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Summary 

Cell-based cardiac repair represents a promising therapeutic approach to treat heart 
failure. Among various cell types, skeletal myoblast (SkM) has been extensively used 
for cardiac cell therapy due to its myogenic potential, proliferative capacity, 
resistance to ischemia, and non-tumorigenic nature. The present study was to 
investigate the characteristics of human SkMs in vitro and in vivo, to investigate and 
compare immune responses, SkM survival profile, and SkM transplantation efficacy 
following xenogeneic, allogeneic, and autologous transplantation of SkMs in a rat 
myocardial infarction model. 

By immunostaining and cell counting, we showed that immunocytes infiltrated 
severely in the early stage (from day-1 to day-7) after SkM transplantation. 
Macrophages and CD8+ lymphocytes infiltrated from day-1; CD4+ lymphocytes 
infiltrated from day-4, but all immunocytes subsided by day-28. By immunostaining, 
real time PCR, and β-gal assay, we confirmed and quantified the survival of SkMs. 
After transplantation, the majority of the SkM signals were rapidly lost by day-1.  
After day-1, a gradual increase in the number of SkMs was observed until 4 weeks 
after cell transplantation, resulting from the SkM proliferation out-balancing the 
gradual loss. One interesting finding of our study is that the grafted human SkMs and 
rat SkMs survive and differentiate well in the immunocompotent hosts even without 
any immunosuppression. From this we suggest that SkMs enjoy a non-autologous 
graft acceptance in myocardium, a finding which may have far reaching implications 
in clinical perspective. In addition, we demonstrated that there was a close correlation 
between immunocyte number and SkM total number.   

In all SkM transplantation groups, SkM transplantation improved the heart 
performance by increasing the contraction function (ejection function) and limiting 
the ventricular dilation (left ventricular end diastolic diameter). Furthermore, we 
demonstrated that there was a linear relationship between the SkM survival and 
ventricular function as well. In our study, cyclosporine inhibited infiltration of the 
immune cells, enhanced the survival of transplanted SkMs and improved heart 
performance. Even in autologous groups, cyclosporine does enhance the heart 
performance.  

This study enabled us a better understanding of the early cellular behavior of SkMs, 
especially human SkMs, and the underlying mechanisms that govern early graft 
attrition in SkM transplantation. The present study also suggests a feasibility of non-
autologous SkM transplantation, especially allogeneic SkM transplantation. 
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Abbreviation 

ABCG2+     ATP-binding cassette transporter  
Ad Adenovirus 
AF      Atrial fibrillation 
AMI      Acute myocardial infarction  
BM      Bone marrow 
BMCs      Bone marrow derived stem cells  
BrdU 5-bromo-2’-deoxy-uridine 
BSA Bovine serum albumin 
CABG Coronary artery bypass grafting 
CHF Congestive heart failure  
c-kit Receptor for the stem cell factor.  
CM Cardiomyocyte 
CSCs Cardiac stem/progenitor cells  
CX Circumflex coronary artery 
DAB 3, 3-diaminobenzidine 
DAPI 4, 6-diamidino-2-phenylindole 
DMEM Dulbecco's Modified Eagle Medium 
ECG                               Electrocardiogram  
EF Ejection fraction 
ELISA Enzyme linked immunosorbent assay 
EPCs Endothelial progenitor cells  
Fb Fibroblast 
FBS Fetal bovine serum 
FITC Fluorescein isothiocynate  
FS Fractional shortening 
G-CSF Granulocyte-colony stimulating factor 
HRP Horse radish peroxidase 
HSCs Hematopoietic stem cells  
hSkM Human skeletal myoblast 
IC Introcoronary infusion 
ICS Intra coronary sinus 
IHD Ischemic heart disease 
Isl-1+ Insulin gene enhancer binding protein  
KDR/Flk-1+ Vascular endothelial growth factor receptor 
LAD Left anterior descending artery.  
Lin Lineage markers 
LVAD Left ventricular assist device 
LVEDV Left ventricular end-diastolic volume  
LVESV Left ventricular end-systolic volume  
MDR1+ P-glycoprotein  
MI Myocardial infarction  
MMLV Moloney Murine Leukemia Virus 
MSCs Mesenchymal stem cells  
FISH Fluorescence in situ hybridization  
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HPF High power field  
LVEDD Left ventricular end diastolic diameter  
MHC Major histocompatibility complex  
NYHA New York Heart Association 
OD Optical density 
PBS Phosphate buffered saline 
PCI Percutaneous coronary intervention 
PEI Percutaneous endoventricular injection 
PET Positron emission tomography 
rSkM Rat skeletal myoblast 
Sca-1 Stem cell antigen 1  
SkM Skeletal myoblast 
SMA Smooth muscle actin 
SP Cardiac side population  
SSEA-1 Stem cell marker stage-specific embryonic antigen 1.  
UPCs Uncommitted cardiac precursor cells.  
VT Ventricular tachycardia  
X-gal 5-bromo-4-chloro-3indoyl-β-D-galactosidase 

 

 

 

 

 

 

 

 

 

 

 

 

 vi



List of figures 

Figure 1.1   Challenges to a successful cell therapy for cardiac repair  9 
Figure 3.1   Representative images to show seeding and propagation of hSkMs    112 
Figure 3.2   Doubling time of hSkMs by 4 times of independent counting  113 
Figure 3.3   Representative images to show fusion of hSkMs into myotubes 
                    in vitro         114 
Figure 3.4   Desmin immunostaining and flow cytometry for hSkM purity  115 
Figure 3.5   MHC I staining for hSkMs and myotubes    116 
Figure 3.6   MHC II staining for hSkMs and myotubes    117 
Figure 3.7   The labeling of SkMs by DAPI, BrdU, and lac-z gene   118 
Figure 3.8   Creating and confirming rat model of MI    119  
Figure 3.9   Representative images to show hSkM survival      120 
Figure 3.10 Representative images to show hSkM survival by FISH  122  
Figure 3.11 Human Y chromosome detection by PCR    123 
Figure 3.12 Real time PCR to quantify the number of surviving SkMs  124 
Figure 3.13 Quantification of the surviving hSkM number by β-gal assay   125 
Figure 3.14 Myoblast differentiation after transplantation by immunostaining  
                    for actin, myosin heavy chain fast and slow isoforms   126 
Figure 3.15 Human cardiac troponin I and connexin 43 staining to show no 
                    transdifferentiation of hSkMs into cardiomyocytes   127 
Figure 3.16 Immunostaining and time observation of the infiltration of  
                    macrophages        128 
Figure 3.17 Immunostaining and time observation of the infiltration of  
                    CD8+ lymphocytes         129 
Figure 3.18 Immunostaining and time observation of the infiltration of  
                    CD4+ lymphocytes       130  
Fgure 3.19 MHC I down-regulation at 28 days after hSkM transplantation  131 
Figure 3.20 MHC II down-regulation at 28 days after hSkM transplantation  133 
Figure 3.21 The presence in the rat serum of antibody against hSkMs was  
                     assessed by flow cytometric assays     135 
Figure 3.22 The concentration of rat IgG by ELISA     137 
Figure 3.23 The concentration of rat IgM by ELISA     138 
Figure 3.24 Echo images to show the movement improvement on anterior 
                    wall of left ventricle after hSkM transplantation into infarcted 
                    myocardium        139 
Figure 3.25 Effects of hSkM transplantation on cardiac function   141 
Figure 3.26 Purity from different rSkM preplating by desmin immunostaining 
                    and doubling time of rSkMs           142  
Figure 3.27 Desmin immunostaining and flow cytometry assay for the  
                     purity of rSkMs        143  
Figure 3.28 Time observation of the infiltration of macrophages, CD8+,  
                     and CD4+ cells        144 
Figure 3.29 Time observation of the IgG and IgM concentration in  
                    allogeneic and autologous transplantation groups   145 
Figure 3.30 Myoblast survival after transplantation by real time PCR 

 vii



                    and β-gal assay        146 
Figure 3.31 Linear relationship between the numbers of infiltrating macrophages, 

CD8+, CD4+ cells and total cell numbers of SkMs   147 
Figure 3.32 Effects of SkM transplantation on cardiac function   149 
Figure 3.33 Linear relationship between the cell survival and  
                    ventricular function (EF)       150
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 viii



List of tables 
Table 1.1 Cardiac progenitor cells so far identified and their characteristics 13 
Table 1.2 Advantages of using SkMs for cardiac repair    29 
Table 1.3 Myoblast transplantation for cardiac repair in preclinical studies  31 
Table 1.4 Experimental studies comparing transplantation efficacy of SkMs  
                 with other cell types in cardiac repair     40 
Table 1.5 Clinical trials of SkM transplantation for cardiac repair                           46 
Table 2.1 Antibodies used in present thesis      83 
Table 3.1 The time courses of SkM survival by real time PCR and β-gal assay. 108 
Table 3.2 Time observation of immunocyte infiltration    109 
Table 3.3 Serum Concentrations of IgG and IgM antibody (µg/ml)   110 
Table 3.4 Heart functions in experimental groups     111 
 
 
    
 

 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ix



Publications 

Abstracts and Meetings: 

• Guo CF, Haider Kh H, Ye L, et al. Human myoblasts are immunoprivileged 
and survived in xenogeneic host without immunosuppression. FEBS J. 2006, 
273(S1): 128  

• Guo CF, Haider Kh H, Ye L, et al. Comparison of cell survival after myoblast 
transplantation into myocardium: xenogenic transplantation versus allogenic 
transplantation. European Heart Journal. 2006, 26(s): 548  

• CF Guo, Haider Kh, Ye l et al. Human myoblasts survived in xenogeneic host 
without immunosuppression: Are they immunoprivileged? J Card Surg 2006: 
21: 634 

• Guo CF., HAIDER, Kh Husnain, et al. Immune cellular dynamics after human 
myoblast transplantation into rat infarcted heart. 8th NUS-NUH ANNUAL 
SCIENTIFIC MEETING 2004. Singapore. 

• Guo CF., Haider Kh H., Jiang SJ., et al. Optimization of myoblast 
transplantation based on immune cellular dynamics after human myoblast 
transplantation into rat infarcted heart. 2nd ASIA PACIFIC CONGRESS OF 
HEART FAILURE, Jan 9-12, 2005, Singapore (Oral presentation).  

• Guo CF., Haider Kh H., Ye L., et al. Human skeletal myoblasts are 
immunoprivilaged and survive following xenotransplantation in the rat 
infarcted heart. 17th ANNUAL SCIENTIFIC MEETING (SCS). Mar. 26-27, 
2005, Singapore (Short list for Young Investigator Award).  

• Guo CF., Kh H Haider, L. Ye, et al. Xenotransplanted human skeletal 
myoblast for the infarcted heart repair. ESH – EBMT - EUROCORD 
Euroconference on STEM CELL RESEARCH. April 15-17, 2005, Cascais, 
Portugal (Awarded with European Commission’s Marie Curie Actions 
Scholarship). 

• Guo CF., Haider Kh H., Ye L., et al. Cyclosporine treatment enhances cell 
survival after human myoblast transplantation into rat infarcted heart. 
ISMICS: Eighth ANNUAL SCIENTIFIC MEETING, June 1-4, 2005, New 
York, USA. 

• Guo CF., Haider Kh H., Ye L, et al.  Human myoblasts are immunoprivileged 
and enhanced by cyclosporine treatment with improvement of heart function 
after xenogeneic transplantation for cardiac repair. Combined Scientific 
Meeting 2005, Singapore.  

• Guo CF, Haider Kh H, Ye L, et al. Human myoblasts survived in xenogeneic 
host without immunosuppression: are they immunoprivileged? The 3rd 
International Congress of the Cardiac Bioassist Association. 8-10 Nov, 2005 
Fort Collins, Colorado, USA (Oral presentation). 

• Guo CF, Haider Kh H, Ye L, et al. Human skeletal myoblasts survived in 
xenogeneic host with improved heart performance without 

 x



immunosuppression. ISMICS: Winter Section.2-4, Dec. 2005, Shang Hai, 
China 

• Guo CF, Haider Kh H, Ye L, et al. Human skeletal myoblast survived in 
xenogeneic host and further enhanced by cyclosporine treatment with 
improvement of heart performance. 18th Annual Scientific Meeting (SCS) 
25th & 26th March, 2006. (Short list for Young Investigator Award). 

• Guo CF, Haider Kh H, Ye L, et al. Comparison of myoblast survival after 
transplantation into myocardium:  xenogenic transplanation versus allogenic 
transplantation. International Society for Stem Cell Research 4th Annual 
Meeting. June 29-July 1, 2006. Toronto, ON, Canada 

Manuscripts:  

• Ye L, Haider HKh, Guo C, Sim EK.Cell-based VEGF delivery prevents donor 
cell apoptosis after transplantation. Ann Thorac Surg. 2007 Mar; 83(3):1233-4. 

• Guo C, HKh. Haider, Winston S.N. Shim et al. Myoblast-based cardiac repair: 
xenomyoblast versus allomyoblast transplantation. J Thorac Cardiovas Surg. 
2007; 134: 1332-9.   

• Guo C, Winston S.N. Shim, Husnain Kh Haider et al. Transplantation of 
xenografted human skeletal myoblasts for cardiac repair (Under submission).  

 

 

 

 

 

 

 

 

 

 

 

 xi

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=17307513&ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


TABLE OF CONTENTS 

Preface          i 
Declaration          ii 
Acknowledgements         iii 
Summary          iv 
Abbreviations         v  
List of figures          vii      
List of tables          ix 
Publications          x 
Table of contents         xii 
 
Chapter One: Introduction    
Section I: Ischemic heart disease  
1.1.1 Introduction to ischemic heart disease (IHD)                                                 1    
1.1.2 Current status on IHD treatment                                                                     3 
1.1.3 No-option patients: a target population for cell therapy                                 4                           
1.1.4 Patients with end-stage ischemic cardiomyopathy: another target 

population for cell therapy 5                                   
1.1.5 The challenges: regenerate contractile tissue and reverse  
            remodeling by cell transplantation 6 

1.1.5.1 rationale for cell transplantation     6  
1.1.5.2 The challenges for a successful cell-based cardiac repair  8                                   

Section II: Stem cell sources and delivery                                    
1.2.1 The choice of donor cells       10                                 

1.2.1.1 Fetal or neonatal cardiomyocytes     10                                 
1.2.1.2 Myocardial stem cells       11  
1.2.1.3 Embryonic stem (ES) cells      16 
1.2.1.4 Bone marrow derived stem cells     18                                 
1.2.1.5 Skeletal myobalsts (SkMs)      21                                 

1.2.2 Cell delivery methods        21                                 
1.2.2.1 Stem cell mobilization      22                                 
1.2.2.2 Direct intramyocardial injection     23                                

1.2.2.2.1 Transepicardial injection     23                                 
1.2.2.2.2 Transendocardial injection     24                                 
1.2.2.2.3 Trans-coronary-vein injection     25                                 

1.2.2.3 Transvascular approaches      26                                 
1.2.2.3.1 Intravenous infusion      26                                
1.2.2.3.2 Intracoronary artery infusion     27                                 

Section III: Myoblast-based cardiac repair                                                   
1.3.1 The rationale to choose myoblast transplantation    28  
1.3.2 Pre-clinical assessment of SkMs for cardiac repair    30 

1.3.2.1 Retention, distribution, and  survival of transplanted SkM  34 
1.3.2.2 Fate of transplanted SkM: cardiomyocyte or skeletal myofiber 36 
1.3.2.3 Efficacy of SkM transplantation for cardiac repair   38 

1.3.3 Clinical trials of autologous SkMs -based cardiac repair   41 

 xii



1.3.3.1 SkM transplantation as a adjunct to CABG     41 
1.3.3.2 SkM transplantation as a stand–alone procedure   43 

1.3.4 From autologous to allogeneic SkM transplantation    44 
1.3.5 Current problems about SkM transplantation     48 
Section IV: Purposes of the study       50 
Chapter Two: Materials and Methods    
2.1 Skeletal Myoblast Isolation and Culture Methodology   52 

2.1.1 Human skeletal myoblast cultivation    52 
2.1.2 Rat skeletal myoblast isolation and cultivation   52 

2.1.2.1 Preconditioning of skeletal muscle prior to biopsy  52 
2.1.2.2 Muscle biopsy, myoblast isolation and cell culture  53 

2.2  Myoblast Purity Test        54 
2.2.1 Desmin immunostaining      54 
2.2.2 Flow cytometry assay      55 

2.3 Myoblast doubling time by cell counting     56 
2.4 Human skeletal myoblast fusion in vitro     57 
2.5 Myoblast labeling        58 

2.5.1 Lac-z reporter gene labeling      58 
2.5.1.1 Retroviral vector propagation and purification  58 
2.5.1.2 Lac-z gene transduction into myoblasts   59 
2.5.1.3 Lac-z labeling efficiency     59 

2.5.2 BrdU labeling       60 
2.5.2.1 BrdU incorporation into myoblasts    60 
2.5.2.2 Immunostaining for BrdU      60 

2.5.3 DAPI labeling       61 
2.5.3.1 DAPI Incorporation into myoblasts    61 
2.5.3.2 DAPI labeling efficiency     62  

2.6 Myoblast availability test by trypan blue exclusion    62 
2.7 Rat mocardial infarction model and cell transplantation   62 

2.7.1 Mocardial infarction model creation     62 
2.7.2 Confirmation of  myocardial infarction model   63 

2.7.2.1 Macroscopic observation     63 
2.7.2.2 Microscopic observation     63 
2.7.2.3 Electrocardiogram (ECG)     64 
2.7.2.4 Echocardiography      64 

2.7.3 Animal groups       65 
2.7.4 Myoblast transplantation      66 

2.8 Animal euthanasia        67 
2.9 Serum preparation and antibody detection     68 

2.9.1 Serum preparation       68 
2.9.2 Antibody concentration assay     68 

2.9.2.1 Flow cytometry assay to detect antibody   68 
2.9.2.2 Enzyme linked immunosorbent assay (Elisa) for  
                   antiobody detection      69 

2.10 Myoblast survival assay       70 
2.10.1 Identification of transplanted cells by X-gal staining,  

 xiii



            BrdU staining, and DAPI fluorescence detection   70 
2.10.2 Identification of Myoblasts Using Fluorescence in Situ  
            Hybridization (FISH)      71 
2.10.3 Time course about myoblast survival    72 

2.10.3.1 PCR and real time PCR     72 
2.10.3.1.1 DNA preparation     72 
2.10.3.1.2 PCR and real time PCR    73 

2.10.3.2 Myoblast survival by β-gal assay    74 
2.11 MHC detection and expression      75 

2.11.1 Immunostaining for MHC      75 
2.11.2 MHC expression by RT-PCR     75 

2.11.2.1 RNA preparation      75 
2.11.2.2 RT-PCR       76 

2.12 Histological and immunohistological study     78 
2.12.1 Staining for skeletal muscle actin, and myosin heavy  
            chain fast and slow isoforms      78 
2.12.2 Immunostaining for connexin 43 and troponin I   80 
2.12.3 Macrophages and CD4+, CD8+ t-lymphocytes immunostaining 81 

2.13 Function assessment        82 
2.14 Statistical analysis        82 
Chapter III: Results 
Section I Human skeletal myoblast transplantation in rat infarcted model  
3.1.1 Human skeletal myoblast culture and fusion     84 
3.1.2 Purity of human skeletal myoblasts      85 
3.1.3 MHC expression on human skeletal myoblasts     85 
3.1.4 Human skeletal myoblast preparation before transplantation   86 
3.1.5 Mortality and confirmation of rat model of myocardial infarction  86 
3.1.6 Myoblast survival within the rat infarcted myocardium   87 
3.1.7 Time course of hSkM survival      88 

3.1.7.1 Cell survival by PCR and real time PCR analysis   88 
3.1.7.2 Cell survival by β-gal assay      89 

3.1.8 Fate of human skeletal myoblasts after grafting    90 
3.1.9 Immunocellular dynamics after human SkM transplantation   91 
3.1.10 MHC expression after human SkM transplantation    93 
3.1.11 Antibody detection by floycytometry      94 
3.1.12 Elisa for rat IgG and IgM after human SkM transplantation   94 
3.1.13 Heart functional assessment       96 
Section II: Rat skeletal myoblast transplantation: allogeneic  
                   and autologous transplantation      
3.2.1 Rat skeletal myoblast isolation, culture, and doubling time   99 
3.2.2 Immucellular dynamics of allogeneic and autologous myoblast 

transplantation         100 
3.2.3 Elisa for rat IgG and IgM after allogeneic and autologous SkM  

transplantation         102 
3.2.4 Cell survival after transplantation      104 

3.2.4.1 Cell Survival by Y chromosome Real Time PCR   104 

 xiv



3.2.4.2 Cell survival by β-gal assay      105 
3.2.5 Heart function assay by echocardiography     105 
Chapter IV Discussion and conclusion      
4.1 Myocardial infarction model of Wistar rats     151 
4.2 The cell delivery time and dosage      151  
4.3       The labeling of the transplanted myoblasts     153 
4.4       The methods to quantify the donor myoblast survival   156  
4.5       Skeletal myoblast dynamics       157 
4.6       Fate of SkM grafts after transplantation     159 
4.7       Immunocellular dynamics and myoblast survival after transplantation 160 
4.8       Major histocompatibility complex (MHC) expression in vitro and in  
            vivo on human SkMs        163 
4.9       Transplantation of non-autologous myoblasts into myocardium  164 
4.10 Comparison of allogeneic and autologous myoblast transplantation  166 
4.11 Heart Performance by SkM Transplantation     167 
4.12 Cyclosporine therapy in non-autologous myoblast transplantations  169  
4.13 Cyclosporine treatment in autologous myoblast transplantation  171 
4.14 Mechanism of myoblast transplantation     172 
4.15 Limitation of the present study      175 
4.16 Future directions        178 
4.17     Conclusion         179 
Bibliography                   182 

                                     

 xv


	GUO CHANGFA 
	2.1.2 Rat skeletal myoblast isolation and cultivation   52 
	2.1.2.1 Preconditioning of skeletal muscle prior to biopsy  52 
	2.1.2.2 Muscle biopsy, myoblast isolation and cell culture  53 


