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Abstract
This thesis describes two genes that may establish different identities in neurons and

thus mediate the formation of synaptic connections. The first gene, ephrinB2a, is

expressed strongly in posterior zebrafish tectal neurons that are contacted by retinal

axons. Ectopic expression of ephrinB2a in the anterior midbrain, with the aid of

baculovirus, causes  stalling of retinal axons. EphrinB2a may thus signal some retinal

axons that they have reached their target neurons. The second gene, Rag1

(recombination activation gene-1), which mediates diversity in the immune system, is

surprisingly also expressed in the vertebrate nervous system. Here, RAG1 protein is

shown to be nuclear localized in a subset of differentiated mouse neurons. Chromatin

immunoprecipitation, coupled with macroarray screening, identified a 5’ repeat

region in a LINE-1 retrotransposon, as a potential target of RAG1 in neurons. This

raises the possibility that Rag1 may have a function in neurons by regulating a mobile

element.

Keywords: vertebrate, zebrafish, ephrinb2, baculovirus, Rag1, chromatin

immunoprecipitation, L1 retrotransposon.
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Summary
Neuronal networks are built up through the connections of neuronal processes

– axons and dendrites. Cues from surrounding tissues guide axons towards their

targets during development of the nervous system. Once an axon reaches its target it

needs to find a partner to make synaptic connections. Signals from the target itself

could help the axon to make necessary modifications for synapse formation. To make

precise connections it is also important that each neuron exhibit a unique identity.

This thesis describes the study of two molecules that are expressed in the

nervous system. EphrinB2 a signal from target cells that could induce presynaptic

modification and RAG1, a molecule that generates diversity in immune system,

which is also present in specific subsets of neurons.

In this study, the role of EphrinB2 in the zebrafish visual system is examined.

EphrinB2 belongs to a family of ligands for Eph receptor tyrosine kinases. It is B-

type Ephrins which are transmembrane molecules. Ephrins are known for their role in

topographic mapping of retinal ganglion cell axons on the optic tectum (O'Leary and

Wilkinson, 1999; Wilkinson, 2000). EphrinB2 is known as a repellant cue for axon

guidance and also has been found in a retinorecipient layer of chick tectum where

RGC axons make synapses (Braisted et al., 1997).

With RNA-in-situ hybridization I found that zebrafish EphrinB2 is expressed

in tectal neurons in the posterior part of the tectum when RGC axons enter the

neuropil. Receptors for EphrinB2 on zebrafish RGC axons were detected by in-vitro

receptor-ligand binding assays. As reported earlier in other systems, zebrafish RGC

axons  showed repulsive response to EphrinB2 in stripe assays. Studies with the
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retinotectal projection mutant “gnarled” pointed out that the expression of ephrinB2

in ectopic cells in the anterior tectum of mutants could cause a premature stopping of

RGC axons (Wagle et al., 2004). To verify this observation, a baculovirus-based gene

expression system was developed which allowed temporal-spatial control over gene

misexpression in zebrafish (Wagle and Jesuthasan, 2003). Ectopic expression of

ephrinB2a in the anterior midbrain of wildtype embryos, with the aid of baculovirus,

was found to inhibit RGC axon entry into the tectum. It is thus proposed that

ephrinB2 may signal a subpopulation of RGC axons that they have reached their

target neurons in the tectum.

The Recombination activating gene-1 (RAG1) is expressed in the vertebrate

immune system and in the nervous system, including the zebrafish visual system

(Chun et al., 1991; Frippiat et al., 2001; Jessen et al., 2001). RAG1 is well

characterized for its role in generating diversity in immune system by V(D)J

recombination (Schatz et al., 1989). Rag1 plays a key role in the initiation of this

process of genomic rearrangement by recognizing and cutting  recombination signal

sequences (RSS) (Schatz et al., 1992). Detection of Rag1 transcripts  in the mouse

nervous system led to the idea that the genome may rearranged in neurons, but there

has been no conclusive experimental evidence. In spite of the studies done over the

last decade, the presence of RAG1 protein in neurons has not been demonstrated and

its functions are questionable.

RAG1 protein was detected in specific neurons from the mouse brain at P10-

14 and in neuronally differentiated P19 embryonic carcinoma cells. To identify

potential RAG1 binding sites in neurons, chromatin immunoprecipitation (ChIP)
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coupled with macroarray screening of a genomic YAC library was carried out. As a

positive control, ChIP- DNA pulled down from thymocytes with anti-RAG1 antibody

was used to generate probe. Signals obtained in this experiment partially overlapped

those obtained from a T-cell receptor locus probe, showing the feasibility of this

approach. ChIP-DNA from brain and neuronally differentiated P19 cells were then

used to generate probes. A YAC clone that showed signal with both probes was

analyzed further. Fine mapping by Southern analysis of BAC clones covering the

YAC locus narrowed the potential target to a region which harbors a retrotransposon

element. Binding of RAG1 to this region was further confirmed by analyzing ChIP-

DNA from brain with the specific PCR. Analysis of the target sequence indicated the

presence of a conserved heptamer found in the RSS. Although the YAC clone

mapped to chromosome-9, PCR analysis and BAC macroarray screening with brain

ChIP-DNA showed that the repeat  region identified here as a potential target may not

be specific to chromosome-9.

Identifying a retrotransposon as a potential target of RAG1 in neurons does

not immediately answer the question of whether RAG1 could generate diversity in

neurons as it does in the immune system. Nevertheless this finding indicates that

RAG1 has distinct binding activity in neurons and puts us one step further in

understanding the role of RAG1 in neurons.
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Chapter-I

Introduction
During embryonic development, the nervous system develops from a mass of

neuroblasts (neuronal precursor cells). These cells divide and build a network of

interconnected neurons. This is a crucial step in embryonic development, as a precise

neuronal network is eventually responsible for most of the activities of an organism.

1.1 Central Nervous System (CNS) development
Various model organisms ranging from worms and insects to mammals have

been used to understand neural development. With the help of mutants and other tools

of genetic manipulation, the mechanisms of neural differentiation and nervous system

patterning have been elucidated. As proposed by Goodman and Doe, the whole of

neurogenesis can be viewed in eight steps (1) Induction and patterning of neuron

forming regions, (2) birth and migration of neurons and glia, (3) generation of

specific cell fates, (4) guidance of axonal growth cones to specific targets, (5)

formation of specific synaptic connection, (6) binding of specific trophic factors for

survival and differentiation, (7) competitive rearrangement of functional synapses and

(8) continued synaptic plasticity during the life of an organism (Goodman and Doe,

1993). The first three steps are part of neural development and differentiation whereas

the last three steps are activity-dependent. In this chapter, I will briefly describe the

first steps of neural differentiation with a focus on axon guidance.

1.1.1. Neural differentiation
Soon after the embryo starts developing into a mulitcellular mass of cells from

a single cell stage, it begins gastrulation. During this stage cells proliferate and
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migrate. Involution of these cells converts the embryo into a multi-layered structure.

Three germ layers – ectoderm, mesoderm and endoderm are formed. Specialized cell

movements known as convergent-extension transform the embryo into a primitive

body plan. Maternally deposited factors along with zygotically expressed genes

pattern the embryo along the dorso-ventral (D-V) and anterior-posterior (A-P) axes.

During gastrulation, a group of cells from the dorsal ectoderm is assigned a neuronal

fate. These neuronal precursor cells migrate to their appropriate position to form the

preliminary central nervous system in the form of a neural tube.

1.1.2. Neuralation and patterning of neural tube
In most vertebrate species, the anterior neural tube is formed by primary

neuralation involving cell proliferation, invagination and pinching off from the rest of

the cells, whereas the posterior part of the neural tube is formed by secondary

neuralation in which the neural tube arises from a solid chord of cells which

subsequently hollows out (Figure: 1.1A). The neural tube is patterned in A-P and D-V

axis by the action of several genes. The anterior neural tube folds into forebrain

(prosencephelon), midbrain (mesencephalon) and hindbrain (rhombencephalon)

(Figure 1.1B). During the formation of preliminary brain structure from the anterior

neural tube, optic vesicles are derived from the forebrain. Other sensory organs

develop while the neural tube is transforming into the CNS. The posterior neural tube

forms the spinal cord. Within the neural tube, neurons are specified to carry out

different roles.
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Figure 1.1: Schematic – Primary neuralation and patterning of neural tube

(Adapted & modified from Developmental Biology – 5th Edition: Scott F. Gilbert)

(A) The ectodermal plate consists of the neural tube in the middle and presumptive

epidermis on either side separated by neural crest cells. The presumptive epidermis

moves towards the center pushing the neural tube below it. This results in formation

of an outer epidermis and neural tube contacted by neural crest cells that eventually

migrate away from the neural tube to form peripheral neurons, glia and skin pigment

cells.

(B) In the anterior region, the neural tube folds into three major structures

Prosencephalon (Fore brain):  Telencephalon and Diencephalon

Mesencephalon (Mid brain)

Rhombencephalon (Hind brain)  Metencephalon and Myelencephalon

Structures in the adult brain such as the olfactory lobe, hippocampus and thalamus are

derived from these structures.

(C) the neural tube is patterned along the dorsal-ventral axis by signals from the

ventral floor-pate and dorsal epidermis that specify different types of motor neurons

and interneurons by activating transcription of specific genes.
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1.2 Neuronal diversity
The nervous system of vertebrates comprises many types of neurons. In the

human brain, there are approximately 1012 neurons of various types, for example there

are about two dozen types of inhibitory neurons in the hippocampus alone (Parra et

al., 1998). There is diversity in anatomy, gene expression and physiological

properties. Morphologically, there are four different types of neurons, i.e. axonal,

monopolar, bipolar, and multipolar.  Based on their function in the nervous system,

neurons are classified as sensory neurons, interneurons and motor neurons. Different

types of sensory neurons are found within each sensory organ, depending on the

stimulus they respond to. In the retina there are at least one dozen different types of

ganglion cells (Devries and Baylor, 1997). Similarly in the olfactory epithelium each

neuron has its own identity based on odorant receptor expression (Mombaerts et al.,

1996). Motor neurons have distinct anatomical connectivities and gene expression

properties. Neurons within the CNS have differences in neurotransmitter identities;

they may be DOPAergic or GABAergic for example. They also differ by expression

of surface molecules such as protocadherins.

This diversity is created by the action of several signaling molecules that act

during the development of the nervous system. Two mechanisms have been described

for neuronal fate specification: lineage dependency and extrinsic signal/morphogen

dependency. Proneural genes belonging to bHLH family initiate neural fate and

generate progenitor cells that are committed to differentiate (Bertrand et al., 2002).

Studies in Drosophila have shown that lateral inhibition involving Notch-Delta

signaling plays a crucial role in specification of neuronal fate in neuroblasts. A
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similar mechanism exists in vertebrates as well (Lewis, 1998). Asymmetric cell

division of neuronal progenitors allows the inheritance of cell fate determining factors

to one daughter cell, thus resulting cells may be specified as neuronal or glial (Chia

and Yang, 2002). Neuronal specification and diversity has been well studied in the

CNS with respect to patterning of hindbrain along rostro-caudal axis and D-V axis in

the neural tube. During development, FGF and several Hox genes pattern different

regions of the brain to specify neurons within these structures (Dasen et al., 2003;

Salie et al., 2005). The neural tube is patterned along the D-V axis by the action of

TGF-β from dorsal and Sonic hedgehog from the ventral floorplate or notochord

(Echelard et al., 1993; Roelink et al., 1994; Liem et al., 1995; Liem et al., 2000;

Nguyen et al., 2000). Motor neurons and interneurons are specified along the D-V

axis within the neural tube by the combinatorial effect of these factors (Figure 1.1C).

These factors induce expression of transcription factors and genes which govern

various properties of the neuron such as expression cell surface molecule/receptors,

production and response to neurotransmitters. Thus various neurons are specified

during the development of the nervous system. This allows neurons to carry out their

specialized functions as well as to connect with their synaptic partner.

Sperry’s chemoaffinity theory postulates a cytochemical specificity to

individual neurons (Sperry, 1963). Cell surface molecules are the best candidate to

satisfy this assumption. Indeed, in Drosophila, Down syndrome cell adhesion

molecule (DSCAM) could generate diversity in neurons (Schmucker and Flanagan,

2004). The Dscam locus contains three arrays of alternative exons that are combined

with 20 constant exons and two alternative transmembrane domain by alternative
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RNA-splicing (Wojtowicz et al., 2004). This generates a huge repertoire of DSCAM

molecules containing different extracellular domains. These molecules show

homophilic interaction and are involved in axon guidance (Schmucker et al., 2000;

Wojtowicz et al., 2004). The diversity in neuronally expressed DSCAM provides a

mechanism for selective axon fasciculation and recognition of synaptic targets.

Although vertebrate orthologs of Dscam do not show this diversity, other cell surface

molecules such as protocadherins (Pcdh) exist and these are good candidates for

generating diversity in the vertebrate nervous system (Serafini, 1999). The Pcdh

genes are clustered in the genome and show similar organization as that of

immunoglobulins or T-cell receptors (Wu and Maniatis, 1999; Wu et al., 2001). Like

Dscam, individual Pcdh mRNA are generated by splicing of variable exons to the

constant 3’end (Wu and Maniatis, 1999). Pcdh are localized in  synapses, and have

been proposed to offer synaptic specificity along with other cadherins (Kohmura et

al., 1998; Serafini, 1999). Other molecules such as cochlear potassium channels and

synaptic neurexins also show various isoforms through alternative RNA splicing

mechanism and may further contribute to neuronal diversity (Black, 1998; Missler

and Sudhof, 1998).

Thus neuronal diversity is achieved by the expression of various genes. In spite

of this diversity and large number of neurons in the vertebrate nervous system,

neurons are connected precisely to their targets. In fact this diversity is an essential

criteria for building a complex neuronal network and its functionality.
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1.3 Axon guidance –mechanism
Apart from differentiation and migration of neurons to their appropriate

position in the embryo, it is also important that these neurons are connected to each

other in a specific manner to build a functional neuronal network. Once neurons are

specified, they send out processes called axons and dendrites to connect with each

other. An axon can extend many cell diameters to connect to other neurons. Axons

grow in a stepwise manner and surrounding tissue along the axon path may act as

guide posts. Examples of such cells are those at the midline for peripheral axons

(reviewed in Tessier-Lavigne and Goodman, 1996). The tip of the axon is called the

growth cone. It has microtubules at the base and dynamic actin filaments that form

finger like protrusions (filopodia) and web-like lamellipodia (Figure 1.2A). It also

bears receptors at the surface that sense cues from surrounding tissues (reviewed in

Tessier-Lavigne and Goodman, 1996)..

During embryonic development, axon guidance is mainly independent of

neuronal activity and relies on surrounding cues. These cues could be in the form of

secreted molecules or cell surface molecules that either attract or repel the growth

cone (Figure 1.2). In the case of secreted signaling molecules, axon behavior is

termed as chemoattraction or chemorepulsion, whereas in the case of guidance

molecules bound to cell surface the phenomenon is known as contact mediated

attraction or repulsion (Figure 1.2 B). Receptor ligand interactions at the growth cone

lead to changes in the axon cytoskeleton. Signaling molecules may trigger different

types of signaling pathways that eventually result in cytoskeletal rearrangements.
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1.4 Model systems and methods to study axon guidance
Several model organisms have been used over the last few decades to study axon

guidance. Studies in invertebrates, mainly in C. elegans and Drosophila, have been

successful in identifying many axon guidance molecules. The simple nervous system

architecture, for example 302 total neurons in C. elegans and segmental arrangement in

Drosophila allowed connection of individual neurons with their targets to be studied

during development. Moreover these systems are easily amenable to genetic

manipulation. Through the study of such simple systems, well-conserved mechanisms

were elucidated. One example is the crossing of axons at the midline (Figure 1.3). Axons

from peripheral neurons are attracted towards the midline and once they cross the midline

they are kept away from the midline. The change in axon response to the same guidepost

has been studied in depth in Drosophila. Molecules such as Roundabout,

Commissureless, Netrins were identified by genetics and characterized extensively

(Kaprielian et al., 2001). Thus genetics in invertebrates has been a powerful tool to

identify guidance cues. Many of these genes have orthologs in vertebrates where they

also function at midline crossing.

Biochemical approaches have also identified several cell adhesion and signaling

molecules. A key requirement is an assay system to test effects of these molecules.

Conventionally neuronal explants and co-cultures were used for axon guidance studies.

Neuronal extensions (neurite growth) can be studied in response to secreted molecules by

placing neurons in proximity to cells expressing those molecules (Kennedy et al., 1994;

Serafini et al., 1994). Two assays that are widely used studying effects of various

molecules on growth cone behavior are “stripe assays” for analyzing membrane
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associated molecules, and the “pipette assay” or “growth cone turning assay” for soluble

molecules. Initial stripes assays developed by Bonhoeffer’s group used stripes of

membrane preparations from tectal cells to study the growth of retinal axons from

anterior or posterior retina (Walter et al., 1987). In a modification of this assay, stripes of

purified proteins have been used to examine the response of retinal axons (Drescher et al.,

1995). Chemo- attraction or repulsion could be better studied in pipette assays. A glass

capillary pipette holding a solution of the molecule to be tested is positioned close to

growth cone. Pulses of these molecules create a concentration gradient between the

pipette tip and growth cone. Growth cone response to this gradient could be studied by

time-lapse microscopy (Lohof et al., 1992).
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z3

(Adapted and modified from : Developmental Biology – 5th Edition: Scott F. Gilebert)

Drosophila

Drosophila
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1.5 Principles of axon guidance
In 1892 Ramón y Cajal proposed that chemotactic cues guide axons in the nervous

system (Ramón, 1892). About hundred years later the molecular nature of these cues

became clear when several axon guidance molecules were identified based on approaches

described above. Below is the brief summary of these molecules which describe the

principles of axon guidance.

1.5.1 Netrins:
The idea of chemoattractant-mediated axon guidance was supported when Netrins

were isolated from chick brain, based on their ability to promote outgrowth and reorient

comissural axons in an in vitro assay system. (Kennedy et al., 1994; Serafini et al., 1994).

Netrins form a small family of secreted proteins similar to laminin, an extracellular

matrix protein.  In mice, loss of Netrin-1 leads to abnormal commissural axons projection

(Serafini et al., 1996). Similarly C.elegans mutant for UNC-5, a homolog of Netrin-1,

show a defect in circumferential axon guidance. Also Netrin-A and Netrin-B are

expressed in the Drosophila ventral nerve cord during commissure formation, and

deletion of both these genes leads to formation of thinner than normal commissures

(Harris et al., 1996; Mitchell et al., 1996). Thus the role of Netrin as a chemoattractant at

the midline remains evolutionarily conserved.

Netrins act through their receptors known as Deleted in Colorectal Cancer (DCC)

and UNC5H in mammals. Mice mutant for DCC shows similar defects in commissural

axon projection as that of the Netrin-1 mutant (Fazeli et al., 1997). Surprisingly in C.

elegans, the Netrin ortholog UNC-6 acts as an attractant for some axons and a repellant



14

for others. UNC-6 genetically interacts with the DCC ortholog UNC-40 for ventral

guidance (Hedgecock et al., 1990; Chan et al., 1996), and UNC-5, a novel Ig superfamily

member, is required for dorsal directed axon guidance by repulsive interaction (Culotti

and Merz, 1998). Similarly Netrin-1 was also found to be bifunctional and repelled

Xenopus spinal neurons under in vitro conditions (Ming et al., 1997). UNC-5 homologs

in vertebrate have been identified and found to be expressed in neurons that are repelled

by Netrin-1 in vitro  (Leonardo et al., 1997). These studies showed that an axon guidance

molecule could act as attractive or repulsive in different contexts by interacting with

different receptors.

1.5.2 Semaphorins:
The molecular aspect of repulsive interactions in axon guidance was revealed by

identification and characterization of Semaphorin. The first Semaphorin was identified in

the grasshopper CNS (Kolodkin et al., 1992) and the subsequent one in vertebrate growth

cone collapse study (Luo et al., 1993).

The semaphorins are a large family of cell surface and secreted guidance molecules.

They show a characteristic ~ 420 amino acid “sema” domain at their –NH2 termini and

are divided into eight classes (reviewed in (Raper, 2000). Semaphorins signal through a

multimeric receptor complex which involves plexin, a family of transmembrane

molecules, and neuropillins, along with other molecules such as L1 (a neuronal cell

adhesion molecule), the Met receptor tyrosine kinase, and OTK (an inactive receptor

tyrosine kinase in Drosophila) (Raper, 2000). Semaphorin III, also known as collapsin-1

in chicken, is the best studied semaphorin in vertebrates. It induces growth cone collapse

in DRG (dorsal root ganglion) axons (Luo et al., 1993). Semphorin mainly functions as a
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repulsive cue but has also been shown to act as an attractant in some cases (Wong et al.,

1999; Raper, 2000). Sensory axons and spinal motor axons but not RGC axons are

repelled from immobilized source of Sema III (Messersmith et al., 1995; Puschel et al.,

1996; Varela-Echavarria et al., 1997).

1.5.3 Slit-Robo
Signals from the midline may attract or repel axons. After reaching the midline,

some axons grow parallel to it on the ipsilateral  (same) side while some axons cross the

midline forming commissures and then grow parallel to the midline on the contralateral

(other) side. The change in axon behavior at the midline was puzzling, as commissural

axons are first attracted towards the midline but are kept away after crossing it.

In the Drosophila mutant roundabout (robo), axons that do not cross the midline

usually do cross over, and those which cross it once are attracted towards the midline

after crossing, resulting in formation of thick commissures (Seeger et al., 1993). Another

mutant commissureless (comm) showed exactly the opposite phenotype to that of robo,

displaying absence of nearly all commissures. Molecular characterization of these

mutants and identification of Slit, a ligand for Robo, solved the midline crossing puzzle.

Interaction of Slit with Robo leads to repulsion of axons, whereas Commissureless

regulates the Robo-Slit interaction by controlling the localization of Robo at the growth

cone during the midline crossing (Kidd et al., 1998; Keleman et al., 2002; Myat et al.,

2002).

A C. elegans homolog of Robo, Sax-3 serves a similar function in axon guidance

near the midline. Like in Drosophila, vertebrate Slit proteins are present at the ventral

midline cells and commissural axons are repelled by Slit after crossing the midline (Brose
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et al., 1999; Zou et al., 2000). Mice deficient for Slit1 and Slit2 do not show an obvious

defect in midline guidance because of the presence of Slit3 at the midline in these mice.

Nevertheless these mice show a defect in formation of the optic chiasm (Plump et al.,

2002). Similar defects are seen in the zebrafish mutant astray/robo2 in which RGC axons

make multiple errors before, during and after crossing the midline (Fricke et al., 2001).

Thus, like Netrins the function of Robo-Slit at the midline seems to be conserved during

evolution. These studies also revealed how the axon response to a guidepost or a

guidance molecule could be reversed by receptor localization at the growth cone.

1.5.4 Eph-Ephrins
In visual system, most RGCs (retinal ganglion cells) send their axons to the

contralateral optic tectum. RGC axons project to specific areas on the tectum with respect

to their point of origin. For example, axons from anterior part of the eye terminate in the

posterior region of the tectum and posterior axons in the anterior tectum. This is known

as the topographic mapping of axons and has been an interesting question in the study of

axon guidance. Sperry invoked the chemoaffinity theory, proposing that gradients of

chemical tags may provide positional information to neurons in the eye as well as in the

tectum (Sperry, 1963). Bonhoeffer’s stripe assays provided experimental evidence to this

theory (Walter et al., 1987). The molecular nature of this phenomenon began to become

clear after the identification of Ephrins as guidance cues in the tectum (Drescher et al.,

1995). There are two types of ephrin ligands viz. EphrinAs that are GPI anchored and

EphrinBs which are transmembrane molecules. Accordingly there are EphA and EphB

receptors. These molecules play important roles in retinotectal mapping i.e. mapping of

RGC axons onto their target - the optic tectum in the brain (O'Leary and Wilkinson,
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1999). The role of Eph-Ephrin signaling is well studied in the visual system (discussed in

first section), but they are also known to be involved in axon guidance elsewhere in the

nervous system.

The role of EphA4 and EphrinB3 during the formation of the corticospinal tract

(CST) was elucidated in a genetic study, (Kullander et al., 2001; Kullander et al., 2001;

Yokoyama et al., 2001). CST axons originate in the motor cortex and cross the midline

once at the brain – spinal cord junction. In mice carrying a non-catalytic allele of EphA4

or deletion of EphrinB3, CST axons cross the midline a second time. It was suggested

that EphrinB3 expressed by spinal cord midline cells repels EphA4 positive CST axons

(Kullander et al., 2001). Midline Ephrins do not repel spinal cord commissural axons as

EphB1 and EphA2 receptors are absent on ipsilateral axon segments but are up-regulated

on distal axons segments after crossing the midline by localized protein translation and

cell surface expression (Imondi et al., 2000; Brittis et al., 2002). Formation of the anterior

commissure (AC) involves reverse signaling between EphrinBs expressed on AC, and

EphB2 and EphA4 expressed in territories through which the AC migrates during midline

crossing (Henkemeyer et al., 1996; Kullander et al., 2001).

Apart from axon guidance at the midline, Eph-Ephrins are also involved in creating

patterned neuronal connections in the CNS and the peripheral nervous system. Similar to

the topographic mapping in the visual system, Eph signaling acts in topographic

projection involving the septum and hippocampus (Gao et al., 1996; Zhang et al., 1996).

These studies show that EphrinA2 is expressed in a gradient on the septum whereas

EphA5 is in the complementary gradient on the hippocampus. EphrinAs are also involved

in patterning axon projections in other parts of the CNS, such as the thalamocortical
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connection and cerebellum (Nishida et al., 2002; Dufour et al., 2003), reviewed in

(Palmer and Klein, 2003). Axon projection of motor neurons within the lateral column of

the spinal cord and their target muscles also show topographic mapping influenced by

EphA4 (Helmbacher et al., 2000; Eberhart et al., 2002). Topographic mapping of axons

from the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB) involves

EphrinA5 and EphA6 (Knoll et al., 2001). EphrinAs along with odorant receptors are also

involved in axon projection of olfactory neurons (Cutforth et al., 2003).

1.5.5 Secreted molecules: Shh, BMP and Wnt
Secreted molecules such as Shh, BMP and Wnt, which play important roles in

various developmental processes such as embryonic axis determination, neuronal

differentiation and specification, also participate in axon guidance.

The first clue implicating the Shh pathway in axon guidance came from an

observation that commissural axons do reach the ventral midline in mutant mice lacking

Netrin or DCC (which are involved in attraction of commissure axons to the ventral

midline). However, in double mutants lacking Gli-2 (a component of Shh signaling

pathway) and Netrin-1, commissural axons do not reach to the ventral midline (Charron

et al., 2003). Thus Shh signaling may serve as an additional attractive cue from the

midline to commissural axons. These observations were further supported by experiments

in which the spinal cord was cultured with Shh expressing CHO (Chinese hamster ovary)

cells and by in vitro growth cone turning assays.  Shh is also known to affect growth cone

behavior of RGC axons in vitro (Trousse et al., 2001).

In an in vitro assay, commisural axons were reoriented away from the roof plate

(Augsburger et al., 1999). The behavior of commissural axons in co-culture assays with
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roof-plate from wildtype and BMP-7-/- or GDF-7-/- mutant mice revealed that these

molecules serve as repulsive cues (Butler and Dodd, 2003). Further analysis subsequently

showed that BMP7 and GDF7 heterodimers cause growth cone collapse in commisural

axons.

A family of secreted molecules, the Wnts, which function in nervous system

development, are known to be involved in presynaptic axon remodeling in vertebrate

synaptogenesis and maturation of Drosophila neuromuscular junctions (Hall et al., 2000;

Krylova et al., 2002; Packard et al., 2002). Recently one Wnt family member, the Drl

ligand Wnt-5 was found to function in axon guidance of anterior commissure axons in

Drosophila (Yoshikawa et al., 2003).

1.5.6 Other signaling molecules
Apart from the major axon guidance molecules discussed above there are several

neurotrophic growth factors, cell adhesion molecules and small molecules such as

calcium and cyclic nucleotides that play important roles in axonal pathfinding.

The neurotrophin  family comprises nerve growth factors (NGF), brain derived

neurotrophic factor (BDNF), NT3 and NT4/5. These factors are necessary for the

development, maintenance and plasticity of the nervous system. Neurotrophins act

through two types of receptors viz. a low affinity receptor p75 and a ligand specific

receptor tyrosine kinase of the trk family (Segal and Greenberg, 1996). When injected

into ventricles of neonatal rats, NGF evoked aberrant axon growth (Menesini Chen et al.,

1978); it also promoted axonal growth of embryonic sensory neurons in vitro

(Letourneau, 1978; Gundersen and Barrett, 1979). The role of neurotrophins in axon

guidance has also been studied using DRG neurons. Gradients of NGF and BDNF in
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culture conditions evoked either an attractive or inhibitory response in growth cones

depending upon the neuronal type e.g. BDNF, NT3 and NT4/5 caused a chemotropic

turning response in certain populations of embryonic DRG neurons whereas they served

as inhibitory factors for growth cones of NGF dependent neurons (Paves and Saarma,

1997). BDNF also induced branching in RGC axons (Alsina et al., 2001).

Components of the extracellular matrix (ECM) have also been demonstrated to

modulate neurite outgrowth. The myelin associated growth factor (MAG) in its soluble

form was found to be a repulsive cue for cultured spinal neurons (Song et al., 1998).

Soluble forms of cell adhesion molecules (CAM) such as neuronal CAM, L1 and

neuronal cadherin (calcium dependent adherent proteins) can affect nerve growth by

modulating cascades of secondary messenger systems. Many CAMs predominantly show

homophilic interaction and could potentially influence growth cone guidance, axon

fasciculation, and target recognition.

1.5.7 Interpretation of guidance cues (effect of Calcium and cyclic
nucleotides)

Axon guidance molecules were initially described either as attractive, repulsive or in

some cases bifunctional. Studies by Mu Ming Poo and colleagues provided an alternate

viewpoint by showing that a guidance cue can be interpreted by the growth cone as

attractive or repulsive depending on intrinsic factors such as calcium and cyclic

nucleotide concentration (Terman and Kolodkin, 1999). For example, the attraction of

cultured retinal neuron growth cones to  netrin-1 and BDNF is converted to repulsion

when these neurons are grown on a laminin substrate, which alters the level of cAMP in

neurons (Song et al., 1997). Cultured spinal neurons show an attractive response to a

gradient of a membrane permeable analogue of cAMP (Lohof et al., 1992). Mutant mice



21

lacking type-I adenylate cyclase activity shows disrupted patterning of the

somatosenssory cortex (Abdel-Majid et al., 1998). The effect of cAMP may be mediated

by protein kinase-A (PKA) through its substrate IP3 receptor and cytoskeletal proteins.

Another cyclic nucleotide, cGMP has also been shown to have role in establishing

connections of retinal and olfactory axons (Wu et al., 1994; Gibbs and Truman, 1998).

Extracellular and cytosolic levels of Ca2+ play a crucial role in regulating a wide

range of growth cone behaviors. An inverse correlation of neurite extension rate with the

frequency of Ca2+ transients in growth cones has been observed (Gu and Spitzer, 1995;

Gomez and Spitzer, 1999). Growth cone collapse is sometimes associated with an

increase in cytosolic Ca2+ whereas a lowering of extracellular Ca2+ concentration may

increase neurite extension (Song et al., 1997; Gomez and Spitzer, 1999). The turning

response of cultured Xenopus spinal neuron growth cones induced by Netrin-1 and

BDNF can be abolished by removing extracellular Ca2+ (Ming et al., 1997; Song et al.,

1997). Neural cell adhesion molecules such as L1 and NCAM can increase intracellular

Ca2+ by opening Ca2+ channels. Calcium signaling can be transduced by calmodulin

(CaM) and CaM dependent kinases (Zheng et al., 1994). Selective disruption Ca2+/CaM

function in Drosophila embryos resulted in deviating axon growth, fasciculation, and

pathfinding (VanBerkum and Goodman, 1995). The potential downstream target of Ca2+

is adenylate cyclase, which in turn regulates the level of cAMP.

1.6 Aim of the thesis

1.6.1 Study of EphrinB2a in zebrafish visual system
Differentiation of neurons and axon guidance have been studied for the past

several decades. As described above, the molecular mechanism of neuronal
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differentiation, axon pathfinding and topographic mapping has been elucidated to a great

extent using various model organisms. The first part of this thesis examines a question

that has received less attention, which is how axons from peripheral neurons find their

synaptic partners within their target zone.

Axons are guided towards their target zone by different cues, but once axons

reach their target, they need to change their growth behavior in order to make connection

with their partners. At least three changes need to happen to form synapses in the target

zone: axon should stop their growth so as not to overshoot the target, they should sort out

into individual axons i.e. defasciculate and branch locally (arborize) and they should

sequester proteins that are necessary for forming synaptic connections (presynaptic

modification).

It is easy to conceptualize that the molecules expressed on the target, either in

neurons or surrounding glial cells could induce these changes in the axon and thereby

facilitate synapse formation. It is likely that a combination of signaling molecules is

involved in this process. In the first part of the thesis (second chapter) I describe the study

of one such signaling molecule, Ephrin-B2 - that is known to be involved in axon

guidance as well as other cell migration phenomena (e.g. vasculogenesis and

somitogenesis) and also recently suggested to be involved in target recognition (reviewed

in (Palmer and Klein, 2003; Davy and Soriano, 2005).

1.6.2 Study of Rag1(Recombination activating gene-1) in neurons
Guidance cues help axons to reach their destination and may further help in target

recognition but how does each neuron connect precisely to its right synaptic partner? To

achieve this, each neuron should carry a specific address. At the molecular level this
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would mean that each neuron carries specific molecule(s) that would be recognized by its

synaptic partner. Even in a simplest vertebrate there would always be more synapses than

the number of genes. So the question arises as to how such diversity is achieved. In

Drosophila a family of cell adhesion molecules, DSCAM (Down syndrome cell adhesion

molecule), plays an important role in this process.  Large number of diverse DSCAM

molecules are synthesized from a single transcript from the Dscam locus by alternate

RNA splicing (Schmucker et al., 2000; Celotto and Graveley, 2001). But this

phenomenon is specific to invertebrates, as the vertebrate DSCAM ortholog does not

show this property. Cell adhesion molecules such as protocadherin may be involved in

synapse formation. However, the question of how diversity is generated and maintained

remains open

One intriguing possibility is that the vertebrate nervous system could generate

diversity in neurons by genomic rearrangement analogous to the immune system. In the

immune system, a large repertoire of antibodies is generated from a relatively small

number of genes by genomic rearrangement. Such a process offers a large diversity and

unique identity to each cell. Does a similar mechanism exist in neurons? Even before the

mechanism of V(D)J recombination in immune system was known, Dreyer et al proposed

the hypothesis of genetic reprogramming in the immune system and nervous system with

reference to gold fish retinotectal projection (Dreyer et al., 1967).  At least at the

molecular level there seems to be a link between the immune system and the nervous

system. Rag1 plays a key role in the initiation of this process of genomic rearrangement

by recognizing and cutting recombination signal sequences (RSS). This molecule is also

known to be expressed in the nervous system. Several groups have reported the presence
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of Rag1 transcripts in the nervous system of various vertebrate model organisms and

transgenic animals with reporter genes driven by the Rag1 promoter have shown

expression in the nervous system (Chun et al., 1991; Frippiat et al., 2001; Jessen et al.,

2001). Although mice lacking Rag1 do not show any obvious morphological defect in the

brain, behavioral studies do show subtle defects in these mice (Mombaerts et al., 1992;

Cushman et al., 2003). In spite of studies done over the last decade, the presence of

RAG1 protein and its function in neurons remains to be established. In the second part of

the thesis (chapter-3), I describe a study of Rag1 in neurons.
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Chapter II

Development of a baculovirus mediated misexpression
system and its application to the study of EphrinB2a
function in Zebrafish visual system

2.1 Introduction
Though axon guidance molecules and cues that are necessary for topographic

mapping have been extensively studied, molecules involved in target recognition within

the CNS have not been well characterized. Once axons reach their target, they should

stop growing further and arborize within the target. It is likely that the signals for target

recognition are provided by the target itself. These signals should meet at least three

conditions: firstly, they should be expressed postsynaptically, secondly the receptor for

these signals should be present on presynaptic cells and lastly, these molecules should

have a growth inhibitory effect on the axons. In case of motor neuron connections with

their target muscles, a specific form of muscle derived laminin may act as “stop signal”

for axonal growth (Martin et al., 1995; Noakes et al., 1995). Such stop signals have not

been characterized for peripheral neurons. This study addresses the question by candidate

gene approach using the visual system as a model.

2.1.1 Vertebrate visual system:
The vertebrate visual system has been a model for studying axon guidance of

peripheral neurons. The vertebrate eye consists of a lens that projects the image of the

surrounding environment onto the retina which includes photoreceptors. The information

from photoreceptors is transmitted to the brain by retinal ganglion cells (RGCs) which

send their axons to the visual centers in the midbrain. RGC axons from the entire retina

first come together at the optic disc, form a fascicle and exit the eye as an optic nerve.
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During the development of the visual system in vertebrates such as fish and amphibians,

RGCs innervate a number of targets in the midbrain, with the most prominent being the

optic tectum. In mammals, RGCs are connected to the lateral geniculate nuclei (LGN)

and superior colliculus (SC) in the midbrain. These centers are connected to the primary

visual cortex. A majority of RGCs send their axons to the contralateral tectum, but a

population of RGC axons are connected to the ipsilateral centers.

Within the optic tectum, axons are sorted out depending on where they originate

from.  Axons from the anterior eye branch primarily in the posterior tectum, while those

from the posterior eye branch in the anterior tectum. Similarly, axons from the dorsal eye

branch in the ventral tectum, while those from the ventral eye arborize in the dorsal

tectum. As they branch, the axons form synapses with tectal neurons. A family of

receptor tyrosine kinases – Eph and their ligands Ephrins - are the main players in the

topographic mapping of RGC axons.

2.1.2 Eph-Ephrins
 Eph receptors constitute the largest subfamily of receptor tyrosine kinases (Tuzi and

Gullick, 1994; Orioli and Klein, 1997). Its 13 members (in mammals) are subdivided

based on their sequence similarity and ligand binding properties into subclass-A: EphA1-

EphA8 and subclass-B: EphB1-EphB4, EphB6. Their ligands are also subdivided into

subclass-A: EphrinA1-EphrinA5 which are associated with the cell membrane by a

glycosyl phosphatidylinositol anchor and subclass-B: EphrinB1-EphrinB3 which are

transmembrane proteins. Ephrin orthologs have also been identified in invertebrates

(George et al., 1998; Scully et al., 1999; Wang et al., 1999; Bossing and Brand, 2002).

All Eph-Ephrins mentioned in this section are either referred to by the original
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publication or as suggested by the Eph nomenclature committee

(Eph_Nomenclature_Committee, 1997) and described by Nigel Holder & Rüdiger Klein

(Holder and Klein, 1999). Binding of Ephrins to Eph is promiscuous (Figure 2.1). It is

known that EphA4 can bind to EphrinB2 and EphrinB3 but not EphrinB1 (O'Leary and

Wilkinson, 1999). This promiscuity could cause functional redundancy in vivo (Orioli et

al., 1996; Feldheim et al., 2000).

The first Eph receptor was cloned in a screen for human homologs of viral oncogene

(Hirai et al., 1987). Later Eph and Ephrin were extensively studied for their role in axon

guidance and retinotectal topographic mapping (reviewed in (O'Leary and Wilkinson,

1999). But research over the last several years shows that Eph-Ephrin signaling is

involved in several biological process during embryonic development, in the adult and in

some pathological conditions  (reviewed in (Palmer and Klein, 2003). Apart from their

neuronal role, ephrins have been studied for their involvement in cell migration,

segmentation and vasculogenesis (Holder and Klein, 1999; Palmer and Klein, 2003)

Eph-Ephrin signaling is unique among the RTK family because of its

bidirectionality. Ephrins not only induce signaling downstream of the Eph receptor

(known as forward signaling) but also signal into the cell that expresses them (referred as

reverse signaling (reviewed in (Palmer and Klein, 2003; Davy and Soriano, 2005).

Oligomerization and clustering of Eph receptors and Ephrins at the cell surface is

essential for their signaling (Stein et al., 1998). Structural analysis showed that Eph and

Ephrin interaction domains associate to form hetero tetramers (Himanen et al., 2001)

The bi-directional mode of signaling and knowledge about molecular architecture of

Eph and Ephrin has facilitated the study of their roles in various context by perturbing
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either one of the signaling. In addition to a complete null mutation (knockout) of either

Eph or Ephrin, specific deletions or point mutations in the cytoplasmic domain of either

receptor or ligand allows a dissection of the signaling pathway and an analysis of its

effect in a particular process. Soluble or non-clustered ligands show different effects and

enable their usage in a dominant negative approach (Durbin et al., 1998; Lackmann et al.,

1998).

2.1.3 Neuronal roles of Ephrin
Eph-Ephrin signaling has been studied in various aspects of neurobiology. It was

found to be involved in neurogenesis, axon guidance, synaptic plasticity and

neuroregeneration (reviewed in (Palmer and Klein, 2003). Eph and Ephrins are localized

in the ventricular zone (VZ) of the embryonic cortex (Stuckmann et al., 2001). Disruption

of Eph-Ephrin signaling by the intraventricular infusion of soluble receptor or ligand in

the subventricular zone (SVZ) results in disorganized migration pattern and increased

proliferation (Conover et al., 2000)implying an involvement in stem cell differentiation.

The involvement of Ephrins in axon guidance within the CNS has been discussed in the

previous section. It is believed that molecules involved in axon guidance during

embryonic development could be reused in regeneration. An up-regulation of Eph

expression after injury was found in the adult spinal cord, hippocampus and cochlear

nucleus (Pickles and van Heumen, 1997; Miranda et al., 1999; Moreno-Flores and

Wandosell, 1999). An expression of EphrinA was observed in regenerating tectum of

adult goldfish and zebrafish (Becker et al., 2000; Rodger et al., 2000).
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2.1.4 Ephrins in Retinotectal projection and topographic mapping
Friendrich Bonhoeffer and colleagues showed that cues in the posterior tectum

had a repellant activity on temporal axons retinal in vitro (Walter et al., 1987; Walter et

al., 1987). Subsequent molecular characterization revealed that positional information,

which is critical for topographic mapping, is provided by gradients of ligands and

receptors of the Eph family (O'Leary and Wilkinson, 1999; Wilkinson, 2000), which are

present on endfeet of radial glial cells (the substrata for migration) and retinal ganglion

cell axons. GPI-anchored ligands such as EphrinA5 (Drescher et al., 1995) and EphrinA2

(Cheng et al., 1995) are present in a high-posterior to low-anterior gradient in the optic

tectum, and have been proposed to inhibit growth (Drescher et al., 1995) and branching

(Yates et al., 2001) of retinal ganglion axons. Misexpression of EphrinA2 in chick or

mutating EphrinA5 in mice caused abnormal axonal projection in the tectum (Nakamoto

et al., 1996; Frisen et al., 1998). The double knockout of ephrinA2-/-, ephrinaA5-/- shows

a severe defect in anterior-posterior projection (Feldheim et al., 2000). Receptors for

these ligands are present in the axons, either uniformly, as in the case of EphA4 (Holash

and Pasquale, 1995), or in anterior-posterior gradients (e.g. EphA3 and Ephrin-A5)

(Cheng et al., 1995; Connor et al., 1998). Though expression data from various organisms

is sufficient to support the role of Eph receptors in topographic mapping, knockout of

these receptor have not provided much information. But misexpression of EphA3 in a

subset of RGCs and disturbing the gradient of EphA in the retina resulted in projection

errors of both EphA3 overexpressing axons as well as wild-type axons. This lead to the

theory that it’s not the absolute levels of EphA in the axon but relative levels that are

responsible for their termination zone in the tectum (Goodhill and Richards, 1999; Brown

et al., 2000). These studies imply a more complex mechanism of retinoptic mapping than
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the proposed model of repulsive interaction and complementary gradients of Eph and

Ephrin in the retina and the tectum respectively. Moreover graded expression of

EphrinAs in retina and EphA in tectum were found (Marcus et al., 1996; Connor et al.,

1998; Hornberger et al., 1999; Marin et al., 2001). This raises a possibility that

interaction between EphA on retinal axons and EphrinAs in the tectal cells may be

regulated by ligands and receptors expressed within the same or neighboring axon and

tectal cells (Knoll and Drescher, 2002).

Positional information along the dorso-ventral axis, appears to be provided by

transmembrane ligands and receptors such as EphrinB1 and EphB2. The first evidence

for the involvement of these genes was their dorsoventral gradient of expression in the

radial glial cells of the tectum (Braisted et al., 1997) and retinal ganglion cell layer

(Holash and Pasquale, 1995). In the mouse, forward signaling of EphB receptors by

EphrinB1 is necessary for correct D-V patterning as indicated by the errors in ephB2 and

ephB3 mutants (Hindges et al., 2002). In these mutant mice ventral axons termination

zone was shifted to the lateral regions of superior colliculus with lower levels of

EphrinB1. This suggests that EphrinB1 attract ventral axons. In the Xenopus embryo,

EphrinB2 is present in a high-dorsal to low-ventral gradient in the retina, while EphB1 is

distributed in a high-ventral to low-dorsal gradient in the tectum (Mann et al., 2002).

Blocking EphrinB/EphB interaction by exogenous EphB or dominant negative EphrinB2

eliminated retinal projections to the ventral tectum. In vitro assays showed that dorsal

EphrinB expressing axons preferred to grow on clustered EphB stripes. Together, this

suggests that RGC axons from the dorsal eye appear to be attracted to the ventral tectum

because of reverse signaling via EphrinB2. Whereas ectopic expression of EphrinB1 in
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the developing chick tectum however, suggests a bifuctional role of EphrinB1 as the

repellent and attractant in DV retinoptic mapping (McLaughlin et al., 2003)

Thus Ephrins have been studied in various model organisms with an aim to

understanding their role in the topographic mapping of RGC axons. But cues that help

axons to find their synaptic partner on the tectum (i.e. tectal neurons) remained unclear. It

is possible that Ephrins along with other molecules may be involved in this process. This

question could be addressed by studying the effect of candidate molecule on axons in

vivo and in vitro. Hence, a model system that allows manipulation in live organism and

neuronal explants would be ideal.

2.1.5 The zebrafish visual system
Over the last decade, the zebrafish has become an established vertebrate model

organism to study early embryonic development. There are several advantages of using

zebrafish. First of all, the early embryonic development in the zebrafish embryo is similar

to that of amphibians and mammals. The external development allows study of early

events by various manipulations in a live embryo. The almost transparent body of the

larvae facilitates light and fluorescence microscopic studies. The comparatively short life

cycle, ease of maintenance and breeding under laboratory conditions, high efficiency of

spawning (typically 100-200 eggs from a single pair) makes it a good system for genetic

studies. Indeed zebrafish has been the first vertebrate organism to be used for a large

scale genetic mutagenesis screen (Nusslein-Volhard, 1994). The large-scale screens

carried out at Tübingen and Boston generated a large number of mutants defective in

various developmental processes (Development –1996 volume 123). Although genetic

knockout techniques have not been implemented in Zebrafish, antisense morpholinos
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(oligonucleotides with a modified sugar backbone) are widely used to block translation

and perturb gene function during early embryonic development (Nasevicius and Ekker,

2000).

The advantages of zebrafish as a model organism and the bank of mutants defective

in various aspects of visual system development have been useful in studying eye

development and axon guidance (Karlstrom et al., 1996). The anatomy of the zebrafish

visual system has been well documented. Analogous to other vertebrate species, the

zebrafish eye consist of a lens derived from the ectoderm and a retina from the neural

plate. The eye is covered with a melanin rich retinal pigmented epithelium (RPE). The

RGCs in the eye project their axons to the optic tectum in the midbrain. Apart from the

major target, which is the tectal neuropill, some RGC axons terminate at various pretectal

targets known as AF1 – AF9 (Burrill and Easter, 1994) (Figure 2.2 B), within the optic

tectum (Figure 2.2 A). Using lipophilic dyes such as DiI and DiO, the path of RGC axons

can be traced in live larvae with fluorescence microscopy (Figure 2.2 C and D). This

approach has been used to identify mutants defective in the retinotectal projection. Many

of these mutants have been characterized and the mutant genes identified.  For example

characterization and cloning of astray mutant provided the information that Robo-Slit

signaling (necessary for the commissural axon crossing the midline) is required for RGC

axon guidance (Fricke et al., 2001). Along with molecular characterization of these

mutants, behavioral tests have also been developed to study the zebrafish visual system

(Rick et al., 2000). Tissue ablation studies have provided further information about

development and functioning of the zebrafish visual system (Roeser and Baier, 2003).
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Although zebrafish has been established as useful system to study early embryonic

development there are several technical limitations in studying late developmental events

such as axon pathfinding in the visual system, bone and gonad development. The effect

of morpholino based knock down could be observed only up to 3dpf. Genetic knockout

and gene replacement methods have not been established in zebrafish. Similarly the

effects of overexpression with RNA injection at single-cell stage is limited to early stages

of development and use of tissue specific or inducible promoters require the

establishment of transgenic lines.

2.2 Aim of the project
The project involved the development of an easier and reliable technique for gene

misexpression that would help in the study of the role of EphrinB2 in vivo. EphrinB2

expression has been detected in the visual system in other organisms.  The aim of this

project was to study the expression pattern of EphrinB2 in the visual system of zebrafish

and its effect on RGC axons in vivo and in vitro.
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2.3 Methods

2.3.1 Chemicals and general protocols
All chemicals were purchased from Sigma and BDH. Restriction endonucleases, and

other DNA modifying enzymes were purchased from NEB, Promega and Roche.

Ologonucleotide primers were purchased from GENSET. Fluorescent dyes were

purchased from Molecular Probes. EphrinB2-Fc was purchased from R&D Systems.

Digestion of DNA with restriction endonuclease, ligation, agarose gel

electrophoresis and other standard molecular biology experiments were carried out as

described (Fred et al., 1987; Sambrook et al., 1989)

2.3.2 Zebrafish Adults and Embryos
Gnarled mutant embryos were obtained by crossing heterozygote carriers of

gnatc36z, which were identified by injection of DiI into the eyes of fixed 3 days-old fish.

The gnarled mutant can be obtained as sperm samples from the Max Planck Institute for

Developmental Biology in Tübingen, Germany. A live line no longer exists.

2.3.3 Constructs

A transfer plasmid (pGTV) containing GFP under the Xenopus EF1α promoter

(Johnson and Krieg, 1994) was constructed by cloning a blunted DraIII/NotI fragment of

pESG (Chien Chi-Bin, personal communication) into pAcSG2 (Pharmingen). To create a

second expression cassette, the hsp70 promoter (Halloran et al., 2000) was cloned into

the NotI/KpnI site of pGTV. The HSV-TK polyA signal was PCR amplified from pCEP4

(Invitrogen) and cloned into the ApaI/KpnI sites to generate the pGHT transfer plasmid.

A blunted HindIII/StuI fragment of pCS2+nßgal (Fire et al., 1990) was cloned into the

blunted ApaI site of pGHT. The transfer plasmid pGHT-Pp-nβGal was generated from
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pGHT by removing polyhedrin promoter. A transfer plasmid pFB-HuC-GFP was

constructed by cloning XhoI/NotI fragment of pBS-∆EcoHuCP-EGFP (Park et al., 2000)

into the SalI/NotI sites of pFastBac Dual (Life Technologies). A transfer plasmid pFBD-

Unc76-GFP was constructed by cloning the XhoI /NotI fragment of XEX-76/eGFP

(Dynes and Ngai, 1998) into the SalI/NotI site of pFastBac Dual. Full length EphrinB2

(PCR amplified from a c-DNA library clone) was cloned into pCS2+3’MT at the

BamHI/ClaI sites. A SalI/SnaBI fragment of this was cloned into the XhoI (blunted)/NsiI

sites of pFBD-Unc76-GFP to generate a transfer plasmid pFBD-U76G-CEB2m.

2.3.4 Virus production and injection
Viruses were prepared either by the conventional method i.e. by cotransfecting

the viral DNA and targeting vector into SF9 cells with subsequent plaque purification and

amplification or by the Bac to Bac method (Life Technologies). Viruses were amplified

and purified as described by King and Possee (King and Possee, 1992). Briefly, medium

from SF9 cells infected with virus was collected; centrifuged at 2500 rpm for 10 minutes

at 40C to remove cell debris. The clear supernatant was filtered through a 0.2 µm filter.

Viruses were concentrated by centrifugation at 24000 rpm at 40C for 1 hour using a

50.2Ti rotor. The glassy pellet was dissolved in a minimum volume of TE buffer. Viruses

were further purified by layering on a 50%-10% sucrose step gradient and centrifuging at

24000 rpm at 40C for 1 hour in a SW41.2Ti rotor. Viruses forming a band at the interface

of the 50% and 10% sucrose layers were collected and diluted in TE. These purified

viruses were concentrated once again as above. Viruses were finally suspended in 20 µl

of 0.1x TE.
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For injection at the sphere stage, embryos with chorions were kept on a glass slide

with minimum egg water (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2. 2H2O, 0.33 mM

MgSO4.7H2O) in a cluster of 10-15 embryos. For injections at the 6-somite and later

stages, individual dechorionated embryos were embedded in 1.2% low melting

temperature agarose (Bio-Rad). Concentrated viruses (1x1011 particles/ml) were injected

in the intercellular spaces of zebrafish embryos using a gas pressure microinjector (PLI-

100; Medical Systems Corp.). Virus particles were aspirated into the tip of injection

needles, which were pulled from thin wall borosilicate capillaries (Clarks GC100TF).

2.3.5 X-gal staining

Embryos injected with viruses carrying the nβgal construct were stained as

described previously (Muller et al., 1993). Embryos were washed in sodium phosphate

buffer (100mM, pH 8.0), then fixed for 2 hours at 370C in fixing solution (100 mM

phosphate buffer, pH 8.0; 5 mM EGTA; 2 mM MgCl2; 1% glutaraldehyde). Fixed

embryos were then rinsed two times in washing solution (100mM phosphate buffer, pH

8.0; 2 mM MgCl2; 0.03% IGEPAL CA-630; 0.01% Na-deoxycholate). Fixed embryos

were incubated in staining mix containing 1 mg/ml X-gal, 25 mM K4Fe(CN)6, 25 mM

K3Fe(CN)6 dissolved in washing solution for 2 hours at 370C. Stained embryos were

washed with washing solution.

2.3.6 DiI labeling
RGC axons in live embryos were labeled using DiI (Molecular Probes) dissolved

in ethanol (2 mg/ml), which was injected into the eye using a gas pressure microinjector.

For transneuronal labeling of tectal cells, embryos were fixed in 4% para-formaldehyde-

PBS and DiI dissolved in chloroform (2 mg/ml) was injected into the eye. Embryos were
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incubated at 280C for at least 36 hours. To photo-convert DiI, labeled embryos were

incubated in DAB solution (0.7 mg/ml di-amino benzidine, 5 mg/ml heparin, 0.03%

NiCl2) for 15 min, and then exposed to green light using a conventional fluorescent

microscope (Liu et al., 1999).

2.3.7 In-situ hybridization
Antisense RNA probes were prepared by in vitro transcription using T3, T7 or

Sp6 RNA polymerase and Digoxigenin-UTP RNA labeling mix (Roche). The

hybridization and staining was carried out using standard protocols (Westerfield, 1995).

2.3.8 Microscopy

For imaging, live embryos were embedded in 1.2% low melting temperature

agarose. Embryos expressing GFP were imaged on a Zeiss Axioskop using a Bio-Rad

MRC1024 laser scanning confocal microscope. For brightfield imaging, embryos were

mounted in 70% glycerol in PBS and imaged with a compound microscope using a

Princeton Instruments MicroMax camera.

2.3.9 Stripe assay
Stripes of zebrafish EphrinB2a (R&D Systems) were made with a silicon stamp

on glass-bottom dishes (MatTek), which had been coated with poly-L-lysine. To cluster

the proteins, 5 µg/ml of Ephrin-fc was incubated with 50 µg/ml Alexa 488-coupled goat

anti-human antibody (Molecular Probes) for 30 minutes at room temperature. The

clustered proteins were then placed on the silicon stamp for 10 minutes. The mixture was

removed with a pipet and the stamp left to dry for a few minutes. The dish was then

lowered onto an inverted stamp, enabling the transfer to protein to be seen. The dishes

were subsequently coated with 50 µg/ml laminin for 1 hour. To prepare retinal axon
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cultures, eyes of 2 day-old embryos were dissected using tungsten needles.  These were

then cleaned individually by passages through a few drops of sterile medium, broken into

clumps and transferred to the culture dish containing L15/1%BSA/1%N1 (Sigma)

buffered at pH 7.4 with Hepes and freshly supplemented with L-glutamine (2 mM).

2.3.10 Ligand binding assay
RGC cultures were washed with Hank’s Buffered Salt Solution (HBHA; Hanks

saline with 0.5 mg/ml BSA, 0.1% NaN3, 20mM HEPES pH 7.3) and then incubated with

3 nM EphrinB2-Fc or HBHA buffer for 2 hours at room temperature. Cultures were

washed in HBHA and fixed with 60% acetone, 3.7% formaldehyde, 20 mM HEPES pH

7.3 at room temperature for exactly one minute. After washing with 20 mM HEPES, 150

mM NaCl, protein bound to axons was detected using the anti-Fc antibody (Alexa 488

conjugated at 1:300 dilution). Images were captured with Leica DMIRBE microscope

with a 100X oil immersion objective and Hamamatsu Orca II camera.

2.4 Results

2.4.1 Baculovirus can drive gene expression in zebrafish
 Several methods have been established in other organisms for ectopic gene

expression. In the chick, for example, viruses have been widely used to study cell lineage,

brain patterning, axon guidance and vasculogenesis (Flamme et al., 1995; Friedman and

O'Leary, 1996). A non-replicating virus that can infect zebrafish embryos, which is

simple to use and can carry a large load, would be useful for experiments requiring

localised gene misexpression. Thus the ability of Autographa californica multiple

nuclear polyhedrosis virus (AcMNPV) to express genes in zebrafish was tested. This

virus is known to infect a wide range of cells, including those from human, mouse,
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Xenopus, and Drosophila, but can replicate only in insect cells (Sandig et al., 1996;

Barsoum et al., 1997; Oppenheimer et al., 1999). It can also infect terminally

differentiated cells such as neurons (Sarkis et al., 2000), and can carry inserts of 15 kb or

even larger (Fraser, 1986; Boyce and Bucher, 1996).

To determine if baculovirus can infect zebrafish cells, viruses carrying Hsp70-

LacZ or EF1α-GFP were made, concentrated to a high titre and injected into zebrafish

embryos at different stages. When virus were injected into blastula-stage embryos,

widespread expression was seen (Figure. 2.3 A, B), possibly due to the scattering of

clonally related cells (Kimmel and Warga, 1987). When injections were carried out at

later stages, e.g. at the 18-somite stage, expression was restricted to the site of injection

(Figure. 2.3 C). GFP was detected within 6 hours of virus injection, and persisted for at

least 5 days. Expression of the reporter gene was dependent on the promoter used. When

virus containing EF1α-GFP was injected in the eye, retinal ganglion cells expressed GFP

in only 3 out of 24 embryos, whereas when the zebrafish neural-specific HuC promoter

(Park et al., 2000) was used, GFP expression was seen in retinal ganglion cells of all

injected embryos (Figure. 2.3 D; n=20). Baculovirus were able to infect zebrafish at late

stages of development. When virus carrying the HuC-GFP cassette were injected into the

brain of fish at 19 dpf, GFP was detected in neurons; fluorescence persisted for at least 2

weeks after injection (Figure. 2.3 E).

Baculovirus carrying two expression cassettes were then made, to test whether

two genes could be expressed independently. The zebrafish hsp70 promoter was used to

regulate LacZ, while EF1α promoter was used to drive GFP. Twelve hours after virus

injection into the eye primordia at the 18-somite stage, expression of GFP was recorded
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by confocal microscopy. Embryos were then heat shocked and processed for LacZ

activity six hours later. Strong X-gal staining was seen only in heat-shocked embryos

(n=16) while untreated siblings (n=16) expressed only GFP (Figure. 2.4). Low level of

X-gal staining in untreated siblings may be caused by leaky expression of β-gal through

the Hsp70 promoter.

2.4.2 Baculovirus-mediated EphrinB2a misexpression affects
segmentation
To test whether baculovirus-mediated misexpression can be used to manipulate a

developmental process, virus carrying myc-tagged ephrinB2a under the CMV

(cytomegalovirus) promoter, as well as the axonal tracer unc76-GFP driven by the EF1α

promoter, were made. Virus were injected into the presomitic mesoderm, as ectopic

ephrinB2a expression has been shown to affect segmentation (Durbin et al., 1998).

Control virus, expressing only the fluorescent reporter (unc76-GFP), did not affect

segmentation (Figure. 2.5 A,B), whereas the ephrinB2a virus caused defects in somite

boundary formation (Figure.  2.5 C,D).
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2.4.3 EphrinB2a expression in the optic tectum
The zebrafish has two orthologs of ephrinB2, ephrinB2a and ephrinB2b (Chan et

al., 2001). In 3-days old zebrafish larvae, ephrinB2a is expressed by a subset of cells in

the optic tectum (Figure. 2.6 A). Although there is no obvious gradation in the level of

expression in the anterior-posterior or dorso-ventral axes, there appear to be many more

ephrinB2a positive cells in the posterior tectum (see Figure. 2.9 A). These ephrinB2a-

expressing cells may be tectal neurons, as their expression correlates with that of deltaB,

which is expressed in post-mitotic neurons (Haddon et al., 1998) (Figure. 2.6 B). In

particular, cells at the posterior boundary of the tectum appear to express both ephrinB2a

and deltaB; cells closer to the neuropil only appear to express deltaB. Some of the

ephrinB2a-expressing cells are directly contacted by RGC axons, as indicated by

transneural labeling. DiI was used to label RGCs in fixed embryos, and these were

incubated overnight at 280C to allow the dye to transfer to cells in physical contact

(Bruce et al., 1997). Label was seen in scattered cells in the tectum, including those in the

posterior tectum (Figure. 2.6 C). A combination of transneural DiI labeling and in-situ

hybridization suggests that at least some of the ephrinB2a expressing cells are directly

contacted by incoming RGC axons (Figure. 2.6 D). These cell bodies have the rounded

morphology of tectal neurons, and not the elongated morphology of radial glial cells.
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2.4.4 Retinal ganglion cell axon behaviour in a mutant with ectopic
tectal neurons
In 3-day old wild-type fish, the tectum is filled with RGC axons (Figure. 2.7 A),

whereas in gnarled mutants the 3-day tectum is devoid of axons (Figure. 2.7 B). At 5-

days post fertilization, RGC axons are found in the tectum of mutants, but they branch

aberrantly (Trowe et al., 1996). Whole eye transplantation indicated that the defect lies in

the brain of gnarled mutants, and not in the eye (Wagle et al., 2004). The brain of

gnarled mutant fish is morphologically abnormal, as seen in optical sections of Syto-11

labeled fish (Figure. 2.8 A,B), and in transverse sections (Figure. 2.8 C,D). Specifically,

there is a change in the shape of the neuropil and an increase in the number of cell bodies

in the anterior tectum, in the region where RGC axons normally enter the tectal neuropil.

It appears that ectopic tectal neurons have an inhibitory effect on RGCs – either delaying

RGC axon entry into the tectum or causing them to misroute.

The increase in the number of cell bodies in the anterior tectum of gnarled mutant

are likely to be caused by ectopic tectal neurons, as can be seen by the expression pattern

of proneural genes such as zash1b and, and neural genes such as deltaB (Figure. 2.9 E,F).

These ectopic tectal neurons in mutants express ephrinB2a (Figure. 2.9 D). Molecules

thought to provide positional information in the optic tectum, such as ephrinA2, retain the

anterior-low to posterior-high gradient seen in wildtype (Ober, 1996).
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2.4.5 Baculovirus-mediated ephrinB2a misexpression affects RGC
axon migration
To test whether ectopic ephrinB2a alone can affect RGC axon entry into the

tectum, baculovirus was used for misexpression in the anterior tectum.  When virus

carrying myc-tagged ephrinB2a under the CMV (cytomegalovirus) promoter, as well as

the axonal tracer unc76-GFP driven by the EF1α promoter, were injected into the tectum

at 40 to 48 hours post fertilization, defects in RGC axon migration occurred, as indicated

by DiI labeling at 4 days post-fertilization. At this stage, axons from the anterior eye

would normally have reached the posterior tectum, and this is what was seen in all

embryos injected with virus carrying the reporter gene only (Figure. 2.10 A). In embryos

injected with the ephrinB2a-carrying virus, axons from the anterior eye failed to reach the

posterior tectum in 12 out of 21 embryos when reporter expression was seen in the

anterior tectum (Figure. 2.10 B). Embryos with reporter expression in other parts of the

brain did not have any defect in the migration of RGC axons. Hence, ephrinB2a is able to

inhibit RGC axon entry into the tectum.



53

 z13



54

2.4.6 Effect of EphrinB2a on RGC axons in vitro
The ability of EphrinB2 to bind zebrafish RGC axons was tested in vitro, by

incubating cultured neurons with purified EphrinB2-fc, and then lightly fixing the culture

and labeling with a fluorescently labeled anti-Fc antibody.  Punctate fluorescence was

seen on axons (Figure. 2.11 B), indicating that the receptors for EphrinB2 are present on

the growth cone. In cultures incubated with the buffer lacking EphrinB2-fc or heat

inactivated EphrinB2-fc, no label was detected. To further examine the behavior of axons

in response to EphrinB2a the stripe assay was used: stripes were printed on a glass-cover

slip using a silicon stamp, and isolated retinal explants were placed over the stripes. Some

degree of repulsion was seen in this assay (Figure. 2.11 C). Approximately 40% (n=200)

of the axons from the explants grew exclusively in lanes between the EphrinB2a stripes,

while the remaining 60% crossed at least one stripe. No avoidance was seen in the

absence of EphrinB2a in the stripes.



55

z14



56

2.5 Discussion
To study the function of ephrinB2 in vivo, a baculovirus-based gene expression

method in zebrafish was developed. The location of expression can be controlled by

injection, and the timing can be controlled by using promoters such as the hsp70

promoter, as shown here, or a hormone inducible promoter. The most widely used

method of misexpression at present, which is mRNA injection at the 1-cell stage, leads to

ubiquitous expression of the gene of interest, whereas DNA injection leads to mosaic

expression. Even with tissue-specific promoters, DNA injection does not allow restriction

of expression to a cluster of cells, for example in restricted regions of the eye.

Lipofection is less efficient as very few cells show expression. Baculovirus is thus useful

when localized misexpression is required late in embryonic or larval development.

Baculoviruses are known to be taken up by cells via endocytosis (Hofmann et al.,

1995), and they should thus be able to infect any cell type in the embryo, larvae or adult.

Observations with injections of virus carrying GFP into the eye suggest that a critical

parameter for obtaining expression is the choice of promoter. Very few RGCs expressed

GFP when the EF1α promoter was used, while GFP expression was seen in all cases

where the HuC promoter was used. More reproducible expression can thus probably be

obtained using zebrafish promoters, rather than heterologous ones. The baculovirus has

several advantages, in comparison to retroviruses (Burgess and Hopkins, 2000): they are

easy to prepare, can carry large inserts and most importantly, can infect post-mitotic cells.

Hence, baculoviruses can be used to manipulate differentiated neurons in the zebrafish

brain. Even though the baculovirus genome remains episomal, and expression is

transient, it should be sufficient for testing gene function.
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At the time when this study was initiated, at least two other systems for ectopic

expression of a gene of interest in the zebrafish were available. One utilises the Gal4-

UAS system first developed in Drosophila (Brand and Perrimon, 1993) to drive gene

expression reproducibly in selected cell types (Scheer and Camnos-Ortega, 1999). The

other uses the hsp70 promoter, which can be activated locally by laser induction

(Halloran et al., 2000). Both systems are effective, but require the establishment of stable

transgenic lines. Recently  expression of GFP reporter by localized delivery of DNA

using electroporation in zebrafish has been demonstrated (Lyons et al., 2003; Teh et al.,

2003). With the baculovirus, misexpression can be done without establishing transgenic

fish, thus saving several months. Also, injection of the virus does not appear to have any

deleterious effects on cells, so the method is only minimally invasive. For experiments

requiring misexpression late in development, for example in studies of bone formation or

gonad differentiation, baculovirus-mediated misexpression may be a useful method for

testing gene function. It can be used to ectopically express genes, or to deliver antisense

RNA or even double-stranded RNA, with the promoter determining what cell type is

targeted.

Topography specific arborization, as mediated by EphrinA2 and EphrinA5 in the

anterior-posterior axis or EphB1 in the dorso-ventral axis, is an important step in the

establishment of the retinotectal projection. An additional part of this process is the

recognition of synaptic partners. In the chick embryo, retinal ganglion cell axons form

connections in three different layers within the tectum. Glycoproteins and cadherins have

been implicated in the recognition of specific laminae, on the basis of their expression

and the effect of an N-cadherin antibody. EphrinA5 may be present on some tectal
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neurons in the chick (Rosentreter et al., 1998), and could thus be involved in mediating

recognition. Chromophore-assisted laser ablation of ephrinA5 does not prevent

arborization, however, but causes posterior shift (Sakurai et al., 2002). EphrinB2 has also

been found in a retinorecepient layer (Braisted et al., 1997), but there has been no

experimental test of its function in this system reported.

In the zebrafish larval tectum, two lines of evidence suggest that EphrinB2a could

function as a target recognition signal. Firstly, ephrinB2a is expressed by tectal neurons

that are contacted by RGC axons, as indicated by the transfer of DiI from RGC axons to

these cells. Secondly, ectopic ephrinB2a is able to affect RGC axon migration.

Based on observations in other species, such as in the crossing of the midline by

RGC axons as well as neural crest migration in Xenopus (Smith et al., 1997), it is not

surprising that EphrinB2a on its own acts as a repellent on some zebrafish ganglion cells

in vitro. Nevertheless, it is intriguing that ectopic expression of ephrinB2a in the tectum,

by baculovirus or in the context of the gnarled mutant, causes a stalling of RGC axons.

Could EphrinB2a be a part of a group of signals that causes axons to stop at their target in

the tectum?  In principle, if Ephrins are cleaved from the membrane by proteases upon

encountering a receptor on another cell, repulsion will occur. If, however, both receptor

and ligand remain attached to their respective cells, it is possible that axons will stop

(Holash et al., 1997). It is unlikely that EphrinB2 on its own can elicit all responses

required for synapse formation as the stopping of axons was not reproduced in vitro. It

may be that EphrinB2a acts in concert with other molecules, such as EphrinA2 and

EphrinA5, as well as BDNF, to induce branch and synapse formation in the appropriate

position, and to prevent further axonal outgrowth. The culture technique described here
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should be useful for further studies addressing this question. For example, it will be

interesting to see what combination of proteins can trigger an accumulation of pre-

synaptic specialization on EphrinB2a stripes. Indeed recent research from several groups

indicate that Eph-Ephrin play critical role in modulating multiple aspects of synaptic

structure and physiology (Murai and Pasquale, 2004)

It would be informative to know the effect of eliminating ephrinB2a in tectal

neurons. However, there is currently no simple way of doing this selectively. EphrinB2a

has early functions in development (Durbin et al., 1998), and thus its function in RGC

axon guidance cannot be studied using morpholinos knocked-down. Injection of soluble

EphrinB2a will non-specifically inhibit signaling of ephrin-As, since EphrinB2 binds to

EphA4, and would also interfere with reverse signaling that might be required for

dorsoventral mapping. Overexpression of antisense RNA using baculovirus may be allow

eliminating ephrinB2a in tectal neurons. Nevertheless this study shows that EphrinB2a

fulfills the criteria for part of a stop signal in the tectum and implicates its involvement in

target recognition by RGC axons.
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Chapter III

Studying the Role of Rag1 (recombination activating
gene-1) in Neurons

3.1 Introduction:

3.1.1 Similarities between the vertebrate adaptive immune system
and the CNS: Molecular link

The nervous system and immune system both allow an organism to perceive its

environment and to deal with it to survival. In vertebrates these systems are more

complex with a highly evolved brain and adaptive immune system. Although these

systems are derived from different lineages during embryonic development, similarities

between the two have been investigated with great interest.  Both these systems carry a

common property: “memory”. In case of the nervous system, memory involves the

recording of a particular event and recalling it over time, whereas for the immune system

it entails a quicker and robust response to the antigen that was experienced previously. It

is tempting to speculate that these functions might share a similar underlying mechanism

but there has been no experimental evidence supporting this idea.

Another feature that is common to these two systems is diversity. The immune

system generates a huge repertoire of immunoglobulins and T-cell receptors that allows

antigen recognition. Similarly, neurons have distinct anatomical connectivities,

physiological properties, neurotransmitter identities and  differences in surface

molecules such as protocadherins (Wu and Maniatis, 1999). Considering this, CNS

complexity seems to be comparable to the immune system.  In 1967, even before the

mechanism of adaptive immune system development was elucidated, Dreyer proposed a
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hypothesis with reference to goldfish retinotectal projection suggesting that the

mechanism of “genome reprogramming” could be involved in generating diversity in the

adaptive immune system to recognize antigens and in neurons to recognize their synaptic

partner (Dreyer et al., 1967). Genomic rearrangement at the immunoglobulin and T-cell

receptor loci has been demonstrated in the immune system. Similar rearrangement of a

reporter construct has been shown in the CNS, but these studies remain controversial and

rearrangement of endogenous gene loci has not been reported in neurons (Matsuoka et

al., 1991; Abeliovich et al., 1992).

For a functional network to develop, axons must be guided to their target zone and

once there, they need to make precise synaptic connections. The first criterion is met by

various axon guidance cues (discussed in Chapter 1). The neuronal-activity based model

supports the second criteria of precise synaptic connection (Shatz, 1990; Penn and Shatz,

1999). But initial connections during embryonic development are mostly activity

independent. One possibility is the involvement of cell surface molecule in cell to cell

recognition. Indeed in Drosophila, a large number of cell surface molecules DSCAM

synthesized from a single locus by an alternate splice mechanism have been shown to be

involved in synaptogenesis (Schmucker et al., 2000; Celotto and Graveley, 2001). In

vertebrates this function could partly be attributed to a large family of cell adhesion

molecules: protocadherins (Wu and Maniatis, 1999). The recognition of synaptic partners

by means of cell surface molecules parallels antigen recognition by immunoglobulins and

T-cell receptors.

Similarities between the immune system and the nervous system have been found at

the molecular level (Chun, 2001). Specific molecules such as Thy-1 (Stohl and Gonatas,



62

1977; Lancki et al., 1995), cadherins (Takeichi, 1991; Muller et al., 1997), major

histocompatibility complex (MHC) (Germain, 1994; Corriveau et al., 1998) and

immunoglobulins (Weiner and Chun, 1997) are present in both the immune and the

nervous system. Genes encoding protocadherins and odorant receptors (OR) are arranged

in clusters at genomic loci and ORs are expressed in a monoallelic fashion similar to

immunoglobulins (Buck and Axel, 1991; Wu and Maniatis, 1999). Besides this,

components essential for immune system development were found to be expressed in the

nervous system. Moreover, deletion of some of these such as XRCC4 and Lig4 resulted

in increased neuronal apoptosis (Sekiguchi et al., 1999). These studies once again raised

the hypothesis of genome rearrangement in neurons analogous to V(D)J recombination in

the immune system.

3.1.2 Development of the adaptive immune system
The major components of the adaptive immune system are T-cells and B-cells. Both

develop from a common precursor known as pluripotent hematopoetic stem cells, which

give rise to all blood cells. In the developing fetus, these cells are found in the liver but in

the adult they are present in the bone marrow. The adult immune system consists of bone

marrow and thymus as the primary lymphoid organs, where the initial development of T-

cells and B-cells take place. It also involves secondary lymphoid organs such as the

spleen, lymph nodes and appendix where these cells interact with antigens and later steps

of development and activation can take place.

3.1.2.1 B-cell and T-cell development : Immunoglobulin and T-cell
receptor structure

B-cells complete their development in the bone marrow (hence the name B-cells),

whereas immature T-cells migrate from the bone marrow and mature in the thymus
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(hence the name T-cells). Various cell surface molecules known as “cluster designation”

(CD) have been characterized which serves as markers for developmental stages of both

B-cells and T-cells. B-cells are destined to produce antigen receptor molecules known as

“immunoglobulins” (Ig) whereas T-cell produce T-cell receptors (TCR) which interact

with antigens when presented along with major histocompatibility complex (MHC)

molecules by antigen presenting cells (APC).

Monomeric immunoglobulin is a “Y” shaped molecule consisting of two light and

two heavy chains. Each monomeric molecule consists of two antigen binding sites. The

C-terminal part of each chain is constant except for isotopic variation and is called CL

(constant light) whereas the N-terminal region shows a high degree of sequence

variability and is known as VL (variable light). The variable region of each chain is

synthesized from a rearranged genomic locus (discussed below). There are five classes of

immunoglobulins based on heavy chain composition. The classes and heavy chains are

IgM- µ chain, IgD- δ chain, IgG- γ chain, IgA- α chain, and IgE- ε chain. Also there are

two types of light chains, κ and  λ. All classes exist in membrane bound as well as in

soluble forms. B-cells can change the class of Ig they synthesize during their

development and activation. This process is called “class switching”. Precursor B-cells

initially make the µ chain and continue further as immature naïve B-cells synthesizing

membrane associated IgM. Thus IgM is the first class of antibody to appear on the

surface of a B-cell. In its secreted form an IgM exists as a pentamer. After leaving the

bone marrow, B-cells starts to produce surface IgD with the same antigen binding site as

the IgM. At this stage they are called mature naïve B-cells and can respond to foreign

antigen in peripheral lymphoid organs. The major class of Igs during the secondary
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response is a monomeric IgG. The tail part of IgG called Fc can interact with

macrophages and neutrophils through the Fc receptors. This helps in destroying the

antigen recognized and coated by IgG. IgA is a dimeric molecule present in secretion

such as saliva, tears, milk, respiratory and intestinal secretions. IgE binds to another class

of Fc receptors present on mast cells and basophils.

Immature T-cells migrate to the thymus where they undergo various steps of

maturation characterized by expression of cell surface molecules such as CD4, CD8 and

others. Mature T-cells synthesize T-cell receptors containing α and β chains. T-cells

entering the thymus do not express CD4 or CD8 and are called “double negative” . First

the β-chain locus undergoes rearrangement and in the next step they become double

positive expressing both CD4 and CD8. At this stage the TCR-α chain undergoes

rearrangement. This stage accounts for 85% of lymphoid cells in the thymus at any given

time. At the mature stage, T-cells express TCRs with either α and β or γ and δ chains and

are positive for either CD4 or CD8 (single positive). During development in the thymus,

T-cells also go through positive and negative selections. Those T-cells which recognize

self MHC are positively selected and allowed to develop but those which recognize self

components other than MHC undergo apoptosis (negative selection).
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Adapted and modified from  : (A) & (B) – Alberts et al. Molecular Biology Of The Cell
: fourth edition
(C) – Notarangelo et al. 1999. Curr Opin Immunol, 11:435-42
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( Adapted and modified from : Roth et al. 1995. Current Biology 5:496-99 )
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3.1.2.2 Genomic locus of immunoglobulins, TCR and V(D)J
rearrangement : Role of Rag1

Both heavy and light chains of Igs and TCRs are synthesized from a cluster of genes

spanning a genomic locus of several hundred kilobases. As mentioned above, both chains

consist of a variable region which is synthesized from a combination of V and J

segments. For example, in the human κ light chain locus, there are about forty V genes

and five J genes in a cluster. Similarly the heavy chain is synthesized from a combination

of V, J and D segments. Thus, in theory combinations of V and J genes in light chains

and V, D, and J genes in heavy chains could potentially generate more than 106 different

antigen binding sites. As shown in figure 3.1, these genes are arranged in a cluster and

during the development of lymphocytes one of the V gene is combined with the J region

and the intervening DNA is eliminated by a process which changes the original germline

configuration and is known as V(D)J recombination (Tonegawa, 1983).

V(D)J recombination occurs between elements known as recombination signal

sequences (RSS) that lie adjacent to each gene segment. The RSS contains a conserved

heptamer and nonamer sequence separated by 12 or 23 bases. The process of V(D)J

recombination requires recombination activating  gene-1 (RAG1) and RAG2 proteins

(Schatz et al., 1989; Oettinger et al., 1990) along with high mobility group protein-1

(HMG1) and HMG2 (Sawchuk et al., 1997; van Gent et al., 1997). Two RSS undergoing

recombination are brought together in a specific complex by RAG proteins and cleaved

subsequently such that two hairpin “coding ends” and two blunt “signal ends” are

generated (McBlane et al., 1995). Thus RAG plays a key role at the very first step of

V(D)J recombination. After the cleavage, a transient complex is formed in which both
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signal and coding ends are held by RAG proteins (Hiom and Gellert, 1998; Tsai et al.,

2002). The coding ends are subsequently released but signal ends remain bound to RAG

proteins (Agrawal and Schatz, 1997). Coding ends are processed by DNA-dependent

protein kinase (DNA-PK), Ku70, Ku80, XRCC4, DNA ligase, Artemis and terminal

deoxy nucleotidyl transferase (TdT) (Figure 3.2 and reviewed in (Fugmann et al., 2000;

Gellert, 2002). Hairpins at coding ends are opened, nucleotides are added or deleted and

ends are subsequently ligated (Ramsden and Gellert, 1995; Roth et al., 1995). Depending

on the original configuration of RSS in the germline arrangement, signal ends may be

retained or deleted from the chromosome and eventually lost. Coding ends are retained in

the chromosome and contribute to the expression of an antigen receptor peptide (light or

heavy chains of Ig or TCR).

3.1.2.3 Rag1 structure, function and regulation
Owing to its identification as a key molecule in immune system development, RAG1

has been studied intensively for the past several years. It is a 119 Kd protein with 1043

amino acids. Residues 387 to 1008 (in human RAG1) constitute the core domain of the

protein which is essential and sufficient for its activity (van Gent et al., 1995). The N-

terminal region may have important functions in vivo and may be required for nuclear

localization and enhancement of RAG1 activity (Rodgers et al., 1996; McMahan et al.,

1997). Recently, the non-essential N-terminal domain of RAG1 was shown to have

ubiquitin ligase activity in vitro (Yurchenko et al., 2003). The zinc RING finger domain

in the N-terminal region and C2H2 zinc finger domain within the core region are thought

to be involved in RAG dimerization  (Rodgers et al., 1996; Bellon et al., 1997; McMahan

et al., 1997). Five basic regions have been identified for interaction of RAG1 with
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nuclear transport protein SRP-1 (Cortes et al., 1994; Cuomo and Oettinger, 1994;

Spanopoulou et al., 1995). Two domains have been identified within the core region of

RAG1; the first domain encompassing amino acids 392-448, is required for binding of

RAG1-RAG2 to the nonamer of RSS, and the second domain, encompassing amino acids

504-526 is related to  catalytic domain of prokaryotic integrase – a site-specific

recombinase (Bernstein et al., 1996; Difilippantonio et al., 1996; Spanopoulou et al.,

1996). The RAG2 interacting domain is located within the core region encompassing

amino acids 504-1008 (McMahan et al., 1997).

RAG1, showing homology with prokaryotic integrase, is thought to have entered the

genome of a vertebrate ancestor 450 million years ago, as part of a mobile element

(Bernstein et al., 1996; Spanopoulou et al., 1996; Agrawal et al., 1998; Kapitonov and

Jurka, 2005). Several similarities have been identified between the mechanism of V(D)J

recombination and transposition (Thompson, 1995; Fugmann et al., 2000; Chatterji et al.,

2004; Kapitonov and Jurka, 2005). Indeed RAG1 shows transposase activity in vitro and

chromosomal translocations in some carcinomas have been attributed to the

misregulation of V(D)J recombination (McGuire et al., 1989; Hiom et al., 1998; Melek

and Gellert, 2000; Lee et al., 2002). Also a recent report shows that the intervening

sequence with signal end can integrate elsewhere in the genome (Messier et al., 2003).

Therefore the activity of RAG1 is controlled by its regulation at the expression level as

well by restricting access to the genome.

The promoter region of RAG1 from mouse and humans has been characterized and

binding sites for Ekaros, Ikaros and NF-Y were identified (Kurioka et al., 1996; Fuller

and Storb, 1997). The expression of RAG1 and RAG2 is regulated by the region 5’ to the



70

Rag2 gene (Yu et al., 1999). During the development of T-cells and B-cells, RAG1 is

present at specific stages, for example RAG1 is expressed in pro-B cells during

rearrangement of heavy chain but downregulated during expansion stage and expressed

again in non-proliferating pre-B cells in which the light chain is rearranged (Nagaoka et

al., 2000).

Rag proteins when expressed in non-lymphoid cells such as fibroblast do not cause

rearrangement of endogenous Ig or TCR locus but could recombine artificial

recombination substrate (Schatz et al., 1992). This implies that the process of V(D)J

recombination is also regulated by controlling the access of RAG to RSS sites.  One way

to achieve this is by modulating the chromatin. Histone acetylation was found to play a

role in active rearrangement (McMurry and Krangel, 2000). Other means of nucleosome

modification may also control the accessibility of antigen receptor loci (Oettinger, 2004).

Besides regulating expression and access to the substrate, RAG1 activity is

controlled by other factors to  avoid transposition events.  Though  in vitro studies using

core domains of RAG demonstrate the capability of transposition by V(D)J recombinase,

full length proteins seems to be less efficient in generating hybrid joints (Sekiguchi et al.,

2001). Recent report shows that the C-terminal region of RAG2 and GTP prevents

transposase activity of RAG1 (Tsai and Schatz, 2003).

3.1.3 Rag-1: role in neurons – facts and hypothesis.
More than ten years ago it was shown that Rag1 is expressed in specific regions of

the brain such as the hippocampal formation, cerebellum and olfactory bulb (Chun et al.,

1991). Rag1 mRNA has been detected in the brain of vertebrates as diverse as mouse,

salamander and zebrafish (Chun et al., 1991; Frippiat et al., 2001; Jessen et al., 2001).
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This has led to speculation that neurons undergo some form of genomic rearrangement

that is RAG1-mediated. An experiment to address this possibility, using a transgenic

mouse carrying an inverted LacZ gene flanked by recombination signal sequences, lent

some support to this idea, as X-gal stained cells were found only in the thymus and brain

(Matsuoka et al., 1991). However, this experiment could not be reproduced, and remains

controversial (Abeliovich et al., 1992). Another observation that has been suggested to

support the notion that RAG1 has a role in the brain is that mice lacking Rag1 have

behavioral defects (Cushman et al., 2003). However, as these mice are also

immunodeficient, the possibility that abnormal behavior is due to a defective immune

system cannot be excluded. Moreover, the brain of mice lacking Rag1 appears

morphologically normal at the level of light microscopy (Mombaerts et al., 1992).

Excessive cell death in the brain of double strand break repair mutants (Gao et al., 1998)

indicates that the genome of neurons contains many breaks. However, there appears to be

no exclusive link to Rag1, because the xrcc4 and Rag1 double mutant displays a similar

phenotype as the xrcc4 single mutant (Sekiguchi et al., 1999). Hence, in spite of some

hints, there is no compelling evidence yet that Rag1 has a function in the vertebrate

nervous system.

3.2 Aim of the project
This project aims to study the role of RAG1 in neurons. Literature evidence from

more than the last ten years have conclusively shown that RAG1 transcript is present in

specific neurons. Exploring whether RAG1 aids genetic rearrangement in neurons and

determining whether its role is related to neuronal development or function would be an

eventual goal. But before addressing this, a few fundamental questions need to be



72

addressed. This study aims to check the presence and sub-cellular localization of RAG1

protein in neurons. If the RAG protein is localized in the neuronal nuclei, then being a

DNA binding protein it would predictably have specific targets in neurons. Thus the

second goal of this study was to test DNA binding of RAG1 in neurons and identify

target(s).

3.3 Materials and Methods:

3.3.1 Antibody, enzymes, chemicals and general protocols:
The antibodies used in this study (SC363, SC5599) and the blocking peptide SC363P

were purchased from Santa Cruz. These antibodies have been used for detecting RAG1

by western and immunoflurescence. (Kumaki et al., 2001; Bas et al., 2003; Vaitaitis et

al., 2003; Hillion et al., 2005). ProteinA speharose beads were purchased from

Amersham. Mouse YAC and BAC macroarrays were purchased from RZPD. All other

chemicals were purchased from Sigma and BDH. Restriction endonucleases, and other

DNA modifying enzymes were purchased from NEB, Promega and Roche.

Oligonucleotide primers were purchased from GENSET.

Digestion of DNA with restriction endonuclease, ligation, agarose gel

electrophoresis and standard molecular biology experiments were carried out as described

(Fred et al., 1987; Sambrook et al., 1989)

3.3.2 Oligonucleotide primers :
DAR192 : 5_-AGCAAGGAAGTCCTGAAGAAGATCT-3

DAR216 : 5_-GATATCGGCAAGAGGGACAATAGCT-3_

DAR6 : 5-GAGCAGTGGGTAGGCGAAAGCTTAACCCC-3

DAR11: 5-AGTGCCACTAACTGCTGAGCCACCT-3

DAR321- 5-GGTCCACGTCCAGATGCCAACT-3



73

DAR322:5’- TCTCAGGGAAGATGGGCCTCTC-3’

DAR323: 5’-CCCTGTCAGCTTGGTTCAAAGGC-3

FM11: 5-CACTTCAGATC-3

FM25: 5-GCGGTGACTCGGGAGATCTGAAGTG-3

1F: 5’-TATCATAAACTGGGTGCAGC-3’

1R: 5’-GCTCGAGTCTGCTTTCACTA-3

2F: 5’- CGGGCTACCTTGCCAGCAGAGTCTT -3’

2R: 5’-AGTCTCGAGTCGAGCGGAAGGGACT -3’

HYAC-C: 5’-GCTACTTGGAGCCACTATCGACTACGCGAT-3’

LS2: 5’-TCTCGGTAGCCAAGTTGGTTTAAGG –3’

RSS-12-TOP:

5’-ATGCTTGACGTCCACAGTGATTCACATCATGACAAAAACCCCATGGATGCTT-3’

RSS-12-BOTTOM

5’-AAGCATCCATGGGGTTTTTGTCATGATGTGAATCACTGTGGACGTCAAGCAT-3’

RSS-23-TOP

5’ATGCTCTAGCGGCCGCGGTTTTTGTACGACTGAACATATCAAATCTTTCACTGTGGG

GCCCATCGTCA-3’

RSS-23-BOTTOM

5’TGACGATGGGCCCCACAGTGAAAGATTTGATATGTTCAGTCGTACAAAAACCGCGG

CCGCTAGAGCAT-3’

3.3.3 Buffers and solutions:

NPBS: 0.1% IGEPAL CA-630 (sigma- I-8896) in PBS

NPBS+: NPBS, 2% milk powder (fat free), 5% FBS, 0.02% Na-Azide.

TBS: 150mM NaCl, 20mM Tris-Cl pH 7.6
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ChIP Lysis buffer: 0.1% (w/v) deoxycholic acid (Na-salt), 1mM EDTA, 50mM

HEPES pH 7.5 (adjusted with KOH), 140mM NaCl, 1% (v/v) TritonX-100, add

protease inhibitor (Roche) before use

ChIP Lysis Buffer 500: 0.1% (w/v) deoxycholic acid (Na-salt), 1mM EDTA,

50mM HEPES pH 7.5 (adjusted with KOH), 500mM NaCl, 1% (v/v) TritonX-

100, protease inhibitor (Roche) added before use

TE/1%detergent washing solution: 10mM Tris-Cl pH 7.6, 1mM EDTA, 1% SDS

TE/0.67%detergent washing solution: 10mM Tris-Cl pH 7.6, 1mM EDTA, 0.67%

SDS

LiCl/ detergent washing solution: 0.1% (w/v) deoxycholic acid (Na-salt), 1mM

EDTA, 50mM, 0.5% (v/v) IPGEAL (sigma- ), 10mM Tris-Cl pH 8.0, 250mM

LiCl

Elution Buffer: 10mM EDTA, 1% SDS, 50mM Tris-Cl pH 8.0

Proteinase-K solution: 0.5µl of 20mg/ml glycogen (Roche), 5.0µl of 20mg/ml

proteinaseK, 244.5 µl of TE pH 7.6

Complete Medium: DMEM (Dulbecco’s Modified Eagle Medium) with 10%

Fetal bovine serum and antibiotic (penicillin/streptomycin)

Retinoic Acid stock solution: Retinoic Acid was dissolved in ethanol to prepare

0.5mM stock

Ara-C: 5 mg/ml in water

3.3.4 Mice and tissue collection :

Mice pups at age 7 to 14 days were obtained from Laboratory Animal Center,

Singapore. Mice were sacrificed by cervical dislocation or decapitation. Tissue was
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collected by quick dissection. Brain and thymus dissected from pups were kept in ice-

cold PBS till the next step.

3.3.5 P19 cells and differentiation into neurons:
Undifferentiated P19 embryonic carcinoma cells were obtained from American Type

Culture Collection and maintained as described (Rudnicki and McBurney, 1987). Frozen

stock of P19 cells was thawed at 370C and diluted in 10 ml of DMEM. Cell suspension

was centrifuged at 200x g for 5 min. Cell pellet was washed with DMEM and diluted to

10ml centrifuged again at 200xg for 5min. Cells were suspended in 15 ml of complete

medium (DMEM+ 10%FBS+ antibiotics) and grown in 75 cm3 tissue culture flask at

370C with 5% CO2 in a humidified incubator.

For routine splitting, high density cultures (up to 90% saturation) were split 1:15.

Medium was discarded from the flask and cells were washed twice with PBS. To detach

cells from the surface, 1 ml of 0.25% Trypsin, 2 mM EDTA mixture diluted in 4 ml of

PBS was added and flasks were kept at 370C for not more than 5 min. 10 ml of complete

medium was added to stop trypsinization and cells were monodispersed. 1 ml of this

suspension with 14 ml of fresh complete medium was placed in a fresh tissue culture

flask and incubated as above.

To induce the differentiation of P19 cells, cultures were treated with retinoic acid

(RA). 0.5 µM of retinoic acid was added to monodispersed suspension of undifferentiated

P19 cells at 5x106 /ml density in 5 ml complete medium and placed in a 35 mm diameter

non-tissue culture dish. Cultures were incubated at 370C with 5% CO2 in a humidified

incubator for 2 days. Small cell clusters were observed. The culture was transferred to a

15 ml falcon tube and cells were allowed to settle down. Medium was replaced with fresh
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medium with 0.5µM RA and placed in the same dish and incubated for 2 more days.

After 4 days of RA treatment, small spheres of cell clusters were formed. The culture was

transferred to a falcon tube and clumps were allowed to settle down. Cell clumps were

trypsinized and monodispersed as described above. Monodispersed cells were inoculated

in 35 mm diameter tissue culture dishes at 1x106 cells/dish and incubated at 370C with

5% CO2 in a humidified incubator. Neuronally differentiated cells were visible after two

days. Medium was replaced with fresh medium containing Ara-C at  5 µM. Incubation

was continued under same condition and medium was replaced every 2 days.

3.3.6 Antibody staining

Thymocytes were dissociated from the thymus by triturating in ice cold PBS using

tungsten needles and  suspended at 5 x 106 cells/ml concentration.  Cells were fixed with

1.0% formaldehyde for 15 mins at room temperature and then washed with PBS.

Approximately 100 µl of cells were spread on charged glass slides (BDH superforst+).

Cells were blocked with NPBS+ (200-300 µl/slide) for at least one hour at room

temperature. Anti-RAG1 antibodies diluted in NPBS+ (1:250) were added (250 µl/slide)

and incubated overnight at room temperature. Slides were washed with NPBS 5-6 times

for 15 min each. Secondary antibodies (anti-rabbit – Alexa 488 conjugate; Molecular

probes) diluted at 1: 300 in NPBS+ were added to each slide (300 µl/slide) and incubated

in the dark at room temperature for 2 hours. Slides were washed with NPBS 3-4 times for

15 min each. Cells were counter stained with the DNA labeling dye Hochest (1:1000

dilution in PBS of stock 100 µg/ml) for 5 min at room temperature and rinsed with PBS.

Slides were mounted in 70% glycerol in PBS
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Pups were sacrificed by cervical dislocation. Viscera was dissected by standard

procedure. Pups were perfused with 4% PFA in PBS by injecting into the heart. Perfusion

was carried out only when tissues were to be used for immunohistochemistry. The brain

was dissected out from the cranium and kept in 4%PFA for overnight fixation at 40C. the

cerebellum was cut out from the rest of the brain. Both parts were embedded in cryo

medium in a mould and frozen on dry ice. 20 µm section were cut using a cryostat and

collected on charged slides. Sections were treated with 0.2% Triton-X100 in PBS for

30min to 1hour at room temperature and then washed with PBS three times for 5 min

each. Antibody staining was carried out on sections as described above.

Neuronally differentiated P19 cells were stained with anti-RAG1 antibodies in a

similar manner as described above for thymocytes with few changes. Anti-rabbit Alexa

568 conjugated secondary antibodies (1:300 dilution) were used to detect RAG1. Cells

were also stained with anti-acetylated tubulin monoclonal antibodies (1: 200) and anti-

mouse Alexa 468 conjugated secondary antibodies (1:300 dilution).

3.3.7 Imaging:
Samples were imaged on a Zeiss LSM 510 laser scanning confocal microscope. A

100x 1.3 NA oil objective was used. Z-stacks were processed by deconvolution, using a

blind deconvolution algorithm (Auto Deblur, AutoQuant Inc.)

3.3.8 Construction of artificial recombination substrate
A plasmid pEGRR carrying an artificial recombination substrate was prepared by

modifying pEGFP-1 (clontech). RSS12 and RSS23 were prepared by annealing RSS-12-

TOP+RSS-12-BOTTOM and RSS-23-TOP+RSS-23-BOTTOM respectively. RSS12 was

inserted at the StuI site of pEGFP-1 to create pEGR. RSS23 was inserted at the SmaI site
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of pEGR. The orientation of both RSS were confirmed by sequencing. The resultant

pEGRR plasmid was introduced into undifferentiated P19 cells by lipofection using

Lipofectamine (Invitrogen). P19 clones resistant to G418 were isolated and propagated

separately. Retinoic acid treatment and differentiation was carried out as above. Cells

were screened for GFP expression under fluorescent microscope with a 10x objective.

3.3.9 Chromatin immunoprecipitation

Single and double ChIP was performed as described by Aparicio and Farhnan (with

some modifications - Figure 3.7) (Aparicio, 1999; Weinmann and Farnham, 2002)

3.3.9.1 Tissue preparation:
Thymocytes were dissociated from the thymus by triturating in ice cold PBS using

tungsten needles. The brain was chopped into small pieces (~2 mm) with a surgical blade

on a cold platform. These brain pieces were further homogenised in a 1.5ml centrifuge

tube using a blue tip handheld homogenizer for 15-30sec pulse x 3 times. Tissue was

transferred to a 15 ml falcon tube. Brain cells were suspended in 10ml ice-cold PBS by

pipetting with a 5 ml surgical pipette. Cells were passed through 100 µm pore size mesh

to eliminate clumps. Neuronally differentiated P19 cells were trypsinized and finally

resuspended in ice-cold  PBS.

3.3.9.2 Crosslinking:
In all cases cells were treated with 1% formaldehyde for 10 min at room temperature.

Fixation was stopped by the addition of glycine to 0.125M and incubating at room

temperature for 5 min. Cells were centrifuged at 500xg for 5 min at 40C. The cell pellet

was washed 3 times with ice-cold TBS. Cells were suspended at approx. 1x 108 cells/ml
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in TBS and frozen at -800C till next step. Cells could be stored after fixation at  -800C for

several months.

3.3.9.3 Cell Lysis and preparation of soluble chromatin:
In all cases, approx. 108 cells were used in each experiment. Samples were processed

in multiple tubes under identical condition. Frozen cells were thawed on ice, centrifuged

at 1500x g for 5 min at 4 0C and resuspended in 500 µl of lysis buffer. Suspension was

split into two 2.0 ml centrifuge tubes. Equal volume of glass beads (size 0.5 µm) were

added to each tube and vortexed for 30 min at 4 0C. 250 µl of lysis buffer was added to

each tube and vortexed briefly. Tubes were punctured with a heated 25 gauge needle and

immediately placed on a 14 ml collection tube. Tubes were centrifuged at 1000x g for 3

min at 40C in a swinging bucket rotor. The sample expelled in the 14 ml tube contained

soluble cell lysate and cell debris. The sample was mixed with a 1ml pipette tip (wide

opening) and transferred to a fresh 1.5 ml centrifuge tube. To shear chromatin to approx.

=<500bp fragments, samples were sonicated in 3 continuous pulses of 12 seconds

duration each at the microtip setting 4 with Misonix incorporated XL2020 sonicator

ultraprocessor. Tubes were held on ice for at least 2 mins. between two sonication pulses.

After sonication, tubes were centrifuged at 14000rpm for 5 min. at 4 0C. Centrifugation

was repeated for 15 min if necessary. Clear supernatant from two tubes was pooled into

one 1.5 ml tube resulting in a pooled lysate from approx. 108 cells.

3.3.9.4 Incubation with antibodies and pull-down with beads:
Samples were incubated with either 4 µg of anti-RAG1 antibodies (SC363 or

SC5599) or without antibodies at 4 0C overnight on a shaking platform (Nutator).

ProteinG-sepharose beads were washed three times with ice-cold PBS and a 50% slurry
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in PBS was prepared. 150 µl of 50% ProteinG-sepharose (Amersham) was added to each

tube and incubated at 4 0C for 3 hours on the nutator. Tubes were either left on ice for

10min or centrifuged at 500x g for 5 min to pellet down beads. The supernatant was

carefully removed without disturbing the beads. 1/10th of this supernatant was mixed

with TE/1%detergent solution and kept aside as “total input”. This was processed as

described below to purify the DNA. Beads were washed twice with 1 ml of lysis buffer,

followed by washes of 1 ml of lysis buffer-500, 1 ml of LiCl detergent solution, 1 ml of

TE buffer for 5 min each at room temperature on a nutator. In each washing step, beads

were separated from the washing solution by centrifuging tubes at 1000x g for 1 min at

room temperature. DNA-protein complexes were eluted from beads by adding 200 µl of

elution buffer and keeping tubes at 65 0C for 10 min.

3.3.9.5 Second round of antibody incubation and pull-down.
 The eluate from the first round of immunoprecipitation was diluted with 1 ml of

lysis buffer and corresponding samples were incubated with either 4 µg of anti-RAG1

antibodies (SC363 or SC5599) or without antibodies at 4 0C overnight on a shaking

platform (Nutator). Incubation with beads and all washes were carried out as above.

DNA-protein complexes were eluted from beads by adding 200 µl of elution buffer and

keeping tubes at 65 0C for 10 min. Tubes were centrifuged for 5 seconds at full speed and

the eluate was transferred to fresh tubes. Beads were again incubated with 300 µl of

TE/0.67% detergent solution and the supernatant was mixed with the previous eluate.

3.3.9.6 Purifying double ChIP-DNA.:
All tubes containing the eluate (from with and without antibodies experiment) along

with the “total input” were incubated at 65 0C overnight to reverse crosslink. 10 µl of
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proteinase-K (20mg/ml) and 1 µl of glycogen (20mg/ml) was added to all tubes and

incubated at 37 0C for 3 hours. 55 µl of 4M LiCl was added to each tube and mixed with

500 µl of phenol:chloroform: isoamyl alcohol (25:24:1) mixture by inverting tubes

several times. Tubes were centrifuged at 14000 rpm for 10 min at  room temperature. The

aqueous phase was transferred to a fresh tube.  DNA was precipitated by adding 1 ml of

ethanol and mixing it  by inverting tubes several times. Tubes were centrifuged at 14000

rpm for 15 min at  room temperature. The supernatant was discarded and DNA pellet

washed with 1ml of  75% ethanol. DNA pellets were  air dried and dissolved in 25 µl of

TE for all samples.

3.3.10 ChIP-DNA analysis  by specific PCR:   
All PCR assays were performed using 2µl of template DNA from each sample in a

20µl reaction with 1x  Taq DNA polymerase buffer with 1.5 mM MgCl2, 200 µM

dNTPs, and 1 µM primer. For amplification of Jα50 primer pairs DAR321 and DAR323

were used under PCR conditions: 950C-3 min, followed by 950C-1 min, 580C-1 min,

720C-1 min for 25 cycles and 720C-5 min. For amplification of Jκ,  primer pairs DAR6

and DAR11 were used under PCR conditions: 950C-3 min, followed by 950C-1 min,

600C-1 min, 720C-1 min for 25 cycles and 720C-5 min. For amplification of brain target

repeat region primers 2F and  2R  (Figure 3.10 E) were used under PCR conditions:

950C-3 min, followed by 950C-1 min, 600C-1 min, 720C-1 min for 20 cycles and 720C-5

min. For unique region 1F and 1R (Figure 3.10 E) were used under PCR conditions:

950C-3 min, followed by 950C-1 min, 560C-1 min, 720C-1 min for 20 cycles and 720C-5

min. PCR amplification was checked on  2% TAE-agarose gel stained with Gel-Star
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3.3.11 End-repair and adaptor ligation
ChIP-DNA was end repaired as described (Wilson and Mardis, 1997). Eluted ChIP-

DNA was first incubated with T4 DNA polymerase with 100uM of dNTPs at 120C for 20

min followed by Klenow at 250C for 15 min. Enzymes were inactivated by heating the

sample at 750C for 20 min. DNA was extracted with phenol:chloroform and ethanol

precipitated with NaCl and glycogen. The DNA pellet was dissolved in water and treated

with T4 polynucleotide kinase in T4 DNA ligase buffer containing ATP at 370C for 30

min. The enzyme was inactivated by incubating at 650C for 20 min.

3.3.12 LMPCR and DIG-labeled probe synthesis
Adapters were prepared by annealing oligos FM11 and FM25. These adapters were

ligated to ChIP-DNA and was amplified by adding 1.24 µM of FM25, 320 µM dNTPs

along with 1x PCR buffer and incubating for 3 min at 720C followed by the addition of

Taq DNA polymerase and amplification under the following conditions: 940C-1 min,

600C-1 min, 720C-1 min for 30 cycles and 720C for 10 min.

LMPCR amplified DNA was used for preparing DIG labeled probe by PCR labeling

method using PCR DNA-DIG probe synthesis kit (Roche 1636090) as per manufacturer’s

instructions. Incorporation of labeled nucleotide was checked by spotting various

dilutions of probe and detecting by Alkaline Phosphatase  conjugated anti-DIG antibody

staining followed by developing with CDP-star (Roche - 1759051) substrate.

3.3.13 Screening YAC and BAC library macroarrays
An equal quantity of probe was used for a set of comparable experiments. A mouse

genomic YAC library (Kusumi et al., 1993) spotted on a  22.2 x 22.2 cm nylon

membrane (RZPD library no. 910), as well as a BAC library (RZPD library no. 710) was

used for hybridization. The probe was hybridized to the macroarrays at 500C and washing
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were carried out at 650C with high stringency wash buffer (twice with 2x SSC, 0.1%SDS

5 min. at room temperature followed by two washes of 0.1x SSC, 0.1%SDS for 15min at

650C). Hybridization signals were detected as above on Kodak-MS/ML X-ray film.

3.3.14 End sequencing of YACs
A positive YAC clone was received from RZPD (http://www.rzpd.de). The end

sequence of YAC was obtained by plasmid-rescue method. Crude YAC DNA was

prepared, digested with XhoI and self ligated. This was transformed into E.coli

electrocompetent cells. Positive clones were selected on LB-Agar plates containing

ampicillin. The plasmid insert was sequenced using HYAC-C and LS2 primers.

3.3.15 BACs southern hybridization
BAC clones covering the locus of mouse chromosome-9 to which YAC was mapped

were received from RZPD. EcoRI and BamHI digests of these BAC DNA were resolved

on a 0.8% TAE-agarose gel and transferred to nylon membrane. Southern hybridization

with brain ChIP-DNA probe was carried out as described above.

3.3.16 Screening BAC subclone
A 5.7Kb EcoRI fragment of BAC-86O15 was gel purified and cloned into a pUC19

plasmid. These subclones were screened by probing with brain ChIP-DNA probe in a

colony hybridisation assay under the hybridisation condition described above. Positive

clones were sequenced using vector-specific primers. The insert was purified and

digested with EcoRV. Southern analysis of this EcoRV digest with Brain-ChIP-DNA

probe was performed as above.
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3.4 Results :

3.4.1 Detection of RAG1 protein in thymocytes and neurons:
Previous in situ hybridization with radioactive probes has suggested that Rag1 is

expressed in the mouse brain, with higher levels of transcript being detected in the

cerebellum and hippocampus (Chun et al., 1991). To determine if this gene is translated

in neurons, immunofluorescent labeling with an antibody to the core domain of RAG1

was carried out. Antibodies were first tested on thymocytes, with pre-absorption being

used as a control for specificity (Figure. 3.3 A-H). Strong nuclear labeling was detected

(Figure. 3.3 I). The SC-363 antibody was then used to label sections made through the

brains of p10 mice. Labeling was observed in the hippocampus (Figure. 3.4 A-F) and the

cerebellum (Figure. 3.4 G-L). In the hippocampus (Figure. 3.4 A), nuclear-localized

RAG1 was detected in cells forming the stratum pyramidale (Figure. 3.4 M). Some

nuclear label was also seen in the granule neuron layer forming the stratum granulosum

of the dentate gyrus, but these cells appeared to contain more cytoplasmically localized

protein (Figure. 3.4 N). Cells in the purkinje cell layer of the cerebellum contained

nuclear as well as cytoplasmic RAG1 (Figure. 3.4 O).
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Figure 3.4: A-L: Parasagittal sections through the hippocampus (A-F) and

cerebellum (G-L) of neonatal mice, labeled with the SC-363 polyclonal antibody to

RAG1 (A,G), without primary antibody (B,H) or with peptide-blocked antibody (C,I).

Corresponding images of DAPI stained nuclei are shown below each panel (D-F, J-L).

Strong labeling was detected in the stratum pyramidale (A; arrowhead) and stratum

granulosum (A; arrow) of the hippocampus, as well as the granular layer (G; arrow) and

external granular layer (G; arrowhead) of the cerebellum. M-O: Higher magnification

images of the areas outlined with the red (M) and yellow (N) rectangles in panel A, and

with the yellow rectangle (O) in panel G. Predominantly nuclear label was detected in

cells of the stratum pyramidale (M), while more cytoplasmic labeling  was seen in cells in

the stratum granulosum (N). In the cerebellum (O), Purkinje neurons, which have large

nuclei, contained nuclear and cytoplasmic RAG1.  Scale bar A-L: 200µ and M-O: 10µ
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Mouse embryonic carcinoma cells from the P19 line show fibroblast morphology under

normal growth conditions. With retinoic acid treatment, these cell can be differentiated

into neuronal cells (Figure 3.5 A,B) (Jones-Villeneuve et al., 1982). The presence of

RAG1 protein in these differentiated neuronal cells along with the neuronal marker

acetylated tubulin was checked. RAG1 was detected in the cell bodies of differentiated

neuronal cells whereas acetylated tubulin staining was mainly detected in neurites (Figure

3.5 C-E).

3.4.2 Checking the V(D)J like recombination in RAG1 expressing
neuronally differentiated P19 embryonic carcinoma cells

Recombination of an artificial substrate containing RSSs in RAG1 positive neurons

been reported earlier, but the conclusion of those studies remain controversial (Matsuoka

et al., 1991; Abeliovich et al., 1992). After demonstrating the presence of RAG1 protein

in the nucleus of neuronally differentiated P19 embryonic carcinoma cells, the possibility

of V(D)J like recombination in  these cells was checked. An artificial substrate containing

RSS was prepared by modifying pEGFP-1 plasmid as shown in Figure 3.6. In the original

configuration, the promoterless EGFP is not expressed. A recombination event between

the 12 and 23 RSS flanking EGFP would result in loss of  KanR/NeoR, HSV-TK polyA,

and pUC ori region bringing the SV40 promoter upstream of EGFP. Given that Rag1 can

mediate transposition, it was postulated that the fragment containing KanR/NeoR, HSV-

TK polyA, and pUC ori might also be inserted into the genome.  In a pilot experiment,

EGFP expression under SV40 promoter was checked in undifferentiated and neuronally

differentiated P19 EC. Linearized pEGRR plasmid (an artificial recombination substrate)

was transformed into P19 cells and G418 resistant clones were picked. Cells from eight

different clones were maintained in an undifferentiated state in medium containing G418.
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During the differentiation of these cells, G418 selection was not applied. Differentiated

cells were screened for EGFP expression. Cells from all clones (total no of cells – 1 x 108

) were screened. No EGFP expression was detected. Presence of the recombination

substrate in undifferentiated and differentiated cells was confirmed by PCR. A similar

PCR analysis did not show recombined substrate in neuronally differentiated cells. A

positive control in which the same pEGRR introduce into a B-cell line was lacking in this

experiment due to the technical difficulties in maintaining B-cells.

Since this experiment did not show V(D)J like recombination in neuronal cells,

alternative approach to check the biochemical function of RAG1 in neurons was

implemented.
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3.4.3 Testing the possibility (standardization) of ChIP (chromatin
immunoprecipitation) assay:

Chromatin immunoprecipitation has previously been used to confirm the binding of

RAG1 to specific loci involved in the adaptive immune response. It is known that RAG1

remains associated with the intervening non-coding region during V(D)J recombination

and that this locus can be pulled down in ChIP assays using anti-Rag1 antibodies (Perkins

et al., 2002).

In a standard ChIP assay, formaldehyde fixed cells are lysed mechanically by

vortexing with glass beads. The cell lysate is sonicated to obtain chromatin fragments of

approx. 0.5-2 kb in size. Fragments associated with the DNA binding protein are pulled

down using antibodies against the protein and proteinG-sepharose beads. This chromatin

immunoprecipitated DNA (ChIP-DNA) is used to analyse the enrichment of the known

targets of the DNA binding protein in a PCR based assay (Figure 3.7). To increase

specificity of ChIP, samples were processed in two rounds of immunoprecipitation

(Double ChIP assay Figure 3.7). The protocol was standardised using mouse thymocytes

at P10-14. Two different polyclonal antibodies against RAG1 protein (SC363 and SC

5599 ) were used for ChIP. PCR assays for a specific locus (J-α50) showed the expected

level of enrichment (~ 5-7%) compared to a non-specific locus (J-κ  - undetectable) in the

ChIP-DNA in the test experiment (with anti-RAG1 antibodies). Both loci (J-α50 and J-κ)

were undetectable in the control experiments in which either preabsorbed antibodies or

no primary antibodies were used for ChIP, further confirming the specificity of the

immunoprecipitation (Figure 3.8 A-C).
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Figure 3.8: Analysis of chromatin immunoprecipitated DNA (ChIP-DNA) from

thymocytes. A. PCR of specific target locus Jα50 – top panel and Jκ - bottom panel.

Template DNA used for PCR are Lane1: no template DNA, Lane 2:  ChIP DNA using

anti-RAG1 polyclonal antibodies SC5599, Lane 4: ChIP DNA using anti RAG1

polyclonal antibodies SC363, Lane 6:  ChIP DNA without using antibodies, Lane 3,5 and

7: 1/10th of total input DNA. B. PCR of specific target locus Jα50 using template DNA

from single (top panel) and double ChIP (bottom panel). Lane 1: ChIP DNA without

using antibodies, Lane: ChIP-DNA using anti-RAG1 polyclonal antibodies against the c-

terminus of RAG1 (SC5599), Lane 3: ChIP-DNA using anti-RAG1 polyclonal antibodies

against short peptide within the core domain of RAG1 (SC363). C. Specificity of anti-

RAG1 polyclonal antibodies (SC363). Double ChIP-DNA analysis by PCR of specific

target locus Jα50. Template DNA used for PCR are – Lane 1: 1/20th total input DNA.

Lane 2: ChIP DNA using anti-RAG1 polyclonal antibodies (SC363). Lane 3: ChIP DNA

using neutralized/peptide blocked anti RAG1 polyclonal antibodies (SC363). Lane 4:

ChIP DNA without using antibodies. Lane 5: no template DNA control. D. PCR of

specific target locus Jα50 – top panel and Jκ - bottom panel using LMPCR amplified

ChIP DNA from thymocyte. Lane 1: ChIP DNA without using antibodies, Lane 2: ChIP-

DNA using anti-RAG1 polyclonal antibodies –SC363, Lane 3: ChIP-DNA using anti-

RAG1 polyclonal antibodies –SC5599, Lane 4: no template DNA control.
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3.4.4 Chromatin immunoprecipitation and Screening YAC library
macroarray :

To identify binding sites for RAG1 in neurons, without a priori knowledge of what

these sites might be, the method of chromatin immunoprecipitation followed by

hybridization to a genomic array was adopted. Brain cells from P10 mice and neuronally

differentiated P19 embryonic carcinoma cells were processed as above for ChIP.

A YAC library, with 6-fold coverage of the mouse genome and arrayed on nylon

filters, was used. Each clone is spotted twice on the filter (within a 4 x 4 block, in one of

the 8 patterns), so only clones that have both spots labeled are considered positive.

Immunoprecipitated DNA was amplified by ligation-mediated PCR to generate sufficient

probe. To establish conditions for hybridization, experiments were first carried out with

thymocytes ChIP-DNA. To generate enough DNA for probe preparation, ChIP-DNA was

amplified by LM-PCR. As shown in Figure. 3.8-D, LM-PCR did not lead to non-specific

amplification of precipitated DNA. Amplified DNA was subsequently labeled with DIG

and hybridized to the membrane. A number of YACs appeared positive (Figure. 3.9 A,

B). To test whether any of these corresponded to T-cell loci, a probe was made from the

Jα50 locus and the hybridization pattern compared. A degree of overlap was seen

(Figure. 3.9 C, D), suggesting that the thymocyte probe was binding to YACs that contain

RAG1 binding sites.

Probes were then generated from neurons. Two sources of neurons were used, the

first being brains of p10 mice, and the second neuronally differentiated P19 cells. When

probes from brain ChIP-DNA were hybridized at high stringency to the YAC array, a

single YAC (WIBRy910H0698D) was positive (Figure. 3.10 A, B). At lower stringency,

a second YAC (WIBRy910E0666D) was also positive for this probe (Figure. 3.10 D).
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Both YACs, but no others, were positive with probes generated using either the SC363 or

the SS595 antibody for ChIP. With probes made from P19 cells, using the SC363

antibody, the YAC - WIBRy910H0698D as well as others, were positive at high

stringency (Figure. 3.11). The higher number of positives with the P19 probes may be

either due to the higher number of nuclei that were RAG1-positive from this source, or

because additional target sites are present.
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3.4.5 Mapping of YACs to their genomic locus

The sequence of the insert in both the YACs (WIBRy910H0698D and

WIBRy910E0666D) identified using the brain probes was determined by plasmid rescue

and end sequencing. Both YACs contained sequences that matched to the identical region

of chromosome 9, namely band A5.2 (at approx. 32.9Mb). To further narrow down the

region of putative RAG1 binding, BACs in the region of the YAC on Chromosome 9

were obtained (Figure. 3.12 A). Southern hybridization was used to narrow down the

putative binding region to a 5.7 kb fragment in BAC 86O15 (Figure. 3.12 B, C).

Following digestion with the EcoR-V restriction enzyme, this was further narrowed down

to a 2.2 kb region.

3.4.6 Analysis of the putative RAG1 binding site
The region around the 2.2 kb site contains several features. Firstly, there are about

9.5 copies of a 208 nucleotide sequence (analyzed by Tandem Repeat Finder

http://tandem.bu.edu/trf/trf.submit.options.html). Eight copies of the heptamer

(CACAGTG) from the highly conserved RAG1 binding site, i.e. the recombination signal

sequence (RSS), is also found within the repeat region, supporting the possibility of

RAG1 binding to this region (Figure 3.13). Similar repeats occur elsewhere in the

genome, but there is a 220 nucleotide unique sequence associated with the repeat that is

found only on Chromosome 9. To test if binding occurs to the unique sequence or to the

repeat region, PCR primers were designed to the repeat and unique region, and the

immunoprecipitated DNA analyzed. Specific amplification was obtained with primers to

the repeat region only (Figure. 3.12 D, E). PCR-ChIP was subsequently carried out on
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thymocytes. No amplification was seen, suggesting that this region was not bound by

RAG1 in thymocytes (Figure. 3.12 E). This is consistent with the results of the array

hybridization using thymocyte probes, in which these YACs were not positive.

A second feature of the putative binding site is that it is located within a

retrotransposon. The repeats are virtually identically to the monomers found in the

5’UTR of the A101-type LINE-1 element (Goodier et al., 2001). The sequence

downstream to this repeat region shows almost 100% identity to ORF1 (mRNA U16672)

and ORF2 of L1. A-type L1 retrotransposons are known to be transcriptionally active and

to retrotranspose in cultured cells (DeBerardinis et al., 1998). ESTs of ORF1 and ORF2

have been found in several neonatal mouse cDNA libraries, including a cerebellar library

(e.g. AU079979, BB251308), indicating that this element is transcribed in vivo. However,

as the mouse genome contains approximately 730 copies of this element (ref: UCSC

genome browser), it is not clear where the element originates from.
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Figure 3.12: Fine mapping of potential RAG1 target in brain A. BAC contig covering the

region of mouse chromosome-9 to which the positive YAC was mapped. BAC clones

denoted by numbers are 1: RP23-65J2, 2: RP24-11A6, 3: RP23-84E4, 4: RP86-B13, 5:

RP23-93M1, 6: RP24-308I2, 7: RP24-86O15. B. BamH-I and EcoR-I digest of BAC

clones, resolved on 0.8% agarose gel stained with Gel-star. C. Southern analysis of BAC

digest with brain ChIP-DNA probe. Letters on the top of panel (B) and (C) denote

B:BamH-I , E: EcoR-I and numbers 1-7 denotes BAC clones as in panel (A), BAC clone

8 is from a zebrafish library and serves as a negative control for Southern hybridization.

D. Schematic of BAC 86O15. Blue bar showing the region corresponding to the 5.7Kb

band that hybridised with brain ChIP-DNA probe shown in panel (C), Red bar shows

further fine mapped 2.2 Kb potential target. Predicted tranposases and reverse

transcriptase are shown with pink and green bars respectively. E,F. PCR analysis of the

ChIP-DNA from  thymocyte and LMPCR amplified ChIP-DNA from brain for the

potential target region of RAG1 in brain. The schematic (E) shows the location of

primers to the unique region (1F and 1R) and repeat region (2F and 2R). Top panel in (F)

shows the PCR for unique region using ChIP-DNA from brain. PCR for the repeat region

using brain ChIP-DNA (middle panel) and thymus ChIP-DNA (bottom panel). Template

DNA used for PCR are Lane1 – total input, Lane2 - ChIP DNA using anti RAG1

polyclonal antibodies, Lane3 - ChIP DNA without using antibodies, Lane4 - no template

DNA control.
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 1 tatcataaac tgggtgcagc agatggccag tgttttgtgg gagaaagcgt
tgctcagtag ctgctgtcat gaagaccttt aggttaattt aaagctaaga

  101 gcacactatt ggtccaatga tggaaaagta ggtattcatc atgttgccta
tccagagtct gctagtgatt ttgcccaact ccaaacagta atgcaagaat

  201 agtgaaagca gactcgaGCC CCGGGCTACC TTGCCAGCAG AGTCTTGCCC
AACACCTGCA AGGGCCCACA TGGGACTCCC CACGGGAACC TAAGACCTCT

  301 GGTGAGTGGA CCACAGTGCC TGCCCCAATC CAATCGCGCG GAACTCGAGA
CTGCGGTACA TAGGGAAGCA GGCTACCCGG GCCTGATCTG GGGCACAAGT

  401 CCCTTCCGCT CGACTCGAGA CTCGAGCCCC GGGCTACCTT GCCAGCAGAG
TCTTGCCCAA CACCCGCAAG GGTCCACACG GGACTCCCCA CGGGACCCTA

  501 AGACCTCTGG TGAGTGGATC ACAGTGCCTG CCCCAATCCA ATCGCGTGGA
ACTTGAGACT GCGGTACATA GGGAAGCAGG CTACCCGGGC CTGATCTGGG

  601 GCACAAGTCC CTTCCGCTCG ACTCGTGACT CGAGCCCCGG GCTACCTTGC
CAGCAGAGTC TTGCCCAACA CCCGCAAGGG TCCACACGGG ACTCCCCACG

  701 GGACCCTAAG ACCTCTGGTG AGTGGATCAC AGTGCCTGCC CCAATCCAAT
CGCGCGGAAC TCGAGACTGC GGTACATAGG GAAGCAGGCT ACCCGGGCCT

  801 GATCTGGGGC ACAAGTCCCT TCCGCTCGAC TCGAGACTCG AGCCCCGGGC
TACCTTGCCA GCAGAGTCTT GCCCAACACC CGCAAGGGTC CACACGGGAC

  901 TCCCCACGGG ACCCTAAGAC CTCTGGTGAG TGGATCACAG TGCCTGCCCC
AATCCAATCG CGTGGAACTT GAGACTGCGG TACATAGGGA AGCAGGCTAC

 1001 CCGGGCCTGA TCTGGGGCAC AAGTCCCTTC CGCTCGACTC GAGACTCGAG
CCCCGGGCTA CCTTGCCAGC AGAGGCTTGC CCAACACCCG CAAGGGTCCA

 1101 CACGGGACTC CCCACGGGAC CCTAAGACCT CTGGTGAGTG GATCACAGTG
CCTGCCCCAA TCCAATCGCG CGGAACTTGA GACTGCGGTA CATAGGGAAG

 1201 CAGGCTACCC GGGCCTGATC TGGGGCACAA GTCCCTTCCG CTCGACTCGA
GACTCGAGCC CCGGGCTACC TTGCCAGCAG AGTCTTGCCC AACACCCGCA

 1301 AGGGTCCACA CGGGACTCCC CACGGGACCC TAAGACCTCT GGTGAGTGGA
TCACAGTGCC TGCCCCAATC CAATCGCGTG GAACTTGAGA CTGCGGTACA

 1401 TAGGGAAGCA GGCTACCCGG GCCTGATCTG GGGCACAAGT CCCTTCCGCT
CGACTCGAGA CTCGAGCCCC GGGCTACCTT GCCAGCAGAG GCTTGCCCAA

 1501 CACCCGCAAG GGTCCACACG GGACTCCCCA CGGGACCCTA AGACCTCTGG
TGAGTGGATC ACAGTGCCTG CCCCAATCCA ATCGCGCGGA ACTTGAGACT

 1601 GCGGTACATA GGGAAGCAGG CTACCCGGGC CTGATCTGGG GCACAAGTCC
CTTCCGCTCG ACTCGAGACT CGAGCCCCGG GCTACCTTGC CAGCAGAGGC

 1701 TTGCCCAACA CCCGCAAGGG TCCACACGGG ACTCCCCACG GGACCCTAAG
ACCTCTGGTG AGTGGATCAC AGTGCCTGCC CCAATCCAAT CGCGCGGAAC

 1801 TTGAGACTGC GGTACATAGG GAAGCAGGCT ACCCGGGCCT GATCTGGGGC
ACAAGTCCCT TCCGCTCGAC TCGAGACTCG AGCCCCGGGC TACCTTGACA

 1901 GCAGAGTCTT GCCCAACACC CGCAAGGGCC CACACGGGAC TCCCCACGGG
ACCCTAAGAC CTCTGGTGAG TGGAACACAG CGCCTACCCC AATCCAATCG

 2001 CGTGGAACTT GAGACTGCGG TACATAGGGA AGCAGGCTAC CCGGGCTTGA
TCTGGGGCAC AAACCCCTTC CACTCCACTC GAGCCCCGGC TACCTTGCCA

 2101 GCTGAGTCGC CTGACACCCG CAAGGGCCCA CACAGGATTC CACACGTGAT
CCTAAGACCT CTAGTGAGTG GAACACAACT TCTGCCAGGA GTCTGGTTCG

 2201 AACACCAGAT

Figure 3.13: Sequence of 2.2Kb target region. The unique sequence is indicated in

red color text (lower case), monomer of repeat sequence is in blue color text (bold type).

RSS heptamer sequence CACAGTG is shown in pink color bold text type (underlined).

Z27
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3.4.7 BAC macroarray hybridization
The failure of primers to the unique region to amplify the ChIP-DNA raises the

possibility that RAG1 binding actually occurs to another genomic locus that contains this

motif and not chromosome-9. Indeed, an analysis of mouse genome indicates the

existence of numerous repeats of this 208 nucleotide sequence. The fact that the only one

YAC clone was positive may be due to the nature of the YAC library. Hence a BAC

library with 11 times coverage of mouse genome, (RPCI-23 created by Kazutoyo

Osoegawa, Dr. Pieter J. de Jong , and Minako Tateno) arrayed  on 7 nylon membranes

(RZPD library no. 710) was screened with the brain ChIP-DNA probe. Fifty six  BACs

appeared positive, out of these 44 clones were mapped to the mouse genome based on

Ensemble mouse genome assembly -2005. Chromosome location and sequence

information was not available for 12 clones. Mapping of these 49 BACs revealed 24

different loci on various chromosomes. Three of these loci which mapped to chromosome

X, 2, and 14, showed the presence of a 5’UTR of the L1 element. Most of other contained

L1 ORFs but lacked 5’UTR repeats.  In addition three loci were found that did not

contain L1 elements (Table 3.1). None of the BACs mapped to TCR or immunoglobulin

locus.
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3.5 Discussion :
I have used immunofluorescence followed by chromatin immunoprecipitation to

investigate whether RAG1 may have a function in the vertebrate nervous system. This

study shows that the RAG1 protein is present in specific neurons in the mouse brain,

which have previously been identified by in situ hybridization to express Rag1. This

correlation, together with the absence of signal with peptide-blocked antibody, indicates

that the label obtained provides an accurate description of the distribution of RAG1 in the

brain. RAG1 localization does not appear to be identical in all neurons: some neurons

have more nuclear protein whereas others have more cytoplasmic RAG1.

An artificial recombination substrate was introduced in P19 cells to check the

possibility of V(D)J like recombination in neuronal cells. Recombination was not

observed in neuronally differentiated P19 cells either phenotypically (EGFP expression)

or at a molecular level by PCR assays. This is consistent with previous studies by Chun et

al. reporting a lack of recombination in P19 cells using an artificial substrate (Chun et al.,

1991) and the recent report suggesting that RSS are not used for recombination in

neuronally differentiated P19 cells (Kawabata et al., 2004). This is likely because the

RAG2 is not expressed in these cells.

But nuclear localization of RAG1 in P19 cells as well as in brain cells was sufficient

grounds to investigate RAG1 interaction with DNA in these cells.

A relatively new approach of double chromatin immunoprecipitation coupled with

whole genome macroarray screening was used in this study. Double ChIP approach was

shown to enhance the specificity without losing the efficiency of pull down (Weinmann
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and Farnham, 2002). Indeed, in this study I find that after two rounds of

immunoprecipitation the specific TCR locus region Jα50 shows a similar level of

amplification from ChIP-DNA as after the first round, whereas the non-specific locus

does not show any amplification (Fig. 3.8). The ChIP & chip approach in which the

pulled down DNA is used as a probe to screen microarray chips has been used (Ren et al.,

2000). This approach is useful in identifying unknown targets of transcription factors

with the use of specific microarrays. In this study I used whole genomic macroarray to

scan the entire genome as there was no prior information about the location of potential

RAG1 targets in neurons. In a YAC library screen, brain ChIP-DNA probe hybridized to

a single clone, whereas the BAC library screen resulted in 56 positive clones.

Chromatin immunoprecipitation, using either whole brains or a cell line as source of

nuclei, suggests that RAG1 binds to specific loci in the genome of neurons. Analysis of

the positive YAC clone identified a putative binding site that contains eight copies of the

conserved heptamer found in all vertebrate recombination signal sequences. The

nonamer, which is less well conserved, especially near embedded heptamers (Fanning et

al., 1998) and in cryptic recombination signals (Cowell et al., 2003), was not detected.

This site turned out to be the L1 repeat located on chromosome-9. The unique sequence

associated with this repeat region at chromosome-9 locus did not amplify from brain

ChIP-DNA suggesting that the repeat bound by RAG1 is located elsewhere in the

genome. Consistent with this, the 5 positive BAC clones containing L1 repeat regions

map to different chromosomes.

It is clear from some cancers, such as Burkitt’s lymphoma, that RAG1 can cut DNA

and mediate transposition in cryptic sequences (Vaandrager et al., 2000; Raghavan et al.,
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2004). Also recent studies showing similarity of RAG1 and its recognition sites to transib

transposon supports that RAG1 alone may function as transposases (Kapitonov and

Jurka, 2005). To prevent unwanted RAG1 induced breaks, access to the genome is

normally tightly regulated. The fact that RAG1 binding occurs at this site in neurons,

raises the possibility that binding has a useful function.

An unexpected finding is that the site identified here lies in the 5’ region of a L1Md

A-type retrotransposon. Although mobile elements such as retrotransposons are

sometimes considered junk DNA, there is evidence that these elements can sometimes be

specifically regulated and even have physiological roles (Britten, 1997). In the

Drosophila visual system, for example, transcription of a retrotransposon is activated

when axons contact their target (Mozer and Benzer, 1994), presumably because of a

factor transported by the axons. In fission yeast, the LTR of retrotransposons are able to

silence adjacent genes through an RNAi-dependent mechanism (Schramke and Allshire,

2003). A similar phenomenon occurs in mouse cells, where RNA of the VL30

retrotransposon binds to PSF (pre m-RNA splicing factor) protein and enables the

induction of genes normally repressed by PSF (Song et al., 2004). Recent studies shows

that L1 retrotansposition occurs in neural progenitor cells, and may have a role in

generating neuronal diversity (Muotri et al., 2005; Ostertag and Kazazian, 2005).

It should be informative next to determine whether and how RAG1 affects L1

elements, and if this affects neurons. One possibility is that binding of RAG1 the

retrotransposon may causes DNA breaks. I have attempted to use terminal transferase

dependent PCR (TD-PCR), which has been used for detecting DNA adducts (Komura

and Riggs, 1998) to detect endogenous DNA breaks at TCR locus and A-type L1. This
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approach did not yield significant information  probably due to high level background

(unbroken) DNA in the sample.  It is possible that RAG1 binding to 5’ region of the L1

may have other effects such as controling the expression of L1 ORF or the neighboring

genes. It would be worth checking expression of L1 ORF in wildtype and rag1 mutant

mice brains.

The A-type L1 repeats are found only in the mouse genome. This means that the

potential site identified here is applicable only to the mouse genome. Other binding sites

may exist, both in mouse and other vertebrates. A further analysis of BAC clones as well

as YAC clones bound by ChIP-DNA from neuronally differentiated P19 might identify

these other sites.

In summary, this study establishes that RAG1 protein is present in neurons, in

regions of the brain where a LacZ reporter has suggested that recombination can occur

(Matsuoka et al., 1991). Chromatin immunoprecipitation indicates that RAG1 can bind to

the genome of mouse neurons specifically in a repeat associated with a retrotransposon.

This indicates that RAG1 has DNA binding activity in neurons and binds loci that are

distinct from those in thymocytes. Thus the data reported here represent initial steps in

unraveling the question of whether RAG1, which revolutionized the vertebrate immune

system, has had any effect on evolution of the vertebrate nervous system. Further

molecular and biochemical analysis along with behavioral and physiological studies

should solve the puzzle of Rag1 expression in neurons.
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Appendix

Studies presented in Chapter-2 on gnarled mutant (in figure 2.7, 2.8 and 2.9) were carried

out by other members of Dr. Jesuthasan’s lab.
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