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Summary 
 

    Sensor integration has shown much potential to enable a tool condition monitoring 

(TCM) system to be more accurate, robust and effective as the sensors can 

complement and reinforce each other. The main objective of this thesis is to 

incorporate one direct sensor (vision) and one indirect sensor (force) to create an 

intelligent integrated TCM system for on-line monitoring of flank wear and breakage 

in milling. To achieve this objective, two subsystems including a vision-based 

subsystem and a force-based subsystem have been developed to work in-cycle and in-

process respectively. Experiments on both the subsystems and the integrated system 

were conducted to verify the integration scheme. To measure crater wear, a full-field 

optical method based on phase-shifting was also proposed and demonstrated. 

    For the vision-based subsystem, images were first captured with the spindle stands 

stationary. These were then processed with the individual image processing method, 

giving sub-pixel accuracy. A rough-to-fine strategy was employed to locate the point 

on the boundary of the wear land in two steps. The binary edge image was firstly used 

to locate the boundary point roughly. The gray-level image was then used to locate the 

boundary point more precisely using a moment-invariance based edge detection 

method in the vicinity of the rough point. Based on the individual image processing 

method, the successive image analysis method was developed to capture and process 

moving images captured while the spindle was rotating. A trigger-capture mechanism 

was introduced in response to the spindle rotation and successive images were 

processed on the basis of their correlation. 

    For the force-based subsystem, two force features in time domain based on average 

force and standard deviation were extracted from the cutting force signal and included 

to train a Self-organizing map (SOM) network. The SOM network was used locally in 
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the sense that the feature vectors used to train and apply the network were derived 

from two neighboring machining passes. The wear measured in-cycle by vision and the 

force features extracted in-process in the previous pass were used to train the SOM 

network. After the training, the SOM network was applied immediately to the next 

machining pass to estimate flank wear. 

    Apart from flank wear estimation, breakage and crater wear were also studied. To 

detect breakage, two other force features, which are residual error and peak rate, were 

used. This preliminary detection result was verified by vision. To measure crater wear, 

the phase-shifting method was employed. Four images of the rake face on which 

different fringes were projected were analyzed to give the phase map, which was 

converted to a 3-D map of crater wear after calibration. 

    Experimental results showed that the breakage was detected and verified 

successfully, and the flank wear was estimated well, especially at the linear wear stage. 

The crater wear was accurately and robustly measured by phase-shifting method. This 

study has demonstrated that it is possible to use this sensor integration scheme to 

monitor breakage and flank wear on-line in milling process quite accurately, robustly 

and effectively over a wide range of machining conditions. 
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Chapter 1 Introduction 

Chapter 1 

Introduction 

 

1.1 Problem statement 

In manufacturing, it is desirable to reduce labor cost, minimize operator’s errors, and 

enhance the productivity and quality of products (Huang et al., 1999). To achieve this 

goal, on-line tool condition monitoring (TCM) is one of the most important techniques 

(Lin and Lin, 1996). It helps to operate the machine tool at its maximum efficiency by 

detecting and measuring the tool conditions such as flank wear, crater wear, chipping, 

breakage and so on. A successful TCM system can increase productivity, and hence 

competitiveness, by maximizing tool life, minimizing machine down time, reducing 

scrap and preventing workpiece damage (Donnell et al., 2001).  

    A significant amount of TCM research has been dedicated to monitor tool 

conditions on-line. However, most of the TCM techniques developed are for single-

point cutting processes, such as turning. The results may not be directly suitable for the 

multi-tooth milling process (Lin and Lin, 1996). Although milling is a very important 

machining process in manufacturing, much less effort has been made to monitor it 

(Byrne et al., 1995). The systems developed for milling still need to be more reliable, 

robust and responsive for truly automated manufacturing (Prickett and Johns, 1999). 

Obviously, there is still much to understand and do before on-line TCM systems in 

milling can be used in industry.  

For decades, researchers have proposed numerous methods based on sensors to 

monitor tool conditions in milling on-line. In the early years, only a single sensor was 

used but it was found to be inadequate. Recently, one trend is to combine two or more 
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sensors in one system to achieve better performance. Therefore, in this research, 

vision-based sensor and force-based sensor are integrated to implement an on-line 

TCM system that can monitor progressive flank wear and detect breakage in milling.  

1.2 Motivation 

    A TCM system is basically an information flow and processing system (Niu et al., 

1998) that integrates the following three functional blocks: the information source 

selection and acquisition (sensor and data collection); information processing and 

refinement (feature extraction); and decision making based on the refined information 

(condition identification). It is essentially a sensor-based system. Consequently, 

according to the sensor type, TCM techniques can be generally classified into direct 

and indirect methodologies (Kurada and Bradley, 1997a). The direct methods rely on 

sensors that measure tool condition in situ, such as vision, mechanical probes and 

proximity sensors. Indirect methods, by contrast, measure signals that indirectly 

indicate the tool conditions with sensors such as force, acoustic emission (AE), 

vibration, current/torque, and power sensors.  

    Early TCM research focuses on one single sensor in the TCM systems. However, 

use of a sole sensor, either by direct or indirect methods, to monitor the tool condition 

is not satisfactory. Although accurate, the direct method can only monitor the 

conditions between cuts or tool changeovers, and thus continual monitoring is not 

achieved. By contrast, the indirect method, which deploys force or AE sensors, can 

monitor conditions continually and on-line. But in most cases, it is not sufficient for 

the sole sensor to provide condition-sensitive features. Accordingly, the performance 

of TCM systems using a single sensor is not satisfactory and as a result, few successful 

applications in industrial environment have been reported (Byrne et al., 1995). 
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    To replace the manual monitoring of the tool condition is one of the goals of TCM 

research. Less downtime, higher productivity, higher surface finish quality and more 

powerful, but cheaper unmanned tool change decisions are necessities for industrial 

application (Donnell et al., 2001). More research, with the aim of developing a TCM 

system with higher reliability, robustness, and response is needed (Byrne et al., 1995; 

Kurada and Bradley, 1997a; Prickett and Johns, 1999). With this goal, sensor fusion, 

integration of two or more sensors in one TCM system, has been recently researched. 

It shows great potential for empowering the system with these abilities (Byrne et al., 

1995).  

    Available sensor fusion methods include multiple indirect sensor fusion and direct 

plus indirect sensor fusion. Artificial intelligence (AI), especially neural networks 

(NNs), is the predominant technique in the former method. Even though these methods 

provide a systematic approach for sensor fusion, the need for extensive training of the 

neural networks is still a major drawback (Park and Ulsoy, 1993a). More importantly, 

either supervised or unsupervised neural networks cannot adapt to various cutting 

conditions. Further research is needed to address this problem partially, if not 

completely. 

    By contrast, direct plus indirect sensor fusion seems more attractive due to its 

valuable advantage that the two different types of sensors can counteract drawbacks of 

each other and reinforce each other. However, few papers on this scheme have been 

published. Accordingly, this fusion strategy is used and its implementation of each 

subsystem is presented in this thesis. 
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1.3 Objectives and scope of work 

    The aim is to develop an on-line TCM system which can monitor the flank wear and 

breakage in milling by integrating vision and force sensors. The specific objectives are 

to: 

1. Build a vision subsystem that can monitor the flank wear with good accuracy 

and  robustness while the spindle rotates.  

2. Develop a vision subsystem that can measure the crater wear efficiently.  

3. Extract relevant features from the force signal which are sensitive to flank wear 

and breakage. 

4. Implement a force subsystem that can monitor breakage and flank wear based 

on the extracted features.  

5. Integrate the vision and force subsystems into an on-line TCM system.  

    With these objectives achieved, the developed techniques, subsystems and system 

can provide: 

1. An advanced vision system to monitor flank wear dynamically whereby the 

cutting operation is minimally interrupted.  

2. An efficient method to monitor crater wear with the insert in the milling cutter.  

3. An integrated approach for monitoring flank wear and breakage on-line in 

milling, which is adaptive to various cutting conditions. 

    To achieve the objectives, the scope of work includes: 

1. Integration of one direct (vision) and one indirect (force) sensors. 

2. The flank wear along the major cutting edge is studied as generally this wear is 

the most important aspect to monitor. 
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3. Experimental setup design for capturing images of tool inserts in the milling 

cutter rotating with low speed. Moving and still images are to be processed 

with appropriate techniques. 

4. Investigation of a non-contact method of crater wear measurement is proposed, 

which is based on phase-shifting and fringe projection. But crater wear is not 

considered in on-line monitoring since flank wear is more often considered in 

research. 

5. Identification and application of suitable neural networks as the estimator to 

predict the flank wears and tool breakage in milling.  

    Tool conditions such as wear and chipping/breakage and wear mechanisms in 

milling are reviewed and the sensors used to monitor these conditions are discussed, 

especially vision and force sensors. These two sensors are separately reviewed as 

single-sensor methods, which lay the foundation for sensor integration. After single-

sensor methods, multiple-sensor methods are reviewed. By surveying the literature, 

research gaps in vision and force domain are identified, and hence research orientation 

is highlighted. 

1.4 Organization of the thesis 

    This thesis is organized as follows: 

    Chapter 2 reviews the current TCM systems with focus on use of sensors. Basic 

techniques and systems of TCM are presented and various sensors and their 

corresponding signal processing methods are reviewed, including direct and indirect 

sensors, and sensor fusion methods. 
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    Chapter 3 outlines the overall on-line monitoring framework of the proposed TCM 

system, which integrates in-cycle image processing module and in-process force 

analysis module. 

    Chapter 4 presents the individual image processing methods to measure flank wear 

and detect breakage. Unlike the traditional thresholding-based methods, a rough-to-

fine strategy is considered and a threshold-independent edge detection method based 

on moment invariance is employed for more robust determination of the wear edge 

with sub-pixel accuracy. The chipped-away part of the insert is quantified to detect 

breakage. 

    Chapter 5 extends the work of Chapter 4 that utilizes successive images to analyze 

the in-cycle processing. The system uses close correlation between successive images 

to measure flank wear during in-cycle process, whereby the images are captured while 

the spindle rotates.  

    Chapter 6 describes a phase-shifting method using fringe patterns to measure crater 

wear by constructing a 3-D map of the tool insert. By solving and then unwrapping the 

phase map obtained from four images with different fringe patterns, the 3-D profile of 

the tool insert is obtained, which provides the overall size of the crater wear land.  

    Chapter 7 proposes a self-organizing map (SOM) network used to estimate the flank 

wear in-process based on features extracted from cutting force. The SOM network is 

trained in a batch mode after each pass using the two features and interpolated wear 

values. The trained SOM network is applied to the next cutting pass to estimate the 

flank wear. Breakage detection based on force features is also investigated. 

    Chapter 8 shows the on-line experimental results under various cutting conditions. 

Chapter 9 concludes the thesis and recommends work for future research. 
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Chapter 2 

Literature review 

 

2.1 Tool condition monitoring (TCM) and sensors 

2.1.1 TCM 

    Generally, tool wear, breakage/chipping, chatter, chip breakage, and built-up edge 

are the tool conditions to be monitored in TCM. So far, most of research work has 

focused on tool wear and breakage monitoring. One of the main reasons is that these 

two phenomena are crucial in TCM and difficult to handle; thus bringing about several 

research challenges to this field. Since these two conditions are to be monitored in this 

thesis, the review concentrates on them. 

    Tool wear is defined as change in shape of the cutting edges and their neighboring 

regions of a tool from its original shape, resulting in progressive loss of tool material 

during cutting (ISO8688-1, 1989). It has two categories: flank wear and crater wear, as 

shown in Figure 2.1. 

 

Figure 2.1 Sketch of flank wear and crater wear 
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    Flank wear. Flank wear occurs on the tool relief face (or flank face). It develops 

under almost any cutting condition, and usually in three stages (Ber and Friedman, 

1976), as shown in Figure 2.2. The first stage is a rapid initial wear stage in which the 

wear develops rapidly to a certain level, within a relatively short time. In the second 

stage, the wear progresses linearly for a comparatively longer period of time. Much of 

the useful tool life is within this stage, and therefore this stage is of most concern. The 

last stage is a rapid accelerated wearing period. In this stage, the wear rate increases 

rapidly and it is usually recommended that the tool be replaced before this stage. Flank 

wear predominates under low cutting speed (low cutting temperature). 

 

Figure 2.2 Three stages of flank wear 
 

    Nose wear forms at the nose radius and near the end relief face of the tool. The wear 

is partially a continuation of the flank wear around the nose radius and partially a 

series of grooves that often develops at the front of the tool. It is similar to and is often 

considered as part of the flank wear. Accordingly, in this thesis, it is also not 

considered separately. 

    Crater wear. Crater wear occurs on the rake face. It develops under high cutting 

speeds or high feeds. The development of crater wear is closely related to the cutting 

temperature and pressure (Cook, 1973). The crater depth is generally a maximum at a 
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substantial distance from the major cutting edge, where the cutting temperature and 

pressure are high. Under certain circumstances the crater may break off from the tool 

face to intersect the tool major flanks. The general tool geometry correspondingly can 

vary considerably. Sometimes, fracture or catastrophic failure of the tool results from 

serious crater wear. 

    Since flank wear appears in all cutting operations, and it directly affects the quality 

of machined part, its monitoring is usually considered to be more essential than crater 

wear. 

    Chipping/breakage. Chipping happens when the edge line breaks away from the 

tool cutting edge, rather than wears. A sudden load in intermittent cutting (as in milling) 

or thermal gradients are two main reasons of chipping. Gross inconsistencies in the 

workpiece composition or its structure also contribute to chipping. Figure 2.3 depicts 

the chipping of a tool. When the tool has chipping with length of more than 1mm, this 

chipping is called breakage. Table 2.1 shows the three kinds of chipping in terms of 

the size of the chipped pieces (ISO 8688-1, 1989). 

 

Figure 2.3 Chipping illustration 
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Table 2.1 Three types of chipping 

y or z (mm) Length (mm) 
Small Normal Large 

Mirco-chipping < 0.3 0.2 0.25 0.3 
Macro-chipping 0.3 to 1 0.25 0.4 0.5 
Breakage > 1 N/A N/A N/A 

 
    There are many kinds of wear mechanisms responsible for tool wear. Depending on 

circumstances, the following mechanisms have been outlined (Teo, 1992): 

    Adhesive wear. Adhesive wear arises from molecular adhesion occurring between 

tool and workpiece. When the chip slides, it tears away minute particles of the tool 

material and causes tool wear. This kind of wear can occur at any cutting speed. 

    Abrasive wear. Abrasive wear involves the removal of the tool material by the 

scoring action of the inherently hard particles in the machined workpiece, such as 

inclusions and carbides, causing continuous wear on the surface of the tool. This kind 

of wear can also occur at any cutting speed. 

    Oxidative wear. An oxidation process generally occurs at high cutting temperature, 

particularly at the outer-edge of contact zones where there is free atmospheric contact. 

As a result, there is a general weakening of the tool matrix which facilitates the tool 

wear. 

    Diffusive wear. In diffusive wear, mutual dissolution of the materials occurs 

between the workpiece and tool and weakens the tool material. It often occurs at a high 

cutting temperature. 

    Superficial plastic deformation. This process has a major influence on the crater 

wear rate when machining with high speed steel tools near the limit of their endurance. 

The chip is deformed at a very high strain rate and can exert sufficient shear stress onto 

the surface layer of the tool to deform the latter at a low strain rate. This effect 

removes tool material from the crater region. 
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    Plastic deformation of the cutting edge. The thermal weakening of the cutting 

edge region with plastic deformation occurs under normal applied load. It occurs at 

high cutting temperature and depends on the temperature rise of the tool. Once this 

deformation occurs, the blunt edge causes an additional heat source as it rubs on the 

workpiece, further weakening the material and leading to plastic collapse. 

2.1.2 Sensors 

    As mentioned in Chapter 1, a TCM system is essentially a sensor-based system. 

Hence, sensors are crucial to TCM. To be successful in a machining environment, 

sensors should meet the following requirements (Kurada and Bradley, 1997a, Niu et al., 

1998, Pedersen, 1990, Byrne et al., 1995): 

• Good correlation between the sensor signal and the tool condition; 

• The response should be fast enough for feedback control; 

• Simple in design and rugged in construction and easily integrated into system 

together with other control and measurement equipment; 

• Non-contact, accurate, low-cost and reliable; 

• No interference with the machining process; 

• Resistant to dirt, chips and mechanical, electromagnetic and thermal influences; 

• Function independent of tool or workpiece, and signal transmission reliable. 

Numerous sensor types are available for monitoring aspects of the machining 

environments (Moriwaki, 1993). Generally, the sensors fall into two categories (Cook, 

1973): direct and indirect sensors, among which the commonly used are shown in 

Table 2.2. 
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Table 2.2 Sensor types in TCM 

Proximity 
sensors 

Takeyama et al., 1967, Stoferle and Bellmann, 1975 

Radioactive 
sensors 

Uehara, 1973, Cook and Subramanian, 1978 

Direct 
sensors 

Vision 
sensors 

Yang M. Y. and Kwon O. D., 1996, Kurada and Bradley, 
1997b, Karthik et al., 1997, Wong et al., 1997, Pfeifer and 
Wiegers , 2000, Xu and Luxmoore, 1997, Prasad and 
Ramamoorthy, 2001, Lanzetta, 2001, Mannan  et al., 2000, 
Park and Ulsoy, 1993b, Maeda et al., 1987a, 1987b, Giusti et 
al., 1987, Jeon and Kim, 1988, Oguamanam et al., 1994, Lee 
et al., 1994, Teshima et al., 1993, Giardini et al., 1996 

Force 
sensors 

Lan and Naerheim, 1986, Altintas, 1988, Altintas and 
Yellowley, 1989, Lin and Lin, 1996, Tarn and Tomizuka,  
1989, Elbestawi et al., 1989, Elbestawi et al., 1991, Tarng, 
1990, Tansel et al., 1992a, 1995, Tansel and Mclaughlin, 
1993a, 1993b, Leem and Dornfeld, 1995, Zhang et al., 1995, 
Elanayar and Shin, 1995, Santanu et al., 1996; Xue et al., 
1997; Lee and Tarng, 1999; Rene de Jesus et al., 2004 

Vibration 
sensors 

Lee et al., 1987; Tlusty and Tarng, 1988; Reif, and Cahine, 
1988; Coker and Shin, 1996; Li et al., 2000a 

AE sensors Sampath and Vajpayee, 1987; Diei and Dornfeld, 1987a, 
1987b; Liu and Liang, 1991; Wilcox et al., 1997; Jemielniak 
and Otman, 1998a, 1998b 

Indirect 
sensors 

Power 
sensors 

Matsushima et al., 1982; Bertok et al., 1983; Yellowley, 
1985; Stein and Wang, 1990; Li et al., 2000b 

 
Direct sensors 

    Proximity sensors. These estimate tool wear by measuring the change in the 

distance between the cutting edge and the workpiece. This distance can be measured 

by electrical feeler micrometers and pneumatic touch probes. The measurement is 

affected by the thermal expansion of the tool, deflection or vibration of the workpiece 

and the deflection of the cutting tool due to the cutting force. 

    Radioactive sensors. These assess tool wear by monitoring the amount of 

radioactive material deposited on the chips from the flank face of the cutting tool 

where the radioactive material is implanted. The need for collecting chips on-line and 

the hazardous nature of radioactive material limits this technique for laboratory 

environment. 
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Vision sensors. These measure tool wear by extracting various morphological 

parameters with image processing techniques. Because of the availability of CCD 

camera, vision sensors have been widely used as a direct TCM method. Due to the 

hostility of the cutting environment (presence of lubricant, built-up-edge or metal 

deposits on the cutting tool), current vision sensors can only be used between cutting 

cycles. 

Indirect sensors 

    Unlike direct sensors, indirect sensors measure one or more parameters that can be 

correlated with tool conditions. The most commonly used indirect sensors are (Kurada 

and Bradley, 1997a, Bahr et al., 1997, Byrne et al., 1995): 

    Cutting force sensors. There are typically dynamometers mounted on a tool holder 

or under the workpiece to monitor the cutting force. Cutting force has been proven to 

be closely correlated to both the flank wear and breakage or chipping and thus has 

been extensively used. 

    AE sensors. These record the elastic stress waves, known as acoustic emission (AE), 

which is generated by different sources such as friction on the rake face and the flank, 

plastic deformation in the shear zone, crack formation and propagation, impact of the 

chip at the workpiece and chip breakage. AE has been very successful in its application 

to TCM during turning operations (Sampath and Vajpayee, 1987). Its application to 

milling has been less straightforward. It is difficult to distinguish pulse shock loading 

occurring during the entry and exit of each individual tooth to the workpiece from that 

generated during tooth fracture. 

    Vibration sensors. These sense the level of vibration caused by the friction between 

the flank face of the cutting tool and the workpiece/the internal fractures of the tool. 

This type of sensor has the advantage of simplicity and low cost. However, it is widely 
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understood that vibration monitoring for indirect tool wear detection may not be as 

accurate or reliable as the methods based on force and AE (Verma and Kline, 1990). 

    Current/power sensors. These measure current or effective power of feed drives or 

main spindle. It has some disadvantages. Tool breakages are not detected directly, but 

only after the consequential damage has occurred. Furthermore, the spindle power is 

proportional to the resultant cutting force in the direction of primary motion: the least 

wear-sensitive parameter. This makes wear monitoring very difficult (Byrne et al., 

1995). 

    These direct and indirect sensors, however, should not be necessarily mutually 

exclusive. On the contrary, integration of several sensors or sensor fusion technique 

has attracted much attention recently to better and more robustly characterize the 

cutting conditions.  

    To summarize, Table 2.3 shows the tool conditions and their corresponding sensing 

techniques. 
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Table 2.3 Tool conditions and sensing signals 

Tool 
condition 

Causes Happening 
frequency 

Detectable 
physical effects 

Signals 

Wear: 
 
 

Crater 
wear 

 
 
Flank wear 

 
 
 
-Friction 
-Abrasion 
 
 
-Adhesion 
-Diffusion 
 
 
 

Predominates 
at high cutting 
speed or high 
feed rate 
(Zhou et al., 
1995) 
 
 
Predominates 
at low cutting 
speed 
 
3-5 (Lanzetta, 
2001) 

-Change of force 
in flank face 
-Rubbing between 
tool flank face and 
workpiece 
 
-Change in the 
effective rake 
angle 

Force  
 
 
AE 
 
 
Vision  

Breakage: 
Fracture 

Chipping 
Cracking 

 

-Severe flank wear 
or crater wear 
-Impact on tool 
during entry, exit 
or by action of 
swarf 
-Plastic 
deformation 
-The tearing off of 
materials from tool 
faces 
-Non-uniform 
thermal expansion 
and contraction 
-Mechanical stress 
cycles on tool 
 

Dominant 
mode for more 
than a quarter 
of all the 
advanced 
tooling 
material 
(Kurada and 
Bradley, 
1997a) 
 
3-5 (Lanzetta, 
2001) 

-Change in cutting 
force 
-Fracture of tool 
-Change in shear 
deformation 
during chip 
formation 
-crack formation 
and propagation 

Force 
 
 
AE 
 
 
Vision 

Chatter -The regenerative 
effects 
-The mode 
coupling effect 

 Vibration of tool Vibration 

Chip 
breakage 

-Bending moment 
-Local fracture 
stress 

1* (Lanzetta, 
2001) 

-Change in shear 
deformation 
during chip 
formation and 
chip/tool interface 

AE 
 
Force 

Built-up 
edge 

-Adhesion 
-Cratering 

1/50-1/100 
(Lanzetta, 
2001) 

Change in 
effective rake 
angle 

Force 

 
*Assume the occurrence frequency of chip breakage is 1 
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2.2 Single sensor 

    In general, in terms of the number of sensors involved, the monitoring methods fall 

into two categories: single-sensor methods and multi-sensor or sensor fusion methods. 

In this subsection and the one that follows, these two methods are reviewed. 

    As previously mentioned, any one of the direct or indirect sensors can be used in 

monitoring tool conditions. For conciseness, only vision and force sensors are 

reviewed herein since they are deployed in this thesis. 

2.2.1 Vision 

    Illuminated by appropriate lighting, the wear land (both flank wear and crater wear) 

reflects the incident light and is sensed by a camera. The image is then processed to get 

the size of the wear. 

    Vision method has some valuable advantages (Pfeifer and Wiegers, 2000; Lanzetta, 

2001; Pedersen, 1990; Giusti et al., 1987): 

• The obtained measurement results are independent from the actual cutting 

process and its parameters; 

• High accuracy, as CCD cameras can get images of the tool area 5 × 5 mm2 with 

high resolution of about 10 μm/pixel; 

• No effects on the machine stiffness; 

• Universal. Systems using computer vision techniques can measure many 

different kinds of tools without requiring physical adjustment. 

• Tool wear appears in a large variety of forms, which can be classified into 

several typical groups of wear. As a result, prediction of the tool life can be far 

more reliable. 
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    In constructing TCM systems with vision sensors, some key issues should be taken 

into consideration: 

• Optimized illumination. Generally, two light sources are used, including 

directional lighting and structured lighting (Lanzetta, 2001). Only with an 

optimized illumination, the contours of the worn area on the cutting edge can 

be extracted from the image with a high degree of reliability. Thus far, hardly 

there are any systematic approaches found in literature to handle the adaptive 

adjustment of illumination parameters. Few techniques were reported for 

application in industrial environment. The main problem is either the lack of 

measurement robustness or the required complexity in the lighting devices 

(Park and Ulsoy, 1993b). 

• Vision sensors are sensitive to outside environment, such as disturbances, dirt, 

chips, fluids, and mechanical influences (Lanzetta, 2001). 

• The measurement system should be calibrated to provide absolute units of 

measurement (Kurada and Bradley, 1997a). 

• Appropriate segmentation techniques (which can be categorized into 4 classes: 

thresholding, edge detection, region growing, and split and merge (Bahr et al., 

1997)) determine the accuracy of measurement results. 

    A typical TCM system based on machine vision is shown in Figure 2.4. 
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Figure 2.4 General framework of image analysis for TCM 
 

Flank wear by vision 

    To measure flank wear, three approaches based on rake face image, neural networks 

and flank face image have been proposed. 

    Rake face image. In this approach, the image of the rake face rather than that of the 

flank face was measured (Maeda et al., 1987b). The coordinate transformation 

relationship between the images of the rake face and flank face was parameterized by 

rake angle, side angle and cutting edge angle. In this way, by measuring the change of 

the rake face image of the worn tool with respect to that of the new tool, an entire 

contour of the flank face could be constructed. However, the accuracy depends on how 

precisely the orientation of the tool can be achieved with respect to the camera. 

Another problem is that it may be difficult to obtain the rake face image when the tool 

is mounted on the mill holder. This approach is, therefore, not considered in the 

proposed system. 
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    Neural networks. In this approach, the image data were input to a neural network to 

give the flank wear. Teshima et al. (1993) trained a BP neural network to estimate the 

cutting tool life. The entire image was partitioned into many small regions, each of 

which was assigned a value by their gray-level. The image data, together with the 

cutting conditions, was input to a BP net to estimate the tool information. Giardini et al. 

(1996) proposed a similar approach but did not consider the cutting conditions in 

training the neural network. This approach has two disadvantages: lots of trial cutting 

should be carried out in order to collect training data, and the generalization of the 

neural network would be low for various cutting conditions. Consequently, this 

approach is not considered in the proposed system either. 

    Flank face image. This approach directly uses the image of the flank face to 

measure flank wear. Most of the researchers used this approach, which is reviewed 

chronologically below. 

    One of the earliest approaches was that by Giusti et al. (1987) who employed a 

special lighting system. They deployed optical fibers to illuminate the flank face and 

laser beam to illuminate the rake face. The two lighting subsystems worked 

independently and were successfully integrated into the machining system as a 

prototype. The image processing technique was very basic and not too robust. 

    Besides lighting, the image processing technique is also very important. Jeon and 

Kim (1988) designed an optical system for flank wear measurement using two 

parameters: VB and VBmax with a measurement resolution of 0.1 mm. The image 

processing began with binarizing the gray-level image into non-wear area and wear 

land. The binary image was then projected along the cutting edge of the tool. By 

checking the distribution of the projection, some pixels outside the wear land were 
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rejected as noise. The wear land contour was determined by neighboring pixels. This 

rather simple method to measure the flank wear had quite low accuracy. 

    To improve accuracy, Pederson (1989) developed a prototype experimental 

computer vision system for flank wear measurement. The gray-level image was 

binarized with a threshold determined from a smoothed histogram. To remove noise 

and close unconnected areas, a sequence of shrink and expand operations were applied. 

Although the resolution of the image was improved to 0.01 mm, the method did not 

consider actual machining process, in which small chips or dirt could introduce much 

noise on the flank face, affecting system’s robustness. 

    In an attempt to enhance robustness, Ogumanam et al. (1994) built up a system that 

extracted five features and classified the tool as good, worn and broken from the 

captured tool image. The image was segmented firstly by multi-threshold learnt from 

trial tests. Then neighborhood and connectivity were used to label the unlabelled pixels 

after the first pass. The wear land was thus detected by searching the pixels with the 

same specified labels. The cutting edge was detected by Hough transform and was 

used to detect breakage. This method provided a systematic solution to the 

measurement of the degree of flank wear and breakage. But it required a series of tests 

to determine thresholds. 

The first two aforementioned approaches based on rake face image and neural 

networks are not the research trend because their practical use is limited. In contrast, 

the third method based on flank face image is of research interest and focus as it is 

more practical. However, to facilitate applications in the industry, there is the need to 

improve the method for the following aspects: 
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1. The above systems using flank face image provide pixel accuracy, which may not 

be adequate for today’s precision manufacturing. Actually, sub-pixel accuracy is of 

greater importance. An optical system with sub-pixel accuracy is therefore needed.  

    2. Typically, a single image is captured at the instant when the tool is parked in a 

stationary position at a specified location. In practice, it is more efficient to capture the 

image when the tool is still rotating. Thus far, there is no reported approach to 

capturing images from a rotating tool. Accordingly, a system that can capture the 

image when the tool rotates and process the captured moving image is to be developed. 

    3. Generally the image is processed with a simple procedure. Noise due to dirt and 

small adhered chips may not be completely removed and the resulting noise can 

significantly affect the robustness of the system. Consequently, a robust processing 

procedure is needed.  

Crater wear by vision 

    To measure crater wear, it is necessary to first construct a 3-D image of the crater 

wear. Crater wear is not used as commonly as flank wear to indicate the degree of wear. 

In literature, only a few researchers have reported study in this topic and their work is 

discussed below. 

    Giusti et al. (1987) proposed a method using laser fringe to measure crater wear. 

Laser fringe, obtained after the laser beam goes through a diffraction grating, is 

projected onto the rake face. Fringe patterns differ between the crater wear area and 

other areas. With the fringe projection angle, and by tracking the boundary of the 

fringe in the wear area, the crater wear can be measured. Maeda et al. (1987a) 

proposed a similar method to measure crater wear. In both methods, the projection 

angle must be known, and only one fringe pattern is used, which can be sensitive to the 

fringe spacing. 
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    Yang and Kwon (1996) applied an automatic focusing technique to measure a crater 

wear depth with a 1-D search algorithm for finding the best focus. The intensity of the 

illumination is important for both contour detection and best focus search. Thus, light 

can affect the accuracy easily. The use of a servo control system in finding the best 

focus increases the complexity of the system. 

    Karthik et al. (1997), Prasad and Ramamoorthy (2001) constructed a 3-D map of the 

crater wear using a stereo imaging technique. Two images captured with the camera at 

different locations relative to the object are used to reconstruct its 3-D image, which is 

used to measure the crater wear. Because it is necessary to search the corresponding 

pair of points in the two images, the computation time is long. The use of two cameras 

is costly for practical application and light can also affect the measurement. 

    It can be seen that the crater wear measurement systems are subject to ambient light 

or their processing is not full-field. Because the ambient light will affect the accuracy 

of the result and the non-full-field processing will make the system complicated and 

difficult to handle, there is a need to develop a system that is robust to ambient light 

and can process the image in full-field sense.  

2.2.2 Force 

    Unlike vision sensors, cutting force can be used on-line to detect tool 

breakage/failure, classify wear level, estimate wear value, or predict tool life, etc. Here, 

wear usually refers to flank wear as it serves as the wear indicator more often than 

crater wear (ISO 8688-1, 1989). As an indirect monitoring signal, cutting force has to 

be processed and analyzed to extract a set of features that are close to tool conditions. 

The widely used signal processing approaches for feature extraction include: 

• Time domain analysis (such as differencing of force (Altintas and Yellowley, 

1989), maximum force level and total amplitude (Tarn and Tomizuka, 1989), 
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variable force (Tarng et al., 1994), statistical value of force (Leem and 

Dornfeld, 1995)); 

• Time series analysis (such as AR model (Lan and Naerheim, 1986; Altintas, 

1988); 

• Power spectrum analysis (such as FFT (Tarng, 1990; Elbestawi et al., 1991; 

Oraby, 1995)); 

• Wavelet analysis (Kasashima et al., 1995; Wu and Du, 1996; Xue et al., 1997; 

Lee and Tarng, 1999; Rene de Jesus et al., 2004). 

    Artificial intelligence (AI) techniques are widely used to map the extracted features 

to tool conditions. They are: 

• Neural networks (such as MLP (Rangwala and Dornfeld, 1987; Monostori, 

1993; Ko and Cho, 1994; Santanu et al., 1996), SOM (Leem and Dornfeld, 

1995), ART and ART2 (Burke and Rangwala, 1991; Tansel and Mclaughlin, 

1993b), RBF (Elanayar and Shin, 1995), RCE (Tansel et al., 1992b));  

• Fuzzy logic (Li and Elbastawi, 1996); 

• Pattern recognition (Elbestawi et al., 1989). 

    Among the ongoing discussed AI techniques, neural networks are the most popular 

due to the following favorable advantages (Dimla et al., 1997): 

• Fault tolerance and adaptability; 

• Data-driven nature; 

• Noise suppression capabilities; 

• Parallel processing capabilities. 

    For force, the predominant research uses supervised neural networks such as MLP, 

RBF, RCE or SVM. To train these networks, there is a need to collect a lot of data 

through experiments under various cutting conditions and perform off-line training. 
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Additionally, the generalization of the trained networks is not good enough for various 

cutting conditions. Therefore, there is a need to develop an unsupervised network to 

use less data in training. Furthermore, the network should be adaptive to various 

cutting conditions. The features for flank wear estimation and breakage should be 

sensitive to the two conditions and their extraction should be easy to implement on-

line.     

    There are also model-based methods of relating tool wear to cutting force (Koren, 

1978; Marques and Mesquita, 1991; Park and Ulsoy, 1993a; Lin and Lin, 1996) or 

other measurable signals (Abu-Zahra and Nayfeh, 2000). To implement such a model, 

a large database must be established through numerous experiments to furnish the 

constants in the models. This disadvantage renders it not so amenable to practical 

applications. 

    Table 2.4 sums up the cutting force features used in literature and the methods to 

make decision based on them. 
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Table 2.4 Force features and decision-making: review 

Conditions Features Decision making Reference 
TBD1 Residual error Thresholding Lan and Naerheim, 1986; 

Altintas, 1988 
 Components in tool 

breakage zone 
Thresholding Tarng, 1990 

 Sum of the squares of 
residual errors 

Thresholding Tansel and Mclaughlin, 
1993a 

 Peak rate Thresholding Zhang et al., 1995 
 Ten normalized 

averages in one tool 
revolution 

RCE, ART2 Tansel et al., 1992a, 
1992b 

 Average force and 
variable force 

MLP Tarng et al., 1994 

 Shape characteristic 
vectors from wavelet 
coefficients 

ART2 Xue et al., 1997 

 Wavelet detail 
coefficients 

Thresholding Kasashima et al., 1995; 
Lee and Tarng, 1999 

TWD2 1st and 2nd order 
differencing 

Thresholding Altintas and Yellowley, 
1989 

 Maximum level, Total 
amplitude, combined 
incremental changes, 
amplitude ratio 

Thresholding Tarn and Tomizuka, 
1989 

 Power spectral density LDF-classifier Elbestawi et al., 1989 
 Ratio between 

harmonics 
Thresholding Elbestawi et al., 1991 

 Power spectral density 
and mean, standard 
deviation, skew, kurtosis

SOM Leem and Dornfeld, 1995

 Wavelet transform 
coefficient 

ART2 Tansel et al., 1995 

 Ratio between the 
instantaneous increase 
in the cumulative 
distribution function 
(CDF) 

Thresholding Oraby, 1995 

TWE3 Average force MLP Santanu et al., 1996; Lin 
and Lin, 1996 

 Clustering of spectrum 
and wavelet coefficients 

Recurrent NN Kamarthi and Pittner, 
1997 

 
1. TBD: Tool breakage detection. 
2. TWD: Tool wear detection. 
3. TWE: Tool wear estimation. 
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2.3 Multiple sensors: sensor fusion and sensor integration 

    To provide reliable, robust and accurate result in tough industrial environments, 

researchers have combined two or more sensors, which is termed sensor fusion, in one 

monitoring system. Thus far, sensor fusion has attracted much attention and research 

highlight in TCM. Generally speaking, sensor fusion can be divided into two types: 

fusion by multiple indirect sensors and fusion by indirect plus direct sensors.  

2.3.1 Multiple indirect sensors 

    When using multiple indirect sensors, majority of the proposed methods use neural 

networks for decision making, partially because of the good ability of neural networks 

to map the non-linear relationship between input and output. Functionally, multiple-

indirect-sensor fusion method is analogous to single-sensor method in the monitoring 

flow in TCM, involving data acquisition, signal preprocessing, feature extraction, and 

decision making. The difference is that the feature vector is derived from multiple 

sensors instead of a single sensor. In principle, in sensor fusion, features from the 

multiple sensors are able to complement and reinforce each other to result in a better 

TCM performance.  

Therefore, as in the single-sensor method, in multiple indirect sensor fusion method, 

the features of each sensor signal are extracted using the same or different processing 

methods.  These features and the observed corresponding tool conditions are used to 

train a neural network. The trained network subsequently provides appropriate output 

for given input, in a form of either a condition class or an estimation of the tool wear. 

Table 2.5 shows some indirect sensor fusion systems. 
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Table 2.5 Multiple indirect sensor fusion systems 

Condition Signals Decision
-making 

Success 
(%) 

Reference 

TWE F, AE, SMC MLP -- Dornfeld, 1990 
TWD Vt, F MLP 97 Ko and Cho, 1994 
TWE T, F, AE MLP -- Masory, 1991 
TWE T, AE, SMC MLP >90 Ruiz et al., 1993 
TBD Vt, F MLP 100 Markos et al., 1993 
TWE Vt, F SOM ~95 Kamarthi et al., 1991 
TWD Vt, F MLP 96.5-98 Monostori, 1993 
TWD AE, F MLP 96.9 Moriwaki and Mori, 1993 
TWD F, T, AE MLP -- Chryssolouris and Domroese, 1988 
 
F = cutting force, AE = acoustic emission, SMC = spindle motor current, Vt = 
vibration, T = temperature, CNNN = condensed nearest-neighbor network, TWE = tool 
wear estimation, TWD = tool wear detection, TBD = tool breakage detection, SOM = 
self-organizing map, MLP = multiple layer perceptron 
 

    Even though these methods provide a systematic approach for sensor fusion, the 

need for extensive training of the neural networks remains a major drawback.  

    To address this problem, Leem and Dornfeld (1995) designed an unsupervised 

customized neural network to map the features of force and AE, together with cutting 

conditions at different wear levels. The neural network is trained by unsupervised 

Kohonen’s feature map procedure followed by an input feature scaling algorithm. The 

network shows several practical and reliable properties for sensor-based tool-wear 

monitoring systems at work: off-line feature selection not required, fast learning, fewer 

teaching samples, and the avoidance of serious types of error (i.e., the reduction of 

cases where tool wear is misclassified into something other than the level adjacent to 

the correct one). Burke and Rangwala (1991) also proposed an unsupervised network, 

ART, to overcome this problem. However, even the unsupervised network still uses 

the cutting conditions in learning, which means the network is not adaptive to a wide 

range of cutting conditions. 
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2.3.2 Direct plus indirect sensors 

    For the foregoing indirect methods, even sensor fusion is not satisfactory, perhaps 

because indirect methods can only correlate with actual tool wear conditions 

throughout its entire monitoring process. In other words, indirect methods are blind to 

any direct condition information to correct its error, if any. Hence, researchers attempt 

to combine direct and indirect methods, in an attempt to reduce the drawbacks of one 

to the other and result in more accurate on-line TCM. A few papers have been 

published on this sensor fusion scheme, and they are reviewed chronologically below. 

    Park and Ulsoy (1993a, 1993b) proposed a tool wear monitoring system integrating 

an adaptive observer and computer vision. A simplified linear model was formulated 

on the relationship between the cutting force and flank wear. By observing the 

measured cutting force, some of the unknown parameters could be estimated by the 

constructed adaptive observer. Other parameters could be calculated or evaluated by 

empirical equations or data book. The less accurate indirect flank wear measuring 

method was intermittently calibrated by a more accurate direct measurement method. 

However, the force-wear model was developed based on turning and not be directly 

applicable in milling. 

    Bahr et al. (1997) proposed a similar system, which featured a direct vision 

measurement and indirect vibration-based on-line monitoring. The vision measurement 

provided geometrical properties of the tool, such as length, width, perimeter, and area 

of the wear land to decide the extent of wear. Vibration sensor, on the other hand, was 

used to monitor the tool condition on-line and could detect tool breakage. A neural 

network (SOM) was used in image segmentation, which required teaching sample 

pixels to be provided in training so that the image processing module was not 
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automatic, since. Another problem was that the vibration signal was not as reliable or 

accurate as force signal.  

Mannan et al. (2000) also studied the combination of direct and indirect sensors. 

The difference from Bahr et al. was that Mannan et al. monitored the tool wear by 

inspecting the workpiece surface instead of the tool, and the indirect sensor was a 

microphone (sensing sound). In the analysis of the image, a neural network was 

deployed. This may be a drawback, since it is necessary to collect much data to train 

the neural network. Even though the correspondence of the tool wear and the 

workpiece surface is very close, it is doubtful that the generalization of the neural 

network can guarantee an accurate measurement of the tool wear, given a different 

cutting condition.  

From the above survey, there is still much room for improvement to the 

performance of the reported sensor fusion schemes because the processing methods for 

one or more of the sensors in the system have disadvantages. It is therefore meaningful 

to try the sensor integration by vision and force, which are processed with more 

effective methods, to hopefully achieve a better performance. For the general concept, 

the overall scheme of the sensor integration is described and discussed in Chapter 3. 
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Chapter 3 

Framework for on-line TCM by multi-sensor integration 

 

3.1 Overview 

    As mentioned earlier, in this thesis, the focus is on vision and force sensor 

integration. Before explaining the details of each sensor technology, the general 

framework for on-line TCM by multiple sensor integration is briefly introduced. 

Therefore, this chapter describes how the two sensors are combined to work together 

and how the two sensors play their individual role in monitoring tool conditions.  

For clarity, two terms are defined in this thesis: in-cycle and in-process. “In-cycle” 

refers to “periodic”, such as, between machining cycles or during part changeovers. 

“In-process,” on the contrary, refers to that during machining. The overall scheme of 

the proposed on-line TCM system is shown in Figure 3.1.  

    For flank wear, accurate vision measurement is obtained by processing the images 

of the tool captured in-cycle. Two features of the cutting force extracted in-process and 

the flank wear increment in this cutting block are used to train the unsupervised 

Kohonen’s SOM neural network, which in turn serves to estimate the wear increment 

in the next cutting block. The two individual sensors play their respective roles in 

alternative intervals.  

To handle exceptions, i.e., breakage event, two force features extracted in-process 

are firstly checked with preset thresholds. If the thresholds are reached, the image of 

the tool is then captured and processed to verify if breakage has really occurred. 

Note that in this thesis, for convenience of experiment, one pass of machining a 

cube is taken as one block. 
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Figure 3.1 Overall scheme of the proposed on-line TCM system 

3.2 In-cycle tool wear measurement by vision 

    From Figure 3.1, it is necessary to know the wear values at the beginning and end of 

one cutting block to train the SOM net. To perform this task, a CCD camera has been 

chosen to work in-cycle. For this vision subsystem, there are some key issues: 

• It should interrupt the machining procedure as little as possible. 

• It should provide accurate measurement results as fast as possible. 

• It should be more or less robust to the ambient environment, particularly 

lighting. 

• It can be generalized to a wide range of tool types. 

    In the light of the above, techniques used to process the images are previewed herein: 

For flank wear 

 31



Chapter 3 Framework for on-line TCM by multi-sensor integration 

1. Not only binary image, but also gray-level image, is involved to measure the 

flank wear area, compared to traditional thresholding-based methods that use 

binary image only. Hence, more accurate result can be achieved by avoiding 

the selection of wrong threshold. 

2. Rough-to-fine strategy is employed. The wear edge is located step by step by 

gradually narrowing the search scope. In this way, the flank wear area can be 

more reliably detected. 

3. Noise is reduced by various means, i.e., morphological operation, windowing 

technique, median filter, horizontal and vertical scanning. 

4. Processing area is reduced from the entire image to the region of interest (wear 

land) to speed up the processing. 

5. Threshold-independent method based on moment invariance is introduced to 

detect the wear edge with sub-pixel accuracy. 

6. Trigger-capture mechanism is proposed and implemented to capture moving 

image series as the spindle rotates. 

7. Successive moving image analysis based on individual image processing is 

deployed to process the consecutive image series, using the correlation within 

the image series to make the measurement more accurate and robust. 

Techniques 1-5 will be discussed in detail in Chapter 4, which focuses on the 

individual image processing and lays the foundation for successive image analysis. 

Then techniques 6 and 7 mentioned above will be described in Chapter 5, which 

focuses on successive image analysis. 
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3.3 In-process wear estimation by force 

    The force subsystem works in-process while cutting is in-progress. The challenges 

of wear estimation through force signature are: 

1. Features suitable for on-line use and close to wear progress should be extracted 

and properly processed, say, scaled. 

2. The dimension and the extraction procedure of the features should be as simple 

as possible due to the on-line application. 

3. A good unsupervised neural network should be selected according to the 

features. Its training should converge fast and end before the next machining 

cycle. 

4. Cutting-condition independent estimation method is preferred to make the 

system adaptive to various cutting conditions. 

    The solution to these challenges is presented in Chapter 7.  

3.4 Breakage detection and verification 

    Generally, breakage detection is based on thresholding. Once one or more features 

of a sensed signal (AE, or force, etc.) have a value exceeding a preset value (threshold), 

the tool is viewed as failed. However, to specify such a threshold is a big challenge. 

Accordingly, a wrong decision on the breakage may be made due to a deviated 

threshold. To address this problem, there is an available tool – vision. So once again, 

to verify this breakage, the flank face is inspected by vision. Part of Chapter 4 and 7 

touch on the issues on breakage. 
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Chapter 4 

Individual image processing 

 

4.1 System configuration 

    Figure 4.1 shows the camera system mounted on a CNC machining center. The 

camera system consists of the following: 

• EG&G Reticon MD4256C CCD camera with a 40 mm-extender to zoom on 

to the insert. The image size is 256 pixel × 256 pixel. The field of view of the 

camera is about 3 mm × 3 mm. The horizontal and vertical pixel resolution is 

12 μm/pixel. A telecentric lens Computar TEC-55 is used. The vision system 

was calibrated with the method proposed by Blahusch et al. (1999). 

• Frame grabber EG&G Reticon SB4001. 

• Adjustable fibre-optic lighting. 

• Microcomputer Pentium III 550. 

 

Figure 4.1 Experimental setup for individual image processing 
 

    During the experiment, the milling cutter was programmed to park at a preset 
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position with respect to the CCD camera so that a sharp image could be captured. For 

different inserts, the spindle was manually rotated to an appropriate position where the 

flank face could be clearly inspected by the camera. In this way, the pixel resolution 

was consistent for all images of different inserts. The insert remained still in the slot of 

the cutter when its image was captured.  

4.2 Definition of terms 

    To proceed, some key terms used throughout the thesis are defined. 

 

Figure 4.2 Definition of key terms 
 

    As shown in Figure 4.2, a typical CCD-captured insert image consists of three 

different areas:  

a). The background (relative to the insert), where each pixel has a low gray level 

(dark area).  

b). The unworn area of the insert, where each pixel has an intermediate gray level.  

c). The flank wear land (of the insert), where each pixel has a high gray level 

(bright area).  

    The insert area is defined as the minimal rectangular area that circumvents the 

whole insert appearing in the captured image. The critical area is defined as the 

rectangular area obtained by extending the insert area by some appropriate amount to 

accommodate some errors. The reference line, refers to the cutting edge of the insert. 
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The bottom edge of wear land is a set of points, which are on the boundary between 

the worn and unworn areas.  

    The aim of this chapter is to find and quantify the flank wear land. 

4.3 Identification of the critical area 

    To reduce the processing time and memory requirement, the processing area of the 

captured image is confined to the critical area. The background, unworn area and flank 

wear land, which are at different gray levels, provide the means of identifying the 

critical area, based on the schematic steps shown in Figure 4.3. 

 

Figure 4.3 Schematic steps for identification of the critical area 
 

4.3.1 Preprocessing 

In preprocessing, noise is reduced using median filtering (Gonzalez and Woods, 

2002), which has the advantage of keeping the detailed information while minimizing 

the noise so that edges can be clearly identified. This is important as in the following 

steps, edges in the image are used to determine the critical area. The original image 

and the median-filtered image are denoted as A(x,y) and O(x,y), respectively. Here, the 

value of a pixel in O(x,y) is replaced by the median of the gray levels in the 

neighborhood of that pixel in A(x,y). As can be seen from the median filtered image 

(Figure 4.4 (b)), the pixels within each area appear more uniform and smooth. 

In digital image processing, the median filter is carried out in a window, which can 

also be called as a mask. The side value (size) of the window is usually odd. A large 

size of the window will result in much computation time and may bring about the 
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unexpectedly distortion of the resultant image. A small size window may not get the 

noise removed. In this case, 5 × 5 window is selected. 

4.3.2 Histogram stretch 

The histogram stretch is employed for two purposes.  Firstly, it is used to improve 

the contrast of the median-filtered image.  Secondly, it is used to differentiate the 

average gray level of the wear land and that of the unworn area pixels, within a 

relatively constant interval, by mapping the original gray-level interval into a fixed 

interval of [0,255] with a linear transform (Gonzalez and Woods, 2002).  

Suppose the linear transform is: 

 
y = ax + b                                                             (4.1) 

 
where x is any gray level of the pre-transformed image, y is the corresponding desired 

gray level after transform; a and b are unknown variables, which can be calculated by 

solving two equations. 

Consider that the gray level range of the pre-transformed image lies over [Gmax, 

Gmin], the desired gray level interval is generally [0, 255]. Two equations are obtained: 

 
0 = kGmin + b                                                                 (4.2) 

 
255 = kGmax + b                                                              (4.3) 

 
which give: 
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a
−
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The image after histogram stretch has greater contrast in each gray-level area 

(Figure 4.4 (c)). 

    

 (a) (b) (c) 

(a) Original image A(x,y), (b) Median-filtered image O(x,y), (c) Histogram-stretched 
image S(x,y). 

Figure 4.4 Gray-level images after preprocessing and histogram stretch 
 

4.3.3 Thresholding 

The background pixels are assigned a value of ‘0’ and other pixels ‘1’, with a 

suitable threshold TS. The resultant binary image is denoted as B(x,y). It is obtained 

through this formula: 

 

⎩
⎨
⎧

=
0
1

),( yxB                                                           (4.5) 
else
if

,
, STyxS ≥),(

 
This threshold is easily obtained by searching the gray-level histogram, with the 

knowledge that the background has the lowest gray level.  

As shown in Figure 4.5, a typical histogram of the image S(x,y) has three visible 

clusters, which correspond background, unworn area and wear land respectively as the 

gray level increases. Additionally, the background has the maximum density value in 

the histogram distribution. 

Since the unworn area and wear land as a whole in this context is the object to be 

labeled with ‘1’, the iterative threshold selection algorithm (Sonka et al., 1999) is not 
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suitable. There are two main reasons. One is that having too many iterations requires 

time. The other is that the histogram is sparse, i.e., the background has very compact 

distribution, while the non-background has very wide distribution. If the threshold is 

selected with this algorithm, some non-background pixels will be wrongly classified 

into background in the resultant binary image. Accordingly, the obtained critical area 

may be shrunk compared to its minimal size. 

From the histogram pattern, a simple way to get a suitable threshold is designed. 

a). Search the histogram, finding the gray level with the maximum density value, i.e., 

GPDF=max; 

b). Let TS = 2GPDF=max. 

 

(a) Histogram of image S(x,y) 
 

(b) Resultant binary image

Figure 4.5 Image thresholding 
 

    In this method, the underlying hypothesis is that the background has a Gaussian 

distribution. Consequently, GPDF=max is not only the mean of the Gaussian but also the 

value of several times of standard deviation, say 5σ, such that outside of range [0, 

2GPDF=max] are there nearly no background pixels. Figure 4.5 (b) shows the resultant 

binary image. 

4.3.4 Extraction of the critical area 

To extract the critical area, the “line segment encoding” segmentation method 

(Castleman, 1996) is used.  
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Figure 4.6 Line coding method sketch map 
 

    Suppose there is a region in an image as shown in Figure 4.6, the algorithm goes as 

follows. 

    Scanned from line 0, all the connected pixels whose values are 1 will be viewed as a 

section. According to this rule, in line 0, three sections are obtained. They belong to 

three different regions which are encoded as region 1, region 2 and region 3. The three 

sections are encoded as 1-1, 2-1 and 3-1, which mean they are the first sections of 

three regions. 

    In line 1, the algorithm finds other 3 sections, which are neighbors of the three 

sections found previously in line 2. The three new sections belong to region 1, region 2 

and region 3 respectively, so the algorithm encodes them 1-2, 2-2 and 3-2, which mean 

they are the second sections of three regions. 

    In line 2, only one section is ascertained. It is neighbor of all the three sections of 2-

1, 2-2 and 3-2, so region 1, region 2 and region 3 actually are only one region. They 

will be merged into region 1 as a result. At the same time, this new section will be 

encoded as 1-3, which means it is the third section of region 1. 

    Perform the scanning of each line for the entire image in the same way, thus all 

isolated regions are obtained. 

The insert area is selected out from all candidate areas after segmentation with the 

criterion that the insert area is the greatest one in terms of area. In Figure 4.5 (b), the 

insert area is outlined. After the insert area is found, the critical area is thus obtained 
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by magnifying the insert area by some amount, in order to accommodate possible 

errors in processing. The image processing to identify and measure the flank wear land 

is subsequently performed within the critical area. 

4.4 Identification of flank wear land 

The determination of the flank wear land requires the extraction of the edge image 

to obtain the reference line. 

4.4.1 Edge detection and enhancement 

The fundamental principle of edge detection is based on the abrupt or gradual gray 

values’ change of several continuous pixels. For an input image f(x,y), its edge image 

can be obtained by calculating its gradient magnitude via any one of the following 

equations (Gonzalez and Woods, 2002): 

 

( , ) max{| |,| |} max{| |,| |}x y
f fg x y G G
x y
∂ ∂

= =
∂ ∂

                          (4.6) 

 
( , ) | | | |x yg x y G G= +                                                  (4.7) 

 
2( , ) 2
x yg x y G G= +                                                  (4.8) 

 
    These three equations give slightly different results. But the complexity of Eqs. (4.6) 

and (4.7) is less than Eq. (4.8) and they are usually used in practice. 

     In computing the edge image in digital image processing, a kernel is often used that 

is a square matrix to convolve the image, which is also essentially a matrix. For the 

edge detection operation, the Sobel operator, Eq. (4.8) is applied as it incurs almost no 

extra noise to the image.  
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Sobel operator (Sonka et al., 1999; Gonzalez and Woods, 2002) has two kernels, Gx 

and Gy, weighting the central row and column respectively, which are shown as 

follows: 
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1 0 1

xG
−⎡ ⎤
⎢= −⎢
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⎥
⎥                

1 2 1
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⎡ ⎤
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                                   (4.9) 

 
As the horizontal edges are more critical in the proposed method, only the horizontal 

edge operator Gy is calculated with the image data. Figure 4.7 (a) shows the Sobel-

operated image, which is denoted as E(x,y). 

In order to improve the edge contrast of E(x,y), a local window function, called 

adaptive contrast enhancement at edges (Klette and Zamperoni, 1996), is employed.  

The local edge gray value E is defined as a weighted and normalized average gray 

value inside the window whose center is the pixel at (x,y). 
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where n is the size of the window and given an odd value according to the general rule. 

The weight di,j is edge value of the pixel at (x-I+i,y-J+j). I=J=n/2. 

The local contract C between gray value f(x,y) and E is defined by using the 

Canberra distance measure: 
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, with 0 ≤ C ≤ 1                                       (4.11) 
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Let the wanted contrast C’ = Cr, the resulting h(x,y) can be obtained by the 

following equation: 

 
1 '        ,if  ( , )
1 '( , )
1 '                       ,else
1 '

CE f x
Ch x y
CE
C

−⎧ y E≤⎪⎪ += ⎨ +⎪
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                                                (4.12) 

 
    When r<1, the contrast can be enhanced. 

Figure 4.7 (b) shows the enhanced image E+(x,y) which shows a higher-contrast 

edge. 

   

 (a) (b)  

   

 (c) (d)  

(a) Sobel-operated gray-level edge image E(x,y), (b)Enhanced gray-level edge image 
E+(x,y), (c) Binary edge image BE

+(x,y) after Otsu method, (d) Binary edge image 
M(x,y) after morphology. 
 
Figure 4.7 Edge and binary edge images confined to the critical area outlined by 

the red rectangle (Arrows indicate noise patches) 
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4.4.2 Thresholding the edge image 

As the pattern of the histogram of the image E+(x,y) is quite different from that of 

the image S(x,y), an adaptive determination of an optimal threshold based on the Otsu 

method (Otsu, 1979) is employed: 

    a). Calculate the histogram H(i) of the edge image E+(x,y); 

b). Calculate the average gray level of the image; 
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c). Calculate the average of the gray class k and the sum of the class histogram: 
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d). Calculate the standard of class classification: 
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e). Finally, calculate k so that σB reaches its maximum, the optimum threshold is 

then: 

B

TE = k.                                                                 (4.16) 

 
Figure 4.7 (c) shows the resultant binary image, BBE

+(x,y), binarized with the 

threshold via Otsu method.  

4.4.3 Reference line parameterization by Hough transform (HT) 

    As mentioned earlier, the reference line is actually the crater face when seen from 

the flank face. This line acts as the reference line in detection of flank wear and should 
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be located precisely. For line detection, Hough transform (HT) (Klette and Zamperoni, 

1996; Castleman, 1996) is an effective method often used. 

Principle of HT 

A straight line in x-y coordinate system can be described in the spatial domain by a 

set of parameters. For example, as shown in Figure 4.8, line y = ax+ b is parameterized 

by the slope a and intercept b. In another coordinate system, polar system, this line can 

be written in a parameter set (d,α), where d is its distance from the origin and α the 

angle of its normal. The d-α plane is parameter space. 

 

Figure 4.8 Principle of Hough transform 
 

    In light of the transform, any point (xi,yi) on the line satisfies the following condition: 

 
d = xi cos α + yi sin α                                                (4.17) 

 
For example, the coordinates of collinear points P and Q on the line L, satisfy the 

conditions: 

 
d = x1 cos α + y1 sin α                                                (4.18) 

 
d = x2 cos α + y2 sin α                                                (4.19) 
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Therefore, P and Q will “vote” for the specified set (d,α). Considering all pixels in 

an image, calculate their votes for each discretized pair (di,αi); obviously, the line that 

has the most collinear points has a peak “vote” value in the parameter space. By 

searching the peak value, the line is identified. 

    Hence, the HT reduces the problem of searching locally for lines in image space to 

searching globally for peaks in parameter space  

Data preparation 

    The data for HT are the parts from the morphology resultant image M(x,y) in the 

processing. If all pixels are individually used as the input, too much storage space is 

required. Considering there are some connected points which have same value, ‘0’ or 

‘1’, only the two end points of the data segments, which are composed of a series of 

connected points with the same value of ‘1’, are enough to be input as the spatial 

points for HT. Figure 4.9 exemplifies this idea. 

 

Figure 4.9 Data structure for Hough transform 
 

    For one line scanned from left to right, there are three data segments found, each of 

which has a start point and an end point. These two end points’ coordinates and the 

distance between the two points are recorded as a data structure. Obviously, this data 

structure is more efficient than every point’s coordinates themselves as the input to HT. 

In this example, 6 points for three segments are recorded instead of all the 10 points. 

Even plus the storage space for the distance, the storage saving here is remarkable 

(about 40%). 

    The same operation has been manipulated along each column in order to be able to 

detect the line whose slope’s absolute value is less than one.  
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Reduction of the transform area 

    This has been achieved after identification of the critical area. Now that the HT is 

performed just in the critical area, which is smaller than the entire image area. As a 

result, the storage space decreases and computation speed increases.  

Fast calculation of cosine and sine 

    Basically, in calculating cosine and sine or even the right-hand value of Eq. (4.17), 

look-up tables are a good choice. But in some dynamic calculation of cosine and sine 

because of their adaptive resolution, although a very detailed look-up table works, it 

consumes too much memory. In what follows, a simple numerical calculation method 

is presented. 

    In HT, calculation of cosine and sine of each discretizated angle value over the 

entire search interval, which is always [0,1800) (Immerkær, 1998). It is time-

consuming to directly calculate the cosine and sine values of each angle increment by 

using the functions provided by the compiler, i.e., cos(x) and sin(x) (Obviously, as 

processors get faster, this numerical method may not be necessary). According to the 

triangular relationship, the following is performed (with reference to Figure 4.10): 

 

Figure 4.10 Triangular symmetry relationship regarding 450, 900, 1800

 

    a). For α∈[00, 450], calculate cosα and sinα directly by functions cos(x) and sin(x). 
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    b). For α∈(450, 900], according to cosα = sin(900-α) and  sinα = cos(900-α), cosα 

and sinα can be obtained directly by copying the values of the corresponding sinα and 

cosα obtained in a). 

    c). For α∈(900, 1800], according to cosα = -cos(1800-α) and sinα = sin(1800-α), 

cosα and sinα can be obtained directly by copying the values of the corresponding 

cosα and sinα obtained in a) and b). 

Constraint of the parameter space 

    In hardware configuration, the reference line’s approximate orientation can be easily 

controlled within a range, say, (0,900), so that an angle searching area can be limited in 

a narrow interval rather than a 180-degree search for the HT. Based on the same 

principle, the polar distance of the reference line can also be easily estimated within a 

range, which can serve as the polar distance search interval.  

This strategy brings about three remarkable advantages:  

1). Faster computation can be achieved as a result of narrowing both the distance 

and angle search intervals;  

2). Less run-time memory is needed because of the reduced scale of parameter sets 

in parameter space;  

3). More accurate in locating the reference line results by avoiding the risk of 

transforming points on other line patterns, which might create unexpected results.  

 

Figure 4.11 The identified reference line 
 

The reference line 
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The reference line produces the most noticeable line pattern among all the candidate 

line patterns available in the critical area. Based upon this fact, by seeking through the 

resulting HT parameter space with Quick Sort algorithm (Klette and Zamperoni, 1996), 

the set (d,α) with the greatest accumulation value is taken as the parameters of the 

reference line. Figure 4.11 shows the reference line superimposed on the gray-level 

image. 

4.4.4 Morphology 

As indicated by the arrows in Figure 4.7 (c), BBE
+(x,y) consists of small areas of 

white patches that can be regarded as noise.  To remove these, two morphology 

operators, namely, erosion and dilation, are performed on the binary image BEB
+(x,y) 

sequentially. The main purpose of the erosion operation is to remove small areas 

regarded as noise that will introduce errors when locating the wear land. The purpose 

of dilation is to connect broken segments that originally are on one boundary of a 

region.  

The definitions of erosion and dilation are the following: 

Erosion: 

 
B * S = {x: Sx ⊂ B}                                          (4.20) 

 
Dilation: 

 
B ⊕ S={x: Sx ∩ B ≠ ∅}                                           (4.21) 

 
where B stands for the function of binary image; S stands for the structuring element; 

Sx stands for the nucleus of the structuring element. 

Figure 4.12 shows the visible effects of erosion and dilation on a binary image. 
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(b) Dilation(a) Erosion 

Figure 4.12 Morphological operation 
 

The resultant image M(x,y) after the morphology operation is shown in Figure 4.7 

(d). It can be seen that much noise has been removed, and most pixels on the bottom 

edge of wear land and reference line have been connected. The remaining noise can be 

removed further through windowing technique discussed later. 

4.4.5 Image rotation 

    To make the subsequent calculation easier, with the reference line in hand, the 

critical area is rotated such that the reference line aligns with the x-axis (the horizontal 

line) using bilinear interpolation. 

A rotation through an angle θ about the origin can be expressed in homogeneous 

coordinates as: 
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                                         (4.22) 

 
where (X,Y) is the new coordinate, (x,y) is the old coordinate. 

Obviously, the new coordinate has fractional value, which means that one output 

pixel falls into the space between four input pixels. So interpolation is necessary to 

determine what gray level corresponds to that position. For binary image, nearest 

neighbor interpolation is ok, since there are only two levels: 0 or 1. For gray level 

image, however, the nearest neighbor interpolation will result in sawtooth effect at 
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some of the edges. In this case, bilinear interpolation method is then used, which 

produces better result at cost of slight increase in execution time. 

Let f(x,y) be a function of two variables that is known at the four vertices of the unit 

square. The value of f(x,y) at an arbitrary point (x,y) inside the square can be 

established by interpolation through: 

 
f(x,0) = f(0,0) + x [f(1,0) - f(0,0)]                                (4.23) 

 
f(x,1) = f(0,1) + x [f(1,1) - f(0,1)]                                (4.24) 

 
f(x,y) = f(x,0) + y [f(x,1) - f(x,0)]                                (4.25) 

 
In real calculation, the unit square is replaced by the four neighboring pixels of the 

fractional position. Figure 4.13 shows the rotated binary image and gray level image. 

 

(a) Rotated gray-level image 

 

(b) Rotated binary image

Figure 4.13 Image rotation 
 

4.5 Flank wear measurement 

    The flank wear measurement is based on the resultant histogram stretch image 

(gray-level image) S(x,y) and the binary image after morphology M(x,y). The 

processing is confined to the critical area, which is the region of interest (ROI). 

    As illustrated in Figure 4.14, the measurement procedure, herein referred to as 

orthogonal scanning, involves repetitive scanning vertically to determine points on 
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the bottom edge of wear land and further, to get the wear value along each line and the 

entire wear land. 

    A scan line is the vertical line that starts from a point on the reference line and ends 

at a point on the boundary of the critical area. For simplicity, for the ith scan line L(i), 

the start point is denoted as PA(i), and the end point PB(i) with respect to the origin at 

the upper-left corner of the critical area. The interval, D, between each pair of 

adjacent scan lines L(i) and L(i+1) is typically ‘1’ pixel apart. 

B

    The measurement procedure uses information provided by the preceding processing, 

as indicated in Figure 4.15. In wear detection module, a rough-to-fine strategy is used, 

i.e., the edge point, denoted as PE(i), is firstly located in the binary image M(x,y) in ith 

scan line, using a windowing technique. The detected PE(i) is used as a reference point 

to more precisely detect in the gray-level image S(x,y) the point on the bottom edge of 

wear land, denoted as PRB(i). In this way, the distance between PRB(i) and PA(i) gives a 

flank wear value, W(i). Detailed explanation follows. 

 

Figure 4.14 Illustration of orthogonal scanning 
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Figure 4.15 Flow chart of procedures for wear detection 
 

4.5.1 Rough bottom edge detection 

    With reference to Figure 4.14, to locate rough bottom edge point is equivalent to 

locate point PE(i). To do this, the binary image M(x,y) is used. 

Determination of scan lines 

    The origin is taken to be at the upper-left corner of the critical area, whose 

coordinate system is shown in Figure 4.14. A scan line can be determined easily 

through getting the coordinates of its two end points, PA(i) and PB(i) now that the 

parameters for the critical area and the reference line are known. 

B

Determination of PE(i) 

 53



Chapter 4 Individual image processing 

    In performing this task, the procedure involves scanning from PB(i) to PB A(i). The 

first white (‘1’) pixel may be basically regarded as PE(i). However, PE(i) obtained in 

this way is easily subject to noise (for example, noise indicated by the arrow in Figure 

4.7 (d) will be regarded as PE(i)). Considering that the noise is normally isolated and 

small, a windowing technique is introduced to improve the performance. 

    After finding a candidate edge point whose binary value is ‘1’, a given number of 

adjacent pixels (a w1-pixel length window) is considered. If the number of ‘1’ pixels 

(N1) in the window exceeds a preset threshold , this candidate edge point is taken as 

P

E
TN

E(i); otherwise, find another candidate edge point, and repeat the above operation. In 

this process, the window is moving, as illustrated in Figure 4.16, where it is supposed 

that the window length is 4-pixel (w1=4), =3. In practice, selection of wE
TN 1 and  is 

based on noise size and distribution observed in the binary edge image. Observing that 

noise is small and isolated, w

E
TN

1 = 10 and = 4 is a good choice after trial. E
TN

 

Figure 4.16 Moving window 
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4.5.2 Fine bottom edge detection 

    In this section, the wear point is determined with the reference line, PE(i), PB(i) and 

the gray-level image S(x,y) after histogram stretch. 

B

Processing gray-level data 

    The difference in the gray level between the wear land and the unworn area of the 

scan line L(i) serves as a criterion in determining PRB(i). The average gray level in the 

wear land, )(iG w , and the average gray level in the unworn area, )(iG w  can be easily 

computed since PA(i), PE(i), and PB(i) are available for scan line L(i). B

The average gray level difference, )(iGΔ , between )(iG w  and )(iG w  is given by: 

 
)()()( iGiGiG ww −=Δ                                                 (4.26) 

 
A scan line L(i) with wear (that is, PRB(i) exists on this line) has to meet the 

following constraint: 

 

wwGiG −≥Δ )(                                                     (4.27) 

 
where wwG −  reflects the minimum gray-level difference between the wear land and 

unworn area. This can be obtained experimentally. 

For scan line L(i) satisfying Eq. (4.27), assume that wear occurs in the vicinity of w3 

pixels of PE(i).  

Moment-invariant edge detection 

    To locate the wear bottom point, a threshold independent method (Tae et al., 1999), 

based on moment invariance, is introduced. 

    A scan line across a step edge in the absence of noise is characterized by a set of 

numbers xi’s (i=0, 1, 2,…, n-1) that are either monotonically non-decreasing or non-
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increasing. An ideal edge is a sequence of one brightness value h1, followed by a 

sequence of another brightness value h2, as shown in Figure 4.17 (a), where k denotes 

the edge location and n is the number of input data. 

The first three moments of the input data can be calculated by: 

 

∑
−
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=
1

0
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n
m , i =1, 2, 3                                                        (4.28) 

 
The solutions of the edge are given by: 

 

1

2
11 p

pmh σ−=                                                          (4.29) 

 

2

1
12 p

pmh σ+=                                                           (4.30) 

 

⎥
⎦

⎤
⎢
⎣

⎡

+
+= 21 4

11
2
1

s
sp                                                  (4.31) 

 
Where 

 

3
21

3
13 32
σ

mmmms −+
= ,   2

12 mm −=σ ,    p1 + p2 = 1                   (4.32) 

 
Thus, the edge location is given with a sub-pixel precision by: 

 
k = p1n                                                     (4.33) 

 
    In this case, considering that the real data in either sequence of brightness value are 

not so uniform, for each scan line, the above edge detection method is repeated on 

gray-level data with increasing length from w2 to w3 (see Figure 4.17 (b)), each time 
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the input data starting from PE(i) with length increased by ‘1’ pixel. For clarity, postfix 

form h1(n) is defined as h1 calculated with data’s length n, and the other parameters 

follow the same rule. 

The distance K from PE(i) to PRB(i) is then given by: 

 
,)()( 1 jjpjkK ==                                                 (4.34) 

 
 where , n= w)}()({maxarg 12 nhnhj

n
−= 2, w2+1, w2+2,…,w3. 

    Correspondingly, PRB(i) can be determined by offsetting PE(i) with the value of K. 

  

 (a) Moment-invariant method (b) Searching scope 

Figure 4.17 Searching bottom edge of wear land 
 

4.5.3 Parameters of the wear land 

Once PRB(i) is obtained, the wear land on line L(i) can be calculated, i.e., W(i) is 

given by: 

 
 W(i)=| PRB(i)- PA(i)|                                             (4.35) 

 
Aw of the wear land is given by: 

 
 Aw =∑ W(i)                                                   (4.36) 

 
    Maximum wear height VBmax: 
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 VBmax =max{W(i) |i=0, 1, 2, …, NL-1}                           (4.37) 

 
Average wear height VBave: 

 
 VBave = Aw / NL                                               (4.38) 

 
where, NL is the number of scan lines having wear. 

4.6 Breakage detection 

Sometimes, when micro-chipping develops in size to breakage, the tool must be 

replaced. To detect breakage is very significant. In this section, the means by vision to 

inspect breakage are examined. 

As mentioned in Chapter 2, breakage occurs as a block of material chipped away 

along the cutting edge. Figure 4.18 (a) shows a sample image of a broken tool. It can 

be observed that the chipped-away zone actually has same gray level as the 

background. With this information, the binary image alone can be used to detect this 

chipped-away zone, as shown in Figure 4.18 (b). 

The processing is confined to the critical area. In this region of interest (ROI), the 

image can be binarized using the optimal threshold calculated with Otsu method. The 

small regions (isolated small blocks or noise) of the resultant binary image are firstly 

removed so that within the area circumvented by the reference line and the cutting 

edge there is no noise. After this, the chipped-away zone can be easily extracted since 

the location of the pixels on the cutting edge can be figured out in the binary image 

scanned from one pixel on the reference line downwards, the first white point is the 

pixel on the cutting edge. Again, orthogonal scanning is used and thus its detail 

description is omitted. Figure 4.19 shows the binary image of the ROI and the 
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extracted chipped-away zone for the sample as shown in Figure 4.18 (a). The upper 

part is the binary image of Figure 4.18 (a), and the lower part is the extracted breakage. 

 

(a) A tool with breakage 

 

(b) Breakage sketch

Figure 4.18 Breakage detection 
 

 

Figure 4.19 Detected breakage.  
 

4.7 Experimental results 

    In this chapter, the focus is on the tool wear measurement. Thus, experiments were 

carried out to measure tool wear rather than breakage. That is, the samples tested were 

worn-out tools, not broken tools. 

    Wear characteristics of three types of inserts, namely, A30N (Group A), AC325 

(Group B) and ACZ350 (Group C) have been investigated. Table 4.1 shows ten image 

samples and the measurement results obtained. The results obtained by using the 

method proposed by Jeon and Kim (1988), which is a typical method based on only 

measuring the binary image, and the direct manual measurement with a tool-maker’s 

microscope are also listed for comparison. When measuring V2, the threshold for each 
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image was set to be the same at 150 (since the lighting condition was the same for all 

samples), by which the wear land was seen to be white (‘1’). 

    Figure 4.20 shows the ROI of 10 samples, in each of which the left part includes 

S(x,y) superposed by the reference line (drawn in line). Below S(x,y) is shown the wear 

measurement parameters. The right image is the binary edge image M(x,y). 

According to Table 4.1, among the 10 samples, results of 8 samples (Samples 1, 2, 

4, 5, 6, 8, 9, 10) had a relative error within ±5%, assuming that results obtained by 

manual operation with a microscope are considered the correct or reference values. 

These results indicate an error of about 1 pixel size. Samples 3 and 7 had a relative 

error greater than 5%, where the wear was at its initial stage.  
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Table 4.1 Comparison of flank wear measurement results 

Wear VBmax (μm) Group Sampl
e No. V1 by 

this 
method 
(V2 *) 

V0 by 
microscope

Error (μm) 
Δ1= V1−V0

(Δ2= V2−V0)

Δ1/ V0 
(%) 

(Δ2/ V0)

Computing 
time** (s) 

Comments

1 816 
(812) 

821 -5 
(-9) 

-0.61 
(-1.1) 

1.822 
(0.01***) 

 

2 367 
(212) 

365 2 
(-153) 

0.55 
(-41.92)

1.382  

3 78 
(24) 

85 -7 
(-61) 

-8.24 
(-71.76)

1.191  

4 288 
(259) 

282 6 
(-23) 

2.13 
(-8.16)

1.542  

A 
(A30N) 

5 640 
(600) 

629 11 
(-29) 

1.75 
(-4.61)

1.822 2 

6 441 
(435) 

426 15 
(9) 

3.52 
(2.11) 

1.533  

7 180 
(129) 

167 13 
(-38) 

7.78 
(-22.75)

1.472 1 

8 193 
(94) 

196 -3 
(-102) 

-1.53 
(-52.04)

1.222  

B 
(AC325) 

9 258 
(94) 

248 10 
(-154) 

4.03 
(-62.1)

1.332 1 

C 
(ACZ350) 

10 236 
(224) 

230 6 
(-6) 

2.61 
(-2.61)

1.462  

 
*, V2 obtained by method of Jeon and Kim (1988), corresponding parameters listed in 
the brackets. 
**, All time based on the same PC. 
***, Same time for each image sample. 
1, Reference line accuracy expected to be improved. 
2, Critical area unexpected. 
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 (a) Sample 1                                                                     (b) Sample 2 

  

 (c) Sample 3                                                                    (d) Sample 4 

 

       (e) Sample 5  

                        (f) Sample 6  

 

      (g) Sample 7 

 

                       (h) Sample 8  

  

 (i) Sample 9                                                       (j) Sample 10 

Figure 4.20 Flank wear measurement results 
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4.8 Discussion 

    The performance of this method depends partially on the accuracy of the reference 

line (See Samples 7, 9) when wear is negligible or little. Because the wear land at this 

stage is small, the edges obtained will affect the HT seriously. As a result, the 

reference line may not be calculated precisely.  

    Interestingly, however, a smaller processing area than expected seems to have no 

serious effect on the final results (See Sample 5). In binarizing image S(x,y) into 

B(x,y), if a threshold is given such that some pixels in unworn area are set to ‘1’ rather 

than ‘0’, given the pixels in wear land are set to ‘1’ (which is often the case), the insert 

area obtained by segmentation will contain a whole set of pixels in the wear land. In 

other words, all candidate wear pixels are counted into the critical area. In this way, the 

result will not be affected.  

    In Table 4.2, some ‘error’s are big, for example, Sample 6 had an error 15 μm. It 

seems large. However, considering that when using microscope to measure the flank 

wear, human eyes make subjective decision on the wear land bottom boundary. 

Different people give different measured values through different times. It is, therefore, 

reasonable to take this error as tolerable. 

Compared to the traditional thresholding procedure, this method with more 

procedure involved needs more time to compute as a necessary result of more 

operations than thresholding. Regardless of this, even using software, the computation 

time is within 2 s, which can be reduced with a more powerful PC. Given that the 

procedure is implemented by using a professional image processing hardware, the 

speed will be higher and hence satisfies the practical real-time need. In addition, this 

method has a better performance in terms of accuracy since it takes edge image and 

gray-level image into consideration, which makes use of as much available 
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information as possible. More importantly, the wear bottom edge is determined 

through a threshold independent method with sub-pixel accuracy, surpassing the 

traditional thresholding-based methods in this sense. With the same setting, lighting 

condition and algorithm parameters for three kinds of inserts, the results are 

satisfactory, which shows the system has certain robustness. Table 4.2 compares other 

methods (Kurada and Bradley, 1997a) and the proposed method. 

Although the results show that this individual image processing method is successful 

in measuring flank wear and detecting breakage, the spindle stand is stationary as the 

image is captured. As mentioned earlier, it is more desirable to keep the spindle 

rotating when the measurement is made. To realize it, further development is needed. 

And this is presented in Chapter 5.  
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Table 4.2 Comparison of vision-based flank wear measurement systems 

Hardware Software Results Methods 
Light Camera Algorithm to 

get wear 
Speed Accuracy 

Application 
area 

Lee et al. 
(1986) 

Non-
coherent 

VIDICON 
(488 × 380) 

Interactive 
segmentation

Low + Lab 

Giusti et al. 
(1987) 

Non-
coherent 

(FW) 
Coherent 

(CW) 

VIDICON Thresholding 
by 10-pixel 
wide stripes 

Med. 0.03 mm 
(FW) 

0.03 mm 
(CW) 

In-cycle 

Jeon and Kim 
(1988) 

Coherent 
(dia. 

0.8mm) 

VIDICON 
(0.001 mm) 

Filter and fill 
binary image, 

contour 
detection 

High 0.1 mm Lab 

Pedersen 
(1990) 

Non-
coherent 

Philips LDH 
0600 CCD 
(0.001 mm) 

Threshold 
value from 
smoothed 
histogram 

Med. + In-cycle* 

Park and 
Ulsoy 

(1993b) 

Non-
coherent 

TN 2500 CID 
(0.0015 mm)

Thresholding Low ~5% (FW) Lab 

Du et al. 
(1993) 

Non-
coherent 

CCD (0.0043
mm) 

Template 
matching 

Med. + In-cycle 

Oguamanam 
(1994) 

Non-
coherent 

CCD (RGB) Thresholding 
to label three 

distinct 
regions 

Med. Confidence 
Level of 

0.002 

Lab 

Proposed 
method 

Non-
coherent 

CCD (0.012 
mm) 

Threshold 
independent, 

moment 
invariance 

Low ≤0.015 mm 
(FW) 

In-cycle 

 
FW, Flank wear. 
CW, Crater wear. 
+, Not available. 
*, An in-cycle sensor examines the tool periodically, for example, between machining 
blocks or during part changeovers. 
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Chapter 5 

Successive image analysis 

 

5.1 Problem statement 

Chapter 4 presented a systematic method of measuring flank wear with sub-pixel 

accuracy for individual images. These still images were captured when the tool insert 

was mounted on a stationary milling holder. Actually, reported research studied only 

still images. However, to capture the image, the insert was either removed or retained 

in the tool holder. For the first case (Maeda et al., 1987b; Jeon and Kim, 1988; 

Oguamanam et al., 1994), the insert was placed on some measurement table where a 

still image of the insert was captured and measured. The mounting/dismounting of the 

insert was time-consuming and might cause run-out problem between the inserts. For 

the second case (Giusti et al., 1987; Pedersen, 1990; Park and Ulsoy, 1993b; Kurada 

and Bradley, 1997b; Pfeifer and Wiegers, 2000), although the mounting/dismounting 

of the insert was avoided, the image was captured when the spindle was stationary, so 

that a sharp image of the insert could be captured. This obviously does not meet the 

demand of unmanned manufacturing. A vision system that can capture and process the 

images while holder is rotating is necessarily required. 

To develop such a system, there are some challenges: 

• The mechanism to capture the image, i.e., in what manner the camera is 

controlled to capture the image; 

• Since the object is moving, the ability of the camera to capture image with little 

blurring should be considered; 
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• There are in most cases several inserts mounted on the holder, and these need 

to be distinguished separately when processing their images; 

• Since a series of images of a same tool insert can be obtained, their correlation 

can be appropriately used to speed up the processing and enhance the accuracy. 

    In the remaining text of this chapter, a system based on successive image analysis is 

presented for periodic measurement of flank wear in milling. The successive images 

are captured while the spindle is rotating. The trigger-capture hardware mechanism is 

described. With the image series, a method of processing image series to measure flank 

wear is presented instead of processing only individual still images, using the 

relationship between the successive images. 

5.2 System configuration 

5.2.1 Experimental setup 

The experimental setup is shown in Figure 5.1. The same system described in 

Section 4.1 was used in addition: 

• a laser trigger PD45VP6C200 with working range of 250 mm. 

• four pieces of reflective tapes mounted on the spindle to serve as markers. 

Compared to Figure 4.1 in Chapter 4, where the image was captured when the holder 

stayed stationary, the above two additional items were involved in order to capture the 

image as the spindle rotates. 
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Laser spot Marker 

Insert 

Figure 5.1 Experimental setup for successive image analysis 
 

To get an image as sharp as possible for a moving object, theoretically, the 

integration time of the camera is expected to be shorter. Therefore, in this case, the 

integration time, TI, of the camera working under trigger mode was set to 1.03 ms, 

which is the shortest time interval that can be set for the camera. The spindle speed, s, 

is also desired to be as low as possible to get the minimum blur, given by Eq. (5.1). 

Therefore, in this setup, s was set to 20 rpm, which is the minimum spindle speed for 

the Makino CNC machine used. The diameter of the cutter D is 50 mm. Accordingly, 

the blur of the captured moving images can be approximated by: 

 
Blur = π ⋅ D ⋅ s ⋅ TI / 60 μm = 3.14 × 50 × 20 × 1.03 / 60 ≅ 54 μm                  (5.1) 

 
Considering that the insert is moving in a circle and its movement trajectory with 

respect to the camera is not parallel to the image plane, the blur is slightly smaller than 

54 μm, which is equivalent to 4-5 pixels. Figure 5.2 shows the still and moving image 

of the same insert. It can be observed that the blur does not seriously affect the overall 

gray-level distribution of the different areas of the insert, although some non-critical 

details in the moving image were slightly blurred, such as the undulation in the worn 

region. In other words, the moving image can be approximately viewed as a translated 

 68



Chapter 5 Successive image analysis 

still image, with negligible blur. 

     

(a) Still image   (b) Moving image 

Figure 5.2 Still and moving images of the same insert  
 

5.2.2 Experimental procedure 

For four inserts mounted into four different holder slots, moving images of the four 

inserts can be captured. The experimental procedure is as follows:  

(i). Calibration and referencing. A worn insert is mounted into the holder. Adjust the 

position of the camera (which has been calibrated earlier) and the holder so that a sharp 

image of the insert can be obtained. The current position of the tool is stored in the 

CNC machine controller as the image capture position. 

(ii). Adjust the intensity and position of the lighting so that the image of the insert 

has good contrast, i.e., the whole image has distinct parts: background, unworn part of 

the insert, and worn part of the insert.  

(iii). Dismount the worn insert, and mount all the four fresh inserts into different 

slots. For each insert, rotate the spindle slightly, so that the insert’s possible worn part 

can be fully seen by the camera. Put the tapes on the holder almost evenly spaced to 

mark each insert. When the spindle rotates, by sensing the occurrence of the edge of 

the tape, a laser trigger sends a signal to the camera, which then captures an image of 

the insert. Each insert is marked by a tape. Therefore, in one revolution, the camera is 
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triggered by the laser trigger for four times to capture four moving images 

corresponding to the four different inserts.  

(iv). Before machining commences, capture the images of the fresh inserts as the 

spindle rotates at a speed of 20 rpm. 

(v). Using predetermined machining conditions, the CNC machine is programmed to 

cut the workpiece for one pass. It then moves the tool to the image capture position at a 

lower spindle speed of 20 rpm. A new set of images of the four inserts is captured.  

Repeat the fifth step to capture a set of four images of the inserts after each 

machining pass. By processing each image set, the flank wear of each insert is 

obtained after each pass. 

Note that in steps (i) and (ii), a worn insert is used in setting up the positions of the 

camera and lighting for suitable orientation and intensity of the lighting. This setup is 

to ensure that a good image of the insert is captured for successful measurement of 

flank wear. The worn insert serves as a sample to help determine the setup. In the 

subsequent image capture, the setup is not changed, and steps (i) and (ii) are no longer 

needed. 

5.3 Reference image processing 

In this configuration, the blur (Eq. (5.1)) is minimal and the captured moving image 

is almost as sharp as the still image as shown earlier (Figure 5.2). So the deblurring 

operation is omitted. 

The ongoing method in this chapter is based on the static image method described in 

Chapter 4, where the images are not moving but static. However, the method has been 

modified to take advantage of correlation features among successive images, which 

provide important clues for measuring the flank wear. For convenience, images of all 
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inserts after each pass are called as an image set, two images of the same insert from 

two successive passes as an image pair. The images related to the fresh inserts are 

indicated as ‘reference’ image, while those related to the gradually worn inserts are 

indicated as ‘worn insert’ image. 

Images in the reference image set are captured when the inserts are fresh. Figure 5.3 

(a) shows an image of a fresh tool insert.  

 

(a) Image of a fresh tool insert 

 

Reference 
line 

Critical area 

(b) Two features extracted

Figure 5.3 Image processing for a reference image 
 

Two features can be extracted from this image set, which provide important 

information to process the subsequent worn insert image set to obtain the flank wear 

continually. As shown in figure 5.3 (b), the two features are: 

• The critical area (outlined by solid rectangle) 

• The reference line (cutting edge) 

5.3.1 Critical area redefined dynamically 

Examining the moving image in Figure 5.3 (b), it can be observed that the cutter area 

is a large portion of the entire image. According to the definition of the critical area in 

Chapter 4, its scope covers this large portion, see the dashed rectangle in Figure 5.3 

(b). As a result, the image is processed over this large region that increases 

computation time. Hence the critical area is redefined. 
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    Because of the constant relative position between the camera and the insert, the 

insert position in the image is relatively fixed. Given the depth of cut, the contact 

length between the major cutting edge and the workpiece can be roughly estimated. 

The flank wear occurs along this length. Consider Figure 5.2 (b) as an example, the 

upper border of the critical area can be fixed. The bottom border of the critical area can 

be obtained by tailoring the cutter area if necessary since the wear in the major cutting 

edge is of interest.  

 

Figure 5.4 Determination of the right border of the critical area 
 

In addition, suppose that the maximum width of the wear land is V, the right border 

of the critical area can be calculated, as shown in Figure 5.4. 

 
w = (d0+V+M)/cosα0                                                     (5.2) 

 
where,  

w - the width of the critical area; 

d0 - the distance from the origin to the reference line; 

α0 - the angle from the x-axis to the normal to the reference line; 

V - the maximum width of the wear land; 

 72



Chapter 5 Successive image analysis 

M - a margin set for the critical area. 

   Obviously, V is a time-varying parameter. In particular, V=0 when the insert is fresh. 

After each pass, V is increased by some amount as wear progresses. Hence a dynamic 

critical area can be used. The new critical area when the tool insert is fresh is shown as 

the solid rectangle in Figure 5.3 (b). 

5.3.2 Reference line 

   The reference line is obtained with Hough transform in the entire image. The upper 

and bottom borders are defined before Hough transform, while the right border of the 

critical area is defined after Hough transform. The procedure to determine the critical 

area and the reference line is shown in Figure 5.5. Detailed information can be found 

in Chapter 4 and thus is omitted here. 

 

Figure 5.5 Processing blocks for the reference image 
 

5.4 Worn image processing 

    The procedure is somewhat similar to that static image method described in Chapter 

4. For the moving image case, however, unique steps have been developed and 

described below. 
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5.4.1 Index and order inserts  

    The objective of this step is to index and order each insert after each pass with its 

image so that a correct image pair can be determined, in the case of more than one 

insert mounted on the holder. This is required since in the worn insert image sets, the 

capture may not be in the same order as in the reference set. Take four inserts for 

example. In the reference set, the captured images start with that of insert 1. Thus four 

ordered images are obtained and their insert indices are 1, 2, 3, and 4, respectively; that 

is, P0I1 for insert 1, P0I2 for insert 2, P0I3 for insert 3 and P0I4 for insert 4. While in 

the subsequent worn insert set (e.g., xth), the captured images can start from any one of 

the four insert images as the first image captured can be any one of the rotating inserts, 

i.e., not necessarily that of insert 1. Thus, the images PxI1, PxI2, PxI3 and PxI4 may 

have any one of the following insert indices: {1, 2, 3, 4}, {2, 3, 4, 1}, {3, 4, 1, 2}, or 

{4, 1, 2, 3}. Obviously, the image PxI1 and P0I1 are for different insert in the latter 

three cases. Accordingly, it is necessary to identify the insert with its captured image. 

For the matching, a cross-correlation coefficient (CC) is used. This is a classical 

representation of the area-based methods in matching corresponding image pairs in 

image register technique (Zitová and Flusser, 2003), and is defined by: 
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where W refers to the same window for the reference image and worn insert image, R 

is the reference image, U is the worn insert image, A(R) and A(U) are their average 

gray levels in W. 

CC of the first image instead of each in the worn set with the reference set is 

calculated. Once the first image’s index is determined, the others are subsequently 
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uniquely determined, since the index set has only four unique cases, each of which 

begins with a unique index. 

     The configuration has been set such that each insert appears at a different position 

in the captured image, as shown in Figure 5.6 (Each captured image has only one 

insert. In Figure 5.6, all four insert images are put together to show they are at different 

locations). The trigger-capture mechanism ensures the same position of the same insert 

in successive images. Thus it is reasonable to select a small-size window (in dashed 

line) to calculate CC. The accuracy of image pair is practically 100% guaranteed. Once 

the correct image pair is obtained, the reference lines in the worn insert image set are 

made available by taking those obtained in processing the reference image set. 

 

Figure 5.6 Four inserts put together with window to match image pairs 
 

5.4.2 Parallel scanning 

In Chapter 4, orthogonal scanning method is used to determine the wear, where the 

scanning is operated in the direction perpendicular to the reference line. Here, for 

greater robustness against noise outside the flank wear land, parallel scanning is 

applied on the binary image BBE
+(x,y), which is the resultant image after binarizing the 

edge image following contrast enhancement. 
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Figure 5.7 Parallel scanning scheme 
 

The parallel scanning is operated parallel to the reference line, as shown in Figure 

5.7. It proceeds as follows: 

(i). Scan along each parallel line with distance i to the reference line, and get the 

number N(i) of white pixels. The scanning is confined to the critical area, i.e., i = 0, 1, 

2, …, V+M-1. 

(ii). Find the maximum value Nmax, of number set N, and the related index I. 

 
                                                    Nmax = max{N(i)}, 

 
I = {i| Nmax = N(i)}                                               (5.4) 

 
(iii). Let j = I, I+1, I+2, …, V+M-1, if  

 
N(j)<rw⋅ Nmax                                                     (5.5) 

 
go to (iv). 
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(iv). Let Dmax = j+d0. Turn all white points outside line Lmax = (Dmax, α0) black, and 

terminate. 

where rw is a percentage ratio, indicating the correlation between a line within the flank 

wear land and Lmax in terms of the white-pixel number N(i). 

Note that since the average wear of the preceding pass is known (denoted as w ), in 

step (i), it does not have to scan right from i = 0. Instead, scanning from i = w  is 

reasonable. Because the aim is to remove noise outside the boundary of the wear land, 

the priority is given to scanning closer to the boundary. 

Figure 5.8 shows the original gray image and images before and after parallel 

scanning. The necessity (from (b)) and effectiveness (from (c)) of parallel scanning can 

be observed. 

     

(a)    (b)    (c) 

(a) Original gray image, (b) Binary edge image before parallel scanning, (c) Binary 
edge image after parallel scanning. 
 

Figure 5.8 Parallel scanning in practice 
 

5.4.3 Wear measurement 

The whole procedure to get the flank wear is illustrated in Figure 5.9. Detailed 

information can be found in Chapter 4 and thus is omitted here. 
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Figure 5.9 Procedure to measure flank wear 
 

5.5 Experimental results 

Five tests were done under various cutting conditions as shown in Table 5.1. 

After each machining pass, an image set was captured. For the image set, taking Test 

1 in which four inserts were mounted on the holder as an example, the maximum flank 

wear of each insert was measured. The four maximum values were then averaged to 

get the flank wear for this pass. In this way, the flank wear values of 53 passes were 

computed and plotted in Figure 5.10 (a). Also in Figure 5.10 (a), the manual 

measurement is plotted for comparison, which was made after 3 passes, i.e., after pass 

3, 6, 9, …, etc. Figure 5.10 (b)-(e) shows the results for Tests 2-5. 

    Note that ‘Automatic, individual images’ are based on the individual image 

processing method. ‘Automatic, correlated images’ refer to the results obtained using 

the successive image analysis method. ‘Manual measurement’ refers to the results 

obtained by manual measurement of the flank wear land, which is subjectively 
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determined by the naked eye from the captured successive images. ‘Measurement with 

microscope’ refers to the results obtained by taking out the inserts from the holder and 

measuring their wear with a tool-maker’s microscope. 

In Figure 5.10 (a), no results with ‘Automatic, correlated images’ are shown, 

because in Test 1, the markers (pieces of clay rather than reflective tape) had position 

shifts after machining (the markers will be discussed separately later in Section 5.6.2) 

and the same insert appeared in different positions in its image pair. Figure 5.10 (a) is 

shown to verify the effectiveness of the individual image processing method. In Figure 

5.10 (b)-(d), three results are plotted to further verify the effectiveness of the 

successive image analysis method. Figure 5.10 (e) shows the results obtained using 

successive images and a tool-maker’s microscope to verify that the successive image 

analysis method gives relatively good accuracy. 

Table 5.1 Parameters in dry machining for successive image analysis 

Parameters Test 1 Test 2 Test 3 Test 4 Test 5 
Type of inserts (ISO 
SDKN42MT) 

A30N, uncoated AC325, coated A30N, 
uncoated 

Number of inserts 
mounted 

4 4 1 2 2 

Workpiece ASSAB718HH steel 
Length of the workpiece 
(mm) 

205 

Diameter of cutter (mm) 50 
Spindle speed (rpm) 
(m/min) 

800 
125.6 

1000 
157 

1000 
157 

1000 
157 

1000/800* 
157/125.6 

Feed rate (mm/min) 300 300 300 200 100 
Feed per tooth (mm/tooth) 0.094 0.075 0.3 0.1 0.05 
Depth of cut (mm) 1 2 2 1 2 
Time/pass (s) 36 36 36 54 108 
Immersion rate Full 
Total passes observed 53 24 10 37 10 
Conditions observed Gradual wear 

 
Breakage 
from pass 
8 

Fracture 
at pass 
34 

Worn out, 
fracture at 
pass 10 

Manual measure interval 3 3 1 3 3** 
 
*, The speed was reduced after pass 6 due to the rapid tool wear progress. 
**, Only this test has been measured with a tool-maker’s microscope. 
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(a) Test 1    (b) Test 2 

  

(c) Test 3    (d) Test 4 

 

(e) Test 5 

Figure 5.10 Flank wear measurement against pass (time) 
 

5.6 Discussion 

5.6.1 Results 

Figure 5.10 (a) shows that the flank wear obtained by the individual image 

processing method was quite good in terms of accuracy. The method gave a result that 
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had small deviation from the manual measurement. In Figure 5.10 (a), even the 

maximum deviation which occurred after pass 14 was only about 50 μm. Comparing 

the two results throughout the whole test (53 passes), it was found that although the 

individual image processing method gave a result greater or smaller than the manual 

measurement, the overall average deviation was small. This finding again reinforces 

the conclusion that the individual image processing method is effective and accurate as 

shown in Chapter 4. Furthermore, it was observed that when the flank wear became 

severe (with a greater value), the deviation was smaller (see the results from passes 35-

53). This result is favorable since it is preferable to be able to monitor the flank wear 

accurately as the tool is at the worn stage. 

The results measured by the individual image processing method tracked the manual 

measurement well in Figure 5.10 (a) and (b). However, Figure 5.10 (c) and (d) show 

that the results obtained using the individual image processing method did not match 

the manual measurement in the same way. An important reason is that Tests 3 and 4 

shown in Figure 5.10 (c) and (d) used AC325 inserts, which are coated with small 

particles to enhance the performance of the insert. For this kind of insert, its surface is 

not as smooth and uniform as that of the uncoated insert A30N. When the coated insert 

is used to cut workpiece after a period of time, the dirt will fill up the space between 

particles. Also some of the coated particles will be removed with the chips from the 

surface of the insert. Furthermore, due to the temperature of the machining, the color 

of the particles will fade away to different extents. These factors will collectively make 

the surface of the insert ‘noisy’ in the sense that the image of the insert has no distinct 

three areas which are supposed to have separable gray levels. This means that, the gray 

level of the unworn area of the insert is not evenly distributed as assumed in the 

intermediate level, which results in more noise in the binary image. Consequently, 
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some wear value measured by the individual image processing method may be greater 

than the actual. Similarly, the gray level of the wear land does not exhibit a uniform 

distribution at the bright level. Some pixels in the wear land, particularly those along 

the wear land boundary are slightly darker than or even approaching the gray level of 

the unworn area. Thus, the measured wear value will be smaller than the actual.  

Although the results shown for coated inserts were not so accurate, the accurate 

results for uncoated inserts indicate that for a specific image of a coated insert, it is 

likely to achieve a better result by deliberately fine-tuning the parameters in the 

individual image processing method. Although fine-tuning the parameters needs more 

trials, the accurate result implies that this method can be used as the basis for 

successive image analysis. 

Figure 5.10 (a), (b), (c) and (d) show that the flank wear obtained by the individual 

image processing method had some fluctuation. It did not always increase. On the 

contrary, for some two successive passes, say, pass k and pass k+1, the wear after pass 

k+1 can be less than pass k. One noticeable example is the measured results after pass 

12 and 13 as shown in Figure 5.10 (d), where the wear after pass 13 was smaller than 

pass 14 by more than 100 μm. This, definitely, is not logical since as machining 

proceeds, the wear should become greater in principle. Although it can remain 

unchanged in calculation when the wear increases so slightly that the increment is 

undetectable for the camera with an insufficiently high resolution, the wear should by 

no means decrease. Two main reasons may account for this observation. One reason is 

that small chips may or may not adhere to the surface of the insert after each pass (In 

Figure 5.2, for example, small chips exist in the unworn area). If the small chips stay 

around the boundary of the wear land, since chips look bright to the camera, the 

method will regard chips as wear, and the flank wear result will be greater. Another 
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reason is that, after one pass of machining, the surface of the insert, especially near the 

wear land boundary, will change the gray level. Sometimes, the boundary after pass 

k+1 looks shrunken, compared to that after pass k. Thus, the wear after pass k+1 is less 

than that after pass k. For example, in Figure 5.11, the surface of the insert looks 

different in successive two images, especially for the surface around the wear land 

boundary. 

Results obtained with the successive image analysis method are shown in Figure 

5.10 (b)-(e). Figure 5.10 (b) strongly demonstrates the good accuracy of this method. 

Throughout the whole test, the wear using successive image analysis was nearly the 

same as the manual measurement. One significant improvement of the successive 

image analysis method over the individual image processing method lies in accuracy. 

This can be seen in Figure 5.10 (d), where the results tracked the manual measurement 

very well. This can be explained by two factors. One factor is that a more precise 

binary edge image was obtained thanks to parallel scanning that can remove noise 

outside the wear land. The other factor is that a more precise critical area was obtained 

due to the knowledge of the neighboring (previous) wear values. Another notable 

improvement of this method over the individual image processing method lies in the 

logical increment of wear values as machining progresses. This can be seen in any one 

of Figure 5.10 (b)-(e), where the wear values kept increasing or remained unchanged 

as time went by. This was achieved because the critical area was expanded 

dynamically pass-by-pass.  
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(a) Image after pass 3 (b) Image after pass 4 

Figure 5.11 Test 3, images after pass 3 and pass 4 
 

Furthermore, Figure 5.10 (e) shows the good agreement between the results obtained 

using the successive image analysis method and a tool-maker’s microscope. It also 

shows that after the insert was measured with the microscope, the remounting of the 

insert onto the holder affected the wear measurement. For example, the automatic 

results 1-3, 4-6, 7-9 were of different patterns (greater or smaller than) around the 

microscope results. This is a natural consequence of the remounting since there is no 

way to mount the insert back to the same position where it was removed from the 

holder for microscope measurement. Accordingly, there will be geometric shifts for the 

reference line and the critical area in the entire image. Therefore, depending on the 

shift orientation, the automatic result is greater or smaller than the microscope 

measurement. This observation indicates that removal and remounting of the insert 

from and back to the holder for microscope measurement can alter the wear change 

pattern. In this aspect, the successive image analysis method is better than the 

microscope measurement method in the sense that the former does not affect the wear 

rate since the insert always stays on the holder. 

It is also worth noting that the successive image analysis method gave a result with a 

greater deviation at the early wear stage; for example, the deviation reached up to 35 

μm after pass 6 in Figure 5.10 (d). This can be attributed to the use of a median filter, 

which has both positive and negative effects. When wear is small, after median 
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filtering, the inside and boundary pixels of the wear land will be partially immersed in 

the unworn area in terms of gray level. In other words, the wear land is shrunken when 

segmented from the unworn area. The measured wear is more likely to be less than the 

actual. However, as wear grows, the wear land is more distinguished and hence, the 

camera can capture a more uniform bright wear land. Thus, the measured result is 

better. But median filter cannot be simply discarded to reduce the deviation at the early 

wear stage. If median filtering is not applied, too much noise remains in the gray-level 

and binary edge images, which may result in a greater deviation. Moreover, greater 

deviation occurring at the early stage is tolerable in practice since it is more important 

to get a more precise wear value as the tool tends to be worn out at the later stage 

rather than the early wear stage. Therefore, it is preferable to employ the median filter 

as the positive effect surpasses its negative effect. 

The wear shown in Figure 5.10 (d) developed in three stages, i.e., initially stage 

(wear increases sharply) from pass 1 to 3, linear stage (wear increases slowly) from 

pass 4 to 28, and accelerated stage (wear increases abruptly till the tool is worn out) 

from pass 29. This observation confirms the theory of three stages for progressive wear, 

as mentioned in Chapter 2. However, the wear development curves shown in Figure 

5.10 (a) and (b) have no evident linear stage. This is probably because the tool has no 

coated material. Under some cutting conditions, flank wear progresses nearly linearly 

from a fresh tool to a worn-out or broken tool. The absence of the linear stage was also 

observed in Figure 5.10 (c) and (e). For these two cases, the tool failed (with breakage 

or fracture) very soon. Therefore, it may be argued that under some circumstances, the 

tool does not necessarily wear out in the typical three stages.  

5.6.2 Experimental setup 

Normal lighting or strobe lighting 
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    In this experiment, normal lighting was projected on the cutter when capturing 

images. Because the spindle was rotating during capture, to reduce blurring, 

integration time of the camera was set very short (recall the time is only 1.03 ms) and 

the spindle speed was set low (only 20 rpm). The normal lighting was thus set to be 

very intensive to provide adequate exposure of the insert surface for the camera. This 

configuration is acceptable, since the speed is slowed down only when there is no 

machining. As the image capture was quite fast, there was little negative effect on the 

actual machining.  

    Strobe lighting is a possible alternative. Its remarkable advantage is that the spindle 

speed may remain unchanged when capturing images, so that images can be captured 

faster and even on the fly. But the problems are: 1) If the spindle speed is high, say, 

800 rpm, which is 40 times the set speed presently. For the experimental setup 

presented in this thesis, to maintain the acceptable or ignorable blurring, strobe flash 

duration should be less than 1.03/40 ms, or about 25 μs. Correspondingly, the lighting 

intensity should be 40 times the normal lighting, which now has been quite intensive 

(the intensity looks higher than a 150W-bulb). 40 times this lighting will cost the 

strobe circuit board to be much higher, especially with a quite high strobe flash rate. 2) 

The timing sequences of strobe fire signal, image capture signal, and laser trigger 

signal should be controlled properly on order of microsecond. Extra control circuit is 

required, which again costs more. In other words, even with strobe lighting, the spindle 

speed when capturing images should be slowed down to make the system cheaper and 

simpler. 

Space for the system 

This system needs a little more space. The frame holding the camera should provide 

enough stabilization and adjustment range for the camera. In addition, since the camera 
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should be within the machining volume of the CNC machine (because the holder 

cannot go outside of the machine door), the frame hampers the door from being closed. 

Meanwhile, the camera’s wire connection is the factor which prevents closing the 

door. As such, all of these: camera, frame, laser trigger and its fixture, plus lighting set 

need space. If the system is to be used in real industry, these components should be 

integrated and made more compact for use on the CNC machine. 

Markers to index different insert 

In this experiment, four pieces of clay were initially attempted as markers. A big 

problem occurred after some passes of machining: the clay became softer and lost its 

stickiness. This resulted from the increasing temperature after a period of machining 

and high-intensity lighting projected on the holder. Another accompanying 

phenomenon was that the shape of the clay was distorted. Two factors contributed to 

this occurrence: 1) The centrifugal effect during machining at a spindle speed that 

cannot be ignored. 2) Relatively high-frequency impact during entry and exit of the 

inserts through the workpiece. 

Consequently, the marker for triggering the camera to capture its corresponding 

insert may not stay at the same place after each pass, or even be thrown off the holder. 

As a result, the same insert appears in different positions in the image pair. In this case, 

the reference line, critical area obtained in the reference set cannot be directly used in 

the worn set and have to be recalculated. Result for Test 1 is one such case. 

Fortunately, the experiment shows that the reflective tape works well as a marker. 

Tests 2-5 were carried on with reflective tapes as the markers. In other words, to be 

used in real industry, the markers should be at least immune to high temperature, 

distortion and displacement. 

Others 
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As observed in machining, small chips may remain on the surface of the cutter when 

capturing images, which will affect the measurement result. Good chip removal will be 

most helpful in practice. For the lighting and the laser trigger, keeping their positions 

fixed with respect to the holder is necessary for this method. Because the integration 

time for the camera is short, high-intensity lighting is needed in order for the insert 

surface to be exposed sufficiently. Thus, it is necessary to consider cooling, not only 

the lighting system, but also the camera system (especially working with long 

continuous time). In addition, it is a necessity to protect the lens of the camera from the 

chips produced during the machining. 

So far, the optical method has been presented to measure flank wear. Actually, crater 

wear is also an important wear mechanism, especially in high-speed machining. 

Therefore, in the next chapter, crater wear measurement based on phase-shifting will 

be resolved. 
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Chapter 6 

Crater wear measurement by phase-shifting method 

 

6.1 Problem statement 

    Flank wear and crater wear are the two main wear mechanisms in machining. They 

are primarily used in determining the tool conditions for the study of tool wear 

characteristics. In recent decades, researchers have been conducting research on TCM 

using image processing techniques to measure flank and crater wear (Giusti et al., 1987; 

Jeon and Kim, 1988; Pedersen, 1990; Oguamanam et al., 1994; Yang and Kwon, 1996; 

Karthik et al., 1997). It has been demonstrated that image processing techniques can be 

effective in measuring flank wear and crater wear. When the cutting speed is high, it is 

more likely for crater wear to occur. Recent trends are toward high-speed machining 

and thus, there is increasing need to be able to measure crater wear, which is hence the 

focus of the research described in this chapter.  

    To measure crater wear, a 3-D image of the crater wear is needed. As reviewed in 

Chapter 2, several researchers (Giusti et al., 1987; Yang and Kwon, 1996; Karthik et 

al., 1997) have developed and used various methods to obtain the 3-D profile of the 

crater wear. But those methods are not satisfactory in terms of processing speed, 

system complexity, robustness and accuracy. Therefore, in this chapter, a new method 

of non-contact tool wear measurement is presented. It employs a phase-shifting 

method using fringe patterns to measure crater wear by constructing a 3-D map of the 

tool insert. Four fringe patterns with various phase shifts are projected onto the rake 

face of the tool upon which four gray-level images are captured. By solving and then 

unwrapping the phase map with the four images, the 3-D profile of the tool is obtained 
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to provide the overall size of the crater wear land. Sample tool inserts under different 

machining conditions have been tested and the results demonstrate that the system is 

robust to ambient light and is accurate and applicable for use in real industrial 

environment to measure crater wear. The full-field method has high precision, 

permitting interpolation to 1/1000 of a fringe period and low sensitivity to background, 

contrast variations and noise (Halioua and Liu, 1989). It does not require precise 

orientation of the incident ray (lighting) and the camera and can construct the 3-D map 

of the tool accurately and automatically. 

6.2 Principle of phase-shifting method 

    Halioua and Liu (1989) have developed a novel 3-D sensing approach known as 

phase measuring profilometry (PMP), based on the use of sinusoidal grating projection 

and digital phase-shifting techniques.  

    With reference to Figure 6.1, an incident ray P strikes the object and the reference 

plane at points D and A respectively. When viewed from an offset direction at height h, 

A is displaced to a new position C. It is the displacement ∆x = AC  which carries 

information about the object height Z = h(x,y) from the reference plane, or the range   L 

- h(x,y) from the view point. 

6.2.1 Phase measuring profilometry (PMP) model 

When a sinusoidal grating pattern is projected onto a 3-D diffuse object, the 

mathematical representation of the deformed grating image may be expressed in the 

general form: 

 
I(x,y)=R(x,y)[G(x,y)+H(x,y)cosφ(x,y)]                                    (6.1) 
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where, R(x,y) is the object reflectivity characterizing the surface nature, G(x,y) 

represents the background intensity and H(x,y)/G(x,y) the fringe contrast, and φ(x,y) is 

the phase function, which characterizes the fringe deformation and is related to the 

object shape Z = h(x,y). The surface shape is thus converted into a phase distribution.  

Normally, in practice, phase function φ(x,y) can be obtained easily. For example, 

four phase-shifted sinusoidal fringe patterns are projected onto an object surface with 

phase shifts of 0, π/2, π, and 3π/2 within one period of the fringe. Following Eq. (6.1), 

one can derive four equations (Eq. 6.2-6.5) with respect to these phase shifts: 

 
I1 =R [G + H cosφ]                                                        (6.2) 

 
I2 =R [G+H cos(φ+π/2)]                                                   (6.3) 

 
I3 = R [G+ H cos(φ+π)]                                                   (6.4) 

 
I4 =  R[G+ H cos(φ+3π/2)]                                                 (6.5) 

 
   By solving them, the following phase function can be expressed as: 

 
φ=arctan[(I4-I2)/(I1-I3)]                                                              (6.6) 

 
    The phase value computed according to Eq. (6.6) ranges from -π to π. Thus the 

phase distribution is wrapped into this range and, consequently, has discontinuities 

with 2π-phase jumps. These discontinuities can be corrected easily by adding or 

subtracting 2π by checking the phase jump value. The resultant phase map is called an 

unwrapped map. 
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Figure 6.1 Optical geometry for fringe projection 
 

6.2.2 Relation between phase function and shape 

    The projected sinusoidal pattern as seen on the reference plane has a period p0 and 

the intensity produced at a point C is given by: 

 
IC = G + H cos (2πOC /p0)                                              (6.7) 

 
    Consider ri as one of the detectors in an array of a CCD camera and is used to 

measure the intensity at C on the reference plane and at D on the object. The intensity 

observed at D on the object is the same as that observed at A if projected on the 

reference plane (without the object), modified by the object reflectivity R; thus: 

 
ID=R[G + H cos (2πOA /p0)]                                           (6.8) 
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    Using ID=RIC, and Eqs. (6.7) and (6.8), the phase difference φCD in phase values at 

points C and D, observed by the same detector ri, is related to the geometric distance 

AC : 

 
AC =(p0/2π)φCD                                                      (6.9) 

 
    In turn AC  is related to the object height h = BD  by: 

 
h = AC /(tan θ + tanθ’)= (p0/2π)φCD /(tanθ+tanθ’)=KφCD                   (6.10) 

 
where θ and θ’ represent the respective directions of illumination and observation as 

shown in Figure 6.1. 

6.3 Experimental setup 

 

Figure 6.2 Experimental setup for 3-D crater wear measurement 
 

    As shown in Figure 6.2, the experimental system consists of an LCD projector 

mounted with a long working distance microscope (LWDM), an LCD controller, a 

CCD camera mounted with another LWDM, a three-axis translation stage, and a frame 
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grabber. The tool insert is put on the stage. Four linear sinusoidal fringe patterns with 

phase shift values of 0, π/2, π, and 3π/2 are produced by the LCD controller and 

projected onto the rake face of the tool insert by the LCD projector through its LWDM. 

The contouring fringe patterns are then captured by the CCD camera through its 

LWDM and stored via the frame grabber. By processing the 256-graylevel images of 

fringe patterns, a 3-D map of the crater wear region can be obtained. 

6.4 Experimental results 

6.4.1 System calibration 

    With reference to Eq. (6.10), the system can be calibrated to convert a phase value 

to a physical dimension, say, in microns by determining a suitable constant factor K 

using the following simple method: 

• When the stage stays at some initial place, capture four phase-shifting images of 

the rake face, and solve out the phase function according to Eq. (6.6) and 

unwrapped it to a phase map (φ1); 

• Move the stage towards or away from the camera by Δh (50 μm in this case), and 

capture another set of four phase shifting images of the rake face. Again solve out 

the phase function and get the phase map (φ2); 

• Trim two parts of the two phase functions from the same region, and compute the 

mean of the phase difference, MΔφ. Then, the factor K=Δh / MΔφ. 

    After calibration, either φ1 or φ2 is used to convert the phase to its physical 

dimension with Eq. (6.10). 
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6.4.2 3-D crater wear of samples 

Two types of tool insert, namely, A30N (uncoated) and AC325 (coated), were tested. 

The fringe patterns were projected onto the rake face of the inserts and the captured 

images were 768 × 576 pixel at 256-graylevel. 

Figures 6.3-6.9 show the results of the seven samples of tool inserts. For each 

sample, the fringe image of the rake face projected with the phase shift value of ‘0’, 

and the constructed 3-D map of the tool insert are shown. In the 3-D map, the image 

was truncated to focus on the crater wear area.  

For each sample, a 3-D map constructed using laser scanning is also shown for 

comparison. The laser scanning was performed with Mahr’s multi-sensor OMS400 

measuring machine. Each time, only one line can be scanned. Therefore, to construct 

the 3-D map to sufficient resolution, a large number of scans are necessary.  

To verify the accuracy of the phase-shifting method, the maximum depths measured 

with phase-shifting method and with a microscope are compared in Table 6.1. The 

microscope is Keyence VHX-100 digital microscope. By manual focus on the rake 

face and the lowest point, the maximum depth can be measured. This measurement can 

be taken as the benchmark and the results measured by phase-shifting method can be 

compared accordingly. 

Table 6.1 Maximum crater wear depths for seven insert samples 

Sample # 1 2 3 4 5 6 7 
Insert Type (ISO 
SDKN42MT) 

A30N, uncoated AC325, coated 

Z0, measured by 
microscope (μm) 

468 549 433 302 234 221 585 

Z1, measured by 
phase-shifting (μm) 

450 554 448 315 220 238 578 

ΔZ=Z1-Z0 (μm) 
ΔZ/Z0 (%) 

-18 
-3.8 

5 
0.9 

15 
3.5 

13 
4.3 

-14 
-6.0 

17 
7.7 

-7 
-1.2 
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(a) Rake face, fringe phase shift = 0 

 

(b) 3-D map using phase-shifting, 
maximum depth = 450 μm 

 

(c) 3-D map using laser scanning, 
maximum depth = 473 μm 

 
Figure 6.3 Sample 1 

 

 

(a) Rake face, fringe phase shift = 0 

 

(b) 3-D map using phase-shifting, 
maximum depth = 554 μm 

 

(c) 3-D map using laser scanning, 
maximum depth = 553 μm 

 
Figure 6.4 Sample 2 
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(a) Rake face, fringe phase shift = 0 

 

(b) 3-D map using phase-shifting, 
maximum depth = 448 μm 

 

(c) 3-D map using laser scanning, 
maximum depth = 440 μm

 
Figure 6.5 Sample 3 

 

 

(a) Rake face, fringe phase shift = 0 

 

(b) 3-D map using phase-shifting, 
maximum depth = 315 μm 

 

(c) 3-D map using laser scanning, 
maximum depth = 306 μm

Figure 6.6 Sample 4 
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(a) Rake face, fringe phase shift = 0 

 

(b) 3-D map using phase-shifting, 
maximum depth = 220 μm 

 

 

(c) 3-D map using laser scanning, 
maximum depth = 237 μm

Figure 6.7 Sample 5 
 

 

(a) Rake face, fringe phase shift = 0 

 

(b) 3-D map using phase-shifting, 
maximum depth = 238 μm 

 

(c) 3-D map using laser scanning, 
maximum depth = 227 μm

 
Figure 6.8 Sample 6 
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(a) Rake face, fringe phase shift = 0 

 

(b) 3-D map using phase-shifting, 
maximum depth = 578 μm 

 

(c) 3-D map using laser scanning, 
maximum depth = 576 μm

Figure 6.9 Sample 7 
 

    From the above figures, one can see that the 3-D map of the tool insert, and the 

whole size of the crater wear can be easily obtained. From Table 6.1, the deviation of 

the result measured with phase-shifting method between that measured with the 

microscope is small (maximum absolute deviation was only -18μm for Sample 1 and 

maximum percentage error was 7.7% for Sample 6). Additionally, the results given by 

this method also match those given by a laser measuring machine (particularly, the 

maximum depth on the edge, which has small deviation). But this method is of full-

field nature, which surpasses laser scanning that must scan line-by-line. Accordingly, 

to construct a 3-D map with higher resolution, the laser scanning resolution has to be 

higher. This will make the hardware more complex and costly, and it will take more 
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time to scan the crater wear area. By contrast, the efficiency of the phase-shifting 

method as a full-field method is higher. 

6.5 Discussion 

    For the unwrapped phase map, there are two important post-processing steps to 

remove the background noise and thus, improve the quality of the 3-D map. 

    Outside the rake face is the background. There is much noise introduced through the 

unwrapping process. Because there are no fringes on the background, the unwrapping 

algorithm will accumulate phase error on the background. The range of the background 

noise usually is wider than that of the points in the crater wear land. In visualization, it 

will immerse the useful information because the valid range of phase in the wear land 

just spans a small part of z axis and make the true crater wear land hardly visible. A 

mask can be produced and applied to this noisy phase map. 

    It is easy to obtain a binary image by thresholding the fringe image of the rake face 

since the gray-level difference between the tool surface and the background is distinct. 

Pixels inside the tool surface are turned to white (‘1’), and those outside (background 

pixels) are turned to black (‘0’). The binary image can be applied to the phase map to 

remove the background noise. Figure 6.10 shows the mask image for Sample 1. 

 

Figure 6.10 The mask image for Sample 1 
 

    The non-uniform surface of the wear land introduces noise on the tool surface. To 

reduce it, a median filter (Gonzalez and Woods, 2002) can be applied, whereby the 
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value of a pixel is replaced by the median of the gray levels in the neighborhood of that 

pixel. The median filter is used here because the noise is impulse or salt-and-pepper 

noise, which can be reduced effectively especially by this filter. As a result, this filter 

introduces little error on the filtered phase map in terms of actual phase values, while 

the noise is removed. A 5 × 5 filter has been found to be effective by experiment. 

    It is necessary to pay attention to the intensity of the fringe projected on the rake 

face. Excessive intensity will make the captured image saturated (gray-level of the 

pixels perpendicular to the fringe is not sinusoidal). As a result, the accuracy will be 

affected. To move the LCD projector away from the rake face and/or adjust the 

position of the CCD camera can easily address this problem. 

    Generally, given a fixed image resolution, with more fringes projected on the crater 

wear area, the resolution of this method will be higher. But if the fringe is too narrow, 

the abrupt change of depth cannot be accurately observed. Hence, there is a 

compromise between resolution and accuracy when selecting the fringe width. 

    Figure 6.11 demonstrates the experimental setup with the insert on the milling 

holder. By adjusting the positions and angles of the projector and the CCD camera, the 

crater wear land can be seen by the camera clearly. A 3-D map with very similar 

accuracy of the crater wear can be constructed. Figure 6.12 shows the fringe image 

captured using the experimental setup in Figure 6.11 with the insert on the milling tool 

holder. The constructed 3-D map of Sample 1 with this setup can be compared with the 

constructed 3-D map using the experimental setup shown in Figure 6.2. Compared to 

Figure 6.3 (b), the details in the crater wear differ slightly. Theoretically, the 

performance of the system is independent of the location of the tool. Because the 

orientation and location of the camera and fringe projector can be adjusted in response 

to the change of the location of the tool, the relative coordinates of these components 
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can be fixed. That is to say, whether the tool is on the stage or on the holder, the 

system is able to get nearly the same result. The only requirement is to get a good 

fringe image such that fringes can reflect depth change.  

 

Figure 6.11 Experimental setup tried with a mill holder 
 

 

(a) Fringe image 

 

(b) 3-D map, maximum depth = 456 
μm

 
Figure 6.12 Sample 1 reprocessed with the setup shown in Figure 6.11 

 
    With a suitable setup, the system can be used in an industrial environment to 

measure and monitor crater wear. For example, in monitoring the crater wear, the tool 

can be moved away from the cutting zone and coolant to a pre-specified location, 

where the fringes can be projected and images captured with the equipment already 

appropriately oriented and placed. With the captured images, the pre-calibrated system 

can give the crater wear map. 

 102



Chapter 6 Crater wear measurement by phase-shifting method 

Limited by the availability of the experimental devices, this crater wear 

measurement system has not been put in situ to process the images captured when 

spindle rotates using trigger-capture mechanism as did in the successive image analysis 

method for flank wear measurement. Therefore, in the next chapter, crater wear is not 

considered in wear estimation via the self-organizing map network. 
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Chapter 7 

Flank wear estimation and breakage detection by force 

 

7.1 Problem statement 

As mentioned in Chapter 3, cutting force is used to monitor both the breakage and 

flank wear in-process. Most researchers proposed monitoring strategy based on force 

features and neural networks, especially supervised learning networks, to make 

decisions on tool conditions, as reviewed in Chapter 2. Supervised learning needs 

collection of lots of data and the training is off-line. The generalization of the trained 

networks is also not good for varied cutting conditions. Although unsupervised 

networks, such as SOM, have been investigated, the training is still based on the whole 

dataset collected from a fresh tool to a worn-out tool. It is not adaptive to various 

cutting conditions. Thus in this chapter, one of the challenges is to estimate flank wear 

in-process without off-line training and involvement of cutting conditions. Another 

challenge is to detect breakage in time. 

In accordance with these two challenges, in the following sections, the following 

key issues are presented: 

• A self-organizing map (SOM) network is introduced as estimator. 

• SOM is locally trained in a batch mode and applied immediately. 

• Two features of the cutting force, which closely indicate flank wear, are 

extracted in-process and used to train the SOM.  

• Force features in time domain, frequency domain and wavelet domain are 

extracted and compared. The sensitive features are identified and used to 

detect breakage. 
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7.2 Kohonen’s self-organizing map 

7.2.1 Why SOM 

    Self-Organizing Map (SOM) has the ability to form a topographic map in which the 

spatial locations of the neurons in the lattice are indicative of intrinsic statistical 

features contained in the input patterns (Kohonen, 1982; Kohonen, 1990; Kohonen, 

2001). It transforms high-dimensional input space into a low-dimensional grid where 

the location of a unit represents the density of the input data. In this transformation, 

relative distances between data points are preserved. 

    In this case where the force signal is closely related to wear progress, SOM can map 

the input signal (force) with same patterns to an output unit and accordingly, the 

conditions can be classified or the flank wear be estimated. A big advantage is that the 

majority of the input feature vectors can be used in unsupervised learning, and just a 

small portion are needed for supervised learning together with their outputs. 

    Generally, wear progresses extensively at the short initial stage and progresses 

nearly linearly at the linear stage, within which most of the useful tool life lies. Change 

of a worn tool is usually recommended before the end of the linear stage (Zhou et al., 

1995). The force signal at this stage is also stable in some sense. Consequently, the 

force features in the previous machining pass can be used to train the SOM network, 

which is subsequently applied to the current machining pass to estimate flank wear. 

With this scheme, the traditional off-line training of the neural network, which 

generally uses overall dataset collected off-line (i.e., tool from fresh to worn-out), is 

avoided. More importantly, cutting conditions are not involved in this training as 

traditional neural network methods do. 
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7.2.2 Principle 

There exist many versions of the SOM. As shown in Figure 7.1, the basic SOM 

defines a mapping from the input data space ℜn onto a 1-D or 2-D array of units 

(Kohonen, 1982; Kohonen, 1990; Kohonen, 2001), whereby the latter is more often the 

case.  

 

x
x

Figure 7.1 Mapping of SOM 
 

With each unit i, a weight vector mi∈ℜn is associated. A metric function is used to 

compare an input vector x∈ℜn with each mi.  The closest match is defined as response: 

the input is thus mapped onto this location. A common metric function used is the 

Euclidean norm ||x – mi|| .The best-matching unit or winner, c, is defined as: 

 
}{min iic mxmx −=− , or }{minarg ii

mxc −=                        (7.1) 

 
    For the purpose of topological ordering, during learning, the weight vector of those 

units that are topographically close to the winner c will also be updated from the same 

input. The learning rule is given below: 

 
mi(t + 1) = mi(t) + hci(t)[x(t) - mi(t)]                                      (7.2) 

 
where t is the discrete-time coordinate, and hci(t) is a neighborhood kernel defined over 

the lattice points. 
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    Usually hci(t)=h(||rc - ri||, t), where rc∈ℜ2  and ri∈ℜ2 are the location vectors of units 

c and i, respectively, in the array. With increasing ||rc - ri|| and time t, hci(t)→0.  

The following function is used as the neighborhood kernel. 
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where l(t) is some monotonically decreasing function of time (0<l(t)<1), σ(t) defines 

the width of the kernel and is also some monotonically decreasing function of time, as 

shown below: 

 

)/exp()0()( 1ταα tt −= , )/exp()0()( 2τσσ tt −=                          (7.4) 

 

where τ1 and τ2 are time constants. 

    The training is usually performed in two stages. In the first stage, relatively large 

initial learning rate l(0) and neighborhood radius σ(0) are used. In the second stage, 

both learning rate and neighborhood radius are small right from the beginning. This 

procedure corresponds to first tuning the SOM approximately to the same space as the 

input data and then fine-tuning the map. 

7.2.3 Batch training algorithm 

    Instead of using a single input vector at a time, the whole input set is presented to 

the map before any adjustments are made – hence the name “batch.” (Kohonen, 2001) 

Each unit has a Voronoi set, which collects a list of input vectors whose winners 

belong to the current neighborhood of the unit. So, in each training step, the data set is 
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partitioned into Voronoi sets whose number is equal to that of units. The algorithm 

proceeds as follows: 

• Calculate the sum of the vectors in each Voronoi set: 
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where NVi is the number of input samples in the Voronoi set of unit i. 

• Update the weight vectors: 
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where u is the number of units. 

    In batch training algorithm, no convergence problems will be encountered. 

Compared to basic SOM algorithm (sequential training algorithm) aforementioned, 

this algorithm does not involve learning rate and performs faster. A few iterations will 

usually suffice. 

7.3 SOM as estimator 

    Asymmetric mapping (Kohonen, 2001) is employed here. Here, the input data 

consisting of force features and wanted output (wear increment value) are called 

labeled data; otherwise those consisting of only force features are called unlabeled. 

Consider then that it is often much easier and less expensive to collect masses of 

unlabeled input data than a much smaller number of well-classified training samples. 

The unlabeled data should be utilized first for a preliminary unsupervised learning, 

which readily approximates the density function of input data. Then the labeled data 
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are used for a refinement of the density function. So, two-phase learning strategy is 

more reasonable and applied. 

7.3.1 Phase one 

Presentation of all the available unlabeled input data to a normal SOM, whereby the 

input vectors are of the form: 

 
x=[in φ]T

where in=[f1, f2, …, fm]T, a feature vector at one instance of time, its corresponding 

output vector is denoted as out=[o1, o2, …, on]T (in this case, n=1, flank wear 

increment); the symbol φ means the “don’t care” condition, i.e., when searching for the 

winner, only the in part of x is compared with the corresponding components of the 

weight vectors, and no output (out) part is thereby present in the learning algorithm. 

7.3.2 Phase two 

    After convergence of phase one, the labeled data are applied to the SOM and 

training is continued. During this second phase, the winner is determined only based 

on the in part of x, while the weight vectors corresponding to the in part of x are no 

longer changed. Instead, the SOM learning algorithm is now applied to change the 

weight vectors of the out part only.  

    So, the input vector x in winner search and learning are different. 

    During winner search: x=[in φ]T; during learning: x=[φ out]T. Notice that the in and 

out in phase two are labeled, whereas in phase one they are unlabeled. 
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7.4 Estimation by SOM 

7.4.1 Feature extraction 

The average force and the standard deviation over one rotation have been found to 

be correlated to flank wear well (Elbestawi et al., 1989; Leem and Dornfeld, 1995; Lin 

and Lin, 1996; Santanu et al., 1996). 
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    Fa(i), σ(i) refer to the average force and standard deviation over rotation i, f(i,j) 

refers to the raw force at instance of time j in rotation i, N is the number of sample 

points in one rotation.  

    The average force and standard deviation in each machining pass instead of in the 

whole test are processed to extract features. That is to say, the features are extracted 

pass by pass.  

The two features are firstly filtered with median algorithm. The objective is to 

remove the great fluctuation and to make them smoother. Direct use of the filtered 

features is still not a good idea, since in SOM, input data should be normalized in order 

to remove the effect on weight vectors imposed by the greater value of some input data. 

To do the scaling, take the filtered force in the kth pass as an example. The force at the 

beginning (force at 1st rotation) of the kth pass is denoted as L(0), then any force at nth 

rotation in this pass L(n) is scaled by: 

 
F’(n)=(L(n)-L(0))/L(0);                                         (7.9) 
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The scaled value is then accumulated to form a stable feature by the following 

formula: 
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    The scaled value Fe(n) is now suited to be the feature. The same scaling method is 

applied to the filtered standard deviation.  

7.4.2 Working with SOM  

    A 1-D SOM is constructed with 15 units. In training, the majority of the data in the 

kth pass are unlabeled (only the two force features) and used in phase one. A small 

portion of the data are labeled (the two force features and its corresponding wear 

increment value) according to the overall wear increment during this whole pass. The 

labeled data are used in phase two. The trained SOM is then applied on each data in 

the (k+1)th pass to estimate flank wear increment at different rotations.  

The output of the SOM is flank wear increment with respect to the wear value at the 

beginning of this (k+1)th pass. This wear value has been available by means of 

interpolation of the measured flank wear which is obtained with the tool-maker’s 

microscope. Thus, the absolute wear at each time is the summation of the wear value 

plus the wear increment value estimated by SOM. 

7.5 Breakage detection 

Breakage detection is an important task in TCM. To detect breakage, typically there 

are three methods based on features or patterns extracted in different domains, i.e., 

time domain, frequency domain and wavelet domain. In what follows, these three 
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methods will be compared via case study and identify which method is more sensitive 

to breakage. 

7.5.1 Features in time domain 

This method has been the mostly studied since the early stage of research in TCM. 

Many features have been proposed as shown in Table 2.4. Here, two features are 

especially focused on, i.e., residual error and force peak rate. 

Altintas (1988) has shown that the residual error of the average force rather than 

instantaneous force was able to embody the breakage. With this conclusion, the 

calculation of residual error on basis of rotation rather than every sampling point is by 

any means more time-saving. The residual error is based on AR1 model. Its calculation 

follows the procedure stated below. 

AR1 model for the first differencing of the average force can be expressed as: 

 
fa(t) =Φ fa(t-1) + ε(t)                                                  (7.11) 

 
fa(t) = Fa(t) - Fa(t-1)                                                 (7.12)  

 
where Fa(t) is the average force over the t-th rotation period. The residual error can 

therefore be calculated by: 

 
( ) ( ) ( ) ( )1ˆ1 −Φ⋅−−= ttftft aaε                                      (7.13) 

 
where Φ can be evaluated recursively by: 

 
)()1()1(ˆ)(ˆ ttKtt ε⋅−+−Φ=Φ                                        (7.14) 

 
where K(t) is updated by: 
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    And P(t) can be updated by: 
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The initial conditions are Φ(0) = 0, and P(0) = β where β is a large number. The 

forgetting factor λ is 0.9 ≤ λ ≤ 1. 

A residual error exceeding a preset threshold (i.e., ε > Tre, Tre is the threshold) 

indicates breakage. 

To calculate residual error, the average force over one rotation is considered. The 

detail force, i.e., instantaneous force at each sampling point is not considered. This 

may lead to mistake when the average force cannot reflect the breakage. Therefore, 

peak rate of cutting forces (Zhang et al., 1995) is taken into account too. Its definition 

is given by: 
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where Fm(t) is the peak value of the cutting force over the t-th rotation period. The 

force peak rate Kpr is dimensionless and independent of the cutting conditions. A value 

exceeding a preset threshold (i.e., Kpr > Tpr, Tpr is the threshold) indicates tool breakage. 

    As pointed out by Altintas (1988) and Zhang et al. (1995), it is very difficult to 

specify Tr and Tpr, e.g., many trial tests are required. In this thesis, since conditions are 

monitored pass-by-pass, dynamical Tr and Tpr can be obtained without any trial tests.  
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    In the first pass, it is assumed that there is no breakage, the maximum amplitudes of 

residual error and peak rate can be obtained. These two values are taken as the 

thresholds for the beginning of the second pass. From the second pass onwards, as long 

as no breakage has been detected by vision after the kth pass, the maximum amplitudes 

of the two features in the kth pass can be taken as the thresholds for the beginning of 

the (k+1)th pass. Within each pass, if breakage is detected by force features but not 

verified by vision, i.e. breakage does not really occur, the thresholds are updated by 

increasing a little, say, 5%. 

    Figures 7.2 and 7.3 show the average force, instantaneous force, and the two 

extracted features. Clearly, the breakage can be detected through the two abrupt 

changes of the residual error and peak rate. In the following two sections, the dataset 

got from the same test will be used to do FFT and wavelet transform for comparison. 

 

Figure 7.2 Residual error and peak rate for dataset 1, s = 1200 rpm, 2 inserts 
mounted 
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Figure 7.3 Residual error and peak rate for dataset 2, s = 1200 rpm, 4 inserts 
mounted 

 

7.5.2 Features in frequency domain 

It is stated that there exists a tool breakage zone in the spectral density of the cutting 

force. Between the rotation frequency, fr and tooth frequency, ft (ft = mt × fr, mt is the 

number of teeth or inserts), the harmonics of fr are indicators when breakage occurs 

(Tarng, 1990). Using a different chip thickness determination method from Tarng, the 

theoretical research based on a milling force model reinforces this finding.  

In milling, as shown in Figure 7.4, the instantaneous tangential force acting on the 

cutting edge is modeled to be proportional to the area of the chip cut (Koenigsberger 

and Sabberwal, 1961): 

 
Ft = ks ⋅ wc ⋅ htr                                                  (7.18) 

 
where, 

Ft, instantaneous tangential force on the cutting edge; 

ks, specific cutting force coefficient; 

wc, chip width; 
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htr, true undeformed chip thickness. 

According to Li et al. (2001), the true undeformed chip thickness can be 

approximated by this formula: 
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Rc, radius of the cutter; 

fpt, feed per tooth per revolution; 

mt, number of teeth on the cutter, 

ϕi, cutting edge rotation angle of the ith tooth. 

 

Figure 7.4 Force model in milling 
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The corresponding instantaneous radial force, Fr, has a linear relationship with Ft, 

and can be modeled by: 

 
Fr = kr ⋅ Ft                                                          (7.20) 

 
where,  

kr, the ratio of the tangential force and radial force. 

The instantaneous cutting forces in the X and Y directions can be obtained by 

decomposing the cutting forces Ft and Fr into the X and Y directions: 

 
Fx = Ft ⋅ cosϕ + Fr ⋅ sinϕ                                      (7.21) 

 
Fy = -Ft ⋅ sinϕ+ Fr ⋅ cosϕ                                      (7.22) 

 
In multi-tooth milling, the instantaneous cutting forces in the X and Y directions can 

be expressed as: 

 

FX =                                               (7.23) ∑
=
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FY =                                                (7.24) ∑
=
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i
iyFi

1

)()( ϕδ

 
and 

                                                    δ(i) = 1, if ϕen ≤ ϕi ≤ ϕex, 

                                            0, otherwise                                                 (7.25) 

where, 

ϕen, entry angle of cut; 

ϕex, exit angle of cut; 
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Finally, the instantaneous resultant cutting force, F, can be expressed as: 

 
F = (FX2 + FY2)1/2.                                              (7.26) 

 

 

Figure 7.5 Assumed breakage geometry 
 

    To simulate the breakage, suppose the breakage forms a circle with a radius of rbk, 

as shown in Figure 7.5. At some instance, when the chip thickness is htr, the shadowed 

area is the chip cut. Thus, for this broken insert, the area outlined by the arc AM, line 

MN, arc NB, and line BA is uncut. This uncut area can be viewed as a rectangle EFGH. 

From the viewpoint of the force, for the broken insert this uncut area is equivalent to a 

decreasing wc. Conversely, for the insert following this broken insert, it cuts with an 

increasing wc. The change of wc is equivalent to |EF| and can be calculated easily.  

    Using the following parameters, a simulation was conducted on the force and its 

spectrum in the cases of with and without breakage: spindle speed 1200 rpm, feedrate 

200 mm/min, 4 inserts, sampling rate 2000 Hz, wc = 2 mm, breakage occurs on the 1st 

insert, rbk = 1 mm. ϕen = 45 degree, ϕex = 135 degree. The following findings have 

been obtained: 

1. FFT over one rotation cannot provide the complete information of frequency 

components, especially the harmonics of fr at the breakage zone. This can be 
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seen in Figure 7.6. In contrast, FFT over two or more rotations can provide 

harmonics of fr, as shown in Figure 7.7. 

 

Figure 7.6 Simulated force and its power spectrum (FFT over one rotation) 
 

2. Only with breakage, harmonics of fr at the breakage zone stand out, indicating 

the breakage. This was observed in Figure 7.7. 

 

Figure 7.7 Power spectrum of the simulated force (FFT over two rotations) 
 

In the following, FFT is performed on the real force, i.e., sampled signal in 

machining tests. Note that in the power spectrum plots, ‘NB’, ‘CP’ or ‘BK’ refers to 
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that one of these three events: no breakage, chipping, or breakage has occurred by 

some rotation(s). The following have been observed. 

1. Like simulated force, for sampled force, FFT over one rotation cannot provide 

complete frequency components, opposed to FFT over two or more rotations. 

This is shown in Figures 7.8 - 7.11. 
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Figure 7.8 Power spectrum before and after breakage (FFT over one rotation), 
for dataset 1 

 
2. The harmonics at the breakage zone are not reliable for breakage detection as 

expected from the theoretical simulation.  

    In Figure 7.10, the harmonic at 20 Hz when the insert was broken did not have a 

greater value than that of a fresh insert. Likewise, in Figure 7.11, a greater peak value 

is not observed at 20 Hz, 40 Hz and 60 Hz when the insert was broken. The peaks at 

40 Hz in Figure 7.10 and at 80 Hz in Figure 7.11 do have a greater value when the 

insert was broken. However, this cannot be used as the breakage indicator, because this 

increasing amplitude in frequency domain is just a mapping of the increasing 

amplitude of cutting force in time domain. That is, the cutting forces for 701st, 4381st, 
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8061st and 11741st rotations increase in Figure 7.10, the same is true for 67th, 11587th, 

34627th and 46147th rotations in Figure 7.11. 
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Figure 7.9 Power spectrum before and after breakage (FFT over one rotation), 
for dataset 2 
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Figure 7.10 Power spectrum before and after breakage (FFT over two rotations), 
for dataset 1 
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Figure 7.11 Power spectrum before and after breakage (FFT over two rotations), 
for dataset 2 

 

    Therefore, harmonics at the breakage zone are not reliable indicators of breakage in 

practice. A very important reason is that run-out can cause the same frequency 

component distribution at the breakage zone as breakage does. Removal of the run-out 

in machining is a big challenge to make frequency usable for breakage detection. But, 

it is impossible to eliminate run-out completely. Therefore, in practice, the effect 

caused by run-out always exists in the cutting force. Frequency pattern is not employed 

in this thesis for breakage detection. 

7.5.3 Features in wavelet domain 

Wavelet transform, having good resolution both in time and frequency domains, was 

adopted in breakage detection (Kasashima et al., 1995; Lee and Tarng, 1999). It is 

argued that detail components of the wavelet transformation of the force signal can be 

used to detect breakage by making the transients stand out.  
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Basically, wavelet transform decomposes a signal into approximations and details 

by low-pass and high-pass filters. The approximations are the high-scale, low-

frequency components of the signal. The details are the low-scale, high-frequency 

components. This decomposition process can be iterated, with successive 

approximations being decomposed in turn, so that one signal is broken down into 

many lower resolution components. Each iteration of decomposition is called a level. 

Figure 7.12 shows a decomposition of a signal to level 3. 

 

Figure 7.12 An example of wavelet decomposition 
 

The dataset 1 and 2 involved in previous two sections were again used to do wavelet 

transform to level 5 with wavelet db4. The transformed details and approximation are 

shown in Figures 7.13 and 7.14, where A5 means approximation at level 5. D5 means 

details at level 5. D4 means details at level 4, and so on. 
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Figure 7.13 Wavelet transform for dataset 1 
 

 

Figure 7.14 Wavelet transform for dataset 2 
 

From Figures 7.13 and 7.14, the approximation and the details do not show any 

specific patterns when breakage occurs. It indicates that wavelet transform cannot be 

used to detect breakage. 
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In summary, collectively considering the effectiveness of the above three methods in 

time domain, frequency domain and wavelet domain, two features in time domain, i.e., 

residual error of average force and peak rate are easy and effective in detecting 

breakage. They are accordingly used in this thesis. 

7.6 Experimental results 

    This section concentrates on wear estimation results rather than breakage 

detection. The latter will be shown in on-line cases, which are the focus of the next 

chapter.  

7.6.1 Setup for force system 

PC

Dynamometer

CNC Milling Machine

Workpiece

Machining Table

Cutting Tooth

Charge
Amplifier

DAQ
Board

Force

Tool
State Microscope

Digital
Camera

Insert

BNC Cable

Tool
Wear

 

Figure 7.15 Experimental setup for force subsystem 
 

The experimental setup is sketched in Figure 7.15. The devices are listed in Table 

7.1. 
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Table 7.1 Experimental devices for force subsystem 

Devices 
Makino CNC milling machine with Funuc controller 
EGD 4450R cutter  
ASSAB718HH workpiece (210 mm × 43 mm × 106 mm) 
Kistler 9265B Quartz 3-Component Dynamometer 
Kistler 5019A Multi-channel Charge Amplifier 
NI-DAQ PCI 1200 Board 
Olympus microscope and Panasonic digital camera 
PC with P3 300 MHz  

 

The cutting force is captured by the dynamometer in the form of charges, and 

converted to voltages by the charge amplifier. The voltage signal is then sampled via 

the data acquisition (DAQ) card PCI-120. The digital voltage level is transferred to 

force level with the specified mechanical unit. Table 7.2 shows the parameters 

specified for the charge amplifier and the DAQ card. 

Table 7.2 Parameters for charge amplifier and DAQ card 

Channel 
Transducer Sensitivity / TS [pC/Mechanical unit] = pC/N 

1 
7.85 

Scale / SC [Mechanical units/V] = N/V 600 
Low-pass Filter / LP 1K Hz 

Charge 
amplifier 

Time constant / TC (High-pass filter) Long 
Input range (V) ±5 
Input mode Single-ended 
Polarity Bipolar 
Sampling rate (Hz) 2000 
Channel 0 

DAQ 
PCI-1200 

Gain 1 
 

    To get stable and useful force, the force signal is sampled only when the tool was 

fully engaged into workpiece. The effective sampling period, in this case, was 

therefore not throughout the whole length of workpiece, but part of it. This is shown in 

Figure 7.16. 
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                          Workpiece 

Sampling length 

Feed

Tool

Length of workpiece 

 

Figure 7.16 Effective force sampling period 
 

    The cutting force was recorded and saved on hard disk for off-line processing. After 

some number of passes, the tool inserts were taken away from the milling holder and 

inspected by a tool-maker’s microscope for flank wear value. The wear values in 

between the measured passes were calculated by interpolating the measured values. 

Therefore, for each pass, the force features and wear increment value were extracted 

throughout this pass. Then SOM was trained by using the wear increment value and 

the extracted features. The trained SOM used the force features extracted in a new 

machining pass to estimate the wear increment and thus, the estimated flank wear in 

this pass. Throughout this period, SOM was trained locally after each pass and applied 

immediately to the next pass. It was updated pass-by-pass. 

7.6.2 Wear estimation results by SOM and comments 

Twenty tests with various cutting conditions and two types of inserts were tested 

and these are shown in Table 7.3. The experimental results are shown in Figures 7.17-

7.26.  For each test, the estimated wear and actual wear measured with the microscope 

mentioned in Table 7.1 are plotted for comparison, which is shown in the first row of 
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the figure. The second row of the figure shows the average force throughout the test. 

And the third row shows the two features extracted from the cutting force. 

 

 

Table 7.3 Parameters of cutting tests for off-line wear estimation 

Insert type Test 
# 

Spindle 
speed 
(rpm) 

Feed rate 
(mm/min)

Depth 
of  cut 
(mm) 

# of 
inserts 

mounted 

Time 
per pass 

(s) 

# of 
passes 

a1 800 150 1 4 72 120 
a2 1000 100 1 2 108 50 
a3 1000 100 1 4 108 82 
a4 1000 200 1 2 54 60 
a5 1000 300 1 4 36 79 
a6 1200 150 1 2 72 40 
a7 1200 200 1 2 54 35 
a8 1200 300 1 4 36 65 
a9 600 100 2 4 108 73 
a10 600 200 2 4 54 101 
a11 800 100 2 2 108 56 

AC325 
(coated) 

a12 1000 100 1 4 108 72 
b1 800 200 1 4 54 97 
b2 800 300 1 4 36 30 
b3 1000 200 1 2 54 68 
b4 1000 300 1 4 36 20 
b5 1000 300 2 4 36 50 
b6 1200 100 1 2 108 6 
b7 1200 200 1 4 54 35 

A30N 
(uncoated) 

b8 800 300 1 4 36 53 
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Figure 7.17 Wear estimation result for Test a1 
 

 

Figure 7.18 Wear estimation result for Test a2 
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Figure 7.19 Wear estimation result for Test a3 

 

Figure 7.20 Wear estimation result for Test a4 
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Figure 7.21 Wear estimation result for Test a5 

 

Figure 7.22 Wear estimation result for Test a6 
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Figure 7.23 Wear estimation result for Test a7 

 

Figure 7.24 Wear estimation result for Test a8 
 

 132



Chapter 7 Flank wear estimation and breakage detection by force 

 

Figure 7.25 Wear estimation result for Test a9 
 

 

Figure 7.26 Wear estimation result for Test a10 
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Figure 7.27 Wear estimation result for Test a11 

 

Figure 7.28 Wear estimation result for Test a12 
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Figure 7.29 Wear estimation result for Test b1 
 

 

Figure 7.30 Wear estimation result for Test b2 
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Figure 7.31 Wear estimation result for Test b3 
 

 

Figure 7.32 Wear estimation result for Test b4 
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Figure 7.33 Wear estimation result for Test b5 
 

 

Figure 7.34 Wear estimation result for Test b6 
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Figure 7.35 Wear estimation result for Test b7 
 

 

Figure 7.36 Wear estimation result for Test b8 
 

Figures 7.17-7.36 strongly demonstrate that the wear estimation results track the 

actual values very well, especially for those tests wherein flank wear increases slowly 
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and stably, i.e., many passes in the test. This can be observed from most of the figures 

except Figures 7.32 and 7.34, which show the results for Tests b4 and b6. From Table 

7.3, it was found that there were only 20 and 6 passes for these two tests, respectively. 

Compared to other tests, the tools in these two tests were worn out faster. This worn-

out rate can be reflected through cutting force. Thus, it was observed that the two 

features in these two tests for successive passes had different patterns in terms of the 

amplitude and shape. Because the SOM functions locally, i.e., it is trained to 

approximate the wear flank increment in the current pass with the increment in the 

previous pass based on the two force features. When the increments in these two 

successive passes have really different values, say, the increment in the current pass 

exceeds that in the previous pass, the SOM still tracks the increment in the previous 

pass and cannot give a greater increment. In this case, the estimated result is less than 

the real. Reversely, if the increment in the current pass is less than that in the previous 

pass, the SOM is likely to give an equal or greater increment compared to the real, 

depending largely on the amplitude of the features. Nevertheless, the deviation in these 

tests is tolerable, say, even in the worst case Test b6 in Figure 7.34, the maximum 

deviation was about 30 μm at the end of pass 4.  

It is also worth noting that the two features are not redundant. Most of the figures 

show that the patterns of the two features are different, including the amplitude and 

shape. It is therefore not a good idea to use only one of them in order to make the 

calculation simpler and faster. In addition, looking into the features in two successive 

passes (see Figure 7.34 for fine resolution in detail), it was found that they were quite 

similar in patterns. More importantly, even when the tool is approaching worn out, the 

average force has tremendous fluctuations, the features are stable (Figures 7.19, 7.22, 
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7.28, 7.30, 7.33 and 7.34 etc.). This property is useful for SOM to track the wear 

increment locally. 

More discussion will be presented in the next chapter in connection with the on-line 

monitoring.  

7.7 Concluding remarks 

In this chapter, wear estimation and breakage detection methods based on cutting 

force have been presented. To estimate wear, SOM is employed, which is trained 

locally and applied immediately after the training. It is updated with the cutting pass. 

Features of cutting force in time domain, frequency domain and wavelet domain have 

been compared to show that the two features in time domain, i.e., residual error of 

average force and peak rate, can be effective to detect breakage. Experimental results 

demonstrate the ability of SOM as wear estimator to give accurate estimation. 

The accurate estimation has been achieved because of two factors. One is the 

similarity and stability of the features extracted from cutting force, the other is that the 

manual wear measurement was used in the training. Recalling that the goal in this 

research is to replace the manual measurement by the proposed successive image 

analysis method, it is necessary to investigate if the estimation is still good in terms of 

accuracy when the replacement takes place. Therefore, in the next chapter, the 

proposed vision subsystem and force subsystem are put together to form a sensor 

integration system. The effectiveness of this integrated system in wear estimation and 

breakage detection is demonstrated. 
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Chapter 8 

Experiment for on-line TCM 

 

8.1 Experimental setup 

    Referring to Figure 3.1, the integrated on-line TCM system actually combines the 

vision subsystem and force subsystem into one collaborative system where the former 

functions in-cycle and the latter functions in-process. Therefore, as shown in Figure 

8.1, the complete experimental setup is composed of the two subsystems, setup shown 

in Figure 5.1 together with that shown in Figure 7.17. The devices of each subsystem 

have been described in Chapters 5 and 7. 

 

Figure 8.1 Experimental setup for on-line TCM 
 

Before machining commences, images of the fresh inserts were captured while the 

spindle was rotating at a speed of 20 rpm. The current position of the tool was stored in 

the CNC machine controller as the image capture point. Images were processed to get 

the reference line and critical area for future use. When machining, the traverse force 

signal was low-pass filtered (1K Hz low-pass filter) and sampled at 2K Hz via the data 
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acquisition card PCI-1200. Four features of the cutting force were extracted in-cycle, 

namely, two features for breakage detection (residual error of average force, peak rate) 

and two features based on average force and standard deviation. The first two features 

were checked immediately after extraction with a preset threshold to detect breakage. 

According to the overall TCM strategy mentioned in Chapter 3, if breakage is detected, 

the machining is paused. The tool insert is programmed to park at the image capture 

point to be inspected by the vision subsystem. If breakage is verified by vision, the tool 

insert is considered to be broken and disposed. If vision does not detect breakage, the 

machining is resumed, and the thresholds for the two features will be increased some 

amount, say, 5%. However, in the experiment, in order to observe the force trend after 

a breakage event, machining was continued with the broken tool insert till the end of 

the ongoing machining pass. 

After one machining pass, the tool was programmed to park at the image capture 

point and images of the inserts were captured while the spindle was rotating at a speed 

of 20 rpm. The wear value was thus obtained by successive image analysis. And the 

chipped-away material along the cutting edge was quantified to verify the breakage. If 

the breakage occurred, the machining was terminated. Otherwise, the SOM was trained 

in-cycle by using the wear increment value (measured in-cycle) and the extracted 

features (extracted in-process). After training, a new machining pass began. During 

this machining pass, the SOM used the two features extracted in-process to estimate 

the wear increment and hence, the estimated flank wear in the pass. The experiment 

was repeated in this manner till the insert was worn out or seriously broken. Note that 

SOM was trained locally with the latest data collected in-process and kept updating 

after each machining pass. 
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8.2 Experimental results 

    Experiment with different cutting conditions and two types of inserts was carried out. 

The parameters for the tests are shown in Table 8.1. For Test 1, because the tool was 

worn very slowly, to save material and time, it was not continued after pass 104. The 

experimental results for the six tests are shown in Figures 8.2-8.7.  

 
Table 8.1 Parameters in dry milling for on-line TCM 

Parameters Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Inserts (ISO 
SDKN42MT) 

AC325, coated A30N, uncoated 

Number of inserts 2 
Workpiece ASSAB718HH steel 
Length of the workpiece 
(mm) 

205 

Diameter of cutter (mm) 50 
Spindle speed (rpm) 
(m/min) 

600 
94.2 

1000 
157 

1200 
188.4 

1000 
157 

800 
125.6 

1200 
188.4 

Feed rate (mm/min) 200 200 150 200 300 150 
Feed per tooth 
(mm/tooth) 

0.17 0.1 0.063 0.1 0.188 0.063 

Depth of cut (mm) 1 
Time/pass (s) 54 54 72 54 36 72 
Immersion rate Full 
Number of machining 
passes 

104 27 30 27 20 13 

Conditions observed Gradual 
wear 

Breakage 

 

There was no breakage observed or detected in Test 1. So in Figure 8.2, only the 

wear estimation result is shown. For the other tests, breakage was detected in some 

pass and the image of the insert was inspected by vision. Therefore, in each of Figures 

8.3-8.7, (a) shows the wear estimation result throughout the entire test (till the end of 

the pass listed in Table 8.1). (b) shows the breakage result inspected by vision, with 

gray-level image of the insert in left part, binary image in right-upper part and 

breakage in right-bottom part. (c) shows the force and force features, i.e., residual error 
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and peak rate against rotations, when breakage was detected in some pass by these two 

features (except Figure 8.3 for Test 2, no breakage detected). 

 

Figure 8.2 On-line TCM result for Test 1 
 

 
(a) Wear estimation result 

 
(b) Breakage by vision after pass 27 

 
(c) Force features in pass 27 

Figure 8.3 On-line TCM result for Test 2 
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(a) Wear estimation result 

 
(b) Breakage by vision after pass 24 

 
(c) Force features in pass 24 

Figure 8.4 On-line TCM result for Test 3 
 

(a) Wear estimation result 

 
(b) Breakage by vision after pass 18  

(c) Force features in pass 18 

Figure 8.5 On-line TCM result for Test 4
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(a) Wear estimation result 

 
(b) Breakage by vision after pass 20 

 
(c) Force features in pass 20 

Figure 8.6 On-line TCM result for Test 5 
 

 
(a) Wear estimation result 

 

 
(b) Breakage by vision after pass 13 

(c) Force features in pass 13 

Figure 8.7 On-line TCM result for Test 6 
 

    Some important findings were observed from the figures for the six tests: 

 146



Chapter 8 Experiment for on-line TCM 

From all the figures for the six tests, it was observed that the flank wear estimation 

result is good in association with the in-cycle measurement by vision, especially at the 

linear wear stage, although there is great deviation at the initial wear stage. 

Breakage is successfully inspected by vision. This can be seen from Figures 8.3 (b)-

8.7 (b).  

Breakage can be detected by force features using dynamic thresholding. Residual 

error and peak rate are two complementary features to detect breakage. When one 

feature fails to detect breakage, the other can be used to detect breakage. For example, 

in Tests 2 (Figure 8.3 (c)), 3 (Figure 8.4 (c)) and 4 (Figure 8.5 (c)), residual error better 

indicated breakage than peak rate; while in Test 6 (Figure 8.7 (c)), the opposite was 

true. 

8.3 Discussion and summary 

    Before the first machining pass, no a priori knowledge of the data was assumed in 

the training of the SOM network. The wear estimation values were set to zero based on 

the pass. At the initial wear stage, the wear grows rapidly, and then the wear increases 

at a much slower rate at the linear wear stage. During this wear rate transition, the 

SOM gave an estimate with greater deviation from that by the vision measurement. In 

Test 6 (Figure 8.7 (a)), there was an even greater deviation up to 75 µm. The reason is 

that the SOM applied to a machining pass with a slow wear increment was trained with 

data from the previous machining pass with a more rapid wear rate. However, this 

deviation is tolerable since the tool is hardly worn out in this short period of time. 

    At the linear wear stage, the SOM tracked the wear value well. However, when the 

wear rate changed between two successive passes, i.e., wear in the current pass was 
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slower or faster than the previous pass, there was some resultant deviation. This 

deviation was small, about 15 µm and thus tolerable. 

When there is tool breakage in machining, the estimated error becomes large. This 

can be explained by the rather different patterns in the force features extracted before 

and after breakage. Figure 8.8 shows the average force and features in pass 12 and 13 

for Test 6, respectively, whereby in pass 13 there was breakage, as shown in Figure 8.7 

(b). 

 

Figure 8.8 Average forces and features in two neighboring passes for Test 6 
 

    When the thresholds are too sensitive, it will lead to many cases of false breakage 

detection, i.e., many iterations of vision verification are required and thus much 

interruption of machining process. However, the proposed dynamic thresholds, 

determined by using the correlation between two successive passes are not too 

sensitive. In the above tests, it was observed that at only several points the thresholds 

were exceeded. The thresholds are accordingly reasonable. 
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On the PC Pentium III 300, only 2 s or so are taken to get the flank wear, to quantity 

the chipped-away zone and to finish training the SOM. The time can be reduced 

further given that special image processing hardware is designed to process these in-

cycle tasks. Additionally, the in-cycle processing can concurrently proceed as the tool 

holder resets to its starting point for a new machining pass. In this way, the in-cycle 

processing will not, or slightly, be interrupted during the normal cutting process. 

The comparison of the proposed sensor fusion method and the methods reviewed in 

Chapter 2 (section 2.3.2) is shown in Table 8.2. Method 1 is based on turning, thus the 

linear force-flank wear model may not be applicable to milling. Furthermore, its image 

processing module is too simple to be robust in industrial environment. Method 2 does 

not provide on-line wear estimation with vibration signal. In addition, using SOM to 

segment the image needs manual selection of teaching sample pixels. Use of the RBF 

network in Method 3 means extensive experiment over wide range of cutting 

conditions has to be carried out in order to collect the training data. The proposed 

method, however, uses updated wear value and force features to estimate the wear on-

line. And the vision system can provide robust and fast wear measurement with good 

accuracy by successive moving image analysis while the spindle does not stop. 

Breakage detection is also achieved by vision and force features in the method. 

    In summary, the on-line tests have proven the effectiveness of the proposed sensor 

fusion strategy in flank wear estimation and breakage detection in milling process. The 

features of this method are: 

• Sensor fusion, i.e., integration of vision and force sensors, is used. 

• Force features, namely, residual error and peak rate, are used to detect breakage 

in-process. 
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• In-cycle vision measurement based on successive image analysis is accurate, 

robust, and fast, providing necessary reliable knowledge for the SOM estimator. 

Breakage can be verified successfully. 

• SOM network is used to estimate flank wear in-process with the following 

merits: 

    a). Only two features of the cutting force required, which can thus be 

implemented easily and quickly, especially favorable for on-line 

implementation; 

    b). Unsupervised batch training, and hence easier data collection and 

less computation time; 

c). Cutting condition independent. SOM works in a repetitively 

updating mode: trained locally and applied immediately. It is thus 

applicable for various cutting conditions in the sense that there is no 

need to train by collecting lots of force samples under different 

conditions, as opposed to traditional neural networks. 
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Table 8.2 Comparison of TCM systems using indirect sensor(s) and vision 

Methods Process/ 
condition 

Indirect signal 
and processing 

Image 
processing 

Fusion method 

1 (Park 
and 
Ulsoy, 
1993a,b) 

Turning/ 
wear 

Force, an 
adaptive 
observer on 
wear-force 
relationship 

Segmentation 
by 
thresholding 

Vision system provides 
parameters for the 
observer and calibrates 
the observer 

2 (Bahr et 
al., 1997) 

Turning/ 
wear and 
breakage 

Vibration, 
moving average 
of the root mean 
square 
(MARMS) 

Segmentation 
by SOM 

Vision system 
measures wear between 
cuts, vibration system 
gives breakage or 
unforeseen situation. 
Wear value is not given 
on-line 

3 
(Mannan 
et al., 
2000) 

Turning/ 
wear 
classification 

Sound, energy 
of two wavelet 
coefficients 

Column 
projection and 
run length 

Both features from 
sound and vision are 
fed to a RBF neural 
network to classify the 
degree of tool wear 

This Milling/ 
wear and 
breakage 

Force, 
processed 
average force 
and standard 
deviation for 
wear 
estimation, 
residual error 
and peak rate 
for breakage 

Moment-
based edge 
detection, 
threshold-
independent, 
and spindle 
rotates 

Vision system provides 
wear value for the 
SOM network to 
estimate wear on-line 
with force features. 
SOM is updated with 
the wear value 
repeatedly. Breakage is 
detected via force 
features and verified by 
vision 
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Chapter 9 

Conclusions and recommendations for future work 

 

9.1 Conclusions 

In this research, one direct sensor (vision) and one indirect sensor (force) are used to 

create an intelligent integrated TCM system for on-line monitoring of flank wear and 

breakage in milling. Two subsystems, namely, a vision subsystem and a force 

subsystem have been developed to work in-cycle and in-process respectively. 

Experiments on both the subsystems and the integrated system have been conducted to 

verify the integration scheme. A full-field optical method based on phase-shifting has 

been proposed to measure crater wear,. 

The research reported in this thesis has made the following contributions: 

1. An effective individual image processing method for measuring flank wear and 

detecting breakage.  

In this proposed method, the image captured when the spindle stands still is 

processed with sub-pixel accuracy. Rough-to-fine strategy is employed to locate the 

points on the boundary of the wear land in two steps. The binary edge image is firstly 

used to roughly locate the boundary point. The gray-level image is then used to locate 

the boundary point precisely in the vicinity of the rough point with a moment-

invariance edge detection method. After trimming the image to a critical area to speed 

up the calculation, the reference line is detected via Hough transform. To enhance the 

robustness, noise is reduced by median filter, morphology and moving window 

techniques. To make the method less sensitive to light, a thresholding-based 
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segmentation in detecting the boundary point is avoided. The off-line measurement 

results of sample inserts were accurate and breakage was detected successfully.  

However, the performance is still affected by the orientation and intensity of light. 

The same problem exists in the optical systems proposed by Jeon and Kim (1988), 

Pederson (1989) and Ogumanam et al. (1994). Generally, the orientation and intensity 

of light are deliberately adjusted to make the three areas distinguishable to the camera 

in order for this method to be effective. With the adjustment, the image of the flank 

wear has three areas with different gray levels: low level for background, intermediate 

level for the unworn area of the cutter, and high level for the wear land. Deliberate 

adjustment of the orientation and intensity is rather troublesome and cumbersome. This 

is, however, an inevitable requirement for any optical method with visible light. It 

cannot be eliminated completely. In this method threshold selection is avoided in 

detecting the point on the wear land boundary. Furthermore, although it needs time and 

effort to make the initial adjustment ready, once this is done, the whole experimental 

setup can be used for all inserts of the same type since the relative geometric 

relationship between the camera and the insert is fixed. 

There is another problem with the individual image processing method. Given 

different parameters, the method may give different measurement results. In some 

cases, say, for the coated inserts, the measurement results have a large deviation. The 

main reason is that there is no a priori knowledge given to the method regarding the 

wear since there is only one individual image to be processed. However, in the 

successive image analysis method, since a series of images with close correlation are 

involved, a newly captured image can be processed with the knowledge obtained 

already from its neighboring image captured earlier. Therefore, the effect of 

parameters on the results, especially on the consistency of the results, is reduced. 
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2. A more robust and effective successive image analysis method based on 

processing moving images captured while the spindle rotates. 

    Based on the aforementioned individual image processing method, the successive 

image analysis method has been developed to capture and process the moving images 

when the spindle rotates. A trigger-capture mechanism is introduced in response to the 

spindle rotation. This mechanism ensures that the same insert appears at the same 

location in its image series. It also helps to control the integration time of the camera to 

reduce blur imposed on the image due to the rotation of the spindle. The hardware 

setup, therefore, leads to close correlation between successive images. In view of this, 

the critical area can be expanded dynamically as wear progresses. And the reference 

line and part information of the critical area extracted from the reference image can be 

reused for all subsequent images. This improves the accuracy, robustness and speed of 

the method. To reduce noise for these in situ images (opposed to images in off-line 

measurement), parallel scanning is proposed. It has been shown that this method is 

better than its predecessor (i.e., the earlier individual image processing method) in 

terms of accuracy, robustness, consistency and speed. 

Nevertheless, it is noteworthy that this method with the present setup cannot be 

directly used in the industry. Firstly, the image is captured at a very low spindle speed 

(only 20 rpm) because of the limitation of the experimental devices. Despite such a 

low speed, there exists some blur resulting from the rotation in the image. If the 

spindle speed is increased, with the same experimental setup in this case, the blur will 

be severe such that the wear land is very distorted and undetectable. In this case, 

deblurring is a must. Typically, there are software algorithms to do deblurring, say, by 

convolving with some deblurring function designed in connection with the rotation 
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speed and orientation. Figure 9.1 shows a moving image (as shown in Figure 5.2 (b)) 

and its deblurred counterpart by a Wiener filter.  

                               

             (a) Moving image                                          (b) Deblurred image 

Figure 9.1 Deblurring result 
 

It was found that the deblurred image suffered from ringing effect, which made the 

deblurred image unacceptable. It is therefore better to employ appropriate hardware to 

reduce the blur. This can be done in two ways. One way is to use strobe light that can 

provide strong illumination in a short period of integration time of the camera. The 

other way is to use a camera with higher speed coupled with a normal light (non-strobe) 

that can provide more intense lighting. 

    Secondly, the experimental procedure is a little more complex. But like the 

adjustment of the orientation and intensity of the light, after the setup for one insert is 

done, it can be used for all inserts of the same type. More importantly, if the developed 

system is integrated into the CNC machine, the coordinates of the camera, light and 

image capture point can be easily obtained, adjusted and stored. Hence, the whole 

system can be used easily. 

Thirdly, the commercial devices used in the experiments are not compact and so 

need much space. This may hamper them from being integrated into the CNC machine. 

However, as electronic technologies progress rapidly, it is possible to design more 

compact cameras and light systems at low cost. 
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3. An effective and robust 3-D crater wear by phase-shifting method. 

Four images of the rake face with different fringes projected on are analyzed to give 

the phase map, which is converted to a 3-D map of crater wear after calibration. This is 

a full-field optical non-contact method. Its performance has been found to be 

independent of light intensity, unlike other methods based on visible light. Therefore, 

it is effective and robust. 

As the devices for phase-shifting are not available for experimental use on the CNC 

machine, the crater wear is measured off-line rather than on-line. For off-line 

measurement, the current method is good. However, for on-line measurement, the 

method has two limitations. One is that the algorithm needs a long time to calculate the 

3-D map of the crater wear (in the order of minutes on PIII PC). Special image 

processing hardware can be used to speed up the calculation. The other limitation is 

that the devices need much space, similar to that for the flank wear measurement 

system. 

4. An effective flank wear estimation via SOM. 

The estimation is carried out on a pass-by-pass basis through an unsupervised SOM 

network. Two features sensitive to flank wear are extracted in time domain from the 

cutting force. The features and wear increment in the previous pass are used to train 

the SOM. After the training, the SOM is applied immediately to the succeeding pass, 

estimating the flank wear increment in this pass. Both off-line and on-line results show 

that this method is successful, especially at wear linear stage. Training without cutting 

conditions makes this method adaptive to various cutting conditions. The use of SOM 

avoids troublesome data collection and tedious off-line training. 

However, flank wear estimation in a pass-by-pass manner limits its feasibility in the 

industry. In the experiment, throughout the test, the vision subsystems works 
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periodically, i.e., at the same frequency no matter how serious the wear is. This may be 

a problem for industrial case. For example, when the wear becomes more serious, the 

condition is likely to be monitored more frequently by vision. It is easy to change the 

monitoring frequency in this approach. However, there is no optimum strategy to 

change the frequency. The design of such an optimum strategy should be explored in 

future work. 

5. Breakage detection via two force features in time domain and verified by vision. 

Features in time domain, frequency domain and wavelet domain are compared to 

identify their effectiveness in detecting breakage. It was found that features in time 

domain, i.e., residual error and peak rate are sensitive to breakage. Breakage or non-

breakage can be verified by vision successfully. 

In the detection of breakage, the thresholds are set dynamically with the correlation 

of two successive passes. This threshold determination method is reasonable and 

objective. 

    Collectively speaking, the TCM system based on intelligent sensor integration of 

vision and force has potential to be used to monitor flank wear and breakage in milling 

process in the industry. 

9.2 Recommendations for future work 

    In the previous section of Conclusions, some limitations are mentioned. In 

association with these limitations, recommendations for future work are given below: 

1. Hardware setup for capturing images when the spindle rotates at higher speed 

should be considered as part of the whole CNC machine system. The 

combination of high-speed camera and light (either a strobe light or a normal 

light) should be considered carefully in terms of their working temperature, 
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cost and working space. With a higher spindle speed, it is also necessary to 

control the laser trigger signal precisely so that the reference line in successive 

images has tolerable or no shift geometrically. The hardware should be 

miniaturized in size to be feasible for integration into the CNC machine. 

2. Crater wear should be considered in on-line monitoring. Firstly, like the 

successive image analysis method, it should be studied whether the crater wear 

could be measured when the spindle rotates via trigger-capture mechanism. 

Then from this point, the measurement devices for crater wear should be 

miniaturized to be integrated in the CNC machine. 

3. New features from force or other sensing signals should be extracted to reflect 

the change of wear rate and used as a clue to design an optimum control 

strategy for the frequency with which the vision subsystem works. From this 

aspect, besides force, other signals may be considered, for example, vibration 

or current. The wear rate given by vision can also be used in this regard. 

4. The current TCM system is dealing with cases where the machining is very 

simple (rectangular workpiece milling). For complex shapes to be made, the 

TCM system may not function properly. It should be further investigated. 

5. There is no a quantitative description about the estimation error in using the 

SOM as in-process flank wear estimator. How to quantify the error and use it to 

improve the estimation performance should be studied. 
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