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Summary 

 

Advances in vision research are contributing to the development of image processing. 

Digital communication systems can be optimized by incorporating the perceptual 

properties of the human eye to ensure that the resulting images are more appealing to 

human viewers. 

 

This thesis discusses the relevant properties of the human visual system (HVS) and 

presents a spatio-temporal just-noticeable distortion (JND) model in the discrete cosine 

transform (DCT) domain. The proposed JND model thus incorporates the relatively 

well developed spatial mechanism of the HVS (including luminance adaptation and 

contrast masking) as well as the temporal mechanisms with the aim of deriving a 

vision model which is consistent for both image and video applications. Subjective 

experiments show that the proposed model outperforms the related existing JND 

models, especially when high motion takes place.

  

The JND model facilitates perceptual image/video processing. Based on an improved 

pixel-based JND profile for the image, an image compression scheme for both 

perceptually lossless and perceptually optimized lossy compression have been then 

proposed and discussed. Experiments show that the proposed coding scheme leads to 
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higher compression in the perceptually lossless mode and better visual quality in 

perceptually optimized lossy mode compared with related coding methods. 
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CHAPTER 

                                    1 
Introduction 

 

1.1 Motivation 

Modern design of the visual communication system aims at using the least resources to 

achieve the highest visual quality with respect to the coding constraint (e.g., bit-rate, 

complexity and delay). In most circumstances, the human visual system (HVS) makes 

final evaluations on the quality of images and videos that are processed, transmitted 

and displayed. Thus it is essentially futile to spend significant effort on encoding those 

signals that are beyond human perception. Researchers have already realized the 

importance of considering human visual properties and implemented some of them in 

the existing image/video coding standards. For example, the quantization tables of 

JPEG & MPEG can be adjusted to fit human visual sensitivity [1-5]. 

 

The characteristics of HVS influence the human perception in many aspects. 

Luminance adaptation property explains the fact that it is safer to insert noise into 

low-intensity or high-intensity regions than mid-intensity regions. The contrast 
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masking phenomenon gives good reasons why more distortion can be tolerated in 

texture areas of an image. The contrast sensitivity theory indicates that the human eye 

is actually sensitive to the contrast rather than the absolute intensity of the signal and 

the human perceptive capability highly depends on the frequency of the signal. This 

finding gives sound foundation for assigning a higher quantization step for 

high-frequency component in image/video compression. In video sequences, the 

temporal mechanism can not be ignored. The contrast sensitivity property has its 

extension in the temporal domain and the temporal component interweaves with the 

spatial component for different spatio-temporal frequencies. For example, in the region 

where high motion (high temporal frequency) takes place, details (signals of high 

spatial frequency) are not so crucial for perception; but in the low-motion region, 

detailed information is quite obvious and should be carefully managed. In addition, the 

human eye tends to track moving objects, and this mechanism helps alleviate the 

blurring effect of motion. Only by properly considering the combination effect of those 

factors above can we derive a comprehensive model to predict the perception of HVS.  

 

An effective and convenient way to realize perception-based application is through 

deriving the just-noticeable distortion (JND) map for images or video sequences. JND, 

which accounts for the smallest distortion that the human eye perceives [6], serves as 

the benchmark perceptual threshold to guide an image/video processing task. In image 

compression schemes, JND can be used to optimize the quantizer [7-10] or to facilitate 

rate-distortion control [11]. Information of higher perceptual significance is given 
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more bits and preferentially encoded, so that the resultant image is more appealing. In 

video compression schemes, JND plays more diverse roles. As in image compression, 

JNDs for video can be used to improve quantizers and bit allocation [12,13]; moreover, 

motion estimation can be facilitated with the help of the JND profile [14]. For both 

image and video, objective quality evaluation based on the characteristics of the HVS 

can be achieved by using the JND [15-21].  

 

JND estimation for images has been relatively well developed. However, there has not 

been much work on the study of JND for videos. The majority of the related work has 

been devoted to the evaluation of perceptual error between an original video sequence 

and its processed version [16,18,19,20,21,22,23], without explicit mathematical 

expressions for JND. In fact, JND is a property of video itself, even when no 

processing is performed on it. Therefore, it is meaningful to derive an explicit formula 

for the calculation of JND with any frame in a given video sequence, after 

incorporating the temporal characteristics of the HVS. Furthermore, a stand-alone JND 

estimator for the video signal would facilitate wider and/or more convenient 

applications in visual processing of different nature and constraints.  

 

HVS-based technology is becoming a good tool in the information processing field, 

providing guidance for determining which information should be maintained and 

which can be safely omitted. As more and more psychophysical properties of HVS are 

unveiled, perceptual technology will keep on developing. 
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1.2 Objectives  

This thesis mainly aims at explicit JND estimation based upon the perceptual 

characteristics of the human visual system. An estimator that can be adopted for both 

image and video in the DCT domain is proposed first. This JND model combines the 

effects of eye-movement compensated spatio-temporal contrast sensitivity function, 

luminance adaptation and contrast masking, thus providing a more accurate estimation 

of distortion thresholds than previous models. Secondly, a perceptual image 

compression scheme based on an enhanced pixel-based JND model is proposed. This 

coding method gives an example of how the JND model can be applied to image/video 

processing. 

 

1.3 Contributions 

The contributions of this thesis can be summarized as follows: 

•  Major properties of human perception with regard to the proposed model and 

scheme are explored and investigated, and well-known perceptual models related 

to the proposed JND model are discussed. 

•  A new spatio-temporal DCT-based CSF model, which takes into account the effect 

of eye movement on visual perception, is proposed. The spatio-temporal CSF 

model is combined with luminance adaptation and contrast masking to form a 

complete JND model. Subjective testing shows that our model outperforms 

existing models in JND value prediction, and therefore achieves better noise mask 
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in the image/ video. 

•  According to the different response of the human eye to the distortion in different 

areas (smooth, edge, texture) of an image, a block classification module is adopted 

for contrast masking. Incorporating the more accurately predicted contrast masking 

based on the local texture activity, an improved JND model for the image is 

achieved. This JND model is among the few perceptual models that estimate the 

visual threshold in the pixel domain. 

• Based on the modified pixel-based JND estimator for the image, an image 

compression scheme for both perceptually lossless and perceptually optimized 

lossy compression is proposed. Experiments show that our scheme is effective and 

efficient for both modes compared with related coding schemes. 

 

1.4 Organization 

The thesis is outlined as follows:  

 

Chapter 2 discusses the properties of the human visual system and its contribution to 

human perception. Temporal properties including temporal contrast sensitivity function, 

temporal masking and eye movement effect are presented in detail because of their 

importance to the proposed perceptual model. 

 

Chapter 3 presents several models of the human visual system particularly those 
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spatio-temporal contrast sensitivity function (CSF) models and just-noticeable 

distortion (JND) models for images, because they are the basis for our proposed JND 

model. The human vision models designed for video applications have also been 

summarized in this chapter. 

 

Chapter 4 shows the design of the proposed JND estimation model. Firstly, the eye 

movement compensated spatio-temporal CSF is elaborated because of its essential role  

in the calculation of JND calculation. Secondly, luminance adaptation and the 

improved contrast masking scheme are included to derive a comprehensive model for 

JND estimation. 

 

Chapter 5 gives the experimental results and discussions for the model validation.  

The proposed model is compared with related existing JND estimators by specially  

designed experiments. 

 

Chapter 6 introduces a modified version of a pixel-based JND model for the image. 

Based on the JND model, a perceptual image compression scheme is designed for 

both perceptually lossless and perceptually optimized lossy compression. Experiments 

are conducted to show that this human vision based coding scheme is superior to the 

traditional coding scheme (without perceptual consideration) for both modes. 

 

Chapter 7 concludes the thesis with discussions and suggestions for the future research  

 6



 

endeavors.
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CHAPTER 

                                    2 
Perceptual Characteristics of Human Vision 

 

2.1 Introduction 

The working of the human visual system (HVS) can be divided into two stages: lower 

level processing and higher level processing. Lower level processing involves the 

functions of the optics, retina, lateral geniculate nucleus, and striate cortex, while 

higher level processing incarnates more complex mechanism such as attentive vision, 

Gestalt and figure/ground effects [24]. Since higher level processing elements are not 

understood well enough and their effects are not that predictable as those in lower level 

processing stage, current HVS models mostly focus on the simulation of lower level 

mechanisms. The effective application of these models justifies the approximation. 

 

In general, the basic elements that influence the visual sensitivity include contrast 

sensitivity function (CSF), luminance adaptation and contrast (texture) masking. For 

video applications, temporal properties such as temporal CSF and temporal masking 

can be added. In this chapter, these spatial and temporal mechanisms of the early-stage 
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human perception as well as their roles in perception will be discussed. 

2.2 Contrast Sensitivity Function 

The contrast sensitivity function (also called the modulation transfer function) 

demonstrates the varying visual acuity of the human eye towards signals of different 

spatial and temporal frequencies. Instead of the absolute intensity of signal, the human 

eye responds to contrast. In psychophysical experiments, the threshold contrasts are 

measured for viewing traveling sine wave gratings (Figure 2.1) at various spatial 

frequencies and velocities (the standing sine waves can be regarded as traveling waves 

at 0 velocity and counterphase flicker stimuli can be decomposed into two opposing 

traveling waves [10]). The contrast sensitivity function (CSF) is defined as the inverse 

of this measured threshold contrast.  

 

 

Figure 2.1 Illustration of traveling sine wave gratings [25] 

 

Spatial contrast sensitivity function, as shown in Figure 2.2, describes the influence of 

the spatial frequency on visual sensitivity. The parabola curves show that the human 

eye has different acuity for different spatial frequency. Specifically, the acuity for high 

spatial frequencies is comparatively low. This fact has been utilized to design 
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perceptually optimized coding schemes where few bits are given to high spatial 

frequency components. In the measurement of the contrast sensitivity, it should be 

noticed that spatial frequencies are in units of cycles per degree of visual angle [24]. 

This implies that the contrast sensitivity function also varies with the viewing distance. 

For instance, the imperceptible details of an image may become visible when the 

viewer moves closer to it. Therefore, a minimum viewing distance needs to be clarified 

when a visual model is derived. Strictly speaking, the HVS is not perfectly isotropic 

and orientation has some adjustive effects on CSF [24]. However, for a visual model, 

isotropic assumption can be a rational approximation. 

 

 

Figure 2.2 Typical spatial contrast sensitivity function [26] 

 

Another notable factor that affects the CSF is the background luminance. We define it 

as luminance adaptation and will discuss it in details in Section 2.3.  
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In non-static scenarios, the temporal frequency plays an indispensable role in shaping 

contrast sensitivity. Not only the levels but also the shapes of the spatial CSF change 

with different temporal frequencies. Figure 2.3 and 2.4 illustrate a well-known 

spatio-temporal CSF model by Kelly [27]. As can be seen from these two figures, at 

low temporal frequencies, the contrast sensitivity curve holds a band-pass shape; while 

at high temporal frequencies, the contrast sensitivity curve holds a low-pass shape. It 

can also be observed that the sensitivity of the eye decreases with the increase of 

spatial and temporal frequencies.  

 

 

Figure 2.3 Spatio-temporal contrast sensitivity surface 
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Figure 2.4 Spatial contrast sensitivity curves at different temporal frequencies 

 

Kelly [27] measured his spatio-temporal CSF surface under the condition that eye 

movements were strictly controlled. However, in practice, eye movements can have 

important effects on the perceptual threshold and should not be ignored in the vision 

modeling. Based on Kelly’s stabilized spatio-temporal CSF model, Daly (1998) [10] 

built an eye movement model and applied it to an improved CSF model which is valid 

for unconstrained natural viewing conditions. More details of eye movement will be 

explored in Section 2.5 and Daly’s model will be elaborated in Chapter 3. 

2.3 Luminance Adaptation 

The human eye operates over a large range of light intensities. Luminance adaptation 

refers to the visual sensitivity adjustment for different light levels. Since the HVS is 

sensitive to the luminance contrast rather than the absolute luminance, the luminance 
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adaptation is usually modeled by measuring the increment threshold or contrast against 

a background of certain luminance. Figure 2.5 illustrates this mechanism. 

 

 

Figure 2.5 Description of luminance adaptation [28-30] 

Generally, the working of the mechanism can be divided into four sections [29]:  

- Dark light  

- Square Root Law (de Vries-Rose Law)  

- Weber's Law  

- Saturation  

In the “dark light” section, the sensitivity is limited by the internal noise of the retina 

so that the increment threshold remains the same without depending on the background 

luminance variance. In the “saturation” region where the background intensity is high, 

the slope of curve in Figure 2.5 begins to increase rapidly, which means that the eye 

becomes unable to detect the stimulus. The “square root law” (de Vries-Rose law) 

region involves a complex mechanism, the details of which can be found in [31]. 

Compared with the three sections above, “Weber’s law” demonstrates a more 
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important aspect of our visual system, because it operates at a moderate background 

luminance which is a more common viewing environment. Weber’s law refers to the 

phenomenon that the threshold contrast remains the same regardless of ambient 

luminance. This contrast constancy property can be mathematically expressed as:  

C = ∆L/L                                (2.1) 

Where the threshold contrast C is a constant. ∆L is the luminance offset on a uniform 

background luminance L. Only when ∆L is greater than C⋅L can it be perceived by 

human eye. 

2.4 Masking Phenomenon 

In general, masking occurs where there is a significant change in luminance. For 

example, spatial masking is obvious at texture areas where the image activity is intense, 

and temporal masking can take place when there is an abrupt change of scene leading 

to a considerable change of intensity. 

2.4.1 Contrast Masking 

Contrast masking (also known as spatial masking) refers to the reduction in visibility 

of one image component (the target) in the presence of another image component (the 

masker) [24]. Generally, we consider two kinds of contrast masking phenomenon: 1. 

inter-band masking: accounts for the masking effect among different subband; 2. 

Intra-band masking: refers to the combined effect of sufficient amount of coefficients 

in the same subband.  
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Figure 2.6 Illustration of typical masking curves. 

For stimuli with different characteristics, masking is the dominant effect (case A). 

Facilitation occurs for stimuli with similar characteristics (case B). 

 

In modeling contrast masking, the detection threshold for a target stimulus is measured 

when it is superimposed on a masker with varying contrast. Pioneer researchers have 

done experiments on this [32,33] and Figure 2.6 illustrates a typical masking curve 

[28]. The horizontal axis (logCM) shows the logarithm of the masker contrast, and the 

vertical axis (logCT) shows the log of the target contrast at detection threshold. CT0 

denotes the detection threshold for the target stimulus without any masker. As shown 

in the figure, there are two cases A and B when the masker contrast is close to CM0. In 

case A, masker and target have different characteristics and there is a smooth transition 

from the threshold range to the masking range. While in case B, the masker and target 

share similar properties and the facilitation effect occurs: the target is easier to be 

perceived due to the masker in this contrast range. Masking is strongest when the 
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interacting stimuli have similar characteristics, i.e. similar frequencies, orientation, 

colors, etc. [28].  

 

In practical image/video applications, the extent of contrast masking depends on the 

local intensity activity of the image. For example, it has been found that the HVS 

sensitivity to error is generally high in smooth, or plain areas, and low in the texture 

area [34]; while the sensitivity for edge areas lies in between. Contrast masking 

explains the fact that similar artifacts are visible in some areas of an image but can not 

be detected in other places.  

 

In the design of a vision model, contrast masking is usually locally calculated as an 

elevation factor for the base threshold that is determined by contrast sensitivity and 

luminance adaptation [3,35,36].  

2.4.2 Temporal Masking 

Temporal masking occurs because of the temporal discontinuities in intensity, for 

instance, scene cuts. It has been found that with the increase of interframe luminance 

difference, the error visibility threshold is increased [1,37]. Specifically, after the scene 

change, the perceived spatial resolution is reduced significantly immediately and this 

phenomenon will last up to 100ms [38]. Because of the difficulty in predicting 

temporal masking, very few models have taken it into account. In Watson’s digital 

video quality metric (DVQ) model [39], temporal masking is incorporated in its 
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masking step with a construction of a temporally filtered masking sequence. Moreover, 

as indicated by Lucas etc. [40], the occurrence of temporal masking is also related to 

the spatial activity of the frame: the temporal masking is more applicable in areas of 

high details than smooth areas. 

2.5 Eye Movement  

As discussed in Section 2.2, the spatial CSF changes with different temporal 

frequencies. Because of the inconvenience of measuring the temporal frequency, the 

dependence of spatial acuity on temporal frequencies can be studied through exploring 

the relationship between the spatial sensitivity and the velocity of the image traveling 

across the retina [10,27,41]. It should be noted that this retina velocity of the human 

eye is different from the image plane velocity, due to the effect of the eye movement.  

 

Generally, three types of eye movements are considered in the vision research [10,42]. 

They are the natural drift eye movements, the smooth pursuit eye movements and the 

saccadic eye movements. The natural drift eye movements are also referred to as 

involuntary fixation mechanism, which is responsible for perception of static imagery 

during fixation and helps lock the eyes on the object of interest. The saccadic eye 

movements (voluntary fixation mechanism) account for the behavior of the eye to 

rapidly relocate the fixation point on object of interest. The smooth pursuit eye 

movements (SPEM) occur when the eye is tracking a moving object [10]. This 

mechanism is especially significant in that it compensates the loss of sensitivity due to 
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motion. Fast moving objects tend to blur the image, however, SPEM reduces the 

object’s velocity from the image plane to retinal so that image spatial resolution 

actually doesn’t suffer from a substantial reduction in regions of motion. According to 

[41], the function of SPEM can be summarized as:  

(1) maintaining the object of interest in the area of highest spatial acuity of the visual 

field, and  

(2) minimizing the velocity of the image across the retina by matching eye velocity to 

image velocity.  

 

The execution of the three types of eye movements relies on the target velocity, and the 

relationship between them is shown in Table 2.1. 

 

Table 2.1 The relationship between target velocity and the type of eye movement 

target velocity 
(deg/sec) 

0.8 – 1.5 1.5 – 80 > 80 

type of  
eye movements 

the natural drift eye 
movements 

the smooth pursuit 
eye movements 

the saccadic eye 
movements 

 

It should be noted that when the target velocity surpasses some limit (e.g. 20-30 

deg/sec as reported [10]), the eye can not perform a perfect tracking (SPEM), thus a 

certain loss of visual sensitivity will be suffered accordingly. Considering this factor in 

modeling the human vision is essential in achieving consistent simulation of human 

perception. 
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In summary, the existence of eye movement leads to the consequence that spatial 

acuity does not directly depend on the image velocity, but on the retinal velocity which 

is influenced by the ability of the visual system to track objects [41].  

 

Incorporating eye movement into modeling vision can be realized in several ways. 

Westen etc. (1997) [43] proposed an eye movement estimation algorithm to 

compensate the contrast sensitivity function, so that not more noise or blur is allowed 

in moderately moving object than in static objects. Daly (1998) [10] modified Kelly’s 

stabilized CSF by inserting an eye model, through which a relationship is built 

between the retinal velocity and image plane velocity. The improved CSF model can 

fit unconstrained natural viewing conditions and is proved to be more consistent with 

human perception. 

2.6 Pooling 

The preliminary perception of human vision processes the information in various 

channels and then the outputs of these channels are integrated in the subsequent brain 

areas to form vision. The course of gathering the data from different channels 

according to rules of probability or vector summation and calculating them into a 

single number for each pixel of the image, or a single number for the whole image is 

known as pooling [28]. Two well-known mathematical models: the probability 

summation and the vector summation have been proposed for pooling, though the 

nature of this mechanism is still to be explored.  
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The probability summation rule can be summarized as follows: 

 

If there are a number of independent “reason” i for an observer to view the presence of 

a distortion, each having probability Pi respectively, the overall probability P of the 

observer noticing the distortion is: 

                          ∏ −−=
i

iPP )1(1                          (2.2) 

the dependence of Pi on the distortion strength xi can be described by the psychometric 

function: 

 1i
i

ixP e
β

−= −                      (2.3) 

If we set the homogeneity assumption that all βi are equal, (2.2) & (2.3) can be 

combined to form: 

1 ixP e
β−∑= −                         (2.4) 

 

Vector summation (Minkowski summmation) is used to obtain the combined effect of 

several mechanisms. If the individual effects of N mechanisms are represented by xi 

(i=1,...,N), the combined effect x can be shown as: 

1x xiN
ββ= ∑                           (2.5) 

β is a summation constant which can hold different values for different experiments 

and implements [28]. In most studies and applications, β = 2 is found to give good 

experimental results. In some cases, if we assume that high distortion tends to draw 

viewer's attention more than low distortions, β can be set to a higher value to weight 
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the higher distortion more.  

For videos, pooling in both spatial domain and temporal domain are needed. Since the 

perceived distortion in an image sequence is a function of more than just one frame, 

temporal summation accounts for the persistence of the images on the retina and 

should take into account the combination of several successive frames. Commonly, 

100msec is regarded as the delay time of a signal on the retina [44] and the combined 

effect of temporally successive frames can be regarded as imposing a low-pass time 

window on the image sequence. This modeling can also explain the smoothness of 

perceived quality recording in perceptual subjective experiments [45].  

 

The pooling method is actually very flexible and can be determined according to 

individual needs. For example, in order to take into account the focus of attention of 

human observers, spatial summation can be operated on blocks, each of which covers 

two degrees of visual angle (the dimension of the fovea). 

2.7 Summary 

In this chapter, spatial and temporal perceptual properties of human visual systems 

have been particularized. We introduced the mechanisms of contrast sensitivity, 

luminance adaptation, masking phenomenon, eye movement and pooling, based on 

which their relationship with human perception are illuminated. All these 

characteristics discussed above are the fundamentals for deriving the perceptual 

models and they make the preparations for our subsequent discussion. 
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CHAPTER 

                                    3 
Spatio-temporal Models of the Human 
Vision System  

 

3.1 Introduction 

Model of the human visual system (HVS) plays an essential role in perceptual visual 

processing system. As the pertinent and practical simulation of the human vision, the 

perceptual model builds a bridge between vision research and practical applications. 

The human vision models for images have been relatively well developed. In particular, 

several models for estimating the just noticeable distortion of images were proposed.  

 

Pixel-based JND models such as the ones proposed in [37,46,47] basically take into 

account two components: luminance adaptation and contrast masking. In [46], the 

maximum effect between luminance adaptation and contrast masking is used for JND 

estimation, while in [37], luminance adaptation is regarded as the major factor 

affecting JND. The contributions of luminance adaptation and contrast masking are 

accumulated in [47] for a more general pixel-based JND model. In a subband domain, 
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spatial contrast sensitivity function (CSF), luminance adaptation, and contrast masking 

can be incorporated into a JND model [2,3,4,35,36]. An early scheme for the 

perceptual threshold was developed in [2] with DCT decomposition, based upon 

spatial CSF, and was improved into the DCTune model [36] after luminance adaptation 

effect had been added to the base threshold and contrast masking [32,48] had been 

calculated as the elevation factor. More recently, the DCTune model was modified [3] 

with a foveal region being considered instead of a single pixel. The block classification 

for different local structures was introduced in [34] for accounting the contrast 

masking effect. In [35], more realistic luminance adaptation was also considered for 

digital images to fit the empirical parabola curve [49] better (especially in bright and 

dark areas).   

 

Compared with the effort devoted to JND estimation for images, there has not been 

much work on the study of JND for videos. One reason is that more knowledge of 

temporal mechanisms in the HVS is still to be unveiled. Another reason may come 

from the fact that temporal processing within the human eye is not easy to be 

controlled and predicted. The majority of the related work has been devoted to the 

evaluation of perceptual error between an original video sequence and its processed 

version [16,18,19,20,21,22,23], without explicit mathematical expressions for JND. In 

fact, JND is a property of video itself, even when no processing is performed on it. 

Therefore, it is meaningful to derive an explicit formula for the calculation of JND 

with any frame in a given video sequence, after incorporating the temporal 
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characteristics of the HVS. Furthermore, a stand-alone JND estimator for the video 

signal would facilitate wider and/or more convenient applications in visual processing 

of different nature and constraints.  

 

The critical issue in designing a vision model for video is modeling the temporal 

mechanism of the HVS. Therefore, in this chapter, we will first introduce several 

spatio-temporal CSF models for this key task. Then JND models for the image will be 

discussed. In most cases, JND models for the video are actually the extensions of those 

models for the image with the consideration of relevant temporal properties. Finally, 

several practical the HVS models designed for video will be summarized. Besides,the 

temporal properties, these models also incorporate the spatial properties, similarly 

considered in the HVS models for images.  

3.2 Spatio-temporal Contrast Sensitivity Models 

Spatio-temporal Contrast sensitivity is very important for modeling the human visual 

system. Compared with the HVS models for the image, the HVS models for video 

sequences need to also take into account the dependence of the human sensitivity on 

temporal frequencies. So far, this property is best presented by the spatio-temporal 

CSF model. Figure 2.3 shows a classic envelope of visual sensitivity for 

spatiotemporal frequencies. If we cut the 3-D surface at different temporal frequencies, 

we can obtain the 2-D curve of different shapes (Figure 2.4). This corresponds to the 

experimental finding that the spatial contrast sensitivity function has its normal 
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bandpass shape at low temporal frequencies, whereas it gets a lowpass shape at high 

temporal frequencies [50]. Similarly, if we cut the 3-D surface at different spatial 

frequencies, it also can be seen that the temporal contrast sensitivity function has a 

bandpass shape at low spatial frequencies and a lowpass shape at high spatial 

frequencies.  

3.2.1 Fredericken and Hess’ two-temporal-mechanism model [53] 

According to the psychophysical studies of the HVS, it is now believed that the initial 

stage of visual processing involves a series of spatio-temporal filters. Sensitivities with 

respect to the spatial frequencies were substantially explored, while less attention was 

given to the investigation of the temporal mechanism and how it co-varies with spatial 

frequency. In order to find the rationale of the spatio-temporal covariation in the 

human perception, R. F. Hess & R. J. Snowden [52] conducted a parametric 

assessment using a novel temporal masking paradigm evaluating the most sensitive 

temporal properties. Their experimental results suggested that the spatial dependence 

of the temporal surface can be adequately represented by no more than three 

broadband mechanisms. The evidence for the low pass mechanism and a band pass 

mechanism centered at 8 Hz is strong, while the second band pass mechanism is less 

clear-cut. A well-known best-fitting model for the multiple temporal mechanisms was 

proposed by Fredericksen & Hess in 1998. They used an impulse response basis set to 

describe the temporal mechanisms. The complete family of impulse responses is 

generated by taking successive temporal derivatives of a basic impulse response. After 
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undertaking temporal-noise-masking experiments among three subjects, two filters 

were selected from the basis set to give the best succinct data-fitting. Equations (3.1) 

and (3.2) denote the two filters h0 and h2, which correspond to one sustained and one 

transient mechanism, respectively. 

                             
2ln( / )(

0 ( )
t

h t e
τ

σ−
=

)

2

                       (3.1)

                            2
2 0( ) ( ) /h t h t t= ∂ ∂                       (3.2) 

With a typical choice of parameters τ = 160 ms and σ = 0.2, the two filters can be 

described by Figure 3.1 and Figure 3.2 [28].  

 

 

Figure 3.1 Frequency responses of sustained (solid) and transient (dashed) mechanism 
of vision [28,53] 
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Figure 3.2 Impulse response functions of sustained (solid) and transient (dashed) 
mechanism of vision and its normalized second derivative [28] 

 

The multi-channel temporal model has been used later by several perceptual video 

quality evaluation systems which will be summarized in Section 3.4. 

3.2.2 Daly’s CSF model [10] 

Daly’s CSF model is built upon Kelly’s stabilized spatio-temporal threshold surface 

model, so first we will look into the theory of Kelly’s model [27]. Spatio-temporal 

contrast sensitivity is sometimes referred to as the spatial acuity of the HVS depending 

on the velocity of the image traveling across the retina, where the retinal image 

velocity implicitly denotes the temporal frequency. In order to eliminate the influence 

of eye movements on the human visual sensitivity, Kelly performed the 

psychophysical experiments under the stabilized condition, which guaranteed that the 

velocity of the stimulus reflected the velocity on the retina. By measuring the contrast 
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sensitivity at constant velocity, Kelly proposed an expression that fits the data: 

3 2( , ) [6.1 7.3| log( /3) |] exp[ 2 ( 2) / 45.9]G α υ υ υα α υ= + × − +      (3.3) 

where υ is the constant velocity in degrees per second, and α/2π(cycles per degree) 

denotes the spatial frequency.  

Since υ = ω/ρ, where ω represents the temporal frequency (cycle/second) and ρ 

represents the spatial frequency (cycle/degree), υ is actually the ratio of temporal to 

spatial frequency.  

 

Although a large variation of curve shape occurs when the spatial or temporal 

frequency is held constant, all these constant-velocity curves have nearly the same 

shape according to the experiments. Each of the curves described by (3.3) is actually 

the 450 projection of the spatio-temporal threshold surface (Figure 2.3).   

 

However, in natural viewing conditions, the velocity of the actual object is different 

from the retinal velocity of the perceived object because of the eye movement. The 

human eye tends to track the moving object so that the loss of sensitivity because of 

high motion can be compensated. Daly took into account this factor and developed 

Kelly’s model into an unstabilized spatio-temporal threshold estimator. Equations (3.4) 

– (3.6) describe the spatiovelocity CSF model.  

21
0 2

max
( , ) ( ) exp( )2R R

c cCSF v k c c v 1ρ ρρ
π π ρ

= • • • • −
•

           (3.4) 

3
26.1 7.3 | log( /3) |Rc vk •= +                   (3.5) 

max 245.9/( 2)Rc vρ = +                      (3.6) 
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where ρ is spatial frequency in cycle/degree and νR is the retina velocity in 

degree/second. k and ρmax control the vertical shift of the sensitivity as a function of 

velocity and the horizontal shift of the function’s peak frequency, respectively. Figure 

3.3 and 3.4 give clearer descriptions of these two parameters. 

 

As in Figure 3.4, with increasing retinal velocity, the sensitivity curve moves 

horizontally to the left so that the peak frequency is becoming smaller. c0 and c1 control 

the magnitude and the bandwidth of a CSF curve (Figure 3.5).  

 

 

Figure 3.3 Parameter k vs. retinal velocity 
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Figure 3.4 Peak frequency of spatio-temporal CSF vs. retinal velocity 

 

 

Figure 3.5 Spatial contrast sensitivity at different retinal velocities  

(0.001, 0.01, 0.15, 1, 10 deg/sec) [10] 

 

For practical application, Daly substituted the retinal velocity in (3.9) with the image 

plane velocity by using an eye movement model described by (3.7): 

νE = min⎣(g ⋅νI) +νMIN, νMAX⎦                 (3.7) 
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Thus if the image plane velocity is vI, the relationship between vR and vI can be 

calculated as: 

νR = νI –νE                         (3.8) 

(3.7) actually covers the three types of eye movements: natural drift eye movements, 

the smooth pursuit eye movements and the saccadic eye movements. Details about the 

eye movement can be referred to in Section 2.5. g is the gain of the smooth pursuit eye 

movement, νMIN is the minimum eye velocity due to drift, and νMAX is the maximum 

eye velocity before transitioning to saccadic movements.  

 

With the experimental data, Daly set c0, c1, c2 to 1.14, 0.67 and 1.7 respectively. νMIN 

and νMAX are assigned 0.15 and 80 deg/sec.  

3.3 Just-Noticeable-Distortion Models for the image 

JND models for the image are the basis for estimating JND values of the video 

sequence. Compared with estimating JND values in pixel domain, subband JND 

models are of particular interest because CSF can be more easily incorporated in 

subband and more images are coded in a subband scenario. A typical subband-based 

JND model consists of a base threshold and an elevation factor [36]. The former is 

determined by CSF and luminance adaptation while the latter denotes the effect of 

contrast masking.  

3.3.1 Ahumada & Peterson’s JND model [61] 

Ahumada & Peterson developed their model to approximate visibility thresholds for 
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discrete cosine transform (DCT) coefficient quantization error. Besides considering the 

dependence of visibility sensitivity on spatial frequency, orientation and image 

luminance, the model also explored the effects of other image independent parameters 

such as display luminance and viewing distances. Therefore, it is applicable for display 

conditions other than those of the experimental measurements. 

 

In an image, let (n1,n2) denote the 8×8 DCT block, (i,j) denote the location inside each 

block with i, j = 0,1,…7, the luminance threshold Ti,j(n1,n2) can be calculated 

according to the following parabola equation: 

2
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where Tmin is the luminance threshold at fmin, the frequency where the threshold is 

smallest. K is the steepness of the parabola. They are all functions of the average 

luminance L(n1,n2) in each block:   
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DCT basis functions fi,j are determined by two frequency components with the same 

spatial frequency but different orientations: 
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θ denotes the angle between the two frequency components: 
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In Equation (3.9), the multiplicative factor 
jirr ,

2cos)1(
1

θ−+
 accounts for the effect 

of intermediate positions of the two Fourier components [61]. 

In [61], r = 0.7, NDCT = 8, LT = 13.45 cd/m2, S0 = 94.7, αT = 0.649, f0=6.78 cycles/deg, 

αf = 0.649 and LK = 300 cd/m2. ωx and ωy are the horizontal width and vertical height 

of a pixel in degrees of visual angle, which can be determined as follows: 

)
2

arctan(2
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R

⋅=ω                                                  (3.15) 

where R is the distance between two adjacent pixels, D is the viewing distance. 

 

Considering JND is a property of the image and should use grey levels as the unit, we 

convert luminance threshold values Ti,j(n1,n2) to the corresponding JND values as: 
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where M=256 is the number of gray levels for 8-bit image, Lmax and Lmin are the 

maximum and minimum display luminance. αi and αj account for the DCT coefficient 

factors, which is calculated as 
⎩
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3.3.2 Watson’s DCTune Model [36] 

Watson’s DCTune Model aims at optimizing the quantization scheme for image coding 
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so that maximum visual quality can be achieved at a given bitrate. Luminance 

adaptation and contrast masking are considered for estimating the DCT-based JND 

values.  

 

Compared with Ahumada and Peterson’s model, Watson suggested a simpler solution 

to approximate the dependence of visibility threshold tDCT(n1,n2,i,j) on local image 

intensity: 

T

C
nnCtjinnt ijDCT

α))0,0,2,1((),,2,1( =                                (3.17) 

where C(n1,n2,i,j) is the DCT efficient in block (n1,n2), location (i,j) (i,j = 0,1, …7). tij 

is predetermined based on the contrast sensitivity at an assumed display luminance L0. 

C  is a constant related to the display luminance. For a 25-graylevel image, C  is set 

to be 128. αT is 0.649. 

 

Contrast masking, which accounts for the change of detection threshold for one signal 

at the presence of another, is simulated by a power law equation in the DCTune model.  

The final threshold considering both luminance adaptation and contrast masking is 

represented as: 
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where ρ = 0.7. 
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3.4 Human Vision Models for video 

Although JND models for images are developing very fast, there are very few explicit 

JND model designed for videos. The majority of the human vision models for videos 

are devoted to perceptual video quality evaluation, which requires two input video 

sequences (reference and target video sequence). Basically, a large number of models 

for this use adopt the multi-channel scheme. The heart of this multi-channel theory lies 

in that stimulus are decomposed to be processed in different channels when they go 

into the HVS. The CSF is just the envelope of the responses of these channels. The 

emergence of this multi-channel structure for the HVS model was prompted by the 

neuronal selectivity in vision science. Electrophysiological experiments reveal that the 

perceptive neurons in the primary visual cortex are selectively sensitive to certain 

types of information. A particular cell may strongly respond to a signal of certain 

orientation and frequency.  

 

Generally, in a multi-channel model for quality evaluation, the signal is first engaged 

in multi-channel decomposition, then luminance adaptation, inter- & intra-channel 

contrast masking follow, finally pooling is implemented to integrate the separate 

elements that contribute to the overall quality.  

 

The most well-known DCT-based HVS models for video is the Digital Video Quality 

(DVQ) metric proposed by Watson etc. in 2001 [39]. Watson developed the DVQ 

model based on his DCT-based still image metric. The model accepts two video 
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sequences (one reference sequence and one test sequence), and finally gives a measure 

for visible difference between them. A pyramid structure for frequency and orientation 

analysis has been adopted by several well-developed perceptual quality metric models 

[23, 28, 54, 55]. The Sarnoff JND model [55] requires two input sequences and outputs 

a JND map sequence to indicate the visible difference between them. Then two 

temporal filters and Gaussian pyramid structure are used for spatio-temporal 

decomposition. Normalization is used to adapt the sensitivity to the temporal variation 

of the luminance. Winkler [28] developed his PDM model for both digital color images 

and videos following the earlier work by van den Branden Lambrecht [54]. It 

incorporates the combined effects of color perception, the multi-channel architecture of 

temporal and spatial mechanism, spatio-temporal contrast sensitivity, pattern masking 

and channel interactions. CVQE model by Masry and Hemami [23] evaluates the 

continuous video quality at low bit rates. Instead of producing a single pooled value 

for a video sequence as most models do [28, 39, 54, 55], this metric can provide a 

time-varying quality assessment. 

3.4.1 Chou and Chen’s JND model (1996) [1] 

Chou and Chen built their spatio-temporal JND model as an extension of the earlier 

spatial JND model and the model is specifically designed for video coding. The 

temporal perceptual redundancy is simply modeled as an elevation factor that is a 

function of the interframe luminance difference. The spatio-temporal JND value 

JNDS-T(x,y,n) at location (x,y) of frame n can be computed as: 
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JNDS-T(x,y,n) = f3(ild(x,y,n)) · JNDS(x,y,n)            (3.19) 

Where JNDS(x,y,n) represents the corresponding spatial JND value and ild(x,y,n) 

represents the average interframe luminance difference between the nth and the (n-1)th 

frame. f3 is empirically determined as in Figure 3.6.  

 

Figure 3.6 Scale factor as a function of the interframe luminance difference for 
modeling temporal redundancy [1] 

 

The calculated spatio-temporal JND profile was then embedded in the video codec for 

perceptual bit allocation. After the target sequence is decomposed into 11 

spatio-temporal subbands by a two-band temporal filter and QMF filterbanks, the 

perceptual weighting for each subband is determined by the spatio-temporal CSF 

presented by Kelly [27]. Therefore, the full-band JND defined by equation (3.19) can 

be distributed into subband JND profiles according to the perceptual weightings. 

Optimized bit-allocation and error concealment can be realized based on the perceptual 

importance determined by the subband JND.  
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3.5 Summary 

In this chapter, various HVS models contributing to JND estimation in image/video 

have been presented. Firstly, two stand-alone schemes for modeling the 

spatio-temporal CSF have been discussed. Based on the human vision properties 

discussed in Chapter 2, two DCT-based JND models for images have been summarized. 

Because the majority of the human vision models for videos are applied to quality 

evaluation, we introduced several multi-channel models designed for this application. 

Finally we elaborated one spatio-temporal JND model applied for video coding. 

 

However, as discussed in Chapter 1, most of the models (except Chou and Chen’s 

model in 3.4.1) haven’t calculated explicit JND profiles and all the models for 

perceptual quality evaluation discussed in Section 3.4 need both original sequence and 

distorted sequence for processing. Although Chou and Chen proposed a method to 

calculate JNDs for the video, they used a simplified equation which is lack of 

theoretical proof. We are going to tackle these problems in the proposed model in the 

next two chapters.
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CHAPTER 

                                    4 
DCT-based Spatio-temporal JND Model 

4.1 Introduction 

In this chapter, we are going to develop a spatio-temporal HVS model estimating JNDs 

in the DCT domain. Besides spatial frequencies, the influences of temporal frequencies 

and eye movements on contrast sensitivity are explored. We also incorporate 

luminance adaptation and an improved contrast masking estimator to make the 

proposed model more consistent with human perception. The same formulation in the 

proposed spatio-temporal model is capable of yielding JNDs for both still images and 

video with significant motion. The experiments (Chapter 5) conducted in this study 

will demonstrate that the JND values estimated with moving objects by the model are 

in line with the HVS perception. 

 

We derive the JND profile in the DCT domain because the DCT is the most adopted 

transform for image and video compression. Therefore, our model is convenient to be 

applied for the existing standard coding systems such as MPEG-1/2/4 and H.26x. 

Figure 4.1 gives a block diagram for the model.  
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Figure 4.1 Block diagram for the proposed JND model 

 

Within a DCT block (n,t), the JND threshold in the position (i,j) (i, j = 0, 1, ..., 7) of the 

frame t can be calculated as: 

           JND (n,i,j,t) = T(n,i,j,t) ⋅ aLum(n,t) ⋅ aC(n,i,j,t)             (4.1) 

where T is the base distortion threshold contributed by spatio-temporal CSF, aLum and 

aC denote the respective effects of luminance adaptation and contrast masking. In the 

following part of this chapter, we will detail the calculation of each multiplicative 

factor.   

4. 2 Base distortion Threshold in DCT Subbands 

In this section, we compute the maximum error that can be tolerated for each DCT 

coefficient with consideration of spatio-temporal CSF (i.e., the relation of visibility 

threshold with spatial and temporal frequencies of visual signals). 
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4.2.1 Spatio-temporal CSF in DCT domain 

As discussed in section 3.2.3, equations (3.4) – (3.6) describe the CSF. c0 and c1 

control the magnitude and the bandwidth of a CSF curve (Figure 3.5), and can be 

decided with subjective viewing test data for the subband decomposition in use. If we 

consider the (i,j)-th subband in the n-th DCT block in the t-th frame, the corresponding 

CSF can be derived from (3.9) as follows:  
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210 ktnvctnvtnvkkctjinG jiji +⋅⋅⋅−⋅⋅⋅⋅+⋅= επρπρε

(4.2) 

where i, j = 0,1,…,N-1 while N is the dimension of the DCT block; ν(n,t) depicts the 

associated retinal image velocity. The empirical constants ,  and  are set as 

6.1, 7.3 and 23 [27], respectively, and ε = 1.7; ρ

1k 2k 3k

i,j (cycles per degree) is the spatial 

subband frequency [61]: 

                  2
,

1 ( / ) ( / )
2i j

2
x yi j

N
ρ ω= + ω                         (4.3) 

where ωx and ωy are the horizontal and vertical size of a pixel in degrees of visual 

angle, respectively. They are related to the viewing distance ℓ and the display width Λ 

of a pixel on the monitor as follows:  

           )
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⋅=ω , ћ = x, y                        (4.4) 

In our experimental environment, ωx and ωy are equal to 0.0342 (degree) for ℓ=50cm 

and the CRT monitor (Philips 107X2) used in the experiments. 
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4.2.2 Eye Movement Effect 

For a practical formulation of the spatio-temporal CSF, the influence of observers’ eye 

movement needs to be taken into account for motion imagery [41,43], and the retinal 

velocity in (4.2), ν(n,t), has to be expressed by easily measurable variables from the 

moving images. Because of the eye movements, the perceived velocity at the retina 

(retinal velocity) is different from the image plane velocity that can be usually obtained 

through motion estimation. 

 

Based on the heuristic eye movement model devised by Daly (1998) [10] (Section 

3.2.3), the retinal image velocity can be expressed as: 

                ν(n,t) = νI(n,t) – min⎣(g ⋅νI(n,t)) +νMIN, νMAX⎦              (4.5) 

where the definitions of νI(n,t), g, νMIN and νMAX can be referred to Section 3.2.3. In this 

study, it is assumed that the HVS tracks different parts of an image equally and g is 

assigned with a value of 0.92. 

 

With a motion estimation technique (discussed in 4.2.5), we can obtain (MVx(n,t), 

MVy(n,t)), the motion vector for the n-th block in the t-th frame, and calculate the 

image velocity as: 

            22 )),(()),((),( yyxxI tnMVtnMVftnv ωω ⋅+⋅⋅=         (4.6) 

where f is the frame rate (in frames per second) of the video, and νI(n,t) is measured in 

degrees of visual angle per second. 
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When ν(n,t) ≡ 0.15 deg/sec (i.e., only natural drift movement occurs), the 

spatio-temporal CSF is equivalent to the spatial (static) CSF [10], so the formulae 

derived above are also applicable for images if the said value of ν(n,t) is used. 

4.2.3 Base Distortion Threshold 

When equation (4.2) is used for predicting distortion threshold due to  

spatio-temporal CSF, several factors need to be considered: i) the sensitivity modeled 

by (4.2) represents the inverse of distortion threshold; ii) the CSF-derived threshold 

expressed in luminance needs to be scaled to grey levels for digital images [61]; iii) 

since Equation (4.2) is derived from the experimental data of one-dimensional spatial 

frequencies (i.e., i or j is equal to 0), for an arbitrary subband (i ≠ 0 and j ≠ 0), the  

threshold is actually higher than the one given by (4.2), and therefore a compensating 

term (as the last term of the right-hand side in (4.7) below) needs to be introduced [61] 

for a DCT subband. With all considerations mentioned above, the base threshold for a 

DCT subband is determined as: 
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θφφ ⋅−+
⋅

−
⋅=          (4.7) 

where Lmax and Lmin represent the display luminance values corresponding to the 

maximum and minimum grey levels (depending on the display facility); M is the 

number of grey levels (256 in most imagery systems); φi and φj are DCT normalization 

factors: 
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r is set to 0.6 [61], and ji ,θ  accounts for the effect of an arbitrary subband (the factor 

iii mentioned above):  
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When i=0 or j=0, ji,θ =0 and  takes its smallest value since 

=1; when i=j, 
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4.2.4 Determination of c0 and c1

In equation (4.2), c0 and c1 regulate the value level and the bandwidth of the CSF 

respectively. As illustrated in [10], the spatio-temporal CSF when ν = 0.15 deg/sec (i.e., 

only natural drift eye movement occurs) is equivalent to the spatial (static) CSF. With 

ν(n,t) = 0.15 deg/sec in (4.7), we estimated c0 and c1 by fitting the resultant T(i,j) to the 

spatial CSF model in [61]. . 
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Figure 4.2 Illustration of the fitting data (gray blocks shows the data for fitting) 

 

Only the AC components of the upper triangle in the DCT block are used for fitting 

because of the symmetry of the spatial frequencies expressed as (4.3) (Figure 4.2). The 

visibility thresholds ts are calculated for each DCT frequency ρs using the JND model 

in [61]. We use the LMS (least mean squares) approach to get the best-fitted c0 and c1 

for the data pair (ρs, ts): 

 

                 2
0 1 0 1( , ) arg min{ [ ( , , )] }s s

s
c c t T c cρ= −∑                  (4.10) 

where T(ρs, c0, c1) is the threshold (derived from equation (4.7)). As a result, c0 = 7.126 

and c1 = 0.565. Figure 4.3 shows the result of the fitted data. 

 

 45



 

 

Figure 4.3 Data-fitting results from LMS 

 

4.2.5 Motion Estimation 

In order to calculate the image plane velocity as in (4.6), we need to obtain the motion 

vector (MVx(n,t), MVy(n,t)) according to the motion estimation. Here we adopt a new 

three-step search algorithm (NTSS) for block motion estimation [5] to achieve the 

target. 

 

NTSS has been developed from the three-step search (TSS), which is widely used as 

the motion estimation method in some low bit-rate video compression applications. 

Compared with the oldest and most reliable full search method, NTSS and TSS are 

superior in their simplicity and efficiency yet effectiveness. Retaining the advantages 
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of TSS, NTSS has more competitive features: 

 

1. NTSS chooses a set of center-biased checking points in addition to the original 

checking points as in TSS in its first step, which makes the search more consistent with 

the motion distribution of real world image sequence (Figure 4.4).  

2. NTSS has a halfway-stop policy which further reduces the computation cost. 

 

 

Figure 4.4 Illustration for NTSS (Filled circles are the checking points in the first step 

of TSS, squares are the 8 extra points added in the first step of NTSS, and triangles 

explain how the second step search is performed if the minimum BDM in the first step 

is at one of the 8 neighbors of the window center) [5] 

 

As in Figure 4.4 (which assumes that the search window is a 15×15 pixel block), we 

choose 17 check points in the first step: 9 points as in TSS (filled circles) and 8 

neighbor points of the center (squares). We find the point that yields the minimum 
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block distortion measure (BDM). If the point is the center of the search window, we 

can stop the search and obtain the motion vector (0, 0). If it is not, then we judge 

whether the point is the one of the neighbor of the center (squared points). If the 

answer is yes, we perform the second step of NTSS: the check points are limited to 3 

or 5 neighbors of the point (illustrated in Figure 4.4 by triangles). The whole algorithm 

will stop at the second search. If the stand-out point in the first step is neither the 

center nor one of the neighbors of the center, then we need to do a complete three-step 

search.  

4.3 Luminance Adaptation and Contrast Masking 

For a complete spatio-temporal CSF model, we need to include luminance adaptation; 

and as a comprehensive JND estimator, different contrast masking has to be considered. 

For luminance adaptation, the response of the HVS depends more on the luminance 

against the surroundings than the absolute luminance. Intra-band masking refers to the 

reduction in the distortion visibility in a subband due to the signal in that subband itself, 

while inter-band masking refers to the reduction in the distortion visibility in a subband 

at the presence of other visual components in other subbands. In this work, inter-band 

masking is evaluated on a block basis.   

 

The effects of luminance adaptation, intra-band masking and inter-band masking can 

be formulated as the multiplicative factors to the base distortion threshold estimated in 

the previous section; in consequence, the complete JND estimator is modeled by 
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formula (4.1). 

4.3.1 Luminance Adaptation 

As has been discussed in Section 2.3, the visual sensitivity varies with the background 

luminance. Since the digital images have a limited intensity range (typically 256 

levels), the mean background luminance is not very different from one image to 

another. However, previous studies found that local intensity variations contribute to 

the adaptive thresholds within an image. For digital images, the HVS visibility 

threshold is higher in dark and light regions, i.e., the HVS is more sensitive to the 

noise in medium grey-grey regions, as shown in Figure 4.5.  

 

Since the average local intensity can be represented by its DC component, C(n,0,0,t), 

the luminance adaptation factor for the n-th DCT block is determined as [35]: 
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(4.11) 

where M = 256 represents the range of grey levels, N = 8. According to the background 

illumination and the effect of γ-correction [2]: k1 = 2, k2 = 0.8, λ1 = 3 and λ2 = 2 [35].  
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Figure 4.5 Distortion visibility as a function of background brightness [6] 

4.3.2 Intra- and Inter-band Contrast Masking 

The extent of contrast masking depends on the local intensity activity of the image. 

The HVS sensitivity to error is generally higher in smooth (or plain) region, and lower 

in texture region [34]; while the sensitivity for edge region lies in between. Therefore, 

contrast masking can be discriminated for different image context.  

 

In computing the contrast masking adjustment, we separately estimate the intraband 

masking aintra and interband masking ainter. The combined contrast masking factor can 

be calculated as: 

       aC(n1, n2, i, j, t) = aintra(n1, n2, i, j, t) ⋅ ainter(n1, n2, t)            (4.12) 

 

In block-based DCT environment, local texture activity is approximately reflected by 
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the AC energy of the DCT coefficients [34,66]. A DCT block can be divided into four 

parts: DC, low-frequency (LF), medium-frequency (MF) and high-frequency (HF), as 

shown in Figure 4.6.  

 

 

Figure 4.6 Block classification scheme for a DCT block [34,35] 

 

If we denote the sums of the absolute DCT coefficient values in LF, MF and HF by L, 

M and H, then the block texture energy TexE is calculated as: 

TexE = M + H                           (4.13) 

Moreover, we define: 

1 ( ) /E L M H= +                           (4.14) 

2 /E L M=                              (4.15) 

where X  (X = L, M, H) denotes the mean of X. 

 

Block classification is implemented according to the following rules [34]: 

1. A block is assigned to be an EDGE class if any one of the following cases is true: 
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Case 1: E1 ≥ υ                               

Case 2: max{E1, E2} ≥ α & min{E1, E2} ≥ β where α > β              

Case 3: µ1 ≤ TexE ≤ µ3 and (4.14) or (4.15) is valid for α = α1 and β = β1            

Case 4: TexE > µ3 and (4.14) or (4.15) is valid for α = k⋅α1 and β = k⋅β1           

2. A block is assigned to be a TEXTURE class if any one of the following cases is true: 

Case 1: µ2 ≤ TexE ≤ µ3 and neither (4.14) nor (4.15) is valid for α = α1 and β = β1   

Case 2: TexE > µ3 and neither (4.14) nor (4.15) is valid for α = k⋅α1 and β = k⋅β1   

3. A block is assigned to be a PLAIN class if any one of the following cases is true: 

Case 1: TexE ≤ µ1                                         

Case 2: µ1 ≤ TexE ≤ µ2 and neither (4.14) nor (4.15) is valid for α = α1 and β = β1    

 

Then inter-band masking can be represented as: 
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In the above rule and equation (4.16), we set µ1=125, µ2 =290, µ3 =900, α1 = 7, β1 = 5, 

κ = 0.1, υ  = 16, δ 1= 1.25 and δ 2=1.125. 

 

As for intra-band masking, we modify the model in [34] to exclude intra-band masking 

from taking effect in LF and MF subbands for non-textured blocks:  
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where C(n,i,j,t) is the DCT coefficient, and ε = 0.36. 
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4.4 Summary 

In this chapter, we have developed a HVS model for estimating the JND profile in 

DCT domain. This model is applicable for both images and video sequences with the 

differentiation in the spatio-temporal CSF component. For image application, the 

retina velocity is set to a constant value; while for video application, the retina velocity 

is determined using motion estimation. An eye movement model is incorporated into 

the CSF to account for the effect of eye motion on visual sensitivity. Moreover, 

luminance adaptation and contrast masking are considered as elevation factors for the 

base threshold derived from spatio-temporal CSF. For contrast masking, in addition to 

the EDGE region, we also exclude the intra-band masking at the low and medium 

frequencies of the SMOOTH region, which is more consistent with the human 

perception. The experiments and model validation will be discussed in Chapter 5. 

 

 

 

 

 

 

 

 

 

 53



 

 

CHAPTER 

                                    5 
Experiments and Model Testing 

 

5.1 Introduction 

To evaluate the performance of JND models, the generated JND profiles can be used to 

guide the noise injection into an image or video [35,46], and appropriate subjective 

viewing tests are then conducted to assess the quality of the resultant visual signal. The 

proposed JND estimator has been compared with Zhang, et. al.’s JND model [35] 

(referred as Model I hereinafter) and Daly’s model1 [10] (referred as Model II 

hereinafter) in the experiments. These two models are the most relevant existing 

models for comparison, since Model I is the recent enhancement of the well 

acknowledged models [36,61] in DCT subbands, while Model II is an enhanced 

version of [27]. The aim of our experiments is to show that the proposed model not 

only succeeds in the improvement of Zhang’s model for spatial properties of HVS, 

more importantly, it also achieves an effective addition of temporal properties into 

                                                        
1 with c0 and c1 determined in Section 4.2.4, because Daly’s original model is not for 
DCT domain. 
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JND modeling.  

 

The relevant parameters of the models are determined under the same experimental 

conditions: a CRT monitor (17'' Philips 107X2) with viewing distance of 50 cm. When 

a model (Model II or the proposed model) is used for images in the following 

experiments, ν(n,t) is set to 0.15 deg/sec. 

 

The noise injection can be described as: 

                         (5.1) , ,( , , , ) ( , , , ) ( , , , )random
noise n i jC n i j t C n i j t M J n i j t•= +

where C(n,i,j,t) is the DCT coefficient of the original image or a frame of the original 

video, and Cnoise(n,i,j,t) is the corresponding noise-injected coefficient;  

takes +1 or -1 randomly; and J(n,i,j,t) represents the JND obtained via a model (Model 

I, Model II or the proposed model). A JND model can avoid yielding values larger than 

the actual HVS thresholds via adjusting its overall gain. If a model derives better JNDs, 

Equation (5.1) allows higher injected-noise energy (measured by PSNR) without 

jeopardizing picture quality.   

, ,
random
n i jM

5.2 Subjective testing 

The aim of vision research is to mimic the response of HVS towards stimulus. Our 

perceptual study applies the results from vision research and forms objective metrics to 

substitute for the subjective tests. Although subjective tests are unfavorable because of 

their complex and time-consuming structure, they are the most reliable strategies to 
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predict the perception after all. Therefore, in order to evaluate the performance of our 

model, we need to conduct subjective tests to compare the objective estimation and the 

actual subjective perception. Individual subjective testing schemes in our experiments 

will be elaborated for image and video in the following sections. 

 

The subjective viewing tests in this project are conducted in a room illuminated by 

fluorescent ceiling lights, and this is the typical conditions under which people would 

view digital images. The subjects’ eyesight is either normal or has been corrected to be 

normal with spectacles.  

5.3 Results and Discussions 

5.3.1 Evaluation on images 

For images, the proposed model is similar to Model I, and differs from Model II in that 

the latter does not exploit the content-based properties of an image (i.e., luminance 

adaptation and contrast masking). 

 

As discussed in Section 5.1, we inject noise into the image based on different JND 

models to compare their performances of JND estimation. According to Equation (5.1), 

the amount of noise injected into the image is at the JND level. Figure 5.1 shows the 

noise-contaminated Lena images by Model I, Model II and the proposed model. We 

find that the noise injected in the images based on all three models is hardly noticeable, 

which proves that the three models yield values not larger than the actual HVS 
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thresholds. Comparing the PSNRs of the three images in Figure 5.1, the proposed 

model yields the lowest PSNR (about 2 dB lower than Model II) by inserting more 

noise into the image, and this reflects that the proposed model is able to exploit the 

HVS bounds more aggressively without introduction of noticeable visual disturbance.    

 

   

      (a) Model I, PSNR: 31.28 dB            (b) Model II, PSNR: 33.08 dB 

 

   

                 (c) the proposed JND model, PSNR: 31.09 dB   

 Figure 5.1. Noise-injected Lena with Model I, Model II and the proposed JND model. 

 57



 

 

For a comprehensive evaluation, we have conducted subjective viewing tests to give 

quantitative scores for all images (with different visual contents and spatial complexity) 

shown in Figure 5.2 with JND-guided noise injection. In each viewing test, two images 

of the same scene (i.e., the original image and its noise-contaminated version) were 

juxtaposed on the screen, and six subjects (three are in the image processing field and 

three are naive) were employed. On each session of the experiment, subjects viewed 

two images, and were then given time to vote on the comparative quality of the images, 

using the continuous quality comparison scale shown in Table 5.1. The subjects were 

not allowed to respond until they had viewed the images for at least two seconds. The 

order of the presentation of the image pairs was randomized in each session, and the 

noised image appeared randomly on the left- or right-hand side of the screen. The 

results indicated no notable difference on whether a subject has image processing 

knowledge or not.  

 

Table 5.1 Subjective rating criterion for the comparative visual quality of an image pair 

 
Subjective score Description 

-3 the right one is much worse than the left one 
-2 the right one is worse than the left one 
-1 the right one is slightly worse than the left one 
0 the right one has the same quality as the left one  

+1 the right one is slightly better than the left one 
+2 the right one is better than the left one 
+3 the right one is much better than the left one 
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      A            B             C            D            E                     

     
      F            G             H            I             J 
 

Figure 5.2 Images for the experiments. (A: Cameraman256x256; B: Pepper512x512; C: 

Goldhill256x256; D: Airplane512x512; E: Lena512x512; F: Baboon256x256; G.: 

Barbara512x512; H: Girl256x256; I: House512x512; J: Splash512x512.) 

 

Figure 5.3 shows the mean subjective score by all subjects for each noise-injected 

image with one of the JND models, while Table 5.2 lists the corresponding standard 

deviations. In Figure 5.3, each symbol represents the average subjective score among 

six subjects for one image. A negative subjective score indicates that the noise-injected 

image has worse perceptual quality than the original image, and its magnitude 

represents the extent of quality degradation. Averaging the mean subjective scores of 

all the ten images, we get the respective scores for Model I, Model II and the proposed 

model. The slightly higher average quality score (in difference of 0.33 in Fig. 6) with 

Model II than Model I is due to the somewhat excessive intra-band masking in LF and 

MF subbands for non-textured blocks in Model I, the proposed model has remedied 

this by excluding intra-band masking from taking effect in LF and MF subbands for 

non-textured blocks (Section 4.3.2, Equation (4.17)). As can be observed in Figure 5.3, 
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the proposed model leads to similar visual quality on average as Model II in the 

noise-injected images, and slightly better quality on average than Model I. Overall, the 

3 scores are very close to each other (the average range of subjective score variations is 

below 0.45) and are all close to score 0, where there is no difference between the 

original image and its noise-contaminated version. Therefore, noise injection into 

images guided by all the three models leads to very similar visual qualities and the 

noise-contaminated image can hardly be distinguished from its original. 
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Figure 5.3. Mean subjective scores for the noise-injected images  

with the three JND models 
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Table 5.2 Standard deviations of the subjective scores 

for the noise-injected images 
 

Image A B C D E F G H I J 
Model I 0.258 0.548 0.408 0.548 0.408 0 0.408 0.408 0.548 0.447
Model II 0.492 0.408 0.516 0.492 0.204 0.418 0 0 0.408 0.204
Proposed 

Model 
0.548 0.516 0.408 0.516 0.492 0 0.418 0 0.548 0 

 

The PSNR has been used to measure the visual content variations after the JND-guided 

noise injection. At a same level of perceived picture quality, a better JND model yields 

more aggressive JNDs (i.e., resulting in lower PSNR). Figure 5.4 shows the PSNRs of 

the noise-injected images using the three models. The PSNRs (as well as the average 

PSNR) for the images with the proposed model are similar to those with Model I. As 

aforementioned, Model II for images is image independent, and therefore the 

associated PSNR remains the same for every image in Figure 5.4. The propose model 

yields more aggressive JNDs than Model II towards the actual HVS thresholds, with 

the evidence of an average PSNR reduction of 2.82 dB from Model II (as shown in 

Figure 5.4 for all ten images), without jeopardy of visual quality (Figure 5.3). 
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Figure 5.4 PSNRs of noise-injected images by the three models 

 

5.3.2 Evaluation on video 

We have conducted experiments to test how the models work for video sequences. 

Seven sequences (Susie, Miss America, News, Bus, Claire, Carphone, and Caltrain, as 

shown in Figure 5.5) are distorted by inserting the noise according to (5.1), for the 

experiments. The proposed model should outperform the other two models in video, 

since Model I does not exploit temporal CSF while Model II does not exploit the 

content-based properties of an image.  

  

 62



 

       

       (i)                 (ii)                 (iii)                (iv)               

     

        (v)               (vi)              (vii) 

Figure 5.5 Videos for the experiments: (i) Susie; (ii) Miss America.cif; (iii) News.qcif; 

(iv) Bus.cif; (v) Claire.cif; (vi) Carphone.qcif ; (vii) Caltrain.cif. 

 

1) Effect of Motion 

Figure 5.6 illustrates how the models perform in the presence of motion, for the 

noise-injected Susie and Miss America sequences. First we measure the motion of each 

frame using the average motion energy which is defined as: 

2 21_ ( ( , )( ) x y
nf

Avg MotionEnergy t MV n t MV n t
N

+= ∑ ( , ))         (5.2) 

where (MVx(n,t), MVy(n,t)) represents the motion vector for the n-th block in the t-th 

frame, and Nf is the number of blocks in a frame.  

 

In Figure 5.6, (a) and (b) denote the average motion energy over the frames for the 

noise-injected Susie and Miss America video sequences, with the three JND models, 

while (e) and (f) illustrate the zoom-in details of (a) and (b) before Frame 40. Figure 

5.6 (c) and (d) show the PSNR over the frames for the two noise-injected sequences. 
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As shown in Figure 5.6 (a) and (e), small motion and big motion take place around 

Frames 20 and 40, respectively, in the noise-injected Susie sequence; as expected, 

Figure 5.6 (c) shows the corresponding small drop and big drop of PSNR for Model II 

and the proposed model. Similar phenomena occur in Miss America when there is 

small motion around Frames 3 and 18, as illustrated in Figure 5.6 (b), (d) and (f). 

 

It is obvious that Model I is not able to respond to motion since the temporal CSF has 

not been incorporated; the proposed JND model predicts correctly (inheriting the 

temporal characteristics from Model II) that more distortions can be tolerated with 

higher motion.  

 

We notice that the motion energy actually fluctuates in Figure 5.6 (e) and (f) (apart 

from the aforementioned motion around Frames 20 and 40 in Figure 5.6 (e), and 

Frames 3 and 18 in Figure 5.6 (f)), while the PSNR curves by Model II and the 

proposed model in Figure 5.6 (c) and (d) do not reflect such changes of motion; in fact, 

this demonstrates the effect of eye movement: for low motion, eye movement can 

compensate some, if not all loss of sensitivity, and thus the JNDs derived by Model II 

and the proposed model do not undertake considerable elevation for these slight 

motion fluctuations. 

 

In addition, the PSNR curve by the proposed model has similar shape but with a lower 

valuation levels than that by Model II; this demonstrates the effectiveness of 
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luminance adaptation and contrast masking considered in the proposed model. 

           

 

(a) Susie:                         (b) Miss America: 

average motion energy vs. frame          average motion energy vs. frame 
 

 

 
   
    (c) Susie: PSNR vs. frame          (d) Miss America: PSNR vs. frame      
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      (e) details of (c) before Frame 40        (f) details of (d) before Frame 40 

Figure 5.6 Demonstration of the effect of motion. 

 
 
2) Noise shaping for individual frames 
 

In order to provide the ground to demonstrate the temporal CSF effect with the 

proposed model (to be discussed in Section 5.3.2-(3)), noise-injection has been 

performed with the first frame of the video sequences in Fig. 5.5. Since each frame is 

treated as a still image, ν(n,t) is set to be 0.15 deg/sec in Model II and the proposed 

model. In line with the results obtained in Section 5.3.1, the same subjective viewing 

tests have confirmed that the three models yield similar perceptual quality in the 

noise-injected frames. Figure 5.7 shows the noise-injected images for the first frame of 

Bus sequence with Model I, Model II and the proposed JND model. 

 

Figure 5.8 illustrates the PSNRs of noise-contaminated frames of different videos by 

the three models (without temporal CSF effect). Similar to the results in Section 5.3.1, 
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the proposed model performs slightly better than Model I in PSNR reduction; and it 

yields an average 3.41 dB of PSNR reduction from Model II (as shown in Figure 5.8). 

 

 

(a) Model I, PSNR: 28.93 dB 

 

 

(b) Model II, PSNR: 33.08 dB 
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(c) the proposed JND model, PSNR: 28.70 dB 

 
Figure 5.7 Noise-injection to the first frame of Bus sequence with Model I, Model II 

and the proposed JND model. 
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 Figure 5.8. PSNRs of Noise-contaminated frames of videos by the three models 
(without temporal CSF effect) 
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3) Overall Performance 

For the comprehensive performance comparison, we followed the procedures of the 

Double Stimulus Continuous Quality Scale (DSCQS) method in Rec. ITU-R BT.500 

[67], in the subjective experiments for video. Figure 5.9 shows the presentation course. 

The Mean Opinion Score (MOS) scales are adopted for quality grading: Excellent 

(100-80), Good (80-60), Fair (60-40), Poor (40-20) and Bad (20-0), for both an 

original sequence and the associated processed sequence. Ten viewers (three were in 

the image processing field and seven were naive) were required to give MOS for both 

of the original and the processed sequences (they were not told which sequence is the 

original one). Then the different MOS (DMOS) is obtained by subtracting the MOS of 

the processed sequence from that of the original one. A higher DMOS indicates bigger 

quality discrepancy between the processed sequence and the original one. Again, there 

is no notable difference found regarding whether a subject has image processing 

knowledge. 

 

 
 

Figure 5.9. DSCQS test scheme 

 

Figure 5.10 compares the mean DMOS with the ten viewers for each sequence, and 

Table 5.3 lists the corresponding standard deviations. It is shown in Figure 5.10 that 
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the subjective quality of the noise-injected video sequences is quite similar with the 

three models (the average DMOSs for Model I, Model II and the proposed model is 

10.7, 10.1, 10.5, respectively). However, Figure 5.11 demonstrates that the average 

PSNR of noise-injected sequences by the proposed model is 0.83 dB lower than that 

by Model I, and 3.32 dB lower than that by Model II. Comparing the PSNRs for the 

proposed model in Figure 5.8 and Figure 5.11, it can be seen that the consideration of 

temporal CSF brings about 0.6 dB additional perceptual data redundancy on average. 

In summary, the proposed model is able to give more aggressive JND estimation than 

the other two models, without effects on the perceptual video quality, and the modeling 

of temporal effect is effective. 
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Figure 5.10 Mean DMOSs for the noise-injected videos with the three JND models 
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Table 5.3 Standard deviations of DMOSs for the noise-injected videos 

 
Video Susie Miss 

Am. 
News Bus Claire Carphone Caltrain 

Model I 1.932 2.359 1.619 1.633 2.214 2.121 1.418 
Model II 1.549 2.111 1.751 2.908 1.932 2.359 2.058 
Proposed 
Model 2.119 2.8389 2.1089 1.947 0.995 1.703 2.011 
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Figure 5.1. PSNRs of Noise-contaminated videos by the three models 

 

4) Discussion 

A better JND model is capable of determining a more aggressive error profile (e.g., 
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with lower PSNR in the experiments described above) for an image but not causing 

noticeable visual distortion. Determination of the biggest unnoticeable error bounds in 

visual signal facilitates various processing tasks for resource savings and performance 

improvement.  

 

In image and video compression, the budgeted bits can be allocated for better coding 

quality using a more accurate JND profile, with more bits assigned (via quantization 

step selection) [1,3,4,36,46] to the signal components with lower JNDs; only the DCT 

coefficients above the JNDs need to be coded [68], and this can result in computational 

complexity reduction and bit savings for more significant signal components (or 

alternatively, better perceptual picture quality with a same bit rate). 

 

Accurate JND estimation benefits the non-compression processing processes as well. 

In watermarking, authentication, and error protection applications, the accessory data 

can be embedded inside the visual signal itself with the guide of the JND profile 

towards the minimum visual quality degradation [69,70]. For visual quality/distortion 

prediction, a metric can be defined or fine-tuned according to the JND [36,55] for 

better matching the HVS perception; a JND-based perceptual metric may be also 

adopted beyond the quality evaluation purpose (e.g., for image synthesis [71]).           

 

5.4 Summary 

In this chapter, we have compared the proposed JND estimation model with two 
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existing models (Model I and Model II defined in Section 5.1) based on a 

noise-injection scheme. We conducted the experiments separately for image and video. 

As for the image case, our model is comparable to Model I (even better performance in 

smooth areas of the image) and superior to Model II because it considers luminance 

adaptation and contrast masking. As for the video case, our model could add more 

invisible noise into frames of high motion compared with Model I, which shows that 

the addition of temporal contrast sensitivity and eye movement factor into the visual 

model is more consistent with human perception.
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CHAPTER 

                                    6  
Perceptual Image Compression Application  

 
6.1 Introduction 

In the previous chapters, we have discussed the properties of the HVS. The ultimate 

purpose of perception related research is actually to render more efficient and effective 

visual data processing. Therefore, in this chapter, the application of a JND model for 

image coding will be demonstrated. 

 

As discussed earlier in Chapter 1, a JND model can play an important role in 

perceptual image coding. With a near-lossless compression technique, we can achieve 

perceptually lossless results if the coding error is below the corresponding JND. For 

lossy image compression, the use of JND can facilitate perceptually optimized coding. 

Based on the above consideration, we propose an image compression scheme for both 

perceptually lossless and perceptually optimized lossy compression of color images. A 

type of Hartley transform, an integer transform, is used for efficient decorrelation and 
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energy compaction before JND-based quantization. Pixel-based JND is more 

straightforward in this application. The JND profile accounts for the combined effect 

of both luminance masking and contrast masking and can be more accurately estimated 

after image pixel classification. Experimental results show that the proposed scheme 

achieves higher compression in the perceptually lossless mode and better visual quality 

in lossy mode compared with other related coding methods. 

 

The chapter has been organized as follows: firstly in Section 6.2, the Hartley transform 

for frequency analysis will be introduced; then a JND model will be presented with 

finer pixel classification (Section 6.3); the coding scheme for perceptually lossless 

image compression as well as its extension to perceptually optimized lossy image 

compression will be proposed in Section 6.4. The experimental results are next 

presented (Section 6.5).  

6.2 Hartley Transform 

Discrete Hartley transform (DHT), an efficient integer transform at length N=4, can be 

extended to 2-D lossless Hartley transform (L-HT) [72]. According to [74], the L-HT 

for a 4x4 array x(p, q) is defined as: 

 

                         (6.1) 
3 3

0 0
( , ) ( , ) ( / 2) ( / 2)

p q
X m n x p q cas mp cas nqπ π

= =
= •∑ ∑

 

where ( ) sin( ) cos( )cas α α α= + , m, n, p, q = 0, 1, 2, 3. 
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In the above 4x4 L-HT, the basis vectors take only the binary values +1 and -1, which 

makes it computationally less complex. Furthermore, the forward and inverse HT share 

the same transform kernel, and this facilitates economical hardware/software 

implementation. According to (6.1), the coefficients of HT are obtained via a linear 

combination of the pixel values in the original image, and therefore, the distortion due 

to compression can be controlled by the quantization step, d. For the n-th block, the 

reconstructed error En (p, q) for any pixel (p, q) within the block is constrained by: 

 

( , ) ( / 2)nE p q d≤                      (6.2) 

for p, q = 0, 1, 2, 3. 

6.3 JND in Pixel Domain 

In real-life images, the JND value of each pixel of the image is associated with the 

inter-relevance of two factors: luminance masking and contrast masking [46]. The 

combination of these two masking effects for JND calculation in image domain can be 

modeled by the following nonlinear additivity model [47]: 

 

{ }( , ) ( , ) ( , ) min ( , ), ( , )l c lc l t
JNDT x y T x y T x y C T x y T x yθ θ θθ

= + − •      (6.3) 

 

where θ = Y, Cb, Cr, denotes the three channels for a color image; Tl(x, y) and Tθc(x, y) 

are the visibility thresholds due to luminance masking and contrast masking, 

respectively; and the last term of equation (6.3) represents the interactional effect of  
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the two masking types. 

 

According to [46], Tl (x, y) can be described by: 

 

              0
( , )(1 ) 3 ( , ) 127( , ) 127

( ( , ) 127) 3
l

I x yT if I xT x y y

I x y otherwiseγ

⎧
⎪ − + ≤

= ⎨
⎪ − +⎩

            (6.4)             

where 

             
5 5

1 1
( , ) (1/ 32) ( 3 , 3 ) ( , )

i j
I x y I x i y j B i j

= =
= − + − + •∑∑             (6.5) 

accounts for the average background luminance, and B(i, j) is a weighted low pass 

operator shown in Figure 6.1. T0 and γ are set to 17 and 3/128 respectively based on 

the experimental results in [46]. For color images, only the information of the 

luminance channel is used to estimate luminance masking. 

 

1 1 1 1 1
1 2 2 2 1
1 2 0 2 1
1 2 2 2 1
1 1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

Figure 6.1 The low pass operator B 

 

Contrast masking depends on the local texture activity of the image. The HVS 

sensitivity to error is generally higher in smooth, or plain areas, and lower in the 
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texture area [34]; while the sensitivity for edge areas lies in between. Therefore, we 

discriminately calculate contrast masking for different image pixel classes. We use the 

Canny method [75] to detect the edges in the image and classify a block as an edge 

class if there are more than two edge pixels in the 4x4 block. We then classify 

non-edge blocks as smooth class or texture class based on the block-based standard 

deviation (STD). We give different weights to different block classes and obtain a 

classification map Wθ after a Gaussian low-pass filtering: 

 

           W C hθ θ= ∗                     (6.6) 

where  
1

( ) 0.3
0.1

when block n texture class
C n when block n edge class

when block n smooth class
θ

⊂⎧
⎪= ⊂⎨
⎪ ⊂⎩

and  is a k × k Gaussian low pass filter with standard deviation σ (k=7 and σ=0.8). h

 

The contrast masking is then determined as: 

 

( , ) ( , ) ( , )tT x y G x y W x yθ θ θ θβ= • •            (6.7) 

 

where Gθ denotes the maximal weighted average of gradients [46] around the pixel at 

(x, y). βθ is the empirical weights for each color channel and is determined according 

to the subjective experiment in [47]. Table 6.1 shows the values of the parameters in  

the model. 
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Table 6.1 Empirical experimental parameters for the JND model 

Cθ
lc βθParameter 

Y Cb Cr Y Cb Cr 

Value 0.3 0.25 0.2 0.117 0.65 0.45 

 

6.4 JND Guided Image Compression 

6.4.1 Perceptually Lossless Compression 

The proposed coding scheme can be described by the block diagram in Figure 6.2.  

(4X4)
Block of
Source
Image

2-D
(4X4)
L-HLT

Block-based
Perceptual

Quantization

Local Property
Analysis JND Profile Quantization

map

Gaussian
Filtering

Selection Mechanism

Coefficients
Scanning

Entropy
Coding

Input
Image

Compressed
Bit-stream

 

 

Figure 6.2 Block diagram for the proposed encoding process 

 

In the selection mechanism, we set the quantization step for each block as: 
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2

0 0
( )

( , )

2
16

JND
p q

Q

T p q

nθ

θ
= =

= •

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎣ ⎦

∑∑
              (6.8) 

 

where TJNDθ  (p, q) (p, q=0, 1, 2, 3) denotes the JND values within the 4x4 block n in 

channel θ. Operator ⎣⎦ gets the maximum integer that is less than or equal to the inside. 

We call TJNDθ (x, y)2 JND energy [46] for pixel (x, y). According to equation (6.2), 

equation (6.8) guarantees that the total error energy of each block in a reconstructed 

image is below the JND energy in the corresponding block. In this way, we realize the 

perceptually lossless coding. The scanning order for HT coefficients is depicted in 

Figure 6.3. 
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Figure 6.3 The scanning order of HLT coefficients 

 

6.4.2 Perceptually-Optimized Lossy Compression 

With a lower bit-rate than that required by perceptually lossless coding, we aim at 

achieving the best possible perceptual quality of compressed images at a given bit-rate 

budget. In order to do this, we extend the above perceptually lossless coding scheme to 
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optimized lossy image coding by dispensing the distortion among the image pixels 

according to the perceptual importance information given by the JND profile. Here we 

use minimally noticeable distortion (MND) [6] instead of JND for the perceptual 

consideration. Different from the JND leading to a visually transparent processing, 

MND renders non-transparent but still visually optimum image/video under a bit rate. 

 

In our project, the MND is essentially a scaled version of the JND profile depending 

on the bit rate budget: 

( , ) ( , )MND JNDT x y T x
θ

α= • y
θ

            (6.9) 

where α is the adjustable parameter for different bit-rate budgets. Then the quantization 

step is set: 

    

3 3
2

0 0
( )

( ( , ))

2
16

MND
p q

Q

T p q

nθ

θ
= =

= •

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑∑
        (6.10) 

The rest of the lossy image compression scheme is similar to the perceptually lossless 

compression described in section 6.4.1. 

6.5 Experimental Results 

6.5.1 Perceptually Lossless Compression 

We compare our perceptually lossless compression scheme with the near lossless 

scheme described in [72] (uniform quantization with quantization step d =5), based on 

the same L-HT. Table 6.2 lists the bit per pixel (bpp) comparison of the two schemes 
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for different (grey-level and color) images from image database (Table 6.3). As can be 

seen, the proposed scheme significantly lowered the bit rate compared with the near 

lossless scheme.  

 

Table 6.2 Comparison of bit-rates for the proposed compression scheme 

and the near lossless compression scheme (with uniform quantization) 
 

Image Near lossless coding (d=5) 
(bpp) [72] 

Proposed perceptually lossless 
coding (bpp) 

A 3.31 2.31 
B 3.01 2.07 
C 4.20 2.83 
F 11.05 7.37 
G 6.25 4.06 
H 4.27 2.29 

 

Table 6.3 Image database for the experiments  

Gray-level Image Color Image 
Image 
Index 

Image Description Image 
Index 

Image Description 

A cameraman256x256 F mandrill512x512 
B pepper512x512 G peppers256x256 
C goldhill256x256 H splash512x512 
D airplane512x512 I lena512x512 
E lena512x512 J house256x256 

 

6.5.2 Perceptually-Optimized Lossy Compression 

We compare the visual quality of reconstructed images obtained by MND-based 

compression with that obtained using uniform quantization and the standard JPEG at 

an equivalent bit rate in Figure 6.4, where we see that image (b,d,f) by the proposed 

scheme appears to have less visible distortion than images (a,c,e) by the other two 
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scheme. The difference between the schemes is more obvious in the smooth areas, due 

to our block classification in the JND model.  

 

     

(a)                     (c)                     (e) 

     

(b)                     (d)                     (f) 

Figure 6.4 Comparison of visual quality between other coding methods and the 

proposed MND-quantization-based coding method. (a) image A (Table 6.3) by JPEG 

scheme at 0.4 bpp; (b) image A (Table 6.3) by our proposed scheme at 0.4 bpp; (c) 

image E (Table 6.3) by uniform quantization at 0.35 bpp; (d) image E (Table 6.3) by 

our proposed scheme at 0.35 bpp; (e) zoom-in image of (c); (f) zoom-in image of (d) 

 

We conducted subjective viewing experiments to give quantitive scores for all the 

images concerned. Under the same experimental environment as in [47], we performed 

10 trials on the images from the database (Table 6.3). In each trial, two reconstructed 

images (from the uniform-based coding method and the proposed method at equivalent 

bit rate) of a same image were juxtaposed on the screen and 6 subjects (3 are in the 
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image processing field and 3 are naive) were asked to rate the comparative visual 

quality of the pair according to Table 6.4. The rating results are listed in Table 6.5, 

where the mean subjective scores and the standard deviation are computed based on 

the 10 trials. In Table 6.5, the positive average mean with the average standard 

deviation of 0.761 shows that overall subjective rating favors the proposed scheme. 

Thus, we can say that our perceptual coding scheme helps better distribute the 

reconstruction distortion so as to optimize the perceived quality of decoded images. 

 

Table 6.4 Subjective rating table for comparing the visual quality of a pair of images 
 

-3 the left one1 much better than the right one2

-2 the left one better than the right one 
-1 the left one slightly better than the right one 
0 the same 
+1 the left one slightly worse than the right one 
+2 the left one worse than the right one 
+3 the left one much worse than the right one 

     1. the left one: decoded image by uniform-quantization-based coding method 
    2. the right one: decoded image by MND-quantization-based coding     
 

Table 6.5 Results for subjective evaluation 

 

Subject index Mean Standard Deviation 
1 +1.2 0.919 
2 +0.9 1.135 
3 +1.3 0.823 
4 +1.1 0.568 
5 +1.2 0.422 
6 +0.6 0.699 

Average +1.05 0.761 
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6.6 Summary 

In this chapter, we give an example of using the JND to facilitate image coding. A 

unified scheme for both perceptually lossless image compression and perceptually 

optimized lossy image compression based on L-HT and JND estimation in pixel 

domain has been proposed. The experiments show that in perceptually lossless mode, 

the reconstructed error is controlled below the visual threshold of the human 

perception, so that better compression performance can be achieved without 

jeopardizing the visual quality of the decoded image. While in lossy mode, we 

optimize the compression by distributing more distortion to image regions of less 

perceptual importance. 
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CHAPTER 

                                    7 
Conclusion and Future Work 

 

Recent developments in vision research have been contributing significantly to the 

advancement of perception-related research. How to effectively apply the 

characteristics of the human visual system to optimize digital imaging systems 

becomes increasingly important. For applications such as image/video coding and 

quality evaluation, pertinent understanding and proper modeling of human vision is 

essential. 

 

In this thesis, the main properties of the human visual system are first explored. Most 

of these properties can be simulated and represented by mathematical models. 

Appropriately combining these separated one-fold models leads to a rounded vision 

model, which mimics the human perception to certain extent for practical applications. 

Several existing perceptual models have been reviewed in the work to set a 

background for the proposed model.  
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7.1 Concluding remarks  

The major contribution of this thesis is the design of a DCT-based spatio-temporal JND 

(just noticeable distortion) estimation model, because a stand-alone JND estimation 

model can hardly be found. In comparison with the image case, estimation of JND for 

video needs to take the temporal HVS properties into account, in addition to the spatial 

properties. The temporal factor is considered in the model with a spatio-temporal CSF 

(contrast sensitivity function) model. Since eye motions may change the shape of 

spatial CSF, an eye movement model is incorporated into the spatio-temporal CSF to 

compensate for this mechanism. Similar to the model for images, luminance adaptation 

and contrast masking are inserted to account for the spatial properties of each frame in 

the video sequence. Compared to the related work [35], we exclude smooth blocks 

from the intra-band masking because we find that human vision is quite sensitive to the 

noise in the smooth areas even when motion takes place.  

 

Experimental results with subjective viewing confirm the improved performance of the 

proposed model. The model is capable of predicting more aggressive JND values 

without introducing noticeable distortion for both images and videos, and therefore 

outperforms the relevant existing models. 

 

We finally give an example of applying the JND model into the image coding scheme. 

A JND model estimating visual thresholds in pixel domain for images has been 
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introduced. In order to better estimate the contrast masking phenomenon, a blocking 

classification method has been adopted to separate the image blocks into the smooth, 

edge and texture group. Luminance adaptation has also been incorporated for the 

complete construction of the JND model. Based on Hartley transform and JND 

estimation in pixel domain, a unified scheme for both perceptually lossless image 

compression and perceptually optimized lossy image compression has been proposed.  

 

The experiments show that in perceptually lossless mode, the reconstructed error is 

controlled below the visual threshold of the human perception, so that better 

compression performance can be achieved without jeopardizing the visual quality of 

the decoded image. While in lossy mode, we optimize the compression by distributing 

more distortion to image regions of less perceptual importance, so that a tradeoff 

between visual quality and bit rate budget is achieved. 

7.2 Future work  

Though the proposed JND model has already considered many spatial and temporal 

properties of the human visual system, there are still more to be added. For example, 

higher processing in the human perception related to visual attention and foveal 

property are also very important yet not well developed for modeling the HVS and for 

quality evaluation. In a video sequence, the foreground object and motion tend to draw 

more attention from the observer. Therefore, we can further enhance the JND model 

for background and visually unnoticed areas.  
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In our model, we have made several assumptions to simplify modeling. We can exploit 

these in the future for more accurate modeling. For instance, it has been assumed that 

the HVS tracks different parts of an image equally (Section 4.2.2), but this is just an 

approximation, especially for a large-size image.  

 

Moreover, our model is designed only for gray-level images and video. Although 

achromatic factors play more important roles than chromatic factors in terms of 

perception, it should not be ignored when a more thorough and accurate model is 

desired.  

 

As for practical applications, the more accurate JND estimation towards the actual 

visibility bounds can facilitate resource savings (e.g., for bandwidth/storage, 

computation) and performance improvement (for perceived quality, etc.) in video 

coding, as well as improvement in various other visual processing tasks (such as 

perceptual quality evaluation, visual signal restoration/ enhancement, watermarking, 

authentication, and error protection). 
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