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Summary 

 

The morbidity and mortality of cancer typically arises from metastasis of the primary 

tumor and it is generally accepted that secondary prevention through early detection 

yields the opportunity for early intervention. Spreading of cancer to distant sites is 

usually established through the body circulatory system and thus the number of 

circulating tumor cells (CTCs) in peripheral blood of cancer patients is strongly 

associated to the disease development. The technical challenge lies in the rarity of these 

cells in peripheral blood of cancer patients which makes them hard to be distinguished. 

Recent advances in microdevice technology have allowed highly sensitive techniques, 

and the current investigation seeks to demonstrate a system for the effective isolation and 

study of CTCs. The study presents a label-free microdevice that is capable of isolating 

cancer cells from whole blood via cancer cells’ distinctively different physical properties 

such as size and deformability. The isolation of CTCs using microfluidics is attractive as 

the flow conditions can be accurately manipulated to achieve an efficient separation. 

Using physical structures placed in the path of blood specimens in a microchannel, CTCs 

which are generally larger and stiffer are retained while most blood constituents are 

removed. The operations for processing blood are straightforward and permit 

multiplexing of the microdevices to concurrently work with different samples. The 

microfluidic device is optically transparent which makes it simple to be integrated to 

existing laboratory microscopes and immunofluorescence staining can be done in situ to 

distinguish cancer cells from hematopoietic cells. This also minimizes the use of 

expensive staining reagents, given the small size of the microdevice.  
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In the development of this microfluidic device, computational studies of the proposed 

microfluidic design along with results from feasibility studies are first performed. A full 

characterization of the microdevice with numerous cancer cell lines from different origins 

is then conducted. Finally, its direct use with clinical blood specimens is investigated. 

With the microfluidic system, it was demonstrated that an effective isolation could be 

attained and the microdevice is versatile to address the heterogeneities associated with 

different cancer types. The microsystem was verified with studies using cancer cell lines 

from breast, colorectal, gastric, liver, tongue and throat cancer. Using clinical blood 

specimens, isolation of CTCs was achieved with high sensitivity and attained close to 100% 

detection rate. Due to the unique separation technique, it also enabled the capture of a 

more diverse group of CTCs without the use of antibodies during enrichment. With this 

system, real-time visualization of CTC isolation can be achieved during blood processing. 

The microdevice shows promise in the isolation and investigation of CTCs on patients 

with metastatic cancer. 
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Computer Aided Design 
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CK 

 

Cytokeratin 

CT 

 

Computed Tomography 

CTCs 

 

Circulating Tumor Cells 

DAPI 

 

4',6-diamidino-2-phenylindole 

DMEM 

 

Dulbecco’s modified Eagle's medium 
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Epidermal growth factor receptor 
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Fluorescent Activated Cell Sorter 
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Fibre-optic array scanning technology 
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FDA  

 

US Food and Drug Administration  
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mRNA 
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NI 
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Chapter 1 Introduction 

 

1.1 Background (Disease and Technology) 

 

Cancer has been the interest of medical research for over a century and is usually 

associated with extreme desperation in patients due to the morbidity and fatalities 

involved. In 2008 alone, 7.6 million people die from the disease, with an estimation of 

over 12.6 million newly diagnosed cases (Ferlay J 2008) according to the World Health 

Organization (WHO). The lack of telltale signs at the onset limits the ability for 

eradicating or early treatment of cancer (Chambers, Groom et al. 2002). Physical signs 

associated with the disease include the uncontrolled proliferation of cells which can affect 

almost any part of the body. More often than not, these signs go unnoticed until serious 

impairment of bodily functions or pain is experienced. In most cases, the primary cause 

of cancer related deaths is the result of the intravasation of tumor cells from the primary 

neoplasm into the circulation and the subsequent growth of a secondary tumor at distant 

sites (Heyder, Gloria-Maercker et al. 2006; Steeg 2006), a process known as metastasis. 

The exact mechanism of how tumors spread remains an enigma, although there were 

early observations showing possibilities of targeted cancer spreading to specific organs in 

the human body (Paget 1889). In more recent investigations, the pathogenesis of cancer 

metastasis is now better understood after decades of extensive studies (Gupta and 

Massague 2006). Figure 1.1 highlights the key processes in metastatic development of 

cancer.  
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As shown in figure 1.1a, the disease establishes with a local aberration of cellular 

functions at the genetic level, leading to malignant transformation and tumor growth. 

Subsequently, cell proliferation results in increase tumor mass and extensive 

vascularization supplies continual nutrients to maintain growth. The invasion or 

intravasation of tumor cells into the host stroma provides entry into the circulation where 

cancer cells become free to colonize a secondary site as shown in figure 1.1f. This cycle 

Figure 1.1 Major steps in the metastatic progression of cancer. (a) Cellular aberration and 

tumor growth. (b) Formation of blood vessels to sustain and replenish nutrients to the tumor. 

(c-d) Intravastion of tumor cells into the stroma tissue and dissemination through the 

circulation. (e-f) Tumor arrest and extravastion to form secondary metastases. (Fidler 2003) 
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occurs repeatedly which translates into an aggravation of the disease for the patient. 

Important events in the biological cascade of cancer metastasis are the uncontrolled cell 

proliferation, angiogenesis and tumor dissemination into the circulation. These processes 

sustain the growth and allow the progression of the disease. An estimated 90% of deaths 

from solid tumors are a direct result of metastasis (Gupta and Massague 2006). Therefore 

effective means to combat the disease are through early detection before metastasis has 

occurred or to prevent the spread of the tumor cells to distant sites of the body.  

 

Technological advances have brought significant improvements in diagnostic methods, 

surgical techniques, general patient care and enhanced therapeutic treatments (Spinney 

2006). For instance, the use of nano-particles achieved the targeted delivery of anti-

cancer drugs directly to tumor cells, aiming to avoid debilitating outcomes with 

conventional chemotherapeutic treatments (MacDiarmid, Mugridge et al. 2007). The 

development of better imaging techniques such as the positron-emission tomography 

(PET) scan have proved useful in patients with non-small cell lung cancer (NSCLC) as 

compared to standard approaches using computed tomography (CT), ultrasonography and 

bone scanning (Pieterman, van Putten et al. 2000). As technology develops, it will 

increasingly have a broader impact in biology and healthcare, bringing more sensitive 

instruments for various clinical applications. This in turn hopes to improve the quality of 

life for patients. The need for better techniques in cancer detection cannot be 

overemphasized, given the increasing trend of people suffering or dying from the disease. 

New devices which are more sensitive and convenient in the clinical setting are necessary 
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to better detect tumors in the body so that they can be effectively eliminated before 

acquiring the ability to metastasize.  

 

 

1.1.1 Circulating Tumor Cells  

 

Cancer cells that enter the blood circulation are termed as circulating tumor cells (CTCs), 

with documented evidence of the presence of CTCs over a century ago (Ashworth 1869) 

during the examination of blood samples from a deceased patient. In more recent 

evaluations, CTCs are found in patients with different metastatic carcinomas (Allard, 

Matera et al. 2004; Steen, Nemunaitis et al. 2008) and clinical studies supported the 

potential use of the number of CTCs in peripheral blood as prognostic indicators for 

survival in metastatic breast, prostate and colon cancers (Cristofanilli, Hayes et al. 2005; 

Slade and Coombes 2007; de Bono, Scher et al. 2008; Helo, Cronin et al. 2009). Thus, 

analyzing the blood specimens of patients which are routinely taken can be useful and is 

also less invasive as compared with traditional biopsies. Evidence from various clinical 

investigations have also showed that CTC count in blood is directly linked to disease 

progression, overall survival (Cristofanilli, Budd et al. 2004; Nole, Munzone et al. 2008) 

and an indication of treatment efficacy (Reuben, Krishnamurthy et al. 2008; Serrano, 

Sanchez-Rovira et al. 2009). Comparing to invasive biopsies, the enumeration of CTCs in 

peripheral blood provides a promising alternative source of tumour tissue for the 

detection, characterisation and monitoring of non-blood-related cancers. Thus, isolating, 

quantifying and studying these cells obtained from peripheral blood are of much interest. 
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Research into tumor cell dissemination through the circulatory system has shown it to be 

an inefficient process and most of the tumor cells are destroyed before distant 

implantation can occur (Weiss 1990; Brodland and Zitelli 1992; Weiss 1992). As a result, 

the frequency of CTCs in peripheral blood of cancer patients is of very low concentration 

and varying in quantity from patient to patient (Zieglschmid, Hollmann et al. 2005; 

Losanoff, Zhu et al. 2008). The rarity of CTCs in peripheral blood presents a technical 

challenge to detect them (Pantel, Cote et al. 1999). Tumor cell count can be as low as 1 

cancer cell to 1 ml of blood which contains approximately 4.8 – 5.4 billion erythrocytes; 

7.4 million leukocytes and 280 million thrombocytes (Fournier 1998). Several different 

enrichment methodologies have been employed to isolate CTCs, most notably using 

biochemical means. Using anti-bodies targeted against epithelial specific antigens such as 

Epithelial Cell Adhesion Molecule (EpCAM), CTCs have been isolated using magnetic 

separation or flow based assays (Nagrath, Sequist et al. 2007; Riethdorf, Fritsche et al. 

2007). Additional immunofluorescence staining or molecular based techniques are 

utilized to confirm the presence of CTCs in the isolated cell population, allowing them to 

be distinguished from hematopoietic cells. The procedure is demonstrated in various 

clinical settings but studies have established that the effectiveness is highly dependent on 

the specificity of the anti-body used (Sieuwerts, Kraan et al. 2009). Alternative 

methodologies such as a direct visualization assay (Kahn, Presta et al. 2004), fluorescent 

activated cell sorter (FACS) (Moreno, O'Hara et al. 2001) and fibre-optic array scanning 

technology (FAST) cytometer (Krivacic, Ladanyi et al. 2004) have also been used to 

detect CTCs in blood samples. Complex procedures, tedious inspections and long 
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processing time are the limiting factors associated with most existing techniques. 

Furthermore, viability of the isolated cells is lost during the process as fixations of the 

samples are required by most existing techniques. The understanding of the molecular 

and biological characteristics of CTCs and their connections to the metastatic process is 

in its infancy but these tumor cells hold important information about the disease (Pantel 

and Alix-Panabieres 2007). 

 

There is much to appreciate about the conditions of CTCs whilst in circulation (Pantel, 

Brakenhoff et al. 2008) and having viable cells after isolation will allow studies to be 

carried out on CTC sub-populations. This may provide valuable insights into the 

metastatic process which will influence therapeutic decisions. Thus a sensitive 

enrichment method is crucial to aid in further examination of CTCs which can be 

clinically beneficial. Taken together, the enumeration of CTCs in peripheral blood is a 

promising and attractive complementary technique for the detection, investigation and 

monitoring of cancers. 

 

 

1.1.2 Microfluidics 

 

Biological cells, typically in the range of several microns to tens of microns, are 

extremely hard to handle for its small size. Precise control and instrumentation are 

required to work at such resolutions to correctly position the cell to the desired location 

for measurements to be taken (Van Vliet, Bao et al. 2003). Traditional bench-top tools in 
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cell and molecular biology are not sufficient to address the needs for sensitive and 

accurate measurements of rare cell events such as the isolation and enumeration of CTCs. 

The advent of various breakthroughs in micro and nano technology has aided the 

development of numerous manipulation and analytical methods for various qualitative 

and quantitative analyses. Techniques that are built upon engineering principles such as 

microelectronics as well as cell and nuclear mechanics have enabled the handling of 

micron and sub micron size objects or samples accurately. These methodologies also 

offer a high throughput analysis using small sample volumes (Bashir 2004; Whitesides 

2006) and make these technologies suitable to handle the challenges involved in single 

cell and nucleus manipulations, and analyze the molecular components such as DNA and 

RNA (Thorsen, Maerkl et al. 2002; Hong and Quake 2003).  

 

Microfluidics involves the miniaturization of systems for the handling and manipulation 

of small quantities of fluids. With microchannels in the dimensions of a few to hundreds 

of micrometers, it is well suited for single cell handling which is of comparable 

dimensions. The small size in microfluidic devices ensures laminar flow characteristics 

(low Reynolds number) which make the fluid flow predictable. The flow characteristics 

of such systems will further aid in the precise control of cells in the enclosed environment. 

A vast number of applications are being developed based on the technology which 

includes analytical systems in biochemistry, biomedical devices for disease detection and 

tools used in systems biology (Whitesides, Ostuni et al. 2001; Smith and Figeys 2006; 

Martini, Hellmich et al. 2007; Ohno, Tachikawa et al. 2008). Besides being suitable to 

handle single cells analyses, other motivations for using microfluidic platforms are 
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abundant.  It provides a quick means to test out designs due to the fast turnover time and 

offers the ability to integrate several devices with various functions to form a complete 

integrated laboratory on chip (Melin and Quake 2007). Furthermore, the miniaturized 

platform allows for minimal use of expensive reagents compared to similar conventional 

biological bench-top methods, thereby saving cost. The technology fundamentally 

introduces myriad possibilities to enhance and bring about new capabilities in a variety of 

analyses (Sorger 2008). Hence, microfluidic devices can be especially useful in 

investigating rare cell events like the detection of CTCs in peripheral blood.  

 

 

1.2 Motivations, Hypothesis and Objectives 

 

According to the American Cancer Society, about a third of patients (excluding non-

melanoma skin cancers) have metastases that are detected at the time when their cancer is 

first diagnosed. Another third of patients have metastases that are too small to be detected 

via the usual diagnostic tests. There is an inverse exponential relation for early detection 

with survival rate, and the disease can be fully cured if diagnosed early (Allard, Matera et 

al. 2004; Cristofanilli, Budd et al. 2004; Budd, Cristofanilli et al. 2006). Furthermore, for 

a patient with a malignant tumor, the surgical removal may bring immediate relief to the 

pain and suffering but leave the person with an uncertain future. The potential of remnant 

cancer cells resurgence in the body is unpredictable and there are no easy approaches to 

ascertain when it will happen again. Current methodologies that aid in the early detection 

of the disease cancer include tumor markers (such as PSA, CA 27.29, CA 15-3 and CEA) 
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and various imaging techniques. Tumor markers have little diagnostic value though they 

present well in prognosis (Zieglschmid, Hollmann et al. 2005; Elshimali and Grody 2006; 

Pantel and Riethdorf 2009), and imaging is difficult with newly formed and small 

micrometastases (Gilbey, Burnett et al. 2004). The detection of circulating tumor cells in 

peripheral blood is proposed as an alternative method in diagnosis and prognosis. 

 

The clinical relevance of assessing the quantity of CTCs in peripheral blood is to 

establish the direct association with cancer progression (Racila, Euhus et al. 1998; Allard, 

Matera et al. 2004; Cristofanilli, Budd et al. 2004; Kahn, Presta et al. 2004; Cristofanilli, 

Hayes et al. 2005; Budd, Cristofanilli et al. 2006; Hayes, Cristofanilli et al. 2006; 

Cristofanilli, Broglio et al. 2007; Nole, Munzone et al. 2007). For instance, Kahn et al. 

reported a correlation of disease stage and progression with the number of CTCs in 

peripheral blood on 123 patients (Kahn, Presta et al. 2004). Cristofanli et al. studied 177 

women with metastatic breast cancer and showed that patients with 5 or more CTCs in 

7.5 ml of blood had an overall survival of less than10 months (Cristofanilli, Budd et al. 

2004). Subsequently in a further report, they measured treatment efficacy through 

monitoring CTCs counts in blood (Cristofanilli, Hayes et al. 2005). The extraction of 

blood samples remain as one of the most commonly extracted body fluid in any health 

test which will allow ease of access to conduct CTC tests. Hence, a careful analysis of 

constituents in peripheral blood will assist in early detection of cancer. 

 

Leading technologies in CTC enrichment from blood specimen uses affinity based 

techniques which employ antibodies that are absent in blood cells.  These methods face 
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various drawbacks such as the need for pre sample preparation and more importantly the 

specificity of the antibody selected for enrichment. Additional preparatory steps are likely 

to incur CTC losses while the lack of a universal biomarker for CTC enrichment limits 

the detection of CTCs for different cancer types (Allard, Matera et al. 2004). The 

technique is also laborious, complicated and potential important information about the 

subpopulations of these cells may also be lost (Sieuwerts, Kraan et al. 2009). Furthermore, 

the isolated cells are no longer viable after processing of the blood samples which limits 

the downstream applications that can be done on CTC sub populations which hold 

important information about the metastatic process.  

 

Past studies have revealed that the shear modulus, stiffness, size and deformability of 

cancer cells (Weiss and Dimitrov 1986; Weiss 1990) are distinctively different from 

blood constituents (Shelby, White et al. 2003; Mohamed, McCurdy et al. 2004). 

Fundamental cell rheological properties of cancerous cells such as deformability and flow 

characteristics were extensively studied (Lekka, Laidler et al. 1999; Leinung, Wurl et al. 

2000; Ito, Nakanishi et al. 2002) and are attractive for CTCs enrichment. No functional 

modifications will be required as isolation is solely dependent on the biorheological 

properties differences of cancer cells and blood constituents. In addition, it bypasses the 

use of a selection antibody during the CTCs enrichment process. Without the need for 

functional modifications, it will simplify device preparation and blood processing.  

 

It is hypothesized that an efficient isolation of CTCs from peripheral blood can be 

achieved by utilizing the physical characteristics of tumor cells. From a mechanistic 
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purview, the separation and enrichment of tumor cells from blood is versatile for different 

cancer types, though significant molecular heterogeneity exists. The scope and objectives 

of the study will include designing a microfluidic device that exploits the differences in 

cell size and deformability of cancer cells to blood cells for the isolation and detection of 

CTCs. The microdevice is required to be biocompatible, and allow direct processing of 

blood to minimize intermediary steps so as not to compromise the CTC yield. In addition, 

the platform has to be able to handle large blood sample volumes and yet be gentle to 

isolated cells to maintain the integrity of CTCs. With the microdevice, the efficacy for 

separation and detection of CTCs will be studied. The system will be assessed based on 

its efficiency, sensitivity and isolation purity of tumor cells from blood. The study will 

also encompass the use of tumor cells from various cancer origins to ascertain the 

technique versatility. With clinical trials using peripheral blood specimens from cancer 

patients, it will test the applicability of the system on actual clinical samples and 

investigate various characteristics of CTCs.  
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Chapter 2 Literature Review 

 

The leading cause of death in patients with carcinomas are due to metastatic lesions and 

less likely of the primary tumor itself (Pantel and Brakenhoff 2004; Gupta and Massague 

2006). Even after curative resections, the probable resurgence of the disease poses an 

uncertainty that affects the emotional aspect of the patients. Furthermore, surgical 

operations are not entirely restorative and it was reported that 20-50% of patients with 

“localized” colorectal tumors after surgical removal die of metastasis (Cohen, Kelsen et 

al. 1997; Ratto, Sofo et al. 1998; Riethdorf, Wikman et al. 2008; Sergeant, Penninckx et 

al. 2008). The need for better diagnostic, prognostic and monitoring apparatus for the 

disease cannot be over emphasized.  

 

Technology development has bring about new tools in the field of biomedical 

engineering and microfluidic devices attracted great attention for its suitability to handle 

the various challenges involved (Whitesides 2003; Toner and Irimia 2005; Whitesides 

2006). Microfluidics is still in its infancy and represents a revolution in laboratory 

innovation, bringing the benefits of miniaturization, integration and automation for 

numerous research applications. It can be considered an integrative science with a 

combination of engineering, chemistry and biology (Gomez 2008). This technology has 

been the motivation for various biochemical applications in point of care diagnostics, 

bioterrorism detection and drug discovery. For instance, the methodology has been 

applied in single cell analysis which will allow for greater discrimination of different cell 

types (Wheeler, Throndset et al. 2003; Li and Li 2005), thereby producing more sensitive 
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responses to diseases and treatment monitoring. The technology has also been applied to 

cell sorting, and produced systems with the capabilities of high throughput and rare cell 

recovery (Huang, Cox et al. 2004; Davis, Inglis et al. 2006; Nagrath, Sequist et al. 2007; 

Pamme 2007; Tan, Yobas et al. 2009).   

 

For the purpose of the discussion, the clinical significance of CTCs will be reviewed, 

showing its association to aid in studying cancer. Competing technologies for the 

detection of CTCs will also be identified and compared. Lastly, the chapter will examine 

current microfluidic systems used in cell sorting and single cell analysis which are 

relevant to the current proposed microsystem to enrich CTCs from peripheral blood.  

 

 

2.1 Clinical Significance of CTCs  

 

The detection of CTCs dates back to 1869, which was first reported by Ashworth 

(Ashworth 1869) who observed the presence of tumor cells in blood taken off from the 

saphena vein of a deceased patient. Interest on these cells in circulation amass over the 

years to address how these tumor cells traverse and survive in the blood circulation 

(Weiss and Ward 1983; Weiss and Dimitrov 1984; Weiss and Dimitrov 1986; Weiss and 

Schmid-Schonbein 1989; Weiss 1990), their clinical significance to patients’ overall 

survival rate (Pool E.H. and G.R. 1934; Roberts, Jonasson et al. 1961; Cristofanilli, Budd 

et al. 2004) and the characteristics of these cells (Paget 1889; Ashida, Okuda et al. 2000). 

The use of CTCs as a tool for monitoring and understanding tumor cells in circulation is 
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rekindled in recent years due to the availability of new and emerging technologies, and is 

progressing rapidly to address various important problems in metastasis (Pantel and Alix-

Panabieres 2007; Pantel, Brakenhoff et al. 2008). These studies outline the importance of 

understanding the cancer cell biology for CTCs and its survival mechanism for this 

diverse population of tumor cells.  

 

Several reports demonstrated important connections between the presence of CTCs in 

peripheral blood and the disease. Mostly notably, CTCs were detected in many of the 

cancers at the early stage, indicating dissemination of neoplastic cells into the 

bloodstream occur at the initial stages of the disease (Loberg, Fridman et al. 2004; 

Riethdorf, Wikman et al. 2008). The possibility for CTCs to be isolated and detected 

during the early phases of the disease may provide values in prognosis and aid to design 

regimens for more effective therapeutic treatments. A summary of various studies with 

different cancer types are presented in tables 2.1, 2.2 and 2.3. 

 

 

2.1.1 Breast Cancer 

 

Numerous studies have been put forward on the detection of CTCs from the peripheral 

blood of breast cancer patients, its clinical relevance to disease progression and overall 

survival, and a measure of treatment efficacy (Schlimok, Funke et al. 1987; Harbeck, 

Untch et al. 1994; Cristofanilli, Budd et al. 2004). Breast cancer is the most widespread 

cancer among women in Singapore and demands attention for its prevalence. Table 2.1 
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summarizes various studies utilizing different enrichment schemes for the detection of 

CTCs from breast cancer patients. The most commonly used techniques for detecting 

CTCs after enrichment from peripheral blood are immunofluorescence staining for 

specific markers and RT-PCR for different oncogenes of interest. As shown in table 2.1, 

in order to detect breast cancer CTCs, a variety of molecular markers are employed 

which include CK2, CK18, CK19, EMA, MUC5B and CEA. The detection rates also 

vary in different investigations even with trials using the same molecular markers and are 

highly indicative of the heterogeneous nature of the disease. Positive detection rates of 

tumor cells range from 18% to 83% of peripheral blood samples from cancer patients at 

various stages of the disease.  

 

Schlimok et al. (Schlimok, Funke et al. 1987) and Cote et al. (Cote, Rosen et al. 1991) 

enriched CTCs from peripheral blood using density centrifugation from a patient pool of 

155 and 49 patients, respectively. Patients who participated in the tests were from various 

stages of systemic therapy and were tested for keratins from the enriched cell populations. 

From the studies, it was deduced that the presence of CTCs in peripheral blood was an 

indication to distant metastases and was positively correlated to early recurrence of the 

disease. The clinical implications of the results show that monitoring the presence of 

these tumor cells will aid to provide a measure to disease relapse and possibly introduce 

new treatment regimens before further disease progression occurs. The results from 

various other tests (Harbeck, Untch et al. 1994; Cristofanilli, Budd et al. 2004; Becker, 

Becker-Pergola et al. 2006) further confirms the CTCs’ clinical value which present 

correlations of the quantity of CTCs in peripheral blood to overall and disease free 
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survival, and the effects of chemotherapeutic exposures to cancer patients. Becker et al. 

(Becker, Becker-Pergola et al. 2006) in their studies showed a reduction of CTCs after 

chemotherapy which proves to be useful and sensitive to gauge treatment efficacy. Given 

the heterogeneity of the disease, Berois et al. (Berois, Varangot et al. 2003) investigated a 

series of molecular markers by RT-PCR. CEA and CK19 were shown to be significant 

prognostic indicators for patients with early disease. In short, CTCs in breast cancer had 

been detected as early as during primary diagnosis and also described as potential 

measures of chemotherapeutic treatments. The persistence of CTCs in circulation is likely 

to demonstrate the link to the disease and further evidences from molecular analyses will 

elucidate the characteristics of CTCs to design targets for them. 

 

 

2.1.2 Colorectal Cancer 

 

The detection of CTCs in colorectal cancer patients has yielded significant impact to 

demonstrate its clinical benefits. Most studies were performed with cytokeratin anti-

bodies which are illustrated in table 2.1. A variety of methodologies have also been 

employed which showed clinical correlation to patients at different stages of the disease. 

For instance, Silly et al. (Silly, Samonigg et al. 1992) used 5 ml of blood extracted from 

the patients who participated in the study and showed that there were a spike in tumor 

cell detection directly after surgical operations. CTCs were also discovered at early stages 

of the disease though the numbers were small. A total of 19 patients were enlisted for this 

trial and had a 79% detection rate using CK18 as the detection marker. In a similar trial 
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that examines the effects of surgical procedures, O'Sullivan et al. (O'Sullivan, Collins et 

al. 1997) predicted a high disease recurrence with the presence of CTCs after the 

operation to resect the tumor. Flow cytometry was used to detect CTCs in the samples 

using CK18 as the detection marker. Patients involved in the study were distributed over 

different disease stages and yielding a 27% detection rate from the sample population.  

 

Broll et al. (Broll, Lembcke et al. 1996) studied the results from 34 patients using density 

centrifugation to enrich CTCs from 8 ml of blood and showed that there was a strong 

relationship between the patients and the stage of their disease. The results were 

promising given patients from different stages showed a strong link to CTC detection. A 

panel of markers was also tested specifically for colorectal cancer and had varying 

detection rates which could be specific to the etiology of cancer. A 74% detection rate 

was achieved and clearly effective to associate the severity of cancer to specific patient’s 

state of health. Cohen et al. in 2 separate investigations (Cohen, Garin-Chesa et al. 1998; 

Cohen, Punt et al. 2009) showed the importance of detecting CTCs for colorectal cancer 

patients. In an earlier study with smeared samples, a significant decline in CTC count was 

observed after the tumor was resected. In more recent analyses using the CellSearch 

system, CTC count was demonstrated to be strongly linked to overall survival of patients 

with a sample size of 397 specimens. Progression free survival was also shorter for 

patients with unfavorable CTCs count and can be used as supportive evidence for future 

evaluations of CTCs in specific patient subgroups as a marker of outcome and treatment 

effects. 
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Table 2.1 Detection of CTCs and the clinical significance for breast and colorectal carcinomas 

Cancer 

Type 

Method of 

Enrichment 

Specimen 

Volume 

Detection 

Markers 
Stage 

Detection Rate 

(sample size) 
Correlation to disease Reference 

Breast 

Cancer 

Ficoll 6.1ml CK2,CK18 T1-4 18% (155) Detected distant metastasis (Schlimok, Funke et al. 1987) 

Ficoll NA 

Cell surface 

antigens;  

pan-CK 

>T1 37% (49) Showed early recurrence (Cote, Rosen et al. 1991) 

Lymphoprep 4-6ml EMA; Pan-CK M0,T1-4 38% (100) 
Demonstrated relapse free 

survival and overall survival 
(Harbeck, Untch et al. 1994) 

CellSearch 7.5ml pan-CK >T2 61% (177) 
Demonstrated progression free 

survival and overall survival 
(Cristofanilli, Budd et al. 

2004) 

Biocoll 10-20ml pan-CK T1-4 83% (112) 
Chemotherapy response. 24% 

detection rate after treatment. 
(Becker, Becker-Pergola et al. 

2006) 

Buffer Coat 5ml 
MUC5B, 

CK19, CEA 
T1-4 41% (46) 

Detection rate with different 

markers. MUC5B (19%), 

CK19 (41%), CEA (17%) 

(Berois, Varangot et al. 2003) 

Colorectal 

Cancer 

Ficoll 5ml CK18 I-IV 79% (19) 

Different detection rate in 

different stages. M1 (16%), 

Post operative (71%) 

(Silly, Samonigg et al. 1992) 

(Lindemann, Schlimok et al. 

1992; Panaro, Lou et al. 2005) 

Flow 

Cytometry 
NA CK18 I-IV 27% (48) 

Fewer metastatic cells 

postoperative 

Recurrence high with CTC 

present postop 

(O'Sullivan, Collins et al. 

1997) 

Ficoll 8ml 
Pan-CK; CK18; 

CEA; 17-1-A 
I-IV 74% (34) 

Correlated to stage of disease 

Detection rate for markers: 

CEA (30%), 17-1a (26%), 

pan-CK (67%), CK18 (52%) 

(Broll, Lembcke et al. 1996) 

Smear NA 
A33, CK18, 

pan-CK 
M1 34% (80) 

Showed significant decline 

post operation: resected: 9%; 

non resected: 34%  

(Cohen, Garin-Chesa et al. 

1998; Hou, Bhagat et al. 

2010) 

CellSearch 7.5ml pan-CK IV NA (397) 

Important prognostic factor 

for overall survival and 

progression free sruvival 

(Cohen, Punt et al. 2009) 

* CEA: Carcinoembryonic antigen; CK: Cytokeratin; EMA: Epithelial membrane antigen; MUC5B: Mucin-5B  
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2.1.3 Lung Cancer 

 

Table 2.2 summarizes 5 different studies conducted on lung cancer patients to investigate 

the significance of CTCs for this particular cancer type. Different methods of CTC 

isolation had been employed with specimen volume used in the tests ranging from 0.5 ml 

to 20 ml of blood. A variety of markers were also tested which is clearly indicative of the 

diverse nature of the disease and showed a high success rate to determine the molecular 

characteristics of lung cancer. For instance, Maheswaran et al. (Maheswaran, Sequist et al. 

2008) demonstrated the active monitoring of changes in genotypes of epithelial tumor 

cells in circulation. EGFR mutations which are responsible for resistance to certain drug 

treatments are identified in patients with NSCLC. By actively monitoring the changes of 

secondary mutations in the tumor cells, better administering of drugs can be devised.  

 

In other tests with lung cancer patients, there were direct correlations to tumor size and 

grades. Pantel et al. (Pantel, Izbicki et al. 1993) provided affirmative evidence of CTC 

detection with the severity of cancer linking tumor size and grading to the detection of 

CTCs. A sample population of 82 specimens was tested with 0.5 to 5 ml of blood volume 

using density centrifugation. Patients were in stage I to III of the disease. The results also 

showed that the disease recurrence is also linked to the amount of CTCs detected. In 

another test with EpCAM as the detection marker, there were however no significant 

conclusions drawn with clinical outcome with CTC detection. Brunsvig et al. (Brunsvig, 

Flatmark et al. 2008) tested 196 specimens from patients with stage I-IV lung cancer and 

denoted no significant correlation. The results could be due to the unsuitability of the 
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detection marker that was used in the tests or the heterogeneity of the disease. The former 

might be a stronger reason for the discrepancy as studies which utilized cytokeratins as 

detection markers registered a strong link to the clinical outcome of lung cancer patients. 

Kasimir et al. and Yasumoto et al. (Kasimir-Bauer, Schleucher et al. 2003; Yasumoto, 

Osaki et al. 2003) in two separate studies showed that the presence of CTCs significantly 

related to reduced overall survival in lung cancer patients and is correlated to the tumor 

size. Patient sample sizes were 80 and 351, respectively in each of the investigation and 

yielded a detection rate of 23% and 32%, correspondingly. The use of CTCs in patients 

with lung cancer is thus promising to aid in active disease monitoring and prediction of 

overall survival.  

 

 

2.1.4 Prostate Cancer 

 

There is evidence that detection of CTCs in peripheral blood of prostate cancer patients 

may represent a prognostic parameter. Different molecular markers have been proposed 

such as cytokeratins, PSA and EpCAM, which has shown to be effective to a certain 

extent. Detection of CTCs in prostate cancer patients are found in early stages of the 

disease as illustrated in table 2.2 and genotyping of the cells are now possible with new 

techniques available. Oberneder  et al. (Oberneder, Riesenberg et al. 1994) for instance 

correlated the presence of CTCs to tumor size, distant metastases and tumor 

differentiation. A total of 84 specimens were analyzed with a detection rate of 33%. 

Samples were taken from patients with early stages of the disease and enriched using 
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density centrifugation with 6 ml of sample volume. CK18 was used as the detection 

marker and the results were promising in identifying patients with critical conditions. 

Melchior et al. (Melchior, Corey et al. 1997) used PSA, which is a common serum 

antigen tested in clinical practice for prostate cancer. PSA is usually low in normal 

people and a sudden elevation may suggest the presence of prostate cancer. 16% of the 

prostate cancer patients with organ confined tumors were found to be positive for PSA 

from CTCs using RT-PCR. A total of 71 participants were enlisted, showing an 

approximate 20% detection rate. Patients with advance stage disease showed 71% 

positive responses in peripheral blood. The study also demonstrated a direct comparison 

with samples from the bone marrow and presented evidence that specimens from the 

bone marrow had a significantly higher rate of detection. This is suggestive of a more 

sensitive reading with bone marrow specimens than peripheral blood.  

 

On the other hand, Pfitzenmaier et al. (Pfitzenmaier, Ellis et al. 2007) concluded there 

were no specified correlations to the disease status using EpCAM as the detection marker. 

However, a detection rate of 92% was achieved for certain subgroups of cancer patients 

that were tested, showing a strong positive outcome. The tests also claimed to achieve the 

isolation of viable cells via an immuno-magnetic separation. In another interesting study, 

Leversha et al. (Leversha, Han et al. 2009) successfully performed fluorescence in situ 

hybridization (FISH) on isolated CTCs using the CellSearch system. FISH probes used 

included AR, MYC and 8p which were shown to be present in men with progressive 

castration-resistant disease. This is beneficial to aid in understanding disease genotypes 

and active monitoring for secondary mutations so that treatment regimens can be tailored. 
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Table 2.2 Detection of CTCs and the clinical significance for lung and prostate carcinomas 

Cancer 

Type 

Method of 

Enrichment 

Specimen 

Volume 

Detection 

Markers 
Stage 

Detection Rate 

(sample size) 
Correlation to disease Reference 

Lung 

Cancer 

Ficoll 0.5-5.0ml CK18 I-III 22% (82) 

Correlated to tumor size and 

grade. Showed disease 

recurrence with CTC detection 

(Pantel, Izbicki et al. 1993) 

Lymphoprep 

+  immuno-

magnetic 

separation 

10-20ml EpCAM I-IV 55% (196) 
No significant correlation to 

clinical outcome 
(Brunsvig, Flatmark et al. 

2008) 

Ficoll + 

immuno-

magnetic 

separation 

10ml pan-CK I-IV 23% (80) 

Presence of CK+ cells 

significantly correlated with 

reduced overall survival 

(Kasimir-Bauer, Schleucher et 

al. 2003) 

Ficoll 5ml CK18 I-III 32% (351) 

Correlated to tumor size and 

overall survival for stage II 

and III patients 

(Yasumoto, Osaki et al. 2003) 

CTC Chip 1-5ml Pan-CK; EGFR NA 100% (23) 

Monitoring changes in 

epithelial tumor genotypes 

during treatment 

Genotyping CTCs had a 

sensitivity of 92%, whereas 

plasma genotyping had 33% 

(Maheswaran, Sequist et al. 

2008) 

Prostate 

Cancer 

Ficoll 6ml CK18 N0M0 33% (84) 

Correlated to tumor size, 

distant metastases and tumor 

differentiation 

(Oberneder, Riesenberg et al. 

1994) 

Ficoll 5ml PSA 
pT1-3 

M0 
20% (71) 

CTCs preferential in the bone 

marrow than peripheral blood 
(Melchior, Corey et al. 1997) 

MACS 10ml EpCAM NA 46-92% (292) 

Viable cells can be acquired 

but no specific correlation was 

performed 

(Pfitzenmaier, Ellis et al. 

2007) 

CellSearch 7.5ml 

pan-CK, FISH 

probes (AR, 

MYC, and 8p.) 

Late 

Stage 
NA (77) 

Performing FISH in CTCs in 

men with progressive 

castration-resistant disease to 

analyze disease genotypes 

(Panaro, Lou et al. 2005; 

Leversha, Han et al. 2009) 

* EGFR: Epidermal growth factor; PSA: Prostate specific antigen; AR: Androgen receptor 
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2.1.5 Renal Cancer 

 

Renal cell carcinoma typically has poor prognosis as early detection is difficult and for 

the lack of tumor specific markers in the disease (Loberg, Fridman et al. 2004). The 

detection of CTCs may therefore aid in the clinical setting to provide a measure for early 

detection or monitoring purposes. It is also valuable to rely on CTCs to detect specific 

mutations linked to RCC which can be used as a means of genotyping the disease. As 

shown in table 2.3, Ohlmann et al. (Ohlmann, Ozgur et al. 2006) showed that the 

expression of MN/CA9 was significantly present in CTCs from renal cancer patients. The 

sample size of 24 yielded a positive detection rate of 67%. 8-10 ml of blood were drawn 

from each patient and enriched for CTCs using centrifugation. There were however no 

direct correlation to clinical outcome with the presence of CTCs in the study. On the 

other hand, Bluemke et al. (Bluemke, Bilkenroth et al. 2009) demonstrated significant 

links of CTCs to lymph node status and showed CTCs can be a strong prognostic factor 

in RCC. 16 ml of blood were used from each patient and enriched using centrifugation 

and a negative depletion technique that removed WBCs from the buffy coat. CK8/18 

were used as the detection marker for CTCs. An interesting observation from this study 

found considerable quantity of cytokeratin negative large cells which appeared to have 

morphology and characteristics of tumor cells. This is indicative of the presence of CTC 

subgroups which were not identified with standard markers.  

 

Using the CellSearch system, Basso et al. (Basso, Rossi et al. 2009) and Zovato et al. 

(Zovato, Opocher et al. 2009) demonstrated the detection rate of 80% and 71% with a 
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sample size of 20 and 21, respectively. It was also found that the baseline CTC count do 

not significantly relate to the extension of the disease nor to sunitinib (Tryosine Kinase 

Inhibitor) response. There were however interesting observations about the state of CTCs 

in the samples which showed that 50% of sporadic RCC patients and 66% of VHL 

patients had 100% apoptotic cell population. In addition, few studies have focused also 

on the genotyping aspects of RCC. For instance, Ashida et al. (Ashida, Okuda et al. 2000) 

reported the detection of the VHL tumor suppressor gene mutations in CTCs which were 

also detected in the tumors of RCC patients. This is direct evidence of tumor shedding 

into the blood circulation with CTCs retaining the characteristics of the primary tumor. 

The clinical implications of the study showed the possibility of tracing the characteristics 

of the tumor based on the cancer cells that were released into the blood circulation. 

 

 

2.1.6 Gastric Cancer 

 

Although recent technological advances and awareness to a healthy diet have brought 

about an improvement in clinical outcome of patients with gastric cancer, the prognosis 

of patients in their advanced stages remain bleak. This is largely because of the high 

incidences of metastases and disease resurgence. Early detection is the key component to 

reduce the mortality rate. The use of CTCs in the clinical setting may provide a 

convenient technique as blood samples are readily available. With a suitable biomarker, 

an accurate measure of the disease as well as a high detection rate can be achieved. 

 



25 

 

For instance, Koga et al. (Koga, Tokunaga et al. 2008) tested a variety of different 

common targets in gastric cancer. The density centrifugation technique was applied to 

enrich the tumor cell population from 10 ml of blood for the trials. mRNA sequences for 

CK18, CK19, CK20 and CEA were used on the isolated cell populations to test their 

prevalence. The results showed that the CK19 and CK20 expressions were significantly 

increased in patients with a non-curative operation or recurrence of gastric cancer as 

compared to healthy volunteers. Furthermore, the five year survival rate for patients’ 

samples who expressed CK19 above the cutoff rate (results taken from healthy volunteers) 

was 50% and for CK20 was 51.9%. CK19 was proposed to be a more suitable marker 

than CEA, CK18 and CK20. This could be clinically beneficial for prognosis or to design 

a postoperative strategy of adjuvant treatment.  

 

In another investigation, Mimori et al. (Mimori, Fukagawa et al. 2008) showed that MT1-

MMP was useful to detect CTCs in the sample population of 185 specimens. A 100% 

detection rate was achieved in the trials with patients from stages I-IV. It was further 

deduced that MT1-MMP from CTCs in peripheral blood of cancer patients was an 

independent marker for determining cancer recurrence and distant metastases. These can 

be clinically valuable to make judgments about the disease and also in early detection of 

gastric cancer. In other tests with gastric cancer patients, Allard et al. (Allard, Matera et 

al. 2004) demonstrated the isolation of intact cancer cells using the CellSearch system 

with an average of 24 recovered tumor cells from the tests. A 31% detection rate was 

achieved using pan-cytokeratin as the detection marker in a sample size of 13 specimens.  
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Table 2.3 Detection of CTCs and the clinical significance for renal cell and gastric carcinomas 

Cancer 

Type 

Method of 

Enrichment 

Specimen 

Volume 

Detection 

Markers 
Stage 

Detection Rate 

(sample size) 
Correlation to disease Reference 

Renal 

Cancer 

Ficoll 8-10ml MN/CA9 pT1-3 67% (24) 

Use of MN/CA9 in the 

detection of CTCs  

No direct correlation of CTCs 

to clinical outcome 

(Ohlmann, Ozgur et al. 2006) 

Ficoll + 

MACS 
16ml CK8/18 NA 41% (154) 

CTCs correlated to lymph 

node status and a strong 

prognostic marker 

(Bluemke, Bilkenroth et al. 

2009) 

CellSearch 7.5ml pan-CK NA 80% (20) 

Baseline count does not 

correlate to extension of 

disease nor to sunitinib 

treatment 

(Basso, Rossi et al. 2009) 

CellSearch 7.5ml pan-CK NA 71% (21) 

Apoptotic cell population 

found in CTCs from sporadic 

RCC patients (50%) and VHL 

patients (66%) 

(Zovato, Opocher et al. 2009) 

Ficoll 10ml VHL I-IV 75% (20) 

Mutations of the VHL tumor 

suppressor gene detected in 

CTCs which are also found in 

the tumors of RCC patients 

(Wilding, Kricka et al. 1998; 

Ashida, Okuda et al. 2000) 

Gastric 

Cancer 

Ficoll 10ml 
CK18; CK19; 

CK20; CEA 

Late 

Stage 
15.5% (69) 

Detection rate with different 

markers. CK19 (11.6%); 

CK20 (15.5%).  

5 year survival rate for CK19 

positive patients (50%); CK20 

(51.9%) 

(Koga, Tokunaga et al. 2008) 

NIL 1.0ml MT1-MMP I-IV 100% (185) 

MT1-MMP in peripheral 

blood was an independent 

factor for determining 

recurrence and distant 

metastasis 

(Mimori, Fukagawa et al. 

2008) 

CellSearch 7.5ml pan-CK NA 31% (13) 
Mean cell count of 24 cells 

were retrieved 
(Allard, Matera et al. 2004) 

*VHL: von Hippel-Lindau 
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2.2 Prior Art in CTC Detection  

 

The isolation, quantification and molecular categorization of CTCs is extremely 

challenging as they exist as rare events in the presence of billions of blood cells. 

Furthermore, given the sheer size of these cells, handling them using conventional bench 

top techniques are difficult. Several methods are proposed in the processing of peripheral 

blood for the detection of CTCs and a summary is outline in table 2.4. A more detailed 

analysis for two of the leading detection methodologies are presented in the subsequent 

discussion.  

 

The CellSearch system (Veridex LLC, Raritan, NJ, USA) is currently the only setup in 

the market approved by the US Food and Drug Administration (FDA) for the clinical use 

of CTCs in breast, colorectal and prostate cancer. It consists of a CellPrep system, the 

CellSearch Epithelial Cell Kit, and the CellSpotter Analyzer. Blood specimens are also 

extracted into their proprietary CellSave Preservative Tube which is an evacuated blood 

draw tube containing EDTA as the anti-coagulant together with the presence of  a cellular 

preservative. Requirements for blood specimen storage are straightforward, keeping them 

in room temperature prior to use and to be processed within 72 hrs of blood collection. 

The CellPrep machine is for the purpose of sample preparation and is semi-automated to 

ease operations. The CellSearch Epithelial Cell Kit is a set of standard reagents used for 

CTC enrichment and detection. It consists of ferro-fluids coated with epithelial cell 

specific EpCAM antibodies for immuno-magnetically separation of CTCs from 

peripheral blood; a mixture of two phycoerythrin-conjugated antibodies that bind to 
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cytokeratins 8, 18, and 19 which are supposed to be present in epithelial tumor cells and 

not in blood cells; anti-bodies for CD45 conjugated to allophycocyanin as a negative 

stain to identify WBCs; and DAPI to label the nucleus of the cells.  

 

The kit also comes with standard buffers for washing procedures, permeabilizing of the 

cells and blocking to prevent non specific bindings. Briefly, 6 ml of buffer was added 

into 7.5 ml of blood, centrifuged for 10 minutes at 800g, and placed on the CellPrep 

system. The plasma and buffer layer were then automatically removed by the system and 

ferro-fluids from the CellSearch Epithelial Cell kit were added followed by an incubation 

period. The bounded cells were the separated by means of the affinity of ferromagnetic 

beads attached to cells to be attracted to a magnetic field and the rest of the effluence 

were aspirated. The staining agents used to identify CTCs for immunofluorescence were 

added together with the permeabilization buffer and set for another incubation cycle to 

molecular interactions to complete. After the incubation period, the magnetic field was 

applied again so that cells were immobilized and excess reagents could be washed away.  

 

For the final procedure before detection, the isolated cells were resuspended in the 

MagNest Cell Presentation Device, where it contained a magnet that orient the labeled 

cells onto the same focal plane for analysis using the CellSpotter Analyzer. The 

CellSpotter Analyzer is a four-color semi-automated fluorescence microscope which 

captures images from the MagNest and presents them to the user for manual 

identification. Criteria used to confirm the presence of CTCs included round to oval 

morphology, a visible nucleus (DAPI positive), positive staining for cytokeratin, and 
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negative staining for CD45. As illustrated in table 2.4, the system had a proof of concept 

using specimens from numerous cancer patients suffering from a variety of different 

cancers (Allard, Matera et al. 2004) and were successful in providing standardized tests 

for reproducible measurements. The specificity of the technique was high and had 

negative responses from healthy volunteers. Recent development effectively integrated 

additional features for the molecular characterization of CTCs to determine the genotype 

analysis of the disease (Leversha, Han et al. 2009). The system thus has potential to be 

clinically relevant for monitoring and prognostication of cancer. 

 

Figure 2.1 shows the experimental setup for the CTC-chip which is also used to isolate 

and detect CTCs from whole blood. It consisted of an array of microposts as shown in 

figure 2.1d which had been chemically treated to be functional with EpCAM antibodies. 

The arrays of microposts were optimally positioned to enhance the interaction of tumor 

cells to micropost surface, and the microscale of the setup ensured a high surface area to 

volume ratio to maximize capture efficiency. The flow velocity was the controlling 

parameter for the efficacy of the system and to establish flow through the chip, pneumatic 

lines were added to drive sample fluid across the system.  

 

In brief, for device preparation, the microchips made out of silicon were purged with 

nitrogen and sealed using pressure sensitive adhesive tape (3M, St Paul, USA). The 

silicon chip was then placed in a custom made plastic manifold with inlet and outlet ports 

for fluid handling. The system was made leak resistant by mechanically locking the 

microchip in the manifold with screws that ensures all the parts were tightly in place. 
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Standard luer lock fittings were added to the inlet and outlet ports to facilitate sample 

entry and effluence removal.  

 

For blood delivery into the system, a pneumatic driving setup consisting of manual 

pressure regulators, digital gauges and a blood tube rocking mechanism were designed 

in-house. Prior to running the samples, the device was purged with 3 ml of buffer that 

removed trapped air bubbles in the system. The sample was then allowed to mix on the 

rocker for at least 5 min before running the experiment. At the start of blood processing, 

the pneumatic pump was turned on and adjusted to the required settings for the desired 

Figure 2.1 Isolation of CTCs using a microfluidic device. (a) Experimental setup with the 

sample continually mixed on a rocker, and pumped through the chip using a pneumatic 

pressure-regulated pump. (b) Overview of the CTC-chip with microposts etched in silicon. (c) 

Whole blood flowing through the microfluidic device. (d) Scanning electron microscope 

image of a captured NCI-H1650 lung cancer cell spiked into blood (pseudo coloured red). The 

inset shows a high magnification view of the cell. (Nagrath, Sequist et al. 2007) 
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flowrate. After the processing of blood, the microchip was flushed with 10 ml of PBS at 

10 ml/h to remove cells that were non specifically bounded.  

 

Identification and enumeration of CTCs were then performed in situ with 

immunofluorescence staining for cytokeratin, CD45 and DAPI. The microchip was 

scanned automatically in a 1mm × 1mm grid format using the programmable stage and 

Qcapture Pro software (Media Cybernetics, Bethesda, MD, USA). Enumeration for CTCs 

were then performed with careful evaluation of the images at 100X magnification by 

examining the staining results, morphological characteristics such as cell size and shape 

to exclude possibilities of non specific cells that were attached and/or debris present in 

the blood specimen. The results were evaluated by 2 different operators independently to 

reduce inter-operator variability. As illustrated in table 2.4, the proof of concept were 

shown with patients samples from lung, prostate, pancreatic, breast and colorectal cancer, 

and achieving a high sensitivity and tumor cell yield from these samples. The system was 

further proven to be gentle to isolated cells and the use of whole blood directly aid to ease 

operational needs.   

 

With the enabling technologies available, the isolation of CTCs which is clinically 

beneficial will be enhanced. Table 2.4 summarizes the main points about current 

techniques employed in the detection of CTCs but is by no means exhaustive for all the 

existing techniques. As noted in table 2.4, the capture target using different techniques 

are dissimilar but have yielded significant results with clinical samples. These 

technologies are also likely to complement each other to fill in the short comings 
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associated with certain techniques. Ikonisys (table 2.4) for instance uses a combination of 

centrifugation and filtration which is likely to reduce noise levels (non specific cells) in 

the isolated cells. Affinity based techniques using EpCAM is hotly debated as the marker 

is shown in certain cases to be less expressed in various tumor cells (Sieuwerts, Kraan et 

al. 2009), which will result in the loss of these cells and consequently presents an 

underestimate of CTCs in blood. Nonetheless, the development of techniques for CTCs 

isolation is still new and with more studies done on these tumor cells, better 

methodologies can be devised which will be clinically beneficial. The long term goal is 

thus to incorporate the tests as standard measures to enhance the quality of life for cancer 

patients. 
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Table 2.4 Comparison of current methods to detect CTCs (Stebbing and Jiao 2009)  
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2.3 Microfluidics for Cell Sorting using Physical Methodologies 

 

Effective methods for the manipulating, isolating and sorting of cells are essential for the 

development of microfluidic-based point of care diagnostic platforms. Cells are 

extremely heterogeneous, differing in their genetic makeup, behavioral characteristics 

and functions. The benefits of such technologies enable high speed processing with 

enhanced sensitivity, allowing for rare cell recovery and better discrimination of cell 

types in a mixed cell population. Microfluidic systems are well positioned to tackle the 

challenges involved, given the compatibility with biological species, similar dimensions 

to cells and accuracy in manipulation with flow control. The proposed system for the 

 

 

Table 2.5 Cell sorting using physical techniques with microfluidic devices 

Methodology Capture Target Reference 

Pillar structures that deflect 

particles and cells based on size 

Sorted beads of different sizes and fractionation of 

blood in a continuously mode 

(Huang, Cox et al. 2004; 

Davis, Inglis et al. 2006; 

Inglis, Davis et al. 2006) 

Side diffusive filter system in a 

microchannel 

Leukapheresis, for the enrichment of leukocytes in 

a blood sample 
(Sethu, Sin et al. 2006) 

Direct filter structures in the 

flow path of flow that passively 

selects fetal cells in the sample 

Isolation of fetal cells from maternal circulation 
(Mohamed, Turner et al. 

2007) 

Weir structures that have a gap 

at the top of the pillars to 

selectively allow cells to pass 

based on deformability 

Separation of leukocytes from blood and allowed 

further molecular analysis to be carried out  

(Wilding, Kricka et al. 

1998; Panaro, Lou et al. 

2005) 

Step weir structures that 

differentiate samples based on 

physical means and the gap 

distance from the top of the 

chamber   

Size separations of mixtures of 0.5 and 1.0 microm 

carboxylated polystyrene beads as well as of binary 

mixtures of Staphylococcus aureus and 

Saccharomyces cerevisiae cells and of S. cerevisiae 

and Escherichia coli cells are demonstrated. 

(Vankrunkelsven, Clicq 

et al. 2004) 

Inertia flow separation based on 

the migration of particles across 

stream lines due to the inertial 

aspect of the flow   

Massive parallelization of continuous pathogenic 

cell separation from diluted blood 

(Mach and Di Carlo 

2010) 
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isolation of CTCs from the peripheral blood of cancer patients works on the physical 

characteristics of cancer cells from blood cells, and the section aims to review various 

physical separation microfluidic technologies. Table 2.5 highlights various examples of 

microfluidic systems utilizing physical separation to effectively discriminate against 

different cell types. 

 

 

2.3.1 Pillar structures  

 

The use of pillared structures is attractive for size and deformability based cell sorting. 

Huang et al. describe a method of continuous separation based on a “deterministic lateral 

displacement” of micron sized particles with a resolution less than 20 nm (Huang, Cox et 

al. 2004). The layout of the microfluidic device consists of arrays of pillar structures 

within the main flow channel.  

 

Using the technology, Davis et al. successfully fractionated blood components by 

tailoring the design of the microfluidic devices to the sizes of the blood cells (Davis, 

Inglis et al. 2006). In the approach, the selection mechanism is based on the size of the 

cells as they interact with the obstacles (figure 2.2a). Taking advantage of the laminar 

characteristics of the flow profile, sorting of the cells is achieved during the asymmetric 

bifurcation of the flow around the pillars. The effectiveness of the separation is controlled 

by the critical hydrodynamic diameter (Inglis, Davis et al. 2006) which is related to the 

size of the gaps, positions of the pillar arrays and the dimensions of the cells. Sizes of 
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cells smaller than the critical hydrodynamic diameter maintains an average downward 

flow direction following the streamlines around the pillar obstacles. Above the critical 

diameter, cells are laterally displaced into the adjacent streamlines in a particular 

direction controlled by the placement of the pillars.  

 

The advantage of the system lies in its simplicity and reliability. It does not require the 

presence of any molecular tags nor complex preparatory procedures and the system 

Figure 2.2 Cell separation using lateral displacement in a laminar flow. (a) Schematic of 

design and separation principle. Particles that are smaller than the critical diameter (green 

particle) follow initial designated streamlines while the larger particle (red particle) is 

displaced to the right during the interactions with the obstacles. (b) Fractionating device that 

separates blood cells. (c) Plasma separation device for the removal of all cells from whole 

blood (Davis, Inglis et al. 2006). (d) Design of microfluidic diffusive filter for leukocyte 

enrichment (Sethu, Sin et al. 2006). 

 

(b) 

(c) (d) 

(a) 
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maintains clog free throughout various sample processing (Davis, Inglis et al. 2006). In 

addition, the microfluidic device is capable of sorting multiple sizes of cells in a single 

pass as shown in figures 2.2b and 2.2c for the fractionation of whole blood.  

 

Besides utilizing the characteristics of the laminar flow, pillar structures are ideal as 

filters for cell sorting. By tailoring the dimensions in between pillars, selection of cells 

based on their size and deformability can be achieved. The technique has been 

demonstrated to be effective in isolating circulating tumor cells (CTCs) from blood 

(Mohamed, Murray et al. 2009; Tan, Yobas et al. 2009) and also in leukapheresis (Sethu, 

Sin et al. 2006). Sethu et al. showed the ability to enrich leukocytes from whole blood 

without clogging the device and offers the possibility for the leukocyte depleted blood to 

be returned to the donor (figure 2.2d) (Sethu, Sin et al. 2006). The design features pillar 

structures with 2.5µm gaps alongside the central channel that permits passage of 

erythrocytes in a continuous separation while acting as barriers to leukocytes.  

 

With a similar methodology, CTCs which are generally larger and stiffer than blood 

constituents are impeded with different gap sizes (Mohamed, Murray et al. 2009; Tan, 

Yobas et al. 2009). The technique which is simple and straightforward is attractive for 

cell sorting in various applications. However, such physical systems that separate cells 

passively by geometrical and rheological differences are likely not universal. The gap 

sizes between pillar structures will need to be modified to suit the target sample. 
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2.3.2 Weir Structures 

 

Cell sorting using mechanical filtration techniques such as weir structures in microfluidic 

designs are straightforward and simple to operate. The mechanism at which separation is 

achieved is primarily by the sizes of components in a heterogeneous sample. Gaps are 

created in between weirs and the top cover, which performs as a filter to permit smaller 

cells to go through while impeding larger cells. Wildings et al. use a series of such weir 

structures to isolate leukocytes from blood (Wilding, Kricka et al. 1998) as shown in 

figure 2.3a. The weir-type filter features a 3.5 µm gap between the silicon structure and 

the Pyrex top cover, which effectively allows the passage of biconcave shaped 

erythrocytes of 7.6 - 8.2 µm diameters and 2 µm thicknesses. The major drawback of a 

direct filtration system is the clogging issues that may interfere with the separation 

(b) (c) (a) 

Figure 2.3 Physical based separation using weir structures. (a) Impediment of white blood 

cells due to the size of the cells comparing with red blood cells (Wilding, Kricka et al. 1998). 

(b) Weir structures alongside the main flow channel which effectively prevents clogging when 

dealing with larger sample volume. (c) The weir type device after filtration of blood showing 

the clear separation of white blood cells (Chen, Cui et al. 2008). 
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process due to the processing of large sample volumes. Weir filters that are perpendicular 

to the flow cause cell buildup over time, leading to obstructions. Chen et al. produce 

microfluidic devices by setting weirs structures alongside to the main flow (Chen, Cui et 

al. 2008) to address the cell clogging issue as depicted in figure 2.3b. The device consists 

of 3 parallel micro channels, separated by weir filtration blocks along the main flow 

direction. With a 3.5 µm gap, the device allows erythrocytes and other smaller cells to 

cross from the main channel into the side flow, which effectively restricts only the 

leukocytes in the main channel (figure 2.3c). However, such mechanical filtration 

systems that separate cells by geometrical differences are likely not universal and will 

require variations in design when the target sample changes. Furthermore, reported 

studies show limited efficiency in the target cell isolation (Wilding, Kricka et al. 1998; 

Chen, Cui et al. 2008) though the amount is sufficient for further downstream analysis to 

be carried out.  

 

Nonetheless, physical cell separation represents a simple yet straightforward means for an 

effective separation. The use will be extended in the current study to address rare cell 

events to detect CTCs from metastatic cancer patients.  

 

 

2.3.3 Inertia Flow Separation 

 

The use of inertia forces in separation is an important technique given the simplicity of 

the procedure and is generally label free during separation. In a laminar flow as in the 
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Figure 2.4 Inertial forces that achieves self-ordering of articles. (a) Schematic of the ordering 

process. Precise ordering of initially scattered particles is observed both longitudinally along 

the direction of flow and laterally across the channel. (b) Top-down views of fluorescent 

streak where flow is from left to right. Particles are initially uniformly distributed within the 

fluid and focusing of particles into four single streamlines is observed. (c) For a symmetric 

curving channel the symmetry of the system reduces focusing to two streams. Above a critical 

Dean number (De) focusing is perturbed. (d) For an asymmetric curving system, focusing 

down to a single stream is favored. Focusing is again more complex as De increases. (e) A 

confocal cross-section of the rectangular channel shown in b shows focusing of particles to the 

four channel faces. (Scale bar, 10 μm.) (f) Schematic diagram showing the force balance 

between the shear-gradient (F shear, red arrows) and wall-induced lift (F wall, blue arrows) 

for particles in three positions. (g) Confocal cross-section for an asymmetric channel. (h) 

Starting at the inlet on the left, a random inlet distribution of fluorescent microparticles is 

focused to a tight streamline on the right after a short distance. (Scale bar, 160 μm.) (Di Carlo, 

Irimia et al. 2007) 
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case of fluid traversing in a microfluidic channel, it is generally accepted that in the 

absence of an external force, particles tend to follow defined streamlines. Inertia forces 

become significant when the aspect ratio and geometries of the flow channels are altered 

as characterized by Di Carlo et. al (Di Carlo, Irimia et al. 2007). By making use of the 

inertia effects, particles can cross streamlines in a predictable manner, thus achieving an 

effective separation (Di Carlo, Irimia et al. 2007; Di Carlo, Edd et al. 2008; Di Carlo, Edd 

et al. 2009; Gossett and Di Carlo 2009; Russom, Gupta et al. 2009; Hou, Bhagat et al. 

2010).  A schematic of how a series of ordered particle can be obtained due to the inertia 

forces exerted of them in the flow is shown in figure 2.4. By further controlling the fluid 

flow parameters as shown in figure 2.4b, c and d, the effects of the focused flow can be 

enhanced to attain a more distinctive separation. 

 

Using this phenomena in fluid flow, cell separation of pathogenic bacteria cells was 

retrieved from diluted blood specimens (Mach and Di Carlo 2010). A massive parallel 

microfluidic device was designed and achieves more than 80% removal of the bacteria 

cells after 2 passes. It allows a throughput of 400 million cells per minute and can process 

blood at 240 ml.hr. The technique is potentially useful in the field for its simplicity and 

portability for concentrating specimens  in a robust manner.  

  

 



42 

 

Chapter 3 Methods and Materials 

 

3.1 Microdevice Fabrication 

 

Figure 3.1a highlights the fabrication steps involved in the manufacture of the 

microdevice. The microfluidic biochip was produced using soft lithography (Chang, di 

Tomaso et al. 2000) and the procedures are described as follows. The design of the 

microdevice was first printed on a photo mask (Infinite Graphics Inc., Minneapolis, MN, 

USA) which was drawn on a computer aided design (CAD) software Cadence (Cadence 

Design Systems, Inc., San Jose, CA, USA). SU8-2025 (Microchem Corporation, Newton, 

MA, USA), a negative photoresist was spin coated at 3200 rpm for 45 seconds on an 8 

inch silicon substrate to achieve the thickness of 18-20 μm. Then it underwent an 

ultraviolet exposure of 120 mJ/cm
2
 through the photo mask where the portions that were 

exposed become polymerized. Following that, the photoresist developer removed the 

unexposed region chemically. A final hard bake in the oven was performed to ensure a 

better adhesion of the photoresist to the substrate. The designs on the silicon substrate 

become the master molds (figure 3.1b) which could then be used for replica molding of 

the microdevice. 

 

Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, Midland, MI, USA) mixed 

according to manufacturer’s recommendation (10:1) was degassed and poured over the 

master mold. The mixture was then subjected to the curing conditions of 80°C for 2 hours 

in an oven. Fluidic ports were created using punches on the patterned PDMS shown in 
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figure 3.1c after the removal from the master mold. The PDMS block together with a 

glass slide was then subjected to oxygen plasma treatment and bonded irreversible. A 

power setting of 70W, exposed to plasma for 65s with oxygen flowrate of 60 sccm were 

used. The bonded microdevice underwent a final heat sterilization cycle at 150 ºC 

overnight. Prior to use, tubings were finally inserted directly into the fluidic ports of the 

finished microdevice to allow blood samples to be introduced.  

 

 

3.2 Experimental Setup and Apparatus Preparation 

 

The experimental setup which is integrated onto an inverted microscope (Leica 

Microsystems GmbH, Germany) is illustrated in figure 3.2. The compatibility with 

Figure 3.1 Major steps in the fabrication of the microdevice. (a) Device fabrication using soft 

lithography procedures. (b) Master mold on a pre cut 8 inch wafer. (c) Microdevice removed 

from the master mold. 

 

(a) 

(b) 

(c) 
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existing laboratory microscope meant that real time visualization of the isolation process 

can be achieved. Predetermined pressure differentials were used to drive the samples 

across the microdevice using manual pressure regulators in the initial design layout (Tan, 

Yobas et al. 2009). The platform was upgraded as depicted in figure 3.2a to use 

compressed air from two large syringes to produce pressured lines. A program written in 

NI Labview (National Instruments, Austin, TX, USA) controlled the programmable 

syringe pump (Harvard Apparatus, Holliston, MA, USA) and made minute adjustments 

every 100 ms in response to pressure drop. The differential pressure was measured by a 

pressure transducer (Honeywell, Morristown, NJ, USA) which was feedback to the 

computer via a voltmeter to precisely control the pressure settings into the microdevice. 

This allowed semi-automation in the blood processing and also made the entire system 

(a) 

Figure 3.2 Experimental apparatus and setup. (a) Schematic of the entire setup showing the 

pressure control component and the microdevice system. (b)  Entire CTCs isolation setup 

which is integrated onto an inverted microscope to allow real time visualization and 

compactness to reduce dead volume.  

(b) 
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easily portable without requiring external pressure sources. The control of the pressure 

differential is critical as the efficacy of CTC separation is highly dependent on the 

applied pressure conditions. With the semi-automated system, the refresh rate of 100 ms 

ensured the operating pressure differential is tightly controlled. 

  

For apparatus preparation prior to samples processing, the microfluidic system was 

flushed with 5mM EDTA (Sigma, St. Louis MO, USA) buffer through the sample inlet as 

shown in figure 3.2b for 10 minutes at 120 µl/min. No other preparatory steps were 

required for the sample.  

 

The device was mounted on an inverted microscope, with custom made fixtures as 

depicted in figure 3.3 to hold liquid reservoirs as close as possible to the microfluidic 

device to minimize sample/reagent wastage in the tubings during processing. The setup 

also allowed multiplexing of the microdevices to concurrently process more samples at 

the same time (figure 3.3b and 3.3c). The fixtures which are shown in figure 3.3a is made 

of acrylic and fabricated using a laser cutter from the Institute of Microelectronics, 

A*STAR. Dimensions of the fixtures are designed to be compatible to the existing Leica 

microscope and could be easily modified to suit other microscope systems by changing 

the size of the base and the locking screw locations.  
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The complete experimental setup is shown in figure 3.2b and 3.3, and cell enumeration 

was done manually and immediately after cell isolation. Image capturing of the cell 

isolation process was taken using a high speed camera (Photron, San Diego, CA, USA). 

 

 

3.3 Computational Fluids Dynamics (CFD) Analysis 

 

A 3D computational model of the microdevice was developed to better understand the 

flow characteristics as well as to help in initial optimization of the design as shown in 

figure 3.4. A simplified model of the microdevice due to symmetry of the uniform array 

(a) 

(b) 

(c) 

Figure 3.3 Custom made fixtures for holding tubings and reservoirs for the microdevice. The 

fixtures is made of acrylic and fabricated according to dimensions using a laser cutter to fit the 

Leica inverted microscope. (a) Overview of the setup. (b) Single unit processing. (c) Dual 

units processing.  
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was created using Gambit (Ansys Inc., Lebanon, NH, USA) and simulated using Fluent  

(Ansys Inc., Lebanon, NH, USA) as illustrated in figure 3.4c. The model consisted of 

fourteen isolation structures. An optimized mesh density of 579, 820 was used. Mesh 

independence was ascertained by increasing the mesh density and observing the 

difference in velocities to be less than 1%. Adopting a no-slip wall boundary condition 

and fluid properties of pure H20 (density at 998.2 kg/m3 and viscosity 0.001003 kg/ms), 

the study was carried out by analyzing the velocity profiles, particle flow paths and shear 

Figure 3.4 Isometric views of the computational models for the optimization of the 

microdevice isolation structures. (a) Overview of the device layout generated from Gambit. 

(b) Closeup view of the cell isolation structure compartment. (c) Simplified model for the 

analyses of shear stresses around isolated cells, flow profile around the isolation structures and 

optimization of structure positions.  

(a) 

(b) (c) 
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stresses at the isolation structures under different initial conditions. Boundary conditions 

at the inlets were determined experimentally by measuring the flow rates through the 

device at various operating pressures. The simulated operating pressures range from 2kPa 

to 20kPa. Free stream was assumed at the outlet.  

 

This is crucial to ensure minimal damage to the isolated cells. The shear stresses and flow 

patterns in the microdevice at various operating conditions were extracted from the 

computational analysis to aid in optimizing the design and determining the operating 

conditions for the microdevice.  

 

 

3.4 Blood Collection 

 

Informed consent from healthy volunteers and cancer patients were taken before blood 

extraction, as approved by the institutional review board. Blood samples from healthy 

patients served as controls and were also used in spiking experiments for the 

characterization of the microdevice. Samples were stored in EDTA tubes (BD, Franklin 

Lakes, NJ, USA) prior to use and discarded after the experiment. From cancer patients, 9-

10 ml of blood was extracted each time with the first 0.5-1.0 ml of blood discarded to 

prevent false positive responses. A total of 10 healthy volunteers and 39 cancer patients 

participated in the study. 
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3.5 Cell Culture  

 

The cell lines of human breast adenocarcinomas (MCF-7 and MDA-MB-231), colorectal 

adenocarcinoma (HT29), gastric carcinomas (AGS and N87), hepatocellular (HepG2 and 

HuH-7) adenocarcinomas, tongue squamous carcinoma (CAL27) and pharynx squamous 

carcinoma (FADU) were used to characterize the efficacy of the microfluidic chip. 

Culturing of cells was done in 25 cm
2
 tissue culture flasks (Greiner Bio-One, 

Frickenhausen Germany). AGS and N87 were maintained using RPMI 1640 (Sigma, St. 

Louis, MO, USA) while the rest used Dubelcco’s Modified Eagle Medium (DMEM) 

(Sigma, St. Louis, MO, USA). Both culture media were supplemented with 10% fetal 

bovine serum (FBS) (Hyclone, Logan, UT, USA) and 1% penicillin G / streptomycin / 

amphotericin (Gibco, Carlsbad, CA, USA).  

 

The culturing media were continually changed every 2 days during the maintenance of 

the cancer cell lines, keeping the cells with fresh media which supported their growth. 

Upon close to 95% confluence in the flask, the cells were sub-cultured and the protocols 

are as follows. Cells were washed with 1×phosphate buffered saline (PBS) to remove 

traces of media in the culturing flask and 2.5 ml of trypsin-EDTA (Gibco, Carlsbad, CA, 

USA) was added. Trypsin-EDTA aided to release the cells from the culture flask surface 

so that these adherent cells become suspended. The culture flask was then placed back 

into the incubator for 5 minutes for the release of the cells.  

 



50 

 

Confirmation of cell detaching from the surface of the flask was done optically under the 

inverted microscope using phase contrast imaging at 10X magnification. An additional 

2.5 ml of fresh media was added into the suspended cells mixture to neutralize the effects 

of trypsin-EDTA. The cell suspension was then spun down into a pellet using 

centrifugation at the operation parameters of 1200 rpm for 5 minutes. The supernatant 

was removed and fresh media of 1 ml was added to resuspend the cell pellet. Depending 

on the cell type, a minimum seeding number was replaced into a new flask based on the 

recommendations from the American Type Culture Collection (ATCC). The rest of the 

cells were used for experimentations.  

 

 

3.6 Cell Size Measurements and Spiked Sample Preparation 

 

The measurement of cell diameters is important for the study, as the separation technique 

uses the physical characteristics of cancer cells to enrich them from peripheral blood. For 

cell size measurements of the cancer cell lines, the diameter was taken as an average 

reading obtained from images of 100 suspended cells and determined using an image 

processing software (NIS-Elements AR, Nikon Corp., Singapore). For the preparation of 

sample solutions used in the various experiments, cancer cell counting was done with a 

disposable hemocytometer (iN Cyto, Republic of Korea) and serial diluted to achieve the 

desired concentration of 100 cells per milliliter in 1PBS.  
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For a more detailed description, in each experiment involving cancer cell lines, cells were 

grown to confluence and resuspended in culture media. A portion of the suspended cells 

were taken as control in the experiment and cultured normally. The rest was diluted to a 

concentration of approximately 100 cells per milliliter and the sample solution was 

injected into the device for characterizing the isolation efficiency of cancer cells. For cell 

viability experiments, isolated cells were retrieved by reversing the pressure differential 

in the system which directed the isolated cells to dislodge and flow towards to the 

collection point. The collected solution was centrifuged at 1200 rpm for 5 minutes with 

the cell pellet resuspended later in culturing media DMEM. These were then reseeded in 

the T25 culture flask. Their proliferative rates were compared with normal cultures which 

acted as controls in the experiment over a period of 5 days under normal culturing 

conditions. 

 

 

3.7 Immunofluorescence Staining to Identify CTCs  

 

To ascertain the isolation purity, each of the cancer cell types were added into whole 

blood donated from healthy donors at a concentration of approximately 100 cells per 

milliliter. The sample solution was further diluted with 5mM EDTA in a 1:2 ratio to 

reduce the sample viscosity so that it could be processed easily. Isolated cells in the 

microdevice were immunofluorescently stained to distinguish between cancer cells and 

hematopoietic cells to allow the visual examination of the isolation purity of cancer cells 

in the microdevice.  
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For the control experiment, the pre-mixed sample of blood and cancer cells (200 μl) was 

incubated onto a 12 mm coverslip (polylysine coated) for 30 minutes. The sample was 

then stained for EpCAM (1:50, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) to 

identify cancer cells, CD45 (1:50, Santa Cruz Biotechnology Inc. , Santa Cruz, CA, USA) 

for white blood cells and 4',6-diamidino-2-phenylindole (DAPI) to permit nuclei 

visualization. 

 

For staining in the microdevice, a pressure differential of 5 kPa was used to induce fluid 

flow into the microdevice. The value of 5 kPa was chosen as it best preserves the state of 

the isolated cells in the microdevice as compared to using higher pressure differentials. 

Lower pressure conditions would increase the processing time. Captured cells were first 

fixed by flowing 4% paraformaldehyde (PFA) for 30 minutes, permeabilized by 0.1% 

Triton X-100 in 1 PBS for 10 minutes, followed by washing with 1PBS for 15 minutes 

and adding 10% goat serum to block out non-specific bindings. To identify cancer cells, 

0.2 ml of EpCAM antibodies were injected for 15 minutes,  left to stand for another 45 

minutes and followed by washing with PBS. The procedures of antibody injection and 

PBS wash were repeated for the secondary antibody (1:500, goat anti-mouse AlexaFluor 

568, Invitrogen Corp., Carlsbad, CA, USA).  For the identification of white blood cells, 

0.2 ml of fluorescein isothiocyanate (FITC) conjugated with CD45 antibodies were 

injected for 15 minutes, left to stand for another 45 minutes and followed by washing 

with PBS. Staining was completed by flowing DAPI for 15 minutes at 5 kPa followed by 

washing with PBS. 
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For the identification of CTCs in metastatic lung and nasopharyngeal cancer patients, 

anti-cytokeratin antibodies (CAM5.2, BD Bioscience, San Jose, CA, USA) were used. 

For renal cell carcinoma (RCC) patients, anti-panCytokeratin antibodies (1:50, Santa 

Cruz Biotechnology Inc., Santa Cruz, CA, USA) were used. A positive CTC count was 

defined to be cytokeratin positive, CD45 negative and DAPI positive. 

 

 

3.8 Experimental Tests with Low Cancer Cell Count 

 

We attempted to ascertain the detection limit for the setup with low cell count in sample 

solutions. 1-3 cell(s) were suspended in 1ml of 1×PBS and passed through the device. 

Isolation of individual cells from suspended state after trypsinization was done by either 

manually pipetting or using the fluorescence activated cell sorter (FACS, BD FACSAria 

II Cell Sorter, Franklin Lakes, NJ, USA) to automatically sort the cells.  

 

For each trial with different cancer cell lines, a sample size of 10 experiments was 

adopted. The study was conducted with cancer cells from diverse origins to ascertain the 

universality of the isolation and detection technique. The device was prepared normally 

as illustrated in section 3.2 and freshly trypsinized cells from cultures were used. For 

manual picking out of cells, a drop of suspended cancer cells (highly diluted) was 

observed under the microscope and picked up using a pipette. This was then transferred 

immediately into the inlet reservoir of the system and processed by the biochip. Manual 
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pipetting is preferred over serial dilution as errors associated with the latter technique are 

enormous when dealing with low concentration of cells. FACS is another alternative 

which provided a faster means to obtain small number of cells per sample. The sole issue 

of the automated technique is the errors involved to get a single cell per vial and the 

correct transfer of the sample to the reservoir. Potential significant errors in sample 

preparation were minimized by confirming the presence of cells under the microscope 

before transfer to the inlet reservoir. 

 

 

3.9 Blood Processing Protocol 

 

The average blood processing time for 2 ml of blood was approximately 3.5-4.0 hrs, 

inclusive of a washing step to remove blood residues from the system. Detailed step by 

step procedures for the clinical aspect are illustrated in figure 3.5. As stipulated in the 

instructions from the institutional review board, informed consent was taken under no 

forms of undue influence. Procedures for blood extraction were described earlier in 

section 3.4 and blood processing was performed preferably within 24 hrs. Depending on 

the requirements of the clinical collaborators, a cell count and/or extraction of CTCs were 

performed.   
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Microdevice Preparation 
 

1. Fix all connections 

2. Buffer flushing at 120 µl/min for 10 minutes 

Figure 3.5 Flowchart that shows the sequence of events from requesting for informed consent 

to blood extraction to completing the blood processing for enumeration or recovery of isolated 

CTCs. 
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Chapter 4 Microdevice Design and Computational Fluid 

Dynamics Simulations 

 

4.1 Microdevice Design 

 

Figure 4.1 shows the experimental setup and the design of the microdevice. The 

microdevice is affixed to custom made fixtures as shown in figure 4.1a which aids to 

compact the system and allows it to be portable. In this way, the usage of reagents such 

as anti-bodies can be minimized, thereby saving cost. During processing, blood 

specimens are pressure driven into the microdevice as shown in figure 4.1b, and 

controlled by the computer, achieving a semi-automated operation. Blood enters the 

Figure 4.1 Microdevice setup and design layout. (a) Apparatus setup. (b) Microdevice chip 

(c) Detailed layout of the plan view of the microdevice.  
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microdevice via the sample inlet (figure 4.1c), pass the cell isolation region and out from 

the waste collection at the bottom. The cell collection and secondary waste ports are 

closed at this point to prevent specimens from entering and are only activated when 

required. A set of pre-filters shown in figure 4.1c before the isolation traps also serve to 

prevent large clumps or debris from clogging up the setup and are linked to the waste 

outlet to effectively remove debris. Clogging prevention is important to get a feasible 

system which is a major issue associated with devices that attempt to separate and isolate 

cells through direct physical means (Mohamed, McCurdy et al. 2004; Di Carlo, Wu et al. 

2006; Pamme 2007). In addition, the microdevice allows for recovery of cells in the 

isolation traps through the cell collection point. A key advantage of using microfluidic 

devices lies in their laminar flow characteristics, making the profile predictable. The flow 

patterns inside the small enclosed volume can be easily controlled by changing the 

external conditions to guide the recovery of isolated cells.  

 

The technique for the enrichment and isolation of CTCs utilizes the differences in 

physical characteristics of tumor cells and blood constituents. Physical parameters such 

as the size of cancer cells and their deformability are distinctively dissimilar (Weiss and 

Dimitrov 1986; Weiss 1990; Shelby, White et al. 2003; Mohamed, McCurdy et al. 2004). 

The design of each trap follows a crescent shape with gaps of 5μm in each of the traps as 

shown in figure 4.2 to ensure the exit of blood constituents due to their ability to traverse 

very small constrictions. Multiple arrays of these crescent-shaped isolation traps are 

created in the microchannel to isolate cancer cells while allowing blood constituents to 

sieve through (figure 4.2). In this way, larger white blood cells (WBCs) of comparable 
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dimensions to but more deformable than cancer cells can be effectively removed and this 

will ensure high purity of trapped cancer cells. Each trap is positioned with a pitch of 50 

μm which effectively prevents cells build-up in any particular region. In addition, each 

row of isolation structures is offset by 25 μm to enhance the hydrodynamic efficiency 

(figure 4.2). The crescent shape of the isolation trap which is alternated left and right also 

aid to prevent clogging and allow each structure to hold a single cell by directing 

incoming cells away, as the fluid resistance on the adjacent sides are smaller when the 

trap is occupied (further analyses are given in chapter 5). 

 

Cell Trap 
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Figure 4.2 Design characteristics and view of fabricated device for CTCs trapping. (a) 

Cadence schematic drawing for design layout. (b) Corresponding fabricated PDMS structures 
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Furthermore, the isolation traps are divided into 6 compartments as shown in figure 4.3c, 

spanning over two sections that facilitated the maximal retrieval of isolated cells. During 

cell retrieval, the rounded inverted crescent-shaped structures provide a favorable path in 

the opposite flow direction to enable the cells to be extracted out to the cell collection 

point (a thorough computational study is presented in section 4.2). It also minimized 

physical interactions as the laminar streamlines curves around the structures to reduce 

possible mechanical damage during retrieval. For each microdevice, there are a total of 

900 isolation structures.   

 

A detailed schematic of the microdevice design is presented in figure 4.3. The overall 

size of the microdevice spans 5.1 by 3.7 mm as shown in figure 4.3a. Reservoirs (figure 

4.3b) are tapered and rounded in shape to minimize air bubbles and dead volume during 

the injection of fluids into the microdevice. The system is divided into various 

compartments and separated into 2 sections as depicted in figure 4.3c. These effectively 

help to maintain similar flow conditions throughout the microdevice, ensuring a smooth 

cell retrieval path and also aid in enumeration of isolated cells. The uniform array of 

isolation traps in the design as shown in figures 4.3e and 4.3f further enhance the cell 

counting process and will facilitate digital image analysis for process automation. To 

increase hydrodynamic efficiency to ensure better cell isolation, rows of isolation traps 

are offset from each other to make certain that cells that escape the initial traps will more 

likely enter traps in subsequent rows. Lastly, the design has a set of pre filters before the 

cell isolation region (figure 4.3d) that aims to hold debris or larger particulates and 

prevents them from entering the isolation traps. These large foreign matters are potential 
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problems if they enter the cell isolation region and will likely clog up the system. The 

design of the microdevice allows a direct and instantaneous means of removing large 

particles trapped in the pre-filters by manipulating the flow conditions and sending them 

out through the adjacent waste port which is connected to the left side of the inlet (figure 

4.1c). Miniaturized systems are particularly susceptible to issues such as clogging and 

trapped bubbles which will limit its reliability (Pan 2004), and these are taken into 

consideration during the designing phase of the microdevice.  

 

 

4.2 Design Considerations and Computational Fluid Dynamics (CFD) Simulations 

of Flow Parameters 

 

The purpose of the computational study is to ascertain flow parameters as well as 

optimize the isolation trap design for better efficiency. A crescent shape with two 5 µm 

gaps was chosen as the final design for the isolation trap due to various considerations. 

Pillared structures which are ill designed have the tendencies for lateral collapse (figure 

4.4b) (Schmid and Michel 2000). The failure modes are closely linked to the material 

properties of the polymer and the dimensions of the structures (Hui, Jagota et al. 2002; 

Sharp, Blackman et al. 2004). Equation 4.1 highlights the conditions that will result in the 

lateral collapse of pillared structures. 
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Here, E* ≡ E/(1 - v
2
) is the plane strain modulus of the PDMS block, where E is the 

Young’s modulus and v is the Poisson’s ratio of the material. Furthermore, γs is the 

surface energy of the material, and a, w, and h are the dimensions of the features’ width, 

spacing, and height, respectively as shown in figure 4.4a. The reliability of the system 

will be highly dependent on the pillar size and the gap between them as depicted in 

equation 4.1. Failure can occur due to capillary forces from the retained solvents on the 

structures during the cleaning cycle of the PDMS before bonding, which are sufficiently 

large enough to cause them to contact during air or blow drying. Contact can also occur 

during improper peeling from the master mold. Once contact occurs, pillars may adhere 

to each other as a result of surface adhesive forces as shown in figure 4.4b. This renders 

the microdevice unusable and will have an effect on the process reliability for the 

 

Figure 4.4 Failure modes of pillared structures. (a) Schematic of adjacent pillars sticking to 

each other (Hui, Jagota et al. 2002). (b) Left: Collapse of pillars in an earlier microdevice 

design after a washing cycle. Right: SEM image of epoxy nanopillars collapsing on its own 

weight (Zhang, Lo et al. 2006). 
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production of the biochips. The design of interest for the isolation trap has a w/a of 2.5 

and an aspect ratio of approximately 4 for the height to width of the structures. γs is taken 

as 21.6 ergs/cm
2
 for PDMS as reported by Chaudhury and Whitesides (Chaudhury and 

Whitesides 1991). 

 

Another design consideration that will affect the reliability of the microdevice fabrication 

is the possibility for the collapse of the top surface of the PDMS which is termed roof 

collapse by Sharp et al. (Sharp, Blackman et al. 2004).  Equation 4.2 puts forward the 

relationship for the event which is a direct result of unstable structures formed.  

 

 

−4𝜎∞𝑤

𝜋𝐸∗ℎ
 1 +

𝑎

𝑤
 cosh−1  sec  

𝑤𝜋

2 𝑤+𝑎 
  < 1 

 

 

Here σ is the uniform stress applied to the top of the PDMS block, E
*
 is the plane strain 

modulus defined earlier and a, w, h are dimensional parameters depicted in figure 4.5. 

The instability is a direct result of the soft characteristics of the polymer and large 

unsupported region in the design. Emmanuel et al. (Delamarche, Bernard et al. 1997)  

demonstrated that if the aspect ratio is too large, the microchannels can collapse even 

under its own weight (Delamarche, Schmid et al. 1997). Henceforth, the considerations in 

the current design of the microfluidic chip minimize such large areas. This is also a key 

consideration for the compartmentalization of isolation traps as supporting structures can 

(4.2) 
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be introduced. This facilitated a straight forward means for the scale up of the current 

design to allow more samples and cells to be trapped.  

 

In order to understand the flow profile around the irregular shaped structures and 

ascertain minimal damage on the isolated cancer cells due to hydrodynamic forces, the 

fluid velocity and shear stress profiles were simulated for the operating pressure 

differentials applied. A 3D model was used in all the simulated conditions and the results 

from the mid plane of the model were extracted. Figure 4.6 depicts the velocity patterns 

and flow path surrounding the cell isolation structures at a maximum operating pressure 

of 15 kPa which is likely the critical case in this investigation. The simulated conditions 

during cell isolation (forward flow direction) and retrieval (backflow direction) were 

analyzed. This allowed a measure to estimate the effectiveness of the design before actual 

prototyping which is time consuming and laborious. Computational methods are also cost 

 
Elastomer 

Figure 4.5 Collapse of the top surface between two supporting regions in a patterned polymer 

(Hui, Jagota et al. 2002; Sharp, Blackman et al. 2004). 
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effective as numerous designs can be tested by merely generating the model and running 

the analyses. By examining the streamlines and particle paths in the model, a gauge of the 

cell isolation efficiency of the setup can be predicted, assuming a perfectly rigid particle 

in the flow.  

 

In isolating cancer cells (figure 4.6a), the gaps in the isolation traps facilitated the entry 

of the cells as shown by the path lines. These path lines were derived from simulated 

particles placed in the microdevice as they passed through the cell isolation regions. This 

was evident from the computational study showing successful interactions of free flowing 

cells in the flow with the isolation structures, which would ensure that cells that were 

Figure 4.6 Computational analyses of the flow and shear stress around the isolation structures 

at the operating condition of 15 kPa. (a) Velocity profile when isolating cells taken at mid-

plane (10 µm from the base) of the model. (b) Velocity profile during the retrieving of 

isolated cells.  
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larger and less deformable to be impeded.  Flow velocities were also much lower near the 

isolation structures which translate to lower shear stresses for an isolated cell. During the 

sample processing phase, the flow paths were actively changed as more of the traps were 

occupied. Cells began to favor adjacent sides of occupied traps (figure 4.7a) due to lower 

fluid resistance and the flow paths were diverted to prevent a local build up of cells. This 

averted the possibility of clogging in the microdevice and allowed a smooth processing of 

the blood specimens.  

 

For the purpose of cell retrieval, the flow direction was reversed (figure 4.6b) by applying 

a positive pressure differential across the waste outlet and cell collection point. This was 

0 

Flow 

Direction 

P
a 

20 (b) 

Model 

Cells 

(a) 

Flow 

Direction 

Figure 4.7 Computational analysis of the flow and shear stress around the isolation structures 

at the operating condition of 15 kPa when the traps are occupied. (a) Velocity profile and 

simulated particle tracks. (b) Shear stress acting on a spherical cell model when the cells were 

arrested in the isolation structures.  
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accomplished by switching the pressure settings on the computer controlling the pressure 

lines to achieve an instantaneous change in the flow conditions in the microdevice. 

During cell retrieval, the inverted isolation structures enabled a streamline profile around 

the crescent shape isolation traps as shown in figure 4.6b. Cells that were dislodged from 

the structures were immediately pushed towards the region in between the traps which 

had a lower fluid resistance. That minimized obstruction of the cells on the recovery 

route and was less likely to get wedged in between traps. These would ensure a high 

percentile of cell retrieval in the collection outlet.  

 

In order to make certain that the system was gentle to cells in the microdevice, the 

average wall shear stresses on isolated cells subjected to a constant flow were 

characterized. This was to prevent excessive forces which could be damaging to the cells 

or altering many of its signal transduction responses (Papadaki and Eskin 1997; Haier, 

Nasralla et al. 1999; Hodgson, Kohn et al. 2000; Chang, Chang et al. 2008; Liang, 

Slattery et al. 2008). A simulated condition using 15 kPa is presented in figure 4.7b. It is 

noted that the regions of high shear stresses occur near the surface of the isolated cells 

and the structures. The average wall shear stresses on the cells due to the fluid flow are 

tabulated to establish that it did not exceed physiological conditions. Contrasting with the 

physiological wall shear stresses experienced in large arteries (10-70 dynes/cm
2
) (Malek, 

Alper et al. 1999), the estimated average shear stress around the isolated cells due to the 

flow were much lower as shown in figure 4.8. The wall shear stress acting on an isolated 

cell was predicted to be between 1.8 Pa to 5.3 Pa, corresponding to 5 kPa and 15 kPa 

respectively for the pressure differential driving the fluid in the microdevice. This 
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indicated a low possibility that cells would be affected as a result of the interactions of 

the flow and the small enclosed volume in the system. Cell integrity was likely to be 

maintained whilst in the microdevice, providing the opportunities to examine and analyze 

these rare cells in peripheral blood to understand the disease better.  

 

 

4.3 Feasibility Studies 

 

The concept of cell isolation using physical characteristics of cancer cells on a 

microfluidic device was tested with a macro setup by means of ideal rigid beads of 45 µm 

Figure 4.8 Effects of input pressure on the estimated wall shear stress of an isolation cell 

using simulation studies. 
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(Polystyrene Polybead® Microspheres, Polysciences Inc., Warrington, PA, USA). This 

was to ascertain that the design parameters used in the simulations were effective. 

Furthermore, the trials were used to confirm several other design considerations such as 

reduced pitch size between isolation traps, reduced row separation distances and ensure 

failures modes like lateral collapse of pillars and roof collapse of top PDMS surface do 

not occur. The various experimental design layouts extracted from the photolithography 

mask drawing are shown in figure 4.9. Six different configurations were tested for its 

Figure 4.9 Feasibility studies designs. (a-e) Evaluation of the placement of isolation traps and 

traps density per unit area. (f) Evaluation of compartmentalized design.  
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isolation efficiency using rigid polystyrene beads that simulated the presence of cells in 

the samples. The size of the isolation traps were scaled up by a factor of 2 from the 

optimal layout simulated in the computational analyses and designed to be suitable to 

hold particles between 40-55 µm in diameter. This is analogous to the use of 

dimensionless analysis to predict the responses. A plastic mask (Infinite Graphics Inc., 

Singapore) was employed in the photolithographic process given that the features sizes of 

the trial designs were significantly larger with critical dimensions of 10 µm. Fabrication 

of the master mold and casting of PDMS microdevices were similar to the steps described 

in section 3.1. The sole difference was in the use of SU 8 2050 instead of SU 8 2025 

which was recommended by the manufacturer for a more uniform photoresist layer of 50 

µm.  

 

A PDMS replica mold for testing the reduced separation distance between isolation rows 

(figure 4.9d) is shown in figure 4.10a. The design consisted of a single chamber with 102 

isolation traps set out in a uniform array. Six different arrangements of the microdevice 

were put forward in the trial to confirm the simulation results experimentally. 

Standardized samples with concentration of approximately 1000 microbeads per milliliter 

of 1×PBS solution were used. Figure 4.10b shows the experimental results from one of 

the designs in a typical run. Within 20 minutes, almost all the isolation traps were 

occupied which indicated a fast loading capacity in the microdevice and likely an 

effective means to hold cells which were stiffer and significantly larger than the gap size 

in the crescent shape traps. It was also observed that single bead trappings were prevalent 
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in all the tests conducted for this particular design as demonstrated in figure 4.10b.  This 

is coherent with the design considerations set out in section 4.1 that the occupied 

isolation traps direct incoming particles to subsequent traps which would prevent a local 

build up of particles and clog up the system. It was also evident from the study that a 

large blood sample volume could be processed on this platform with minimal risk of 

failure due to obstruction of blood constituents in the microdevice. The single bead per 

trap is also useful to aid enumeration and analyses, as compared to alternative techniques 

which have isolated cells in clusters in physical traps or far apart on anti-body coated 

substrates (Mohamed, Turner et al. 2007; Nagrath, Sequist et al. 2007; Mohamed, Murray 

Figure 4.10 Feasibility study design using a scale-up version of the microdevice. (a) SU 8 

master mold for PDMS replica molding. (b) Micro beads loading showing high isolation 

efficiency and mostly single bead trapping.  
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et al. 2009; Kuo, Zhao et al. 2010). Having cells in clusters make distinction and exact 

counting difficult, while cells that are too far apart are laborious during counting and risk 

increased human random errors. Furthermore, a general observation from the study 

showed that initial capture rates were high when all or most of the isolation traps were 

unoccupied. There were significant bead losses when approximately 50% of the traps 

were engaged. This was a consequence of diverting incoming particles to the next 

isolation row when the earlier isolation traps were occupied. As more of the traps became 

taken, it increased the probability of a non engagement and allowed the bead to be 

washed away.  

 

In terms of fabrication issues, no roof collapsed were encountered which indicated that 

the design was overall stable. There was however slight lateral collapses of the crescent 

shape isolation traps which occurred during bonding when a force was applied to form a 

complete seal of the PDMS block to a glass slide after the oxygen plasma treatment. The 

 

 

Table 4.1 Microdevice isolation efficiency using 45µm rigid beads in the feasibility experiments  

No Design Sample Size 
Efficiency 

(%) 

Standard Error 

(%) 

1 Design 1 10 65.24 0.34 

2 Design 2 9 75.24 0.54 

3 Design 3 10 68.28 0.27 

4 Design 4 10 77.67 0.67 

5 Design 5 10 78.70 0.55 

6 Design 6 10 70.75 0.53 
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problem was overcome by controlling the applied force after numerous practices. Table 

4.1 summarizes the results for the isolation efficiency of rigid beads of 45 µm in the 

microdevice for all the trial designs. The choice of using the 45 µm beads is due to the 

design of the traps that ensured an optimal fitting of the bead in the crescent well. The 

experimental spilt considered various placement issues of the isolation traps as well as to 

ascertain the stability in a compartmentalized design. A maximum isolation efficiency of 

78.7% was attained from the designs with the lowest being 65.2%. Using a Student’s t 

test, the isolation efficiency obtained from design 5 was significantly higher than designs 

1 and 3, with p < 0.05 but no significant conclusions with designs 2 and 4. However, it 

was observed that there was a higher chance of a localized build-up of beads when the 

separation distances between the rows became compacted due to the difficulties of the 

Figure 4.11 Feasibility study using 45 µm beads. Image captured at approximately 100fps. 

Scale bar represents 20 µm. 
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rigid beads to move in the much confined region, which ruled out the selection of design 

4. With no statistical significance between designs 2 and 5, the selection criteria reviewed 

the space requirements and decided on design 2 as it conserved about 10% less space. 

Results from design 6 were also promising that will enable scaling up of the platform by 

simply stacking or arranging in uniform array for each of the isolation chambers into a 

single microdevice. This will speed up sample processing or cater for the isolation of 

more cells which may be present. An illustration of the isolation route is depicted in 

figure 4.11 which showed a smooth entry of the bead into the trapping structures and was 

consistent with the particle tracks derived from simulation studies.  

 

It was estimated from computational analyses that the wall shear stresses acting on the 

particles were within the physiological range of forces experienced by blood cells in 

circulation. Confirmation tests were conducted by analyzing the behavior of cancer cells 

in the microdevice which provided an instantaneous means of verifying the cell integrity. 

It was observed that cancer cells were able to adhere and spread near the isolation 

structures. Trypan blue exclusion tests established that the isolated cells were viable and 

most of the cells remain unstained. Figure 4.12 shows a 2 day culture of the isolated cells 

directly in the microdevice. MCF-7 was used in the experiments and pressure driven into 

the microdevice. The flow was left stationary for approximately 1 hr for cells to attach to 

the surface before a gentle washing cycle using culturing media to remove any residue. A 

control with normal culture was used to compare the proliferation rate of the cells. The 

microdevice and the control culture were then left in a CO2 rich (5%) incubator (Thermo 
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Electric Corp., Singapore) overnight. From figure 4.12, it is shown that proliferation of 

the cancer cells are not hindered after passing through the microdevice. The outcome 

indicated that the system was gentle during the process of cell isolation and less likely to 

damage the cells with the pillars in the microdevice. To sum up, the experiments depicted 

the bio compatibility of the biochip and that negligible external forces are exerted on 

these cells in the device.  

 

In brief, the feasibility studies demonstrated the successful and efficient isolation of rigid 

polystyrene beads. The isolation trap arrangement presented in design 2 (figure 4.9b) was 

Control 

Device 

Day 1 Day 2 

Figure 4.12 Cell integrity after the isolation process in the microdevice. Control experiments 

are obtained from normal cultures and proliferation of cancer cells are assessed in the 

microdevice. Scale bar represent 20 µm. 
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selected as the finalized configuration for its advantages of lesser space requirements and 

being effective to isolate the beads. The investigation also verified certain design 

considerations such as achieving mostly single bead trapping without clogging the system. 

The platform was also determined to be gentle to cells during sample processing which is 

crucial in CTC analyses. 
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Chapter 5 Microdevice Characterization   

 

The characterization of the microdevice is of paramount importance to achieve the 

optimal setting for CTC isolation. Earlier discussions presented the design and feasibility 

studies of using a microfluidic device for this function. To sum up what has been put 

forward thus far, the system utilizes the biorheological differences in the cell size and 

deformability of cancer cells to achieve an effective separation.  

 

For blood processing operations, the sample is pressure driven through the system from 

the sample inlet past the cell traps and the effluence is collected in the waste outlet. The 

pressure control allows instantaneous manipulation of the fluid conditions in the 

microdevice. Each of the microdevices has 900 crescent shaped isolation structures 

formed into a uniform array where cancer cells being generally larger and stiffer than 

blood cells will be retained. The design of the traps also prevents build up of cells when 

the structures are occupied, unlike most direct filtration methods and allows processing of 

large sample volumes. Due to the rarity of CTCs in peripheral blood, processing of larger 

volumes of samples is desired and the laminar flow around the cell traps channel cells 

away to prevent clogging due to lower fluid resistance on the adjacent sides. In addition, 

each trap is likely to hold only a single cell and this simplifies enumeration either 

optically or through an image processing software.  

 

The clinical benefits of enumerating CTCs in peripheral blood have been widely reported 

(Beitsch and Clifford 2000; Gogas, Kefala et al. 2002; Hoon 2004; Budd, Cristofanilli et 
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al. 2006; Hayes, Cristofanilli et al. 2006; Cristofanilli, Broglio et al. 2007). This method 

is also minimally invasive as compared to traditional biopsies. The number of CTCs in 

blood is directly associated with the disease progression and can help in evaluating 

cancer treatment efficacy (Nole, Munzone et al. 2007). Thus, it is important to have a 

high cancer cell isolation efficiency for the microdevice to count these rare cells in blood 

specimens accurately. Our approach draws mainly upon the highly deformable nature of 

erythrocytes (Shelby, White et al. 2003) and leukocytes (Liang, Liu et al. 2005) that 

enable these cells to traverse capillaries as small as 2-5 μm whose cell diameters can 

range from 8 to 25 μm. On the other hand, cancer cells are more likely to be arrested in 

capillaries of similar dimensions (Weiss and Dimitrov 1984). Henceforth, the gaps in the 

isolation traps will hold cancer cells while allowing blood constituents to pass through 

with ease. 

 

 

5.1 Cell Size Measurement 

 

From table 5.1 which included measurements taken from cancer cell lines of various 

origins, it was noted that there existed a diverse range in terms of the dimensions of these 

cells. Figure 5.1 shows the cells that were just resuspended after cell culture which 

clearly highlighted the differences. Furthermore, it was observed that the morphology and 

appearances of these cells differs. At the molecular level, the genetic makeup of these 

cells is largely dissimilar due to different mutations which can explain their different 

behaviors. Hence the heterogeneity of the disease is an important factor to consider in the 
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study. For the current work, we aim to demonstrate the use of a microfluidic device using 

purely physical differences of cancer cells to isolate them from blood specimens. It is 

hypothesized that the technique is versatile to handle tumor cells from diverse origins 

though the molecular aspects of these cells are heterogeneous. The isolation rate and 

capture purity are of interest as these parameters dictates the accuracy of the tests which 

is to be associated to the state of health of the patient. Sensitivity of the microdevice to 

small numbers of tumor cells in peripheral blood is of paramount importance as well in 

the tests and we hope also to show the detection limit of the proposed platform. 

Table 5.1 Measurement of the cell size of cancer cell lines 

Cancer Cell 

Line 
Cancer Origin 

Sample 

Size 

Average 

Diameter (µm) 

Standard 

Deviation (µm) 

MCF-7 
Breast  

adenocarcinoma 
300 15.7 1.8 

MDA-MB-

231 

Breast 

adenocarcinoma 
300 16.6 2.8 

HT-29 
Colorectal 

adenocarcinoma 
100 15.5 1.3 

AGS Gastric carcinoma 300 14.0 1.8 

N87 Gastric carcinoma 300 14.2 1.8 

HepG2 
Hepatocellular 

carcinoma 
100 16.9 1.7 

HuH7 
Hepatocellular 

carcinoma 
100 19.3 2.9 

CAL27 
Tongue squamous 

carcinoma 
100 15.0 1.7 

FADU 
Pharynx squamous 

carcinoma 
100 16.9 2.1 

* Measurements of cell size was done with NIS Elements software using 3 points to estimate the curvature of the 

cells 
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Figure 5.1 Cancer cells in suspension for measurements of cell diameters. (a) MCF-7. (b) 

MDA-MB-231. (c) HT-29. (d) AGS. (e) N87. (f) HepG2. (g) HuH7. (h) CAL27. (i) FADU. 

Scale bar represents 20 µm 

(a) (c) (b) 

(d) (f) (e) 

(g) (i) (h) 
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5.2 Cancer Cell Isolation Efficiency 

 

For characterizing the cell isolation efficiency, low concentration of cancer cells (100 

cells per milliliter) spiked in 1PBS is injected into the microdevice at various pressure 

differentials. Small numbers of cancer cells in the sample solution mimic the rarity of 

CTCs in peripheral blood. By visually counting the number of trapped and escaped 

cancer cells, the efficiency of tumor cell capture can be determined using equation 5.1 

where a ratio of the trapped cells are taken, over the total number of cells that enters the 

microdevice. Visual inspection is preferred to minimize random errors that might occur 

during serial dilution leading to discrepancies in cell concentration in the solution. This is 

especially critical when dilution is performed to obtained very low cell counts and visual 

means will aid to circumvent the problem as all the cells that enter the microdevice is 

actively monitored. 

 

 

Isolation 
Efficiency

 % =
Trapped Cells

Trapped Cells + Escaped Cells
× 100% 

 

 

   

 

The main factor affecting cell isolation efficiency is the pressure applied as the input 

values directly alters the flow conditions in the microdevice. With a larger applied 

pressure differential to drive the sample solution, flow rates will increase leading to a 

proportionate increase of forces acting on the cells. This might induce a large 

(5.1) 
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deformation on cells to be able to pass through the gaps in the crescent shaped wells 

which will compromise on the efficiency for cell capture. Although, higher flow rates 

meant lesser sample processing time, the larger shear forces on the cells are undesirable 

as they can cause cell behaviour modifications due to mechanical activated signal 

pathways or cell death (Chang, Chang et al. 2008). In this investigation, the selected 

pressure differentials included 5 kPa, 10 kPa and 15 kPa which are comparable to 

physiological conditions and verified using computational analyses in section 4.2.  

 

Figure 5.2 shows the successful arrest of MCF-7 breast cancer cells and HT-29 colorectal 

adenocarcinoma in the isolation structures. Consistent with the observations from the 

feasibility tests, mostly single cells were loaded in each of the traps. It was also noted that 

(a) 

Figure 5.2 Cancer cells isolation in the microdevice which presented mostly single cell per 

trap. (a) MCF-7 (breast adenocarcinoma). Red arrows indicated regions where more than 1 

cell was trapped. (b) HT-29 (colorectal adenocarcinoma). Scale bar represents 20 µm. 

(b) 

MCF-7 breast 

cancer cells 
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despite the diverse range of dimensions existed between different cell lines or even 

within the same cell line, the platform was able to hold them in place. The single or 

doublet cells arrested in each isolation trap facilitated cell counting with ease. For traps 

holding more than 1 cell, they were generally observed to be of smaller diameters than 

others as depicted in figure 5.2a with the red arrows. The outcome is expected as excess 

space with small cells in the traps is able to accommodate another. It can be resolved by 

tuning the trap size to suit the dimensions of the tested sample. This aspect is 

advantageous for the system as controlling the size of the traps can potentially allow the 

microdevice to be used for a wide variety of cells and applications in single cell studies. 

In addition, the experiments demonstrated that these cancer cell lines differ significantly 

in their ability to deform as well. For instance, MCF-7 (figure 5.2a) cells in the traps 

showed certain amount of deformation into the gaps in each of the cell trap that were 

meant to allow blood constituents to pass through, while HT-29 cells (figure 5.2b) 

remained perfectly spherical in the isolation structures under the same flow conditions. 

This is indicative of dissimilar physical characteristics and that HT-29 is stiffer than 

MCF-7 cells.  

 

Using the computer to control and maintain the pressure differential in the system, the 

quantitative analyses from comparing cell isolation efficiencies at various pressure 

settings is plotted in figure 5.3. In the current study, 9 dissimilar cell lines from 6 

different cancer types were used to ascertain the microdevice characteristics. A total of 

264 experimental runs were performed for the entire investigation, showing an 

approximate effective isolation rate of 80% for the tested samples, at an operating 
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condition of 5 kPa. The Student’s t-test verifies that isolation efficiencies at 5 kPa are 

significantly higher (p<0.01) for all 3 samples than at higher pressure inputs as illustrated 

in figure 5.3. It was also noticed that a downward trend was experienced as the pressure 

differential increased. The reduction in cell capture efficiency can be accounted for by the 

dislodgement of the arrested cells due to increased hydrodynamic forces acting on these 

cells at higher pressure differentials or the forcing of smaller cells through the gaps in the 

crescent traps. At the pressure setting of 5 kPa, the microdevice was capable of 
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processing samples at 0.71 ml/hr with a high isolation efficiency needed for an accurate 

diagnosis. A typical experiment with the isolation of CAL27 is shown in figure 5.4.  

 

From the time sequence images extracted from the high speed camera (figure 5.4), it can 

be clearly observed for cells that try to enter an occupied trap will be pushed downwards 

to engage an empty one. This mechanism allowed single cell trapping to occur and 

prevented a local build-up of cells that might clog up the system.  

 

Other leading techniques to enrich cancer cells from peripheral blood have efficiency 

ranging from 20% to 90% (Allard, Matera et al. 2004; Lara, Tong et al. 2004; Balic, 

Dandachi et al. 2005). However, there are also numerous restrictions and complex 

preparation procedures. For example, there is limited purity when detecting low 

concentrations of CTCs (Smirnov, Zweitzig et al. 2005) in peripheral blood and various 

preparatory steps such as centrifugation, incubation and functional modifications which 

can be tedious and time consuming. The proposed microdevice is comparable to other 

Figure 5.4 Time sequence images showing the capture of a cancer cell. The arrangement of 

the cell traps enables the capture of cells that circumvent occupied traps and prevents clogging 

in the microdevice. Images taken with a high speed camera at 1000fps. 
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leading biochemical techniques in terms cancer cell enumeration from blood and is done 

without any functional modifications. The results favor the lower input pressure of 5 kPa 

to effectively isolate cancer cells given the Student’s t-test with a significance level of 

0.01 confirmed that isolation efficiencies at 5 kPa were significantly higher than other 

operating pressures for all the samples. Single cell trapping is also affirmed in our studies 

and that the system proves to be suitable to process large sample volume without 

clogging. 

 

 

5.3 Cancer Cell Isolation Purity 

 

The cell isolation efficiencies of the microdevice were performed with pure spiked 

samples of cancer cells in 1×PBS to minimize random errors that would occur in the 

presence of blood. With blood samples, it was difficult to count the number of escaped 

cancer cells due to the presence of large amounts of blood constituents. Henceforth, the 

cell isolation efficiency and the capture purity were characterized in separate experiments.  

 

With cancer cells spiked into blood samples from healthy volunteers, the quantitative 

analyses for the isolation purity could be determined. Spiking concentrations of 100 

cancer cells per millilitre of blood which was further diluted in 5mM EDTA buffer (1:2) 

were used in all the tests. EDTA buffer was used in place of PBS to prevent blood 

coagulation. Standard staining protocols were then followed in the identification of 

cancer cells from the isolated cell population in the microdevice.  
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Figure 5.5 Live visualization of the isolation of MCF-7 breast cancer cells in a spiked blood 

sample of approximately 1% hematocrit. Red arrows indicate the passage of blood cells in the 

microdevice. Image taken at 60 fps. 
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Figure 5.5 shows the live capturing process of MCF-7 breast cancer cells spiked in a 1% 

hematocrit blood sample taken at the input condition of 5 kPa. The blood sample was 

deliberately diluted from 50% hematocrit to 1% to permit clear visualization for 

demonstration purposes and spiked samples used in the characterization of the capture 

purity of cancer cells in the system was performed with approximately 15% hematocrit as 

stated in the preparation process in section 3.7. From the images extracted off the live 

video capture, it was observed that blood constituents passed through the structures with 

ease given their highly deformable nature. It was also evident that a build-up of blood 

cells due to the presence of the structures in the flow path was negligible and processing 

of 3 ml of sample solution was smooth. As denoted earlier and observed from the 

experiments, the cell traps held mostly single cells and was occasionally having a doublet, 

were coherent with the earlier tests for the isolation efficiency of the microdevice. This is 

also shown in figure 5.5 where the trap with an initial occupied small cell allowed the 

entry of another cell.   

 

For the isolation purity characterization, in order to differentiate between hematologic 

and cancer cells, immuno-fluorescence staining of the isolated cells was carried out. It is 

reported that the EpCAM is over-expressed in human carcinoma (Osta, Chen et al. 2004; 

Baeuerle and Gires 2007) which makes this an ideal marker to identify the cancer cells. 

All the selected cell lines in this study (MCF-7, MDA-MB-231, HT-29, FADU, CAL27, 

AGS, N87, HepG2 and HuH7) had been reported to be positive for EpCAM (Flieger, 

Hoff et al. 2001; Di Paolo, Willuda et al. 2003; Pauli, Münz et al. 2003; Osta, Chen et al. 

2004; Yamashita, Budhu et al. 2007; Joka, Pietsch et al. 2009; Wenqi, Li et al. 2009) and 
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were confirmed in control experiments. In addition, DAPI was used to counterstain the 

cell nucleus to identify all peripheral blood mono-nucleated cells (PBMC). CD45, a 

trans-membrane glycoprotein is expressed among hematologic cells and will be used to 

distinguish white blood cells (WBCs). 

 

Figure 5.6 shows the immuno-fluorescence staining results of a typical experiment for the 

isolated cells in the microdevice. The individual reagents were added into the system via 

pressure differential that drive fluid into the microdevice. A stationary holding time 

allowed the antibodies to bind to the isolated cells so that a distinction could be made. A 

positive cancer cell count for this investigation were identified using red (EpCAM 

Control 

Staining in the microdevice 

Figure 5.6 Isolation purity of tumor cells in a spiked sample using the microdevice. Immuno-

fluorescence staining to detect cancer cells using DAPI(blue) to counterstain the cell nucleus, 

CD45(green) for hematopoietic cells and EpCAM(red) to detect tumor cells. (a) Control was 

done with a mixture of blood and resuspended cancer cells. (b) Staining in the microdevice is 

to distinguish between the different cell types. Scale bar represents 20 µm. 

DAPI (Blue) CD45(Green) EpCAM (Red) Merged 

(a) 

(b) 
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positive) and blue fluorescence (DAPI positive) while hematologic cells are identified 

using green (CD45 positive) and blue fluorescence (DAPI positive). This is clearly 

depicted in the control experiment in figure 5.6a. The first picture (left) shows the blue 

channel which highlights all PBMCs. The second pictures shows the presence of WBCs 

using CD45 (green) and the third picture shows cancer cells using EpCAM (red) in the 

population of PBMCs. The last picture depicts a merged view of all the coloured 

channels that highlights the positions of the cancer cells and the WBCs in the same image.  

 

For the isolated cells in the microdevice, the staining protocols was repeated and figure 

5.6b shows that high purity can be achieved, with the absence of WBCs (no visible green 

fluorescence) in the isolated cells. In the same view, it was observed also that the 

expression levels of EpCAM in the cells vary quite significantly, even within cells from 

the same cancer cell lines. The deduction was also confirmed in the control experiments 

with cells showing different level of fluorescence (different degree of brightness) which 

underwent the same processes for staining. This is likely to have an impact in the 

identification of CTCs from cancer patients as it might be difficult to recognize cells with 

low expression levels, leading to false negatives. Sieuwerts et al. (Sieuwerts, Kraan et al. 

2009) also presented evidence that EpCAM is unsuitable on breast cancer cell given the 

large diverse expression patterns and called for new anti bodies to be adopted. 

Nonetheless, the cell lines used in the investigation had been confirmed with the presence 

of the antibody and would have minimal impact on the characterization experiments.  
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Figure 5.7 shows the cancer cell capture purity in the experiments over the range of 

operating pressures applied. A mean isolation purity of 89% was obtained at the 

operating pressure of 5 kPa and showed insignificant variations at larger operating 

conditions. A Student’s t-test performed on each individual cell line showed no 

significant differences in the mean isolation purity over the range of operating pressures 

at p<0.01. The tumor cell purity in each of the tests was maintained over the entire 

pressure range. Cell isolation purity was calculated as the ratio of cancer cells to the total 

number of cells isolated from the blood mixture as illustrated in equation 5.2.  
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HT-29 AGS N87 HepG2 Huh7 CAL27 FADU

0

20

40

60

80

100

Is
o
la

ti
o
n
 P

u
ri
ty

 (
%

)

Cancer Cell Lines

 5 kPa

 10 kPa

 15 kPa

Figure 5.7 Cancer cell isolation purity for various cancer cell lines in the microdevice over a 

range of operating pressure applied.  
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Isolation 
Purity

 % =
Trapped Cancer Cells (EpCAM+)

Total Number of Isolated Cells
× 100% 

 

 

The results were also significantly higher than leading techniques which claimed a 

separation purity of approximately 50% using biochemical means (Nagrath, Sequist et al. 

2007).  The insignificant change of capture purity over a wide range of applied pressure 

differentials and a mean capture purity of above 85% is indicative that the physical 

properties of cancer cells are distinctively different from blood constituents. The results 

also highlighted that the microdevice was effective to remove blood constituents. The gap 

size of 5 µm in each of the crescent traps was sufficiently large enough to allow blood 

cells to deform through while holding the cancer cells effectively.  

 

 

5.4 Microfluidic Chip Versatility with Cancer of Different Origins 

 

For the characterization of the microdevice, a diverse range of cancer cell lines were used 

to determine the versatility of the technique to handle different cancers as the disease is 

genetically heterogeneous (Braun, Hepp et al. 1999; Reya, Morrison et al. 2001; Shah, 

Mehra et al. 2004; Sergeant, Penninckx et al. 2008). A total of 9 different cancer cell 

lines from 6 different origins were utilized as denoted earlier to ascertain the microdevice 

characteristics. Table 5.2 summarizes the maximum cell isolation efficiencies obtained in 

processing the samples and the corresponding cell capture purity. A 95% confidence 

(5.2) 
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interval is also calculated for each of the individual cell isolation efficiencies to gauge the 

degree of uncertainty around the mean estimates. For the current tests, the isolation of 

HepG2 proved to be the most effective with an isolation efficiency of 87.4%.   

 

Comparing across the different sets of experimental trials with different cell lines, the 

spread of the data was small as denoted by the standard deviation of each sample. This is 

likely to indicate that the results are consistent and the technique is reliable in isolating 

cancer cells from peripheral blood at the particular pressure setting which is applied. 

With a 95% confidence interval, the deviation from the mean showed little variations and 

Table 5.2 Maximum isolation efficiency and corresponding cell capture purity in the 

microdevice using various cancer cell lines.  

Cancer Cell 

Line 

Isolation Efficiency 

(%) 

95% Confidence 

Interval 

Capture Purity 

(%) 

MCF-7 81.5 ± 5.6 [78.7%   84.3%] 87.1 ± 9.0 

MDA-MB-231 80.9 ± 5.3 [77.6%   84.2%] 85.3 ± 5.0 

HT-29 85.4 ± 4.6 [82.7%   88.1%] 90.6 ± 7.0 

AGS 78.9 ± 8.0 [73.9%   83.9%] 89.9 ± 9.0 

N87 80.7 ± 7.6 [76.0%   85.4%] 90.3 ± 7.7 

HepG2 87.4 ± 5.8 [83.8%   91.0%] 88.3 ± 7.5 

HuH7 81.1 ± 4.4 [78.4%   83.8%] 90.8 ±7.9 

CAL27* 81.6 ± 8.6 [76.3%   86.9%] 86.8 ± 10.3 

FADU 80.6 ± 8.7 [75.2%   86.0%] 90.0 ± 8.9 

* Measurements taken at the operating pressure of 3 kPa 
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constantly above 73%, which can be inferred that a high cell isolation efficiency is 

probable when the operating pressures are optimized. Furthermore, it showed that the 

technique is suitable to achieve a precise measure for each of the cancer cell lines in 

peripheral blood which is required for an accurate assessment of the state of health of 

metastatic cancer patients. Collectively, an average cell isolation efficiency of 82.0% was 

obtained with the results acquired from all the cancer cell lines. A 95% confidence 

interval of the mean cell isolation efficiency of the system was between [82.3%  83.7%]. 

This is indicative of an accurate platform for the processing and detection of tumor cells 

in peripheral blood of cancer patients as cell yield is high. Comparing across different 

cell lines, the sample standard deviation for the cell isolation efficiencies was 

approximately 2.6% which is suggestive of a rather small spread of data. The results 

showed that the system fluctuates very little across different cancer types and can be 

versatile to handle cancer cells from different origins. Furthermore, it can be inferred that 

physical properties of cancer cells remained distinctly different from blood cells across 

different cancer types, though they may differ considerable at the genetic level. These 

made separation via size and deformability of cancer cells an attractive method which 

will also resolve numerous issues surrounding affinity based separation.  

 

 

5.5 Conditions of Isolated Cells and Cell Retrieval 

 

The main aims of the system are to provide a direct means of detecting tumor cells from 

peripheral blood which will also keep cells viable so that downstream analyzes can be 
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supported. This is because the conditions of cancer cells after isolation are of interest, as 

these tumor cells in circulation are likely to be responsible for the progression of the 

disease cancer. For this aspect, preserving the native state of the cells after isolation will 

help to determine their exact nature and allow a detailed study of CTC sub-populations 

such as in the investigation of cancer stem cells which are reported to be critical to 

progressive disease (Reya, Morrison et al. 2001; Wicha 2006). This will hopefully 

elucidate clearer the metastatic process to aid in diagnostics, prognosis, monitoring and in 

the search for new therapeutic targets. 

 

Figure 5.8 shows the isolation paths of MCF-7, MDA-MB-231 and HT-29 cells into each 

of the single traps. Results from other cell lines were similar as well and hence the data 

were not shown. Cell isolation followed rather similar tracks as denoted in the CFD 

simulations and met with little resistance from the physical structures created from 

PDMS. The simulated data also presented that the wall shear stress acting on isolated 

cells were within the physiological range which meant fluid shear forces acting on these 

cells were minimized. To ascertain the deductions experimentally, the isolated cells were 

retrieved from the cell traps in the microdevice and cultured under normal conditions.  

 

Retrieval of the isolated cells in the microdevice can be achieved by altering the flow 

conditions inside the microdevice, using the valve connections and the computer which 

controls the pressure lines. Firstly, the waste reservoir was cleared to prevent backflow of 

waste materials, followed by closing of the sample inlet fluidic port. The valve leading to 

the cell collection point was then opened and the pressure differential between the waste 
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HT-29 

2000fps – 5 kPa 

Frame 1 Frame 6 Frame 11 

Frame 16 Frame 21 Frame 26 

Frame 1 Frame 3 Frame 5 

Frame 7 Frame 9 Frame 11 

MDA-MB-231 

110 fps – 2 kPa 

Frame 1 Frame 6 Frame 11 

Frame 16 Frame 21 Frame 26 

MCF-7 

2000fps – 5 kPa 

Figure 5.8 Time sequence images to isolate a cancer cell from a spiked sample. (a) MCF-7 

cells taken at 2000 fps at the operating pressure of 5 kPa. (b) MDA-MB-231 cells taken at 110 

fps at the operating pressure of 2 kPa. (c) HT-29 cells taken at 2000 fps at the operating 

pressure of 5 kPa. Scale bar represent 10 µm.  

(a) 

(b) 

(c) 
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outlet and cell collection point quickly increased to 20 kPa. Isolated cells would then be 

dislodged as shown in figure 5.9 for the 3 cancer cell lines mentioned earlier. The 

returned path did not hinder the disengagement of cells from the cell traps and most of 

the events were instantaneous. Recovery of cells following the release from the traps 

were smooth as the inverted isolation structures directed the free floating cells to the 

adjacent sides and not restricting their movement. An exception in the experimentations 

lies in HuH 7 (hepatocellular carcinoma cells) where it was observed that cells’ 

dislodgement from the traps posed an issue. This is highlighted also in table 5.3 which 

showed that HuH 7 had the lowest recovery rate comparing with all the cell lines tested. 

The recovery rate is calculated based on the number of cells that are dislodged to the 

initial number of trapped isolated cells as denoted in equation 5.3. 

 

 

Cell 
Recovery

 % =
Number of dislodge cancer cells

Initial number of isolated cells
× 100% 

 

 

The probable reason for the lower successful recovery rate is due to the strong adherence 

of the cancer cells to the glass substrate and the PDMS structures. This is an inherent 

property of the cell and differs in strength between different cell types. In order to remove 

them from the structures, it will require a force larger than 20 kPa for the recovery 

settings. Otherwise, chemical agents like trypsin-EDTA (0.25%) can be used to release 

them from the adherent state, before the activation of the cell recovery protocol. A larger 

backflow is not desired as it may breached the critical shear stresses that will in turn 

(5.3) 
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Frame 1 Frame 3 Frame 5 

Frame 7 Frame 9 Frame 11 

Frame 1 Frame 6 Frame 11 

Frame 16 Frame 21 Frame 26 

Frame 1 Frame 6 Frame 11 

Frame 16 Frame 21 Frame 26 

(a) 

(b) 

(c) 

Figure 5.9 Time sequence images to retrieve a cancer cell from the isolation traps. (a) MCF-7 

cells. (b) MDA-MB-231 cells. (c) HT-29 cells. Scale bar represent 10 µm.  

MCF-7  

MDA-MB-231  

HT-29 



99 

 

permanently affect the cells’ biochemistry (Patton, Menter et al. 1993; Chang, Chang et 

al. 2008) or even kill the cells (Brooks 1984). Another alternative is to block the interior 

of the microdevice with a surfactant such as polyethylene glycol (PEG) or pluronic acid 

F-127. These were reported to be effective to prevent cell adhesion on coated surfaces 

(Miqin, Desai et al. 1998; Boxshall, Wu et al. 2006) and yet had minimal effects on the 

viability of the cells when used at low concentrations (negligible toxicity effects). 

However, this incurs additional preparatory steps which will increase the total processing 

time per sample.  

 

Table 5.3 Recovery rate of isolated cells from the microdevice by exerting a back flow to 

collect the cells in the collection point 

Cancer Cell 

Line 
Recovery Rate (%) 

95% Confidence 

Interval 

Deviation from the 

mean (p value)* 

MCF-7 94.9 ± 8.0 [92.1%   97.7%] 0.03499 

MDA-MB-

231 
97.3 ± 2.6 [96.4%   98.2%] ≈ 0.00000 

HT-29 96.0 ± 4.4 [94.5%   97.5%] 0.00002 

AGS 94.4 ± 5.1 [92.6%   96.2%] 0.01253 

N87 94.1 ± 7.4 [91.5%   96.7%] 0.08513 

HepG2 92.4 ± 9.7 [88.9%   95.9%] 0.45543 

HuH7 72.0 ± 13.2 [67.3%   76.7%] ≈ 1.00000 

CAL27 96.0 ± 6.4 [94.0%   98.0%] 0.00028 

FADU 92.5 ± 7.9 [89.7%   95.3%] 0.41834 

*Hypothesis testing performed with null hypothesis H0: µ=92.2 and H1: µ>92.2. 92.2% is the mean recovery rate 

for all the cell lines. 
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All the other cell lines were successfully recovered with high yields as shown in table 5.3. 

An average recovery rate of 92.2% was attained from all the cell lines, indicating a 

significant cell quantity that can be collected from the microdevice after the isolation 

process. A 95% confidence interval for the average cell recovery for this sampling was 

92.2 ± 5.1%. The spread of the data measured by the standard deviation was 

approximately 7.7% which was largely attributed to the heterogeneity between the 

different cells lines in terms of the adhesion strength to the microdevice. MDA-MB-231 

breast adenocarcinoma cells showed the best recovery rates from the microdevice and 

coincidently had also the lowest value for standard deviation. The results were indicative 

that the adherent properties of MDA-MB-231 cells were relatively weaker than the other 

cell lines tested which made it easy to be removed under the same extraction conditions. 

A Student t-test was performed on each individual cell line comparing the recovery rate 

with the mean value from the entire group. This clearly differentiated the groups which 

showed some of the cell lines faced less difficulties in recovery. For instance, with a 

significance level, α of 0.05, we reject the null hypothesis (refer to table 5.3) for MCF-7, 

MDA-MB-231, HT-29, AGS and CAL27. It is statistically significant to claim that this 

group of cancer cell lines showed a higher recovery rate comparing with the mean 

retrieval quantity.  

 

The integrity of the isolated cells was measured by the behavior of the retrieved cells 

under normal culturing conditions. It is hypothesized that the cells initiating tumors have 

stem cell like properties (Marx 2007) and CTCs being circulating in bloodstream are the 

potential targets. Isolating sufficient living CTCs have been a challenge with limited 
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success (Pantel, Brakenhoff et al. 2008) mainly due to the harsh conditions that were 

subjected to the cells in the body before it was retrieved. Current leading techniques do 

not suffice to maintain the quality of these cells and an optimal culturing condition needs 

to be further examined (Kaiser 2010). Removing isolated cells in the proposed 

microdevice for further analysis could be achieved with ease by altering the flow 

conditions to induce the cells to flow towards the cell collection point. The process of cell 

recovery was repeated for 5-8 cycles to obtain enough cell number and the retrieved cells 

were then reseeded to a culture flask. A normal culture from the same batch was 

concurrently maintained that served as a control for comparison.   

 

Figures 5.10, 5.11 and 5.12 illustrate an overview of a 5-day culture for MCF-7, MDA-

MB-231 and HT-29. Similar conclusions were also obtained for the rest of the cancer cell 

lines that were tested. The proliferative rates of reseeded cells were compared to normal 

cultured cells to ascertain that isolated cancer cells were not affected by the microdevice. 

Initial seeding of cells was approximately similar in all experiments and can be verified 

by observing the cultures at day 1. Comparable initial cell numbers were observed on the 

control and experimental culture flasks at day 1. Cells were then allowed to grow for 5 

days with a medium change every 2 days. Over the same duration, there were no 

observable differences in proliferation rate for all cell-lines as shown in figures 5.10, 5.11 

and 5.12 when compared to their respective normal cultures. The morphology of the 

retrieved cells and its control experiment were also rather similar. For instance, reseeded 

MDA-MB-231 (figure 5.11) showed a spindle shape trait which was coherent with the 

control experiment and reseeded HT29 (figure 5.12) proliferated in clusters 
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which were also exhibited in the control experiments. This uniformity in cell behaviour 

confirmed that the retrieved cells were unaffected after isolation in the microdevice and 

that the system was gentle during the processing. 

 

  

5.6 Microdevice Detection Limit 

 

The rarity of CTCs in the presence of a multitude of blood cells is the main technical 

challenge to identify them. The ratio of CTCs to blood cells can be of a billion orders of 

magnitude difference which implies a high noise to signal ratio in the pre-processed 

specimen. An enrichment step is thus crucial and a sensitive setup is desired to detect 

small numbers of cells in the mixture. Therefore, the detection limit of the system is of 

interest as it represents the sensitivity of the microfluidic chip in CTC detection. For 

these experiments, very low counts of cancer cells were added to 1×PBS, either with 

manual pipetting or FACS, and made to pass through the microdevice. It is noted that 

manual pipetting is a laborious and unreliable procedure which will not always yield the 

collection of one single cell. The cell number can vary between 1 to 5 cells but this can 

be clearly observed under the microscope. Using the FACS on the other hand is a 

straightforward process but errors associated in the separation can be quite high when 

trying to obtain a live single cell in each sample from our observations. As the separation 

process cannot be visualized directly, the errors associated cannot be determined 

empirically.  
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We used 1-3 cells in each of our experiments to mimic the rarity in the specimen and 

determine the detection limits of the platform. All other experimental procedures are 

similar to that used in establishing the microdevice cell isolation efficiency as illustrated 

in section 5.1. We define a positive ratio for the number of trials for which at least one of 

the total number of cells spiked into PBS is retrieved, over the total number of cases. A 

value closer to 1 denotes most of the trials were successful to recover the cells while a 

lower value illustrates the converse situation. This provided a gauge of the detection limit 

for the microdevice with respect to each of the cell lines. A total of 90 experimental runs 

were performed for all the cell lines listed in table 5.4.  

 

 

 

Table 5.4 Isolation efficiency and positive ratio for low cancer cell count using 

spiked (1-3 cells) samples. 

Cell Line Cancer Type 
Sample 

Size, n 

Positive Case  

Ratio 

MCF-7 
Breast 

adenocarcinoma 
10 1.00 

MDA-MB-231 
Breast 

adenocarcinoma 
10 0.78 

HT-29 
Colorectal  

adenocarcinoma 
10 0.80 

AGS 
Gastric 

adenocarcinoma 
10 0.80 

N87 
Gastric  

carcinoma 
10 0.60 

HepG2 
Hepatocellular  

adenocarcinoma 
10 0.75 

HuH7 
Hepatocellular  

adenocarcinoma 
10 1.00 

CAL27 
Tongue squamous  

carcinoma 
10 0.68 

FADU 
Pharynx squamous  

carcinoma 
10 0.90 
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To sum up, the mean positive rate achieved from the investigation was approximately 

0.81 from all the nine different cancer cell lines. The results were promising to indicate 

an average success rate for 8 out of every 10 tries in detecting low cell counts from the 

specimens using the proposed microdevice. This was also coherent with the microdevice 

efficiency characterizations in section 5.1 which predicted an average isolation efficiency 

of 80%. However, within cancer cells of the same origin, it was observed that there 

existed distinct isolation rate variations. For instance, MCF-7 was found to have a higher 

positive detection rate at low cell numbers in the sample solution than MDA-MB-231 

which was of the same cancer type. This could be attributed to a number of factors such 

as the heterogeneity of different cancer cell lines, random errors in FACS separation 

when preparing the spiked sample or a result of the setup with cancer cells adhering to 

tubes before entering the microdevice. From the diverse range of cell lines tested, MCF-7 

and HuH7 showed a perfect detection process with all positive responses from each tests. 

On the other spectrum, N87 and CAL27 fared poorly in the study with a detection rate of 

0.6 and 0.68 respectively. Nonetheless, an overall effective rate of 81% is hopeful and 

significant enough to accurately detect CTCs with high sensitivities from the peripheral 

blood of cancer patients. 
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Chapter 6 Clinical Blood Processing to Detect and Analyze 

Circulating Cells 

 

 

The enrichment of CTCs in peripheral blood using the microdevice is based on cell size 

and deformability differences, with the assumption that CTCs are generally larger and 

much stiffer than blood constituents. In this way, as the mixture of cells passes through 

the isolation regions in the microdevice as shown in figure 6.1, cancer cells will be 

impeded by the physical cell traps while blood cells passes through with ease. With a 

uniform array of 900 crescent shaped cell isolation structures optimally positioned, the 

isolation efficiency was maximized for the detection of CTCs and fully characterized 

with techniques illustrated in chapter 5. For the microdevice, it processes whole blood 

directly to isolate CTCs, which simplifies operations and experimental preparation. No 

prior work is required to modify the blood specimen which makes it attractive and 

straightforward. Various features are also built into the device to ensure the smooth 

processing of blood, such as pre-filters, compartmentalized isolation regions and the 

ability to retrieve isolated cells.  

 

 

6.1 CTCs in Patients with Renal Cell Carcinoma (Kidney Cancer) 

 

In this study, we seek to demonstrate the isolation of CTCs in peripheral blood of renal 

cell carcinoma (RCC) patients using purely CTCs’ cell size and deformability differences 
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Figure 6.1 Overview of the microdevice during the processing of whole blood directly for the 

isolation and detection of CTCs. The images were extracted from a real time video taken at 60 

fps of the procedure using a 5× magnification lens on an inverted microscope. Scale bar 

represents 100 µm. 
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from that of blood cells. Patients with RCC have a high probability of haematogenous 

metastasis (Weiss, Harlos et al. 1988; Pagano, Franzoso et al. 1996) and disseminated 

tumor cells from the bone marrow of RCC patients have demonstrated a strong 

prognostic value (Buchner, Riesenberg et al. 2006). By applying biorheological 

differences in cell separation such as that of the cell dimensions and ability to deform, it 

bypasses the need for a selection antibody during the CTCs enrichment process. 

Furthermore, the lack of a suitable universal tumor marker for diagnosis or monitoring 

for RCC (Loberg, Fridman et al. 2004) limits the efficacy of the affinity based separation 

technique. In addition, Allard et al. (Allard, Matera et al. 2004) reported low sensitivities 

in CTC detection using the Cell Search system with EpCAM as the selection marker on 

patients with renal cancer They hypothesized that the heterogeneity in the expression 

levels of EpCAM on CTCs’ surfaces causes variations in the ability of the system to 

recover and detect these cells. Our approach is thus attractive as it is a label free method 

to effectively isolate CTCs from blood, and cells that are generally larger and stiffer will 

be retained. The system being gentle to the isolated cancer cells is likely to maintain the 

integrity of these cells.  

 

Here, the device processes whole blood directly without the need for intermediate 

preparation, thus minimizing potential cell losses as shown in figure 6.1. Biochemical 

functional modifications are also not required for the microdevice which simplifies 

device preparation. Also in the design for a smooth operation, the pre filters in the 

microdevice are necessary to block out large clumps or debris which can come from the 

blood specimen or the fluidic connections of the microdevice from entering the cell 
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isolation region (figure 6.1). This is required to ensure that the tests are not hindered due 

to blocked isolation traps from the large clumps.  

 

Furthermore, the compartmentalized isolation regions aids in the overall support of the 

microdevice as noted in section 4.2 and make certain that the flow characteristics are 

uniformly distributed across the microfluidic channel. The uniform array of the isolation 

traps facilitated cell enumeration in situ and allows processing of large blood sample 

volume (in the range of millilitres) in a microscale device. Contrary to direct filtration 

methods where clogging is an issue, this microdevice directs incoming cells from 

occupied isolation traps to the next row of unoccupied traps, thus preventing potential 

build up of cells in a particular region, which has been demonstrated in chapter 5 using 

spiked samples.  

 

In addition, the optical transparency of the microdevice enables the use of 

immunofluorescence to detect CTCs in situ. The detection of CTCs using 

immunofluorescence staining is performed directly on the microdevice which ensures 

maximum cell yield and minimizes the usage of expensive reagents.  

 

For this investigation, blood samples of RCC patients are examined using this 

microdevice and the system is characterized for its stability, sensitivity and isolation 

capability.  
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6.1.1 Blood Sampling of Metastatic Renal Cancer Patients and Control Experiments from 

Blood Extracted from Healthy Volunteers 

 

Ten healthy volunteers and 32 RCC patients participated in the study after informed 

consent were taken as approved by the institutional review board. Blood samples from 

healthy volunteers serve as control experiments to ascertain the microdevice accuracy. In 

all, 99 peripheral blood samples were extracted from 32 RCC patients from the National 

Cancer Center, Singapore between June 2009 to February 2010. 9 – 10 ml of blood are 

extracted from every patient each time with the first 0.5 – 1 ml of blood discarded to 

prevent false positive responses. Samples were stored in EDTA tubes (BD, Franklin 

Lakes, NJ, USA) prior to use and most blood samples were processed within 24 hours 

after extraction.  

 

 

6.1.2 Linearity of Circulating Tumor Cell Detection 

 

In order to determine a suitable amount of blood volume and measure the variability for 

the tests, we analyzed the first 10 blood specimens taken from RCC patients and varied 

the volume of blood processed. This is important from the considerations on both the 

patient’s comfort level for the amount of blood drawn and the operation time to process 

the sample. Minimizing the amount of blood required per test is advantageous as the 

emotional burden is reduced for the patient and may further aid to convince future test 

subjects to participate in the trials to use CTCs as a monitoring tool for their disease. This 
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is also likely to minimize dropout rate as the level of discomfort from the tests are 

minimal. On the operations, optimizing the quantity of blood in each test will help to 

decrease the blood specimen processing time. This will be beneficial in maintaining the 

conditions of CTCs by reducing the exposure time of these cells to fluid shear forces in 

the microdevice. It this way, this will hopefully help in the culturing of CTCs which are 

important in the study of cancer stem cells and therapeutic treatments (Kaiser 2010).  

 

Figure 6.2 illustrates the enumeration of CTCs from all 10 patients. From each of the 

EDTA tubes, experimental splits of 1 ml, 2 ml and 3 ml of whole blood were set aside. It 
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Figure 6.2 Isolated CTCs from different volumes of blood from the each of the 10 specimens 

to investigate the linearity of the capture. A linear curve fit was performed on each sample 

with an intercept at 0. 
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was observed that a range between 0 and 53 CTCs per ml of blood was obtained for this 

study. The results of each trial were curve fitted using a straight line that passed through 

the origin to determine the linearity of the data. Theoretically, the values should follow a 

linear relationship as it is assumed that CTCs are distributed homogeneously throughout 

the blood specimen and thus it will not matter how much blood is being processed. We 

derived the goodness of fit with a linear model for each of the patient sample and listed 

them in table 6.1. For 7 out of 10 cases, it was noted that a R
2
 value of 0.9 or greater were 

attained that indicated a clear linear correlation.  

 

To further examine the discrepancies associated with certain patient samples, we divided 

the 10 samples into 2 groups based on the average quantity of CTCs detected in each of 

the samples as denoted in table 6.1. It was observed that for samples having a good linear 

relationship, it was achieved when the concentration of CTCs were larger than 5 CTCs 

per ml of blood. The R
2
 values in this group cover over than range of 0.92 to 1.00. As the 

concentration of CTCs in blood increases, the linear correlation is better defined. This 

 

Table 6.1 Linear correlation coefficient, R
2
 for the tested samples to measure the linearity of 

CTC detection 

Patient 

Number 
1 2 3 4 5 6 7 8 9 10 

R
2
 0.94 0.92 0.99 0.80 0.00 0.97 0.99 1.00 0.79 0.91 

CTCs/ml 

 >5* 
Yes Yes Yes No No Yes Yes Yes No No 

* The value is calculated based on an average CTCs count of all the samples tested ie. For Patient 1 who had 7, 16 

and 30 CTCs detected in 1ml, 2ml and 3ml of blood specimens respectively had an average of (7+16+30)/(1+2+3) 

= 9 CTCs/ml (rounded up) 
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could be clearly seen with specimens taken from patients 3 and 8 (figure 6.2) where the 

correlation coefficients were 0.99 and 1.00 respectively.  

 

Henceforth, it can be inferred that with a CTC concentration of larger than 5 in the 

sample, sampling volume of 1 ml is sufficient. As an added safety factor, we proposed to 

increase the sampling volume to 2 ml instead to boost the CTC count so that the results 

were more sensitive, given a larger quantity of isolated cells. This investigation also 

demonstrated the suitability of the technique on clinical blood samples. 

 

 

6.1.3 Technical Stability for Blood Processing in the Microfluidic Device 

 

We investigated the effects of blood storage time prior to sample processing and defined 

that as the stability of the system. Although blood specimens are kept in EDTA tubes 

before being processed in the microdevice, the deterioration of the sample is inevitable 

due to the environment we reside in. As the quality of the sample worsens, it can be 

expected that there will be more coagulated clumps of blood cells present in the samples. 

For instance, repeated freeze thaw cycles can result in the formation of large precipitates 

(Cheng, Hochlowski et al. 2003). Such situations commonly arise during the 

transportation route, in between blood extraction and the delivery of the specimens from 

the hospital to the laboratory, where the blood processing is performed. This is 

detrimental to the processing of the specimen in minuscule platforms (Pan 2004) as these 

materials pose the issue of clogging in the microdevice.     
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The stability of the microdevice to process blood samples is important as it determines 

the overall effectiveness of the system. This prevents wastage of valuable samples and 

allows for the logistic planning of blood extraction to maximize output. Figure 6.3 

illustrates the overview of the interior of the microdevice after the processing of blood. 

The isolated cells underwent a secondary detection procedure using immunofluorescence 

to further confirm their status and to allow a comparable platform with other techniques. 

Figure 6.3 CTCs detection from the peripheral blood of cancer patients. (a) Overview of one 

compartment in the microdevice. The red squares highlights the confirmed CTCs isolated 

from blood specimens and the circle encompasses the WBCs. Scale bar represents 50 µm (b) 

Real time visualization of the blood processing process. Scale bar represents 20 µm (c) Same 

view of the isolated cell after a washing cycle which removes blood residues. Scale bar 

represents 20 µm. 

(b) 

Whole 
Blood 

Isolated Cell 
(a) 

(c) 
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Figure 6.3a depicts the overview of a compartment of isolation traps in the microdevice 

after the staining process which clearly distinguishes apart the CTCs from residual 

hematopoietic cells that remains in the system. Figure 6.3b and 6.3c show the 

intermediary steps during the blood processing and washing cycle that removes blood 

residual off the microdevice. The isolated cells can then proceed further for 

immunofluorescence detection for CTCs. A clear imagery of isolated cells was seen in 

real time during blood processing as whole blood passes through the microdevice. Being 

optical transparent and compatible with existing microscopes, the microfluidic device and 

the setup permitted visualization during the process, allowing corrections to the system if 

errors or clumps enter the platform. In addition, cells that are of larger dimensions and 

higher stiffness will be actively impeded and can be observed instantaneously.  

 

A total of 119 blood specimens from both healthy volunteers and RCC patients are 

analyzed and summarized in table 6.2. We extracted 20 control samples from 10 healthy 

volunteers and 99 specimens from 32 renal cancer patients. Hence, an average of 2 

samples was taken from each healthy volunteer and 3 from each cancer patient. Samples 

are categorized by the duration of storage before blood processing and gauged by the 

microdevice’s ability to successfully analyze these samples. As noted earlier, the quality 

of the samples are of paramount importance to the successful blood processing. For 

healthy volunteers, blood processing through the microdevice either before or after 24 hrs 

possed no significant problems. However, for RCC patients, the stability of the system 

was 85.5% for samples that were being processed within 24 hrs after blood extraction. A 

significant decline was also seen with older samples that were kept for more than 24 hrs 
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as shown in table 6.2. The discrepancies are attributed to the fast deterioration of clinical 

samples where large clumps start to form over time in the stationary EDTA tubes. These 

are likely incurred during the idle and transportation times. As the microdevice operates 

within a small enclosed volume, such coagulated materials are detrimental to the blood 

processing and likely to obstruct the microfluidic device.  

 

It is thus recommended that the storage to processing time be kept within 24 hrs after 

blood extraction. Furthermore, to prevent the formation of precipitates in the specimen, it 

is proposed to keep specimens cool and under a slight agitation using a slow rocking 

mechanism on a shaker until blood processing is available.  

 

 

6.1.4 Sensitivity for CTCs Detection using Physical Separation 

 

The detection of CTCs in RCC is attractive as it is reported that the dissemination of 

tumor cells into the circulation is an early event (Blumke, Bilkenroth et al. 2005). Studies 

Table 6.2 Stability of the microfluidic device on the detection of circulating tumor cells in 

peripheral blood of healthy volunteers and metastatic RCC patients 

 

No of 

subjects 

Sample 

Size 

<24hrs 

(+ve) 

<24hrs 

(-ve) 

≥24hrs 

(+ve) 

≥24hrs 

(-ve) 

Stability 

<24hrs 

Stability 

≥24hrs 

Healthy 

subjects 
10 20 10 0 10 0 100% 100% 

RCC 

patients 
32 99 71 12 2 14 85.5% 12.5% 
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have also shown that CTCs are present in RCC patients with different tumor grades 

(McKiernan, Buttyan et al. 1999), indicating a high probability of detecting these 

circulating cells. There are reported significant prognostic values of CTCs enumeration 

for RCC patients (Buchner, Riesenberg et al. 2006; Bluemke, Bilkenroth et al. 2009) and 

current methods focuses on immunomagnetic separation to enrich CTCs (Bilkenroth, 

Taubert et al. 2001; Allard, Matera et al. 2004). The sensitivities of such systems can be 

affected by the selection of antibodies during enrichment, as specific renal tumor markers 

are lacking (Loberg, Fridman et al. 2004). Physical methods are attractive as it does not 

rely upon specific biomarkers on the tumor cells and are efficient in cell separation 

(Pamme 2007). The lung, being a prominent site for secondary tumor formation (Assouad, 

Petkova et al. 2007) is an excellent in vivo example to illustrate that size based arrest of 

tumor cells are possible. As shown in various reports, the lung has been effective at 

arresting CTCs by impeding them in small capillaries and exerting lethal mechanical 

trauma to these cells, which contributes to the inefficiency of the metastatic process 

(Weiss and Dimitrov 1986).  

 

Analogous to the principle of CTCs trapping in the lungs, the microdevice provides an 

efficient enrichment process using the physical differences of CTCs to blood constituents. 

By controlling the flow conditions inside the microdevice, the highly deformable 

erythrocytes (Shelby, White et al. 2003) and leukocytes (Yap and Kamm 2005) are 

removed as these cells traverse through without much difficulty, and arresting CTCs 

which are generally larger and less deformable. Figure 6.3a shows the successful 

isolation of cells with positive responses for pan-cytokeratin and DAPI. A summary of 
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the results are presented in figure 6.4 and table 6.3. A total of 73 blood samples from 

renal cancer patients which have been successfully processed by the system are tested 

using immunofluorescence staining for pan-Cytokeratin, CD45 and DAPI. A positive 

count of CTC is determined to be pan-Cytokeratin positive, CD45 negative and DAPI 

positive. A close up view of isolated CTCs and WBCs are illustrated in figure 6.5. The 

secondary anti-bodies which are tagged to the fluorophores determine the colour of the 

stains and can be interchange based on the complementary pair on the primary anti-body. 

The selection of anti-bodies using this technique is thus versatile and can be tailored to 

suit the needs of the analysis. Figure 6.5 shows CTCs which are tagged with 
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Figure 6.4 Isolated CTC count in renal cancer patients blood in comparison with healthy 

volunteers. The variable n denotes the number of specimens within the range. 
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Alexafluor 568 showing a red fluorescence and can be readily changed with other 

secondary antibodies to display CTCs in other colours. CTCs are detected in 70 out of 73 

samples, achieving a 95.9% detection rate in RCC patients.  

 

This is a significant increase in sensitivity comparing with previous studies (Allendorf, 

Ippagunta et al. 2004) and is likely a result of the direct processing of whole blood and 

Table 6.3 Summary of CTCs enumeration with metastatic renal cell carcinoma patients 

showing the sensitivity and purity of the system  

 
Sample Size Mean ± SD 

Positive 

Rate 

Average Purity  

± SD 

Healthy 

volunteers  
20 0 0% NA 

RCC patients 73 27 ± 35 95.9% 71.5 ± 28.6% 

 
 

CTCs WBC 

Figure 6.5 General view of the microdevice showing isolated CTCs (pan-cytokeratin positive, 

CD45 negative, DAPI positive) and a hematopoietic cell (pan-cytokeratin negative, CD45 

positive, DAPI positive). 
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the redundancy of a selection antibody used in immunomagnetic separation. By 

processing whole blood directly, it minimizes any potential loss from any intermediary 

preparation steps and the isolation methodology retains every cell that are physically 

different. For the samples tested, an average count of 27 CTCs was detected in the 

peripheral blood from all patient samples. Furthermore, the spread of the data comparing 

across different specimens was contrasting which can be useful to better differentiate and 

gauge the severity of the disease. Previous studies by Allard et al. (Allard, Matera et al. 

2004) presented a 25% detection rate using CellSearch’s affinity based separation and 

having positive samples with 2 cells or less with renal cancer patients. Such detection 

numbers are likely to pose issues in the linearity of the results as mentioned in section 

6.1.2 which may be erroneous when used to determine the average concentration of 

CTCs in peripheral blood. Using the same data range, it was observed that there was a 

better spread of samples in each of the data bins as illustrated in figure 6.4. However, it 

was noted that the nature of the samples and patients conditions presented were different 

in both cases which could be the reason for the dissimilarities as well. This also made a 

direct comparison difficult.  

 

For the capture purity in the microdevice, the average rate was approximately 71.5% and 

a 95% confidence interval of 64.9% to 78.1%. The large spread of purity values was 

likely a direct consequence of the different conditions of blood being processed. It was 

observed that the quality of samples was an important parameter in obtaining good 

capture purity. Samples that were significantly deteriorated tend to have more WBCs 

trapped after blood processing. 
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Nonetheless, achieving a 95.9% positive detection rate from a random selection of renal 

cancer patients proved the technology promising in the detection of CTCs. We had also 

achieved a significant sensitivity for the investigated set of blood specimens using the 

microdevice with an average detection rate of 27 tumor cells. The platform will provide a 

sensitive and accurate measure of the quantity of CTCs in peripheral blood for various 

clinical applications. For control experiments, there were no positive responses from 

healthy volunteers, signifying the specificity of the technique with RCC patients’ blood 

samples. 

 

 

6.1.5 Heterogeneous Behaviour in RCC CTCs 

 

The molecular characteristics are different for various cancer types and thus it is expected 

that such variations manifest in the circulating cells as well. Comparing against cancer of 

different origins, it is reported that these distinct divergent features are important to 

achieve a good understanding of the disease and for prognostic purposes (Riethdorf, 

Wikman et al. 2008; Steen, Nemunaitis et al. 2008). Within circulating cells of the same 

type, such disparities are also present. Sieuwerts et al. (Sieuwerts, Kraan et al. 2009) 

observed that for breast cancer cell lines, a diverse expression pattern of EpCAM existed 

which may limit its usefulness in it use for cell separation as potential cancer cells with 

low EpCAM levels are not detected.  Hautkappe et al. (Hautkappe, Lu et al. 2000) also 

reported the detection of specific mutations in the von Hindel-Lindau tumor-suppressor 

gene in CTCs of renal cancer patients, showing diversities in cancer cell populations. 
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These studies demonstrated that the pursuit to decipher the differences that existed in 

CTCs will be clinical beneficial.  

 

We had also observed various heterogeneous behaviours in the isolated CTCs from renal 

cancer patients in the microdevice. A clear distinction was in the pan-cytokeratin 

expression levels detected across different blood specimens, which was used to confirm 

the presence of CTCs. Within isolated cells in the sample blood sample, the expression 

patterns were also varied and could be clearly observed under the microscope. Figure 6.6 

Isolated cells with 
varying degree of CK 

expression level 

Figure 6.6 Isolated cells from peripheral blood of patients. Identification using pan-cytokeratin 

(red) on the isolated cells. Scale bar represents 20 µm.  
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depicts a fluorescent image of isolated cells from a patient’s peripheral blood which 

clearly demonstrated CTC variants having different pan-cytokeratin expression levels. 

Most of the isolated CTCs tend to show weak pan-cytokeratin staining while small 

proportions display distinct expression levels. These results are in coherence with 

previous studies conducted by Blumke et al (Blumke, Bilkenroth et al. 2005), having 

shown using immunocytochemistry that cytokeratin expression levels in RCC CTCs 

differs. The observation is intriguing and likely to suggest the presence of diverse 

populations of cells within the same cancer type in our specimens.  

 

In addition, another interesting result from our tests shows a diverse variation in cell sizes 

of CTCs. The different dimensions of cells were rather uniformly distributed for all the 

CTCs isolated from the 73 blood samples. The difference between the smallest and 

largest cell was however rather distinct with isolated CTCs as small as 8 µm to cells as 

large as 30 µm which were pan-cytokeratin positive, CD45 negative and DAPI positive.   

Figure 6.7 is a clear illustration of the differences, with the isolated cells in the traps and 

showing positive responses fluorescently for CTC markers. The voluminous ratios of the 

cell nucleus to its cytoplasm were large which typically are characteristics observed in 

cancer cells. These are features that can be observed in figures 6.6 and 6.7 and also in all 

other isolated cells from the tests. 

 

The design of the microdevice initially targeted to hold cells in the size range of 15 µm to 

25 µm, and the presence of smaller cells resulted in traps holding more than 1 cell at 

times. The ability to hold CTCs below the desired range indicated that the stiffness of the 
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cells is significantly dissimilar enough to be impeded by the isolation structures. An 

example of trapping a small CTC is visibly demonstrated in figure 6.7. The results are 

also likely to indicate the diverse and complex nature of CTCs in haematogenous 

metastasis. It concurs with various hypotheses from numerous studies that a diverse 

group of circulating cells are present in peripheral blood (Racila, Euhus et al. 1998; 

Sledge 2006; Pantel and Alix-Panabieres 2007; Pantel, Brakenhoff et al. 2008; Sastre, 

Maestro et al. 2008; Sergeant, Penninckx et al. 2008). The capability to isolate the 

different subtypes of CTCs is useful for further characterizations which might be valuable 

to disease prognostication and treatment monitoring. 

 

 

 

DAPI CD45 panCK Merged 

Figure 6.7 Isolated cells from peripheral blood of RCC patients and immunofluorescence 

staining in situ on chip. (b) Isolated CTCs of various sizes showing pan-cytokeratin positive, 

CD45 negative and DAPI positive. Scale bar represents 5 µm. 
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6.1.6 CD44 Staining of CTCs in RCC patients  

 

The system is shown to be suitable to handle the challenges involved in the finding of 

CTCs, with a high detection rate in the peripheral blood of cancer patients. Heterogeneity 

of the circulating cells are also important study parameters and physical techniques for 

enrichment and detection of CTCs will further the endeavour. By using cell and 

deformability of cells for tumor cell isolation, it relies solely upon the differences in 

biorheological properties and will retain all cells that are significantly different than 

blood constituents. This is in contrast to the use of biomarkers for CTCs enrichment 

which select a specific cell population as the markers are not entirely universal. Thus, the 

outcomes of using physical separation are likely to encompass a more diverse and 

unbiased range.  

 

From the trials, 94.5% of the 73 blood samples presented additional mono-nucleated cells 

that were negative for both pan-cytokeratin and the hematopoietic marker (CD45). 

Though they were negative for standard CTCs selection markers, their physical 

characteristics such as the voluminous ratio of their nucleus to cytoplasmic content were 

large which was suggestive that they might be cancer cells. Furthermore their lack of 

positive response to hematopoietic markers indicated that these cells were not of blood 

origin. Blumke et al (Bluemke, Bilkenroth et al. 2009) also reported the presence of 

cytokeratin negative large cells in RCC patients using a CD45 depletion technique that 

removes leukocytes in an enriched sample after density gradient centrifugation, which 

showed that there were probably significant numbers of cancer cell subpopulations in 
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peripheral blood. It should be noted that these samples used in our tests were derived 

from patients with metastatic renal cell carcinoma, and may not represent the entire 

spectrum of patients with RCC.  

 

CD44 that belongs to a family of transmembrane glycoprotein is shown to be associated 

with p53 expression (Zolota, Tsamandas et al. 2002) and has prognostic potential in RCC 

(Paradis, Ferlicot et al. 1999). Studies have also revealed strong correlations of CD44 

expressions to tumor differentiation and cancer progression (Heider, Ratschek et al. 1996; 

Terpe, Storkel et al. 1996; Masuda, Takano et al. 1999). We investigated the expression 

patterns of CD44 standard form in CTCs by direct immunofluorescence techniques and 

staining the isolated cells in situ. 10 samples were randomly selected from the entire tests 
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Figure 6.8 Investigation of the CD44 expression patterns on the isolated cells in RCC patients. 
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and repeated for the detection of pan-cytokeratin, CD44 and DAPI. We allowed the 

samples to be processed in parallel with two different microdevices at the same time, 

using blood samples from the same EDTA tubes. Different sets of primary antibodies are 

then added during the immunofluorescence staining process. The results are summarized 

in figure 6.8 with all the samples having a proportion of isolated cells positive for the 

standard CTC markers (pan-cytokeratin positive, CD45 negative and DAPI positive). In 

the parallel setup, 3 subtypes could be seen, namely isolated cells that were pan-

cytokeratin positive/CD44 negative; both positives and pan-Cytokeratin negative/CD44 

positive. A proportion of the isolated cells from all 10 samples were pan-Cytokeratin 

positive/CD44 negative. 5 out of 10 samples had isolated cells that were positive for both 

and 7 out of 10 had isolated cells only for CD44. Figure 6.9 shows a typical analysis from 

the samples illustrating the distinct expression patterns that are present. The results are 

indicative of the occurrence of CTC subtypes and the complex nature of tumor cells 

(a) 

(b) 

panCK CD44 DAPI Merged 

Figure 6.9 Immunofluorescence staining of pan-Cytokeratin and CD44 in RCC CTCs which 

show a heterogeneous cell population in the isolated cells by the microdevice. (a) Isolated cell 

with CD44 positive, pan-cytokeratin negative and DAPI positive. (b) Isolated cell with CD44 

positive, pan-cytokeratin positive and DAPI positive. Scale bars represent 10 µm. 
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dissemination into the blood circulation. The lack of CD44 in normal renal cells (Paradis, 

Ferlicot et al. 1999) suggest that CD44 can be a strong prognostic factor to detect CTCs 

in peripheral blood. 

 

 

6.2 Non Small Cell Lung Cancer (NSCLC) and Nasopharyngeal Cancer (NPC) 

 

Having optimized the system with controlled parameters described in chapter 5, the 

microdevice was tested initially on blood specimens from renal cancer patients. The 

benefits of CTC enumeration are being less invasive than surgical biopsies and can 

potentially be more responsive to the state of health of cancer patients (Mocellin, Hoon et 

al. 2006; Riethdorf, Wikman et al. 2008). In addition, it can provide an alternative source 

of tumor tissue for the detection, characterisation and monitoring of non-blood-related 

cancers (Maheswaran, Sequist et al. 2008; Panteleakou, Lembessis et al. 2009). The 

technique proposed in this report uses a microfluidic device which isolates CTCs directly 

from whole blood using purely rheological differences. Tumor cells which lack certain 

blood characteristics made them physically distinct from blood cells. This feature is 

probably not restricted to renal cancer alone and has been clearly demonstrated with a 

diverse range of cancer cell lines tested. The technique is potentially universal to handle 

most cancer types of non hematologic origin.  

 

In a subsequent study, the platform was tested on clinical blood specimens from patients 

suffering from lung and nasopharyngeal cancer. Blood extraction followed protocols set 

out in sections 3.4 and 3.9 after obtaining consent from patients for the tests, as stipulated 
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by the Institutional Review Board. The study is currently ongoing in parallel with other 

trials. For the tests on NSCLC and NPC, a total of 7 patients are currently involved in the 

trials. Figure 6.10 shows some of the isolated cells from the blood specimens. The 

isolated cells underwent an immunofluorescent labeling for cytokeratin, CD45 and DAPI 

which was similar to the procedures performed on RCC samples. Figure 6.10a shows the 

positively identified tumor cells from lung cancer patients. The isolated cells also showed 

typical large cell nucleuses which are clearly visible in figure 6.10b. Other physical 

Figure 6.10 CTC isolation from clinical blood samples of metastatic lung cancer patients. 

(a) Immunofluorescence staining of isolated cells to identify cancer and hematopoietic 

cells. Scale bar represents 20 µm. (b) Phase contrast images of isolated CTCs after blood 

processing. Scale bar represents 10µm. 

 

(a) 

(b) 

CD45 panCK DAPI Merged 
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characteristics concur with earlier deductions such as isolated cells display a wide range 

of sizes and were heterogeneous in behavior.  

 

Table 6.4 summarizes the CTCs isolation and detection of NSCLC and NPC specimens. 

A 100% detection rate was achieved for both cancer types. This was indicative of the 

suitability of the technique and the microdevice to perform the tasks. Comparing with 

leading technologies on CTC enumeration for lung cancer (Allard, Matera et al. 2004; 

Maheswaran, Sequist et al. 2008), the sensitivity of the system showed comparable 

isolation efficiencies to work on patients’ blood samples. An average cell count of 63 

cells was obtained with specimens from lung cancer patients and a positive count of 70 

cells for the NPC specimen. An average capture purity of 85.5% was achieved for lung 

cancer samples and a 95% confidence interval gave the range from 78.6% to 92.3%.  

 

Table 6.4 CTCs isolation and detection from peripheral blood of metastatic lung cancer 

patients using the proposed microdevice. 

 

Specimen 
Number 

Cancer Origin 
Volume 

Processed 
Positive CTC 

count 
WBC 

Isolation 
Purity (%) 

1 NSCLC 2 ml 30 4 88.2 
2 NSCLC 2 ml 84 10 89.4 
3 NSCLC 2 ml 82 10 89.1 
4 NSCLC 2 ml 20 8 71.4 
5 NSCLC 2 ml 36 11 76.6 
6 NSCLC 2 ml 166 4 97.6 
7 NSCLC 2 ml 79 3 96.3 
8 NSCLC 2 ml 3 1 75.0 
9 NPC 2 ml 70 2 97.2 
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The results from the tests showed a high signal to noise ratio that is beneficial for 

downstream processing, especially for the molecular detection methods to avoid false 

positives. It is also evident that physical dissimilarities between CTCs and blood 

constituents are significant in peripheral blood of cancer patients for an efficient tumor 

cell enrichment and separation. The methodology for the separation and isolation of 

CTCs from blood offers a new perspective to current performed techniques and will aid 

clinical applications to target the disease.  

 

A sum up of all the results from clinical samples is shown in table 6.5. With clinical 

blood specimens from cancer patients, it is demonstrated that the system is sensitive to 

rare CTCs from various cancer types. This is potentially useful to gauge the disease 

severity, drug monitoring and prognostic purposes in clinical practices, which will 

hopefully aid and raise the patients’ quality of life. The microdevice is specific in its 

blood processing which showed negative responses from all 10 healthy volunteers who 

participated in the study. The CTCs yield from the isolation process was large and 

Table 6.5 Summary of CTC counts in 2ml of whole blood from patients with various types of 

carcinomas 

 

 
No of study 

subjects 

No of 

Specimens 
Mean n = 0 n ≤ 5 ≤ 10 ≤ 50 > 50 

Healthy 

Volunteers 
10 20 0 20 0 0 0 0 

RCC 32 73 27 3 17 7 35 11 

NSCLC 6 8 63 0 1 0 3 4 

NPC 1 1 70 0 0 0 0 1 
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covered a wide range as shown in table 6.5. This is valuable to the further analyses of 

CTCs in cancer patients to better understand the disease.   
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Chapter 7 Conclusions and Future Work 

 

7.1 Conclusions 

 

Cancer metastasis is the key attribute to cancer-related deaths and much remains to be 

explored about this phenomena. Evolving techniques for isolating CTCs represents an 

unprecedented opportunity for clinical and biological insight into the nature of metastasis 

and cancer. In the present study, it is demonstrated that a microfluidic setup can yield an 

accurate and sensitive measure of CTCs in peripheral blood. CTCs which represent tumor 

cells in the blood circulation of cancer patients are likely to be useful and associated to 

the disease. The basis for an effective isolation of CTCs is to utilize their inherent 

physical differences of size and deformability from blood cells in a microfluidic system. 

With the platform, the objectives are to study these cells in circulation, with hopes to 

understand their characteristics in relation to the metastatic process. 

 

Using computational analysis, various design layouts were put forward and tested in a 

systematic and controlled manner to show that the proposed system was plausible to 

handle the tasks. The proposed system was then tested with spiked samples using 

numerous cancer cell lines. Results from the tests showed that the microfluidic platform 

is successful in the isolation of various cancer cell types. The microdevice also achieved 

significant cancer cell isolation purity while preserving the integrity and state of these 

cells. Furthermore, the microfluidic platform is versatile, being capable of handling 

diverse cancer cell lines with minimal noise and yet maintaining cell viability and 
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phenotype through a gentle and straightforward processing. More importantly, the system 

is label-free, isolating cells in an unbiased fashion, and sensitive to detect small cancer 

cell count in the specimens. Through the use of distinctive biomechanical characteristics 

of the cells, neither functional modification nor complex enrichment procedures were 

required. Being label free also helped to address numerous concerns linked to affinity 

based isolation methods. Operational procedures were straightforward as minimal 

preparations were needed for the microdevice and samples. Cancer cells were captured in 

a single processing step thereby minimizing potential cell losses during intermediary 

procedures. Furthermore, immunofluorescence staining could be done in situ inside the 

microdevice as the system is optical transparent and designed to be integrated onto 

existing microscopes. Given the simplicity of the processing procedures, multiplexing of 

the system to concurrently run numerous samples is straightforward, which allowed 

processing and testing more parameters at the same time.   

 

With clinical blood specimens from patients suffering from various cancer types, there 

was positive CTC detection in the preliminary studies, which was also promising for the 

isolation of viable cells. The microdevice which separates CTCs in a single step, without 

requiring biochemical modifications is attractive to maximize the yield for downstream 

analyses to enhance the understanding of the disease, and complement current cancer 

detection and prognosis techniques. Results obtained from RCC peripheral blood samples 

highlighted the heterogeneous nature of CTCs in haematogenous metastasis which 

presented variations in cell dimensions and pan-cytokeratin expression levels. The 

isolated cells also revealed the presence of CD44 in CTCs arising from the peripheral 
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blood of RCC patients which had shown in previous immunohistochemistry studies to 

have strong correlations to tumor progression. The microfluidic platform was capable of 

isolating the different subtypes of CTCs which is useful for further characterizations. The 

microsystem also allowed for real time visualization of the isolation process. With blood 

specimens from lung and nasopharyngeal cancer, the investigation presented a strong 

affinity to enrich and isolate these cells. The microdevice which separates CTCs in a 

single step without requiring biochemical modifications, is attractive for applications in 

oncology research particularly prognostication and prediction of drug response. 

 

 

7.2 Recommendations 

 

Moving forward, the system is currently in the process of testing various clinical 

specimens from cancer patients to determine the disease correlation, as well as to engage 

in the study of the epigenetics of the disease. Most clinical trials are currently still in 

progress and as the tests are done single blinded, such data are not available at this time. 

These trials are likely to continue over an extended period to track the progress of the 

patients. The work is also expected to expand into the molecular aspects of the problem 

which will help to identify genes and proteins that are involved in the disease. The 

current system can be optimized to fulfill the objectives by providing access to the 

recovered cells for DNA extraction and fluorescence in situ hybridization (FISH) 

analyses. With multiplexing of the setup to be straightforward as demonstrated, these 

parameters can be examined concurrently.  
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Furthermore, there are interests in the culture of CTCs in vitro and the system might be 

well poised to address these issues. Current limitations in this aspect of the study is in 

getting enough living cells for culture and may be addressed with larger volumes of 

extracted blood from the patients. The system will then have to be scaled up to meet the 

volume requirements. In addition, to improve upon current work, the designs of the 

isolation traps can be modified. For instance, a diverse range of cell diameters were 

observed in isolated CTCs which led to multiple cells within each isolation trap in some 

instances. A slight modification of design to have different sizes of traps in the same 

microdevice will address the discrepancies.  

 

Minor improvements to the blood processing procedure may be implemented in the 

future such as the incorporation of an automated CTC counter from the isolation traps. 

This is crucial with the scaled up system meant for processing larger blood volumes, as it 

will likely incur a higher probability of human error during cell enumeration. Automated 

CTC counting will also ensure consistencies in the tests. Further efforts to improve upon 

the design of the microchip to allow greater flexibility in processing blood samples are 

also currently being pursued. Finally, it is of interest to explore other microdevice designs 

in the future work that utilizes similar separation mechanisms of CTCs from whole blood 

with the objectives of achieving better isolation efficiencies and shorter blood processing 

time.   
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In summary, our platform provides a unique opportunity to study the systemic circulation 

and activity of cancer in a simple, accessible and unbiased fashion over time. We 

anticipate its use in disease prognosis and therapeutic monitoring, thereby permitting 

personalization of therapy. 
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