCTCAGTCATCTTCCCTGTTGGATATG  1440  

1441  GGAAACATGTCTGCCTCTGATCTCGATGTTGCTGACAGGACCAAATTTGATAAGATCTTT  1500  

1501  GAACAGGTACTAAGTGAACTGGAGCCCCTATGTCTGGCAGAACAGGACTTCATAAGTAAA  1560  

1561  TTTTTCAAACTACAGCAACATCAAAGTATGCCTGGAACTATGGCTGAAGCAGAGGACCTG  1620  

1621  GATGGAGGAACATTATCACGGCAACATAATTGTGGCACACCACTGCCTGTTTCATCTGAG  1680  

1681  AAAGATATGATCCGCCAAATGATGATTAAAATATTTCGCTGCATTGAGCCAGAGCTGAAC  1740   

1741  AACCTAATTGCATTAGGAGACAAAATTGATAGCTTTAACTCTCTTTATATGTTAGTCAAA  1800   
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1801  ATGAGTCATCATGTGTGGACTGCACAAAATGTGGACCCTGCTTCTTTCCTAAGTACTACA  1860  

1861  TTGGGAAATGTTTTGGTGACTGTCAAAAGGAACTTTGACAAATGCATTAGTAACCAAATA  1920  

1921  AGGCAAATGGAAGAAGTAAAGATCTCAAAAAAGAGTAAAGTTGGAATTCTTCCATTTGTT  1980  

1981  GCTGAATTTGAAGAATTTGCTGGACTTGCAGAATCAATCTTCAAAAATGCTGAGCGTCGT  2040  

2041  GGAGACCTGGATAAAGCATACACCAAACTTATCAGAGGAGTATTTGTTAATGTGGAGAAA  2100  

2101  GTAGCAAATGAAAGCCAGAAGACCCCCAGGGATGTGGTTATGATGGAAAACTTTCACCAT  2160  

2161  ATTTTTGCAACTCTTTCTCGATTGAAAATCTCATGTCTAGAAGCAGAAAAAAAAGAAGCC  2220  

2221  AAACAAAAATACACAGATCACCTTCAGTCTTATGTCATTTACTCTTTAGGACAACCTCTT  2280  

2281  GAAAAACTAAATCATTTCTTTGAAGGTGTTGAAGCTCGCGTGGCACAGGGCATAAGGGAG  2340  

2341  GAGGAAGTAAGTTACCAACTTGCATTTAACAAACAAGAACTTCGTAAAGTCATTAAGGAG  2400  

2401  TACCCTGGAAAGGAAGTAAAAAAAGGTCTAGATAACCTCTACAAGAAAGTTGATAAACAT  2460  

2461  TTATGTGAAGAAGAGAACTTACTTCAGGTGGTGTGGCACTCCATGCAAGATGAATTTATA  2520  

2521  CGCCAGTATAAGCACTTTGAAGGTTTGATAGCTCGCTGTTATCCTGGATCTGGTGTTACA  2580  

2581  ATGGAATTCACTATTCAGGACATTCTGGATTATTGTTCCAGCATTGCACAGTCCCACTAA  2640 

 

Fig. 5.6.  Cloned hDIP contains several point mutations.  After DNA sequencing of 
plasmids isolated from 10 to 20 single bacterial colonies, a number of point mutations 
were found for nucleotides at various locations (grey shaded boxes).  Red letters in shaded 
boxes refer to mutation which was observed in all clones sequenced, whereas the blue 
letter denotes mutation which was observed twice.  The black letters in shaded boxes refer 
to mutation which was observed only once.   
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Fig. 5.7.  Overexpression of His6-FLJ10893(127 - 333) partial hDIP fusion protein.  E. coli 
strains, BL21(DE3)/pRSET-A and BL21(DE3)/pHC2, grown in LB medium were 
collected after overnight culture (lanes 1 and 4), before IPTG induction (lanes 2 and 5) 
and after IPTG induction (lanes 3 and 6).  The same amount of bacterial cells was 
collected for each strain under the three different conditions, and the total protein from 
each sample was electrophoresed in a 10% SDS-PAGE gel.  The fusion proteins were 
visualized by immunoblotting using the 6×His monoclonal antibody (CLONTECH) as the 
primary antibody.  
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As for the uninduced cells, a small amount of the protein could also be detected after 

Western Blotting.  Therefore, this protein appears to be constitutively expressed and the 

bacterial cells did not require the inducer, IPTG, for maximal expression from the pRSET 

based vector under the control of the T7 promoter.  It is probable that the level of “leaky” 

expression from uninduced cells was sufficiently high enough to render the addition of 

IPTG unnecessary. 

 After French Press mediated cell lysis, purification by affinity chromatography and 

gel purification, the purified His6-FLJ10893(127 - 333) fusion protein could be obtained at a 

relatively high concentration, as shown in Fig. 5.8.  However, when the purified fusion 

protein was used to raise polyclonal antibody in rabbits, the subsequent serum from the 

rabbits failed to show any immuno-reactivity and specificity against hDIP.  When used to 

probe against hDIP in a Western Blot, a diffused background with numerous bands was 

observed (data not shown).  Thus, it seems that rabbits may possess an hDIP homologue 

with a very high degree of amino acid sequence similarity to give rise to such results.  

Such unusual high sequence similarity is a reflective of the highly conserved exocyst 

function, in which Sec3 plays a role. 

 Since no sequence data for hDIP homologue(s) in rabbits are available, an attempt 

was made to raise hDIP antibody in mice.  When this experiment was performed in 2001, 

it was found that the mouse homologue is quite highly homologous to hDIP.  But a short 

stretch of peptide sequence was found to be unique in human and not found in the mouse 

homologue.  This short peptide, KKFGLHGSSGKLTGSTSSLNKL, was synthesized 

commercially and made to conjugate with the bovine serum albumin (BSA) protein, 
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Fig. 5.8.  Coomassie blue staining of His6-FLJ10893(127 - 333) partial hDIP fusion protein 
after gel purification.  The protein samples were electrophoresed on a 10% SDS-PAGE 
gel and then subjected to Coomassie blue staining, as described in Chapter 2.  Lane 1, 
protein standards; Lane 2, BSA standard; Lane 3, purified His6-FLJ10893(127 - 333) fusion 
protein. 
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before the conjugated protein was sent to a commercial company (InvitrogenTM) for the 

generation of antibody against hDIP.   

 When the antibody generated from mice was used to probe the Human Adult Normal 

Tissue Western Blot IV (BioChain Institute, Inc.), the immunoblot shows that hDIP is 

expressed in all major tissue types (Fig. 5.9), except a very low level of expression in 

brain and an additional smaller hDIP protein in the skeletal muscle. But upon closer 

examination of the immunoblot, it was found that the size of the protein, 62.5 kD, differed 

markedly from the predicted size of about 100.2 kD (SWISS-PROT/TrEMBL at 

http://tw.expasy.org/tools/pi_tool.html).  The size of 62.5 kD is, however, very similar to 

that of BSA protein (lane 2 of Fig. 5.8).   

 It is therefore quite likely that the antibody raised in mice might have been an 

antibody against BSA protein, which has an expected size of around 62.5 kD.  This is 

quite feasible when considering that BSA was conjugated to the short peptide sent for 

antibody generation.  Indeed, this is subsequently substantiated when the human and 

mouse Sec3 protein was found to possess at least 2 to 3 isoforms (NCBI database), about 1 

year after the initial immunoblot was performed.  The multiple sequence alignment of 

hDIP with its isoforms in human and homologues in mice, shown in Fig. 5.10, has 

demonstrated very clearly that hDIP is extremely and highly conserved.  The homologues 

in these two species share a sequence identity of over 95 %.  This may account for the 

failure of raising antibody against hDIP in mice and, by in inference, in rabbits.   

 

 

 173

http://tw.expasy.org/tools/pi_tool.html


 

 

62.5 kD 

30 kD 

H
ea

rt 

B
ra

in
 

K
id

ne
y 

Li
ve

r 

Lu
ng

 

Pa
nc

re
as

 

Sp
le

en
 

Sk
el

et
al

 M
us

cl
e 

St
om

ac
h 

Sm
al

l I
nt

es
tin

e 

C
ol

on
 

R
ec

tu
m

 

U
te

ru
s 

Pr
os

ta
te

 

Te
st

is
 

Pl
ac

en
ta

 

 

 

Fig. 5.9.  Expression profile of hDIP protein.  Human Adult Normal Tissue Western Blot 
IV (BioChain Institute, Inc.) was subjected to immunoblotting by using the commercially 
raised antibody (anti BSA: KKFGLHGSSGKLTGSTSSLNKL) generated from mice.  The 
tissue type is indicated on top, while the approximate size range of protein is shown to the 
left.   
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Fig. 5.10.  Multiple alignment of hDIP isoforms and mouse homologues.  The amino acid 
sequences of various hDIP isoforms and mouse homologues of hDIP were aligned by 
using the Multialign program at http://prodes.toulouse.inra.fr/multalin/multalin.html 
hosted by INRA website.  The red letters show identical amino acids while the blue o
black letters show similar amino acids.   

r the 

 

 

 

 175

http://prodes.toulouse.inra.fr/multalin/multalin.html


5.3.3.  hDIP is expressed in most human tissues 

 As shown in Fig. 5.11, hDIP gene is expressed in all tissues, except peripheral blood 

leukocyte, which is not a tissue.  The accumulation of hDIP mRNAs (~ 3.6 kb) was quite 

high in brain, heart, skeletal muscle, kidney and placenta, whereas the expression in other 

tissues was comparatively lower or in some tissues quite low.  This differential expression 

is probably due to the different rates of required polarized secretion in different tissues, 

where the exocyst function is differentially engaged for cellular functions.  On the 

contrary, such variation in expression level was not observed for the control human β-

actin gene, as the immunoblot shows a more or less uniform expression level at around 2 

kb. 

 Although hDIP gene could not be amplified via One-step RT-PCR from HEK-293 

cells – a cell line derived from embryonic kidney cells, the probe of hDIP has managed to 

detect the mRNA of this gene in the kidney tissue (Fig. 5.11).  This discrepancy suggests 

that even though a certain tissue may be tested positive for the presence of the transcript 

for hDIP gene, the developmental stage and individual cellular function of the various cell 

types within a tissue may dictate the need for the expression of this gene at various levels 

and at various time points. 

 Perceptibly, hDIP could also be constitutively expressed in certain cell types or 

tissues where an ever active exocyst function is engaged at all times.  This is probably the 

case for heart and skeletal muscle tissues, where rhythmic contractions are almost 

continuous at most time.    
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Fig. 5.11.  Expression profile of hDIP gene.  Human 12-Lane Multiple Tissue Northern 
(MTNTM) Blot (CLONTECH) was probed with a 1-kb hDIP gene fragment labeled with 
32P.  As a control, the same MTN Blot was stripped and reprobed with human β-actin 
control probe labeled with 32P.  The tissue type is indicated on top, while the approximate 
size range of RNA is shown to the left.   
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5.4.  Discussion 

 Prior to the availability of all the sequences of the various isoforms of human Sec3 

(hDIP) and mice Sec3 proteins, attempts were made in our lab to generate the antibody 

against hDIP in 2001.  The subsequent inability to generate anti-hDIP antibody in both 

rabbits and mice has suggested that the homologues of the evolutionarily conserved 

exocyst complex subunit, Sec3, in mammals are probably extremely homologous to one 

another and an important function is perhaps conserved in these organisms.  This high 

degree of sequence homology is eventually substantiated, when the sequence data of all 

the isoforms of human and mice DIP homologues became available.   

  While the identification of the various isoforms of these proteins in different 

organisms from the database suggests that proteins which are encoded by different genes 

may play the same function, subsequent sequence analysis has revealed that these 

isoforms are over 95 % identical to one another, as shown in Fig. 5.10.  This is also the 

case for DIP and its native Arabidopsis homologues with very high sequence homology to 

one another (alignment not shown).  All these observations imply that the various 

isoforms could have been encoded by the same gene and the minor sequence differences 

among them might have been attributed to different sequencing efforts, which produced 

slightly different results.  The single band of hDIP for each tissue type shown in the MTN 

Blot in Fig. 5.11 seems to support this notion.  Besides this, the frequency of mutation of 

the N-terminal half of hDIP shown in Fig. 5.6 could also partly explain the generation of 

these potentially false “isoforms”. 
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 If the presence of isoforms is disregarded, the sequence homologies of the DIP 

homologues in various organisms with DIP, as outlined in section 5.1 above, are still 

relatively and significantly adequate for us to hypothesize that Agrobacterium-mediated 

transformation of cells from these organisms may involve the evolutionarily conserved 

exocyst complex subunit Sec3.  This is based on the indispensability of normal DIP 

function for an efficient Agrobacterium-mediated transformation, shown in Chapter 3.  

Although not all cells from the organisms with a DIP homologue are transformable by A. 

tumefaciens or shown to be transformable by A. tumefaciens, the ever increasing host 

range of A. tumefaciens and the plasticity of this natural occurring “inter-kingdom gene 

transfer” suggest that A. tumefaciens may utilize the endogenous host exocyst function 

during course of its interaction with the transformable host cells. 

 Despite the failure to raise antibody against hDIP, which has hindered further 

immunohistological studies of hDIP and its colocalization with T-DNA, if any, the 

analysis of our data has implicated an involvement of the exocyst complex in various 

organisms during Agrobacterium-mediated transformation.  Besides Sec3, it is perceivable 

that other exocyst complex component may also be involved during Agrobacterium-

mediated transformation.   

 Even though exocyst complex has been largely associated with polarized secretion 

and exocytosis, a recent study of exocyst complex component Sec5 in Drosophila has 

shown that Sec5 could be found on the endocytic vesicles in the oocytes (Sommer et al, 

2005).  Such finding further supports the feasibility that Agrobacterium-mediated 

transformation of host cells may mediate through the endocytotic pathway, which is 
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manipulated by A. tumefaciens for the traverse of its T-DNA within the cell cytoplasm and 

towards the nucleus.  If that is indeed proven to be the case, further studies and 

characterization of DIP homologues and other exocyst complex components will give rise 

to a much clear picture and shed light on the mechanism of Agrobacterium-mediated 

transformation of its host cells. 
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Chapter 6.  General Conclusions and Future Work  

6.1.  General conclusions 

VirD2 Interacting Protein, DIP, isolated from Arabidopsis cDNA library has 

been shown to interact with A. tumefaciens virulence protein, VirD2, both in vitro and 

in vivo (Chang, 2002).  In that study, DIP was shown to co-localize with T-DNA 

within the plant cell cytoplasm during Agrobacterium-mediated transformation of 

tobacco BY-2 cells, by an immunohistological approach.  Even though the 

aforementioned work on DIP has suggested the involvement of DIP during 

Agrobacterium-mediated transformation of plant cells, the functional requirement and 

importance of this plant factor was not firmly demonstrated.   

In this study, a novel RNAi approach involving sequential rounds of 

Agrobacterium-mediated transformations was adopted to establish the functional 

significance of DIP in the Agrobacterium-mediated transformation of plant cells and 

tissues.  When DIP was “knocked down” transiently in tobacco BY-2 cells or tobacco 

leaf tissues, the plant cells and tissues were shown to become less susceptible to a 

second round of transformation by A. tumefaciens.  This is evident in the decrease of 

the GUS reporter activity, which indicates a much reduced efficiency of transformation 

of these cells and tissues by A. tumefaciens.  When the DIP “knock down” genotype 

was selected on the selective medium, the resultant stable transgenic BY-2 cells were 

found to possess a slower rate of growth as well as a similarly reduced efficiency of 

transformation by A. tumefaciens.  Apart from these, the failed attempt to generate 

homozygous DIP -/- “knock out” Arabidopsis plants from heterozygous seed line by 

repeated rounds of self fertilization has further shown that DIP is critically important 
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for plant physiological and cellular functions.  Taken together, these results show that 

DIP is crucial and involved functionally in Agrobacterium-mediated transformation of 

plant cells. 

Furthermore, the delineation of the DIP-interacting domain of VirD2 via the 

GAL4 based yeast two-hybrid analysis has indicated that the C-terminal bipartite 

NLSs of VirD2 are not required for interaction with DIP.  This places DIP in a group 

of plant factors that do not localize T-complex to the nucleus.  In term of the mode of 

action, DIP is perhaps more akin to chaperone proteins such as cyclophilins, although 

they are not homologous to each other in term of sequences, (Deng et al, 1998).   

Since DIP has been identified as a homologue of the evolutionarily conserved 

exocyst complex subunit (Sec3p) in yeast and partly because it contains a conserved 

Vps52 domain, it is probable that during Agrobacterium-mediated transformation of 

plant cells, host factors interacting with the A. tumefaciens T-pilus or T-DNA export 

machinery (such as BTI proteins; Hwang and Gelvin, 2004) may subsequently direct 

the T-DNA or T-complex to the route of endocytotic pathway, in which the exocyst 

complex, involving DIP, may play a role. 

The subsequent effort in characterizing the human homologue of DIP, hDIP, has 

revealed the surprisingly and extremely homologous amino acid sequences among the 

various mammalian homologues of Sec3, especially that between hDIP and the mouse 

homologues and possibly also that between hDIP and the rabbit homologues.  This is 

apparent from the inability of raising antibody against hDIP in both rabbits and mice.  

Such an observation from this study implies that the conserved exocyst complex 

function in the secretion and/or endocytotic pathway is likely to be ‘hijacked’ and 

manipulated for its own cause when A. tumefaciens transforms its host cells. 
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  6.2.  Future work 

 Despite the failure to generate antibody against hDIP for immunohistological 

analyses, further characterization of hDIP and that of the other DIP homologues can 

still make use of a similar RNAi approach that has been adopted to probe DIP function 

in this study.  After taking into consideration the ‘non-specific’ effects of RNAi in the 

mammalian systems as discussed in Chapter 3, RNAi experiments in human cells seem 

to be the appropriate next step.  Depending on the outcomes of such investigation, the 

role of exocyst complex in Agrobacterium-mediated transformation can then be 

assessed further. 

 Aside from that, the relative order of interaction and any potentially synergistic 

relationship of DIP with other plant factors in Agrobacterium-mediated transformation 

of plant cells will also require more studies.  Albeit the inherent difficulties that are 

associated with the studies of such a complex process as Agrobacterium-mediated 

transformation of plant cells, the findings from such studies will certainly and 

unavoidably yield further insights with great impact. 
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