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SUMMARY  
 
 
c-Abl is a non-receptor tyrosine kinase involved in various cell processes ranging 

from cell growth to cellular stress response. Mice carrying the null allele for c-Abl 

exhibit developmental abnormalities and complex phenotypes. My project attempts to 

address how c-Abl deficiency leads to the osteoporotic phenotype observed in mutant 

mice. 

 

c-Abl-/- osteoblasts show a reduction in proliferation potential and undergo premature 

senescence due to up-regulation of p16INK4a, a biomarker of senescence. The 

p16INK4a–mediated osteoblast senescence can be regulated by BMPs, which are major 

regulators of bone remodeling, through ERK1/2 and Id1 in an opposing fashion. 

Elevated p16INK4a levels were secondary to the down-regulation of Id1 and enhanced 

activation of ERKs, both known regulators of p16INK4a expression.  

 

Id1, a known target gene of the BMP pathway, was repressed in c-Abl-/- osteoblasts. 

Further investigation showed that c-Abl could regulate Id1 expression and was 

required for maximal Id1 induction by BMP2. This premature senescence could be 

rescued by c-Abl reconstitution or ectopic expression of Id1. c-Abl augments Id1 

expression by modulating the activation of Smads1/5/8, direct effectors of the BMP 

pathway. In addition, the expression of several other BMP target genes was found to 

be compromised by c-Abl deficiency. Hence, c-Abl played a positive role in BMP 

signaling and I found the link for c-Abl involvement via the regulation of BMP type I 

receptors (BMPR IA/IB), upstream activators of Smads. c-Abl was found to 

phosphorylate BMPR1A, on tyrosine residues Y453/457/458/467 found at the 

carboxy-terminus of BMPR1A. More importantly, co-immunoprecipitation studies 



 xviii

revealed that receptor complex formation between BMPR1 and BMPRII was 

compromised without the intact tyrosine residues on BMPR1A, validating the 

significance of c-Abl action on the BMP pathway. 

 

On the other hand, ERKs are positive regulators of p16INK4a and can be activated by 

BMPs via the TAB1-TAK1 complex. c-Abl repressed BMP-induced ERK activation 

over long periods of time by affecting the interaction of TAB1 with BMPR1A, 

forming the basis behind enhanced MAPK-ERK1/2 activation observed in c-Abl-/- 

osteoblasts. Moreover BMPs, secreted by osteoblasts, not only mediate osteoblast 

differentiation but also promote osteoprogenitor expansion via sustained Id1 

expression, by keeping p16INK4a expression repressed. Thus, through the actions of c-

Abl on BMPR1A, c-Abl deficiency shifts BMP signal transduction from Smad1/5/8 to 

favor MAPK-ERK1/2 activation, resulting in up-regulation of p16INK4a. For that 

reason, c-Abl fine-tuning of p16INK4a expression, in part by BMP signaling, is 

important for promoting osteoprogenitor cell expansion.  

 

These findings place c-Abl in BMP-mediated signaling pathways and establish its 

importance in osteoprogenitor expansion, linking osteoprogenitor senescence to senile 

osteoporosis. c-Abl-/- mice may represent a mouse model to study aging related 

osteopenia. 
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CHAPTER 1 
 
 
GENERAL INTRODUCTION 
 
 
The following literature review provides background information for the results 

section (Chapter 3 to 8). It begins with an overview of c-Abl, a tyrosine kinase central 

to this research project. The themes of aging is explored at both the organism and 

cellular level, as well as in bone homeostasis whereby diseases such as osteoporosis 

arise from abnormal aging of the bones. Lastly, the BMP pathway, vital to these 

processes is reviewed in greater detail.  

 
 
1.1 The c-Abl tyrosine kinase 
 
 
Tyrosine kinases (TKs) are enzymes that catalyze the transfer of phosphate from ATP 

to tyrosine residues in polypeptides, and there are 90 TKs and 43 TK-like genes, 

comprising close to one-fifth of total protein kinases identified in the human genome 

(Krause and Van Etten, 2005). TKs can be broadly grouped into either receptor TKs 

or non-receptor TKs (NRTK). c-Abl (cellular-Abelson) is a NRTK, and is closely 

related to the c-Src and Src family of NRTKs as they share a homologous N-terminal 

portion. ARG (Abl-related gene, or ABL2) is the only known paralogue of c-Abl 

(Kruh et al., 1990).  

 

c-abl, a proto oncogene; came into discovery only after the isolation of A-MuLV 

(Abelson murine Leukemia Virus), which induced development of lymphosarcoma in 

mice (Abelson and Rabstein, 1970). c-Abl was found to be the host protein with 

kinase activity, while fusions with other viral component such as Gag-Abl (v-Abl) 
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render its transforming capability. The following subsections will briefly collate 

structural and functional studies done on c-Abl, and also its involvement in 

pathophysiology of CML. 

 
 
1.1.1 The c-Abl gene, isoforms and structure  
 

c-Abl is a 150 kDa protein that is highly conserved and expressed ubiquitously. It is 

present in most cellular compartments, including the nucleus. In humans, the c-Abl 

gene gives rise to two forms of mRNA products that are 5- and 6.5- kb in length, 

denoted type Ia and Ib as a result of alternative splicing from separate promoters 

found on the Abl gene. The murine versions of c-Abl are denoted as type I and IV, 

equivalents of human type Ia and Ib respectively. Similarly, two isoforms of ARG; A 

and B exists (Li, 2006). 

 

Figure 1.1A illustrates the structural domains of the c-Abl Ib protein. The proximal 

N-terminus at the cap region is important for lipid modification of c-Abl as it contains 

the consensus sequence for myristoylation, which is not present in type Ia (or I for 

murine) (Fig. 1.1B). The C14 myristoyl fatty acid at the amino terminus is essential for 

regulating c-Abl activation and is the main difference between the gene variants.  

Following the cap domain are the SH3 (Src-homology 3), SH2, and kinase domain 

(PTK), which are common to the Src family kinases. In contrast the large, C-terminal 

region spanning ~90 kDa is unique to c-Abl. The main sections found here are: a large 

DNA binding domain, an actin binding domain, three nuclear localization signals 

(NLS), one single nuclear export signal (NES) (Wen et al., 1996, Taagepera et al., 

1998). The features of the latter two domains confer the special ability of c-Abl to 
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shuttle between the cytoplasm and nucleus (Van Etten, 1999). Hence, the specific 

roles of c-Abl can be pre-determined by its localization.  

 

The ability of c-Abl to form fusion proteins with other genes gives rise to isoforms 

such as v-Abl (viral-Abl), BCR-ABL (Breakpoint cluster-ABL), and Tel-Abl. These 

gene fusions create oncogenes, as all three possess transformation ability, unlike 

tightly regulated c-Abl, which cannot transform cells even when overexpressed (Van 

Etten et al., 1989). v-Abl is a result of fusion between Gag viral protein (M-MulV) to 

the SH2 domain of c-Abl, and can be myristoylated, hence its exclusive localization 

in the cytoplasm. It possesses potent tyrosine kinase activity that is required for 

cellular transformation of cells such as myeloid cells and fibroblasts, and can induce 

pre-B cell leukemia in mice.  

 

BCR-ABL, on the other hand, is a fusion protein between the N-terminal sequences of 

BCR and almost full-length c-Abl. This fusion makes BCR-Abl constitutively active, 

unlike c-Abl that is normally held in an inactive form in the absence of stimulation. 

BCR-Abl is localized in the cytoplasm, with the exception of ectoposide-induced 

DNA damage that triggers its nuclear translocation (Dierov et al., 2004). The various 

fusions at different points of BCR exons create at least three isoforms that differ in 

their size: p185, p210, and p230. Differences in BCR-ABL isoforms and the cell it 

targets is likely to contribute to the type of leukemia formed. In the etiology of 

specific leukemias, expression of p210BCR-ABL was correlated with Chronic 

Myelogenous Leukemia (CML) in over 90% of cases, and estimated 33% of adult 

acute lymphoblastic leukemia (B-ALL) cases with Ph chromosome. p185BCR-ABL was 
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associated with the remaining adult Acute Myelogenous Leukemia cases unrelated 

with Ph chromosome, AML and lymphoma (Melo, 1996, Deininger et al., 2000). 

 
 
1.1.2 Abl biology using forward/reverse genetics 
 

c-Abl is expressed ubiquitously throughout mouse embryonic development, with 

higher expression in the thymus (Muller et al., 1982, Renshaw et al., 1988). In 

humans, high expression of c-Abl was found in hyaline cartilages, adipocytes and 

ciliated epithelium of adults, while in fetuses the heaviest expression was observed at 

the sites of endochondral ossification (O'Neill et al., 1997). The physiological 

functions of c-Abl have been studied mainly with the c-Abl knockout mice. Genetic 

studies of c-Abl-/- mice demonstrated its essential role in development. Mice carrying 

the null allele for c-Abl are mostly perinatal lethal. And those that survive the first 3 

days (<50%) exhibit several developmental abnormalities coupled with complex 

phenotypes such as shortened-lifespan, infertility, runtedness, thymus and spleen 

atrophies and osteoporosis (Schwartzberg et al., 1991, Tybulewicz et al., 1991). Some 

surviving homozygous mutants will develop megaesophagus and anal prolapse from 

the third month (Li et al., 2000). Through the generation of other c-Abl knockout 

lines bearing c-Abl deletion or truncation it was found that the carboxy-terminal 

region was critical for c-Abl function in vivo (Li et al., 2000). 

 
Mice deficient for c-Abl paralogue Arg are normal. However, mice deficient for both 

c-Abl and Arg are embryonic lethal at 11 dpc., with defects in neural tube closure and 

massive apoptosis and hemorrhage in the brains (Koleske et al. 1998). This suggests a 

role for c-Abl and Arg in early embryonic development,  with   Arg   sharing  some  

level  of  functional  redundancy. 
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Figure 1.1 The structural domains of c-Abl. (A) Illustration of the domain 

structures in mammalian c-Abl protein (Abl Ib) and below (B) the aligned cap 

sequences of human Abl Ia, Ib, ARG-A, ARG-B, and mouse c-Abl I and IV. 

Myristoylation sites are shaded in yellow and the conserved sequences of cap regions 

are boxed (Li, 2006).  
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Apart from genetic studies, c-Abl function was extensively studied from the cell 

biology perspective. Biochemical studies indicate that c-Abl can be activated by 

various growth factors such as transforming growth factor-� (TGF�) (Wilkes and 

Leof, 2006), epidermal growth factor (EGF) (Plattner et al, 1999), PDGF through 

phospholipase C-�1 (PLC-�1) (Plattner et al., 2003), mainly to promote cell 

proliferation. It also plays an important role cellular stress response as in the case of 

promoting apoptosis under DNA damage stress response by activating ATM-p53-p73 

pathway (Yuan et al., 1999), and in oxidative stress response via protein kinase C 

(PKC�) (Li et al., 2004). Due to the presence of a huge actin binding domain, c-Abl 

was also found to regulate cytoskeleton reorganization (reviewed in Pendergast, 

2002). 

 
 
1.1.3 Abl in transformation and therapeutics: BCR-ABL and STI571 
 
 
Chronic Myelogenous Leukemia (CML) is a clonal myeloproliferative disorder 

originating from the pluripotential stem cells of the bone marrow. This disease 

progresses in three stages, starting from the chronic phase, and followed the 

accelerated phase and lastly, the blast crisis phase. The transition to final two phases 

often display more aggressive and pleiotropic phenotypes, with a displacement of 

mature cells by immature blasts (Wong and Witte, 2004). Therefore, treatment of 

CML in the early stage holds better prognosis, and chances of remission. 

 

The majority of CML patients have the Philadelphia chromosome (Ph+), an abnormal 

reciprocal translocation between chromosomes 9 (containing c-Abl gene) and 22 

(BCR-break point gene) creating partner proteins (Rowley, 1973, Groffen et al., 1984, 

and Heisterkamp et al., 1985). This fusion holds a coiled-coil (CC) domain in the 
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BCR region that mediates oligomerization, which is crucial for its constitutively 

active kinase activity and remains a target region for therapeutic intervention 

(reviewed in Krause and Van Etten, 2005).  

 

Imatinib mesylate (Gleevec) was the first and most successful small molecular TK 

inhibitor tested on CML. It is a 2-phenylaminopyrimidine compound that can 

specifically inhibit four TKs: Abl, Arg, c-Kit and PDGF receptor (PDGFR) (Druker et 

al., 1996, Okuda et al., 2001) and induces complete hematologic and cytogenetic 

remissions in most chronic phase CML patients (O’Brien et al., 2003), with the 

overall survival rate of 90.8% (Cohen et al., 2005). 

 
The elucidation of intramolecular interaction between c-Abl kinase complexed with 

imatinib using crystallography led to the advanced understanding of the mechanism 

behind imatinib action (Nagar et al., 2003). The latch-clamp model of Abl 

autoinhibition reveals the conformational changes for c-Abl activation requires 

removal of myristoyl group, displacement of SH3 domain, along with activation of 

phosphor-tyrosine sites Y412 and/or Y245. Therefore, how BCR-ABL can maintain 

constant kinase activation stems from the loss of Cap domain which weakens the 

inhibitory effect of SH3-SH2 domains and more importantly the oligomerization 

ability of BCR-CC domain that can facilitate phosphorylation of Y412 (Harrison, 

2003, Hantschel and Superti-Furga, 2004). 

 

However, newer approaches to CML therapy is needed as a small percentage of 

chronic phase patients remain non-responsive to imatinib, and it does not work as well 

in accelerated and blast stages, with higher incidence of drug resistance in blast crisis 

patients that received treatment. Moreover, long-term treatment is mandatory as 
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imatinib acts to repress, but not remove BCR transcripts since it enforces Abl to adopt 

an inactive confirmation by binding to the conserved ATP-binding region. Long-term 

toxicity of imatinib is implicated as it can also repress c-Abl functions. Other 

pharmacological options to improve treatment involve the use of combination therapy 

(e.g. imatinib with interferon-α or farnesyl transferase inhibitors), small molecule 

inhibitor nutlin-1 to boost p53 levels. Also, newer designed inhibitors have been 

tested that are improved versions of imatinib, such as PD173955, AMN107 that 

inhibits only BCR-ABL, and dual inhibitors of Abl and Src such as AP23464. Other 

drugs created can also target imatinib-resistant BCR-ABL mutants (reviewed in Li, 

2006). The current known pathways that are involved in BCR-ABL pathogenesis will 

be further discussed in chapter 8. 
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1.2 Aging and senescence   
 
 
Aging is a universal, physiological process that marks the finite life-span of a multi-

cellular organism, which eventually leads to death. In aging, survival is challenged by 

deleterious changes that compromise the body’s capacity to function efficiently. The 

history and current understanding of factors involved in the biology of aging are 

described here, at both the organism and cellular level. 

  
 
1.2.1 Organismal aging 
 
 
The typical signs of aging in mice are phenotypes such as reduced life-span, 

osteopenia, graying hair, reduced weight, skin ulcerations and alopecia (Hasty et al., 

2003). In humans, these signs are also prevalent, along with neuronal, retinal 

degeneration and the increased risk of late-life cancers. Despite the physical 

similarities, the etiology of aging remains complex, as significant variations in aging 

phenotypes and individual lifespan have been reported across all species.  

 

Genetics was believed to be the basis for aging. There exist unique sets of pleiotropic 

genes that function to be beneficial during early life and turn harmful later in age, as 

natural selection becomes weak, labeled the “antagonistic pleiotropic theory” 

(Williams, 1957). Less well-received was the theory that aging was programmed, and 

the accumulation of mutations in genes that confer longevity causes aging. Yet, both 

theories have not been validated successfully since pleiotropic genes have not been 

singled out (Partridge and Gems, 2002), and no combination of mutations were found 

to abolish aging altogether, as seen with genetic manipulations on longevity model, 

the nematode C. elegans (Shaw et al., 1999).  
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Nevertheless, the “disposable soma theory” could account for the variations observed 

with aging. The act of natural selection was believed to conserve body’s resources to 

maintain processes such as growth, repair and reproduction. Aging begins when the 

body’s resources are stretched beyond their allocated limit to cater to additional 

functions such as injury or adaptation to weather. Thus, the exhaustion of resources to 

maintain optimum body functions is believed to disrupt the maximum lifespan 

potential of an organism (Kirkwood, 1977 and 2005, Kirkwood and Austad, 2000). 

Therefore, due to the lack of mechanistic conservation in aging, it remains 

complicated in understanding the reasons behind aging.  

  
 
1.2.2 Cellular senescence  
 
 
Cellular or replicative senescence is an in vitro phenomenon that occurs to cells in 

culture. Unlike tumor cells that can proliferate indefinitely, normal cultured cells were 

observed to possess a finite lifespan, or doubling time (Hayflick and Moorhead, 

1961).  The process of replicative senescence is a fundamental feature of somatic 

cells, and is characterized by cells undergoing permanent growth arrest at G1 phase 

(Campisi, 1997). Senescent cells adopt a typical physical appearance of a large, 

flattened morphology. More striking are the biochemical changes that distinguish a 

senescent cell from a pre-senescent cell. Senescent cells cease to divide but remain 

metabolically active. Apart from the irreversible block to cell proliferation, changes to 

expression of different sets of transcription factors, the increased resistance to 

apoptosis (Wang, 1995) and the secretion of various cytokines and matrix proteins 

makes a senescent cell alter its normal differentiated functions (Shelton et al., 1999, 

Itahana et al., 2004). With the knowledge obtained on senescence mostly from cell 

culture studies, an important caveat to be questioned is whether senescence takes 
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place in vivo. Campisi addressed this issue and strongly suggested that cells do 

undergo replicative senescence in vivo to contribute to aging, via several lines of 

evidence that included studies of cells passaged in intact animals (reviewed in 

Campisi, 1996 and 2001). 

 
The outcome of senescence can be a two-edged sword. Senescence remains an 

effective barrier against neoplastic transformation, linking cancer and aging as a 

tumor suppressive mechanism. Yet in contradiction, the presence of senescent cells 

can accumulate in aged tissues and disrupt tissue integrity and normal function 

through their altered actions such as the secretion of degradatory matrix proteins 

(Dimri et al., 1995, Millis et al., 1992). This in turn may promote cancer progression 

(Campisi, 2005).  

 
1.2.2.1 Replicative senescence versus premature senescence 

 
 
Senescence can be categorized into two types, replicative senescence which is 

attributed by telomerase (hence intrinsic), and non-replicative/premature senescence 

which occurs by telomere-independent mechanisms (extrinsic). This classification is 

important in distinguishing the different mechanisms of senescence that occurs 

between humans and mice. 

 
Intrinsic senescence relies on the expression of telomerase. The telomerase enzyme 

synthesizes telomeres, which function as a “cap” to keep chromosome length 

constant. To protect cells against genomic instability and cancer, it is believed 

senescence is triggered when cells acquire very short telomeres (Kim et al., 2002). 

However, only human germ cells and certain stem cells express telomerase, therefore 

most human somatic cells suffer from telomere attrition after each round of DNA 
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replication and become vulnerable to senescence. This cell-counting mechanism 

employed by human cells does not exist in mice as laboratory mice have been shown 

to possess extremely long telomeres (40-60 kb, in contrast with 5-15 kb in humans) 

(reviewed in Itahana et al., 2004). Hence, the senescence of murine cells is most 

likely to be induced by extrinsic or environmental factors. Figure 1.2 summarizes the 

two classes of senescence and the causative agents involved.  

 
 
1.2.3 The molecular basis of senescence 
 
 
Many intrinsic and extrinsic factors have been implicated to trigger senescence and 

different hypotheses were proposed along these lines. However, little is done to unify 

these theories as they remain rather unconnected, while it is generally believed that 

each of these causes work in combination to contribute to aging as a whole. 

 

One key intrinsic factor that affects the rate of aging is progressive telomere attrition 

that acts as a system to ‘count’ cell divisions and a potential tumor-protection 

mechanism (Wright and Shay, 2001). Yet, the differences in mouse and human 

telomere lengths demonstrate the species-specific disparity in regulating senescence.  

The increased levels of oxidative stress was found to be able to accelerate telomere 

loss (von Zglinicki, 2002), indicating innate and extrinsic factors may share 

similarities in signaling mechanisms. 

 
Genome maintenance is another important factor. Damage to DNA triggers sensors of 

DNA double strand breaks and leads to the recruitment of DNA repair foci to the site 

of damage. Defects in DNA repair systems increase the risk of somatic cell mutations, 

and thus senescence is induced. Therefore, the capacity for DNA repair is another 
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Figure 1.2. The two forms of senescence in mammalian cells. Extrinsic senescence 

(telomere independent) covers cell culture conditions, DNA damage by radiation or 

chemicals, oncogenic or mitogenic stimuli and exogenously overexpressed tumor 

suppressors such as p16INK4a. Intrinsic senescence occurs within the cell nucleus, a 

result of telomere shortening. 
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important determinant in the rate of aging (Kirkwood, 2005), and human models for 

this form of aging are discussed in section 1.2.4. 

 

A major extrinsic factor for inducing senescence is the exposure of cells to cellular 

stresses. STASIS (stress or aberrant signaling-induced senescence) forms the basis of 

the numerous acute and chronic stress signals that confronts a pre-senescent cell 

(Shay and Roninson, 2004). Oxidative stress, in particular is common in cell culture 

conditions where higher physiological concentrations of O2 and the production of free 

radicals ROS (reactive oxygen species) can significantly accelerate senescence 

(Lundberg et al., 2000). For example, mild hyperoxia culture conditions could shorten 

a cell’s replicative lifespan and induce accelerated telomere shortening (von Zglinicki 

et al, 1995), while short term serum starvation in cells induced quiescence, and long 

term serum deprivation triggered senescence. The free radical theory of senescence 

may be valid in organismal aging as well, since p66SHC-/- mice were less sensitive to 

the toxic effects of ROS, and lived 30% longer than its wild type counterparts 

(Migliaccio et al., 1999). 

 

The relationship shared by oncogenes and senescence has been well established. 

Oncogene-induced senescence (OIS) describes the ability of oncogenes such as Myc, 

E1A or Ras to activate genes (p16INK4a and p19ARF) required for cell cycle arrest and 

induce senescence, when ectopically expressed (Serrano et al., 1997, Palmero et al., 

1998). OIS operate as a bona fide barrier to tumorigenesis in vivo (reviewed in Narita 

and Lowe, 2005), as the escape from senescence or immortality is important for 

malignant transformation to occur. In this case, senescence can be bypassed by 

introducing viral oncogenes (e.g. HPV-E6), that targets tumor suppressors p53 and 
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Rb, both of which must be functionally inactivated in order for human cells to 

circumvent senescence (Shay et al., 1991). Nevertheless, the mechanism of telomere 

shortening (replicative senescence) appears to be dispensible for ras-induced 

senescence, since prior ectopic expression of hTERT allowed fibroblasts to escape 

from replicative, but not ras-induced senescence (Wei and Sedivy, 1999). 

Furthermore, the immortalization of epithelial cells required additional mechanisms 

such as epigenetic modifications (p16INK4a methylation) as the expression of 

telomerase per se is insufficient to bypass senescence (Wright and Shay, 2001). 

Hence, it appears different senescence mechanisms are employed by cells and this 

may vary among species, cell type, or in different cell context. 

 
 1.2.3.1 Signaling pathways of senescence 
 
 
Despite the diverse stimuli in inducing a senescent state, only two signaling pathways 

have been shown to be responsible. Crucial to these pathways are the activation of 

two key tumor suppressor genes p53 and pRb (retinoblastoma) and their effectors 

cyclin-dependent kinase inhibitors (CDKIs) p19ARF and p16INK4a respectively, as 

illustrated in Figure 1.3. 

 
In the p53 pathway, p19ARF stabilizes p53 by interfering with its negative regulator 

MDM2. In turn, p21CIP1 gets induced by p53, to promote cell cycle arrest since 

p21CIP1 inhibit cyclin E and A-dependent kinase complexes. The activation of p19ARF 

/p53 pathway is associated with telomere dysfunction, oncogene ras activation and 

DNA damage. p53 is vital to DNA damage response signaling pathways (Wahl and 

Carr, 2001) and it is believed that the shortening of telomeres resemble damaged 

DNA, thus triggering a p53-mediated response. The effects of p53 activation in 

senescence may well be an indirect response to the many pathways it regulates. In ras-
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induced senescence, p53 activation was postulated to be caused by the DNA-

damaging effects of ROS production, created from ras-induced MAPK signaling 

(reviewed in Campisi, 2005). Unlike Rb-mediated senescence, p53-mediated 

senescence is reversible, as inactivating p53 in replicative senescent human cells can 

completely reverse the senescent growth arrest phenotype (Gire and Wynford-

Thomas, 1998). 

 
In the Rb pathway, p16INK4a is the key mediator in controlling cell cycle arrest by 

inhibiting cyclin-dependent kinases, which consist of a catalytic subunit (cdk) and a 

regulatory subunit (cyclin). The steps of Rb activation begins with p16INK4a induction 

upon stress stimuli, which in turn bind to cdk4/6 to inactivate cdk4/6-cyclinD 

complexes via inhibition of ATP binding and thus displacing cyclinD. Consequently 

the Rb proteins remain hypophosphorylated, leading to G1 arrest, as cdk4/6-cyclinD 

complexes are required for Rb phosphorylation during G1-S transition (Serrano et al, 

1993). This inactivation of Rb also lifts its repression of E2F transcription factors, 

which are responsible for promoting cell proliferation (Stevaux and Dyson, 2002). 

p16INK4a activation comes mainly from conditions of cellular stress, such as genotoxic 

and oxidative stress, as well as ras overexpression. The activation of this pathway is 

irreversible, as once pRb is engaged by p16INK4a, the senescence-mediated growth 

arrest cannot be reversed by subsequent p53 inactivation, silencing of p16INK4a, or 

inactivation of pRb (Beausejour et al., 2003). Therefore the p16INK4a/Rb pathway may 

function as a final barrier to cell proliferation, in situations where senescence can be 

overcome by p53 loss or inactivation (Campisi, 2005).  

 
The activation of either pathway appears to depend on the type and species of origin 

in  cell.  In   mice,  MEFs  depend  on  p19ARF  for   ras-induced  senescence,  whereas  



 17

 
 
 
 

 
 
 
Fig 1.3. The two major pathways of senescence, the p16INK4a /Rb and p19ARF /p53 

signaling pathways. Activation by various stimuli, and the key molecules involved in 

these pathways are illustrated here. 
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p16INK4a appears to be essential for senescence of human cells since fibroblasts 

carrying inactivating mutations of p16INK4a can be resistant to ras-induced senescence 

(Carnero et al., 2000, Huot et al., 2002). The p16INK4a /Rb pathway was also found to 

be important for melanocyte senescence, melanoma progression (Bennett, 2003). 

These pathways may cooperate to regulate senescence, as seen with Pak4 bridging 

p16/p19 pathways through MAPK-ERK (Cammarano et al., 2005), while the 

inactivation of both pathways can bypass senescence and trigger cell transformation 

(Hara et al., 1991). 

 
 

1.2.3.2 p16INK4a , a biomarker of aging 
   

 
The INK4 family of proteins regulates cell cycle progression by binding and 

inhibiting cdks. p16INK4a belongs to this family that also includes p15INK4b, p18INK4c 

and p19INK4d/ARF. p16INK4a and p19ARF are alternative splice variants from the INK4a 

locus, and therefore they are not isoforms and share no homology in amino acid 

sequence (Kim and Sharpless, 2006). Three p16INK4a variants have been found to exist 

in senescent human fibroblasts (Weebadda et al., 2005). 

 
p16INK4a arrest cells at the G1 phase of cell cycle, and the induction of p16INK4a in 

normal proliferating cells is a relatively rare event (Serrano et al, 1993). Instead, 

p16INK4a expression is normally silenced by methylation in cultured cells as well as in 

vivo (Holst et al., 2003). p16INK4a have been established to be a true biomarker of 

mammalian aging, as its in vivo expression correlates with the aging of mice 

(Krishnamurthy et al., 2004). Moreover, the increasing p16INK4a gene dosage (to lesser 

extent with p19ARF) results in normal aging and resistance to cancer (Matheu et al., 
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2004). More recently, p16INK4a was found to promote the age-dependent decrease in 

proliferation and self-renewal capacity of progenitor cells in different organs such as 

brain, bone marrow and pancreatic islets (Molofsky et al., 2006, Janzen et al., 2006 

and Krishnamurthy et al., 2006).   

 
Among cdk inhibitors, p16INK4a is the only known bona fide tumor suppressor, since 

p16INK4a function, or its downstream mediators is frequently de-regulated in many 

types of human cancers (Okamoto et al., 1994). Therefore, p16INK4a and the p16INK4a –

pRb pathway remains a molecular link between cellular senescence and tumor 

suppression (Ohtani et al., 2004). 

 
Some progress has been made in understanding the regulation and kinetics of 

p16INK4a. The stable expression of p16INK4a during replicative senescence was a result 

of decreased p16INK4a mRNA turnover, mediated by a mRNA decay protein AUF1 

(Wang et al., 2005). p16INK4a was also demonstrated to participate in epigenetic 

regulation, as high-mobility group A (HMGA) proteins cooperate with p16INK4a to 

promote senescence-associated heterochromatin foci formation, thus stabilize 

senescence by silencing E2F target genes (Narita et al., 2006). 

 
1.2.3.3 Biochemical markers of aging 
 
 

To date, current research employs a limited set of candidate markers to define and 

measure the degree of senescence.  Key genes are cell cycle inhibitors p16INK4a and 

p19ARF (ARF), where their mRNA expression markedly increases with aging. The 

expression profile of p16INK4a often correlates with the up-regulation of enzyme SA-�-

Gal (Senescence-associated-�-Galactosidase), which remains the gold standard for 

detecting senescence in vitro and in vivo (Dimri et al., 1995). Interestingly, the 
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discovery of senescence-associated heterochromatic foci (SAHF), which accumulates 

in senescent human fibroblasts, may serve as a potential marker. The formation of 

SAHF was found to correlate with stable repression of E2F target genes, validating 

the existence of an intact p16-Rb mediated senescent pathway (Narita et al., 2003). 

 
 
1.2.4 Progeroid syndromes  
 
 
Does senescence reflect aging in humans? Although the features and causative agents 

of aging vary widely among species, some universal aging mechanisms have been 

identified, such as alterations to insulin-IGF axis. Yet, mechanisms primary to aging 

in humans may not necessarily have counterparts in every metazoan (Kipling et al., 

2004). The study of aging in humans are modeled on progeroid (premature aging-like) 

syndromes, which are human genetic diseases with outcomes that mimic aging 

phenotypes (Martin, 1985). However, most progeroid syndromes manifest only partial 

aging phenotypes, which compound the fear that these syndromes may have resulted 

from mechanisms postulated to play only causal roles in normal aging (Hasty et al., 

2003). 

 
Genomic instability remains a fundamental problem as defects in genome 

maintenance can greatly compromise survival and accelerate aging. In humans, 

Werner syndrome (WS) displays severe age-related diseases such as type II diabetes, 

osteoporosis and calcification of cardiac valves, arising from DNA helicase (RecQ) 

mutation. The ataxia telangiectasia (ATM) syndrome, which exhibits 

immunodeficiency and osteopenia (Hishiya et al., 2005), arises from defects in repair 

of double strand breaks (reviewed in Lombard et al., 2005). Hutchinson-Gilford 

progeria (HGP), shows distinct tissue specific features, due to mutations in lamin A/C 
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(Goldman et al., 2004). A common ground for comparative studies between humans 

and mice have been achieved by crossing the Werner gene (wrn) to telomerase-null 

(terc-/-) mice, in the attempt to humanize the telomere length in mice (Chang et al., 

2004). 
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1.3 Bone development & pathophysiology   
 
The physiological functions of bone serve not only as a support system for our 

internal organs, but also for body movement, body resistance and adaptation to 

changing mechanical stress/loading. Other essential roles for bone lie in the regulating 

homeostasis of ions; in particularly calcium, as well as providing the site for 

hematopoiesis to take place. The biology of bone and disease is reviewed in following 

sub-headings below. 

 
 
1.3.1 Bone tissue and the process of osteogenesis 
 
 
The skeletal system consists mainly of bone tissue, a specialized form of connective 

tissue with its extracellular matrix (ECM) components calcified. Mineralization 

confers immense rigidity and tensile strength, characteristics of bone. The average 

compact bone holds 30% organic matrix and 70% salts in which collagen fibers fill 

the organic matrix and the gradual deposition of inorganic bone salts (mostly calcium 

and phosphates which forms hydroxyapatite crystals) increases its compressional 

strength, along with tensile strength, to create a material reminiscent of reinforced 

concrete (Guyton and Hall, 1996). Anatomically, bone is comprised of 2 different 

types of structures, namely the compact bone (cortical bone), which is the outer hard 

shell that forms the shaft of long bones, and spongy bone (trabecular/cancellous 

bone), which consists of a lattice-like network of bony spicules with interconnecting 

spaces filled with bone marrow cells (Burkitt et al., 1999).  

 

During development, immature woven bone can be found in a developing embryo, up 

to childhood before 14 years of age, and temporarily in the regions of bone 

undergoing repair. Over time, secondary bone takes over to form well organized 
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lamellar bone, which contains compact and cancellous bone, forming the mature 

skeleton. The process of endochondral ossification takes place in all long bones. 

Unlike intramembraneous bone formation (which involves direct bone formation 

within primitive connective tissue), this process requires the development of a 

cartilage platform prior to bone formation, and an intricate network of several cell 

types. Long bone growth involves expansion of bones in diameter and length. The 

increase in thickness of cortical bone shaft (diaphysis region) can be achieved by bone 

deposition on the periosteal surface, and resorption at the endosteal surface that 

begins from the center region of bone and creates a hollow bone marrow cavity. On 

the other hand, an increase of bone length takes place primarily at the ends of long 

bones, termed epiphyseal plate region (growth plate). It is the fusion of epiphyses 

which results in the loss of growth plates and hence cessation of bone growth at the 

end of adolescence (www.techion.ac.il).   

 
At the cellular level, 3 major cell lineages originating from mesenchymal stem cells 

critical to osteogenesis are osteoblasts, osteoclasts and chondrocytes. Endochondral 

ossification of long bones begins with condensation of mesenchymal cells to form 

chondrocytes (Kronenberg, 2003), laying down a hyaline cartilage template which 

then directs the differentiation of osteoblasts to form mature bone (Russell et al, 

2006). Osteoclasts act to remove bone, while osteoblasts function to form new bone. 

 

1.3.2 Bone remodeling 
 
 
As progression of early bone modeling to formation of mature skeleton is completed, 

the complicated process of bone remodeling begins. Continuous bone remodeling 

takes place so as to maintain bone homeostasis, bone architecture and buffer 
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circulating plasma calcium in the body. Bone remodeling involves creating new bone 

tissue in place of old bone, and these require the orchestrated actions of osteoblasts 

and osteoclasts, to form a basic multicellular unit (BMU).  

 

A cycle of BMU action revolves around 3 consecutive phases: bone resorption, 

reversal and formation. Osteoclasts, multinucleate cells derived from the 

monocytic/macrophage lineage, resorb bone upon migration to the bone surface, 

leaving open ‘trenches’ or cavities that are 20-40�m deep in cortical bones. This 

resorption stage is then followed by a reversal phase with mononuclear cells 

appearing on bone surface, to prepare the surface for new bone by signaling for the 

maturation of osteoblast progenitors and subsequently recruiting osteoblasts to the site 

to lay down new bone till the resorbed site is fully covered, completing the final phase 

of the cycle. Flattened lining cells then occupy the site until a new remodeling cycle is 

initiated. This process is illustrated in Figure 1.4.  

 

Hence, the actions of osteoblasts and osteoclasts are closely coupled to each other. 

Bone turnover occurs more actively in trabecular bones, which form 20% of skeletal 

mass but holds 80% of total bone surface due to the larger surface to volume ratio. 

Nevertheless, up to 2-5% of cortical bones, and about 25% of trabecular bones are 

replaced annually during adulthood (Hadjidakis and Androulakis, 2006, Manolagas 

and Jilka, 1995). Bone remodeling is regulated by a numerous factors, which range 

from secondary/systemic influence via the endocrine system (such as parathyroid 

hormone (PTH) and estrogens), to local regulation in the bone microenvironment via 

the release of cytokines that regulate osteclasts (osteoprotegerin-OPG), or osteoblasts 

(interleukin 6- IL6) (reviewed in Hadjidakis and Androulakis, 2006). 
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Figure 1.4. The process of bone remodeling in normal bones carried out by 

osteoclasts and osteoblasts. 
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1.3.3 Osteoblast biology  
 
 
Osteoblasts form new bone by first synthesizing complex extracellular matrix 

including collagen fibres (termed osteoid), which is then subsequently mineralized. 

Osteoblasts are found in clusters, lining the layer of bone matrix that they are 

producing on the bone surface. When its matrix secreting period ceases, 15% of 

mature osteoblasts become entrapped in the new bone matrix and differentiate into 

osteocytes, while some remain on the bone surface to form flat lining cells 

(Hadjidakis and Androulakis, 2006). Such functions require osteoblasts to be rich in 

the enzyme alkaline phosphatase that is needed for the formation of the mineral 

deposits in the matrix. Due to the metabolic requirements of this cell type, it is also 

morphologically a large cell filled with abundant basophilic cytoplasm that holds a 

huge Golgi apparatus, a pale stained nucleus but prominent nucleolus, features that 

reflect a high rate of protein and proteoglycan synthesis (Burkitt et al., 1999). 

 
 

1.3.3.1 Osteoblast differentiation and proliferation 
 
 
Cells of the osteoblast lineage originate from stromal cells of bone marrow, where 

mesenchymal stem cells reside. The pluripotency of these stem cells can give rise to 

not only osteoblasts, but also adipocytes, chondrocytes, myoblasts or fibroblasts 

(Bianco et al 2001). Fibroblast colony-forming unit (CFU-F) remains the earliest cell  

to commit to the osteoblast lineage (Manolagas and Jilka, 1995).  The commitment of 

precursor cells to the osteoblastic fate involves the complicated coordination of 

several cytokines and growth factors, and timed expression of osteoblast specific 

transcription factors. Figure 1.5 illustrates the stages of osteoblast differentiation, 

along with the biochemical markers that are expressed by osteoblasts at different 
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phases of differentiation. The early steps of cell commitment to preosteoblast remains 

vague, but several factors have been singled out in driving proliferation and expansion 

of precursor osteoblasts, and they include bone morphogenetic proteins (BMPs), 

fibroblast growth factor (FGF), insulin-like growth factors I and II (IGF-I and IGF-II), 

platelet-derived growth factor (PDGF) and transforming growth factors-�1 and �2 

(Mundy et al., 2001, Chen et al, 2004), though most of these factors act to exert 

similar effects on mesenchymal cells in general. Moreover, the differentiation 

program of osteoblast is dependent on the expression of master genes Runx2 (or core 

binding factor 1/cbfa1), and osterix (osx). Through genetic studies it was found that 

both transcription factors are essential in bone formation as Runx2 null mice form a 

skeleton made entirely of cartilage and not normal bones (Ducy et al., 1997, Komori 

et al., 1997), while Osx-/- mice do not develop bones. It was believed that osterix 

worked downstream of Runx2 as Runx2-/- mice do not express osterix at all, while 

Runx2 was expressed in Osx-/- mice despite the lack of bone formation(Nakashima et 

al., 2002). Other transcription factors than influence osteoblast differentiation in vivo 

include the homeobox proteins Dlx5, Dlx6 and Msx2 (reviewed in Ducy et al., 2000). 

More work remains to be done on uncovering the regulation of osteoblast 

differentiation, in comparison to the extensive research and knowledge obtained about 

osteoclast biology. 

 

1.3.3.2 Signaling pathways in osteoblasts 
 
 
The signal transduction pathways that occur in osteoblasts can be traced from the 

substances that they secrete. BMP-mediated signaling, for example, is of utmost
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Figure 1.5. The various stages of cell fate commitment to osteoblast differentiation. Growth factors and cytokines (in green) are placed from the 

start of their expression, transcription factors (in red) and the expressed biochemical markers by osteoblasts (in orange). 
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importance to osteoblasts as the transcription of key genes Runx2 and osterix are 

dependent on it. Activation of these 2 master genes drives the terminal differentiation 

of osteoblasts, by enhancing osteoblast specific genes such as alkaline phosphatase 

and osteocalcein. In addition, other growth factors may act to complement or 

antagonize BMP signaling. TGF� can also induce Runx2 expression via activated 

effectors Smad2 and Smad3 (Lee et al., 2000). Growth factors FGF, IGF-1, and 

endothelin-1 (ET1) activate osteoblast MAPK (mitogen activated protein kinase) 

cascade via transmembrane or G-protein coupled receptors. These activated pathways 

can also ultimately lead to Runx2 and osterix gene regulation, via other kinases such 

as protein kinase C (PKC) in the case of FGF signaling (Kim et al., 2003). Also of 

importance is the canonical Wnt signaling pathway, whereby co-receptor LRP5 was 

shown to be involved in bone formation (Boyden et al., 2002), independent of Runx2 

(Kato et al., 2002), while �-catenin was also required for osterix expression (Rodda 

and McMahon, 2006). Notably, the most well studied connection between osteoblasts 

and osteoclasts comes from the RANKL-RANK-OPG interaction that show 

osteoclasts need osteoblast secreted RANKL (receptor activator of nuclear factor 

kappa-B ligand) to mature (Russell et al., 2006).  

 

Of newer interest is osteoblast apoptosis, where the activation of apoptotic pathways 

may be part of osteoblast signaling since bone cells may undergo programmed cell 

death to control life span, affecting changes in bone turnover as well (Manolagas, 

2000). Proapoptotic proteins Bim, Bak and Bax were found to be induced in 

osteoblasts via the caspase 3 pathway upon serum deprivation (Liang et al., 2008). 

Nevertheless, the multiple pathways an osteoblast can support due to the abundance 

of growth factors it secrete can also be a bane as in the case of frequent metastatic 
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secondary tumors of bone developed from primary adenocarcinomas, through 

stimulation of osteoblast proliferation (Logothetis and Lin, 2005). 

 
  
1.3.4 Disorders of bone remodeling 
 
 
In healthy adults, bone turnover is maintained at a steady state as the rate of resorption 

roughly equals the rate of bone deposition. Disorders of bone remodeling occur as a 

result of an imbalance in these two actions. Osteoporosis develops when the rate of 

bone resorption exceeds the rate of bone formation, such that resorption cavities left 

by osteoclasts are incompletely replaced by new bone, creating perforations in bone 

structure. Less common is osteopetrosis, characterized by high bone mass 

(osteosclerosis) due to the higher bone formation rates, the opposite outcome of the 

former (Russell et al., 2006, Lazner et al., 1999) 

 

The cellular mechanism behind bone disorders is not completely understood; as the 

understanding on bone remodeling remains vague.  Bone remodeling is a continuous 

process with each phase requiring different time frames; resorption takes about 2 

weeks in contrast with bone formation needing up to 4 months for complete structural 

bone replacement (Hadjidakis and Androulakis, 2006).  

 
 

1.3.4.1 Osteoporosis, a disease of low bone turnover  
 
 
Osteoporosis/osteopenia is a disease characterized by low bone mass. The most 

common and widespread bone disease, osteoporosis affects mainly the older 

population with a higher incidence in women.  
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One of the two primary causes is loss of gonadal function/estrogen deficiency termed 

postmenopausal bone loss, which is usually rapid.  The other is gradual bone loss with 

aging (non-hormonal), in which both causes are known to operate through 

independent mechanisms. Bone loss through aging differs from hormonal deficiency 

as bone formation decreases over time, due to a progressive decline of osteoblasts 

supply relative to the demand. This “exhaustion” or senescence of precursor cell 

population in the marrow results in irreversible loss of bone mass over time, usually 

affecting cortical bones. Post-menopausal osteoporosis, on the other hand, is 

effectively the result of excessive osteoclast activity that mainly affects trabecular 

bones (Manolagas and Jilka, 1995). 

 

Age-related bone loss is also termed as senile osteoporosis. The major sources of 

senile osteoporosis stem from either systemic abnormality, or osteoblast dysfunction. 

Systemic influences include insufficient active vitamin D. Intrinsic osteoblast 

dysfunction results from factors found in the osteoblast or surrounding it (within its 

microenvironment). The local microenvironment of the osteoblast is controlled by 

cytokines and growth factors such as BMPs and IGF-1, though none of these factors 

can solely be responsible for the etiology of aging-associated bone loss (Kawaguchi, 

2006). 

 

Therefore, what causes senile osteoporosis? Several genetic and systemic factors have 

been implicated, in an attempt to uncover its pathophysiology. Osteoporosis is 

generally known to be a multiple-factor disease and is believed that genetic 

susceptibility plays substantial role at an early age. Despite no single gene have been 

identified to be directly the sole cause of osteoporosis, linkage studies have identified 
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several loci that may contain the genes regulating bone mineral density (BMD), which 

can alter one’s risk to disease progression (Russell et al., 2006). One such example of 

genetic impact is the role of Sca1 gene, present on a subset of bone marrow stroma 

whereby Sca1-/- mice born with normal bone development matures to senile 

osteoporosis with age, due to the deficiency in self-renewal capacity of mesenchymal 

progenitors (Bonyadi et al., 2003).  

 

The increased risk for fractures and the lack of promising therapeutics remains the 

major concerns about osteoporosis (reviewed in Canalis et al., 2007). Current drugs 

are created as pre or post-therapeutics. Anti-resorptive drugs include oestrogens, 

bisphosphonates and selective estrogen receptor modulators (SERMs). The next class 

of therapeutics is anabolic drugs, targeted to promote bone formation and these 

include PTH/teriparatide and strontium (reviewed in Russell et al., 2006). More 

promising osteoblast-promoting drugs may be in the pipeline to enhance bone 

formation. Local administration of rhIGF-1 could significantly induce new bone 

formation in the already impaired bone formation ability of aged mice, hence rhIGF-1 

may improve senile osteoporosis (Fowlkes et al., 2006). Also, small-molecule PYK2 

(proline rich tyrosine kinase 2) inhibitor was targeted as a promising anabolic 

approach to regulate osteoprogenitor differentiation (Buckbinder et al., 2007).  

 
 

1.3.4.2 Mouse models of senile osteoporosis 
 
 
Senile osteoporosis is difficult to study as it develops slowly, and despite the advances 

in human and mouse genetics, skeletal physiology remains poorly understood. To 

date, a database of over 120 bone-related mouse models have been archived to close 
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the gaps on understanding bone biology. Transgenic and mutant mice remain the most 

appropriate genetic tools to dissect bone disease (Pogoda et al., 2005). 

 

Notably, much of aging-related research came from the SAM (senescence–accelerated 

mouse) family of mice. In as early as 1970s, Takeda and team, through selective 

inbreeding of AKR/J strain mice that exhibited natural spontaneous senescence and 

aging-like features, developed 14 senescence-prone inbred strains and 4 senescence-

resistant inbred strains (SAMR) as control counterparts that show normal aging 

(Takeda, 1999). In particular, the SAMP6 strain developed distinct senile osteoporotic 

features, and was subsequently used as a model to study the basis behind aging-

associated osteoporosis (Matsushita et al., 1986). Research on SAMP6/Ta uncovered 

the depletion of osteoblast progenitor pool as a result of bone marrow tendency to 

favor adipocyte differentiation, rather than osteoblasts (Suda et al., 1994). Also, it was 

found that the initial healthy numbers of bone marrow osteoprogenitor cells at 1 

month of age deteriorated to a palpable 3-fold reduction by the 3rd to 4th month of 

SAMP6 lifespan (Jilka et al., 1996). Hence it is highly probable that the switch in the 

differentiation program of multipotential mesenchymal progenitors is one such basis 

for senile osteoporosis, as osteoblasts and adipocytes share the same progenitor. 

Using the SAMP6 mice, Takeda and team was able to treat senile osteoporosis by a 

novel surgical method of bone marrow transplant and normalize the defective bone 

marrow constituents (Takada et al., 2006). 

 

More current genetic approaches to understand senile osteoporosis come from mouse 

models focused on systemic influences of bone metabolism. Circulating levels of 

IGF-1 could regulate bone growth and density (Yakar et al., 2002) and is involved in 
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the pathophysiology of osteoporosis via IRS (insulin receptor substrates). IGF-1 

signaling requires the essential adaptor molecule IRS to activate PI3K/AKT and 

MAPK pathways (Kadowaki et al., 1996).  The low bone turnover of IRS-1-/- revealed 

its essential role in promoting catabolic and anabolic osteoblast functions (Ogata et 

al., 2000), while decreased bone formation and increased bone resorption rate of IRS-

2-/- revealed an uncoupling status that has to be fine-tuned by IRS-2 (Akune et al., 

2002). In addition, PPAR�+/- mice exhibited high bone mass by stimulating 

osteoblastogenesis from bone marrow progenitors, increasingly prominent with age. 

Hence, heterozygote mutation of PPAR�, a key regulator of adipocyte differentiation 

and a factor intrinsic to osteoblasts, shows the fundamental relationship between 

osteoblasts and adipocytes in the regulation of osteoprogenitor population 

(Kawaguchi, 2006). Another interesting example of systemic impact on osteopenia 

comes from the klotho homozygous null (kl/kl) mice that exhibit age-related bone loss 

and independent impairment of osteoblast and osteoclast differentiation (Kawaguchi 

et al., 1999). These 3 newer players depict the coupling of bone metabolism with 

bone aging. The role of ECM proteins in osteoporosis was also explored with the 

study on non-collagenous ECM protein biglycan (Bgn), whereby Bgn-/- mice 

developed osteoporotic-like phenotypes (Xu et al., 1998).
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1.4 Bone morphogenetic proteins   
 
 
The bone morphogenetic proteins (BMPs) belong to the transforming growth factor 

(TGF�) superfamily of signaling molecules which also consist of TGF�, activin and 

inhibin (Wozney, 1988). BMPs were first discovered to induce ectopic bone 

formation when implanted into rodents, and subsequently established an ability to 

drive undifferentiated stem cells into the osteogenic program (Urist, 1965). The early 

developmental stages of patterning and organogenesis were found to be regulated by 

BMPs, and due to its pleiotropic actions it is also involved in adult tissue homeostasis 

Hogan, 1996). 

 

BMPs proteins have seven cysteine residues (conserved in TGF� superfamily), and 

are first synthesized as large precursors that require proteolytic cleaving to release its 

active C-terminal domain. BMPs can then be secreted as mature, dimeric ligands of 

20 – 30 kDa in size. Over 20 distinct BMPs have been isolated. In vivo bone 

promoting BMPs are BMP2, 4, -6 and -7(Osteopontin-1) and -9.  Of these, BMP2 and 

BMP4 remains the foremost well characterized members with potent osteoinductive 

activities, and has been developed for orthopedic clinical applications in animal 

models (reviewed in Chen et al, 2004). The essential roles of BMP2 and BMP4 in 

development were validated by the observed embryonic lethality of bmp2-/- mice with 

cardiac defects (E7.5-10.5) and bmp4-/- mice with defects in mesoderm formation 

(E6.5-9.5) (Zhang et al., 1996, Winnier et al., 1995).  
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1.4.1 BMP-Smad pathway 
 
 
The canonical BMP pathway consists of a signaling cascade mediated by 

serine/threonine (S/T) kinase molecules. The step-wise activation of downstream 

molecules requires S/T phosphorylation. Figure 1.6 describes the various signal 

mediators involved. BMP signaling begins at the plasma membrane, with BMP ligand 

binding to type I and II BMP receptors, inducing heterodimerization of these 

receptors. This activates the BMP type II (BMPRII) receptors, which in turn 

phosphorylates Type I receptors (BMPRI) at its unique GS domain. Upon GS box 

activation, BMPRIs becomes activated by autophosphorylation and recruits the next 

step of transducers, the Smads. BMP-Smads (Smads1/5/8) are then activated and form 

hetero-trimeric complexes with Smad4 (a common Smad shared by all TGF� 

superfamily members), to translocate into the nucleus and activate the transcription of 

target genes (Massague, 2000). Figure 1.7 illustrates the BMP signaling pathway and 

the modulators at different compartments of the cell. 

 
 
In the TGF� superfamily, there are 5 type II receptors and only BMPRII specifically 

binds to BMP. 7 type I receptors exist, and BMPRIA (ALK3) and BMPRIB (ALK6) 

are specific for BMPs, The basic structure for BMP receptors are modeled on TGF� 

receptors, seen in Figure 1.8.  Both type I and type II consist of a short extracellular 

domain, a transmembrane domain and a large intracellular S/T kinase domain. Type I 

receptors contain a serine-glycine rich domain (GS box) at the N-terminal region prior 

to kinase domain, which is needed for activation by BMPRII (Massague et al., 1994, 

Shi and Massague, 2003). BMPRII has an extremely long C-terminal tail, which was 

reported to mediate other kinase dependent pathways.  
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Fig. 1.6. The TGF� superfamily of signaling molecules. Step-wise activation of 

phosphorylation casade begins from ligand binding to type II receptors. 
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Fig 1.7. The canonical BMP-Smad pathway and signaling modulators. Negative 

regulators exist at the extracellular and cytoplasmic compartments (green boxes), and 

as transciptional co-repressors in the nucleus. 
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Fig 1.8.  The basic structures of BMP type I and type II S/T kinase receptors. 

Common to these two classes of receptors are the extracellular domain, a single 

transmembrane domain (denoted M), and a kinase domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kinase domain 
Tail 

Kinase domain 

GS domain 

M 

100 amino acids 

Cys box 

Type I 

Type II 



 40

BMPRIA is a 55 kDa protein that is ubiquitously expressed in most cell types 

including osteoblasts, and in cultured cells COS7 and osteoblastic cell line MC3T3. 

This was also the case for BMPRII, a 70-80 kDa protein, which was highly expressed 

in most tissues, while BMPRIB expression was confined to limited tissues such as 

glioblastomas. Core BMP signal transduction appears to mediated by BMPR1A and 

BMPRII rather than BMPRIB, as bmpr1a-/- embryos die at E9.5 with no mesoderm 

formation (Mishina et al., 1995), and BMPRII null mice is also embryonic lethal 

(Beppu et al., 2000). On the other hand, mice lacking BMPRIB are viable, albeit with 

defects in cartilage formation (Yi et al., 2000). Even though BMPRIA can bind to 

BMP ligands in the absence of BMPRII, its binding affinity is facilitated by the 

presence of BMPRII (Massague, 1996, Kawabata et al, 1998).  

 

Smads are the only known direct effectors of the BMP pathway. There are 8 

mammalian Smads, and these intracellular BMPR substrates are grouped into three 

classes, the receptor-Smads (R-Smads, Smads1/5/8), which confers specificity in 

transcriptional response, the common Smad (co-Smad, or Smad4), which serves as an 

adaptor for R-Smads, and lastly the inhibitory Smads (Smad6/7), which are discussed 

in section 1.4.2. R-Smads and Co-Smad contains the conserved MH1 and MH2 

domains, bridged by a linker region, while the MH1 domain is missing in I-Smads. 

The linker region of Smads have been found to be important for functional regulation 

by other S/T kinases,. More importantly, the C-terminal tail extending out of the MH2 

domain contains the site for BMP receptor activation of Smads. The SXS (Ser-X-Ser) 

motif is only found in R-smads and increases its affinity for Smad4 when activated 

(reviewed in Massague et al, 2000, Miyazono et al., 2001).  
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BMP signaling is complicated by the crosstalk or convergence of BMP signaling 

pathway with other pathways. Pathways known to crosstalk with BMPs include the 

JAK-STAT, Wnt, MAPKs, PI3K/AKT and TGF� pathways (reviewed in Bubnoff and 

Cho, 2001). Specificity is highly dependent on cell type contexts. In neural induction, 

the IGF and FGF works in tandem to counter BMP signals, targeting activated Smad1 

(Pera et al., 2003). Moreover, non-canonical Smad-independent pathways exist, and 

may operate in synergy or function to oppose BMP-Smads pathway. For example, 

PKC and MAPKs could be activated by BMPs (Hay et al., 2001, Miyazono et al., 

2005).   

 

Deletion of genes of individual BMP signaling molecules in mice have often led to 

embryonic lethality, due to the key roles they play in embryogenesis. However, in 

humans, several inherited diseases were found to be linked to natural occurring 

mutations in the BMP pathway. In FOP (Fibrodysplasia ossificans progressiva), a 

disabling genetic disorder that promotes aggressive bone growth, ectopic BMP4 was 

found in patients (Gannon et al., 1997). Mutations in Smad 4 were linked to familial 

juvenile polypopsis, and mutations in BMPRII were implicated in a rare autosomal 

dominant disorder, familial primary pulmonary hypertension (Lane et al., 2000, Deng 

et al., 2000). 

 
 
1.4.2 Modulators of BMP signaling pathway  
 
 
Many regulators exist to ensure BMP signaling can be turned off, fine-tuned or is cell 

type specific. BMP signaling modulators discussed here are categorized according to 

their cellular localization: extracellular, cytoplasmic and nuclear.  
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At the extracellular membrane region, BMP antagonists function to block the binding 

of BMP ligand to its cognitive receptors. BMP antagonists behave in a similar fashion 

to BMPs as they share the cysteine-knot structure and originate as a secretary signal 

peptide. The three sub-families of BMP antagonists are based on their cysteine-knot 

size (Avsian-Kretchmer and Hsueh, 2004) and they are the DAN family (e.g. gremlin, 

sclerostin and USAG-1), twisted gastrulation (Tg), and chordin/noggin (reviewed in 

Yanagita, 2005). Of interest are the noggin/chordin family that have been studied in 

depth, due to their importance in regulating bone formation and turnover. Noggin is a 

32 kDa secreted glycoprotein that binds to BMP2 and BMP4 with high affinity and 

BMP7 with low affinity. Noggin gene was found to be induced by BMP themselves, 

which reveals the likelihood that noggin could function as a direct and efficient 

antagonist, and plays a major role in autonomous BMP-signal regulation. The lack of 

noggin function is deleterious, as noggin homozygous null mice had excess cartilage 

and present with a failure to initiate joint formation (Brunet et al., 1998). In humans, 

heterozygous mutations cause apical joint fusions, exhibiting noggin 

haploinsufficiency (Gong et al., 1999). Also, transgenic mice with targeted 

overexpression of noggin in osteoblasts became osteoporotic (Wu et al., 2003). 

Hence, noggin appears to regulate postnatal bone homeostasis as well. Chordin, 

another antagonist found in the Spemann organizer, is a large protein of 120 kDa 

containing 4 cysteine rich domains (Piccolo et al., 1996). It only binds specifically to 

BMP2 and BMP4. Mice deficient for chordin display early lethality and a ventralized 

gastrulation phenotype (Bachiller et al., 2003). Furthermore, double knockout mice 

for noggin/chordin exhibit severe defects in facial structures, head development, 

partial mesoderm development and abnormal left to right patterning (Bachiller et al., 

2000). BMP receptors can also be targeted. BAMBI is a transmembrane protein 
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structurally related to type I receptors, but lacks the serine/theonine kinase domain, 

thus function as a pseudo-receptor to suppress BMP signaling (Onichtchouk et al., 

1999). Dullard, a neural gene, could bind and abolish BMP-mediated activation of 

type I receptors. More importantly, it promoted BMP receptor internalization and 

ubiquitin-mediated proteosomal degradation via the lipid-raft caveolar pathway 

(Satow et al., 2006). 

In the cytoplasm, direct negative mediators of Smad signaling are the third class of 

Smads, the inhibitory smads I-Smad6 and I-Smad7. Smad6 binds to BMP type I 

receptors to inhibit activation of Smad1 and Smad5 and consequently prevent 

heteromerization with Smad4, terminating Smad signaling upstream of receptor 

Smads.  Smad 6 is a BMP target gene and thus participates in BMP signaling 

feedback. Smad7 is less specific as it can also inhibit TGF�/activin signaling 

(reviewed in Miyazono et al., 2005). Other regulators of Smad proteins are also 

required. In osteoblasts, anti-proliferation protein Tob (transducer of ErbB2) 

associates with Smad1 and Smad5 to inhibit BMP-Smad dependent transcription, 

while Tob knockout mice displays osteosclerotic phenotype, with increased bone 

mass in adulthood (Yoshida et al., 2000). Smurfs are members of the HECT type E3 

ligases that mediate the degradation of receptor Smads (Zhu et al., 1999), and 

enhanced bone formation was observed in Smurf1 null mutant mice. Phosphatases of 

Smads are the emerging trend towards understanding Smad regulation. The S/T 

phosphatase PPM1A could dephosphorylate TGF�-Smads (Lin et al., 2006), and was 

found to deactivate BMP-Smad1 in vitro and in vivo as well (Duan et al., 2006). 

RNAi-based genetic screening has also identified pyruvate dehydrogenase 

phosphatases (PDP) as BMP specific S/T phosphatases (Chen et al., 2006). 
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In the nucleus, the specificity of BMP response comes into play, with the myriad 

classes of transcription factors/DNA binding proteins that function as co-activators, or 

co-repressors to complex with Smads on BMP target genes. Much of the 

transcriptional regulators is also shared by the TGF� family, and perhaps differs in 

response by cell type expression. Transcription factor Runx2, is essential to induce 

genes involved in bone formation. Ski and SnoN interacts with Smads, and are 

transcriptional co-repressors that induce histone deacetylation (Wan and Cao, 2005). 

Co-activator p300/CBP was found to bridge STAT3 and Smad1 and transduce BMP-

LIF-mediated transcription in fetal brain (Nakashima et al., 1999). In addition, small 

C-terminal domain phosphatases were found to act as nuclear Smad phosphatases 

(Knockaert et al., 2006). Nucleoplasmic shuttling adds another level of complexity in 

the modulation of Smad signaling (reviewed by Xu and Massague, 2004).  Smad6 

was found to have a novel function in the nucleus through interaction with co-

repressor CtBP to repress BMP-induced Id1 transcription (Lin et al., 2003). 

 
 
1.4.3 BMP target genes 
 
 
Genes targeted by BMPs regulate transcriptional responses to bone differentiation, 

skeletal patterning and angiogenesis. Conversely, BMPs potently repress genes 

involved in muscle differentiation (such as MyoD and myogenin), since they direct 

the differentiation route of mesenchymal stem cells away from the osteogenic 

program. Genes that are direct targets of BMPs include Id proteins, Dlx5, Tsg, 

Msx1/2, GATA2, Tbx2, collagen, Smad6 and Smad7. Mostly BMP modulators 

themselves, they are rapidly transcribed due to the SBE (Smad binding elements) sites 

found on their promoters. On the other hand, indirect target genes such as osterix and 

osteocalcin require de novo protein synthesis, but are indispensable for BMP mediated 



 45

functions (Miyazono et al., 2005). The Id proteins remain the most well-characterized 

target genes and are further discussed below. 

 
 
 1.4.3.1 Id proteins  
   
  
Id (inhibitor of differentiation, or inhibitor of DNA binding) proteins are a subclass of 

the basic helix-loop-helix (bHLH) family of transcriptional regulators that are critical 

in development. All HLH proteins contain the E-box consensus motif CANNTG that 

regulate distinct tissue specific gene transcription. Dimerization of HLH proteins is 

required for activation, as the formation of four helix bundles allow its basic region to 

bind DNA (Massari and Murre, 2000). Id proteins are a special subclass of the HLH 

family as they possess the HLH domain but lack the basic DNA binding domain. As a 

result they function as dominant negative regulators by binding to bHLH members 

and abolish dimerization, thus antagonizing transcription as illustrated in Figure 

1.9A. Therefore, BMP-induced Id proteins promote cell proliferation and block 

differentiation programs of many cell types (Norton et al., 1998). Ids are proposed to 

act as molecular “brakes” needed for proper and timed developmental processes 

(Carmeliet, 1999), and when this is breeched, excess Id1 production leads to 

uncontrolled proliferation and possibly cancer, while the loss of Id1 increases the 

likelihood of senescence with p16INK4a up-regulation (reviewed in Yokota and Mori, 

2002, Perk et al., 2005). Id proteins targets not only bHLH transcription factors such 

as E-proteins, but also Ets family members, and Rb. Hence its roles are not limited to 

development, but also in balancing cell proliferation versus survival and senescence 

versus cancer (reviewed by Zebedee and Hara, 2001, Sikder et al., 2003). Figure 

1.9B illustrates Id1 role in senescence. 
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Four mammalian isoforms Id1 to Id4 have been identified, and while they exhibit 

some functional redundancy, each Id protein have been shown to retain unique roles, 

which explains their distinct expression patterns throughout embryogenesis (Jen et al., 

1997). Gene ablation studies on Id proteins reveal the in vivo overlapping functions of 

Id1 and Id3, as each Id1-/- and Id3-/- mice are normal, yet double knockout Id1-/-Id3-/- 

is embryonic lethal. Any other Id combinations of double knockout mice were also 

reported to be non-viable (Ruzinova and Benezra, 2003). Moreover, the essential role 

for Id1 and Id3 in in vivo bone formation was studied using Id1/Id3 heterozygous 

knockout mice (Maeda et al., 2004). 

 

In molecular studies, Id1 is often the candidate BMP target gene analyzed. The Id1 

gene can be rapidly transcribed and translated within 30 mins of BMP induction. This 

efficient responsiveness to BMP is due to distinct SBE motifs found on Id1 promoter 

(Korchynskyi and Ten Dinjke, 2002), facilitated by direct binding of Smad1 and 

Smad4 to promoter as well (Lopez-Rovira et al., 2002). The serum responsiveness of 

Id1 to growth signals are found to be regulated by a complex containing the 

immediate-early response (Egr-1) gene (Tournay and Benezra, 1996). 
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Fig 1.9. Id1 in diffentiation and cell growth. (A) Mechanism of Id1 in inhibiting 

differentiation. (B) Id1 opposes the effects of Ets, which represses p16 and induced 

p16-mediated senescence. 
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1.5 Thesis rationale    
 
 
Since the discovery of c-Abl, there has not been much progress in understanding its 

function, the genes it affects, and the roles it plays in cell signaling networks. The 

establishment of c-Abl knockout mouse provided genetic evidence for its role in 

development and survival. Also, many of the c-Abl-/- phenotypes observed resembled 

aging-related syndromes. 

 

This study was undertaken to investigate the molecular mechanisms behind the 

premature senescence phenotype of c-Abl-/- osteoblasts. c-Abl mice showed reduced 

bone formation rate, thinner cortical bone and lower trabecular bone volume. It was 

found that defects in osteoblast maturation were the underlying causes of its 

osteoporotic feature (Li et al., 2000).     

 

My project employs mainly primary osteoblasts, as well as bone sections to help 

identify the pathways and key mediators involved. In doing so, the ex vivo and in vivo 

results provides a better insight into the understanding of physiological functions of c-

Abl in bone development, bone homeostasis, and how it participates in a signaling 

pathway. The consequences of altered tyrosine kinase activity in the case of BCR-

ABL, and its impact on the BMP signaling pathway are also explored here. 

 
 
This thesis is divided into 9 chapters;  

Chapter 1 contains general literature review to provide background information for 

this project. 

Chapter 2 describes the materials and methods used for this study. 
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Chapter 3 describes the poor growth potential and premature senescence of c-Abl-/- 

osteoblasts through the up-regulation of p16INK4a. 

Chapter 4 identifies the two major regulators of p16INK4a; Id1 and MAPK-ERKs, and 

their expression pattern in c-Abl-/-  osteolasts.   

Chapter 5 examines in detail c-Abl regulation of Id1 expression under the BMP 

pathway, and the positive effect of c-Abl on Smad1/5/8 activation. 

Chapter 6 demonstrates how c-Abl regulates BMP signaling through the 

phosphorylation of BMPR1A, and the mechanism behind compromised Smad 

activation in the absence of c-Abl. 

Chapter 7 deals with the negative effect of c-Abl on BMP-induced ERK activation, 

through its action on BMPR1A. 

Chapter 8 provides another perspective on c-Abl role in osteoprogenitor expansion, 

using the BCR-ABL model to study BMP-Id1- p16INK4a signaling and the implications 

for CML. The expression of p16INK4a in bone marrow cells relative to age was also 

explored. 

Chapter 9 is for general discussion and future perspectives. 
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CHAPTER 2 
 
 
MATERIALS AND METHODS 
 
 
2.1 Chemicals and antibodies   
 
Table 2.1 List of antibodies used 
 

Antibody Clone / Host Brand/company 

Id1  
p16INK4a 
TAK1 

Polyclonal/rabbit 
Polyclonal/rabbit 

Monoclonal/mouse 
Santa Cruz 

p-Smad1/5/8  
p42/p44 MAPK  
p-p42/p44 MAPK 
TAB1 
p-TAK1 (Thr184/187) 
p-MEK1/2 
MEK1/2 

 
 
 

Polyclonal/rabbit 
 

Cell Signaling 
 

HA affinity matrix Monoclonal/ rat Roche 
Flag-M2 affinity gel 
Actin Monoclonal/ mouse Sigma 

BMPRII 
BMPRIA Polyclonal/ goat R & D Systems 

BMPRIA 
BMPRIB Polyclonal/rabbit Zymed/Invitrogen 

c-Abl (Ab-3)  
Smad1 

Monoclonal/mouse 
Polyclonal/ rabbit Oncogene/Calbiochem 

p-Tyrosine (PY20) Monoclonal/mouse BD Transduction 
Laboratories 

 
 

For drugs and chemicals used, rhBMP2 was obtained from iDNA, rmNoggin and 

rmChordin from R&D Systems, hygromycin-B from Invivogen, puromycin 

dihydrochloride from USBiological, sequabreene from Sigma, U0126S from Promega 

and Imatinib mesylate/STi571 from Norvartis, tunnel assay kit and BrdU labeling 

reagent from Roche. Formulations and chemical/drug preparations can be found in 

Appendix E. 
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2.2. Cell culture 

Adherent cell lines C2C12, cos7, c-Abl-/- and c-Abl-/- Arg-/- mouse embryonic 

fibroblasts were cultured using Dulbecco’s Modified Eagle’s Medium (DMEM, 

Sigma). Suspension cells HL60 and K562 were cultured using RPMI-1640 media 

(Sigma). MC3T3E1 and c-Abl-/- or wild type primary osteoblasts were cultured in 

Minimal Essential Medium Alpha (αMEM, Gibco), with 15% FBS for osteoblasts. 

All media were supplemented (otherwise stated) with 4.5g/L glucose, 2mM L-

glutamine (Gibco), 10% (v/v) fetal bovine serum (FBS, Hyclone), anti-mycotic 

antibiotic solution containing 100 units/ml penicillin, 100ug/ml streptomycin and 

250ng/ml amphotericin-B, and 20mM HEPES in a humidified 37oC incubator 

containing 5% CO2.  

 
 
2.3. Cavarial osteoblasts isolation and culture 

c-Abl null mice (abl1) were crossed to C57BL/6 mice six times before use. To extract 

primary osteoblasts, calvaria of 19-20 day old fetuses were harvested, washed in PBS 

before being digested for 10mins with collagenase and dispase (Roche) in αMEM at 

37oC. Digestion was repeated for another 3 times. The supernatant from the first 

digestion was discarded and last 3 digested supernatants pooled. Finally, the cells 

were then washed and plated onto 6-well plates and left to grow in αMEM 

supplemented with 15% FCS until they reach confluency. The pre-osteoblast cultures 

were then trysinized and cell population expanded to passage 3 before being used for 

experiments. c-Abl deficient mice were compared to their control littermates in all 

experiments.     
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2.4. Senescence associated-beta-galactosidase (SA-ββββ-Gal) assay   

Cells were washed in TBS buffer, and then fixed in 2% formaldehyde / 0.2% 

glutaradehyde for 3 mins at room temperature. Cells are washed with PBS again, and 

rinsed with H2O to remove fixation solution. Freshly prepared X-Gal staining solution 

(Appendix C) was then used to stain cells for 2 hrs at 37oC.  �-Gal positive cells were 

counted.  

 
 
2.5. Cell proliferation assays   

The following 2 methods were employed; 

Manual cell counting 

The proliferation potential of the mutant and wild type primary osteoblasts starting 

from passage 3 were used for continuous counting and plating via the trypan-blue dye 

exclusion method.  4x105 cells were plated onto 6 cm dishes, cultured for three days, 

and counted.  The same number of cells were re-plated, cultured for three days and 

counted again.  The procedure was repeated until the cells stopped dividing.   

BrdU incorporation 

Cell proliferation was directly assessed using DNA synthesis as an indicator of 

growth by measuring the incorporation rates of synthetic DNA analogue BrdU (5’-

Bromo-2’-deoxy-uridine) in place of thymidine. The Cell Proliferation Biotrak ELISA 

kit (Amersham Biosciences) was used and apart from following manufacturer’s 

protocol; osteoblasts at various passages were seeded at 3 different densities of 1x103, 

5x103 and 1x104 in 96-well plates, in triplicates. The next day, BrdU labeling was 

carried out and incubated overnight (16 hrs) and the final colorimetric measurement at 

A450nm (reference A690nm) using a plate reader.   
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2.6. Infection by retrovirus and selection  
 
Transfection 

Platinum-E cells (PlatE, courtesy of Dr. Kitamura), a modified 293T-derived 

ecotropic packaging cell line, was seeded in a 10 cm2 dish to achieve 80% confluency 

the next morning (refer to Appendix B for PlatE media). 6ug of retroviral plasmid 

harbouring Id1, GFP, p16INK4a, c-Abl or BMPR1A and control empty vector was 

tranfected into PlatE cells overnight using Fugene reagent (Roche). The following 

day, cells were replaced with 8mls of fresh media, and left to incubate for another 48-

72 hrs.  

Infection  

Following incubation, the media supernatant containing matured virus was used to 

infect early passage primary cells. Polybreene (Sequabrene, Sigma) was added (final 

concentration 8ug/ml) to viral supernatant and filter-sterilized prior to infection. Post 

8 hrs infection, fresh media containing polybreene was added to dilute existing 

supernatant at a 1:1 ratio and left for a further 16 hrs. Supernatant was then aspirated 

and cells recovered in fresh media for 24 hrs before starting the selection stage. 

Selection  

24 hrs post recovery, cells were subjected to selection with hygromycin B 

(HygroGold, InvivoGen) or puromycin (US Biological).The selection process was 

monitered daily to observe for cell death, so as to optimize drug dose till a ~30-40% 

cell death rate was achieved, and after 3-7 days in selection (with selection drug 

changed every 3 days), resistant cells were further passaged and seeded for various 

experiments. Levels of protein overexpression were observed by western blotting. 
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2.7. Bone marrow extraction 
 
Mice were sacrificed using Advertin as anesthesia and hindlegs removed to obtain 

femoral (thigh) and tibia bones. The bones are washed several times with cold PBS 

and trimmed at the edges to reveal the bone marrow. Marrow/stroma was then flushed 

out using DMEM normal media and a syringe. Marrow cells were then spun down in 

a 4oC centrifuge and cell pellet washed several times with cold PBS. Cells were lysed 

with TNEN lysis buffer (for protein), or TRIzol (for RNA extraction). Red blood cells 

were lysed using RBC lysis buffer prior to beginning protein or RNA work. 

 
 
2.8. Transient transfection 

Cells were counted and seeded to achieve 40-50% confluency the next day. 

Transfection was carried out with 3-4ug total DNA per 6 cm2 dish using 

Lipofectamine and Plus reagents (Invitrogen) for cos7 cells and Fugene (Roche) at a 

6:1 ratio for MC3T3 cells, according to manufacturer’s protocols. Cells were 

incubated with transfection complex for an average of 3.5 – 5 hrs (cos7) or overnight 

for MC3T3, before being recovered with fresh complete media for a minimum of 36 

hrs, including serum starvation for the last 16 hrs if necessary. Upon treatment, cells 

were harvested to proceed with western blotting or RNA extraction. 

 
 
2.9. Western blot 
 
Sample preparation 

Harvested cells were lysed on ice and washed twice with cold PBS. TNEN lysis 

buffer (containing 50mM Tris, pH7.5, 100mM KCl, 1mM EDTA, 0.5% NP-40, 1mM 

PMSF, 1mM sodium orthovanadate, 10mM NAF, 1mM �-glycerolphosphate and 

10ug/ml each of aprotonin and leupeptin) was then added and lysates left to rock for 
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30 mins at 4oC before spinning down at maximum speed for 10 mins. An aliquot of 

spun supernatant clear of debris was used for protein quantitation using the Protein 

Assay Reagent (Bradford assay) from Biorad. Lysates were then normalized in a fresh 

eppendorf tube and 5X SDS loading buffer was added before boiling samples for 5 

mins at 95 oC.  

SDS-PAGE and detection 

SDS-PAGE gels were prepared using the Biorad protean minigel apparatus. 

Components of these gels can be found in Appendix D. 13.5% -15% gels were used 

for detecting proteins such as Id1 and p16INK4a. 8%-12% gels were used for BMPR1A, 

phospho-Smad1/5/8, TAB1, TAK1, and 7.5% gel for c-Abl. Gels were run at 80-

120V along with protein standards (kaleidoscope marker, Biorad). Transfer by electric 

current was carried out using PVDF (Millipore) membranes for 2 hrs at 300mA, or 

overnight at 100mA in 4oC. Thereafter, membranes were stained with Ponceau S to 

check for integrity of transfer and stain removed with rinsing with TBST buffer 

(Appendix A). Membranes were then blocked with 5% (w/v) nonfat milk or 5% (w/v) 

BSA (for goat host, or all bmpr1A, 1B antibodies) for 1 hr before incubation with 

primary antibody overnight. The next day, primary antibody was removed, 

membranes washed 3X (5 mins per wash) with TBST, before adding secondary-HRP 

linked antibody for 1 hr. Membranes were then washed 4X and subjected to ECL 

solution for detection of protein bands. Varying film exposures were obtained before 

analysis of results. Membranes could then be stripped and reprobed if necessary. 

0.2M glycine solution was used for stripping PVDF membranes, for 15-10 mins and 

rinsed thoroughly with ddH20 for reprobing. 
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2.10. Immunoprecipitation 
 
Cells were harvested on ice by washing twice with cold PBS, lysed using CO-IP 

buffer (Appendix A). Lysates were then left to rock at 4oC for 30 mins. The tubes 

were then centrifuged at max speed 16100g (or 14300rpm) for 10 mins (Note: all 

steps and centrifugation was performed at 4oC, with tubes kept on ice). A small 

aliquot (1-2ul) of supernatant was taken to perform protein quantitation using the 

Bradford assay with a spectrometer. All OD readings were ensured that they fall 

within the linear range of 0.1-0.5. Thereafter, OD measurements were calculated and 

lysates normalized with lysis buffer in a new tube. 25ul of anti-HA affinity beads 

(Roche) was added to each tube and left to rock for 2-3 hrs. After 

immunoprecipitation, the beads were spun down at 6000rpm for 8 mins and 

supernatant aspirated. Beads were subsequently washed 5 times, the first 3 times 

using CO-IP buffer, and the last 2 washes using cold PBS. Finally, after washing and 

final aspiration the beads were incubated with 2X SDS-PAGE loading buffer, boiled 

for 5 mins at 95 oC and ready to proceed with western blotting. 

 
 
2.11. RNA extraction  
 
Extraction and phase separation  

Prior to extraction, monolayer cells grown on culture dish were washed twice with 

cold PBS to remove residual media. Likewise, suspension cells (e.g. K562 and 

marrow cells) were centrifuged and cell pellet washed twice with PBS. TRIzol 

reagent (Invitrogen) was added (at 1ml per 10 cm2 of cells), to scrape and the lysate 

carefully dispersed by going through a 1ml sterile pipette tip 6 times before being 

placed in an eppendorf tube and left to sit at room temperature (rt) for 5-10 mins to 

permit complete dissociation of nucleoprotein complexes. Choloform (CHCl3) (at 
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0.5ml for every 1ml of TRIzol) was then added and tube vigorously hand-shaked for 

15 sec and left to sit at rt for another 2-3 mins. Thereafter the sample was centrifuged 

at 4oC, 12,000g for 15 mins. RNA will be exclusively contained within the colorless 

upper aqueous phase.  

Precipitation phase  

The aqueous phase was carefully transferred to a new tube. Precipitation starts with 

the addition of isopropanol (at 0.7ml isopropanol for every 1ml TRIzol used), mixed 

by hand and incubated at 10 mins rt before centrifugation at 4oC, 12,000g for 15 mins. 

A gel-like pellet was then formed at the bottom corner of tube. 

RNA recovery 

The supernatant was carefully removed, and pellet washed once with 1ml of 75% 

ethanol, and centrifuged at 12,000g for 10 mins. The RNA pellet was then air-dried at 

rt till its whitish pellet color turns translucent (approx 15 mins onwards). Pellet was 

then dissolved using RNase-free water, pipetted gently, and placed in 55oC waterbath 

for 20 mins. RNA was then measured at A260 for concentration, and at A260/280 ratio for 

purity check.  

 
 
2.12. RNA extraction of femur/long bones  
 
c-Abl adult mice were sacrificed and femur bones carefully removed from skin and 

muscle tissue using sterile dissection apparatus. The bones were rinsed with sterile 

cold PBS several times and placed in eppendorf tube, then immediately frozen using 

liquid nitrogen. Tubes containing long bones were then stored at -80oC. Prior to RNA 

extraction, the femurs stored at -80oC have to be broken down to powder form. A 

makeshift table was prepared, using dry ice and pre-chilled autoclaved mortar and 
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pestle. Femurs were grinded to powder with liquid nitrogen and further kept in dry ice 

until ready for RNA extraction using Trizol method as in 2.11. 

 
 
2.13. Reverse Transcription – Polymerase chain reaction (RT-PCR) 
 
Reverse transcription  

To assess the mRNA levels of Id1, Semi-quantitative RT-PCR assays were carried 

out.  Total RNA was isolated from cultured cells using Trizol reagent (Invitrogen), 

quantitated, and then used as template for reverse transcription.  Reverse transcriptase 

AMV, RNase inhibitor, dNTPs and oligodT primers (Roche) were added and 

incubated at 42oC for 1 hr and thereafter heat inactivated at 90 oC for 5 mins. 

PCR 

The synthesized cDNA serves as a template to probe Id1 transcript, using DNA Taq 

polymerase (Roche). Beta-actin was used as an internal control. The various primers 

used, annealing temperature and cycle number for PCR are as listed below.   

 
Table 2.2 RT-PCR primers list 
 

Gene Primer sequence 5’ – 3’  
(F-forward, R-reverse) 

Annealing 
Temperature 

(oC) 

Cycle 
Number 

Id1 F- ACTCACGCCTCAAGGAGCTGG      
R- TCAGTGCGCCGCCTCAGCGACAC 57 30 

p16 F- AGTCCGCTGCAGACAGACTG   
R- CGGGAGAAGGTAGTGGGTC   55 35 

Id3 F- GGTGCGCGGCTGCTACGAG   
R- CAGGCCACCCAAGTTCAGTCC   56 27 

JunB F– CCACCATCAGCTACCTCCCAC   
R– TCAGAAGGCGTGTCCCTTGAC   56 30 

Smad6 
F-
GAGAGTGACTGCGAGACGGTGACCTG  
R- GCGGCCGAGCAGCAGCTGCGG   

58 25 

Smad7 F- TCCTGCTGTGCAAAGTGTTC 
R- AGTAAGGAGGAGGGGGAGAC 58 25 

BMPRIA F- TCGTCGTTGTATTACAGGAC   
R- TTACATCCTGGGATTCAACC   56 35 

BMPRIB F- GCTTTGGACTCATCCTCTGG   
R- CACTGGGCAGTAGGCTAACG   56 35 

BMPRII F-  GGTAGATAGGAGGGAACGGC   
R- CACTGCCATTGTTGTTGACC   56 35 

Actin F- AGATGTGGATCAGCAAGCAG 
R- GCGCAAGTTAGGTTTTGTCA 56 25 
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2.14. Luciferase reporter assay 
 
C2C12 cells were counted and seeded (0.5x105 per 12-well) to achieve 45% 

confluency the next morning. Cells were transfected with DNA (total of 1.2ug DNA 

in equal proportions, along with 5ng TK-null plasmid as internal control) using 

Lipofectamine and Plus reagents (Invitrogen) for 3.5 hrs, and recovered with fresh 

complete media. Cells were harvested at an average of 48-72 hrs post-transfection 

(including starvation and/or BMP2 addition if needed). Harvesting starts from 

washing cells twice with PBS, adding 150ul 1X Passive Lysis Buffer (Promega) to 

rock for 20 mins, lysate collected, and spun down at 2000 rpm for 2 mins before 

reading. 20ul of lysate was used to determine luciferase and renilla activity using the 

luciferase and STOP and Glo reagents (Promega) respectively, in the TD20e 

luminometer under the dual-luciferase mode. Ratio of luciferase/renilla activity was 

obtained and the normalized values plotted on a chart for analysis. 

 
 
2.15. RNA Interference 
 
siRNA preparation and transfection 

Murine MAP3K-TAK1 siRNA (ON-Targetplus SMARTpool L-040718-00-0010) and 

non-target pool siRNA as control were resuspended in 1X siRNA buffer to a stock 

concentration of 20nM and stored in aliquots at -20oC (Dharmacon). C2C12 cells 

were seeded the night before at a density of 1.2-1.5x105 per 6-well in antibiotic-free 

complete media to achieve 70% confluence the next day. siRNA and non-target 

control were then diluted to 2uM final concentration and transfected using 

Dharmafect 3 reagent according to manufacturer’s instructions and left to incubate for 

48 and 60 hrs. Cells were then treated with BMP2 for various time points and 

harvested for western blot analysis.  
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The siRNA product - Mouse MAP3K7, NM_172688 (10nmol) consist of 4 pooled 

duplex primer pairs and target sequences are available online at 

http://www.dharmacon.com/predesignedsirna/search.aspx. 

 

2.16. Cloning  
 
BMPRIA deletion mutants were PCR-cloned with reverse primers flanking the 30, 35, 

45 and 50 kDa regions of full length wild type BMPR1A expression construct (gift 

from Dr Chen Ye-Guang).  PCR products were then gel-purified and digested with 

XbaI and EcoRI, and ligated into pCDNA-NE vector (N’-terminal HA-tag) using 

Rapid Ligation Kit (Roche). Transformation into competent E. coli (DH5α) was then 

carried out at 42oC, left to recover at 37 oC in 0.5ml LB broth (without selection drug) 

for 1 hr and plated onto ampicillin LB agar plates overnight at 37oC. Single 

ampicillin-resistant colonies were isolated next day and grown with 4ml LB broth 

(with ampicillin) overnight. Purification of plasmid was performed with Miniprep Kit 

(Qiagen) and positive clones confirmed with enzyme digestion (for size) and 

sequenced using dideoxy termination method. 

 
 
2.17. Site directed mutagenesis 
 
Using the QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene), point 

mutations were created on BMPRIA. PCR was carried out at annealing temperature of 

60oC for 18 cycles, followed by extension at 68oC for 12 mins.  DpnI was used to 

remove orginal BMPRIA template DNA (methylated, hence recognized and 

digested). BMPRIA single tyrosine mutants A to E were cloned from full length 

BMPRIA as template, while combination mutants F to I were cloned from A-E as 

templates, at HindIII and NheI sites into pCDNA-NE vector. Mutant plasmids were 
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then transformed to isolate positive clones and mutations confirmed by sequencing 

along with BLAST (NCBI) search online. 

 
 
2.18.  Densitometric analysis 
 
To measure the band intensity of blots and set it against control protein/RNA bands 

for normalization, the Bio-Rad GS-700 imaging densitometer was used. Using the 

Quantity one program, the bands on X-ray films were boxed and their total intensity 

volume quantitated against film background. Corrected integrated volumes were 

taken, and ratio calculated against respective control bands. The arbitrary units were 

then used for graphical representation.    

 
   
2.19.  Statistical analysis and data presentation  
 
All experiments were performed at least 3 times. Statistical analysis was performed 

using the student’s unpaired t-test (STATISTICA). 
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CHAPTER 3  
 

PREMATURE SENESCENCE OF C-ABL-/- OSTEOBLASTS AND THE UP-

REGULATION OF p16INK4a, A BIOMARKER OF AGING  

 
 
3.1 c-Abl-/- osteoblasts have decreased proliferation ability and undergoes 

premature senescence 

 
c-Abl-/- mice show features of senile osteoporosis, this phenotype primarily caused by 

a decline in the function of osteoblasts (Li et al., 2000). In addition to the 

differentiation defects, it was found that c-Abl-/- osteoblast cultures were particularly 

difficult to maintain with increasing passages, and generally senesce after the 4th to 5th 

passages. This was in contrast to the wild type osteoblasts, which could be maintained 

past another 3 to 4 more passages. To study the growth potential of these osteoblasts, 

a modified 3T3 procedure was used (Randle et al., 2001). Osteoblasts were derived 

from single cavarial bone of an 18-19 day fetus and plated onto a 6-well or 35 mm 

dish (counted as passage 1). Upon confluence, these cells were further expanded to a 

60 mm dish (passage 2) and then to a 100 mm dish (passage 3) before being used for 

experiments. Cells were counted at every passage (post 3 days) and further re-plated 

at 4 x 105 cells/60 mm dish till the cells stop dividing. We detect little difference in 

growth rates of c-Abl mutant and wild type osteoblasts of early passages (Fig. 3.1A). 

However, after the 3rd passage the growth rates differed tremendously, since c-Abl 

mutant osteoblasts ceased growing at passage 5, while wild type osteoblasts could be 

maintained till the 8th passage before senescing eventually. The percentage of dead 

cells was factored in all cell counts and was found to be in similar proportions, 
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therefore indicating that c-Abl-/- osteoblasts contained an innate defect in proliferating 

capacity. 

 

Moreover, staining of senescence associated-�-Galactosidase (SA-�-Gal), a 

histochemical marker active only in senescent cells (Dimri et al., 1995), revealed an 

increase in percentage of SA-�-Gal positive cells in c-Abl-/- osteoblasts with 

continuous passage (Fig. 3.1B). As alterations in cell metabolism and morphology 

follow replicative senescence (Ben-Porath and Weinberg, 2004), the increase in SA-�-

Gal staining with both mutant and wild type osteoblasts over time reveals that primary 

osteoblasts undergo senescence, albeit with the mutant osteoblasts at an accelerated 

rate.  

 

This premature senescence phenotype of c-Abl-/- osteoblasts was further supported by 

the findings that c-Abl-/- mice possessed lower osteoblast numbers in their bones (Fig. 

3.1C). In vivo BrdU labeling on E19 embryonic bones validated the lower growth 

rates as c-Abl-/- bones had fewer BrdU positive cells in the S phase of cell cycle, as 

compared to its wild type counterpart (Fig. 3.1D). Hence, osteoblasts lacking c-Abl 

have limited lifespan and suffer from accelerated senescence.  
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Fig. 3.1. c-Abl-/- osteoblasts do not grow well and senesces prematurely.  

(A) Growth of c-Abl-/- and wild type osteoblasts. Calvarial osteoblasts were cultured 

as described and cell count numbers plotted against passage numbers. (B) 

Histochemical staining of SA-�-Gal. Mutant and control osteoblasts were cultured as 

in (A), then fixed and stained at a neutral pH for �-Gal. Percentage of SA-�-Gal 

positive cells at each passage was shown. (C) c-Abl-/- bone sections showed reduced 

number of osteoblasts. *, p<0.05. Femur bones of 2-month old c-Abl-/- and wild type 

mice were used for histomorphometric analysis.  
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Fig. 3.1. c-Abl-/- osteoblasts do not grow well and senesces prematurely. 

(continued) 

(D) Reduced osteoblast proliferation in c-Abl-/- mice. BrdU was injected into pregnant 

mice at E19 for 2-3hours and the mice sacrificed. The embryos were fixed and cryo-

embedded and stained for BrdU positive cells in the long bones.  (Black arrows 

indicate examples of positive BrdU labeled cells). 
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3.2 p16INK4a is up-regulated in c-Abl-/- osteoblasts 
 
 

The two signaling pathways known to mediate senescence are the p16INK4a/pRB and 

the p19ARF/p53 pathways (Lundberg et al., 2000). In order to distinguish the pathway 

that governs c-Abl mediated senescence, the expression of key proteins of these 

pathways were monitored. Osteoblasts were harvested at passage 4 and 6, when 

mutant cells ceased to divide. Passage 4 cavarial osteoblasts correlate with the time 

frame whereby considerable difference in total viable cell numbers could be seen 

between c-Abl-/- and wild type osteoblasts (Fig. 3.1A).  It was observed that the 

protein expression of p19ARF and p21 remain unchanged at either passage points in 

both c-Abl-/- and normal osteoblasts, suggesting the lack of significant p19ARF or p21 

involvement in mediating c-Abl-/- senescent phenotype (Fig. 3.2A). On the other hand, 

changes in p16INK4a expression was visibly noted, first an up-regulation with 

increasing passage (as cells senesce), and next, the apparent difference in mutant 

versus wild type osteoblasts (Fig. 3.2A). It was noticed that with all western blot 

analyses, the levels of p16INK4a expression in wild type osteoblasts never achieved the 

maximal levels seen in c-Abl-/- at parallel passages, suggesting that up-regulation of 

p16INK4a may participate in the initiation and/or maintenance of senescence in 

osteoblasts.  

 
More importantly, ectopic expression of p16INK4a, to a level comparable to that of c-

Abl-/- osteoblasts, resulted in a senescent-like phenotype in early passage primary wild 

type osteoblasts; flattened cell morphology and two-fold reduction of BrdU 

incorporation (Fig. 3.2B and Fig. 3.2C). To support the findings that p16INK4a up 

regulation contributes to osteoblast senescence, immunohistochemical staining of 

p16INK4a protein in the long bones of c-Abl adult mice was carried out. It revealed 
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higher levels of p16INK4a in c-Abl mutant mice, mostly concentrated at the growth 

plate region of the long bone, where active osteoblasts reside (Fig. 3.2D). p16INK4a 

expression was also examined in the long bones of E18.5 embryos and they show a 

similar staining pattern between mutant and wild type, though to a lesser extent 

(results not shown). Extraction of RNA from the adult femurs also revealed higher 

p16INK4a mRNA levels in knockout (Fig. 3.2E).  

 
 
 
3.3  p16INK4a affects not only the senescence, but also regulates survival of c-

Abl-/- osteoblasts 

 
 
I have examined if the loss of p16INK4a in c-Abl-/- osteoblasts could revert the 

senescent phenotype. p16INK4a expression was knocked down in c-Abl-/- osteoblasts 

using p16shRNA (courtesy of Dr. S.Lowe) and its proliferation ability assessed by 

counting and replating every 4-5 days. It was observed that the viability of 

p16shRNA-c-Abl-/- osteoblasts could overcome the negative or neutral growth rate (at 

least 2 fold in twice repeated experiments) briefly over the 3rd-4th passage onwards, 

and ceased to divide thereafter (results not shown). This slight ability to overcome its 

usual senescing phenotype may indicate once p16INK4a –mediated senescence pathway 

is induced in osteoblasts, they become irreversibly resistant to p16INK4a silencing by 

p16INK4a shRNA, or that for this rescue phenotype to fully manifest it may require 

additional factors other than p16INK4a per se. Nevertheless, the role of p16INK4a in 

osteoblast survival in vivo was examined using TUNEL assay on c-Abl embryonic 

bone sections (Fig 3.3) and it revealed that c-Abl-/- bones contain more cells 

undergoing apoptosis at the growth plate region and further north, compared to wild 

type bones.  
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Fig. 3.2.  Up-regulation of p16INK4a expression in c-Abl-/- cells.  

(A) c-Abl-/- osteoblasts expressed elevated levels of p16INK4a, but not p19ARF or p21 

during replicative senescence. Mutant and control osteoblasts were cultured as in Fig. 

3.1, and at day 3 of indicated passage, cells were harvested and protein lysates 

normalized before western blot analysis. (B) Ectopic expression of p16INK4a led to 

senescence-like phenotypes. Wild type osteoblasts were infected with control empty 

retroviruses or viruses harboring p16INK4a. Cells were selected against puromycin and 

cultured. Bottom panel: Western blot to show levels of infected p16INK4a, compared to 

control empty virus. (C) Forced expression of p16INK4a resulted in growth reduction, 

justified by a 2-fold reduction in S phase cells. The infected wild type osteoblasts 

were seeded in 96-well plates at various cell densities in triplicates and BrdU labeling 

was carried out overnight. Measurement of BrdU incorporation was determined by 

ELISA and averaged absolute units obtained. This experiment was repeated twice on 

separate occasions.  
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Fig. 3.2. Up-regulation of  p16INK4a expression in c-Abl-/- cells (continued).  

(D) In vivo analysis of mouse bone sections. c-Abl adult mice femurs were 

decalcified and embedded in methyl methacrylate (MMA), sectioned and stained for 

p16INK4a protein (40X magnification). (Top - c-Abl+/+, Bottom - c-Abl-/-). (E) mRNA 

levels of p16INK4a examined in long bones of an c-Abl adult mice pair. Total RNA was 

extracted from femurs of an adult mice pair, and then subjected to RT-PCR.  
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Fig. 3.3. Increased apoptosis in c-Abl-/- osteoblast long bones. 

TUNEL assay immunostaining was performed on the long bones of c-Abl E18.5 day 

old embryos. Mice long bones were embedded in paraffin and sectioned (40X 

magnification). 
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3.4 Summary  
 
 
Here, the osteoporotic phenotype of c-Abl-/- mice were further studied in detail at the 

cellular level. Primary cells were isolated from the cavarial bone to obtain relatively 

pure populations of osteoblasts for culture and biochemical assays. The osteoblasts 

used in this project were essentially unipotent osteoprogenitors, (or preosteoblasts, 

referred to as osteoblasts in this report) as they have the capacity to proliferate but do 

not express alkaline phosphatase or osteocalcein, markers for differentiated 

osteoblasts. However, in the presence of BMP2, or ascorbic acid and �-glycerol 

phosphate, they could differentiate into mature osteocytes. 

 

Proliferation assay demonstrates a slower growth rate on c-Abl-/- osteoblasts (Fig 

3.1A), and more advanced stage of senescence using the �-galactosidase marker (Fig 

3.1B) with progressive passages when compared to wild type cells. These results 

complemented the in vivo data that c-Abl-/- mice show lower osteoblast numbers (Fig 

3.1C), as well as significantly fewer cells in S phase in the long bones of c-Abl-/- 

embryos. Hence, the senile osteoporotic phenotype in c-Abl-/- mice stems from an 

innate problem with a reduced proliferation potential of its osteoblasts, apart from the 

defect in osteoblast function.   

 

p16INK4a was observed to be dramatically up-regulated in c-Abl deficient osteoblasts 

(Fig 3.2A). To confirm if p16INK4a could mediate the senescence of osteoblasts, gain 

of function study on wild type osteoblasts revealed a senescent outcome, with cells 

displaying half the amount of cells in S phase, when compared to its control (Fig 3.2B 

and C). Hence, the stable p16INK4a expression in c-Abl-/- osteoblasts could cause 

senescence, as without c-Abl, osteoblasts exhibit an advanced stage of senescence. 
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This outcome was exemplified by femur sections of adult mice, in which c-Abl 

mutant display increased staining for p16INK4a, especially in the growth plate region, 

while RNA extracted from the long bones of adult mice pair expressed higher levels 

of p16INK4a transcript (Fig 3.2D and E).  

 
Moreover, it has been shown that p16INK4a may be involved in regulating cell survival, 

in addition to senescence. Tunel assay performed on c-Abl E18.5 embryos showed 

increased apoptotic cells in c-Abl mutant long bones, suggesting that in the absence of 

c-Abl, higher p16INK4a expression correlates with increased senescence and apoptosis 

(Fig 3.3). Therefore c-Abl exerts a positive role in cell survival in osteoblasts, though 

it is not clear if the upstream regulators of p16INK4a may activate apoptotic/survival 

signaling pathways as well. 
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CHAPTER 4 
 
 
UP-REGULATION OF p16INK4a IN C-ABL-/- OSTEOBLASTS IS 

ACCOMPANIED BY INCREASED ERK1/2 ACTIVATION AND 

DECREASED ID1 EXPRESSION 

 
Chapter 3 describes p16INK4a as the candidate mediator of premature senescence in c-

Abl-/- osteoblasts. The mechanisms behind regulation of p16INK4a in cellular 

senescence remains complicated with its heterogenous expression in different cell 

types or context. To date, some key transcription factors have been reported to 

regulate of p16INK4a expression. In p16INK4a-pRB mediated senescence, Id1, E proteins 

and Ets proteins- Ets1 and Ets2 can modulate p16INK4a transcription.  

 

Id1 delays senescence and was specifically involved in pRb, and not p19ARF/p53-

mediated senescence (Tang et al., 2002, Alani et al., 2001). Id1 was a negative 

regulator of p16INK4a by binding and sequestering the Ets1, which binds and activates 

the p16INK4a promoter. The reciprocal relationship of Id1 repression and Ets1 up-

regulation was stable, and correlated with promoting p16INK4a expression (Ohtani et 

al. 2001). Similarly, the E protein–E47, a member of the HLH family, was also found 

to be antagonized by Id1 to block p16INK4a transcription (Zheng et al., 2004) 

 

On the other hand, the MAPK cascade (Ras-Raf-MEK-ERK) was required for the up-

regulation of p16INK4a and p19ARF. Transcription factor Ets2, was found to be a 

downstream target of the MAPKs (Lin et al., 1998). Hence the primary activators of 

p16INK4a expression are the MAPKs, which activate Ets1/2, while Id1 serves to oppose 
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this. In this chapter the roles of MAPK-ERK and Id1 in c-Abl-/- osteoblasts are 

examined. 

 
 
 
4.1 Role of MAPK pathway in the up-regulation of p16INK4a 

 

p16INK4a can be positively regulated by the Ras-Raf-MAPK pathway, and consistent 

with this notion it was found that along with elevated p16INK4a expression, c-Abl-/- 

osteoblasts also exhibited higher levels of activated ERKs (phospho-p42/p44) (Fig. 

4.1A). The overnight osteoblast cultures displayed intensified levels of activated 

ERK1/2, compared to cells cultured for 3 days (refer to passage “-“ and “4”), 

probably due to the presence of fresh growth factors in the serum. Yet activated 

ERK1/2 remained higher in c-Abl mutant osteoblasts than in wild type cells, at all 

passage points (Fig. 4.1A). This reflected the p16INK4a expression profile between the 

both cell types.  

 

Furthermore, specific inhibition of ERK using MEK inhibitor U0126 also reduced 

p16INK4a levels in both osteoblast types, validating that ERK activation have a positive 

impact on p16INK4a expression (Fig. 4.1B). The fact that ERK inhibition in c-Abl 

mutant did not reduce the levels of p16INK4a expression to that of wild type osteoblasts 

suggests that p16INK4a up-regulation may involve other factors apart from ERK1/2, 

and possibly the inhibition of MEK (U0126) may have displayed slight redundancy 

by affecting the regulation of other proteins necessary for p16INK4a regulation in the 

absence of ERK. Nonetheless, deficiency of c-Abl could alter ERK activation and this 

was affirmed by enhanced ERK activation upon inhibition of c-Abl using imatinib 

mesylate (Fig. 4.1C), and reconstitution of c-Abl in c-Abl-/- osteoblasts could repress  
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Fig. 4.1. Enhanced activation of ERK1/2 in c-Abl-/- osteoblasts.  

(A) Mutant and wild type cells were cultured as in Fig. 3.1 and cells collected at day 3 

of each passage. Passage “n/o” stands for cells that were grown overnight. Harvested 

lysates were subjected to western blot analysis. (B) Inhibition of ERK1/2 activation 

repressed p16INK4a expression. Early passage (P2) osteoblasts were treated with 2 

different doses of U0126 for 3 days and harvested for western blot (lanes 1 and 4 as 

non-treatment control). (C) c-Abl inhibition enhances ERK activation. Wild type 

osteoblasts (ctrl) were serum starved overnight and then treated with 1uM of 

STI571/imatinib for 2 hours. (D) Reconstitution of c-Abl in c-Abl-/- osteoblasts 

restores the normal activation of ERKs. Bottom panel: protein levels of retroviral 

expressed c-Abl in wild type and mutant osteoblasts.  

+/+ 
[STI571] 

Ctrl    +[STI571] 
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ERK activation (Fig. 4.1D). Taken together, these results summarize c-Abl negative 

effect on ERK activation and will be further discussed in Chapter 7. 

 

 

4.2 An opposing role of Id1 in p16INK4a up-regulation 
 
 
The expression of p16INK4a is largely controlled by the helix-loop-helix family of 

transcription factors, namely the Ets1/2 as positive regulators and Id1 as a negative 

regulator (Ohtani et al., 2001). Besides, Id1 involvement in p16INK4a-dependent 

senescence have been well studied (reviewed in Zebeedee and Hara, 2001, Ruzinova 

and Benezra, 2003), which raised the rationale to probe the expression of these 

proteins in c-Abl-/- osteoblasts. While the expression of Ets1 and Ets2 remained 

unchanged (data not shown), the levels of Id1 protein was down-regulated in c-Abl-/- 

osteoblasts (Fig. 4.2). Since Id1 levels did not change with increasing passages, it was 

possible that the constant p16INK4a up-regulation during osteoblast senescence could 

be triggered by other factors other than Id1. Nevertheless, an inverse relationship 

could be observed in untreated osteoblasts; when p16INK4a expression was increased, 

Id1 level dropped (Fig. 4.1B, lanes 1 and 4). This expression pattern was also 

observed in long bone sections of c-Abl fetuses (E18.5), where Id1 immunostaining is 

lower in c-Abl mutants compared to wild type (results not shown). 
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Fig. 4.2. Down-regulation of Id1 in c-Abl-/- osteoblasts. 

The osteoblasts were harvested at day 3 following the designated passage number and 

probed with western blot antibodies for Id1 and �-actin.  
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4.3 Summary 
 
 

The increase in p16INK4a expression in senescent osteoblasts correlates with aging-

associated phenotypes such as increased �-Gal staining and a reduction in BrdU 

positive cells. What are the upstream mediators that regulate p16INK4a expression in c-

Abl-/- osteoblasts? The endogenous levels of activated MAPK-ERK1/2 was found to 

be dramatically elevated in c-Abl-/- osteoblasts, when compared to wild type cells, and 

this increase remained consistently unchanged, regardless of osteoblast passage 

number (Fig. 4.1A). In addition, the presence of c-Abl displays an inhibitory mode on 

ERK activation, as blocking c-Abl kinase activity using imatinib/STI571 relieved the 

ERK inhibition in wild type osteoblasts (Fig. 4.1C), while ERK repression was 

restored in c-Abl-/- osteoblasts, when c-Abl was reinstated (Fig. 4.1D).  

 

On the other hand, as Id1 has been shown to inhibit p16INK4a expression in the 

p16INK4a-RB mediated senescent pathway. Aligned to our results, Id1 expression was 

diminished in c-Abl-/- osteoblasts and at the in vivo level, in the long bones of c-Abl-/- 

embryos (Fig 4.2 and results not shown). As a result the lack of sufficient Id1 levels in 

c-Abl mutants is likely to be one of the reasons why p16INK4a was higher in the 

mutants than in wild type osteoblasts. 

 

Hence, the positive impact of increased ERK activation and the negative influence of 

Id1 exemplify the actions of two opposing mediators that must be balanced in order to 

achieve a desired output of p16INK4a on osteoblasts. Yet, p16INK4a expression in c-Abl 

osteoblasts suggests the existence of regulation by separate pathways; one that 
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involve an ERK1/2 mediated pathway independent of Id1, and another pathway that 

requires Id1 (Fig 4.1B). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 82

CHAPTER 5 
 
 
C-ABL POSITIVELY REGULATES ID1, VIA THE BMP-SMADS-1/5/8 

SIGNALING PATHWAY 

 
Previous chapters have demonstrated the strong correlation of Id1 up-regulation with 

p16INK4a down-regulation in the premature senescence of osteoblasts (depicted in 

chapter 3). This chapter further investigates the upstream regulation of Id1 and its 

relationship with the BMP pathway, to understand how Id1 expression is affected by 

c-Abl deficiency during osteoblast senescence. 

 
 
5.1 c-Abl is likely to augment Id1 expression via the BMP pathway 
 
 
Having shown that c-Abl-/- osteoblasts expressed reduced levels of Id1, and Id1 is a 

direct target gene of the BMP pathway (Miyazono and Miyazawa, 2002), it was 

imperative to understand how c-Abl regulates Id1 expression. More so as it is known 

that BMPs are expressed and secreted by osteoblasts, and BMP signaling is essential 

for regulating osteoblast differentiation and bone remodeling (Chen et al., 2004). To 

demonstrate that c-Abl is involved in BMP2-induced Id1 expression, c-Abl-/- and 

control osteoblasts were serum starved overnight and stimulated with increasing doses 

of BMP2 (Fig. 5.1A). Both cells were highly sensitive to BMP2, with dramatic Id1 

induction even at a low dose of 10ng/ml BMP2, while the Id1 levels in mutants 

remained sub-optimal, and did not reach that of wild type osteoblasts. Surprisingly, 

BMP2 at the dose of 200ng/ml failed to induce Id1, probably due to feedback 

regulation in the cell response to high concentrations of BMP2. In addition, inhibition 

of c-Abl using imatinib was able to repress BMP2-induced Id1 expression in wild 



 83

type osteoblasts (Fig. 5.1B), indicating c-Abl was required for maximal induction of 

Id1.  

 

To test if c-Abl reconstitution could ultimately rescue the defect of BMP-induced Id1 

expression in c-Abl-/- osteoblasts; retroviruses carrying the c-Abl gene and empty 

vector as control were infected into these cells and then challenged with 10ng/ml of 

BMP2. The time course study showed that c-Abl could indeed rescue the otherwise 

weak Id1 induction in c-Abl-/- osteoblasts, when compared to the vector control in the 

same set of cells, even with a low dose of BMP2 (Fig 5.1C). This implies c-Abl plays 

a positive role in BMP signaling, while negatively regulating ERK1/2 activation (Fig. 

4.1D). 

 
 
5.2 c-Abl  up-regulates Id1 transcription 
 
 
To explore the extent of c-Abl regulation of the Id1 gene, transcription-based assays 

were carried out. In RT-PCR assays, overexpression of c-Abl or the constitutively 

activated v-Abl DNA enhanced the endogenous Id1 mRNA expression, with stronger 

induction being seen with v-Abl in osteoblast-like cell line MC3T3 (Fig. 5.2A).  

 

It was shown that c-Abl can potentiate BMP-induced Id1 at the protein and 

transcription levels (Fig 5.1C, 5.2A). Luciferase reporter assays using Id1 promoter 

construct were transfected into myoblastic cell line C2C12. Constructs expressing 

effectors of BMPs; Smad1 and Smad4 with BMP2, or BMP2 alone was able to 

enhance Id1 transcription, yet c-Abl itself could only induce a 2-fold increase in basal 

Id1 transcription. The kinase activity of Abl was important for this, as constitutive 

activated  Abl,  v-Abl,  induced  significant  promoter  activity  while  addition  of  the  
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Fig. 5.1. c-Abl is required for optimal induction of Id1.  

(A) Reduced Id1 induction by BMP2 in c-Abl-/- osteoblasts. c-Abl mutant and wild 

type osteoblasts were serum-starved overnight and stimulated with various doses of 

BMP2 for 4 hrs and the levels of Id1 determined by Western blot. (B) Imatinib 

treatment inhibits Id1 induction by BMP2. Primary osteoblasts were pre-treated with 

1uM imatinib for an hour prior to adding of low doses of BMP2 for 1 hr. (C) A time 

course study of Id1 induction in c-Abl-/- and c-Abl reconstituted c-Abl-/- osteoblasts 

using 5ng/ml of BMP2. 
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kinase-dead c-Abl [KD] remained unchanged (Fig. 5.2B), this also signifies the 

effects of v-Abl and the BMP-Smad pathway is not mutually exclusive. Treatment of 

C2C12 cells transfected with Id1 promoter-luciferase gene with imatinib to inhibit 

endogenous c-Abl also repressed Id1 transcription, as well as BMP-induced Id1 

transcription (Fig. 5.2C), stressing the need for c-Abl kinase activity in Id1 up 

regulation, whether direct or indirect. 

 

Importantly, RT-PCR assay confirmed that c-Abl regulates Id1 at the transcript level 

as the reconstitution of c-Abl into c-Abl-/- osteoblasts could rescue the BMP-induced 

Id1 mRNA (Fig. 5.2D), modeling the Id1 protein level pattern observed in Fig.5.1C.  

 
 
 
5.3 c-Abl enhances Smad activation to promote expression of BMP target 

genes 
 
 
Since c-Abl positively regulates Id1 gene transcription, and more so with BMP-

induced Id1, It was necessary to determine if BMP-Smads 1/5/8 could be affected by 

c-Abl deficiency, since Smads1 and Smad4 are the upstream regulators of Id1 (Lopez-

Rovira et al., 2002), and/or if this involved a Smad-independent mechanism. c-Abl-/- 

osteoblasts were subjected to BMP2 in various doses, revealing compromised Smad 

1/5/8 activation, as well as basal levels when compared to wild type cells (Fig. 5.3A). 

Also, while the basal levels of activated Smad 1/5/8 was significantly reduced in 

mutant cells, they could be restored by the reconstitution of c-Abl (Fig. 5.3B). Both 

suggest the compromised Smad signaling could be responsible for the down 

regulation of Id1. This was not confined solely to osteoblasts, as c-Abl-/- MEFs also 

displayed such a response to BMP2, along with up-regulation of ERK activation (Fig. 

5.3C).  
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Fig. 5.2. c-Abl regulates Id1 at the level of transcription. 

(A) c-Abl overexpression promoted BMP-induced Id1 expression. MC3T3 cells were 

transfected for 24 hrs, and further treated with 100ng/ml of BMP2 for 6 hrs. The 

amount of Id1 mRNA was determined by RT-PCR. (B) c-Abl acted directly on the 

Id1 promoter. Id1 promoter-luciferase reporter was co-transfected with Smad1 and 

Smad4, c-Abl, c-Abl kinase dead [KD], or v-Abl into C2C12 cells for 3.5 hrs. These 

cells were then treated with 100ng/ml BMP2 overnight for 16 hrs and the luciferase 

activity was measured with the renilla plasmid as an internal control.  
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Fig. 5.2. c-Abl regulates Id1 at the level of transcription (continued). 

(C) Imatinib mesylate inhibited Id1 promoter activity. As before, Id1 promoter-

luciferase reporter was transfected into C2C12 cells. The cells were then pretreated 

with 1uM imatinib for 2 hrs prior to adding 100ng/ml BMP2 for 16 hrs. Luciferase 

activity was measured, and renilla used as an internal control. (D) RT-PCR assay 

showed that BMP2-induced Id1 mRNA was significantly reduced in c-Abl-/- 

osteoblasts and can be rescued upon c-Abl reconstitution using retrovirus. c-Abl 

mutant and control osteoblasts were stimulated with 5ng/ml BMP2 and harvested at 

various time points, and assessed for the level of Id1 mRNA. 
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As the activation of Smads 1/5/8 would result in changes to downstream events of 

BMP signaling since they mediate the transcription of various target genes, RT-PCR 

was carried out in the same conditions as in Fig 5.2A to study the mRNA levels of 

other target genes. BMP early target genes such as Id3 and Smad6 gave rise to similar 

profiles as Id1 transcript, whereby attenuated response to BMP2 exist with the lack of 

c-Abl, and this deficiency could be restored with c-Abl reconstitution (Fig 5.3D). 

These results reaffirms the hypothesis that c-Abl acted positively on the BMP 

pathway and its direct effector Smads 1/5/8, and is needed for full induction of BMP 

target genes. 

. 
 
5.4 BMP sustains Id1 expression to promote cell proliferation 
 

To place in context the logic behind Id1 up-regulation by c-Abl in the senesence of 

osteoblasts, the Id1 protein was overexpressed in c-Abl-/- osteoblasts using retrovirus 

(Fig. 5.4A). Levels of Id1 overexpressed in mutant cells matched that of wild type 

levels and was sufficient to down regulate p16INK4a, and extented the lifespan of 

mutant cells by three doublings (results not shown). This establishes the basis that c-

Abl elevation of Id1 served to down regulate p16INK4a, and delay the senescent fate of 

osteoblasts, and is consistent with findings that Id1 overexpression extended the 

lifespan of keratinocytes and ES cells (Rheinwald et al., 2002, Ying et al., 2003). 

 
In order to prove BMP signaling affects p16INK4a expression via Id1, BMP2 and 

BMP4 antagonists: noggin and chordin, were added to culture media of wild type 

osteoblasts. While activated Smads 1/5/8 and target gene Id1 were repressed, p16INK4a  
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Fig. 5.3. c-Abl regulates the activation of BMP-Smad1/5/8. 

(A) Reduced Smad1/5/8 activation in the presence of BMP2. c-Abl-/- and control 

osteoblasts were stimulated with various concentrations of BMP2 for 4 hrs and 

analyzed by western blot using anti-p-Smad1/5/8 antibodies. (B) The attenuated basal 

levels of activated Smads in c-Abl-/- osteoblasts were restored by c-Abl reconstitution. 

(C) Profile of Id1, Smad1/5/8, p16INK4a and ERKs expression in response to BMP2 in 

c-Abl MEFs is similar to that of osteoblasts. MEFs isolated from c-Abl-/- mice and 

control littermates were cultured to passage 3. Cells were treated with BMP2 for 

different time points and harvested for western blot analyses. 
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Fig. 5.3. c-Abl positively regulates BMP signaling via Smad1/5/8 activation. 

(D) RT-PCR assays conducted in the same manner as in Fig. 5.2D also revealed the 

loss of BMP2 induction on BMP target genes, and can be rescued to wild type levels 

with the addition of c-Abl back to c-Abl-/- osteoblasts. 5ng/ml BMP2 was added for 

various time points before subjecting cells to RNA extraction and RT-PCR. 
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expression was concurrently elevated with increasing dosage of BMP antagonists 

(Fig. 5.4B). Moreover, BMP2 was able to down regulate p16INK4a in osteoblast 

cultures (Fig. 5.4C), also reflected in c-Abl MEFs (Fig. 5.3C), stressing the 

importance of an intact BMP pathway in influencing p16INK4a expression. 

Nonetheless, the delayed rate of p16INK4a up regulation (Fig. 5.4B), and resistance to 

absolute repression of p16INK4a (Fig. 5.4A and C) also meant that the regulation of 

p16INK4a gene is complex and likely to involve a combination of other factors for 

complete regulation. 
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Fig. 5.4. BMP2-induced Id1 up-regulation promotes osteoblast proliferation. 

(A) Retroviral expression of Id1 down-regulated p16INK4a in c-Abl-/- osteoblasts. (B) 

Blocking BMP signaling with noggin and chordin in osteoblasts down-regulates Id1 

and up-regulates p16INK4a. Wild type osteoblasts were cultured in the presence of 

increasing doses of noggin and chordin for 3 days and the levels of p16INK4a, Id1 and 

phospho-Smad1/5/8 determined by western blot. (C) BMP2 was able to down-

regulate p16INK4a expression in osteoblast cultures. Normal osteoblasts were seeded at 

1x105 cells/60mm dish, and treated with BMP2 for 2 or 4 days. The basal levels of 

p16INK4a were determined by western blot. Graphical representation of normalized 

p16INK4a levels (against actin) using densitometry. 
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5.5 Summary 
 
 
In c-Abl wild type osteoblasts, the homeostatic levels of p16INK4a is maintained by Id1 

and counter-balanced by ERKs to achieve a normal replicative senescence program 

reflective of primary cells.  The reduction of Id1 expression in c-Abl mutant cells 

prompted further investigation of its role not only in affecting p16INK4a mediated 

senescence, but also in the search for a connection between c-Abl and Id1. c-Abl was 

found to positively regulate Id1 expression, as seen when comparing the basal Id1 

protein expression levels, as well as under BMP2 induction , where the difference was 

clearly observed under conditions of serum starvation (Fig 5.1A). In addition, 

inhibition of c-Abl on a separate batch of wild type osteoblasts shows that Id1 

expression is augmented by c-Abl under low doses of BMP2. However, as serum-free 

media was used for imatinib pretreatment period, as well as on non-treated 

osteoblasts, and the density of protein cell lysate collected was lesser in comparison to 

other sets, this could account for the minimal Id1 expression seen in lane1 of control 

set cells (Fig 5.1B). Conversely, the rescue of BMP2-induced Id1 in c-Abl knockout 

osteoblasts is restored with reconstitution of c-Abl (Fig 5.1C). Therefore this 

suggested that c-Abl could be involved in BMP signaling and affect its target gene 

Id1. Furthermore, transient overexpression of v-Abl could significantly boost basal 

Id1 mRNA, while the addition of BMP2 saturates this effect by the maximal induction 

of Id1 in MC3T3-E1 cells. This occurred to a lesser extent in the c-Abl overexpressed 

set, probably due to the difficulty of getting sufficient c-Abl kinase activation to occur 

in these cells (Fig 5.2A). c-Abl also appears to create an additive effect on Id1 

transcription, and the degree of Id1 induction depended on its kinase action as the 

kinase dead c-Abl, as well as inhibition of Abl kinase by imatinib, repressed Id1 

transcription, demonstrated by the Id1-promoter reporter assays (Fig 5.2B and C). 
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Again, the rescue of endogenous Id1 and BMP-induced Id1 mRNA in c-Abl-/- 

osteoblasts by c-Abl reconstitution (Fig 5.2D) was consistent with the pattern seen at 

the protein level (Fig 5.1C). The rapid induction of BMP2-induced Id1 by c-Abl led to 

the analysis of BMP-Smads expression, and indeed the activation of Smads1/5/8 was 

compromised by the loss of c-Abl, particularly at the endogenous stage. This 

phenomenon was not restricted to osteoblasts as c-Abl-/- MEFs also displayed poorer 

BMP2-induced Id1 expression and Smad activation. Smads are transcription factors 

that regulate a large repertoire of genes, hence this led to extending the analysis of c-

Abl reconstitution studies to more BMP target genes. Undoubtedly, the transcription 

of various immediate-early direct target genes of the BMP pathway were found to be 

affected (Fig 5.3). This led to the conclusion that c-Abl could participate in the BMP 

signaling pathway, and do so in a positive manner. 

 

To confirm if c-Abl’s involvement in BMP pathway could modulate p16INK4a 

mediated senescence in osteoblasts, Id1 overexpression in c-Abl-/- osteoblasts could 

down-regulate p16INK4a expression and overcome the premature senescence to some 

extent (Fig 5.4A). In addition, BMP2 could repress p16INK4a expression further in 

proliferating osteoblasts with increasing dosage (Fig 5.4C), while blocking BMP 

signaling and feedback by BMP antagonists created an outcome that supported rising 

evidence for BMP regulation of p16INK4a, as it appears the repressive effect of BMP 

on p16INK4a was lifted, in a dose dependent manner, and correlated with repression of 

Id1 and Smad activation. Thus, c-Abl could augment BMP2-induced Id1 to promote 

osteoblast proliferation, in tandem with the function of Id1 up-regulation to maintain 

p16INK4a repression. 
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CHAPTER 6  
 
 
C-ABL ACTS UPSTREAM OF SMADS-1/5/8 AT THE BMP RECEPTOR 

LEVEL TO AUGMENT BMP-SMAD SIGNALING   

 
 
The structural features of BMP receptors were described in chapter 1.4.1 (page 37). 

Smads1/5/8 can only be activated by type I BMPRs (BMPRIA), therefore BMPRIA 

determines the specificity of Smad signaling. Proper BMP-Smad signaling requires 

intact type I BMP receptors, as studies manipulating BMPRIA have shown. Truncated 

forms of BMPRIA caused cells to differentiate into myotubes (Namiki et al., 1997), 

and induced dorsal mesoderm formation instead of ventralization in Xenopus embryos 

(Suzuki et al, 1994). So, mutated BMPRIA appears to exert a dominant negative 

effect in vitro and in vivo, since the phenotype completely reversed. 

 

In this chapter the roles of BMP receptors are covered, to gain an understading into 

the attenuated Smad activation and Id1 induction in c-Abl-/- osteoblasts. 

 
 
 
6.1 c-Abl phosphorylates BMP type I receptors 
 
 
The endogenous transcript and protein levels of BMP receptors 1A, 1B and II were 

examined in c-Abl wild type and knockout osteoblasts and MEFs. No obvious 

changes were observed, which ruled out varying innate expression levels as the reason 

behind decreased Smad activation in c-Abl-/- osteoblasts. (Fig. 6.1A; transcript in 

osteoblasts, protein in MEFs). To determine the likelihood of post-translational 

modification of the receptors, c-Abl was cotransfected along with receptor 1A, 1B or 

II in cos7 cells, and subjected to immunoprecipitation. It was observed that tyrosine 
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phosphorylation occurred in type 1 receptors and not type II when co-expressed with 

c-Abl (Fig. 6.1B). Moreover, since no tyrosine phosphorylation could be seen with 

co-expression of a kinase dead version of c-Abl (KD), this indicated a requirement for 

cAbl activation in this process (lane 6 in Fig 6.1B). To test whether this modification 

was physiological, c-Abl-/-Arg-/- double knockout (DKO) MEFs were used to 

immunoprecipitate endogenous BMPR1A. While similar levels of BMPR1A could be 

immunoprecipitated in both DKO and WT MEFs, DKO MEFs displayed lower levels 

of tyrosine phosphorylation compared to wild type (Fig. 6.1C). In addition, the 

compromised BMPR1A tyrosine phosphorylation in DKO MEFs was also seen in c-

Abl-/- MEFs, and this effect was further enhanced with BMP induction (Fig. 6.1D). It 

is possible that the homologue of c-Abl; Arg, might be needed to exert some 

synergistic kinase activity on c-Abl, to influence the degree of BMPR1A tyrosine 

phosphorylation. 

 
 

6.2 Serial deletion analysis of BMPR1A reveals the carboxy terminal region is 

phosphorylated by c-Abl 

 

The intracellular portion of BMPR1A consists mainly of a ~32 kDa kinase domain, 

leaving a short tail of 13 aa at its carboxy terminus. In order to identify the region 

where c-Abl phosphorylates, deletion analysis was performed. 4 fragments with the 

lengths of 50 kDa, 45 kDa, 35 kDa or 30 kDa, with truncations starting from the 

carboxy terminus were PCR-cloned using the full length (FL) wild type BMPR1A as 

template, and HA-tagged. These deletions were labeled as deletion 1-4 (1 being the 

shortest fragment – 30 kDa), with each fragment consisting of a cluster of tyrosine 

residues (illustrated in Fig. 6.2A). Along with FL receptor, these constructs were co-  
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Fig. 6.1. Post-translational modification of BMP type I receptors by c-Abl.  

(A) Left - c-Abl mutant and wild type osteoblasts were harvested and subjected to 

RNA extraction and then RT-PCR. Little difference was observed in mRNA 

expression levels of BMPR 1A, 1B and II. Right – Protein levels of BMPR1A in c-

Abl MEFs. (B) Co-expression with c-Abl led to BMPR1A and BMPR1B tyrosine 

phosphorylation. HA-tagged BMPR1A and BMPRIB was expressed alone or co-

expressed with c-Abl in cos7 cells. BMP receptor was immunoprecipitated using anti-

HA antibodies and its tyrosine phosphorylation determined by western blot. Similarly, 

Flag-tagged BMPRII was immunoprecipitated with anti-Flag antibodies and observed 

for tyrosine phosphorylation.   
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Fig. 6.1. Tyrosine phosphorylation of  BMP type I receptors by c-Abl (cont’d). 

(C) Reduced tyrosine phosphorylation of BMPR1A in c-Abl-/-Arg-/- MEFs. 

Endogenous BMPR1A was immunoprecipitated from cell lysates of mutant and 

control MEFs and tyrosine phosphorylation determined by western blot. (D) c-Abl-/- 

and wild type MEFs were grown to confluence, serum starved overnight and 15ng/ml 

BMP2 added the next day for 2.5 hours before harvesting cells. Cell lysates were 

subjected to similar conditions as in (C) during immunoprecipitation. 
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expressed with c-Abl in cos7 cells and upon immunoprecitation of receptor via HA 

antibody, no tyrosine phosphorylation could be seen in all 4 deletion constructs except 

for the original FL receptor (results summarized in Fig. 6.2A right panel box). This 

leads to the finding that the tail-end region or carboxy terminus of BMPR1A is 

important in c-Abl regulation.  

 
 
6.3 BMPR1A Y453/467 residues are preferentially phosphorylated by Abl 

kinases 

 

In order to map the tyrosine residues in the tail-end region, an alignment of BMPR1A 

protein sequences of various animal species was made (Fig. 6.2B). 17 conserved 

tyrosine residues could be found in the entire cytoplasmic length of BMPR1A, with a 

cluster of 4 tyrosine residues being found at the extreme C-terminus, designated 

Y453, Y457, Y458 and Y467 (Fig. 6.2B). Mutagenesis of these four tyrosine residues 

were performed to generate four single tyrosine (Y) FL receptor mutants (labeled A to 

E) by replacing its original tyrosine residue to phenylalanine (F), so it does not affect 

protein confirmation, yet fail to be phophorylated by tyrosine kinases. Tyrosine 

phosphorylation by immunoprecipation was examined with these 4 single Y receptor 

mutants and no difference in the ability or strength for c-Abl phosphorylation was 

found (Fig. 6.3A). This led us to speculate that these Y residues might work in a 

group rather than singly to affect c-Abl action on BMPRs. Subsequently, 4 more 

tyrosine mutants were made with the first four mutants as templates, this time in 

various Y residue combinations as illustrated in Fig. 6.3B.  Phosphorylation analysis 

of these 4 combination mutants show that relative to FL wild type receptor, the 

tyrosine phosphorylation by c-Abl was abolished in the mutant I (Fig. 6.3B).  
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Moreover, the addition of BMP could enhance the c-Abl tyrosine phosphorylation of 

combination receptor mutants F, G, and H, but could not lift the severe inhibition in 

mutant I (Fig. 6.3C). The level of phosphorylation drops with receptor mutant H, thus 

suggesting that residues Y453 and Y467 are the tyrosine residues preferred by c-Abl. 

In addition, the degree of tyrosine phosphorylation by c-Abl is possibly quantity 

dependent, as receptor mutant F displayed highest phosphorylation, corresponding to 

higher c-Abl expression when compared to the rest. This overall effect was enhanced 

when the mutants were co-expressed with constitutive v-Abl (figure not shown), 

hence confirming that the integrity of Abl phosphorylation of BMPR1A depends 

largely on the combination of Y453 and Y467. 
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Fig. 6.2. Mapping of BMPR1A phosphorylation site by c-Abl via receptor 

truncations. 

(A) The domain phosphorylated by c-Abl was mapped by serial deletions starting 

from C-terminus end. Four deletion mutants were created with their respective sizes 

stated on the left, compared to full length [FL] 1A receptor. Receptor deletion mutants 

#1 to 4 were co-expressed with c-Abl and tyrosine phosphorylation determined by 

western blot. The box in red summarizes the lack of tyrosine phosphorylation 

observed in all deletion mutants, when compared to typical FL tyrosine 

phosphorylation by c-Abl. (B) Diagram illustrating the alignment of C-terminal  

regions of BMPR1A of various species. Boxed in red are the conserved tyrosine 

residues found within the region after deletion mutant #1 to carboxy end of full length 

receptor. 
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Fig. 6.3. Identifying the BMPR1A C-terminal tyrosine residues phosphorylated 

by c-Abl via mutagenesis. 

(A) BMPR1A single tyrosine mutants do not affect the tyrosine phosphorylation 

status by c-Abl. Mutants A to E consist of a single (except D) mutation to replace 

tyrosine with phenylalanine (labeled F in blue). c-Abl was co-expressed with each of 

these mutants in cos7 and receptors immunoprecipitated using anti-HA antibodies. 

Tyrosine phosphorylation was determined by western blot. (B) More BMPR1A 

receptor mutants created from the templates of earlier single mutants. It was observed 

that while all 4 tyrosine residues could be phosphorylated, the major phosphorylation 

site for c-Abl remained at Y453/467 (mutant I consisting of all four mutated sites 

compared to mutant H). 
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Fig. 6.3.  BMP2 can enhance c-Abl mediated phosphorylation of BMPR1A on 

any of the all four tyrosine residues.  

(C) Receptor mutants F to I, together with wild type BMPR1A [FL], were co-

expressed with c-Abl in cos7 and serum starved overnight before adding 20ng/ml 

BMP2 for 30mins. Receptors were immunoprecipitated with anti-HA antibodies, and 

tyrosine phosphorylation determined by western blot. For control, lanes 1 and 2 were 

co-expressed with vector, and with BMP treatment, lanes 8 and 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 108

6.4 BMPR1A Y453/457/458/467 mutant affects Smad1 activation, but not  

            Smad1 binding to receptor 

 

As BMPR1A is the bona fide activator of Smads1/5/8 and direct interaction is 

required, the effects of Smad1 activation was studied using a wild type Smad1 

construct and as a control; a mutant Smad1 that has the last 11aa deleted so it cannot 

be phosphorylated by BMPR1A (structural studies showed that the C-terminal final 

10 aa residues of Smad1 was shown to be flexible, while its carboxy tail end 

containing the final two serine residues of Ser-X-Ser, or SSXS motif was required for 

phosphorylation by BMPR1A (Qin et al., 2001, Shi and Massague, 2003). Co-

expression studies revealed that Smad1 activation was compromised in the mutant 

tyrosine receptor, while the binding of Smad1 to the wild type or tyrosine mutant 

receptor remains unaffected, with the mutant smad1 as well (Fig. 6.4). Hence, it is 

likely that c-Abl enhances Smad activation via these c-terminal tyrosine residues 

without interfering with Smad binding to the receptor.  

 
6.5 Mutant BMPR1A affects receptor complex formation 
 
 
In what ways can c-Abl influence the receptors and affect Smad activation? Since 

BMPRII is needed to phosphorylate BMPRIA at the unique GS box domain in order 

to further activate BMPR1A itself and thus Smads, the joining of both receptor types 

can affect downstream events. To understand the earliest cytoplasmic steps of BMP 

signaling, HA and Flag-tagged constructs containing BMPR1A and BMPRII 

respectively were co-expressed along with c-Abl. BMPR1A was then 

immunoprecipitated, using HA antibody while flag antibody was applied in western  
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Fig. 6.4. Smad1 activation is compromised in the mutant BMPR1A.  

The mutant BMPR1A [m] carrying the 4 Y-F mutations and the wild type receptor 

were co-expressed with Smad1, or the mutant Smad1 (Smad1�). Western blot 

analysis was used to determine Smad1 activation, using anti-phospho-Smad1/5/8 

antibody, and total Smad expression using anti-Smad1 antibody. For 

immunoprecipitation analysis, anti-HA antibodies were used for BMPR1A wild type 

and mutant constructs, and Smad1 association detected with anti-Smad1 antibodies. 
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blot to look for the presence of BMPRII (Fig. 6.5). As seen in Fig 6.5, lanes 1-3 

revealed that BMPRII bound to BMPR1A, and this binding was markedly enhanced 

only with the addition of c-Abl, not its kinase dead form (KD). More importantly, 

lanes 6 and 7 show diminished binding of BMPRII, when the mutant BMPR1A was 

used. This signals that the 4 tyrosine sites regulated by c-Abl is needed for 

‘usual/normal’ receptor complex formation, as the lack of these sites can reduce 

receptor binding to each other, and consequently a reduction in the level of Smad 

activation.  
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Fig. 6.5. c-Abl facilitated the interaction between BMPRII and BMPR1A.  

The mutant BMPR1A [m] carrying the 4 Y-F mutations and BMPR1A wild type 

receptor were co-expressed with BMPRII (Flag-tagged) and c-Abl or c-Abl KD. 

BMPR1A was immunoprecipitated with anti-HA antibodies and the association to 

BMPRII were identified with an anti-Flag antibody. 
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6.6 Summary          
 
 
Since c-Abl could augment Smad activation, it is likely that c-Abl works upstream of 

Smads 1/5/8 and more work was needed to understand the first tier of BMP signaling 

that occurs upon BMP ligand binding. Immunoprecipitation studies showed that c-Abl 

could tyrosine phosphorylate BMP type I receptors and endogenous tyrosine 

phosphorylation of BMPR1A occurred in c-Abl primary cells. In the absence of c-

Abl, tyrosine phosphorylation was lower, and this was not due to differences in 

receptor transcript or protein expression levels (Fig 6.1). Hence, c-Abl acted on the 

BMP receptors and this phosphorylation action could be the main reason behind the 

enhanced Smad1/5/8 activation, since receptor Smads remain the only substrates of 

BMP receptor kinases.  

 

In order to map the region on BMPR1A that was phosphorylated by c-Abl, serial 

deletion analysis of the receptor was carried out on the cytoplasmic portion of the 

receptor, which mainly consisted of the S/T kinase domain. It was found that all 4 

truncations created could not be phosphorylated, hence the carboxy tail region of the 

receptor was targeted by c-Abl (Fig 6.2). Mapping of conserved tyrosine residues at 

this area was performed, by first aligning BMPR1A protein sequences of various 

mammalian species and further creating several single tyrosine mutations of the full 

length BMPR1A. Immunoprecipitation of these mutants showed little difference in 

phosphorylation status; hence more mutants were created in various combinations out 

of the four conserved tyrosines. Subsequently, c-Abl phosphorylation was severely 

abolished in mutant I containing all four tyrosines mutated to phenylalanine, with the 

preferred flanking tyrosine residues at Y453/Y467 favored by c-Abl (Fig 6.3). 
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The functionality of this receptor mutant I (Y453/457/458/467) on Smad activation 

was tested, and was shown that while it did not affect Smad1 binding to receptor, its 

co-expression with Smad1 decreased the Smad1 phosphorylation significantly, when 

compared to the strong Smad1 activation observed with wild type BMPR1A (Fig 6.4). 

More importantly, Fig 6.5 addressed the results observed in Fig 6.4, as the presence of 

c-Abl could enforce the binding of BMPRII to BMPR1A, while BMPRII binding to 

the mutant receptor was dramatically compromised, with or without c-Abl. This 

showed that the four tyrosine residues found on BMPR1A was essential for c-Abl to 

enhance receptor complex formation and thus promote receptor Smad activation, 

since the receptor type I and II complex was necessary for downstream Smad 

activation to occur.   
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CHAPTER 7  
 
 
A NEGATIVE ROLE OF C-ABL IN BMP-INDUCED ERK1/2 ACTIVATION 
 
 
With the earlier chapters demonstrating how c-Abl functions in the BMP pathway up-

regulate BMP target genes via Smads1/5/8, the key mediators of another equally 

important BMP-induced Smad-independent pathway is studied here, in the attempt to 

understand the purpose for MAPK-ERK activation seen in c-Abl-/- cells (chapter 4). 

 

The BMP-MAPK pathway is one of the pathways that were identified to be Smad-

independent. However, the downstream outcomes of activating mitogenic subfamilies 

ERK1/2, p38MAPK and JNK, vary extensively in cell type, kinetics and magnitude 

(Massague, 2000). Central to BMP-MAPK signaling is the activation of TAK1 (TGF-

� activated kinase), that is shown to function downstream of BMPs and TGF�, as well 

as cytokines IL-1 and TNFα (Ninomiya-Tsuji et al., 1999). TAK1 was first identified 

as a MAP3K (Yamaguchi et al., 1995), and forms the crucial link between BMP 

receptors and MAPKs. TAK1, along with TAB1 (TAK1-binding protein-1), acts to 

mediate downstream MAPK pathways, by activating JNK and p38MAPK via 

MAP2Ks such as MKK3 and MKK6 (Delaney and Mlodzik, 2006, Moriguchi et al., 

1996). TAK1 works in tandem with TAB1 as it requires TAB1 for its initial activation 

and autophosphorylation at Thr184/187 in its kinase activation loop (Sakurai et al., 

2000).  

 
TAK1 is ubiquitously expressed during early development, and generally localized in 

the cytoplasm (Jadrich et al., 2003). TAK1 serves multiple roles in mouse 

development, as TAK1-/- mice are embryonic lethal (Shim et al., 2005). An important 

function of TAK1 signaling lies in the regulation of cell survival. TAK1-/- MEFs are 
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highly sensitive to TNFα-induced apoptosis and the loss of its kinase activity 

attenuates the TRAIL-induced activation of NFkB-p65 and MAPKs (Choo et al., 

2006, Thiefes et al., 2005). On the other hand, ectopic expression of TAK1 in induces 

cell death in Xenopus embryos (Shibuya et al., 1998). Here, the roles of TAK1 and 

TAB1 in BMP-ERK regulation are investigated. 

 
 
 
 
 
7.1 Dual phases of ERK activation in c-Abl mutant osteoblasts is dependent 

on the duration of exposure to BMP2 

 

Early on, in chapter 4, it was observed that levels of activated ERK1/2 were elevated 

in c-Abl mutant osteoblasts and MEFs, when compared to its wild type counterpart. c-

Abl appears to have a repressive effect on MAPK/ERK activation, as in the absence 

of c-Abl, the level of activated ERK rises. In addition, reconstitution of viral c-Abl 

into knockout osteoblasts can rescue the lack of ERK inhibition in mutant cells (Fig 

4.1D). To examine the pattern of this activation, and also if ERK activation can be 

influenced by BMP signaling, BMP2 was added at various time points ranging from 0 

to 8hrs on wild type and c-Abl-/- osteoblasts (Fig 7.1A). It was observed that the 

normal wild type osteoblasts show transient ERK activation which peaks at 30mins 

from BMP stimulation, and plateau at the 2hr mark, this was then followed by a 

consecutive repression of phospho-ERK, to levels below the basal level. It is possible 

that the activation and repression waves under the influence of BMP could be 

involved in fine-tuning p16INK4a expression, as ERKs1/2 are transcriptional activators 

of p16INK4a (Lin et al., 1998). With c-Abl mutant osteoblasts, the ERK activation 

pattern differs, starting with higher basal p-ERK levels, followed by extended 
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transient ERK activation and the lack of ERK inhibition. These differences can be 

better observed by means of density measurement using absolute units (Fig 7.1B). 

Basal levels of activated MAPKK-MEK1/2, was also increased in c-Abl-/- osteoblasts, 

but remains constant with BMP2 induction. It is possible that c-Abl acts in an 

inhibitory manner on the upstream MAPKKKs, or there is a likelihood of crosstalk 

with the canonical RAS-RAF-MEK-ERK pathway. Nevertheless, either does not 

solely account for the ERK activation/repression pattern seen in mutant osteoblasts, 

and this underscores a novel role for c-Abl in BMP-induced ERK activity.  

 

Besides, blocking BMP2 activity for prolonged periods with antagonist noggin and 

chordin reversed the repression on ERK1/2 activation in wild type osteoblasts (Fig 

7.1C). This supports the earlier observation that the constant presence of BMPs plays 

a part in ERK regulation, and likely to be partially accountable for the enhanced ERK 

activation in c-Abl knockout osteoblasts. 

 
 
 
7.2 BMPR1A mutant mimics c-Abl-/- osteoblasts in ERK activation 
 
 
To further understand the relationship between c-Abl, and BMP-induced ERK 

activation, wild type and mutant-4Y BMPR1A was overexpressed with retrovirus in 

C2C12, a myoblastic cell line, as well as in primary osteoblasts to observe ERK 

activation. In both cases expression of mutant 4Y receptor led to an up-regulation of 

p-ERK1/2, compared to equivalent levels of expressed wild type 1A receptor (Fig 

7.2A and B). This is reminiscent of c-Abl knockout osteoblasts phenotype, suggesting 

that the mutant receptor acts in a dominant negative fashion, and that c-Abl  
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Fig. 7.1. c-Abl regulates BMP2-induced ERK activation.  

(A) c-Abl deficiency altered BMP-induced ERK1/2 activation and/or suppression. 8 

individual osteoblast cultures of each cell type was pooled together and subjected to 

various time point treatments using 100ng/ml BMP2. Western blot was then used to 

determine activation of various kinases. (B) Quantitation data of phosphorylated ERK 

against total ERK values. (C) Blocking BMP signaling led to ERK activation. Using 

c-Abl primary osteoblasts, BMP antagonists noggin and chordin [N+C], or 100ng/ml 

BMP2 [B] was added to both wild type and mutant cells for 2-3 days and cells 

harvested for western blot analysis.  
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phosphorylation of BMPR1A might be important in controlling BMP-induced ERK 

activation.  

 

The TAB1-TAK1 complex has been implicated in BMP-mediated MAPK activation 

(Yamaguchi et al., 1999, von Bubnoff and Cho, 2001, Massague, 2000). It can be 

seen that the basal levels of activated TAK1, an upstream regulator of ERK 

(Hammaker et al., 2004), was enhanced in c-Abl mutant osteoblasts (Fig 7.1C), as 

well as MEFs (Fig 7.2C). On the other hand, the basal p-TAK1 levels in wild type 

osteoblasts and MEFs remain too low to be detected, indicating that c-Abl represses 

the TAB1-TAK1 complex signaling. Therefore, c-Abl functions upstream at the 

MAPKKK, as C2C12 cells overexpressing mutant 4Y receptor also leads to higher 

levels of activated TAK1 (Fig 7.2A). To find out if TAK1 was indeed required for 

BMP-induced ERK activation, TAK1 was knocked down in C2C12 cells. Using 

pooled TAK1 siRNAs and a transient transfection system based from Dharmacon, 

cells were kept in culture for >48hrs post transfection and 100ng/ml BMP2 added 

directly to culture media for various time points. Compared to the mock and siRNA 

non-target controls, the transient ERK1/2 activation was mitigated with the addition 

of BMP (Fig 7.2D). This implies that BMP-induced transient ERK1/2 activation 

utilizes TAK1, though it is unclear if c-Abl can engage TAK1 complex directly 

during the transient wave of ERK1/2 activation. 

 
 
7.3 Role of mutant BMPR1A in TAB1-TAK complex formation 
 
 
It was previously reported that the TAK1 and TAB1 molecules function downstream 

of BMPR1A as injection of a kinase negative form of TAK1 mRNA in Xenopus  
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Fig. 7.2. c-Abl action on BMPR1A affects ERK activation.  

Mutant BMPR1A expression leads to enhanced ERK activation in C2C12 (A), as well 

as primary osteoblasts (B). Western blots show the innate levels of p-ERK1/2 and 

equivalent amounts of BMPR1A in cells overexpressing wild type 1A receptor or 

mutant receptor, compared to vector control infected cells. (C) Endogenous levels of 

activated TAK1 protein in c-Abl wild type and mutant MEFs. (D) Tak1 is required for 

transient BMP-induced ERK activation. TAK1 is silenced in C2C12 cells for 2 days 

and BMP2 added for short time points. Cells were harvested for western blot and 

probed for total TAK1 and p-ERK1/2 expression. 
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embryos could revert the ventralization phenotype generated by constitutive 

BMPR1A activation that reproduced the effect of BMP2/4 (Shibuya et al., 1998). 

Essentially, it is important to look into the physical interaction of these molecules at 

the BMP receptor level as they are needed to tranduce the downstream effect of 

observed ERK activation seen in c-Abl-/- osteoblasts. Co-immunoprecipitation 

experiments in cos7 cells using mutant-4Y receptor showed that TAB1 displayed a 

higher affinity for the mutant BMPR1A compared to wild type receptor (Fig 7.3A). 

This experiment was repeated three times, with the average difference of 2.2 fold 

increase with density quantitation. This enhanced interaction could be direct, or 

mediated by endogenous proteins such as XIAP. Importantly, these results suggest 

that c-Abl deficiency can facilitate recruitment of TAB1-TAK1 complex to 

BMPR1A, and hence augment ERK1/2 activation. Fig 7.3B summarizes the results of 

all chapters, illustrating BMP activation of a Smad-dependent and Smad-independent 

pathway that converge to fine-tune the expression of p16INK4a which mediate c-Abl’s 

effect on osteoblast expansion. 
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Fig. 7.3. c-Abl phosphorylation of BMPR1A counters TAB1 interaction.  

(A) TAB1 was shown to display higher affinity for mutant 1A receptor [m] than wild 

type counterpart. Flag-tagged TAB1 and HA-tagged 1A receptors were co-expressed 

in cos7 cells. Receptors were immunoprecipitated using anti-HA antibodies and co-

purified TAB1 detected by western blot. (B) A diagram showing how c-Abl might be 

involved in regulating osteoblast expansion in response to BMPs. 
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7.4 Summary 
 
 
BMP signaling in osteoblasts gave rise to divergent outcomes of the MAPK-ERK1/2 

regulation. A short duration of BMP2 exposure (about 30mins) resulted in ERK 

activation, while long term BMP stimulation caused ERK repression. This suggests 

existence of a negative feedback regulation on BMP-induced ERKs, which was 

further confirmed by enhanced phospho-ERK levels when BMP signaling was 

impeded by adding BMP antagonists in the culture media (Fig 7.1C, lane 3). Yet, 

careful analysis of ERK activation by comparing c-Abl-/- with wild type cells revealed 

that the transient activation phase was not affected by c-Abl deficiency. Instead, 

differences could be observed with ERK repression at the longer time range of BMP2 

stimulation. c-Abl-/- osteoblasts originated with elevated basal phospho-ERK levels, 

comparable to the levels seen in noggin/chordin treated cells, yet repression of 

phospho-ERK was either delayed (Fig 7.1B), or lost (Fig 7.1C, lane 5), with long 

periods of BMP treatment. Moreover, cells expressing the mutant-4Y receptor also 

displayed higher phospho-ERK amounts in comparison to wild type BMPR1A (Fig 

7.2A and B), suggesting that tyrosine phosphorylation of BMPR1A by c-Abl serves 

some function in BMP-induced ERK repression.  

 

On the other hand, the mechanism by which BMPs regulate MAPK-ERK is not well 

understood. Previous studies suggest that BMPs might activate MAPKs through 

TAB1-TAK1 complex, joined by adaptor protein XIAP (Yamaguchi et al., 1999). 

XIAP was found to recruit this complex to BMPR1A, and this could subsequently 

result in MAP3K-TAK1 activation. Indeed, TAK1 plays a positive role in BMP-

induced ERK activation, as knockdown of Tak1 resulted in lower phospho-Erks at the 

basal level in response to BMP2 induction (Fig 7.2D). Moreover, TAB1 was found to 
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bind better to the mutant BMPR1A (Fig 7.3A), and since TAB1 is needed to activate 

TAK1, this correlates well with the subsequent observed elevated downstream 

activation of MAP3K-TAK1, MAPKK-MEKK1 and finally, MAPK-ERKs, in c-Abl 

deficient cells, as well as cells overexpressing mutant BMPR1A. 
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CHAPTER 8 
 
  
BMP SIGNALING IN BCR-ABL AND THE SUSTAINANCE OF BONE 

MARROW PROJENITOR CELL POPULATION 

 
Studies described in the previous chapters support the notion that the cytoplasmic 

form of c-Abl acts on BMP type 1 receptors to affect downstream signaling to 

enhance Id1 expression, to down-regulate Erk1/2 activation, leading to repression of 

p16INK4a expression. As a result, the net outcome favors osteoblast proliferation. 

Another perspective into Abl signaling would be to understand the etiology of BCR-

ABL oncogenesis in the development of CML. 

 

BCR-ABL expression is required for the maintenance of CML. What are the signaling 

pathways involved? BCR-ABL targets many common signaling pathways to block 

apoptosis, promote proliferation and affect cell adhesion characteristics, processes 

that are advantageous for cellular transformation. The PI3K-AKT pathway is 

activated by BCR-ABL, likely to target AKT-mediated inactivation of FoxO 

transcription factors that affect apoptosis through p27Kip1 (Gesbert et al., 2000) and 

Bim (Kuribara et al., 2004). Proliferation is promoted by activation of the mitogenic 

Ras-Raf-MEK-ERK pathway, by recruitment of adaptors Grb2-Gab2 (Million and 

Van Etten, 2000). Yet, specific roles for BCR-ABL activation of p38-MAPK and 

repression of ERK was reported (Kohmura et al., 2004). The JAK/STAT pathway is 

involved in BCR-ABL transformation as STAT5a could abrogate hematopoietic cell 

dependence on cytokines (reviewed in Steelman et al., 2004). BCR-ABL can also 

alter actin cytoskeleton dynamics by binding to cytoskeletal proteins such as Sos-1 
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(Sini et al., 2004), and activating related pathways to enhance cell adhesion to the 

extra-cellular matrix (Feller, 2001).  

 
From the current understanding of BCR-ABL in signaling pathways, this chapter 

looks into the existence of a senescence pathway that is repressed in BCR-ABL 

positive cells. 

 
 
 
 
8.1 BCR-Abl potentiates BMP-induced Id1 expression, and can be inhibited 

by imatinib/STI571 treatment 

 

Using BCR-ABL positive CML human cell line K562, the endogenous protein levels 

of Id1 and phosphorylated smads1/5/8 were found to be highly expressed, when 

compared to its negative counterpart (myeloblastic cell line HL-60) (Fig. 8.1A). This 

suggests that increased Smad-Id1 signaling correlate with higher levels of Abl kinase 

activity.  

 

A preliminary look at downstream effects of suppressing BCR-ABL activity by 

adding inhibitor imatinib into culture media for 1 and 3 days demonstrated that basal 

Id1 expression is completely abolished even in K562 cells in 1 day, or 3 day cultures 

(Fig. 8.1B).  

 

In addition, the presence of BMP2 in culture could further induce Id1 expression after 

6 hrs of treatment (Fig. 8.1C, lanes 5 and 6), with the response more pronounced at 

the transcript levels when compared to HL60 cells (Fig. 8.1D). Interestingly, 

pretreatment of cells with imatinib prior to BMP2 treatment led to a huge reduction of 
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Id1 induction under BMP stimulation (Fig. 8.1C-D, lanes 4 and 8). This shows that 

BCR-ABL positive cells respond to BMPs, and it is due to this active BMP signaling 

that Id1 is enhanced. It appears that Id1 serves as an important target of BCR-ABL 

kinase activity, which is effectively repressed upon imatinib treatment.  

 

Likewise, limiting the canonical BMP2/4 circulation in culture media using BMP 

antagonists noggin and chordin at recommended ED50 dosage showed that the high 

levels of basal Id1 in K562 cells could be reduced by about more than half after 72 hrs 

(Fig. 8.1E) This implies that a positive feedback mechanism of BMP signaling 

pathway exists in myeloid cell types , and is in part needed to maintain constant, high 

levels of Id1 expression, along with other pathways. The similar fashion in which 

HL60 cells behave in response to noggin and chordin confirms that Abl in essence, 

rely on Id1 as a positive downstream mediator in encouraging survival or growth, 

albeit with the “amplified” Id1 level in BCR-ABL cells, it may possibly promote 

aggressive growth signals.  

 

8.2 p16INK4a expression and the ageing of the bone marrow cells  
 
 
In vivo, osteoblasts reside in the bone marrow, and to gain insight into the influence of 

its microenvironment, bone marrow cells were pooled from adult mice of three age 

groups; at 4, 12 and 17 months to look at the effects of age on HSCs that consist of 

virtually all progenitor precursor cell populations of myeloid lymphoid and erythroid 

lineage.  p16INK4a expression at the protein level in these bone marrow cells increased 

with age (Fig. 8.2A), while this can be more clearly seen at the mRNA expression 

(Fig. 8.2B). The concomitant increase in p16INK4a expression with increasing age have  
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Fig. 8.1. Profile of Id1 gene regulation in an innate activated Abl cell line model.  

(A) Constitutive BCR-ABL activity in K562 cells showed that endogenous Id1 

protein expression was elevated, along with activated BMP-Smads 1/5/8 when 

compared to BCR-ABL negative HL60 cells. (B) HL60 and K562 suspension cells 

were counted and seeded in T25cm2 flasks, at a cell density that encouraged 

proliferation (with exception of day 3 - K562 cells seeded at a lower density to 

parallel growth rate for HL60 cells as K562 cells proliferate faster). Cells were then 

harvested for western the following day (day 0), followed by days 1 and 3. In lanes 7 

and 8, 1uM imatinib was added to culture media from day 0.  
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Fig. 8.1. BCR-ABL can potentiate Id1 expression via the BMP pathway.  

(C) Western blot shows that imatinib mesylate can overcome BMP-induced Id1 in 

K562 cells.  Cells were pretreated with 1uM imatinib for 4 hrs, before adding 

100ng/ml BMP2 for 6hrs. (D) RT-PCR shows mRNA profile of Id1 under the same 

conditions used in Fig 8.1C. (E) Blocking BMP signaling by adding noggin and 

chordin for 3 days down-regulates Id1 protein expression in both K562, as well as 

HL60 cells. 
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been reported in normal human and mice tissues, and may reflect a role for p16INK4a  

in cellular senescence in vivo (Nielsen et al., 1999). Normal p16INK4a -mediated aging 

may take place in the bone marrow, with increasing intensity at an older age, as 

senescence of bone marrow stroma may decrease the ability of marrow cells to form 

osteoblast precursors (Manolagas and Jilka, 1995) 
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Fig. 8.2. p16INK4a expression in the bone marrow of aging mice.  

(A) Bone marrow cells were extracted from long bones (femur and tibia) of mice. 3 

mice of each age group; 4mths, 12 mths and 17mths were pooled. Cells were rid of 

red blood cells, and lysed with protein lysis buffer for western blot analysis to probe 

for p16INK4a and Id1 expression. (B) Bone marrow cells were obtained from the above 

mentioned and cell pellet subjected to RNA extraction, RT-PCR, to measure p16INK4a 

transcripts.   
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8.3 Summary  
 
 
From the above results, it can be concluded that a BMP-Id1 pathway also exists in 

BCR-ABL positive cells, and mirrors the positive role that c-Abl plays in bone 

development. Id1, responsible for promoting proliferation signals and inhibiting 

initiation of differentiation programs, is heavily amplified in BCR-ABL positive cells. 

With K562 cells, the pattern of increased Id1 induction reflects the intensity, or the 

degree of innate Abl kinase activity, which was effectively suppressed upon imatinib 

treatment (Fig 8.1A and B). This suggests that the sustained, yet stable expression of 

high levels of Id1 is highly dependent on BCR-ABL kinase activity, along with other 

tyrosine kinases that imatinib/STI571 inhibits.  

 

This phenomenon was enhanced with the addition of BMP2, with Id1 up- regulated at 

the mRNA level. Imatinib also severely repressed BMP-induced Id1 (Fig 8.1C and 

D). The BMP-Smad pathway forms an integral part of the many pathways BCR-ABL 

targets (Steelman et al., 2004), since the lack/inhibition of BMP signaling feedback 

(Fig8.1E) and adding imatinib to osteoblasts give a similar reactions; both represses 

Id1 expression, along with down-regulation of activated Smads (results not shown), in 

contrary to the presence of an intact, overactive BMP system in K562 cells.  

 

Also, a salient feature of chronic phase CML is the subtle but consistent increase in 

immature and mature myeloid cells, which later develops into abnormally high levels 

of immature myeloblasts (blasts crisis phase) (Wong and Witte, 2004). Blasts cells 

originate from the bone marrow. Cellular barriers to such aggressive tumorigenesis 

must be in place, and p16INK4a –mediated stem cell senescence might be one such 

barrier. The analysis of bone marrow stomal cells in wild type mice of various ages 
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also demonstrates the concomitant increase of p16INK4a (Fig 8.2). While Id1 

expression diminish in 17-18mth old mice, surmises the fact that regulation of 

p16INK4a expression may be largely controlled by Id1, and the role of BMPs in the 

marrow microenvironment cannot be discounted.  

   

BCR-ABL induced Id1 via BMP-Smads in CML is complicated by the multitude of 

other intracellular signaling pathways taking place. Nevertheless, the main reasons 

could be to target and block p16INK4a -mediated senescence, while promoting aberrant 

clonal cell expansion. Indeed, it was reported that BMPs play a role in mouse ES cells 

was to encourage self-renewal, rather than block ES cell differentiation in neural crest 

formation (Varga and Wrana, 2005). Yet, it is also possible that BMPs have more 

discrete roles on ES cells in post-natal physiology (or adult tissue regeneration), and 

the emphasis might shift to regulate cell expansion and survival. 

 

Hence, these results provide an insight into how CML disease state is maintained in 

the cells, and the implications of these findings are further discussed in chapter 9. 
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CHAPTER 9   
 
 
DISCUSSION AND FUTURE PERSPECTIVES 
 
 
A link for osteoblast premature senescence and aging associated osteoporosis 
 
 
c-Abl knockout mice display aging associated osteoporosis, characterized by defects 

in osteoblast function and numbers, but not osteoclasts (Li et al., 2000). Ex vivo 

analysis of c-Abl-/- osteoblast cultures painted a profile that matched this phenotype, 

as isolated mutant osteoblasts have reduced proliferation capacity, along with 

accelerated senescence as demonstrated by increased �-galactosidase staining and 

p16INK4a expression. This premature senescence could be mediated by increased 

p16INK4a expression, resulted from increased ERK1/2 activation and decreased Id1 

expression (Chapter 4). In adults, constant bone remodeling is essential for bone 

homeostasis and repair, which accounts for an estimated replacement of 25% of 

trabecular bone and 3% of cortical bone annually (Manolagas and Jilka, 1995). A 

reduction in the growth potential of osteoprogenitors can lead to undesirable 

consequences, such as an insufficient supply of mature osteoblasts, or the induction of 

senescence which might also interfere with the function of neighboring cells (Chan 

and Duque, 2002). In addition, in vivo studies on the long bones of c-Abl-/- adult mice 

revealed higher levels of p16INK4a staining in marrow region near the hyperchondrial 

growth plate, and higher levels of p16INK4a mRNA, while lesser number of osteoblasts 

per bone surface was reported. This provides a rationale for c-Abl-/- mice as a suitable 

mouse model to associate premature osteoblast senescence with senile osteoporosis. 

The concept that cellular senescence contributes to tissue aging, such as osteopenia of 

bones, parallels the study of PASG, a proliferation associated SNF2-like gene in 
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which its deficiency led to premature aging phenotypes, including osteoporosis (Sun 

et al., 2004). 

 

Another feature associated with aging is cell susceptibility to stress. Cells of patients 

with progeroid syndromes were more prone to hypersensitivity to stress-induced cell 

death. c-Abl have been implicated in cellular response to oxidative stress, and it was 

found that c-Abl-/- osteoblasts and c-Abl-/- Argl-/- MEFs showed higher susceptibility to 

oxidative damage (Li et al., 2004, Cao et al., 2003). Oxidative stress have also been 

known to induce senescence in many cell types, and it is important to determine if the 

up-regulation of p16INK4a, and decrease in Id1 seen in senescent c-Abl-/- osteoblasts 

were the consequence of a response to oxidative stress, apart from premature 

senescence. Experiments using hydrogen peroxide to induce oxidative damage on c-

Abl osteoblasts, and conversely the use of ROS (reactive oxygen species) blocker; 

NAC (N’ acetylcysteine), did not alter the expression of p16INK4a and Id1 

significantly, although senescence was induced in the former (results not shown).  

This confirmed that changes in p16INK4a or Id1 expression remains unaffected by 

oxidative stress-induced senescence, hence the hypersensitivity to oxidative stress and 

premature senescence in c-Abl-/-  osteoblasts are independently modulated by c-Abl. 

 

This study highlights the importance of p16INK4a in the aging process of osteblasts. 

Premature senescence of c-Abl-/- osteoblasts were found to be the result of p16INK4a up 

regulation, consistent with the studies by other groups that report the accumulation of  

p16INK4a in aged cells and the reduction of Id1, or cells deficient for p16INK4a are 

resistant to senescence (Huot et al., 2002, Alani et al., 2001). Moreover, the interest in 

p16INK4a mediated aging was renewed when up regulation of p16INK4a was shown to 
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induce an aging-dependent decrease of forebrain progenitors and pancreatic beta-cells 

(Molofsky et al., 2006, Krishnamurthy et al., 2006).  

 

Nonetheless, c-Abl-/- mice displayed other phenotypes reminiscent of an aging 

organism such as premature death, thymus atrophy and lymphopenia, other than 

osteoporosis. Taken together, the mouse phenotypes, the hypersensitivity to oxidative 

stress, and the premature senescence of osteoblasts suggest that c-Abl plays a role in 

bone remodeling and general organismal aging. The role of p16INK4a up-regulation 

and BMP activated pathways may also contribute to c-Abl function in other aspects of 

development and homeostasis.  

 
 
A role for c-Abl in BMP signaling, ERK1/2 activation and Id1 induction 
 
 
In chapters 4 and 5, ERKs, and Id1 were identified as major players involved in 

p16INK4a mediated aging of c-Abl-/- osteoblasts. Without c-Abl, excessive MAPK-ERK   

activation and Id1 repression was observed. This was in line with established studies 

that stated ERKs to be positive regulators, while Id1 a negative regulator of p16INK4a, 

and Id1 along with p16INK4a, influenced the senescence of human and murine cells 

(Lowe and Sherr, 2003).  

 

BMPs are secreted by osteoblasts and are required for bone formation and 

regeneration (Chen et al., 2004, Tsuji et al., 2006). It was observed that blocking 

BMPs with antagonists noggin and chordin could up regulate p16INK4a, while long 

term BMP2 treatment down-regulated p16INK4a levels. These findings suggest that 

BMPs modulate p16INK4a expression via the ERK1/2 and Smad1/5/8-Id1 pathways. 

Yet, p16INK4a regulation may be more complicated due to inputs of ERK1/2 from 
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growth factors, as well as the feedback regulators of BMP-Smad signaling such as 

inhibitory Smads. However, the Id1 and ERK signaling pathways that govern p16INK4a 

expression were found to act independent of each other as Id1 remains unaffected by 

MEK1/2 inhibition with U012S (MEK1/2 activates ERK1/2 -Fig 4.1B). The fact that 

c-Abl affects ERK activation and Id1 hints at the possibility of a BMP-Smad and 

BMP-Smad-independent pathway taking place, as c-Abl have been shown to 

participate in TGF� activated, Smad-independent pathway (Daniels et al., 2004, 

Wang et al., 2005). Thus it remains likely that the BMP pathway operates in 

cooperation with other signaling pathways to control p16INK4a transcription, as in the 

case of stem cell regulation (Zhang and Li, 2005).  

 

Furthermore, these findings suggest that BMPs play a role in osteoprogenitor 

expansion. We found that Id1, when overexpressed could extend the lifespan of c-Abl-

/- osteoblasts, indicating the down-regulation of Id1 by c-Abl deficiency contributed to 

the reduced proliferation capacity of c-Abl-/- osteoblasts, via p16INK4a. Since BMP 

inhibition by noggin and chordin not only impedes osteoblast differentiation, but also 

cause the reduction of Id1 and elevation of p16INK4a in wild type cells, implies that 

autocrine BMPs may function to promote osteoblast proliferation via Id1. This idea is 

in agreement with the finding that targeted noggin overexpression in osteoblasts led to 

the depletion of osteoprogenitor cells of 8 month old mice (Wu et al., 2003). The 

question remains on how BMPs work in unison with other pathways to regulate 

osteoblast expansion and osteoblast differentiation. 

 
c-Abl modulates BMP receptors and negates BMP-Tak1 signaling 
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c-Abl was able to up-regulate Smad activation by modifying BMP type I receptors, 

whereby the tyrosine residues found at the C-terminus was necessary for robust 

complex formation of type I and type II receptors.  It was speculated that type IV c-

Abl, which harbors a myristoylation signal and is potentially attached to the plasma 

membrane, was responsible for this phosphorylation. On the other hand, the 

expression pattern of BMPR1B was limited to various embryonic tissues; while 

BMPR1A could be ubiquitously expressed in developing embryos (Kawabata et al., 

1998) provided a rationale to study BMPR1A regulation by c-Abl. Nevertheless, a 

similar mode of action on BMPR1B by c-Abl would be probable since both BMP type 

1 receptors, BMPR1A and BMPR1B; possesses 85% aa sequence identity similarity 

to each other and they share almost the same conserved tyrosine residues. The 

functions of both type I receptors appear to confer unique roles in bone development 

(Kawakami et al., 1996, in vitro studies by Chen et al., 1998 and Kaps et al., 2004), 

yet overlapping functions were also reported (Yoon et al., 2005). Nevertheless, it 

appears that BMPR1A is ultimately needed for induction of mesoderm formation 

/embryogenesis since bmpr1a-/- mice are embryonic lethal (Mishina et al., 1995), 

compared to the less severe phenotype of null mutation in BMPR1B gene. 

Comparatively, the phenotypes of c-Abl-/- mice could provide clues to understand the 

functions of BMP receptors in neo-natal and post-natal development, such as and the 

maintenance of tissue homeostasis and repair, this importance is stressed in mouse 

postnatal bone formation by Zhao et al., 2002. 

 

It also appears that BMPRII, harboring a large cytoplasmic tail of about 600 aa 

following the kinase domain, does not play a role in c-Abl regulation of the BMP 

signaling, but is required for BMPR1A activation. Indeed it was previously reported 
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that this tail domain held little significance for BMP-Smad mediated signaling, though 

it may play a role in mediating other pathways (Wieser et al., 1993, Nishihara et al., 

2002). In our study, a novel role for the C-terminal domain of BMPR1A is uncovered, 

other than its function in Smad activation.  

 

The findings that c-Abl regulates BMPR1A adds to the list of cited examples of BMP 

receptor post-translational modification by kinases. BMPRII was found to be 

regulated by interaction with LIM kinase (Foletta et al., 2003), c-kit, a stem cell factor 

receptor (Hassel et al., 2006) c-Src; a c-Abl related kinase (Wong et al., 2005), and 

TrkC (Jin et al.,2007) while GD5-mediated BMPR1B signaling was affected by 

receptor tyrosine kinase Ror2 (Sammar et al., 2004). However, the functional 

significance of some of these kinase-receptor interactions has yet to be validated in in 

vivo settings. Apart from phosphorylation, other modes of modification have also 

been reported. Sulfation was found to be required for BMP2 induction of Id1 (Osses 

et al., 2006), while pamitylolation was found to occur on BMP receptors (by personal 

correspondence with Dr. Leong Wai Fook), and epigenetic silencing of BMPR1B 

determines cell-fate decision of glioma stem cells (Lee et al., 2008). The ever 

increasing discovery of various post-translational events on BMP receptors shows the 

complex regulation of an apparently simple three-tier signaling pathway. 

 

Also, steps taken to study the structural and/or physical aspects of receptor regulation 

provide better understanding of receptor dynamics in the cell membrane. Pre-

complexed BMPR1A and BMPRII at the plasma membrane (or PRCs- Pre-formed 

receptor complexes) forms a precedence for canonical receptor-Smad activation, 

while in the case of latent complex formation induced upon BMP ligand binding (or 
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BISCs- BMP-induced signaling complexes) leads to non-Smad MAPK signaling 

(Nohe et al., 2002) Hence, this supports the data that c-Abl facilitation of pre-

complexed IA and II, enhances Smad activation and thus transcription of downstream 

target genes such as Id1. In addition, BMP receptors exist in a dynamic state as they 

not only form clusters or enact rearrangement upon BMP induction, but also interact 

with caveolae compartments (Nohe et al., 2003 and 2004), and exhibit different 

modes of BMP receptor endocytosis that pre-determines preference for Smad-

dependent or Smad-independent signaling (Hartung et al., 2006). c-Abl might also 

regulate the BMP receptors via other mechanisms such as the ones mentioned above, 

or to affect receptor degradation, and is worth exploring further in the future. 

 

The consequent activation of BMP receptors at the cell membrane upon BMP ligand 

binding not only triggers the receptor Smad activation cascade, but also the lesser 

known Tak1-MAPK pathway. In chapter 7, the role and importance of TAK1 in 

BMP-MAPK signaling is explored. ERK1/2 was found to be repressed with long 

durations of BMP treatment, while a transient activation is initially observed within 

30 mins of BMP addition. What is the role of ERK activation and repression in the 

time frame of BMP signaling? We argue that the function for ERK activation and 

repression by c-Abl might serve disparate purposes, and although ERK activation 

involves Tak1 and its activation is heightened in c-Abl-/- osteblasts, this could reflect 

the consititutve general repressive action of c-Abl on ERKs. However, c-Abl 

activation of ERKs, albeit a short one, may be important in regulating or work in 

synergy with other growth related MAPK pathways to promote proliferation. To a 

lesser extent, another possibility would be to hinder BMP-Smad signaling as ERKs 

can phosphorylate the linker region of receptor Smads and prevent its translocation 
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(Massague, 2003). Hence, the transient activation of ERK under BMP, might also 

contribute to the phenotype seen in c-Abl-/- mice through activation of other pathways. 

 
 
On the other hand, what do the repression of ERK1/2 in BMP signaling serves in the 

context of bone development? An example of BMP signaling required for ERK 

repression was to counter key effectors (ERK being one of them) of the FGF pathway 

in the growth plate region of bone (Yoon et al., 2006). ERK repression was also found 

to be required for BMP induction of early osteoblast genes in human marrow cells 

(Osyczka and Leboy, 2005). Long term BMP-induced inhibition of MAPK/ERK may 

also have an influence on cell survival, as TGF� family members have been reported 

to enlist MAPKs in activation of apoptotic pathways (Massague, 2000). The XIAP 

adapter protein, constitutively bound to BMPR1A and interacts with Tab1 

(Yamaguchi et al., 1999), is likely to be involved, and could also be the link for 

increased apoptotic osteoblasts seen in the TUNEL immunostaining of c-Abl-/- long 

bones (Fig 3.3), as it has been reported that BMP signaling is necessary for induction 

of apoptosis of neural progenitors, by the combined actions of Smad and TAK1 

(Kendall et al., 2005). It will be interesting to further study the role of XIAP, as well 

as if the apoptotic signaling cascade is triggered, as BMP-MAPK signaling is favored 

due to defective BMP-Smad pathway in c-Abl-/- mice. 

 

In our study, c-Abl acts to stabilize BMP receptor complex formation, which 

augments Smad activation. Concurrently, this c-Abl-BMPR1-BMPRII complex acts 

to repress the action of TAK1-TAB1 activation by physical interference. The 

subsequent increase in Id1 and down-regulation of active ERKs works hand in hand 

to fine-tune p16INK4a gene expression, so it can be inferred that BMP-TAK1 activation 
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serves to oppose canonical BMP-Smad pathway in c-Abl-/- osteoblasts, summed up 

earlier in Fig 7.3B. Nevertheless, more work will also be needed to understand the 

mechanism of BMP-MAPK signaling and its influence on BMP-Smad signaling, 

emphasized in Qi et al., 2004, and Zhang and Li, 2005. This is because the negative 

impact of TAK1 activation on BMP-Smad activation could be far greater than 

anticipated as activated TAK1 has been shown to bind to all Smads and Tak1 

overexpression attenuated the BMP-dependent differentiation potential, as well as 

block the transcription of osteogenic marker genes in C3H10T½ cells (Hoffman et al., 

2005). Therefore, the subtle actions of c-Abl on BMP receptors exemplify the 

multitude stages of BMP regulation that affects the transcriptional outcome and thus 

the cell’s response to BMPs. 

 
BMPs and Abl kinases; involvement in oncogene-induced senescence  
 
 
In retrospect, the previous findings raised some important questions on Abl function. 

The phenomenon of replicative senescence is postulated to act as an important barrier 

against neoplasticity and tumor formation (Sherr and DePinho, 2000, Mathon and 

Lloyd, 2001), and can be seen in normal cells harboring enforced expression of 

cancer-promoting genes such as Ras; termed oncogene-induced senescence, which 

requires both intact p53 and p16INK4a-Rb pathways (Braig et al., 2005, Benanti and 

Galloway, 2004). While it was shown that the loss of c-Abl induces high p16INK4a 

expression and leads to premature osteoblast senescence, BCR-ABL on the other 

hand, was also able to activate BMP-Smad-Id1 pathway and it is likely that BCR-

ABL prevention of regular stem cell senescence acts as a viable mechanism to support 

HSC transformation.  
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There is other evidence to support this notion. Firstly, the persistent and sustained 

high levels of Id1 expression seen in BCR-ABL positive cells was likely to act as an 

indispensable target that drives indefinite self-renewal capacity and expansion of 

myeloid progenitors, possibly at different time frames of cell fate decision. Though 

the role of Id proteins demonstrated some functional redundancy in the immune 

system, specificity of each Id protein function was essential. It was found that Id1, 

and not Id3, maintains long-term repopulating HSC cell expansion (Perry et al., 

2007), while Id2 expression peaked in cells undergoing terminal myeloid 

differentiation (Ishiguro et al., 1996). Also, the ectopic expression of BCR-ABL 

could sustain the self-renewal of mouse ES cells (Nakamura et al., 2005).  

 

It appears that Id1 up regulation by BCR-ABL serves as a signaling midpoint in the 

cross-talk and activation of many pathways. Id1 was singled out in several examples 

in the study of BCR-ABL malignancy such as; to promote invasiveness of leukemic 

cells via matrix metalloproteinase 9 (MMP9) (Nieborowska-Skorska et al., 2006), via 

Akt inactivation of FOXO3a in K562 cells (Birkenkamp et al., 2007) and C/EBPα 

mediated myeloid differentiation (Wagner et al., 2006). Id1 also participate in 

promoting angiogenesis (Sikder et al., 2003, Ruzinova et al., 2003), while c-Abl-/- 

mice showed defects in angiogenesis (Nunes et al., 2001) which could in part be due 

to compromised Id1 levels.  

 

Secondly, another essential function of Id1 is to regulate cell cycle events, via 

suppression of p16INK4a, along with other cyclin-dependent kinases and/or inhibitors. 

Despite the multitude of proteins that keep p16INK4a  expression tightly controlled, Fig 

8.2 demonstrated that p16INK4a expression stably increases with age, while Id1 



 143

expression is lost, in the bone marrow of aged heterologous mice. Therefore, it 

appears that a ‘theshold’ level of Id1 expression is required in the bone marrow to 

oppose p16INK4a–mediated senescence, though it will be of interest to find out if the 

individual cell types found in the bone marrow exhibit similar profiles with age. 

Nevertheless, Morrison and team studied the in vivo properties of murine marrow 

cells and found that old mice had functionally incapable HSCs compared to young 

mice, despite being proliferative (Morrison et al., 1996). It is not fully understood if 

replicative senescence can only be triggered following cessation of cell expansion or 

that they can both occur concurrently, but Id1 plays important roles in these two 

outcomes of cell fate, and its time and amount of expression may be the determinant. 

This also raised the question of whether intrinsic determinants or the aging 

microenvironment could give rise to leukemia in aging subjects. Since p16INK4a has 

been implicated on the phenomena of stem cell aging (Janzen et al., 2006), it is 

imperative to embrace the role BMPs and senescent osteoblasts play in the bone 

marrow microenvironment as well. BMP signaling have been indirectly implicated in 

study that cited the lack of JunB gave rise to a CML like disorder in mice, stemming 

from HSCs (Passegue et al., 2004), since JunB is a BMP target gene. c-Myc, another 

transcription factor that also can be induced by BMP2, triggers p16INK4a mediated 

senescence in tumor cells when inactivated (Wu et al., 2007). More importantly, the 

role of osteoblasts is to provide a stem cell niche for HSC expansion in the marrow, 

and failure to maintain this niche may underlie the pathogenesis of senile osteoporosis 

(Calvi et al., 2003, Zhang et al., 2003, Visnjic et al., 2004 and reviewed by Calvi, 

2006). Our findings suggest that BCR-ABL enhanced expression of Id1 and 

repression of p16INK4a might be mediated by the BMPs circulating in the bone 

marrow, while BMPs are secreted by osteoblasts. Hence the secondary effect of aging 
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osteoblasts and disrupted BMP signaling might overall contribute to other immune 

cell defects as well as development of leukemias.  

 
Moreover, it was found that the expression of p16INK4a was silenced in K562 cells 

(data not shown), as well as in leukemic cells of many CML patients, indicating the 

importance of down-regulating p16INK4a in CML development. This was exemplified 

with an example of p16INK4a repression by Bmi-1 that led to premature senescence of 

stem cells (Itahana et al., 2003).Hence, expressing high levels of Id1 contributes to 

delaying and/or inhibiting the onset of senescence program of myeloid cells by 

keeping p16INK4a permanently repressed, thus facilitating transformation and 

development of leukemia. This might have implications in the rapid, yet debilitating 

progression of chronic phase to blast crisis stage of CML, where imatinib prognosis is 

poor (Wong and Witte, 2004), while the mechanisms that control the rate of disease 

progression remains unclear.  

 

Moreover, a study has shown that imatinib treatment of CML was found to disturb 

bone remodeling, as patients show reduced bone formation (Berman et al.,2006). 

Thus, the possible toxicity of long-term imatinib mesylate therapy in humans have to 

be questioned, since it also inhibits the activity of c-Abl, whose deficient mice leads 

to senile osteoporosis, along with other defects. Therefore, long-term inhibition of abl 

kinase activity might lead to shortage of osteoblasts and osteopenia through the 

regulation of BMP activated Smad1/5/8 and MAPK pathways. Compounded by the 

ever increasing imatinib resistance in patients, and efforts to repress BCR-ABL 

transcripts or protein levels have led to limited progress due to the kinase-dependent 

nature CML pathogenesis (reviewed in O’Hare et al., 2007), perhaps targeting these 

key mediators may provide some relief to a long standing problem?  
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APPENDICES   
 
 
 
APPENDIX A: BUFFERS FOR WESTERN BLOT AND IP ANALYSIS  
 
 
 
BUFFER           Final concentration/vol 
 
 
CO-IP buffer 

    Tris solution  [pH7.4]   20mM 

    NaCl     100mM 

    NP-40     0.5% 

    EDTA     0.5mM 

    PMSF     0.5mM 

    Protease inhibitor cocktail  0.5% 

 

 
 
 
 
TBST Buffer (30X stock) 
 
 
    Sodium Chloride   480g 

    Tris base    152.4g 

 

 

 

Top up to 2L using ddH20 and adjust pH to 7.6 with 5M HCl. Dilute stock solution to 

1X and add Tween 20 at 1/1000 (1ml per 1L solution), stir thoroughly before use. 

   

 
 
 
 
 
 
 
 



APPENDIX B: CELL CULTURE REAGENT          
 
 
PlatE culture medium 

 

DMEM    - 

FBS     10% 

Pen/Strep    1X 

Blasticidin    10ug/ml 

Puromycin    1ug/ml 

 

Prepared and filter-sterilized media is kept for not more than 1-2 months at 4oC. 

 

 
 
 
 
 
APPENDIX C: STAINING SOLUTIONS 
 
 
 
Beta-galactosidase solution 

 

X-Gal     0.1% (w/v) 

Citric acid/ sodium phosphate  

(pH6.0)    40mM  

Potassium ferrocyanide  5mM 

Potassium ferricyanide  5mM   

NaCl     150mM 

MgCl     2mM 

 

 
 
 
 
 
 
 
 



APPENDIX D: SDS-PAGE GEL COMPONENTS 
 
 
 
 
Stacking gel (4%) 

    30% acrylamide (29:1)  1.3ml 

    ddH2O     6.1ml 

    0.5M Tris-HCL pH 6.8  2.5ml 

    10% SDS    100ul 

    10% APS (w/v)   100ul 

    TEMED       10ul 

    Total volume     10ml 

 

 

 

Resolving gel (15%) 

30% acrylamide (29:1)  5.0ml 

    ddH2O     2.36ml 

    1.5M Tris-HCL pH 8.8  2.5ml 

    10% SDS    100ul 

    10% APS (w/v)   100ul 

    TEMED       10ul 

    Total volume     10ml 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX E: PREPARATION OF DRUGS 
 
 
 
Imatinib (STI571) (Novartis) 

Dilute amphophilic pellet to 1mM stock concentration with sterile ddH2O. Dissolve 

thoroughly and store in aliquots at -20oC. Stock can be directly used and diluted with 

media to achieve final concentration of 1uM (1000x dilution). 

 

rhBMP2 (R&D systems and iDNA)  

1mg lyphophilic pellet is diluted to 10ug/ml working stock with 1ml of dilution buffer 

(0.1% BSA in PBS). Dissolve thoroughly and store in aliquots at -20oC.  The same 

dilution buffer is used to further dilute BMP if necessary. 

 

Mouse recombinant Noggin (R&D systems)  

25ug lyophilized pellet dissolved with 500ul filtered PBS (with 0.1% BSA as carrier) 

to create a 50ug/ml working stock.  

 

Mouse recombinant Chordin (R&D systems) 

50ug lyophilized pellet dissolved with 500ul filtered PBS (with 0.1% BSA as carrier) 

to create a 100ug/ml working stock. 

 

MEK inhibitor U0126 (Promega) 

1mg pellet was resuspended with 234ul DMSO to prepare a 10mM working stock. 

Solution remains stable for 1 week at -20oC.  

 

Puromycin dihydrochloride (USBiological) 

100mg of puromycin powder was weighed out and dissolved with 4mls of ddH20 to 

prepare a working stock of 25mg/ml. Solution was filter-sterilized before storing in 

aliquots at -20oC. 

   
 

 
 

 
 


