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Summary

Grid computing is a technology that allows organizations to lower their computing

costs by allowing them to share computing resources, software licenses and storage

media. As more services are pushed to grid networks in the future, Quality of

Service (QoS) will become an important aspect of this service.

In this thesis, we look into a method for providing QoS through learning and

autonomic methods. The learning methodology we use is known as Reinforcement

Learning (RL), a stochastic optimization method used in areas like robotics. An

autonomous method is one in which no manual intervention is required, and a

major aim in this thesis is to provide QoS in such a manner. RL based systems

will help achieve this, since they are model free, and require no supervision to

learn. An autonomous system will not require constant monitoring, and if well

designed, will be able to maximize the utility of the grid.

We explore two RL methods, known as Watkins’ Q(λ) and Semi-Markovian Av-

erage Reward Technique (SMART), to perform resource allocation on computing

and network resources. We also explore two alternatives to resource allocation,

provisioning and reservation. We performed simulations by selectively enabling

our proposed solution on user’s grid brokers and agents located at networking and

computing resources. We have evaluated the performance of our learning method-

ology in simulation using a grid simulation software known as GridSim. Since

earlier versions of GridSim did not support networking resources like routers and

network links, we extended GridSim to provide this functionality. The design of

this network functionality is covered in brief. We also performed experiments on

a testbed in order to support the observations made from the analysis of our sim-

ulations. This thesis describes in detail the design of our proposed solution to

providing QoS, the experiments performed to verify our solution the conditions

under which the experiments were carried out, and what we can infere from the



results.

From the simulation and implementation results, we conclude that reinforce-

ment learning methods are able to adapt successfully to a given scenario. Resource

allocation techniques relying on RL methods are able to modify their allocation

levels to support the workload provided to the system. These methods work better

than Static methods of resource allocation. We also conclude that reservation of

resources can provide better a quality of servicve then provisioning methods.

Keywords: Grid Computing, Reinforcement Learning, Watkins Q(λ), SMART,

GridSim

xvi
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Chapter 1

Introduction

Grid Computing has emerged as a powerful way to maximize the value of com-

puting resources. Grid computing allows organizations and people to unite their

computing, storage and network systems into a virtual system which appears as

one point of service to a user. Grid computing can be something as simple as a

collection of similar machines at one location to a mix of diverse systems spread all

over the world. The machines may not even be owned by a single entity. Organiza-

tions can link to other organizations computing resources for collaborative problem

solving in various fields of science, engineering, medicine etc. These resources are

shared with strict rules and are highly controlled, with resource providers and con-

sumers defining clearly what is being shared, the conditions of them being shared,

cost, time of use, specific use etc. A set of individuals and/or institutions sharing

resources under such conditions is known as a Virtual Organization (VO). [1].

Some of the most primitive forms of Grid computing were projects like SETI@Home

[2] and Distributed.net [3]. These projects harnessed the spare computing cycles

of PCs distributed all around the world for a single purpose. These applications

are also known as Peer-to-Peer (P2P) networks.

1



1.1 Services Provided by Grid Computing

Grid computing can provide organizations the following features [4].

• Exploit underutilized resources - Many computers in organizations are only

active at certain times of the day. For e.g., desktop machines used by people

are only used during office hours. The computing cycles of these machines

can be harnessed with the use of grid computing to run compute intensive

jobs. This is especially easy if the process to be executed is easily parallelized.

This process is also known as scavenging.

• Enable Virtual Resources and Virtual Organizations - Grid computing sim-

plifies collaboration between different organizations . Different users can be

divided into different virtual organizations , with each VO having a different

policy for sharing of resources. Storage space, data, application licenses and

computing power etc. can be shared by people who are in different physical

organizations, but in the same VO. They can have common security poli-

cies, and can implement payment systems for the usage of resources. To a

single user, all resources within a VO can be consolidated to feel like a single

resources.

• Provide Resource Balancing - In a grid, a large number of machines are

federated into a single entity. If there is a sudden spike in the demand for

a computing resource, a good scheduling policy can split the request into

various resources that form the grid.

• Establish A Grid Computing Market - The fact that users from different

organizations can use resources from other organizations transparently is

giving rise to services like computing and storage farms. Entities known

as the Grid Service Provides can provide users access to large computing

resources, application libraries, network bandwidth and storage at specified

2
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Figure 1.1: A Virtual Organization Aggregates Resources in Various Domains to
Appear as a Single Resource to the End-user
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rates. This is convenient for the users too since it lowers the cost for occa-

sional use of such resources. Organizations with large computing resources

can recoup their investments by lending out their idle computing prowess.

This model is also referred to as Utility Computing.

• Provide Quality of Service - In various organizations, some projects could

be of higher importance than the others due to its monetary value or be-

cause of time constraints. Users could implement brokers, who can negotiate

on their behalf with grid service providers to lease more computing power,

storage space, network bandwidth etc. In a utility computing model, service

providers can charge premium rates for providing expedient service.

1.2 Need for Job Classes

Jobs that run of Grid Networks may be of several types. Some jobs may require

large amounts of computational power, while others may require quick response

times. From the point of view of service providers, it is not be possible to specify

what kind of service each job should receive. Better service can be provided if jobs

are profiled, and split into separate classes. Each job in the same class receives

the same service from the grid network and network providers.

In this thesis, jobs are divided into classes depending on the amount of process-

ing power they require, the amount of data to be transferred, and its deadline.

Jobs belonging to the same class have similar values for each of these parameters.

1.3 Quality of Service

Quality of Service refers to the ability of a node to provide differential service to

different classes of jobs. In order to do this, the resource providing QoS needs to

be aware of incoming workload to be of different classes, and it should have inbuilt

4



mechanisms to provide varying share of its capability, depending on a specified

policy. In our thesis, we have analyzed QoS requirements for two kinds of resources

- Processing nodes and Network elements.

1.3.1 QoS for Processing Nodes

[5] discusses some of the metrics relevant to Quality of Service in Grid Computing.

The QoS of a grid job at a processing node can be defined in terms of the following

parameters -

• Latency of a task is the amount of time taken by the grid node to execute

it. It can also be said to be the response time of the node. Latency is the

most important parameter for jobs that need immediate attention, for e.g. a

system that keeps tabs on the stock market to decide which stocks to invest

in.

• Throughput is the units of work that is accompanied by the grid service in

unit time. The throughput for a certain job can be measured as the amount

of work provided by the job divided by the amount of time taken to complete

it i.e. latency. Throughput is an important factor for jobs that need lot of

processing power for e.g. weather simulations, nuclear reaction simulations

or processing large financial worksheets.

• Availability - Another important QoS metric is the availability. Availability

is defined as the fraction of time that the resource is available for use. For

e.g., the desktop PCs may only spare their CPU cycles for grid services at

night. However, some jobs may require guarantees of 100% availability of

service, for e.g. a fire or defense alarm system. Systems that require higher

availability may need more dedicated hardware.

5



1.3.2 QoS for Network Elements

In networks, QoS refers to the capability of a network to provide differentiated

service to different types of network traffic. Certain flows should be able to obtain

better service than other flows. Common methods to do this include providing

higher bandwidth to high priority flows and/or dropping more packets of low

priority packets in the presence of congestion. In computer networks, some of the

important QoS parameters are bandwidth, packet loss rate, delay and jitter.

• Bandwidth - Bandwidth refers to the amount of data that can be sent in unit

time by a flow. Applications which require lot of I/O to and from network

resources can be sped up by providing them higher bandwidth.

• Packet Loss Rate - In IP networks, packets are not guaranteed to reach

their destination. If queues at any intermediate router in a flow are full,

an incoming packet is dropped. Flows that are guaranteed low packet loss

rates can be accommodated by dropping packets of lower priority, when high

priority packets arrive at a router that has full queues. Flow-based Random

Early Detect (FRED) ([6]) is a common technique that can be used to achieve

preferential treatment with regard to loss rate for packets of certain classes.

• Delay - In computer networks, delay is composed of transmission delay,

prorogation delay and queuing delay. Transmission delay depends on the

bandwidth provided to the flow and prorogation delay depends on the speed

of electrons in metallic mediums, or speed of light in optic fibers. Queuing

delays occur at a router because routers have an overhead for processing each

packet, and many packets in its queues that delay the time at which a specific

packet will be processed by the router. Routers which guarantee low delays

to certain flows can use buffer management techniques like Priority Queuing

(PQ), Weighted Fair Queuing (WFQ) or Class Based Queuing (CBQ).

6



• Jitter - Many applications are sensitive to the variation in delay, rather than

the actual delay itself. This is usually the case with applications that rely

on a regular arrival of data, for e.g. a video client. Variation in delay of

packets is known as jitter. Jitter can be kept low by using small queue sizes

in routers.

[7] provides a detailed view of QoS in networks and the various mechanisms

used to implement and provide QoS in networks..

1.3.3 QoS Levels

Quality of Service (QoS) can be distinguished into two categories -

• Soft QoS - Soft QoS consists of providing better service to some jobs on

resources like network and processing nodes. Service Providers can make

some assurances about bandwidth, delay, processing power etc., by treating

some jobs better than the rest. However, no guarantees are made, and the

assurances are given on a statistical basis. Soft QoS is mainly achieved by

having multiple classes of service, with different priorities. One example of

a soft QoS mechanism is the Assured Forwarding Per-Hop-Behavior (PHB)

([8] of DiffServ ([9]).

• Hard QoS - In some cases, soft QoS may not be enough to satisfy all the

requirements of an user. For jobs with tight deadlines, the customer may

require the service provider to guarantee that the job will get completed

within a certain time. Hard QoS includes mechanisms for guaranteeing the

bandwidth or other QoS metrics at resources. Hard QoS allows the resource

provider to decouple the requirement of one customer from the load intro-

duced by another, since he needs to make sure there are enough resources

available to satisfy both. Though this service requires more stringent re-

source management techniques, as compared to soft QoS, service providers

7



may be interested in providing such services since they can charge a premium

rate for it. An example of Hard QoS is the Resource ReSerVation Protocol

(RSVP) ([10]). RSVP can be used by an application to make resource reser-

vation at each node that the application stream will be traversing. Another

example is the Guaranteed Service (GS) ([11]) provided by the IntServ ([12])

framework.

1.4 Provisioning and Reservation

We discussed in Section 1.3.3 the difference between soft and hard QoS. Resources

that support soft QoS are said to support provisioning. In provisioning, the service

levels supported are only statistical. Resources provided differentiated service to

multiple classes of jobs. Load from other sources can affect the performance of a

job in provisioning schemes. Reservation, on the other hand, refers to hard QoS

guarantees provided by resources. Here, the service parameters are absolute, and

do not change depending on the load at a resource.

1.5 Service Level Agreements

Users and service providers can agree to the service parameters that the user will

receive from a service provider through a Service Level Agreement (SLA). A SLA

contains the contract between the subscriber and the service provider regarding

the characteristics of traffic allowable at the service providers ingress node. For

example, a SLA could state that a subscriber will always receive a lower delay for

his packets as compared to other flows, as long as the number of packets are kept

below a certain threshold. This is an example of soft QoS. A SLA could also state

that a job of certain size will always get processed within an hour at a processing

node. This is an example of hard (guaranteed) QoS. [13] provides examples of

how static of dynamic SLAs can be used in conjunction with other technologies
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like IntServ and DiffServ to provide QoS to users.

The major problem with SLAs is that it leads to wastage of resources at the

service providers side. If the mechanisms ensuring QoS are static, the service

provider needs to make sure that he has enough capacity to cater to every user

consuming their maximum allowable capacity. This leads to underutilization of

his resources when the subscribers are sending below their upper limits. Thus,

static QoS mechanisms do not provide maximum value for money.

1.6 Integrated Network and Processing QoS

In grid computing models, users submit their jobs via brokers to one or many

grid processing nodes. These processing nodes may be within the same network

domain, or could be a few network Administrative Domains (AD) away. If a grid

user wants his jobs to meet certain QoS criteria, he needs the following

i. The grid service provider must have mechanisms to ensure that he can pro-

vide QoS to the jobs, for e.g. higher or fixed share of processing capacity, or

ensuring 24/7 availability.

ii. The network domains through which the jobs passes also need to provide

QoS support. This can be through means of providing priority queuing,

higher share of bandwidth, or allowing packets to queue at the head of the

router queues.

Jobs can only fulfill their deadline and other QoS requirements if QoS support

is provided by both of the above. For e.g. if only grid nodes provide QoS support,

data packets for that job may get held up in the network, or even lost, leading to

QoS violations overall for the job. This will be especially true if the job is I/O

intensive.

One way in which the user can make sure of his job meeting deadlines, is to

sign a SLA(1.5) with the grid service provider, and all the network domains that
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his data will be passing through. However, this would mean the location of the

grid processing nodes will need to be fixed and known in advance. This takes away

a lot of flexibility of having a grid system that is supposed to be transparent to

the user. Also, in services like utility computing, the user sends his jobs to the

utility provider, from where it may be farmed out to any location the provider

thinks is appropriate. Thus, signing SLAs in advance is a cumbersome process

which requires manual intervention, and does not always fit in well with the grid

and utility computing model.

In this thesis, we have used a model where network and processing resources

always provide QoS support. The services a job receives depends on its class. Class

1 jobs receive preference over Class 2 jobs. The resource allocations among classes

are decided by policies at each resource. The policies are learnt and continually

adjusted by agents residing at each resource.

1.7 Related Work

Providing Quality of Service in Grids is a challenging problem and many re-

searchers have taken a look at it in recent years. [14] presents a resource man-

agement architecture called GARA, that addresses the problem of achieving end-

to-end QoS guarantees across heterogeneous collections of shared resources. It

works in conjunction with the Globus Toolkit. ([15]). It allows the construction

of reusable co-reservation and co-allocation agents that can combine domain and

resource specific knowledge to discover, reserve and and allocate resources to try

and meet application QoS requirements. [16] discusses the principles behind the

GARA architecture. However, GARA requires that the application use an API

to create calls for reservation and allocation.Also, the project seems to be out-

of-date and doesn’t work with newer versions of Globus, with the last update to

their website in June 2000.
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[17] proposes a Grid Architecture for Computational Economy (GRACE).

GRACE is an economic framework for consumers and service providers to op-

erate in a grid computing market. The consumers interact with brokers to express

their budget and deadline requirements. The resource broker is responsible for

discovering grid resources, negotiating with GSPs and controlling and schedul-

ing jobs. GRACE proposes setting up a market directory, where resource owners

can publish their services along with their service parameters like pricing poli-

cies. It also proposes setting up a Grid Bank which records resource usage, bills

consumers, and transfers funds to service providers. The pricing strategies can

be based on flat rates, demand-and-supply, calendar based, bargaining based etc.

[17] also discusses Nimrod-G, which is a tool for automated modelling and exe-

cution of applications, and it is based on the GRACE framework. The GRACE

framework enables QoS by allowing users and service providers to negotiate the

price and deadline of job. However, it does not propose any mechanisms by which

the service providers can ensure that they deliver the QoS they promised when

publishing their services in the market directory. It also does not explore how

resource providers can maximize the usage of their grids.

[18] details another approach to provide QoS to grid services using a framework

called QoSINUS. This approach aims to provide an end-to-end Best Effort QoS.

Only network level QoS is provided in this approach. Programs can specify their

QoS parameters through an API provided by QoSINUS, and the QoSINUS service

tries to map their requests with a class of IP service on a network that supports

some form of QoS like DiffServ ([9]). The QoSINUS approach contains adaptive

control components that are responsible for class mapping and adapting the packet

marking policy according to the performance experienced by the packets of each

particular flow. The adaptive policies can be flexible, ranging from static mapping

to policies that give higher priorities to jobs with earlier deadlines. There is no

provision for CPU Reservation in this framework, therefore no guarantees can be
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provided. The QoS provided is very basic, limited to Best Effort Service. Though

this framework has adaptive algorithms, the adaptive algorithms are simple in

nature.

[19] proposes a framework called Grid QoS Management (G-QoSM), which

is compatible with the Open Grid Services Architecture (OGSA) specification.

OGSA is a framework to build Virtual Organizations, and defines grid services in

the form of Web services. It provides three levels of service called Guaranteed,

Controlled Load and Best Effort QoS. The behavior of these levels are similar

to those defined by the IntServ Architecture ([12]). The G-QoSM framework is

composed of - (i) the QoS Grid Server, (ii) an extended version of the Universal

Description Discovery and Integration (UDDIe), (iii) a resource reservation man-

ager, (iv) a resource allocation manager and, (v) a policy Grid Service. It uses

DSRT ([20]) for reservation of CPU cycles and DiffServ ([9]) for network manage-

ment. It has facilities for reservation, advanced reservation and admission control.

However, the reservation levels are fixed and cannot adjust depending on the load

and type of jobs coming to the grid service.

[21] discusses a resource allocation algorithm using reinforcement learning. The

algorithm used for reinforcement learning is one step Q Learning. The reward is

based on the amount of time used to complete the job by a grid node. [?] presents

a general methodology for scheduling jobs in soft real-time systems, where the

utility of each job decreases as a function of time. It demonstrates a RL based

architecture for solving a NP-hard optimal control problem, which is scheduling

jobs on multiple CPUs on single or multiple machines.

R = sign{< ρi > −ρi >} (1.1)

where R is the reward, and < ρi > is the average of the response time of

jobs completed to date and ρi is the response time of the last completed job.

This reward structure penalizes a grid node if its response time is larger than the
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average response time.

The update equation is

Qi,t+1 ← Qi,t + α(R−Qi,t) (1.2)

Qi,t is the value of grid node i at time t and α is the learning rate. Therefore

grid nodes that take longer time to complete a job have lower value then grid nodes

with fast response time. The agent follows a ε-greedy strategy, which means that

the greedy action will be taken with probability 1−ε, with the greedy action being

taken otherwise. The paper concludes that this Q learning approach does better

than an algorithm that simply chooses the least loaded resource. The problem

with this simplistic approach is that the arrival of jobs at a resource would be

cyclic. A fast grid node would see more jobs coming to it, eventually slowing it

down more than the slow resource, which will hardly see any load. As a result its

Q value will decrease over time, after which the slow resources will tend to get

swamped.

1.8 Aims of this Thesis

This research focuses on the need to provide Quality of Service to grid users in

an autonomous manner. Providing QoS in an autonomous manner implies that it

should require minimum interference from a system or network administrator in

order to meet the QoS requirements laid out in SLAs.

As we stated in Section 1.5, static mechanisms to provide QoS cause resources

to be underutilized at a service providers site. In our thesis, we focus on dynamic

QoS mechanisms that learn policies to help maximize the utilization of a network

or grid service providers resources.

We focus on Reinforcement Learning based mechanisms that can observe the

load and other conditions at a resource and learn resource allocation policies with-
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out the need for external supervision. RL agents reside at each resource node.

These agents are responsible for the resource allocation policies. We intend to

implement a system where successful completion of jobs within deadlines gives

a positive feedback to the agents, and they are penalized if a job fails to finish

within deadline. Once the agent learns an optimal policy, they should be able to

handle any situation in the network and grid. We aim to design such a system in

simulation, as well as have a working implementation on a testbed to assess its

viability.

1.9 Organization of this Thesis

This thesis describes how QoS can be achieved using RL based algorithms. The

proposal made is evaluated using a grid simulation package known as GridSim,

and a testbed running a Globus based grid. Before the actual RL based system

is described, we need to briefly introduce these various components. Accordingly,

the rest of the thesis is organized as follows - Chapter 2 gives a brief introduc-

tion to Reinforcement Learning, the framework which was used for the design of

our resource allocation system. It includes descriptions of the Markov Decision

Process, states, actions reward policy etc. It also shows how a Cerebellar Model

Articulate Controller is used for function approximation. It goes on to describe

the RL algorithms used in this thesis, namely Q(λ) and SMART.

Chapter 3 gives a description of the work that was done on GridSim. GridSim

did not support any network simulations prior to version 3.1. This chapter details

the motivations behind implementing an elementary network stack for GridSim

and how the this feature was designed and added to GridSim. We have shown the

design for the network elements, and also discussed their implementation details.

We have provided class diagrams for the various elements like Packets, Links,

Routers etc., that are essential for the network infrastructure in GridSim. We
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have also discussed some of the other grid simulation packages, the features they

provide, and why they do not fit our needs completely. It is hoped that these will

be useful for other researchers wanting to use and extend GridSim.

Chapter 4 discusses our strategies for Reinforcement Learning based resource

allocation in detail. Resources can be allocated by provisioning or reservation.

The chapter explores resource provisioning on routers and GRs with the use of

WFQ and GPS algorithms respectively. It also details how resource reservation

can be provided on routers and GRs using rate-jitter schedulers and CPU cycle

reservation. We also discuss the design and configuration of the RL system, like

the state and action space, reward policies etc.

In Chapter 5, we describe the simulations of the solutions we discussed in

Chapter 4. We describe the various simulation experiments we designed and ran

on GridSim to benchmark the performance of our solution against currently used

static allocation policies. We simulated three distinct scenarios : (i) when only the

User broker runs an agent to decide which resource to send the next job to; (ii)

when the agents are only running on network routers and grid nodes, adjusting

the resource allocation levels according to the policies they learn in real time;

(iii) when the agents are enabled on the User brokers, the network routers and

grid nodes. We also compare the performance of our algorithm in each case. We

continue the chapter with a description of the implementation of our system on a

testbed. We detail the design of the agents running on routers and grid resources.

These agents also use Reinforcement Learning to determine resource allocation.

We show how we used nice levels on Linux to provide CPU provisioning, and a

Linux program called rshaper to provide bandwidth reservation.
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Chapter 2

Reinforcement Learning

2.1 Introduction to Reinforcement Learning

2.1.1 Markov Decision Process

In general reinforcement learning problems can be modelled as Markov Decision

Processes (MDP). A MDP consists of

• a set of States S

• a set of Actions A

• a reward function R : S× A→ <

• a state transition function T : S× A→ π(S)

The state transition function specifies the probability distribution of state tran-

sitions, i.e. the probability of moving from state s to state s′ given action a, spec-

ified as T (s, a, s′). The reward function specifies the instantaneous reward when

such a transition takes place. A reinforcement learning process that satisfies the

Markov property can be modelled as a MDP.
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2.1.2 The Markov Property

In a certain process, if the probability distribution of all the future states of the

environment only depend on the current state, the process is said to fulfill the

Markovian Property, and the process itself is known as a Markovian Process. This

implies that the probability of reaching a state s′ from s is always known. Math-

ematically,

P [st + 1 = s′|st, at]

is a known value, where P (st, at) is the probability of event being in state s due

to action a at time t.

In reinforcement learning, the agent makes a decision based on a function of

the state of the environment. If the given problem is Markovian in nature, then the

agent can predict all future states and rewards to be received given an initial state.

Thus, Markovian problems provide the best basis for choosing actions. Theorems

developed for Markovian problems can be used with non-Markovian processes,

but the effectiveness becomes lesser as the problem diverges from the Markovian

property.

2.1.3 Reinforcement Learning

Bellman [22] proposed the framework of Dynamic Programming (DP) to solve

problems which are amenable to Markovian analysis. Algorithms like value or

policy iteration can be used to solve such problems. However, these algorithms

require that for every decision made by an agent, the complete state-transition

probability is required. In other words, the model of the problem must be known.

In problems with large state and action spaces, developing the transition proba-

bilities model can be a hindrance to solving the problem. This is known as the

curse of dimensionality. To solve such problem, we can use algorithms like the

method of temporal differences (TD(λ) [23] or Watkins Q(λ) [24]. These methods
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fall in the category of reinforcement learning algorithms.

Reinforcement Learning(RL) (also known as Neuro-dynamic Programming (NDP))

is a popular technique used to learn an action policy i.e. given a certain situation,

it is able to decide the ideal action to be taken. An ideal action is one which

maximizes a numerical reward signal over a period of time. Agents using the

RL algorithm discover by trial and error which actions are the most valuable in

the states that the agents will encounter. For a comprehensive discussion on RL,

please refer to [25] and [26].

Figure 2.1: Reinforcement Learning Model

In the standard model shown in 2.1, an agent communicates with an environ-

ment. At each iteration of the algorithm, the agent gets to know the state st from

the environment at time t. The agent refers to its current policy (π), and decides

an action at to be taken. This changes the state of the environment from st to

st+1. It also causes a reward to be generated, Rt, which is used as feedback to the

agent. The agent learns about the desirability of an action from a particular state

in this way. The agent formulates a policy that maximizes the discounted sum of

expected future rewards
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value = E[Rt + γRt+1 + γ2Rt+2 + ...] (2.1)

2.1.4 State

In every reinforcement learning problem, the environment is always in a certain

state. A state can consist of any information available to the agent from the

environment. For example, if the environment is a chess board, the state of the

environment could be the positions of the pieces on the board. States can be

directly observed from the environment or constructed using inputs received from

the environment. Constructed states can be useful when the agent is interested in

the gradient of a feature. In this thesis, the state of the environment at time t is

represented as st.

2.1.5 Action

At every state, the RL agent has a list of possible actions that it can take from that

state. Actions could either be greedy or exploratory. Greedy actions are ones that

the agent knows should lead to the future rewards being maximized. Exploratory

actions [27] are those that are used to learn more about the environment, in the

hope of finding a better policy than the current one. In this thesis, the action

taken at time t is represented by at.

One way to decide between taking greedy and exploratory actions at each step

is known as the ε-greedy method. In this method, the greedy action is taken

most of the time, but once in a while, an exploratory action is taken with a small

probability ε.

Another way to explore the state and action space is by using softmax action

selection. This method is an improvement over ε-greedy methods, because the ε-

greedy selection is as likely to be a bad one as a good one. The softmax algorithm

on the other hand chooses actions based on their value estimates. The probability
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of an action being chosen is directly proportional to its value estimate, therefore

the greedy action has the highest probability of being chosen. A common softmax

method uses the Boltzmann distribution.

The probability of choosing action a at time t is

p(a) =
eQt(a)/θ∑n
b=1 eQt(b)/θ

(2.2)

θ is a positive parameter called the temperature. The higher the temperature,

the more even the probabilities of all actions being chosen. Therefore, an experi-

ment can begin with a high temperature, and the temperature can be lowered as

the experiment goes on. This will mean that more learning will take place initially,

and as the agent learns more about the optimal policy π∗, less exploratory actions

are taken, causing higher returns and system stability.

2.1.6 Rewards

Agents receive reward from the environment for taking actions at each state. The

sole purpose of the agent is to maximize the expected value of the rewards in

the future, as stated in Equation 2.1. Rewards are generated by the environment,

rather than being calculated by the agent itself. By placing the reward assignment

outside the agent, it is encouraged to formulate a policy in an environment in which

it has imperfect control of the reward outcome.

The rewards generated by environments due to an agent’s actions may not

be immediate. For example, in a grid environment, an agent could change the

reservation levels for certain classes of jobs. This affects the jobs running currently

and the jobs arriving in future. Since jobs on grids could be processor and I/O

intensive, they could take a long time to complete, and the effect of the agent’s

action will not be known till some time into the future. Such rewards are known

as Delayed Rewards, and agents must know how to assign delayed rewards to the
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action or series of actions that caused this reward to be generated.

The most important part of assigning reward is to determine which action at

which state should the reward be assigned to. This is known as the temporal credit

assignment problem. If the credit is assigned to an action that did not contribute

to the credit being generated, the agent might formulate a sub-optimal policy.

A sub-optimal policy is one that does not lead to maximum expected return.

One method to overcome this problem is to wait till the end of the experiment,

and observe whether the reward is positive or negative, and reward the actions

respectively. We will need to iterate this process a few times for proper learning

to take place. However, this increases the learning time of the agent, and does not

work in problems that do not have a specific ending. There are techniques that

adjust the estimated value of a state depending on the current estimated value,

immediate reward and the estimated value of the state reached due to the action.

These class of techniques are known as temporal difference methods ([23]).

2.1.7 Policy

Every agent follows a policy which dictates what actions are to be taken in each

state. The policy that the agent follows determines the reward and return that

the agent enjoys. By observing the returns from its current policy, the agent tries

to continually improve its policy. In our thesis, policy is represented by π, the

action to be taken at a state s is represented as π(s), and the optimal policy is

represented by π∗. The optimal policy is the one that achieves maximum return.

Policy can be improved through Policy Iteration or Value Iteration [26].

2.1.8 Function Approximation

The basic method of storing the Q-values of state-action pairs are lookup tables.

Lookup tables are simple to implement, but they can only be used when the state

and action space is small. However, in problems where the state or action space is
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very large or continuous (for example [28]), lookup tables become impractical to

implement. Not only do the lookup tables require large amounts of memory, they

are also unable to generalize the learnt values. Generalization refers to the genera-

tion of similar outputs for similar input. Generalization also allows agents to learn

faster since they do not need to explore the entire state and action space before

they can produce a meaningful action for a given state-action pair. Structures

that provide such generalization are known as Function Approximators.

There are several techniques which can provide function approximation. We

can use neural network methods like Multi-Layer Perceptrons (MLP) or Radial

Basis Functions (RBF). The method we have chosen for function approximation in

our experiments is a coarse coding technique known Cerebellar Model Articulation

Controller (CMAC). The main advantage of CMACs over RBFs and MLPs is that

they have lower computation requirements ([29]).

CMACs work by using quantizing functions and resolution elements. Each

dimension of the Q-value is mapped to K different quantizers, each of which has

N resolution elements. Each quantizing function has a value associated with it,

and each resolution represents a fraction of the value of the quantizer. When two

inputs to the CMAC are close, they map to quantizers and resolution elements

that are close, and therefore have values that are similar. A detailed description

of CMACs can be found in Chapter 3 of[29].

For a CMAC with K quantizing functions, the number of storage elements

required is

S = K Πj
i=1 Ni (2.3)

where Ni is the number of resolution elements in quantizer i. Choosing a larger

number of quantizers and resolution elements increases the accuracy of the CMAC,

but also increases its memory requirements.

The major advantage of using CMACs is that looking up the value of a single
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element only requires K lookups, where K is the number of quantizers. This is

significantly lesser than the case of MLPs where all weights have to be computed

to lookup a single value.

2.2 Solutions to Reinforcement Learning

In our problem of providing Quality of Service in Grid Environment, we experi-

mented with two different methods that can be used to solve reinforcement learning

problems. The first of these is called Watkins Q-Learning algorithm [30] , and the

second one is known as Semi-Markovian Average Reward Technique (SMART)

[31].

2.2.1 Watkins’ Q-Lambda

Watkins’ Q(λ) is an off policy Temporal Difference (TD) learning method [24].

It combines one-step Q-Learning with eligibility traces. Both these terms are

explained below.

One-step Q-Learning

In one step Q-Learning, the agent uses the following update rule

Q(st, at)← Q(st, at) + α[Rt+1 + γmaxaQ(st+1, a)−Q(st, at)] (2.4)

The Qπ(s, a) function is the perceived value of taking action a at state s under

policy π. The higher the value of Qπ(s, a), the more desirable that action in that

particular state. Qπ(s, a) is basically the expected return when starting from state

s, taking action a and following policy π thereafter. The Q-value of a state-action

pair is learnt from experience. If the agent follows policy π and maintains an

separate average for actions from each state, the average will converge to the Q-

value for that state. In a reinforcement learning problem, the objective of the
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actions should be to maximize the return. Achieving maximum returns indicates

that the agent is following the optimal policy π∗.

Equation 2.4 above is known as one-step Q learning because the Q-value of a

state-action pair is only updated with the Q-value of the next state-action pair

visited. Steps taken by the agent do not affect state-action pairs visited more than

one epoch ago. It is also an offline method because the next step Q-value being

used to update Q(st, at) is not Q(st+1, at+1). Rather it’s maxaQ(st+1, a). This

means is that the to update the Q-value of a state-action pair reached at time t

we do not use the next state-action pair reached, but we use the maximum of the

possible Q values of the state-action pairs that could be reached from (s, a). This

method has been shown to achieve faster convergence than using the Q value of

the next state-action pair (st+1, at+1). The policy decides the next action to be

taken, but the updates to the Q-values are independent of policy. In effect, the

learning is greedy, while the policy is exploratory.

The term [Rt+1 + γmaxaQ(st+1, a)−Q(st, at)] in equation 2.4 is known as the

Temporal Difference (TD) error. The TD error is an indicator of whether the

action that was taken leads to better Q values for a state-action, or worse. A

positive TD error indicates that the tendency to select action at at state st should

be increased, a negative TD error indicates the opposite.

Eligibility Traces

In most real-life reinforcement learning problems, there is a delay between taking

an action and the generation of the reward or penalties. Eligibility traces [32] are

a way to overcome the problem of which state-action pair the reward should be

assigned to. An example of the use of eligibility traces is Tesauro’s backgammon

playing reinforcement learning agent [28].

Eligibility traces are akin to maintaining a trace of all the events that have

happened that lead to up to the visit of a state or action. By keeping this trace,
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all the state-action pairs that led to this TD error can be rewarded or penalized.

This is desirable because the generated TD error is not just due to the immediate

action that caused the error; the path of state-action pairs traversed is responsible

for the generation of the current TD error. Thus the eligibility trace helps to

assign rewards or penalties to all the state-action pairs responsible for this TD

error.

Two kinds of eligibility traces are generally used, accumulating traces and

replacing traces. In accumulating traces, the weight assigned to the state-action

pair is increased each time that state-action pair is visited. In replacing traces,

the weight of the trace for a state-action pair is set to 1 if a state- action pair is

visited, and remains at one even if it is visited multiple times before a TD error is

generated. Replacing traces are more efficient than accumulating traces because

they only need to maintain a binary map for all the stat-action pair. Accumulating

traces require an array of integer or fractional values, which requires more memory.

In problems with very large state and action spaces, the memory requirements

of accumulating traces might be prohibitive. [32] showed that replacing traces

improve convergence in a ”Mountain-Car” experiment, a problem in which the

state and action space is continuous. Replacing traces were used in this study due

their efficiency and better performance.

Replacing traces are defined in the following way -

et(s) =


γλet−1(s) s 6= st

1 s = st

(2.5)

In equation 2.5, the eligibility trace for all states are decayed by a factor γλ.

The state being visited has its eligibility trace set to 1. γ is the discount rate and

λ is called the trace-decay parameter. The use of trace-decay parameter ensures

that the states that were visited earlier than when the TD error was generated,

receive a lesser share of the credit or blame. This is sensible because states that
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are closer predecessors in time are more responsible for the agent reaching a state

where the current TD error was generated.

Q(λ)

Merging the concepts of one step Q-learning and eligibility traces gives us Watkins

Q(λ).

Watkins Q(λ) uses equations 2.6 and 2.7 to update Q values for state-action

pairs. For recording the eligibility trace, when a state is visited, its eligibility trace

is set to 1, and all others are decayed by γλ. Whenever an exploratory action is

taken instead of a greedy one, all the trace values are set to 0.

δ ← R + γmaxaQ(st+1, a)−Q(st, at) (2.6)

For all s,a:

Q(st, at)← Q(st, at) + αδe(st, a) (2.7)

However, in our simulations and implementation, the value functions are calcu-

lated by a CMAC. Therefore, the RL agent only calculated the TD errors according

to Equation 2.6, and then uses that value to update the features of the CMAC.

2.2.2 SMART

SMART (Semi Markovian Average Reward Technique) ([31]) is a RL technique

to solve Semi-Markov Decision Problems (SMDP).

Semi Markov Decision Problems

Markov Decision Problems require that a decision is made every time step. When

the sojourn times between actions are drawn from general probability distribu-

tions, the problems can be modeled as Semi- Markov Decision Processes.
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SMART

The Bellman optimality equation for SMDPs can be stated as follows ([33]) : There

exists a scalar χ∗ and a value function V ∗ satisfying the system of equations

V ∗(s) = R(s, a)− χ∗τ(s, a) +
∑
s′∈S

Pss′(a) max
a′∈As′

V ∗(s′, a),∀s ∈ S (2.8)

where τ(s, a) is the average sojourn time of the SMDP in state s under action a,

R(s, a) is the immediate reward obtained by the action, Pss′(a) is the transition

probability of going from state s to state s′ given action a, and the greedy policy

π∗ formed by selecting actions that maximize the right hand side of the above

equation is optimal.

Jobs in grids can take indefinite amount of time. The time not only depends on

the number of grid jobs, it will also change according to the local load at the grid

node. The problem we are trying to solve is non-deterministic. Thus constructing

a model for transition probabilities will be an extremely hard task. Consequently

deriving a value iteration algorithm will also be difficult. Since the amount of time

taken by jobs is indefinite, the sojourn times are also not fixed. Therefore this

problem can be modelled as a SMDP.

V (s, a) in Equation 2.8 can be calculated by SMART online using equation 2.9

shown below.

Vnew(s, a) = (1− αm)Vold(s, a)

+αm

(
R(s, s′, a)−ARmτ(s, s′, a) + max

a′
Vold(s

′, a′)
)

(2.9)

where Vnew(s, a) is the new calculated value of action a in state s at the mth

decision epoch, α is the learning rate at that epoch for updating the value of the

state-action pair, s′ is the new state that the system moves into due to action a,

and a′ is the action taken from state s′. R(s, s′, a) is net reward earned between
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two successive decision epochs, starting in state s, ending in state s′ due to action

a. ARm is the average reward rate, and it is updated as shown in equation 2.10.

ARm = (1− βm−1)ARm−1 + βm−1
T (m− 1)ARm−1 + R(s′, s, a)

T (m)
(2.10)

T(m) is the total time spent in all visited states until the mth decision period and

βm is a learning rate parameter.

The learning rates αm and βm, and the exploration rate εm are decayed slowly

to 0 using the Darken-Chang-Moody search-and-converge algorithm [34].

2.3 Advantages of Reinforcement Learning

A reinforcement learning based solution allows us to combine various states, ac-

tions and rewards into a policy. This is advantageous in problems where the ac-

tion may cause an indirect change in state, and therefore the action has no direct

control over the returns from the environment either. Often problems are non-

deterministic i.e. the probability of reaching a specific state due to an action taken

in another state need not be 0. In fact, in real world situations, non-deterministic

problems are more common than deterministic ones. Reinforcement Learning also

frees us from having to study the state transitions in detail in order to build a

model of the problem.
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Chapter 3

Design of Network Elements in

GridSim

In this chapter, we detail the work we did in designing network extensions for

GridSim. For our simulation purposes, we required a package that provides sup-

port for grid modelling, network support and flexible and easy to modify for our

purposes. We were not able to find any simulation package with all these require-

ment, but found GridSim to be easily modifiable to meet our needs. Since the

only thing missing from GridSim was a network stack, we wrote a network layer

for GridSim. This chapter is mostly derived from [35]. It has been reproduced

here since the design and implementation of GridSim is essential to understanding

the simulations we conducted in Chapter 5.

3.1 Introduction to GridSim

Grid computing has emerged as the next-generation parallel and distributed com-

puting methodology that aggregates dispersed heterogeneous resources for solving

various kinds of large-scale parallel applications in science, engineering and com-

merce [36]. In order to evaluate the performance of a grid environment, experi-

ments need to be repeatable and controlled [37] , which are difficult due to grid’s
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inherent heterogeneity and its dynamic nature. Additionally, grid testbeds are

limited and creating an adequately-sized testbed is expensive and time consum-

ing. Grids also need to handle different administration policies at each resource.

Due to these reasons, it is easier to use simulation as a means of studying complex

scenarios.

GridSim ([38]) is a Java based discrete-event Grid simulation toolkit. It sup-

ports the modelling and simulation of heterogeneous resources, users and appli-

cation models. The GridSim toolkit has been applied successfully to simulate a

Nimrod-G [39] like grid resource broker and to evaluate the performance of dead-

line and budget constrained cost and time optimization scheduling algorithms.

3.2 The Need for Network Simulation in Grid-

Sim

Versions of GridSim 3.0 and earlier did not support designing a network archi-

tecture to connect the various users, resources and other entities that may be

required (Grid Information Service for e.g.). In the real world though, Grid com-

puting technologies are increasingly being used to aggregate computing resources

that are geographically distributed across different locations. Commercial net-

works are used to connect these resources, hence a simulation that does not take

into account the effect of network links and routers will be incomplete.

Support was added to GridSim to simulate various network elements like links

and routers. GridSim now has the ability to

1. allowing users to create a network topology,

2. packetizing a data into smaller chunks for sending it over a network,

3. generating background traffic, and

4. incorporating different level of services for sending packets.
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Figure 3.1: A Class Diagram Showing the Relationship between GridSim and
SimJava entities

The flow of information among GridSim entities happens via their Input and

Output (I/O) entities. Upon creating a GridSim entity with a specified bandwidth,

it automatically creates both instances of class Input and Output, and links them

to this entity. Hence, sending a data must go through to a sender’s Output entity

before going into a recipient’s Input entity for collection.

3.3 Design and Implementation of Network in

GridSim

GridSim is based on SimJava2 ([40],[41]), a general purpose discrete-event sim-

ulation package implemented in Java. In SimJava, each simulated system (e.g.

resource and user), that interacts with others, is referred to as an entity. An en-

tity runs in parallel in its own thread by inheriting from the class Sim entity,

while its desired behavior must be implemented by overriding a body() method.

SimJava requires each entity to have two ports for communication: one for

sending events to other entities, whereas the other port is used for receiving incom-

ing events. In GridSim, this is done via class Input and Output.Both classes have

their own body() method to handle incoming and outgoing events respectively.
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Figure 3.2: A Class Diagram Showing the Relationship between GridSim and
SimJava Entities

Similar to SimJava, GridSim entities must inherit from the class GridSimCore and

override a body() method. The relationship between Sim entity and GridSim

classes is shown in Figure 3.1. In a class diagram, attributes and methods are pre-

fixed with characters + indicating access modifiers public. The class GridSimCore

does not have the body() method because it is not necessary since its subclasses

will override the method.

The flow of information among GridSim entities happens via their Input and

Output (I/O) entities. Upon creating a GridSim entity with a specified bandwidth,

it automatically creates both instances of class Input and Output, and links them

to this entity. Hence, sending a data must go through to a sender’s Output entity

before going into a recipient’s Input entity for collection.

The use of separate entities for I/O provides a simple mechanism for a GridSim

entity to communicate with each other, and allows modeling of a communications
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Figure 3.3: Interaction among GridSim Network Components

delay ([37]). In addition, this existing design provides a clean interface between the

network entities and others. Therefore, most of the changes were incorporated into

class Input and Output for transparent and minimal modification to the existing

code.

The new addition to the existing network architecture allows GridSim entities

to be connected using links and routers, with different packet scheduling policies

for realistic experiments as shown in Figure 3.3. Detailed explanation of this figure

will be explained later in Section 3.3.3. The network architecture has also been

designed to be extensible and backwards compatible with existing codes written

on older GridSim releases.

3.3.1 Network Components

Important addition to the existing GridSim network architecture are link, router,

packet, packet scheduler and background traffic generator components. The rela-

tionships among these network components in Unified Modeling Language (UML)

notations [42] are depicted in Figure 3.4 and 3.5.

Link

A link in GridSim is represented as an abstract class Link for extensibility. SimpleLink,

a subclass of Link as shown in Figure 3.4 (a), requires information like the prop-

agation delay, bandwidth and Maximum Transmission Unit (MTU) for packet

33



Figure 3.4: Generalization and Realization Relationship in UML for GridSim Net-
work Classes
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PacketScheduler

Link

Figure 3.5: Association Relationship in UML for GridSim Network Classes

35



delivery.

Input and Output

When GridSim entities want to send a data over the network, each of them has In-

put and Output (I/O) entities attached to it, as previously mentioned. The Output

entity is responsible for splitting the data into MTU sized packets, whereas the

Input entity is accountable to collate the different packets in a stream altogether,

and send them as one piece of data to the GridSim entity. In addition, these I/O

entities act as a buffer to hold the packets until a link is free.

Router

A router in GridSim is represented as an abstract class Router for flexibility as

shown in Figure 3.4 (a). Therefore, this design allows a subclass of Router in

determining the forwarding table at the start of the simulation, and implementing

any routing algorithms.

Routing can be done using static tables or dynamic methods, such as Routing

Information Protocol (RIP) [43] and Open Shortest Path First (OSPF) [44]. An

implementation of a router in class FloodingRouter uses a flooding algorithm

to setup its forwarding tables automatically. Since routers and other GridSim

entities can not be created and added after the simulation has started, the flooding

algorithm is a sufficient method to setup a router’s forwarding tables.

Packet

A network packet in GridSim is represented as an interface class Packet as shown

in Figure 3.4 (b). Currently, there are two classes that belongs to this category,

i.e. NetPacket and InfoPacket. A NetPacket class is used to encapsulate data

passing through the network, whereas class InfoPacket is devoted to gather net-

work information during runtime which is equivalent to Internet Control Message
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Protocol (ICMP) [45] in physical networks.

Packet Scheduler

A packet scheduler is responsible for deciding the order in which one or more

packets will be sent downlink. Implementing a packet scheduler requires extending

from class PacketScheduler as depicted in Figure 3.4 (c).

Two implementations of a packet scheduler are provided in GridSim, i.e. class

FIFOScheduler and SCFQScheduler. The class FIFOScheduler uses a simple

First In First Out (FIFO) policy, whereas the class SCFQScheduler adopts a vari-

ation of Weighted Fair Queuing (WFQ) [46], called Self Clocked Fair Queuing

(SCFQ) [47] policy, which will be discussed next.

3.3.2 Support for Network Quality of Service & Runtime

Information

Jobs on grids may have different requirements with respect to bandwidth and

latency. Systems like fire or earthquake detection require low latency and reli-

able delivery. Other jobs like protein folding experiments require high processing

power, and may tolerate some network errors. Also, in some cases, grid resource

providers may wish to charge for priority access to their resources. Thus grid

resource providers need mechanisms to provide users with different Quality of

Service (QoS) for using their networks [9]. In order to support this functionality,

every packet in GridSim contains a Type of Service (ToS) attribute with a default

value of zero weight. This attribute will be used by routers or packet schedulers

to provide a differentiated service to heterogeneous links or connections for incom-

ing packets. In GridSim, class SCFQScheduler can be configured with different

weights. Packets belonging to a class with higher weight receive higher priority

according to the SCFQ algorithm.

GridSim also supports requesting network status during runtime, such as num-
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ber of hops to destination, round trip time (RTT), bottleneck bandwidth and all

bandwidths that a packet has traversed for current or future simulation time. This

feature is similar to an ICMP ping message. The result is captured inside class

InfoPacket.

To enable this functionality, a GridSim entity must use either blocking or non-

blocking method calls from class GridSimCore. A blocking call requires to use only

a pingBlockingCall() method, where it waits for a result to come back while

preventing other entity’s activities. In contrast, a non-blocking call needs to use

a combination of ping() and getPingResult() methods while doing something

else in between. Both pingBlockingCall() and getPingResult() method return

an object of class InfoPacket.

3.3.3 Interaction among GridSim Network Components

When a simulation starts, routers send out advertisement packets to all neighbor-

ing router, advertising any other GridSim entities they are connected to. Later

on, the neighboring routers adjust their forwarding tables upon receiving these

packets. Then, they forward the packets to all neighboring routers except the

source. Depending on the complexity of a network topology and number of Grid-

Sim entities created, this process might take a while.

Once the forwarding tables have been completed, a GridSim entity, named

User from following an example shown in Figure 3.3, can start sending jobs to a

GridResource entity. Each GridSim entity has I/O entities attached to it that act

as a buffer. Therefore, when a job is to be sent out by a User entity, it is first

buffered at the Output entity (step 1). Here, the job is split into multiple packets

if it is larger than the MTU of a link connected to the Output entity. The packets

are then given sequence numbers, en-queuing in a buffer, and sent to the router

down the link one by one. The link takes the packet, delays it by the propagation

delay specified, and dequeues it at the other end (step 2).
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Routers receive the packet from the link, and decide the packet scheduler that

the packet should be sent to (step 3). If the outgoing interface has a MTU less

than the packet size, it splits the packet into smaller ones, similar to what Output

entity does. Next, these packets are enqueued at the packet scheduler. The packet

scheduler uses its own algorithm, such as FIFO or WFQ to decide the order in

which the packets should be dequeued (step 4). When a link attached to the packet

scheduler is free, the router dequeues one packet from the packet scheduler, and

sends it down the link (step 5). Similar approach is required if the other end of

the link is another router entity (step 6–8).

When the final link is traversed and the packet reaches the GridResource entity,

all packets in a sequence are collated back together into the job (step 9). This

is done by the Input entity. The job is then passed to the GridResource entity

for processing. Once processing is complete, the GridResource entity passes the

completed job to its Output entity, which follows a similar path until it reaches

the Input entity that created this job.

The current protocol used for sending packets is a datagram oriented proto-

col, which is similar to User Datagram Protocol (UDP). There is no support for

acknowledging each packets and packet reordering. Since there is no support for

recovering lost packets, I/O buffers are considered to be unlimited in order to

ensure no packets are lost.

3.4 Related Work

Simulation is very much used in the networking research area. Examples of

such simulators include NS–2 [48], DaSSF [49], OMNET++ [50] and J–Sim [51].

Though their support for network protocols is extensive, they are not targeted

at studying grid computing. This is because simulating grids requires modeling

the effects of scheduling algorithms on grid resources and investigating user’s QoS
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Table 3.1: Listing of Network Functionalities for Each Grid Simulator
Simulation
Tool

Routing
Table
Entry

Type of
Transport
Protocol

Data Pack-
etization

Runtime
Network
Status

Network
QoS

GridSim Automatic a data-
gram
oriented
protocol

Supported Supported Supported

similar to
UDP

MicroGrid Automatic TCP and
UDP

Supported Supported Not sup-
ported

SimGrid Manual TCP Not sup-
ported

Supported Not sup-
ported

OptorSim Manual Not sup-
ported

Not sup-
ported

Not sup-
ported

Not sup-
ported

requirements for application processes. In addition, we believe simulating TCP

and UDP connections are sufficient to model a real world behavior, because grid

users are mostly interested in finding out RTT and available bandwidth of a host.

Therefore, these network simulators perform other complex functionalities which

are not needed in simulating a grid computing environment.

There are some tools available, apart from GridSim, for application scheduling

simulation in Grid computing environments, such as Bricks [52], MicroGrid [53] [54],

SimGrid [55] [56], and OptorSim [57]. All of these simulators also have an under-

lying network infrastructure, with the ability to simulate realistic experiments

by using background traffic. Differences among the grid simulators, except for

Bricks, in terms of network functionalities and features are highlighted in Ta-

ble 3.1. Note that for Routing Table Entry column, an automatic entry means

filling in a router’s forwarding table automatically during runtime. In contrast,

a manual entry means filling in the forwarding table by reading from an external

file that defines a router’s connection with others, or by manually entering the

information into the table.

Bricks [52] is able to specify a network topology, bandwidth, throughput and
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variance of the throughput over time. The background traffic functionality is mod-

eled by using a probabilistic distribution, which is similar to GridSim. However,

at the time this article is being written, this package is not available to download

from its website [58]. As a result, we are not able to compare it with our work in

more details. Therefore, it is not included in Table 3.1.

MicroGrid [53] [54] allows complex network modeling, such as transport and

routing protocols, and large-scale experiments since it is based on DaSSF [49].

Hence, in terms of network capabilities, MicroGrid is the most complete of all grid

simulators. However, it is actually an emulator, meaning that actual application

code is executed on the virtual grid modeled after Globus [59].

SimGrid [55] [56] has a good network infrastructure that supports Transmission

Control Protocol (TCP) transport protocol for a reliable service. It also models

background traffic by reading from a trace file generated by Network Weather Ser-

vice (NWS) [60]. NWS is used to monitor current available bandwidth between

two machines over the network. However, SimGrid does not make any distinc-

tion between a job computation and a data transfer, since they are modeled as

a resource performing a specific task. Therefore, it does not support data pack-

etization. In addition, requesting network status functionalities during runtime

in SimGrid are limited to latency and bandwidth of a link. In contrast, GridSim

reports more network information than SimGrid, such as number of hops to a

destination and RTT as mentioned in Section 3.3.2.

OptorSim [57] has a very simple network infrastructure compared to other

simulation tools, since it does not support routing and transport protocol nor

data packetization. The background traffic functionality is modeled by using a

Landau distribution only. In addition, simulating with background traffic requires

a configuration file that describes a network topology in a matrix format.

From the above discussion and Table 3.1, GridSim incorporated QoS into a

network for scheduling packets, which are not supported by other grid simulators.
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In addition, GridSim provides a good set of network functionalities and features,

which some of them are not supported in the other grid simulators.

3.5 Conclusion to GridSim

Network serves as a fundamental component in grid computing since resources and

users are connected over a network topology with shared bandwidth. Previously,

GridSim does not have the ability to specify a network topology nor the function-

ality to connect resources through network links in the experiment. In this work,

modifications into an existing network architecture have been incorporated into

GridSim ver3.1 to address the above problems.

With the addition of this network functionality, users can study the effects

that both the network topology and grid resources can have on their jobs. This

paper explores the various types of network elements in GridSim like routers,

links, packet schedulers; and how they can be extended to add more functionali-

ties. Moreover, GridSim has new exciting features such as generating background

traffic during an experiment, requesting network information during runtime and

providing differentiated service for packets based on users’ Quality of Service (QoS)

requirements. These features help make GridSim a comprehensive package to sim-

ulate a realistic grid environment.

Software Availability

The latest GridSim toolkit with source code and examples can be downloaded

from the following website:

http://www.gridbus.org/gridsim/
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Chapter 4

Reinforcement Learning based

Resource Allocation

In this chapter, we explore the life cycle of a grid job in detail. We discuss

the mechanisms to provide QoS support for provisioning and reservation at the

network and processing levels. We also discuss the role of Reinforcement Learning

(RL) agents at the resources, how they are configured and their effects on the

performance of jobs.

4.1 Life-cycle of a Grid Job

In a typical grid usage scenario in our thesis, a user sends his job to a local

broker. The User Broker (UB), decides where to submit the job depending on the

User

Broker

Scheduler

RL Agent

Scheduler

RL Agent

...

Router Router

Scheduler

RL Agent

Grid Resource

Figure 4.1: Flow of a Grid Job
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requirements of the job, availability and load conditions on grid nodes, budget and

time constraints etc. The UB also runs an agent within itself, which can decide

which Grid Resource (GR) should process the job. The UB can also negotiate

or decide which class the job belongs to. Once the grid node is chosen, the UB

connects to the GR and sends the job to it. The data passes through a few routers

in one or more ADs before reaching the GR. In our framework, show in Figure

4.1, each router and the GR have an agent residing in them.

At each router, the data packets are received at the incoming interface, and

put into a queue. The order of dequeuing is decided by a scheduler residing at

the router. In our experiments, the scheduling algorithm was one among FIFO,

WFQ and a Rate-Jitter scheduler. WFQ and Rate-Jitter schedulers provide QoS

support, by providing differential service depending on the class of a job. The

agent running at each router can adjust the service levels provided to each class

of jobs.

When the job reaches a GR, it is enqueued or processed along with other jobs

that might be running on it. A scheduler running at the GR decides the order of

processing jobs, as well as the kind of service it receives. In the case of a FIFO

scheduler, one job is dequeued from the head of the queue, and it receives exclusive

service from the GR. In a parallel scheduler with only Best Effort (BE) service,

jobs are never enqueued. All the incoming jobs are run at the same time, with

no differentiation in service. Other scheduling schemes may support providing

different service levels depending on the class of the job. Each GR also runs

an agent, which can adjust the service levels if the scheduling policy supports

providing QoS.

Once the job is complete at the GR, it is sent back to the UB. It is the function

of the UB to verify whether the job was received back within deadline. As discussed

in Section 1.2, the deadline of a job is defined by its class. If the job is finished

within deadline, the UB generates a positive reward, and notifies the first router
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of the reward along with information about which GR processed the job. If the

processed job is only returned after the deadline, a negative reward is generated,

and the same action is taken. The UB also updates its value functions with the

generated reward. This affects its decisions about choosing GRs for future jobs of

the user.

The router that receives the reward and GR information from the User Broker,

updates its own agent with it. The agent adjusts the service level parameters of

the scheduler at the router. This adjustment depends on the size of the reward

received and the class of the job. It also sends this information to the next router

in the path. In this manner, each router which processed data packets for that

job receives the reward or penalty signal, until the information reaches the GR

that processed the job. In order for this to work, all data packets and the reward

information for a single job must pass through the same path.

When the GR receives the reward information, it updates its agent with the

information. Similar to the agents running on routers, the agents adjusts the

service level parameters of the scheduler running on the GR, depending on the

size of the reward and the class of the job. This is how a job circulates through

a grid system, and the agents learn and adjust QoS parameter to maximize the

reward they receive. The net accumulated reward could have monetary offsets,

in order to encourage administrator to run agents on their resources to maxima’s

their profit.

4.2 Network QoS

Service differentiation on the network can be done through bandwidth provision-

ing or reservation. Service differentiation allows certain classes of traffic to have

better service through higher priority access to network resources than others. By

queuing all the packets belonging to the same class at the same queue, we ensure
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that all flows of the same class receive similar treatment by the scheduler.

In our experiments, we have implemented WFQ to provide provisioning and

Rate-Jitter scheduling to provide reservation facilities on the routers.

4.2.1 Bandwidth Provisioning via Weighted Fair Queuing

In this thesis, provisioning is done using WFQ ([61]). WFQ is a fair and effi-

cient way of provisioning bandwidth. The total bandwidth available is distributed

among all flows according to the weight assigned to each flow. The higher the

weight of a stream, the higher its proportion of bandwidth.

WFQ is a variation of the Generalized Processor Sharing (GPS) algorithm

([62]). A GPS server is a work conserving scheme which operates at a fixed rate

µ. If the weights assigned to each flow i is φi, then a server is said to be GPS if

equation 4.1 is satisfied.

TSi(τ, t)

TSj(τ, t)
>

φi

φj

(4.1)

where TSi(r, t) is the amount of traffic served for flow i in the interval [τ, t].

Both flows, i and j must have backlogged data in the interval [τ, t]. A flow i is

said to be backlogged at a server at time t, if there is some data from i queued at

the server.

GPS is unimplementable because it assumes that data is perfectly divisible.

However, in computer networks, data is always sent in quantized packets. WFQ

is a scheme which works with packets of data and approximates the behavior of

GPS.

WFQ can provide some statistical guarantees to flows. For a backlogged

stream, WFQ provisions bandwidth according to equation (4.2). In equation (4.2)

µi is the amount of bandwidth provisioned to flow i, φi is the weight assigned to

flow i and n is the total number of flows. µ is the bandwidth of the link.
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µi =
φi∑n

j=1 φj

µ (4.2)

The Parekh-Gallagher theorem [62] can provide us a bound on the maximum

end-to-end delay. Consider a flow i regulated by a leaky bucket regulator, so that

the number of bits sent in time [t1, t2] is bound by µi(t2− t1)+σi, where µi is the

minimum bandwidth allocated to the flow among all schedulers it flows through.

If this flow passes through K schedulers, and the kth scheduler has a rate µ(k)

then

Di =
σi

µi

+
K−1∑
k=1

Γ

µ
+

K∑
k=1

Γ

µ(k)
(4.3)

where Di is the delay bound of flow i and Γ is the size of the largest packet in

the network.

Thus, we can see that WFQ can provide some guarantees on bandwidth and

delay of a flow. However, the problem with WFQ is that in order to decrease

the delay bound of a flow, its bandwidth allocation needs to be increased. Thus a

stream which requires low delay needs to be allocated a large amount of bandwidth,

even if it does not require the large bandwidth. The delay requirements and

bandwidth allocations are coupled in WFQ.

WFQ is a complex algorithm that requires computing a finish time for each

packet. The finish time of a packet in a WFQ scheduler is shown in Equation

4.4, where F p
i is the finish time of packet p of flow i, φi is the weight attached to

flow i and v(ap
i ) is the virtual clock time for that flow. Therefore WFQ requires

maintaining a virtual clock for each flow. Also, the virtual time for a flow only

increases if there are backlogged packets for that queue. It needs to be paused and

remembered when the there are no packets for that flow type. Therefore, WFQ

requires the scheduler to maintain a separate virtual clock for each connection .
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F p
i =

Lp
i

φi

+ max[F p−1
k , v(ap

i )] (4.4)

Self-Clocked Fair Queuing (SCFQ) ([47]) is a simple to implement approxima-

tion of WFQ. In SCFQ, the virtual time increases during busy periods for each

flow. When there are no backlogged packets for a flow, its virtual clock is reset to

0. Therefore, the virtual clock does not need to be maintained for each connection.

In our experiments, we have used SCFQ instead of WFQ.

The agents running at the routers are allowed to modify the weights that are

assigned to each class of traffic. In this manner, they are able to modify the service

parameters that a class of jobs experience. Assigning high weights to a class leads

to shorter queuing times, and also higher bandwidth utilization.

4.2.2 Bandwidth Reservation via Rate-Jitter Scheduling

We used a rate-jitter regulator ([63], [64]) to provide means to reserve bandwidth

at the routers. A rate-jitter regulator is a non-work conserving scheduler . A

non-work conserving scheduler is one that may be idle (i.e. not serve packets)

even when the downstream link is idle, and packets are queued at it. This helps to

constrict the rate of flows, and results in downstream flows being more predictable

and less bursty.

In a rate-jitter regulator, the eligibility time of a packet is defined with reference

to the eligibility time of the previous packet. If the maximum rate for flow i is µi,

then the eligibility time of a packet is defined as

τin = max(τi(n−1), Λn) +
Γn

µi

(4.5)

τin is the eligibility time of packet n for flow i, Λn is the arrival time of packet

n and Γn is the size of packet n. The packets that become eligible, are then sent

to a FIFO queue to be sent out through the egress interface. In this manner, the
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maximum rate of the flow i is capped by µi.

Agents can change the service offered by Rate-Jitter regulators by adjusting

the bandwidth share of each class. At every update of their value functions, they

can change µi for each class to a value which they think will maximize the future

returns.

4.3 QoS at Grid Resources

Similar to network QoS, we also implemented QoS through provisioning and reser-

vation for GRs. For provisioning, we implemented a scheduler that prioritizes jobs

by assigning weights, something that approximates GPS. The weight assigned to

a job is dependent on its class. To provide reservation services, we implemented

a mechanism in which each jobs get assigned a certain share of the CPU cycled,

depending on its class.

4.3.1 CPU Provisioning

For provisioning at GRs, we implemented an algorithm that approximates Gen-

eralized Processor Sharing (GPS) ([62]). Jobs coming in to a server are put in a

common queue. Each job is assigned a certain weight φi, which depends on its

class. All jobs in the same class are assigned the same weight. The scheduler

running at the GR processes all the jobs in parallel, and ensures that Equation

4.1 is adhered to at all times.

We have assumed that the cycles are perfectly divisible, and no atomic steps

are present that require more than one cycle of the CPU time. If the total capacity

of the CPU is C, then a job j with a weight φj receives the following amount of

CPU capacity in the interval [τ, t]. This assumes there are no new job arrivals and

no job gets completed in that interval.
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TSj(τ, t) =
φjC∑K
k=1 φk

(4.6)

The capacity of a server is defined in terms of the number of Millions of In-

structions Per Second (MIPS) it can execute.

The agent residing at the GR is able to modify the weights assigned to each

job. This adjustment is done to try and maximize the expected return from jobs

arriving in the future. Adjusting the weights of the jobs changes the share of CPU

cycles that the job will receive from the scheduler.

4.3.2 CPU Reservation

Reservation of CPU cycles is implemented by defining the number of CPU cycles

that each job will receive. This number of MIPS a job gets depends on which class

it belongs to. The scheduler running on the GR ensures that each jobs receives

the exact amount of MIPS that is due to it. If the amount of MIPS reserved by

job j is Mj, then an admission control algorithm implemented at the server needs

to make sure that the following condition is met

N∑
j=1

Mj 6 C (4.7)

where C is the capacity of the server in MIPS.

The agent running at the GRs can set the MIPS that each class should receive.

By doing this, it can control how long each jobs takes to complete. The agent

tries to make this adjustment in such a way that its returns from future jobs are

maximized.
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4.4 Using RL for Resource Allocation

We have implemented two algorithms based on Reinforcement Learning to adjust

provisioning and reservation levels for routers and GRs - Watkins Q(λ) ([30] and

SMART ([31]). These two algorithms have been introduced in Sections 2.2.1 and

2.2.2 respectively.

We have evaluated the performance of these two algorithms in both simulation

and implementation on a testbed. In simulation, we can assume complete knowl-

edge of the system state, but that is not possible with implementation. In order

to account for this, some slight adjustments are needed in the RL algorithms for

simulation and implementations. Sections 4.5 and 4.6 explain the design of the

RL algorithms for simulation and implementation cases respectively.

4.5 Simulation

The simulations are discussed thoroughly in Chapter 5. The simulation consisted

of two routers, two GRs, and two users sending their jobs to the GRs. The two

users submitted different classes of jobs, therefore two classes of jobs existed in the

system. The UBs responsible for each user were would decide which GR would

process a submitted job. The UB would take the decision according to the agents

value functions. Therefore the action taken at the agents was to decide which GR

to use. The agents running at the network nodes would decide the service levels

to be provided to each class, and the agents at the GRs would decide the resource

allocation for each class. Therefore, the actions at the resources were to decide

what service levels to use.

In order to formulate the resource provisioning or resource reservation problem

as a reinforcement learning problem, we need to specify the state space, action

space, reward structure and the update policies used by the agents.
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Figure 4.2: Sample Time-line Showing Generation and Completion of Jobs

4.5.1 State Space

For the state space of the UB, we use the response time of the job as the state

dimension. The state space consists of all the possible values of the response time.

Since the response time is continuous, the state space is also continuous. The

response time of a resource is a good indicator of its load, since higher response

times indicate high load on the system.

The UB is only interested in which GR can process its job the fastest. In

our experiments, each user only sends one class of job, therefore the state for the

UB is only composed of the response times of jobs for each GR. The RL agents

maintains the state sUB of the UB as

sUB = {ρGR1, ρGR2} (4.8)

where ρGR1 is the response time of the first GR, and ρGR2 is the response time

of the second GR.

Figure 4.2 shows a sample time-line of job generation and completion for class k

jobs. The current state of the system is always determined by the response time of

the last job that was completed. For example, at time t = 14, the state dimension

for that class is {ρ14,k} = {7}, where as at time t = 18, the state dimension for
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that class is {ρ18,k} = {15}.

In the case of routers and GRs, each of them has one agent present. The state

for these agents is simply the service levels being provided to each class of job.

Since we have two classes of jobs, the state st at time t is

st = φ1,t, φ2,t (4.9)

where φi,t is the service level for class 1 at time t and φ2,t is the service level

for class 2. The service level would be weights for WFQ on routers and GPS for

GRs when resource provisioning is used. When resource reservation is tested, the

service levels are determined by the bandwidth share for routers and CPU share

for GRs.

4.5.2 Action Space

The action space defines the list of actions which the agents can choose.In case

of a UB, the action space consists of choosing which GR should process the job.

Since our simulation setup has two GRs, the action space consists of two items -

’Choose GR1’ or ’Choose GR2’. ’Choose GR1’ signifies that first GR has been

chosen for processing, and ’Choose GR2’ signifies that the second GR has been

chosen.

For routers and GRs, an action signifies choosing the service level that will

be used by the scheduler running at the resource. The list of service levels is

predefined and depends on whether provisioning or reservation is being used by

the schedulers. In the case of provisioning, a service level is the set of weights that

will be used by the scheduler. These weights can be used for WFQ in network

routers (Section 4.2.1) or for CPU Provisioning (Section 4.3.1). If provisioning

is being used, a service level consists of defining what share of a resource will

be assigned to job class. This is used to reserving bandwidth (Section 4.2.2) or
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reserving CPU cycles (Section 4.3.2). Therefore the action space A consists of

A = {a1, a2, ..., an} (4.10)

where a is the action signifying choosing a service level, and n is the cardinality

of the set of service levels. Since the list of actions is predefined and discrete, our

action space is also discrete.

The actual list of actions used in experiments is defined in Sections 5.5, 5.6

and 5.7.

4.5.3 Reward Structure

Jobs which are successful (meet their deadline) are assigned a positive reward. A

failure to meet the deadline is penalized by assigning a negative reward. Thus,if

the deadline is met, the reward R is

R = 5 ∗ ςi, (4.11)

where ςi is the scaling factor for class i. The scaling factor is used since some

jobs may be valued more than others, and thus meeting their deadlines should be

rewarded more. If a deadline is not met, the agent receives a negative reward R

equal to

R = −5 ∗ ςi (4.12)

Some jobs have tighter deadlines than others. Thus, they may need higher

network bandwidth and processing capacity. Therefore, if a job with a tighter

deadline is successful, a larger reward is assigned to the agent. From an economic

point of view, the cost of processing a job with a tight deadline should be higher

than jobs which are not as sensitive to time. An optimal algorithm for resource

allocation will maximize the revenue (reward) earned by the agent.
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The rewards are generated by the UB when it receives a completed job back.

The UB also rewards all the routers and grid resources that took part in processing

this job, in a process detailed in Section 4.1.

4.5.4 Configuration of Reinforcement Learning Agents

In this section, we describe how the agents are configured at the UB, routers and

GRs. We have already described the state and action spaces used by them, along

with the reward policy in Sections 4.5.1, 4.5.2 and 4.5.3.

Configuration of Q-lambda algorithm

In one-step Q-Learning, we need the learning rate α, the discount rate γ, and the

reward at each step for updating the Q-values for state action pairs, as shown in

equation 2.4. Since we will be using eligibility traces to provide faster convergence,

we need the trade-decay parameter λ shown in equation 2.5. In our experiments,

λ is set to 0.2. λ determines how many past values of a state must be used

to calculate the current value of the state. A value of 0 would mean only the

previous step is used (TD(0)), and a value of 1 would mean all steps in the past

are considered. A value of 0.2 means that only recent states are used to calculate

the current value. This ensures that the agent does not rely on state values which

are out-of-date.

The discount parameter γ is set to 0.9. A high value of γ means that the pre-

vious state values are decayed less. As discussed in Section 2.1.5, we also need to

decay the exploration rate so that the Q-values are able to converge. The learning

rates needs to be decayed the same reason. The learning rate and exploration rate

are decayed according to the Darken-Cheng-Moody (DCM) search-then-converge

procedure ([34]) each time a new action is chosen by the agent. The DCM pro-

cedure is shown in equation 4.13 and Figure 4.3 shows the effect of decaying the

learning rate α using it. The effect on exploration rate ε is similar. A decaying
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Figure 4.3: Effect of Darken-Chang-Moody Decay Algorithm on Learning Rate

exploration and learning rate help to ensure that the value functions stabilize over

time. The initial learning rate α and the initial exploration rate ε are both set to

0.5.

(α, ε) =
(α, ε)

1 + n2
s

%+ns

(4.13)

where % is the a constant and ns is the number of times the CMAC has been

updated. The decay constant % is set to 5× 106.

In order to reduce the storage requirements for the Q-values, we use CMAC

tables for function approximation (Section 2.1.8). The CMAC needs a certain

number of quantizing functions and resolution elements to run. Higher number of

these will increase the memory requirements (Equation 2.3), will result in a lack

of accuracy. We used 20 quantizing functions and 20 resolution elements for the

CMAC.
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Configuration of SMART algorithm

Section 2.2.2 shows how SMART can be implemented to solve a reinforcement

learning problem. In order to calculate the average reward rate which is shown

in equation 2.10, we need the learning rate and discount rate. The learning rate

is set to 0.5 at the start of each experiment, while the discount rate is 0.9. The

exploration rate is also set to 0.5 at the start of each experiment. The learning

and exploration rates are decayed using the DCM search-then-converge procedure,

similar to how they are decayed for the Q(λ) algorithm. In order to reduce storage

needs for Q-values, we used the CMAC function approximator, as described in

Section 2.1.8. The number of quantizing functions and resolution elements are set

to 20.

At every decision epoch, when the value functions need to be updated, the

average reward AR is updated as shown in equation 4.14.

AR = (1− α) ∗ AR+ α
told +AR+ R

tnew

(4.14)

where told is the time at the previous decision epoch, tnew is the current time,

and R is the reward received during this epoch.

4.5.5 Update Policy

The update policy of each learner determines how a reward should be processed,

how its value functions should be updated, and what action, if any, should be

taken.

The update policy in Q(λ) and SMART requires the action for which the

value functions are being updated, the state previous to the action being taken,

the state after the action was taken, and the reward that the system received for

taking the action. In addition to these, SMART also requires the the sojourn time

between this action being taken and the next decision epoch. Since the learning
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policy requires the the state at which the action was taken, we need to keep track

of the state at which a job was submitted by the system. In our experiments,

we kept this information inside the submitted job itself. However, in an actual

implementation, the UB can manage all this information by keeping track of the

GR load information from the Grid Information System (GIS), and state of routers

and network links with the help of a Network Management System (NMS) using

Simple Network Management Protocol (SNMP).

Once a job is received at the UB, the completion time of the job is calculated

and a reward is generated according to the reward policy in Section 4.5.3. The

current state of the system are also calculated. The state of the system when the

job was submitted, which is stored in the job itself, is also extracted. All this

information is then supplied to the agent running at the UB.

When the agent receives a reward, it is used to calculate the TD error ac-

cording to Equation 2.6. The TD error is used to update the CMAC function

approximators. This is common for agents running Q(λ) and SMART. The same

process takes place at the agents running on routers and GRs.

4.6 Implementation on Testbed

For the implementation, we have evaluated the performance of Watkins Q(λ)

learner and the SMART algorithm. The CPU Resource Manager can assign

weights to jobs, thereby providing facilities for CPU provisioning. The Network

Resource Manager supports reservation of bandwidth by jobs, and the amount of

reservations can be adjusted by a learning agent running at the each router.

The action space, state space, update policies etc. were similar to that for sim-

ulation. The only thing that was different from the simulation scenario described
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in Section 4.5 was the reward structure.

Ri =


10 if successful

−5
ρi−di

if failure

(4.15)

where Ri is the reward for job i, ρi is the total processing time of the job

(response time) and di is the deadline for the job. The penalty is structured in

the way shown in equation 4.15 so that jobs which miss their deadline by larger

margins generate a larger penalty.

We evaluated the performance of our reinforcement learning based methods de-

scribed above in simulation and implementation on a testbed. Chapter 5 describes

in detail our simulation setup and results. and also deals with implementation de-

tails and results.

59



Chapter 5

Performance Evaluation

In this chapter, we discuss the details of the simulations we carried out, and the

details on implementation and experiments done on a testbed. Sections 5.1 to

5.8 describe the simulation setup, the various experiments carried out, and the

results obtained from them. Sections 5.9 to 5.13 describe the implementation on

a testbed, and the results obtained from the experiments carried out on it.

5.1 Simulation

In this chapter, we discuss the details of the simulations we carried out to test our

Reinforcement Learning QoS framework. All the tests are carried out using the

GridSim simulation tool. We have tested both provisioning and reservation, using

the methods described in Chapter 4.

5.2 Simulation Scenarios

We have simulated three different scenarios in our experiments -

• Scenario I - In the first scenario, agents run only on the brokers attached

to each user (UB1 and UB2). The broker is a proxy for the user, and it

decides which Grid Resource (GR) should process a job. In our experiment
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the brokers have a choice between two resources (GR1 and GR2). The

agents try to minimize the response time for the user they are attached

to by trying to learn the optimum scheduling policy. The agents measure

completion times of jobs and reward or penalize themselves depending on

the response time of the submitted jobs.

• Scenario II - In the second scenario, agents run on the network routers and

GRs. Here the agents have complete control over the resource provisioning

or reservation. At the end of each job, the UBs calculate the reward or

penalty that the routers and GRs should receive, and sends this data to the

agents running on them. The agents at routers and GRs then update their

resource allocation policies, and apply the new policy to their schedulers.

There is no agent running on the UB in this scenario.

• Scenario III - In the third scenario, we explore providing combined QoS on

UBs, routers and GRs. Agents are enabled on the UBs as well as the routers

and GRs. On the completion of a job, the UBs generate a reward or penalty

signal. The UBs use this signal to update the agents running on themselves,

as well as the agents at routers and GRs.

5.3 Benchmarking

The agents running at the UBs, routers and GRs are run in different configurations

to evaluate the performance of the Q(λ) and SMART algorithms. The agent at

the UB is run in four different configurations, while the agents at routers and GRs

were run in three different configurations.

5.3.1 Configurations of Agents at UBs

The UB is run in the following configurations -

61



• RR - In the first case, the UB runs in Round Robin (RR) mode. In RR

mode, jobs are sent alternatively to GR1 and GR2. Therefore the jobs are

distributed evenly among the GRs, irrespective of their response times.

• ExpAvg - In the second case we use exponential averaging. At the comple-

tion of each job, we calculate its response time, and use that to update an

exponentially weighted average for each resource. A new job is always sent

to the resource with lower average response time. Equation 5.1 shows the

formula used to calculate the average response time.

EAit = α ∗ ρit + (1− α) ∗ EAi(t−1) (5.1)

where EAit is the exponentially weighted average of resource i at time t, ρit

is the response time of the last job at resource i and α is the learning rate,

which is set to α = 0.5.

• QL - In the third case, the agents use Watkin’s Q-Learning algorithm. In

this case, the greedy action is chosen with a probability of 1 − ε, and an

exploratory action is chosen the rest of the time. ε starts with a value of

0.5, but it is decayed using the Darken-Chang-Moody Search-then-Converge

technique as shown in Section 4.5.4. The other parameters used in Q(λ) are

also provided in the same section.

• SMART - In the fourth case, the agents use the SMART algorithm. Like the

QL case, the agents explore their state-space with a probability of ε, while

taking the greedy action the other times. The complete details are provided

in Section 4.5.4.

5.3.2 Configuration of Agents at Routers and GRs

The agents at routers and GRs are also run with three different cases.
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Figure 5.1: Simulation Setup

• Static - Here, the resource allocations for each class of jobs are pre-configured,

and they do not change throughout the course of the experiment.

• QL - In this case, the agents at routers and GRs use the Q(λ) algorithm.

Each time a reward or penalty is received, the agent updates its value func-

tions, and chooses a new resource allocation to be used by the resource. It

takes the greedy action with a probability of 1−ε, and chooses an exploratory

action the other times. The learning rate and exploration rate are set to 0.5

at the start of the experiment, but decays as described in Section 4.5.4.

• SMART - The agents at routers and GRs use the SMART algorithm to

decide the resource allocation. Similar to the QL case, exploratory actions

are taken with a probability of ε, with the non-exploratory actions being

taken otherwise. The decay in learning rates and exploration rates are the

same as the QL case.
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5.4 Simulation Setup

5.4.1 Topology and Characteristics

Figure 5.1 shows the topology that was simulated in GridSim. The scenario con-

sists of two users of the grid, with two grid resources and two routers in between

the users and resources. All the network links had a bandwidth of 1 Megabit per

second (Mbps)and a propagation delay of 5 ms. The MTU for each packet in the

network is 1000 bytes. The routers are able to process data at 1 Mbps. GR1 has

a processing capacity of 250 Million Instructions Per Second (MIPS), while GR2

has a processing capacity of 350 MIPS.

GR1 does not support providing differentiated services. It gives equal prefer-

ence to both the classes, by dividing its cycles equally among both classes of jobs.

On the other hand, GR2 does support differentiated service, and the service it

provides to a job depends on its class.

Table 5.1: Characteristics of Jobs in Simulation Setup

Class Job Size Data Size Mean Generation Deadline
(MIPS) (bytes) Delay (s) (s)

1 150 50000 2.5 4
2 300 100000 2.5 15

Table 5.1 shows the configuration of the jobs of the two classes that were sent

to the GRs. Class 2 jobs require more processing power and network bandwidth,

but Class 1 jobs require a lower response time. Class 2 jobs are designed to model

bulk or background jobs. Class 1 jobs are modeled as jobs requiring immediate

attention and fast response times, therefore the scaling factor for Class 1 and 2

were 1.5 and 1 respectively. This means that completing a Class 1 job within its

deadline generated a reward that was 1.5 time higher than Class 2 jobs. Failing

to meet the deadline for a Class 1 job generates a penalty that is 1.5 times the

penalty generated when a Class 2 job fails. User 1 always sends Class 1 jobs,

64



while User 2 sends jobs of Class type 2. The delay between sending out two jobs

is determined by an exponential distribution [65].

Each simulation is run for 25,000 seconds of the simulation clock.

5.5 Scenario I - User Level Job Scheduler

In this section, the use of a user level scheduler is studied. A user may have access

to various grid resources, with some providing him better service than others,

depending on the load condition. Some grid or network resources may support

providing Quality of Support (QoS), while other resources may be set to static

configurations. It is the function of the UB to select the resource from which it

expects to receive the best service.

In this scenario, the routers and GRs do not provide any QoS, therefore they

are set at static service levels. GR2 gives a higher preference to Class 1 jobs. It

can do this either by reserving more cycles for Class 1 and using a CPU share

algorithm (Section 4.3.2), or by assigning higher weights to Class 1 jobs (Section

4.3.1). We conducted the experiment with both the above alternatives, and the

results are given in Sections 5.5.1 and 5.5.2.

5.5.1 Using Reservation on GRs

In this setup, GR1 divides its CPU cycles equally among both classes. GR2

reserves 65% of its cycles for Class 1 jobs, and 35% for Class 2. The experiment is

run with the four cases listed in Section 5.3.1. In this scenario, we are interested

in studying the processing time of the jobs at the GRs, since the service at the

routers is the same for both classes of jobs. Therefore, we only list the processing

time at the GRs, rather than the response time.

Results are provided in Table 5.2, and graphed in Figures 5.2 and 5.3. It can

be seen that there is not much observable difference in the performance of RR,
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Table 5.2: Average Processing Time for Jobs in Scenario I with Reservation

Class RR (s) ExpAvg (s) QL (s) SMART (s)

1 0.962621 0.880351 0.947469 0.964863
2 2.815509 18.158761 8.401099 7.913707

QL and SMART for Class 1 jobs. ExpAvg does better for Class 1 than the other

three, but the average processing time for Class 2 jobs is worse than the deadline

for Class 2 (15 s). This can be understood in the following way - GR1, which can

execute 200 MIPS provides equal service to Class 1 and Class 2 jobs. GR2, which

can execute 350 MIPS, reserves 65% of its CPU cycles for Class 1, which means

that Class 1 jobs get 227.5 MIPS at GR2, and Class 2 jobs get 122.5 MIPS. The

learning agent at UB1 observes that GR2 gives it better service. Therefore, the

agent at UB1 running QL or SMART algorithm tends to send most of it jobs to

GR1. On the other hand, UB2 observes it is getting 125 MIPS from GR1 and

122.5 MIPS from GR2, so the agent there sends almost equally to both GRs. This

can be observed in Figure 5.4. Due to almost all jobs from Class 1 being sent to

GR2, its average processing time is slightly higher than the RR case, though still

well within the deadline. When the RR scheme is used, both classes of jobs are

sent evenly to both GRs. Thus, a learning agent deployed only at the UBs does

not perform any better or worse than a simple RR algorithm.

The ExpAvg algorithm does obtain a average lower processing time for Class

1, but its average processing time for Class 2 is even higher than the deadline

for the response time. The reason for this can be seen in Figure 5.5. It can be

observed that when the curve for jobs of any class being sent to GR1 is rising, the

corresponding curve for jobs of that class being sent to GR2 is flat, and vice-versa.

This is because ExpAvg sends all its jobs to the resource with the lower response

time. For example, if UB1 observes a lower response time average from GR1, it

will send all its jobs to GR1. GR1 then gets swamped with Class 1 jobs, and

starts to perform poorly. However, since the average response time is weighted,
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Figure 5.4: Distribution of Jobs in Scenario I using Reservation (QL)

UB1 keeps sending jobs to GR1 until its average response time climbs above GR2.

UB1 then starts to send all its jobs to GR2, and this cycle continues. Thus a

simple weighted averaging learning technique is insufficient to provide good QoS,

when resource reservation facilities are provided.

5.5.2 Using Provisioning on GRs

In this setup, GR1 assigns equal weights to both jobs of classes. GR2 assigns Class

1 jobs thrice the weight of Class 2 (3:1) jobs. The scheduler running at both GR1

and GR2 is SCFQ. Similar to Section 5.5.1, the experiment is run with the four

cases listed in Section 5.3. Results are given in Table 5.3.

In the case of provisioning, the service received by a class of jobs is not guar-

anteed. The number of CPU cycles that a Class 1 job gets depends not only on

how many other Class 1 jobs are present, but also on how many Class 2 jobs are

68



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  5000  10000  15000  20000  25000

N
um

be
r 

of
 J

ob
s

Time (s)

User 1 to GR1
User 1 to GR2
User 2 to GR1
User 2 to GR2

Figure 5.5: Distribution of Jobs in Scenario I using Reservation (ExpAvg)

0.75

0.8

0.85

0.9

0.95

1

1.05

Time

(s)

Class I

RR

ExpAvg

QL

SMART

Figure 5.6: Average Processing Time (s) in Scenario I with Provisioning (Class 1)

69



Table 5.3: Average Processing Time for Jobs in Scenario I with Provisioning

Class RR (s) ExpAvg (s) QL (s) SMART (s)

1 1.016818 0.866499 0.936889 0.912874
2 1.387380 1.484839 1.653235 1.596051
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Figure 5.7: Average Processing Time (s) in Scenario I with Provisioning (Class 2)

present in the system simultaneously. Therefore in this case, the agents running

QL and SMART are able to obtain a lower processing time than an agent distrib-

uting jobs in a RR manner. When using RR, both both resources receive equal

amount of jobs, even though GR1 has only about 71.4% the capacity of GR2. The

agents running learning algorithms like QL or SMART distribute jobs to servers

where they receive better service, as can be seen in Figure 5.8. It can be seen that

UB1 sends most of its jobs to GR2. However, provisioning does not insulate the

performance for Class 1 jobs completely from other jobs. UB2 also receives a low

response time from GR2 since it has more capacity, and thus sends most of its

jobs to GR2.

ExpAvg is able to obtain the best response times when provisioning is used
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Figure 5.8: Distribution of Jobs in Scenario I with Provisioning (SMART)

at the resources. Once again, this is because having GR2 does not provide a

guaranteed service level to Class 1. As a results, Class 2 jobs are also able to get

good service at GR2, even when Class 1 jobs are present. From Figure 5.9, it can

be seen that both UB1 and UB2 send most of their jobs to GR2.

5.6 Scenario II - Resource-Level RL Manage-

ment

In the second scenario, agents are deployed only on routers and GRs. The UBs

submit jobs in a Round Robin fashion to the two resources, therefore each router

receives an equal amount of jobs of each class. We studied the effect of providing

QoS on routers and GRs through reservation and provisioning. The results are

discussed in Sections 5.6.1 and 5.6.2 respectively.
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5.6.1 Using Resource Reservation on Routers and GRs

At both the routers, banwidth reservation is provided by using a rate-jitter sched-

uler (Section 4.2.2). When the agent at routers is running the QL or SMART

algorithm, it can choose the reservation levels to use. The agent can choose one of

the reservation level pair from following list - {(40%,60%), (50%,50%), (60%,40%),

(70%,30%)}, where the first element of the set represents the percentage of CPU

cycles reserved for Class 1, and the second element represents the percentage of

CPU cycles reserved for Class 2.

Agents are also present at GRs, and when running the QL or SMART algo-

rithm, they can choose the reservation levels to use for each class of job. Similar

to the routers, the reservation levels that the agent can choose are as follows -

{(40%,60%), (50%,50%), (60%,40%), (70%,30%)}. The CPU cycles reserved for a

class of jobs is shared equally among all jobs of that class running simultaneously
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on that GR.

The agents at routers and GRs are run in three different configurations : Static,

QL and SMART, as described in Section 5.3.2.

Table 5.4: Average Response Time for Jobs in Scenario II with Reservation

Class Static (s) QL (s) SMART (s)

1 2.677932 2.338313 2.335429
2 5.630762 4.728753 4.742591

Table 5.5: Average Processing Time for Jobs in Scenario II with Reservation

Class Static (s) QL (s) SMART (s)

1 0.962621 0.644755 0.644895
2 2.815509 1.803996 1.810912

It can be seen from Tables 5.4 and 5.5 that the agents running QL and SMART

are able to lower the response and processing times for Class 1 jobs. With the

efficient reservation of resources, we are also able to lower response and processing

times for Class 2. In the static configuration, GR1 had reserved 50% of its CPU

cycles for Class 1, and GR2 had reserved 65% of its cycles for Class 1. The

routers also had reserved 50% of their bandwidth for Class 1. Thus, Class 1 was

receiving a much larger share of CPU resources, and an equal amount of network

bandwidth, even though it only required half the processing power and network

bandwidth as compared to Class 2. The QL and SMART are able to correct this

overprovisioning of resources, and thus obtain better QoS for Class 2 also.

5.6.2 Using Resource Provisioning on Routers and GRs

In this section, we changed the schedulers on the routers and GRs, so that they

perform resource provisioning rather than resource reservation. Similar to the

previous section, the agents running at the routers can decide the weights for

different classes of jobs when they are utilizing the QL or SMART algorithm. The
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Figure 5.10: Average Response Time (s) in Scenario II with Reservation

scheduler running on the agents processes the incoming packets according to the

SCFQ algorithm (Section 4.2.1). The agents at routers can choose one of the

following weight sets - {(0.5:1), (1:1), (2.5:1), (5:1) and (7.5:1)}, with the first

element being the weight of Class 1 jobs, and the second element being the weight

of Class 2 jobs. The agents running at GRs have the same set of weights to choose

from. The schedulers at the GRs use the GPS algorithm to provision CPU cycles

to users (Section 4.3.1).

When running in static mode, the routers and GR1 are setup to provide 1:1

provisioning for Class 1 and 2. GR2 is configured to assign thrice the weight to

Class 1 jobs as compared to Class 2.

Table 5.6: Average Response Time for Jobs in Scenario II with Provisioning

Class Static (s) QL (s) SMART (s)

1 2.664450 3.456912 3.438866
2 4.216304 3.864805 3.869627
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Table 5.7: Average Processing Time for Jobs in Scenario II with Provisioning

Class Static (s) QL (s) SMART (s)

1 1.016818 1.047533 1.037764
2 1.387380 1.384302 1.388785
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Figure 5.11: Average Response Time (s) in Scenario II with Provisioning

Tables 5.6 and 5.7 summarize the average response time and the processing

time obtained by using the three schemes, with provisioning enabled on routers

and GRs. It can be seen that the response time and processing times for Class 1

are higher than when reservation is used (Section 5.6.1 - Tables 5.4 and 5.5.). This

is again because higher provisioning levels do not guarantee performance. Similar

to Section 5.5.2, Class 1 jobs experience an increase in response times when Class

2 jobs also queue up. This also leads to Class 2 getting lower response times when

provisioning is used rather than reservation. This can be observed by comparing

Table 5.6 (Provisioning Case) to Table 5.4 (Reservation Case).
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5.7 Scenario III - Integrated QoS

In Sections 5.5 and 5.6 we saw the effect of running agents using Reinforcement

Learning to perform resource reservation or provisioning. The agents were either

run on the UBs, or they were run on resources like routers and GRs. Using RL,

they are able to learn a policy that can benefit classes that require quick response

time, without overly penalizing other classes of jobs. In this section, we study the

effect of performing resource reservation or provisioning along with scheduling by

the UBs, with all the actions being decided by Reinforcement Learning policies.

Like Sections 5.5 and 5.6, agents at resources are responsible for resource allo-

cation, and take actions which they think will maximize the return of jobs in the

future. Agents at UB schedule the jobs according what they feel is the best policy

to receive low response times. The same algorithm is used at UBs and resources.

Thus, when the UBs use QL to learn the optimum scheduling policy, agents at

routers use QL to learn the best resource allocation policy.

In order to compare the performance of agents utilizing Reinforcement Learn-

ing, we also ran the UB in RR and ExpAvg mode (Section 5.3.1). When the UBs

run in RR or ExpAvg mode, the agents at routers and GRs run in static mode.

5.7.1 Using Resource Reservation on Routers and GRs

In this part of the experiment, the agents running on routers and GRs were re-

sponsible for deciding how much of the resources would be reserved for each class

of jobs. The list of actions available to the agents at routers and GRs is the same

as Section 5.6.1.

When the agents at routers and GRs were run in static mode, the network

bandwidth and CPU cycles at GR1 is shared 1:1 among Class 1 and 2. GR2

reserves 65% of its bandwidth for Class 1, and the rest is reserved for Class 35%.

It can be seen from Tables 5.8 and 5.9 that the response times for Class 1 and
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Table 5.8: Average Response Time for Jobs in Scenario III with Reservation

Class RR (s) ExpAvg (s) QL (s) SMART (s)

1 2.677932 2.614117 2.064217 2.016163
2 5.630762 21.276755 4.651910 4.423825

Table 5.9: Average Processing Time for Jobs in Scenario III with Reservation

Class RR (s) ExpAvg (s) QL (s) SMART (s)

1 0.962621 0.880351 0.307630 0.257287
2 2.815509 18.158761 1.742260 1.550361

2 are better when the agents at UBs, routers and GRs use the QL or SMART

algorithm, as compared to running the agents in static, RR or the ExpAvg mode.

The response times for Class 1 and Class 2 is better than what is obtained by using

resource reservation only at routers and GRs (Section 5.6.1). The processing times

are also better than what is obtained with only scheduling enabled at UBs (Section

5.5.1). The response times for class 2 are beyond the deadline for the same reasons

as explained in section 5.5.1.

Figure 5.14 shows how the jobs are distributed when agents use QL at UBs to

learn scheduling policy, and agents use QL at routers and GRs to learn resource

allocation policies. Both UB1 and UB2 send less jobs to GR1, which has a lower

processing capacity.

5.7.2 Using Resource Provisioning on Routers and GRs

In this section, we compare the performance of using QL or SMART to perform

resource provisioning at routers and GRs while UBs also simultaneously use the

two algorithms to determine their scheduling policies. The list of actions available

to the agents at routers and GRs is the same as Section 5.6.2. Similar to Section

5.7.1, in order to benchmark the performance of these algorithms, we used RR

and ExpAvg scheduling policies at UBs, and static resource allocation levels at

routers and GRs. When running in static mode, schedulers at routers and GR1
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Figure 5.14: Distribution of Jobs in Scenario III using Reservation (QL)

were configured to give equal weightage to Class 1 and Class 2 jobs. GR2 was

configured to give Class 1 jobs thrice the weight of Class 2 jobs.

Table 5.10: Average Response Time for Jobs in Scenario III with Provisioning

Class RR (s) ExpAvg (s) QL (s) SMART (s)

1 2.664450 2.500774 3.368479 3.141526
2 4.216304 4.226257 3.888730 3.919203

The results of using RL to decide resource allocation and scheduling policies

are given in Tables 5.10 and 5.11. The response time for Class 1 and Class 2 jobs

are comparable to those obtained by RR and ExpAvg schemes, but not better.

The response times for both classes are slightly better than what is obtained by

running the agents in RL mode on routers and GRs only (Section 5.6.2 - Table 5.6).

The processing times for Class 1 jobs are similar to those obtained by running the

agent in RL mode the the UB also, but the processing time for Class 2 is better
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Table 5.11: Average Processing Time for Jobs in Scenario III with Provisioning

Class RR (s) ExpAvg (s) QL (s) SMART (s)

1 1.016818 0.866499 1.065486 0.934184
2 1.387380 1.484839 1.448755 1.482444
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Figure 5.15: Average Response Time (s) in Scenario III with Provisioning

(Section 5.5.2 - Table 5.3).

Figure 5.16 shows how the jobs are scheduled by the UBs when they are using

the SMART algorithm for scheduling. Compared to Figure 5.14, more jobs are

sent to GR1, which is a weaker resource than GR2, leading to worse response and

processing times as compared to Section 5.7.1.
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Figure 5.16: Distribution of Jobs in Scenario III using Provisioning (SMART)

5.8 Discussion

5.8.1 Reservation vs. Provisioning

From our experiments, it can can be seen that reservation of resources is able to

obtain lower response and processing times for Class 1 compared to provisioning.

The reason for this is that reservation is able to guarantee a certain level of service

to jobs. When GR2 is reserves 65% of its cycles for Class 1, incoming Class 1 jobs

share that evenly, irrespective of how many Class 2 jobs are also queued at the

system. Thus, QoS differentiation is more distinct in the case of reservation as

compared to the case of provisioning.

The drawback with reservation is that it can lead to wastage of resources.

When no jobs of a class exist, its reserved cycles will be wasted. This problem

can be overcome if the unused cycles are shared among other jobs, but could be

taken away as soon as a job of a reserved class type arrives at the system. Another
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alternative is to use a learning system like the ones discussed in this thesis, which

can analyze the pattern of incoming jobs and try to minimize resource wastage.

5.8.2 Q-Learning vs. SMART

In all our experiments, we tested the performance of two RL algorithms. Q(λ)

is used when the updates to the value functions take place at each unit of time.

Thus it requires regular updates from the system. In a Grid environment, where

jobs could be of varying duration, it might be difficult to perform such updates

on a regular basis. The SMART algorithm is modeled for SMDP problems, where

the sojourn time between updates can be of variable length. Due to the varying

run-length of jobs in grids, it would be preferable to have a learning system based

on the SMART algorithm.

5.8.3 Policy Learnt by User Brokers

Figure 5.17 shows the value function and the policy learnt by the QL algorithm at

the UBs in Scenario III. The graph shown is for the case when reservation is used

to perform resource allocation (Section 5.7.1). The y-axis represents the numerical

reward that each action has accumulated over the period of the experiment. It can

be seen that at the end of the simulation, the algorithm running at UB1 prefers

sending jobs to GR2 as compared to GR1. When response times are lower than

10 seconds, UB2 gives an almost equal preference to both jobs. This is what leads

to the job distribution seen in Figure 5.14.

The value functions have a lot of variance for high response time situations.

This is because the average response time is much lower, as is seen in Table 5.8.

Therefore situations where the response time is greater than 10 seconds are rare.

Consequently, the state-action space at those levels are not explored extensively,

leading to the value functions not stabilizing for high values of response times.
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Figure 5.18: Implementation Setup

5.9 Implementation

We also tested the RL based resource reservation and provisioning scheme on a

testbed in order to evaluate how difficult it would be to implement such a system

in real-world situations. It is a proof-of-concept implementation rather than a full

blown one. The testing was done by allowing network bandwidth reservation and

CPU provisioning. CPU provisioning was done using the nice utility in Linux,

which can set the priority of a process. Network reservation was provided using a

software known as Rshaper ([71]). We also tried implementing CPU reservation

using DSRT ([66]) and RTAI ([67]). However, DSRT seems not to work with newer

versions of the Linux kernel, and is not actively being developed. With RTAI, we

tried implementing a master scheduler that can assign slices of CPU time to various

processes, depending on how much CPU they have reserved. However, we could

not get process preemption to work, which meant that the slave processes had to

manually wake up the master once their allotted cycles are over. This was deemed

impractical since grid jobs would need to implement RTAI specific code in order

to run.
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5.10 Hardware Details

Figure 5.18 shows the topology that was used to test the RL based agent on a

physical testbed. The tested consists of two users, each of them being attached to

a machine each. User1 always sends Class 1 job, while User2 sends Class 2 jobs to

the Grid Resource (GR), Hercules. All the links shown in the figure are Ethernet

connections and they have a maximum bandwidth of 100 Mbps.

The machines, Gemini and Capricorn, run Red Hat Linux ([68]) (kernel version

2.4.20) on a Pentium IV processor, and both have a single network interface. They

submit jobs to the grid resource by using the Java CoG toolkit ([69],[70]).

The router, Sagittarius, is a machine similar to Gemini and Capricorn, the only

difference being that it has three network interfaces. Sagittarius runs a bandwidth

control software known as Rshaper ([71]). Rshaper can be used to control the

incoming bandwidths of different hosts or subnets. In this configuration, rshaper

limits the total incoming bandwidth of Gemini and Capricorn to 125 KBytes/sec

(1 Mbps). We also developed a daemon program that runs on Sagittarius and is

capable of accepting reservation rate data from other network entities. When this

daemon program receives a reservation request, it modifies the reservation levels

for different IPs on the fly with the help of rshaper.

Hercules, the machine acting as the grid resource is also a Pentium IV machine

running Debian Linux Sarge ([72]). It runs Globus version 2.4 ([15]) in order to

provide grid services. It also runs the RL network agent responsible for managing

network bandwidth at Sagittarius. It communicates with the daemon program

at Sagittarius using a client-server protocol over TCP/IP. In addition to that,

Hercules also runs a CPU Scheduler, which manages provisioning levels for the

incoming jobs. CPU provisioning is done using nice levels in Linux. Nice levels in

Linux are in the range [-20,20] with -20 being the highest priority a process can

obtain. Processes that require more CPU cycles are assigned lower nice levels,

while background jobs and other miscellaneous jobs are assigned high nice levels.
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5.11 Configuration of the Experiment

Table 5.12 lists the parameters of the jobs that were executed on the testbed. The

deadline for a Class 1 job was 15 seconds, and the deadline for a Class 2 job was

50 seconds. Therefore, Class 1 jobs require more resources than Class 2 jobsin

order to meet their deadlines. On the completion of a job, it returns to the user

who created the job, and the broker running at Hercules calculates the reward or

penalty depending on whether the job is completed before of after deadline.

Table 5.12: Characteristics of Jobs in Implementation Setup

Class Processing Network Mean Generation Number of Deadline
Time Size Delay (secs) jobs (s)

(seconds) (bytes)

1 1.5 232972 2.5 1000 15
2 2.5 232972 2.5 1000 50

5.11.1 Network Agent

One of the RL agents running at Hercules is for the purpose of network bandwidth

reservation. For this RL agent, the state space is an array of the delays experienced

by the two jobs. The state of the agent had two dimensions, one for the response

time of the last completed job of each class. The state space varied from from [0,0]

to [20,20]. Response times that were greater than 20 seconds were truncated to

20 s. For the action space, the network bandwidth could be reserved in the ranges

of 50%, 55%, or 60% in favour of Class 1. We have deliberately chosen to have

equal or more bandwidth for Class 1 compared to Class 2 because we know Class 1

demands lower response times, and reducing the number of possible actions speeds

up the convergence of the learning algorithm. The reward structure is defined as

below -
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If deadline is met ( di < Di )

R =
5

(di − ρi) + 0.001
(5.2)

else

R = −10 (5.3)

where ρi is the completion time of job i. The reward is given in such as above in

order to encourage jobs to finish close to their deadlines. If a job finishes too fast,

the reward it receives is lower than what it would have received if it had finished

closer to the deadline. This ensures that RL agents to not over-provision resources

for one class of jobs.

5.11.2 CPU Agent

Another agent running on Hercules is responsible for assigning nice levels to in-

coming jobs. In our experiments, a running job is continues to run at the same

service it is assigned when it enqueued. The reason for this was that changing

the nice level would make it difficult to determine which action caused the job to

finish within or after the deadline.

Similar to the case for the network agent, the state space is two dimensional,

one dimension for the response time of the last completed job of each class. The

state space ranged from [0,0] to [20,20]. The action consists of setting the nice

levels for both classes of jobs at the next decision epoch. One of the following nice

levels could be chosen by the agent - {(-20,-10), (-20,0), (-20,10), (-20,20), (-10,0),

(-10,10), (-10,20), (0,10), (0,20), (10,20)}. The first element of the given tuples is

the nice level for class 1, and the second element is the nice level for class 2 jobs.

A lower nice level leads to the Linux CPU scheduler giving higher preference to

that job. Similar to the case for the network agent, we always assign a higher

preference to Class 1 jobs, since we know that they demand lower response time

87



and hence consume more resources.

The reward structure for the CPU Agent is as follows: If deadline is met (

di < Di )

R =
5

(di − ρi) + 0.001
(5.4)

else

R = −10 (5.5)

The reward assignment algorithm is similar to the one used for the network

agent (Section 5.11.1), and for the same reasons.

5.11.3 Resource Allocation Policies

We ran the experiments with three different resource allocation policies enabled

on the agents.

• Default - In this mode, the agent does not perform any resource allocation.

The router runs in its default FIFO mode, and the jobs are run at the GR

with the default nice level. Neither the router nor the GR give any preference

to Class 1 or Class 2 jobs.

• QL - In this case, the agent performs resource allocation according to the

optimum policy as determined by the Watkins Q(λ) algorithm.

• SMART - Similar to the previous case, the network agent determines the

bandwidth to be allocated to Classes 1 and 2, and the nice levels for the jobs

are set according to the optimum policy learnt by the SMART algorithm.

When using QL and SMART, we used function approximation to reduce the

amount of memory required to store the value function data. The function ap-

proximation used was the CMAC algorithm (Section 2.1.8).

The default scheduling policy is used as a comparison to QL and SMART

because it is the out-of-the-box service levels provided to Globus users. Globus
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does not yet have a global standard to provide QoS to grid jobs. Providing QoS

requires negotiations between users and service providers; it is not yet an au-

tonomous process.

5.12 Results

Table 5.13: Number of Successful Jobs

Class Default QL SMART

1 198 684 649
2 16 412 474

Table 5.14: Average Response Time for Successful Jobs

Class Default (s) QL (s) SMART

1 13.184 10.293 10.061
2 40.922 28.217 26.494
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Figure 5.19: Average Response Time of Successful Jobs
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Figure 5.20: Number of Jobs that Finished within their Deadline

Table 5.13 shows the results of running the experiment on the testbed. It

shows that the RL based learning algorithm does much better than the default

scheduling policy. By allocating CPU cycles and network bandwidth carefully, the

RL policies are able to lower response times for both Class 1 and 2. The reason

for this was that jobs which failed to meet their deadline were ones that were

allocated very few resources, thus freeing up the resources for other jobs. The

average response time for jobs that failed to meet their deadline is given in Table

5.15. Some of the jobs also fail because during exploration, the agent can assign

some undesirable resource allocations to jobs.

Table 5.15: Average Response Time for Successful Jobs

Class Default (s) QL (s) SMART

1 17.586 20.109 25.186
2 78.384 96.318 105.308

If the QoS mechanisms were work conserving, then one class of jobs could
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only perform better at the expense of other classes. This means that in a work

conserving system like provisioning, if Class 1 had a worse response time than QL

or SMART, then Class 2 would have a better response time. However, we have

used reservation for providing QoS at the router, which is a non-work conserving

QoS mechanism. In reservation, both classes would only receive their fixed share

of bandwidth, regardless of whether the entire bandwidth of the router was free.

This is the reason for both Class 1 and 2 jobs having worse response times than

QL or SMART.

5.13 Issues with Reinforcement Learning

Agents running the Reinforcement Learning algorithm need to share the reward

signal at a minimum. Since the reward itself is a discrete quantity that only needs

to be sent at intervals, RL algorithms do not impose a significant load on the

network. However, at Grid Resource, the RL algorithms need to maintain value

functions for the entire state space and action space. The memory requirements

can be reduced with the use of function approximators like CMAC.

Another problem is the training time required for RL. During the exploration

phase, actions may be taken that do not produce the desired results. Therefore,

a short training time is preferable. However, by using short training times, the

RL algorithms may not be able to learn sufficient information in order to perform

well in circumstances that did not occur during the training period. Long training

periods help the RL algorithms explore more of their state space. The learning

time can be reduced significantly with the use of function approximators.
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5.14 Conclusions from Simulations and Imple-

mentation

From the simulation results in this chapter, we can conclude that reinforcement

learning methods are able to adapt successfully to a given scenario. Brokers using

RL to learn scheduling policies are able to successfully learn a scheduling pol-

icy which works better than Round Robin or Exponential Averaging methods.

Resource allocation techniques relying on RL methods are able to modify their

allocation levels in such a manner as to support the workload provided to the

system. These methods work better than Static methods of resource allocation.

Reservation of resources can provide better a guarantee of service than provision-

ing.

This chapter also presented a proof-of-concept implementation of a reinforce-

ment learning method to allocate resources in order to support QoS. With some

training, a RL based resource allocation agent manage a network and grid re-

sources, and requires minimal intervention from the system administrator.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The work presented in this thesis was motivated by the need to provide au-

tonomous Quality of Service mechanisms in grid and utility networks. Providing

QoS in such networks is becoming increasingly important as organizations move

from in-house processing to renting service from grid service providers. QoS pa-

rameters may be negotiated between GSPs and organizations using Service Level

Agreements. However, it is cumbersome for GSPs to individually configure re-

sources to match all the various SLAs they have drawn up with their customers.

This thesis explores a Reinforcement Learning based solution to make the

management of resources in such scenarios autonomous. The advantage of Rein-

forcement Learning based methods are that they are self-training, and they can

adapt themselves to different scenarios. We explored two different RL methods -

Watkins’ Q(λ) and SMART, and tested their performance against currently used

static provisioning methods. We believe that RL based resource allocation strate-

gies can provide the solution to one aspect of the QoS question, i.e. providing

autonomous resource allocation strategies that adapt to the environment at grid

and network service providers. We tested our RL methods in simulation to verify
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their performance. We also provided a sample implementation to test the viabil-

ity of our solution, and compared the implementation to other resource allocation

strategies.

From the simulation and implementation results, we can conclude that rein-

forcement learning methods are able to adapt successfully to a given scenario. Bro-

kers using RL to learn scheduling policies are able to successfully learn a scheduling

policy and provide QoS. Resource allocation techniques relying on RL methods

are able to modify their allocation levels in such a manner as to support the work-

load provided to the system. These methods work better than Static methods of

resource allocation. We can also conclude that reservation of resources can provide

better a quality of servicve then provisioning methods.

An advantage of using the Q(λ) or SMART algorithm is that both are model

free. A model is essentially an agent’s view of the environment, which maps state-

action pairs to probability distributions over states. When the possible number of

state-action pairs increase, the memory requirement of a model-based algorithm

will increase proportionately. In grid environments, where a large number of

resources should be expected, the memory requirement will be quite high. The

model free algorithms we have used have much lesser memory requirements due

to the lack of a model, and hence should be scalable to real-world grid networks.

RL based systems require a certain amount of time to learn their policy well.

During this time, some of the decisions may lead to worse behaviour than static

policies, due to the exploration that the agent is carrying out. In order to cut

down on the learning time, we can train the agent in a simulation environment

which resembles the environment the agent is expected to operate in. After this,

the agent may be used in the real system, and due to its previous learning, should

be able to perform much better.
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6.2 Contributions

This thesis presents a scheme for resource allocation in Grids and network domains

via Reinforcement Learning algorithms. The RL based agents are able to adjust

the resource allocation levels without intervention from a supervisor, and it can

adapt itself to any scenario without the need for a model of the problem.

Our major contribution in this thesis is the design and implementation of a

RL based system to achieve QoS paramaters for users with different requirements.

We provide a comprehensive analysis of our solution in simulation, and verify

the results with an implementation on a Globus based testbed. From our study,

we concluded that the RL methods would be a viable technique to use on grid

networks for resource allocation.

We also contributed a network simulation package that works with GridSim.

This will help other researches simulate their own various proposals to improve

the design of grid networks.

6.3 Recommendations for Future Work

6.3.1 Co-ordination among Agents

In our study, the agents are completely independent of each other, and their

actions are taken as if no other agents exist in the system. This may lead to slower

convergence due to conflicting actions of the agents. For example, when a job fails,

both the routers in between and the grid node which processed the job receive a

negative reward. This will cause agents on both of them to increase allocation

levels for the class to which the failed job belongs. If the job failed by missing the

deadline quite narrowly, it may be possible that increasing only network bandwidth

reservation or CPU reservation would have been enough. Therefore, it would be

better if there was some kind of co-ordination among the agents managing these
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resources.

One method in which agents can co-ordinate is to present the bandwidth and

processing allocation problem as a joint problem. However, this approach leads to

an increase in both state space and action space, which increases the size of the

problem exponentially.

Rather than following a brute-force merging of state and action space tech-

nique, an option would be to try implementing Co-ordinated Reinforcement Learn-

ing ([73]). This approach is based on approximating the joint value function as a

linear combination of value functions of the individual agents. Agents communi-

cate reinforcement learning signals, utility values and policies in order to achieve

convergence quickly and correctly. [73] provides an example of implementing Co-

ordinated RL to a Q-learning problem, and shows how such communication and

co-ordination can be achieved.

6.3.2 Better Network support in GridSim

GridSim supports network elements after our work, but there are a lot more fea-

tures that need to be incorporated in order for it to grow further as a simulation

package. Currently, GridSim only supports having a single link to an entity that

is not a router. It would be desirable to have multiple links and routing tables

which support multiple routes to a destination. With this implemented, brokers

can not only choose which grid node their jobs should run on, they can also choose

the route to be taken to the node. Note that this is not currently not possible

even on the public Internet, where a user has no control over his packets once they

leave his Administrative Domain (AD).

It would also be desirable to support features like finite buffers and TCP like

mechanisms to retransmit dropped packets. The addition of these features would

make GridSim a comprehensive grid simulation package.
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