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SUMMARY 

 

The development of a membrane-based electrochemical immunosensor is 

described in this thesis. Nanoporous alumina was directly fabricated onto the tip of a 

home-made platinum disk electrode using a novel pipette anodization technique. 

Immunoglobulin G (IgG) and bovine serum albumin (BSA) was next immobilized 

along the porous alumina nanochannel walls and the alumina-modified platinum disk 

electrode was subsequently used for glucose oxidase (GOx) detection, in the presence 

of a redox probe, ferrocenemethanol. Upon binding the complementary GOx to IgG, 

formation of the antigen–antibody complexes blocked the approach of 

ferrocenemethanol towards the exposed platinum surface beneath the alumina layer, 

resulting in a signal-off immunosensor. The constructed immunosensor proved to be 

highly sensitive and selective and has a low detection limit of 100 ng L-1 for GOx. 

The same sensor configuration was used for determination of West Nile Virus domain 

III protein (WNV D-III) and particles by immobilising it with immunoglobulin M 

(IgM) and BSA. Again, the prepared immunosensor was highly sensitive and low 

detection limits of 7 ng L-1 and 3 particles mL-1 was achieved for WNV-DIII and viral 

particles, respectively. The potential of the immunosensor for real sample detection 

was evaluated by conducting WNV particles detection in blood serum.  

 

Finally, the activity of IgG-bound GOx adsorbed on glass and gold substrates 

was studied using scanning electrochemical microscopy (SECM). Feedback curves 

were obtained and the data were fitted to calculate the apparent heterogeneous rate 

constants as well as turnover numbers of IgG-bound GOx.  
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CHAPTER I 

INTRODUCTION 

 

According to the IUPAC Compendium of Chemical Terminology, a biosensor 

is “a device that uses specific biochemical reactions mediated by isolated enzymes, 

immunosystems, tissues, organelles or whole cells to detect chemical compounds 

usually by electrical, thermal or optical signals” [8]. In general, a biosensor consists of 

a biorecognition layer, immobilized onto a suitable substrate and integrated with a 

transducer that converts biological or biochemical changes detected into readable 

electrical data [9, 10]. In the construction of biosensors, it is often aimed to enhance a 

sensor’s performance in one or more of the following figures of merit:  sensitivity, 

selectivity, reproducibility and stability. 

 

When antibodies or antigens are used for biomolecular recognition in 

bioaffinity-based biosensors, the sensors are known as immunosensors. The 

fundamental basis for immunosensors is the specific coupling of an antibody to its 

antigen or vice versa, to form a stable immunocomplex. This is similar to 

immunoassay methodology, except that modern transducer technology and novel 

sensing methodologies applied in immunosensors can allow label-free detection and 

quantification of the detected antigen or antibody [11]. Immunosensors are usually 

classified by the type of integrated transducer, which are generally electrochemical, 

optical, thermal or piezoelectric devices [9]. Among the different types, 

electrochemical immunosensors are particularly attractive due to their specificity, 

simplicity, low cost, high sensitivity and potential for miniaturization. 

Electrochemical immunosensors can be further categorized into amperometric, 
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voltammetric or potentiometric sensors depending on whether current is monitored 

with respect to time or potential, or potential is measured with respect to time, 

respectively.  

 

Many developed electrochemical immunosensors have already been 

commercialized and are widely applied in clinical, industrial, environmental and 

agricultural analyses [12]. Current research and development of electrochemical 

immunosensors thus focused on innovations and development of novel sensing 

configurations or strategies to improve specificity, sensitivity, and response time of 

the sensors. 

 

In this thesis, the development and application of an alumina membrane-based 

electrochemical immunosensor is described. Electrochemical studies of the fabricated 

immunosensor and a glucose biosensor, utilising a simple enzyme immobilisation 

method, are also discussed. Chapter I provides the brief background to the topic of 

electrochemical immunosensors. Detailed introduction on each sub-topic is provided 

at the beginning of each following chapter.  

 

Chapter II describes the fabrication of alumina on home-made platinum disk 

electrodes, via anodization of aluminum. The fabricated nanoporous alumina acts as 

the substrate onto which the biorecognition elements are immobilised upon. A novel 

method of aluminum anodization developed in our laboratory is illustrated and 

explained. Electrochemical and scanning electron microscopy (SEM) studies of the 

constructed alumina modified platinum disk electrodes are also discussed. 
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In chapter III, the application of these alumina modified platinum disk 

electrodes in the detection of glucose oxidase (GOx) enzyme is demonstrated. In the 

following chapter, the developed immunosensor is further applied for the 

determination of West Nile Virus (WNV) domain III (D-III) protein as well as WNV 

particles. Optimisations of the experimental conditions for detection of WNV D-III 

protein are also discussed. In addition, the potential of the prepared immunosensor for 

real sample detection is evaluated. 

 

In chapter V, scanning electrochemical microscopy (SECM) studies of 

immunoglobulin (IgG)-bound glucose oxidase (GOx) enzyme is described and kinetic 

parameters such as apparent heterogeneous rate constants and turnover numbers were 

calculated. The subsequent application of the IgG-bound GOx monolayer in a glucose 

biosensor has also been demonstrated, thus confirming the kinetic calculations.  

 

In the final chapter, the thesis is concluded and further possible research and 

development of the work described is evaluated.  
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CHAPTER II 

CHARACTERIZATION OF THE BARRIER LAYER OF NANOPOROUS 
ALUMINA FILMS PREPARED USING TWO DIFFERENT CONTACT 

CONFIGURATIONS 
 

1. Introduction 

 

1.1. Formation and Structure of Alumina 

 

Nanoporous alumina comprising uniform and regularly spaced pores of 

nanometer dimension (Figure 1), has attracted great interest as a template material for 

the fabrication of various nanostructures [13-15]. Its features of uniform pore sizes, 

high pore density and high aspect ratio, are relatively easy and inexpensive to achieve 

by comparison to conventional lithographic techniques.  

 

 

Figure 1. Schematic diagram of porous alumina film formed by anodization of 
aluminum [1]. Reprinted with permission from Furneaux R. C., Ribgy W. R., 
Davidson A. P., Nature 1989, 337, 147. Copyright 1989, Nature. 

 

When aluminum films are exposed to air, they react with oxygen in the 

atmosphere and a thin layer of alumina is formed on the surface of the films. This 
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reaction is driven by the potential difference of ca. 3 V between aluminum and 

oxygen. However, the layer of alumina form naturally has a limiting thickness and its 

growth can be artificially extended. This is usually achieved by anodizing aluminum 

in acidic solutions such as sulfuric acid, phosphoric acid, or oxalic acid [16, 17] and 

applying a constant voltage in the range of 10 to 100 V or a constant current. In this 

process, a highly ordered hexagonal prismatic structure with a pore at the centre of 

each hexagon is formed. Beneath this regular structure is a non-porous alumina 

barrier layer (Figure 2). Variation in the electrochemical and etching conditions can 

lead to alumina films of different pore density and pore diameter [16].  

 

The high voltage applied during anodization generates an electric field, which 

drives aluminum and oxygen ions through the oxide surface layer on the aluminum 

film and leads to a flow of ionic current. Oxide anions migrate towards the 

aluminum/oxide interface to react with aluminum, forming alumina:  

 

2Al + 3O2- → Al2O3 + 6e- 

 

Aluminum cations move towards the oxide/electrolyte interface to react with 

the water, forming alumina as well: 

 

2Al3+ + 3H2O → Al2O3 + 6H+ 

 

The circuit is completed by the reduction of hydrogen ions to form hydrogen 

gas at the cathode, which is usually a platinum mesh or wire electrode:  
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2H+ + 2e- → H2 

 

 

Figure 2. Schematic diagram of alumina film growth. Nanoporous alumina with a 
thin barrier layer is formed during anodization [2]. Reprinted with permission from 
Knaack S. A., Redden M., Onelliona M., The American Journal of Physics 2004, 72, 
856-9. Copyright 2004, American Institute of Physics. 

 

1.2. Barrier Layer Removal 

 

The necessary formation of the non-porous alumina layer during anodization 

of aluminum limits several applications in which direct electrodeposition of materials 

in the alumina pores is required, as the underlying conductive electrode is separated 

from the solution species by the insulating barrier layer. One method to remove the 

barrier layer is the chemical etching method [18]. Commonly, nanoporous alumina is 

first formed from anodization of aluminum metal films and subsequently removed by 

etching with HgCl2 or CuCl2. The barrier layer is removed from these free-standing 

films using acids [18]. In a second approach, first described by Furneaux and co-

workers, the anodization voltage is stepped down progressively after the porous 

alumina layer is formed [1]. Another group described reduction of the thickness of the 
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barrier layer by re-anodization of alumina under constant current conditions, which 

resulted in considerable reduction in the electrical resistance of the barrier layer [19].  

These approaches of barrier layer removal were similarly found applicable when the 

alumina films were formed on conductive surfaces such as those of gold, platinum, 

carbon and indium titanium oxide (ITO) electrodes, other than base aluminum metal 

films.  

 

In this work, aluminum coated platinum electrodes were anodized using a 

novel ‘pipette’ anodization technique (Figure 4), in which the aluminum surface in 

contact with the anodizing solution, was directly connected to the power supply. This 

is in contrast with the conventional and commonly used ‘sub-surface’ anodization 

technique (Figure 5), in which the aluminum overalyer of the electrode was anodized 

in the anodizing solution via electrical connection to the underside of the overlayer. 

The physical nature of the barrier layer formed at the alumina-platinum electrode 

interface was studied using cyclic voltammetry (CV) and scanning electron 

microscopy (SEM), for alumina modified electrodes prepared using both sub-surface 

and pipette anodization techniques.   

 

1.3. Cyclic Voltammetry 

 

 Cyclic voltammetry (CV) is an electrochemical technique consisting of 

scanning the potential of a working electrode using a triangular waveform (Figure 3A) 

and measuring the current resulting from the applied potential [20]. Figure 3B 

illustrates the expected response of a reversible redox couple during a single potential 

cycle, assuming that only the oxidized form (O) of the redox species is present 
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initially. A scan in the negative direction is initiated and the observed current will 

start increasing when the applied potential approaches the reduction potential, E0 of 

the redox species. A maximum is reached when any oxidized species (O) that diffuses 

toward the electrode surface is instantaneously reduced. When the direction of the 

potential sweep is switched in the opposite direction, the reduced species (R) 

generated in the forward scan are oxidised back to O, resulting in an anodic peak.  

 

 

Figure 3. (A) Potential waveform applied during cyclic voltammetry. (B) Expected 
current response of a reversible redox couple during a single potential cycle, assuming 
that only the oxidized form (O) of the redox species is present initially [3]. 
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The peak current, ip for a reversible couple is related to square root of the scan 

rate, v in the Randles-Sevick equation: 

 

ip = (2.69x105)n3/2ACD1/2v1/2 

 

where n is the number of electrons, A is the electrode area, C is the 

concentration of redox species, D is the diffusion coefficient and v is the scan rate. 

The peak potential, Ep is related to the formal potential, E0 of the redox process 

according to the equation: 

 

E0 = Ep,a൅ Ep,c
ଶ  

 

where Ep,a is the anodic peak potential and Ep,c is the cathodic peak potential. 

Separation between peak potentials for a reversible couple is given by: 

 

ΔEp = Ep,a – Ep,c = 0.059
n

 

 

Thus the peak separation can be used to determine the number of electrons, n, 

transferred and a rapid one electron redox process will exhibit an ΔEp of about 59 

mV.  

  

Cyclic voltammetry is commonly used for acquiring qualitative information 

from electrochemical reactions. It is a technique that can provide adequate 

information on the thermodynamics of redox process, kinetics of heterogeneous 
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electron transfer reactions and on coupled chemical reactions or adsorption processes 

[20]. 

 

2. Experimental 

 

2.1. Materials and Instruments 

 

Electrodes used were either commercial platinum disk electrodes (CH 

Instruments, 0.2 cm diameter) or home-made platinum disk electrodes (76 μm 

diameter, 99.99% platinum wire sealed in epoxy resin). Sub-micrometer thick 

aluminum films were sputter coated over the tip (ca. 3 mm diameter) of the platinum 

electrodes using high purity aluminum target (99.999%, JEOL Asia), Denton 

discovery® 18 Sputtering System with a sputtering power of 100 W in an atmosphere 

of research-grade Ar at 5 × 10-3 Torr for 1.5 hours. Anodization of aluminum coated 

electrodes was conducted using Apelex electrophoresis power supply model P304 

minipac II.  

 

Morphologies and microstructures of anodized specimens were observed using 

a field emission scanning electron microscope (FEI, XL30-FEG SEM) with an energy 

dispersive X-ray analyzer (EDX). Measurement of pore sizes and densities on 

alumina surfaces under varying etching times in 3% phosphoric acid were carried out 

on alumina coated glass substrates. The anodization set up for these alumina coated 

glass substrates is the same as that for sub-surface anodization of aluminum-coated 

electrodes further discussed below in methodology. The aluminium glass slide was 

connected directly to the positive output of the power supply. All scanning electron 
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microscopy specimens were sputtered with about 20 nm thick gold before 

observations of morphologies, without which high charging current will caused 

imaging to be impossible.  

 

Electrochemical behaviours of alumina-modified electrodes were 

characterized using the cyclic voltammetry technique (CHI440 

potentiostat/galvanostat, data acquisition software) in the presence of the redox probe, 

ferrocenemethanol (FeMeOH, >99% Sigma Aldrich) in 1.0 mM in 0.1 M phosphate 

buffer solution, pH 6.8), using a three electrode system. All potentials were measured 

and reported with respect to the silver–silver chloride (saturated KCl) reference 

electrode and a platinum mesh electrode was used as the counter electrode. Scan rate 

used for all cyclic voltammograms obtained were 50 mV s-1, unless otherwise stated.  

 

2.2. Methodology 

 

2.2.1. Fabrication of Platinum Disk Electrodes 

 

Homemade electrodes were fabricated using epoxy resin (RS Components Pte 

Ltd), micropipette tips and 99.99% platinum wire (76 µm diameter, Sigma Aldrich). 

The platinum wire was aligned in the center of the micropipette tips and sealed within 

epoxy resin. The platinum wire was subsequently soldered to a copper wire and the 

connection was sealed with epoxy resin. The fabricated platinum wire electrodes were 

polished with 1.0 µm and 0.3 µm diameter alumina slurry and sonicated in ultrapure 

water with resistivity of more than 18 Ω (Barnstead Nanopure Ultrapure Water 

System), before aluminum was deposited onto the electrode tips.  
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2.2.2. Anodization of Aluminium Sputtered Electrodes 

 

A general scheme for fabrication of nanoporous alumina modified electrodes 

using the pipette anodization technique is shown in Figure 4. In this method, 

anodization was carried out by positioning a glass pipette coated with ca. 40 nm thick 

platinum layer, above and in contact with the surface of the aluminum coated 

electrode (Figure 4).  

 

 

Figure 4. Schematic diagram of the fabrication procedure for alumina-modified 
electrodes, using the pipette anodization technique. 

 

The pipette tip (2 mm internal diameter, 0.5 mm wall thickness) was coated 

with platinum and subsequently carefully positioned over the aluminum area 

overlaying the 76 μm diameter platinum disk electrode tip. 0.1 M oxalic acid solution 

was then added into interior portion of the platinum coated glass pipette. The contact 
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junction between the platinum coated glass pipette and aluminum coated electrode 

was sealed using Teflon tape to prevent leakage of the anodizing solution. Prior to this 

arrangement, the interior rim of the platinum glass pipette was insulated with 

polydimethylsiloxane to prevent direct contact of solution with platinum. The positive 

output of a power supply was connected via the connecting copper wire, directly to 

the platinum coated pipette. Thus, the aluminum coating, which was exposed to the 

oxalic acid solution within the pipette and in contact with the platinum coated pipette, 

functioned as the anode. The negative output of the power supply was connected to a 

platinum mesh counter electrode, which functioned as the cathode and was immersed 

in the same oxalic acid solution (or anodizing solution) within the pipette. In this way, 

the area of aluminum coating which overlaid 76 μm dia. platinum wire at the centre of 

the electrode tip was subsequently anodized, when the anodizing voltage was applied. 

Whereas, the area of aluminum outside the pipette contacted region remain 

unanodized after the anodization procedure. 

 

This was in contrast to the experimental set-up for conventional sub-surface 

anodization of aluminum coated electrodes, in which the entire aluminum overlayer 

above the electrode tip was anodized, when immersed in the anodizing solution 

together with counter electrode (Figure 5). In this case, the home-made electrode was 

placed ca. 3 cm away from the platinum mesh counter electrode and the anodizing 

solution was stirred at 240 rpm continuously through the process. In this study, both 

anodization procedures were carried out and the electrochemical behaviours of these 

alumina-coated electrodes in the presence of a redox probe were compared. 
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All the aluminum-coated electrodes were rinsed with ultrapure water before 

anodized potentiostatically in 0.1 M oxalic acid at 40 V. A two-step anodization 

process was adopted [16, 17] in which the aluminum was anodized at 40 V in oxalic 

acid solution, followed by immersion in 3% H3PO4 solution containing 0.2 M CrO3 

for 1 min and a second step anodization until the current decreased to zero. This two-

step process ensures that a more uniform layer of alumina is formed and improves the 

overall pore arrangement [15]. Highly ordered pore arrangement is usually achieved 

in oxalic acid solutions [21] and hence the choice of this acidic medium for 

anodization in this investigation. 

 

 

Figure 5. Schematic diagram of the fabrication procedure for alumina-modified 
electrodes, using the sub-surface anodization technique. 

 

3. Results and Discussion 

 

3.1. Electrochemical Investigations of Alumina Barrier Layer 
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In the following work, the physical nature of the barrier layer between the 

porous alumina structure and the underlying electrode prepared using the different 

sub-surface and pipette anodization procedures, was investigated. Several outer-

sphere one electron redox couples have been employed to probe electron transfer and 

diffusion through thin films in solution, including ferrocenemethanol [22], 

hexacyanoferrate [23] and rutheniumhexaamine [24]. For these studies, 

ferrocenemethanol was employed as the redox probe and cyclic voltammetry studies 

in 1.0 mM solutions of ferrocenemethanol, prepared in 0.1 M phosphate buffer, (pH 

6.8) were carried out. 

 

 

Figure 6. Cyclic voltammograms of sub-surface anodized electrode, pipette anodized 
electrode, bare platinum electrode obtained at 50 mV s-1 in 1 mM ferrocenemethanol 
solution, 0.1 M phosphate buffer solution (pH 6.8). 

 

Figure 6 shows the cyclic voltammograms of a bare platinum electrode and 

alumina-modified electrodes prepared using the conventional sub-surface anodization 

and pipette anodization techniques. In the cyclic voltammogram of the bare platinum 

electrode, the peak-to-peak distance corresponded closely to 60 mV for the one-
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electron, reversible redox couple. Peak shape obtained during cyclic voltammograms 

of the pipette anodized electrode closely resembled that of the bare electrode, with a 

peak-to-peak separation of 133 mV. E1/2 of ferrocenemethanol measured at the 

pipette-anodized electrode also corresponded closely with E1/2 measured at the 

platinum electrode and these were consistent with that obtained at a gold electrode 

[22]. In contrast, cyclic voltammogram of the sub-surface anodized electrode 

exhibited electrochemically irreversible behaviour with a peak-to-peak distance of 

640 mV, clearly differing from the pipette-anodized electrode. 

 

The irreversible anodic peak clearly indicates a sluggish electron transfer 

process occurring at the sub-surface anodized electrode. The heterogeneous rate 

constants were derived by plotting ln ip versus (Ep −E0’) determined from the 

irreversible anodic peak at different scan rates, using the following Equation (1) 

derived for an irreversible one-step, one-electron process [25]: 
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where ip,a, Ep,a and E0’ refers to the anodic peak current, anodic peak potential 

and formal potential respectively.  The remaining parameters have their usual 

meanings in reference [25]. Using a value of 0.16 V for the formal potential 

determined at a bare platinum electrode, k and α were found to be 1.5 (± 0.9) × 10-6 

cm s-1 and 0.60, respectively for the sub-surface anodized electrode. Anodization of 

aluminum is known to yield an anodization voltage-to-barrier layer thickness growth 

parameter of 1.2 nm V-1 [26], thus the voltage-dependent barrier layer thickness for 
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the sub-surface anodized electrode prepared using an anodization voltage of 40 V, 

was expected close to 50 nm [27]. It is also well known that tunnelling currents are 

strongly damped for aluminum oxide films thicker than ca. 4 nm [27]. Therefore, the 

observable current response obtained at the sub-surface anodized electrode in Figure 6 

was not expected. The conduction of current for the sub-surface anodized electrode 

probably occurred via intermediate states by means of resonance mechanisms [28]. 

These intermediate states could arise from defective sites due to interstitials, 

vacancies or surface states [29].  It is however, unlikely due to permeation of 

hydrophobic ferrocenemethanol into the barrier layer, which has been shown to 

consist of anion rich hydrophilic outer region [30, 31]. 

 

Figure 7. Effect of immersion duration in 3% phosphoric acid on the (A) peak-to-
peak separation ΔEp and (B) heterogeneous rate constant k for the electrochemical 
reaction of ferrocenemethanol at bare platinum and alumina-modified electrodes. ΔEp 
were averaged over four different scan rates: 20, 50, 100 and 200 mV s-1 and error 
bars indicate the error range of values obtained at different scan rates. Heterogeneous 
rate constants k were calculated from the average ΔEp values using the method of 
Nicholson for all voltammograms showing ΔEp < 200 mV; k value for unetched sub-
surface anodized electrode was calculated using Equation (1), since ΔEp > 200 mV is 
beyond the quasi-reversible range.  

 

The cyclic voltammograms of ferrocenemethanol at the pipette anodized 

electrode between scan rates of 20 and 200 mVs-1 showed quasi-reversible behaviour 
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with peak-to-peak separation ranging from 133 to 155 mV. These data were analyzed 

using the method used by Nicholson to estimate the rate constant for quasi-reversible 

systems by analysis of the peak-to peak separation and using the working curve in 

Figure 3 of reference [32]. The peak-to-peak separation ΔEp values as theoretically 

determined by Nicholson were nearly independent of α for 0.3 < α < 0.7 for small ΔEp 

close to the reversible system (60/n mV< ΔEp < 200/n m V) [32]. From the symmetry 

of the redox peaks obtained for ferrocenemethanol at the pipette anodized electrode, α 

was estimated to be close to 0.5. Heterogeneous rate constant k values were then 

calculated from average values of ΔEp obtained over different scan rates, using 

Equation (17) from the same reference [32]. The other parameters used for the 

calculation included the estimated α value at 0.5, diffusion coefficient of 1 × 10-5 cm2 

s-1 and assuming negligible difference in the diffusion coefficient values of reduced 

and oxidized ferrocenemethanol. The effect of uncompensated ohmic potential drop 

on ΔEp was expected to be minimal in the 0.1 M phosphate buffer solution and a very 

low ferrocenemethanol concentration of 1 mM. 

 

Using this method, the heterogeneous rate constant k for the electrochemical 

reaction of ferrocenemethanol at a pipette anodized electrode was determined to be 

2.8 × 10-3 cm s-1. This is ca. three orders of magnitude faster than the heterogeneous 

electron transfer rate occurring at a sub-surface anodized electrode. The substantially 

larger heterogeneous rate constant of ferrocenemethanol obtained at the pipette-

anodized electrode suggests either a barrier layer with extensive number of defective 

sites or a very thin barrier layer. Overall, it is clear the insulating barrier layer in the 

sub-surface anodized electrode was kinetically unfavourable towards the 

electrochemical reaction of ferrocenemethanol. In contrast, the electrochemical 
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behaviour of the redox probe at the pipette-anodized electrode was more similar to 

that observed at the bare platinum electrode which has a standard rate constant k0 for 

ferrocenemethanol at 0.129 cm s-1, estimated using the method employed by 

Nicholson. 

 

In addition, the thickness of the barrier layer for the sub-surface anodized 

electrode was varied and compared with an electrode prepared using pipette 

anodization technique. Figure 7 shows the decrease in peak-to-peak separation ΔEp in 

the cyclic voltammograms and increase in rate constant k after varying etching time in 

phosphoric acid for both sub-surface anodized and pipette-anodized electrodes. 

Various acids such as phosphoric acid, oxalic acid, sulfuric acid have been routinely 

used as chemical etchants for control of alumina pore sizes as well as removal of the 

barrier layer [33]. Etching rate of nanoporous alumina has been estimated to proceed 

at 9.4 nm min-1 in 5% phosphoric acid [34]. It is therefore expected the barrier layer to 

be completely removed at long etching times, so the redox probe was able to access 

the underlying platinum electrode. Under these conditions, ΔEp would be close to 60 

mV, the electrochemically reversible situation. As expected, Figure 7 shows an 

increase in electrochemical reversible behaviour as the insulating barrier layer was 

subsequently removed from the sub-surface anodized electrode. 

 

Non-linear diffusion effects occurring at an electrode covered by a blocking 

film comprising large numbers of microscopic pores give rise to the following relation 

between the rate constant k at the insulated electrode and bare metal electrode [35]: 

 

k = k0(1 − θ)  (2) 



20 
 

 

where θ refers to the surface coverage of the blocking film. This relation holds 

when the average film thickness and pore diameters are smaller than the total 

diffusion layer thickness [35]. The thicknesses of the sputtered alumina films 

employed in the work were in the range of 2 µm and below, and the total diffusion 

layer thickness was ca. 40 µm, estimated using the relation (πDt)1/2 for an 

experimental timescale of 0.5 s and diffusion coefficient D of 1×10-5 cm2 s-1. Thus, 

the three-dimensional porous structure of the alumina-modified electrode would have 

the same effect of a thin two-dimensional insulating film, comprising non-conducting 

and inert aluminum oxide, which partly covers the surface of a platinum electrode. 

 

Equation (2) can be used to describe the alumina-modified electrodes and the 

term (1−θ) is equivalent to the total pore area, which exposes the platinum surface to 

the solution species. The fractions of exposed platinum surfaces (1−θ) at the alumina-

modified electrodes etched for different time periods were determined from the rate 

constant values (see Table 1). These values calculated from rate constants were 

compared with actual physically available pore areas determined from scanning 

electron microscopy studies of alumina films coated on glass substrates. The 

maximum electrode area available for electron transfer (1−θ)max was determined by 

the total pore area along the alumina surface calculated from pore size and pore 

density, since the same area could become accessible to the underlying platinum 

electrode in the absence of a barrier layer.  

 

For the pipette anodized electrode, the values of (1−θ) calculated from rate 

constants agreed very well with the values of (1−θ)max determined from surface pore 
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areas measured using scanning electron microscopy. This strongly suggests the 

absence of a barrier layer for alumina-modified electrodes prepared using pipette 

anodization method. This was further supported by close agreement within 

experimental errors, of (1−θ) and (1−θ)max values for the sub-surface anodized 

electrode after 15 min etching, indicating the removal of barrier layer after an initial 

15 min etch time was necessary to improve the heterogeneous electron transfer rate at 

the electrode. The similarity between the values of (1−θ) and (1−θ)max does not 

preclude the additional contribution of electron transfer occurring via electron 

tunnelling, which could be significant when the barrier layer was sufficiently thin. 

 

Table 1. Comparison of total pore areas (1- θ) calculated from equation (2) and 
maximum total pore areas (1- θ)max determined from SEM measurements of pore size 
and pore density of alumina films. 

         

Etching 
time/ min 

Pt 
electrode 

Sub-surface anodized 
electrode 

Pipette anodized 
electrode bPore 

size  
(nm) 

bPore density 
x 109 

(pores cm-2) 

cMaximum 
total pore 

area 
(1- θ)max 

 

ak0 (cm s-1) 
ak (cm s-1) 

Total pore 
area 

(1- θ ) 
ak (cm s-1) 

Total 
pore 
area 

(1- θ) 

0 0.129 1.5 x 10-6 1.1 x 10-5 0.003 0.022 30 + 9 2.6 ± 0.3 0.02 + 0.01 

15 -- 0.012 0.090 0.014 0.107 50 + 10 5.1 ± 0.5 0.10 + 0.03 

30 -- 0.015 0.118 0.025 0194 64 + 14 5.9 ± 0.6 0.19 + 0.06 

45 -- 0.017 0.133 0.027 0.209 75 + 10 6.2 ± 0.5 0.27 + 0.06 

60 -- 0.023 0.176 0.060 0.469 80 + 12 7.0 ± 0.4 0.35 + 0.06 

See text for calculation of kinetic rate constants for electron transfer reaction of 
ferrocenemethanol at bare platinum, sub-surface anodized and pipette-anodized 
electrodes. Values of rate constant k are the same as those plotted in Figure 7B.  
aDetermined from cyclic voltammograms obtained at scan rates ranging from 20 to 
200 mV s-1.  
bDetermined from scanning electron micrographs of surface morphologies of alumina 
coated glass substrates, etched in 3% phosphoric acid over varying time duration.  
cCalculated values based on the geometric area of a 0.2 cm diameter platinum 
electrode. 
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3.2. Reproducibility of Pipette Anodization Technique 

 

To investigate the reproducibility of the pipette anodization technique, 

platinum electrodes (76 µm diameter) sealed in epoxy were prepared. Figure 8 shows 

the cyclic voltammograms of seven pipette-anodized electrodes in which the alumina 

modified electrodes were cycled between −0.2 and 0.8 V (versus silver-silver chloride 

reference electrode) in 1.0 mM ferrocenemethanol buffer solution. It was obvious the 

electrochemical behaviours of these alumina modified electrodes prepared using the 

pipette anodization technique were reproducible and consistent with the quasi-

reversible behaviour of ferrocenemethanol observed at the pipette anodized 

commercial electrode using the larger platinum electrode of 0.2 cm diameter (Figure 

6). 

 

Figure 8. Cyclic voltammograms of seven pipette-anodized electrodes in 1.0 mM 
ferrocenemethanol buffer solutions. Currents were normalized to peak current 
responses towards 1.0mM ferrocenemethanol, at the respective bare platinum 
electrodes prior to deposition of aluminum overlayers. All electrodes used were 
home-made 76 µm diameter platinum disk electrodes. 
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3.3. Scanning Electron Microscopy Studies 

 

Inspection of the scanning electron micrographs of the top surfaces of alumina 

overlayers obtained from pipette contact and sub-surface anodization techniques 

revealed similar morphologies (Figure 9A and B), with pore densities of 4.1 (± 0.1) 

×109 and 4.2 (± 0.1) × 109 pores cm-2, respectively. In contrast, the undersides of 

alumina overlayers obtained from the sub-surface anodized and pipette contact 

anodized electrodes prepared from the 76 µm diameter platinum electrode sealed in 

epoxy were clearly different in their morphologies. A non-porous barrier layer was 

observed at the side profile of the alumina overlayer of an unetched sub-surface 

anodized electrode (Figure 9C), unlike the roughened surface comprising microporous 

structures at the underside surface of the alumina overlayer obtained from a pipette-

anodized electrode (Figure 9D). It is noteworthy to mention that removing the 

alumina films from the electrode tips using tape during the preparation process of 

obtaining scanning electron micrograph images of these samples could possibly have 

introduced observed artefacts of roughened surfaces. 

 

The central symmetry of the pipette wall placed in contact with the 

aluminum/alumina overlayer was expected to give rise to a current distribution, which 

originated from the pipette wall and extend into the anodizing solution through the 

aluminum/ alumina overlayer during anodization. At and close to the central point of 

the pipette tip, the potential field must extend normally through the 

aluminum/alumina overlayer, generating a current distribution similar in the 

aluminum/alumina overlayer at a sub-surface anodized electrode during anodization. 

The absence of barrier layer was thus probably due to progressively increasing ohmic 
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losses as growth of the non-conducting alumina at the pipette walls continued during 

anodization. This would be similar to the method of uniform barrier layer thinning [1] 

by gradually reducing an externally applied anodizing voltage during anodization. It 

was equally possible under the condition of limited volume of the anodizing solution 

during pipette contact anodization, pH changes were more significant and likely 

affected the kinetics of porous oxide layer formation and dissolution rate of the non-

porous barrier layer. 

 

 

Figure 9. Scanning electron micrographs of the surfaces of alumina overlayers 
obtained from (A) pipette anodized and (B) sub-surface anodized electrodes. 

(E) 

(D) (C) 

(A) (B) 
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Micrographs of (C) side profile of the alumina overlayer of an unetched sub-surface 
anodized electrode and undersides of the alumina overlayers of (D) pipette anodized 
and (E) sub-surface anodized electrodes. These samples were obtained from the 
central regions of the electrode tips, close to the platinum wire and all electrodes used 
were home-made 76 µm diameter platinum disk electrodes. 

 

4. Conclusion 

 

An alternative approach to fabrication of nanoporous alumina films with no 

barrier layer is described. Heterogeneous electron transfer rate constant for the 

oxidation of ferrocenemethanol at a sub-surface anodized electrode was found to be 

five orders of magnitude lower than that of a bare platinum electrode. In contrast, the 

electrochemical behaviour of redox probe ferrocenemethanol, at a pipette-anodized 

electrode was characteristically more similar to that observed at a bare platinum 

electrode, in which the heterogeneous electron transfer rate constant was about 50 

times lower than that observed at a bare platinum electrode. Scanning electron 

microscopy studies supported the conclusion of a “barrier layer-free” alumina 

structure, when fabricated using the pipette anodization technique. This novel 

preparation method of “barrier layer-free” is foreseen to be useful in these 

applications in which direct access of solution species to the underlying conductive 

electrode is highly desirable, such as for electrochemical sensors, membrane 

electrodes and preparation of sensors of nanometer dimension using the template 

synthesis approach.  

 

The structural differences of alumina fabricated from sub-surface and pipette 

anodization methods may be due to the differences in placement of cathode and 

direction of the applied potential. In the former method, current flows from the 
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soldered copper wire, through the platinum wire to the underside of the aluminium 

layer, while in the latter method, current flows from the platinum coating to the top of 

the aluminium layer. This, together with the difference in placement of the cathode 

will most likely lead to a difference in the flow and direction of electric field, which 

in turn may result in changes in the growth mechanism of the alumina film. Material 

growth mechanism studies can be undertaken to further probe into these observed 

differences. 
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CHAPTER III 

MEMBRANE-BASED ELECTROCHEMICAL BIOSENSOR – DETECTION 

OF GLUCOSE OXIDASE 

 

1. Introduction 

 

Development of immunosensors with capability for rapid, sensitive and 

selective detection of infectious diseases continues to be an important subject for 

research and development [36-39]. It is equally desirable to have fast response 

sensing capability towards other analytes, including proteins, DNAs and haptens in 

environmental studies, pharmaceutical applications and biomedical diagnostics, as 

long as their complementary binding immunoglobulins can be produced. Current 

methods used by in vitro immunoassay such as enzyme-linked immunosorbent assay 

(ELISA) incorporates immunoglobulins or antigens tagged with markers into 

appropriate biorecognition materials and coupled to a transducer such as optical [40], 

fluorescence [41] or electrochemical sensor [42-44]. Typically, these techniques give 

a linear response of 10 µg L-1 to 150 mg L-1 and have a detection limit of 10 µg L-1 

[45]. 

 

Herein, a method for measuring the amount of protein antigen based on 

monitoring the magnitude of diffusion limited faradiac current of a redox probe 

diffusing within narrow channels of a nanoporous alumina matrix is described. 

Nanoporous alumina is a highly regular, rigid and dense porous material with nominal 

pore sizes ranging from 10 to 200 nm pore density of about 1×1010 pores cm-2 [46, 47] 

and is chemically and thermally stable [48]. It is reasoned that these same features can 
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be used to trap specific-binding antibody such as immunoglobulin G within the 

confined spaces of the vertical channels of an alumina matrix. In addition, these 

immunoglobulin G coated channels could function as diffusion paths for a redox 

probe, ferrocenemethanol, chosen for its neutral charge and electrochemically 

reversible behaviour.  

 

  Sensors based on similar scheme of detection had been constructed based on 

porous polymer films or aligned carbon nanotubes. Shan et al. developed a glucose 

biosensor by entrapping glucose oxidase into porous poly(acrylonitrileco-acrylic acid 

[49]. The use of the porous film increased the stability and sensitivity of the sensor, 

resulting in a low limit of detection, as well as enabled a rapid rate of detection. 

Similar sensor behaviour was also observed by Kanungo et al., who developed protein 

sensors based on poly(styrene sulfonate)-polyaniline (PSS-PANI) composites tubules 

[50]. To allow maximum access of nanotubes surface, there had been efforts to align 

carbon nanotubes (CNT). This approach had enabled high loading of thionine onto an 

aligned CNT electrode, which subsequently allowed highly sensitive detections of 

nitrite [51]. However, these methods involve more complicated and tedious film 

fabrication processes, whereas our direct method of alumina film fabrication from 

anodization of aluminium is simpler and do not require a long formation time. 

 

Recently, Nematollahi et. al. had studied catalytic oxidation of thiourea at an 

alumina modified platinum electrode using cyclic voltammetry [52]. However, their 

electrode was modified by polishing a bare platinum electrode with alumina powder. 

This method of modification renders the alumina film on the electrode surface to be 

unstable. Other groups [53, 54] made used of alumina as a template and sputter metal 
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into the pores to fabricate a nanoarray sensor. Instead, our work made use of alumina, 

produced from anodization of sputtered aluminium, as a substrate to immobilise 

antibodies in the development of an electrochemical immunosensor. This method of 

preparation of alumina modified electrodes provided alumina films of high stability 

and strong adhesion to the electrode surface. 

 

Figure 10 shows the basic design of our immunosensor which explains its 

scheme of operation. A layer of aluminum (ca. 400 nm thick) was sputtered onto a 

home-made platinum disk electrode tip and anodized to alumina using a pipette 

anodization method, which yields barrier-free alumina [55]. A sub-monolayer or 

monolayer of immunoglobulin G was then immobilized along the nanochannel walls 

of the porous alumina, followed by immobilization of bovine serum albumin (BSA) to 

block the unspecific adsorption sites. The alumina-modified platinum disk electrode 

was subsequently used for antigen detection, in the presence of the redox probe, 

ferrocenemethanol. Upon binding the complementary antigen to the immunoglobulin 

G, formation of the antigen–antibody (Ag–Ab) complexes blocked the approach of 

ferrocenemethanol towards the exposed platinum surface beneath the porous alumina 

layer. The developed sensor is thus a signal-off immunosensor, where the signal 

response decreases as the concentration of analyte increases. 

 

Differential pulse voltammetry (DPV) was employed to monitor the faradiac 

current limited by the diffusion rate of the redox probe diffusing towards the 

underlying platinum electrode. The feasibility of using this scheme of operation for 

antigen detection is demonstrated, by choosing glucose oxidase (GOx) and anti-

glucose oxidase (immunoglobulin G) as our model antigen-antibody system. The 
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antigen GOx system was chosen because GOx is a well-studied protein with known 

molecular mass, size and shows high binding specificity for its immunoglobulin G 

antibody. Descriptions of immunoglobulin G antibody and glucose oxidase enzyme 

are provided below. 

 

 

Figure 100. Scheme of antigen detection. A monolayer or submonolayer of antibody 
was physically adsorbed onto the channel walls of the nanosized alumina pores, 
followed by blocking of non-specific adsorption sites with BSA and finally the 
alumina-modified electrode was used for antigen detection. Formation of the Ab–Ag 
complex resulted in the narrowing and blocking of the nanosized pores and the 
subsequent decrease in signal response towards a redox probe measured using 
differential pulse voltammetry. 

 

1.1. Structure of Immunoglobulin G 

 

Immunoglobulin G (IgG) is a major antibody in the blood and has a molecular 

weight of about 150 kDa [56]. X-ray diffraction analysis of IgG molecules revealed 

that it consists of three subunits – two identical fragment antigen binding arms known 

as the Fab arms and a short constant stem region known as the Fc domain [57] (Figure 
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11). The Fab arms are connected to the Fc domain via hinges, which enable rotation 

of the Fab arms. Though the structure of IgG molecule is frequently referred to as Y-

shape, the Fab-Fc angle can extend from 66º to 123º and the Fab-Fab angle ranges 

from 115º to 172º [58]. This flexibility allows the IgG molecules to bind to any 

specific antigen located within its rotation region and thus increases the probability of 

antibody-antigen binding.  

 

 

Figure 11. Schematic diagram of an IgG molecule [4]. 

 

Self assembly studies of IgG molecules on substrate surfaces has shown that 

IgG molecules adsorb via different configurations, which include end-on with 

contracted Fab fragments, end-on with intermediate Fab fragments, end-on with 

highly repelling Fab fragments or side-on or face-on orientation [59-61]. The 

preference for the IgG molecule to bind end-on via the Fc domain is likely due to 

higher tendency for the Fc domain to unfold, compared to the Fab arms [61]. This 

orientation is highly favourable, since the Fab arms will be left free to bind to its 

specific antigen. 
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1.2. Structure of Glucose Oxidase 

 

Glucose oxidase (GOx) exists as a dimeric protein with a molecular weight of 

160 kDa (Figure 12). Each monomer consists of a flavin adenine dinucleotide (FAD) 

unit, which acts as the redox carrier during catalytic reactions.  The enzyme catalyses 

the oxidation of β-D-glucose to D-glucono-1,5-lactone and hydrogen peroxide, using 

molecular oxygen as the electron acceptor. Details of the catalytic reaction are further 

discussed in the introduction of Chapter V as the enzyme was not used for catalysis in 

the development of the immunosensor, but as an analyte. 

 

 

Figure 12. Three dimensional structure of glucose oxidase created using RasMol 
Version 2.6. 

 

1.3. Differential Pulse Voltammetry 

 

Differential pulse voltammetry (DPV) is commonly used for measuring trace 

levels of analytes due to its higher limit of detection, compared to cyclic voltammetry. 

In this technique, fixed magnitude pulses, superimposed on a linear potential ramp, 

are applied to the working electrode (Figure 13A). The current is sample twice, just 
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before the pulse application (at 1) and again at just before the end of the pulse (at 2), 

when the charging current has decayed. The first current is subsequently subtracted 

from the second current by the instrument and this current difference is plotted against 

the applied potential (Figure 13B) [20].  

 

 

Figure 13. (A) Potential waveform applied during differential pulse voltammetry. 
Adapted from reference [6]. (B) Current response of a redox species during a potential 
scan from -0.1 to 0.5 V. 
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The resulting differential pulse voltammogram consists of a peak current, ip, 

which is directly proportional to the concentration of the corresponding analytes 

according to the equation: 
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where ip is the maximum peak height or DPV signal response, n is the number 

of electrons transferred, F is the Faraday constant, D is the diffusion coefficient of 

redox species, Cbulk is the bulk concentration of the redox species, (τ- τ’) is the pulse 

duration, ∆E is the pulse amplitude and σ = exp (-nF∆E/2RT). 

 

2. Experimental 

 

2.1. Reagents and Materials 

 

Monoclonal anti-glucose oxidase (anti-GOx) provided as mouse ascites fluid 

with 0.1% sodium azide as preservative, glucose oxidase (GOx) from Aspergillus 

Niger, bovine serum albumin (BSA, >98%), ferrocenemethanol (FeMeOH, >99%) 

and phosphoric acid (85%) were purchased from Sigma Aldrich (Singapore). All 

proteins solutions were prepared in phosphate buffered saline (PBS; containing 100 

mM sodium phosphate and 1.7 M sodium chloride; pH 6.8). All chemicals and 

solvents of analytical grade were used as received. Ultrapure water (Barnstead 

Nanopure Ultrapure Water System) was used for all preparations, unless otherwise 

stated. Glutathione S-transferase (GST) was supplied by BST Scientific Pte Ltd. in the 
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form of a 1 mg mL-1 solution in phosphate buffered saline containing 0.02% Tween 

20 and 0.02% sodium azide. Mouse monoclonal antibody (IgG2b-kappa, clone GST 

3-4C) raised against 26 kDa GST protein from S. japonica was supplied by ZYMED 

laboratories Inc. as a 200 mL aliquot at a concentration of 0.5 mg mL-1 in PBS, pH 

7.4, containing 0.1% sodium azide (NaN3) 

 

2.2. Electrode Fabrication 

 

Home-made electrodes were fabricated using epoxy glue, micropipette tips 

and platinum wire (0.076 mm diameter) as in Chapter I. The electrode tip was 

polished with 1.0 and 0.3 µm diameter alumina powder and sonicated in ultrapure 

water, before being sputter-coated with aluminum metal film. Sub-micrometer thick 

aluminum films in the thickness range of 300–500 nm were sputter-coated onto the 

platinum electrodes using 99.999% purity aluminum target, Denton discovery® 18 

Sputtering System and sputtering power of 100W in an atmosphere of research-grade 

Ar at 5 × 10-3 Torr. Anodization of aluminum-coated electrodes was conducted using 

Apelex electrophoresis power supply model P304 minipac II. All aluminum-coated 

electrodes were rinsed with ultrapure water before anodized potentiostatically in 0.1 

M oxalic acid at 40 V. Anodization using the surface contact anodization method 

described in Chapter I and in reference [55], was carried out by positioning a platinum 

coated glass pipette in contact with the surface of the aluminum-coated electrode. A 

two-step anodization process was used in which the aluminum was first anodized at 

40 V in 0.1 M oxalic acid solution, followed by immersion in 3% H3PO4 solution 

containing 0.2 M CrO3 for one minute and a second anodization step until the current 

decreased to zero. Electrochemical behaviours of the alumina-modified electrodes 
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were characterized using cyclic voltammetry and differential pulse voltammetry 

techniques (CHI440 potentiostat/ galvanostat, data acquisition software) in the 

presence of 1.0 mM ferrocenemethanol in 0.1M phosphate buffer solution, pH 6.8. 

All potentials were measured with respect to the silver–silver chloride (saturated KCl) 

reference electrode. 

 

2.3. Preparation of Immunosensor  

 

Figure 14 shows the signal responses of the membrane-based electrochemical 

immunosensor electrode obtained by DPV technique towards the redox probe, during 

each step of the sensor preparation procedure carried out consecutively as follows. A 

sub-monolayer to monolayer of immunoglobulin G was first immobilized via physical 

adsorption onto the alumina by immersing the alumina-modified electrode in 5 µL of 

0.4 mg L-1 anti-GOx IgG solution for 1 hr, followed by rinsing in 0.1 M phosphate 

buffer solution (pH 6.8). The DPV signal response of this alumina-IgG electrode 

towards ferrocenemethanol was measured in a solution containing 1 mM 

ferrocenemethanol, 0.1 M phosphate buffer (pH 6.8). The electrode was subsequently 

transferred to and physically adsorbed with BSA in a solution containing 200 mg L-1 

BSA for 30 min, followed by rinsing, transferring to a 1 mM ferrocenemethanol 

solution and measurement of immunosensor response towards the redox probe using 

DPV. Adsorption of IgG and BSA onto the alumina electrode reduced the signal 

response towards ferrocenemethanol (Figure 14).  
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Figure 14. DPV signal response obtained at a 60 min etched alumina electrode 
immersed in 1 mM ferrocenemethanol, after each step of the sensor preparation 
procedure: (a) before adsorption of IgG, (b) after adsorption of anti-GOx IgG, (c) 
after adsorption of BSA and (d) after formation of IgG-GOx complex. Experimental 
conditions were described in text. Average background noise determined from 
standard deviations of three consecutive DPV scans of all the experiments was ± 0.5 
nA. 

 

The immunosensor was stable, with no significant change (± 2%) in the DPV 

signal response towards redox probe in the absence of antigen over a period of 2 hr 

(Figure 15). A precautionary measure that had been taken to establish this stability 

was to immerse the immunosensor in the redox probe solution for 30 min before 

commencing measurement of antigen concentrations in order for the redox probe to 

infiltrate the nanochannels of the alumina layer. Without this preparative step, the 

electrode showed erratic behaviour during measurement of the first one or two antigen 

concentrations. 
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Figure 15. Relatively constant DPV signal responses (± 2%) of a 60 min etched 
alumina electrode immobilised with IgG and BSA obtained in a solution of 1 mM 
ferrocenemethanol in the absence of antigen, GOx over a period of 2 hr indicate 
stability of the IgG-BSA monolayer.   

 

2.4. Glucose Oxidase Detection 

 

Detection of the GOx antigen was carried out using a batch system in which 

the prepared immunosensor (alumina-IgG BSA electrode) was kept immersed in 15 

mL of a buffered solution containing 1mM ferrocenemethanol, pH 6.8. Concentration 

of GOx in the solution was varied by addition of aliquots of a 10 mg L-1 GOx stock 

solution containing 1 mM ferrocenemethanol. Further quartz crystal microbalance 

(QCM) experiments coupled to cyclic voltammetry using an alumina coated gold 

quartz crystal revealed that significant antigen–antibody binding occurred within the 

first 2 min of immersing the alumina-modified electrode in the antigen solution while 

near equilibrium was reached after ca. 30 min, when the observed current in cyclic 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 0.1 0.2 0.3 0.4

C
ur

re
nt

 (n
A

)

Potential vs Ag/AgCl (V)

30 min

60 min

90 min

120 min



39 
 

voltammetry coupled to QCM stabilized. In a separate study, continuous differential 

pulse voltammetric signal response obtained at intervals of 2 min during this 

immersion time in the antigen solution between 2–30 min, similarly decreased over 

time and stabilized after 20–30 min (Figure 16).  

 

 

Figure 16. Measurement of DPV current responses of a 60 min etched alumina 
electrode immobilised with IgG and BSA, used for detection of GOx over time. 
Current responses decreased over time and stabilised after ca. 20 min.  

 

Detection of antigen was thus, carried out after immersion times of 

immunosensor in the antigen solution for 30 min. Figure 17 shows the decreasing 

signal responses of the immunosensor towards the redox probe, during successive 

additions of increasing concentrations of the GOx, using differential pulse 

voltammetry. 
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Figure 17. DPV signal response of an immunosensor towards the redox probe in 
increasing concentration of GOx, with corresponding decrease in signal response. 
Average background noise determined from standard deviations of three consecutive 
DPV scans of all the experiments was ± 0.4 nA. 

 

All differential pulse voltammetry (DPV) experiments were conducted using 

the prepared electrode as the working electrode, a platinum disk electrode as the 

auxiliary electrode and a silver-silver chloride reference electrode. Parameters used 

for DPV were as follows: amplitude of 50 mV, pulse width of 0.05 s, sample width of 

0.0167 s and scan range from −0.2 to 0.8 V. 

 

3. Results and Discussion 

 

3.1. Control Experiments 
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Several control studies were carried out using a high concentration of 0.1 mg 

L-1 GOx antigen concentration. First, a bare platinum electrode was prepared under 

identical immunosensor preparation procedure, but without the alumina overlayer, 

indicated high constant signal response towards the redox probe, at different antigen 

concentrations. In the second control experiment, a 60 min etched alumina-modified 

electrode was prepared under the same conditions as the working immunosensor, 

immobilized with BSA, but without IgG (alumina-BSA electrode). The third control 

used a 60 min etched alumina modified electrode immobilized with IgG, but without 

BSA (alumina-IgG electrode). Figure 18 shows the differential pulse voltammograms 

obtained for the three controls before and after the addition of glucose oxidase antigen 

into the sensing solution. Both the alumina-BSA and alumina-IgG electrodes showed 

decrease in signal response in the presence of antigen GOx (Figure 18B and C).  

 

It was expected the presence of BSA in the alumina-BSA electrode prevented 

non-specific adsorption along the BSA coated alumina channel walls. The observed 

decrease in signal response was likely the result of displacement of the BSA 

molecules (65 kDa) by the bulkier GOx molecules (180 kDa). It was unclear whether 

the decrease in signal response of the alumina-IgG electrode in the presence of GOx 

was due to specific or non-specific binding. However, it is obvious from Figure 18D, 

the decreases in signal responses in the presence of GOx for both alumina-BSA and 

alumina-IgG control electrodes were not cumulative, but were significantly less than 

that obtained at the alumina-IgG-BSA electrode.  
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Figure 18. DPV signal responses of (A) platinum disk electrode, (B) alumina-BSA 
electrode, (C) alumina-IgG electrode and (D) alumina-IgG-BSA electrode obtained 
for the various control studies. Average background noise of three consecutive DPV 
for the control experiments was in the range of ± 0.1 to ± 2 nA. 

 



43 
 

The signal responses of these electrodes towards the redox probe obtained in 

the presence of antigen GOx were compared to the signal responses towards the redox 

probe by their respective bare platinum electrodes before coating with alumina 

overlayers. It was found that in the presence of 0.1 mg L-1 GOx, the alumina-BSA 

control electrode showed 74% (± 7%) reduction and the alumina-IgG electrode a 

similar 65% (± 5%) reduction with respect to the signal responses obtained at their 

respective uncoated platinum electrode. In contrast, the alumina-IgG-BSA electrode 

showed a significantly larger signal reduction of 82% (± 1%) which indicated the 

channels within the alumina-IgG-BSA electrode were blocked more effectively 

compared to the alumina-BSA and alumina-IgG electrodes. This suggests specific 

binding which yields a larger size immunocomplex probably occurs to greater extent 

in the alumina-IgG-BSA electrode, compared to the alumina-IgG electrode. 

 

3.2. Selectivity Studies 

 

 

Figure 19. Signal response obtained by DPV technique towards the redox probe for 
(A) GOx immunosensor and (B) GST immunosensor. Each bar represents the signal 
response obtained towards the redox probe after adding aliquots of antigen, non-
specific antigen and mixture of antigen/non-specific antigen consecutively to a 15mL 
buffered solution of 1 mM ferrocenemethanol (pH 6.8). Average background noise of 
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3 consecutive DPV after each step of the experiment was in the range of ± 0.1 to ± 1.6 
nA. 

 

Further study on an alumina-IgG-BSA electrode conducted using another 

protein, glutathione S-transferase (GST) indicated negligible non-specific binding of 

antigen molecules, when both IgG and BSA were present in the electrode. Figure 19A 

shows the responses of a GOx immunosensor (alumina-IgG-BSA electrode) towards 

GOx and non-specific antigen GST. A decrease in signal response of the GOx 

immunosensor was observed in the presence of 0.03 mg L-1 of GOx as expected, 

compared to a buffer solution without GOx. Subsequent addition of 0.1 mg L-1 non-

specific antigen GST resulted in no further decrease in signal response of the same 

GOx immunosensor. Additional decrease in signal response was observed when a 

solution containing both GOx and GST at concentrations of 0.10 mg L-1 was 

subsequently added.  

 

The experiment was carried out in reverse order using a second GOx 

immunosensor, by adding the non-specific antigen GST first, followed by the antigen 

GOx. The GOx immunosensor showed no change in signal response in the presence 

of GST, but significant change in signal responses in the presence of GOx or GOx–

GST mixture. Similarly, using an immunosensor immobilized with anti-GST IgG, 

negligible signal response change was observed in the presence of non-specific 

antigen GOx (Figure 19B). The GST immunosensor was immersed sequentially in 

0.03 mg L-1 GST, 0.10 mg L-1 GOx and finally, a mixture containing 0.10 mg L-1 

GST and GOx. Thus, non-specific binding of GST or GOx if these occurred, resulted 

in negligible channel blocking effect for the alumina-IgG-BSA electrodes.  
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3.3. Normalisation of Current Response 

 

Signal responses of an alumina-modified electrode towards the redox probe in 

the presence of antigen (IGOx) were normalized against the signal response of the same 

alumina electrode immobilized with IgG (alumina-IgG) (Ianti-GOx), instead of IgG and 

BSA (alumina-IgG-BSA) (Ianti-GOx/BSA). Ianti-GOx and Ianti-GOx/BSA refer to signal 

responses obtained at the same alumina electrode after the antibody and BSA 

immobilization step, respectively and in the absence of antigen. Normalization of 

signal responses against Ianti-GOx using the ratio of IGOx/Ianti-GOx gave reproducible 

results for different electrodes and good linear logarithmic plots of normalized signal 

response against concentrations. This is likely due to irreproducible non-specific 

binding between BSA and IgG close to or at the antigen-binding site of IgG 

molecules. The BSA molecules bound at these parts of the IgG molecules are readily 

displaced by the GOx antigen which binds specifically to IgG. This method of data 

presentation significantly improved the reproducibility of the immunosensor for three 

different electrodes. For example, the relative standard deviation for three different 60 

min etched electrodes prepared under similar conditions ranged from ± 4.1% at 200 

ng L-1 antigen concentration to ± 13.8% at 10 µg L-1 antigen concentration using the 

normalized signal responses (IGOx/Ianti-GOx). In contrast, the relative standard deviation 

were ± 26.4% (200 ng L-1) and ± 15.6% (10µg L-1) respectively when the same data 

were normalised using IGOx/Ianti-GOx/BSA and not IGOx/Ianti-GOx. 

 

3.4. Study of Channel Diameters 
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In order to understand the effect of channel diameters on the sensing response 

of the immunosensor, the alumina overlayer was etched in 3% phosphoric acids for 

durations of 0, 30 or 60 min. Each alumina-modified electrode was thoroughly rinsed 

in ultrapure water after the etching process to remove the dissolved alumina, which 

caused significant electrode fouling problems as well as to remove any remaining 

phosphoric acid within the alumina nanopores. Figure 20 shows the decreasing signal 

response of the sensor towards increasing concentrations of GOx antigen for three 

different alumina-modified electrodes etched for different time durations in 

phosphoric acid. The 60 min etched electrode exhibited the steepest slope of all the 

calibration curves. 

 

 

Figure 20. DPV signal response towards the redox probe, ferrocenemethanol for an 
immunosensor prepared using 0.4 mg L-1 anti-GOx and 200 mg L-1 BSA over varying 
concentrations of GOx. Immunosensors were derived from alumina electrodes etched 
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for 0, 30 and 60 min in 3% phosphoric acid solutions. Concentration of 
ferrocenemethanol used was 1 mM and all experiments were conducted at 297 K. 

 

Two general trends were observed. First, the decrease in signal response per 

unit antigen concentration (sensitivity) was highest for electrodes etched at longest 

time of 60 min. Second, the electrodes etched at 60 min also exhibited the most 

effective blocking of pore channels at high antigen concentrations, in which its signal 

response decreased to less than 0.5 times of the initial measured signal response when 

the channels were unblocked. In contrast, the signal response at high antigen 

concentrations for the unetched electrode was only ca. 0.8 times of the initial signal 

response in the absence of antigen.  

 

It was expected that alumina-modified electrodes with pore sizes significantly 

larger than the IgG and GOx molecules would display poor sensitive response and 

low resistance towards diffusion of the redox probe at high antigen concentrations. 

This is considering the dimension of an IgG molecule, which is known to be 14.5 nm 

× 8.5 nm × 4 nm from X-ray diffraction studies [62] and the average size of a GOx 

molecule of 14.0 (± 0.3 nm) as determined in phosphate buffered saline (PBS), using 

dynamic light scattering technique (Malvern Zetasizer Nano ZS). However, SEM 

studies of the side profiles of alumina overlayers after different duration of etching 

times further revealed narrow channels extended throughout the alumina overlayer for 

an unetched alumina-modified electrode (Figure 21). For a 15 min etched alumina-

modified electrode, the channels were widened at the side exposed to solution and 

narrower at the alumina-electrode interface. For the 60 min etched alumina-modified 

electrode, the alumina overlayer showed two types of layers, a highly porous 

reticulate layer at the surface with pore sizes at least 10 times larger than either 
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antigen or IgG molecule. The inner layer of the 60 min etched alumina electrode 

resembled unetched alumina with channel diameters ca. 30–50 nm (Figure 21), the 

result of slower etching rates at the ‘inner’ part of channels due to depletion and slow 

mass transfer of acid reagent within the alumina overlayer. Channel diameters within 

the inner alumina overlayer thus remained relatively unchanged over the varying 

etching time.  

 

 

Figure 21. Scanning electron micrographs of side profiles of alumina overlayers 
etched in 3% phosphoric acid for (A) 15, (B) 30, (C) 45 and (D) 60 min. The pores of 
the outer films show extensive merging with poorly defined shapes. Pore sizes of the 
inner film estimated from SEM micrographs were (A) 20–50 nm (B) 25–70 nm (C) 
30–75 nm and (D) 30–100 nm. Pore densities of inner films range from 5.9 × 109 to 7 
× 109 pores cm-2 for (B), (C) and (D). 

 

Besides the change in pore sizes and channel diameters, the other effect of 

chemical etching on alumina-modified electrodes was a reduction in the ratio of outer 
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surface area to the total internal channel volume of the alumina overlayer. It was 

possible that binding of antigen molecules to IgG molecules sited along the alumina 

outer surface occurred, which could not influence the sensor response. Whereas, an 

extensively etched alumina-modified electrode with reduced ratio of outer surface-to- 

channel volume likely exhibited sensitive response towards antigen due to majority of 

antigen-antibody binding occurring along the diffusion path of the redox probe within 

the channels. 

 

3.5. Electrochemical Studies 

 

During a potential step experiment of an electrochemical reversible redox 

couple, the faradaic current flow at a planar electrode can be described by a Cottrell-

type equation, in which the magnitude of the transient current is inversely related to 

the square root of time as well as the equilibrium surface concentration ratio of the 

oxidized and reduced forms of the redox couple after the potential step [25]. The 

signal response obtained during a differential pulse voltammetric experiment derived 

from the difference in the faradaic current flow before and after the pulse is thus 

expressed in the form of the same Cottrell-type equation, with consideration of the 

equilibrium surface concentration ratios of the oxidized and reduced forms of the 

redox couple before and after the potential step. For a nernstian system, these 

concentration ratios are related exponentially to the applied potentials and it can be 

readily shown at E = Emax (where Emax= E0’ − ΔE/2 and ΔE is the pulse height applied 

during the DPV experiment), the maximum peak height is linearly proportional to 

concentration of the redox species for an electrochemically reversible system [25]: 

 



50 
 

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
+
−

−
=

)1(
)1(

' 2/12/1
bulk

2/1

max σ
σ

ττπ
δ

CnFAD
i   (3) 

 

where (δi)max is the maximum peak height or DPV signal response, n is 1, F is 

the Faraday constant, D is the diffusion coefficient of ferrocenemethanol, Cbulk is the 

bulk concentration of ferrocenemethanol, (τ- τ’) is the pulse duration, ∆E is the pulse 

amplitude and σ = exp (-nF∆E/2RT) for the oxidation process.  Figure 22 shows the 

plot of maximum peak height (δi)max against 
σ
σ

+
−

1
1  obtained during DPV 

measurements towards the redox probe over varying pulse heights for unetched and 

60 min etched alumina electrodes immobilized with IgG, IgG/BSA or 

IgG/BSA/antigen. Plots are shown for pulse amplitude values from 0 to 130mV, 

which demonstrated good linearity, consistent with an electrochemically reversible 

system, under the experimental conditions described in the caption of the figure. The 

inset at Figure 22 shows the magnitude of AD1/2 derived from the slopes of the plots 

of (δi)max against 
σ
σ

+
−

1
1 . In our immunosensor system, the concentration of 

ferrocenemethanol was kept constant throughout the experiments. Thus changes in the 

maximum peak height for the different experiments could only arise due to variation 

of the electrode active area and/or diffusion coefficient of the redox probe, according 

to Equation (3).  

 

Figure 22 inset revealed gradual decrease in the magnitude of AD1/2 for the 

IgG and IgG/BSA immobilized 60 min etched alumina electrode, but significant 

decrease for the IgG/BSA/antigen immobilized 60 min etched alumina electrode. This 

trend agrees with the result obtained in Figure 17 in which the DPV waveforms 
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similarly revealed significant decrease in the maximum peak height in the presence of 

antigen. The magnitude of AD1/2 values are slightly less than the known diffusion 

coefficient value of ferrocenemethanol of 1 × 10-5 cm2 s-1 and that calculated using the 

surface area of the 76 µm diameter electrode overlaid by an alumina layer comprising 

ca. 30 nm size pores of ca. 7 × 109 pores cm-2 pore density. It is likely due to reduced 

diffusion coefficient of the redox probe when the channel diameters were narrowed in 

the presence of antigen due to formation of immunocomplex within the channels, as 

determined by molecular dynamic stimulation study carried out for system comprising 

channel size smaller than five times the diameter of the diffusing species [63]. 

Interestingly, the magnitude of AD1/2 obtained at the unetched alumina-modified 

electrode remained fairly constant when immobilized using IgG, IgG/BSA and 

IgG/BSA/antigen. This is probably due to ineffective blocking of the channels for the 

unetched alumina electrode, likely the results of a large number of available binding 

sites along the outer surface of the unetched alumina overlayer and a smaller channel 

size in comparison to the etched electrode, which reduce the ease of access by the 

biological molecules. 
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Figure 22. Plots of (δi)max against (1 − σ)/(1 + σ) obtained by varying DPV pulse 
amplitude from 10 to 130 mV with a pulse width of 50 ms in an unstirred solution 
containing 1mM ferrocenemethanol at 297 K. Relative standard deviation of (δi)max 
ranges from ± 4.2% for 10 mV pulse amplitude to ± 22.7% for 130 mV pulse 
amplitude. Inset: variation of AD1/2 with respect to types of alumina electrodes 
immobilized with IgG, IgG/BSA or IgG/BSA/antigen, derived from slopes and slope 
errors of best-fit lines through the plots presented in this figure. 

 

3.6. Figures of Merit 

 

Measurement of the signal-to-noise ratio revealed a decreasing signal-to-noise 

(S/N) ratio, for example, from S/N = 28 at 200 ng L-1 to S/N = 16 at 50 µg L-1 antigen 
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concentration for one of the immunosensor electrodes. This has the advantage of 

increased sensitivity towards the antigen at low concentrations, unlike most sensors in 

which the signal-to-noise ratio decreases as concentration of analyte decreases.  

 

Limit of detection was derived from the minimum antigen concentration value 

which produced a reduction of sensor signal equivalent to three times the background 

noise at zero antigen concentration. A low-detection limit (LOD) of 100 ng L-1 of 

GOx antigen was achieved using this simple sensing approach with a linear 

logarithmic concentration dependence range, extending from 200 ng L-1 to 11.2 µgL-1 

(correlation of determination = 0.993). In comparison, commercially available ELISA 

technique has a higher LOD of ca. 10 µg L-1. Unlike ELISA, where large quantity of 

antibody (50 µL of 20 mg L-1) is typically used for protein detection, this membrane-

based electrochemical immunosensor system requires only ca. 5 µL of 0.4 mg L-1 

antibody for sensor preparation. The detection limit of this technique is significantly 

lower compared to other similar immunosensors using static batch system [38, 64, 

65]. 

 

4. Conclusion 

 

Overall, a membrane-based immunosensor with sensitive response has been 

developed for the detection of the protein, GOx. An extensively etched alumina 

membrane overlayer provides the greatest decrease in signal response towards the 

protein antigen molecules over the concentration range tested. SEM studies also 

revealed that the 60 min etched alumina layer consist of two types of layers, a highly 

porous reticulate layer at the surface and an inner layer resembling unetched alumina 
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with channel diameters ca. 30–50 nm. In addition, the prepared immunosensor also 

has a low detection limit of 100 ng L-1 GOx antigen. The same approach may be 

applicable to detection of other proteins, using appropriate complementary binding 

immunoglobulin antibodies and this is illustrated in the following chapter. 
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CHAPTER IV 

MEMBRANE-BASED ELECTROCHEMICAL BIOSENSOR – DETECTION 

OF WEST NILE VIRAL DOMAIN III PROTEIN AND PARTICLES 

 

 

1. Introduction 

 

Following the successful determination of glucose oxidase enzyme using the 

developed alumina membrane-based electrochemical immunosensor, it was aimed to 

made use of the same sensing platform for the detection of West Nile virus domain  

III (WNV-DIII), which is a specific protein segment of the viral envelope protein and 

WNV viral particles. Experimental conditions, such as pH, ionic strength of sensing 

solution and concentration of immunoglobulin M (IgM) utilised for detection, were 

optimised for the determination of WNV-DIII and the same experimental parameters 

were subsequently used for detection of WNV particles.  

 

1.1. West Nile Virus 

 

West Nile virus (WNV) was first isolated from a female adult in Uganda in 

1937 and had since circulated throughout Africa, Asia, USA, southern Europe, the 

Middle East and Australia [66]. It had caused over a dozen epidemics of West Nile 

fever and meningoencephalitis during the past eight decades. The virus normally 

circulates in natural transmission cycles involving mosquito vectors (usually Culex 

species) and birds, whereas humans and horses are considered incidental or dead-end 

hosts [67].  
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As of all flavivirus, the WNV is made up of three structural proteins – a large 

envelope protein (E), a single nucleocapsid protein (C) and a lipid membrane protein 

(M). Its genome RNA strand and the protein C form an isometric nucleocapsid, while 

the M and E proteins, together with the host’s membrane, form the envelope that 

surrounds the nucleocapsids [21] (Figure 23).  Protein E also enables receptor 

binding, host membrane fusion and can elicits a neutralizing antibody response [68]. 

It is arranged as a homodimer and each monomer has three domains (I, II and III). 

Among the different domains, domain III is responsible for binding to the host’s cell 

before membrane fusion occurs. Experiments were thus conducted systematically, by 

first carrying out the detection of WNV-DIII protein, followed by the determination 

of WNV particles. The domain III protein was also chosen due to its well-studied 

sequence [69, 70] and its short length of ca. 100 amino acids makes it less susceptible 

to folding when isolated from the rest of the protein envelope [68]. 

 

  

Figure 23. A 17 Å structure of West Nile virus determined by cryo-EM. (A) A 
surface shaded view of the virus. (B) A central cross section showing the concentric 
layers of density [7]. From Mukhopadhyay S., Kim B.-S., Chipman P. R., Rossmann 
M. G., Kuhn R. J., Science 2003, 302, 248. Reprinted with permission from AAAS. 
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WNV poses significant public health problems in affected countries. 

Surveillance and early detection schemes are thus necessary to reduce the spread of 

the virus from animal vectors to human hosts. The detection of WNV had been 

typically conducted using immunoassays and reverse transcriptase polymerase chain 

reaction (RT-PCR) [66, 67, 71-73]. However, these methods are usually labour 

intensive and time-consuming.  

 

The detection scheme employed for the prepared immunosensor is the same as 

that employed for determination of GOx. Immunoglobulin M (IgM) antibody raised 

against WNV-DIII protein was physically adsorbed along the channel walls within the 

alumina overlayer of an alumina modified electrode. In the presence of WNV-DIII 

protein, formations of the immunocomplexes occur within the channels of nanosized 

diameter. The channels thus become blocked in the presence of the protein analyte. 

The status of blocked and unblocked channels was subsequently detected via a mass 

transport limiting electro-oxidative current generated by an electrochemical probe, 

ferrocenemethanol, which diffused through the nano-sized channel to reach the 

electrochemical sensor at the alumina-electrode interface for redox processes. Again, 

differential pulse voltammetry was used as the detection technique. 

 

2. Experimental 

 

2.1. Reagents and Materials 

 

Monoclonal anti-West Nile virus (H546, isotype IgM, 275 µg mL-1) was 

obtained from Microbix Biosystems. Bovine serum albumin (BSA, >98%), 
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ferrocenemethanol (FeMeOH, >99%), sodium dihydrogenphosphate dihydrate and 

phosphoric acid were purchased from Sigma Aldrich. Sodium chloride (NaCl) was 

purchased from QRëC. All protein solutions were prepared in 0.1 M phosphate buffer 

(pH 6.8), unless otherwise stated. All chemicals and solvents used were of analytical 

grade and were used as received. Ultrapure water (Barnstead Nanopure Ultrapure 

Water System) was used for preparations of all buffers, unless otherwise stated. 

Electrodes used were home-made platinum disk electrodes and modified according to 

the procedures stated in Chapter III section 2.2. West Nile Virus domain III protein 

and particles were provided by Professor Ng Mah Lee, Mary from the Department of 

Microbiology, NUS. 

 

2.2. West Nile Virus Domain III Protein and Particles Detection 

 

Detection of WNV-DIII was carried out using the following conditions. 0.2 µg 

mL-1 immunoglobulin M (IgM) solution, 200 µg mL-1 BSA solution and 0.25 µg mL-1 

WNV-DIII solution were first prepared using 0.1 M phosphate buffer (pH 6.8, ionic 

strength of 1.7M NaCl). IgM was next physically adsorbed onto the alumina modified 

electrode tip for 1 hour and non-specific binding sites along the channel walls were 

blocked off subsequently by further adsorption of BSA for 30 min in a solution 

containing 200 µg mL-1 BSA.  Both IgM and BSA immobilisation was done by 

placing 5 µL of the respective protein solution onto the electrode tip. A three-

electrode system was then employed for the measurement of faradaic currents of the 

redox probe, using a silver-silver chloride reference electrode and a 2 mm diameter 

platinum disk, auxiliary electrode. Detection of WNV-DIII protein antigen was 

carried using a batch system in which the prepared immunosensor was kept immersed 
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in a sensing solution containing constant concentration of 1 mM ferrocenemethanol, 

prepared in 100 mM phosphate buffer (pH 6.8, ionic strength of 1.7 M NaCl). 

Concentration of WNV-DIII in the sensing solution was varied from 0.008 to 0.05 ng 

mL-1 by addition of aliquots from a 0.25 µg mL-1 WNV-DIII stock solution 

containing 1 mM ferrocenemethanol, into the sensing solution. Differential pulse 

voltammograms (CHI440 potentiostat/ galvanostat, data acquisition software) were 

obtained at 30 min intervals after addition of each aliquot into the sensing solution.  

The same was done for the detection of WNV particles. 

 

3. Results and Discussion 

 

3.1. Control Experiments 

 

 

Figure 24. (A) DPV signal response obtained at a 60 min etched alumina electrode 
immersed in 1 mM ferrocenemethanol, after each step of the sensor preparation 
procedure. (B) DPV signal response of an immunosensor towards ferrocenemethanol 
in increasing concentration of WNV-DIII protein, with corresponding decrease in 
signal response for an immunosensor prepared similarly as in (A).  
 

. 
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Figure 24A shows the typical differential pulse voltammograms of 

ferrocenemethanol obtained at an alumina modified platinum disk electrode after each 

step of the sensor preparation procedure.  The differential pulse voltammetric peak 

signal responses towards ferrocenemethanol decreased incrementally after IgM, BSA 

and WNV-DIII protein were adsorbed in consecutive steps onto the alumina 

overlayers. The DPV peak signal response towards the redox probe was further 

reduced during successive batch additions of increasing concentrations of protein 

(Figure 24B). This is again due to adsorption of proteins within the channels 

“blocking” the diffusion path of redox probe through the channels. Thus the peak 

signal response of the DPV decreased after each protein adsorption step. Interestingly, 

the alumina electrode adsorbed with BSA alone exhibited inconsistent and poorly 

reproducible DPV results. This is likely due to the random formation of dimeric and 

oligomeric BSA species [74, 75], which “block” the nanosized diameter channels to 

different extents. In contrast, the prior adsorption of IgM for the IgM/BSA electrode 

probably reduced the number of available binding sites for formation of oligomeric 

BSA.  

 

To investigate the influence of this method for analytical sensing of WNV-

DIII protein, 4 different electrodes were prepared using IgM (IgM-alumina electrode), 

BSA (BSA-alumina electrode) and IgM/BSA (IgM-BSA-alumina electrode) or no 

adsorbed biomolecule (alumina electrode). Figure 25 shows the trend of the 

normalised DPV signal responses of the electrodes toward ferrocenemethanol during 

batch addition of increasing concentrations of WNV-DIII protein. The IgM–BSA 

alumina electrode gives the largest decrease in DPV signal response. This indicates 

formation of IgM-WNV-DIII immunocomplex is effective towards reducing the 
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diffusion rate of ferrocenemethanol through the nanochannels. For the IgM-alumina, 

BSA-alumina and alumina electrodes, there are insignificant decreases in the DPV 

signal responses (Figure 25). This suggests that non-specific binding of WNV-DIII 

within the channels of the alumina overlayer is less effective in blocking the diffusion 

path of the redox probe, compared to specific binding between WNV-DIII and its 

antibody, IgM. It is also possible that the slight decrease in DPV peak signal response 

is due to surface fouling of the platinum electrode by the protein antigen.  

 

 

Figure 25. DPV signal responses of four different alumina electrodes prepared using 
IgM (IgM-alumina electrode), BSA (BSA-alumina electrode) and IgM/ BSA (IgM-
BSA-alumina electrode) or no adsorbed biomolecule (alumina electrode). Controls 
were studied over the antigen concentration range of 0.007 to 0.05 ng mL-1 in 1 mM 
ferrocenemethanol solution at pH 6.8 and an ionic strength of 1.7 M. All alumina 
electrodes used were etched in 3% phosphoric acid for 60 min. 0.2 µg mL-1 IgM 
solution and 200 mg mL-1 BSA solution were used for immobilisation of either or 
both proteins for the alumina electrodes. All experiments were conducted at 297 K. 

 

3.2. Effect of Antibody Concentration 
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To understand the effect of IgM antibody loading on the sensor response 

toward WNV-DIII antigen, IgM-BSA-alumina electrodes were prepared from 0.1 to 

0.4 μg mL-1 IgM solutions and used for WNV-DIII detection (Figure 26). Using a 

higher IgM concentration of 0.4 μg mL-1, the prepared electrode exhibited a small, 

linear concentration range from 0.007 ng mL-1 to 0.030 ng mL-1 and low detection 

limit of WNV-DIII antigen. This is probably due to higher loading of IgM antibody 

within the nanochannels, which led to more antigen molecules being retained within 

the nanochannels at each antigen concentration under equilibrium condition and hence 

the lower limit of detection. However the initial high loading of IgM molecules within 

the nanochannels had blocked off most of the alumina pores, resulting in a low initial 

signal response after all immunosensor preparation steps. The extent at which the 

signal response can be depressed without compromising the signal-to-noise ratio at 

the highest concentration of antigen detected is therefore lower, resulting in a narrow 

linear range. 

 

 

Figure 26. Plots of normalised current against (A) concentration and (B) log of 
concentration of WNV-DIII protein for different concentrations of IgM used. When a 
high concentration of 0.4 µg mL-1 IgM was used, a lower limit of detection and a 
narrow linear range was obtained.  At lower concentration of 0.1 µg mL-1 IgM, a 
higher limit of detection and a wide linear range was achieved. Thus, to have a 
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compromise between these two figures of merit, 0.2 µg mL-1 IgM was utilised. 
Sensing solution was 1 mM ferrocenemethanol in 100 mM phosphate buffer (pH 6.8) 
with an ionic strength of 1.7 M. All alumina electrodes used were etched in 3% 
phosphoric acid for 60 min.  

 

 In contrast, when a low IgM concentration of 0.1 μg mL-1 was used to prepare 

the immunosensor, the electrode exhibited a wider linear range (0.027 ng mL-1 to 

0.087 ng mL-1) and a higher limit of detection. Due to the initial lower loading of IgM 

molecules onto the alumina membrane and within the alumina nanopores, the 

immunosensor can be used to detect over a wider range of antigen concentration due 

to its initial high signal response after all immunosensor preparation steps. However, 

the lower loading of IgM molecules also meant that less antigen molecules can be 

retained within the nanochannels at each antigen concentration under equilibrium 

condition and hence the higher limit of detection. To compromise between having a 

wide linear range and an acceptable limit of detection, an optimized 0.2 μg mL-1 IgM 

solution was therefore used as the loading solution for preparation of the WNV-DIII 

sensor.  

 

3.3. Effect of pH on Adsorption of IgM onto the Alumina Overlayer and Sensor 

Response  

 

pH of sensing solutions has a strong influence on the stability of proteins such 

as antibody and antigens. At too low or high pH, antibodies can be denatured, 

resulting in a change of its three dimensional structure [76], which in turn affects the 

effective binding to its specific antigen. Determination of optimal pH of the sensing 

solution for the detection of proteins is thus necessary. For the following 

investigations, pH of the phosphate buffer solutions used was varied from 6.2 to 8.2, 
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since alumina is stable in the pH range of about 4 to 9 [77] and the buffering capacity 

of phosphate buffer is effective only at the buffer range of pKa 7.2 (± 1).  

 

Figure 27A shows the effect of pH on the immobilisation of IgM onto the 

alumina electrode. The percentage decrease in DPV signal responses increased when 

pH increased from 6.2 to 7.6, indicating a higher loading of IgM molecules onto the 

alumina electrode. However at pH 8.2, the DPV signal response decreased to a lesser 

extent. This is likely due to the influence of pH on the overall charge densities of IgM 

and alumina. At pH 8.2, IgM with an isoelectric point of 8.0 [78] is negatively 

charged and surface charge density of alumina is also negative at pH higher than 7.2 

[79]. Thus at pH 8.2, there will be electrostatic repulsion between the alumina film 

and negatively charged IgM molecules, resulting in a lower amount of IgM molecules 

being adsorbed onto alumina, which is reflected in the reduced percentage decrease in 

DPV signal response. At pH 6.2, 6.8 and 7.6, IgM is positively charged, considering 

its isoelectric point (pI) of 8.0. At pH value of less than 7.2, alumina has an overall 

positive surface charge density, which becomes less positive as pH increases and 

becomes neutral at pH 7.2 [79]. The electrostatic repulsion between the positively 

charged IgM molecules and alumina thus decreases from pH 6.2 to 7.6. As a result, 

the percentage decrease in DPV signal responses increased when pH increased from 

6.2 to 7.6, indicating a higher amount of IgM molecules being adsorbed onto the 

alumina.  

 

The different extent of IgM loading onto the alumina electrodes due to pH 

changes can affect the sensitivity of the IgM-BSA-alumina electrodes (Figure 27B). 

Sensitivity at each pH value was determined from the gradient of the plots of 
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normalised current against log of concentration of WNV-DIII protein. The gradient 

values obtained at pH 6.2, 6.8, 7.6 and 8.2 were -0.61 (± 0.04), -0.64 (± 0.03), -0.76 

(± 0.06) and -0.42 (± 0.03) respectively. A more negative gradient signifies a greater 

decrease in signal response at a given analyte concentration and thus higher 

sensitivity. Since a higher loading of IgM molecules allows more antigen molecules 

to be retained within the nanochannels at each antigen concentration under 

equilibrium conditions, it is therefore not surprising for the IgM-BSA-alumina 

electrodes to be more sensitive as pH increases from 6.2 to 7.6 and to be less sensitive 

at pH 8.2, following the trend of IgM loading onto the alumina overlayer as pH is 

varied. 

 

 

Figure 27. (A) Percentage decrease in observed current upon IgM immobilization at 
various pH values. The larger decrease in observed current indicates higher loading of 
IgM molecules onto the surface of the alumina membrane and within the alumina 
nanopores. (B) DPV signal responses towards redox probe in the presence of 
increasing antigen concentration, using alumina electrode adsorbed with IgM from 
solutions of different pH and in sensing solutions of different pH. 1 mM 
ferrocenemethanol, prepared in 100 mM phosphate buffer with 1.7 M ionic strength 
solutions was used as the sensing solution.  

 

From the values of the gradient, it is obvious that the most sensitive detection 

of WNV-DIII was achieved at pH 7.6. However, the difference in the coefficient of 
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determination (0.962 at pH 7.6 and 0.993 at pH 6.8) and results obtained from data 

fitting into equation (4) derived from a Langmuir-type isotherm (Section 3.6) supports 

the choice of pH 6.8 as the optimal pH instead.   

 

3.3. Effect of Ionic Strength on Sensor Response 

 

Figure 28 shows the sensor response against WNV-DIII antigen 

concentrations in three sensing solutions of different ionic strengths. The desired ionic 

strength of phosphate buffered ferrocenemethanol solution was adjusted using sodium 

chloride salt. From Figure 28, it is clear that at low ionic strength of 0.5 M and high 

ionic strength of 3.5 M, the decrease in DPV signal response was minimal. In 

contrast, at ionic strength of 1.7 M, the largest sensitivity towards the viral protein 

was achieved.  

 

 

Figure 28. DPV signal responses towards redox probe, prepared in phosphate buffers 
of different ionic strengths, in the presence of increasing antigen concentration using 
alumina electrode adsorbed with IgM from solutions of different ionic strengths. 1 
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mM ferrocenemethanol, prepared in 100 mM phosphate buffer (pH 6.8) was used as 
the sensing solution. Sodium chloride salt was employed to control of ionic strengths 
of the prepared buffers. 

 

The reason for lower sensitivity of the alumina-IgM-BSA electrode towards 

WNV-DIII is probably due to the ‘salting out’ of proteins at high salt concentrations 

[80] of sizes larger than the surface pore sizes of the alumina overlayer.  The extent of 

immunocomplex formation is subsequently reduced within the channels, resulting in a 

decrease in the degree of blocking of the nanopores. Thus, the redox probe can readily 

access the platinum electrode through the alumina overlayer, without much hindrance. 

Interestingly, at the lower 0.5 M ionic strength, low sensitivity of the alumina-IgM-

BSA electrode towards WNV-DIII was similarly observed. It is likely that the 

reduced total surface charges on alumina at lower ionic strengths at pH 6.8 [79] 

disfavoured the physical adsorption of IgM along the surface of the alumina channel 

walls, resulting in reduced loading of IgM molecules onto the alumina overlayer and 

hence, a prepared immunosensor of lower sensitivity. An intermediate ionic strength 

of 1.7 M was found to give optimal sensitive response towards WNV-DIII protein.        

 

3.4. Effect of Channel Diameters 

 

The effect of channel diameters on the sensing response of the immunosensor 

for WNV-DIII detection was conducted by etching alumina electrodes in 3% 

phosphoric acid for 0, 30 and 60 min. Etching time beyond 60 min caused 

disintegration of the alumina overlayer.  The unetched (0 min) alumina electrode gave 

large signal response fluctuations (Figure 29). In contrast, the 30 and 60 min etched 

alumina electrodes gave incremental decreasing signal responses (Figure 29). Similar 



68 
 

to results obtained for detection of GOx, the decrease in signal response per unit 

antigen concentration (sensitivity) was highest for electrodes etched at longest time of 

60 min. They also exhibited the most effective blocking of pore channels at high 

antigen concentrations. 

 

 

Figure 29. DPV signal response towards the redox probe for an immunosensor 
prepared using 0.2 µg L-1 IgM and 200 mg L-1 BSA over varying concentrations of 
WNV-DIII protein. Immunosensors were derived from alumina electrodes etched for 
0, 30 and 60 min in 3% phosphoric acid solutions. Sensing solution was 1 mM 
ferrocenemethanol, prepared in pH 6.8 phosphate buffer with ionic strength of 1.7 M. 

 

The reason for the fluctuating current response towards redox probe for the 

unetched alumina electrode was probably due to non-specific adsorption of the 

antigen within the channels of the alumina overlayer surface. Antibody IgM is a large 

pentameric molecule with molecular size of 900kDa [81] and estimated width of 29 

nm [62], while the pores along the surface of the unetched alumina overlayer have 
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average diameters of 20 nm. The IgM molecules are thus likely to be immobilised 

along the surface of the alumina overlayer, instead of within the pores. However, the 

smaller WNV-DIII protein (10.7 kDa) can be adsorbed along the surface and within 

the pores of the alumina overlayer. Non-specifically adsorbed WNV-DIII protein can 

easily desorbed from the alumina pores, leading to an erratic signal response.  

 

 

Figure 30. DPV signal response towards the redox probe for an immunosensor 
prepared using 0.2 µg L-1 IgM and 200 mg L-1 BSA over varying concentrations of 
WNV particles. Immunosensors were derived from alumina electrodes etched for 0, 
30 and 60 min in 3% phosphoric acid solutions. Sensing solution was 1 mM 
ferrocenemethanol, prepared in pH 6.8 phosphate buffer with ionic strength of 1.7 M. 
 

A similar experiment conducted using whole virus particles with dimension 

ca. 50 nm showed similar incremental decrease in the DPV signal responses for the 30 

min and 60 min etched alumina electrodes in the presence of increasing concentration 

of WNV particles (Figure 30). However, the signal response obtained for the unetched 

(0 min) alumina electrode was not as erratic. Considering the size of IgM molecules 

(29 nm), WNV particles (50 nm) and nanopores (20 nm), it is likely the 20% decrease 
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in DPV signal response is due to the specific binding of the IgM and WNV particles 

immobilised along the surface and not within the alumina nanopores. Under this 

condition, low sensitivity cannot be achieved though specific binding between IgM 

and WNV particles can occur. From both sets of results, it is evident that the 60 min 

etched alumina electrode is the most sensitive and effective for WNV-DIII protein 

and WNV particles determination.  

 

3.5. Stability and Reproducibility of Sensor Response 

 

 

Figure 31. Reproducibility (A) across different batches of sputtered electrodes and 
(B) within a single batch of electrodes sputtered with aluminum simultaneously. 
Standard deviations in the range of 2% to 10% and a low limit of detection of 4 ng 
mL-1 were obtained. 
 

Signal responses of the alumina modified electrodes towards the redox probe 

in the presence of antigen were normalised against the signal response of alumina 

electrode immobilised with IgM (alumina-IgM), instead of alumina electrode 

immobilised with IgM and BSA (alumina-IgM-BSA), which had been similarly done 

for data obtained for the determination of GOx in the previous chapter. The former 

method gave reproducible results for different electrodes and good linear logarithmic 

plots of normalised signal response against concentrations. This is likely due to 
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irreproducible non-specific binding between BSA and IgM close to or at the antigen 

binding site which the BSA molecules are readily removed and subsequently 

displaced by the protein antigen which binds specifically to IgM. This method of data 

presentation significantly improved the reproducibility of the immunosensor for 3 

different electrodes, which was critical to its applicability. Reproducibility of the 

fabricated alumina electrodes utilized for WNV-DIII detection was investigated 

across different batches and within a batch of prepared electrodes. All alumina 

electrodes were etched in 3% phosphoric acid for 60 min before immobilization of 

both IgM and BSA. 

 

Calibrations employing alumina electrodes from different fabricated batches 

resulted in standard deviations ranging from 2% to 8%, while that conducted using 

alumina electrodes of the same fabricated batch resulted in standard deviations 

ranging from 2% to 10% (Figure 31) across the concentration range of WNV-DIII 

protein investigated. These slight deviations could be due to the differences in 

sputtered aluminum overlayer thickness or anodization that led to slight differences in 

pore sizes. Since IgM molecules were physically adsorbed onto the alumina 

overlayer, differences in IgM molecular orientation may also have contributed to 

differences in the observed signal responses. However, standard deviations of the 

calibrations are within acceptable range and a limit of detection of 4 ng mL-1 (S/N = 

3) was obtained for detection of WNV-DIII protein.  
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Figure 32. Reproducibility of the prepared IgM-BSA-alumina electrodes applied in 
the detection of WNV particles. Standard deviations in the range of 2% to 6% and a 
low limit of detection of ca. 0.02 PFU mL-1 (2 viral particles mL-1) were obtained. 
 

Figure 32 shows the signal responses of three similarly prepared alumina 

electrodes applied for the determination of WNV particles. Standard deviations 

ranging from 2% to 6% were obtained for signal responses across the concentration of 

0.03 to 0.50 plague forming unit (PFU) mL-1 WNV particles. Considering the lowest 

PFU that can be detected with a signal-to-noise ratio of 3, the limit of detection of the 

immunosensor was estimated to be 0.02 PFU mL-1 (ca. 2 viral particles mL-1).  

 

3.6. Fitting of Data 

 

Logarithmic plots of immunoassay experimental data which include log-log 

and logit-log are commonly used for deriving linear plots for calibration purposes 

[82]. Similarly in this work, plots of the normalized DPV signal response against 
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logarithmic function of concentration yield good linearity for data derived under the 

optimized conditions (Figure 33).   

 

 

Figure 33. Plots of the normalized DPV signal response against logarithmic function 
of WNV-DIII protein concentration (A) within a single batch and (B) across different 
batches of fabricated electrodes. Calibration plots were obtained using alumina 
modified electrodes etched for 60 min in 3% phosphoric acid. Sensing solution was 1 
mM ferrocenemethanol, prepared in pH 6.8 phosphate buffer with ionic strength of 
1.7 M. 

 

However, these mathematical plots do not adequately explain the 

physicochemical processes occurring within the system. To correlate the antigen 

detection mechanism with the detection signal response, a simple model is described 

as follows: 

 

IgMs + P ↔ IgMs-P 

 

where IgMs refers to the surface bound immunoglobulin M within a channel, P 

is the WNV-DIII protein and IgMs-P refers to the immunocomplex formed between 

the antibody and antigen within the channel. Herein, formation of immunocomplex 
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between protein and IgM bound to alumina surfaces outside the channels was not 

considered. Since only one monolayer of protein molecules can form 

immunocomplexes to the surface-bound IgM molecules, the well described 

Langmuir-type isotherm can be used to describe the binding process as follows: 

 

])[1(
][

b

b

PK
PK

+
=θ     (4) 

 

where θ is the fraction of filled effective binding sites and each effective 

binding site refers to one surface bound IgM unit within the channel. [P] is 

concentration of WNV-DIII protein and Kb refers to the equilibrium binding constant 

between IgM and WNV-DIII.  

 

The observed DPV peak signal response was derived from the mass transfer-

limiting oxidation process of the redox probe at the platinum electrode. Under the 

condition in which no formation of immunocomplex occurs within the channel, the 

DPV peak signal response, IIgM is the maximum. In the presence of antigen, the 

formation of immunocomplex within the channel reduces the rate of diffusional mass 

transfer of the redox probe moving through the channels towards the platinum 

electrode under the alumina overlayer [63]. Therefore, it is assumed that each filled 

binding site within the channel causes a proportionally linear incremental decrease in 

the DPV signal response towards the redox probe. Thus, the experimentally 

determined normalized DPV signal response 
IgM

WNVIgM

I
I − can be related to fraction of 

filled binding sites θ  as follows:   
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WNVIgM1
I

I
k −−=θ     (5) 

 

where ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− −

IgM

WNVIgM1
I

I
 is the decrease in the normalized DPV signal and k is 

the proportionality constant. 

 

 

Figure 34. Langmuir fitting of reproducibility plots of WNV-DIII detection (A) 
within a single batch and (B) across different batches of electrodes. Calibration plots 
were obtained using alumina modified electrodes etched for 60 min in 3% phosphoric 
acid. Sensing solution was 1 mM ferrocenemethanol, prepared in pH 6.8 phosphate 

buffer with ionic strength of 1.7 M. Note that 1
1‐β

 =

IgM

WNVIgM1

1

I
I −−

. 

 

From equations (4) and (5), the relation between normalized DPV peak signal 

response and concentration of WNV-DIII protein is expressed as follows: 
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Rearrangement into its reciprocal form gives: 

 

kPkK
I

I
1

][
1

1

1

b

IgM

WNVIgM
+=

− −
  (7) 

 

Figure 34 shows the double reciprocal plots of 

IgM

WNVIgM1

1

I
I −−

against 
][

1
P

 using 

the same experimental data shown in Figure 31. Good linearity with coefficients of 

determination of 0.992 and 0.984 were obtained for all IgM-BSA-alumina electrodes 

within the same fabricated batch and between different batches respectively.  

 

Table 2. K and r2 values obtained from Langmuir plots of WNV-DIII protein 
calibration plots obtained upon variation of different parameters investigated. 

Parameter investigated Variations Kb (1011) k r2 
pH of buffered electrolyte pH 8.2 8.5 0.74 0.981 
 pH 7.6 3.8 1.30 0.962 
 pH 6.8 3.5 1.36 0.993 
  pH 6.2 2.9 1.16 0.986 
     
Ionic strength of electrolyte 1.7M 4.5 1.20 0.974 
 0.5M 0.9 0.81 0.978 
  3.5M 0.3 1.04 0.965 
     
Etching time 0 min 11.7 0.24 0.006 
 30 min 3.5 1.09 0.999 
 45 min 13.4 0.72 0.940 
  60 min 4.1 1.27 0.982 
     
Reproducibility Within batch 3.5 1.36 0.992 
  Across batches 6.0 1.09 0.996 

 

Table 2 summarized the values of Kb and k derived from the reciprocal plots 

under different pH, ionic strengths of electrolyte and etching times of the alumina 



77 
 

overlayer. Fitting of the data obtained from varying etching time, ionic strength and 

pH further supports the selection of 60 min etching time, pH 6.8 and 1.7 M ionic 

strength as the optimal conditions for detection of WNV-DIII utilizing our alumina 

electrode. Data fitting yield linear plots of the highest r2 values of 0.994, 0.993 and 

0.993 within each set of data at 60 min etching time, pH 6.8 and 1.7 M respectively.  

 

3.6. Detection of WNV particles in Blood Serum 

 

 

Figure 35. Comparison of DPV signal response of the prepared immunosensor in the 
detection of WNV particles in 100 mM phosphate buffer (pH 6.8, ionic strength of 1.7 
M) and blood serum. 

 

 In order to evaluate the potential application of the prepared immunosensor in 

real sample detection of WNV particles, determinations were conducted using blood 

serum, instead of phosphate buffered solution. Figure 35 shows the decrease in DPV 

signal response of an IgG-BSA-alumina electrode when applied in viral particles 

detection using spiked blood serum samples. The DPV signal responses obtained for 
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detection conducted in blood serum were very similar to that obtained for detection 

conducted in phosphate buffer, indicating minimal inference from the array of 

proteins present in the blood serum. When DPV signal responses from 3 similarly 

prepared IgM-BSA-alumina electrodes were compared, standard deviations ranging 

from 6% to 15% were obtained in the WNV particles concentration range of 0.03 to 

0.50 PFU mL-1. It was not surprising that the standard deviations obtained was higher 

compared to that achieved when detection was conducted in phosphate buffer (2% to 

6%) due to the presence of a high concentration of other interfering proteins. 

However, the standard deviations were lower than 20%, indicating high selectivity of 

the prepared immunosensor and this is greatly favourable for real sample detection.  

 

4. Conclusion 

 

A membrane-based electrochemical immunosensor, sensitive towards WNV-

DIII and viral particles has been developed. The sensor is based on the principle of 

channel blocking by the protein antigen within a nanoporous alumina matrix.  A low 

detection limit of 4 ng L-1 and 0.02 PFU mL-1 (ca. 2 viral particles mL-1) was achieved 

for WNV-DIII and particles, respectively.  In addition, detection of WNV particles in 

spiked blood serum demonstrated the potential application of the immunosensor in 

real sample detection. The same technique is likely to be applicable to other viral 

proteins and small molecular weight proteins by choosing the appropriate specific 

binding immunoglobulin antibodies and similar electrode fabrication and preparation 

conditions.    
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CHAPTER V 

ELECTROANALYTICAL STUDIES OF IMMUNOGLOBULIN-BOUND 

GLUCOSE OXIDASE 

 

1. Introduction 

 

Development of new methodologies and materials for the immobilization of 

biological molecules is an exciting and important research area in bioanalytical, 

environmental and biomedical applications, including biosensors, bioaffinity 

chromatography, bioreactors, besides being useful for fundamental biochemical and 

biophysical studies [83]. In electrochemical biosensors, a large number of matrices 

have been shown to be suitable for the entrapment of biological molecules [83-85]. 

Typically, biological molecules are entrapped within these matrices by mixing the 

solutions containing biological molecules and the matrix components and 

subsequently applied as a coating over the sensing electrode. Other methods include 

direct physical mixing of the enzyme molecules into electrode materials such as 

carbon paste [86]. Physical entrapment of biological molecules during 

electrodeposition of conductive polymers [87] and metals [88] are also convenient 

single step methods that are rapid and readily controlled.    

 

Monolayers and multi-layers of immunoglobulin G (IgG)  structures have 

been routinely used in enzyme-linked immunoassay analysis (ELISA) and 

electrochemical immunoassay techniques [42-44, 89, 90]. The use of immunoglobulin 

monolayer as immobilization matrix for enzymes is not new and had been applied for 

the detection of glucose in flow injection systems [91, 92]. Glucose oxidase bound to 
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its specific antibody was found to be stable and active [93]. In this work, the enzyme 

activity of surface adsorbed IgG-bound glucose oxidase enzyme using scanning 

electrochemical microscopy was studied and the feasibility of using IgG as the 

immobilization matrix for glucose oxidase (GOx) in an electrochemical biosensor had 

been demonstrated in another thesis [94]. The activity of surface-bound IgG-GOx was 

investigated on two different surfaces – gold and glass. Glucose oxidase enzyme was 

chosen since it is one of the most studied enzymes in enzyme-based biosensors.  

 

1.1. Scanning Electrochemical Microscopy 

 

Scanning electrochemical microscopy (SECM) is a scanning probe 

microscopy technique which relies on faradaic currents to provide information on the 

electrochemical activity of surfaces [95]. An electrochemically sensitive disk 

ultramicroelectrode (UME) probe tip is moved over a surface to monitor the presence 

of redox active species generated by electrochemical, enzymatic or catalytic processes 

occurring at the surface. The current generated at the ultramicroelectrode probe tip is 

monitored either as a function of distance (feedback modes) or held at a potential 

close to the surface in order to detect the surface electrogenerated species (collection 

modes) [95]. In the feedback mode, SECM is useful in probing heterogeneous kinetics 

of surfaces, including enzymes-coated surfaces [96] under the condition in which the 

surface bound redox enzyme oxidizes or reduces a redox mediator in the presence of 

excess amount of enzyme substrate. The rate at which the redox mediator is generated 

at the surface is measured by keeping the ultramicroelectrode probe tip at a suitable 

potential which either reduces or oxidizes the mediator. 
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If the UME probe tip is far (greater than several tip diameters) from the 

substrate, the steady state current depends only on the characteristics of the mediator 

and the electrode itself. The surface does not communicate with the electrode tip and 

the steady-state-diffusion controlled oxidation current iT,∞ of a reduced species is 

given by: 

 

iT,∞ = 4nFDCa 

 

where F is the Faraday constant, n is the number of electrons transferred in the 

tip reaction, D is the diffusion coefficient of reduced species (R), C is the bulk 

concentration of R and a is the ultramicroelectrode radius. At closer distance, the 

surface begins to intercept both redox forms of the mediator. For insulating or non-

reactive substrates, the surface blocks R from diffusing to the probe tip and the 

steady-state current decreases from iT,∞. Currents lower than iT,∞ demonstrate a 

negative feedback communication between the probe tip and the surface. For 

conducting surface poised at a potential sufficient to reverse the tip reaction, the 

substrate intercepts the oxidized mediator species (O) produced at the probe tip and 

reduces it back to R. The probe tip current iT derived from the oxidation of R, will be 

greater than the steady state current iT,∞ due to the regeneration of the reduced 

mediator species R at the substrate surface. This is known as ‘positive feedback’.   

 

Using the feedback mode, an immobilized enzyme regenerates the mediator 

species, R and the rate of the enzyme reaction could be monitored by measuring 

directly the substrate current. For enzymes with high enzymatic activities, the SECM 

current will demonstrate a positive feedback. On the other hand, a slow or hindered 
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enzyme reaction will result in an overall negative feedback response, although this 

negative feedback current is expected to be larger than that observed for a pure 

insulator. At very close distance between the tip and surface where there is 

insignificant lateral diffusion of mediator, the current measured at the probe tip is 

derived entirely from the reduction or oxidation of the redox mediator regenerated at 

the enzyme-coated solid surface. Thus, the heterogeneous kinetics of the surface-

bound enzyme could be derived from the probe tip current.   

 

1.2. Catalysis by Glucose Oxidase 

 

Glucose oxidase catalyses the oxidation of β-D-glucose to D-glucono-δ-

lactone via a multistep reaction. If natural oxygen is used as the mediator, it functions 

as a two electron acceptor and the overall process can be summarised in the following 

equations [97]: 

 

β-D-glucose + glucose-FAD ↔ Glucose oxidase-FADH2 + δ-D-gluconolactone 

Glucose oxidase-FADH2 + O2 → Glucose oxidase-FAD + H2O2 

 

Upon reaction with β-D-glucose, glucose oxidase rapidly forms an enzyme-

substrate complex, followed by an electron transfer that results in the reduction of the 

FAD cofactor to FADH2. This is believed to proceed via a hydride transfer 

mechanism. The second equation oversimplifies the actual mechanism, where the 

reduced glucose oxidase-FADH2 undergoes activation, before being oxidised by 

oxygen and is converted back to glucose oxidase-FAD. Oxygen, itself is reduced to 

hydrogen peroxide and released.  
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Besides natural oxygen, ferrocene derivatives such as ferrocenemethanol have 

also been used to probe the kinetics of glucose oxidase enzyme [98]. When applied in 

SECM studies, there is the continuous regeneration of ferrocene from ferrocinium ion 

by the reduced glucose oxidase enzyme. The reaction sequence is similar to that when 

glucose oxidase reacts with oxygen and is as follows [98]: 

 

β-D-glucose + glucose-FAD ↔ Glucose oxidase-FADH2 + δ-D-gluconolactone 

Glucose oxidase-FADH2 + 2Fecp2R+ → Glucose oxidase-FAD + 2Fecp2R + 2H+ 

2Fecp2R ↔ 2Fecp2R+ + 2e- 

 

The catalytic cycle of glucose oxidase thus replenishes the supply of ferrocene 

to the UME at a faster rate than the diffusion of ferrocene towards the surface of the 

UME, driven by concentration gradient. As a result, the activity of glucose oxidase 

immobilised on a substrate surface can be probed via SECM. 

 

2. Experimental 

 

2.1. Reagents and Materials   

 

The buffer used was 0.1 M KH2PO4/K2HPO4, pH 7.0, prepared from 0.1 M 

KH2PO4 (ACS reagent, 99.0%) and 1 M KOH solutions. D-(+) glucose (99.5%), 

glucose oxidase (GOx, EC 1.1.3.4; from Aspergillus Niger, 215 U mg-1, 186000 g 

mol-1), anti-glucose oxidase (monoclonal antibody produced in mice, 150000 g mol-1), 

ferrocenemethanol (97%) were purchased from Sigma Aldrich and were used as 

received. Solutions containing glucose were prepared at least 24 hr before the 
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experiment to allow complete mutarotation of α- and β-D-glucose. All solutions used 

for electroanalytical studies were prepared using the buffer solution (pH 7.0) and 

deoxygenated with argon.   

 

2.2. Instrumentation 

 

Photometric measurements were performed in 1 cm quartz cell using a 

Shimadzu UV spectrophotometer 2450. A CH instruments (Austin, Texas) model 

900B scanning electrochemical microscope was used to perform the electrochemical 

measurements. pH measurements were carried out using a Metrohm 744 pH meter.  

  

2.3. Methodology 

 

2.3.1. SECM Probe Approach Measurements 

 

Approach curves were obtained using a 10 μm diameter ultramicroelectrode 

(UME) (CH Instruments). The ultramicroelectrode probe tip was first manually 

positioned in contact with the solid substrate surface and subsequently retracted to a 

position of 100 μm above the substrate surface. During approach curve 

measurements, the probe tip was moved at a rate of 2.5 μm s-1 and held at a potential 

of 600 mV versus a silver-silver chloride reference electrode. The run was stopped 

when the UME probe tip had travelled the full distance of 100 μm. Line scans across 

the IgG-bound enzyme spot to measure the enzyme activity at a fixed distance of 20 

μm away from solid substrate surface was additionally carried out. No significant 

difference in the feedback response across the spot, except expectedly at the edge of 
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spot was observed, which confirmed that there was negligible local change in the 

distribution of modified sites within the IgG-bound enzyme spot. All SECM 

measurements were carried out within the first 15 min after the IgG-GO coated solid 

substrate was placed in the solution of the SECM cell.   

 

2.3.2. Preparation of Glass and Gold Substrate 

 

Microscope slides were cut into pieces of 1.5 cm × 0.9 cm and cleaned with 

dichloroethane, ethanol, acetone and finally rinsed with deionized water.  The gold 

substrates used were polished, bounded, mounded 100Å Cr + 1000Å gold crystal (CH 

Instrument). All gold substrates were treated with piranha solution (3:1 volume H2SO4 

to H2O2) at 70°C for 30 seconds before use. 

 

2.3.3. Immobilization of Immunoglobulin G and Glucose Oxidase 

 

  For SECM studies, 0.4 μl of IgG solution was carefully spotted onto a glass 

slide or gold substrate. Physical adsorption of IgG onto the solid substrate was carried 

out for 30 min before rinsing with buffer solution (pH 7.0). 0.4 μl of GOx solution 

was then applied to the IgG spot on the solid substrates to form the IgG-bound GOx 

immunocomplex over a 30 min duration, followed by rinsing.   

 

2.3.4. Measurement of Immunoglobulin G and Glucose Oxidase Surface 

Coverage 
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UV measurements of IgG and GOx solutions of concentrations ranging from 1 

to 4 μg mL-1 were obtained and absorptivity of both proteins were calculated using 

Beer-Lambert law. 2.5 μg mL-1 IgG solution was added into the absorption cell 

containing the solid substrate. The solution’s absorbance was measured at 280 nm 

wavelength before and after 30 min adsorption time. The amount of IgG adsorbed 

onto the substrate surface was calculated from the difference in absorbance before and 

after immobilisation. To measure the amount of GOx bound to IgG, 4 μg mL-1 GOx 

solution was added to the same substrate immediately after the IgG immobilisation 

procedure.  The UV absorbance method for measuring surface coverage was carried 

out for both glass and gold substrates. All surface coverage values on glass substrates 

were subsequently corrected and referenced to the more precise and accurate quartz 

crystal microbalance (QCM) measurements on gold substrate to correct for the loss of 

protein materials during transfer of solution between the adsorption cell and the 

measurement cuvette, besides protein adsorption along the walls of the adsorption 

cell.   

 

QCM measurements of IgG and enzyme surface coverage on gold substrates 

were carried out as follows. A polished, bounded, mounded 100 Å Ti + 1000 Å gold 

quartz crystal was immersed in piranha solution (3: 1 sulfuric acid to hydrogen 

peroxide) for 30 seconds and rinsed thoroughly before use. The gold quartz crystal 

was equilibrated in 0.1 M phosphate buffer solution (pH 7.0) until the frequency 

remained relatively constant. The solution was changed to an IgG solution of 0.5 μg 

mL-1 concentration and the change in frequency was recorded once it reached a 

relatively constant value. Subsequent addition of GOx solution into the adsorption cell 

containing the IgG-coated quartz crystal was carried out to determine the surface 
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coverage of IgG-bound enzyme. The same was repeated for IgG solutions in the 

concentration range of 10 to 150 μg mL-1. 

 

For leaching studies, the gold or glass substrate was first immobilised with 

both IgG-GOx complex using solutions of the same concentrations as described 

above. The substrate was subsequently placed in a 10 mL buffer and aliquots of the 

buffer solution were taken at 10 min intervals from 0 to 90 min for measurement of 

absorbance at 280 nm. As a control, the same procedure was carried out for a gold or 

glass substrate immobilised only with IgG. 

 

3. Results and Discussion  

 

3.1. Apparent Heterogeneous Rate Constant and Turnover Numbers of 

Immunoglobulin G-Bound Glucose Oxidase 

 

 

SECM was used to measure the apparent heterogeneous rate constant k’f, of 

the enzyme-mediator reaction for GOx enzyme bound to surface adsorbed IgG. Gold 

and glass substrate surfaces were used to immobilize the IgG and GOx molecules 

since these surfaces are routinely used for adsorbing enzymes [99-102]. Surface 

adsorbed GOx on gold and glass substrates were similarly attempted but gave highly 

irreproducible results due to significant desorption of GOx during the SECM 

experiments. Figure 36 shows the schematic of the SECM feedback mode used in 

probing a substrate surface physically adsorbed with IgG-bound GOx 

immunocomplex. 
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Figure 36. Schematic of the SECM feedback mode. 

 

The probe tip current responses obtained for an insulating substrate and a 

highly conducting substrate (diffusion-limiting case) derived during SECM feedback 

modes can be described using the following equations, respectively [103]:   
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where IT
c(L) and IT

ins(L) are the normalized ultramicroelectrode probe currents 

for diffusion-controlled regeneration of a redox mediator on a conducting and 

insulating substrate respectively, at a normalized probe tip-substrate separation, L = 

d/a; d is the probe tip-substrate separation and a is the ultramicroelectrode radius. 

Between these two extremes, the steady-state feedback current response is limited by 

the substrate current Is
k derived from the ‘turnover’ (regeneration) of the mediator at 
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an electrochemically active substrate surface. The magnitude of substrate current can 

be calculated from the difference between the probe tip feedback current response of 

the substrate and an insulating substrate, normalized with respect to the highly 

conducting substrate (diffusion-limiting) case, as follows [103]: 
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 Using equations (8), (9) and (10), Is
k values were derived from the SECM 

approach curves and plotted against normalized distance. Figure 37 shows the 

normalized substrate current Is
k obtained for GOx bound to physically adsorbed IgG 

on both gold and glass substrates, which were of intermediate magnitudes between 2 

and 0.5. This indicates the surface activities of GOx occurred halfway between the 

‘conducting’ (diffusion limited) and ‘insulating’ cases.   

 

  The approximate analytical solutions for heterogeneous reactions over the 

intermediate kinetic region have been described by the following equation [103]: 
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where Λ = k’fd/DR, k’f is the apparent heterogeneous rate constant (cm s-1), κ = 

k’fa/D, DR is the diffusion coefficient of the reduced mediator in water and F(L, Λ) = 

(11/Λ +7.3)/(110-40L).   
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Figure 37. Plots of normalized substrate current against normalized distance, L for 
different concentrations of (A) ferrocenemethanol mediator and (B) IgG for glucose 
oxidase enzyme bound to surface adsorbed IgG on gold and glass substrates. 
 



91 
 

  The curves in Figure 37 were fitted to equation (11) using non-linear 

regression in order to find the heterogeneous rate constant, k’f, for 0.5 ≤ L ≤ 1.5. Table 

3 presents the best fitted k’f values for GOx bound to surface adsorbed IgG on gold 

and glass substrates.   

 

To find the turnover number of the mediator under saturated enzyme 

concentration condition, the substrate current, Is
k was first expressed as the rate of 

production of the reduced form of mediator (dcR/dt) by the enzyme-mediator reaction 

under steady-state condition [95]. The rate of production (in mol cm-2) of the reduced 

form of mediator by the enzyme-mediator reaction can be derived from the 

generalised steady-state two-reactant enzyme rate equation for a heterogeneous 

reaction, as follows [95]:  
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where the kinetic constants KM are the corresponding Michaelis-Menten 

constants for glucose (glc) and oxidized mediator (O). kcatΓenz represents the 

maximum rate for the enzyme-mediator reaction, where kcat is the maximal turnover 

number of the immobilized enzyme GOx and Γenz is the surface coverage of the 

enzyme.   
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Under condition of large excess glucose concentration, the two-reactant rate 

equation is reduced to the Michaelis-Menten type expression [104, 105]: 
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These kinetic parameters in the generalized enzyme kinetics, equation (14), 

were compared with the corresponding apparent heterogeneous rate constants k’f 

derived from SECM data. For example, equation (14) reduces to 
M,O
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where k’f = (kcatΓenz)/KM,O for first order reaction when cO << KM. Thus, the turnover 

numbers for the enzyme-mediator reaction of GOx bound to IgG adsorbed on gold 

and glass substrates could be derived (Table 3). The turnover numbers of the IgG 

immobilized enzyme, kcat ranged from 475 to 740 s-1 and 103 to 354 s-1 for gold and 

glass substrate respectively. However, it was not possible to measure the kinetics of 

surface adsorbed GOx in the absence of IgG due to significant desorption of GOx 

from the substrate surfaces during the experiments. In comparison to the turnover 

number of unbound GOx in the presence of natural mediator, O2, the turnover 

numbers of surface bound IgG-bound GOx immunocomplexes on gold and glass were 

lower than that of the native enzyme (800 s-1) [106]. In a previous work [94], it was 

demonstrated that the second order homogeneous rate constant kS for the reaction 

between Medox and GOx was lower for IgG-bound GOx compared with free GOx.  

 

This trend was consistent with several studies in which the turnover numbers 

of immobilized enzymes were significantly lower than that of the native enzyme [92, 

95, 96, 107]. For example, Bard observed a kcat value that was 3 orders of magnitude 
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lower than the intrinsic kcat value for solubilised GOx, when they immobilized GOx 

within hydrogel membranes [95]. In another study involving urease, kcat value of the 

entrapped enzyme was 70-fold lower than that of the solubilised enzyme [108]. 

Enzyme turnover number of sol-gel encapsulated alcohol dehydrogenase was 

drastically reduced to 1.8 × 102 s-1, from a reported kcat value of 8.4 × 105 s-1 for the 

same enzyme/cofactor/substrate system in a pH 9 buffered solution [107]. The same 

was observed for bovine carbonic anhydrase II encapsulated in sol-gel silica glass 

[109].  Its turnover number diminished to ca. 2% of the corresponding value for the 

dissolved enzyme, upon entrapment. It has been suggested that the smaller turnover 

number may be due to deactivation of the enzyme during the immobilization and 

chemical modification of additional functional groups [96].  

 

Another possible reason for decreased enzyme activity could be caused by 

random orientation of the enzyme on the electrode surface, leading to blocked binding 

site of the enzyme which prevented access for the enzyme substrate [92]. In contrast, 

the lowest turnover numbers of IgG-bound GOx physically adsorbed on gold and 

glass substrate were 60 % and 10 % of the turnover number of native enzyme 

respectively, whereas the highest turnover number was ca. 90 %. Similarly, the 

homogeneous rate constant ks of IgG-bound GOx was ca. 25% of the ks value of free 

GOx measured using cyclic voltammetry described elsewhere [94]. These changes in 

the kinetic parameters were much less significant compared with those observed for 

other immobilization methods. 
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Table 3. Average apparent rate constants and turnover number for heterogeneous 
glucose oxidase-mediator reaction at different concentrations of mediator and IgG. 

Substrate [FeMeOH]/ 
mM 

Apparent rate 
constanta 
k’f/ cm s-1 

%RSD 
Turnover 
numberb,c 

kcat / s-1 
%RSD 

Gold 0.5 1.38 × 10-2 3.1 479 15.3 
 1 1.38 × 10-2 3.1 480 15.3 
 2 1.37 × 10-2 2.9 475 15.3 

Glass 0.5 3.30 × 10-2 2.0 206 20.3 
 1 3.17 × 10-2 8.1 196 21.7 
 2 5.69 × 10-2 2.6 354 20.4 

Substrate [IgG]/ μg mL-1 
Apparent rate 

constanta 
k’f/ cm s-1 

%RSD 
Turnover 
numberb,d 

kcat / s-1 
%RSD 

Gold 50 1.01 × 10-2 8.1 352 17.1 
 100 1.44 × 10-2 2.0 499 15.2 
 150 2.13 × 10-2 2.0 740 15.1 

Glass 50 1.29 × 10-2 2.6 103 20.3 
 100 1.31 × 10-2 2.6 104 20.3 
 150 1.35 × 10-2 3.1 108 20.4 

aApparent rate constants are obtained by fitting values of Is
k and L to equation (11) using 

non-linear regression. Refer text for details. Diffusion coefficient of ferrocenemethanol = 
7.25 × 10-6 cm2 s-1.  
bTurnover numbers were calculated from where KM = 50.3 μM [110].  
cΓenz(gold) = 1.5 (± 0.2) × 10-12 mol cm-2 and Γenz(glass) = 6.3 (± 1.3) × 10-12 mol cm-2.   
dΓenz(gold) =  0.8 ± 0.1 × 10-12 mol cm-2, 1.5 ± 0.2 × 10-12 mol cm-2 and 2.1 ± 0.3 × 10-12 
mol cm-2 for 50, 100 and 150 μg mL-1 IgG respectively,  and Γenz(glass) = 6.3 (± 1.3) × 
10-12 mol cm-2 for all three IgG concentrations. Surface coverage of IgG-bound GOx on 
gold surfaces were determined using quartz crystal microbalance (CH Instruments). UV 
absorbance measurements carried out on protein solutions before and after adsorption, 
were used to determine the surface coverage of IgG-bound GOx on gold and glass 
substrates. Enzyme surface coverages on glass substrates were subsequently corrected 
using the QCM measurements on gold substrate as reference.   

 

  Table 3 shows that the apparent heterogeneous rate constant k’f remained 

constant for the gold substrate, but increased for the glass substrate as the mediator 

concentration increased. It was not surprising that mediator concentration did not 

affect k’f for the gold substrate since the Michaelis-Menten constant for the oxidized 

mediator KM,O (50.3 µM) [111] was at least ten times smaller than the mediator 

concentrations used in the experiments. Conversely, the increase in k’f values for glass 
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substrate under varying mediator concentration indicated that the enzymatic reaction 

was limited by the enzyme-mediator reaction. It is known that a densely-packed IgG 

monolayer gives a surface coverage ranging from 200 to 550 ng cm-2, depending on 

orientation of IgG molecules [112]. In addition, for the IgG-bound GOx adsorbed on 

gold and glass substrates, the amount of enzyme bound to one molecule of IgG was 

between 0.8 to 1.2, determined using quartz crystal microbalance (CH Instruments) 

and UV-visible spectroscopy. Therefore, the enzyme surface coverage on gold (1.5 (± 

0.2) × 10-12 mol cm-2) and glass (6.3 (± 1.3) × 10-12 mol cm-2) substrates corresponded 

closely to one monolayer coverage and 1-6 times monolayer coverage of IgG on gold 

and glass, respectively.  

 

  It was possible the amount of GOx molecules oxidized by the mediator during 

the SECM measurements was limited by the amount of mediator molecules entrapped 

between the UME probe tip and substrate, due to slow diffusion of mediator with the 

multilayer IgG-bound GOx structure on glass substrate. The effect of slow diffusion 

on the kcat values was estimated by calculating the diffusion coefficient of the 

mediator within the IgG multilayer structure as follows. A diffusion term kd was 

added into equation (14) in the reciprocal form and subsequent comparison with the 

substrate current gave the relation: 

 

OM,
d

enzcat

enzcat
f'

K
k
Γk

Γkk
+

=     (15) 

 

  for a pseudo first order reaction when cO << KM where kd is the diffusion rate 

constant of mediator comprising the solution diffusion (kd,soln) and diffusion within the 
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IgG-GOx multi-layer film (kd,film) in the form of 
filmd,solnd,

filmd,solnd,
d kk

kk
k

+
= . Using equation 

(15), the values of kd were found in the range of 0.07 to 0.08 for all mediator and IgG 

concentrations obtained on glass substrates except when the mediator concentration 

was 2 mM, kd was significantly higher at 1.2. From the kd values and an approximated 

90 nm thick IgG multi-layer structure (assuming 6 IgG layers and each IgG layer was 

ca. 15 nm thick), the diffusion coefficient of mediator within this IgG multi-layer 

structure was estimated to be 6.1 (± 1.2) × 10-7 cm2 s-1. This compares favorably with 

magnitudes of reduced diffusion coefficients of ferrocene derivatives in polymer films 

[113]. The large kd value obtained in the 2 mM mediator concentration clearly 

indicates a non-mass transport limiting process at high mediator concentration. It is 

likely at the high mediator concentration, more GOx molecules could be accessed by 

the mediator molecules within the multilayer structure during SECM measurements. 

   

  In contrast, as the IgG concentration increased from 50 to 150 μg mL-1, k’f 

values for gold substrate increased, but remained constant for glass substrate. The 

amount of IgG loading on both gold and glass substrates was measured using quartz 

crystal microbalance (QCM, CH Instruments) and UV absorbance. QCM results 

showed that as IgG concentration was increased from 0.5 to 150 μg mL-1, the amount 

of IgG loaded onto the gold surface increased from 3.3 (± 0.4) x 10-14 to 1.5 (± 0.2) x 

10-12 mol cm-2, in the regime of sub-monolayer to monolayer coverage. However, UV 

absorbance measurements of IgG solutions before and after adsorption of IgG on 

glass substrates revealed the amount of adsorbed IgG remained constant at ca. 6.3 (± 

1.3) × 10-12 mol cm-2, which was in the regime of multilayer coverage. It was possible 

the enzyme-mediator reaction for the gold substrate was limited by the low surface 
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loading of GOx due to sub- and monolayer coverage of IgG. Thus, the k’f values for 

surface bound IgG-GOx immunocomplexes on gold substrate increased at higher IgG 

concentrations. It was equally possible that the difference between the trends in k’f 

values for gold and glass substrates could arise from differences in surface roughness. 

It has been demonstrated that surface roughness could influence the kinetics of protein 

loading, hence the amount of protein adsorbed [114, 115]. In addition, under 

situations of high surface roughness, close-packing of IgG may not always apply 

[115].   

 

In the following, the value of second order homogeneous rate constant kS 

obtained from cyclic voltammetry experiments [88] was compared with apparent 

heterogeneous rate constant k’f derived using SECM for the gold substrate. It should 

be noted that there is a mistake in the reported values in reference [88] due to using v 

in unit of mV s-1, instead of V s-1.  Recalculation of kf using the correct slope relation 

of kfRT/nF and in unit of V s-1 gives kS for free GOx (1.0 (± 0.05) x 104 L mol-1 s-1) 

and IgG-bound GOx (2.4 (± 0.05) x 103 L mol-1 s-1) at pH 7.0 and 25 0C. Assuming 

the IgG-bound GOx enzyme activity remained unaffected by physical adsorption of 

IgG-bound GOx on the solid substrates, the hypothetical heterogeneous rate constant 

k’f (hyp) can be obtained using k’f (hyp) = ГenzkS.  The k’f (hyp) value of IgG-bound 

GOx derived from kS was 3.6 (± 0.1) × 10-6 cm s-1 using the experimentally 

determined value of Гenz on gold substrate (1.5 (± 0.2) × 10-12 mol cm-2). Interestingly, 

this k’f (hyp) value was significantly less than the heterogeneous k’f values at Table 3, 

obtained from SECM measurements. This strongly suggests the enzyme-mediator 

reaction rate of IgG-bound GOx was influenced by the surface adsorption of IgG to 

the solid substrate.  It was likely the surface adsorbed IgG molecules were not all 



98 
 

arranged via end-on arrangement, so some of the IgG-bound GOx enzyme could 

interact with the solid substrate surface [116]. It is known that GOx undergo 

conformational changes when bound to solid substrate surfaces [99]. Similar to other 

enzymes, changes in their secondary and tertiary structures upon surface adsorption, 

could lead to changes in the enzyme kinetics [117-120]. 

 

In order to determine whether the IgG-GOx adsorbed layers on gold and glass 

substrates were stable over long time, desorption of the IgG-GOx complexes from the 

substrates was monitored using UV-visible spectroscopy. The gold or glass substrate 

was first immobilised with IgG-GOx complex, rinsed and subsequently immersed in 

phosphate buffer. Buffer aliquots were subsequently obtained at 10 min intervals and 

the absorbance was measured. No desorption of the GOx enzyme or IgG-GOx 

complex occurred during the first 20 min. Between 20 to 30 min, rapid leaching of 

GOx enzyme or IgG-GOx complex from the IgG-GOx coated glass and gold 

substrates were observed. At longer period from 40 to 90 min, the absorbance of the 

buffer aliquot reached a constant plateau value, which indicated no further leaching 

after 40 min. The same trend was observed for both IgG coated gold or glass 

substrates. The absorbance values obtained after 40 min for the IgG-GOx coated 

substrates were ca. 2 times more than the controls with only IgG coated substrates as 

expected since the IgG-GOx complex and IgG were desorbed respectively. SECM 

measurements confirmed that the IgG-bound GOx on both gold and glass substrates 

remained active at the end of 90 min immersion time in pH 7 phosphate buffer when 

no further leaching occurred. The apparent heterogeneous rate constant, k’f values for 

gold and glass substrates after 90 min immersion in buffer solution were 5.38 × 10-3 

and 5.29 × 10-3 cm s-1 for gold and glass substrates. The corresponding turnover 
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numbers (kcat ) for gold and glass substrates calculated using the lower surface 

coverage values after leaching, were 373 (± 65) and 127 s-1 (± 28) respectively.   

 

3.2. Glucose detection 

 

To find out whether the surface adsorbed IgG-bound GOx immunocomplexes 

on electrode could function as a glucose sensor, the current response of a glucose 

sensor prepared using a home-made gold electrode (electrode diameter = 0.01 mm) 

and physically adsorbed with IgG-bound GOx immunocomplexes was measured as 

shown in another thesis [94] (Figure 38A). In addition, the current response of the 

IgG-bound GOx electrode was compared with another electrode fabricated using 

covalently attached IgG, subsequently bound with glucose oxidase enzyme. A control 

electrode using surface adsorbed GOx without IgG was similarly prepared. All three 

electrodes gave current response towards glucose. Curve fitting of all three current 

response curves gave apparent Michaelis Km(glucose) value of 7 (± 1), 13 (± 1) and 

99 (± 3) mM for physically adsorbed GOx, physical adsorbed IgG-bound GOx and 

covalently immobilized IgG-bound with GOx (Figure 38B). Apparent Michaelis 

Km(glucose) values obtained for physically adsorbed GOx and adsorbed IgG-bound 

GOx were lower than the reported value for free enzyme from A. Niger [121]. This 

clearly indicates the immobilized GOx via surface adsorbed IgG was non-denaturing 

[122]. The Km(glucose) value for covalently immobilized IgG-bound with GOx was 

significantly higher, suggesting the covalently immobilized IgG could have affected 

the enzyme characteristics in which the GOx became less responsive towards low 

concentration of glucose.   

 



100 
 

 

Figure 38. (A) Steady-state amperometry obtained at a glucose sensor prepared using 
GOx bound to a monolayer of IgG adsorbed on gold electrode. 2.0 mM D-glucose 
was successively added to 0.5 mM ferrocenemethanol solution in 0.1 M pH 7.0 
phosphate buffer and the sensor potential was held constant at +0.35 V. (B) Sensor 
response towards glucose for electrodes coated with (♦) GOx directly adsorbed on 
gold, (■) GOx bound to monolayer of IgG adsorbed on gold substrate and (▲) GOx 
bound to monolayer of IgG covalently bound to gold substrate.  The solid lines are 
best fitted curves to the generalized Michaelis-Menten type equation for biosensor 
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]glc[
]glc[

ii
m,glc

cat
0 +
=−

K
k  using non-linear regression.  i is the peak current response obtained 

using cyclic voltammetry and i0 is the peak current response at zero concentration of 
glucose.  kcat is the enzyme turnover number, [glc] is the concentration of substrate, 
glucose and Km,glc is the apparent Michaelis constant.   

 

4. Conclusion 

 

SECM studies indicated turnover numbers of 475 to 740 s-1 and 103 to 354 s-1 

for IgG-bound GOx adsorbed on a gold and glass substrate respectively, using 

ferrocenemethanol as mediator. IgG was also successfully applied as an alternative 

immobilization method for GOx in a glucose biosensor. The same approach is 

potentially applicable in other enzyme-based biosensors. 
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CHAPTER VI 

CONCLUSION AND FURTHER RESEARCH 

 

The major portion of this thesis dealt with the fabrication and development of 

an alumina membrane-based immunosensor. In the first section, the anodization of 

aluminum to alumina is described and explained. Alumina electrodes were fabricated 

using two different techniques, namely sub-surface and pipette anodization. Results 

from electrochemical studies and scanning electron microscopy (SEM) studies 

supported the construction of a barrier layer free alumina membrane on the home-

made platinum wire electrode tips using the developed, novel pipette anodization 

technique. This is significant since the absence of a barrier layer will allow redox 

probes to reach the platinum wire electrode surface beneath the membrane and 

facilitate rapid electron transfer. In addition, barrier layer free alumina membranes 

formed using this technique can be used directly for electrodeposition of materials 

such as carbon, gold and platinum, for the fabrication of electrode nanoarrays and 

nanotubes. The step involving the removal of alumina barrier layer can be omitted, 

thus reducing the amount of work required.  

 

The alumina modified platinum disk electrodes were subsequently used to 

develop immunosensors, specifically detecting glucose oxidase. The fundamental idea 

is to immobilise a sub-monolayer or monolayer of immunoglobulin G along the 

nanochannel walls of the porous alumina, followed by the immobilization of bovine 

serum albumin (BSA) to block unspecific adsorption sites. After which the alumina-

modified platinum disk electrode was used for antigen detection, in the presence of 

the redox probe. Upon binding the complementary antigen to the immunoglobulin G, 
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formation of the antigen–antibody (Ag–Ab) complexes blocked the approach of 

ferrocenemethanol towards the exposed platinum surface beneath the porous alumina 

layer and the extent of blockage was measured using differential pulse voltammetry.  

This resulted in a signal-off immunosensor, where the signal response decreases as 

the concentration of analyte increases.  

 

However, no more than 100% of the signal can be suppressed by target 

binding in a signal-off immunosensor and hence, the dynamic range of the sensor is 

limited. This can be overcome by the use of a sandwich assembly system, commonly 

applied in immunoassays as well as other various biosensors [123-125]. In this 

system, the antigen is bound to a secondary antibody after binding to the first 

antibody, immobilised onto the sensor substrate. The secondary antibody is usually 

conjugated to an enzyme and the reduction of the appropriate enzyme substrate added 

into the system will generate side products, which can be detected electrochemically 

or optically [126, 127]. The amount of reaction product detected can subsequently be 

related to the concentration of antigen present for quantitative analysis. A more direct 

method would to employ of a secondary antibody conjugated to a light sensitive or 

fluorescent molecule and making use of a optical detection system [128]. 

 

Nevertheless, the developed signal-off immunosensor demonstrated high 

selectivity for glucose oxidase and control experiments confirmed the reliability of the 

detection scheme. A low detection limit of 100 ng mL-1 was achieved for glucose 

oxidase and this was 100 times lower than those provided by commonly used 

immunoassay techniques. The successful development of this immunosensor 

prompted further application for the determination of West Nile Virus domain III 
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protein and West Nile viral particles. A 60 min etched alumina electrode was found to 

exhibit the most sensitive response and most effective blocking effect. The optimal 

sensing solution was found to be 100mM phosphate buffer of pH 6.8 and ionic 

strength of 1.7 M. The same experimental conditions were used, when the prepared 

immunosensor was employed for the detection of West Nile Viral particles, which is 

usually detected using reverse transcription polymerase chain reaction (RT-PCR) 

techniques [71, 129]. A low detection limit of 7 ng mL-1 and ca. 3 viral particles mL-1 

were found for both West Nile Virus domain III protein and viral particles, 

respectively. The determination of West Nile viral particles in blood serum was also 

conducted and results indicated minimal interference from the wide array of protein 

existing in the serum. The high selectivity of the developed immunosensor is again 

demonstrated and the immunosensor can potentially be applied in real sample 

detection. However, the results should be compared to an established technique such 

as enzyme-linked immunosorbent assay (ELISA) to ensure high accuracy of the 

results. Due to the difficulties encountered in culturing WNV-DIII protein and WNV 

particles as well as time constraints, ELISA was not conducted currently and may be 

possible in the near future. 

 

Work is on-going to investigate the mechanism or real-time effect of the 

blockage of the alumina nanopores by the antibody-antigen immunocomplex, which 

subsequently hinders the pathway of the redox probe to the electrode surface for 

redox processes. 60 min etched alumina electrodes were demonstrated to be the most 

effective and sensitive for detection of glucose oxidase, West Nile Virus domain III 

protein and West Nile viral particles. However, the extent of blocking differs for all 

three types of analytes and real-time studies of binding of the antigen to the antibody 



105 
 

should shed some light on the intrinsic behaviour of the antibody-antigen binding as 

well as the effect of immunocomplex formation on the diffusional behaviour of redox 

probe, ferrocenemethanol into the alumina nanochannels. Continuous collection of 

differential pulse voltammetry data during the 30 min allowed for antibody-antigen 

binding did not reveal much information about the blocking process. Thus, other 

similarly sensitive techniques have to be employed. It is aim to make use of AC 

voltammetry for this further work. This technique had been used to probe various 

electron transfer mechanisms [130-135] and should be more suitable for real-time 

studies.  

 

In addition, attempts to remove the immobilised biomolecules from the 

alumina membrane using urea and high concentrations of sodium chloride were futile. 

Given the inability to reuse the alumina electrodes and the high portability of chip 

devices, it would be advantageous to deviate from single electrodes construction and 

develop screen-printed electrodes for the developed immunosensor. The ability to 

include a counter electrode and a reference electrode into the design of such devices 

will eliminate the use of external electrodes. Having all required electrodes 

miniaturised into a single screen-printed electrode can also allow the use of a small 

sample cell and thus drastically reduce the amount of sample required [136, 137]. 

 

In addition, covalent bonding of immunoglobulin molecules to the alumina 

overlayer can be conducted to investigate its effect on the detection of the different 

analytes.  Immunoglobulin’s molecules can also be aligned in a particular direction on 

a substrate by first conducting absorption or covalent bonding of protein A, followed 

by the binding of immunoglobulin to these proteins. Protein A binds to 
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immunoglobulin molecules via its Fc domain, leading its Fab arms free to bind to 

antigen molecules [138]. This approach had been attempted  in the development of 

other biosensors and results proved that the aligned immunoglobulin molecules 

provided higher binding capability, thus conferring higher sensitivity to the sensing 

platforms [138, 139].  

 

Furthermore, if most of the pores of the alumina can be masked such that only 

a few or one nanopores remain exposed to the sensing solution, detection of single 

molecule may be possible. To work toward this direction, attempts were made to etch 

the platinum wire into a fine tip with sodium nitrite, before sealing in epoxy glue to 

construct an ultramicroelectrode of nanometer dimensions. A nanometer disk 

electrode when overlaid with an alumina membrane may be capable for single 

molecule detection, if a nanopore is directly above the electrode surface and the same 

blocking detection scheme is carried out. However, platinum wire etching conducted 

in sodium nitrite was not reproducible and the fine tip breaks off easily before or 

during sealing of the wire in epoxy glue. Polishing of electrode tips manually using 

silica carbide paper to expose the sealed platinum wire, is also not an ideal method to 

construct platinum disk electrodes of similar nanometer dimensions. As such, a 

screen-printed electrode design, mentioned previously, may be more probable and 

useful.  

 

The last section described the use of scanning electrochemical microscopy 

(SECM) to investigate the apparent heterogeneous electron transfer coefficient and 

activity of glucose oxidase bound to immunoglobulin G. Turnover numbers of 475 to 

740 s-1 and 103 to 354 s-1 were obtained for immunoglobulin G -bound glucose 
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oxidase adsorbed on a gold and glass substrate respectively, using ferrocenemethanol 

as mediator. Immunoglobulin G was also successfully applied as an alternative 

immobilization method for glucose oxidase in a glucose biosensor as indicated in 

another thesis. The result of this investigation can complement other sensor studies 

utilising immunoglobulin G-bound glucose oxidase [91, 92] as well as other SECM 

studies involving enzymes [96], in which complete kinetic calculations and data 

analysis is lacking. 
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CHAPTER VII 
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2) Koh Guiwan, Shuchi Agarwal, Cheow Pui-Sze, Toh Chee-Seng, Development 

of a membrane-based electrochemical immunosensor, Electrochimica Acta, 
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