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SUMMARY 

In recent years, there is an increasing interest in fatigue-tracking technologies with the 

widespread hope that they will be invaluable in the prevention of fatigue-related 

accidents. In the literature, various efforts have been put into the fatigue measurement 

methods, including performance, perceptual, and electrophysiological based 

measurements. Majority of previously published research findings on fatigue have 

found varying results, which could be due to methodological limitation. However, 

there are fewer studies on the neural firing state across the whole process of fatigue, 

induced by the circadian rhythm. It therefore needs further research to get conclusion 

regarding the neural activity of the fatigue brain. 

Based on a number of previous studies, we proposed four hypotheses for the circadian 

fatigue progress by fMRI to indicate the neural firing states when the circadian fatigue 

is progressing. First, a decreased brain activity occurs throughout the whole circadian 

fatigue process; second, there are specific parts of the brain which are more sensitive 

to the circadian fatigue; third, ACC and TH effect of the circadian fatigue; fourth, the 

auxiliary brain regions searched following the circadian fatigue progresses. 

This study presents the usage of fMRI method to find out the neural activity of the 

brain under the different fatigue states, based on an auditory discrimination task. 

Results from the present study show that the circadian mental fatigue causes over all 

brain activity decrease. The brain protects compensate for these effects of circadian 

fatigue by manipulating the activation status of the areas in PFC, AFC, PL, ACC and 

TH. In the AFC, a sensitive decreased activation was observed across four sessions. 

For the PL, on the other hand, an equivalent activity was observed in the superior PL 

as well as the inferior PL. The ACC and the TH were found to be more strongly 
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activated following the circadian fatigue extreme. The DLPFC, which mediates both 

attention and arousal after fatigue, in order to maintain intact performance, also 

showed continued decrease in activity as a consequence. The precuneus, and the 

insular cortex which are not designed to be the ROIs were two other areas found to be 

involved in the circadian fatigue.  

Finally, this fMRI based study provides a better understanding of the anatomical 

characteristics of the mystery of the brain in circadian fatigue, but also helps in the 

development of fatigue counterwork using a combined technique of EEG and fMRI. 
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1 Introduction 

1.1 Background 

Mental fatigue is a common feeling of thousands of people during their work 

everyday. Seriously, there are hundreds of thousands of accidents in our industrial 

world due to the fatigue of operators. From several wrong arithmetic problems on the 

small papers of the primary school students after a long exam to the amazing number 

of the traffic accidents due to the fault of the mental operation, fatigue is a big threat 

to our life every day. According to the early work by Idogawa (1991) on driver 

fatigue, it is believed to account for 35-45% of road accidents. Recently, an estimation 

made by the National Highway Traffic Safety Administration in the United States has 

announced the figure of road accidents reported due to fatigue related drowsy driving 

to be 100,000, resulting in 1,500 fatalities each year (Stutts, Wilkins, & Vaughn, 

1999). However, what is mental fatigue? How does our brain experience such 

common but unraveled mental mystery? 

 

A lot of efforts have been focusing on it since people realized the mental fatigue is 

such a big threat to them. Interest in fatigue may have been demonstrated a long time 

ago but actual documentation dates as far back as World War I. Research in fatigue 

has since that time passed through different eras of interest. However, only two of 

these including the third which is still ongoing are of consequence. 
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The first era of interest on the phenomena of fatigue was in England during the First 

World War and the research at this time was conducted by the Industrial Research 

Fatigue Board. The major focus on the work of the Board was understandably in the 

munitions industry. The primary concern was the effect of fatigue on productivity. It 

was postulated that fatigue effects were as a result of work (daily or weekly), shift 

changes, illumination and ventilation, work place design, and plant layout the criteria 

used to measure fatigue was total out put of manufactured items and hence and 

ensuing reduction in output was ascribed to fatigue (Cameron, 1973). 

 

The next major surge in interest was demonstrated in the period immediately 

preceding, and towards the end of the Second World War. A major research effort at 

this time focused on military and civilian aviation. A major work of this era was 

conducted by Viteles (1946) and members of his committee for the U.S. Civil 

Aeronautics Administration. The focus of much of their work was the attempt to 

establish appropriate standards of operation of aircrafts to avoid excess fatigue. Their 

report concluded that performance effects alone were not and should not be the 

exclusive area of interest in describing fatigue. Two researchers during the same 

period (Eartly and Chute, 1947) supported this view by emphasizing the complex 

nature of fatigue and went further to distinguish three distinct facets of the problem of 

fatigue. These three categories were: 1. the subjective feeling; 2. Impairment as a 

reduction in physical capacity due to accumulated oxygen debt in the muscles and 

finally; 3. work decrement as exteriorization in performance for reasons other than 

sheer physical incapacity. 
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The third era of interest in fatigue had an early beginning, but real interest was 

developed in the early fifties and is still very active at the present time. The research 

was focused on two different but related areas. The first is the area of fatigue during 

driving and the effects on accident rate. A major research in this area was spearheaded 

by Brown (1967). Most of the work on fatigue in driving implies that safety is the 

ultimate goal and so the number of accidents is used as the criterion. Another area that 

has generated considerable interest is the area of fatigue and Air Trafific Controllers 

(ATC) and the resultant health change (Rose, 1978). In this area the emphasis is on 

the chronic and cumulative effects of fatigue and a concern with the long-term 

wellbeing of the individual workers, i.e., traffic controllers. While it has not been 

proven that fatigue on the part of ATC leads to accidents, it has been recognized that 

the long-term effects on health and on the job satisfaction of ATC crews are 

legitimate areas of concern. 

 

Most of the investigations up till now were concerned with fatigue as it affects 

physical and paraphysical work. Very little has been reported with regard to the 

phenomena of fatigue during activities which are mostly mental. 

1.2 Problem statement 

Fatigue was believed to be a nonlinear, temporally dynamic, and complex process 

which results from the various combinations of many factors, sleep loss, extended 

work periods, circadian rhythm, and etc (Dinges, 1995). Fatigue can refer to a 

subjective symptom of malaise and aversion to activity or to objectively impaired 

performance. It has both physical and mental aspects. The physiological and 

psychological mechanisms underlying subjective fatigue are poorly understood. One 
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common definition of fatigue in medicine is that fatigue is the “state following a 

period of mental or bodily activity characterized by a lessened capacity for work”. 

The concept of mental fatigue early introduced by Grandjean (1981)，clearly 

differentiated mental fatigue from physical fatigue. He defined that physical fatigue is 

concerned on the reduced muscular system performance; mental fatigue deals with 

much reduced mental performance, and the sense of weariness. Cortical deactivation 

occurred during fatigue has been reported by recent researches on driver fatigue 

(Brookhius & Waard, 1993; Kecklund & Åkerstedt, 1993; Waard & Brookhius, 1991). 

In this study, only mental fatigue was investigated for its increasing influence on 

operation safety and work efficiency (the word “fatigue” refers to mental fatigue 

hereafter in this study).  

 

The complexity of fatigue metric makes it difficult to be detected or identified. 

Though the increasing number of fatigue detection technologies comes out, such as 

the ECG, EMG, EEG, heart rate and respiration, there is still no clear understanding 

of the fatigue mechanism in our brains. Previous studies have shown that the link 

between each parameter changes and fatigue levels depended on task design, subject 

state, and the psychological states. These studies differ from the precise nature of their 

fatigue-detection algorithm to the number and the equipment limitations from which 

they record (Makeig & Jung, 1995; Lal & Craig, 2002). Therefore, a further study of 

the fatigue mechanism is needed and the understanding of the neuronal activity in the 

brain during the whole process of the circadian mental fatigue progress is critical. 

After the technique of fMRI has been developed with high resolution of the indication 

of the brain, it becomes the most promising method to detect the fatigue. Furthermore, 
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for the future understanding of the fatigue, study of the fatigue combined with the 

EEG and the fMRI is most prospering methods.   

1.3 Research objective 

The apparent evidence shows that a clear relationship between circadian fatigue and 

the cognition is in place since circadian fatigue results in an impaired performance in 

cognitive tasks. In view of this, as well as the many studies linking the circadian 

fatigue to the proper functioning of the central nervous system, the current study seeks 

to investigate the effect of circadian fatigue on the brain activity during a 24-hour 

sleep deprivation. A number sequence discrimination task was administered to the 

subject during fMRI* scanning. Subjects were required to maintain ‘on-line’ the 

present stimulus and subsequently make a response according to the number sequence. 

Individual analyses were performed for the region of interests (ROIs): Dorsolateral 

prefrontal cortex (DLPFC), Ventralateral prefrontal cortex (VLPFC), anterior frontal 

cortex (AFC), Parietal lobe (PL), primary motor cortex (Mo), Temporal lobe (TL), 

Cinguli gyrus (ACC) and Thalamus (TH). ROIs were defined by a combination of 

functional activation and anatomical landmarks. This approach considered activated 

voxels within the anatomically defined ROI without including areas that lay in the 

ROI but were not activated above threshold. 

 

The following hypotheses were tested: 

The 1st hypothesis: the circadian fatigue will cause general decreased activity of the 

brain which should be coherent with the decreased performance. 

 

 

* fMRI: functional magnetic resonance imaging 



 6

The 2nd hypothesis: there should be some specific parts of the brain which are 

sensitive to the circadian fatigue.  

1. Based on the auditory task, when the circadian fatigue progresses, the 

prefrontal cortex (PFC) of the brain will decrease its activity in advance 

compared to other areas which are also concerned with the task, e.g. the 

auditory cortex and the primary motor cortex. In other words, the frontal 

cortex shows much more sensitive characteristics than others. The prefrontal 

cortex (PFC) comprised 3 areas, namely the dorsolateral prefrontal cortex 

(DLPFC), ventrolateral prefrontal cortex (VLPFC), and the anterior frontal 

cortex (AFC). We aimed to find out their sensitivities to the circadian fatigue.  

2. Activity in prefrontal cortex (PFC) and parietal lobe (PL) was reduced 

following the circadian fatigue. Although the study (Drummond et al. 1999) 

was employing a working memory paradigm, the same trend was postulated.  

 

The 3rd hypothesis is that accompanying the circadian fatigue, a greater fMRI signal 

would be found in the cinguli gyrus (ACC) and thalamus (TH). The cinguli gyrus 

(ACC) has been implicated in mediating arousal (Jansma et al., 2000), while the 

thalamus (TH) has been found to be involved in mediating attention (Portas et al., 

1998). Since sleep deficit results in reduced vigilance (Binks et al., 1999) and lowered 

arousal (McCarthy & Waters, 1997), the subjects would need to counteract these 

physiological responses by compelling themselves to not only stay awake, but also 

complete the task. In the task all subjects were informed before-hand that payment 

would only be administered following the successful completion of the task. As such, 

the monetary motivation to stay awake would result in increased activation in cinguli 

gyrus (ACC) and thalamus (TH).  



 7

The 4th hypothesis is that circadian fatigue results in recruitment of auxiliary brain 

regions during the performance of the task. Following the reduction in signal in the 

prefrontal cortex (PFC) (Drummond et al., 1999), it is likely that additional brain 

areas will be recruited so as to compensate for the effects brought about by the 

decreased activity of the prefrontal cortex (PFC). 
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2 Literature Review 

2.1 Circadian fatigue 

The body’s processes have peaks and valleys during every 24-hour period. These are 

called circadian rhythms. Time cues – such as sunlight and work/rest schedules keep 

the circadian clock set. Crossing time zones or changing form a day shift to a night 

shift forces the circadian clock to move to a different schedule. Disruption of the 

circadian rhythm when combined with loss of sleep can create a dangerous increase in 

fatigue. 

 

Research in the past thirty years, has indicated that people are diurnal and that 

performance and sleepiness responds to a circadian 24 hr clock (Tepas 1994). 

Research has consistently found that an increase in sleepiness and a related decrease 

in performance occur at two particular periods of the day, during the night at the time 

of normal sleep and in the early afternoon. It is during these two periods that human 

functioning is at its lowest point. Perhaps the effects of time of day can be most 

readily seen by the examination of accident data. Research has consistently shown 

that time of day is an important factor in accidents (McDonald, 1984; Haworth, 

Hefferman & Horne 1989; Haworth & Rechnitzer 1993; Hartley & Arnold 1995; 

Lisper, Eriksonn, Fagerstrom & Lindholm 1979). Early work by Prokop & Prokop 

(1955 cited in McDonald 1984) indicated that drivers who had fallen asleep at the 

wheel tended to do so between the hours of 23:00 and 05:00 hours (58%) and between 

the hours of 12:00 and 15:00 hours. 
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The circadian rhythms are controlled by a biologic clock located in the 

suprachiasmatic nucleus of the hypothalamus. Many biologic systems, such as 

hormonal secretion, follow a circadian pattern. The generator of sleep which will 

cause the circadian fatigue is not known but may involve neurons in the 

preoptic-anterior hypothalamic region. The cycle of the sleep-wake is associated with 

state-specific activity of brainstem and thalamic neurons.   

 

2.2. The brain and the mental process 

An understanding of the physiological mechanisms used by the human brain for 

thinking must begin with anatomy, with the identification of what parts of the brain 

play what role in thought processes. The brain, also known as the cerebrum is a vast 

collection of neural cells connected by neuronal arc and synapses with a complex 

series of inter neurons between the limbs of the arcs (Gardner, 1975). Till now, the 

mechanism of the neural activation and deactivation mechanism has been going much 

further. 

 

The brain is made up of the forebrain (prosencephalon), the midbrain (mesencephalon) 

and the hindbrain (Rhombencephalon) and is protected by three layers of non-nervous 

tissues which are collectively called the meninges. The outermost layer of this tissue 

is the dura-mater, the middle layer – the arachnoids and the innermost layer – the 

pia-mater (Gardner, 1975; Holloway, 1968) from observations of the areas of the 

brain that show evidence of increased work during thinking or other cognitive tasks, a 

model has been developed for those areas of the brain responsible for thinking and 
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memory. The model involves cortical structures of the cerebral hemisphere, with 

zones in the upper brain stem, the mediobasal portions of the temperal lobes and 

cortex, the thalamus, and the striopallidal system (Bechter-eva, 1981; Gogolitsin et al, 

1981; Ojeman, 1981; Ojeman, 1968; Peterson et al, 1959). The cerebal maintenance 

of the functions of thinking and memory is due to linkage of the system evolving from 

the aforementioned areas, each area functionally complementing the other. 

2.2.1. Human thought process 

The human brain engages in, and is responsible for, among a host of other things, 

functions and specialization which are vital in intellectual and cognitive processes. 

Although the basic mechanisms of some of these cerebral functions cannot be 

ascertained, it has been established that these functions are critically dependent on 

certain areas of the brain namely the association areas. 

 

The association areas are used to designate all those areas of the cerebral cortex to 

which actual physical function of associational areas to unite the external or physical 

world with the internal or bodily world (Berry, 1928). Most modern authorities 

(Gardner, 1975; Russell, 1975; Rosenblueth, 1969) regard the association areas as 

being responsible for the higher processes of reflection, intelligence and volition. As 

being the true instrument of speech and thought; as being the region in which the 

efferent sense impressions are synthesized into complex perceptions or concepts; and 

as being the area where memory record of past experience and their connections are 

laid down and stored in the cortical network of neurons. 
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The human thought process as part of the cerebral function is very difficult to define 

and in fact is not exactly alike in any two individuals. Thinking, in a broad sense, 

involves the linking and recalling of one memory with another and the forming of 

decisions for actions (Russell, 1975). Speech and thought depend on a charging of 

cortical neurons by suitable impulses intellectual differences between individuals are 

brought about first by the number of cortical neurons possessed and by the nature of 

the receptor impulses which charge of stimulate those neurons. 

 

Memory and the thought process both depend primarily on the integrity of the 

cerebral cortex and thalamus on one hand and the limbic system on the other. The 

workings of these two systems even though separate are intertwined and 

complementary. While the brain is under the affect of the alerting system, 

innumerable repetitions of a visual pattern are made and this results in memory being 

formed. The limbic system provokes thought processes not only by encouraging the 

original visual pattern to be reactivated over and over again but also by encouraging 

the recall of similar related experience in the past. The stores of past information are 

not in the limbic system itself. These mechanisms of storage are in the cortical and 

thalamic areas of the cerebral hemispheres. The cortical mechanisms are responsible 

for the details of given information (visual, auditory, etc.) to be studied. Thus the 

cortex must guide or train limbic system to drive the cortex – in a pattern which the 

cortex itself must to a large extent determine (Russell, 1975). 

2.2.2. Physiological correlates of mental fatigue 

The fundamental property of a cell is excitability, the ability to respond or react to a 

stimulus, that is, to the application of some energy change. When any neuron is 
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stimulated by the stimulus to which it is designed to react, a change takes place in the 

neuron and dendron (Berry, 1928; Gardner, 1975; Rosenblueth, 1969; Russell, 1975). 

The nature of this change is unknown but it is believed to be chemical, physical, 

physico-chemical or even electrical (Hill, 1968; Gardner, 1975; Berry, 1928). These 

chemical or metabolic changes in the cell-body of the neuron and dendrites result in 

the release or consumption of nerve energy within the nervous system (Hill, 1968; 

Gardner, 1975). Any neuron which is subjected to some stimulus will in combination 

with other neurons discharge the resulting energy or impulse on to the next neuron. 

 

In general, the cells of all tissues exhibit a balance between the process of 

consumption of material associated with their activities and process of repair. If the 

stimulation reaching the neuron is too strong or is repeated at too brief an interval, 

then the process of repair do not keep pace with those of consumption. The excessive 

activity in the neuron due to over stimulation results in temporary or permanent 

physico-chemical changes in the nerve cell due to the removal of chromation 

materials from the cell body of the neuron. The ensuing condition known as 

chromatolysis results in the phenomena of fatigue. If the adverse conditions persist 

and are extreme, the chromation material may become completely removed from the 

cell body of the neuron, a condition which leads to a functionally exhausted cell. If 

the cause of chromatolysis is not removed, in time the neuron will be destroyed and 

there will be a corresponding dimunition of nerve action (Berry, 1928). Mental 

activity in the course of intellectual process implies and expenditure of nervous 

energy through the consumption of the reserves stored up in the cells and replenished 

by nutritive contribution or the mobilization of reserves situated in other organs. 

Whether the reserves are exhausted, in which case the nervous elements can no longer 
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borrow from other tissues or whether chemical production of energy is rendered 

impossible. Mental functioning is greatly reduced or even abolished due to the lack of 

necessary energy. If the reserves are impoverished and poorly replenished or if the 

consumption of reserves be interfered with, cerebral activity will become difficult and 

irregular.  

 

Pieron (1950) in an earlier work indicated that a slight difficulty in the energic 

processes would result in the most costly mental activities – the complex synthetic 

functions, constructive thought and efforts of attention being greatly curtailed or even 

impossible. 

2.3. Cognitive activity of the brain influenced by the circadian fatigue 

Fatigue may be with regard to less energy conservation (Berger & Philips 1995) and it 

was concluded that sleep was necessary for neuronal detoxification and restitution. 

Without normal rest – sleep, fatigue has also been found to play an important role in 

cognition deterioration. For example, Karni et al. (1994), and Gais et al. (2001) have 

demonstrated a circadian rhythm interfered fatigue improvement on a visual texture 

discrimination task. Similar studies by Stickgold (1998) et al. (2000a; 2000b; 2001) 

also demonstrated that circadian fatigue plays an essential adverse role in the 

consolidation of experience-dependent neuronal changes into a form that leads to 

improved task performance. Drummond et al. (2000) found that the circadian fatigue 

appeared to selectively impair cognitive tasks associated with a prefrontal cortex 

(PFC) focus. The current approach involved the administration of circadian fatigue 

and a subsequent assessment of how cognitive processing has been affected (Binks et 

al., 1999; Linde & Bergstorm, 1992; Harrison & Horne, 1997; Drummond et al., 1999; 
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2000). Of the many cognitive tasks involved, those pertaining to the verbal system 

have been most appealing, with studies focusing on the susceptibility of the verbal 

system to circadian fatigue being especially well replicated. According to Drummond 

et al. (2000), the decreases in specific cognitive functions observed after the circadian 

fatigue progressed are likely to be due to impairments in the cerebral systems which 

constitute the neural substrates of these functions. In conclusion, their findings posit 

that circadian fatigue assumes a crucial adverse role in the cognitive processing and 

consolidation of information. 

 

Previous studies use many indicators to determine fatigue, including performance, 

perceptual, physiological, psychological based measurements (Lal & Craig, 2002). 

Among them, vigilance performance is preferred by many researchers (Hartley, 2000; 

Mallis, 1999). Rating scales or subjective estimates are unreliable which could not be 

relied on to determine fatigue (Dinges, 1989). The auditory reaction time task has 

been regarded as a promising criterion 

 

Many tasks have been used to exploit the human cognitive activity. In reflection, the 

inner of the brain will be introduced to correspond to the stimulus. Therefore, the 

mechanism of the brain can be studied. The studies on the fatigue all share one 

common feature: they require the subject to respond to a particular stimulus and then 

record the response. The response may either be in frequency and accuracy of 

detections or in reaction times. The outside stimulus can be visual, auditory, or even 

sensorial. Here are some most common tasks, which have been introduced for 

investigating the vigilance, attention or inversely the fatigue.  
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2.3.1. Visual based task  

Stroop test  

Subject given a list of words belonging to either category: color stated matches that of 

word, color stated conflicts that of word. For example: Color matches word (Control) 

RED (with red color), GREEN (with green color), BLUE (with blue color); Color 

conflicts word (experimental): RED (with green color), GREEN (with blue color), 

BLUE (with red color). Subject is supposed to list the color of the word in both 

categories. Task assesses the interference response and measures attention indirectly. 

A lower reaction time would be expected with the responses generated from the 

second column as due to the interference effect.  

 

Visual search task 

The experiment involves the subject trying to identify a target among many distracters, 

of which the two have similar features. For example, the target may be a green circle, 

while the distracters will be green squares and blue circles. The subject thus has to 

search through all the items to quickly identify the location of the target. A response is 

required for both scenarios (either yes or no).  

 

Visual discrimination task 

The subject is showed a serial presentation of a 3 x 3 grid of colored letters. Each grid 

is displayed for 3 seconds. The subject is required to make a response by answering 

“yes” or “no” depending on whether he saw 2 same letters that differed in color. Task 

is reported to last 40 minutes (Belyavin, A & Wright, N. 1987). 

 

The Multiple Vigilance Test  
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Subjects are required to discriminate between visual targets (usually letters) and 

standard stimuli (the same letter but rotated by 90º). Subjects have to answer as soon 

as possible. Task lasts about 30 min.  

2.3.2. Auditory based task  

Auditory Reaction-time Task  

An acoustic stimulus is delivered every 20 s for 60 min to the subject through an 

output interface to headphones worn by the subject. The subject is required to respond 

to each stimulus as fast as possible by pushing a button (Conte, S. etc. 1995)  

 

Wilkinson Auditory Vigilance Task (Assesses vigilance fluctuations) 

An auditory discrimination task can be incorporated in which a target tone is 

interspersed with probe tones and played to the subject at regular intervals. The length 

of this task can vary between 30 and 60 min. While this task is sensitive to vigilance 

fluctuations that arise as a result of sleep deprivation, it can be long and boring 

(Makeig, S & Inlow, M. 1993).  

 

Auditory Discrimination Task 

The task modified by Williams, H.L. (1962) and Jancke, L. (1998) gives out five 

tones (200, 300, 500, 700, 1000 Hz), which will be played at 95dB through a loud 

speaker. The subject is instructed to press a pre-specified button to indicate a “yes” 

response when he hears the 1000 cycle critical tone. He is instructed to press another 

button to indicate a “no” response when he hears any of the non-critical tones. Stimuli 

were 16-bit, digitally sampled tones (pure sine waves) of 500 ms duration each. The 
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inter-stimulus interval was 1 s. A set of 30 tones would be presented in each set. 

Among these tones, eight critical tones were randomly distributed. 

 

Further modified test is the number sequence task from above. The stimulus consist of 

the sound of “one” “two” “three” “four” with random sequence. The subjects have to 

press the preset button of each sound of number immediately after the sound finished. 

The sequences of the numbers have to be remembered before the buttons are to be 

pressed. The accuracy will be strictly according to the pressing each buttons correctly. 

 

The two modified auditory based tasks are the main brain activity detection tasks 

throughout this whole fatigue investigation. For the purpose to reduce the artifact 

from the eyes for both fMRI and EEG signal, the auditory task becomes the best 

methods to find out the mechanism of fatigue throughout the whole day without sleep. 

The investigation is based on the auditory task; also the general fatigue related brain 

activation and activity will be concluded. 

2.4. Technology developed for fatigue investigation 

2.4.1. The physiology of brain activation 

Functional brain imaging can be strictly or more broadly defined. Different techniques 

are sensitive to different types of change. In contrast to many of the in vitro methods 

used to define brain function, methods used in vivo generally are concerned not with 

the behaviors of single neurons but with the activities of large populations of neurons. 

As we know, single neurons do not work independently, but function in large 

aggregates. Information transfer in the brain along axons occurs by electrical 

conduction. Information is transferred between neurons by the release of 
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neurotransmitter molecules at synapses and their subsequent interactions with specific 

receptors on target neurons. These neurotransmitter-receptor interactions then lead to 

changes in membrane current flow which change the post-synaptic neuronal 

membrane potential (and the accompanying extra cellular electrical field) and alter 

depolarization frequency. Most of the energy is used at or around synapses. As 

normal brain energy production depends ultimately on oxidative metabolism, there 

thus is greater local demand for delivery of oxygen with increased synaptic activity. 

To meet this increased metabolic demand, neuronal activation is accompanied by 

increased local blood flow.  

 

In 1890, the physiologist Charles Sherrington demonstrated that stimulation of the 

brain caused a local increase in blood flow. However, he also observed that the 

relative proportion of oxygen extracted from this blood was reduced: the increase in 

total oxygen delivery exceeded the increase in oxygen utilization. The increased rate 

of oxygen delivery to the working brain shows that rates of oxygen diffusion from 

capillaries may limit its utilization rate (Kuwabara et al. 1992; Buxton and Frank 

1997). By increasing the relative proportion of oxygenated hemoglobin in blood, the 

oxygen gradient between capillaries and cell mitochondria is increased, helping to 

match diffusion-limited transport to the rate of utilization. Accompanying the increase 

in blood flow is a small increase in local blood volume. 

 

These elements of the physiology of information transfer in the brain-generation of an 

extra cellular electrical potential, increased oxidative metabolism (and glucose 

substrate utilization), and enhanced local blood flow and relative oxygenation – 

provide the basis for a number of functional imaging methods. 
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Functional imaging methods define dynamic brain changes having a time course 

similar to that of brain sensory, motor or cognitive activities. Specific interpretations 

demand methods that also can define the neuroanatomical localizations for these 

dynamic changes. 

 

Different functional brain imaging methods, therefore, are usefully compared and 

contrasted in terms of both their temporal and spatial resolution. In general, 

electrophysiological methods based on direct mapping of transient brain electrical 

dipoles generated by neuronal depolarization (e.g. EEG) or the associated magnetic 

dipoles (e.g. MEG) define the underlying cortical neuronal events in real time 

(10-100msec), but provide relatively poor spatial resolution (many mm--cm). in 

contrast, functional magnetic resonance imaging (fMRI) and positron emission 

tomography (PET) provide information on the increases in blood flow accompanying 

neuronal activation with relatively high spatial resolution (approximately, 

1mm—10mm), but have a temporal resolution limited (at best) by the rate of the 

much slower haemodynamic changes that accompany neuronal depolarization. 

 

Optical imaging methods (e.g. near infrared spectroscopy or NIRS) also measure 

changes in cortical blood flow, but, because of light scattering particularly the skull, 

have poor spatial resolution unless the cortical surface is exposed. Optical imaging 

methods also are restricted to study of the cortical surface. An important relative 

advantage of PET or fMRI methods is that they allow mapping of neuronal activation 

deep in the brain. Metabolic imaging by magnetic resonance spectroscopic imaging 

(MRSI) or PET is also possible, but these methods have a more variable and generally 
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lower spatial resolution (depending on the nature of the chemical species being 

imaged) and rather poor temporal resolution (on the order of 30s to min). However, 

the specificity of the information that they can provide is high and complements that 

available from fMRI. 

2.4.2. Principles of magnetic resonance imaging (MRI) 

Like its predecessor, x-ray computed tomography (CT), magnetic resonance (MR) is a 

computer-based imaging modality that displays the body in thin tomographic slices. 

Unlike CT, which requires ionizing radiation, MR is based on an apparently safe 

interaction between radio waves and hydrogen nuclei in the body in the presence of a 

strong magnetic field. Physical characteristics of a volume element, or voxel, of tissue 

are translated by the computer into a two-dimensional image comprised of picture 

elements, or pixels. 

 

Very briefly, magnetic resonance arises from the interaction of nuclei which have a 

magnetic moment with an applied magnetic field (Hashemi and Bradley, 1997). 

Nuclei of many atoms with a nuclear “spin” can behave as simple magnetic dipoles 

and notionally can assume either a high-energy state (behaving as if oriented against 

the applied field) or a low-energy state (as if aligned with the applied magnetic field). 

Transitions between the two energy states accompany absorption or emission of 

energy in the radiofrequency range. 

 

The frequency of the energy emitter by an excited nucleus is proportional to the 

magnetic field experienced. The magnetic field at the nucleus is determined primarily 

by the strong magnetic field that is applied to the sample in the imaging experiment. 
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As the precise relation between the resonance frequency and the applied magnetic 

field is different for different nuclei, magnetic resonance imaging systems can be 

“tuned” to detect specific types of nuclei independently. However, the magnetic field 

at the nucleus is also modulated by small “shielding” effects of electrons around the 

nucleus. These “shielding” effects cause changes on the order of only ppm in the 

precise resonance frequencies of nuclei that are observed. These small differences 

between resonance frequencies of protons in different molecules are ignored in 

conventional MRI or fMRI applications, but they provide the basis for MR 

spectroscopic methods. 

 

The construction of an image by nuclear magnetic resonance (MR) techniques 

typically involves three different electromagnetic fields. 1) A high-intensity magnetic 

field aligns the magnetic dipoles of atomic nuclei, producing magnetization. 2) A 

brief “burst” of impulses in an RF field displaces the magnetization from its 

alignment with the main magnetic field and initiates a top like spinning that produces 

the MR signal. 3) A ramp like magnetic field placed across the exposed tissue and 

oscillating at a few cycles per second produces a magnetic gradient that slightly shifts 

the spin frequency, thereby providing position information as a function of spin 

frequency. 

2.4.3. Blood oxygenation level dependent (BOLD) fMRI 

The present study seeks to examine the physiological changes in brain activity as a 

result of sleep deprivation using BOLD fMRI.  BOLD fMRI (blood oxygen level 

dependent functional magnetic resonance imaging) is one of the many functional 

imaging methods available for the mapping of brain activity in a time course 
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comparable to that of brain cognitive, sensory or motor activities (Matthews, 2001), 

and is responsible for making the identification of large-scale activation patterns 

associated with high-order cognitive processes possible (Cabeza & Nyberg, 2000). As 

opposed to in vitro methods which are concerned with the study of individual neurons, 

the in vivo method of fMRI concentrates on studying large populations of neurons, 

thus providing more useful information since neurons function in large aggregates and 

not individually. One distinct advantage fMRI has over other techniques is that it 

enables neuronal activations deep in the brain to be mapped, in terms of magnitude 

and neuroanatomical localizations. In addition, in comparison to the other imaging 

methods (for example, electroencephalography, commonly known as EEG), which 

map transient brain electrical dipoles generated by electrical depolarization, or near 

infrared spectroscopy (NIRS), which measures changes in blood flow), fMRI is able 

to provide information regarding neuronal activation with a relatively high spatial 

resolution at 1- 10 mm (Matthews, 2001) and this is one reason for its relative 

popularity.  

 

Under normal conditions the brain derives almost all of its energy from the oxidation 

of glucose: for this it needs a nearly constant supply of glucose and oxygen, delivered 

by the blood supply through a rich network of vessels. Although the brain accounts 

for only about 2 per cent of the total body mass, it consumes 20 per cent of the body’s 

glucose and oxygen, and receives 20 per cent of its blood supply. A remarkable 

feature of brain metabolism, fundamental to many functional imaging methods, is that 

blood flow and energy metabolism is tightly linked to local neuronal activity. This 

implies that maps of local glucose consumption, local oxygen consumption, or local 

blood flow each provide information on neuronal activity. The cellular and subcellular 
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sites of the increases of glucose and oxygen metabolism accompanying brain 

activation have been the subject of much investigation (Rose, 1975; Muir etc. 1991; 

Poitry-Yamate and Tsacopoulos, 1992; Magistretti etc. 1999). There is evidence that 

the major site for increased glycolysis with neuronal activity occurs in presynaptic 

structures (Eisenberg etc. 1993; Sokoloff etc. 1996; Sokoloff, 1999) which also may 

be the predominant location of lactate dehydrogenase (Borowsky and Collins 1989). 

Mitochondria, on the other hand, have been observed to be particularly concentrated 

in the postsynaptic structures of neuropil (Ribak, 1981; Gonzalez-Lima and Jones 

1994), which stain weakly for the glycolytic enzyme hexokinase (Snyder and Wilson, 

1983). These observations suggest that the glycolytic and oxidative metabolism 

preferentially occur in separate cellular compartments (Aoki etc. 1987). The 

observation of relative metabolic compartmentation would suggest that the enhanced 

metabolism associated with brain activation should occur primarily in postsynaptic 

structures which are subject to direct-current depolarization during neuronal 

excitation. 

 

The locally increased blood flow in regions of the brain that become active appears to 

be a consequence of increased energy utilization at the synapse (Duncan etc. 1987; 

Duncan and Stumpf, 1991). Precisely which processes account for the metabolic 

changes is unclear. A major contribution to increased energy utilization may arise 

from metabolic changes in adjacent astrocytes with the uptake of the excitatory 

neurotransmitter, glutamate (Magistretti and Pellerin, 1996). The observations 

highlight fundamental characteristics of the BOLD fMRI response. First, it should be 

useful for identifying activation-related changes in grey matter. Second, the changes 

measured reflect synaptic activity or a combination of synaptic and dendritic electrical 
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changes, but not neuronal activity directly. Third, as cortical signal change are 

triggered by excitatory synaptic activity, at least under some conditions there should 

be a direct relationship between neuronal discharge rate and the magnitude of the 

BOLD response (Rees etc. 2000). However, the relationship should be modulated by 

the relative inhibitory input. Under some conditions at least, increases in inhibitory 

synaptic input may also contribute independently to increase in the fMRI BOLD 

signal. 

 

Multiple mechanisms interact in the control of blood flow to the brain. Global brain 

perfusion is regulated by sympathetic, hormonal and myogenic mechanisms. Local 

tissue perfusion demands additional, more specific regulation to meet changes in 

energy demands with neuronal activation. There are a variety of factors likely to 

contribute to this local response, including +K release with neuronal depolarization 

and +H and adenosine release when there is a mismatch between oxygen delivery and 

utilization. However, nitric oxide (primarily from neuronal nitric oxide synthase) is 

likely to be the most important chemical signal responsible for local increases in 

perfusion with neuronal activation and also the cerebral vasodilatory response to 

hypercapnia. 

 

Understanding the BOLD response is important for appreciating aspects of fMRI, 

including the spatial and temporal limitations to activation mapping, optimization of 

those responses and their potential change with pathology.  

 

BOLD fMRI images signal contrast arising from changes in the 

deoxyhaemoglobin-oxyhaemoglobin ratio as an index for neuronal activation. Normal 
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blood can be considered as a concentrated solution of haemoglobin (Matthews, 2001). 

When bound to oxygen, haemoglobin is diamagnetic, while deoxygenated 

haemoglobin is paramagnetic. Normal brain energy production depends on oxidative 

metabolism. A large proportion of this energy is used at or around synapses to 

facilitate metabolic changes in the neurons and glia for the release of 

neurotransmitters in response to neuronal activation. With neuronal activation, there is 

therefore an increased blood flow in order to meet the increased metabolic demand. 

Increased synaptic activity therefore results in a greater local demand for oxygen 

delivery (Duncan & Stumpf, 1991). The imaging contrast employed in BOLD fMRI 

arises as a consequence of the higher ratio of oxy- to deoxyhaemoglobin in local 

draining venules and veins as a result of neuronal activation. As magnetic flux is 

reduced in diamagnetic materials (that is, the applied magnetic field is repelled) but 

increased in paramagnetic materials (that is, the applied magnetic field is attracted 

into the material), the change in haemoglobin oxygenation therefore leads to changes 

in local distortions of a magnetic field applied to it thus leading to a signal in the 

fMRI field.. 

2.4.4. Overview of fMRI analysis 

After an fMRI experiment has been designed and carried out, the resulting data must 

be passed through various analysis steps before the experimenter can get answers to 

questions about experimentally-related activations at the individual or multi-subject 

level. After the experiment, more than 100 volumes of what are typically got. Each 

session a low resolution functional volume is acquired in very few seconds. Some of 

the imaging is taken while there is stimulation, and some are take while the subjects 

are at rest. As the image taken from the MR sequence we discussed before, which is 
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sensitive to the local blood oxygenation level (BOLD) change, parts of the images 

taken during stimulation should show increased intensity, compared with those taken 

whilst at rest. The parts of the images which show increased intensity should 

correspond to the brain areas which are activated by the stimulation. The aim of the 

fMRI analysis is to detect those parts of the brain which show increased intensity at 

the points in time that stimulation was applied.  

 

Before the fMRI data analysis, there are several steps to do, which we call the 

preprocessing. Slice-timing correction, motion correction, intensity normalization will 

be taken. The purpose of the preprocessing is to remove various kinds of artifacts in 

the data, and to condition the data, in order to maximize the sensitivity of later 

statistical analysis, and also to increase the statistical validity. 

 

A set of coplanar T2 anatomical images acquired in an identical orientation was used 

to align the functional images to the high resolution three-dimensional anatomical 

image. The high-resolution anatomical reference image was acquired using a T1 

3D-MPRAGE sequence for the purpose of image display in Talairach space. The 

resulting aligned dataset was then transformed into Talairach space (Talairach and 

Tournox, 1988) 

 

After that, statistical analysis is carried out to determine which voxels are activated by 

the stimulation. This can be simple correlation analysis or more advanced modeling of 

the expected haemodynamic response to the stimulation. It is most common to 

analyse each voxel’s time series independently. Standard general linear model (GLM) 

sets up a model and fits it to the data. If the model is derived from the timing of the 
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stimulation that was applied to the subject in the MRI scanner, then a good fit 

between the model and the data means that the data was probably caused by the 

simulation. We consider the fitting of models to a single voxel’s time-course. 

 

A very simple example of linear modeling is  

y(t)=β* x(t) + c + e(t)                 (1) 

where y(t) is the data, x(t) is the model, β is the parameter estimate for x(t), that is the 

value that the square wave (of height 1) must be multiplied by to fit the square wave 

component in the data. c is a constant, which would correspond to the base line (rest) 

intensity value in the data. e is the error in the model fitting. Thus the model fitting 

involves adjusting the baseline level and the height of the square wave, to best fit the 

data; the error term accounts for the residual error between the fitted model and the 

data. 

2.5. Model of the fatigue 

2.5.1. The existing model of the fatigue 

From the physical to the psychological aspects understanding of the mental fatigue, 

now a general model of the fatigue states that fatigue is in the mind, not the muscles. 

Traditionally, fatigue was viewed as the result of over-worked muscles ceasing to 

function properly. But evidence is mounting that our brains make us feel weary after 

exercise mental or physical (New Scientist print edition, 20 March, 2004). The idea is 

that the brain steps into prevent vital organs damage by inducing fatigue. 

 

There are number of models to explain the fatigue. The importance of the conceptual 

models described above is that they suggest that different physiological systems 
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determine performance under different conditions. In the study of the mental fatigue 

(Jongman, L. etc.), the model of working memory hypothesis of mental fatigue was 

proposed. Mental fatigue is defined as “a subjective feeling of fatigue combined with 

a negative change in performance, due to time spent on cognitively demanding tasks.” 

Based on many authors of fatigue study (Bartlett, 1943; Broadbent, 1979; Holding, 

1983), the behavior of the people seems to loose cohesion when they got mental 

fatigue.  

2.5.2. The aims of the study 

The study of mental fatigue has increased leaps and bounds, yet there is still no 

universal definition of mental fatigue. Researchers in this field have not been able to 

agree upon a single definition of fatigue, however, there is consensus amongst the 

scientific community that fatigue comprises of physiological, emotional and 

behavioral factors that can result in chronic physical or mental states. Picture 2-1 

shows the schematic structure of the study. 

 

Figure 2-1: Schematic structure of the study 
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On the basis of earlier findings, the following aims to each of the four hypotheses will 

be achieved. Picture 2-1 shows the schematic structure of the study. 

1. By comparing the general activity of the brain with the performance, we aim to find 

out the direct relation with the decrease activities of the two, which can explain the 

decreased performance with the brain fatigue. 

 

2. By indicating the working memory in the auditory discrimination tasks, we hoped 

to find the activities of the PFC decreased dramatically as the fatigue progressed, as 

well as the activities of PL. 

 

3. The ACC and TH, which are engaged in arousal and attention respectively, are also 

indicated in the auditory discriminate tasks. The increased activities of them are 

investigated, compared to the decreased performance. 

 

4. Triggered by the steadily decreased performance which means the stable state in 

each fatigue levels, we are going to search the auxiliary brain regions as a feedback to 

the task specified central area. 
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3 Materials and Methods 

3.1. Study Subjects  

Fourteen right-handed neurologically healthy subjects (4 females and 10 males; age 

range 19-25 years old) recruited from the National University of Singapore or 

Nanyang Technology University of Singapore with the undergraduate education 

background gave the consent form to participate in the experiment. This study has 

been approved by Institutional Review Board. It is supported by the funding of …. 

Financial compensations for expenses are given for subjects’ participation. All 

subjects were screened using a medical history, a sleep questionnaire, and one week 

of sleep diary records to establish that they had relatively regular sleep patterns. Only 

subjects who did not have a habit of napping were short listed. In addition, in order to 

find out the influence of the circadian rhythms to the mental fatigue, subjects were 

screened by fMRI based on the general time of inflexion of performance records 

which came to be 9am, 2pm, 3 am and 9am (2nd day).  

3.2. Experimental protocol 

In order to study the circadian fatigue, the time of the scanning was crucial. The 

subjects were asked to stay awake in National University Hospital out-patient clinic 

totally 25 hours. They were required to report to the laboratory at 8:30 am and were 

monitored onwards for 25 hours without sleep. For the whole experiment, subjects 

were scanned 4 times by fMRI, each for a different fatigue state. In addition to the 

fMRI scanning which took 1 hour for each time, EEG was recorded each hour during 
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the period of 25 hours sleep deprivation. They were not allowed stimulants of any 

kind during the whole experiment. Subjects’ performance on Auditory Discrimination 

Task (ADT) which is the objective method measuring fatigue, as well as the Epworth 

Sleepiness Score (ESS) and Stanford Sleepiness Scale (SSS) which are the subjective 

methods measuring fatigue was recorded hourly. The subjective evaluation of fatigue 

states – ESS and SSS were scored by subjects before and after ADT. The performance 

accuracy and Reaction Time (RT) on the ADT was also recorded. In both the fMRI 

and EEG recording, subjects performed the ADT for the target tone discrimination 

(TTD) and number sequence discrimination (NSD) task. The session consisted of four 

runs (2 TTD runs and 2 NSD runs). Each fMRI experimental session lasted 55 

minutes and each EEG experimental session lasted 15 minutes. The experimental 

protocol was approved by the Ethics Committee of the National University of 

Singapore. 

3.3. Auditory Discrimination Task 

The ADT task was administered to the subjects while they were in the fMRI scanner. 

It requires the continuous discrimination ability based on the different fatigue state. 

All subjects were given a presetting session, and were included only after reaching a 

criterion level of performance (>75% accuracy). During each hour, subjects had to do 

the task twice – one for fMRI and one for EEG recording. 

3.3.1. Target tone discrimination (TTD) Task 

The stimuli consisted of five tones with different frequencies which are 200Hz, 

300Hz, 500Hz, 700Hz, and 1000Hz. The tones were delivered at 95dB through 

headphones. The 1000Hz tone is the critical tone which is the target tone to be 
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discriminated from the other tones. In each run, six experimental blocks alternated 

with seven baseline resting blocks, starting and ending with a resting block. In each 

block, 15 tones were presented through the headphone, with each for 500 ms and a 

1,500 ms inter-stimulus interval for subjects making response. There are only 4 

critical tones within 15 tones. All the tones are randomly distributed. The tone stimuli 

were 16-bit, digitally sampled tones (pure sine waves) of 500ms duration each. The 

total time of the TTD test took 6 minutes and 42 seconds (Figure 3-1).  

 

The task requires the subjects to make a response indicating whether the stimulus is 

the target or the non-target using hand-held response box. Upon hearing the 1000Hz 

cycle critical tone, the subjects had to press the right button to indicate a “yes” 

response as soon as they can. On the other hand, whenever they hear any of the 

non-critical tones, they are to press the left button to indicate a “no” response as soon 

as possible. Meanwhile the RT and the accuracy were recorded. 

3.3.2. Number Sequence Discrimination (NSD) Task 

The stimuli consisted of groups of 4 numbers which are one, two, three and four. The 

sound of the numbers was delivered at 95dB through headphones. The sequence of 

the 4 numbers has to be remembered and the subjects had to make the same sequence 

response indicated on the key box. In each run, six experimental blocks alternated 

with seven baseline resting blocks, starting and ending with a resting block. In each 

block, 6 groups of the number 1,2,3,4 were presented, with each group for 3,000 ms 

and a 2,000 ms inter-stimulus interval for subjects making response (Figure 3-1). The 

numbers were randomly sequenced. The sound stimuli were 16-bit, digitally sampled 

tones of 500 ms duration each. The total time of the NSD test also took 6 minutes and 
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42 seconds. After hearing the sequenced numbers, the subjects had to press the 

numbers on the button in the same sequence quickly. Accuracy was recorded. 
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Figure 3-1: Schematic representation of the TTD and NSD task 
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3.4. fMRI scanning procedures 

Stimuli were instructed by the computer and heard by subjects through an 

earphone. A tightly clip was used to reduce any possible head-motion of the 

subject. All images were acquired with a 1.5T scanner (Siemens, Symphony 

Germany). A blipped gradient-echo EPI sequence was used with TR = 3000ms, 

FOV = 256 x 256 mm and 64 x 64 mm pixel matrix. 32 oblique axial slices with 

thickness 3 mm (0.3mm gap) approximately parallel to the anterior and posterior 

commissure (AC – PC) line were acquired.  

3.5. Behavioral data analysis procedures 

The accuracy and reaction times were recorded for each subject. For the present study, 

the design of the task is that a response was required for each stimulus in all states. 

Any response which was not coincident with the requirement was regarded as an 

incorrect response while accuracy was calculated based on the proportion of trials 

answered correctly.  As such, the null response, the wrong button pressing, the 

wrong sequence response, less or more response is all labeled as incorrect. Analysis 

of behavioral measures was performed using repeated measures ANOVA with state (4 

stages from alert to fatigue after 25 hours awake) as within-subject predictors using 

MiniTab (version 14.12).  

3.6. Image analysis procedures 

Functional images underwent phase correction prior to further processing with Brain 

Voyager QX software version 1.3 (Brain Innovation, Maastricht, Netherlands). Mean 

intensity adjustment and intra-session alignment were performed on functional images. 
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Gaussian filtering was applied in the spatial domain with a smoothing kernel of 8 mm 

FWHM for computation of group-level activation maps and 4 mm FWHM for 

individual-level activation maps. A set of coplanar T2 anatomical images acquired in 

anidentical orientation was used to align the functional images to the high resolution 

three-dimensional anatomical image. The high-resolution anatomical reference image 

was acquired using a T1 3D-MPRAGE sequence for the purpose of image display in 

Talairach space. The resulting aligned dataset was then transformed into Talairach 

space (Talairach and Tournox, 1988). Stereotaxic coordinates in the x dimension refer 

in millimeters to the medial-to-lateral distance from the midline, in the y dimension to 

the anterior-posterior distance, and in the z dimension to the superior-inferior distance 

from the intercommisural line (see Figure 3-2). 

 

Image data analysis was performed at the group or multisubject level. The imaging 

data was analyzed by a general linear model (GLM) with state (rest state versus levels 

of circadian fatigue) as within-subject predictors. 
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Figure 3-2: Schematic representation of the left lateral cortex. Major prefrontal 
areas have been annotated (numbers correspond to Brodmann areas). Boxed 
areas indicate some of the regions of interest which will be focused on in the 
present study. Also indicated are the x, y, and z dimensions, which are used to 
report the coordinates of activation (where the three dimensions intersect, the 
coordinates are zero). The anterior-posterior and dorsal-ventral directions which 
are used in anatomical descriptions are also indicated.  Adapted from Smith 
and Jonides (1999). 
 
The expected BOLD signal change was modeled using a gamma function (tau = 1.25, 

delta = 2.5) synchronized to blocks of cognitive tasks. Time courses were collected 

from activated voxels 20 x 20 x 20 mm3 which passed a threshold of p<0.005, and 

were averaged across blocks of the same condition for each participant. The averaged 

values were then fitted to the GLM and the parameter estimates (beta) for each ROI 

for each predictor harvested from the best fit of the GLM on these voxels. A 

conjunction analysis was first applied to the GLM to derive areas common to all tasks 

and conditions. These values were then subjected to repeated-measures ANOVA with 

state (rest state versus levels of circadian fatigue state) as within-subject predictors. 

Contrast operations (session 2, 3, 4 minus session 1) were subsequently applied to the 

group-level GLM activation maps. Each participant’s mean parameter estimate across 

voxels for each contrast for each predictor was calculated and subjected to ANOVA 

to find out the difference significance.   
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3.7. fMRI signal evaluation  

Individual analyses were performed for the ROIs:  DLPFC, VLPFC, AFC, parietal 

cortex, primary motor cortex, temporal cortex, ACC and TH. ROIs were defined by a 

combination of functional activation and anatomical landmarks. This approach 

considered activated voxels within the anatomically defined ROI without including 

areas that lay in the ROI but were not activated above threshold. The PFC comprised 

3 areas, namely the DLPFC, VLPFC, and the AFC. The DLPFC ROI included the 

middle frontal gyrus which corresponds to BA 46 and the dorsal part of the inferior 

frontal gyrus corresponding to BA 9 while the VLPFC ROI included the ventral part 

of the inferior frontal gyrus corresponding to BA 44, 45 and 47. The anterior frontal 

cortex (AFC) incorporated the “frontopolar area lying anterior to the anteriormost 

extent of the inferior frontal gyrus” (Fletcher and Henson, 2001) and included BA 8 

and 10. The parietal ROI incorporated the superior and inferior parietal lobes that 

included BA 7 and 40. The ACC ROI included areas which corresponded to BA 24 

and 32. The primary motor cortex ROI included the BA 4. The temporal ROI 

incorporated the superior, inferior and medial temporal lobes where the primary 

auditory cortex is located (BA 41, 42). 
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4 Results 

4.1. Behavioral data for the different states as a function of time of the day 

The subjects (SDS2, SDS7 and SDS10) were excluded from the behavioral data 

analysis as they were outliers. Three subjects (SDS1, SDS5 and SDS6)’s data was 

discarded because they were unable to complete the study. The means and standard 

deviations of the two behavioral measures, task accuracy and reaction times (RT), 

were summarized in Figure 4-1. Time of the day appeared to interfere with cognitive 

performance. All the subjects showed an overall decrease in the percentage of correct 

responses and took longer to respond (Table 4-1). 

Table 4-1: The accuracy and the RT of the NSD and TTD task. The accuracy 
refers to the percentage and the RT refers to the unit of ms. 
 
a) NSD task accuracy 
Subjects 

 

Time 
S3 S4 S8 S9 S11 S12 S13 S14 Mean SD* 

9:00 95.8 95.8 91.7 90.3 98.6 95.8 97.2 91.7 94.6125 2.985411
14:00 98.6 97.2 97.2 100 97.2 97.2 90.3 100 97.2125 3.053072
3:00 84.7 81.9 94.4 95.8 88.9 95.8 61.1 100 87.825 12.41494
9:00 90.3 63.9 97.2 97.2 90.3 98.6 75 98.6 88.8875 12.80674

 
b) TTD task accuracy 
Subjects 

 

Time 
S3 S4 S8 S9 S11 S12 S13 S14 Mean SD* 

9:00 100 96.7 98.9 94.4 98.3 97.2 96.7 98.4 97.575 1.715268
14:00 97.8 98.9 100 94.4 98.9 96.7 85.6 98.9 96.4 4.696503
3:00 96.7 92.8 100 94.4 93.9 100 79.5 100 94.6625 6.799567
9:00 95.6 96.7 98.3 94.4 87.8 97.8 54.5 100 90.6375 15.05788
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 c) TTD task RT 

 
SD*: standard deviation 
 

(a) FUNCTIONAL ACCURACY AT DIFFERENT TIME OF DAY
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(b) FUNCTIONAL REACTION TIME AT DIFFERENT TIME OF DAY
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Figure 4-1: Means and standard errors of the behavioral data during the fMRI 
session as a function of time of day (from 9am 1st day to 9am 2nd day): (a) 
Accuracy of TTD and NSD task (b) Reaction times of TTD task 
 

Subjects 
 
 
 

Time 

S3 S4 S8 S9 S11 S12 S13 S14 Mean SD* 

9:00 740.83 773.33 420.55 462.50 606.11 531.38 706.38 527.77 596.11 132.09
14:00 791.11 646.94 393.88 385.55 716.66 457.22 886.66 533.88 601.49 188.11
3:00 763.05 966.11 435.83 389.72 861.94 454.16 1009.72 501.38 672.74 255.49
9:00 794.44 636.66 457.22 390.55 714.44 454.16 1365 557.49 671.25 312.63
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In addition, there appeared to be a trend with regard to both task. An increase in time 

progress was generally accompanied by a decrease in accuracy and an increase in RT. 

However, repeated ANOVA analysis for both behavioral measures failed to establish 

any significant effect state (Table 4-2). 

 
Table 4-2: Repeated ANOVA analysis for both behavioral measures 
 
a) NSD task accuracy 
Source  DF      SS     MS     F      P 
1        3   488.3  162.8  1.94  0.147 
Error   28  2354.6   84.1 
Total   31  2843.0 
 
S = 9.170   R-Sq = 17.18%   R-Sq(adj) = 8.30% 
 
                        Individual 95% CIs For Mean Based on 
                        Pooled StDev 
Level  N   Mean  StDev  -----+---------+---------+---------+---- 
1      8  94.61   2.99              (----------*----------) 
2      8  97.21   3.05                  (----------*----------) 
3      8  87.83  12.41  (----------*----------) 
4      8  88.89  12.81    (----------*----------) 
                        -----+---------+---------+---------+---- 
                          84.0      90.0      96.0     102.0 
Pooled StDev = 9.17 
 
b) TTD task accuracy 
Source  DF      SS    MS     F      P 
1        3   220.8  73.6  0.99  0.413 
Error   28  2085.8  74.5 
Total   31  2306.6 
 
S = 8.631   R-Sq = 9.57%   R-Sq(adj) = 0.00% 
 
                        Individual 95% CIs For Mean Based on 
                        Pooled StDev 
Level  N   Mean  StDev    -+---------+---------+---------+-------- 
1      8  97.58   1.72                  (-----------*------------) 
2      8  96.40   4.70               (------------*-----------) 
3      8  94.66   6.80            (-----------*------------) 
4      8  90.64  15.06    (-----------*------------) 
                          -+---------+---------+---------+-------- 
                        85.0      90.0      95.0     100.0 
Pooled StDev = 8.63 
 
c) TTD task RT 
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Source  DF       SS     MS     F      P 
1        3    42984  14328  0.27  0.850 
Error   28  1510994  53964 
Total   31  1553978 
 
S = 232.3   R-Sq = 2.77%   R-Sq(adj) = 0.00% 
 
                        Individual 95% CIs For Mean Based on 
                        Pooled StDev 
Level  N   Mean  StDev  ----+---------+---------+---------+----- 
1      8  596.1  132.1  (-------------*-------------) 
2      8  601.5  188.1  (-------------*-------------) 
3      8  672.7  255.5        (-------------*-------------) 
4      8  671.3  312.6        (-------------*-------------) 
                        ----+---------+---------+---------+----- 
                          480       600       720       840 
Pooled StDev = 232.3 
 

4.2. Imaging data analysis of the 4 sessions:  

The imaging data of the three subjects who were outliers for the behavioral data 

were also excluded from the imaging analysis.  

A conjunction analysis was performed to determine the areas consistently 

activated across the 4 sessions. Activation was observed in the following ROIs: 

bilateral ventrolateral PFC (VLPFC) (Brodmann areas (BA) 44, 45，BA 47); anterior 

frontal cortex (AFC) (BA 10), supplemental motor area (SMA) (BA 6); precentral 

gyrus (BA 4), thalamus, bilateral inferior and superior parietal lobes (PL) (BA 7), 

postcentral gyrus (BA 2) bilateral inferior and superior temporal lobes(TL) (BA 41, 

BA 37, 38 ), bilateral primary auditory cortex (BA 41); the precuneus (PCu) (BA 7) 

and insular (bilaterally); left cingulated gyrus (ACC) (BA 24, 30). The anatomical 

localizations along the axial plane of the various ROIs are shown in Figure 4-2. The 

significant effect of fatigue will be focused on these area: bilateral VLPFC, AFC, left 

precental gyrus, superior and inferior PL (bilateral), superior and inferior TL 

(bilateral), postcental gyrus, left ACC and the thalamus (Table 4-3).  



 43

Besides the regions as mentioned above, the main effect of the fatigue causing 

decreased activities of the brain was also found in these areas: bilateral AFC (BA 8, 

10), left ACC (BA 31) (Table 4-4), and also bilateral hippocampus (BA 35) (Figure 

4-3).  
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Figure 4-2: Regions of interest (ROI) maps showing axial sections after a conjunction analysis of summation of 4 sessions. The axial 
Talariach coordinates are indicated below for each slice of the brain at an interval of 5 mm from 0 to 45 mm. All activations have 
crossed the threshold p < 0.5e-3. The Talariach coordinates for regions of interest (indicated by circle) as follows: middle frontal gyrus: 
A(25, 41, 5); inferior frontal gyrus: B1(33, 21, 5), B2(43, 9, 5), B3(-43, 9, 5); superior frontal gyrus--GFs: C1(6, 50, 5); medial frontal lobe: 
C2(-9, 56, 25), C3(-12, 46, 37), C4(1, 6, 45); motor cortex: D1(-54, 3, 25), D2(-48, -4, 40), D3(-35, -18, 50), D4(-57, 5, 19); inferior 
parietal--LPi: F1(-33, -42, 38), F2(36, -42, 40); superior parietal--LPs: E1(42, -35, 40), E2(-43, -34, 40); sensory cortex: G(-53, -34, 44) ; 
thalamus: H(16, -17, 5), (-16, -17, 5); insula: I(-42, -7, 10); gyrus cinguli: G1(-4, 12, 37), G2(-5, -43, 33) precuneus-PCu(-5, -65, 25); 
Primary auditory receiving cortex—GTT: J1(41,-21,10) J2(-48, -24, 10), J3(-44, -29, 15). 
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Table 4-3: Talairach coordinates of significant effect of fatigue with constant active activity found as a summarization of all the 4 
sessions. p < 0.5e-3. 
 

Brain area Anatomy  BA area Talairach coordinates Denote 
   X* Y* Z*  
Right AFC Middle frontal gyrus 10 25 41 5 A 
Right VLPFC Inferior frontal gyrus 45 33 21 5 B1 
Bilateral VLPFC Inferior frontal gyrus 47 +/-43 9 5 B2B3 
Right SMA Medial frontal gyrus 6 1 6 45 C4 
------ Precentral gyrus 4 -54 3 25 D1 
------ Precentral gyrus 4 -48 -4 40 D2 
------ Precentral gyrus 4 -35 -18 50 D3 
------ Precentral gyrus 4 -57 5 20 D4 
Bilateral Temporal cortex Primary auditory cortex 41 41 -21 10 J1 
Left Temporal cortex Primary auditory cortex 41 -48 -24 10 J2 
Left Temporal cortex Primary auditory cortex 41 -44 -29 15 J3 
Left Parietal cortex Inferior parietal lobe 40 -33 -42 38 F1 
Right Parietal cortex Inferior parietal lobe 40 36 -42 40 F2 
Left Parietal cortex Inferior parietal lobe 40 -53 -34 44  
Right Parietal cortex Superior parietal lobe 40 42 -35 40 E1 
Left Parietal cortex Superior parietal lobe 40 -43 -34 40 E2 
------ Postcentral gyrus 2 -53 -34 44 G 
Left Parietal cortex Precuneus 18 -5 -65 25  
Bilateral Thalamus Thalamus  NA +/-16 -17 5 H 
Left Cingulate cortex Cinguli Gyrus 24 -4 12 37 G1 
Left Cingulatel cortex Cinguli Gyrus 30 -9 -50 8  
Insular cortex Insular   -42 -7 10 I 

*X, Y, Z (in mm) refer to coordinates in the Talairach space in which positive values refer to regions right of (X), anterior to (Y), and superior to (Z) the anterior commissure (AC). 
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Table 4-4: Talairach coordinates of significant effect of fatigue with constant 
reduced activity found as a summarization of all the 4 sessions. p < 0.5e-3. 
 

 
 
 
 

 
 
Figure 4-3: Reduced activity map showing sagittal sections of 4 session 
summation. A) Left hippocampus (-25,-44,-4); B) Left AFC (-12, 56, 21); C) Left 
AFC (-12, 46, 37); D) Left ACC (-12, -60, 21). P<0.5e-3.  

Brain area Anatomy BA 
area 

Talairach 
coordinates Denote

   X* Y* Z*  

Left AFC Superior frontal 
gyrus 8 -12 46 37 C3 

Right AFC Medial frontal 
gyrus 10 6 50 5 C1 

Left AFC Medial frontal 
gyrus 10 -9 56 25 C2 

Left Cingulate 
cortex Cinguli Gyrus 31 -5 -43 33 G2 
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4.3. Relation between fMRI activity and fatigue states 

Analysis was performed individually at each session to determine how the activation 

signal varies with state. First using contrasts session 2 minus 1, session 3 minus 2, and 

session 4 minus 3 respectively, decreased brain activity (indicated as blue in the 

Figure 4-4) except some special parts which are the mid brain and the thalamus 

throughout the whole 4 sessions are shown in Figure 4-4.  

 

Secondly, Using the contrasts session 2, 3, 4 minus session 1, areas more activated in 

the different fatigue state were identified at the different contrast (Figure 4-5 session 2 

minus session 1, Figure 4-6 session 3 minus session 1 and Figure 4-7 session 4 minus 

session 1) and these have been summarized in Table 4-5 for session 2 minus session 1, 

Table 4-6 for session 3 minus session 1, and Table 4-7 for session 4 minus session 1.. 

 

In the session 2 minus session 1, these areas were found to be more effected by the 

circadian fatigue with decreased activity: bilateral VLPFC, left SMA (BA 6), left 

AFC (BA 10), right parietal lobe (BA 7) and bilateral temporal lobe (Figure 4-5). The 

insular left side, an area not included as an ROI, was also found to be sensible to the 

circadian fatigue. In the session 3 minus session 1, increased activity of the brain due 

to the circadian fatigue was found in left AFC (BA 10), left SMA (BA 6), bilateral 

parietal lobe (BA 7) and temporal lobe, left cingulate cortex (ACC) (BA 31, 24) 

(Figure 4-6). Increased activity was observed in the left TH, an area which was not 

designated as the most important ROI. The right insular was also found to be 

decreased activity. In the session 4 minus session 1, circadian fatigue resulted in 

decreased activity in the left AFC (BA 10), right VLPFC (BA 47), bilateral DLPFC 
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(BA 9), left ACC (BA 31, 24), bilateral parietal and temporal lobe (Figure 4-7). 

Thalamus was also found to have increased activity and also the right ACC (BA 23).  
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A) 2-1 

 
 
B) 3-2 
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C) 4-3 

 
 
Figure 4-4: Activity indication throughout the whole 4 sessions with general decreased activity as the fatigue states progressing. The 
slices are got at the interval of 10mm from the 0mm in the horizontal direction. All the threshold are P<0.5e-3. A) The activity of the 
brain at the 2nd session minus the activity of the brain at the 1st session. The blue indicates the area with decreased activity during the 
2nd session.  B) The activity of the brain at the 3rd session minus the activity of the brain at the 2nd session. The blue indicates the area 
with decreased activity during the 3rd session. The red indicates the area with increased activity during the 3rd session. The thalamus 
and the midbrain are more active in the 3rd session. C) The activity of the brain at the 4th session minus the activity of the brain at the 
3rd session. The blue indicates the area with decreased activity during the 4th session. The red indicates the area with increased activity 
during the 4th session. 
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Table 4-5: Talairach coordinates of significant activity (increased or decreased activity) within the same task (NSD) across states. Values 
are obtained using the contrasts at session 2 minus session 1 
 

Brain area Anatomy BA area Talairach coordinates Denote 
   X Y Z  
Left AFC Middle frontal gyrus 10 -42 50 2  
Left VLPFC Middle frontal gyrus 47 -38 37 -8 A 
Right VLPFC Inferior frontal gyrus 44 50 5 29 L 
Session 2 minus session 1 continued 
Left SMA Medial frontal gyrus 6 -1 6 57 P 
-------- Precentral gyrus 4 -51 -17 34 M 
Right Temporal cortex Inferior temporal gyrus 37 48 -58 -5 D 
Left Temporal cortex Inferior temporal gyrus 37 -48 -61 -5 E 
Left Temporal cortex Superior temporal gyrus 38 45 6 -8 C 
Right Temporal cortex Superior temporal gyrus 38 -48 12 -8 B 
Left Temporal cortex Superior temporal gyrus 42 -57 -13 7 I 
Right Temporal cortex Superior temporal gyrus 22 59 -35 7 G 
Left Temporal cortex Superior temporal gyrus 22 -49 -34 7 H 
Right Temporal cortex Medial temporal gyrus 22 58 -33 4  
Left Temporal cortex Primary auditory cortex 42 -50 -33 10 J 
Right Parietal cortex Inferior parietal lobe 7 33 -57 43 O 
Right Parietal cortex Superior parietal lobe 7 33 -40 55 Q 
Right Parietal cortex Precuneus 7 3 -67 40 N 
Left ACC Cinguli gyrus 23 -6 -40 26 K 
Left Insular cortex Insular  NA -41 9 -2 F 
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          -8mm               -5mm            -2mm             +7mm            +10mm           +26mm 

 
           +29mm           +34mm             +40mm           +43mm            +55mm           +57mm  
Figure 4-5: Group level activity maps observed with the contrasts session 2 minus session 1, P<0.5e-3. The Talaraich coordinates for the 
activity peak (indicated by cross) are as follows: upper row: A) Left VLPFC: -38, 37, -8; B) Left superiortemporal lobe: -48, 12, -8; C) 
Right superior temporal lobe: 45, 6, -8; D) Right inferior temporal lobe: 48, -58, -5; E) Left inferior temporal lobe: -48, -61, -5; F) Left 
insular cortex: -41, 9, -2; G) Right superior temporal lobe: 59, -35, 7; H) Left superior temporal lobe: -49, -34, 7; I) Left superior 
temporal lobe: -57, -13, 7, J) Left primary auditory cortex: -50, -33, 10; K)left cinguli gyrus: -6, -40, 26; Lower row: L) Right VLPFC: 
50, 5, 29; M) Left precentral gyrus: -51, -17, 34; N) Right parietal lobe: 3, -67, 40; O) Right inferior parietal lobe: 33, -57, 43; P) Left 
SMA: -1, 6, 57; Q) Right superior parietal lobe: 33, -40, 55. 
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Table 4-6: Talairach coordinates of significant activity (increased or decreased activity) within the same task (NSD) across states. Values 
are obtained using the contrasts at session 3 minus session 1. 
 

Brain area Anatomy BA area Talairach coordinates Denote 
   X Y Z  
Left AFC Middle frontal gyrus 10 -44 45 -3 A 
Left VLPFC Inferior frontal gyrus 47 -42 21 -17 B1 
Right VLPFC Inferior frontal gyrus 47 51 18 4 B2 
Left SMA Medial frontal gyrus 6 -1 -4 48 C 
------ Precentral gyrus 4 -29 -10 52 D1 
------ Precentral gyrus 4 28 -10 52 D2 
Right Temporal cortex Inferior temporal gyrus 37 45 -57 -3 E1 
Left Temporal cortex Inferior temporal gyrus 37 -48 -57 -3 E2 
Left Temporal cortex Superior temporal gyrus 38 -45 15 -9 F1 
Right Temporal cortex Superior temporal gyrus 38 46 4 -9 F2 
Left Temporal cortex Superior temporal gyrus 22 -52 -43 8  
Right Temporal cortex Superior temporal gyrus 22 47 -43 8  
Right Temporal cortex Medial temporal gyrus 37 45 -65 -3 G1 
Left Temporal cortex Medial temporal gyrus 37 -48 -55 -3 G2 
Right Temporal cortex Medial temporal gyrus 21 58 -33 4 H1 
Left Temporal cortex Medial temporal gyrus 21 -60 -33 4 H2 
Right Temporal cortex Primary auditory cortex 41 45 -28 10 I 
Left Temporal cortex Hippocampus 28 -32 -25 -17 J 
Right Parietal cortex Inferior parietal lobe 7 33 -57 43 L1 
Left Parietal cortex Inferior parietal lobe 7 -33 -57 43 L2 
Left Parietal cortex Superior parietal lobe 7 -22 -58 57 K1 
Right Parietal cortex Superior parietal lobe 7 22 -54 57 K2 
------ Postcentral gyrus 3 58 -13 25 M 
Left Parietal cortex Precuneus 7 -3 -56 52 O 
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Session 3 minus session 1 continued 
Left ACC Cinguli gyrus 24 -2 -14 40 N1 
Left ACC Cinguli gyrus 31 -1 -50 40 N2 
Right Insular cortex Insular NA 34 -11 4  
Thalamus Thalamus  NA -18 -22 7 X1 
------ Occipitofrontal fasciculus NA 22 20 17 X2 
------ Occipitofrontal fasciculus NA -18 -34 25 X3 
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-17mm            -9mm            -3mm             +4mm             +7mm            +10mm 

 
+17mm         +25mm         +40mm        +43mm         +48mm         +52mm         +57mm 

 
Figure 4-6: Group level activity maps observed with the contrasts session 3 minus session 1, P<0.5e-3. The Talaraich coordinates for the 
activity peak (indicated by cross) are as follows: upper row: B1) Left VLPFC: -42, 21, -17; J) Left hippocampus: -32, -25, -17; F1)Left 
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superior temporal lobe: -45, 15, -9; F2)Right superior temporal lobe 46, 4, -9; E1)Right inferior lobe: 45, -57, -3; E2)Left inferior lobe: 
-48, -57, -3; G1)Right medial temporal lobe: 45, -65, -3; G2)Left medial temporal lobe: -48, -55, -3; B2) Right VLPFC: -11, 17, 39; 
H1)Right medial temporal lobe: 58, -33, 4; H2)Left medial temporal lobe: -60, -33, 4; X1)Left thalamus: -18, -22, 7; I)Right primary 
auditory cortex: 45, -28, 10; Lower row: X2)Right occipitofrontal fasciculus: 22, 20, 17; M)Right postcentral gyrus: 58, -13, 25; X3)Left 
occipitofrontal fasciculus: -18, -34, 25; N1)Left ACC: -2, -14, 40; N2)Left ACC: -1, -50, 40; L1) Right inferior parietal lobe: 33, -57, 43; 
L2)Left inferior parietal lobe: -33, -57, 43; C)left SMA: -1, -4 48; D1)Left precentral gyrus: -29, -10, 52; D2)Right precentral gyrus: 28, 
-10, 52; K1)Left superior parietal lobe: -22, -58, 57; K2)Right superior lobe: 22, -54, 57. 
 
 
 
Table 4-7: Talairach coordinates of significant activity (increased or decreased activity) within the same task (NSD) across states. Values 
are obtained using the contrasts at session 4 minus session 1 
 
Brain area Anatomy  BA area Talairach coordinates Denote 
   X Y Z  
Left AFC Middle frontal gyrus 10 -40 46 -8 A 
Right VLPFC Inferior frontal gyrus 47 49 24 7 B 
Right DLPFC Medial frontal gyrus 9 5 45 10 C 
Left DLPFC Medial frontal gyrus 9 -2 42 28  
------ Precentral gyrus 4 29 -30 55 D1 
------ Precentral gyrus 4 41 -11 49 D2 
Left Temporal cortex Inferior temporal gyrus 37 -51 -59 -2 E 
Right Temporal cortex Superior temporal gyrus 38 40 16 -9 F1 
Left Temporal cortex Superior temporal gyrus 38 -45 15 -9 F2 
Right Temporal cortex Superior temporal gyrus 22 59 -35 7  
Left Temporal cortex Superior temporal gyrus 22 -52 -37 7  
Session 4 minus session 1 continued 
Right Temporal lobe Medial temporal gyrus 37 48 -52 2 G1 
Left Temporal lobe Medial temporal gyrus 37 -44 -52 2 G2 
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Continued with last page 
Right Temporal lobe Hippocampus 35 21 -32 -11 H 
Right Parietal lobe Inferior parietal lobe 7 33 -62 41 I 
Left Parietal lobe Superior parietal lobe 7 -25 -76 34 J1 
Right Parietal lobe Superior parietal lobe 7 21 -68 41 J2 
------ Postcentral gyrus 1 59 -16 25  
Left Parietal lobe Precuneus 7 -3 -56 49  
Left ACC Cinguli gyrus 31 -2 -52 41 K1 
Left ACC Cinguli gyrus 24 -2 3 28 K2 
Right Insular cortex Insular  35 -3 -5  
Right ACC Cinguli gyrus 23 6 -21 28 X1 
Left TH Thalamus  NA -21 -19 7 X2 
Right TH Thalamus  NA 15 -13 10 X3 
Left TH Thalamus  NA -24 -4 7 X4 
Left TH Thalamus NA -16 -16 10 X5 
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-2mm                -9mm                 -11mm                 +2mm                +7mm 

 
+10mm           +28mm            +34mm            +41mm           +49mm             +55mm 

 
Figure 4-7: Group level activity maps observed with the contrasts session 4 minus session 1, P<0.5e-3. The Talaraich coordinates for the 
activity peak (indicated by cross) are as follows: upper row: E)Left inferior temporal lobe: -51, -59, -2; A)Left SMA: -40, 47, -9; 
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F1)Right superior temporal lobe: 40, 16, -9; F2)Left superior temporal lobe: -45, 15, -9; H)Hippocampus: 21, -32, -11; G1)Right medial 
temporal lobe: 48, -52, 2; G2)Left medial temporal lobe: -44, -52, 2; B)Right VLPFC: 49, 24, 7; X2)Left TH: -21, -19, 7; X4)Left TH: -24, 
-4, 7; Lower row: C)Right DLPFC: 5, 45, 10; X3)Right TH: 15, -13, 10; X5)Left TH: -16, -16, 10; X1)Right ACC: 6, -21,28; K2)Left 
ACC: -2, 3, 28; J1)Left superior parietal lobe: -25, -76, 34; I)Right inferior parietal lobe: 33, -62, 41; J2)Right superior lobe: 21, -68, 41; 
K1)Left ACC: -2, -52, 41; D2)Right precentral gyrus: 41, -11, -9; D1)Right precentral gyrus: 29, -30, 55. 
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As indicated in the equation (1), the value of β is the indication of the activation of the 

specific voxle of the brain image. On each circadian mental fatigue state, i.e. the 

session we scan the brain by fMRI, the β of the ROI was calculated. Figure 4-8 shows 

the plot of the β at each session across the PFC, the motor cortex (Mo), the primary 

auditory cortex (Au), the PL, the ACC, and the TH. The trend of the activation of all 

the ROI except the ACC and the TH shows the general decrease till the session 3 and 

later comes back at the session 4.  

The value of the β at each session of the ROI were analyzed through the t-test which 

is to compare the two samples and tells the probability of the two samples with the 

significant difference. The results are summarized in Table 4-8. 
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C) The primary auditory cortex(Au) 
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Precuneus (PCu) 
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Figure 4-8: The plot of β in each session. The peak of the activation area was 
indicated by Talairach coordination for A) PFC: a) AFC:(-45,44,1); b) VLPFC: 
(51,15,3),(-42,20,-16); c) DLPFC: (5,45,10). B) The motor cortex: (-33,-8,53); C) 
The primary auditory cortex: (45,-28,10); D) Parietal lobe: (36,-59,41), 
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(-21,-58,58); Precuneus (-3,-56,54); E) Insular (Ins): (34,-4,-5); F) ACC: 
(-2,-14,40),(6,-21,28); G) TH: (-21,-17,6); H) Hi: (-32,-24,-16). 

 
 

Table 4-8: T-test of the β of ROIs at 2 different sessions. The significant 
differences of two of the 4 sessions are indicated by the P value, which are in 
BOLD. The “*” indicates the area with increased activation across the four 
sessions. 
 

ROIs Comparison between 2 different sessions 
Brain 

area 
Talairach 
coordinates 1st&2nd 2nd&3rd 1st&3rd 1st&4th 3rd&4th 

AFC (-45, 44, 1) 0.01070256 0.305719 0.004167966 0.098805342 0.276815086
VLPFC ( 51, 15, 3) 0.11041777 0.128685 0.00204039 0.017083135 0.560079277
VLPFC (-42, 20,-16) 0.243993 0.036222 0.01003 0.040097 0.185769 
DLPFC ( 5, 45, 10) 0.316529 0.405701 0.116227 0.017929 0.567268 

Mo (-33, -8, 53) 0.401561375 0.418323 0.124883145 0.152908929 0.654143267
Au ( 45,-28, 10) 0.375388865 0.116237 0.0265062 0.063958103 0.451053044
PL ( 36,-59, 41) 0.085437013 0.473297 0.02037543 0.172557536 0.386283969
PL (-21,-58, 58) 0.40963972 0.056414 0.0194892 0.113551149 0.500641537

PCu ( -3,-56, 54) 0.192544386 0.058527 0.007449294 0.014292721 0.641583565
Ins ( 34, -4, -5) 0.428245176 0.03781 0.01304495 0.011064647 0.57506869 

ACC ( -2,-14, 40) 0.117602515 0.0337 0.00427291 0.002800065 0.765898685
ACC* ( 6,-21, 28) 0.321861043 0.322929 0.07894345 0.000919252 0.420468312

TH* (-21,-17, 6) 0.06651612 0.11225 0.0101452 0.0000318155 0.74766098 
Hi (-32,-24,-16) 0.01859841 0.00819 0.0000518108 0.052264403 0.00271284 
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5 Discussion 

5.1 Significance in behavioral measures to be achieved by recruiting more 

subjects 

No significant effect of state was found with regard to the behavioral data. This is 

likely to have arisen due to two reasons. Firstly, most subjects were exhibiting a 

ceiling effect with regard to accuracy. With reference to Figure 5-1 a) and Figure 5-2 

b), it should be observed that most of the subjects were achieving an 85% level of 

accuracy under both conditions across the different fatigue states. Secondly, the lack 

of significance could have arisen due to the insufficient power of the data (Table 5-1).   
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b)                                 c) 
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Figure 5-1: : Plots showing the individual behavioral data for both accuracy and 
RT with the brain activation status of specific subjects: a) Accuracy of NSD task 
as a function of fatigue states; b) Accuracy of TTD task as a function of fatigue 
states; c) RT of TTD task as a function of fatigue states 
 
 
 
Table 5-1: Repeated measures of ANOVA with fatigue state for the 2 different 
discrimination task showed no main effects of the state. 
 

TTD task Effect NSD task accuracy 
Accuracy RT 

Df 3 3 3 

F-value 1.94 0.99 0.27 

Sig. 0.147 (n.s.) 0.413 (n.s.) 0.85 (n.s.) 
n.s.: non-significant 
 

5.2 Analysis of the 1st hypothesis: The general decreased brain activity of the 

brain throughout the whole circadian fatigue process. 

The brain shows the general decreased activity throughout the whole circadian fatigue. 

As the Figure 4-4 indicates, the activation of the session 2 minus session 1, session 3 

minus session 2, and session 4 minus session 3, the results shows that the minus value 

of the activation which indicated by the blue color. The gradually reducing the brain 

activation from the session 1 to the session 4 after 24 hours staying awake should be 
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the protecting mechanism of the brain. The parts of the brain and the organs which are 

supposed to join in the task are kept away from damaging after an unremitting 

cognitive stress. 

 

As shown in Figure 4-8 which shows the activation across the 4 sessions during 24 

hours in region of interests (ROIs), the βvalue went down from the first session to 

the third session which had the lowest and they went up in the fourth session that was 

held on the 2nd day at the same time as the first session. However, the βvalue did 

not get to the same states as the first session. This could be due to the effect of the 

circadian rhythm. After 24 hours, the brain manages to catch up the circadian effect to 

get to the alertness as the states at the same time 24 hours before. But the protecting 

mechanism drops it down. The result of the circadian fatigue is the balance of the 

circadian rhythm and the protecting mechanism.  

 

Further more, as the performance of the individual shows (Figure 4-3 & Figure 5-1), 

the results of the brain activation and the performance give us the same trend. This is 

not coincident, but it is because the circadian fatigue which is reflected in the brain. 

As the control center of the human body, the brain affects the operating parts of the 

performance. It is understandable that the operating system and the control center 

have the same results of the circadian fatigue. 

 

In conclusion, circadian fatigue is the states of the brain affected by the circadian 

rhythm. With the general decreased activity of the brain, circadian fatigue can be 

classified according to the different level of the brain activation based on the task. It is 

more scientific to classify the circadian fatigue according to the brain activation which 
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is essentially the neural firing of a bunch of the neurons. How to dividing the 

circadian fatigue states is beyond the scope of present study. But the present study 

proposed a new point of view to understand the circadian fatigue. 

5.3 Analysis of 2nd hypothesis: There are specific parts of the brain more 

sensitive to the circadian fatigue. 

5.3.1 More sensitivity to the circadian fatigue found in the anterior frontal 

cortex (AFC) 

As we understand the circadian fatigue is a brain state affected by the circadian 

rhythm, it is curious for us to know how the brain is affected and which parts of the 

brain are concerned for the most. 

 

Based on the task we designed, e.g. the number sequence discrimination (NSD task, 

the brain has to contribute at least 3 different areas for the out put of the performance: 

1) the auditory cortex which charges the listening of the commands; 2) the area for 

analysis of the commands which we call the prefrontal cortex; 3) the primary motor 

cortex to control the finger pressing to the button. Of course, the simple pressing the 

button is a complex cooperation of many different areas of the brain. We just simplify 

the pressing model of the brain to find out which is the most sensitive area of the task 

primarily including areas. From the previous study by Drummond et al. (1999), we 

propose that the prefrontal cortex (PFC) should be much more sensitive to the 

circadian fatigue, i.e. PFC is in the manner of decreased activity in advance. 

 

From the Figure 4-5, Figure 4-6, and Figure 4-7, we can find that the brain activity on 

each fatigue state include the ROIs we proposed and also other areas, such as the 
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insular, the precuneus and the Hippocampus in the temporal lobe. We can see that the 

activation of the primary auditory cortex (Au) (Figure 4-8 (C)), the AFC (Figure 4-8 

(A)) and the motor cortex (Mo) (Figure 4-8 (B)) show the same trend of the activity 

across the 4 sessions. However, there are differences among them. Referred to the 

Table 4-8, we can see that the difference of the 2 of the 4 sessions can be indicated by 

the P value in the t-test. For the anterior frontal cortex (AFC), it shows the significant 

difference between the brain activity of the first session and the second session. After 

that, it is in the manner of non-significant effect from the second to the third session 

and from the third session to the fourth session. Compared with the activity of anterior 

frontal cortex (AFC), the brain activation at the Au and Mo shows the significant 

difference at the third session or even no much difference e.g. Mo.  

 

This indicates that the anterior frontal cortex (AFC) reduced its activity earlier at the 

second session and the decreased activity continues gradually but without too much 

difference. On the other hand, the auditory cortex (Au) reduced its activity 

dramatically at later session—the third session and the decreased activity of motor 

cortex (Mo) just behaved gradually without big difference. 

 

The results are perfectly coincident with our prediction. The reasons might be the 

protection effect of the brain from the circadian fatigue. The regions of the brain 

involved in the task can maintain a relatively stable performance. Thus the more 

sensitive region such as the AFC, has to reduce its activity to make sure the 

accomplishment of the task in the future. In another word, the decreased activity of 

the AFC saves the energy to protect the brain for further task demanding in the future 

hours at some early fatigue level. Another, the order of the operating area of the brain 
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is proposed here. The auditory cortex and the motor cortex are the areas related to the 

stimulus and response directly. The anterior frontal cortex (AFC) is the higher order. 

It has to receive the signal from the auditory and analyze the stimulus before it sends 

out the commands to the motor cortex to control the finger pressing. The complex 

functions of the anterior frontal cortex (AFC) make it using the energy and the oxygen 

much more. As a result, the time of the day causes it responding to this requirement, 

which is anterior frontal cortex (AFC) much more sensitive to the circadian fatigue. 

5.3.2 Dorsolateral prefrontal cortex (DLPFC) only sensitive to the extreme 

fatigue states and cognitive stress 

Contrary to earlier imaging studies on working memory (WM) (Braver et al., 1997; 

Jaeggi et al., 2003) which associated the dorsolateral prefrontal cortex (DLPFC) with 

little activation during low load conditions, the present study found that the simple 

task we designed causes continued activity until the 4th session. This has been shown 

in Table 4-7. The dorsolateral prefrontal cortex (DLPFC) only appeared to have the 

decreased activity as the result of the session 4 minus session 1. Figure 4-8 (c) shows 

that the activation of dorsolateral prefrontal cortex (DLPFC) at each session is smaller 

than the previous session. Not like the other part of prefrontal cortex (PFC), 

dorsolateral prefrontal cortex (DLPFC) decreased its activity further from the 3rd 

session significantly (Table 4-8). Increased demands on cognitive would be 

accompanied by increased cerebral activity (fMRI signal) as long as a certain level of 

performance can be maintained (Jansma et al., 2000). In this task, however, accuracy 

doesn’t display big difference as the fatigue goes into deeper states from the session 3. 

In this study the dorsolateral prefrontal cortex (DLPFC) shows its manner of more 

and more decreased activity either because “maximum processing has been exceeded” 
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or because it just “fails to contribute” (Jansma et al. 2000) to the fatigue states 

extreme and the cognitive stress. 

 

The continued decreased activation at each session can be attributed to its role in 

mediating executive functions (Cohen et al., 1997), some of which involved the 

regulation of the other cortical regions and the coordination of their processing 

(Reichle et. al., 2000). The present task required subjects to set up and keep track of 

goals and this involves the maintenance of information in an active state. In addition, 

the subject is also required to keep track of subgoals (keeping focused during the task 

and making sure that a response for the present stimulus is made before the next one 

appears) and this would entail the coding and retrieval information in time. These two 

processes are within the domain of “executive functions” undertaken by the DLPFC 

(Fletcher & Henson, 2001; Smith & Jonides, 1999). On the other hand, the PFC is 

anatomically connected to many cortical areas including the parietal lobe (PL) 

(Corbetta, 1998), cinguli gyrus (ACC) (Devinsky et al., 1995), thalamus (TH) 

(Kubat-Silman, 2002), insular cortex (INS) (Augustine, 1996), to name a few. 

Following up on the earlier postulation that the maximum processing “power” of the 

dorsolateral prefrontal cortex (DLPFC) could have been exceeded in the present task, 

the decreased activity of the dorsolateral prefrontal cortex (DLPFC) following SD 

could reflect a protection response. To following the effects of the “deficit” brought 

about by the fatigue, the dorsolateral prefrontal cortex (DLPFC) could reduce its 

modulatory inputs to the other cortical areas in which it is connected, for example, the 

thalamus and the cinguli gyrus, and thus causing these parts signals to increase 

consequently (Figure 4-8).  
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5.3.3 The cognitive impairment induced as a result of circadian fatigue is 

accompanied by parietal lobe (PL) related to the working memory. 

In another study conducted by Drummond et al. (1999), activity in the prefrontal 

cortex (PFC) and parietal lobe (PL) was reduced following 24 hours staying awake. 

On the other hand, the parietal lobe (PL) is anatomically connected to many cortical 

areas including the PFC (Corbetta, 1998). At the present study, the same trend is 

postulated.  

 

A study by McCarthy & Waters (1997) has shown that sleep debt not only decreases 

the attentional responsivity of subjects to new information, but also reduces their 

efficiency of cognitive processing. As such, the human brain after one sleepless night 

is clearly functioning on a lower level at all times (Gillberg & Akerstedt, 1998). This 

would thus imply a decreased ability of the brain during the sleep deficit state to 

perform. The decreased activation of the parietal lobe (PL) (inferior and superior) 

took the same results as the performance accuracy. As the cognitive awareness went 

down accompanying with the fatigue, the results of the cognitive performance reflect 

the low level of the cognitive processing of the higher order including parietal lobe 

(PL). 

 

Involvement of frontal-parietal network in fatigue is proposed here. The left PL has 

been known to be involved in the phonological storage of verbal WM (Paulesu et al., 

1993). In the NSD task, the commands were phonological. Thus, the decreased 

activity following circadian fatigue would suggest the fatigue effects across the PL. 

The frontal areas have been found to be involved across the whole fatigue process, 

thus implying its necessary involvement in the task. There was also an activation of 
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Broca’s area (left BA 44) and the parietal lobe (BA 40). As these two areas are 

involved in the phonological storage of working memory, they are likely to play an 

important role in the ‘articulatory loop’ of working memory (Paulesu et al., 1993). In 

addition, the supplementary motor area (SMA) (BA 6) found to be involved with the 

circadian fatigue (Table 4-5 & Table 4-6), have been proposed by Braver et al (1997) 

to be associated with Broca’s area in mediating subvocal articulatory processes such 

as verbal rehearsal. The involvement of a network of cortical areas involved in 

working memory are consistent with Jaeggi et al. (2003)’s findings, and appears to 

support the working memory model proposed by Baddeley (1992) in which the 

Broca’s area, together with the inferior parietal lobe, the supplementary motor cortex 

and the frontal lobes each assume specific processes within their cortical domains. 

5.4 Analysis for the 3rd hypothesis: Cinguli Gyrus (ACC) and Thalamus (TH) 

effect of the circadian fatigue 

The Cinguli Gyrus (ACC) has been implicated in mediating arousal (Jansma et al., 

2000), while the Thalamus (TH) has been found to be involved in mediating attention 

(Portas et al., 1998). Since SD results in reduced vigilance (Binks et al., 1999) and 

lowered arousal (McCarthy & Waters, 1997), the subjects would need to counteract 

these physiological responses by compelling themselves to not only stay awake, but 

also complete the task. All subjects were informed before-hand that payment would 

only be administered following the successful completion of the task. As such, the 

monetary motivation to stay awake could have resulted in increased activation in 

Cinguli Gyrus (ACC) and Thalamus (TH).  
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5.4.1 Role of Cinguli Gyrus (ACC) in serving attention control 

As indicated in Figure 4-8 (F) & (G), Cinguli Gyrus (ACC)and Thalamus (Th) are 

the special parts of the brain under the effect of the circadian fatigue. Although most 

of the part of the brain took the manner of the decreased activity across the four 

sessions, Cinguli Gyrus (ACC) and Thalamus (Th) showed their specialty with more 

and more activation at each session throughout the fatigue. The present findings have 

largely abided to as that hypothesized, with the ACC and thalamus showing greater 

activation in fatigue states.  

 

The present study reveals an increased activation of the ACC following the circadian 

fatigue. This reinforces its proposed role in response monitoring (Badgaiyan & Posner, 

1998). A study conducted by Carter et al. (2000) had found the Cinguli Gyrus (ACC) 

to be responsible for evaluating processing conflicts that may result in behavioral 

performance decline. As such, an increased activation of Cinguli Gyrus (ACC) 

would thus reflect the enhanced sensitivity to errors. In addition, Cinguli Gyrus 

(ACC) activations have been shown to reflect “cognitively demanding information 

processing (Devinsky et al., 1995). In the above-mentioned condition, the ‘cognitive 

stress’ induced as a consequence of fatigue would thus result in an increase in the 

likelihood of a blunder during the task. The intensified alertness thus activates the 

Cinguli Gyrus (ACC), a component in the “error prevention” network, to a greater 

extent. On the other hand, the increased activation of the Cinguli Gyrus (ACC) could 

be due to feedback from the thalamus. This is in accordance with the proposed model 

by Frith & Friston (1996) in which the thalamus is responsible for binding together 

the features of attention by initiating a signal which is then used to synchronize firing 
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in the different cortical areas, one of them of which would be the Cinguli Gyrus 

(ACC).  

 

The engagement of the Cinguli Gyrus (ACC) following increased cognitive stress 

can also be accounted in terms of the existing prefrontal-cingulate interactions. The 

Cinguli Gyrus (ACC) and Thalamus (Th) have been found to play distinct yet 

complementary roles in the neural network serving attentional control (Gehring & 

Knight, 2000; MacDonald et al., 2000). The dorsolateral prefrontal cortex (DLPFC) 

has been suggested to be involved in the representation and maintenance of the 

attentional task demands while the Cinguli Gyrus (ACC) plays a role in conflict 

monitoring (MacDonald et al., 2000). This role of the Cinguli Gyrus (ACC) in 

mediating executive control is analogous to a “central executive” (Casey et al., 2000), 

and is therefore likely to be made possible by the engagement of the dorsolateral 

frontal cortex.  

5.4.2 Role of Thalamus (TH) in mediating attention 

The thalamus is yet another structure consistently activated across the circadian 

fatigue. As noted by Frith & Friston (1996), an increase in thalamic activity has been 

found across a few studies employing attention demanding tasks. Also, the thalamus 

has been suggested to assume a chief role in selective attention (LaBerge, 1995), 

which basically refers to the mental ability to select stimuli, responses, or thoughts 

that are behaviorally relevant amidst the many others that are behaviorally 

inapplicable (Corbetta, 1998). This therefore suggests that its recruitment in the 

present study could have been necessary as subjects focus their attention to execute 

the correct response with regard to each of the stimuli. On the other hand, thalamic in 
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facts have been commonly associated with prefrontal executive function impairments 

(Kubat-Silman et al., 2002).  In addition, the thalamus is anatomically 

interconnected to the prefrontal cortex as the mediodorsal nucleus, anterior nucleus, 

and ventrolateral nucleus of the thalamus all have frontal lobe connections 

(Kubat-Silman et al., 2002). This close association between the thalamus and the 

prefrontal areas could mean that the thalamus could have been activated following a 

modulatory input by the prefrontal areas in response to task activation.  

5.5 Analysis for the 4th hypothesis: The auxiliary brain regions searched 

following the circadian fatigue progresses 

Following the reduction in signal in the prefrontal cortex (Drummond et al., 1999), it 

is likely that additional brain areas will be recruited so as to compensate for the 

effects brought about by the decreased activity of the prefrontal cortex. 

 

Comparing across the states at the different fatigue level to that in the first session, the 

present findings failed to detect the activation of any auxiliary areas following sleep 

debt. This suggests that, in contrary to the hypothesis, the effects of sleep deprivation 

are not manifested in the recruitment of additional areas to mediate the ‘stress’ 

incurred as a result of the fatigue. In view of the concluded findings thus far, it is 

likely that the brain compensates for the effects of fatigue by manipulating the 

activation status of the areas already implicated in the task instead of recruiting 

additional areas to rectify the cognitive stress.  
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5.6 Significance in recruitment of the Insular (INS) to mediate cognitive 

processes under the fatigue states 

The insular which is not the region of interests was also found to have the same 

decreased activity across the four sessions (Table 4-5, Table 4-6 & Table 4-7), thus 

suggesting its essential role in fatigue functions. While it has been found to play an 

integral role with regard to human physiological functioning, it also has a role 

mediating cognitive functions (Augustine, 1996). In a study conducted by Paulesu et 

al. (1993), the insular was found to be bilaterally activated in the performance of a 

rhyming judgment task. This, Paulesu et al. thus suggests, implicates the insular in the 

“functional anatomy of the ‘articulatory loop’”. In addition, the insular has also been 

found to be involved in mediating selective attention (Corbetta et al., 1991). These 

functions could be fostered by the close anatomical connections of the insular lobe to 

the regions of the cerebral cortex, some of which include the frontal lobes, the 

temporal lobes, the cingulate cortex and the dorsal thalamus in primates. 

5.7 Sensitivity of the Precuneus (PCu) and Hippocampus (Hi) to memory   

The precuneus and hippocampus, the regions not designated as an region of interest, 

were found to exhibit decreased activity across the four sessions also (Table 4-5, 

Table 4-6 & Table 4-7). The precuneus, a medial parietal brain region, is situated 

superior and posterior to the retrosplenial area of the cingulate cortex and has been 

postulated to play an integral role in task-elicited awareness together with the 

prefrontal regions (Kjaer et al., 2001). As such, its decreased activity in the presence 

of the four sessions could reflect a channeling of decreased attentional resources, as 

subjects became less “aware” while performing the task as a result of lower 

performance accuracy. On the other hand, another proposed function of the precuneus 
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is that its serves as an important “neural substrate of visual imagery occurring in 

conscious memory recall” by subserving the function of a visual imagery buffer 

through its activation (Fletcher et al., 1995). As such, the decreased activity following 

deeper and deeper fatigue could therefore imply the less and less use for the memory 

and visual imagery, as the subjects were going through the extreme fatigue which is 

sleep. The record of the performance could tell us the subjects were not asleep. 

 

The hippocampus is known for its function of long term and short term memory. As 

such, it presented the sensibility to the fatigue throughout the four sessions (Figure 

4-5). As indicated in the Figure 4-8 (H), it reduced its activity sharply from the first 

session to the second session, and to the third session. Affected by the circadian 

rhythm, after the fatigue extreme on the session 3, it recovered from the low activity 

on the fourth session. The activation differences between each session to the first are 

significant (Table 4-8). This implies that the circadian fatigue influence the memory 

process largely. One of the reasons should be the shutting down of hippocampus can 

make the brain focus on management of the central cognitive control of performance. 

Another, we can conclude that it is influence by the circadian rhythm directly other 

than controlled by the higher order of cognitive engaged areas we discussed above. 
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6 Conclusion and Recommendation for Future Work 

6.1 Conclusions 

In the present study, we proposed four hypothesis of the brain activity under the 

circadian fatigue. We are able to draw following conclusions based on the results of 

the present study. 

6.1.1 The general decreased activity of the cortex throughout the fatigue 

process.  

The subtraction of the later session from the previous session indicates the decreased 

activity throughout the 4 sessions in 24 hours. Because of the restlessness within 24 

hours, the brain managed to catch up the circadian effect to get to the alertness the 

same as the states at the same time 24 hours before. But the protecting mechanism 

dropped it down. The result of the circadian fatigue should be the balance of the 

circadian rhythm and the protecting mechanism. 

6.1.2 There are some specific parts of the brain which are sensitive to the 

circadian fatigue 

The decreased activity was found in the anterior frontal cortex (AFC), dorsolateral 

prefrontal cortex (DLPFC) and parietal lobe (PL). 

1. For the anterior frontal cortex (AFC), it is more sensitive to the circadian 

fatigue. A sensitive decreased activation was observed across four sessions in 

anterior frontal cortex. The reasons might be the consequence of the circadian 

fatigue. The frontal and parietal lobes could possibly function as a 
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neurophysiological substrate of the initial protection for the effects of rest 

debt in order to maintain partially intact performance in the later hours. 

Another, the anterior frontal cortex is the higher order. It has to receive the 

signal from the auditory and analysis the stimulus before it sends out the 

commands to the motor cortex to control the finger pressing. The complex 

functions of the anterior frontal cortex make it consuming the energy and the 

oxygen much more than others. As a result, the time of the day causes it 

responding to this requirement, which is anterior frontal cortex much more 

sensitive to the circadian fatigue.  

2. The dorsolateral prefrontal cortex (DLPFC) is only sensitive in the fatigue 

extreme and cognitive stress. Dorsolateral prefrontal cortex which mediates 

both attention and arousal after fatigue in order to maintain intact 

performance also showed continues decreased activity as a consequence. The 

sensitivity in the fatigue extreme can be attributed to its role in mediating 

executive functions. Another, the prefrontal cortex is anatomically connected 

to many cortical areas including the PL, Cinguli Gyrus (ACC), Thalamus 

(TH), insular cortex (INS) etc. To protect the brain from the effects of the 

“deficit” brought about by the fatigue, the dorsolateral prefrontal cortex could 

reduce its modulatory inputs to the other cortical areas in which it is 

connected. The modulatory inputs exerted by the dorsolateral prefrontal 

cortex responses to excessive processing demands.  

3. The parietal lobe (PL) is accompanied by the fatigue induced cognitive 

impairment. An equivalent activity was observed in the superior parietal lobe 

as well as the inferior parietal lobe. The parietal lobe has been known to be 

involved in the phonological storage of verbal working memory (WM) and 
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the parietal lobe is anatomically connected to many cortical areas including 

the prefrontal cortex. In the network of frontal-parietal due to fatigue, the 

commands of the present task are phonological. Thus, the decreased activity 

following circadian fatigue would suggest the fatigue effects across the 

parietal lobe. 

6.1.3 Cinguli Gyrus (ACC) and Thalamus (TH) effect of the circadian fatigue.  

Results from the present study show that the circadian mental fatigue caused more 

activated in the cinguli gyrus and the thalamus following the circadian fatigue 

extreme. 

1. The cinguli gyrus serves the attention control in the fatigue brain. The 

increased activation would reflect the enhanced sensitivity to errors. The 

intensified alertness thus activates the cinguli gyrus, a component in the 

“error prevention” network, to a greater extent. Another, the increased 

activation of the cinguli gyrus could be due to feedback from the thalamus. 

The thalamus is responsible for binding together the features of attention by 

initiating a signal which is then used to synchronize firing in the different 

cortical areas, one of them of which would be the cinguli gyrus. Lastly, the 

cinguli gyrus and prefrontal cortex have been found to play distinct yet 

complementary roles in the neural network serving attention control. The 

Dosolateral prefrontal cortex (DLPFC) has been suggested to be involved in 

the representation and maintenance of the attention task demands while the 

Cinguli gyrus plays a role in conflict monitoring.  

2. Thalamus (TH) serves to mediate the attention in the fatigue brain. The 

thalamus has been suggested to assume a chief role in selective attention. 
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Thalamic in facts have been commonly associated with prefrontal executive 

function impairments. The close association between the thalamus and the 

prefrontal areas could mean that the thalamus could have been activated 

following a modulatory input by the prefrontal areas in response to task 

activation.  

6.1.4 The brain does not responds to circadian fatigue by recruiting auxiliary 

area of the brain 

We hypothesized there should be the auxiliary brain regions searched following the 

circadian fatigue progresses. However, the present study did not show much clues 

about this searching during the fatigue progress. This might be that the brain 

compensates for the effects of circadian fatigue by manipulating the activation status 

of the areas already implicated in cognition instead of recruiting additional areas to 

rectify the cognitive stress.  

6.1.5 The brain searches the insular to mediate cognitive processes under the 

fatigue states 

In the present study, the insular cortex which is not designed to be the ROIs was 

another area found to be involved in the circadian fatigue. Insular functions in the role 

in the “functional anatomy of the ‘articulatory loop’”. It has also been found to be 

involved in mediating selective attention. The close anatomical connections of the 

insula lobe to the regions of the cerebral cortex showed its importance in the fatigue 

states. 
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6.1.6 Precuneus (PCu) & Hippocampus (Hi) show sensitivity to circadian 

fatigue 

Lastly, the precuneus and hippocampus, the regions not designated as an ROI, were 

found to exhibit decreased activity.  

1. For the precuneus, it is situated superior and posterior to the retrosplenial area 

of the cingulate cortex and has been postulated to play an integral role in 

task-elicited awareness together with the prefrontal regions. Its decreased 

activity could reflect a channeling of decreased attentional resources, as 

subjects become less “aware” while performing the task as a result of lower 

performance accuracy.  

2. For the hippocampus, the decreased activity implies that the circadian fatigue 

influence the memory process largely. One of the reasons should be the 

shutting down of hippocampus can make the brain focus on management of 

the central cognitive control of performance. Another, we can conclude that it 

is influence by the circadian rhythm directly other than controlled by the 

higher order of cognitive engaged areas we discussed above 

6.1.7 Conclusion of the effects of circadian fatigue in brain 

As mentioned above, throughout the 24-hour track of the brain, the significance of the 

different fMRI signal changes in various regions of the brain specify the circadian 

rhythm effect on the brain. The overall decreased activity of the brain provides the 

general background of the brain activity to the circadian rhythm. The specific effect of 

circadian fatigue is as shown in the Figure 6.1. 

1) AFC, PL, PCu, INS, Hi decrease their activities in the circadian fatigue 

through 24 hours sleep deprived process. 
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Figure 6-1:  Integrated representation of activities in different brain regions 
throughout the process of circadian fatigue 
 

2) DLPFC decreases slower than the other regions in interests, which shows its 

lowest activity level at the most fatigue state. 

3) ACC and TH indicate more and more powerful activities due to the circadian 

fatigue. 

6.2 Recommendation for future works 

1. The present study has sought to elucidate the effects of circadian rhythm on 

brain activity at each fatigue states. However, due to the small sample, the 

data collected constitute only a preliminary finding as to how circadian 

fatigue affects cognitive performance and the neural activity of the parts of 

the brain involved in the cognitive task. A follow-up involving a larger 

sample (where n = at least 20) is likely to lead to more conclusive results.  

2. To date, there are still a lot of unknowns regarding how brain mediates 

cognitive processing to the circadian fatigue. While extensive studies have 



 86

been conducted within this domain, the emphasis has been on fatigue states 

extreme after sleep deprivation, and is insufficient for us to place a judgment 

on the effects of circadian fatigue to the neural firing states per se.  

3. The effects of the circadian fatigue are based on the specific tasks, and thus 

are not conclusive as yet. Hence, a possible follow-up from the current study 

could involve variations of tasks in which spatial and object are used as 

stimuli. Having then a better knowledge on how circadian influence the brain 

neural activity, a greater understanding on how neural firing states affect 

cognition can be facilitated and this may perhaps, provide a piece to the 

puzzle as to why circadian fatigue is important, at least with regard to 

cognition.  
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