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Abstract 

Medical treatments involving the use of shockwaves and ultrasound are 

gaining popularity. When these strong sound waves are applied, cavitation bubbles 

are generated in nearby tissues and bodily fluids. This thesis aims to study the 

complex bubbles’ interactions with the tissues and among themselves. Simulations 

are done using the Boundary Element Method (BEM) which has computational 

efficiency advantage as compared to other numerical methods.  

Firstly, the interaction between a shockwave and a bubble is modeled and 

verified against experimental results. A temporally inverted lithotripter shockwave is 

tested. This waveform has the potential benefit of minimizing collateral damages to 

close-by tissues or blood vessels.  Next, the non-spherical bubble dynamics near a 

biomaterial in a medical ultrasound field is investigated. Complex bubble behaviors 

are observed; for certain cases, the bubble jets towards the biomaterials, and in other 

conditions it forms high speed jets away from the materials. Also, the model is 

extended to study a microbubble’s interaction with high intensity pulsed ultrasound 

proposed for tissue cutting (histotripsy). In medical applications, multiple bubbles are 

often involved. To provide better understanding of multiple bubble interaction, an 

experimental study using high speed photography of spark-generated bubbles is 

performed. Corresponding numerical simulations are done to compare and highlight 

the details of the complex fluid dynamics involved. Good agreement between the 

experimental data and the 3D BEM results are obtained.  



 vi

The thesis concludes with discussions on its scientific contributions, some 

new development in acoustic bubble applications (for example microbubble contrast 

agents for cancer treatment), and hazards involved in the use of ultrasound in medical 

therapy. It ends with a conclusion and some suggestions for future work.  
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(f /f0 = 1.5). (a) The dimensionless t′ is as indicated near each history 
profiles. (b) The corresponding profiles (‘P1’, ‘P2’ and ‘P3’) are 
shown on the R′ vs t′ graph. The pressure oscillation of the sound wave 
is indicated on the top (P′ vs t′ graph). (c) The 3D visualization of the 
bubble is based on the solid line profile (‘P3’) at t′ =5.812. 
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sound field (f /f0 = 1.5). (a) The dimensionless t′ is as indicated near 
each history profiles. (b) The corresponding profiles (‘P1’, ‘P2’ and 
‘P3’) are shown on the R′ vs t′ graph. The pressure oscillation of the 
sound wave is indicated on the top (P′ vs t′ graph). (c) The 3D 
visualization of the bubble is based on the solid line profile (‘P3’) at  
t′ =4.640. 

 
4.13     The variation of bubble radius, R′, with time (t′). The pressure                      98 

variation of the sound wave (f /f0 = 1.0, A= 0.8) is plotted on top with a 
secondary y-axis on the right. 
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4.14    Maximum jet velocity for a bubble collapsing near various   99 
biomaterials in an ultrasound field of  f /f0 = 1.0. Both axes are plotted 
in logarithmic scales. 

 
4.15    The variation of bubble radius, R′, with time (t′). The pressure            100 

variation of the sound wave (f /f0 = 0.5, A= 0.8) is plotted on top with a 
secondary y-axis on the right. 

 
4.16     The variation of bubble radius, R′, with time (t′). The pressure               102 

variation of the sound wave (f /f0 = 1.5, A= 0.8) is plotted on top with a 
secondary y-axis on the right. 

 
5.1       Pulsed ultrasound with various intensities as indicated, (a) 1000,  105 

(b) 3000, (c) 5000, and (d) 9000 W/cm2 as used in Xu et al (2005) and 
the simulations in this section. It is noted that all the sound waves start 
off with a tensile part that will cause the bubbles to expand before they 
are forced to collapse by the compressive component of the waves. 

 
5.2       The microbubble profiles with initial radius of 1 μm when it is hit by 108 

the pulsed ultrasound of intensity 1000 W/cm2 (Pulse 1). It expands 
from its initial size (thick solid line at the center of the plot) to its 
maximum radius, Rmax = 25.9 μm, at t = 0.881 μs (dotted line). Then 
the bubble collapses with a jet at t = 1.229 μs. The formation of the jet 
is shown with the respective bubble profiles at different time (in μs) 
which is indicated next to the profiles. 

 
5.3      (a) Variation of bubble radius in time for microbubbles of radii  109 

between 1 to 10 μm inclusively. Also indicated is the pressure 
variation in time of the pulsed ultrasound wave of 1000 W/cm2 (with 
y-axis on the right). The bubbles obtain maximum radii between 25 to 
30 μm and collapse between 1.2 to 1.4 μs. The collapse times are 
within the first cycle of the pulsed ultrasound wave as shown in (b) 
where the complete pulsed ultrasound wave is plotted together with the 
1 μm bubble’s radius variation in time. 

 
5.4       The bubble profile at its moment of collapse for a 1 μm bubble  113 

interacted with (a) Pulse 1 (pulsed ultrasound of intensity 1000 
W/cm2), and (b) Pulse 4 (pulsed ultrasound of intensity 9000 W/cm2). 
The jet tip is much wider with the radii of the jets, Rjet, doubling from 
(a) 3 μm to (b) about 6.5 μm. 

 
5.5       Positions of the top and bottom nodes as a bubble of 1 μm radius is  114 

impacted by a pulsed ultrasound wave of 1000 W/cm2 (Pulse 1). The 
translation of the bubble center is indicated as squares on line. It is 
seen that the movement during the collapse phase is mainly due to the 
movement of the bottom surface in the direction of positive z. 
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5.6      The profiles of a (a) 0.01 μm and a (b) 0.1 μm bubble in its collapse  115 
phase after being hit by Pulse 1 (1000 W/cm2 pulsed ultrasound as 
shown in Fig. 5.1). The time (in μs) for each profile is indicated next 
to it. Both bubbles expand to about 24 μm, and collapse at around t = 
1.2 μs. 

 
5.7      The radius versus time curve (left y-axis) for a 20 μm bubble in a  116 

pulsed ultrasound field as indicated by the pressure profile in dotted 
line (right y-axis). The bubble grows to a maximum radius of 36 μm in 
the first period of its oscillation. It collapses only at the end of its 
second oscillation period which coincides with the second cycle of the 
ultrasound waves (Pulse 1). 

 
5.8      (a) Profiles of a 30 μm bubble interacting with Pulse 1 (pulsed  118 

ultrasound of 1000 W/cm2). The dashed line profile corresponds to the 
point A in (b) the bubble radius R, versus time curve (thick line, left y-
axis). Also shown is the Pulse 1 pressure variation in time (dotted line, 
right y-axis). The final collapse from point B to C with the timing 
indicated is shown in (a). The final stage, the bubble developed 
multiple jets and is likely to break into several smaller bubbles. 

 
5.9      (a) Oscillations of 40 to 100 μm bubble as a result of interaction with a 120 

pulsed ultrasound field (Pulse 1, 1000W/cm2). The thick lines from 
bottom to top indicates the radius R variation in time for bubbles of 40, 
50, 60, 70, 80, 90, and 100 μm in initial radii (left y-axis). Also shown 
is the Pulse 1 profile in dashed line with the corresponding pressure on 
the right y-axis. (b) Oscillation of a 100 μm bubble subjected to Pulse 
1. The circled portion corresponds to the respective curve of the 100 
μm bubble in (a) as pointed by the arrow. After the passing of the 
pulsed ultrasound, the bubble continues to oscillate in its resonance 
frequency of about 30 kHz (with a corresponding period of 33 μs). 

 
6.1       Electrical circuits for spark bubble experiments involving (a) a bubble 124 

near an elastic membrane, and (b) multiple bubbles interactions; at the 
crossing of each electrode, a bubble is generated. 
 

6.2      (a) Selected frames showing a spherical expansion and collapse of a  127 
single bubble with maximum radius mmR 5.3max =  in a free field with 
the time from the start of the spark (first image). The bubble rebounds 
and collapses again in the last two frames (t = 1467 μs, and t = 1700 
μs). The solid line in the second image shows the scale of 5 mm. 
Pictures reproduced with permission from author (Adhikari, 2006). (b) 
Bubble radius-time histories: a comparison between experiment and 
theory. The dotted and solid lines represent the curves with vapor 
pressure 5105.0 ×=vp  Pa and with 0=vp  Pa, respectively, and the 
squares represent the experimental data. 
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6.3      Sequence of experimental result of a bubble initiated 3.0 mm above a 132 

membrane from (i) to (viii). Time was taken from the frame just before 
the spark was observed as t = 0 μs at (i). The corresponding time in 
microseconds is noted under each image. The bubble expands from (ii) 
to its maximum size (Rmax = 4.41 mm) at (iii), pushing away the 
membrane. Then it enters its collapse phase from (iv) to (viii). The 
membrane moves towards the collapsing bubble. Noticeable traveling 
waves in the membrane are observed. No jet is formed; instead, a 
‘mushroom-shaped’ bubble is seen in (vii) t = 1280 μs. Then the 
bubble splits up in two parts at (viii) t = 1360 μs. The bottom bubble is 
larger than the top bubble. 

 
6.4      Experimental observations of a spark bubble initiated 4.16 mm above 133 

an elastic membrane (frame (i)). The bubble obtains its maximum 
radius, Rmax, of 3.2 mm at 400 μs (frame (iii)). Then the bubble 
collapses spherically to its minimum at frame (vi) (t = 720 μs). After 
that the bubble rebounds at frame (vii) (t = 800 μs), and collapses 
again at frame (viii) (t = 960 μs). 

 
6.5      The growth and collapse of a spark bubble which is initiated 2.9 mm above 135 

the elastic membrane (frame (i)). The sequence is to be interpreted 
from top left to bottom right (frame (i) to (viii)). The bubble grows to 
its maximum size at t = 960 μs, and obtains a Rmax of 4.5 mm (frame 
(iii)). It collapses with a flattened bottom surface in frame (iv) and (v). 
The next two frames (frame (vi) and (vii)) see the formation of a 
‘mushroom’ shape bubble. In the last frame, the bubble splits into two 
bubbles of almost equal size. 

 
6.6       Numerical comparison with experimental results (experimental results 141 

reproduced with permission from author (Adikhari, 2006)). The three 
bubbles are generated at the same time. Bubble 1, being smallest in 
size, collapses first. It forms a jet towards bubble 2. The figures on the 
left of the pair are experimental observations from the high speed 
camera filming at 20000 frames per second. Frame 1 corresponds to 
the frame just before the bubbles are created, t=0 μs. The frame 
number and time in μs are indicated on the photographs. The bubbles 
are created at the ‘crossing points’ as indicated at Frame 1. The figures 
on the right of the pair are simulation results with time in μs provided. 
The vapor pressure, pv, is taken to be 0.5 bar. It is noted that the last 
simulation result (t=746 μs) does not match exactly to the timing of 
Frame 18 in (a) (t=850 μs) since the former depicts an observation that 
should occur slightly before Frame 18 as the top bubble in Frame 18 
has completely collapsed while in the simulation, the jet in the 
collapsing bubble has just reached its opposite wall. 
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6.7      Case 1: Final stage of collapse of the top bubble (bubble 1).   143 
Simulation results in 3D, with time (t) in μs as indicated between the 
subfigures from t=729 to 746 μs. The jet formed is directed towards 
bubble 2 (not shown here) with a maximum jet velocity of about 50 
m/s. 

 
6.8      Case 1: Experimental results after the collapse of the top bubble  143 

(reproduced with permission from author (Adikhari, 2006)). The  
inter-frame rate used is 20000 frames per second. The frame number 
continues from that in Fig. 6.6. The top bubble 1 has fully collapsed 
with a thin jet towards bubble 2. Bubble 3 migrates significantly 
towards bubble 2 as they collapse with jets towards one another. 

 
6.9      Case 2: Experimental results plotted together with numerical  145 

simulations (experimental results reproduced with permission from 
author (Adikhari, 2006)). Bubble 1 and 3 are created 25 μs after 
bubble 2. The center bubble 2 enters its collapse phase while bubble 1 
and 3 are still expanding. Being much flattened on both the top and 
bottom surfaces, bubble 2 collapses along its equator forming a 
‘dumbbell-shaped’ bubble. The left figures of the pair are experimental 
observations from the high speed camera filming at 20000 frames per 
second. Frame 1 corresponds to the frame just before the bubbles are 
created (frame 1 to 4 are not shown here). The frame number and time 
in μs are indicated on the photographs. The right figures of the pair are 
simulation results with the time in μs provided. They roughly 
correspond to the experimental results in (a). For example the last 
simulation result t=759 μs corresponds to Frame 16 in (a) (t=750 μs). 
The vapour pressure, pv, is taken to be 0.5 bar. 

 
6.10    Case 2: Experimental results after the collapse of the center bubble.  146 

The frame number continues from that in Fig. 6.9. As bubble 2 has 
fully collapsed while bubble 1 is still expanding (Frame 17), when it 
eventually collapses (Frame 22), it does so almost spherically. Bubble 
3, on the other hand, collapses with a jet towards bubble 2. 

 
6.11    Case 3: Experimental results plotted together with numerical simulations  148 

(experimental results reproduced with permission from author 
(Adikhari, 2006)). Bubble 3 is created first, followed by bubble 1 (on 
Frame 3, not shown here) at time = 50 μs and bubble 2 at time = 350 μs 
(Frame 9, not shown here). The expansion phase of bubble 2 coincides with 
the collapse phases of bubble 1 and 3. The resultant fluid flow causes the 
formation of an elliptic bubble 2. The left figures of the pair are experimental 
observations from the high speed camera filming at 20000 frames per second. 
Frame 1 corresponds to the frame just before the bubbles are created (frame 1 
to 7 are not shown here). The frame number and time in μs are indicated on 
the photographs. The right figures of the pair are simulation results with the 
time in μs provided. They roughly correspond to the experimental results in 
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(a). For example the last simulation (t=850 μs) corresponds to Frame 18 in (a) 
(t=840 μs). The vapor pressure, pv, is taken to be 0.4 bar. 

 
6.12     Case 3: Experimental results after the collapse of the bottom bubble 149 

(bubble 3) (reproduced with permission from author (Adikhari, 2006)). 
The frame number continues from that in Fig. 6.11. Both bubble 1 and 
3 collapse with a jet away from bubble 2. The elongated bubble 2 
collapses with the formation of an elliptic bubble in frames 23-25. 

 
6.13    Case 4: Experimental results plotted together with numerical  151 

simulations. All bubbles are created at the same time. Bubble 1, being 
smallest, collapses first with a jet towards the elongated bubble 3. (a) 
Experimental observations from the high speed camera filming at 
15000 frames per second. Frame 1 corresponds to the frame just before 
the bubbles are created (frame 1 to 8 are not shown here). The frame 
number and time in μs are indicated on the photographs. (b) 
Simulation results with the time in μs as indicated. The vapor pressure, 
pv, is taken to be 0.5 bar. (c) Sequence of frames after the collapse of 
the top bubble. Frame numbers as indicated is continued from (a). 
Bubble 2 and 3 collapse with two jets towards one another. 

 
6.14    Case 5: Sequence of frames from Frame 6 to Frame 14 from top left to 155 

bottom right (Frame 1 corresponds to the frame just before the bubbles 
are created, Frame 1 to 5 are not shown here). The filming rate is 
15000 frames per second. All bubbles are created at the same time. 
Bubble 1 splits into two as it collapses. Opposite jets are developed in 
the resultant bubbles, and the lower bubble’s jet penetrates bubble 3 
which top surface is elongated towards bubble 1. Bubble 2 gets very 
close to bubble 3, forming a ‘mushroom-shaped’ bubble (Frame 7-9) 
before it eventually collapses by splitting into two parts. 

 
6.15    Case 6: Selected frames from top left to bottom right with frame  157 

number as indicated. The frame rate used is 15000 frames per second. 
The intervals between the creation of the first (bubble 1) and the 
second (bubble 2), and the first and the third (bubble 3) bubbles are 
66.7 μs and 267 μs respectively. Bubble 1 has collapsed, while the 
others are still expanding. The jet in bubble 2 directing away from 
bubble 3, induces the thin elongation of the tip of bubble 3 (Frame 13). 
As bubble 2 becomes toroidal and rebounds (Frame 14-16), a very 
high speed jet (greater than 180 m/s) is developed in bubble 3 that 
‘catapults’ away from bubble 2. 

 
6.16    Coalescence of two adjacent bubbles with the corresponding frame as 161 

indicated on the top left (experimental results reproduced with 
permission from author (Adikhari, 2006)). The inter-frame rate used is 
20000 frames per second. Frame 1 corresponds to the frame just before 
the bubbles are created (not shown here). The bubbles are at their 
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maximum sizes at frame 15 with the scale as provided. These two 
bubbles coalesced into one bubble with pronounced ‘swelling’ at the 
middle. The resultant bubble eventually collapses elliptically (frames 
25 and 26). After that, the bubble fragmented into small bubbles, 
forming bubble clouds (frame 35). They re-expand and move away 
from the center of the frame (frame 62). 

 
6.17     Analogous comparison between a system of four bubbles (Fig. 6.18)  163 

and a system of two bubbles with a rigid wall (Tomita et al., 1994). 
According to the image theory, both systems are equivalent. 

 
6.18    Simulation results of four bubbles (only two are shown since the other 164 

two are symmetrically placed with exactly the same evolutions in 
time) with the time (t) in microseconds (μs) as indicated. The center of 
this four bubbles system is at z=0, thus it is equivalent to simulating 
two bubbles with a solid wall at z=0. Maximum radii of the bubbles 
are Rmax,1=0.59 mm and Rmax,2=0.85 mm. Initial distance between 
bubble and the wall are lbubble 1=0.79 mm and lbubble 2=2.69 mm. All 
these parameters are the same as those in the experiment performed by 
Tomita et al (1990). The right bottom figure shows the cross-section of 
the bubbles at the plane y=0 for t=155.6 μs. The flattening of the top 
and bottom poles of bubble 1 (t=47.43 and 81.35 μs), the necking 
phenomenon following that, and the elongation of top surface of 
bubble 2, show very close correspondence to the high speed 
photography results in Tomita et al. (1990). 

 
6.19     Anologous comparison between a system of three bubbles arranged  165 

in-line with the center bubble being smaller than the top and bottom 
bubbles. From experimental and numerical results for Case 2 (Fig. 6.9), 
and the experimental results from Shima and Sato (1980), Kucherenko 
and Shamko (1986), and Ishida et al. (2001), the results between these 
systems show close correspondence in terms of the center bubble 
profile evolution. 

 
6.20    A spark bubble near a soft elastic material (Young’s modulus =  168 

1.7 MPa). The video is taken with a high speed camera at 12,500 fps 
(i.e. interframe period is 80 μs). Indicated on the top right corner of 
each frame is the frame number starting with frame 1 (one frame just 
before the spark occurs). The bubble is initiated 0.7 mm away from the 
material, and it grows to its maximum size of 4.33 mm in radius at 
frame 10. Then the bubble collapses at frame 15. From frame 17 to 88, 
the jet from the collapsing bubble shoots into the soft material (depth 
of penetration at frame 88 is 0.51 cm). Then the gas trapped from the 
collapsed bubble forms a bubble coated with the elastic material 
(radius = 0.74 mm) and rises again. It rises in a zig-zag manner from 
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frame 358 to 1528. Note the visibility of the wake at the back of the 
rising bubble. 

 
6.21     Pseudo-2D bubble collapses near a solid wall (top of the frames).  169 

Framing rate is 15,000 fps. Selected frames up to 44 are shown, and 
the time after the spark has initiated is given at the bottom of each 
frame. Initially the crossing of the electrodes is placed 2.9 mm below 
the wall (frame 1). Then the bubble grows (frame 9) and achieves its 
maximum radius of about 7.0 mm at 0.933 ms. It then collapses with a 
jet towards the boundary (frames 21 to 28). The last row of frames 
show the interesting vortices along the solid wall as the two split 
bubbles roll away. 

 
6.22    Interaction of a stationary 3D bubble with a pseudo-2D spark bubble  171 

that is 4.8 mm away (between the center of the stationary bubble and 
the crossing of the electrodes as shown in frame 1). Framing rate is 
15,000 fps. Selected frames up to 24 are shown, and the time after the 
spark has initiated is given at the bottom of each frame. The stationary 
bubble has a horizontal radius of 1.65 mm. The spark bubble has a 
maximum radius of 4.7 mm (frame 11) at t = 667 μs. The shock waves 
and flow generated by the expanding spark bubble cause the stationary 
bubble to develop a jet and breaks into two. Then as the spark bubble 
collapses from frame 19 to 24, the split bubbles are attracted towards 
the latter and eventually breaks into many small bubbles (at last frame, 
t = 1533 μs). 

 
6.23    Two spark bubbles, 1.3 mm apart (between the crossings of the  172  

electrodes as shown in frame 1. Selected frames up to 25 are shown, 
and the time after the spark has initiated is given at the bottom of each 
frame. The scale for the image is shown as a bar in frame 8. Both 
bubbles expand (frame 8) and coalesce after 867 μs. Pronounced 
‘swelling’ at the middle similar to that in Fig. 6.16 is seen. Then the 
joint bubble collapses almost spherically from t = 1007 μs to 1600 μs. 
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Chapter 1 

Introduction to acoustic bubble dynamics 
  

 The study of sound wave interaction with bubbles in a fluid is of interest to a 

wide-ranging field of science. From sonochemistry and medical applications such as 

fragmentation of kidney stones, to industrial processes like ultrasonic cleaning and 

defense technology involving the use of sonar for undersea exploration, the 

interaction of the bubbles and the acoustic field is of importance. The bubbles 

involved could be gas or vapor bubbles, or ‘cavities’ formed as the liquid is ‘torn 

apart’ by tension forces. Nevertheless, these bubbles are oscillating (non-equilibrium), 

and affecting the fluid and the surrounding acoustic field in a complex manner. For 

instance, the bubble-liquid interface would continue to change shape and size, 

pressure and temperature in the bubble and its surrounding liquid would fluctuate 

rapidly, and complex phenomena such as thermal diffusion and acoustic streaming 

may occur.  

 This chapter begins with a brief review of the history of bubble dynamics 

studies. Then more specifically, a short outline of some important acoustic bubble 

work is given. The role of bubbles in some common medical applications is described. 

And lastly, the scope and objectives of this thesis are presented with brief summaries 

of the contents of the chapters to come.  

 

1.1 Brief review of previous work on bubble dynamics 
 

 The study of bubble dynamics was initially motivated by the damages 

sustained in ship propellers. Lord Rayleigh (Rayleigh, 1917) pioneered the study by 
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giving a theoretical description to a spherically collapsing bubble. The asymmetric 

collapse of a bubble leading to the development of a high speed jet from one side of 

the bubble surface to its opposite side with the eventual penetration of the surface was 

first suggested by Kornfeld and Suvorov (1944). Using specially prepared bubbles, 

Naude and Ellis (1961) and Benjamin and Ellis (1966) were able to confirm the 

postulation experimentally. Since then, the role of collapsing bubbles in causing 

damage to solid surfaces has motivated a large number of scientific investigations. 

 Using high speed photography, the jetting of an oscillating bubble near a solid 

boundary was studied in detail by Benjamin and Ellis (1966), Gibson (1968), 

Lauterborn and Bolle (1975), Lauterborn (1982), Lauterborn and Vogel (1984) 

Tomita and Shima (1990), and Soh (1991) among others. These bubbles are typically 

generated by high voltage electrical spark discharge or using a pulsed laser. Accurate 

photographic records of bubble shape and jet evolution as shown in Fig. 1.1 were 

obtained.  

 
Fig. 1.1 High speed photographic recording of the collapse of a spark bubble of maximum 
radius (taken from frame 11), Rmax, of 3.9 mm near a solid boundary. The frame rate used is 
12500 frames per second (fps) and the corresponding frame numbers from the first frame 
showing the initial spark are given below the pictures. The bubble is initially located 7.8 mm 
away from the solid boundary below. A penetrating high speed jet is observed moving 
towards the wall (from Frame 19 to 23). The experiment was performed by the author. 
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 When the bubble collapses near a free surface, however, the jet formed is 

directed away from the free surface (as oppose to moving towards the solid boundary). 

Experimental works on this phenomenon were done by Gibson (1968), Chahine 

(1977), Gibson and Blake (1980), Blake and Gibson (1981), and Robinson et al 

(2001). It was also reported that the water-air interface formed a water plume after the 

collapse of the bubble beneath it.  

 The flexibility of the nearby boundary seems to determine the direction of the 

reentrant bubble jets. For a completely flexible surface like the free surface, the jet is 

directing away from the surface; while for a non-flexible solid surface, the jet is 

directing towards it. Therefore it leads one to wonder what will happen if the surface 

has flexibility that is in between these two extremes. Gibson and Blake (1982), and 

Blake and Gibson (1987) studied both experimental and analytically the bubble 

dynamics near a rubber-coated solid boundary. They noticed that during the collapse, 

the bubble contracted more rapidly from the sides toward the axis of symmetry, 

formed an “hourglass” shape bubble (a similar phenomenon is reported in Fig. 6.3 in 

Chapter 6. It is termed “mushroom-shape” bubble in that figure), and eventually split 

into two bubbles. Tomita and Kodama (2003), and Shima et al (1989) also used 

composite surfaces (using a rubber plate and foam rubber) to study the interaction, 

and reported the same perturbation on the sides of the bubbles which led to bubble 

splitting and jetting. Experiments by Brujan et al (2001a, b), however, made use of a 

polyacrylamide gel (PAA) as the elastic boundary. The laser-generated bubble of 

Brujan et al (2001a, b) was found to exhibit complex interactions with this nearby 

interface. They reported “mushroom” shaped bubble formation, bubble splitting, and 

the elevation and repulsion of the elastic boundary. Recently, Turangan et al (2006) 
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introduced a spark bubble next to a stretched elastic membrane. Similar complex 

bubble and interface behaviors were reported.  

 Apart from experimental observations, theoretical and analytical studies on 

bubble dynamics near the different types of boundary were performed too. The first 

fully numerical paper which studied the phenomenon of a cavitation bubble 

collapsing near a solid (rigid) boundary is by Plesset and Chapman (1971). 

Lauterborn and Bolle (1975) compared their experimental results with numerical 

calculations based on Plesset and Chapman (1971), and reported remarkable 

agreement. Following these initial studies, more analytical works have been 

performed. These include studies done by Guerri et al (1981), Prosperetti (1982), 

Cerone and Blake (1984), Taib et al (1984), Blake et al (1986), Zhang et al (1993), 

and Klaseboer et al (2005). In some of these works, the Boundary Element Method 

(BEM) was utilized to solve the equations involved. More details about this numerical 

method will be given in Chapter 2 on numerical modeling.  

 As for the modeling of an oscillating bubble collapsing near a free surface, a 

series of papers by Blake and co-workers (Blake and Gibson (1981), Blake (1988), 

Cerone and Blake (1984), Blake and Gibson (1987) etc.) detailed the theoretical 

formulation and the BEM implementation. A number of other numerical studies were 

done to study this problem. Starting with the classical textbook of Cole (1948) 

treating the bubble with the method of images, Best (1991), Wilkerson (1992), Wang 

et al (2003), and Klaseboer et al (2005) studied underwater explosions using 

axisymmetric and three dimensional (3D) BEM. Jetting phenomena and formation of 

toroidal shape bubbles were successfully simulated. 

 There are relatively limited numerical works involving flexible surfaces. Apart 

from the mentioned study from Blake and Gibson (1987), Duncan and Zhang (1991) 
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coupled BEM and a Finite Difference Method to study the fluid motion of an 

oscillating bubble near a spring-backed surface. Later, this model was extended by 

Duncan et al (1996) to incorporate a Finite Element model of the composite structure. 

Recently, Klaseboer and Khoo (2004a, b) developed a full BEM scheme to simulate 

the bubble-elastic boundary interaction. Simulation results from this model have been 

successfully compared to experimental data from Turangan et al (2006). It has also 

been extended to model various biomaterials as described in Chapter 4 on ‘Ultrasonic 

bubbles near biomaterials’. 

 

1.2 Background on acoustic bubble dynamics 
  

Apart from the presence of a nearby boundary (either solid or free surface), the 

bubble jetting phenomenon is also observed when the bubble interacts with a strong 

sound wave, such as lithotripsy shockwave or high intensity focused ultrasound 

(HIFU). This phenomenon is commonly studied because of its importance in 

lithotripsy treatment for the fragmentation of kidney stones, and ultrasonic cleaning 

for the electronic industry. For a comprehensive review on acoustic bubbles, the 

reader is advised to refer to the book by Leighton (1994).  
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1.2.1 Shockwave bubble interaction 
   

 Most studies on shockwave bubble interaction involve a single bubble (two or 

three dimensional), and a planar or focused shockwave. The shockwaves are often 

generated by a lithotripter (either with spark discharge or using piezo-electric 

transducer) or focused piezo-electric transducers in a disc or cylindrical shape. The 

use of a disc-shaped quasi two dimensional (2D) bubble to study shockwave bubble 

interaction was first suggested by Brunton (1966). He introduced a bubble in the 

liquid between two transparent plates, and then allowed the bubble to be hit by a 

planar shockwave. An extension of the idea was used by Dear and Field (1988). They 

added 12 % gelatin to the water between the plates so as to allow better control of the 

position and size of the cavities. Very high speed jets up to 400 m/s were measured 

when the millimeter-sized cavities were subjected to strong shocks of 0.26 GPa. In 

another similar setting, a stronger planar shock of 1.88 GPa was used by Bourne and 

Field (1999) to study the role of hydrodynamic and adiabatic heating in ignition 

associated with the shock bubble interaction. Kodama and Takayama (1998) attached 

bubbles to a gelatin surface and allowed them to interact with a spherical shockwave 

of 10.2 ± 0.5 MPa to understand the destructive effect of jet penetration on nearby 

biological tissue specimens. They generated the spherical shocks using micro-

explosives of silver-azide pellets. More recently, full 3D studies of shockwave bubble 

interactions were performed by Ohl and Ikink (2003), and Sankin et al (2005) among 

others. Both groups used a clinical lithotripter transducer to generate shockwaves of 

strength between 20 to 40 MPa which interacted with gas bubbles (for Ohl and Ikink 

(2003)) or laser generated bubbles (for Sankin et al (2005)). High speed jetting of 

bubbles in the direction of travel of the shockwaves was reported. 
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 The difficulties in generating shockwaves and the stringent high speed 

photography requirements for experimental study of shockwave bubble interaction 

can be mitigated by numerical simulations. By numerical calculations, it is possible to 

study the phenomena in great details without being limited by temporal or spatial 

resolution of the experimental diagnostics. Ding and Gracewski (1996) utilized the 

Arbitrary Lagrangian-Eulerian (ALE) method to study the interaction of a strong 

shockwave with a stationary bubble in an axisymmetric configuration. Jamaluddin 

(2004) also did a similar set of simulations using the Free Lagrange method (FLM). 

The author will compare the results from these two studies with that from BEM 

simulations in Chapter 3 on shockwave bubble interactions. These apart, Ball et al 

(2000) implemented a 2D FLM code to generate simulation results which were set to 

the initial conditions from Bourne and Field (1992, 1999). The simulations 

successfully captured many important phenomena such as shock transmission inside 

the bubble and the prediction of local heating of the bubble content.  

 

1.2.2 Bubble in an ultrasound field  
 

 One of the most impressive photographs of a jetting bubble is from Crum 

(1979). A small bubble of 3 mm was placed on a pulsating table of 60 Hz, and was 

photographed using stroboscopic illumination. Blake et al (1999) modeled the 

phenomena observed using BEM whereby the influence of the oscillating table was 

incorporated into the reference pressure in the Bernoulli equation (more details about 

modeling ultrasound field this way can be found in Chapter 2) by adding a modified 

gravitational term associated with the sinusoidal table displacement. Other studies 

involving standing ultrasound waves include the research on microstreaming from 
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bubble oscillation (e.g. Elder (1959), Marmottant and Hilgenfeldt (2004), and Tho et 

al (2007)), light emission from the bubble due to high amplitude driving waves 

(sonoluminescence)(e.g. Brenner et al (2002)), and chemical reactions triggered in 

acoustic waves (sonochemistry)(e.g. Suslick (1998)). Since they are not examined in 

detail in this thesis and are relevant only as subjects for future studies, they are 

included in a brief manner for the completeness of discussion. 

 When a stationary bubble is trapped in a weak oscillating ultrasound field, it 

will undergo shape oscillations. The bubble oscillates in different modes, causes 

streaming flow in the surrounding liquid, but does not collapse with a jet. Kolb and 

Nyborg (1956) were the first to study this phenomenon. Elder (1959) extended their 

work by classifying the streaming patterns observed. Liu et al (2002) made use of the 

streaming in the liquid caused by this acoustic bubble for the mixing of liquid in 

micro-channels. Also for microfluidic devices, Marmottant and Hilgenfeldt (2004) 

suggested the use of the flow field to transport particles. More recently, Tho et al 

(2007) used micro-PIV (particle imaging velocimetry) technique to photograph the 

microstreaming patterns in single and multiple bubble systems to great accuracy. 

Some numerical works on this topic include that from Davidson and Riley (1971), Wu 

and Du (1997), and Longuet-Higgins (1998).  

 When the ultrasound field applied is of higher amplitude, it may cause the 

collapse of the existing bubbles in the liquid. The violent bubble collapse results in 

conversion of the kinetic energy of the liquid motion into the heating of the bubble 

contents. As a result, high local temperatures and pressures are created. These local 

sites serve as hotspots for driving chemical reactions which require extreme 

conditions. The chemistry induced by the bubble collapse has been extensively 
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studied by Flynn (1964), Neppiras (1980), Mason & Lorimer (1988), Suslick (1988), 

and Suslick (1998).  

 The concentration of energy in the acoustic bubble under certain conditions 

causes the emission of light. This phenomenon, first observed by Frenzel and Schultes 

(1934), is known as sonoluminescence. Single Bubble Sonoluminescence (SBSL) 

involves the trapping of a stationary bubble in the node of a standing acoustic field. 

Many experiments and numerical studies have been reported, and interested readers 

are advised to refer to articles by Barber and Putterman (1992), Gaitan et al (1992), 

Ohl et al (1998), and Brennen et al (2002) for more information. When the light 

emission involves many short-lived bubbles in an acoustic field, the phenomenon is 

known as Multi-bubble Sonoluminescence (MBSL). 

 When the ultrasound field is generated by a focused transducer, the 

phenomena obtained are different from those mentioned previously. High amplitude 

sound waves generated this way could be used to create cavitation bubbles (Brujan et 

al (2005), Parlitz et al (1999)). Brujan et al (2005) used a disc shape piezo transducer 

to generate an ultrasonic bubble next to the elastic PAA material for the study of their 

complex interaction. Lauterborn’s group (Parlitz et al, 1999) has studied the formation 

of bubble streams generated by the focus piezo devices when they are driven with 

continuous waves. Ikeda et al (2006) proposed to replace shockwaves used in 

lithotripsy with pulsed ultrasound of different frequencies for better control of the 

forced collapse of the cavitation bubbles near the renal stones. More discussions on 

the use of this type of ultrasound waves in medical applications are given in the 

following section. 
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1.3 Bubbles in biomedical applications 
  

 Cavitation bubbles are believed to play a part in numerous biomedical 

applications. Most notably is the use of shockwave for the fragmentation of kidney 

stones as mentioned. This procedure is termed Extracorporeal Shockwave Lithotripsy 

(ESWL). High intensity shockwaves are focused on the renal stones and are applied in 

repetitions up to 1000 or even 3000 times until the stones are comminuted (Chaussy et 

al 1980). Although there are arguments on the exact mechanisms responsible for the 

destruction of the renal calculi (Delius and Brendel (1988), Gracewski et al (1993), 

Howard and Sturtevant (1997), and Lokhandwalla and Sturtevant (2000)), it is widely 

believed that cavitation bubbles play an important role in the stones’ disintegration 

(Coleman et al (1987), Crum (1988), Kodama and Takayama (1998), and Zhu et al 

(2002)). This is because, as mentioned in Section 1.2.1, when a shockwave hits a pre-

existing bubble or a bubble that is produced by previous lithotripter generated pulses, 

a high speed jet is generated within the bubble in the direction of the shockwave 

propagation. This jet is capable of penetrating the opposite bubble surface and 

impacts upon the renal stones. The stress forces imposed on the stones are deemed to 

be part of the mechanisms that causes the breakup of the stones. 

 Apart from ESWL, acoustic energy in the form of ultrasound is also 

commonly used for various medical treatments, for example, to mention just a few, in 

ultrasound-assisted lipoplasty, phacoemulsification, brain tumor surgery, muscle and 

bone therapies, and drug delivery into the eye (intraocular) or through the skin 

(transdermal). Each of these treatments is related to the motivation behind the 

simulations performed in Chapter 4, as they involve the interaction of an ultrasonic 
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bubble near various biomaterials (for instance fat, cornea, skin, muscle, cartilage, 

brain and bone). Brief descriptions for them are given in the following paragraphs.  

 Lipoplasty (also commonly known as liposculpture, liposuction or suction 

lipectomy) is a surgical technique for the permanent removal of undesirable or 

excessive fat deposits located beneath the surface of the skin (Ehrlich and Schroeder, 

2004). In recent years, the traditional suction-vacuuming technique is gradually being 

replaced by the safer ultrasound-assisted procedure (also known as Ultrasound-

Assisted Lipoplasty, UAL (Cooter et al, 2001)). The surgeon inserts an ultrasonically 

vibrating probe under the patient’s skin via an incision into the area from which the 

excessive fat is to be removed. The fat cells are believed to be ruptured and 

‘emulsified’ by the collapsing cavitation bubbles near or in them.  

Another well-known situation in which such a probe is used is in 

phacoemulsification, the procedure used to emulsify the dense nucleus of the optical 

lens so as to remove them by vacuum during cataract surgery (Snell and Lemp, 1998). 

The advantage of this minimally invasive procedure over traditional eye surgery is 

that only a very small incision at the side of the eye is required for inserting the probe 

(the same incision is used to remove the old lens and insert the new artificial one). 

However, cavitation is also known to cause collateral damage to the cornea. Hence 

various studies have been performed to control the extent of cavitation to increase its 

effectiveness while minimizing the undesirable side-effects (FDA (1996), and Anis 

(1999)).  

The use of focused ultrasound in contrast to single shockwave allows the 

control of concentrated cavitation in regions near the surface of the targeted stone 

(Ikeda et al, 2006). Again the competing objectives of maximizing damage to the 

stone (by increasing the strength of the ultrasound) and minimizing collateral 
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damages have motivated various studies to improve on the design of the lithotripter 

(Zhong and Zhou (2001) and Sokolov et al (2001)).  

An understanding of the dynamics of acoustic cavitation is also important in 

brain tumor surgery. A procedure which is known as ‘ultrasonic aspiration’ is 

performed by making use of the ultrasound vibration to break the tumor into small 

pieces which are then aspirated out (Brock et al, 1984). The jetting effect of the 

collapsing cavitation bubbles is believed to be responsible for the break down of the 

tumor. 

Instead of a beneficial role, transient cavitation is an undesirable side-product 

in several medical treatments, such as the use of ultrasound for bone growth 

stimulation (Duarte, 1983), and muscle injury therapy (Jarvinen et al, 2005). It is 

argued that cavitation is partly responsible for ultrasound-induced lesions (Chavrier et 

al, 2000).  

The cavitation mechanism is also utilized to enhance transdermal (Langer, 

2000), and intraocular (Zderic et al, 2004) drug delivery. In the former, cavitation is 

speculated to be one of the releasing mechanisms responsible for sonophoresis 

(enhanced drug transport through skin, Langer (2000)). For the latter, both stable and 

transient bubbles are thought to be playing a role in enhancing the permeability of the 

cornea (Zderic et al, 2004).   

Another important use of ultrasound is in biomedical imaging. A special type 

of microbubble, known as Ultrasound Contrast Agent (UCA), is used. These bubbles 

have high echogenicity, i.e. the ability to reflect sound waves, which enhances the 

backscattering of ultrasound. UCAs are of micron-size, and are coated with thin shells 

of protein, lipid or polymer. During the imaging process, they are injected 

intravenously for the imaging of blood flow, tissue and organ delineation and 
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perfusion. Their usage is especially important in the imaging of blood flow in organs 

because the acoustic impedance difference between the bodily fluid, such as blood 

and the surrounding tissues is low; but the enhanced backscattering from the gas in 

the microbubbles allows the spatial and temporal imaging of blood flow, and thus 

provides a non-invasive method for quantitative analysis, and visualization of the 

system for diagnostic purposes (Feinstein (2004), and Lepper et al (2004)). 

Recently, the microbubble contrast agent has also been used for therapeutic 

procedures, for example thrombosis and vascular plaques treatments (Unger et al. 

(1981), Tachibana and Tachibana (1995), and Tsutsui et al (2006)), drug and gene 

deliveries ((Taniyaman et al (2002), Li et al (2003), and Bekeredjian et al (2005)). 

More interestingly, when these bubbles are coated with targeting ligands (antibodies 

and peptides), they attach themselves only to specific cells (a technique that has been 

successfully applied as discussed in Unger et al (2003), Klibanov (1999), and Lanza 

et al (1996)). This technique can be used for preferential enhancement of the 

ultrasound signal at the diseased area, diagnosis of cancerous tissues, and even 

therapeutic procedures such as targeted drug/gene delivery and selective destruction 

of the cancerous cells. For these therapies, a stronger ultrasound wave, such as high 

amplitude pulsed ultrasound, is generally required. This kind of sound wave is 

proposed to be used to replace the use of shockwaves in lithotripsy (Ikeda et al 2006), 

and also in Xu et al (2005) for the highly localized removal of tissues. Both Ikeda et al 

(2006) and Xu et al (2005) claim that the new methods could minimize collateral 

damages on the nearby tissues. 
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1.4 Scope and objectives of this thesis 
  

 There are two main objectives of this thesis. Firstly, it strives to provide an 

understanding of the role of cavitation bubbles in acoustic fields which are commonly 

found in biomedical applications. Secondly, it aims to introduce BEM as an effective 

and efficient computational tool for the simulation involving acoustic bubbles. Single 

or multiple bubbles dynamics are studied either numerical, experimental, or a 

combination of both. Results from simulations are compared with other established 

methods and experimental data so as to validate the model. Further discussions and 

analysis of results are given to provide physical understanding to the phenomena 

observed. 

After this introductory chapter, the theory behind the potential flow model and 

the numerical implementation involving the Boundary Element Method (BEM) are 

presented in Chapter 2. The assumptions involved in the model are described and the 

non-dimensionalization of parameters is made clear. Other aspects of BEM modeling 

and implementation which are pertaining to specific chapters are given in the chapters 

themselves for the ease of reading and referencing.  

Chapter 3 begins by validating the BEM model against established methods in 

the modeling of shockwave bubble interaction, namely the Arbitrary Lagrangian-

Eulerian (ALE) (Ding and Gracewski, 1996) and the Free Lagrange (FLM) 

(Jamaluddin, 2004) methods. Both ALE and FLM take into account the 

compressibility of the fluid and are capable of accounting for the shockwave 

reflection from the bubble. Despite of its simplicity as a potential flow theory model, 

the BEM simulations manage to capture the bubble shape and size changes, as well as 

other physical parameters such as the maximum jet velocity.  
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The BEM model is then extended to model the interaction of a lithotripter 

shockwave with a cavitation bubble which has been studied experimentally by Sankin 

et al (2005). Detailed quantitative comparison on the bubble shape changes, and 

qualitative analysis for experimental measurements such as the collapse time and 

impact pressure are performed. With the validations from numerical and experimental 

results, simulations are performed on the interaction of a temporally inverted 

shockwave with a stationary bubble. The motivation of using this form of alternative 

shockwave for lithotripsy treatment stems from the possibility of reducing collateral 

damage to the surrounding cells or vessels because of the suppression of rebounding 

bubble’s expansion. Interesting results on maximum bubble size obtained, collapse 

time, and especially the jet velocity are discussed. 

The fourth chapter is based on a paper by Fong et al (2006) which studies the 

complex interaction of a cavity near a biomaterial in an ultrasound field. This 

numerical paper is valuable as cavitation bubbles are often found in the vicinity of 

biomaterials such as fat, cornea, and skin during medical treatments involving the use 

of ultrasonic probes. A diverse range of possible responses between the bubble and 

the biomaterial is reported. For example, high speed jets from the collapsing acoustic 

bubble could be directing towards or away from the biomaterials in different cases. 

Even bubble splitting events with jets in opposite directions are found.  

Apart from cavitation and gas bubbles, ultrasound contrast agent microbubbles 

are considered in Chapter 5. Recent developments see the use of these bubbles for 

drug delivery and cancer treatment. A strong and focused ultrasound pulse is used 

instead of the weak continuous wave as described in Chapter 4. Collapse of these 

microbubbles is induced by the strong pulses in the vicinity of the diseased cells for 

the delivery of treatment DNA or proteins, or the destruction of cancerous cells by 
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mechanical forces. Thus, the author modified the BEM code to simulate the event of 

strong pulsed ultrasound waves as described in Xu et al (2005) interacting with 

microbubbles of various initial sizes. The effects of intensity and bubble size 

variations for several parameters of interest (such as bubble shape, jet velocity) are 

discussed.  

Chapter 6 is on multiple spark bubbles experiment and the corresponding 

BEM simulations. Interesting interactions between two or three bubbles of different 

initial positions, sizes and time of initiation are detailed. For instance, a high speed jet 

of 180 m/s is observed when a bubble that is collapsing near another bubble which is 

generated slightly earlier. This phenomenon is termed ‘catapult’ effect and is 

important as another way of generating high speed jets with bubbles (apart from the 

mentioned ones when a single bubble collapses near a solid boundary or interacts with 

a strong pressure wave). 

The last chapter, Chapter 7, gives a summary of the contributions of this thesis. 

It also contains the discussion on new developments in biomedical applications 

involving acoustic bubbles. It ends with discussions on possible hazards in use and 

suggestions for future code expansions. 
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1.5 Author’s contributions 
 

 This thesis is a collection of work on soundwave bubble interaction done by 

the author with help and contributions from others in the team. The experimental 

example shown in Fig. 1.1 was performed by the author. In the second chapter, the 

model and BEM code on bubble dynamics, both axisymmetric and 3D, are described. 

They were developed over a period of about ten years by colleagues in the same 

scientific group. The author’s contribution to the modeling rests mainly on the 

addition of a shockwave or an ultrasound wave to the existing BEM model. 

In the third chapter, the author, under the supervision and guidance of Dr. 

Evert Klaseboer and Prof Boo Cheong Khoo, pioneered the simulation of strong 

shockwave bubble interaction using BEM. The comparison to other compressible 

codes, ALE and FLM, is done successfully by the author. An extension of this work is 

in the second part of this chapter, Section 3.2, where a study mainly done by Dr Evert 

Klaseboer and other co-authors in the paper Klaseboer et al (2007) is described. The 

author was involved in active scientific discussion with the other co-authors of the 

paper, and she also contributed to the writing up of the paper. Since the 

implementation of an inverted shockwave was more challenging, the author fully 

concentrated on this work instead which is described in Section 3.3. A scientific paper 

is currently being written on this work. 

For the fourth chapter, the author originated the ideal of modeling biomaterials 

with an existing elastic fluid model. The ultrasound field is also added by the author 

to the pre-existing model. All simulations and write up of the paper are done by the 

author in consultation with her supervisors. The fifth chapter on pulsed ultrasound 

interaction with microbubble, the author suggests the modeling and modifies the code 
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accordingly. The analysis and writing is done by the author with scientific advice 

from her supervisors and Dr Claus-Dieter Ohl.  

Chapter 5 is devoted to the study of a microbubble contrast agent interacting 

with a high intensity pulsed ultrasound wave. The simulations are done solely by the 

author. The results are recently published (Fong et al, 2008). 

The chapter on bubble dynamics experiments show results from the author, as 

well as some others performed by mechanical engineering students under the advice 

and supervision of the author. The students’ contributions are noted, where 

appropriate, throughout the chapter. This novel method of generating spark bubble for 

the study of bubble dynamics is developed by the author and a final year student, 

Geok Pei Ong. The method is further extended to study multiple bubble interaction 

with the help of another student, Deepak Adikhari. Other students the author has 

supervised or helped in setting up their experiments include Kelly Siew Fong Lew, 

Daan Martens, Hui Shan Xu, and Benny Teo. The experiments with Hui Shan Xu and 

Benny Teo involve the generation of focused ultrasound using a bowl-shaped 

transducer. The author designed and set up the initial experiments with the students. 

The experiments involving the use of ultrasound by the author are still ongoing and 

therefore not included in this thesis. Another experiment that the author helped to set 

up together with an attachment student, Rahman Dadvand from the University of 

Tabriz, Iran, involves a spark bubble near a perforated wall. On one side of the wall 

(with a hole) where the bubble is, the fluid is water; on the other side, the fluid is air. 

As the hole size increases, the bubble behavior changes; for holes that are smaller that 

the diameter of the bubble, the bubble collapses towards the wall, and for holes that 

are bigger than the diameter of the bubble, it collapses away from the wall. In both 

cases, a water jet is observed on the free surface side of the wall.   
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Chapter 2  

Numerical modeling using the Boundary Element 
Method (BEM) 

 

For all the simulations in this thesis, an incompressible fluid is considered. 

The Laplace equation is assumed to be valid in the fluid domain. An adiabatic bubble 

is added to the fluid assuming either a stationary or a non-equilibrium initial stage. 

After that, the numerical equations used to model a weak ultrasound field are 

described in details. This acoustic model is used in Chapter 4 to study the interaction 

of a bubble near a biomaterial which is modeled as an elastic fluid. In Section 2.2, 

details about non-dimensionalizing the equations, as commonly applied in fluid 

dynamics numerical studies, are described. In the last section, Section 2.3, the 

Boundary Element Method implementations for both an axisymmetric and a 3D 

model are presented. 

 

2.1 Physics of the problem 

2.1.1 The fluid model 
 

As mentioned, the fluid is considered to be incompressible. This consideration 

can be justified knowing that compressibility can be modeled by adding a term 

⎟
⎠
⎞

⎜
⎝
⎛ −

dt
dR

c
11  to the Rayleigh-Plesset equation, and c is the speed of sound in water 

(Young, 1989). In general, when the velocity of the bubble wall, dR/dt, is much lower 

than c (~1500 m/s) (for example the jet speed when a bubble collapses near a solid 

boundary is about 100 m/s), the compressibility assumption is valid. However, in 

some cases in this thesis, the bubble velocity exceeds 1500 m/s. Thus these jet speeds 
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are accurate only as a first order approximation. With the incompressibility 

assumption, the divergence of velocity is zero and thus the continuity equation is 

reduced to 

 0=•∇ v ,         (2.1) 

where v  is the velocity vector. Furthermore, the fluid is assumed to be irrotational 

with viscous effects being ignored. This is justified because the Reynolds number Re 

is typically very high, rendering the flow to be essentially inertia-controlled. For 

example in the spark bubble experiments and simulations, a typical maximum bubble 

size maxR  is 3 mm, the collapse time ct  is about 0.3 ms (see eqn. (3.15) on Rayleigh 

collapse time), then Re ( )cr tRRv ∗== υυ /2/2 2
maxmax  is 60000 since viscosity of water 

υ  is about 10-6 m2/s, and the velocity of the bubble wall, rv , is equaled to ctR /max . 

For the micron-sized bubble simulations in this thesis, a typical bubble radius is 1 μm. 

The corresponding Rayleigh collapse time is 0.1 μs. Thus Re is 20, which is still 

above the limit of Re = 1. Also, in these cases, the timescale for diffusion of vorticity 

is very small and therefore there is no time for the development of a boundary layer. 

With the irrotational assumption, a potential Φ  which obeys the following equation is 

introduced: 

  Φ∇=v .         (2.2) 

Combining eqns. (2.1) and (2.2), the potential flow approximation model can be 

expressed using the Laplace equation 

 02 =Φ∇ .         (2.3) 
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2.1.2 The boundary and initial conditions 
 

Since the flow is incompressible and irrotational, the following unsteady 

Bernoulli equation is valid everywhere in the fluid 

2

2
1 v

Dt
Dpp ref ρρ +
Φ

−= ,       (2.4) 

where p  is the pressure, refp  is a reference pressure (taken to be equal to 

atmospheric pressure, pATM = 105 Pa, unless otherwise stated), ρ  is the liquid density 

(in all cases, water is the surrounding fluid and its density, ρ , is taken to be 1000 

kg/m3), t  denotes time, and the material derivative DtD  is equal to ∇⋅+∂∂ vt .  It 

is noted that the gravitational field effect has been ignored. This is justifiable by 

considering the Froude number in the cases involved. The Froude number (Fr) is 

defined to be the ratio between the inertia forces and the gravitational forces, such that 

 
c

rr
r gt

v
gL
vF ==

2

,        (2.5) 

where g is the gravitational acceleration, L, the length scale is equal to vr tc. But 

ρ
ref

refr

p
Uv =≡ , and maxRL = , thus,  

 
maxRg

p
F ref

r ⋅⋅
=

ρ
.                   (2.6) 

For a typical bubble of Rmax = 3 mm, and g = 10 m/s2, Fr is found to be 3.3x103. For 

the small 1 μm bubble, Fr is even higher (Fr = 9.9x106). This high number confirms 

the fact that the gravitational forces are of much less significant than the governing 

inertia forces (Turangan et al, 2006). 

 The surface tension, σ, is also neglected because the typical Weber number 

(We) is rather large. It can be calculated as follows:       
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σ

σ
ρ

σ
ρ

ref

crr

pR

tvLvWe

⋅
=

==

max

32

.         (2.7) 

With the numerical values for the parameters as mentioned and taking σ to be 70x10-3 

N/m, We is found to be 4.3x103. This certainly shows the dominant importance of the 

inertia forces over surface tension. Although for a 1 μm bubble, We is as low as 1.43. 

However, it is shown in the simulations in Fong et al. (2008) whereby the surface 

tension is incorporated in to the model, the difference in terms of jet velocity and 

translational movement of the lowest node is minimal. Nevertheless, both gravity and 

surface tension can be easily incorporated into eqn. (2.10) if need be (Blake et al 

(1987), and Klaseboer et al (2005)). 

 A bubble is introduced into this liquid. For simplicity, the gas inside the 

bubble is assumed to behave adiabatically. Together with the ideal gas law and the 

assumption of a uniform gas pressure gp , the following equation describes the gas 

pressure inside the bubble: 

γ

⎟
⎠
⎞

⎜
⎝
⎛=

V
V

pp gg
0

0, ,        (2.8) 

where the subscript ‘0’ denotes in the initial values, and V is the volume of the bubble. 

The ratio of the specific heats γ has been empirically approximated to be 1.25 for 

explosives like TNT (Cole, 1948) and is defined to be 1.4 for an ideal diatomic gas 

(Fermi, 1956).   

The total pressure inside the bubble is expressed as  

gvb ppp += .          (2.9) 
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In most of the cases mentioned in this thesis, the vapour pressure vp  could be ignored 

because it is several magnitudes smaller than the gas pressure gp . With eqn. (2.4), the 

following equation is valid on the bubble’s surface: 

 20
0, 2

1 v
V
V

ppp
Dt
D

gvref ρρ
γ

+⎟
⎠
⎞

⎜
⎝
⎛−−=

Φ .              (2.10) 

Eqn. (2.10) is utilized to update Φ  on the surface of the bubble for the next 

time step. Then from the Boundary Element equations (see Section 2.3), the normal 

component of the velocity vector, 
n∂
Φ∂ , can be determined. With these values, the 

position of the bubble boundary can be found by  

Φ∇=
Dt

xD ,                  (2.11) 

where x is the position vector of the boundary.  

 

2.1.3 Modeling an explosion (non-equilibrium) bubble 
  

In Section 3.2, the interaction of a lithotripter shockwave with an already 

oscillating bubble is considered. The shockwave impinges on the bubble at 

various max00 / RR , where 00R , and maxR  denote the bubble radius at the moment of 

shockwave impact and maximum bubble radius respectively. Thus apart from setting 

the initial value for max00 / RR , we need a formulation for the initial velocity potential 

for the corresponding 00R , ( )00RΦ .  

As mentioned in the previous section, the gas inside the bubble is assumed to 

behave adiabatically and therefore eqn. (2.8) holds. Also, it is supposed that for laser 

generated bubbles from the experiments in Sankin et al (2005) to which the numerical 
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simulations in Section 3.2 are compared to, γ , the ratio of specific heats, is the same 

as that of oscillating underwater explosion bubbles, i.e. 1.25=γ (Cole, 1948). The 

bubble in this case is far from boundaries (either free surface or solid structures), and 

free from other disturbances (such as gravity (see Section 2.1.2 for reason supporting 

this assumption)). It will oscillate spherically prior to the interaction with the 

shockwave. Continuity of mass of the fluid around the spherical expanding bubble 

requires that the radial fluid velocity vr depends on the radial co-ordinate r (with its 

origin in the center of the bubble) as dtdRRvr r /22 = , where R  and dtdR /  denote 

the bubble radius and bubble wall velocity at time t , respectively. Thus the velocity 

potential becomes 

dt
dR

r
R 2

−=Φ .                  (2.12) 

The motion of a spherically oscillating bubble can be described with the 

Rayleigh-Plesset equation (Brennen, 2005). Applying the unsteady Bernoulli equation 

at the bubble surface, using eqn. (2.12) and setting the fluid pressure to the internal 

pressure of the bubble, bp  (it is assumed that gb pp =  in eqn. (2.8) because the 

internal pressure originates mainly from the bubble’s non-condensable gas contents, 

therefore 0=vp ), the simplest form of the Rayleigh-Plesset equation (also commonly 

known as Rayleigh equation) is obtained as follows 

2

22

2
3

dt
RdR

dt
dRpp refb +⎟

⎠
⎞

⎜
⎝
⎛=

−

ρ
,                                   (2.13) 

From eqn. (2.8), again considering gb pp = , an analytical solution of eqn. 

(2.13) exists, which relates dtdR /  to R  as (Brennen, 1995) 
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where 0,gp  is the internal pressure at initial bubble radius 0R  ( 0R relates to the initial 

bubble volume, 0V  by 3
00 3

4 RV π= ). This equation automatically satisfies the initial 

condition 0/ =dtdR  at 0RR = . When the bubble reaches its maximum 

radius maxRR = , the velocity becomes 0/ =dtdR  again, thus:  
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Using eqn. (2.12), the potential on the surface of an oscillating bubble with 

radius R00 can be determined by setting 00RRr ==  and substituting dtdR /  from eqn. 

(2.14), the initial velocity potential ( )00RΦ  can be determined as 
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The positive sign in eqn. (2.16) is for a collapsing bubble and the negative sign is for 

an expanding bubble when the shockwave hits.   

It is noted that in the simulations, a dimensionless parameter ε (often referred 

to as the strength parameter in bubble dynamics) is used. It is defined as 

refg pp /0,=ε .                  (2.17) 

Of the three dimensionless parameters ε  (as in eqn. (2.17)), and max0 / RR and γ  in 

eqn. (2.15), only two can be chosen independently.  In fact, eqn. (2.15) is used to 

calculate 0R  in the numerical model, assuming the other parameters are given.  
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2.1.4 Modeling weak ultrasound 
  

The simplified acoustic wave models used in this thesis are able to describe 

the physics involved. The linearity of the ultrasound wave is assumed as normally 

done in studies involving the medical applications mentioned although these sound 

waves are intrinsically non-linear. Also, reflection, shear wave propagation and 

scattering effects are ignored. Therefore, the ultrasound waves can be described by a 

time-varying pressure field. This pressure perturbation is incorporated into the 

reference pressure term, pref, in the unsteady Bernoulli’s equation of eqn. (2.10). At 

any time step, pref  is taken to be equal to the pressure on the elements as the wave 

travels across the bubble at a certain speed. Since eqn. (2.10) is valid on the bubble 

surface, the sound waves’ temporal effect is captured. The various shockwave models 

used in the simulations in this thesis are described in details in the later chapters. The 

ultrasound and the elastic fluid model used in Chapter 4 are presented here. 

The pressure due to the ultrasound in fluid in the absence of the bubble can be 

written as: 

 )]2sin(1[ ftAp(t)p ATMref π−= ,              (2.18) 

where ATMp  represents the static pressure of the liquid, ApATM  is the amplitude of 

the pressure perturbation, A  is the dimensionless pressure amplitude, f  is the 

frequency of the pressure perturbation, and t  represents time. It is assumed that 

(t)pref  only depends on time and not on the spatial coordinates. This is valid because 

the wave lengths of the ultrasound used in the set of simulations in Chapter 4 are 

much larger than the typical bubble size in consideration. For example, in one of the 

applications, brain tumor surgery, an ultrasound wave of 500 kHz is typically used. 

The wave length of this ultrasound is 3 mm. However the bubbles involved (which 
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vibrate in their resonance frequency of 500 kHz) are 6 μm in radii. Thus the bubbles 

do not experience much of a pressure gradient across their surfaces. This justifies the 

decision not to consider spatial variation of pressure. In contrast, the spatial variation 

becomes important and is incorporated into the models described in Chapter 3 and 5. 

It is noted that if A  has a positive value and the pressure perturbation starts at 

t  = 0, then (t)pref  will decrease first. This will cause the bubble to expand. Otherwise, 

if A  has a negative value, then (t)pref  will increase first, causing the bubble to shrink. 

Another important parameter that is used in the simulations is the resonance 

frequency of a bubble, 0f . The relationship between the initial bubble radius 0R  and 

0f  is derived by Minnaert (1933) by considering the bubble as a simple harmonic 

oscillator neglecting surface tension and assuming small oscillations 
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f = .                (2.19) 

The frequency ratio 0/ ff  is used in the simulations and discussions because it is 

deemed that this ratio largely determines the oscillatory behavior of the bubble 

(Brujan (2004), Sato et al (1994), Krasovitski and Kimmel (2001), Fong et al (2006)). 

 

2.1.5 Modeling an elastic fluid 
  

This model is largely based on Klaseboer and Khoo (2004a, 2004b), and Fong 

et al (2006). In the model two fluids separated by a common interface are considered. 

Viscosity is neglected and the fluid-fluid interface is initially at rest. One of the fluids 

(Fluid 1) is water, where a bubble with initial radius, R0, is located. The other fluid, 

Fluid 2, has some elastic properties incorporated. This elastic fluid is used to represent 
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the various biomaterials such as fat, skin, cornea, brain, muscle, cartilage, or bone. 

Also, to make the biomaterial model more realistic, the elastic fluid’s density is 

changed according to the values obtained from literature. In Fig. 2.1, the parameters 

used in the simulation are described. It is noted that the distance between the center of 

the bubble and the fluid-fluid interface is denoted as H. 

  

 

Fig. 2.1. A bubble immersed in Fluid 1 that is in contact with a biomaterial (Fluid 2) used in 
numerical simulations. The z-axis and r-axis directions are as indicated (r=0 is the axis of 
symmetry). The initial distance between the center of the bubble and the fluid-fluid interface 
is termed ‘H’ and ‘h’ is the elevation of the fluid-fluid interface with respect to its initial 
horizontal equilibrium position. 

 

The model is based on Potential Flow theory and therefore two velocity 

potentials, Φ1 and Φ2, are introduced to Fluid 1 and 2 respectively. Both liquids are 

irrotational and incompressible. Therefore 01
2 =Φ∇  and 02

2 =Φ∇ , and the 

subsequent velocity vectors can be derived as 11 Φ∇=v  and 22 Φ∇=v . As in Section 

2.1.2, the Bernoulli equation can be applied to Fluid 1 (at the Fluid-Fluid interface), 

and the pressure 1p  can be expressed as: 
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D
tpp i

ref ρρ +
Φ

−= .               (2.20) 

Here Dx/Dt=∂ x/∂ t + v1• ∇x represents the material derivative with respect to 

velocity v1. The subscript ‘i’ in the potential refers to the fluid-fluid interface, and ρ1 
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is the density of water. Similarly, the Bernoulli equation is also valid in Fluid 2. 

However, since the interface between the two fluids is common to both, the interface 

movement due to Fluid 1 must be considered. From Klaseboer and Khoo (2004a, 

2004b) it is argued that the comparable equation for Fluid 2 is  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −•+

Φ
−= 2122

2
22 2

1 vvv
Dt

D
tpp i

ref ρρ .           (2.21) 

With eqn. (2.21), the model is designed such that the nodes of the discretization of the 

fluid-fluid interface move with the velocity of Fluid 1.  

 The elasticity of Fluid 2 is expressed by considering the elasticity modulus 

(Young’s modulus) E, the Poisson ratio ν , and the elevation of the fluid-fluid 

interface with respect to its initial equilibrium position h (see Fig. 2.1). Following 

Klaseboer and Khoo (2004a, 2004b), h is related to the pressure difference between 

the fluids such that 

( ) h
R

Epp
0

221 12 υ−
=− ,                (2.22) 

The bubble in Fluid 1 is modeled as described in Section 2.1.2. It is assumed 

to be in equilibrium at 0=t with an initial radius R0. Therefore the ratio of the specific 

heats of the bubble’s contents γ  is taken to be 1.4, which is the value for an ideal 

diatomic gas. The γ  value is different from that in Section 2.1.3 where γ  = 1.25 

because the bubbles here are stationary bubbles, naturally presiding in Fluid 1 

whereas in Section 2.1.3, the bubbles are non-equilibrium bubbles generated using a 

laser. These laser bubbles probably have content properties closer to that of explosion 

bubbles which have γ  = 1.25. 
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2.2 Dimensionless equations 
  

To facilitate numerical calculations and eliminate the need to mention physical 

units in the discussion, the equations mentioned in Section 2.1 are made 

dimensionless. For distances, the scaling factor used is the maximum bubble radius, 

maxR , which is taken to be the radius of the bubble at its maximum size. For all 

pressure terms, they are scaled with vref ppp −=0 , where refp  is the reference 

pressure (taken to be equaled to atmospheric pressure, 0.1 MPa), and vp  is the vapor 

pressure. In most simulation cases in this thesis, vp  is considered to be negligible 

because normally vp  is at least several orders of magnitude smaller than refp . 

However, in the simulation for comparisons with spark bubbles experiments 

presented in Chapter 6, due to this special method of bubble generation, vp  is found to 

be as large as 0.5 bar. Thus it is taken into consideration in those calculations 

performed in Chapter 6. The scaling factor for time, 0t , is given by  

0
max0 p

Rt ρ
= .                                         (2.23) 

The potential is scaled with   

ρ
0

max0
p

R=Φ .                                    (2.24) 

Due to the relation Φ∇=v  the scaling factor for the velocity is
max

0
0 R

v Φ
= . With these 

non-dimensionalizing factors, eqn. (2.10) which is valid on the bubble surface is 

reduced to 
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In the above and subsequent equations, variables with a prime )('  refer to 

dimensionless variables. 

In the ultrasound model mentioned in Section 2.1.4, both f  and 0f  in the 

frequency ratio are made dimensionless with 0/1 t . Since the factors cancel out, 

00 ffff ′′≡ . 

Eqns. (2.20), (2.21) and (2.22) are combined to give the following 

dimensionless form:  
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The parameter determining the elasticity of Fluid 2, *κ , is given by 

( ) 0,
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12 gp
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=  ,                 (2.27)  

and the density ratio of the two fluids, α , is expressed as 

2

1

ρ
ρ

α = .                  (2.28) 

Eqn. (2.26) gives the relationship between the two potentials above and below 

the fluid-fluid interface and can be considered as a boundary condition for the 

problem. Another boundary condition is such that the normal velocities at this fluid-

fluid interface should be equal but opposite (since the normal vector is pointing in 

opposite direction for the two fluids), thus: 

nn ∂
Φ∂

−=
∂
Φ∂ 21 ''

,               (2.29) 

with ∇•=∂∂ nn , where n is the normal derivative on the bubble boundary and 

directed away from the boundary. With the Bernoulli equation which can be applied 

on the bubble surface given as 
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where bΦ , bv  refer to the values of Φ and v  on the bubble surface, and the 

equivalent dimensionless equation can be written with eqns. (2.19) to (2.22) as 
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where 
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γ

2
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'0 =f . 
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2.3 Boundary Element Method and numerical implementation 
  

The Laplace equation is an elliptic equation and the potential anywhere in the 

fluid domain can always be computed provided that the potential is known on the 

boundary of the bubble. The boundary element formulation, which relates Φ and 
n∂
Φ∂  

on the surface of the bubble, S, can be written as (Brebbia and Dominguez (1989), 

Pozrikidis (2005)): 

∫∫ ∂
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n

)yΦ(
)x,yG(dS

n
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)yΦ()xΦ()xc( .           (2.32) 

Eqn. (2.32) is the Boundary Element equation where x is a fixed point and y is the 

integration variable, both are located on S.  The solid angle at location x is represented 

by c(x) and G is the Green function or kernel function defined in a three-dimensional 

(or axisymmetrical) domain as: 
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xy

−
=

1),G( .                                                                                   (2.33) 

The non-dimensionalized form of eqn. (2.32) is given as  
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 As for the two fluids model as depicted in Section 2.1.5, the Boundary 

Element Method can be applied for Fluid 1 to relate between the potential and the 

normal velocity on the boundaries and is valid for any point on the fluid-fluid 

interface or the bubble interface: 
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where the integral is over both the bubble surface and fluid-fluid interface “b+i”. In 

eqn. (2.32) G is the Green function and c represents the solid angle at the point on the 

surface under consideration. A similar equation can be obtained for Fluid 2, 
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2 '''4π .              (2.36) 

The term c−π4  appears in eqn. (2.36) because the solid angle is viewed from Fluid 2. 

The plus sign that appears in eqn. (2.36) is due to the fact that the normal vector 

points in the opposite direction in Fluid 2. In eqn. (2.36), the integral is now only 

performed on the fluid-fluid interface “i”. More details about the method can be found 

in Klaseboer and Khoo (2004a and 2004b).  

 

2.3.1 The axisymmetric implementation 
 

The surface of the bubble is represented with N nodes. The number of nodes 

on the bubble surface is N = 51 for all cases simulated using the axisymmetric 

formulation. For each node, eqn. (2.34) relates this particular node to all the other 

nodes.  An axisymmetric formulation as described in Wang et al (1996a and 1996b) is 

used. The integrations are performed with a linear representation of the potential and 

the normal velocity. A system of equations with size NxN is then obtained with 

influence matrices G and H and vectors 'Φ and 
n∂
Φ∂ ' representing the potential and its 

normal derivative at each node: 

''
Φ⋅=

∂
Φ∂

⋅ HG
n

.                (2.37) 

The new potential at the next time step can be determined using the potential 

and velocities at the current time step. The right hand side of the system of equations 
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in eqn. (2.37) is now known and it can be solved for the unknown normal velocity 

n∂
Φ∂ '  at each node using Gauss elimination. The velocity vector 'v  can be determined 

with this normal velocity and the potential distribution along the surface of the bubble 

to evaluate the tangential velocity. The position vector of a node on the bubble surface 

'x  can be updated for each time step using eqn. (2.11). 

The initial condition at the bubble surface which is initially at rest is: 

0'0' ==Φ tat .                 (2.38) 

A fixed time step which is reasonable in terms of computational accuracy and 

efficiency is chosen to a particular set of simulations. Smoothing is done to prevent 

numerical surface instabilities at every 10 time steps (Klaseboer and Khoo, 2004a).  

 

2.3.2 The three dimensional implementation 
  

The 3D model used for simulations in Chapter 6 was developed by Wang et al 

(2001), Wang et al (2003), and Klaseboer et al (2005). The grid on the bubble surface 

consists of triangular cells. The initial meshing is usually formed using an 

icosahedron as a first level (Fig. 2.2). This shape has 20 equally sized equilateral 

triangles and 12 nodes. All of these nodes lie on the surface of a sphere. Each triangle 

is taken to be a single element (with 3 nodes). Then the mesh is refined by dividing 

each of the original triangles into smaller ones and projecting the new nodes on the 

spherical surface. The number of times the original triangles is subdivided is termed 

the ‘level’ of meshing. For instance, the level 3 mesh divides the original triangle into 

9 sub-triangles. 
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Fig. 2.2 The icosahedron used for representing the level 0 bubble mesh. It has 20 equally 
sized equilateral triangles and 12 nodes. 
 

 In the 3D simulations presented in this thesis, the level of mesh used is 5 as 

shown in Fig. 2.3. There are 500 elements and 252 nodes in total. In fact the number 

of elements for a particular level of mesh n  is given as 220nNt = . Also, the total 

number of nodes can be calculated from 210 2 += nNn . 

 

Fig. 2.3 The level 5 mesh with 500 elements and 252 nodes. 
 

 As the bubble surface advances, the internode distances can become highly 

irregular and the mesh greatly distorted. A methodology known as the Elastic Mesh 

Technique (EMT) developed by Wang et al (2003) is used in the code to counter this 

problem.   

This mesh optimization technique is based on the assumption that the 

segments of the mesh are elastic (as if elastic springs are attached at each side of a 

triangular mesh element). The mesh is not advanced by the material velocity as 

commonly done in front tracking simulations (Harris (1992), Zhang and Duncan 
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(1994), Zhang et al (2001)). Instead an optimum shift velocity EMTv  is used. This shift 

velocity is calculated by minimizing the total elastic energy stored in every segment 

of the mesh at every time step. In doing so, the same number of nodal points is 

maintained (there is no need for mesh refinement as suggested by Zhang et al (2001)) 

together with the regularity of the mesh. This is effective in ensuring uniform mesh 

distribution at the beginning of the simulation up to the point when the jet has been 

largely developed and just before its impact. After that, the material velocity v  is 

applied so that the node density becomes higher at the jet tip which leads to a better 

resolution of the flow physics in this region which has a large velocity gradient.  

A varying time step scheme based on the Bernoulli equation (similar to that of 

Harris (1992) and Zhang et al (2001)) is implemented. By iteratively solving the 

matrix equations resulting from the varying time step scheme, the normal velocity on 

the bubble can be calculated. Then the potential and the normal velocity on each node 

are known. Although the normal vector can be determined easily on each triangular 

element, the normal vector on the nodes has to be approximated. As each node is 

surrounded by several triangular elements with different normal vector, a weighted 

average based on Zhang et al (2001) is used: 
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n .                  (2.39) 

The normal vectors of the surrounding elements in  are averaged with the inverse of 

their area iΔ . The inverse of the area is used because it is a better weighted average 

than the area itself; a small element will be nearer to the desired node and therefore 

yield a larger influence than the larger elements around.  



 38

 After this, the velocity vector at any node can be found with the help of the 

potential of its neighbouring nodes in a similar way as the normal vector. The detailed 

procedure has been described in Zhang et al (2001); an estimation for the gradient of 

the potential (or velocity) can be made from the potential of the nodes of each element 

surrounding a particular node. A weighted average scheme similar to eqn. (2.41) is 

then applied to find the velocity v  at each node. 

 Apart from imposing a limit on the time step size, a least-squares smoothing 

scheme is also applied. It is applied at every 10 time steps until the jet impact. 

Detailed explanation of this smoothing scheme can be found in Zhang et al (2001). 
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Chapter 3  

Numerical simulations of shockwave bubble 
interaction 

 

In this chapter, the results for BEM simulation of shockwave bubble 

interaction are presented. Firstly the shockwave is modeled as a pressure pulse, as 

described in Section 3.1.2. The simulation results are compared to that from the Free-

Lagrange Method (FLM) and the Arbitrary Lagrangian-Eulerian Method (ALE). For 

further validation of the code, simulations are performed for comparison to the 

experiments of Sankin et al (2005) in Section 3.2. A real lithotripter shockwave is 

modeled based on experimental readings. The interaction of this shockwave with a 

non-equilibrium (oscillating) laser bubble is studied. The advantages of using BEM 

for the simulation of bubble lithotripter shockwave interaction are also discussed. 

After the validations, the code is modified to model an alternative shock 

waveform known as an inverted shockwave (a shock with its tensile component that 

comes before the compressive part). Firstly, the interaction between an inverted 

shockwave and a stationary bubble is studied. The strength (peak pressures) of the 

shockwave and the initial bubble radius are varied to study the inverted shockwave’s 

effect on the bubble dynamics in terms of bubble shape, volume changes in time, jet 

velocity and Kelvin impulse. Lastly, the potential application of this alternative form 

of shockwave is discussed.  
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3.1 Shockwave interactions with a stationary bubble 

3.1.1 Comparison with other numerical methods –  

Arbitrary Lagrangian-Eulerian (ALE) and Free Lagrange (FLM) methods  
  

 Ding and Gracewski (1996) studied the interaction of a shockwave of strength 

0.528, 1.011, and 2.06 GPa with a bubble of initial radii 0.1, 1.0, and 10.0 mm. They 

modeled the shockwaves as step pressure pulses and simulated the interaction using 

ALE. Several similar cases were again examined by Jamaluddin (2004), who carried 

out the simulation via the Free Lagrange Method (FLM). Considering the same set of 

cases, simulations using BEM are performed and the results are compared to the 

others.  

A brief description of the ALE and FLM methodology is given as follows. 

Both methods involve the solving of the compressible Euler equations in a two 

dimensional or axisymmetric configuration, and both methods use sophisticated and 

computationally expensive meshing. The ALE method developed by Ding and 

Gracewski (1996) uses the finite volume method. They have an adaptive mesh 

generation technique whereby a weight function depending on the pressure gradient 

was used. The FLM also utilizes the finite volume method. It starts off by filling the 

domain with computational “particles”, and then discretising the domain by 

constructing a Voronoi mesh. As the computation progresses, the computational 

“cell” are allowed to change “neighbours” so as to prevent mesh distortion. The Euler 

equations are solved using Godunov-type solvers (Ball et al. (2000), Howell and Ball 

(2002), Turangan et al. (2006)). 

In comparison, the BEM model is only solving a Laplace equation which is 

inherently incompressible. Our model is axisymmetric and involves the use of only 51 
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nodes on the bubble surface. This minimal number of nodes needed attribute to the 

great computational efficiency obtained with BEM. 

  

3.1.2 Modeling a single pulse (step) shockwave 
  

The shockwave is modeled as a pressure pulse function. It moves with 

constant velocity Us and a width Ws towards the bubble in the direction of the z-axis 

as depicted in Fig. 3.1. The bubble is initially located at z0 with a radius Rmax. 

 
Fig. 3.1. Schematic diagram of a pressure pulse with a width Ws moving towards the bubble 
in the z-direction with velocity Us. The initial bubble radius is Rmax. 
  

The shockwave has a constant peak pressure Ps across the width Ws. 

Anywhere else, the shockwave pressure is taken to be the reference pressure, pref, 

which is equivalent to the atmospheric pressure, i.e. 0.1 MPa. At a fixed position the 

shockwave profile is as shown in Fig. 3.2. The duration of the pressure pulse ts is 

related to Ws as 

 sss tUW ⋅= .                  (3.1) 
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t

p

 
Fig. 3.2 Schematic diagram of a pressure pulse with duration ts and peak pressure Ps as a 
function of time t. At all other times the pressure equals the reference pressure Pref 
 

Because of the pressure variation in time and its constant velocity sU , the 

spatial variation of the traveling shockwave in the z-direction is defined. It is 

represented in the refp term in the unsteady Bernoulli’s equation (eqn. (2.4) in Chapter 

2), such that before the front of the shock reaches the bubble, ATMref pp =  

(atmospheric pressure); when the shock moves across the bubble, it is eventually 

submerged in the shockwave, and sref Pp = ; and lastly, when the shock has passed, 

refp  is again ATMref pp = . Mathematically, refp  is expressed with the following: 
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 With this spatial consideration, the current model can be seen as an extension 

to that used by Blake et al (1999). In their model, at any point on the bubble surface, 

refp  is a function of time only. Recently, the model from Blake et al (1999) is also 

extended to include the spatial consideration similar to the formulation described in 

this section in Calvisi et al (2007).  

Peak pressure, Ps 

ts

Reference  
pressure, pref 

p 

t
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 In order to model with spatial consideration, the speed of the shockwave, Us, 

must be known. It is in fact related to the amplitude of the shock, Ps. First of all, a 

parameter called particle velocity behind the shock is calculated. It is computed with 

consideration of the shock amplitude, and is then used to obtain the shock speed 

(Flores and Holt, 1981). It is assumed that the Tait equation of state applies in the 

fluid domain (in this case, the fluid is water). The density of the fluid behind the 

shock, ∗ρ , is given by 
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                (3.3) 

where 96.999=Rdρ kg/m3 is the water reference density at zero pressure, and B and n 

are constants with values of 3.31x108 and 7, respectively. 

 Then as proposed by Flores and Holt (1981), the post-shock water particle 

velocity, u*, can be calculated from 
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where the subscript u refers to the pre-shock condition. For all simulations in this 

thesis, the water is stationary. Therefore uu = 0.0 m/s and Pu = pref  = 0.1 MPa. 

 It is known that for most solids and liquids, the shock velocity Us is near-

linearly proportional to the velocity of the material (relative to the undisturbed 

medium) behind the shock u*, provided that there is no phase change or existence of 

porosity (Howell and Ball, 2002). This is certainly the case for water. The near-linear 

relation of experimental shock data is given in the form 

 
*uAaU kks +=                                                                                            (3.5) 

where ak is the local isentropic sound velocity and Ak is the shock density ratio 

parameter. For water ak = 1480 m/s and the linear fit of Us versus u* for u* < 3.5 km/s 
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gives Ak = 1.815 (based on shock Hugoniot data as found in Marsh (1980)). For a 

weak pressure disturbance under atmospheric conditions, the wave speed in water 

approaches the local sound velocity, which is m/s1480≈= ks aU (Leighton, 1994). 

But for a very strong shock, like the case to be presented in Section 3.2 whereby Ps = 

0.528 GPa, u* reaches a value of 259 m/s, and therefore, Us = 1950 m/s, or sU ′= 195.0 

(where sU ′  is nondimensionalised as will be described shortly in eqn (3.8)). In the 

simulations in Section 3.1, this value of sU ′ is used. 

 

3.1.3 Non-dimensionalizing the shockwave model equations 
 

 As mentioned in Chapter 2, the equations are non-dimensionalized to facilitate 

numerical calculation and the subsequent discussions. For the parameters involved in 

describing the shockwaves, the following dimensionless parameters are used to non-

dimensionalize eqn. (3.2): 

 refss pPP /' =                   (3.6) 

 max/' RWW ss =                             (3.7) 

 0/' vUU ss = ,                          (3.8) 

where 0v  is equal to ρ/refp . The resultant non-dimensionalized eqn. (3.2) is as 

follows: 
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                 (3.9) 

 In eqn. (3.8), sU '  is independent of the maximum bubble radius Rmax and only 

depends on Us. Since it is mentioned in Section 3.1.2 that 11950 −≈= msaU ks , 
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sU ' therefore assumes the value sU ' = 195. Also, the parameter 0'z is chosen as 

0.1'0 −=z , so that 0'=t  coincides with the time the pulse first hits the bubble. 

 

3.1.4 Interaction of a 0.528 GPa pressure pulse (shockwave) with a 
bubble of radius 1.0 mm 
  

In this particular case, a pressure pulse with profile as depicted in Fig. 3.2 is 

simulated to interact with a stationary bubble. The shock strength, also known as the 

peak pressure, Ps, is equal to 0.528 GPa, and the initial bubble radius is 1.0 mm. The 

shock width, Ws, is set to a very large value with respect to the bubble size, i.e. sW ′= 

1000. As the pressure pulse travels from top to bottom, eventually it strikes the upper 

surface of the bubble. This strong pressure perturbation causes a large momentum to 

be imparted to the gas-water interface of the bubble surface. This creates a high 

pressure region in the water around the impact location. The immediate difference in 

pressure between this water region and the gas inside the bubble, forces the bubble 

boundary to form an accelerating jet in the traveling direction of the pulse. 

Fig. 3.3 depicts the BEM simulation results on the bubble evolution as a result 

of its interaction with the pressure pulse on the left, together with the FLM results 

from Jamaluddin (2004) on the right. Again, it is noted that 0'=t  is set to be the time 

when the pulse first hits the bubble. Prior to that, the velocity anywhere on the bubble 

surface is identically zero as the bubble is stationary.  
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Fig. 3.3 BEM and FLM simulation of the interaction of a very wide pressure pulse of 0.528 
GPa with a bubble of radius 1.0 mm. The figures on the left of the pair with velocity vectors 
plots (represented by the arrows) are from the BEM simulation; while the ones on the right of 
the pair are FLM results taken from Jamaluddin (2004).  The line represents the shock front 
which moves from top to bottom (is horizontal for the BEM simulations). The time for the 
respective frames is indicated below the figures. The dimensionless parameters for the 
shockwave are: 5280' =sP , 1000'W s =  and 195' =sU . The top bubble surface moves first 
and it accelerates to form a high speed jet of 2 km/s upon impact. 
  

 In the FLM method in Fig. 3.3 (figures on the right), the pressure pulse front 

represents the Mach contour front, whereas for the BEM method, the horizontal line 

represents the pulse front. Due to the lower acoustic impedance of air in comparison 

with water, the transmitted shock inside the bubble propagates slower than the 

pressure pulse front. This phenomenon is captured correctly by FLM simulations. But 

because the BEM model is an incompressible model, this feature is not reproduced. 

 At t = 0 μs in Fig 3.3(i), the pressure pulse touches the upper surface of the 

bubble. The pulse travels from top to the bottom of the frame in the z-axis direction 

(see Fig. 3.1). About 0.66 μs later (Fig. 3.3(ii)), the pressure pulse has traveled to the 

(ii) 0.66 μs 0.6 μs 

(vi) 1.79 μs 1.6 μs (v) 1.57 μs 1.4 μs 

(iii) 1.1 μs 1.0 μs (iv) 1.32 μs 1.2 μs 

(i) 0 μs 0 μs 
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middle part of the bubble. The top surface of the bubble is then flattened by the fluid 

behind the shock which is responding to the pressure pulse. The next figure, Fig. 

3.3(iii), shows the bubble profile when the pressure pulse has completely passed the 

bubble. Since the shock width, Ws, is much larger than the bubble size, the bubble is 

then completely immersed in a very high pressure environment (pref = Ps = 0.528 GPa). 

Due to the fluid inertia, a high speed jet begins to develop from the top surface of the 

bubble towards its bottom surface. The jet becomes more prominent from Fig. 3.3(iv) 

to (v). At t = 1.79 μs, the bubble continues to contract and the jet has almost touched 

the opposite surface of the bubble. From this series of figures, it is clear that although 

the BEM model does not model the propagation of waves inside the gas body, highly 

similar bubble profiles are obtained. However, possibly due to the lack of reflection 

and other shock related phenomena, the jet from the top bubble surface impacts 

slightly later in the BEM model; jet impact occurs at 1.6 μs for the FLM method, but 

at 1.79 μs for the BEM method. 

 In Fig. 3.3, the figures on the left of the pair (BEM simulations) show velocity 

vector plots (represented by the arrows) as well. Similar plots are also presented by 

Jamaluddin (2004), and are in good agreement with the left side figures of Fig. 3.3 

(not reproduced here). As the shock travels from top to bottom, the velocity vectors 

behind the shock respond as the fluid is perturbed and has picked up speed. Highest 

speed indicated by the longest velocity vectors is observed around the region near the 

jet tip. In short, despite its simplicity, the results of BEM simulation are very similar 

to that of FLM and ALE in terms of the bubble shape (for ALE results, the reader can 

refer to Ding and Gracewski (1996)). The velocity plots compare favorably well with 

that from FLM (not shown here) too.  
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For a quantitative comparison, the jet velocity-time plot of the same case is 

examined. After the shock hits the bubble, a jet starts to develop at the top surface of 

the bubble. Its velocity in time is recorded for all three methods and presented in Fig. 

3.4. Jamaluddin (2004) obtained the jet velocity values by taking averages of the 

absolute velocity of a few elements at the tip of the jet. For BEM, the velocity of a 

single node which is on the axis of symmetry is recorded. The trend of the results for 

both methods is similar; the jet velocity increases in time with an almost linear 

acceleration of about 1300 m/s2. The same observation is obtained for ALE, with 

exception of some minor oscillations at the beginning of the simulation. However, 

when the jet is about to impact on the bottom surface of the bubble, the difference 

between BEM and FLM/ALE becomes larger. For the bubbles in FLM and ALE 

simulations, the jet impact occurs sooner at t = 1.6 μs, and at a higher final maximum 

velocity of about 2200 m/s. From the BEM simulations, it is found that the jet impact 

happens at t = 1.79 μs, and the velocity reaches a comparable value of 2000 m/s. This 

probably implies that the reflected shockwaves inside the bubble play a part in 

enhancing the collapse of the bubble, and therefore resulting in slightly earlier 

collapse with higher velocity. Nevertheless, the general trends for the bubble’s jet 

velocity for all three methods remain similar. 
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Fig. 3.4 Jet velocity, ujet, vs time, t, for BEM, FLM, and ALE methods. The pressure pulse 
hits the bubble at t = 0 μs. Then the jet starts to develop; for ALE and FLM, it impacts upon 
the bottom bubble surface at about t = 1.6 μs. For BEM, jet impact occurs slightly later at t = 
1.79 μs. As for the jet velocity at the moment of impact, ujet reaches a maximum of about 
2200 m/s for FLM and ALE, but slightly less at 2000 m/s for BEM. Nevertheless, the trends 
for all methods are similar. 
 

 The BEM simulation has two significant advantages over the other methods 

mentioned, namely the FLM and ALE methods. Firstly, the time requirement to run 

the same simulation (for instance the case presented in Section 3.1.4) is much less for 

BEM than for the other methods. On a normal personal computer, the full simulation 

of the case in Section 3.1.4 takes only a few minutes for BEM, whilst for FLM and 

ALE, it takes at least a few hours. Secondly, the storage space requirement is much 

less for BEM. Since only the boundaries in the model (in this case, the bubble surface) 

are considered, a great reduction of computational elements is achieved using BEM. 

For this case, the author used a total of 51 nodes for the representation of half of the 

bubble surface (this is sufficient since the problem is considered in axisymmetric 

configuration). Typically for FLM, since a full mesh of the domain is required, the 

number of cells used can be very large (for example about 19000 for the simulation in 

Section 3.1.4 (Jamaluddin, 2004)). The small number of computational elements is 

also the main factor contributing to the fast computing time for BEM. Furthermore, as 

FLM 

ALE 

BEM 
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the calculation proceeds, the number of elements remains the same for BEM 

simulations. For FLM, however, a high concentration of nodes is often found in the 

region where the shock advances. This adds to greater computational complexity 

which in turn leads to longer time requirement and larger storage space needed. 

More results and detailed discussions on other cases have been done but are 

not shown here. Interested readers can refer to Klaseboer et al (2006b). After the 

comparison with other numerical simulation results, the BEM model is slightly 

modified in the next section to simulate the interaction of a lithotripter shockwave 

with an oscillating (non-equilibrium) bubble. The bubble shape changes in time and 

jet velocity readings from both experimental and numerical results will be compared 

and discussed. 

 

3.2 Lithotripter shockwave interaction with a non-equilibrium 
bubble 
  

In this section, the dynamic interaction of a shockwave, which is modeled as a 

pressure pulse with realistic pressure profile from a lithotripter, with an expanding or 

collapsing bubble is investigated numerically. This model is an extension of the 

model used in the previous section and will be presented in detail in Section 3.2.1 and 

3.2.2. The results are compared with experimental observations of lithotripter 

shockwaves impinging on laser induced bubbles as presented in Sankin et al (2005). 

The jet impacts the opposite surface of the bubble in the direction of the shockwave 

and emits an intense pressure wave, which was measured experimentally and 

compared to various parameters in the numerical results. It is found that the 

experimental peak pressure is related to numerical variables such as the jet velocity 

and the Kelvin impulse (all at the moment of jet impact). The key observation in this 
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section is that the most intense collapse is occuring for a bubble having intermediate 

size (not the maximum size), and that this happens when the collapse time of the 

bubble is approximately equal to the time scale of the compressive portion of the 

shockwave. The main advantage in computational efficiency of the BEM code is 

retained in this extended model. 

 

3.2.1 Modeling of a lithotripter shockwave 
 

The shockwaves generated by a lithotripter used in kidney stone removal 

treatment have typical profiles as depicted in Fig. 3.5. The lithotripter shockwave 

consists of firstly a high peak pressure compressive wave, and then a negative 

pressure tensile wave. For this particular case, the compressive wave has a maximum 

pressure of 39 MPa and lasts for about 1 μs, and the tensile wave has a minimum of -8 

MPa and  duration  of  about 2 μs.  
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Fig. 3.5 Average-smoothed experimental shockwave profile from Sankin et al (2005), 
pressure P(t*) as a function of time, t* with peak pressure 39 MPa. The pulse has 
approximately a 1 μs compressive wave followed by a 2 μs tensile wave of -8 MPa. The 
secondary oscillations in the profiles are due to reflections. 
 

 The shockwave as shown in Fig. 3.5 is incorporated into the model with both 

temporal and spatial considerations as mentioned in Section 3.1.2. The difference 

between these two models is that instead of a constant shock pressure Ps, a realistic 
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time-varying pressure, P(t*) is used. The values in P(t*) are obtained from the 

experimental observations such as that found in Fig. 3.5. It is incorporated into the 

reference pressure term refp  in the unsteady Bernoulli’s equation (eqn (2.4) in 

Chapter 2) again such that refp (z, t) = P(t*) with  

 t* = t - z/Us + R0/Us,                 (3.10) 

where Us is the velocity of sound in water, which is taken to be 1480 m/s as the shock 

is moderate in strength (see Section 3.1.2), and z is the distance on the z-axis as 

depicted in Fig. 3.1.  Also if t* < 0, the reference pressure P(z,t) is set to be equal to 

pATM. The absolute time is set to t = 0 when the front of the shockwave hits the bubble. 

 

3.2.2 Modeling of an oscillating (non-equilibrium) bubble 
 

 When the shockwave impinges on an oscillating bubble at t = 0 μs, the radius 

of the bubble at that moment is taken to be R00. Note that this radius differs from the 

initial radius for a stationary bubble like that mentioned in Section 3.1 in such that R00 

might not be the minimum or maximum bubble radius.  Therefore in the following 

section, the shockwaves are considered to hit the bubble (t = 0 μs) at various R00 with 

non-dimensionalization provided by maxR  (maximum bubble radius which a bubble 

would have obtained if no shockwave was present), i.e.  max00 / RR . Also apart from 

setting the initial value for max00 / RR , we need a formulation for the initial velocity 

potential for the corresponding 00R , ( )00RΦ . This is because at this instance, the 

bubble is not stationary, i.e. ( ) 000 ≠Φ R . Instead it is already moving with a certain 

velocity because the bubble could be in its ‘E’ (expanding) or ‘C’ (collapsing) phase. 

The derivation for ( )00RΦ  is found in eqn. 2.16. For the simulations performed here, 
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ε  is taken to be 100 (thus assuming bar 1000, =gp ), max0 / RR  is calculated to be equal 

to 0.1485 with eqn. 2.15. All bubbles studied in Section 3.2 have maximum radii, 

maxR = 300 μm. This Rmax is chosen because it is the bubble size generated with the 

laser energy level as set by Sankin et al. (2005). The result is probably valid for 

bubbles between a few micron to a few millimeter because as pointed out in Section 

2.1, a 1 μm bubble is perhaps the lower limit of the BEM model, and for larger 

bubbles, other forces like gravity and buoyancy might play a part in the bubble 

dynamics. 

 

3.2.3 Comparison of bubble shapes and collapse times with 
experimental results 
  

 Figs. 3.6 to 3.11 show experimental and numerical results of the lithotripter 

shockwave given in Fig. 3.5 impinging on bubbles with R00/Rmax ~0.50, ~0.65, and 

~1.0 ( 00R  and maxR  denote the bubble radius at the moment of shockwave impact and 

maximum bubble radius respectively). The letter ‘E’ in the figures stands for an initial 

expanding bubble and ‘C’ denotes a collapsing bubble. The collapse time is defined to 

be the time taken for the bubble to collapse from its maximum size to the moment of 

jet impact. Selected experimental frames are shown (for the complete sequence, one 

can refer to Sankin et al (2005)). Several general trends of bubble dynamics are 

observed. Firstly, all bubbles eventually develop high speed jets in the direction of the 

propagation of the shockwave, in this case, in the upwards direction. They are forced 

to collapse by the strong shockwave that travels across them. Also, for a bubble of a 

certain size, the collapse time for this bubble in its ‘E’ (expansion) phase is longer 
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than that when it is in its ‘C’ (collapse) phase. Lastly, a smaller bubble has the 

tendency to collapse earlier than the larger ones (see also Fig. 3.12).  

 When the shockwave impinges on an ‘E’ (expanding) bubble, the bubble 

shape changes are documented experimentally in Fig. 3.6(a) (from Sankin et al, 2005) 

and numerically in Fig. 3.6(b). Both figures show the development of a flat and broad 

jet in the direction of propagation of the shockwave. The bubble shapes (t = 1.20, 1.29, 

and 1.32 μs) in the simulation diagram show clearly how the thick jet develops. Also, 

it is noticed that the bubble center translates in the shockwave propagation direction as 

well. 

 
Fig. 3.6 An oscillating bubble with R00/Rmax = 0.53 in its ‘E’ (expansion) phase. The 
shockwave is coming from below. (a) Experimental results taken from Sankin et al (2005). It 
shows the bubble from t = 0 to 1.5 μs. (b) Numerical results of the bubble shape with the 
corresponding time in μs indicated on each profile. Both experimental and numerical results 
show the development of a flat broad jet and the translation of bubble center. 
 

 The corresponding observation for a bubble of similar initial bubble size 

(R00/Rmax = 0.5), but in its ‘C’ (collapsing) phase instead, is presented in Fig. 3.7. 

Again the final bubble shows a much flattened profile; for the simulation this happens 

at 0.96 μs, and the corresponding experimental observation at 1.0 μs after the 

shockwave hits the bubble. This collapse time is much shorter than that observed for 

the corresponding ‘E’ bubble; the bubble collapses at 1.5 μs for experiment and 1.32 

μs for simulation results are shown in Fig. 3.6. It is noted that the secondary 

shockwaves from the bubble collapse in the experiment is seen in the last frame. 

(b)

(a) 
0.0 μs 0.5 1.0 1.5
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Fig. 3.7  An oscillating bubble with R00/Rmax = 0.5 in its ‘C’ (collapse) phase. (a) Experimental 
results taken from Sankin et al (2005). It shows the bubble from t = 0 to 1.0 μs (with an 
interframe rate of 0.5 μs). The last frame shows a secondary shockwave from the bubble 
collapse (b) Numerical results of the bubble shape with the corresponding time in μs indicated 
on each profile. Again as in Fig. 3.6, both experimental and numerical result show the 
development of a flat broad jet and the translation of bubble center in the direction of 
shockwave propagation (upwards). 
 
 In the next two figures (Fig. 3.8 and 3.9), a bubble with R00/Rmax = 0.65 is 

considered. For both cases, the bubble collapses with a flat and broad jet as in the 

previous examples. Fig. 3.8 shows an ‘E’ bubble which collapses with a flat broad jet 

at t = 1.77 μs for simulation results and 1.5 μs for the corresponding experimental 

result. The final shape of the bubble is similar to that in Fig. 3.6. 

 
Fig. 3.8 An oscillating bubble with R00/Rmax = 0.65 in its ‘E’ (expansion) phase. (a) 
Experimental results taken from Sankin et al (2005). It shows the bubble from t = 0 to 1.5 μs 
(with an interframe rate of 0.5 μs). (b) Numerical results of the bubble shape with the 
corresponding time in μs indicated on each profile. Both experimental and numerical results 
show the development of a flat broad jet. 
  
 Fig. 3.9 shows a ‘C’ bubble with the same size (R00/Rmax = 0.65) when it is hit 

by the shockwave of Fig. 3.5. It develops a slightly rounder jet than that of the 

corresponding ‘E’ bubble in Fig. 3.8. Also, a shorter collapse time is observed. For 

this ‘E’ bubble, it collapses at t = 1.77 μs, whereas for the ‘C’ bubble, it takes 1.32 μs. 

(b)

0.0 μs 0.5 
(a) 

1.0

(b)

0.0 μs 0.5 
(a) 

1.0 1.5
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Similar translational movement of the bubble center is observed for the bubbles of 

different R00/Rmax.  

 
Fig. 3.9 An oscillating bubble with R00/Rmax = 0.65 in its ‘C’ (collapse) phase. (a) 
Experimental results taken from Sankin et al (2005). It shows the bubble from t = 0 to 1.5 μs 
(with an interframe rate of 0.5 μs). (b) Numerical results of the bubble shape with the 
corresponding time in μs indicated on each profile. Again as in Fig. 3.8, both experimental 
and numerical results show the development of a flat broad jet. 
 

 When the shock hits a bubble at its maximum size (R00/Rmax = 1.0) as shown in 

Fig. 3.10, it takes a much longer time of 4 μs for the bubble to collapse. According to 

Sankin et al (2005), in general, the larger the size of the bubble when the shockwave 

impacts, the longer it takes to collapse. Besides, there is clearly a jet developing at 

about t = 3.5 μs (t = 3.45 μs for the simulation results in Fig. 3.10(b)). But at the final 

moment of collapse, the jet becomes so broadened that the bubble appears flattened 

out (last frame of Fig. 3.10(a) and bubble profile at t = 3.51 μs for Fig. 3.10 (b)).  

 It is noted that for previous cases with R00/Rmax = 0.5 or 0.65, the compressive 

part of the shockwave of Fig. 3.5 which lasts only about 1 μs, has completely passed 

the bubbles before their final collapses. In other words, they experience part of the 

tensile component of the shock as the jets develop and impact on the other surfaces on 

the bubbles. As for the R00/Rmax = 1 bubble however, it experiences the full tensile part 

of the shock (lasting about 2-3 μs) before its final collapse at t = 4 μs (or t = 3.51 μs 

for the simulation). This could be the reason behind the peculiar final shape of the 

bubble.  

 

(b)

0.0 μs 0.5 
(a) 

1.0 1.5
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Fig. 3.10 An oscillating bubble with R00/Rmax = 1. (a) Experimental results taken from Sankin 
et al (2005). It shows selective frames of the bubble from t = 0 to 4 μs. (b) Numerical results 
of the bubble shape with the corresponding time in μs indicated on each profile. A very 
flattened disc-like bubble is observed both (a) experimental and (b) numerically. 
 

 For a bubble with very small R00/Rmax, no experimental results are available. 

This is probably because of the temporal constraints as it is difficult to align the 

equipment to enable the shockwaves to hit the bubbles at those instances as the 

bubbles are growing/collapsing extremely rapidly. From numerical simulation, it is 

seen that a rather thin jet is formed and impacts on the opposite surface of the bubble 

at t = 0.48 μs. It has been mentioned in Section 3.1.2 that shockwave speed, Us, is 

taken to be 1480 m/s (Leighton, 1994). Thus it takes the shockwave sUR /2 0⋅ , i.e. 

0.64 μs, to move across the bubble. Since the bubble has already collapsed at t = 0.48 

μs, it has not experienced the tensile component of the shock which happens after 1 μs. 

This is possibly the reason behind the different in final collapse shape of the bubble as 

compared to all previously discussed cases (from Figs. 3.6 to 3.10).    

(a)
0.0 μs 1.0 2.0 3.0 3.5 4.0 

(b)
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Fig. 3.11 An oscillating bubble with R00/Rmax = 0.16 in its ‘C’ (collapse) phase. The bubble 
shapes with the corresponding time in μs indicated on the first and last profiles. 
 

 Apart from the bubble shapes, the collapse times of the bubbles in various 

initial conditions of R00/Rmax are also studied. Experimental results from Sankin et al 

(2005) are plotted together with numerical simulation values in Fig. 3.12. They show 

very close resemblance. Three important observations are obtained: firstly, for each 

group of the bubble (‘E’ or ‘C’ bubbles), the larger the value of R00/Rmax, the longer 

the collapse time. Secondly, the ‘C’ bubbles are collapsing faster then the ‘E’ bubbles 

of the same normalized size in R00/Rmax. Thirdly, the difference in collapse time for an 

‘E’ and ‘C’ bubble pair of same R00/Rmax, is about 0.5 μs for a large range of values of 

R00/Rmax. It is also noted that no values for small R00/Rmax are available from Sankin et 

al (2005) because of experimental limitations in the use of laser bubble. These bubbles 

suffer non-spherical distortion at their early stages (also in late stages) of oscillation. 

However, numerical results are available even for a bubble with minimum value of 

R00/Rmax i.e. R00/Rmax = 0.1485. These data form a closed loop, where the curves of ‘E’ 

and ‘C’ bubbles join at the left bottom and right top corners of the graph. Also plotted 

on the same graphs are results from Rayleigh-Plesset model of the oscillating bubbles 

(dashed red lines). In this model the pressure experienced on the bubble surface is 

uniform (no spatial difference) because only temporal variation of the pressure wave 

is considered. It is seen that the results match that from the BEM simulation rather 

well. For ‘E’ bubbles with R00/Rmax > 0.6, the Rayleigh-Plesset collapse times are 

slightly larger than that from the BEM simulation. Similar increase in collapse times 
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is observed for ‘C’ bubbles with R00/Rmax > 0.8. On the other hand, for ‘C’ bubbles 

with R00/Rmax < 0.8, the collapse times obtained from the Rayleigh-Plesset model is 

slightly lower than that calculated with BEM simulations. Similar decrease is 

observed for ‘E’ bubbles with R00/Rmax < 0.6. Nevertheless, the difference in collapse 

times between the two models is less than 4.5%. This suggests that the simple 

Rayleigh-Plesset model is sufficient in predicting the collapse time of the oscillating 

bubble when hit by a lithotripter shockwave. However, the BEM model has the added 

advantage of being able to provide other information about the jet development and jet 

velocity. 
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Fig. 3.12 Collapse time for bubbles with various normalized bubble radius (R00/Rmax). 
Experimental results from Sankin et al are plotted with circles (filled circles for ‘E’ and empty 
circles for ‘C’ bubbles). Numerical simulation values are plotted in thick and thin lines for ‘E’ 
and ‘C’ bubble respectively. Also plotted in thick and thin dashed lines for ‘E’ and ‘C’ 
bubbles from Rayleigh-Plesset simulations. Each of these curves is plotted from 14 data 
points. Results shows that the larger the value of R00/Rmax, the longer is the bubble’s collapse 
time. Also, a ‘C’ bubble always collapses faster than an ‘E’ bubble of the same initial size. 
Similar trends are shown by the Rayleigh-Plesset (RP) model. Slight differences between the 
models are observed. For the larger bubbles (‘E’ bubbles, R00/Rmax > 0.6, ‘C’ bubbles, 
R00/Rmax > 0.8), the RP model predicts a longer collapse times. But for small bubbles (‘E’ 
bubbles, R00/Rmax < 0.6, ‘C’ bubbles, R00/Rmax < 0.8), the collapse times for the RP model are 
lower than that from the BEM simulations. 
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3.2.4 Comparison between experimental pressure measurements 
and numerical results 

  

Since jet impact from the collapsing bubbles is believed to be one of the 

important mechanisms in breaking up kidney stones during lithotripsy treatments, the 

jet velocity and pressure pulse resulting from these bubbles are of interest. Sankin et 

al (2005) measured the peak pressure shortly after jet impact by using a needle 

hydrophone which was placed along the central axis of the shockwave source at a 

distance of 1.1 mm above the source’s focus. Results were obtained for the various 

R00/Rmax, and were plotted as shown in Fig. 3.13.  

As mentioned in the previous section, the collapsing ‘C’ bubbles tend to have 

shorter collapse time as compared to the ‘E’ bubbles of the same R00/Rmax. These ‘C’ 

bubbles also seem to be collapsing more violently than the counterpart ‘E’ bubbles (of 

the same R00/Rmax) because the pressure at impact measured (in Fig. 3.13) is much 

higher. One noteworthy observation from Fig. 3.13 is that the maximum value of the 

peak pressure is obtained for a bubble of R00/Rmax = 0.7, and not at the lowest or 

highest R00/Rmax values. For example, for the ‘C’ bubble, the peak pressures for lowest 

and highest R00/Rmax of 0.4 and 1.0 respectively, they are only about 60% of the peak 

pressure measured at R00/Rmax  = 0.7.  

The numerical model used assumes incompressibility of the liquid. Therefore 

it is not possible to calculate directly the pressure caused by shock emission from the 

jet impact. But the pressure measured is related to how violent the collapse is, which 

is in turn related to the jet velocity and the Kelvin impulse values (details about the 

parameter Kelvin impulse are given in the later paragraphs in this section). The 

numerical results for both parameters are presented in Fig. 3.14 and 3.15, respectively. 

Both figures show strong resemblance to the peak pressure figure (Fig. 3.13).  
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 In Fig. 3.14, jet velocity of the jet tip just at the moment before it impacts on 

the opposite bubble wall is shown. In general, the jet velocities calculated are very 

high. The maximum value of 1260 m/s is obtained for a ‘C’ bubble with R00/Rmax = 

0.5. Even the minimum jet velocity reaches a value of 410 m/s, for an ‘E’ bubble of 

R00/Rmax = 0.95. Also, similar to the peak pressure data, jet velocity for ‘C’ bubbles 

are higher than that of its corresponding ‘E’ bubbles of the same R00/Rmax, except for 

the cases whereby R00/Rmax < 0.2. This is probably due to the fact that when the 

bubbles are small, i.e. R0/Rmax is less than 0.2, the collapse time difference between 

‘E’ and ‘C’ bubbles  are  proportionally  larger.   For   example,   a   ‘C’    bubble    of  

R00/Rmax = 0.2, collapses after 0.41 μs; whilst a corresponding ‘E’ bubble collapses 

only after 0.68 μs. This means that the ‘E’ bubble has about 1.6 times longer for the 

development and acceleration of jets before the final impact. Therefore it is able to 

achieve a higher jet velocity than the ‘C’ bubble. However for the larger bubbles, the 

difference in collapse time between the ‘C’ and ‘E’ bubbles is only 15 to 20%. 

Therefore the propensity of the already collapsing ‘C’ bubbles to collapse more 

violently than the corresponding ‘E’ bubbles dominates. As a result, higher jet 

velocity values are obtained by the ‘C’ bubbles.   

 Another interesting parameter for accessing the physics of the bubble collapse 

is known as the Kelvin impulse. The impulse vector K is defined as the integral of the 

potential Φ on the bubble surface S multiplied by the fluid density,  ρ, and the normal 

vector n at this surface (Pearson et al. 2004): 

∫Φ=
S

dSnK ρ .                 (3.12) 

Physically this parameter gives the impulse that is required to be applied over the 

surface of the bubble in order to generate the flow field during the jet formation and 

the subsequent jet impact. Therefore, it is related to the jet speed and the broadness of 
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the jet radius. For a spherically oscillating bubble, however, the Kelvin impulse vector 

is zero because the flow field is uniform on the bubble surface and 0n =∫S dS . Also, 

since the simulations done here are under axisymmetric configuration, the Kelvin 

impulse vector has only a component in the z-direction. Thus, it is taken to be a scalar 

with value K=K .  

Non-dimensionalized Kelvin impulse (K’) values are used in Fig. 3.15. It is 

obtained by dividing K with ρrefpR3
max . The ‘C’ bubbles generally give a higher 

value of K’ than their corresponding ‘E’ bubbles. Exception occurs again for R00/Rmax 

< 0.2. The maximum value is obtained for R00/Rmax = 0.7 for a ‘C’ bubble. Although 

the peak pressure is not directly proportional to K’, K’ exhibits a trend that is very 

similar to the peak pressure data of Fig. 3.13. Therefore K’ can potentially be utilized  

to predict the pressure measurement qualitatively.
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Fig. 3.13 Measured peak pressure due to the jet impact Pc for the various ‘E’ and ‘C’ bubbles 
with different R00/Rmax. The figure is reproduced from Sankin et al (2005).  
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Fig. 3.14 Jet velocities of the ‘E’ and ‘C’ bubbles with various R00/Rmax from BEM 
simulations. ‘C’ bubbles of R00/Rmax > 0.2 collapse with higher jet velocity than ‘E’ bubbles 
and vice versa for bubbles with R00/Rmax < 0.2. Maximum jet velocity of about 1260 m/s is 
obtained for a ‘C’ bubble of R00/Rmax = 0.5. 
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Fig. 3.15 The dimensionless Kelvin impulse, K’, at the moment of jet impact for various 
R00/Rmax. The maximum K’ occurs at R00/Rmax  = 0.7 for a ‘C’ bubble.  
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3.2.5 Discussion 

3.2.5.1 Other types of bubbles 
 

 In Section 3.2, the bubble studied is an oscillating bubble with a bubble 

strength of ε = 100. It is therefore interesting to compare the interaction of the same 

lithotripter shockwave on a stationary bubble, or a bubble with higher ε. The 

stationary bubble is modeled with setting ε = 1.0. As discussed in eqn. (2.15), this will 

set the initial internal gas pressure, pg,0, equal to that of the reference pressure, pref, 

and thus the bubble will stay at rest for t ≤ 0.  

 To compare meaningfully with the oscillating bubble cases, the results 

obtained are non-dimensionalized with Rmax = 300 μm. It is found that for a particular 

value of R00/Rmax, the collapse time and the dimensionless Kelvin impulse, K’ of the 

non-oscillating bubble takes on the average value of the corresponding ‘C’ and ‘E’ 

bubbles. For instance, a stationary bubble of R00/Rmax = 0.5 (R00 = 150 μm) collapses 

after 1.11 μs while its corresponding ‘C’ and ‘E’  bubbles  collapse   at   t = 0.95    and  

1.32 μs, respectively. It is also noted that for very small bubbles (i.e. those with 

R00/Rmax close to zero), their collapse time tend towards zero. As for the K’ curve, 

again the stationary bubbles of certain R00/Rmax, tend to take on the average values of 

that of its ‘C’ and ‘E’ corresponding bubbles.  

 Therefore it is concluded that simulation results from modeling a stationary 

bubble are average values from the simulations that consider oscillating bubbles. This 

is important as it is very often that a stationary bubble is modeled in simulation due to 

its simplicity, but in realistic situations the bubbles might be oscillating. Some 

insights can still be obtained from the simplified stationary bubble results. 

 The parameter ε, bubble strength, is set to an arbitrary value of 100 in all the 

simulations presented in previous sections. Deriving from eqn. (2.11) and taking the 
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maximum peak pressure as obtained from G.N. Sankin through private 

communication to be 4.5 MPa, the value of ε and R00/Rmax are set to be 3906 and 

0.0413. This high value of ε is deemed unrealistic because it would probably suggest 

that a shockwave is emitted in both expansion and collapse phase of the oscillating 

bubble, and no such emission was picked up by experimental measurements of Sankin 

et al (2005). Nevertheless to analyze the effect of ε, a set of simulations with ε = 3906 

and R00/Rmax = 0.0413 is performed. It is found that both collapse time and the K’ 

graphs for ‘C’ and ‘E’ bubbles for both ε = 100 and ε = 3906, overlap almost exactly. 

The only mismatch is found for ‘C’ bubbles with R00/Rmax < 0.2. In these cases, the 

pressure in the tiny bubbles is so large (390.6 MPa) that the shockwave has little 

influence on the bubble dynamics and thus the bubbles collapse spherically rather 

than with a jet. With these results, it is concluded that in general the value of ε is not 

critically influencing the numerical results of shockwave-bubble interaction.  

 

3.2.5.2 Advantages and validity of BEM in bubble lithotripter 
shockwaves simulations 
 

 The main advantages of BEM, as mentioned in Section 3.1.4, are its 

computational efficiency and storage space requirement. These benefits are retained 

in the simulation involving lithotripter shockwave bubble interaction. A full 

simulation of a particular case of R00/Rmax ‘C’ and ‘E’ bubbles only takes a few 

minutes. The number of nodes on the bubbles also remains constantly 51.  

  The reader might be concerned about the use of potential flow approximation 

which does not take into account the compressibility of the fluid in the modeling of 

shockwave bubble interaction. It is true that the shockwave phenomena cannot be 

modeled using the potential theory. Nevertheless, the shockwave can be considered as 
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a pressure perturbation because the bubble dynamics involved in its interaction with 

the shock is still primarily inertia driven. From the validations obtained by comparing 

the BEM results with those from other numerical methods which model 

compressibility, and the experimental data from Sankin et al (2005), it can be said that 

fluid compressibility and bubble’s internal shockwave are of weak secondary 

importance. More discussions and details of the simulation performed in Section 3.2 

can be found in Klaseboer et al (2007). 

 

3.3 Interactions of a stationary bubble with inverted shockwaves 
  

For the normal shockwaves used in lithotripsy treatment, there is a 

compressive component of high intensity followed by a tensile part of relatively long 

duration as depicted in Fig. 3.5. This shockwave causes the bubbles that are generated 

either by a previous shock or are pre-existing in the fluid or tissues, to collapse 

violently with a very high speed jet. This phenomenon is much discussed in the 

previous section. However it is noticed that the collapse time of the bubbles are 

generally shorter than the duration of the shockwave. They have collapsed either 

before the arrival of the tensile part of the shock or in the early phase of the tensile 

wave. Thus, these bubbles after the initial collapse and their likely subsequent 

fragmentation will rebound typically as clusters of bubbles. This rebound bubble 

cluster will also eventually collapse, usually only a few hundred microseconds later 

(Church (1989), Coleman et al (1992), Zhong et al (1997b, 1999)), and may cause 

great collateral damage to the nearby tissue (Castensen et al (1990)). 

 To minimize collateral damage and to maximize treatment efficiency (fewer 

number of shock used in a single session), the use of an inverted shockwave has been 
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proposed (Zhong et al (2001), Bailey et al (1999), Loske and Prieto (2002)). This 

shock has a leading tensile wave, which is followed immediately by a much stronger 

compressive wave. The tensile component will cause the existing gas pockets or small 

bubbles to expand, but the compressive wave will force the bubbles to collapse 

violently, and greatly suppress further bubble growth. This type of shockwave can be 

generated using a pressure release reflector which is inserted into an electrohydraulic 

lithotripter (Bailey et al, 1998) or by changing the piezoelectric circuit (Loske et al, 

2002).  

 There are few numerical simulations of bubble interactions with an inverted 

shockwave. In two successive publications, Bailey et al. (1998, 1999) studied the 

effect of acoustic inversion on the pressure distribution and cavitation field. They also 

applied a single bubble model to compare the measured bubble dynamics. They found 

that the inverted shockwave greatly shortened bubble collapse duration, and yet the 

pressure emitted from the bubble cluster is the same as that from a cluster which is 

driven with a standard pressure pulse. In the same year, Zhu and Zhong (1999) did a 

numerical study of the combination of waveforms to generate an inverted shockwave 

for the interaction with a stationary bubble using the Gilmore formulation (Gilmore, 

1952). They also found that the inverted shockwave significantly decreased the re-

expansion of the bubble following its initial collapse, and thus may alleviate the risk 

for vascular expansion. In this section, the author will extend the BEM model that has 

been previously describe to study the interaction of an inverted shockwave of varying 

strength with a stationary bubble of different initial sizes. Bubble profile evolution, 

collapse time, jet velocity and Kelvin impulse of the interaction are presented. These 

parameters, however, could not be obtained from the previous mentioned spherical 

symmetric bubble models of Bailey et al. (1998, 1999) and Zhu and Zhong (1999). 
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3.3.1 Inverted shockwave 
  

 The shockwave model used is based on Church (1989). Church proposed to 

model a typical lithotripter shock wave by considering its time history P*(t) to be  

 ),3/2cos(2)( ππα += −+∗ ftePtP t                       (3.14) 

where P+ is the peak pressure, α is the decay constant (taken to be 1.15x106), and f is 

the frequency which is determined by the negative pulse duration of the shockwave. 

In the simulation, the time varying pressure P*(t) from eqn. (3.14) is incorporated into 

the reference pressure term refp of the unsteady Bernoulli’s equation such that refp (z, t) 

= P*(t). The velocity of the shockwave is then taken to be negative. This converts a 

normal lithotripter shockwave into an inverted lithotripter shock. An additional 

distance factor is added to eqn. (3.10) to ensure that the absolute time is set to t = 0 

when the pressure starts to decrease smoothly, and such that the waveform crosses 

zero pressure at about t = 7 μs before the arrival of the positive peak pressure. 

The pressure profiles of the three waveforms used in this study are presented 

in Fig. 3.16. The shockwaves used have different peak positive pressures, P+. The 

strongest of them, Inverted Lithotripsy Shockwave 1 (ILSW1), has P+ = 39 MPa. This 

value is taken because it is a common pressure strength generated by a clinical 

lithotripter as discussed in section 3.2.1. The peak negative pressure, P-, of this shock 

has a value of -4 MPa. To study the effect of varying the shock strength in terms of its 

peak positive and negative pressures on a bubble, two other shockwaves of lower 

strength as shown in Fig. 3.16 are used. These waves have a P+ of 17 and 5 MPa, with 

the corresponding P- of -1.7 and -0.5 MPa, respectively. For the ease of discussion, 

they are denoted as ILSW2 and ILSW3.  
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Fig. 3.16 Pressure profile of the three inverted shockwaves used in simulations. They are 
generated based on the theoretical lithotripsy shockwave formulation from Church (1989). 
The inverted shocks have peak positive pressures, P+, of 39, 17, and 5 MPa as indicated in the 
legends; the corresponding peak negative pressures (P-) are -4, -1.7, and -0.5 MPa. In the 
discussion, these waves are termed ILSW1, ILWS2 and ILSW3 respectively.  
  

3.3.2 Interaction of an inverted shockwaves of 39 MPa (ILSW1) with 
stationary bubbles 

 

Stationary bubbles of initial sizes, R0, of 1, 10 and 100 μm are simulated to 

interact with the three waveforms presented in Fig. 3.16. The equivalent radius, R, 

(calculated from bubble volume, V, such that, 3

3
4 RV π= ) is plotted against time for 

all three bubbles interacting with ILSW1 (P+ = 39 MPa, P- = -4 MPa). It is noted that 

the initial tensile component of ILSW1 creates a region of low pressure in the fluid 

surrounding the bubbles and thus causes the bubbles to expand. All three bubbles of 

different initial sizes expand to their maximum sizes after about 6.7 μs (Fig. 3.17). At 

this point in time, they have already experienced part of the compressive component 

of the shockwave which stops their expansion. As seen in Fig. 3.16, the compressive 

wave lasts a very short duration of only about 1 μs. Soon after it passes, the bubbles 



 70

collapse. The forced collapse of the bubble caused by a varying pressure such as 

ILSW1, is now compared with that of a Rayleigh collapse driven by a constant 

overpressure. The Rayleigh collapse time (Rayleigh, 1917), tc, is given to be: 

∗⋅=
s

c P
Rt ρ

max91.0 ,                 (3.14)  

where Ps
* is the effective positive pressure experienced by the bubbles. An estimation 

of this constant overpressure, Ps
*, is done with the following equation:  

 ref
c

avg
c

s p
t
tP

t
tP ⋅−+⋅= ++ )1(* ,                           (3.15) 

where Pavg is the average pressure of the positive part of the pressure wave, and 
ct

t+  

denotes the proportion of pressure  contribution   from    the    compressive    wave    

(see t+ in Fig. 3.17).   Then  

eqn. (3.14) gives the time duration of the positive component  

 
f

t
⋅

=+ 12
1 .                  (3.16) 

Since it is set in the simulation that f = 83.3 kHz, t+ is equal to 1.0004 μs. Then with 

eqn. (3.18), the value of Pavg can be obtained using the P+ for ILSW1. Similar 

calculation is done for ILSW2, ILSW3, and ILSW4 for data in Fig. 3.20.  

 dtfteP
t

P
t t

avg ∫
+ += −+

+
0

)3/2cos(21 ππα .                              (3.17) 

The collapse time is then obtained by successive iteration of eqns. (3.15) and (3.16).  

Thus the calculated collapse time, tc, for the 1, 10 and 100 μm initial radii 

bubble is 1.40, 1.50 and 2.50 μs respectively. From the simulation, the collapse time 

(from the bubble’s maximum size to the time of jet impact) is slightly shorter. For the 

1, 10, and 100 μm bubble, it is 1.25, 1.35 and 2.45 μs. The difference can be attributed 
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to the overestimation of the effective pressure Ps
*. This is due to the assumption that 

the bubbles experience the full extent of the compressive wave in its collapse phase. 

However, it is seen in Fig. 3.17 that the bubbles start to collapse only shortly after the 

pressure has started to rise from zero. The average compressive pressure, Pavg, is 

calculated from eqn. (3.18) with t+ taken from the moment that the pressure becomes 

zero from negative. Therefore a lower Pavg would be obtained if t+ is taken from the 

moment the bubbles start their collapse phases.  
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Fig. 3.17 Equivalent radius, R, versus time for bubbles of 1, 10, and 100 μm (initial bubble 
radii) interacting with an inverted shockwave (ILSW1) of 39 MPa peak positive pressure (P+), 
and -4 MPa peak negative pressure (P-). All bubbles expand to large sizes that are multiples 
of their initial sizes, and experience inertial collapse after their expansions are stopped by the 
compressive component of ILSW1.  
 

 The bubble shape changes in the collapse phase for the same set of simulations 

are shown in Fig. 3.18. All bubbles grow to a very large maximum size (the dashed 

line plots in Fig. 3.18) after about 6.7 μs from the instant when the shockwaves hit 

them. The 1 and 10 μm initial radii bubbles expand to 154 and 159 μm in radii 

respectively. The large bubble of 100 μm, on the other hand, reaches a maximum size 

of 206 μm. They then collapse with translational movement of the bubble center about 

t+

ILSW1 
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50 μm from its initial position in the direction of the traveling shockwave. This is due 

to the fact that the upper surfaces of the bubbles move downwards in a much slower 

manner than the bottom surfaces which accelerate upwards. The final bubble for all 

three cases obtains a peculiar shape whereby the bottom sides of the bubbles seem to 

move faster than the center (Fig 3.19). This might cause the bubbles to break up. 

Nevertheless, the bottom surfaces of these bubbles still move with a high speed (about 

1000 m/s for the 1 and 10 μm bubble; and about 500 m/s for the 100 μm bubble) 

which might eventually develop into high speed jets. 

 In the following sections, the results of the interaction of the all three 

shockwaves (ILSW1, ILSW2, and ILSW3) with the bubbles of different initial sizes 

will be discussed. Their collapse time, maximum radius (Rmax) obtained, jet velocity, 

and Kelvin impulse after interacting with the inverted shocks will be studied. 
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Fig. 3.18 Shape profiles of the bubbles of different initial sizes, R0, equal to 1, 10, and 100 μm 
interacting with ILSW1 (Peak positive pressure, P+ = 39 MPa). Also on each profile, the 
corresponding time in μs is noted. It is observed that all three bubbles expand to a large 
maximum radius, Rmax of over 150 μm at about 6.7 μs and then collapse to a flattened bubble.  
 

(i) 1 μm 

(iii) 100 μm 

(ii) 10 μm 
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Fig. 3.19 The final collapsing shape of the 1 μm bubble as shown in Fig. 3.18. The bottom 
surface moves with high speed towards the upper surface (about 1000 m/s for this 1 μm 
bubble. Larger bubbles of radii 10 and 100 μm, collapse with jet speed of about 1000 and 500 
m/s, repectively). 
  

3.3.3 Maximum radius Rmax and collapse time 
  

 The maximum radii, Rmax, obtained by the bubbles as a result of their 

interactions with the tensile wave are documented in Fig. 3.20. Also besides each data 

point for a certain bubble size and amplitude Ps
*, the collapse time from simulation, 

and the Rayleigh collapse time, tc (see eqn. (3.15) to (3.19)) are shown. It is noticed 

that the tensile component of the shockwaves causes the bubbles to expand from its 

initial size to a much larger Rmax. This is especially true for small bubbles of 1 and 10 

μm whereby even a weak P- = -0.5 MPa from ILSW3 can cause them to expand to 

over 50 μm (Rmax,1μm = 56 μm, Rmax, 10μm = 65 μm). This is 56 and 65 times their 

original radii respectively. In this case, the large bubble of 100 μm also expands to a 

133 μm maximum radius. But this is only 1.3 times its original size. For a stronger 

inverted shock like ILSW2 with P- = -1.7 MPa, the bubbles expand even more than 

that when they interact with ILSW1. Both 1 and 10 μm bubbles grow to maximum 

radii of 101 and 108 μm, respectively. The 100 μm bubble reaches a maximum size of 

163 μm in radius. When the strength of the negative part of the shockwaves continues 

to increase to ILSW1, the bubbles expand well above 150 μm as discussed in detail in 

the previous section. The 100 μm bubble even expands to over 200 μm in radius.  
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Fig. 3.20 Maximum radius Rmax for the various initial size bubbles (1, 10, and 100 μm) 
interacting with inverted shockwaves of three different strengths (ILSW1, ILSW2, ILSW3). 
Also indicated next to the data points are the simulated collapse time and (estimated Rayleigh 
collapse time, tc). It is noted that the 100 μm bubble does not collapse immediately after 
interacting with ILSW3. It rebounds from its minimum and continues to oscillate (see Fig. 
3.21). 
 

 After the passing of the tensile component, the compressive part of the 

shockwaves will stop the expansion of the bubbles and cause them to collapse as also 

mentioned in the previous section for the particular cases involving ILSW1. Since the 

collapse time, tc is proportional to Rmax, tc is higher for a bubble with a larger initial 

radius. For instance, it is calculated that it takes 3.51 μs for the 100 μm initial radius 

bubble to collapse under ILSW2, but for the 1 and 10 μm bubbles, they take 1.59 and 

1.41 μs, respectively. The simulated results show a collapse time slightly different in 

magnitude but similar in trend. The 100 μm bubble takes 3.95 μs to collapse, whereas 

the 1 and 10 μm bubbles require only 1.27 and 1.46 μs, respectively. The 

discrepancies lie on the underestimation of the effective positive pressure P*
s as 

experienced by the bubbles as discussed in Section 3.3.2. 

In summary, it is found that the shockwave limits the duration of bubble 

expansion to that of the tensile wave. Although small bubbles can expand to 

approximately 150 times that of their initial radius, large bubbles reach comparable 

1.25  
(1.40) 

1.27  
(1.41)

1.29 (1.43)

1.35  
(1.50) 

1.46 
(1.59)

1.78  
(1.88) 

3.95 
(3.51)

2.45 (2.50) 



 76

sizes too. In the next section, the focus is turned to the collapse and the jetting 

thereafter. 

 

3.3.4 Jet velocity and Kelvin impulse 
 

 When considering the degree of destruction caused by cavitation activities, it 

is important to assess the jet velocity and probably also the Kelvin impulse at the 

moment of jet impact.  

 Fig. 3.22(a) shows the maximum jet velocity of the bottom node of the 

bubbles of various initial sizes (1, 10, and 100 μm) interacting with ILSW1, ILSW2, 

and ILSW3. There is no data available for the 100 μm bubble interacting with ILSW3 

because it does not collapse initially but rather rebounds from its minimum size and 

oscillates for several periods (Fig. 3.21). In the subsequent periods, the 100 μm bubble 

attains a peculiar shape as shown in Fig. 3.21(a) and (b) for its third and fourth 

periods respectively. For the small bubbles of 1 and 10 μm, very high speed jet 

velocities are recorded. For interaction with ILSW1 (peak pressure P+ = 39 MPa), 

ILSW2 (P+ = 17 MPa) and ILSW3 (P+ = 5 MPa), a 1 μm initial radius bubble reaches 

a maximum jet velocity of 1100, 1400 and 1200 m/s respectively. Similarly high 

velocities are obtained for the 10 μm bubble (960 m/s for ILSW1 and ILSW3, and 

1300 m/s for ILSW2). For the large bubble of initial size 100 μm, when it collapses 

under ILSW1 and ILSW2, it obtains a maximum jet velocity of 520 and 590 m/s 

respectively.     
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Fig. 3.21 (a) Equivalent radius, R, versus time for bubbles of 1, 10, and 100 μm (initial bubble 
radii) interacting with an inverted shockwave (ILSW3) of 5 MPa peak positive pressure (P+), 
and -0.5 MPa peak negative pressure (P-). All bubbles expand to large sizes that are multiples 
of their initial sizes. The 100 μm bubble does not collapse but oscillates with a peculiar shape 
(see Fig. 3.21(b) for period three and (c) for period four after the passing of the shockwave. 
 
 
 It is noticed that when the bubbles are hit by ILSW2, they reach higher 

maximum jet velocities than when they are interacting with the stronger shockwave of 

ILSW1. This may be explained by considering the Kelvin impulse, K, as shown in Fig. 

3.22(b). It is noticed that all the bubbles of different sizes seem to obtain rather 

similar Kelvin impulse values for their interaction with a particular inverted shock. 

When hit by ILSW3, all bubbles have K’s close to 3x10-10 kg m/s at the moment just 

before jet impact. Interacting with ILSW2 and ILSW1,  they    have    K’s    of    about  

(a) 

(b) (c) 
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60x10-10 and 450x10-10 kg m/s respectively. Since a higher value of K means a higher 

jet speed or a broader jet (Klaseboer et al, 2007), in this case, when the shockwave 

peak pressure increases from 5 to 17 MPa, the increase in K’s coincide with the 

increase in maximum jet velocities recorded for the 1 and 10 μm bubbles. However, 

as the shockwave’s positive peak pressure P+ increases to 39 MPa, the maximum jet 

velocities obtained for all bubbles decrease. Broadening of jets is observed. For 

instance, both 1 and 10 μm bubbles have a jet radius of 12 μm at the moment of 

collapse when they interact with ILSW2, but the jet radius increases to 27 μm for both 

cases when the bubbles are hit by ILSW1.  

 
Fig. 3.22 (a) The maximum jet velocity from the bottom node as the bubbles collapse under 
the compressive component of different magnitudes. (b) The Kelvin impulse recorded at the 
moment just before jet impact for the similar set of bubbles and shockwaves. 
 

(a) 

(b) 
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3.3.5 Discussion and conclusion 
 

 The inverted shockwaves presented in Section 3.3 have the same acoustic 

energy as their counterparts of same pressure amplitude and pulse duration as 

produced by the standard lithotripter. The standard lithotripsy pulse, like the one 

measured by Sankin et al (2005) in Fig. 3.5, has a sharp-rising, high pressure 

amplitude compressive component which is followed by a much lower in amplitude, 

negative pressure wave. When the positive pressure hits the existing bubbles (either 

stationary or oscillating) in the fluid, they will collapse from their initial size violently 

with a high speed jet as discussed in Section 3.1 and 3.2. Although not examined in 

this thesis, it is shown in numerous studies (Bailey et al (1999), Zhu and Zhong 

(1999), Zhong et al (2001)) that the ensuing negative tensile wave will cause these 

collapsed bubbles to rebound. The growth and collapse cycle is then driven by the 

inertia of the surrounding fluid and lasts far longer (usually a few hundreds 

microseconds) than the lithotripter pulse. Thus the rebounded bubble(s) can grow to a 

large size before the pressure difference across the gas/water interface forces the 

bubble(s) to collapse. This often leads to severe collateral damages in the surrounding 

tissues. However, if the shockwave shape is inverted, i.e. the negative tensile wave 

comes before the positive compressive wave, the bubble will expand to a large size 

initially but the expansion will be stopped by the compressive component and the 

bubble will collapse. There is no ensuring negative pressure to trigger the rebound of 

bubbles and thus less collateral damage is made possible.  

 This form of inverted lithotripsy shockwaves is studied in Section 3.3. Three 

inverted shocks with different peak positive (P+) and peak negative pressures (P-), 

namely 39 and -4 MPa (ILSW1), 17 and -1.7 MPa (ILSW2), 5 and -0.5 MPa (ILSW3), 

are simulated to interact with bubbles of initial radii 1, 10, and 100 μm. It is found 
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that the tensile component causes the small bubbles to expand to large sizes between 

50 to 200 μm in radius. However, further expansion is suppressed, and the bubbles are 

forced to collapse. All bubbles collapse in a few microseconds after the interaction 

with the high positive compressive waves, except for   the    case    of    the  

100 μm bubble interacting with the weak shock of ILSW3. In this exception, the large 

bubble does not collapse with a high speed jet but rather rebounds from its minimum 

volume and continues to oscillate for several periods. 

 It is noteworthy that although further expansion of bubbles after the passing of 

the inverted shockwaves is suppressed (at least for all small bubbles between 1 and 10 

μm in radius), one must not ignore the initial large expansion and the subsequently 

violent forced collapse. These small bubbles expand to several tens and hundreds 

times of their initial radius before being stopped by the compressive wave. Also when 

they collapse, they form flat broad jets as shown in Fig. 3.19. The jet velocities 

obtained are still relatively high (compared to its standard lithotripsy shockwave 

counterparts of equal amplitude and pulse duration). Together with the large jets, 

these bubbles may still be capable of causing damage to the kidney stones. It is 

therefore concluded that the inverted lithotripter shockwave is potentially useful for 

kidney stone fragmentation with the advantage of minimizing collateral damages to 

the nearby tissue. 
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Chapter 4  

Ultrasonic bubbles near biomaterials 
  

This section details the numerical study of the interaction of a stationary 

bubble with a nearby biomaterial in an ultrasound field. These biomaterials are 

involved in various medical treatments using ultrasound as mentioned in Section 1.3. 

But due to the high frequencies and small spatial scale, it is difficult to observe the 

complex interaction between the ultrasonic bubble and the biomaterials. Therefore 

numerical simulations are performed. A range of frequencies is used to study the 

bubble behavior in terms of its growth and collapse shapes, and the maximum jet 

velocity obtained.  

 

4.1 Modeling biomaterials and the acoustic bubble 
  

A BEM model of two fluids is used in the simulation whereby one of the 

fluids has some elasticity and is used to represent the various biomaterials. The other 

fluid in which the bubble is located is assumed to be a Newtonian fluid, and in all the 

simulations presented in this chapter, it is taken to be water. Details about the model 

are described in Section 2.1.5, and its relating non-dimensionalization and other 

parameters used in the program is detailed in Section 2.2. The two important 

parameters used to model the biomaterials are *κ  and α . The parameter *κ  is related 

to the Young’s modulus, E , and the Poisson ratio, υ , of the biomaterials by eqn. 

(2.27) in Chapter 2; whereas α  denoted the density ratio of the two fluids in the 

model as depicted in eqn. (2.28) in Chapter 2.  
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 The mechanical properties of the biomaterials modeled (as presented in Table 

4.1) are obtained from various studies*. It is noted that the quantification of the 

Young’s moduli of biomaterials is highly challenging, and the numbers reported in 

the literature often vary greatly, depending upon measurement method, rate of 

excitation, applied strain and sample size. But the trend reported is consistent (for 

example, fat tissue has a Young’s modulus much lower than that of cartilage). 

Furthermore, the composite nature of the materials and the variety of measurement 

techniques used render the values obtained at best averages. Nevertheless, since the 

purpose of this study is to provide insights to acoustic bubble biomaterial interaction, 

a sufficiently representative value is acceptable. From the density, Young’s Modulus, 

and Poisson ratio values of the biomaterials listed in Table 4.1, the input parameters 

for our program, *κ  and α , are calculated using eqn. (2.27) and eqn. (2.28). It is 

noted that α  is close to 1 ( 1≈α ) for all of the cases simulated except for the case of 

the bone. However, *κ  changes significantly for the different materials. 

                                                 
* Fat’s Young’s modulus (YM) and Poisson ratio (PR) are from Nightingale et al (2003), and its 
density is from Martin et al (1994). Skin’s YM and PR are from Zheng et al (1999), and its density 
from Lask et al. (1997). Cornea’s YM, PR, and density are from Power et al (2001). Brain’s parameters 
are from Trosseille et al (1992). Muscle’s YM and PR are from Duck (1990), and its density is from 
Payne et al (2005). Cartilage’s YM and PR are from Patil et al (1996), and its density is from Shapiro 
et al (2001). Bone’s parameters are from Duarte (1983). 
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Table 4.1. Mechanical properties of the biomaterials used in the simulations. The values are 
obtained from references (Duarte (1983), Nightingale et al (2003), Martin et al (1994), Zheng 
et al (1999), Lask et al (1997), Power et al (2001), Patil et al (1996), Shapiro et al (2001), 
Trosseille et al (1992), Payne et al (2005), Duck (1990)). It is noted that the high Young’s 
Modulus of the bone causes numerical difficulties in our simulation. Since bone is considered 
a hard material, we have replaced the parameters with that of a solid wall. 

No Material 
Density 
(kg/m3) 

Young’s 
Modulus 
(kPa) 

Poisson 
ratio α  *κ  

1 Adipose tissue (fat) 950 5.6 0.45 1.05 0.037 

2 Skin 1100 22.6 0.45 0.909 0.1288 

3 Cornea 1400 47 0.49 0.714 0.2209 

4 Brain 1000 240 0.495 1.0 1.589 

5 Muscle (across 
fibers) 1060 790 0.45 0.943 4.673 

6 Cartilage (coastal) 1300 5000 0.4 0.769 22.89 

7 Bone 2000 14000000 0.43 0.001 100.0 

 

 The stationary gas bubble is placed in the Newtonian fluid (Fluid 1 in Fig. 2.1 

in Chapter 2). Its distance from the biomaterials, H , (refer to Fig. 2.4) is set to be 

05.1 RH ∗=  (in non-dimensionalized terms, 5.1/' 0 == RHH ). The value 1.5 is used 

for all the simulations done in this chapter. It is chosen so that the bubble is not too far 

from the biomaterial (in order that the influence of the boundary on the bubble is still 

reasonably significant), and the bubble is not too near the biomaterial so as to allow 

room for the translational movement of the bubble (a bubble which has moved too 

close to the boundary can lead to numerical instability in the simulation). The bubble 

is stationary at 0=′t  when the sound field is applied. The initial radius of the bubble 

is taken to be 10 =′R . The interface of the biomaterial is assumed to be flat and at rest 

initially. The material is assumed to extend to infinity. The fluid in which the bubble 

resides (water) is assumed to extend to minus infinity. The dimensionless amplitude 

of the wave, A, is chosen to be 0.8 for all the simulations as also used in Sato et al 
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(1994). The frequencies that are used, f / f0, range from 0.25 to 2.0. The discussion 

here will focus on bubbles that are driven below, at, and above their resonance 

frequencies, i.e.  f / f0 = 0.5, 1.0 and 1.5. 

 

4.2 Influence of frequency 
  

The profiles of the bubble evolution and biomaterial boundary behavior are 

investigated and discussed in detail in this section for a selection of the materials 

mentioned in Table 4.1. High sensitivity of the bubble behavior to the different types 

of biomaterials is observed. The bubble will oscillate, and in some occasions, it will 

form a jet or split into two smaller bubbles. The corresponding reaction of the 

biomaterials varies too; in some cases, it hardly moves (for example cartilage and 

bone). In certain cases, it is ‘attracted’ towards the bubble (although close proximity 

of the bubble and the material prevents the simulation from proceeding after a while). 

The result in the last case is observed to bear some similarities to the development of 

jet-like ejection of the material into the fluid as reported in Brujan et al (2001a, and 

2001b). Incidentally, the above-mentioned experiments of Brujan et al (2001a, and 

2001b) were performed with non-equilibrium bubbles and not with ultrasound; a 

successful comparison of those experiments with a numerical model based on the 

same theory as described here was given in Klaseboer and Khoo (2004b). For a more 

direct comparison of the present work involving ultrasound on the bubble with the 

experiments on a non-equilibrium bubble, more assumptions and relations will have 

to be established, which is beyond the scope of the present work. It is noted that the 

radius R′  mentioned in the figures is the dimensionless equivalent radius which is 

calculated from the dimensionless volume, V ′ , of the bubble, ( )3 43'' πVR = . 
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4.2.1 Sound field frequency, 0.1/ 0 =ff  
  

The first case, labeled as Case 1 (Fig. 4.1), depicts the profiles of a bubble 

near an adipose tissue (or fat, 037.0* =κ ) at different instances (Fig. 4.1(a)), together 

with its equivalent radius R′ versus time graph which quantities the bubble profiles 

with time (Fig. 4.1(b)). The three dimensional structure of the bubble corresponds to 

the final profile (Fig. 4.1(c)) just before jet impact. In the first period of oscillation, 

the bubble expands (from t′ = 0.000 to t′ = 1.937) pushing back the fat tissue and then 

contracts almost spherically (from t′ = 1.951 to t′ = 3.013) to a very small size (R′ ≈ 

0.45) and the fat boundary is ‘attracted’ towards the bubble. In the second period, it 

expands from its minimum size (‘P1’ in Fig. 4.1(a) and (b)) until it reaches its 

maximum size as shown with the dashed-lined profile (‘P2’) which is larger than its 

maximum size in the first oscillation. The boundary is pushed back. After that, the 

bubble enters its second collapse phase. Its profile at the end of the second oscillation 

period is drawn with a solid line (‘P3’) with the corresponding point of the radius (R′) 

versus time plot. The jet formed is directed away from the interface as shown in Fig. 

4.1(a) (t′ = 6.707, solid line). Similar jet formation is often observed in a cavitation 

bubble collapse near a free surface or gas-water interface with a consequential water 

plume into the gaseous medium (Wang et al, 1996a). However, instead of the hump 

formed on the fluid interface as a counter reaction to the jet formation within the 

bubble (like for the free surface), the adipose tissue seems to be ‘attracted’ towards 

the bubble because of its elastic nature. 
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Fig. 4.1 Case 1: A bubble near a fat tissue boundary (κ∗= 0.037) in a sound field (f / f0 = 1.0). 
(a) The dimensionless t′ is as indicated near each history profiles. (b) The corresponding 
profiles (‘P1’, ‘P2’ and ‘P3’) are indicated on the R′ vs t′ graph. The pressure oscillation of 
the sound wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization of the bubble 
is based on the solid line profile (‘P3’) at t′ =6.707. 
 

 For Case 2 involving skin (Fig. 4.2), however, the jet formed is directed 

towards the interface as is often observed for the cavitation bubble near a rigid 

boundary (Blake and Gibson, 1987) or a bubble collapsing in an ultrasound field near 

a solid wall (Sato et al, 1994). From t′ = 0.000 to t′ = 1.909, the bubble expands 

spherically. It collapses (t′ = 2.082 to t′ = 3.016) with slight elongation on the part of 

the bubble which is nearest to the skin (‘P1’ in Fig. 4.2(a) and (b)). The skin moves a 

little towards the bubble. During its second expansion (t′ = 3.017 to t′ = 5.021), the 

bubble grows to a much larger size (‘P2’ in Fig. 4.2(a) and (b)) than it ever does 

during the first period of oscillation pushing back the skin interface. The bubble then 

contracts (t′ = 5.022 to t′ = 6.819) and moves towards the skin with the latter 

advancing towards it as well. Then a jet is formed and it penetrates the (opposite) 

bubble wall eventually (‘P3’). 
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Fig. 4.2 Case 2: A bubble near a skin boundary (κ∗= 0.1288) in a sound field (f / f0 = 1.0). (a) 
The dimensionless t′ is as indicated near each history profiles. (b) The corresponding profiles 
(‘P1’, ‘P2’ and ‘P3’) are also shown on the R′ vs t′ graph. The pressure oscillation of the 
sound wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization of the bubble is 
based on the solid line profile (‘P3’) at t′ =6.819. 
 

 Similarly for Case 3 of a bubble near the cornea (Fig. 4.3), the jet formed is 

directed towards the cornea. This is probably because both cornea and skin 

biomaterials are significantly stiffer, i.e. the Young’s moduli for cornea and skin are 

about 5 and 10 times higher than that of fat, and slightly denser than fat. In its first 

period of oscillation, the bubble expands (t′ = 0.000 to t′ = 1.909) and contracts (t′= 

1.924 to t′ = 3.032) almost spherically. During the bubble’s second period (t′ = 3.033 

to t′ = 5.101), it moves slightly towards the interface (‘P1’ in Fig. 4.3(a) and (b)), and 

expands to a large volume (‘P2’). The cornea boundary is ‘attracted’ towards the 

bubble initially before being pushed back when the bubble expands to its maximum 

size. Then the bubble collapses from t′ = 5.102 to t′ = 6.835 with a dimensionally 

thicker jet towards the cornea (‘P3’). The cornea bulges towards the collapsing bubble 

considerably. 
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Fig. 4.3 Case 3: A bubble near a cornea boundary (κ∗= 0.2209) in a sound field (f / f0 = 1.0). 
(a) The dimensionless t′ is as indicated near each history profiles. (b) The corresponding 
profiles (‘P1’, ‘P2’ and ‘P3’) are depicted on the R′ vs t′ graph. The pressure oscillation of the 
sound wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization of the bubble is 
based on the solid line profile (‘P3’) at t′ =6.835. 
 

 When a bubble oscillates near a brain-like tissue boundary (Case 4), it behaves 

very differently from all the previous cases investigated. This could be related to the 

density of the brain tissue which is the same as that of water (Fluid 1). In the first 

oscillation period, it expands (t′ = 0.000 to t′ = 1.767) spherically, and then collapses 

from t′ = 1.782 to t′ = 3.043 with ‘pinches’ observed on the side of the bubble (‘P1’ in 

Fig. 4.4(a) and (b)). The brain interface moves towards the bubble during this period. 

In its second period of expansion, it grows to a large size (R′ > 2 at ‘P2’ in Fig. 4.4(b)). 

The boundary is pushed back only marginally as compared to the previously 

mentioned cases because brain tissue is stiffer (κ* = 1.589) than that of fat, skin, and 

cornea (κ* = 0.037, 0.1288, and 0.2209, respectively).  After that, the bubble 

collapses and breaks into two with the top bubble being much larger than the bottom 

one (‘P3’) in Fig. 4.4(a). Note that the stand-alone data of ‘P3’ in Fig. 4.4(b) pertains 

only to the top bubble. In spite of its stiffness, the brain boundary bulges towards the 
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bubble very significantly, even more severe than that in the previous fat, skin and 

cornea cases. No jet is observed for the first two periods of oscillation. 

 
Fig. 4.4 Case 4: A bubble near a brain-like tissue boundary (κ∗= 1.589) in a sound field (f / f0 

= 1.0). (a) The dimensionless t′ is as indicated near each history profiles. (b) The 
corresponding profiles (‘P1’, ‘P2’ and ‘P3’) are shown on the R′ vs t′ graph. The R′ at the 
square ‘P3’ is calculated only with the volume of the top large bubble. The pressure 
oscillation of the sound wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization 
of the bubble is based on the solid line profile (‘P3’) at t′ =6.614. 
 

For the case involving the muscle tissues (Case 5 in Fig. 4.5), after expanding 

almost spherically, the bubble starts to pinch at the side towards the end of its first 

period (‘P1’ in Fig. 4.5(a) and (b)). After that, the bubble moves towards the interface 

and eventually gets very close to the muscle boundary in its second expansion phase 

from t′ = 2.965 to t′ = 4.817, and thereby pushing back the boundary as it expands. 

Then it splits into two in this (second) expansion phase. (This is very different from 

Case 4 for the brain boundary where the bubble splitting occurs during the second 

collapse phase.) Eventually opposite-directed jets are formed at the bottom and top of 

the upper and lower bubbles, respectively (‘P2’) as depicted in Fig. 4.5(a) and 6(b). 

(Again in Fig. 4.5(b) depicting R′ versus t′, the dotted distribution shortly after ‘P1’ 

pertains to the upper bubble only.) 
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Fig. 4.5 Case 5: A bubble near a muscle boundary (κ∗= 4.673) in a sound field (f / f0 = 1.0). (a) 
The dimensionless t′ is as indicated near each history profiles. (b) The profile ‘P1’ is shown 
on the R′ vs t′ graph. The pressure oscillation of the sound wave is indicated on the top (p′ vs 
t′ graph). (c) The 3D visualization of the bubble is based on the solid line profile (‘P2’) at t′ 
=4.817. 
 

The behavior of a bubble near cartilage is presented in Fig. 4.6 (Case 6). Since 

the biomaterial is relatively much harder or stiffer as compared to the previous cases, 

it is expected not to move much as the bubble evolves to its maximum size (‘P2’ in 

Fig. 4.6(a) and (b)) and thereafter. Then the bubble breaks into two at t′ = 3.152, with 

the top bubble being much larger then the bottom bubble. In its second period of 

oscillation, two opposite penetrating jets are observed in the top and bottom bubbles 

directing towards and away from the interface, respectively, and depicted as ‘P3’ as 

shown in Fig. 4.6(a). The numerical code is able to handle the event of breaking up of 

the bubble into two, and their consecutive behaviors. The reader can refer to 

Klaseboer and Khoo (2004a) for details on the numerics. 



 91

 
Fig. 4.6 Case 6: A bubble near a cartilage boundary (κ∗= 22.89) in a sound field (f / f0 = 1.0). 
(a) The dimensionless t′ is as indicated near each history profiles. (b) The corresponding 
profiles (‘P1’ and ‘P2’) are also shown on the R′ vs t′ graph. The dashed line curve is drawn 
with R′ calculated from only the volume of the larger bubble which is nearer to the boundary. 
The pressure oscillation of the sound wave is indicated on the top (p′ vs t′ graph). (c) The 3D 
visualization of the bubble is based on the solid line profile (‘P3’) at t′ =3.322. 
 

When a bubble is placed near a solid wall which approximates a bone material 

(Case 7), it expands spherically from t′ =0.000 to t′ =1.919 to its maximum size (‘P2’ 

in Fig. 4.7(a) and (b)).  Then it collapses with a jet that penetrates its opposite wall 

(‘P3’). This is a common observation for a bubble collapsing next to a rigid boundary 

(Blake and Gibson, 1987). At t′ ≈ 3.327, the induced jet is on the verge of impacting 

on the opposite side of the bubble surface which will lead to the formation of a 

toroidal shape bubble. 
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Fig. 4.7 Case 7: A bubble near solid wall which approximates a bone material in a sound field 
(f / f0 = 1.0). (a) The dimensionless t′ is as indicated near each history profiles. (b) The 
corresponding profiles (‘P1’, ‘P2’ and ‘P3’) are also shown on the R′ vs t′ graph. The pressure 
oscillation of the sound wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization 
of the bubble is based on the solid line profile (‘P3’). 
 

4.2.2 Sound field frequency, 5.0/ 0 =ff  
 

For comparison, simulations for a bubble near the same set of biomaterials for 

sound waves with dimensionless frequencies (f / f0) of 0.5 (here) and 1.5 (in Section 

4.2.3) are performed. For Case 8 at f / f0 = 0.5 (fat boundary), there is no penetrating 

jet developed in the first two periods of oscillation (see Fig. 4.8). Although the bubble 

is seemingly pinched at the middle towards the end of its first period of oscillation 

(‘P3’ at t′ = 4.504, solid line), it does not break into two. The fat boundary is attracted 

to the bubble as the latter contracts to its minimum size. In the second period, a jet 

directed away from the interface is observed. However, the jet does not impact on the 

opposite side of the bubble wall. The bubble traverses away from the initial quiescent 

boundary while the latter evolves and indicates a movement towards the bubble.  
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Fig. 4.8 Case 8: A bubble near a fat boundary (κ∗= 0.037) in a sound field (f / f0 = 0.5). (a) 
The dimensionless t′ is as indicated near each history profiles. (b) The corresponding profiles 
(‘P1’, ‘P2’ and ‘P3’) are shown on the R′ vs t′ graph. The pressure oscillation of the sound 
wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization of the bubble is based on 
the solid line profile (‘P3’) at t′ =4.504. 
 

Compared to the fat boundary just mentioned, for the bubble near the skin and 

the cornea (f / f0 = 0.5), a slower jet is observed. The bubble collapses with a jet 

towards the skin interface, similar to that of Case 2 (Fig. 4.2) and not shown here. The 

typical history profiles of the bubble for the cornea (Case 9) are shown in Fig. 4.9. 

The bubble moves towards the boundary while developing a jet towards it (‘P3’ at t′ = 

4.585, solid line). The cornea boundary advances towards the bubble. But in the 

second period, the jet does not develop further as the bubble expands. This is very 

unlike Case 3 for the cornea boundary at f / f0 = 1.0 where a broader extent jet is 

observed to develop fully in the second period. 
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Fig. 4.9 Case 9: A bubble near a cornea boundary (κ∗= 0.2209) in a sound field (f / f0 = 0.5). 
(a) The dimensionless t′ is as indicated near each history profiles. (b) The corresponding 
profiles (‘P1’, ‘P2’ and ‘P3’) are shown on the R′ vs t′ graph. The pressure oscillation of the 
sound wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization of the bubble is 
based on the solid line profile (‘P3’) at t′ =4.585. 
 

When the bubble is placed near the brain and muscle however (only the case 

for the former is presented in Case 10 Fig. 4.10), it splits into two with the top bubble 

(the one nearer to the biomaterial) larger than the bottom bubble. There is no jet 

formation leading to the collapses of the bubbles after they have split (‘P3’ in Fig. 

4.10(a) and (b)). The brain boundary moves towards the bubble even as the latter 

breaks into two entities. On the other hand, the muscle boundary, being stiffer, moves 

only marginally towards the split bubble (not shown here).  
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Fig. 4.10 Case 10: A bubble near a brain boundary (κ∗= 1.589) in a sound field (f / f0 = 0.5). (a) 
The dimensionless t′ is as indicated near each history profiles. (b) The corresponding profiles 
(‘P1’, ‘P2’ and ‘P3’) are shown on the R′ vs t′ graph. The pressure oscillation of the sound 
wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization of the bubble is based on 
the solid line profile (‘P3’) at t′ =4.491. 
 

For very stiff boundaries like cartilage and bone, a bubble-induced jet is 

developed and is directing towards the boundaries (similar to Fig. 4.7 for a bubble 

near the bone with f / f0 = 1.0). For the bubble near the cartilage boundary the 

formation of a jet towards the boundary in this case is very unlike the counterpart of  

f / f0 = 1.0 where the bubble splits into two parts first to be followed by two opposing 

jets (Fig. 4.5).  

 

4.2.3 Sound field frequency, 5.1/ 0 =ff  
 

The history profiles of the bubble in a sound field of f / f0  = 1.5 are rather 

different from the earlier ones at f / f0 = 1.0 and 0.5. For the first three cases of the 

bubble placed in the vicinity of fat, skin, and cornea at f / f0  = 1.5, no penetrating jet is 

observed during the first two periods of oscillation (although a jet is initially formed 

for the case of skin, it does not develop fully to penetrate through the opposite bubble 
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wall). However, for the case of brain, a penetrating jet is seen at the end of the second 

period (see Fig. 4.11(a)); this is very different from the counterparts at f / f0 = 1.0 

(Case 4) and f / f0 = 0.5 (Case 10) where no jet is observed.  

 
Fig. 4.11 Case 11: A bubble near a brain boundary (κ∗= 1.589) in a sound field (f / f0 = 1.5). (a) 
The dimensionless t′ is as indicated near each history profiles. (b) The corresponding profiles 
(‘P1’, ‘P2’ and ‘P3’) are shown on the R′ vs t′ graph. The pressure oscillation of the sound 
wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization of the bubble is based on 
the solid line profile (‘P3’) at t′ =5.812. 
 

For the cases of muscle and cartilage (Case 12), the bubble elongates towards 

the boundary quite profoundly at the beginning of its second oscillation period as 

shown in Fig.4.12 (a) and (b) (‘P1’). Then the bubble expands to its maximum size 

with pinching in the middle Section (‘P2’ at t′ = 3.605, dashed profile) is observed. 

After that, the top boundary of the bubble moves very closely to the interface with 

additional pinching near its lower portion (‘P3’ t′ = 4.640, solid line). The topological 

behavior of the bubble surface is very different from the counterpart at f / f0 = 1.0 

(Case 6). 

P3
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Fig. 4.12 Case 12: A bubble near a coastal cartilage boundary (κ∗= 22.89) in a sound field (f / 
f0 = 1.5). (a) The dimensionless t′ is as indicated near each history profiles. (b) The 
corresponding profiles (‘P1’, ‘P2’ and ‘P3’) are shown on the R′ vs t′ graph. The pressure 
oscillation of the sound wave is indicated on the top (p′ vs t′ graph). (c) The 3D visualization 
of the bubble is based on the solid line profile (‘P3’) at t′ =4.640. 
 

4.2.4 Jet velocity and translational movement of the bubble 
 

The penetrating jet phenomenon is observed in several cases for the bubble in 

an ultrasound field of f / f0 = 1.0. It is closely related to the frequency of the sound 

wave. In this case, the driving frequency of the sound wave is the same as the 

bubble’s natural frequency. As a result, the phase difference between the bubble’s 

oscillation and the sound wave is π/2 (Leighton, 1994) as can be seen in Figs. 3b, 4b, 

5b, 6b, 7b and 8b. This promotes the bubble growth. The radius R′ is re-plotted in Fig. 

4.13 whereby a large dimensionless equivalent radius R′ of close to 1.4 is obtained in 

the first period of oscillation; in the second period, the maximum R′ even exceeds 2.0. 

Figure 4.13 seems to indicate that, while the shapes of the bubbles can be very 

different, the volume-time oscillations are quite similar for all the Cases 1 to 7. 
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Fig. 4.13 The variation of bubble radius, R′, with time (t′). The pressure variation of the sound 
wave (f / f0 = 1.0, A= 0.8) is plotted on top with a secondary y-axis on the right. 
 

When the bubble collapses with a jet, the variation of the maximum jet 

velocity (as it originates from one Section of the bubble surface and evolves towards 

the opposite wall of the bubble) is shown in Fig. 4.14. This velocity is obtained from 

the locality on the bubble boundary which is on or nearest to the tip of the jet and 

which will eventually penetrate the bubble. A very high speed jet of up to 980 m/s is 

observed as the bubble collapses near the fat boundary (Case 1). Interestingly, this jet 

is directed away from the biomaterial, similar to that formed in a bubble near a free 

surface (Wang et al, 1996a). However the bubble center traverses slightly away from 

the initial quiescent boundary as opposed to the movement of the bubble towards the 

free surface (Brennen, 2005) during the collapse. This could be due to the momentum 

transfer from the elastic fat boundary which is ‘attracted’ towards the bubble as the 

bubble collapses. 

R′ 
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Fig. 4.14 Maximum jet velocity for a bubble collapsing near various biomaterials in an 
ultrasound field of  f / f0 = 1.0. 
 

For the cases of a bubble near skin, cornea and bone boundaries (Case 2, 3 and 

7), the jet formed is directed towards the boundary. The maximum velocities of these 

jets, however, are about ten times lower than that of the previous case. For the jet in a 

bubble near the skin boundary, the maximum velocity of the impinging jet is 153 m/s. 

As for the cases of the cornea and bone, even lower maximum velocities of 98 and 83 

m/s are observed, respectively.  

Before the bubble collapses near the muscle or cartilage boundaries (Case 5 

and 6), it splits up into two with opposing jets formed pertaining to both split bubbles. 

The jet develops more rapidly for the bottom bubbles in both cases. This bottom 

bubble is smaller in size and the jet impinges the opposite wall of the bubble away 

from the (interface) boundary before the jet pertaining to the top bubble develops 

fully which is directed towards the boundary. In Fig. 4.14, the maximum jet velocities 

obtained are for the bottom bubbles. For Case 5, this value is 24 m/s and for Case 6, it 
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is 37 m/s. In all these cases (Case 2 to 7), the bubble traverses away from the 

horizontal boundary initially, but moves towards the latter as the jet develops. A 

similar observation of the translational movement of the bubble center is obtained for 

Case 4 (brain). The bubble moves away from the initial quiescent brain boundary and 

then towards it when the bubble splits up into two. 

 When the sound field is changed to that of 5.0/ 0 =ff , in all the biomaterial 

cases, except for Case 8 (fat), the bubble initially traverses away from the boundary 

and then towards it as it expands in the second period. In Fig. 4.15, the variations of 

the evolution of R′ with t′ for the different biomaterials at f / f0 = 0.5 are given for 

comparison. As observed, the maximum bubble radius read in the first period is about 

the same as for the second period, unlike that found for f / f0 = 1.0 where the 

phenomenon occurs in the same period. Also, the maximum radius obtained for  

t′ < 7.0 is only about 1.6 (Fig. 4.15), which is lower than that of bubbles in a sound 

field of f / f0 = 1.0 (Fig. 4.13).  

 
Fig. 4.15 The variation of bubble radius, R′, with time (t′). The pressure variation of the sound 
wave (f / f0 = 0.5, A= 0.8) is plotted on top with a secondary y-axis on the right. 
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As for maximum jet velocity, the only two cases where a jet is observed in the 

collapsing bubbles for 5.0/ 0 =ff  are for the bubble near the cartilage or bone 

materials. The maximum jet velocity for the case involving cartilage is very high at 

about 900 m/s. This suggests that very severe damage can be sustained by the 

cartilage when the acoustic bubble collapses next to it. For the case of the bone 

boundary, the maximum velocity recorded is much lower at about 141 m/s. For the 

sound field of 5.1/ 0 =ff , the maximum jet velocity obtained for the case of a 

bubble near the brain-like material is about 25 m/s. Even for a bubble near the bone, 

its maximum jet velocity is only 12 m/s. 

It is noted that the brain boundary, in the case of f / f0 = 1.5, displaces much 

less as compared to the previous f / f0 = 1.0 or f / f0 = 0.5 cases. Furthermore, the 

translational movement of the bubble center for this sound field is generally less than 

that of f / f0 = 0.5 and 1.0. Also, as seen in Fig. 4.16, the variation of R′ is almost in 

phase with that of the sound wave. The maximum radius achieved at about 1.3 to 1.4 

is comparatively lower that the counterparts at f / f0 = 1.0 and f / f0 = 0.5. It is apparent 

that the maximum R′ is obtained at the resonant frequency of f / f0 = 1.0 irrespective of 

the different types of nearby boundary. 
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Fig. 4.16 The variation of bubble radius, R′, with time (t′). The pressure variation of the sound 
wave (f / f0 = 1.5, A= 0.8) is plotted on top with a secondary y-axis on the right. 
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Chapter 5  

Acoustic microbubble simulations 
  

The interaction of a microbubble contrast agent with a strong pulsed 

ultrasound field is studied numerically in this chapter. The response of the bubble, in 

terms of its profiles at different time, the maximum bubble radius obtained, the 

oscillation time, the jet velocity, and its translational movement, is studied. Also the 

effect of increasing the intensity of the ultrasound waves is examined. Lastly, the 

importance of initial bubble radius on the acoustic bubble dynamics is considered. 

 

5.1 Introduction of the study of microbubbles in sound fields 
  

Microbubbles are used as contrast agents in medical imaging. When 

interacting with high intensity acoustic waves, the microbubbles can collapse with a 

high speed jet (Bourne and Field, 1999). The jet from the collapsing bubbles will 

create high shear stress on the cell membranes and eventually rupture them (Brujan, 

2004). This could lead to possible drug delivery via sonoporation (Miller et al (2002), 

Ohl et al (2006)) or cell death (Prentice et al, 2005a). A similar bubble collapse 

phenomenon involving shockwave bubble interaction has been previously studied by 

several researchers such as Ding and Gracewski (1996), Jamaluddin (2004), and 

Klaseboer et al. (2006b). However, recent development in clinical treatment has seen 

renewed interest focusing largely on the use of the pulsed ultrasound; this is possibly 

motivated by the intent to minimize collateral damage on the nearby tissues caused by 

strong shockwaves (Ikeda et al, 2004). Therefore, it is essential to establish the basic 

phenomena concerning microbubble pulsed ultrasound interactions as presented in 
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this chapter, for a better understanding of the physics involved, and for future 

improvement in clinical treatments. 

 

5.1.1 Pulsed ultrasound profiles 
  

The pulsed ultrasound profiles used here are based on those reported 

experimentally by Xu et al. (2005). They use focused pulsed ultrasound to 

mechanically remove tissue in a localized, controlled manner for clinical treatments. 

Various intensities of sound waves as shown in Fig. 5.1 are used, namely 1000, 3000, 

5000, and 9000 W/cm2 as indicated on the figure. These ultrasound waves are 

generated using a single-element transducer. The main frequency of the pulses is 0.8 

Mhz. Xu et al. (2005) postulate that transient cavitation is the primary mechanism of 

the tissue erosion process. This is because they detected acoustic signals caused by the 

existence of the cavitation bubbles when there is effective tissue erosion. Since the 

sound waves used by Xu et al. (2005) are strong enough to cause the collapsing 

cavitation bubbles to cut through tissues, they are deemed suitable to be used as a 

driving force for the forced collapse of the microbubble contrast agents in the cancer 

treatment procedure mentioned (targeted drug delivery with cell destruction by 

collapsing microbubbles). Four pulses of different strengths as shown in Fig. 5.1 are 

used in the simulations. In this chapter, they are referred to as Pulse 1 (for the 1000 

W/cm2 ultrasound), Pulse 2 (3000 W/cm2), Pulse 3 (5000 W/cm2), and Pulse 4 (9000 

W/cm2) for ease of referral. 
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Fig. 5.1 Pulsed ultrasound with various intensities as indicated, (a) 1000, (b) 3000, (c) 5000, 
and (d) 9000 W/cm2 as used in Xu et al (2005) and the simulations in this section. It is noted 
that all the sound waves start off with a tensile part that will cause the bubbles to expand 
before they are forced to collapse by the compressive component of the waves.  
 

 The modeling of these pulsed ultrasound waves is similar to that mentioned in 

chapter 3. Both spatial and temporal considerations are taken into account. In all the 

simulations in this chapter, the pulsed ultrasound is set to hit the bubble from the 

bottom surface, and then travels across the bubble to the top. 

 

5.1.2 The microbubbles 
 

The term ‘microbubble’ is generally used to indicate ultrasound contrast agent 

which is basically a small gas bubble with a thin membrane. Often heavy gases, such 

as sulphur hexafloride, are used. But in some cases, an air core is utilized (for 

example in Levovist Ultrasond Contrast Agent (UCA) from Schering). The use of 

heavy gases is arguably preferred because these gases are less water-soluble so they 

(a) (b)

(c) (d)



 106

are less likely to dissolve which impairs echogenicity (McCulloch et al., 2000). Also 

with slow gas diffusion, the microbubbles are likely to last longer in circulation. The 

thin membrane enclosing the gas core is usually made of albumin, galactose, lipid, or 

polymers (Lindner, 2004). For example the commercially available ultrasound 

contrast agent Optison has octafluoropropane as it content, and it is enclosed in 

albumin.  

Because of the existence of the shells, the microbubbles remain stable in 

solution for a certain period of time, from a few minutes to a few hours. If left 

unattended, they gradually dissolve due to gas diffusion or dissolution of the 

membrane. However, if a strong acoustic field is present, these bubbles could be 

driven to expand to multiple times of their original sizes (as to be presented in later 

sections). In this case, the bubble dynamics is mainly inertially-controlled, and the 

bubbles behave more like cavitation bubbles. Thus, in our model of the microbubble, 

the thin membrane is not considered to be important. It is noted that this is unlike the 

case for the study of microbubble oscillations in a sinusoidal ultrasound field intended 

for bio-imaging purposes. When the microbubbles oscillate gently in the ultrasound, 

the surface tension due to their usually tens of nanometer thick membrane is 

important in influencing the bubble dynamics, e.g. the resonance frequency 

(Khismatullin, 2004). Yet in the case of strong sound waves, the extremely rapid 

expansion and subsequent even more rapid collapse of the microbubbles, render the 

membrane effect to be of secondary importance. In fact, as shown in various 

experiments using strong pressure waves (Wolfrum et al (2002), Prentice et al 

(2005b)), these microbubbles collapse violently with a high speed jet, similar to that 

of a cavitation bubble collapsing after being hit by a shockwave (refer to Chapter 3 on 

“Shockwave bubble interaction”). Therefore, it is considered reasonable in this study 
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to ignore the damping effect due to the membrane and to model the microbubble as a 

stationary gas bubble with internal pressure of 1 bar. 

 

5.2 Interaction of a microbubble with pulsed ultrasound of intensity 
1000 W/cm2 
  

The size of the microbubble contrast agents available commercially is fairly 

well-controlled and uniform. They are usually found within the range between 1 to 4 

μm. This small size allows them to flow easily through the blood circulation (being 

smaller than the red blood cells), and even the micro-circulation systems to the site of 

interest. Therefore in this section, the interaction of a single microbubble of typical 

sizes (with slightly wider range between 1 to 10 μm) with Pulse 1 (denoting the 

pulsed ultrasound of 1000 W/cm2 as shown in Fig. 5.1) is presented. 

Firstly a microbubble 1 μm in radius is considered. This stationary bubble is 

hit by a sound wave like Pulse 1. The traveling wave is modeled as described in 

Section 3.2.1 (the only difference being the function P(t*), in Section 3.2.1, it depicts 

the pressure variation of a shockwave (Fig. 3.5), while here it represents a pulsed 

ultrasound as shown in Fig. 5.1). As the tensile part of the waves passes the bubble, 

the bubble expands and grows to about 25 times that of its initial radius, to a 

maximum radius, Rmax, of 25.9 μm as shown and indicated by the dashed line profile 

in Fig. 5.2. After that, the bubble enters its collapse phase. The subsequent profiles in 

the collapse phase with the time for each profile in microseconds are also shown in 

Fig. 5.2. A jet in the direction of travel of the sound wave (upwards) is formed, and 

causes the collapse of the bubble at t = 1.229 μs from the initial contact (t = 0 μs) of 

the sound wave and the bottom surface of the bubble (the sound wave travels from 

bottom to top).   
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Fig. 5.2 The microbubble profiles with initial radius of 1 μm when it is hit by the pulsed 
ultrasound of intensity 1000 W/cm2 (Pulse 1). It expands from its initial size (thick solid line 
at the center of the plot) to its maximum radius, Rmax = 25.9 μm, at t = 0.881 μs (dotted line). 
Then the bubble collapses with a jet at t = 1.229 μs. The formation of the jet is shown with the 
respective bubble profiles at different time (in μs) which is indicated next to the profiles. 
 

  All the bubbles between 1 to 10 μm in radii, collapse with similar shapes. 

They expand to a large size before collapsing with a jet in the direction of the pulsed 

ultrasound. The maximum bubble radius, Rmax, obtained for these bubbles is in the 

range between 25 to 30 μm. The oscillation time, tosc, which is defined to be from t = 

0 μs to the collapse of the bubble (or its first minimum after a maximum size), is 

found to be between 1.2 to 1.4 μs for the range of microbubbles considered. As shown 

in Fig. 5.3, all the bubbles of these sizes collapse within the first cycle of Pulse 1. This 

is significant because it could mean that if the strong jet from the collapsing bubble is 

the main mechanism for tissue erosion or cell membrane rapture, a single cycle 

ultrasound should be sufficient. The removal of redundant further cycles might serve 

to reduce collateral damages to the healthy cells in the vicinity. 
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Fig. 5.3 (a) Variation of bubble radius in time for microbubbles of radii between 1 to 10 μm 
inclusively. Also indicated is the pressure variation in time of the pulsed ultrasound wave of 
1000 W/cm2 (with y-axis on the right). The bubbles obtain maximum radii between 25 to 30 
μm and collapse between 1.2 to 1.4 μs. The collapse times are within the first cycle of the 
pulsed ultrasound wave as shown in (b) where the complete pulsed ultrasound wave is plotted 
together with the 1 μm bubble’s radius variation in time. 
 

 Also it is noted that, the larger the initial bubble radius, the longer the 

oscillation time, tosc, before the bubble collapses as indicated in Fig. 5.3(a). This is 

because the larger bubble takes longer to expand to its maximum size. In fact all of 

the bubbles are still expanding while already being subjected to the compressive 

component of the sound wave. Another important thing to discuss is the collapse time, 

tc. The value of tc from its maximum radius (Rmax) to jet impact is greater for bubbles 

with larger initial radius because for a given driving pressure, P+, the bubble collapse 

time measured, tc, is found to be proportional to Rmax (see section 5.3). 

 The bubble translates in the direction of the sound waves as it collapses. Most 

of the bubbles have moved a distance of about 8 μm at the moment of jet impact. 

Furthermore, the high speed jets formed attain velocities (vjet) ranging from 1050 m/s 

for the 1 μm bubble to about 1400 m/s for the 10 μm bubble.  
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5.3 The effect of increasing the intensity of the pulsed ultrasound 
 Sound intensity is defined as sound power per unit area. Considering the 

ultrasound waves here as planar progressive waves, the intensity of the waves, I, is 

proportional then to the square of the amplitude of the pressure waves (A), 

 
Z
AI

2

= ,         (5.1) 

where Z is the acoustic impedance. Therefore, when it is increased, the maximum 

positive and negative pressures of the pulsed ultrasound also increase (as shown in 

Fig. 5.1). Since all bubbles between 1 to 10 μm collapse within the first cycle of the 

sound waves, only the pressure amplitudes (both positive and negative) of this cycle 

are considered in this section.  As shown in Table 5.1, as the intensity of the sound 

waves increases from 1000 W/cm2 to 9000 W/cm2, the negative pressure increases in 

magnitude from -25 bar to -62 bar. This negative tensile wave is responsible for the 

expansion of the microbubbles. As provided in Table 5.1, the range of maximum 

radius obtained for the bubbles between 1 to 10 μm also increases with the rise in the 

amplitude of the negative pressure. For the pulsed ultrasound of intensity 1000 W/cm2 

(denoted as Pulse 1) as discussed in the previous section, Rmax is 25.1 μm for a bubble 

with initial radius of 1 μm and 29.8 μm for the 10 μm initial radius bubble. When the 

negative pressure is increased from -25 to -39 bar for Pulse 2, the range of Rmax for the 

same variation of initial bubble radii increases to between 31.2 to 35.7 μm. When the 

negative component of Pulse 3 almost doubles from that of Pulse 1 to -48 bar, the 

maximum radii range increases significantly to between 34.8 and 39.3 μm. Further on, 

the bubbles expand to between 40.5 to 44.7 μm in radii before collapsing when they 

are hit by Pulse 4 with a maximum negative pressure of -62 bar. 
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Table 5.1 Peak pressures (negative and positive) of the first cycle of the pulsed ultrasound 
waves of different intensity and their effects on the collapse time and the maximum radii of 
the microbubbles of initial radii between 1 to 10 μm. The lower bond is set by the columns 
under 1 μm bubble, and the upper bond is given by the values for 10 μm bubbles. All other 
bubbles (between 2 to 9 μm) have tosc and Rmax between these two bonds. 

Intensity of 
pulsed 
ultrasound 
(W/cm2) 

Peak negative 
pressure (bar) of 
the first cycle 

Peak positive 
pressure (bar) 
of the first cycle 

Oscillation time, 
tosc (μs) 

Maximum radius, 
Rmax (μm) 

1 μm 10 μm 1 μm 10 μm 

1000 (Pulse 1) -25 52 1.23 1.37 25.1 29.8 
3000 (Pulse 2) -39 86 1.21 1.31 31.2 35.7 
5000 (Pulse 3) -48 112 1.20 1.30 34.8 39.3 
9000 (Pulse 4) -62 169 1.23 1.32 40.5 44.7 

  

On the other hand, the oscillation time (tosc) of the microbubbles for a given 

initial bubble radius for the various pulsed ultrasound amplitudes remains fairly 

invariant (Table 5.1). They range between 1.20 and 1.37 μs. When the compressive 

component of the first pulse passes the bubbles, they collapse in the direction of travel 

of the sound wave. A very high speed jet of about 1000 m/s (see Table 5.2) is 

observed for the microbubbles of various sizes. Both the intensity and the initial 

bubble radius are important factors in determining the jet velocity. For example, the 

small 1 μm bubble records maximum jet speeds between 1270 and 1366 m/s for the 

various sound waves in Table 5.2; while for the 10 μm bubble, it is between 813 and 

1466 m/s.  

 The decrease of the maximum jet velocity obtained with increasing pulsed 

ultrasound intensity seems counter-intuitive. However, this can be explained by 

considering the Kelvin impulse. For a 1 μm bubble, its Kelvin impulse calculated is 

progressively higher when it is impacted by pulsed ultrasound waves of increasing 

intensity. For instance as shown in Table 5.2, 610131.0 −×=K  kg ms-1 at the moment 

of collapse when it is hit by Pulse 1; but when it is impacted by Pulse 4, K is about 10 

times larger, i.e. 61022.1 −×=K  kg ms-1. The Kelvin impulses, K, for the 10 μm 

bubble is also increasing along with the intensity of the sound waves. For example, at 
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the moment of jet impact when the 10 μm bubble is hit by Pulse 1, its Kelvin impulse 

is 610101.0 −×=K  kg ms-1. However, then it is interacting with Pulse 4, K is about 10 

times larger, i.e. 61003.1 −×=K  kg ms-1. 

 
Table 5.2 Maximum jet velocities and Kelvin impulse for the microbubbles of initial radii 1 
and 10 μm. The maximum jet velocity decreases with increasing pulse intensity (more 
significantly with increasing initial bubble radius). The Kelvin impulse, however, increases 
with increasing pulse intensity. This signifies the broadening of jet radius with increasing 
pulsed ultrasound intensities. 

Intensity of pulsed 
ultrasound (W/cm2) 

Maximum jet velocity, vjet (m/s) Kelvin impulse (μg ms-1) 
1 μm 10 μm 1 μm 10 μm 

1000 (Pulse 1) 1366 1466 0.131 0.101 
3000 (Pulse 2) 1274 1397 0.418 0.388 
5000 (Pulse 3) 1279 1224 0.597 0.50 
9000 (Pulse 4) 1270 813 1.22 1.03 

 

Since the Kelvin impulse is a measure of both the jet speed and its broadness, 

the result signifies that although the jet speed does not vary much, the increase in the 

sound waves’ intensity has the effect of broadening the jet tip (as depicted in Fig. 5.4). 

In this particular case, both bubbles expand spherically, and they start to collapse, an 

obvious flattening of the bottom surface is noticed at about 1.2 μs. The flattened 

bottom surfaces eventually develop into thick jets. The stronger is the sound wave, a 

thicker but slower jet is formed. The radius of the jet, Rjet, for the bubble interacted 

with Pulse 1 (Fig. 5.4(a)), has doubled from about 3 μm, to about 6.5 μm for the one 

with Pulse 4 (Fig. 5.4(b)). This could lead to a broad-based and more effective tissue 

erosion or cell rupture as mentioned. It is noted that both bubbles The broad jet is 

formed as the bubbles collapse. 
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Fig. 5.4 The bubble profile at its moment of collapse for a 1 μm bubble interacted with (a) 
Pulse 1 (pulsed ultrasound of intensity 1000 W/cm2), and (b) Pulse 4 (pulsed ultrasound of 
intensity 9000 W/cm2). The jet tip is much wider with the radii of the jets, Rjet, doubling from 
(a) 3 μm to (b) about 6.5 μm. 
 

 Another physical quantity shown in Table 5.3 is the translational 

movement of the equivalent bubble center or its centroid. The center of a 1 μm bubble 

translates as much as 8.11 μm in the direction of the sound wave when it is hit by 

Pulse 1. When the same interacts with Pulse 4, the distance moved almost doubles to 

15.24 μm. For all the bubbles in the size range of 1 to 10 μm, the increase in sound 

intensity has the effect of causing further translation of the bubble center especially in 

the collapse phase of the bubble evolution. This is perhaps directly related to the fact 

that the higher intensity sound waves cause the bubble to obtain greater Rmax as 

discussed in Table 5.1. As seen in Fig. 5.5, for the case of a 1 μm bubble interacting 

with Pulse 1, the bubble center hardly moves at the expansion phase. As seen from the 

line with dotes which indicates the position of bubble center, the translational 

movement happens mainly in the collapse phase. Both top and bottom surface 

movements are obtained from the top and bottom nodes on the z-axis. During the 

expansion phase, both surfaces move away (radially outwards) from the initial 

(a) (b) 
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position of the bubble (z = 0). The bubble centroid moves little from its initial position 

as seen in Fig. 5.5 during the bubble’s expansion.  

Table 5.3 Translation of the bubble center from its initial position in the direction of the 
pulsed ultrasound waves for the microbubbles of initial radii between 1 to 10 μm. The lower 
bond is set by the columns under 1 μm bubble, and the upper bond is given by the values for 
10 μm bubbles. All other bubbles (between 2 to 9 μm) have values between these two bonds. 

Intensity of pulsed 
ultrasound (W/cm2) 

Translation of the bubble center at the moment 
of collapse (μm) from its initial position 
1 μm 10 μm 

1000 (Pulse 1) 8.11 8.19 
3000 (Pulse 2) 11.05 11.76 
5000 (Pulse 3) 12.53 13.50 
9000 (Pulse 4) 15.24 17.09 

 

The bottom surface of the bubble starts to collapse before that of the top 

surface at t = 0.85 μs. The top surface starts moving toward the bubble center at t = 

0.91 μs. With more time for translational movement and a high acceleration at the last 

moment of collapse, the bottom surface moves relatively more towards the top surface 

then vice versa. This results in a net translational movement of the bubble centroid as 

seen in Fig 5.5 for t between 0.8 and 1.2 μs when the jet impact occurs in the bubble. 

 
Fig. 5.5 Positions of the top and bottom nodes as a bubble of 1 μm radius is impacted by a 
pulsed ultrasound wave of 1000 W/cm2 (Pulse 1). The translation of the bubble center is 
indicated as squares on line. It is seen that the movement during the collapse phase is mainly 
due to the movement of the bottom surface in the direction of positive z. 
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5.4 The effect of the initial size of the microbubbles 
  

It is noted that even for very small initial bubbles of radii 0.1 μm (at the limit 

of validity of our model because surface tension effects have been ignored), the 

oscillation time is similar to that of the bubbles in the range between 1 to 10 μm in 

radius. For instance, when a 0.1 μm bubble interacts with Pulse 1, its oscillation time, 

tosc, is 1.22 μs. The maximum radius obtained, about 24 μm, is close to that of the 

larger bubbles too (between 25.1 to 29.8 μm, Table 5.1). In Fig. 5.6, the profiles of the 

0.1 μm bubble at different times during the collapse phase are shown. The bubble 

seems to be flattened as seen in the profile for t = 1.2147 μs. It achieves a final jet 

velocity, vjet, of 1128 m/s.  

                                    
Fig. 5.6 The profiles of a 0.1 μm bubble in its collapse phase after being hit by Pulse 1 (1000 
W/cm2 pulsed ultrasound as shown in Fig. 5.1). The time (in μs) for each profile is indicated 
next to it. The bubble expands to about 24 μm, and collapses at around t = 1.2 μs.  
  

It is also noted that the profile of the bubble collapse as shown in Fig. 5.6 does 

bear resemblances to that of the 1 μm bubble as shown in Fig. 5.2 in terms of the 

broad timing, general bubble shapes, and bubble dimension. This observation has an 

important implication: if and when the microbubble contrast agents break into smaller 

bubbles after their collapse, the subsequent pulses may cause these very small bubbles 
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to expand to considerable sizes, and bring about unwanted collateral damage to the 

surrounding tissues. For instance, the 0.1 μm bubble which can be remnants from the 

original bubble having been broken up (Fig. 5.6), and can readily expand to 240 times 

of its initial 0.1 μm size when hit by Pulse 1 (pulsed ultrasound of 1000 W/cm2). 

Moreover, the maximum radius obtained of about 24 μm is comparable to that of a 1 

μm bubble with μm26max ≈R .  

 On the other hand, increasing the initial bubble size beyond 10 μm has 

substantial influence on the subsequent bubble behaviors. As described in previous 

sections (Sections 5.2 and 5.3), for the bubbles between 1 to 10 μm in radii, they will 

collapse with a high speed jet within the first cycle of Pulse 1. As the initial bubble 

size increases, for example a 20 μm bubble, it will oscillate one period before 

collapsing in the second oscillation period as shown in Fig. 5.7. 
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Fig. 5.7 The radius versus time curve (left y-axis) for a 20 μm bubble in a pulsed ultrasound 
field as indicated by the pressure profile in dotted line (right y-axis). The bubble grows to a 
maximum radius of 36 μm in the first period of its oscillation. It collapses only at the end of 
its second oscillation period which coincides with the second cycle of the ultrasound waves 
(Pulse 1). 
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 Bubbles in the initial radius range between 20-28 μm exhibit a similar radius 

versus time curve as that shown in Fig. 5.7. Because of the longer oscillation time 

before collapse (with consequential more energy input from the pulsed ultrasound 

wave) and the greater maximum radius attained, bubbles between 20 and 28 μm in 

initial radius therefore collapse with a much higher jet velocity of over 2000 m/s as 

compared to bubbles of 1 to 10 μm (see Table 5.2). For instance, the 20 μm bubble 

collapses at tosc = 2.51 μs with vjet = 2764 m/s. 

 For a bubble of even larger initial radius at 30 μm interacting with Pulse 1, the 

bubble eventually still collapses but only after three periods of oscillation as indicated 

in Fig. 5.8(b). Fig. 5.8(a) shows the maximum bubble radius obtained in dashed line 

(corresponding point A in Fig 5.8(b)) of about 45 μm. In the final collapse from point 

B to C (Fig. 5.8(b)), the bubble develops several jets and is likely to break into several 

small bubbles after point C in Fig 5.8(a).  
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Fig. 5.8 (a) Profiles of a 30 μm bubble interacting with Pulse 1 (pulsed ultrasound of 1000 
W/cm2). The dashed line profile corresponds to the point A in (b) the bubble radius R, versus 
time curve (thick line, left y-axis). Also shown is the Pulse 1 pressure variation in time (dotted 
line, right y-axis). The final collapse from point B to C with the timing indicated is shown in 
(a). The final stage, the bubble developed multiple jets and is likely to break into several 
smaller bubbles. 
 

In fact, as observed in previous sections, for microbubbles of ranges of size 

range between 0.1 and 30 μm, the maximum radius obtained has increased 

correspondingly. It is interesting to investigate the bubble dynamics with initial 

bubble radii that are even larger than the mentioned range interacting with the same 
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pressure pulse (Pulse 1). For bubble of initial sizes between 40 to 100 μm, they 

primarily oscillate in the presence of Pulse 1. As depicted in Fig. 5.9, these bubbles do 

not collapse with a high speed jet. Instead they continue to oscillate after the passing 

of full three cycles of the imposed pulsed ultrasound waves as shown in Fig. 5.9(b). 

Also noted in Fig. 5.9(a) is the fact that the oscillation amplitude of the bubbles seems 

to be moderated as the initial bubble size increases. For example, within the time 

considered or equivalent to the passing of the pulsed ultrasound waves in Fig. 5.9(a), 

the 40 μm bubble oscillates between a maximum radius of 54 μm and a minimum of 

34 μm. For the 100 μm bubble, however, the bubble gradually grows from its initial 

radius of 100 μm, to only about 110 μm when the final pulse passes the bubble. In fact, 

the bubble radius versus time in Fig. 5.9(a) appears as a series of ‘perturbations’ 

depicted within a drawn circle in the plot of Fig. 5.9(b). For a long period after this 

initial ‘perturbation’, the bubble continues to oscillate, way beyond the duration of 

Pulse 1 (about 5 μs). It is found that this 100 μm initial bubble continues to oscillate 

in its resonance frequency, f0, given by Minnaert (1933) (mentioned in Chapter 2 (eqn. 

(2.16)), and repeated here for continuity of discussion) to be 

ρ
γ

π
0

0
0

3
2

1 p
R

f = ,        (5.3) 

where R0 is the initial bubble radius, γ  is the ratio of specific heat of the gas content 

in the bubble (taken to be 1.4 because the gas is assumed to be ideal), p0 is the 

atmospheric pressure, and ρ  is the density of the fluid (in this case water). As an 

approximation, (5.3) can be simplified to  

 
0

0
3

R
f ≈ .                    (5.4) 

Therefore, the 100 μm bubble has a resonance frequence, f0 = 30 kHz. The 

corresponding period is therefore T0 = 33 μs. From Fig. 5.9(b), it is seen that the 
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period of oscillation after the passing of the pulsed ultrasound is about 32 μs. This is 

indeed close to the theoretical calculation mentioned.    

 
Fig. 5.9 (a) Oscillations of 40 to 100 μm bubble as a result of interaction with a pulsed 
ultrasound field (Pulse 1, 1000W/cm2). The thick lines from bottom to top indicates the radius 
R variation in time for bubbles of 40, 50, 60, 70, 80, 90, and 100 μm in initial radii (left y-
axis). Also shown is the Pulse 1 profile in dashed line with the corresponding pressure on the 
right y-axis. (b) Oscillation of a 100 μm bubble subjected to Pulse 1. The circled portion 
corresponds to the respective curve of the 100 μm bubble in (a) as pointed by the arrow. After 
the passing of the pulsed ultrasound, the bubble continues to oscillate in its resonance 
frequency of about 30 kHz (with a corresponding period of 33 μs). 
 

 If the bubbles are initially very large (much greater than 100 μm), they are 

hardly perturbed by the pulsed ultrasound waves. The bubble simply oscillates very 

‘gently’ under the imposed sound fields of Pulse 1 to 4. Since no damping is included 

in the model, this oscillation will go on forever. 

 

100 μm 

40 μm 
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5.5 Conclusion 
  

As the microbubble contrast agents are becoming more readily available, 

research on their use in more clinical procedures are being explored and developed. 

One ongoing area of research work is in the use of these bubbles for targeted drug 

delivery and cancer treatment. Strong ultrasound waves are utilized for cell 

sonoporation (so that macromolecular drugs or genes can enter the cells) or remote 

destruction of the microbubbles after they are attached to the diseased area. This 

procedure has the advantages of being non-invasive, can be easier monitored via 

bioimaging, and potentially economical.  

 To understand how this concept can be utilized, a numerical study is 

performed on the interaction of microbubbles of typical sizes (between 1 to 10 μm in 

radius) with pulsed ultrasound waves as used by Xu et al (2005). It is found that all 

the bubbles collapse within the first cycle of the pulsed ultrasound (which consists of 

three cycles). The maximum bubble radii obtained lie between 25 to 30 μm. When the 

intensity of the sound waves is increased (from Pulse 1 of 1000 W/cm2 to Pulse 4 of 

9000 W/cm2), the bubbles expand to larger sizes before collapsing. However, the 

oscillation time remains fairly similar, this is because the increase in expansion time is 

offset by the decrease in the collapse time due to the higher positive pressure. Also, 

the maximum jet velocity obtained is not much affected by the increase in sound 

intensity. Nevertheless, the enhancement of tissue erosion by the increased intensity 

ultrasound as reported in Xu et al (2005) could possibly be explained by the 

broadening of jet radius from Pulse 1 to Pulse 4 or observed as an increase of the 

calculated Kelvin impulse. Also when exposed to the stronger intensity pulsed 

ultrasound waves, the further the bubbles translate in the direction of propagation of 
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the waves. Thus, this movement of the bubbles to closer proximity to the cells, 

together with the widening of jet could well explain the more effective tissue ‘cutting’ 

due to higher shear stress generated with the higher ultrasound intensity.  

 If a microbubble has very small initial bubble radius for example 0.1 μm, it 

expands to about the same maximum bubble radius and collapses with similar 

oscillation time cycles as the 1-10 μm initial bubble radius. This is significant because 

potential bubble fragments arising from collapsed microbubbles could be induced by 

subsequent sound waves to expand to large sizes and collapse violently to cause 

collateral damage. For larger initial bubbles of between 20 to 30 μm in radius, 

however, the bubbles oscillate one or two more periods before collapsing. Because of 

the greater energy input from the sound waves, their collapse is even more violent 

than the previous smaller bubbles. However, if the initial bubbles are even larger at 

O(100 μm), they are hardly perturbed even by the strongest sound waves of Pulse 4.  

 Lastly it is mentioned that although these microbubbles are often 

operating/placed near tissues or organs in clinical settings, the nearby biomaterials are 

not modeled in this present study. The presence of biomaterial subjected to the pulsed 

ultrasound and response of the biomaterial to the dynamics of the bubble behavior 

which in turn affect the bubble behavior is likely to be a complex coupled interaction, 

and a subject for future studies. Lastly, the reader is referred to Fong et al (2008) for 

more details of the study in this chapter.  
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Chapter 6  

Experimental observations of spark bubbles using high 
speed photography 
 

 In this chapter, experiments using a novel method for generating non-equilibrium 

spark bubbles are described. A simple setup utilizing relatively low voltages between 55 

and 57 V is developed. This setup has advantages over previous works which employed 

high voltage for the breakdown of water (Buogo and Cannelli (2002), Soh and Willis 

(2003), Blake and Gibson (1981)) regarding safety and simplicity: there is no special 

safety measure required except for the avoidance of physical contact with the circuit 

when the capacitors are charged up and the water in the tank before the electrodes are 

short-circuited. Only a few standard electrical components, such as capacitors, switches, 

and wires are needed to make the circuit. Furthermore, only a slight modification is 

needed to generate multiple spark bubbles for the study of multiple bubble interactions 

which will be presented in section 6.4. One important feature of spark bubbles generated 

using this method is that the vapor pressure inside these spark bubbles is not negligible, 

as shown in Buogo and Cannelli (2002), and Lew et al (2006). From the simulations, it is 

found to be between 0.3 to 0.5 bar.  

 

6.1 Experimental setup 
 

The experimental setup consists of four main components: electrical circuit, water 

tank, high speed camera, and light source. Two similar circuits are used for the 



 124

experiments described in section 6.3 and 6.4 respectively. For the single bubble near an 

elastic membrane (section 6.3), the circuit consists of a 55 V DC supply, 5300 μF 

capacitors (two of 1000 μF and one of 3300 μF, connected in parallel), and a 1 kΩ 

resistor as shown in Fig. 6.1(a). As for the multiple bubble experiments (section 6.4), a 

single 3300 μF capacitor, in series with a resistor of 1 kΩ, and a DC supply of 57 V (Fig. 

6.1(b)), is used.  

Fig. 6.1 Electrical circuits for spark bubble experiments involving (a) a bubble near an elastic 
membrane, and (b) multiple bubbles interactions; at the crossing of each electrode, a bubble is 
generated. 
 

The tank used is an open-top transparent tank of 17x17x17 cm3 size, in which a 

fixture was placed to hold a wire support. The wire support could be moved along the 

(b) 

(a) 
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vertical axis of the wire fixture to a desired level and distance from the membrane, as 

well as incorporating multiple wire holders. At each of the wires’ ends, copper-alloy 

electrodes (0.11 mm in diameter) are connected for the generation of a single cavitation 

bubble. The electrodes crossed and touched each other, and this appeared to be the best 

way to generate a large spark bubble. The size of the bubble produced was much larger 

(maximum bubble radii are from 2 to 4 mm) than the electrodes and thus their influence 

on the bubble’s behavior was assumed to be negligible. The tank was initially filled up to 

about 80% with water. For the experiments involving an elastic membrane, the water is 

strongly degassed by boiling it and later letting it cool down to 25 °C. For the other set of 

experiments in section 6.4, ordinary tap water is used. The use of the different types of 

water has no significant influences on the results obtained.  

The experiment works principally by charging the capacitors via the ‘Charging 

circuit’ in Fig. 6.1, and then discharging the electricity via the electrodes (see 

‘Discharging circuit’ in Fig. 6.1) into the water to create the transient bubble(s). To 

record the events, a monochrome high speed camera (Photron Fastcam—APX Ultima 

Imager) with a framing rate of 12,500 frames per second (fps) and above is used. The 

shutter speed is set to 1/24,000 s. The camera was placed in front of the tank at a distance 

of approximately 45 cm. The scene is illuminated with a strong continuous spot lamp 

(ARRI-Arrislin) operated at an electric power of about 500 W. A white reflective board 

diffusely scattered the light and thus improved on the contrast of the bubble interior was 

used. The membrane was made from a cut rectangular piece (30 x 31.2 cm) of surgical 

glove. It was stretched by using two holders at the sides to a final length of 38.1 cm. Care 

was taken to eliminate the influence of the free surface by placing the membrane at 49.7 
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mm depth which was more than 10 times that of the maximum bubble radius, Rmax (about 

4 mm).  

The thin copper alloy wires (the electrodes) were wound carefully to the thick 

copper wire used in the main circuits (Fig. 6.1). Since the electrodes were so thin, they 

broke off during the experiment, partly ‘vaporized’, and had to be replaced for the next 

experiment. When the electrodes were ‘shorted’, the intense heat and pressure due to this 

initial electrical discharge caused the formation of plasma at the bubble center. The bright 

light following that rendered the bubble shape in the first few frames of the high speed 

photographs indistinguishable. Nevertheless, the bubble cooled down quickly and the rest 

of its dynamics was able to be captured accurately and clearly. Also, the heat generated 

during the plasma formation caused the burning off of the electrodes. With this, the 

electrical discharge was stopped, and some of the initial voltage at the beginning of the 

discharge process remained (Lew et al, 2006).  

  

6.2 The growth and collapse of a single spark bubble in a free field 
  

High temperature and pressure at the contact point of the electrodes ionized the 

water to generate plasma and subsequently a rapidly expanding bubble. Although the 

content of the bubble generated using the above mentioned setup is not known exactly, it 

is presumed to be mainly made up of diatomic gases (for example H2 and/or O2) with 

some water vapor and hot metal vapor from the electrodes. These vapors contribute to the 

pressure in the bubble during the early expansion phase. In the experimental observations 

shown in Fig. 6.2(a), it is seen that the bubble grew to a maximum radius, 
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28.3max ≈R mm, and then collapsed spherically. Finally the bubble in Fig. 6.2(a) breaks 

into many small fragments due to the violent nature of the collapse. It is noted that pv 

varies slightly from experiment to experiment. 

 

 
Fig. 6.2 (a) Selected frames showing a spherical expansion and collapse of a single bubble with 
maximum radius 28.3max =R mm (as seen in frame t = 383 μs) in a free field with the time from 
the start of the spark (first image). The bubble rebounds and collapses again in the last three 
frames (from t = 783 μs to t = 1050 μs). Pictures reproduced courtesy of Daan Martens. (b) 
Bubble radius-time histories: a comparison between experiment and theory. The dashed and solid 
lines represent the curves with vapor pressure 51026.0 ×=vp  and 0 Pa, respectively, and the 
squares represent the experimental data. 

(a) 

0 μs 183 μs 383 μs 650 μs 

717 μs 783 μs 883 μs 1050 μs 

(b) 
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  From the high speed video, the bubble radius versus time data for a single 

oscillation is obtained as shown in Fig. 6.2(b) (in squares). The result is compared with 

theoretical calculations using the Rayleigh-Plesset equation (2.10). Two solutions are 

plotted with 51026.0 ×=vp  Pa (dotted line), and 0=vp  Pa (solid line) respectively. It is 

seen from Fig. 6.2(b) that the period of oscillation for the bubble with 0=vp  Pa is 

significantly shorter: the bubble reaches its maximum size of 3.20 mm at 323 μs, and 

collapses to its minimum size at about 618 μs. But for results with 51026.0 ×=vp  Pa, the 

curve matches very well with the experimental data. In fact for all the simulations to be 

presented in this chapter, pv is taken to be either 5104.0 ×  or 5105.0 ×  Pa (obtained with 

comparison to the time scale in experimental observations), depending on the fit with the 

experimental results. The bubble reaches its maximum radius at 370 μs and collapses 

after 720 μs. Buogo and Cannelli (2002) reported an experiment with a spark bubble of 

35max ≈R mm that the vapor pressure was indeed as high as 5103.0 ×=vp  Pa.  

 

6.3 Spark bubble interaction with an elastic membrane  
  

It is known that when a bubble collapses near a solid boundary, it will form a high 

speed jet towards the boundary. When it is near a free surface, however, the jet formed is 

away from the interface. The free surface develops a water plume which is opposite in 

direction to the jet in the bubble. If the nearby interface has elastic properties, the bubble 

behaviors are rather complex. Early experiments by Tomita and Kodama (2003) and 

Shima et al (1989) used a laser to generate a bubble near composite materials. One of the 

materials they used consisted of a silicone rubber plate on top of foam rubber. The elastic 
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surface influenced the flow around the bubble as it oscillated causing it to split into two, 

or form a ‘mushroom’ shaped bubble, or migrate away from the compliant surface. 

Brujan et al (2001a and b) have also performed a series of experiments of a laser 

generated bubble near an elastic material. In this case, they used polyacrylamide gel as an 

elastic boundary. More interesting and complex bubble behaviors are observed, such as 

the mentioned ‘mushroom’ shaped bubble formation, bubble splitting, and elevation and 

repulsion of the elastic interface. 

 More relevant literature includes a short study by Shaw et al (1999) on the 

interaction of a laser bubble near a thin elastic membrane. Again phenomena such as 

‘mushroom’ shape bubble formation and bubble splitting were observed. Some of the 

bubble profiles seen were similar to that of Brujan et al (2001a and b). Based on the 

experimental results to be presented here, Turangan et al (2006) performed BEM 

simulations using the parameters measured. Simulations results in very good agreement 

with experimental results were obtained. The author wish to acknowledge the effort of 

Ong Geok Pei in the experimental results presented in Section 6.3. She was a mechanical 

engineering student under the supervision of the author.  
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6.3.1 Growth and collapse of a spark bubble 3.0 mm away from the 
membrane 

 

It is reported by Tomita and Kodama (2003) that the ‘mushroom’ shape bubbles 

were observed when the distance between the bubble center and the elastic boundary is 

less than one maximum bubble radius (Rmax) away. In this experiment shown in Fig. 6.3, 

a spark bubble is created 3.0 mm away from the membrane (Rmax = 4.41 mm). As seen in 

frame (i) at t = 0 μs, the crossing point of the electrodes (where the bubble will be 

initiated) is located at 3.0 mm from the membrane. Frame (ii) shows the expanding 

bubble at t = 640 μs. The bright spots on/near the bubble surface are possibly due to the 

burning of the electrodes that have been broken into small pieces.  

At t = 800 μs, the bubble obtains its maximum radius, Rmax, of 4.41 mm. Since the 

bubble is located less then one Rmax away from the membrane, its bottom surface 

becomes flattened as its expansion is partly hampered by the membrane. The compliant 

membrane is, in turn, being pushed away. Then the bubble enters its collapse phase. 

Frame (iv) and (v) show the bubble shrinking to a smaller volume from its maximum at 

frame (iii). Then at t = 1200 μs (frame (vi)), both left and right sides of the lower bottom 

surface of the bubble seems to be forming jets that eventually cause the development of a 

‘mushroom’ shape bubble at frame (vii). The jets meet each other, and break the bubble 

into two smaller bubbles at t = 1360 μs (frame (viii)). 

Meanwhile, the elastic membrane moves with the bubble as it shrinks from its 

maximum at frame (iii) to its minimum before splitting into two bubbles at frame (vii). 

Then the membrane forms a hump when the bubble collapses into two at the last frame. 

This movement of the membrane is believed to be a repulsion back towards the bubble 
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due to its elasticity since it was pushed away when the bubble expands to its maximum. 

Because of this, the momentum in the water induced by the membrane movement is 

transferred to the bubble in a form of perturbation that propagates from the bottom to the 

top of the bubble. This contributes to the formation of the ‘mushroom’ shape bubble. 

Apart from this, there are also clearly observable surface waves on the membrane. This 

waves travel from the center of the membrane where the bubble is, and then across the 

membrane surface towards the side clamps. 

 

6.3.2 Growth and collapse of a spark bubble 4.16 mm away from the 
membrane 
  

In this case (results shown in Fig. 6.4), the bubble is located more then one Rmax away 

from the membrane as seen in frame (i). The influence of the membrane on the bubble is 

not significant because of the distance involved. As the bubble grows to its maximum 

size from frame (ii) to frame (iii), the membrane is only slightly pushed down. The 

bubble obtains a Rmax of 3.2 mm at t = 400 μs (frame (iii)). Then the bubble collapses 

spherically from frame (iv) to frame (v). It obtains its minimum size at t = 720 μs (frame 

(vi)). Instead of a single bubble, it is then fragmented into many small bubbles which 

clump together and rebound in frame (vii). It collapses again at t = 960 μs (frame (viii)). 

Throughout the collapse phase, the membrane is hardly perturbed. It remains flat in its 

equilibrium position even at the rebound of the bubble at frame (vii). 
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Fig. 6.3 Sequence of experimental result of a bubble initiated 3.0 mm above a membrane from (i) 
to (viii). Pictures taken from Ong (2005) and Ong et al (2005) with permission. Time was taken 
from the frame just before the spark was observed as t = 0 μs at (i). The corresponding time in 
microseconds is noted under each image. The bubble expands from (ii) to its maximum size (Rmax 
= 4.41 mm) at (iii), pushing away the membrane. Then it enters its collapse phase from (iv) to 
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(viii). The membrane moves towards the collapsing bubble. Noticeable traveling waves in the 
membrane are observed. No jet is formed; instead, a ‘mushroom-shaped’ bubble is seen in (vii) t 
= 1280 μs. Then the bubble splits up in two parts at (viii) t = 1360 μs. The bottom bubble is larger 
than the top bubble. 
 
 

 
Fig. 6.4 Experimental observations of a spark bubble initiated 4.16 mm above an elastic 
membrane (frame (i)). Pictures taken from Ong (2005) and Ong et al (2005) with permission. The 
bubble obtains its maximum radius, Rmax, of 3.2 mm at 400 μs (frame (iii)). Then the bubble 
collapses spherically to its minimum at frame (vi) (t = 720 μs). After that the bubble rebounds at 
frame (vii) (t = 800 μs), and collapses again at frame (viii) (t = 960 μs). 
 
 
 
6.3.3 Growth and collapse of a spark bubble 2.9 mm away from the 
membrane 
  

Another set of experiments with the distance between the bubble and the 

membrane less than Rmax is presented in Fig. 6.5. The general behavior is similar to that 

presented in Fig. 6.3. Frame (i) shows the initial position of the electrodes. Initially the 

growth of the bubble is not visible due to the brightness of the spark. At t = 800 μs, the 

bubble outline is first seen. It then expands to its maximum size of Rmax = 4.5 mm in 
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frame (iii), after which, the bubble collapses. Frames (iv) and (v) (t = 1200 μs and t = 

1280 μs respectively) show the initial stage of the collapse. Because the bubble is slightly 

nearer to the membrane (2.9 mm away as compared to Fig. 6.3 where the bubble is 3.0 

mm away), the bottom surface of the bubble is more flattened than the previous 

experiment described in section 6.3.1. A ‘mushroom’ shape bubble is eventually formed 

(frame (vii)). However, the size of this ‘mushroom’ shape bubble is slightly larger than 

that described in Fig. 6.3. Also, in the last frame the bubble breaks into two bubbles of 

almost equal size, as compared to a larger bottom bubble and a smaller top bubble in the 

previous experiment.  

 The elastic membrane is pushed away by the expanding bubbles in frames (ii) and 

(iii). It moves towards the bubble as the bubble collapses. As mentioned in section 6.3.1, 

this causes the fluid flow around the bubble which eventually results in the formation of 

the ‘mushroom’ shape bubble. In the last frame, the membrane is seen to move upwards 

to form a hump underneath the split bubble. In conclusion, it is clear that the presence of 

a nearby membrane has a profound influence on the behavior of an oscillating bubble. It 

exhibits complex dynamics such as the formation of a ‘mushroom’ shape bubble, bubble 

splitting and jetting. Also, it induces a surface wave on the membrane which starts at the 

bottom of the expanding bubble, and travels towards the still collapsing bubble at frame 

(viii). 



 135

Fig. 
6.5 The growth and collapse of a spark bubble which is initiated 2.9 mm above the elastic 
membrane (frame (i)). Pictures taken from Ong (2005) with permission. The sequence is to 
be interpreted from top left to bottom right (frame (i) to (viii)). The bubble grows to its maximum 
size at t = 960 μs, and obtains a Rmax of 4.5 mm (frame (iii)). It collapses with a flattened bottom 
surface in frame (iv) and (v). The next two frames (frame (vi) and (vii)) see the formation of a 
‘mushroom’ shape bubble. In the last frame, the bubble splits into two bubbles of almost equal 
size. 

(i)  0 μs (ii)  800 μs 

(iii)  960 μs (iv)  1200 μs

(v)  1280 μs (vi)  1360 μs

(vii)  1440 (viii)  1520 μs 
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6.4 Multiple bubble interaction – comparison with simulation results 
 
  

Using the spark discharge circuit with the modification presented in section 6.1, 

multiple sparks can be generated to initiate several violently oscillating bubbles at the 

same time. It will be shown that interesting and complex interactions between bubbles are 

resulting, such as jet formation, translational movement due to attraction or repulsion, 

and coalescence between two bubbles. The interactions between the bubbles depend on 

several factors: the distances between the bubbles, their relative sizes, and the spark 

initiation times. Because of the large number of possible combinations of these 

parameters, only selected and distinct cases are discussed in turn. Cases numbered 1, 2 

and 3 involve bubbles that are arranged almost in-line and Cases 4 to 6 for bubbles placed 

in a triangular configuration. The three bubbles involved in Case 1 are created at the same 

instant (in phase). In Case 2 and 3, the bubbles are not in phase; Case 2 has an earlier 

generated center bubble which reaches a smaller maximum radius as compared to the two 

outer bubbles while in Case 3, the center bubble is generated later. In both Case 4 and 5, 

the bubbles are generated at the same instant, but for Case 5, they are placed very near 

each other with respect to their maximum radii. Case 6 documents the situation whereby 

the bubbles are created one after another, and an interesting phenomenon, termed the 

‘catapult’ effect is observed. Here a high speed jet with a velocity of more than 180 m/s is 

found when the bubble is close to its maximum size. Some discussions on the 

coalescence of bubbles and other phenomena will be presented following the presentation 

of all the cases (from 1 to 6). 
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 The geometrical arrangement and the separation distances of the bubbles in these 

experiments are controlled by the physical placement of the crossing points of the 

electrodes. The bubbles are created centered at these crossing points. The timing of the 

bubble generation is determined by the connection of the thin electrodes on the anode and 

cathode wires; the differences in the tightness of the winding of the electrode to the 

thicker copper wire give rise to the generation of out-of-phase bubbles. Also, the 

difference in bubble size is caused by the slight difference in the electrodes’ contact at the 

respective crossing points. Nevertheless, the current experimental setup renders a fair 

degree of control of bubble locations and inception time. Numerical simulations using a 

3D BEM program are also performed to facilitate the understanding of the flow dynamics 

involved. The details about the modeling and numerical methods can be found in section 

2.3.2. 

 It is noted that some of the experiments are performed by Deepak Adhikari of the 

National University of Singapore (as noted in the captions of the respective figures) 

under the guidance of the author. The rest of the experiments and all of the simulations 

are done by the author.  

 

6.4.1 Case 1: Three bubbles arranged almost in-line and in-phase 
 
 The three electrodes used for the generation of three spark induced bubbles are 

arranged in a linear manner as shown in Frame 1 of Fig. 6.6. The camera speed used here 

is 20,000 fps (frames per second) with a shutter speed of 1/20,000. In all the experimental 

results presented from this point onwards, the frame number as recorded with the high 

speed camera is indicated in the images. However, only the most interesting frames 
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(correspondingly numbered) are shown. Frame 1 always corresponds to the frame just 

before the first appearance of a spark that will generate the first bubble in the experiment.  

The distance between the contact points of the top and center electrodes (l1,2), and 

the center and bottom electrodes (l2,3), are 8.14 and 7.79 mm, respectively. In the 

simulation, coordinates of the bubbles are set to be at (in mm) (-1.17, 0.0, 8.06), (0.0, 0.0, 

0.0), and (0.583, 0.0, -7.77) for the top (bubble 1), center (bubble 2), and bottom (bubble 

3) bubble, respectively. These coordinates are assigned to match the locations of the 

bubbles in the physical experiment with the assumption that the bubbles are exactly on 

the same plane of y = 0 (the y-axis is perpendicular to the viewing plane). 

The maximum bubble radii obtained for the top (Rmax,1), center (Rmax,2), and 

bottom (Rmax,3) are 2.38, 3.03, and 2.69 mm, respectively. These maximum radius values 

are obtained by measuring the bubble radii at the frames whereby they each appear to be 

largest. This way of measurement is fairly accurate because the change in bubble size 

slows down as the bubble approaches its maximum size thus allows the camera to capture 

several frames for measurement and comparison. The subscripts ‘1’, ‘2’ and ‘3’ refer to 

bubbles 1, 2 and 3. Their initial radii for the simulations (R0,i) are 0.0940, 0.0736, and 

0.0833 mm. These initial radii are calculated by considering the Rayleigh Plesset 

equation when the bubbles are at their maximum sizes (R = Rmax,i). At this time, the 

velocity is equal to zero and the following equation (see (2.15) of Chapter 2) is valid: 
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where p0 is the initial pressure (which is taken to be 362.4 bar for all simulations in this 

chapter based on an explosion bubble model), pref is the reference pressure (taken to be 

equal to atmospheric pressure, 105 Pa), and γ is the specific heats of the gases inside the 
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bubble (which is taken to be equal to 1.4). Therefore by knowing Rmax,i, one can easily 

calculate R0,i. All bubbles are created at the same instance. The vapor pressure, pv, is 

taken to be 0.5 bar in this case. The vapor pressure is determined by matching the time 

scale of the simulation (converting from its dimensionless form) to the experimental 

observations. Different vapor pressure is possible for the experiments mentioned in this 

chapter because of the slight difference in the spark duration used for the generation of 

the bubble. The spark duration is determined by the tightness of the wounding of the 

electrodes on the wires and the speed at which the switch for discharging the capacitor is 

pressed.  

The bubble phenomena following their generation are highly dependent on the 

relative bubble size and their separations (Tomita and Shima, 1990). In this case, the 

bubbles are placed 2 to 3 times their maximum radii apart, with the center bubble (bubble 

2) being slightly bigger in size. Bubble 1 reaches its maximum size first (Frame 11, Fig. 

6.6) while the other bubbles are still expanding. It therefore collapses earlier. Due to the 

presence of bubble 2, its collapse is not spherical, but is affected with a jet towards 

bubble 2 (Frame 18 and the corresponding simulation figure of Fig. 6.6, and Frame 19 of 

Fig. 6.8). It is noted that the results presented in Fig. 6.8 are a continuation of that of Fig. 

6.6. 

The development of the jet with enhanced temporal resolution is shown in the 

simulation of the collapsing stage of bubble 1 in Fig. 6.7. It is noticed that the jet is 

directed toward the top section of the elongated bubble 2 (Fig. 6.6). The maximum 

velocity obtained is about 50 ms-1, which is comparable to that of a bubble jetting 

towards a solid wall. Meanwhile the bottom section of bubble 2 is attracted (or pulled) 
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towards the bottom bubble, bubble 3, resulting in an ellipsoidal bubble 2 at t = 746 μs 

(Fig. 6.6). 

Before the jet impacts onto the lower interface of bubble 1, bubble 3 has 

expanded to its maximum radius in Frame 14 (Fig. 6.6) which is earlier than the largest 

bubble, bubble 2. In Fig. 6.8, the thin jet from the top bubble 1 moves towards the other 

two bubbles as it rebounds. Bubble 2 also moves slightly towards bubble 3 as it collapses 

and forms a jet towards bubble 3 (Frame 22-24, Fig. 6.8). Bubble 3 migrates vertically 

towards bubble 2 in Fig. 6.8, and eventually collapses with a jet towards bubble 2. 
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Fig. 6.6 Case 1: Numerical comparison with experimental results (experimental results 
reproduced with permission from author (Adikhari, 2006)). The three bubbles are generated at the 
same time. Bubble 1, being smallest in size, collapses first. It forms a jet towards bubble 2. The 
figures on the left of the pair are experimental observations from the high speed camera filming at 
20000 frames per second. Frame 1 corresponds to the frame just before the bubbles are created, 
t=0 μs. The frame number and time in μs are indicated on the photographs. The bubbles are 
created at the ‘crossing points’ as indicated at Frame 1. The figures on the right of the pair are 
simulation results with time in μs provided. The vapor pressure, pv, is taken to be 0.5 bar. It is 
noted that the last simulation result (t=746 μs) does not match exactly to the timing of Frame 18 
(t=850 μs) since the former depicts an observation that should occur slightly before Frame 18 as 
the top bubble in Frame 18 has completely collapsed while in the simulation, the jet in the 
collapsing bubble has just reached its opposite wall. 
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Fig. 6.7 Case 1: Final stage of collapse of the top bubble (bubble 1). Simulation results in 3D, 
with time (t) in μs as indicated between the subfigures from t=729 to 746 μs. The jet formed is 
directed towards bubble 2 (not shown here) with a maximum jet velocity of about 50 m/s. 
 

 
Fig. 6.8 Case 1: Experimental results after the collapse of the top bubble (reproduced with 
permission from author (Adikhari, 2006)). The inter-frame rate used is 20000 frames per second. 
The frame number continues from that in Fig. 6.6. The top bubble 1 has fully collapsed with a 
thin jet towards bubble 2. Bubble 3 migrates significantly towards bubble 2 as they collapse with 
jets towards one another. 
 

6.4.2 Case 2: Three bubbles arranged almost in-line with center 
bubble created 25 μs earlier  
 
 The same arrangement of the electrodes as in Case 1 is utilized for this 

experiment. The distances between the contact points of the top and center electrodes 
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(l1,2), and that of the center and bottom electrodes (l2,3), are 9.08 and 7.01 mm, 

respectively. In the numerical simulations, the coordinates of the bubbles (in mm) are (-

0.332, 0.0, 9.07), (0.0, 0.0, 0.0), and (0.774, 0.0, -6.97) for the top (bubble 1), center 

(bubble 2), and bottom (bubble 3) bubbles. Bubble 2 is created at time t = 0.0 s. A slight 

moment later, bubble 1 and bubble 3 are generated at time, t = 25 μs (time obtained from 

experimental observation). The maximum bubble radii obtained for the top (Rmax,1), 

center (Rmax,2), and bottom (Rmax,3) are 2.87, 2.65, and 2.79 mm accordingly. Camera 

settings are the same as that of Case 1. In the simulation, the vapor pressure, pv, is set to 

be 0.5 bar.  

 In contrast to Case 1, the maximum size of the center bubble (bubble 2) is slightly 

smaller in size than the other bubbles. It has expanded to its maximum radius at Frame 12 

(Fig. 6.9). Bubble 2 then starts contracting while bubble 1 and bubble 3 are still 

expanding. The expansion of bubble 1 and bubble 3 causes the flattening of bubble 2’s 

top and bottom surfaces (Frame 13, Fig. 6.9). Lauterborn (1982) points out that since 

smaller bubbles have shorter collapse times, the highly curved parts of a bubble should 

therefore collapse faster. As a result, a flattened bubble like bubble 2 collapses along its 

equator (the part with the initially highest curvature) as observed in Fig. 6.9, and seems to 

break up into two parts in Frame 16 (see Fig. 6.10, frame 17).  

The ‘dumbbell-shaped’ bubble observed in the simulation for t = 686 μs and 759 

μs is also reported in other experimental settings, such as a single bubble placed between 

two solid walls (Shima and Sato (1980), Ishida et al (2001)), near a composite surface 

(Shima et al, 1989), and two simultaneously produced bubble near a rigid boundary 

(Tomita et al, 1994). The phenomenon for the last mentioned reference has also been 
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simulated by Blake et al (1993). Qualitatively, it is argued that the rapid expansion of the 

larger bubbles (bubble 1 and bubble 3) causes the water between them and the smaller 

center bubble to be continuously confined or influenced by the presence of neighboring 

boundaries. This invariably led to the production of a flow field similar to that induced 

for a bubble between two rigid walls. In the sequence of breaking into two, the external 

liquid that rushes in at the equator of bubble 2 caused the squeezing of internal gaseous 

fluid at the poles.  
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Fig. 6.9 Case 2: Experimental results plotted together with numerical simulations (experimental 
results reproduced with permission from author (Adikhari, 2006)). Bubble 1 and 3 are created 25 
μs after bubble 2. The center bubble 2 enters its collapse phase while bubble 1 and 3 are still 
expanding. Being much flattened on both the top and bottom surfaces, bubble 2 collapses along 
its equator forming a ‘dumbbell-shaped’ bubble. The left figures of the pair are experimental 
observations from the high speed camera filming at 20000 frames per second. Frame 1 
corresponds to the frame just before the bubbles are created (frame 1 to 4 are not shown here). 
The frame number and time in μs are indicated on the photographs. The right figures of the pair 
are simulation results with the time in μs provided. They roughly correspond to the experimental 
results in (a). For example the last simulation result t=759 μs corresponds to Frame 17 in (a) 
(t=800 μs). The vapour pressure, pv, is taken to be 0.5 bar. 

 

 

 
Fig. 6.10 Case 2: Experimental results after the collapse of the center bubble. The frame number 
continues from that in Fig. 6.9. As bubble 2 has fully collapsed while bubble 1 is still expanding 
(Frame 17), when it eventually collapses (Frame 22), it does so almost spherically. Bubble 3, on 
the other hand, collapses with a jet towards bubble 2. 

 

As bubble 1 is still expanding when bubble 2 has collapsed (Frame 16, Fig. 6.9), 

and reaching its maximum size only in Frame 17 (Fig. 6.10), the upper child bubble of 

bubble 2 is much smaller and produces a smaller upwards jet relative to the lower child 

bubble. Furthermore, bubble 1 begins its collapse phase only after the upper child bubble 

of bubble 2 has fully collapsed, the latter’s influence is negligible and thus bubble 1 

collapses almost spherically with no vertical translation (Fig. 6.10). On the other hand, 
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bubble 3 expands to its maximum radius at Frame 16 (Fig. 6.9) and has started to collapse 

even as the jet from bubble 2’s lower child bubble is developing and directing towards 

bubble 3. As a consequence, bubble 3 also collapses with a jet directed towards bubble 2 

(Frame 22 to 23, Fig. 6.10). 

6.4.3 Case 3: Three bubbles arranged almost in-line with the center 
bubble being created slightly later  
  

Similar to the previous two cases, the electrodes in Case 3 are arranged in a linear 

manner with l1,2 = 8.15 mm, and l2,3 = 8.57 mm, respectively. Again the camera is filming 

at 20,000 fps with a shutter speed of 1/20,000. Simulation setting of the coordinates of 

the bubbles is matched to the same relative physical arrangement in the experiment. 

Bubble 1 is placed (in mm) at (-1.64, 0.0, 7.98), bubble 2 at (0.0, 0.0, 0.0), and bubble 3 

at (0.117, 0.0, -8.57). The maximum radii of bubble 1, bubble 2 and bubble 3 (which are 

indicated in Fig. 6.11) are 2.93, 3.46, and 2.85 mm accordingly. The bubbles are 

generated at a slightly different time. Bubble 3 is created first at time, t = 0 μs. Bubble 1 

is generated 50 μs after that, and bubble 2 is created much later at time, t = 350 μs.  

In contrast to Case 2, the center bubble (bubble 2) in this case is of larger size 

than the other two bubbles. But the situation is different from that of Case 1 because 

bubble 2 is generated much later and its expansion phase coincides with the collapse 

phases of both bubble 1 and bubble 3. The vapor pressure, pv, is found to be 0.4 bar, 

which is slightly less than that in Cases 1 and 2. Both bubble 1 and bubble 3 collapse 

with a jet directed away from bubble 2 as shown in Fig. 6.12. There is an analogy 

between these mentioned jets and a jet in a bubble collapsing near a free surface. When a 
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bubble collapses near a free surface, a jet directed away from this free surface is 

generated (Chahine (1977), Blake and Gibson (1981)).  

 
Fig. 6.11 Case 3: Experimental results plotted together with numerical simulations (experimental 
results reproduced with permission from author (Adikhari, 2006)). Bubble 3 is created first, 
followed by bubble 1 (on Frame 3, not shown here) at time = 50 μs and bubble 2 at time = 350 μs 
(Frame 9, not shown here). The expansion phase of bubble 2 coincides with the collapse phases 
of bubble 1 and 3. The resultant fluid flow causes the formation of an elliptic bubble 2. The left 
figures of the pair are experimental observations from the high speed camera filming at 20000 
frames per second. Frame 1 corresponds to the frame just before the bubbles are created (frame 1 
to 7 are not shown here). The frame number and time in μs are indicated on the photographs. The 
right figures of the pair are simulation results with the time in μs provided. They roughly 
correspond to the experimental results in (a). For example the last simulation (t=850 μs) 
corresponds to Frame 18 in (a) (t=840 μs). The vapor pressure, pv, is taken to be 0.4 bar. 
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The flow of liquid as a result of the jets away from bubble 2 causes the bubble to 

be elongated at its poles (frame 20). This elliptic bubble has its maximum curvature parts 

at the poles. Proceeding with the same argument as stipulated in Case 2, these said parts 

will collapse first. As a result, an ‘elliptical-shaped’ bubble is formed (Frames 23-25, Fig. 

6.12) and collapses as a flat disk shape. 

 
Fig. 6.12. Case 3: Experimental results after the collapse of the bottom bubble (bubble 3) 
(reproduced with permission from author (Adikhari, 2006)). The frame number continues from 
that in Fig. 6.11. Both bubble 1 and 3 collapse with a jet away from bubble 2. The elongated 
bubble 2 collapses with the formation of an elliptic bubble in frames 23-25. 
 

6.4.4. Case 4: Three bubbles created in-phase but arranged at the 
apex of an imaginary triangle  

 

In Case 4, the electrodes are not arranged in-line. They are placed approximately 

at the vertices of an imaginary triangle as shown in Fig. 6.13. The bubbles are all placed 

in the plane y=0. The distances between bubble 1 and bubble 2 (l1,2), bubble 2 and bubble 

3 (l2,3), and bubble 1 and bubble 3 (l1,3), are 6.28, 6.29, and 5.6 mm, respectively. Rmax,1 is 
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1.93 mm, Rmax,2 is 2.38 mm, and Rmax,3 is 2.26 mm. The camera is filming at 15,000 fps 

with a shutter speed of 1/30,000.  

The relative physical arrangement of the bubbles is translated into numerical input 

with bubble 1 placed (in mm) at (0.406, 0.0, 1.15), bubble 2 at (-2.29, 0.0, 3.76), and 

bubble 3 at (4.0, 0.0, -4.0). All bubbles are created at the same time as in the experiment. 

The vapor pressure, pv, is found to be 0.5 in this case. 

The smaller top bubble (bubble 1) collapses first with an induced jet directed 

approximately towards the geometrical center of the system (Fig. 6.13), analogous to a 

four bubbles system reported in Bui et al (2006). The development of the jet is clearly 

observed in the simulation figures (Fig. 6.13(b)). Both upper poles of bubble 2 and 

bubble 3 nearest to bubble 1 gain increasing prominence with time and are attracted 

towards bubble 1. For bubble 3, being nearer to bubble 1 than bubble 2, the resultant 

elongation is more pronounced. 
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Fig. 6.13 Case 4: Experimental results plotted together with numerical simulations. All bubbles 
are created at the same time. Bubble 1, being smallest, collapses first with a jet towards the 
elongated bubble 3. (a) Experimental observations from the high speed camera filming at 15000 
frames per second. Frame 1 corresponds to the frame just before the bubbles are created (frame 1 
to 8 are not shown here). The frame number and time in μs are indicated on the photographs. (b) 
Simulation results with the time in μs as indicated. The vapor pressure, pv, is taken to be 0.5 bar. 
(c) Sequence of frames after the collapse of the top bubble. Frame numbers as indicated is 
continued from (a). Bubble 2 and 3 collapse with two jets towards one another. 
 

Subsequently bubble 2 and bubble 3 also collapse with induced jets (Fig. 6.13(c)). Since 

bubble 1 has already collapsed some time before that of bubble 2 and bubble 3, its 

presence does not exert much influence on the collapsing phase of bubble 2 and bubble 3. 

As a consequence, bubble 2 and bubble 3’s induced jets are directed towards each other 

as shown in Fig. 6.13(c). This is similar to the collapse of two in-phase bubbles, or a 
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bubble near a solid wall (Tomita and Shima (1990), Timm and Hammit (1971), 

Lauterborn et al (1999), Blake et al (1986)). 

 

6.4.5 Case 5: Three bubbles arranged out-of-line and close to each 
other  

 

When the distances between bubbles are reduced, complex interaction phenomena 

are observed as in Case 5 (Fig. 6.14). Here the bubble separations are l1,2 = 7.99 mm, l1,3 

= 5.36 mm, and l2,3 = 3.92 mm. The maximum radii obtained for each bubble are 

approximately 2.01 mm (Rmax,1), 2.36 mm (Rmax,2), and 3.38 mm (Rmax,3). The filming rate 

and shutter speed used are the same as that of Case 4. Again, all three bubbles are created 

at the same time (i.e. within one frame). 

Close proximity of the physical arrangement of the bubbles renders some 

difficulties for the simulation. This is because the surfaces of the different bubbles tend to 

become too close when they are too near to one another, and this leads to numerical 

instability in the front-tracking calculations. Merging involves the use of an artifice or 

some other sophisticated methods. A code capable of automated merging of full 3D 

bubbles in complex or less conventional arrangement is still being developed. As such, 

the corresponding simulation is not performed and might be taken up in a future study 

with bubble 1 placed (in mm) at the origin, (0.0, 0.0, 0.0), bubble 2 at (2.30, 0.0, -7.65), 

and bubble 3 at (-0.829, 0.0, -5.29). 

Bubble 1 and bubble 2, being smaller in size, collapse first while bubble 3 is still 

expanding. Due to this expansion, the bottom surface of bubble 1 is much flattened as 

observed in Frame 6 to 8 in Fig. 6.14. The bulged equatorial parts of bubble 1 collapse 
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first, leading to the splitting of this bubble into two in Frame 10. The top pole of bubble 3 

is attracted towards bubble 1 as bubble 1 collapses and the former forms an ‘egg-shaped’ 

bubble. After that, two opposite induced jets are formed in the child bubbles of bubble 1. 

The jet of the lower child bubble enters and penetrates bubble 3, as also observed by 

Tomita and Shima (1990), and Lauterborn and Hentschel (1985) for two bubbles 

interaction. 

Bubble 2 gets very close to bubble 3 and developed into a ‘mushroom-shaped’ 

bubble in Frames 9 to 11 in Fig. 6.14. This is very similar to the observations reported for 

a bubble’s interaction with a composite surface (Tomita and Kodama, 2003), an elastic 

gel (Brujan et al, 2001a), and an elastic membrane (Ong et al (2005), Turangan et al 

(2006), Shaw et al (1999)). Bubble 2 also breaks into two parts subsequently, and its 

child bubble nearer to bubble 3 develops a jet that enters the latter as well. Finally bubble 

3 collapses violently in Frames 13 and 14 of Fig. 6.14. 
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6.4.6 Case 6: Three bubble interaction showing the ‘catapult’ effect  
 

The bubbles for Case 6 are arranged in a triangular manner similar to Case 4 and 

5, and are initiated one after another. The separation between bubble 1 and bubble 2 is 

6.55 mm, and the distance between bubble 2 and bubble 3 is 5.31 mm. The separation 

between bubble 1 and bubble 3 is 6.45 mm. Relatively, the orientation of the bubbles’ 

centers are given with bubble 1 (in mm) at (-6.42, 0.0, 0.273), bubble 2 at (0.0, 0.0, -1.0), 

and bubble 3 at (-1.27, 0.0, 4.15). Maximum radii obtained are Rmax,1 = 2.02 mm, Rmax,2 = 

2.94 mm, and Rmax,3 = 2.9 mm. Bubble 1 is created first, followed by bubble 2 at t = 67 μs, 

and lastly bubble 3 which is generated 334 μs after the initiation of bubble 1. The same 

camera setting as that of Case 5 is used. 

As bubble 1 is created before the other two bubbles, it has collapsed while bubble 

2 and bubble 3 are still expanding (Frame 11, Fig. 6.15). The expansion of bubble 3 

causes the top surface of bubble 2 to be much flattened in Frame 9 and 11 (Fig. 6.15). But 

instead of breaking into two as found in Case 5, a jet directing away from bubble 3 is 

developed in bubble 2. The flow of liquid due to this jetting effect brings about the 

elongation of the bottom part of bubble 3 downwards as it expands in its growth phase. 
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Fig. 6.14 Case 5: Sequence of frames from Frame 6 to Frame 14 from top left to bottom right 
(Frame 1 corresponds to the frame just before the bubbles are created, Frame 1 to 5 are not shown 
here). The filming rate is 15000 frames per second. All bubbles are created at the same time. 
Bubble 1 splits into two as it collapses. Opposite jets are developed in the resultant bubbles, and 
the lower bubble’s jet penetrates bubble 3 which top surface is elongated towards bubble 1. 
Bubble 2 gets very close to bubble 3, forming a ‘mushroom-shaped’ bubble (Frame 7-9) before it 
eventually collapses by splitting into two parts. 
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From Frames 12 and 13 (Fig. 6.15), it is observed that the greatly elongated tip of 

bubble 3 downwards becomes notably squeezed. After that, a high speed jet is developed 

in bubble 3, directed away from bubble 2 like a ‘catapult’. The maximum jet speed 

obtained is more than 180 m/s. This is considerably more than the jet speed of around 50 

m/s as observed in Case 1. A similar observation for two bubble interaction near a solid 

wall is reported by Tomita et al (1994). They postulate that the fine, high-speed jet from 

the larger bubble (more than 130 m/s in their case) is caused by the shock wave from the 

rebounding of the toroidal shaped lower bubble. In a slightly different setting in Chen et 

al (2006) where two microbubbles are created by laser in a thin ink sheet between two 

glass slices, a similar strong interaction between the bubbles is observed. The jet velocity 

calculated from the clear photographs in Chen et al (2006) reaches a maximum of about 

75 m/s while it is still developing inside the larger bubble (although the speed drops to 

about 16 m/s once the jet has penetrated the bubble and moved into the liquid). The 

difference in velocity obtained is possibly due to the fact that the bubbles in their paper 

are generated in a confined space, and hence the influence of the walls to the bubble 

dynamics is significant. In section 6.4.7, more discussion on the physical background of 

this phenomenon will be given. 
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Fig. 6.15 Case 6: Selected frames from top left to bottom right with frame number as indicated. 
The frame rate used is 15000 frames per second. The intervals between the creation of the first 
(bubble 1) and the second (bubble 2), and the first and the third (bubble 3) bubbles are 66.7 μs 
and 267 μs respectively. Bubble 1 has collapsed, while the others are still expanding. The jet in 
bubble 2, directed away from bubble 3, induces the thin elongation of the tip of bubble 3 (Frame 
13). As bubble 2 becomes toroidal and rebounds (Frame 14-16), a very high speed jet (greater 
than 180 m/s) is developed in bubble 3 that ‘catapults’ away from bubble 2. 
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6.4.7 Discussion on multiple bubble interactions 

6.4.7.1 ‘Catapult’ effect 
  

In this section, several important experimental and simulation results are 

discussed in comparison with previous works which may provide further new insights. 

Firstly the phenomenon of a very high speed jet in Case 6 (Fig. 6.15) is examined. This 

phenomenon is termed the ‘catapult’ effect because of its resemblance with the fast and 

forceful launch of an object winched-down on a catapult. Foreseeing possible future 

applications (in cases where a very high speed jet is needed), it is deemed useful to 

discuss more on the physics involved.  

 The ‘catapult’ effect seems to be basically a two-bubble interaction phenomenon 

(bubble 2 and 3 of Fig. 6.15). Bubble 3 is created when bubble 2 is about to reach its 

maximum size. Thus the internal pressure of bubble 2 is very low (much lower then 

ambient pressure). This causes the expanding bubble 3 to develop a protrusion on its 

bottom surface that is directed towards bubble 2 (frame 13). This effect has become more 

pronounced during the collapse of bubble 2. It almost appears as if bubble 3 is sucked 

into the (presumably) toroidal shaped bubble 2. Once bubble 2 has collapsed and reaches 

its minimum volume, it will generate a very high pressure due to the compressed gaseous 

contents. The possible shock wave emitted during this collapse might also contribute to a 

high pressure region just outside of bubble 3. Due to this high pressure, a very high speed 

jet develops in bubble 3. This jet originating at the lower section then penetrates and 

impacts on the upper portion of bubble 3 while the bubble itself is still almost in its 

maximum volume. The reader is also reminded of the suggestion from Lauterborn (1982) 

that since smaller bubbles have shorter collapse time, the highly curved parts of a bubble 
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should collapse faster. In this case, the lower section of the enlongated bubble 3 has the 

highest curvature and is therefore collapsing faster, creating the high speed jet. 

A possible reason for the existence of a very high speed jet may be put forward 

with the following considerations. Under atmospheric conditions, if a bubble collapses 

near a solid boundary (or two in-phase bubbles collapse in each other’s vicinity), a jet is 

generated with a speed of 50 to 160 ms-1(Blake et al (1986), Lauterborn and Hentschel 

(1975), Tomita and Shima (1986)), fairly regardless of the maximum size of the bubbles. 

It seems that the jet velocity, jetv , is proportional to 5 to 10 refv , where under normal 

atmospheric condition ( refp = 1 bar), 10/ ≈= ρrefref pv ms-1. In the current situation, 

however, a region with a very high pressure exists just outside bubble 3. Even though the 

mentioned high pressure region may exist for only a very short period of time, it is 

perhaps reasonable to assume that an ‘effective reference pressure’, much higher than 

refp  will be generated. From Cole (1948) and Lee et al (2007), it is established that 

energy loss of the oscillating bubble of up to 50% of its total energy occurs during the 

bubble’s minimum volume. This loss of energy of bubble 2 at its minimum volume is 

radiated outwards as a pressure pulse (or shock waves), and certainly is compatible with 

the suggested presence of an effective reference pressure. This higher pressure will be 

responsible for the higher jet velocity (assuming that the dimensionless proportionality 

coefficient of 5 to 10 still exists). In view of the possible application areas, and the 

relative ease with which such high speed jets can be generated (only two closely spaced, 

out-of-phase bubbles are needed), it might be a subject for future studies to analyse and 

optimize this effect further. Moreover, if the current difficulties in simulating the event 

(numerical instability due to the extreme deformation of bubble 3, and the proximity of 
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bubbles 2 and 3) can be overcome, more insights to the physics of this phenomenon can 

be obtained. 

 

6.4.7.2 Coalescence of two adjacent bubbles 
 
 When two bubbles are very near each other and they are created at the same time 

and have about the same dimensions, they will coalesce as shown in the experimental 

result given in Fig. 6.16. The first frame (Frame 2) shows the instance whereby the sparks 

are initiated. The initial separation between the electrodes is 1.21 mm (about half of Rmax, 

which is approximately 3.4 mm). Somewhere around Frame 8, the two bubbles appear to 

have merged into one large bubble. From the experimental results, it cannot be 

determined when the coalescence occurs exactly. At Frame 15, the resulting bubble is at 

its maximum radius. As predicted by the equivalent numerical simulations done by 

Rungsiyaphornrat et al. (2003), there is a distinct and significant ‘swelling’ at the middle 

of the two merging bubbles, and the resultant coalesced bubble eventually collapses in an 

elliptical shape (Frame 25). Two jets, one directed upwards from below while the other 

directed downwards from above, have been observed numerically in Rungsiyaphornrat et 

al. (2003). However, this is not so clearly seen in the experiments (Frame 25). 

Nevertheless, the present experiment still confirms the earlier experimental observations 

of Lal and Menon (1996) regarding the broad shape and salient features like middle 

‘swelling’. The exact cause of this swelling is not yet fully understood. Yet, the fact that 

it is also observed numerically in Rungsiyaphornrat et al. (2003), where no surface 

tension effects were considered, leads to the conclusion that its origin(s) may lie solely in 

the inertia of the fluids.  
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Fig. 6.16 Coalescence of two adjacent bubbles with the corresponding frame as indicated on the 
top left (experimental results reproduced with permission from author (Adikhari, 2006)). The 
inter-frame rate used is 20000 frames per second. Frame 1 corresponds to the frame just before 
the bubbles are created (not shown here). The bubbles are at their maximum sizes at frame 15 
with the scale as provided. These two bubbles coalesced into one bubble with pronounced 
‘swelling’ at the middle. The resultant bubble eventually collapses elliptically (frames 25 and 26). 
After that, the bubble fragmented into small bubbles, forming bubble clouds (frame 35). They re-
expand and move away from the center of the frame (frame 62).  
 

6.4.7.3 Symmetry considerations of multiple bubble systems 
 

It is well-known that a single-bubble-near-a-solid-wall system can be 

approximated by putting an image bubble behind the wall that is located symmetrically to 

it with respect to the wall (Plesset and Prosperetti (1977), Krasovitski and Kimmel 

(2001)). The high speed jet from the physical bubble towards the solid wall is explained 

by Plesset and Prosperetti (1977) as follows: the portion of the real bubble farther from 
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the wall acquires a greater velocity than the region near the wall because there is 

asymmetry in the velocity of the flow induced by the image bubble on the far and near 

portion of the real bubble. Furthermore they also explained that the sink-like flow of the 

image attracts the real bubble towards the wall. This translational movement of the 

collapsing bubble is also observed experimentally by Lauterborn and Hentschel (1985), 

Tomita and Shima (1990), and Lauterborn et al. (1999), among others.  

A corresponding phenomenon in many-bubble system is observed by Tomita et al. 

(1990) using high speed photography. They show that when a small bubble is sandwiched 

between a larger bubble and a solid wall, a necking phenomenon appears in the small 

bubble. It forms a ‘dumbbell-shaped’ bubble and disintegrates into two parts in the end. 

Based on the image theory (Wang (1998), Tomita et al. (2002)), this system is equivalent 

to a system of four bubbles whereby the center of the system corresponds to the location 

of the rigid wall in the former two bubble system (Fig. 6.17). With the bubbles’ radii and 

distances between them in agreement with that in the article (Tomita et al., 1990), we 

have simulated an equivalent four bubble system (as shown on the left of Fig. 6.17), and 

obtained results as shown in Fig. 6.18. The two bubbles are created at the same time. 

Bubble 1 is slightly smaller than bubble 2 (Fig. 6.18) in such a way that its maximum 

radius is Rmax,1= 0.59 mm while Rmax,2= 0.85 mm. The initial distances between the 

bubbles and the wall are lbubble1=0.79 mm and lbubble2=2.69 mm. Due to the expansion of 

the larger bubble 2, the north and south poles of bubble 1 are significantly flattened while 

it is still in its expansion phase (picture of the two bubbles at time, t = 47.43 μs, in Fig. 

6.18). The much curved equator region of bubble 1 collapses first, causing the ‘necking’ 

phenomenon (as mentioned in Tomita et al., 1990) and the eventual formation of a 
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‘dumbbell-shaped’ bubble at t = 155.6 μs as clearly depicted in the cross-sectional picture 

in Fig. 6.18.  

 
Fig. 6.17 Analogous comparison between a system of four bubbles (Fig. 6.18) and a system of 
two bubbles with a rigid wall (Tomita et al., 1994). According to the image theory, both systems 
are equivalent. 
 

Also, from our results in Case 2 (Fig. 6.9), we notice some similarity between the 

three bubble system whereby the center bubble is smaller than the other two that are 

sandwiching it, and a single bubble between two parallel rigid walls (Fig. 6.19). From 

previous experimental observations of Kucherenko and Shamko (1986), and Ishida et al. 

(2001), it is noticed that when a bubble is formed between two narrow parallel plates, it 

deforms to be ‘dumbbell’ in shape before finally splitting up into two equivalent bubbles. 

Shima and Sato (1980) reported the same observations from their simulation results. The 

formation of a ‘dumbbell-shaped’ bubble in both situations could be due to the similar 

restriction of flow in the direction of the walls or equivalently the corresponding lower 

surface of the top and the upper surface of the bottom bubble in the three bubble system 

(see Fig. 6.19). For the latter, since the top and bottom bubbles are significantly larger, 

their oscillation periods are longer than that of the center bubble. Therefore, when they 
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are expanding relatively slowly, their bottom and upper surfaces (for top and bottom 

bubbles, respectively) restrict fluid flow in a manner similar to that of the parallel rigid 

wall in the single bubble case. This restriction of flow causes the flattening of the top and 

bottom surfaces of the center bubble. The bulging equatorial region of the bubble will 

thus collapse faster, forming the ‘dumbbell-shaped’ bubble mentioned. In the three 

bubble system, the center bubble will also eventually split into two. The analogy of Fig. 

6.19 is, however, not perfect, since an infinite number of bubbles would be needed to 

match the bubble between two flat plates. However, in a first order approximation, this 

consideration of only two image bubbles is important because the infinite number of 

other (image) bubbles are further away and therefore have less influence on the centre 

bubble. 

 

     

(figure to be continue next page) 

47.43 μs 81.35 116.5 
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Fig. 6.18 Simulation results of four bubbles (only two are shown since the other two are 
symmetrically placed with exactly the same evolution in time) with the time (t) in microseconds 
(μs) as indicated. The center of this four bubble system is at z=0, thus it is equivalent to 
simulating two bubbles with a solid wall at z=0. Maximum radii of the bubbles are Rmax,1=0.59 
mm and Rmax,2=0.85 mm. Initial distance between bubble and the wall are lbubble 1=0.79 mm and 
lbubble 2=2.69 mm. All these parameters are the same as those in the experiment performed by 
Tomita et al (1990). The right bottom figure shows the cross-section of the bubbles at the plane 
y=0 for t=155.6 μs. The flattening of the top and bottom poles of bubble 1 (t=47.43 and 81.35 μs), 
the necking phenomenon following that, and the elongation of top surface of bubble 2, show very 
close correspondence to the high speed photography results in Tomita et al. (1990). 

 
Fig. 6.19 Anologous comparison between a system of three bubbles arranged in-line with the 
center bubble being smaller than the top and bottom bubbles. From experimental and numerical 
results for Case 2 (Fig. 6.9), and the experimental results from Shima and Sato (1980), 
Kucherenko and Shamko (1986), and Ishida et al. (2001), the results between these systems show 
close correspondence in terms of the center bubble profile evolution. 

142.8 155.6 Cross-section at t = 155.6 μs 



 166

6.5 Other interesting experimental results 
 

In this section, several experimental results of significance are presented. Firstly, 

interaction of a spark bubble near a soft elastic material is studied. The material in use is 

konjac jelly. The jelly is prepared by mixing the common konjac powder with water. The 

mixture is heated to its boiling point and is left to cool in a container. The jelly formed 

has a diameter of 7.2 cm and a height of 3.5 cm. It is placed in a water tank with the same 

dimensions as mentioned in the previous section (17x17x17 cm3) just a few minutes 

before the experiment. Another sample of the same jelly is used for the measurement of 

its stiffness (Young’s modulus) and density. For the former, the spring coefficient (k) is 

obtained from the measurement done on the jelly using a compression tester where by 

compression force is applied on the top surface of the sample, and the resulting 

displacement is measured. Then Young’s Modulus (E) is related to k by:  

E = k/V,         (6.1) 

where V is the volume of the sample. For the case shown in Fig. 6.20, a soft konjac jelly 

of E = 1.7 MPa and density comparable to water is used as the elastic material which 

interacts with the spark bubble. The spark is generated very close to the material, merely 

0.7 mm away. The growth of the bottom half of the spark bubble is hampered by the jelly. 

Therefore the maximum bubble radius, Rmax, is obtained in frame 10, by taking the 

distance from the top surface (which is not affected by the presence of the material) to the 

bubble center. Rmax obtained is about 4.33 mm. The dark circles underneath the 

hemispheric bubble in frames 7 and 10 are actually stress in the gel as induced by the 

expanding bubble. Then the bubble collapses (as shown in frame 14 and 15). From 

frames 17 to 88 (t between 1.28 and 6.96 ms), a jet is seen to form from the collapsed 
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bubble towards the material and penetrates deep into the material (depth of penetration is 

0.51 cm). Due to the elasticity of the material, the trapped gas from the jet is forced out 

from the jelly as seen from frames 227 to 358. It forms a round gas bubble which is 

coated with the konjac jelly material, and rises slowly (velocity about 12 cm/s) in the 

fluid (tap water). The radius of the bubble is 0.74 mm. According to the numerical 

simulations performed by Hua et al (2007), a bubble of this size in a low viscosity fluid 

like water, will rise in a zig-zag manner. The path of bubble together with the wake 

behind it is seen as traces left behind by the konjac jelly.  

 In the next experiment in Fig. 6.21, the electrodes are placed between two glass 

plates which are placed vertically facing the camera (one behind the other). The solid 

wall on top is weighted down by thick aluminium block. Because of the proximity of the 

two vertical glass plates (about 3 mm apart), the spark bubble generated in this setting is 

much flattened and restricted to grow mainly in the vertical plane facing the camera. 

Therefore it is considered to be pseudo-2D in configuration. A similar setting (without 

the top solid wall) is used for experiments shown in Fig. 6.22 and 6.23. This setting has 

the advantage of clear visualization of the bubble dynamics involved. A similar 

configuration in much smaller scale is used by Chen et al (2006) to study bubble 

dynamics of a laser bubble in a narrow gap. 

 When a non-equilibrium bubble collapses near a solid wall, it will collapse with a 

jet towards the wall. As seen in Fig. 6.21, the bubble is created 2.9 mm away from the 

wall (frame 1). The bubble grows to its maximum size at frame 15, with Rmax = 7.0 mm. 

It then collapses with a jet towards the wall. In frame 28, it is seen that the jet has 

penetrated the opposite surface of the bubble and causes it to split into two bubbles of  
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Fig. 6.20 A spark bubble near a soft elastic material (Young’s modulus = 1.7 MPa). The video is 
taken with a high speed camera at 12,500 fps (i.e. interframe period is 80 μs). Indicated on the top 
right corner of each frame is the frame number starting with frame 1 (one frame before the spark 

10 14 Frame 1 (0 μs) 

17 22 55 88 227 

259 358 534 712 

1100 

938 

1219 1329 1404 1528 

7 15 
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occurs). The bubble is initiated 0.7 mm away from the material, and it grows to its maximum size 
of 4.33 mm in radius at frame 10. Then the bubble collapses at frame 15. From frame 17 to 88, 
the jet from the collapsing bubble shoots into the soft material (depth of penetration at frame 88 is 
0.51 cm). Then the gas trapped from the collapsed bubble forms a bubble coated with the elastic 
material (radius = 0.74 mm) and rises again. It rises in a zig-zag manner from frame 358 to 1528. 
Note the visibility of the wake at the back of the rising bubble. 
 

 

 
Fig. 6.21 Pseudo-2D bubble collapses near a solid wall (top of the frames). Framing rate is 15,000 
fps. Selected frames up to 44 are shown, and the time after the spark has initiated is given at the 
bottom of each frame. Initially the crossing of the electrodes is placed 2.9 mm below the wall 
(frame 1). Then the bubble grows (frame 9) and achieves its maximum radius of about 7.0 mm at 
0.933 ms. It then collapses with a jet towards the boundary (frames 21 to 28). The last row of 
frames show the interesting vortices along the solid wall as the two split bubbles roll away. 
 

0 ms 0.533 ms 0.933 ms

1.33 ms 1.53 ms 

1.93 ms 

1.80 ms 

2.13 ms 2.87 ms 

1 

21 24 

9 15 

28 

30 33 44 
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equal size. Interestingly, the two bubbles then move in a circular manner away from the 

jet center towards the sides of the wall. The vortices caused by this bubble movement are 

visualized with the help of the debris from the broken electrodes and the tiny bubbles 

from the bubble clouds. It is considered that this is the main cause for the shear force 

which is responsible for the removal of dirt on material surface as the bubbles collapse 

near the surface in ultrasonic cleaning. The visualization of the vortices is an advantage 

of this pseudo-2D experiment. They are much more difficult to visualize in three 

dimensional experiments.  

 Also in pseudo-2D configuration, the interaction of a stationary bubble with the 

shockwaves from a nearby spark bubble is studied in Fig. 6.22. The stationary bubble is 

of small size, i.e. its diameter (3.3 mm) is about the same as the gap between the glass 

plates (4 mm), and is therefore in a three dimensional configuration. The spark bubble, 

however, is much larger (Rmax = 4.7 mm), and is considered to be in pseudo-2D 

configuration. Due to buoyancy, the stationary bubble is slightly elongated. Its horizontal 

radius is calculated to be 1.65 mm. It is placed on the surfaces between the glass plates 

using a syringe. The stationary bubble is 4.8 mm away from the crossing of the electrodes 

as shown in frame 1. As the spark bubble expands, the flow and the spherical shockwaves 

hit the stationary bubble. They cause the formation of a jet in the middle of the right 

surface of the bubble (frame 5). This jet penetrates the bubble (frame 6, t = 333 μs). As 

the spark bubble continues to grow to its maximum size at frame 11 (Rmax = 4.7 mm), its 

expansion generates a region of low pressure around the bubble. This causes the split 

stationary bubbles to expand (as seen in frames 8 to 11). But as the spark bubble 
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collapses, it ‘attracts’ the stationary bubbles towards it. Finally all the bubbles collapse as 

shown in the last frame at t = 1533 μs.  

 

Fig. 
6.22 Interaction of a stationary 3D bubble with a pseudo-2D spark bubble that is 4.8 mm away 
(between the center of the stationary bubble and the crossing of the electrodes as shown in frame 
1). Framing rate is 15,000 fps. Selected frames up to 24 are shown, and the time after the spark 
has initiated is given at the bottom of each frame. The stationary bubble has a horizontal radius of 
1.65 mm. The spark bubble has a maximum radius of 4.7 mm (frame 11) at t = 667 μs. The shock 
waves and flow generated by the expanding spark bubble cause the stationary bubble to develop a 
jet and breaks into two. Then as the spark bubble collapses from frame 19 to 24, the split bubbles 
are attracted towards the latter and eventually breaks into many small bubbles (at last frame, t = 
1533 μs). 
 

 The last experiment in this chapter shows the coalescence of two spark bubbles in 

the pseudo-2D configuration. The reader is advised to compare the result in Fig. 6.23 
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19 21 24 
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with that of a full 3D setting as given in Fig. 6.16. The crossings of the electrodes (as 

seen in frame 1) are placed 1.3 mm apart. The two expanding bubbles grow (frame 8) and 

coalesce at frame 14. Pronounced ‘swelling’ at the middle of the joint bubble, similar to 

that in Fig. 6.16, is seen. The bubble collapses radially after that. 

 

Fig. 6.23 Two spark bubbles, 1.3 mm apart (between the crossings of the electrodes as shown in 
frame 1. Selected frames up to 25 are shown, and the time after the spark has initiated is given at 
the bottom of each frame. The scale for the image is shown as a bar in frame 8. Both bubbles 
expand (frame 8) and coalesce after 867 μs. Pronounced ‘swelling’ at the middle similar to that in 
Fig. 6.16 is seen. Then the joint bubble collapses almost spherically from t = 1007 μs to 1600 μs.  
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Chapter 7  

Summary, discussions and conclusion 
7.1 Summary on thesis contribution 
 

 This thesis focuses on the numerical study of bubble dynamics related to 

biomedical applications, namely Extracorporeal Shockwave Lithotripsy (ESWL) and 

therapies using ultrasound. An existing Boundary Element Method (BEM) code is 

extended to model the acoustic fields with temporal and spatial considerations. 

Strictly speaking, the model, which is based on potential flow theory, cannot be 

utilized to simulate shockwaves and strong ultrasound fields that require the 

consideration of liquid compressibility. Nevertheless through extensive validations 

that include both numerical and experimental results comparison with published 

literature (Ding and Gracewski (1996), Jamaluddin (2004), Sankin et al (2005)), the 

BEM simulations are deemed to be able to capture the phenomena involved well. The 

reason behind this could be that the bubble interaction with the acoustic field is still 

mainly controlled by the inertia of the fluid. The shockwave movement and reflection 

inside the bubble, as well as liquid compressibility are probably of secondary 

importance. Therefore the author argues that it is advantageous to use BEM for 

acoustic bubble simulation because of its inherent computational efficiency in terms 

of output time and storage requirement (only 51 nodes are used for the required 

meshing on the bubble boundary).   

 Also, this thesis documents the use of the BEM simulations to reveal 

dynamics of bubbles in extreme and very difficult to observe experimental situations, 

e.g. in ESWL and other ultrasonic medical treatment. For ESWL, apart from giving 

insights into an oscillating bubble’s interaction with the standard shockwave used in 
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clinical treatment, an inverted shockwave which has a leading negative pressure wave 

followed by a much higher amplitude but shorter duration compressive wave is also 

simulated. This waveform was suggested by Zhong et al (2001), Bailey et al (1998), 

Loske and Prieto (2002) for the minimization of collateral damage during ESWL. 

Interesting resultant bubble dynamics are discussed.  

 Very often in medical applications, the ultrasonic bubbles are found in the 

vicinity of organs and other biomaterials such as fat, skin, and cornea. Using an 

elastic fluid model to represent the biomaterials, and incorporating an ultrasound field, 

the complex interactions between a stationary bubble and the nearby biomaterials 

involved in a number of common ultrasonic medical treatments (e.g. liposuction, 

transdermal drug delivery, and brain tumor surgery) are studied in detail. Recently, a 

new surgical method in development involving the use of high intensity pulsed 

ultrasound for localized tissue removal has been advocated by Xu et al (2005).  

Inspired by this study, a microbubble’s interaction with the form of sound wave used 

in Xu et al (2005) is simulated numerically. A cancer treatment scheme similar to 

some previously suggested methods (Lindner (2004), Everbach (2007), Ferrara et al. 

(2007)) using sound wave bubble interaction can be implemented. The targeting 

microbubble contrast agents which will automatically attach themselves to the 

diseased cells when hit by these ultrasound pulses, they will collapse violently, killing 

the cancerous cells in vicinity and delivering drugs to other vital cells simultaneously.  

 Lastly, multiple bubble dynamics is studied using high speed photography and 

a previously developed three dimensional BEM code. Complex bubble interactions 

are observed and the physics involved is discussed. Other interesting experimental 

results are also included in this thesis as a source for future studies.  

 



 175

7.2 Discussions on new developments in biomedical applications 
involving acoustic bubbles 
 

 Since the introduction of ESWL decades ago, the use of sound waves in 

medical therapies has gained recognition and acceptance of the general public. The 

use of ultrasound for imaging is deemed so safe that it is widely used for diagnostics 

and obstetric scans. Based on these premises, scientific development has seen more 

diverse uses of sound waves in therapies being proposed. One such example is the use 

of ultrasound to emulsify unwanted tissue (e.g. in lipoplasty) or to pulverize unwanted 

solid material (e.g. in phacoemulsification). Interestingly, ultrasound is also beginning 

to be used for hemostasis (the stoppage of bleeding in internal organs (Vaezy et al, 

1999a) such as the spleen (Vaezy et al, 1999b) and the liver (Vaezy et al, 1997)), for 

tumor necrosis (Bailey et al, 2003), and for immunotherapy (Bailey et al, 2003).  

 More adventurous use of ultrasound is also proposed. This involves the 

increase in the sound wave intensity by stronger vibration of the transducer and by 

focusing the waves generated. This form of ultrasound is termed High Intensity 

Focused Ultrasound (HIFU). Apart from treatments mentioned in previous chapters, 

HIFU is also used to treat regions that are not easily reachable by surgical means, for 

instance the brain (Daum et al (1998), Thomas et al (1996), Hynynen and Clement 

(2007)), and abdominal organs that are protected by the rib cage (Thomas et al (1996), 

Tanter et al (2007)). More importantly, since ultrasound can be used for imaging, 

HIFU presents the possibility of integrating imaging with therapy. Image-guided 

HIFU therapy can be an effective means for cancer treatment and drug delivery as 

described in Section 7.2.1. 
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7.2.1 Microbubbles for cancer treatment and drug delivery 
  

 To enhance the clarity of an ultrasound scan, microbubbles known as 

ultrasound contrast agents (UCA) are injected into the area of interest. These bubbles 

can be coated with receptors in such a way that they adhere only to specific cells, for 

example cancer tumor cells (Dayton et al (2004), Unger et al (2003), Haag et al 

(2006)). Not only can then the diseased area be diagnosed and imaged, the 

microbubbles can be utilized for the lysis of the cells when they are forced to collapse 

by a HIFU or shock wave. The high speed microjets from the collapsing microbubbles 

(Ohl and Ikink (2003), Prentice et al (2005b)) induce shear stress on the cell 

membrane, and cause the membrane to be permanently damaged leading to cell death. 

This lysing effectiveness can be further enhanced with the use of an inverted 

shockwave (see Section 3.3) or a pulsed HIFU (see Chapter 5). These sound waves 

have a leading negative tensile component which induces bubble growth, but the 

subsequent high pressure compressive component causes the collapse of these large 

bubbles. A high jet speed possibly with a large jet radius obtained can increase the 

area affected and number of cells lysed.  

 Apart from destroying the cancer cells, the targeting microbubbles can be used 

for drug delivery too. Instead of coating the bubbles with cancer receptors, drugs such 

as modified proteins and DNA can be used to cover the bubbles or be inserted into the 

bubbles’ content. Again, sound waves are utilized to induce bubble oscillation or 

collapse which can in turn enhance sonoporation of  the cells and facilitate the 

penetration of the macromolecules into the cells (Wolfrum et al (2003), Lindner and 

Kaul (2001), Haag et al (2006), Unger et al (2003), Lum et al (2006)).  
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7.2.2 Alternative waveforms for cavitation control 
 

 In Section 3.3, an inverted shockwave is introduced with the intention to 

reduce collateral damage to the surrounding cells. Other alternative waveforms are 

also suggested and studied with the same intention or to enhance and control 

cavitation activity. One notably effort is from Ikeda et al (2006). They make use of a 

dual frequency HIFU; one high frequency and high amplitude wave for the generation 

of cavities which is followed by a low frequency wave which enhances the violent 

collapse of these bubbles. They termed this method as Cavitation Control Lithotripsy 

(CCL) and suggested the replacement of the standard ESWL with CCL.  

 Another effort to improve lithotripsy treatment based on modifying the 

waveform used is put forward by Prieto and Loske (1995, 1998, 1999), Loske and 

Prieto (1996), Bailey (1997), Zhong et al (1997b, 1999a) and Sokolov et al (2001), 

Loske et al (2002, 2005). They suggest the use of a second shock which is sent in a 

few hundred microseconds after the first to enhance cavitation collapse in order to 

reduce treatment time. The second shock is generated either by two separate spark 

gaps, a modified reflector or with a piezoelectric system. Promising results obtained 

pave the path for continual development in lithotripsy techniques and science. 
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7.2.3 Ultrasonic bubbles in microfluidic devices and water 
treatment 
 

 Apart from medical treatments, ultrasonic bubbles are also studied for 

chemical and biological applications. Due to the diversity of the field, only two 

notable examples are mentioned here, namely the use of acoustic cavitation in 

microfluidic devices, and the utilization of ultrasound for water cleaning systems.  

 Microfluidics is the enabling technology for genomics, proteomics, and 

molecular drug delivery among others. The pertaining problems are related to the 

microscale nature of devices, especially in mixing and transport effects. The use of 

acoustic actuators for acoustic mixing was first reported by Moroney et al (1991). 

Using piezoelectric thin film to generate the vibration, Yasuda (2000) managed to 

generate stirring movements in micro flow channels. Yang et al (2000, 2001) used the 

acoustic waves for the mixing of water and ethanol, as well as, water and uranine in 

microchambers. Other researchers utilize cavitation microstreaming for mixing. Liu et 

al (2002, 2003) introduced air pockets for trapping air bubbles which are in turn 

vibrating to generate a streaming flow. Marmottant and Hilgenfeldt (2004) proposed 

to use the same phenomenon of microstreaming with microbubbles for the directional 

transport of particles. Recently, a different idea of utilizing cavitation bubbles in 

microfluidics is presented by Zwaan et al (2007). They use the collapse of a laser 

bubble, which is created by focusing laser light in the microchannel, to generate high 

speed flow in the device.  

 Ultrasound is suggested to be used for disinfection of wastewater effluents 

(Neis and Blume, 2003), and for assisting sludge disintegration (Tiehm et al (1997, 

2001)). Ultrasonic treatment is done often with other disinfection methods such as 

using UV light. Sonochemistry effects on the microorganisms involved are believed 
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to be the main reasons behind the treatment success. Cavitation bubbles are also 

important in another aspect of water technology; i.e. in the ultrasonic cleaning of the 

membrane filter used in water treatment. Chai et al (1999) utilized ultrasound devices 

to clean the polymeric membranes that have been used for water treatment. 

Lamminen et al (2004) suggested the use of ultrasound to clean particle-fouled 

ceramic membranes so as to prolong the service lifespan of the expensive membrane. 

They observed that cavitational microstreaming and micro-jet pitting due to the 

collapse of bubbles are main contributing factors that drive the cleaning process.  

 

7.3 Assessment on possible hazards in use for medical ultrasound 
 

 There are a sizeable number of parameters for a full description of the 

ultrasound field. These may include the frequency, pressure amplitude in terms of 

peak positive and negative pressure, duty factor, temporal average power, and 

temporal and spatial peak intensities. Therefore to define the exposure quantity of 

ultrasound values deemed safe for medical applications is a complicated subject that 

is open to discussion and controversy.  

 Firstly, the effect of ultrasound on cells and genetics is of concern. As 

mentioned before, cell lysis can occur when a cavitation bubble collapses near it. Also 

degradation of DNA may happen when ultrasound of sufficiently high intensity 

generates cavitation. The collapse of these bubbles leads to shear stresses on the cell 

membrane, free radical formation in the surrounding fluid, and excessive heating 

(Thacker (1973), Miller and Thomas (1995, 1996)).  

 On a multicellular scale, ultrasound use is potentially harmful to bone and 

tissues. Thermal heating due to ultrasound exposure seems to be the limiting factor in 
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physiotherapy for bones. High temperature occurs due to either prolonged exposure or 

high intensity ultrasound could lead to pain (Lehmann et al, 1967), and subsequently 

the detachment of the periosteum (a fibrous membrane which encloses the bone (Gray, 

1918)) (Bruno et al, 1998). 

 It is known that shear stresses from collapsing cavitation bubbles are capable 

of causing haemolysis (the rupture of the red blood cells and the dissolution of their 

contents to the surrounding fluid (Allaby, 1999)). (Rooney (1970), Williams et al 

(1970)). However, it is reported that cavitation does not occur under the ultrasound 

intensity commonly used in clinical treatment, but it can be induced in blood only by 

high intensity ultrasound, e.g. 17 MPa at 1 MHz (Brayman et al, 1996). Nevertheless 

more care must be taken when ultrasound contrast agents (UCA) are introduced into 

the blood stream because it is demonstrated by Brayman et al (1995) and Miller and 

Thomas (1995, 1996) that haemolysis can occur in this case with normal ultrasound 

exposure levels.  

 Another important concern regarding the use of ultrasound is in its capacity to 

damage the blood vessels. Experiments with animal subjects by Dyson et al (1974) 

and ter Haar et al (1979) have reported damage to blood vessels due to irradiation in a 

standing ultrasound field. This damage was thought to be due to shear stresses from 

acoustic streaming. High intensity ultrasound exposure is found to be capable of 

creating tissue lesions (Child et al (1990), Holland et al (1996), Dalecki et al (1995)). 

Nevertheless this phenomenon is put to positive use by Xu et al (2005) (see Chapter 

5), and Kodama et al (1997) for the removal of cerebral blood clots. 

 Lastly, the author wishes to mention the potential hazards for the use of 

ultrasound in cancer treatment. There are several possible concerns. Firstly the 

surrounding normal tissues could sustain collateral damage during the lysing of the 
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cancer cells by UCA or the tissue ablation due to cavitation bubble collapse. Care 

must to be taken to localize the treatment area by using focused ultrasound or with 

integrated real time imaging techniques. Secondly, ultrasound treatment may cause 

the dissemination of malignant cells around the body and thus an increase in 

metastasis. However there is no evidence supporting the proposition that localized 

heating due to ultrasound may increase metastasis (Hahn (1982), Smachlo et al 

(1979)). Therefore, the use of ultrasound for cancer treatment may be a promising 

non-invasive procedure in the future.  

 

7.4 Conclusion and future work 
 

 The research presented in this thesis addresses the need to understand the 

bubble dynamics involved in several biomedical applications. Details of the 

contributions made are given in Section 7.1. In short, a numerical method known as 

the Boundary Element Method (BEM) is utilized to simulate the interaction of 

different types of acoustic fields (planar shock, lithotripter shockwave, inverted shock, 

and high intensity pulsed ultrasound) with a stationary or oscillating bubble. The 

model is extended to include the consideration of having a biomaterial near the 

acoustic bubble. Details of the interactions such as the bubble shape changes in time, 

jet velocity at the moment of impact, translational movement of the bubble etc. are 

discussed in detail. These parameters are valuable because they are difficult to obtain 

experimentally due to temporal and spatial constrains in experiments. Complex 

interactions between bubble and the sound field or the biomaterials are observed and 

discussed to provide greater understanding to the physics behind the bubble dynamics, 

and a basis for future technological development. Finally, multiple bubble interactions 
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are experimentally and numerically explored. The various interesting phenomena 

observed by high speed photography and calculated with a 3D BEM code are 

discussed. 

 As for future work, more experimental work for bubble dynamics utilizing the 

novel spark bubble technique and high speed photography can be done. For instance 

the study of bubbles oscillating in small tubes (mimicking blood vessels), near 

biomaterials, or in microfluidic devices is possible. Another promising incremental 

development in the current experimental setup is to incorporate ultrasound and shock 

waves. The various numerical studies done here can then be verified and studied 

further.  

 Numerically, several interesting areas of study can be explored. One such area 

being the simulation of acoustic microstreaming as mentioned in Section 1.2.2. 

Ultrasonic cleaning simulations, which are useful for the understanding of water 

treatment techniques, can be done with extension on the current code. Lastly, more 

simulations on other biomedical related applications, such as drug delivery and cancer 

treatment, can be performed to facilitate the procedural and material design in the 

initial stage, and to compliment the in vivo experiments or clinical trials in the final 

phase. The author is also currently exploring experiments on ultrasonic bubbles. A 

focused ultrasound transducer system has been built and it is used in several ongoing 

projects. 
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