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Summary 

Flowering is one of the most essential processes in the life cycle of a flowering plant. 

It requires a transition from vegetative to reproductive growth, which is regulated by four 

genetic pathways, including gibberellin (GA), photoperiod, venalization and autonomous 

promotion pathways. Photoperiod and venalization pathways respond to environmental 

signals, while GA and autonomous pathways sense endogenous signals. They activate the 

expression of a group of flowering time integrators to promote the transformation of the   

vegetative shoot apical meristem (SAM) into the inflorescence SAM, which has the capacity 

to generate floral meristems on its flankings.   

We have known that a MADS-domain containing transcription factor, AGAMOUS-

LIKE 24 (AGL24), plays an important role in integrating flowering time signals in 

Arabidopsis. AGL24 is a dosage-dependent promoter of flowering in Arabidopsis, because 

loss-of-function agl24 mutants show late flowering and overexpression of AGL24 transgenic 

plants show early flowering. Loss of AGL24 function can suppress the premature flowering 

phenotype of overexpression of SOC1 and overexpression of AGL24 can partially rescue the 

late flowering phenotype of soc1. Thus, AGL24 acts partly downstream of SOC1. In addition, 

AGL24 affects the transcriptional induction of a floral meristem identity gene, LEAFY (LFY) 

because LFY expression is delayed and reduced in agl24 mutants during floral transition, 

whilst over-expression of LFY is able to compensate the late flowering phenotype of agl24. 

Therefore, AGL24 functions upstream of LFY. Although the above results suggest that 

AGL24 is an essential flowering time integrator, it is hitherto unknown what are the direct 

regulators upstream or downstream of AGL24.  



 XI

In this study, chromatin immunoprecipitation (ChIP) was applied to identify the 

downstream target genes of AGL24. Firstly, 35S::AGL24-12HA tagging transgenic lines were 

generated and showed the similar phenotypes as 35S::AGL24, indicating that 35S::AGL24-

12HA fusion protein is biologically functional. Secondly, by using these tagging lines and the 

specific HA antibody, it was purified that the in vivo complex containing the AGL24-12HA 

fusion protein and associated DNAs. Lastly, several putative target genes were identified by 

cloning and sequencing isolated DNA fragments in ChIP experiments.  

To study the molecular basis of the regulation of AGL24, the AGL24 promoter was 

isolated and this regulatory region was investigated by promoter deletion analysis. 

To facilitate our further studies of AGL24 target genes, an in situ hybridization system 

was established to examine the spatial and temporal expression of a specific gene. By using 

this system, the altered expression of two putative target genes of AGL24 has successfully 

detected. Through these studies, we gained sights into the mechanism of AGL24 function in 

the control of floral transition in Arabidopsis. 
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1 Literature review 

1.1 Introduction 

Flowering is one of the most essential phases in the life cycle of a flowering plant. 

It requires a transition from vegetative to reproductive growth, which is controlled by a 

group of flowering time genes in response to environmental and endogenous 

developmental signals. The complexity of this transition is reflected by an intricate 

network of several flowering promotion pathways (Mouradov et al., 2002).  

At least four genetic pathways have been suggested to control flowering time in 

plants. Vernalization and photoperiod pathways capture environmental signals, while 

autonomous and GA pathways respond endogenous developmental signals. The genes 

immediately downstream of these four pathways are flowering integrators that integrate 

environmental and endogenous cues regulating floral transition and the subsequent flower 

development. LFY, FLOWERING LOCUS T (FT) and SOC1 are three critical flowering 

time integrators. The expression of FT and SOC1 are regulated positively by the 

photoperiod pathway, but negatively by FLOWEIRNG LOCUS C (FLC), which is an 

important regulator integrating the signals from the vernalization and autonomous 

pathways. SOC1 can be up-regulated by the GA pathway as well (Komeda, 2004). LFY is 

the most critical regulator located very downstream of flowering time pathways, which 

controls the switch form flowering time control to flower development (Blazquez et al., 

1997).  

Arabidopsis is an excellent model system to study the control of flowering time, 

because it responds to typical environmental conditions that affect flowering in a wide 
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range of plant species (Mouradov et al., 2002). Arabidopsis also offers several additional 

advantages for the research in the regulation of flowering, including the rapid life cycle, 

prolific seed production, efficient transformation systems and established genetic 

molecular tools for studying Arabidopsis genes.  Genetic and molecular studies in 

Arabidopsis have shown that a lot of MADS-box genes are required for plant 

reproduction development (Pařenicová et al., 2003). AGL24 is one of the MADS-domain 

containing transcription factors, which plays an important role in the regulation of 

flowering time (Yu et al., 2002; Michaels et al, 2003). As a dosage-dependent mediator 

of the flowering signals, the levels of AGL24 expression determine the flowering time in 

Arabidopsis. Although it has been suggested that AGL24 acts downstream of SOC1 and 

upstream of LFY (Yu et al, 2002), there is no evidence for the direct relationships 

between these genes. Some other intermediators may function in the gaps. To investigate 

the regulatory components downstream and upstream of AGL24, we planned to use ChIP 

to identify AGL24 target genes and to use promoter deletion analysis to dissect cis-

elements responsible for the regulation of AGL24. 
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1.2 Flowering Time 

The general body plan of plants is established during embryogenesis, when the 

undifferentiated meristematic regions of root and shoot are set aside. Much of plant 

development occurs postembryonically, through the reiterative production of organ 

primordia at the SAM. In flowering plants, the SAM initially gives rise to vegetative 

organs such as leaves, but at a specific point the SAM makes the transition to 

reproductive development and then produces flowers (Levy & Dean, 1998).The induction 

of flowering in plants is the most important part from the standpoints of reproductive 

strategy and allocation of limited resources. Monocarpic plants, such as Arabidopsis, 

perform the flowering only once in their lifecycle, and the reproductive success depends 

entirely on this one opportunity (Komeda, 2004). 

During floral transition, the change in the developmental fate of primordia 

initiated at the SAM is controlled by environmental and endogenous signals (Bernier, 

1988; McDaniel et al., 1992). Unlike many developmental transitions in animals, the 

SAM of plants is not irreversibly "committed" to reproductive development once 

flowering commences. In some species and genotypes under certain environmental 

conditions, flowers can be transformed back into leafy shoots in a phenomenon known as 

the inflorescence reversion (Battey & Lyndon, 1990; Pouteau et al., 1997). This 

observation implies that the genes and processes involved in the transition to flowering 

are required for both the initiation and maintenance of flower development.  

The endogenous signals for floral transition in many species can accumulate in 

vegetative tissues. These internal cues include plant size or number of vegetative nodes. 
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The vegetative SAM is thought to first pass through a "juvenile" phase in which it is 

incompetent to respond to internal or external signals that would be able to trigger 

flowering in an "adult" meristem (Levy & Dean, 1998). The acquisition of reproductive 

competence is then marked by changes in the morphology or physiology of vegetative 

structures. For example, the alteration of leaf morphology may indicate the competence 

for floral transition in a process known as vegetative phase change (Poethig, 1990; 

Lawson & Poethig, 1995). It is likely that some of the important genes in controlling the 

transition from vegetative to reproductive development are also involved in vegetative 

phase change.  

In some species, the timing of flowering is primarily influenced by environmental 

factors, which serve to communicate the timing and/or growth conditions favorable for 

sexual reproduction and seed maturation. These factors include photoperiod (i.e., day 

length), light quality (spectral composition), light quantity (photon flux density), 

vernalization (exposure to a long period of cold), nutrient and water availability. However, 

flowering can also be induced by stresses such as nutrient deficiency, drought, and 

overcrowding. These kinds of response enable plants to produce seeds, which will 

facilitate plants to survive the stress and pass the genetic information to the next 

generation (Levy & Dean, 1998).  
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1.3 Genetic Pathways in the Control of Flowering Time  

Over the years, four genetic pathways in the control of flowering time have been 

well investigated in the model plant species Arabidopsis. They are vernalization, 

photoperiod, autonomous and gibberllin pathways (Fig. 1).  

 

1.3.1 Autonomous Pathway 

Genes in autonomous pathway can promote flowering by sensing endogenous 

developmental signals. These genes include FCA, LUMINIDEPENDENS (LD), FVE, 

FPA, and FY. Loss-of-function mutants of these genes show late flowering in both long 

days (LD) and short days (SD) (Koornneef et al., 1991). The LD gene encodes a protein 

carrying nuclear localization signal, homologous to mammalian transcription domain and 

plant DNA-binding homeo domain (Lee et al., 1994). The FCA gene encodes a RNA-

binding protein, containing WW-protein interaction domain (Macknight et al., 1997). It is 

homologous to SEX-LETHAL (SX-1) and EMBRYONIC LETHAL ABNORMAL VISUAL 

SYSTEM (ELAV) genes of Drosophila (Macknight et al., 1997). Both LD and FCA 

promote flowering by repressing a MADS-box transcription factor, FLC, which is a 

major repressor converging on both autonomous and venalization pathways.  

FY is an RNA 3′ end-processing factor that interacts with FCA to regulate 

flowering time (Simpson et al., 2003). FCA expression is autoregulated through the 

selection of different polyadenylation sites within the FCA pre-mRNA, and the FCA/FY 
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Fig. 1 Four distinct genetic pathways regulate flowering time in Arabidopsis. FT, 
SOC1, AGL24 and LFY serve as flowering time integrators acting downstream of four 
genetic pathways in the control of flowering time. Arrows indicate promotion while T 
bars represent repression. 
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interaction is required for efficient selection of the promoter-proximal polyadenylation 

site. Their interaction is also required for the downregulation of FLC. FPA encodes a 

protein which contains three RNA recognition motifs in N-terminal region. It is 

expressed strongly in developing tissues, similar to the expression of FCA and LD 

(Schomburg et al., 2001). Mutation of FPA result in extremely delayed flowering 

(Schomburg et al., 2001). All the above genes in the autonomous pathway can repress 

FLC and thus promote flowering (Komeda, 2004). These redundant genes in the same 

pathway ensure the developmental tuning of flowering when a plant develops to a certain 

age or size (Komeda, 2004).  

 

1.3.2 Vernalization Pathway 

The genes in this pathway can sense the alteration of temperature and promote 

flowering by repressing FLC activity. There are two genes VERNALIZATION 1 (VRN1) 

and VERNALIZATION 2 (VRN2) isolated in this pathway (Chandler et al., 1996). The 

function of VRN1 is unknown, while VRN2 is a polycomb group protein that is essential 

for the stable repression of FLC by modulating its chromatin (Sheldon et al., 2000; 

Gendall et al., 2001). Autonomous and vernalization pathways are conveged on the FLC 

gene, which functions in repressing a group of downstream flowering time integrators, 

including SOC1 and FT. By repression of FLC, both pathways can eventually promote 

the expression of other downstream flowering time integrators, leading to the initiation of 

floral meristem development. FRIGIDA (FRI) is a positive regulator of FLC. Some 

ecotypes of Arabidopsis, such as Columbia, Lansberg erecta, and Wassilewskija (WS), 
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have mutations in the FRI gene, which causes the downregulation of FLC and early 

flowering (Johanson et al., 2000) 

 

1.3.3 Photoperiod Pathway 

The genes in this pathway can sense the length and quality of light and promote 

flowering by upregulating SOC 1 and FT through a critical regulator CONSTANT (CO). 

The CO gene encodes a protein that has homology to the Zinc-finger domain protein 

family of transcriptional factors (Putterill et al., 1995). The co mutants are late flowering 

only under LDs (Koornneef et al., 1991). The quantity of the CO message was 

proportional to the earliness of flowering in transgenic plants overexpressing CO 

(Samach et al., 2000). These results indicate that CO is a major regulator in the 

photoperiod pathway. The transgenic plants overexpressing the CO gene to some extent 

rescued the late flowering demonstrated by the mutants in the autonomous pathway 

(Komeda, 2004). Thus, it is clear that the autonomous pathway in Arabidopsis is partially 

redundant to the photoperiod pathway (Komeda, 2004). 

PHYTOCHROME A (PHYA), PHYTOCHROME A (PHYB), CRYPTOCHROME 1 

(CRY1), and CRYPTOCHROME 2 (CRY2) are several important regulators upstream of 

CO in the photoperiod pathway (Levy & Dean, 1998). Red light is absorbed by the 

phytochrome proteins encoded by PHYA and PHYB in Arabidopsis (Briggs et al., 2001; 

Parks & Quail, 1993; Reed et al., 1993), while blue light are absorbed by cryptochrome 

proteins, encoded by CRY1 and CRY2 (Ahmad & Cashmore, 1993; Lin et al., 1998). The 

PHYA expression is abundant and labile while the PHYB expression is low abundant but 
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more stable (Parks & Quail, 1993). Moreover PHYA responds to far-red light but PHYB 

percepts red light (Parks & Quail, 1993). Under red light, PHYB functions in repressing 

CO function (Putterill et al., 1995), while under blue light, CRY2 inhibits PHYB and 

induces flowering (Lin et al., 1998; Mockler et al., 1999). Another cryptochome gene 

CRY1 cooperatively functions with the CRY2 gene to repress the function of the PHYB 

(Mockler et al., 1999). The genes LATE ELONGATED HYPOCOTYL (LHY), 

CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), EARLY FLOWERING 3 (ELF3), EARLY 

IN SHORT DAY 4 (ESD 4) and TIMING OF CAB EXPRESSION 1 (TOC1) function to 

process the physical signals in the photoperiod pathway (Doyle et al., 2002; Hicks et al., 

2001; Reeves et al., 2002). The processed signals are transmitted to the GI gene encoding 

a membrane protein with a membrane-spanning region (Fowler et al., 1999; Park et al., 

1999), which further activates the CO gene to promote flowering (Suarez-Lopez et al., 

2001).  

 

1.3.4 Gibberellin Pathway 

GAs are one important class of plant hormones affecting many plant 

developmental programs from seed germination, stem elongation, flowering time and 

flower development. In Arabidopsis, GA primarily affect flowering time in SD 

conditions. The GA-deficient ga1-3 mutants of Arabidopsis thaliana never flower under 

SD conditions (Wilson et al., 1992). Blazquez et al. (1998) found that the ga1-3 mutants 

contained very low levels of expression of the floral meristem identity gene LFY in SDs, 

while overexpression of LFY could rescue the non-flowering phenotype of ga1-3 under 

SDs. Thus, GA signaling pathway regulates flowering time by activation of several 



 10

downstream integrators including LFY. This process is mediated mainly by two GA 

signaling DELLA proteins: REPRESSOR OF GA1-3 (RGA) and GA INSENSITIVE 

(GAI), because the non-flowering phenotype of gal-3 in SDs can be rescued by rga and 

gai loss-of-function mutants (Dill & Sun, 2001).  

 

1.4 Integration of Flowering Time Control Pathway  

All of the above four genetic pathways eventually activate the expression of a 

group of downstream flowering time integrators to promote the transition of the 

vegetative SAM into inflorescence SAM, which can further generate floral meristems on 

its flankings. These key flowering time integrators include FT, SOC1, and LFY (Moon et 

al., 2005). 

FT is a promoter of flowering that acts downstream of various regulatory 

pathways. The FT gene encodes a small and mobile protein that is expressed in the 

vasculature of cotyledons and leaves. In Arabidopsis, the day-length response depends on 

the induction of FT, which interacts with a bZIP transcription factor FD to activate 

downstream genes including a floral meristem identity gene APETALA1 (AP1) (Wigge et 

al., 2005; Abe et al., 2005). It has been suggested that FT is a primary target of CO in the 

photoperiod pathway (Samach et al., 2000), and a target of FLC in both vernalization and 

autonomous pathways (Hepworth et al., 2002) 

SOC1, also called AGAMOUS-LIKE 20, is another important flowering time 

integrator. It encodes a MADS-box transcription factor, whose expression is dramatically 

increased in the SAM during floral transition (Lee et al., 2000; Borner et al., 2000).  
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Vernalization can increase SOC1 expression via reduction of FLC levels (Lee et al., 

2000), and GA treatment can also upregulate its expression. These results suggest that 

SOC1 acts downstream of the vernalization and GA pathways (Borner et al., 2000). In 

addition, SOC1 has been identified as a direct target of CO in the photoperiod pathway 

(Hepworth et al., 2002; Samach et al., 2000).  

LFY is a key regulator that integrates the signals from several genetic pathways in 

the control of flowering time and subsequently specifies floral meristem identity (Weigel 

et al., 1992; Blazquez et al., 1997).  High levels of LFY mRNA are detectable in young 

floral primordia during floral transition. The lfy mutants have an extended vegetative 

phase and the flowers are often incompletely converted to vegetative shoots (Komeda, 

2004).  LFY specifies floral meristem identity and regulates floral organ formation mainly 

through promoting the expression of AP1 and other floral organ identity genes (Wagner 

et al., 1999; William et al., 2004).  

 

1.5 AGL24 

AGL24 is another important MADS-box transcription factor that acts as a 

flowering time integrator (Yu et al., 2002; Michaels et al., 2003). Loss or reduction of  

AGL24 function causes late flowering (Fig. 2A) and there is a strong correlation between 

the severity of phenotype and the expression levels of AGL24. Overexpression of AGL24 
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Fig. 2 Phenotype of AGL24 mutant plants. (A) A loss-of-function agl24 mutant shows 
late flowering phenotype; (B) A transgenic plant with overexpression AGL24 plant shows 
early flowering phenotype; (C) A wild type plant 
 

 

 

A 
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shows early flowering under both LDs and SDs (Yu et al., 2002; Fig 2B and 2C). Thus, 

AGL24 is a dosage-dependent promoter of flowering in Arabidopsis (Yu et al., 2002). 

Over-expression of AGL24 could partially rescue the late flowering phenotype of 

soc1, while loss of AGL24 function could suppress the premature flowering phenotype of 

overexpression of SOC1 (Yu et al., 2002). These results indicate that AGL24 acts partly 

downstream of SOC1. On the other hand, over-expression of SOC1 causes an increase of 

AGL24 expression (Michaels et al., 2003). Therefore, it seems that AGL24 and SOC1 are 

able to positively regulate each other and the actual relationship needs to be further 

investigated. Mutants with loss- or gain-of-function of SOC1 and AGL24 are still 

responsive to the difference of photoperiod, despite the fact that both SOC1 and AGL24 

act downstream of CO. Therefore, the gene cascade from CO to FT might contribute a 

larger part to the photoperiod pathway than the gene cascade from CO to SOC1 (Yu et al., 

2002). Furthermore, AGL24 affects the transcriptional induction of LFY because LFY 

expression profile is delayed and reduced in agl24 mutant during floral transition, whilst 

over-expression of LFY is able to compensate the late flowering phenotype of agl24 (Yu 

et al., 2002). However, whether or not LFY is a direct target of AGL24 is unknown. In in 

vitro assays, AGL24 can be specifically bound to and phosphorylated by a meristemic 

receptor-like kinase (MRLK). The MRLK signaling promotes translocation of AGL24 

from the cytoplasm to the nucleus (Fujita et al., 2003), which may be important for the 

AGL24 function as a transcription factor. 

It is noteworthy that AGL24 can promote both flowering and the inflorescence 

identity, because overexpression of AGL24 not only shows early flowering, but also 

converts floral meristems into inflorescence meristems (Yu et al., 2004). Thus, repression 
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of AGL24 is a crucial step for flower development. Floral meristem identity gene LFY 

and AP1 promote establishment and maintenance of floral identity in newly formed floral 

primordia (Parcy et al., 2002; Irish & Sussex, 1990; Weigel et al., 1992) by repressing 

AGL24. Without this repression, ectopic expression of AGL24 would revert floral 

meristems into inflorescence meristems (Yu et al., 2004). This explains the phenotype of 

floral reversion (from floral to shoot meristem) in ap1 and lfy loss-of-function mutants. 

Loss of AGL24 function can significantly reduce the inflorescence characteristics in the 

flowers of ap1-1and lfy-6 mutants (Yu et al., 2004), further suggesting that AGL24 

activity has to be repressed during flower development.    

 

1.6 The MADS-box Protein Family 

A lot of key regulators in the control of flowering time including FLC, SOC1 and 

AGL24 belong to the MADS-box gene family, which encode transcription factors that are 

found in a wide range of eukaryotic kingdoms. In flowering plants, MADS proteins are 

involved in many important developmental programs ranging from embrogenesis, 

vegetative growth, flowering time control, flower and fruit development. MADS is the 

acronym of MINICHROMOSOMEMAINTENANCE 1 (MCM1) gene in yeast, AGAMOUS 

(AG) in Arabidopsis, DEFICIENS (DEF) in Antirrhinum and SERUM RESPONSE 

FACTOR (SRF) in human (Riechmann & Meyerowitz, 1997). They are collectively 

called as MADS-box proteins because they share a highly conserved MADS domain, a 

DNA binding domain that binds to a CC-(A/T)6-GG (CArG box) motif in the regulatory 

regions of their target genes (Hayes et al., 1988; Riechmann et al., 1996).  
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The biological function of MADS-box proteins, the interaction among MADS-

box proteins and other cofactors, and the evolutionary significance of these proteins have 

been extensively investigated (Shore & Sharrocks, 1995; Riechmann & Meyerowitz, 

1997; Jack 2001; Ng and Yanofsky, 2001; Saedler et al., 2001; Becker & Theißen, 2003; 

De Bodt et al, 2003; Messenguy & Dubois, 2003; Pařenicová et al., 2003; Zhang et al., 

2004). The MADS-box genes family in Arabidopsis can be divided into five major 

classes termed MIKC, Mα, Mβ, Mγ and Mδ based on the phylogenetic relationship of the 

conserved MADS-box domains (Table 1; Pařenicová et al., 2003). MIKC-type genes 

have a MIKC domain structure, including a MADS-box (M), an intervening (I), a keratin-

like (K), and a C-terminal (C) domain (Hasebe & Banks, 1997; Ma et al., 1991; Münster 

et al., 1997; Theißen et al., 1996). The MADS-box domain is usually located at the N-

terminus of a MADS-box protein, which is responsible for DNA-binding (Shore and 

Sharrocks, 1995). This is the most conserved domain of MIKC domains. The I domain is 

a less conserved domain located between MADS and K domains, which may contribute 

to the specificity of dimerization of MADS-box protein (Pařenicová et al., 2003). The K 

domain is characterized by a coiled-coil structure, which facilitates protein –protein 

interactions (Davies et al., 1996; Fan et al., 1997). The C domain is the least conserved 

domain located at the C-terminus of a MADS-box protein. It has shown different 

functions in different MIKC-type MADS-box genes. For example, it may contribute to 

the formation of multimeric MADS-box protein complexes (Egea-Cortines et al., 1999; 

Honma & Goto, 2001). The genomic distribution of the MIKC genes suggests that these 

genes already existed at the time of the polyploidization of the Arabidopsis genome (75 

million years ago). MIKC-type genes play essential and important roles in plant 
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development, because almost all the MADS-box genes identified so far to have important 

regulatory functions belong to this type of MADS-box genes (Pařenicová et al. 2003). 

Furthermore, MIKC genes have long sequences containing five to eight exons, while Mα, 

Mβ, and Mγ groups have no introns or a single intron (Pařenicová et al. 2003; Table 1). 

The protein sequence analysis suggests C-terminal part of the MADS-box domain in the 

Mα, Mβ, and Mγ groups are more divergent (Pařenicová et al. 2003). The origin of the 

Mδ group is unique. This group is small and contains genes that have the structural 

complexity comparable to the MIKC genes (5 to 10 exons). However, they do not contain 

the K domain, and their functions are unknown.  

Interactions between MADS proteins or between MADS proteins and proteins of 

other classes to form homo/heterocomplexes appear to be a common theme in the MADS 

proteins family (Shore & Sharrocks, 1995). These protein-protein interactions are 

essential in the formation of specific transcriptional regulatory complexes to determine 

some key developmental programs, such as the formation of floral organs. However, this 

kind of protein interaction has not been found among the MADS-box genes involved in 

the control of flowering time.  
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Table 1. Differences between subfamilies of MADS-box genes (Pařenicová et al. 2003 

).  

 
 

Subfamily Intron and exons 
distribution 

Genome 
distribution Duplication 

MIKC 

 

Multiple introns, 5 to 10 
exons 

Across all five 
chromsomes 

Duplication occurs 
between two 
differnent 
chromosomes 

Mα No intron or single intron Mainly on 
chromosome I and 
V 

Internal chromosome 
duplication 

Mβ No intron or single intron Mainly on 
chromosome I and 
V 

Internal chromosome 
duplication 

Mγ No intron or single intron Mainly on 
chromosome I and 
V 

Internal chromosome 
duplication 

Mδ Multiple introns, no K 
domain 

Mainly on 
chromosome I and 
V 

Internal chromosome 
duplication 
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1.7 Methods Used for the Investigation of AGL24-related 

Regulatory Network 

Although AGL24 has been suggested as a novel integrator of flowering pathways, 

acting downstream of SOC1 and upstream of LFY, genes interacting directly with AGL24 

are thus far unclear. To address this question, we applied the following three methods in 

this study. 

 

1.7.1 Promoter Studies  

GUS (β-glucuronidase) is a widely used reporter gene in plants (Jefferson et al., 

1987). It encodes a stable enzyme which hydolyses a wide range of β-glucuronides and 

has low endogenous activity in plants. Its enzyme activity can be assayed easily by using 

X-Gluc (5-bromo-4-chloro-3-indolyl β-D-glucuronide) as a substrate (Jefferson & Wilson, 

1991). The reaction first produces an unstable intermediate, which would then undergo 

oxidative dimerization to form the intensive blue ClBr-indigo. ClBr-indigo immediately 

precipitates upon formation, thus allowing precise localization of GUS activity. Therefore, 

by monitoring GUS localization, the fusion of AGL24 regulatory regions with GUS 

reporter gene can be used for detection of the spatial and temporal regulation of AGL24 

expression. 

1.7.2 Chromatin Immunoprecipitation (ChIP) 

Protein-DNA interactions mediate transcription, DNA replication and repair, 

which are central problems to the biology of all organisms. The ability to provide direct 
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information that a given protein is associated “in time and space” with specific genomic 

regions is a key determinant of the merits of the various techniques (Orlando, 2000). In 

particular, the method of ChIP appears to have significant advantages over other 

approaches, because it allows the analysis of the interaction of transcriptional factors with 

DNAs in living cells, thereby providing an in vivo picture of the native chromatin 

structure and its bound factors at a specific developmental stage (Sandoval et al., 2004). 

In ChIP technique, biological materials are firstly fixed, where the targeted protein and 

DNA is corsslinked into a chromatin complex. The crosslinked chromatin is then isolated 

and sonicated to produce small fragments. Subsequently, the antibody that recognizes the 

target protein is used to precipitate the chromatin complex. Finally, the crosslink between 

the protein and DNA is reversed, and the released DNA fragments are purified for further 

analysis. Although the whole ChIP process appears to be simple, a lot of parameters 

should be adjusted to achieve different levels of accuracy to determine the interaction of a 

protein and its associated DNA sequences. With appropriate controls, ChIP can serve as a 

valuable tool for studying nuclear events of protein and DNA interactions (Spencer et al., 

2003). In this study, AGL24 was fused with haemagglutinin (HA) tag, because of the 

unavailability of AGL24 antibody. Then ChIP was applied to identify the downstream 

targets of AGL24 by using the transgenic lines containing the AGL24-HA fusion proteins. 

 

1.7.3 In Situ Hybridization  

In situ hybridization techniques allow specific nucleic acid sequences to be 

detected in morphologically preserved chromosomes, cells or tissue sections. In 

combination with immunocytochemistry, in situ hybridization can relate microscopic 
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topological information to gene activity at the DNA, mRNA, and protein levels. The 

technique was originally developed by Pardue and Gall (1969) and (independently) by 

John et al. (1969).  

With the completion of many genome projects, a large number of gene sequences 

are readily available for comprehensive functional analysis. Gene expression analysis is a 

key procedure in determining the function of genes and the activity of promoters. Most of 

gene expression studies involve the hybridization of a specific nucleic acid probe to 

either genomic DNA (Southern blotting) or mRNA (Northern blotting), which has been 

isolated from homogenized tissues, separated by electrophoretic methods, and transferred 

to a stable matrix such as nitrocellulose or more recently, nylon. Whilst these techniques 

can provide a great deal of information regarding gene expression, they are limited by the 

crude spatial discrimination of the technique. Comparatively, in situ hybridization allows 

the precise cellular or subcellular localization of genes. Furthemore, some mRNA species 

present at low levels are often expressed in only a few cells, the sensitivity of in situ 

hybridization may exceed that of Northern hybridization where the target mRNAs are 

inevitably diluted by the relatively large-scale homogenization of tissue.  

In this study, it was investigated that the expression patterns of several AGL24 

target genes in wild-type plants and agl24 loss-of-function mutants by in situ 

hybridization, which facilitates the precise localization of these genes in the SAM. If 

these genes were regulated by AGL24, it would be expected that their expression patterns 

are different with or without AGL24.  
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2 Material and Methods  

2.1 Plant Material 

Seeds of Arabidopsis thaliana ecotype Columbia (wild type, transgenic plants and 

mutants) were geminated at 22 °C under 16 h light/8 h dark condition. T1, T2 and T3 

transgenic plants containing transgenes with the pGreen backone were screened with 

0.3% Basta after producing two rosette leaves under the same growth condition. 

Seedlings at different developmental stages were collected for analysis of GUS reporter 

genes. For ChIP and in situ hybridization, inflorescence and vegetative SAMs were 

collected for fixation.   

 

2.2 Vector Construction 

2.2.1 Genomic DNA Extraction 

 Leaves were ground in 200 µl extraction buffer consisting of 0.2 M Tris-HCl pH 

9.0, 0.4 M LiCl, 25mM EDTA, 1% SDS in an eppendorf tube. After centrifugation at 

13,000 rpm for 5 min, the supernatant was transferred to a new tube containing 150 µl 

isopropanol and mixed well. After centrifugation at 13000 rmp for 10 min, the 

supernatant was poured off and the pellet was rinsed with 70% ethanol, dried by vaccum 

concentrator, and resuspended in 100 µl TE buffer (10 mM Tris pH 8.0, 1 mM EDTA). 

The extracted genomic DNA was stored at -20 ºC.    
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2.2.2 Promoter reporter constructs 

For promoter deletion analysis, four vectors have constructed containing four 

different fragments of AGL24 regulatory regions fused with the GUS reporter gene (Fig. 

3). Four AGL24 genomic fragments were amplified from the extracted genomic DNA by 

polymerase chain reaction (PCR) using primers shown in Table 1. A 50 µl PCR reaction 

system consisted of 2 µl of DNA template, 1 µl of 10 mM dNTPs, 1 ul of 10 mM forward 

primer, 1 µl of 10mM reverse primer and 1 µl of AdvantageTM 2 polymerase in 1X PCR 

buffer (clontech). PCR was performed by 94 ºC for 2 min of initial denaturation, which 

was followed by 35 cycles of 94 ºC for 1 min, 58 ºC (P2 and P3) or 56.6 ºC (P4 and P5) 

(Table 2) for 1 min, elongation at 68 ºC for 2.5 min for P2, 3.6 min for P3, 4.8 min for P4 

and 3.6 min for P5, and a final extension at 68 ºC for 10 min. After PCR amplification, 

the resulting PCR products were separated on agarose gels and the expected bands were 

cut and purified by PCR purification Kit (Roche, USA). The purified products were 

digested at the designed restriction enzyme cutting sites, which were corresponding to the 

sites in the cloning vectors.  

Genomic fragments of P2, P3, P4 and P5 were cloned into pGreen-HY107 (Fig. 

4A), which was derived from the pGreen 0229 vector (Hellens et al., 2000) by deleting 

the 35S promoter and inserting the GUS reporter gene. For the purpose of ligation, the 

cloning vectors were firstly digested by the corresponding restriction exzymes and then 

dephosphorylated by alkaline phosphatase (CIP, New England Biolab, USA). The vectors 

were further purified by the PCR purification column (Roche, Germany). The treated 

inserts and vectors were ligated in a 10 µl reaction system consisting of 1 µl T4 DNA 

ligase and 1 µl 10X ligation buffer (New England Biolab, USA). After overnight ligation 
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Table 2. List of primers used to amplify various genomic fragments used for 
promoter analysis. 

 

construct Primers 
Restriction 
enzyme 
used 

Forward 
 

5’-CGCGTCGACTCGTTCCTTATAGCGGTGGAT-3’ 

 

Sal I 
P2 

Reverse 
 

5’-GCTCTAGACTTGAGCTGGAGAACTCGAA-3’ 

 

Xba I 

    

Forward 
 

5’-CGCGTCGACTCGTTCCTTATAGCGGTGGAT-3’ 

 

Sal I 
P3 

Reverse 
 

5’-GCTCTAGACGTAGCTGCTTGGTTTTGTC-3’ 

 

Xba I 

    

Forward 
 

5’-AACTGCAGTCGTTCCTTATAGCGGTGGAT-3’ 

 

Pst I 
P4 

Reverse 
 

5’-GGACTAGTTTCCCAAGATGGAAGCCTAACCAAC-3’ 

 

Spe I 

    

Forward 
 

5’-AACTGCAGGATGACGGTGGGAGACGAGTGATC-3’ 

 

Pst I P5 

 
Reverse 

 

5’-GGACTAGTTTCCCAAGATGGAAGCCTAACCAAC-3’ 

 

Spe I 

 

 

The underlined nucleotides represent the restriction enzyme cutting sites.   
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Fig. 4 pGreen vectors used for cloning. (A) pGreen HY107 vector; (B) pGreen 35S-
AGL24-GR-12HA; (C) pGReen 35S-AGL24-12HA.  

 

 

 

 

 

 

LB Basta Pro 2 X 35S  pro  AGL24   12xHA   RB 

LB      Ter Basta Pro GUS Ter RB

LB    Ter Basta Pro 2 X 35S  pro   AGL24       GR       12 x HA       

Multiple cloning sites (MCS)

Xhol I

Xma I 

C 

B 

A 

LB     Ter Basta  Ter

Basta  GUS Ter RB

LB Basta Ter RB 

Multiple cloning sites (MCS)

Xhol I
Apa IC 

B 

A 

Xhol I
Xma IApa I

Xma I



 26

at 16 ºC, 2 µl of ligation product was transformed into E. coli competent cells, which 

were prepared according to the published protocol (Ausubel et al., 1995). A tube 

containing 50 µl of frozen competent cells was thawed on ice. Two microliters of ligation 

reaction was mixed with the competent cells and incubated on ice for 30 min. The tube 

was subsequently incubated at 42 ºC for 90 seconds and placed on ice for 2 min. LB 

broth was then mixed with competent cells at 37 ºC for 1 hour. Cultured competent cells 

were precipitated and spreaded on LB agar plates supplied with 50 µg ml-1 kanamycin. 

After incubation at 37 ºC for 16 hours, colonies containing the successfully ligated 

vectors were selected and cultured overnight at 37 ºC. The plasmids extracted from these 

bacteria cultures were further confirmed by sequencing.   

DNA sequencing was performed by the dideoxy chain-termination method 

(Sanger et al., 1977) utilizing ABI BigDyeTM Terminator Cycle Sequencing Kit (Applied 

Biosystem, USA). About 300 ng of purified plasmid was mixed with 3.2 pmols of 

forward or reverse primer. The sequencing PCR was performed with 25 cycle of 

denaturation at 96 °C for 10 sec, annealing at 50 °C for 5 sec, and extension at 60 °C for 

3 min. PCR products were then precipitated with 80 µl of 75 % isopropanol, pelleted by 

centrifugation, washed with 500 µl of 70 % ethanol, and finally air-dried. The DNA 

pellet was sequenced by the DNA Sequencing Laboratory in the Department of 

Biological Sciences, National University of Singapore. 
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2.2.3 Construction of pGreen 35S-AGL24-12HA 

To identify the target genes of AGL24, ChIP was performed to isolate the protein 

complex containing the AGL24 protein and promoter sequences of its target genes. Since 

AGL24 antibody was not available, we firstly produced the AGL24-12HA tag, which can 

be precipitated by commercially available HA antibodies. The pGreen 35S-AGL24-

12HA vector containing the AGL24-12HA tag was derived from pGreen 35S-GR-12HA 

(a gift from Dr. Toshiro Ito, Temasek Life Science Laboratory, Singapore).  

AGL24 cDNA fragments were amplified from the cDNA template (Yu et al., 

2002) by PCR using forward primer: 5’-

CCGCTCGAGGTAGTGAAGGAGAGATCTGG-3’ and reverse primer: 5’-

ATGGGCCCTTCCCAAGATGGAAGCCCAA-3’. 50 µl PCR reaction system consisted 

of 2 µl of DNA template, 1 µl of 10 mM dNTPs, 1 ul of 10 mM forward primer, 1 µl of 

10mM reverse primer and 1 µl of AdvantageTM 2 in 1X PCR buffer (Clontech, USA). 

PCR was performed by 94 ºC for 2 min of initial denaturation,  which was followed by 

35 cycles of 94 ºC for 1 min, 60 ºC for 1 min, elongation at 68 ºC for 1 min, and a final 

extension at 68 ºC for 10 min. After PCR amplification, the resulting PCR products were 

separated on agarose gels and the expected bands were cut and purified by Gel Extraction 

Kit (Qiange, USA). The purified products were digested by restriction enzymes XhoI and 

ApaI, which were corresponding to the coloning sites in the vector pGreen 35S-GR-

12HA.  

pGreen 35S-GR-12HA vector was digested by restriction enzymes XhoI and ApaI 

and ligated with AGL24 fragment prepared as described above. This resulted in the 

generation of pGReen 35S-AGL24-12HA (Fig. 4B) 
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To produce pGreen 35S-AGL24-12HA (Fig. 4), the pGReen 35S-AGL24-12HA 

was digested by XmaI to delete GR fragment, and self-ligated.  

 

 

 

2.3 Plant transformation 

The constructed vectors were introduced into Arabidopsis via Agrobacterium-

mediated transformation. Fristly, these constructs were transformed into Agrobacterium 

strain GV3101 by electroporation. The competent GV3101 bacteria mixed with 

constructs were electroporated in 1mm Gene Pulser cuvettes (Bio-Rad, USA). The 

bacteria after electroporation were cultured in 1 ml of LB broth for 4 hours at 28 °C. The 

bacteria were precipitated and plated on the LB agar medium supplemented with 25 

µg/ml gentamycin, 10 µg/ml tetracycline and 50 µg/ml kanamycin. The plates were 

incubated for 48 hours at 28 °C. The colonies for different constructs were screened by 

PCR verification using one gene-specific primer and one primer located on the vector. 

The confirmed colonies with transgene constructs were selected for subsequent plant 

transformation. 

Plant transformation was performed by floral dipping method (Clough & Bent, 

1998). The selected Agrobacteria strains containing transgenes were cultured in a large 

scale LB broth containing 25 µg/ml gentamycin, 10 µg/ml tetracycline, and 50 µg/ml 

kanamycin at 28 °C until OD600nm of the culture reached 0.8. Agrobacteria were then 

precipitated at 4000 rpm for 10 min and resuspended thoroughly in a same volume of 5% 
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sucrose with 0.015% Silwet L-77 (OSi Specialties, USA). Inflorescences of wild-type 

plants containing different stages of floral buds were dipped into the Agrobacterium 

suspension for 5 seconds. The inoculated plants were then covered in black plastic bags 

overnight, which kept humidity and thus promoted transformation efficiency. The 

inoculated plants were grown under normal growth conditions after removing the covers 

on the next day. 

  

 

 2.4 Detection of GUS Reporter Gene   

The GUS reporter gene was detected according to the pulished protocol 

(Rodrigues-Pousada et al., 1993). 

2.4.1 Fixation 

The transgenic seedlings carrying various promoter constructs were collected and 

immersed in 90% ice-cold acetone immediately and incubated on ice for 15-20 min.  

2.4.2 Staining 

After fixation, actone was removed and fixed tissues were washed three times 

with the rinse solution consisting of 50mM NaPO4 pH 7.2, 0.5mM K3Fe(CN)6, 0.5mM 

K4Fe(CN)6. The tissues were then incubated in staining solution consisting of 50mM 

NaPO4 (pH 7.2), 0.5mM K3Fe(CN)6, 0.5mM K4Fe(CN)6) and 2mM X-Gluc for overnight 

at  37ºC . 
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2.4.3 Dehydration 

To remove chlorophyll, tissues were dehydrated through ethanol series solution of 

15%, 30%, 50%, 70%, 85%, 95% and 100%.  

2.4.4 Observation Under Microscope 

All tissues were observed under dissecting microscope (Nikon SM21500, Japan). 

Tissues were lain on slides with some ethanol. All pictures were captured by the digital 

camera (DXM1200F, Japan) for microscope.  

 

2.5 ChIP 

   ChIP assays were carried out as the published protocol with minor modification 

(Ito et al., 1997; Wang et al., 2002). 

2.5.1 Nuclear fixation 

Collected shoot apical meristems were immediately soaked in MC buffer (10 mM 

KPO4, pH 7.0, 50 mM NaCl, and 0.1 M sucrose) with 1% formaldehyde that was freshly 

added. The materials were then infiltrated under vacuum pressure for 90 min at 4 ºC. 

When vacuum pressure was released, the formaldehyde was quenched by incubating it 

with 0.15 M glycine for 15 min at 4 ºC. This was followed by washing the fixed tissues 

with fresh MC buffer three times at 4 ºC for 20 min. After these treatments, the fixed 

materials were either stored at -80 ºC for future use or applied immediately into following 

procedures. 
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2.5.2 Homogenization and sonication 

About 1.0 g of fixed materials were ground with mortar and pestle using liquid 

nitrogen. The ground powder was quickly transferred into a beaker and mixed thoroughly 

with M1 buffer (10 mM KPO4, pH 7.0, 0.1 M NaCl, 10 mM beta-mercaptoethanol, 1M 2-

methyl-2,4-pentanediol, and 1mM phenylmethylsulfonylfluoride (PMSF)). This slurry 

was centrifuged at 15300 rpm for 10 min at 4 ºC. After removing the supernatant, the 

green pellet was resuspended into M2 buffer (10 mM KPO4, pH 7.0, 0.1 M NaCl, 10 mM 

beta-mercaptoethanol, 1 M 2-methyl 2, 4-pentanediol, 10 mM MgCl2, and 0.5% Triton 

X-100), and subsequently centrifuged at 15300 rpm for 10 min at 4 ºC. The supernatant 

was discarded and the pellet was thoroughly washed with M2 buffer again for other three 

times. The pellet was resuspended with M3 buffer (10 mM KPO4, pH 7.0, 0.1M NaCl, 

and 10 mM beta-mercaptoethanol), and centrifuged at 15300 rpm for 10 min at 4 ºC. The 

supernatant was discarded and the pellet was subjected to the sonication step.  

For sonication, the crude nuclear extract was resuspended in 0.5 ml sonication 

buffer (10 mM KPO4, pH 7.0, 0.1 mM NaCl, 0.5% sarkosyl, and 10 mM EDTA), and 

mixed with 1/3 volume of 106 µm glass beads (Sigma, USA), which were prepared by 

washing them twice with 1 M HCl for 30 min, 0.1 M HCl for 30 min, and distilled water 

for 30 min, and then rinsing them twice with the sonication buffer and 5 µl 100 mM 

PMSF. After resuspension, the nuclear extract with glass beads was then sheared with a 

probe sonicator (Materials Inc., VC 130 PB Sonicator). The output power was 

controlled at about 104 W with each pulse for 15 sec for 12 times. Between two 

continuous pulses, the chromatin solution was cooled down for 1 min on ice. After  
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Fig. 5 Flowchart of ChIP work.  
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sonication, the solution was centrifuged at 14000 rpm for 5 min at 4 ºC and the 

supernatant was transferred into a new eppendorff tube. About 1/10 of the sonicated 

sample was saved, from which the DNA recovered was designated as “input DNA”. The 

remaining sample was subjected to further immunoprecipitation. 

 

2.5.3 Immunoprecipitation 

Before incubating the sheared chromatin with the immunoprecipitation column, 

30 µl of anti-HA antibody conjugated with agarose beads was washed 5 times with the 

sonication buffer. After the chromatin solution was incubated with the antibody for 2 h at 

4 ºC on a shaker, the mixture was centrifuged at 3500 rpm for 1 min. The supernatant was 

removed as the “post-bind sample”, while the remaining anti-HA antibody beads were 

washed 4 times with the sonication buffer with each time for 5 min. Washing by high salt 

solution was then carried out by using the sonication buffer with 500 mM NaCl for 5 min, 

which was followed by four rounds of washing with the sonication buffer. The last step 

of washing was conducted in a new eppendorff tube. To elute, the anti-HA antibody 

beads were incubated with 300 µl of elution buffer (50 mM Tris, pH 8.0, 1% SDS, and 10 

mM EDTA) at 65 °C for 30 min on a shaker. The beads were precipitated at 3500 rpm at 

room temperature for 1 min and the supernatant was collected. Additional 100 µl of 

elution buffer was incubated with beads at 65 °C for 5 min to elute more chromatin 

complex. From a total volume of 400 µl eluted solution, 20 µl was saved for Western blot 

analysis, and the remaining was used for the DNA recovery step. 
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2.5.4 DNA recovery 

The eluted chromatin complex was first incubated with 1 µl of RNase A (1 mg/ml) 

at 37 °C for 30 min, and then treated with 0.5 mg/ml Proteinase K at 37 °C for at least 3 

hours. After incubation, Proteinase K was added again and the solution was incubated at 

65 °C for 6 hours to reverse the formaldehyde crosslink. The released DNAs were 

subsequently extracted by phenol:chloroform and precipitated with standard protocols. 

Briefly, an approximately equal volume of extraction solution A (50% v/v Tris saturated 

phenol, 48% v/v chloroform, and 2% v/v isoamyl alcohol) was mixed with the chromatin 

solution. After centrifugation, the aqueous layer was collected and then mixed with the 

same volume of extraction solution B (96% v/v chloroform and 4% v/v isoamyl alcohol). 

After centrifugation, the aqueous layer was transferred into a new eppendorf tube and 

precipitated overnight at -20 °C by adding 1 µl glycogen (20 mg/ml), 1/10 volume of 3 M 

sodium acetate, and 2.5 volumes of absolute ethanol. DNAs were eventually precipitated 

at 15300 rpm at 4 °C for 20 min and washed with 70% ethanol twice. After the DNA 

pellets were completely dried, they were dissolved in 50 µl water. The recovered DNAs 

were further modified with the designed linkers to allow their amplification via PCR. 

 

2.5.5 Linker Modification and PCR Amplification 

 

  To facilitate the amplification of precipitated DNAs from ChIP, we modified the 

recovered DNAs by sticky end linker. Thirteen microliters of co-precipitated DNAs were 

incubated with 2 units of restriction enzyme Sau3AI (New England Biolab, USA) at 37 
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°C for 2 h, and inactivated at 65 °C for 20 min. After cooling, 1 µl of 10 mM dGTP and 

0.5 µl Klenow Enzyme (Roche, Germany) were added to perform single G fill-in reaction 

at 37 °C for 10 min. The resulting products were then purified with High Pure PCR 

Product Purification Kit (Roche, Germany) following the manufacturer’s instruction. 

After purification, DNAs were incubated in a T4 DNA ligase mixture with the pre-made 

linkers overnight at 16 °C. The linkers were annealed by heating two oligonucleotides: 

oligonucleotide 1 (5’-ATCGAGATATTAGAATTCTACTCA-3’) and oligonucleotide 2 

(5’-GAGTAGAATTCTAATATCTC-3’) to 95 °C and allowing them to cool down 

gradually to 16 °C over 2 hours.  

After linker modification, the DNAs in ligation mixture were purified by High 

Pure PCR Product Purification Kit again to remove excessive linkers. To monitor self 

ligation of linkers, a mock ligation mixture without co-precipitated DNAs was also 

simultaneously prepared as a negative control. 

 For PCR amplification, two microliters of modified DNAs were added into a 

buffered PCR reaction system containing 0.2 mM dNTP, 1 unit of KlenTaq LA 

polymerase (Sigma, USA), and 0.4 mM linker primer (5’-

GAGTAGAATTCTAATATCTCGATC-3’). PCR was performed by denaturation at 94 

°C for 3 min, followed by 40 cycles of denaturation at 94 °C for 30 sec, annealing at 58 

°C for 30 sec, and extension at 68 °C for 1.5 min, and final extension at 68 °C for 5 min. 

About 4 µl of PCR products were analyzed on 1% Tris acetated electrophoresis (TAE) 

agarose gel, and the rest was used for cloning and subsequent sequence analysis. 
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2.5.6 Western Blot Analysis 

 To monitor the process of ChIP, the samples collected from several critical steps 

were subject to Western Blot analysis. For Western blot analysis, 20 µl of protein 

samples were mixed with 4.5 µl of 6×SDS-PAGE loading buffer (300 mM Tris-HCl, pH 

6.8, 12% SDS, 0.6% bromophenol blue, and 60% glycerol) and 2.7 µl of 1 M beta-

mercaptoethanol in boiling water for 5 min. The denatured protein samples were then 

separated on 12.5% (w/v) denaturing polyacrylamide gels and blotted onto immun-

BlotTM PVDF membrane (Bio-Rad). The membrane was blocked with 5% non-fat dry 

milk that was dissolved in PBS buffer (130 mM NaCl, 7 mM Na2HPO4, and 3 mM 

NaH2PO4) for 1 hour, and incubated with 1:10000 (v/v) anti-HA alkaline phosphatase 

conjugate antibody (Sigma, USA) (diluted with PBS buffer supplemented with 0.05% 

Tween 20) at room temperature for 1 hour. The membrane was subsequently washed 

three times with PBS buffer containing 0.05% Tween 20 for 15min each. Finally, the 

membrane was treated with CDP-Star (Roche, Germany) and exposed to CL-X Posure X-

ray film (Pierce, USA). 

 

2.5.7 Analysis on Co-precipitated DNA 

2.5.7.1 Cloning 

 PCR products obtained in section 2.5.5 were purified with High Pure PCR 

Product Purification Kit (Roche, Germany). To clone these purified PCR products into 

pGEM®-T Easy Vector (Promega, USA), 20 ng DNA was ligated overnight at 16 °C with 

50 ng vector in the reaction mix containing 1×T4 ligase buffer and 3 unit of T4 ligase. 
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The recombinant plasmids were then transformed into competent cells of E.coli DH5α as 

described in 2.2.2. 

After cell transformation, the bacteria were plated on the agar medium 

supplemented with 100 µg/ml ampicillin and 20 µl of 2% X-gal. The agar plates were 

incubated overnight at 37 °C, and the white colonies were selected for further verification. 

 

2.5.7.2 Verification of clonies using PCR 

For verification of colonies containing successfully ligated vectors, each selected 

colony was suspended in 5 µl LB broth. Two microliters of bacterial suspension were 

added to a buffered PCR reaction mix containing 0.2 mM dNTP, 1 unit of DynazymeTM 

Thermostable DNA Polymerase, 0.2 mM T7 (5’-GTAATACGACTCACTATAGGGC-3’) 

and SP6  (5’-TATTTAGGTGACACTATAG-3’) primers. PCR was performed by 

denaturation at 94 °C for 5 min, 30 cycles of denaturation at 94 °C for 30 sec, annealing 

at 52.5 °C for 30 sec, and extension at 72 °C for 1 min, and final extension at 72 °C for 5 

min. PCR products were separated on a 1% TAE agarose gel by electrophoresis. Colonies 

with PCR products that had distinguishably different sizes were selected for DNA 

sequencing, while those with PCR products at the same size were subject to a pre-

screening process as described below. 

 For pre-screening of colonies, 8 µl of PCR products were digested by 0.1 unit of 

RsaI (New England Biolab, USA) at 37 °C for 20 min. The digested products were 

separated on a 1% TAE agarose gel. Colonies showing different digestion patterns were 
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selected for DNA sequencing, while for colonies with a same digestion patterns, only one 

was selected for further sequencing. 

 

2.5.7.3 Sequence analysis 

 Plasmids from the selected colonies were purified with Wizard® Plus SV 

Minipreps DNA Purification System (Promega, USA) according to the manufacturer’s 

instruction. The plasmid sequence was determinded by BigDye® Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, USA) as described in 2.2.2. The identity of the 

DNA inserts was identified by comparing the sequence with the published databases in 

the BLAST program at the web site of National Centre for Biotechnology Information 

(NCBI, http://www.ncbi.nlm.nih.gov). 

 

 

2.6 Non-radioactive RNA-RNA In Situ Hybridization 

Non-radiocactive in situ hybridization was performed as described previously (Yu 

et al., 2004).  

2.6.1. Synthesis of DIG Labeling mRNA Probe 

Both DNA and RNA probes can be used for in situ hybridization, but RNA 

probes show high sensitivity and give strong signals. Thus, we chose RNA probes for all 

in situ hybridization experiments. We cloned a gene of interest into the pGEM®-T Easy 

Vector (Promega, USA) that contains both SP6 and T7 promoters on the flanks of the 
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insertion site. To get run off transcripts with either SP6 or T7 polymerase, the cloned 

plasmids were digested into linearized plasmids by a restriction enzyme, which was able 

to generate a 3’ overhang.  An excess amount of enzyme was usually used to ensure a 

complete digestion. The digestion plasmids were purified by phenol/chloroform to get rid 

of any RNase contamination, and then resuspended in DEPC-treated H2O to reach the 

concentration of 0.5µg/µl.  

The RNA probes were generated from the digested plasmids by a digoxigenin 

RNA labeling kit (Roche, Germany). The 20 µl labeling reaction system contained 1µg 

template cDNA, 4 µl 5xtranscription buffer, 2 µl 10×DIG labeling Mix, 1 µl RNase 

inhibitor, 2 µl RNA polymerase. The reaction was incubated at 37°C for 2 hours and 

added with 2 µl of RNase-free DNase (Roche, Germany) for additional 30 min to remove 

the DNA template. A small portion of the resulting products could be verified on a 1% 

TAE agarose gel.  

The labeled RNA probes should be partially hydrolyzed to about 150 bp by 

alkaline treatment to improve permeability to tissue sections. We calculated the reaction 

time for alkaline treatment with the following formula: Time=(Li-Lf)/0.11*Li*Lf 

(Li=initial length of probe in kb; Lf=desired final length of probe in kb).  

For alkaline treatment, the volume of the transcription reaction was increased to 

100 µl by adding DEPC H2O. The reaction was then incubated with 2×CO3 buffer 

(80mM NaHCO3 and 120mM Na2CO3) at 60°C for the calculated time, neutralized by 10 

µl of 10% acetic acid, and precipitated with 1/10 volume of 3M NaAc (pH 5.2), 2.5 

volumes of ethanol, and 2µl of 10mg/ml tRNA. The pellet was rinsed with 70% ethanol, 
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and resuspended in 80 µl of 50% formamide. The final concentration of probes used in 

the hybridization solution was 0.5ng/µl/kb.  

 

2.6.2 Fixation of In Situ Materials 

The fixative for in situ materials was freshly prepared by dissolving 4% (w/v) 

paraformaldehyde in 1xPBS (0.13 M NaCl, 7 mM Na2HPO4, and 3 mM NaH2PO4, pH 

7.0). Firstly, the required amount of 1xPBS was adjusted to pH 11.0 with NaOH. 

Secondly, PBS solution was heated to 60-70°C in waterbath, and mixed with 

paraformaldehyde by vigorously shaking. After paraformaldehyde was completely 

dissolved, the fixative solution was placed on ice until it was cooled to 4°C. Lastly, the 

solution was adjusted to pH 7.0 by H2SO4, and placed on ice for immediate fixation of 

plant materials.  

SAMs of agl24 mutants and wild type plants were collected and immediately 

immersed into ice-cold fixative. Vacuum was applied to samples until the fixative started 

to bubble. After the fixed materials were kept in vacuum for 15 min, the vacuum was 

released slowly. The above vacuum operation was repeated until tissues began to sink. 

The fixative was then replaced and the plant samples were incubated with new fixative by 

shaking overnight at 4°C.  

 

2.6.3 Dehydration, Embedding and Section 

After the fixed, materials were washed twice by 1XPBS at 4°C for 30 min each. 

They were dehydrated and washed by 30%, 40%, 50%, 60%, 70%, and 85% ethanol for 1 
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hour each at 4°C. In the step of dehydration by 95% ethanol at 4°C, eosin was added to 

provide tissue staining, which was important for locating samples in the wax. The 

samples were further dehydrated by 100% ethanol and eosin for 4 times. For histoclear 

infiltration, the samples were immersed in 25% histoclear and 75% ethanol for 60 min, 

and were continuously exchanged by 50% histoclear and 50% ethanol for 60 min, 75% 

histoclear and 25% ethanol for 60 min, and 100% histoclear for 60 min twice. For 

paraffin infiltration, 1/4 volume paraplast chips were added, and the samples were 

incubated at room temperature overnight. In the next day, samples were placed at 42°C, 

until paraplast chips melt completely. We added additional 1/4 volume of chips, until 

chips completely melted. Samples were then moved to 58°C for several hours. 

Wax/histoclear was replaced with freshly melted wax overnight at 58°C. On the 

following three days, wax was changed twice per day. For paraffin embedding, tissues 

and wax were poured together into a weighing boat. The plant samples were orientated 

by a syringe needle, which had been warmed up in a flame. The weighing boat was 

placed in cold water to speed up solidification of the paraffin. The solidified blocks could 

be stored at 4 °C. 

We used are ProbeOn Plus slides (Fisher Biotechnology, USA). They are pre-

cleaned and charged with a white frosting on them that allows to sandwich them together 

in the hybridization/detection steps. During sectioning, continual ribbons were floated on 

water to get rid off wrinkles. After attaching the ribbons on the surface of slides, the 

slides were incubated overnight in slide-warmer at 42 ºC. Sectioned tissue could be 

stored at 4°C for several weeks. 
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2.6.4. In Situ Section and Pretreatment  

For deparaffinization, slides were soaked twice in 100% histoclear for 10 min. 

The slides were rehydrated with 100%, 95%, 90%, 80%, 60%, 30% ethanol and DEPC-

treated water for 1-2 min in each step. The slides were then incubated in 2X SSC for 15-

20 min. After treated with proteinase K (1µg/ml) in 100 mM Tris pH 8.0, and 50 mM 

EDTA for 30 min at 37°C, the slides were soaked in 2 mg/ml glycine in PBS solution for 

2 min. After washed twice in PBS for 2 min, the slides were teated with 4% (w/v) 

paraformaldehyde in PBS solution (pH 7) for 10 min, and washed twice with PBS 

solution for 5 min. The slides were further treated with 0.1 M triethanolamine and acetic 

anhydride for 10 min.  The slides were subsequently washed twice by PBS solution for 5 

min, and dehydrated through 30%, 60%, 80%, 90%, 95%, and 100% ethanol for 30 sec in 

each step. The slides were stored in a container with a little ethanol at the bottom for up 

to several hours at 4°C before theywere used for in situ hybridization. 

 

2.6.5 Hybridization 

For in situ hybridization, the slides were incubated with the hybridization buffer 

that contains 0.5ng/µl/kb of RNA probes at 55°C overnight. Every 800µl of hybridization 

solution contains 100 µl 10X in situ salts, 400 µl deionized formamide, 200 µl 50% 

dextran sulfate, 20 µl 50X Denhardts solution (warm to 50OC before pipetting), 10 µl 

tRNA (10 mg/ml), and 70 µl DEPC-treated water. For each pair of slides, 60 µl RNA 

probes in 50% formamide were heated to 80°C for 2 min, chilled on ice, spun down and 

mixed with 240 µl of hybridization solution. The probes were then applied on the slides 
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with one of the following methods. One technique was to apply 150µl probes to each 

slide, spreading them out over the entire slide with the side of a pipette tip so that all of 

the tissues were exposed to probes. Then two slides were slowly sandwiched together. 

Second technique was to put all of the probes in the middle of one slide and slowly 

massage the other slide on top until the two slides were merged together. Hybridized 

slides were elevated above wet paper towels in a plastic container that was sealed tightly, 

and incubated at 50-55°C overnight. 

2.6.6 Wash and Detection 

Hybridized slides were washed via a series of solutions to reduce background 

signals. Before washing, 0.2X SSC and NTE (0.5 M NaCl, 10 mM Tris pH 8.0, 1mM 

EDTA) solutions were pre-warmed to 55°C and 37°C respectively. Hybridized slides 

were dipped and rinsed in 0.2X SSC and then washed twice fresh in 0.2X SSC solution 

for 60 min with gentle agitation. The slides were treated with RNase A (20 µg/ml RNase 

A in NTE) for 30 min at 37°C with gentle agitation, and washed twice in NTE for 5 min 

at 37°C. The slides were further washed in 0.2X SSC for 60 min with gentle agitation, 

and incubated in PBS for 5 min at room temperature. The slide s were blocked with 1% 

Boehringer block (Roche, Germany) in 100 mM Tris pH 7.5, 150 mM NaCl for 45 min 

on rocker platform at room temperature. After blocking, the slides were incubated in 

1.0% Bovine Serum Albumin (BSA) in 100 mM Tris pH 7.5, 150 mM NaCl, 0.3% Triton 

X-100 for 45 min on rocker platform. Anti-dig antibody (Roche, Germany) was diluted in 

a ratio of 1:100-500 in 2 ml BSA/Tris/NaCl/Triton solution prepared as in the last step a 

plastic weighing dish. The slides were sandwiched together and dipped into the antibody 

solution, which allowed capillary action to pull up solution throughout the slides. After 



 44

the slides with antibody were elevated above wet paper towels in a plastic container for 2 

hours, the antibody solution was drained on Kimwipes and the slides were separated. The 

slides were washed 4 times in BSA/Tris/NaCl/Triton solution for 15 min each at room 

temperature on rocker platform, and further washed twice in 100 mM Tris pH 9.5, 100 

mM NaCl, 50 mM MgCl2 for 10 min each to ensure all of detergent was washed off.  

To prepare substrate solution to detect in situ signals, 10% (w/v) polyvinyl 

alcohol (PVA, either 40 kD or 70-100 kD, Sigma, USA) was dissolved in Tris pH 

9.5/NaCl/MgCl2 solution to make a Tris-NaCl-PVA stock solution. To detect 30-50 

slides, 200 µl NBT/BCIP stock solution (Roche, Germany) was mixed vigorously with 

10 ml of Tris-NaCl-PVA stock solution. Around 300 µl solution was applied to each pair 

of slides, which were sandwiched and kept overnight in a wet plastic container in 

darkness. In the next day, the slides were separated and rinsed in tap water to stop 

reaction. They were dehydrated through 70% and 100% ethanol for less than 10 sec in 

each step, because color products were soluble in ethanol. The slides were air-dried and 

mounted with 50% glycerol.  
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3 Results and Discussion 

3.1 Investigation of the Regulatory Region of AGL24 

3.1.1 GUS Constructs 

To study the regulatory region of AGL24, different AGL24 promoter::β-

glucuronidase (GUS) gene fusion constructs were generated. Genomic sequence of 

AGL24 is around 4.5 kb, which is composed of 8 exons, 7 introns, and 2.2 kb of 5’ 

upstream sequence (Fig. 6). Sequence analysis of AGL24 genomic region revealed the 

presence of some cis elements thought to be the binding sites of certain important 

regulatory proteins in plant development. As shown in Figure 6, several putative CArG 

box motifs have at least a nine out of ten match with the core consensus binding sites of 

MADS-box proteins (Dolan & Fields, 1991, Treisman, 1992). Several putative DNA-

binding core sequences (CCANTGK) of the LFY gene are also present in the AGL24 

gnomic sequence (Matinspector analysis result). We also found that AGL24 genomic 

sequence had ABA INSENSITIVE PROTIEN 4 (ABI4), TCP CLASS 1 TRANSCRIPTION 

FACTOR (ATTCP20) and CAACTC REGULATORY ELEMENTS, GA-INDUCIBLE 

(CARE) binding sites. Moreover, there were 4 CA-RICH ELEMENT (CARICH) 

transcription binding sites and 8 CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) binding 

sites.  

A lot of studies have shown that a regulatory region is not always located in the 

upstream promoter region of a gene.  For example, the second intron sequences of 

AGAMOUS (AG), a critical regulator of floral reproductive organs, are sufficient to 

confer the same expression as AG, indicating the AG expression is regulated via the cis- 



 46

cgttccttatagcggtggattccgactgtttcaccgcgagtttggttaag    -2178 
P2, P3 and P4 forward primer -2228 
 

tctactgatcgccgatcggtctcgtctttttgtgtgtctggtggtgaggt    -2128 
ggttcacgttttaccatttgccgtcgttatcgtgaagcttcttcatgaga    -2078 
cggagggttctgtgtttttgtgaattatgatttcttgttcttatatgggc    -2028 
                                       CArG box 
 

ctatttttaagacatcaatatggcccaaatttcgaacttgttatgagttt    -1978 
                         CArG box 
 

aaggaaataagtagtaagtactataaatgatggttcgatctcggaggaga    -1928 
aaaaaaaaaacattgtttacgaggaagcaaaatgtgagttgatataaagg    -1878 
gtacaacacataatttatttttggaagtcaaaactttgaggattaagctg    -1828 
acaacgaaggttagtgaagactttcgggatcgagcaatcgggagatatac    -1778 
atgagcctagagggctgacaagatgaccaagcattccaaatgaaaggctt    -1728 
aagatttttctttttctaaactcaagtaagaaacacaagatatatgaaag    -1678 
ggtaacaagggtcaacaacaagtctaagctttttaaacgtgttagatgat    -1628 
tcttcttgaacactattacaattactgtttagtttcacatttatatgacc    -1578 
ttgggagtcttctagctcgtcccaaatatattttcaacatattactataa    -1528 
gatcctaaagaccaataacattgatctacaccaaaaactctcactttctg    -1478 
           CCAAT-box 
 

attttgcactcgctttttttcctcccataaacaaaaccaaaggcttacaa    -1428 
tactaaatctgtctcacattcttagtgcttatttgttttagtcataaaga    -1378 
acttaatcttatacagattgaagtcttaaagtcatctatattacttttca    -1328 
catgtatcattatgagatggtacgtttcccacgaattttatcagtttagt    -1278 
ttaattttcagttgtactttgggagaaaaaatttacaagatacttgtcgg    -1228 
ccatgatatcaccctagagttaccggagtccggtgatatatcatttctaa    -1178 
                                          CArG box 
 

ttagggttaaaacttaaaagggtataaatggctgatcaaacccaaaaata    -1128 
            CArG box 
 

aaagataatgatgacggtgggagacgagtgatcttatcaggtgtcgcatc    -1078  
                    P5 forward primer -1108  
 

tagcatatataggtgaaagactataaaaaagacatgaaatatttaataga    -1028 
    CArG box 
 

cacaacttttgtaataaaccaaaaccaaaaaggtagatgaactgatgaac     -978  
agcatcttctaattacgaataaaaaaagtaaccaaactttctttccatta     -928 
gaattggtacgtagttccttgtgtattgtgatttctttcattttccaatt     -878 
                                          CArG box 
 

atgtttttttattttatcatgttacatttttgatagtgggtaacttttgt     -828 
atcattttatttgacctagccatatataaatctattaacttatacggagt     -778 
agtatttcacgtcatttatttttattttgtttttagatgggaagttattc     -728 
aaaactagactaaaacagtaaaactaggaaacccgctactgaataaagtt     -678 
acaattccacattattccatgacagactaattgaattagaaggttaggta     -628 
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aattattaaatcataactgtagcagtctcttcgtctggcagctcagtcag     -578 
acaaaacacaaagtgtgtttatgtgttatttttaatgattatagtttggg     -528 
aaaaagacataatcaaaagggatacaaaacatatggcccattgataagta     -478 
                                 LFY binding site 
 

tagatcactgtttagctaaaaaaagcagactcttttttccaatcttgaac     -428 
                                      CCAAT-box 
 
acaaacacagtcaccatctctctctctctttctctctcactcacacatta     -378 
gggagtaaacagctaccagaaaaaccttttttatcttctcacaaatttaa     -328 
taaagtgggtgctgagattgaataacgtaatccaagatcctccaactcac     -278 
agaaaggtaaaagctgtgaatctgtgttctttcttcttaagcaaagtgtt     -228 
tgatgaattcatctagtcctgtccattcttttgcttctcatggtttatgg     -178 
atctgatctctctttctctctctctctagccattagggtttcctaagaat     -128 
attatataaactctctttagctaacaccgttccaattggtttctttcttt      -78 
                             CCAAT-box 
 
gttcttggtctaaaatctaaatggtgttatgggtataggcagattcaaga      -28 
                                TATA box 
 

acagtagtgaaggagagatctggtaaaATGGCGAGAGAGAAGATAAGGAT      +23  
AAAGAAGATTGATAACATAACAGCGAGACAAGTTACTTTCTCAAAGAGAA      +73 
GAAGAGGAATCTTCAAGAAAGCCGATGAACTTTCAGTTCTTTGCGATGCT     +123  
GATGTTGCTCTCATCATCTTCTCTGCCACCGGAAAGCTCTTCGAGTTCTC     +173    
CAGCTCAAGgtatattctatctttttgttagtagttgtcttatttttttc     +223 
P2 reverse primer +182 
 

aatccatgtttgtgtttttgagaatatggttggataaatatattaagata     +273 
tgtatttaaatgagatttttattttctcgtttactctctaaagttaatta     +323 
tcagtaggctcggagatctcatgtacggcataatttgatgacctaaatta     +373 
ttatactttaaagtataggattgatgttttattacttttatgtataacac     +423 
atcatgtatttaattccgtttaacataatatgggtttttaacgtgtaatt     +473 
                        CArG box 
 

tttcaatcattttcatttagactcatggttaagatttctgtactgggaaa     +523 
taagagagcagaatattatagtgtgatttttgttaattaggaaagcatat     +573 
gtatatatggatacatagtacttaccacaattagaatgaatttcttttcc     +623 
cttttttcatttgactttgtgtattacaaaagtctttgacactgtcactt     +673 
ggtatgattggggattaattcttaaccactcgtttagtttatcttgggaa     +723 
gcattaccataattgggaaacgagtcatctgtctgtatcgtgatggctac     +773 
       CArG box 
 

ttctgattacttttcttttattataaccaaaaaggcttctaatgtactta     +823 
attaattttacaaatgtaatatggacgaaggaaatgtttataagaaagat     +873 
ggattgtttgttgaaacgtgtagAATGAGAGACATATTGGGAAGGTATAG     +923 
TCTTCATGCAAGTAACATCAACAAATTGATGGATCCACCTTCTACTCATC     +973 
TCCGGgtattttcgatatcacttactcttttttttttttgtggattttaa    +1023 
actctctgctctttttaccaaacccttctctttttatcaaacccttctct    +1073 
ctataatattatccgatgttcactttgttacacgtgtttgttataatttt    +1123 
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tagctgtaagtctaaatatagaaacattgagtggcatataatcattaatc    +1173 
ttgaagcatctaattaattggttttacatattaatagcagaatcctgaaa    +1223 
ctgttgactttgcatctagcagCTTGAGAATTGTAACCTCTCCAGACTAA    +1273 
GTAAGGAAGTCGAAGACAAAACCAAGCAGCTACGgtatggctccattgat    +1323 
      P3 reverse primer +1307     LFY binding site 
 

atgttatgcagataaacctattttcatataggctatagctgtaagagatc    +1373 
atctatttcatgtgtgtggtttttttttttatgttttttcaatgatgtgt    +1423 
gcatgctatttttaggttttagaatctatttcatggaaattgaagatatt    +1473 
tcatttcacgtgtaagttcgtcaagttgtggcgtgtgtcttggaaattga    +1523 
tgttttgtttgtagattttaagagctacttctaaaatttacaagagtttt    +1573 
gtaattttcaattatggcccattattctcattaattcattaaaaaaatta    +1623 
        CArG box 
 

tatacattactatctatatctagcataggtagttttttttttctttttct    +1673 
ttggtagacctactgaacaaatatctgatatatcactgactggataaata    +1723 
tctatagagatatttttgatagaaatgagtgttaatttaacgtaaaacag    +1773 
GAAACTGAGAGGAGAGGATCTTGATGGATTGAACTTAGAAGAGTTGCAGC    +1823 
GGCTGGAGAAACTACTTGAATCCGGACTTAGCCGTGTGTCTGAAAAGAAG    +1873 
gtttactactatacataaactaatagcatgcatattttccttaacgtggc    +1923 
atataaataataagctgtacatatataaaagtttgactttgttgttgtta    +1973  
ttggtaaatagGGCGAGTGTGTGATGAGCCAAATTTTCTCACTTGAGAAA    +2023 
CGGgttagtagttagtacatacaattcgtataactaatggatcataagcc    +2073 
tatctatagctagtgactttcttaataagtgaaacagGGATCGGAATTGG    +2123 
TGGATGAGAATAAGAGACTGAGGGATAAAgtacggctctaaacccttata    +2173 
gatatcatggaataaccttAatctatttttttatgtataagaaaatatga    +2223 
tgagggaacgtatattatatatcggcagCTAGAGACGTTGGAAAGGGCAA    +2273 
AACTGACGACGCTTAAAGAGGCTTTGGAGACAGAGTCGGTGACCACAAAT    +2323 
GTGTCAAGCTACGACAGTGGAACTCCCCTTGAGGATGACTCCGACACTTC    +2373 
CCTGAAGCTTGGgtataatttgtttaactgaacatatttcaaactttttg    +2423 
ttgacattttgtatgtggatgtttactaactgtttgttggttagGCTTCC    +2473 
ATCTTGGGAATGA                                         +2487           
P4 and P5 reverse primer +2484 

 

 

Fig. 6 Genomic sequence of AGL24. Black letters indicate upstream sequence. Orange 
captial letters present exons and blue letters present introns. The transcription start site 
and stop codon are bold. The CCAAT-box and TATA box are underlined. The putative 
MADS-box genes and LFY binding sites are indicated.   
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elements in the second intron (Deholos & Sieburth, 2000). Therefore, for the 

investigation of AGL24 regulatory region, we included its upstream putative promoter 

region, exons, and introns in the promoter GUS constructs.  

 

3.1.2 Transgenic Plants 

As shown in Figure 7, the phenotypes of transgenic plants containing different 

promoter constructs usually showed no apparent differences from wild-type plants, 

indicating that the insertion of transgenes have not affected normal plant development 

and these transformants could be used for monitoring promoter functions. After 

transforming Arabidopsis wild-type plants with different AGL24 promoter constructs, we 

identified different number of transgenic plants bearing these constructs at the T1 

generation (Table 3). After they were segregated at the T2 generation, we identified 

several transgenic plants with only single-insertion of the transgene for each construct, 

based on their segregation ratio. Since the insertion locus in the chromosome would 

sometimes affect the GUS expression in the transgene, the selection of single-insertion 

transgenic lines could reduce this possibility to the minimal level. 

 

3.1.3 GUS staining results 

As a promoter of flowering, AGL24 mRNA is present in all of the tissues with the 

strongest  expression  in  stems  (Yu et al., 2002).  During  floral  transition,  the   AGL24  

expression gradually increases in the inflorescence SAM. However, once floral 

meristems   are  generated   on    the   flanks    of   the  inflorescence   meristem,    AGL24 
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Fig. 7 Transgenic plant containing different AGL24 promoter:: GUS constructs.  (A)  

a AGL24-P2 transformant; (B) a AGL24-P3 transformant; (C) a AGL24-P4 transformant; 

(D)  a AGL24-P5 transformant; (E) a wild-type plant 
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Table 3 Isolation of transgenic plants containing different promoter constructs  

 

 

Construct No. of T1 transformants 
identified 

No. of single-insertion 
transformants used for 
further studies 

P2 42 15 

P3 39 14 

P4 28 14 

P5 35 13 
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expression is dramatically reduced in floral meristems (Yu et al., 2004). With these 

expression patterns as a reference, we compared the GUS expression in transgenic plants 

containing different AGL24 promoter constructs. GUS staining patterns was examined in 

at least 10 lines of independent transgenic plants for each promoter construct. Although 

slightly varied intensity of staining was observed in the lines carrying the same construct, 

the patterns of GUS staining were usually consistent.  

In AGL24-P4 plants, the GUS reporter gene was driven by a 4.7 kb sequence 

including 2 kb upstream promoter and 2.7 kb intragenic sequence of AGL24 (Fig. 3). 

GUS expression was firstly detected at the SAM and young leaf primordia of AGL24-P4 

seedlings 8 days after germination (Fig. 8A). The GUS expression gradually increased in 

the same regions from 8 to 16 days after germination (Fig. 8 B-E). The GUS expression 

reached the highest level on 16 days after germination (Fig. 8E). It was obvious that GUS 

expression in AGL24-P4 plants were only limited in the SAM and the coupled young leaf 

primordialm, but not in adult leaves. These GUS expression patterns were consistent with 

the AGL24 exprssion during floral transition of Arabidopsis. When AGL24-P4 plants 

stared to bolt 18 days after germination, GUS expression was dramatically reduced in 

floral buds (Fig. 9A). The staining was only obvious at the apical region of the 

inflorescence and coupled cauline leaves (Fig. 9A). During inflorescence stem elongation 

from 20 to 25 days after germination, GUS expression was mainly confined in the 

provascular strands of the inflorescence stem and in anthers of mature flowers (Fig. 9B-

D). In general, the GUS expression pattern in AGL24-P4 plants completely mimicked the 

endogenous AGL24 expression, suggesting that the P4 fragment contains all the cis-

elements required for the regulation of AGL24 expression in wild-type plants.  
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Fig. 8 GUS expression in AGL24-P4 plants. (A) 8 days after germination; (B) 10 days 
after germination; (C) 12 days after germination; (D) 14 days after germination; (E) 16 
days after germination. 
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Fig. 9 GUS expression in AGL24-P4 plants. (A) 18 days after germination; (B) 20 days 

after germination; (C) 22 days after germination; (D) 25 days after germination. 
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In AGL24-P5 plants, the GUS reporter gene was driven by a 3.6 kb AGL24 

genomic fragment including 1 kb upstream promoter and 2.6 kb intragenic sequence (Fig. 

3). The only different between AGL24-P4 and AGL24-P5 was that AGL24-P5 lacked the 

upstream promoter region from -2228 to -1109. In transgenic plants harboring the 

AGL24-P5 construct, GUS expression was barely detectable in the seedlings from 8 to 12 

days after germination (Fig. 10A-C). On 14 days after germination, we could detect the 

GUS expression at the SAM and young leaf primordia (Fig. 10D). This expression was 

further enhanced in the seedling 16 days after germination (Fig. 10E) The GUS 

expression patterns in AGL24-P5 plants at later developmental stages (Fig. 11A-D) were 

similar to those in AGL24-P4 plants. The different GUS expression between AGL24-P4 

and AGL24-P5 transformants implies that the promoter region from-2228 to -1109 may 

be responsible for the initial regulation of AGL24 in the control of flowering time.   

 In AGL24-P2 construct, the GUS gene was fused with 2 kb upstream promoter 

and the first exon of AGL24 (Fig. 3). In transgenic plants with the AGL24-P2 constructs, 

GUS expression was early detected in the seedling 8 days after germination (Fig. 12A). 

However, its expression was neither at the SAM nor at the young leaf primordia. The 

irregular distribution of GUS expression at this stage and the total loss of its expression in 

the seedlings at later stages (Fig. 12B-E) strongly suggest that the AGL24 5’ upstream 

promoter sequence is not sufficient to provide the normal regulation of AGL24.     

Compared with the AGL24-P2 construct, the AGL24-P3 construct contained 

additional two introns and two exons after the first exon (Fig.3). The GUS expression in 

AGL24-P3 transformants was in great contrast to that in AGL24-P2 transformants. In 

AGL24-P3 transformants, Gus expression was early detected in the seedling 8 days   after 
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Fig. 10 GUS expression in AGL24-P5 plants. (A) 8 days after germination; (B) 10 days 
after germination; (C) 12 days after germination; (D) 14 days after germination; (E) 16 
days after germination. 
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Fig.11 GUS expression in AGL24-P5 plants. (A) 18 days after germination; (B) 20 

days after germination; (C) 22 days after germination; (D) 25 days after germination. 
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Fig. 12 GUS expression in AGL24-P2 plants. (A) 8 days after germination; (B) 10 days 

after germination; (C) 12 days after germination; (D) 16 days after germination; (E) 18 

days after germination; (F) 20 days after germination. 
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C D
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germination in a similar pattern as that in AGL24-P4 transformants (Fig. 13A). Before 16 

days after germination, the GUS expression in AGL24-P3 was almost similar to the 

patterns in AGL24-P4 transformants (Fig. 13B). However, on 16 days after germination, 

the GUS expression pattern was not consistent in different lines of AGL24-P3 transgenic 

plants. Some lines showed very strong GUS expression throughout the SAM and the 

coupled young leaf primodia (Fig. 13C), while some lines showed weak GUS expression 

(Fig. 13D). On 20 days after germination, GUS expression was usually high in the 

inflorescence stalk and the coupled young flowers (Fig. 13E). These results suggest that 

the region from +182 to +1307 containing exons 1 and 2 as well as introns 1 and 2 is 

necessary to confer the initial and enhanced AGL24 expression in a correct spatial and 

temporal pattern during floral transition, while the region emcompassing the intragenic 

region after exons 3 of AGL24 gene may be capable of maintaining AGL24 expression 

during floral transition and regulating AGL24 in floral meristem development.  

Comparison of GUS expression pattern in AGL24-P2, -P3, -P4 and –P5 provided 

important insights for the regulation of AGL24 expression (Fig. 14). First, the regulatory 

region required for conferring the full spectrum of AGL24 expression was in the sequence 

from -2228 to +2484 as demonstrated by GUS expression in AGL24-P4 trangenic plants 

(Fig. 8A-E). Second, the different GUS expression pattern revealed in AGL24-P4 and 

AGL24-P5  transformants  indicates  that  the  region  between  -2228 and -1108 contains 

basic cis-elements required for the initial expression of AGL24 during floral transition. 

Deletion of this region caused the significant delay of AGL24 expression in the SAM and 

the coupled leaf primordia, as shown by GUS expression in AGL24-P5 transformants 

(Fig. 10A-E). Third, the region from +182  to  +1307 seems crucial for providing  normal 
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Fig. 13 GUS expression in AGL24-P3 plants. (A) 8 days after germination; (B) 10 days 

after germination; (C) 16 days after germination (strong expression); (D) 16 days after 

germination (weak expression); (E) 20 days after germination. 
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Fig. 14 Schematic diagram summarizing the required regulatory elements for the 
normal AGL24 expression. The full-length AGL24 genomic sequence is shown on the 
top with the labeled sequence position corresponding to the end of each promoter 
fragment relative to the transcription start site (+1). The critical regulatory regions 
required for the normal expression of AGL24 are represented by horizontal boxes. Region 
A is required for the initial expression of AGL24 during floral transition. Region B 
required for normal spatial and temporal expression of AGL24 during floral transition, 
while region C is required for maintaining AGL24 expression during floral transition and 
repressing AGL24 expression in floral meristems.  
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spatial and temporal expression of AGL24 during Arabidopsis development, because 

deletion of this fragment could totally abolish the AGL24 expression as shown by GUS 

expression in AGL24-P2 transfomants (Fig. 12A-F). Last, the intragenic region of AGL24 

gene after exon 3 may be responsible for the maintenance of AGL24 expression during 

floral transtion and for the repression of AGL24 in floral meristems, as suggested by the 

distinct GUS expression patterns in AGL24-P3 and AGL24-P4 transgenic plants.  

It is noteworthy that from GUS expression analyses, the AGL24 intragenic regions, 

especially exons 1 and 2 and introns 1 and 2, play an important role in regulating AGL24 

expression in a normal spatial and temporal pattern. This result is consistent with the 

regulatory pattern of AG gene in Arabidopsis, which also encodes a MADS-box 

transcription factor and is responsible for the development of floral meristems and floral 

reproductive organs (Mizukami & Ma, 1997).  AG RNA accumulates in the centre of 

floral meristems and later in the stamen and carpel primordia of young flowers 

(Mizukami & Ma, 1997; Weigel & Meyerowitz, 1993). Thus, the AG expression needs to 

be tightly regulated at different developmental stages.  

It has been reported that the transgenic plants containing the GUS fusion construct 

including ~6 kb upstream and ~3.8 kb intragenic sequence of AG showed a staining 

pattern similar to the endogenous expression pattern of AG in wild type plants (Sieburth 

& Meyerowitz, 1997; Bowman et al., 1991; Drews et al., 1991).  Loss of AG intragenic 

sequence resulted in loss of negative control of AG, thus producing spatial distribution of 

AG floral in both floral and vegetative tissues, and caused loss of positive regulation of 

AG, thus delaying activation of AG in floral meristems (Sieburth & Meyerowitz, 1997). 

Further deletion analyses of the intagenic sequence of AG gene found that a specific 
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region in second intron sequences (1653 bp of DNA from the 3' end of the second intron) 

of AG was sufficient to confer a normal AG expression pattern (Deyholos & Sieburth, 

2000) 

Investigation of AG and AGL24 regulatory region suggests that gene regulation 

may involve the genomic sequences that are not conventionally located at the upstream 

promoter regions. Further dissection of AGL24 regulatory regions may provide more 

insights into the regulatory mechanism of AGL24 in the control of flowering. 
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3.2 Identification of AGL24 Target Genes by ChIP 

3.2.1 Production of Functional Trasngeneic Tagging Lines 

To proceed in isolation of putative AGL24 targets by ChIP, firstly AGL24-12HA 

tagging transgenic lines were produced because of unavailability of AGL24 antibody. 

Fusion of a small tag sequence that has an available antibody with a protein of interest 

allows monitoring or purifying the protein of interest much more easily. However, 

sometimes the original structure of the target protein might be disrupted by the fused tag, 

and hence its biological function could be severely affected. Therefore, it is essential to 

test if the fusion protein still maintains its biological function in an in vivo context. In this 

study, a preliminary checkup has been conducted to test if AGL24-12HA fusion protein 

keeps the basic function as AGL24. Transgenic plants of 35S::AGL24-12HA were created, 

and their phenotypes were compared with those of 35S::AGL24 and wild-type plants 

under same conditions. For each genotype, the flowering time was calculated based on 

the number of rosette leaves when a plant began to bolt. Compared with 35S::AGL24 

transgenic plants, the stature of 35S::AGL24-12HA transgenic plants was smaller, while 

on average, both of them produced 5-6 rosette leaves before bolting (Fig. 15). On the 

other hand, wild-type plants produced 8-9 rosette leaves before bolting (Fig. 15). 

Therefore, over-expression of AGL24-12HA caused the same early flowering phenotype 

as over-expression of AGL24, indicating that AGL24-12HA fusion protein was 

biologically functional as endogenous AGL24 in terms of flowering time regulation.  
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Fig. 15 Over-expression of AGL24-12HA fusion protein was able to induce early 

flowering as overexpression of AGL24. Two transgenic (35S::AGL24-12HA and 

35S::AGL24) and a wild-type (WT) plants were sowed and grown under same conditions. 
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Besides the early flowering phenotype that was observed in both 35S::AGL24-

12HA and 35S::AGL24 transgenic plants, they showed somehow different phenotypes in 

flower development. In 35S::AGL24, the reversion from floral meristems to inflorescence 

meristems was usually observed, while 35S::AGL24-12HA transgenic plants produced 

flowers similar to wild-type plants (Fig. 16). This suggests that over-expression of 

AGL24 and AGL24-12HA has different impact on flower organ development. The 

presence of AGL24 activity in floral meristems severely interferes the function of floral 

homeotic genes, and thus repression of AGL24 expression is a crucial step in promoting 

flower development (Yu et al., 2004). It is possible that due to the HA tagging sequence, 

the fused AGL24 protein could not interfere with other factors that play critical roles in 

regulating floral organ formation during flower development. 

 Phenotypic variation was also observed among different 35S::AGL24-12HA 

transgenic lines. Figure 16D showed four 35S::AGL24-12HA transgenic lines that were 

grown under same conditions. One out of these four lines was significant larger than the 

others. We found that AGL24-12HA expression level was significantly lower in the 

plants with a large stature, as Western blot analysis was only able to detect AGL24-12HA 

fusion protein in 4 mg of plant leaves collected from small transgenic plants but not from 

large ones. Therefore, in addition to its influence on flowering time, the expression level 

of AGL24-12HA also affected plant size as well, which was similar to the effect of 

overexpression of other flowering time genes. 
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Fig. 16 Flower phenotypes in 35S::AGL24-12HA transgenic plants. Flowers of 

35S::AGL24-12HA (A) show the similar phenotype as those of wild-type plants (B), 

while flower of 35S::AGL24 (C) demonstrate floral reversion in that floral meristems are 

converted inflorescence meristem. (D) 35S::AGL24-12HA plants show different stature. 
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3.2.2 Sonication  
 

The sonication step determines the extent of fragmentation of chromosomes, and 

an efficient sonication step in ChIP should result in sheared DNAs with an average length 

of 1000 bp. It was suggested that the extent of sonication mainly depends on pulse time, 

pulse strength, and sample volume. An average fragment size of 1 kb could be reached 

when the output power was increased to around 65 W. Under this condition, the number 

of pulses could be increased in proportion to the increased sample volume. For example, 

if 1 ml sample was subjected to sonication, 14 pulses were required to achieve the same 

shearing effect as that of 6 pulses for 0.5 ml sample. In addition, tip immersion depth 

would greatly affect sonication efficiency as well (Orlando et al. 1997). Thus, the tip 

immersion depth should be adjusted in a way that samples neither circulated around the 

container nor produced too much foam.   

 

3.2.3 Western Blot  
 

Immunoprecipitation, washing, and elution steps in ChIP were performed as 

described in “Material and Methods”.  To monitor the ChIP process, Western blot 

analyses were performed for the samples collected from several critical steps. The 

AGL24-12HA fusion protein was detected in crude extract of 35S::AGL24-12HA 

inflorescence tissues (Fig. 17). After immunoprecipitation, the fusion protein was 

detected in the beads conjugated with anti-HA antibody, but not in the supernatant (post-  
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Fig. 17 AGL24-12HA fusion protein was purified. Elute: AGL24-12HA fusion protein 

could be eluted from beads by SDS elution buffer; Post-bind: AGL24-12HA was absent 

in the solution that has been incubated with beads, confirming that AGL24-12HA has 

bound with beads; Extract: crude extract of 35S::AGL24-12HA inflorescence tissues. 
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bind solution), indicating that beads containing the HA antibody could specifically bind 

with AGL24 -12HA fusion protein. Further, the fusion protein was also detectable in the 

elution buffer, suggesting that the whole process of ChIP was able to isolate the 

chromatin complex associated with AGL24-12HA fusion protein.    

In Western blot analyses, we found that the molecular size of AGL24-HA protein 

was at 50 kDa, which was larger than the theoretical value of 39.7 kDa (Figure 17), as 

predicted by the Biology WorkBench Program from San Diego Supercomputer Center 

(SDSC) (http://workbench.sdsc.edu). This discrepancy between experimental and 

theoretical data was acceptable, since the difference of the magnitude between the 

theoretical mass and the mass estimated by SDS/PAGE was commonly found (Bisht et 

al., 2004). In fact, analyses of in vitro synthesized AGL24 in SDS/PAGE gel also showed 

a larger mass at around 35 kDa than its theoretical size at 25.1 kDa (Fujita et al., 2003). 

 

3.2.4 Linker Ligation 
 

After ChIP, usually there is very little amount of DNAs that could be recovered 

(Orlando, 2002). To facilitate the following examination of DNA sequences, co-

precipitated DNA had to be amplified by PCR. Thus, adaptors (linkers) were required to 

be ligated with the co-precipitated DNAs to provide known sequences for primer binding 

during the subsequent PCR step. To prevent linker self ligation, an additional step was 

added after linker modification, but before PCR amplification, to remove the extra 

adaptors by the High Pure PCR Product Purification Kit (Roche, Germany), because the 

columns in the kit were only able to purify DNA fragments with sizes more than 100 bp.  
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3.2.5 Sequence analysis 
 

The co-precipitated DNAs modified with linkers were amplified by PCR and 

cloned into pGEM-T Easy vectors for sequencing. In total, there were 246 different 

sequences identified by sticky end ligation. Among them, 211 sequences were at unique 

genomic sites and the remaining 35 sequences were located at repetitive chromosome 

regions including 27 centromeric repeats and 8 ribosomal repeats. Some other sequences 

not from the nuclear source, such as chloroplast DNA and mitochondria DNA as well as 

the DNAs that could not be identified through BLAST, were considered as 

“contaminants”.  

It was expected that the ChIP-enriched sequences would be observed at a high 

frequency. However, every one of the identified 211 unique loci appeared only once. This 

might be caused by the problem in cloning the targets of a transcription factor directly 

from immunoprecipitated chromatin, where the overall abundance of non-specifically co-

precipitated DNAs were dominant. Although the specific DNA sequences for a targeted 

protein could be typically 10 to 30 fold more abundant than those representing random 

DNA loci, the absolute amount of non-specifically precipitated fragments still 

overwhelmd in the precipitated DNAs. Hence, large-scale sequencing work has to be 

performed to enlarge the sequence library to identify the enriched sequences. 

Alternatively, there are other methods such as Southern blot and genomic microarray 

analyses that are available to find out candidate targets. However, these alternative ways 

are only well established in yeast, and their applications in Arabidopsis need to be further 

investigated (Burski & Frenkel, 2004). 
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Table 4. Candidate genes isolated by ChIP can be used for further functional studies. 

 

 

Gene Locus CArG motif* in co-
precipitaed DNA 

Gene Locus CArG motif* in co-
precipitaed DNA 

AT5G45780 CCTTATAAGA, 
ACAATTATGG 

AT2G35230 CCATATATGC 

AT5G54570 CGTAAATTGG AT2G47010 CCTAAATAGC 
AT5G57620 CCATAATTGC AT2G47980 CCTAAAAAGT 
AT5G66430 CTAAATATGG AT3G10980 TCAAATTTGG 
AT5G66770 TCATTTTTGG, 

CTTTAATTGG 
AT3G17850 CCTAATTTCG 

AT4G02110 CCATATAAAG AT1G30810 CGATATTAGG, 
CGATATTAGG 

AT4G25500 CATTTAATGG AT1G43670 CCATATATTG 
AT4G26700 CCTAAATAGC AT1G45230 CCATTATTGA, 

CAAAAAATGG 
AT4G30470 TCTTTTTAGG AT1G52980 CCATATTAGG** 
AT4G38710 CCAAAATTGT AT1G71380 CCTTATATGA 
AT5G05620 CCTAAATAGG** AT1G73100 CCTAAAAAGC 
AT5G06090 CCAAAAAAGG** AT1G76510 CCTTATATGT 
AT5G16120 CGTTTTTAGG AT1G76970 CATAATTTGG 
AT5G17160 CCAAAAAAAG AT2G07729 CCTTTTTTTGG, 
AT5G22950 CGAATAATGG, 

CCTTTAAATG 
AT2G07735 CCTTATTTGA 

AT5G23610 CCATTAAAGC AT2G07787 CCTATTAAGT 
AT5G28463 CCAAAATAAG AT2G32580 CCTAATAAGT 
AT3G32897 CCTAATAAGT AT1G07570 CCATTAATGC, 

ACATTTTTGG 
AT3G41979 TCTTAATTGG AT1G09050 CCATTATTAG, 

CTATTATTGG, 
AT3G50560 CCTTTTTTGT AT1G11670 CCTAAATAGC, 

GCATTAATGG 
AT3G54300 ACAAAAAAGG, 

GCATATATGG, 
TCAATATAGG 

AT1G16330 ACATTTTTGG, 
ACTTTTAAGG 

AT3G57800 CCAATAATCG, 
CCAATTTTGG** 

AT1G24260 GCTAAATAGG 

 

* Maximally one nuleotide mismatch is allowed 

** Perfect CArG box  
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The CArG motif with the CC-(A/T)6-GG pattern that is a potential binding site of  

MADS-box genes was also searched in these sequences, since AGL24 is a typical 

MADS-box protein. Recent studies on AGL15, another MADS-box protein, revealed that 

in addition to the consensus CC-(A/T)6-GG sequence, AGL15 was also able to bind with 

a relaxed form of CArG motif known as C-(A/T)8-G (Tang and Perry, 2003). Therefore, 

in our study, the sequences with one base mismatch of CArG motif were also counted. In 

total, we identified 44 sequences with at least one CArG motif (Table 4). Four of them 

(AT1g52980, At3g57800, AT5g05620, and AT5g06090) were good candidate genes for 

further enrichment test because they all contained the prefect CArG motif in their 

genomic sequences.  
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3.3 Nonradioactive RNA-RNA In situ Hybridization 

In parallel with the ChIP experiment, we also tried to establish an in situ 

hybridization system, which could be potentially used for detection of genes isolated 

from ChIP experiments.  

 

3.3.1 Putative AGL24 Target Genes 

TERMINAL FLOWER 1 (TFL1) is a pivotal gene that affects the growth phases of 

Arabidopsis by regulating the phase transition in the short apical meristem (Shannon & 

Meeks-Wagner, 1991; Schultz & Haughn, 1991; Alvarez et al., 1992; Ray et al., 1996). 

The TFL1 protein has similarity to animal phosphatidylethanolamine-binding proteins, 

which can associtate with membrane protein complexes. Its exact function in celluar 

process is unknown (Bradley et al., 1997). In Arabidopsis, the tfl1 loss-of-function 

mutants showed early flowering and converted inflorescence meristems into floral 

meristems shortly after bolting, while overexpression of TFL1 caused late flowering and 

prolonged life cycle (Ohshima et al., 1997; Ratcliffe et al., 1998). It has been found that 

TFL1 could delay the upregulation of LFY and AP1 expression in the inflorescence apical 

meristem (Ratcliffe et al., 1998), and prevent the floral meristem from responding to the 

activity of LFY or AP1 (Ratcliffe et al., 1999). Since AGL24 acts as a promoter of 

flowering and it functions upstream of LFY, AGL24 may act antagonistic to TFL1 

function. Therefore, we checked TFL1 expression in the background of agl24 loss-of-

function mutants and wild-type plants.  
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SHORT VEGETATIVE PHASE (SVP), is another MADS-box transcription factor, 

involved in the control of flowering time. Loss-of-function of SVP caused significant 

early flowering (Hartman et al., 2000), while overexpression of SVP resulted in late 

flowering (Zhou et al., unpublished data). These results suggest that SVP is an important 

repressor of flowering. Genetic crossings showed that SVP could suppress the late 

flowering phenotype of agl24, and 35S::SVP could also suppress the early flowering 

phenotype of 35S::AGL24 (Zhou et al., unpublished data), indicating that SVP is epistatic 

to AGL24. Thus, SVP might be a downstream regulator of AGL24. In this study, we used 

SVP as a marker gene to compare the different expression of SVP corresponding to 

AGL24 activity.     

 

3.3.2 In Situ Hybridization Results 

 

In situ hybridization showed that in wild-type plants, TFL1 was strongly 

expressed in the centrol zone of the SAM, but not in the apical two layers of cells (Fig. 

18A). Also, TFL1 expression was not detected in the floral meritems at different 

developmental stages. These expression patterns were consistent with previous reports 

(Kardailsky et al., 1999; Ratcliffe et al., 1999), suggesting that TFL1 is responsible for 

the phase transition in the SAM.  

On the other hand, TFL1 expression in agl24 was expanded into the whole zone 

of the SAM (Fig. 18B), which was in great contrast to the confined expression of TFL1 in 

the central region of the SAM in wild type plants. This result implies that AGL24 activity  
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Fig. 18 TFL1 expression pattern in wild type plants (A) and in agl24 mutants (B) 

IM: inflorescence meristem; FM: floral meristem 
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may be responsible for restricting TFL1 expression in the central zone of the SAM, where 

a small group of cell essential for meristem maintenance is present. 

It has been reported that TFL1 expression in the shoot apex accounted for 

indeterminate growth and flowering time control (Bradley et al., 1997). Despite the 

strong phenotypes observed in tfl1 and 35S::TFL1, the exact function of TFL1 is so far 

unknown. The results shown in our study suggest that AGL24 may serve as an upstream 

regulator of TFL1 to regulate flowering time in Arabidopsis. Some studies have 

demonstrated that TFL1 could antagonize the activity of LFY and AP1 to mediate the 

formation of floral meristems (Ratcliffe et al., 1998; Ratcliffe et al., 1999). Thus, a 

mormal floral transition leading to the generation of floral meristems may be achieved by 

repression of TFL1 in the peripheral zone of the SAM by AGL24.  

The interesting phenomenon was that TFL1 expression in the central zone of the 

SAM was not regulated by AGL24, since TFL1 expression was always there regardless of 

AGL24 expression. This observation strongly suggests that AGL24 can only limit TFL1 

expression in the peripheral zone, but not in the central zone of the SAM. Some other 

factors should be responsible for the stable expression of TFL1 in the centre of the SAM.  

In wild-type plants, SVP was strongly expressed in the central zone of the SAM 

and the coupled young leaf primodia during the vegetative stage, while its expression 

disappeared in the inflorescence meristem during floral transition (Hartman et al., 2000; 

Fig 19A). This expression pattern was consistent with SVP function as a repressor of 

flowering.  

In agl24 mutant plants, SVP expression remained the same in the SAM dring the 

vegetative   stage   as   in   wild-type  plants  (data not shown).  However,  SVP  was   still 
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Fig. 19 SVP expression pattern in wild type plants (A) and in agl24 mutants (B).  

IM: inflorescence meristem; FM: floral meristem 
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expressed in the inflorescence meristem of agl24 mutants (Fig 19B). This result implies 

that AGL24 activity may repress SVP expression in the SAM during floral transition.  
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Conclusion 

AGL24, a MADS-box DNA binding transcription factor, is a promoter of 

flowering. It acts downstream of SOC1 and upstream of LFY (Yu et al., 2002). Although 

the linear hierarchy from SOC1 to LFY via AGL24 is well documented, it is still unknown 

what are direct regulators or targets of AGL24.  

In this study, we have applied several molecular methods to analyze the 

regulation of AGL24 and its target genes. First, by utilizing GUS reporter gene, we 

dissected the regulatory regions of AGL24. Several concrete regions required for the 

regulation of AGL24 at different developmental stages were identified. Further 

identification of cis-elements in these regions can help to identify the upstream regulators 

of AGL24. Second, we isolated a group of putative target genes of AGL24 by ChIP. The 

genomic sequences of these target genes contained the consensus binding site of MADS-

box transcript factors including AGL24. Further molecular and genetic studies on these 

target genes will reveal whether they are directly regulated by AGL24 or not. Last, we 

established an in situ hybridization system to detect genes expression in the background 

of agl24 loss-of-function mutants. We successfully detected the alteration of gene 

expression of two marker genes, TFL1 and SVP, in the inflorescence meristem of wild-

type and agl24 plants. The established in situ system can be applied for detection of other 

AGL24 target genes. 

Take together, this study has provided important insights into the regulatory 

network involving AGL24 in floral transition of Arabidopsis. The results derived form 

this study pave ways on the eventual elucidation of AGL24 function in flowering process.  
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