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Abstract 

 

The hippocampus is a small gray matter structure that is adjacent to other gray 

matter structures e.g amygdala, parahippocampus gyrus. The hippocampus has no 

clearly distinguishable boundaries along significant portion of its surface . That is 

why segmentation of hippocampus from its neighbors is still a challenge of 

medical image processing. I propose an atlas-assisted method to segment the 

hippocampus in brain MR neuroimages. The method is implemented in two steps: 

global and local. In the global step, the initial location of the hippocampus is 

determined by a brain atlas registered with the scan. For registration, we use the 

modified Talairach transformation based on the midsagittal plane, anterior and 

posterior commissures, and the extents of the brain. In the local step, this coarse 

segmentation is refined locally of applying active contours with anatomical 

knowledge constraints.  

 



Chapter 1 

 

Introduction and Motivation 

 

The rapid development and proliferation of medical imaging technologies is 

revolutionizing medicine. Medical imaging allows scientists and physicians to 

glean potentially life-saving information by peering noninvasively into the human 

body. The role of medical imaging has expanded beyond the simple visualization 

and inspection of anatomic structures. It has become a tool for surgical planning 

and simulation, intra-operative navigation, radiotherapy planning, and for tracking 

the progress of disease. For example, ascertaining the detailed shape and 

organization of anatomic structures enables a surgeon preoperatively to plan an 

optimal approach to some target structure. In radiotherapy, medical imaging 

allows the delivery of a necrotic dose of radiation to a tumor with minimal 

collateral damage to healthy tissue. 

 

With medical imaging playing an increasingly prominent role in the diagnosis and 

treatment of disease, the medical image analysis community has become 

preoccupied with the challenging problem of extracting, with the assistance of 

computers, clinically useful information about anatomic structures imaged 

through CT (Computed Tomography), MR (Magnetic Resonance), PET (Positron 

Emission Tomography), and other modalities. Although modern imaging devices 
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provide exceptional views of internal anatomy, the use of computers to quantify 

and analyze the embedded structures with accuracy and efficiency is limited. 

Accurate, repeatable, quantitative data must be efficiently extracted in order to 

support the spectrum of biomedical investigations and clinical activities from 

diagnosis to radiotherapy to surgery. 

 

Nowadays, medical image applications have been developed rapidly. In most 

applications that use medical image data, segmentation is an important step. For 

example, segmentation is a prerequisite for quantification of morphological 

disease manifestation and for radiation treatment planning. The results of 

segmentation can be used to construct anatomical models. The brain atlases are 

used in stereotactic neurosurgery, neuroradiology and human brain mapping.  The 

data from segmentation also can be used for visualization of individual objects. 

 

In our project, we focus on the segmentation of the human hippocampus. The 

hippocampus is a part of the brain located inside the temporal lobe (humans have 

two hippocampi, one in each side of the brain). It forms a part of the limbic 

system and plays a major role in memory and navigation. The limbic system is a 

group of brain structures that are involved in various emotions such as aggression, 

fear, pleasure and also in the formation of memory. The location and shapes of 

structures in limbic system is in Fig. 1 and Fig.2 (from Internet). 
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Figure 1 Location of Major Limbic System Structures 

 
Figure 2 Major components of the Limbic System 

 3



The hippocampus is one of the first region to be affected by Alzheimer’s disease 

causing memory problems and disorientation as the first symptom. Damage to the 

hippocampus can also result from oxygen starvation (anoxia) and encephalitis. 

The hippocampus has an essential role in the formation of new memories about 

personally experienced events. Some evidence implicates the hippocampus for 

storing and processing spatial information. Abnormalities of hippocampal 

anatomy occur in schizophrenia and support current hypothese that schizophrenia 

involves a disturbance of hippocampal-prefrontal connections. Therefore, the 

study of hippocampus is very important and necessary for clinical analysis. From 

the segmentation of the hippocampus, the doctor can diagnose the nature of 

disease. 

 

The hippocampus is a small gray matter structure that is adjacent to some other 

gray matter structures (e.g amygdala, parahippocampal gyrus). The hippocampus 

has relatively low contrast and no distinguishable boundaries along significant 

portion of its surface. That is why segmentation of hippocampus from its 

neighbors is still a challenge of medical image processing. 

 

So far, there has been some research about segmentation of hippocampus. 

However, atlas-assisted segmentation of hippocampus has not been studied. The 

atlas will speed up the segmentation and facilitate acceptance in clinical practice. 

In our project, we use the atlas as an assistant to segment the hippocampus from 

MR images. 
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Chapter 2 

 

Background 

 

2.1 Brain atlases 

Before the prevalence of Information Technology, a number of excellent printed 

atlases had already been available, such as, DUVERNOY (1988), NETTER (1991). In 

addition, several stereotactic brain atlases have also been constructed: TALAIRACH 

and TOURNOUX (1988, 1993). These atlases are usually based on a single, at best 

several, specimen. They only provide some very general and non-specific 

information and are used as a reference model. Furthermore, because they are 

printed on paper, a major limitation of these atlases is the difficulty in mapping 

the printed atlas plates into an individual brain [Nowinski, 2002]. 

 

In order to overcome the disadvantage of the printed atlases, electronic atlases 

were developed. Electronic atlas is not just a simple electronic transformation of 

the printed atlas. It is a rather complex system consisting of 3 major components 

(as shown in Fig. 3) [Nowinski, 2002]. Brain model is the graphic databases 

containing contours, surfaces, polygonal or volumetric models. Textural database 
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is a list of the anatomy structures with their anatomical name and description. 

Tools provide some operations such as registration, labeling, presentation and 

mensuration. 
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Figure 3  [Nowinski, 2002] 

These deformable electronic atlases overcome some limitations of the printed atlas 

and even give new possible applications. They offer many features not available 

in printed atlas, such as interactive labeling of scans, selectable visualization in 2D 

or 3D, defining the regions of interest (ROI), and integration information from 

multiple sources. Combining with the widely accepted stereotactic printed atlas 

with the new features provided by the electronic atlases, many printed atlases have 

been converted into electronic form. Among them, Cerefy electronic brain atlas 

database [Nowinski 1997a; Nowinski 2001a] contains electronic version of 

several printed brain atlases published by Thieme (SCHALTENBRAND and WAHREN 

1977; TALAIRACH and TOURNOUX 1988; ONO et al 1990; TALAIRACH and TOURNOUX 

1993). This databse has been used for many clinical and educational applications 

[Nowinski et al. 2000, 2001b, 2003a, 2003b]. 
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2.2 Medical Image Segmentation 

2.2.1 Terminology 

In this section we define some terminologies that are used in our project. 

Definitions 

An image may be defined as a two-dimensional function, f(x, y), or a three-

dimensional function, f(x, y, z),  where x and y and z are spatial  coordinates, and 

the amplitude of f is called the intensity or gray level of the images at that point. 

When x, y, z and amplitude values of f are all finite, discrete quantities, we call the 

image a digital image. Image intensities are measurements that can be radiation 

absorption in X-ray imaging, acoustic pressure in ultrasound, or RF (Radio 

Frequency) signal amplitude in MRI. If a single measurement is made at each 

location in the image, then the image is called a scalar image. If more than one 

measurement is made (eg. Dual-echo MRI), the image is called a vector or multi-

channel image. 

The term image segmentation refers to the partition of an image into a set of 

regions that cover it. These nonoverlapping, constituent regions which are 

homogeneous with respect to some characteristics such as intensity or texture. If 

the domain of the image is given by I, then the segmentation problem is to 

determine the sets   whose union is the entire image I. These sets must 

satisfy 

ISk ⊂
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=  

where φ=∩ jk SS  for k≠j, and each Sk is connected.  

Labeling is the process of assigning a meaningful designation to each region or 

class and can be performed separately from segmentation. It maps the numerical 

index k of the set Sk to the anatomical designation. In medical imaging, the labels 

are visual and can be determined by a physician or technician.  

Dimensionality  

Dimensionality refers whether a segmentation method operates on a 2-D image or 

a 3-D image. Methods that are based on image intensity are independent on the 

image dimensionality. Some methods such as deformable models, Markov 

random fields, region growing incorporate spatial information. Therefore, these 

methods operate differently on 2-D and 3-D images. A 2-D method can be used 

for 3-D images by implementing slice by slice of 3-D images. This method has 

some advantages such as ease of implementation, lower computational complexity, 

and less memory requirements.  

Soft segmentation and partial volume effects 

Segmentations that allow regions or classes to overlap are called soft 

segmentation. Soft segmentation is important in medical imaging because of 

partial volume effects, where multiple tissues contribute to a single pixel or voxel 

resulting in a blurring of intensity across boundaries (see Fig. 4). 

 

 8



 

Figure 4 Illustration of the partial volume effect: a) Ideal image,  b) acquired image [Dzung 

1998].  

A hard segmentation gives a decision whether a pixel is inside or outside the 

object. Soft segmentation retains more information from the original image by 

allowing for uncertain location of object boundaries. 

Interaction 

Interaction implies the interaction between the user and the implementation of the 

algorithm. The tradeoff between manual interaction and performance is an 

important consideration in any segmentation application. Segmentation methods 

can be classified into: manual, automatic and semi-automatic. A manual method 

with incorporated prior knowledge of an operator usually gives high accuracy. 

However, this method is laborious, time consuming and requires higher 

computational cost. Even automatic methods still require some interaction for 

specifying initial parameters that affect the segmentation performance. 
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Validation  

After segmenting the object, we need validation experiments to determine 

sensitivity and specificity to make sure that our segmentation method is accurate. 

The straightforward approach is to compare the automated segmentations with 

manually obtained segmentations. The other approach is through the use of 

physical phantoms or computational phantoms.  

2.2.2 Overview of Medical Image Segmentation Methods 

In this section, we have a quick overview of some segmentation methods before 

going to some specified methods used in segmentation of hippocampus.  

Thresholding 

The thresholding approaches segment images by creating a binary partitioning of 

the image intensities. A thresholding procedure attempts to determine an intensity 

value, called the threshold, which separates the desired image into required 

segments. The segmentation is achieved by grouping all pixels with intensity 

greater than the threshold into one class, and all other pixels into another class. 

Thresholding is a simple effective means for obtaining a segmentation in images 

where different structures have contrasting intensities or other quantifiable 

features [Shiffan 2000]. 

 

The limitation of thresholding is that in its simplest form of only two classes 

cannot applied to multi-channel images. Moreover, thresholding does not take into 
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account the spatial characteristics of an image so it is independent of spatial 

configuration. Because of these issues, this method is sensitive to noise and 

intensity inhomogeneties. 

Region Growing 

Region growing is a technique for extracting a region of the image that is 

connected based on some predefined criteria. This criteria can be based on the 

intensity information or edges. At first, the algorithm needs a seed point and after 

that the region is grown from the seed point. A neighbor of the region can be 

added if it satisfies some criteria. In its simplest form, region growing requires a 

seed point that is manually selected by an operator, and extracts all pixel 

connected to the initial seed with the same intensity value or the same range. 

 

Like thresholding, region growing is not usually used alone. The primary 

disadvantage is that the algorithm requires a seed point manually planted. 

Therefore, for each region that needs to be extracted, a seed needs to be planted. 

Region growing can also be sensitive to noise, causing extracted regions to have 

holes or even become connected. The result of region growing may be 

unsatisfactory when complicated structures are to be segmented. Seed can also be 

selected automatically. Defining the parameters of region growing may be 

difficult. 
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Classifier 

Classifier methods are pattern recognition techniques that partition a feature space 

derived from the image. Classifier methods are supervised method because they 

use training data that are manually segmented and labeled and then used as 

references for automatically segmenting new data. There are a number of ways in 

which training data can be applied in classifiers methods. A simple classifier is the 

nearest-neighbor classifier, where each pixel or voxel is classified in the same 

class as the training datum with the closest intensity. The k-nearest-neighbor 

(kNN) classifier is a generalization of this approach, where the pixel is classified 

according to the majority vote of the k closest training data. The kNN classifier is 

considered a nonparametric classifier since it makes no underlying assumption 

about the statistical structure of the data. Another nonparametric classifier is 

Parzen window, where the classification is made according to the majority vote 

within a predefined window of the feature space centered at the labeled pixel 

intensity. A commonly-used parametric classifier is the maximum likelihood or 

Bayes classifier. It assumes that the pixel intensities are independent samples from 

a mixture of probability distribution, usually Gaussian.  

 

Standard classifiers require that the structures to be segmented possess distinct 

quantifiable features. Because training data can be labeled, classifiers can transfer 

these labels to new data as long as the feature space sufficiently distinguishes each 

label as well. Being non-iterative, they are relatively computationally efficient. 

Unlike thresholding methods, classifiers can be applied to multi-channel images. 
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A disadvantage of classifiers is that they generally do not perform any spatial 

modeling. This weakness has been addressed in recent work to segmenting images 

that are corrupted by intensity inhomogeneities. Another disadvantage is the 

requirement of manual interaction for obtaining training data. Training sets can be 

acquired for each image that requires segmenting, but this can be time consuming 

and laborious [Karayiannis 1999],  [Dzung 1999], [Barra 2001].   

Clustering 

Clustering algorithms essentially perform the same function as classifier methods 

without the use of training data. Therefore, they are termed unsupervised methods. 

Without the training data, clustering methods train themselves by using the 

available data.  

 

Although clustering algorithms do not require training data, they do require an 

initial segmentation (or equivalently, initial parameters). Like classifier methods, 

clustering algorithms do not directly incorporate spatial modeling. Thus, the result 

is sensitive to noise and intensity inhomogeneities. This lack of spatial modeling, 

however, can provide significant advantages for fast computation.  

Artificial Neural Network 

Artificial neural networks (ANNs) are massively parallel networks of processing 

elements or nodes that simulate biological learning. Each node in ANN performs 
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elementary computations. Learning is archieved by the adaptation of the weight of 

the connection assigned to each node. 

 

ANNs represent a paradigm for machine learning and can be used in a variety of 

ways for image segmentation. The most widely applied use in medical imaging is 

as a classifier, where the weights are determined using training data, and the ANN 

is then used to segment new data [Reyes-Aldasoro 1999]. 

Morphology-based 

Geraud et al [Geraud 1998] introduced a method that relies mainly on 

morphological information. The method is basically based on the mean and 

variation gray value of the structures. Although the accuracy of the segmentation 

is not stable in some structures, this methods can be improved by combining with 

more statistical methods (Markov Random Fields for instance) or be the 

initialization for other model-based recognition method.    

 

A grey-level morphology-based is proposed by Hult [Hult 2003]. This approach is 

similar to other histogram-based methods. The grey-level morphology is used 

with binary morphology. 

Deformable Models 

Deformable models are physically motivated, model-based techniques for 

delineating region boundary using closed parametric curves or surfaces that 

deform under the influence of internal and external forces. Among model-based 
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techniques, deformable models offer an approach that combines geometry, 

physics, and approximation theory. Geometry represents the shape of object and 

physics imposes constraints on how the shape may vary over space and time. 

Optimal approximation provides the solution how to fit the models to measured 

data. 

 

The potency of deformable models stems from their ability to segment, match, and 

track images of anatomic structures by exploiting (bottom-up) constraints derived 

from the image data together with (top-down) a priori knowledge about the 

location, size, and shape of these structures. The important capability of 

deformable models is that they can accommodate the often significant variability 

of biological structures over time and across different individuals.  

 

The deformable model that has attracted the most attention to date is popularly 

known as “snakes” [Kass 1988]. Snakes or “deformable contour models” 

represent a special case of the general multidimensional deformable model theory. 

We will review their simple formulation in the remainder of this section in order 

to illustrate the basic mathematical machinery that is present in many deformable 

models.  

 

Energy-Minimizing Deformable Models 

The active contour model, or snake, is defined as an energy minimizing spline – 

the snake's energy depends on its shape and location within the image [Kass 1988]. 

The snake model represents a contour x as 
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x = x(s) = (x(s), y(s))        10 ≤≤ s  

and x and y are the coordinates of a contour point. 

The snake is deformed under the influence of three forces: 

• Internal forces ( ): constraining the stretching and banding of 

the snake. 

intE

• Image forces ( ): forces are derived from the image data over 

which the snake lies. 

imageE

• External forces ( ): external constraints imposed either by a 

user or some other higher level process which may force the snake toward 

or away from particular features. 

conE

The total energy of the snake is 

dssxEsxEsxEE conimagesnake ))](())(())](([
1

0
int ++= ∫  

The local minimum of this energy corresponds to desired image properties.  

 

The deformable model combines three types of information. First, it employs 

information about the geometric properties of the object boundary, from a local 

and relatively finer scale to a more global and relatively coarser scale. Second, the 

model includes a statistical characterization of normal shape variation across 

individuals, serving as prior knowledge to the algorithm. Third, the algorithm 

utilizes a number of manually defined boundary points, which can help guide the 

model deformation to the appropriate boundaries, wherever these boundaries are 

weak or not clearly defined in MR images [Shen 2001b ]. 
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The disadvantage is that deformable models require manual interaction to place an 

initial model and choose appropriate parameters. 

Atlas-guided approaches 

Atlas-guided approaches are a powerful tool medical image segmentation when a 

standard atlas or template is available. At first, the atlas is generated by compiling 

information on the anatomy of image data. After that, this atlas is used as a 

reference to segment new images. Conceptually, the atlas-guided approaches are 

quite similar to classifiers. However, they are implemented in the spatial domain 

of the image rather that the feature space. 

 

The standard atlas-guided approach treats segmentation as a registration problem. 

It first finds a one-to-one transformation that maps a pre-segmented atlas image to 

target image that requires segmenting. This process is often referred to as atlas 

warping. 

 

Atlas-guided approaches have been applied mainly in brain imaging. An 

advantage of atlas-guided approaches is that labels are transferred along with the 

segmentation [Rohlfing 2004]. 

2.3 Active Contours 

Snakes, or active contours, are curves defined within an image domain that can 

move under the influence of internal forces coming from within the curve itself 

and external forces computed from the image data. The internal and external 
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forces are defined so that the snake will conform to an object boundary or other 

desired features within an image. Active contours synthesize parametric curves 

within an image domain and allow them to move toward desired features, usually 

edges. 

 

There are two key problems with active contour algorithms. First, in general, the 

initial contour must be close to the true boundary. Otherwise, it will converge to 

the wrong result. The second problem is that active contours have difficulties 

progressing into boundary concavities.  

  

Traditional snake 

A traditional snake is a curve v(s) = [x(s), y(s)], s ∈  [0, 1]. It has the energy 

function  

[ ] dssvEsvsvE ext ))(()('')('
2
1 22

1

0

++= ∫ βα  

where α and β are weighting parameters that control the snake’s tension and 

rigidity, respectively, and v’(s) and v’’(s) denote the first and second derivatives of 

v(s) with respect to s. 

 

The external energy function Eext is derived from the image so that it takes smaller 

values at the boundaries. Given a gray-level image I(x, y), the external energy is 

defined as 

2)1( ),(),( yxIyxEext ∇−=  

or 
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2)2( )],(*),([),( yxIyxGyxEext σ∇−=  

where  is a two-dimensional Gaussian function with standard derivation 

σ and ∇ is the gradient operator. Larger σ’s will cause the boundaries to become 

more blurry. 

),( yxGσ

 

A snake that minimizes E must satisfy the Euler equation   

0'))'(''())'('( =−∇− extEsvsv βα     

A numerical solution to this equation can be found by discretizing the equation 

and solving the discrete system iteratively [Kass 1988]. 

 

Behavior of traditional snake 

The illustration of behavior of traditional snake is in Fig. 5. 

a)     b)    c)  

a) The U-shape test object.  b)The progress of deformation during running. c)The final 

result after iteration 500. 

Figure 5 Running of traditional snake contour algorithm. 

 

Gradient Vector Flow Snake 

The traditional snake has two main shortcomings: 
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• It does not converge well to concave features 

• Its performance is sensitive to initial guess of snake point positions 

Gradient Vector Flow (GVF) overcomes these shortcomings. It is based on 

diffusion of gradient vectors of edge map. 

It is solved numerically by discretization and iteration, in identical fashion to the 

traditional snake.  

 

Defining f(x, y) as edge map derived from the image I(x, y). Three properties of 

edge maps are important. First, the gradient of an edge map ∇f is normal to the 

edges at the edges. Second, these gradients have large magnitudes only in the 

immediate vicinity of the edges. Third, in the homogeneous regions, I(x, y) is 

nearly constant, ∇f is nearly zero. The gradient vector flow field g(x, y) = [u(x, y), 

v(x, y)] is the vector field that minimizes the energy functional  

dxdyEgfvvuu yxyx
222222 )( ∇−∇++++= ∫ ∫ με  

When ∇f is small, the energy is dominated by the sum of the squares of the partial 

derivatives of the vector field, yielding a slowly varying field. When ∇f is large, 

the second term dominates the integrand, and is minimized by setting v = ∇f. This 

produces the desired effect of keeping v nearly equal to the gradients of the edge 

map when it is large, but forcing the field to be slowly-varying in homogeneous 

regions. The parameter μ is regularization parameter governing the tradeoff 

between the first term and the second term in the integrand. This parameter should 

be set according to the amount of noise present in the image (more noise, increase 

μ). 
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The GVF can be found by solving the following Euler equations 

0))(( 222 =+−−∇ yxx fffuuμ  

0))(( 222 =+−−∇ yxy fffvvμ  

where ∇2 is the Laplacian operator. In a homogeneous region [where I(x, y) is 

constant], the second term in each equation is zero because the gradient of f(x, y) 

is zero. Within such a region, u and v are each determined by the Laplace’s 

equation, and the resulting GVF field is interpolated from region’s boundary, 

reflecting a kind of competition among the boundary vectors. This explains why 

GVF yields vectors that point into boundary concativites. 

a)  b)  c)  

a) The U-shape test object.  b) The progress deformation during running of GVF algorithm. 

c) The final result with iteration 125 times. 

Figure 6 Results of GVF contour algorithm. 

 
 
 
 
 
 
 
Chapter 3 
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State Of The Art Review Of Segmentation of 

Hippocampus 

 

In this chapter, we do a literature review of previous and current research that is 

relevant to the project. The literature review mostly refers to segmentation and 

shape analysis of hippocampus.  

 

In the following parts, we will analyze some outstanding research on segmentation 

and modeling of the hippocampus. Methods for segmenting hippocampus can be 

classified into: manual, automatic and semi-automatic. 

 

3.1 Manual segmentation methods of hippocampus 

In [Csernansky 1998], Csernansky et al used transformations of neuroanatomical 

template containing expert-derived information about the boundaries of the left 

and right hippocampus to compare subjects with schizophrenia and healthy 

control subjects. An analysis of hippocampal shape as well as volume was carried 

out. To highlight the specificity of the shape comparison findings, hippocampal 

shape deformations found in the schizophrenia subjects were compared with 

patterns of normal hippocampal shape variability and to the hippocampal shape 

deformation found in a single subject with mild dementia of the Alzheimer type.  

The landmarks in the MR scan placed were based on the properties of anterior and 

posterior commissures in the midsagittal plane. The template was produced from 
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healthy controls manually by the consensus of three experts. This method had a 

remarkable accuracy in segmenting the hippocampus at a high computational cost. 

 

In [Joshi 1997], for segmentation of hippocampus, the authors represent the 

typical global structures via the construction of templates. To represent the 

structures’ variability, they define a probabilistic diffeomorphic transformation to 

apply to the templates. The transformations are defined by diffeomorphisms 

 of the coordinate system of the template defined as Ω↔Ω:h Ω . The dimension 

of the transformation, 

Ω∈=Ω∈= ))(),(),(()(),,(: 3
2

2
2

1
1

321 xhxhxhxhxxxxh a  

is roughly equivalent to the number of voxels in the volume, thereby 

accommodating a variation in anatomy. A coarse-to-fine procedure is generated 

for generating the volume maps from the template to the target. The first step in 

the procedure is based on operator provided manifold information, the information 

corresponding to easily identifiable points, lines, surfaces. The second step is to 

solve the registration problem using the full volume data. The experiments and 

results presented in this paper are limited because the sample size studied 

consisted of only 10 pairs of schizophrenics and controls. 

 

3.2 Semi-automatic segmentation methods of hippocampus 

Automatic methods did not combine prior knowledge of hippocampal location, 

anatomic boundaries and shape. Some more realistic semi-automatic methods 

have been proposed to combine automatic techniques with prior knowledge 
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[Ashton 1997], [Shen 2001b] [Ghanei 1998]. Ashton et al [Ashton 1997] proposed 

an algorithm that uses elements of both deformable model and region growing 

techniques and incorporates a prior operator knowledge of hippocampal location 

and shape. A new 3D discrete dynamic model was used to segment hippocampus 

from brain MRI [Ghanei 1998]. The geometry of model deforms by internal 

forces (based on local geometry of the model and local curvature of the surface) 

and external forces (calculated from desired image features) after being generated 

by triangles patches. Another method using a deformable model for segmentation 

and quantification of the shape and size of the hippocampus was proposed in 

[Shen 2001b]. This model integrates geometric, statistical, and user-defined 

information. 

 

Ashton et al. [Ashton 1997] introduced an algorithm that makes use of elements of 

both deformable model and region growing techniques and incorporates a prior 

operator knowledge of hippocampal location and shape. This method improves 

the snake-based techniques that do not incorporate any a prior model, the 

expected shape and size of the structure of interest. The algorithm begins with an 

initial simple shape model, composed of the superposition of multiple 

appropriately placed and shaped ovoids. This a prior modeling allows the 

algorithm to fill in area of the surface of the structure of interest which have no 

apparent boundary in the data. In addition, deformable model technique which 

incorporates some of the same goals as the region growing technique was 

proposed. At first, one or more seed voxels are planted. Each of seeds will, if left 

constrained, expand into an ovoid with a predetermined volume and preset ratios 
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between radii in the x, y, and z directions. Constraining forces are elastic surface 

tension, deviation from the expected surface normal, and resistance from 

surrounding tissue. The expansive force is provided by internal pressure, which is 

gradually increased until either the expected volume is reached or no further 

expansion is possible due to constraining tissue. The model proposed is an 

expanding bubble with a preset geometry. The expansive force at a given 

boundary is  

)( CNSpF ++−=  

where p is internal pressure, S is surface tension that is proportional to the total 

surface area of the model, N is deviation from expected surface normal, and C is 

the constraining force of the surrounding tissue. 

 

Ghanei et al [Ghanei 1998] introduced a geometric structure used for deformation 

process. Basic geometry of the model surface is generated by triangle patches. The 

normal vector at each point that shows the local direction of the surface and is the 

base in computing internal forces is defined. The property of the normal vectors is 

that they point to the inside of the volume(see Fig. 9). Internal forces are elastic 

forces generated by the model geometry. The goal of internal forces is to smooth 

the surface and reduce its local curvature. A curvature definition at a point is 

defined by averaging on curvatures along different directions at that point. The 

external forces are computed from the volumetric data and show desired image 

features such as edges or lines. The resolution of the model is maintained by using 

a sampling procedure in each time step. This is done by adding vertices in the 

middle of large segments (See Fig. 7). An initial shape that is a closed surface is 
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produced from a stack of polygons drawn on parallel cross sections (See Fig. 8). 

This is a 3D deformable surface can be used for segmenting objects from 3D 

volume data in medical images. However, the model is dependent on parameter 

values and the initial polygon. The method does not incorporate information from 

multiple images normally acquired in MRI studies. 

 

Figure 7 An example of the model structure with five vertices and five patches. The 

relative indices of four vertices relative to vertex i have been shown. Here, ri is the unit 

radial vector of vertex i and ni,0 is the unit normal vector perpendicular to the patch 

defined by vertices i, v(i, 0) and v(i, 1). 

 

Figure 8 Resampling of the model to increase the resolution (a) Model before resampling. 

(b) Model after resampling. A vertex is added in the middle of the segment between v(i,1) 

and v(i,2).  
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Figure 9 The initial shape is produced from a stack of polygons drawn by the user slice by 

slice. π(l, k) is the kth vertex of lth polygon. 

 

A deformable method using attribute vectors for measuring size and shape of the 

hippocampus was presented in [Shen 2001b]. The attribute vector is attached to 

each vertex of models, which reflects the model’s geometric structure from a local 

to a global level. The energy function is composed of three terms. 
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where N is the number of the vertices in the hippocampal model and L is the 

number of landmarks placed on the boundaries of the hippocampi. αi and βj are 

the parameters to control the relative importance of each energy term. The first 

term favors shapes that have attribute vectors similar to the model. The second 

term demands that the deformable model adhere to edges extracted from the MR 

images. The third term demands that the reconstructed hippocampus pass through 

the landmarks that are defined manually. The initialization process is guided by 

the manually placed landmarks. Attribute vectors help establish anatomical 
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correspondences between the model and an individual hippocampus. These 

attribute vectors also help to train the model in the stage in which the normal 

range of shape variation is determined from a training set, without the need for 

manual definition of homologies, which could be impossible in 3D. With the help 

of the statistical prior, the deformable model stays within the range of shapes that 

“look like hippocampi” and can avoid following incorrect and noisy edges. The 

main shortcoming of this method is the need for manual definition of a number of 

points along the hippocampal boundary.  

 

3.3 Automatic segmentation methods of hippocampus 

Deformable models have been applied in some research in segmentation of 

hippocampus. These researches have been developed from the basic idea of 

deformable models as presented in the previous chapter. However, for each 

research, deformable model is applied differently. 

 

An automatic model-based segmentation of objects from volumetric image data 

was proposed in [Klemen 1999]. The development closely follows the seminal 

work of Taylor and Cootes [Cootes 1994] on active shape models, but is based on 

a hierarchical parametric object description rather than a point distribution model. 

The segmentation system includes both the building of statistical models and the 

automatic segmentation of new image data sets via a restricted elastic deformation 

of shape models. Geometric models are derived from a sample set of image data 

which have been segmented by experts. The traning set is segmented by manual 
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processing. The parametric shape representation is SPHARM (spherical 

harmonics) (see Fig. 10). The reference coordinate system is the standard 

stereotactic coordinate system proposed by Talairach for global alignment of the 

head image data sets. Basic features used for alignment are the approximation of 

the interhemispheric fissure by a midsagittal plane and the definition of the 

anterior and posterior commisure (AC-PC) (see Fig. 11). The surfaces of these 

binary objects are converted into parametric surface representations, which are 

normalized to get an invariant object-centered coordinate system. The shape 

representation results in a continuous mapping function between similar objects. 

A key step in the shape description of a surface is its mapping to the parameter 

space, the sphere. Any point on the surface must map to exactly one point on the 

sphere and vice versa. The location on the sphere corresponding to a surface point 

defines the surface parameters of the point. Corresponding points on different 

object surfaces are found by calculating a canonical parametrization, rather than 

by interactive selection of labeled sets of 3-D points. After transformation to 

canonical coordinates, the object descriptors are related to the same system and 

can be directly compared. Principal Component Analysis (PCA) is applied for 

eigenmodes, mean shape and variation. Augmenting geometric models with 

information about the gray-level environment of the model significantly improves 

the robustness of the segmentation. The statistics of the image intensity along one-

dimensional profiles, orthogonal to the object surface at a discrete set of sampling 

points are examined.  This approach makes use of two shape representations 

which are used in a vice versa fashion, taking advantage of shape descriptors 
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holding a compact global object characterization and of a set of surface points 

giving access to local shape objects.  

 

 

Figure 10 Model building. (a) Interactive segmentation of a left hippocampus. (b) 

Reconstruction from surface descriptor up to degree one. (c) Reconstruction up to degree 

ten. (d) Normalization of the shape pose in object space [Klemen 1999]. 

 

Figure 11 Stereotactic coordinate system used for object space normalization. 
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Crum et al presented an automated hippocampal segmentation by regional fluid 

registration [Crum 2001]. In this paper, the application of voxel-level three-

dimensional registration to serial MRI is described. This fluid registration 

determines deformation fields modeling brain change, which are consistent with a 

model describing a viscous fluid. The segmentation algorithm consists of three 

steps. First, parameter choices for the fluid registration are investigated. Second, 

the technique is examined for repeatability and linearity. Third, this technique is 

used to measure simulated atrophy. The practical advantage of fluid registration 

over baseline manual segmentation for quantifying hippocampal change is that, 

given a baseline region, the match to a registered repeat region is deterministic.  

 

 

 

 

Chapter 4 

Proposed Algorithm for Segmentation of 

Hippocampus 

 

In this section, we state the problems involved in segmentation of hippocampus 

and formulate the algorithm that we study in our research. Our research objective 

is to segment the hippocampus from the 3D MRI brain images. 
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The first problem is how to combine prior knowledge when segmenting the 

structure. One way is to change the prior knowledge into some parameters that are 

processed in the running of the algorithm (for example energy, force). Another 

way to use the prior knowledge is to identify the initially coarse position of the 

structure. This knowledge is derived from the anatomical knowledge because the 

relative position of structures is usually known. To identify initial coarse position 

is a challenging sub-problem to be solved in our research. We propose to combine 

the prior knowledge from the electronic atlas for segmentation. 

 

We use the Cerefy Atlas of Brain Anatomy to assist segmentation. Two types of 

knowledge we derive from the electronic atlas are the position and the shape of 

hippocampus. The position and the shape are initial information put into the active 

contour. When the active contour runs, it will converge to the exact boundary of 

the structure. 

 

The next problem is how to eliminate the user interaction of the algorithm. An 

ideal segmentation algorithm is the one that has automatic operation with high 

accuracy. So far, most automatic algorithms have only been applied on some 

simple objects and still need user interaction such as initializing parameters. In our 

research, we try to design a segmentation algorithm that is fully automatic and as 

accurate as possible. The results will be quantitatively compared with the ground 

truth determined by neuroanatomy experts.  
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 We propose a two-steps knowledge-guided automatic segmentation algorithm. 

The first step is global segmentation where we identify the coarse position of 

hippocampus based on rotation, translation, and piece-wise linear scaling. The 

second step is the refinement of the hippocampus. The results obtained 

automatically by using our approach have to be quantitatively compared with the 

ground truth determined by neuroanatomy experts. 

 

The algorithm was run with the data sets that have been provided by a local 

hospital and some hospitals from the US. To evaluate the algorithm, we used 10 

data sets.  

 

4.1 Global segmentation 

The global segmentation step is mainly based on the Talairach transformation and 

the modified Talairach landmarks [Nowinski 2001a]. Talairach transformation is a  

piece-wise linear, landmark-based transformation. This transformation is based on 

the midsagittal plane (MSP), anterior commissure (AC), posterior commissure 

(PC), and the extent of the brain in anterior, posterior, dorsal, and ventral 

directions. The definition of AC, PC as well as how to find these points in MSP 

are explained in [Nowinski 2001a]. In addition, an algorithm for rapid and 

automatic extraction of the midsagittal plane of the human cerebrum from 

neuroimages is presented in [Hu 2003]. The detailed steps are diagrammed below 

(Fig. 12). Extract MSP (Midsagittal 
Plane) 

 

Calculate  AC and PC in 
MSP 
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Figure 12 Flowchart for atlas-assisted global segmentation. 

 

 

Cerefy Electronic Brain Atlas Database 

The Cerefy electronic brain atlas database contains electronic versions of the 

printed brain atlases published by Thieme: 

- Co-planar Stereotactic Atlas of the Human Brain  

The Co-planar Stereotactic Atlas of the Human Brain [Talairach 1988] was 

constructed from a single brain specimen which had been sectioned and 

photographed sagittally, and coronal and axial sections were subsequently 

interpolated manually. To construct an electronic version, the printed plates were 

digitized with high resolution, and extensively preprocessed, enhanced and 

extended: (1) the original grids, rulers, and annotations were removed; (2) each 

atlas structure was assigned a unique color-coded representations, as opposed to a 

mixture of contour, color-coded, and texture representations in the printed atlas; (3) 
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the left thalamic nuclei, not available in the printed atlas on the axial and coronal 

plates, were outlined and color-coded;  (4) the right hemisphere cortex for axial 

orientation was added by mirroring the left hemisphere cortex; (5) Brodmann’s 

areas and gyri, which are labled but not segmented in the printed atlas, were 

constructed and color-code for axial orientation.  

 

The electronic atlas database includes 3 directions: axial, coronal, sagittal. We 

segment hippocampus from the coronal direction.   

 

Figure 13 A coronal electronic atlas slice with the hippocampus labeled. 

In the coronal direction, there are 38 slices, in which eights slices contain 

hippocampus. The size of the atlas slice is 660×600. An example of slice in 

coronal direction is in Fig. 13. 

 

Talairach Transformation and Landmarks 
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The Talairach transformation [Talairach 1988] normalizes the brain piecewise 

linearly. It is based on the Talairach landmarks: two internal landmarks lying on 

the midsagittal plane and six external landmarks lying on the smallest bounding 

box encompassing the cortex. The Talairach landmarks are: AC – the anterior 

commisure is the intersection of the lines passing through the superior edge and 

the posterior edge of the anterior commissure; PC – the posterior commisure is the 

intersection of the lines passing through the inferior edge and the anterior edge of 

the posterior commissure; L(R) – most lateral point of the parietotemporal cortex 

for the left (right) hemisphere; A – most anterior point of the frontal cortex;; P – 

most posterior point of the occipital cortex; S – most superior (most dorsal) point 

of the parietal cortex; I – most inferior (most ventral) point of the temporal cortex. 

 

The Talairach bounding box and the reference planes (i.e, the intercommissural 

plane, interhemispheric plane, and coronal planes passing through the AC and PC) 

divide the brain into 12 regions (Fig. 14 )   
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The Talairach transformation normalizes brain images by warping the images 

within each of 12 regions linearly. In this way, the volumetric image of brain is 

warped in three dimensions piecewise linearly. The Talairach transformation can 

be used to warp one atlas against another, atlas against scan, or scan against atlas 

[Nowinski 2001a]. 

 

Figure 14 Talairach proportional grid system. a Sagittal orientation. b Coronal orientation. 
c In three dimensions [Nowinski 2002] 

 

Modified Talairach Landmark 

There are several problems associated with the original Talairach landmarks. First, 

not all of them are available in the original atlas. Second, locations of some 

landmarks in the atlas contradict their definitions. Third, the cortical landmarks 

are not defined in a constructive way. And fourth, the intercommisural landmarks 

are located beyond their own structures and, despite being defined constructively, 

their constructions are not easily feasible on a scanner console. To overcome these 

problems, Nowinski introduced a new, equivalent set of landmarks called the 

Talairach-Nowinski landmarks. The new landmarks are defined in a more 

constructive way than the original Talairach landmarks. In addition, they can be 

more easily identified automatically [Nowinski 2001a]. 
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Two intercommissural lines are introduced: central intercommissural line and 

tangential intercommissural line. The central intercommissural line is passing the 

through the centres of the anterior commisure and the posterior commissure on the 

midsagittal (interhemishperic) plane. The tangential intercommissural line is 

tangential dorso-posteriorly to the anterior commissure and ventroanteriorily to 

the posterior commissure on the midsagittal plane.  

The Talairach-Nowinski landmarks are defined as follows, see Fig. 15. 

   

AC: The anterior commissure is a point within the intersection of the anterior 

commissure with the midsagittal (interhemispheric) plane. Three definitions of 

the AC landmarks are introduced:                                                                                                       

central, where the AC landmark is the central point (the gravity center) of the 

anterior commissure                                                                                                                    

internal, where the AC landmark is the intersection of the central 

intercommissural line and the line passing through the posterior edge of the 

anterior commissure  

PC: The posterior commissure is a point within the intersection of the posterior 

commissure with the midsagittal plane. Three definitions of the PC landmarks 

are introduced:                                                                                                                                    

central, where the PC landmark is the central point (the gravity center) of the 

posterior commissure                                                                                                                    

internal, where the PC landmark is the intersection of the central 

intercommissural line and the line passing through the anterior edge of the 

posterior commissure  
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L: The point of intersection of three planes: the intercommissural (AC-PC axial) 

plane, the coronal plane through the PC, and the sagittal plane passing through 

the most lateral point of the parietotemporal cortex for the left hemisphere. 

R: The point of intersection of three planes: the intercommissural plane, the 

coronal plane through the PC, and the sagittal plane passing through the most 

lateral point of the parietotemporal cortex for the right hemisphere. 

A: The point of intersection of three planes: the intercommissural plane, the 

midsagittal plane, and the coronal plane passing through the most anterior 

point of the frontal cortex. 

P: The point of intersection of three planes: the intercommissural plane, the 

midsagittal plane, and the coronal plane passing through the most posterior 

point of the occipital cortex. 

S: The point of intersection of three planes: the coronal plane passing through the 

PC, the midsagittal plane, and axial plane passing through the highest, most 

superior (most dorsal) point of the parietal cortex. 

I: The point of intersection of three planes: the coronal plane passing through the 

PC, the midsagittal plane, and axial plane passing through the lowest, most 

inferior (most ventral) point of the temporal cortex. 

 

 39



 

Figure 15 Modified Talairach Landmarks 

For our project, we need the information of the modified Landmarks in the 

electronic slice. The modified Talairach landmarks coordinate in electronic slices 

are in Fig. 16  The coordinate is (row, column) in pixel.   

 
 

L (369,642) R(369,18)

I (566, 329) 

AC/PC (369,329) 

S(30,329)

 

Figure 16 The modified Talairach landmarks coordinate in coronal direction 

4.2 Local segmentation 

After finding the coarse position of the object, the local segmentation step is to 

identify the exact boundary of the object. This is the refinement of the coarse 
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boundary of hippocampus after global segmentation. An active contour is applied 

to segment the exact boundary of the structure. We have explored some models of 

active contour in this study. 

 

In Fig. 17 we describe the detailed steps of local segmentation. First, the 3D 

image “.raw” file is input and stored in a 3D matrix for further implementation. 

Each image slice is represented by a 2D array from this 3D matrix. Based on the 

modified Talairach landmarks, the region of interest (ROI) is extracted. The 

Canny edge detector is applied in the ROI to find its edge map. The anatomical 

constraint is put into the edge map. The atlas slice “.bmp” files are input and 

stored in a 2D array when running a 2D image slice. The ROI in the atlas slice is 

extracted based on the modified Talairach landmarks as well. From the atlas ROI, 

the atlas boundary of hippocampus is searched based on the color code and is 

matched into the image ROI as initialization of the active contour. The edge map 

is the input for GVF and the active contour runs on this GVF to converge to the 

exact boundary of the hippocampus.     

The details what we have implemented are explained below.  
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Matching the ROI of 
atlas and the data 
slice based on 
Talairach 
transformation 

Input 
reformatted 
data .raw 
file 

Take ROI based 
on Modified 
Talairach 
landmarks 

Get Canny 
edge map of 
ROI 

Input atlas 
slice .bmp 
file 

Take ROI based 
on Modified  
Talairach 
landmarks 
 

Search 
hippocampus 
in the ROI and 
get its 
boundary 

validation Ground truth 
hippocampus 
segmented by 
expert 

Put 
hippocampus 
boundary in 
atlas as 
initialization of 
active contour 

Use the edge 
map with the 
constraints as 
the input of 
GVF 

Run the active 
contour to get 
segmented 
hippocampus 

 

Figure 17 Flowchart describing atlas-assisted local segmentation. 

 

 

From the image slice, we get the region of interest based on the modified 

Talairach landmarks. The co-ordinate values of the modified Talairach landmarks 
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are obtained from the global segmentation. The left hippocampus is the object to 

be segmented. (See Fig. 18). The ROI is extracted using the coordinates of the 

landmarks AC, R and I. 

 

       

Figure 18  One data image slice and its corresponding ROI. 
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From the atlas slice, we also get the region of interest based on the modified 

Talairach landmarks. The region of interested is defined like in the Fig 19.                                         

a)     b)   

Figure 19 The region of interest based on the modified Talairach landmarks. a) The atlas 
b) The region of interest. 
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The atlas plates are color-coded. Therefore, to find the hippocampus in the atlas, 

the color value of the hippocampus is searched. This value is different from other 

structures in the atlas. The color code of hippocampus is [179 147 179] in the 

range from 1 to 255. After finding the hippocampus, we mark the atlas only with 

the hippocampus in white (1 value) and the rest in black (0 value). Running the 

“edge” function in Matlab, we get the contour that covers the hippocampus. This 

contour is our initialization for the active contour. The initial points of the active 

contour are stored in two array x (row co-ordinate) and y (column co-ordinate). 

The length of these two arrays depends on the number of points of the active 

contour. The lengths as well as the values of these two arrays are updated when 

the active contour runs iteratively. 
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Figure 20 After finding the hippocampus in the atlas 

 

a)    b)  

Figure 21 The edge of the hippocampus from the atlas is detected ( Fig a) ) put as the 
initialization of the active contour ( Fig b) ) 
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Match the atlas with the image slice 

For initialization of the active contour, we match the boundary of hippocampus 

from the atlas as the initialization of the active contour to its corresponding image 

slice. In the Table 1, there are some image slices and their corresponding atlas 

slices.  

 

Coronal Direction Image Slice Atlas Slices 

TT88c / 0mm      #16 (the slice that contains AC)    

TT88c / -4mm     #17           

TT88c / -8mm     #18          

TT88c / -12mm    #19 

TT88c / -16mm    #20          

TT88c / -20mm    #21         

TT88c / -24mm    #22        

TT88c / -28mm    #23        

TT88c / -32mm    #24         

TT88c / -35mm    #25         

TT88c / -40mm    #26         

 

Table 1 The data image slices and its corresponding atlas plates. 

In the left column in Table 1, there are coronal direction image slices. The 0mm 

slice is the one that contains the AC landmarks. In the right column, there are 

corresponding atlas slices with the image slices in the left. There are 38 atlas 
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slices in the coronal direction. Hippocampus appears in the atlas slices numbered 

from 19 to 26. In the table, the minus slice means that it is near posterior. 

 

Figure 22 An illustration of a coronal atlas slice at the co-ordinate -24mm, and 

corresponding position of this slice in the sagittal and axial direction (green line). 
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Canny edge map  

To make the active contour converge easily, an edge map of the region of interest 

is computed. From experiments, we found that the Canny edge detector gives a 

good edge map. (See Fig. 23).  

a)    b)  

Figure 23 The region of interest and the corresponding Canny edge map. 

 

Apply anatomical knowledge to active contour 

To make the active contour converge more precisely, the size and shape of 

hippocampus is converted to constraint of the active contour. To put the prior 

anatomical information, we use the atlas boundary into the edge map. The value 

of all pixels in the Canny edge is 0 or 1 (0 is normal pixel and 1 is in the edge). 

Therefore, we set value α corresponding to the atlas boundary in the range [0..1]. 

The higher the value of  α is, the more difficult for the active contour to move far 

away from the atlas boundary. In Fig. 24 the edge in gray color is the anatomical 

constraint edge as well as the initialization boundary active contour. 
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Figure 24 The edge map with the constraint of the atlas boundary. 

 

Running the active contour 

Before choosing GVF as a choice for the running of active contour, experiments 

with traditional snake were tried. Moreover, I also had tried the GVF with the 

input as the gradient map of the image. I found that the GVF with the edge map 

input gave a good accuracy of boundary as well as a high speed convergence. 

The modified edge map with constraint is blurred by applying Gaussian noise 

function (see Fig. 25 ). The blurred edge map is used as input for the calculation 

of GVF. After each iteration, the contour is interpolated to make sure it is smooth 

enough for the next running time. The iterative procedure of snake deformation is 

run for a fixed number of iterations (100 times). 

 

Figure 25 The edge map after applying the Gaussian noise function. 
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Filling  the final  active contour 

After running the algorithm of the active contour, we just get the boundary of the 

structure. From the center of the active contour, we grow the seed in this center to 

get the segmented region. The region growing algorithm is applied to fill up the 

region inside the active contour (See Fig. 26).  

Fill_contour algorithm: from the contour we find the center of the contour. 

The center is found by the mean of all the points of the contour. The center of 

the manual segmentation is also found by calculating the mean of all the 

points marked by the experts. After finding the center, we run the 

Region_Growing algorithm to fill up the region inside the boundary. 

Region_growing: the input of the algorithm is the matrix that contains the 

contour and the center that we want to grow to get the region, and the 

value of the boundary and the value that we want to fill up the region. 

 

a)       b)  

Figure 26 The hippocampus segmented with the final active contour and filled to form a 
segmented region 
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Chapter 5 

Results and Validation 

 

 

Validation 

In order to quatitatively evaluate the algorithm, 10 data sets have been selected. 

Hippocampus was also segmented manually by an expert. The manual 

segmentation of the experts is the ground truth for validation of the algorithm.  

 

 The overlap metric [Zidenbos 1994] was calculated to compare the hippocampus 

manually and automatically segmented: 

)/(2 2112 VVV +×=ε  

where V1 and  V2 are the volumes of the two segmentations, and V12 is the volume 

of their overlap.  In addition, the ratios of the volume of false negative (missed) 

and false positive (overestimated) to the overlap volume are computed (in 

percentage). False negative (FN) is defined as the yellow region in Fig. 27. This 

yellow is extracted by the expert, but not by the algorithm (missed). False positive 

(FP) is defined as the red region in the Fig. 27. This red region is extracted by the 

algorithm but not by the expert (overestimated).  

FN ratio = (number of pixels in yellow region)/ (number of pixels in green region) 

FP ratio = (number of pixels in red region)/ (number of pixels in green region) 
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Figure 27 Definition of false negative (yellow) and false positive (red).  

 

The final results of 10 data sets are in the table 2.  

 

Data Overlap metric False Negative Ratio False Positive Ratio 

BrainWeb 1100 0.94 2% 9.6% 

Child 02 0.94 1.8% 10% 

IB 0610 0.935 2% 11% 

IB 1103 0.91 8% 10% 

Japan 07 0.92 4% 12% 

Japan 13 0.91 8% 12% 

Japan 14 0.94  2% 10% 

Singapore 07 0.91 8% 11% 

Singapore 13 0.9 2% 18% 

Singapore 18 0.9 1.8% 19% 

Average 0.9205 3.88% 12.26% 

 

Table 2 The hippocampus segmentation results of 10 data sets 

We present some good examples as well as some issues of the algorithm and 

outstanding comments below. 

From Fig. 28 to Fig. 34, there are some results.  
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a) b)     
   

c)  
Figure 28 Child02 Image slice number = 125; Atlas slice number = 22; α = 0.7 a) The 

atlas b)The initial boundary c) The final boundary and the ground truth in yellow. 

 

a)   b)        

c)  

Figure 29 Ib0610 Image slice number = 110; Atlas slice number = 22; α = 0.7 a) The atlas 
b)The initial boundary c) The final boundary and the ground truth in yellow. 
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a) b)      

c)  

Figure 30 Ib1103 Image slice number = 116; Atlas slice number = 22; α = 0.7 a) The atlas 
b) The initial boundary c) The final boundary and the ground truth in yellow. 

 

a) b)      

c)  

Figure 31 Ja07Image slice number = 150; Atlas slice number = 22; α = 0.7 a) The atlas 

 b) The initial boundary c) The final boundary and the ground truth in yellow. 

 

 55



a) b)       

c)  

Figure 32 Image slice number = 172; Atlas slice number = 22; α = 0.7 a) The atlas  

b)The initial boundary c) The final boundary and the ground truth in yellow. 

 

a)  b)    

c)  

Figure 33 Ja14 Image slice number = 137; Atlas slice number = 22; α = 0.7 a) The atlas 
b)The initial boundary c) The final boundary and the ground truth in yellow. 
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a) b)     

c)  

Figure 34 Sg18 Image slice number = 143; Atlas slice number = 22; α = 0.7 a) The atlas 
b)The initial boundary c) The final boundary and the ground truth in yellow. 
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In some data, the false negative ratio is so high than others. This is because the 

active contour does not cover all the hippocampus (missed) (See Fig. 35). 

a)    b)   

c)  

Figure 35 Ja13 Image slice number = 172; Atlas slice number = 23; α = 0.6 a) The atlas 
b)The initial boundary c) The final boundary and the ground truth in yellow. 

 

 

From the result table, we see that the false positive ratio is mostly higher than the 

false negative ratio. Because the active contour usually is slightly pulled by the 

nearest edges, it overextracts the hippocampus (See Fig. 36, Fig. 37). 
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a)    b)  

c)  

Figure 36 BW1100 Image slice number = 117; Atlas slice number = 22; α = 0.7 a) The 
atlas b)The initial boundary c) The final boundary and the ground truth in yellow. 

a)  b)       

c)  

Figure 37 Sg13 Image slice number = 150; Atlas slice number = 22; α = 0.7 a) The atlas 
b)The initial boundary c) The final boundary and the ground truth in yellow. 
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In some slices, when the edge map is not sufficient and the initialization is not so 

exact, it is difficult for the active contour to run. In this case, if we set the 

constraint value α be so high (for example greater than 0.8), the active contour is 

not so accurate because it can not apply much information in the image. It just 

converges well because of the prior constraint. However, this is a solution to 

segment hippocampus in slices where there is much noise and no edge around 

detected.  If the edge can not be detected, the constraint becomes a very important 

knowledge to segment the hippocampus (see Fig. 38).  

 

a) b)

c)   d)  

Figure 38 Image slice number = 105; Atlas slice number = 19; α = 0.7 a) The atlas b)The 
initial boundary c) The edge with constraint d) The final boundary and the ground truth in 
yellow. 
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In some cases, there is noise in the image. An edge appears inside the region of 

the actual hippocampus. When the active contour runs, it converges to wrong 

inside edge instead of the exact boundary edge. (See Fig. 39). 

a) b)     

c)   d)  

Figure 39 An example of the active contour converging an noise edge. 
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One solution in this case is to increase the value of α. This means that we make 

the constraint become stronger, so the active contour can not go far away from the 

initialization and converge to a wrong edge. (See Fig . 40) 

a) b)  

c)   d)   

Figure 40 An example of reducing the influence of noise edge by increasing the constraint 
value α (In this example α =1). 
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Chapter 6  

Conclusion and Prospects 

 

Advantages 

 Our algorithm is fully automatic and no manual intervention is required.  

 The approach combines the anatomical knowledge with image 

processing technique. 

 The algorithm can also be applied for other structures of brain image. 

As the algorithm is based on the combination of image processing technique and 

anatomical knowledge, it may well be extended to other imaging sequences and 

other modalities. 

 

Limitation 

The algorithm should be improved to increase the accuracy. The average value of 

the metric is 0.9205. That is not a high value for a segmentation algorithm. More 

information in the image should be added as the constraint of the active contour to 

get better accuracy of segmentation. More detailed information about the shape 

and the texture of the anatomic structure of interest could be transferred to the 

model by applying the methods similar to those described in our approach. 

 

Controlling the running of the active contour is not an easy task. For the edge-

based active contour, the appearance of some noise edge decreases the accuracy of 
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the segmentation. The edges of the nearby objects also influence the accuracy of 

the algorithm.   

 

Conclusion 

In this thesis, we have presented an atlas-assisted active contour to segment 

hippocampus. The purpose of this work is mainly to identify hippocampus 

location and segment quickly. To overcome some obstacles of the traditional 

active contour, we use anatomical information as constraints to the active contour. 

Therefore, the active contour can more easily converge to the desired boundary of 

the hippocampus.    

 

Fast and accurate segmentation of brain structures from MRI is a difficult task due 

to several factors, including anatomical variability, diversity of pulse sequences, 

various scanners, noise, partial volume effect, intensity inhomogeneity, artifacts, 

just to mention a few. Atlas-based segmentation helps in fast brain segmentation. 

In our work, we have used our electronic version of the Talairach-Tournoux brain 

atlas with gross anatomy in coronal orientations to demonstrate the atlas and 

snakes based segmentation. The GVF snake gives a good result when the edge 

map can be derived. The anatomical knowledge of hippocampus is put into the 

algorithm to make the active contour converge more easily. Although applying 

active contour is not completely satisfactory, the problem can be improved by 

adding more techniques of medical image segmentation.  
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Prospects 

Our algorithm provides a good approach in automatically identifying and 

segmenting hippocampus from MR images. There are still some space work left to 

be done in the future. 

 

Our future work is to improve our algorithm so that it can run well in slices where 

hippocampus and amygdala are overlapped. Our approach also should be 

experimented in many more data sets with different modalities and contrast and 

some more active contours. The matching from electronic atlas is another issue to 

improve in future work. If the matching is precise, the initial boundary of the 

active contour is closer to the actual boundary of the structures. In that case, we 

can have an initial constraint that the snake can not move so far from the initial 

boundary.  The results are encouraging. However, more work is required to 

address problems existing in clinical setting.   

 

One prospect of segmentation of hippocampus is statistical shape analysis (SSA) 

of hippocampus. SSA has become of increasing interest to the neuroimaging 

community due to its potential to precisely locate morphological changes and thus 

potentially discriminate between healthy and pathological structures. SSA is 

frequently used method to address the problem of shape variation. These methods 

try to find the statistical property of the variation in a population. The result of 

SSA can be used to construct the probabilistic atlas. See (Fig. 41). 
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Segmentation of hippocampus 
with assistance of electronic 

atlas using active contour 

Statistical Shape Analysis of 
Hippocampus 

Build hippocampus models 

Build probabilistic 
atlas of hippocampus 

Use the model to segment 
hippocampus from a new 

data set 

 

Figure 41 Next prospective steps of segmentation of hippocampus 
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