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Summary 
 

Parkinson's disease (PD) is a common, progressive neurodegenerative illness, associated 

with a selective loss of dopaminergic neuron in the nigrostriatal pathway of the brain, leading to 

impairment of voluntary motor control.  While genetic studies have yielded several important 

pathogenetic factors such as alpha synuclein and parkin, the rapid development of novel and 

effective PD therapeutics requires the identification of a broader base of pathogenetic agents 

involved in dopaminergic cell death elicitation. To this aim, proteomics was performed on 

MPP+-treated MN9D cells, which was used to recapitulate the biochemical and 

neuropathological changes reminiscent of those occurring in sporadic PD. Through this exercise, 

eight proteins with MPP+-induced altered expression levels were identified. Among them, NPM 

stood out as the candidate for further studies due to its recently discovered interaction with the 

tumour suppressor p53, as well as its ability to inhibit apoptosis when overexpressed.  

 Up regulation in NPM protein level was observed on two-dimensional gel electrophoresis 

(2DGE) with four hours of exposure of the neurotoxin MPP+ to the MN9D cells. The apparent 

increase in NPM amount was subsequently attributed to stress-induced release of the nucleoli-

bound NPM into the nucleoplasm and cytoplasm, rather than due to de novo protein synthesis. 

Translocation of NPM into the cytoplasm was mediated by the nuclear export receptor Crm1, 

since Leptomycin B, an inhibitor of Crm1-mediated nuclear export, prevented cytoplasmic 

accumulation of NPM. Activation of the initiator caspase-8, but not executor caspase-3 or -6, 

promoted cytoplasmic accumulation of NPM. The results thus indicate cytoplasmic NPM build-

up as part of the early cellular stress response. Subsequent in vivo and in vitro testings using a 

variety of cell lines implicate NPM as a caspase inhibitor. Overexpression of GFP-tagged NPM 
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ddition of recombinant NPM to the cytochrome-c induced 

HEK293 cytosolic extract inhibited the activation of caspase-3, -6, -7 and -8, but not that of 

caspase-9. Meanwhille., immunodepletion of endogenous NPM from apoptotic-induced 

cytosolic extracts resulted in significant increase in activation of the same four caspases. Our 

results hence indicate that NPM retards the caspase activation loop downstream of cytochrome c- 

induced caspase-9 activation. Measuring the activities of the various recombinant active caspases 

in the absence or presence of recombinant NPM revealed that NPM specifically inhibits the 

activities of caspase-6 and -8, in particular cleaving of their respective downstream procaspases 

and death substrates. 

 Further characterisation using co-immunprecipitation unravels specific physical 

associations between NPM and caspase-6/-8. NPM specifically interacts with only the cleaved 

form of both caspases in MPP+-treated MN9D cells. This is reminiscent of X-linked Inhibitor of 

Apoptosis (XIAP)’s inhibition of and exclusive interactions with cleaved caspase-3 and -7, and 

appears to underlie the NPM’s caspase inhibitory mechanism.  In addition, NPM promoted the 

formation of an inhibitory complex involving active caspase-6/-8 and their procaspase substrates, 

and the complex was thought to sequester the active caspases away from other substrate 

molecules.

Taken together, the results suggest a role for nucleoli-released, cytoplasmic-accumulated 

NPM in the regulation of the caspase-8/-6-mediated death signalling network. The hypothesis is 

strongly supported by the discovery of the cytoplasmic NPM mutant (NPMc) mutant in 

approximately one third of patients suffering from acute myeloid leukaemia (AML). The disease 

is characterised by an accumulation in the bone marrow and peripheral blood of large numbers of 
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abnormal, immature myeloid cells. Cytoplasmic abundance of NPMc inhibited cytochrome c-

induced caspase activation cascade in the HeLa cells and halted cleaving of downstream 

procaspase-3 by active caspase-8 in the AML-relevant OCI/AML3 cell line. The latter 

observation coincided with an attenuation of TRAIL-induced cell death and failure in caspase-8 

and -3 activation in the same cell line, as compared to the OCI/AML2 cell line bearing wild type 

NPM only. The results hence implicate excessive inhibition of caspase-8 mediated death 

signalling by cytoplasmic NPMc as the primary cause underlying the pathogenesis of AML. 

They also support our hypothesis proposing stress-induced cytoplasmic NPM translocation as a 

cytoprotective strategy to delay caspase-8/-6-mediated death signalling until death commitment. 

The discovery made herein opens up therapeutic opportunities for AML and PD alike, both of 

which are likely to be characterised by deregulated cell death. 
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Chapter I  Proteomic analysis of MN9D cells 

1.1 Introduction 

Recent approaches to address complex biological systems include the use of cDNA 

microarrays and oligonucleotide chips to monitor changes in mRNA expression. Although gene-

chip technology is certainly very powerful, it is clear that it has its limitations. Cells need to be 

able to dynamically modify protein function as well as to quickly regulate protein creation and 

degradation under both normal situations and in response to cellular perturbations (Pasinetti, 

2001). However, mRNA-based assays are unable to detect covalent modification, regulated 

translation, or proteolysis, which are key regulatory events in signal transduction mechanisms. 

Furthermore, studies in human liver and S. cerevisiae have shown that mRNA levels correlate 

poorly with corresponding protein levels (Gygi et al., 1999; Futcher et al., 1999). As such, 

analysis of genomic information alone is incapable of providing a complete overview of protein 

activation. The emerging field of proteomics seeks to address the role of protein expression 

directly and offers a much richer source for the functional description of diseases and the 

discovery of diagnostic and therapeutic targets. An additional and unique advantage is that, in 

contrast with the genome, the inherently dynamic nature of the proteome allows us to monitor 

closely changes in the state of a cell, tissue or organism over time (Pandey & Mann, 2000).  

Proteomics provides a complementary and potentially more comprehensive approach to 

the analysis of signalling mechanisms by resolving the expressed proteins of the cell 

("proteome") followed by protein sequencing and identification (Pandey & Mann, 2000). 

Improved technologies that have emerged for comprehensive and high-throughput protein 

analysis yield novel insights into cell regulation. An established and widely accessible strategy 

for protein profiling is two-dimensional gel electrophoresis (2DGE), which displays changes in 
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protein expression and post-translational modifications based on protein staining intensities and 

electrophoretic mobility. By combining 2D gels and mass spectrometry with standard molecular 

pharmacological approaches, responses to specific signal transduction pathways can be 

monitored (Pandey & Mann, 2000). Several studies have successfully identified novel signal 

transduction targets by selectively activating or inhibiting pathways and screening molecular 

responses by 2DGE. Also, signature patterns containing diagnostic or functional information 

may be acquired from 2DGE profiles, aiding the quest for disease biomarkers and potential drug 

targets (Aebersold & Mann, 2003; Hanash, 2003).   

 

1.1.1 Proteomic Methodologies 

Proteomics methodologies include a number of sample preparation steps that culminate 

in mass spectral analysis and automated identification. Harvested cells are lysed, and then 

proteins are reduced and alkylated. For quantitation and differential expression experiments, the 

alkylated proteins from specific cell states (e.g., normal versus diseased) can be labeled with 

stable isotope tags for quantitation. Proteins may be separated by 2DGE or chromatographic 

means. Differential image analysis of 2DGE-separated proteins can reveal pattern changes 

suggesting regulation of protein expression or post-translational modifications. Spots of interest 

are manually or robotically excised and digested, then analysed using matrix assisted laser 

desorption/ionisation-time-of-flight (MALDI-TOF) mass spectrometer (MS) (Pandey & Mann, 

2000). 
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Chapter I  Proteomic analysis of MN9D cells 

1.1.1.1 Two dimensional Gel Electrophoresis (2DGE) 

For more than 30 years, the mainstay of protein expression profiling has been 2DGE, 

where proteins are separated according to their isoelectric points using isoelectric focussing in 

the first dimension, and by size using SDS/PAGE in the second dimension. Proteins may be 

stained by Coomassie brilliant blue, SYPRO Orange/Red or silver, in order of increasing 

sensitivity.  Visualisation and analysis of 2D gels can be performed by imaging systems and 

software. The introduction of immobilised pH gradients and advanced bioinformatics have vastly 

improved the reproducibility and comparability between gels, although the high demand on 

labour is a serious obstacle to 2DGE becoming routine for a clinical laboratory (Hanash, 2000). 

2DGE can resolve 1500–3000 protein spots per gel, which is still at the top end of any 

two-step separation procedure. By spreading the pH range across several gels, so called zoom 

gels (Gorg Electrophoresis 2000), between 5000–10000 protein spots can be resolved. Any 

additional purification step will display more proteins. In this aspect, subcellular fractionation 

offers the advantage of well-established protocols for many subcellular compartments and 

additional information derived from protein localisation (Huber et al., 2003). 

Although 2DGE is the most widely used tool for separating proteins in expression 

proteomics, it is not without its limitations. Challenges faced when utilizing this technology are 

co-migration of proteins, systematic exclusion of highly hydrophobic molecules and problems 

with detecting proteins with extremes of pH and size or low abundance proteins. To meet 

demands for greater detail and accuracy in protein separation techniques, companies are 

developing new products that are inexpensive and reliable, generate high-resolution protein 

separation and yield good visual detection of subtle differences. Also, fractionation methods that 
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reduce complexity or affinity purifications for selective enrichment are now commonly used to 

enhance proteomic analysis. Technologies such as microcapillary electrophoresis, capillary 

electrochromatography and ultra-HPLC are also emerging which promise excellent protein 

separations as well as detection of low abundance proteins (Lubec et al., 2003). 

 

1.1.1.2 Mass Spectrometry (MS) 

MS is a highly sensitive and versatile technique for studying proteins. It can be used to 

derive sequences de novo and determine structural information (in particular post-translational 

modifications) as well as to quantify relative and absolute amounts of proteins. In proteomics, 

the most common approaches used are peptide mass fingerprinting and tandem mass MS 

sequencing (Aebersold & Mann, 2003).  A mass spectrometer consists of three components: an 

ionization source, a mass analyser, and a detector. The ionization source adds a charge to the 

peptides in the sample, usually in the form of a proton to produce positively charged particles, 

and injects them into a vacuum chamber. The mass analyser uses an electromagnetic field to 

separate and sort the ionized peptides, while the detector registers the number of ions at each 

mass-to-charge value. True mass can only be determined if the charge state can be determined, 

which requires the resolution of naturally occurring isotopic variants (Kolch et al., 2005) 

On a mass spectrum, each peak represents an ionized peptide, originating from a protein 

in the sample, with the height of the peak proportional to the abundance of the peptide. Proteins 

may be identified by recording their peptide mass fingerprint (PMF) — the pattern of peaks in 

the mass spectrum after fragmentation by specific enzymes — or by amino-acid sequencing after 
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breaking down the protein fragments further into a series of peptides differing by one amino acid 

(Pandey & Mann, 2000). 

 

1.1.2 Scope of Proteomics 

 Two main areas of the proteomic field are profiling and functional proteomics. Profiling 

proteomics encompasses the description of the whole proteome of an organism (by analogy with 

the genome) and includes organelle mapping and differential measurement of expression levels 

between cells or conditions. The usefulness of profiling proteomics is well illustrated in the field 

of neuroscience. One detailed analysis of the mouse brain proteome established a protein index 

of over 8,500 proteins by 2DGE, with MS identification of 

 

about 500 (Klose et al., 2002). 

Another profile of human fetal brain identified 1,700 proteins corresponding to 437 genes 

(Fountoulakis et al., 2002). Differential protein expression analysis based on 2DGE separation 

and visualisation methods have been used to compare the anatomy of different brain regions and 

to profile molecular changes associated with physiological states and development. Comparative 

proteome analysis has also been used to study pathology associated with neurodegeneration, 

psychiatry, trauma, stroke and nervous system tumors. Also, expression proteomics of 

cerebrospinal fluids, astrocyte secretions and microdialysates of brain are under investigation to 

identify biomarkers for diagnostics and prognostics (Choudhary & Grant, 2004).  

On the other hand. functional proteomics characterises protein activity, interactions and 

the presence of post-translational modifications (reviewed in Mirzabekov & Kolchinsky, 2001; 

MacBeath, 2002; Venkatasubbarao, 2004). It usually begins with a subset of proteins sharing a 

common trait (e.g. affinity for a particular small molecule), isolated from a starting material. 
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Coupled to the use of microarrays or protein chips, functional proteomics aids in the discovery of 

novel protein functions in complex biological processes, based on certain inherent properties of 

the proteins such as specific protein-ligand interactions, presence of distinct functional groups 

and post-translational modifications. Several large-scale functional proteomics technologies have 

been developed to generate comprehensive, cellular protein-protein interaction maps (Drewes & 

Bouwmeester, 2003), which will prove very useful for the drug discovery process. 

 

1.1.3 Objective of current investigation: proteomics in the study of Parkinson’s disease 

Parkinson's disease (PD) is a common, progressive neurodegenerative illness, associated 

with a selective loss of dopaminergic neuron in the nigrostriatal pathway of the brain (Olanow & 

Tatton, 1999). While the aetiology of PD is hitherto unclear, evidences are accumulating to 

suggest that, like other chronic neurodegenerative disorders such as Alzheimer’s disease (AD), 

PD is caused by a combination of events that impaired neuronal functions, such as oxidative 

stress, mitochondrial dysfunction, environmental toxins, endogenous toxins, proteosome 

dysfunction, and genetic defects have been proposed to play a role (Bossy-Wetzel et al., 2004). 

While genetic studies have yielded several important pathogenetic factors such as alpha 

synuclein (Polymeropoulos et al., 1997) and parkin (Kitada et al., 1998) which are mutated in 

some cases of PD, the rapid development of novel and effective PD therapeutics requires the 

identification of a broader base of pathogenetic agents involved in dopaminergic cell death 

elicitation. This is especially so since sporadic Parkinson's disease (PD) constitutes 99% of the 

disorder, while only a mere 1% of the cases is of genetic origin (Mandel et al., 2005).  The use of 

proteomics should thus shed light on the overall mechanisms underlying PD pathogenesis and 

reveal novel therapeutic targets. Nevertheless, up to now, proteomics has mainly studied the 
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identity and levels of the abundant human, rat, and mouse brain proteins as well as changes of 

their levels and their chemical modifications deriving from neurological disorders, such as AD 

and Down's syndrome and in animal model of those disease, collecting information about gene 

products involved in their respective aetiologies (Cheon et al., 2003; Bajo et al., 2002; 

Butterfield & Boyd-Kimball, 2004; Choi et al., 2004; Butterfield, 2004). On the other hand, few 

proteomic investigations were employed in the study of Parkinson's disease (Lee et al., 2003; 

Basso et al., 2004). 

With these in mind, proteomic study was performed here with the aim to unearth novel 

players involved in the pathogenesis of PD. In this study, we employed the dopaminergic cell 

model, MN9D (Choi et al., 1991), to identify proteins with altered expression induced by the 

administration of 1-methyl-4-phenylpyridinium (MPP+), the active ion of the Parkinson-inducing 

neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyride (MPTP) (Davis et al., 1979). By 

applying proteomics to the cell model used to recapitulate the biochemical and neuropathological 

changes occurring in sporadic PD, we aim to uncover novel proteins of potential prognostic and 

therapeutic values. 
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1.2 Materials and Methods 

 

1.2.1 Cell culture and induction of apoptosis 

 MN9D (obtained with courtesy of Dr Jun Chen, University of Pittsburgh and with 

agreement from Dr Alfred Heller, University of Chicago), was cultured in DMEM medium 

supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin in a humidified 

atmosphere of 5% CO2 at 37°C. To induce apoptosis, MN9D cells were treated with 500 µM of 

1-Methyl-4-phenil-pyridinium (MPP+) for 0, 4, 8 or 16 hours, after which the cells were 

harvested, lysed using a cell lysis buffer containing 50 mM HEPES pH 7.4  and 1% Triton X-

100, and subjected to centrifugation at 12, 000 x g for 10 min at 4°C. The supernatant was then 

collected and concentrated using the Ultrafree-CL centrifugal units Biomax-5 with molecular 

weight cut-off of 5 kDa (Millipore, USA). 

 

1.2.2 Two-dimensional gel electrophoresis  

The protein content of the cell lysates was determined by the Bradford protein assay. 

2DGE was performed according to the manufacturer’s protocol for the PROTEAN® II xi 2-D 

Cell Systems (Biorad, USA) based on the publications of O’Farrell & Goodman (1975) and 

Garrels (1979). 200 µg aliquots of the total cellular lysates proteins were loaded onto the 

immobilised pH gradient (IPG) strips (Biorad, USA) for IEF. Each IPG strip was rehydrated for 

16 hours in 300 µL of rehydration buffer containing 8 M urea (Biorad, USA), 2% CHAPS (w/v, 

Sigma, USA), 2.8% DTT (w/v, Sigma, USA), 0.5% (v/v) ampholytes (Biorad, USA) and 200 µg 

9 



Chapter I  Proteomic analysis of MN9D cells 

of cell lysates. Isoelectric focusing was performed at 20°C with the following setting: 300 V, 1 h; 

1000 V, 1 h; 3000 V, 1 h; rapid ramp 6000 V, for 60 000VH; 500 V, 12 h. 

Prior to the second dimensional separation by SDS-PAGE, the IPG-strips were first 

equilibrated for 15 min in 10 mL of equilibration buffer containing 50 mM Tris-HCl (pH 8.8), 6 

M Urea, 30% glycerol (Merck, USA), 2% SDS (Merck, USA) and 1% DTT (w/v, Sigma, USA), 

after which the strips were equilibrated for a further 15 min in the same buffer in which DTT was 

replaced with 2.5% Iodoacetamide (IAA, w/v, Sigma, USA) to alkylate the free thiol groups of 

the reduced cysteine residues. SDS-PAGE was carried out on a PROTEAN® II xi 2-D apparatus 

(Biorad, USA) using a 12% resolving gel. SDS-PAGE was performed at a constant current of 5 

mA for half an hour and subsequently, 25 mA per gel. 

 

1.2.3 Silver stain visualisation of protein spots 

The gels were fixed overnight in 50% methanol (v/v, Fisher Chemicals, USA) and 5% 

acetic acid (v/v Merck, USA). Prior to silver staining, the gels were washed with 3 changes of 

deionised water for 1 h, after which the gels were sensitised with 0.2 g/L sodium thiosulphate 

(Sigma, USA) for 2 min. Subsequently, the gels were rinsed twice in deionised water for 1 min 

before staining in 0.1% silver nitrate (w/v, Sigma, USA) for 20 min at 4°C. The gels were rinsed 

twice in water for 1 min to remove the excess silver ions. The gels were then rinsed briefly with 

a small amount of developing solution containing 2% sodium carbonate (w/v, Sigma, USA) and 

1.48% formaldehyde (v/v, Sigma, USA). Subsequently, the protein spots were developed to the 

desired intensity in fresh developing. The developing step was arrested by the addition of 5% 
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acetic acid, and then the gels were stored in 1% acetic acid until the spots of interest were 

excised for analysis. 

 

1.2.4 Gel imaging and Identification of spots with up- or down-regulation 

 Silver-stained 2-D gels were scanned using a GS-710 imaging densitometer (Biorad, 

USA), and the raw scans were processed by PDQuest software (Biorad, USA). Two-dimensional 

gels were evaluated visually pairwise, and changes of spots were considered with respect to 

variation in the presence or absence, quantity, and spot position. 

 

1.2.5 In-gel tryptic digestion and mass spectrometry 

 The protein spots of interest were excised by manual means and rinsed twice in deionised 

water. The spots were then washed in fresh deionised water for 10 min with agitation to 

completely remove traces of acetic acid. Freshly prepared potassium ferricyanide (10 mg/mL) 

and sodium thiosulphate (16 mg/mL) were mixed in equal volumes and 50 µL aliquots were 

immediately added to the gel fragments. The gel pieces were destained on a shaker for 30 min, 

after which the mixtures were spun briefly and the destaining solution was discarded.  The gel 

fragments were washed in copious amount of deionised water before addition of 100 mM 

ammonium bicarbonate. The mixtures were vortexed for 20 min until the gel pieces were cleaned 

of silver stain. The mixtures were spun briefly and the solution was discarded. The gel pieces 

were then washed for 15 min in 50 mM ammonium bicarbonate/50% acetonitrile (J.T. Baker, 

USA) prior to shrinkage by addition of acetonitrile. The gels were dried to completion in a 

vacuum centrifuge. 
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 Reswelling was carried out by the addition of 30µL of digestion solution containing 12.5 

ng/µL trypsin (Promega, USA) in 50 mM ammonium bicarbonate for 30 min at 4°C. Excess 

trypsin was removed and tryptic digestion was carried out for 15 h at 37°C. The mixtures were 

cooled to room temperature before centrifugation at 3300 x g for 10 min. The supernatant 

fractions were saved whilst the gel pieces were treated with 20 mM ammonium bicarbonate for 

10 min and centrifuged at 3300 x g. The resulting supernatants were combined were combined 

with the first supernatants. Final extraction was done by treatment with 5% formic acid (Fluka, 

USA) in 50% acetonitrile. The mixture was allowed to stand for 10 min and subsequently 

centrifuged at 3300 x g to collect the third supernatant, which was combined with the previous 

two supernatants. This combined supernatant was dried in a vacuum centrifuge. 

 The dried samples were then submitted to the Protein and Proteomic Centre, NUS, for 

MALDI-TOF. Briefly, each peptide obtained was dissolved in 1.5 µL of 50% acetonitrile and 

0.5% trifluoroacetic acid (TFA, v/v), from which 1-µL aliquot was mixed with 0.5 µL of matrix 

solution on the stainless steel matrix assisted laser desorption ionisation (MALDI) target plate. 

The mixture was allowed to dry at room temperature and pressure. α-Cyano-4-hydroxycinnamic 

acid was used as the matrix. A Voyager-DE PRO MALDI-TOF mass spectrometer (Applied 

Biosystems, USA) equipped with delayed extraction and a nitrogen laser (337 nm, with a focal 

diameter of 25 nm) was used for all analyses. The flight tube length in the reflector mode is 2 m. 

The MALDI mass spectra were internally calibrated with angiotensin II and ACTH-clip 18-39 

(Sigma, USA) and were optimised for the range 800-2000. The spectra were acquired in the 

positive-ion reflector mode using an accelerating voltage of 20 kV. Spectral data were obtained 

by averaging 10 spectra, each of which was the composite of 10 laser firings. 
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1.2.6 Protein identification through peptide mass fingerprinting 

 Peptide masses obtained by MALDI-MS analysis were used to search the National Centre 

for Biotechnology Information database (NCBI, www.matrixscience.com) to identify the intact 

proteins. Often, a series of spots that differ slightly in pI represent the same proteins. 

Accordingly, some of the proteins that have a relatively low score but are positioned within such 

a series that match the predicted molecular mass and pI are also listed. 

13 
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1.3 Results 
  

1.3.1 Treatment with MPP+ resulted in differential proteome profiles 

 MPP+, which is the active metabolite of the neurotoxin MPTP, is widely used as a 

neurotoxin in various models to study Parkinson’s disease, as it was found to induce many of the 

biochemical and neuropathological changes that are observed in postmortem brains of PD 

patients (Davis et al., 1979). MPP+ exerts its effect by inhibiting the complex I of the oxidative 

phosphorylation chain (Nicklas et al., 1985). The mitochondrial inhibition leads to a decrease in 

ATP production, as well as the formation of superoxide anion (Hasegawa et al., 1990). By-

products generated with the reaction of the superoxide anion with other reactive oxygen species 

(ROS) e.g. nitric oxide (NO) could produce more damaging effects within the cell (Beckman, 

1994). In our laboratory, we have previously demonstrated time- and dosage-dependent cell 

death of our model cell line, the mouse dopaminergic MN9D cells, in response to MPP+ (Chee et 

al., 2005). The optimum concentration of MPP+ required for inducing about 50% cell death 

(LD50) was found to be 500 µM and was therefore chosen as a standard dosage for current 

investigations, since higher concentrations of MPP+ did not further increase cell death.  

 For proteomic analysis, we used 2DGE to resolve several hundreds MN9D cell proteins. 

Differential gel analysis yielded quite a number of proteins showing altered level of expression 

with MPP+ treatment of the MN9D cells. In the current investigation, the narrow range or zoom 

gels were utilised to better resolve closely spaced protein spots, so as to facilitate in their 

excision and eventual identification through MALDI. A representative of well-resolved gels of 

pH range 3-6 and 5-8 is shown in Figure 1.1 and 1.2, respectively. Comparison of the 2DGE 

protein profiles of unchallenged and MPP+-challenged MN9D cells treated for various durations 
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(0, 2, 4, 8, 16 hours) revealed some differences in the protein patterns, even though the general 

profiles were similar between various treatments. Selected proteins that showed marked 

differences in expression across treatments were identified by peptide mass fingerprinting using 

MALDI-TOF. Figures 1.3-1.10 show the up- and down-regulation of proteins with MPP+ 

treatments. It was noted that proteins that were up-regulated in one treatment, say 8 hours of 

MPP+ exposure, might not be up-regulated in another treatment, say 16 hours of MPP+ exposure 

(results not shown). Such dynamic kinetics of protein expression levels attests to the 

complexities of the molecular mechanisms involved in stress response.  

 

1.3.2 Proposed roles of proteins identified by MALDI-TOF  

 The identities of the proteins, as recognised through the use of MALDI-TOF, are listed in 

Table 1.1 and their proposed roles in MPP+-exposed MN9D cells are presented below: 

 

(a) Nucleophosmin (NPM) – Expression is up-regulated four hours after MPP+ treatment 

(Figure 1.3). NPM is proposed to function in ribosomal assembly and transport. It is 

associated with pre-ribosomal particles and is localised in the granular region of the 

nucleolus (Prestayko et al., 1974; Spector et al., 1984; Yung et al., 1985). It also function 

as a molecular chaperone that prevents protein from aggregating in the crowded 

environment of the nucleolus (Szebeni & Oslon, 1999). NPM is recently shown to 

interact directly with the tumour suppressor protein, p53 and regulates its stability and 

transcriptional activation after different types of stress. It also induces p53-dependent 

premature senescence upon overexpression in diploid fibroblast (Colombo et al., 2002). 

NPM probably has a role in regulating p53 stability in MPP+-treated MN9D cells, but 
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given NPM’s diverse cellular duties, its involvement may be much more complex than 

that.  

 

(b) Proteosome subunit, beta type 6 – Expression was up-regulated after eight hours of MPP+ 

exposure (Figure 1.4). The proteosome is the major cellular proteolytic machinery 

responsible for the degradation of both the normal and damaged proteins, and hence play 

a pivotal role in retaining cellular homeostasis. It was shown that in human embryonic 

fibroblast cultures undergoing replicative senescence, the reduced levels of proteosomal 

activities during the process are accompanied by lower proteosome content and protein 

expression levels of some, but not all, proteosome subunits. Specifically, it was 

discovered that the loss of proteosome function is a result of reduced levels of beta type 

subunits, whereas the alpha-type subunits are in excess as “free” subunits in senescent 

cells (Chondrogianni et al., 2003). Meanwhile, over-expression of the beta-type 5 subunit 

was shown to enhance proteosome activities, increased protein expression levels of the 

other proteosome subunits, and efficiently assembled proteosome. The increased amount 

of assembled proteosome resulted in more functional proteosome being produced, which 

in turn conferred enhanced survival following treatment with oxidants (Chondrogianni et 

al., 2005). Its up-regulation with MPP+ treatment may hence be indicative of elevated 

amount of ROS-damaged proteins in the cell and is probably required for assembly of 

more proteosomal complex to cope with cellular stress. 

 

(c) Ribosomal protein Large P2 subunit – Up-regulated after eight hours of MPP+ treatment 

(Figure 1.5). This eukaryotic acidic protein, together with P1 protein, modulate the 

16 



Chapter I  Proteomic analysis of MN9D cells 

activity of the ribosomal stalk. These are the only ribosomal components for which there 

is a cytoplasmic pool (Mitsui et al., 1988). Phosphorylation and N-terminal region of 

yeast ribosomal P1 mediate its degradation. However, association of P2 protects the P1 

proteins from the proteosomal-independent degradation (Nusspaumer et al., 2000). 

Elevated P2 level may lead to increased stability of P1, and the ribosomal structure, 

hence avoiding a halt in protein synthesis during cellular stress. Conversely, the increase 

in the amount of P2 detected with MPP+ treatment may be a consequence of their release 

from oxidant-damaged ribosomal complex. An excess of proteins could be damaging to 

the cell, probably due to the tendency of these proteins to bind RNA, interfering with the 

translational machinery (Nusspaumer et al., 2000). Other components of the ribosomal 

complex have been implicated in the regulation cellular response to stress and apoptosis. 

For example, over-expresison of ribosomal protein S13 and L23 can promote multi-drug 

resistance in gastric cancer cells by suppressing apoptosis (Shi et al., 2004). Meanwhile, 

ribosomal protein L11 was shown to bind to and suppress the E3 ligase function of 

HDM2, thus activating p53 which can lead to cell cycle arrest and/or apoptosis (Bhat et 

al., 2004). Research into alternative physiological function(s) of ribosomal protein P2 

subunit may thus shed light on the significance of its heightened expression in the MN9D 

cells after MPP+ treatment. 

 

(d) Glycinamide ribonucleotide synthetase - Up-regulated after eight hours of MPP+ 

treatment (Figure 1.6). Purines are critical for energy metabolism, cell signalling and cell 

reproduction. Purine nucleotides function as precursors for RNA and DNA synthesis, 

coenzymes, energy transfer molecules and regulatory factors in higher organisms 
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(Brodsky et al., 1997). Nevertheless, little is known about the regulation of this essential 

biochemical pathway during mammalian development. In humans, the second step of de 

novo purine biosynthesis are catalysed by a trifunctional protein with glycinamide 

ribonucleotide synthetase (GARS). The expression of GARS is highly regulated during 

development of the human cerebellum. It is expressed at high levels during normal 

prenatal cerebellum development and become undetectable in this tissue shortly after 

birth. In contrast, it continues to be expressed during the postnatal development of the 

cerebellum in individuals with Down syndrome (Brodsky et al., 1997). Individuals with 

Down syndrome have elevated serum purine levels (Pant et al., 1968), and elevated 

purine levels have been associated with mental retardation (Lesch & Nyhan, 1964; 

Jaeken & Van den Berghe, 1984). Down syndrome patients have a very high incidence of 

early onset of clinical, as well as neuropathological symptoms associated with Alzheimer 

disease like white matter lesions (de la Monte et al., 1990). Though the level of GRAS 

expression in Parkinson’s disease patients brain has yet to be determined, its marked up-

regulation in the cell model here still renders it a potential candidate as a biomarker for 

diseases involving neuronal degeneration, such as Down syndrome, Parkinson’s and 

Alzheimer disease.  

 

(e) Phosphoglycerate Mutase – Expression is down-regulated after eight hours of MPP+ 

treatment (Figure 1.7). The enzyme catalyzes the interconversion of 3-phosphoglycerate 

and 2-phosphoglycerate in the glycolysis and gluconeogenesis pathway. Expression of 

this protein was also shown to be down-regulated in methamphetamine-induced 

dopaminergic neurotoxicity in the ventral midbrain (Xie et al., 2002). Growing evidence 
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suggests that brain injury after methamphetamine administration is due to an increase in 

free radical formation and mitochondria damage, resulting in a failure of cellular energy 

metabolism and secondary excitoxicity (Virmani et al., 2002). Down regululation of 

phosphoglycerate mutase 1 was also discovered through proteomic analysis of 

corticobasal degeration, which is an adult-onset progressive neurodegenerative disorder 

(Chen et al., 2005). Interestingly, when proteome techniques was used to examine the 

regional in vivo protein oxidation induced by amyloid beta-peptide (1-42) injected into 

nucleus basalis magnocellularis of rat brain compared with saline-injected control, 

phosphoglycerate mutase 1 was found to be one of the few proteins to be extensively 

oxidised (Boyd-Kimball et al., 2005). Down-regulation of phosphoglycerate mutase in 

MPP+-treated MN9D cells, as well as in other neurodegenerative disease cell models, 

may thus be a consequence of proteosome-mediated degradation of the oxidised protein, 

and may represent an important biomarker for neurodegenerative diseases in general.  

 

(f) PKCq- interacting protein (PICOT) – Expression is up-regulated four hours after MPP+ 

treatment (Figure 1.8). PICOT interacts with protein kinase C-θ, mediated by an N-

terminal thioredoxin homology domain, and is thought to play a role in regulating the 

function of thioredoxin system (Witte et al., 2000). The latter is thought to be involved in 

free-radical scavenging, as well as redox modification of the DNA-binding domain of fos 

and jun, hence controlling the DNA binding of AP-1. Transient over-expression of full-

length PICOT in T-cells inhibited the activation of c-jun N-terminal kinase, and the 

transcriptional factors AP-1 and NF-κB (Witte et al., 2000). Heightened expression of 

PICOT may hence be indicative of elevated oxidative stress within the cells with MPP+ 
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treatment, and may regulate diverse cellular processes in response to cell stress via 

inhibition of transcriptional factors activation. 

 

(g) Spermidine synthase – Expression is up-regulated four hours of MPP+ exposure (Figure 

1.9). This enzyme adds an aminopropyl group to a polyamine spermidine, forming 

spermine. Together with putrescine, the three are essential for cell survival and 

proliferation. Depletion of intracellular polyamines using inhibitors of polyamine 

biosynthesis triggers the mitochondria-mediated pathway for apoptosis, resulting in 

caspase activation and apoptotic cell death in both the murine and human B cell line and 

Jurkat cells (Nitta et al., 2002). Also, spermine has been shown to be capable of 

scavenging free radicals generated by amyloid beta-peptide in solution as measured by 

electron paramagnetic resonance spectroscopy. By extrapolation then, its up-regulation 

may serve as a defense mechanism against oxidative damage and apoptosis activation in 

the current cell model, and is useful as an indicator of free radical damage upon MPP+ 

treatment. 

 

(h) Peptidylprolyl isomerase A  - Also called cyclophilin-A. Down-regulated after eight 

hours of MPP+ treatment (Figure 1.10). Cyclophilin-A is the cytosolic isoform of a 

cyclosporin-A binding family of peptidylproline cis-trans-isomerases that catalyze 

rotation of Xaa–Pro peptide bonds. It binds to the heat shock protein hsp90 (Nadeau et 

al., 1993) and stiumlate the activity of the thiol-specific antioxidant protein Aop1 

(Jaschke et al., 1998). Rat neonatal cardiomyocyte depleted of cyclophilin-A using 

siRNA were shown to be more sensitive to treatment by t-butylhydroperoxide, which 
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mimics the oxidative stress associated with reperfusion-induced cell death (Doyle et al., 

1999). Knockdown of cyclophilin-A resulted in slower growth, decreased proliferation, 

and a greater degree of apoptosis in the tumors overexpressing the protein. On the other 

hand, overexpression of cyclophilin-A protected cells from death after overexpression of 

SODV148G, a familial amyotrophic lateral sclerosis (FALS)-associated mutant Cu/Zn 

superoxide dismutase-1 (SOD) gene (Lee et al., 1999). Though these indicate a protective 

function of cyclophilin-A against cell death, other evidences seem to show otherwise. For 

example, over-expression of a yeast apoptosis-inducing factor (AIF) was shown to 

strongly stimulate apoptotic cell death induced by hydrogen peroxide and this effect was 

attenuated by disruption of cyclophilin A (Wissing et al., 2004). AIF was further 

demonstrated to interact with cyclophilin-A, and that recombinant AIF and CypA 

proteins synergised in vitro in the degradation of plasmid DNA, as well as in the capacity 

to induce DNA loss in purified nuclei. The apoptogenic cooperation between AIF and 

cyclophilin-A did not rely on the cyclophilin-A's peptidyl-prolyl cis-trans isomerase 

activity (Cande et al., 2004). As such, the role that cyclophilin-A plays during apoptosis 

and oxidative stress seems to be contradictory, and manifestation of a specific role 

instead of the other may well depend on the cell-/tissue-type, as well as the death stimuli 

involved. Whether down-regulation of cyclophilin-A with MPP+ treatment in the MN9D 

cells is a sign of the cells’ waning defence against oxidative stress, or that it represents an 

anti-apoptotic mechanism remains to be further verified. 

As many more spots with altered expression were observed with MPP+ treatment, it was clearly 

an attractive proposal to identify all of them. The identification of these proteins, which may 

either mediate anti-oxidative or anti-apoptotic effect or participate in the cell death signalling, 
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would aid in intervention of dopaminergic neuronal degeneration in the Parkinson’s disease. 

Though these spots are discernable on the 2DE gel, identifying them through MALDI-TOF 

proved to be a challenge due to insufficiency of the protein quantity contained within the silver-

stained excised spots. The possibility that two or more protein might be present within a single 

spot could not be dispelled, as revealed by the inclusion of proteins of widely different nature 

and functions within the same peptide mass fingerprinting search results for several spots. More 

cell lysates could be loaded onto the 2-DE gels to ensure sufficient protein quantity within a 

single spot for MALDI-TOF analysis. However, this strategy calls for more stringent desalting 

protocol to be implemented to prevent ‘burning’ of the IEF strips during the first-dimensional 

separation. This could be achieved with multiple washes with low salt buffer using desalting 

column from Millipore. Meanwhile, the use of micro-Range IEF strips (e.g. pH 3.9-5.1 or pH 

5.5-6.7) could aid in separating overlapping spots for their precise excision for MALDI-TOF. 
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Figure 1.1. 2-D gel electrophoresis of control or MPP+-treated MN9D cells. Extracted proteins 
were separated by 2-D gel electrophoresis as detailed in Materials and Methods using pH range 3-6 
IEF strips (Biorad, USA). The gels were silver-stained and analysed visually for altered protein 
expressions. Protein spot outlined (a-c) showed consistent altered expression in two or more gels and 
were selected for MALDI-TOF analysis.
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Figure 1.2. 2-D gel electrophoresis of control or MPP+-treated MN9D cells. Extracted proteins 
were separated by 2-D gel electrophoresis as detailed in Materials and Methods using pH range 5-8 
IEF strips (Biorad, USA). The gels were silver-stained and analysed visually for altered protein 
expressions. Protein spot outlined (d-h) showed consistent altered expression in two or more gels and 
were selected for MALDI-TOF analysis.
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No. Identity pI Mr
(kDa)

4.62 32.0

21.7

12.0

45.6

e Phosphoglycera
te Mutase

6.68 28.0 3.003 + 
0.09

•Catalyzes the interconversion of 3-
phosphoglycerate (3PG) and 2-
phosphoglycerate (2PG) in the glycolysis
and gluconeogenesis pathway.
•Expression of this protein was also shown to 
be down regulated in methamphetamine-
induced dopaminergic neurotoxicity in the 
ventral midbrain 

↓

f PKCq-
Interacting 
Cousin of 

Thioredoxin
(PICOT)

5.43 37.0 1.68e + 
0.03

•Interacts with protein kinase C-θ, mediated 
by an N-terminal thioredoxin homology 
domain
•Play a role in regulating the function of 
thioredoxin system
•Redox modification of DNA-binding 
domain of fos and jun, hence controlling the 
DNA binding of AP-1.

↑

g Spermidine
synthase

5.31 34.0 2.50e + 
0.07

•May function directly as a free radical 
scavenger; its up-regulation may indicate 
free radical damage upon MPP+ treatment

↑

h Peptidylprolyl
isomerase A 

7.73 18.0 2.27e + 
0.05

•accelerate folding of some proteins both in 
vivo and in vitro by catalyzing slow steps in 
the initial folding and rearrangement of 
proline-containing proteins

↓

4.99

4.42

6.15

MOWSE 
Score

Functions Level 
Up/Down 

regulated after 
MPP+ 

Treatment?

a Nucleophosmin 9.22e + 
0.05

2.36e + 
0.05

4.47e + 
0.04

2.27e + 
0.05

•Ribosome biogenesis
•Shuttle protein in the nuclear import
•Molecular chaperoning activities
•Regulates p53 stability

↑

b Proteosome
subunit, beta 

type 6 

•Essential component of complexes involved 
in extralysosomal energy and ubiquitin-
dependent proteolytic pathway.

↑

c Ribosomal 
Protein, Large 

P2

•Along with P0 and P1 ribosomal units 
constitute part of the elongation factor-
binding site connected to GTPase centre in 
the 60S ribosomal unit

↑

d Glycinamide
ribonucleotide

synthetase

•catalyzes the second step of the de novo 
purine biosynthetic pathway; the conversion 
of phosphoribosylamine, glycine, and ATP 
to glycinamide ribonucleotide (GAR).

↑
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Table 1.   Table listing the identities of some up/down regulated spots identified through 
differential gel comparison (MPP+-treated gels vs non-treated control gels, as shown in 
Figure 1.1 and 1.2), expected pI and molecular weight, MOWSE scores, their physiological 
functions known to date, as well as their direction of alteration of expression with MPP+

treatment.
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Figure 1.3.   MALTI-TOF identification of protein marked (a) in Figure 1.1 with MPP+ -induced 
altered expression. (i) The spot marked in Figure 1.1 (a) showed consistent up-regulation of protein 
expression with four hours of MPP+ treatment. (ii) MALDI-TOF peptide mass mapping of spot (a). 
Peptides were produced by in-gel tryptic digestion. The peptide masses were used for NCBI database 
search to identify intact protein. Tryptic peptides that map to the protein sequence with the right 
molecular mass and pI within a mass accuracy of 100 parts per million (ppm) were indicated by an arrow 
in (ii) and a solid black underline in (iii). (iv) indicates the identity of the protein sequence as revealed 
through NCBI database search using the peptide mass fingerprint obtained in (ii). 
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Figure 1.4.   MALTI-TOF identification of protein marked (b) in Figure 1.1 with MPP+ -induced 
altered expression. (i) The spot marked in Figure 1.1 (b) showed consistent up-regulation of protein 
expression with eight hours of MPP+ treatment. (ii) MALDI-TOF peptide mass mapping of spot (b). 
Peptides were produced by in-gel tryptic digestion. The peptide masses were used for NCBI database 
search to identify intact protein. Tryptic peptides that map to the protein sequence with the right 
molecular mass and pI within a mass accuracy of 100 parts per million (ppm)  were indicated by an 
arrow in (ii) and a solid black underline in (iii). (iv) indicates the identity of the protein sequence as 
revealed through NCBI database search using the peptide mass fingerprint obtained in (ii). 
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Figure 1.5.   MALTI-TOF identification of protein marked (c) in Figure 1.1 with MPP+ -induced 
altered expression. (i) The spot marked in Figure 1.1 (c) showed consistent up-regulation of protein 
expression with eight hours of MPP+ treatment. (ii) MALDI-TOF peptide mass mapping of spot (c). 
Peptides were produced by in-gel tryptic digestion. The peptide masses were used for NCBI database 
search to identify intact protein. Tryptic peptides that map to the protein sequence with the right 
molecular mass and pI within a mass accuracy of 100 parts per million (ppm)  were indicated by an 
arrow in (ii) and a solid black underline in (iii). (iv) indicates the identity of the protein sequence as 
revealed through NCBI database search using the peptide mass fingerprint obtained in (ii). 
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Figure 1.6.   MALTI-TOF identification of protein marked (d) in Figure 1.2 with MPP+ -induced 
altered expression. (i) The spot marked in Figure 1.2 (d) showed consistent up-regulation of protein 
expression with eight hours of MPP+ treatment. (ii) MALDI-TOF peptide mass mapping of spot (d). 
Peptides were produced by in-gel tryptic digestion. The peptide masses were used for NCBI database 
search to identify intact protein. Tryptic peptides that map to the protein sequence with the right 
molecular mass and pI within a mass accuracy of 100 parts per million (ppm)  were indicated by an 
arrow in (ii) and a solid black underline in (iii). (iv) indicates the identity of the protein sequence as 
revealed through NCBI database search using the peptide mass fingerprint obtained in (ii). 
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Figure 1.7.   MALTI-TOF identification of protein marked (e) in Figure 1.2 with MPP+ -induced 
altered expression. (i) The spot marked in Figure 1.2 (e) showed consistent down-regulation of protein 
expression with eight hours of MPP+ treatment. (ii) MALDI-TOF peptide mass mapping of spot (e). 
Peptides were produced by in-gel tryptic digestion. The peptide masses were used for NCBI database 
search to identify intact protein. Tryptic peptides that map to the protein sequence with the right 
molecular mass and pI within a mass accuracy of 100 parts per million (ppm)  were indicated by an 
arrow in (ii) and a solid black underline in (iii). (iv) indicates the identity of the protein sequence as 
revealed through NCBI database search using the peptide mass fingerprint obtained in (ii). 
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Figure 1.8.   MALTI-TOF identification of protein marked (f) in Figure 1.2 with MPP+ -induced 
altered expression. (i) The spot marked in Figure 1.2 (f) showed consistent up-regulation of protein 
expression with four hours of MPP+ treatment. (ii) MALDI-TOF peptide mass mapping of spot (f). 
Peptides were produced by in-gel tryptic digestion. The peptide masses were used for NCBI database 
search to identify intact protein. Tryptic peptides that map to the protein sequence with the right 
molecular mass and pI within a mass accuracy of 100 parts per million (ppm)  were indicated by an 
arrow in (ii) and a solid black underline in (iii). (iv) indicates the identity of the protein sequence as 
revealed through NCBI database search using the peptide mass fingerprint obtained in (ii). 
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Figure 1.9.   MALTI-TOF identification of protein marked (g) in Figure 1.2 with MPP+ -induced 
altered expression. (i) The spot marked in Figure 1.2 (g) showed consistent up-regulation of protein 
expression with four hours of MPP+ treatment. (ii) MALDI-TOF peptide mass mapping of spot (g). 
Peptides were produced by in-gel tryptic digestion. The peptide masses were used for NCBI database 
search to identify intact protein. Tryptic peptides that map to the protein sequence with the right 
molecular mass and pI within a mass accuracy of 100 parts per million (ppm)  were indicated by an 
arrow in (ii) and a solid black underline in (iii). (iv) indicates the identity of the protein sequence as 
revealed through NCBI database search using the peptide mass fingerprint obtained in (ii). 
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Figure 1.10.   MALTI-TOF identification of protein marked (h) in Figure 1.2 with MPP+ -induced 
altered expression. (i) The spot marked in Figure 1.2 (h) showed consistent down-regulation of protein 
expression with eight hours of MPP+ treatment. (ii) MALDI-TOF peptide mass mapping of spot (h). 
Peptides were produced by in-gel tryptic digestion. The peptide masses were used for NCBI database 
search to identify intact protein. Tryptic peptides that map to the protein sequence with the right 
molecular mass and pI within a mass accuracy of 100 parts per million (ppm)  were indicated by an 
arrow in (ii) and a solid black underline in (iii). (iv) indicates the identity of the protein sequence as 
revealed through NCBI database search using the peptide mass fingerprint obtained in (ii). 
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1.4 Discussion 

Two-dimensional electrophoresis comparisons of the protein expression patterns between 

the normal and diseased tissues or before and after therapeutic treatment allow for the 

identification of proteins involved in pathogenesis (Pandey & Mann, 2000). Through MALDI-

TOF analysis, eight proteins were identified which are associated with several distinct functional 

categories: cell cycle arrest and p53 binding/protein chaperoning (nucleophosmin), energy 

metabolism (glycinamide ribonucleotide synthetase), protein synthesis (ribosomal large P2 

subunit) or degradation (proteosome subunit beta 6), stress response (PICOT), antioxidant 

enzyme (peptidylprolyl isomerase A and spermidine synthase), and anaerobic glycolysis 

(phosphoglycerate mutase). With the exception of phosphoglycerate mutase and peptidylprolyl 

isomerase A, which were down-regulated after treatment, the other six proteins showed 

heightened expression level with MPP+ treatment.  These data suggest that the MPP+-induced 

cell stress and apoptosis involves the systematic activation of multiple pathways that are 

glycolysis-relevant, oxidative stress-mediated, and possibly mediated through inter-organelle 

crosstalks. 

 

1.4.1 Deployment of cellular defence mechanisms in response to MPP+ insults 

 It is apparent that some of the proteins identified with altered expression are connected to 

processes known to be associated with cellular defence against oxidative stress and cell death. 

This is not unexpected, since the fate of the cell is ultimately dependent on the coordinated 

balance between pro-survival and apoptotic signals. In the face of acute oxidative damages 

elicited by MPP+, a plethora of defence mechanisms are invoked as a last ditch effort to rescue 
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the cells from death commitment. More often than not, such protective strategies entail 

heightened expression of proteins involved in the synthesis of antioxidants, such as PICOT 

(which regulates the redox-regulating thioredoxin system, Figure 1.8) and spermine synthase (in 

the production of the free radical scavenger spermine, Figure 1.9), as identified in our current 

investigation. Proteome analysis of the human substantia nigra in the Parkinson’s disease had 

also unravelled the involvement of other ROS-scavenging proteins. For example, an increased 

expression of peroxiredoxin II was observed in the substantia nigra of postmortem Parkinson’s 

disease victims and this was in agreement with the oxidative stress hypothesis in Parkinson’s 

disease (Basso et al., 2004) The latter suggests the substantia nigra (SN) to be a preferential 

candidate to oxidative damage, since it contains oxidizable dopamine, neuromelanin, 

polyunsaturated fatty acids, iron, and relatively low antioxidant complement (Jenner, 2003). In 

this context, mitochondria are involved in a number of cellular reactions that potentially lead to 

the formation of ROS. Peroxiredoxin II is a sacrificial antioxidant that catalyzes ROS 

oxidation/reduction by direct reaction with the ROS, and hence its heightened expression is 

probably required to combat ROS-induced stress. Also, proteomic approach to study the protein 

levels of three subtypes of human peroxiredoxin in brain regions from patients with Alzheimer's 

disease (AD) and Down Syndrome (DS) showed that the protein levels of peroxiredoxin I and 

peroxiredoxin II were significantly increased in AD and DS. It was thus concluded that increased 

protein levels of peroxiredoxin I and peroxiredoxin II could provide protection against neuronal 

cell death induced by ROS implicated in the pathogenesis of these neurodegenerative diseases 

(Kim et al., 2001). 

 Up-regulation of the antioxidants is, however, not noted in some transgenic mice models 

of neurodegenerative diseases. For example, in transgenic mice overexpressing the P301L 
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mutant human tau protein created to model tauopathies in vivo, down-regulation of antioxidant 

enzymes perioredoxin III, peroxiredoxin VI, GST P2 and Mu1, and phospholipid hydroperoxide 

glutathione peroxidase were observed with mutant tau overexpression (David et al., 2005). Also, 

comparative proteome analysis of wild-type and parkin-/- mice brain samples revealed down-

regulation of peroxiredoxin I, II, VI and Lactoylglutathione lyase, hence suggesting that the 

parkin-/- mouse might have a reduced ability to respond to the generation of ROS (Palacino et 

al., 2004). The disparity observed in the direction of alteration in antioxidant expression level 

may be attributed to the different model systems chosen for proteomic analysis, as well as the 

various treatments/manipulations involved. For example, 8.5–10-month-old P301L tau mice 

were used for the proteomics analysis to study the consequences of tau pathology, though these 

mice showed tau-containing intracellular neurofibrillary tangles formation as early as six-month-

old (David et al., 2005). The accumulation of mutant tau for several months prior to the killing of 

the mice might lead to chronic ROS-induced stress, which could compromise the cellular 

antioxidant mechanisms significantly way before the commencement of proteomic analysis. In 

contrast, the dopaminergic MN9D cells were subjected to an acute neurotoxic insult for 

relatively short durations (2-16 hours) before the protein lysates were harvested for 2DGE. The 

experiment was designed to chart the cell’s early response to neurotoxin-induced stress, in an 

effort to unearth novel therapeutic candidates for the Parkinson’s disease. As such, we speculate 

that in the face of a sudden ROS outburst, an initial up-regulation of the various antioxidants 

may represent a ‘reflexive’ response to cope with the stressful situation. On the other hand, 

chronic exposure of the cells to ROS, such as in the above-mentioned mouse models, may 

seriously undermine the cellular defence system, especially so since the ROS can react with the 

antioxidants directly. In any case, the results clearly implicate oxidative stress in the aetiology of 
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various neurodegenerative diseases, including the Parkinson’s disease, and emphasize the 

potential of the various antioxidants for therapeutic considerations. 

 

 1.4.2 Enhanced housekeeping operations to cope with acute oxidative stress 

 Sustained expressions of the plethora of housekeeping genes are important in maintaining 

the operations of the numerous basal cellular activities. Some of the most important 

housekeeping genes are involved in protein synthesis and degradation. Inactivation of the 

housekeeping proteins involved in these processes can thus lead to severe deregulation in protein 

turnover and cause cell death. For example, caspase-mediated cleavage of three specific subunits 

of the 19S regulatory complex of the proteosome leads to inhibition of proteasomal activities and 

ultimately, apoptosis (Sun et al., 2004). Meanwhile, caspase-mediated proteolysis of eukaryotic 

translation initiation factor eIF4G, which serves as a docking site for initiation factors and 

proteins involved in RNA translation, is often detected during the onset of apoptosis (Marissen et 

al., 2000). 

 While targeted degradation of certain housekeeping genes can lead to cell death, the 

converse is shown to be true as well, i.e., their overexpression can rescue cells from stress-

induced apoptosis and promote survival. For example, overexpression of the eukaryotic 

translation initiation factor eIF4E stimulates cell proliferation and suppress apoptosis in growth 

factor restricted cells (Tan et al., 2000). Also, overexpression of proteasome beta5 assembled 

subunit increases the amount of proteasome and confers ameliorated response to oxidative stress 

and higher survival rates (Chondrogianni et al., 2005). In the present investigation, heightened 

levels of ribosomal protein large P2 subunit (Figure 1.5) and proteasomal subunit beta 6 (Figure 
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1.4), which form part of the translational and protein degradation machineries respectively, were 

noted with MPP+ exposure to the MN9D cells. With the above-mentioned examples in mind, we 

speculate that the up-regulations may represent pro-survival strategies to enable the cell to cope 

with acute oxidative stress elicited by MPP+. While an improved translational rate may be 

directly responsible for increasing output of proteins involved in defence against free radicals 

and cellular repair, an enhanced proteasomal capability may allow the cell to dispose off 

aberrantly oxidised proteins efficiently to prevent their undesirable accumulation in the cellular 

milieu. Enhancing housekeeping operations through overexpression of selected genes involved 

may thus represent viable therapeutic options to enable the dopaminergic neurons to combat 

against free radicals-mediated damages in PD.  

 

1.4.3 Decreased anaerobic glycolysis indicative of mitochondrial dysfunction 

  Phosphoglycerate mutase, an enzyme that catalyses the interconversion of 3-

phosphoglycerate and 2-phosphoglycerate in the glycolysis and glyconeogenesis pathway, was 

found to be down-regulated eight hours after MPP+ treatment (Figure 1.7). Being one of the key 

enzymes that control the glucose flux through the glycolytic pathway, reduced amount of the 

enzyme is indicative of impairment in energy metabolism and mitochondrial dysfunction with 

MPP+ treatment. This finding is reminiscent of that yielded by applying Affymetrix 

oligonucleotide microarray technique in the substantia nigra pars compacta of sporadic 

parkinsonian patients for studying global gene expression analysis.  In this study, reduced 

expression of phosphofructokinase, another regulatory enzyme controlling glycolysis, was 

observed (Mandel et al., 2005). These two findings support previous reports in human PD 

patients using positron emission tomography (PET) analysis, demonstrating a decrease in glucose 
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uptake into the SN (Berding et al., 2001), and give a wider view of major survival pathways 

affected by the disease. Taken together, our finding is consistent with the hypothesis that 

mitochondrial dysfunction contributes to the pathogenesis of PD (Mandel et al., 2005).  

1.4.4 Involvement of Nucleophosmin in MPP+-induced cell death 

 Nucleophosmin (NPM), which is predominantly nucleoli-localised, is a multifunctional 

protein that is involved in regulating numerous cellular processes, such as processing and 

transport of ribosomal RNA (Borer et al., 1989), molecular chaperoning (Szebeni & Oslon, 

1999) and regulating nucleo-cytoplasmic shuttling (Borer et al., 1989), to name a few. Given its 

numerous and diverse functions, it will be difficult to pin-point the exact function of heightened 

level of NPM in MPP+-treated MN9D cells (Figure 1.1). A clue to the possible role(s) of NPM in 

this case comes from insights derived from investigating the association between NPM and 

cancer. NPM has been proposed as a tumour marker for colon (Nozawa et al., 1996) and gastric 

(Tanaka et al., 1992) cancers because NPM expression is markedly higher in these tumour cells 

than in the corresponding normal cells. In fact, over-expression of NPM made NIH 3T3 cells 

more resistant to UV-induced cell growth inhibition and death as compared with control vector-

transfected cells (Wu et al., 2002), while depletion of NPM with small inferring RNA has 

increased apoptosis induced by different agents in various cell type (Li et al., 2004; Li et al., 

2005; Maiguel et al., 2004). Taken together, these observations indicate that NPM may possess 

pro-survival and/or anti-apoptotic capabilities, which may in turn, underlie oncogenesis in 

several cancer types.  

One way via which NPM may promote survival is through p53 regulation. NPM inhibits 

hypoxia-induced p53 phosphorylation at Ser-15 and interacts with p53 in hypoxic cells (Li et al.,  
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2004). Phosphorylation at Ser-15 stimulates p53-dependent transactivation, and thus NPM-

mediated inhibition of p53 phosphorylation prevents the activation of p53 responsive genes such 

as p21, bax and PUMA (Dumaz & Meek, 1999). Overexpression of the mutant NPMDeltaC, 

which lacks the p53-interacting domain, fails to confer cellular resistance to stress-induced 

apoptosis, thus further supporting the notion that NPM protects cells from apoptotic cell death 

through a mechanism involving p53 inhibition (Li et al., 2005). In addition, NPM interacts with 

the nuclear PI(3,4,5)P3 to form a complex that mediates anti-apoptotic effects of Nerve Growth 

Factor by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD) (Ahn et al., 

2005). Notably, the discovery of the cytoplasmic NPM mutant, which is implicated in the 

pathogenesis of Acute Myeloid Leukaemia (AML) (Falini et al., 2005), strongly suggests a 

hitherto unknown cytoplasmic function for NPM that underlies leukaemogenesis.  

As such, up-regulation in NPM level with MPP+ exposure may confer temporary 

resistance to apoptosis for cellular defence and repair to commence. Given that NPM possible 

involvement in the pathogenesis of several cancer types, the scope for research into the pro-

survival mechanisms of NPM appears to be wide and promising.  

 

1.4.5 Concluding remarks 

 Current study of the proteomes of MPP+-exposed versus normal MN9D cells has 

identified several players that are involved in multiple pathways thought to underlie the aetiology 

of PD. The regulated proteins we identified are associated with several distinct functional 

categories: cell cycle arrest and p53 binding, energy metabolism, protein synthesis and 

degradation, stress response, antioxidant enzymes, and anaerobic glycolysis. Further exploitation 
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of these proteins’ therapeutic values calls for more thorough and rigorous investigations into the 

precise mechanisms underlying their involvement in MPP+-elicited stress response and toxicity, 

as we shall see for NPM in the subsequent chapters. 
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2.1 Introduction 

The nucleolus is the site for ribosome assembly, a multi-step process involving numerous 

proteins (Maxwell & Fournier, 1995). Nucleophosmin/B23 (NPM/B23, NO38 or numatrin), a 

ubiquitously expressed abundant nucleolar phosphoprotein, is one such candidate thought to be 

involved in the ribosome assembly process (Maxwell & Fournier, 1995; Olson et al., 2002). It 

has the ability to bind RNA and DNA that are abundant in the nucleolus (Wang et al., 1994), and 

to associate with maturing preribosomal ribonucleoprotein particles (Prestayko et al., 1974; 

Schmidt-Zachmann et al., 1987). NPM also possesses intrinsic endoribonuclease activity 

(Herrera et al., 1995), and its ability to preferentially cleave the internal transcribed spacer region 

2 (ITS2) region of pre-RNA further suggests that it could participate in the late stages of 

ribosome biogenesis (Savkur & Olson 1998). Other nucleolar-localised proteins are thought to 

function in the different stages of ribosome biogenesis. For example, nucleolin/C23 facilitates 

the early stages of pre-rRNA processing, possibly by first interacting with the 5′ region of pre-

rRNA and then recruiting processing components (Pluk et al., 1998). The tumour suppressor 

ARF regulates pre-rRNA processing through interacting with NPM and promoting the 

polyubiquitination and degradation of NPM (Itahana et al., 2003). 

The discovery of nucleolus-localised proteins with no apparent relation to the ribosome 

biogenesis process in recent years has led to the notion that the nucleolus may also perform non-

traditional cellular duties, such as in signal recognition particle assembly, cell cycle regulation, 

control of aging, modification of small nuclear RNAs, and modulation of telomerase function. 

(Olson, 2004). For example, recent results indicate that biosyntheses of signal recognition 
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particle RNA and telomerase RNA involve a nucleolar stage and that nucleolus is a site critical 

to cellular aging (Pederson et al., 1998). The involvement of the nucleolus in numerous diverse 

tasks reflects its pivotal role in maintaining cross talks between various cellular processes and 

compartments, which in turn ensures proper regulation of both cell proliferation and survival. On 

the other hand, nucleolar disruption can result in cessation of ribosome and protein synthesis, 

leading to activation of the cytoprotective mechanisms. Inhibitors of RNA synthesis (for 

example, actinomycin D or camptothecin), DNA-damaging agents (for example, ultraviolet (UV) 

irradiation and anticancer agents), and cellular stressors (for example, heat shock and hypoxia) 

have all been documented to disrupt the nucleolar structure, leading to the impairment of 

nucleolar function, and thereby inducing the stabilisation of the tumour suppressor p53 (Rubbi & 

Milner, 2003). The latter is capable of protecting against cancer via its ability to induce cell cycle 

arrest or ultimately, apoptosis against a variety of cellular stresses (Jin & Levine, 2001). In this 

way, the nucleolus may function as a stress sensor converging the wide array of stress signals 

into the appropriate cellular response(s). 

A common phenomenon accompanying stress-induced nucleolar disruption is the release 

of nucleolar components out of the organelle. Nucleolin is observed to translocate into the 

nucleoplasm to interact directly with p53 under stress conditions (Daniely & Borowiec, 2000). It 

is thought that such relocalisation allows nucleolin to transiently repress genomic replication by 

binding and inhibiting an essential DNA replication factor RPA. This sequesters RPA in nuclear 

foci away from sites of ongoing DNA synthesis, while mobilizing DNA repair factors. 

Meanwhile, ribosomal protein L11 is also released from the nucleolus to bind and inhibit the 

p53-antagonist Mdm2 in the nucleoplasm during serum starvation. This in turn leads to cell cycle 
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arrest through p53 activation. In a cell undergoing a transient arrest, p53 transcriptional targets 

such as p21WAF1/CIP1 and Gadd45 are prominently induced, representing the arrest and ongoing 

DNA repair, followed by a subsequent induction of Mdm2 terminating the response (Reinke & 

Lozano, 1997; Zhang et al., 2003). ARF released from the nucleolus following the latter’s 

perturbation is also thought to stabilise p53 in the same way as L11, since ARF can also directly 

bind Mdm2 (Llanos et al., 2001). Nucleophosmin has also been observed to translocate into the 

nucleoplasm in response to serum deprivation (Chan et al., 1985) and drug treatments such as 

exposure to actinomycin D (Chan et al., 1985) and deferoxamine (Yung et al., 1991). NPM was 

shown to bind to Mdm2 after its translocation to the nucleoplasm. This interaction prevents 

Mdm2 binding to p53 and stabilizes p53, hence potentiating the p53 response to UV radiation 

(Kurki et al., 2004). Short exposure to the transcriptional inhibitor actinomycin D was reported 

to induce reversible translocation of NPM into the nucleoplasm, as well as reversible inhibition 

of cell growth and RNA synthesis in HeLa cells (Yung et al., 1990). In fact, NPM translocation, 

as observed by immunofluorescence, have been used as a simple and rapid method for assessing 

inhibition of cell growth in response to anti-proliferative drugs in cancer chemotherapy (Yung et 

al., 1991).  

Other than ribosome biogenesis, a number of cellular activities associated with NPM 

indicate that NPM has multiple cellular functions, especially in the regulation of cell 

proliferation. Its ability to shuttle between the nucleus and the cytoplasm, and to bind to proteins 

via their nuclear localisation signals suggest a role in nucleo-cytoplasmic transport (Borer et al., 

1989; Szebeni and Olson, 1999). It has also been proposed that NPM acts as a molecular 

chaperone that prevents protein from aggregating in the crowded environment of the nucleolus, 
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protects enzymes from thermal denaturation, and facilitates renaturation of chemically denatured 

proteins (Szebeni et al., 2003). Recently, NPM was shown to bind to different cellular and viral 

proteins and play a critical role in the regulation of subcellular localisation and activities of these 

proteins. NPM physically interacts with p53 (Colombo et al., 2002; Kurki et al., 2004), Arf 

tumor suppressor protein (Bertwistle et al.,2004), Polo-like kinase (Zhang et al., 2004), NF-κB 

(Dhar et al., 2004), p120 (Valdez et al., 1994), nucleolin (Li et al., 1996)), and several viral 

proteins such as Rex of human T-cell leukemia virus (Adachi et al., 1993) and hepatitis δ-virus 

antigen (Huang et al.,  2001a).  

NPM was also found to be associated with a number of cancers, indicating NPM’s 

possible role in cell proliferation. It was shown to be more abundant in cancer cells than in 

normal resting cells (Chan et al., 1989). In fact, NPM has been proposed as a tumour marker for 

colon, ovarian, prostate and gastric cancers because NPM expression is markedly higher in these 

tumour cells than in the corresponding normal cells. Cancers of later stages have relatively 

higher nucleophosmin/B23 mRNA levels than the matched adjacent “normal” tissues. Notably, 

overexpression of the nucleolar protein in NIH 3T3 cells resulted in malignant transformation, 

pointing to a possible oncogenic role for NPM (Kondo et al., 1997). NPM is also frequently 

found in the chromosomal translocation associated with several haematopoietic malignancies, 

such as acute promyelocytic leukaemia, anaplastic large cell lymphomas, and 

myelodysplasia/acute myeloid leukaemia. Finally, a frame-shift mutation occurring at the 

extreme C-terminal of the NPM gene cause aberrant cytoplasmic localisation of the mutated 

NPM, which has been proposed as a biomarker for certain acute myelogenous leukaemia (AML) 

(Falini et al., 2005).  
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Given NPM’s versatile nature and wide range of cellular duties, it is possible that some 

functions of the cytoplasmic NPM remain undiscovered. In this chapter, the subcellular 

localisation of NPM after its release from the nucleoli, as well as factors promoting its release 

are investigated. Here, we show that apart from the nucleoplasm, NPM was translocated into the 

cytoplasm as well in response to diverse stress signals. In the subsequent chapters (III-V), we 

further investigate a possible role of the cytoplasmic-translocated NPM in the regulation of 

apoptotic signalling via caspase inhibition. 
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2.2    Materials and methods 

 

2.2.1 Cell culture and induction of apoptosis 

 MN9D (obtained with courtesy of Dr Jun Chen, University of Pittsburgh and with 

agreement from Dr Alfred Heller,University of Chicago), HeLa (a gift from Dr Ge Rou Wen, 

NUS), SHSY5Y (a gift from Dr Lim Kah Leong, National Neuroscience Institute, Singapore), 

293T and NIH 3T3 (both gifts from Dr Low Boon Chuan, NUS) cell lines were cultured in 

DMEM medium (RPMI 1640 medium for 293T cells) supplemented with 10% fetal bovine 

serum and 1% penicillin/streptomycin in a humidified atmosphere of 5% CO2 at 37°C. To induce 

apoptosis, MN9D cells were treated with varying dosage of 1-Methyl-4-phenil-pyridinium 

(MPP+), NIH 3T3 with cyclohexamide, SHSY5Y and 293T cells with rotenone and HeLa cells 

with UV-C irradiation, Camptothecin or Actinomycin. 

 

2.2.2   Plasmids and Transfection 

Total RNA was prepared using TRIZOL (Invitrogen, USA) from human HeLa cells 

according to the protocol by TRIZOL’s manufacturer. Amplification of the human caspase 

cDNA was performed using the Access RT-PCR kit (Promega, USA) from the extracted RNA, 

using the following primers:  

For caspase-3:   Forward primer  5’ – ATG GAG AAC ACT GAA AAC TC –3’ 

    Reverse primer  5’ – TTT AGT GAT AAA AAT AGA GT –3’ 
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For caspase-6:   Forward primer  5’ – CAT GAC AGA AAC CGA TGG –3’ 

    Reverse primer  5’ – CAG ATG GCC CTA CTT GCT –3’ 

For caspase-8:   Forward primer  5’ – ATG GAC TTC AGC AGA AAT CT –3’ 

    Reverse primer  5’ – CTT GCG GTG AGC CGA GAT CA –3’ 

The PCR cycles were (i) 95 C for 5 min; (ii) 95°C for 1 min, 50°C for 2 min, 72 C for 1 min (30 

cycles); and (iii) 72 C for 10 min. The full-length PCR product was purified by low melting-

agarose gel electrophoresis and cloned into pGem-T Easy vector (Promega, USA) for 

sequencing. The caspase cDNAs were then subcloned into the  pXJ40-HA plasmid (a generous 

gift from Dr Low Boon Chuan, NUS) using the EcoRI restriction site for non-directional cloning. 

For plasmid transfection, HeLa cells were seeded at a density of 1.5 x 105 per well in six well 

plates in DMEM supplemented with 10% fetal bovine serum. 24 h later, the cells were 

transfected with varying amount of plasmid DNA using Lipofectamine (Invitrogen, USA) 

according to the manufacturer’s instructions. After 24-48 hours, the cells were harvested and 

protein extracted for further analysis. 

 

2.2.3 Caspase inhibition  

 MN9D cells transfected with caspases or exposed to MPP+ were washed with PBS 

exposed for 12-24 h to caspase-3 inhibitor (Calbiochem, USA) at 16µM; caspase-8 inhibitor 
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(Calbiochem, USA) at concentrations of 0.5µM; and caspase-6 inhibitor at 20µM. All chemicals 

used were dissolved in DMSO and filtered through a 0.22µm pore-size filter before use 

 

2.2.4   Rapid preparation of total cell lysate (total cytosolic - nucleoplasmic extract)  

Treated MN9D cells were washed with PBS to remove the medium. A volume of 200µl 

of cell lysis buffer (100mM HEPES pH 7.5, 5mM MgCl2, 150mM NaCl, 1mM EDTA, 1% 

Triton X-100 + 1% protease inhibitor cocktail [AEBSF-Hydrochloride, Aprotinin, E-64-Protease 

Inhibitor, EDTA-Disodium, Leupeptin-Hemisulfate] ) was added to lyse the cells. The cell lysate 

was further pipetted through a 271/2G needle to break up the genomic DNA. The cell lysate was 

finally centrifuged at 13,000rpm for 1 minute to pellet the DNA and the supernatant was stored 

at –20oC. 

 

2.2.5   Preparation of subcellular fractions 

 Nuclear and cytosolic fractions were prepared using the Nuclear/Cytosol fractionation kit 

(BioVision, USA), according to the manufacturer’s protocol. Briefly, cells were washed with 

PBS two times to remove the medium. A volume of 200µl of Cytoplasm Extraction Buffer A 

(CEB-A) was added and the cells scraped down using a rubber policeman. The cell suspension 

was then vortexed for 15 sec and incubated on ice for 10 min. 11µl of the Cytoplasm Extraction 

Buffer B (CEB-B) was next added to the suspension and vortexed for 5 sec. The suspension was 

then incubated on ice for 1 min, vortexed for another 5 sec, before being centrifuged at 16, 000 g 

for 5 min at 4°C. The supernantant, which is the cytoplasmic fraction, was then collected. Next, 
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100µl of the Nuclear Extraction Buffer (NEB) added to the pellet and vortexed vigorously for 15 

sec and incubated on ice for 10 min before being subjected to another round of vortexing. This 

was repeated over a duration of 40 min, after which the suspension was centrifuged at 16, 000 g 

for 10 min at 4°C. The supernatant, which is the nuclear fraction, was finally collected. The 

fractions were immunoblotted against the nuclear marker oct-1 to ensure clean separation of the 

two fractions. 

 

2.2.6   Electrophoresis and Western Blot analysis 

 Equal amount of proteins were resuspended in SDS-PAGE buffer (62.5 mM Tris-HCl, 

pH 6.8, 2% SDS, 10% glycerol, 5% dithiothreitol) and boiled in a water bath for 5 min. Lysates 

were stored at -20°C until further analysis. Proteins were separated under reducing conditions for 

2 h at 120 V in 12 or 15% SDS-polyacrylamide gels. Gels were transblotted onto the 

nitrocellulose membranes at 100V for 1.5 h. Membranes were blocked for 1h in TBS Tween 

with 5% milk powder, and then incubated overnight with anti-NPM (1:10000, Zymed, USA), -

caspase-3 (1:1000, Santa Cruz, USA), -caspase-6 (1:2000, Cell Signalling, USA), -caspase-7 

(1:600, Neomarkers, USA), -caspase-8 (1:1000, Santa Cruz, USA), oct-1 (1:1000, Chemicon, 

USA) and actin (1:1000, Santa Cruz, USA), followed by incubation with HRP-conjugated 

secondary antibodies (Santa Cruz), goat-anti-mouse or anti-rabbit (1:1000). Protein bands were 

visualised by applying chemiluminescent substrate (Pierce, USA)  
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2.2.7   Immunofluorescence microscopy 

The various cell lines were cultured under normal conditions. After exposure of the cells 

to apoptotic stimuli for various durations, the cells were then rinsed once with PBS and fixed in 

3% paraformaldehyde for 30 min at room temperature. Cells were then incubated in blocking 

buffer (10% horse serum/0.4% Triton X-100 in PBS) for 10 min, followed by a wash with 0.4% 

Triton X-100 in PBS. The cells were then incubated with primary antibody (anti-NPM at 1:200, 

anti-active caspase-6 at 1:50) overnight at 4°C in a humidified chamber. Excess antibody was 

removed by washing with PBS (five times, 5 min each), followed by incubation with anti-mouse 

FITC-conjugated secondary antibody for 45 min at room temperature, with protection against 

light. Hoechst 33342 was added to a final concentration of 4 µM and incubated for an additional 

5 min at room temperature, before washing with 0.4% Triton X-100 in PBS (5 times, 5 min 

each). Images were collected using an inverted fluorescence microscope (model Axiovert 25; 

Carl Zeiss Meditech, Germany). 

 

2.2.8 Quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

Total RNA was prepared using TRIZOL (Invitrogen, USA) from human HeLa and 

mouse MN9D cells after varying duration of exposure to 0.50 µg/mL of actinomycin D and 500 

µM MPP+, respectively.  Concentration of the extracted RNA was then measured at OD 260. RT-

PCR was performed using the Access RT-PCR system (Promega, USA) in 25 µl reactions 

containing a 200 µM concentration of each dNTP, 1 mM MgSO4, 5 units of avian myeloblastosis 

virus reverse transcriptase, 5 units of Tfl DNA polymerase, 10 µl of 5x avian myeloblastosis 
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virus/Tfl buffer, 50 pmol each of primers (see below), and 20 µg of various extracted RNA. The 

primers used were as follow: 

For human NPM:   Forward primer  5’ – CGATG GACAT GGACA TGAGC –3’ 

         Reverse primer  5’ – TTCGTAATTC ATTGCCTCTG –3’ 

For mouse NPM:   Forward primer  5’ – CGATG GATAT GAACA TGAGT –3’ 

         Reverse primer  5’ – ACTGCCTTCA TAGTTCATTG –3’ 

For human beta actin:   Forward primer  5’ – CGCGCTCGTC GTCGACAACG –3’ 

               Reverse primer  5’ – CCATGTCGTC CCAGTTGGTG –3’ 

For mouse beta actin:   Forward primer  5’ – GCTGGTCGTC GACAACGGCT –3’ 

               Reverse primer  5’ – TGCCAGATCT TCTCCATGTC –3’ 

All four sets of primers amplified a single band each of about 0.2 kb. Thermocycling conditions 

were as follows: 48°C for 45 min, 94°C for 2 min; then 40 cycles of 94°C for 30 sec, 50 °C for 1 

min, and 68°C for 2 min; and ending with 68°C for 7 min. Amplified products were then run on a 

1% agarose gel and visualised under the UV. Bands intensities for NPM and β-actin were 

determined by densitometric scanning. The values of NPM were normalised with respect to the 

intensities of β-actin. Data were analysed by Gel pro Imager (Image Porcessing Solutions, USA).  
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2.2.9 Isolation of naked nuclei 

 Naked nuclei were isolated from HeLa or MN9D cells using the Nuclei EZ Prep Kit 

(Sigma, USA) according to the manufacturer’s protocol. Briefly, cells were cultured in a 10 cm 

diameter culture dish and grown to about 90% confluence. During harvesting, the cells were 

washed with two washes of ice cold PBS. 4 mL of ice cold Nuclei EZ lysis buffer was next 

added and the cells scraped down, vortexed and set on ice for 5 min. The released nuclei were 

then collected by centrifugation at 500 x g for 5 min at 4°C, before subjected to another wash of 

ice cold Nuclei EZ lysis buffer and centrifugation.  The collected nuclei were finally resuspended 

in ice cold Nuclei EZ storage buffer. Equal volume of 2x reaction buffer (10 mM Tris pH 8.0, 5 

mM magnesium chloride, 0.3M potassium chloride) was added to the nuclei suspension before 

treatment with actinomycin D, α-amanitin or MPP+ .  
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2.3   Results 

 

2.3.1  NPM translocates into the cytoplasm upon stress induction 

 Intrigued by how proteins released out of the nucleolus can play various cytoprotective 

functions, we sought to determine if NPM, a nucleolar component known to be translocated out 

into the nucleoplasm in response to drug treatments (Chan et al., 1985; Yung et al., 1985a & b; 

Yung et al., 1990; Yung et al., 1991; Wu & Yung, 2002), also play a similar function once out of 

the nucleoli. We first used immunofluorescence to determine the subcellular distribution of NPM 

when different cell lines were subjected to four hours of various drug treatments (MN9D cells 

with 500 µM MPP+, HeLa with 0.40 µM transcriptional inhibitor Actinomycin D and 10µg/mL 

topoisomerase inhibitor Camptothecine, NIH 3T3 with 50 µM translational inhibitor 

Cycloheximide). Apart from the nucleoplasmic localisation of NPM as previously reported 

(Chan et al., 1985; Yung et al., 1985a & b; Yung et al., 1990; Yung et al., 1991; Wu and Yung 

2002), we also observed prominent localisation of NPM outside the nucleus in the treated HeLa 

and NIH-3T3 cells (stained blue with nuclear stain Hoechst 33342) (Figure 2.1 A-C).  

Translocation of NPM into the cytoplasm and nucleoplasm correlated well with the dissolution 

of the nucleolar structure. Expectedly, western blot analysis demonstrated an increase in 

cytoplasmic accumulation of NPM and concomitant decrease in nuclear NPM, with increasing 

drug dosage used (Figure 2.2 A-C). In comparison, cytoplasmic and nucleoplasmic localisation 

of NPM was not so uniformly observed across all MN9D cells with MPP+ treatment. Many 

treated cells were observed to retain distinct nucleolar structure, even though the nucleolar edge 

appeared to be fuzzy and less defined (Figure 2.1D). This may indicate limited dissociation of 

55 



Chapter II            Subcellular Localisation of NPM 

NPM from the edge of the nucleoli for translocation into the nucleoplasm and cytoplasm. This is 

supported by western blot analysis which showed early cytoplasmic NPM build-up with MPP+ 

treatment. Meanwhile, HEK293 cells also showed cytoplasmic accumulation of NPM eight 

hours after a 42°C heat shock treatment, coinciding with the cytoplasmic accumulation of the 

anti-apoptotic Hsp70 (Figure 2.2 D). The cytoplasmic fractions are free from nuclear 

contamination, as no nuclear protein oct-1 was detected. These data indicate that in addition to 

the well-documented nucleoplasmic accumulation of NPM, its cytoplasmic build-up is also a 

general phenomenon in response to cell stress as observed in the various cell lines used. 

 

2.3.2   Early cytoplasmic build-up of NPM precedes the onset of apoptosis 

 Though visually we detected little cytoplasmic NPM and no massive nucleolar disruption 

in MPP+ treated MN9D cells, we went on to perform a time-course analysis of both the cyto-

nucleoplasmic and cytoplasmic NPM level using immunoblotting.  Here, we demonstrated early 

cytosolic-nucleoplasmic build-up of NPM, which decreased at the onset of apoptosis. NPM’s 

protein level was elevated by the second hour after MPP+ exposure, and peaked at the fourth 

hour, before declining steadily till the 16th hour. This is reminiscent to the findings of Wu and 

Yung (2002), who, using UV to induce acute DNA damage response, showed that NPM’s 

protein level peaked by the 12th hour, before returning to near baseline by the 24th.  NPM’s 

possible role in genotoxic stress response was speculated, but the exact purpose and molecular 

mechanism of its involvement remained unknown. We further demonstrated that the peak in 

NPM protein level coincided with early initiator caspase-8 activation, but preceded the cleaving 

of key apoptogenic factors such as the executioner caspase-7 and Poly-(ADP-ribose) Polymerase 
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(PARP), both of which indicated the onset of cellular apoptotic destruction (Figure 2.3).  Earlier 

results from our laboratory have demonstrated early activation of caspase-8 in MPP+-treated 

MN9D cells (Chee et al., 2005). In addition, caspase-8 is the apical caspase activated in diverse 

apoptotic signalling pathways (Kruidering & Evan, 2000). As such, coordinated transitions in the 

level of early-activated marker of cell death such as caspase-8, and NPM with MPP+ treatment, 

which preceded the appearance of two downstream apoptotic markers, suggest a role for NPM in 

the regulation of caspase-mediated apoptotic signalling.  

 

2.3.3 Stress-induced cytoplasmic build-up of NPM can occur in the absence of de novo NPM 

protein synthesis 

We demonstrated early cytoplasmic accumulation of NPM under stressful conditions, but 

the source of NPM remains hitherto unclear. Wu and Yung (2002) demonstrated rapid and 

transient stimulation of NPM mRNA expression by UV irradiation in HeLa cells and NIH 3T3 

cells. They further showed that stimulation of NPM mRNA expression by UV was inhibited by 

the transcription inhibitor actinomycin D. These strongly suggest the appearance of the 

cytoplasmic NPM as a direct consequence of stress-induced de novo protein synthesis. However, 

as discussed above in Section 2.3.1, cytoplasmic (and nucleoplasmic) accumulation of NPM 

commenced even in the presence of increasing dosage of transcriptional or translational 

inhibitors that could block de novo protein synthesis. This led to our speculation that the nucleoli 

could be the source of both the nucleoplasmic and cytoplasmic NPM. Here, using reverse 

transcription PCR, we sought to determine changes in transcript level of NPM with respect to 

that of β-actin after exposure of HeLa cells to actinomycin D or MN9D cells to MPP+. We were 
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able to determine that the increase in cytoplasmic NPM is not regulated by transcription during 

stress conditions, as the level of NPM transcripts remained almost the same or lower for up to 16 

hours of drug exposure (Figure. 2.4 a & b). Since no de novo NPM synthesis is involved during 

stress conditions, the results point to the disrupted nucleoli as the source of the cytoplasmic 

NPM.  

 

2.3.4 Translocation of NPM into the cytoplasm is dependent on the Crm1 

 Nucleo-cytoplasmic transport is accomplished by specific receptors of the β-importin 

family, such as the importin receptors that bind to nuclear localisation signals (NLS) (Imamoto et 

al., 1995) and the export receptor Crm1 that binds to nuclear export signals (NES) (Ossareh-

Nazari et al., 1997). These processes require a small GTPase, Ran, which controls the interaction 

of these receptors with their substrates (Fornerod et al., 1997). The guanine nucleotide-exchange 

factor RCC1 facilitates Ran binding to Crm1, whereas RanBP1, a major regulator of Ran, 

promotes Crm1 dissociation from Ran (Kehlenbach et al., 1999). Nucleocytoplasmic transport 

can be disrupted with Leptomycin B, an unsaturated, branched chain fatty acid that blocks the 

binding of Crm1 to the NES by direct binding to Crm1 (Fornerod et al., 1997). It was discovered 

previously that NPM may be a Ran−Crm1 substrate that controls centrosome duplication. NPM 

contains a functional nuclear export signal (NES) that is responsible for both its 

nucleocytoplasmic shuttling and its association with centrosomes, which are Ran−Crm1-

dependent as they are sensitive to Crm1-specific nuclear export inhibition, such as leptomycin B 

(Wang et al., 2005). Here, we investigated whether stress-induced cytoplasmic accumulation of 

NPM is dependent on Crm1. We first demonstrated an increase in cytoplasmic NPM content 
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with concomitant decrease in nuclear NPM amount, when the Jurkat cells were exposed to 

increasing dosage of the topoisomerase inhibitor etoposide (Figure 2.5 A). We next showed that 

leptomycin B inhibited the etoposide-induced cytoplasmic accumulation of NPM (Figure 2.5 B). 

Our finding here thus indicates that stress-induced translocation of NPM from the nucleus to the 

cytoplasm is mediated by Crm1, and inhibition of the latter with Leptomycin B prevents the 

stress-induced cytoplasmic NPM build-up. 

 

2.3.5 NPM is released from isolated nuclei as a result of drug-induced nucleoli disruption in 

in vitro nuclei assay 

Various stress-inducing agents are known to disrupt the nucleolar structure and 

translocation of nucleolar components were often observed to occur as a consequence of such 

disruption (Olson, 2004). It is, however, unknown whether the nucleolar components are 

passively released due to dissolution of the nucleolar structure, or if there are other factors 

actively regulating their release. Here, we investigated factors mediating the release of NPM 

from the nucleoli. In the presence of actinomycin D and α-amanitin, drugs which are known to 

disrupt the nucleoli structure (Rubbi & Milner, 2003), GFP-tagged NPM was released out from 

isolated nuclei (Figure 2.6 A). Figure 2.6 (B) shows the disruption of the nucleoli structure and 

dispersal of NPM into the nucleplasm of the intact isolated nuclei treated with 1.25 µg/mL of 

actinomycin D. In contrast, intact nuclei showed distinct nuclei structure, with little or no GFP-

NPM localisation detected visually in the nucleoplasm. On the other hand, nuclei treated with 

various concentration of the mitochondrial complex I inhibitor MPP+ did not show marked 

increase in GFP-NPM release from the nuclei. As such, any nucleoli-disrupting agents or cellular 

59 



Chapter II            Subcellular Localisation of NPM 

signal leading to the dissolution of the nucleoli structure can promote the massive release of 

NPM into the nucleoplasm. This in vitro experiment was designed to test the availability of NPM 

in the nucleoplasm for translocation into cytoplasm in the in vitro system, and it is not meant to 

be used to measure the effectiveness of the Ran-Crm1 system which should have been disabled 

during the nuclei isolation process. Coupled with the Ran-Crm 1 network regulating 

nucleocytoplasmic shuttling, the agents/signals can also indirectly lead to elevation in 

cytoplasmic NPM level, which is usually much lower since much of the nucleoli-bound NPM is 

not available for nucleo-cytoplasmic shuttling.  

 

2.3.6 Activation of the initiator caspase-8 leads to cytoplasmic accumulation of NPM 

 We have shown earlier in Section 2.3.1 and 2.3.2 that cytoplasmic accumulation of NPM 

occurs in response to MPP+ treatment. However, it was demonstrated in Section 2.3.4 that MPP+, 

which targets the mitochondria, did not result in the release of GFP-NPM out of the isolated 

nuclei in the in vitro nuclei assay, unlike nucleoli-disrupting drugs such as actinomycin D and α-

amanitin. A question thus arises as to how MPP+ can promote the cytoplasmic build-up of NPM, 

especially since it does not directly cause nucleoli disruption. We have observed in Section 2.3.2 

that cytoplasmic accumulation of NPM occurred alongside with cleaving of caspase-8 and 

preceded the activation of executor caspase-7 by at least six hours.  Based on this observation, 

we sought to determine the relationship between cytoplasmic accumulation of NPM and the 

activation status of the initiator and executor caspases. It was previously shown in our lab that 

with MPP+ treatment, the initiator caspase-8 and effector caspase-7 were activated, using a 

combination of caspase-inhibition and western blot studies (Chee et al., 2005). We further 
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demonstrated here that with caspase-8 inhibition, levels of both total cytosolic-nucleoplasmic 

NPM and cleaved PARP were reduced significantly by the 12th hour of MPP+ exposure (Figure 

2.7). Meanwhile, level of total cytoplasmic and nucleoplasmic NPM remained unchanged with 

an inhibitor targeting either caspase-6 or effector caspase in general, even though the level of 

cleaved PARP declined in both cases. It should be noted here that since there is no known 

inhibitor for caspase-7, a high concentration of caspase-3 inhibitor (100µM) was used to achieve 

general effector caspase inhibition. The results demonstrated that the cytosolic-nucleoplasmic 

accumulation of NPM in MN9D cells requires the activation of caspase-8 but not that of the 

effector caspases. We went on to further examine specifically the cytoplasmic build-up of NPM 

with overexpression of the initiator or executor caspases. Expectedly, overexpression of caspase-

8, but not that of caspase-3 and -6, in HeLa cells resulted in cytoplasmic NPM build-up, with 

concomitant decrease in the nuclear NPM content (Figure 2.8). It is noteworthy that transfection 

of the cells with a lower amount (1 µg) of caspase-8 overexpressing plasmid resulted in greater 

cytoplasmic build-up of NPM, as compared to when higher amounts were used (10 and 50 µg). 

Marked decrease in the nuclear NPM content was also noted with greater caspase-8 

overexpression. It is hence possible that alteration in the cytoplasmic and nuclear NPM content is 

dependent on the level of apoptotic signalling through caspase-8, which in turn dictates the cell’s 

commitment to either survival or death. We hypothesise that low level of active caspase-8 

activates the cytoplasm translocation of NPM, which may act against cell death commitment. On 

the other hand, high amount of active caspase-8 promotes depletion of nuclear NPM, leading to a 

decline in ribosome and protein synthesis, and hence resulting in committed cell death.  The 
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scenario depicted here is of course based on the assumption that NPM plays a protective role in 

the cytoplasm, and at this juncture, we have yet to ascribe an anti-apoptotic role for NPM.  

 

2.3.7 Stress-induced cytoplasmic build-up of NPM is not dependent on the presence of p53 

 Nucleolin was shown to translocate from the nucleus into the nucleoplasm following 

exposure to ionizing radiation (IR) and treatment with camptothecin. It was further demonstrated 

that the formation of the p53-nucleolin complex is required for nucleolin mobilisation in 

response to stress, as such mobilisation was not observed in p53-null Sao2 cells (Daniely et al., 

2002). Since NPM was shown previously to interact with p53 (Colombo et al., 2002; Maiguel et 

al., 2004), we sought to determine if the presence of p53 is essential for stress-induced 

cytoplasmic translocation of NPM. Using the p53+/+ and p53-/- mouse embryonic fibroblast 

(MEF), it was determined that NPM accumulates in the cytoplasm in both cell lines after 

exposure to UV, even though the apoptotic response was attenuated in the p53-null MEF as 

shown by a decrease in the amount of cleaved PARP detected by immunoblotting (Figure 2.9). 

Cytoplasmic build-up of NPM is hence not affected by the absence of p53. Unlike nucleolin, 

interaction and formation of complex between p53 and NPM is not a pre-requisite for NPM’s 

translocation into the cytoplasm. 
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Figure 2.1. Selective nucleoplasmic and cytoplasmic mobilisation of NPM induced by 
various treatments. HeLa, Nih-3T3 or MN9D cells were either left untreated (A-D, left panels) 
or subjected to various drug treatments for four hours using concentration as indicated (A-D, right 
panels). In all cases, cells were fixed by treatment with 3% (wt/vol) paraformaldehyde for 30 min 
at RT and stained for NPM as described in Materials and Methods, Section 2.2.7. NPM
localisation was observed by fluorescence microscopy using a Zeiss Axiophot (Germany). White 
arrow indicates an MN9D cell with promionent nucleoplasmic and cytoplasmic NPM localisation 
with MPP+ treatment.  
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Figure 2.3. Early cytoplasmic and nucleoplasmic NPM build-up coincides with caspase-8 
activation but precedes cleavage of caspase-7 and PARP.  MN9D cells were exposed to 500 
µM MPP+ for varying duration as indicated. Cells harvested at various time points were lysed and 
the total cell extracted collected as described in Material & Methods, Section 2.2.4. Portion of the 
harvested cells were subjected to subcellular fractionation to obtain the cytoplasmic fraction. The 
total cytosolic-nucleoplasmic lysates and cytoplasmic protein extract were next subjected to SDS-
PAGE and immunoblot analysis using anti-NPM, anti-ß-actin, anti-caspase-8, anti-caspase-7 or 
anti-cleaved PARP antibody, as indicated to the right of each panel. 20 µg of the total cellular 
extract and cytoplasmic extract extract (80 µg for caspase-8 immunoblotting) were 
electrophoresed to monitor the cyto-nucleoplasmic and cytoplasmic NPM level following various 
length of exposure to MPP+. White triangle indicates procaspase, while black arrows indicate 
cleaved caspase form. 
Cytoplasmic
NPM 
25 kDa
20 kDa



Chapter II            Subcellular Localisation of NPM 

(A) HeLa (B) MN9D 

Duration of 
actinomycin 
D exposure 
(Hrs) 

Duration 
of MPP+ 
exposure 
(Hrs) 

 0          2         8         16 0         2           8         16 

NPM NPM 

0.0
0.2

0.4
0.6
0.8
1.0

1.2
1.4

/
 

n  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ratio 
(NPM/ 
Actin) 

Figure 2.4.  Significant elevation in NPM gene expression is not observed with actinomy
D or MPP+ treatment in HeLa and MN9D cells respectively. HeLa (A) or MN9D cells 
were treated with 0.40 µM of actinomycin D or 500 µM of MPP+ respectively. The cells w
harvested at indicated times, and total RNA was prepared. RT-PCR was performed as descri
in Materials and Methods, Section 2.2.8, with 20 µg of RNA for each sample. The primers u
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The values of NPM were normalised with respect to the intensities of β-actin. Data were analy
by Gel pro Imager (Image Processing Solutions, USA).  

66 
Β-Actin
Β-Acti
Ratio 
(NPM
Actin)
cin 
(B) 
ere 
bed 
sed 

n of 
ised 
ing. 
sed 



Chapter II            Subcellular Localisation of NPM 

67 

Figure 2.5. Cytoplasmic translocation of NPM is dependent on Crm1-mediated nucleo-
cytoplasmic shuttling. Cytoplasmic and nuclear fractions were prepared from Jurkat cells after a 
four-hour exposure to (A) etoposide of increasing dosage or (B) 500 nM etoposide alone or 
etoposide with 2.5 ng/mLof Leptomycin B. Harvested cells were subjected to subcellular fraction 
as described in Materials and Methods, Section 2.2.5. Collected fractions were next subjected to 
SDS-PAGE and immunoblot analysis using anti-NPM, anti-oct-1 or anti-actin antibody, as 
indicated to the right of each panel. 
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Figure 2.6. NPM is released from isolated nuclei as a result of drug-induced nucleoli 
disruption in in vitro nuclei assay. HeLa or MN9D cells were transfected with GFP-tagged 
NPM and their nuclei extracted as described in Material and Methods, Section 2.2.9. The 
resuspended nuclei were then exposed to various concentrations of actinomycin D, α-amanitin 
and MPP+ as indicated for one hour. The nuclei were next spun down and the supernatant 
collected were subjected to SDS-PAGE and immunoblot analysis using an anti-GFP antibody 
(A). The pelleted actinomycin D-exposed nuclei were then resuspended in Nuclei EZ Prep 
suspension buffer, stained with Hoechst-33342 and observed by fluorescence microscopy using a 
Zeiss Axiophot (Germany) (B).  



Chapter II            Subcellular Localisation of NPM 

(A)   Caspase-8 inhibition (B)   Caspase-6 inhibition 
 
 

 
 

MPP+               −           +           + 
Caspase-8        −           −           + 
Inhibitor 

MPP+                −           +           + 
Caspase-6         −           −           + 
Inhibitor 

NPM 
NPM 

 
Cleaved 
PARP 

Cleaved 
PARP 

 
 
 
 
 
 
 

(C)   Caspase 
 

MPP+             
Caspase-3      
Inhibitor 

 
 
 
 
 
 
 
 
 
 

Figure 2.7. Inhibition of caspase
nucleoplasmic accumulation of NP
incubated with 0.5 µM of caspase-8
caspase-3 inhibitor (C) for 30 min, 
then harvested, and total cell lysate
2.2.4. The extracts were next subjec
anti-cleaved PARP and anti-actin an
 
 

Actin
-3 inhibition 

  −           +           + 
  −           −           + 

NPM 

Cleaved 
PARP 

 

-8, but not caspase-3 or 6, suppressed total c
M in MN9D cells exposed to MPP+. MN9D cells 

 inhibitor (A), 20 µM of caspase-6 inhibitor (B) or 1
and then treated with 500 µM MPP+ for 12 h. The c
s extracted as described in Materials and Methods

ted to SDS-PAGE and immunoblot analysis using  a
tibody, as indicated to the right of each panel. 

69 
Actin
 

Actin
ytosolic-
were pre-
00 µM of 
ells were 
, Section 
nti-NPM, 



Chapter II            Subcellular Localisation of NPM 

70 

Figure 2.8. Overexpression of caspase-8, but not caspase-3 and -6, in the
cytoplasmic accumulation of NPM.  HeLa cells were transfected with
caspase3 (A), caspase-6 (B) or caspase-8 (C) overexpressing plasmid for 24 
then harvested and subjected to subcellular fractionation as described in Mate
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2.4 Discussion 

In Chapter I, we have observed NPM’s up-regulation on the 2DGE. We subsequently 

noted that the protein extraction used, a low salt HEPES buffer with 1% Triton X-100, was 

unable to solubilise NPM tightly bound to the nucleoli. As reported previously, nucleoli-bound 

NPM is resistant to extraction by a 0.5% Triton X-100 containing PBS buffer, but the addition of 

RNase A is sufficient to release it from the nucleoli (Zatsepina et al., 1997). Since RNase A was 

not included during the concoction of our protein extraction buffer, the NPM spot observed on 

our 2D gels most probably represented the combined cytosolic and nucleoplasmic NPM protein 

amount, rather than the total cellular NPM amount (which takes into account the nucleoli-bound 

NPM as well). It thus follows that the apparent up-regulation of NPM observed on the 2DGE 

could be attributed to an increase in the amount of cytosolic-nucleoplasmic NPM released from 

the nucleolus with MPP+ treatment. This was further corroborated by time-course analysis of 

NPM expression, which demonstrated a marked increase in total cytosolic-nucleoplasmic NPM 

level with just two hours of MPP+ exposure (Figure 2.3). We further demonstrated that NPM 

transcript level remained relative constant for up to 16 hours of MPP+ treatment (Figure 2.4), 

indicating that the increase in the cytosolic-nucleoplasmic NPM level was not due to de novo 

protein synthesis. Taken together, these data point to the nucleoli as the most obvious source of 

both the cytoplasmic- and nucleoplasmic-translocated NPM.  

Stress-induced translocation of NPM into the nucleoplasm has been an area well- 

researched on for the past two decades. Conditions or drugs known to cause NPM dispersal into 

the nucleoplasm include serum deprivation (Chan et al., 1985), actinomycin D (Yung et al., 
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1985b), toyocamycin, alpha-amanitin (Yung et al., 1985a) and dororubicin (Chan et al., 1987), 

among many reported previously. In fact, identification of NPM translocation was originally 

used to detect drug-resistant cancer cells and to study the efficacy of certain anti-tumour agents 

(Chan et al., 1987), though the exact role of the nucleoplasmic localised NPM was never 

investigated until recently. A study of the correlation between NPM-translocation and apoptosis 

in cells induced by daunomycin was conducted by Chan & Chan in 1999, who found that drug 

concentration required for induction of DNA fragmentation and chromatin condensation in the 

HeLa cells coincided with the drug concentration required for NPM-translocation. This 

observation thus suggested a positive role for NPM in the regulation of apoptotic progression, 

though the mechanism underlying its possible involvement was not speculated. Korgaonkar et al. 

(2005) further demonstrated that NPM inhibits ARF's p53-dependent activity by targeting it to 

nucleoli and impairing the ARF-Mdm2 association. It follows that stress-induced NPM 

translocation into the nucleoplasm allows ARF to interact with Mdm2 in the nucleoplasm, which 

in turn spares p53 from being degraded by Mdm2. The activated p53 can then proceed to halt 

cell cycle progression and/or initiate apoptotic response. Nucleoplasmic redistribution of NPM 

may thus be crucial in regulating the cell’s p53 responsiveness during stressful conditions. 

The recent discovery of a C-terminal NPM mutant in Acute Myeloid Leukemia (AML) 

(Falini et al., 2005) has led to our speculation that NPM may possess a cytoplasmic function that 

may be distinct from its nuclear or nucleolar functions. Here, we demonstrated that in response 

to diverse stress signals, NPM was translocated into the cytoplasm as well (Figure 2.1 and 2.2). 

The extent of cytoplasmic NPM translocation was observed to correlate very closely with the 

drug dosage used. Though we have established cytoplasmic build-up of NPM as a general 
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phenomenon in response to cell stress, the exact cytoplasmic function of NPM remains hitherto 

unknown. To date, many of the functions ascribed to NPM are reliant on its nuclear localisation. 

For example, NPM is a partner of the NF-kappaB nuclear transcription complex in the induction 

of MnSOD by phorbol 12-myristate 13-acetate and cytokines (Dhar et al., 2004). Also, in 

response to UV damage, NPM undergoes nucleoplasmic redistribution and regulates p53 level 

by interacting with HDM2 and preventing it from degrading p53 (Kurki et al., 2004). Notably, 

one cytoplasmic role recently ascribed to NPM is its involvement in centrosome duplication 

during mitosis. NPM associates specifically with unduplicated centrosomes, and dissociates from 

centrosomes by CDK2/cyclin E-mediated phosphorylation (Okuda et al., 2000). The Ran-Crm1 

nucleo-cytoplasmic shuttling complex was further shown to promote a local enrichment of NPM 

on centrosomes, thereby preventing unnecessary centrosome reduplication that can lead to 

supernumerary centrosomes and multipolar spindles that are associated with most human cancer 

cells (Wang et al., 2005). While it is plausible that cytoplasmic build-up of NPM is required for 

suppression of centrosome reduplication during stressful conditions, it is unknown if cellular 

stress can lead to centrosome reduplication.  

A possible clue to a cytoplasmic role of NPM in stress response comes from the caspase 

inhibition and overexpression studies. It was reported previously in an in vivo model of ischemic 

tolerance that widespread caspase-3 activation occurred without cell death in the preconditioned 

tissues. Moreover, activation of caspase-3 was found to induce up-regulation of Hsp70, and 

blocking caspase-3 activation would prevent such an up-regulation, and lead to a loss of 

neuroprotection in the mouse ischemic model (McLaughlin et al., 2003). Based on these 

observations, it was proposed that the initial energetic stress during preconditioning leads to 
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limited activation of caspase-3. Once activated, caspases are held in check by interaction and 

sequestration with proteins such as Hsc 70, thereby depleting the free pool of Hsc 70. This in 

turn leads to increased synthesis of Hsp 70, which is capable of binding and sequestering 

components of the apoptotic machinery such as Apaf-1 and Apoptosis Inducing Factor (AIF), 

among several of Hsp 70’s anti-apoptotic roles described so far (Beere et al., 2000; Saleh et al., 

2000; Jäättelä et al., 1998). In our current investigation, we similarly demonstrated marked 

cytoplasmic accumulation of NPM in HeLa cells with overexpression of caspase-8 (but not 

caspase-3 or -6) (Figure 2.8). Assuming that NPM plays a protective role just like Hsp70 in the 

mouse ischemic model, the ‘deployment’ of NPM into the cytoplasm may serve to delay full-

fledge apoptotic response until necessaary and thus prevent the cell from dying with slight 

provocation of the death signalling network. This hypothesis is further supported by our time-

course analysis of cytosolic-nucoleoplasmic NPM level in MN9D cells exposed to MPP+ 

(Section 2.3.2). We showed that elevation in NPM level occurred alongside with the appearrance 

of cleaved caspase-8. However, upon reaching the peak by the 4th hour, total cytosolic-

nucleoplasmic NPM level began to decrease and this coincided with the cleaving of caspase-7 

and PARP, which indicated the onset of apoptosis (Figure 2.3.3). It thus appeared that the brief 

initial elevation in NPM level resulted in a temporary ‘stall’ in apoptotic signalling downstream 

of caspasse-8, which was subsequently ‘revived’ with the fall in NPM level after the fourth hour. 

The ascription of an anti-apoptotic role to NPM in this case will hardly be surprising, since NPM, 

like the multifunctional Hsp70 protein which mediates neuroprotection in the ischemic model, 

also functions as a molecular chaperone promoting the renaturation of denatured proteins 

(Szebeni & Olson, 1999).  
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It should be emphasized at this point of our discussion that the anti-apoptotic function of 

the cytoplasmic-localised NPM assumed here is only speculative. It is still highly possible that 

cytoplasmic NPM may instead be involved in positive regulation of the apoptotic signalling 

network, in a way similar to that mediated by another molecular chaperone Hsp60. The latter has 

been shown to be able to improve the vulnerability of pro-caspase-3 to proteolytic maturation by 

upstream caspases during apoptosis (Xandoudakis et al., 1999). Hsp60 was further shown to 

translocate into the cytoplasm from the mitochondria during apoptosis, and this coincided with 

the mitochondrial-to-cytoplasmic translocation and activation of pro-caspase-3 (Samali et al., 

1999). It is hence probable that NPM may play a similar role as Hsp60, and like the latter, its 

translocation into the cytoplasm may allow it to interact with and positively regulate the 

components of the apoptotic pathway. At this juncture, based on the results gathered so far, the 

ascription of either a definitive pro-apoptotic or pro-survival role to cytoplasmic-localised NPM 

will be too premature.  

Apart from attempts to elucidate the exact nature of cytoplasmic NPM’s involvement 

during stressful conditions, we also investigated factors promoting or mediating cytoplasmic 

translocation of NPM. Among the drugs used to induce cytoplasmic NPM translocation, the 

transcriptional inhibitor actinomycin D and topoisomerase inhibitor camptothecin are known to 

be potent nucleolar disrupting agents promoting rapid dispersal of nucleolar-bound NPM into the 

nucleoplasm. The large pool of nucleoplasmic-dispersed NPM would then be available for Crm1 

mediated translocation into the cytoplasm, which would otherwise not be accessible to Crm1 

mediated nucleo-cytoplasmic transport during non-stressful conditions due to its sequestration to 

the nucleolus. It thus follows that stress-induced massive disruption of the nucleolus is a pre-
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requisite for cytoplasmic translocation of NPM to commence. As attractive as this proposal 

might be, we further discovered that non-nucleolar disrupting agents such as MPP+ and heat 

shock could also lead to cytoplasmic NPM build-up. Unlike actinomycin D and another nucleoli 

disrupting agent α-amanitin, MPP+ was incapable of direct nucleolar disruption leading to 

passive ‘leaking’ of the GFP-tagged NPM out of isolated HeLa nuclei (Figure 2.6). We did 

however observe that with MPP+ treatment, the outline of the nucleoli seemed to be less ‘define’ 

with some nucleoplasmic NPM dispersed in between. This might indicate a limited release of 

NPM into the nucleoplasm, which could then proceed to actively shuttle into the cytoplasm with 

the aid of Crm1. As mentioned before, activation of caspase-8 by MPP+ may promote 

cytoplasmic NPM build-up, and it could well be an essential mediating factor signalling for the 

restricted release of NPM from the nucleoli without disrupting the latter. As such, massive 

nucleoli disruption may not exactly be a requirement before cytoplasmic NPM translocation can 

occur, though it may be a contributing factor leading to rapid availability of a large pool of 

nucleoplasmic NPM for translocation purpose.  

 Apart from caspase-8, we went on to further determine if an NPM-interacting partner, 

p53, mediates the cytoplasmic translocation of NPM as well. It was established previously that 

nucleolin translocation into the nucleoplasm requires the presence of p53 as a nucleoplasmic 

anchor, such that in p53-null Sao2 cells, no such translocation could occur following exposure to 

IR and camptothecin (Daniely et al., 2002).  Owing to its central position in DNA damage 

response and apoptosis activation (Levine, 1997), p53 would seem like an ‘ideal’ candidate for 

regulating cytoplasmic NPM translocation. However, cytoplasmic NPM build-up was still 

observed (with concomitant decrease in nuclear NPM level) even in the p53-null MEF cells 
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following UV irradiation (Figure 2.9). This observation thus indicates that unlike in the case of 

nucleolin, p53 is not a crucial factor regulating stress-induced cytoplasmic translocation of NPM.  

 In conclusion, our results point to cytoplasmic NPM accumulation as a common 

phenomenon in response to diverse stress signals, in addition to the well-established 

nucleoplasmic accumulation of NPM. Activation of caspase-8, which is usually the first caspase 

to become activated during stress-induced death signalling, was demonstrated to be sufficient to 

induce cytoplasmic NPM build-up. Meanwhile, stress-induced massive nucleolar disruption may 

also contribute to the phenomenon by “supplying” a ready pool of nucleoplasmic NPM for 

Crm1-mediated translocation into the cytoplasm. While the overall results are indicative of 

NPM’s involvement in apoptotic regulation, its precise cytoplasmic role still remains elusive at 

this juncture. Perhaps, deciphering NPM’s connection with the cytoplasmic apoptotic machinery 

may hold the key to this mystery, as we shall see in the next chapter. 
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Chapter III.  NPM retards the apoptotic signalling cascade via 

inhibition of caspase-6 and -8 
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3.1 Introduction 

 
Cellular response to genotoxic stress includes cell cycle arrest and activation of DNA 

repair mechanism. However, in the event of irreparable cellular damage, cells respond with 

induction of apoptosis. Apoptosis is an evolutionarily conserved mode of cell death characterised 

by a discrete set of biochemical and morphological events resulting in an ordered disassembly of 

the cell (Kerr et al., 1972; Vaux et al., 1994; Steller, 1995). The biochemical orchestration of the 

apoptotic death is mediated largely by the activity of a group of conserved cysteinyl-aspartate 

proteases that are activated in response to a variety of proapoptotic stimuli (Nicholson, 1996; 

Thornberry et al., 1997; Thornberry & Lazebnik, 1998).  

There are at least 14 caspases identified in mammalian cells, which are normally 

expressed as inactive precursor molecules (procaspases), that in response to an apoptotic 

stimulus are proteolytically cleaved at specific Asp-X junctions to generate catalytically active 

heterodimers (Thornberry & Lazebnik, 1998). The mature enzyme consists of two large (~p20) 

and two small (~p10) subunits, derived from a pair of interdigitated proenzyme molecules 

(Rotonda et al., 1996). Caspases are divided into two subgroups based on their functions in the 

apoptotic pathways. The initiator caspases consisting of caspase-1, -2, -4, -5, -8, -9, -10, -11, and 

-12 which receive the initial death stimulus. The activation of this cascade of caspases usually 

converges to activate a common set of the downstream effector caspases. Effector caspases 

(consisting of caspase-3, -6, -7 and -14) are directly responsible for the cleavage of housekeeping 

proteins, causing death to the cells and also giving rise to the morphological characteristics 

observed during apoptosis. They can also inactivate proteins that inhibit apoptosis by cleaving 
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them into fragments. Various initiator and effector caspases are involved in different death 

signalling pathways. 

 

3.1.1 Different roles of caspases in the death pathways 

Cellular survival is an intricate balance between factors that either promote or inhibit 

apoptosis. Several pathways and protein families together set a threshold for apoptosis to assure 

that apoptosis only takes place in response to an appropriate death signal, whereas cell death is 

prevented when cellular survival is required. Apoptotic cell suicide can be initiated by a plethora 

of stimuli that generally feed into one of two known death signalling pathways as shown in 

Figure 3.1, with various caspases playing crucial roles in signal transmission and death execution 

(Budihardjo et al., 1999; Green, 2000). The intrinsic pathway feeds cell death signals through the 

mitochondria, which appears to act as a generic damage sensor and monitor of metabolic status. 

The mitochondrion apoptotic pathway initiates with signalling from pro-apoptotic proteins from 

the Bcl-2 family such as Bax, which trigger the release of cytochrome c. The cytosolic presence 

of cytochrome c will result in the formation of the apoptosome, consisting of Apaf-1, 

procaspase-9 and cytochrome c itself. In the presence of ATP, procaspase-9 is cleaved resulting 

in the activation of caspase-3, which in turns activates the caspase activation cascade (Figure 3.1 

a) (Green & Reed, 1998).  

On the other hand, the extrinsic pathway is initiated by binding of extracellular death 

ligands belonging to the Tumour Necrosis Factor (TNF) superfamily (e.g., TNF- , Fas ligand and 

Apo3L) to their respective transmembrane death receptors found on the surface of the cell 

(Figure 3.1b). This leads to the recruitment of adaptor proteins such as FADD (Fas-associated 
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death domain) to the receptor (Blagosklonny, 2000). The adaptor proteins in turn recruit 

procaspases to form the death-inducing signalling complex (DISC), and the procaspases are then 

activated to form the enzymatically active heterotetramers. Caspase-8 and caspase-10 are the 

caspases recruited in this pathway, with caspase-8 playing a major role. The activation of caspase 

8, similar to caspase 9 in intrinsic pathway, leads to effector caspases activation (Chan et al., 

2000; Siegel et al., 2000). In addition, the bcl-2 family member Bid is cleaved by the activation 

of pro-caspase-8 through the extrinsic pathway, and translocates to the mitochondrion to promote 

cytochrome c release, thereby completing a positive feedback loop of caspase activation and 

providing a link to the intrinsic death pathway. 

 

3.1.2 Keeping death in check – the Inhibitor of Apoptosis (IAP) family 

Given their intimate involvement throughout the entire apoptotic signalling pathway, the 

caspases represent strategic targets for regulating and setting certain threshold for apoptosis 

induction. The Inhibitor of Apoptosis (IAP) is a family of proteins regulating the activity of the 

caspase cascade by blocking both the mitochondrial-dependent and -independent apoptotic 

pathways (Jia et al., 2003; Carson et al., 2002). IAPs were first identified in baculoviruses, and 

they belong to a family of homologous proteins characterised by the presence of one or more 

baculoviral IAP repeat (BIR) domains, together with an ability to suppress apoptosis (Crook et 

al., 1993; Birnbaum et al., 1994). The IAP proteins identified in humans include X-chromosome 

linked IAP (XIAP), cellular inhibitor of apoptosis 1 and 2 (cIAP1, cIAP2), neuronal apoptosis 

inhibitor protein (NAIP), livin and survivin. The IAP may regulate caspase activities by two  
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Figure 3.1   Illustration of the different proteins involved in the two apoptotic pathways. In the 
death receptor pathway (a), death ligands such as TRAIL or Fas bind to the death receptors e.g. DR5 or 
CD-95 respectively. This triggers the recruitment of FADD and procaspase-8 to the death receptor, 
forming the Death-Inducing Signalling Complex (DISC) which leads to caspase-8 cleaving and 
activation. In the mitochondrial pathway (b), apoptotic stimuli such as DNA damage triggers the 
dimerisation and insertion of the pro-apoptotic Bax into the mitochondrial membrane, allowing the efflux 
of cytochrome c into the cytoplasm. The cytosolic presence of cytochrome-c will result in the formation 
of the apoptosome, consisting of Apaf-1, procaspase-9 and cytochrome-c itself. In the presence of ATP, 
procaspase-9 is cleaved and activated. Both activated caspase-8 and -9 cleave procaspase-3, which in 
turn activates caspase-6. The executor caspase-3 and -6 then cleave and inactivate other cellular targets. 
Activated caspas8-8 also cleaves Bid, which can trigger cytochrome c release as well. Legend: FADD, 
Fas-associated death domain, PARP, Poly-(ADP-ribose) Polymerase.  
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ways, either by direct caspase inhibition, or by promoting the degradation of the caspases. 

Using the BIR domain, the IAPs can bind to and inhibit caspases. For example, the third 

BIR of XIAP can bind to the initiator caspase-9, preventing the homodimerisation of caspase-9 

and keeping caspase-9 in an inactive monomeric state. This in turns prevents the activation of 

caspase-9, which requires homodimerisation of the enzyme before it can cleave downstream 

effector caspase such as caspase-3 (Shiozaki et al., 2003; Srinivasula et al., 2001). Meanwhile, 

XIAP inhibits caspase-3 (and caspase-7) by interaction of its second BIR and the preceding 

linker region with active caspase-3 dimer. This in turn prevents the interaction of caspase-3 

dimers with their cellular substrates, hence inhibiting the proteolytic degradation of the cell that 

marks the final execution stage of apoptosis (Huang et al., 2001b; Riedl et al., 2001; Suzuki et 

al., 2001b). 

Apart from BIR, several IAPs also contain the RING finger possessing ubiquitin protein 

ligase activity (Deveraux et al., 1999). Ubiquitin ligases can target specific proteins for 

ubiquitination and subsequent degradation by the proteasome. cIAP2 and XIAP can trigger the 

ubiquitination of caspase-3 and -7, suggesting that RING-dependent proteosomic caspase 

degradation may be another mechanism of the IAPs’ anti-apoptotic activity (Huang et al., 2000; 

Suzuki et al., 2001c). 

A number of proteins have been identified which regulate IAP’s turnover. SMAC and 

Omi/HtrA2 are proteins that reside in the mitochondrial intermembrane space and translocate to 

the cytosol during apoptosis (Hedge et al., 2002; Verhagen et al., 2000; Suzuki et al., 2001a; 

Marins et al., 2002; van Loo G et al., 2002). Processed SMAC and Omi/HtrA2 can compete with 
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the caspases for binding to IAPs, hence liberating the caspases from IAP repression. SMAC can 

interact with several IAPs, including XIAP, c-IAP1, c-IAP2, Survivin and Livin, thereby 

interfere with inhibition of caspase-3, -7 and -9 (Chai et al., 2000; Srinivasula et al., 2000). 

Another protein, the XIAP-associated factor (XAF-1) interacts with XIAP and antagonizes XIAP 

inhibition of the caspases and subsequently apoptosis. It also triggers the translocation of XIAP 

into the nucleus, thereby preventing their inhibitory interaction with the cytosolic caspases 

(Liston et al., 2001). 

The IAPs and their antagonists thus represent potent death mediators, which determine 

the extent of death signal penetration within a cell through caspase regulation. They are, 

however, not the only players residing within the cell’s anti-apoptosis squad, as another group of 

proteins, which forms the most ancient defence system in all living organisms, have also been 

discovered to play similar functions to the IAPs in regulating apoptotic signalling.  

 

3.1.3 Heat shock proteins (Hsps) as death determinants 

Both heat shock responses and apoptosis are mechanisms engaged to cope with stressful 

conditions, though one is being protective, while other potentially lethal. It is therefore likely that 

the apoptotic process evolved with an inherent susceptibility to intervention by one or more of 

the heat shock proteins (Hsps) at different points in the apoptotic cascade. Recent evidences 

suggest that the coordinated balance between these two opposing pathways governs the ultimate 

fate of the cell - whether it lives or dies (Beere et al., 2000).  
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The Hsps are a large family of highly conserved proteins that can be classified into 

groups based primarily on size which can vary anywhere from 10 – 170 kDa. The six major size 

classes currently recognised are Hsp100, Hsp90, Hsp70, Hsp60, Hsp40, and the small heat shock 

proteins, which can range from 10-30 kDa (Gething, 1997). The Hsps are constitutively 

expressed in the cells and their levels can be rapidly induced in response to cellular stress. Hsps 

function collectively to protect the cells from adverse environmental, physical or chemical 

stresses through their ability to bind to and stabilise proteins that are in a non-native 

conformation. Interactions with these unstable protein conformations prevent the formation of 

large protein aggregates and facilitate normal protein folding, membrane translocation, and the 

degradation and removal of damaged proteins (Feder & Hofmann, 1999).  

The protective role of the Hsps may be extended to include the anti-apoptotic role for 

several members of the Hsp family, including Hsp90, Hsp70 and Hsp27. Hsp70 is able to 

directly inhibit caspase processing by interacting with Apaf-1, hence preventing the recruitment 

of procaspases-9 to the apoptosome (Beere et al., 2000). Hsp90 and Hsp27 are also shown to be 

able to inhibit the formation of a functionally competent apoptosome. Hsp90 associates with 

Apaf-1 directly to prevent its oligomerisation that is required before procaspases-9 recruitment 

into the apoptosome (Pandey et al., 2000b), while Hsp27 binds to and sequesters cytochrome c 

away from its target Apaf-1 (Bruey et al., 2000). 

Like the IAPs, the anti-apoptotic mechanisms of some of the Hsps involve inhibition 

interaction with the caspases. αB-crystallin, a small heat shock protein that is related to Hsp27, 

binds to caspase-3 that has been partially processed by caspase-9 or caspase-8 cleavage and 

inhibits the autoproteolytic removal of its prodomain to produce its large subunit (Kamradt et al., 
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2001). Meanwhile, Hsp27 associates with caspase-3, but not Apaf-1 or caspase-9, and inhibits 

activation of caspase-3 by caspase-9-mediated proteolysis (Pandey et al.,  2000a). Because this 

autocatalytic maturation is required for caspase-3 activation by both the mitochondrial and death 

receptor pathways, the inhibition of caspase-3 maturation by B-crystallin and Hsp27 is a 

parsimonious strategy to inhibit both pathways. In the case of Hsp60, however, its direct 

interaction with procaspases-3 actually accelerates the maturation of procaspase-3 by different 

upstream activator caspases and this effect was dependent on ATP hydrolysis. It was proposed 

that the ATP-dependent chaperoning activity of Hsp60 improves the vulnerability of pro-

caspase-3 to proteolytic maturation by upstream caspases and that this represents an important 

regulatory event in apoptotic cell death (Samali et al., 1999; Xanthoudakis et al., 1999). 

These recent discoveries reveal an important connection between Hsps and the                     

apoptotic machinery. Given that cellular homeostasis represents an equilibrium between survival 

and death, it follows that HSPs should play a pivotal role in maintaining this delicate balance via 

regulation of caspase activation within the death signalling pathways. 

 

3.1.4 Other anti-apoptotic regulators involved in death signalling 

 Apart from the IAP and Hsps family, there are other molecules which play pivotal roles 

in suppression of caspase activation at different points in the apoptotic cascade. Cellular FLICE-

inhibitory protein (c-FLIP) specifically regulates the extrinsic apoptotic process through 

inhibition of caspase-8 activation. c-FLIP is expressed in both a long-form (c-FLIPL) and a short-

form (c-FLIPS) due to alternative splicing. The Death Effector Domains (DEDs) of c-FLIPL and 

c-FLIPS interact with the DEDs of FADD and procaspasse-8. Through the binding of c-FLIP to 
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FADD and procaspase-8 at the death receptor complexes, c-FLIP presumably prevents the 

processing of procaspase-8 and thus inhibits downstream apoptotic events (Irmler et al., 1997; 

Tschopp et al., 1998).  

Though members of the Bcl-2 family do not directly inhibit caspase activation like c-

FLIP, they do exert profound influence on the caspase activation status within the intrinsic 

pathway through regulation of cytochrome c release from the mitochondria. Proteins belonging 

to the Bcl-2 family are key regulators of cell death and survival, and individual family members 

can serve to inhibit or promote apoptosis (Cory & Adams, 2002). In general, Bcl-2 proteins 

regulate the apoptotic cascade mainly at the level of the mitochondria. Members of the Bcl-2 

family possess either anti-apoptotic or pro-apoptotic function. They are characterised by the 

presence of conserved sequence motifs, known as Bcl-2 homology (BH) domains. Anti-apoptotic 

members share all four BH domains, designated as BH1-4; the multidomain pro-apoptotic 

members contain BH1-3 domains, whereas another subgroup of pro-apoptotic members only 

possess a BH3 domain (Cory & Adams, 2002). The BH3-only proteins act as sensors for distinct 

apoptosis pathways, whereas multidomain pro-apoptotic Bax and Bak are executioners of death 

orders relayed by the BH3-only proteins. Upon activation by an apoptotic signal, the BH3-only 

protein such as Bid and Bim, activate the pro-apoptotic Bcl-2 proteins Bax and Bak to 

permeabilize the mitochondrial outer membrane leading to the release of cytochrome c and other 

proteins from the intermembrane space (Shimizu et al., 2000; Korsmeyer et al., 2000). The 

impact of pro-apoptotic Bcl-2 proteins on mitochondria can be inhibited by anti-apoptotic 

members such as Bcl-2 and/or Bcl-XL.  Anti-apoptotic Bcl-2 family members appear to function, 

at least in part, by interacting with and antagonizing pro-apoptotic family members (Sedlak et al., 
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1995; Kelekar et al., 1997). Although the mechanism underlying the regulation of mitochondrial 

membrane permeability is not completely understood, current hypotheses suggest that Bcl-2 

family members regulate the outer mitochondrial membrane by interaction with the voltage-

dependent anion channel (VDAC) (Shimizu et al., 1999). 

 

3.1.5 Involvement of NPM in the regulation of apoptosis 

Insights into the anti-apoptotic mechanisms of many cell death mediators were gained on 

the foundation of numerous previous studies demonstrating the oncogenic potential and/or 

protective effect of these molecules against cell death. For example, Hsp27 delivered with a 

herpes simplex virus-based vector protects dorsal root ganglion neurons from apoptosis induced 

by nerve growth factor withdrawal (Wagstaff et al., 1999). Over-expression of Hsp27 or Hsp70 

protects cardiac cells against three different apoptosis-inducing stimuli, as well as against 

thermal or hypoxic stress (Heads et al., 1994; Jayakumar et al., 2001). On the flip side, partial 

deletion of neuronal apoptosis inhibitor protein (NAIP) gene resulted in uncontrolled cell death 

in certain neurodegenerative disorders, such as type I spinal muscular atrophy (SMA) (Roy et al., 

1995). Meanwhile, the prototypical anti-apoptotic member, Bcl-2, was first discovered because 

of its involvement in 95% of follicular B-cell lymphomas as a result of a chromosomal 

translocation t(14;18) (Tsujimoto et al., 1985). High levels of bcl-2 did not act to increase 

proliferation but rather increased cell survival (Henderson et al., 1991), thus defining a new class 

of oncogenes with anti-apoptotic functions. 

Several lines of studies indicate that NPM may also play a role in the regulation of 

apoptosis. Overexpression of NPM results in a decrease in susceptibility of human leukaemia 
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HL-60 cells to sodium butyrate and retinoic acid-induced apoptosis, while down-regulation of 

NPM through anti-sense NPM transfection increases this susceptibility (Liu et al., 1999; Hsu & 

Yung, 2000). Increased stability of NPM is also shown to be involved in ant-apoptotic effect of 

the oncogene ras during serum deprivation. NPM in serum-deprived NIH-3T3 cells was found to 

be highly unstable with a short half-life, while NPM in serum-deprived ras-transformed (RAS-

3T3) cells was as stable as that in serum-supplemented NIH-3T3 or RAS-3T3 cells. Treatment of 

RAS-3T3 cells with NPM antisense oligomer significantly potentiated the apoptosis induced by 

serum deprivation (Chou & Yung, 2001). Also, suppression of NPM expression by small 

interfering RNA targeting NPM increases hypoxia-induced apoptosis, whereas overexpression of 

NPM protects against hypoxic cell death (Li et al., 2004). Finally, development of the forebrain 

and haematopoiesis was shown to be profoundly disrupted in Npm1(-/-) mutants as a result of 

excessive apoptosis, indicating a pivotal role for NPM in apoptosis regulation in these 

developmental processes (Grisendi et al., 2005). 

In the previous chapter, NPM was shown to translocate into the cytoplasm in response to 

stress signals such as a sub-lethal heat shock. In the event of acute toxic exposure, such 

translocation preceded the onset of the apoptotic events such as cleaving of PARP and 

executioner caspase-7. This led to the speculation that early translocation of NPM may represent 

a transient cytoprotective mechanism suppressing cell death in the event of mild stress. In acute 

myelogenous leukaemia (AML) with a normal karyotype, a C-terminal frame-shift mutation of 

the NPM gene results in cytoplasmic dislocation of NPM (Falini et al., 2005), which may 

possibly function in cancer pathogenesis through cell death inhibition. Given that over-

expression of NPM can inhibit apoptosis, and that both the intrinsic and extrinsic signalling 
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pathways are initiated in the cytoplasm, the current investigation was undertaken to determine 

the role that cytoplasm-localised NPM may play in regulating death signal transmission, 

particularly with regard to suppression of caspase signalling. 
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3.2 Materials and Methods 

3.2.1 Cloning of Human and Mouse NPM 

Total RNA was prepared using TRIZOL (Invitrogen, USA) from the mouse MN9D cells 

according to the protocol by TRIZOL’s manufacturer. Amplification of the human and mouse 

NPM cDNA was performed using the Access RT-PCR kit (Promega, USA) from the extracted 

RNA, using the following primers:  

For mouse NPM:   Forward primer  5’ – CTC ATG GAA GAC TCG ATG GAT ATG G –3’ 

         Reverse Primer  5’ – TCT TAA ACA GAC TTC CTC CAC TGC C –3’ 

For human NPM:   Forward primer  5’ – CCG ATG GAA GAT TCG ATG GAC ATG –3’ 

         Reverse Primer  5’ – TTA AAG AGA CTT CCT CCA CTG –3’ 

The PCR cycles were (i) 95°C for 5 min; (ii) 95°C for 1 min, 50°C for 2 min, 72°C for 1 min (30 

cycles); and (iii) 72°C for 10 min. The full-length PCR product was purified by low melting-

agarose gel electrophoresis and cloned into pGem-T Easy vector (Promega, USA).  

 

3.2.2 Expression of Recombinant NPM 

Full-length NPM cDNA in pGEM T-Easy (Promega, USA) was used for constructing 

recombinant NPM protein. The restriction enzyme EcoRI was used to cleave out the NPM 

cDNA, which was then ligated into pET32a using non-direction cloning.   
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Polyhistidine-tagged NPM was expressed in Escherichia coli BL21(DE3)pLysS bacteria 

(Novagen, USA). After 3 h of growth at 37 °C the culture was transferred to room temperature 

and 0.5 mM isopropyl thiogalactopyranoside (Biorad, USA) was added to induce expression of 

recombinant proteins for 3 h. Bacteria were harvested by centrifugation, resuspended, and lysed 

by sonification as described previously (Holstein et al., 1996). 1% Triton X-100 (Sigma, USA) 

and Complete protease inhibitor mixture (Roche Molecular Biochemicals, USA) were included 

in the lysis buffer. Recombinant proteins were purified by affinity chromatography on Ni-NTA 

agarose (Qiagen, USA) according to the manufacturer's recommendations. 

 

3.2.3 Cell culture and induction of apoptosis 

MN9D (obtained with courtesy of Dr Jun Chen, University of Pittsburgh and with 

agreement from Dr Alfred Heller (University of Chicago), HeLa (a gift from Dr Ge Rou Wen, 

NUS), SHSY5Y (a gift from Dr Lim Kah Leong, National Neuroscience Institute, Singapore), 

293T and NIH 3T3 (both gifts from Dr Low Boon Chuan, NUS) cell lines were cultured in 

DMEM medium (RPMI 1640 medium for 293T cells) supplemented with 10% fetal bovine 

serum and 1% penicillin/streptomycin in a humidified atmosphere of 5% CO2 at 37°C. To induce 

apoptosis, MN9D cells were treated with 500µM of MPP+, NIH 3T3 with 50µM of 

cyclohexamide, SHSY5Y and 293T cells with 1µM rotenone and HeLa cells with UV radiation 

50 Jm-2, 4 ug/ml of camptothecin or 0.5 µM of actinomycin D for varying length of time.  
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3.2.4 Plasmids and Transfection 

pcDNA3.1-GFP-NPM codes for the mouse NPM gene fused to a GFP tag and is used in 

transient transfection investigation in this chapter. The mouse NPM cDNA was then subcloned 

into pcDNA3.1 plasmid using the EcoRI restriction site for non-directional cloning. For plasmid 

transfection, HeLa cells were seeded at a density of 1.5 x 105 per well in six-well plates in 

DMEM supplemented with 10% fetal bovine serum. 24 h later, the cells were transfected with 

varying amount of plasmid DNA using Lipofectamine (Invitrogen, USA) according to the 

manufacturer’s instructions. After 24-48 hours, the cells were harvested and protein extracted for 

further analysis. As the transfection effeciancy of the HeLa cells with pcDNA3.1-GFP-NPMis 

quite high (>50% when judged visually using fluorescence microscopy), cell-sorting was not 

utlised to enrich for the transfected cells before protein extraction. 

 

3.2.5 RNA Interference 

The siRNA sequence-targeting NPM gene corresponded to nucleotides 103−125 of the 

coding region relative to the first nucleotide of the start codon (sense, 5'-

UGAUGAAAAUGAGCACCAGTT-3'; antisense, 5'-CUGGUGCUCAUUUUCAUCATT-3'). As 

a control, the inverted sequence was used (sense, 5'-GACCACGAGUAAAAGUAGUTT-3'; 

antisense, 5'-ACUACUUUUACUCGUGGUCTT-3'). MN9D cells were plated in a six-well plate 

at a density of 2.35 x 10  cells per well5  24 hours before performing the transfection protocol. Just 

prior to transfection, the medium was removed and 500 µl of fresh DMEM supplemented with 

10% FBS was added to each well. During transfection, 10 µl of transit-TKO transfection reagent 

was added, dropwise, into 100 µl of serum-free DMEM, vortexed and incubated for 20 min. The 
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RNA duplex was then added to the mixture to a final concentration of 10 nM and incubated for 

another 20 min for complex formation. The complex was then added, dropwise, to each well and 

the cells incubated at 37°C for 24 hours before being exposed to 500 µl MPP  for another 12 

hours. The cells were subsequently harvested and subjected to subcellular fractionation to obtain 

the cytoplasmic fraction for western blot analysis. 

+

 

3.2.6 Preparation of subcellular fractions 

Nuclear and cytosolic fractions were prepared using the Nuclear/Cytosol fractionation kit 

(BioVision, USA), according to the manufacturer’s protocol. Briefly, cells were washed with 

PBS two times to remove the medium. A volume of 200µl of Cytoplasm Extraction Buffer A 

(CEB-A) was added and the cells scraped down using a rubber policeman. The cell suspension 

was then vortexed for 15 sec and incubated on ice for 10 min. 11µl of the Cytoplasm Extraction 

Buffer B (CEB-B) was next added to the suspension and vortexed for 5 sec. The suspension was 

then incubated on ice for 1 min, vortexed for another 5 sec, before being centrifuged at 16, 000 g 

for 5 min at 4°C. The supernantant, which is the cytoplasmic fraction, was then collected. Next, 

100µl of the Nuclear Extraction Buffer (NEB) added to the pellet and vortexed vigorously for 15 

sec and incubated on ice for 10 min before being subjected to another round of vortexing. This 

was repeated over a duration of 40 min, after which the suspension was centrifuged at 16, 000 g 

for 10 min at 4°C. The supernatant, which is the nuclear fraction, was then collected. The 

fractions were immunoblotted against the nuclear marker oct-1 to ensure clean separation of the 

two fractions. 
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3.2.7 Electrophoresis and Western Blot analysis 

Equal amount of proteins were resuspended in SDS-PAGE buffer (62.5 mM Tris-HCl, 

pH 6.8, 2% SDS, 10% glycerol, 5% dithiothreitol) and boiled in a water bath for 5 min. Lysates 

were stored at -20°C until further analysis. Proteins were separated under reducing conditions for 

2 h at 120 V in 12 or 15% SDS-polyacrylamide gels. Gels were transblotted onto the 

nitrocellulose membranes at 100V for 1.5 h. Membranes were blocked for 1h in TBS Tween 

with 5% milk powder, and then incubated overnight with anti-NPM (Zymed, USA, 1:10000), -

caspase-3 (Santa Cruz, USA, 1:1000), -caspase-6 (Cell Signalling Technology, USA, 1:2000), -

caspase-7 (Neomarkers, USA, 1:600), -caspase-8 (Cell Signalling Technology, USA, 1:1000), -

cleaved PARP (Cell Signalling Technology, USA, 1:2000), -oct-1 (Chemicon, USA, 1:1000), -

cytochrome c (Becton Dickinson, USA, 1:1000), -cleaved Bid (Chemicon, USA, 1:1000), Lamin 

A/C (Cell Signalling Technology, USA, 1:1000) and actin (Santa Cruz, USA, 1:1000), followed 

by incubation with HRP-conjugated secondary antibodies (Santa Cruz, USA), goat-anti-mouse or 

anti-rabbit (1:1000). Protein bands were visualised by applying chemiluminescent substrate 

(Pierce, USA). 

 

3.2.8 Preparation of S100 cytosolic Cell-free Extracts 

To make S100 cell-free extracts, the cell pellet was resuspended at 108 cells/0.5 ml of ice-

cold buffer A (20mM Hepes-KOH, pH7.5, 10mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM 

EGTA, 3 mM dithiothreitol, and protease inhibitor cocktail (Calbiochem, USA). After 
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incubation on ice for 15 min, the cells were disrupted by Dounce homogenizing for 15 times in a 

Wheaton Dounce homogenizer with a tight pestle. The lysates were directly centrifuged at 

100,000 x g for 1 hour in a Beckman Optima TLX-100 ultracentrifuge. The resulting 

supernatants (S100 cell-free extracts) were collected. 

 

3.2.9 Immunodepletion 

4 µg of anti-NPM (Zymed, USA) or anti-HA IgG2a (Santa Cruz, USA) was incubated 

with 100 µl of S100 extract for 1 h on ice. The immune complexes were then cleared by 

incubation with protein A/G bead pellet (from 10 µl of 25% v/v, Santa Cruz, USA) for 4 hour in 

a rotator at 4°C. The beads were subsequently pelleted by centrifugation for 2 min in a 

microcentrifuge at 4°C, and the resulting supernatant were collected and incubated for various 

length of time at 37°C for caspase activation, before being analysed by immunoblotting. 

 

3.2.10 In vitro caspase activation 

Untreated 293T cells were harvested, collected by centrifugation, and washed twice with 

ice-cold PBS. The cell pellet was resuspended at 108 cells/0.5 ml of ice-cold buffer A. After 

incubation on ice for 10 min, the cells were disrupted by Dounce homogenizing for 20 times and 

centrifuged at 15,000 x g for 20 min, 4°C before collecting the supernatant. 100 µl of the 

supernatant was incubated with cytochrome c (300 nM) and ATP (900 nM) at 37°C for 3 hour to 

activate the caspase cascade. To determine the effect of recombinant NPM on caspase activation, 

5 µM of these proteins were included in the incubation mixture. 
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3.2.11 Immunofluorescence microscopy 

HeLa cells were cultured as described in Section 2.2.1. After exposure of the cells to 0.5 

µg/mL of actinomycin D for four hours, the cells were then handled separately depending on 

which active caspase was to be visualised. For observation of active caspase-8, the cells were 

incubated for 1 h at 37°C in fresh DMEM medium with 1x IETD-FLICA (amount used 

according to the manufacturer’s instructions) for in situ detection of active caspase-8. The cells 

were then rinsed once with PBS and fixed in 3% paraformaldehyde for 30 min at room 

temperature. Cells were then incubated in blocking buffer (10% horse serum/0.4% Triton X-100 

in PBS) for 10 min, followed by a wash with 0.4% Triton X-100 in PBS. The cells were then 

incubated with primary antibody (anti-NPM, 1:200, Zymed USA) overnight at 4°C in a 

humidified chamber. Excess antibody was removed by washing with PBS (five times, 5 min), 

followed by incubation with anti-mouse FITC-conjugated secondary antibody (Santa Cruz, USA) 

for 45 min at room temperature, with protection against light. Hoechst 33342 was added to a 

final concentration of 4 µM and incubated for an additional 5 min at room temperature, before 

washing with 0.4% Triton X-100 in PBS (5 times, 5 min each).  

For visualisation of active caspase-6, the cells were fixed directly after exposure to 

actinomycin D. The cells were next incubated with blocking buffer and washed as above. 

However, instead of anti-NPM, the cells were incubated first with anti-cleaved caspase-6 (Cell 

signalling Technology, USA, 1:50) overnight at 4°C in a humidified chamber. Excess antibody 

was removed by washing with PBS (five times, 5 min), followed by incubation with anti-rabbit 
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FITC-conjugated secondary antibody (Santa Cruz, USA) for 45 min at room temperature, with 

protection against light. After another five washes of PBS, the cells were finally incubated with 

anti-NPM (Zymed, USA, 1:200) overnight at 4°C in a humidified chamber. Excess antibody was  

again removed by washing with PBS (five times, 5 min), followed by incubation with anti-mouse 

FITC-conjugated secondary antibody (Santa Cruz, USA) for 45 min at room temperature. 

Hoechst 33342 was added to a final concentration of 4 µM and incubated for an additional 5 min 

at room temperature, before washing with 0.4% Triton X-100 in PBS (5 times, 5 min each). In 

both cases, images were collected using an inverted fluorescence microscope (Axiovert 25; Carl 

Zeiss Meditech, Germany).  
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3.3 Results 

3.3.1 Depletion of endogenous NPM using small interfering RNA (siRNA) transfection 

increased caspase activation and apoptosis 

To investigate how the translocated NPM mediates its anti-apoptotic effect, we first 

examined the effect of depletion of endogenous NPM on the caspase-activation cascade in intact 

cells. Using siRNA to knock down NPM protein levels in MN9D cells, we showed that 

cytoplasmic NPM protein levels were efficiently and specifically reduced in the presence of a 

NPM-specific double-stranded RNA (dsRNA) oligomer (Figure 3.2). As a control, we used an 

siRNA containing the inverted sequence. Using western blot analysis, an increase in the amount 

of cleaved fragments was observed for caspase-6, -7, -8 and -9, as well as cleaved Bid, with 

depletion of endogenous NPM. Caspase-3 is not activated in intact MN9D cells treated with 

MPP+ as demonstrated previously in our laboratory (Chee et al., 2005), so western blot analysis 

for caspase-3 was not performed in this case. Depletion of the endogenous NPM also resulted in 

more cytochrome c release, as well as an increase in the amount of cleaved PARP, which 

indicate elevated cell death with NPM siRNA treatment. This is consistent with previous 

observations that depletion of NPM with small interfering RNA increases apoptosis induced by 

different agents in various other cell types, though none looks into the status of caspase 

activation with NPM depletion (Li et al., 2004; Maiguel et al., 2004; Li et al., 2005). Our results 

here thus indicate that depletion of NPM increases the activation of various caspases involved in 

both the intrinsic and extrinsic death pathways. 
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3.3.2 Over-expression of GFP-tagged NPM decreased caspase activation and apoptosis 

Since depletion of endogenous NPM could enhance caspase activation and apoptosis, we 

went on to test the reverse, i.e. if over-expression of NPM could instead suppress the activation 

of the same caspases and inhibit apoptosis in HeLa cells exposed to UV-irradiation. As shown in 

Figure 3.3, transfection of the pcDNA3.1-GFP-NPM plasmid resulted in appearance of a band of 

approximately 55-60 kDa that corresponded to the molecular weight of GFP-tagged NPM, while 

transfection of the empty vector pcDNA3.1-GFP resulted in no such band in the control 

experiment. Over-expression of GFP-tagged NPM coincided with an increase in the amount of 

pro-caspase and partially cleaved caspase for caspase-3, -6, -7, -8 and -9. For caspase-7, -8 and -

9, we were able to further demonstrate a concomitant decrease in the amount of cleaved caspases 

as well with GFP-NPM over-expression. Decreases in the amount of cleaved Bid, cleaved PARP, 

and cytoplasmic cytochrome c were also observed. Our results here thus indicate the silencing of 

the caspase signalling pathway with NPM over-expression, which in turn led to the attenuation 

of the death response. These observations are in agreement with the findings in Section 3.3.1 - 

that NPM appears to negatively regulate caspase activation and the apoptotic response. 

 

3.3.3 Recombinant NPM retarded cytochrome c-induced caspase activation in S100 cytosolic 

fraction 

Studies using cell-free systems have shown that cytochrome c, in association with dATP, 

is capable of initiating apoptosis-like changes in cytosols derived from a variety of cell types (Liu 

et al., 1996; Kluck et al., 1997a,b; Deveraux et al., 1998; Pan et al., 1998a). The apoptosis-

promoting activity of cytochrome c is due to its ability to interact with Apaf-1 (Zou et al., 1997) 
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and binding of cytochrome c to Apaf-1 enables this protein to recruit caspase-9 and to stimulate 

processing of the inactive caspase-9 zymogen to its active form (Li et al., 1997; Srinivasula et 

al., 1998). Once active, caspase-9 then presumably triggers a cascade of caspase activation 

events leading to apoptosis. The sequence of the protease cascade in a cytochrome c induced cell-

free system was reported to be in the order: caspase-9, -3/-7, -6 and –8 (Slee et al., 1999).  

Caspase-8 “back-cleaves” caspase-3 and -7 as well (Hirata et al., 1998), forming a positive 

feedback loop downstream of caspase-9. Here, the HEK 293–derived cell free system was used 

to investigate the effect of recombinant NPM on cytochrome c induced caspase activation 

cascade in an in vitro system.  Addition of cytochrome c and dATP to a final concentration of 

300 nM and 900nM respectively resulted in cleaving of caspase-3, -6, -7, -8, and -9 as 

demonstrated by a marked decrease in the amount of procaspase (compare Lane 1 and Lane 3 in 

Figure 3.4). Meanwhile, the addition of recombinant polyhistidine-tagged NPM (5 µM) to the 

cytochrome c induced HEK293 cytosolic extract inhibited the activation of caspase-3, -6, -7 and 

-8, but not that of caspase-9 (Compare Lane 4 and 5 to Lane 3 of Figure 3.4). The inhibitory 

effect of NPM appeared not to have an energy requirement, as addition of exogenous dATP led 

to instead a slight decrease in the procaspase amount for caspase-6, -7 and -8. The latter can be 

explained by the fact that formation of the apoptosome requires dATP, and thus presence of 

more dATP will result in more caspase activation, which may counteract the inhibitory effect of 

the recombinant NPM. In the absence of cytochrome c, neither NPM nor dATP had no effect on 

caspase activation (Lane 6, Figure 3.4). The results described herein suggest a role for NPM in 

inhibiting the caspase amplification loop downstream of caspase-9.  
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3.3.4. Immunodepletion of NPM increased caspase activation in apoptotic-stimulated S100 

cytosolic fraction 

To further ascertain that NPM is indeed inhibiting the caspase activation cascade, another 

in vitro system was set up using an apoptotic-induced cell free system derived from three 

different cell lines. The cells were first subjected to various apoptotic stimulation for only two 

hours in order to initiate low level of caspase activation. Mouse-derived neuronal MN9D cells 

were exposed to the neurotoxin MPP+, human-derived neuronal SHSY5Y cells with the 

neurotoxin rotenone and human kidney-derived HEK 293 cells with the topoisomerase-II 

inhibitor etoposide, before extracting the S100 cytosolic fraction from the treated cells. Depletion 

of NPM was then performed using anti-NPM monoclonal antibody, and mock depletions using 

control monoclonal antibody. The immunodepleted fractions were then incubated at 37°C for six 

hours to allow full-fledge caspase activation in the presence or absence of the endogenous NPM. 

NPM depletion results in greater activation of caspase-3, -6, -7 and -8, as demonstrated by a 

marked increase in the amount of cleaved fragments for these caspases (Figure 3.5). On the other 

hand, caspase-9 showed similar extent of activation with or without NPM depletion.  The results 

obtained here further confirm the involvement of NPM in inhibiting the caspase activation loop 

downstream of caspase-9 activation and this may represent a general mechanism used in 

retarding caspase-mediated death signalling in various cell types and across different species.   

 

 

 

104 



Chapter III  NPM inhibits caspase cascade 

3.3.5 NPM inhibited the activities of recombinant caspase-6 and -8  

To determine the specific caspase(s) within the activation loop inhibited by NPM, we 

investigated the effect of NPM on the activities of the various recombinant active caspases added 

to HEK 293 cells-derived S100 cytosolic extracts. Here, cleavage of their respective colorimetric 

substrates was monitored at OD 400 nm in the absence or presence of recombinant NPM (5µM). 

Meansurements made in the presence of recombinant NPM were then divided by that made in 

the absence of recombinant NPM. This figures obtained were next converted to percentage, and 

subtracted from 100% to obtain the final figures, which were indicative of the extent of 

inhibition of the caspases’ activities with addition of exogenous NPM. Among the five caspases 

examined, caspase-6 and -8 were the most significantly inhibited (56.1% and 58.6% 

respectively) in the presence of recombinant NPM. The activities of the other caspases were 

either not inhibited (caspase-9) or inhibited only modestly (<10.0% inhibition, caspase-3 and -7) 

(Figure 3.6 A).  

To further ascertain that NPM inhibits the activities of caspase-6 and –8 specifically, we 

evaluated the influence of NPM on the cleavage of the various physiological targets by the five 

caspases examined above. Addition of exogenous NPM reduced the cleaving of lamin and Bid 

by recombinant caspase-6 and -8 respectively added to HEK 293-derived cell free extracts. As 

observed in Figure 3.6 (B), addition of recombinant NPM resulted in less cleaving of full length 

Bid by caspase-8, as well as presence of less cleaved lamin A fragment. On the other hand, no 

reduced cleaving of PARP (substrate for active caspase-3 and -7) and caspase-3 (substrate for 

active caspase-9) was observed with addition of recombinant NPM.  

105 



Chapter III  NPM inhibits caspase cascade 

Cleaving and activation of the procaspases by upstream active caspases is crucial in 

ensuring rapid and massive death signal amplification. It thus follows that inhibition of any step 

within the caspase activation loop can retard death signal relay significantly, leading to a halt in 

cell death. As both caspase-6 and -8 are important components of the caspase amplification loop, 

experiments were designed to evaluate the influence of NPM on the activation of various 

proenzymes by active caspase-6 and -8. Reaction mixtures were reconstituted using HEK293-

derived cell free extract, and the activation of the procaspases was measured by monitoring 

cleavage of their respective colorimetric substrates. As shown in Figure 3.7 (A), activation of 

caspase-3 by caspase-8 was markedly inhibited by 63.8% in the presence of recombinant NPM. 

Inhibition of procaspases-3 processing by caspase-8 was further confirmed by immunoblot 

against both large and small subunit of caspase-3 (Figure 3.7 B). While addition of recombinant 

caspase-8 resulted in cleavage of procaspases-3 and appearance of the 17 kDa cleaved fragment, 

presence of the exogenous NPM resulted in the ‘disappearance’ of that cleaved fragment. In a 

similar manner, it was shown that activation of procaspases-8 by caspase-6 was inhibited by 

47.1% in the presence of recombinant NPM, and immunoblot against caspase-8 demonstrated the 

‘disappearance’ of the p44/47 intermediate cleaved band with addition of the exogenous NPM.  

Surprisingly, cleaving of procaspases-3 by caspase-6 was not affected by the addition of 

recombinant NPM, as shown by both the colorimetric assay and immunoblotting.  

Taken together, the data indicated that NPM acts to retard the caspase amplification loop 

by inhibiting procaspases-3 and -8 processing by active caspase-8 and -6 respectively. NPM also 

inhibits the cleaving of various cellular targets by both caspases, which may further contribute to 

blockage of cell death. Hence, among the five caspases examined and known to be involved in 
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the two death signalling pathways, caspase-6 and -8 were identified to be the inhibitory target of 

NPM. 

 

3.3.6 Activation of caspase-6 and -8 coincided with stress-induced cytoplasmic translocation of 

NPM  

In Chapter two, we demonstrated cytoplasmic translocation of NPM as a general 

phenomenon in response to stress. We further showed in this chapter that NPM inhibits the 

activities of caspase-6 and -8. It will thus be interesting to determine if cytoplasmic NPM 

translocation coincides with caspase-6 and -8 activation. Here, HeLa cells were exposed to the 

transcriptional inhibitor actinomycin D for four hours, and the cells were subsequently fixed and 

decorated with antibodies against NPM and active caspase-6. For visualisation of active caspase-

8, we used VEID-FLICA, which is a fluorochrome-labelled inhibitor of caspase that allows for in 

situ detection of caspase activities in the cell. The four hours time point was chosen since the 

cytoplasmic NPM level was shown to peak by the fourth hour after MPP+ exposure in the MN9D 

cells (See Section 2.3.2). As expected, nucleoplasmic dispersal of NPM was observed for all 

treated HeLa cells, indicating the occurrence of nucleoli disruption. A subset of cells also 

showed green fluorescence, indicating the presence of activated caspases. As shown in Figure 

3.8, active caspase-6 is localised mainly and uniformly in the nucleus while active caspase-8 is 

localised in both the cytoplasm and nucleus. However, we observed that in general, cells with 

prominent cytoplasmic NPM localisation showed little or no green fluorescence, indicating the 

absence of caspase-6 and -8 activation in these cells. This observation lends support to the 
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hypothesis that cytoplasmic NPM plays a protective role during stress by suppressing or delaying 

caspase activation until necessary.  
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Figure 3.2. Depletion of endogenous NPM leads to enhanced activation of the various caspases 
and intensified apoptotic signal progression in MPP+-treated MN9D cells. MN9D cells were 
treated with NPM-specific or non-specific siRNA as described in Materials and Methods, Section 
3.2.5. 48 hours after siRNA treatment, the cells were exposed to 500 µM of MPP+ for 12 hours. 
Harvested cells were subjected to subcellular fraction as described in Materials and Methods, 
Section 2.2.5. Collected cytoplasmic fractions were next subjected to SDS-PAGE and immunoblot 
analysis using anti-NPM, anti-caspase-6, anti-caspase-7, anti-caspase-8, anti-caspase-9, anti-Bid, 
anti-cytochrome c, anti-cleaved PARP or anti-actin antibody, as indicated to the left of each panel. 
20 µg of the cytoplasmic extract (80 µg for caspase-8 immunoblotting) was electrophoresed for 
immunoblotting. White triangle indicates procaspase, and black arrow indicates cleaved caspase 
fragment.  
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Figure 3.3. Overexpression of NPM leads to reduced activation of the various caspases, as 
well as attenuated apoptotic signal progression in UV-irradiated HeLa cells. HeLa cells were 
transfected with 30 µg (in a 10-cm diameter tissue culture plate) of GFP or GFP-NPM 
overexpressing plasmid as described in Materials and Methods, Section 3.2.4. 24 hours after 
transfection, the cells were irradiated with UV-C (40 W) for four hours. Harvested cells were 
subjected to subcellular fraction as described in Materials and Methods, Section 2.2.5. Collected 
cytoplasmic fractions were next subjected to SDS-PAGE and immunoblot analysis using anti-NPM, 
anti-caspase-6, anti-caspase-7, anti-caspase-8, anti-caspase-9, anti-Bid, anti-cytochrome c, anti-
cleaved PARP or anti-actin antibody, as indicated to the left of each panel. 20 µg of the cytoplasmic 
extract (80 µg for caspase-8 immunoblotting) was electrophoresed for immunoblotting. White 
triangle indicates procaspase, black triangle indicates intermediate cleaved fragment, and black 
arrow indicates cleaved caspase fragment.  
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Figure 3.4. Inhibition of cytochrome c-induced caspase activation by recombinant NPM in 
vitro.  S100 cytosolic fractions extracted from HEK 293 cells were incubated with cytochrome c 
(300 nM), in the presence or absence of dATP (900 nM) and recombinant His-tagged NPM (5 µM), 
for three hours at 37˚C. The various extracts were next subjected to SDS-PAGE and immunoblot 
analysis using anti-NPM, anti-caspase-6, anti-caspase-7, anti-caspase-8 or anti-caspase-9 antibody, 
as indicated to the left of each panel. White broad arrow indicates higher molecular weight His-
tagged recombinant NPM, grey broad arrow indicates endogenous NPM, white triangle indicates 
procaspase, black triangle indicates intermediate cleaved fragment, and black arrow indicates 
cleaved caspase fragment. Cyc c: Cytochrome c, rNPM: recombinant NPM. 
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Figure 3.5. Acceleration of caspase activation with immunodepletion of endogenous NPM in 
vitro. HEK 293 cells were subjected to slight apoptotic induction by treatment with 5 µM of the 
potent neurotoxin rotenone for one hour before extraction of S100 cytosolic fractions. The extracts 
were then subjected to immunodepletion as described in Material and Methods, Section 3.2.9, using 
4µg of anti-NPM or anti-HA antibodies Immunodepleted extracts were then incubated for five 
hours at 37˚C. The various extracts were next subjected to SDS-PAGE and immunoblot analysis 
using anti-NPM, anti-caspase-6, anti-caspase-7, anti-caspase-8 or anti-caspase-9 antibody, as 
indicated to the left of each panel. Black triangle indicates intermediate cleaved fragment, and black 
arrow indicates cleaved caspase fragment.  
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Figure 3.6. NPM inhibits the activities of caspase-6 and -8, but not caspase-3, -7 or -9.  S100 
cytosolic fractions extracted from HEK 293 cells were incubated with one unit of the various indicated 
recombinant active caspases (32 units for recombinant active caspase-8) in the absence or presence of 5 
µM of recombinant His-tagged NPM for one hour at 30˚C. (A) Caspase activities were measured 
colorimetrically using DEVD-pNA (for caspase-3 and -7), VEID-pNA (for caspase-6), (IETD-pNA (for 
caspase-8) or LEHD-pNA (for caspase-9). Endogenous caspase activities were also measured using 
control extracts without addition of recombinant caspase, and the measurements subtracted from 
readings obtained for extracts with recombinant caspase addition, before further tabulations. Data are 
expressed as per cent inhibition, based on the average ratio of velocities (vi/v0) of three independent 
experiments (mean + s.e.) performed in the presence (vi) or absence (v0) of recombinant NPM. (B) 
Alternatively, after incubation, the various extracts were next subjected to SDS-PAGE and immunoblot 
analysis using anti-NPM, anti-Bid (for recombinant caspase-8 addition), anti-lamin A (for recombinant 
caspase-6 addition), anti-PARP (for recombinant caspase-3 or -7 addition) or anti-caspase-3 (for 
recombinant caspase-9 addition) antibody, as indicated to the left of each panel. White broad arrow 
indicates higher molecular weight His-tagged recombinant NPM, grey broad arrow indicates 
endogenous NPM, and black arrows indicate cleaved caspase. 
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Figure 3.7. NPM inhibits the cleaving of procaspases by recombinant active caspase-6 and -8.
S100 cytosolic fractions extracted from HEK 293 cells were incubated with one unit of 
recombinant active caspase-6 or 32 units of recombinant active caspase-8 in the absence or 
presence of 5 µM of recombinant His-tagged NPM for one hour at 30˚C. (A) Caspase activities 
were measured colorimetrically using IETD-pNA (with addition of recombinant caspase-6) or 
DEVD-pNA (with addition of recombinant caspase-6 or -8). Endogenous caspase activities were 
also measured using control extracts without addition of recombinant caspase, and the 
measurements subtracted from readings obtained for extracts with recombinant caspase addition, 
before further tabulations. Data are expressed as per cent inhibition, based on the average ratio of 
velocities (vi/v0) of three independent experiments (mean + s.e.) performed in the presence (vi) or 
absence (v0) of recombinant NPM. (B) Alternatively, after incubation, the various extracts were 
next subjected to SDS-PAGE and immunoblot analysis using anti-NPM, anti-caspase-3 (for 
recombinant caspase-6 or -8 addition), or anti-caspase-8 (for recombinant caspase-6 addition) 
antibody, as indicated to the left of each panel. White broad arrow indicates higher molecular 
weight His-tagged recombinant NPM, grey broad arrow indicates endogenous NPM, white triangle 
indicates procaspase, black triangle indicates intermediate cleaved fragment, and black arrow 
indicates cleaved caspase fragment.  
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M
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Figure 3.8. Activation of caspase-6 and -8 coincided with stress-induced cytoplasmic 
translocation of NPM. HeLa cells were exposed to with 0.40 µM of actinomycin D for four 
hours, after which the cells were fixed by treatment with 3% (wt/vol) paraformaldehyde for 30 
min at RT and stained for NPM, active caspase-6 (A-B) or active caspase-8 (C-D) as described in 
Materials and Methods, Section 3.2.11. Localisation of NPM, active caspase-6 and -8 were 
observed by fluorescence microscopy using a Zeiss Axiophot (Germany) White arrow indicates a 
cell with prominent nucleoplasmic and cytoplasmic NPM localisation with MPP+ treatment; 
white triangle indicates with only nuclear NPM localisation and caspase activation. 
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3.4 Discussion 

Multicellular organisms have evolved a number of molecular mechanisms for responding 

to cellular damage and environmental stress. Included among these is the induction of a 

subfamily of heat shock proteins designated as chaperonins (Beissinger & Buchner, 1998; Bukau 

& Horwich, 1998), which are capable of inhibiting the caspase signalling pathway at multiple 

points. Among the various hsps, Hsp27 and αB-crystallin are known to inhibit caspase-3 

maturation through direct physical interaction with caspase-3, with the mechanism underlying 

such inhibition being similar to that effected by the IAPs. In this study, we have identified 

another molecular chaperone, NPM, as a caspase inhibitor. However, unlike the IAPs and Hsps 

that are collectively known to specifically inhibit caspase-3, -7 and -9, NPM inhibits caspase-6 

and -8 instead. While caspase-3, -7 and –9 are key players in the mitochondrial (intrinsic) 

pathway, caspase-6 and -8 are instead known to be part of the death receptor (extrinsic) pathway 

relaying signals from DISC to downstream effectors. It thus follows that simultaneous induction 

of both the Hsps/IAPs and cytoplasmic NPM during stress conditions can lead to blockage of the 

two death pathways altogether, hence ensuring a complete halt in apoptotic signalling regardless 

of the source of the death stimuli.  In this context, we noted in Chapter two that a one-hour 42°C 

heat shock resulted in increase amount of cytoplasmic Hsp70 and NPM (Figure 2.2 D). Hsp70 is 

known to interact with Apaf-1 and prevent the recruitment of pro-caspase-9 into the apoptosome 

through Apaf-1 (Saleh et al., 2000). Its cytoplasmic up-regulation with heat shock may thus help 

suppress unwanted caspase activation via the mitochondria pathway. This in turn complements 

the protective action of cytoplasmic NPM, which shuts down the death receptor pathway through 

inhibition of heat-stress induced caspases-8 activation.  
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Caspase-8 is a key mediator of apoptotic signals triggered by death receptors such as Fas 

/CD95, TNF-R1, and TRAIL-R1/TRAIL-R2. In the case of the TRAIL receptors and Fas/CD95, 

caspase-8 is directly recruited into the DISC by the adapter protein FADD (Schulze-Osthoff et al., 

1998; Peter & Krammer, 2003). Once formed, the DISC promotes the proximity-induced 

activation of caspase-8, which then proceeds to be further processed via an auto-proteolysis 

mechanism.(Salvesen & Dixit, 1999; Yang et al., 1998). Active caspase-8 then activates effector 

caspases, such as caspase-3, leading to cell execution via degradation of the nucleus and other 

intracellular structures (Scaffidi et al., 1998). This direct activation of caspase-dependent cell 

execution, which does not require mitochondria, is believed to occur in select cell types, 

including thymoctyes, that are classified as Type I cells (Scaffidi et al., 1998; Ozoren & El-deiry, 

2002). This death pathway of Type I cells plays an important role in the immune response that is 

involved in the deletion of transformed cells (Hickman et al., 2002). As such, regulation of 

caspase-8 mediated death receptor pathway through NPM may be of utmost importance in 

maintenance of an optimal immune response and for homeostatic regulation of the Type I cells. 

In acute myelogenous leukaemia (AML) with a normal karyotype, a C-terminal frame-shift 

mutation of the NPM gene results in cytoplasmic dislocation of NPM (Falini et al., 2005), which 

may possibly function in cancer pathogenesis through caspase-8 inhibition at the death receptor. 

It was shown previously that Fas has a novel role in the regulation of myelopoiesis and that Fas 

may act as a tumor suppressor to control leukaemogenic transformation in myeloid progenitor 

cells (Traver et al., 1998). Over-inhibition of caspase-8, which functions downstream of Fas, by 

the cytoplasmic-dislocated NPM ,may hence lead to neoplastic transformation of myeloid 

progenitor cells in the case of AML, as we shall further examine in Chapter V.  
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Various studies have proposed that caspase-8 is not only activated in the death receptor 

pathway, but can also be activated independently of death receptors, for instance during 

genotoxic stress-induced apoptosis (Ferarri et al., 1998; Wesselborg et al., 1999; Engels, et al., 

2000; Cowling & Downward, 2002; Milner et al., 2002) or by direct cleavage through other 

proteases including the CTL protease granzyme B and human immunodeficiency virus type 1 

protease (Fernandes-Alnemri et al., 1996; Nie et al., 2002). During stress-induced apoptosis 

triggered by anti-cancer drugs or ionizing irradiation, it was proposed that caspase-8 activation is 

mediated in a post-mitochondrial event by the prior cleavage through caspase-6 (Cowling  & 

Downward, 2002). In all these studies, the activated caspase-8 was proposed to trigger a feedback 

amplification loop through the cleavage of Bid (Engels et al., 2000; Tang et al., 2000) to produce 

tBid, which then translocates into the mitochondria to facilitate the release of cytochrome c.  The 

direct target of caspase-8, caspase-3, has also been shown to be able to cleave Bid as well after 

activation (Slee et al., 2000). Inhibition of caspase-8 by NPM should therefore enable silencing 

of apoptotic signalling not involving death receptors. Two lines of evidence presented in this 

chapter supported this notion. Firstly, depletion of endogenous NPM using siRNA in the MPP+-

treated MN9D cells resulted in increase activation of multiple caspases. Increases in the amount 

of cytochrome c release and Bid cleaving were observed at the same time (Figure 3.2). Secondly, 

over-expression of GFP-tagged NPM in UV-exposed HeLA cells led to the reverse situation, i.e. 

markedly reduced activation of caspase-3, -6, -7, -8 and -9. Significant decreases in the amount 

of cleaved Bid and cytochrome c observed herein indicated silencing of the caspase-8-activated 

mitochondrial-signalling branch (Figure 3.3). Cleavage of Bid during UV radiation-induced 

apoptosis was already shown to occur downstream of the point of Bcl-2 action (Slee et al., 

2000). Likewise, MPTP (MPP+ precursor)-mediated caspase-8 activation and Bid cleavage were 
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demonstrated to occur downstream of caspase-9 activation via cytochrome c release (Viswanath 

et al., 2001). In both cases, NPM was shown to be effective here in inhibition of caspase-8-

mediated feedback loop for the amplification of mitochondrial cytochrome c release.  

Further characterisation of NPM’s caspase inhibition function in the context of an in vitro 

system revealed NPM’s possible involvement in regulating the progression of the downstream 

caspase amplification loop. Addition of recombinant NPM was shown to readily halt the 

cytochrome c induced caspase activation cascade involving caspase-3, -6, -7 and -8 (Figure 3.4), 

while removal of endogenous NPM with immnodepletion enhanced the activation of the same 

caspases markedly (Figure 3.5).  Following initial caspase activation at the death receptors or 

mitochondria, the small amount of activated caspases is usually shunted into the caspase 

amplification loop for rapid signal amplification. It was previously demonstrated that caspase-8 

cleaves pro-caspase-3 (Stennicke et al., 1998), caspase-3 activates procaspase-6 (Hirata et al., 

1998) and that caspase-6 cleaves procaspase-8 (Cowling & Downward, 2002). The caspase 

amplification loop is made up of these caspases cleaving one another in that sequential order, 

thereby leading to an escalation of caspase activities enabling a swift death response. In this 

context, we noted that recombinant NPM inhibited the cleaving of procaspases-8 and -3 by 

active caspase-6 or -8 respectively (Figure 3.7). Thus, by strategically inhibiting the activities of 

caspase-6 and -8 within the amplification cascade, NPM can effectively quench the activation of 

all caspases involved in the activation loop, regardless of the source of the death stimulus.  

An obvious consequence of caspase activation is the cleaving of a plethora of proteins 

known as the ‘death substrates’. Many caspase substrates are just cleaved as bystanders, because 

they happen to contain a caspase cleavage site in their sequence. Several targets, however, have a 
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discrete function in propagation of the cell death process. Many regulatory proteins are 

inactivated by caspases, while other substrates can be activated. Caspase substrates can also 

regulate the key morphological changes in apoptosis (Fischer et al., 2003). For example, 

caspase-6 activity is shown to be essential for lamin A cleavage and that when lamin A is present 

it must be cleaved in order for the chromosomal DNA to undergo complete condensation during 

apoptotic execution (Ruchaud et al., 2002). Also, as mentioned before, cleaving of Bid by 

caspase-8 is required before it can translocate to the mitochondria to promote insertion of BAX 

into mitochondria for cytochrome c release to occur (Luo et al., 1998). Preventing the cleavage 

of these ‘death substrates’ can thus halt or delay apoptotic progression. Our data here showed 

that recombinant NPM can specifically inhibit the cleaving of lamin A and Bid by recombinant 

active caspase-6 and -8 respectively (Figure 3.6 B), which is consistent with current and previous 

observations that NPM over-expression can inhibit apoptosis. Apart from inhibiting caspase-8 

maturation at the death receptors and halting progression of the caspase activation loop, 

inhibition of ‘death substrate’ cleavage by caspase-6 and -8 affords an additional layer of 

protection against cell death during stressful conditions.  

All in all, despite significant cross-talk and ‘biofeedback’ between the ‘extrinsic’ and 

‘intrinsic’ death signalling pathways, caspase-8 remains an integral component in various 

apoptotic signalling settings. NPM’s inhibition of caspase-8 during stress conditions thus 

represents a parsimonious strategy in attaining effective silencing of the intricate death-signalling 

network, as illustrated in Figure 3.9.  

To date, no known natural inhibitor of caspase-6 is ever reported. Meanwhile, the only 

caspase-8 inhibitor known is the cellular FLICE-inhibitory protein (c-FLIP). Both NPM and c-

120 



Chapter III  NPM inhibits caspase cascade 

FLIP have been separately reported to be over-expressed in various tumour types (Dolcet et al.,  

2005; Zhou et al., 2004; Jonsson et al., 2003). c-FLIP has high sequence homology to caspase-8, 

and is structurally similar to the latter as well, since it contains two death effector domains and a 

caspase-like domain. However, this domain lacks residues that are important for its catalytic 

activity, most notably the cysteine within the active site (Irmler et al., 1997). It is hence 

hypothesised that c-FLIP inhibits caspase-8 processing at the death receptor complex by direct 

binding to both caspase-8 and the adaptor FADD. Meanwhile, NPM shows no significant protein 

sequence homology to caspase-8. The mechanism of inhibition of caspase-8 by NPM may thus 

be different from that effected by c-FLIP, and possibly novel. A discernible difference between 

NPM and c-FLIP in terms of their mode of inhibition is that the former inhibits the activities of 

caspase-8, while the latter merely prevents the recruitment of caspase-8 and FADD for 

proximity-induced cleavage of caspase-8. As such, the inhibitory effect of NPM on the caspase 

signalling network is much more widespread as compared to c-FLIP, whose action is hitherto 

only reported to be limited to the death receptor complex.  

 We have seen in Chapter two the phenomenon of stress-induced NPM cytoplasmic 

translocation mediated by Crm-1, and speculated on a protective function for the translocated 

NPM. Here, based on both in vivo and in vitro results gathered so far, we are finally able to 

ascribe a definitive anti-apoptotic function to NPM based on its inhibitory effect on caspase-6 

and -8.  Taken together, it will not be unreasonable to assume that the major consequence of 

NPM’ translocation into the cytoplasm during stress is the inhibition of caspase-8 activation by 

DISC and/or the mitochondria pathway, both of which are not known to be localised in the 

nucleus. Nevertheless, the notion that NPM may further inhibit caspase-6 and -8 activation in the 
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nuclear milieu cannot be discounted based on a few observations. Firstly, as observed in Figure 

3.8, significant amount of activated caspase-6 and -8 was observed to be localised in the nucleus. 

In fact, activated caspase-6 seemed almost exclusively nuclear-bound, which is consistent with 

the fact that it cleaves lamin A that is critical to maintaining the integrity of the nuclear envelope 

(Takahashi et al., 1996). Some of caspase-8’s substrates are also known to be localised in the 

nucleus, such as PARP-2 (Benchoua et al., 2002). Secondly, many lines of evidence point to the 

possibility that caspase-6 and -8 activation can occur in the nucleus as well. For example, FADD, 

which predominantly associates with death receptors and was long believed to be a cytoplasmic 

protein, was recently shown to also reside in the nucleus (Gomez-Angelats & Cidlowski, 2003; 

Screaton et al., 2003; Sheikh & Huang, 2003). This suggests that FADD-mediated caspase-8 

activation also occurs in the nucleus. Meanwhile, nuclear localisation of the DEDD protein, 

which shares sequence homology in its death effector domain (DED) to FADD and caspase-8, 

was shown to lead to caspase-6 activation in the nucleus (Schickling et al., 2001). Given these 

observations, we may be able to extrapolate NPM’s caspase inhibitory role into the nucleus, 

especially since it is more highly abundant there relative to the cytoplasm during stressful 

conditions. 

 Based on the results gathered so far, we hypothesise that the release of NPM from the 

nucleoli may constitute a stress-induced protective mechanism inhibiting aberrant activation of 

caspase-6 and -8 in the cytoplasm and/or nucleus, which may otherwise result in dire 

consequences especially if the activated caspases enter the amplification loop. While we are able 

to prove that NPM can inhibit the activities of caspase-6 and -8 using in vitro and in vivo assays, 

we have yet to prove any physical association between them. The demonstration of actual 
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physical interactions between NPM and the caspases will go further in lending stronger support 

to the caspases inhibitory function proposed herein, as we shall see in the next chapter. 
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Figure 3.9.   Illustrations of the inhibitory effect of NPM on the two death pathways. (A) In death-
receptor-mediated death signalling, binding of the death ligands to the death receptors on the plasma 
membrane triggers activation of caspase-8, which in turns cleaves downstream targets such as 
procaspase-3 and Bid. During the early stages of stress response, NPM translocates into the cytoplasm 
and inhibits the activities of caspase-8 and -6, which are required for apoptotic signal relay from the 
death receptors all the way to death substrates cleaving. Cytoplasmic NPM not only prevents proximity-
induced activation of caspase-8 at the death receptors by DISC, but also inhibited the cleaving of Bid by 
activated caspase-8. Without the truncated Bid to trigger cytochrome c release from the mitochondria, the 
mitochondrial pathway is effectively blocked. Cytoplasmic NPM also prevents already activated caspase-
6 and -8 from cleaving procaspase-8 and procaspase-3 respectively, and through this averts full-fledged 
activation of the caspase amplification loop involving all these caspases. Lastly, cytoplasmic NPM also 
inhibits the cleavage of the death substrate lamin A by active caspase-6, hence maintaining the integrity 
of the nuclear envelop and prevents nuclear condensation from setting in.(B) Meanwhile, in mitochondria
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(Continued from previous page) -mediated death signalling pathway, cellular and/or DNA damage 
triggers the release of cytochrome c from the mitochondria. The cytosolic presence of cytochrome c will 
result in the formation of the apoptosome, consisting of Apaf-1, procaspase-9 and cytochrome c itself. In 
the presence of ATP, the apoptosome activates caspase-9, which in turn cleaves procaspase-3. Activated 
cvaspase-3 then participates in the caspase amplification loop, leading to the subsequent activation of 
caspase-6 and -8 as well. In this case, cytoplasmic NPM prevents activated caspase-6 and -8 from 
cleaving other procaspase, hence halting the progression of the caspase amplification loop. It also inhibits 
activated caspase-8 from cleaving Bid, hence preventing caspase-8 from triggering a feedback 
amplification loop leading to more cytochrome c release. As in the case of the death receptor pathway, 
cytoplasmic NPM also inhibits cleaving of lamin A by activated caspase-6. In both cases (A & B), 
cytoplasmic NPM not only inhibits proximal events occurring just downstream of apoptotic stimulation, 
but also halts distal events as well. 
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4.1 Introduction 

Protein-protein interactions are essential for the cellular function of virtually every 

protein. Protein interactions are crucial for the formation of structural complexes, intracellular 

signalling, cell-cell communication and practically every other aspect of cellular function. The 

‘guilt-by-association’ concept has been used for elucidating functional roles from pairs of 

interacting proteins (Lo et al., 2005). Here, identification of its partner of known function will be 

instrumental in uncovering the possible function of a protein of hitherto unknown function. 

Knowledge of protein-protein interactions is also useful for probing biological pathways and 

regulation of signalling, metabolic, gene expression and replication processes. Meanwhile, 

alteration of protein-protein interactions is known to contribute to many diseases. Hence, the 

manipulation of protein-protein interactions that contribute to disease is a potential therapeutic 

strategy. 

 Protein interactions are central to the functioning of the caspase-signalling cascade. A 

striking example is the formation of the Death-Inducing Signalling Complex (DISC) at the Fas 

receptor. Only a few seconds after receptor triggering, a highly complex mixture of signal 

transducing molecules consisting of the death receptors, adaptor proteins, caspase-8 and caspase-

10 are recruited to the intracellular part of the receptor via interactions between homologous 

death domains (DD) or death effector domains (DED) (reviewed by Curtin & Cotter, 2003). This 

newly formed complex is capable of transmitting multiple specific signals, provoking a highly 

regulated cellular response. Another example is the formation of the large signalling complex, 

the apoptosome, in response to apoptotic signalling from the mitochondria. Cytochrome-c 

released from the mitochondria interacts and activates Apaf-1, which subsequently oligomerises 
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to form an approximately 700-1400-kDa caspase-activating complex known as the Apaf-1 

apoptosome. The initiator caspase-9 is next recruited to the complex by binding to Apaf-1 

through CARD-CARD (caspase recruitment domain) interactions to form a holoenzyme complex 

(Li et al., 1997; Srinivasula et al., 1998). The holoenzyme complex then recruits the effector 

caspase-3 through an interaction between the active site cysteine in caspase-9 and the critical 

aspartate, which is the cleavage site for generating the large and small subunits of caspase-3 (Li 

et al., 1997). The formation of the mega-apoptotic complex through multiple protein-interactions 

thus initiates the caspase cascade responsible for the execution phase of apoptosis, and marks the 

cell’s irrevocable commitment to its own demise.  

 Apart from the evident structural requirements provided by a plethora of protein-protein 

interactions, there are a large number of transient protein-protein interactions providing tight 

regulations of the apoptosis progression.  Some IAPs use specific BIRs (baculovirus IAP repeats) 

domains to inhibit particular caspases. XIAP, for example, binds the downstream effector 

proteases caspase-3 and caspase-7 through its BIR2 domain (requiring both BIR2 and portions of 

a flanking segment of the protein located between BIR1 and BIR2) (Takahashi et al., 1998), 

whereas it binds the upstream initiator protease, caspase-9 through its BIR3 domain (Shiozaki et 

al., 2003). The RINGs domain of cIAPs are implicated in interactions with the cellular 

components of the ubiquitination machinery (Yang & Li,., 2000), thus controlling turnover of 

these RING-containing proteins and of other proteins with which they associate. Meanwhile, the 

cell death–inducing activity of most BH3 domain proteins depends on their ability to dimerise 

with antiapoptotic Bcl-2 family members and thus to function as trans-dominant inhibitors of 

proteins such as Bcl-2 and Bcl-XL (reviewed in Kelekar & Thompson, 1998). Alternatively, 

certain BH3-only proteins, in particular Bid and Bim, can either bind proapoptotic multidomain 
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proteins (such as Bax or Bak) and function as apoptosis agonists, or dimerise with antiapoptotic 

family members (such as Bcl-2 or Bcl-XL) and function as apoptosis antagonists (Wang et al., 

1996; Desagher et al., 1999).  

 In Chapter III, it was shown that NPM inhibits the caspase amplification cascade, both in 

vivo and in vitro, via direct inhibition of both caspase-6 and caspase-8. Here, we attempt to 

elucidate the mechanism underlying such specific inhibitions by determining whether NPM 

interacts with caspase-6 and -8 physically. Presence of an interaction will strongly implicate 

NPM in the direct regulation of the caspase-signalling cascade using the “guilt-by-association” 

principle. 
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4.2 Materials and methods 

 
4.2.1 Immunoprecipitation 
 

 MN9D and HeLa cells were treated with 500µM MPP+ for 12 hours or exposed to UV 

for 8 hours. The cells were then lysed using a mild lysis buffer (150mM NaCl, 50mM Tris, 1% 

TritonX-100). Co-immunoprecipitation was performed using the SeizeTM Primary 

Immunoprecipitation Kit (Pierce, USA) according to the manufacturer’s instructions. Briefly, the 

cell lysates were incubated with AminoLink®
 Plus Coupling gel previously coupled to the 

primary antibodies (anti-NPM Zymed, USA; anti-caspase-6, Santa Cruz, USA; anti-caspase-8 , 

Santa Cruz, USA and anti-HA, Santa Cruz, USA) overnight at 4˚C. The mixture in the columns 

were then washed using the IP Buffer three times and the columns were centrifuged at 12,000 x g 

for 1 minute to remove the spent buffer between each wash. The bound antigens were eluted 

using the Elution Buffer and the eluted fractions were concentrated using Ultrafree-MC 

centrifugal filter unit Biomax-5 (Millipore, USA) before being analysed by immunoblotting. 

 

4.2.2 Electrophoresis and Western Blot analysis 

  Please refer to section 3.2.5 for details. The following antibodies were used in this 

chapter: with anti-NPM (Zymed, USA, 1:10000), -caspase-3 (Cell Signalling Technology, USA, 

1:1000), -caspase-6 (Cell Signalling Technology, USA, 1:2000), -caspase-7 (Neomarkers, USA, 

1:600), -caspase-8 (Cell Signalling Technology, USA, 1:1000) and -caspase-9 (Becton 

Dickinson, USA, 1:1000), followed by incubation with HRP-conjugated secondary antibodies 

(Santa Cruz, USA), goat-anti-mouse or anti-rabbit (1:1000). 
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4.2.3 Preparation of S100 cytosolic Cell-free Extracts  

Please see Section 3.2.6 for details. 1 µl of recombinant caspase-6 of concentration 1 

unit/µl or 36 unit of concentration 36 unit/µl (both from Biovision, USA) was added to the cell-

free extract for IP or in vitro assay of the inhibitory effect of NPM. Production of recombinant 

NPM, added to a final concentration of 5 µM, was described in Section 3.2.2. 
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4.3 Results 

 

4.3.1 NPM co-precipitates cleaved caspase-6 and -8 in MPP+ treated MN9D cell 

 To investigate the possibility of an interaction between NPM and caspase-6 /-8, co-

immunoprecipitation (IP) studies were performed. Using extracts from MPP+ treated MN9D cell, 

we showed that antibody against NPM co-precipitated only cleaved caspase-6 and -8 (Figure 

4.1). Meanwhile, antibodies against caspase-6 and -8 precipitated both proform and cleaved 

forms of their target antigens. These are used as positive controls demonstrating that the 

antibodies used for immunoblotting are capable of detecting both the cleaved and proform of the 

caspases. Co-precipitation experiments in the reverse direction were also performed and both 

anti-caspase-6 and anti-caspase-8 antibodies used for IP (which recognize both the pro- and 

cleaved caspases) pulled down NPM.  

 The experiments revealed that that caspase-8 co-precipiated with both proform and 

cleaved form of caspase-6, which is in agreement with previous observations that caspase-6 is a 

direct activator of caspase-8 (Cowling & Downward, 2002). This is in stark contrast to the 

observation that NPM co-precipitated only cleaved caspases, and serves to demonstrate that the 

exclusive interactions of NPM with cleaved caspase-6 and -8 as observed here are bona fide. 

 

4.3.2 NPM co-precipitates both proform and cleaved caspase-6 and -8 in UV-irradiated HeLa 

cells 

 We have previously shown that over-expression of GFP-tagged NPM in UV-irradiated 

HeLa cells halted the progression of the caspases signalling network (Figure 3.1). Here, using the 
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lysates from UV-exposed HeLa, NPM was shown to form a complex with all forms of caspase-6 

and -8 (procaspase, intermediate-cleaved and fully cleaved forms) (Figure 4.2). This is in 

contrast to the results obtained for the MN9D cells, where NPM was demonstrated to interact 

with only the cleaved form of both caspases-6 and -8. We further demonstrated a lack of physical 

interaction between NPM and caspases-3, -7 or -9. Taken together, the results were in agreement 

with our previous findings in Chapter III, which demonstrated that recombinant NPM 

specifically inhibited the activities of caspases-6 and -8, but not that of caspases-3, -7 and -9, 

using the in vitro colorimetric assay (Figure 3.5). 

 

4.3.3 Increased caspases concentration reversed the inhibitory effect of NPM 

 If NPM suppresses general caspase activation by targeting caspases-6 and -8, then 

increasing the concentration of caspases-6 or -8 in extracts should overwhelm the inhibitory 

effect of recombinant NPM. To test this argument, we added increasing units of active caspase-8 

into the S100 cytosolic extracts derived from untreated HEK293 cells, in the presence of 5 µM 

recombinant polyhistidine-tagged NPM. While the presence of the recombinant NPM reduced 

the presence of cleaved caspase-3 markedly, doubling the amount of active caspase-8 (Biovision, 

USA) from 36 to 72 units added to the extracts restored the amount of cleaved caspase-3 to a 

level comparable to that in the absence of recombinant NPM (Figure 4.3). Finally, the addition of 

120 units of active caspase-8, slightly more than three times the minimal amount used, resulted 

in even greater amount of cleavage of caspase-3. We thus conclude here that the inhibitory effect 

of NPM on caspase-8 is reversible with increasing concentration of active caspase-8. 
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4.3.4 NPM forms an inhibitory complex with the active caspases and their substrates 

 Since NPM interacts with cleaved caspase-6 and -8, we tested if such interactions 

sequester the active caspases from their physiological substrates. Using the HEK293-derived cell 

free extract, we previously demonstrated that in the presence of recombinant NPM, recombinant 

active caspase-8 and -6 showed reduced cleaving of their substrate procaspase-3 and –8 

respectively (Figure 3.7). We next used co-immunoprecipitation to determine if recombinant 

NPM addition will result in less active caspase-6 and -8 being co-precipitated with their 

respective substrates. Surprisingly, procaspase-8 was observed to co-precipitate even more active 

caspase-6 in the presence of recombinant NPM. The recombinant NPM was also precipitated 

with procaspase-8 (Fig. 4.4 A). Similar phenomenon was also observed for procaspases-3, which 

co-precipitated more active caspase-8 and recombinant NPM (Fig. 4.4 B). These findings 

indicate that NPM may serve as an inhibitor delaying dissociation between the active caspases 

and their substrates, hence reducing the pool of available active caspases for further substrate 

binding and cleaving. 
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Figure 4.2.  NPM interacts with proform and cleaved caspase-6 and -8 in UV-irradiated 
HeLa cells.  HeLa cells were irradiated with UV (40 W) for four hours, after which the cells were 
harvested and the total cell lysates extracted. Immunoprecipitation was carried out as described in 
Materials and Methods, Section 4.2.1 using antibodies against NPM or Hemaglutinnin (HA, 
negative control), followed by Western blotting using antibodies to NPM (A-E), caspase-8 (A), 
caspase-6 (B), caspase-3 (C), caspase-7 (D) and caspase-9 (E), as indicated to the left of the 
panel. 20 µg of the total cell lysates extract (80 µg for caspase-8 immunoblotting) were loaded as 
positive control. White triangle indicates procaspase, black triangle indicates intermediate cleaved 
fragment, black arrow indicates cleaved caspase fragment and asterisk indicates unidentifiable 
band. The positive control for caspase-8 blot is spliced and juxtapose next to the IP blot. 
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rC8 (Unit) - 36 36 72 120
+
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NPM 

C3 19 kDa 
Figure 4.3.  Increased active caspase-8 amount reversed the caspase inhibitory effect of 
NPM.  S100 cytosolic cell-free extracts were prepared from non-treated HEK 293 cells. Varying 
amount of recombinant active caspase-8 was added to the extract in the absence or presence of 5 
µM of His-tagged recombinant NPM. The various extracts were then incubated at 37˚C for four 
hours, before being subjected to SDS-PAGE and immunoblot analysis using anti-NPM and anti-
caspase-3 antibody, as indicated to the right of each panel. White broad arrow indicates th higher 
molecular weight His-tagged recombinant NPM, grey broad arrow indicates endogenous NPM, 
and black arrow indicates cleaved caspase-3. rC8: recombinant active caspase 8, rNPM: 
recombinant nucleophosmin. 
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4.4 Discussion 

 While physical interactions with the caspases have been taken to constitute a direct 

evidence implicating several molecules in an anti-apoptotic function, the form(s) of caspase 

found in these associations differ(s) from inhibitor to inhibitor, thus suggesting differences 

between the underlying inhibition mechanisms. c-IAP1, c-IAP2, XIAP, and survivin have been 

reported to bind to and inhibit the active forms of the terminal caspases-3 and -7, but do not 

interact with caspase-8, which is the most proximal caspase from the TNF-α/Fas receptor 

(Deveraux et al., 1997; Roy et al., 1997; Conway et al., 2000). c-IAP1, c-IAP2, and XIAP also 

bind to the zymogen form of caspase-9 thereby preventing its proteolytic processing as well as 

the processing of downstream proteases, such as caspase-3, -6, and -7 (Deveraux et al., 1998).  

Livin, which is a member of the IAP family, was observed to co-immunoprecipitate with pro-

caspase-9 and a partially activated form of caspase-9 containing the NH2-terminal prodomain. No 

interaction of Livin was seen with the fully active 12- and 20-kDa subunits of caspase-9 using the 

Biacore, suggesting that the prodomain is required for the interaction (Kasof & Gomes, 2001). 

Meanwhile, the small heat shock protein αB-crystallin was shown to bind to the p24 partially 

processed caspase-3 and inhibits its autoproteolytic maturation, which is consistent with in vitro 

studies demonstrating that B-crystallin inhibited the autoproteolytic maturation of the p24 

partially processed caspase-3 intermediate (Kamradt et al.,  2001).  

Generally speaking, the inhibition of initiator caspase (e.g. caspase-9) appears to involved 

interaction of the inhibitor molecule with the zymogen, thereby preventing its processing. In 

contrast, inhibition of the executor caspases (3 and 7) seems to involve a different mechanism – 

one that calls for direct interaction of the inhibitor molecule with the cleaved or partially cleaved 
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caspase instead, thereby inhibiting its proteolytic activity. The differences in the two mechanisms 

may reflect the difference in the role and hierarchy of these two groups of caspases (initiator 

versus effector) within the death-signalling network, as well as their sequence variations. NPM’s 

physical interaction with caspase-6 and -8, as discovered in this chapter, seems to present a 

unique case. Both 1) exclusive interaction with only the cleaved caspases, and 2) interactions 

with all forms (proform, partially cleaved and fully cleaved) of the caspases, were detected, 

albeit in different cell lines. While inhibiting the active caspases’ activities is perceivably 

sufficient in halting death signal relay, preventing further processing of the proform and 

intermediate cleaved fragments may provide additional protection against the death stimulus. 

The difference in the interaction modes observed here may also stem from the differences in the 

host species and tissue from which the cell lines were derived from – MN9D cells are mouse 

midbrain in origin, while HeLa cells are human cervical adenocarcinoma-derived. It can also be 

argued that the existence of two interaction modes for caspase-8 with its inhibitor may reflect the 

uniqueness in the former’s hierarchical role within the death-signalling pathway. Caspase-8 

functions both as an initiator and executor caspase. It not only triggers and amplifies the 

apoptotic process at cytoplasmic sites, but can also act as an executioner in the nucleus, where it 

cleaves PARP-2, a member of the poly(ADP-ribose) polymerase family involved in DNA repair 

(Benchoua, et al., 2002). Thus, while inhibiting procaspase cleavage can help prevent caspase-8 

from relaying death signals and fulfilling its ‘initiator’ role, inhibiting the activities of already-

cleaved fragments can prevent cleavage of caspase-8’s ‘death substrates’ further downstream. So 

far, such dual inhibition mode is not observed for other caspases, which are only known to 

belong to one of the two caspase classification groups. In any case, both modes of interaction 
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involve the cleaved caspase fragments, and this seems to form the basis of NPM’s inhibition of 

caspase-6 and -8. 

 We have hypothesized, based on the results gathered so far, that stress-induced elevation 

in cytoplasmic NPM level may lead to inhibition of the activities of caspase-6 and –8 (See 

Chapter II and III). This in turn begs the question of how the cell may overcome the inhibitory 

hurdle set by the elevated amount of NPM when it is eventually committed to death. It was 

previously reported that while Hsp70 was able to inhibit processing of procaspases-9 by 

preventing the recruitment of the latter to Apaf-1, over-expression of Apaf-1 was demonstrated 

to be able to abrogate the inhibitory effect of Hsp70 on procaspases-9 processing (Beere et al.,  

2000). We similarly observed in Figure 4.3 that doubling the amount of active caspase-8 was 

able to overcome the inhibitory effect of the exogenously added recombinant NPM and restore 

the amount of cleaved caspase-3 to a level comparable to that without addition of the 

recombinant NPM. Coupled to the fact that NPM interacts with cleaved caspse-6 and -8, this 

observation raised the possibility that inhibition of procaspase-3 activation is mediated by simple 

competition for active caspase-8. Using the pull-down assay, we therefore examined if the 

binding of active caspase-6 and -8 to their respective substrates, procaspases-8 and -3, is 

disrupted by the presence of the exogenously added recombinant NPM. Surprisingly, we noted 

instead an increase in the amount of active caspase-6 and -8 being precipitated along with 

procaspases-8 and –6 in the presence of exogenous NPM (Figure 4.4). Both endogenous and 

added NPM were also co-precipitated with the procaspases as well. In both cases, the amount of 

procaspases pulled down in the presence and absence of recombinant NPM is not markedly 

different from each other. Taken together, the observations indicate the formation of an 

inhibition complex comprising of NPM, active caspase-6/-8 and their substrates. The addition of 
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recombinant NPM appears to ‘freeze’ the interaction of the active caspase-6 and -8 with their 

substrates, though the order of interaction within the complex remains unknown unless 

elucidated with structural biology means. Given our previous observations that recombinant 

NPM could inhibit the cleaving of procaspases-3 and -8 by active caspase-8 and -6 respectively, 

we hypothesize that the formation of the inhibition complex may prevent the dissociation of 

active caspase-6 and -8 from their current targets, thereby making them unavailable for cleaving 

other procaspases. The validation of this hypothesis is, however, complicated by the fact that 

procaspases-8, the substrate to active caspase-6, was shown to interact with NPM in at least the 

HeLa cells, though the procaspases-3 showed no interaction with NPM (Figure 4.2).  In any case, 

the inhibition of procaspases cleaving by active caspe-6 and -8 is unlikely to be due to simple 

competition. This is reminiscent to situation of Hsp70’s inhibition of procaspases-9 recruitment 

to Apaf-1 apoptosome, where Hsp70’s addition was demonstrated to be unable to disrupt the 

interaction between procaspases-9 and the CARD domain of Apaf-1 (Beere et al., 2000).  

All in all, physical associations between NPM and caspase-6 and -8 are demonstrated 

here, and it is likely that NPM promotes the formation of an inhibitory complex involving the 

active caspases and their current substrates, thereby effectively sequestering them away from 

many other available substrate molecules. The use of biophysical methods such as nuclear 

magnetic resonance (NMR) to investigate the crystal structure of NPM in complex with active 

caspase-6 and -8 is likely to shed light on the structural basis for such inhibitions, as well as 

reveal the order of contact of components within the NPM-caspase-substrate inhibition complex.  
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5.1 Introduction 

Normal development of haematopoietic cells and maintenance of tissue homeostasis 

requires tight regulation of proliferation, differentiation and death processes. Deregulation of any 

of those processes can result in leukaemia (Thompson, 1995). Many genetic changes occur in 

many different types of leukaemia. For many, the most important changes are chromosomal 

translocations. A number of acute and chronic leukaemias and non-Hodgkin's lymphomas 

subtypes are associated with specific translocations. The genes located at breakpoints are often 

involved in lymphocytic or myeloid cell proliferation and/or differentiation. When these genes 

are translocated into a new genetic "environment", they are upregulated and overexpressed or 

mutated. These changes often result in loss of growth control and malignancy. For instance, 

chronic myelogenous leukaemia results from a cytogenetic aberration consisting of a reciprocal 

translocation between the long arms of chromosomes 22 and 9; t(9;22).  This translocation 

relocates an oncogene called abl from the long arm of chromosome 9 to the long arm of 

chromosome 22 in the bcr region. The resulting bcr-abl fusion gene encodes a chimeric protein 

with strong tyrosine kinase activity (Lugo et al., 1990), which is necessary and sufficient for 

leukaemogenesis (Daley et al., 1990; Heisterkamp et al., 1990).  

 NPM has also been found to be involved in several chromosomal translocations, resulting 

in the formation of oncogenic fusion proteins. The NPM-ALK fusion gene, formed by the 

t(2;5)(p23;q35) translocation in non-Hodgkin's lymphoma, encodes a 75-kDa hybrid protein that 

contains the amino-terminal 117 amino acid residues of the nucleolar phosphoprotein 

nucleophosmin (NPM) joined to the entire cytoplasmic portion of the receptor tyrosine kinase 

ALK (anaplastic lymphoma kinase) (Morris et al., 1994). ALK is a cell membrane-spanning 
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receptor tyrosine kinase and a member of the insulin receptor superfamily. Although the precise 

physiological function and regulation of ALK have not been well defined, oligomerisation of the 

fusion proteins mediated by the NPM portion, which contains the homodimerisation domain, is 

thought to result in dysregulated expression and constitutive activity of the ALK kinase (Bischof 

et al., 1997). This in turn leads to aberrant phosphorylation of multiple intracellular substrates 

downstream of NPM-ALK, which plays a key role in lymphomagenesis (Pulford et al., 2004; 

Duyster et al., 2001). Meanwhile, in acute promyelocytic leukaemia (APL), a t(5;17)(q32;q12) 

chromosomal translocation fuses the gene for nucleophosmin (NPM) to the retinoic acid receptor 

alpha (RARA) (Redner et al., 1996). Signalling through RAR and activation of RAR target 

genes induce proliferation arrest, differentiation, and apoptosis in a wide variety of cell types. 

Retinoids have tumor-suppressive activity, and consequently, defects in RAR signalling are 

implicated in cancers (Altucci & Gronemeyer, 2001; Freemantle et al., 2003). The chromosomal 

translocation results in functionally altered receptors that act as constitutive repressors of 

transcription, thereby preventing cell differentiation and resulting leukaemogenesis (Redner et al., 

2000).  

 The NPM sequence contained in the NPM-RAR cDNA is identical to the NPM 

sequences contained in the NPM-ALK fusion gene mentioned above. In both cases, the NPM 

homodimerisation domain is retained in the fusion proteins. While homodimerisation of the 

fusion proteins mediated through the NPM portion can lead to constitutive activation of their 

fusion partner, interaction of wild type NPM with the fusion proteins has been speculated to 

further contribute to oncogenesis by inhibiting the normal cellular functions of NPM. This is 

reminiscent of PML−RAR, the fusion protein resulting from a translocation involving the 

promyelocytic leukaemia gene (PML) and the retinoic acid receptor alpha gene, which is another 
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oncogenic fusion protein found in acute promyelocytic leukaemias (APLs) (He et al., 1999). 

PML−RAR is a bifunctional protein that blocks differentiation (through its RAR moiety) and 

inhibits stress-induced apoptosis (Grignani et al., 1993) through the effect of its PML component 

on p53. PML can interact directly with p53, and regulate the latter’s acetylation, as well as 

premature senescence induced by oncogenic Ras (Pearson et al., 2000).  The region of PML 

involved in p53 binding is lost in the PML−RAR fusion protein, and PML−RAR strongly 

inhibits p53 activity through interaction with wild-type PML in a dominant negative manner 

(Fogal et al., 2000). Similar to PML, NPM has been shown to interact with p53, and positively 

regulate its stability and transcriptional activity. NPM-RAR and NPM-ALK has been speculated 

to be able to sequester wild type NPM away from p53, hence leading to p53’s degradation. As 

the tumour suppressor p53 induces cellular senescence and/or apoptosis in response to oncogenic 

signals, the decline in p53 level in this case inadvertently promotes leukaemogenesis (Colombo 

et al., 2002).  

 Though chromosomal translocations have been prominently implicated in the 

pathogenesis of many leukaemic types, conventional chromosome banding analysis of 

approximately 50% of the acute myeloid leukaemia (AML) patients lack clonal chromosome 

aberrations (Byrd et al., 2002; Grimwade et al., 1998). AML is a heterogeneous group of 

malignant leukaemia with diverse genetic abnormalities. It is characterised by an accumulation in 

the bone marrow and peripheral blood of large numbers of abnormal, immature myeloid cells. 

These cells are capable of dividing and proliferating, but cannot differentiate into mature 

haematopoietic cells (i.e., neutrophils). Falini et al (2005) investigated the subcellular localisation 

of NPM1 in bone marrow biopsy specimens from 591 adult patients with primary AML, 135 

patients with secondary AML, and 980 haematopoietic or extrahaematopoietic malignancies 
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other than AML using immunohistochemical methods. Cytoplasmic NPM1 (NPM1c+) was 

exclusively detected in primary AML with an incidence of 35.2%. It was associated with a broad 

spectrum of morphologic AML subtypes with the highest frequency in monocytic leukaemias. 

Notably, in none of the NPMc+ AML specimens was NPM-ALK, NPM-RAR or any other NPM-

containing fusion protein found.  Sequencing of the NPM1 coding region identified an exon 12 

mutations leading to a frameshift in the C-terminal region of the NPM1 protein that is necessary 

for nucleolar localisation of NPM1 (Nishimura et al., 2002). Meanwhile, transfection of mutated 

NPM1 into NIH-3T3 cells confirmed that exon 12 mutations result in delocalisation of NPM1. 

Thus, based on these findings, mutations in NPM1 exon 12 and the resulting shift of NPM1 into 

the cytoplasm are the most frequent events that have been identified in adult AML lacking 

chromosomal translocation to date. 

 Given that NPM’s usual localisation and functioning is in the nucleus, the cytoplasmic 

NPM mutant (NPMc) was thought to represent a ‘loss-of-function’ mutant. In other words, 

disruption of wild type NPM’s regular nuclear duties was conjectured to underlie the 

pathogenesis of AML with a normal karyotype. A vital function of nuclear NPM is in the 

regulation of the stability and localisation of the tumour suppressor Arf, which inhibits cell 

proliferation through both p53-dependent and -independent mechanisms (Sherr, 2001). By 

binding and inhibiting the p53-antagonist Mdm2 in the nucleoplasm, Arf is able to induce cell 

cycle arrest through p53 activation (Llanos et al., 2001). NPM in turn binds the Arf protein and 

protects it from degradation by the ubiquitin-proteasome pathway (Kuo et al., 2004). Indeed, the 

stability of Arf protein is markedly decreased in cells that lack NPM expression. The amino-

terminal region of Arf is dynamically disordered in aqueous solution and becomes highly 

structured upon binding to Mdm2 (Bothner et al., 2001). NPM was thought to bind newly 
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synthesised Arf and serve as a molecular chaperone to favour acquisition of a tertiary and stable 

structure, thus preventing its degradation or aggregation (Colombo et al., 2005). While the 

leukaemia-associated NPMc mutant was shown to be capable of binding Arf as well, it was 

unable to prevent degradation of the latter, unlike its wild type counterpart. In addition, NPMc 

was found to provoke dislocation of remaining Arf from the nucleus into the cytoplasm, which 

potentially disrupts the Arf-Mdm2 inhibitory interaction and leads to suppression of p53 

activation. All in all, the inability of NPMc to protect Arf from degradation and to target it to the 

nucleus for p53 regulation, as outlined in Figure 5.1, was proposed to be the main cause 

underlying the pathogenesis of AML with a normal karyotype (Colombo et al., 2005).  

 Though the hypothesis put forth by Colombo et al. (2005) appears plausible, its strength 

was undermined considerably with further investigations by den Besten et al. (2005). The latter 

likewise demonstrated that NPMc-dependent export of p19-Arf from the nucleus inhibited p19-

Arf’s functional interaction with the p53 negative regulator, Mdm2, and blunted Arf-induced 

activation of the p53 transcriptional program. Surprisingly, despite the ability of NPMc to 

interfere with the activities of Arf, NPMc was shown to lack a proliferation-promoting function 

exhibited by its wild type counterpart. Overexpression of wild type NPM, but not NPMc, 

overcame premature senescence of Atm-null Nih-3T3 cells, a phenotype that can be rescued by 

inactivation of Arf or p53. Overcoming senescence has been proposed to play a critical role in 

human cancer pathogenesis (Yeager et al., 1998). Thus, the inability of NPMc to do so implies 

that perturbation of Arf function might be insufficient to explain the oncogenic effects of the 

NPMc mutation, and that perturbation of other function of wild type NPM by NPMc may 

contribute more substantially toward AML’s pathogenesis.  
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Figure 5.1   The “ARF disruption” model as proposed by den Beston et al. (2005). In a normal 
myelogenous cell (A), wild type NPM binds ARF and prevents it from being targeted for proteosomal 
degradation in response to cellular or DNA damage. ARF in turn associates with Mdm2 and prevents it 
from degrading p53. Heightened p53 then triggers cell cycle arrest or apoptosis. Meanwhile, in a 
myelogenous cell harbouring the NPM1 mutation, the mutant NPMc is unable to protect ARF from 
proteosomal degradation. In addition, the cytoplasmic dislocated NPMc sequesters the remaining ARF 
away from the nucleus, and prevents it from interacting with Mdm2. Without binding to ARF, Mdm2 is 
free to associate with and target p53 for degradation. This in turn leads to attenuation of the cell’s p53 
response and is proposed to underlie the pathogenesis of NPMc+ AML. 

 Based on results gathered in the previous chapter, we have ascribed to NPM a definitive 

anti-apoptotic role involving the direct inhibition of caspase-6 and -8. We have also shown that 
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in response to diverse stress stimuli, NPM is transiently translocated into the cytoplasm, which is 

the site of death signal initiation and amplification by the mitochondrial and death receptor 

pathways, to possibly delay full-fledge caspase activation until the cell becomes irrevocably 

committed to cell death. These observations in turn open up the possibility that localisation of 

NPMc in the cytoplasm may permanently elevate the threshold for caspase-8 activation, and 

aberrantly prevent cell death even in the face of considerable death provocations. This in turn 

suggests NPMc as an oncogene with an anti-apoptotic, rather than anti-proliferative, function, as 

in the case of bcl-2 in follicular B-cell lymphomas (Hockenbery et al., 1990). In this Chapter, we 

explore this possibility, by investigating the caspase inhibitory capacity of NPMc in relation to 

its wild type counterpart, in both the HeLa cells and the AML patients-derived myelogenic cell 

models. 
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5.2 Materials and methods 

 

5.2.1 Cell culture and induction of apoptosis 
 

 HeLa (a gift from Dr Ge Rou Wen, NUS) was cultured as described in Section 2.2.1. 

OCI-AML2 and OCI-AML3 cell lines were purchased from DSMZ (German National Resource 

Centre for Biological Material) and cultured in Alpha MEM medium (Invitrogen, USA) 

supplemented with 20% fetal bovine serum and 1% penicillin/streptomycin in a humidified 

atmosphere of 5% CO2 at 37°C. Both AML cell lines were treated with recombinant TRAIL 

(Chemicon, USA) at a final concentration of 50 ng/mL for 12 hours before being harvested for 

immunoblot analysis. For apoptosis assay, the cells were treated with recombinant TRAIL of the 

same concentration for 0, 6, 12 or 24 hours before harvesting.  

 

5.2.2 Electrophoresis and Western Blot analysis 

As described in Section 3.2.5. The following antibodies were used in this chapter: with 

anti-NPM (Neomarker, USA, 1:1000), -caspase-3 (Cell Signalling Technology, USA, 1:1000), -

caspase-6 (Cell Signalling Technology, USA, 1:2000), -caspase-7 (Neomarkers, USA, 1:600), -

caspase-8 (Cell Signalling Technology, USA, 1:1000),  -oct-1 (Chemicon, USA, 1:1000) or –

actin (Santa Cruz, USA, 1:1000), followed by incubation with HRP-conjugated secondary 

antibodies (Santa Cruz, USA), either goat-anti-mouse or anti-rabbit (1:1000). 
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5.2.3   Plasmids and Transfection 

 The construction of pcDNA3.1-GFP-human-NPM used in this chapter is as described in 

Section 3.2.4.  The NPMc mutant was constructed using multiple steps PCR. Human NPM1 

fragment corresponding to human protein sequence 1-287 (out of 294 amino acids) was initiately 

amplified using the wild type human NPM1 as the template with Turbo Taq polymerase 

(Strategene, USA) to ensure high sequence fidelity during amplification. The following primers 

were used for the initiate amplification: 

CytoNPM-F   Forward primer  5’ – CGA TGG AAG ATT CGA TGG ACA –3’ 

CytoNPM-B1   Reverse primer  5’ – TGC CAG ACA GAG ATC TTG AAT AGC CT –3’ 

The resulting C-terminal truncated wild type NPM1 fragment was purified by low melting-

agarose gel electrophoresis and used as template for a second round of PCR amplification for 

extension of the truncated fragment, using the following primers: 

CytoNPM-F     Forward primer  5’ – CGA TGG AAG ATT CGA TGG ACA –3’ 

CytoNPM-B2   Reverse primer  5’ – AAA GAG ACT TCC TCC ACT GCC AGA CAG AGA   

TC –3’ 

The extended portion contains the mutated NPMc sequence not found in wild type NPM1.  The 

PCR product obtained from this second round of amplification was again subjected to gel 
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extraction clean up. Complete extension of the mutated NPMc portion was finally performed 

with this second round amplification products as the template using the following primers: 

CytoNPM-F   Forward primer  5’ – CGA TGG AAG ATT CGA TGG ACA –3’ 

CytoNPM-B3   Reverse primer  5’ – CTA TTT TCT TAA AGA GAC TTC CTC CAC –3’ 

The same exact protocol was used for the construction of the NPMc mutant, except that the 

reverse primers used were different. In this mutant, the lysine and valines originally present in 

the NPMc C-terminal mutant portion were replaced, thereby abolishing the nuclear export signal 

(NES). Wild type human NPM1 cDNA was again used as the initiate template for first round 

PCR amplification with the following primers: 

CytoNPM-F               Forward primer  5’ – CGA TGG AAG ATT CGA TGG ACA –3’ 

Mutant-CytoNPM-B1   Reverse primer  5’ – TGC CTC ACA GAG ATC TTG AAT AGC CT – 

     3’ 

The primers used for the second round PCR amplification were as follow: 

CytoNPM-F               Forward primer  5’ – CGA TGG AAG ATT CGA TGG ACA –3’ 

Mutant-CytoNPM-B2   Reverse primer  5’ – AAA GAG GCT TCC TCC GCT GCC TCA CAG  

                                                AGA TC  –3’ 
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The primers used for the third round PCR amplification were as follow: 

CytoNPM-F               Forward primer  5’ – CGA TGG AAG ATT CGA TGG ACA –3’ 

Mutant-CytoNPM-B3   Reverse primer  5’ –GCT TTT CTA AAA GAG GCT TCC TCC AC–3’ 

For all three rounds of amplifications for the construction of NPMc or mutant NPMc, the PCR 

cycling conditions were (i) 95°C for 5 min; (ii) 95°C for 1 min, 55 °C for 1 min, 68°C for 2 min 

(30 cycles); and (iii) 68°C for 10 min. The full-length PCR products were purified by low 

melting-agarose gel electrophoresis and separately cloned into pGEM-T Easy vector (Promega, 

USA) for sequencing. The NPMc and mutant NPMc cDNAs were then subcloned into 

pcDNA3.1-GFP using the EcoRI restriction site for non-directional cloning. Transfection of 

HeLa cells with pcDNA3.1-GFP empty vector, pcDNA3.1-GFP-human-NPM, pcDNA3.1-GFP-

NPMc or pcDNA3.1-GFP-mutant-NPM using Lipofectamine 2000 (Invitrogen, USA) were as 

described in Section 2.2.2. 

  

5.2.4 Preparation of S100 cytosolic Cell-free Extracts  

As described in Section 3.2.6. 10 units of concentration 36 unit/µl (Biovision, USA) was 

added to the HeLa cell-free extract for in vitro assay of the inhibitory effect of NPM and the 

various NPM mutants on caspase activation initiated by the addition of rat-heart derived 

cytochrome c (300 nM, Sigma, USA) and ATP (900 nM, Sigma, USA) 

5.2.5   Preparation of subcellular fractions 

 Nuclear and cytosolic fractions were prepared as described in Section 2.2.5. 
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5.2.6 Immunodepletion 

As described in Section 3.2.9. The N-terminal targeting NPM antibody (Cell signalling, 

USA) was used for immunodepletion of NPM and NPMc from the cytosolic extracts of OCI-

AML2 or OCI-AML-3 cell lines. 

 

5.2.7 Apoptosis assay 

Apoptosis was assessed by examination of nuclear morphology. Cells were loaded with 4 

µM of Hoechst 33342 (cell-permeable, blue fluorescent chromatin stain, Sigma, USA) for 10 

min. Apoptosis was characterised by scoring condensed and fragmented highly fluorescent 

nuclei of GFP-, GFP-NPM-, GFP-NPMc- or GFP-Mutant-NPMc-transfected HeLa cells. Each 

set of experiments was repeated at least three times, with at least 300 cells counted in each 

instance. 

 

5.2.8  Immunofluorescence microscopy 

HeLa cells tranfected with GFP, GFP-NPM, GFP-NPMc or GFP-Mutant-NPMc were 

exposed to Hoechst 33342 at a final concentration of 4 µM and incubated for an additional 5 min 

at room temperature, before being observed. Images were collected using an inverted 

fluorescence microscope (model Axiovert 25; Carl Zeiss Meditech, Germany). 
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5.3 Results 

5.3.1 Creation of the NPMc and NPMc mutant 

  The NPMc mutant was reported to result from mutations affecting exon 12 of the human 

NPM1 gene. Six sequence variants (designated NPMc mutant A-F) were observed, all leading to 

a frame shift in the region encoding the C-terminal of the NPM protein. The most frequent 

mutation (mutant A) was a duplication of a TCTG tetranucleotide at positions 956 through 959 of 

the wild type sequence. The resulting shift in the reading frame alters the C-terminal portion of 

the NPM protein by replacing the last seven amino acids (WQWRKSL, where the amino acids 

are designated by their single-letter codes) with 11 different residues (CLAVEEVSLRK) (Falini 

et al., 2005). A motif containing leucine-valine residues, constituting the nuclear-export-signal 

(NES) motif was further discovered in the C-terminal of NPMc mutants. The typical nuclear-

export signal consists of a short stretch of hydrophobic amino acids (predominantly leucines) and 

fits the consensus sequence Lx(1-3)Lx(2-3)LxL (with x indicating any residues) (Henderson & 

Eleftheriou, 2000). NES can be recognised by the nuclear export receptor NES for cytoplasmic 

export of the protein harbouring it. It was hence speculated that Crm1-mediated export of NPMc 

mutant may underlie tumorigenesis in acute myelogenous leukaemia (Nakagawa et al., 2005). 

 Since NPMc mutant A is the most frequent frame shift mutant (77%) reported among the 

six NPMc variants (Falini NEJM 2005), it was chosen for further investigations here. The NPMc 

cDNA was constructed using a three-step PCR with wild type human NPM1 as the initiate 

template, and subsequently cloned into pcDNA3.1-GFP for over-expression in the HeLa cells. 

Expectedly, GFP-tagged NPMc was localised almost exclusively in the cytoplasm in slightly 

more than 90% of the transfected HeLa cells (Figure 5.2 B). This is in stark contrast to the 
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exclusively nuclear localisation of the GFP-tagged wild type NPM in majority of the transfected 

HeLa cells (93.1%).  

 To investigate if the presence of the ‘unintended’ NES at the C-terminal of NPMc is 

solely responsible for the overwhelming cytoplasmic localisation of the mutant protein, an 

NPMc mutant was created. In this mutant, the two lysines and valines present in the C-terminal 

portion of NPMc were mutated to other amino acids, as shown in Figure 5.2a, so as to abolish 

the putative NES completely. The NPMc mutant was likewise constructed using a three-step 

PCR, and over-expression of the GFP-tagged protein showed almost exclusive nuclear 

localisation in 95.8% of the transfected HeLa cells (Figure 5.2 B), thereby indicating that the C-

terminal NPMc NES is indeed a significant factor underlying cytoplasmic NPM export and the 

pathogenesis of AML. This is corroborated by our observation that treatment of the NPMc 

transfected HeLa cells with the nuclear export receptor Crm1 inhibitor, Leptomycin B, likewise 

resulted in a reversion in the localisation of NPMc from the cytoplasm back into the nucleus for 

96.3% of the transfected cells (Figure 5.2 B). Notably, both mutation of the NPMc C-terminal 

NES or treatment with Leptomycin B did not resume the nucleolar localisation of the protein, 

which was prominently observed in the wild type NPM trasfected cells. Tryptophans 288 and 

290 in the C-terminal region of wild type human NPM were previously demonstrated to be 

important for its nucleolar localisation (Nishimura et al., 2002). The frame-shift mutation in 

AML, which occurred just before amino acid 288, removed the two C-terminal tryptophan and 

replaced it with the leukaemic associated NES. As such, the absence of the two tryptophans in 

the NPMc mutant is most likely the underlying cause behind the failure to resume NPM’s 

nucleolar localisation with inactivation of the mutant-associated NES.  
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5.3.2 NPMc has anti-apoptotic activities as observed for wild type NPM and NPMc mutant 

 Unlike wild type NPM, NPMc was previously shown to lack a proliferating promoting 

function due to its inability to rescue proliferation in the Atm-null mouse embryonic fibroblasts 

(den Besten et al., 2005). While promotion of proliferation remains a major tumorigenic factor, 

cell death resistance has increasingly been implicated in several cancer types like the human 

follicular B-cell lymphoma, in which the t(14; 18) chromosomal translocation of human 

follicular B-cell lymphoma juxtaposes the bcl-2 gene with the immunoglobulin heavy chain 

locus (Hockenbery et al., 1990). The bcl-2 immunoglobulin fusion gene is markedly deregulated 

resulting in inappropriately elevated levels of bcl-2 RNA and protein, which in turn leads to 

blockage of cell death and causes tumorigenesis. With this example in mind, we proceeded to 

check if NPMc manifest any significant anti-apoptotic activity that may underlie 

leukaemogenesis.  

 We have shown in Chapter III and IV that NPM specifically inhibited the activities of 

caspase-6 and -8, and interacts with them physically. Auto-proteolysis usually occurs when the 

procaspases is overexpressed in the cells, presumably as a result of proximity-induced 

proteolysis. Marked increases in cell death, tabulated as percentage of transfected cells with 

condensed nuclei when stained with Hoechst 33342, were noted here when HeLa cells were co-

transfected with GFP and either human caspase-6 or -8 (23.1% and 24.7% respectively, as 

compared to 7.45% for GFP alone transfection, Figure 5.3). Expectedly, co-transfection of either 

caspases with GFP-tagged wild type NPM rescued the cells from caspase-induced death almost 

completely (9.4% for caspase-6 transfection and 7.4% for caspase-8 transfection, as compared to 

7.8% for wild type NPM alone transfection). The same phenomenon was observed with GFP-
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tagged NPMc mutant co-transfection, with full cell death rescue observed for caspase-6 and -8 

transfection (6.6% for caspase-6 transfection and 6.3% for caspase-8 transfection, as compared 

to 6.8% for wild type NPM transfection alone). Co-transfection with GFP-tagged NPMc 

significantly rescued caspase-induced cell death as well, though the decrease in cell death for 

caspase-6 co-transfection was not as marked as that for caspase-8 co-transfection (12.7% for 

caspase-6 transfection and 10.6% for caspase-8 transfection, as compared to 8.4% for wild type 

NPM transfection alone). All in all, the data here indicate that NPMc possesses anti-apoptotic 

activities just like its wild type counterpart and its NES mutant, despite differences in the 

subcellular localisation of their respective NPM proteins. 

 

5.3.3 Cytoplasmic abundance of NPMc led to marked inhibition of the progression of  

cytochrome c-induced caspase activation cascade 

 It was demonstrated in Section 3.3.3 in Chapter III that addition of recombinant NPM 

could inhibit cytochrome c induced activation of caspase-3, -6, -7, and -8. Since NPMc is 

prominently localised and concentrated in the cytoplasm (as observed in Figure 5.2 B), we 

speculate that the dramatic elevation in cytoplasmic NPM level may lead to inhibition of caspase 

activation cascade. To test this hypothesis, HeLa cells were transfected with same amount (20 µg 

plasmid per 10cm diameter culture dish) of the various plasmids for overexpression of GFP 

alone, GFP-NPM, GFP-wild type NPMc and GFP-NPMc mutant. An extra plate of HeLa cells 

was transfected with GFP-NPMc-overexpressing plasmid and treated with 40 nM Leptomycin B 

two hours prior to harvesting of the cells. 24 hours after transfection, the cells were first observed 

for GFP overexpression under the microscope before harvesting, and the S100 cytoplasmic 

fractions obtained as described in Section 5.2.4. Caspase activation was next induced in each 
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fraction with the addition of cytochrome c. Subsequent immunoblot analysis demonstrated an 

expected greater abundance of GFP-tagged NPMc in the cytoplasmic fraction when compared to 

the other samples (Figure 5.4). Reduced cleaving of procaspase-3, -6 and -7 was observed to 

coincide with cytoplasmic accumulation of NPMc, indicating that cytoplasmic dislocated NPMc 

mutant might halt cell death in the myelogenous cells through inhibition of the caspase activation 

cascade, thus leading to leukaemogenesis.  

 

5.3.4 OCI/AML3 cell line manifested exclusive cytoplasmic NPM localisation 

  Human cell lines derived from AML patients bearing recurrent chromosomal 

abnormalities and/or gene mutation represent remarkable tools for biological and molecular 

studies of these diseases (MacLeod & Drexler, 2005). Quentmeier et al. (2005) reported that the 

OCI/AML3 cell line bears the characteristic molecular and biological features of the NPMc 

positive AML. The OCI/AML3 cell line was the only human myeloid cell line, among 79 tested 

by the group, to harbour mutation at exon-12 of the NPM1 gene. The cell line was established 

from the peripheral blood taken from a 57-year-old male patient with AML subtype M4 (Wang 

et al., 1989). In contrast, the OCI/AML2 cell line, also established from an aged patient with 

AML subtype M4 (Wang et al., 1989), revealed no cytoplasmic NPM dislocation and mutation 

at exon 12 of the gene. These two cell lines were thus acquired and used as contrasting cell 

models to study the effect of differential subcellular localisation of NPM on TRAIL-induced cell 

death and caspase-8’s activity.  

 Immunoblot analysis of the nuclear and cytoplasmic fractions was first performed to 

confirm the predominant subcellular localisation of their respective NPM variants before 
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conducting further investigations. As shown in Figure 5.5, OCI/AML2 manifested a typical 

nuclear localisation of the NPM, while OCI/AML3 displayed an expected cytoplasmic 

localisation of NPMc as reported by Quentmeier et al. (2005). Cytoplasmic fractions were shown 

to be free from nuclear contamination, as no nuclear protein oct-1 was detected. Notably, the 

commassie blue-stained protein gel not only showed equal protein loading, but also revealed 

very similar protein banding patterns for the cytoplasmic and nuclear fractions of both cell lines. 

Despite being isolated from different patients, the two cell lines are probably physiologically 

very similar to each other, and would thus serve as a good pair of contrasting cell models for our 

investigations here.  

 

5.3.5 Caspase-8 and -3 activation was significantly halted in TRAIL-treated OCI/AML3 

TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is being 

developed as an antitumor agent as it induces apoptosis in a wide range of tumor cell lines but 

not in most normal cells (Walczak et al., 1999). TRAIL induces apoptosis by binding to two 

membrane-bound receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5), resulting in the 

recruitment of the adaptor molecule FADD, followed by the recruitment and activation of 

caspase-8, into DISC (Bodmer et al., 2000; Kischkel et al., 2000; Sprick et al., 2000). Active 

caspase-8, the apical caspase in death receptor-induced apoptosis, can then activate other 

caspases, such as caspase-3, which in turn cleave many cellular substrates resulting in the 

biochemical and morphological features characteristic of apoptosis (Bratton et al., 2000).  

In our investigation, total cell lysates were harvested from TRAIL-treated OCI/AML2 

and OCI/AML3 cell lines and the activation status of both caspase-3 and -8 investigated using 
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immunoblotting. As shown in Figure 5.6, marked decrease in the procaspases amount for 

caspase-3 and -8 was observed for OCI/AML2, but not OCI/AML3, with TRAIL treatment, 

indicating that the TRAIL death receptor response might be significantly attenuated in 

OCI/AML3 cells. Meanwhile, by determining the proportion of TRAIL-exposed cells with 

condensed nuclei, we expectedly observed considerably lower amount of cell death in 

OCI/AML3 than in OCI/AML2 cell line for all three time points sampled (Figure 5.7). Taken 

together, the data suggest that attenuation in cell death in TRAIL-exposed OCI/AML3 may be 

attributed to impairment in caspase activation. To further determine if the cytoplasmic NPMc is 

involved in this phenomenon, the cytoplasmic fractions were isolated from the two cell lines and 

the same amount of recombinant caspase-8 (10 units) was added to each fraction to determine 

their respective efficiencies in procaspase-3 processing. As shown in Figure 5.8, caspase-3 

activation by caspase-8 was markedly halted in OCI/AML3 extract (lane 2, when compared to 

OCI/AML2 in lane 1), and this coincided with a higher amount of cytoplasmic NPM. On the 

other hand, immunodepletion of the cytoplasmic NPM from the OCI/AML3 extract enabled 

resumption of procaspases-3 processing by recombinant caspase-8. This is observed in Figure 

5.8 (lane 3 and 4) as a decrease in procaspases-3 amount and increase in cleaved caspase-3 

fragment with increasing depletion of cytoplasmic NPM. All in all, the results suggest that the 

rather subdued TRAIL-induced death receptor signalling in OCI/AML3 is likely to be attributed 

to inhibition of caspase-8’s cleaving activities by the greater amount of cytoplasmic NPMc.  

 

162 



Chapter V  Role of NPMc in pathogenesis of AML 

(B) 

(A) 

  

  
Wild Type NPM     C-Terminal – Gln Asp Leu  Trp  Gln  Trp  Arg  Lys  Ser  Leu    
 

l 
  NPMc                    C-Terminal – Gln Asp Leu  Cys  Leu  Ala  Val  Glu  Glu  Val  Ser  Leu  Arg  Lys  
s 

 
Mut NPMc              C-Terminal – Gln Asp Leu  Cys  Glu  Ala   Ala  Glu  Glu  Ala  Ser  Phe  Arg Lys  
      6.9

% cells with 
cytoplasmic 
NPM: 

Wild 
NPMGFP
Frame-shift mutation    
163 

%             90.1%      

   NPMc 
type 

 

Nuclear Export Signa
        3.7%                

NPMc+  40 nM 
Leptomycin B 

M
NP
Mutagenesi
4.2%   

ut 
Mc 

GFP

Hoechst
33342 
Figure 5.2. Frame-shift mutation in the C-terminal end of NPM creates a Nuclear Export 
Signal (NES) that is responsible for cytoplasmic dislocation of the NPMc mutant. (A) 
Schematic showing the extreme C-terminal amino acid sequences for wild type NPM and its two 
mutants. A frame-shift mutation results in replacement of the last seven amino acids by an 
entirely different 10 residues containing a leucine-valine NES motif in the NPMc mutant. The 
NES was abolished in a “Mut NPMc” mutant, in which the leucine and valines were replaced 
with other amino acids using mutagenesis. (B) HeLa cells were transfected with plasmid 
overexpressing GFP alone, GFP-tagged wild-type NPM, GFP-tagged NPMc or GFP-tagged Mut 
NPMc for 24 hours. Cells transfected with GFP-tagged NPMc were either treated with 2.5 ng/mL 
of Leptomycin B for two hours, or left untreated before harvesting. The cells were then stained 
with Hoechst-33342 for 15 min at room temperature and observed by fluorescence microscopy 
using a Zeiss Axiophot.  
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Figure 5.3. NPMc mutant rescues HeLa cells from caspase-6 or caspase-8 mediated cell 
death. HeLa cells were transfected with plasmid overexpressing GFP alone, GFP-tagged wild-
type NPM, GFP-tagged NPMc or GFP-tagged Mut NPMc. In each case, the cells were co-
transfected with another plasmid overexpressing human caspase-6 or -8, or an empty vector. 24 
hours after transfection, the cells were stained with Hoechst-33342 for 15 min at room 
temperature and observed by fluorescence microscopy using a Zeiss Axiophot (Germany). 
Apoptosis was characterised by scoring condensed and fragmented highly fluorescent nuclei. 
Each set of experiments was repeated at least three times, with at least 300 cells counted in each 
instance.
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Figure 5.4. Cytoplasmic abundance of NPMc led to marked inhibition of the progression of 
cytochrome c-induced caspase activation cascade.  HeLa cells were transfected with plasmid 
overexpressing GFP alone, GFP-tagged wild-type NPM, GFP-tagged NPMc or GFP-tagged Mut 
NPMc for 24 hours. Cells transfected with GFP-tagged NPMc were either treated with 2.5 ng/mL 
of Leptomycin B for two hours, or left untreated before harvesting. The harvested cells were 
subjected to subcellular fractionation, as described in Materials and Methods, Section 2.2.5, to 
obtain the cytoplasmic fraction. The cytoplasmic extracts were next subjected to SDS-PAGE and 
immunoblot analysis using anti-NPM (N-terminal), anti-caspase-3, anti-caspase-6, anti-caspase-7, 
or anti-caspase-8 antibody, as indicated to the left of each panel. 20 µg of the total cellular extract 
and cytoplasmic extract extract (40 µg for caspase-8 immunoblotting) were electrophoresed. 
White triangle indicates procaspases.  
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Figure 5.5. OCI/AML3 cell line manifests exclusive cytoplasmic NPM localisation, while 
OCI/AML2 shows predominantly nuclear NPM localisation.  Untreated OCI/AML2 or 
OCI/AML3 cells were subjected to subcellular fractionation, as described in Materials and 
Methods, Section 2.2.. The cytoplasmic and nuclear extracts were next subjected to SDS-PAGE 
and immunoblot analysis using anti-NPM (N-terminal) or anti-oct-1 antibody, as indicated to the 
left of each panel. 20 µg of the cytoplasmic extracts and 10 µg of the nuclear extracts were 
electrophoresed to monitor subcellular localisation of NPM in the two cell lines. Alternatively, 
after SDS-PAGE, the gel was stained with Commassie blue protein stain to visualize the one-
dimensional protein gel profile, which is used as an equal loading control. C: cytoplasmic 
fraction, N: nuclear fraction. 
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Figure 5.6. Activation of caspase-8 and -3 are attenuated in TRAIL-treated OCI/AML3 
cells, but not OCI/AML2 cells.  OCI/AML2 or OCI/AML3 cells were either treated with 50 
ng/mL of TRAIL or left untreated for 12 hours at 37°C. The cells were then harvgested and the 
total cell lysates extracted as described in Materials and Methods, Section 2.2.4. The protein 
extracts were next subjected to SDS-PAGE and immunoblot analysis using anti-caspase-8, anti-
caspase-3 or anti-actin antibody, as indicated to the left of each panel. 20 µg of the extracts (40 
µg for caspase-8 immunoblotting) were electrophoresed to monitor activation status of the two 
caspases in the two cell lines with TRAIL stimulation. White triangle indicates procaspases. 
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Figure 5.7. Cell death is attenuated in OCI/AML3, but not OCI/AML2 cells with TRAIL 
treatment.  OCI/AML2 or OCI/AML3 cells were treated with 50 ng/mL of TRAIL for up to 12 
hours at 37°C. The cells were harvested at indicated times and stained with Hoechst-33342 for 15 
min at room temperature and observed by fluorescence microscopy using a Zeiss Axiophot
(Germany). Apoptosis was characterised by scoring condensed and fragmented highly fluorescent 
nuclei (B). Each set of experiments was repeated at least three times, with at least 300 cells 
counted in each instance. The average readings obtained for the two cell lines were then plotted 
against time as shown in (A).
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Figure 5.8. Cytoplasmic abundance of NPMc in OCI/AML3 cell line inhibits cleaving of 
endogenous procaspase-3 by recombinant active caspase-8. Cytoplasmic fractions were 
prepared from OCI/AML2 or OCI/AML3 cells as described in 2.2.5, and normalised to the same 
protein concentration before use. Portions of the extract from OCI/AML3 cells were further 
subjected to immunodepletion as described in Materials and Methods, Section 3.2.9, using the 
indicated amount of anti-NPM (N-terminal) antibody.  The immunodepleted extracts were then 
incubated with 32 units of recombinant active caspase-8 for three hours at 37°C, after which they 
were subjected to SDS-PAGE and immunoblot analysis using anti-NPM (N-terminal), anti-
caspase-3 or anti-actin antibody, as indicated to the left of each panel. 20 µg of the extracts  were 
electrophoresed to monitor activation status of caspase-3 with addition of recombinant caspase-8 
in the two extracts. White triangle indicates procaspases, and black arrow indicates cleaved 
caspase. 
169 



Chapter V  Role of NPMc in pathogenesis of AML 

5.4 Discussion 

Arf inhibits cell proliferation through both p53-dependent and -independent mechanisms 

(Sherr, 2001). Since NPM physically interacts with Arf and protects it from degradation 

(Korgaonkar et al., 2005), the inhibitory effect of NPM on cellular proliferation is thought to be 

mediated by Arf itself. With the discovery of the cytoplasmic dislocated NPMc mutant in AML 

patients, Arf became an immediate ‘prime suspect’ in the pathogenesis of AML, especially given 

its role as a tumour suppressor and its physical association with NPM. Dysregulation of Arf 

expression has previously been implicated in the pathogenesis of another AML subtype. 

Transcriptional repression of p14(ARF) by the t(8;21) chromosomal translocated fusion protein 

AML1 ETO is shown to predispose haematopoietic stem cells or progenitor cells to oncogenic 

transformation (Linggi et al., 2002). The cessation of Arf-associated role in cell cycle arrest is 

thus shown to underlie oncogenesis in this case, and this easily led to the notion that the 

disruption of Arf-mediated function may drive leukaemogenesis in NPMc+ AML as well. 

However, studies undertaken by den Beston et al. (2005) demonstrated a loss of proliferation-

promoting effect with cytoplasmic dislocation of the mutant NPM, leading to the authors to 

conclude that destabilisation of Arf with NPM mutation may not be the de facto cause behind the 

pathogenesis of NPMc+ AML.  

We have seen in Chapter II that NPM undergoes immediate translocation into the 

cytoplasm under stressful conditions, and hypothesized, based on results gathered so far, that 

elevated cytoplasmic NPM level may serve to inhibit caspase-8 and -6’s activation. Stress-

induced cytoplasmic NPM translocation appears transient, as its level decreased subsequently 

with prolonged stress (see Section 2.3.2), presumably to lower the death signal threshold again 
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for apoptosis to commence. Cytoplasmic NPM hence serves as a removable ‘road block’ to 

temporarily prevent apoptotic signalling flow, until the cell is committed to death. It thus follows 

that when the ‘road block’ becomes permanently lodged in the cytoplasm, as in the case of 

NPMc+ AML, initiation and progression of apoptotic signalling involving caspase-8 and -6 

becomes indefinitely halted as well. Cell death resistance via inhibition of caspase-8 and -6 by 

excessive cytoplasmic NPM mutant hence represent a plausible explanation behind 

leukaemogenesis in NPMc+ AML. Apart from data gathered from the previous chapters, two 

lines of evidences, as presented in this chapter, further support our claim. Firstly, using protein 

extracts from HeLa cells overexpressing the different NPM variants, we demonstrated that 

cytochrome c induce caspase-3, -6, -7 and -8 activations were halted to a greater extent in the 

NPMc containing extract, and this coincided with its greater cytoplasmic abundance of this 

protein as compared to the other NPM variants (Figure 5.4). This is in agreement with our 

observations in Figure 5.3 that NPMc retained its anti-apoptotic function despite the change in its 

predominant subcellular localisation, and suggests caspase inhibition as the mechanism 

underlying its ability to counteract caspase-6 and -8 induced cell death. Secondly, using a pair of 

AML-relevant cell models, we observed difference in their TRAIL-induced death responses, and 

correlated it to the difference in their NPM subcellular localisation. OCI/AML3 cell line, which 

manifested predominantly cytoplasmic NPM localisation, was markedly more resistant to 

TRAIL induced cell death as compared to OCI/AML2 cell line with mainly nuclear-bound NPM 

(Figure 5.5 and 5.7). Dissection of the caspase activation pathway in the two cell lines revealed 

that caspase-8 and its substrate caspase-3 were more readily cleaved in OCI/AML2 than 

OCI/AML3 with TRAIL treatment (Figure 5.6). As the immediate effect of TRAIL stimulation 

is the recruitment and activation of procaspase-8 by DISC at the DR4/5 death receptors, our 
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results here indicate that inhibition of caspase-8 by the abundant cytoplasmic NPMc may 

underlie the attenuation of TRAIL-induced cell death in OCI/AML3 cell line. A direct 

relationship between NPM and caspase in AML was further demonstrated by our in vitro 

experiment, in which depletion of the cytoplasmic NPM from the OCI/AML3-derived protein 

extract led to an instant resumption of caspase-3 cleavage by added recombinant caspase-8 

(Figure 5.8). Overall, our results indicate that excessive caspase inhibition by the unusually high 

amount of cytoplasmic NPM may trigger tenacious cell death resistance, which in turn leads to 

life span extension of primary myeloid progenitor cells and/or stem cells, and ultimately, AML.  

Caspase-8 is an integral component of the death receptor pathway, and is often described 

as the most apical caspase being activated in the apoptotic signalling cascade (Kruidering & 

Evan, 2000). Apart from being involved in the TRAIL receptor pathway, caspase-8 also relays 

apoptotic signal in the Fas/Fas ligand system of apoptosis, which plays a central role in the 

regulation of homeostasis by elimination of self-reactive lymphocytes during ontogeny, and 

activated lymphocytes following an immune response (Nagata, 1997). Caspase-8 mutation in 

human not only results in  defective lymphocyte apoptosis and homeostasis , but also defective 

activation of T lymphocytes, B lymphocytes and natural killer cells, which leads to 

immunodeficiency (Chun et al., 2002). In this case, caspase-8 deficiency has shown that caspase-

8 has a broad role in the activation of T, B and NK cells, in addition to its function in conveying 

signals from death receptors to apoptosis effector mechanisms (Alam et al., 1999; Kennedy et al., 

1999). This thus implicates caspase-8 in non-apoptotic roles as well, and that mutation or 

inhibition of their activation should result in pleiotropic physiological effects, rather than just cell 

death inhibition alone. It was also previously noted that activation of the caspase-8 not only 

mediates TRAIL cytotoxicity, but also promotes monocytic maturation of HL-60 cells. Sechierro 
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et al. (2002) demonstrated that z-IETD-fmk, a selective caspase 8 inhibitor, significantly reduced 

the cytotoxic activity of TRAIL and was as efficient as z-VAD-fmk in blocking the TRAIL-

induced maturation along the monocytic pathway. On the other hand, z-LEHD-fmk, a selective 

caspase -9 inhibitor, was unable to significantly prevent TRAIL-mediated cytotoxicity and 

maturative effect. Extrapolating this observation to our own findings here, we can further 

hypothesize that excessive inhibition of caspase-8 by cytoplasmic NPMc not only inhibited death 

receptor signalling, but also halted caspase-8-mediated myeloid differentiation. Differentiation 

blocks are thought to contribute to tumorigenesis, along with mutations that affect cellular 

proliferation, inactivate cell-cycle checkpoints, and block apoptosis (Hiebert, 2001). In this 

context, it was previously reported that mutation of the transcription factor C/EBP alpha, which 

is required for neutrophil differentiation (Zhang et al., 1997), is found in patients with M2 AML, 

a myeloblastic leukaemia characterised by an early block in neutrophil differentiation (Pabst et 

al., 2001). As such, inhibition of myeloid differentiation and cell death, both resulting from 

caspase-8’s inhibition by cytoplasmic NPMc, may have synergistic leukaemogenic effect on the 

immature myeloid blast cells, resulting in their specific immortalisation in AML. While the 

effect of NPMc expression on myeloid differentiation is not examined in this dissertation, we 

noted from the supplier’s website that the NPMc- OCI/AML2 cell line appears to express the 

myeloid differentiation marker CD14 on their cell surface, in contrast to the NPMc+ OCI/AML3 

cell line which does not (www.dsmz.de). It thus seems that caspase-8 inhibition by the abundant 

cytoplasmic NPMc in OCI/AML3 cell line may underlie its inability to undergo differentiation to 

the same extent as, or further than, the OCI/AML2 cells. 

The death receptor systems, which constitute major components of the finely tuned 

haematopoietic network, serve to eliminate superfluous cells once they have fulfilled their 
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respective functions. As such, mutation affecting the functioning of Fas, TRAIL or components 

of DISC may contribute to the development of autoimmunity and/or neoplastic diseases (Greil et 

al., 2003). Heterozygous mutations in Fas, Fas ligand or caspase-10 were shown to underlie most 

cases of autoimmune lymphoproliferative syndrome (ALPS), a human disorder that is 

characterised by defective lymphocyte apoptosis, lymphadenopathy, splenomegaly and 

autoimmunity (Fisher et al., 1995; Rieux-Laucat et al., 1995; Drappa et al., 1996; Bettinardi et 

al., 1997; Alam et al., 1999; Kennedy et al., 1999). Meanwhile, mutations in the Fas antigen was 

shown to contribute to the pathogenesis of multiple myeloma (Landowski et al., 1997) and non-

Hodgkin’s lymphomas (Grønbæk et al., 1998). Loss of function of the Fas antigen due to 

mutation is thought to contribute to the pathogenesis and progression of neoplasias by allowing 

susceptible cells to evade immune surveillance. The prolonged survival would then allow the cell 

to accumulate mutations leading to malignancy (Nagata, 1997). As caspase-8 is involved in the 

proximal events downstream of death receptor signalling, disruption of caspase-8’s function can 

potentially lead to oncogenesis as well. For instance, in hepatocellular carcinomas, caspase-8 

gene is frequently inactivated by the frameshift somatic mutation with two base-pair deletion 

(1225_1226delTG), resulting in a premature termination of amino-acid synthesis in the p10 

protease subunit (Soung et al., 2005). Also, silencing of caspase-8 expression through 

methylation and inactivation of its promoter is implicated in the pathogenesis of aggressive 

childhood neuroblastoma (Teitz et al., 2001) and small cell lung carcinoma (Shivapurkar et al., 

2002). Based on results obtained so far, we likewise implicate functional disruption of caspase-8 

in the oncogenesis of AML. While tumorigenesis involving caspase-8 inactivation is not without 

precedence, the mode of caspase-8 inactivation in NPMc+ AML appears to be unique, involving 
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excessive inhibition of caspase-8’s activity by a mutant regulator rather than caspase-8 mutation 

or transcriptional defects.  

One question that looms large at this juncture concerns the specificity of the tissue/cell 

type involved in neoplastic transformation with NPM’s mutation. Since cytoplasmic NPMc has 

the potential to inhibit apoptotic signalling involving caspase-8 and -6 in any tissues and cell 

types throughout the body, why then is the haematopoietic myeloid cells so particularly 

vulnerable to the oncogenic effect of the mutation?  Clues to answering this question may be 

gleaned from several transgenic animal studies. In the Npm1-/- mutants mice, developmental 

abnormalities were specifically observed in the anterior brain and haematopoietic system. For the 

latter in particular, the number of haematopoietic precursors in the blood islands of the Npm1-/- 

yolk sacs was greatly reduced, and their ability to differentiate into various lineages was 

profoundly impaired. Npm1-/- embryos showed a noticeable degree of apoptosis, as revealed by 

staining for activated caspase-3 (Grisendi et al., 2005). These indicate that NPM may have a 

specific role in the regulation of apoptosis in both the forebrain and haematopoietic system, 

among many other tissues in the body. It thus follows that disruption of NPM’s apoptosis-

regulatory function should affect these two tissues the most. Meanwhile, observations from other 

transgenic mice models further demonstrated specific vulnerability of myeloid precursors cells, 

among the various haematopoietic lineages, to impairment in death receptor signalling. For 

example, Fas-inactivating mutation in mice resulted in accumulation of myeloid colony-forming 

cells in the bone marrow, while the number of granulocytes and macrophages remained constant 

when compared to the Fas+/+ mice (Traver et al., 1998). Also, low-level expression of the 

caspase-8 inhibitor CrmA in mice provided some protection against Fas ligand–induced 

apoptosis and promoted accumulation of myeloid cells in the bone marrow (Pellegrini et al., 
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2005). Taken together, these observations indicate the importance of NPM-mediated apoptotic 

regulation in the homeostasis of the haematopoietic system and in particular, the myeloid cells. 

This, coupled to the above-mentioned observation that caspase-8 mediates myeloid 

differentiation, may explain the specific susceptibility of the myeloid precursors to neoplastic 

transformation in NPMc+ AML patients. 

In conclusion, our data strongly implicate impairment in caspase-8 mediated-death 

receptor signalling, caused by cytoplasmic mutant NPM, in the pathogenesis of NPMc+ AML. 

This in turn indicates the importance of the death receptor pathway in homeostatic maintenance 

of the myeloid haematopoietic lineage. More importantly, it highlights the stringent need by the 

cells to maintain the right amount of apoptotic regulators at the right place and right time, 

violation of which can lead to dire consequences such as AML.  
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6.1 “The accidental tourist”: from PD to leukaemic therapeutics 

 The current investigation started off as a search for potential biomarkers and therapeutic 

candidates for PD using the proteomics approach. Several proteins were identified through this 

exercise and their possible involvements in the aetiology of PD were speculated. Among them, 

NPM stood out as the candidate for further studies due to its recently discovered interaction with 

the tumour suppressor p53, as well as its ability to inhibit apoptosis when overexpressed. As PD 

is characterised by the sudden and massive demise of the dopaminergic brain cells leading to 

impairment of voluntary motor control, NPM’s anti-apoptotic potential lends credence to its 

candidacy for gene therapy or small-peptide drug delivery aiming at rescuing dopaminergic cells 

from premature death. However, before this aim can be fulfilled, an in-depth look into the 

mechanisms underlying cell death inhibition by NPM must be undertaken, in order to determine 

the specific inhibitory target(s) of NPM within the intricate death signalling network. This will in 

turn facilitate rationale small-peptide drug designing for PD therapeutics. 

 Though up-regulation in NPM protein level was observed on the 2DGE, we subsequently 

established that the apparent increase in NPM amount was due to stress-induced release of the 

nucleoli-bound NPM into the nucleoplasm and cytoplasm. Cytoplasmic translocation of NPM, 

presumably from the nucleoli and nucleoplasm, appeared to be an early stress response observed 

in several cell lines examined, and could be invoked merely with caspase-8 activation. In vitro 

and in vivo experiments strongly suggest an involvement of NPM in the negative regulation of 

the caspase-mediated death signalling progression. In particular, NPM was shown to specifically 

interact with and inhibit the activities of caspase-6 and –8, which are integral components of both 

the death receptor and mitochondrial death pathways. 
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 Caspase-8 is often the apical caspase activated in the death receptor systems, which 

serves to eliminate excess unwanted haematopoietic cells through apoptosis (Greil Crit Rev 

Immunol 2003). It may also regulate the lymphocytic and myeloid differentiation process 

(Hyung Nature 2002; Siechierro et al. Blood 2002). Excessive inhibition of caspase-8 may thus 

hold oncogenic potential by preventing cell death and differentiation from taking place. This 

appears to be the case for the NPMc+ AML, characterised by a mutation in the C-terminal end of 

NPM1 gene that leads to massive cytoplasmic dislocation of the protein. Excessive cytoplasmic 

NPM mutant sets an unusually high threshold for caspase-8’s self-activation at the death 

receptors, and this may represent the primary cause underlying AML pathogenesis.   

 The discovery made herein opens up therapeutic opportunities to develop biology 

adapted treatment strategies for NPMc+ AML, which accounts for about 35% of adult AML 

(Quentmeier Leukaemia 2005). Though PD and AML are two very different diseases affecting 

different organs, they appear to share a common underlying theme, one that revolves around 

deregulated cell death. In this case, the pathogenetic factor inhibiting apoptosis in AML (i.e. 

NPMc) may well be the therapeutic element required to stop unnecessary death of the post-

mitotic dopaminergic neurons in PD. However, before such translation can be made, more effort 

is needed in characterizing NPM’s pro-survival mechanisms, as well as in understanding how 

NPM can halt cell death without triggering oncogenesis in PD models.  
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6.2 Proposed hypothesis: cytoplasmic NPM translocation as a novel cytoprotective 

mechanism  

The nucleolus has been proposed to be a major cellular stress sensor and transmits signals 

to the system for regulating cellular stress response (Rubbi & Miller EMBO 2003).  Stress-

induced release of the nucleolar components into the nucleoplasm is one such mechanism the 

organelle employs in regulating cellular p53 response. Nucleoli-bound ribosomal protein L11 

and the tumour suppressor ARF both ‘leaks’ into the nucleoplasm in the event of stress-induced 

nucleolar disruption, and stabilizes p53 through binding of its antagonist MDM2 (Zhang et al, 

2003; Llanos et al., 2001). Heightened cellular p53 level in turn allows the cell to cope with 

stress by initiating cell cycle arrest, so as to allow repair to commence to remove any cellular or 

DNA lesions posing oncogenic threats. In addition to rapid p53 induction, the cell’s intricate 

death signaling network may also become activated under mild provocation in response to stress. 

It is therefore essential that the death signaling be halted to allow cellular repair works to 

commence, and only be reactivated when cellular damages are beyond salvation.  Here, our data 

substantiate one such cytoprotective mechanism that involves translocation of nucleolar 

components NPM into the cytoplasm for stress-associated anti-apoptotic functions.   

NPM is a predominantly nucleolar-bound protein which is known to shuttle between the 

nucleus and cytoplasm (Borer Cell 1989). As depicted in Figure 6.1(a), low level of cytoplasmic 

NPM can bind aberrantly activated caspase-6 and -8 and prevent escalation of death signalling in 

the absence of stress or death stimulation. On the other hand, stress-associated slight activation 

of caspase-8 can induce Crm1-mediated translocation of NPM from the nucleolus into the 

cytoplasm to curb further self-activation of caspase-8. The cytoplasmic NPM also binds newly-
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cleaved caspase-6 to prevent it from cleaving more procaspase-8 (Figure 6.1 b). Both NPM-

bound active caspase-6 and -8 are also less capable of cleaving downstream substrates such as 

other procaspases, Bid (for caspase-8) and lamin A (for caspase-6). Heightened cytoplasmic 

NPM level thus set a higher-than-usual threshold for activation of caspase-6 and -8, and prevents 

the latter two from cleaving downstream targets for death signal relay.  As such, active caspase-

8–induced cytoplasmic NPM build-up provides negative feedback regulation of apoptotic 

signalling involving caspase-6 and -8. Meanwhile, nucleolar-disrupting agents such as heat 

shock can also lead to massive release into the nucleoplasm (Figure 6.1b).  This may, in turn, 

provide a large pool of NPM readily available for Crm1-mediated translocation into the 

cytoplasm as well for caspase inhibition.   

Increasing the cytoplasmic pool of NPM thus help to quench caspase-6 and -8 mediated 

death signalling under stressful conditions, and presumably allow the cell to cope with insults 

without launching apoptosis. However, how does the cell overcome such death inhibition when 

there is the need to die?  It appears that a reduction in the initially heightened cytoplasmic NPM 

level may be necessary in allowing reactivation of caspase-8- and -6-mediated death signalling. 

Cleavage of NPM by the downstream executor caspase may be one such mechanism responsible 

for depressing the cytoplasmic NPM amount with prolonged stress. In this context, we noted that 

caspase-3, a direct downstream target of caspase-8, cleaves NPM directly (Chou Mol 

Pharmacology 2001). We likewise demonstrated that active caspase-6 cleaves recombinant NPM 

as well (data not shown). An escalation in the level of active caspase-3 and -6 due to, say 

irreparable cell-wide oxidative damage, may thus participate in a negative feedback loop that 

serves to undermine the caspase-inhibitory ability of cytoplasmic NPM for apoptotic signalling 

to commence.   
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Maintaining the right amount of cytoplasmic NPM at the right time during the stress 

response is hence crucial in holding apoptotic signalling in check until necessary. Meanwhile, 

when NPM becomes aberrantly lodged in the cytoplasm, as in the case of the NPMc+ AML, the 

threshold for caspase-8’s activation by DISC becomes permanently raised (Figure 6.1 c). As 

activated caspase-8 in myeloid cells not only mediate death signalling but also regulates the 

myeloid differentiation process, curbing of caspase-8 activation by the unusually high 

cytoplasmic NPM level may constitute the primary cause underlying immortalisation of the 

myelogenous blast cells in AML. The discovery of the association between cytoplasmic NPM 

mutant and leukaemia reiterates the importance of nucleoli-released, cytoplasmic-accumulated 

NPM in the regulation of the caspase-8-mediated death signalling network, and clearly supports 

our hypothesis proposing such translocation as a cytoprotective strategy to cope with cellular 

stress. 
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Figure 6.1.  Cytoplasmic NPM inhibits caspase-6 and -8 mediated death signalling.   (a) In an 
unstressed cell, basal level of cytoplasmic NPM is maintained by constant nucleo-cytoplasmic 
shuttling of NPM without disruption of the nucleoli. Low level of NPM in the cytoplasm helps to 
curb aberrant caspase-6 and -8 activation.  
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(Continued from previous page) (c) In the haematopoietic system, the death receptor pathways 
operate to eliminate superfluous cells that can cause leukaemogenesis and/or autoimmunity. 
However, in a patient carrying the frame-shift NPM1 mutation leading to cytoplasmic dislocation 
of the protein, the threshold for caspase-8 activation is raised sharply due to cytoplasmic 
abundance of the mutant protein. As a result, immaturely myelogenous blast cells in the bone 
marrow become resistant to death ligand-induced cell death. Since caspase-8 activation is 
required for myeloid differentiation, the undying cells remain undifferentiated as well. 
Consequently, the immortalised cells acquire other gene mutations that results in rapid cell 
proliferation, and oncogenesis ensues. 
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6.3 Future works 

Current NPM research efforts centre on NPM’s association with the tumour suppressors 

such as p53 and ARF, as well as NPM’s involvement in leukaemogenic fusion proteins resulting 

from chromosomal translocation. The present investigation, which delves into NPM’s previously 

unknown caspase regulatory function, is, to our knowledge, without precedence. The unravelling 

of a novel caspase-6/-8 inhibitory function for NPM here opens up therapeutic vistas for both PD 

and NPMc+ AML alike. Further works are, however, required to gain greater biological insights 

into the mechanism of caspase inhibition by NPM, so as to facilitate rationale drug designing for 

these diseases. Scope for future works includes the following:  

 

a)  Investigating the possibility of an interaction between caspase-10 and NPM. - Like caspase-8, 

caspase-10 is similarly activated at the death receptor. It has been suggested that the two 

caspases play redundant function  in human. This is supported by the observation caspase-8 

deficiency in humans is compatible with normal development (Chun et al Nature 2002). 

Inherited human Caspase 10 mutations has been shown to underlie defective lymphocyte and 

dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II (Wang Cell 1999). 

Given the high sequence similarity between the two caspases, we intend to investigate the 

possiblity that caspase10 may interact with and be inhibited by NPM as well. 
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b)  Structural studies of the inhibition mechanism of active caspase-6 and -8 by NPM - Apart 

from demonstrating physical interactions between NPM and active caspase-6/-8, we have also 

shown that NPM promotes the formation of an inhibitory complex involving the active caspases 

and their current substrates, thereby effectively sequestering them away from many other 

available substrate molecules (See Chapter 4, Section 4.3.4). The use of biophysical methods 

such as nuclear magnetic resonance (NMR) to investigate the crystal structure of NPM in 

complex with active caspase-6 and -8 is expected to shed light on the structural basis for such 

inhibitions, as well as reveal the order of contact of components within the NPM-caspase-

substrate inhibition complex.  

 

c) Development of therapeutics for AML - Since inhibition of caspase-8 and -6 by 

cytoplasmic NPM underlie defective myelogenous cell apoptosis in AML, disruption of the 

interaction may increase the susceptibility of the leukimic cells to apoptosis in response to 

chemotherapeutic treatments. Using an ELISA based screening method, we intend to identify 

small molecular compounds capable of disrupting the interaction between NPM and the active 

caspases. This compound can be developed as a potential pharmacological agent other cancers 

with overexpression of NPM. 

 

d)  Development of therapeutics for Parkinson's disease - Given NPM's ability to inhibit the 

activities of caspase-6 and -8, NPM can be explored as a therapeutic agent for inhibiting 

excessive cell death in neurodegenerative disease such as PD. We have mapped NPM's domain 

of interaction with caspase-6 and -8 to the C-terminal heterodimerisation domain using GST 
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pull-down assay (Figure 6.2), and is in the midst of determining the portions within NPM's C 

terminal that is sufficient to effect substantial caspase-6/-8 inhibition in vitro. This will facilitate 

the development of small peptide drugs capable of passing through the blood brain barrier to the 

target neurons. We may further look into the development of an effective vector system for small 

NPM peptide deliverance into the dopaminergic neurons to curb excessive cell death, possibly 

using MPP+ treated mouse/rats as animal models to explore the effectiveness of the NPM 

peptide inhibitor 
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Figure 6.2   GST pull-down assay showing interaction between C-terminal NPM and active 
caspase-6/-8.   (a) Whole-cell lysate from apoptotically-induced MN9D cells was used in GST 
pull-down assay using either empty GST beads, GST-tagged full length NPM or its various deletion 
mutants. Immunoprecipitates were resolved by SDS−PAGE and subjected to immunoblotting using 
anti-NPM, anti-caspase-6 or anti-caspase-8 antibody, (b), domain structure of the full-length 
GST−NPM protein and the various deletion mutants. HeD, heterodimerization domain; HoD, 
homodimerization domain; NBD, nucleic acid binding domain; NLS, nuclear localization signal.
Arrows indicate the exact boundary of deletion in the various mutants. Reproduced with permission 
from Miss Ang Swee Tin.  
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