TRANSPLANTATION OF SKELETAL MYOBLAST IN

ISCHEMIC HEART DISEASE

GUO CHANGFA

(M. Sc. & MD, Central South University, PR China)

A THESIS SUBMITTED

FOR THE DEGREE OF PHILOSOPHY

DEPARTMENT OF SURGERY

NATIONAL UNIVERSITY OF SINGAPORE

2007

Declaration

I declare that the research presented in this thesis, including research design, data collection, and data analysis was conducted by the author, Guo Changfa. The results of this work have not been submitted for degree at any other tertiary institute.

Copies (by any process) either in full, or of extracts, may be made in accordance with instructions given by the author and lodged in the national University of Singapore. Details may be obtained from the librarian of the National University of Singapore. This page must form part of any such copies made. Further copies (by any process) made in accordance with such instructions may not be made without the permission (in writing) of the author.

Guo Changfa

July 2007

Acknowledgements

In submitting this thesis, I would like to express my exceptional gratitude to my supervisor groups. My sincerest thanks go to associate professor Eugene Sim for giving me such an invaluable opportunity to engage in this project, for continuous supervision, guidance and encouragement throughout this PhD study. Sincerest thanks also to Dr Khawaja Husnain Haider, who has been a supervisor, elder brother and friend to me. Your guidance, invaluable advice, support and understanding are deeply appreciated. Sincere thanks to Dr. Winston Shim and Dr. Philip Wong, from National Heart Center. Your invaluable support and guidance make this whole project go smoothly.

Special gratitude goes to my wife, Zhang Huili. With your support, understanding and contribution, I am completing the whole study in the long run.

Special thanks go to Dr. Tan Ru-San, National Heart Center, for kind technique assistance in heart function analysis by echocardiography.

Special thanks go to associate professor Teh Ming, National University Hospital, for providing technical guidance and opinion in tissue processing and histological analysis.

My thanks also go to my lab mates, Dr. Jiang Shujia, Dr. Ye Lei, Dr. Zhang Wei, Dr. Rufaihah Abdul Jalil, Ms Muhammad Idris Niagara, Ms Wahidah Bte Esa, Mr. Toh Wee Chi, and Ms Su Liping for insightful discussions, technical and scientific advice, and moral support.

Thanks also go to Professor Peter K Law, from Cell Transplants Singapore, for providing the patented Supermedium and human skeletal myoblasts.

Special acknowledgement goes to members of Animal Holding Unit, NUS, for giving me expertise advice and technical support with regards to animal work

And not to forget friends and family members who have been supportive and encouraging throughout this enriching period of my life. I hope we will share the delight of my accomplishment.

Summary

Cell-based cardiac repair represents a promising therapeutic approach to treat heart failure. Among various cell types, skeletal myoblast (SkM) has been extensively used for cardiac cell therapy due to its myogenic potential, proliferative capacity, resistance to ischemia, and non-tumorigenic nature. The present study was to investigate the characteristics of human SkMs in vitro and in vivo, to investigate and compare immune responses, SkM survival profile, and SkM transplantation efficacy following xenogeneic, allogeneic, and autologous transplantation of SkMs in a rat myocardial infarction model.

By immunostaining and cell counting, we showed that immunocytes infiltrated severely in the early stage (from day-1 to day-7) after SkM transplantation. Macrophages and CD8+ lymphocytes infiltrated from day-1; CD4+ lymphocytes infiltrated from day-4, but all immunocytes subsided by day-28. By immunostaining, real time PCR, and β -gal assay, we confirmed and quantified the survival of SkMs. After transplantation, the majority of the SkM signals were rapidly lost by day-1. After day-1, a gradual increase in the number of SkMs was observed until 4 weeks after cell transplantation, resulting from the SkM proliferation out-balancing the gradual loss. One interesting finding of our study is that the grafted human SkMs and rat SkMs survive and differentiate well in the immunocompotent hosts even without any immunosuppression. From this we suggest that SkMs enjoy a non-autologous graft acceptance in myocardium, a finding which may have far reaching implications in clinical perspective. In addition, we demonstrated that there was a close correlation between immunocyte number and SkM total number.

In all SkM transplantation groups, SkM transplantation improved the heart performance by increasing the contraction function (ejection function) and limiting the ventricular dilation (left ventricular end diastolic diameter). Furthermore, we demonstrated that there was a linear relationship between the SkM survival and ventricular function as well. In our study, cyclosporine inhibited infiltration of the immune cells, enhanced the survival of transplanted SkMs and improved heart performance. Even in autologous groups, cyclosporine does enhance the heart performance.

This study enabled us a better understanding of the early cellular behavior of SkMs, especially human SkMs, and the underlying mechanisms that govern early graft attrition in SkM transplantation. The present study also suggests a feasibility of non-autologous SkM transplantation, especially allogeneic SkM transplantation.

Abbreviation

ABCG2+	ATP-binding cassette transporter
Ad	Adenovirus
AF	Atrial fibrillation
AMI	Acute myocardial infarction
BM	Bone marrow
BMCs	Bone marrow derived stem cells
BrdU	5-bromo-2'-deoxy-uridine
BSA	Bovine serum albumin
CABG	Coronary artery bypass grafting
CHF	Congestive heart failure
c-kit	Receptor for the stem cell factor.
СМ	Cardiomyocyte
CSCs	Cardiac stem/progenitor cells
CX	Circumflex coronary artery
DAB	3, 3-diaminobenzidine
DAPI	4, 6-diamidino-2-phenylindole
DMEM	Dulbecco's Modified Eagle Medium
ECG	Electrocardiogram
EF	Ejection fraction
ELISA	Enzyme linked immunosorbent assay
EPCs	Endothelial progenitor cells
Fb	Fibroblast
FBS	Fetal bovine serum
FITC	Fluorescein isothiocynate
FS	Fractional shortening
G-CSF	Granulocyte-colony stimulating factor
HRP	Horse radish peroxidase
HSCs	Hematopoietic stem cells
hSkM	Human skeletal myoblast
IC	Introcoronary infusion
ICS	Intra coronary sinus
IHD	Ischemic heart disease
Isl-1+	Insulin gene enhancer binding protein
KDR/Flk-1+	Vascular endothelial growth factor receptor
LAD	Left anterior descending artery.
Lin	Lineage markers
LVAD	Left ventricular assist device
LVEDV	Left ventricular end-diastolic volume
LVESV	Left ventricular end-systolic volume
MDR1+	P-glycoprotein
MI	Myocardial infarction
MMLV	Moloney Murine Leukemia Virus
MSCs	Mesenchymal stem cells
FISH	Fluorescence in situ hybridization
11511	rubreseenee in situ nybridization

HPF	High power field
LVEDD	Left ventricular end diastolic diameter
MHC	Major histocompatibility complex
NYHA	New York Heart Association
OD	Optical density
PBS	Phosphate buffered saline
PCI	Percutaneous coronary intervention
PEI	Percutaneous endoventricular injection
PET	Positron emission tomography
rSkM	Rat skeletal myoblast
Sca-1	Stem cell antigen 1
SkM	Skeletal myoblast
SMA	Smooth muscle actin
SP	Cardiac side population
SSEA-1	Stem cell marker stage-specific embryonic antigen 1.
UPCs	Uncommitted cardiac precursor cells.
VT	Ventricular tachycardia
X-gal	5-bromo-4-chloro-3indoyl-β-D-galactosidase

List of figures

Figure	1.1	Challenges to a successful cell therapy for cardiac repair	9
Figure	3.1	Representative images to show seeding and propagation of hSkMs	112
Figure	3.2	Doubling time of hSkMs by 4 times of independent counting	113
Figure	3.3	Representative images to show fusion of hSkMs into myotubes	
_		in vitro	114
Figure	3.4	Desmin immunostaining and flow cytometry for hSkM purity	115
Figure	3.5	MHC I staining for hSkMs and myotubes	116
Figure	3.6	MHC II staining for hSkMs and myotubes	117
Figure	3.7	The labeling of SkMs by DAPI, BrdU, and lac-z gene	118
Figure	3.8	Creating and confirming rat model of MI	119
Figure	3.9	Representative images to show hSkM survival	120
Figure	3.10	Representative images to show hSkM survival by FISH	122
Figure	3.11	Human Y chromosome detection by PCR	123
Figure	3.12	Real time PCR to quantify the number of surviving SkMs	124
Figure	3.13	Quantification of the surviving hSkM number by β -gal assay	125
Figure	3.14	Myoblast differentiation after transplantation by immunostaining	
		for actin, myosin heavy chain fast and slow isoforms	126
Figure	3.15	Human cardiac troponin I and connexin 43 staining to show no	
		transdifferentiation of hSkMs into cardiomyocytes	127
Figure	3.16	Immunostaining and time observation of the infiltration of	
		macrophages	128
Figure	3.17	Immunostaining and time observation of the infiltration of	
		CD8+ lymphocytes	129
Figure	3.18	Immunostaining and time observation of the infiltration of	
		CD4+ lymphocytes	130
Fgure 3	3.19	MHC I down-regulation at 28 days after hSkM transplantation	131
Figure	3.20	MHC II down-regulation at 28 days after hSkM transplantation	133
Figure	3.21	The presence in the rat serum of antibody against hSkMs was	
		assessed by flow cytometric assays	135
Figure	3.22	The concentration of rat IgG by ELISA	137
Figure	3.23	The concentration of rat IgM by ELISA	138
Figure	3.24	Echo images to show the movement improvement on anterior	
		wall of left ventricle after hSkM transplantation into infarcted	
		myocardium	139
Figure	3.25	Effects of hSkM transplantation on cardiac function	141
Figure	3.26	Purity from different rSkM preplating by desmin immunostaining	
		and doubling time of rSkMs	142
Figure	3.27	Desmin immunostaining and flow cytometry assay for the	
		purity of rSkMs	143
Figure	3.28	Time observation of the infiltration of macrophages, CD8+,	
		and CD4+ cells	144
Figure	3.29	Time observation of the IgG and IgM concentration in	
		allogeneic and autologous transplantation groups	145
Figure	3.30	Myoblast survival after transplantation by real time PCR	

and β-gal assay	146
Figure 3.31 Linear relationship between the numbers of infiltrating macrophages,	,
CD8+, CD4+ cells and total cell numbers of SkMs	147
Figure 3.32 Effects of SkM transplantation on cardiac function	149
Figure 3.33 Linear relationship between the cell survival and	
ventricular function (EF)	150

List of tables

Table 1.1 Cardiac progenitor cells so far identified and their characteristics	13
Table 1.2 Advantages of using SkMs for cardiac repair	29
Table 1.3 Myoblast transplantation for cardiac repair in preclinical studies	31
Table 1.4 Experimental studies comparing transplantation efficacy of SkMs	
with other cell types in cardiac repair	40
Table 1.5 Clinical trials of SkM transplantation for cardiac repair	46
Table 2.1 Antibodies used in present thesis	83
Table 3.1 The time courses of SkM survival by real time PCR and β -gal assay.	108
Table 3.2 Time observation of immunocyte infiltration	109
Table 3.3 Serum Concentrations of IgG and IgM antibody (µg/ml)	110
Table 3.4 Heart functions in experimental groups	111

Publications

Abstracts and Meetings:

- Guo CF, Haider Kh H, Ye L, et al. Human myoblasts are immunoprivileged and survived in xenogeneic host without immunosuppression. FEBS J. 2006, 273(S1): 128
- Guo CF, Haider Kh H, Ye L, et al. Comparison of cell survival after myoblast transplantation into myocardium: xenogenic transplantation versus allogenic transplantation. European Heart Journal. 2006, 26(s): 548
- CF Guo, Haider Kh, Ye l et al. Human myoblasts survived in xenogeneic host without immunosuppression: Are they immunoprivileged? J Card Surg 2006: 21: 634
- Guo CF., HAIDER, Kh Husnain, et al. Immune cellular dynamics after human myoblast transplantation into rat infarcted heart. 8th NUS-NUH ANNUAL SCIENTIFIC MEETING 2004. Singapore.
- Guo CF., Haider Kh H., Jiang SJ., et al. Optimization of myoblast transplantation based on immune cellular dynamics after human myoblast transplantation into rat infarcted heart. 2nd ASIA PACIFIC CONGRESS OF HEART FAILURE, Jan 9-12, 2005, Singapore (Oral presentation).
- Guo CF., Haider Kh H., Ye L., et al. Human skeletal myoblasts are immunoprivilaged and survive following xenotransplantation in the rat infarcted heart. 17th ANNUAL SCIENTIFIC MEETING (SCS). Mar. 26-27, 2005, Singapore (Short list for Young Investigator Award).
- Guo CF., Kh H Haider, L. Ye, et al. Xenotransplanted human skeletal myoblast for the infarcted heart repair. ESH – EBMT - EUROCORD Euroconference on STEM CELL RESEARCH. April 15-17, 2005, Cascais, Portugal (Awarded with European Commission's Marie Curie Actions Scholarship).
- Guo CF., Haider Kh H., Ye L., et al. Cyclosporine treatment enhances cell survival after human myoblast transplantation into rat infarcted heart. ISMICS: Eighth ANNUAL SCIENTIFIC MEETING, June 1-4, 2005, New York, USA.
- Guo CF., Haider Kh H., Ye L, et al. Human myoblasts are immunoprivileged and enhanced by cyclosporine treatment with improvement of heart function after xenogeneic transplantation for cardiac repair. Combined Scientific Meeting 2005, Singapore.
- Guo CF, Haider Kh H, Ye L, et al. Human myoblasts survived in xenogeneic host without immunosuppression: are they immunoprivileged? The 3rd International Congress of the Cardiac Bioassist Association. 8-10 Nov, 2005 Fort Collins, Colorado, USA (Oral presentation).
- Guo CF, Haider Kh H, Ye L, et al. Human skeletal myoblasts survived in xenogeneic host with improved heart performance without

immunosuppression. ISMICS: Winter Section.2-4, Dec. 2005, Shang Hai, China

- Guo CF, Haider Kh H, Ye L, et al. Human skeletal myoblast survived in xenogeneic host and further enhanced by cyclosporine treatment with improvement of heart performance. 18th Annual Scientific Meeting (SCS) 25th & 26th March, 2006. (Short list for Young Investigator Award).
- Guo CF, Haider Kh H, Ye L, et al. Comparison of myoblast survival after transplantation into myocardium: xenogenic transplanation versus allogenic transplantation. International Society for Stem Cell Research 4th Annual Meeting. June 29-July 1, 2006. Toronto, ON, Canada

Manuscripts:

- Ye L, Haider HKh, Guo C, Sim EK.Cell-based VEGF delivery prevents donor cell apoptosis after transplantation. Ann Thorac Surg. 2007 Mar; 83(3):1233-4.
- Guo C, HKh. Haider, Winston S.N. Shim et al. Myoblast-based cardiac repair: xenomyoblast versus allomyoblast transplantation. J Thorac Cardiovas Surg. 2007; 134: 1332-9.
- Guo C, Winston S.N. Shim, Husnain Kh Haider et al. Transplantation of xenografted human skeletal myoblasts for cardiac repair (Under submission).

TABLE OF CONTENTS

i
ii
iii
iv
V
vii
ix
X
xii

Chapter One: Introduction

Section 1: Ischemic heart disease	
1.1.1 Introduction to ischemic heart disease (IHD)	1
1.1.2 Current status on IHD treatment	3
1.1.3 No-option patients: a target population for cell therapy	4
1.1.4 Patients with end-stage ischemic cardiomyopathy: another target	
population for cell therapy	5
1.1.5 The challenges: regenerate contractile tissue and reverse	
remodeling by cell transplantation	6
1.1.5.1 rationale for cell transplantation	6
1.1.5.2 The challenges for a successful cell-based cardiac repair	8
Section II: Stem cell sources and delivery	
1.2.1 The choice of donor cells	10
1.2.1.1 Fetal or neonatal cardiomyocytes	10
1.2.1.2 Myocardial stem cells	11
1.2.1.3 Embryonic stem (ES) cells	16
1.2.1.4 Bone marrow derived stem cells	18
1.2.1.5 Skeletal myobalsts (SkMs)	21
1.2.2 Cell delivery methods	21
1.2.2.1 Stem cell mobilization	22
1.2.2.2 Direct intramyocardial injection	23
1.2.2.2.1 Transepicardial injection	23
1.2.2.2.2 Transendocardial injection	24
1.2.2.2.3 Trans-coronary-vein injection	25
1.2.2.3 Transvascular approaches	26
1.2.2.3.1 Intravenous infusion	26
1.2.2.3.2 Intracoronary artery infusion	27
Section III: Myoblast-based cardiac repair	
1.3.1 The rationale to choose myoblast transplantation	28
1.3.2 Pre-clinical assessment of SkMs for cardiac repair	30
1.3.2.1 Retention, distribution, and survival of transplanted SkM	34
1.3.2.2 Fate of transplanted SkM: cardiomyocyte or skeletal myofiber	36
1.3.2.3 Efficacy of SkM transplantation for cardiac repair	38
1.3.3 Clinical trials of autologous SkMs -based cardiac repair	41

1.3.3 Clinical trials of autologous SkMs -based cardiac repair

1		41
1	.3.3.2 SkM transplantation as a stand–alone procedure	43
1.3.4	From autologous to allogeneic SkM transplantation	44
1.3.5	Current problems about SkM transplantation	48
Section	n IV: Purposes of the study	50
Chap	ter Two: Materials and Methods	
2.1	Skeletal Myoblast Isolation and Culture Methodology	52
	2.1.1 Human skeletal myoblast cultivation	52
	2.1.2 Rat skeletal myoblast isolation and cultivation	52
	2.1.2.1 Preconditioning of skeletal muscle prior to biopsy	52
	2.1.2.2 Muscle biopsy, myoblast isolation and cell culture	53
2.2	Myoblast Purity Test	54
	2.2.1 Desmin immunostaining	54
	2.2.2 Flow cytometry assay	55
2.3	Myoblast doubling time by cell counting	56
2.4	Human skeletal myoblast fusion in vitro	57
2.5	Myoblast labeling	58
	2.5.1 Lac-z reporter gene labeling	58
	2.5.1.1 Retroviral vector propagation and purification	58
	2.5.1.2 Lac-z gene transduction into myoblasts	59
	2.5.1.3 Lac-z labeling efficiency	59
	2.5.2 BrdU labeling	60
	2.5.2.1 BrdU incorporation into myoblasts	60
	2.5.2.2 Immunostaining for BrdU	60
	2.5.3 DAPI labeling	61
	2.5.3.1 DAPI Incorporation into myoblasts	61
	2.5.3.2 DAPI labeling efficiency	62
2.6	Myoblast availability test by trypan blue exclusion	62
2.7	Rat mocardial infarction model and cell transplantation	62
	2.7.1 Mocardial infarction model creation	62
	2.7.2 Confirmation of myocardial infarction model	63
	2.7.2.1 Macroscopic observation	63
	2.7.2.2 Microscopic observation	63
	2.7.2.3 Electrocardiogram (ECG)	64
	2.7.2.4 Echocardiography	64
	2.7.3 Animal groups	65
• •	2.7.4 Myoblast transplantation	66
2.8	Animal euthanasia	67
2.9	Serum preparation and antibody detection	68
	2.9.1 Serum preparation	68
	2.9.2 Antibody concentration assay	68
	2.9.2.1 Flow cytometry assay to detect antibody	68
	2.9.2.2 Enzyme linked immunosorbent assay (Elisa) for	<i>c</i> o
0 10	antiobody detection	69
2.10	Nyobiast survival assay	/0
	2.10.1 Identification of transplanted cells by X-gal staining,	

	BrdU staining, and DAPI fluorescence detection	70
	2.10.2 Identification of Myoblasts Using Fluorescence in Situ	
	Hybridization (FISH)	71
	2.10.3 Time course about myoblast survival	72
	2.10.3.1 PCR and real time PCR	72
	2.10.3.1.1 DNA preparation	72
	2.10.3.1.2 PCR and real time PCR	73
	2.10.3.2 Myoblast survival by β-gal assay	74
2 11	MHC detection and expression	75
	2.11.1 Immunostaining for MHC	75
	2 11 2 MHC expression by RT-PCR	75
	2 11 2 1 RNA preparation	75
	2.11.2.2 RT-PCR	76
2.12	Histological and immunohistological study	78
2.12	2.12.1 Staining for skeletal muscle acting and myosin heavy	70
	chain fast and slow isoforms	78
	2 12 2 Immunostaining for connexin 43 and trononin I	80
	2.12.2 Macronhages and CD4+ CD8+ t-lymphocytes immunostaining	81
2 13	Function assessment	82
2.13	Statistical analysis	82
	star III. Doculto	02
Chap	n I Human akalatal muchlast tuangalantation in nat informated model	
2 1 1	Human skeletal myoblast transplantation in rat infarcted model	Q /
3.1.1 2 1 2	Durity of human skeletal mychlasts	04 05
3.1.2	MUC aupression on human alkalatal myschlasts	83 05
5.1.5 2 1 4	MINC expression on numan skeretar myodiasis	0J 04
5.1.4 2.1.5	Mortality and confirmation of rat model of myceografial information	80 86
3.1.3 2.1.6	Muchlast survival within the ret inforeted muccardium	00 07
5.1.0 2 1 7	Time course of hShM survival	0/
3.1.7	2.1.7.1 Call survival by DCD and real time DCD analysis	00
	$2.1.7.2$ Cell survival by β cel access	00
210	5.1.7.2 Cell sulvival by p-gal assay	89 00
5.1.0 2.1.0	Fate of number dynamics after hymon SIM transplantation	90
3.1.9 2.1.10	MILC summarian offen human SIM transmantation	91
3.1.10	Antibady detection by flavor tomotry	93
3.1.11	Eliza for not I C and I M offer house a Cl-M to non-last time	94
3.1.12	Lisa for ratigg and ign after numan Skin transplantation	94
5.1.15 Section	n Ha Dat abalatel much last transplantations allo geneis	90
Sectio	on 11: Kat skeletal myodiast transplantation: allogeneic	
2 2 1	and autologous transplantation	00
3.2.1	Kat skeletal myööläst isolation, culture, and douoling time	99
3.2.2	transplantation	100
2 7 2	uanspiantation Eliza for rat IaC and IaM ofter allogeneis and systelegeus SIM	100
3.2.3	Elisa for fat IgO and Igivi after anogeneic and autologous SKM	102
2 2 4	Call survival after transplantation	102
3.2.4	2.2.4.1 Coll Survival by V abromagama Deal Time DCD	104
	5.2.4.1 Cell Survival by 1 chromosome keal time PCK	104

	3.2.4.2 Cell survival by β-gal assay	105
3.2.5	Heart function assay by echocardiography	105
Chap	ter IV Discussion and conclusion	
4.1	Myocardial infarction model of Wistar rats	151
4.2	The cell delivery time and dosage	151
4.3	The labeling of the transplanted myoblasts	153
4.4	The methods to quantify the donor myoblast survival	156
4.5	Skeletal myoblast dynamics	157
4.6	Fate of SkM grafts after transplantation	159
4.7	Immunocellular dynamics and myoblast survival after transplantation	160
4.8	Major histocompatibility complex (MHC) expression in vitro and in	
	vivo on human SkMs	163
4.9	Transplantation of non-autologous myoblasts into myocardium	164
4.10	Comparison of allogeneic and autologous myoblast transplantation	166
4.11	Heart Performance by SkM Transplantation	167
4.12	Cyclosporine therapy in non-autologous myoblast transplantations	169
4.13	Cyclosporine treatment in autologous myoblast transplantation	171
4.14	Mechanism of myoblast transplantation	172
4.15	Limitation of the present study	175
4.16	Future directions	178
4.17	Conclusion	179
Biblic	ography	182