DUAL ROLES FOR TRANSCRIPTION FACTOR ZIC3 IN REGULATING EMBRYONIC STEM CELL PLURIPOTENCY AND DIFFERENTIATION

LINDA <u>LIM</u> SHUSHAN

B.Sc (Honours) The University of Melbourne, 2003

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

NUS Graduate School for Integrative Sciences and Engineering

NATIONAL UNIVERSITY OF SINGAPORE

August 2008

ACKNOWLEDGEMENTS

It is a pleasure to thank the many people who made this thesis possible. My deepest thanks goes to Dr Lawrence Stanton for his invaluable guidance and steadfast belief in me. His mentorship has encouraged creativity, flexibility and room to grow, and these past 4 years have been an amazingly inspiring and enriching experience for me. I would also like to thank my thesis advisory committee, Dr Paul Robson and Dr Chan Woon Khiong, for their critical feedback along the way.

I am especially grateful to Jonathan Loh for numerous open discussions and exchange of ideas in the development of the Zic3 project. My thanks goes to Li Pin who taught me the critical foundations of stem cell culture, and to Hoi Aina and Wong Kee Yew who have been so generous in their sharing of technical experience. Special appreciation goes to Lim Yiting and Tahira Allapitchay whose work I have referred to in this thesis, and to Rory Johnson for his feedback and comments. I also wish to thank everyone in the GIS Stem Cell group for stimulating discussions and fun companionship.

Finally and most importantly, I thank my parents, who have been encouraging, supportive and incredibly giving at every turn of the corner. I am grateful far beyond what words can express for the depth of their grace, their understanding, and the genuine interest they consistently take in my work. I am immeasurably blessed to have them as my parents. Their love has made all the difference in my life - and it is to them I dedicate this thesis.

TABLE OF CONTENTS

TABLE OF CONTENTSIIIABSTRACTVIILIST OF FIGURESXLIST OF FIGURESXLIST OF TABLESXIIIABBREVIATIONSXIVCHAPTER 1: Introduction11.1Derivation of embryonic stem cells21.2Regulation of embryonic stem cells41.2.1The key properties of ES cells41.2.2Extrinsic signalling pathways maintaining ES cell pluripotency61.3Transcriptional networks in ES cells91.3.1Regulation of transcription networks101.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1Oct4211.3.2.2Sox2231.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5.1Breaking bilateral symmetry371.5.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development441.6Role of Zic3 in neural development441.7Acid stations result in X-linked heterotaxy441.6Role of Zic3 in neural development441.7Molecular biology techniques542.1Transformation of chemic	ACKNOWLEDGEMENTS II			
ABSTRACTVIILIST OF FIGURESXLIST OF TABLESXIIIABBREVIATIONSXIVCHAPTER 1: Introduction11Derivation of embryonic stem cells21.2Regulation of embryonic stem cells41.2.1The key properties of ES cells41.2.2Extrinsic signalling pathways maintaining ES cell pluripotency61.3Transcriptional networks in ES cells91.3.1Regulation of transcription networks101.3.2.2Sox2231.3.2.1Oct4211.3.2.2Sox2231.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of Zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development344.3Biochemical pathways involving Zic3344.5Role of Zic3 in early embryonic development375.1.1Breaking bilateral symmetry375.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity395.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials532.1Molecul	TABLE OF CONTENTSIII			
LIST OF FIGURESXLIST OF TABLESXIIIABBREVIATIONSXIVCHAPTER 1: Introduction11.1Derivation of embryonic stem cells21.2Regulation of embryonic stem cells41.2.1The key properties of ES cells41.2.2Extrinsic signalling pathways maintaining ES cell pluripotency61.3Transcriptional networks in ES cells91.3.1Regulation of transcription networks101.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1Oct4213.2.2Sox2233.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of Zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials532.1Molecular biology techniques542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria55 </th <th>ABSTR</th> <th colspan="3">ABSTRACT VII</th>	ABSTR	ABSTRACT VII		
LIST OF TABLESXIIIABBREVIATIONSXIVCHAPTER 1: Introduction11.1Derivation of embryonic stem cells22.2Regulation of embryonic stem cells41.2.1The key properties of ES cells41.2.2Extrinsic signalling pathways maintaining ES cell pluripotency63.3Transcriptional networks in ES cells93.1Regulation of transcription networks101.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1Oct4211.3.2.2Sox2231.3.2.3Nanog251.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1.1Breaking bilateral symmetry371.5.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic midline421.5.3The Zic-Zinul mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale532.1.1Molecular biology techniq	LIST (DF FIGURES	X	
ABBREVIATIONSXIVCHAPTER 1: Introduction11.1Derivation of embryonic stem cells21.2Regulation of embryonic stem cells41.2.1The key properties of ES cells41.2.2Extrinsic signalling pathways maintaining ES cell pluripotency61.3Transcriptional networks in ES cells91.3.1Regulation of transcription networks101.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1Oct4211.3.2.2Sox2231.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 nutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale532.1.1Cloning542.1.2Transf	LIST (OF TABLES	XIII	
CHAPTER 1: Introduction11.1Derivation of embryonic stem cells21.2Regulation of embryonic stem cells41.2.1The key properties of ES cells41.2.2Extrinsic signalling pathways maintaining ES cell pluripotency61.3Transcriptional networks in ES cells91.3.1Regulation of transcription networks101.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1Oct4211.3.2.2Sox2231.3.2.3Nanog251.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1.1Breaking bilateral symmetry371.5.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic milline411.5.3The Zic 3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.5.4Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials532.1Molecular biology techniques542.	ABBR	EVIATIONS	XIV	
1.2Regulation of embryonic stem cells41.2.1The key properties of ES cells41.2.2Extrinsic signalling pathways maintaining ES cell pluripotency61.3Transcriptional networks in ES cells91.3.1Regulation of transcription networks101.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1Oct4211.3.2.2Sox2231.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1.1Breaking bilateral symmetry371.5.2Zic3 in the development of the embryonic midline371.5.3The Zic3-null mouse model421.5.4Zic3 in utations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale532.1Molecular biology techniques542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria551.5Preparation of bacterial stocks55	CHAP 1.1	TER 1: Introduction Derivation of embryonic stem cells	1 2	
1.2.1The key properties of ES cells41.2.2Extrinsic signalling pathways maintaining ES cell pluripotency61.3Transcriptional networks in ES cells91.3.1Regulation of transcription networks101.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1Oct4211.3.2.2Sox2231.3.2.3Nanog251.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1.1Breaking bilateral symmetry371.5.2Zic3 in the development of the embryonic midline371.5.3The Zic3-null mouse model421.5.4Kole of Zic3 in neural development421.5.5The Zic3-null mouse model421.5.6Role of Zic3 in neural development461.7Experimental approach and study rationale532.1Molecular biology techniques542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria553.1.5Preparation of bacterial stocks55 <th>1.2</th> <th>Regulation of embryonic stem cells</th> <th>4</th>	1.2	Regulation of embryonic stem cells	4	
1.2.2Extrinsic signalling pathways maintaining ES cell pluripotency61.3Transcriptional networks in ES cells91.3.1Regulation of transcription networks101.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.1Oct4211.3.2.2Sox2231.3.2.3Nanog251.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale532.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.2.1	The key properties of ES cells	4	
1.3 Transcriptional networks in ES cells91.3.1 Regulation of transcription networks101.3.2 Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1 Oct4211.3.2.2 Sox2231.3.3.3 Identifying genes that contribute to stem cell pluripotency271.4 Properties of zinc finger transcription factor Zic3291.4.1 The Zic gene family291.4.2 Discovery of Zic3 and its general expression domains during development341.4.3 Biochemical pathways involving Zic3341.5.1 The embryonic midline371.5.1.1 Breaking bilateral symmetry371.5.2 Zic3 in the development of the embryonic midline371.5.3 The Zic3-null mouse model421.5.4 Zic3 mutations result in X-linked heterotaxy441.6 Role of Zic3 in neural development461.7 Experimental approach and study rationale50CHAPTER 2: Methods & Materials532.1 Molecular biology techniques542.1.2 Transformation of chemically competent cells542.1.3 PCR analysis of transformants552.1.4 Isolation of plasmid DNA from bacteria552.1.5 Preparation of bacterial stocks55	1.2.2	Extrinsic signalling pathways maintaining ES cell pluripotency	6	
1.3.1Regulation of transcription networks101.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1Oct4211.3.2.2Sox2231.3.2.3Nanog251.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 in neural development461.5.4Role of Zic3 in neural development461.5Role of Zic3 in neural development461.6Role of Zic3 in neural development461.7Experimental approach and study rationale532.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.3 Tr	anscriptional networks in ES cells	9	
1.3.2Oct4, Nanog and Sox2 are key regulators of transcription in ES cells151.3.2.1Oct4211.3.2.2Sox2231.3.2.3Nanog251.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 in neural development441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.3.1	Regulation of transcription networks	10	
1.3.2.1Oct4211.3.2.2Sox2231.3.2.3Nanog251.3.3Identifying genes that contribute to stem cell pluripotency271.4 Properties of zinc finger transcription factor Zic3 291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5 Role of Zic3 in early embryonic development 371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 nutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.3.2	Oct4, Nanog and Sox2 are key regulators of transcription in ES cells	15	
1.3.2.2Sox2231.3.2.3Nanog251.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic milline371.5.1.1Breaking bilateral symmetry371.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale532.1Molecular biology techniques542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.3.2.1	Oct4	21	
1.3.2.3 Nanog251.3.3 Identifying genes that contribute to stem cell pluripotency271.4 Properties of zinc finger transcription factor Zic3291.4.1 The Zic gene family291.4.2 Discovery of Zic3 and its general expression domains during development341.4.3 Biochemical pathways involving Zic3341.5 Role of Zic3 in early embryonic development371.5.1 The embryonic midline371.5.1.1 Breaking bilateral symmetry371.5.2 Zic3 in the development of the embryonic midline411.5.3 The Zic3-null mouse model421.5.4 Zic3 mutations result in X-linked heterotaxy441.6 Role of Zic3 in neural development461.7 Experimental approach and study rationale50CHAPTER 2: Methods & Materials51.1 Cloning542.1.3 PCR analysis of transformants552.1.4 Isolation of plasmid DNA from bacteria552.1.5 Preparation of bacterial stocks55	1.3.2.2	Sox2	23	
1.3.3Identifying genes that contribute to stem cell pluripotency271.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.2.2Xic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.3.2.3	Nanog	25	
1.4Properties of zinc finger transcription factor Zic3291.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria553.1Siterial stocks55	1.3.3	Identifying genes that contribute to stem cell pluripotency	27	
1.4.1The Zic gene family291.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria5531Site of bacterial stocks55	1.4	Properties of zinc finger transcription factor Zic3	29	
1.4.2Discovery of Zic3 and its general expression domains during development341.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1Molecular biology techniques542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.4.1	The Zic gene family	29	
1.4.3Biochemical pathways involving Zic3341.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale532.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.4.2	Discovery of Zic3 and its general expression domains during development	34	
1.5Role of Zic3 in early embryonic development371.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials532.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.4.3	Biochemical pathways involving Zic3	34	
1.5.1The embryonic midline371.5.1.1Breaking bilateral symmetry371.5.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials532.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.5	Role of Zic3 in early embryonic development	37	
1.5.1.1Breaking bilateral symmetry371.5.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials532.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.5.1	The embryonic midline	37	
1.5.1.2Asymmetric Gene Expression: Reinforcement of Left-Right Polarity391.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.5.1.1	Breaking bilateral symmetry	37	
1.5.2Zic3 in the development of the embryonic midline411.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.5.1.2	Asymmetric Gene Expression: Reinforcement of Left-Right Polarity	39	
1.5.3The Zic3-null mouse model421.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.5.2	Zic3 in the development of the embryonic midline	41	
1.5.4Zic3 mutations result in X-linked heterotaxy441.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials532.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.5.3	The Zic3-null mouse model	42	
1.6Role of Zic3 in neural development461.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials2.1Molecular biology techniques532.1Cloning542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.5.4	Zic3 mutations result in X-linked heterotaxy	44	
1.7Experimental approach and study rationale50CHAPTER 2: Methods & Materials532.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.6	Role of Zic3 in neural development	46	
CHAPTER 2: Methods & Materials532.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	1.7	Experimental approach and study rationale	50	
2.1Molecular biology techniques542.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	CHAPTER 2: Methods & Materials			
2.1.1Cloning542.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	2.1	Molecular biology techniques	54	
2.1.2Transformation of chemically competent cells542.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55	2.1.1	Cloning	54	
2.1.3PCR analysis of transformants552.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55iiiiii	2.1.2	Transformation of chemically competent cells	54	
2.1.4Isolation of plasmid DNA from bacteria552.1.5Preparation of bacterial stocks55iiiiii	2.1.3	PCR analysis of transformants	55	
2.1.5 Preparation of bacterial stocks 55	2.1.4	Isolation of plasmid DNA from bacteria	55	
	2.1.5	Preparation of bacterial stocks	55	
111			iii	

2.1.6	Isolation of genomic DNA from cell lines	56
2.2	Cell culture	56
2.2.1	Mouse ES cell culture	56
2.2.2	Human ES cell culture	57
2.2.3	Isolation, expansion, and mitotic inactivation of MEF cells	58
2.2.4	Maintenance of HEK293T cells	59
2.2.5	Cryopreservation of cell lines	59
2.2.6	Thawing of cell lines	60
2.3	ES Cell-based assays	60
2.3.1	RNA interference (siRNA)	60
2.3.2	RNA interference (shRNA)	61
2.3.3	Rescue of RNAi knockdown	61
2.3.4	Secondary ES-colony replating assay	63
2.3.5	Reprogramming assays	63
2.3.5.1	Viral packaging of reprogramming factors	63
2.3.5.2	Viral infection of fibroblast cells	64
2.4	Establishment of clonal cell lines	65
2.4.1	Clonal Zic3 knockdown lines	65
2.4.2	Clonal Zic3-inducible ES cells	65
2.5	ES cell differentiation protocols	66
2.5.1	Retinoic acid differentiation	66
2.5.2	DMSO and HMBA differentiation	67
2.5.3	Neural differentiation of ES cells	67
2.6	Gene expression analysis	68
2.6.1	RNA extraction	68
2.6.2	cDNA synthesis	68
2.6.3	Quantitative real-time PCR	69
2.7	Protein expression analysis	69
2.7.1	Cell lysis and protein quantitation	69
2.7.2	SDS-PAGE	70
2.7.3	Protein detection and chemiluminescence detection	71
2.7.4	Immunocytochemistry	72
2.8	Custom production of Zic3 antibodies	73
2.9	Chromatin Immunoprecipitation (ChIP)	74
2.9.1	ChIP protocol	74
2.9.2	Quantitative PCR for ChIP enrichment	78
2.9.3	ChIP-chip assays, data processing, and statistical analysis	79
2.10	Luciferase reporter assays	80
2.10.1	Nanog promoter assays	80
2.10.2	Zic3 ChIP-identified promoter assays	80
2.11	Co-immunoprecipitation experiments	81
2.12	Gene Expression arrays	81
2.12.1	Illumina mouse arrays	81
2.12.2	Statistical analysis of microarray data	82
2.12.3	Functional annotations using the Panther database	82
CHAF	PTER 3: Zic3 is involved in transcriptional regulation of ES	cell

	TER 5. Zies is involved in transcriptional regulation of	cen
plurip	potency	 . 84
3.1	Introduction	85
3.2	Results	87
3.2.1	Zic3 expression is associated with ES cell pluripotency	87

3.2.2	Zic3 is regulated by Oct4, Nanog and Sox2	90
3.2.3	Zic3 RNA interference in ES cells	93
3.2.3.1	Loss of Zic3 leads to ES cell differentiation	93
3.2.3.2	2 Specificity of Zic3 knockdown	97
3.2.4	Zic3 clonal knockdown lines express endoderm lineage markers	100
3.2.4.1	Zic3 clonal knockdown lines	100
3.2.4.2	2 Endoderm genes are upregulated in Zic3 clonal knockdown lines	108
3.2.4.2	2 Endoderm protein expression is upregulated in Zic3 clonal knockdown lines	109
3.2.5	Zic2 is able to partially compensate for the function of Zic3	109
3.3	Discussion	117
3.3.1	Zic3 expression is associated with the key regulators of pluripotency in ES cells.	117
3.3.2	Zic3 functions downstream of Oct4, Nanog and Sox2 and is positively regulat	ed by
224	these factors.	117
3.3.4	Zic2 works in concert with Zic3 to reduce endodermal specification in ES cells	122
3.4	Summary	123
СНА	PTER 4: Zic3 interacts with Sox2 in ES cells	. 124
4.1	Introduction	125
4.2	Results	126
4.2.1	Zic3 interacts with Sox2 in embryonic stem cells	126
422	Zic3 shares regulatory pathways with Sox2 in ES cells	129
4.2.3	Zic3 and Sox2 co-occupy physical binding sites in mouse ES cells	134
4.3	Discussion	140
4.3.1	Zic3 and Sox2 regulate a common set of pathways in ES cells	140
4.3.2	Zic3 and Sox2 are interacting partners in ES cells	142
11		
	Summary	145
7.7	Summary	145
CHA	Summary PTER 5: Zic3 is a regulator of lineage specification during ES	145 cell
CHA differ	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation	145 cell . 146
CHA differ 5.1	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction	145 cell . 146 147
CHA differ 5.1 5.2	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results	145 cell . 146 147 148
CHA differ 5.1 5.2 5.2.1	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes	145 cell . 146 147 148 148
CHA differ 5.1 5.2 5.2.1 5.2.2	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes	145 cell . 146 147 148 148 155
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification	145 cell . 146 147 148 148 155 159
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines	145 cell . 146 147 148 148 155 159 159
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal linear	145 cell . 146 147 148 148 155 159 159 159 neage
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal limmarkers Zic3 uprecentered according ES cell proved derivation	145 cell . 146 147 148 148 155 159 159 159 159 159
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.3.2 5.2.4	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal linearkers Zic3 upregulates neurogenesis during ES cell neural derivation	145 cell . 146 147 148 148 155 159 159 159 neage 159 163 163
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3.1 5.2.2	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal linearkers Zic3 upregulates neurogenesis during ES cell neural derivation Zic3 is a regulator of lineage-specific pathways Zic3 enhances neurogenesis during ES cell differentiation	145 cell . 146 147 148 145 159 159 159 159 163 168 172
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3 5.2.3 5.2.3 5.2.3 5.2.3 5.2.4 5.3.1 5.3.2 5.4	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal limarkers Zic3 upregulates neurogenesis during ES cell neural derivation Zic3 is a regulator of lineage-specific pathways Zic3 enhances neurogenesis during ES cell differentiation	145 cell . 146 147 148 145 159 159 159 163 168 172 174
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3.1 5.3.2 5.4	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal linearkers Zic3 upregulates neurogenesis during ES cell neural derivation Zic3 enhances neurogenesis during ES cell differentiation Summary	145 cell . 146 147 148 148 155 159 159 159 159 163 168 172 174
 CHA: differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3.2 5.4 CHA: 	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal limarkers Zic3 upregulates neurogenesis during ES cell neural derivation Zic3 is a regulator of lineage-specific pathways Zic3 enhances neurogenesis during ES cell differentiation Summary PTER 6: Discussion and future directions	145 cell . 146 147 148 148 155 159 159 159 163 168 172 174 . 175
CHA differ 5.1 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3.1 5.3.2 5.4 CHA 6.1	Summary PTER 5: Zic3 is a regulator of lineage specification during ES Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal linearkers Zic3 upregulates neurogenesis during ES cell neural derivation Zic3 is a regulator of lineage-specific pathways Zic3 enhances neurogenesis during ES cell differentiation Summary PTER 6: Discussion and future directions	145 cell . 146 147 148 148 155 159 159 159 159 163 163 168 172 174 . 175 176
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3.1 5.3.2 5.4 CHA 6.1 6.2	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal linearkers Zic3 upregulates neurogenesis during ES cell neural derivation Zic3 enhances neurogenesis during ES cell differentiation Summary PTER 6: Discussion and future directions	145 cell . 146 147 148 148 155 159 159 159 159 163 168 172 174 . 175 176 178
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3.1 5.3.2 5.4 CHA 6.1 6.2 6.3	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal limarkers Zic3 upregulates neurogenesis during ES cell neural derivation Zic3 is a regulator of lineage-specific pathways Zic3 enhances neurogenesis during ES cell differentiation Summary PTER 6: Discussion and future directions	145 cell . 146 147 148 148 155 159 159 159 163 168 172 174 . 175 176 178 182
 CHA: differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3.1 5.3.2 5.4 CHA: 6.1 6.2 6.3 6.4 	 Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation	145 cell . 146 147 148 148 155 159 159 159 163 168 172 174 . 175 176 178 182 184
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3.1 5.3.2 5.4 CHA 6.1 6.2 6.3 6.4 6.5	 Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation	145 cell . 146 147 148 148 155 159 159 159 163 163 168 172 174 . 175 176 178 182 184 186
CHA differ 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3.1 5.3.2 5.4 CHA 6.1 6.2 6.3 6.4 6.5	Summary PTER 5: Zic3 is a regulator of lineage specification during ES entiation Introduction Results Zic3 regulates the promoters of lineage-specific genes Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes Zic3 overexpression increases mesoderm and ectoderm specification Zic3-inducible overexpression cell lines Zic3 overexpression leads to upregulation of ectodermal and mesodermal limmarkers Zic3 upregulates neurogenesis during ES cell neural derivation Zic3 is a regulator of lineage-specific pathways Zic3 enhances neurogenesis during ES cell differentiation Summary PTER 6: Discussion and future directions	145 cell . 146 147 148 148 155 159 159 159 163 168 172 174 . 175 176 178 182 184 186

APPENDICES	1
Appendix 1 - Primers for ChIP-PCR assay	2
Appendix 2 - FDR Analysis: ChIP-PCR results for Zic3/Sox2 common targets20	15
Appendix 3 - Luciferase cloning primers for Zic3 chip-chip validation20	6
Appendix 4 - GFP fluorescence in mES cells transfected with the pSUPER-GFP	
shRNA vector20)7
Appendix 5 - Zic3 ChIP target gene and their associated promoter regions in	
mouse ES cells20	8(
Appendix 6 - Sox2 ChIP target gene and their associated promoter regions in	
mouse ES cells21	4
Appendix 7 - Zic5 and Zic2 are transcribed by a divergent promoter24	.3
Appendix 8 - Zic3 shares regulatory pathways with Oct4 & Nanog in ES cells24	4
Appendix 9 - Reprogramming assay with Oct4, Sox2, Klf4, C-Myc and Zic324	-5
Appendix 10 - Zic3 is required for maintenance of pluripotency in embryonic stem	
cells24	-6

ABSTRACT

The transcription factors Oct4, Nanog and Sox2 are key regulatory players in embryonic stem (ES) cell biology. Dissecting their transcriptional networks will provide inroads to the molecular mechanisms that direct ES cell pluripotency and early differentiation. I describe a role for a zinc finger transcription factor, Zic3, in the maintenance of ES cell pluripotency. Zic3 is expressed in ES cells and this expression is repressed upon differentiation. The binding of transcription factors Oct4, Nanog and Sox2 have been mapped to the gene regulatory region of *Zic3* in ES cells. Here I demonstrate that *Zic3* is activated downstream of these key pluripotency genes. In addition, gene expression microarray experiments have uncovered significant overlaps between the Oct4, Nanog, Sox2 and Zic3 pathways in ES cells.

Targeted repression of *Zic3* in human and mouse ES cells was performed to investigate the functional role of Zic3 in ES cells, and the results indicate that loss of Zic3 expression induces the expression of several markers of the endodermal lineage. This suggests that Zic3 plays an important role in the maintenance of pluripotency by preventing differentiation of ES cells into endoderm. This project therefore establishes a foundation for further investigation into the mechanisms involved in the maintenance of ES cell pluripotency.

Little is known about the regulatory networks that Zic3 employs to maintain pluripotency or to determine lineage specificity during embryonic development. I have established the global regulatory targets of Zic3 in ES cells and investigated its interactions with other ES cell-associated proteins. Here I define a Zic3 consensus DNA binding motif and present evidence for the cooperative action of Zic3 with a key ES cell transcription factor, Sox2. These results include: (1) physical interaction between Zic3 and Sox2 proteins, (2) evidence for common regulatory pathways, and (3) a significant overlap between their target genes. These results indicate that Zic3 binds both in close proximity with Sox2 in ES cells and comes in direct contact with DNA.

In addition, I report that Zic3 occupies promoters of ES cell-related genes as well as genes involved in early embryonic patterning, and mesoderm and ectoderm formation. Although Zic3-bound developmental regulators are transcriptionally silent in ES cells, functional analysis indicates that Zic3 has capacity to activate these genes outside the pluripotent state. This suggests that Zic3 may confer ectoderm and mesoderm specificity during differentiation of ES cells. In support of this, I demonstrate that transient drug-induced overexpression of Zic3 in ES cells enhances the rate of neurogenesis under conditions that promote neural differentiation.

The zinc finger transcription factor, Zic3, is critical for the maintenance of ES cell pluripotency and, additionally, is a positive regulator of embryonic morphogenesis, and cardiac, skeletal and neural differentiation during embryonic development. To date, little is known about the transcriptional network that Zic3 regulates to confer ES cell pluripotency or to define lineage specificity during development. To this end, the results of my work provide key molecular insight viii

into the Zic3-regulated pathways that influence ES cell pluripotency and the critical lineage decisions made during differentiation. This thesis therefore extends our knowledge of ES cell transcriptional circuitry and contributes to a greater understanding of the role of Zic3 in development.

LIST OF FIGURES

Figure 1. Contribution of the blastocyst inner cell mass to embryonic development and embryonic stem cells
Figure 2. Components of the cell cycle5
Figure 3. Signalling pathways contributing to the pluripotency of ES cells7
Figure 4. Role of Oct4, Nanog and Sox2 in ES cell pluripotency11
Figure 5. Functional domains of a transcription factor13
Figure 6. Assembly of a transcription initiation complex14
Figure 7. The transcriptional circuit is built on basic network motifs16
Figure 8. The core transcriptional regulatory network in ES cells
Figure 9. Transcriptional regulatory motifs between Oct4, Nanog and Sox2 and their common targets in ES Cells
Figure 10. Gain- and Loss-of-function phenotypes of Oct4, Nanog and Sox2 in ES Cells
Figure 11. Structure and relationship between the Zic family proteins
Figure 12. DNA sequence of the Zinc finger domain
Figure 13. Determination of Left-Right asymmetry in the developing embryo
Figure 14. The role of <i>Zic</i> genes in neural development
Figure 15. Experimental approach for establishing the transcriptional network of Zic3 in ES cells
Figure 16. Zic family protein sequence alignment (Clustal W)75
Figure 17. Profile of Zic3 expression during retinoic acid differentiation of E14 cells
Figure 18. Zic3 expression during DMSO, HMBA and embryoid body differentiation of E14 cells
Figure 19. Oct4, Nanog and Sox2 binding sites on the Zic3 promoter91
Figure 20. Oct4, Sox2 and Nanog regulate Zic3 expression92
Figure 21. Effect of Zic3 RNAi on endogenous Oct4, Nanog and Sox2 levels95
х

Figure 22. Effect of Zic3 RNAi on ES cell pluripotency96
Figure 23. Effect of Zic3 RNAi on lineage marker gene expression
Figure 24. Zic3 RNAi-immune construct99
Figure 25. Zic3-immune construct specifically reverses changes in lineage marker expression levels caused by Zic3 RNAi
Figure 26. Morphology of Zic3 clonal knockdown lines102
Figure 27. pSUPER.GFP.neo construct from Oligoengine104
Figure 28. GFP fluorescence in mES cells transfected with non-targeting pSUPER-GFP shRNA vector
Figure 29. GFP fluorescence in mES cells transfected with the Zic3-pSUPER- GFP shRNA vector106
Figure 30. Zic3 knockdown clonal lines demonstrate endodermal gene marker specification
Figure 31. Protein expression in Zic3 knockdown clonal lines
Figure 32. Endodermal marker staining for E14 cells
Figure 33. Nanog expression in the Zic3 knockdown lines114
Figure 34. Effect of Zic2 and Zic3 double knockdown115
Figure 35. A summary of Oct4, Nanog and Sox2 binding sites on the Zic2 promoter
Figure 36. A model of Zic3 function in embryonic stem cells
Figure 37. Sox2 Co-immunoprecipition with the Seize-X Protein G Co-IP kit
Figure 38. Zic3 and Sox2 interact in embryonic stem cells128
Figure 39. Gene expression profiles for Sox2 and Zic3 RNAi130
Figure 40. Significant overlap of Zic3 and Sox2 RNAi-regulated genes132
Figure 41. Zic3 and Sox2 bind common targets in mouse ES cells
Figure 42. The Zic3 consensus DNA binding sequence138
Figure 43. Zic3 and Sox2 motifs occur in close proxmity in the mouse ES genome 141
Figure 44. Possible binding schemes for Zic3 and Sox2 in ES cells144
Figure 45. PCR validation of five Zic3 binding targets151

Figure 46. Transciptional responsiveness of the five Zic3 target promoter regions (HEK293T)152
Figure 47. Transciptional responsiveness of the five Zic3 target promoter regions in mES cells
Figure 48. Transciptional responsiveness of the five Zic3 target promoter regions in mES cells
Figure 49. Zic3 target genes identified by chromatin-immunoprecipitation157
Figure 50. Expression profile of Zic3-doxcycyline inducible cell lines
Figure 51. Zic3 overexpression cell lines differentiated more rapidly in the absence of LIF
Figure 52. Zic3 overexpression enhances early neurogenesis during mouse ES differentiation
Figure 53. Zic3-overexpressing cell lines show earlier onset of neurogenesis markers
Figure 54. Illustration of the function of Zic3 in mouse ES cells

LIST OF TABLES

Table 1. Zic family genes in human and mouse
Table 2. Expression of Zic genes during early mouse and <i>xenopus</i> development35
Table 3. shRNA sequences for pSUPER vector
Table 4a. List of primers for the cloning Zic3 and Zic3-RNAi immune genes62
Table 4b. Transfection scheme for Zic3 Rescue Experiments 62
Table 5. List of marker genes used to assess lineage marker development in ES cells 70
Table 6. Details of custom-produced Zic3 antibody 77
Table 7. Panther Biological Process annotations for significantly co-regulated genes by Zic3 and Sox2 RNAi
Table 8. Luciferase assays for Zic3 target regions. DNA fragments were cloned into the pGL3 basic vector (Promoter assay) or pGL3-SV40 vector (Enhancer essay)
Table 9. Panther Biological Process annotations for Zic3 ChIP-chip target genesrelative to the Agilent mouse promoter array gene population160
Table 10. Panther Biological Process annotations for significantly regulated genes in the Zic3 overexpression samples grown in –LIF conditions, relative to the Illumina mouse Ref8-v1.1 reference gene list

ABBREVIATIONS

Symbol	Definition	Symbol	Definition
μg	Microgram	PCR	Polymerase chain reaction
μL	Microlitre	qPCR	Quantitative PCR
A-P	Anterior-posterior	RA	Retinoic acid
AVE	Anterior visceral endoderm	RE	Restriction enzyme
BSA	Bovine serum albumin	RNA	Ribonucleic acid
ChIP	Chromatin immunoprecipitation	RNAi	RNA interference
CHO	Chinese hamster ovary	SCNT	Somatic cell nuclear transfer
DBD	DNA-binding domain	SDS	Sodium dodecyl sulfate
DMSO	Dimethyl sulfoxide	TBS-T	Tris-buffered saline/Tween-20
DNA	Deoxyribonucleic acid	TF	Transcription factor
D-V	Dorso-ventral	ZF	Zinc finger
ECL	Enhanced chemiluminescence		
EDTA	Ethylene Diamine Tetra-acetic Acid		
ES cells	Embryonic stem cells		
EtOH	Ethanol		
ExE	Extra-embryonic endoderm		
FCS	Fetal calf serum		
FDR	False discovery rate		
gDNA	Genomic DNA		
GFP	Green fluorescent protein		
HH	Hedgehog		
HMBA	N,N'-Hexamethylenebisacetamide		
HRP	Horseradish peroxidase		
ICM	Inner cell mass		
IVF	In-vitro fertilization		
LIF	Leukemia inhibitory factor		
L-R	Left-right		
MAP2	Microtubule-associated protein 2		
MEF	Mouse embryonic fibroblast		
Neo	Neomycin resistance		
PAGE	Polyacrylamide gel electrophoresis		
PBS	Phosphate buffered saline		

CHAPTER 1: INTRODUCTION

1.1 Derivation of embryonic stem cells

The inner cell mass (ICM) of an embryonic blastocyst is a source of pluripotent cells that ultimately give rise to the embryo proper. Following implantation into the uterine wall, pluripotent ICM cells develop into both extra-embryonic endoderm as well as the three key embryonic germ layers comprising ectoderm, endoderm and mesoderm tissue¹ (Figure 1A). The unique cells of the ICM therefore represent an opportunity for the study of fundamental processes behind embryonic development and cell fate determination.

In 1981, Evans & Kaufman at the University of Cambridge made a significant breakthrough in their establishment of pluripotent ICM cells in laboratory cultures². They had successfully delayed embryonic implantation to achieve enlarged blastocysts from which ICM cells could be isolated and expanded *in vitro*. Using a separate approach, developmental biologist Gail Martin independently extracted ICM cells from non-enlarged blastocysts, and aided their expansion with teratocarinoma-conditioned media, which she hypothesized contained growth factors that stimulated cell growth and prevented differentiation³. These ICM cells, henceforth termed "embryonic stem cells", were shown to be pluripotent and could self-renew indefinitely in culture^{2,3} (Figure 1B).

These two developments represented a significant breakthrough in the study of pluripotent cell types, and provided the basis of isolation techniques for ES cells from other species⁴⁻⁶. In 1998, knowledge gained from prior studies culminated in the landmark derivation of five human ES cell lines by Thomson et al. from the

Figure 1. Contribution of the blastocyst inner cell mass to embryonic development and embryonic stem cells. (A) The ICM gives rise to extra-embryonic endoderm and the three germ layers of the embryo proper. (B) ES cells are derived from the inner cell mass of the embryonic blastocyst and can be propagated indefinitely in culture.

blastocysts of discarded *in-vitro* fertilization (IVF) embryos⁷. These cell lines demonstrated stable karyotype after several months of continuous passage, and had the ability to form extra-embryonic trophoblast and the three germ layers of the embryo proper⁷. Thomson et al. thus speculated that directed differentiation of human ES cells would one day be harnessed to treat clinical disease⁷.

Today ES cells are recognized for their vast potential in a host of applications. In addition to being harnessed as a model for early embryonic development, and a vector for introduction of targeted mutations into the mouse germ-line^{8,9}, ES cells are viewed as an important potential tool for clinical therapy and drug discovery¹⁰.

1.2 Regulation of embryonic stem cells

1.2.1 The key properties of ES cells

Embryonic stem cells have the capacity to self-renew indefinitely when cultured under conditions that prevent differentiation¹¹, and undergo rapid proliferation by symmetric division every 12 hours¹². ES cells display an unusual cell cycle with a shortened Gap 1 (G1) phase lasting an average of 1.5 hours¹³. At the G1 phase, mammalian cells typically face a choice between entering the quiescent Gap 0 (G0) state associated with post-mitotic differentiation, or to continue through the DNA Synthesis (S) phase in preparation for mitosis (Figure 2). The G1/S transition is therefore a critical point beyond which cells are committed to dividing¹⁴. In ES cells, the G1 control pathways commonly found in other cell types are reduced or absent¹³, resulting in prolonged maintenance of the self-renewal state.

Figure 2. Components of the cell cycle. Gap 1 phase (G1) – The cell undergoes metabolic changes in preparation for division. This phase is marked by the synthesis of enzymes required for DNA replication in the S phase. Beyond the restriction point (R), the cell is committed to division and moves into the S phase. Synthesis phase (S) - DNA synthesis replicates the genetic material in preparation for mitosis, and each chromosome now consists of two sister chromatids. **Gap 2 phase (G2)** – A period of intense protein synthesis where cytoplasmic material mainly consisting of microtubules are produced and organized for mitosis and cytokinesis. **Mitosis (M)** – This is a relatively brief phase comprising a nuclear division (karyokinesis) followed by a cell division (cytokinesis) to produce two identical daughter cells. **Interphase (I)** - The period between mitotic divisions, G1, S and G2, are collectively known as the interphase. *Figure adapted from Clinical tools, Inc.*

Pluripotency is maintained during ES cell self-renewal through the prevention of differentiation and the promotion of proliferation¹⁵. Pluripotency is broadly defined as the potential to give rise to all the cells and tissues within an embryo proper, while lacking the self-organizing ability conferred by extra-embryonic tissue to generate a whole organism^{15,16}. Pluripotent ES cells are characterized by the presence of ES cell surface markers (e.g. Stage-specific embryonic antigens), and specific patterns of gene expression, DNA methylation, and telomerase activity. In addition, pluripotent cells have ability to form teratomas when introduced into a host organism, generate chimeras upon injection into 8-cell embryos or blastocysts¹⁷, and show germline transmission¹⁸.

Studies over the past few years have revealed that transcription factor networks^{19,20}, epigenetic processes²¹⁻²³, and extrinsic signalling pathways²⁴⁻²⁷ play important roles in the maintenance of ES cell pluripotency. These processes are described in greater detail in the following sections.

1.2.2 Extrinsic signalling pathways maintaining ES cell pluripotency

Embryonic stem cells are maintained by a network of extrinsic and intrinsic signals that collectively regulate the properties of pluripotency and self-renewal. A unique trademark of ES cells is their ability to propagate indefinitely without showing signs of senescence and cell death. However, the maintenance of the undifferentiated stem cell phenotype is not a cell autonomous process (Figure 3). ES cells are dependent upon exogenous factors that are supplied either by co-culture with fibroblast feeder cells, or through the use of conditioned media²⁸. One key exogenous factor is leukemia inhibitory factor (LIF), a cytokine that effectively

Figure 3. Signalling pathways contributing to the pluripotency of ES cells. Cell-surface receptors initiate signals that are conveyed (thin black lines) to the nucleus and affect key pluripotency transcription factors such as Oct4, Nanog, Sox2, and self-renewal transcription factors such as Stat3. These signals comprise: (A) The LIF-gp130 pathway that triggers the JAK-kinase pathway activation of Stat3, (B) the Bmp4 signalling pathway, and (C) the Wnt-Frizzled activated pathway that signals Sox2 and Oct4 activity via mediators such as β -catenin and the Smad proteins. (Adapted from Boiani & Schöler, 2004)

sustains mouse ES cell self-renewal in the absence of the feeders²⁴ (Figure 3A). The withdrawal of LIF from ES cell cultures results in a decrease in cell proliferation and induction of differentiation in mouse ES cells²⁵. The expression of LIF in mouse embryonic feeder cells is stimulated by the presence of ES cells, and LIF is secreted into the media of ES cell co-cultures for the maintenance of pluripotency²⁹. The importance of LIF is underscored by studies showing that feeder cells lacking a functional *Lif* gene do not effectively support ES cell propagation³⁰.

LIF binds to the gp130 heterodimer receptor on the cell membrane and activates downstream signaling pathways, beginning with JAK kinase-mediated recruitment of the transcription factor, Stat3 (Figure 3A). Stat3 undergoes phosphorylation and dimerization before being translocated to the nucleus, where it activates important transcriptional programs to maintain self-renewal in ES cells²⁵. Significantly, studies have shown that activation of this transcription factor is sufficient to support ES cell self-renewal in medium lacking LIF³¹, thus confirming that Stat3 is the downstream effector of the LIF pathway.

The LIF-Stat pathway alone is insufficient to maintain the pluripotent state in feeder-free ES cultures; additional signalling by Bmp4 is required for normal ES cell maintenance under serum-free conditions²⁷. In the presence of LIF, Bmp4 contributes to the LIF pathway by the activation of Smad4, which in turn activates members of the *Id* (inhibitor of differentiation) gene family to prevent neuronal specification in mouse ES cells²⁷ (Figure 3B). The Bmp proteins also share their targets with the Wnt-activated ligand pathway²⁶ (Figure 3C). The Wnt proteins are

secreted glycoproteins that have widespread roles in tissue differentiation and organogenesis³², and the canonical Wnt pathway is activated when a Wnt protein binds to the Frizzled receptor on the cell membrane. This leads to inhibition of Gsk3 (glycogen-synthase kinase-3) and subsequent translocation of β -catenin to the nucleus to regulate expression of downstream target genes (Figure 3C). Inhibition of the Gsk3 pathway results in the maintenance of undifferentiated mouse and human ES cells, with sustained expression of key pluripotent transcription factors *Oct4*, and *Nanog* even in the absence of LIF³³.

However Ying et al. (2008) have recently demonstrated that these extrinsic stimuli, previously thought to be critical for ES cell self-renewal, may in fact be dispensible. Small molecule-induced inhibition of the Gsk3 and phospho-ERK pathways that lie upstream of extrinsic signalling pathways resulted in replication of the pluripotent state³⁴, and complete bypass of cytokine signalling was demonstrated using Stat3-deficient cells. This suggests that the BMP/Smad/Id and LIF/STAT3 pathways are not instructive for self-renewal but instead shield the pluripotent state from induced phospho-ERK. These new findings indicate that ES cells may have innate self-renewal capacity and are not dependent on external signalling factors for propagation of the pluripotent state.

1.3 Transcriptional networks in ES cells

The extrinsic signalling pathways eventually reach the ES cell nucleus to activate or repress transcriptional programs responsible for the pluripotent state of the ES cells (Figure 4). Here the nuclear transcription factors Oct4, Nanog and Sox2 feature prominently in directing self-renewal and maintaining pluripotency. In early

studies of ES cells, these transcription factors were identified as potential regulators of pluripotency due to their unique expression pattern and critical roles in early development³⁵⁻³⁹ and their function as essential regulators of cell-fate specification in many organisms^{37,40}. The activity of these transcription factors also depends on the accessibility of their target genes, which are made more or less accessible by the modification of their DNA, histones, or chromatin structure^{22,23,41}. In recent years, it has emerged that Oct4, Nanog and Sox2 contribute to the hallmark characteristics of ES cells by: 1) activation of target genes that encode pluripotency and self-renewal mechanisms and 2) repression of signalling pathways that promote differentiation⁴² (Figure 4). These key transcription factors will be reviewed in the following section.

1.3.1 Regulation of transcription networks

Proper regulation of gene transcription is critical for activation of tissue-specific programs, and is foundational to the establishment of unique tissue properties. The biological properties of an organism are characterized by gene expression patterns that result from a dynamic interplay between transcription factors and their target genes. Delineation of transcriptional networks is therefore required to understand the molecular basis of cell fate.

Transcription factors comprise several domains that are essential for its function⁴³ (Figure 5). DNA-binding domains (DBD) associate with DNA in non-coding regions, and confer specificity by recognition of specific DNA sequences within the promoter of each gene. Secondly, several transcription factors also contain a signal sensing domain (SSD) which senses and transmits external signals to the

Figure 4. Role of Oct4, Nanog and Sox2 in ES cell pluripotency. Oct4, Nanog and Sox2 activate target genes in ES cells that signal the expression of pluripotency and self-renewal factors. These core ES cell transcriptional factors concurrently repress the expression of genes encoding pathways that promote ES cell differentiation. *Source: Orkin, S.H., 2005*

rest of the transcription complex to regulate gene expression (Figure 5). Finally, the trans-activating domains (TAD) of transcription factors contain binding sites for coactivator proteins (Figure 6) which signal the basal transcription proteins to initiate RNA-polymerase mediated transcription of the target gene. The transcription initiation complex in Figure 6 illustrates the core units required for activation of gene transcription, and demonstrates how signals from the transcriptional activators and repressors are transmitted via coactivator proteins to regulate the activity of RNA polymerase.

Transcription networks are built upon a series of interconnected pathways that collectively regulate the gene expression program of an organism. At the most basic level, transcription networks are organized into 6 simple motifs with specific patterns of regulation between transcription factors and their target genes⁴⁴. These transcriptional motifs are illustrated in Figure 7. The single-input motif is a connection between a target gene and its sole transcriptional regulator, while the multiple-input motif is simultaneously regulated by a group of factors⁴⁵. The target genes belonging to these two motifs are usually co-expressed at levels proportional to the number of transcription factors involved⁴⁶.

A feed-forward loop is established when a TF regulates the expression of a second TF, and both factors together regulate the expression of a common set of target genes⁴⁴⁻⁴⁶. Integrated networks characterized by these multiple feed-forward loops tend to show stable regulatory patterns⁴⁷. Other common motifs identified in yeast include the autoregulatory and regulatory chain motifs⁴⁸. The

Figure 5. Functional domains of a transcription factor. The amino acid sequence of a prototypical transcription factor is illustrated, containing a DNA-binding domain (DBD), a signal sensing domain (SSD), and a transactivation domain (TAD). The number and order of domains may differ in various types of transcription factors. *Adapted from Latchman, DS. (1997)*

Figure 6. **Assembly of a transcription initiation complex**. Transcription factors (red) bind to promoter or enhancer regions to determine the genes that will be transcriptionally activated. The interaction of DNA binding domain (DBD) with DNA and trans-activating domain (TAD) with coactivators are represented here. Repressor proteins (grey) bind to DNA at sites known as silencers and interfere with the function of activators to decrease the rate of transcription. Co-activators (Green) are adaptor molecules that integrate activator and repressor signals and relay the results to the basal factors (blue) which position RNA polymerase at the start of the protein-coding region of a gene, and initiate the transcriptional activity of the enzyme. Adapted from "Transcription of Eukaryotic DNA", Roanoke College, Biology 201 Chapter 11b.

predominating motif is often determined by the type of transcriptional response required, such that an "all-or-none" response is usually characterized by single-input motifs, whereas more subtle and gradated response usually results from a combination of multiple-input motifs⁴⁷. Together, these individual network motifs form the entire assembly of regulatory interactions known as the 'transcriptional regulatory network', which specifies the blueprint for gene expression patterns within an organism⁴⁴.

1.3.2 Oct4, Nanog and Sox2 are key regulators of transcription in ES cells

In ES cells Oct4, Nanog, and Sox2 co-occupy promoters of hundreds of genes that are both expressed and repressed in the pluripotent state^{19,20,49} (Figure 8).

This suggests complex regulatory circuitry in which Oct4, Nanog, and Sox2 collectively and uniquely regulate downstream genes to control ES cell differentiation. Recent advances in genomic technologies have enabled the construction of transcriptional regulatory networks of Oct4, Nanog, and Sox2 in ES cells. Two groups have harnessed the chromatin-immunoprecipitation (ChIP) technique followed by genomic analysis of the target material to identify DNA bound by the three factors in human and mouse genomes^{19,20,49}. Oct4, Nanog, and Sox2 were found to co-occupy a substantial portion of their target genes, suggesting that the three factors interact to regulate a large subset of common targets. Nanog shares 44.5% (345) of Oct4-bound genes in mouse ES cells²⁰, while 353 genes are co-bound by Oct4, Nanog, and Sox2 in human ES cells¹⁹. However, a comparison of the Oct4- and Nanog-bound regions revealed small

Figure 7. The transcriptional circuit is built on basic network motifs. The motifs in this figure represent the most common units found in transcription networks, comprising single and multiple input motifs, and autoregulatory, feed-forward, multi-component and regulator chain loops. *Source: Blais & Dynlacht, 2005*

overlaps between their target genes in mouse and human ES cells^{20,50} (Figure 9A). The lack of similarities between their genomic targets have been attributed to the differing genomic platforms employed in the two studies, and possible genuine differences between the regulatory networks of human and mouse ES cells.

A closer examination of the Oct4, Nanog and Sox2 targets revealed that these key transcription factors occupy the promoters of both transcriptionally active and inactive genes in ES cells^{19,20,49}. Among the active targets are genes encoding ES cell self-renewal genes including *Stat3* and components of the Wnt and TGF- β pathways. Amongst the inactive targets are a large number of transcriptionally silent lineage-specification genes. It was therefore concluded that Oct4, Nanog and Sox2 regulate a wide spectrum of cellular processes, and collectively function to maintain pluripotency by promoting the expression of other self-renewal genes while simultaneously preventing expression of differentiation-promoting genes involved in mesoderm, endoderm and ectoderm specification during development (Figure 8).

The assays for Oct4, Nanog and Sox2 targets revealed two regulatory motifs in the ES cell transcriptional circuitry¹⁹. Figure 9B represents the feed-forward loop in which Oct4 and Sox2 interact to co-activate Nanog expression, which subsequently acts in concert with these two factors to control downstream target genes. Oct4, Nanog and Sox2 also occupy the promoters of their own genes to form the interconnected auto-regulatory loops shown in Figure 9C. Collectively,

Figure 9. Transcriptional regulatory motifs between Oct4, Nanog and Sox2 and their common targets in ES Cells. (A) Oct4 and Nanog share a small subset of target genes between mouse and human ES cells. (B) Feedforward transcriptional regulatory circuitry in human ES cells. Regulators are represented by blue circles; gene promoters are represented by red rectangles. Binding of a regulator to a promoter is indicated by a solid arrow. Genes encoding regulators are linked to their respective regulators by dashed arrows. (C) The interconnected autoregulatory loop formed by Oct4, Nanog and Sox2. Adapted from: Boyer et al., Cell. 2005 Sep 23;122(6):947-56. & Loh et al., Nat Genet. 2006 Apr;38(4):431-40

these feedforward and auto-regulatory loops provide the advantage of reduced response time to environmental stimuli and increased stability of gene expression in ES cells.

In addition to transcription factor binding targets, a recent study was conducted to determine protein interaction patterns of key pluripotency genes⁵¹. The results indicate that a large subset of pluripotency-associated proteins such as Oct4, Esrrb, Rif1, and Sall4 are highly enriched within Nanog-associated complexes. Significantly, a substantial portion of the Nanog interactome members are also transcription targets of Oct4, Sox2 or Nanog in ES cells^{19,20}. Moreover, a recent chromatin-immunoprecipitation assay combined with ultra-high-throughput sequencing (ChIP-sequencing) of 13 ES cell transcription factor binding sites revealed their dense occupancy patterns throughout the genome. The sites with dense TF occupancy were termed "multiple transcription-binding loci" (MTLs) of which 43.4% reflected Oct4, Nanog and Sox2 co-occupancy and were frequently associated with Smad1 and Stat3 binding⁴⁹. This suggests that Smad1 and Stat3 share many common target sites with Nanog, Oct4, and Sox2, and reflects a point of convergence between the Smad1 and Stat3 signaling pathways with the core ES cell circuitry comprising Nanog, Oct4, and Sox2^{19,20}.

Interestingly, while the withdrawal of LIF and Bmp4 led to a significant reduction in binding of Stat3 and Smad1 proteins respectively, the extent of Oct4 occupancy remained unaffected. These results strongly indicate that Oct4 is central to the stability of the nucleoprotein complex⁴⁹. The Oct4/Nanog/Sox2 MTLs also exhibit significant characteristics of enhanceosome complexes⁵², such 20 as dense TF occupancy and an ability to enhance transcription from a distance. In addition, a second highly occurring MTL cluster comprising c-Myc, n-Myc, Zfx, and E2f1 co-occupancy was identified in ES cells. Together with the Oct4/Sox2/Nanog loci, the collective targets of these two clusters comprise 60% of genes upregulated in ES cells⁴⁹.

The recent data have therefore identified functionally-important genomic "hotspots" within the ES cell genome. These sites are extensively co-occupied by transcription factors and reflect in particular the presence of Oct4, Nanog, and Sox2 feedforward loops in ES cell transcriptional networks (Figure 9). In the following sections, I will review the properties of these three key ES cell transcriptional regulators that establish the genomic state necessary for the ES cell self-renewal and pluripotency.

1.3.2.1 Oct4

The transcription factor Oct4 is a POU-domain protein encoded by *Pou5f1*. The POU-domain family is named after three mammalian transcription factors, <u>P</u>it-I, <u>O</u>ct-I, Oct-2, and a *C. elegans* protein <u>U</u>nc-86, which share a region of homology known as the POU domain⁵³⁻⁵⁷. The POU domain is a bipartite DNA-binding domain comprising two highly conserved regions tethered by a variable linker. The 75-amino acid N-terminal region is known as the POU-specific domain, while the C-terminal 60-amino acid region, the POU homeodomain. High-affinity site-specific DNA-binding by POU domain transcription factors requires both the POU-

specific domain and the POU homeodomain. The two subdomains can cooperatively bind DNA even when they are not joined by the linker^{53,57-60}.

Certain transcription factors containing the POU-homeodomain are important regulators of early mammalian development^{36,57,61-63}. Oct4 is expressed in the unfertilized egg and within the early embryo during the cleavage stages prior to the separation of the ICM from the trophectoderm⁶⁴. The expression of Oct4 is then maintained in the epiblast of pre- and post-implantation embryos before becoming restricted to the migratory primordial germ cells^{65,66}. In addition, Oct4 expression is downregulated in the trophectoderm, primitive endoderm and the extraembryonic and somatic lineages⁶⁶. Interestingly, *Oct4*-deficient embryos develop to the blastocyst stage but comprise only trophectoderm cells without the ICM³⁸. These *Oct4*-null embryos also specifically give rise to trophectodermal cells when dissociated and maintained *in vitro*³⁸. Moreover, RNAi-mediated depletion of *Oct4* causes human ES cells to differentiate towards the trophectodermal lineage⁶⁷. These results indicate that Oct4 plays a central role in preventing trophectodermal differentiation while maintaining the pluripotent state of the ICM during embryonic development (Figure 10).

Consistent with its role as a repressor of trophectoderm commitment, Oct4 is a negative regulator of *Cdx2*, a factor essential for the self-renewal of trophoblast stem cells and specification of the trophoblast lineage *in vivo*⁶⁸. Moreover, overexpression of *Oct4* in mouse ES cells results in endodermal and mesodermal lineage specification⁶⁹ (Figure 10). These results collectively indicate that Oct4
has a key role in regulating ES cell pluripotency, and that precise levels of Oct4 protein are required to maintain its function in ES cells⁶⁹.

1.3.2.2 Sox2

Sox2 is a member of the Sox (SRY-related HMG box) gene family that encodes transcription factors with a high mobility group (HMG) DNA-binding domain⁷⁰. Based on homology within and outside the HMG box, Sox2 belongs to the SoxB1 subgroup that encompasses the Sox1 and Sox3 proteins. Several lines of evidence suggest that Sox2 functions to maintain developmental potential in their target cells. Firstly, Sox2 expression is found in growing and mature oocytes³⁷. Secondly, it is present in blastomeres and then later in the ICM of blastocysts and epiblasts cells⁷¹. Sox2-deficient embryos give rise to defective ICMs from which pluripotent ES cells cannot be derived (Figure 10), and subsequently, to abnormal development of the epiblast³⁷, and these Sox2 null embryos also demonstrate lethality around the peri-natal stages. Third, Sox2 expression is associated with embryonic stem cells^{19,20} and uncommitted precursor cells within the developing central nervous system⁷² (Figure 10). Thus the expression pattern of Sox2 is similar to that of Oct4 within embryonic stem cells, and the embryonic ICM, epiblast and germ cells. However, unlike Oct4, Sox2 is also found within the multipotent cells of the extraembryonic endoderm, suggesting that Sox2 may be involved in establishment of primitive and extra-embryonic ectoderm, and that its function is not merely restricted to ES cells or pluripotency³⁷.

Figure 10. Gain- and Loss-of-function phenotypes of Oct4, Nanog and Sox2 in ES Cells. Loss-of-function phenotypes are described in the left column, and grain-of-function phenotypes are described in the right column.

The expression of *Sox2* in ES cells is known to be mediated by two promoter/enhancer regions on the Sox2 gene, known as SRR1 and SRR2⁷³. Oct4 has recently been shown to bind and regulate an octamer recognition sequence within the SRR1 region⁷⁴, and SRR2 contains a composite sox-oct binding element 1.2 kb downstream of the *Sox2* transcription start site⁷³. Binding of Oct4 or Sox2 to SRR2 is mediated by the presence of Oct4, and mutations to the SRR2 region that resulted in ablation of Oct4 binding disrupted the formation of a DNA/protein complex, and subsequent loss of SRR2 activity⁷³. These results indicate that Oct4/Sox2 heterodimer occupancy of the SRR2 region is essential for the expression of Sox2. The above results are supported by structural validation of the ability of the POU and HMG domains to mediate specific protein-protein and DNA-protein interactions^{75,76}, and the observation that regulatory regions of a set of important Oct4/Sox2 heterodimers bind and interact synergistically^{37,77} to regulate expression of their downstream targets.

1.3.2.3 Nanog

Nanog was identified as an important ES cell transcription factor through gain-offunction studies demonstrating its ability to maintain mouse ES cells in the absence of LIF and feeder cultures^{39,78} (Figure 10). The Nanog protein comprises a 96 amino acid N-terminal domain and a 150 amino acid C-terminal domain. Both the N- and C-terminal domains of mouse Nanog have the ability to transactivate Nanog target genes, with the C-terminal domain being 7 times as active as the N-terminal one⁷⁹. This unique arrangement of dual trans-activators may be responsible for the flexibility and specificity of Nanog to regulate downstream targets critical for both ES cell pluripotency and differentiation. The Nanog protein also contains a homeobox domain which confers binding specificity by recognition of DNA motifs, and Nanog consensus sequences have been defined in the promoter/enhancer regions of *Rex1* and *Gata6* genes^{80,81}.

Nanog expression is first observed in the embryonic morula, and high levels of *Nanog* RNA persist in the early blastocyst and declines just prior to implantation^{39,78}. Nanog expression is subsequently restricted to a subset of epiblast cells and is down-regulated during primitive streak formation^{39,78}. The *in vivo* depletion of *Nanog* disrupts inner cell mass proliferation and prevents formation of epiblast^{39,78}. *Nanog*-null embryos do not give rise to primitive ectoderm at E5.5³⁹, and hence subsequently do not form the three primary germ layers of the embryo. In addition, Nanog is expressed in pluripotent germ cells of the nascent gonad during embryonic development, and within in germ cell tumours and teratoma-derived cell lines³⁵. These results collectively indicate that Nanog signalling is important in pluripotency and early embryonic development.

Recent studies have shown that Oct4 and Sox2 co-occupy the promoter of *Nanog* and positively regulate its expression in ES cells (Figure 9B)^{19,82,83}. Nanog is known to be essential for propagation of ES cells in an undifferentiated state, and loss of Nanog results in spontaneous differentiation into primitive endoderm (Figure 10). This is similar to the cell type formed upon ectopic expression of *Gata4* and *Gata6* in ES cells⁸⁴, and it is thought that Nanog maintains pluripotency through repression of *Gata4* and *Gata6* pathways to prevent primitive endoderm differentiation in ES cells.

1.3.3 Identifying genes that contribute to stem cell pluripotency

The transcriptional networks governing the unique properties of ES cell pluripotency and self-renewal have been the focus of many genome- and proteome-wide studies to date. These approaches include high-throughput gene expression profiling to determine transcripts upregulated in the pluripotent state^{85,86}, chromatin-immunoprecipitation to identify targets of Oct4, Nanog and Sox2 in mouse and human ES cells^{19,20,49,87}, RNAi-mediated depletion of key regulators in ES cell pluripotency accompanied by global analysis of gene expression to determine affected pathways⁸⁷, and affinity purification of Nanog-associated proteins followed by mass spectrometry to establish a protein interaction network in ES cells⁵¹.

Many transcription factors apart from Oct4, Nanog and Sox2 have recently been identified that are essential for the undifferentiated state of ES cells. An RNAimediated knockdown approach has demonstrated that 8 genes (*Nanog, Oct4, Sox2, Tbx3, Esrrb, Tcl1, Dppa4* and *Mm.343880*) are important for maintaining the morphology and proliferation of ES cells⁸⁷. In addition, a genome-wide study has identified and characterized *Rif1* and *Esrrb* as important downstream effectors of Oct4 and Nanog of mouse ES cells²⁰. Another study that combined a list of Oct4 binding targets with gene expression profile changes resulting from perturbations of endogenous Oct4 levels has identified *Tcl1* as a critical regulator of cell proliferation⁸⁸. Furthermore, two separate studies have also shown that a member of the spalt-like protein family, Sall4, physically interacts with Nanog and positively regulates transcription of Oct4 in ES cells^{89,90}. Two recent studies have also demonstrated that Tcf3, a downstream effector of the Wnt pathway, is a regulator of ES cell pluripotency and self-renewal^{91,92}.

A series of breakthrough experiments initiated by Takahashi and Yamanaka have demonstrated the ability of four transcription factors *Oct4, Sox2, Klf4* and *c-Myc* to re-establish a pluripotent state when ectopically expressed in mouse and human embryonic fibroblasts^{93,94}. Importantly, these reprogrammed cells were were able to form viable chimaeras that demonstrated germline transmission^{95,96}. However, the tumorigenicity resulting from the reactivation of retroviral-transduced *c-Myc* render these induced pluripotent cells (iPS) unsuitable for transplantation⁹⁶. To this end, another study has shown that *Nanog* and *Lin28* may be used in place of *Klf4* and *c-Myc* to successfully generate human iPS cells⁹⁷.

The above findings demonstrate that the ES cell pluripotent state is maintained by a large number of transcription factors apart from Oct4, Nanog and Sox2 in autoand co-regulatory feedback loops. In addition, pluripotency may be re-established in differentiated cells by ectopic expression of ES cell transcription factors by various combinations of *Oct4, Nanog, Sox2, Klf4, c-Myc* and *Lin28*. These results indicate that ES cell pluripotency is a complex network encompassing a large host of transcription factors. There is therefore a critical need to dissect the ES cell transcriptional pathways to achieve a greater understanding of ES cell properties, in order to gain insight into embryonic development and important knowledge to harness these cells for effective therapy.

1.4 Properties of zinc finger transcription factor Zic3

The zinc finger transcription factor Zic3 was initially identified as a potential regulator of ES cell pluripotency due to its expression profile. Zic3 is highly expressed in mouse and human ES cells^{85,86}, and its expression is rapidly downregulated as the cells begin to differentiate. I have investigated the role of Zic3 in the regulation of ES cell transcriptional networks in this thesis, and the following sections therefore contain a review of the properties of Zic3 and a description of its roles in embryonic development.

1.4.1 The Zic gene family

The Zic proteins (Zinc finger protein of the cerebellum) belong to the GLI superfamily of transcription factors and are vertebrate homologues of the *Drosophila* zinc finger pair-rule protein, odd-paired (opa), essential for the parasegmental division of the *Drosophila* embryo ⁹⁸. The five known mammalian *Zic* genes (Zic1 – 5) encode five tandem C₂H₂ zinc finger domains that are highly conserved across species⁹⁸⁻¹⁰⁴ (Table 1, Figure 11A). The zinc finger (ZF) domain of *Zic* family genes is characterized by an unusually long intervening sequence between the two cysteine residues of the first ZF motif. In addition, the N-terminal region contains a ZOC domain conserved between vertebrate Zic and the Drosophila Odd-paired (*Opa*) proteins⁹⁸ (Figure 11A), to which transcriptional activity has been mapped¹⁰⁵.

Species	Common name	Gene	Synonyms	Accession no.	References
Homo sapiens	human	ZICI		NP_003403	Yokota et al., 1996
		ZIC2		NP_009060	Brown et al., 1998
		ZIC3		NP_003404	Gebbia et al., 1997
		ZIC4		NP_115529	
		ZICS		NP_149123	
Mus musculus	mouse	Zicl		NP_033599	Aruga et al., 1994
		Zic2		BAA11115	Aruga et al., 1996a
		Zic3		NP_003404	Aruga et al., 1996a
		Zic4		NP_033602	Aruga et al., 1996b
		Zic5	opr	BAB18579	Furushima et al., 2000

mom
and
human
<u> </u>
genes
family
1. Zic
Table

Source: Aruga, J. Mol Cell Neurosci. 2004 Jun;26(2):205-21

Figure 11. Structure and relationship between the Zic family proteins. (A) Structure of Zic protein family members with zinc finger (ZF) and ZOC domains indicated. (B) Phylogenic tree showing relations within the Zic family proteins, derived from a comparison of Zic family DNA sequences. The Zic1 – 3 subgroup is indicated by the red box. Adapted from: *Aruga, J. Mol Cell Neurosci. 2004 Jun;26(2):205-21*

The *Zic* genes are thought to share a common ancestral gene, and phylogenic analysis has revealed that *Zic1*, *Zic2* and *Zic3* are most closely related and form a subgroup among *Zic* family genes (Figure 11B). Zic3 shares overall 64% and 59% homology with Zic1 and Zic2 respectively, and this homology increases to 91% within the zinc finger domain¹⁰⁶ (Figure 12). Thus members of Zic family are strong candidates for redundancy in molecular signalling owing to the high degree of homology and overlapping expression observed among the members of this family. In addition, the genomic locations of gene pairs *Zic1* and *Zic4*, and *Zic2* and *Zic5* demonstrate a head-to-head arrangement in 30-kb genomic regions, implying chromosomal duplication of an ancestral gene complex that contributes to the high complexity of *Zic* genes and the evolution of body plans during development¹⁰⁶.

Zic family proteins share high homology with the Gli and NKL (Gli-Kruppel zincfinger protein) families in their zinc finger domains, where the last three C₂H₂ motifs in particular are well conserved. Gli family proteins function as transcriptional mediators of the hedgehog (Hh) signaling cascade^{107,108} and are known to play critical roles in dorsoventral neural patterning¹⁰⁹⁻¹¹¹. Furthermore, characterization of the NKL/Gli protein family has shown that NKL promotes neuronal differentiation in the formation of primary neurons and other neuronal precursors¹¹²⁻¹¹⁴. The Zic proteins are also hypothesized to regulate genes

Zicl Zic2 Zic3 Opa	222 253 247 207	KQELICKWIEPEQLANPKKSCNKTFSTMHELVTHVTVEHVGGPEQSNHI 28 KQELICKWIDPEQLSNPKKSCNKTFSTMHELVTHVSVEHVGGPEQSNHV 30 KQELSCKWIEEAQLSRPKKSCDRTFSTMHELVTHLTIEHVGGPEQNNHA 29 KQEMQCLWIDPDQPGLVPPGGRKTCNKVFHSMHELVTHLTVEHVGGPECTTHA 25	0059
Zicl	281	CFWEECPREGKPFKAKYKLVNHIRVHTGEKPFPCPFPGCGKVFARSENL 319	
Zic2	301	CFWEECPREGKPFKAKYKLVNHIRVHTGEKPFPCPFPGCGKVFARSENL 350	
Zic3	296	CYWEECTREGKSFKAKYKLVNHIRVHTGEKPFPCPFPSCGKIFDRSENL 344	
Opa	260	CFWVGCSRNGRPFKAKYKLVNHIRVHTGEKPFACPHPGCGKVFARSENL 308	
Zic1	320	KIHKRTHTGEKPFKCEFEGCDRRFANSSDRKKHMHVHTSDRPYLCKM 366	
Zic2	351	KIHKRTHTGEKPFQCEFEGCDRRFANSSDRKKHMHVHTSDKPYLCKM 397	
Zic3	345	KIHRRTHTGERPFKCEFEGCORRFANSSORKKHMHVHTSOKPYICKV 391	
Opa	309	KIHKRTHTGEKPFKCEHEGCDRRFANSSDRKKHSHVHTSDKPYNCRING 357	
-			
Zicl	367	CDKSYTHPSSVRKHMKVH 384	
Zic2	398	CDKSYTHPSSLRRHMKVH 415	
Zic3	392	CDKSYTHPSSLRKHMKVH 409	
Opa	358	CDKSYTHPSSLRKHMKVH 375	

Figure 12. DNA sequence of the Zinc finger domain. The amino acid sequence alignment of zinc finger domains of the Zic, Zic2, Zic3, and Opa proteins. Bold letters indicate the conserved or similar residues among all four proteins, and the asterisks above the Zic1 line indicate the cysteine and histidine residues of a typical C2H2 motif. *Adapted from: Nakata et al., Mech Dev. 1998 Jul;*75(1-2):43-51.

involved in the hedgehog and neural development pathways, and may derive their function from these conserved zinc finger domains between the Gli and NKL families.

1.4.2 Discovery of Zic3 and its general expression domains during development

In the adult, the *Zic* genes are expressed almost exclusively in the cerebellum^{98,101}. The first mammalian *Zic* family member, *Zic1*, was identified through an adult mouse cerebellum cDNA library screen¹⁰¹ and *Zic3* was subsequently discovered through its shared homology of the zinc finger domain (Figure 12) by low-stringency genomic screens and cDNA cloning⁹⁸. Although the *Zic* genes are expressed together in the adult mouse cerebellum, expression profiling revealed that they are found in partially overlapping and sometimes distinct domains during development^{115,116}. The expression of *Zic3* has been identified in the mouse ectoderm and mesoderm during gastrulation, the dorsal neural tube during neurulation, and the developing brain and limb buds during organogenesis (Table 2). *Zic1* and *Zic2* expression has also been detected in these regions, and it is thought that the overlapping domains and high structural homology between *Zic1*, *Zic2*, and *Zic3* may allow these proteins to function in compensatory mechanisms during development.

1.4.3 Biochemical pathways involving Zic3

The Zic and Gli family proteins physically interact through their zinc finger domains to regulate neural and skeletal patterning^{117,118}, and the Zic proteins are known to bind a DNA sequence highly similar to the Gli binding site, recognizing a

Zicl	Zic2	Zic3
Xenopus		
<i>Blastula stage</i> Ectoderm	Ectoderm	
Gastrula stage Uncommitted ectoderm Prospective neural plate Anterior neural folds Involuting mesoderm	Uncommitted ectoderm Prospective neural plate Anterior neural folds Involuting mesoderm	Prospective neural plate Anterior neural folds Involuting mesoderm, especially organizer reg
Neurula stage Neural plate edges Somites	Neural plate edges Somites (dorsal)	Neural plate edges
Tailbud stage Developing brain Dorsal spinal cord	Developing brain Dorsal spinal cord Eye (retina)	Developing brain Dorsal spinal cord Tail
Mouse		
Gastrulation Embryonic mesoderm	Embryonic ectoderm Embryonic mesoderm	Embryonic ectoderm Embryonic mesoderm
Neurulation Dorsal neural tube	Dorsal neural tube Roof plate Tailbud	Dorsal neural tube Tailbud
Organogenesis Dorsomedial somites Midline, developing brain Eye (neural retina) Adult Coroballum	Dorsomedial somites Developing brain Eye (neural retina) Limb bud	Dorsomedial somites Developing brain Eye (neural retina) Limb bud
Cerebellum	Cerebellum	Cerebellum

 Table 2. Expression of Zic genes during early mouse and xenopus development

Adapted from: Herman & El-Hodiri, Cytogenet Genome Res. 2002;99(1-4):229-35.

core motif comprising 5'-TGGGTGGTC-3'¹⁰⁵. Zic/Gli interactions also facilitate the nuclear translocation of these proteins to function as transcriptional activators and repressors^{103,119,120}, which forms the basis of their antagonistic and synergistic features in development. As the Gli family members are well-characterized regulators of the hedgehog (HH) signaling pathway^{110,121,122}, it has been speculated based on interactive capacity that the Zic proteins are potential modulators of the hedgehog-mediated signaling pathway¹²⁰. At the molecular level, Zic3 appears to function primarily as a transcriptional cofactor with the Gli proteins, with interactions occurring at the zinc-finger domain^{105,120}. A Zic3 DNA-binding sequence has been identified, although its binding affinity is significantly lower than that of Gli proteins¹⁰⁵.

The specific pattern of *Zic3* expression during gastrulation suggests an important role in development of embryonic ectoderm and mesoderm tissue. This is supported by molecular pathways in which *Zic3* has been implicated. For example the mesoderm-associated gene Brachyury induces *Zic3* expression in *Xenopus*¹²³, and the embryonic patterning gene Nodal is regulated by *Zic3* during gastrulation through interaction with an upstream enhancer region in both mouse and *Xenopus* embryos¹²⁴. A recent study demonstrated that *Zic3* activates a 2.7kb enhancer region of Nodal at the node of the murine embryos¹²⁴. This enhancer region, located 7.5 kb upstream of the Nodal translational start site, has been shown to be responsible for node -specific expression of Nodal in murine embryos¹²⁵. In ectodermal development, *Zic3* is a potent inducer of *Xenopus* proneural and neural crest genes¹²⁶, and is induced directly downstream of transcription factors Pbx1b and Meis1 in the *Xenopus* ectoderm^{127,128}.

1.5 Role of Zic3 in early embryonic development

1.5.1 The embryonic midline

The earliest reported phenotypic abnormality in *Zic3*-null mutants is a defect in establishment of the Left-Right axis¹²⁹, resulting in a congenital defect known as X-linked heterotaxy^{124,130,131}. A key process in early embryonic development is the formation of positional axes. Along with the anteroposterior and dorsoventral axes, the presence of the evolutionarily conserved left-right axis is crucial for the proper morphogenesis of internal organs. Disturbances in left-right asymmetry can result in severe developmental aberrations such as (1) *situs inversus,* a complete inversion of organs relative to the L-R axis; (2) *heterotaxia* or *situs ambiguous*, the randomization of organ placement within the embryo; or (3) *isomerism,* where mirror image duplications of paired organs are observed¹³².

During development, the establishment of the Left-Right (LR) axis can be described in three consecutive stages: (1) initial disruption of embryonic symmetry; (2) establishment of asymmetric gene expression; and (3) transmission of positional information to the developing organs¹³³. These phases are reflected in Figure 13 and are described in greater detail in the following paragraphs.

1.5.1.1 Breaking bilateral symmetry

Left-right asymmetry is initiated in mouse embryos early in the gastrulation phase¹³⁴ (Figure 13). A series of experiments at this stage have identified an organizer, or node, as an early inducer of laterality^{135,136}. The **nodal-flow model** describes a role for the monocilia at this region. Firstly, monocilia create a critical

Figure 13. Determination of Left-Right asymmetry in the developing embryo. (1) Left-right asymmetry begins with an initial process that orients direction in the embryo. (2) The asymmetric pattern is propagated and amplified by cascades of gene expression that culminate in production of a Nodal protein on the left side of the embryo. (3) Nodal action is modulated by lefty proteins, in particular by constraining its action at the dorsal midline. At this stage of embryogenesis, nodal proteins regulate expression of Pitx2c and other factors that influence morphogenesis in asymmetrically developing organs (3). *Source: Mercola 2003. J Cell Sci. 2003 Aug 15;116(Pt 16):3251-7*

unidirectional flow of signalling molecules and morphogens consistently to the embryo's left¹³⁷. The importance of this process is underscored by studies demonstrating that when cilia are rendered immotile by deletion of the left-right dynein gene (*Ird*)^{138,139}, or absent through mouse knockouts of the *kif3* genes^{137,140}, randomized laterality is observed in the resulting mutant embryos. Restoring the leftward flow in dynein (*Ird*) mutants rescued the mutant phenotype¹³⁷. Furthermore, when an artificial rightward nodal flow was created in wildtype embryos, an inversion of laterality was observed¹⁴¹. Thus directional flow appears to be an important factor in correct handedness determination.

Based on fluid dynamics, Cartwright et al suggested that the cilia are able to direct leftward flow by capitalizing on a posterior tilt of the embryo, which impedes rightward fluid movement as the cilia stroke close to the cell surface¹⁴². This model has been experimentally validated, firstly through video microscopy of E8.0 mouse embryos, and secondly, through a mechanical model in which leftward velocity is shown to be proportional to the angle of tilt¹⁴³. Further evidence from rabbit and medakafish embryos support the posterior tilt model for leftward flow that results in left-right axis development¹⁴⁴. Thus recent evidence has shed some light on the role of cilia in generating unidirectional nodal flow, and demonstrates their importance in the establishment of the left-right axis during early gastrulation through facilitating the asymmetric transport of morphogens.

1.5.1.2 Asymmetric Gene Expression: Reinforcement of Left-Right Polarity

Following the break in bilateral symmetry, asymmetric gene distribution is induced in the embryo (Figure 13). At this stage, retinoic acid (RA) is a demonstrated inducer of left side genes such as *Nodal, Lefty*, and *Pitx2*. Ectopic administration of RA resulted in misexpression of *Nodal, Lefty*, and *Pitx2* and caused abnormal situs in the developing embryo^{145,146}. Conversely, the presence of RA-inhibitors caused a downregulation in the expression of *Nodal, Lefty*, and *Pitx2*^{145,146}. Furthermore, studies have shown that the *cis*-regulatory region of *Nodal* contains retinoic acid response elements, and that *Lefty* expression is induced by RA in the P19 embryocarinoma cell line^{125,147}.

Nodal is a key morphogen that regulates specification of the left-right axis¹⁴⁸ (Figure 13). It has been shown to have critical functions during early murine embryogenesis and to be expressed in different tissues of the early embryo. The epiblast expression of Nodal is crucial for the establishment of the primitive streak^{149,150}, and the primitive endoderm expression of Nodal is important for patterning of the anterior aspects of the A-P axis¹⁴⁹. Two distinct *cis*-acting regulatory elements control Nodal expression at different tissue sites: an upstream enhancer region directs node-specific expression, while an intronic enhancer controls expression in the epiblast and the visceral endoderm¹²⁵.

The importance of Nodal signalling in L-R axis formation is underscored by studies of the *lefty* genes which act as inhibitors of Nodal signalling during gastrulation^{151,152}, possibly through inhibition of putative Nodal receptors such as the Activin receptor, ActRIIB¹⁵². *Lefty* expression is found in the embryonic midline and overlaps with that of *nodal* expression (Figure 13)¹⁵¹, and Lefty2 has the ability to function as a feedback inhibitor to block both *Nodal* and *Lefty2* expression on the left¹⁵³. Significantly, *Lefty* expression has been shown to be

affected in mutant mouse backgrounds that affect organ situs^{154,155}. In addition, mutations in mouse *Lefty1* lead to defects in left-right specification, including altered symmetric expression of *Lefty2* in the lateral plate mesoderm and left pulmonary isomerism¹⁵⁵. The above results collectively indicate that the lefty genes are key regulators of left-right axis development.

The asymmetric expression patterns described above are dependent on an intact midline (Figure 13) consisting of two tissues - the axial mesoderm and the overlying neuroectoderm. The midline is partly derived from the node and distinguishes the left and right sides of the embryo. An intact midline is crucial for the development of L-R asymmetry, and mouse mutants with parts of the axial mesoderm disrupted, such as the notochord in *No turning* and *SIL* mice^{156,157}, show randomized heart looping and symmetric expression of *nodal*. These results demonstrate the importance of the midline in the maintenance of embryonic asymmetry by preventing the right lateral plate from acquiring left-sided identity.

1.5.2 Zic3 in the development of the embryonic midline

Zic3 loss-of-function mutants display both *situs ambiguous*, a partial reversal of asymmetric structures, and *situs inversus*, a complete mirror image reversal of midline organs^{124,130,131}. These results imply that *Zic3* is involved in early left-right axis formation, such as the establishment of the midline node and notochord. In accordance with this, a recent study has demonstrated that *Zic3* is expressed in the node at late headfold and early somite stages of development¹¹⁵. Other groups have also shown that *Zic3* acts early in gastrulation but have

hypothesised that Zic3 affects the L-R axis following the formation of the midline by binding to and activating the Nodal promoter in the left lateral plate mesoderm^{124,158}.

Based on recent findings, *Zic3* expression initiates prior to gastrulation with transcript detected throughout the extra-embryonic ectoderm and within the proximal epiblast of 5.0 dpc embryos¹¹⁵. As gastrulation proceeds with the formation of the primitive streak, expression of *Zic3* is found in the primitive streak, in the wings of mesoderm of the embryonic region and in the ectoderm adjacent to the expressing mesoderm¹¹⁵.

1.5.3 The Zic3-null mouse model

Zic3-null mice exhibit a wide spectrum of phenotypes associated with defects in left-right patterning. Fifty percent of null mice succumb to embryonic lethality over different gestational stages, and thirty percent to peri-natal lethality as a result of congenital heart defects, pulmonary isomerism and defects in the central nervous system¹²⁹. The earliest and most profound *Zic3*-null defects have been attributed to failure in establishment of the anterior-posterior axis by the anterior visceral endoderm (AVE) prior to gastrulation¹⁵⁸. In less severely affected embryos, abnormalities are observed at gastrulation in the distribution and accumulation of excess mesoderm tissue. Taken together, the defects in embryonic lethal mice demonstrate a key role for Zic3 in early embryonic patterning that encompasses anterior visceral endoderm formation, initiation of gastrulation, and primitive streak morphogenesis¹⁵⁸.

Laterality defects were detected in 6 out of 55 heterozygous *Zic3* female mice examined¹²⁹, indicating that both complete and partial deficiency of the X-linked *Zic3* gene result in disruption of laterality. Interestingly, a higher proportion of *Zic3* null males died *in utero* whereas *Zic3* null females died within the perinatal period, suggesting a sex-limited effect. The majority of perinatal deaths were attributable to congenital heart defects (CHD), suggesting that *Zic3* null females may be more susceptible to this defect¹²⁹. These results indicate a role for environmental factors, potentially in combination with genetic modifying loci encompassing modifier genes and gene threshold effects, in contributing to the laterality phenotype observed in *Zic3* mutants.

The varying degrees of severity in failure to complete gastrulation displayed by *Zic3*-null mice may be attributed to compensatory mechanisms in developing embryos, as indicated by the overlapping domains of expression between Zic family, as indicated by the partially overlapping expression patterns exhibited by members of the *Zic* gene family^{115,116} (Table 2). Similar to *Zic3*-null mice, previous studies in *Zic1*-deficient mice and *Zic2* knockdown mice have reported skeletal and CNS anomalies^{99,159}. *Zic3* shares overall 64 and 59% homology with *Zic1* and *Zic2*, respectively, and this homology increases to 91% within the zinc finger domain. Thus members of *Zic* family are strong candidates for redundancy in molecular signaling during development.

By characterizing the early embryonic lethality of *Zic3*-null mouse embryos, a recent study has revealed a new function for Zic3 during gastrulation at a stage earlier than left-right patterning¹⁵⁸. An examination of the most severely affected

Zic3-deficient embryos revealed that these mutants either fail to initiate gastrulation or undergo an initial specification of the mesodermal cell population with failure to progress¹⁵⁸. It was found that *Zic3*-null embryos showed abnormalities in anterior visceral endoderm (AVE). This abnormality was reflected in the inappropriate distal localization of AVE markers such as *Cer-1* and in the absence of *Hex* expression at day 6.5 to day 7.0 when a global anterior-ward rotation of the visceral endoderm should have occurred prior to streak formation^{158,160}. This rotation is critical for the conversion of the proximal-distal (P-D) polarity to the anterior-posterior (A-P) axis of the murine embryo.

It has been suggested that while the extraembryonic ectoderm seems to signal to the proximal epiblast to induce expression of proximal-posterior genes, the AVE counters this activity by repressing expression of these genes in the underlying epiblast so as to prime it for anterior patterning¹⁶⁰. Thus, this failure to undergo a P-D to A-P rotation appears to be the main cause for the *Zic3*-null embryos to exhibit failure to gastrulate, establish the primitive streak, and to form mesoderm¹⁵⁸.

1.5.4 Zic3 mutations result in X-linked heterotaxy

A large number of congenital disorders arise from defects in embryonic midline development^{129,161-164}, indicating that the midline tissue of the vertebrate embryo plays a critical role in its development. In humans, Zic3 mutations are associated with X-linked heterotaxy, a disorder characterized by disruptions in embryonic laterality and midline developmental field defect¹⁰³. In addition, clinical

abnormalities resulting from X-linked heterotaxy manifest in organs such as the spleen (asplenia or polysplenia) and lungs (bilateral trilobed or bilobed lungs), and in complex cardiovascular malformations with cardiac looping abnormalities^{124,165}.

Zic3-associated X-linked heterotaxy is a recessive disorder of variable clinical expression that predominantly affects males. More rarely, heterozygous females with isolated congenital heart defect are reported^{119,166}. In females, functional nullisomy of the Zic3 protein can occur as a result of constitutional X-autosome translocations with one breakpoint in the *Zic3* region, leading to gene disruptions or defects arising from its ectopic position, as well as preferential inactivation of the normal X-chromosome¹⁶⁶.

The locus for *Zic3* in humans was initially mapped to Xq26.2 by linkage analysis in a single family and by detection of a deletion in an unrelated *situs ambiguus* male^{167,168}. From this chromosomal region, *Zic3* was positionally cloned¹⁰³. The *Zic3* mutations that gave rise to *situs ambiguus* included one frameshift, two missense and two nonsense mutations. A recent study has further established that X-linked heterotaxy in humans results from several *Zic3* mutations that render the protein unstable and absent in cells, or incapable of nuclear localization where its transcriptional effect is exerted^{103,119}.

1.6 Role of Zic3 in neural development

Zic3 is involved in a spectrum of processes related to neural development, from the establishment of the neuroectoderm, to the patterning of the dorsal neural tube, and finally, the development of mature dorsal neurons. These phases are summarized in Figure 14 and are described in detail in the following paragraphs.

At the beginning of gastrulation when the neuroectoderm is being established, Zic3 expression is upregulated near the dorsal lip of the blastopore, where the dosalizing center secretes a neural inducer. As gastrulation proceeds, Zic3 expression is extended anteriorly and is subsequently found at the border of the neural plate, where it is involved in generating dorsal neural tissue and neural crest tissue^{126,169}. The expression of *Zic*3 at this stage is negatively regulated by Bmp, as indicated by an increase in Zic3 expression domain when a Bmp antagonist, noggin, or a dominant-negative Bmp receptor is overexpressed¹²⁶. In accordance with this, it has been observed during neuroectodermal differentiation that Zic3 is expressed by ectoderm cells only when Bmp signals are blocked by a secreted Bmp-antagonizing neural inducer¹⁷⁰. Furthermore, it has been shown that the anti-neural protein, Msx1, represses Zic3 expression through dominant negative Bmp receptors¹⁷¹. Conversely, a dominant-negative form of Msx1 was able to trigger the expression of $Zic3^{172}$, indicating that the inhibition of Zic3expression by Bmp is mediated in part by Msx1. These results collectively indicate that signalling of Bmp is essential for the proper establishment of Zic3 expression in the ectoderm (Figure 14; early phase).

Figure 14. The role of *Zic* genes in neural development. The dorsoventral axis in neural tissue is reflected on the y-axis, and the developmental stages are shown in the x-axis. The green area indicates the region expressing *Zic*. Blue letters indicate major roles of *Zic* genes in neural development. *Source: Aruga, J. Mol Cell Neurosci. 2004 Jun;26(2):205-21*

The expression of *Zic3* is found in the dorsal ectoderm at the late blastula stage just prior to neuroectodermal differentiation¹²⁶. Thus *Zic3* expression is detected earlier than most proneural genes. A study has shown that overexpression of *Zic3* at this stage resulted in an expansion of the resulting neuroectoderm¹²⁶. In addition, ectopic expression of *Zic3* in animal cap explants induced neural crest and proneural markers. Taken together, the above data indicate that *Zic3* is a primary regulator both of neural and neural crest development, and is an inducer of pro-neural transcription factors that activate the neural differentiation program.

An alternative model for the function of Zic3 in neuroectodermal fate determination has been proposed in the context of calcium signalling. Localized calcium-expressing domains are found exclusively in the anterior dorsal part of the ectoderm, and these domains have been shown to mediate the choice between epidermal and neural tissue fates¹⁷³. When ectodermal cell explants were treated with a voltage-sensitive calcium channel inhibitor or by a calcium-chelating reagent, *Zic3* expression was significantly reduced^{174,175}, indicating that *Zic3* is upregulated by the presence of calcium. Further investigation revealed an early calcium sensitive target gene, expressed in neural territories, known as arginine methyltransferase, was shown to specifically induce the expression of *Zic3*^{175,176}. Arginine methyltransferase is thought to play an instructive role in the embryonic choice of determination between epidermal and neural fate¹⁷³, and its ability to regulate the expression of *Zic3* may represent another pathway by which intracellular calcium suppresses the epidermal fate and activates the neural fate¹⁷⁷.

Zic3 is also known to be an important regulator of neurulation (Figure 14; intermediate phase). Neural tube defects are commonly observed in the hindbrain region of *Zic3* mutant mice, in domains where *Zic3* expression is normally found in wildtype mice^{106,129,178}. In addition, *Zic3*-deficient mice show hypoplastic changes in the cerebellar anterior lobe, indicating that Zic3 is involved in cerebellar patterning¹⁰⁶.

Zic3 is also known to regulate the process of axon targeting within the retina in the developing visual system¹⁷⁹ (Figure 14; late phase). During this phase, radially-positioned ganglion cell axons begin to project toward the optic disc, a small opening in the center of the retina. An expression assay determined that Zic3 is found in a periphery-high, center-low gradient in the developing retina. Durina retinal cell differentiation and axonogenesis, Zic3 expression correspondingly recedes toward the periphery of the retina¹⁷⁹. Interestingly, disruption of the Zic3 expression gradient during this process resulted in axons being misrouted to the sub-retinal space on the photoreceptor side of the retina. In contrast, misexpression of Zic3 did not affect retinal neurogenesis or lamination, and it was shown instead that the axonal mis-projection phenotype was the result of an inhibitory factor regulated by Zic3. These results suggest that Zic3 may regulate a currently unknown pathway influencing intra-retinal axon pathfinding¹⁷⁹. In summary, Zic3 has been shown to regulate extensive processes in the establishment and patterning of neural tissue, and is therefore a critical factor in embryonic ectoderm development and neurogenesis.

1.7 Experimental approach and study rationale

Zic3 is preferentially expressed in the pluripotent state and has recently been identified as a target of Oct4, Nanog, and Sox2 in ES cells^{19,20,179} ^{85,86}. However, the detailed molecular networks regulated by Zic3 to confer its properties on ES cells remain unknown. Therefore I set out to address the following questions in this thesis:

- 1. How do Oct4, Nanog, and Sox2 regulate the expression of *Zic3*, and what results from this interaction?
- 2. What phenotype results from a *Zic3* loss-of-function, and what can be inferred about the role of Zic3 in the ES cells?
- 3. Does Zic3 interact with ES cell-related proteins to regulate pluripotency?
- 4. What are the targets regulated by Zic3 in ES cells, and do these genes reveal the networks that Zic3 controls to maintain pluripotency?
- 5. Does Zic3 repress lineage-specific genes in ES cells, and are these genes related to the established functions of Zic3 in development?

To understand the dynamics of Zic3-governed transcriptional networks in ES cells, I used a combination of gene expression analysis, *Zic3* gain- and loss-of-function experiments, co-immunoprecipitation for interacting partners of Zic3, chromatin-immunoprecipitation to identify Zic3-regulated targets, and functional annotation of these targets to gain deeper insight into Zic3-regulated processes and to establish the Zic3 regulatory network in ES cells (Figure 15). The results of these analyses are presented and discussed in Chapters 3 to 6.

A detailed knowledge of ES cell transcriptional circuitry may contribute to a more comprehensive understanding of embryonic development, and is critical for the realization of ES cell therapeutic potential. The critical need to dissect their transcriptional networks is underscored by their potential to yield critical insights into genetic mechanisms at the earliest stages of embryo development and to provide significant inroads into the properties ES cell unlimited growth and differentiation potential that will render them therapeutically useful.

Figure 15. Experimental approach for establishing the transcriptional network of Zic3 in ES cells. Zic3 gene expression profiling, depletion of Zic3 gene expression, co-immunoprecipitation of protein complexes, chromatin-immunoprecipitation, functional annotation of Zic3 gene targets, and Zic3 gain-of-function experiments were performed to construct the Zic3 transcriptional network.

CHAPTER 2:

Methods & Materials

2.1 Molecular biology techniques

2.1.1 Cloning

The sub-cloning of DNA fragments into vectors was achieved by restriction enzyme digestion, gel purification of digested DNA, and T4 ligase treatment to yield the final construct. Restriction digests were preformed overnight at 37°C according to manufacturers' instructions (New England Biolabs). The following day, digested DNA was resolved on 1% - 1.5% agarose gels in TAE buffer, and the desired fragments were visualized under UV lighting and excised from the gel. The DNA fragments were released from agarose matrix using the Qiagen gel extraction kit according to manufacturer's instructions. The concentration of the recovered DNA was quantified by UV absorbance using the nanodrop instrument, and ligations were performed at 5:1 (insert:vector) molar ratio in 20 μ l reactions containing1U of T4 DNA ligase in 1 x T4 ligase buffer (Roche) at 16°C overnight.

2.1.2 Transformation of chemically competent cells

For transformation of ligated plasmids, a 50µl aliquot of One-Shot Top10 chemically competent *E.coli* cells (Invitrogen) was thawed on ice. Approximately 10ng of ligation reaction was added to the thawed cells and gently mixed followed by incubation on ice for 30 minutes. Transformation was induced by heat-shock treatment at 42°C for 1 minute. The cells were cooled on ice for 2 minutes, and 200µl of nutrient-rich LB-SOC was then added to the tube for incubation at 37°C for 1 hour in a bacterial shaker. Following incubation, 50 to 300µl of the culture was plated on LB-agar plates containing the appropriate antibiotic selection, and the plates were placed in an incubator at 37°C overnight to allow growth of bacterial colonies.

2.1.3 PCR analysis of transformants

Bacterial colonies were screened for positive ligation events as follows: 20 µl sterile PBS for inoculated with a single colony to serve as a PCR template. PCR reactions were carried out in 25 µl volumes comprising 1 x PCR buffer w/o MgCl₂ (ProMega), 2 mM MgCl₂, 0.2mM dNTPs, 0.5 µM of each forward and reverse primer, 1 U Taq Polymerase in Buffer B (ProMega), and 5 µl PBS containing template DNA. The PCR conditions were as follows: 95°C for 3 minutes, followed by 32 cycles of 95°C for 30s, 52°C for 30s, 72°C for 1 min 30s, and finally, a single cycle of 72°C for 7 minutes before holding at 4°C. PCR products were resolved on 1% agarose gels for 40 minutes at 100V to check for correct insert size.

2.1.4 Isolation of plasmid DNA from bacteria

Bacterial colonies containing positive ligation events were expanded as follows: 5 ml LB medium with appropriate antibiotic selection was inoculated for overnight culture at 37°C. The overnight cell suspensions were centrifuged at max speed for 15 minutes to pellet bacteria. The bacterial cells were then lysed and plasmid DNA purified using the Qiagen miniprep kit according to manufacturer's instructions. The DNA was eluted in $30 - 50 \,\mu$ l dH2O and quantified by nanodrop to ensure a final concentration in the range of $200 - 1000 \,\mu$ g/ul.

2.1.5 Preparation of bacterial stocks

Bacterial stocks of successful transformation events were prepared in 33.3% sterile glycerol. The LB-glycerol suspension was vortexed to ensure thorough mixing, cooled on ice for 1 hour, and then placed at -80°C for long term storage.

2.1.6 Isolation of genomic DNA from cell lines

Confluent cell cultures were rinsed thrice with PBS and then gently scraped for release from adherent culture dishes. The cells were pelleted for 5 minutes at 500 rpm and then lysed in 3 ml DNA buffer (10 mM Tris-HCl at pH 8.0, 0.1 M EDTA, 0.5% SDS, and 100 µg/ml proteinase K) and incubated overnight at 45°C with gentle agitation. The following day, the cell lysate was treated thrice with Chloroform/ Isoamyl alcohol (24:1) as follows: An equal volume of Chloroform/ Isoamyl alcohol was added to the lysate, mixed thoroughly and centrifuged at 4°C for 10 minutes at maximum speed. The resulting supernatant was transferred to a fresh eppendorf tube and the above procedure was repeated. Following the third extraction, the supernatant was transferred into a fresh 50 ml falcon tube containing 1/10 volume 3 M sodium acetate (pH 5.2) and 3 volumes 100% isopropanol. The tube was gently inverted to allow precipitation of DNA which was then transferred into a fresh 50 ml falcon tube containing 30 ml of 70% ethanol. The DNA was rinsed in ethanol for 2 hours, then centrifuged at 4°C for 20 min at maximum speed. The DNA pellet was dried in a SpeedVac for 5 minutes and then resuspended in 1 ml sterile dH₂0 for 1 hour at 37°C. The resulting genomic DNA was quantified to ensure concentrations above 1000 ng/ul, and then resolved on 1% agarose gels to check for DNA quality.

2.2 Cell culture

2.2.1 Mouse ES cell culture

Feeder-free E14 mouse ES cells were maintained on 0.1% gelatin coated dishes in E14 proliferative medium containing DMEM/15% ES FBS (Gibco), 0.1 mM MEM non-essential amino acids (Gibco), 2 mM L-glutamine (Gibco), 0.1 mM βmercaptoethanol (Gibco), and CHO-LIF (1,000 U/ml). The cells were passaged every 2 days with the following procedure: Each dish was rinsed twice with 1x PBS solution (Gibco) and then incubated in 3 ml 0.05% Trypsin (Gibco) for 3 minutes at 37°C to allow detachment of cells from the culture surface. The trypsin-treated cells were diluted with 7 ml E14 culture media, pelleted in a centrifuge for 5 min/500rpm, and then re-suspended in 5 ml fresh E14 culture media. The cells were then triturated to achieve a single cell suspension, and seeded in gelatin-coated plates at a density of 4.0 x 10^6 cells per 10 cm² dish.

Mouse ES cells cultured on mouse embryonic fibroblast (MEF) feeder layers were maintained in the proliferative medium described above, with the exception of CHO-LIF. The mouse ES cells were passaged every 2 days as described above and seeded at a density of 3.0×10^6 cells per 10 cm^2 dish. One day prior to passaging, 2.5×10^6 inactivated Balb/c MEFs (ref. section 2.2.3) were seeded on gelatin-coated plates and allowed to adhere to the plate surface overnight at 37° C. All cultures were maintained in an incubator at 37° C with 5% CO2.

2.2.2 Human ES cell culture

Feeder-free undifferentiated HuES9 human ES cells were maintained on matrigel-coated dishes in conditioned medium containing Knockout DMEM/10% serum replacement (Gibco), 0.1 mM MEM non-essential amino acids (Gibco), 1 mM L-glutamine (Gibco), 0.1 mM β -mercaptoethanol (Gibco), 8% plasmanate (NUH pharmacy), 12 ng/ml LIF, and 10 ng/ml human recombinant Basic Fibroblast Growth Factor (bFGF; Gibco). Conditioned media was obtained by 57 culturing mouse embryonic fibroblast (MEF) cells with HuES9 media. The media was collected at 24 hour intervals, filter sterilized and further supplemented with 8 ng/ml bFGF for HuES9 cell culture.

2.2.3 Isolation, expansion, and mitotic inactivation of MEF cells

Pregnant female Balb/C mice were sacrificed at day 13 post-coitum by cervical dislocation. The mouse abdomens were swabbed once with 70% Ethanol and peritoneal walls were dissected to expose the uterine horns, which were removed and placed in a 10 cm² dish. The uterine horns were rinsed thrice with 10 ml PBS (Gibco #14190-169) without bivalent cations. The embryos were then released from the embryonic sac and subsequently separated from the placenta and associated membranes. Dark red visceral tissue was removed and each embryo was rinsed 3 x 10 ml PBS in a fresh Petri dish.

The embryos were transferred into a new Petri dish containing a minimal amount of PBS, and were finely minced with two pairs of forceps. The fragmented tissue was placed in 2 ml Trypsin-EDTA (Gibco) per embryo, then further minced and subsequently incubated at 37°C for 15 min with gentle agitation. The Trypsin-EDTA was neutralized in a fresh 50ml conical tube containing 20 ml MEF culture medium, prepared as follows: DMEM supplemented with 10% FBS, 1% Lglutamine (v/v) and 1% Pen-step (v/v). The larger pieces of tissue were briefly allowed to settle, and the supernatant containing MEF cells was then pelleted at 500 rpm for 5 mins at room temperature. The MEF cells were then resuspended in fresh culture media warmed to 37°C, and plated at a density of 1 embryo per 10 cm² dish (Passage 0).
The MEF primary cultures were typically confluent within 2 days. Confluent dishes were trypsinized according to the procedure described for HEK293T cells, and reseeded at a density of 1:5. The cells were expanded to Passage 5 and then mitotically inactivated by treatment with Mitomycin-C at 10 μ g/ml for 2 hours at 37°C. The inactivated cells were then rinsed twice with PBS, trypsinzed as described above, and then resuspended in freezing media (ref. section 2.2.5) at a density of 2.5 x 10⁶ cells per cryotube.

2.2.4 Maintenance of HEK293T cells

HEK 293T cells were cultured in DMEM supplemented with 10% fetal bovine serum (Gibco-Invitrogen) and 2 mM L-glutamine (Gibco-Invitrogen), and maintained in an incubator at 37°C with 5% CO2. The cells were passaged every 4 days with the following procedure: Each dish was rinsed twice with 1x PBS solution (Gibco) and incubated in 3 ml 0.25% Trypsin (Gibco) for 3 minutes at 37°C. The cells were then diluted with 7 ml 293T culture media, pelleted in a centrifuge for 5 min/500rpm, and re-suspended in 5 ml fresh 293T culture media. The cells were triturated to achieve a single cell suspension, and seeded in 10 cm² dishes at a density of 1.0×10^6 cells.

2.2.5 Cryopreservation of cell lines

Confluent cell cultures were trypsinised as described above and centrifuged for 5 minutes at 500rpm. The cells were resuspended in freezing media (70% DMEM supplemented with 20% FCS and 10% dimethyl sulphoxide) and then transferred into Nunc cryotubes at 1 ml per vial. The cryotubes were placed at -80°C 59

overnight in Mr Frosty containers buffered with isopropyl alcohol and then transferred to a liquid nitrogen tank the following day for long-term storage.

2.2.6 Thawing of cell lines

Frozen cryotubes were retrieved from liquid nitrogen tanks and placed immediately into a 37°C waterbath. The cells were rapidly thawed and then transferred into 10 ml of pre-warmed culture media. The cell suspension was pelleted for 5 minutes at 500 rpm, then gently resuspended in culture media and plated in 10 cm² tissue culture dishes to allow for overnight adhesion of cells to the vessel surface.

2.3 ES Cell-based assays

2.3.1 RNA interference (siRNA)

RNA interference (RNAi) experiments were performed with Dharmacon siGENOME SMARTpool reagents against human or mouse *Zic3*. The Dharmacon si*CONTROL* nontargeting siRNA pool was used as a negative control. Mouse ES cells were transfected according to manufacturer's instructions in 12-well plates at a density of 2 x 10^5 cells per well. Re-transfections were performed on pre-adherent cells at 48-hour intervals, and RNA expression analysis was performed on Day 5 samples. Human ES cells were transfected in 12-well plates with 2 x 10^5 cells per well in suspension. Subsequent re-transfections were performed on adherent cells at 24-hour intervals and RNA was harvested for analysis at Day 5.

2.3.2 RNA interference (shRNA)

The Oct4, Nanog, Sox2 and Zic3 shRNA sequences were designed according to criteria by Ui-tei et al. ¹⁸⁰. and Reynolds et al. ¹⁸¹, and cloned into the pSUPER.puro or pSUPER.neo-GFP shRNA vectors (Oligoengine) as per manufacturer's instructions. Details of the shRNA sequences are listed in Table 3. For shRNA experiments, E14 cells were seeded at a density of 4 x 10^5 cells per well in 6-well plates 1 day prior to transfection. The following day, the cells were transfected with 2.0 µg of shRNA construct each. Puromycin or neomycin selection was introduced 1 day post-transfection at 1.0 µg/ml, and maintained for 3 days prior to RNA isolation. The ES cells were maintained in mouse ES cell culture medium at all times.

2.3.3 Rescue of RNAi knockdown

The *Zic3* open reading frame (ORF; NM_009575) was cloned from reversetranscribed cDNA from mouse embryonic stem cells, using the primers indicated in Table 4A. The PCR product was subsequently cloned into an overexpression construct downstream of a cytomegarovirus/chicken β -actin (CAG) promoter, which is known to drive efficient episomal expression in ES cells⁶⁹. The RNAiimmune *Zic3* ORF R3M was generated from this construct using the QuikChange site-directed mutagenesis kit (Strategene) as per manufacturer's protocol with the primers shown in Table 4A. To perform the rescue experiments, 4 x 10⁵ mouse ES cells were seeded per well in 6-well plates, and transfected according to the scheme in Table 4B. Hygromycin (1.0µg/ml) was introduced 1 day posttransfection for selection of transfected cells, and ES cell culture media containing hygromycin was refreshed daily until the cells were harvested for analysis.

Table 3. shRNA sequences for pSUPER vector

Name	Sequence
Nanog-SENSE	GATCCCCGAACTATTCTTGCTTACAATTCAAGAGATTGTAAGCAAGAATAGTTCTTTTA
Nanog-ANTI-SENSE	AGCTTAAAAAGAACTATTCTTGCTTACAATCTCTTGAATTGTAAGCAAGAATAGTTCGGG
Sox2-SENSE	GATCCCCGAAGGAGCACCCGGATTATTTCAAGAGAATAATCCGGGTGCTCCTTCTTTTA
Sox2-ANTI-SENSE	AGCTTAAAAAGAAGGAGCACCCGGATTATTCTCTTGAAATAATCCGGGTGCTCCTTCGGG
Zic3-SENSE	GATCCCCGAATTCGAAGGCTGTGACATTCAAGAGATGTCACAGCCTTCGAATTCTTTTA
Zic3-ANTI-SENSE	AGCTTAAAAAGAATTCGAAGGCTGTGACATCTCTTGAATGTCACAGCCTTCGAATTCGGG
Oct4-SENSE	GATCCCCGAAGGATGTGGTTCGAGTATTCAAGAGATACTCGAACCACATCCTTCTTTTA
Oct4-ANTI-SENSE	AGCTTAAAAAGAAGGATGTGGTTCGAGTATCTCTTGAATACTCGAACCACATCCTTCGGG
Zic3-SENSE	GATCCCCGTGCGCAGTTCCCTAACTATTCAAGAGATAGTTAGGGAACTGCGCACTTTTTA
Zic3-ANTI-SENSE	AGCTTAAAAAGTGCGCAGTTCCCTAACTATCTCTTGAATAGTTAGGGAACTGCGCACGGG

Table 4a. List of primers for the cloning Zic3 and Zic3-RNAi immune genes

Description	Primers	Set
Zic3 ORF	Forward 5'-AACACCagatctATGACGATGCTCCTGGACGGAGGCC-3'	~
	Reverse 5' -TTTTGGacgcgtTCAGACGTACCATTCGTTAAAATTG-3'.	
Zic3 ORF R3M	Forward 5'-AACACCagatctATGACGATGCTCCTGGACGGAGGCC-3'	1
(RNAi immune)	Reverse, 5'-CTGTTGGCAAACCGTCGATCGCATCCCTCAAATTCACATT-3'	
	Forward, 5' -AATGTGAATTTGAGGGATGCGATCGACGGTTTGCCAACAG-3'	2
	Reverse, 5'- TTTTGGacgcgtTCAGACGTACCATTCGTTAAAATTG-3'	
	Forward, 5' - AACACCagatctATGACGATGCTCCTGGACGGAGGCC-3'	3
	Reverse, 5'- TTTTGGacgcgtTCAGACGTACCATTCGTTAAAATTG-3'	

Table 4b. Transfection scheme for Zic3 Rescue Experiments

Experiment	Zic3 construct / 1.0 μg	RNAi construct / 1.0 μg
1	pCAGIhyg	pSUPERpuro-GFP (Non-specific control)
2	pCAGlhyg	pSUPER.puro-Zic3
3	pCAGlhyg-Zic3 R3M	pSUPER.puro-Zic3

2.3.4 Secondary ES-colony replating assay

ES cells were transfected with *Zic3*- or empty pSUPER shRNA constructs and selected 24 hours later with puromycin at 1.0 μ g/ml over four days. At the end of four days few cells remained in the untransfected control wells indicating that selection was effective. The surviving cells were trypsinized as described in Section 2.2.1 and resuspended in E14 medium without LIF. Ten- or twenty-thousand cells were plated onto mouse feeder layers in six-well plates for secondary ES cell-colony formation. After seven days, emerging colonies were stained with the Wright-Giemsa stain (Sigma) according to manufacturer's instructions. Three biological replicates were performed for each experiment. The extent of differentiated colonies was defined as the percentage of unstained colonies out of the total number of colonies in the well.

2.3.5 Reprogramming assays

2.3.5.1 Viral packaging of reprogramming factors

One day prior to transfection, 8 x 10⁶ Plat-E viral packing cells¹⁸² were seeded per 10cm² dish, and the cells were allowed to adhere overnight at 37°C. The following day, each plate of 10cm² Plat-E cells was transfected with 9µg of pMXs plasmids containing *Oct4, Sox2, Klf4, c-Myc* or *Zic3*, using the Fugene 6 system (Roche) according to manufacturer's specifications. Briefly, 27µl of Fugene 6 was incubated with DMEM for 5 minutes at room temperature. pMXs DNA was then added dropwise, and gently mixed and further incubated for 15 minutes at room temperature. Following incubation, the DNA/Fugene 6 complex was added dropwise to the Plat-E cells and allowed to transfect overnight at 37°C. The transfection mix was aspirated the following day and replaced by Plat-E culture 63

media containing DMEM supplemented with 10% FBS, 50 units per 50 µg/ml pen/strep, 1 µg/ml puromycin (Sigma), and 100 µg/ml of blasticidin S (Funakoshi). Twenty-four hours later, the retrovirus-containing media was harvested, filter-sterilized, and supplemented with polybrene (4 mg/ml) to increase efficiency of retroviral infection.

2.3.5.2 Viral infection of fibroblast cells

Mouse embryonic fibroblast (MEF) cells were isolated from mouse embryos, expanded to Passage 6, and inactivated as described in Section 2.2.3. These inactivated MEF cells were plated as a feeder layer for the reprogramming experiment, at a density of 2.5×10^6 per gelatin-coated 10 cm^2 dish. The following day, Passage 3 balb/c fibroblasts were seeded on the inactivated feeder layer at a density of 8×10^5 per dish, and allowed to adhere overnight. Twenty-four hours later, fresh retroviral-containing media (ref section 2.3.5.2) for each reprogramming factor was mixed in equal parts to a total volume of 10 ml, and then added to the fibroblast cultures for overnight infection at 37° C. The cells were supplied daily with fresh Plat-E media (Section 2.3.5.1), and allowed to grow for 2 to 3 weeks. ES-like colonies arising from the infections were treated with the Wright-Giemsa stain (Sigma) according to manufacturer's instructions, and positive colonies were counted to assess the effectiveness of the reprogramming assay.

2.4 Establishment of clonal cell lines

2.4.1 Clonal Zic3 knockdown lines

Clonal Zic3 knockdown lines were established by transfection of shRNA constructs as described in Section 2.3.2. The Zic3 knockdown and vector control colonies were picked after 7 days of puromycin selection (1.0 µg/ml). Colonies were dissociated into single cell suspensions by treatment with 0.05% Trypsin (Gibco) and plated on puromycin-resistant mitomycin-inactivated DR4 MEFs (ATCC). In total, 15 Zic3 clonal knockdown and 7 vector control lines were established and maintained under constant puromycin selection. The lines analyzed in this thesis were maintained feeder-free in ES cell proliferative media on 0.1% gelatin-coated dishes over a period of 8 passages.

2.4.2 Clonal Zic3-inducible ES cells

The Ainv18 cell line (gift of George Daley, Harvard Medical School, Boston, MA) is an E14 mouse ES line modified for targeted gene insertion downstream of a doxycycline-responsive promoter ¹⁸³. The *Zic3* transgene was PCR-amplified from a mouse cDNA library and subcloned into the KpnI/Xbal sites of the pLox-N-tag-HA vector (George Daley, Harvard Medical School, Boston, MA) with the following primers, restriction sites indicated in uppercase: Forward 5'-tat-tat-GGT-ACC-tac-gat-gct-cct-gga-cgg-ag-3' and Reverse 5'-tcg-gca-TCT-AGA-tca-gac-gta-cca-ttc-gtt-aaa-att-g-3'. An additional nucleotide was inserted in the forward primer to allow in-frame processing of the Zic3 insert with the N-terminal HA tags.

For targeted insertion at the HPRT locus, 20 µg each of pLox-N-tag-HA-Zic3 and pSALK-Cre were transfected with Lipofectamine 2000 (Invitrogen, Carlsbad, CA) into 6x10⁵ AINV18 cells seeded in 10cm² dishes. For derivation of Ainv18-*Zic3* clonal lines, mouse ESC medium was supplemented with 350 µg/ml G418 solution (Invitrogen) 24 hours after transfection and maintained for 14 days. Colonies arising from G418 selection were individually picked and expanded on neomycin-resistant MEFs. Site-specific integration was confirmed by PCR analysis with the following primers: LoxinF 5'-cta-gat-ctc-gaa-gga-tct-gga-g-3' and LoxinR 5'-ata-ctt-tct-cgg-cag-gag-ca-3'.

To induce overexpression, AINV18-*Zic3* cells were treated with 1.0 µg/mL doxycycline in mouse ESC medium. Protein was harvested to test and confirm the efficacy of regulation by doxycycline.

2.5 ES cell differentiation protocols

2.5.1 Retinoic acid differentiation

Mouse ES cells were cultured in LIF-deficient ES cell medium with all-*trans* retinoic acid (RA) at 100 nM. Retinoic acid stock powder was dissolved in DMSO to give a concentration of 0.1 M and stored at -80°C. For each differentiation experiment, an aliquot of 0.1 M RA solution was thawed and diluted 1:1000 in 100% EtOH to yield a 0.1 mM solution, which was further diluted 1:1000 in ES cell media excluding LIF for a final working concentration of 100 μ M. RA-treated cells were seeded on gelatin-coated tissue culture dishes at a density of 4 x 10⁶

cells per 10 cm² dish. The cells were passaged every 2 days according to the protocol in Section 2.2.1.

2.5.2 DMSO and HMBA differentiation

For differentiation, ES cells were seeded in 6-well plates at a density of 3 x 10⁵ cells per well. The cells were cultured in ES cell media (detailed in Section 2.2.1) excluding LIF with 1% DMSO or 5mM HMBA. The cells were passaged and harvested for RNA extraction every 2 days according to the protocol in Section 2.2.1.

2.5.3 Neural differentiation of ES cells

To achieve neural differentiation, AINV18-*Zic3* cells were exposed to doxycycline for 48 hours in ES culture medium and then treated with N2B27 medium as previously described¹⁸⁴. Briefly, ES cells were dissociated and plated onto 0.1% gelatin-coated culture dishes at a density of 0.5–1.5 x 10⁴/cm², in N2B27 medium comprising a 1:1 mixture of Neurobasal medium (Gibco) supplemented with B27 (Gibco), and DMEM/F12 (Gibco) supplemented with modified N2 (25 g/ml insulin, 100 g/ml apo-transferrin, 6 ng/ml progesterone, 16 g/ml putrescine, 30 nM sodium selenite and 50 g/ml bovine serum albumin fraction V (Gibco). N2B27 medium was refreshed every 2 days and the cells were observed daily under the microscope for changes in morphology.

2.6 Gene expression analysis

2.6.1 RNA extraction

RNA was extracted from mammalian cells with TriZol reagent (Invitrogen) and then further purified with the RNeasy minikit (Qiagen) according to manufacturer's instructions. RNA samples were treated with DNase for removal of genomic DNA contamination. This was performed in 100 μ l reactions containing 5 μ g RNA, 0.2 U/ μ l RNAse inhibitor, and 0.15 U/ μ l RNase-free DNase (ProMega). Samples were incubated at 37°C for 30 minutes, followed by heat-inactivation of enzymes at 65°C for 15 minutes. The RNA samples were then purified using two phenol extractions and one chloroform extraction, and back extractions were performed with each step using equal volumes of sterile dH₂0 to minimize loss of RNA. Total RNA was precipitated, washed with 70% ethanol and finally resuspended in 30 μ l of sterile nuclease-free dH₂0.

2.6.2 cDNA synthesis

cDNA was synthesized with 1.0 μ g total RNA using the High Capacity cDNA Archive kit (Applied Biosystems) as per manufacturer's instructions. Briefly, cDNA synthesis was performed in 100 μ l reactions consisting of 1.0 μ g RNA diluted in 50 μ l nuclease-free dH₂0, and cDNA Archive kit components: 1 x Reverse Transcriptase buffer, 5.5mM MgCl₂, 500 μ M dNTP mix, 2.5 μ M random primers, and 0.25 U/ μ l MultiScribe Reverse Transcriptase. Synthesis reactions were incubated in a PCR thermocycler at 25°C for 10 minutes followed by 37°C for 2 hours. The cDNA samples were stored at -20°C following synthesis.

2.6.3 Quantitative real-time PCR

Quantitative PCR assays were performed as follows: Reversed transcribed cDNA samples were diluted 10x in nuclease-free water, and added to 5.0 ul TaqMan® Universal PCR Master Mix reagent (Applied Biosystems) containing 0.5 μ l of a single TaqMan probe (20x TaqMan® Gene Expression Assay reagents; Applied Biosystems). The list of TaqMan probes are provided in Table 5. Reactions were conducted in triplicate within 384-well reaction plates (ABI) at a final volume of 10 μ l on the ABI Prism 7900 machine.

2.7 Protein expression analysis

2.7.1 Cell lysis and protein quantitation

Confluent cell cultures were harvested by scraping and washing with 1 x PBS solution. The cells were centrifuged for 5 minutes at 500 rpm, and then resuspended in cell lysis buffer comprising 50 mM Tris pH 7.4, 150 mM NaCl, 2mM EDTA, 1% NP-40, 0.1% SDS, and 1 x EDTA-free Protease inhibitor (Roche). The cell lysate was incubated with rotation for 10 minutes at 4°C and was cleared by centrifugation at 12,000 rpm for 30 minutes at 4°C. The supernatant was transferred to a fresh tube and protein was quantitated using the Bradford assay (Bio-Rad Laboratories). Six bovine serum albumin (BSA) protein standards were used at 0 μ g, 50 μ g, 100 μ g, 200 μ g, 300 μ g and 400 μ g for the Bradford assay. Protein samples and standards were diluted in 0.15M NaCl prior to triplicate loadings onto a 96-well ELISA plate. Absorbance values were measured on a Sunrise Tecan Microplate Reader at A₅₉₅ nm.

Gene Symbol	Description	Lineage
Sox17	SRY-box containing gene 17	Endoderm
PDGFRA	Platelet-derived growth factor receptor, alpha	Endoderm
Gata4	GATA binding protein 4	Endoderm
Gata6	GATA binding protein 6	Endoderm
Foxa2	Forkhead box A2	Endoderm
GSC	Goosecoid	Mesendoderm
Nodal	Nodal	Mesendoderm
MixL1	Mix1 homeobox-like 1	Mesendoderm
Hand1	Heart and neural crest derivatives expressed 1	Mesoderm
Nkx2.5	NK2 transcription factor related, locus 5	Mesoderm
Gata2	GATA binding protein 2	Mesoderm
Nestin	Nestin	Ectoderm
GFAP	Glial fibrillary acidic protein	Ectoderm
Pax6	Paired box gene 6	Ectoderm
TDGF1	Teratocarcinoma-derived growth factor / Cripto	Ectoderm
Sox1	SRY-box containing gene 1	Ectoderm
REST	RE1-silencing transcription factor	Ectoderm
CoREST	REST Co-repressor 1	Ectoderm
FGF5	Fibroblast growth factor 5	Ectoderm
BMP4	Bone morphogenetic protein 4	Trophectoderm
CDX2	Caudal type homeobox 2	Trophectoderm
DKK3	Dickkopf homolog 3	Wnt pathway
Gsk3beta	Glycogen synthase kinase 3 beta	Wnt pathway

Table 5. List of marker genes used to assess lineage development in ES cells.

2.7.2 SDS-PAGE

Denaturing polyacrylamide gel electrophoresis was conducted to resolve proteins by size. Thirty micrograms of protein was added to 6x SDS loading buffer (250 mM Tris/HCl pH6.8, 30% glycerol, 10% SDS, 5% β -mercaptoethanol, and 0.02% bromophenol blue), followed by incubation at 55°C for 5 minutes. Protein samples were loaded onto a 10% or 12% acrylamide gel for electrophoresis at 100V for 1.5 hours. The resolved protein samples were then electroblotted onto Hybond C extra nitrocellulose membrane (Amersham) for 1 hour in Western Transfer Buffer (20% Ethanol, 70% dH₂0, and 1x Western Transfer Buffer stock containing 14.5g Glycine and 3.0g Tris base).

Consistency of protein loading and quality of Western blot transfer was assessed by Ponceau S staining (0.5% Ponceau S, 1% glacial acetic acid). In this protocol, the electroblotted membrane was rinsed once in Tris-buffered saline containing Tween-20 (TBS-T; 10mM Tris/HCl pH 8.0, 150mM NaCl, 0.5% Tween-20; pH 8.). Ponceau S was then applied for 30 seconds to enable visualization of proteins on the membrane, following which the membrane was rinsed twice in dH₂0 and then thrice in TBS-T. The nitrocellulose membranes were immediately probed for protein (Section 2.7.3) or stored at 4°C in air-tight boxes containing TBS-T.

2.7.3 Protein detection and chemiluminescence detection

Immunodetection of proteins was carried out as follows: Nitrocellulose membranes were blocked for 1 hour at room temperature in 5% (w/v) skimmed-milk powder and 1% BSA. Protein detection was performed with goat-anti-Zic3

antibody (1:800; C-12, Santa Cruz Biotechnology) or rabbit-anti-HA (1:1000, sc-805, Santa Cruz Biotechnology), followed by HRP-conjugated donkey-anti-mouse or donkey-anti-rabbit secondary antibodies (Santa Cruz Biotechnology) at a dilution of 1:5000.

Loading consistency was determined with mouse-anti-βactin (1:3000; Invitrogen) and goat-anti-mouse HRP secondary antibodies (1:5000; Santa Cruz Biotechnology). The primary antibodies were incubated overnight at 4°C and the secondary antibodies were subsequently incubated for 1 hour at room temperature, with 3 x TBS-T rinses for 15 minutes performed in between incubations. Chemiluminescence detection was carried out using the Enhanced-Chemiluminescence (ECL) Western blotting kit (Amersham) according to manufacturer's instructions.

2.7.4 Immunocytochemistry

For imaging of Zic3 clonal knockdown lines, cells were seeded at a density of 1.0 $\times 10^5$ cells per well on fibronectin-coated chamber slides, fixed in 4% paraformaldehyde and permeabilized with 0.3% Triton X-100. Blocking was performed with 5% FBS and 1% BSA in PBS solution for 30 minutes. Cells were stained with the following primary antibodies (1:100): goat- or mouse-anti-Oct4 (Santa Cruz Biotechnology, N-19 and C-10 respectively), rabbit-anti-Nanog (Chemicon), goat-anti-FoxA2 (M-20, Santa Cruz Biotechnology), goat-anti-Gata6 (C-20, Santa Cruz Biotechnology), or mouse-anti-CD140a (PDGFRA; eBioscience #16-1401). This was followed by the appropriate secondary 72

antibodies detecting mouse or goat IgG Alexa Fluor 488 (1:500; Molecular Probes) for Oct4 staining, rabbit IgG Alexa Fluor 594 (1:500; Molecular Probes) for Nanog staining, or Qdot® 655 anti-goat or anti-mouse antibodies (Molecular Probes) for FoxA2, Gata6 and PDGFRA staining (1:150) according to manufacturer's protocol. Images were captured with the Zeiss LSM 5 Duo inverted confocal microscope (Zeiss, Thornwood, NJ).

N2B27-differentiated cells were fixed at room temperature in 4% paraformaldehyde and permeabilized with 0.3% Triton X-100 in 24-well plates. Blocking was performed for 30 minutes in buffer comprising 5% FBS and 1% BSA in PBS solution. Cells were stained with the following primary antibodies: mouseanti-Nestin (Chemicon, MAB353), rabbit-anti-TuJ1 (Covance, MRB-435P) and anti-MAP2 (Sigma-Aldrich) for 1 hour at room temperature. The cells were rinsed 3 times with blocking buffer and incubated with Alexa Fluor 488 secondary antibodies (#A11070, #A11017, #A11055; Molecular Probes) for 30 minutes. DAPI staining was performed at 1 µg/ml for 5 minutes at room temperature (D9542, Sigma) and images were captured on a Carl Zeiss Observer.D1 with AxioVision v 4.6.3 software (Carl Zeiss Inc, Thornwood, NY).

2.8 Custom production of Zic3 antibodies

A region was selected on the Zic3 protein that is not conserved among the other Zic family members (Figure 16; Clustal W protein sequence alignment). For a further test of specificity, this region was subjected to a protein BLAST search (NCBI). The peptide sequence and antibody properties are listed in Table 6.

Peptide synthesis and antibody production were performed according to the custom polyclonal antibody protocol by Biogenes GmBH (Berlin, Germany). The rabbits were immunized and boosted every 28 days for 3 months. Subsequent monthly production bleeds were affinity-purified for total IgG (tris-glycine buffer pH 7.5, 250mM NaCl, 0.02% thimerosal) and their specificity was tested by western blots. Antibodies from the 3rd production bleed were the most sensitive and produced the lowest background. These antibodies were used in our experiments.

2.9 Chromatin Immunoprecipitation (ChIP)

2.9.1 ChIP protocol

E14 cells were cultured to a density of 1 x 10⁸ cells for each IP. Two biological ChIP replicates were performed per experiment. Cells were cross-linked for 10 minutes at room temperature with 1% (w/v) formaldehyde and the reaction was subsequently quenched with 125mM glycine. Nuclear fractions were isolated and the DNA was sheared to lengths of 200 to 500 bp. Antibodies against Zic3, Sox2 (sc-17320, Santa Cruz Biotechnology) and GST (sc-459 & sc-34073; Santa Cruz Biotechnology) were used for immunoprecipitation. Ten micrograms of each ChIP antibody was incubated with pre-blocked Protein G sepharose beads for 2 hours at 4°C. Following incubation, the antibody-sepharose bead complexes were rinsed, gently pelleted at 500 rpm for 1 minute at 4°C, and then resuspended in the pre-cleared (2 hour incubation at 4°C with pre-blocked protein G sepharose beads) cross-linked nuclear protein fractions for overnight incubation at 4°C. The following day, the protein-antibody-bead complexes were rinsed and pelleted by

	Spiri # (1.03) multiple sequence alignment (rage 1 of 2)
Zic1	MLLDAGPQYPA	11
Zic2	MLLDAGPQFPA	11
Zic3	MTMLLDGGPQFPG	13
Zic4		
2105	MMEPPLSKRNPPALRLADLATAQAQQLQNMTGFPVLVGPPAHSQRRAVAMHLHPRDLGTD	60
Zic1	IGVTTFGASRHHSAGDVAERDVGLGINPFADGMGAFKLNPS-SHEL	56
Z1C2 Zic3	IGVGSFARHHHHSAAAAAAAAAAAAAAEMQDRELSLAAA-QNGFVDSAAAHMGAFKLNPG-AHEL	69
Zic4	LGVG5FGAFKIIIEMFWKEFAGHGLNFFGD51IIAAAAAAAAAAA KLSFAIAUDL	00
Zic5	PGVASTALGPEHMAQASGQGPCPPSQGLPGLSQVPAPAARSVASGTHPGARTHPDGGGSS	120
Zic1	ASAGOTAFTSOAPGYAAAAALGHHHHPGHVGSYSSAAFNSTRDFLFRNRG	106
Zic2	SPGQSSAFTSQGPGAYPGSAAAAAAAAAAGPHAAHVGSYSGPPFNSTRDFLFRSRG	125
Zic3	${\tt SSGQSSAFTPQGSGYANALGHHHHHHHHASQVPTYARR-ASAAFNSTRDFLFRQRG}$	123
Zic4	TSLVMRKRLRLYRN	18
2105	GAQASAPPPPAPPLPPSQSSSPPPPPPPALSGYTATNSGGGSSSGKGHSRDFVLRRDL * : *	180
Zicl	PHGHTDAAGHLLFSGLH	147
Zic2	FG-DSAPGG-GQHGLFGPGAGGLHHAHSDAQGHLLFPGLP	163
Zic3	PAGIPEPPSYLLFPGLH	165
Z1C4 Zic5		4/
103		240
Zic1	EQAAG-HASPNVVNGQMRLGFSGDMYPRPEQYGQVTSPRSEHYAAPQL	194
Zic2	PEQHGPHASQNVLNGQMRLGLPGEVFGRSEQYRQVASPRTDPYSAAQL	211
Zic3	EQGAG-HPSPTGHVDNNQVHLGLRGELFGRADPYRPVASPRTDPYAASAQ	214
Z1C4 Zic5		94 296
2105		200
	. *. ::**:: : .*: ::.	
Zicl	. *. ::**:: : .*: ::. HG-YGPMNVNMAAAFFR	215
Zic1 Zic2	*. ::**: .: : .*: .:: HG-YGPMNVNMAAAFFR HHGAGAFFR HNQYGPMNMNMGMNMAAAAAHHHHHHHHHPGAFFR	215 245
Zic1 Zic2 Zic3	*. ::**: .: :: .*: .:: HG-YGPMNVNMAA	215 245 240
Zic1 Zic2 Zic3 Zic4 Zic5	*. ::**: .: :: .*: .: :: .*: HG-YGPMNVNMAA	215 245 240 118 356
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1	*. ::**: .: : .: .*: .: : .:. HG-YGPMNVNMAA- HNQYGPMNMNMGMNMAAAAAHHHH FPNYSPMNMNMGVN- FPNYSPMNMMGVN- LHGYGGMNLTMNLT- LHGYGAVNLNLLAAAAAAAAAGPGPHLQHHAPPPAPPAPAPHPHHPHLPGAAGAFLR * **: *	215 245 240 118 356 267
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2	*. ::**: .: :: .: .*: .: :: HG-YGPMNVNMAA-	215 245 240 118 356 267 298
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic2 Zic3	*. ::**: .: :: .: .: :: .: HG-YGPMNVNMAA- HNQYGPMNVNMAA- HNQYGPMNMNMGMNMAAAAAHHHH FPNYSPMNMMGVN- LHGYGGMNLTMNLT- LHGYGAVNLNLLAAAAAAAAAAAAAGPGPHLQHHAPPPAPPAPAPAPHPHHPHLPGAAGAFLR * **: * **:* YMRQP-IKQELICKWIEPEQLANPKK- SCNKTFSTMHELVTHVTVEHVGGPEQS YMRQQCIKQELICKWIDPEQLSNPKK- SCNKTFSTMHELVTHVTVEHVGGPEQS YMRQP-IKQELSCKWIEEAQLSRPKK- SCDRTFSTMHELVTHVTMEHVGGPEQN	215 245 240 118 356 267 298 292
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic2 Zic3 Zic4 Zic5	*. ::**: .: :: .: .: :: .: .: :: .: HG-YGPMNVNMAA- .: .: .: HQYGPMNVNMAA- .:. FPNYSPMNMMGWNMAAAAAHHHH FPNYSPMNMMGVN LHGYGGMNLTMNLT LHGYGAVNLNLNLAAAAAAAAAAGPGPHLQHHAPPPAPPAPAPAPHPHHPHLPGAAGAFLR YMRQP-IKQELICKWIEPEQLANPKK	215 245 240 118 356 267 298 292 169
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic2 Zic3 Zic4 Zic5	*. ::**:.: ::.: ::.: ::HG-YGPMNVNMAA	215 245 240 118 356 267 298 292 169 415
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic2 Zic3 Zic4 Zic5 Zic1	*. ::**:.: :: .: .: .: .: .: .: .: .: .: .: .: .	215 245 240 118 356 267 298 292 169 415 327
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2	*. ::**:.: :: .: .: .: .: .: .: .: .: .: .: .: .	215 245 240 118 356 267 298 292 169 415 327 358
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic2 Zic3 Zic2 Zic3	*. ::**: .: .: .: .: HG-YGPMNVNMAA-	215 245 240 118 356 292 292 169 415 327 358 322
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic2 Zic3 Zic2	*. ::**: .: .: .: HG-YGPMNVNMAA-	215 245 240 118 356 292 169 415 327 358 352 2299
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic2 Zic3 Zic4 Zic3 Zic4 Zic5	*. ::**:.: :: .: .: .: .: .: .: .: .: .: .: .: .	215 245 240 118 356 292 292 169 415 327 358 352 229 475
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic4 Zic5 Zic4 Zic5	*. ::**:.: :: .: .: .: .: .: .: .: .: .: .: .: .	215 245 240 118 356 292 292 169 415 327 358 352 229 475 385
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic4 Zic5	*. ::**:.: :: .: .: .: .: .: .: .: .: .: .: .: .	2155 245 245 118 356 267 298 292 415 327 358 322 229 475 385 416
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5	*. ::**:.: :: .: .: .: .: .: .: .: .: .: .: .: .	2155 2450 118 3566 2677 298 292 415 327 358 322 2299 415 327 358 352 229 475 385 4166 4100
Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5 Zic1 Zic2 Zic3 Zic4 Zic5	<pre>*. *. :**:</pre>	2155 2450 118 3566 2677 298 2922 1699 4155 3277 3588 3222 2299 4755 3855 4166 4100 2899

Zic	family	CLUSTAL	W	(1.83)	multiple	sequence	alignment	(Page	2	of	2)	ļ
-----	--------	---------	---	--------	----------	----------	-----------	-------	---	----	----	---

Zic1 Zic2 Zic3 Zic4 Zic5	SSSQGSQPSPAASSGYESSTPPTIVSPTTDNPTTSSMSPSSSAVH 4 SSPQGSESSPAASSGYESSTPPGLVSPSAEPQSSSNLSPAAAAAAAAAAAAAAAAAAAAAA SQGSDSSPAASSGYESSTPPAIASANSKDTTKTPSAVQ 4 RSPPPSSGYDSAITSALASPSLESGREPSVACSAV 3 KSPPPSPGALGYSSVGTPVGDPLSPVLDPTRSRSSTLSPQVTNLNEWYVCQASGAPSHLH 5 : ** : *	30 75 48 25 95
Zic1 Zic2 Zic3 Zic4 Zic5	HTAGHSALSSNFNEWYV4 44 RGAGSGSSGSGGGSAAGSGGGGGGGGGGGGGGGGGGGGG	47 30 66 34 18
Zic1 Zic2 Zic3 Zic4 Zic5	RTIH 622	

Figure 16. Zic family protien sequence alignment (Clustal W). The Zic3 protein sequence is indicated in grey, and the Zic3 antibody was raised against a unique 13 amino acid region (yellow) that is not conserved amongst the Zic family members

Table 6. Details of custom-produced Zic3 antibody

Antibody property	Details
Peptide Sequence	5'-AIASANSKDTTKT-3'
Location	N ear C-terminal
Reactivity	Mus musculus (tested) Homo sapiens, Equus asinus
Applications	Western blot, co-immunoprecipitation, Chromatin-IP

Summary of peptide design

1. Binds to sequence outside high-homology zinc finger domain, and

2. Does not cross-react with other Zic family members (Figure 16)

3. Does not cross-react with other non-related proteins (BLAST seach

4. Within limits of 1 - 3 above, peptides with highest solubility were selected.

centrifugation at low speed for 1 minute at 4°C. The ChIP material was eluted from the beads at 65°C for 30 minutes, and cross-links were reversed overnight by incubation at 65°C. The following day, the samples were treated with RNaseA (0.2mg/ml) for 2 hours at 37°C, and then Proteinase K (0.2 mg/ml) at 55 °C for 1 hour. Finally, the samples were treated twice with phenol/chloroform/Isoamyl alcohol (25:24:1), then precipitated and rinsed once in 70% ethanol before resuspension in 70µl of 10mM Tris-HCl, pH 8.0.

2.9.2 Quantitative PCR for ChIP enrichment

Quantitative PCR for ChIP enrichment was performed on the ABI PRISM 7900 machine with 1x SYBR Green PCR mastermix (Applied Biosystems), under the following conditions: 50°C for 2 minutes, 95°C for 10 minutes, and 40 cycles of 95°C for 15s and 60°C for 1 minute. Fluorescence from the amplified products was measured by laser spectral analyses on the ABI Prism 7900 machine, and the data were processed and displayed in the form of real-time amplification plots generated by the SDS software (v2.2; Applied Biosystems). ChIP fold-enrichment was determined by normalizing Threshold cycle (Ct) values of ChIP samples against sonicated whole cell DNA extract, and then subsequently to a non-enriched ChIP control region set at a value of 1. Details of primers are provided as Appendix 1.

All PCR primers gave a single product as confirmed by agarose gel electrophoresis and heat dissociation analysis¹⁸⁵ on the ABI Prism 7900 (Applied Biosystems), under the following conditions: 95°C for 15s, 60°C for 20s, 20

minute ramp to 95°C and 95°C for 15s. The data from this analysis were compiled by the SDS software (v2.2; Applied Biosystems) and displayed as melting curve graphs. The graphs were checked for specificity of PCR amplified product as indicated by a single, well-defined melting curve peak¹⁸⁵.

2.9.3 ChIP-chip assays, data processing, and statistical analysis

For analysis on mouse Agilent ChIP-on chip promoter arrays, the purified ChIP material (Section 2.9.1) was blunt-ended, ligated to linkers and PCR amplified. DNA was flurophore-labeled using Invitrogen's CGH Labeling kit (ChIP samples with Cy5; whole-cell extract with Cy3). The labeled DNA was hybridized to Agilent mouse promoter ChIP-on-chip arrays for 40 hours at 65° C (Agilent Technologies, Santa Clara, CA). Chips were washed and scanned as per manufacturer's protocol and the results were processed with Agilent's ChIP Analytics software v1.3. A *p*-value cutoff <0.001 was specified in this analysis.

To further minimize false positives, a "neighborhood voting" algorithm¹⁹ was applied to filter for high confidence Zic3- or Sox2-enriched sites, wherein binding was considered genuine only in the presence of a second significantly enriched neighboring probe (p < 0.005). For analysis of ChIP-chip false discovery rate (FDR), 33 ChIP positive regions reported by the Agilent array were selected at random for PCR verification (ref. section 2.9.2). One gene out of the 33 did not give a PCR enrichment greater than our 2.5-fold threshold for positive enrichment, giving an FDR < 0.03 (Appendix 2).

2.10 Luciferase reporter assays

2.10.1 Nanog promoter assays

The 300bp *Zic3* enhancer region containing the Nanog-binding site was cloned from mouse genomic DNA (Section 2.1.6). The primers used were: forward, 5' ATATAacgcgtTTAGAGGTCAAACCAT-3', and reverse, 5'-TATATagatctTAGT AGTCAAACTGGATT-3' with restriction sites indicated in lowercase. The PCR fragment was digested with *Mlul* and *Bglll*, and cloned into the pGL3-Basic vector (Promega) containing a basal promoter comprising the 500bp region immediately upstream of the mouse Oct4 gene. The following constructs were transfected into cells 2.5 x 10⁴ cells in 96-well plates for the luciferase assay: 100ng firefly luciferase reporter, 1.0 ng of the *Renilla* luciferase vector, pRL-SV40 plasmid normalization control, and 250ng of the respective knock-down construct. Puromycin selection (1.0µg/ml) was introduced 20 hours post-transfection and cultured for 2 days. Luciferase activity measured using the Dual Luciferase System (Promega) in a Centro LB960 96-well luminometer (Berthold Technologies).

2.10.2 Zic3 ChIP-identified promoter assays

Zic3 target regions were amplified by PCR from genomic DNA (Section 2.1.6) and sub-cloned into the Nhel/BgIII sites of the ProMega luciferase reporter vector pGL3. Sequences lacking a native minimal promoter were cloned upstream of the SV40 promoter for enhancer assays. DNA sequences were amplified by PCR from mouse genomic DNA with the primers listed in Appendix 3. All transfections and luciferase assays were performed as described above, and the unpaired Student's *t* test was used to determine statistical significance.

2.11 Co-immunoprecipitation experiments

The Seize-X Protein G immunoprecipitation kit (#45210, Pierce Biotechnology, Rockford, IL) was used according to the manufacturer's protocol. Briefly, antibodies were cross-linked to immobilized protein G sepharose in spin columns. Confluent 15cm² dishes of E14 cells (1 x 10⁸ cells) were rinsed twice with PBS, and then gently scraped and pelleted at 500 rpm for 5 minutes. The cells were lysed in Co-IP lysis buffer (50 mM Tris, pH 7.6, 150 mM NaCl, 2 mM EDTA, 1% NP-40, 0.1% SDS, and 1 x EDTA-free Protease inhibitor, Roche), and centrifuged at maximum speed for 15 minutes at 4°C. The supernatant containing endogenous complexes was applied to the antibody-linked columns and incubated overnight at 4°C. Immunoprecipitated complexes were washed the following day and eluted twice from the spin columns, and the samples were resolved in 10% SDS-PAGE gels with reducing buffer.

2.12 Gene Expression arrays

2.12.1 Illumina mouse arrays

The whole-genome Illumina Mouse Ref-8 v1.1 beadchips were used for microarray analysis of RNAi-treated and Ainv18-Zic3 overexpression samples. These Illumina beadchips allow interrogation of approximately 25,600 well-annotated mouse refseq transcripts. For the microarray analyses, mRNA was harvested from 3 biological replicates per experiment. These samples were reverse-transcribed, Cy3-labeled, and hybridized to Illumina MouseRef-8 v1.1 Expression Beadchips according to the manufacturer's protocol (Illumina Inc., San Diego). Following the wash of Illumina chips, microarray signals were

scanned with an Illumina BeadStation array reader, and the data were background-normalized and assessed for quality with cluster dendrograms and DirectHyb control plots (Beadstudio v1.5, Illumina).

2.12.2 Statistical analysis of microarray data

The microarray data were processed with Genespring GX v7.3.1 (Agilent Technologies, Santa Clara). The unpaired Student's *t* test was used to determine statistical significance with Benjamini and Hochberg multiple-testing correction (FDR<0.1), and genes demonstrating \geq 1.5-fold change were reported as statistically significant.

For statistical analysis of overlapping genes between RNAi samples, computer simulations were conducted as follows: a number of genes corresponding to the actual number of genes within each list were randomly sampled from the Illumina mouse Ref-8 v1.1 beadchip. The random gene lists were overlapped to derive a percentage, and this process was repeated 100 times to yield an average percentage overlap by chance. Finally, *p*-values were computed by comparing the 100 simulated overlaps to the actual overlap percentage using one-sample *t*-tests.

2.12.3 Functional annotations using the Panther database

The microarray gene lists were uploaded to the Panther database for functional annotations (http://www.pantherdb.org). In this analysis, the Panther Gene Expression tool set was used to classify differentially-regulated genes under 82

biological process groups using the "Compare Gene List" function, relative to the 25,600 Illumina mouse Ref-8 v1.1 transcripts, and the binomial test was used to identify statistically significant over- or under-represented functional categories within the Zic3 RNAi or overexpression gene lists.

CHAPTER 3:

Zic3 is involved in transcriptional

regulation of ES cell pluripotency

3.1 Introduction

Embryonic stem (ES) cell pluripotency is dependent upon sustained expression of the key transcriptional regulators Oct4, Nanog and Sox2. These core factors contribute to the hallmark characteristics of ES cells by: (1) activation of target genes that encode pluripotency and self-renewal mechanisms, and (2) repression of signaling pathways that promote differentiation⁴². In ES cells Oct4, Nanog and Sox2 co-occupy promoters of hundreds of genes that are both expressed and repressed in the pluripotent state ^{19,20}. This suggests complex regulatory circuitry in which Oct4, Nanog and Sox2 collectively and uniquely regulate downstream genes to control ES cell differentiation. However, it remains unclear what are the downstream effectors of these transcription factors that contribute to maintaining the pluripotent status of ES cells. It also is not understood how these 'master regulators' of pluripotency are involved in controlling lineage-specific differentiation of ES cells. It is therefore useful to elucidate the transcriptional networks surrounding Oct4, Nanog and Sox2, where detailed knowledge of these pathways remain key to harnessing the potential to direct differentiation of ES cells into therapeutically useful cell types.

To expand our understanding of the transcriptional networks that control stem cell differentiation, I have focused on transcription factors whose expression is directly regulated by Oct4, Nanog and Sox2. Zic3 (Zinc finger protein of the cerebellum 3) was identified as a transcription factor of interest for two reasons. Firstly, Oct4, Nanog and Sox2 binding have been mapped to the *Zic3* promoter regions in ES cells ^{19,20}, implying that these key factors may regulate *Zic3* expression. The overlap between mouse and human ES cells further highlights the significance of 85

Zic3, and suggests possible conservation of the gene's pathways between the two species. Secondly, *Zic3* demonstrates differential gene expression between the pluripotent and early differentiation phases, where its expression is higher in the pluripotent state ^{85,86}. The changes in gene expression between these states suggest a potential role for Zic3 in controlling differentiation of mouse and human ES cells.

Zic3 belongs to the GLI superfamily of transcription factors and is a vertebrate homologue of the *Drosophila* pair-rule gene odd-paired (opa)⁹⁸. The five known mammalian *Zic* genes (Zic1 – 5) encode five tandem C_2H_2 zinc finger domains that are highly conserved across species^{186,187}, and show distinct and partially overlapping expression patterns during development^{115,116}. *Zic3* shares overall 64% and 59% homology with *Zic1* and *Zic2* respectively, and this homology increases to 91% within the zinc finger domain. Thus members of Zic family are strong candidates for redundancy in molecular signaling owing to the high degree of homology and overlapping expression observed among the members of this family.

In this study, I examined the function of *Zic3* as a regulatory target of Oct4, Nanog and Sox2 in ES cells. The *Zic3* gene has been identified as a target of Oct4, Nanog and Sox2 in ES cells^{19,20}, and *Zic3* is preferentially expressed in pluripotent state ^{85,86}. Questions arising from these data are: (1) How do Oct4, Nanog and Sox2 interact with the *Zic3* regulatory region, and what results from this interaction, and, (2) What role does Zic3 play in the embryonic stem cell? In

this chapter, I have addressed these questions using the loss-of-function approach for *Zic3* and the key regulatory genes in ES cells.

3.2 Results

3.2.1 Zic3 expression is associated with ES cell pluripotency

Comprehensive expression profiling of mouse and human ES cells has resulted in the identification of numerous genes that are expressed in undifferentiated cells and quickly repressed upon differentiation^{85,86}. Among these genes are transcription factors Oct4, Nanog, and Sox2, which are required to maintain pluripotency of ES cells. Zic3 was also found to be expressed in undifferentiated ES cells and suppressed in differentiated cells, and thus, may play a role in regulating ES cell differentiation. To further characterize the expression profile of Zic3, I assayed its expression in mouse ES cells which were induced to differentiate over 6 days by the addition of retinoic acid (RA) (Figure 17A). Similar to the trend demonstrated by Oct4, Nanog and Sox2 in differentiating ES cells, Zic3 transcript levels decreased between 1.5- to 10-fold for each two-day interval (D2, D4, and D6) relative to the undifferentiated control (Figure 17A), and this decrease in Zic3 mRNA levels also correlated with a downregulation of Zic3 protein expression (Figure 17B). In addition, Zic3 expression was significantly decreased in mouse ES cells differentiated by treatment with HMBA (N,N'-Hexamethylenebisacetamide)or DMSO (Dimethyl Sulfoxide), and by aggregation into embryoid bodies (Figure 18). Collectively, these results indicate that Zic3 is associated with mouse ES pluripotency and that its expression decreases as the ES cells differentiate.

Figure 17. Profile of Zic3 expression during retinoic acid differentiation of E14 cells. (A) Real-time PCR analysis of differentiation induced by Retinoic Acid. Samples were assayed at two-day intervals (Untreated control, and treated samples Day 2, Day 4, Day 6). Mean levels \pm S.E. are expressed as percentages relative to undifferentiated E14 cells (100%). The assays were conducted in duplicate and normalized to Beta-actin control. (B) Verification of Zic3 protein expression during the process of RA differentiation.

Figure 18. Zic3 expression during DMSO, HMBA and embryoid body differentiation of E14 cells. Samples were assayed at two-day intervals (Untreated control, and treated samples Day 2, Day 4, Day 6). Mean levels \pm S.E. are expressed as percentages relative to undifferentiated E14 cells (100%). The assays were conducted in duplicate and normalized to Beta-actin control.

In further support of the importance of Zic3 in ES cell pluripotency, chromatin immunoprecipitation (ChIP) experiments in both mouse and human ES cells have identified binding sites for the transcription factors Oct4, Nanog and Sox2 at the *Zic3* gene locus (Figure 19)^{19,20}. The binding of these transcription factors, which are demonstrated regulators of pluripotency, suggests that *Zic3* is a direct target for regulation by these TFs and may play a role in regulating ES cell differentiation.

3.2.2 Zic3 is regulated by Oct4, Nanog and Sox2

To further validate that Oct4, Sox2 and Nanog regulate *Zic3* expression, I performed gene expression knock-down experiments in mouse ES cells using RNA interference. Mouse ES cells were transfected with gene-specific siRNAs against *Oct4, Sox2,* and *Nanog* on alternate days to achieve 80-90% reduction in expression of the specific target gene as detailed in Section 2.3.1 (Figure 20A). Down-regulation of *Oct4* and *Sox2* reduced the level of endogenous *Zic3* to less than 25%, while *Nanog* RNAi reduced the level of *Zic3* to 70% (Figure 20B). These data indicate that *Zic3* expression is regulated by Oct4, Sox2, and Nanog.

It has been shown that Nanog over-expressing ES cells are resistant to differentiation induced by LIF withdrawal and RA addition¹⁸⁸. As the endogenous levels of *Zic3* decreased upon RA induced differentiation (Figure 17), I was interested to determine if Nanog over-expression would sustain *Zic3* levels under RA treatment. ES cells with constitutive overexpression of Nanog were treated for two days with 0.3uM RA, alongside empty vector controls. The control cells showed a decrease in *Zic3* RNA levels typical of RA-induced differentiation. In

Figure 20. Oct4, Sox2 and Nanog regulate Zic3 expression. (A) Changes in endogenous gene expression levels of Oct4, Nanog and Sox2 following gene-specific RNA interference, and (B) corresponding changes in endogenous Zic3 gene levels. cDNAs were prepared from the RNAi knockdown ES cells and analyzed using real-time PCR. The levels of the transcripts were normalized against values derived from control RNAi transfected ES cells (100%). (C) Changes in ES cell endogenous Zic3 gene level following Nanog over-expression with RA induced differentiation. Nanog over-expression cell line and control cell line were treated with no RA or 0.3µM RA for 2 days. Transcript levels of 0.3μ M RA treated sample were normalized against no RA treatment sample. (D) Diagram of the construct with putative Zic3 enchancer region fused upstream of a minimal Pou5f1 promoter and firefly luciferase gene (E) The effects of luciferase activity in the absence of the putative Nanog binding site on Zic3 enhancer were tested by transfecting into ES cells. Activity were measured relative to the minimal promoter only (MP) construct without the Nanog enhancer (F) Effects of Nanog RNAi on Zic3 enhancer activity were tested by co-transfecting the Nanog RNAi with the reporter construct into ES cells and luciferase activity measured. Activity were normalized against the Control RNAi with mOct4 promoter-only construct. An RNAi targeting the GFP sequence was used as a nonspecific control.

Acknowledgments: Data in Panels A & B were produced by the author of this thesis (Linda Lim). Panel C was produced by Jonathan Loh. The construct in Panel D was produced by Ng Huck Hui's group. Experiments in Panels E & F were independently conducted and verified by both Linda Lim and Jonathan Loh. contrast, mouse ES cells over-expressing Nanog sustained the level of *Zic3* at greater than 80% relative to the control ES cell line (Figure 20C). Thus, over-expression and knockdown of Nanog in ES cells results in an increase and decrease, respectively, of *Zic3*, suggesting that *Zic3* expression is regulated by Nanog, perhaps directly or indirectly.

A previous study identified a Nanog binding site in the enhancer region, 16.4 kb upstream of the transcription start site, of the *Zic3* gene²⁰. Using this DNA region, I sought to determine if *Zic3* expression was directly regulated by Nanog. A 292bp portion of the *Zic3* enhancer containing the Nanog binding site was fused upstream of a minimal *Pou5f1* promoter that drives the firefly luciferase gene (Figure 20D). The minimal promoter was weakly active in ES cells, while activity of the *Zic3* enhancer region linked to the minimal promoter was 9-fold upregulated as quantified by luciferase (Figure 20E). When the sequences of this putative Nanog binding site were deleted from the *Zic3* enhancer the corresponding reporter activity decreased (Figure 20E). *Nanog* RNAi was then transfected together with the wild-type reporter construct and the results indicated a 4-fold decrease in *Zic3* enhancer activity relative to the controls (Figure 20F). Collectively, the data show that *Zic3* expression is directly regulated by Nanog and, thus, may be a downstream effector in controlling ES cell differentiation.

3.2.3 Zic3 RNA interference in ES cells

3.2.3.1 Loss of Zic3 leads to ES cell differentiation

To investigate the role of Zic3 in ES cells I used RNA interference to achieve knockdown of gene expression. Both the siRNA and shRNA methods resulted in

a 70% reduction of *Zic3* transcript levels relative to the non-targeting controls (Figure 21A). Zic3 protein levels reflect this decrease in gene expression following *Zic3* RNAi treatment, while protein expression remained high in vector-only treated cells (Figure 21B).

Zic3 RNAi transfections resulted in a marked decrease in pluripotent colonies that stained for the stem cell surface marker alkaline phosphatase (AP)¹⁸⁹ relative to the mock RNAi control (Figures 22A & 22B). Following AP staining, the extent of differentiation was quantified with secondary re-plating assays that revealed a 3to 5- fold increase in differentiated colonies in comparison with the non-targeting control (Figure 22C). In order to assess the differentiation state of Zic3 knockdown cells, I assayed the changes in expression of key pluripotency genes (Figure 21A). Though the mouse ES cells showed clear morphological changes (Figures 22A & 22B), there were only modest decreases (15-20% siRNA experiment; 20-25% shRNA experiment) in the expression of the key pluripotency genes Oct4 and Sox2 (Figure 21A), while Nanog expression decreased 40% relative to the non-targeting control. I then performed the same experiment with human ES cells (HuES9). Although there was 70% decrease in Zic3 transcript levels, Oct4 and Sox2 transcript levels remained unchanged and Nanog levels decreased by 25% (Figure 21A). These results suggest that Zic3 plays a role in maintaining ES cell pluripotency and its action is downstream of the dominant pluripotency factors Oct4, Sox2, and Nanog.

It is interesting that targeted repression of *Zic3* induced morphological differentiation of ES cells, while maintaining the expression of pluripotency marker

Figure 21. Effect of Zic3 RNAi on endogenous Oct4, Nanog and Sox2 levels. (A) Zic3 levels were depleted by RNA interference using siRNA and shRNA in mouse E14 cells and siRNA in human HuES9 cells. RNA was harvested between 4 to 5 days of transfection and transcript levels assayed by Real-time PCR. Shown in this figure are the levels of Zic3 transcript and the corresponding changes in Oct4, Nanog and Sox2 expression. Mean values ± S.E. are plotted as percentages relative to the non-targeting control (100%). The samples were assayed in duplicate and normalized to endogenous Beta-actin. (B) Corresponding decrease in protein levels following Zic3 RNAi treatment. Details of antibody specificity are provided in Table 6. The Zic3 protein species was depleted in the Zic3 RNAi sample, while B-actin protein levels remained high in the control. Beta-actin protein was used as a loading control.

Figure 22. Effect of Zic3 RNAi on ES cell pluripotency. (A) & (B) Alkaline phosphatase staining revealed that the extent of differentiation in Zic3 RNAi-treated cells was greater than non-targeting RNAi control cells. (C) Secondary replating assays were used to quantitate the extent of differentiation in Zic3 RNAi cells. A 3-to-5 fold increase in differentiated colonies were observed with Zic3 RNAi relative to the non-targeting control. Scale bars, 50 μ m.

genes in the transient knockdown experiments. To understand the molecular state of these cells, I examined a series of markers that represent lineage-specific ES cell differentiation. *Zic3* knockdown in mouse and human ES cells resulted in an up-regulation of a panel of endodermal markers assayed by real-time PCR (Section 2.6.3): *Sox17* (3.5-fold), *Pdgfra* (3.2- to 5.5-fold in mouse ES cells; 2.7-fold in human ES cells) and *Gata6* (2.5- to 3.5-fold) (Figure 23). In addition, two more endodermal lineage genes *Gata4* and *Foxa2* were up-regulated in the E14 RNAi cells (2.5-fold). I also assayed the expression of mesendodermal, mesodermal, ectodermal, trophectodermal and Wnt-pathway markers in *Zic3* RNAi cells. These markers remained unchanged relative to the non-targeting control in both mouse and human RNAi experiments (Figure 23) and were not statistically significant. These results indicate that Zic3 could play a specific role in maintaining ES cell pluripotency by suppressing endoderm marker expression.

3.2.3.2 Specificity of Zic3 knockdown

There was a possibility that ES cell differentiation and marker gene expression were due to off-target effects of the RNA interference. To address this concern, I designed a *Zic3* expression construct that was immune to RNA interference and tested whether this construct could rescue the knock-down phenotypes. The *Zic3* RNAi-immune expression construct was engineered with 5 silent mutations in protein coding domain sequence (Figure 24). As such, this construct (mutZic3) produces functional Zic3 protein, but due to codon degeneracy, remains resistant to RNAi targeting and degradation. This mutZic3 construct was therefore used to determine the specificity of endoderm marker upregulation produced by *Zic3* knockdown.

Figure 23. Effect of Zic3 RNAi on lineage marker gene expression. The panel of genes above was selected for their lineage-specificity. Transcript levels of genes from the endodermal (ENDO), mesendodermal (MESENDO), mesdodermal (MESO), ectodermal (ECTO), trophectordermal (TROPH) and Wnt pathways in mouse and human ES cells were assayed by Real-time PCR following Zic3 depletion by RNA interference. (A) siRNA in mouse E14 cells. (B) shRNA in mouse E14 cells. (C) siRNA in human HuES9 cells. Mean levels ± S.E. are expressed as percentages relative to the non-targeting control (100%). The assays were read in duplicate and results were normalized to Beta-actin.

RNAi WT target	Cys	Glu Phe	Glu	Gly	Cys	Asp	Arg
	TGT	GAATTO	GA	AGGC	TGT	GAC	AGA
	ACA	CTTAAC	GCT:	TCCG	ACA	CTG.	I <mark>CT</mark>
RNAi-Immune	TGT	GAATTI	[GAC	GGGA	TGC	GAT	C <mark>GA</mark>
	ACA	CTTAA	ICT (CCT	'AC G	CTA	GСТ

Figure 24. Zic3 RNAi-immune construct. Diagram of the Zic3-RNAi wildtype targeted region (WT target) and the Zic3 target sequence modified to encode mutations that render immunity to RNAi targeting, while preserving functional viability due to degeneracy of the genetic code (red codons; RNAi-immune).

Acknowledgements: This construct was greated by Jonathan Loh.

The expression of endodermal markers *Foxa2, Gata4* and *Sox17* was first induced in ES cells by co-transfection of an empty overexpression vector with Zic3-RNAi, relative to cells co-transfected with empty vector and GFP-RNAi (6.5-, 10.1-, and 8.7-fold, for *Foxa2, Gata4* and *Sox17*, respectively, Figure 25, A-C). In contrast, when ES cells the RNAi-immune construct (mutZic3) was introduced into ES cells with *Zic3* RNAi, no endodermal markers were induced. (Figure 25, A-C). These experiments indicate that the RNA interference results are not due to off-target effects and further support the conclusion that Zic3 plays a role in maintaining the pluripotency of ES cells.

3.2.4 Zic3 clonal knockdown lines express endoderm lineage markers

3.2.4.1 Zic3 clonal knockdown lines

To determine if endodermal markers were upregulated in the same cells in which Zic3 was depleted, three clonal lines were generated that stably expressed *Zic3* shRNA. Figure 26 shows the morphology of these clonal lines. Panels A and B show non-targeting control lines which propagated rapidly and demonstrated the typical compact, phase-bright colonies of ES cells, suggesting that transfection of non-targeting shRNA and long-term antibiotic selection did not affect the ES-like morphology of the cells. In contrast, Panels C and D reflect the differentiated morphology of Zic3 clonal knockdown lines. These cell lines contained a mixture of phase-bright ES-like colonies and phase-dark, flattened cells with extended processes (Figure 26C and 26D). The *Zic3* knockdown lines propagated more slowly, as observed by their slower rate at attaining confluency relative to the control lines when an equal number of cells were seeded. This appeared to be a result of decreased rate of proliferation rather than increased cell death (where a 100

Figure 25. Zic3-immune construct specifically reverses changes in lineage marker expression levels caused by Zic3 RNAi. (A) – (C) Zic3 Rescue experiments demonstrating the specificity of Zic3 RNAi and reversibility of lineage marker expression. E14 cells co-transfected with the Zic3 RNAi-immune overexpression contruct and Zic3 RNAi vector demonstrated notable suppression of endodermal markers Foxa2, Gata4 and Sox17, relative to Zic3 RNAi co-transfected with the empty vector control). Zic3 immune real-time PCR analysis was conducted 3 days post-transfection. β -actin was used as an internal control for normalization. The measurements were performed in biological triplicate with two technical replicates each and the average of the normalized ratio of target gene/ β -actin was calculated and presented with standard deviation. Relative expressions calculated with respect to the control experiment (Vector + *GFP* RNAi) at 100%. Transfection schemes are represented in Supplementary Table 1b.

The experiments were independently conducted and cross-verified by both Linda Lim and Jonathan Loh.

Figure 26. Morphology of Zic3 clonal knockdown lines. (A – B) Brightfield pictographs of two control lines transfected with a non-targeting control vector. These cell lines had the typical morphology of ES cells that form compact, phase-bright colonies. (C – D) Zic3 clonal knockdown lines contained a mixture of phase-bright ES-like cells and phase-dark, flattened cells with processes extended. This indicates that the Zic3 clonal knockdown lines are differentiated relative to the control lines. Scale bars, 50 μ m.

significant increase in dead and floating cells was not observed in the culture media), and is a further indication of the differentiated status of the *Zic3* knockdown lines.

It was interesting that clonal cell lines with proliferative capacity could be derived from differentiated *Zic3* knockdown cells. I hypothesized that the clonal lines resulted from a subset of cells that were successfully transfected but maintained *Zic3* shRNA expression at lower levels. It was possible that this decreased amount of *Zic3* knockdown in ES cells was compatible with long-term passaging. To examine this possibility, a pSUPER shRNA construct containing EGFP (pSUPER.GFP) was used to generate *Zic3* knockdown cells (Figure 27), to enable tracking of transfected cells by GFP expression. This construct was similar to the pSUPER construct used previously, with the exception of a GFP transgene inserted upstream of the antibiotic resistance cassette. This construct has been extensively tested in our lab and produces a knockdown efficiency equivalent to that of the pSUPER vector. In addition, GFP fluorescence has been observed as a reliable indicator of vector expression.

Three days following transfection of the pSUPER.GFP constructs (Figures 28A and 29A), GFP was expressed in approximately 80% of ES cells, indicating a high rate of transfection efficiency. The non-targeting cells proliferated quickly and gave rise to small ES cell colonies at this stage (Figure 28B). In contrast, the *Zic3* knockdown cells showed differentiated morphology (Figure 29B) and were proliferating at a slower rate. This observation is consistent with the previous data

103

Figure 27. **pSUPER.GFP.neo construct from Oligoengine**. This construct features an shRNA cloning site (MCS) downstream of the RNA pol III H1 promoter for endogenous production of siRNA. In addition, EGFP expression and Neomycin antibiotic resistance are driven by the PGK promoter

Figure 28. GFP fluorescence in mES cells transfected with non-targeting pSUPER-GFP shRNA vector. (A - B) The non-targeting control cells demonstrated robust GFP expression 3 days after transfection, with antibiotic selection introduced 24 hours post-transfection. (C - D) Three weeks post-transfection, the non-targetting pSUPER-GFP cells continued to demonstrate robust GFP expression, indicating that the shRNA construct was stably expressed in control cells undergoing long-term selection.

Figure 29. GFP fluorescence in mES cells transfected with the Zic3-pSUPER-GFP shRNA vector. (A - B) The Zic3 RNAi cells demonstrated robust GFP expression 3 days after transfection. The decreased proliferation rates following Zic3 knockdown resulted in smaller cell colonies compared to the controls in Figure 11. (C - D) Three weeks following transfection, the Zic3-pSUPER-GFP cells gave rise to colonies were non-fluorescent for GFP, suggesting that the cells that survived selection did not express a significant amount of shRNA. (E) Two clonal lines derived from each of the non-targetting pSUPER.GFP or Zic3-pSUPER.GFP vectors were assayed for expression of Zic3. The results indicated that, despite lack of GFP fluorescence, Zic3 expression was reduced by 60% in the Zic3 knockdown lines relative to non-targeting controls.

demonstrating that Zic3 transient knockdown resulted in ES cell differentiation (Figure 22B).

Following three weeks of antibiotic selection, robust levels of GFP expression were observed in the non-targeting knockdown cells (Figure 28C), indicating that the pSUPER.GFP vector was stably expressed in cells undergoing long-term passage. In contrast, the Zic3 knockdown cells revealed a striking lack of GFP expression (Figure 29C). This observation was surprising as colonies emerging from long-term passage of pSUPER.GFP cell lines were generally observed to have high levels of GFP fluorescence (See Appendix 4 for illustration of GFP-expressing colonies derived from knockdown an unrelated gene, *CoupTFII*). The lack of GFP expression is therefore unique to the *Zic3* knockdown cells, and it suggests that colonies present after three weeks resulted from low expression levels from the shRNA construct that conferred sufficient antibiotic resistance for cell survival, but reduced knockdown efficiency.

Clonal cell lines were derived from the non-targeting and *Zic3* knockdown cells by expansion of individual colonies at 3 weeks. Two cell lines per construct were assayed for *Zic3* expression, and the results indicate that *Zic3* was downregulated by 60% in the *Zic3* knockdown lines relative to the control lines. This knockdown is less robust than in the transient *Zic3* knockdowns where depletion of *Zic3* expression by 70% to 80% was observed (Figure 21a). The results therefore support the hypothesis that the Zic3 clonal lines resulted from a subset of transfected cells that maintained *Zic3* shRNA expression at decreased

107

levels, thus allowing a degree of proliferation that was compatible with long-term passage.

3.2.4.2 Endoderm genes are upregulated in Zic3 clonal knockdown lines

The Zic3 knockdown lines derived from the non-fluorescent construct (pSUPER-Zic3) were assayed to determine the expression profile of pluripotency and lineage marker genes. As observed with the cell lines from pSUPER.GFP (Figure 29E), Zic3 expression was downregulated approximately 60% relative to vectoronly lines (Figure 30a). The pluripotency genes Oct4 and Sox2 were reduced between 20% to 30% relative to controls in all three clonal knockdown lines, while Nanog was reduced by 80% (Figure 30a). The endodermal genes Pdgfra, Gata4, Gata6, and Sox7 were 30-fold higher than in the controls, while Sox17 was upregulated between 60- to 80-fold, and FoxA2 was increased by 80- to 120-fold in all three Zic3 knockdown lines (Figure 30b). The induction of endodermal markers here was substantially greater than observed in the transient Zic3 knockdowns. Expression of mesendoderm, mesoderm, ectoderm, trophectoderm and Wnt-related genes remained essentially unchanged (<2-fold) in the Zic3 knockdown lines (Figure 30c). Thus the specific upregulation of endodermal gene expression in the clonal lines is consistent, and in fact more pronounced, with the observations in the transient knockdowns (Figure 23). It would be interesting to evaluate the Zic3 knockdown effect in a range of clonal lines in further experiments, to correlate varying Zic3 levels with the extent of endoderm marker upregulation.

3.2.4.2 Endoderm protein expression is upregulated in Zic3 clonal knockdown lines

To ascertain if there were corresponding increases in endodermal protein levels, immunocytochemistry was performed against FoxA2, Gata6 and PDGFRA in the clonal lines. The *Zic3* knockdown lines consistently demonstrated robust endodermal marker staining (Figure 31A) that was absent in the vector control lines (Figure 32). Oct4 staining was also observed in the cells that were positive for endodermal marker expression (Figure 31A). Interestingly, although the *Zic3* clonal knockdown lines expressed Oct4 and SSEA-1 (Figure 31B), Nanog protein expression was significantly reduced relative to the vector control lines (Figure 33). This corroborated with my earlier observation that Nanog gene expression levels were down-regulated in the *Zic3* knockdown lines (Figure 30A) and raises the possibility that Nanog gene expression is directly regulated by *Zic3*.

3.2.5 Zic2 is able to partially compensate for the function of Zic3

Zic3 belongs to a family of transcription factors with five member proteins (Zic1 – Zic5) encoding five consecutive C_2H_2 zinc finger domains which are highly conserved across species^{186,187}. In addition, the Zic family members show distinct and partially overlapping expression patterns during development^{115,116}. *Zic3* shares 64% and 59% homology with the *Zic1* and *Zic2* genes respectively, and this homology increases to 91% within the zinc finger domain. It was therefore interesting that *Zic3* RNAi resulted in a 2-fold increase in *Zic2* (Figure 34a),

raising the possibility that *Zic2* may be compensating for the reduction in *Zic3* levels. *Zic2* is expressed in ES cells and its expression is downregulated upon differentiation^{85,86}. *Zic2* may also be regulated by Nanog as binding sites for this TF have been mapped to the Zic2 gene by chromatin immunoprecipitation (Figure 35); however the functional regulation of Zic2 by Nanog remains to be tested. Knockdown of *Zic2* expression by siRNA (75% reduction in RNA levels) did not produce any effect on lineage marker expression (Fig 34b).

In order to determine if *Zic2* compensated for the absence of *Zic3*, I performed a double RNAi experiment against *Zic2* and *Zic3* in ES cells. The double knockdown prevented *Zic2* levels from increasing in a compensatory manner as observed in the *Zic3* single knockdown (Figure 34c). Interestingly, endodermal specification was markedly enhanced following the *Zic2* and *Zic3* double knockdown as demonstrated by increased expression of *Sox17* (4.7-fold), *Pdgfra* (8.7-fold) and *Gata4* (3.1-fold), which is more robust than observed for all three markers (*Sox17*, 3.1-fold; *Pdgfra*, 3.3-fold; *Gata4*, 1.5-fold) when *Zic3* alone was reduced (Figure 34d). The results therefore indicate that, in the absence of *Zic3*, *Zic2* is able to partially compensate and downregulate endoderm gene specification in a global assay of ES cell expression.

Figure 31. Protein expression in Zic3 knockdown clonal lines. (A) Oct4 protein expression was high in all three Zic3 knockdown lines, and the expression of specific endodermal marker proteins Foxa2, Gata6 and Sox17 was observed in the same cells. (B) The Zic3 knockdown lines expressed stem cell surface protein, SSEA-1, which is specific to murine ES cells. Scale bars represent 100 μ m.

Figure 32. Endodermal marker staining for E14 cells. The negative staining here demonstrates specificity of positive staining for Zic3 knockdown clonal lines in Figure 31. Scale bars, 100 μ m.

Figure 33. Nanog expression in the Zic3 knockdown lines. The Zic3 clonal knockdown lines demonstrated a significant decrease in Nanog expression.

Figure 35. A summary of Oct4, Nanog and Sox2 binding sites on the Zic2 promoter. Oct4 and Sox2 binding sites were not present in this region, and three Nanog binding sites were located upstream of the Zic3 transcription start site (Loh *et al.*, 2006; Sox2). Each unit on the scale represents 10 kb.

3.3 Discussion

3.3.1 Zic3 expression is associated with the key regulators of pluripotency in ES cells.

The work presented in this chapter demonstrates that Zic3 plays a key regulatory role in controlling ES cell differentiation. Here I have demonstrated that the expression pattern of Zic3 in ES cells corresponds closely with that of known regulators of pluripotency Oct4, Nanog, Sox2, which have high levels of expression in the undifferentiated state and decrease rapidly upon differentiation (Figure 17). The findings in mouse ES cells are consistent with results from human ES cells⁸⁵. The differences observed in Zic3 expression levels between pluripotent and early differentiation phases imply a potentially significant role for Zic3 in ES cell pluripotency. In addition, chromatin-IP mapping by us and others has revealed Oct4, Nanog and Sox2 co-occupancy on the Zic3 regulatory region, suggesting that Zic3 may be co-ordinately regulated by Oct4, Nanog and Sox2 in mouse and human ES cells^{19,20} (Figure 19). These observations together led to my hypothesis that Zic3 functions to maintain the pluripotent state of ES cells. Here I characterized the relationship of Zic3 with that of the key stem cell regulatory factors, and uncovered a role for Zic3 in the maintenance of ES cell pluripotency.

3.3.2 Zic3 functions downstream of Oct4, Nanog and Sox2 and is positively regulated by these factors.

My first objective was to assess the nature of interactions between Oct4, Nanog and Sox2 with the *Zic3* regulatory region. This was addressed using a combinatorial approach that encompassed the results of chromatin-IP mapping 117 and RNAi, to demonstrate that ablation of Oct4, Nanog and Sox2 in mouse ES cells resulted in a significant decrease in *Zic3* expression (Figure 20 A-B). Since *Zic3* was previously implicated as a target of Oct4, Nanog and Sox2 in ChIP experiments^{19,20}, the concern of non-direct or secondary effects of RNAi was significantly reduced⁴⁵. Thus it is likely that the binding of Oct4, Nanog and Sox2 to the *Zic3* gene regulatory region serves to enhance target gene expression, such that the key pluripotency regulators function as transcriptional activators of *Zic3* in ES cells (Figure 36). This point is underscored by the results with Nanog over-expression and binding site mutagenesis assays, which indicate a positive association between Nanog binding and *Zic3* expression (Figure 20 D-F). These results therefore reveal positive functional interactions between the key pluripotency regulatory regional interactions between the key pluripotency regulatory functional interactions between the key pluripotency regulatory functional interactions.

Since transcriptional networks are also known to feature auto-regulatory loops^{45,48}, I also asked if the inverse relationship was true – that is, whether Zic3 regulates expression of the key regulatory genes. Here I observed that *Oct*4 and *Sox2* levels remained slightly perturbed by the ablation of *Zic3* expression (Figures 521A and 30A). In the absence of clear changes despite a robust Zic3 knockdown, the above data places *Zic3* downstream of Oct4 and Sox2 in the ES cell transcriptional networks as illustrated in Figure 36. In addition, the immunostaining experiments revealed a significant decrease in Nanog expression within the *Zic3* clonal knockdown lines (Figures 30A and 33).

Figure 36. A model of Zic3 function in embryonic stem cells. Zic3 contributes to the maintenance of pluripotency by operating downstream of Oct4, Nanog and Sox2 to inhibit endoderm lineage specification as characterized by endodermal markers Sox17, PDGFRA, Gata4, Gata6, Foxa2 and Sox7. The presence of Zic3 also maintains the expression of the homeodomain protein Nanog, a key regulator of pluripotency in embryonic stem cells.

3.3.3 Zic3 maintains pluripotency by blocking endodermal differentiation in ES cells Embryonic stem cells are derived from the inner cell mass of the blastocyst and, as such, are able to undergo unlimited self-renewal and differentiation into the three germ layers of the embryo – mesoderm, ectoderm and endoderm^{2,3}. In the pluripotent state, ES cells remain undifferentiated and do not express specific lineage markers. I was interested in examining the effect of *Zic3* knockdown on the maintenance of ES pluripotency using specific lineage markers as an assessment of differentiation following *Zic3* knockdown. Here I demonstrate that ablation of *Zic3* expression in both mouse and human ES cells resulted in a significant increase in markers of endodermal lineage (Figures 23, 30B and 31). These results suggest that Zic3 may have an important role in preventing endodermal specification in ES cells.

Many reports support this observation: Firstly, Zic3 knockdown in ES cells induced expression of Gata4 and Gata6, and forced expression of Gata4 and Gata6in ES cells result in differentiation towards extraembryonic endoderm⁸⁴. Further strengthening this association is the fact that all other endodermal markers assayed (Pdgfra, Sox17 and FoxA2) are also expressed in extraembryonic endoderm derivatives¹⁹⁰. Secondly, Zic3 regulates *Nodal* expression through direct interaction with its promoter during gastrulation and it has been shown that Nodal expression is essential in proper specification of the embryonic visceral endoderm¹⁹¹. This significance is underscored by studies reporting that the earliest abnormalities observed in Zic3-null mice are defects in proper patterning of the anterior visceral endoderm¹⁵⁸. Finally, Zic3 clonal knockdown lines exhibit a significant decrease in Nanog gene expression (Figure

120

30A and 33), and several groups have reported that RNAi-mediated depletion of *Nanog* expression resulted in an induction of extraembryonic endoderm markers *Gata4* and *Gata6*^{39,192,193}.

The results in this chapter indicate that Zic3 functions as a gatekeeper of pluripotency in ES cells by preventing their differentiation into cells that express endodermal markers. Corroborating with this, a significant reduction in Nanog expression was observed in the Zic3 clonal lines. This reduction is noteworthy as Nanog is a key regulator of pluripotency in ES cells⁷⁸, and it is well-established that disruption of Nanog expression results in development of extraembryonic endoderm character in ES cells^{39,192,193}. Thus, I demonstrate here an important role for Zic3 in the maintenance of pluripotency in ES cells through prevention of endodermal lineage specification, and suggest that its action may in part be mediated through the key pluripotency regulator Nanog (Figure 36).

The role of Zic3 in preventing endodermal specification is further supported by evidence indicating its restricted expression within the mesoderm and ectoderm lineages during gastrulation¹⁸⁶. In addition, Zic3 activity has been specifically implicated in the mesodermal and ectodermal molecular pathways in the early developing embryo^{123,126-128}. These data in combination with the results in this chapter suggest that while Zic3 is instructive for mesodermal and ectodermal specification in embryonic development, it may simultaneously function as a repressor of ectopic endodermal induction in these tissues. To determine this it would be interesting to examine the differentiation capacity of *Zic3* knockdown and overexpressing cells in teratoma formation *in vivo*. In addition *Zic3*-null ES

cells may be assayed for their lineage markers under conditions that maintain ES cell pluripotency and when induced to differentiate.

3.3.4 Zic2 works in concert with Zic3 to reduce endodermal specification in ES cells

The transcription factor Zic3 shares five highly-conserved Zinc finger domains with family members Zic1, Zic2, Zic4 and Zic5^{98,101,102,106}. Their partially overlapping spatial and temporal patterns of expression during early development suggests potential functional redundancy between the Zic family members^{115,116}. When Zic3 expression was reduced in ES cells, an increase in *Zic2* gene levels was observed (Figure 34A). The mechanism for this upregulation remains unknown and may be addressed by an investigation of transcriptional regulators which occupy the *Zic2* promoter in ES cells. However, since *Zic2* is also differentially expressed between pluripotent and differentiation states of ES cells^{85,86} and binding of the key pluripotency transcription factor Nanog has been mapped to the *Zic2* regulatory region (Figure 35), I reasoned that Zic2 may participate in the regulation of ES cell pluripotency along with Zic3.

In order to unveil the possible effects of functional redundancy between Zic2 and Zic3, a double knockdown was performed in mouse ES cells. The results indicate that repression of *Zic2* and *Zic3* expression significantly enhanced endoderm specification in ES cells (Figure 34C). The evidence that Nanog binds to the *Zic2* regulatory region suggests that it may be involved in similar pathways as Zic3 in repressing endoderm expression. Thus, Zic2 and Zic3 may participate in redundant or partially overlapping networks to silence endoderm specifying gene

expression and contribute to the maintenance of pluripotency in ES cells. It would be interesting to examine the binding targets of Zic2 to determine if it shares common targets with Zic3 to account for this redundancy.

3.4 Summary

I have demonstrated in this chapter that Zic3 is present in ES cells and that its expression is quickly repressed as the cells begin to differentiate. The expression of *Zic3* in pluripotent ES cells is also directly regulated by Oct4, Sox2, and Nanog. In addition, targeted repression of *Zic3* in both human and mouse ES cells by RNAi induced expression of several markers of the endodermal lineage. Notably, the expression of Nanog, a key pluripotency regulator and repressor of extraembryonic endoderm specification in ES cells, was significantly reduced in *Zic3* knockdown cells. This suggests that Zic3 may prevent endodermal marker expression through Nanog-regulated pathways, and that it is important in maintaining ES cell pluripotency by preventing differentiation of cells into endodermal lineages.

CHAPTER 4:

Zic3 interacts with Sox2 in ES

cells

4.1 Introduction

Zic3 operates directly downstream of Oct4, Nanog and Sox2, and maintains the pluripotent state by preventing ES cells from differentiating into the endoderm lineage. These results place Zic3 within an important loop in association with the key pluripotent factors. In addition, it was recently shown that retrovirus-mediated infection of four ES cell transcription factors (Oct-3/4, Sox2, KLF4 and c-Myc) into mouse fibroblasts resulted in induced pluripotent stem (iPS) cells⁹³. A recent microarray analysis of fully and partially re-programmed iPS cells revealed an upregulation of Zic3 in these cells relative to their original differentiated fibroblast states¹⁹⁴. This further supports the idea that Zic3 may be at least partially involved in the process of restoring the properties of self-renewal and pluripotency during reprogramming of differentiated cells.

While the role of Zic3 in maintenance of the pluripotent state has been established, the detailed molecular pathways in which Zic3 operates in ES cells remain as yet unknown. I was therefore interested to elucidate the network of global targets regulated by Zic3, and to uncover its hitherto unknown interactions with other ES cell-associated proteins. To this end, I reported in the previous chapter that Zic3 positively regulates the expression of Nanog in ES cells in a manner similar to that of the Oct4/Sox2 heterodimer on the Nanog promoter^{82,83}. Here I conducted experiments to address my hypothesis that Zic3 binds with Oct4 and/or Sox2 protein to regulate activity of the Nanog promoter, and in extension, the promoters of their common target genes in ES cells.

4.2 Results

4.2.1 Zic3 interacts with Sox2 in embryonic stem cells

In order to address my hypothesis that Zic3 is an interacting partner of the Oct4/Sox2 transcription complex, experiments were conducted to examine the capacity of Zic3 to associate with the core ES cell regulatory proteins. Here Zic3 co-immunoprecipitation (Co-IP) was performed using the Seize-X Protein G Co-IP kit (Pierce Biotechnology). This method allowed the cross-linking of Co-IP antibodies to the column to prevent their elution with the target protein complex, hence eliminating the problem of contaminating antibody heavy/light chain bands in the sample (Figure 37). To ensure adequate release of captured proteins, immunoprecipitated complexes from ES cell nuclear extracts were eluted from the column in two consecutive fractions. Following Zic3 co-IP (Figure 38), western blots were used to confirm the presence of Sox2 and Oct4 within these fractions and found a clear Sox2 band (32 kDa) in the first eluted fraction. The Oct4 protein (47 kDa), in contrast, was not detected in the samples. These results indicate that Zic3 and Sox2 are interacting partners in ES cells.

Inverse experiments were performed to verify these observations. Corroborating with results from the Zic3 pull-down, the Oct4 co-IP yielded Oct4 protein at 47 kDa but no trace of Zic3 protein in both fractions (Figure 38). In contrast, the Sox2 co-IP yielded Sox2 and Zic3 protein in both eluted fractions (Figure 38; 32 kDa and 55 kDa respectively). To ensure that the Co-IP proteins were specifically pulled down by the antibodies used, a control pull-down was performed using

Figure 37. Sox2 Co-immunoprecipition with the Seize-X Protein G Co-IP kit (Pierce Biotechnology). Fractions 1 - 3 are displayed. (A) Presence of Sox2 protein in Sox2 Co-IP samples at 32 kDa. (B) Presence of Zic3 protein in Sox2 Co-IP samples at 55 kDa. Detection of a single protein species at the expected size confirms the specificity of the assay. Unlike traditional Co-IPs, antibodies are cross-linked to Seize-X columns and do not elute with protein complexes. The absence of additional bands in the Sox2 blot (A), for which the secondary antibody used is cross-reactive with the original co-IP antibody, indicates the lack of contamination by the Co-IP antibody's heavy and light chains (50 and 20 kDa respectively).

Figure 38. Zic3 and Sox2 interact in embryonic stem cells. Zic3 and Sox2 are co-immunoprecipitated in mouse ES cells (55 kDa and 32 kDa respectively), while pull-downs for Oct4 and GST did not result in Zic3 or Sox2 precipitation. Positive controls for Zic3, Oct4 and Sox3 were included to ensure sensitivity and specificity of the assay.

antibodies against GST. In these control samples, no Zic3, Oct4 or Sox2 was detected (Figure 38). Total mouse ES nuclear extract was included to confirm that western blot conditions were specific and sensitive to detect Oct4, Sox2 and Zic3. Taken together, the above results suggest that Zic3 interacts specifically with Sox2 in ES cells.

4.2.2 Zic3 shares regulatory pathways with Sox2 in ES cells

I hypothesized that as interacting partners, Zic3 and Sox2 will share regulatory pathways in mouse ES cells. To test this possibility, RNA interference of *Sox*2 and *Zic3* were performed in biological triplicate to identify commonly regulated genes. After 4 days of Zic3 knockdown, the expression of Zic3 was reduced by 80% relative to the non-targeting control (Figure 39A). In response to Zic3 knockdown, Oct4, Nanog and Sox2 expression levels were down-regulated 20%, 40% and 30%, respectively (Figure 39A).

Global gene expression changes in the RNAi samples were assayed with Illumina bead chip arrays. In response to the depletion of endogenous Zic3, a total of 1122 genes were found to be significantly regulated, of which 609 genes were upregulated and 513 genes were down-regulated (\geq 1.5 fold, FDR 0.1). The complete list of genes is provided in Supplementary Tables 1A and 1B. A parallel analysis of gene expression changes was performed in ES cells after 4 days of Sox2 knockdown, where I found that the levels of *Sox2*, *Oct4*, *Nanog* and *Zic3* were down-regulated by 80% or greater relative to the non-targeting control (Figure 39B). The global gene expression assay on the *Sox2* knockdown cells

Figure 39. Gene expression profiles for Sox2 and Zic3 RNAi (A) Zic3 RNAi results in significant downregulation of endogenous Zic3 expression. The expression of Oct4, Nanog and Sox2 were also downregulated in response to Zic3 knockdown. (B) Sox2 RNAi results in significant downregulation of Sox2 expression in mouse ES cells with Oct4, Nanog and Zic3 levels correspondingly downregulated. (C) Zic3 and Sox2 RNAi samples reveal similar expression profiles for 557 genes (Fold change \geq 1.5; FDR 0.1).
identified a total of 5445 genes that were differentially expressed (\geq 1.5-fold, FDR 0.1), with 2733 genes significantly up-regulated and 2712 genes down-regulated (gene lists provided in Supplementary Tables 2A and 2B). Overall, more genes were regulated by the *Sox*2 knockdown (5445 vs.1122) and the *Sox*2 knockdown generally resulted in greater gene expression changes than *Zic3* knockdown. This suggests that while Zic3 and Sox2 co-regulate a subset of genes, the Zic3 transcriptional network is slightly less influential than that of Sox2.

The sets of differentially expressed genes from the Zic3 and Sox2 knockdowns were then compared, and the results indicated that 557 genes were similarly regulated in the Zic3 and Sox2 knock-down cells (Figure 39C). To assess the statistical significance of the 557 similarly regulated genes, I examined the *Zic3* and *Sox2* RNAi overlaps in greater detail (Figure 40). Amongst the genes that were up-regulated 1.5-fold or greater, 304 out of 609 genes (50%) that changed as a result of *Zic3* RNAi were similarly regulated by *Sox2* RNAi (Figure 40A). An overlap of only 11% ± 1.3 was expected by random sampling, thus indicating that the actual 50% overlap is highly significant (*p*-value = 1.9725×10^{-147}). Likewise, 253 of 513 genes (49%) that were down-regulated by *Zic3* RNAi were similarly affected by *Sox2* knockdown, while an overlap of 10.7% ± 1.3 was expected by chance (*p* < 6.9763×10^{-146} ; Figure 40B). These results demonstrate that *Zic3* and Sox2, which we have shown to physically interact, co-regulate hundreds of genes in ES cells^{19,20}.

Figure 40. Significant overlap of Zic3 and Sox2 RNAi-regulated genes (A) Zic3 and Sox2 RNAi genes 1.5-fold upregulated and above show statistically significant overlap. (B) An overlap of Zic3 and Sox2 RNAi 1.5-fold downregulated and below is statistically significant.

To understand the biological implications of the gene network co-regulated by Sox2 and Zic3, the list of 557 genes was uploaded to the Panther database for biological process annotations¹⁹⁵. In this analysis, the genes were clustered into functional themes and compared to a reference list to look for statistically over (+) and under-represented (-) pathways. Here I found 26 biological processes that were significantly over- or under-represented relative to all genes on the Illumina bead arrays (p < 0.01, Supplementary Table 3). Of these 26 pathways, the 12 highlighted in Table 7 may be broadly clustered under developmental- or stem cell-related themes. For comparison, the total number of genes from the Illumina reference list for each category is presented (#Ref list). Based on random sampling of 557 genes from the reference list (equivalent to the total number of genes in input list), the number of genes expected to cluster under each pathway is calculated (#Expected). The actual number of genes that changed as a result of RNAi (#Observed) was then compared with the #Expected to derive a p-value by Binomial testing. The biological processes in Table 7 are significantly overrepresented in both the Zic3 and Sox2 RNAi gene sets. Supplementary tables 4 A - D provide the full lists of genes that cluster under each pathway. These annotations suggest that Zic3 and Sox2 are interacting partners that co-regulate pathways involved in early embryonic development, ectoderm and mesoderm specification, oncogenesis and stem-cell related functions. The genes belonging to the endoderm development pathway (Sox17, Gata6, Pdgfra) were also found in the overlapping upregulated gene set between Zic3 and Sox2 RNAi. However the endoderm pathway did not rank as statistically significant (p > 0.05) with Bionomial testing in the Panther output (Supplementary Table 3).

	PANTHER BIOLOGICAL PROCESS	# REF. LIST (Illumina)	# EXPECTED	# OBSERVED	OVER / UNDER	<i>p</i> - value
Early	Developmental processes	2057	58.5	106	+	0.0000
embryonic	Embryogenesis	146	4.15	14	+	0.0001
development	Anterior/posterior patterning	66	1.88	7	+	0.0032
Ectoderm	Ectoderm development	654	18.6	37	+	0.0001
	Neurogenesis	573	16.3	30	+	0.0012
	Segment specification	100	2.84	8	+	0.0087
Mesoderm	Mesoderm development	557	15.84	26	+	0.0100
	Muscle contraction	169	4.81	12	+	0.0039
	Muscle development	137	3.9	10	+	0.0066
Stem cell,	Cell proliferation / differentiation	850	54	24.17	+	0.0000
proliferation	Oncogenesis	376	10.69	28	+	0.0000
& oncogenesis	Oncogene	84	2.39	10	+	0.0002

Table 7. Panther Biological Process annotations for significantly co-regulated genes by Zic3 and Sox2 RNAi

Table Legend

REFERENCE - No. of genes from Reference list that clustered under specific Panther category (Agilent mouse promoter array gene list)

OBSERVED - No. of ChIP target genes that clustered under specfic category

EXPECTED - No. of ChIP target genes that were expected under specfic category

OVER/UNDER - No. of observed genes vs. expected (indication of over or underrepresentation)

P-value - Probability that the number of genes observed in this category occurred by chance (Categories with p<0.01 are highlighted)

4.2.3 Zic3 and Sox2 co-occupy physical binding sites in mouse ES cells

Given the evidence that Zic3 and Sox2 physically interact and co-regulate developmental pathways, I hypothesized that common binding locations exist between Zic3 and Sox2 in the mouse ES genome. To address this hypothesis, chromatin immunoprecipitation (ChIP) experiments were conducted for both Zic3 and Sox2, and subsequently assayed for enriched binding sites using a mouse promoter array (Agilent Technologies, CA). These ChIP-chip arrays contain 2 x 244K probes, which interrogate promoter regions of ~17,000 transcripts. Two biological replicates were performed for each experiment.

The Zic3 ChIP-chip analysis yielded 665 significantly enriched probes at the stringent cut-off p < 0.001 (Supplementary Table 5). Due to the fact that maximum chromatin shear size was 500 bp, multiple 60-mer probes on the tiled array were often enriched in close proximity to each other. To account for redundant probe enrichments, each 60-bp probe was extended equally on each end to a length of 500 bp. These extended regions were then compared, and overlapping regions were merged to define unique Zic3 target regions. Using this analysis, a total of 379 Zic3 unique target promoter sites were identified (Appendix 5). A similar analysis was conducted for the Sox2 ChIP-chip samples; a total of 4400 60-mer probes were significantly enriched at p < 0.001 (Supplementary Table 6). These probes were extended to 500bp and then overlapped to yield a total of 1764 unique genomic locations that are occupied by Sox2 in ES cells (Appendix 6).

I was interested to determine the extent of co-binding between Zic3 and Sox2. Thus, the ChIP-chip results for Sox2 and Zic3 were compared and I found that 48.8% (185 out of 379) Zic3-enriched sites were also occupied by Sox2 (Figure 41A; details in Supplementary Table 7). This overlap was highly significant ($p < 3.69e^{-187}$) relative to an expected overlap of 5.95 ± 2.42 sites based on 100 simulations. I examined the overlaps in greater detail to determine the physical binding distance between the most highly enriched Zic3 and Sox2 probes. Figure 41B indicates that the location of the highest enriched probes for both Zic3 and Sox2 ChIPs coincided in 87 out of 185 co-bound regions (48%). This resulted in a sharp peak in the graph at 0 bp which rapidly declined further away from the Zic3 probe. These results suggest that Zic3 and Sox2 bind in very close proximity within the mouse ES genome.

Based on the degree of overlap between the most highly-enriched Zic3 and Sox2 probes, I hypothesized that Zic3 and Sox2 binding motifs would occur close to each other. The Sox2 motif has been well-characterized^{20,49}; however, there were no known Zic3 motifs in the context of the ES genome. Thus, I used the binding site data described above to derive a Zic3 consensus binding motif (Figure 42A). In this analysis, 332 high-quality (normalized log2 ratio > 2) enriched 60-mer probes were selected from the list of 665 enriched probes for a *de novo* motif search. The probe sequences were equally extended on both ends to a final length of 300 bp and uploaded to the Weeder search function¹⁹⁶. From the results, ubiquitously-occurring sequence motifs within promoters were filtered out¹⁹⁷ and the remaining motifs were assessed by frequency of their occurrence

Figure 42. The Zic3 consensus DNA binding sequence. (A) A Zic3 consensus binding motif was derived from 212 Zic3 target regions using the Weeder motif search function. (B) A Zic3 binding motif from the T2G database established by Mizugishi et al. 2001. In this assay, 30 random oligonucleotides were incubated with GST-fused Zic3 protein. The DNA sequences bound by Zic3 protein were sequenced to determine the optimal Zic3 binding sequence.

4

5 Position within Zic3-bound sites using a method previously described²⁰. From this analysis I identified 3 highly analogous binding motifs that correlated strongly with Zic3 enrichment. An independent search was then conducted for these 3 motifs within all Zic3 enriched regions which identified 212 positive-scoring sites. The native motif sequences were extracted from these 212 sites and aligned to generate the final Position Weight Matrix shown in Figure 42A. This motif shares some similarity with a previously reported Zic3 consensus binding site (Figure 42B; Transfac #T04671¹⁰⁵). In particular, they both demonstrate heavy preference for the guanine (G) nucleotide. However, due to the fact that a greater number of Zic3 binding sequences were analyzed in these experiments, the Zic3 consensus motif presented here shows overall greater weight, and hence specificity, at each nucleotide position (Figure 42A). The binding affinity of Zic3 to this newly-defined motif may be tested by gel-shift assays and compared to that of the previously established Zic3 motif.

To determine the extent of Zic3 and Sox2 motif co-occurrence, two reciprocal analyses were performed. First, I identified the locations of Sox2 motifs within the 1764 unique Sox2 target regions described in Figure 41A (Appendix 6). I then searched for the presence of Zic3 motifs within 100 bp of the Sox2 motifs and found a total of 945 co-occurring motif regions. Figure 43A shows the relationship between the number of co-occurring motifs identified and their distance relative to the nearest Sox2 motif. Most Zic3 motifs (123 regions) were found within 10 bp of Sox2 motifs. A high number of co-occurring motifs were also found 11 to 20 bp

apart (101 regions). Beyond 20 bp, the frequency of Zic3 and Sox2 co-occurring motifs declined sharply as seen in Figure 43A.

An inverse analysis was performed with the Zic3 target regions described in Figure 41A (Appendix 5). The Zic3 motifs within these regions were identified and their sites scanned for the presence of Sox2 motifs. A total of 158 Sox2 motifs were identified within 100 bp of the Zic3 motif. Similar to the earlier observation (Figure 43A), the greatest number of Sox2 motifs were identified within 10 bps of the Zic3 motif (30 regions) and this frequency declined with separation distance (Figure 43B). Taken together, the above results indicate that Zic3 and Sox2 co-occupy physical sites in the mouse ES genome.

4.3 Discussion

4.3.1 Zic3 and Sox2 regulate a common set of pathways in ES cells

The results in this chapter demonstrate for the first time a physical interaction between Zic3 and Sox2, and evidence for their co-regulation of pathways in ES cells. Sox2 has an extended network involving a greater number of genes that change when its expression is perturbed in ES cells. Although Zic3 appears to directly or indirectly regulate fewer genes than Sox2, a significant proportion of genes that are dependent on Zic3 expression are also similarly regulated by Sox2. These genes cluster into biological pathways that reveal similar roles for Zic3 and Sox2 in the areas of stem-cell related proliferation, early embryonic

development, ectoderm and mesoderm development. Evidence exists in the literature for the independent roles of Sox2 and Zic3 in several of these pathways, and in particular for neural differentiation^{72,106,116,126,198,199}. These data provides further validation for the separately established functions of the two transcription factors, and present unique evidence for their co-operative action on genes related to the abovementioned contexts.

In further support of the interaction between Zic3 and Sox2, I highlight binding data demonstrating that they share a significant subset of target genes. Zic3 and Sox2 bind in close proximity on the promoters of their common targets, suggesting that they function as part of what is, at minimum, a heterodimer unit. The idea that Zic3 may associate with an ES cell protein complex is a plausible one, as reports in the literature suggest that many of the core ES cell proteins bind closely to each other ^{49,51}, and Sox2 in particular is known to be a binding partner of Oct4 ^{19,83}. Hence I examined if Zic3 is associated with the Sox2-Oct4 heterodimer in ES cells. The distance between Zic3-Sox2 ChIP-chip peak enrichments was compared with that of Oct4 ChIP-sequencing peaks⁴⁹, and no significant association between the Sox2 and Oct4 binding sites (Supplementary table 8). These results suggest that Sox2 and Zic3 interact to regulate a separate subset of pathways from that of the Sox2-Oct4 heterodimer in ES cells.

4.3.2 Zic3 and Sox2 are interacting partners in ES cells

There are two possible ways in which Zic3 may bind with Sox2, either by direct contact with DNA or indirectly via Sox2 (Figure 44). A previous report suggests that Zic3 is a transcription factor with low binding affinity and is dependent on its 142

co-partners for specificity¹⁰⁵. Thus I established three criteria to determine if Zic3 binding is dependent on that of Sox2 in ES cells: First, I assessed whether Zic3 binding sites are always located in close proximity with Sox2, and found that Zic3 sites were distinct from Sox2 in slightly over 50% of Zic3 binding targets (Figure 41A). Second, I examined if it was possible to derive an independent Zic3 motif from its ChIP-determined binding sites, and found that a consensus sequence could be detected in at least 212 Zic3 binding regions.

Third, I reasoned that if Zic3 binding was solely mediated by the binding of Sox2, then a significant association should not exist between the Zic3 and Sox2 motifs. The Sox2 binding motif has been reported as a half-site in the context of heterodimerization with Oct4^{19,20,83} and more recently on its own with the use of in-depth ChIP-sequencing techniques⁴⁹. These Sox2 binding motifs are highly similar and many occurrences of these motifs were found within the Sox2 ChIPchip peak binding sites, providing further validation of the accuracy of the ChIP results. Upon examination of the Zic3 and Sox2 consensus binding regions, an association between DNA binding motifs for the two transcription factors was observed (Figure 43A & B). Based on this, it is possible to conclude that the Zic3 binding motif is distinct from the Sox2 motif and yet closely associated with it, suggesting that Zic3 binds both in close proximity with Sox2 and comes in direct contact with DNA. It is still possible, however, that the binding of Zic3 is enhanced by the presence of Sox2 or that it is binding to an as yet unknown partner that is responsible for its specificity in ES cells, and these notions remain to be further elucidated with affinity purification and mass spectrometry to identify binding partners of Zic3.

Figure 44. Possible binding schemes for Zic3 and Sox2 in ES cells. Zic3 and Sox2 interact in mouse ES cells. Zic3 binds to Sox2 in one of two ways: 1) By direct contact with DNA, or 2) indirectly via Sox2. Our results indicate that Zic3 has a consensus binding motif that is found in close proximity with Sox2, suggesting that Zic3 binds directly to DNA in mouse ES cells.

4.4 Summary

Little was previously known about the regulatory networks that Zic3 employs to maintain pluripotency in ES cells. Thus I have established the global regulatory targets of Zic3 in ES cells and investigated its interactions with other ES cell-associated proteins. A Zic3 consensus binding motif was defined based on DNA sequences isolated by Zic3 chromatin immunoprecipitation (ChIP), and evidence for the co-operative action of Zic3 with Sox2 was presented. These results include: (1) physical interaction between Zic3 and Sox2 proteins, (2) evidence for their common regulatory pathways, and (3) a significant overlap between their target genes. These results suggest that Zic3 binds both in close proximity with Sox2 in ES cells and comes in direct contact with DNA. This chapter therefore presents new evidence for the hitherto unknown interaction between Zic3 and Sox2 in ES cells, and provides unique molecular insight into the question of how Zic3 functions in the maintenance of ES cell pluripotency.

CHAPTER 5: Zic3 is a regulator of lineage specification during ES cell differentiation

5.1 Introduction

In addition to its role in pluripotency, Zic3 is a positive regulator of embryonic morphogenesis and cardiac, skeletal and neural development^{106,115,124,126,129,158}. During early embryogenesis, Zic3 is involved in the initiation of gastrulation and the specification of left-right asymmetry. *Zic3 null* mouse models manifest early embryonic patterning failures that encompass defects in the anterior visceral endoderm and primitive streak formation^{129,158}, indicating an important role for Zic3 in embryonic patterning. Complex cardiac defects also result from abnormal left-right axis formation during embryonic morphogenesis in *Zic3* knockout mice, and Zic3 has been shown to interact with Nodal in left–right patterning that gives rise to subsequent cardiac development in the mouse¹²⁴. These studies have further indicated a Zic3-responsive enhancer that mediates *Nodal* expression at the node¹²⁴.

Zic3 expression has also been identified in developing mouse ectoderm during gastrulation¹¹⁵, within the embryonic brain during organogenesis, and in the cerebellum of adult mice¹⁸⁶. In addition, neural tube defects have been observed in the developing hindbrain of Zic3 knockout mouse models^{129,200}. Interestingly, the overexpression of *Zic3* in the ventricular zone of the embryonic mouse telencephalon, where cortical neurons are generated during development, results in an increase of proliferating neuronal progenitors²⁰¹. These data strongly suggest a role for Zic3 in the early specification and maintenance of neural identity. Previous reports have also demonstrated the ability of Zic3 to activate the neural differentiation program through induction of proneural gene expression in *Xenopus* tissue¹²⁶. However, there is to date no clear understanding of the 147

global regulatory networks within which Zic3 operates to determine lineage specificity. Here I investigate how Zic3 confers lineage specificity during ES cell differentiation.

5.2 Results

5.2.1 Zic3 regulates the promoters of lineage-specific genes

Amongst the list of Zic3 target genes identified by chromatin-immunoprecipitation (Appendix 5) were many lineage-specific genes. In order to determine if these genes were responsive to regulation by Zic3, five arbitrarily selected target regions were tested for functional response to perturbations of Zic3 levels. Table 8 provides details on these regions including the location of Zic3 binding, the gene associated with the target region, and the response of the gene to *Zic3* RNAi or overexpression in ES cells. With the exception of *Nanog*, the other four promoter regions belonged to genes that specify lineage development. These regions were amplified from mouse ES cell genomic DNA and linked to a luciferase reporter to test for transcriptional responsiveness. The length of the target region and type of luciferase vector used, enhancer or promoter, is shown in Table 8. The *Nanog* promoter region that was cloned contained the native *Nanog* minimal promoter, while the other 4 target regions were cloned upstream of an SV40 minimal promoter to test for enhancer activity.

Zic3 enrichment was firstly verified at these 5 target regions by ChIP-PCR. Two DNA fragments approximately 200bp in length were selected for PCR amplification per target region. One PCR fragment contained the Zic3 motif while

Zic3 Binding Location	Associated Gene	Refseq #	Regulation by Zic3 in ES cells	Luciferase Assay type / DNA Length (bp)	
Promoter	Zic5-Zic2	NM_022987 NM_009574	Zic2 upregulated with Zic3 RNAi	Enhancer / 980 bp	
Intron 1	Fgf5	NM_028016	Downregulated with Zic3 overexpression	Enhancer / 592 bp	
Promoter	Mbtps2	NM_011803	Up with Zic3 overexpression	Enhancer / 471 bp	
Intron 1	Cortistatin	NM_007745	Up with Zic3 overexpression	Enhancer / 390 bp	
Promoter	Nanog	NM_028016	Down with Zic3 RNAi	Promoter / 383 bp	

 Table 8.
 Luciferase assays for Zic3 target regions. DNA fragments were cloned into the pGL3 basic vector (Promoter assay) or pGL3-SV40 vector (Enhancer essay)

the other was located within 300 bps of the motif-containing fragment. The sequences of all PCR primers used are provided in Appendix 1. Figure 45 presents the fold enrichments at the 5 target regions by ChIP-PCR. The *Zic5-Zic2* divergent promoter (*Zic5/2*) and *Nanog* promoter regions were enriched between 10- to 20-fold by ChIP-PCR, while the *Cortistatin, Mbtps2* and *Fgf5* promoter regions were enriched greater than 50-fold each. These results were normalized to a region on the mouse *Chst1* promoter (NM_003654) that was not enriched by Zic3 ChIP. In contrast, a control ChIP experiment performed with a non-specific GST antibody did not enrich any of the target regions tested. Two further controls were performed with PCR primers that amplified non-Zic3 binding regions of the *Nanog* enhancer regions (Controls A and B). No Zic3 enrichment was detected at these regions, relative to the GST control. These results together confirm that the target regions selected for functional characterization are indeed occupied by Zic3 in the mouse ES genome.

Transcriptional reporter assays were performed on the five promoter regions to test for functional regulation by Zic3. Figure 46 shows the activity of the promoter regions in response Zic3 overexpression in 293T cells. The *Zic5/2* divergent promoter demonstrated the greatest increase (11-fold) in activity with Zic3 overexpression relative to the no overexpression control (p < 0.01). Similar to the *Zic5/2* divergent promoter, the activities of the *Fgf5* (6-fold), *Mbtps2* (8.5-fold), *Cortistatin* (4-fold) and *Nanog* (4.5-fold) promoters were also significantly upregulated. These activities were specific to Zic3 as overexpression of another

Figure 45. PCR validation of five Zic3 binding targets. Zic3 enrichment is positive by ChIP-PCR for the five target regions selected for functional validation.

Figure 46. Transciptional responsiveness of the five Zic3 target promoter regions (HEK293T). The promoter regions were cloned into cloned into luciferase reporter vectors, and co-transfection with a Zic3 overexpression vector resulted in a significant upregulation of promoter activities in HEK 293T cells.

Zinc finger transcription factor, Zfp212, did not result in a significant increase in promoter activities (Figure 46).

The five promoter regions demonstrated robust increases in activity in 293T cells, indicating that Zic3 is an activator of these regions. However, I observed in ES cells that Zic2 expression was up-regulated in response to Zic3 RNAi and Fgf5 was down-regulated with Zic3 overexpression (Table 8), suggesting in contrast that Zic3 functions as a repressor in ES cells at these loci. To validate these observations, I performed luciferase experiments on the five promoter regions in mouse ES cells that were engineered for inducible Zic3 expression. Two Zic3 doxycycline-inducible clonal lines were used in this analysis and three biological replicates were executed per experiment. In accordance with the earlier observations in ES cells, the activities of the Zic5/2 divergent promoter (0.5-fold) and the *Fqf5* promoter (0.4-fold) were significantly (p < 0.01) down-regulated in both clonal lines in response to Zic3 overexpression (Figure 47A). As expected, the Mbtps2 (3-fold), Cortistatin (2.5-fold) and Nanog (2.2-fold) promoter activities in both clonal lines were significantly up-regulated in response to Zic3 overexpression (Figure 47A). To confirm that the presence of doxycycline in the media did not interfere with luciferase readings, control experiments were performed with the empty vectors (pGL3 and pGL3-SV40) to demonstrate that basal luciferase activity was not affected by exposure to doxycycline (Figure 47B).

Finally, luciferase reporter experiments were performed in ES cells to test the activities of the five promoter regions in response to Zic3 RNAi. The promoter activities of *Zic5/2* (2.3-fold) and *Fgf5* (2-fold) were significantly up-regulated with *Zic3* RNAi, while the activities of the *Mbtps2* (0.65-fold), *Cortistati*n (0.4-fold) and *Nanog* (0.25-fold) promoters were significantly down-regulated relative to no-RNAi controls (Figure 48). To check that the promoter activities were authentic, control experiments were performed with non-specific GFP RNAi. The five promoter activities were not significantly regulated by GFP RNAi relative to the no-RNAi experiments. The above results collectively indicate that the five promoter regions, where were identified by Zic3 ChIP experiments, are functionally responsive to Zic3 in both 293T and mouse ES cells.

5.2.2 Zic3 binds to promoters of mesoderm, ectoderm and early developmental genes

In addition to verifying the functional activity of Zic3 target regions, I was interested to define Zic3 regulated pathways in ES cells. Here I reasoned that the individual Zic3 target genes would group in specific functional pathways that reflect their function in ES cells. The list of Zic3 ChIP-chip genes was therefore analyzed by the Babelomics Fatigo+ search function (http://babelomics2.bioinfo.cipf.es/fatigoplus/ cgi-bin/fatigoplus.cgi) and classified under their relevant Gene Ontology (GO) terms for various biological processes²⁰². The list of annotations at level 6 was selected for further analysis as it provided sufficient depth for functional classifications (Supplementary Table 9). Figure 49 presents a summary of the key developmental pathways identified by

155

Figure 48. Transciptional responsiveness of the five Zic3 target promoter regions in mES cells. Zic3 RNAi resulted in an upregulation of Zic5/2 and Fgf5 promoter activities, and a downregulation in activities of the Mbtps2, Cortistatin and Nanog promoters in mouse ES cells.

Wnt / TGF- Beta Signaling	Ectoderm development & function	Mesoderm Development	ırly Embryonic Development
<u>TGF-beta</u> Nodal, Smad6 Thbs2	ironal function Nab2, Hexb, Grm8, Cort, tC050840, Trh P2rx5, Cga	<u>Muscle</u> <u>evelopment</u> agln3, Gja1, 91, Hist1h1b	rulation Ea lal, Lhx1, Ea sg1, Frs2
Wnt Receptor SIc9a3r1, Fzd8 Porcn, Dkk1, Wif1, Frzb, Tle4	elopment <u>Neu</u> , Zic2 , Twsg1 Tagln3, B rs2	etal poment De ab2 Twsg1, Ta , Hes7 Zfp	<u>/entral</u> <u>Gast</u> <u>prmation</u> Nod mx1b Two
Genes 3, Pou5f1, 16, MycN,	CNS Dev CNS Dev del1, Zic5 Pigt, Pitx3, Frs2, F	Skel Develo Fgf23, Na Hexb	Dorsal-V Pattern Fc Pax6, L Ptch
Pluripotency Jarid2, Kft2, Nanog Sall4, Sox2, Zfp20 Rif1	Neurogenesis Sema6a, Pax6, Strr Sitt Nab2, Socs2, N Rth4rt1 Lmx1b, Fgf5, Vegfc, Pitx3, Zfp91, F Nkx2-2, Gja1	<u>Heart</u> <u>Development</u> Casq2, Nodal, Is11, Sall4, BC050840, Gja	Anterior-Posterior Pattern Formation Grsf1, Frs2 Pax6, Hes7 Dll1
t genes			
Zic: targe			

Figure 49. Zic3 target genes identified by chromatin-immunoprecipitation. Zic3 binds to the promoters of genes involved in pluripotency, Wbt/TGF-beta signalling, ectoderm development, mesoderm development, and early embryonic development

the GO search that may be broadly grouped under the following themes: Neuronal development and function, mesoderm development, Wnt signalling, and early embryonic development. As the GO database does not include annotations for pluripotency-related genes, I conducted an additional manual search for genes known to be involved in ES cell maintenance²⁰³.

The pluripotency genes in Figure 49 provide insight into the mechanisms of Zic3 function in ES cells. To further explore the biological significance of these data, I sought to identify specific pathways in which Zic3 target genes are significantly over-represented. Hence the list of individual Zic3 target genes were compared to the Panther database of biological process annotations¹⁹⁵. This list was assessed for statistically significant over (+) or under (-) representation within a pathway, relative to an expected number of genes derived from a reference list comprising the population of Agilent mouse promoter array genes. Table 9 reflects the biological pathways that are most significantly implicated by the Zic3 target genes ($p \le 0.01$). Based on random sampling from the reference list, the processes of mRNA transcription, development, chromatin packaging and remodelling, and ectoderm development were most significantly over-represented within the Zic3 target genes.

5.2.3 Zic3 overexpression increases mesoderm and ectoderm specification

5.2.3.1 Zic3-inducible overexpression cell lines

A Zic3 inducible-expression cell line (Zic3 O/E) was established using mouse ES cells engineered for targeted gene insertion at the transcriptionally open HPRT locus¹⁸³. Figure 50 demonstrates the specificity of regulation by doxycycline in two Zic3-overexpressing clones. Upon exposure to doxycycline for 4 days, *Zic*3 gene expression was specifically upregulated 5-fold in the Zic3-overexpressing lines relative to control lines that overexpressed GFP (Figure 50A). Corroborating with this observation, Zic3 protein expression was not detected in the clones without exposure to doxycycline (Day 0) while strong Zic3 protein expression (55kDa) was observed at days 2 and 4 in response to addition of doxycycline to the ES cell culture media (Figure 50B). These results indicate that overexpression of Zic3 in the engineered cell lines was specific and sensitive to doxycycline induction.

5.2.3.2 Zic3 overexpression leads to upregulation of ectodermal and mesodermal lineage markers

In order to assess the potential of Zic3 to induce ES cell differentiation, the GFPand Zic3-overexpressing lines were exposed to doxycycline in the absence of LIF. This provided conditions that were conducive for general differentiation so that the lineage specification properties of Zic3 could be determined. After 4 days of doxycycline treatment in ES cell media lacking LIF, the GFP-overexpressing cells showed a mixture of phase-dark differentiated cells and phase-bright

PANTHER BIOLOGICAL PROCESS	# REF. LIST (Agilent)	#OBSERVED	# EXPECTED	OVER / UNDER	<i>p</i> -value
mRNA transcription regulation	1071	56	22.87	+	0.000
mRNA transcription	1391	64	29.7	+	0.000
Nucleoside, nucleotide and nucleic acid metabolism	2522	94	53.85	+	0.000
Developmental processes	1864	66	39.8	+	0.000
Chromatin packaging and remodeling	168	11	3.59	+	0.001
Ectoderm development	595	22	12.7	+	0.010

 Table 9. Panther Biological Process annotations for Zic3 ChIP-chip target genes relative to the

 Agilent mouse promoter array gene population

Figure 50. Expression profile of Zic3-doxcycyline inducible cell lines. (A) Zic3 overexpression cell lines are sensitive to induction by doxycycline in an overexpression cell line engineered for targeted insertion at the HPRT locus. Zic3 gene expression is upregulated in Zic3-overexpressing but not GFP control cells 4 days after exposure to doxcycline. (B) HA-tagged Zic3 protein is not detected in mouse ES without exposure to doxycyline, and is upregulated in cells exposed to doxycyline for 2 and 4 days

compact ES cell colonies (Figure 51A). In contrast, the Zic3-overexpressing cells showed very distinct signs of differentiation including phase-dark cells with extended processes, and a decreased rate of proliferation (Figure 51B). No overt increase in cell death was observed from a general survey of floating cells in the culture medium, and the rate of cell death appeared to be consistent between the GFP- and Zic3-overexpressing lines.

The GFP- and Zic3-overexpressing lines in Figure 51 were assayed for global gene expression changes. The cells at Day 4 of doxycycline induction were selected for microarray analysis as the cells earlier time-points did not demonstrate substantial change in morphology or marker expression in a preliminary real-time PCR assay. Three biological replicates were used per cell line. In this experiment, the genes that were significantly regulated in the Zic3-overexpressing lines were determined relative to the GFP-overexpressing control cells. The list of significantly regulated genes (\geq 1.5-fold; FDR 0.1, Supplementary Tables 10-11) was then uploaded to the Panther database for Biological Process annotations. In line with the functional pathways represented by Zic3 target genes (Figure 49), the results indicated a significant increase in the mesoderm and ectoderm pathways in Zic3-overexpressing cells (Table 10). These results suggest that Zic3 has the ability to confer mesoderm and ectoderm properties during ES cell differentiation.

5.2.4 Zic3 upregulates neurogenesis during ES cell neural derivation

The chromatin-IP and overexpression data suggest that Zic3 may be a significant regulator of the ectoderm specification pathway during ES cell differentiation. To determine the functional significance of these data, I examined if Zic3 overexpression was able to enhance neural induction of ES cells. Due to the fact that Zic3 is involved in the earliest stages of neural differentiation in the Xenopus embryo¹²⁶, I postulated that the presence of Zic3 during early stages of ES cell neural differentiation would enhance the rate of neurogenesis.

The N2B27 neural induction protocol was used as it involves a monolayer culture process, and is known to work with mouse ES cells¹⁸⁴. Two clones each of the Zic3-overexpressing and control GFP-overexpressing cells were seeded on gelatin-coated plates and exposed to N2B27 media. The cells were induced to overexpress Zic3 or GFP by exposure to doxycycline during the first 2 days of N2B27 treatment and subsequently allowed to persist in N2B27 media without doxycycline for a further 6 days. Doxycyline induction was performed for the first initial experiments indicated that maintainence of Zic3 two days as overexpression beyond day 2 in N2B27 prevented cells from neuronal differentiation. Corroborating with this observation, prior studies have demonstrated that Zic3 functions to maintain cells in the early undifferentiated neural progenitor state and may serve to expand the pool of neural cell numbers during embryonic ectoderm development²⁰¹.

163

Figure 51. Zic3 overexpression cell lines differentiated more rapidly in the absence of LIF. (A) GFP-overexpressing lines show a mixture of ES-like phase-bright cells and flattened cells with extended processes after 4 days of culture in ES cell media without LIF. (B) The majority of cells in the Zic3-overexpressing cultures showed differentiated morphology with phase-dark extended processes. Scale bars, 100 μ m.

Table 10. Panther Biological Pro Zic3 overexpression samples giv1.1 reference gene list.	ocess annotat rown in –LIF (tions for significantly regul conditions, relative to the l	ated genes in the Ilumina mouse Ref8-

PANTHER BIOLOGICAL PROCESS	# REF. LIST (Agilent)	# EXPECTED	# OBSERVED	OVER / UNDER	<i>p</i> -value
Mesoderm development	576	355	227.42	+	0.00
Ectoderm development	729	371	287.83	+	0.00

Figure 52 shows the cells after 3 days of N2B27 treatment. As doxycycline was withdrawn just 24 hours prior to this time-point, residual GFP fluorescence was observed in the control cell lines from the earlier induction. In contrast the Zic3 overexpressing lines did not contain GFP and as such were not fluorescent. I also examined the cells at Day 3 for Nestin expression. Prior reports have indicated that the expression of this neural progenitor marker emerges between 48 to 72 hours of N2B27 treatment ¹⁸⁴. In accordance with previous reports¹⁸⁴, a small amount of Nestin in the control lines was observed at 72 hours (Day 3) while the Zic3-overexpressing lines demonstrated more intense staining for Nestin expression.

Next I examined the expression of an early neurogenesis marker, TuJ1 (β -III tubulin), and a mature neuronal marker MAP2 (microtubule associated protein 2) at days 5 and 8 of N2B27 treatment respectively. The control GFP lines expressed little TuJ1 at day 5 while the Zic3 overexpressing lines showed strong staining for this marker (Figure 53A). The expression of TuJ1 was examined at this stage in accordance with the report by Ying et al. (2003) suggesting that TuJ1 is first detected 5 days after exposure to N2B27 media. An analysis of MAP2 expression at day 8 showed a similar trend. The control GFP lines showed a small amount of MAP2 staining while the Zic3 lines demonstrated robust MAP2 expression (Figure 53B). These results show that Zic3 has the ability to enhance the process of neurogenesis and thus, is a positive regulator of neural differentiation in ES cells. Further characterization of the effect of Zic3 overexpression on neural differentiation could include a complete assay of neural

Figure 52. Zic3 overexpression enhances early neurogenesis during mouse ES differentiation. Nestin protein expression is enhanced in Zic3-overexpressing cells treated with N2B27 for 3 days. Scale bars, $100 \mu m$.

and glial differentiation markers across different time-points, as well as fluorescence-activated cell sorting (FACs) to quantify the extent of neurogenesis.

5.3 Discussion

5.3.1 Zic3 is a regulator of lineage-specific pathways

Zic3 has clearly established roles in the context of development, and its function has been identified in embryonic morphogenesis and cardiac, skeletal, and neural differentiation^{106,115,124,126,129,158}. However, the underlying Zic3 molecular networks giving rise to these processes have not been properly elucidated to date. This chapter presents novel data demonstrating the molecular pathways that Zic3 regulates in the context of development. Corroborating with observations in the literature, the chromatin-immunoprecipitation data presented here suggest that Zic3 binds to the promoters of genes involved in ectoderm development, mesoderm development, and general early embryonic development (Figure 49). In particular, the functional pathways that regulate general embryonic development and ectoderm development, encompassing genes such as *Nodal* and *Lhx1* in gastrulation, and *Fgf5* and *Zic2* in neurogenesis, are significantly over-represented amongst the target pathways identified by chromatin-IP (Table 9).

Many novel targets of Zic3 were identified, and several of these regions were tested at random for transcriptional responsiveness to Zic3. These target regions were selected to represent the diversity of pathways that Zic3 potentially regulates in both the ES cell and differentiated contexts. Amongst these target regions, the metalloprotease site-2 protease, *Mbtps2* (also known as S2P), was

positively regulated by Zic3 in both ES cells and HEK293T cells. Mbtps2 is an enzyme that catalyzes critical steps in cell signalling, and it is known to be involved in intra-membrane proteolysis that regulates both cholesterol homeostasis and the pathogenesis of Alzheimer's disease and Hepatitis C infections²⁰⁴⁻²⁰⁶. Mbtps2 mediates the second cleavage step in the processing of Sterol Regulatory Element-binding Proteins (SREBPs) which, when released from cell membranes, are responsible for transcriptional control of genes involved in cholesterol biosynthesis and uptake from plasma lipoproteins²⁰⁷. To date no evidence exists for *Zic3* in the regulation of intra-membrane protein cleavage or cholesterol biosynthesis. Thus the sensitivity of the *Mbtps2* promoter to Zic3 regulation could form the basis of further studies to determine the relationship between *Zic3*, *Mbtps2* and the catalysis of SREBP peptide cleavage within membranes.

The functional assays also demonstrated the capacity of Zic3 to regulate the promoters of neural genes *Zic5/Zic2*, *Cortistatin*, and *Fgf5*. This suggests that Zic3 has the potential to regulate the expression of these genes during ES cell differentiation and embryonic development. *Zic2* and *Zic5* belong to the Zic-family of transcription factors which share high structural homology with Zic3¹⁰⁶, and their expression is transcribed from a divergent promoter on chromosome 14 that is approximately 9800bp in length (Appendix 7). The functional assays in this chapter indicate that Zic3 downregulates the activity of the *Zic5/Zic2* promoter region in ES cells, while activating it in HEK293T cells. These results validate my earlier observation that *Zic2* expression is upregulated upon knockdown of *Zic3* in ES cells (Figure 34A), and suggest that Zic3 functions as a negative regulator of 170

Zic2 in ES cells. In addition, the capacity of Zic3 to activate the *Zic5/Zic2* divergent promoter region in HEK293T cells indicates that Zic3 may activate these genes in the context of differentiation. The significance of this is highlighted by data indicating that *Zic2, Zic3* and *Zic5* share highly overlapping expression domains in the developing dorsal brain and spinal cord^{116,208}. In association with their significant structural homology, this new knowledge on the potential for Zic3 to function as a positive regulator of *Zic2* and *Zic5* in differentiated cell types may contribute to further understanding of the functional redundancy¹⁰⁶ between these genes. The capacity of Zic3 to function as an activator or repressor of the *Zic5/Zic2* promoter may be dependent on the presence of different binding partners between the pluripotent and differentiated cell contexts.

During development, Faf5 expression is associated the emergence of primitive ectoderm cells in the earliest stages of embryonic differentiation^{29,209}. Primitive ectoderm cells arise from the inner cell mass of the embryonic blastocyst from which pluripotent ES cells are derived (Figure 1). The ability of Zic3 to downregulate Fgf5 expression in ES cells, indicated by repression of Fgf5 in response to Zic3 overexpression and functional assays for Fgf5 promoter activity (Table 8 & Figure 47), represents a pathway in which Zic3 may function to maintain the pluripotent state. During later stages of development, the presence of *Fgf5* is known to promote neurotrophic activity in septal cholinergic and raphe serotonergic neurons²⁰⁸. Fgf5 strongly enhances the uptake of serotonin in cholinergic and upregulates serotonergic neurons. and the choline acetyltransferase activity of rat septal cholinergic neurons²¹⁰. Here the ability of Zic3 to upregulate Fqf5 promoter activity in differentiated cells (Figure 46) 171

suggests that Zic3 promotes *Fgf5* expression and contributes to neuronal function beyond the early stages of development. Further work is required to determine the presence of Zic3 in cholinergic and serotonergic cell types, and to examine if a role exists for Zic3 in the specification of neuronal function.

Zic3 is a positive regulator of *Cortistatin* in both HEK293T and mouse ES cells. Cortistatin (CST) is a neuropeptide belonging to the somatostatin family with predominantly cortical and hippocampal expression in the central nervous system²¹¹, and its presence is found within a subset of γ -aminobutyric acid (GABA)-releasing interneurons and hippocampal cells²¹². It has been suggested that CST-treated mice spend nearly twice the length of time in slow-wave sleep compared to saline-treated control animals²¹¹, and it is thought that CST induces sleep by enhancing cortical neuron activity through hyperpolarization of principal cells^{211,212}. In addition, it has been shown that regulated release of CST antagonizes the excitatory effects of acetylcholine neurotransmitter to promote sleep²¹¹. *Zic3* expression has been observed in the adult cerebellum¹⁸⁶; however no functional role to date has been identified for *Zic3* in this context. The capacity of Zic3 to activate the *Cortistatin* promoter represents initial evidence for a role *Zic3* upstream of neuropeptide signalling, and further studies are required to verify the positive effect of Zic3 on *Cortistatin* expression in the developed brain.

5.3.2 Zic3 enhances neurogenesis during ES cell differentiation

In order to determine the role of Zic3 in early ES cell differentiation, a Zic3inducible overexpression cell line was cultured in ES cell media without LIF. LIF is able to prevent ES cell differentiation by activation of the Stat3 signalling pathway^{25,31}, and ES cells grown in the absence of LIF or a supporting layer of feeder cells rapidly lose their pluripotency and capacity for self-renewal. After 4 days of culture in –LIF conditions, Zic3-overexpressing cells demonstrated overt differentiated morphology with phase-dark extended processes (Figure 51). An analysis of its gene expression profile revealed that both ectoderm and mesoderm markers were significantly increased in the Zic3-overexpressing cells relative to the controls. These data suggest that Zic3 is able to confer both ectoderm and mesoderm properties on ES cells as they begin to differentiate.

In this chapter, I have provided an illustration of the principle that Zic3 is able to enhance neural specification in early ES cell differentiation. Overexpression of Zic3 resulted in an increased rate of neurogenesis when ES cells were exposed to neural differentiation conditions (Figures 52 & 53), denoted by the earlier onset of neural markers Nestin, TuJ1 (Beta-III tubulin), and MAP2 at days 3, 5 and 8 respectively. In support of the above, Zic3 is known in particular to be involved in neural development, and the overexpression of Zic3 in the ventricular zone of the embryonic mouse telencephalon, where cortical neurons are generated during development, results in an increase of proliferating neuronal progenitors²⁰¹. A previous report has also demonstrated the ability of Zic3 to activate the neural differentiation program through induction of proneural gene expression in *Xenopus* tissue¹²⁶. Furthermore, gene expression assays in our lab reveal that Zic3 expression is high in embryonic development and then specifically restricted to the adult brain in the mouse (Appendix 7). Taken together, these data suggest a role for Zic3 in the early specification and maintenance of neural identity, and demonstrates conclusively that Zic3 is a potent activator of ES cell neurogenesis.

5.4 Summary

Zic3 is a positive regulator of embryonic morphogenesis, cardiac and skeletal patterning, and neural differentiation during embryonic development^{106,115,124,126,129,158}. However, little is known about the networks regulated by Zic3 to determine the lineage specificity. Here I establish the target genes of Zic3 that are important during the process of development. This investigation has uncovered many novel Zic3 targets that may shed more light on its function of Zic3 in the development and function of non-pluripotent cells. In addition, the data indicate that Zic3 occupies promoters of genes involved in early embryonic patterning, and mesoderm and ectoderm formation, suggesting that Zic3 may confer ectoderm and mesoderm specificity during differentiation of ES cells. In support of this, Zic3 overexpression in differentiation-promoting conditions resulted in an over-representation of activated genes in the mesoderm and ectoderm lineage pathways. To illustrate the functional relevance of these data, I have demonstrated that transient drug-induced overexpression of Zic3 in ES cells enhances the rate of neurogenesis under conditions that promote neural differentiation. In summary, this work has elucidated a set of Zic3-regulated pathways that have the potential to influence the critical lineage decisions made during early differentiation.

CHAPTER 6:

Discussion & Future Directions

6.1 How does Zic3 maintain ES cell pluripotency?

Embryonic stem cells have the potential to generate replacement cells for damaged and diseased organs, and thus hold great promise in the field of regenerative medicine. The transcriptional networks governing the unique properties of ES cells have been the focus of many large-scale studies^{19,20,51,203}, and the insight gained from this work has resulted in the ability to regulate the processes of self-renewal, early differentiation, and more recently, the reprogramming of differentiated cells to the pluripotent state^{93-95,213-215}.

The transcriptional regulators Oct4, Nanog, and Sox2 are required for the propagation of undifferentiated ES cells in culture. These core factors contribute to the hallmark characteristics of ES cells by activating genes involved in self-renewal and pluripotency, while concurrently repressing genes involved in lineage specification^{19,20}. To further elucidate the transcriptional networks that contribute to stem cell pluripotency, I have focused on transcription factors whose expression is directly regulated by Oct4, Nanog and Sox2.

Zic3 (\underline{Zinc} finger protein of the <u>cerebellum 3</u>) is a transcription factor that encodes five tandem C₂H₂ zinc finger domains with demonstrated capacity for DNA and protein interaction^{105,119,120,124}. Gene expression profiling in this thesis initially revealed that Zic3 is highly expressed in the ES cell pluripotent state and is quickly repressed upon differentiation, an observation which suggests a potential role for Zic3 in controlling differentiation of mouse and human ES cells. In addition, Oct4, Nanog and Sox2 binding have been mapped to the *Zic3* promoter regions in ES cells^{19,20}, implying that these key factors may regulate *Zic3* 176 expression. I have demonstrated in Chapter 3 that *Zic3* is directly regulated by Oct4, Nanog and Sox2 and sustains the pluripotent state through Nanog-mediated pathways. Here Zic3 functions as a gatekeeper that blocks the specification of the endoderm lineage genes, and in doing so, prevents differentiation in ES cells.

The chromatin-immunoprecipitation assays have additionally revealed that Zic3 occupies the promoters of other genes associated with the pluripotent state, including Nanog, Oct4, Sox2, *Klf2, Rif1* and *Phc1.* Zic3 may therefore function to maintain pluripotency through upregulation of key pluripotent genes Nanog, Oct4 and Sox2. Here I have demonstrated a significant overlap beween Zic3, Oct4, Nanog and Sox2 pathways (Figure 39 & Appendix 8). Furthermore, the Krüppel-like factor Klf2 shares many gene targets with Nanog, and also directly upregulates Nanog expression in ES cells²¹. Thus the association of Zic3 with the Klf2 promoter may represent another pathway by which Zic3 further modulates the expression of *Nanog* and may in part explain why *Nanog*, in particular, is substantially downregulated by Zic3 knockdown. Nanog is known to prevent differentiation of ES cells into endoderm, and Gata6 expression and endoderm lineage specification^{39,192,193}. It is therefore likely that Zic3 prevents differentiation of ES cells into endoderm through its maintainence of Nanog expression.

Zic3 also binds to the promoter of telomere-associated protein *Rif1*, which regulates telomere length and is hypothesized to be important for self-renewal²¹⁶, and a member of the polycomb group proteins, *Phc1*, which functions to silence

the transcription of developmental regulators in ES cells, In addition, Zic3 occupies the promoter regions of chromatin modifiers *Jarid*2 and *Smarcad*1²¹⁷⁻²¹⁹, which are known to be highly expressed in ES cells, though their roles in pluripotency and self-renewal remain as yet unknown. Zic3 may also regulate the expression of the histone methyltransferase gene, *Ehmt*2 (also known as *G9a*), which is associated with early embryonic development and transcriptional silencing in ES cells^{220,221}.

To date, no evidence exists for the role of Zic3 in regulating the expression of chromatin modifier genes. The above data may therefore represent additional pathways by which Zic3 could maintain the pluripotent state in ES cells, and it would be interesting to determine if Zic3 directly regulates these chromatin remodelling genes by conducting binding and mutational assays on their promoters.

6.2 Does cellular context determine activator or repressor functions of Zic3?

The question of how Zic3 operates in the opposing contexts of pluripotency and differentiation remains unresolved. Here I conceived two putative models for the role of Zic3 in pluripotency and differentiation: Firstly, Zic3 may specifically occupy the promoters of genes related to self-renewal and pluripotency in ES cells, and only bind to and regulate the promoters of lineage-specific genes as the cells exit the pluripotent phase. This model of context-dependent binding is particularly relevant given the propensity for transcription factors to associate with different partners in various spatial and temporal milieus. In support of this idea, 178

Zic3 is known to dimerize with the Gli proteins during development to function specifically in neural and skeletal development^{105,131}. Alternatively, in a manner similar to that of Oct4, Nanog and Sox2^{19,20}, I postulated that Zic3 may co-occupy the epigenetically silenced promoters of developmental regulators in ES cells, thus serving to confer lineage-specific capabilities as chromatin repressive marks are relieved during differentiation.

To address this question, I examined the Zic3 targets identified by chromatinimmunoprecipitation and determined that the list comprises both ES cell-related and lineage-specific genes. It is therefore likely that Zic3 interacts with pluripotency-maintaining complexes to activate self-renewal genes and repress differentiation-specific genes in the undifferentiated state. Concurrently, Zic3 may prime the cells for differentiation into ectoderm and mesoderm lineages during differentiation by its occupancy of lineage specific promoters (Figure 49). This idea is supported by my data indicating that Zic3 represses the promoter of an early primitive ectoderm gene, $Fgf5^{29}$, and the divergent promoter of the neuronal differentiation genes Zic2 and Zic5¹⁰⁶ in the ES cell state, while, in contrast, strongly activating these promoters in the differentiated HEK293T cell state (Figures 46 & 47). Thus although these Zic3-bound developmental regulators are transcriptionally silent in ES cells, the functional assays here suggest that Zic3 is able to activate these genes outside the pluripotent state. Zic3 therefore appears to function in two capacities: firstly to maintain the pluripotent state in ES cells, and secondly, to confer lineage specificity through activation of lineage development genes upon initiation of differentiation (Figure 54).

To test this hypothesis, it would be interesting to perform Zic3 chromatinimmunoprecipitation assays on embryos during axis formation and organogenesis¹⁵⁸. Zic3 null embryos at these stages demonstrate abnormalities in embryonic patterning and abnormal mesoderm and neuroectoderm allocation. This could be the result of an abnormally lateralized location of the node which normally instructs proper specification of the neuroectoderm and paraxial mesoderm²²². The Zic3 target genes identified in ES cells that are relevant to this developmental stage include Nodal, Lhx1, Pax6, Lmx1b, Hes7, and Dll1 (Figure 49). Amongst these genes, evidence exists for a genetic interaction between Zic3 and Nodal in left-right patterning and subsequent cardiac development, where significantly reduced numbers of Zic3^{+/-} / Nodal^{+/-} compound heterozygous mice are born¹²⁴. In addition, Zic3 is known to mediate *Nodal* expression at the node through an upstream *Nodal* enhancer that is responsive to Zic3¹²⁴. Apart from Nodal, all other Zic3 targets at this stage (Figure 49) represent newly identified pathways by which Zic3 may contribute to axis patterning and gastrulation. It therefore would be interesting to examine the genetic interaction of these genes with Zic3 using compound heterozygous mice, validate the binding of Zic3 to their promoters in embryonic tissue with chromatin-immunoprecipitation, and assay their response to Zic3 via promoter assays in vitro or injection into the early embryo.

The contrasting activity of Zic3 in retaining pluripotency in ES cells versus that of enhancing specific germ layers during during development may be due to its

Figure 54. Illustration of the function of Zic3 in mouse ES cells. Zic3 contributes to ES cell pluripotency by: 1) Positively regulating Nanog expression and preventing mouse ES cells from expressing endodem markers, and 2) Conferring endodermal and mesodermal properties on mouse ES cells during early differentiation.

ability to associate with different factors in varying contexts. A similar molecular paradigm is observed with Sox2, which associates with Oct4 in ES cells to maintain pluripotency, while interacting with Pou2f1 to enhance lens and olfactory placode development, and with β -catenin to inhibit osteoblast differentiation^{223,224}.

6.3 Is Zic3 able to reprogram differentiated cells to pluripotency?

ES cells have the capacity to generate all the cells within an organism²²⁵, and are therefore a potential donor source for cell transplantation therapies. Possible human ES cell applications include treatment of Parkinson's disease, cardiac failure and juvenile diabetes. However, the destruction of human embryos in the process of harvesting ES cells, and potential tissue rejection by the transplant recipient, pose barriers to successful ES cell therapy. One strategy to circumvent such issues is to reprogram differentiated adult cells to an ES cell-like pluripotent state and generate from them the histocompatible required tissue for therapy. It has recently been shown that differentiated cells can be reprogrammed to pluripotency through ectopic expression of ES cell transcription factors *Oct4*, *Sox2, c-Myc,* and *Klf4*^{18,93-95,213,226}. These induced pluripotent cells (iPS) are similar to ES cells in morphology, rate of proliferation, and capacity for pluripotency indicated by teratoma formation and chimera contribution in mice⁹³.

A recent analysis of gene expression patterns within fully and partially reprogrammed fibroblasts revealed the presence of *Zic3* in these cells⁹⁵, suggesting that Zic3 may be at least partially involved in the process of restoring the properties of self-renewal and pluripotency as fibroblasts are reprogrammed

to an iPS state. Thus it would be interesting to assay the capacity of Zic3 to reprogram differentiated fibroblast cells.

A preliminary reprogramming assay in our lab indicated that ectopic expression of Zic3 in fibroblast cells did not yield significant numbers of ES-like colonies (Appendix 9). Overexpression of Oct4, Sox2, c-Myc, and Klf4 resulted in approximately 1000 alkaline phosphatase (AP) positive ES-like colonies, while overexpression of Zic3 in a variety of combinations with Oct4, Sox2, c-Myc, and Klf4 did not give rise to an increased number of AP-positive colonies relative to controls (Appendix 9 for details). Several factors may account for this observation. Firstly, the number of Zic3 targets in ES cells is significantly smaller than that of the key pluripotent ES cell factor Sox2 (Appendices 7 - 8), suggesting that Zic3 may regulate only a partial set of genes required for pluripotency and self-renewal. Secondly, a microarray analysis of partially reprogrammed cells expressing high levels of Zic3⁹⁵ revealed the presence of lineage-specific genes which were not detected in the fully reprogrammed state. These results suggest that Zic3 may promote the expression of lineage-specific factors in partially reprogrammed cells, and is supported by my data indicating that while Zic3 represses the promoter activity of lineage-specific factors in ES cells, it has potential to activate them in differentiated cells (Section 6.2). Therefore, Zic3 may not fully activate the program required for restoring pluripotency in differentiated fibroblast cells, due to its ability to function either as an activator or repressor of lineage-specific factors in context-dependent roles.

It is important to note that the Zic3 reprogramming assay in our lab utilized staining of a stem cell surface marker, alkaline phosphatase, to identify iPS colonies. However, it has been suggested that stem cell surface markers do not distinguish between significantly different cell states in a heterogeneous population of reprogrammed cells. For instance, both Stage-specific embryonic antigen 1 (SSEA1)-positive and -negative cells demonstrated similar gene expression profiles and DNA methylation patterns in partially reprogrammed populations¹⁹⁴. Moreover, while stem cell surface antigens may serve as markers for the early reprogramming stages, activation of endogenous *Oct4*, *Nanog*, and *Sox2* is required for late reprogramming events^{194,227}, and the endogenous upregulation of these key pluripotent factors may thus be a better indicator of successful reprogramming. It would therefore be important to repeat the Zic3 reprogramming experiments using *Oct4*- or *Nanog*-GFP fibroblast lines²²⁸ that enable identification of endogenous gene activation and quantification of stable ES-like induced pluripotent cell colonies.

6.4 Does Zic3 interact with Sox2 to confer neurogenic potential on ES cells?

This thesis presents evidence for a previously unknown physical interaction between Zic3 and Sox2. These transcription factors are both known to be involved in the regulation of neural progenitor cells^{198,229,230}, and the significance of their interaction is highlighted by reports indicating that $Sox2^{72,198,199}$ and $Zic3^{106,116,126}$ share similar patterns of expression during early development of the central nervous system. A role for Sox2 in particular has been implicated in CNS formation, primary neurons, and neural crest cells²³¹, and these data establish a 184

role for Sox2 in the initial specification of neural fate and maintenance of neural progenitor properties¹⁹⁸. My results demonstrate that Zic3 and Sox2 share a subset of signalling networks in ES cells and highlight their common roles in ectoderm development, suggesting that their shared pathways may be important in neuronal specification during ES cell differentiation and embryonic development.

Due to their similar expression profiles in neural progenitors and early CNS development, it would be interesting to examine if Zic3 and Sox2 are co-localised in neural progenitor cells *in vivo*, and neural stem cells *in vitro*. To address my speculation that Zic3 and Sox2 interact and regulate common pathways during early neuronal development, chromatin-immunoprecipitation may be used to define the common targets of Zic3 and Sox2 within these cells. As the interaction between Zic3 and Sox2 is a new discovery, the dynamics of their physical association are not known. Thus it would be interesting to assay the equilibrium binding constant (K_d) of the Zic3/Sox2 dimer on a nucleotide sequence comprising both binding motifs to determine their binding affinity.

The question also remains as to whether Zic3 and Sox2 interact as a heterodimer or as part of a larger complex in the context of neural differentiation. If Zic3 and Sox2 are found to interact during neuronal development, it would be useful to explore their protein network using affinity purification and mass spectrometry. This would potentially yield insight into the protein regulatory mechanisms for maintenance of early neuronal properties of progenitor cells in embryonic development. Further work in this area could therefore contribute to validation of 185 the shared molecular roles of Zic3 and Sox2 potentially in the expansion of neural stem cells or promoting ectodermal specification of neural progenitors during early development, which may lead to further understanding of the process of derivation of neuronal cells from ES cells for therapeutic purposes.

6.5 Concluding remarks

This thesis highlights a role for Zic3 in the maintenance of pluripotency downstream of Oct4 and Sox2, and presents unique evidence for its function as a gatekeeper controlling differentiation of ES cells into the endoderm lineage through Nanog-mediated pathways. Having demonstrated that Zic3 plays an important role in maintenance of pluripotency, I have further mapped the target genes of Zic3 to extend our understanding of the transcriptional network that governs pluripotency and lineage specification. This has contributed to a more detailed understanding of how Zic3 may regulate pluripotency in ES cells, and identified novel pathways through which it may mediate its effects.

In addition, many lineage-specific genes were identified within the targets of Zic3. Numerous reports exist for the role of Zic3 development^{116,126,158,229}, and the elucidation of Zic3 binding targets in this thesis represents unique molecular insight into the function of Zic3 in these processes. These results therefore provide foundational knowledge for the dissection of transcriptional networks in Zic3-regulated developmental pathways. The data representing an interaction between Zic3 and the key stem cell pluripotent factor and neural progenitor gene, Sox2, also highlight a novel mechanism for the role of Zic3 in the maintenance of 186

ES cell pluripotency. In addition, it may explain how Zic3 subsequently confers neural specific properties during ES cell differentiation.

A detailed knowledge of ES cell transcriptional circuitry is fundamental to a comprehensive understanding of embryonic development and the realization of ES cell therapeutic potential. To this end, my work presents novel molecular insight into Zic3-regulated pathways that influence the state of ES cell pluripotency and the critical lineage decisions made during the process of early differentiation.

BIBLIOGRAPHY

- 1. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005;19(10):1129-55.
- 2. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292(5819):154-6.
- 3. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981;78(12):7634-8.
- 4. Notarianni E, Galli C, Laurie S, Moor RM, Evans MJ. Derivation of pluripotent, embryonic cell lines from the pig and sheep. J Reprod Fertil Suppl 1991;43:255-60.
- Sukoyan MA, Golubitsa AN, Zhelezova AI, Shilov AG, Vatolin SY, Maximovsky LP, Andreeva LE, McWhir J, Pack SD, Bayborodin SI and others. Isolation and cultivation of blastocyst-derived stem cell lines from American mink (Mustela vison). Mol Reprod Dev 1992;33(4):418-31.
- Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 1995;92(17):7844-8.
- Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145-7.
- 8. Thomas KR, Deng C, Capecchi MR. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol 1992;12(7):2919-23.
- Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O. Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A 1989;86(22):8927-31.
- 10. Thomson H. Bioprocessing of embryonic stem cells for drug discovery. Trends Biotechnol 2007;25(5):224-30.
- 11. Suda Y, Suzuki M, Ikawa Y, Aizawa S. Mouse embryonic stem cells exhibit indefinite proliferative potential. J Cell Physiol 1987;133(1):197-201.
- Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988;336(6200):688-90.
- 13. Burdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 2002;12(9):432-8.
- 14. Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 2001;490(3):117-22.
- 15. Niwa H. How is pluripotency determined and maintained? Development 2007;134(4):635-46.
- 16. Boiani M, Scholer HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 2005;6(11):872-84.
- 17. Beddington RS, Robertson EJ. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 1989;105(4):733-7.
- 18. Yamanaka S. Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 2008;363(1500):2079-87.
- 19. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG and others. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005;122(6):947-56.
- 20. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J and others. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006;38(4):431-40.
- Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 2008;10(3):353-60.

- 22. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K and others. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006;125(2):301-13.
- Fouse SD, Shen Y, Pellegrini M, Cole S, Meissner A, Van Neste L, Jaenisch R, Fan G. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2008;2(2):160-9.
- 24. Dani C, Chambers I, Johnstone S, Robertson M, Ebrahimi B, Saito M, Taga T, Li M, Burdon T, Nichols J and others. Paracrine induction of stem cell renewal by LIF-deficient cells: a new ES cell regulatory pathway. Dev Biol 1998;203(1):149-62.
- 25. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998;12(13):2048-60.
- Haegele L, Ingold B, Naumann H, Tabatabai G, Ledermann B, Brandner S. Wnt signalling inhibits neural differentiation of embryonic stem cells by controlling bone morphogenetic protein expression. Mol Cell Neurosci 2003;24(3):696-708.
- 27. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003;115(3):281-92.
- 28. Smith AG, Hooper ML. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol 1987;121(1):1-9.
- 29. Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G, Rathjen PD. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 1999;112 (Pt 5):601-12.
- Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, Abbondanzo SJ. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992;359(6390):76-9.
- Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, Yokota T. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. Embo J 1999;18(15):4261-9.
- 32. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997;11(24):3286-305.
- Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004;10(1):55-63.
- 34. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. The ground state of embryonic stem cell self-renewal. Nature 2008;453(7194):519-23.
- Hart AH, Hartley L, Ibrahim M, Robb L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn 2004;230(1):187-98.
- Scholer HR, Dressler GR, Balling R, Rohdewohld H, Gruss P. Oct-4: a germlinespecific transcription factor mapping to the mouse t-complex. Embo J 1990;9(7):2185-95.
- Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003;17(1):126-40.
- Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998;95(3):379-91.
- Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003;113(5):631-42.
- 40. Hombria JC, Lovegrove B. Beyond homeosis--HOX function in morphogenesis and organogenesis. Differentiation 2003;71(8):461-76.
- 41. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33 Suppl:245-54.
- 42. Orkin SH. Chipping away at the embryonic stem cell network. Cell 2005;122(6):828-30.

- 43. Latchman DS. Transcription factors: an overview. Int J Biochem Cell Biol 1997;29(12):1305-12.
- 44. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA. Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 2004;14(3):283-91.
- 45. Blais A, Dynlacht BD. Constructing transcriptional regulatory networks. Genes Dev 2005;19(13):1499-511.
- 46. Yu H, Luscombe NM, Qian J, Gerstein M. Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet 2003;19(8):422-7.
- Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H. Network motifs in integrated cellular networks of transcription-regulation and proteinprotein interaction. Proc Natl Acad Sci U S A 2004;101(16):5934-9.
- Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I and others. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002;298(5594):799-804.
- 49. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J and others. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008;133(6):1106-17.
- 50. Boyer LA, Mathur D, Jaenisch R. Molecular control of pluripotency. Curr Opin Genet Dev 2006;16(5):455-62.
- Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH. A protein interaction network for pluripotency of embryonic stem cells. Nature 2006;444(7117):364-8.
- 52. Thanos D, Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 1995;83(7):1091-100.
- 53. Herr W, Sturm RA, Clerc RG, Corcoran LM, Baltimore D, Sharp PA, Ingraham HA, Rosenfeld MG, Finney M, Ruvkun G and others. The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev 1988;2(12A):1513-6.
- 54. Clerc RG, Corcoran LM, LeBowitz JH, Baltimore D, Sharp PA. The B-cell-specific Oct-2 protein contains POU box- and homeo box-type domains. Genes Dev 1988;2(12A):1570-81.
- 55. Muller MM, Ruppert S, Schaffner W, Matthias P. A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 1988;336(6199):544-51.
- 56. Finney M, Ruvkun G, Horvitz HR. The C. elegans cell lineage and differentiation gene unc-86 encodes a protein with a homeodomain and extended similarity to transcription factors. Cell 1988;55(5):757-69.
- Ingraham HA, Flynn SE, Voss JW, Albert VR, Kapiloff MS, Wilson L, Rosenfeld MG. The POU-specific domain of Pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent Pit-1-Pit-1 interactions. Cell 1990;61(6):1021-33.
- 58. Sturm RA, Herr W. The POU domain is a bipartite DNA-binding structure. Nature 1988;336(6199):601-4.
- Botfield MC, Jancso A, Weiss MA. Biochemical characterization of the Oct-2 POU domain with implications for bipartite DNA recognition. Biochemistry 1992;31(25):5841-8.
- 60. Verrijzer CP, Alkema MJ, van Weperen WW, Van Leeuwen HC, Strating MJ, van der Vliet PC. The DNA binding specificity of the bipartite POU domain and its subdomains. Embo J 1992;11(13):4993-5003.
- Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 1990;345(6277):686-92.
- 62. Ryan AK, Rosenfeld MG. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 1997;11(10):1207-25.
- 63. Scholer HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature 1990;344(6265):435-9.

- 64. Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 2001;19(4):271-8.
- 65. Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, Hubner K, Scholer HR. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 1996;122(3):881-94.
- 66. Palmieri SL, Peter W, Hess H, Scholer HR. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 1994;166(1):259-67.
- 67. Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ. Highefficiency RNA interference in human embryonic stem cells. Stem Cells 2005;23(3):299-305.
- 68. Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2005;123(5):917-29.
- 69. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000;24(4):372-6.
- 70. Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 2000;16(4):182-7.
- 71. Pevny LH, Lovell-Badge R. Sox genes find their feet. Curr Opin Genet Dev 1997;7(3):338-44.
- 72. Zappone MV, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi AL, Lovell-Badge R, Ottolenghi S and others. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 2000;127(11):2367-82.
- 73. Tomioka M, Nishimoto M, Miyagi S, Katayanagi T, Fukui N, Niwa H, Muramatsu M, Okuda A. Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 2002;30(14):3202-13.
- 74. Catena R, Tiveron C, Ronchi A, Porta S, Ferri A, Tatangelo L, Cavallaro M, Favaro R, Ottolenghi S, Reinbold R and others. Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J Biol Chem 2004;279(40):41846-57.
- 75. Remenyi A, Lins K, Nissen LJ, Reinbold R, Scholer HR, Wilmanns M. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev 2003;17(16):2048-59.
- Williams DC, Jr., Cai M, Clore GM. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex. J Biol Chem 2004;279(2):1449-57.
- 77. Wang ZX, Teh CH, Kueh JL, Lufkin T, Robson P, Stanton LW. Oct4 and Sox2 directly regulate expression of another pluripotency transcription factor, Zfp206, in embryonic stem cells. J Biol Chem 2007;282(17):12822-30.
- Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003;113(5):643-55.
- 79. Pan GJ, Pei DQ. Identification of two distinct transactivation domains in the pluripotency sustaining factor nanog. Cell Res 2003;13(6):499-502.
- 80. Singh AM, Hamazaki T, Hankowski KE, Terada N. A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 2007;25(10):2534-42.
- 81. Shi W, Wang H, Pan G, Geng Y, Guo Y, Pei D. Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. J Biol Chem 2006;281(33):23319-25.
- Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 2005;25(6):2475-85.
- 83. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005;280(26):24731-7.

- Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K, Miyazaki Ji J, Niwa H. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 2002;16(7):784-9.
- 85. Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K and others. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 2004;22(6):707-16.
- 86. Wei CL, Miura T, Robson P, Lim SK, Xu XQ, Lee MY, Gupta S, Stanton L, Luo Y, Schmitt J and others. Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells 2005;23(2):166-85.
- Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR. Dissecting self-renewal in stem cells with RNA interference. Nature 2006;442(7102):533-8.
- Matoba R, Niwa H, Masui S, Ohtsuka S, Carter MG, Sharov AA, Ko MS. Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS ONE 2006;1:e26.
- Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L and others. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 2006;8(10):1114-23.
- Wu Q, Chen X, Zhang J, Loh YH, Low TY, Zhang W, Sze SK, Lim B, Ng HH. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem 2006;281(34):24090-4.
- Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 2008;22(6):746-55.
- 92. Tam WL, Lim CY, Han J, Zhang J, Ang YS, Ng HH, Yang H, Lim B. T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 2008;26(8):2019-31.
- 93. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76.
- 94. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-72.
- 95. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007;448(7151):318-24.
- 96. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007;448(7151):313-7.
- 97. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R and others. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318(5858):1917-20.
- Aruga J, Nagai T, Tokuyama T, Hayashizaki Y, Okazaki Y, Chapman VM, Mikoshiba K. The mouse zic gene family. Homologues of the Drosophila pair-rule gene odd-paired. J Biol Chem 1996;271(2):1043-7.
- 99. Brown SA, Warburton D, Brown LY, Yu CY, Roeder ER, Stengel-Rutkowski S, Hennekam RC, Muenke M. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 1998;20(2):180-3.
- 100. Yokota N, Aruga J, Takai S, Yamada K, Hamazaki M, Iwase T, Sugimura H, Mikoshiba K. Predominant expression of human zic in cerebellar granule cell lineage and medulloblastoma. Cancer Res 1996;56(2):377-83.
- 101. Aruga J, Yokota N, Hashimoto M, Furuichi T, Fukuda M, Mikoshiba K. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem 1994;63(5):1880-90.
- 102. Aruga J, Yozu A, Hayashizaki Y, Okazaki Y, Chapman VM, Mikoshiba K. Identification and characterization of Zic4, a new member of the mouse Zic gene family. Gene 1996;172(2):291-4.

- 103. Gebbia M, Ferrero GB, Pilia G, Bassi MT, Aylsworth A, Penman-Splitt M, Bird LM, Bamforth JS, Burn J, Schlessinger D and others. X-linked situs abnormalities result from mutations in ZIC3. Nat Genet 1997;17(3):305-8.
- 104. Furushima K, Murata T, Matsuo I, Aizawa S. A new murine zinc finger gene, Opr. Mech Dev 2000;98(1-2):161-4.
- 105. Mizugishi K, Aruga J, Nakata K, Mikoshiba K. Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J Biol Chem 2001;276(3):2180-8.
- 106. Aruga J. The role of Zic genes in neural development. Mol Cell Neurosci 2004;26(2):205-21.
- 107. Koebernick K, Pieler T. Gli-type zinc finger proteins as bipotential transducers of Hedgehog signaling. Differentiation 2002;70(2-3):69-76.
- 108. Matise MP, Joyner AL. Gli genes in development and cancer. Oncogene 1999;18(55):7852-9.
- 109. Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui CC. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 1998;125(14):2533-43.
- 110. Lee J, Platt KA, Censullo P, Ruiz i Altaba A. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997;124(13):2537-52.
- 111. Matise MP, Epstein DJ, Park HL, Platt KA, Joyner AL. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 1998;125(15):2759-70.
- 112. Kim YS, Lewandoski M, Perantoni AO, Kurebayashi S, Nakanishi G, Jetten AM. Identification of Glis1, a novel Gli-related, Kruppel-like zinc finger protein containing transactivation and repressor functions. J Biol Chem 2002;277(34):30901-13.
- 113. Lamar E, Kintner C, Goulding M. Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation. Development 2001;128(8):1335-46.
- 114. Nakashima M, Tanese N, Ito M, Auerbach W, Bai C, Furukawa T, Toyono T, Akamine A, Joyner AL. A novel gene, GliH1, with homology to the Gli zinc finger domain not required for mouse development. Mech Dev 2002;119(1):21-34.
- 115. Elms P, Scurry A, Davies J, Willoughby C, Hacker T, Bogani D, Arkell R. Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation. Gene Expr Patterns 2004;4(5):505-11.
- 116. Nagai T, Aruga J, Takada S, Gunther T, Sporle R, Schughart K, Mikoshiba K. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 1997;182(2):299-313.
- 117. Aruga J, Mizugishi K, Koseki H, Imai K, Balling R, Noda T, Mikoshiba K. Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech Dev 1999;89(1-2):141-50.
- 118. Brewster R, Lee J, Ruiz i Altaba A. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 1998;393(6685):579-83.
- 119. Ware SM, Peng J, Zhu L, Fernbach S, Colicos S, Casey B, Towbin J, Belmont JW. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 2004;74(1):93-105.
- 120. Koyabu Y, Nakata K, Mizugishi K, Aruga J, Mikoshiba K. Physical and functional interactions between Zic and Gli proteins. J Biol Chem 2001;276(10):6889-92.
- 121. Alexandre C, Jacinto A, Ingham PW. Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev 1996;10(16):2003-13.
- 122. Marigo V, Johnson RL, Vortkamp A, Tabin CJ. Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev Biol 1996;180(1):273-83.
- 123. Kitaguchi T, Mizugishi K, Hatayama M, Aruga J, Mikoshiba K. Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry. Dev Growth Differ 2002;44(1):55-61.
- 124. Ware SM, Harutyunyan KG, Belmont JW. Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. Dev Dyn 2006;235(6):1631-7.

- 125. Norris DP, Robertson EJ. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev 1999;13(12):1575-88.
- 126. Nakata K, Nagai T, Aruga J, Mikoshiba K. Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc Natl Acad Sci U S A 1997;94(22):11980-5.
- 127. Kelly LE, Carrel TL, Herman GE, El-Hodiri HM. Pbx1 and Meis1 regulate activity of the Xenopus laevis Zic3 promoter through a highly conserved region. Biochem Biophys Res Commun 2006;344(3):1031-7.
- 128. Maeda R, Ishimura A, Mood K, Park EK, Buchberg AM, Daar IO. Xpbx1b and Xmeis1b play a collaborative role in hindbrain and neural crest gene expression in Xenopus embryos. Proc Natl Acad Sci U S A 2002;99(8):5448-53.
- 129. Purandare SM, Ware SM, Kwan KM, Gebbia M, Bassi MT, Deng JM, Vogel H, Behringer RR, Belmont JW, Casey B. A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development 2002;129(9):2293-302.
- 130. Ware SM. DNA mutation analysis in heterotaxy. Methods Mol Med 2006;126:247-56.
- 131. Zhu L, Zhou G, Poole S, Belmont JW. Characterization of the interactions of human ZIC3 mutants with GLI3. Hum Mutat 2008;29(1):99-105.
- 132. Le P, Benazouzz AP, Billey C. [Situs invertus, a mirror image]. Presse Med 2003;32(37 Pt 1):1742-3.
- 133. Burdine RD, Schier AF. Conserved and divergent mechanisms in left-right axis formation. Genes Dev 2000;14(7):763-76.
- 134. Wood WB. The left-right polarity puzzle: determining embryonic handedness. PLoS Biol 2005;3(8):e292.
- 135. Danos MC, Yost HJ. Linkage of cardiac left-right asymmetry and dorsal-anterior development in Xenopus. Development 1995;121(5):1467-74.
- 136. Davidson BP, Kinder SJ, Steiner K, Schoenwolf GC, Tam PP. Impact of node ablation on the morphogenesis of the body axis and the lateral asymmetry of the mouse embryo during early organogenesis. Dev Biol 1999;211(1):11-26.
- 137. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998;95(6):829-37.
- 138. Supp DM, Witte DP, Potter SS, Brueckner M. Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 1997;389(6654):963-6.
- 139. Supp DM, Brueckner M, Kuehn MR, Witte DP, Lowe LA, McGrath J, Corrales J, Potter SS. Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. Development 1999;126(23):5495-504.
- Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LS. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci U S A 1999;96(9):5043-8.
- 141. Nonaka S, Shiratori H, Saijoh Y, Hamada H. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 2002;418(6893):96-9.
- 142. Cartwright JH, Piro O, Tuval I. Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc Natl Acad Sci U S A 2004;101(19):7234-9.
- 143. Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF, Hamada H. De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol 2005;3(8):e268.
- 144. Okada Y, Takeda S, Tanaka Y, Belmonte JC, Hirokawa N. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 2005;121(4):633-44.
- 145. Chazaud C, Chambon P, Dolle P. Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development 1999;126(12):2589-96.
- 146. Tsukui T, Capdevila J, Tamura K, Ruiz-Lozano P, Rodriguez-Esteban C, Yonei-Tamura S, Magallon J, Chandraratna RA, Chien K, Blumberg B and others. Multiple left-right asymmetry defects in Shh(-/-) mutant mice unveil a convergence of the shh

and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci U S A 1999;96(20):11376-81.

- 147. Oulad-Abdelghani M, Chazaud C, Bouillet P, Mattei MG, Dolle P, Chambon P. Stra3/lefty, a retinoic acid-inducible novel member of the transforming growth factorbeta superfamily. Int J Dev Biol 1998;42(1):23-32.
- 148. Brennan J, Norris DP, Robertson EJ. Nodal activity in the node governs left-right asymmetry. Genes Dev 2002;16(18):2339-44.
- 149. Varlet I, Collignon J, Robertson EJ. nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 1997;124(5):1033-44.
- 150. Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 1994;120(7):1919-28.
- 151. Bisgrove BW, Essner JJ, Yost HJ. Regulation of midline development by antagonism of lefty and nodal signaling. Development 1999;126(14):3253-62.
- 152. Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, Mochida K, Shimono A, Kondoh H, Talbot WS, Robertson EJ and others. Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 1999;4(3):287-98.
- 153. Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M, Hashiguchi H, Mochida K, Ohishi S, Kawabata M and others. Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol Cell 2000;5(1):35-47.
- 154. Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, Yokoyama M, Toyoda Y, Hamada H. Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 1996;381(6578):151-5.
- 155. Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, Noji S, Kondoh H, Hamada H. lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 1998;94(3):287-97.
- 156. Melloy PG, Ewart JL, Cohen MF, Desmond ME, Kuehn MR, Lo CW. No turning, a mouse mutation causing left-right and axial patterning defects. Dev Biol 1998;193(1):77-89.
- 157. Izraeli S, Lowe LA, Bertness VL, Good DJ, Dorward DW, Kirsch IR, Kuehn MR. The SIL gene is required for mouse embryonic axial development and left-right specification. Nature 1999;399(6737):691-4.
- 158. Ware SM, Harutyunyan KG, Belmont JW. Zic3 is critical for early embryonic patterning during gastrulation. Dev Dyn 2006;235(3):776-85.
- 159. Aruga J, Minowa O, Yaginuma H, Kuno J, Nagai T, Noda T, Mikoshiba K. Mouse Zic1 is involved in cerebellar development. J Neurosci 1998;18(1):284-93.
- 160. Lu CC, Brennan J, Robertson EJ. From fertilization to gastrulation: axis formation in the mouse embryo. Curr Opin Genet Dev 2001;11(4):384-92.
- 161. Henderson DJ, Conway SJ, Greene ND, Gerrelli D, Murdoch JN, Anderson RH, Copp AJ. Cardiovascular defects associated with abnormalities in midline development in the Loop-tail mouse mutant. Circ Res 2001;89(1):6-12.
- 162. Triulzi F, Scotti G, di Natale B, Pellini C, Lukezic M, Scognamiglio M, Chiumello G. Evidence of a congenital midline brain anomaly in pituitary dwarfs: a magnetic resonance imaging study in 101 patients. Pediatrics 1994;93(3):409-16.
- 163. Clark KL, Yutzey KE, Benson DW. Transcription factors and congenital heart defects. Annu Rev Physiol 2006;68:97-121.
- 164. Nagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y, Noda T, Mikoshiba K. Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci U S A 2000;97(4):1618-23.
- 165. Zhu L, Belmont JW, Ware SM. Genetics of human heterotaxias. Eur J Hum Genet 2006;14(1):17-25.
- 166. Fritz B, Kunz J, Knudsen GP, Louwen F, Kennerknecht I, Eiben B, Orstavik KH, Friedrich U, Rehder H. Situs ambiguus in a female fetus with balanced (X;21) translocation--evidence for functional nullisomy of the ZIC3 gene? Eur J Hum Genet 2005;13(1):34-40.

- Kosaki K, Casey B. Genetics of human left-right axis malformations. Semin Cell Dev Biol 1998;9(1):89-99.
- 168. Casey B, Devoto M, Jones KL, Ballabio A. Mapping a gene for familial situs abnormalities to human chromosome Xq24-q27.1. Nat Genet 1993;5(4):403-7.
- 169. Nakata K, Nagai T, Aruga J, Mikoshiba K. Xenopus Zic family and its role in neural and neural crest development. Mech Dev 1998;75(1-2):43-51.
- 170. Grinblat Y, Sive H. zic Gene expression marks anteroposterior pattern in the presumptive neurectoderm of the zebrafish gastrula. Dev Dyn 2001;222(4):688-93.
- 171. Feledy JA, Beanan MJ, Sandoval JJ, Goodrich JS, Lim JH, Matsuo-Takasaki M, Sato SM, Sargent TD. Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors DIx3 and Msx1. Dev Biol 1999;212(2):455-64.
- 172. Yamamoto TS, Takagi C, Ueno N. Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos. Mech Dev 2000;91(1-2):131-41.
- 173. Batut J, Vandel L, Leclerc C, Daguzan C, Moreau M, Neant I. The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo. Proc Natl Acad Sci U S A 2005;102(42):15128-33.
- 174. Leclerc C, Webb SE, Daguzan C, Moreau M, Miller AL. Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 2000;113 Pt 19:3519-29.
- 175. Leclerc C, Lee M, Webb SE, Moreau M, Miller AL. Calcium transients triggered by planar signals induce the expression of ZIC3 gene during neural induction in Xenopus. Dev Biol 2003;261(2):381-90.
- 176. Moreau M, Neant I, Webb SE, Miller AL, Leclerc C. Calcium signalling during neural induction in Xenopus laevis embryos. Philos Trans R Soc Lond B Biol Sci 2008;363(1495):1371-5.
- 177. Leclerc C, Rizzo C, Daguzan C, Neant I, Batut J, Auge B, Moreau M. [Neural determination in Xenopus laevis embryos: control of early neural gene expression by calcium]. J Soc Biol 2001;195(3):327-37.
- 178. Inoue T, Hatayama M, Tohmonda T, Itohara S, Aruga J, Mikoshiba K. Mouse Zic5 deficiency results in neural tube defects and hypoplasia of cephalic neural crest derivatives. Dev Biol 2004;270(1):146-62.
- 179. Zhang J, Jin Z, Bao ZZ. Disruption of gradient expression of Zic3 resulted in abnormal intra-retinal axon projection. Development 2004;131(7):1553-62.
- 180. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004;32(3):936-48.
- 181. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004;22(3):326-30.
- 182. Morita S, Kojima T, Kitamura T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 2000;7(12):1063-6.
- Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 2002;109(1):29-37.
- 184. Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003;21(2):183-6.
- Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 1997;245(2):154-60.
- 186. Herman GE, El-Hodiri HM. The role of ZIC3 in vertebrate development. Cytogenet Genome Res 2002;99(1-4):229-35.
- 187. Grinberg I, Millen KJ. The ZIC gene family in development and disease. Clin Genet 2005;67(4):290-6.
- 188. Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 2004;23(43):7150-60.

- Pease S, Braghetta P, Gearing D, Grail D, Williams RL. Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol 1990;141(2):344-52.
- Kunath T, Arnaud D, Uy GD, Okamoto I, Chureau C, Yamanaka Y, Heard E, Gardner RL, Avner P, Rossant J. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 2005;132(7):1649-61.
- 191. Mesnard D, Guzman-Ayala M, Constam DB. Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 2006;133(13):2497-505.
- Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S, Herbert M, Murdoch A, Strachan T, Lako M. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 2005;23(8):1035-43.
- Hough SR, Clements I, Welch PJ, Wiederholt KA. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells 2006;24(6):1467-75.
- 194. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008.
- 195. Thomas PD, Kejariwal A, Guo N, Mi H, Campbell MJ, Muruganujan A, Lazareva-Ulitsky B. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res 2006;34(Web Server issue):W645-50.
- 196. Pavesi G, Mereghetti P, Zambelli F, Stefani M, Mauri G, Pesole G. MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes. Nucleic Acids Res 2006;34(Web Server issue):W566-70.
- 197. Ji H, Vokes SA, Wong WH. A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res 2006;34(21):e146.
- 198. Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron 2003;39(5):749-65.
- 199. Uwanogho D, Rex M, Cartwright EJ, Pearl G, Healy C, Scotting PJ, Sharpe PT. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev 1995;49(1-2):23-36.
- 200. Klootwijk R, Franke B, van der Zee CE, de Boer RT, Wilms W, Hol FA, Mariman EC. A deletion encompassing Zic3 in bent tail, a mouse model for X-linked neural tube defects. Hum Mol Genet 2000;9(11):1615-22.
- 201. Inoue T, Ota M, Ogawa M, Mikoshiba K, Aruga J. Zic1 and Zic3 regulate medial forebrain development through expansion of neuronal progenitors. J Neurosci 2007;27(20):5461-73.
- 202. Al-Shahrour F, Minguez P, Tarraga J, Medina I, Alloza E, Montaner D, Dopazo J. FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res 2007;35(Web Server issue):W91-6.
- 203. Kim J, Chu J, Shen X, Wang J, Orkin SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008;132(6):1049-61.
- 204. Haass C, Steiner H. Alzheimer disease gamma-secretase: a complex story of GxGDtype presenilin proteases. Trends Cell Biol 2002;12(12):556-62.
- 205. Hope RG, McLauchlan J. Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J Gen Virol 2000;81(Pt 8):1913-25.
- 206. Hua X, Nohturfft A, Goldstein JL, Brown MS. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 1996;87(3):415-26.
- 207. Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 1999;96(20):11041-8.

- 208. Grinberg I, Northrup H, Ardinger H, Prasad C, Dobyns WB, Millen KJ. Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat Genet 2004;36(10):1053-5.
- 209. Haub O, Goldfarb M. Expression of the fibroblast growth factor-5 gene in the mouse embryo. Development 1991;112(2):397-406.
- 210. Lindholm D, Harikka J, da Penha Berzaghi M, Castren E, Tzimagiorgis G, Hughes RA, Thoenen H. Fibroblast growth factor-5 promotes differentiation of cultured rat septal cholinergic and raphe serotonergic neurons: comparison with the effects of neurotrophins. Eur J Neurosci 1994;6(2):244-52.
- 211. de Lecea L, Criado JR, Prospero-Garcia O, Gautvik KM, Schweitzer P, Danielson PE, Dunlop CL, Siggins GR, Henriksen SJ, Sutcliffe JG. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 1996;381(6579):242-5.
- de Lecea L, del Rio JA, Criado JR, Alcantara S, Morales M, Danielson PE, Henriksen SJ, Soriano E, Sutcliffe JG. Cortistatin is expressed in a distinct subset of cortical interneurons. J Neurosci 1997;17(15):5868-80.
- 213. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells. Science 2008.
- 214. Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007;2(12):3081-9.
- 215. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008;26(1):101-6.
- 216. Adams IR, McLaren A. Identification and characterisation of mRif1: a mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells. Dev Dyn 2004;229(4):733-44.
- 217. Jung J, Mysliwiec MR, Lee Y. Roles of JUMONJI in mouse embryonic development. Dev Dyn 2005;232(1):21-32.
- 218. Jung J, Kim TG, Lyons GE, Kim HR, Lee Y. Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J Biol Chem 2005;280(35):30916-23.
- 219. Schoor M, Schuster-Gossler K, Gossler A. The Etl-1 gene encodes a nuclear protein differentially expressed during early mouse development. Dev Dyn 1993;197(3):227-37.
- 220. Ueda J, Tachibana M, Ikura T, Shinkai Y. Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J Biol Chem 2006;281(29):20120-8.
- 221. McGraw S, Vigneault C, Sirard MA. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction 2007;133(3):597-608.
- 222. De Robertis EM, Larrain J, Oelgeschlager M, Wessely O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat Rev Genet 2000;1(3):171-81.
- 223. Donner AL, Episkopou V, Maas RL. Sox2 and Pou2f1 interact to control lens and olfactory placode development. Dev Biol 2007;303(2):784-99.
- 224. Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 2005;168(7):1065-76.
- 225. Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 2006;7(4):319-27.
- 226. Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2008;2(1):10-2.
- 227. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008;2(3):230-40.
- 228. Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H, Jaenisch R. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2008;2(2):151-9.

- 229. Inoue T, Ota M, Mikoshiba K, Aruga J. Zic2 and Zic3 synergistically control neurulation and segmentation of paraxial mesoderm in mouse embryo. Dev Biol 2007;306(2):669-84.
- 230. Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH. In Vivo Fate Analysis Reveals the Multipotent and Self-Renewal Capacities of Sox2(+) Neural Stem Cells in the Adult Hippocampus. Cell Stem Cell 2007;1(5):515-528.
- 231. Kishi M, Mizuseki K, Sasai N, Yamazaki H, Shiota K, Nakanishi S, Sasai Y. Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm. Development 2000;127(4):791-800.

APPENDICES

Appendix 1. Primers for ChIP-PCR assay

No.	Name	SEQUENCE (5' -> 3')	Grade	Quantity
1	60_Rik_375_F	TTCCGGGTCGCAAACGGAAGTG	PCRGrade	50nmole
2	60_Rik_375_R	AGTCCCAGGCTCGCCGCGTTAC	PCRGrade	50nmole
3	Agtrap_109F	AGAAGCCATATGGGAACCCATG	PCRGrade	50nmole
4	Agtrap_109R	ATTAAATTAGGTCTGCCCCGCC	PCRGrade	50nmole
5	Anxa11_432_F	GTCCTGGGGCGTCAGTTGAAAG	PCRGrade	50nmole
6	Anxa11 432 R	CCCCAGCTCACATTTAGGCACC	PCRGrade	50nmole
7	Btn2a2 399 F	GGCGGGCACCATAGGTCCTTTAAAG	PCRGrade	50nmole
8	Btn2a2 399 R	TAGTGCTGAGCCAGGAGACACGTGG	PCRGrade	50nmole
9	Cacna2d1 112F	TAAGTCGCTCTGGGGTGCCTTTG	PCRGrade	50nmole
10	Cacna2d1 112R	GGTTAGCTTTCCCGTCCCCCTT	PCRGrade	50nmole
11	Cd109 219 F	GCAGGAGGTGGCCAACCACACC	PCRGrade	50nmole
12	Cd109_219_R	CGCGCACAAGCAGAGAAGGTGG	PCRGrade	50nmole
13	Commd3_25_F	AGGTGTCAAGCTGCGGAGCTTTTC	PCRGrade	50nmole
14	Commd3 25 R	TATTCCACTTGCCCTTTGGCCC	PCRGrade	50nmole
15	D11Ertd636e_F	GCAGGCCAGAAGCATCGGAAAC	PCRGrade	50nmole
16	D11Ertd636e R	CAGTGGATTCCTCGCTGGGAGG	PCRGrade	50nmole
17	Dido1 60 F	CAGAGCCACCTTTCAATTTTATG	PCRGrade	50nmole
18	Dido1 60 R	GGGCAATTAGGGTAGCTCTAGG	PCRGrade	50nmole
19	DII1_523_F	CCCTCCCCCTATGCCTCTCCTTC	PCRGrade	50nmole
20	DII1 523 R	CGGGCTGCAGCCGCAGGTAAAC	PCRGrade	50nmole
21	Emb 423 F	GTAGGGTCAGCTCATTTGCAGGAG	PCRGrade	50nmole
22	Emb 423 R	GCTTGCTAATTCACACCGGTGC	PCRGrade	50nmole
23	Faf5 129 F	TCTTGTCTTCCTGGTGGCTCTCGG	PCRGrade	50nmole
24	Fgf5 129 R	TTTCCAAACCCTCCCCACAGGC	PCRGrade	50nmole
25	Fafbp1 125 F	GCTGTGGAAGGAGGCAGACTGAG	PCRGrade	50nmole
26	Fgfbp1 125 R	TTCTTAGATTGATTCAGAATCG	PCRGrade	50nmole
27	Gja1_251_F	AGCTGTGCGCTTTGTCTTGGAG	PCRGrade	50nmole
28	Gja1_251_R	TGCCTAGGCAAAGGTAGCCAAG	PCRGrade	50nmole
29	Hesx1_434_F	TAACTCCTTAAGCCGCTGGCTG	PCRGrade	50nmole
30	Hesx1_434_R	TGGGATCTTCCAGCAGTTCACC	PCRGrade	50nmole
31	Hlf_333_F	TTCCTTCTAGCCCCACTGCATATCC	PCRGrade	50nmole
32	Hlf_333_R	TTAATTCCCTCGGACAGCGTGG	PCRGrade	50nmole
33	Hoxb13_339_F	CTGTGAAGCTGGAGAAAGGACTGGG	PCRGrade	50nmole
34	Hoxb13_339_R	CGGGGGTCCCACACAGAAACTG	PCRGrade	50nmole
35	Hs6st2_642_F	GGTTGACACAGTAGGTAGCTATCC	PCRGrade	50nmole
36	Hs6st2_642_R	TGTGGGCTTGAATGTGTGAACC	PCRGrade	50nmole
37	Hs6st2_644_F	AGGGTCCTTCAGTCACTTGACTGC	PCRGrade	50nmole
38	Hs6st2_644_R	AGCAAGGAAGTGGTTTCCCTGG	PCRGrade	50nmole
39	ltga1_421_F	AAGGCTGTGAGCTTAGCTACTG	PCRGrade	50nmole
40	ltga1_421_R	ACCCAAATGTCGCAGTGCTGTC	PCRGrade	50nmole
41	Jarid2 405 F	AACCACAAAGGACAATCCATTTTCC	PCRGrade	50nmole
42	Jarid2_405_R	CTCCAAGTCCCAGGCAAGTGTG	PCRGrade	50nmole
43	Klf2_202_F	ACACACACACACACACACACAC	PCRGrade	50nmole
44	Klf2_202_R	TTTTTCCTGGTAGGTGGCCGG	PCRGrade	50nmole
45	Klf6_394_F	ACAGGGAAACCTGCGGGCACGTTTG	PCRGrade	50nmole
46	Klf6_394_R	TGTTCCCGGATCCTTCCCTGAC	PCRGrade	50nmole
47	Klf9_617_F	TCCCAATGTGAGGTCTGACACGTG	PCRGrade	50nmole
48	Klf9_617_R	CTGCCGATTCTGGCTTTTCTCG	PCRGrade	50nmole
49	Lbxcor1_211_F	GTGCGAGGGGGTTACTTGGCAG	PCRGrade	50nmole
<u> </u>	Lbxcor1_211_R	CCTTTTCCTCCCTTAGCCCCCC	PCRGrade	50nmole
51	Liph_507_F	TAATGAACCTGCCCTGGAATGTGC	PCRGrade	50nmole
52	Liph_507_R	TGAGGATCGGATAGTTTCGCCC	PCRGrade	50nmole
53	Lmx1b_29_F	TGTCTTGATAACCACTACTCCGCCC	PCRGrade	50nmole
54	Lmx1b_29_R	AAAGGACCCCGGCTTTATCCTC	PCRGrade	50nmole
55	Map4k4_6_F	TGAAAGGGAGCCCTGTTAACAGC	PCRGrade	50nmole
56	Map4k4_6_R	CCGTGCTTAAACAAACTCTGGAGC	PCRGrade	50nmole
No.	Name	SEQUENCE (5' -> 3')	Grade	Quantity
-----	--------------	----------------------------	----------	----------
57	Mllt6-342_F	ATCTCCTCTCCGAGCCCTCTGC	PCRGrade	50nmole
58	MIIt6-342_R	AATACCCCCTCAGCGGGAGGTT	PCRGrade	50nmole
59	Mycn_371_F	AGCAGGGGCTGTATGGTAAGTGTTC	PCRGrade	50nmole
60	Mycn_371_R	AAAAGGTTCTGGGAGCCACACC	PCRGrade	50nmole
61	Nid2_430_F	ACATTTCAGAGGGTGGCAGTGTCC	PCRGrade	50nmole
62	Nid2_430_R	GGCCCTCGGATAAAGAATCAAAGG	PCRGrade	50nmole
63	Nodal_255_F	GGCAGCTGCTAATGTGCTAGTTGG	PCRGrade	50nmole
64	Nodal_255_R	TTCAAAAGGGAAGGCGGGATAG	PCRGrade	50nmole
65	Pax6_40_F	GAGTGAGGAGGACAGAGGTCCAATG	PCRGrade	50nmole
66	Pax6_40_R	TCAGCCCAAACCCCTAGCCTAG	PCRGrade	50nmole
67	Pax9_376_F	GCGCTGCCCTACAACCACATTTAC	PCRGrade	50nmole
68	Pax9_376_R	GAGTGAGAGGAGGGCCAGGTGC	PCRGrade	50nmole
69	Pdpn_106_F	AACAGCGGGGGACCCTTTGTTC	PCRGrade	50nmole
70	Pdpn_106_R	AGAAGTGCAGCCCACCGCTCTC	PCRGrade	50nmole
71	Phc1_150_F	CCTTTGGGAAGGCTGAGCATATG	PCRGrade	50nmole
72	Phc1_150_R	GCTGTCTTTGCTAACAATGCTCTGG	PCRGrade	50nmole
73	Porcn_639_F	TGTGAACGGAGAAACACACCCAG	PCRGrade	50nmole
74	Porcn_639_R	TTAACAGAAAGGGACACCGCCC	PCRGrade	50nmole
75	Pou5f1_552_F	GGTTGGGGAGCAGGAAGTTGTCC	PCRGrade	50nmole
76	Pou5f1_552_R	AGGACAATGGCCTTGGCTGGAC	PCRGrade	50nmole
77	Pou5f1_550_F	CTGGGTGTGGGGGAGGTTGTAGC	PCRGrade	50nmole
78	Pou5f1_550_R	AACCATCTTCTCTGCCCCCAGG	PCRGrade	50nmole
79	Pou5f1_549_F	GCTAACACGAGTGATTTCCCTGCTC	PCRGrade	50nmole
80	Pou5f1_549_R	AACAATAGGCGTTGACCCCCAC	PCRGrade	50nmole
81	Ppp2r5b_612F	AGCTCAGAACTGGACTCCCGAATTC	PCRGrade	50nmole
82	Ppp2r5b_612R	CAAATTGTGGGCCTGGCACATC	PCRGrade	50nmole
83	Rif1_30_F	CTCTACACCTGGGGTCCAATGGAAG	PCRGrade	50nmole
84	Rif1_30_R	TGGCGTGCATAACAAAGGCCTG	PCRGrade	50nmole
85	Ror1_92_F	CTGAGCCTGCACACAATGAGAGG	PCRGrade	50nmole
86	Ror1_92_R	AGAGTTCAGGGGCTCCAACACC	PCRGrade	50nmole
87	Sall4_57_F	AACCTGCATTCTCCTACAGACCGAC	PCRGrade	50nmole
88	Sall4_57_R	GGACCTCGATTGTGGTTTTGGG	PCRGrade	50nmole
89	Smarcd1_495F	ACTGCAGTTCACCACTCCTGCTGG	PCRGrade	50nmole
90	Smarcd1_495R	TCAACAGCAACCCAGACCCCAG	PCRGrade	50nmole
91	Snapc5_213_F	ACCACCACAGCTATGGCCACTG	PCRGrade	50nmole
92	Snapc5_213_R	AGGAACTGCCTTGTCTCAGGGAGT	PCRGrade	50nmole
93	Sox2_65_F	AACCCACTCAAATGCAGATGCAGG	PCRGrade	50nmole
94	Sox2_65_R	TGACAATGTTGTGGAGGTGCGG	PCRGrade	50nmole
95	Tcea1_2_F	CACCTTAACTTTGCCTTAGGCAGC	PCRGrade	50nmole
96	Tcea1_2_R	TTTCCTGCCTCCACCCAAGTAC	PCRGrade	50nmole
97	Tdgf1_223_F	TGAGACTGGAGGAGTGGAGAAGGG	PCRGrade	50nmole
98	Tdgf1_223_R	CCCCAAGTGATCATGGAAAGGC	PCRGrade	50nmole
99	Thbs2_518_F	GGTTCTCCCCGCCCTGTACATT	PCRGrade	50nmole
100	Thbs2_518_R	AGGAATGTCAAGAGATCTCTTG	PCRGrade	50nmole
101	Trp53_305_F	CTCCCTGCTCTTGCAATCTCTTTG	PCRGrade	50nmole
102	Trp53_305_R	TAAACAAGATGGGGCCTAGG	PCRGrade	50nmole
103	Twsg1_581_F	TAAAGGTAGAGGACCAAGTCACGG	PCRGrade	50nmole
104	Twsg1_581_R	TGTGTTCTGCCCCCCTCTATGTAG	PCRGrade	50nmole
105	Upp1_282_F	GAAAGGGCCAGTCTTTTCCGGG	PCRGrade	50nmole
106	Upp1_282_R	TCAGAGGTCACACCTGCCCCCT	PCRGrade	50nmole
107	Vegfc_198_F	GCAGAGTTCCTAGGTGCTTTTC	PCRGrade	50nmole
108	Vegfc_198_R	GACACACCCAAACTGTATCTGC	PCRGrade	50nmole
109	Vim_20_F	GCAGCATTCCCAGAACTGACTGAG	PCRGrade	50nmole
110	Vim_20_R	TGGAGCACAGAGTGTTCCCAGC	PCRGrade	50nmole
111	Vmp_403_F	AGGATTTTGCCTGGGGCTTACC	PCRGrade	50nmole
112	Vmp_403_R	TCCATCTGGCTGTCAAACCCAG	PCRGrade	50nmole
113	Zcrb1_492_F	ACAATGGACCCGGCACCCCGGAG	PCRGrade	50nmole
114	Zcrb1_492_R	TCCGGCCCCAGGAACGTCCAGC	PCRGrade	50nmole

No.	Name	SEQUENCE (5' -> 3')	Grade	Quantity
115	Zfp206_527_F	GGGGTGTAGGCTTACAGCACTGTG	PCRGrade	50nmole
116	Zfp206_527_R	TGCTGTGTGGCCTTGGAGTCTC	PCRGrade	50nmole
117	Zfp36l1_383F	GGGAATCGGTAACCCTGTAACCG	PCRGrade	50nmole
118	Zfp36l1_383R	GCTGCCCCGCTCTTTGATCTAT	PCRGrade	50nmole
119	Zfp36l1_385F	CACTGCACGGCCTTCGACTTTTC	PCRGrade	50nmole
120	Zfp36l1_385R	TTGGGGCAGCGACTTCAGACAG	PCRGrade	50nmole
121	Zfp499_171_F	GACCTTACCCCCTGCTGTTTAAACC	PCRGrade	50nmole
122	Zfp499_171_R	CAAGGGAAGGTGACAGGGACTAAGA	PCRGrade	50nmole
123	Zic5_471_F	TGGTCATCAGGAAGGCTCACTGTG	PCRGrade	50nmole
124	Zic5_471_R	TTAAGTGCGTTTCGGCTGGCTC	PCRGrade	50nmole

Appendix 2. FDR Analysis: ChIP-PCR results for Zic3/Sox2 common targets

No	Namo	SEQUENCE (5' -> 3')	Grado	Quantity
NU.	Name		Graue	Quantity
1	Mbtps2Luc-F	GCG-CGC-TAG-CACT-TTA-TTT-TTT-GAT-TTG-ACC-TTT-G	PCRGrade	50nmole
2	Mbtps2Luc-R	GCG-CAG-ATC-TCAA-AAT-GTT-TTG-CCA-ATT-AAG-C	PCRGrade	50nmole
3	Cort-Luc-F	GTC-AGC-TAG-CAC-TTG-CAC-GAG-GAG-AAG-GTT-TTC-C	PCRGrade	50nmole
4	Cort-Luc-R	GCT-AAG-ATC-TTGA-GCA-GTT-TCT-CTA-GAG-TCC-G	PCRGrade	50nmole
5	Zic5-2-Luc-F	GTC-AGC-TAG-CTT-CGT-TTC-CTT-GAA-GGA-CAT-TTC	PCRGrade	50nmole
6	Zic5-2-Luc-R	GCT-AAG-ATC-TTT-CAA-CGC-TCT-GGA-AAT-TGT-TG	PCRGrade	50nmole
7	NanogLuc-F	GTC-AGC-TAG-CAA-ATG-AGG-TAA-AGC-CTC-TTT-TT	PCRGrade	50nmole
8	NanogLuc-R	GCT-AAG-ATC-TGA-AGA-GTT-AAA-TGT-CTA-ATG-CA	PCRGrade	50nmole
9	Fgf5-Luc-F	GTC-AGC-TAG-CCT-GTG-TGC-ATG-CAT-GGG-ACT	PCRGrade	50nmole
10	Fgf5-Luc-R	GCT-AAG-ATC-TCG-AAC-GTC-AAG-AGA-AGG-GGT	PCRGrade	50nmole

Appendix 3. Luciferase cloning primers for Zic3 chip-chip validation

Appendix 4. GFP fluorescence in mES cells transfected with the pSUPER-GFP shRNA vector. (A - B) Three weeks posttransfection, non-targetting shRNA cells demonstrated robust GFP expression (C - D) mES cells were transfected with a pSUPER.GFP shRNA vector targetting the CoupTFII gene. As observed with the non-targetting cells, the CoupTFII knockdown cells expressed high levels of GFP protein. (E - F) In contrast to the non-targetting and CoupTFII RNAi cells, Zic3 shRNA transfected cells did not express GFP after 3 weeks in culture. This suggests that the lack of GFP expression is unique to the Zic3 knockdown cells, and could be an indicator that the colonies emerging from long-term selection were a result of low levels of expression from the shRNA construct, which conferred antibiotic resistance and reduced knockdown efficiency on the cells.

Appendix 5. Zic3 ChIP target gene and their associated promoter regions in mouse ES cells

"Bound Region" (column E) - the annotation assigned to each unique region Genomic co-ordinates are with reference to UCSC build mm7 (August 2005)

Chr	Start	End	Length	Bound Region	First Gene	Accession #	Second gene	Accession #	Primary Annotation
chr1	4850110	4850610	500	Zic3_extended:1	Tcea1	NM_011541	NA	NA	PROMOTER
chr1	4850939	4851565	626	Zic3_extended:2	Tcea1	NM_011541	NA	NA	PROMOTER
chr1	36925610	36926110	500	Zic3_extended:3	BC050210	NM_201365	Cox5b	NM_009942	DIVERGENT
chr1	40141150	40141878	728	Zic3_extended:4	Map4k4	NM_008696	NA	NA	INSIDE
chr1	65548530	65549030	500	Zic3_extended:5	Pthr2	NM_139270	NA	NA	PROMOTER
chr1	96722860	96723535	675	Zic3_extended:6	Slco4c1	NM_172658	NA	NA	INSIDE
chr1	1.32E+08	1.32E+08	500	Zic3_extended:7	Slc26a9	NM_177243	NA	NA	INSIDE
chr1	1.33E+08	1.33E+08	649	Zic3_extended:8	Lrrn2	NM_010732	NA	NA	PROMOTER
chr1	1.34E+08	1.34E+08	500	Zic3_extended:9	Chi3l1	NM_007695	NA	NA	INSIDE
chr1	1.57E+08	1.57E+08	652	Zic3_extended:10	Ralgps2	NM_023884	NA	NA	INSIDE
chr1	1.66E+08	1.66E+08	500	Zic3_extended:11	Dusp27	NM_001033344	NA	NA	INSIDE
chr1	1.89E+08	1.89E+08	500	Zic3_extended:12	Kctd3	NM_172650	NA	NA	INSIDE
chr2	13511256	13512164	908	Zic3_extended:13	Vim	NM_011701	NA	NA	PROMOTER
chr2	18738918	18739815	897	Zic3_extended:14	Commd3	NM_147778	NA	NA	INSIDE
chr2	22604814	22605497	683	Zic3_extended:15	Gad2	NM_008078	NA	NA	PROMOTER
chr2	26306168	26306668	500	Zic3_extended:16	4932418E24Rik	NM_177841	NA	NA	PROMOTER
chr2	33644475	33644975	500	Zic3_extended:17	Lmx1b	NM_010725	NA	NA	INSIDE
chr2	52079235	52079735	500	Zic3_extended:18	Rif1	NM_175238	NA	NA	PROMOTER
chr2	69062444	69063255	811	Zic3_extended:19	Nostrin	NM_181547	NA	NA	PROMOTER
chr2	69152456	69153109	653	Zic3_extended:20	G6pc2	NM_021331	NA	NA	INSIDE
chr2	80291887	80292541	654	Zic3_extended:21	Frzb	NM_011356	NA	NA	PROMOTER
chr2	1.02E+08	1.02E+08	500	Zic3_extended:22	E430002G05R1k	NM_173749	NA	NA	PROMOTER
chr2	1.06E+08	1.06E+08	948	Zic3_extended:23	Pax6	NM_013627	NA	NA	INSIDE
chr2	1.1/E+08	1.1/E+08	/18	Zic3_extended:24	Spred	NM_033524	NA	NA	PROMOTER
chr2	1.21E+08	1.21E+08	796	Zic3_extended:25	Trp53bp1	NM_013/35	NA	NA	PROMOTER
chr2	1.26E+08	1.26E+08	626 500	Zic3_extended:26	SIC2/a2	NM_01029/25	NA	NA	PROMOTER
cnr2	1.3E+08	1.3E+08	500	Zic3_extended:27	Stk35	NM_001038033	INA	NA	PROMOTER
chr2	1.47E+08	1.47E+08	500	Zic3_extended:28	AIIIZ Nilw2 2	NM_010010	INA	INA NA	PROMOTER
chr2	1.4/E+08	1.4/E+08	500	Zic3_extended:29	INKX2-2	NM_010919	INA	INA NA	PROMOTER
ohr2	1.40E+00	1.40E+00	500	Zic3_extended.30	Zipsso Cet3	NM_000076	NA	NA	INSIDE
chr2	1.49E+08	1.49E+08	500	Zic3_extended:32	A svl1	NM 001039930	NA	NA	INSIDE
chr2	1.55E+08	1.55E+08	500	Zic3_extended:33	Sall4	NM 201396	NA	NA	INSIDE
chr2	1.00E+0.08 1.72E+0.8	1.002+0.08 1.72E+0.8	614	Zic3_extended:34	Tefan?e	NM_009335	NA	NA	PROMOTER
chr2	1.72E+00	1.72E+00	500	Zic3_extended:35	Dido1	NM 177852	2310003C23Rik	NM 029607	DIVERGENT
chr3	9009634	9010406	772	Zic3_extended:36	Tpd52	NM 001025263	NA	NA	INSIDE
chr3	34453440	34454092	652	Zic3 extended:37	Sox2	NM 011443	NA	NA	PROMOTER
chr3	51347657	51348396	739	Zic3 extended:38	Ccrn4l	NM 009834	NA	NA	PROMOTER
chr3	81139550	81140250	700	Zic3 extended:39	Pdgfc	NM 019971	NA	NA	PROMOTER
chr3	95534005	95534505	500	Zic3 extended:40	Mcl1	NM 008562	NA	NA	INSIDE
chr3	96432490	96433120	630	Zic3 extended:41	Txnip	NM 023719	NA	NA	INSIDE
chr3	97031441	97032125	684	Zic3_extended:42	Acp6	NM_019800	NA	NA	INSIDE
chr3	1.02E+08	1.02E+08	662	Zic3 extended:43	Casq2	NM_009814	NA	NA	PROMOTER
chr3	1.03E+08	1.03E+08	786	Zic3_extended:44	Dennd2c	NM_177857	NA	NA	INSIDE
chr3	1.05E+08	1.05E+08	680	Zic3_extended:45	Mov10	NM_008619	NA	NA	PROMOTER
chr3	1.21E+08	1.21E+08	644	Zic3_extended:46	Alg14	NM_024178	NA	NA	INSIDE
chr3	1.27E+08	1.27E+08	689	Zic3_extended:47	D3Wsu161e	NM_138593	mmu-mir-302	NA	DIVERGENT
chr4	35027618	35028342	724	Zic3_extended:48	Cga	NM_009889	NA	NA	PROMOTER
chr4	47107367	47107867	500	Zic3_extended:49	Galnt12	NM_172693	NA	NA	INSIDE
chr4	57961424	57962248	824	Zic3_extended:50	D630039A03Rik	NM_178727	NA	NA	PROMOTER
chr4	99473183	99474693	1510	Zic3_extended:51	Ror1	NM_013845	NA	NA	INSIDE
chr4	1.17E+08	1.17E+08	615	Zic3_extended:52	Plk3	NM_013807	NA	NA	INSIDE
chr4	1.23E+08	1.23E+08	745	Zic3_extended:53	Rrage	NM_017475	NA	NA	INSIDE
chr4	1.3E+08	1.3E+08	500	Zic3_extended:54	Pef1	NM_026441	NA	NA	PROMOTER
chr4	1.34E+08	1.34E+08	500	Zic3_extended:55	Stmn1	NM_019641	NA	NA	INSIDE
chr4	1.43E+08	1.43E+08	895	Zic3_extended:56	Pdpn	NM_010329	NA	NA	PROMOTER
chr4	1.47E+08	1.47E+08	794	Zic3_extended:57	Agtrap	NM_009642	NA	NA	PROMOTER
chr4	1.48E+08	1.48E+08	500	Zic3_extended:58	Cort	NM_007745	NA	NA	INSIDE
chr5	14920688	14921188	500	Zic3_extended:59	Cacna2d1	NM_009784	NA	NA	PROMOTER
chr5	28770547	28771193	646	Zic3_extended:60	Dnajb6	NM_001037941	NA	NA	INSIDE
chr5	32165192	32165692	500	Zic3_extended:61	Slc5a1	NM_019810	NA	NA	PROMOTER
chr5	37356800	37357725	925	Zic3_extended:62	Otop1	NM_178139	NA	NA	PROMOTER
chr5	43189306	43190241	935	Zic3_extended:63	Cd38	NM_007646	NA	NA	INSIDE
chr5	45505018	45504226	1208	∠ics_extended:64	rgibpi	INIM_008009	NA	NA	PROMOTER

Chr	Start	End	Length	Bound Region	First Gene	Accession #	Second gene	Accession #	Primary Annotation
chr5	88619489	88620142	653	Zic3_extended:65	Grsf1	NM_178700	NA	NA	PROMOTER
chr5	97470559	97471301	742	Zic3_extended:66	Fgf5	NM_010203	NA	NA	INSIDE
chr5	99258407	99259361	954	Zic3_extended:67	2310057D15Rik	NM_026421	NA	NA	INSIDE
chr5	1.06E+08	1.06E+08	500	Zic3_extended:68	Tgfbr3	NM_011578	NA	NA	INSIDE
chr5	1.09E+08	1.09E+08	651	Zic3_extended:69	D5Ertd585e	NM_027922	NA	NA	PROMOTER
chr5	1.17E+08	1.17E+08	729	Zic3_extended:70	Wsb2	NM_021539	NA	NA	PROMOTER
chr5	1.47E+08	1.47E+08	895	Zic3_extended:71	Ubl3	NM_011908	NA	NA	INSIDE
chr6	28058167	28058667	500	Zic3_extended:72	Grm8	NM_008174	NA	NA	PROMOTER
chr6	92329962	92330617	655	Zic3_extended:73	Trh	NM_009426	NA	NA	PROMOTER
chr6	92899650	92900333	683	Zic3_extended:/4	8430417A20Rik	NM_175209	NA	NA	PROMOTER
chr6	9/296454	9/29/220	766	Zic3_extended:/5	Ubelc	NM_011666	Arl61p5	NM_022992	DIVERGENT
chr6	1.15E+08	1.15E+08	500	Zic3_extended:/6	Timp4	NM_080639	NA	NA	PROMOTER
chr6	1.22E+08	1.22E+08	1212	Zic3_extended://	Phc1	NM_007905	NA	NA	PROMOTER
chro	1.22E+08	1.22E+08	804	Zic3_extended:/8	Fine 1	NM_007905	INA NA	NA	PROMOTER
chro	1.27E+08	1.27E+08	035	Zic3_extended:/9	Fg125 Borg	NM 191099	INA NA	INA NA	DDOMOTED
chr6	1.3/E+08	1.37E+08	500	Zic3_extended:81	Aebn?	NM 178803	NA	NA	PROMOTER
chr6	1.41E+00	1.41E+00	500	Zic3_extended:82	L dbb	NM_008402	NA	NA	PROMOTER
chr7	6200707	6201881	1084	Zic3_extended:83	Luno Usp29	NM 021323	NA	NA	INSIDE
chr7	11600570	11601510	940	Zic3_extended:84	7fp/199	NM 001024699	Trim28	NM 011588	DIVERGENT
chr7	24792012	24792512	500	Zic3_extended:85	4732475C15Rik	NM_001024099	NA	NA	PROMOTER
chr7	25367850	25368350	500	Zic3_extended:86	Samd4b	NM 175021	NA	NA	INSIDE
chr7	32228061	32228724	663	Zic3_extended:87	Rhnn?	NM_027897	NA	NA	INSIDE
chr7	41416413	41416913	500	Zic3_extended:88	Cd37	NM_007645	NA	NA	PROMOTER
chr7	55753819	55754609	790	Zic3 extended:89	Snurf	NM_033174	NA	NA	PROMOTER
chr7	93773043	93773543	500	Zic3 extended:90	Aqp11	NM 175105	NA	NA	PROMOTER
chr7	1.06E+08	1.06E+08	500	Zic3 extended:91	D930014E17Rik	NM 020616	NA	NA	PROMOTER
chr7	1.14E+08	1.14E+08	743	Zic3_extended:92	Arl6ip1	NM_019419	NA	NA	INSIDE
chr7	1.37E+08	1.37E+08	863	Zic3_extended:93	Ifitm2	NM_030694	Ifitm1	NM_026820	DIVERGENT
chr8	11608449	11609055	606	Zic3_extended:94	Ankrd10	NM_133971	NA	NA	PROMOTER
chr8	18819898	18820661	763	Zic3_extended:95	Agpat5	NM_026792	NA	NA	PROMOTER
chr8	23223678	23224286	608	Zic3_extended:96	1810011010Rik	NM_026931	NA	NA	INSIDE
chr8	25840152	25840981	829	Zic3_extended:97	Gpr124	NM_054044	NA	NA	PROMOTER
chr8	52844954	52845644	690	Zic3_extended:98	Vegfc	NM_009506	NA	NA	PROMOTER
chr8	68450734	68451563	829	Zic3_extended:99	Gatad2a	NM_145596	NA	NA	PROMOTER
chr8	70838696	70839196	500	Zic3_extended:100	Klf2	NM_008452	NA	NA	PROMOTER
chr9	35452948	35453448	500	Zic3_extended:101	Ddx25	NM_013932	NA	NA	INSIDE
chr9	44239945	44240445	500	Zic3_extended:102	Mizf	NM_172162	NA	NA	PROMOTER
chr9	50637857	50638357	500	Zic3_extended:103	Dlat	NM_145614	NA	NA	INSIDE
chr9	52025216	52025716	500	Zic3_extended:104	Rdx	NM_009041	NA	NA	PROMOTER
chr9	59683361	59683861	500	Zic3_extended:105	Pkm2	NM_011099	NA	NA	INSIDE
chr9	61971493	61972167	674	Zic3_extended:106	Kif23	NM_024245	NA	NA	INSIDE
chr9	63174592	63175307	715	Zic3_extended:107	Lbxcor1	NM_172446	NA	NA	INSIDE
chr9	64051160	64051660	500	Zic3_extended:108	Smad6	NM_008542	NA	NA	PROMOTER
chr9	64206873	64207485	612	Zic3_extended:109	Snapc5	NM_183316	NA	NA	PROMOTER
chr9	70173572	70174072	500	Zic3_extended:110	6430514L14R1k	NM_029784	NA	NA	PROMOTER
chr9	73017831	73018331	500	Zic3_extended:111	Cepg1	NM_028181	NA	NA	INSIDE
chr9	77583464	77583964	500	Zic3_extended:112	Lrrcl	NM_172528	NA	NA	PROMOTER
chr9	78601267	/8063884	500	Zic3_extended:113	SICI /a5	NM_1/2//3	NA	NA	INSIDE
chr9	/809120/	/8091/0/	500	Zic3_extended:114	Cu109	NM 019762	INA NA	INA	INSIDE
chr9	95051189	95051807	018	Zic3_extended:115	Cnst2	NM_011810	INA NA	NA	INSIDE
chr0	98027443	90020290	500	Zic3_extended:117	Faili Cen70	NM 023873	NA	NA	INSIDE
chr0	1 06E+08	1 06E + 08	500	Zic3_extended:118	Pehp4	NM 021567	NA	NA	DDOMOTED
chr0	1.00E+08	1.00E+08	500	Zic3_extended:110	Dag1	NM_010017	NA	NA	PROMOTER
chr0	1.00E+00	1.00E+00	500	Zic3_extended:120	Dag1 Usp10	NM_027804	NA	NA	INSIDE
chr9	1.00L+00	1.00L+00 1.1E+08	609	Zic3_extended:121	Mtan4	NM_008633	NA	NA	INSIDE
chr9	1.11E+0.08	1.11E+08	1085	Zic3_extended:122	Tdof1	NM_011562	L rrc?	NM 028838	DIVERGENT
chr9	1.112+00 1 12E+08	1.11E+00 1 12E+08	626	Zic3_extended:122	Arnn?1	NM_033264	NA	NA	INSIDE
chr9	1.18E+08	1.18E+08	636	Zic3 extended:123	Itga9	NM 133721	NA	NA	INSIDE
chr10	4540427	4540927	500	Zic3 extended:125	Fbxo5	NM 025995	NA	NA	PROMOTER
chr10	4795929	4796429	500	Zic3 extended:126	Svne1	NM 153399	NA	NA	INSIDE
chr10	13667365	13668247	882	Zic3 extended:127	Hivep2	NM 010437	NA	NA	PROMOTER
chr10	24587560	24588060	500	Zic3 extended:128	Enpp3	NM 134005	NA	NA	INSIDE
chr10	40087864	40088364	500	Zic3_extended:129	Amd2	NM 007444	NA	NA	INSIDE
chr10	43287733	43288387	654	Zic3_extended:130	AK122525	NM 199028	NA	NA	PROMOTER
chr10	56191057	56192221	1164	Zic3_extended:131	Gia1	NM_010288	NA	NA	PROMOTER
chr10	59469793	59470293	500	Zic3_extended:132	Ddit4	NM_029083	NA	NA	PROMOTER
chr10	60934099	60934599	500	Zic3_extended:133	Nodal	NM_013611	NA	NA	PROMOTER

Chr	Start	End	Length	Bound Region	First Gene	Accession #	Second gene	Accession #	Primary Annotation
chr10	61300254	61300930	676	Zic3_extended:134	H2afy2	NM_207000	NA	NA	INSIDE
chr10	61651300	61651917	617	Zic3_extended:135	Neurog3	NM_009719	NA	NA	PROMOTER
chr10	63609168	63609826	658	Zic3_extended:136	Lrrtm3	NM_178678	NA	NA	PROMOTER
chr10	66687292	66687909	617	Zic3_extended:137	D10Ucla1	NM_178606	NA	NA	PROMOTER
chr10	69847135	69847635	500	Zic3_extended:138	Slc16a9	NM_025807	NA	NA	PROMOTER
chr10	70886885	70887385	500	Zic3_extended:139	Ube2d1	NM_145420	NA	NA	INSIDE
chr10	75593367	75593995	628	Zic3_extended:140	Gm867	NM_001037714	NA	NA	INSIDE
chr10	79546773	79547388	615	Zic3_extended:141	Rnf126	NM_144528	NA	NA	PROMOTER
chr10	80131024	80131524	500	Zic3_extended:142	Adamts15	NM_025629	6330514A18Rik	NM_183152	DIVERGENT
chr10	85475173	85475673	500	Zic3_extended:143	Prdm4	NM_181650	NA	NA	PROMOTER
chr10	93101056	93101556	500	Zic3_extended:144	Ccdc38	NM_175488	NA	NA	INSIDE
chr10	949/6124	949/682/	703	Zic3_extended:145	Socs2	NM_007706	NA	NA	INSIDE
chr10	995//1/8	995//6/8	500	Zic3_extended:146	Kiti	NM_013598	NA	NA	INSIDE
chr10	1.1/E+08	1.1/E+08	500	Zic3_extended:147	FISZ Wif1	NM_1///98	INA NA	NA	PROMOTER
chr10	1.2E+08	1.2E+08	500	Zic3_extended:148	WILL Nob2	NM_008668	NA PC020440	INA NM 172722	PROMOTER
chr10	1.2/E+00	1.27E+00	500	Zic3_extended:149	Na02 Daka	NM_016811	DC030440	NA	INSIDE
chr11	112303	112803	500	Zic3_extended:151	Dgka Sf3a1	NM_026175	NA	NA	INSIDE
chr11	6360586	6370086	500	Zic3_extended:157	Pria	NM_008907	NA	NA	INSIDE
chr11	9067943	9068443	500	Zic3_extended:153	I pia Upp1	NM_009477	NA	NA	PROMOTER
chr11	9069187	9069687	500	Zic3_extended:154	Upp1	NM_009477	NA	NA	PROMOTER
chr11	29644701	29645201	500	Zic3_extended:155	Rtn4	NM 194052	NA	NA	PROMOTER
chr11	31323146	31323646	500	Zic3_extended:156	Stc2	NM 011491	NA	NA	PROMOTER
chr11	34267223	34267723	500	Zic3_extended:157	MGC99845	NM 001025382	NA	NA	INSIDE
chr11	48827727	48828670	943	Zic3 extended:158	Irgm	NM 008326	NA	NA	PROMOTER
chr11	50167019	50167755	736	Zic3 extended:159	Sastm1	NM 011018	NA	NA	INSIDE
chr11	50333864	50334576	712	Zic3 extended:160	Hnrph1	NM 021510	NA	NA	PROMOTER
chr11	51594711	51595211	500	Zic3_extended:161	Rmnd5b	NM_025346	NA	NA	PROMOTER
chr11	51607066	51607566	500	Zic3_extended:162	D930048N14Rik	NM_175289	NA	NA	PROMOTER
chr11	53721599	53722099	500	Zic3_extended:163	Irf1	NM_008390	NA	NA	PROMOTER
chr11	59531447	59531947	500	Zic3_extended:164	Jmjd4	NM_178659	NA	NA	INSIDE
chr11	64516893	64517393	500	Zic3_extended:165	F930015N05Rik	NM_001039541	NA	NA	INSIDE
chr11	68934435	68934935	500	Zic3_extended:166	Ndel1	NM_023668	NA	NA	PROMOTER
chr11	69199253	69199753	500	Zic3_extended:167	Hes7	NM_033041	NA	NA	PROMOTER
chr11	69662788	69664152	1364	Zic3_extended:168	Trp53	NM_011640	NA	NA	INSIDE
chr11	69686816	69687316	500	Zic3_extended:169	Atp1b2	NM_013415	NA	NA	INSIDE
chr11	72123511	72124346	835	Zic3_extended:170	Aipl1	NM_053245	6720460F02Rik	NM_144526	DIVERGENT
chr11	72491980	72492480	500	Zic3_extended:171	D130058I21Rik	NM_177776	NA	NA	INSIDE
chr11	73241691	73242191	500	Zic3_extended:172	P2rx5	NM_033321	NA	NA	PROMOTER
chr11	74126654	74127154	500	Zic3_extended:173	Olfr139	NM_147003	NA	NA	PROMOTER
chrll	74730687	74731419	732	Zic3_extended:174	E130309D14R1k	NM_001013784	NA	NA	DOWNSTREAM
chr11	74911605	74912105	500	Zic3_extended:1/5	Mnt	NM_010813	NA	NA	PROMOTER
chr11	75254608	/5255258	650	Zic3_extended:176	Hici Den Ault	NM_010430	mmu-mir-212	NA	DIVERGENI
chr11	75612074	75612724	/04	Zic3_extended:1//	Kttt4f11	NM_172288	NA	NA	INSIDE
chr11	2160226	/3015/24 82470475	620	Zic3_extended:178	SIC4582	NM_022428	INA NA	NA	PROMOTER
chr11	84505020	02470473 04506420	500	Zic3_extended:179	I memi 152e	NM_0023438	INA NA	NA	PROMOTER
chr11	84030558	84040274	716	Zic3_extended:181	Caphp?	NM 153144	NA	NA	INSIDE
chr11	88169680	88170287	607	Zic3_extended:182	Cuedc1	NM 198013	NA	NA	INSIDE
chr11	89108200	89108822	622	Zic3_extended:183	Trim25	NM 009546	NA	NA	PROMOTER
chr11	90500291	90500791	500	Zic3 extended:184	Hlf	NM 172563	NA	NA	PROMOTER
chr11	95420611	95421258	647	Zic3 extended:185	Myst2	NM 177619	NA	NA	PROMOTER
chr11	95951212	95951712	500	Zic3 extended:186	Abi3	NM 025659	Gngt2	NM 023121	DIVERGENT
chr11	96116149	96116649	500	Zic3 extended:187	Igf2bp1	NM 009951	NA	NA	PROMOTER
chr11	96299162	96300038	876	Zic3_extended:188	Hoxb13	NM_008267	NA	NA	PROMOTER
chr11	97229180	97229680	500	Zic3_extended:189	Tbx21	NM_019507	NA	NA	PROMOTER
chr11	97770838	97771831	993	Zic3_extended:190	Mllt6	NM_139311	NA	NA	PROMOTER
chr11	99339714	99340338	624	Zic3_extended:191	Smarce1	NM_020618	NA	NA	PROMOTER
chr11	1.01E+08	1.01E+08	500	Zic3_extended:192	Jup	NM_010593	NA	NA	INSIDE
chr11	1.03E+08	1.03E+08	500	Zic3_extended:193	BC050840	BC050840	NA	NA	Unknown
chr11	1.1E+08	1.1E+08	833	Zic3_extended:194	Abca8b	NM_013851	NA	NA	PROMOTER
chr11	1.14E+08	1.14E+08	927	Zic3_extended:195	D11Ertd636e	NM_029794	NA	NA	PROMOTER
chr11	1.15E+08	1.15E+08	899	Zic3_extended:196	Slc9a3r1	NM_012030	NA	NA	PROMOTER
chr11	1.16E+08	1.16E+08	500	Zic3_extended:197	Grb2	NM_008163	NA	NA	INSIDE
chr11	1.16E+08	1.16E+08	500	Zic3_extended:198	Grb2	NM_008163	NA	NA	PROMOTER
chr11	1.16E+08	1.16E+08	500	Zic3_extended:199	H3f3b	NM_008211	NA	NA	INSIDE
chr11	1.17E+08	1.17E+08	500	Zic3_extended:200	St6galnac2	NM_009180	NA	NA	INSIDE
chr11	1.21E+08	1.21E+08	500	Zic3_extended:201	Pycr1	NM_144795	NA	NA	PROMOTER
chr12	8798692	8799433	741	Zic3_extended:202	Sdc1	NM_011519	NA	NA	INSIDE

Chr	Start	End	Length	Bound Region	First Gene	Accession #	Second gene	Accession #	Primary Annotation
chr12	11329562	11330209	647	Zic3_extended:203	Smc6l1	NM_025695	NA	NA	INSIDE
chr12	13005608	13006590	982	Zic3_extended:204	Mycn	NM_008709	NA	NA	PROMOTER
chr12	49359490	49360307	817	Zic3_extended:205	6030408C04Rik	NM_001015099	NA	NA	PROMOTER
chr12	49361345	49362049	704	Zic3_extended:206	6030408C04Rik	NM_001015099	NA	NA	PROMOTER
chr12	54627184	54627684	500	Zic3_extended:207	Pax9	NM_011041	NA	NA	INSIDE
chr12	68767854	68768354	500	Zic3_extended:208	Frmd6	NM_028127	NA	NA	PROMOTER
chr12	74328029	74328828	799	Zic3_extended:209	Zbtb25	NM_028356	Zbtb1	NM_178744	DIVERGENT
chr12	74920901	74921401	500	Zic3_extended:210	Max	NM_008558	NA	NA	PROMOTER
chr12	74923581	74924081	500	Zic3_extended:211	Max	NM_008558	NA	NA	PROMOTER
chr12	78074365	78074865	500	Zic3_extended:212	Zfp3611	NM_007564	NA	NA	INSIDE
chr12	78079547	78080223	676	Zic3_extended:213	Zfp3611	NM_007564	NA	NA	PROMOTER
chr12	78223037	78223537	500	Zic3_extended:214	Actn1	NM_134156	NA	NA	PROMOTER
chr12	81483154	81483654	500	Zic3_extended:215	Dp13	NM_058212	NA	NA	INSIDE
chr12	82040889	82041389	500	Zic3_extended:216	/420416P09K1K	NM_001055776	NA	NA NA	PROMOTER
chr12	99433434 1 02E + 09	99434042 1 02E ± 09	500	Zic3_extended:217		NM_029703	NA NA	INA NA	PROMOTER
chr12	1.03E+08	1.03E+08	500	Zic3_extended.210	Vrla1	NM 001020842	NA	NA	DROMOTER
chr12	1.04E+08	1.04E+08	500	Zic3_extended:220	2310040A13Dik	NM 027140	NA	NA	PROMOTER
chr12	5745670	5746170	500	Zic3_extended:220	Z310040A13KIK K1f6	NM_011803	NA	NA	PROMOTER
chr13	211/8/10	211/8010	500	Zic3_extended:222	Hist1h1h	NM_020034	NA	NA	PROMOTER
chr13	21155988	21146717	500	Zic3_extended:222	Hist1h2hn	NM 178202	NA	NA	DOWNSTREAM
chr13	21155500	21157406	887	Zic3_extended:224	Hist1h2bp	NM 178202	NA	NA	DOWNSTREAM
chr13	22858042	22858542	500	Zic3_extended:225	Btn2a2	NM 175938	NA	NA	PROMOTER
chr13	22050042	23105615	500	Zic3_extended:226	Hist1h1c	NM_015786	NA	NA	INSIDE
chr13	23110286	23110786	500	Zic3 extended:227	Hist1h3h	NM 178206	NA	NA	INSIDE
chr13	24197468	24197968	500	Zic3 extended:228	Ttrap	NM 019551	NA	NA	INSIDE
chr13	24640675	24641175	500	Zic3 extended:229	Vmp	NM 009513	NA	NA	PROMOTER
chr13	43054988	43055488	500	Zic3 extended:230	Rnf182	NM 183204	NA	NA	PROMOTER
chr13	44178546	44179261	715	Zic3_extended:231	Jarid2	NM_021878	NA	NA	PROMOTER
chr13	48671827	48672327	500	Zic3_extended:232	Ninj1	NM_013610	NA	NA	INSIDE
chr13	53693147	53693647	500	Zic3_extended:233	Cltb	NM_028870	NA	NA	INSIDE
chr13	54918449	54918949	500	Zic3_extended:234	Pitx1	NM_011097	NA	NA	INSIDE
chr13	61391226	61391915	689	Zic3_extended:235	Ptch1	NM_008957	NA	NA	PROMOTER
chr13	64425224	64425724	500	Zic3_extended:236	Mterfd1	NM_025547	NA	NA	PROMOTER
chr13	80810937	80811548	611	Zic3_extended:237	C130071C03Rik	NM_177100	NA	NA	INSIDE
chr13	94266754	94267254	500	Zic3_extended:238	Hexb	NM_010422	NA	NA	INSIDE
chr13	95885463	95885963	500	Zic3_extended:239	Fcho2	NM_172591	NA	NA	PROMOTER
chr13	1.1E+08	1.1E+08	693	Zic3_extended:240	Il6st	NM_010560	NA	NA	PROMOTER
chr13	1.12E+08	1.12E+08	500	Zic3_extended:241	Pelo	NM_134058	NA	NA	PROMOTER
chr13	1.12E+08	1.12E+08	627	Zic3_extended:242	Itga1	NM_001033228	Pelo	NM_134058	PROMOTER
chr13	1.14E+08	1.14E+08	500	Zic3_extended:243	Isl1	NM_021459	NA	NA	PROMOTER
chr13	1.14E+08	1.14E+08	947	Zic3_extended:244	Emb	NM_010330	NA	NA	PROMOTER
chr13	1.15E+08	1.15E+08	678	Zic3_extended:245	Henl	NM_010408	NA	NA	INSIDE
chr14	17407826	17408326	500	Zic3_extended:246	Nid2	NM_008695	NA	NA	PROMOTER
chr14	17408365	17409155	790	Zic3_extended:247	Nid2	NM_008695	NA	NA	PROMOTER
chr14	23512539	23513039	500	Zic3_extended:248	Anxall	NM_013469	NA	NA	PROMOTER
chr14	24432904	24433818	914	Zic3_extended:249	Hesx I	NM_010420	NA	NA	INSIDE
chr14	244/1440	24472072	052 821	Zics_extended:250	111/fu	INIVI_154457	INA NA	INA NA	PROMOTER
chr14	32320001 40705750	32321422	821 500	Zic3_extended:251	Gappat1	NM 010425	NA NA	NA NA	INSIDE
chr14	40705755	40700237	500	Zic3_extended:253	Sall2	NM_015772	NA	NA	INSIDE
chr14	47665712	47666212	500	Zic3_extended:254	Sall2	NM_015772	NA	NA	PROMOTER
chr14	49278127	49278836	709	Zic3_extended:255	Slc7a7	NM_011405	NA	NA	INSIDE
chr14	50427122	50427881	759	Zic3_extended:256	Wdr23	NM 133734	NA	NA	INSIDE
chr14	51535675	51536380	705	Zic3_extended:257	4930548G07Rik	NM_023773	NA	NA	PROMOTER
chr14	52389235	52389735	500	Zic3_extended:258	II17d	NM 145837	NA	NA	PROMOTER
chr14	58372276	58373106	830	Zic3 extended:259	Tdh	NM_021480	NA	NA	INSIDE
chr14	60983009	60983509	500	Zic3 extended:260	Ephx2	NM 007940	NA	NA	INSIDE
chr14	64996184	64997102	918	Zic3 extended:261	Slc39a14	NM 144808	NA	NA	PROMOTER
chr14	65279249	65279890	641	Zic3_extended:262	Epb4.9	NM_013514	NA	NA	PROMOTER
chr14	82130067	82130834	767	Zic3_extended:263	Tdrd3	NM_172605	NA	NA	INSIDE
chr14	97412017	97412632	615	Zic3_extended:264	Kctd12	NM_177715	NA	NA	INSIDE
chr14	1E+08	1E+08	697	Zic3_extended:265	Spry2	NM_011897	NA	NA	INSIDE
chr14	1.15E+08	1.15E+08	500	Zic3_extended:266	Rap2a	NM_029519	NA	NA	PROMOTER
chr14	1.17E+08	1.17E+08	500	Zic3_extended:267	Clybl	NM_029556	NA	NA	INSIDE
chr14	1.17E+08	1.17E+08	674	Zic3_extended:268	Zic5	NM_022987	Zic2	NM_009574	DIVERGENT
chr15	25468138	25468798	660	Zic3_extended:269	Basp1	NM_027395	NA	NA	PROMOTER
chr15	55172354	55172854	500	Zic3_extended:270	Depdc6	NM_145470	NA	NA	INSIDE
chr15	58278092	58278836	744	Zic3_extended:271	Fbxo32	NM_026346	NA	NA	INSIDE

Chr	Start	End	Length	Bound Region	First Gene	Accession #	Second gene	Accession #	Primary Annotation
chr15	79066470	79066970	500	Zic3_extended:272	Triobp	NM_001024716	NA	NA	INSIDE
chr15	79689154	79689973	819	Zic3_extended:273	Dmc1h	NM_010059	NA	NA	PROMOTER
chr15	82359817	82360317	500	Zic3_extended:274	Sep-03	NM_011889	NA	NA	INSIDE
chr15	84747325	84748166	841	Zic3_extended:275	BC024991	BC024991	NA	NA	Unknown
chr15	89157846	89158507	661	Zic3_extended:276	5730502D15Rik	NM_026485	NA	NA	PROMOTER
chr15	89278423	89278923	500	Zic3_extended:277	1700027J05Rik	NM_027081	NA	NA	INSIDE
chr15	93477634	93478595	961	Zic3_extended:278	Zcrb1	NM_026025	NA	NA	INSIDE
chr15	95791823	95792323	500	Zic3_extended:279	Tmem16f	NM_175344	NA	NA	INSIDE
chr15	99689343	99690118	775	Zic3_extended:280	Smarcd1	NM_031842	NA	NA	INSIDE
chr15	1.02E+08	1.02E+08	500	Zic3_extended:281	AI507495	NM_213728	NA	NA	PROMOTER
chr15	1.02E+08	1.02E+08	500	Zic3_extended:282	Eif4b	NM_145625	NA	NA	PROMOTER
chr15	1.04E+08	1.04E+08	500	Zic3_extended:283	PppIrla	NM_021391	NA	NA	PROMOTER
chr16	10461960	10462/63	803	Zic3_extended:284	SOCS1	NM_009896	NA	NA	INSIDE
chr16	16750772	16760272	500	Zic3_extended:285	1810015A11Kik	NM_020940	NA	INA NA	PROMOTER
chr16	10/39//3	10/002/3	500	Zic3_extended:286	Gm603	NM_000270	NA	INA NA	INSIDE
chr16	20202207	20202707	740	Zic3_extended.287	Liph	NM 152404	NA	NA	DDOMOTED
chr16	21047515	21046233	662	Zic3_extended:280	Ety5	NM 023704	NA	NA	PROMOTER
chr16	22092011	22092073	500	Zic3_extended:200	Ltv5	NM 178665	NA	NA	INSIDE
chr16	32283306	24033733	500	Zic3_extended:290	Tfre	NM_011638	NA	NA	INSIDE
chr16	32551851	32552351	500	Zic3_extended:292	1700021K19Rik	NM 172615	Evttd1	NM 027226	DIVERGENT
chr16	45502007	45502716	709	Zic3_extended:293	Tagln3	NM_019754	NA	NA	PROMOTER
chr16	49616441	49617086	645	Zic3_extended:294	Cd47	NM_010581	NA	NA	INSIDE
chr17	12975566	12976632	1066	Zic3_extended:295	Thbs?	NM_011581	NA	NA	INSIDE
chr17	13241510	13242010	500	Zic3_extended:296	Phf10	NM_024250	NA	NA	INSIDE
chr17	13242296	13242904	608	Zic3 extended:297	Phf10	NM 024250	NA	NA	PROMOTER
chr17	13617464	13617964	500	Zic3 extended:298	Dll1	NM 007865	NA	NA	PROMOTER
chr17	13763847	13764347	500	Zic3 extended:299	Pdcd2	NM 008799	NA	NA	INSIDE
chr17	13940963	13941633	670	Zic3_extended:300	Chd1	NM_007690	NA	NA	PROMOTER
chr17	21780670	21781286	616	Zic3_extended:301	Zfp206	NM_001033425	NA	NA	INSIDE
chr17	21824850	21825510	660	Zic3_extended:302	Mmp25	NM_001033339	NA	NA	PROMOTER
chr17	24293450	24294656	1206	Zic3_extended:303	Tmem8	NM_021793	NA	NA	PROMOTER
chr17	25824460	25824960	500	Zic3_extended:304	Rps10	NM_025963	NA	NA	PROMOTER
chr17	26875656	26876156	500	Zic3_extended:305	Slc26a8	NM_146076	NA	NA	INSIDE
chr17	29577155	29577655	500	Zic3_extended:306	Pde9a	NM_008804	NA	NA	INSIDE
chr17	30584537	30585037	500	Zic3_extended:307	Wiz	NM_212438	NA	NA	PROMOTER
chr17	31758569	31759069	500	Zic3_extended:308	Hnrpm	NM_029804	NA	NA	INSIDE
chr17	31987259	31987907	648	Zic3_extended:309	Daxx	NM_007829	NA	NA	PROMOTER
chr17	31998414	31998914	500	Zic3_extended:310	Tapbp	NM_001025313	NA	NA	INSIDE
chr17	32008137	32008637	500	Zic3_extended:311	Rgl2	NM_009059	NA	NA	INSIDE
chr17	33008002	33008615	613	Zic3_extended:312	Ehmt2	NM_145830	NA	NA	INSIDE
chr17	33078929	33079429	500	Zic3_extended:313	Lsm2	NM_030597	NA	NA	PROMOTER
chr17	33156548	33157048	500	Zic3_extended:314	Ddah2	NM_016765	NA	NA	INSIDE
chr17	33300611	33301111	500	Zic3_extended:315	Lta	NM_010735	NA	NA	INSIDE
chr17	33603233	33603848	615	Zic3_extended:316	Pou5f1	NM_013633	NA	NA	PROMOTER
chr17	33605076	33605576	500	Zic3_extended:317	Pou5f1	NM_013633	NA	NA	PROMOTER
chr17	33605923	33606959	1036	Zic3_extended:318	Pou5f1	NM_013633	NA	NA	PROMOTER
chr1/	34022197	34022837	640	Zic3_extended:319	Ppp1r10	NM_175934	NA	NA	INSIDE
chr1/	34023624	34024124	500	Zic3_extended:320	Ppp1r10	NM_1/5934	NA	NA	INSIDE
chr17	351755524	35134024	500 612	Zic3_extended:321	241013/W114KIK 7fp57	NM 001013745	NA	NA	PROMOTER
chr17	28062101	20064000	2617	Zic3_extended.322	Zip57	NM 122770	NA	NA	PROMOTER
chr17	38066618	38067280	662	Zic3_extended:323	Pigt	NM 133779	NA	NA	DOWNSTREAM
chr17	45576769	45577374	605	Zic3_extended:325	1700001C19Rik	NM_029296	NA	NA	PROMOTER
chr17	5///770/	5///8610	816	Zic3_extended:326	M6prbp1	NM_025836	NA	NA	INSIDE
chr17	6/1736/7	64174147	500	Zic3_extended:320	Twee1	NM_023053	NA	NA	PROMOTER
chr17	65968212	65968712	500	Zic3_extended:328	Lamal	NM_008480	NA	NA	PROMOTER
chr17	77352355	77352855	500	Zic3_extended:329	BC020023	BC020023	NA	NA	Unknown
chr17	78357716	78358216	500	Zic3_extended:320	Hnrpll	NM 144802	NA	NA	PROMOTER
chr18	3551386	3551886	500	Zic3 extended:331	Cul2	NM 029402	NA	NA	INSIDE
chr18	3673646	3674259	613	Zic3 extended:332	Bambi	NM 026505	NA	NA	INSIDE
chr18	9414755	9415255	500	Zic3 extended:333	Fzd8	NM 008058	NA	NA	PROMOTER
chr18	9417236	9417873	637	Zic3_extended:334	Fzd8	NM_008058	NA	NA	INSIDE
chr18	9914004	9914504	500	Zic3_extended:335	Colec12	NM_130449	NA	NA	INSIDE
chr18	24587517	24588381	864	Zic3_extended:336	Galnt1	NM_013814	NA	NA	PROMOTER
chr18	34382606	34383106	500	Zic3_extended:337	Epb4.114a	NM_013512	NA	NA	PROMOTER
chr18	34749125	34749625	500	Zic3_extended:338	Reep5	NM_007874	NA	NA	PROMOTER
chr18	36037883	36038494	611	Zic3_extended:339	5133400G04Rik	NM_029485	NA	NA	PROMOTER
chr18	38977778	38978475	697	Zic3_extended:340	9630014M24Rik	NM_001033771	NA	NA	INSIDE

Chr	Start	End	Length	Bound Region	First Gene	Accession #	Second gene	Accession #	Primary Annotation
chr18	47746645	47747145	500	Zic3_extended:341	Sema6a	NM_018744	NA	NA	PROMOTER
chr18	61403019	61403684	665	Zic3_extended:342	Slc6a7	NM_201353	NA	NA	INSIDE
chr18	62115508	62116008	500	Zic3_extended:343	Grpel2	NM_021296	NA	NA	INSIDE
chr18	66335073	66335744	671	Zic3_extended:344	Rax	NM_013833	NA	NA	PROMOTER
chr18	67733626	67734310	684	Zic3_extended:345	Cidea	NM_007702	NA	NA	PROMOTER
chr19	4292818	4293318	500	Zic3_extended:346	9430078G10Rik	NM_001033811	NA	NA	INSIDE
chr19	4706247	4706747	500	Zic3_extended:347	Rbm14	NM_019869	NA	NA	PROMOTER
chr19	4962093	4962593	500	Zic3_extended:348	Cd248	NM_054042	NA	NA	PROMOTER
chr19	6130680	6131456	776	Zic3_extended:349	Ppp2r5b	NM_198168	1810013C15Rik	NM_194348	DIVERGENT
chr19	12474829	12475329	500	Zic3_extended:350	Zfp91	NM_053009	NA	NA	INSIDE
chr19	14298746	14299246	500	Zic3_extended:351	Tle4	NM_011600	NA	NA	PROMOTER
chr19	22834538	22835038	500	Zic3_extended:352	Klf9	NM_010638	NA	NA	PROMOTER
chr19	24600029	24600529	500	Zic3_extended:353	Foxd4	NM_008022	NA	NA	INSIDE
chr19	24602138	24602638	500	Zic3_extended:354	Foxd4	NM_008022	NA	NA	PROMOTER
chr19	29728705	29729393	688	Zic3_extended:355	Uhrf2	NM_144873	NA	NA	PROMOTER
chr19	30253011	30253511	500	Zic3_extended:356	Dkk1	NM_010051	NA	NA	PROMOTER
chr19	40164894	40165394	500	Zic3_extended:357	Pdlim1	NM_016861	NA	NA	INSIDE
chr19	41636979	41637479	500	Zic3_extended:358	Slit1	NM_015748	NA	NA	INSIDE
chr19	44187418	44187918	500	Zic3_extended:359	Scd2	NM_009128	NA	NA	PROMOTER
chr19	46044741	46045390	649	Zic3_extended:360	Pitx3	NM_008852	Gbf1	NM_178930	DIVERGENT
chr19	46225002	46225774	772	Zic3_extended:361	Fbxl15	NM_133694	NA	NA	INSIDE
chr19	46469726	46470226	500	Zic3_extended:362	Arl3	NM_019718	Sfxn2	NM_053196	DIVERGENT
chr19	53211495	53211995	500	Zic3_extended:363	Mxi1	NM_001008542	NA	NA	PROMOTER
chr19	55230271	55230968	697	Zic3_extended:364	Zdhhc6	NM_025883	Vti1a	NM_016862	DIVERGENT
chrX	6197914	6198414	500	Zic3_extended:365	Tcfe3	NM_172472	NA	NA	INSIDE
chrX	6639825	6640889	1064	Zic3_extended:366	Porcn	NM_145908	NA	NA	PROMOTER
chrX	46775012	46775824	812	Zic3_extended:367	Hs6st2	NM_015819	NA	NA	PROMOTER
chrX	46776734	46777586	852	Zic3_extended:368	Hs6st2	NM_015819	NA	NA	PROMOTER
chrX	47837278	47838363	1085	Zic3_extended:369	mmu-mir-106a	mmu-mir-106a	NA	NA	PROMOTER
chrX	48870422	48870922	500	Zic3_extended:370	Zfp36l3	NM_001009549	NA	NA	PROMOTER
chrX	96411551	96412051	500	Zic3_extended:371	Slc7a3	NM_007515	NA	NA	INSIDE
chrX	96964440	96964940	500	Zic3_extended:372	Ogt	NM_139144	NA	NA	PROMOTER
chrX	1.03E+08	1.03E+08	500	Zic3_extended:373	Itm2a	NM_008409	NA	NA	PROMOTER
chrX	1.39E+08	1.39E+08	1064	Zic3_extended:374	Glt28d1	NM_026247	NA	NA	INSIDE
chrX	1.46E+08	1.46E+08	754	Zic3_extended:375	ORF34	NM_198105	NA	NA	INSIDE
chrX	1.52E+08	1.52E+08	500	Zic3_extended:376	Sms	NM_009214	NA	NA	PROMOTER
chrX	1.52E+08	1.52E+08	686	Zic3_extended:377	Mbtps2	NM_178266	NA	NA	PROMOTER
chrX	1.55E+08	1.55E+08	500	Zic3_extended:378	Pdha1	NM_008810	NA	NA	PROMOTER
chrX	1.58E+08	1.58E+08	500	Zic3_extended:379	Rbbp7	NM_009031	NA	NA	PROMOTER

Appendix 6. Sox2 ChIP target gene and their associated promoter regions in mouse ES cells

"Bound Region" (column E) - the annotation assigned to each unique region Genomic co-ordinates are with reference to UCSC build mm7 (August 2005)

Chr	Start	End	Bound Region	First Gene	Accession #	Second gene	Accession #	Primary Annotation
chr1	4850939	4851875	Sox2_bound:1	Tcea1	NM_011541	NA	NA	PROMOTER
chr1	5014069	5014840	Sox2_bound:2	Rgs20	NM_021374	NA	NA	INSIDE
chr1	7097722	7098222	Sox2_bound:3	BC110360	BC110360	NA	NA	Unknown
chr1	9844280	9845013	Sox2_bound:4	Mybl1	NM_008651	NA	NA	PROMOTER
chr1	9845140	9845834	Sox2_bound:5	Mybl1	NM_008651	NA	NA	PROMOTER
chr1	1.3E+07	1.3E+07	Sox2_bound:6	Sulf1	NM_172294	NA	NA	PROMOTER
chr1	1.3E+07	1.3E+07	Sox2 bound:7	Slco5a1	NM 172841	NA	NA	PROMOTER
chr1	1.4E+07	1.4E+07	Sox2 bound:8	Eva1	NM 010164	NA	NA	PROMOTER
chr1	1.7E+07	1.7E+07	Sox2 bound:9	Tceb1	NM 026456	Tmem70	NM 027415	DIVERGENT
chr1	1.9E+07	1.9E+07	Sox2 bound:10	Tcfap2b	NM 001025305	NA	NA	PROMOTER
chr1	3.5E+07	3.5E+07	Sox2 bound:11	C230030N03Rik	NM 172847	NA	NA	PROMOTER
chr1	3 6E+07	3 6E+07	Sox2 bound:12	Hs6st1	NM 015818	NA	NA	PROMOTER
chr1	4E+07	4E+07	Sox2 bound:12	Man4k4	NM_008696	NA	NA	INSIDE
chr1	4 1E+07	4 1E+07	Sox2_bound:14	Slc9a2	NM 001033289	NA	NA	PROMOTER
chr1	4.12+07 4.3E+07	4.1E+07 4.3E+07	Sox2_bound:14	Tofbran1	NM_001013025	NA	NA	INSIDE
chr1	4.5E+07	4.3E+07	Sox2_bound:16	Nck2	NM 010879	NΔ	NΔ	INSIDE
chr1	5.2E±07	5.2E±07	Sox2_bound:10	5830/11E10Bik	NM 028696	NA	NA	PROMOTER
chr1	5.2E+07	5.2E+07	Sox2_bound:15	Stot4	NM_011487	NA	NA	INSIDE
ohr1	5.2E+07	5.2E+07	Sox2_bound:10	Stat4	NM_011487	NA	NA	INSIDE
chi 1	5.5E±07	5.2E+07	Sox2_bound.15	Stat4	NM_01022104	INA NA	INA NA	DROMOTER
	5.5E+07	5.5E+07	Sox2_bound:20	Busi2	NIVI_001055194	INA	INA NA	PROMUTER
	5.5E+07	5.5E+07	Sox2_bound:21	Preis	NM_025285	NA NA	NA	INSIDE
chrl	5.5E+07	5.5E+07	Sox2_bound:22	BC0268/1	BC0268/1	NA	NA	Unknown
chrl	5./E+0/	5./E+0/	Sox2_bound:2:	Satb2	NM_139146	NA	NA	PROMOTER
chrl	5.9E+07	5.9E+07	Sox2_bound:22	Ppil3	NM_027351	N1f311	NM_022988	DIVERGENT
chr1	5.9E+07	5.9E+07	Sox2_bound:25	BC049806	NM_172513	Ndufb3	NM_025597	DIVERGENT
chr1	6E+07	6E+07	Sox2_bound:26	Fzd7	NM_008057	NA	NA	PROMOTER
chr1	6E+07	6E+07	Sox2_bound:27	Nol5	NM_018868	NA	NA	INSIDE
chr1	6.3E+07	6.3E+07	Sox2_bound:28	Nrp2	NM_010939	NA	NA	INSIDE
chr1	6.4E+07	6.4E+07	Sox2_bound:29	Klf7	NM_033563	NA	NA	PROMOTER
chr1	6.5E+07	6.5E+07	Sox2_bound:30	Crygd	NM_007776	NA	NA	INSIDE
chr1	6.7E+07	6.7E+07	Sox2_bound:31	Rpe	NM_025683	NA	NA	PROMOTER
chr1	7.2E+07	7.2E+07	Sox2_bound:32	Fn1	NM_010233	NA	NA	INSIDE
chr1	7.2E+07	7.2E+07	Sox2_bound:33	Fn1	NM_010233	NA	NA	PROMOTER
chr1	7.2E+07	7.2E+07	Sox2_bound:34	Wdt2	NM_001005423	NA	NA	PROMOTER
chr1	7.3E+07	7.3E+07	Sox2_bound:35	Smarcal1	NM_018817	NA	NA	PROMOTER
chr1	7.3E+07	7.3E+07	Sox2_bound:36	Igfbp2	NM_008342	NA	NA	PROMOTER
chr1	7.3E+07	7.3E+07	Sox2_bound:37	Igfbp2	NM_008342	NA	NA	INSIDE
chr1	7.3E+07	7.3E+07	Sox2_bound:38	Igfbp5	NM_010518	NA	NA	INSIDE
chr1	7.3E+07	7.3E+07	Sox2_bound:39	Igfbp5	NM_010518	NA	NA	INSIDE
chr1	7.5E+07	7.5E+07	Sox2_bound:4(Wnt6	NM_009526	NA	NA	INSIDE
chr1	7.6E+07	7.6E+07	Sox2_bound:41	Inha	NM_010564	NA	NA	INSIDE
chr1	7.6E+07	7.6E+07	Sox2_bound:42	Stk11ip	NM_027886	NA	NA	INSIDE
chr1	7.8E+07	7.8E+07	Sox2_bound:43	Epha4	NM_007936	NA	NA	INSIDE
chr1	8.6E+07	8.6E+07	Sox2_bound:44	Itm2c	NM_022417	NA	NA	INSIDE
chr1	8.6E+07	8.6E+07	Sox2_bound:45	Ptma	NM_008972	NA	NA	PROMOTER
chr1	8.6E+07	8.6E+07	Sox2_bound:46	Ptma	NM_008972	NA	NA	PROMOTER
chr1	8.8E+07	8.8E+07	Sox2 bound:47	6430706D22Rik	NM 198652	NA	NA	PROMOTER
chr1	8.9E+07	8.9E+07	Sox2 bound:48	Sh3bp4	NM 133816	NA	NA	INSIDE
chr1	9E+07	9E+07	Sox2 bound:49	Gbx2	NM 010262	NA	NA	PROMOTER
chr1	9E+07	9E+07	Sox2 bound:50	Gbx2	NM 010262	NA	NA	PROMOTER
chr1	9E+07	9E+07	Sox2 bound:51	Cmkor1	NM 007722	NA	NA	PROMOTER
chr1	9.1E+07	9.1E+07	Sox2 bound:50	Hes6	NM 019479	NA	NA	PROMOTER
chr1	9.7E+07	9.7E+07	Sox2 bound:52	Slco4c1	NM 172658	NA	NA	PROMOTER
chr1	1.2E+08	1.2E+08	Sox2_bound:54	Tefen211	NM 023755	NA	NA	PROMOTER
chr1	1.2E+08	1.2E+08	Sox2_bound:54	Tefen211	NM 023755	NA	NA	PROMOTER
chr1	1.2E+0.08	1.2E+08	Sox2_bound:56	Tmem37	NM 019432	NA	NA	PROMOTER
chr1	1 3E+08	1 3E+00	Sox2_bound.50	CverA	$\frac{1019452}{NM}$	NΔ	NΔ	PROMOTER
chr1	1 3E±00	1 3E+00	Sov2 bound.51	Durl?	NM 145509	NA	NA	PROMOTED
ohr1	1.35+00	1.35+08	Sov2 bounder	L oto	NM 010700		IN/A NA	DROMOTER
	1.36+00	1.5E+08	50x2_00ullu.55	டதய	11111_010709	INA	INA	TROMUTER

chr1 1.3E+08	1.3E+08 Sox2_bound:6(Slc26a9	NM_177243	NA	NA	INSIDE
chr1 1.3E+08	1.3E+08 Sox2_bound:61	Rab711	NM_144875	NA	NA	PROMOTER
chr1 1.3E+08	1.3E+08 Sox2_bound:62	Nucks1	NM_175294	NA	NA	PROMOTER
chr1 1.3E+08	1.3E+08 Sox2_bound:63	mmu-mir-135b	mmu-mir-135b	NA	NA	PROMOTER
chr1 1.3E+08	1.3E+08 Sox2_bound:64	mmu-mir-135b	mmu-mir-135b	NA	NA	PROMOTER
chr1 1.3E+08	1.3E+08 Sox2_bound:65	Tmcc2	NM_178874	NA	NA	INSIDE
chr1 1.3E+08	1.3E+08 Sox2_bound:66	Rbbp5	NM_172517	NA	NA	PROMOTER
chr1 1.3E+08	1.3E+08 Sox2 bound:67	Lrrn2	NM 010732	NA	NA	PROMOTER
chr1 1.3E+08	1.3E+08 Sox2 bound:68	Ppp1r15b	NM 133819	NA	NA	PROMOTER
chr1 1.3E+08	1.3E+08 Sox2 bound:69	Ppp1r15b	NM 133819	NA	NA	PROMOTER
chr1 1 $3E+08$	1.3E+08 Sox2 bound:7(Ppp1r15b	NM 133819	NA	NA	PROMOTER
chr1 1 $3E+08$	1.3E+08 Sox2_bound:71	Chi311	NM_007695	NA	NA	INSIDE
chr1 1 $3E\pm08$	$1.3E+08$ Sox2_bound:71	4031440I 10Bib	NM 183202	Iarid1b	NM 152895	DIVERGENT
hr 1 1.5E + 08	1.5E+08 50x2_bound.72	5720550C19Dil	NM 029972	NA	NA	INSIDE
$c_{111} 1.4E + 08$	1.4E+08 SOX2_Dound:7:	5750559C18RIK	NM_028872	NA	INA NA	INSIDE
$c_{111} 1.4E + 08$	1.4E+08 SOX2_DOUND:74	J/50559C18KIK	NM_028872	NA	INA NA	PROMOTER
cnr1 1.4E+08	1.4E+08 Sox2_bound:/:	Lnx9	NM_010/14	NA	NA	PROMOTER
chr1 1.4E+08	1.4E+08 Sox2_bound:/(Kgs2	NM_009061	NA	NA	PROMOTER
chr1 1.5E+08	1.5E+08 Sox2_bound://	B830045N13Rik	NM_153539	NA	NA	INSIDE
chr1 1.5E+08	1.5E+08 Sox2_bound:78	1200016B10R1k	NM_025819	NA	NA	INSIDE
chr1 1.5E+08	1.5E+08 Sox2_bound:79	Rgs16	NM_011267	NA	NA	INSIDE
chr1 1.6E+08	1.6E+08 Sox2_bound:8(Mr1	NM_008209	Stx6	NM_021433	DIVERGENT
chr1 1.6E+08	1.6E+08 Sox2_bound:81	Ralgps2	NM_023884	NA	NA	INSIDE
chr1 1.6E+08	1.6E+08 Sox2_bound:82	BC026585	NM_001033284	NA	NA	INSIDE
chr1 1.6E+08	1.6E+08 Sox2_bound:83	6430517E21Rik	NM_207583	Astn1	NA	INSIDE
chr1 1.6E+08	1.6E+08 Sox2_bound:84	4930523C07Rik	NM_001024470	NA	NA	PROMOTER
chr1 1.6E+08	1.6E+08 Sox2_bound:85	Zbtb37	NM_173424	NA	NA	PROMOTER
chr1 1.6E+08	1.6E+08 Sox2_bound:86	Zbtb37	NM_173424	NA	NA	PROMOTER
chr1 1.6E+08	1.6E+08 Sox2_bound:87	Dars2	NM_172644	NA	NM_027429	DIVERGENT
chr1 1.7E+08	1.7E+08 Sox2_bound:88	Mpz11	NM_001001880	NA	NA	PROMOTER
chr1 1.7E+08	1.7E+08 Sox2 bound:89	Pou2f1	NM 198932	NA	NA	PROMOTER
chr1 1.7E+08	1.7E+08 Sox2 bound:90	Dusp27	NM 001033344	NA	NA	INSIDE
chr1 17E+08	1 7E+08 Sox2 bound:91	Uck2	NM 030724	NA	NA	PROMOTER
chr1 1.7E+08	1.7E+08 Sox2_bound:97	Uck2	NM_030724	NA	NA	PROMOTER
chr1 1 7E \pm 08	1.7E+08 Sox2 bound:92	Ryrg	NM_009107	NΔ	NΔ	INSIDE
chr1 1.7E+08	$1.7E+08 \text{ Sox}_{2}$ bound:9.	Hed17b7	NM 010476	NA	NA	PROMOTER
chr1 1.7E+08	$1.7E+08 30x2_{bound.9}$	Ndufe2	NM 153064	A domte 4	NM 172845	DIVEDGENT
hr 1 1.7E + 08	1.7E+08 30X2_00ulid.9.	Induisz Uafi	NM_000480	NA	NM_172045	INSIDE
$c_{1111} 1.7E + 08$	1.7E+08 S0X2_00ulld.90	USI1 Defha2	NM_009460	NA	INA NA	DDOMOTED
chr1 1.7E+08	1.7E+08 Sox2_bound:97	Refbp2	NM_019484	NA	NA	PROMOTER
chr1 1./E+08	1.7E+08 Sox2_bound:98	Refbp2	NM_019484	NA	NA	PROMOTER
chr1 1.7E+08	1.7E+08 Sox2_bound:99	TagIn2	NM_178598	NA	NA	INSIDE
chr1 1.8E+08	1.8E+08 ox2_bound:10	Hnrpu	NM_016805	ΝΔ	NA	DDAMAATED
chr1 1.8E+08	$1.9E \pm 0.9$ ov 2 bound $\cdot 10$			1471		FROMUTER
abr1 1 8E 108	$1.6L+08$ $0.02_00010.10$	Efcab2	NM_026626	NA	NA	INSIDE
CHI1 1.0L+00	1.8E+08 lox2_bound:10	Efcab2 Parp1	NM_026626 NM_007415	NA NA	NA NA	INSIDE INSIDE
chr1 1.8E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10	Efcab2 Parp1 BC031781	NM_026626 NM_007415 NM_145943	NA NA NA	NA NA NA	INSIDE INSIDE PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10	Efcab2 Parp1 BC031781 Lefty2	NM_026626 NM_007415 NM_145943 NM_177099	NA NA NA NA	NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10	Efcab2 Parp1 BC031781 Lefty2 Lefty1	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094	NA NA NA NA NA	NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587	NA NA NA NA NA	NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135	NA NA NA NA NA NA	NA NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135	NA NA NA NA NA NA	NA NA NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_172650	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_172650 NM_008937	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_172650 NM_008937 mmu-mir-205	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 3338193 lox2_bound:11	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_172650 NM_008937 mmu-mir-205 NM_008579	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE INSIDE PROMOTER INSIDE
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:12 1.9E+08 lox2_bound:12 1.9E+08 lox2_bound:12 1.9E+08 lox2_bound:12 1.9E+08 lox2_bound:12 1.9E+08 lox2_bound:12	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_172650 NM_008937 mmu-mir-205 NM_008579 NM_008091	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1 1E+07	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+07 lox2_bound:11 1.1E+07 lox2_bound:11 1.1E+07 lox2_bound:11	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkca	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_172650 NM_008937 mmu-mir-205 NM_008579 NM_008859	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.4E+07	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.1E+07 lox2_bound:11 1.4E+07 lox2_bound:11	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_010135 NM_172650 NM_008937 mmu-mir-205 NM_008579 NM_008859 NM_0011701	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	INSIDE INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.8E+07	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.1E+07 lox2_bound:11 1.4E+07 lox2_bound:11	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim 2810030E011Pit	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_010135 NM_172650 NM_008937 mmu-mir-205 NM_008579 NM_008859 NM_008859 NM_011701 NM_028317	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.4E+07 chr2 1.8E+07	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.8E+07 lox2_bound:12 1.8E+07 lox2_bound:12 1.8E+07 lox2_bound:12 1.8E+07 lox2_bound:12 1.8E+07 lox2_bound:12 1.8E+07 lox2_bound:12	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim 2810030E01Rik	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_010135 NM_172650 NM_008937 mmu-mir-205 NM_008579 NM_008859 NM_008859 NM_011701 NM_028317	NA NA NA NA NA NA NA NA NA NA NA NA MIlt10	NA NA NA NA NA NA NA NA NA NA NA NA NA N	PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER DIVERGENT
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.4E+07 chr2 1.8E+07 chr2 1.8E+07	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+07 lox2_bound:11 1.4E+07 lox2_bound:11 1.8E+07 lox2_bound:12 1.8E+07 lox2_bound:12 1.8E+07 lox2_bound:12 1.8E+07 lox2_bound:12 1.8E+07 lox2_bound:12	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim 2810030E01Rik Mllt10	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_010135 NM_008937 mmu-mir-205 NM_008579 NM_0080579 NM_008859 NM_008859 NM_011701 NM_028317 NM_010804 NM_010804	NA NA NA NA NA NA NA NA NA NA MIIt10 NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER DIVERGENT INSIDE
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.4E+07 chr2 1.8E+07 chr2 1.9E+07 chr2 1.9E+07	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.9E+07 lox2_bound:12 1.9E+07 lox2_bound:12 1.9E+07 lox2_bound:12 1.9E+07 lox2_bound:12 1.9E+07 lox2_bound:12	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim 2810030E01Rik Mllt10 Commd3	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_010135 NM_008937 mmu-mir-205 NM_008579 NM_008579 NM_008859 NM_011701 NM_028317 NM_010804 NM_0147778 NM_002625	NA NA NA NA NA NA NA NA NA MIIt10 NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER DIVERGENT INSIDE INSIDE INSIDE
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.4E+07 chr2 1.8E+07 chr2 1.9E+07 chr2 1.9E+07 chr2 2.3E+07	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+07 lox2_bound:11 1.4E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.9E+07 lox2_bound:11	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim 2810030E01Rik Mllt10 Commd3 Gad2	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_010135 NM_172650 NM_008937 mmu-mir-205 NM_008937 MM_008859 NM_008859 NM_011701 NM_008859 NM_011701 NM_028317 NM_010804 NM_147778 NM_008078	NA NA NA NA NA NA NA NA NA MIIt10 NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER DIVERGENT INSIDE INSIDE PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.4E+07 chr2 1.8E+07 chr2 1.9E+07 chr2 2.5E+07 chr2 2.5E+07	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.4E+07 lox2_bound:11 1.4E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.9E+07 lox2_bound:11 1.9E+07 lox2_bound:11 1.9E+07 lox2_bound:11 2.3E+07 lox2_bound:12 2.6E+07 lox2_bound:12	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim 2810030E01Rik MIlt10 Commd3 Gad2 Nrarp	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_010135 NM_008937 mmu-mir-205 NM_008937 MM_0080579 NM_0080579 NM_0080579 NM_008059 NM_011701 NM_028317 NM_010804 NM_147778 NM_008078 NM_025980	NA NA NA NA NA NA NA NA NA MIIt10 NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER DIVERGENT INSIDE INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.4E+07 chr2 1.8E+07 chr2 1.8E+07 chr2 1.9E+07 chr2 2.5E+07 chr2 2.6E+07	1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+07 lox2_bound:11 1.4E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.9E+07 lox2_bound:11 1.9E+07 lox2_bound:11 1.9E+07 lox2_bound:11 2.3E+07 lox2_bound:12 2.6E+07 lox2_bound:12	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim 2810030E01Rik Mllt10 Commd3 Gad2 Nrarp Btbd14a	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_010135 NM_008937 mmu-mir-205 NM_008579 NM_008579 NM_0080579 NM_008859 NM_011701 NM_028317 NM_010804 NM_01147778 NM_008078 NM_0025980 NM_001037098	NA NA NA NA NA NA NA NA NA MIIt10 NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER DIVERGENT INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.4E+07 chr2 1.8E+07 chr2 1.8E+07 chr2 1.9E+07 chr2 2.5E+07 chr2 2.6E+07 chr2 2.6E+07	1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.9E+07 lox2_bound:11 2.3E+07 lox2_bound:11 2.5E+07 lox2_bound:12 2.6E+07 lox2_bound:12	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim 2810030E01Rik Mllt10 Commd3 Gad2 Nrarp Btbd14a 4932418E24Rik	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_010135 NM_008937 mmu-mir-205 NM_008579 NM_0080579 NM_008859 NM_011701 NM_028317 NM_010804 NM_011804 NM_147778 NM_008078 NM_001037098 NM_001037098 NM_0177841	NA NA NA NA NA NA NA NA NA MIIt10 NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER DIVERGENT INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER
chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.9E+08 chr1 1.9E+08 chr1 1.9E+08 chr2 3337229 chr2 9821702 chr2 1.1E+07 chr2 1.4E+07 chr2 1.8E+07 chr2 1.8E+07 chr2 1.9E+07 chr2 2.5E+07 chr2 2.6E+07 chr2 2.7E+07	1.8E+08 lox2_bound:10 1.9E+08 lox2_bound:10 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+08 lox2_bound:11 1.9E+07 lox2_bound:11 1.4E+07 lox2_bound:11 1.8E+07 lox2_bound:11 1.8E+07 lox2_bound:11 2.3E+07 lox2_bound:11 2.5E+07 lox2_bound:12 2.6E+07 lox2_bound:12 2.6E+07 lox2_bound:12 2.7E+07 lox2_bound:12	Efcab2 Parp1 BC031781 Lefty2 Lefty1 LOC433384 Enah Enah Kctd3 Prox1 mmu-mir-205 Meig1 Gata3 Prkcq Vim 2810030E01Rik MIlt10 Commd3 Gad2 Nrarp Btbd14a 4932418E24Rik Notch1	NM_026626 NM_007415 NM_145943 NM_177099 NM_010094 NM_001007587 NM_010135 NM_010135 NM_172650 NM_008937 mmu-mir-205 NM_008579 NM_0080579 NM_0080579 NM_0080579 NM_011701 NM_028317 NM_010804 NM_011804 NM_0108078 NM_001037098 NM_001037098 NM_001037098 NM_0714	NA NA NA NA NA NA NA NA NA NA MIIt10 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	INSIDE INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER PROMOTER DIVERGENT INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE

chr2 2.9E+07	2.9E+07	ox2_bound:12	Ralgds	NM_009058	NA	NA	INSIDE
chr2 2.9E+07	2.9E+07	ox2_bound:12	Als4	NM_198033	NA	NA	PROMOTER
chr2 3E+07	3E+07	ox2_bound:12	Coq4	NM_178693	NA	NA	PROMOTER
chr2 3E+07	3E+07	ox2_bound:12	Set	NM_023871	NA	NA	PROMOTER
chr2 3E+07	3E+07	ox2_bound:12	Set	NM_023871	NA	NA	INSIDE
chr2 3E+07	3E+07	ox2_bound:13	Tbc1d13	NM_146252	NA	NA	INSIDE
chr2 3E+07	3E+07	lox2 bound:13	Ier51	NM 030244	NA	NA	PROMOTER
chr2 3.1E+07	3.1E+07	ox2 bound:13	1700001022Rik	NM 198000	2610205E22Ri	NM 170592	DIVERGENT
chr2 3.2E+07	3.2E+07	lox2 bound:13	Fubp3	NM 001033389	NA	NA	PROMOTER
$chr^2 3 2E+07$	3 2E+07	lox2 bound:13	Len2	NM 008491	Proes2	NM 133783	DIVERGENT
$chr^2 = 3.2E + 07$	3.2E+07	lox2_bound:13	C230093N12Rik	NM 153560	NA	NA	INSIDE
$chr^2 = 3.5E + 07$	3.3E+07	lox2_bound:13	L my1h	NM_010725	NΔ	NΔ	INSIDE
$chr^{2} = 3.4E \pm 07$	3.4E+07	lox2_bound:13	Zhth6	NM 146253	NA	NA	DDOMOTED
$c_{112} 3.7E \pm 07$	3./E+0/	$0x2_bound.13$	ZUUUU NaCa 1	NM_140233	INA	INA	PROMOTER
cnr2 3.9E+07	3.9E+07	$0x2_bound:13$	INFOAT	NM_010264	NA	NA	INSIDE
chr2 4.5E+07	4.5E+07	ox2_bound:13	ZINXID	NM_015753	NA	NA	INSIDE
chr2 4.5E+07	4.5E+07	ox2_bound:14	Zfhx1b	NM_015753	NA	NA	PROMOTER
chr2 5.2E+07	5.2E+07	ox2_bound:14	Rif1	NM_175238	NA	NA	PROMOTER
chr2 5.2E+07	5.2E+07	ox2_bound:14	Rif1	NM_175238	NA	NA	PROMOTER
chr2 5.3E+07	5.3E+07	ox2_bound:14	Cacnb4	NM_146123	NA	NA	INSIDE
chr2 5.4E+07	5.4E+07	ox2_bound:14	Rprm	NM_023396	NA	NA	INSIDE
chr2 6E+07	6E+07	ox2_bound:14	Ly75	NM_013825	NA	NA	PROMOTER
chr2 6.2E+07	6.2E+07	ox2_bound:14	Dpp4	NM_010074	NA	NA	PROMOTER
chr2 6.3E+07	6.3E+07	ox2_bound:14	Kcnh7	NM_133207	NA	NA	PROMOTER
chr2 6.4E+07	6.4E+07	ox2_bound:14	Fign	NM_021716	NA	NA	PROMOTER
chr2 6.6E+07	6.6E+07	ox2_bound:14	A330102K23Rik	NM_153409	NA	NA	PROMOTER
chr2 6.6E+07	6.6E+07	lox2 bound:15	A330102K23Rik	NM 153409	NA	NA	INSIDE
chr2 6.9E+07	6.9E+07	ox2 bound:15	G6pc2	NM 021331	NA	NA	INSIDE
chr2 7.1E+07	7.1E+07	ox2 bound:15	4833418A01Rik	NM 198005	NA	NA	INSIDE
chr2 7.1E+07	7.1E+07	lox2 bound:15	Dlx1	NM_010053	NA	NA	INSIDE
$chr^2 7 2E+07$	7 2E+07	lox2 bound:15	Pdk1	NM 172665	NA	NA	PROMOTER
$chr^2 7 3E + 07$	7 3E+07	lox2_bound:15	Sp3	NM 001018042		NΔ	PROMOTER
chr^{2} 7.5E+07	7.5E+07	lox2_bound:15	Sp3 Evy2	NM 007967	NA	NA	INSIDE
chr^{2} 7.5E+07	7.5E+07	lox2_bound:15	Hoyd13	NM_008275	NA	NA	INSIDE
ohr2 7.5E+07	7.5E+07	lox2_bound:15	Hoyd12	NM_008273	NA	NA	DDOMOTED
cm2 7.5E+07	7.5E+07	lox2_bound:15	Hoyd11	NM_008274	NA	NA	PROMOTER
cm2 7.5E+07	7.5E+07	lox2_bound:15	Hoyd10	NM_012554	NA	NA	PROMOTER
chr2 7.5E+07	7.5E+07	ox2_bound:16	HOX010	NM_012554	INA	INA	PROMOTER
cnr2 7.5E+07	7.5E+07	ox2_bound:16	Hoxd10	NM_013554	NA	NA	PROMOTER
chr2 7.5E+07	/.5E+0/	ox2_bound:16	Hoxd10	NM_013554	NA	NA	PROMOTER
chr2 7.5E+07	7.5E+07	ox2_bound:16	Hoxd10	NM_013554	NA	NA	INSIDE
chr2 7.5E+07	7.5E+07	ox2_bound:16	Hoxd4	NM_010469	NA	NA	PROMOTER
chr2 7.6E+07	7.6E+07	lox2_bound:16	Hnrpa3	NM_198090	NA	NA	PROMOTER
chr2 7.6E+07	7.6E+07	ox2_bound:16	Nfe212	NM_010902	NA	NA	PROMOTER
chr2 7.7E+07	7.7E+07	ox2_bound:16	Fkbp7	NM_010222	NA	NA	INSIDE
chr2 7.9E+07	7.9E+07	ox2_bound:16	Neurod1	NM_010894	NA	NA	PROMOTER
chr2 8E+07	8E+07	lox2_bound:16	Pde1a	NM_016744	NA	NA	INSIDE
chr2 8E+07	8E+07	ox2_bound:17	Nup35	NM_027091	NA	NA	INSIDE
chr2 8.5E+07	8.5E+07	ox2_bound:17	2700094K13Rik	NM_001033166	NA	NA	INSIDE
chr2 8.5E+07	8.5E+07	ox2_bound:17	Zdhhc5	NM_144887	NA	NA	PROMOTER
chr2 8.5E+07	8.5E+07	ox2_bound:17	P2rx3	NM_145526	Ssrp1	NM_182990	DIVERGENT
chr2 9.2E+07	9.2E+07	lox2 bound:17	Chrm4	NM 007699	NĂ	NA	PROMOTER
chr2 9.2E+07	9.2E+07	ox2 bound:17	Mdk	NM 010784	NA	NA	PROMOTER
chr2 9.4E+07	9.4E+07	ox2 bound:17	2610203E10Rik	NM 183220	NA	NA	INSIDE
chr^2 1E+08	1E+08	lox2 bound:17	B230118H07Rik	NM_026592	NA	NA	PROMOTER
chr^2 1E+08	1E+08	lox2_bound:17	Nat10	NM 153126	NA	NA	PROMOTER
chr2 $1E+08$	1E+00	lox2_bound:17	Gnian1	NM_016739	NΔ	NΔ	PROMOTER
chr^2 1 $1E_{\perp}00$	1 1E+00	lox2_bound-19	Ron1	NM 000027	NA	NA	INCIDE
cm2 1.1E+00	1.10+00	-0.12 bound 10	Dové	NM 012607	INA NA	INA NA	DDOMOTED
chr2 1.1E+08	1.1E+08	$\log 2$ bound:18	Paxo	INIVI_01362/	INA NA	INA	PROMUTER
cnr2 1.1E+08	1.1E+08	$0x2_bound:18$	Paxo	INIM_013627	NA	NA	INSIDE
cnr2 1.1E+08	1.1E+08	ox2_bound:18	Kit18a	NM_139303	NA	NA	INSIDE
chr2 1.1E+08	1.1E+08	ox2_bound:18	Bdnf	NM_007540	NA	NA	PROMOTER
chr2 1.1E+08	1.1E+08	ox2_bound:18	Slc12a6	NM_133648	NA	NA	PROMOTER
chr2 1.1E+08	1.1E+08	ox2_bound:18	Arhgap11a	NM_181416	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08	ox2_bound:18	BC052040	NM_207264	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08	ox2_bound:18	Mrg1	NM_010825	NA	NA	INSIDE
chr2 1.2E+08	1.2E+08	ox2_bound:18	Spred1	NM_033524	NA	NA	PROMOTER

chr2 1.2E+08	1.2E+08 lox2_bound:19	Spred1	NM_033524	NA	NA	INSIDE
chr2 1.2E+08	1.2E+08 lox2_bound:19	2610510H03Rik	NM_026620	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08 lox2_bound:19	Bmf	NM_138313	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08 ox2_bound:19	Bub1b	NM_009773	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08 lox2_bound:19	Ivd	NM_019826	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08 ox2_bound:19	BC100358	BC100358	NA	NA	Unknown
chr2 1.2E+08	1.2E+08 ox2_bound:19	Rpusd2	NM_173450	NA	NA	DOWNSTREAM
chr2 1.2E+08	1.2E+08 ox2_bound:19	D114	NM_019454	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08 ox2_bound:19	Itpka	NM_146125	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08 ox2_bound:19	Pla2g4e	NM_177845	NA	NA	INSIDE
chr2 1.2E+08	1.2E+08 ox2_bound:20	Pla2g4e	NM_177845	NA	NA	INSIDE
chr2 1.2E+08	1.2E+08 ox2_bound:20	Trp53bp1	NM_013735	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08 lox2_bound:20	BC019755	NM_145395	NA	NA	INSIDE
chr2 1.2E+08	1.2E+08 ox2_bound:20	Shf	NM_001013829	NA	NA	PROMOTER
chr2 1.2E+08	1.2E+08 ox2_bound:20	Shf	NM_001013829	NA	NA	PROMOTER
chr2 1.3E+08	1.3E+08 ox2_bound:20	Shc4	NM_199022	NA	NA	PROMOTER
chr2 1.3E+08	1.3E+08 ox2 bound:20	Slc27a2	NM 011978	NA	NA	PROMOTER
chr2 1.3E+08	1.3E+08 ox2_bound:20	1810024B03Rik	NM_198630	Ascc311	NM_177214	DIVERGENT
chr2 1.3E+08	1.3E+08 ox2 bound:20	Zc3h8	NM 020594	NA	NA	PROMOTER
chr2 1.3E+08	1.3E+08 ox2 bound:20	BC058173	BC058173	NA	NA	Unknown
chr2 1.3E+08	1.3E+08 ox2 bound:21	Sirpa	NM 007547	NA	NA	PROMOTER
chr2 1.3E+08	1.3E+08 ox2 bound:21	Stk35	NM 001038635	NA	NA	PROMOTER
chr2 1.3E+08	1.3E+08 ox2 bound:21	Tgm3	NM 009374	NA	NA	PROMOTER
$chr^2 1.3E+08$	1.3E+08 lox2 bound:21	4930402H24Rik	NM 029432	NA	NA	INSIDE
$chr^2 1.3E+08$	1.3E+08 lox2 bound:21	D430028G21Rik	NM 144888	NA	NA	PROMOTER
$chr^2 = 1.3E + 08$	$1.3E+08 \log 2_{bound:21}$	Pcna	NM 011045	Cds2	NM 138651	DIVERGENT
$chr^2 = 1.3E + 0.08$	$1.3E+08 \log 2_{bound:21}$	B430119L13Rik	NM 177303	NA NA	NA	PROMOTER
$chr^2 = 1.3E + 08$	$1.3E+08 \log 2_{bound:21}$	Iag1	NM 013822	NA	NA	PROMOTER
$chr^2 = 1.4E + 0.08$	$1.4E+08 \log 2_{bound:21}$	2900006F19Rik	NM_028387	NA	NA	INSIDE
$chr^2 = 1.4E + 08$	$1.4E+08 \log 2_{bound:21}$	Elrt3	NM 178382	NA	NA	PROMOTER
$chr^{2} 1.4E+08$	$1.4E+08 \text{ lox2}_{bound:22}$	I OC/33/79	NM 001013802	NA	NA	PROMOTER
$chr^{2} 1.4E+08$	$1.4E+08 \text{ lox2}_{bound:22}$	Detn	NM 010771	NA	NA	INSIDE
$chr^{2} 1.4E+08$	$1.4E+08 0x2_bound.22$ 1 5E+08 0x2_bound.22	Insm1	NM 016889	NA	NA	PROMOTER
$chr^{2} 1.5E+08$	$1.5E+08 \log 2_{-}bound:22$	Insm1	NM 016889	NA	NA	PROMOTER
$chr^{2} 1.5E+08$	$1.5E+08 \log 2_{-}bound:22$	Xrn2	NM 011017	NA	NA	PROMOTER
chr2 1.5E+08	$1.5E+08 0x2_{bound:22}$	Nky2 2	NM_010010	NA NA	NA	PROMOTER
$chr^{2} = 1.5E + 08$	$1.5E+08 0x2_{bound:22}$	Nkx2-2	NM_010010	NA NA	NA	PROMOTER
$chr^{2} = 1.5E + 08$	$1.5E+08 0x2_{bound:22}$	Dox 1	NM_008780	NA NA	NA	PROMOTER
clii 2 1.5E+00	$1.5E+08$ 0x2_00ulld.22	Fax1 Cat2	NM_000076	NA NA	NA NA	INSIDE
chr2 1.5E+08	$1.5E+08$ 0X2_bound:22	CSL5	NM_009976	INA NA	INA NA	DDOMOTED
clii 2 1.5E+00	$1.5E+08 0x2_00ulld.22$	Nonn	NM_026086	NA NA	NA NA	INSIDE
cm2 1.5E+00	$1.5E+08 0x2_00und.23$	Gm122	NM_001000045	NA	NA NA	DROMOTER
clii 2 1.5E+00	$1.5E+08 0x2_00ulld.23$	UIII125 141	NM_010405	NA NA	NA NA	PROMUTER
clii 2 1.5E+00	$1.5E+08 0x2_00ulld.23$	Hale	NM_010493	NA NA	NA NA	DOWINGIKEAM
clii 2 1.5E+00	$1.5E+08 0x2_00ulld.23$		NM_001020020	NA NA	NA NA	INSIDE
cm2 1.5E+08	1.5E+08 $0X2$ bound:25	ASXII C4f5	NM_002100	INA NA	INA NA	DDOMOTED
$c \ln 2 1.0E + 00$	$1.0E+08 0X2_00ulld.23$	Gui5 Teif2	NM 172206	NA NA	NA NA	INSIDE
cm2 1.0E+08	$1.0E \pm 08$ lox2_bound.23	rgnz Sro	NM_001025205	NA NA	NA NA	DROMOTER
$c \ln 2 1.0E \pm 00$	$1.0E \pm 08 ox2_00ulld.23$	Cm(0)	NM 109627	INA NA	INA NA	PROMOTER
chr2 1.0E+08	$1.0E+08$ 0X2_Dound:23	GIII091	NM_198027	INA NA	INA NA	PROMUTER
$c \ln 2 1.0E + 00$	$1.0E+08 0X2_00ulld.23$	Mofb	NM_010659	NA NA	NA NA	DROMOTER
$c \ln 2 1.0E + 00$	$1.0E+08 0X2_00ulld.24$	Muh12	NM_008652	NA NA	NA NA	PROMOTER
chr2 1.0E+08	$1.0E+08$ 0X2_Dound:24	NIYDI2 Sda4	NM_008032	INA NA	INA NA	PROMOTER
$c \ln 2 1.0E + 00$	$1.0E+08 0X2_00ulld.24$	Suc4	NM_020059	NA NA	NA NA	INSIDE
$c \ln 2 1.0E + 00$	$1.0E+08 0X2_00ulld.24$	Spint4	NM 179275	NA NA	NA NA	INSIDE
$cm^2 1.0E + 08$	$1.0E+08$ 0x2_bound:24	ZSWIII5	INIM_1/85/5	INA NA	INA NA	INSIDE
cnr2 1.0E+08	$1.0E+00 0X2_00Und:24$	Ppgo	NIVI_001038492	INA NA	INA NA	INSIDE
chr2 1.0E+08	$1.0E+00 0X2_00Und:24$	INCOAD Delegator 1	NIVI_144892	INA NA	INA NA	PROMUTER
cnr2 1.7E+08	$1.7E+08 \text{ ox}2_bound:24$	rrkcop1	NIVI_027230	INA NA	INA NA	INSIDE
$cnr_2 1./E+08$	1.7E+08 ox2_bound:24	Sull2	NIVI_028072	INA	INA NA	PROMUTER
cnr2 1.7E+08	1.7E+08 ox 2 bound: 24	Sull2	NIVI_028072	INA NA	INA NA	PROMUTER
cnr2 1.7E+08	1.7E+08 + 00X2 = 00000000000000000000000000000000	Snail	NIVI_011427	INA NA	INA NA	INSIDE
$cnr_2 1./E+08$	$1.7E+08 \text{ ox}2_bound:25$ $1.7E+08 \text{ ox}2_bound:25$	Sall4	NIVI_201396	INA NA	INA NA	INSIDE
cnr2 1.7E+08	1.7E+08 0X2_bound:25	Sall4	NIVI_1/5303	NA NA	NA	PROMUTER
cnr2 1.7E+08	1./E+08 ox2_bound:25	Sall4	NM_1/5303	NA	NA	PROMOTER
cnr2 1./E+08	$1.1E+08$ ox2_bound:25	Z1p64	INIM_009564	NA	INA	PROMOTER

chr2 1.7E+08	1.7E+08 ox2_bound:25	Cbln4	NM_175631	NA	NA	INSIDE
chr2 1.7E+08	1.7E+08 ox2_bound:25	F730031O20Rik	NM_001033538	NA	NA	PROMOTER
chr2 1.7E+08	1.7E+08 ox2_bound:25	Tcfap2c	NM_009335	NA	NA	PROMOTER
chr2 1.7E+08	1.7E+08 ox2 bound:25	Gnas	NM 010309	NA	NA	PROMOTER
chr2 1.8E+08	1.8E+08 ox2 bound:25	Dido1	NM_011805	310003C23Ri	NA	PROMOTER
chr2 1 8E+08	1.8E+08 ox2 bound 26	Dido1	NM 177852	NA	NM 029607	DIVERGENT
$chr^2 = 1.02 + 0.000$	1.8E+08 lox2 bound:26	BC019537	NM 183161	NA	NA	PROMOTER
$chr^{2} = 1.0E + 00$	$1.0E+00 + 0.0x2$ _bound:20	BC019537	NM 183161	NA	NA	INSIDE
$chr^{2} = 1.8E \pm 08$	1.8E+08 lox2 bound:26	C030010E02Bik	NM_021426	NA	NA	INSIDE
ohr 1 9E+08	1.8E + 08 + 082 = 000000000000000000000000000000000	C030019F02Rik	NM_021426	NA	NA	INSIDE
cm2 1.0E+00	1.8E+08 + 0.82 - 0.0000000.20	C030019F02Kik	$NM_{02}1420$	INA NA	INA NA	DROMOTER
$cm^2 1.8E+08$	$1.8E+08$ $0X2_00010.20$	Chrina4 Kanar2	NM_01006678	INA	NA	PROMUTER
cnr2 1.8E+08	1.8E+08 ox2_bound:26	Kcnq2	NM_001006678	INA NA	NA	INSIDE
chr2 1.8E+08	1.8E+08 ox2_bound:26	2/00038C09R1k	NM_025598	NA	NA	PROMOTER
chr2 1.8E+08	1.8E+08 ox2_bound:26	Myt1	NM_008665	NA	NA	PROMOTER
chr3 7374346	7375296 ox2_bound:26	Pkia	NM_008862	NA	NA	INSIDE
chr3 8515904	8517611 ox2_bound:27	Stmn2	NM_025285	NA	NA	INSIDE
chr3 8970645	8971423 ox2_bound:27	Tpd52	NM_001025262	NA	NA	PROMOTER
chr3 9009906	9010406 ox2_bound:27	Tpd52	NM_001025263	NA	NA	INSIDE
chr3 9014630	9015320 ox2_bound:27	Tpd52	NM_009412	NA	NA	PROMOTER
chr3 9616498	9617838 ox2_bound:27	Gig1	NM_133218	NA	NA	PROMOTER
chr3 1E+07	1E+07 lox2_bound:27	Fabp5	NM_010634	NA	NA	INSIDE
chr3 1E+07	1E+07 lox2_bound:27	Zfand1	NM_025512	NA	NA	PROMOTER
chr3 1.4E+07	1.4E+07 ox2_bound:27	Slc7a12	NM_080852	NA	NA	PROMOTER
chr3 1.5E+07	1.5E+07 ox2_bound:27	Car3	NM_007606	NA	NA	PROMOTER
chr3 1.8E+07	1.8E+07 ox2_bound:27	Bhlhb5	NM_021560	NA	NA	INSIDE
chr3 2E+07	2E+07 ox2 bound:28	Smarca3	NM 144959	NA	NA	INSIDE
chr3 2.2E+07	2.2E+07 ox2 bound:28	Tbl1xr1	NM 030732	NA	NA	PROMOTER
chr3 2.7E+07	2.7E+07 lox2 bound:28	Ect2	NM_007900	NA	NA	PROMOTER
chr^3 3E+07	3E+07 lox2 bound:28	Arpm1	NM_029690	Mynn	NM 030557	DIVERGENT
chr3 $3E+07$	3E+07 lox2 bound:28	4930558021Rik	NM 026668	NA	NA	INSIDE
chr3 3 $1E\pm07$	$3.1E\pm07$ lox2 bound:28	Prkci	NM_008857	NΔ	NΔ	PROMOTER
chr3 3.1E+07	$3.1E+07$ lox2_bound:28	Skil	NM 001030000	NA NA	NA	PROMOTER
$chr^3 = 3.1E \pm 0.7$	$3.1E+07$ lox2_bound:28	Konmh?	NM 028231	NA NA	NA	INSIDE
$chr^3 = 3.2E \pm 0.7$	$3.2E+07$ lox2_bound:28	A otl60	NM_010673	NA	NA	INSIDE
$hr^2 = 2 2E + 07$	3.3E+07 $0.00000000000000000000000000000000000$	Mrn147	NM_020017	Ndufh5	NM 025216	DIVEDCENT
$c_{\rm HI} = 3.5 \pm 0.7$	$3.3E+07$ $0X2_00ulld.20$	Mipi47	NM_029017	Nullos	NM_023510	DIVERGENT
$c_{HI} = 3.4E \pm 07$	2.4E+07 lox2_bound.29	SOX2	NM_011443	INA NA	INA NA	PROMOTER
cm3 3.4E+07	$3.4E+07$ ox2_bound:29	S0X2	NM_011443	INA	NA	PROMOTER
chr3 3.4E+07	3.4E+07 ox2_bound:29	Sox2	NM_011443	NA	NA	PROMOTER
chr3 3.4E+07	3.4E+07 ox2_bound:29	Sox2	NM_011443	NA	NA	INSIDE
chr3 4.5E+07	4.5E+07 ox2_bound:29	Pcdh10	NM_011043	NA	NA	PROMOTER
chr3 5.1E+07	5.1E+07 ox2_bound:29	Ccrn4l	NM_009834	NA	NA	PROMOTER
chr3 5.2E+07	5.2E+07 ox2_bound:29	Setd7	NM_080793	NA	NA	PROMOTER
chr3 7E+07	7E+07 ox2_bound:29	B3galt3	NM_020026	NA	NA	INSIDE
chr3 7E+07	7E+07 ox2_bound:29	1110032A04Rik	NM_133675	NA	NA	PROMOTER
chr3 8.1E+07	8.1E+07 ox2_bound:29	Pdgfc	NM_019971	NA	NA	PROMOTER
chr3 8.2E+07	8.2E+07 ox2_bound:30	Accn5	NM_021370	NA	NA	PROMOTER
chr3 8.5E+07	8.5E+07 ox2_bound:30	9930117H01Rik	NM_177260	NA	NA	PROMOTER
chr3 8.6E+07	8.6E+07 ox2_bound:30	Pet1121	NM_144896	NA	NA	INSIDE
chr3 8.6E+07	8.6E+07 ox2_bound:30	Gm1019	NM_001001650	NA	NA	PROMOTER
chr3 8.8E+07	8.8E+07 ox2_bound:30	Prcc	NM_033573	NA	NA	PROMOTER
chr3 8.8E+07	8.8E+07 ox2_bound:30	Cct3	NM_009836	NA	NA	PROMOTER
chr3 8.9E+07	8.9E+07 ox2_bound:30	Thbs3	NM_013691	NA	NA	INSIDE
chr3 8.9E+07	8.9E+07 ox2_bound:30	Muc1	NM_013605	NA	NA	PROMOTER
chr3 9E+07	9E+07 ox2 bound:30	Creb3l4	NM_030080	Slc39a1	NM 013901	DIVERGENT
chr3 9.1E+07	9.1E+07 ox2 bound:30	Ints3	NM 178876	NA	NA	PROMOTER
chr3 9.3E+07	9.3E+07 lox2 bound:31	2300002G24Rik	NM 028798	NA	NA	INSIDE
chr3 9.4E+07	9.4E+07 ox2 bound 31	2310007A19Rik	NM 025506	Tnrc4	NM 172434	DIVERGENT
chr3 9.5E+07	9.5E+07 lox2 bound 31	Scnm1	NM 027013	NA	NA	INSIDE
chr3 9 5F+07	9.5E+07 lox2 bound 31	Gabnb?	NM 172512	NA	NA	PROMOTER
chr3 9.5E+07	9.5E+07 lox2 bound 31	Cdc42se1	NM 001038708	NA	NA	INSIDE
chr3 9 5F+07	9.5E+07 lox2 bound 31	Arnt	NM 001037737	NA	NA	PROMOTER
chr3 9 $6E\pm07$	$9.6E+07$ lox2_bound.31	7a20d1	NM 001025613	NA	NA	PROMOTER
chr3 9 6 $E_{\perp}07$	$9.6E+07$ lox2_bound.31	Hist2h3c1	NM 178216	NA	NA	DOWNSTREAM
chr3 9 $6E \pm 07$	$9.6E+07$ lox2_bound:31	Hist2hJ	NM 033596	Hist2h3c1	NΔ	DOWNSTREAM
chr3 9 6 $E_{\perp}07$	$9.6E+07$ lox2_bound.31	Hist2h4	NM 033596	NA	NM 019469	DIVERGENT
		- 110 COLLT	1.1.1_00000000	1 14 1		21. DIGDINI

chr3 9.6E+07	9.6E+07	ox2_bound:32	Polr3gl	NM_027241	NA	NA	INSIDE
chr3 9.7E+07	9.7E+07	ox2_bound:32	Асрб	NM_019800	NA	NA	INSIDE
chr3 1E+08	1E+08	ox2_bound:32	Ptgfrn	NM_011197	NA	NA	PROMOTER
chr3 1E+08	1E+08	ox2_bound:32	Casq2	NM_009814	NA	NA	PROMOTER
chr3 1E+08	1E+08	ox2_bound:32	Csde1	NM_144901	NA	NA	INSIDE
chr3 1E+08	1E+08	ox2_bound:32	Dennd2c	NM_177857	NA	NA	PROMOTER
chr3 1E+08	1E+08	ox2 bound:32	Dennd2c	NM 177857	NA	NA	INSIDE
chr3 1E+08	1E+08	ox2 bound:32	Trim33	NM 053170	NA	NA	PROMOTER
chr3 1E+08	1E+08	ox2 bound:32	Svt6	NM 018800	NA	NA	PROMOTER
chr3 $1E+08$	1E+08	ox2 bound:32	Ppm1i	NM 027982	NA	NA	INSIDE
chr3 1E+08	1E+08	ox2 bound:33	Cttnbp2nl	NM 030249	NA	NA	INSIDE
chr3 1 1E+08	1 1E+08	lox2_bound:33	Wdr77	NM 027432	NA	NA	PROMOTER
chr3 1 1E \pm 08	1.1E+00 1.1E+08	ox2_bound:33	Tmem77	NM 001025582		NΔ	INSIDE
chr3 1.1E+00	1.1E+00	lox2_bound:33	Sym12	NM 008506	NA NA	NA	DDOMOTED
$hr^2 1 1E+08$	$1.1E \pm 00$	ox2_bound:33	Syp12	NM_011210	NA	NA	PROMOTER
$c_{\rm HIJ} 1.1E + 08$	1.1E+00	ox2_bound.33	Sais Wdr47	NM 191400	INA NA	NA	PROMOTER
$c_{1175} 1.1E + 08$	1.1E+08	ox2_bound:55	W 0147	NM_181400	INA NA	NA	PROMOTER
$cnr_{3} 1.2E+08$	1.2E+08	ox2_bound:55	BC072644	BC0/2644	INA	NA	Unknown
cnr3 1.2E+08	1.2E+08	ox2_bound:33	Cnn3	NM_028044	NA	NA	INSIDE
chr3 1.2E+08	1.2E+08	ox2_bound:33	Gelm	NM_008129	NA	NA	PROMOTER
chr3 1.3E+08	1.3E+08	ox2_bound:33	Ank2	NM_178655	NA	NA	PROMOTER
chr3 1.3E+08	1.3E+08	ox2_bound:34	D3Wsu161e	NM_138593	mmu-mir-302	mmu-mir-302	DIVERGENT
chr3 1.3E+08	1.3E+08	ox2_bound:34	Neurog2	NM_009718	NA	NA	PROMOTER
chr3 1.3E+08	1.3E+08	ox2_bound:34	Pitx2	NM_011098	NA	NA	INSIDE
chr3 1.3E+08	1.3E+08	ox2_bound:34	Pitx2	NM_011098	NA	NA	INSIDE
chr3 1.3E+08	1.3E+08	ox2_bound:34	Lef1	NM_010703	NA	NA	PROMOTER
chr3 1.3E+08	1.3E+08	ox2_bound:34	Lef1	NM_010703	NA	NA	INSIDE
chr3 1.3E+08	1.3E+08	ox2_bound:34	Hadhsc	NM_008212	NA	NA	INSIDE
chr3 1.3E+08	1.3E+08	ox2_bound:34	Scye1	NM_007926	4630047E20Ri	NM_173032	DIVERGENT
chr3 1.3E+08	1.3E+08	ox2_bound:34	Cxxc4	NM_001004367	NA NA	NA	PROMOTER
chr3 1.4E+08	1.4E+08	ox2_bound:34	Ddit41	NM_030143	NA	NA	PROMOTER
chr3 1.4E+08	1.4E+08	ox2 bound:35	Adh7	NM 009626	NA	NA	PROMOTER
chr3 1.4E+08	1.4E+08	ox2 bound:35	Tspan5	NM 019571	NA	NA	INSIDE
chr3 1.4E+08	1.4E+08	ox2 bound:35	Pdlim5	NM 019809	NA	NA	PROMOTER
chr3 1.4E+08	1.4E+08	ox2 bound:35	Ccbl2	NM 173763	NA	NA	PROMOTER
chr3 1.4E+08	1.4E+08	ox2_bound:35	Pkn2	NM 178654	NA	NA	PROMOTER
chr3 1.4E+08	1.4E+08	ox2_bound:35	Lmo4	NM 010723	NA	NA	INSIDE
$chr^{3} + 4E + 08$	1.4E+08	lox2 bound:35	Lmo4	NM_010723	NA	NA	INSIDE
chr3 1 5E+08	1.1E+00	lox2_bound:35	Cyr61	NM 010516	NA	NA	PROMOTER
chr3 1 5E \pm 08	1.5E+08	ox2_bound:35	Ddah1	NM 026993	NΔ	NΔ	PROMOTER
chr3 1.5E+08	1.5E+08	ox2_bound:35	Ddah1	NM 026993	NA	NA	INSIDE
chr3 1.5E+08	1.5E+08	lox2_bound:35	Gine?	NM 016867	NA	NA	INSIDE
$chr_3 1.5E+08$	1.5E+08	ox2_bound:36	Upc2	NM_010712	NA	NA	INSIDE
$chr_3 1.5E+08$	1.5E+00	ox2_bound:36	Sfra11	NM_026080	InA I mado	NM 024104	DIVEDCENT
$c_{HIJ} 1.0E+08$	1.0E+0.07	ox2_bound.30	511511 Tm 52inn 1	NM 021907	LIIC40	NM_024194	DIVERGENT
cnr4 1.1E+07	1.1E+07	ox2_bound:36	1rp55inp1	NM_021897	INA	NA	PROMOTER
cnr4 1.6E+07	1.0E+07	ox2_bound:36	Decri	NM_026172	INA	NA	PROMOTER
cnr4 1.6E+07	1.0E+07	ox2_bound:36		NM_013752	INA	NA	INSIDE
chr4 2.1E+07	2.1E+07	ox2_bound:36	E130310K16R1k	NM_1/298/	NA	NA	INSIDE
chr4 2.2E+07	2.2E+07	ox2_bound:36	Coq3	NM_172687	NA	NA	INSIDE
chr4 2.2E+07	2.2E+07	ox2_bound:36	Pou3f2	NM_008899	NA	NA	PROMOTER
chr4 2.2E+07	2.2E+07	ox2_bound:36	Pou3f2	NM_008899	NA	NA	PROMOTER
chr4 2.6E+07	2.6E+07	ox2_bound:37	Fut9	NM_010243	NA	NA	INSIDE
chr4 3.3E+07	3.3E+07	ox2_bound:37	Ankrd6	NM_080471	NA	NA	PROMOTER
chr4 3.3E+07	3.3E+07	ox2_bound:37	Ankrd6	NM_001012451	I NA	NA	INSIDE
chr4 4E+07	4E+07	ox2_bound:37	Ddx58	NM_172689	NA	NA	INSIDE
chr4 4.1E+07	4.1E+07	ox2_bound:37	B4galt1	NM_022305	NA	NA	PROMOTER
chr4 4.1E+07	4.1E+07	ox2_bound:37	Aqp3	NM_016689	NA	NA	PROMOTER
chr4 4.1E+07	4.1E+07	ox2_bound:37	Aqp3	NM_016689	NA	NA	PROMOTER
chr4 4.1E+07	4.1E+07	ox2_bound:37	Nol6	NM_139236	Ube2r2	NM_026275	DIVERGENT
chr4 4.3E+07	4.3E+07	ox2_bound:37	Dnajb5	NM_019874	NA	NA	PROMOTER
chr4 4.3E+07	4.3E+07	ox2_bound:37	Fancg	NM_053081	NA	NA	PROMOTER
chr4 4.4E+07	4.4E+07	ox2_bound:38	Gba2	NM_172692	NA	NA	INSIDE
chr4 4.5E+07	4.5E+07	ox2_bound:38	Pax5	NM_008782	NA	NA	PROMOTER
chr4 4.5E+07	4.5E+07	ox2_bound:38	D4Wsu132e	NM 138590	NA	NA	PROMOTER
chr4 4.6E+07	4.6E+07	ox2 bound:38	Hemon	NM 053149	NA	NA	DOWNSTREAM
chr4 4.9E+07	4.9E+07	ox2_bound:38	Tmeff1	NM_021436	NA	NA	INSIDE

chr4 5.8E+07	5.8E+07 ox2_bound:38	D630039A03Rik	NM_178727	NA	NA	PROMOTER
chr4 5.8E+07	5.8E+07 lox2_bound:38	Musk	NM_001037127	NA	NA	INSIDE
chr4 8E+07	8E+07 lox2_bound:38	D4Bwg0951e	NM_026821	NA	NA	INSIDE
chr4 8.2E+07	8.2E+07 lox2_bound:38	Nfib	NM_008687	NA	NA	PROMOTER
chr4 8.3E+07	8.3E+07 lox2_bound:38	1810054D07Rik	NM_027238	NA	NA	PROMOTER
chr4 8.3E+07	8.3E+07 ox2_bound:39	Snapc3	NM_029949	NA	NA	PROMOTER
chr4 8.3E+07	8.3E+07 ox2_bound:39	Snapc3	NM_029949	NA	NA	PROMOTER
chr4 8.5E+07	8.5E+07 ox2_bound:39	BC062814	BC062814	NA	NA	Unknown
chr4 8.6E+07	8.6E+07 ox2_bound:39	Rraga	NM_178376	NA	NA	PROMOTER
chr4 8.6E+07	8.6E+07 ox2_bound:39	6230416J20Rik	NM_173400	NA	NA	PROMOTER
chr4 9.1E+07	9.1E+07 ox2_bound:39	Elavl2	NM_207685	NA	NA	INSIDE
chr4 9.7E+07	9.7E+07 ox2_bound:39	Nfia	NM_010905	NA	NA	PROMOTER
chr4 9.8E+07	9.8E+07 ox2 bound:39	Usp1	NM 146144	NA	NA	PROMOTER
chr4 9.9E+07	9.9E+07 ox2 bound:39	Itgh3bp	NM 026348	BC020077	NM 145549	DIVERGENT
chr4 9.9E+07	9.9E+07 lox2 bound:39	Ror1	NM 013845	NA	NA	INSIDE
chr4 $1E+08$	1E+08 lox2 bound:40	Cachd1	NM 198037	NA	NA	INSIDE
chr4 $1E+08$	1E+08 lox2 bound: 10 1E+08 lox2 bound: 40	Dab1	NM_010014	NA	NA	INSIDE
chr4 $1E+08$	1E+08 lox2 bound:40	Pnan2h	NM_080555	NA	NA	INSIDE
$chr4 \ 1 \ 1F+08$	1 1E+08 lox 2 bound: 10	Ssbn3	NM_023672	NA	NA	PROMOTER
$chr4 \ 1 \ 1E+08$	1.1E+08 lox2 bound: 10	Tmem48	NM 028355	NA	NA	PROMOTER
$chr4 \ 1 \ 1E+08$	1.1E+08 lox2 bound:40	Rtf314	NM_027453	Txndc12	NM 025334	DIVERGENT
$chr4 \ 1 \ 1E+08$	1.1E+08 lox 2 bound:40	Tal1	NM_011527	NA	ΝΔ	PROMOTER
chr4 1.7E+08	1.1E+08 + 0x2 bound: 40	Pad5/1	NM_000015	NA	NA	PROMOTER
cm4 1.2E + 08	1.2E + 08 + 0x2 = 000000000000000000000000000000000	Caba111	NM_020868	NA NA	NA	INCIDE
clii4 1.2E+00	$1.2E+08$ $0X2_00uld.40$	Neer	NM_016777	INA NA	NA	INSIDE
cnr4 1.2E+08	$1.2E+08$ ox2_bound:40	INasp	NM_016///	NA 10027D15D	NA	INSIDE
cnr4 1.2E+08	$1.2E+08$ ox2_bound:41	Mmache	NM_025962	01003/DISKI	NM_026/14	DIVERGENI
cnr4 1.2E+08	1.2E+08 ox2_bound:41	Tesk2	NM_146151	NA	NA	PROMOTER
cnr4 1.2E+08	1.2E+08 ox2_bound:41	Tesk2	NM_146151	NA	NA	INSIDE
cnr4 1.2E+08	1.2E+08 ox2_bound:41	Zswim5	NM_001029912	2 NA	NA	PROMOTER
chr4 1.2E+08	1.2E+08 ox2_bound:41	PIK3	NM_013807	NA	NA	INSIDE
chr4 1.2E+08	1.2E+08 ox2_bound:41	Rps8	NM_009098	NA	NA	DOWNSTREAM
chr4 1.2E+08	1.2E+08 ox2_bound:41	Cdc20	NM_023223	NA	NA	PROMOTER
chr4 1.2E+08	1.2E+08 ox2_bound:41	Ybx1	NM_011732	NA	NA	INSIDE
chr4 1.2E+08	1.2E+08 ox2_bound:41	Hivep3	NM_010657	NA	NA	INSIDE
chr4 1.2E+08	1.2E+08 ox2_bound:41	Edn2	NM_007902	NA	NA	PROMOTER
chr4 1.2E+08	1.2E+08 ox2_bound:42	Smap11	NM_133716	NA	NA	PROMOTER
chr4 1.2E+08	1.2E+08 ox2_bound:42	Zmpste24	NM_172700	NA	NA	INSIDE
chr4 1.2E+08	1.2E+08 ox2_bound:42	Mycl1	NM_008506	NA	NA	INSIDE
chr4 1.2E+08	1.2E+08 ox2_bound:42	Bmp8a	NM_007558	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 ox2_bound:42	Eif2c1	NM_153403	NA	NA	INSIDE
chr4 1.3E+08	1.3E+08 ox2_bound:42	Gjb3	NM_008126	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 ox2_bound:42	Trim62	NM_178110	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 ox2_bound:42	Bsdc1	NM_133889	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 lox2_bound:42	Tssk3	NM_080442	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 ox2_bound:42	Pef1	NM_026441	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 ox2_bound:43	Fabp3	NM_010174	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 ox2_bound:43	Med18	NM_026039	NA	NA	INSIDE
chr4 1.3E+08	1.3E+08 ox2_bound:43	Sesn2	NM_144907	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 ox2_bound:43	Rpa2	NM_011284	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 ox2_bound:43	BC082554	BC082554	NA	NA	Unknown
chr4 1.3E+08	1.3E+08 ox2_bound:43	Lin28	NM_145833	NA	NA	INSIDE
chr4 1.3E+08	1.3E+08 ox2_bound:43	Slc30a2	NM_001039677	i NA	NA	INSIDE
chr4 1.3E+08	1.3E+08 ox2_bound:43	Pafah2	NM_133880	NA	NA	PROMOTER
chr4 1.3E+08	1.3E+08 ox2_bound:43	Stmn1	NM_019641	NA	NA	INSIDE
chr4 1.3E+08	1.3E+08 lox2_bound:43	Stmn1	NM_019641	NA	NA	INSIDE
chr4 1.3E+08	1.3E+08 ox2_bound:44	Tmem57	NM_025382	NA	NA	INSIDE
chr4 1.3E+08	1.3E+08 ox2_bound:44	Grhl3	NM_001013756	NA	NA	PROMOTER
chr4 1.4E+08	1.4E+08 ox2_bound:44	Pnrc2	NM_026383	NA	NA	PROMOTER
chr4 1.4E+08	1.4E+08 ox2_bound:44	Id3	NM_008321	NA	NA	INSIDE
chr4 1.4E+08	1.4E+08 ox2_bound:44	Tcea3	NM_011542	NA	NA	PROMOTER
chr4 1.4E+08	$1.4E \pm 0.9$ low 2 hours $d_{1}44$	Tcen3	NM 011542	NA	NA	PROMOTER
ahr 4.1.4 E + 0.8	$1.4E+08$ 0x2_00und:44	Teeds	10011012			
CIII4 1.4L+0.0	1.4E+08 ox2_bound:44	6030445D17Rik	NM_177079	NA	NA	INSIDE
chr4 1.4E+08	1.4E+08 ox2_bound:44 1.4E+08 ox2_bound:44 1.4E+08 ox2_bound:44	6030445D17Rik 4930549C01Rik	NM_177079 NM_026300	NA NA	NA NA	INSIDE INSIDE
chr4 1.4E+08 chr4 1.4E+08 chr4 1.4E+08	1.4E+08 lox2_bound:44 1.4E+08 lox2_bound:44 1.4E+08 lox2_bound:44 1.4E+08 lox2_bound:44	6030445D17Rik 4930549C01Rik Zbtb40	NM_026300 NM_198248	NA NA NA	NA NA NA	INSIDE INSIDE PROMOTER

chr4 1.4E+08	1.4E+08 lox2_bound:45	Eif4g3	NM_172703	NA	NA	PROMOTER
chr4 1.4E+08	1.4E+08 lox2_bound:45	C79267	NM_183148	NA	NA	PROMOTER
chr4 1.4E+08	1.4E+08 ox2_bound:45	Pax7	NM_011039	NA	NA	PROMOTER
chr4 1.4E+08	1.4E+08 ox2_bound:45	Rcc2	NM_173867	NA	NA	PROMOTER
chr4 1.4E+08	1.4E+08 ox2_bound:45	Rcc2	NM_173867	NA	NA	INSIDE
chr4 1.4E+08	1.4E+08 ox2 bound:45	Arhgef19	NM 172520	NA	NA	PROMOTER
chr4 1.4E+08	1.4E+08 lox2 bound:45	Fblim1	NM 133754	NA	NA	PROMOTER
chr4 1 4F+08	1.4E+08 lox2 bound:45	Pdnn	NM 010329	NA	NA	PROMOTER
chr4 1 4F+08	1.4E+08 lox2 bound:45	Pdnn	NM 010329	NA	NA	PROMOTER
chr4 1.4E+08	1.4E+08 lox 2 bound:45	Pdpn	NM 010329	NA	NA	PROMOTER
chr4 1.4E+08	$1.4E+08 + 0x2_{bound}.45$	A atrop	NM_000642	NA	NA	INSIDE
cm4 1.5E+08	$1.5E+08$ $0x2_{0und}.40$	Agtrap	NM_000642	NA	NA	DROMOTER
clii4 1.5E+00	$1.5E+08 + 0x2_00ulld.40$	Aguap	NM_007745	INA NA	INA NA	INCIDE
chr4 1.5E+08	1.5E+08 ox2_bound:46	Cort	NM_007745	NA	NA	INSIDE
chr4 1.5E+08	1.5E+08 ox2_bound:46	Hes3	NM_008237	NA	NA	INSIDE
chr4 1.5E+08	1.5E+08 ox2_bound:46	D330010C22R1k	NM_001033489	Rpl22	NM_009079	DIVERGENT
chr5 5564922	5565540 ox2_bound:46	BC034507	NM_153116	NA	NA	INSIDE
chr5 8092083	8092583 ox2_bound:46	Sri	NM_025618	NA	NA	INSIDE
chr5 8461281	8462640 ox2_bound:46	B230315F11Rik	NM_178766	NA	NA	INSIDE
chr5 1.5E+07	1.5E+07 ox2_bound:46	Cacna2d1	NM_009784	NA	NA	PROMOTER
chr5 1.5E+07	1.5E+07 ox2_bound:46	Cacna2d1	NM_009784	NA	NA	INSIDE
chr5 2E+07	2E+07 ox2_bound:47	Phtf2	NM_172992	Tmem60	NM_177601	DIVERGENT
chr5 2E+07	2E+07 ox2_bound:47	Ptpn12	NM_011203	NA	NA	INSIDE
chr5 2.1E+07	2.1E+07 ox2_bound:47	Pmpcb	NM_028431	NA	NA	PROMOTER
chr5 2.7E+07	2.7E+07 ox2_bound:47	En2	NM_010134	NA	NA	INSIDE
chr5 2.9E+07	2.9E+07 ox2 bound:47	Dnajb6	NM 00103794	I NA	NA	INSIDE
chr5 3E+07	3E+07 ox2 bound:47	9430057O19Rik	NM 174849	NA	NA	PROMOTER
chr5 3.1E+07	3.1E+07 ox2 bound:47	Fos12	NM_008037	NA	NA	PROMOTER
chr5 3.2E+07	3.2E+07 ox2 bound:47	Slc5a1	NM 019810	NA	NA	PROMOTER
chr5 3.3E+07	3.3E+07 lox2 bound:47	Rnf4	NM 011278	NA	NA	INSIDE
chr5 $3.4E+07$	3.4E+07 lox2 bound:47	Lrnan1	NM 013587	NA	NA	INSIDE
chr5 3.6E \pm 07	3.6E+07 lox2 bound:48	Crmp1	NM_007765	NΔ	NΔ	INSIDE
chr5 3.7E \pm 07	$3.0E+07$ lox2_bound:48	Mex1	NM_010835	NA	NA	PROMOTER
ohr5 3 $7E+07$	$3.7E+07$ ox2_bound:48	Otop1	NM 172700	NA	NA	PROMOTER
ohr5 $4.1E+07$	3.7E+07 $0.00000000000000000000000000000000000$	Dtop1	NM_007524	NA	NA	PROMOTER
chi 5 4.1E+07	4.1E+07 lox2_bound.40	C429	NM_007646	INA NA	INA NA	INCIDE
chi 5 4.5E+07	4.3E+07 0X2_00ulld.40	Cu3o Eafha1	NM_002000	INA NA	INA NA	DDOMOTED
cnr5 4.5E+07	4.5E+07 ox2_bound:48	Fgiopi	NM_008009	NA	NA	PROMOTER
chr5 4.5E+07	4.5E+07 ox2_bound:48	Lap3	NM_024434	NA	NA	INSIDE
chr5 4./E+0/	4./E+0/ ox2_bound:48	Slit2	NM_1/8804	NA	NA	INSIDE
chr5 5.2E+07	5.2E+07 ox2_bound:48	Lgi2	NM_144945	NA	NA	PROMOTER
chr5 5.3E+07	5.3E+07 ox2_bound:48	Rbpsuh	NM_009035	NA	NA	INSIDE
chr5 5.3E+07	5.3E+07 ox2_bound:49	Cckar	NM_009827	NA	NA	PROMOTER
chr5 5.7E+07	5.7E+07 ox2_bound:49	Pcdh7	NM_018764	NA	NA	PROMOTER
chr5 6.3E+07	6.3E+07 ox2_bound:49	AA536743	NM_145923	NA	NA	PROMOTER
chr5 6.3E+07	6.3E+07 ox2_bound:49	AA536743	NM_145923	NA	NA	PROMOTER
chr5 6.4E+07	6.4E+07 ox2_bound:49	Tlr6	NM_011604	130005N14Ri	NM_026667	DIVERGENT
chr5 6.4E+07	6.4E+07 ox2_bound:49	Klhl5	NM_175174	NA	NA	PROMOTER
chr5 6.5E+07	6.5E+07 ox2_bound:49	B3bp	NM_001024917	7 NA	NA	PROMOTER
chr5 6.6E+07	6.6E+07 ox2_bound:49	BC013481	NM_178446	NA	NA	PROMOTER
chr5 6.6E+07	6.6E+07 ox2_bound:49	Uch11	NM_011670	NA	NA	INSIDE
chr5 6.6E+07	6.6E+07 ox2_bound:49	Uch11	NM_011670	NA	NA	INSIDE
chr5 6.6E+07	6.6E+07 ox2_bound:50	Phox2b	NM_008888	NA	NA	PROMOTER
chr5 7.1E+07	7.1E+07 ox2 bound:50	Gabrb1	NM 008069	NA	NA	INSIDE
chr5 7.3E+07	7.3E+07 ox2 bound:50	9030227G01Rik	NM 177136	NA	NA	PROMOTER
chr5 7.4E+07	7.4E+07 ox2 bound:50	Gsh2	NM 133256	NA	NA	PROMOTER
chr5 7 5E+07	7.5E+07 lox2 bound:50	Kit	NM 021099	NA	NA	INSIDE
chr5 7.7E+07	7.7E+07 lox2 bound:50	Rest	NM 011263	NΔ	NΔ	PROMOTER
chr5 8 $0E\pm07$	$8.9E\pm07$ lox2_bound.50	Rufy2	NM 027520	NA	NA NA	INCIDE
chr5 & 0E + 07	$8.9E\pm07$ low 2 hound 50	Graf1	NM 179700	NA	NA	DDUNUTED
ohr5 0.9E+07	$0.9E \pm 07$ $0.0X2_00und:50$	GISH E420024L04D ²¹	$\frac{1}{100} \frac{1}{100} \frac{1}$	INA NA	IN/A NTA	PROMOTER
chr5 9.2E+07	9.2E+07 ox2_bound:50	E450054L04K1K	INIVI_UT1816	INA	INA	PROMOTER
chr5 9.2E+07	$9.2E+01 + 0.0X_{0} = 0.000000000000000000000000000000000$	Nup54	INIVI_183392	INA	INA	PROMUTER
cnr5 9.2E+07	9.2E+07 ox2_bound:51	Scarb2	NM_007644	NA	NA NA 015755	INSIDE
chr5 9.3E+07	9.3E+0/ lox2_bound:51	4932413O14Rik	NM_17230	Shrm	NM_015756	DIVERGENT
chr5 9.3E+07	9.3E+0/ lox2_bound:51	4932413O14Rik	NM_177230	Shrm	NM_015756	DIVERGENT
chr5 9.3E+07	9.3E+07 ox2_bound:51	Sept11	NM_001009818	NA NA	NA	INSIDE
chr5 9.3E+07	9.3E+07 ox2_bound:51	Ccni	NM_017367	NA	NA	PROMOTER

chr5 9.3E+07	9.3E+07	ox2_bound:51	Ccng2	NM_007635	NA	NA	INSIDE
chr5 9.7E+07	9.7E+07	ox2_bound:51	Fgf5	NM_010203	NA	NA	INSIDE
chr5 9.9E+07	9.9E+07	ox2_bound:51	2310057D15Rik	NM_026421	NA	NA	INSIDE
chr5 1E+08	1E+08	ox2_bound:51	Mrps18c	NM_026826	NA	NA	PROMOTER
chr5 1E+08	1E+08	ox2_bound:51	Arhgap24	NM_029270	NA	NA	PROMOTER
chr5 1E+08	1E+08	ox2_bound:52	Dhrs8	NM_053262	NA	NA	PROMOTER
chr5 1E+08	1E+08	ox2_bound:52	Spp1	NM_009263	NA	NA	PROMOTER
chr5 1E+08	1E+08	ox2_bound:52	Lrrc8c	NM_133897	NA	NA	PROMOTER
chr5 1.1E+08	1.1E+08	ox2_bound:52	Tgfbr3	NM_011578	NA	NA	INSIDE
chr5 1.1E+08	1.1E+08	ox2_bound:52	Mtf2	NM_013827	NA	NA	PROMOTER
chr5 1.1E+08	1.1E+08	ox2_bound:52	Dgkq	NM_199011	Idua	NM_008325	DIVERGENT
chr5 1.1E+08	1.1E+08	ox2_bound:52	D5Ertd585e	NM_027922	NA	NA	PROMOTER
chr5 1.1E+08	1.1E+08	ox2_bound:52	D5Ertd585e	NM_027922	NA	NA	PROMOTER
chr5 1.1E+08	1.1E+08	ox2_bound:52	Ulk1	NM_009469	NA	NA	INSIDE
chr5 1.1E+08	1.1E+08	lox2_bound:52	E130006D01Rik	NM_207252	NA	NA	INSIDE
chr5 1.2E+08	1.2E+08	ox2_bound:53	Ccdc60	NM_177759	NA	NA	PROMOTER
chr5 1.2E+08	1.2E+08	ox2_bound:53	1500001A10Rik	NM_026886	NA	NA	PROMOTER
chr5 1.2E+08	1.2E+08	ox2_bound:53	BC023744	NM_001033311	NA	NA	PROMOTER
chr5 1.2E+08	1.2E+08	ox2_bound:53	Wsb2	NM_021539	NA	NA	PROMOTER
chr5 1.2E+08	1.2E+08	ox2_bound:53	Tbx3	NM_011535	NA	NA	INSIDE
chr5 1.2E+08	1.2E+08	ox2_bound:53	Anape7	NM_019805	NA	NA	PROMOTER
chr5 1.2E+08	1.2E+08	ox2_bound:53	Anapc5	NM_021505	NA	NA	PROMOTER
chr5 1.2E+08	1.2E+08	ox2_bound:53	FbxII0	NM_001003953	NA	NA	PROMOTER
chr5 1.2E+08	1.2E+08	ox2_bound:53	Rhot	NM_175092	NA	NA	PROMOTER
chr5 1.2E+08	1.2E+08	ox2_bound:53	MIxip	NM_1//582	NA	NA	PROMOTER
cnr5 1.2E+08	1.2E+08	ox2_bound:54		NM_02/494	NA	NA	PROMOTER
cnr5 1.2E+08	1.2E+08	ox2_bound:54	1500011J00KIK	NM_001005523	INA NA	NA NA	PROMUTER
$chr_{5} = 1.2E + 08$	1.2E+08 1.2E+08	ox2_bound:54	0550548G22KIK	NM_029552	NA NA	INA NA	INSIDE
chi = 1.2E + 08	1.2E+00 1.3E+00	ox2_bound:54	Fzd10	NM_011424 NM_175284	NA NA	NA	DPOMOTEP
chr5 1.3E+08	1.3E+08	lox2_bound:54	Ctf2i	NM_010365	NA NA	NA	INSIDE
chr5 1.3E+08	1.3E+00	ox2_bound:54	Cldn4	NM_000003	NA NA	NA	INSIDE
chr5 1 $3E\pm08$	1.3E+08	$\log 2$ bound:54	Baz1h	NM_011714	NΔ	NΔ	PROMOTER
chr5 1 $3E+08$	1.3E+0.00	$\log 2$ bound:54	Rhbdd2	NM 146002	NA	NA	PROMOTER
chr5 1.3E+08	1.3E+08	lox2_bound:54	Rhbdd2	NM 146002	NA	NA	PROMOTER
chr5 1.3E+08	1.3E+08	lox2_bound:55	Usmg1	NM_031398	NA	NA	INSIDE
chr5 1.3E+08	1.3E+08	lox2 bound:55	Ywhag	NM 018871	NA	NA	PROMOTER
chr5 1.4E+08	1.4E+08	lox2 bound:55	Ars2	NM 031405	NA	NA	INSIDE
chr5 1.4E+08	1.4E+08	ox2 bound:55	Ephb4	NM 010144	NA	NA	INSIDE
chr5 1.4E+08	1.4E+08	ox2 bound:55	Actl6b	NM 031404	NA	NA	PROMOTER
chr5 1.4E+08	1.4E+08	ox2_bound:55	Bcdin3	NM_144913	Zcwpw1	JM_00100542	DIVERGENT
chr5 1.4E+08	1.4E+08	ox2_bound:55	Zipro1	NM_011757	NĂ	NA	INSIDE
chr5 1.4E+08	1.4E+08	ox2_bound:55	Zfp113	NM_019747	Cops6	NM_012002	DIVERGENT
chr5 1.4E+08	1.4E+08	ox2_bound:55	Ap4m1	NM_021392	NA	NA	INSIDE
chr5 1.4E+08	1.4E+08	ox2_bound:55	Pdgfa	NM_008808	NA	NA	PROMOTER
chr5 1.4E+08	1.4E+08	ox2_bound:56	Uncx4.1	NM_013702	NA	NA	PROMOTER
chr5 1.4E+08	1.4E+08	ox2_bound:56	Zfp469	NM_178242	NA	NA	PROMOTER
chr5 1.4E+08	1.4E+08	ox2_bound:56	Nptx2	NM_016789	NA	NA	PROMOTER
chr5 1.4E+08	1.4E+08	ox2_bound:56	Atp5j2	NM_020582	NA	NA	PROMOTER
chr5 1.5E+08	1.5E+08	ox2_bound:56	Wasf3	NM_145155	NA	NA	INSIDE
chr5 1.5E+08	1.5E+08	ox2_bound:56	Gsh1	NM_008178	NA	NA	PROMOTER
chr5 1.5E+08	1.5E+08	ox2_bound:56	Cdx2	NM_007673	NA	NA	INSIDE
chr5 1.5E+08	1.5E+08	ox2_bound:56	Cdx2	NM_007673	NA	NA	INSIDE
chr5 1.5E+08	1.5E+08	ox2_bound:56	1200006F02Rik	NM_027872	NA	NA	INSIDE
chr5 1.5E+08	1.5E+08	ox2_bound:56	Ub13	NM_011908	NA	NA	INSIDE
chr6 3450583	3451240	ox2_bound:57	1700034M03Rik	NM_024260	NA	NA	INSIDE
chr6 4039057	4040037	ox2_bound:57	Bet1	NM_009748	NA	NA	PROMOTER
chr6 5333718	5334218	ox2_bound:57	Asb4	NM_023048	NA	NA	PROMOTER
chr6 6833226	6834122	ox2_bound:57	Dlx5	NM_010056	NA	NA	INSIDE
chr6 7646962	7647708	ox2_bound:57	Asns	NM_012055	NA	NA	PROMOTER
chr6 1.4E+07	1.4E+07	ox2_bound:57	B630005N14Rik	NM_175312	NA	NA	PROMOTER
chrt 1.4E+07	1.4E+07	ox2_bound:57	2610001J05Rik	NM_183258	NA	NA	INSIDE
chrt 2.6E+07	2.6E+07	ox2_bound:57	Gpr37	NM_010338	NA	NA	INSIDE
chr6 2.9E+07	2.9E+07	ox2_bound:57	mmu-mir-129-1	mmu-mir-129-1	NA	NA	PROMOTER
cnrc 2.9E+07	2.9E+07	ox2 bound:57	mmu-mir-129-1	mmu-mir-129-1	NA	NA	PROMOTER

chr6 2.9E+07	2.9E+07 ox2_	bound:58	mmu-mir-129-1	mmu-mir-129-1	NA	NA	PROMOTER
chr6 3E+07	3E+07 ox2_	bound:58	2700094F01Rik	NM_178625	700025E21Ril	NM_029373	DIVERGENT
chr6 3.8E+07	3.8E+07 ox2_	bound:58	Trim24	NM_145076	NA	NA	INSIDE
chr6 3.8E+07	3.8E+07 ox2_	bound:58	Zc3hav1	NM_028864	NA	NA	PROMOTER
chr6 3.8E+07	3.8E+07 ox2_	bound:58	Zc3hav1	NM_028864	NA	NA	PROMOTER
chr6 3.8E+07	3.8E+07 ox2_	bound:58	Ttc26	NM_153600	NA	NA	PROMOTER
chr6 3.8E+07	3.8E+07 ox2_	bound:58	1110001J03Rik	NM_025363	NA	NA	PROMOTER
chr6 3.9E+07	3.9E+07 ox2_	bound:58	Mkrn1	NM_018810	NA	NA	PROMOTER
chr6 4.7E+07	4.7E+07 ox2_	bound:58	Cntnap2	NM_025771	NA	NA	PROMOTER
chr6 4.9E+07	4.9E+07 ox2_	bound:58	Gimap9	NM_174960	NA	NA	INSIDE
chr6 4.9E+07	4.9E+07 ox2_	bound:59	Igf2bp3	NM_023670	NA	NA	PROMOTER
chr6 4.9E+07	4.9E+07 ox2_	bound:59	Igf2bp3	NM_023670	NA	NA	PROMOTER
chr6 5E+07	5E+07 ox2_	bound:59	Npy	NM_023456	NA	NA	PROMOTER
chr6 5.1E+07	5.1E+07 ox2	bound:59	Hnrpa2b1	NM 016806	NA	NA	INSIDE
chr6 5.2E+07	5.2E+07 ox2	bound:59	Scap2	NM_018773	NA	NA	PROMOTER
chr6 5.2E+07	5.2E+07 ox2	bound:59	Hoxa2	NM 010451	730596B20Ri	NA	INSIDE
chr6 5.2E+07	5.2E+07 ox2	bound:59	Hoxa2	NM 010451	NA	NM 175261	DIVERGENT
chr6 5.2E+07	5.2E+07 ox2	bound:59	5730596B20Rik	NM 175261	NA	NA	PROMOTER
chr6 5.2E+07	5.2E+07 ox2	bound:59	Hoxa9	NM 010456	NA	NA	PROMOTER
chr6 5.2E+07	5.2E+07 ox2	bound:59	Hoxa10	NM 008263	NA	NA	INSIDE
chr6 5.2E+07	5.2E+07 ox2	bound:60	Hoxa10	NM 008263	NA	NA	PROMOTER
chr6 5.2E+07	5.2E+07 ox2	bound:60	Hoxa11	NM 010450	NA	NA	PROMOTER
chr6 5.2E+07	5.2E+07 ox2	bound:60	Hoxa11	NM 010450	NA	NA	PROMOTER
chrf $5.2E+07$	5.2E+07 lox2	bound:60	Hoxa11	NM 010450	NA	NA	PROMOTER
chr6 5 $2E+07$	5.2E+07 lox2	bound:60	Hoxa11	NM 010450	NA	NA	PROMOTER
chr6 5 $2E+07$	5.2E+07 lox2	bound:60	Fvx1	NM_007966	NA	NA	PROMOTER
chr6 5 $2E+07$	5.2E+07 lox2	bound:60	Evx1	NM_007966	NΔ	NΔ	INSIDE
chr6 7 $1E\pm07$	7.1E+07 lox2	bound:60	Eval Fabri	NM 017399	NΔ	NΔ	PROMOTER
chr6 7 $1E+07$	7.1E+07 lox2	bound:60	Smvd1	NM_009762	Δ Δ 792894	NM 145568	DIVERGENT
chr6 7 $2E+07$	$7.1E+07 + 0x2_$	bound:60	Imid1a	NM 173001	NA	NA	PROMOTER
chr6 7 3E+07	7.2E+07 ox2	bound:61	Tof3	NM 000332	NA	NA	INSIDE
chr6 7 $3E+07$	7.3E+07 lox2	bound:61	BC043330	BC043330	NA	NA	Unknown
chire $7.3E+07$	$7.3E+07.0X2_$	bound:61	BC043330	BC043330	NA	NA	Unknown
chr6 7 8E+07	$7.5E+07$ lox2_	bound:61	DC043330	NM 011260	NA	NA	INSIDE
chire $8.3E \pm 0.7$	$7.8E \pm 07$ ox2	bound:61	LUI22	NM_013820	NA	NA	INSIDE
chr6 8 $6E+07$	8.5E+07 lox2	bound:61	Figle	NM_012013	NA	NA	DOWNSTREAM
chr6 8 8E \pm 07	$8.0E \pm 07$ ox2	bound:61	8/30/10/17Pjb	NM 173737	NA	NA	PROMOTER
chirt $0.3E+07$	$0.8E \pm 07$ $0.0X2_$	bound:61	C130022K22Dil	NM 172730	NA	NA	PROMOTER
chit(9.2E+07)	$9.2E \pm 07$ lox2	bound 61	C130022K22KIK Trh	NM_000426	NA	NA	PROMOTER
chir($9.2E+07$	$9.2E \pm 07$ $\log 2$	bound:61	Trb	NM_000426	NA	NA	PROMOTER
chi (9.2E+07)	$9.2E+07$ $0.0X2_$	bound 62	1111 9/20/17 A 20D ile	NM_175200	INA NA	INA NA	PROMOTER
chit 9.3E+07	$9.3E+07.0X2_$	bound 62	045041/A20KIK	NM_175209	INA Arl6in5	NA 022002	DIVERGENT
chird $9.7E+07$	$9.7E+07$ ox2_	bound:62	Ubelc	NM_011666	Arl6in5	NM 022092	DIVERGENT
chi (9.7E+07)	$9.7E+07.0X2_$	bound.62.	CDETC SMUST00000000	MUST000008	Anoip5	NINI_022992	Unknown
2 + 07	9.9E+07.0X2	bound 62	Bubs	NM 010743	NA NA	INA NA	INSIDE
child 11 ± 08	$11E+08 + 0X2_$	bound:62	Ky0p Sotd5	NM 028385	NA	NA	DDOMOTED
child $1.1E+08$	1.1E+00.0X2	bound 62	Selus	NM 179703	INA NA	INA NA	INSIDE
chit 1.1E+08	$1.1E \pm 00 \text{ ox}2$	bound.62	Sicoal Time 4	NM_020620	INA NA	INA NA	DDOMOTED
chi (1.2E+08)	1.2E+00.0X2	bound 62	I IIIIp4 Dp12	NM 172086	INA Super1	NA	PROMOTER
chirc $1.2E+08$	$1.2E+08$ 0X2_	bound 62	Rp15	NM_1/2080	Syngri	INA NA	PROMUTER
chirc $1.2E+08$	$1.2E+08$ 0X2_	bound 62	A dimon2	NM_198005	INA NA	INA NA	INSIDE
chirc $1.2E+08$	$1.2E+08$ 0X2_	bound 62	Adipor2	NM_197985	INA NA	INA NA	PROMOTER
chirc $1.2E+08$	$1.2E+08 + 0X2_$	bound:05	Adiporz W-1-1	NM_197983	INA NA	INA	PROMOTER
chrc $1.2E+08$	$1.2E+08$ ox2_	bound:03	W fik I	NM_198703	NA NA	NA	PROMOTER
chrc $1.2E+08$	$1.2E+08$ ox2_	bound:03	Mopr Db - 1	NM_010749	NA NA	NA	PROMOTER
cnrc 1.2E+08	1.2E+08 ox2_	bound:03	PhCI	NM_007905	NA	NA	PROMOTER
chr6 1.2E+08	1.2E+08 ox2_	bound:63	Gdf3	NM_008108	NA	NA	INSIDE
cnrc 1.2E+08	1.2E+08 [0X2]	bound:63	Gai3	NM_120210	INA NA	INA NA	INSIDE
cnrc 1.2E+08	1.2E+08 lox2_	bound:63	Dppa3	NM_139218	NA	NA	PROMOTER
cnrt 1.2E+08	1.2E+08 lox2_	bound:63	SIc2a3	NM_011401	NA	NA	PROMOTER
chrt 1.2E+08	1.2E+08 lox2_	bound:63	mmu-mir-141	mmu-mir-141	NA	NA	INSIDE
cnrc 1.2E+08	1.2E+08 lox2_	pound:64	Gree 10	NM_013535	NA	NA	INSIDE
cnrt 1.2E+08	1.2E+08 lox2_	bound:64	Usp5	NM_013700	NA	NA	INSIDE
chrt 1.3E+08	- ALLINY AT				NIA	NIA	INTERNAL AND
1 / 1 0 0 0 0 0	1.3E+08 0X2_	bound:64	Ing4	NM_133345	INA NA	NA NA	INSIDE
chr6 1.3E+08	1.3E+08 lox2_ 1.3E+08 lox2_	bound:64	LOC14433	NM_133345 NM_008084	NA	NA	INSIDE

chr6 1.3E+08	1.3E+08 ox2_bound:64	Ndufa9	NM_025358	Akap3	NM_009650	DIVERGENT
chr6 1.3E+08	1.3E+08 ox2_bound:64	Rad51ap1	NM_009013	D6Wsu163e	NM_138594	DIVERGENT
chr6 1.3E+08	1.3E+08 ox2_bound:64	Prmt8	NM_201371	NA	NA	PROMOTER
chr6 1.3E+08	1.3E+08 ox2_bound:64	Tspan9	NM_175414	NA	NA	INSIDE
chr6 1.3E+08	1.3E+08 ox2_bound:64	Etv6	NM_007961	NA	NA	PROMOTER
chr6 1.3E+08	1.3E+08 ox2_bound:65	Gpr19	NM_008157	NA	NA	PROMOTER
chr6 1.3E+08	1.3E+08 ox2_bound:65	Gpr19	NM_008157	NA	NA	PROMOTER
chr6 1.3E+08	1.3E+08 ox2_bound:65	Cdkn1b	NM_009875	NA	NA	PROMOTER
chr6 1.4E+08	1.4E+08 ox2_bound:65	Gprc5a	NM_181444	NA	NA	PROMOTER
chr6 1.4E+08	1.4E+08 ox2_bound:65	8430419L09Rik	NM_028982	NA	NA	PROMOTER
chr6 1.4E+08	1.4E+08 ox2_bound:65	Atf7ip	NM_019426	NA	NA	PROMOTER
chr6 1.4E+08	1.4E+08 ox2_bound:65	Pde6h	NM_023898	NA	NA	INSIDE
chr6 1.4E+08	1.4E+08 ox2_bound:65	Rerg	NM_181988	NA	NA	INSIDE
chr6 1.4E+08	1.4E+08 ox2_bound:65	BC027061	NM_183165	NA	NA	INSIDE
chr6 1.4E+08	1.4E+08 ox2_bound:65	Ldhb	NM_008492	NA	NA	INSIDE
chr6 1.4E+08	1.4E+08 ox2_bound:66	Ldhb	NM_008492	NA	NA	PROMOTER
chr6 1.4E+08	1.4E+08 ox2_bound:66	Ldhb	NM_008492	NA	NA	PROMOTER
chr6 1.4E+08	1.4E+08 ox2_bound:66	Kcnj8	NM_008428	NA	NA	PROMOTER
chr6 1.4E+08	1.4E+08 ox2_bound:66	Cmas	NM_009908	NA	NA	PROMOTER
chr6 1.4E+08	1.4E+08 ox2_bound:66	St8sial	NM_011374	NA	NA	INSIDE
chré $1.4E+08$	1.4E+08 ox2_bound:66	St8sial	NM_0113/4	NA	NA	PROMOTER
chr6 1.5E+08	1.5E+08 ox2_bound:66	Bcat1	NM_001024468	NA	NA	PROMOTER
chr6 1.5E+08	1.5E+08 ox2_bound:66	Lrmp	NM_008511	NA	NA	PROMOTER
chre $1.5E+08$	1.5E+08 ox2_bound:66	4930469P12R1K	NM_133688	NA	NA	INSIDE
chref $1.5E+08$	1.5E+08 ox2_bound:66	1 era	NM_019643	NA	NA	PROMOTER
chrc 1.5E+08	1.5E+08 ox2_bound:0/	28104/4019Kik	NM_026054	NA NA	NA NA	INSIDE
chr7 3290007	3290307 0X2_00ulld:07	Leng I Brs0	NM_027203	NA NA	NA NA	PROMUTER
chr7 3320734	3527792 OX2_DOUIId:07	Kps9 Cda42an5	NM_021454	NA NA	NA NA	INSIDE
chi7 3/122/7	3/12921 0x2_00ulld.0/	6030420C01Bik	NM 001033548	NA	NA NA	PROMOTER
chr7 4326084	4110108/0x2_00uld.07	Cov6h2	NM 183406	NA	NA	INSIDE
chr7 4520084	4520774 lox2_bound:07	Eiz1	NM_011813	ThA Zfn524	NM 025224	DIVEDGENT
chr7 6287731	6288231 lox2 bound:67	Pag3	NM 001010988	NA	NA	INSIDE
chr7 6290903	6291681 lox2 bound:67	Len29	NM 021323	NA	NΔ	INSIDE
chr7 9149609	9150109 lox2 bound:67	7ik1	NM 009577	NA	NA	PROMOTER
chr7 1 2E+07	1.2E+07 lox2 bound:68	Zfp499	NM 001024699	Trim28	NA	INSIDE
chr7 1.2E+07	$1.2E+07$ ox2_bound:68	Zfp499	NM 001024699	Trim28	NM 011588	DIVERGENT
chr7 1.2E+07	$1.2E+07$ ox2_bound:68	Trim28	NM 011588	NA	NA	PROMOTER
chr7 1.2E+07	1.2E+07 ox2 bound:68	Zfp98	NM 145819	NA	NA	PROMOTER
chr7 1.5E+07	1.5E+07 ox2 bound:68	Slc1a5	NM 009201	NA	NA	PROMOTER
chr7 1.7E+07	1.7E+07 ox2 bound:68	Bloc1s3	NM 177692	Тгаррсба	NM 025960	DIVERGENT
chr7 1.7E+07	1.7E+07 ox2_bound:68	Gemin7	NM_027189	Zfp296	NM_022409	DIVERGENT
chr7 1.7E+07	1.7E+07 ox2_bound:68	Clptm1	NM_019649	NA	NA	PROMOTER
chr7 1.7E+07	1.7E+07 ox2_bound:68	Apoe	NM_009696	NA	NA	PROMOTER
chr7 2.1E+07	2.1E+07 ox2_bound:68	Zfp93	NM_009567	NA	NA	PROMOTER
chr7 2.1E+07	2.1E+07 ox2_bound:69	2410005H09Rik	NM_146183	NA	NA	PROMOTER
chr7 2.1E+07	2.1E+07 ox2_bound:69	2410005H09Rik	NM_146183	NA	NA	PROMOTER
chr7 2.2E+07	2.2E+07 ox2_bound:69	Rps19	NM_023133	NA	NA	PROMOTER
chr7 2.2E+07	2.2E+07 ox2_bound:69	Rps19	NM_023133	NA	NA	PROMOTER
chr7 2.2E+07	2.2E+07 ox2_bound:69	Gsk3a	NM_001031667	NA	NA	PROMOTER
chr7 2.3E+07	2.3E+07 ox2_bound:69	Hnrpul1	NM_144922	NA	NA	PROMOTER
chr7 2.4E+07	2.4E+07 ox2_bound:69	Mia1	NM_019394	NA	NA	INSIDE
chr7 2.5E+07	2.5E+07 ox2_bound:69	BC089491	NM_175033	NA	NA	INSIDE
chr7 2.5E+07	2.5E+07 ox2_bound:69	Samd4b	NM_175021	Gmfg	NM_022024	DIVERGENT
chr7 2.6E+07	2.6E+07 ox2_bound:69	Fbxo27	NM_207238	NA	NA	PROMOTER
chr7 2.6E+07	2.6E+07 ox2_bound:70	Hnrpl	NM_177301	NA	NA	PROMOTER
chr7 2.6E+07	2.6E+07 ox2_bound:70	Neud4	NM_013874	NA	NA	INSIDE
chr7 2.7E+07	2.7E+07 ox2_bound:70	Zfp27	NM_001037707	NA	NA	INSIDE
chr7 2.7E+07	2.7E+07 ox2_bound:70	Zfp27	NM_011754	NA	NA	PROMOTER
chr7 2.7E+07	2.7E+07 ox2_bound:70	Zfp27	NM_011754	NA	NA	PROMOTER
chr7 2.7E+07	2.7E+07 lox2_bound:70	Zfp146	NM_011980	NA	M_00103354	DIVERGENT
chr7 2.7E+07	2./E+07 ox2_bound:70	Capns1	NM_009795	NA	NA	PROMOTER
chr/ 2.7E+07	2./E+0/ lox2_bound:70	Prodh2	NM_019546	NA	NA	PROMOTER
chr/ 2.7E+07	2./E+0/ lox2_bound:70	Prodh2	NM_019546	NA	NA	PROMOTER
chr/2.8E+07	2.8E+0/ Sox2_bound:70	Lsr	NM_017405	NA	NA	INSIDE

chr7 3.2E+07	3.2E+07	ox2_bound:71	Rhpn2	NM_027897	NA	NA	PROMOTER
chr7 3.2E+07	3.2E+07	ox2_bound:71	Rhpn2	NM_027897	NA	NA	INSIDE
chr7 3.5E+07	3.5E+07	ox2_bound:71	C80913	NM_011274	NA	NA	PROMOTER
chr7 4E+07	4E+07	ox2_bound:71	BC043301	NM_001008549	NA	NA	PROMOTER
chr7 4E+07	4E+07	ox2_bound:71	4933405K07Rik	NM_028913	NA	NA	PROMOTER
chr7 4E+07	4E+07	ox2_bound:71	4933405K07Rik	NM_028913	NA	NA	INSIDE
chr7 4.1E+07	4.1E+07	ox2_bound:71	Napsa	NM_008437	NA	NA	PROMOTER
chr7 4.1E+07	4.1E+07	ox2_bound:71	Med25	NM_029365	NA	NA	PROMOTER
chr7 4.1E+07	4.1E+07	ox2_bound:71	Prrg2	NM_022999	Nosip	NM_025533	DIVERGENT
chr7 4.1E+07	4.1E+07	ox2_bound:71	Rps11	NM_013725	NA	NA	PROMOTER
chr7 4.1E+07	4.1E+07	ox2_bound:72	Nop17	NM_029406	NA	NA	PROMOTER
chr7 4.1E+07	4.1E+07	lox2_bound:72	Cd37	NM_007645	NA	NA	PROMOTER
chr7 4.2E+07	4.2E+07	ox2_bound:72	Snrp70	NM_009224	NA	NA	PROMOTER
chr7 4.2E+07	4.2E+07	ox2 bound:72	Ft11	NM 010240	NA	NA	PROMOTER
chr7 4.2E+07	4.2E+07	ox2 bound:72	Dhrs10	NM 025330	NA	NA	PROMOTER
chr7 4.2E+07	4.2E+07	lox2 bound:72	Bcat2	NM_009737	NA	NA	PROMOTER
chr7 4.2E+07	4.2E+07	lox2 bound:72	Car11	NM_009800	NA	NA	INSIDE
chr7 4 2E+07	4 2E+07	$\log 2$ bound 72	Pscd2	NM_011181	NA	NA	PROMOTER
chr7 4 2E+07	4 2E+07	lox2_bound:72	Tmem143	NM 144801	NA	NA	INSIDE
chr7 4 2E+07	4 2E+07	$\log 2$ bound 72	Emp3	NM_010129	BC013491	JM 00103324	DIVERGENT
chr7 4 6E+07	4.6E+07	lox2_bound:72	Dby1	NM 001005232	NA	NA	INSIDE
chr7 5 6E+07	5.6E+07	lox2_bound:73	Snurf	NM 033174	NA	NA	INSIDE
chr7 5.6E+07	5.6E+07	lox2_bound:73	Snurf	NM_033174	NΔ	NΔ	PROMOTER
chr7 5.6E+07	5.6E+07	$\log 2$ bound:73	Snurf	NM_033174	NA	NA	PROMOTER
chr7 6 0E+07	5.0E+07	lox2_bound:73	Pama	NM 177740	NA	NA	INSIDE
chi 7 0.9E+07	0.9E+07	lox2_bound:73	Rgilla Dibn1	NM_020500	NA PC025462	INA NM 145046	DIVERCENT
chi / 7.5E+07	7.5E+07	lox2_bound.75	5720500C10D31	NM 020825	DC023402	NWI_143940	DIVERGENT
chr7 7.0E+07	7.0E+07	ox2_bound:73	3/30390019Kik	NM_029855	INA NA	INA NA	DDOMOTED
chr7 7.7E+07	7.7E+07	ox2_bound:73	Zscanz Dda9a	NM_009902	INA NA	INA NA	PROMOTER
chr7 7.7E+07	7.7E+07	ox2_bound:73	Puesa	NM_008803	INA NA	INA NA	PROMOTER
CHI7 7.7E+07	7.7E+07	0x2_bound:75	Puesa	NM_008803	INA	INA	PROMUTER
chr//./E+0/	/./E+0/	ox2_bound:74	Kps1/	NM_009092	NA	NA NM 022402	DUWINSTREAM
chr/8E+0/	8E+07	ox2_bound:74	Mesdel	NM_030705	Mesdc2	NM_023403	DIVERGENT
cnr/8E+0/	8E+07	$ox2_bound:74$	Mesac2	NM_023403	NA	NA	INSIDE
cnr/8.3E+0/	8.3E+07	$ox2_bound:74$	Tyr D 120	NM_011661	NA	INA	PROMOTER
chr/8.4E+0/	8.4E+07	ox2_bound:74	Rab 38	NM_028238	NA	NA	PROMOTER
chr/8.5E+0/	8.5E+07	ox2_bound:74	1 mem 135	NM_028343	NA	NA	PROMOTER
chr/ 8.5E+0/	8.5E+07	ox2_bound:74	FZd4	NM_008055	NA	NA	INSIDE
chr/ 8.9E+0/	8.9E+07	ox2_bound:/4	2310015N0/Rik	NM_025515	NA	NA	PROMOTER
chr/ 8.9E+0/	8.9E+07	ox2_bound:74	Rab30	NM_029494	NA	NA	PROMOTER
chr7 8.9E+07	8.9E+07	ox2_bound:74	Rab30	NM_029494	NA	NA	INSIDE
chr7 8.9E+07	8.9E+07	ox2_bound:75	Prcp	NM_028243	NA	NA	PROMOTER
chr7 8.9E+07	8.9E+07	ox2_bound:75	Prcp	NM_028243	NA	NA	INSIDE
chr7 9.2E+07	9.2E+07	ox2_bound:75	Timd4	NM_178759	NA	NA	PROMOTER
chr7 9.3E+07	9.3E+07	ox2_bound:75	Alg8	NM_199035	NA	NA	INSIDE
chr7 9.4E+07	9.4E+07	ox2_bound:75	1810020D17Rik	NM_183251	NA	NA	PROMOTER
chr7 9.4E+07	9.4E+07	ox2_bound:75	Aqp11	NM_175105	NA	NA	PROMOTER
chr7 9.5E+07	9.5E+07	ox2_bound:75	SMUST0000086	8MUST000008	NA	NA	Unknown
chr7 9.5E+07	9.5E+07	ox2_bound:75	Wnt11	NM_009519	NA	NA	PROMOTER
chr7 9.5E+07	9.5E+07	ox2_bound:75	Serpinh1	NM_009825	NA	NA	INSIDE
chr7 9.6E+07	9.6E+07	ox2_bound:75	Pgm211	NM_027629	NA	NA	INSIDE
chr7 9.6E+07	9.6E+07	ox2_bound:76	Ppme1	NM_028292	NA	NA	INSIDE
chr7 1E+08	1E+08	ox2_bound:76	Prkcdbp	NM_028444	NA	NA	INSIDE
chr7 1E+08	1E+08	ox2_bound:76	Prkcdbp	NM_028444	NA	NA	INSIDE
chr7 1.1E+08	1.1E+08	ox2_bound:76	Zfp143	NM_009281	NA	NA	PROMOTER
chr7 1.1E+08	1.1E+08	ox2_bound:76	Calca	NM_001033954	NA	NA	PROMOTER
chr7 1.1E+08	1.1E+08	ox2_bound:76	Plekha7	NM_172743	NA	NA	INSIDE
chr7 1.1E+08	1.1E+08	ox2_bound:76	Rps15a	NM_170669	NA	NA	PROMOTER
chr7 1.1E+08	1.1E+08	ox2_bound:76	Coq7	NM_009940	NA	NA	INSIDE
chr7 1.1E+08	1.1E+08	ox2_bound:76	9030624J02Rik	NM_027815	NA	NA	PROMOTER
chr7 1.1E+08	1.1E+08	ox2_bound:76	Gprc5b	NM_022420	NA	NA	INSIDE
chr7 1.2E+08	1.2E+08	ox2_bound:77	4930404J24Rik	NM_029610	NA	NA	INSIDE
chr7 1.2E+08	1.2E+08	ox2_bound:77	4930404J24Rik	NM_029610	NA	NA	INSIDE
chr7 1.2E+08	1.2E+08	ox2_bound:77	Eef2k	NM_007908	NA	NA	INSIDE
chr7 1.2E+08	1.2E+08	ox2_bound:77	Polr3e	NM_025298	NA	NA	PROMOTER
chr7 1.2E+08	1.2E+08	ox2_bound:77	Polr3e	NM_025298	NA	NA	PROMOTER

chr7 1.2E+08	1.2E+08	ox2_bound:77	Cdr2	NM_007672	NA	NA	PROMOTER
chr7 1.2E+08	1.2E+08	ox2_bound:77	Prkcb1	NM_008855	NA	NA	DOWNSTREAM
chr7 1.2E+08	1.2E+08	ox2_bound:77	Slc5a11	NM_146198	NA	NA	PROMOTER
chr7 1.2E+08	1.2E+08	ox2_bound:77	Slc5a11	NM_146198	NA	NA	INSIDE
chr7 1.2E+08	1.2E+08	ox2_bound:77	2210013K02Rik	NM_023712	NA	NA	PROMOTER
chr7 1.2E+08	1.2E+08	ox2_bound:78	Sh2bpsm1	NM_011363	NA	NA	PROMOTER
chr7 1.2E+08	1.2E+08	ox2 bound:78	Ppp4c	NM 019674	NA	NA	PROMOTER
chr7 1.2E+08	1.2E+08	ox2 bound:78	Oprt	NM 133686	NA	NA	INSIDE
chr7 1.2E+08	1.2E+08	ox2 bound:78	Cd2bp2	NM 027353	NA	NA	PROMOTER
chr7 1 2E+08	1 2E+08	lox2 bound:78	Sept1	NM 017461	NA	NA	INSIDE
chr7 1 2E+08	1.2E+00 1.2E+08	lox2_bound:78	Zfn553	NM 146201	NA	NA	PROMOTER
chr7 1.2E+00	1.2E+00 1.2E+08	lox2_bound:78	Zfp535	NM 175163	NA	NA	PROMOTER
chr7 1.2E+08	1.2E+08	lox2_bound:78	Eby110	NM 172748	NA	NA	PROMOTER
$chi 7 1.2E \pm 08$	1.2E+00	lox2_bound.78	T-0A119	11/2/40	1NA 69204201401	NA 172740	DIVEDCENT
cnr/1.2E+08	1.2E+08	ox2_bound:78	Z1p008	NM_146259	0820429M01	NM_1/2/49	DIVERGENI
cnr/1.2E+08	1.2E+08	ox2_bound:78	PISS8	NM_155551	NA	NA	PROMOTER
chr/ 1.3E+08	1.3E+08	ox2_bound:/9	Brwd2	NM_1/2255	NA	NA	PROMOTER
chr/ 1.3E+08	1.3E+08	ox2_bound:/9	Fgfr2	NM_010207	NA	NA	INSIDE
chr7 1.3E+08	1.3E+08	ox2_bound:79	Plekhal	NM_133942	NA	NA	PROMOTER
chr7 1.3E+08	1.3E+08	ox2_bound:79	Ebf3	NM_010096	NA	NA	PROMOTER
chr7 1.4E+08	1.4E+08	ox2_bound:79	Ppp2r2d	NM_026391	NA	NA	INSIDE
chr7 1.4E+08	1.4E+08	ox2_bound:79	Dpysl4	NM_011993	NA	NA	PROMOTER
chr7 1.4E+08	1.4E+08	ox2_bound:79	Utf1	NM_009482	NA	NA	DOWNSTREAM
chr7 1.4E+08	1.4E+08	ox2_bound:79	Msx3	NM_010836	NA	NA	INSIDE
chr7 1.4E+08	1.4E+08	ox2_bound:79	Drd1ip	NM_026769	Prap1	NM_009475	DIVERGENT
chr7 1.4E+08	1.4E+08	ox2_bound:79	Ifitm2	NM_030694	Ifitm1	NM_026820	DIVERGENT
chr7 1.4E+08	1.4E+08	ox2_bound:80	Ifitm2	NM_030694	Ifitm1	NM_026820	DIVERGENT
chr7 1.4E+08	1.4E+08	ox2 bound:80	Ifitm2	NM 030694	Ifitm1	NM 026820	DIVERGENT
chr7 1.4E+08	1.4E+08	ox2 bound:80	Ifitm1	NM 026820	NA	NA	DOWNSTREAM
chr7 1.4E+08	1.4E+08	ox2 bound:80	Ifitm3	NM 025378	NA	NA	DOWNSTREAM
chr7 1.4E+08	1.4E+08	lox2_bound:80	Drd4	NM_007878	NA	NA	INSIDE
chr7 1 4F+08	1.4E+08	lox2 bound:80	Jof?	NM 010514	NA	NA	PROMOTER
chr7 1.4E+08	1.4E+00	lox2_bound:80	Mrapra	NM 203492	NΔ	NΔ	PROMOTER
chr7 1.4E+08	1.4E+00	lox2_bound:80	Faf4	NM_010202	NΔ	NΔ	PROMOTER
chr8 3308637	3300550	lox2_bound:80	Arbaef18	NM 133062	NA	NA	INSIDE
chr8 1 1E+07	1 1E+07	lox2_bound:80	Coldal	NM_000031	NA	NA	INSIDE
obr $9 1.2E \pm 0.7$	$1.1E \pm 07$	lox2_bound:80	Anlard10	NM 122071	NA	NA	DROMOTER
chire $1.2E+07$	$1.2E \pm 07$	lox2_bound.81	Alikiulu Tmaa2	NM 172282	INA NA	INA NA	INCIDE
cmre 1.5E+07	1.5E+07	$0x2_bound.81$	Deft-1	NM_172282	INA NA	INA	INSIDE
chr8 2.1E+07	2.1E+07	ox2_bound:81	Derb1	NM_007843	NA	NA	PROMOTER
chr8 2.6E+07	2.6E+07	ox2_bound:81	Gpr124	NM_054044	NA	NA	PROMOTER
chr8 2.6E+07	2.6E+07	ox2_bound:81	Got111	NM_029674	NA	NA	PROMOTER
chr8 2.6E+07	2.6E+07	ox2_bound:81	Adrb3	NM_013462	NA	NA	PROMOTER
chr8 3E+07	3E+07	ox2_bound:81	Rnf122	NM_175136	NA	NA	PROMOTER
chr8 3E+07	3E+07	ox2_bound:81	BC019943	NM_144927	NA	NA	PROMOTER
chr8 3E+07	3E+07	ox2_bound:81	BC019943	NM_144927	NA	NA	PROMOTER
chr8 3.4E+07	3.4E+07	ox2_bound:81	Dusp4	NM_176933	NA	NA	PROMOTER
chr8 3.4E+07	3.4E+07	ox2_bound:82	Dusp4	NM_176933	NA	NA	INSIDE
chr8 4.2E+07	4.2E+07	ox2_bound:82	Zfp42	NM_009556	NA	NA	INSIDE
chr8 4.2E+07	4.2E+07	ox2_bound:82	Zfp42	NM_009556	NA	NA	PROMOTER
chr8 4.4E+07	4.4E+07	ox2_bound:82	F11	NM_028066	NA	NA	PROMOTER
chr8 4.5E+07	4.5E+07	ox2_bound:82	Helt	NM_173789	NA	NA	PROMOTER
chr8 4.5E+07	4.5E+07	ox2 bound:82	Casp3	NM 009810	NA	NA	INSIDE
chr8 5.3E+07	5.3E+07	ox2 bound:82	Vegfc	NM_009506	NA	NA	PROMOTER
chr8 5.6E+07	5.6E+07	lox2_bound:82	Hand2	NM 010402	NA	NA	INSIDE
chr8 5.9E+07	5.9E+07	lox2 bound 82	BC042740	BC042740	NA	NA	Unknown
chr8 $6.3E\pm07$	$6.3E \pm 07$	lox2_bound:82	BC031142	BC031142	NΔ	NΔ	Unknown
chr8 $6.7E \pm 0.7$	67E-07	lox2_bound.82	Inte 10	NM 027500	NΛ	ΝA	PROMOTED
$chr8 6 0E \pm 07$	6.0E+07	$\log 2$ hound $\log 2$	Cana ²	NM 007790			DROMOTED
cmc 0.9E+07	0.9E+0/	$0x2_bound:83$	Cspg5	INIVI_001024022	INA	INA NM 021520	TRUMUTER
cnre 6.9E+0/	0.9E+0/	ox2_bound:83	Dax49	.NIVI_001024922	Cope	INIVI_021538	DIVERGENT
cnr8 6.9E+07	6.9E+07	ox2_bound:83	Екрр 8	NM_010223	NA	NA	PROMOTER
chr8 6.9E+07	6.9E+07	ox2_bound:83	Lsm4	NM_015816	NA	NA	INSIDE
chr8 7E+07	7E+07	ox2_bound:83	2010315L10Rik	NM_025917	NA	NA	PROMOTER
chr8 7E+07	7E+07	ox2_bound:83	Insl3	NM_013564	NA	NA	PROMOTER
chr8 7.1E+07	7.1E+07	ox2_bound:83	Tpm4	NM_001001491	NA	NA	INSIDE
chr8 7.1E+07	7.1E+07	ox2_bound:83	Klf2	NM_008452	NA	NA	PROMOTER
chr8 7.1E+07	7.1E+07	ox2_bound:83	Calr3	NM_028500	700030K09Ri	NM_028170	DIVERGENT

chr8 7.2E+07	7.2E+07 ox2_bound:84	Large	NM_010687	NA	NA	PROMOTER
chr8 7.4E+07	7.4E+07 ox2_bound:84	Hmox1	NM_010442	NA	NA	PROMOTER
chr8 7.7E+07	7.7E+07 ox2 bound:84	Pou4f2	NM 138944	NA	NA	INSIDE
chr8 7.7E+07	7.7E+07 lox ² bound:84	Pou4f2	NM 138944	NA	NA	PROMOTER
chr8 7 7E+07	7.7E+07 lox2 bound 84	2410193C02Rik	NM_001009980	NA	NA	INSIDE
chr8 7 7E+07	$7.7E+07$ lox2_bound:04	2410103C02Bik	NM_0010009900	NA	NA	INSIDE
child $7.7E\pm07$	7.0E+07 lox2_bound.84	2410195C02Kik	NM 020250	NA	INA NA	INSIDE
chr8 7.9E+07	7.9E+07 ox2_bound:84	Hnip	NM_020259	INA	NA	INSIDE
chr8 8.2E+07	8.2E+07 ox2_bound:84	Tbc1d9	NM_027758	NA	NA	PROMOTER
chr8 8.2E+07	8.2E+07 ox2_bound:84	Tbc1d9	NM_027758	NA	NA	PROMOTER
chr8 8.2E+07	8.2E+07 ox2_bound:84	Tbc1d9	NM_027758	NA	NA	PROMOTER
chr8 8.2E+07	8.2E+07 ox2_bound:85	Gipc1	NM_018771	NA	NA	PROMOTER
chr8 8.2E+07	8.2E+07 ox2_bound:85	Gipc1	NM_018771	NA	NA	INSIDE
chr8 8.3E+07	8.3E+07 ox2_bound:85	Ier2	NM_010499	NA	NA	INSIDE
chr8 8.4E+07	8.4E+07 ox2 bound:85	Prdx2	NM 011563	NA	NA	INSIDE
chr8 8 $4E+07$	8.4E+07 ox2 bound 85	Iunh	NM_008416	NA	NA	PROMOTER
chr8 8 $4E\pm07$	8.4E+07 lox2 bound:85	Tnpo2	NM 145390	NΔ	NΔ	PROMOTER
ohr9 8 4E+07	8.4E+07 lox2_bound:85	PC056474	NM 001001402	NA	NA	INSIDE
$c_{111} c_{0.4} = 0.4E \pm 0.7$	8.4E+07 0X2_bound.85	DC030474	NWI_001001493	NA	INA NA	DDOMOTED
chr8 8.6E+07	8.6E+07 ox2_bound:85	Coini	NM_019626	INA	NA	PROMOTER
chr8 8.8E+07	8.8E+07 ox2_bound:85	Sall1	NM_021390	NA	NA	PROMOTER
chr8 8.9E+07	8.9E+07 ox2_bound:85	Chd9	NM_177224	NA	NA	PROMOTER
chr8 9E+07	9E+07 ox2_bound:86	Irx3	NM_008393	NA	NA	PROMOTER
chr8 9.3E+07	9.3E+07 ox2_bound:86	Amfr	NM_011787	NA	NA	INSIDE
chr8 9.3E+07	9.3E+07 ox2_bound:86	Mt1	NM_013602	NA	NA	PROMOTER
chr8 9.3E+07	9.3E+07 ox2_bound:86	Cpne2	NM_153507	NA	NA	INSIDE
chr8 9.3E+07	9.3E+07 ox2 bound:86	Pllp	NM_026385	NA	NA	PROMOTER
chr8 9 4E + 07	9.4E+07 lox2 bound 86	Cede102a	NM 001033533	Gpr114	JM 00103346	DIVERGENT
chr8 9.4E \pm 07	9.4E+07 lox2 bound:86	Kife3	NM 010631	NA	ΝΔ	PROMOTER
ohr $9.4E+07$	0.4E + 07 + 0.002 bound: 80	Kife2	NM_010621	NA	NA	DROMOTER
cmc 9.4E+07	9.4E+07 $0.00000000000000000000000000000000000$	DC021952	NM 172759	NA	INA NA	PROMOTER
chr8 9.4E+07	9.4E+07 ox2_bound:86	BC051855	NM_1/2/58	INA	NA	PROMOTER
chr8 9.8E+07	9.8E+07 ox2_bound:86	Cdh8	NM_007667	NA	NA	INSIDE
chr8 1E+08	$1E+08$ ox2_bound:87	4931428F04Rik	NM_028888	NA	NA	PROMOTER
chr8 1E+08	1E+08 ox2_bound:87	Slc12a4	NM_009195	NA	NA	PROMOTER
chr8 1E+08	1E+08 ox2_bound:87	Smpd3	NM_021491	NA	NA	PROMOTER
chr8 1E+08	1E+08 ox2_bound:87	Smpd3	NM_021491	NA	NA	PROMOTER
chr8 1.1E+08	1.1E+08 ox2_bound:87	Zfp90	NM_011764	NA	NA	INSIDE
chr8 1.1E+08	1.1E+08 ox2_bound:87	6030452D12Rik	NM_177904	NA	NA	INSIDE
chr8 1.1E+08	1.1E+08 ox2 bound:87	Cdh3	NM 007665	NA	NA	PROMOTER
chr8 1.1E+08	1.1E+08 ox2 bound:87	Cdh1	NM_009864	NA	NA	PROMOTER
chr8 1 1 $E\pm 08$	1.1E+08 lox2 bound:87	Cdh1	NM_009864	NΔ	NΔ	INSIDE
$chr^{\circ} 1 1E + 08$	1.1E+08 + 0x2 = bound:87	Los 2	NM_008217	NA	NA	INSIDE
chirc $1.1E \pm 0.0$	1.1E+08 + 0.02 bound 87	Has3	NM_008217	NA	INA NA	INSIDE
	1.1E+08 0X2_bound.88	Паво	NM_008217	NA	INA NA	INSIDE
chr8 1.1E+08	1.1E+08 ox2_bound:88	Has3	NM_008217	NA	NA	INSIDE
chr8 1.1E+08	1.1E+08 ox2_bound:88	Sntb2	NM_009229	NA	NA	PROMOTER
chr8 1.1E+08	1.1E+08 ox2_bound:88	Nqo1	NM_008706	NA	NA	PROMOTER
chr8 1.1E+08	1.1E+08 ox2_bound:88	Dhx38	NM_178380	Txnl4b	NM_175646	DIVERGENT
chr8 1.1E+08	1.1E+08 ox2_bound:88	2400003C14Rik	NM_028018	NA	NA	INSIDE
chr8 1.1E+08	1.1E+08 ox2_bound:88	Zfp1	NM_001037665	NA	NA	INSIDE
chr8 1.1E+08	1.1E+08 ox2_bound:88	Wwox	NM_019573	NA	NA	PROMOTER
chr8 1.1E+08	1.1E+08 ox2 bound:88	Maf	NM 001025577	NA	NA	INSIDE
chr8 1.2E+08	1.2E+08 ox2 bound:88	Plcg2	NM 172285	NA	NA	PROMOTER
chr8 1 2E+08	1.2E+08 lox2 bound 89	Cdh13	NM 019707	NA	NA	INSIDE
chr8 1 $2E\pm08$	1.2E + 08 + 0.02 = 0.0000 + 0.00000 + 0.00000 + 0.0000000 + 0.00000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0	Gsel	NM 198671	NΔ	NΔ	PROMOTER
ohr% 1.2E+08	$1.2E+08$ lox2_bound.89	Cov4i1	NM_000041	NA	NA	INSIDE
chire $1.2E \pm 0.0$	1.2E + 08 + 082 - bound.89	Cox411	NM_000041	NA	INA NA	INSIDE
1.6 1.2E+08	1.2E+08 0X2_bound:89	C0X411	NM_009941	NA	NA NM 016012	INSIDE
chr8 1.2E+08	1.2E+08 ox2_bound:89	Carsa	NM_007608	Banp	NM_016812	DIVERGENT
chr8 1.2E+08	1.2E+08 ox2_bound:89	Spire2	NM_172287	NA	NA	INSIDE
chr8 1.2E+08	1.2E+08 ox2_bound:89	Tubb3	NM_023279	NA	NA	PROMOTER
chr8 1.2E+08	1.2E+08 ox2_bound:89	Tubb3	NM_023279	NA	NA	INSIDE
chr8 1.2E+08	1.2E+08 ox2_bound:89	Rab4a	NM_009003	NA	NA	INSIDE
chr8 1.2E+08	1.2E+08 ox2_bound:89	4933403G14Rik	NM_028908	NA	NA	PROMOTER
chr8 1.3E+08	1.3E+08 ox2_bound:90	2610044O15Rik	NM_153780	NA	NA	PROMOTER
chr9 4711313	4712169 ox2 bound:90	Gria4	NM 019691	NA	NA	INSIDE
chr9 1 4F+07	1.4E+07 lox2 bound 90	Sesn3	NM_030261	NA	NA	PROMOTER
chrq 1 $9E\pm07$	1.9E+07 lox2 bound:90	Zfp75	NM 172918	NΔ	NΔ	INSIDE
chrQ 2 1 $E\pm07$	$2.1E+07$ lox2_bound:90	Eda5	NM 010333	NΔ	NΔ	PROMOTEP
UII) 2.1ETU/	2.11100000	LugJ	14141_010333	1171	11/1	TROMOTER

chr9 2.1E+07	2.1E+07	ox2_bound:90	Tmed1	NM_010744	NA	NA	PROMOTER
chr9 2.5E+07	2.5E+07	ox2_bound:90	Tbx20	NM_020496	NA	NA	PROMOTER
chr9 2.5E+07	2.5E+07	ox2 bound:90	Tbx20	NM 020496	NA	NA	PROMOTER
chr9 2.7E+07	2.7E+07	lox2 bound:90	Acad8	NM_025862	Thyn1	NM 144543	DIVERGENT
$chr^{Q} = 3.2E \pm 0.7$	3.2E+07	lox2_bound:90	Fli1	NM_008026	NΔ	ΝΔ	PROMOTER
ohr0 2 7E+07	2.7E+07	lox2_bound.00	DC024470	NM 146222	NA	NA	DROMOTER
CIII9 5.7E+07	3./E+0/	0X2_bound:91	BC024479	INIVI_140222	INA	INA	PROMUTER
chr9 4.3E+07	4.3E+07	ox2_bound:91	1 mem 136	NM_001034863	NA	NA	INSIDE
chr9 4.3E+07	4.3E+07	ox2_bound:91	Pou2f3	NM_011139	NA	NA	PROMOTER
chr9 4.3E+07	4.3E+07	ox2_bound:91	D9Ucla1	NM_178644	NA	NA	PROMOTER
chr9 4.4E+07	4.4E+07	ox2_bound:91	Pvrl1	NM_021424	NA	NA	PROMOTER
chr9 4.4E+07	4.4E+07	ox2_bound:91	Tmem24	NM_027909	Dpagt1	NM_007875	DIVERGENT
chr9 4.4E+07	4.4E+07	ox2_bound:91	Dpagt1	NM_007875	NA	NA	INSIDE
chr9 4.5E+07	4.5E+07	ox2_bound:91	Atp51	NM_013795	NA	NA	PROMOTER
chr9 4.5E+07	4.5E+07	ox2_bound:91	Amica1	NM 001005421	NA	NA	PROMOTER
chr9 4 9F+07	4 9E+07	lox2 bound:91	Zw10	NM 012039	NA	NA	PROMOTER
chr0.4.0E+07	4.0E+07	lox2_bound:02	Zw10	NM_012030	NA	NA	DPOMOTER
chr0 5E+07	4.9L+07	lox2_bound.92	Zw10	NM 010975	INA NA	INA NA	NSIDE
CIII9 SE+07	SE+07	0X2_bound:92		NM_010873	INA	INA	INSIDE
chr9 5E+07	5E+07	ox2_bound:92	1600029D21R1K	NM_029639	NA	NA	INSIDE
chr9 5.1E+07	5.1E+07	lox2_bound:92	Dixdel	NM_178118	NA	NA	INSIDE
chr9 5.1E+07	5.1E+07	ox2_bound:92	Dixdc1	NM_178118	NA	NA	PROMOTER
chr9 5.5E+07	5.5E+07	ox2_bound:92	Acsbg1	NM_053178	NA	NA	PROMOTER
chr9 5.6E+07	5.6E+07	ox2_bound:92	C230081A13Rik	NM_172924	Hmg20a	NM_025812	DIVERGENT
chr9 6E+07	6E+07	ox2_bound:92	Pkm2	NM_011099	NA	NA	INSIDE
chr9 6E+07	6E+07	ox2 bound:92	Pkm2	NM 011099	NA	NA	INSIDE
chr9 6.1E+07	6.1E+07	ox2_bound:92	Tle3	NM_009389	NA	NA	PROMOTER
$chr^{9} 6 1E+07$	6 1E+07	lox2 bound:93	Tle3	NM_009389	NA	NA	PROMOTER
$chr^{0} = 6.2E \pm 07$	6.2E+07	lox2_bound:93	Ann329	NM_009672	NA	NA	PROMOTER
$cm = 0.2E \pm 0.7$	6.2E+07	lox2_bound.93	Anp32a	NM 010102	INA NA	INA NA	PROMOTER
$c_{11} = 0.5E + 07$	0.5E+07	0x2_bound.93		NM_010193	INA	INA	PROMOTER
chr9 6.3E+07	0.3E+07	ox2_bound:93	Lbxcori	NM_1/2446	NA	NA	INSIDE
chr9 6.4E+07	6.4E+07	ox2_bound:93	Snapc5	NM_183316	NA	NA	PROMOTER
chr9 6.4E+07	6.4E+07	ox2_bound:93	AV340375	NM_172519	NA	NA	INSIDE
chr9 6.6E+07	6.6E+07	ox2_bound:93	Plekhq1	NM_153119	AI449441	NM_172453	DIVERGENT
chr9 7E+07	7E+07	ox2_bound:93	Foxb1	NM_022378	NA	NA	INSIDE
chr9 7E+07	7E+07	ox2_bound:93	Foxb1	NM_022378	NA	NA	PROMOTER
chr9 7.3E+07	7.3E+07	ox2_bound:93	Nedd4	NM_010890	NA	NA	INSIDE
chr9 7.3E+07	7.3E+07	ox2_bound:94	BC003885	NM_198609	NA	NA	PROMOTER
chr9 7.5E+07	7.5E+07	ox2 bound:94	BC023444	BC023444	NA	NA	Unknown
chr9 7.5E+07	7.5E+07	ox2_bound:94	Gnb5	NM 010313	NA	NA	PROMOTER
$chr^{Q} 7 8E \pm 07$	7.8E±07	lox2 bound:94	Gsta4	NM_010357	NΔ	NΔ	PROMOTER
chr0 7 8E+07	7.8E+07	lox2_bound:04	Gsta4	NM_010357	NA	NA	DROMOTER
$cm = 7.8E \pm 07$	7.00+07	lox2_bound.94	Dana5	NIM_010557	INA NA	INA NA	PROMOTER
1 0 7 0E+07	7.0E+07	0X2_00ulld.94	Dppa3	NM_023274	INA	INA	PROMOTER
chr9 /.9E+0/	/.9E+0/	ox2_bound:94	Ca109	NM_153098	NA	NA	PROMOTER
chr9 8E+07	8E+07	ox2_bound:94	Coll2a1	NM_007730	NA	NA	INSIDE
chr9 8.9E+07	8.9E+07	ox2_bound:94	SMUST00000093	7MUST000009	NA	NA	Unknown
chr9 8.9E+07	8.9E+07	ox2_bound:94	SMUST00000093	7MUST000009	NA	NA	Unknown
chr9 9E+07	9E+07	ox2_bound:95	Rasgrf1	NM_001039655	NA	NA	PROMOTER
chr9 9E+07	9E+07	ox2_bound:95	Tbc1d2b	NM_194334	NA	NA	PROMOTER
chr9 9.2E+07	9.2E+07	ox2_bound:95	BC002017	BC002017	NA	NA	Unknown
chr9 9.4E+07	9.4E+07	ox2 bound:95	1190002N15Rik	NM 001033145	NA	NA	INSIDE
chr9 9.4E+07	9.4E+07	ox2 bound:95	Slc9a9	NM 177909	NA	NA	PROMOTER
chr9.94E+07	94E+07	lox2_bound:95	Slc9a9	NM 177909	NA	NA	INSIDE
$chr^{Q} = 9.6E \pm 0.7$	9.6E±07	lox2_bound:95	BC043934	NM 177770	NΔ	NΔ	INSIDE
ohr0.06E+07	0.6E+07	lox2_bound:05	7hth29	NM 175527	NA	NA	INSIDE
$cm = 9.0E \pm 07$	9.0E+07	lox2_bound.95	Z01038	NM 129756	INA NA	INA NA	DDOMOTED
chi 9.7E+U/	9./E+U/	$\log 2$ bound:95	51025850	NIM 000292	INA NTA	INA NA	PROMOTER
chr9 IE+08	1E+08	ox2_bound:95	Stag1	NM_009282	NA	NA	PROMOTER
chr9 1E+08	1E+08	ox2_bound:96	Stag1	NM_009282	NA	NA	PROMOTER
chr9 1.1E+08	1.1E+08	ox2_bound:96	Rpl29	NM_009082	NA	NA	INSIDE
chr9 1.1E+08	1.1E+08	ox2_bound:96	Tex264	NM_011573	NA	NA	PROMOTER
chr9 1.1E+08	1.1E+08	ox2_bound:96	Zmynd10	NM_053253	NA	NA	INSIDE
chr9 1.1E+08	1.1E+08	ox2_bound:96	Gnat1	NM_008140	NA	NA	INSIDE
chr9 1.1E+08	1.1E+08	ox2_bound:96	Gnat1	NM_008140	NA	NA	INSIDE
chr9 1.1E+08	1.1E+08	ox2_bound:96	Camkv	NM 145621	NA	NA	INSIDE
chr9 1.1E+08	1.1E+08	ox2 bound:96	Ihpk1	NM 013785	NA	NA	PROMOTER
chr9 1 1 $E \pm 0.8$	1 1F±08	ox2 hound 96	Amt	NM 001013814	NA	NA	PROMOTER
chrQ 1 1 $F \pm 0$	1 1E+00	lox2 hound 06	1700102008031	NM 053216	NΔ	NΔ	PROMOTEP
CIII 7 1.112700	1.15700	$-0\Lambda 2$ _00ullu.90	1/001021 UONIK	1111_033210	110	11/1	TROMUTER

chr9 1.1E+08	1.1E+08	ox2_bound:97	Celsr3	NM_080437	NA	NA	PROMOTER
chr9 1.1E+08	1.1E+08	ox2_bound:97	Tdgf1	NM_011562	Lrrc2	NM_028838	DIVERGENT
chr9 1.1E+08	1.1E+08	ox2_bound:97	Lrrc2	NM_028838	NA	NA	INSIDE
chr9 1.1E+08	1.1E+08	ox2_bound:97	Arpp21	NM_033264	NA	NA	INSIDE
chr9 1.1E+08	1.1E+08	ox2_bound:97	Cnot10	NM_153585	NA	NA	PROMOTER
chr9 1.2E+08	1.2E+08	ox2 bound:97	Eomes	NM 010136	NA	NA	PROMOTER
chr9 1.2E+08	1.2E+08	ox2 bound:97	Itga9	NM 133721	NA	NA	INSIDE
chr9 1.2E+08	1.2E+08	lox2_bound:97	BC060645	BC060645	NA	NA	Unknown
chr9 1 2E+08	1.2E+08	lox2_bound.97	Mohn	NM 001039365	NA	NA	INSIDE
$chr^{Q} = 1.2E \pm 0.08$	1.2E+00 1.2E+08	lox2_bound:97	Zfn105	NM 009544	NΔ	NΔ	INSIDE
chr^{0} 1 2E+08	1.2E+00 1.2E+08	lox2_bound:97	Tmem/12	NM 025330	NA	NA	PROMOTER
ohr1 4521461	4522150	lox2_bound:08	Mtrf11	NM 175374	NA	NA	DROMOTER
chi1 4321401	4322130	lox2_bound.98	Altern12	NM 021195	NA	NA	INSIDE
chiri 6078900	00/9334	0x2_bound:98		NM_051185	INA	NA	INSIDE
chr1 8585/96	8586/31	ox2_bound:98	Sash1	NM_1/5155	NA	NA	PROMOTER
chr1 8588/4/	8589372	ox2_bound:98	Sash1	NM_1/5155	NA	NA	PROMOTER
chr1 8589806	8590306	ox2_bound:98	Sash1	NM_175155	NA	NA	PROMOTER
chr1 1.4E+07	1.4E+07	ox2_bound:98	1110059P08Rik	NM_025418	NA	NA	INSIDE
chr1 1.7E+07	1.7E+07	ox2_bound:98	Cited2	NM_010828	NA	NA	PROMOTER
chr1 1.8E+07	1.8E+07	ox2_bound:98	BC030842	BC030842	NA	NA	Unknown
chr1 1.9E+07	1.9E+07	ox2_bound:98	Olig3	NM_053008	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07	ox2_bound:99	Ahi1	NM_026203	NA	NA	PROMOTER
chr1 2.4E+07	2.4E+07	ox2_bound:99	Rps12	NM_011295	NA	NA	PROMOTER
chr1 2.4E+07	2.4E+07	ox2_bound:99	Ctgf	NM_010217	NA	NA	PROMOTER
chr1 2.5E+07	2.5E+07	ox2_bound:99	Enpp3	NM_134005	NA	NA	INSIDE
chr1 2.9E+07	2.9E+07	ox2_bound:99	6330407J23Rik	NM_026138	NA	NA	PROMOTER
chr1 3.7E+07	3.7E+07	ox2 bound:99	Marcks	NM 008538	930403N24Ri	NM 177177	DIVERGENT
chr1 4E+07	4E+07	ox2 bound:99	Bxdc1	NM 023323	NA	NA	INSIDE
chr1 4E+07	4E+07	ox2 bound:99	2410016F19Rik	NM 026113	NA	NA	PROMOTER
chr1 4E+07	4E+07	lox2 bound:99	Cdc2l6	NM 198164	NA	NA	PROMOTER
chr1 4 1E+07	4 1E+07	lox2 bound 99	Wasf1	NM_031877	NA	NA	PROMOTER
chr1 4.1E+07	4.1E+07	$2x^2$ bound:10(Micall	NM 138315	NA	NA	INSIDE
chr1 4.1E+07	4.1E+07	$3x2_bound:10($	A K 122525	NM 100028	NA	NA	DDOMOTED
$hr1 4.3E \pm 07$	4.3E+07	$3x2_bound:10($	Cd24a	NM 000846	NA	NA	INSIDE
clii 1 4.5E+07	4.3E+07	JX2_bound.10(Cd24a	NM 000846	INA NA	NA	INSIDE
$c = 14.3E \pm 07$	4.3E+07	JX2_bound.10(Cu24a	NM 007549	INA NA	NA	DROMOTER
cnr1 4.4E+07	4.4E+07	5x2_bound:10(NM_00/548	INA	NA	PROMOTER
chr1 4.5E+07	4.5E+07	5x2_bound:10(Lin28b	NM_001031772	NA	NA	INSIDE
chr1 5.1E+07	5.1E+0/	5x2_bound:10(Sim1	NM_011376	NA	NA	PROMOTER
chr1 5.6E+07	5.6E+07	ox2_bound:100	Gjal	NM_010288	NA	NA	PROMOTER
chr1 5.6E+07	5.6E+07	ox2_bound:100	Gjal	NM_010288	NA	NA	PROMOTER
chr1 5.6E+07	5.6E+07	ox2_bound:100	Gjal	NM_010288	NA	NA	PROMOTER
chr1 6E+07	6E+07	ox2_bound:101	Unc5b	NM_029770	NA	NA	INSIDE
chr1 6.1E+07	6.1E+07	ox2_bound:101	Nodal	NM_013611	NA	NA	PROMOTER
chr1 6.1E+07	6.1E+07	0x2_bound:101	Nodal	NM_013611	NA	NA	PROMOTER
chr1 6.1E+07	6.1E+07	ox2_bound:101	Nodal	NM_013611	NA	NA	PROMOTER
chr1 6.1E+07	6.1E+07	ox2_bound:101	H2afy2	NM_207000	NA	NA	INSIDE
chr1 6.2E+07	6.2E+07	ox2_bound:101	Tspan15	NM_197996	NA	NA	PROMOTER
chr1 6.4E+07	6.4E+07	ox2_bound:101	Lrrtm3	NM_178678	NA	NA	PROMOTER
chr1 6.7E+07	6.7E+07	ox2_bound:101	D10Ucla1	NM_178606	NA	NA	INSIDE
chr1 6.7E+07	6.7E+07	ox2_bound:101	D10Ucla1	NM_178606	NA	NA	PROMOTER
chr1 6.7E+07	6.7E+07	ox2 bound:101	D10Ucla1	NM 178606	NA	NA	PROMOTER
chr1 6.7E+07	6.7E+07	$2x^2$ bound: 102	D10Ucla1	NM 178606	NA	NA	PROMOTER
chr1 6.8E+07	6.8E+07	$2x^2$ bound: 102	Arid5b	NM 023598	NA	NA	PROMOTER
chr1 $7E+07$	7E+07	$2x^2$ bound:102	Ank3	NM_009670	NA	NA	INSIDE
chr1 $7E+07$	7E+07	$2x^2$ bound:102	Physin	NM 178621	NA	NA	INSIDE
chr1 7 2 $F_{\perp}07$	7 2F±07	$3x^2$ bound 102	Zwint	NM 025635	NΔ	NΔ	PROMOTEP
$chr1 7.2E \pm 07$	7.25+07	$3x^2$ bound 10	Zwint	NM 025625	NA	N A	INCIDE
cm1 / .2E+0/	7.5E+07	$JX2_00und:102$	Zwiiit	INIVI_023033	INA NTA	INA NA	INSIDE
cm1 / .3E+0/	7.5E+0/	$JX2_00und:102$	Ggual	NIVI_011820	INA NTA	INA NA	TROMUTER
cnr1 /.6E+07	7.6E+07	5x2_bound:102	Gm86/	NM_00103//14	NA		INSIDE
cnr1 7.6E+07	7.6E+07	ox2_bound:102	Gm867	NM_001037714	NA	NM_009514	DIVERGENT
chr1 7.6E+07	/.6E+07	ox2_bound:102	Ftcd	NM_080845	NA	NA	PROMOTER
chr1 7.8E+07	7.8E+07	ox2_bound:103	Aire	NM_009646	Dnmt31	NM_019448	DIVERGENT
chr1 8E+07	8E+07	ox2_bound:103	Thrap5	NM_198107	NA	NA	PROMOTER
chr1 8E+07	8E+07	ox2_bound:103	Midn	NM_021565	NA	NA	INSIDE
chr1 8E+07	8E+07	ox2_bound:103	Ndufs7	NM_029272	NA	NA	PROMOTER
chr1 8E+07	8E+07	ox2_bound:103	Tcfe2a	NM_011548	NA	NA	PROMOTER

chr1 8.1E+07	8.1E+07 x2_bound	1:103	Atcay	NM_178662	NA	NA	INSIDE
chr1 8.1E+07	8.1E+07 x2_bound	1:103	Tle2	NM_019725	NA	NA	PROMOTER
chr1 8.1E+07	8.1E+07 $3x2$ bound	1:10?	Sirt6	NM 181586	Ankrd24	NA	INSIDE
chr1 8 4E+07	8.4E+07 x ² bound	1.10:	Rfx4	NM 001024918	NA	NA	PROMOTER
chr1 8 $4E+07$	8.4E+07 $3x2$ bound	1.10:	Rfv4	NM_001024918	NΔ	NΔ	INSIDE
ohr1 8 4E+07	8.4E+07 $3x2$ bound	4.102 4.10/	Dfy/	NM_001024910	NA	NA	INSIDE
cm1 8.4E+07	$8.4E\pm07$ JX2_bound	1.104 1.107	Dfr 4	NIVI_001024916	NA	INA NA	INSIDE
chr1 8.4E+07	8.4E+07 5x2_bound	1:104	RIX4	NM_001024918	NA	NA	INSIDE
chr1 8.4E+07	8.4E+07 5x2_bound	1:104	RIX4	NM_027689	NA	NA	PROMOTER
chr1 8.4E+0/	$8.4E+0/3x2$ _bound	1:104	Rfx4	NM_027689	NA	NA	INSIDE
chr1 8.4E+07	8.4E+07 x2_bound	1:104	Ric8b	NM_183172	NA	NA	PROMOTER
chr1 8.6E+07	8.6E+07 x2_bound	1:104	Bpil2	NM_177772	Fbxo7	NM_153195	DIVERGENT
chr1 8.7E+07	8.7E+07 x2_bound	1:104	Ascl1	NM_008553	NA	NA	PROMOTER
chr1 8.7E+07	8.7E+07 ox2_bound	1:104	Igf1	NM_010512	NA	NA	PROMOTER
chr1 8.8E+07	8.8E+07 x2_bound	1:104	Spic	NM_011461	NA	NA	PROMOTER
chr1 8.9E+07	8.9E+07 x2_bound	1:104	Tmem16d	NM_178773	NA	NA	INSIDE
chr1 9.3E+07	9.3E+07 x2 bound	1:105	Ccdc38	NM 175488	NA	NA	INSIDE
chr1 9.3E+07	$9.3E+07$ $3x^2$ bound	1:10*	Usp44	NM 183199	NA	NA	PROMOTER
chr1 9 5E+07	9.5E+07 x ² bound	1.104	Cradd	NM_009950	NA	NA	INSIDE
chr1 9.5E+07	$9.5E+07$ 3x2_bound	1.105	Socs2	NM_007706	NΔ	NΔ	INSIDE
ohr1 0 5E+07	9.5E+07 $3x2$ bound	4.105	Socs2	NM_007706	NA	NA	INSIDE
hr1 0.5E+07	9.5E+07 $3x2$ bound	4.10.	Nudt4	NM 027722	NA	NA	DDOMOTED
chil 9.5E+07	$9.5E+07$ JX2_bound	1.10.	Duané	NM_026268	NA	INA NA	PROMOTER
chr1 9.9E+07	9.9E+07 5x2_bound	1:10:	Duspo	NM_026268	NA	NA	PROMOTER
chr1 9.9E+07	9.9E+07 5x2_bound	1:105	Dusp6	NM_026268	NA	NA	INSIDE
chr1 9.9E+07	9.9E+07 x2_bound	1:105	B530045E10Rik	NM_177302	NA	NA	INSIDE
chr1 1E+08	1E+08 ox2_bound	1:105	Mgat4c	NM_026243	NA	NA	PROMOTER
chr1 1E+08	1E+08 ox2_bound	1:10€	Cart1	NM_172553	NA	NA	INSIDE
chr1 1E+08	1E+08 ox2_bound	1:10€	Slc6a15	NM_175328	NA	NA	INSIDE
chr1 1.1E+08	1.1E+08 x2_bound	1:10€	Thap2	NM_025780	NA	NA	INSIDE
chr1 1.2E+08	1.2E+08 x2_bound	1:10€	Frs2	NM_177798	NA	NA	PROMOTER
chr1 1.2E+08	1.2E+08 x2_bound	1:10€	Irak3	NM_028679	Tmbim4	NM_026617	DIVERGENT
chr1 1.2E+08	1.2E+08 x2 bound	1:10€	Hmga2	NM 178057	NA	NA	INSIDE
chr1 1.3E+08	1.3E+08 $x2$ bound	1:10€	4632413K17Rik	NM 177614	NA	NA	PROMOTER
chr1 1.3E+08	1.3E+08 x2 bound	1:106	Kif5a	NM_008447	Dctn2	NM 027151	DIVERGENT
chr1 1 3E+08	1.3E+08 x2 bound	1.106	Nxnh4	NM 183297	NA	NA	PROMOTER
chr1 1 3E+08	$1.3E+08$ x^2 hound	1.106	1123a	NM_031252	Usp52	NM 133992	DIVERGENT
chr1 1 3E+08	1.3E+08 $x2$ bound	1.100	Rpl41	NM_018860	NA	NA	INSIDE
chr1 1 $3E\pm08$	$1.3E+08$ x^2 bound	1.107	Rps76	NM_013765	NΔ	NΔ	PROMOTER
chr1 1 $3E+08$	$1.3E+08$ x^2 bound	1.107	Daka	NM_016811	Wiba	NM 030100	DIVERGENT
chr1 3244576	3245076 px2_bound	1.107	$7 f_{\rm p} 278$	NM_010574	NA	NA	INSIDE
chi1 3244370 obr1 2015760	2016260 av2 hound	1.107	Zip278	NM 022880	NA	NA	INSIDE
ohr1 4656909	4657526 px2 hound	1.107	Test Zmot5	NM 026015	NA	NA	INSIDE
chi 1 4050808	4037330 JX2_bound	1.107	LillatJ	NM_0020013	NA	INA NA	DROMOTER
chir1 /100409	/10/01/ JX2_bound	1:107	Igiops	NM_000477	NA	INA	PROMOTER
chr1 906/309	9067809 5x2_bound	1:107	UppI	NM_009477	NA	NA	PROMOTER
chr1 906/943	9068443 5x2_bound	1:10,	Upp1	NM_009477	NA	NA	PROMOTER
chr1 9069065	9069947 x2_bound	1:107	Upp1	NM_009477	NA	NA	PROMOTER
chr1 9071367	9072240 x2_bound	1:108	Upp1	NM_009477	NA	NA	INSIDE
chr1 1.2E+07	1.2E+07 ox2_bound	1:108	Cobl	NM_172496	NA	NA	PROMOTER
chr1 1.9E+07	1.9E+07 x2_bound	1:108	Meis1	NM_010789	NA	NA	PROMOTER
chr1 2E+07	2E+07 ox2_bound	1:108	Spred2	NM_033523	NA	NA	INSIDE
chr1 2E+07	2E+07 ox2_bound	1:108	Slc1a4	NM_018861	NA	NA	PROMOTER
chr1 2E+07	2E+07 ox2_bound	1:108	Sertad2	NM_021372	NA	NA	PROMOTER
chr1 2E+07	2E+07 ox2_bound	1:108	Sertad2	NM_021372	NA	NA	PROMOTER
chr1 2.2E+07	2.2E+07 ox2_bound	1:108	Otx1	NM_011023	NA	NA	INSIDE
chr1 2.2E+07	2.2E+07 x2 bound	1:108	Otx1	NM 011023	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 $3x2$ bound	1:108	Xpo1	NM 001035226	NA	NA	INSIDE
chr1 2 4E+07	$2.4E+07$ x^2 bound	1.100	4933435A13Rik	NM 028304	NA	NA	INSIDE
chr1 2 4 F +07	2.4E+07 ox2 bound	1:100	A830031A19Rik	NM 207251	Bellla	NM 016707	DIVERGENT
chr1 2 9F \pm 07	$2.9E+07$ x2_bound	1.100	Ccdc85a	NM 181577	NΔ	NA	INSIDE
chr1 3E+07	$3F\pm07$ x^2 hours	1.100	Rtn/	NM 02/226	NΛ	NA	PROMOTED
chr1 2 1E + 07	$31E\pm07$ $3X2$ bound	1.105 1.100	2510006C20D31-	NM 026527	N A	NA NA	DROMOTER
cm1 3.1E+0/	3.12 ± 07 $3X2$ bound	1.105 1.100	2010000C20KIK	NM 000741	INA NA	INA NA	INCIDE
cnr1 3.2E+07	3.2E+07 3X2_DOUNC	1.105	INSG2	$\frac{1}{1} \frac{1}{1} \frac{1}$	INA	INA	INSIDE
cnr1 3.3E+0/	5.5E+0/ 5x2_bound	1:105	rgilð Magana ta	INIM_001025202	NA	INA NA	INSIDE
cnr1 3.4E+0/	5.4E+0/ 0x2_bound	1:105	MGC99845	NIM_001025382	NA	NA	INSIDE
chr1 4.1E+07	4.1E+07 ox2_bound	1:109	Nudcd2	NM_026023	NA	NA	INSIDE
chr1 4.5E+07	4.5E+07 x2_bound	1:109	Ebf1	NM_007897	NA	NA	PROMOTER

chr1 4.6E+07	4.6E+07	ox2_bound:110	Sox30	NM_173384	NA	NA	PROMOTER
chr1 4.9E+07	4.9E+07	ox2_bound:110	Irgm	NM_008326	NA	NA	INSIDE
chr1 4.9E+07	4.9E+07	ox2_bound:110	Zfp62	NM_001024846	NA	NA	INSIDE
chr1 5E+07	5E+07	ox2_bound:110	Scgb3a1	NM_054037	NA	NA	PROMOTER
chr1 5E+07	5E+07	ox2_bound:110	Canx	NM_007597	NA	NA	PROMOTER
chr1 5E+07	5E+07	ox2_bound:110	Hnrph1	NM_021510	NA	NA	PROMOTER
chr1 5.1E+07	5.1E+07	ox2 bound:11(Zfp2	NM 178447	NA	NA	INSIDE
chr1 5.2E+07	5.2E+07	$2x^2$ bound:11(Rmnd5b	NM 025346	NA	NA	PROMOTER
chr1 5.2E+07	5.2E+07	$2x^2$ bound:11(D930048N14Rik	NM 175289	NA	NA	PROMOTER
chr1 5.2E+07	5.2E+07	$2x^2$ bound:11(Ube2b	NM_009458	Cdk13	NM 153785	DIVERGENT
chr1 5.2E+07	5.2E+07	$2x^2$ bound:111	Tcf7	NM_009331	NA	NA	PROMOTER
chr1 5 2E+07	5 2E+07	$2x^2$ bound:111	Vdac1	NM 011694	NA	NA	PROMOTER
chr1 5 $3E+07$	5.2E+07	ox2_bound:111	Aff4	NM_033565	NA	NA	INSIDE
chr1 5.3E+07	5.3E+07	ox2_bound:111	Sent8	NM_033144	NA	NA	INSIDE
chr1 5.8E \pm 07	5.3E+07	ox2_bound:111	7fn692	NM 182006	NA	NA	PROMOTER
chr1 5.8E+07	5.6E+07	3x2_bound:111	Elen	NM 146018	NA	NA	PROMOTER
chill 6 1E + 07	0E+07	JX2_DOUIId.111	FICII L Iall	NM 008502	INA NA	NA	PROMOTER
cnr1 0.1E+07	0.1E+07	5x2_bound:111		NM_000410	INA Currente	INA NNA 175401	PROMOTER
$cnr1 \ 6.1E+07$	0.1E+07	5x2_bound:111	10p3a	NM_009410	Smcr8	NM_1/5491	DIVERGENT
chr1 6.1E+07	6.1E+0/	Dx2_bound:111	Aldh3a2	NM_00/43/	NA	NA	INSIDE
chr1 6.3E+07	6.3E+07	ox2_bound:111	Ubb	NM_011664	NA	NA	PROMOTER
chr1 6.3E+07	6.3E+07	ox2_bound:112	Fbxw10	NM_001033669	NA	NA	INSIDE
chr1 6.4E+07	6.4E+07	$3x2_bound:112$	Hs3st3b1	NM_018805	NA	NA	PROMOTER
chr1 6.7E+07	6.7E+07	ox2_bound:112	A730055C05Rik	NM_177392	NA	NA	PROMOTER
chr1 6.7E+07	6.7E+07	px2_bound:112	A730055C05Rik	NM_177392	NA	NA	PROMOTER
chr1 6.8E+07	6.8E+07	ox2_bound:112	Usp43	NM_173754	NA	NA	PROMOTER
chr1 6.9E+07	6.9E+07	ox2_bound:112	Aurkb	NM_011496	NA	NA	PROMOTER
chr1 6.9E+07	6.9E+07	ox2_bound:112	Aloxe3	NM_011786	NA	NA	PROMOTER
chr1 6.9E+07	6.9E+07	ox2_bound:112	Trappc1	NM_001024206	NA	NA	INSIDE
chr1 6.9E+07	6.9E+07	ox2_bound:112	Jmjd3	NM_001017426	NA	NA	PROMOTER
chr1 7E+07	7E+07	ox2_bound:112	Trp53	NM_011640	NA	NA	INSIDE
chr1 7E+07	7E+07	ox2_bound:113	Cd68	NM_009853	NA	NA	PROMOTER
chr1 7E+07	7E+07	ox2_bound:113	Tnfsf13	NM_023517	NA	NA	INSIDE
chr1 7E+07	7E+07	ox2 bound:113	2810408A11Rik	NM 027419	NA	NA	INSIDE
chr1 7E+07	7E+07	ox2 bound:113	Gabarap	NM 019749	NA	NA	INSIDE
chr1 7E+07	7E+07	ox2 bound:11?	Pelp1	NM 029231	NA	NA	PROMOTER
chr1 7.3E+07	7.3E+07	ox2_bound:11?	Ube2g1	NM 025985	NA	NA	INSIDE
chr1 7.6E+07	7.6E+07	ox2_bound:11	Slc43a2	NM 173388	NA	NA	PROMOTER
chr1 7 8E+07	7 8E+07	ox2 bound:11?	Nufin2	NM 001024205	NA	NA	PROMOTER
chr1 7.8E+07	7.8E+07	bound:11?	Myo18a	NM 011586	NA	NA	PROMOTER
chr1 7.8E+07	7.8E±07	$3x2_bound:11$	Pipox	NM_008952	NΔ	NΔ	PROMOTER
chr1 7.8E+07	7.8E±07	$3x2_{bound:11}$	Sez6	NM_021286	NA	NA	PROMOTER
chr1 7.8E+07	7.8E+07	5x2_bound:114	Dhf12	NM 174852	NA	NA	PROMOTER
clii 1 7.6E+07	7.0E+07	JX2_bound:114	FIII12 Wab1	NM_010652	NA	NA	INSIDE
chir1 /.9E+07	1.9E+07	5x2_bound:114	W SD1	NM_019033	INA	INA NA	INSIDE
cnr1 8.5E+07	8.5E+07	5x2_bound:114		NM_008498	INA	NA	INSIDE
cnr1 8./E+0/	8./E+0/	5x2_bound:114	Cite	NM_001003908	INA	NA	INSIDE
chr1 8./E+0/	8./E+0/	5x2_bound:114	Cltc	NM_001003908	NA	NA	PROMOTER
cnr1 8./E+07	8./E+07	5x2_bound:114	Gdpd1	NM_025638	NA	NA	PROMOTER
chr1 8.7E+07	8.7E+07	ox2_bound:114	mmu-mir-301	mmu-mir-301	NA	NA	PROMOTER
chr1 8.8E+07	8.8E+07	px2_bound:114	Mrps23	NM_024174	NA	NA	PROMOTER
chr1 8.9E+07	8.9E+07	px2_bound:114	BC065135	BC065135	NA	NA	Unknown
chr1 8.9E+07	8.9E+07	ox2_bound:115	Trim25	NM_009546	NA	NA	PROMOTER
chr1 9E+07	9E+07	ox2_bound:115	Tmem100	NM_026433	NA	NA	INSIDE
chr1 9.1E+07	9.1E+07	ox2_bound:115	Hlf	NM_172563	NA	NA	PROMOTER
chr1 9.4E+07	9.4E+07	ox2_bound:115	Nme1	NM_008704	NA	NA	INSIDE
chr1 9.4E+07	9.4E+07	ox2_bound:115	Spag9	NM_001025428	NA	NA	INSIDE
chr1 9.5E+07	9.5E+07	ox2_bound:115	Myst2	NM_177619	NA	NA	PROMOTER
chr1 9.5E+07	9.5E+07	ox2_bound:115	Myst2	NM_177619	NA	NA	PROMOTER
chr1 9.6E+07	9.6E+07	ox2_bound:115	Nxph3	NM_130858	NA	NA	PROMOTER
chr1 9.6E+07	9.6E+07	ox2_bound:115	Ngfr	NM_033217	NA	NA	INSIDE
chr1 9.6E+07	9.6E+07	ox2_bound:115	Phb	NM_008831	NA	NA	PROMOTER
chr1 9.6E+07	9.6E+07	ox2_bound:116	LOC544809	NM_001024710	NA	NA	PROMOTER
chr1 9.6E+07	9.6E+07	ox2_bound:116	Hoxb13	NM_008267	NA	NA	PROMOTER
chr1 9.6E+07	9.6E+07	ox2 bound:116	Hoxb13	NM 008267	NA	NA	PROMOTER
chr1 9.6E+07	9.6E+07	ox2 bound:116	Hoxb5	NM 008268	NA	NA	PROMOTER
chr1 9.6E+07	9.6E+07	<pre>>x2_bound:116</pre>	mmu-mir-10a	mmu-mir-10a	NA	NA	PROMOTER

chr1 9.6E+07	9.6E+07	ox2_bound:116	Hoxb1	NM_008266	NA	NA	PROMOTER
chr1 9.7E+07	9.7E+07	ox2_bound:116	Snx11	NM_028965	Cbx1	NM_007622	DIVERGENT
chr1 9.7E+07	9.7E+07	ox2_bound:116	Npepps	NM_008942	NA	NA	PROMOTER
chr1 9.7E+07	9.7E+07	ox2_bound:116	Mrpl45	NM_025927	NA	NA	PROMOTER
chr1 9.8E+07	9.8E+07	ox2_bound:116	Mllt6	NM_139311	NA	NA	PROMOTER
chr1 9.8E+07	9.8E+07	ox2_bound:117	Lasp1	NM_010688	NA	NA	PROMOTER
chr1 9.8E+07	9.8E+07	ox2_bound:117	Lasp1	NM_010688	NA	NA	INSIDE
chr1 9.8E+07	9.8E+07	ox2_bound:117	Stac2	NM_146028	NA	NA	PROMOTER
chr1 9.8E+07	9.8E+07	ox2_bound:117	Pparbp	NM_134027	Crkrs	NM_026952	DIVERGENT
chr1 9.9E+07	9.9E+07	0x2_bound:117	6330509G02Rik	NM_172946	NA	NA	PROMOTER
chr1 1E+08	1E+08	0x2_bound:117	Krt1-17	NM_010663	NA	NA	PROMOTER
chr1 1E+08	1E+08	0x2_bound:117	Jup	NM_010593	NA	NA	INSIDE
chr1 1E+08	1E+08	ox2_bound:117	Cnp1	NM_009923	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2_bound:117	Gcn512	NM_020004	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2_bound:117	Stat5a	NM_011488	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2_bound:118	Stat3	NM_213660	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2_bound:118	Rnd2	NM_009708	NA	NA	INSIDE
chr1 1E+08	1E+08	ox2_bound:118	Brca1	NM_009764	Nbr1	NA	INSIDE
chr1 1E+08	1E+08	ox2_bound:118	Brca1	NM_009764	NA	NM_008676	DIVERGENT
chr1 1E+08	1E+08	ox2_bound:118	Nbr1	NM_008676	NA	NA	INSIDE
chr1 1E+08	1E+08	ox2_bound:118	Rdm1	NM_025654	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2_bound:118	Etv4	NM_008815	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2_bound:118	Etv4	NM_008815	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2_bound:118	BC030867	NM_153544	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2_bound:118	BC030867	NM_153544	NA	NA	INSIDE
chr1 1E+08	1E+08	ox2 bound:119	Rap2ip	NM 016759	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2 bound:119	Fzd2	NM 020510	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2 bound:119	BC050840	BC050840	NA	NA	Unknown
chr1 1E+08	1E+08	ox2 bound:119	Acbd4	NM 025988	NA	NA	INSIDE
chr1 1E+08	1E+08	ox2 bound:119	Hexim1	NM 138753	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2 bound:119	Nsf	NM_008740	Arf2	NM 007477	DIVERGENT
chr1 1.1E+08	1.1E+08	ox2 bound:119	2610204L23Rik	NM 026009	Ddx42	NM 028074	DIVERGENT
chr1 1.1E+08	1.1E+08	ox2 bound:119	Pitpnc1	NM 145823	NA	NA	INSIDE
chr1 1.1E+08	1.1E+08	ox2 bound:119	Pitpnc1	NM 145823	NA	NA	INSIDE
chr1 1.1E+08	1.1E+08	$2x^2$ bound:119	Gna13	NM 010303	NA	NA	PROMOTER
chr1 1.1E+08	1.1E+08	ox2 bound:120	Slc16a6	NM 001029842	NA	NA	PROMOTER
chr1 1.1E+08	1.1E+08	ox2 bound:120	Slc39a11	NM 027216	NA	NA	PROMOTER
chr1 1.1E+08	1.1E+08	ox2 bound:12(D11Ertd636e	NM 029794	NA	NA	PROMOTER
chr1 1.2E+08	1.2E+08	$2x^2$ bound:12(Galr2	NM_010254	NA	NA	INSIDE
chr1 1.2E+08	1.2E+08	ox2 bound:12(Sphk1	NM 025367	NA	NA	PROMOTER
chr1 1.2E+08	1.2E+08	$2x^2$ bound:12(Tha1	NM 027919	NA	NA	PROMOTER
chr1 1.2E+08	1.2E+08	ox2 bound:12(Bajap2	NM 001037755	NA	NA	PROMOTER
chr1 1.2E+08	1.2E+08	ox2 bound:12(P4hb	NM 011032	NA	NA	PROMOTER
chr1 8523865	8524705	$2x^2$ bound:12(Rhob	NM_007483	NA	NA	INSIDE
chr1 8947667	8948379	$2x^2$ bound:12(Laptm4a	NM 008640	NA	NA	INSIDE
chr1 9602816	9603316	$2x^2$ bound:121	Osr1	NM 011859	NA	NA	INSIDE
chr1 1.2E+07	1.2E+07	$2x^2$ bound:121	D12Ertd553e	NM 029758	NA	NA	INSIDE
chr1 1.3E+07	1.3E+07	$2x^2$ bound:121	Mycn	NM_008709	NA	NA	PROMOTER
chr1 1.3E+07	1.3E+07	$2x^2$ bound:121	Mycn	NM_008709	NA	NA	PROMOTER
chr1 1.5E+07	1.5E+07	$2x^2$ bound:121	BC058368	BC058368	NA	NA	Unknown
chr1 $1.6E+07$	1.6E+07	$2x^2$ bound:121	Trib2	NM 144551	NA	NA	INSIDE
chr1 $2E+07$	2E+07	$2x^2$ bound:121	Ywhaq	NM 011739	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07	$2x^2$ bound:121	Id2	NM 010496	NA	NA	PROMOTER
chr1 2.6E+07	2.6E+07	$2x^2$ bound:121	Rps7	NM 011300	NA	NA	PROMOTER
chr1 3.2E+07	3.2E+07	$2x^2$ bound:121	Twist1	NM 011658	NA	NA	INSIDE
chr1 3.2E+07	3.2E+07	2x2 bound 122	Hdac9	NM 024124	NA	NA	PROMOTER
chr1 3.3E+07	3.3E+07	$2x^2$ bound 122	Snx13	NM 001014973	NA	NA	PROMOTER
chr1 $3.4E+07$	3.4E+07	$2x^2$ bound 122	Bzw?	NM 025840	NA	NA	INSIDE
chr1 3 7 F +07	3.7E+07	ox2_bound-122	Etv1	NM 007960	NA	NA	PROMOTER
chr1 3.7E+07	3.7E+07	$2 \ge 0 \le 122$	Etv1	NM 007960	NA	NA	INSIDE
chr1 4.9E+07	4.9E+07	$2x^2$ bound 122	6030408C04Rik	NM 001015099	NA	NA	PROMOTER
chr1 4.9E+07	4.9E+07	$2 \ge 0 \le 122$	6030408C04Rik	NM_001015099	NA	NA	INSIDE
chr1 $5E+07$	5E+07	ox2 bound:122	Coch	NM 007728	NA	NA	INSIDE
chr1 5.1E+07	5.1E+07	ox2_bound:122	Npas3	NM 013780	NA	NA	PROMOTER
chr1 5.1E+07	5.1E+07	ox2_bound:122	Npas3	NM_013780	NA	NA	INSIDE
			1 -				

chr1 5.3E+07	5.3E+07 x2_bound:123	1810011O16Rik	NM_025456	NA	NA	PROMOTER
chr1 5.3E+07	5.3E+07 x2_bound:123	Nfkbia	NM_010907	NA	NA	PROMOTER
chr1 5.4E+07	5.4E+07 x2_bound:123	Titf1	NM_009385	NA	NA	INSIDE
chr1 5.4E+07	5.4E+07 x2_bound:123	Titf1	NM_009385	NA	NA	INSIDE
chr1 5.5E+07	5.5E+07 x2_bound:123	Nkx2-9	NM_008701	NA	NA	PROMOTER
chr1 5.5E+07	5.5E+07 x2_bound:123	Pax9	NM_011041	NA	NA	INSIDE
chr1 6.7E+07	6.7E+07 x2_bound:123	Klhdc2	NM_027117	NA	NA	INSIDE
chr1 6.9E+07	6.9E+07 x2_bound:123	Psma3	NM_011184	NA	NA	PROMOTER
chr1 6.9E+07	6.9E+07 x2_bound:123	Timm9	NM_013896	NA	NA	PROMOTER
chr1 7E+07	7E+07 ox2_bound:123	1200003C05Rik	NM_024205	NA	NA	INSIDE
chr1 7E+07	7E+07 ox2_bound:124	Rtn1	NM_001007596	NA	NA	INSIDE
chr1 7.1E+07	7.1E+07 x2_bound:124	Mnat1	NM_008612	NA	NA	INSIDE
chr1 7.5E+07	7.5E+07 x2_bound:124	Max	NM_008558	NA	NA	PROMOTER
chr1 7.8E+07	7.8E+07 x2_bound:124	Zfp3611	NM_007564	NA	NA	INSIDE
chr1 7.8E+07	7.8E+07 x2_bound:124	Zfp3611	NM_007564	NA	NA	PROMOTER
chr1 7.8E+07	7.8E+07 x2_bound:124	Zfp3611	NM_007564	NA	NA	PROMOTER
chr1 7.8E+07	7.8E+07 x2_bound:124	Actn1	NM_134156	NA	NA	INSIDE
chr1 7.9E+07	7.9E+07 x2_bound:124	Gm1568	NM_001008423	NA	NA	INSIDE
chr1 8.1E+07	8.1E+07 x2_bound:124	Dpf3	NM_058212	NA	NA	PROMOTER
chr1 8.2E+07	8.2E+07 x2_bound:124	Papln	NM_130887	NA	NA	PROMOTER
chr1 8.2E+07	8.2E+07 x2_bound:125	Acot1	NM_012006	NA	NA	PROMOTER
chr1 8.3E+07	8.3E+07 x2_bound:125	Abcd4	NM_008992	NA	NA	PROMOTER
chr1 8.3E+07	8.3E+07 x2_bound:125	7420416P09Rik	NM_001033776	NA	NA	PROMOTER
chr1 8.3E+07	8.3E+07 x2_bound:125	7420416P09Rik	NM_001033776	NA	NA	PROMOTER
chr1 8.3E+07	8.3E+07 x2_bound:125	Acyp1	NM_025421	NA	NA	DOWNSTREAM
chr1 8.3E+07	8.3E+07 x2_bound:125	Fos	NM_010234	NA	NA	PROMOTER
chr1 8.3E+07	8.3E+07 x2_bound:125	Fos	NM_010234	NA	NA	INSIDE
chr1 8.5E+07	8.5E+07 x2_bound:125	6430527G18Rik	NM_145836	NA	NA	PROMOTER
chr1 8.5E+07	8.5E+07 x2_bound:125	2310044G17Rik	NM_173735	NA	NA	PROMOTER
chr1 9.3E+07	9.3E+07 x2_bound:125	Flrt2	NM_201518	NA	NA	INSIDE
chr1 9.6E+07	9.6E+07 x2_bound:126	Ptpn21	NM_011877	NA	NA	PROMOTER
chr1 9.8E+07	9.8E+07 x2_bound:126	Rps6ka5	NM_153587	NA	NA	PROMOTER
chr1 1E+08	1E+08bound:126	Itpk1	NM_172584	NA	NA	INSIDE
chr1 1E+08	1E+08bound:126	Itpk1	NM_172584	NA	NA	PROMOTER
chr1 1E+08	1E+08bound:126	Moap1	NM_022323	NA	NA	PROMOTER
chr1 1E+08	1E+08bound:126	Gsc	NM_010351	NA	NA	PROMOTER
chr1 1E+08	1E+08bound:126	Tcl1	NM_009337	NA	NA	PROMOTER
chr1 1E+08	1E+08bound:126	Tcl1	NM_009337	NA	NA	PROMOTER
chr1 1.1E+08	1.1E+08 x2_bound:126	Rcor1	NM_198023	NA	NA	PROMOTER
chr1 1.1E+08	1.1E+08 x2_bound:126	Ckb	NM_021273	NA	NA	INSIDE
chr1 1.2E+08	1.2E+08 x2_bound:127	Sp8	NM_177082	NA	NA	PROMOTER
chr1 1.2E+08	1.2E+08 x2_bound:127	Sp8	NM_177082	NA	NA	PROMOTER
chr1 5745679	5746179 x2_bound:127	Klf6	NM_011803	NA	NA	PROMOTER
chr1 1.3E+07	1.3E+07 x2_bound:127	Tbce	NM_178337	NA	NA	PROMOTER
chr1 1.7E+07	1.7E+07 x2_bound:127	2810021B07Rik	NM_025479	NA	NA	INSIDE
chr1 2.1E+07	2.1E+07 x2_bound:127	Hist1h3h	NM_178206	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2_bound:127	Hist1h2bm	NM_178200	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2_bound:127	Hist1h4j	NM_178210	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2_bound:127	Hist1h4j	NM_178210	NA	NA	DOWNSTREAM
chr1 2.1E+07	2.1E+07 x2_bound:127	Hist1h4k	NM_178211	NA	NA	DOWNSTREAM
chr1 2.1E+07	2.1E+07 x2_bound:128	Hist1h1b	NM_020034	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2_bound:128	Hist1h3i	NM_178207	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2_bound:128	Hist1h3i	NM_178207	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2_bound:128	Hist1h2an	NM_178184	Hist1h2bp	NM_178202	DIVERGENT
chr1 2.1E+07	2.1E+07 x2_bound:128	Hist1h2bp	NM_178202	NA	NA	DOWNSTREAM
chr1 2.1E+07	2.1E+07 x2_bound:128	Hist1h2bp	NM_178202	NA	NA	DOWNSTREAM
chr1 2.1E+07	2.1E+07 x2_bound:128	Zfp184	NM_183014	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2_bound:128	Hist1h2ah	NM_175659	Hist1h2bk	NA	DOWNSTREAM
chr1 2.1E+07	2.1E+07 x2_bound:128	Hist1h2ah	NM_175659	NA	NM_175665	DIVERGENT
chr1 2.1E+07	2.1E+07 x2_bound:128	Hist1h2bk	NM_175665	NA	NA	DOWNSTREAM
chr1 2.1E+07	2.1E+07 x2_bound:129	Hist1h4i	NM_175656	NA	NA	DOWNSTREAM
chr1 2.1E+07	2.1E+07 x2_bound:129	Hist1h4i	NM_175656	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2_bound:129	Hist1h2ag	NM_178186	Hist1h2bj	NM_178198	DIVERGENT
chr1 2.3E+07	2.3E+07 x2_bound:129	Abt1	NM_013924	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 x2_bound:129	Btn2a2	NM_175938	NA	NA	PROMOTER

chr1 2.3E+07	2.3E+07 x2_bound:12	Hist1h4h	NM_153173	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 x2_bound:12	Hist1h4h	NM_153173	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 x2_bound:12	Hist1h2af	NM_175661	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 x2_bound:12	Hist1h2af	NM_175661	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 x2_bound:12	Hist1h3f	NM_013548	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 x2_bound:13	Hist1h3h	NM_178206	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 x2_bound:13	Hist1h1d	NM_145713	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 x2_bound:13	Hist1h3e	NM_178205	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 x2_bound:13	Hist1h3e	NM_178205	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 x2_bound:13	Hist1h2ae	NM_178187	NA	NM_178196	DIVERGENT
chr1 2.3E+07	2.3E+07 x2_bound:13	Hist1h3h	NM_178206	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 ox2_bound:13	Hist1h3d	NM_178204	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 ox2_bound:13	Hist1h4d	NM_175654	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 ox2_bound:13	Hist1h2bc	NM_023422	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 x2_bound:13	Hist1h3h	NM_178206	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 x2_bound:13	l Hist1h1c	NM_015786	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 x2_bound:13	l Hist1h3h	NM_178206	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 x2_bound:13	l Hist1h2ab	NM_175660	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 ox2_bound:13	Hist1h4a	NM_178192	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 5x2_bound:13	Histihia	NM_030609	NA	NA	DOWNSTREAM
chr1 2.3E+07	2.3E+07 5x2_bound:13	l Scgn	NM_145399	NA	NA	PROMOTER
chr1 2.5E+07	2.5E+07 5x2_bound:13	l Vmp	NM_009513	NA	NA	PROMOTER
chr1 $3.4E+07$	3.4E+07 5x2_bound:13	Tubb2b	NM_023716	NA	NA	PROMOTER
chr1 $3.4E+07$	3.4E+07 0x2_bound:13		NM_023716	NA	NA	PROMOTER
chr1 $3.4E+07$	3.4E+07 5x2_bound:13		NM_023716	NA	NA	PROMOTER
chr1 4E+07	$4E+07$ $3X2_bound:13$	Cont2	NM_011547	INA NA	NA NA	INSIDE
chr1 4E+07	4E+07 $3x2$ bound:15. 4E+07 $3x2$ bound:13.	Gent2	NM_122210	NA NA	INA NA	PROMOTER
$hert 42 \pm 07$	$4E+07$ JX2_00ulld.15.	Edn1	NM_010104	NA NA	NA	PROMOTER
chr1 4.2E+07	$4.2E+07$ JX2_00ulid.13.	Eulif Enf182	NM 183204	NA NA	NA	PROMOTER
chr1 4.5E+07	4.5 ± 07 $5x2_{bound:13}$	Larid?	NM 021878	NA	NA	PROMOTER
chr1 4.4E+07	$4.4E+07$ 3x2_bound:13:	Nup153	NM 175749	NΔ	NΔ	PROMOTER
chr1 4.6E+07	$4.6E+07$ 3x2_bound:132	Kif13a	NM_010617	NA	NA	INSIDE
chr1 4.0E+07	$4.0E+07.5x2$ _bound:13	2 1700022C02Rik	NM 025495	NA	NA	PROMOTER
chr1 $5.1E+07$	5.1E+07 x2 bound:13	Shc3	NM 009167	NA	NA	PROMOTER
chr1 5.1E+07	5.1E+07 x2 bound:13	Gadd45g	NM 011817	NA	NA	INSIDE
chr1 5.3E+07	5.3E+07 x2 bound:13	Msx2	NM 013601	NA	NA	INSIDE
chr1 5.3E+07	5.3E+07 x2_bound:13	Sfxn1	NM_027324	NA	NA	PROMOTER
chr1 5.4E+07	5.4E+07 ox2_bound:13	Higd2a	NM_025933	NA	NA	INSIDE
chr1 6E+07	6E+07 ox2_bound:13	Dapk1	NM_029653	NA	NA	INSIDE
chr1 6.1E+07	6.1E+07 x2_bound:13	Ptch1	NM_008957	NA	NA	PROMOTER
chr1 6.1E+07	6.1E+07 x2_bound:13	Ptch1	NM_008957	NA	NA	PROMOTER
chr1 6.5E+07	6.5E+07 x2_bound:132	6820416H06Rik	NM_198322	NA	NA	INSIDE
chr1 6.5E+07	6.5E+07 x2_bound:132	BC048507	BC048507	NA	NA	Unknown
chr1 7E+07	7E+07 ox2_bound:13	Irx2	NM_010574	NA	NA	INSIDE
chr1 7.2E+07	7.2E+07 x2_bound:134	Pcsk1	NM_013628	NA	NA	INSIDE
chr1 7.9E+07	7.9E+07 x2_bound:134	Lysmd3	NM_030257	NA	NA	PROMOTER
chr1 8.1E+07	8.1E+07 x2_bound:134	mmu-mir-9-2	mmu-mir-9-2	NA	NA	PROMOTER
chr1 8.1E+07	8.1E+07 x2_bound:134	C130071C03Rik	NM_177100	NA	NA	INSIDE
chr1 8.1E+07	8.1E+07 x2_bound:134	C130071C03Rik	NM_177100	NA	NA	INSIDE
chr1 8.8E+07	8.8E+07 x2_bound:134	Rps23	NM_024175	NA	NA	DOWNSTREAM
chr1 9.3E+07	9.3E+07 x2_bound:134	F2rl1	NM_007974	NA	NA	PROMOTER
chr1 9.4E+07	9.4E+07 x2_bound:134	Hmgcr	NM_008255	NA	NA	PROMOTER
chr1 9.4E+07	9.4E+07 x2_bound:134	Hmger	NM_008255	NA	NA	PROMOTER
chr1 9.4E+07	9.4E+07 x2_bound:134	Hexb	NM_010422	NA	NA	INSIDE
chr1 9.7E+07	9.7E+07 x2_bound:13	Mtap1b	NM_008634	NA	NA	INSIDE
chr1 1E+08	1E+08 ox2_bound:13:	2410002O22Rik	NM_025879	NA	NA	INSIDE
chr1 1.1E+08	1.1E+08 ox2_bound:13:	ll6st	NM_010560	NA	NA	PROMOTER
cnr1 1.1E+08	1.1E+08 ox2_bound:13:	mmu-mir-449	mmu-mir-449	NA	NA	PROMOTER
cnr1 1.1E+08	1.1E+08 x2_bound:13:	mmu-mir-449	mmu-mir-449	NA	NA	PROMOTER
cnr1 1.1E+08	$1.1E+08$ $0x2_bound:13$	INdufs4	NM_01022226	INA N A	INA NA	PROMOTER
chr1 1.1E+08	1.1E+08	Itgal	NIM_001033228	INA NA	INA NA	INSIDE
cnr1 1.1E+08	1.1E+00	EMD Emb	NM_010220	INA NA	INA NA	PROMOTER
chr1 5095472	1.1E+08 0X2_00Und:13	Em0 Dala	NM_024221	INA NA	INA NA	
CIII I J70J4/2	5765712 JA2_00ulid:15.	. runo	11111_024221	INA	INA	FROMUTER

chr1 9368570	9369324 x2_bound:136	Ptprg	NM_008981	NA	NA	PROMOTER
chr1 1E+07	1E+07 ox2_bound:136	Zfp312	NM_080433	NA	NA	INSIDE
chr1 1E+07	1E+07bound:136	Zfp312	NM_080433	NA	NA	INSIDE
chr1 1.7E+07	1.7E+07 x2_bound:136	Nid2	NM_008695	NA	NA	PROMOTER
chr1 1.8E+07	1.8E+07 x2_bound:136	Nudt13	NM_026341	NA	NA	INSIDE
chr1 2E+07	2E+07 x2_bound:136	Zfp503	NM_145459	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 x2_bound:136	Rai17	NM_183208	NA	NA	PROMOTER
chr1 2.4E+07	2.4E+07 x2_bound:136	Anxa11	NM_013469	NA	NA	PROMOTER
chr1 2.4E+07	2.4E+07 x2_bound:136	Slmap	NM_032008	NA	NA	PROMOTER
chr1 2.4E+07	2.4E+07 x2_bound:136	E430028B21Rik	NM_178668	NA	NA	INSIDE
chr1 2.4E+07	2.4E+07 x2_bound:137	Hesx1	NM_010420	NA	NA	INSIDE
chr1 2.7E+07	2.7E+07 x2_bound:137	Selk	NM_019979	NA	NA	PROMOTER
chr1 3.2E+07	3.2E+07 x2_bound:137	Glud1	NM_008133	NA	NA	INSIDE
chr1 3.2E+07	3.2E+07 x2 bound:137	Mmrn2	NM 153127	NA	NA	INSIDE
chr1 3.2E+07	3.2E+07 x2 bound:137	mmu-mir-346	mmu-mir-346	NA	NA	PROMOTER
chr1 3.8E+07	3.8E+07 x2 bound:137	Sh2d4b	NM 177816	NA	NA	INSIDE
chr1 3.8E+07	3.8E+07 x2 bound:137	Sh2d4b	NM 177816	NA	NA	INSIDE
chr1 4.1E+07	4.1E+07.5x2 bound:137	Gnpnat1	NM 019425	NA	NA	INSIDE
chr1 4.2E+07	4.2E+07 x2 bound:137	Bmp4	NM 007554	NA	NA	PROMOTER
chr1 4.4E+07	4.4E+07 x2 bound:137	Otx2	NM 144841	NA	NA	PROMOTER
chr1 4 4E+07	44E+07 x2 bound:138	Otx2	NM 144841	NA	NA	PROMOTER
chr1 4 6E+07	4 6E+07 px2_bound:138	Rnase9	NM 183032	NA	NA	PROMOTER
chr1 4.6E+07	4.6E+07 $3x2$ bound:138	Rnase/	NM_021472	NΔ	NΔ	PROMOTER
chr1 4.0E+07	$4.0E+07.0x2_{bound:138}$	7fn219	NM_027248	NΔ	NΔ	PROMOTER
chr1 4.7E+07	$4.7E+07.5x2$ _bound:138	Hnrnc	NM_016884	Rngrin1	NM 023879	DIVERGENT
chr1 4.7E+07	$4.7E+07$ 3x2_bound:130	5730580K01Bik	NM_023434	NA	NA	INSIDE
chr1 4.8E+07	$4.8E+07$ 3x2_bound:130	Sall2	NM_015772	NA	NA	PROMOTER
chr1 4.0E+07	$4.0E+07$ JX2_bound:130	Sal12 S10707	NM_011405	Mrn152	NA	INSIDE
chr1 4.9E+07	$4.9E+07$ JX2_bound:136	SIC7a7	NM_011405	NIA	NA	INSIDE
chr1 4.9E+07	$4.9E+07$ JX2_bound:136	SIC7a7	NM_011405	NA	NM 026851	DIVERGENT
$c = 14.9E \pm 07$	4.9E+07 JX2_bound.13c	SIC/a/	NM_012769	INA NA	NWI_020651	DIVERGENT
cnr1 4.9E+07	4.9E+07 JX2_bound:155	1500001L 15D:1-	NM_015708	INA	INA	PROMOTER
chr1 5E+07	5E+07 $3X2$ bound: 135	1500001L15Kik Wdr22	NM_020890	INA NA	INA NA	PROMUTER
cnr1 5E+07	5E+07 5X2_bound:135	Wdr25	NM_133/34	INA NA	NA	INSIDE
cnr1 5.1E+07	5.1E+07 5x2_bound:155	INTate4	NM_023699	INA NA	NA	PROMOTER
cnr1 5.4E+07	5.4E+07 5X2_bound:159	I mem46	NM_145465	INA NA	NA	PROMOTER
cnr1 5.6E+07	5.6E+07 5X2_bound:155	Sacs	NM_172809	INA NA	NA	PROMUTER
chr1 5.6E+07	5.6E+07 0x2_bound:139	Sacs	NM_172809	NA	NA	INSIDE
chr1 5./E+0/	5./E+0/ 0x2_bound:139	Dieus	NM_026001	NA	NA	PROMOTER
chr1 5.8E+07	5.8E+07 ox2_bound:139	Fdft1	NM_010191	NA	NA	PROMOTER
chr1 5.8E+07	5.8E+07 ox2_bound:139	Tdh	NM_021480	NA	NA	INSIDE
chr1 5.9E+07	5.9E+07 ox2_bound:14(mmu-mir-124a-1	nmu-mir-124a-	NA	NA	PROMOTER
chr1 5.9E+07	5.9E+0/ x2_bound:14(mmu-mir-124a-1	nmu-mir-124a-	NA	NA	DOWNSTREAM
chrl $6E+07$	6E+07 ox2_bound:14(Hmbox1	NM_17/338	D14Ertd231e	NM_153414	DIVERGENT
chrl $6E+0/$	6E+07 ox2_bound:14(Fbxo16	NM_015795	NA	NA	PROMOTER
chr1 6.1E+07	6.1E+07 x2_bound:140	Pbk	NM_023209	NA	NA	INSIDE
chr1 6.1E+07	6.1E+07 x2_bound:140	Ephx2	NM_007940	NA	NA	INSIDE
chr1 6.2E+07	6.2E+07 x2_bound:14(Dpysl2	NM_009955	NA	NA	INSIDE
chr1 6.2E+07	6.2E+07 x2_bound:14(Ebf2	NM_010095	NA	NA	PROMOTER
chr1 6.2E+07	6.2E+07 x2_bound:14(Ebf2	NM_010095	NA	NA	PROMOTER
chr1 6.2E+07	6.2E+07 x2_bound:14(Ebf2	NM_010095	NA	NA	INSIDE
chr1 6.3E+07	6.3E+07 x2_bound:141	Nefl	NM_010910	NA	NA	PROMOTER
chr1 6.4E+07	6.4E+07 x2_bound:141	Chmp7	NM_134078	NA	NA	PROMOTER
chr1 6.4E+07	6.4E+07 x2_bound:141	Chmp7	NM_134078	NA	NA	PROMOTER
chr1 6.5E+07	6.5E+07 x2_bound:141	Slc39a14	NM_144808	NA	NA	PROMOTER
chr1 6.5E+07	6.5E+07 x2_bound:141	Epb4.9	NM_013514	NA	NA	PROMOTER
chr1 6.8E+07	6.8E+07 x2_bound:141	P2ry5	NM_175116	NA	NA	PROMOTER
chr1 6.8E+07	6.8E+07 x2_bound:141	P2ry5	NM_175116	NA	NA	INSIDE
chr1 7.2E+07	7.2E+07 x2_bound:141	LOC629678	NM_001037935	NA	NA	PROMOTER
chr1 7.4E+07	7.4E+07 x2_bound:141	Pcdh8	NM_021543	NA	NA	PROMOTER
chr1 7.4E+07	7.4E+07 x2_bound:141	Pcdh8	NM_021543	NA	NA	PROMOTER
chr1 8.2E+07	8.2E+07 x2_bound:142	Tdrd3	NM_172605	NA	NA	INSIDE
chr1 1E+08	1E+08 ox2_bound:142	Spry2	NM_011897	NA	NA	PROMOTER
chr1 1.1E+08	1.1E+08 x2_bound:142	Gpc6	NM_011821	NA	NA	INSIDE
chr1 1.1E+08	1.1E+08 ox2_bound:142	Tgds	NM_029578	Gpr180	NM_021434	DIVERGENT
chr1 1.2E+08	1.2E+08 x2_bound:142	Slc15a1	NM_053079	NA	NA	PROMOTER

$CIII 1 1.2 E \pm 0.0$	1.2E+08 x2_bo	bund: 14^2	6530402A20	NM_177817	NA	NA	INSIDE
chr1 1.2E+08	1.2E+08 x2_bo	ound:142	Zic5	NM_022987	Zic2	NM_009574	DIVERGENT
chr1 1.2E+08	1.2E+08 x2_bo	ound:142	Zic2	NM_009574	NA	NA	INSIDE
chr1 3853269	3853769 x2_bo	ound:142	Oxct1	NM_024188	NA	NA	PROMOTER
chr1 7639552	7640218 x2_bo	ound:142	Gdnf	NM_010275	NA	NA	INSIDE
chr1 1.1E+07	1.1E+07 x2_bo	ound:143	Rai14	NM_030690	NA	NA	PROMOTER
chr1 1.1E+07	1.1E+07 x2_bo	ound:143	C1qtnf3	NM_030888	NA	NA	INSIDE
chr1 1.1E+07	1.1E+07 x2_bo	ound:143	C1qtnf3	NM_030888	NA	NA	INSIDE
chr1 1.1E+07	1.1E+07 x2_bo	ound:143	C1qtnf3	NM_030888	NA	NA	INSIDE
chr1 1.2E+07	1.2E+07 x2_bo	ound:143	Zfr	NM_011767	NA	NA	PROMOTER
chr1 1.2E+07	1.2E+07 x2_bo	ound:143	Mtmr12	NM_172958	NA	NA	PROMOTER
chr1 1.2E+07	1.2E+07 x2_bo	ound:143	Mtmr12	NM_172958	NA	NA	INSIDE
chr1 1.2E+07	1.2E+07 ox2_bo	ound:143	Golph3	NM_025673	NA	NA	INSIDE
chr1 1.3E+07	1.3E+07 ox2_bo	ound:143	Cdh6	NM_007666	NA	NA	PROMOTER
chr1 1.3E+07	1.3E+07 ox2_bo	ound:143	Cdh6	NM_007666	NA	NA	PROMOTER
chr1 2.5E+07	2.5E+07 x2_bo	ound:144	Basp1	NM_027395	NA	NA	PROMOTER
chr1 2.6E+07	2.6E+07 x2 bo	ound:144	LOC432939	NM 001013791	NA	NA	PROMOTER
chr1 3.2E+07	3.2E+07 x2 bo	ound:144	Cct5	NM 007637	A930016P21Ri	NM 026546	DIVERGENT
chr1 3.5E+07	3.5E+07 x2 bo	ound:144	Osr2	NM_054049	NA	NA	PROMOTER
chr1 3.5E+07	3.5E+07 x2 bo	ound:144	Osr2	NM 054049	NA	NA	PROMOTER
chr1 3.7E+07	3.7E+07 x2 bo	ound:144	Zfp706	NM 026521	NA	NA	PROMOTER
chr1 3.7E+07	3.7E+07 x2 bo	ound:144	Grhl2	NM 026496	NA	NA	INSIDE
chr1 4E+07	4E+07 x2 bo	ound:144	Drys	NM 022722	NA	NA	INSIDE
chr1 4 $3E+07$	$4 3E+07 x^2 b^2$	ound 144	Angnt1	NM_009640	NA	NA	INSIDE
chr1 5 3E+07	5.3E+07 ox2 bo	$und \cdot 144$	Fxt1	NM_010162	NA	NA	INSIDE
chr1 5.5E+07	$5.5E+07$ $3x2_{b0}$	ound:144	Dendc6	NM 145470	NA	NA	INSIDE
chr1 5.5E+07	$5.5E+07$ $3x2_{b0}$	und 14	Mthp	NM 134092	NΔ	NΔ	INSIDE
chr1 5.0E+07	5.0E+07	und 1/14	Has2	NM_008216	NA	NA	INSIDE
chr1 5.7E+07	5.7E+07	und 1/4	Mtss1	NM 144800	NA	NA	INSIDE
chr1 5.9E+07	$5.9E+07$ $3x2_{b0}$	und 1/4	Mtss1	NM 144800	NA	NA	PROMOTER
chr1 6 7E+07	$5.5E+07 \text{ sx2}_{b0}$	und:145	Wiep1	NM 018865	NA	NA	PROMOTER
chi1 0.7E + 07	$7.5E+07.5x^2$ bo	und:14.	I véo	NM 008520	NA	NA	INSIDE
hr 1 7.5E + 07	$7.5E+07.5x2_{00}$	und:14.	Lyte	NM 104250	NA	NA	DROMOTER
chr1 7.0E+07	$7.0E+07$ JX2_00	und 14.	Foxh1	NM 007080	Dop1r160	NM 033371	DIVEDGENT
clii 1 7.7E+07	$7.7E+07 JX2_00$	ound:14.	FUXIII D15Pwg0750a	NM 001017092		NWI_055571	INSIDE
clii 1 7.6E+07	$7.0E+07 JX2_00$	ound:14.	Cda42ap1	NM 027210	NA NA	NA	INSIDE
clii 1 / .9E+07	$7.9E+07$ JX2_00	ound:140	Dmalh	NM_010050	NA	NA	DROMOTER
$chi1 \delta E + 07$	$8E+07$ JX2_00	ound:140	Anobao ²	NM_020255	NA	NA	PROMOTER
chi = 0.07	$8E+07$ JX2_00	Juliu. 14(Apobecs	NM 144911	NA	NA	PROMOTER
$CIII \delta E + 0/$	$\Delta \mathbf{E} \pm \mathbf{U} / \mathbf{D} \mathbf{X} / \mathbf{D} \mathbf{U}$	ound:140	Cbx7	NNI_144011	INA NA	INA NA	PROMOTER
-1-1 0E 07	0E+07 sx2_00			NVI 144811		NA	
chr1 8E+07	8E+07 ox2_bo	ound:140	Cbx7	NM 144011		NTA	PROMOTER
chr1 8E+07 chr1 8E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo	ound:146	Cbx7 Dr12	NM_144811	NA NA	NA	PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo	ound:146 ound:146 ound:146	Cbx7 Rpl3	NM_144811 NM_013762	NA NA Syngr1	NA NA	PROMOTER PROMOTER INSIDE
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo	ound:146 ound:146 ound:146 ound:146	Cbx7 Cbx7 Rpl3 Rpl32	NM_144811 NM_013762 NM_013762	NA NA Syngr1 NA	NA NA NM_009303	PROMOTER PROMOTER INSIDE DIVERGENT
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0	ound:146 ound:146 ound:146 ound:146 ound:146	Cbx7 Cbx7 Rpl3 Rpl32 Rpl36	NM_144811 NM_013762 NM_013762 NM_013762	NA NA Syngr1 NA NA	NA NA NM_009303 NM_009303	PROMOTER PROMOTER INSIDE DIVERGENT DIVERGENT
chr1 8E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8.2E+07 5x2_bo	ound:146 ound:146 ound:146 ound:146 ound:146 ound:146	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2	NM_144811 NM_013762 NM_013762 NM_013762 NM_145993	NA NA Syngr1 NA NA NA	NA NA NM_009303 NM_009303 NA	PROMOTER PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo	ound:146 ound:146 ound:146 ound:146 ound:146 ound:146 ound:147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2	NM_144811 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507	NA NA Syngr1 NA NA NA	NA NA NM_009303 NM_009303 NA NA	PROMOTER PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a	NM_144811 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507 NM_026737	NA Syngr1 NA NA NA NA Aco2	NA NA NM_009303 NM_009303 NA NA NA NM_080633	PROMOTER PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER DIVERGENT
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.3E+07 5x2_bo	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_026737 NM_178627	NA Syngr1 NA NA NA Aco2 NA	NA NA NM_009303 NM_009303 NA NA NM_080633 NA	PROMOTER PROMOTER INSIDE DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.4E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.3E+07 5x2_bo 8.4E+07 5x2_bo	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_026737 NM_178627 NM_178614	NA Syngr1 NA NA NA Aco2 NA NA	NA NA NM_009303 NM_009303 NA NA NM_080633 NA NA	PROMOTER PROMOTER INSIDE DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.5E+07 chr1 8.5E+07 chr1 8.5E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.3E+07 5x2_bo 8.4E+07 5x2_bo 8.5E+07 5x2_bo	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_026737 NM_026737 NM_178627 NM_178614 BC024991	NA Syngr1 NA NA NA Aco2 NA NA NA	NA NA NM_009303 NM_009303 NA NA NA NA NA NA NA	PROMOTER PROMOTER INSIDE DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER Unknown
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.3E+07 chr1 8.4E+07 chr1 8.5E+07 chr1 9.5E+07 chr1 9.5E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.3E+07 5x2_bo 8.4E+07 5x2_bo 8.5E+07 5x2_bo 9E+07 5x2_bo	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_178627 NM_178614 BC024991 NM_009713	NA Syngr1 NA NA NA Aco2 NA NA NA NA	NA NA NM_009303 NM_009303 NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER Unknown PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.4E+07 chr1 8.4E+07 chr1 8.5E+07 chr1 9E+07 chr1 9E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.3E+07 5x2_bo 8.3E+07 5x2_bo 8.4E+07 5x2_bo 9E+07 5x2_bo 9E+07 5x2_bo	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3	NM_144811 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_178617 BC024991 NM_009713 NM_021423	NA Syngr1 NA NA NA Aco2 NA NA NA NA NA	NA NA NM_009303 NM_009303 NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER Unknown PROMOTER PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.5E+07 chr1 9.4E+07 chr1 9.5E+07	8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.2E+07 5x2_bo 8.3E+07 5x2_bo 8.4E+07 5x2_bo 9E+07 5x2_bo 9E+07 5x2_bo 9.3E+07 5x2_bo	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1	NM_144811 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_178627 NM_178614 BC024991 NM_009713 NM_021423 NM_021423 NM_026025	NA Syngr1 NA NA NA Aco2 NA NA NA NA NA NA	NA NA NM_009303 NM_009303 NA NA NM_080633 NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.4E+07 chr1 8.4E+07 chr1 8.4E+07 chr1 9.E+07 chr1 9.E+07 chr1 9.3E+07 chr1 9.3E+07	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.3E+07 5x2_b0 8.4E+07 5x2_b0 9E+07 5x2_b0 9.3E+07 5x2_b0 9.3E+07 5x2_b0 9.3E+07 5x2_b0 9.3E+07 5x2_b0 9.3E+07 5x2_b0 9.3E+07 5x2_b0 9.3E+07 5x2_b0 9.3E+07 5x2_b0	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f	NM_144811 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_178627 NM_178614 BC024991 NM_009713 NM_021423 NM_026025 NM_175344	NA Syngr1 NA NA NA Aco2 NA NA NA NA NA NA NA	NA NA NM_009303 NM_009303 NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.5E+07 chr1 8.4E+07 chr1 9.4E+07 chr1 9.E+07 chr1 9.E+07 chr1 9.3E+07 chr1 9.6E+07 chr1 9.7E+07 chr1 9.7E+07	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.3E+07 5x2_b0 8.4E+07 5x2_b0 9E+07 5x2_b0 9E+07 5x2_b0 9.3E+07 5x2_b09.3E+00	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2	NM_144811 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_178627 NM_178614 BC024991 NM_009713 NM_021423 NM_021423 NM_026025 NM_175344 NM_175121	NA Syngr1 NA NA NA Aco2 NA NA NA NA NA NA NA NA	NA NA NA_009303 NM_009303 NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.3E+07 chr1 8.4E+07 chr1 9.4E+07 chr1 9.E+07 chr1 9.E+07 chr1 9.3E+07 chr1 9.6E+07 chr1 9.7E+07 chr1 9.7E+07	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.3E+07 5x2_b0 8.4E+07 5x2_b0 9.E+07 5x2_b0 9.3E+07 5x2_b0 9.3E+07 5x2_b0 9.7E+07 5x2_b0 9.7E+07 5x2_b0 9.7E+07 5x2_b0 9.7E+07 5x2_b0 9.7E+07 5x2_b0 9.7E+07 5x2_b0	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2	NM_144811 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_178627 NM_178614 BC024991 NM_009713 NM_021423 NM_026025 NM_175344 NM_175121 NM_175121	NA Syngr1 NA NA NA Aco2 NA NA NA NA NA NA NA NA NA	NA NA NA_009303 NM_009303 NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.3E+07 chr1 8.4E+07 chr1 9.4E+07 chr1 9.E+07 chr1 9.3E+07 chr1 9.3E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.7E+07	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.3E+07 5x2_b0 9.5E+07 5x2_b0 9.5E+07 5x2_b0 9.6E+07 5x2_b0 9.7E+07 5x2_b0 9.7	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_021423 NM_026025 NM_175344 NM_175121 NM_175121 NM_031163	NA Syngr1 NA NA NA Aco2 NA NA NA NA NA NA NA NA NA NA	NA NA NM_009303 NM_009303 NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.3E+07 chr1 8.4E+07 chr1 9.4E+07 chr1 9.E+07 chr1 9.3E+07 chr1 9.7E+07	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.3E+07 5x2_b0 9.5E+07 5x2_b0 9.5E+07 5x2_b0 9.3E+07 5x2_b0 9.7E+07 5x2_b0 9.7	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147	Cbx7 Rp13 Rp132 Rp136 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1 Cacnb3	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_021423 NM_026025 NM_175344 NM_175121 NM_175121 NM_031163 NM_007581	NA Syngr1 NA NA NA Aco2 NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NM_009303 NM_009303 NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.3E+07 chr1 8.4E+07 chr1 9.4E+07 chr1 9.E+07 chr1 9.3E+07 chr1 9.7E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.3E+07 5x2_b0 9.5E+07 5x2_b0 9.5E+07 5x2_b0 9.3E+07 5x2_b0 9.7E+07 5x2_b0 9.7	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 147	Cbx7 Rp13 Rp132 Rp136 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1 Cacnb3 Tuba1	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_021423 NM_026025 NM_175344 NM_075344 NM_175121 NM_031163 NM_007581 NM_011653	NA Syngr1 NA NA NA Aco2 NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA_ NM_009303 NA_ NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.3E+07 chr1 8.4E+07 chr1 9.4E+07 chr1 9.E+07 chr1 9.3E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.8E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 1E+08	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.3E+07 5x2_b0 9.4E+07 5x2_b0 9.4E+07 5x2_b0 9.4E+07 5x2_b0 9.7E+07 5x2_b0 9.7E+07 5x2_b0 9.7E+07 5x2_b0 9.8E+07 5x2_b0 9.9E+07 5x2_b0 9.9	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 148 ound: 148 ound: 148	Cbx7 Rp13 Rp132 Rp136 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1 Cacnb3 Tuba1 Smarcd1	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_021423 NM_021423 NM_026025 NM_175344 NM_075344 NM_175121 NM_031163 NM_007581 NM_0011653 NM_031842	NA Syngr1 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA_ NM_009303 NA_ NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE INSIDE
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.3E+07 chr1 8.4E+07 chr1 8.5E+07 chr1 9.E+07 chr1 9.3E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.9E+07 chr1 1.E+08 chr1 1.E+08	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.4E+07 5x2_b0 9E+07 5x2_b0 9E+07 5x2_b0 9.4E+07 5x2_b0 9.7E+07 5x2_b0 9.7E+07 5x2_b0 9.7E+07 5x2_b0 9.8E+07 5x2_b0 9.8E+08 5x2_b0 9.8E+08 5x2_b0	ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 146 ound: 147 ound: 148 ound: 148 ound: 148 ound: 148 ound: 148	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1 Cacnb3 Tuba1 Smarcd1 BC031490	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_009713 NM_021423 NM_0026025 NM_175344 NM_075121 NM_031163 NM_007581 NM_0011653 NM_031842 BC031490	NA Syngr1 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NM_009303 NA 009303 NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE INSIDE INSIDE INSIDE
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.3E+07 chr1 8.4E+07 chr1 9.4E+07 chr1 9.4E+07 chr1 9.4E+07 chr1 9.4E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.7E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 9.9E+07 chr1 1.E+08 chr1 1.E+08 chr1 1.E+08	8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.2E+07 5x2_b0 8.3E+07 5x2_b0 8.4E+07 5x2_b0 9.E+07 5x2_b0 9.E+07 5x2_b0 9.6E+07 5x2_b0 9.7E+07 5x2_b0 9.8E+07 5x2_b0 9.8E+07 5x2_b0 9.8E+07 5x2_b0 9.8E+07 5x2_b0 9.8E+07 5x2_b0 9.8E+07 5x2_b0 9.8E+07 5x2_b0 9.8E+07 5x2_b0 9.8E+07 5x2_b0 1.E+08	ound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 147 pound: 148 pound: 148 pound: 148 pound: 148 pound: 148 pound: 148 pound: 148 pound: 148 pound: 148	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1 Cacnb3 Tuba1 Smarcd1 BC031490 BC031490	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_009713 NM_021423 NM_0026025 NM_175344 NM_075121 NM_075121 NM_07581 NM_007581 NM_0011653 NM_0031842 BC031490 BC031490	NA Syngr1 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NM_009303 NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE INSIDE INSIDE INSIDE
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.4E+07 chr1 8.5E+07 chr1 9.E+07 chr1 9.3E+07 chr1 9.4E+07 chr1 9.7E+07 chr1 1E+08	8E+07 x2_ba 8E+07 x2_ba 8E+07 x2_ba 8E+07 x2_ba 8E+07 x2_ba 8E+07 x2_ba 8E+07 x2_ba 8.2E+07 x2_ba 8.2E+07 x2_ba 8.2E+07 x2_ba 8.2E+07 x2_ba 8.3E+07 x2_ba 9.4E+07 x2_ba 9.4E+07 x2_ba 9.4E+07 x2_ba 9.4E+07 x2_ba 9.7E+07 x2_ba 9.7E+07 x2_ba 9.7E+07 x2_ba 9.7E+07 x2_ba 9.7E+07 x2_ba 9.7E+07 x2_ba 9.7E+07 x2_ba 9.7E+07 x2_ba 9.7E+07 x2_ba 1E+08 x2_ba 1E+08 x2_ba 1E+08 x2_ba	ound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 147 pound: 148 pound: 148 pound: 148 pound: 148 pound: 148 pound: 148 pound: 148 pound: 148	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1 Cacnb3 Tuba1 Smarcd1 BC031490 BC004728	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_009713 NM_0021423 NM_0021423 NM_0021423 NM_0021423 NM_021423 NM_021423 NM_021423 NM_021423 NM_075121 NM_175121 NM_175121 NM_031163 NM_0031842 BC031490 BC031490 BC031490 NM_174992	NA Syngr1 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA_ NM_009303 NA_009303 NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE INSIDE INSIDE UNKNOWN UNKNOWN
chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.2E+07 chr1 8.4E+07 chr1 8.5E+07 chr1 9.E+07 chr1 9.2E+07 chr1 9.7E+07 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 chr1 1.8E+08 <tr t<="" td=""><td>8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8.2E+07 x2_bo 8.2E+07 x2_bo 8.2E+07 x2_bo 8.3E+07 x2_bo 8.4E+07 x2_bo 9.E+07 x2_bo 9.E+07 x2_bo 9.6E+07 x2_bo 9.7E+07 x2_bo 9.7E+07 x2_bo 9.7E+07 x2_bo 9.8E+07 x2_bo 9.8E+07 x2_bo 9.9E+07 x2_bo 9.9E+07 x2_bo 1E+08 x2_bo 1E+08 x2_bo 1E+08 x2_bo</td><td>ound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 147 pound: 148 pound: 148 pound: 148 pound: 148</td><td>Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1 Cacnb3 Tuba1 Smarcd1 BC031490 BC004728 LOC432988</td><td>NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_00713 NM_021423 NM_0075121 NM_075121 NM_075121 NM_075121 NM_031163 NM_007581 NM_011653 NM_031842 BC031490 BC031490 BC031490 NM_174992 NM_001004171</td><td>NA Syngr1 NA NA NA NA Aco2 NA NA NA NA NA NA NA NA NA NA NA NA NA</td><td>NA NA NA_ NA_ 009303 NA_ 009303 NA NA NA NA NA NA NA NA NA NA NA NA NA</td><td>PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE INSIDE Unknown Unknown</td></tr>	8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8.2E+07 x2_bo 8.2E+07 x2_bo 8.2E+07 x2_bo 8.3E+07 x2_bo 8.4E+07 x2_bo 9.E+07 x2_bo 9.E+07 x2_bo 9.6E+07 x2_bo 9.7E+07 x2_bo 9.7E+07 x2_bo 9.7E+07 x2_bo 9.8E+07 x2_bo 9.8E+07 x2_bo 9.9E+07 x2_bo 9.9E+07 x2_bo 1E+08 x2_bo 1E+08 x2_bo 1E+08 x2_bo	ound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 147 pound: 148 pound: 148 pound: 148 pound: 148	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1 Cacnb3 Tuba1 Smarcd1 BC031490 BC004728 LOC432988	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_00713 NM_021423 NM_0075121 NM_075121 NM_075121 NM_075121 NM_031163 NM_007581 NM_011653 NM_031842 BC031490 BC031490 BC031490 NM_174992 NM_001004171	NA Syngr1 NA NA NA NA Aco2 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA_ NA_ 009303 NA_ 009303 NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE INSIDE Unknown Unknown
8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8E+07 x2_bo 8.2E+07 x2_bo 8.2E+07 x2_bo 8.2E+07 x2_bo 8.3E+07 x2_bo 8.4E+07 x2_bo 9.E+07 x2_bo 9.E+07 x2_bo 9.6E+07 x2_bo 9.7E+07 x2_bo 9.7E+07 x2_bo 9.7E+07 x2_bo 9.8E+07 x2_bo 9.8E+07 x2_bo 9.9E+07 x2_bo 9.9E+07 x2_bo 1E+08 x2_bo 1E+08 x2_bo 1E+08 x2_bo	ound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 146 pound: 147 pound: 148 pound: 148 pound: 148 pound: 148	Cbx7 Rpl3 Rpl32 Rpl36 L3mbtl2 Tob2 Phf5a Poldip3 Samm50 BC024991 Arsa Shank3 Zcrb1 Tmem16f Slc38a2 Slc38a2 Col2a1 Cacnb3 Tuba1 Smarcd1 BC031490 BC004728 LOC432988	NM_144811 NM_013762 NM_013762 NM_013762 NM_013762 NM_145993 NM_020507 NM_026737 NM_178614 BC024991 NM_009713 NM_00713 NM_021423 NM_0075121 NM_075121 NM_075121 NM_075121 NM_031163 NM_007581 NM_011653 NM_031842 BC031490 BC031490 BC031490 NM_174992 NM_001004171	NA Syngr1 NA NA NA NA Aco2 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA_ NA_ 009303 NA_ 009303 NA NA NA NA NA NA NA NA NA NA NA NA NA	PROMOTER INSIDE DIVERGENT DIVERGENT PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER INSIDE INSIDE INSIDE INSIDE Unknown Unknown	

chr1 1E+08	1E+08	ox2_bound:149	Prr13	NM_025385	NA	NA	INSIDE
chr1 1E+08	1E+08	ox2_bound:149	Hoxc12	NM_010463	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2_bound:149	Hoxc5	NM_175730	NA	NA	INSIDE
chr1 1E+08	1E+08	ox2 bound:149	Smug1	NM 027885	NA	NA	PROMOTER
chr1 1E+08	1E+08	ox2 bound:149	Hnrpa1	NM 001039129	NA	NA	INSIDE
chr1 4558866	4559366	ox2 bound-14	Morn1	NM 029657	NA	NA	PROMOTER
$chr1 1 3E \pm 07$	1 3E±07	22_bound:14	Dorn	NM_028761	Bfar	NM 025076	DIVERGENT
hr1 1.3E+07	1.3E+07	$3x2_bound:14$	$D_{10}2a10$	NM_011087	N A	NA	DROMOTER
chill 1.3E+07	1.3E+07	JX2_00ulld.145	Flazg10	NWI_011967	INA	INA	FROMUTER
chr1 1.3E+07	1.3E+07	5x2_bound:149	KIN5	NM_001039521	NA	NA	INSIDE
chr1 1.4E+07	1.4E+07	5x2_bound:149	2900011008Rik	NM_144518	NA	NA	INSIDE
chr1 1.6E+07	1.6E+07	ox2_bound:150	Yars2	NM_198246	NA	NA	PROMOTER
chr1 1.6E+07	1.6E+07	ox2_bound:150	Fgd4	NM_139234	NA	NA	PROMOTER
chr1 1.7E+07	1.7E+07	ox2_bound:150	Thap7	NM_026909	NA	NA	PROMOTER
chr1 1.7E+07	1.7E+07	ox2_bound:150	Slc25a1	NM_153150	NA	NA	PROMOTER
chr1 2E+07	2E+07	ox2_bound:150	Ap2m1	NM_009679	NA	NA	PROMOTER
chr1 2.2E+07	2.2E+07	ox2_bound:150	Liph	NM_153404	NA	NA	PROMOTER
chr1 2.2E+07	2.2E+07	ox2 bound:15(Liph	NM 153404	NA	NA	PROMOTER
chr1 2.2E+07	2.2E+07	ox2 bound:15(C330012H03Rik	NM 183029	NA	NA	INSIDE
chr1 2.2E+07	2.2E+07	ox2_bound:15(Sfrs10	NM_009186	NA	NA	INSIDE
chr1 2.2E+07	2.2E+07	$2x^2$ bound:15(Etv5	NM 023794	NA	NA	PROMOTER
chr1 2.2E+07	2.2E+07	2x2_bound:151	Etv5	NM 023794	NA	NA	PROMOTER
ohr1 2.2E+07	2.2E+07	2x2_bound:151	Eif4o2	NM_013506	NA	NA	INSIDE
-h =1 2.3E+07	2.56+07	JX2_00ulld.151	DC20010A10D:1-	NM_177072	INA NA	INA NA	DDOMOTED
chr1 2.3E+07	2.3E+07	5x2_bound:151	B630019A10R1K	NM_17/072	NA	NA	PROMOTER
chr1 2.4E+07	2.4E+07	5x2_bound:151	Lpp	NM_1/8665	NA	NA	PROMOTER
chr1 3.3E+07	3.3E+07	ox2_bound:151	Slc12a8	NM_134251	NA	NA	PROMOTER
chr1 3.6E+07	3.6E+07	ox2_bound:151	Parp14	NM_001039530	NA	NA	INSIDE
chr1 3.8E+07	3.8E+07	ox2_bound:151	Tmem39a	NM_026407	NA	NA	PROMOTER
chr1 4.5E+07	4.5E+07	ox2_bound:151	Cd200r1	NM_021325	NA	NA	PROMOTER
chr1 4.6E+07	4.6E+07	ox2_bound:151	Tagln3	NM_019754	NA	NA	PROMOTER
chr1 4.6E+07	4.6E+07	ox2_bound:151	Tagln3	NM_019754	NA	NA	PROMOTER
chr1 4.8E+07	4.8E+07	ox2 bound:152	Dppa4	NM 001018002	NA	NA	PROMOTER
chr1 5.6E+07	5.6E+07	ox2 bound:152	Nfkbiz	NM 030612	NA	NA	PROMOTER
chr1 8.5E+07	8.5E+07	ox2_bound:152	Jam2	NM 023844	NA	NA	PROMOTER
chr1 8 6E+07	8.6E+07	$2x^2$ bound:152	Adamts1	NM_009621	NA	NA	PROMOTER
chr1 $9E\pm07$	9E±07	by2_bound:152	BC065126	BC065126	NΔ	NΔ	Unknown
$chr1 0.2E \pm 0.7$	0.2E+07	bound:152	Ifngr?	NM 008338	NA	NA	INSIDE
hr1 0.2E+07	9.2E+07	$3x2_{bound:152}$	Cruz11	NM 122670	NA	NA	DDOMOTED
cnr1 9.2E+07	9.2E+07	5x2_bound:152	CryzII 1100017012D31-	NM_120742	INA	INA	PROMUTER
chr1 9.2E+07	9.2E+07	5x2_bound:152	119001/012Kik	NM_138743	NA	NA	INSIDE
chr1 9.6E+0/	9.6E+07	ox2_bound:152	Brwdl	NM_145125	NA	NA	PROMOTER
chr1 5385118	5385765	ox2_bound:152	5730437N04Rik	NM_027457	NA	NA	INSIDE
chr1 5435942	5436570	ox2_bound:153	Zdhhc14	NM_146073	NA	NA	PROMOTER
chr1 1.3E+07	1.3E+07	ox2_bound:153	Thbs2	NM_011581	NA	NA	INSIDE
chr1 1.3E+07	1.3E+07	ox2_bound:153	Tcte3	NM_011560	NA	NA	INSIDE
chr1 1.4E+07	1.4E+07	ox2_bound:153	D111	NM_007865	NA	NA	PROMOTER
chr1 1.4E+07	1.4E+07	ox2_bound:153	D111	NM_007865	NA	NA	PROMOTER
chr1 1.4E+07	1.4E+07	ox2_bound:153	D111	NM_007865	NA	NA	PROMOTER
chr1 1.6E+07	1.6E+07	ox2_bound:153	Lnpep	NM_172827	NA	NA	PROMOTER
chr1 1.9E+07	1.9E+07	ox2 bound:153	Zfp160	NM 145483	NA	NA	PROMOTER
chr1 2.2E+07	2.2E+07	ox2 bound:15?	Zfp206	NM 001033425	NA	NA	INSIDE
chr1 2.2E+07	2.2E+07	$2x^2$ bound: 15 ²	Zfp206	NM_001033425	NA	NA	INSIDE
chr1 2.2E+07	2.2E+07	$3x2$ _bound:154	2810417112Rik	NM 029798	NA	NA	PROMOTER
chr1 2.2E+07	2.2E+07	2x2_bound:154	The1d24	NM 173186	NA	NA	INSIDE
chr1 2.2E+07	2.2E+07	5x2_bound:154	Trof7	NM 152702	NA	NA	DDOMOTED
chi1 2.3E+07	2.56+07	JX2_00ulld.154	Tial/ Eahd1	NM 022490	INA NA	INA NA	INSIDE
cnr1 2.3E+07	2.3E+07	5x2_bound:154	Fandi	NM_025480	NA	NA	INSIDE
chr1 2.4E+07	2.4E+07	5x2_bound:154	Msin	NM_018857	NA	NA	PROMOTER
chr1 2.4E+07	2.4E+07	ox2_bound:154	Tmem8	NM_021793	NA	NA	PROMOTER
chr1 2.5E+07	2.5E+07	ox2_bound:154	Dusp1	NM_013642	NA	NA	PROMOTER
chr1 2.5E+07	2.5E+07	0x2_bound:154	Itpr3	NM_080553	NA	NA	PROMOTER
chr1 2.6E+07	2.6E+07	0x2_bound:154	Grm4	NM_001013385	NA	NA	INSIDE
chr1 2.7E+07	2.7E+07	ox2_bound:154	Gm749	NM_001034871	NA	NA	PROMOTER
chr1 2.7E+07	2.7E+07	ox2_bound:155	Gm749	NM_001034871	NA	NA	PROMOTER
chr1 2.7E+07	2.7E+07	ox2_bound:155	Stk38	NM_134115	NA	NA	PROMOTER
chr1 2.7E+07	2.7E+07	ox2_bound:155	Stk38	NM_134115	NA	NA	PROMOTER
chr1 2.9E+07	2.9E+07	ox2 bound:155	Slc37a1	NM 153062	NA	NA	INSIDE
chr1 3.1E+07	3.1E+07	ox2_bound:155	Morc2b	NM 177719	NA	NA	INSIDE
			-				

chr1 3.1E+07	3.1E+07 x2_bound:155	Zfp422	NM_029952	rs1	NA	INSIDE
chr1 3.2E+07	3.2E+07 x2_bound:155	Daxx	NM_007829	NA	NA	PROMOTER
chr1 3.2E+07	3.2E+07 x2_bound:155	Rps18	NM_011296	Vps52	NM_172620	DIVERGENT
chr1 3.3E+07	3.3E+07 x2_bound:155	Notch4	NM_010929	NA	NA	INSIDE
chr1 3.4E+07	3.4E+07 x2_bound:155	Pou5f1	NM_013633	NA	NA	PROMOTER
chr1 3.4E+07	3.4E+07 x2_bound:156	Pou5f1	NM_013633	NA	NA	PROMOTER
chr1 3.4E+07	3.4E+07 x2 bound:156	Cdsn	NM 001008424	NA	NA	PROMOTER
chr1 3.4E+07	3.4E+07 x2 bound:156	Tubb5	NM 011655	Myg1	NA	INSIDE
chr1 3 4E+07	3.4E+07 x2 bound:156	Tubb5	NM 011655	NA	NM 021713	DIVERGENT
chr1 3.4E+07	$3.4E+07$ $3x2_{bound:156}$	Ppp1r10	NM 175934	NΔ	ΝΔ	INSIDE
chr1 3.5E \pm 07	3.5E+07 $3x2$ bound:156	Ppp1r10	NM 020632	NA	NA	PROMOTER
chr1 3.5E+07	3.5E+07 $3x2$ bound:156	2410127M14Dib	NM 020747	NA	NA	DROMOTER
chi1 3.5E+07	$3.5E+07$ $3x2$ _bound:15(241013/10114KIK 7fn57	$MM_{001012745}$	NA NA	NA	PROMOTER
CIII 1 3.5E+07	5.5E+07 5X2_bound:15t	Z1p37	NM_001015743	NA NA	INA	PROMOTER
chr1 3.5E+07	3.5E+07 5x2_bound:15t	Zip57	NM_009559	INA	NA	PROMOTER
chr1 3.5E+07	3.5E+07 5x2_bound:15t	Mog	NM_010814	NA	NA	PROMOTER
chr1 4.4E+0/	4.4E+07 x2_bound:157	Hsp90ab1	NM_008302	NA	NA	PROMOTER
chr1 4.4E+07	4.4E+07 x2_bound:157	SIc29a1	NM_022880	NA	NA	PROMOTER
chr1 4.5E+07	4.5E+07 x2_bound:157	Slc22a7	NM_144856	NA	NA	PROMOTER
chr1 4.5E+07	4.5E+07 x2_bound:157	Rp1711	NM_025433	NA	NA	PROMOTER
chr1 5E+07	5E+07 ox2_bound:157	Satb1	NM_009122	NA	NA	PROMOTER
chr1 5.1E+07	5.1E+07 x2_bound:157	Kcnh8	NM_001031811	NA	NA	PROMOTER
chr1 5.2E+07	5.2E+07 x2_bound:157	Pcaf	NM_020005	NA	NA	PROMOTER
chr1 5.2E+07	5.2E+07 x2_bound:157	Pcaf	NM_020005	NA	NA	PROMOTER
chr1 5.2E+07	5.2E+07 x2_bound:157	Pcaf	NM_020005	NA	NA	PROMOTER
chr1 5.4E+07	5.4E+07 x2_bound:157	BC031441	NM_146249	Ebi3	NM_015766	DIVERGENT
chr1 5.4E+07	5.4E+07 x2 bound:158	Ccdc94	NM 028381	NA	NA	INSIDE
chr1 5.4E+07	5.4E+07 x2 bound:158	M6prbp1	NM_025836	NA	NA	INSIDE
chr1 5.4E+07	5.4E+07 x2 bound:158	Jmid2b	NM 172132	NA	NA	PROMOTER
chr1 5.5E+07	5.5E+07 x2 bound:158	Rp13	NM_018730	Syngr1	NA	INSIDE
chr1 5 5E+07	5 5E+07 x2 bound:158	Ranhn3	NM 027933	NA	NA	PROMOTER
chr1 5.5E+07	5.5E+07.5x2_bound:158	Nrtn	NM_008738	Due31	NM 144858	DIVERGENT
chr1 $6.4E\pm07$	$6.4E\pm07$ px2_bound:156	F130000112Rib	NM 001008073	NA	NA	PROMOTER
chr1 6.4E+07	$6.4E+07$ $3x2$ _bound:156	Twen1	NM 023053	NA	NA	PROMOTER
chr1 6.6E + 07	$6.4E+07$ $3x2_{bound:15}$	I wsg1	NM_008480	NA	NA	PROMOTER
clii 1 0.0E+07	$0.0E+07$ JX2_Doulid.156	Lamal	NM_008480	INA NA	NA	INCIDE
clii 1 0.0E+07	$0.0E+07$ JX2_D0ulld.15c	Lailla I	NM 172064	INA NA	NA	DROMOTER
chr1 0.0E+07	$0.0E+07$ $3x2$ _bound:155	Arngap28	NM_1/2904	INA NA	INA NA	PROMUTER
cnr1 6.9E+07	6.9E+07 0X2_bound:155	I gif	NM_009372	NA	NA	INSIDE
chr1 6.9E+07	6.9E+07 5x2_bound:159	Mylc2b	NM_023402	NA	NA	PROMOTER
chr1 7.7E+07	7.7E+07 x2_bound:159	Vit	NM_028813	NA	NA	INSIDE
chr1 7.9E+07	7.9E+07 ox2_bound:159	Sfrs7	NM_146083	NA	NA	PROMOTER
chr1 8.3E+07	8.3E+07 x2_bound:159	Ppm1b	NM_011151	NA	NA	PROMOTER
chr1 8.4E+07	8.4E+07 x2_bound:159	Six3os1	NM_175267	Six3	NA	INSIDE
chr1 8.4E+07	8.4E+07 x2_bound:159	Six3os1	NM_175267	Six3	NA	INSIDE
chr1 8.4E+07	8.4E+07 x2_bound:159	Six3os1	NM_175267	NA	NM_011381	DIVERGENT
chr1 8.6E+07	8.6E+07 x2_bound:159	Msh6	NM_010830	NA	NA	PROMOTER
chr1 6720080	6721211 x2_bound:16(Epc1	NM_007935	NA	NA	PROMOTER
chr1 9414640	9415405 x2_bound:16(Fzd8	NM_008058	NA	NA	PROMOTER
chr1 9418194	9419299 x2_bound:16(Fzd8	NM_008058	NA	NA	DOWNSTREAM
chr1 1.3E+07	1.3E+07 x2_bound:16(Npc1	NM_008720	NA	NA	INSIDE
chr1 1.3E+07	1.3E+07 x2 bound:16(Cabyr	NM 027687	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2 bound:16(Rnf125	NM 026301	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07 x2 bound:16(Rnf125	NM_026301	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07.5x2_bound:16(Rnf125	NM_026301	NA	NA	PROMOTER
chr1 2.1E+07	2.1E+07.5x2_bound:16(Rnf125	NM_026301	NA	NA	INSIDE
chr1 3 $4E+07$	$3.4E\pm07$ yx2 bound:16(D0H4S114	NM_053078	NΔ	NΔ	INSIDE
hr1 2.5E+07	$3.4E+07$ $3X2_{bound:161}$	Wnt%	NM_000200	NA	NA	DROMOTER
cm1 3.3E+0/	3.5 ± 07 3.2 ± 07 3.2 ± 07 3.2 ± 07 3.2 ± 0.1	Willoa Doin?	NM 026420	IN/A NLA	INA NA	INCIDE
cm1 3.0E+0/	$3.0E+07$ $3X2_00und:101$	Paip2	INIVI_020420	INA NA	INA NA	INSIDE
cnr1 3./E+0/	5./E+U/ 0x2_bound:161	Pura	INIM_008989	NA	NA	PROMOTER
cnr1 3./E+07	5./E+0/ 0x2_bound:161	Dndl	NM_173383	NA	NA	INSIDE
chr1 3./E+07	5./E+0/ 0x2_bound:161	Pcdha12	NM_138663	NA	NA	PROMOTER
chr1 3.8E+07	3.8E+07 x2_bound:161	Pcdhb1	NM_053126	NA	NA	INSIDE
chr1 3.8E+07	3.8E+07 x2_bound:161	Pcdhb3	NM_053128	NA	NA	INSIDE
chr1 3.8E+07	3.8E+07 x2_bound:161	Pcdhb11	NM_053136	NA	NA	INSIDE
chr1 3.8E+07	3.8E+07 x2_bound:161	Pcdhb16	NM_053141	NA	NA	INSIDE
chr1 3.8E+07	3.8E+07 x2_bound:161	Pcdhgb2	NM_033575	NA	NA	PROMOTER
chr1 3.8E+07	3.8E+07 x2_bound:162	Pcdhgb6	NM_033578	NA	NA	PROMOTER
------------------------------	--	----------------------	---------------	---------------	-------------	------------
chr1 3.8E+07	3.8E+07 x2_bound:162	Diap1	NM_007858	NA	NA	INSIDE
chr1 3.9E+07	3.9E+07 x2_bound:162	9630014M24Rik	NM_001033771	I NA	NA	INSIDE
chr1 4.3E+07	4.3E+07 x2_bound:162	BC052715	BC052715	NA	NA	Unknown
chr1 4.4E+07	4.4E+07 x2_bound:162	Stk32a	NM_178749	NA	NA	INSIDE
chr1 4.4E+07	4.4E+07 x2_bound:162	Spink3	NM_009258	NA	NA	PROMOTER
chr1 4.6E+07	4.6E+07 x2_bound:162	Kcnn2	NM_080465	NA	NA	PROMOTER
chr1 4.7E+07	4.7E+07 x2_bound:162	Trim36	NM_178872	NA	NA	PROMOTER
chr1 4.8E+07	4.8E+07 x2_bound:162	Sema6a	NM_018744	NA	NA	INSIDE
chr1 5.5E+07	5.5E+07 x2 bound:162	BC092219	BC092219	NA	NA	Unknown
chr1 5.8E+07	5.8E+07 x2 bound:163	Slc12a2	NM 009194	NA	NA	PROMOTER
chr1 6.1E+07	6.1E+07 x2 bound:163	Slc6a7	NM 201353	NA	NA	INSIDE
chr1 6.1E+07	6.1E+07 x2 bound:16?	Cdx1	NM 009880	NA	NA	INSIDE
chr1 6 2E+07	6.2E+07 x2 bound:16	BC060677	NM 172832	NA	NA	INSIDE
chr1 6.6E+07	6 6E+07 x2 bound:16?	Zfn532	NM 207255	NA	NA	PROMOTER
chr1 6.6E+07	6 6E+07 x2 bound:16?	Zfp532	NM 207255	NA	NA	INSIDE
chr1 6 6E+07	6.6E+07.5x2_bound:16?	5330437I02Rik	NM 177028	NA	NA	PROMOTER
chr1 6.6E+07	$6.6E \pm 07.5x2$ bound:16:	Bax	NM 013833	NΔ	NΔ	PROMOTER
$chr1 6.8E\pm07$	$6.8E\pm07$ px2_bound:16?	Imna?	NM_053261	NΔ	NΔ	PROMOTER
chr1 6.8E+07	$6.8E\pm07$ $3x2_bound:16$	Cidea	NM 007702	NA	NA	PROMOTER
chi1 0.8E + 07	$6.8E+07$ JX2_00ulid.10	D19Ertd652a	NM 172621	NA	NA	PROMOTER
chi1 0.0E+07	$0.0E+07$ JX2_00ulld.104	Mo5r	NM_012506	NA	NA	PROMOTER
cnr1 0.9E+07	$0.9E+07$ $3X2$ _bound:104	McSr Maria	NM_172622	INA NA	NA	PROMUTER
chr1 /.4E+0/	7.4E+07 5x2_bound:164	Марк4	NM_1/2632	NA	NA	INSIDE
chr1 7.5E+07	7.5E+07 5x2_bound:164	Lipg	NM_010/20	NA	NA	PROMOTER
chr1 7.5E+07	7.5E+07 ox2_bound:164	RpI17	NM_001002239	, NA	NA	INSIDE
chr1 8.1E+07	8.1E+07 x2_bound:164	Sall3	NM_178280	NA	NA	INSIDE
chr1 8.5E+07	8.5E+07 x2_bound:164	Fbxo15	NM_015798	NA	NA	PROMOTER
chr1 8.5E+07	8.5E+07 ox2_bound:164	Fbxo15	NM_015798	NA	NA	PROMOTER
chr1 8.9E+07	8.9E+07 x2_bound:164	Rttn	NM_175542	NA	NA	INSIDE
chr1 3470790	3471290 x2_bound:164	Saps3	NM_029456	NA	NA	PROMOTER
chr1 3473388	3473888 x2_bound:165	Saps3	NM_029456	NA	NA	PROMOTER
chr1 3953852	3954352 x2_bound:165	BC021614	NM_144869	NA	NA	PROMOTER
chr1 4693633	4694133 x2_bound:165	Rbm4	NM_009032	NA	NA	PROMOTER
chr1 4704473	4706060 x2_bound:165	Rbm14	NM_019869	NA	NA	INSIDE
chr1 4822741	4823417 x2_bound:165	Dpp3	NM_133803	NA	NA	PROMOTER
chr1 5261359	5261966 x2_bound:165	Banf1	NM_011793	2010003J03Ril	NM_027236	DIVERGENT
chr1 5382746	5383827 x2_bound:165	Mus81	NM_027877	Cfl1	NA	INSIDE
chr1 5979720	5980913 x2_bound:165	Cdca5	NM_026410	NA	NA	INSIDE
chr1 6130680	6131180 x2_bound:165	Ppp2r5b	NM_198168	810013C15Ri	NM_194348	DIVERGENT
chr1 6166232	6166896 x2_bound:165	Ehd1	NM_010119	NA	NA	PROMOTER
chr1 7301904	7302404 x2_bound:16t	Rtn3	NM_001003930	NA	NA	INSIDE
chr1 8392938	8393984 x2_bound:166	Slc3a2	NM_008577	NA	NA	INSIDE
chr1 9658526	9659531 x2_bound:16t	Fth1	NM_010239	NA	NA	PROMOTER
chr1 9693228	9693728 x2_bound:16t	Rab3il1	NM_144538	NA	NA	PROMOTER
chr1 1.1E+07	1.1E+07 x2_bound:16t	Tmem109	NM_134142	NA	NA	PROMOTER
chr1 1.1E+07	1.1E+07 x2_bound:166	Ms4a10	NM_023529	NA	NA	INSIDE
chr1 1.6E+07	1.6E+07 x2 bound:166	Cep78	NM 198019	NA	NA	INSIDE
chr1 1.6E+07	1.6E+07 x2 bound:16t	Gna14	NM 008137	NA	NA	INSIDE
chr1 1.7E+07	1.7E+07 x2 bound:16t	Foxb2	NM 008023	NA	NA	DOWNSTREAM
chr1 1.8E+07	1.8E+07 x2 bound:16t	2410127L17Rik	NM 026120	NA	NA	INSIDE
chr1 2.3E+07	2.3E+07 x2 bound:167	K1f9	NM 010638	NA	NA	PROMOTER
chr1 2.3E+07	2.3E+07 x2 bound:167	Mamdc2	NM 174857	NA	NA	INSIDE
chr1 2.3E+07 chr1 2.3E+07	2.3E+07.5x2_bound:167	1700028P14Rik	NM 026188	NA	NA	PROMOTER
chr1 2.5E+07	2.5E+07.5x2_bound:167	Foxd4	NM_008022	NA	NA	INSIDE
chr1 2.5E+07	2.5E+07.5x2_bound:167	Foxd4	NM_008022	NA	NA	PROMOTER
chr1 $3E\pm07$	3E+07 px2 bound:165	Librf?	NM 144873	NA	NA	PROMOTER
chr1 3E+07	$3E_{\pm}07$ $3x2_{\pm}00$ min.107 $3E_{\pm}07$ $3x2$ hound 167	Dkb1	NM 010051	NA NA	NA	DROMOTER
chi1 3E+07	$3E+07$ $3X2_00und.107$	Dkk1	NM_010051	NA	NA	PROMOTER
chr1 2 4E + 07	$3E \pm 07$ $3X2$ bound: 107	DKK1 Stombell	NM 020692	INA NA	INA NA	INCIDE
$c_{1111} = 3.4E + 07$	$J.\pm E\pm 07$ JX2_DOUIId.107	Ddlim 1	NM 012962	INA NIA	INA NA	DDOMOTED
$dH = \frac{4E+0}{2}$	$+E+07$ $3X2_00und:107$	Tm0af2	NIVI_010801	INA NA	IN/A N A	
cm1 4.1E+0/	4.1E+0/ 0X2_00Und:108	1 11198[3 Mar£411	NIVI_155552		IN/A NTA	
chr1 4.1E+0/	4.1E+0/ 0X2_00Und:168	MOTI411	NIVI_00103914	INA NA	INA	PROMOTER
cnr1 4.2E+07	4.2E+0/ 0x2_bound:168	Frat2	INIVI_1//603	NA	NA	PROMOTER
chr1 4.2E+07	4.2E+0/ 0x2_bound:168	Avpil	NM_027106	NA	NA	PROMOTER
cnr1 4.2E+07	4.2E+0/ 0x2_bound:168	D19Ertd386e	NM_17/464	NA	NA	PROMOTER

chr1 4.4E+07	4.4E+07	<pre>>x2_bound:168</pre>	Scd2	NM_009128	NA	NA	PROMOTER
chr1 4.6E+07	4.6E+07	ox2_bound:168	Ldb1	NM_010697	NA	NA	INSIDE
chr1 4.6E+07	4.6E+07	ox2 bound:168	BC066048	BC066048	NA	NA	Unknown
chr1 4 6E+07	4.6E+07	$2x^2$ bound 168	Nolc1	NM 001039351	NA	NA	PROMOTER
chr1 4 6E+07	4 6E+07	2x2_bound:168	Cuedc?	NM 024192	NΔ	NΔ	INSIDE
hr1 4.6E+07	4.6E+07	ox2_bound:16(4020529D17Dil	NM_020196	NA	NA	INSIDE
1 1 4.0E+07	4.0E+07	0x2_00ulid.105	4930336D1/KIK	NM_029180	NA	INA	DDOMOTED
chr1 4.6E+07	4.6E+07	5x2_bound:165	Trim8	NM_053100	NA	NA	PROMOTER
chr1 4.6E+07	4.6E+07	ox2_bound:169	Trim8	NM_053100	NA	NA	INSIDE
chr1 4.7E+07	4.7E+07	ox2_bound:169	Nt5c2	NM_029810	NA	NA	INSIDE
chr1 4.8E+07	4.8E+07	ox2_bound:169	BC063749	NM_001001738	NA	NA	PROMOTER
chr1 5.5E+07	5.5E+07	ox2_bound:169	Acs15	NM_027976	NA	NA	INSIDE
chr1 5.6E+07	5.6E+07	ox2_bound:169	Dclre1a	NM_018831	Nhlrc2	NM_025811	DIVERGENT
chr1 5.9E+07	5.9E+07	ox2_bound:169	Hspa12a	NM_175199	NA	NA	INSIDE
chr2 6197699	6198537	ox2 bound:169	Tcfe3	NM 172472	NA	NA	INSIDE
chr 3 6359451	6360920	ox2 bound 16	Eras	NM 181548	NA	NA	INSIDE
chr3 6453322	6454137	2x2_bound:17(2010001H14Rik	NM_027227	NA	NA	PROMOTER
ohr\ 6620225	6641207	$3x2_{bound:17}$	20100011114Kik	NM 145009	NA	NA	DROMOTER
chi 2 0039623	1.2E+07	JX2_00ulld.17(FOICII UserOre	NM_143906	NA	INA	PROMOTER
cnr2 1.2E+07	1.2E+07	5x2_bound:17(Usp9x	NM_009481	NA	NA	PROMOTER
chr2 1.6E+07	1.6E+07	ox2_bound:17(Fundel	NM_028058	NA	NA	INSIDE
chr2 1.9E+07	1.9E+07	ox2_bound:170	Cfp	NM_008823	NA	NA	PROMOTER
chr2 1.9E+07	1.9E+07	ox2_bound:17(Zfp182	NM_001013387	NA	NA	PROMOTER
chr2 2E+07	2E+07	ox2_bound:170	D930016N04Rik	NM_183185	NA	NA	PROMOTER
chr3 2.2E+07	2.2E+07	ox2_bound:17(BC068151	BC068151	NA	NA	Unknown
chr2 3.3E+07	3.3E+07	ox2_bound:17(Zbtb33	NM_020256	NA	NA	PROMOTER
chr2 3.6E+07	3.6E+07	ox2 bound:17(Gria3	NM 016886	NA	NA	INSIDE
chr3 4 4E+07	44E+07	$2x^2$ bound 171	Pdcd8	NM_012019	Rab33a	NM 011228	DIVERGENT
chr $(4.4E+07)$	4.4E+07	ox2_bound:171	Subw3	NM 153532	NΔ	ΝΔ	PROMOTER
chr 3 4.7E + 07	4.7E+07	ox2_bound:171	Lafet?	NM_015810	NA	NA	DROMOTER
cm7 4.7E+07	4.70+07	JX2_00ulld.171	HaGat2	NM_015819	NA	NA	PROMOTER
CIII2 4.7E+07	4./E+0/	5x2_bound:171	HSOSI2	NM_013819	NA	INA	PROMOTER
chr2 4./E+0/	4./E+0/	5x2_bound:1/1	Gpc4	NM_008150	NA	NA	INSIDE
chr2 4.7E+07	4.7E+07	ox2_bound:171	Gpc4	NM_008150	NA	NA	PROMOTER
chr2 4.8E+07	4.8E+07	ox2_bound:171	mmu-mir-106a	mmu-mir-106a	NA	NA	PROMOTER
chr3 5.3E+07	5.3E+07	ox2_bound:171	Rbmx	NM_011252	NA	NA	PROMOTER
chr2 5.4E+07	5.4E+07	ox2_bound:171	Zic3	NM_009575	NA	NA	INSIDE
chr3 5.4E+07	5.4E+07	ox2_bound:171	Zic3	NM_009575	NA	NA	INSIDE
chr2 5.6E+07	5.6E+07	ox2_bound:172	Mcf2	NM_133197	NA	NA	PROMOTER
chr2 6.9E+07	6.9E+07	ox2_bound:172	Mecp2	NM_010788	NA	NA	PROMOTER
chr2 7E+07	7E+07	$2x^2$ bound: 172	Rp110	NM_052835	NA	NA	PROMOTER
chr3 7 3E+07	7 3E+07	$2x^2$ bound 172	Th11x	NM_020601	NA	NA	PROMOTER
chr $373E+07$	7 3E+07	bound:172	Tbl1x	NM_020601	NΔ	NΔ	PROMOTER
ohr) 8 2E+07	8 2E 107	ox2_bound:172	Nr0b1	NM_007430	NA	NA	DROMOTER
chi 2 0.2E+07	0.2E+07	JX2_00ulld.172	NIODI Nuoli 1	NM_007430	INA NA	INA	FROMUTER
chr2 8.2E+07	8.2E+07	5x2_bound:172	Nrubi	NM_007430	NA	NA	INSIDE
chr2 8.9E+07	8.9E+07	5x2_bound:172	Pcyt1b	NM_211138	NA	NA	PROMOTER
chr2 8.9E+07	8.9E+07	ox2_bound:172	Pcyt1b	NM_211138	NA	NA	INSIDE
chr2 9E+07	9E+07	ox2_bound:172	Klhl15	NM_001039059	NA	NA	PROMOTER
chr2 9.1E+07	9.1E+07	ox2_bound:173	Las11	NM_152822	NA	NA	PROMOTER
chr2 9.6E+07	9.6E+07	ox2_bound:173	Slc7a3	NM_007515	NA	NA	INSIDE
chr2 9.7E+07	9.7E+07	ox2_bound:173	Snx12	NM_018875	NA	NA	PROMOTER
chr2 9.7E+07	9.7E+07	ox2_bound:173	Ogt	NM_139144	NA	NA	PROMOTER
chr2 9.7E+07	9.7E+07	ox2 bound:173	Ogt	NM 139144	NA	NA	PROMOTER
chr3 9 7E+07	97E+07	ox2_bound-17?	Oot	NM 139144	NA	NA	PROMOTER
chr = 0.0000000000000000000000000000000000	9.9E+07	ox2_bound:17?	Cdy4	NM_007674	NΔ	NΔ	PROMOTER
chr3 0.0E+07	0.0E+07	5x2_bound:17:	Dnf12	NM_011276	NA	NA	DROMOTER
cm7 9.9E+07	9.9L+07	JX2_00ulld.17.	Rill12 Def12	NM_011276	NA	NA	PROMOTER
CIII2 9.9E+07	9.9E+07	5x2_bound:17:	KIII 12	NM_011276		NA NM 025270	PROMOTER
chr2 IE+08	1E+08	5x2_bound:1/:	2610529C04R1K	NM_025952	Cox/b	NM_025379	DIVERGENI
chr2 1E+08	1E+08	ox2_bound:174	Pgk1	NM_008828	NA	NA	INSIDE
chr3 1E+08	1E+08	ox2_bound:174	Cysltr1	NM_021476	NA	NA	INSIDE
chr2 1E+08	1E+08	ox2_bound:174	Gpr23	NM_175271	NA	NA	PROMOTER
chr2 1E+08	1E+08	ox2_bound:174	Nsbp1	NM_016710	NA	NA	INSIDE
chr2 1E+08	1E+08	ox2_bound:174	Nsbp1	NM_016710	NA	NA	PROMOTER
chr2 1.3E+08	1.3E+08	ox2_bound:174	Armcx1	NM_030066	NA	NA	PROMOTER
chr2 1.3E+08	1.3E+08	ox2 bound:174	Gprasp1	NM 001004359	NA	NA	PROMOTER
chr 2 1.3E+08	1.3E+08	ox2 bound:174	2900062L11Rik	NM 029823	NA	NA	PROMOTER
chr 3 1 3E \pm 08	1 3E±08	$2x^2$ bound 17^4	Zeche18	NM 001035500	NΔ	NΔ	PROMOTER
ohr $1.5E\pm00$	1.5E+00	3x2_000110.174	Drna1	NM 021462	NA NA	NA NA	DDOMOTED
CH12 1.4E+08	1.46+08	$JA2_000II0.172$	ripsi	11111_021403	INA	INA	FROMUTER

chr2 1.4E+08	1.4E+08 ox2_bound:175	Prps1	NM_021463	NA	NA	INSIDE
chr2 1.4E+08	1.4E+08 x2_bound:175	AW547186	NM_177592	NA	NA	PROMOTER
chr2 1.5E+08	1.5E+08 x2_bound:175	Gnl31	NM_198110	NA	NA	PROMOTER
chr2 1.5E+08	1.5E+08 x2_bound:175	ORF34	NM_198105	NA	NA	INSIDE
chr2 1.5E+08	1.5E+08 x2_bound:175	Huwe1	NM_021523	NA	NA	INSIDE
chr2 1.5E+08	1.5E+08 x2_bound:175	Acot9	NM_019736	NA	NA	PROMOTER
chr2 1.5E+08	1.5E+08 x2_bound:175	Sms	NM_009214	NA	NA	PROMOTER
chr2 1.5E+08	1.5E+08 x2_bound:175	Mbtps2	NM_178266	NA	NA	PROMOTER
chr2 1.6E+08	1.6E+08 x2_bound:175	Rbbp7	NM_009031	NA	NA	PROMOTER
chr2 1.6E+08	1.6E+08 x2_bound:175	4932441K18Rik	NM_178935	NA	NA	PROMOTER
chr2 1.6E+08	1.6E+08 x2_bound:176	4932441K18Rik	NM_178935	NA	NA	PROMOTER
chr2 1.6E+08	1.6E+08 x2_bound:176	4932441K18Rik	NM_178935	NA	NA	PROMOTER
chr2 1.6E+08	1.6E+08 x2_bound:176	Glra2	NM_183427	NA	NA	PROMOTER
chr2 1.6E+08	1.6E+08 x2_bound:176	Tmsb4x	NM_021278	NA	NA	INSIDE
chr2 1.6E+08	1.6E+08 x2_bound:17€	Prps2	NM_026662	NA	NA	INSIDE

opposite directions (Zic2 forward and Zic5 reverse). This divergent promoter is approximately 9800 bp in length. Source: UCSC genome browser Build mm7 (August 2005). regulates the expression of Zic5 and Zic2 by regulating the transcription of their genes in Appendix 7. Zic5 and Zic2 are transcribed by a divergent promoter. The divergent promoter

Appendix 8. Zic3 shares regulatory pathways with Oct4 and Nanog in ES cells. RNA was harvested from mouse ES cells treated with Oct4 and Nanog shRNA for 4 days with puromycin selection. The transfected cells that survived were assayed for their gene expression profiles on Illumina mouse Ref8 microarrays. The number of significantly-regulated genes following each RNAi experiment is presented here and compared with that of the Zic3 gene expression profile.

Appendix 9. Reprogramming assay with Oct4, Sox2, Klf4, C-Myc and Zic3. Oct4, Sox2, Klf4, C-Myc and Zic3 were ectopically expressed in mouse embryonic fibroblast cells (Balb/c; Passage 3), using combinations reflected in the graph above. Details of the reprogramming assay may be found in Section 2.3.5. Three weeks following infection of the reprogramming factors, pluripotent colonies were stained for alkaline phosphatase (AP) and quantified. Assays were performed in biological triplicate in 6 cm² tissue culture dishes. Overexpression of Zic3 in a variety of combinations of Oct4, Sox2, Klf4 and C-Myc did not result in a significant increase in pluripotent AP-positive colonies, relative to the positive control (SOCK). Legend – S: Sox2, O: Oct4, C: C-Myc, K: Klf4, Z- Zic3.

Credits: Zic3-pMXs vector created by Linda Lim; reprogramming assays optimized by Linda Lim & Tahira Allapitchay; Zic3 reprogramming experiment and quantification of colonies performed by Tahira Allapitchay.

APPENDIX 10

Zic3 is required for maintenance of pluripotency in embryonic stem cells

Mol Biol Cell. 2007 Apr;18(4):1348-58.

Zic3 Is Required for Maintenance of Pluripotency in Embryonic Stem Cells^D

Linda Shushan Lim,** Yuin-Han Loh,** Weiwei Zhang,*§ Yixun Li,^{||} Xi Chen,*§ Yinan Wang,*§ Manjiri Bakre,* Huck-Hui Ng,*§ and Lawrence W. Stanton*§

*Stem Cell and Developmental Biology Group, [‡]Gene Regulation Laboratory, and ^{II}Information and Mathematical Sciences Group, Genome Institute of Singapore, Singapore 138672; and [§]Department of Biological Sciences, National University of Singapore, Singapore 117543

Submitted July 24, 2006; Revised November 9, 2006; Accepted January 22, 2007 Monitoring Editor: Marianne Bronner-Fraser

Embryonic stem (ES) cell pluripotency is dependent upon sustained expression of the key transcriptional regulators Oct4, Nanog, and Sox2. Dissection of the regulatory networks downstream of these transcription factors has provided critical insight into the molecular mechanisms that regulate ES cell pluripotency and early differentiation. Here we describe a role for Zic3, a member of the Gli family of zinc finger transcription factors, in the maintenance of pluripotency in ES cells. We show that Zic3 is expressed in ES cells and that this expression is repressed upon differentiation. The expression of Zic3 in pluripotent ES cells is also directly regulated by Oct4, Sox2, and Nanog. Targeted repression of Zic3 in human and mouse ES cells by RNA interference–induced expression of several markers of the endodermal lineage. Notably, the expression of Nanog, a key pluripotency regulator and repressor of extraembryonic endoderm specification in ES cells, was significantly reduced in Zic3 knockdown cells. This suggests that Zic3 may prevent endodermal marker expression through Nanog-regulated pathways. Thus our results extend the ES cell transcriptional network beyond Oct4, Nanog, and Sox2, and further establish that Zic3 plays an important role in the maintenance of pluripotency by preventing endodermal lineage specification in embryonic stem cells.

INTRODUCTION

The transcription factors Oct4, Nanog, and Sox2 are key regulatory players in embryonic stem (ES) cell biology. These core factors contribute to the hallmark characteristics of ES cells by 1) activation of target genes that encode pluripotency and self-renewal mechanisms and 2) repression of signaling pathways that promote differentiation (Orkin, 2005). In ES cells Oct4, Nanog, and Sox2 co-occupy promoters of hundreds of genes that are both expressed and repressed in the pluripotent state (Boyer et al., 2005; Loh et al., 2006). This suggests complex regulatory circuitry in which Oct4, Nanog, and Sox2 collectively and uniquely regulate downstream genes to control ES cell differentiation. However, it remains unclear what are the downstream effectors of these transcription factors that contribute to maintaining the pluripotent status of ES cells. It also not understood how these "master regulators" of pluripotency are involved in controlling lineage-specific differentiation of ES cells. It is therefore useful to elucidate the transcriptional

This article was published online ahead of print in *MBC in Press* (http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E06-07-0624) on January 31, 2007.

^D The online version of this article contains supplemental material at *MBC Online* (http://www.molbiolcell.org).

⁺ These authors contributed equally to this work.

Address correspondence to: Lawrence W. Stanton (stantonl@gis.a-star.edu.sg).

Abbreviations used: ES, embryonic stem; RA, retinoic acid; RNAi, RNA interference; ChIP, chromatin immunoprecipitation; AVE, anterior visceral endoderm.

networks surrounding Oct4, Nanog, and Sox2, where detailed knowledge of these pathways remain key to harnessing the potential to direct differentiation of ES cells into therapeutically useful cell types.

To expand our understanding of the transcriptional networks that control stem cell differentiation, we have looked at transcription factors whose expression is directly regulated by Oct4, Nanog, and Sox2. We have identified Zic3 (Zinc finger protein of the cerebellum 3) as a transcription factor of interest for two main reasons. First, Oct4, Nanog, and Sox2 binding have been mapped to the Zic3 promoter regions in ES cells (Boyer et al., 2005; Loh et al., 2006), implying that these key factors may regulate Zic3 expression. The overlap between mouse and human ES cells further highlights the significance of Zic3 and suggests possible conservation of the gene's pathways between the two species. Second, Zic3 demonstrates differential gene expression between the pluripotent and early differentiation phases, where its expression is higher in the pluripotent state (Brandenberger et al., 2004; Wei et al., 2005). The changes in gene expression between these states suggest a potential role for Zic3 in controlling differentiation of mouse and human ES cells.

Zic3 belongs to the GLI superfamily of transcription factors and is a vertebrate homologue of the *Drosophila* pairrule gene odd-paired (*opa*; Aruga *et al.*, 1996a). The five known mammalian Zic genes (Zic1-5) encode five tandem C_2H_2 zinc finger domains that are highly conserved across species (Herman and El-Hodiri, 2002; Grinberg and Millen, 2005). Although the expression of Zic3 is restricted to the cerebellum of adult mammals, dynamic patterns of expression have been observed during embryonic development in mouse (Herman and El-Hodiri, 2002), *Xenopus* (Nakata *et al.*,

1997, 1998), chick (Warner et al., 2003), and zebrafish (Grinblat and Sive, 2001). The expression of Zic3 in the embryonic ectoderm and mesoderm during gastrulation (Kitaguchi et al., 2002; Elms et al., 2004), and throughout the tailbud, retina and limb bud during neurulation and organogenesis (Herman and El-Hodiri, 2002; Orkin, 2005), suggests an important role for this transcription factor in embryonic ectoderm and mesoderm development. This is further supported by molecular pathways in which Zic3 has been implicated. For example the mesoderm-associated gene Brachyury induces Zic3 expression in Xenopus (Kitaguchi et al., 2002), and the embryonic patterning gene Nodal is regulated by Zic3 during gastrulation through interaction with an upstream enhancer region in mouse and Xenopus embryos (Ware et al., 2006a). In ectodermal development, Zic3 is a potent inducer of Xenopus proneural and neural crest genes (Nakata et al., 1997) and is induced directly downstream of transcription factors Pbx1b and Meis1 in the *Xenopus* ectoderm (Maeda *et al.*, 2002; Kelly et al., 2006).

Zic3 mutations are associated with X-linked heterotaxy, a disorder characterized by disruptions in embryonic laterality and midline developmental field defect (Gebbia *et al.*, 1997). In Zic3 mutant organisms *situs ambiguus* is frequently observed, encompassing failure in lateralization of internal organs, mirror-image inversions, and left-right isomerism (Aylsworth, 2001). Several mutations have been identified in humans that render the Zic3 protein unstable and absent in cells or incapable of nuclear localization where its transcriptional effect is exerted (Gebbia *et al.*, 1997; Ware *et al.*, 2004).

Consistent with its expression in the involuting mesoderm and presumptive neural plate during gastrulation, Zic3 is involved in regulating left–right asymmetry and neural tube development. Zic3-null mice exhibit a wide spectrum of phenotypes. Fifty percent of null mice succumb to embryonic lethality over different gestational stages, and 30% to perinatal lethality as a result of congenital heart defects, pulmonary isomerism, and defects in the CNS (Purandare *et al.*, 2002). The earliest and most profound Zic3-null defects have been attributed to failure in establishment of the anterior-posterior axis by the anterior visceral endoderm (AVE) before gastrulation (Ware *et al.*, 2006b). In less severely affected embryos, abnormalities are observed at gastrulation in the distribution and accumulation of excess mesoderm tissue. Taken together, the defects in embryonic lethal mice demonstrate a key role for Zic3 in early embryonic patterning that encompasses anterior visceral endoderm formation, initiation of gastrulation, and primitive streak morphogenesis (Ware *et al.*, 2006b).

The varying degrees of severity in failure to complete gastrulation displayed by Zic3 null mice may perhaps be attributed to compensatory mechanisms in developing embryos, as indicated by the distinct and partially overlapping expression patterns exhibited by members of the Zic gene family (Nagai *et al.*, 1997; Elms *et al.*, 2004). It is important to note that Zic3 shares overall 64 and 59% homology with Zic1 and Zic2, respectively, and this homology increases to 91% within the zinc finger domain. Thus members of Zic family are strong candidates for redundancy in molecular signaling owing to the high degree of homology and overlapping expression observed among the members of this family.

Although Zic3 expression has been implicated in embryonic development, still lacking is a detailed understanding of what regulates Zic3 expression and what the downstream effectors of Zic3 are. The Zic3 gene has been identified as a target of Oct4, Nanog, and Sox2 in ES cells (Boyer *et al.*, 2005; Loh *et al.*, 2006), and Zic3 is preferentially expressed in pluripotent state (Brandenberger *et al.*, 2004; Wei *et al.*, 2005). Questions arising from these data are as follows: 1) How do Oct4, Nanog, and Sox2 interact with the Zic3 regulatory region, and what results from this interaction and, 2) what

Tuble 1. Elst of marker genes used to assess medge development in Els ens						
Gene symbol	ymbol Description					
Sox17	SRY-box containing gene 17	Endoderm				
PDGFRA	Platelet-derived growth factor receptor, alpha	Endoderm				
Gata4	GATA binding protein 4	Endoderm				
Gata6	GATA binding protein 6	Endoderm				
Foxa2	Forkhead box A2	Endoderm				
GSC	Goosecoid	Mesendoderm				
Nodal	Nodal	Mesendoderm				
MixL1	Mix1 homeobox-like 1	Mesendoderm				
Hand1	Heart and neural crest derivatives expressed 1	Mesoderm				
Nkx2.5	NK2 transcription factor related, locus 5	Mesoderm				
Gata2	GATA binding protein 2	Mesoderm				
Nestin GFAP Pax6 TDGF1 Sox1 REST CoREST FGF5	Nestin Glial fibrillary acidic protein Paired box gene 6 Teratocarcinoma-derived growth factor/Cripto SRY-box containing gene 1 RE1-silencing transcription factor REST Co-repressor 1 Fibroblast growth factor 5	Ectoderm Ectoderm Ectoderm Ectoderm Ectoderm Ectoderm Ectoderm				
BMP4	Bone morphogenetic protein 4	Trophectoderm				
CDX2	Caudal type homeobox 2	Trophectoderm				
DKK3	Dickkopf homolog 3	Wnt pathway				
Gsk3beta	Glycogen synthase kinase 3 beta	Wnt pathway				

Table 1. List of marker genes used to assess lineage development in ES cells

role does Zic3 play in the embryonic stem cell? We have addressed these questions using the loss-of-function approach for Zic3 and the key regulatory genes in ES cells. In this study, we examined the function of Zic3 as a regulatory target of Oct4, Nanog, and Sox2 in ES cells. We report that Zic3 shares significant overlap with the Oct4, Nanog, and Sox2 transcriptional networks and is important in maintaining ES cell pluripotency by preventing differentiation of cells into endodermal lineages. Thus our results extend the current knowledge of the ES cell transcriptional circuitry beyond Oct4, Nanog, and Sox2.

MATERIALS AND METHODS

ES Cell Maintenance

Feeder-free E14 Mouse ES cells were maintained on 0.1% gelatin-coated dishes in E14 proliferative medium containing DMEM/15% ES FBS (Invitrogen, Carlsbad, CA), 0.1 mM MEM nonessential amino acids (Invitrogen), 2 mM L-glutamine (Invitrogen), 0.1 mM *β*-mercaptoethanol (Invitrogen), and Chinese hamster ovary-Leukaemia Inhibitory Factor (CHO-LIF) (1000 U/ml). Feeder-free undifferentiated HuES9 human ES cells were maintained on matrigel-coated dishes in conditioned medium containing knockout DMEM/ 10% serum replacement (Invitrogen), 0.1 mM MEM nonessential amino acids (Invitrogen), 1 mM L-glutamine (Invitrogen), 0.1 mM *β*-mercaptoethanol (Invitrogen), 8% plasmanate (National University Hospital Pharmacy, Singapore), 12 ng/ml LIF, and 10 ng/ml human recombinant basic fibroblast growth factor (bFGF; Invitrogen). Conditioned medium was obtained by culturing mouse embryonic fibroblast (MEF) cells with HuES9 media. The medium was collected at 24 h intervals, filter sterilized, and further supplemented with 8 ng/ml bFGF for HuES9 cell culture.

RNA Interference and Establishment of Clonal Knockdown Lines

Small Interfering RNA (siRNA) Experiments. RNA interference (RNAi) experiments were performed with Dharmacon siGENOME SMARTpool reagents (Boulder, CO) against human or mouse Zic3. The Dharmacon siCONTROL nontargeting siRNA pool was used as a negative control. Mouse ES cells were transfected according to manufacturer's instructions in 12-well plates at a density of 2×10^5 cells per well. Retransfections were performed on preadherent cells at 48-h intervals, and RNA expression analysis was performed on samples from day 5. Human ES cells were transfected in 12-well plates with 2×10^5 cells, in suspension, per well. Subsequent retransfections were performed on aherent cells at 24-h intervals and RNA was harvested for analysis at day 5.

Short Hairpin RNA (shRNA) Experiments. The Oct4 and Nanog RNAi experiments were previously published (Loh *et al.*, 2006). The Zic3 shRNA construct was designed as described (Chew *et al.*, 2005) with a target sequence of 5'-GAATTCGAAGGCTGTGACA-3'. E14 cells in six-well plates were transfected with 2.0 μ g pSUPERpuro vector or Zic3-pSUPER.puro (OligoEngine, Seattle, WA) at a density of 4 × 10⁵ cells per well. Puromycin selection was introduced 1 d after transfection at 1.0 μ g/ml and was maintained for 3 d before RNA isolation. ES cells were maintained in proliferative medium at all times.

Clonal Zic3 knockdown lines were established by transfection of shRNA constructs as described above. The Zic3 knockdown and vector control colonies were picked after 7 d of puromycin selection ($1.0 \ \mu g/m$). Colonies were dissociated into single-cell suspensions by treatment with 0.05% Trypsin (Invitrogen) and plated on puromycin-resistant mitomycin-inactivated DR4 MEFs (ATCC, Manassas, VA). In total, 15 Zic3 clonal knockdown and 7 vector control lines were established and maintained under constant puromycin selection. The lines analyzed in this article were maintained feeder-free in ES cell proliferative media on 0.1% gelatin-coated dishes over a period of eight passages.

Secondary ES Colony-replating Assay

ES cells were transfected with Zic3- or empty pSUPER shRNA constructs and selected 24 h later with puromycin at 1.0 μ g/ml over 4 d. At the end of 4 d few cells remained in the untransfected control wells indicating that selection was effective. The surviving cells were trypsinized and resuspended in E14 medium without LIF. Ten thousand or 20,000 cells were plated onto mouse feeder layers in six-well plates for secondary ES cell-colony formation. After 7 d, emerging colonies were stained with the Wright-Giema (Sigma, St. Louis, MO) stain. The extent of differentiated colonies was defined as the percentage of unstained colonies out of the total number of colonies in the well.

RNAi Rescue Experiments

The Zic3 open reading frame (ORF; NM_009575) was cloned from reversetranscribed cDNA from mouse embryonic stem cells, using the primers indicated in Supplementary Table 1A. The PCR product was subsequently cloned into a vector driven by the CAG promoter. The RNAi-immune Zic3 ORF R3M (Supplementary Figure 1) was generated from this template using site-specific mutagenesis. To perform the rescue experiments, 4×10^5 mouse ES cells were seeded per well in six-well plates and transfected according to the scheme in Supplementary Table 1B. Hygromycin selection (1.0 μ g/ml) was introduced 1 d after transfection.

RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR

To minimize genomic DNA contamination, RNA was extracted with TriZol reagent (Invitrogen) and further purified with the RNeasy minikit (Qiagen, Chatsworth, CA). CDNA was synthesized with 1.0 μ g total RNA using the High Capacity cDNA Archive kit (Applied Biosystems, Foster City, CA). For each qPCR reaction, cDNA samples diluted 10 times in water were mixed with 5.0 μ l TaqMan Universal PCR Master Mix reagent (Applied Biosystems) and 0.5 μ l of a single TaqMan probe from the following list: Zic3, Oct4, Nanog, Sox2, or the lineage markers in Table 1 (20× TaqMan Gene Expression

Figure 1. A profile of Zic3 expression in differentiating E14 cells. (A) Real-time PCR analysis of differentiation induced by retinoic acid. Samples were assayed at 2-d intervals (untreated control, and treated samples day 2, day 4, and day 6). Mean levels \pm SE are expressed as percentages relative to undifferentiated E14 cells (100%). The assays were conducted in duplicate and normalized to β -actin control. (B) Verification of Zic3 protein expression during the process of RA differentiation. (C) A summary of ChIP mapping of Oct4, Nanog, and Sox2 binding sites on the Zic3 regulatory regions in mouse ES cells (Loh et al., 2006; Sox2, Ng, unpublished data) and human ES cells (Boyer et al., 2005). We examined transcription factor binding sites within 100 kb up- and downstream of the Zic3 coding region. In human ES cells, Oct4, Nanog, and Sox2 binding sites were located within 3.5 kb upstream of the Zic3 transcription start site, whereas in mouse ES cells, the Nanog binding site was found within 18.5 kb upstream, and the Oct4 and Sox2 binding sites were within 9.5 kb downstream of the gene, respectively (Loh et al., 2006). Each unit on the scale represents 10 kb.

Assay reagents; Applied Biosystems) with a final volume of 10 μ l. Quantitative real-time PCR analysis was conducted in 384-well clear optical reaction plate (Applied Biosystems) on the ABI Prism 7900 machine (Columbia, MD).

Western Blots and Immunocytochemistry

Zic3 protein detection was performed with goat-anti-Zic3 antibody (1:800 dilution: C-12, Santa Cruz Biotechnology, Santa Cruz, CA) and donkey antigoat horseradish peroxidase (HRP; 1:5000; Santa Cruz Biotechnology). Loading consistency was determined with mouse anti-B-actin (1:3000: Invitrogen) and goat anti-mouse HRP (1:5000; Santa Cruz Biotechnology). For immuno-cytochemistry, cells were seeded at a density of 1.0×10^5 cells per well on fibronectin-coated chamber slides, fixed in 4% paraformaldehyde, and permeabilized with 0.3% Triton X-100. Blocking was performed with 5% fetal bovine serum and 1% bovine serum albumin in PBS solution for 30 min. Cells were stained with the following primary antibodies (1:100): goat or mouse anti-Oct4 (Santa Cruz Biotechnology, N-19 and C-10, respectively), rabbit-anti-Nanog (Chemicon, Temecula, CA; AB5731), goat anti-FoxA2 (M-20, Santa Cruz Biotechnology), goat-anti-Gata6 (C-20, Santa Cruz Biotechnology), or mouse anti-CD140a (PDGFRA; eBioscience, San Diego, CA; 16-1401). This was followed by the appropriate secondary antibodies detecting mouse or goat IgG Alexa Fluor 488 (Molecular Probes, Eugene, OR; 1:500) for Oct4 staining, rabbit IgG Alexa Fluor 594 (Molecular Probes; 1:500) for Nanog staining, or Qdot 655 anti-goat or anti-mouse antibodies (Molecular Probes) for FoxA2, Gata6, and PDGFRA staining (1:150) according to the manufacturer's protocol. Images were captured with the Zeiss LSM 5 Duo inverted confocal microscope (Zeiss, Thornwood, NY).

Luciferase Reporter Construct and Assays

The 300-base pair Zic3 enhancer region containing the Nanog-binding site was cloned from mouse genomic DNA. The primers used were as follows: forward, 5' ATATAacgcgtTTAGAGGTCAAACCAT-3' and reverse, 5'-TATATagatetTAGTAGTCAAACTGGATT-3' with restriction sites indicated in lower case letters. The PCR fragment was digested with MluI and BgIII and

cloned into the pGL3-Basic vector (Promega, Madison, WI) containing a basal promoter comprising the 500-bp region immediately upstream of the mouse Oct4 gene. The following constructs were transfected into cells 2.5×10^4 cells in 96-well plates for the luciferase assay: 100 ng firefly luciferase proter, 1.0 ng of the *Renilla* luciferase vector, pRL-SV40 plasmid normalization control, and 250 ng of the respective knock-down construct. Puromycin selection (1.0 μ g/ml) was introduced 20 h after transfection and cultured for 2 d. Luciferase activity measured using the Dual Luciferase System (Promega) in a Centro LB960 96-well luminometer (Berthold Technologies, Natick, MA).

RESULTS

Zic3 Expression Is Associated with ES Cell Pluripotency

Comprehensive expression profiling of mouse and human ES cells has identified numerous genes that are expressed in undifferentiated cells and quickly repressed upon differentiation (Brandenberger *et al.*, 2004; Wei *et al.*, 2005). Among these genes are transcription factors Oct4, Nanog, and Sox2, which are required to maintain pluripotency of ES cells. Zic3, a zinc-finger transcription factor, was also found to be expressed in undifferentiated ES and suppressed in differentiated cells, and thus, may play a role in regulating ES cell differentiation. We assayed the expression of Zic3 in mouse ES cells induced to differentiate over 6 d by addition of retinoic acid (RA; Figure 1A). Similar to the trends observed for Oct4, Nanog, and Sox2 genes, Zic3 transcript levels decreased between 1.5- and 10-fold for each 2-d interval (D2, D4, and D6), relative to the undifferentiated control. Zic3

Figure 2. Oct4, Sox2, and Nanog regulate Zic3 expression. (A) Changes in endogenous gene expression levels of Oct4, Nanog, and Sox2 after gene-specific RNAi and (B) corresponding changes in endogenous Zic3 gene levels. cDNAs were prepared from the RNAi knockdown ES cells and analyzed using real-time PCR. The levels of the transcripts were normalized against values derived from control RNAi-transfected ES cells (100%). (C) Changes in ES cell endogenous Zic3 gene level after Nanog overexpression with RA induced differentiation. Nanog overexpression cell line and control cell line were treated with no RA or 0.3 µM RA for 2 d. Transcript levels of 0.3 µM RA-treated sample were normalized against no RA treatment sample. (D) Diagram of the construct with putative Zic3 enhancer region fused upstream of a minimal Pou5f1 promoter and firefly luciferase gene. (E) The effects of luciferase activity in deletion of the putative Nanog binding site on Zic3 enhancer were tested by transfecting into ES cells. Activity were measured relative to the minimal promoter only (MP) construct without the Nanog enhancer. (F) Effects of Nanog RNAi on Zic3 enhancer activity were tested by cotransfecting the Nanog RNAi with the reporter construct into ES cells and luciferase activity measured. Activity were normalized against the Control RNAi with mOct4 promoter-only construct. An RNAi targeting the GFP sequence was used as a nonspecific control.

RNA levels were also significantly decreased in mouse ES cells differentiated by treatment with HMBA (hexamethylene bisacetamide) or dimethyl sulfoxide, and also by aggregation into embryoid bodies (data not shown). The decrease in Zic3 mRNA correlated with a comparable decrease in protein expression (Figure 1B). Thus, Zic3 gene expression is associated with the mouse ES pluripotent state and its expression decreases as cells differentiate.

Chromatin immunoprecipitation experiments in both mouse and human ES cells have identified binding sites for the transcription factors Oct4, Nanog, and Sox2 at the Zic3 gene locus (Figure 1C; Boyer *et al.*, 2005; Loh *et al.*, 2006). The binding of these transcription factors, which are demonstrated regulators of pluripotency, suggests that Zic3 is a direct target for regulation by these TFs and may play a role in regulating ES cell differentiation.

Regulation of Zic3 by Oct4, Sox2, and Nanog

To further validate that Oct4, Sox2, and Nanog regulate Zic3 expression, we performed gene expression knockdown experiments in mouse ES cells using RNA interference. Mouse ES cells were thrice transfected with gene-specific siRNAs against Oct4, Sox2, and Nanog on alternate days to achieve 80–90% reduction in expression of the targeted gene (Figure 2A). Down-regulation of Oct4 and Sox2 reduced the level of endogenous Zic3 to <25%, whereas Nanog RNAi reduced the level of Zic3 to 70% (Figure 2B). These data indicate that Zic3 expression is regulated by Oct4, Sox2, and Nanog.

It has been shown that Nanog-overexpressing ES cells are resistant to differentiation induced by LIF withdrawal and RA addition (Chambers and Smith, 2004). As the endogenous levels of Zic3 decreased in the presence of RA-induced differentiation (Figure 1), we were interested in determining if Nanog overexpression would sustain Zic3 levels under RA treatment. ES cells were stably transfected with a construct that expresses Nanog from a constitutively active promoter. The Nanog-expressing cells and cells transfected with empty vector were treated for 2 d with 0.3 μ M RA. Vector-only control cells showed a decrease in Zic3 RNA levels typical of RA-induced differentiation. In contrast, mouse ES cells overexpressing Nanog sustained the level of Zic3 at greater than 80%, relative to the control ES cell line (Figure 2C). Thus, overexpression and knockdown of Nanog in ES cells results in an increase and decrease, respectively, of Zic3, suggesting that Zic3 expression is regulated by Nanog, perhaps directly or indirectly.

Our previous study identified a Nanog binding site in the enhancer region, 16.4 kb upstream of the transcription start site, of the Žic3 gene (Loh et al., 2006). As this DNA region was available for further study in our lab, we sought to determine if Zic3 expression was directly regulated by Nanog. We fused the 292-base pair portion of the Zic3 enhancer that contains the Nanog-binding site upstream of a minimal Pou5f1 promoter driving the firefly luciferase gene (Figure 2D). The minimal promoter was weakly active in ES cells, whereas activity of the Zic3 enhancer region linked to the minimal promoter was ninefold up-regulated as quantified by luciferase (Figure 2E). When the sequences of this putative Nanog binding site were deleted from the Zic3 enhancer the corresponding reporter activity decreased (Figure 2E). We then transfected Nanog RNAi together with the wild-type reporter construct and showed that the activity of the Zic3 enhancer decreased fourfold relative to the controls (Figure 2F). Collectively, our data show that Zic3 expression is directly regulated by Nanog and thus, may be a downstream effector in controlling ES cell differentiation.

Figure 3. Effect of Zic3 RNAi on endogenous Oct4, Nanog, and Sox2 levels. (A) Zic3 levels were depleted by RNAi using siRNA and shRNA in mouse E14 cells and siRNA in human HuES9 cells. RNA was harvested between 4 and 5 d of transfection and transcript levels assayed by real-time PCR. Shown in this figure are the levels of Zic3 transcript and the corresponding changes in Oct4, Nanog, and Sox2 expression. Mean values \pm SE are plotted as percentages relative to the nontargeting control (100%). The samples were assayed in duplicate and normalized to endogenous β -actin. (B) Corresponding decrease in protein levels after Zic3 RNAi treatment. The Zic3 protein species was depleted in the Zic3 RNAi sample, whereas β -actin protein levels remained high in the control. β -actin protein was used as a loading control. (C and D) Alkaline phosphatase staining revealed that the extent of differentiation in Zic3 RNAitreated cells was greater than mock-transfected cells. (E) Secondary replating assays were used to quantitate the extent of differentiation in Zic3 RNAi cells. A 3- to 5-fold increase in differentiated colonies were observed with Zic3 RNAi relative to mock-transfected control.

Effect of Zic3 Depletion on ES Cell Differentiation

To investigate the role of Zic3 in ES cells, we used RNAi to achieve knockdown of gene expression. Both the siRNA and shRNA methods resulted in a 70% reduction of Zic3 transcript levels relative to the nontargeting controls (Figure 3A). Zic3 protein levels reflect this decrease in gene expression after Zic3 RNAi treatment, whereas protein expression remained high in vector-only-treated cells (Figure 3B).

Zic3 RNAi transfections resulted in a marked decrease in pluripotent colonies that stained for alkaline phosphatase (AP) relative to the mock RNAi control (Figures 3, C and D). The extent of differentiation was quantified with secondary replating assays that revealed a three- to fivefold increase in differentiated colonies in comparison with the nontargeting control (Figure 3E). To assess the differentiation state of Zic3 knockdown cells, we assayed for changes in expression of key pluripotency genes (Figure 3A). Though the mouse ES cells showed clear morphological changes (Figure 3, C and D), surprisingly, there were only modest decreases (15–25%) in the expression of the key pluripotency genes Oct4 and Sox2 (Figure 3A), whereas Nanog expression decreased 40% relative to the nontargeting control. We performed the same experiment with human ES cells (HuES9). Although there was 70% decrease in Zic3 transcript levels, Oct4 and Sox2 transcript levels remained unchanged and Nanog levels decreased by 25% (Figure 3A). These results indicate that Zic3 plays a role in maintaining ES cell pluripotency and its action is downstream of the dominant pluripotency factors Oct4, Sox2, and Nanog.

It is interesting that targeted repression of Zic3 induced morphological differentiation of ES cells while maintaining the expression of pluripotency marker genes in the transient knockdown experiments. We were interested in assessing the role of Zic3 in the maintenance of pluripotency. To determine the differentiation status of these cells we assayed by Q-RT-PCR for expression of markers that represent lineage-specific ES cell differentiation (Table 1). Zic3 knockdown in mouse and human ES cells resulted in an upregulation of a panel of endodermal markers: Sox17 (3.5-fold), PDGFRA (3.2- to 5.5-fold in mouse ES cells; 2.7-fold in human ES cells), and Gata6 (2.5- to 3.5-fold; Figure 4). In addition, two more endodermal lineage genes Gata4 and Foxa2 were up-regulated in the E14 RNAi cells (2.5-fold). We also assayed the expression of mesendodermal, mesodermal, ectodermal, trophectodermal and Wnt-pathway markers in Zic3 RNAi cells. These markers remained unchanged relative to the nontargeting control in both mouse and human RNAi experiments (Figure 4). These results indicate that Zic3 could play a specific role in maintaining ES cell pluripotency by suppressing endodermal specification.

Rescue of RNAi-induced Zic3 Phenotype

Our RNAi experiments have established a link between the expression of Zic3 and suppression of endodermal lineage specification. We observed consistent results using multiple siRNAs and shRNAs in both mouse and human ES cells. However, there is still concern that ES cell differentiation and marker gene expression were due to off-target effects of the RNAi. To address this concern we designed a Zic3 expression construct that was immune to RNAi and tested whether this construct could rescue the knockdown phenotypes.

The Zic3 RNAi-immune expression construct was engineered with five silent mutations in protein coding domain sequence (Supplementary Figure 1). As such, this construct (mutZic3) produces functional Zic3 protein, but with the added feature that it is resistant to RNAi targeting and

Figure 4. Effect of Zic3 RNAi on lineage marker gene expression. The panel of genes above was selected for their lineage specificity. Transcript levels of genes from the endodermal (ENDO), mesendodermal (MESENDO), mesdodermal (MESO), ectodermal (ECTO), trophectordermal (TROPH), and Wnt pathways in mouse and human ES cells were assayed by real-time PCR after Zic3 depletion by RNAi. (A) siRNA in mouse E14 cells. (B) shRNA in mouse E14 cells. (C) siRNA in human HuES9 cells. Mean levels ± SE are expressed as percentages relative to the nontargeting control (100%). The assays were read in duplicate and results were normalized to β-actin.

Figure 5. Zic3-immune construct specifically reverses changes in lineage marker expression levels caused by Zic3 RNAi. (A–C) Zic3 rescue experiments demonstrating the specificity of Zic3 RNAi and reversibility of lineage marker expression. E14 cells cotransfected with the Zic3 RNAi-immune overexpression construct and Zic3 RNAi vector demonstrated notable suppression of endodermal markers Foxa2, Gata4, and Sox17, relative to Zic3 RNAi cotransfected with the empty vector control. Zic3 immune real-time PCR analysis was conducted 3 d after transfection. β -Actin was used as an internal control for normalization. The measurements

were done in duplicates and the average of the normalized ratio of target gene/ β -actin was calculated and presented with SD. Relative expressions calculated with respect to the control experiment (Vector + control RNAi) at 100%. Transfection schemes are represented in Supplementary Table 1b.

degradation. Using this mutZic3 construct, we determined the specificity of the endodermal lineage specification produced by Zic3 knockdown. First, the expression levels of endodermal markers Foxa2, Gata4, and Sox17 were induced in ES cells cotransfected with empty vector and Zic3-RNAi, compared with cells cotransfeceted with empty vector and GFP-RNAi (6.5-, 10.1-, and 8.7-fold, for Foxa2, Gata4, and Sox17, respectively, Figure 5, A–C). However, ES cells that express the mutZic3 (RNAi immune construct) showed no induction of endodermal markers by Zic3-RNAi. (Figure 5, A–C). These experiments indicate that our RNAi results are not due to off-target effects and further support our conclusions that Zic3 plays a role in maintaining the pluripotency of ES cells.

Effects of Simultaneous Reduction of Zic2 and Zic3 Expression

Zic2 is another member of the Zic-family of transcription factors. Zic2 is expressed in ES cells and its expression is down-regulated upon differentiation (Brandenberger et al., 2004; Wei et al., 2005). Zic2 may also be regulated by Oct4, Sox2, and Nanog as binding sites for these TFs have been mapped to the Zic2 gene by chromatin immunoprecipitation (ChIP; Supplementary Figure 2). It was interesting that Zic3 RNAi resulted in a twofold increase in Zic2 (Figure 6A), and this raised the possibility that Zic2 may be compensating for the reduction in Zic3 levels. Knockdown of Zic2 expression by siRNA (75% reduction in RNA levels) did not produce any effect on lineage marker expression (Figure 6B). To determine if Zic2 compensated for the absence of Zic3, we performed a double RNAi experiment with Zic2 and Zic3 in ES cells. The double knockdown prevented Zic2 levels from increasing in a compensatory manner as observed in the Zic3 single knockdown (Figure 6C). Interestingly, endodermal specification was markedly enhanced after the Zic2 and Zic3 double knockdown as demonstrated by increased expression of Sox17 (4.7-fold), PDGFRA (8.7-fold), and Gata4 (3.1-fold), which is more robust than observed for all three markers (Sox17, 3.1-fold; PDGFRA, 3.3-fold; Gata4, 1.5-fold) when Zic3 alone was reduced (Figure 6D). Thus, we demonstrate that in the absence of Zic3, Zic2 is able to compensate at least partially to reduce the extent of endodermal specification in ES cells.

Zic3 Clonal Knockdown Lines Show Enhanced Endodermal Specification

To determine if endodermal markers were up-regulated in the same cells in which Zic3 was depleted, three clonal lines were generated that stably expressed Zic3 shRNA. As anticipated, Zic3 expression in the clonal lines was down-regulated 60% relative to vector-only control lines (Figure 7A). This knockdown is slightly less robust than in the transient Zic3 knockdowns where depletion of Zic3 expression by 70-80% was observed (Figure 3A). The pluripotency genes Oct4 and Sox2 were reduced between 20 and 30% relative to controls in all three clonal knockdown lines, whereas Nanog was reduced by 80% (Figure 7A). The endodermal genes PDGFRA, Gata4, Gata6, and Sox7 were 30-fold higher than in the controls, whereas Sox17 was up-regulated between 60- to 80-fold and FoxA2 was increased by 80- to 120-fold in all three Zic3 knockdown lines (Figure 7B). The induction of endodermal markers here was substantially greater than observed in the transient Zic3 knockdowns. Markers of the mesendoderm, mesoderm, ectoderm, trophectoderm, and Wnt pathways remained essentially unchanged (<2-fold) in the Zic3 knockdown lines (Figure 7C). Thus the specific up-regulation of endodermal gene expression in the clonal lines is consistent, in fact more pronounced, with our observations in the transient knockdowns (Figure 4).

To ascertain if there were corresponding increases in endodermal protein levels, immunocytochemistry was performed against FoxA2, Gata6, and PDGFRA in the clonal lines. The Zic3 knockdown lines consistently demonstrated robust endodermal marker staining (Figure 8A) that was absent in the vector control lines (Supplementary Figure 3). Oct4 staining was also observed in the cells that were positive for endodermal marker expression (Figure 8A). Interestingly, although the Zic3 clonal knockdown lines expressed Oct4 and SSEA-1 (Figure 8B), Nanog protein expression was significantly reduced relative to the vector control lines (Figure 8C). This agreed with the down-regulation observed in Nanog gene expression levels in the Zic3 knockdown lines (Figure 7A) and raises the possibility that Nanog gene expression is regulated by Zic3.

DISCUSSION

The work presented here demonstrates that Zic3 plays a key regulatory role in controlling ES cell differentiation. In this article, we have demonstrated that the expression pattern of Zic3 in ES cells corresponds closely with that of known regulators of pluripotency Oct4, Nanog, Sox2, which have high levels of expression in the undifferentiated state and decrease rapidly upon differentiation (Figure 1). Our findings in mouse ES cells are consistent with results from human ES cells (Brandenberger *et al.*, 2004). The differences we observed in Zic3 expression levels between pluripotent and early differentiation phases imply a potentially significant role for Zic3 in ES cell pluripotency. In addition, ChIP mapping by us and others has revealed Oct4, Nanog, and

Figure 6. Effect of Zic2 and Zic3 double knockdown. The genes were assayed by real-time PCR in triplicate and normalized to a β -actin control. Mean levels \pm SE are expressed as percentages relative to the nontargeting control. (A) Zic2 gene expression increased twofold with Zic3 transient knockdown 4 d after transfection. (B) Zic2 knockdown by siRNA was specific but did not produce changes in lineage markers assayed. (C) Zic2 and Zic3 coknockdown produced specific knockdown of Zic3 and at the same time prevented compensatory increase of Zic2 expression in ES cells. (D) The expression of endodermal lineage markers Sox17, PDGFRA, and Gata4 showed a similar pattern of up-regulation as in the Zic3 single knockdown, but was significantly enhanced in this Zic2/Zic3 coknockdown.

Sox2 co-occupancy on the Zic3 regulatory region, suggesting that Zic3 may be coordinately regulated by Oct4, Nanog, and Sox2 in mouse and human ES cells (Boyer *et al.*, 2005; Loh *et al.*, 2006; Figure 1C). These observations together led to our hypothesis that Zic3 functions to maintain the pluripotent state of ES cells. Here we characterized the relationship of Zic3 with that of the key stem cell regulatory factors and uncovered a role for Zic3 in the maintenance of ES cell pluripotency.

Our first objective was to assess the nature of interactions between Oct4, Nanog, and Sox2 with the Zic3 regulatory region. In constructing the transcriptional network around the key pluripotency genes, it is important to establish the outcome of transcription factor binding on downstream genes. We addressed this using a combinatorial approach encompassing the results of ChIP mapping and RNAi, demonstrating that ablation of Oct4, Nanog, and Sox2 in mouse ES cells resulted in a significant decrease in Zic3 expression (Figure 3A). Because Zic3 has already been implicated as a target of Oct4, Nanog, and Sox2 in ChIP experiments (Boyer et al., 2005; Loh et al., 2006), the concern of nondirect or secondary effects of RNAi was significantly reduced (Blais and Dynlacht, 2005). We thus concluded that the interaction of Oct4, Nanog, and Sox2 with the regulatory region of the Zic3 gene serves to enhance target gene expression. In other

words, the key pluripotency regulators function as transcriptional activators of Zic3 in ES cells (Figure 9). This point is underscored by our results with Nanog overexpression and binding site mutagenesis assays, which demonstrate a positive association between Nanog binding and Zic3 expression. We thus demonstrate positive functional interactions between the key pluripotency regulators and the Zic3 gene regulatory region.

Because transcriptional networks are also known to feature autoregulatory loops (Lee *et al.*, 2002; Blais and Dynlacht, 2005), we also asked if the inverse relationship was true, that is, whether Zic3 regulates expression of the key regulatory genes. We observed that Oct4 and Sox2 levels remained largely unperturbed by the ablation of Zic3 expression (Figures 3A and 7A). In the absence of clear changes despite a robust Zic3 knockdown, our data places Zic3 downstream of Oct4 and Sox2 in the ES cell transcriptional networks as illustrated in Figure 9. In addition, we found that Nanog expression decreased significantly in the Zic3 clonal knockdown lines (Figures 7A and 8C). It remains to be determined whether Zic3 directly regulates the expression of Nanog in embryonic stem cells.

ES cells are derived from the inner cell mass of the blastocyst and, as such, are able to undergo unlimited selfrenewal and differentiation into the three germ layers of the

embryo: mesoderm, ectoderm, and endoderm (Evans and Kaufman, 1981; Martin, 1981). In the pluripotent state, ES cells remain undifferentiated and do not express specific lineage markers. We were interested in examining the effect of Zic3 knockdown on the maintenance of ES pluripotency using specific lineage markers as an assessment of differentiation after Zic3 knockdown (Table 1). Here we show that ablation of Zic3 expression in both mouse and human ES cells resulted in a significant increase in markers of endodermal lineage (Figures 4, 7, and 8). These results suggest that Zic3 may have an important role in preventing endodermal specification in ES cells.

Many reports support this observation: First, Zic3 knockdown in ES cells induced expression of Gata4 and Gata6, and forced expression of Gata4 and Gata 6 in ES cells result in differentiation toward extraembryonic endoderm (Fujikura et al., 2002). Further strengthening this association is the fact that all other endodermal markers assayed (PDGFRA, Sox17, and FoxA2) are also expressed in extraembryonic endoderm derivatives (Kunath et al., 2005). Second, Zic3 regulates Nodal expression through direct interaction with its promoter during gastrulation, and it has been shown that Nodal expression is essential in proper specification of the embryonic visceral endoderm (Mesnard et al., 2006). This significance is underscored by studies reporting that the earliest abnormalities observed in Zic3 null mice are defects in proper patterning of the anterior visceral endoderm (Ware et al., 2006b). Finally, Zic3 clonal knockdown lines exhibit a significant decrease in Nanog gene expression (Figures 7A and 8C), and several groups have reported that RNAi-mediated depletion of Nanog expression

Figure 7. Zic3 knockdown clonal lines demonstrate endodermal gene marker specification. Three Zic3 knockdown clonal lines and two vector controls were assayed as indicated in the diagrams. (A) The pluripotency markers Oct4 and Sox2 were slightly down-regulated between 20 and 30%, whereas Zic3 and Nanog decreased significantly between 60 and 80% relative to the vector controls. (B) All endodermal markers assayed in the knockdown lines were significantly up-regulated between 20and 120-fold relative to the control lines. (C) Mesendodermal, mesodermal, ectodermal, trophectodermal, and Wnt pathway genes did not change significantly in knockdown lines, demonstrating <2-fold changes relative to the vector controls. Gene expression levels were assayed by real-time PCR. The samples were assayed in triplicate and normalized to endogenous β -actin. Mean values \pm SE are plotted as percentages relative to the vector control.

resulted in an induction of extraembryonic endoderm markers Gata4 and Gata6 (Mitsui *et al.*, 2003; Hyslop *et al.*, 2005; Hough *et al.*, 2006).

Here we have shown that Zic3 functions as a gatekeeper of pluripotency in ES cells by preventing their differentiation into cells that express endodermal markers. Corroborating this, we have found that Nanog expression is significantly reduced in the Zic3 clonal lines. This reduction is noteworthy as Nanog is a key regulator of pluripotency in ES cells (Chambers *et al.*, 2003), and it is well established that disruption of Nanog expression results in development of extraembryonic endoderm character in ES cells (Mitsui *et al.*, 2003; Hyslop *et al.*, 2005; Hough *et al.*, 2006). Thus, we demonstrate here an important role for Zic3 in the maintenance of pluripotency in ES cells through prevention of endodermal lineage specification, and we suggest that its action may in part be mediated through the key pluripotency regulator Nanog (Figure 9).

The role of Zic3 in preventing endodermal specification is further supported by evidence indicating its restricted expression within the mesoderm and ectoderm lineages during gastrulation (Herman and El-Hodiri, 2002). In addition, Zic3 activity has been specifically implicated in the mesodermal and ectodermal molecular pathways in the early developing embryo (Nakata *et al.*, 1997; Kitaguchi *et al.*, 2002; Maeda *et al.*, 2002; Kelly *et al.*, 2006). These data in combination with our results suggest that although Zic3 is instructive for mesodermal and ectodermal specification in embryonic development, it may simultaneously function as a repressor of ectopic endodermal induction in these tissues.

DAPI Oct4 Endodermal FoxA2 Gata6 Sox17 В DAPI Oct4. SSEA-1 С DAPI Oct4 Nanog Zic3 k.d Control Figure 8. Protein expression in Zic3 knockdown clonal lines. (A)

Oct4 protein expression was high in all three Zic3 knockdown lines. (A) oct4 protein expression of specific endodermal marker proteins Foxa2, Gata6, and Sox17 was observed in the same cells. (B) The Zic3 knockdown lines expressed stem cell surface protein, SSEA-1, which is specific to murine ES cells. (C) The Zic3 clonal knockdown lines demonstrated a significant decrease in Nanog expression.

Α

Figure 9. A model of Zic3 function in embryonic stem cells. Zic3 contributes to the maintenance of pluripotency by operating downstream of Oct4, Nanog, and Sox2 to inhibit endoderm lineage specification as characterized by endodermal markers Sox17, PDGFRA, Gata4, Gata6, Foxa2, and Sox7. The presence of Zic3 also maintains the expression of the homeodomain protein Nanog, a key regulator of pluripotency in embryonic stem cells.

The transcription factor Zic3 shares five highly conserved Zinc finger domains with family members Zic1, Zic2, Zic4, and Zic5 (Aruga et al., 1994, 1996a,b, 2004). Their partially overlapping spatial and temporal patterns of expression during early development suggests potential functional redundancy between the Zic family members (Nagai et al., 1997; Elms et al., 2004). We observed that Zic2 gene levels were up-regulated when Zic3 expression was reduced (Figure 6A). Because Zic2 is also differentially expressed between pluripotent and differentiation states of ES cells (Brandenberger et al., 2004; Wei et al., 2005) and binding of the key pluripotency transcription factor Nanog has been mapped to the Zic2 regulatory region (Supplementary Figure 2), we reasoned that Zic2 may participate in the regulation of ES cell pluripotency along with Zic3. To unveil the possible effects of functional redundancy between Zic2 and Zic3, a double knockdown was performed in mouse ES cells. We report that repression of Zic2 and Zic3 expression significantly enhanced endoderm specification in ES cells (Figure 6C). The evidence that Nanog binds to the Zic2 regulatory region suggests that it may be involved in similar pathways as Zic3 in repressing endoderm expression. Thus, Zic2 and Zic3 may participate in redundant or partially overlapping networks to silence endoderm specifying gene expression and contribute to the maintenance of pluripotency in ES cells.

CONCLUSION

In this article, we expand on the significance of Zic3 as a target of the key stem cell regulatory factors in ES cells. Our results highlight a role for Zic3 in the maintenance of pluripotency downstream of Oct4 and Sox2, and uncovers its role as a gatekeeper controlling differentiation of ES cells into endoderm-specific lineages. In support of this, we present evidence that a key regulator of pluripotency, Nanog, which is shown to be important in repressing endodermal lineage specification, may directly or indirectly be regulated by Zic3 in ES cells. Having now established that Zic3 plays an important role in maintenance of pluripotency,

it will be valuable to search for Zic3-regulated target genes, which will extend our understanding of the transcriptional network that governs lineage specification. The elucidation of molecular signatures of early ES cells in this manner will contribute to validation and extension of the ES cell transcriptional network beyond Oct4, Nanog, and Sox2. The critical need to dissect their transcriptional networks is underscored by their potential to yield critical insights into genetic mechanisms at the earliest stages of embryo development and to provide significant inroads into the properties ES cell unlimited growth and differentiation potential that will render them therapeutically useful.

ACKNOWLEDGMENTS

We thank Drs. Noel Buckley, Paul Robson, Thomas Lufkin, and Bing Lim for helpful discussions. We also thank Li Pin, Aina Hoi, Joon-Lin Chew, and Boon Seng Soh for their invaluable assistance. We thank the Biomedical Research Council and Agency for Science, Technology and Research (A*STAR) for funding. L.S.L. and Y-H.L. are recipients of the A*STAR graduate scholarship. W.Z. and X.C. are supported by the National University of Singapore graduate scholarship.

REFERENCES

Aruga, J. (2004). The role of Zic genes in neural development. Mol. Cell Neurosci. 26, 205–221.

Aruga, J., Nagai, T., Tokuyama, T., Hayashizaki, Y., Okazaki, Y., Chapman, V. M., and Mikoshiba, K. (1996a). The mouse zic gene family. Homologues of the *Drosophila* pair-rule gene odd-paired. J. Biol. Chem. 271, 1043–1047.

Aruga, J., Yokota, N., Hashimoto, M., Furuichi, T., Fukuda, M., and Mikoshiba, K. (1994). A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J. Neurochem. *63*, 1880–1890.

Aruga, J., Yozu, A., Hayashizaki, Y., Okazaki, Y., Chapman, V. M., and Mikoshiba, K. (1996b). Identification and characterization of Zic4, a new member of the mouse Zic gene family. Gene *172*, 291–294.

Aylsworth, A. S. (2001). Clinical aspects of defects in the determination of laterality. Am. J. Med. Genet. 101, 345–355.

Blais, A., and Dynlacht, B. D. (2005). Constructing transcriptional regulatory networks. Genes Dev. 19, 1499–1511.

Boyer, L. A. et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.

Brandenberger, R. *et al.* (2004). Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat. Biotechnol. 22, 707–716.

Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell *113*, 643–655.

Chambers, I., and Smith, A. (2004). Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23, 7150–7160.

Chew, J. L. *et al.* (2005). Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell Biol. 25, 6031–6046.

Elms, P., Scurry, A., Davies, J., Willoughby, C., Hacker, T., Bogani, D., and Arkell, R. (2004). Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation. Gene Expr. Patterns 4, 505–511.

Evans, M. J., and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

Fujikura, J., Yamato, E., Yonemura, S., Hosoda, K., Masui, S., Nakao, K., Miyazaki Ji, J., and Niwa, H. (2002). Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. *16*, 784–789.

Gebbia, M. *et al.* (1997). X-linked situs abnormalities result from mutations in ZIC3. Nat. Genet. 17, 305–308.

Grinberg, I., and Millen, K. J. (2005). The ZIC gene family in development and disease. Clin. Genet. 67, 290–296.

Grinblat, Y., and Sive, H. (2001). zic Gene expression marks anteroposterior pattern in the presumptive neurectoderm of the zebrafish gastrula. Dev. Dyn. 222, 688–693.

Herman, G. E., and El-Hodiri, H. M. (2002). The role of ZIC3 in vertebrate development. Cytogenet. Genome. Res. 99, 229–235.

Hough, S. R., Clements, I., Welch, P. J., and Wiederholt, K. A. (2006). Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem. Cells 24, 1467–1475.

Hyslop, L., Stojkovic, M., Armstrong, L., Walter, T., Stojkovic, P., Przyborski, S., Herbert, M., Murdoch, A., Strachan, T., and Lako, M. (2005). Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 23, 1035–1043.

Kelly, L. E., Carrel, T. L., Herman, G. E., and El-Hodiri, H. M. (2006). Pbx1 and Meis1 regulate activity of the *Xenopus laevis* Zic3 promoter through a highly conserved region. Biochem. Biophys. Res. Commun. 344, 1031–1037.

Kitaguchi, T., Mizugishi, K., Hatayama, M., Aruga, J., and Mikoshiba, K. (2002). *Xenopus* Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry. Dev. Growth Differ. 44, 55–61.

Kunath, T., Arnaud, D., Uy, G. D., Okamoto, I., Chureau, C., Yamanaka, Y., Heard, E., Gardner, R. L., Avner, P., and Rossant, J. (2005). Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development *132*, 1649–1661.

Lee, T. I. et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804.

Loh, Y. H. *et al.* (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. *38*, 431–440.

Maeda, R., Ishimura, A., Mood, K., Park, E. K., Buchberg, A. M., and Daar, I. O. (2002). Xpbx1b and Xmeis1b play a collaborative role in hindbrain and neural crest gene expression in *Xenopus* embryos. Proc. Natl. Acad. Sci. USA *99*, 5448–5453.

Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA *78*, 7634–7638.

Mesnard, D., Guzman-Ayala, M., and Constam, D. B. (2006). Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development *133*, 2497–2505.

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell *113*, 631–642.

Nagai, T., Aruga, J., Takada, S., Gunther, T., Sporle, R., Schughart, K., and Mikoshiba, K. (1997). The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev. Biol. *182*, 299–313.

Nakata, K., Nagai, T., Aruga, J., and Mikoshiba, K. (1997). *Xenopus Zic3*, a primary regulator both in neural and neural crest development. Proc. Natl. Acad. Sci. USA 94, 11980–11985.

Nakata, K., Nagai, T., Aruga, J., and Mikoshiba, K. (1998). *Xenopus Zic family* and its role in neural and neural crest development. Mech. Dev. 75, 43–51.

Orkin, S. H. (2005). Chipping away at the embryonic stem cell network. Cell 122, 828–830.

Purandare, S. M., Ware, S. M., Kwan, K. M., Gebbia, M., Bassi, M. T., Deng, J. M., Vogel, H., Behringer, R. R., Belmont, J. W., and Casey, B. (2002). A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development *129*, 2293–2302.

Ware, S. M., Harutyunyan, K. G., and Belmont, J. W. (2006a). Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. Dev. Dyn. 235, 1631–1637.

Ware, S. M., Harutyunyan, K. G., and Belmont, J. W. (2006b). Zic3 is critical for early embryonic patterning during gastrulation. Dev. Dyn. 235, 776–785.

Ware, S. M., Peng, J., Zhu, L., Fernbach, S., Colicos, S., Casey, B., Towbin, J., and Belmont, J. W. (2004). Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am. J. Hum. Genet. 74, 93–105.

Warner, S. J., Hutson, M. R., Oh, S. H., Gerlach-Bank, L. M., Lomax, M. I., and Barald, K. F. (2003). Expression of ZIC genes in the development of the chick inner ear and nervous system. Dev. Dyn. 226, 702–712.

Wei, C. L. *et al.* (2005). Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells 23, 166–185.