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SUMMARY 
 
 
This study examines the effect of chelating agents, stabilizers and surfactants on the 

electroless copper plating process with emphasis in the surface morphology of the 

plated copper. The reducing agent was formaldehyde and the substrate was a 

acrylonitrile-butadiene-styrene (ABS) film formed from a plate casting method. 

Electroless plating was performed at room temperature (25 oC) and a constant stirring 

rate was provided with a magnetic stirrer.  

 
Structurally similar chelating agents: sodium potassium tartrate, trisodium 

citrate and  potassium sodium salt of malic acid were used separately in each of the 

plating solution as the main chelating agent. A fine grain copper structure was 

exhibited by the sodium potassium tartrate and trisodium citrate, while potassium 

sodium salt of malic acid forms coarse grain structures. Plating rate of the structurally 

similar chelating agent are in the increasing order of sodium potassium tartrate, 

potassium sodium salt of malic acid and trisodium citrate. All the plated copper were 

found to contain 111 and 200 crystallographic planes. Cyclic voltammetry suggests 

that the dual chelating agent system of sodium potassium tartrate and disodium EDTA 

are electrochemically favourable as compared the single chelating agent. 

 
Amino acids, such as L-methionine and glycine, were selected to replace the 

bi-pyridine. The function of the bi-pyridine as the stabilizer was verified as the absence 

of bi-pyridine decreases the decomposition time of the plating solution. L-methionine, 

a sulphur containing amino acid, results in high plating rate. However, its 

concentration is not proportional to the plating rate. L-methionine also induces fine 

grain copper structures similar to those obtained using bi-pyridine. Glycine does not 



 viii 

result in a high plating rate and coarse grain structure was formed. Sulphur containing 

amino acids can affect the plating rate and grain size to a certain extent. 

 
 One special class of surfactant, polyethylene glycol (PEG) was selected for the 

purpose of investigating the effect of surfactant on the surface morphology of the 

electrolessly plated copper. Various molecular weights of PEG in 2.0 g/L were added 

separately to the electroless copper plating solution containing sodium potassium 

tartrate as the main chelating agent. Highly uniform copper grain structures of about 

100-200 nm in size were formed. Higher molecular weight of PEG results in a smaller 

copper grain size and however, above 10,000 g/mol, this trend was not obvious. 

Thermal properties of the ABS film are also affected when PEG was introduced to the 

plating solution. The second glass transition temperature (Tg) generally increases with 

the molecular weight of the PEG. This may due to the strong Cu-CN bonding at the 

copper-ABS interface, which results in a more orderly structure of the ABS polymer. 

Cyclic voltammetry shows that addition of PEG favours electroless copper deposition. 
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NOMENCLATURE 
 
 
 
γ  Surface tension of the metal-solution 

interface 
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Chapter 1 
 
Introduction 
 
 
Electroless plating uses a redox reaction to deposit metal on an object without the 

passage of an electric current. It is autocatalytic in nature as after the first few atomic 

layers of metal are deposited on the activated substrate, subsequent reduction of metal 

occurs on the plated metal surface by itself, which means that the catalyst plays no part 

in the electroless plating process after that. A chemical reducing agent is responsible 

for supplying electrons for the conversion of metal ions to elemental form. The overall 

reaction of metal deposition can be represented as follows: 

 

solutionlattice
surfacecatalytic

solution
n
solution OxMdM + →++ .Re                                             (1.1)                                            

 

where Ox is the oxidation product of the reducing agent, Red. The catalytic surface can 

be the substrate or catalytic nuclei of metal M’ dispersed on a noncatalytic substrate. 

The above redox reaction only proceeds on a catalytic surface. Thus, the above 

equation is a heterogeneous catalytic electron-transfer reaction and can only proceed 

provided that the homogeneous reaction between the Mn+ and Red in the bulk solution 

is suppressed. Metals that can be electrolessly deposited include silver, gold, cobalt, 

copper, nickel, palladium, platimum, ruthenium and tin. Commonly used reducing 

agents consist of formaldehyde (HCHO), sodium phosphinate monohydrate 

(NaH2PO2), potassium borohydride (KBH4) and boron hydride dimethylamine 

(CH3)2NH.BH3 (Murphy et al., 1992). Electroless plating offers many advantages over 

electroplating, but it is not without its drawbacks. Table 1.1 shows some of the 

advantages and disadvantages of electroless plating (Hajdu, 1996), (Decker, 1995a), 

(Lowenheim, 1974). 
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Table 1.1 Advantages and disadvantages of electroless plating 
 
Advantages Disadvantages 
Uniformity of coverage High operating costs due to more 

expensive chemical reducing agents 
Ability to plate selectively Shorter plating bath 
Less porous deposits compared to 
electrodeposits 

 

Absence of power supplies, electrical 
contacts and electrical measuring 
instruments 

 

Unique chemical, mechanical or magnetic 
properties of deposit 

 

 
 
 

The history of electroless plating dates back to 1946 where Brenner and Riddel 

discovered the electroless nickel-phosphorous plating during their nickel electroplating 

experiments. Subsequently, electroless copper plating was reported in 1947 by Narcus. 

The early electroless plating solution was commonly plagued by problems such as 

“triggering”(spontaneous decomposition of the bath), “plate-out” (decomposition over 

a prolonged period), dark deposit colour, rough deposit, coarse grain size etc. The 

modern electroless plating is more stable due to well characterized and controlled trace 

additives. 

 

Applications of electroless plating encompass a wide range of areas with 

electroless copper and nickel as the two most widely used plating metals. Electroless 

copper plating is commonly used in printed circuit board (PCB) industries, plating on 

plastic industries (POP) and electro magnetic interference (EMI) shielding. The 

electroless nickel plating is used extensively for decorative, engineering and 

electroforming purposes (Decker, 1995b), (Baudrand, 1995). 
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 Since electroless copper plating has such diverse applications, it would be 

interesting and useful to investigate the effect of the plating solution chemistry on the 

type of electrolessly plated copper, so as to cater the needs for the many applications. 

As such, the primary aim of this research is to examine the effects of chelating agents, 

stabilizers and surfactants on the electrolessly deposited copper and as well as the 

plating process, so as to establish relationship between the composition of the plating 

solution and the quality of the deposited copper. 
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Chapter 2 
 
Literature Review 

 
 

Many aspects of electroless copper plating have been reported. It would be voluminous 

to describe all of them is this chapter. Selected studies that are relevant to the 

fundamental research of electroless copper plating solution chemistry are presented. 

 
2.1 Fundamentals of electroless copper plating 

 
2.1.1 Electroless copper plating bath chemistry 

 
The overall electroless copper plating reaction is theoretically given as: 
 

−−+ +++→++ 222
2 2242 HCOOHHCuOHHCHOCu o                                     (2.1) 

 
This equation employs formaldehyde (HCHO) as the reducing agent. 

Theoretically, it requires 4 moles of hydroxyl ions and 2 moles of formaldehyde to 

produce 1 mole of deposited copper. Actually, other side reactions do occur, the 

Cannizzaro reaction is a good example, in which formaldehyde disproportionates and 

is given as follows: 

 
−− +↔+ HCOOOHCHOHHCHO 32                                                                    (2.2) 

 
The above Cannizaro reaction consumes additional formaldehyde and base. 

Also, formaldehyde may reduce the cupric ions to form cuprous oxide, which is an 

unwanted product: 

 
OHHCOOOCuOHHCHOCu 22

2 352 ++→++ −−+                                            (2.3) 
 

With only the copper ions and formaldehyde do not therefore ensure electroless 

copper deposition on the substrate. The modern electroless copper plating bath consists 
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of complexing agents, a buffer, a stabilizer, accelerators and surfactants (Decker, 

1995a). 

Complexing agent 

The electroless copper plating solution favours an alkaline medium (i.e. high pH) to 

acidic medium (i.e. low pH) because the thermodynamic driving force for copper 

deposition is greater. Complexing agents are added to prevent precipitation within the 

plating solution at high pH. Commonly used complexing agents include 

ethylenediaminetraacetic acid (EDTA), malic acid (Mal), succinic acid (Suc), tartrate 

(Tart), citrate (Cit), triethanolamine (TEA) and ethylenediamine (En) 

(Mallory and Haju, 1990), (Shacham-Diamand et al, 1995). 

 
Buffer 

During the plating process, pH of the plating solution changes as oxidation of the 

reducing agent involves the formation of either hydrogen (H+) or hydroxide (OH-) 

ions. Therefore, buffers are added to stabilize the plating solution pH. Sodium 

carbonate is a commonly used buffer (Mallory and Haju, 1990). 

 
Stabilizer 

Stability of electroless metal plating solution depends on the probability and the rate of 

nucleation in the solution, i.e. its growth or dissolution. The critical radius of nuclei 

(r*) can be expressed by Equation 2.4. 

)]([
2

*
Re dMe EEnF

r
−

= γν
                                                                                              (2.4) 

where γ  = surface tension of the metal-solution interface 

          ν  = molar volume of the metal 

           n = number of electrons in the redox reaction 

          F = Faraday’s constant 
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          dMe EE Re, = potential of the metal in the solution containing metal ions and   

reducing agents, respectively 

 
When the nuclei in the plating solution is larger than r* in Equation 2.4, the 

solution becomes unstable and spontaneously decomposes. The probability that the 

solution will decompose increases with the decrease in nuclei critical radius. From 

Equation 2.4, it is easily seen that by reducing the difference between EMe and ERed, the 

stability of the electroless plating bath is increased. Decreasing the solution pH (a more 

positive ERed) will also have the same effect. 

 
Stabilizers can be used to prevent spontaneous decomposition, as they are 

known to competitively adsorb on the active nuclei, which block its growth and shield 

them from the reducing agent in the plating solution. Since, the stabilizers can also 

adsorb on the activated substrate, its concentration must not be in excess. Suitable 

stabilizers are metal-containing compounds (V, Mo, Nb, W, Re, Sb, Bi, Ce, U, Hg, Ag, 

As), sulphur-containing compounds (sylphites, thiosulphates, sylphates, etc.), nitrogen-

containing compounds (tetracyanoethylene, cyanides, pyridines, 2,2’-dipyridil, etc.), 

and sulphur- and nitrogen-containing compounds (cycteines, cystines, 

diethlditiocarbamates, thiosemicarbazide, etc.) 

 
Some stabilizers may also form complexes with Cu(I) and prevent reduction to 

Cuo in the bulk solution. Examples of Cu (I) complexing agents are cyanides, 2,2’-

dipyridyl and 1,10-phenanthrolines. In addition, oxidizing agents such as chromates, 

Fe(III), chlorates, iodates, molybdates, hydrogen peroxide, or oxygen can be 

introduced to the solution by stirring or air agitation to oxidize Cu(I) to Cu(II) 

(Mallory and Haju, 1990), (Shacham-Diamand et al, 1995). 
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Accelerators 

The introduction of complexing agents retard the plating rate, accelerators which are  

generally anions, such as cynide, are added to increase the plating rate to an acceptable 

level without causing plating bath instability. The plating rate of common electroless 

plating bath ranges from 1-5 µm/hr. With the introduction of additives, the plating rate 

can increase by a few folds. Typical additives are pyridine, 2-mercaptobenzothiazole 

sodium salt, guanidine hydrochloride and cytosine (Coombs, 1996), (Nuzzi, 1983). 

Possible reasons to explain the action of the additives include activation of the catalyst 

and formation of labile copper complexes (Bielinski, 1987). 

 
Surfactants 

The role of surfactants is to decrease the surface tension of the plating solution and 

helps to remove the hydrogen bubbles formed on the surface of electroless copper 

deposits by inhibiting the dehydrogenation reaction. Anionic, non-ionic, amphoteric or 

cationic surfactants may be used. The selection of surfactants depends on the operating 

temperature, the pH and ionic strength of the electroless plating bath. Popular 

surfactants include complex organic phosphate esters, anionic perfluoroalkyl 

sulfonates and carboxylates, non-ionic fluorinated alkyl alkoxylates and cationic 

fluorinated quaternary ammonion compounds (Shacham-Diamand et al, 1995). 

 
2.1.2 Mixed potential of electroless metal deposition 

 
The principle of superposition of the partial electrochemical processes was proposed 

by Wager and Traud in the 1930s and is commonly known as mixed potential. 

Subsequently, Paunovic and Saito applied the mixed potential concepts to interpret the 

process of electroless deposition of metal. The mixed potential states that the rate of a 

faradaic process is independent of other faradaic processes occurring at the electrode 
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and depends only on the electrode potential. In this manner, polarization curves for 

independent anodic and cathodic processes can be added to predict the overall rates 

and potentials which may exist when more than one reaction occurs simultaneously at 

an electrode. The overall reaction can be represented by considering a redox reaction 

occurring on an inert electrode given in (2.5): 

 

dneOx
c

a

K

K

Re⇔+                                                                                                      (2.5) 

where Ox is the oxidation product of the reducing agent, Red 

          ne is the n number of electrons 

          Kc and Ka is the rates of the cathodic and anodic reactions respectively 

 
There are two direct consequences of the above redox equation. 

1. At any point, the total current density, totali  can be expressed by the following 

equation: 

actotal iii +=                                                                                                    (2.6) 

where itotal represents the total current density 

           ic and ia represent the cathodic and anodic current densities respectively 

 

Initially, the two opposing reactions occur at different rates, leading to a non-

zero total current density. After some time, the two reactions proceed at the 

same rates and the total current density, totali  becomes zero. Equilibrium is 

established at this point. 
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2. The potential at which this equilibrium occurs is described as the equilibrium 

potential (A.K.A  steady-state mixed potential), 0
mpE . This equilibrium potential 

can be determined in the thermodynamic sense using the Nernst equation. 

 
Consider a case where two or more reactions occur simultaneously at the electrode 

surface. A good example is the copper/formaldehyde electroless plating process. In this 

set of reaction, the anodic reaction is the oxidation of the reducing agent 

(formaldehyde): 

 
−−− ++⇔+ eHHCOOOHHCHO 223 2     (pH=14, Eo = -1.07)                            (2.7) 

or simply −+ +→ zeRR zo                                                                                          (2.8) 

 
The cathodic reaction is the reduction of the metal(copper) complex 

−+−− +⇔ nn LCuCuL 6][ 2)26(
6                                                                                      (2.9) 

oCueCu →+ −+ 22                                                                                                   (2.10) 

or simply 0MzeM Z →+ −+                                                                                     (2.11) 

where R and M represent the reductant and the metal respectively. 

Therefore, the overall reaction can be represented by 

++ +→+ zooz RMRM                                                                                            (2.12) 

 
The above equation can be electrochemically described in terms of three 

current-potential (i-V) curves shown in Fig. 2.1. The overall reaction, Vitotal − is 

represented by a dashed curve in Fig. 2.1. The current-potential curve, Vic −  for the 

reduction of Mz+ ions in the absence of the reducing agent lies below the dashed curve, 

and the current-potential curve, Via −  for the oxidation of the reducing agent in the 

absence of the Mz+ ions lies above the dashed curve. The point where the dashed line 
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crosses the potential axis is known as the equilibrium potential, 0
mpE  described earlier, 

and it corresponds to a zero current density. From Fig. 2.1, it can be seen that the 

equilibrium potential of the reducing agent, deqE Re, , must be more negative than the 

metal electrode, MeqE ,  in order for Red to be function as an electron donor and Mz+ as 

an electron acceptor. 

 

 
 

Fig 2.1 Total and component current-potential curves for the overall electroless 
deposition reaction (Murphy et al., 1992) 

 
 

In addition, according to the mixed potential theory, the partial reduction and 

oxidation electrochemical processes occurs at the same time, but spatially separated on 

the substrate. This means the catalytic sites on the substrate consists of a mixture of 

cathodic and anodic sites (Mallory and Haju, 1990), (Murphy et al., 1992). 
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2.1.2.1 The cathodic half reaction 
 
The mechanism of the partial cathodic reaction involves at least two basic elementary 

steps (Paunovic, 1977): 

1. Formation of the electroactive species 

2. Charge transfer from the catalytic surface to the electroactive species (electron       

capture) 

 
The electroactive species, Mz+ are formed by dissociation of the metal complex, 

[MLx]z + xp and shown in Equation 2.13. In general, the metal ions in the electroless 

metal deposition are complexed with at least one ligand. 

 
[ ] Pzxpz

x xLMML +→ ++                                                                                           (2.13) 
 
where p is the charge of the ligand L 

          z is the charge of the noncomplexed metal ion 

          z + xp is the charge of the complexed metal ion 

 
The transfer of z electrons from the catalytic surface to the electroactive 

species,   Mz+ proceeds in steps. The first charge transfer or the one electron transfer is 

usually the rate-determining step(RDS): 

+−−+  →+ )1( zRDSz MeM                                                                                         (2.14) 

 
 

2.1.2.2 The anodic half reaction 
 
Similar to the cathodic partial reaction, the mechanism of the anodic partial reaction 

proceeds in at least two elementary steps (Murphy et al., 1992): 

 
1. Formation of the electroactive species 
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2. Charge transfer from the electroactive species to the catalytic surface(electron 

injection) 

 
A general mechanism for the formation of electroactive species of the reducing 

agent, Red is given by Murphy et al. (1992): 

adsads
bondRHbreaking HRHR + →− ..                                                                          (2.15) 

 
where R-H is the reducing agent, Red 

           Rads is the electroactive species originating from Red 

           Hads is the adsorbed hydrogen 

 
According to the above mechanism, the electroactive species, Rads is formed in 

the process of dissociative adsorption (dehydrogenation) of the reducing agent Red, 

represented as R-H on the catalytic surface. This process usually proceeds through an 

intermediate, R’. For example, if the reducing agent is formaldehyde (HCHO), the 

intermediate, R’ is H2C(OH)O- and the electroactive species, Rads is [HC(OH)-]ads. 

 
The Hads can be either desorbed by a chemical reaction shown in Equation 

2.16a or by an electrochemical reaction shown in Equation 2.16b. 

 

22
1

HH ads →                                                                                                           (2.16a) 

−+ +→ eHH ads                                                                                                     (2.16b) 

 
For example, in electroless deposition of copper, when the reducing agent is 

formaldehyde. Initially, when the substrate is covered with palladium or platinum, Hads 

desorbs via an electrochemical reaction 2.16b. After the substrate is covered with 

copper,  Hads desorbs via a chemical reaction 2.16a.  
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The charge transfer from the electroactive species, Rads to the catalytic surface 

(electron injection) in an alkaline medium is given by:  

 
−− +→+ eROHOHRads                                                                                         (2.17) 

 
 
 

2.1.3 Kinetics of electroless copper deposition 
 
Since most of the electroless copper plating solutions consist of four essential 

components: copper ions, alkalinity, formaldehyde and ligands, a number of studies on 

the effect of these four components on the rate of copper deposition have been 

performed (Donahue, 1980), (Dumesic et al. 1974), (Schmacher et al. 1985), (El-

Raghy and Abo-Salama, 1979). Generally, the overall rate law for electroless copper 

deposition can be written as: 

 
dcba LigandHCHOOHCukr ][][][][ 2 −+=                                                               (2.18) 

 
where k is the observed rate constant at a given temperature 

           a, b, c and d are the reaction orders for the reactants 

 
Some experimentally determined reaction orders for the four components are 

given in Table 2.1. As shown in Table 2.1, the reaction orders are quite diverse. A 

number of factors have contributed to this phenomenon. Firstly, the substrates used in 

each electroless copper plating solution are made of different materials, and thus have 

varying degrees of catalytic activity. Some subtrates are metal, while others are 

catalyzed dielectrics. Secondly, the time frame at which measurements were taken is 

critical. Dumesic et al. (1974) reported that the rate of initial copper deposition 

depends strongly on formaldehyde concentration, but not on copper concentration, 

whereas the final rate is independent of the formaldehyde concentration. The third 

reason is due to mass transfer effects. In the absence of forced convection, the primary 
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means of mass transfer is from the microconvection of hydrogen bubbles and evolution 

from the reaction surface (Donahue, 1980). The observed rate constant k is a function 

of temperature and it obeys the Arrhenius equation. From the slope of an Arrhenius 

plot, an activation energy of 60.9 KJ mol-1 was estimated. 

 
Table 2.1 Experimentally determined reaction orders for electroless copper plating 

solution (Mallory and Haju, 1990) 
 

Cu2+ OH- HCHO Ligand 
0.47 0.18 0.07 - (tartrate) 
0.37 0.25 0.08 0.19 (tartrate) 
0.78 <0.02 0.13 <0.02 (tartrate) 
0.43 -0.70 0.16 -0.04 (EDTA) 
1.00 0.37 0.00 - (EDTA)a 
0.00 1.00 0.68 - (EDTA)b 
0.00 0.00 1.00 0 (EDTA) 
a refers to the final deposition rate 
b refers to the initial deposition rate 
 

Presently, most electroless copper plating solutions contain additional 

components to enhance the properties of copper deposits and improve the plating 

solution stability. These additional components will affect the plating kinetics, but it is 

too complicated to study these systems. Therefore, kinetic studies are largely restricted 

to the four essential components. 

 
A variety of measurement techniques have been employed to obtain kinetic 

data for electroless copper plating. Dumesic et al. (1974) described an optical method, 

which is based on the monochromatic light at a sensitized transparent rotating cylinder. 

They were successful in distinguishing the changes in the initial plating rate and the 

final rate region and reported that the reaction order for formaldehyde changed from 

0.68 in the initial stages of plating to 0 during the final stages. Schumacher et al. 

(1985) utilized a quartz crystal microbalance to measure the deposition rate of 

electroless copper plating. This technique offers the advantage of in-situ measurement 
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compared to the macroscopic weight measurements. Using a resistance probe, in which 

the cathode comprises one arm of a wheatstone bridge, Vitkavage et al. (1983) 

reported that the plating rate may be monitored by observing changes in resistance 

with time.  

 

 
2.1.4 Alkaline-free electroless copper plating bath 
 

The conventional electroless copper plating baths are usually alkaline-based, because it 

is more favourable in a thermodynamic sense. However, acid-based electroless copper 

deposition is still thermodynamically feasible. Tseng et al. (2001) studied the 

electroless copper deposition on a SiO2/Ta/TaN substrate using an acid-based plating 

bath. The plating bath consists of copper chloride (CuCl2), nitric acid (HNO3), 

ammonia fluoride (NH4F) and hydrogen fluoride (HF) and is maintained at a pH of 

4.5. The NH4F and HF serve as the buffer in the plating solution. The role of CuCl2 is 

not limited to the supply of copper ions, the Cl- ion can help to prevent the formation of 

nitrogen dioxide gas by suppressing the reduction of nitric acid. In addition, Cl-and F- 

act as complexing agents and transmit electrons from silicon, Si to Cu2+, where Si act 

as the reducing agent. The presence of nitric acid ensures that shining reddish copper is 

deposited, omission of nitric acid results in dark-reddish dots.  

 
Shacham-Diamand et al. (1995) outlined an alkaline-free electroless copper 

plating bath suitable for integrated circuit (IC) fabrication. The composition and 

various functions of the components in the plating bath are given in Table 2.2. Another 

type of alkaline-free electroless plating bath was proposed by Hung (1988). The 

plating bath consists of 0.024 M copper sulphate (CuSO4), 0.052 M sodium citrate 

(C6H5Na3O7), 0.27 M sodium hypophosphate (NaH2PO2.H2O), 0.5M boric acid 



 16 

(H3BO3) and 0.002 M nickel sulphate (NiSO4). The pH was maintained at 9.2 and the 

plating temperature was set at 65 oC. The substrate was a copper sheet, which is 

activated by 0.1% palladium chloride (PdCl2) solution for 1 minute. Nickel ions were 

added as nickel sulphate to promote autocatalysis and continuous plating. 

 
 
 

Table 2.2 Components of alkali-free electroless copper plating bath (Shacham-
Diamand et al., 1995) 

 
Component Quantity (Range only) Function 
Copper sulphate 
(CuSO4.5H2O) 

0.05-0.1 M Supply copper ions 

Tetraethylammonium 
hydroxide 
[N(C2H5)4OH] 

0.5-1.0 M Supply electrons 

Ethylenediaminetetraacetic 
acid, 
EDTA [ C10H14N2O8] 

0.1 M Complexing agent 

Formaldehyde (HCOH) 
(or alternatively glyoxylic acid) 

0.01-0.1 M Reducing agent 

Tetramethyammonium cyanide 
[N(CH3)4CN] 

0-0.01 M Complexing agent 
(Affects morphology) 

GAF RE-610 0.5-2 % Surfactant 
(Reduces surface tension) 

 
 

Alkaline-free electroless copper plating solution is generally preferred in IC 

manufacturing. This is because alkali metal ions such as sodium and potassium from 

the hydroxides can drift quickly into silicon dioxide under an electric field, which 

causes the accumulation of positive ion charges near the silicon-silicon dioxide 

interface. This extra charge alters the device characteristics, possibly resulting in a 

circuit failure (Sze, 1981). 
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2.2 General processes and principles of plating plastics 
 
Since the research was originally undertaken on electroless copper plating on 

acrylonitrile-butadiene-styrene(ABS), which is a plastic, it is useful to briefly discuss 

the general processes and practices in the plastic plating industry. Plating on plastics is 

generally classified under two broad stages: pretreatment and electroplating. 

 
 
2.2.1 Introduction 
 
Plating of plastics has been around for forty over years since the early 1960s. 

Industries at that time saw the need to develop the plastic plating technology due to the 

following reasons: 

• Better resistance to corrosion 

• Lower cost 

• No secondary operations (i.e., no deflashing or buffing) 

• Design freedom (i.e., the ability to mold large and complex parts) 

• Weight reduction 

 
Of the above reasons, weight reduction is one of the most important reasons for the 

increase in popularity of plating on plastics. This greatly benefits the automobile 

industry, which reduces the fuel usage (Mallory and Haju, 1990). 

 
Many grades of plastics have been proven to be electrolessly platable. They include 

ABS, polypropylene, polysulfone, polyethersulfone, polyetherimide, teflon, 

polyarylether, polycarbonate, polyphenylene oxide (modified), polyacetal, urea 

formaldehyde, diallyl phthalate, mineral-reinforced nylon (MRN) and phenolic. One of 

the earliest plastics plated on a large scale was polypropylene. ABS is the most widely 

used plastics for plating. It is a thermoplastic that has a acrylonitrile-styrene matrix 



 18 

with butadiene rubber uniformly distributed in it. This quality makes ABS unique for 

plating, as the butadiene can be selectively etched out of the matrix, leaving 

microscopic holes that are used as bonding sites for electroless plating and also 

promote adhesion between the substrate and metallic film. ABS was chosen as the 

substrate for electroless copper plating in this study as it is the most easily plated 

plastics (Mallory and Haju, 1990). 

 

Fig 2.2 Flow chart on the general operation of plastic plating (Mallory and Haju, 1990) 
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2.2.2 Pretreatment of plastics plating 
 
The general operation on electroless plating of plastics is shown in Fig. 2.2. The 

objective of the pretreatment stage is to ensure electroless metal deposition on the 

plastics substrate which is non-conductive initially, and also reasonably good adhesion  

between the deposited metal and substrate. As seen in Fig. 2.2, the pretreatment stage 

consists of many stages in which some are more important for certain plastics, while 

others can be completely omitted. 

 
Stress Relieve 

Polysulphone and other highly stressed plastics require this step to prevent cracking 

during the subsequent processing and to obtain a more uniform etching. This step 

consists of holding the plastics mouldings in a forced air circulated oven at a high 

temperature such that the plastics will stand without softening and distorting until the 

surface stresses have been suffucuently reduced (Muller and Baudrand, 1971). 

 
Degreasing 

Degreasing is not required if the plastics substrates are free of grease. If required, 

silicon-free cleaner is used. 

 
Chemical Etching  

This step increase the roughness of the plastics surface, which will facilitate the 

subsequent electroless plating step. Etching composition typically consists of aqueous 

chromic acid/sulphuric acid or a mixture of both. The etching composition is best 

determined experimentally. A typical etch composition is as follows by Muller and 

Baufrand. (1971): 

Sulphuric acid:   100mL 

Potassium dichromate:  15mL 
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Water:               30mL 

 
Neutralizing 

Neutralizing solution usually contains reducing agents, such as sodium hydrogen 

sulfite (NaHSO3). This neutralizing step prevents the carry over of the hexavalent 

chromium (Cr6+) ions from the etching solution to the sensitizing solution, as  Cr6+ are 

known to oxidize Sn2+ to Sn4+ in the sensitizing solution, thus making the solution 

ineffective. This step is usually run at 70 to 110 oF for 1 to 3 minutes with air agitation 

(Mallory and Haju, 1990). 

  
 
Sensitizing 

The previous step discussed above optimized the sensitizing step and this step is 

important for the success of the electroless plating process. The sensitizing solution 

typically consists of 10-20 g/L tin(II) chloride (SnCl2) and 15-50 g/L concentrated 

hydrochloric acid (HCl). The colour of the sensitizing solution can be used as a guide 

for the amounts of HCl required for a fixed amount of SnCl2. When SnCl2 was 

dissolved in a calculated amount of deionised water, a milky-grey solution is formed. 

Concentrated HCl was added with constant stirring until the solution becomes clear 

again. At this point, the SnCl2 and HCl concentrations are in correct balance (Muller 

and Baudrand, 1971). 

 
Activating 

As the name implies, this step is supposed to activate the plastics surface with catalyst. 

Suitable catalysts include precious metals such as gold, silver and palladium. 

Palladium is the most common used catalyst for electroless plating. A suitable 

activating formulation consists of palladium chloride (0.25-0.5 g/L) and concentrated 



 21 

hydrochloric acid (10 mL/L). In the previous sensitizing step, Sn2+ from the tin(II) 

chloride/hydrochloric acid solution was adsorbed onto the surface. The adsorbed Sn2+ 

reduced the Pd2+ to Pd0 according to Equation 2.18 in the subsequent activating step. 

oPdSnPdSn +→+ +++ 422                                                                                      (2.18) 

Thus, the palladium sites for the catalytic surfaces needed for metal deposition was 

formed. It is possible to combine the sensitizing and activating step together by mixing 

the tin(II) chloride, palladium chloride and concentrated hydrochloric acid together. A 

palladium-tin hydrosol, which is a solution of complex ions and the tin ions is formed. 

Its activity and stability depend very much on the chloride and tin ions concentrations 

(Mallory and Haju, 1990). 
 
 
Rinsing 

The rinsing steps are omitted in Fig. 2.2 for simplicity. In fact, rinsing is needed in 

between every step. This is to prevent any undesirable chemicals from the previous 

step to carry over to the subsequent step. Proper rinsing ensures the success of the 

electroless plating process (Muller and Baudrand, 1971). 

 
 
2.2.3 Electroless metal deposition 
 
This step simply deposits metal on the activated plastics surface. In Section 2.1.1, the 

fundamental aspects of the electroless plating solution have been discussed and will 

not be repeated in this section. Before the activated plastics substrate is immersed in 

the plating solution, the plating solution is still stable, only after the substrate is 

immersed, chemical reduction of metal occurs on the palladium-bearing plastics 

surface. Commercially, the electroless plating bath is closely monitored by an 

automatic controller, whereby the pH and concentrations of chemicals are constantly 

analyzed. Whenever necessary, plating reagents and other reagents will be replenished. 
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Electroless copper plating solution are reported to cause more problems than 

electroless nickel plating solution (Mallory and Haju, 1990). 

                                                
                                                                                                                                                                                                                                                                        
 

2.3 Voltammetry analysis of electroless copper plating solution 
 
There are two common types of voltammetry: linear sweep and cyclic. Voltammetry is 

an electroanalytical technique for the study of electroactive species and frequently used 

in the field of electrochemistry, inorganic chemistry, organic chemistry and 

biochemistry (Kissinger and Heineman, 1983). Cyclic voltammetry is an extension of 

linear sweep voltammetry with the voltage scan reversed after the maximum/minimum 

voltage is reached. This technique can provide more information about the properties 

and characteristics of the electrochemical process and also gives insight to 

complicating processes involving pre- and post-electron transfer reactions as well as 

kinetic considerations. The voltammogram is a display of current (vertical axis) versus 

potential (horizontal axis) (Sawyer et al., 1995). 

 
Cyclic/linear sweep voltammetry analysis of electroless copper plating solution 

are rarely reported. Voltammetry analysis on copper electrode immersed in basic 

solution containing reducing agent and additives are more common. Fig 2.3 shows a 

typical voltammogram of a copper electrode in pure base at 25 oC represented by a 

dashed line (Burke et al., 1998). A total of two anodic and two cathodic peaks are 

shown in this figure. Anodic peak, A1 represents the conversion of Cu to Cu2O and 

anodic peak, A2 reflects the conversion of Cu2O (and some additional Cu) to a mixture 

of CuO and Cu(OH)2. The cathodic peak, C2 is the reduction of Cu(II) to Cu(I) species 

in the surface layer of copper electrode and lastly the cathodic peak, C1 is the further 
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reduction of Cu(I) to Cu. The copper equilibria data involving two solid substances are 

given as follows: 

 
−+ ++⇔+ eHOCuOHCu 222 22     Eo=0.471V                                                    (2.19) 

 
−+ ++⇔+ eHCuOOHCu 222       Eo=0.570V (0.609V)                                      (2.20) 

 
−+ ++⇔+ eHCuOOHOCu 22222   Eo=0.669V (0.747V)                                   (2.21)  
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Fig 2.3 Cyclic voltammetry curves for Cu in 1M NaOH (dashed curve) and 1M NaOH 
+ 0.1M HCHO (solid curve). Electrode area = 0.458 cm2; Scan rate = 0.1 V/S; 

Temperature = 25oC (Burke et al., 1998) 
 

The potential values in parenthesis refer to hydrated copper(II) oxide. Equation 

(2.19) is applicable for peak A1 and C1and formation of peak A2 is probably due to a 

combination of processes shown in Equations 2.20 and 2.21. Thus, the behaviour of 

copper in base is complicated because of the multiple oxidation states of copper and its 

oxides can exist in both anhydrous and hydrated form (Burke et al., 1998), (Burke and 

Ryan, 1990). 
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For the case where formaldehyde (HCHO) was added, the resulting 

voltammogram (in solid curve in Fig. 2.3) was quite similar. The anodic peak, '
1A  

occurs as a result of the reaction of HCHO on the freshly reducing copper surface. The 

large increase of the anodic current at peak '
2A  is due to the interaction of 

formaldehyde with Cu(OH)2. There is an additional anodic peak '
3A  at around 1.4 V, 

this peak occurs after the CuO has been removed by dissolution and the oxidation of 

the formaldehyde on the fresh copper surface appears again. Addition of HCHO have 

no effect on the cathodic peak '
2C  (as the cathodic current is the same as without 

formaladehyde), however the peak '
1C  reveals a large cathodic current which is due to 

formaldehyde reduction (Bindra and Roldan, 1985). 

 
     Based on the cyclic voltammogram on the copper electrode immersed in a 

mixture of NaOH and HCHO, Burke et al. (1998) proposed a interfacial redox 

mechasnism for aldehyde oxidation and reduction. Fig. 2.4 and 2.5 shows the actual 

proposed reaction mechanism. Due to energy fluctuations, the copper atoms at an 

active site in a low lattice coordination state, may be oxidised to Cu(I) state at around -

0.1 V. The oxidised copper atoms can rapidly react with an aldehyde molecule to form 

Cu* in nascent (or very active) form as shown in Fig. 2.4. The Cu* is immediately 

oxidized as shown in Fig. 2.5 and the cycle continues. In the course of reaction, if 

some of the excess energy of the nascent Cu* atoms is transferred to other metal atoms 

at the active sites, the aldehyde oxidation will be observed below 0.0 V.  
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Fig 2.4 Interfacial cyclic redox mechanism for aldehyde oxidation at a copper 
electrode in aqueous base (Burke et al., 1998) 
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Fig 2.5 Interfacial cyclic redox mechanism for aldehyde reduction at a copper 
electrode in aqueous base (Burke et al., 1998) 

 
 
Linear sweep voltammetry are performed on electroless copper plating solution 

containing CuSO4.5H2O, ethylenediaminetetraacetic acid (EDTA), triethanolamine 

(TEA) and HCHO. The anodic linear sweep voltammogram shared close resemblance 

with the ones in Burke et al. (1998) and  Bindra and Roldan. (1985). It was expected as 

the plating solution only contains additional chelating agents. The voltammograms 

revealed that EDTA plays an important role in chelating, while TEA adsorbs onto the 

copper surface to inhibit HCHO oxidation, if the plating solution contains sufficient 

EDTA. In addition, traces of ethylenediamine were found to affect the morphology of 

the plated copper. This is due to the high adsorption capability of ethylenediamine, 

which makes it a prominent refining agent (Lin and Yen, 2001). 

2e 

2e 
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Cyclic voltammetry experiments were performed on a new type of electroless 

copper plating solution using cobalt(II)-ethylenediamine complex as reducing agent. 

The electroless plating solution of pH 6-8 contains CuCl2, CoCl2 and ethylenediamine 

(En). From the voltammograms, complicated electrochemical behaviour was observed 

as both the anodic and cathodic processes are occurring simultaneously on the same 

metal surface at the same potential. The current measured corresponds to the algebraic 

sum of anodic Co(II) oxidation and cathodic Cu(II) reduction currents. The Cu(II) 

reduction and Co(II) oxidation takes place at around 0.15 V and the pH of solution was 

7. Furthermore, chloride ions were found to play a crucial role in accelerating both the 

partial reactions of Co(II) oxidation and Cu(II) reduction, by electron transfer through 

the Cl- bridge in Fig. 2.6 and Fig. 2.7 (Vaskelis et al., 1999). 

 
 

Fig 2.6 Reduction of mixed Cu(II)-En-chloride complexe through a chloride ‘bridge’ 
(Vaskelis et al., 1999) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.7 Electrooxidation of CoEn3Cl+ complex through the chloride ‘bridge’ (Vaskelis 
et al., 1999) 

 

CI- 
2e 
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Chapter 4 
 
Effects of Chelating Agents in the Electroless Copper Plating Solution 
 
 
This chapter examines the effects of changing the main chelating agent in the 

electroless copper plating solution. The reference plating solution employs a dual 

chelating agent where the main chelating agent is tartrate salt and the side chelating 

agent is EDTA disodium salt. Analytical instruments such as scanning electron 

microscope (SEM), atomic force microscope (AFM) and X-ray diffraction (XRD) 

were used extensively in order to gain a more in-depth understanding of the plated 

copper structures. 

 
4.1 The influence of varying the concentration of potassium sodium tartrate  

 
Tartrate salts serve as a chelating agent in electroless copper plating solution and its 

primary role is to prevent precipitation of copper into the bulk solution during the 

plating process. Hence, the mole ratio of tartrate salts to copper salts will have a direct 

consequence on the type of copper plated. The plating time was held constant at 15 

minutes and the mole ratio of sodium potassium tartrate to copper (II) sulphate was 

made to vary from 2.5 to 4.3 and the surface morphology of the plated copper was 

observed by AFM and SEM. 

 
Figures 4.1a-c show the 3-dimensional surface image generated by AFM at 

different mole ratios of potassium sodium tartrate to copper (II) sulfate and Table 4.1 

shows the corresponding selected results from the roughness analysis. The 3-

dimensional surface images clearly shows that at the molar ratio of 3.5, the ‘cone’ 

structures of copper are more closely packed and the roughness analysis shown in 

Table 4.1 confirmed that it has the smoothest surface. 
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Fig 4.1 Atomic force microscope 3-dimensional surface images (15 x 15 µm) when the 
molar ratio of sodium potassium  tartrate to copper (II) sulphate is a) 4.3 b) 3.5 c) 2.5  

(Z axis 250 nm/div) 
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Table 4.1 Selected roughness analysis results on various molar ratios of sodium   
potassium tartrate to copper (II) sulphate 

 
Mole ratio of sodium 
potassium tartrate  to 
copper (II) sulphate 

Img. RMS (Rq) /nm 

4.3 67.0 
3.5 32.5 
2.5 48.3 

Img. Rms (Rq) refers to the root mean square of height deviations taken from the mean 

data plane, expressed as
N

ZZZZ n
22

3
2
2

2
1 ...( ++++

 

 
 
Figures 4.2a-c shows the scanning electron microscope images at 5000 

magnification at various mole ratios of potassium sodium tartrate to copper (II) 

sulphate. From these electron micrographs, only the 2-dimensional surface 

morphology was revealed. Fine grains of copper structures were seen and form clusters 

of about 4 µm in size. The clusters of copper structures formed in Fig. 4.2b are more 

uniform than the others, which probably explains the resulting lowest surface 

roughness. The scanning electron microscope images can be still considered as 

consistent with the corresponding 3-dimensional atomic force microscope surface 

image. Therefore, the optimum ratio of 3.5 was selected. 
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a 

 
b 
 

 
c 

 
Fig 4.2 Scanning electron microscope images when the molar ratio of sodium 
potassium tartrate to copper (II) sulphate is a) 4.3 b) 3.5 c) 2.5. Magn. X5000 

 
 

4.2 The influence of varying the concentration of trisodium citrate 
 

Trisodium citrate is a common citric salt and its chemical structure is similar to 

potassium sodium tartrate, except that it contains an additional carboxylic group, and 

one less hydroxyl group. In this section, potassium sodium tartrate was replaced by 

trisodium citrate. The function of the citric salt is still the same as the tartaric salt, 

which serves as a chelating agent. Similar to Section 4.1, this section seeks to obtain 

the optimal concentration of citric salt in the electroless copper plating solution. Again, 

the plating time was fixed at 15 minutes. 
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The 3-dimensional surface images generated by AFM at different mole ratios of 

trisodium citrate to copper (II) sulphate are shown in Figures 4.3a-d and Table 4.2 

shows the corresponding selected results from the roughness analysis. The ‘cone’ 

copper structures of various heights are distributed unevenly on the 15x15 µm area 

when the mole ratio is 5.5, 4.3 and 2.5. At a molar ratio of 3.5, the copper ‘cone’ 

structures appear to be more uniform in size and height and the roughness analysis also 

revealed that it has the smoothest surface. 

 
 The scanning electron microscope images at 5000 magnification at various mole 

ratios of trisodium citrate to copper (II) sulphate are shown in Figures 4.4a-d. Similar 

to tartaric salts, citric salts also offer fine grains of copper structures, which form 

clusters ranging from 2 to 6 µm in size. But it was observed that at a low molar ratio of 

2.5, bigger grains of copper are formed. This may be associated with the higher plating 

rate, when the concentration of chelating agent is reduced. The scanning electron 

microscope images are quite consistent with the corresponding 3-dimensional atomic 

force microscope surface image. In view of the roughness analysis and surface 

morphologies of the four plated copper, the optimum ratio of 3.5 was selected. 
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Fig 4.3 Atomic force microscope 3-dimensional surface images (15 x 15 µm) when the 
molar ratio of trisodium citrate to copper (II) sulphate is a) 5.5 b) 4.3 c) 3.5 d) 2.5 (Z 

axis 250 nm/div) 
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Table 4.2 Selected roughness analysis results on various molar ratios of trisodium 
citrate to copper (II) sulphate 

 
Mole ratio of trisodium 

citrate to copper (II) 
sulphate 

Img. RMS (Rq) /nm 

5.5 62.0 
4.3 60.3 
3.5 58.8 
2.5 96.8 

Img. Rms (Rq) refers to the root mean square of height deviations taken from the mean 

data plane, expressed as
N

ZZZZ n
22

3
2
2

2
1 ...( ++++

 

 
 

 

a 

 

b 

 

c 

 

d 

Fig 4.4 Scanning electron microscope images when the molar ratio of trisodium citrate 
to copper (II) sulphate is a) 5.5 b) 4.3 c) 3.5 d) 2.5. Magn. X5000 
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4.3 The influence of varying the concentration of potassium sodium salt of 
malic acid 

 
The malic acid is not available in the form of salt. In the preparation of electroless 

copper plating solution, a malic salt is desired. The method of preparation involves 

simple titration of potassium hydroxide and sodium hydroxide with malic acid. 

Theoretically, one mole of malic acid will react with one mole of sodium hydroxide 

and one mole of potassium hydroxide to form one mole of a salt of a malic acid and 

two moles of water. Sodium hydroxide solution was added dropwise to the solution of 

malic acid until the pH of the solution reaches the first pKa value of the malic acid at 

3.4. Then, potassium hydroxide solution was added dropwise to the solution until the 

pH of the solution reaches the second pKa value of 5.05 (Dean, 1979). At this point, 

the bulk of the malic acid should be in its salt form. Similar to the Section 4.2, 

potassium sodium tartrate was replaced by potassium sodium salt of malic acid, which 

are both structurally similar. The only difference is that potassium sodium tartrate has 

an additional hydroxyl ion. The purpose is to obtain the optimal concentration of malic 

salt in the electroless copper plating solution. A plating time of 15 minutes was 

selected. 

 
Figures 4.5a-d shows the 3-dimensional surface image generated by AFM at 

different mole ratios of potassium sodium salt of malic acid to copper (II) sulfate 

pentahydrate and Table 4.3 shows the corresponding selected results from the 

roughness analysis. The surface images shared close resemblance with the tartaric and 

citric salts counterparts. At the molar ratio of 5.5, a mixture of thick and thin ‘cone’ 

structures were seen. At the molar ratio of 4.3, the scan area was largely made up of 

thick ‘cone’ structures. When the mole ratio is further reduced to 3.5, many thin ‘cone’ 

structures of about the same height were seen. Lastly, a mixture of ‘cone’ structures 
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were seen when the mole ratio is 2.5. The roughness values shown in Table 4.3 

indicate that the surface of the plated copper appears to be rougher than the tartaric and 

citric salts.  

 

 

  

  

  
 

Fig 4.5 Atomic force microscope 3-dimensional surface images (15 x 15 µm) when the 
molar ratio of potassium sodium salt of malic acid to copper (II) sulphate is a) 5.5 b) 

4.3 c) 3.5 d) 2.5 (Z axis 250 nm/div) 
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Table 4.3 Selected roughness analysis results on various molar ratios of potassium 

sodium salt of malic acid to copper (II) sulphate 
 

Mole ratio of potassium 
sodium salt of malic acid 

to copper (II) sulphate 

Img. RMS (Rq) /nm 

5.5 200.5 
4.3 85.6 
3.5 89.2 
2.5 78.7 

Img. Rms (Rq) refers to the root mean square of height deviations taken from the mean 

data plane, expressed as
N

ZZZZ n
22

3
2
2

2
1 ...( ++++

 

 
 
Figures 4.6a-d show the scanning electron microscope images at 5000 

magnification at various mole ratios of potassium sodium salt of malic acid to copper 

(II) sulphate pentahydrate. The copper grains in all the four microscope images were 

noticeably larger than the copper grains deposited by using tartaric and citric acid salts 

as the chelating agents. Copper clusters of 2-6 µm in size were observed in all the 

microscope images, except in Fig. 4.6b. Changing the molar ratio of malic acid within 

the range of 5.5 to 2.5 does not have a great impact on the surface morphology as 

suggested by the electron microscope images. Only the copper grains at a molar ratio 

of 4.3 were much larger and was confirmed by the corresponding AFM 3-dimensional 

surface image. The ideal molar ratio of potassium sodium salt of malic acid to copper 

(II) sulphate pentahydrate was chosen to be 2.5 as it has the lowest roughness value. 

Again, the scanning electron microscope images and the corresponding 3-dimensional 

atomic force microscope surface images are in agreement. 
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b 

 
c 

 
d 

 
Fig 4.6 Scanning electron microscope images when the molar ratio of potassium 

sodium salt of malic acid to copper (II) sulphate is a) 5.5 b) 4.3 c) 3.5 d) 2.5. Magn. 
X5000 

 
 
 

4.4 Kinetics analysis of structurally similar chelating agents 
 
 
Different chelating agents will result in various copper plating rates. This could be due 

to its different stability formation constants and complex structures. It would be 

interesting to examine the plating rates of structurally similar chelating agents. Plating 

rate is an important factor in electroless plating as it has a direct impact on the 

morphology of plated metal and of course, time needed to plate a certain thickness. 

This section examines and discusses the various plating rates of the chelating agents 

and also the changes in the plated copper surface during the plating process. 
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4.4.1 Calculated plating rates of the structurally similar chelating agents 
 

Figures 4.7-9 shows the graph of the increase of plated copper with plating time for 

tartaric, citrate and malic salts, respectively. The plating experiments for the similar 

chelating agents were repeated twice or more for each plating time in order to 

minimize any possible experimental error. The plating bath and conditions are the 

same for all the plating experiments except the main chelating agent and plating time 

were changed when required. Table 4.4 shows the plating rate of the respective 

chelating agents calculated from Figures 4.7-9. The pH of the plating solution of the 

various chelating agents is highly basic and maintain at a close range of 12.10 to 12.30. 

Since the structurally similar chelating agents are added to the electroless plating 

solution in the form of salt, the predominant form for the tartaric, citric and malic salts 

exists as [C4H4O6]2-, [C6H5O7]3-, [C4H4O5]2- respectively. The chemical structures of 

the predominant form of the structurally similar chelating agents are given in Table 

4.5.  

 

 



 49 

Copper Thickness with Plating Time 
(Chelating Agent: Potassium Sodium Tartrate)
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Fig 4.7 Plated copper thickness with time with sodium potassium tartrate as the 
chelating agent 
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Fig 4.8 Plated copper thickness with time with trisodium citrate as the chelating agent 
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Fig 4.9 Plated copper thickness with time with potassium sodium salt of malic acid as 

the chelating agent 
 
 
 

Table 4.4 Plating rates of structurally similar chelating agents 
 

Chelating agents Plating rate / µmhr-1 
Sodium potassium tartrate  1.51 
Trisodium citrate  4.66 
Potassium sodium salt of malic acid 1.88 
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Table 4.5 Structurally similar chelating agents in deprotonated form 
 
Chelating agents Deprotonated form 
Tartaric acid 
(C4H4O6

2-) 
                             
 
 

Citric acid 
(C6H5O7

3-) 

 
Malic acid 
(C4H4O5

2-) 
 

 
 
 

The chelating agents were added individually to the plating solutions in salt 

form and the pH of the plating solutions of the various chelating agents ranges from 

12.10 to 12.30, so it is safe to assume that the three chelating agents in the plating 

solutions exists  in deprotonated form. Hung and Chen. (1989) compared the plating 

rate of hypophosphite-reduced electroless copper plating bath using trisodium citrate, 

sodium potassium tartrate and malic acid respectively as the sole chelating agent. The 

results of plating rate and stability constant of the chelating agents with Cu2+ are shown 
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in Table 4.6. From the electron paramagnetic resonance (EPR) analysis, the above 

three chelating agents do not form a characteristics structure with Cu2+ unlike EDTA, 

which forms an octahedral structure. They suggested dimeric structures are formed 

instead and presence of dicupric complex ions resulted in high plating rate. However, 

the exact reason for this phenomenon is still unknown. 

 
 
Table 4.6 Plating rates and stability constants with copper(II) ion for various chelating 
agents 
 
Chelating agent Stability constant with         

Cu2+ 
Log K 

Plating rate 
pH=9.2, 65oC 
mg/cm2.h 

Trisodium citrate ML (5.9) 
M2L2 (13.2) 

7.6 

Sodium potassium tartrate ML (3.42) 
M2L2 (8.24) 

6.6 

Malic acid ML (3.42) 
M2L2 (8.0) 

4.2 

 
 

From Table 4.6, it can be seen that there is no relationship between the stability 

constants and the plating rate. This also applies to the dual chelating agents system 

when Table 4.4 is compared with Table 4.6. A high stability constant implies that the 

chelating agent is bound strongly to the metal ion. The plating rate of sodium 

potassium tartrate and malic acid in the dual chelating system seems to agree with the 

corresponding stability constants of the dicupric complex (M2L2). The plating rate of 

malic acid is slightly faster than the sodium potassium tartrate as the stability constant 

of the dicupric complex of sodium potassium tartrate is slightly higher. The sodium 

citrate has an exceptionally high stability constant and this is because one citrate 

molecule can donate three electron pairs to one metal ion. However, the experimental 

results showed that trisodium citrate has a faster plating rate. The bigger molecular 

structure of sodium citrate might be responsible for the high plating rate. There are 
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many factors such as temperature, copper concentration and pH affecting the plating 

rate, though most of these factors are carefully controlled, at present no reasons are 

known to explain the difference in plating rates of structurally similar chelating agents. 

Therefore, further analysis of the electroless copper plating solution is required. 

 
4.4.2 Variation of electrolessly plated copper surfaces during the plating process 
 
The plated copper surfaces at various stage of electroless plating for each respective 

chelating agent namely: sodium potassium tartrate, trisodium citrate and potassium 

sodium salt of malic acid were examined using scanning electron microscope (SEM) 

and atomic force microscope (AFM). The changes on the surface of the plated copper 

of various chelating agents are discussed in the following sections. 

 
4.4.2.1 Sodium potassium tartrate as the main chelating agent 

 
Figures 4.10a-e shows the 3-dimensional surface image generated by AFM at different 

plating times. Fig. 4.11 shows the corresponding surface roughness from the roughness 

analysis. The other 2 chelating agents surface roughness were also included in Fig. 

4.11. At the beginning stage of plating, the plated copper surface is relatively flat 

(surface roughness of 41.34nm) and contains very few ‘cone’ structures as seen in Fig. 

4.10a. The number of ‘cone’ structures increases with the plating time and also the size 

tends to increase as well. Comparing Figures 4.10b and c, it is clearly seen that some 

of the ‘cone’ structures lump together to form larger ones when the plating time 

increase from 10 to 15 minutes. At the last investigated plating time of 25 minutes, 

several large ‘cone’ structures which are not closely packed are found, resulting in 

high surface roughness of 126.20 nm. 
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Fig 4.10 Atomic force microscope 3-dimensional surface images (15 x 15 µm) with 
sodium potassium tartrate as the chelating agent at a plating time of a)5 min b)10 min 

 c)15 min d)20 min e)25 min (Z axis 250 nm/div) 
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Fig 4.11 Variation of surface roughness with plating time for various chelating agents 

 
 

Figures 4.12a-e show the scanning electron microscope images at 5000 

magnification at different plating times. The grain structure of the plated copper is not 

clearly seen at 5 minutes of plating time, this is probably due to the thin layer of plated 

copper. The fine grain structure of copper is clearly seen when the plating time is 

above 10 minutes. As the plating time increases, clusters of copper grain structures of 

4-5 µm are more common. Fig. 4.11 shows that the surface roughness of the plated 

copper increases with the plating time. The AFM surface image and SEM image agree 

well with each other. 
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Fig 4.12 Scanning electron microscope images with sodium potassium tartrate as the 
chelating agent at a plating time of a)5 min b)10 min c)15 min d)20 min e)25 min.  

Magn. X 5000 
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4.4.2.2 Trisodium citrate as the main chelating agent 
 

The 3-dimensional surface images generated by AFM at different plating times are 

shown in Figures 4.13a-e and the corresponding roughness results from the surface 

roughness analysis are shown in Fig. 4.11. At the first investigated plating time of 10 

minutes, many thin ‘cone’ structures together with a few thicker ‘cone’ structures are 

formed. When the plating time increased to 15 minutes, these thin ‘cone’ structures 

disappear as they are lumped together to form larger ones of about 2-3 µm. The thin 

‘cone’ structures reappear at the plating time of 20 minutes, but from the AFM surface 

image, the larger copper structures are still quite dominant. Similar to sodium 

potassium tartrate, the copper structures tend to increase in size with the plating time. 

At the last investigated plating time of 30 minutes, the scan area consists mostly of 

large ‘cone’ structures of about 2-4 µm in size. 
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Fig 4.13 Atomic force microscope 3-dimensional surface images (15 x 15 µm) with 

trisodium citrate as the chelating agent at a plating time of a)10 min b)15 min c)20 min  
d)25 min e)30 min (Z axis 250 nm/div) 
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The scanning electron microscope images at 5000 magnification at different 

plating times are shown in Figures 4.14a-e. The SEM image at 10 minutes of plating 

time agrees extremely well with its AFM counterpart, in which many discrete copper 

structures of about 0.6 µm are observed. These discrete copper structures are probably 

covered by additional copper deposited at longer plating times. Clusters of copper 

structures of about 3-6 µm in size are also formed when the plating time exceeds 15 

minutes. At a final plating time of 30 minutes, the SEM image show a rough surface 

made up of discrete copper structure of 0.5-1.0 µm. Fig. 4.11 shows a roughness of 

about 103.60 nm. Generally, the surface roughness increases with the plating time and 

the AFM and SEM image do not contradict each other. 
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Fig 4.14 Scanning electron microscope images with trisodium citrate as the chelating 
agent at a plating time of a)10 min b)15 min c)20 min d)25 min e)30 min. Magn. X 
5000 
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4.4.2.3 Potassium sodium salt of malic acid as the main chelating agent 

 
Figures 4.15a-e show the 3-dimensional surface image generated by AFM at different 

plating times. Fig 4.11 shows the corresponding selected results from the roughness 

analysis. The initial plating time of 10 minutes shows that many thin ‘cone’ structures 

are formed. These ‘cone’ structures are lumped together when the plating time 

increases to 15 minutes. However, the lump ‘cone’ structures do not seem to dominate 

as the plating time continues to increase and the roughness fluctuates with the plating 

time. 
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Fig 4.15 Atomic force microscope 3-dimensional surface images (15 x 15 µm) with 

potassium sodium salt of malic acid as the chelating agent at a plating time of a)10 min 
b)15 min c)20 min d)25 min e)30 min (Z axis 250 nm/div) 
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Figures 4.16a-e show the scanning electron microscope images at 5000 

magnification at different plating times. The SEM image at 10 minutes of plating 

time corresponds well with the AFM surface image, in which discrete copper 

structures of about 0.6 µm are formed. As the plating time further increases from 

15 to 25 minutes, the size of the copper grains noticeably increase and start to 

overlap each other. Finally, at the last investigated plating time of 30 minutes, the 

copper grains are at the largest at about 1 µm in size. The potassium sodium salt of 

malic acid tends to produce rougher and less uniform copper surfaces compared to 

tartaric and citric salts. Therefore, the malic acid is not a suitable chelating agent 

for electroless copper deposition. 
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Fig 4.16 Scanning electron microscope images with potassium sodium salt of malic 
acid as the chelating agent at a plating time of a)10 min b)15 min c)20 min d)25 min 

e)30 min. Magn. X 5000 
 
 
 
 
 
 

 



 65 

4.5 X-ray diffraction (XRD) studies on the effect of structurally similar 
chelating agents in electroless copper plating solution 

 
 

XRD studies were conducted on three copper samples electrolessly plated on 

acrylonitrile-butadiene-styrene (ABS) film using potassium sodium tartrate, trisodium 

citrate and potassium sodium salt of malic acid as the main chelating agent in each 

plating solution. The optimized mole ratios of the chelating agents to copper ions are 

3.5 for both the potassium sodium tartrate and trisodium citrate, and 2.5 for potassium 

sodium salt of malic acid. The copper concentration in the electroless copper plating 

solution was held constant at 0.1161M. 

 
The XRD patterns of each chelating agent used in electroless copper plating 

solution are shown in Figures 4.17-4.19. The scanning range of the XRD is set at 25 to 

75o and each distinct peak represents a particular plane orientation. Within the 

scanning range, all the three chelating agents reveal a strong (111) plane orientation 

and a relatively weak (200) plane orientation. However, the (111)/(200) intensity ratios 

are slightly different. Table 4.7 gives the values of the (111)/(200) intensity ratios of 

each chelating agent. Tri-sodium citrate dihydrate most favours the (111) plane 

orientation , while potassium sodium salt of malic acid least favours. 

 
Lin and Yen. (2001) carried out XRD analysis of electrolessly plated copper on 

copper sheets employing ethylenediaminetetracetic acid (EDTA) and triethanolamine 

(TEA) as the dual chelating agent system. The reducing agent used was formaldehyde. 

Crystalline planes of (111), (200) and (220) are found with (111) and (220) as the 

major crystallographic orientation. XRD analysis performed on plated copper from an 

electroless plating solution containing copper ions, EDTA, formaldehyde and bi-

pyridine revealed a (111) and (200) crystallographic orientation (Oita et al., 1997). 
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Therefore, the crystalline structure obtained from our plating solutions is comparable 

to other electrolessly deposited copper from similar plating solutions. 

 
 

Table 4.7 (111)/(200) Intensity ratios of  structurally similar chelating agents 
 

Chelating agent (111)/(200) Intensity ratio 
Sodium potassium tatrtrate  2.375 
Trisodium citrate  2.731 
Potassium sodium salt of  malic 
acid 

1.992 

 
 

 
XRD Pattern of Mole Ratio of Sodium Potassium Tartrate  to CuSO4=3.5
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Fig 4.17 XRD pattern of electrolessly plated copper using sodium potassium tartrate as 
the main chelating agent. The mole ratio of sodium potassium tartrate to copper is 3.5 
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XRD Pattern of Mole Ratio of Trisodium Citrate to CuSO4=3.5
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Fig 4.18 XRD pattern of electrolessly plated copper using trisodium citrate as the main 

chelating agent. The mole ratio of trisodium citrate to copper is 3.5 
 
 
XRD Pattern of Mole Ratio of Potassium Sodium Salt of Malic Acid to CuSO4=2.5
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Fig 4.19 XRD pattern of electrolessly plated copper using potassium sodium salt of 
malic acid as the main chelating agent. The mole ratio of potassium sodium salt of 

malic acid to copper is 2.5 
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Chapter 5 
 
Influence of Stabilizer on the Electroless Copper Plating Solution 
 
 
The primary role of stabilizers is to prevent decomposition of the plating solution 

during the electroless deposition process as the electroless plating solution is inherently 

thermodynamically unstable. This chapter seeks to explore possible stabilizer 

candidates with special attention given to amino acids. Plating rates employing various 

stabilizers were obtained by weight gain method as described in Section 3.3 and 3.5. 

The scanning electron microscopy (SEM) and atomic force microscopy (AFM) were 

used extensively to observe the surface morphology. 

 

 
5.1 Removal of bi-pyridine from the electroless plating solution 
 

The electroless copper plating employs the sodium potassium tartrate as the main 

chelating agent in optimized concentration determined in Section 4.1. The rest of the 

components are stated in Table 3.3. The only difference is the omission of bi-pyridine. 

Kinetic analysis and surface morphology of the plated copper were investigated. 

 
5.1.1 Calculated plating rates in the absence of bi-pyridine  
 

Fig 5.1 shows the graph of the increase of plated copper with plating time in the 

absence of bi-pyridine. The pH of the plating solution was maintained at a close range 

of 12.10 to 12.30. A plating rate of 21.78 µm/hr was obtained, which was about 14.5 

times faster when bi-pyridine was included. 
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Fig 5.1 Plated copper thickness with time with no bi-pyridine 
 
 
 

5.1.2 Variation of electrolessly plated copper surface during the plating process 
 

The surface image (15x15 µm) of the plated copper taken by AFM in the absence of 

bi-pyridine at various plating times are shown in Figures 5.2a-e. The roughness 

analysis of the plated copper surface at various plating times is shown in Table 5.1. It 

is obvious from Fig. 5.2 that the surface roughness increase with the plating time and 

the roughness measurements shown in Table 5.1 verifies this. At the early stage of 

plating, the surface area is relatively even with few ‘cone’ like structures. When the 

plating time increases to 1.5 minutes, many ‘cone’ structures were formed on the thin 

layer of ABS plastics, and those structures lumped together to form larger ones as 

plating proceeds. At the last investigated plating time of 3.0 minutes, an uneven 
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surface made up of big ‘cone’ structures surrounded by small copper structures were 

formed. The associated surface roughness was 168.6 nm. 

 

 
  

  
 

 
 
Fig 5.2 Atomic force microscope 3-dimensional surface images (15 x 15 µm) without 
bi-pyridine as the stabilizer at a plating time of a)1.0 min b)1.5 min c)2.0 min d)2.5 

min e)3.0 min (Z axis 250 nm/div) 
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Table 5.1 Selected roughness analysis results at various plating times in the absence of 
bi-pyridine 

 
Plating time/min Img. RMS (Rq) /nm 

1.0 48.2 
1.5 73.0 
2.0 100.5 
2.5 157.9 
3.0 168.6 

Img. Rms (Rq) refers to the root mean square of height deviations taken from the mean 

data plane, expressed as
N

ZZZZ n
22

3
2
2

2
1 ...( ++++

 

 
 

The SEM images at various plating times are shown in Fig. 5.3. At all the various 

plating times, grain structure of copper of about 0.4-0.6 µm in size is clearly seen. At 

the initial phase of plating (1-2 minutes), no clusters of copper grain are formed. The 

SEM image and the AFM surface image complement each other in a way that SEM 

reveals more information on the surface morphology of the copper grains, while AFM 

provides important height variations of the plated copper structures. 
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Fig 5.3 Scanning electron microscope images at a plating time of a)1.0 min b)1.5 min 

c)2.0 min d)2.5 min e)3.0 min in the absence of bi-pyridine. Magn. X5000 
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5.1.3 Discussion 
 

Certain chemical properties of bi-pyridine make it a good choice for stabilizing the 

electroless copper plating solution. As mentioned in Section 2.1, Cu2O is one of the 

main causes for bath decomposition, bi-pyridine are known to form complex with 

Cu(I) and prevent the formation of Cu2O. Also, bi-pyridine can adsorb on the active 

nuclei in the bulk solution and block the growth of these active nuclei to prevent plate-

out (Mallory and Haju, 1990). From the experimentally determined plating rates with 

and without bi-pyridine, it is obvious that bi-pyridine interferes with the plating 

process . The bi-pyridine could have possibly adsorb onto the activated ABS film and 

compete with the Cu2+ deposition process. Through this process, the grain structure of 

copper is more refined with the addition of bi-pyridine. This is shown by comparing 

the SEM images in Fig. 4.12 and Fig. 5.3. However, the surface roughness of the 

plated copper samples does not change drastically. Thus, the concentration of bi-

pyridine is effective in controlling the deposition rate and grain structure of the plated 

copper. 

 
5.2 Replacement of bi-pyridine with L-methionine in the electroless plating 

solution 
 

The electroless copper plating employs sodium potassium tartrate as the main chelating 

agent at optimized concentration determined in Section 4.1. The rest of the 

components are listed in Table 3.3. The only difference is the replacement of bi-

pyridine with L-methionine. The mole concentration of L-methionine in the plating 

solution is the same as bi-pyridine. Later, the concentration of L-methionine was 

doubled.  Kinetic analysis and the surface morphology of the plated copper were 

investigated. 
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5.2.1 Calculated plating rates with L-methionine as stabilizer 
 

Fig. 5.4 shows the graph of the increase of plated copper with plating time with L-

methionine as stabilizer. The pH of the plating solution was maintained at 12.60-12.90. 

A plating rate of 34.01 µm/hr was obtained, which was about 22.6 times faster when 

bi-pyridine was used as the stabilizer. 
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Fig 5.4 Plated copper thickness versus time with L-methionine as the stabilizer 

 
 
5.2.2 Variation of electrolessly plated copper surface during the plating process 
 

The surface image (15 x 15 µm) of the plated copper taken by AFM with L-methionine 

as stabilizer at various plating times are shown in Figures 5.5a-e. The roughness 

analysis of the plated copper surface at various plating time are shown in Table 5.2. 

During the early stages of plating, the plated copper surface is relatively even with few 
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‘cone’ structures. When the plating time was increased to 2.5 minutes, the surface 

image looks to be rougher with more protruding copper structures. The surface 

roughness increases from 48.9 to 58.9 nm. From Table 5.2, the surface roughness of 

the plated copper appears to be at its peak at a plating time of 3.5 minutes. The AFM 

surface image at 3.5 minutes shows a mixture of ‘cone’ structures of various heights, 

and it seems to have the roughest surface from observation. At a further plating time of 

4.5 minutes, many smaller copper ‘cone’ structures are seen together with two much 

larger structures and finally the small ‘cone’ structures were lumped together to form 

larger ones as shown in Fig. 5.5e. 

 
 
 
Table 5.2 Selected roughness analysis results at various plating times with bi-pyridine 

as the stabilizer 
 

Plating time/min Img. RMS (Rq) /nm 

1.5 48.941 
2.5 58.899 
3.5 75.176 
4.5 60.402 
5.5 46.696 

Img. Rms (Rq) refers to the root mean square of height deviations taken from the mean 

data plane, expressed as
N

ZZZZ n
22
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Fig 5.5 Atomic force microscope 3-dimensional surface images (15 x 15 µm) with L-
methionine as the stabilizer at a plating time of a)1.5 min b)2.5 min c)3.5 min d)4.5 
min e)5.5 min (Z axis 250 nm/div) 
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The corresponding SEM images at various plating times are shown in Figures 5.6a-

e. All the SEM images exhibit fine grain structures except in Fig. 5.6c, which is not 

taken clearly. These fine grain structures are similar to those utilising bi-pyridine as the 

stabilizer (shown in Fig. 4.12). This is totally different from those SEM images of 

electrolessly plated copper samples omitting bi-pyridine, which reveal a coarse grain 

structure. The clusters of grain structure of copper of about 4-6 µm in size are formed 

at longer plating times. The SEM images are consistent with the AFM surface images. 
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Fig 5.6 Scanning electron microscope images at a plating time of a)1.5 min b)2.5 min 
c)3.5 min d)4.5 min e)5.5 min with L-methionine as the stabilizer. Magn. X5000 
 
 

5.2.3 Discussion 
 

When the bi-pyridine was used as the stabilizer in the plating solution, the electroless 

plating solution does not decompose within 30 minutes. When bi-pyridine was 
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replaced by L-methionine at the same concentration, the electroless copper plating 

solution was found to have decomposed within 30 minutes of plating. This shows that 

L-methionine is not a strong stabilizing agent as compared to bi-pyridine.  

High plating rate was observed with L-methionine employed as the stabilizer. This 

plating rate of 34.01 µm/hr is even higher than when bi-pyridine was omitted. The 

presence of L-methionine accelerates the electroless copper plating process. The 

stability constant of Cu2+ to L-methionine is 7.87 (Martell and Smith, 1989). This 

stability constant of Cu2+ to L-methionine is much higher than sodium potassium 

tartrate, trisodium citrate and malic acid given in Table 4.6. The L-methionine could 

have adsorbed onto the activated ABS film and attracts the Cu2+ ions since its affinity 

to Cu2+ is even higher than tartaric acid, which is the main chelating agent. The 

structure of L-methionine is shown in Fig. 5.7. L-methionine, which is one of the 

natural amino acids, is a dipolar molecule. It exists as a negatively charged molecule in 

alkaline conditions as shown in Equation 5.1 (Morrison and Boyd, 1992). This will 

further increase its affinity towards Cu2+ ions. 

OHNCHRCOOHOHNCHRCOOH 223 +⇔+ −−−+                                              (5.1) 

where R represents the organic group 

 

The presence of low concentrations of L-methionine seems to have an effect on the 

copper grain structure. Fine grain structures, which are very similar to those obtained 

with bi-pyridine, were observed. At this stage, the exact reason to explain how the L-

methionine could have contributed to the formation of fine grain structures is still 

unknown. However, it is obvious that plating speed does not affect the morphology of 

the copper structures. 
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Fig 5.7 The structure of L-methionine 
 

 
5.2.4 Calculated plating rates at a double concentration of L-methionine 
 
Fig. 5.8 shows the graph of the increase of plated copper with plating time with a 

double concentration of L-methionine as the stabilizer. The pH of the plating solution 

was maintained at 12.60-12.90. A plating rate of  23.66 µm/hr was obtained, which 

was much slower as compared to half of the L-methionine concentration used earlier. 
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Fig 5.8 Plated copper thickness versus time with double of the concentration of L-

methionine as the stabilizer 
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5.2.5 Variation of electrolessly plated copper surface during the plating process 
with double the concentration of L-methionine 

 
The surface images (15 x 15 µm) of the plated copper taken by AFM with double the 

concentration of L-methionine as the stabilizer at various plating times are shown in 

Figures 5.9a-e. The roughness analysis of the plated copper surface at various plating 

times are shown in Table 5.3. At the first investigated plating time of 1.5 minutes, the 

surface of the plated copper is the smoothest with small ‘cone’ structures covering 

about 85% of the scan area. At the next plating time of 2.5 minutes, larger ‘cone’ 

structures are formed and the surface roughness increased from 25.4 to 35.9 nm. The 

‘cone’ copper structures lumped together over the subsequent plating time at 3.5 

minutes and 4.0 minutes. Lastly, at the final investigated plating time of 4.5 minutes, 

an uneven surface was formed with many large ‘cone’ structures. The surface 

roughness from Table 5.3 showed that the surface roughness increases with the plating 

time.   

 

Table 5.3 Selected roughness analysis results at various plating times with double the 
concentration of bi-pyridine as the stabilizer 

 
Plating time/min Img. RMS (Rq) /nm 

1.5 25.4 
2.5 35.9 
3.5 35.5 
4.0 47.2 
4.5 61.6 

Img. Rms (Rq) refers to the root mean square of height deviations taken from the mean 

data plane, expressed as
N

ZZZZ n
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2
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Fig 5.9 Atomic force microscope 3-dimensional surface images (15 x 15 µm) with 
double the concentration of L-methionine as the stabilizer at a plating time of a)1.5 

min b)2.5 min c)3.5 min d)4.0 min e)4.5 min (Z axis 250 nm/div) 
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The corresponding SEM images at various plating times are shown in Figures 

5.10a-e. Figures 5.10a-d show the plated copper is made up of fine grain structures 

similar to Fig. 5.6. However, at the last investigated plating time of 4.5 minutes, coarse 

grain structures of copper were observed. At the initial phase of plating, defects like 

cracks are more common.  

 

5.2.6 Discussion 
 

When the concentration of L-methionine in the electrolessly plating solution was 

doubled, the decomposition time does not vary much. Incremental addition of L-

methionine does not prolong the decomposition time. A plating rate of 23.66 µm/hr 

was obtained when the concentration of L-methionine was increased to 0.00128 M. It 

is much slower than the plating rate of 34.01 µm/hr when the concentration of L-

methionine was only 0.00064 M. Plating rate is not directly proportional to the 

concentration of L-methionine. It is certain that only a certain range of L-methionine 

produces a high plating rate. Changes in the concentration of L-methionine do not 

change the grain structure of the plated copper to a large extent within the investigated 

concentration range. 
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Fig 5.10 Scanning electron microscope images at a plating time of a)1.5 min b)2.5 min 

c)3.5 min d)4.0 min e)4.5 min with double the concentration of L-methionine as the 
stabilizer. Magn. X5000 
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5.3 Replacement of bi-pyridine with glycine in the electroless plating 
solution 

 
The electroless copper plating employs the sodium potassium tartrate as the main 

chelating agent at the optimized concentration as determined in Section 4.1. The rest of 

the components are stated in Table 3.3. The only difference is the replacement of bi-

pyridine with glycine. The molar concentration of glycine in the plating solution is the 

same as bi-pyridine. Kinetic analysis and surface morphology of the plated copper 

were investigated. 

 
5.3.1 Calculated plating rates with glycine as the stabilizer 
 

Fig. 5.11 shows the graph of the increase of plated copper with plating time with 

glycine as the stabilizer. The pH of the plating solution was maintained at 12.70-13.00. 

A plating rate of  20.17 µm/hr was obtained. 
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Fig 5.11 Plated copper thickness versus time with glycine as the stabilizer 
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5.3.2 Variation of electrolessly plated copper surface during the plating process 
 

The surface images (15 x 15µm) of the plated copper taken by AFM with glycine as 

the stabilizer at various plating times are shown in Figures 5.13a-e. The roughness of 

the plated copper surface at various plating times is shown in Table 5.4. The initial 

plating is characterized by small ‘cone’ copper structures scattered around the scan 

area. When the plating time is increased to 4 minutes and beyond, the plated surface 

becomes uneven. A mixture of small and large copper ‘cone’ structures were observed. 

Table 5.4 shows that the surface roughness generally increases with the plating time. 

 

Table 5.4 Selected roughness analysis results at various plating times with glycine as 
the stabilizer 

 
Plating time/min Img. RMS (Rq) /nm 

2.0 54.0 
3.0 52.8 
4.0 70.7 
5.0 82.3 
6.5 94.7 

Img. Rms (Rq) refers to the root mean square of height deviations taken from the mean 

data plane, expressed as
N
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Fig 5.12 Atomic force microscope 3-dimensional surface images (15 x 15 µm) with 
glycine as the stabilizer at a plating time of a)2.0 min b)3.0 min c)4.0 min d)5.0 min 

e)6.5 min (Z axis 250 nm/div) 
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The corresponding SEM images at various stages of plating are shown in Figures 

5.14a-e. All the SEM images reveal a coarse grain structure very similar to the ones 

obtained from the electroless plating solution omitting bi-pyridine. The grain size of 

the plated copper tends to increase with plating time. The grain size at 2.0 minutes of 

plating is around 0.4 µm, at the final investigated plating time of 6.5 minutes, the grain 

size increases to about 0.8 µm. The AFM surface images are quite consistent with the 

SEM images. 
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Fig 5.13 Scanning electron microscope images at a plating time of a)2.0 min b)3.0 min 

c)4.0 min d)5.0 min e)6.5 min with glycine as the stabilizer. Magn. X5000 
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5.3.3 Discussion 
 

When glycine is used to replace bi-pyridine as the stabilizer of the electroless plating 

solution, the decomposition time of the plating solution shortens. The plating solution 

containing glycine decomposed within 10 minutes, which is even much faster 

comparing to L-methionine. Like L-methionine, glycine may not form complexes with 

Cu(I) easily.  

 
    A plating rate of  20.17 µm/hr was obtained using the weight gain method described 

in Section 3.4. This plating rate is similar to the plating rate without bi-pyrdine 

obtained in Section 5.1.1. Additional of glycine in the same concentration of bi-

pyridine does not enhance the deposition rate, unlike L-methionine. The structure of 

glycine is shown in Fig. 5.12. L-methionine has a longer carbon chain than glycine and 

also contains an additional sulphur. The stability constant of Cu2+ to glycine is 8.15 

(Martell and Smith, 1989). Since the stability constant of Cu2+ to glycine is slightly 

larger than L-methionine, one would expect a faster deposition rate. However, the 

reverse occurs. The glycine may not adsorb as easily as the L-methionine on the 

activated surface and the glycine does not contain sulphur. The presence of sulphur in 

amino acids seems to accelerate the plating rate, which may due to the its high 

affininty for copper ions. 

 
 

 
 

Fig 5.14 The structure of glycine 
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The presence of a low concentration of glycine does not result in a fine grain 

structure similar to Figures 5.6 and 5.10 when L-methionine was used as stabilizer. 

Instead, coarse grain structures are formed. This may imply that sulphur containing 

amino acids can result in the formation of fine grain structures. The actual role of 

sulphur which leads to the formation of fine grain structure is still unknown at this 

stage. For the above reasons, glycine is not a suitable stabilizer compared to L-

methionine and bi-pyridine. 
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Chapter 6 
 
Effect of Additives on the Electroless Copper Plating Process 
 

 
Generally, the electroless copper plating solution consists of copper ions, reducing 

agent, complexing agents, buffer, accerlerator and additives. The effect of additives on 

the type of copper plated is examined in this chapter. The term additives encompasses 

a wide range of compounds, ranging from cyanide or related nitrile compounds, 

organo-sulphur compounds, silicanes and surfactants (Mallory and Haju, 1990). 

Additives are frequently used to change the grain size and surface morphology of 

deposit as they are able to adsorb on the active surface nuclei (Kou and Hung, 2003). 

This chapter only focus on one particular class of additives, which is polyethylene 

glycol (PEG), primarily a surfactant. This is because up to present, not much work has 

been done on the influence of PEG on electroless copper deposits. Surface analysis 

were carried out by scanning electron microscopy (SEM), atomic force microscopy 

(AFM) and transmission electron microscopy (TEM). Lastly, differential scanning 

colorimetry (DSC) was used to quantify the effect of PEG on the physical properties of 

the acrylonitrile-butadiene-styrene (ABS) film.   

 

 
6.1 Surface analysis of electrolessly plated copper using polyethylene glycol 
 

As usual, the electroless copper plating employs the sodium potassium tartrate as the 

main chelating agent in optimized concentration determined in Section 4.1. The rest of 

the components are stated in Table 3.3. The only difference is the addition of PEG 

having the concentration of 2.0 g/L. Four different molecular weights (600, 4000, 

10000, 35000 g/mol) of PEG were used in each set of the plating experiment. The 

plating time for each individual molecular weight of PEG is different due to the 
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difference in plating rate. A minimum thickness of plated copper is needed in order for 

surface analysis to perform successfully. Surface morphology of the plated copper was 

investigated for each molecular weight of PEG. 

 
6.1.1 Electrolessly plated copper for various molecular weights of polyethylene 

glycol 
 

Figures 6.1a-d shows the SEM images taken at 5000 magnification for the molecular 

weight of PEG ranging from 600 - 35,000 g/mol. Almost spherical copper grain 

structures of less than 0.5 µm in diameter are seen clearly when the molecular weights 

of PEG is 600 and 4,000 g/mol. For the higher molecular weights of PEG, much 

smaller grain structures are formed. The size of these grain structures cannot be 

determined from the SEM images. 
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Fig 6.1 Scanning electron microscope images with PEG a) 600 b) 4,000 c) 10,000 d) 

35,000 g/mol as the surfactant. Magn. X5000 
 
 

Figures 6.2a-d show the corresponding AFM surface images for the molecular 

weights of PEG ranging from 600 to 35,000 g/mol. The surface roughness of the 

various plated copper surfaces is given in Table 6.1. Small ‘cone’ copper structures are 

seen on the scan area when the molecular weight of PEG is 600 and 4,000 g/mol. This 

is quite consistent with SEM images. At a larger molecular weight of 10,000 g/mol, 

non-distinctive ‘cone’ structures are formed, it could be due to the small individual 

grain structure. For the highest molecular weight of 35,000 g/mol, the familiar small 

‘cone’ structures are formed. Results from the surface roughness analysis do not reveal 

any relationship with the molecular weights of PEG. 
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Fig 6.2 Atomic force microscope 3-dimensional surface images (15 x 15 µm) with 
PEG a) 600 b) 4,000 c) 10,000 d) 35,000 g/mol as the surfactant (Z axis 250 nm/div) 

 
 
 

Table 6.1 Selected roughness analysis results for various molecular weights of PEG in 
the electroless plating solution 

 
Molecular weight of PEG 

g/mol 
Img. RMS (Rq) /nm 

600 90.740 
4000 48.752 

10000 58.365 
35000 100.60 

Img. Rms (Rq) refers to the root mean square of height deviations taken from the mean 

data plane, expressed as
N

ZZZZ n
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From the above SEM and AFM surface images, the addition of PEG seems to 

produce highly oriented copper structures. Higher magnification is needed to examine 

the copper structures at a closer level. Figures 6.3a_b show the surface image of PEG 

600 and 4,000 generated by AFM at a higher magnification. The AFM surface images 

confirmed that the grain structure of copper is roughly spherical in size and ranges 

from 100 - 200 nm. In addition, TEM was also used to examine the copper particles 

deposited from the electroless plating solution employing PEG 600. The TEM image is 

shown in Fig. 6.4. The dark area represents the grain structure of a single copper 

particle, where the particle seems to make up of even smaller particles of about 20 nm 

in size.  

 

 

  
 
Fig 6.3 Atomic force microscope 3-dimensional surface images with PEG a) 600 [0.5 x 
0.5 µm][ Z axis 250 nm/div] b)4,000 g/mol as the surfactant [0.2 x 0.2 µm][Z axis 10 

nm/div] 
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Fig 6.4 Transmission electron microscope image with PEG 600 g/mol as the surfactant 
 
 
 

6.1.2 Discussion 
 

Polyethylene glycol (PEG) is an non-ionic surfactant, which do not have a charged 

group. The structure of PEG is shown in Fig. 6.5. From Fig. 6.5, it can be seen that the 

higher the molecular weight, the longer is the PEG molecule. Its solubility generally 

decreases with increasing molecular weight (Porter, 1994). 

 
 

 
 

 
Fig 6.5 The structure of polyethylene glycol 

 
 

From the above SEM, AFM and TEM images, the presence of trace amount of 

PEG in the electroless plating solution creates highly uniform and compact copper 

grain structures as compared to the SEM images in Fig. 4.2b where PEG was not 

included. It is reported that PEG can easily adsorb on highly catalytically active sites 

H OH 
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on the plated surface, this has prevented hydrogen inclusion in the deposit (Veleva, 

1986). This adsorption ability probably alters the morphology of the copper deposits. 

Also, the plating rate will decrease as well, however this was not experimentally 

verified because the morphology of the plated copper apparently is more important. 

The various molecular weights of PEG was maintained at the same concentration for 

comparison purposes. Fig. 6.1 clearly shows the distinct differences among them. The 

size of the PEG molecule affects the surface morphology. High molecular weights of 

PEG induce very compact copper grain structures as shown in Figures 6.1c and 6.1d. 

At the molecular weight of 35,000 g/mol, no visible copper grain structures 

(underneath the white spots) are seen at 5,000 magnification as they are probably too 

small. The white spots look to be the secondary deposited copper layer. At the next 

lower molecular weight of 10,000 g/mol, the grain structures are finer compared to the 

lighter PEG.  TEM is a better alternative of observing the plated copper structures due 

to its higher magnification power. However, it is difficult and time consuming to take 

good and accurate images which explain why the TEM image taken is not sufficient to 

draw any conclusion. From these preliminary findings, it seems that electroless copper 

plating solution that contains PEG 10,000 produces the smallest copper grain 

structures.   

 
6.2 Effect of polyethylene glycol on the physical properties of acrylonitrile-

butadiene-styrene film 
 

From Section 6.1, the effect of polyethylene glycol (PEG) on the surface morphology 

of the plated copper was seen clearly by the SEM micrographs in which highly 

uniform copper particles of around 100 - 200 nm are deposited on the acrylonitrile-

butadiene-styrene (ABS) film. This section further investigates the changes made to 

the ABS film after it was plated with electroless plating solution containing PEG at 
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various molecular weights. The ABS is generally a thermoplastic polymers that soften 

when heated (and eventually liquefy) and harden when cooled. The other details of the 

ABS used are given in Section 3.1.1. 

 
6.2.1 Unplated acrylonitrile-butadiene-styrene film 

. 
Fig. 6.6 shows the heat evolved of the unplated ABS film versus the temperature 

generated from differential scanning colorimetry (DSC). ABS is mixture of three 

different polymers: acrylonitrile, butadiene and styrene in a certain percentage. The 

ABS used in this research has a acrylonitrile/butadiene/styrene mole ratio of 2:1:2. 

From Fig. 6.5, the first glass transition temperature (Tg) occurs at around 100 oC. This 

is probably due to the combined effect of the acrylonitrile and styrene polymers as 

butadiene has a very low Tg. The product information also states that the Tg of this 

particular grade of ABS is 103 oC (Section 3.1.1), which is close to the experimentally 

determined value. When the temperature increased from 120 to 150 oC, some heat 

fluctuations were seen. This may due to the change in local composition of the ABS 

under increasing heat application. The ABS polymer chains become less orderly 

packed and decrease the percentage of crystallinity. The second Tg occurs at around 

200 oC.  The second Tg is actually is mixture of melting and Tg. For consistency, it is 

referred to Tg for all other following sections. 
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Fig 6.6 Graph of heat evolved of unplated ABS film versus temperature 
 
 

 
6.2.2 Acrylonitrile-butadiene-styrene film with polyethylene glycol (600 g/mol) 
 

Fig. 6.7 shows the heat evolved of the copper plated ABS film with PEG 600 enhanced 

versus the temperature generated from DSC. The first Tg occurs at around 105 oC. This 

shows the plated copper with PEG 600 does not significantly influence the first Tg. 

Similar to unplated ABS, from the temperature range of 120 to 150 oC, heat 

fluctuations were seen. The second Tg was observed at around 225 oC, which is hgher 

compared to the unplated ABS film. 
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Fig 6.7 Graph of heat evolved of plated PEG 600 enhanced ABS film versus 
temperature 

 
 
6.2.3 Acrylonitrile-butadiene-styrene film with polyethylene glycol (4,000 g/mol) 
 

Fig. 6.8 shows the heat evolved of the copper plated ABS film with PEG 4,000 

enhanced versus the temperature generated from DSC. The first Tg occurs at around 

100 oC, which is the same as the unplated ABS. For the second Tg, it occurs at around 

230 oC. This confirms that plated copper ABS film has a higher second Tg. This may 

be due to the strong Cu-CN bonding on the surface of ABS film, since the plating 

solution contains trace amounts of cyanide. These bonding between Cu-CN at the 

copper-ABS interface result in more orderly structure of the ABS polymer, which 

probably increases the second Tg. 
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ABS with PEG 4000
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Fig 6.8 Graph of heat evolved of plated PEG 4,000 enhanced ABS film versus 
temperature 

 
 

6.2.4 Acrylonitrile-butadiene-styrene film with polyethylene glycol (10,000 
g/mol) 

 
Fig. 6.9 shows the heat evolved of the copper plated ABS film with PEG 10,000 

enhanced versus the temperature generated from DSC. The first Tg occurs at around 

100 oC, which is same as unplated ABS and ABS with PEG 600, 4000 respectively. 

The familiar heat fluctuations occur along the temperature range of 130 to 230 oC. The 

second Tg occurs at around 265 oC, which is the highest temperature so far. This is 

accompanied by an obvious endothermic adsorption. This interesting observation 

could be related to the grain size of the plated copper. The smallest copper grain occurs 

when PEG 1,000 was added to the plating solution as shown in Fig. 6.1. The smaller 

the grain size, the higher the percentage of coordination-unsaturated copper bonds is. 

In other words, a decrease in grain size will make the copper more reactive, as more 
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copper atoms in a grain are exposed. As such, the copper atoms at the metal-polymer 

interface are reactive and possibly form strong bonds with the CN on the polymer 

(described in Section 6.2.3). The small size of the copper grain also allows it to 

penetrate deeper into the polymer matrix. These changes can cause the 

polyacrylonitrile segment to be more orderly than before, and results in the high Tg of 

265 oC. 
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Fig 6.9 Graph of heat evolved of plated PEG 10,000 enhanced ABS film versus 
temperature 

 
 

6.2.5 Acrylonitrile-butadiene-styrene film with polyethylene glycol (35000 
g/mol) 

 
Fig. 6.10 shows the heat evolved of the copper plated ABS film with PEG 35,000 

enhanced versus the temperature generated from DSC. This time, the first Tg increase 

remarkably to 130 oC. However, no second Tg was seen within the investigated 
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temperature range of 25 - 300 oC. Fig. 6.1 shows that the grain size of copper plated 

ABS film with PEG 35,000 (Fig. 6.1d) is much larger than PEG 10,000 (Fig. 6.1c). 

This increase probably affects the metal-polymer interactions as described above. The 

structure of ABS is actually core shell of butadiene surrounded by polymer chains of 

acrylonitrile and styrene. The plated copper grains seem to make the polystyrene and 

polyacrylonitrile segment more orderly, which increase the Tg by about 30 oC. 
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Fig 6.10 Graph of heat evolved of plated PEG 35,000 enhanced ABS film versus 
temperature 
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Chapter 7 
 
Electrochemical Analysis of Electroless Plating Solution 
 
 

Potentiommetry and voltammetry are two of the common methods used for 

electrochemical analysis. The measured variable in potentiommetry is potential and the 

measured variable in voltammetry is current. Within voltammetry, there are sub 

methods which include polargraphy, single-sweep, cyclic-sweep, rotated-disk and ring-

disk electrodes, and pulse (Sawyer et al., 1995). This chapter deals with the cyclic 

voltammetry (CV) analysis of various simplified electroless copper plating solution as 

CV is one of the commonly used method. The primary event in CV experiments is the 

oxidation or reduction of a solution chemical species at an electrode. Through the 

series of experiments, important aspects of electroless copper deposition like ease of 

deposition and effect of additives were explored in greater depth. However, the kinetic 

aspects of the electroless plating process due to composition changes cannot be 

determined. 

 
7.1 Cyclic voltammetry analysis of electroless plating solution 
 

Cyclic voltammetry analysis was performed on three main groups of electroless copper 

plating solution, in which each group focusing on a different component of the plating 

solution. Group 1 is on the effect of chelating agents, group 2 is on the effect of 

additives and lastly group 3 focuses on surfactants. There is a total of ten plating 

solutions of different compositions undergoing CV analysis. The composition of the 

various plating solutions are given in the subsequent sections. 
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7.1.1 Effect of chelating agents 
 

Fig. 7.1 shows the cathodic scans of the three various electroless plating solution 

(Group 1a, 1b, 1c) employing different chelating agents. The compositions of the 

plating solution are given in Table 7.1. These plating solutions represent the simplified 

version of the electroless copper plating solution used in this research (Table 3.3). The 

purpose is to examine the effects of sodium potassium tartrate and disodium EDTA on 

the electroless copper deposition process. 
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Fig 7.1 Cyclic voltammetry of various chelating agents in the electroless plating 
solution (Cathodic scan, scan rate = 0.008 V/S) 
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Table 7.1 Composition of simplified electroless plating solutions employing various 

chelating agents 
 
 Group 1a Group 1b Group 1c 
CuSO4.5H2O mol/L 0.1161 0.1161 0.1161 
Na2CO3  mol/L 0.2359 0.2359 0.2359 
NaOH  mol/L 1.048 1.048 1.048 
Sodium potassium tartrate 
[KNaC4H4O6.4H2O] 
mol/L 

0.4065 0 0.4065 

Disodium EDTA 
[C10H14N2Na2O8.2H2O] 
mol/L 

0 0.4065 0.03351 

 
 

Group 1a exhibits one cathodic peak at -1.16 V and the corresponding current 

density peak is -12.2 mA/cm2. The cathodic peak represents Cu2+ reduction. Group 1b 

has a cathodic peak occurring at -1.47 V, the associated current peak of -21.2 mA/cm2 

is larger in magnitude. The potential shift shows that Cu2+ ions are bounded more 

strongly to disodium EDTA than the sodium potassium tartrate. This phenomena is 

verified by looking at the values of the formation constants of Cu-EDTA and Cu-

tartrate complex. The formation constant of Cu-EDTA is 1018.7, which is higher than 

Cu-tartrate of 103.39 (Martell and Smith, 1989). For Group 1c, copper reduction occurs 

at -1.19V and the corresponding current density is -12.5 mA/cm2. This Cu reduction 

potential occurs between -1.17 and -1.47 V, which represents the reduction potential of 

group 1a and 1b respectively. This is expected as group 1c consists of both chelating 

agents and tends to group 1a as the solution contains a higher concentration of sodium 

potassium tartrate. The magnitude of the corresponding current density is similar to 

group 1a. The higher cathodic peak value of group 1b also indicates disodium EDTA 

favours Cu2+ reduction. 
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Fig. 7.2 shows the corresponding anodic scans of the solutions of group 1a-c. 

All the anodic scans show two distinct peaks around -0.4 V and 0 V respectively. 

Equation 7.1 and 7.2 shows the standard electrochemical potential of copper reduction 

(Dean, 1979). 

 
CueCu ↔++    Eo = 0.52 V                                                                                     (7.1) 

++ ↔+ CueCu 2  Eo = 0.153 V                                                                                  (7.2) 
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Fig 7.2 Cyclic voltammetry of various chelating agents in the electroless plating 
solution (Anodic scan, scan rate = 0.008 V/S) 

 
 



 109 

From these 2 equations, formation of Cu+ probably occurs at the first small 

peak in the 0 V region. The second larger peak represents the oxidation of Cu+ to Cu2+ 

and also some of the elemental copper which is directly oxidised to Cu2+. Comparing 

the anodic scans of group 1a and 1b, the first peak occurs at -0.46 V and -0.35 V from 

group 1a and 1b respectively. The corresponding current densities are 1.41 mA/cm2 

and 3.53 mA/cm2. Thus, the selection of sodium potassium tartrate or disodium EDTA 

does not really affect the formation of Cu+. However, for the second peak, group 1a 

has a larger current density of 35.3 mA/cm2, compared to 21.6 mA/cm2. The potential 

for formation of Cu2+ also differs. Group 1b requires a larger potential at 0.19 V, as 

compared to -0.029 V. This reinforced the fact that the formation constant of Cu(II)-

EDTA complex is larger than the Cu(II)-tartrate complex. Also the high current 

density indicates that formation of Cu(II)-tartrate is more favourable. When both 

sodium potassium tartrate and disodium EDTA are combined with the former as the 

majority component as shown in group 1c, the first peak is about the same as group 1a 

and 1b. But for the second peak, a resultant higher current density was observed at a 

similar potential of around -0.45 V. This suggests that a combination of two chelating 

agents is more electrochemically desirable to one. 

 
 
7.1.2 Effect of additives 
 

The triethanolamine, potassium ferrocyanide and bi-pyridine are used in trace amount 

in the electroless copper plating solution. Their influence on the electroless plating 

process was investigated by CV analysis. Fig. 7.3 shows the cathodic scans of four 

different electroless plating solution (Group 2a, 2b, 2c, 2d) employing various 

additives. Three of the curves were deliberately shift along the current density axis 

because the curves are too close together. The current densities corrections are shown 
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in the box directly below the graph. The composition of the plating solutions are given 

in Table 7.2. The bulk of the four electroless plating solutions is the same as group 1c, 

the minor difference is the type of additives added. 
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Fig 7.3 Cyclic voltammetry of various additives in the electroless plating solution 
(Cathodic scan, scan rate = 0.008 V/S) 
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Table 7.2 Composition of simplified electroless plating solutions employing various 
additives 

 
 Group 2a Group 2b Group 2c Group 2d 
CuSO4.5H2O mol/L 0.1161 
Na2CO3  mol/L 0.2359 
NaOH  mol/L 1.048 
Sodium potassium tartrate 
[KNaC4H4O6.4H2O] 
mol/L 

0.4065 

Disodium EDTA 
[C10H14N2Na2O8.2H2O] 
mol/L 

0.03351 

Triethanolamine 
{ N[CH2CH2OH]3} 
mol/L 

0.03351 0 0 0.03351 

Potassium ferrocyanide 
K4Fe[CN]6.3H2O 
mol/L 

0 0.000118 0 0.000118 

Bi-pyridine 
(C10H8N2) mol/L 

0 0 0.00064 0.00064 

 
 

In group 2a, the cathodic scan is very similar to that of group 1c. There are two 

closely  cathodic peaks at -1.09 V and -1.16 V. The corresponding currents are -9.80 

mA/cm2 and -10.4 mA/cm2 respectively. These two peaks are very similar to group 1c 

in terms of potential and current density. The only difference is the addition cathodic 

peak. Low concentration of triethanolamine probably does not play a significant role in 

the copper reduction. For group 2b, the triethanolamine was replaced by potassium 

ferrocyanide of another composition stated in the reference plating solution. The 

cathodic scan shows only one peak (-1.18 V, -12.4 mA/cm2). This peak follows very 

closely to the cathodic peak in group 1c. This probably implies that the addition of 

trace amount of cyanides does not affect the Cu reduction process. Similarly in group 

2c, the additive used is bi-pyridine in the composition stated in Table 3.3. Only one 

cathodic peak was observed and occurs at -1.19 V, with a corresponding current 

density of -12.0 mA/cm2. This cathodic peak also follows closely to group 1c. Bi-
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pyridine probably did not affect the copper reduction process from the electrochemical 

view. Lastly, all the above additives: triethanolamine, potassium ferrocyanide and bi-

pyridine, maintaining the same composition are added to form group 2d. The observed 

cathodic scan features 1 cathodic peak at -1.22 V and the current density is -11.2 

mA/cm2. There is slight potential shift of 0.3 V compared to group 1c which implies 

that copper reduction becomes mildly unfavourable, but not to a large extent. The 

corresponding current  density decreases by about 10%, which means the same as the 

potential shift. This is expected as these additives slow down the plating process. 
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Fig 7.4 Cyclic voltammetry of various additives in the electroless plating solution 

(Anodic scan, scan rate = 0.008 V/S) 
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The anodic scans of the four different electroless plating solution: Group 2a, 

2b, 2c, 2d are shown in Fig. 7.4. Three of the curves were deliberately shift along the 

current density axis because the curves are too close together. The current densities 

correction are shown in the box directly below the graph. In group 3a, there are two 

anodic peaks observed at -0.44 V and 0.0082 V and the corresponding current densities 

are 2.94 mA/cm2 and 45.1 mA/cm2 respectively. As mentioned earlier, the first peak (-

0.44 V) represents the oxidation of Cu to Cu+. Comparing with group 1c, this first peak 

is very similar in terms of potential and current density values. Formation of Cu+ is not 

much affected by addition of triethanolamine. However, for the second peak, potential 

shift of minus 0.046 V and current density increases a little to 45.3 mA/cm2 were 

observed. Therefore, Cu2+ formation is favourable in the presence of triethanolamine, 

since triethanolamine is also a chelating agent which can form copper complex. In the 

case for group 2b, the potential at which the first peak occurs is the same as group 2a. 

However, the associated current density is reduced by 58%. It seems like Cu+ 

formation is slightly less favourable. The second peak reports a potential and current 

density value of 0.012 V and 37.3 mA/cm2 respectively. Comparing with group 1c, 

potential shift of minus 0.042 V and current density decreases by about 16% to 37.3 

mA/cm2. Addition of cyanide ions possibly inhibits the formation of Cu2+ ions to a 

small extent. Cyanide ions are known to stabilize the electroless copper plating 

solution, this probably explains the above CV findings (Mallory and Haju, 1990). For 

group 3c, the first peak (-0.44 V, 1.76 mA/cm2) is comparable to group 1c, 2a and 2b. 

As for the second peak (0.045 V, 37.3 mA/cm2), smaller potential shift was observed 

and the current density also decrease by 16% to 37.3 mA/cm2 when compared to group 

1c. Addition of bi-pyridine seems to have a similar effect as cyanides ions as they both 

played the role of stabilizers in the plating solution. Lastly, in group 2d, the three 



 114 

additives: triethanolamine, potassium ferrocyanide and bi-pyridine were added 

together. Three anodic peaks were observed instead of the usual two. The first peak at -

0.44 V and 1.00 mA/cm2 was similar to group 2a, 2d and 2c. For the second peak, it 

occurs at a higher potential of 0.087 V, which is even higher than group 2c. The 

corresponding current density is much lower at 35.3 mA/cm2. It looks like the 

formation of Cu2+ is even more unfavourable when all the additives were included, this 

may due to the synergistic effect of potassium ferrocyanide and bi-pyridine. 

 
 

7.1.3  Effect of surfactants 
 

The effect of surfactants on the electrolessly plated copper has been discussed in great 

detail in chapter 6. This section focus on the electrochemical aspect, which uses cyclic 

voltammetry to generate response curves from the plating solutions. 

 
 Fig. 7.5 shows the cathodic scans of three electroless copper plating solutions 

employing different molecular weights of polyethylene glycol (PEG). The bulk of the 

electroless plating solution is the same as group 2d with additional PEG added at 2 

g/L. One cathodic peak was observed for the all three curves. For group 3a, the 

reduction cathodic peak occurs at -1.17 V and the corresponding current density is -

13.1 mA/cm2. Comparing to the cathodic peak of group 2d (-1.22 V, -11.2 mA/cm2), 

addition of PEG 600 seems favourable for Cu2+ reduction as the magnitude of current 

density is higher. For group 3b and 3c, the cathodic peaks occur at -1.17 V and -1.18 V 

respectively, and the corresponding current densities are -10.9 mA/cm2and -12.1 

mA/cm2. These values again reflect that addition of PEG 4,000 and 10,000 do not 

hinder Cu2+ reduction. 

 



 115 

Effect of PEG (Cathodic scan)

Potential /V

-1.5 -1.0 -0.5 0.0 0.5 1.0

C
ur

re
nt

 D
en

si
ty

, m
A

/c
m

2

-20

0

20

40

60

Group 3a: Group2d + PEG600
Group 3b: Group 2d + PEG 4000
Group 3c: Group 2d + PEG10000

Scan direction

 
 

Fig 7.5 Cyclic voltammetry of various molecular weights of polyethylene glycol in the 
electroless plating solution (Cathodic scan, scan rate = 0.008 V/S) 

 
 
The anodic scans of the three electroless copper plating solutions employing 

different molecular weights of PEG are shown in Fig. 7.6. All the three anodic scans 

exhibit two anodic peaks. The first anodic peak which relates to the formation of Cu+, 

occurs at -0.44 V with the current density range from 1.29 - 1.57 mA/cm2 for all the 

three curves. The first anodic peak is comparable with the group 2d. As for the second 

anodic peaks, which relate to the formation of Cu2+, the various electroless plating 

solution exhibit slightly different results. For the plating solution employing PEG 600, 

the peak occurs at 0.041 V and 43.1 mA/cm2. The second anodic peak for plating 
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solution employing PEG 4,000 occurs at 0.012 V and 41.2 mA/cm2, and lastly for PEG 

10,000, the peak occurs at 0.066 V and 43.1 mA/cm2. The potential at which Cu+ 

oxidation occurs is smaller in magnitude compared to group 2d. The corresponding 

current is notably higher by around 7.84 mA/cm2. This suggests that addition of PEG 

favours Cu+ oxidation and in turn affect the morphology of the plated copper. 
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Fig 7.6 Cyclic voltammetry of various molecular weights of polyethylene glycol in the 
electroless plating solution (Anodic scan, scan rate = 0.008 V/S) 
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Chapter 8 
 
Conclusions and Recommendations 
 
 

8.1 Conclusions 
 

Formaldehyde based electroless copper plating was successfully performed on 

acrylonitrile-butadiene-styrene (ABS) film. Electroless plating was carried out at 25 oC 

and the plating solution was constantly stirred. The relationship between the deposited 

copper and the chelating agents, stabilizers and surfactants were investigated in detail. 

 
The main chelating agents used include sodium potassium tartrate, trisodium citrate 

and potassium sodium salt of malic acid, which was used separately. They were 

selected because of their similar structures. Potassium sodium salt of malic acid 

produces the largest copper grain size and also the roughest surface. Kinetic analysis of 

the structurally similar chelating agents revealed the electroless copper plating  

solution employing trisodium citrate has the highest plating rate of 4.66 µm/hr, 

followed by potassium sodium salt of malic acid of 1.88 µm/hr. Sodium potassium 

tartrate has the lowest plating rate of 1.51 µm/hr. Crystallgraphic planes of (111) and 

(200) were found in all of the copper samples plated with various structurally similar 

chelating agents. Sodium potassium tartrate was found to be the preferred chelating 

agent. Cyclic voltammetry analysis revealed that the dual chelating agent system of 

sodium potassium tartrate and disodium EDTA electrochemically favours electroless 

copper deposition as compared to single chelating agent. 

 
Selected amino acids were used to substitute bi-pyridine as the stabilizer of 

electroless plating solution. In the absence of bi-pyridine, the plating rate increases by 

about 14.5 times. When the plating solution was replaced with L-methionine (a sulphur 
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containing amino acid) having the same concentration, a high plating rate of 34.01 

µm/hr was achieved. Double concentration of L-methionine lowers the plating rate to 

23.66 µm/hr. This shows that certain range of L-methionine produces the highest 

plating rate. The inclusion of L-methionine produces fine grain copper structures 

similar to those obtained with bi-pyridine. The surface roughness generally increases 

with plating time. The other amino acid selected was glycine (a natural occurring 

amino acid). Fast decomposition of plating solution was observed and coarse grain 

structures of copper are formed. It seems that sulphur containing amino acids are 

related to the plating rate and grain size of deposited copper. Cyclic voltammetry 

analysis confirmed that stabilizers hinder the electroless copper deposition process.  

 
The effect of additivies, in particular surfactants on the electrolessly plated copper 

was also examined. One particular class of surfactant: polyethylene glycol (PEG) was 

selected because they are known to modify the grain size and surface morphology. 

Various molecular weights of PEG were added separately to the plating solution 

containing sodium potassium tartrate as the main chelating agent. The concentration of 

PEG was set at 2.0 g/L. Highly uniform copper grain structures of about 100 - 200 nm 

in size were formed. Plating solution containing PEG 10,000 g/mol offers the smallest 

grain size. Thermal properties of ABS film were also changed with the addition of 

PEG. The second glass transition temperature (Tg) seems to increase with the 

molecular weight of PEG. Smaller copper particles are able to penetrate deeper into 

ABS polymer matrix and increase the order of crystallinity. Cyclic voltammetry shows 

that addition of PEG generally favours electroless copper deposition.   
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8.2 Recommendations 
 

This fundamental research on the electroless copper plating chemistry can further 

elaborate on other areas as follows: 

 
1) Replace formaldehyde with other less environmentally harmful chemicals such 

as hydrophosphite 

2) Introduce more structurally similar chelating agents for purpose of comparison 

3) The effects of pH and deposition temperature on the electroless plating process 

4) More extensive application of transmission electron microscope on the uniform 

copper grains formed using polyethylene glycol 

5) More in depth electrochemical analysis of the electroless plating process to 

complement the surface, kinetics analysis results 
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