
TWO CONCRETE PROBLEMS IN TIMING ANALYSIS OF
EMBEDDED SOFTWARE

HEMENDRA SINGH NEGI
(B.Tech., IIT Bombay)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48645697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement

I would like to thank my supervisorsDr. Tulika Mitra andDr. Abhik Roychoudhury , for

their invaluable guidance and support. Without their help, it was almost impossible for me to complete

this work.

I would also like to thank my lab-mate Pan Yu for his help in getting me various tools and softwares

required. I would also like to thank all my friends for their consistent support and encouragement.

Finally, I would like to thank my parents who stood by me during the hardest time in my life and

provided me with encouragement and confidence to complete the work.

Hemendra Singh Negi

i

Contents

1 Introduction 1

1.1 Design Issues For Real-Time Systems . 1

1.2 Overview Of The Report . 3

2 Estimation of Cache Related Preemption Delay 4

2.1 Introduction . 4

2.2 Related Work . 5

2.2.1 Set Based Approach of Lee et. al . 7

2.3 Our Technique . 8

2.3.1 Motivation . 9

2.3.2 Approach . 10

2.4 An Example . 14

2.5 Experimental Results . 17

2.6 Optimization Using Binary Decision Diagrams . 19

2.7 Conclusion . 23

3 Timing Analysis of Loop Behaviors 24

3.1 Introduction . 24

3.1.1 Types of Infeasible Paths . 25

3.2 Infeasible Path Detection Technique . 27

3.2.1 Technique . 27

3.2.2 Example . 28

3.2.3 Implementation And Results . 28

ii

3.3 WCET Calculation Technique . 29

3.3.1 Basic Technique . 29

3.3.2 Refined Approach . 33

3.3.3 Problem Statement . 34

3.3.4 Method . 34

3.3.5 Creating Nodes . 35

3.3.6 Creating Transitions . 36

3.3.7 Dynamic Programming Algorithm . 37

3.4 Implementation And Illustration By Examples . 39

3.4.1 Example 1: Iteration Based Constraints . 40

3.4.2 Example 2: Effect Based Constraints . 41

3.4.3 Example 3: Combination of Effect Based And Iteration Based Constraints 44

3.4.4 Results . 44

3.5 Related Work . 48

3.6 Discussion . 51

4 Simplifying WCET Analysis by Code Transformations 52

4.1 Our Technique . 53

4.1.1 Reducing number of loop paths . 54

4.1.2 Equalizing path lengths . 55

4.2 Conclusion . 58

4.3 Discussion & Future Work . 58

5 Conclusion & Future Work 61

5.1 A Tighter Bound on CRPD . 61

5.1.1 Example . 62

5.1.2 Future work . 63

5.2 Simplifying WCET Analysis . 63

Bibliography 64

iii

Summary

The design of real-time systems requires a timing guarantee to be given on the execution time of the

tasks running in the system. The timing guarantees for the tasks can be given in the form of worst case

execution time (WCET) of a program. An upper bound on the WCET of a program can be given by static

analysis methods. The problem of determining WCET of a program by static analysis methods has to

be solved at the following two levels (1) Programming language level, to determine the longest path in

the program and (2) Micro-architectural level, to take into account the effect of features such as pipeline,

cache and branch prediction. At the programming language level it is required to detect the infeasible

paths in the program and use that information for giving a tight bound on the WCET of the program.

At the micro-architectural level, the presence of caches in a real-time system with multiple tasks, results

in additional delay in the execution time of the task due to preemption by a higher priority task. Such

delays are called as cache related preemption delay (CRPD). It is important to derive an upper bound on

the CRPD for the schedulability analysis of tasks running in a real-time system.

In our work we have targeted static analysis both at the programming language level and micro-

architectural level. At the programming language level, we have proposed a constraint propagation based

technique to determine certain infeasible paths present in a loop in the program. We have also proposed

a WCET Analysis technique which uses the infeasible path information to give a tight upper bound on

the worst case execution time of a loop. Our experimental results show that our infeasible path detection

technique could even detect some of the infeasible paths which are hard to detect from existing infeasible

path detection techniques and our WCET computation technique gives tight bounds on the WCET of a

program. Further, we have proposed a code transformation based idea for reducing the number of paths

in a program that has to be considered during the WCET analysis. Reducing the number of paths is very

advantageous for path based WCET analysis techniques which in general are exponential on the number

of paths in a program.

We have also proposed a technique to model caches in order to determine a tight bound on the CRPD

of tasks. Our technique performs path analysis of both high priority and low priority tasks. Furthermore,

we compute all possible states of cache, when the lower priority task gets preempted by the higher

priority tasks and when the higher priority task is completed. This is more accurate than the existing set

based analysis techniques which estimate the cache states by inferring the set of memory blocks which

may exist in each cache block, and thus leading to over-estimations.

iv

List of Tables

2.1 Computation ofRCSB for the CFG in Figure 2.3. 15

2.2 Description of benchmark programs. 17

2.3 Accuracy of CRPD analysis for a 32-block cache. A stands for actual value(by sim-

ulation), C stands for combined analysis of all cache blocks and S stands for separate

analysis of each cache block. 18

2.4 Maximum number of cache blocks used by high priority task for a 32-block cache. . . . 18

2.5 Maximum number of useful cache blocks of the low-priority task at any program point

for different cache sizes. A stands for actual value(by simulation), C stands for combined

analysis of all cache blocks and S stands for separate analysis of each cache block. . . . 18

2.6 Comparison of combined and separate analysis for low-priority task. BB denotes the

number of basic blocks at which useful cache block count differs and Diff denotes the

maximum of these differences. 19

2.7 Time to compute useful cache blocks for low-priority task in sec. 19

2.8 Possible encoding of memory blocks into boolean form. 20

2.9 Comparison of memory usage between normal and BDD representation of cache states . 23

3.1 Description of benchmarks used . 47

3.2 Results showing WCET prediction . 48

v

List of Figures

2.1 RMB, LMB and Useful states at program point P . 9

2.2 Two paths to P from X, only one of it is possible . 10

2.3 An example control flow graph . 14

3.1 Infeasible paths due to branch correlation . 25

3.2 Infeasible paths due to effect of assignment on branch 25

3.3 Correlation of a branch outcome with a conjunction of other branches 26

3.4 Infeasible paths across iteration . 26

3.5 Example CFG and working of infeasible path detection algorithm 28

3.6 X has no incoming edge . 32

3.7 X has no outgoing edge . 32

3.8 ba is an infeasible sequence of paths . 35

3.9 Example 1: Illustrating iteration based constraints . 40

3.10 Control Flow Graph for Example 1 . 40

3.11 Paths and their corresponding sequence of blocks executed 41

3.12 Transition graph for Example 1 . 41

3.13 Working of DP algorithm for Example 1 . 42

3.14 Example 2: Illustrating effect based constraints . 42

3.15 Possible paths for Example 2 . 43

3.16 Transition graph for Example 2 . 43

3.17 Working of DP algorithm for Example 2 . 44

3.18 Example 3: Combining effect and iteration based constraints 45

3.19 Possible paths for Example 3 . 45

vi

3.20 Nodes and their corresponding start and end for Example 3 45

3.21 Transition graph for Example 3 . 46

3.22 Working of DP algorithm for Example 3 . 46

4.1 Example code to illustrate our technique . 54

4.2 Reduction of number of loop paths in Control Flow Graph 55

4.3 Possible paths for original loop . 56

4.4 Example code after loop path reduction . 56

4.5 Example code after path length equalization . 57

4.6 Control Flow Graph after path equalization . 57

4.7 Example Code: Toy6 . 59

vii

Chapter 1

Introduction

The world is moving fast towards embedded systems. A lot of equipments used in the day to day life

for e.g. washing machine, mobile phones etc. are embedded systems. An embedded system is classified

asreal-time embedded systemif the correctness of the system depends not only on the logical result of

the computation, but also on the time at which the results are produced [46]. Further, a real-time system

can be divided into two classes: 1)Hard Real-Time System:which has to meet strict deadlines. 2)Soft

Real-Time System:which do not require the same degree of determinism and the task running in it retain

some diminished value after its deadline so it should still be executed. Predictability of hard real-time

systems is very important as missing of deadline by a task in hard real-time system may cause havocs.

In this report we concentrate upon the predictability of real-time system in reference to hard real-time

systems.

1.1 Design Issues For Real-Time Systems

The two main issues1 in the design of real-time systems are: (i)predictability: it should be possible to

give an upper bound on the execution time of a task, and (ii)performance:the real-time system should

be fast.

One of the main issue in the design of real time system is: providing a timing guarantee (predictabil-

ity) for the tasks running in it. The obstacles to the predictability of real-time systems are:

1Note that another important issue in the design of real-time system ispower i.e. a real-time system should consume less
power. Detail description of this issue is beyond the scope of this report

1

1. Large set of inputs: since in most of the cases the set of inputs to an application program in real-

time systems could be very large, hence it is not feasible to test all the input cases to determine

how much time the application will take to execute in the system.

2. Unpredictable hardware: In the presence of unpredictable components such as caches and pipeline

it is hard to derive the exact amount of time taken by a task to run in the system (In this report, we

will only concentrate on predictability issues related to caches).

Predictability for real-time system can be achieved either bystatic analysis techniquesor by hard-

ware/software approaches. Since, it is very difficult and time consuming and in some cases almost

impossible to test all the input cases to determine the time taken by a task running in a system. There-

fore, static analysis methods which analyze the program statically to give an upper bound on the time

taken by a task are very beneficial [31, 23, 36, 32, 29]. On the other hand, hardware/software approaches

try to model the system in a way such that it is inherently predictable.

One of the hindrance to the predictability of real-time system is the use of unpredictable hardware

such as caches. The performance gain achieved by caches in a system makes their use in real-time

system inevitable. Although caches are very effective means of speeding up the memory accesses in

the average case. However, the worst case behavior of applications, which is of prime importance in

hard real-time systems, is hard to predict in a safe and precise way in the presence of caches, due to the

presence ofintra-taskandinter-taskinterferences. Intra-task interferences occur when a task overrides

its own blocks in the cache due to conflicts for cache blocks. Inter-task interferences arise in multitasking

systems because of the preemptions. The modelling of caches via static analysis methods include worst

case execution time (WCET) analysis in case of intra-task interferences [32, 29] and a cache related

preemption delay (CRPD) analysis in case of inter-task interferences. Caches can also be modelled for

real-time system by various hardware/software approaches which include cache partitioning [25, 33],

cache locking [12, 52, 43] etc. In this report we present our technique to determine a tight upper bound

on the cache related preemption delay.

Another issue in the design of real-time embedded system is that it should be fast in performance.

A real-time system can be tuned for optimal performance with respect to caches, either by analysis of

programs’ memory performance [20, 13] and applying code transformation accordingly or by design and

optimization of cache parameters such as line size, cache size and associativity [24, 35, 49, 30].

2

1.2 Overview Of The Report

In this report two techniques for the timing analysis of real-time embedded systems are presented. Chap-

ter 2 discusses a technique to determine a tight bound on the cache related preemption delay. Chapter

3 presents a method to determine a bound on time for the execution of loops in a program. Chapter 4

discusses a code transformation based technique which could be used as a pre-processing step to other

WCET calculation techniques for reducing their complexity. Finally the last chapter presents conclusion

and future work prospects.

3

Chapter 2

Estimation of Cache Related Preemption

Delay

2.1 Introduction

The running of multiple tasks in a real time system with cache results in interferences in the cache, due

to the replacement of memory blocks of one task by another task at the time of preemption. Such type

of interferences as said before are known as inter-task interferences. Due to the preemption of a lower

priority task by a higher priority task some memory blocks belonging to lower priority task might get

replaced, therefore when the lower priority task resumes its execution it has to incur some extra cost by

bringing back the replaced memory blocks (if they are required) from the memory to the cache. This

additional cost incurred by the lower priority task is known as Cache Related Preemption Delay (CRPD)

and it occurs when the useful cache blocks of the lower priority task get replaced by the higher priority

task. The useful cache blocks at any point in the program are those cache blocks whose contents would

be used again later in the program before being replaced.

The estimation of CRPD is very important for the schedulability analysis of tasks. In particular,

[27, 28] reports how CRPD can be used to derive accurate response times of multiple periodic tasks

running on a single processor for fixed-priority preemptive scheduling. There exists other ways such as

cache partitioning (for e.g. [25, 54]) to avoid the analysis of CRPD. However, such an approach results

in severe degradation of performance and might also require changes to hardware or software depending

upon how the partitioning is controlled. Thus, for multi-tasked real-time systems with caches, CRPD

4

estimation is necessary to evaluate task preemption costs.

To determine a tight bound on CRPD, it is important to consider the effects of both high and low

priority tasks. When a taskτ0 is preempted by taskτ1 it is necessary to consider the following:

• All the memory blocks ofτ0 which are in the cache whenτ0 is preempted may not be re-referenced

after resumption.

• All the memory blocks ofτ0 which are in the cache whenτ0 is preempted may not be replaced by

τ1.

• There are several possible cache contents whenτ0 is preempted (resulting from the different paths

of τ0).

• There are several possible cache contents whenτ0 resumes (resulting from the different paths of

τ1.)

• There are several possible memory reference patterns afterτ0 resumes execution (due to different

paths ofτ0).

The importance of some of these factors on CRPD is mentioned in [17]. However, no estimation tech-

nique is given and only simulation results are presented.

2.2 Related Work

In [3], Basumallick and Nilsen extended the rate monotonic analysis to take into account inter-task

interferences in the the form of cache related preemption delay. Some of the works on estimating the

CRPD are presented in [51, 27, 28, 17]. Tomiyama and Dutt in their approach [51] have assumed that

all the cache blocks are useful at the time of preemption, thus reducing the CRPD calculation to finding

out the maximum number of cache blocks used by high priority task. They have also shown that it is

not necessary that the longest path in the program uses the largest number of cache blocks too. They

have used an integer linear programming based approach to determine the program execution path which

uses the maximum number of cache blocks. They have shown that by solving the ILP problem, it is

possible to achieve a tighter upper bound on CRPD. Lee at. el. in [27] have performed a set based

analysis of the cache blocks used by the preempted task. In their approach they try to find out the set

5

of all possible memory blocks that could be present in a cache block at any program point. For their

analysis they consider only the low priority tasks. The work of [27] has been extended in [28] to include

the high priority task also. Dwyer and Fernando in [17] have given a simulation based approach to

calculate the CRPD. They generate a live cache frame1 distribution of an application by running it under

different circumstances and thus find out the maximum number of live cache frames reached at any

instant. This gives an upper bound on the CRPD. A caveat to their approach is that it must be possible

to find the maximum number of live frames coexistent during the execution of an application under all

possible circumstances. They have also proposed refinements to include the effect of high priority task.

Busquets-Mataix has proposed an approach to analyze cache eviction cost in a multi-tasking system

[11]. However, they also conservatively assume that all the cache lines used by the preempting task

need to be reloaded by the preempted task when the preempted task is resumed. In a recent work by

Yudong and Mooney [50], the authors have proposed a method to analyze the preemption cost caused by

cache eviction in a multi-tasking real-time system. They analyzes the inter-task cache eviction behavior

by calculating the intersection set of cache lines used by the preempting task and the preempted task.

The authors also do a path analysis to eliminate cache lines that will not be accessed in a task from

being used in the estimate. In another recent work [48], Staschulat and Ernst have presented a CRPD

analysis approach which considers multiple process activations and preemption scenarios. The authors

have proposed a technique which extends the CRPD approach of [38], by propagating replaced cache

blocks in the control flow graph. Multiple process activations are modelled by inserting an edge from the

last to the first node.

Our approach is similar to the set based approach of Lee et. al. [27]. However, with our approach we

are able to compute a tighter bound on CRPD, as we store the relative occurrences of memory blocks in

cache. We have later compared our results with the set based approach of [27], to show that our approach

gives a tighter bound on the CRPD. Therefore, to realize the usefulness and power of our approach it

is important to have a basic understanding of the set based approach of [27]. The description of the set

based approach follows.

1A ‘live cache frame’ is a cache frame that contains a block that is accessed in the future and without an intervening eviction

6

2.2.1 Set Based Approach of Lee et. al

Lee at. el. in [27] have performed a set based analysis of the cache blocks used by the preempted taskτ0

before and after preemption. Some of the definitions given by them are as follows.

Definition 2.2.1 (REACHING MEMORY BLOCKS(RMBs)) The set of reaching memory blocks of

cache block c at program point p, denoted byRMBc
p ,contains all possible states of cache block c at

program point p, where a possible state corresponds to a memory block that may reside in the cache

block at the point. For a memory block to reside in cache blockc, first, it should be mapped to cache

blockc. Furthermore, it should be the last reference to the cache block in some execution path reaching

p.

Definition 2.2.2 (LIVE MEMORY BLOCKS(LMBs)) The set of live memory blocks of cache blockc

at a program point p, denoted byLMBc
p, contains all possible states of cache blockc at program point

p, where a possible state corresponds to a memory block that may be the first reference to cache blockc

after p.

The iterative equations for calculating the RMBs at various basic blocks of the program are as follows.

RMBc
IN [B] =

⋃
X a predecessor of B

RMBc
OUT [X]

RMBc
OUT [B] =

 genc[B] if genc[B] is not null;

RMBc
IN [B] otherwise.

B, X are the basic blocks (note that a program point is taken as an exit or entry of a basic block).

RMBc
IN andRMBc

OUT are the RMBs at the beginning and end of the basic blockB, respectively.

genc[B] contains as its unique element the memory block that is the last reference to the cache blockc in

the basic block.genc[B] is null if basic blockB does not have any reference to memory blocks mapped

to cache blockc. The equations for LMB is given in a similar manner. The LMBs at various basic blocks

of the program can be calculated using the following equations.

LMBc
OUT [B] =

⋃
S a successor of B

LMBc
IN [S]

7

LMBc
IN [B] =

 genc[B] if genc[B] is not null;

LMBc
OUT [B] otherwise.

wheregenc[B] is null if basic blockB does not have any reference to memory blocks mapped to cache

block c, otherwise contains an unique element, the memory block that is the first reference to the cache

blockc in the basic block.

A fixed point iteration algorithm is used to calculate the sets of RMB and LMB at various program

points, as per the above equations. The initial conditions for RMB calculation via fixed point iteration

algorithm are

RMBc
IN [B] = φ

RMBc
OUT [B] = genc[B]

and the initial conditions for LMB calculation via fixed point iteration algorithm are

LMBc
OUT [B] = φ

LMBc
IN [B] = genc[B].

Once the sets of RMBs and LMBs are calculated at various program points, the set ofuseful cache

blocksare calculated from the intersection of RMB and LMB at various program points. A cache block

c is useful at a program pointP if the intersection of sets RMB and LMB for cache blockc is not null

at pointP. The CRPD incurred, if the interrupt point isP would be given by the total number of useful

cache blocks at pointP.

Figure 2.1 from [27] shows an example of the set of RMB and LMB calculated at program pointP.

The cache blocksi andj are useful at pointP, as the intersection of sets LMB and RMB is not null.

2.3 Our Technique

In our approach [38], we have refined the existing set based approach [27] to calculate a more accurate

bound on the CRPD. Our technique performs path analysis of both high priority and low priority tasks.

Furthermore, we compute all possible states of cache, when the lower priority task gets preempted by

8

21

21

b

a

y

x

xa

i

i

j

ji

j

RMB

(c ,m)

x cache block j

cache block i

Useful

Useful

x

aba

{m }{m }

{m }{m , m }

StateLMB

(c , m)bi b

out out

inin

(c , m)

(c , m)

(c , m)

(c , m)

(c , m)(c , m)
i

P

Figure 2.1: RMB, LMB and Useful states at program point P

the higher priority tasks and when the higher priority task is completed. This is more accurate than the

existing set based analysis techniques [27] which estimate the cache states by inferring the set of memory

blocks which may exist in each cache block.

2.3.1 Motivation

The existing set based approach [27] suffers with an overestimation as they calculate the different pos-

sible states of the cache blocks at any instant independently. Therefore, at any instant for each cache

block, they give all possible memory blocks those can be present at that instant in that cache block. For

example consider Figure 2.2. In Figure 2.2, there are two possible paths to P from X, but only one is

possible at any time. Consider a direct mapped cache with two cache blocks. Taking the left path would

result in cache state{< Ma,Mc >} and taking the right path will result in state{< Mb,Md >} for the

cache. [27] will represent the cache state individually as{Ma, Mb} and{Mc, Md} for the cache blocks

ci andcj , respectively. This will actually be counted as cache states{< Ma,Mc >}, {< Ma,Md >},

{< Mb,Mc >}, {< Mb,Md >}, later while calculating the useful cache blocks, since they do not store

the relative occurrences of memory blocks in cache. In our approach at each point we actually store the

different possible cache states, thus maintaining the relative occurrences of memory blocks in cache. For

example, in the above case we will store the cache states as{< Ma,Mc >} and{< Mb,Md >}, hence

9

, M b
C j , Mc C j , M d

 a, M

T F

 X

i

P

C i C

Figure 2.2: Two paths to P from X, only one of it is possible

later while calculating the useful cache blocks, we get accurate and better results than [27].

2.3.2 Approach

Let us define some of the notions first, before giving the description of our approach.

Definition 2.3.1 (Cache State)A cache staterepresents the contents of cache at any instant. A cache

state of null for any cache block denotes an empty cache block. A cache state can be imagined as a vector

of size equal to maximum number of cache blocks and containing the memory addresses mapping to the

cache blocks.

In all our calculations we have assumed a direct mapped cache. For a direct mapped cache withn

blocks, a cache state can be represented as a vector ofn elementsc[0, ..., n− 1] wherec[i] = m if cache

block i holds memory blockm. Otherwise, if the ith cache block does not hold any memory block we

denote this asc[i] =⊥. At each program point we try to calculate the different possible cache states,

which are called as thesetof cache states.

Definition 2.3.2 (REACHING CACHE STATES) The Reaching Cache States at a basic block B of a

program, denoted asRCSB, is the set of possible cache states when B is reached via any incoming

program path.

10

Definition 2.3.3 (LIVE CACHE STATES) The Live Cache States at a basic block B of a program,

denoted asLCSB, is the set of possible first memory references to cache blocks via any outgoing program

path from B.

The idea is: for the low priority task, we try to calculate different possible reaching and live cache

states of the whole cache, at different program point and then combining each cache state in any set

(reaching/live) with every cache state in the other set (live/reaching), we get a set of useful cache states

at each program point. We then report the useful cache states which has the maximum number of useful

cache blocks. A cache block is useful at any program point if it will be used again during the execution

of the program without its content getting replaced. At any program pointP , an elementR in the set of

reaching cache states represent the memory blocks present in cache when the program pointP is reached

via some path sayp1. And an elementL in the set of live cache states represent the memory blocks which

will be the first memory references via some path sayp2 after the program pointP . Hence, for any cache

block if the value inR andL is same, then it represents that the content of the cache block will be used

again without being replaced in the pathp1 followed by p2. The maximum number of useful cache

blocks obtained from our approach is lesser than that obtained from [27]. Further, we consider the high

priority task and calculates the reaching cache states at the exit of high priority task. Then, by combining

the different possible useful cache states at any program point in the low priority task, with the reaching

cache states at the exit of the high priority task, we get the set of replaced cache states at any program

point. This set of replaced cache states determines the CRPD. The maximum number of replaced cache

blocks in the set of replaced cache states at any program point, gives the CRPD.

The equations for the reaching cache states and live cache states are given by.

RCSIN
B =

⋃
p∈predecessor(B)

RCSOUT
p

RCSOUT
B = {r � genB|r ∈ RCSIN

B }

RCSIN
B andRCSOUT

B are the reaching cache states at the entry and exit of basic blockB, respectively.

genB = [m0,...,mn−1] wheremi = m if m is the last memory block inB mapping to cache blocki in B

and⊥ if no memory block inB maps to cache blocki. The operation� is defined over memory blocks

as:

11

m�m′ =

 m′ if m′ 6=⊥;

m otherwise.
and we assume that any operation� over memory blocks can be applied to cache states (by applying the

operation pointwise to its elements).

The equations for calculating the live cache states are given by:

LCSOUT
B =

⋃
s∈successor(B)

LCSIN
s

LCSIN
B = {l � genB|l ∈ LCSOUT

B }

LCSIN
B andLCSOUT

B are the live cache states at the entry and exit of basic blockB, respectively.genB

= [m0,...,mn−1] wheremi = m if m is thefirst memory block inB mapping to cache blocki in B and⊥

if no memory block inB maps to cache blocki. The� operation is the same as given above.

A fixed point iteration algorithm (as given in [40]) can be used to solve the above sets of equations,

to get the reaching/live cache states at each program point. Once the fixed point is reached we set

RCSB = RCSOUT
B andLCSB = LCSOUT

B . The initial assignments of variables in the two cases

(reaching/live), is as follows.

RCSIN
B = φ

RCSOUT
B = genB

LCSOUT
B = φ

LCSIN
B = genB

Calculating useful cache blocks.Solving the above equations would results in two sets (reaching and

live) at different program points. From the intersection of each element in one set with every element in

another set, we obtain a new set, called useful cache set, denoted asUCSB. Every element of this set is

an array of size equal to total number of cache blocks, and is calculated as follows. If L is a cache state

in LCSB and R is a cache state inRCSB and combination of L and R results in an array U, inUCSB,

then U is given by:

For cache blockci if mli is the memory block inci in L andmri is the memory block inci in R, then

U[i] is given by:

12

U [i] =

 1 if mli = mri;

0 otherwise.
This way at each program point P, we can get a set, representing the useful cache blocks for different

possible program paths through P.

The memory space of high priority task and low priority task are disjoint hence the execution of

high priority task after preemption at any program pointP might replace the useful cache blocks of low

priority task atP . However, it may happen that not all of these useful blocks are replaced by the high

priority task. Therefore it is also necessary to know the cache state at the finish of the high priority task.

Hence, a set of final cache state (FCS) is calculated for the high priority task. The FCS is obtained from

the RCS of high priority task, at the last block (exit block). If R is a cache state inRCSexit then a state

F in FCS corresponding to R can be calculated as below.

F [i] =

 1 if cache blockci in R is nonempty;

0 otherwise.
Once we have both the UCS (at every point of low priority task) and FCS (RCS at exit of high priority

task), we can calculate the CRPD at any point P in low priority task in the following way:

For every U inUCSB at program point P and from every F inFCS find the number of useful cache

blocks in U replaced by F, and report the maximum number of replaced useful cache blocks achieved

through any combination of U and F. A useful cache blockci is replaced, if bothU [i] andF [i] are equal

to one.

Hence by finding the maximum number of replaced useful cache blocks at any program point in low

priority task, we can achieve a tight bound on CRPD.

It may appear that our approach can face exponential blowup of cache states. But this is not common

in general case, because due to the limited size of the cache, different paths get merge at various basic

blocks. A naive example to show this would be to assume that there is a basic block B, which has

instructions mapping to all the cache blocks. Thus even ifRCSIN
B has more than one elements but

RCSOUT
B would only have a single element. This results in reduction of the exponential nature of the

approach. In fact our results prove this fact and the execution time of the fixed point algorithm in general

is not so high in all our test cases.

13

2.4 An Example

For better understanding, let us work out an example to calculate the CRPD with our technique. Consider

the control flow graph (CFG) shown in Figure 2.3. The CFG consists of four basic blocks (B1-B4) and

six memory blocks (m0-m6) within a loop with single if-then-else. A direct mapped cache with four

cache blocks (c0-c3) is assumed. As per the CFG thegenB of various basic blocks are as follows.

m0

m1
m2
m3

m4
m5

m6

B1

B2 B3

B4

c0
c1
c2
c3

m0 m4
m1 m5
m2 m6
m3

Figure 2.3: An example control flow graph

genB1 = [m0,⊥,⊥,⊥]

genB2 = [⊥,m1,m2,m3]

genB3 = [m4,m5,⊥,⊥]

genB4 = [⊥,⊥,m6,⊥]

The various iterations of the fixed-point iteration algorithm to calculate theRCSB are shown in Table

2.1. It is important to note here that some cache states might get subsumed by other cache states and are

avoided for further consideration in the fixed point iteration algorithm. A cache statec′ is subsumed by

another cache statec if ∀i c′[i] = c[i] or c′[i] =⊥. Thus, in iteration 4 for basic block B3,

RCSIN
B3 = {[m0,m1,m6,m3], [m0,m5,m6,⊥]}

14

Iteration Basic Block RCSIN RCSOUT

1 B1 ∅ [m0,⊥,⊥,⊥]
B2 ∅ [⊥,m1,m2,m3]
B3 ∅ [m4,m5,⊥,⊥]
B4 ∅ [⊥,⊥,m6,⊥]

2 B1 [⊥,⊥,m6,⊥] [m0,⊥,m6,⊥]
B2 [m0,⊥,⊥,⊥] [m0,m1,m2,m3]
B3 [m0,⊥,⊥,⊥] [m4,m5,⊥,⊥]
B4 [⊥,m1,m2,m3], [m4,m5,⊥,⊥] [⊥,m1,m6,m3], [m4,m5,m6,⊥]

3 B1 [⊥,m1,m6,m3], [m4,m5,m6,⊥] [m0,m1,m6,m3], [m0,m5,m6,⊥]
B2 [m0,⊥,m6,⊥] [m0,m1,m2,m3]
B3 [m0,⊥,m6,⊥] [m4,m5,m6,⊥]
B4 [m0,m1,m2,m3], [m4,m5,⊥,⊥] [m0,m1,m6,m3], [m4,m5,m6,⊥]

4 B1 [m0,m1,m6,m3], [m4,m5,m6,⊥] [m0,m1,m6,m3], [m0,m5,m6,⊥]
B2 [m0,m1,m6,m3], [m0,m5,m6,⊥] [m0,m1,m2,m3]
B3 [m0,m1,m6,m3], [m0,m5,m6,⊥] [m4,m5,m6,m3]
B4 [m0,m1,m2,m3], [m4,m5,m6,⊥] [m0,m1,m6,m3], [m4,m5,m6,⊥]

5 B1 [m0,m1,m6,m3], [m4,m5,m6,⊥] [m0,m1,m6,m3], [m0,m5,m6,⊥]
B2 [m0,m1,m6,m3], [m0,m5,m6,⊥] [m0,m1,m2,m3]
B3 [m0,m1,m6,m3], [m0,m5,m6,⊥] [m4,m5,m6,m3]
B4 [m0,m1,m2,m3], [m4,m5,m6,m3] [m0,m1,m6,m3], [m4,m5,m6,m3]

6 B1 [m0,m1,m6,m3], [m4,m5,m6,m3] [m0,m1,m6,m3], [m0,m5,m6,m3]
B2 [m0,m1,m6,m3], [m0,m5,m6,⊥] [m0,m1,m2,m3]
B3 [m0,m1,m6,m3], [m0,m5,m6,⊥] [m4,m5,m6,m3]
B4 [m0,m1,m2,m3], [m4,m5,m6,m3] [m0,m1,m6,m3], [m4,m5,m6,m3]

7 B1 [m0,m1,m6,m3], [m4,m5,m6,m3] [m0,m1,m6,m3], [m0,m5,m6,m3]
B2 [m0,m1,m6,m3], [m0,m5,m6,m3] [m0,m1,m2,m3]
B3 [m0,m1,m6,m3], [m0,m5,m6,m3] [m4,m5,m6,m3]
B4 [m0,m1,m2,m3], [m4,m5,m6,m3] [m0,m1,m6,m3], [m4,m5,m6,m3]

Table 2.1: Computation ofRCSB for the CFG in Figure 2.3.

andgenB3 = [m4,m5,⊥,⊥]. Therefore,

RCSOUT
B3 = {[m4,m5,m6,m3], [m4,m5,m6,⊥]}

However,[m4,m5,m6,⊥] is subsumed by[m4,m5,m6,m3] and henceRCSOUT
B3 = {[m4,m5,m6,m3]}.

TheLCSB can also be calculated in the similar fashion and are as follows at the fixed point.

LCSB1 = {[m0,m1,m2,m3], [m4,m5,m6,m3]}

LCSB2 = {[m0,m1,m6,m3], [m0,m5,m6,m3]}

LCSB3 = {[m0,m1,m6,m3], [m0,m5,m6,m3]}

LCSB4 = {[m0,m1,m2,m3], [m0,m5,m6,m3]}

15

Given LCS and RCS for each basic block, the useful cache sets (UCS) can be computed.

UCSB1 = {[1, 1, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 0, 1]}

UCSB2 = {[1, 1, 0, 1], [1, 0, 0, 1]}

UCSB3 = {[0, 1, 1, 1], [0, 0, 1, 1]}

UCSB4 = {[1, 1, 0, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]}

Now let us illustrate the advantage of our technique over separate analysis of each cache block [27, 28].

In that case,RCSB andLCSB have a set of reaching memory blocks for each cache block as shown in

the following.

RCSB1 = [{m0}, {m1,m5}, {m6}, {m3}]

RCSB2 = [{m0}, {m1}, {m2}, {m3}]

RCSB3 = [{m4}, {m5}, {m6}, {m3}]

RCSB4 = [{m0,m4}, {m1,m5}, {m6}, {m3}]

LCSB1 = [{m0,m4}, {m1,m5}, {m2,m6}, {m3}]

LCSB2 = [{m0}, {m1,m5}, {m6}, {m3}]

LCSB3 = [{m0}, {m1,m5}, {m6}, {m3}]

LCSB4 = [{m0}, {m1,m5}, {m2,m6}, {m3}]

Let us considerRCSB4. From separate analysis of cache blocks, we infer thatRCSB4 can have four

possible cache states:[m0,m1,m6,m3], [m0,m5,m6,m3], [m4,m1,m6,m3], and[m4,m5,m6,m3].

However, our combined analysis of cache blocks infers that only two of these cache states are feasible.

The identification of these infeasible cache states leads to decrease in the number of useful cache blocks

(computed via intersection ofRCSB andLCSB) at each program point. For example, our analysis

infers at most 3 useful cache blocks for both B1 and B4 (Even though each of the cache blocks is useful

along some path, all 4 of them are not useful along any path). Whereas, with separate analysis of cache

blocks, we get 4 useful cache blocks for B1 and B4.

Note that we also maintain the Final Cache States (FCS) of the high priority task as a set of boolean

16

Program Description
matsum Summation of two100× 100 matrices
qsort Non-recursive quick sort algorithm
crc Cyclic redundancy check program
sqrt Square root calculation
eqntott Drawn from SPEC’92 integer benchmarks
des Data Encryption Standard
whet Whetstone benchmark
ssearch Pratt-Boyer-Moore string search
math Basic math within nested loop

Table 2.2: Description of benchmark programs.

vectors. This leads to further accuracy in CRPD analysis. For example, suppose we computeFCS =

{[1, 0, 1, 0], [1, 1, 0, 0]}. This will allow our analysis to estimate the number of replaced cache blocks to

be2 leading to even tighter CRPD estimation.

2.5 Experimental Results

In our experiments we used nine different benchmarks (mostly from [32] and [22]) to present the accu-

racy and performance of our technique. Table 2.2 gives the description of benchmarks used by us. We

used the Simplescalar architectural simulation platform [10] in the experiments. All the benchmarks are

compiled to Simplescalar assembly language with modifiedgcc. A CRPD analyzer written by us accepts

the assembly language code, identifies the basic blocks out of it and constructs the control flow graph

(CFG) from it. Given the CFG for the low-priority and high-priority task, our analyzer implements a

fixed point iteration algorithm to calculate the RCS and LCS at various program points taken at the exit

of each basic block. The calculated RCS and LCS are used to compute the useful cache states (UCS) at

various program points and finally the intersection of UCS and final cache states (FCS from high-priority

task) is used to determine the CRPD.

We present three types of results to present the accuracy and performance of our technique, and at

the same time comparing it with the set based approach.

First we present the results for CRPD analysis. Table 2.3 shows the CRPD values in terms of number

of cache blocks for a direct mapped instruction cache with 32 cache blocks.matsum, eqntott , and

sqrt are used as higher priority tasks and all others as low priority tasks. The results for actual (A in

Table 2.3), set based or separate [27] (S in Table 2.3), and combined or our (C in Table 2.3), analysis of

17

LP Task HP Task
matsum eqntott sqrt

A C S A C S A C S
qsort 19 20 24 16 22 28 18 19 26
crc 17 17 18 17 21 22 18 19 20
ssearch 19 22 23 19 25 27 21 22 25
des 22 23 24 21 24 26 22 22 25
whet 20 21 22 20 25 25 23 23 24
math 18 22 23 20 25 27 20 22 25

Table 2.3: Accuracy of CRPD analysis for a 32-block cache. A stands for actual value(by simulation), C
stands for combined analysis of all cache blocks and S stands for separate analysis of each cache block.

Task Combined Separate
matsum 23 24
eqntott 26 28
sqrt 23 26

Table 2.4: Maximum number of cache blocks used by high priority task for a 32-block cache.

all cache blocks are presented. The maximum number of cache blocks used by high-priority tasks are

shown in Table 2.4. Our analysis produces much tighter bound on CRPD, with improvement as high as

37% for some benchmarks.

Second we show the maximum number of useful cache blocks of the low-priority task at any program

point in Table 2.5. In Table 2.5, A, C and S have their usual meaning as described above. Again our

technique results in tighter values for useful cache blocks than the separate analysis of [27].

Third in Table 2.6 we show the number of preemption points (basic blocks) at which useful cache

block count differs in our combined and separate analysis as well as the maximum of these differences. It

should be noted that even though the maximum number of useful cache blocks over all preemption points

Task # of Cache Blocks
8 16 32 64

A C S A C S A C S A C S
qsort 1 1 1 14 14 14 26 28 32 51 62 63
crc 2 2 2 12 12 12 22 26 26 47 48 48
ssearch 2 6 6 14 15 16 29 31 31 59 59 59
des 0 0 0 6 12 12 30 30 30 60 60 64
whet 0 1 2 10 11 14 29 29 29 59 59 59
math 3 4 5 10 14 16 27 30 31 63 63 64

Table 2.5: Maximum number of useful cache blocks of the low-priority task at any program point for
different cache sizes. A stands for actual value(by simulation), C stands for combined analysis of all
cache blocks and S stands for separate analysis of each cache block.

18

Task # of Cache Blocks
8 16 32 64

BB Diff BB Diff BB Diff BB Diff
qsort 0 0 1 1 2 4 1 1
crc 2 1 0 0 0 0 0 0
ssearch 0 0 2 2 0 0 0 0
des 0 0 0 0 9 2 47 15
whet 7 1 11 4 0 0 0 0
math 2 1 4 5 2 3 1 1

Table 2.6: Comparison of combined and separate analysis for low-priority task. BB denotes the num-
ber of basic blocks at which useful cache block count differs and Diff denotes the maximum of these
differences.

Task # of Cache Blocks
8 16 32 64

qsort 0.003 0.004 0.022 0.082
crc 0.016 0.015 0.164 65.663
ssearch 0.007 0.025 1.613 16.168
des 0.010 0.022 0.525 55.329
whet 0.005 0.023 4.189 89.858
math 0.013 0.059 1.061 8.414

Table 2.7: Time to compute useful cache blocks for low-priority task in sec.

of low-priority task (shown in Table 2.5) might be the same in both analysis techniques, the estimated

number of useful cache blocks in individual preemption points of low-priority task may be different.

We have used pentium 4, 1.7 GHz CPU with 1 GB memory for our experiments. For all benchmarks

it takes less than 1.5 minute, to calculate the useful cache states. Also, the cache states are quite less as

compared to expected exponential blow up of cache states. For e.g., forqsort with 40 basic blocks and

490 memory blocks and 8 cache blocks, the total number of live cache states are 68 and reaching cache

states are 69. Table 2.7 shows the time taken by our analyzer to compute the UCS for all basic blocks in

the low-priority task.

2.6 Optimization Using Binary Decision Diagrams

In our approach, we represent the cache states at a program point in a task as a set of tuples (where each

tuple denotes an assignment of memory blocks to the cache blocks). To avoid an exponential blow-up

in the space consumption we can represent the possible cache states at any program point implicitly

as a Binary Decision Diagram (BDD) [9, 8]. A BDD is an efficient data structure for representing

19

c1 c2

x1x2 y1y2

Ma1 01 Ma2 01
Mb1 10 Mb2 10
Mc1 11 Mc2 11

Table 2.8: Possible encoding of memory blocks into boolean form.

a propositional logic formula. In this section we show how to translate our approach to use BDD.

Although we have implemented our approach using BDD but not much gain was obtained in terms of

memory usage. The possible factors for this are discussed later in the section.

Binary Decision Diagram (BDD)

Binary decision diagrams(BDD) [9, 8] are an abstract representation of boolean functions. An Ordered

BDD (OBDD) can be obtained from a BDD, by imposing some of the restriction on the ordering of the

variables used by the boolean function, such that the resulting form is canonical. An OBDD is a directed

acyclic graph with internal nodes corresponding to the variables over which the function is defined and

the terminal nodes labelled by the function values 0 and 1.

Encoding of our approach into boolean Form

For the purpose of using OBDD we first have to encode our variables and structures into boolean form.

Let us assume we have two cache blocks sayc1 and c2, and let the memory blocks (only these are

mapped)Ma1, Mb1 andMc1 gets mapped to cache blockc1 and memory blocks (only these are mapped)

Ma2, Mb2 andMc2 gets mapped to cache blockc2. We can encode the mapping of memory blocks to

cache block in boolean form. For eg. let us have two boolean variables representing the memory block

residing in each cache block, further assumex1 andx2 represent the memory block residing in cache

block c1, andy1 andy2 represent the memory block residing in cache blockc2. We can encode the

memory blocks into boolean values. A possible set of encoding is shown in Table 2.8.

The 00 encoding is used to represent an empty cache state. Now for instance at any program point

P, let the set of cache states is{< Ma1,Ma2 >,< Mc1,Ma2 >}. Hence this set of cache states can be

represented as a boolean functionF (which is a disjoint sum of product cover) of the form.

F = x̄1x2ȳ1y2 + x1x2ȳ1y2 (2.1)

20

where each product term represents the possible cache state at the program point P. The functionF can

then be reduced to

F = x2ȳ1y2 (2.2)

Thus the representation of cache states as boolean function can be used for a more compact representa-

tion.

Our representation

For our purpose we assign each basic block with four boolean functions corresponding toRCSIN
B ,

RCSOUT
B , LCSIN

B andLCSOUT
B , which are stored as BDDs. The previously described LCS and RCS

analysis can then be done by manipulating these boolean functions. The initial values forRCSB
OUT

andLCSB
IN can be obtained by just encoding the cache stategenB in the same way as shown above.

The recursive equations for the RCS and LCS analysis can then be modified in the following way.

• The union operation (
⋃

) for RCS or LCS analysis would just become the + (boolean OR) opera-

tions over various boolean functions representing the differentRCSp
OUT or theLCSs

IN respec-

tively.

• The� operation for RCS analysis can be represented in boolean form in the following way.

RCSB
OUT = f � genB | f is a boolean function forRCSB

IN

f � genB can be calculated as follows: LetgenB = {c1, c2,...,ci} and let each memory block

mapping to a cache blockci is encoded withj variablesxi1,...,xij , henceci would have a particular

set of values(0 or 1) coming from each boolean variable, depending upon the encoding of memory

block which is present in the cache block. Now for each non-empty cache blockci (i.e. at least

one ofxi1,...,xij has a non-zero value), do the following:

For each variablexik first convert all the instances ofxik in f into don’t-care and then do the

boolean “and” off with xik if xik=1 in ci, otherwise do the boolean “and” off with x̄ik if xik=0 in

ci. To reduce a variablex into don’t-care in a boolean functionf, first f is projected with x=0 and

then it is projected with x=1. A boolean “Or” for the two projection results in a new functionf ’

from f with x reduced to don’t-care.

Let us consider an example with two cache blocks to show this.

Let at any instancef = x̄1x2y1ȳ2 + x1x̄2ȳ1y2 and let thegenB be{<01,00>}, this means that the

21

cache block 2 is empty, therefore thef � genB can be calculated in the following way: first take

x1, convert all instances ofx1 in f into don’t-care, hencef will become;

f = x2y1ȳ2 + x̄2ȳ1y2

and now do boolean “and” off with x̄1 as the value ofx1 in genB is 0. hence thef would become

f = x̄1x2y1ȳ2 + x̄1x̄2ȳ1y2

following the same terminology forx2 the resulting f would be

f = x̄1x2y1ȳ2 + x̄1x2ȳ1y2

The� operation for the LCS analysis can also be represented in the same way as in RCS analysis

as shown above.

How does BDD serves us

The above manipulation of boolean functions is done through OBDD. For this purpose the boolean

functions used by us are represented as nodes of OBDD and the transformation functions applied to

the boolean functions are then treated as manipulation of the subtree, rooted at the node representing

those functions, in a OBDD. Although the OBDD representation of the boolean function may have size

exponential in the number of variables, many useful functions have more compact representation. Since,

in our approach we store all possible cache states (corresponding to different paths) at a program point,

therefore our technique might possibly suffer from exponential blow up. The use of OBDDs to represent

intermediate functions representing various cache states might prove helpful as OBDD could represent

many functions compactly.

We have used the CUDD package (Release 2.3.1)[15] by University of Colorado in our implementa-

tion. The CUDD package provides a large set of functions to manipulate Binary Decision Diagrams. The

CUDD package is used as a black box i.e. only the exported functions of the package are used. Although

our implementation proves the accuracy of encoding our approach using OBDD but the memory usage

can not be compared directly, as the CUDD package itself uses a large amount of memory to maintain

its various data structures. Table 2.9 compares the maximum number of Reaching and Live cache states

obtained via normal implementation with the maximum number of nodes in the BDDs during the exe-

cution of fixed point iteration algorithm using CUDD, for 8 and 16 cache blocks. The columnsLCSand

RCSrepresent the maximum number of Live and Reaching cache state obtained in normal implementa-

tion. And the columnsLCS nodesandRCS nodesrepresent the maximum number of nodes used in BDD

22

Benchmark Basic Blocks LCS RCS LCS Nodes RCS Nodes
8 16 8 16 8 16 8 16

qsort 40 68 95 69 109 2661 5363 2505 5171
des 117 236 411 257 469 11796 42434 12239 29653
whet 52 175 506 136 367 5763 14676 4889 11081
ssearch 76 202 479 247 467 6366 14995 7079 17101
crc 66 219 356 186 306 6253 14755 5643 14008
math 22 99 702 81 869 1773 8015 1681 9526

Table 2.9: Comparison of memory usage between normal and BDD representation of cache states

during the execution of fixed point iteration algorithm. It can be observed that a large number of nodes

in BDD are maintained. The size of BDD depends upon a lot on number of variables and their ordering,

hence a proper encoding of memory blocks into boolean variables and their ordering can help in better

performance of OBDDs.

2.7 Conclusion

The determination of Cache Related Preemption Delay (CRPD) is important for the schedulability of

tasks in real-time system. CRPD is the additional delay incurred by the low-priority task owing to

additional cache misses introduced by preemption. We have provided an accurate analysis of CRPD

by maintaining the cache states possible at any program point via various paths in a program. Further

we have considered both low and high priority tasks in our approach. Our experiments show that our

approach results in tighter bound on CRPD than the existing approaches.

One possible concern regarding our analysis technique is a blow-up in space consumption. As ob-

served in the previous section, none of our benchmarks suffered from an exponential space blow-up due

to our decision to represent cache states (instead of the content of each cache block separately).

BDD can be used to reduce the space consumption. To use BDD we have to encode our approach into

a boolean form (a way to do this is presented in previous sections). A proper encoding and ordering of

boolean variables is very important to derive full advantage from BDD. Although we have implemented

our approach using BDD but we have not tried optimization using various encodings and orderings, since

none of our benchmarks suffered with space blow ups.

23

Chapter 3

Timing Analysis of Loop Behaviors

3.1 Introduction

A real-time system requires that some timing guarantee should be given for the tasks running in it. A

bound on the time, taken by an application can be provided by static analysis of programs in the form of

worst case execution time (WCET) of the program. The problem of determining WCET of a program

by static analysis methods has to be solved at the following two levels [53]: (1) Programming language

level, and (2) Micro-architectural level, to take into account the effect of features such as pipeline, cache

and branch prediction [36, 32, 29]. There are three main approaches for calculation of WCET at the

programming language level:path based, tree basedandimplicit path enumeration technique (IPET). In

path basedapproach, the longest path is discovered from the start to end of a program. In atree-based

approachthe final WCET is generated by a bottom-up traversal of a tree, generally corresponding to a

parse tree of the program, using rules defined for each type of compound program statement to determine

the execution time of the statement. InIPET, program flow and low-level execution time are modelled

using arithmetic constraints

The previous chapter presented an analysis of caches to determine the delay caused in the execution

of a task due to preemption (by higher priority task). In this chapter we present a program path analysis

technique to determine the WCET of loops in a task. In particular, we try to identify certain infeasible

paths1 spanning across loop iterations, which are hard to detect via existing path analysis techniques and

1A path (from start to end) in a program is referred as infeasible (or false) if it can never be executed regardless of the input
data [34].

24

then use the infeasible path information to get a tight bound on the WCET of a loop. We first describe

the types of infeasible paths along with some techniques on how to detect them. We then present our

technique to detect infeasible paths and use the infeasible path information to give a bound on the WCET

of a loop in a program.

3.1.1 Types of Infeasible Paths

1 for (i := 0; i < limit; i++)
2 {
3 if (i < 3)
4 u := 0;
5 if (i > 3)
6 u := 1;
7 }

Figure 3.1: Infeasible paths due to branch correlation

The knowledge about infeasible paths in a program can be used to give a tighter bound on WCET.

There could be various types of infeasible paths possible in a program. There could be infeasible paths

because of the correlation between branches. For example, in Figure 3.1,〈3,4,5,6 〉 is an infeasible

path because〈3,4 〉 implies that the outcome of branch at line number 3 is true therefore the outcome

of branch at line number 5 can not be true, hence〈5,6 〉 can not be executed. The idea in such types

of infeasible paths is to detect the effect of outcome of a branch on the outcome of another branch.

Another type of infeasible paths can occur due to the effect of assignment of a variable on a branch.

For e.g. Figure 3.2 shows how the assignment of variablev to value 5 makes〈3,4,6 〉 an infeasible

path. Detection of such types of branch correlation and assignment effect based infeasible paths has

been studied in [6, 23].

1 for (i := 0; i < limit; i++)
2 {
3 v := 5;
4 if v < 6 then
5 u := 1;
6 else ...
7 }

Figure 3.2: Infeasible paths due to effect of assignment on branch

There could exists a different type of branch correlated infeasible paths where the outcome of a

25

1 if u = 0 then
2 v := 1;
3 if w = 0 then
4 x := 1;
5 if (u = 0 and w = 0) then
6 y := 1
7 else y := 2;

Figure 3.3: Correlation of a branch outcome with a conjunction of other branches

1 sumeven := 0;
2 for (j:=0; j <= limit; j++)
3 {
4 if (j % 2 == 0) then
5 sumeven = sumeven + j;
6 }

Figure 3.4: Infeasible paths across iteration

branch is dependent upon outcome of more than one branch visited earlier in the program flow. For

example in Figure 3.3 the outcome of the branch at line 5 depends upon the outcome of branches at lines

1 and 3. Therefore,〈1,2,3,4,5,7 〉 is an infeasible path. However, such types of infeasible paths are

hard to detect because they can not be obtained by considering the direct effect of one branch on another,

rather they require the combined knowledge about the outcomes of several branches. In Figure 3.3 it is

easy to determine the infeasible path〈 1,2,3,5,6 〉 because it could be easily reasoned out that the

falsehood of the branch condition in line 3 forces the condition in line 5 to be false.

Other type of infeasible paths which can be present in a program include ones that span over multiple

iterations of a loop. For example consider the code to calculate the sum of even numbers, as shown in

Figure 3.4. If the path〈3,4,5,6 〉 is taken in some iteration of the loop then it is not possible to take

it again in the consecutive iteration. Information about such types of infeasible paths (which span over

multiple iterations) can be utilized to give a tighter bound on the timing of the loops. In this chapter

we present our technique which uses information about such types ofiteration-spanninginfeasible paths

to get a tight bound on the WCET of a loop. From now on we will use the termiteration-spanning

infeasible pathsto refer such types of infeasible paths.

26

3.2 Infeasible Path Detection Technique

We propose a constraint propagation based infeasible path detection technique to detect the infeasible

paths within a loop. With our technique we could not only detect infeasible paths based upon direct

correlation between two branches or a branch and an assignment statement, but also those infeasible paths

which originate due to the combined effect of more than one conditional branches on some conditional

branch as in Figure 3.3 or those which span over multiple iterations of a loop. Our constraint propagation

technique is based upon the following two main ideas:

1. Propagating the set of constraints in the backward direction (in CFG) via weakest precondition

calculation.

2. Checking for satisfiability of the set of constraints using a constraint solver.

3.2.1 Technique

Consider a bounded loopL with k branches within the loop structure. Assume there aren basic blocks

B1, ..., Bn in the control flow structure of the loop. Assume there arem variablesv1, ..., vm constituting

the setV . The infeasible path detected will be a sequence over the alphabets{B1, ..., Bn}. Every visit

of the basic blockBi is annotated with a set of constraintsCix over the variables inV , x is used to

differentiate between different visits of the basic blockBi. The constraint propagation algorithm works

in a backward breadth-first-search traversal way. At reaching basic blockBi through any path, it tries

to solve the constraints available inCix using some constraint solver (an external constraint solver can

be used). The constraint solver will result in aFALSEanswer if there exists no set of values for variable

in V such thatCix satisfies, and the path in which it returnsFALSEis not further pursued for constraint

propagation. Else, the algorithm proceeds in the following way: For each predecessorBij of Bi, a set

of constraintsCixj is calculated via weakest precondition2 of Cix w.r.t. the statements inBi. There

is another condition for termination of algorithm: A path is not pursued further in the algorithm if the

sequence of basic blocks in it implies a pre-defined maximum unrolling of loop sayM . Hence, the two

conditions for the termination of algorithm are: A path is stopped from being pursued further if the set

2The condition that characterizes the set of all initial states such that activation will certainly result in a properly termi-
nating happening leaving the system in a final state satisfying a given post-condition is called “ the weakest pre-condition
corresponding to that post-condition” [16]

27

of constraints in it at any instant can not be satisfied by any set of values forV or the sequence of basic

blocks in the path implies the desired maximum unrolling of loop.

3.2.2 Example

Consider the CFG shown in Figure 3.5(A). The working of infeasible path detection algorithm on the

example is shown in Figure 3.5(B). The infeasible path detection algorithm starts from the false edge

of basic block 1, propagating the constraints backward via weakest precondition calculation. The con-

straints at the exit of each block is shown next to that block in Figure 3.5(B). The path〈1, 3, 4, 0, 1, 3〉 is

detected as infeasible path, as the set of constraints at the end of path〈1, 3, 4, 0, 1, 3〉 is unsatisfiable for

any set of values for variables.

j < limit

k = 1 k = 0

if (k = 0)

j = j + 1

T F

0

1

2 3

4

1 1

2 3

4

0

1

!(k=0)

!(k=0) AND (j < limit)

!(k=0) AND (j+1< limit)!(k=0) AND (j+1 < limit)

!(0=0) AND (j+1 < limit)!(1=0) AND (j+1 < limit)

Infeasible Path (stop)

.

.

.

F

(A) Example CFG (B) Working of infeasible path detection algorithm

Figure 3.5: Example CFG and working of infeasible path detection algorithm

3.2.3 Implementation And Results

We have implemented our technique using C++. We have usedSimplify[14] by Compaq to check the sat-

isfiability of constraints. Let at any instant, the set of constraints stored at a node are:c1, ..., cn. Therefore

to check the satisfiability, we are required to check the following predicate formula:∃(v1, ...vm)(c1 ∧

c2∧ ...cn). Instead we check the following predicate formula :∀(v1, ...vm)¬(c1∧ c2∧ ...cn). If the return

value for this isTRUE then it states that there does not exists any set of variables such that the formula

28

(c1 ∧ c2 ∧ ...cn) is true. Hence, an infeasible path is detected. For weakest precondition calculation we

use the methods described in [16].

We have used three benchmarks (corresponding to three different types of infeasible paths which

could exist in a program) to check the validity of our approach. We were successfully able to detect

the infeasible paths for the example shown in Figure 3.5(A). Here, if a branch outcome is true in one

iteration it can not be true in the successive iteration. We were also able to detect all the infeasible paths

for the code shown in Figure 3.3. The infeasible paths due to the correlation between one branch and the

combined effect of other two branches were detected too, which can not be detected by other existing

branch correlation based infeasible path detection approaches. Further we used the code shown in Figure

4.2(D) (from Chapter 4) and we were able to detect all the infeasible paths spanning over a pre-defined

number of iteration. We have later used the code shown in Figure 4.2(D) (from Chapter 4), along with

the infeasible path information derived from our infeasible path detection technique, as a benchmark for

our WCET analysis technique.

3.3 WCET Calculation Technique

In this section we present our technique to calculate the WCET of a loop. We use the information about

iteration-spanning infeasible paths in our technique. In this section we first describe the simplified

version of our technique along with the motivation behind it. We then present the general form of our

technique.

3.3.1 Basic Technique

In the simplified form of our technique let us assume that the bound on start and end iterations for every

feasible path through the loop is[1, I], whereI is the loop bound. Also assume a setp of paths (with

their WCET) between the start and end of each iteration, and a set of infeasible sequences (each of length

k + 1) of paths, where each element of the sequence is drawn fromp. For clarity, the elements (paths) of

setp will be referred asipath (iteration path) and a sequence ofipath will be referred aswpath (whole

program path).

We now present a WCET analysis technique which only considers the infeasible patterns and assumes

thatI is a multiple ofk (i.e. I = k ∗ c, wherec is some integer greater than zero). Later, we show how

29

to modify this technique to use the bounds on iteration numbers for each path and handle cases whereI

is not a multiple ofk.

A naive way to find a tight bound on WCET will be to use an exhaustive search with complete loop

unrolling. Basically, the search will enumerate all legalipath sequences of lengthI. The WCET value

of the loop is equal to the maximum WCET value among the sequences. If the information about the

infeasible paths is exact this method will generate an exact WCET value. In our analysis technique we

also compute the exact WCET value, but in a much more efficient manner than the exhaustive search.

The intuition behind our approach is as follows. Suppose afteri iterations we have seen the following

sequence of paths (one path each iteration),p1, p2,...,pi−k, ...,pi. Therefore, the possible path that could

be taken in thei + 1th iteration would be one of those, which does not form an infeasible sequence of

path with the previously seen sequence of paths, i.e.pi−k+1,...,pi+1 should not be an infeasible sequence.

And similarly for the path taken in(i + 2)th iteration and so on. This way we can determine the set of

possible sequence of paths for the nextk iterations. Therefore, if we divide the total number of iterations

into blocks ofk iteration each, we can decide after each block the set of next possibly taken block.

In our basic technique the whole procedure to determine the WCET for the loop can be divided into

four steps:

1. Generate the set of nodes (blocks) with each node representing a sequence of paths of lengthk and

having a weight equal to the sum of the WCET of the paths in the sequence.

2. Create transitions (directed edges) from each node to other nodes, representing the possible se-

quence that could be taken next after the present node’s sequence.

3. Optimization of thetransition graphsay ‘G’, generated from nodes and edges in step 1 and 2, in

order to reduce the number of edges and nodes in the graph.

4. Dynamic programming algorithm to calculate the longest path ofI/k nodes in the graph G.

We now elaborate each of the four steps.

1) The set of nodes is constructed by generating all possible sequences of lengthk, where each posi-

tion of the sequence can be one of thep ipaths. Hence there could bepk such sequences and therefore

same number of nodes in the graph: each node representing one sequence.

30

2) The edges of the graph are constructed by considering various pairs of nodes say N1 (sequence

p1p2...pk) and N2 (sequenceq1q2...qk) and checking the following:

for i going from 1 tok check ifpipi+1...pi+(k−i)q1...qi is a feasible sequence. If any value ofi gives an

infeasible sequence, we do not create an edge between N1 and N2 otherwise if none of the sequences is

infeasible then we create a directed edge from N1 to N2.

3) The transition graphgenerated from the above two steps can be reduced in terms of number of edges

and nodes by the following optimization scheme:

• Put all the nodes that have the same set of outgoing edges into one group sayS. Now if there

is a node which has an outgoing edge to more than one member of a group just keep the edge

which is to the maximum weighted node and delete the edges to the nodes with lower weights.

The intuition behind this is: Let a noden have transitions to elements of a groupS, whose all

elements have the same set of outgoing edges. Since all elements of setS have the same set of

outgoing edges, therefore after a node inS is taken, the sequences of paths with maximum weight

(and same number of nodes in it) that could be seen from any node inS will have the same weight.

Hence, only keeping the transition with maximum weight fromn to a node inS, will still result in

sequences of maximum weight.

• If there is a node X with no incoming edges (Figure 3.6) then for every outgoing node say Y

attached to X (X→Y), check if there is any node Z such that (Z→Y), and w(Z)≥ w(X), then

delete the edge (X→Y).

31

Z

Y

X

. . .
. . .

. . .

. . .

.

.

.

Figure 3.6: X has no incoming edge

Let at any instant the maximum weight sequenceS of nodes has the starting node as Y. Therefore

adding one or more nodes at the beginning ofS such that the new sequence will be of maximum

weight is not possible by adding X before Y inS, because if only one node has to be added then it

should be Z or some node with weight greater than Z and if more than one nodes are added before

Y then again X can not be added because once X is added before Y inS then no further node can

be added before X as X has no incoming edge. Hence, (X→Y) will never be used in determining

maximum weight sequence of nodes.

• If there is a node X with no outgoing edge (Figure 3.7) then for every incoming node say Y attached

to X (Y→X), check if there is any node Z such that (Y→Z), and w(Z)≥ w(X), then delete the

edge (Y→X).

Z

Y

X

. . .
. . .

. . .

. . .

.

.

.

Figure 3.7: X has no outgoing edge

32

Let at any instant the maximum weight sequenceS has the last node as Y. Therefore adding one

or more nodes after Y inS such that the new sequence will be of maximum weight is not possible

by adding X after Y, because if only one node has to be added then it should be Z or some node

with weight greater than Z and if more than one nodes are required to be added after Y then again

X can not be added because once X is added after Y inS then no further node can be added after

X as X has no outgoing edge. Hence, (Y→X) will never be used in determining maximum weight

sequence of nodes.

• If there is a node with no incoming edge and no outgoing edge then delete the node.

4) The Dynamic Programming algorithm iterates in steps ofI/k. The equation for the dynamic pro-

gramming algorithm for calculating the longest path in the graph withI/k nodes is as follows:

f(i, x) = max{∀y:y→x}(f(i− 1, y) + w(x)

wherei is a step.w(x)denotes the weight of nodex.

For every nodex, for a particular stepi, the algorithm tries to find out the longest (in terms of weights)

path ofi nodes (i× k iterations) ending at the nodex by taking the maximum of the longest path fori-1

steps of the incoming-edge neighbors ofx and by adding the weight of nodex to it. Note that we have

assumed thatI is a multiple ofk. Later in the refined approach we show how to handle cases whenI is

not a multiple ofk.

The basic technique assumes that all feasible paths in a loop have the same start and end iterations

(equal to that of loop) between which they can be possibly taken. However, in general it is not so.

For, e.g. in Figure 3.1, the path〈2,3,4,5,7 〉 can not be taken afteri is greater than 3. Such type

of information is useful to give a tight bound on WCET of loops. However, there are some important

modifications that has to be done to the basic technique to incorporate the individual start and end of

each path. The following section present the refined technique to take into account the start and end

information for each path in determining the WCET of the loop.

3.3.2 Refined Approach

In the refined approach we handle theiteration based constraints(i.e. constraints on the index of a loop,

which determines whether a path can be executed or not in a particular iteration number) in order to get

33

a tight bound on WCET of loop. The introduction of iteration based constraints require the following

modifications in the basic technique.

• A start and end for each node in the transition graph should be provided

• An additional check on the validity (possible sequence of paths representing the node) of node

based upon the start and end information of the paths.

• Modification in the algorithm for creating edges between different nodes.

• Modification in the Dynamic Programming algorithm for computing the WCET of the loop.

Let us now explain the approach in detail.

3.3.3 Problem Statement

Input: Given the following set of inputs:

• A loop of I iterations.

• Setp of all possible pathsp1, p2, ... between the start and end of each iteration.

• WCET of each path inp.

• Start and end iteration for each path inp. It is the range of iterations during which each path can

be taken.

• A set of infeasible sequences of paths with the longest sequence of lengthk + 1.

Output: The WCET for the loop.

3.3.4 Method

We use a transition graph along with Dynamic Programming (DP) algorithm to determine the WCET of

a loop. Each nodex in the graph comprises of the following four elements:

1. A sequencePx of paths given byp1, p2,...,pk, and representing the sequence of paths taken ink

consecutive iterations.

34

2. A weightwx, given bywx =
k∑

i=1

WCET (pi).

3. A startP s
x of node, stating the iteration at which the node is activated.

4. An endP e
x of node, stating the iteration at which the node is terminated.

Our technique to determine the WCET of a loop can be divided into the following three steps. It is impor-

tant to note that the optimization steps as present in basic technique is not present in the refined approach,

because due to the introduction of start and end for each node, it is not possible to classify nodes with

same outgoing edges into one group, unless they all have the same start and end also. In general, it will

be very rare that everything is same for nodes, hence it is not useful to apply the optimization approach

as described in the previous section.

1. Generate the set of nodes for the transition graph ‘G’.

2. Create transitions (directed edges) from each nodex in ‘G’ to itself and to other nodes in ‘G’,

representing the sequence of paths possible after the sequence inx is taken.

3. Dynamic Programming (DP) algorithm to calculate the WCET of the loop.

3.3.5 Creating Nodes

The first step in creating nodes for the transition graph ‘G’ is to generate all possible sequencesPx

of paths of lengthk, wherek + 1 is the length of the longest infeasible sequence of paths. EachPx

corresponds to a nodex. If Px contains an infeasible sequence of paths then discard the nodex. The

weightwx of nodex is calculated as given before. The next step is to calculate the start and end of each

node and also discard those nodes which are not valid. A node isinvalid if it represents an infeasible

sequence of paths in it. For example in Figure 3.8,ba is an infeasible sequence of paths, because once

pathb is taken patha can never be taken, hence a node containing a sequenceba is invalid and should be

discarded.

if (i < 5)
path a;

else
path b;

Figure 3.8:ba is an infeasible sequence of paths

35

The start and end of each node in the transition graph can be determined in the following way:

Consider a nodex with sequencePx of pathsp1p2...pk. Let each pathpi has a start (ps
i) and end (pe

i)

iteration as determined by the path analyzer.

Calculating the start: The start iterationP s
x for nodex is given by.

P s
x = max

i
(ps

i − (i− 1)) (3.1)

Calculating the end: Similarly the end iterationP e
x for nodex is given by.

P e
x = min

i
(pe

i + (k − i)) (3.2)

Checking the validity of node

Once the startP s
x and endP e

x for each node has been calculated, it is important to check the validity of

the node. A nodex is invalid if the start and end for some pathpi (in the sequencePx), calculated on the

basis of start and end for nodex, does not satisfy the actual start (ps
i) and end (pe

i) of pi. In other words,

a nodex is invalid if for any of its constituent pathspi the following constraints are violated.

ps
i ≤ P s

x + (i− 1) ≤ pe
i

ps
i ≤ P e

x − (k − i) ≤ pe
i

These invalid nodes are removed from the transition graph and the corresponding path sequence is added

to the set of infeasible paths.Note: It is possible that there are some nodes which are valid but never

reached in the Dynamic Programming algorithm. An example of it is presented in the later section.

3.3.6 Creating Transitions

Once all the possible nodes are created, every pair of nodes in ‘G’ is checked for creating a transition

(edge) between them. There is a transition (directed edge) from a nodex1 to nodex2 if the following

conditions are satisfied.

1. The periods (start to end) of nodex1 andx2 overlap and there is no infeasible path sequence

generated from the concatenation of path sequence ofx1 with x2 (i.e. Px1 with Px2).

36

2. The periods of nodes do not overlap but the start ofx2 is one greater than the end ofx1 (i.e.

P s
x2

= P e
x1

+1), and there is no infeasible path sequence generated from the concatenation of path

sequence ofx1 with x2.

3.3.7 Dynamic Programming Algorithm

The Dynamic Programming algorithm for calculating the WCET of a loop takes the transition graph ‘G’

as an input and at a specified iterationi (wherei is a multiple ofk), it calculates for every nodex, a valid

path of lengthi+k (which is same as (i+k)/k nodes) and maximum weight and withx as the last node in

the path. The Dynamic Programming equation for calculating the above such paths can be written as:

f(i, x) = max{∀y:y→x,y∈valid(x,i−1)}f(i− 1, y) + w(x)

if valid(x, i− 1) 6= ∅
(3.3)

f(i, x) = invalid if valid(x, i− 1) = ∅ (3.4)

wherevalid(x,a)represents the set of incoming nodes of x which are valid at iterationa. The working of

the Dynamic Programming algorithm is shown in Algorithm 1. In Algorithm 1,start(x)andend(x)are

the start and end of nodex respectively.k is the length of sequence of paths in each node. Assume the

total iterations of the loop to beN . The input to the algorithm are transition graph and thelast iteration,

wherelast iteration is given by:

last iteration = N − 1− (N%k) (3.5)

whereN%k gives the remainder whenN is divided byk. Note that the first iteration is taken as 0. Hence

for a total ofN iteration the loop will iterate from 0 toN − 1.

For the remaining iterations (i.e.N − last iteration− 1) add the weight of pathpi with maximum

weight to the WCET (calculated as in Algorithm 1) for calculating the final WCET. Hence the final

WCET is given by:

FINAL WCET = WCET + (N − last iteration− 1)×max
i

(pi)

A more accurate bound on WCET can be determined by creating nodes corresponding to sequences

37

DP ALGORITHM(transition graph,last iteration)
iteration = 0 ;
WCET = 0 ;
for every node xdo

if start(x) ≤ 0 andend(x) ≥ k − 1 then
f(0, x) = w(x) ;

else
f(0, x) = invalid ;

end
end
for iteration← 1 to k-1do

for every node xdo
f(iteration, x) = f(0, x) ;

end
end
for every node xdo

if WCET < f(iteration, x) then
WCET = f(iteration, x) ;

end
iteration = iteration + 1 ;
while iteration≤ last iterationdo

for every node xdo
if start(x) ≤ iteration andend(x) ≥ iteration + k − 1 then

Calculatef(iteration, x) as given in equations 3.3 and 3.4 ;

else
f(iteration, x) = invalid

end
end
current = iteration;
for iteration← current+1 to current+k-1do

for every node xdo
f(iteration, x) = f(iteration− 1, x) ;

end
end
for every node xdo

if WCET < f(iteration, x) then
WCET = f(iteration, x) ;

end
iteration = iteration + 1 ;

end

Algorithm 1: Dynamic Programming algorithm for calculating the WCET of loop

38

(of paths) of lengthN%k and assigning the start for such nodes to belast iteration + 1. However,

in practice since the value ofk is small (for e.g. in our benchmarksk is maximum 2), it will not be

very useful to create extra set of nodes and increase the complexity of approach for a small difference

in WCET bound. It should be noted that the refined Dynamic Programming algorithm iterates over the

original number of iterations. However, the values for the iterative function is calculated at everykth

step only and is kept the same for the followingk − 1 iterations. The algorithm can easily be optimized

to iterate only on steps ofk iteration. However, for better understanding and clarity it is presented as

given above (iterating on original number of iterations).

3.4 Implementation And Illustration By Examples

We have implemented our technique using C++. We have used simplescalar [10] architectural simulation

platform for compiling the benchmarks to simplescalar assembly language with modifiedgcc. A pro-

totype analyzer written by us accepts the assembly language code, disassembles it, identifies the basic

blocks and constructs the control flow graph (CFG). It then separates out the CFGs for the loops, and for

every loop generates the various paths possible from start to end of loop in each iteration, along with the

weight of each path in terms of number of instructions executed in each path. The user then provides

the following inputs to the timing analyzer: (a) Total no.N of paths, with start and end iteration for each

path (this could be obtained using a path analyzer written by us) (b) The infeasible sequences of paths,

with the length of longest infeasible sequence of paths say ask+1. The infeasible paths could be derived

using the infeasible path detection tool written by us (c) Total number of iteration for the loop. The

timing analyzer tool generatesNk sequences of paths (with each sequence of lengthk), corresponding

to same number of nodes. The weight of the node is the sum of weights of each path in the sequence

belonging to it. Out of these nodes those are removed which contains an infeasible sequence of paths.

A start and end for each node is calculated. The validity of the nodes (on the basis of start and end

calculated for them) is checked next (as given in section 3.3.5) and all the nodes which are invalid are

discarded and their sequences are added to the set of infeasible paths. The transitions (directed edges)

for the graph are derived and the function implementing the Dynamic Programming algorithm is called

with input as transition graph.

In this section some of the examples are presented to illustrate the working of our technique under

39

for(i=0; i<10; i++)
{

if (i == 2)
{

S1;
continue;

}
if (i < 5)

S2;
if ((i >= 5) && (i <= 8))

S3;
S4;

}

Figure 3.9: Example 1: Illustrating iteration based constraints

i = 0;

i < 10

i = = 2

S1 i < 5

S2

5 ≤ i ≤ 8

S3

S4

i++

Exit loop

T F

T
F

T
F

1

2

3

4 5

6

7

8

9

10

Figure 3.10: Control Flow Graph for Example 1

different types of scenarios.

3.4.1 Example 1: Iteration Based Constraints

Consider the piece of code shown in Figure 3.9. The constraints on different paths in the code are derived

by comparing the index of the loop with constants, i.e. not all paths can be possibly taken on a particular

iteration of the loop. This type of constraints will be referred asiteration basedconstraints from now

on, borrowing the terminology from [23]. The control flow graph for example in Figure 3.9 is shown in

Figure 3.10. There are 4 possible paths in each iteration of loop as given in Figure 3.11.

Note that the sequence: 2 3 5 6 7 8 9 10 is an infeasible sequence of paths, because if the result of branch

at 5 is true then the result of branch at 7 can never be true. Hence, this path is not included for WCET

40

Path Name Sequence of blocks executed(start,end) iterations
a 2 3 4 10 (2,2)
b 2 3 5 6 7 9 10 (0,1) & (3,4)
c 2 3 5 7 9 10 (9,9)
d 2 3 5 7 8 9 10 (5,8)

Figure 3.11: Paths and their corresponding sequence of blocks executed

analysis. It is assumed that such type of paths have been identified and eliminated by the path analyzer.

The transition graph for the example is shown in Figure 3.12. Let us assume the WCET of paths a, b, c,

a

d c

b

Figure 3.12: Transition graph for Example 1

d are 1, 2, 3, 4 respectively. The working of Dynamic Programming algorithm for the example in Figure

3.9 is shown in Figure 3.13. The values inside parentheses shows the start and end for each node and the

value inside [] represents the weight (sum of WCET of paths) of each node. ‘x’ in Figure 3.13 represents

an invalid node. ‘-’ means “same as in previous iteration”. It is used to show that the values are not

computed in an iteration but just copied from the previous iteration.

3.4.2 Example 2: Effect Based Constraints

If a pathp is taken in some iteration of the loop, it might make some paths infeasible in the following

iteration. Such type of constraints are referred as effect based constraints and leads to iteration-spanning

infeasible paths. Consider the code shown in Figure 3.14.x in the code, takes value in the form of

a harmonic motion around the value 0. The values ofx seen at line 4 of the code are (0 1 2 1 0 -1)*.

41

iteration a b c d
(2,2)[1] (0,1)(3,4)[2] (9,9)[3] (5,8)[4]

0 x 2 x x
1 x 4 x x
2 5 x x x
3 x 7 x x
4 x 9 x x
5 x x x 13
6 x x x 17
7 x x x 21
8 x x x 25
9 x x 28 x

Figure 3.13: Working of DP algorithm for Example 1

‘*’ represents that the same sequence of values is repeated. If the value ofx seen at line 4 is 0, then

line number 5 is executed, otherwise line number 8 and 9 are executed. The two possible paths in every

iteration of the loop can be identified as shown in Figure 3.15

1 x := 0; t := 1;
2 For(i := 0; i < 9; i++)
3 {
4 if (x == 0)
5 u = 0;
6 else
7 {
8 u = 1;
9 update(x,t,temp);
10 }
11 x = x + t;
12 }

update(x,t)
{

switch (x)
{

case 2 : t = -1;
break;

case -1: t = 1;
break;

default: t = t;
}

}

Figure 3.14: Example 2: Illustrating effect based constraints

It should be noted that the function “update” itself has several possible paths from start to end, which

can combine with the paths in the loop to result in many more paths than shown in Figure 3.15. But

42

Path Name Sequence of line numbers executed(start,end) iterations
a 3 4 5 11 12 (0,9)
b 3 4 6 7 8 9 10 11 12 (0,9)

Figure 3.15: Possible paths for Example 2

since every call to “update” will take a constant amount of time, irrespective of the path taken within it,

therefore the function “update” can be treated as a block rather than breaking it down, further into paths.

It is important to note here that the above shown code for “update” is not an optimal implementation

for “update”, rather it is written in this way to reduce the number of possible paths in each iteration of

loop. A detailed description of such code transformation to simplify infeasible path detection is given in

the next chapter. Based upon the possible values ofx, let us assume that the following infeasible path

sequences were identified:bbbb, aa. Since the longest infeasible path is of length 4 each node in the

transition graph will consist of sequences of length 3. Also each node will have the same start and end

iteration as (0,9). The transition graph for the example is shown in Figure 3.16. Assuming the WCET of

aba

abb

bab

bbb

bba

Figure 3.16: Transition graph for Example 2

patha as 1 and of pathb as 3, the working of the Dynamic Programming algorithm is shown in Figure

3.17. ‘x’ in Figure 3.17 represents an invalid node. ‘-’ means “same as in previous iteration”. It is used

to show that the values are not computed in an iteration but just copied from the previous iteration.

43

iteration aba abb bab bba bbb
(0,9)[5] (0,9)[7] (0,9)[7] (0,9)[7] (0,9)[9]

0 5 7 7 7 9
1 - - - - -
2 - - - - -
3 14 16 14 14 16
4 - - - - -
5 - - - - -
6 21 23 23 21 23
7 - - - - -
8 - - - - -

Figure 3.17: Working of DP algorithm for Example 2

3.4.3 Example 3: Combination of Effect Based And Iteration Based Constraints

In this section a more general example which combines both iteration and effect based constraints is

presented. Consider the piece of code shown in Figure 3.18. To reduce the length of infeasible path

sequence, the “update” function has been modified from its previous form of example 2. Here, the values

of x seen at line 8 will be (0 1 2 0 -1)*. Again, since the implementation of update function is such

that it takes constant amount of time on every call of it, therefore it can be considered as a block. The

possible paths per iteration of loop in example 3 are shown in Figure 3.19. Based upon the values, which

x can take in the example code, the user can specify the following infeasible paths:ccc, bb. Since the

longest infeasible path is of length three, therefore each node in the transition graph would consist of

path sequences of length two. The possible nodes and their corresponding start and ends are shown in

Figure 3.20. Note that nodebb is discarded as it contains an infeasible sequence of paths. Checking the

validity of nodes results inba, caas invalid nodes. Bothba andca will get added to the set of infeasible

paths. The resulting transition graph is shown in Figure 3.21. Now assuming the WCET of patha as 1,

of pathb as 2 and of pathc as 4, the working of Dynamic Programming algorithm is shown in Figure

3.22.Note: ab, acnever become a valid node, that means they can never be taken.

3.4.4 Results

In our experiments we have used the benchmarks shown in Table 3.1. The first two benchmarks are taken

from [23], check data is taken from [41],fresnel, sprsin, expint and gaujac bench-

44

1 x := 0; t := 1;
2 For(i := 0; i < 10; i++)
3 {
4 if (i < 4)
5 S1;
6 else
7 {
8 if (x == 0)
9 u = 0;
10 else
11 {
12 u = 1;
13 update(x,t);
14 }
15 x = x + t;
16 }
17 }

update(x,t)
{

switch (x)
{

case 2 : t = -1;
x = 1;
break;

case -1: t = 1;
x = x;
break;

default: t = t;
x = x;

}
}

Figure 3.18: Example 3: Combining effect and iteration based constraints

Path Name Sequence of line numbers executed(start,end) iterations
a 3 4 5 17 (0,3)
b 3 4 6 7 8 9 15 16 17 (4,9)
c 3 4 6 7 8 10 11 12 13 14 15 16 17 (4,9)

Figure 3.19: Possible paths for Example 3

aa - (0,3) ab - (3,4)
ac - (3,4) ba - (4,3) - invalid
cb - (4,9) ca - (4,3) - invalid
bc - (4,9) cc - (4,9)

Figure 3.20: Nodes and their corresponding start and end for Example 3

45

aa

ab

ac

bc

cb

cc

Figure 3.21: Transition graph for Example 3

it aa ab ac bc cb cc
(0,3)[2] (3,4)[3] (3,4)[5] (4,9)[6] (4,9)[6] (4,9)[8]

0 2 x x x x x
1 - - - - - -
2 4 x x x x x
3 - - - - - -
4 x x x 10 10 12
5 - - - - - -
6 x x x 18 16 18
7 - - - - - -
8 x x x 24 24 24
9 - - - - - -

Figure 3.22: Working of DP algorithm for Example 3

marks are fromNumerical Recipes in C[42], SHMis same as shown in Figure 4.2(D) (from Chapter 4).

Sumoddeven sums the odd and even indexed elements of an array. There is an additional exit condition

in the loop which is input data dependent, due to which the end iteration of a path may not be equal to

total number of iterations.Summidall sums the total and middle elements of an array. The loop has

different paths with different start and end.Wordcount counts the number of words in a file with any

two words separated by a single space. Since two words are separated by a space, the path which detect a

end of word and increases the count of words can not be repeated in successive iterations.Check data

checks the input data for value less than zero. It has a loop which depends upon input data, hence the end

46

Benchmark Description
Sumoddeven Sums the odd and even elements of a 100 integer vector.
Summidall Sums the middle half and all elements of a 100 integer vector.
Wordcount Counts the number of words in a string vector of 256 characters.
Checkdata Checks if the input vector of 100 integers has an entry less than 0.

Fresnel Computes noncomplex Fresnel integrals.
Sprsin Converts a 10× 10 integer matrix into row-indexed sparse storage mode.
Expint Computes an exponential integral.
Gaujac Computes the abscissas and weights of a 10 point Gauss-Jacobi quadrature formula.
SHM The sequence of values for a variable, at a particular line number repeats constantly.

Table 3.1: Description of benchmarks used

iterations for the paths in the loop are lesser than the maximum iterations for the loop. TheFresnel

program has a loop which takes different paths on odd and even steps. The loop in theSprsin program

does not take the longer path when the loop index is equal to a variable whose value is constant inside the

loop. Expint has a loop in which the longer path is executed only when the index of the loop is equal

to some variable whose value is constant within the loop. The loop in theGaujac program executes

different paths on different iterations.SHMhasiteration-spanninginfeasible paths.

The WCET calculation results for the benchmarks are presented in Table 3.2. The columnIterations

shows the total number of iterations for the loop. TheDefault WCETrefers to WCET (in terms of number

of instructions executed) calculated on the basis of longest path and without considering infeasible paths

or start/end for paths. The columnWCET (Path Analysis)shows the values (in terms of number of

instructions executed) computed via our approach considering the effects of infeasible paths and start/end

iterations for a path. The columnWCET (separating effects)shows the values (in terms of number of

instructions executed) for WCET by separating out the effects of considering start/end for paths and

infeasible paths. TheStart/Endcolumn shows the WCET values when only the start/end information

for paths was considered and the columnInf. Pathshows the WCET values when the infeasible paths

information is used and it is assumed that all the path’s start/end is same as the start/end of the loop.

The experimental results shows that our approach gives a tighter bound on the WCET, as it uses the

information about the infeasible paths and the start and end of paths.

It is apparent that a exhaustive search over all possible path sequences will take a large amount

of time to execute. For example the exhaustive search will require to generate all permutation of path

sequences. And generating all path sequences of length 25, where each element of the sequence can have

47

Benchmark Iterations Default WCET WCET (path Analysis) WCET (separating effects)
Start/End Inf. Path

no. of inst. no. of inst. no. of inst. no. of inst.
sumoddeven 100 3400 1734 1734 3400
summidall 1000 36000 30500 30500 36000
wordcount 256 9472 8064 9472 8064
checkdata 100 1900 916 916 1900

fresnel 100 5200 5000 5200 5000
sprsin 10 520 476 476 520
expint 100 185200 6109 6109 185200
gaujac 10 45090 44805 44805 45090
SHM 100 2200 2002 2200 2002

Table 3.2: Results showing WCET prediction

two possible values, requires around 400 seconds in a Pentium 4, 2.4 GHz machine. However, WCET

calculation by our technique for all the benchmarks took less than 0.01 seconds in a Pentium 4, 2.4 GHz

machine.

From our experimental results, we identify that most of the benchmarks have a single type of con-

straints associated with the paths. Separating out the effects of considering start/end for paths and infea-

sible paths for the benchmarks shows that all the benchmarks have constraints on the paths which are

derived either only by comparing the index of loop with constants or due to the effect which execution

of some path, in an iteration, makes on the execution of other paths in the successive iterations. For

e.g. the benchmarks,sumoddeven , summidall , check data , sprsin , expint andgaujac

have constraints on the paths based upon just comparing the index of loop with constants and the bench-

marks,wordcount , fresnel andSHMhave constraints on the paths based upon just on the effect

which execution of some path, in an iteration, makes on the execution of other paths in the successive

iterations.

3.5 Related Work

Determining WCET of a program by static analysis methods is a well studied problem. Li et. al. in [31]

have given a method to determine the WCET of a program by implicit path enumeration using Integer

Linear Programming (ILP).

An important strategy to reduce the bound on WCET is: identifying the infeasible paths in a program

48

and then eliminating them from consideration while calculating the WCET of the program. Detection of

infeasible paths and their removal is central to various type of static analyzers. Bodik et. al. in [7] have

given a method to detect infeasible paths due to correlation exhibited by a conditional branch. In their

analysis the authors consider correlated paths spanning procedural boundaries, as well as correlation

that occur within the same procedure. The correlation is detected by performing a query propagation

search in the backward direction from a conditional branch, to find assertions on program variables that

indicate the correlation along paths leading to the condition. The authors have used the infeasible paths

information from branch correlation for compiler optimization, by separating out paths with correlation

via replication of code. Further in [6], Bodik et. al. have refined their approach to identify the shortest

infeasible paths and to label the control flow graph with these paths. In [6] the authors have used the

infeasible path information to show how the precision of def-use pair analysis can be improved by it.

Mueller and Whalley in [37] have given a method to determine when a conditional branch can be avoided

in a loop and used it for compiler optimization. In their method the authors first calculate the set of

registers and variables on which a conditional branch depends and then determine if there exists a path

through a loop from the point immediately after a conditional branch is encountered to the same branch

without the comparison associated with the branch being effected. Once the conditional branches that has

to be avoided are determined the control flow is restructured through replication to avoid these branches.

The infeasible path information can be used to determine a tighter bound on WCET of tasks. Stappert

et. al. in [47] have used the infeasible path information to refine their WCET calculation method which

takes into account of low-level machine aspects like pipelining and caches, and high-level program flow

like loops and infeasible paths. They have used the flow fact language ([18]) to determine the infeasible

paths in a timing graph based upon constraints specified through facts. The authors do a repetitive longest

path search by removing the infeasible path detected each time, until a feasible longest executable path

is found. Lundqvist and Stenstrom in [34] have given a instruction-level simulation approach for the

detection and elimination of infeasible paths. The authors simulate all paths through the program and

in this process exclude the paths that are not possible regardless of input data. To do this, they have

extended traditional instruction-level simulation techniques with the capability to handle unknown data,

using an element denotedunknown. All conditions that depend on data values that are known statically

will be computed during the simulation. Hence the infeasible paths that a conditional branch could create

are automatically eliminated since the branch condition is known while simulating. The elimination of

49

infeasible paths helps in giving a tighter bound on WCET. Ermedahl and Gustafsson in [19] have given

a static analysis method to automatically derive safe and tight annotations from the program semantics.

The derived annotations can then be used for finding the infeasible paths. Altenbernd in [2] have given

a heuristic based approach to determine false paths in a program. The author uses a branch and bound

algorithm to perform the actual path search in the control flow graph. The author uses symbolic execution

which is a simulated execution with partially instantiated variable values. Symbolic execution evaluates

program statements in concurrence to the path search algorithm. Values are assigned on reaching certain

branches and false paths are deducted during path search, based upon the knowledge of stored values of

variables. Park in [41] have given a framework for timing analysis using timing schema approach along

with regular expressions. In his approach the author has assumed that the infeasible paths information is

being provided by the user. The author has proposed an information description language (IDL) that can

be used by user to provide information about the program.

A very similar work on detection and use of infeasible paths for the timing analysis is conducted by

Healey and Whalley in [23]. The authors have given a method to automatically detect infeasible paths

based upon branch correlation and use that information in determining the WCET of loops. They have

used an effect based technique to determine the infeasible paths in a program and used this information

for calculating the WCET of a loop. They first determine how a conditional branch can be effected by an

assignment to a variable and/or the outcome of another conditional branch. The effects on the conditional

branches by the assignment of a variable are then exploited while traversing the basic blocks in every

path of the program to determine whether the path is feasible or not.

There is a similar problem to determine the longest executable path with known false paths in the

field of hardware development, where it is of interest to find the longest executable path in a network of

logic gates. David et. al. in [5] have given an efficient method for removing user specified false paths

from the timing graph of a circuit. They have used a node splitting based method by determining the

minimum number of nodes that have to be splitted for the removal of infeasible paths. Krishna and Suess

in [4], have given a method for timing analysis of circuits with known false sub graphs. Goldberg in

[21] has given a method to determine the longest feasible path from the start to the end of a circuit in the

presence of false (infeasible) paths.

50

3.6 Discussion

Detection of infeasible paths is important for giving a tight bound on the WCET of loops. There could

exist infeasible paths due to correlation between various branches and also due to branch condition

on index of loop. There could also be infeasible paths spanning over multiple iteration of loop. The

infeasible paths originating due to direct correlation between branches are easy to detect and there are

several works done in the past in this direction. However detecting infeasible paths which are dependent

upon more than two branch conditions are hard to detect. Similarly it is hard to detect the infeasible paths

that span over multiple iteration. Whalley in [23], have given a technique to detect iteration-spanning

infeasible paths. But, Whalley’s technique also depend upon direct relation between assignment and

branch or branch and branch.

In this chapter we proposed a constraint propagation based approach to detect infeasible paths in

the system. Our technique could even detect infeasible paths which are dependent upon more than two

branch conditions. We also presented a WCET computation approach. A very similar approach to

determine the WCET of loops is also given by Whalley in [23]. However, there are instances where

our approach can give much tighter results than Whalley’s approach. For instance, consider the example

code given in Figure 3.14 and the various paths in it as given in Figure 3.15. Due to the possible values

which ‘x’ can take, the sequence of paths executed is (abbab)*. Now, lets assume that the time taken

by patha is more than the time taken by pathb. According to Whalley’s approach the minimum count

after which patha can be repeated is two (i.e. a maximum of 5 iterations are possible out of 10, in which

patha can be taken) and that of pathb is one. Therefore, the bound on time taken by loop to execute

as per Whalley’s approach would be(5 ∗ time of(a) + 5 ∗ time of(b)), even when the infeasible path

information is exact, which is certainly an overestimation, because patha can only be taken a maximum

of 4 times out of 10 in reality. With our approach we can determine the exact WCET if the infeasible

path information is exact.

51

Chapter 4

Simplifying WCET Analysis by Code

Transformations

In chapter 3 we presented our infeasible path detection and WCET analysis techniques. It is apparent

from our techniques that the number of paths from the start to end of a loop makes a lot of difference to

the complexity of the technique. Similarly, the WCET analysis technique as in [23] and infeasible path

detection technique of [6] depend on the number of paths in each iteration of loop. Therefore, it will be

very useful if the number of paths in each iteration of loop could be reduced. The other motivation behind

reducing the number of paths is that the timing prediction of loops via control flow (as in [23]) poses a

lot of problems for timing analyzer. A lot of space is required to represent all the paths, unavailability

of which might abort the timing analyzer. Moreover, a large number of paths will result in a significant

increase of the execution time of the timing analyzer.

In the last chapter we discussed the various types of infeasible paths that could be present in a

program/loop structure. There could be infeasible paths due to branch correlation and also there could

be infeasible paths due to correlation between assignment of a variable and a branch condition. There

could be other type of infeasible paths which span over multiple iteration of a loop. We named them as

iteration-spanning infeasible paths. Detection of infeasible paths in a program is an important but difficult

problem. A technique to detect and use infeasible path information is presented in [23]. We briefly

describe their technique here to motivate how it could be benefited by our code transformation approach.

In [23], the authors have used an effect based technique to determine the infeasible paths in a program

52

and used this information for calculating the WCET of a loop. They first determine how a conditional

branch can be effected by an assignment to a variable and/or the outcome of another conditional branch.

The conditional branch could have one of the three types of effects:unknown, fall-throughor jump. The

effects on the conditional branches by the assignment of a variable are then exploited while traversing the

basic blocks in every path of the program to determine whether the path is feasible or not. The reduction

of paths in each iteration of a loop will reduce the complexity of technique in [23] to a great extent.

In chapter 3 we presented our WCET analysis technique. The complexity of our WCET analysis

technique is also directly proportional to the number of paths between the start and end of each iteration.

Therefore a code transformation technique which could reduce the number of paths between the start and

end of each iteration can be very beneficial in reducing the complexity of our WCET analysis technique.

Due to the branches in a program structure, the number of possible paths in the program can grow

exponentially. This makes the detection of infeasible paths quite complex. In this chapter we present

a method to transform the code such that the number of paths in the program could be reduced and

hence the search space for the infeasible paths is brought down. This could reduce the complexity

of determining infeasible paths in a program and also result in tighter WCET. We present our code

transformation based technique [39] as a pre-processing step to reduce the number of paths and hence

reduce the complexity and time taken by other path based WCET analysis techniques.

4.1 Our Technique

We observe that the detection of infeasible paths is inherently exponential in terms of the number of

branch constraints. Hence, we try to develop a strategy to identify which branch conditions can be

removed from consideration during the detection of infeasible paths such that the complexity of the

detection algorithm could be reduced and at the same time a tighter bound on the WCET could be

provided. We also try to optimize the code such that the number of paths in the code can be reduced. We

try to exploit the constraints generated at branch conditions to optimize the code. In this section we will

illustrate our technique with the help of an example and also show how the WCET analysis as per [23]

can be benefited by it.

53

4.1.1 Reducing number of loop paths

Consider the piece of code shown in Figure 4.1. The values ofx in the Figure 4.1 seen at line number

4 are in the form of a simple harmonic motion around the value 0. The sequence of values seen forx at

line number 4 are (0,1,2,1,0,-1)*. ‘*’ represents zero or more repetitions.

The control flow graph for the code in Figure 4.1 is shown in Figure 4.2(A). From Figure 4.2(A), it is

apparent that there are 3 branch conditions and 8 paths in each iteration of the loop. The various possible

paths for each iteration in terms of basic blocks executed are given in Figure 4.3.

1 x = 0; t = 1;
2 for(i = 0; i < 10; i++)
3 {
4 if(x == 0)
5 S1;
6 else
7 S2;
8 if(x == 2)
9 t = -1;
10 if(x == -1)
11 t = 1;
12 x = x + t;
13 }

Figure 4.1: Example code to illustrate our technique

However, it could be observed from the branch constraints that the results of branch conditions at

block 3 and 6 could never be true simultaneously. Therefore block 4 can never be executed together

with block 7. Moreover, both (true/false) paths from block 3 reaches block 6 and 8 where block 6 is a

conditional statement and blocks between 6 and 8 could only be executed along with the false path from

block 3. Also variablex (which is checked for condition at block 6) does not get assigned along the true

path from block 3. Therefore, blocks 6 and 7 could be moved in the false path from block 3. Figure

4.2(B) shows the result of such a transformation.

Due to the transformation, the number of paths in the loop gets reduced to 6 from the initial number

8. Using the similar observation for conditional branches at blocks 3 and 8, the code can be optimized

as shown in Figure 4.2(C), reducing the number of paths to 5. And finally the code can be modified to as

shown in Figure 4.2(D), reducing the number of paths to 4.

The WCET analysis on the basis of the technique given in [23] will involve the following steps:

determining the effect of assignments on the three branch conditions and then using this information to

determine the infeasible sequence of paths. The technique will be greatly benefited by the optimization

54

x = 0; t = 1; i = 0

t = 1;

if (x = = -1)

t = -1;

if (x = = 2)

S1;

if (x = = 0)

if (i < 10)

x = x + t;

i++;

S2;

Exit loop

T F

T
F

F

F

T

T

1

2

3

4 5

6

7

8

9

10

11

12

x = 0; t = 1; i = 0

t = 1;

if (x = = -1)

t = -1;

if (x = = 2)

S1;

if (x = = 0)

if (i < 10)

x = x + t;

i++;

S2;

Exit loop

T F

T
F

F

F

T

T

1

2

3

4 5

6

7

8

9

10

11

12

(A) Original CFG (B) After first transformation

x = 0; t = 1; i = 0

t = 1;

if (x = = -1)

t = -1;

if (x = = 2)

S1;

if (x = = 0)

if (i < 10)

x = x + t;

i++;

S2;

Exit loop

T F

T
F

F

F

T

T

1

2

3

4 5

6

7

8

9

10

11

12

x = 0; t = 1; i = 0

t = 1;

if (x = = -1) t = -1;

if (x = = 2)

S1;

if (x = = 0)

if (i < 10)

x = x + t;

i++;

S2;

Exit loop

T F

TF

F

F

T

T

1

2

3

4 5

6

78

9

10

11

12

(C) After second transformation (D) Final CFG

Figure 4.2: Reduction of number of loop paths in Control Flow Graph

as the number of paths are decreased and so is the complexity of the technique which traverse over the

paths to determine feasibility of paths and also the sequence of paths which is infeasible in consecutive

iterations.

4.1.2 Equalizing path lengths

The optimization given in the previous section will transform the original example code into an optimized

code as shown in Figure 4.4. We now try to deduce a transformation for this code to further simplify

the WCET analysis. For our purpose, we propose a new type of block in the CFG along with basic

blocks. The new block will be called asfunctional blockwhich will represent a function. The various

paths inside such a functional block will not be considered in the WCET analysis. We will see later in

55

a : 2 3 4 6 7 8 9 10 11 b : 2 3 4 6 7 8 10 11
c : 2 3 4 6 8 9 10 11 d : 2 3 4 6 8 10 11
e : 2 3 5 6 7 8 9 10 11 f : 2 3 5 6 7 8 10 11
g : 2 3 5 6 8 9 10 11 h : 2 3 5 6 8 10 11

Figure 4.3: Possible paths for original loop

1 x = 0; t = 1;
2 for(i = 0; i < 10; i++)
3 {
4 if(x == 0)
5 S1;
6 else
7 {
8 S2;
9 if(x == 2)
10 t = -1;
11 else
12 if(x == -1)
13 t = 1;
14 }
15 x = x + t;
16 }

Figure 4.4: Example code after loop path reduction

this section that a safe WCET bound can still be reached even though the number of paths considered for

WCET are reduced without actually removing such paths.
We can identify the following paths, in each iteration of loop, from Figure 4.2(D).

a : 2 3 4 10 11 b : 2 3 5 6 8 10 11

c : 2 3 5 6 8 9 10 11 d : 2 3 5 6 7 10 11

The execution of loop will result in the following sequence of taken paths (abdbac)*. It is apparent

thataa, bb, cc, ddalong withad, abc, bdcand many more, are infeasible sequences of paths that cannot

be taken in consecutive iterations. Determining such infeasible sequences of paths with techniques as

in [23] will be quite complex and computationally expensive. However, we propose the following code

transformation to simplify things. The code in Figure 4.4 can be modified to the code as in Figure 4.5.

The CFG for the modified code is shown in Figure 4.6

The combining of the blocks in path from 6 to 10 intoupdatefunction and writing theupdatefunction

in the way shown in Figure 4.5 can be very fruitful for reducing the number of paths taken in any iteration

for the loop of Figure 4.4. Every call of theupdatefunction will take a constant amount of time due to

the structure of theupdatefunction, hence the time taken to execute block 6 in Figure 4.6 will always be

the same, irrespective of the path taken within the function. The block 6 is afunctionalblock in Figure

56

1 x := 0; t := 1;
2 For(i := 0; i < 9; i++)
3 {
4 if (x == 0)
5 S1;
6 else
7 {
8 S2;
9 update(x,t);
10 }
11 x = x + t;
12 }

update(x,t)
{

switch (x)
{

case 2 : t = -1; break;
case -1: t = 1; break;
default: t = t;

}
}

Figure 4.5: Example code after path length equalization

4.6, and a constant time can be assigned to it just like basic blocks.

x = 0; t = 1; i = 0

update (x , t)

S1;

if (x = = 0)

if (i < 10)

x = x + t;

i++;

S2;

Exit loop

T F

F

T

1

2

3

4 5

6

10

11

12

Figure 4.6: Control Flow Graph after path equalization

The transformation of code will result in the following two possible paths (from Figure 4.6) in each

iteration of loop, that should be considered by the analyzer to detect infeasible sequences of paths taken

in consecutive iterations.

a : 2 3 4 10 11 b : 2 3 5 6 10 11

The execution of loop will result in the following sequence of taken paths (abbbab)*, from which it

57

is easy to identify that the infeasible sequences of paths areaa, bbbb, abba, ababa. The transformation

results in reducing the search space for possible infeasible paths, to a great extent. Therefore the com-

plexity of infeasible path detection as per the technique in [23] is greatly reduced and will result in a tight

and safe bound on WCET. In the previous chapter we presented our constraint propagation based infea-

sible path detection technique. Our infeasible path detection technique is exponential in terms of number

of paths present in each iteration of a loop. Hence a code transformation which could reduce the number

of paths will be very beneficial to our technique (Note that in the previous chapter we used our technique

to detect infeasible paths spanning over two to three iterations of a loop, in our benchmarks. However,

if we try to use it for detecting infeasible paths spanning over even 5 iterations of a loop, it takes more

than 2 minute for some of the benchmarks). To incorporate our code transformation technique, a proper

method to handle thefunctionalblocks will be required. Even though there exists other infeasible paths

when the paths inside the update functions are considered, such infeasible paths can be ignored in WCET

analysis as every call to update function takes constant amount of time.

4.2 Conclusion

Detection of infeasible paths in a program is important for WCET analysis. However, it is difficult to

detect all the infeasible paths in a program and moreover the search space for infeasible paths could

grow exponentially in terms of number of branches in the program. Our proposed technique can not only

reduce the number of paths in the program by optimization but can also consolidate a group of paths

into one path as far as WCET analysis is concerned. Thus we reduce the complexity of infeasible path

detection and WCET analysis.

However, due to the introduction of functions there will be decrease in performance of the system.

The code transformation proposed by us will have to trade off performance with the reduction in com-

plexity of WCET analysis.

4.3 Discussion & Future Work

Mueller and Whalley in [37] have also exploited the idea of restructuring the control flow and repli-

cating code. However, they have used it for compiler optimization via avoiding conditional branches.

Previously, Puschner in [44, 45] have also given a code transformation based approach to reduce the

58

(A)

f1(i){
switch (i){

case 1: i= i+1;
break;

case 2: i = j+0;
break;

case 3: i = i+3;
break;

case 4: i = i+1;
break;

}
}

f2(i){
switch (i){

case 5:
printf (" i = %d

\n",i);
break;

case 6:
printf (" j = %d

\n",j);
break;

}
}

(B)

#include <stdio.h>
main() {

int i, j;
printf ("enter a number: ");
scanf ("%d", &i);
if (i == 1)

i = i+1;
if (i == 2)

i = j;
if (i == 3)

i = i+3;
if (i == 4)

++i;
if (i == 5)

printf (" i = %d\n",i);
if (i == 6)

printf (" j = %d\n",j);
}

#include <stdio.h>
main() {

int i, j;
printf ("enter a number: ");
scanf ("%d", &i);
f1(i);
f2(i);

}

Figure 4.7: Example Code: Toy6

complexity of WCET analysis. The author has proposed a single path paradigm for programs so that

there could only be a single path in a program hence making WCET determination simple. Such a

transformation will have to trade a lot of performance with predictability. On the other hand, with our

proposed technique, the WCET analysis complexity could be reduced to a large extent without much

trade off in performance. Another work by Al-Yaqoubi et. al. ([26, 1]) also describes a technique to

simplify the control flow of complex loops by partitioning the control flow into sections that are lim-

ited to a predefined number of paths. Each section is then treated by the timing analyzer as a loop that

iterates only once. Using the same exampleToy6 as in [1] (shown in Figure 4.7(A)), we see that our

transformation (shown in Figure 4.7(B)) can reduce the number of paths in Toy6 from 64 to 1, without

much increase in the code length and still giving a tight prediction for time using timing analyzer as in

[23]. Functionf1 in Figure 4.7(B) can be assigned a constant amount of time (equal to any single case

of the switch statement), similarly functionf2 can also be assigned a constant amount of time and both

f1, f2 are treated as functional block while calculating WCET. Hence, our approach can reduce the

complexity of control flow much better than that in [26], without trading of much in terms of code length

and tightness of estimation.

It should be noted that our idea for code transformation is not a timing analysis technique. It could

be used as apreprocessingstep to other infeasible path detection and timing analysis techniques such as

[23, 6]. Our idea could reduce the complexity of other techniques and provide tighter bounds on WCET.

Other techniques need to be modified in order to handle the functional blocks. However,at the present

59

stage we do not have a concrete technique, to determine the potential regions in the code which could

be worked upon for transformation and for handling the functional blocks in WCET analysis. In this

chapter we have illustrated our idea with the help of an example to signify the benefit of such a code

transformation in WCET analysis. For example, a certain type ofif structures in the program can be

optimized for reducing the paths as in the given example in this paper and also a group of basic blocks

can be converted into a functional block by transformingif statements into aswitchstatement inside the

new function. In our future work, we plan to come up with efficient methods to automatically determine

potential regions for transformation and incorporate thefunctionalblocks in our infeasible path detection

technique.

60

Chapter 5

Conclusion & Future Work

In this report we presented our techniques for timing analysis of real-time systems. In chapter 2 we

presented our technique to effectively determine the cache related preemption delay. With the help

of our experiments we showed that our technique results in much tighter bound than other existing

techniques. In chapter 3 we discussed our technique for timing analysis of loop behavior. Unlike, our

CRPD technique which analyzes the micro-architectural feature, the timing analysis of loop is done at

the programming language level. A tight bound on the execution time of the loop is determined by taking

into account the infeasible paths within the loop. There could exists an infeasible path from start to end

of each iteration and there could also exist an infeasible path spanning over multiple iteration of the

loops. Both type of infeasible paths are taken care of in our technique. Chapter 4 presented a method

to transform code such that the number of paths in the program, that should be considered for timing

analysis, is reduced.

There are various prospects for future work in regard to techniques presented in this report. A brief

description of future prospects for work is given below.

5.1 A Tighter Bound on CRPD

Consider a set of task for which the CRPD estimation is already made by existing techniques and it is

determined that the set of task is non-schedulable. However, it should be noted that the current CRPD

estimation techniques reports the maximum delay at any program point. Hence, there could exist other

program points where the CRPD value is lower than what reported by the technique. Therefore, it is

61

possible to schedule the set of tasks if the preempted tasks are not allowed to be preempted at program

points where they incur high CRPD and at the same time the preempting tasks still meets its deadlines.

Illustration of the idea with the help of an example follows.

5.1.1 Example

Consider a system of two tasks A (Ca = 0.8, Ta = 2, Da = Ta) and B (Cb = 1, Tb = 5, Db = Tb). Let

the CRPD cost of preemption is 0.9. Let the preemption of low priority task by high priority task could

be delayed by ‘d’. Lets consider the schedulability of the two tasks.

Ca < Ta − d

Cb + d Tb
Ta
e × Ca + CRPD × b Tb

Ta
c < Tb

substituting the values for the variables.

d < 0.8

1 + 3× 0.8 + CRPD × 2 < 5

3.4 + CRPD × 2 < 5

CRPD < 0.8

For the two tasks to be schedulable the CRPD value should be less than 0.8. However, the CRPD value

obtained from the static analysis is 0.9, hence the two tasks are statically determined as non-schedulable.

It should be noted that the CRPD value reported is for the region where the low priority task incurs max-

imum CRPD. Therefore, if the low-priority task is not allowed to get preempted in the regions where it

incurs CRPD greater than 0.8, the system could be made schedulable. The only issue that could arrise is

that if the high priority task is not allowed to preempt then it may miss the deadline. From above equa-

tions it is clear that, even if the high priority task is delayed for 0.8 sec, it would still meet its deadline.

Therefore, if the regions in low priority task which incur high CRPD has total execution time lesser than

0.8 sec, then the preemption of low priority task while executing such regions, could be avoided. And, all

the tasks would still meet their deadlines. This way the above set of tasks which appear non-schedulable

with given CRPD estimation could be schedulable by delaying the preemption of low-priority task at

regions of high CRPD value.

62

5.1.2 Future work

In order to schedule the set of tasks by delaying preemptions, it is important to have a method for

schedulability analysis and determining how much the preemption by various tasks could be delayed

such that the set of tasks is schedulable.

5.2 Simplifying WCET Analysis

In chapter 4 we presented our approach to simplify WCET analysis by code transformations. However,

our approach is presently just an idea which we showed with an example. It is important to come up with

a concrete technique to solve the following issues:

1. How to determine potential regions in the code which could be converted intofunctional blocks?

2. Are there scopes other thanifs (which we used in our illustration in chapter 4) which could be

converted intofunctional blocks? For e.g. a inner nested loop might can also be converted into a

functional block.

3. How to incorporate the effects inside afunctional blockfor detecting the infeasible paths? In fact

this is a serious issue, as it might be necessary to consider the paths inside thefunctional block

separately for detecting the infeasible paths and in that case the infeasible path detection will not

be benefitted by transforming parts of code intofunctional blocks.

63

Bibliography

[1] N. Al-Yaqoubi. Reducing timing analysis complexity by partitioning control flow. Master’s thesis,

Florida State University, Tallahassee, FL, 1997.

[2] P. Altenbernd. On the false path problem in hard real-time programs. In8th Euromicro Workshop

on Real-Time Systems, 1996.

[3] S. Basumallick and K. Nilsen. Cache issues in real-time systems. InACM PLDI Workshop on

Language, Compiler, and Tool Support for Real-Time Systems, June 1994.

[4] Krishna Belkhale and Alexander J. Suess. Timing analysis with known false sub graphs. InInter-

national Conference on Computer-Aided Design (ICCAD), 1995.

[5] David Blaauw, Rajendran Panda, and Abhijit Das. Removing user-specified false paths from timing

graphs. InProceedings of the 37th conference on Design automation, pages 270–273, 2000.

[6] R. Bodik, R. Gupta, and M. Lou Soffa. Refining data flow information using infeasible paths. In

ESEC/SIGSOFT FSE, 1997.

[7] R. Bodik, R. Gupta, and M.L. Soffa. Interprocedural conditional branch elimination. InProceedings

of the ACM SIGPLAN ’97 Conference on Programming Language Design and Implementation,

June 1997.

[8] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transactions

on Computers, C-35(8):677–691, August 1986.

[9] Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.ACM

Computing Surveys, 24(3):293–318, 1992.

64

[10] D. Burger, T. Austin, and S. Bennett. Evaluating future microprocessors: The simplescalar toolset.

Technical Report CS-TR96-1308, University of Wisconsin-Madison, 1996.

[11] J. Busquets-Mataix, J. Serrano, R. Ors, P. Gil, and A. Wellings. Adding instruction cache effect to

schedulability analysis of preemptive real-time systems. InReal-Time Technology and Applications

Symposium, pages 204–212, June 1996.

[12] M. Campoy, A. P. Ivars, and J. V. Busquets-Mataix. Static use of locking caches in multitask

preemptive real-time systems. InIEEE/IEE Real-Time Embedded System Workshop (Satellite of

the IEEE RealTime Systems Symposium), December 2001.

[13] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of the cache behavior of

nested loops. InACM SIGPLAN ’01 Conference on Programming Language Design and Imple-

mentation (PLDI’01), pages 286–297, 2001.

[14] Compaq. Extended static checking for java. http://research.compaq.com/SRC/esc/Simplify.html.

[15] CUDD. Colorado University Decision Diagram Package Version 2.3.1. Free software.

http://vlsi.colorado.edu/ fabio/CUDD/.

[16] E. W. Dijkstra.A Discipline of Programming. Prentice-Hall, 1997.

[17] Harry Dwyer and John Fernando. Establishing a tight bound on task interference in embedded

system instruction caches. InProceedings, CASES 2001, pages 8–14, 2001.

[18] Jakob Engblom and Andreas Ermedahl. Modeling complex flows for worst-case execution time

analysis. In21st IEEE Real-Time Systems Symposium, 2000.

[19] A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of execution time. In

Proceedings of EUROPAR’97, August 1997.

[20] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis for program transformations with

caches of arbitrary associativity.ACM SIGPLAN Notices, 33(11):228–239, 1998.

[21] E. Goldberg and Alexander Saldanha. Timing analysis with implicitly specified false path. InInt.

Workshop on Timing Issues in the Specification and Synthesis of Digital Designs, 1999.

65

[22] Seoul National University Real-Time Research Groups. SNU real-time benchmarks.

http://archi.snu.ac.kr/realtime/benchmark/.

[23] C.A. Healy and D.B. Whalley. Automatic detection and exploitation of branch constraints for

timing analysis.IEEE Transactions on Software Engineering, 28(8), 2002.

[24] M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches.IEEE Transactions on Com-

puters, 38(12):1612–1630, December 1989.

[25] D. Kirk. SMART (Strategic Memory Allocation for Real-Time) cache design. InProceedings of

10th IEEE Real-Time Systems Symp., pages 229–239, December 1989.

[26] L. Ko, N. Al-Yaqoubi, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and M. G. Harmon. Timing

constraint specification and analysis. InSoftware Practice and Experience, pages 77–98, January

1999.

[27] C.-G. Lee, J. Hahn, Y.-M. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee, and C. Kim. Analysis

of cache-related preemption delay in fixed-priority preemptive scheduling. InProceedings of 17th

IEEE Real-Time Systems Symp., pages 264–274, December 1996.

[28] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S. Kim.

Enhanced analysis of cache-related preemption delay in fixed-priority preemptive scheduling. In

IEEE Real-Time Systems Symposium, pages 187–198, December 1997.

[29] X. Li, T. Mitra, and A. Roychoudhury. Accurate timing analysis by modeling caches, speculation

and their interaction. InDesign Automation Conference (DAC), 2003.

[30] Xianfeng Li, Hemendra Singh Negi, Tulika Mitra, and Abhik Roychoudhury. Design space ex-

ploration of caches using compressed traces. In18th Annual ACM International Conference on

Supercomputing (ICS), June 2004.

[31] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software using implicit

path enumeration. InProceedings of the 32nd ACM/IEEE Design Automation Conference, 1995.

[32] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance estimation of embedded

software with instruction cache modeling.ACM Transactions on Design Automation of Electronic

Systems, 4(3):257–279, 1999.

66

[33] Jochen Liedtke, Hermann Hartig, and Michael Hohmuth. OS-controlled cache predictability for

real-time systems. InProceedings of the Third IEEE Real-Time Technology and Applications Sym-

posium (RTAS ’97), pages 213–227, Washington - Brussels - Tokyo, June 1997. IEEE.

[34] Thomas Lundqvist and Per Stenstrom. Integrating path and timing analysis using instruction-level

simulation techniques. InProceedings of the ACM SIGPLAN Workshop on Languages, Compilers,

and Tools for Embedded Systems, pages 1–15, 1998.

[35] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage hierar-

chies.IBM Systems Journal, 9(2):78–117, 1970.

[36] T. Mitra, A. Roychoudhury, and X. Li. Timing analysis of embedded software for speculative

processors. InACM Intl. Symp. on System Synthesis (ISSS), 2002.

[37] F. Mueller and D. B. Whalley. Avoiding conditional branches via code replication. InACM SIG-

PLAN Conference on Programming Language Design and Implementation, pages 55–66, June

1995.

[38] Hemendra Singh Negi, Tulika Mitra, and Abhik Roychoudhury. Accurate estimation of cache-

related preemption delay. InCODES+ISSS Merged Conference, October 2003.

[39] Hemendra Singh Negi, Abhik Roychoudhury, and Tulika Mitra. Simplifying wcet analysis by code

transformations. In4th International Workshop on WCET Analysis, June 2004.

[40] F. Nielson, H. R. Nielson, and C. Hankin.Principles of Program Analysis. Springer-Verlag Berlin

Heidelberg, 1999.

[41] C.Y. Park. Predicting program execution times by analyzing static and dynamic program paths.

Journal of Real-time Systems, 5(1), 1993.

[42] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.Numerical Recipes in C: The Art

of Scientific Computing. New York: Cambridge University Press, 1992.

[43] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking in multitasking hard

real-time systems. InProceedings of the 23rd IEEE International Real-Time Systems Symposium,

December 2002.

67

[44] Peter Puschner. Transforming execution-time boundable code into temporally predictable code.

In Proceedings of IFIP World Computer Congress, Stream on Distributed and Parallel Embedded

Systems, pages 163–172, 2002.

[45] Peter Puschner and Alan Burns. Writing temporally predictable code. InProceedings of 7th IEEE

International Workshop on Object-Oriented Real-Time Dependable Systems, pages 85–91, January

2002.

[46] J. Stankovic. Misconceptions about real-time computing. InIEEE Computer, october 1988.

[47] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient longest executable path

search for programs with complex flows and pipeline effects. InProceedings of the international

conference on Compilers, architecture, and synthesis for embedded systems, pages 132–140, 2001.

[48] Jan Staschulat and Rolf Ernst. Multiple process execution in cache related preemption delay anal-

ysis. InEMSOFT 2004, September 2004.

[49] R. A. Sugumar and S. G. Abraham. Efficient simulation of multiple cache configurations using

binomial trees. Technical Report CSE-TR-111-91, CSE Division, University of Michigan, 1991.

[50] Yudong Tan and Vincent J. Mooney III. Timing analysis for preemptive multi-tasking real-time

systems with caches. InProceedings of the Design, Automation and Test in Europe Conference and

Exhibition Volume II (DATE’04), February 2004.

[51] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache related preemption delay in

preemptive real time systems. InProceedings of 8th International Workshop on Hardware/Software

Codesign (CODES2000), pages 67–71, May 2000.

[52] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program predictability. In2003 ACM

International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS’03)

, San Diego, 2003.

[53] Reinhard Wilhelm. Why AI + ILP Is Good for WCET, but MC Is Not, Nor ILP Alone. InVMCAI

2004, volume 2937 ofLNCS, pages 309–322, 2004.

[54] A. Wolfe. Software-based cache partitioning for real-time applications.Journal of Computer &

Software Engineering, 1(3), 1994.

68

